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Resumo

A evolução das Tecnologias de Informação e Comunicação trouxe tanto benefícios quanto

riscos, especialmente com o surgimento da Internet das Coisas (IoT), que aumentou as

vulnerabilidades a ataques cibernéticos. Neste contexto, Sistemas de Detecção de Intrusão

(IDS), que utilizam aprendizado de máquina para classificar tráfego malicioso, são essen-

ciais para identificar ataques em redes IoT. Contudo, classificadores planos tradicionais,

sejam binários ou multiclasse, apresentam limitações no trade-off entre alta sensibilidade

na filtragem de intrusões e granularidade na identificação de tipos de ataque. Diante disso,

este trabalho propôs e investigou classificadores hierárquicos para detecção de intrusões

em redes IoT, visando combinar a alta sensibilidade da classificação binária com a capa-

cidade de distinção das formas de ataque proporcionadas pela classificação multiclasse.

Utilizando o conjunto de dados CICIoT2023, dois modelos hierárquicos foram construí-

dos e avaliados: Benigno-DDoS-Multiataque (BDM) e Benigno-Recon-DDoS-Multiataque

(BRDM). Os classificadores hierárquicos combinaram com sucesso as qualidades de am-

bos os classificadores planos, com o BRDM aprimorando a detecção ao adicionar um nível

específico para ataques Recon, reduzindo erros de predição e superando o modelo multi-

classe na detecção das classes como Spoofing, Brute Force e Web-Based. Conclui-se que a

classificação hierárquica é uma abordagem promissora para IDS em redes IoT, superando

as limitações dos classificadores planos e contribuindo para a interpretabilidade e robustez

dos sistemas.

Palavras-chave: Classificação Hierárquica, Sistemas de Detecção de Intrusão (IDS), In-

ternet da Coisas (IoT), Cibersegurança, Aprendizado de Máquina
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1 Introdução

Tecnologias de Informação e Comunicação (TICs) estão em um contínuo e acele-

rado processo de desenvolvimento. A Internet das Coisas (IoT) está diretamente inserida

nesse cenário de avanço das TICs, conectando dispositivos físicos à Internet e criando

um ambiente digital mais integrado. No entanto, essa conectividade também amplia as

vulnerabilidades, facilitando a ação de cibercriminosos, que podem explorar falhas nesses

dispositivos para realizar ataques em larga escala, comprometendo redes inteiras. Nesse

cenário, sistemas de segurança, como os Sistemas de Detecção de Intrusão (IDS), têm

mostrado ser essenciais (HAFEZIAN; NADERAN; JADERYAN, 2024). Um IDS tem o

objetivo de detectar tentativas de ataque em um ambiente computacional a partir do

monitoramento e análise de eventos que ocorrem nesse ambiente, frequentemente recor-

rendo a algoritmos de aprendizado de máquina para classificar o tráfego como normal ou

malicioso.

A área de aprendizado de máquina visa capacitar sistemas computacionais a apren-

der e a realizar previsões com base em dados disponíveis. Isso é alcançado por meio de

algoritmos que identificam padrões e características significativas no conjunto de dados,

construindo um modelo de classificação. No contexto do aprendizado supervisionado, são

construídos classificadores que aprendem a partir de dados rotulados, visando prever ró-

tulos reais com precisão, mesmo em casos em que o conjunto de treinamento pode ser

limitado.

No âmbito de sistemas de detecção de intrusão, o aspecto mais crítico consiste em

evitar que tráfego malicioso seja classificado como benigno, uma vez que tal falha com-

prometeria diretamente a integridade e a segurança da rede (JOO; HONG; HAN, 2003).

Ademais, a correta classificação do tráfego de rede desempenha um papel fundamental

não apenas na detecção de atividades maliciosas, mas também na identificação dos tipos

específicos de ataques em execução. Essa distinção é essencial, uma vez que possibilita

o planejamento de estratégias de defesa mais direcionadas e específicas ao ataque. Para

enfrentar esses desafios, diferentes paradigmas de classificação são empregados, como a

classificação binária e a multiclasse. A primeira distingue entre duas categorias principais,

como tráfego benigno e malicioso, sendo particularmente útil na filtragem de ataques no

geral. Por sua vez, a classificação multiclasse amplia esse escopo ao discriminar diferentes

categorias de ataques, permitindo compreender a natureza específica da ameaça, ainda

que tal abordagem acarrete maior complexidade e risco de erros de detecção, conforme o

número de classes aumenta.

Dessa forma, embora os métodos tradicionais de classificação binária e multiclasse,
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também conhecidos como classificadores planos, tenham desempenhado um papel impor-

tante no avanço dos sistemas de detecção de intrusão, eles apresentam limitações quando

aplicados a problemas complexos, como os ataques em redes IoT, conforme evidenciado

pelas investigações discutidas na Seção 2.2.1. A classificação binária, apesar de eficiente

para separar tráfego malicioso de benigno, não fornece informações detalhadas sobre o

tipo específico de ataque. Já a classificação multiclasse, embora capaz de distinguir entre

diferentes categorias de ataques, sofre com o aumento de complexidade à medida que o

número de classes aumenta, o que pode diminuir a sensibilidade do modelo na filtragem

de ataques.

Nesse contexto, a classificação hierárquica surge como uma alternativa promissora

à classificação plana tradicional, pois organiza as classes em uma estrutura hierárquica,

explorando explicitamente as relações estruturais entre as classes (UDDIN et al., 2025).

Essa abordagem permite, por exemplo, que o sistema primeiramente diferencie o tráfego

benigno do malicioso e, em seguida, refine progressivamente a detecção em níveis mais

específicos, categorizando os tipos de ataques de acordo com suas características e si-

milaridades. Assim, esse método combina os benefícios de ambos os modelos binário e

multiclasse, decompondo o problema de classificação em subproblemas menores e mais

manejáveis.

Nesse sentido, o propósito deste estudo é investigar abordagens de classificação

hierárquica para a criação de modelos de detecção de intrusão em ambientes IoT. Consi-

derando a complexidade e a diversidade dos ataques, busca-se avaliar se a utilização de

estruturas hierárquicas pode oferecer ganhos em robustez e interpretabilidade em relação

aos modelos tradicionais de classificação binária e multiclasse. Para tal, os modelos serão

treinados e testados com o conjunto de dados “CICIoT2023”, um extenso conjunto de

dados de ataques em redes IoT desenvolvido pelo Canadian Institute for Cybersecurity

(NETO et al., 2023).

Ao propor e analisar modelos hierárquicos aplicados ao conjunto de dados CI-

CIoT2023, este trabalho pretende não apenas preencher lacunas existentes na literatura,

mas também fornecer insights práticos para o desenvolvimento de sistemas de segurança

mais eficazes e adaptados à realidade dinâmica das redes IoT.

1.1 Motivação

De acordo com o Panorama de Ameaças para a América Latina 2024, o Brasil

ocupa a posição de segundo país mais atacado no mundo, registrando 1.379 ataques ci-

bernéticos por minuto, o que reforça a importância do investimento em cibersegurança no

país (CNN Brasil, 2024b). Além disso, o aumento de 8,86% no número de ataques entre

o primeiro e o segundo semestre de 2023 evidencia a crescente sofisticação das ameaças
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digitais e a vulnerabilidade das redes nacionais (CNN Brasil, 2024a). Para a sociedade,

esses ataques comprometem a segurança de dados pessoais e institucionais, gerando pre-

juízos financeiros e riscos à privacidade. Esses números reforçam a importância do estudo

e desenvolvimento de tecnologias capazes de mitigar essas ameaças, entre elas, algorit-

mos de aprendizado de máquina aplicados a IDS, que podem melhorar a identificação de

ameaças em tempo real.

Paralelamente, a Internet das Coisas tem demonstrado um crescimento contínuo.

O número de dispositivos conectados atingiu a marca de 16,6 bilhões no final de 2023, re-

presentando um aumento de 15% em relação ao ano anterior, com projeções que apontam

para 40 bilhões até 2030 (IoT Analytics, 2025). Contudo, essa expansão vem acompanhada

de riscos: em 2023, observou-se um aumento de 400% em ataques de malware direciona-

dos a dispositivos IoT em comparação com 2022. Assim, a ampliação da superfície de

ataque torna ainda mais crítica a necessidade de sistemas eficazes de detecção de intrusão

especificamente voltados para redes IoT, capazes de identificar e mitigar vulnerabilidades,

proteger a integridade dos dados e garantir a confiança necessária para a expansão segura

desse ecossistema.

Nesse cenário, estudos recentes têm demonstrado avanços significativos por meio

da aplicação de técnicas de aprendizado de máquina, empregando principalmente classi-

ficadores binários e multiclasse (KUMAR; RASTOGI; RANGA, 2024; HAFEZIAN; NA-

DERAN; JADERYAN, 2024; ESTEVES, 2025). No entanto, observa-se que a maioria

desses trabalhos concentra-se em abordagens planas que, embora úteis, apresentam suas

próprias limitações. A classificação hierárquica, por sua vez, ainda é pouco explorada

nesse domínio, o que evidencia uma lacuna de pesquisa a ser preenchida. Tal cenário re-

força a relevância de investigar o potencial dessa abordagem para aprimorar a detecção

de intrusões em ambientes IoT.

Dessa maneira, a motivação desta pesquisa é contribuir para o avanço das téc-

nicas de identificação de atividades maliciosas em redes IoT por meio da exploração da

classificação hierárquica, uma abordagem ainda pouco investigada nesse domínio.

1.2 Objetivos

O objetivo principal deste estudo é construir um classificador hierárquico para a

detecção de intrusões em redes IoT, de modo a combinar a eficiência da filtragem de ata-

ques obtida com classificadores binários e a capacidade de distinção entre múltiplos tipos

de ataques, característica da classificação multiclasse. Ao longo desse processo, almeja-se

atingir os seguintes objetivos específicos:

• Investigar diferentes formas de organização da hierarquia de classificadores, com o
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intuito de reduzir a confusão entre classes e aprimorar a detecção de ataques;

• Validar o desempenho preditivo e computacional do modelo proposto para o con-

junto de dados CICIoT2023;

• Comparar seus resultados em relação a abordagens planas binária e multiclasse;

• Analisar os erros de classificação em cada nível hierárquico, identificando classes

mais problemáticas e tipos de ataques que permanecem desafiadores;

• Avaliar a contribuição da abordagem hierárquica para a interpretabilidade e robustez

dos sistemas de detecção de intrusão em ambientes IoT.

1.3 Método

O processo metodológico adotado neste estudo pode ser estruturado em quatro

etapas principais. Primeiramente, realiza-se a coleta e a análise do conjunto de dados CI-

CIoT2023, com o objetivo de compreender suas características e potenciais desafios para

a modelagem. Na sequência, aplica-se o pré-processamento e a transformação dos dados,

incluindo procedimentos de limpeza, padronização e adequação dos atributos para garan-

tir sua qualidade e compatibilidade com os algoritmos de aprendizado de máquina. Em

um terceiro momento, são construídos e treinados tanto os classificadores planos (biná-

rio e multiclasse) quanto os classificadores hierárquicos propostos, assegurando condições

experimentais equivalentes em termos de ambiente computacional e conjunto de treina-

mento. Por fim, os modelos são avaliados e comparados a partir de métricas padronizadas,

de modo a verificar o alcance do objetivo principal e analisar as contribuições específicas

da abordagem hierárquica frente às estratégias tradicionais. O desempenho preditivo dos

algoritmos será avaliado por meio de métricas como acurácia, precisão, recall, F1-score,

obtidas a partir da matriz de confusão, enquanto o desempenho computacional será anali-

sado com base no tempo de treinamento, no tempo de teste e na memória RAM ocupada

pelo modelo.

Para conduzir os testes deste estudo, os códigos foram desenvolvidos e executados

no ambiente Jupyter Notebook, utilizando a linguagem Python (THOMAS et al., 2016).

Para a implementação dos modelos, foram utilizadas as bibliotecas Scikit-learn (Scikit-

learn Developers, 2025) e XGBoost (XGBoost Developers, 2022). Ademais, a manipulação

e análise do conjunto de dados serão feitas por meio da biblioteca Pandas (MCKINNEY,

2010).
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1.4 Organização da Monografia

A organização deste trabalho está estruturada da seguinte forma:

• Capítulo 2: apresenta a revisão bibliográfica, contemplando a fundamentação teórica

e os trabalhos correlatos;

• Capítulo 3: descreve os passos seguidos para a execução do método proposto;

• Capítulo 4: expõe os resultados obtidos pelos experimentos;

• Capítulo 5 retoma os principais pontos abordados, destacando os insights alcança-

dos, bem como as limitações do estudo e perspectivas para pesquisas futuras.
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2 Revisão Bibliográfica

Este capítulo apresenta a revisão bibliográfica que fundamenta teoricamente o

desenvolvimento deste trabalho. Serão abordados os principais conceitos e tecnologias re-

lacionados ao tema, com o objetivo de oferecer uma base sólida para a compreensão do

problema estudado. Além disso, serão analisados trabalhos correlatos que exploram abor-

dagens semelhantes, permitindo identificar lacunas, inspirações e diferenciais que orientam

a proposta desta pesquisa.

2.1 Fundamentação Teórica

Esta seção apresenta os principais conceitos e fundamentos necessários para o

desenvolvimento deste trabalho. O objetivo é contextualizar os elementos centrais rela-

cionados ao problema abordado e fornecer a base teórica que sustenta as metodologias

empregadas.

Inicialmente, discute-se o conceito de Internet das Coisas (IoT), destacando sua

crescente relevância e os desafios de segurança nesse ambiente distribuído. Em seguida,

aborda-se a área de Cibersegurança, enfatizando as ameaças e vulnerabilidades que afetam

redes IoT e que motivam a busca por soluções eficazes de monitoramento e defesa.

Na sequência, são apresentados os Sistemas de Detecção de Intrusão (IDS), des-

crevendo suas características, classificações e importância na identificação de atividades

maliciosas. Posteriormente, explora-se o Aprendizado de Máquina, com foco em suas fun-

cionalidades, metodologia e nos principais tipos de aprendizado.

Mais adiante, essa seção discute o conceito de Modelos de Classificação e suas

possíveis abordagens, focando na distinção entre classificação plana e hierárquica. Em

seguida, são apresentados os Algoritmos de Classificação utilizados neste trabalho, desta-

cando seus princípios de funcionamento. Por fim, são detalhadas as Métricas de Avaliação

adotadas nesta pesquisa, essenciais para medir o desempenho dos modelos e analisar sua

eficácia frente ao problema de classificação.

2.1.1 Internet das Coisas

As Redes de Internet das Coisas (IoT) representam um ecossistema interconec-

tado de dispositivos inteligentes, sensores, atuadores e plataformas computacionais que

permitem a coleta, processamento e compartilhamento de dados e recursos em tempo real,

agindo diante de situações e mudanças no ambiente. Segundo (BAHGA; MADISETTI,

2015), a IoT envolve tecnologias e arquiteturas que possibilitam a comunicação entre má-
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quinas (M2M) e entre humanos e dispositivos, promovendo a automação e a eficiência em

diversas aplicações.

O conceito da IoT surgiu em 1980, quando programadores da Carnegie Mellon

University criaram um sistema que monitorava a disponibilidade de bebidas em uma má-

quina de refrigerantes, permitindo que pudessem verificar remotamente se valia a pena

se deslocarem até a máquina. Embora esse conceito tenha surgido nessa época, o termo

"Internet das Coisas"foi cunhado apenas em 1999 por Kevin Ashton, então diretor execu-

tivo do Auto-ID Labs no MIT (MADAKAM; RAMASWAMY; TRIPATHI, 2015). Desde

então, diversos dispositivos físicos vêm sendo conectados à Internet, criando um ambiente

digital mais integrado para melhorar a qualidade de vida e a automação em diversas áreas

(NETO et al., 2023). No transporte, por exemplo, dispositivos IoT têm sido utilizados

para coordenar o trânsito e prevenir acidentes (EURICO, 2023). Já na saúde, pacientes

podem ser monitorados por uma rede de sensores interconectados para identificar even-

tuais situações de risco e agilizar a atuação médica (ALBANDES et al., 2019).

Nos últimos anos, a sociedade experimentou um aumento drástico nas conexões

IoT, tendência que se manterá nos próximos anos (ALANI; DAMIANI, 2023). Contudo,

esse ambiente digital cada vez mais integrado amplia a superfície de ataque disponível

para agentes mal-intencionados, criando um cenário propício à exploração de vulnerabili-

dades. Em consequência, observa-se um crescimento significativo na ocorrência de ataques

direcionados a dispositivos e redes IoT (NETO et al., 2023).

2.1.2 Cibersegurança

Cibersegurança é o conjunto de práticas, tecnologias e processos projetados para

proteger redes, dispositivos e dados contra ameaças digitais. O principal objetivo da ciber-

segurança é garantir a proteção da informação através da aplicação da tríade Confiden-

cialidade, Integridade e Disponibilidade (CID). A confidencialidade garante que apenas

indivíduos autorizados tenham acesso às informações, a integridade assegura que os da-

dos permaneçam inalterados e confiáveis e a disponibilidade garante que os sistemas e

informações estejam acessíveis sempre que necessários (STEINBERG et al., 2023).

Ciberataques podem comprometer qualquer um desses princípios, causando desde

o vazamento de informações sensíveis até a interrupção de serviços essenciais. Os principais

métodos de ataques cibernéticos incluem Denial of Service (DoS e DDoS), Abuse Tools,

Logical Bombs, Sniffers, Trojan Horses, Virus, Worms, Spams e Botnets. No ataque DoS,

o invasor sobrecarrega um sistema com mensagens, impedindo o tráfego legítimo, e a

ampliação desse ataque usando múltiplos dispositivos infectados é conhecida como ataques

DDoS. Abuse Tools exploram vulnerabilidades de redes, enquanto Logical Bombs ativam

códigos maliciosos diante de eventos específicos. Sniffers interceptam dados para capturar

informações sensíveis e Trojan Horses se disfarçam de software útil para executar códigos
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perigosos. Vírus infectam arquivos e precisam de interação humana para se espalhar,

enquanto Worms se replicam automaticamente em redes. Botnets são redes de sistemas

infectados usadas para espalhar malware, realizar ataques e roubar informações (LI; LIU,

2021).

Este trabalho foca em sete classes de ataques distintas: DDoS, DoS, Recon, Web-

Based, Brute Force, Spoofing e Mirai. Como já explicado, DDoS e DoS são ataques que

visam comprometer a disponibilidade de dispositivos IoT, exemplos incluem SYN Flood,

UDP Flood e HTTP Flood. Recon refere-se à coleta de informações sobre um alvo, in-

cluindo técnicas como Port Scan e OS Scan. Ataques Web-Based exploram vulnerabili-

dades em serviços web, como SQL Injection e XSS. Brute Force busca acesso a sistemas

por tentativa repetitiva de credenciais, como no Dictionary Brute Force. Spoofing envolve

falsificação de identidade para acessar sistemas ou roubar dados, incluindo ARP e DNS

spoofing. Mirai é um malware que transforma dispositivos IoT em botnets para ataques

DDoS massivos (NETO et al., 2023).

Dentre os ataques investigados, dois se destacam por terem características di-

ferentes dos demais: DDoS e Recon. O ataque DDoS distingue-se por ser de natureza

eminentemente volumétrica, caracterizando-se pela geração massiva de tráfego malicioso

com o objetivo de sobrecarregar os recursos do alvo e comprometer sua disponibilidade

(ZARGAR; JOSHI; TIPPER, 2013). Já o ataque Recon difere por se tratar de uma etapa

preparatória no ciclo de um ataque, na qual o agente mal-intencionado realiza a coleta

sistemática de informações sobre o alvo - como serviços em execução, portas abertas

e sistemas operacionais utilizados - sem necessariamente executar ações destrutivas ou

intrusivas de forma imediata (ALANI; DAMIANI, 2023).

2.1.3 Sistemas de Detecção de Intrusão

Os Sistemas de Detecção de Intrusão (IDS) são ferramentas de segurança proje-

tadas para monitorar um ambiente computacional em busca de atividades suspeitas que

possam violar as regras de segurança desse ambiente (BERGAMASCO et al., 2021). Seu

objetivo principal é identificar acessos não autorizados, tentativas de exploração de vulne-

rabilidades e comportamentos anômalos, alertando administradores para mitigar possíveis

ameaças. Portanto, ele funciona como uma segunda linha de defesa a invasões.

Existem dois tipos principais de IDS com base no posicionamento: Host-based IDS

(HIDS) e Network-based IDS (NIDS). O sistema NIDS monitora o tráfego do segmento de

rede no qual está inserido. A detecção é feita através da captura e análise dos cabeçalhos e

conteúdos dos pacotes que passam pela rede. Já os sistemas HIDS monitoram apenas um

único host na rede, eles são instalados diretamente em dispositivos individuais da rede,

monitorando apenas o tráfego de entrada e saída desse equipamento (ZARPELÃO et al.,

2017).
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Outra forma de classificar Sistemas de Detecção de Intrusão é com base na meto-

dologia de detecção, em que as duas formas principais são por anomalia e por assinatura.

IDS Baseados em Assinatura comparam os dados de tráfego de rede com um banco de da-

dos de assinaturas conhecidas de ameaças; se a atividade do sistema corresponder a uma

assinatura na base de dados, o sistema emite um alerta indicando um possível ataque.

IDS Baseados em Anomalia procuram por padrões que se desviam significativamente do

que é considerado normal, através da comparação dos eventos com um modelo de com-

portamento esperado. Quando atividades saem desses limites predefinidos, o sistema os

identifica como anomalias e emite alertas (PIETRO; MANCINI, 2008). Neste trabalho,

investiga-se Sistemas de Detecção de Intrusão Network-based com detecção por anomalia.

Inicialmente, administradores de sistemas monitoravam manualmente atividades

suspeitas em consoles, identificando possíveis intrusões de forma intuitiva, mas não es-

calável. Nos anos 1970 e 1980, a análise passou a ser feita por meio de logs de auditoria

impressos, o que era demorado e servia mais para investigações pós-incidente do que para

prevenção. Nos anos 1990, surgiram os primeiros sistemas de detecção de intrusão em

tempo real, permitindo identificar e responder a ataques conforme ocorriam. Atualmente,

os esforços se concentram em desenvolver sistemas mais eficazes para grandes redes, en-

frentando desafios como novas ameaças e a constante evolução dos ambientes computaci-

onais (MRCET, 2025). Nos últimos anos, o uso de Inteligência Artificial e Aprendizado

de Máquina tem revolucionado os Sistemas de Detecção de Intrusão, tornando-os mais

eficazes na identificação de ameaças desconhecidas e na resposta a ataques em tempo real

(HORCHULHACK; SANTIN; VIEGAS, 2024).

2.1.4 Aprendizado de Máquina

Aprendizado de Máquina é uma subárea da Inteligência Artificial que se concentra

no desenvolvimento de algoritmos que permitem aos computadores aprender padrões e

tomar decisões através da experiência (MITCHELL, 1997). De acordo com Shalev-Shwartz

e Ben-David (2014), o termo refere-se à detecção automatizada de padrões significativos

em dados.

O Aprendizado de Máquina tem aplicações em diversas áreas, como, por exemplo,

nas áreas de saúde e segurança. Ele desempenha um papel essencial no diagnóstico médico

baseado em imagens, permitindo a identificação precoce de doenças como câncer por meio

da análise automática de exames de imagem (GHASSEMI et al., 2020) (DESAI; SHAH,

2021) (ARDABILI et al., 2020). Já na segurança cibernética, técnicas de aprendizado de

máquina são aplicadas na detecção de anomalias em redes e na identificação de possíveis

ameaças, aumentando a capacidade de resposta contra ataques cibernéticos (MASEER et

al., 2021) (AHMAD et al., 2022) (NETO et al., 2023).

O processo de desenvolvimento de um modelo de aprendizado de máquina segue
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diversas etapas essenciais, as quais correspondem ao fluxo de Descoberta de Conhecimento

em Bancos de Dados (KDD), um processo estruturado para a extração de conhecimento

a partir de dados (FAYYAD; PIATETSKY-SHAPIRO; SMYTH, 1996). A primeira etapa

é a seleção de dados, que envolve a escolha de um conjunto de dados relevante e represen-

tativo para o problema a ser resolvido. Em seguida, realiza-se o tratamento desses dados,

incluindo limpeza, tratamento de valores ausentes e correção de inconsistências. A fase

de transformação dos dados envolve normalização, codificação de variáveis categóricas

e extração de características para melhorar o desempenho do modelo. A etapa seguinte

consiste na mineração de dados, na qual se aplicam métodos e algoritmos para identificar

padrões úteis dentro do conjunto de dados. Por fim, é feita a interpretação e a avaliação

do desempenho do modelo por meio de métricas como acurácia, precisão, recall e F1-score

(MOSAFI, 2022).

Existem dois tipos principais de aprendizado: supervisionado e não supervisio-

nado. No aprendizado supervisionado, o modelo é treinado a partir de um conjunto de

dados rotulado, ou seja, composto por exemplos cujas saídas foram previamente deter-

minadas por especialistas (BISHOP, 2006). Esse processo permite que o modelo aprenda

as relações entre as variáveis de entrada e suas respectivas saídas, de forma a generalizar

esse conhecimento e realizar previsões sobre novos dados não rotulados provenientes de

cenários reais. Durante o treinamento, o algoritmo ajusta iterativamente seus parâmetros

internos para minimizar o erro entre as saídas previstas e as saídas corretas fornecidas

nos dados de treino. Por sua vez, no aprendizado não supervisionado, utilizam-se dados

não rotulados, empregando-se algoritmos capazes de identificar padrões e similaridades

sem intervenção humana direta e treinamento prévio. Nessa abordagem, uma das princi-

pais tarefas é o agrupamento (clustering) de um conjunto de dados em subconjuntos de

instâncias semelhantes, de modo que a homogeneidade entre os elementos de um mesmo

grupo seja maximizada, enquanto a similaridade entre elementos de grupos distintos seja

minimizada (FACELI et al., 2011).

O aprendizado supervisionado pode ser categorizado, de forma geral, em duas

principais tarefas: classificação e regressão (FACELI et al., 2011). A classificação consiste

em atribuir instâncias a categorias previamente definidas, por meio da identificação de

padrões ou características específicas presentes nos dados, determinando, assim, a classe

à qual cada instância pertence. Por sua vez, a regressão tem como objetivo modelar a

relação entre variáveis de modo a estimar um resultado numérico. Assim, enquanto a

classificação é utilizada para prever classes discretas, a regressão é aplicada quando a

variável de saída assume valores contínuos (BELCIC; STRYKER, 2025). Neste trabalho,

serão estudados exclusivamente modelos de classificação supervisionados.
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2.1.5 Modelos de Classificação

Como apresentado anteriormente, modelos de classificação são técnicas de aprendi-

zado de máquina que categorizam dados em classes predefinidas. Esses modelos de classi-

ficação podem ser divididos em classificação binária e classificação multiclasse (SHALEV-

SHWARTZ; BEN-DAVID, 2014). A classificação binária refere-se a problemas em que

existem apenas duas classes. Nesse caso, o objetivo do modelo é separar as instâncias em

uma dessas duas categorias, como, por exemplo, em sistemas de detecção de fraude ou

diagnósticos médicos que retornam a presença ou ausência de uma condição. Por outro

lado, a classificação multiclasse envolve problemas em que há três ou mais classes pos-

síveis. Nesse contexto, o modelo deve atribuir cada instância exatamente a uma dessas

categorias, como, por exemplo, em sistemas de reconhecimento de dígitos manuscritos

(classes de 0 a 9) ou na categorização de tipos de ataques em sistemas de detecção de

intrusão (PH.D.; KAVLAKOGLU, 2025).

Uma outra forma de categorizar os modelos seria em classificação hierárquica ou

plana (SILLA JR; FREITAS, 2011). A Figura 1 ilustra essas duas abordagens.

Figura 1 – Diferença entre classificação plana e hierárquica.

Na classificação plana (flat classification), as classes são tratadas como indepen-

dentes e desprovidas de qualquer relação estrutural explícita. Esse paradigma inclui tanto
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a classificação binária quanto a multiclasse tradicional, em que o modelo é treinado e ava-

liado sem considerar qualquer hierarquia pré-existente entre as classes. Quando aplicada

a problemas intrinsecamente hierárquicos, essa abordagem prevê apenas as classes locali-

zadas nos nós folha (classes alvo), assumindo implicitamente a atribuição de suas classes

ancestrais. Ignorar essa estrutura hierárquica implica em perda de informação sobre as

relações entre classes pai e filho, além de aumentar a complexidade do problema ao exigir

classificadores capazes de distinguir um grande número de classes folha de forma isolada.

Em contrapartida, a classificação hierárquica é uma abordagem na qual as classes

a serem previstas não são independentes, mas sim organizadas em uma estrutura hierár-

quica, geralmente representada por uma árvore ou um Grafo Acíclico Dirigido (DAG).

Diferentemente dos problemas de classificação plana, a classificação hierárquica explora

explicitamente as relações estruturais entre as classes. Ao incorporar essas relações, a

classificação hierárquica permite reduzir a complexidade do problema, seja por meio de

classificadores globais (que constroem um único modelo para toda a hierarquia) ou clas-

sificadores locais (que treinam modelos específicos para cada nó ou nível). Além disso,

esse método possibilita um controle mais eficiente da propagação de erros, tornando-se

uma estratégia fundamental para problemas em que a estrutura hierárquica das classes

desempenha papel central.

2.1.6 Algoritmos de Classificação

Os algoritmos de classificação podem ser organizados segundo diferentes critérios,

e uma das taxonomias mais influentes é a apresentada por Hastie, Tibshirani e Friedman

(2009), que agrupa os métodos supervisionados de acordo com seus fundamentos estatís-

ticos. Essa taxonomia destaca categorias como modelos lineares, métodos baseados em

vizinhança, métodos baseados em árvores de decisão, máquinas de vetores de suporte e

comitês de classificadores (ensemble).

Os modelos lineares utilizam combinações lineares dos atributos para realizar a

separação entre classes, sendo exemplos comuns a Regressão Logística e a Análise Discri-

minante Linear. Os métodos baseados em vizinhança, como o k-Vizinhos Mais Próximos

(KNN), classificam novas instâncias a partir da similaridade em relação aos exemplos de

treinamento, considerando a proximidade no espaço de atributos. Os métodos baseados

em árvores, como a Árvore de Decisão, constroem modelos de decisão a partir de divi-

sões sucessivas dos dados, gerando regras interpretáveis de classificação. As Máquinas de

Vetores de Suporte (SVM) buscam maximizar a margem de separação entre classes (HAS-

TIE; TIBSHIRANI; FRIEDMAN, 2009). Por fim, os comitês de classificadores combinam

múltiplos modelos de classificação com o objetivo de melhorar a acurácia e a robustez

das previsões. Exemplos amplamente utilizados incluem Random Forest, LightGBM e

XGBoost (NTAMWIZA; BWIRE, 2025).
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Além dessas categorias, a literatura contemporânea também reconhece as redes

neurais artificiais como uma família de modelos distinta (AGGARWAL, 2023a). As redes

neurais são modelos inspirados no funcionamento do cérebro humano, compostos por ca-

madas de neurônios artificiais interconectadose que processam e transmitem informações,

permitindo que a rede neural aprenda padrões e relações complexas nos dados. Dentre

suas arquiteturas, destacam-se as Redes Neurais Perceptron Multicamadas (Multi-Layer

Perceptron - MLP), as Redes Neurais Convolucionais (Convolutional Neural Networks -

CNN) e as Redes Neurais Recorrentes (Recurrent Neural Networks - RNN) (AGGARWAL,

2023b).

Os métodos baseados em árvores de decisão ocupam um papel central neste traba-

lho. A Árvore de Decisão é um modelo que divide o espaço dos dados em regiões distintas.

Cada nó da árvore representa uma decisão baseada em um atributo do dado, e as folhas

representam as classes finais (QUINLAN, 1996). Evoluções desses métodos deram origem

aos comitês baseados em árvores, cujo objetivo é combinar múltiplos modelos considera-

dos fracos a fim de produzir classificadores mais robustos e precisos. Nesse contexto, este

trabalho concentra-se especificamente nos comitês de classificadores baseados em árvores

de decisão, com ênfase nos algoritmos Random Forest e XGBoost (NTAMWIZA; BWIRE,

2025).

O Random Forest, por sua vez, constrói diversas árvores de decisão independen-

tes a partir de subconjuntos aleatórios de dados e atributos. Nesse modelo, a predição

final é obtida por meio de votação majoritária, na qual todas as predições individuais

são contabilizadas e a classe mais frequente é selecionada como resultado final (BIAU;

SCORNET, 2016). Em contraste, o Extreme Gradient Boosting (XGBoost) consiste em

um algoritmo de boosting baseado em árvores que constrói o modelo de forma sequencial.

A cada iteração, uma nova árvore é treinada com o objetivo de corrigir os erros cometi-

dos pelas árvores anteriores, utilizando o gradiente da função de perda como guia para o

ajuste dos parâmetros. Além disso, esse algoritmo incorpora otimizações relevantes, tais

como mecanismos de regularização para evitar o sobreajuste (overfitting), paralelização

do processo de treinamento e tratamento eficiente de valores ausentes, resultando em um

modelo de elevada performance e escalabilidade (CHEN et al., 2015).

2.1.7 Métricas de Avaliação

Após a construção de um modelo de classificação, é essencial avaliar seu desempe-

nho e compreender em quais situações ele apresenta maiores dificuldades de predição. As

métricas de avaliação têm como objetivo mensurar a qualidade de um modelo de aprendi-

zado de máquina, permitindo compreender sua capacidade de generalização e sua eficácia

em relação à tarefa proposta. Em problemas de classificação, como a detecção de intrusões

em redes IoT, tais métricas são fundamentais para identificar não apenas o desempenho
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global do modelo, mas também sua habilidade em distinguir corretamente entre diferentes

classes, especialmente em cenários de desbalanceamento de dados.

A avaliação de modelos de classificação baseia-se na comparação entre as previsões

do modelo e os rótulos reais das amostras. A partir dessa comparação, quatro categorias

principais podem ser definidas: Verdadeiro Positivo (VP), Verdadeiro Negativo (VN),

Falso Positivo (FP) e Falso Negativo (FN). Considere um problema de classificação binária

com duas classes: positiva e negativa. O VP representa o número de instâncias cuja classe

real é positiva e que foram corretamente classificadas como positivas pelo modelo. Em

outras palavras, são casos em que o modelo acertou ao prever o evento de interesse. O

VN refere-se ao número de instâncias cuja classe real é negativa e que foram corretamente

classificadas como negativas pelo modelo. Ou seja, são casos em que o modelo corretamente

identificou a ausência do evento de interesse. O FP ocorre quando o modelo prevê a classe

positiva, mas a classe real é negativa. Esse tipo de erro representa uma previsão incorreta

da ocorrência do evento quando este não ocorreu. O FN ocorre quando o modelo prevê

a classe negativa, mas a classe real é positiva. Esse erro indica que o modelo deixou de

identificar um evento positivo que de fato ocorreu (MARIANO, 2021).

Essas quatro categorias formam a matriz de confusão, uma representação tabular

que permite avaliar o desempenho de um classificador ao comparar as classes previstas

pelo modelo com as classes reais observadas nos dados. Ela apresenta os acertos e erros

em termos de contagens absolutas de ocorrências em cada categoria. A Tabela 1 apresenta

a estrutura da matriz para problemas binários.

Tabela 1 – Matriz de confusão para problemas binários.

Classe Predita
Positivo Negativo

Positivo
Verdadeiro Positivo

(VP)
Falso Negativo

(FN)
Classe Real

Negativo
Falso Positivo

(FP)
Verdadeiro Negativo

(VN)

Essa matriz permite uma análise detalhada dos erros cometidos pelo modelo, pos-

sibilitando compreender em quais situações ele tende a falhar. Em sistemas de detecção

de intrusão, a matriz de confusão é especialmente importante para identificar falsos ne-

gativos (ataques não detectados ou erroneamente classificados). Além disso, ela fornece

a base para o cálculo de diversas métricas de avaliação. Nesta pesquisa, as métricas que

serão investigadas são: acurácia, precisão, recall e F1-Score (KUBAT, 2017).

A acurácia mede a proporção de predições corretas (positivas e negativas) em re-

lação ao total de amostras. Ela é útil em cenários com classes balanceadas, mas pode ser

enganosa em contextos desbalanceados, como em detecção de intrusões, onde os ataques

podem representar apenas uma pequena fração do tráfego. Nesse caso, um modelo que
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classifica todas as amostras como benignas pode atingir alta acurácia, mas falha comple-

tamente em detectar ataques. A Eq. 2.1 mostra como é feito o cálculo da acurácia:

Acurácia =
V P + V N

V P + V N + FP + FN
(2.1)

A precisão avalia a proporção de instâncias corretamente classificadas como positi-

vas em relação ao total de instâncias preditas como positivas. Essa métrica é especialmente

relevante em cenários em que o custo de um falso positivo é alto. Em outras palavras,

quando é mais problemático classificar algo incorretamente como positivo do que deixar

de identificá-lo. Assim, a precisão é útil para avaliar a confiabilidade das previsões positi-

vas de um modelo. Entretanto, a precisão sozinha não garante um bom desempenho em

detecção de intrusões, já que o modelo pode evitar alarmes falsos deixando de detectar

ataques reais. A Eq. 2.2 mostra como é feito o cálculo da precisão:

Precisão =
V P

V P + FP
(2.2)

O recall, também chamado de sensibilidade ou revocação, mede a proporção de

instâncias positivas corretamente identificadas pelo modelo em relação ao total de instân-

cias realmente positivas. O recall é importante em contextos onde o custo de um falso

negativo é elevado, ou seja, quando é crítico não deixar de identificar casos positivos. As-

sim, o recall avalia a capacidade do modelo de capturar todos os casos positivos, mesmo

que isso implique maior risco de falsos positivos. Essa métrica é crucial em sistemas de

detecção de intrusão, pois reflete a capacidade do modelo de identificar ataques. Um baixo

recall significa que muitos ataques passam despercebidos (altos FN), o que compromete

seriamente a segurança da rede. A Eq. 2.3 mostra como é feito o cálculo do recall:

Recall =
V P

V P + FN
(2.3)

Por fim, o F1-Score é a média harmônica entre precisão e recall, combinando ambas

em uma única métrica de avaliação. A principal vantagem do F1-Score é equilibrar os dois

aspectos: evitar falsos positivos em excesso (alta precisão) e reduzir falsos negativos (alto

recall). Ele é particularmente útil em cenários com dados desbalanceados ou quando tanto

a precisão quanto a sensibilidade são importantes para avaliar o desempenho do modelo.

Como a média harmônica penaliza valores muito discrepantes, o F1-Score só será alto se

tanto a precisão quanto o recall forem altos de forma simultânea. A Eq. 2.4 mostra como

é feito o cálculo do F1-Score:

F1-Score = 2 ·
Precisão · Recall
Precisão + Recall

(2.4)
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2.2 Trabalhos Relacionados

A detecção de intrusões em ambientes IoT tem se consolidado como um impor-

tante tópico de investigação em cibersegurança. Nesse cenário, métodos de aprendizado

de máquina têm sido amplamente utilizados, visando aprimorar a identificação de tráfego

malicioso e garantir maior resiliência às redes. Entre os conjuntos de dados que buscam

permitir o estudo desses ataques em redes IoT, o Canadian Institute for Cybersecurity IoT

2023 Dataset (CICIoT2023) vem recebendo grande atenção. Essa base de dados, ao reunir

uma ampla diversidade de ataques e cenários realistas, tem sido amplamente explorada

em estudos que buscam avaliar a eficácia de diferentes algoritmos.

Paralelamente, observa-se na literatura um interesse pela estratégia de classificação

hierárquica, uma abordagem promissora para problemas de detecção de intrusões em que

as classes apresentam relações de dependência ou estrutura taxonômica. Diferentemente

da classificação plana, a classificação hierárquica busca organizar os rótulos em níveis

ou categorias inter-relacionadas, o que permite explorar melhor a natureza do problema,

reduzir a complexidade da decisão em uma única etapa e, potencialmente, aumentar a

interpretabilidade e a precisão do modelo.

A análise da literatura é fundamental para compreender quais estratégias já fo-

ram exploradas e quais desafios permanecem abertos. Dessa forma, esta seção apresenta

e discute os principais trabalhos relacionados ao tema desta monografia, destacando suas

contribuições, limitações e potenciais pontos de aprimoramento. Portanto, esta seção será

organizada em duas subseções: a primeira abordará investigações baseadas no conjunto

de dados CICIoT2023, destacando estratégias de classificação, algoritmos aplicados e re-

sultados alcançados; a segunda discutirá estudos voltados à classificação hierárquica em

geral, enfatizando suas contribuições e relevância para o contexto de segurança. O obje-

tivo é estabelecer uma visão crítica do estado da arte que oriente e justifique as escolhas

metodológicas adotadas neste trabalho.

2.2.1 Investigações baseadas no CICIoT2023

Os sistemas de detecção de intrusão (IDS) têm ganhado destaque na segurança da

informação devido ao aumento das ameaças cibernéticas e à complexidade dos ambientes

computacionais, incluindo a Internet das Coisas (IoT). Estudos recentes têm avaliado

diferentes abordagens, como o de Maseer et al. (2021), que realizou um benchmarking

de algoritmos supervisionados e não supervisionados no conjunto de dados CICIDS2017,

destacando o bom desempenho de K-Nearest Neighbors (KNN), Decision Tree e Naive

Bayes. No contexto da IoT, (HASAN et al., 2019) comparou modelos de aprendizado de

máquina usando um conjunto de tráfego IoT aberto, apontando Decision Tree, Random

Forest e Artificial Neural Networks como melhores, com destaque para o Random Forest
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pela acurácia na classificação de múltiplos tipos de ataque.

O trabalho de Neto et al. (2023) propõe um novo e extenso conjunto de dados de

ataques IoT, chamado CICIoT2023, com o objetivo de simular cenários realistas de tráfego

de rede em ambientes IoT e possibilitar a avaliação de sistemas de detecção de intrusões

baseados em técnicas de aprendizado de máquina. Os autores executaram 33 ataques

distintos numa topologia IoT, classificando-os em sete categorias principais (DDoS, DoS,

Recon, Web-Based, Brute Force, Spoofing e Mirai), sendo que todos os ataques foram

realizados por dispositivos IoT maliciosos visando outros dispositivos IoT. Os dados de

tráfego de rede benigno e malicioso foram coletados e uma avaliação de aprendizado de

máquina foi feita para demonstrar a viabilidade do conjunto CICIoT2023 para treinar

modelos de detecção e classificação de ataques IoT.

Para isso, foram avaliados cinco algoritmos de ML (Regressão Logística, Percep-

tron, Adaboost, Random Forest e Deep Neural Network) em três cenários de classificação:

binária (benigno/malicioso), multiclasse em oito classes (sete categorias de ataque mais

benigno) e multiclasse em 34 classes (33 ataques individuais mais benigno). Os resultados

indicaram que, embora todos os métodos tenham apresentado alta performance na classi-

ficação binária, houve uma degradação perceptível quando a tarefa envolveu oito classes.

Ainda assim, o Random Forest e a Deep Neural Network se destacaram por manterem um

desempenho superior em comparação aos demais modelos nesse cenário. A classificação

multiclasse em 34 classes revelou-se a mais desafiadora, com o Random Forest e a Deep

Neural Network apresentando os melhores resultados, apesar de uma ligeira redução no

desempenho. As matrizes de confusão indicaram que classes com muitos exemplos, como

DDoS, DoS e Mirai, apresentam baixas taxas de erro, seguidas por Recon e spoofing. No

entanto, ataques web e de brute force apresentam confusões frequentes, sendo identificados

como benignos, Recon ou spoofing.

A literatura recente tem apresentado um número crescente de estudos voltados

à detecção de ciberataques em ambientes IoT, muitos dos quais utilizam o conjunto de

dados CICIoT2023 como referência para experimentação e avaliação de modelos. Kumar,

Rastogi e Ranga (2024), por exemplo, avalia o desempenho de diversos classificadores

de aprendizado de máquina treinados e testados nessa base. A pesquisa empregou algo-

ritmos como Support Vector Machine, Regressão Logística, Decision Tree, AdaBoost e

Random Forest. A abordagem metodológica incluiu a classificação dos ataques em três

cenários distintos: com 34 classes, 8 classes e 2 classes, permitindo a análise do impacto

da granularidade na performance. Os autores compararam métricas de desempenho como

Acurácia, Recall, Precisão e F1-Score para cada algoritmo. Segundo os autores, os resul-

tados do estudo mostraram que a performance dos modelos de aprendizado de máquina

aumenta consistentemente à medida que o número de classes é reduzido, indicando que

uma abordagem de classificação mais focada e menos granular beneficia a acurácia dos
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modelos. Embora o desempenho geral sofra com mais categorias de ataque, algoritmos

como Random Forest e Decision Tree demonstraram alta eficácia mesmo em cenários de

alta granularidade, mantendo acurácia e F1-score elevados. O Support Vector Machine,

por outro lado, teve o pior desempenho em todos os cenários, especialmente nos de maior

granularidade, o que sugere suas limitações para tarefas de classificação mais detalhadas

de ciberataques.

De maneira semelhante, Hafezian, Naderan e Jaderyan (2024) investiga uma abor-

dagem baseada em aprendizado de máquina para detecção e classificação de intrusões

multi-classe em ambientes IoT, usando o CICIoT2023. A metodologia adotada envol-

veu o treinamento e a avaliação de seis algoritmos supervisionados: Regressão Logística,

AdaBoost, Perceptron, Multi-Layer Perceptron (MLP), Random Forest e Hist-Gradient

Boosting. Esses modelos foram aplicados em três modos de classificação distintos: binário,

oito classes e 34 classes. Os resultados da avaliação indicaram que o algoritmo Random

Forest alcançou os melhores resultados de classificação em todos os três modos e para

todas as métricas de avaliação, como acurácia, precisão, recall e F1-score. Além disso, o

algoritmo Hist-Gradient Boosting demonstrou o melhor desempenho em termos de tempo

de treinamento. Assim como na pesquisa de Kumar, Rastogi e Ranga (2024), os resultados

da avaliação mostraram que as métricas de desempenho diminuíram com o aumento da

complexidade do problema e, embora os algoritmos ainda apresentassem alta acurácia, a

capacidade de identificar e classificar ataques específicos com maior precisão e recall foi

afetada negativamente quanto maior o número de classes a serem distinguidas.

A monografia de Esteves (2025) aborda a aplicação de Inteligência Artificial Ex-

plicável (XAI) em Sistemas de Detecção de Intrusão (IDSs) para dispositivos IoT, visando

aumentar a transparência e a confiança nessas soluções. A metodologia envolveu o pré-

processamento e análise exploratória do conjunto de dados CICIoT2023, seguido pelo trei-

namento de oito modelos de aprendizado de máquina, com o XGBoost sendo selecionado

pelo seu desempenho. A pesquisa focou em dois cenários de classificação com a aplicação

da técnica SHAP (SHapley Additive exPlanations) para gerar explicações globais e locais.

No cenário de classificação binária, que diferencia tráfego normal de tráfego de ataque, o

XGBoost alcançou 86% de acurácia. Já no cenário multiclasse, onde o objetivo era separar

múltiplos tipos de ataques, o modelo obteve 77% de acurácia, apresentando ressalvas em

categorias minoritárias e uma revocação de aproximadamente 38% nos melhores casos.

Embora o CICIoT2023 seja um recurso valioso e amplamente adotado, os estudos

atuais deixam em aberto importantes oportunidades de pesquisa, sobretudo no que diz

respeito à exploração de abordagens hierárquicas e à análise aprofundada das limitações

dos classificadores multiclasse. Primeiramente, nota-se que todos os trabalhos apresentam

uma queda de desempenho quando o problema é formulado em múltiplas classes, em com-

paração com a detecção binária entre tráfego benigno e malicioso. Apesar disso, nenhum
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estudo identificado propõe estratégias intermediárias que conciliem os pontos fortes de

cada abordagem - a filtragem eficiente de ataques no cenário binário e a capacidade de

distinção entre múltiplos tipos de ataque no cenário multiclasse. Além disso, nenhum dos

trabalhos explora a classificação hierárquica como alternativa metodológica. Essa lacuna

é particularmente relevante, uma vez que tal estratégia poderia oferecer um equilíbrio

entre as qualidades dos dois classificadores. Outro aspecto crítico é a ausência, na maior

parte das investigações, de análises mais detalhadas sobre os erros de classificação. Essa

limitação dificulta a identificação de classes problemáticas e a compreensão de quais tipos

específicos de ataques ainda representam desafios significativos para os modelos.

2.2.2 Investigações baseadas na Classificação Hierárquica

Ao longo das últimas duas décadas, diversos trabalhos investigaram abordagens

hierárquicas com o objetivo de aprimorar a qualidade das decisões dos classificadores. A

pesquisa de Lorena, Carvalho e Gama (2008) apresenta uma revisão abrangente sobre a

combinação de classificadores binários em problemas de classificação multiclasse, focando

na decomposição do problema original em múltiplos subproblemas binários. Essa estra-

tégia é motivada pela redução da complexidade e pela adaptabilidade de algoritmos que

não são facilmente reformulados para contextos multiclasse. O trabalho destaca estraté-

gias hierárquicas de decomposição, que organizam classificadores binários em estruturas

como árvores binárias direcionadas ou Grafos Acíclicos Direcionados (DAGs). Nelas, a

classificação ocorre em etapas: discriminações mais gerais são realizadas inicialmente e

progressivamente refinadas até a predição final. Cada nó interno da hierarquia corres-

ponde a um classificador binário que distingue dois subconjuntos de classes, enquanto

os nós terminais representam as classes individuais. O processo de classificação de uma

nova instância é iterativo: inicia-se no nó raiz e, com base na decisão de cada classifica-

dor binário, um novo nó é visitado até que um nó folha seja alcançado, determinando

a classe final. O trabalho Silla Jr e Freitas (2011) faz uma revisão bibliográfica sobre a

tarefa de classificação hierárquica. Os autores clarificam o que é classificação hierárquica,

distinguindo-a da classificação plana, que ignora completamente essa estrutura de classes

e é tratada como um problema multi-classe padrão. A pesquisa propõe uma nova taxo-

nomia para classificar problemas e algoritmos de classificação hierárquica, organizando as

abordagens existentes em planas, locais e globais. É realizada uma revisão crítica e com-

paração empírica dessas abordagens, destacando suas vantagens e desvantagens. Embora

os artigos apresentem uma revisão conceitual das abordagens hierárquicas, os princípios

e métodos descritos são diretamente aplicáveis e fornecem uma base teórica sólida para

sistemas como a classificação hierárquica empregada na detecção de intrusões, onde a

decomposição de problemas multiclasse em problemas de menor complexidade é crucial

para um desempenho eficaz.
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Nesse contexto, Sarıkaya e Kılıç (2020) propõe um modelo hierárquico multiclasse

para detecção de intrusões, visando melhorar as taxas de detecção de classes de ataque

que são historicamente difíceis de identificar, usando o conjunto de dados UNSW-NB15.

A abordagem hierárquica emprega classificadores Random Forest em múltiplas etapas,

transformando tarefas de classificação multiclasse em tarefas de classificação binária para

as classes de baixo desempenho. A estrutura do modelo é construída em estágios, onde

cada classificador tem um propósito específico de detecção de ataque. Primeiramente,

no Estágio-1, um classificador Random Forest é treinado para detectar se o tráfego de

rede é um ataque ou normal. Se um ataque for detectado, o processo avança para o

Estágio-2, onde um segundo classificador Random Forest determina se o ataque pertence

ao Grupo 1 (DoS, Exploit) ou ao Grupo 2 (Outras Classes de Ataque), o que é crucial para

separar as classes com baixas taxas de detecção. Finalmente, no Estágio-3, existem dois

classificadores Random Forest distintos: um para detectar especificamente DoS/Exploit se

a instância for classificada no Grupo 1, e outro para classificar as demais classes de ataque

(Análise, Backdoor, Fuzzers, Reconhecimento, Genérico, Shellcode, Worms) se a instância

for classificada no Grupo 2. Este modelo alcançou uma acurácia geral de classificação de

80,78%, superando o classificador Random Forest de linha de base e significativamente

aumentando as taxas de detecção para os ataques DoS, Exploit e Fuzzers, de acordo com

os autores.

O trabalho Alin et al. (2020) propõe uma nova metodologia hierárquica baseada

em algoritmos de aprendizado profundo para detecção de intrusões, visando superar as

limitações dos métodos tradicionais de proteção que são frequentemente ineficazes e caros

em recursos. A abordagem central do estudo consiste em uma estratégia de classificação

em dois níveis: inicialmente, realiza-se uma classificação binária (Normal/Ataque) para

detectar rapidamente conexões anormais, alertando o administrador; em seguida, para as

conexões identificadas como ’ataque’, aplica-se uma classificação multiclasse para detalhar

o tipo específico de intrusão. A comparação com abordagens de classificação multiclasse

tradicionais revelou que a metodologia hierárquica proposta demonstrou um desempenho

consideravelmente superior nos conjuntos KDD-CUP99, NSL-KDD, UNSW-NB15 e CIC-

IDS2017, alcançando uma taxa de detecção de intrusões de até 95%.

O sistema de detecção de intrusões proposto por Sarnovsky e Paralic (2020) em-

prega uma abordagem de predição hierárquica em múltiplas etapas, que integra modelos

de aprendizado de máquina com uma ontologia para otimizar a detecção de ataques de

rede. O processo inicia-se com uma primeira fase de classificação binária onde um classifi-

cador, baseado em árvores de decisão, distingue o tráfego normal de conexões de ataque.

Se uma conexão é identificada como ataque, ela avança para a segunda fase, guiada pela

ontologia, que navega pela taxonomia de ataques (DoS, R2L, U2R, Probe). Nesta fase,

um ensemble model com votação ponderada é utilizado para prever a classe do ataque.

Este modelo é composto por classificadores base de Naive Bayes e Árvores de Decisão.
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Os modelos baseados em árvores desempenhavam bem na previsão de ataques Probe,

DoS e R2L, mas falhavam na detecção de U2R. Para superar isso, modelos separados

"one-vs-all"foram treinados especificamente para detectar apenas os ataques U2R. Assim,

o ensemble aproveita os modelos baseados em árvores para as classes majoritárias e os

modelos "one-vs-all"para U2R, combinando suas predições através de um esquema de

votação ponderada. Subsequentemente, modelos específicos são acionados para prever o

tipo concreto de ataque dentro da classe identificada. O sistema foi avaliado no conjunto

de dados KDD-99, demonstrando um desempenho superior em comparação com métodos

similares, segundo os autores.

O trabalho de (MOHD; SINGH; BHADAURIA, 2021) propõe um Sistema de De-

tecção de Intrusões (IDS) baseado em classificadores hierárquicos híbridos para enfrentar

o desafio da segurança em sistemas de rede. Para isso, foi utilizado o banco de dados

KDD-99 atualizado, que consiste em 4.898.431 instâncias de tráfego de rede, incluindo

classes normais e quatro tipos de ataques: DoS, U2R, R2L e Probing. A metodologia ini-

cial envolveu o uso de seis classificadores de aprendizado de máquina - Support Vector

Machine (SVM), Probabilistic Neural Network (PNN), Decision Tree (DT), Neuro-fuzzy

Classifier (NFC), Smooth Support Vector Machine (SSVM) e k-Nearest Neighbor (kNN)

- cada um aplicado em uma estrutura de classificação hierárquica de quatro níveis. Cada

nível tinha uma função específica: o Nível-1 separava tráfego normal de ataque; o Nível-

2 identificava ataques DoS ; o Nível-3 classificava ataques R2L; e o Nível-4 diferenciava

ataques U2R e de sondagem (probing). Para construir o modelo hierárquico híbrido, os

pesquisadores identificaram os classificadores com o melhor desempenho em cada nível in-

dividual. Assim, o SSVM-1 foi escolhido para o Nível-1, o NFC-2 para o Nível-2, o SVM-3

para o Nível-3 e o kNN-4 para o Nível-4. A combinação desses melhores classificadores

resultou no sistema híbrido proposto, que alcançou uma Taxa Geral de Detecção (ODA)

de 98,79%.

No contexto de IoT, o trabalho (UDDIN et al., 2025) investiga a eficácia da classifi-

cação hierárquica em Sistemas de Detecção de Intrusões (IDS) com uma ênfase particular

na proteção contra ameaças cibernéticas em redes de tecnologia emergentes, incluindo a

Internet das Coisas. Os autores propõem um modelo de três níveis para abordar a estru-

tura inerente dos ciberataques. A abordagem envolve a classificação de tráfego em três

estágios: primeiro, distinguindo entre tráfego benigno e ataque (Nível 1); segundo, cate-

gorizando tipos de ataque de grão grosso (famílias de ataque) (Nível 2); e terceiro, identi-

ficando subtipos de ataque específicos e de grão fino (Nível 3). Nesse estudo, 10 diferentes

classificadores de aprendizado de máquina foram avaliados em 10 conjuntos de dados IDS

contemporâneos, incluindo bases específicas para IoT, como ToN-IoT-Network, ToN-IoT-

IoTs, BoT-IoT e XIIOTID. Embora o desempenho geral (precisão, recall e F1-score) seja

comparável ao da classificação plana, a abordagem hierárquica minimiza significativa-

mente a classificação incorreta de ataques como tráfego normal (falsos negativos), o que é
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crucial para a segurança cibernética. Segundo os autores, a base de dados ToN-IoT-IoTs

apresentou um desempenho relativamente inferior na detecção de ataques em cenários de

IoT, sugerindo a necessidade de melhorias adicionais na detecção desse tipo de ataque.

Embora a classificação hierárquica já tenha sido aplicada em sistemas de detecção

de intrusão, sua utilização no contexto específico de redes IoT ainda é pouco explorada.

Essa lacuna abre um campo promissor para novas investigações que considerem simulta-

neamente os desafios inerentes ao tráfego IoT e o potencial da classificação hierárquica

em estruturar as classes de forma organizada, possibilitando ganhos tanto em desempe-

nho quanto em interpretabilidade. O trabalho (UDDIN et al., 2025) chega a investigar a

aplicação dessa abordagem para a detecção de intrusões em redes IoT. Contudo, sua pro-

posta não aprofunda a exploração das características diferenciais dos ataques ao longo da

hierarquia, nem investiga como essa estrutura pode contribuir para melhorar a detecção

de cada classe de ataque. Dessa forma, esta monografia se diferencia ao propor uma in-

vestigação que integra a classificação hierárquica ao domínio de detecção de intrusões em

IoT, com o objetivo de explorar não apenas a viabilidade dessa abordagem, mas também

seu impacto na melhoria da robustez e da precisão na identificação de ataques, superando

as limitações observadas nos estudos anteriores.
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junto de dados adequado, que seja relevante e representativo para o problema de ataques

direcionados a dispositivos e redes IoT. A etapa seguinte, de pré-processamento e trans-

formação, tem como finalidade preparar os dados para o treinamento dos modelos e pode

ser subdividida em duas fases: tratamento e transformação. O tratamento envolve proce-

dimentos como limpeza de inconsistências, remoção de duplicatas e tratamento de valores

ausentes, garantindo maior qualidade ao conjunto de dados. Já a transformação refere-se

à aplicação de técnicas que tornam os dados mais adequados ao aprendizado, incluindo

normalização ou padronização, codificação de variáveis categóricas e, quando necessário,

a seleção ou extração de características. A terceira etapa corresponde à construção dos

modelos de aprendizado de máquina, cujo objetivo é identificar padrões no tráfego de rede

capazes de distinguir entre eventos normais e ataques. Por fim, a avaliação dos modelos é

realizada por meio da aplicação de métricas selecionadas, permitindo analisar os desem-

penhos obtidos e medir o quanto as soluções propostas contribuem para a detecção de

intrusões em ambientes IoT.

Todo o código desenvolvido neste trabalho, incluindo a sequência de etapas com-

pleta de extração, tratamento e transformação dos dados, além da construção e avalia-

ção dos classificadores planos e hierárquicos, está disponível publicamente no repositório

GitHub, acessível em:

<https://github.com/gioomartins/Classificacao-Hierarquica-IDS-CICIoT2023.git>

O acesso ao código permite reproduzir os experimentos apresentados e explorar os modelos

implementados, garantindo transparência e reprodutibilidade dos resultados.

3.2 Extração do Conjunto de Dados

A produção de dados de segurança para a Internet das Coisas que possam apoiar

aplicações reais é desafiadora, principalmente pela dificuldade de simular uma rede extensa

com diversos dispositivos IoT, semelhante às topologias de aplicações IoT no mundo real.

Nesse contexto, (NETO et al., 2023) propõe um novo e extenso conjunto de dados de

ataques IoT, denominado CICIoT2023, com o objetivo de impulsionar o desenvolvimento

de soluções de análise de segurança aplicáveis a operações reais em ambientes IoT. Este

conjunto de dados foi utilizado neste trabalho para o treinamento e a avaliação dos modelos

propostos.

Para simular cenários realistas de tráfego em redes IoT, os autores executaram

33 ataques distintos em uma topologia composta por 105 dispositivos reais. O conjunto

de dados resultante contém aproximadamente 46,6 milhões de registros rotulados (NA-

RAYAN et al., 2023), sendo cada registro uma instância de tráfego de rede descrita por

46 atributos, que contemplam métricas de pacotes e fluxos, como taxa de pacotes, dura-
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Tabela 2 – Número de registros para cada ataque e categoria.

Classe Tipo de Ataque Qtd. de Registros
Total por Classe
(CICIoT2023)

Total por Classe
(Subamostragem)

DDoS-ICMP_Flood 7.200.504
DDoS-UDP_Flood 5.412.287
DDoS-TCP_Flood 4.497.667
DDoS-PSHACK_Flood 4.094.755
DDoS-SYN_Flood 4.059.190
DDoS-RSTFINFlood 4.045.285
DDoS-SynonymousIP_Flood 3.598.138
DDoS-UDP_Fragmentation 286.925
DDoS-ACK_Fragmentation 285.104
DDoS-ICMP_Fragmentation 452.489
DDoS-HTTP_Flood 28.790

DDoS

DDoS-SlowLoris 23.426

33.984.560 10.540.341

DoS-UDP_Flood 3.318.595
DoS-HTTP_Flood 71.864
DoS-TCP_Flood 2.671.445

DoS

DoS-SYN_Flood 2.028.834

8.090.738 3.863.993

Mirai-greeth_flood 991.866
Mirai-udpplain 890.576Mirai
Mirai-greip_flood 751.682

2.634.124 1.268.509

Benign BenignTraffic 1.098.195 1.098.195 658.906
DNS_Spoofing 178.911

Spoofing
MITM-ArpSpoofing 307.593

486.504 291.878

Recon-PingSweep 2.262
Recon-HostDiscovery 134.378
Recon-OSScan 98.259
Recon-PortScan 82.284

Recon

VulnerabilityScan 37.382

354.565 212.534

Uploading_Attack 1.252
BrowserHijacking 5.859
CommandInjection 5.409
SqlInjection 5.245
XSS 3.846

Web

Backdoor_Malware 3.218

24.829 14.897

BruteForce DictionaryBruteForce 13.064 13.064 7.839

ção, flags TCP, entre outros. Em termos de rotulagem, os 33 tipos distintos de ataques

podem ser organizados em sete categorias de ataques principais, além do tráfego benigno,

conforme a Tabela 2. Portanto, as classes investigadas no conjunto de dados resultante

são compostas por: Benign, DDoS, DoS, Recon, Web-Based, Brute Force, Spoofing e Mirai

(NETO et al., 2023).

Um aspecto relevante é que o conjunto apresenta alto desbalanceamento de classes,

com grande disparidade no número de instâncias entre as categorias. O desbalanceamento

é um desafio recorrente em detecção de intrusões, pois tende a enviesar os modelos de

aprendizado de máquina em favor das classes majoritárias, comprometendo a detecção de

ataques menos frequentes, porém críticos. Modelos treinados nesse contexto podem alcan-

çar valores elevados de acurácia global, mas falham na correta identificação de intrusões

críticas (SHANMUGAM; RAZAVI-FAR; HALLAJI, 2025).

Considerando o grande volume de instâncias do CICIoT2023, este trabalho em-
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pregou uma subamostra estratificada correspondente a 60% do conjunto original. A estra-

tificação foi necessária para preservar a proporção entre as classes, aspecto essencial em

cenários de desbalanceamento, garantindo que ataques com menor representação relativa

fossem mantidos no processo de treinamento e teste. Os quantitativos das categorias da

subamostragem também são apresentados na Tabela 2.

3.3 Pré-processamentos e Transformação dos Dados

A preparação do conjunto de dados CICIoT2023 para a etapa de modelagem foi

organizada em duas fases complementares: tratamento e transformação. Esse processo

garante tanto a integridade quanto a adequação dos dados, possibilitando a aplicação

eficiente das técnicas de aprendizado de máquina.

O tratamento foi voltado para assegurar a consistência e a qualidade do conjunto

antes da construção dos modelos. A presença de valores ausentes (NaN ) representa um

problema crítico, pois a maioria dos algoritmos de aprendizado de máquina não é capaz de

lidar nativamente com esse tipo de informação. Além disso, valores ausentes em atributos

relevantes comprometem a extração de padrões, reduzindo a capacidade de generalização

do modelo. Outro aspecto tratado foi a remoção de registros duplicados, uma vez que a

repetição de amostras pode super-representar determinados padrões, fazendo com que o

modelo aprenda a reconhecer com maior facilidade esses casos em detrimento de outros

menos frequentes. Esse fenômeno, além de enviesar o processo de aprendizado, pode inflar

artificialmente métricas de avaliação como acurácia e recall, transmitindo uma percepção

equivocada do desempenho do modelo. Para lidar com essas questões, foram aplicadas

as funções dropna() e drop_duplicates() da biblioteca pandas (Pandas Developers, 2025),

para remover registros com valores ausentes e duplicatas, assegurando maior integridade

do conjunto e robustez no processo de modelagem.

Na etapa de transformação, foram aplicadas técnicas destinadas a tornar os dados

mais apropriados para o aprendizado. Neste trabalho, foram considerados todos os 46

atributos originais do conjunto de dados CICIoT2023. Quanto ao atributo alvo (label),

que contém os rótulos de tráfego benigno e de ataques, os 33 tipos de ataques originais

foram agrupados em sete categorias principais: DDoS, DoS, Mirai, Recon, Spoofing, Web-

Based e Brute Force, além da classe Benign. Esse mapeamento teve como objetivo reduzir

a complexidade do problema de classificação e alinhar as análises aos objetivos deste

trabalho. Por fim, foi empregada a técnica de padronização dos atributos contínuos por

meio da função StandardScaler() da biblioteca scikit-learn (Scikit-learn Developers, 2025).

Esse procedimento foi aplicado ao conjunto completo de dados, ajustando os atributos

para média zero e variância unitária, de modo a garantir que variáveis com escalas distintas

não exercessem influência desproporcional no processo de aprendizado.



Capítulo 3. Desenvolvimento 37

Adicionalmente, devido ao elevado volume do conjunto CICIoT2023, com milhões

de registros e dezenas de atributos, uma etapa essencial deste trabalho consistiu na oti-

mização do uso de memória. Esse procedimento visou reduzir o consumo de recursos

computacionais durante o processamento, sem perda de informação, tornando o treina-

mento e a avaliação dos modelos mais eficientes. Inspirada no trabalho de Esteves (2025),

a estratégia implementada consistiu em uma rotina para sugestão e aplicação de tipos de

dados mais econômicos a cada atributo do conjunto. Esse processo avaliou o intervalo de

valores de cada coluna e, com base nesse diagnóstico, mapeou os tipos de dados originais

para representações mais compactas. Por exemplo, atributos inteiros foram convertidos

para tipos como int8, int16, int32 ou int64, dependendo dos valores mínimo e máximo

encontrados. Após essa otimização, foi feita a comparação entre o consumo de memória

original e o consumo após a transformação, permitindo quantificar a economia obtida,

como pode ser visto na Tabela 3. O procedimento reporta tanto a redução absoluta em

megabytes quanto a economia percentual, demonstrando o ganho de eficiência alcançado.

Tabela 3 – Otimização de memória.

Memória Original Memória Otimizada Memória Economizada
19253,31 MB 4764,05 MB 14489,26 MB (75%)

3.4 Construção dos Modelos

Após a etapa de transformação, o conjunto de dados foi particionado em dois sub-

conjuntos: treino e teste. O primeiro foi utilizado no processo de construção dos modelos,

enquanto o segundo serviu exclusivamente para a avaliação de desempenho.

O processo de treinamento é a fase em que o algoritmo de aprendizado de máquina

analisa os exemplos de treino a fim de identificar padrões e relações entre os atributos,

de modo a construir um modelo capaz de realizar classificações em amostras não vistas.

A Figura 3 ilustra o treinamento dos modelos desenvolvidos neste trabalho.

Nesta monografia, foram propostos e avaliados quatro modelos distintos para o

problema de detecção de intrusões em ambientes IoT. Os modelos Binário e Multiclasse

adotam a abordagem de classificação plana, sendo implementados com o objetivo de esta-

belecer uma linha de base para comparação. Já os modelos BDM e BRDM, explicados nas

seções 3.4.3 e 3.4.4, foram desenvolvidos segundo a estratégia de classificação hierárquica,

constituindo o foco central desta pesquisa.

3.4.1 Modelo Binário

O modelo binário tradicional foi desenvolvido com o objetivo de distinguir entre

tráfego benigno e tráfego malicioso, independentemente da categoria específica de ataque.
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Figura 3 – Fluxo de treinamento dos modelos desenvolvidos neste trabalho.

Para isso, o atributo alvo (label) do conjunto de treino foi transformado em uma variável

binária, em que todas as amostras originalmente rotuladas como um tipo de ataque foram

agrupadas em uma única classe denominada Malicious (representada por 1), enquanto as

amostras normais permaneceram classificadas como Benign (representada por 0).

Essa simplificação do problema permite avaliar a capacidade do modelo em identi-

ficar, de forma geral, a presença de atividades anômalas no tráfego de rede, sem considerar

inicialmente a diferenciação entre os diversos tipos de ataques. Embora tal abordagem re-

duza significativamente a complexidade da tarefa de classificação, ela também implica a

perda de informações importantes sobre a natureza específica do ataque detectado.

A Figura 4 ilustra, de forma esquemática, as possíveis saídas do modelo binário

ao classificar uma determinada amostra.

3.4.2 Modelos Multiclasse

O modelo multiclasse tradicional foi desenvolvido com o objetivo de distinguir entre

diferentes categorias de tráfego, incluindo os tipos específicos de ataque. Dessa forma,

sua classificação abrange tanto a classe Benign quanto sete classes distintas de ataques

DDoS, DoS, Mirai, Recon, Spoofing, Web-Based e Brute Force. Para tal, o processo de
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Figura 6 – Fluxo de treinamento dos modelos que compõem o classificador BDM.

preservando a distinção entre os seis tipos de ataques ainda não classificados: DoS, Mirai,

Recon, Spoofing, Web-Based e Brute Force. Esse processo é descrito no Algoritmo 1.

O funcionamento básico do classificador BDM, ilustrado na Figura 7, consiste na

execução desses 3 modelos previamente treinados.

O nível 1, como apresentado pela figura, serve como uma primeira camada de

filtragem, que aproveita a eficiência do modelo binário em separar o tráfego legítimo do

tráfego potencialmente malicioso. Se uma amostra for classificada como benigna nessa fase,

o processo é encerrado. Caso contrário, ela é submetida ao próximo nível de classificação.

O nível 2 tem a função de separar os ataques do tipo DDoS dos demais ataques.

Durante a operação do modelo, se uma amostra for classificada como DDoS nessa fase,

o processo é encerrado. Caso contrário, ela é submetida ao terceiro nível de classificação.

Os ataques DDoS tendem a apresentar padrões de tráfego caracterizados por volumes

elevados de pacotes em curtos intervalos de tempo. Esse comportamento volumétrico

contrasta fortemente com a maioria dos outros tipos de ataques, que geralmente exploram

vulnerabilidades específicas e, portanto, apresentam padrões mais sutis. Dessa forma, esse

segundo nível tem o objetivo de aproveitar a característica volumétrica dos ataques DDoS

para separá-los dos demais ataques, facilitando o processo de classificação e reduzindo a
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Algorithm 1: Processo de Treinamento do Modelo BDM
Input: Conjunto de treinamento D

Output: Modelos treinados: ModeloBenigno, ModeloDDoS e
ModeloMultiAtaque

1

/* Treinamento do Modelo Benigno */

2 Mapear rótulos de D em Benign e Malicious
3 Treinar ModeloBenigno com D

4

/* Treinamento do Modelo DDoS */

5 Dmal ← {x ∈ D | y(x) ̸= Benign}
6 Mapear rótulos de Dmal em DDoS e OtherAttacks
7 Treinar ModeloDDoS com Dmal

8

/* Treinamento do Modelo Multi-Ataque */

9 Doutros ← {x ∈ Dmal | y(x) ̸= DDoS}
10 Manter rótulos multiclasse originais de Doutros

11 Treinar ModeloMultiAtaque com Doutros

12

13 return {ModeloBenigno, ModeloDDoS, ModeloMultiAtaque}

possibilidade de confusão com outras categorias.

Além disso, ao tratar DDoS como uma classe isolada logo após a filtragem de

tráfego benigno, é possível mitigar a sobrecarga que esses ataques volumétricos poderiam

causar em classificadores posteriores. Isso se torna ainda mais relevante devido ao des-

balanceamento do conjunto de dados, no qual os registros de ataques DDoS são muito

mais numerosos em relação às demais classes. Caso fossem incluídos diretamente em um

classificador multiclasse junto aos outros ataques, a predominância de exemplos de DDoS

poderia enviesar o processo de aprendizado, fazendo com que o modelo atribuísse maior

peso a essa classe e, consequentemente, ofuscasse as características discriminativas de

ataques menos frequentes. Tal situação comprometeria a capacidade do modelo em de-

tectar adequadamente esses ataques minoritários, o que justificou a adoção dessa etapa

intermediária de isolamento dos DDoS.

O nível 3 tem como objetivo adicionar a granularidade necessária para identificar os

diferentes tipos de ataques que sobraram. Dessa forma, o nível 3 não apenas complementa

a filtragem inicial de tráfego malicioso, mas também enriquece a análise, fornecendo maior

detalhamento sobre a natureza do ataque detectado, aspecto essencial para subsidiar

respostas mais rápidas e eficazes em um ambiente de cibersegurança. As amostras que

chegam até esse nível são classificadas como um dos ataques restantes e o processo se

encerra. Ao restringir o espaço de decisão apenas a amostras maliciosas não pertencentes à

classe DDoS, o classificador multiclasse opera em um cenário menos complexo e enviesado,

no qual os padrões característicos de cada ataque podem ser explorados de forma mais
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Figura 7 – Fluxo de execução do classificador BDM.

eficaz, sem serem penalizados pelo comportamento dominante dos ataques volumétricos.

Para ilustrar o funcionamento do modelo BDM, o pseudocódigo do processo de

classificação é apresentado no Algoritmo 2.

Algorithm 2: Funcionamento do Modelo BDM
Input: Amostra de tráfego x

Output: Classe predita
1 if ModeloBenigno(x) = Benign then
2 return Benign
3

4 else if ModeloDDoS(x) = DDoS then
5 return DDoS
6

7 return ModeloMultiAtaque(x)

A entrada do algoritmo corresponde a uma amostra de tráfego de rede IoT, e a

saída é a classe predita pelo modelo BDM para essa amostra. As linhas 1 e 2 implementam

o nível 1, responsável pela filtragem de tráfego benigno. As linhas 4 e 5 correspondem ao

nível 2, que realiza a identificação de ataques do tipo DDoS. Por fim, a linha 7 representa
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o nível 3, no qual o classificador multiclasse é acionado para distinguir entre os demais

tipos de ataques.

Portanto, o modelo hierárquico BDM se mostra uma solução robusta para lidar

com os desafios da classificação de tráfego em ambientes IoT. Ao estruturar o processo em

três partes distintas - filtragem de tráfego benigno, isolamento de ataques volumétricos

e detalhamento multiclasse dos ataques remanescentes - o modelo equilibra simplicidade

e granularidade, mitigando problemas recorrentes em abordagens de classificação plana,

como a perda de desempenho causada pelo desbalanceamento de classes. Essa hierar-

quização não apenas melhora a precisão na detecção de tráfego malicioso, mas também

garante maior especialização em cada etapa do processo, o que aumenta a interpretabili-

dade do modelo. Além disso, ao manter a granularidade no terceiro nível, o modelo fornece

informações valiosas sobre o tipo específico de ameaça, contribuindo diretamente para es-

tratégias de defesa mais rápidas e direcionadas em um contexto real de cibersegurança.

Dessa forma, o modelo BDM representa uma alternativa promissora frente às estratégias

convencionais, combinando os benefícios de ambos os modelos binário e multiclasse.

3.4.4 Modelo Hierárquico BRDM

O modelo hierárquico BRDM (Benigno, Recon, DDoS e Multi-Ataque) repre-

senta uma extensão direta do modelo BDM, adicionando um nível extra na hierarquia

de classificação. Assim como no modelo anterior, o objetivo é combinar a simplicidade

do classificador binário com a granularidade de classificadores multiclasse, estruturando

o processo de decisão em etapas sucessivas. A diferença central entre os dois está na in-

trodução de um novo classificador específico para os ataques Recon, posicionado entre a

filtragem de tráfego benigno e o isolamento dos ataques volumétricos DDoS. A Figura 8

ilustra o processo de treinamento dos quatro modelos que compõem essa hierarquia.

O modelo BRDM foi projetado com quatro níveis distintos de classificação, cada

um composto por um modelo isolado. O nome BRDM surge justamente da junção das

primeiras letras dos modelos que o compõem: Benigno, Recon, DDoS e Multi-Ataque. O

processo de treinamento desses modelos segue a mesma ideia do classificador hierárquico

anterior, ou seja, para cada modelo são removidas as classes tratadas pelos seus anteces-

sores na hierarquia. Para o treinamento do Modelo Recon, todas as amostras benignas

foram removidas e todos os ataques diferentes de Recon foram agrupados, reorganizando

as classes alvos em duas categorias: Recon e Outros Ataques. Por sua vez, esse tipo de

ataque também será removido dos conjuntos de treino usados para os modelos DDos e

Multi-Ataque. Esse processo é descrito no Algoritmo 3.

O funcionamento do classificador BRDM, ilustrado na Figura 9, consiste, portanto,

na execução sequencial desses quatro modelos.
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Figura 8 – Fluxo de treinamento dos modelos que compõem o classificador BRDM.

O nível 1 (Modelo Benigno) é idêntico ao do modelo BDM: trata-se de um clas-

sificador binário responsável por separar tráfego benigno de tráfego malicioso. Amostras

classificadas como benignas encerram o processo de decisão, enquanto as demais seguem

para os níveis seguintes.

A principal diferença em relação ao modelo BDM ocorre no nível 2, com a introdu-

ção do Modelo Recon. Esse classificador binário visa distinguir ataques do tipo Recon dos

demais ataques. Caso uma amostra seja classificada como Recon, o processo de decisão é

encerrado. Caso contrário, a amostra segue para o próximo nível.

A motivação por trás da introdução desse nível está no fato de que ataques Recon

se diferenciam substancialmente dos demais, pois representam uma fase preparatória no

ciclo de ataque. Nessa etapa, o agente mal-intencionado coleta informações do alvo -

como portas abertas, serviços disponíveis e sistemas em execução - sem executar ações

diretamente destrutivas. Essa natureza exploratória torna o tráfego Recon distinto, de

forma que sua detecção isolada contribui para reduzir a confusão com outras classes

de ataque e simplifica os classificadores posteriores. Além disso, sua separação precoce

melhora a especialização das fases seguintes, que passam a operar em um espaço de

decisão menos heterogêneo.
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Algorithm 3: Processo de Treinamento do Modelo BRDM
Input: Conjunto de treinamento D

Output: Modelos treinados: ModeloBenigno, ModeloRecon, ModeloDDoS e
ModeloMultiAtaque

1

/* Treinamento do Modelo Benigno */

2 Mapear rótulos de D em Benign e Malicious
3 Treinar ModeloBenigno com D

4

/* Treinamento do Modelo Recon */

5 Dmal ← {x ∈ D | y(x) ̸= Benign}
6 Mapear rótulos de Dmal em Recon e OtherAttacks
7 Treinar ModeloRecon com Dmal

8

/* Treinamento do Modelo DDoS */

9 DoutrosRecon ← {x ∈ Dmal | y(x) ̸= Recon}
10 Mapear rótulos de DoutrosRecon em DDoS e OtherAttacks
11 Treinar ModeloDDoS com DoutrosRecon

12

/* Treinamento do Modelo Multi-Ataque */

13 DoutrosDDoS ← {x ∈ DoutrosRecon | y(x) ̸= DDoS}
14 Manter rótulos multiclasse originais de DoutrosDDoS

15 Treinar ModeloMultiAtaque com DoutrosDDoS

16

17 return {ModeloBenigno, ModeloRecon, ModeloDDoS, ModeloMultiAtaque}

O nível 3 corresponde ao Modelo DDoS : um classificador binário treinado para

distinguir ataques do tipo DDoS dos demais ataques. Assim como no modelo hierár-

quico anterior, se uma amostra for classificada como DDoS, o processo é encerrado. Caso

contrário, a amostra segue para o nível 4.

Por fim, o nível 4 é composto pelo Modelo Multi-Ataque, responsável por identificar

especificamente os ataques restantes (DoS, Mirai, Spoofing, Web-Based e Brute Force).

Ao restringir o espaço de decisão a esse conjunto reduzido, o modelo multiclasse opera em

um cenário mais simplificado, explorando com maior precisão as características de cada

ataque.

Assim como no BDM, a lógica de operação é simples: uma amostra percorre a

hierarquia até ser classificada, com o processo podendo ser encerrado em qualquer um dos

níveis. O pseudocódigo desse processo é apresentado no Algoritmo 4.

No algoritmo, a entrada corresponde a uma amostra de tráfego de rede IoT, e a

saída é a classe predita pelo modelo BRDM para essa amostra. As linhas 1 e 2 implemen-

tam o nível 1, responsável pela filtragem de tráfego benigno. As linhas 4 e 5 correspondem

ao nível 2, que realiza a identificação de ataques do tipo Recon. As linhas 7 e 8 correspon-
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Figura 9 – Fluxo de execução do classificador BRDM.

Algorithm 4: Funcionamento do Modelo BRDM
Input: Amostra de tráfego x

Output: Classe predita
1 if ModeloBenigno(x) = Benign then
2 return Benign
3

4 else if ModeloRecon(x) = Recon then
5 return Recon
6

7 else if ModeloDDoS(x) = DDoS then
8 return DDoS
9

10 return ModeloMultiAtaque(x)

dem ao nível 3, que realiza a identificação de ataques do tipo DDoS. Por fim, a linha 10

representa o nível 4, no qual o classificador multiclasse é acionado para distinguir entre

os demais tipos de ataques.

Em síntese, o modelo BRDM difere do BDM pela adição de uma etapa interme-

diária de isolamento dos ataques Recon, aproveitando suas particularidades para melhorar

a organização hierárquica do processo de decisão. Essa modificação tem o potencial de
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reduzir erros de classificação, simplificar os classificadores subsequentes e oferecer maior

desempenho na detecção dos tipos de ataque.

3.5 Avaliação dos Modelos

Após o treinamento, os modelos passam por um processo sistemático de avaliação

para validar se o classificador é robusto e confiável o suficiente para ser aplicado em ce-

nários reais. Essa etapa consiste na submissão do classificador a um conjunto de dados

formado por amostras que não foram utilizadas no treinamento, para mensurar seu de-

sempenho na tarefa de detecção de intrusões. Por meio dele, é possível medir métricas

como acurácia, precisão, recall e F1-score que permitem, não apenas verificar a capacidade

preditiva dos classificadores, mas também identificar eventuais limitações que podem ser

melhoradas.

A utilização de amostras não vistas durante o processo de treinamento é funda-

mental para a avaliação confiável de modelos de aprendizado de máquina. Quando um

classificador é testado com dados utilizados no treino, o resultado tende a refletir apenas

a sua capacidade de memorizar padrões já conhecidos, sem fornecer indícios claros de sua

habilidade de generalização. Por outro lado, avaliar com exemplos inéditos permite veri-

ficar se o modelo consegue classificar corretamente novos registros, simulando de maneira

mais realista o ambiente de produção em que será aplicado. Essa prática evita problemas

como o overfitting, em que o modelo apresenta desempenho elevado em dados de treino,

mas falha ao lidar com situações não previamente observadas. Portanto, a avaliação é

realizada utilizando o conjunto de teste, formado por amostras previamente separadas

que não foram utilizadas no treinamento do modelo.

Nos experimentos com classificadores binários e multiclasse, o conjunto de teste é

utilizado de forma integral. Entretanto, no caso dos classificadores hierárquicos, foi neces-

sário aplicar um procedimento específico em cada nível da hierarquia. O primeiro nível

recebe como entrada todas as amostras do conjunto de teste. Já os níveis subsequentes são

avaliados apenas com os registros que foram corretamente classificados no nível anterior

e que ainda requerem uma classificação mais refinada. Essa abordagem foi adotada para

evitar que os erros de classificação dos níveis anteriores sejam acumulados, prejudicando

a avaliação das etapas seguintes da hierarquia. O objetivo é avaliar cada modelo indivi-

dualmente, considerando somente os erros e acertos do nível em questão. Cabe destacar

que a adoção dessa abordagem não compromete a avaliação do erro global dos modelos

hierárquicos.

No processo de teste do classificador BDM, inicialmente, o Modelo Benigno é ava-

liado com o conjunto de teste completo. Em seguida, o Modelo DDoS é testado somente

com as amostras que foram classificadas como maliciosas e que de fato pertenciam à classe
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maliciosa. Dessa forma, exemplos benignos ou falsamente identificados como maliciosos

não são considerados nessa etapa. Por fim, o modelo Multi-Ataque é avaliado exclusiva-

mente com as amostras que foram classificadas como ’outros ataques’ no nível anterior e

que realmente correspondiam a ataques diferentes de DDoS. O Algoritmo 5 apresenta, em

formato de pseudocódigo, as etapas que compõem o processo de teste do modelo BDM.

Algorithm 5: Processo de Teste do Modelo BDM
Input: Conjunto de teste D

Output: Métricas de desempenho dos três modelos
1

/* Nível 1: Modelo Benigno */

2 predBenigno ← classificar(ModeloBenigno, D)
3 resultadoBenigno ← avaliar(predBenigno, D)
4 Dmal ← {x ∈ D | predBenigno(x) = Malicious ∧ y(x) = Malicious}
5

/* Nível 2: Modelo DDoS */

6 predDDoS ← classificar(ModeloDDoS, Dmal)
7 resultadoDDoS ← avaliar(predDDoS, Dmal)
8 Doutros ← {x ∈ Dmal | predDDoS(x) = OtherAttacks ∧ y(x) ̸= DDoS}
9

/* Nível 3: Modelo Multi-Ataque */

10 predMulti ← classificar(ModeloMultiAtaque, Doutros)
11 resultadoMulti ← avaliar(predMulti, Doutros)
12

13 return {resultadoBenigno, resultadoDDoS, resultadoMulti}

A entrada do Algoritmo 5 corresponde ao conjunto de teste D, e a saída são

as métricas de desempenho obtidas em cada nível do modelo BDM. As linhas 2 a 4

implementam o nível 1, no qual o Modelo Benigno é avaliado com todas as amostras

do conjunto de teste e, em seguida, é formado o subconjunto Dmal contendo apenas as

instâncias classificadas como maliciosas que realmente pertencem à classe maliciosa. As

linhas 6 a 8 correspondem ao nível 2, no qual o Modelo DDoS é avaliado com Dmal, sendo

então construído o subconjunto Doutros, composto apenas por amostras identificadas como

“outros ataques” que de fato não pertencem à classe DDoS. Por fim, as linhas 10 e 11

implementam o nível 3, no qual o Modelo Multi-Ataque é avaliado exclusivamente com

Doutros, distinguindo entre os demais tipos de ataques.

De forma análoga, o classificador BRDM segue o mesmo princípio hierárquico,

mas com a inclusão do Modelo Recon entre o Modelo Benigno e o Modelo DDoS. Assim,

após a avaliação inicial, o Modelo Recon é testado apenas com as amostras corretamente

identificadas como maliciosas. Em seguida, o Modelo DDoS é avaliado unicamente com

as instâncias classificadas como “outros ataques” no nível anterior e que, de fato, corres-

pondiam a ataques diferentes de Recon. O Algoritmo 6 apresenta as etapas que compõem

o processo de teste do modelo BRDM.
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Algorithm 6: Processo de Teste do Modelo BRDM
Input: Conjunto de teste D

Output: Métricas de desempenho dos quatro modelos
1

/* Nível 1: Modelo Benigno */

2 predBenigno ← classificar(ModeloBenigno, D)
3 resultadoBenigno ← avaliar(predBenigno, D)
4 Dmal ← {x ∈ D | predBenigno(x) = Malicious ∧ y(x) = Malicious}
5

/* Nível 2: Modelo Recon */

6 predRecon ← classificar(ModeloRecon, Dmal)
7 resultadoRecon ← avaliar(predRecon, Dmal)
8 DoutrosRecon ← {x ∈ Dmal | predRecon(x) = OtherAttacks ∧ y(x) ̸= Recon}
9

/* Nível 3: Modelo DDoS */

10 predDDoS ← classificar(ModeloDDoS, DoutrosRecon)
11 resultadoDDoS ← avaliar(predDDoS, DoutrosRecon)
12 DoutrosDDoS ← {x ∈ DoutrosRecon | predDDoS(x) = OtherAttacks ∧ y(x) ̸=

DDoS}
13

/* Nível 4: Modelo Multi-Ataque */

14 predMulti ← classificar(ModeloMultiAtaque, DoutrosDDoS)
15 resultadoMulti ← avaliar(predMulti, DoutrosDDoS)
16

17 return
{resultadoBenigno, resultadoRecon, resultadoDDoS, resultadoMulti}

A entrada do Algoritmo 6 corresponde ao conjunto de teste D, e a saída são as

métricas de desempenho obtidas em cada nível do modelo BRDM. As linhas 2 a 4 im-

plementam o nível 1, no qual o Modelo Benigno é avaliado com todas as amostras do

conjunto de teste e, em seguida, é formado o subconjunto Dmal, contendo apenas as ins-

tâncias classificadas como maliciosas que realmente pertencem à classe maliciosa. As linhas

6 a 8 correspondem ao nível 2, no qual o Modelo Recon é avaliado com Dmal, sendo en-

tão gerado o subconjunto DoutrosRecon, formado apenas pelas amostras identificadas como

“outros ataques” que de fato não pertencem à classe Recon. As linhas 10 a 12 representam

o nível 3, no qual o Modelo DDoS é avaliado com DoutrosRecon, produzindo o subconjunto

DoutrosDDoS, composto apenas por amostras classificadas como “outros ataques” que re-

almente não pertencem à classe DDoS. Por fim, as linhas 14 e 15 implementam o nível 4,

no qual o Modelo Multi-Ataque é avaliado exclusivamente com DoutrosDDoS, distinguindo

entre os demais tipos de ataques.

Após a submissão dos modelos ao conjunto de teste, foi construída uma matriz de

confusão para cada um deles individualmente, a partir dos resultados de predição, utili-

zando a função confusion_matrix da biblioteca scikit-learn. Com base nessas matrizes,
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foram calculadas as métricas de avaliação - acurácia, precisão, recall e F1-Score - por

meio das funções accuracy_score, recall_score, precision_score e f1_score, disponibiliza-

das pela mesma biblioteca (Scikit-learn Developers, 2025). Para cada modelo, as métricas

foram inicialmente calculadas separadamente para cada classe e, em seguida, consolidadas

por meio da média aritmética simples, resultando em um valor global para cada indica-

dor. A opção pelo uso da média simples (macro average) justifica-se pelo fato de ela

atribuir o mesmo peso a todas as classes, independentemente do número de amostras em

cada uma delas, evitando que classes majoritárias dominem a avaliação e permitindo uma

análise mais equilibrada e representativa do desempenho dos classificadores em cenários

desbalanceados.

Além das métricas de classificação, cada modelo também foi avaliado em relação ao

seu desempenho computacional, considerando três aspectos: o tempo total de treinamento,

o tempo médio de predição por amostra (em segundos) e o espaço ocupado na memória

RAM (em bytes). Esta última medida foi obtida por meio da função asizeof, pertencente

à biblioteca pympler (Pympler Developers, 2024).

Para avaliar o desempenho dos classificadores hierárquicos integralmente, as matri-

zes de confusão de cada modelo constitutivo foram examinadas a fim de avaliar a eficácia

na filtragem progressiva dos ataques, identificar confusões entre diferentes categorias e

contabilizar os erros e acertos do classificador como um todo em relação a cada classe-

alvo. A partir dessa consolidação, foi calculado o recall de cada classe, visando mensurar a

capacidade do classificador hierárquico em identificar corretamente cada tipo de tráfego.

A Eq. 3.1 mostra como é feito o cálculo do recall para cada uma das classes:

Recall =
TotalAcertos

TotalAmostras
(3.1)
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4 Experimentos

Neste capítulo, são apresentados e discutidos os resultados obtidos a partir da exe-

cução dos experimentos conduzidos com os modelos propostos. Inicialmente, descreve-se

a configuração do ambiente experimental, contemplando os recursos computacionais e as

decisões tomadas nesse processo. Em seguida, são analisados os desempenhos dos clas-

sificadores, tanto de forma individual quanto no contexto das arquiteturas hierárquicas,

buscando evidenciar pontos fortes, limitações e padrões de comportamento observados.

4.1 Ambiente Experimental

Esta seção descreve os procedimentos e recursos empregados para a realização dos

experimentos, com o objetivo de garantir a reprodutibilidade dos resultados e fornecer

transparência quanto às condições em que os classificadores foram avaliados. Para tanto,

são detalhados os critérios de divisão do conjunto de dados, a escolha e configuração do

algoritmo de classificação, as bibliotecas utilizadas e o ambiente computacional em que

as execuções foram conduzidas.

No processo de pré-processamento e transformação dos dados, foram utilizadas

principalmente as bibliotecas pandas e scikit-learn. A biblioteca pandas foi empregada no

tratamento inicial do conjunto, destacando-se o uso das funções dropna() e drop_duplicates()

para a remoção de registros ausentes e duplicados, assegurando maior integridade e con-

sistência (Pandas Developers, 2025). A biblioteca scikit-learn, por sua vez, foi utilizada na

padronização dos atributos contínuos, por meio da função StandardScaler(), que ajusta

os valores para média zero e variância unitária (Scikit-learn Developers, 2025).

A divisão estratificada do conjunto de dados em treino e teste foi realizada por meio

da função train_test_split, também disponibilizada pela biblioteca scikit-learn. Neste tra-

balho, adotou-se a proporção de 70% para treinamento e 30% para teste. Para mitigar

possíveis vieses decorrentes dessa divisão, o processo foi repetido dez vezes, e os experi-

mentos foram avaliados individualmente em cada repetição. Dessa forma, o resultado final

reportado foi calculado por meio da média aritmética simples entre os resultados dos dez

experimentos.

Todos os classificadores foram implementados utilizando o algoritmo Random Fo-

rest, por meio da implementação disponível na biblioteca scikit-learn (versão 1.6.1). A

escolha desse algoritmo fundamenta-se na revisão bibliográfica feita por esta pesquisa,

que o destaca como técnica eficaz para tarefas de classificação no contexto de detecção de

intrusões em redes IoT. Para assegurar a comparabilidade entre os modelos, os hiperpa-
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râmetros do algoritmo foram mantidos em suas configurações padrão.

Na etapa de avaliação, a biblioteca scikit-learn foi utilizada para a construção das

matrizes de confusão, por meio da função confusion_matrix, e para o cálculo das métricas

de desempenho - acurácia, precisão, recall e F1-Score - com as funções accuracy_score,

precision_score, recall_score e f1_score. As métricas foram inicialmente calculadas para

cada classe e, em seguida, consolidadas por meio da média aritmética simples (macro

average), garantindo que todas as classes recebessem o mesmo peso, independentemente

de sua representatividade no conjunto de dados. Além disso, a biblioteca pympler foi

empregada para mensurar o espaço ocupado pelos modelos na memória RAM, por meio

da função asizeof, complementando a análise de desempenho computacional.

Os experimentos foram conduzidos no ambiente de desenvolvimento Jupyter No-

tebook, utilizando a linguagem Python (versão 3.12.7) (THOMAS et al., 2016). Esse am-

biente foi escolhido pela praticidade na prototipação, pela integração com bibliotecas de

aprendizado de máquina e pelas facilidades na visualização e interpretação dos resulta-

dos. As execuções foram realizadas em uma máquina equipada com processador Intel(R)

Core(TM) Ultra 7 155H (3.80 GHz) e 32 GB de memória RAM instalada. O sistema

operacional adotado foi o Windows 11 Home.

4.2 Avaliação dos Classificadores Planos

Como ponto de partida, foram conduzidos experimentos com os classificadores pla-

nos: binário e multiclasse. O objetivo dessa etapa é estabelecer uma base de comparação,

de modo a analisar o desempenho de ambos em condições idênticas às dos experimentos

com os classificadores hierárquicos. A partir dessa análise preliminar, busca-se compre-

ender as vantagens e limitações inerentes a cada abordagem, bem como verificar se os

classificadores hierárquicos conseguem incorporar os benefícios de ambos, mitigando suas

respectivas desvantagens.

A Tabela 4 apresenta as métricas de desempenho preditivo calculadas para ambos

os classificadores, considerando a média de dez execuções independentes dos experimentos.

Esses resultados representam a consolidação do desempenho dos classificadores planos e

servem como referência para a análise comparativa com os modelos hierárquicos.

Tabela 4 – Resultado das métricas de desempenho preditivo para os classificadores binário
e multiclasse.

Binário Multiclasse
Acurácia 0,9962 0,9941
Precisão 0,9694 0,9641
Recall 0,9814 0,8338
F1 0,9753 0,8777
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Do ponto de vista das métricas clássicas de avaliação, o classificador binário apre-

sentou desempenho superior ao multiclasse em praticamente todos os indicadores. Os

dois modelos tiveram uma acurácia semelhante, com vantagem discreta para o binário

que alcançou 99,62%, contra 99,41% do multiclasse. Entretanto, o classificador binário

destacou-se pelo equilíbrio entre precisão (96,94%) e recall (98,14%), resultando em um

F1-Score de 97,53%. Isso evidencia que o modelo não apenas foi confiável ao indicar

uma instância como positiva (alta precisão), mas também conseguiu identificar a grande

maioria das instâncias que realmente pertenciam à classe positiva (alto recall). Já o classi-

ficador multiclasse obteve precisão relativamente elevada (96,41%), mas apresentou recall

consideravelmente inferior (83,39%), resultando em um F1-Score de 87,77%. Em termos

práticos, isso revela que o modelo multiclasse, apesar de evitar muitos falsos positivos,

deixou de detectar uma parcela considerável das instâncias que deveriam ser classificadas

corretamente, comprometendo sua eficácia em um cenário de detecção de intrusões, no

qual falsos negativos são especialmente críticos por representarem ataques não identifica-

dos.

Para compreender de forma mais detalhada os padrões de erro e acerto dos clas-

sificadores planos, as Figuras 10 e 11 apresentam suas respectivas matrizes de confusão.

Essas matrizes correspondem a uma das dez execuções realizadas, considerando o mesmo

particionamento entre treino e teste, e permitem visualizar como cada modelo se compor-

tou na distinção entre as classes, evidenciando os casos de acerto e as principais confusões

observadas.

A análise das matrizes de confusão revela diferenças importantes no comporta-

mento dos classificadores. O classificador binário apresentou melhor desempenho na detec-

ção de ataques, identificando corretamente 4.847.884 das 4.859.998 instâncias maliciosas,

deixando de detectar 12.114 (falsos negativos). Já o multiclasse obteve desempenho infe-

rior nesse aspecto, detectando 4.843.575 ataques e deixando de identificar 16.423, o que

representa um aumento na taxa de falsos negativos. Por outro lado, na detecção de trá-

fego benigno, o multiclasse apresentou desempenho superior, classificando corretamente

193.761 das 197.672 instâncias, contra 190.902 do binário, resultando em menor número

de falsos positivos (3.911 contra 6.770). Esses resultados indicam que, enquanto o classi-

ficador binário é mais eficaz na detecção de ataques, o multiclasse demonstra ser melhor

na detecção de tráfego benigno, reduzindo alarmes falsos. Em cenários reais de sistemas

de segurança, no entanto, o custo de não detectar um ataque (falso negativo) tende a ser

mais crítico do que o de gerar um alarme falso (falso positivo), uma vez que uma intrusão

não identificada pode comprometer seriamente a integridade e a disponibilidade da rede.

Nesse contexto, ainda que o multiclasse ofereça vantagens na redução de falsos alarmes,

o classificador binário se mostra mais adequado para aplicações práticas em detecção de

intrusões, onde a prioridade é maximizar a sensibilidade do sistema a possíveis ataques.
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Contudo, a filtragem simples entre ataques e tráfego normal não é a única questão

relevante para a cibersegurança. Outra habilidade essencial nessa área é a capacidade de

distinguir entre diferentes tipos de ataque, característica unicamente presente no classifi-

cador multiclasse. Portanto, apesar de apresentar menor sensibilidade na detecção global

de intrusões, esse modelo oferece uma vantagem estratégica ao permitir a identificação

específica das categorias de ataque, fornecendo informações valiosas para a tomada de

decisão e para a definição de medidas de mitigação mais adequadas. Assim, verifica-se um

trade-off entre os dois classificadores planos: enquanto o binário se mostra mais confiável

para garantir a detecção de intrusões, o multiclasse contribui com maior granularidade na

caracterização das ameaças, aspecto que pode ser determinante em cenários práticos de

resposta a incidentes.

Nesse sentido, também é essencial avaliar o desempenho do classificador multi-

classe na identificação de cada tipo de ataque e compreender as principais confusões

entre categorias. A matriz de confusão mostra que as classes majoritárias, como DDoS,

DoS e Mirai, alcançaram taxas de acerto bastante elevadas: no caso de Mirai, 380.523 das

380.553 instâncias foram corretamente classificadas (apenas 30 erros); para DoS, 1.158.965

de 1.159.198 (233 erros); e para DDoS, 3.161.860 de 3.162.103 (243 erros). Esses valores

indicam que, para classes amplamente representadas no conjunto de dados, os erros são

residuais em relação ao volume total. Em contraste, as classes minoritárias apresentaram

maior dispersão de erros, refletindo a dificuldade do modelo em diferenciá-las. No caso

de Recon, por exemplo, mais de 10 mil instâncias foram atribuídas incorretamente a ou-

tras classes, sobretudo Benign e Spoofing. De forma semelhante, em Spoofing, milhares

de instâncias foram confundidas com Recon ou Benign. Já os ataques Web e BruteForce

mostraram sobreposição considerável com Benign, Spoofing e Recon, reforçando a difi-

culdade na separação precisa dessas categorias. Esses resultados sugerem que, embora o

classificador multiclasse seja capaz de diferenciar entre tipos específicos de ataques, essa

habilidade é limitada, especialmente nas classes minoritárias, onde o desbalanceamento

dos dados amplifica as confusões.

Com o objetivo de aprofundar a compreensão sobre as confusões entre classes ao

longo das dez execuções realizadas, foi elaborada uma tabela que consolida o desempe-

nho do classificador em cada categoria alvo. Nessas tabelas, são apresentados o total de

instâncias, a quantidade de acertos e erros, bem como o valor de recall correspondente,

permitindo uma análise detalhada do comportamento do modelo por classe. Esses valores

foram calculados pela média das dez execuções. A Tabela 5 apresenta essa análise para

o classificador binário, enquanto a Tabela 6 reúne os resultados obtidos pelo classificador

multiclasse.

No classificador binário, a detecção de ataques foi de 4.847.885 para uma média de

4.859.998 ataques, resultando em 12.113 amostras incorretamente classificadas como be-
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Tabela 5 – Análise das classes alvo do classificador binário.

Total de Registros Acertos Erros Recall
Malicioso 4859998 4847885 12113 0,9975
Benigno 197672 190831 6841 0,9653

Tabela 6 – Análise das classes alvo do classificador multiclasse.

Total de Registros Acertos Erros Recall
Mirai 380553 380525 28 0,9999
DDoS 3162103 3161856 247 0,9999
DoS 1159198 1158953 245 0.9997

Benigno 197672 193657 4015 0,9796
Spoofing 87563 76298 11265 0,8713

Recon 63760 53353 10407 0,8367
BruteForce 2352 1286 1066 0,5467

Web 4469 1954 2515 0,4370

nignas. Esse desempenho corresponde a um recall de 99,75% para a classe de ataques. Já o

classificador multiclasse obteve desempenho inferior nesse aspecto, com 4.834.225 ataques

corretamente identificados, o que praticamente dobrou o número de erros (25.773) e re-

duziu o recall para 99,46%. Por outro lado, o multiclasse apresentou melhor desempenho

na detecção de tráfego benigno, atingindo um recall de 97,96%, contra 96,53% observado

no binário. Ademais, no contexto multiclasse, verificou-se uma dificuldade na classificação

de algumas categorias de ataques específicas: as classes Web e Brute Force apresentaram

os menores desempenhos, com valores de recall inferiores a 55%, seguidas pelas classes

Recon (83,67%) e Spoofing (87,13%). Em contrapartida, as classes Mirai, DDoS e DoS

exibiram elevadas taxas de acerto, com recalls superiores a 99%, demonstrando baixa taxa

de confusão.

Além das métricas de desempenho preditivo, foi conduzida também uma análise

sob a perspectiva computacional, com o intuito de verificar a viabilidade prática dos

classificadores planos em cenários reais. Essa análise contemplou aspectos relacionados ao

tempo de treinamento, ao tempo médio de teste por amostra e ao espaço ocupado pelos

modelos na memória RAM. A Tabela 7 apresenta os valores médios obtidos para cada

métrica, considerando dez execuções independentes para ambos os classificadores.

Tabela 7 – Resultado das métricas de desempenho computacional para os classificadores
binário e multiclasse.

Binário Multiclasse
Tempo de Treino 39,21 min 64,70 min
Tempo de Teste 0,005 ms 0,011 ms
Tamanho 123.464 bytes 128.344 bytes

Sob a perspectiva computacional, o classificador binário se mostrou mais eficiente.
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Seu tempo médio de treinamento foi de aproximadamente 39 minutos, valor significati-

vamente inferior ao registrado pelo multiclasse de aproximadamente 64 min, indicando

menor custo de processamento durante a fase de construção do modelo. Em termos de

tempo de predição, ambos apresentaram tempos extremamente reduzidos, mas novamente

o binário foi mais eficiente, com um tempo médio de 5 microssegundos por amostra, contra

11 microssegundos do multiclasse. Quanto ao tamanho em memória RAM, os dois mo-

delos mostraram-se semelhantes, com vantagem discreta para o binário (123.464 bytes)

em relação ao multiclasse (128.344 bytes). Assim, os resultados computacionais refor-

çam a superioridade do classificador binário em cenários que exigem rapidez na etapa de

treinamento e maior economia de recursos.

Em síntese, a análise dos classificadores planos evidenciou um claro trade-off entre

desempenho preditivo e granularidade da detecção. O classificador binário destacou-se

pela elevada sensibilidade na identificação de ataques, reduzindo a probabilidade de falsos

negativos, característica essencial em cenários de cibersegurança, onde a omissão de uma

intrusão pode comprometer gravemente a rede. Por outro lado, o classificador multiclasse,

ainda que tenha apresentado menor recall global, mostrou-se mais eficaz na identificação

de tráfego benigno e, sobretudo, oferece a capacidade de distinguir entre diferentes tipos de

ataque, fornecendo informações valiosas para estratégias de mitigação direcionadas. Sob

a perspectiva computacional, o classificador binário também se mostrou mais eficiente,

exigindo menor tempo de treinamento e apresentando uma leve vantagem no uso de

recursos, embora ambos os modelos tenham se mostrado viáveis em termos de execução.

Diante disso, torna-se evidente a necessidade de uma abordagem que combine a alta

sensibilidade do classificador binário com a capacidade de categorização do multiclasse.

4.3 Avaliação do Classificador BDM

Diante das limitações observadas nos experimentos com os classificadores planos,

este trabalho propôs um classificador hierárquico denominado BDM, estruturado em três

modelos distintos: Benigno, DDoS e Multi-Ataque. Essa abordagem busca combinar as

vantagens da classificação binária e multiclasse, de modo a maximizar a detecção de

intrusões e, ao mesmo tempo, fornecer uma caracterização mais detalhada das diferentes

categorias de ataques.

A avaliação do classificador BDM foi conduzida em três etapas complementares. Na

primeira, analisou-se o desempenho de cada modelo individualmente, utilizando métricas

tradicionais de classificação - acurácia, precisão, recall e F1-Score -, com o objetivo de

verificar sua eficácia isolada. Em seguida, investigou-se o funcionamento do classificador

como um todo, por meio da análise das matrizes de confusão correspondentes a cada nível

hierárquico, permitindo compreender a qualidade da filtragem realizada, bem como os
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erros e confusões entre classes após o processo completo de decisão. Além disso, essa etapa

também investigou mais a fundo os erros, acertos e revocação de cada uma das classes

após passar por todos os níveis do BDM. Por fim, realizou-se uma análise computacional

dos modelos isoladamente, considerando o tempo de treinamento, o tempo médio de teste

por amostra e o espaço ocupado na memória RAM, fatores relevantes para avaliar sua

viabilidade prática em cenários reais.

4.3.1 Desempenho Individual dos Modelos

Primeiramente, para cada um dos modelos - Benigno, DDoS e Multi-Ataque - fo-

ram calculadas as métricas tradicionais de avaliação individualmente. Vale lembrar que,

para fins de análise, os erros de modelos de níveis superiores na hierarquia não foram pro-

pagados para o restante dos modelos, visando que essas métricas refletissem a qualidade

de cada modelo isoladamente. Dessa forma, as métricas apresentadas não devem ser inter-

pretadas de maneira comparativa entre os modelos, mas sim como uma caracterização do

desempenho específico de cada etapa da hierarquia. A Tabela 8 apresenta os resultados

médios obtidos por cada um dos modelos, considerando dez execuções independentes dos

experimentos.

Tabela 8 – Resultado das métricas de desempenho preditivo para os modelos que com-
põem o classificador BDM.

Benigno DDoS Multi-Ataque
Acurácia 0,9962 0,9998 0,9938
Precisão 0,9694 0,9998 0,9678
Recall 0,9814 0,9998 0,8176
F1 0,9753 0,9998 0,8671

Como o processo de treinamento do classificador binário tradicional é realizado da

mesma forma que no modelo Benigno, uma vez que ambos possuem o mesmo objetivo

(separação entre tráfego benigno e malicioso), seus resultados foram diretamente aprovei-

tados para a execução do primeiro nível da hierarquia. Dessa forma, as métricas obtidas

são idênticas, com acurácia de 99,62%, precisão de 96,94%, recall de 98,14% e F1-Score

de 97,53%. Esses valores evidenciam desempenho consistente, com bom equilíbrio entre

a correta identificação de instâncias legítimas e a baixa taxa de falsos alarmes, aspectos

essenciais em sistemas de detecção em tempo real.

No caso do modelo DDoS, o desempenho manteve-se elevado, com todas as mé-

tricas acima de 99,98%. Esses resultados refletem a facilidade do modelo em reconhecer

ataques dessa categoria, possivelmente em razão de duas características principais: a natu-

reza volumétrica desse tipo de ataque, cujo padrão de tráfego difere de forma significativa

de outros ataques, e a forte representatividade da classe no conjunto de dados, o que

favorece o aprendizado do modelo.
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Por fim, o modelo Multi-Ataque, responsável pela classificação multiclasse entre

DoS, Mirai, Recon, Spoofing, Web-Based e Brute Force, apresentou acurácia de 99,38%

e precisão de 96,78%. Entretanto, o valor de recall foi consideravelmente mais baixo

(81,76%), resultando em um F1-Score de 86,71%. Esses valores revelam desequilíbrio

entre as métricas, indicando que o modelo, apesar de assertivo ao identificar uma ins-

tância como pertencente a uma classe de ataque (alta precisão), falhou em reconhecer

uma parcela relevante das ocorrências reais, o que compromete sua sensibilidade. Esse

comportamento reflete não apenas a maior complexidade inerente à tarefa de diferenciar

múltiplos tipos de ataques, mas também o desbalanceamento das classes, que limita a

capacidade do modelo em aprender padrões de categorias minoritárias (como Web-Based

e Brute Force).

4.3.2 Análise do Classificador Integrado

A avaliação do classificador BDM como sistema integrado foi conduzida a partir

da análise das matrizes de confusão de cada nível da hierarquia, de modo a compreender

o processo completo de filtragem adotado por esse classificador. As matrizes apresentadas

correspondem à mesma execução utilizada na análise dos classificadores planos, assegu-

rando a consistência do particionamento entre treino e teste.

Para possibilitar uma avaliação mais aprofundada, os experimentos incluíram uma

estrutura complementar que manteve, para cada amostra, a associação com sua classe

original de tráfego. Esse procedimento permitiu contabilizar, em todos os níveis, os acertos

e erros por categoria, mesmo nos casos em que a classificação era binária e não distinguia

explicitamente entre os diferentes tipos de ataque.

Assim, a análise não se restringe às matrizes de confusão, mas incorpora também

tabelas que consolidam o desempenho por classe original, contemplando o total de ins-

tâncias, número de acertos, número de erros e valor de recall obtido. Para assegurar a

robustez dos resultados, tais valores foram calculados individualmente em cada execução

experimental e, ao final, consolidados por meio da média aritmética das dez execuções

realizadas.

O ponto de partida desta análise é o modelo benigno, correspondente ao primeiro

nível da hierarquia, responsável pela separação entre tráfego benigno e malicioso. A Figura

12 apresenta a matriz de confusão correspondente, enquanto a Tabela 9 detalha os resul-

tados obtidos para cada classe original. Essa análise evidencia a qualidade da filtragem

inicial realizada pelo modelo, permitindo verificar sua capacidade em distinguir tráfego

legítimo de instâncias de ataque e fornecendo a base para as etapas subsequentes.

Como o modelo benigno foi construído a partir do mesmo processo que criou o

classificador binário, suas matrizes de confusão são idênticas. Esse resultado evidencia
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Tabela 9 – Análise das classes originais para o nível 1 do classificador BDM.

Total de Registros Acertos Erros Recall
DoS 1159198 1159197 1 0,9999

Mirai 380553 380552 1 0,9999
DDoS 3162103 3162100 3 0,9999

Benigno 197672 190831 6841 0,9653
Web 4469 4312 157 0,9648

Spoofing 87563 80962 6601 0.9246
Recon 63760 58603 5157 0,9191

BruteForce 2352 2159 193 0,9179

0,25% ataques não detectados (12.113 registros incorretos), destacaram-se as categorias

Brute Force, Recon e Spoofing como as mais propensas a serem confundidas com tráfego

benigno, seguidas pela classe Web-Based. Em contrapartida, os ataques DoS, Mirai e

DDoS apresentaram valores de recall superiores a 99,99%, demonstrando baixíssima taxa

de confusão com tráfego legítimo já nesse primeiro nível da hierarquia. Além disso, 96,53%

das instâncias benignas foram corretamente identificadas, evidenciando um desempenho

consistente na detecção de tráfego legítimo, ainda que inferior ao obtido pelo classificador

multiclasse.

As instâncias corretamente classificadas como maliciosas no primeiro nível são

encaminhadas ao segundo, cujo objetivo é identificar ataques do tipo DDoS. É importante

destacar que, para simplificação da avaliação, as amostras incorretamente classificadas

como maliciosas na etapa anterior não prosseguem na hierarquia, sendo contabilizadas

apenas no desempenho do modelo Benigno e do classificador BDM como um todo. A

Figura 13 apresenta a matriz de confusão referente ao modelo DDoS, enquanto a Tabela

10 detalha o desempenho em relação a cada classe original. Essa etapa permite avaliar a

capacidade do modelo em reconhecer ataques volumétricos em meio às demais categorias

de intrusão.

A matriz de confusão revela a facilidade do modelo DDoS BDM em separar ata-

ques do tipo DDoS, identificando corretamente 3.161.810 das 3.162.102 instâncias dessa

classe que passaram para esse nível, deixando de detectar apenas 292 amostras dessa ca-

tegoria. O desempenho foi praticamente equivalente ao do classificador multiclasse, que

acertou 3.161.860 instâncias, superando o modelo DDoS por apenas 50 amostras, dife-

rença desprezível frente ao volume total avaliado. Quanto à confusão de outros tipos de

ataques com DDoS, o modelo hierárquico apresentou desempenho ligeiramente superior,

registrando 471 erros contra 615 do multiclasse.

A Tabela 10 complementa a análise ao indicar quais categorias de ataque apresen-

taram maior confusão com DDoS ao longo das dez execuções. Para os ataques diferentes

de DDoS, os acertos correspondem ao número de instâncias corretamente atribuídas à ca-
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de classificação. A categoria Web-Based teve 1.937 instâncias corretamente classificadas,

mas 2.379 incorretamente atribuídas a outras classes, principalmente Recon e Spoofing.

De maneira semelhante, a classe Brute Force alcançou apenas 1.219 acertos, com 935 er-

ros distribuídos entre diferentes categorias, especialmente Recon e Spoofing, evidenciando

maior fragilidade na sua detecção.

Em síntese, a análise da matriz de confusão revela que o modelo multi-ataque do

BDM apresenta excelente desempenho nas classes majoritárias, como DoS e Mirai, além

de resultados sólidos em Spoofing e Recon. Contudo, as categorias menos representadas no

conjunto de dados, como Web-Based e Brute Force, demonstraram maior dificuldade de

detecção, indicando um impacto direto do desbalanceamento das classes no desempenho

do classificador. Outro aspecto relevante é a elevada taxa de confusão de diversas catego-

rias com os ataques Spoofing e Recon, o que evidencia uma sobreposição de padrões entre

essas classes e aponta para um possível ponto de aprimoramento a ser explorado.

Ao comparar o modelo multi-ataque do BDM com o classificador multiclasse plano,

observa-se que ambos apresentam elevado desempenho nas classes majoritárias, como DoS

e Mirai, com taxas de acerto praticamente equivalentes. Nas classes minoritárias, como

Web-Based e Brute Force, os dois demonstraram dificuldades semelhantes, com baixas

taxas de acerto e elevada dispersão dos erros entre diferentes categorias. O ataque Brute

Force foi a única categoria que obteve menos acertos no modelo multi-ataque (1.219

acertos) do que no classificador multiclasse (1.285 acertos). Em contrapartida, o BDM

apresentou desempenho superior nas classes Recon (54.495 acertos contra 53.157) e Spo-

ofing (77.895 acertos contra 76.477), evidenciando ganhos pontuais nessas categorias. De

forma geral, o classificador BDM alcançou um resultado semelhante ao do classificador

multiclasse na distinção de tipos de ataques nessa execução, cumprindo, assim, um dos

objetivos centrais desta pesquisa.

Para sustentar essa análise, a Tabela 11 contabiliza a média de acertos e erros por

categoria para o modelo multi-ataque ao longo de dez execuções.

Tabela 11 – Análise das classes originais para o nível 3 do classificador BDM.

Total de Registros Acertos Erros Recall
Mirai 380550 380531 19 0,9999
DoS 1158993 1158965 28 0,9999

Spoofing 80962 77763 3199 0,9604
Recon 58375 54601 3774 0,9353

BruteForce 2159 1207 952 0,5590
Web 4312 1945 2367 0,4510

A análise da tabela evidencia que o desempenho do modelo apresenta forte depen-

dência da representatividade de cada classe no conjunto de dados. As classes majoritárias,

como DoS e Mirai, alcançaram recall de 99,99%, com pouquíssimos erros (28 e 19, respec-
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tivamente), confirmando a elevada capacidade de detecção para categorias amplamente

representadas. As classes intermediárias, Recon e Spoofing, também demonstraram re-

sultados satisfatórios, com recall de 93,53% e 96,04%, respectivamente, embora ainda

apresentem confusões relevantes - especialmente no caso da classe Recon, que registrou

3.774 erros. Em contrapartida, observa-se um desempenho significativamente inferior nas

classes minoritárias: Brute Force atingiu apenas 55,90% de recall, enquanto Web-Based

foi a mais prejudicada, com apenas 45,10% de recall.

Contabilizando o total de erros e acertos em cada um dos níveis, durante as dez

execuções, foi possível montar uma tabela para o classificador BDM como um todo, ana-

lisando o seu desempenho por classe. Esses resultados são mostrados na Tabela 12.

Tabela 12 – Análise das classes alvo do classificador BDM.

Total de Registros Acertos Erros Recall
Mirai 380553 380531 22 0,9999
DDoS 3162103 3161805 298 0,9999
DoS 1159198 1158965 233 0,9997

Benigno 197672 190831 6841 0,9653
Spoofing 87563 77763 9800 0,8880

Recon 63760 54601 9159 0,8563
BruteForce 2352 1208 1144 0,5136

Web 4469 1945 2524 0,4352

A Tabela referente ao classificador BDM como um todo evidencia um desempenho

bastante elevado para as classes majoritárias. As categorias DDoS, DoS e Mirai apre-

sentaram recall próximo de 100%, confirmando a capacidade do classificador em lidar

com ataques volumétricos e altamente representados no conjunto de dados. O tráfego

benigno também foi identificado com alta taxa de acerto, atingindo 96,53% de recall, de-

sempenho equivalente ao observado no classificador binário. Em contrapartida, as classes

minoritárias continuaram sendo as mais desafiadoras: Brute Force obteve apenas 51,36%

de recall, enquanto Web-Based apresentou 43,52%, revelando elevada taxa de confusão e

confirmando o impacto do desbalanceamento de classes na hierarquia. Já as classes in-

termediárias, Recon e Spoofing, alcançaram recalls de 85,63% e 88,80%, respectivamente,

indicando um desempenho satisfatório, mas apontando dificuldades na distinção entre

categorias semanticamente próximas. Esses resultados evidenciam que, embora o BDM

tenha mantido desempenho elevado para classes majoritárias e tráfego benigno, sua sen-

sibilidade permanece limitada em categorias pouco representadas.

Ao comparar o desempenho do classificador BDM com o modelo multiclasse plano,

observa-se que ambos apresentaram resultados praticamente equivalentes nas classes ma-

joritárias, como DDoS, DoS e Mirai, todas com recall próximo de 100%. Para o tráfego Be-

nign, o modelo multiclasse alcançou desempenho superior (recall de 97,96% contra 96,53%

do BDM), reduzindo significativamente a quantidade de falsos positivos. Já nas classes mi-
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noritárias, os resultados foram similares, com ligeira vantagem para o multiclasse para os

ataques Brute Force (recall de 54,67% contra 51,36% do BDM) e Web-Based (43,52% con-

tra 43,70%, diferença desprezível). Em relação às categorias intermediárias, como Recon

e Spoofing, o BDM obteve melhor desempenho, com recalls de 85,63% e 88,80%, respec-

tivamente, contra 83,67% e 87,13% no modelo multiclasse. Esses resultados sugerem que

a hierarquia do BDM não trouxe ganhos expressivos nas classes majoritárias nem nas

minoritárias, mas demonstrou maior capacidade de distinção em categorias intermediá-

rias, reforçando sua viabilidade como alternativa estrutural para classificação de ataques

em ambientes IoT. Dessa forma, conclui-se que o classificador BDM conseguiu alcançar

a capacidade do classificador multiclasse de distinguir entre múltiplos tipos de ataques,

apresentando desempenho muito próximo e até mesmo superior em algumas categorias.

Portanto, além de alcançar um recall de 99,75% na filtragem de ataques, equi-

valente ao desempenho obtido pelo classificador binário, o classificador BDM também

demonstrou capacidade de distinguir entre diferentes tipos de intrusão de forma seme-

lhante ao classificador multiclasse. Dessa forma, o BDM cumpre o objetivo central desta

pesquisa ao combinar, em uma única abordagem hierárquica, as principais qualidades

dos dois classificadores planos: alta sensibilidade na detecção de ataques e capacidade de

discriminar múltiplas categorias de ameaças.

4.3.3 Avaliação Computacional

Por fim, para completar a análise do classificador BDM, foi feita uma avaliação

em termos de desempenho computacional. A Tabela 13 apresenta os resultados obtidos

por cada um dos modelos, considerando uma média de dez execuções independentes.

Tabela 13 – Resultado das métricas de desempenho computacional para os modelos que
compõem o classificador BDM.

Benigno DDoS Multi-Ataque
Tempo de Treino 39,21 min 53,83 min 16,21 min
Tempo de Teste 0,005 ms 0,007 ms 0,007 ms
Tamanho 123.464 bytes 123.464 bytes 126.696 bytes

No que se refere ao desempenho computacional dos modelos isolados, observa-se

que os modelos Benigno e DDoS apresentaram tempos de treinamento mais elevados, de

aproximadamente 39,21 e 53,83 minutos, respectivamente, além de ocuparem o mesmo

tamanho em memória RAM (123.464 bytes). Já o modelo Multi-Ataque demandou sig-

nificativamente menos tempo de treinamento, cerca de 16,21 minutos, embora apresente

tamanho superior (126.696 bytes). Em termos de tempo de teste por amostra, todos os

modelos mostraram desempenho bom, variando entre 0,005 e 0,007 milissegundos.

O tempo de treinamento mais elevado observado nos modelos DDoS e Benigno,
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em comparação ao modelo Multi-Ataque, pode ser explicado pelo forte desbalanceamento

do conjunto de dados, no qual a classe DDoS é amplamente majoritária. Esse cenário

faz com que esses dois modelos precisem processar um volume muito maior de instâncias

durante a etapa de aprendizado, aumentando a quantidade de operações necessárias para

o ajuste dos parâmetros internos. Assim, o tempo de treinamento não reflete apenas a

arquitetura do modelo, mas também a distribuição das instâncias no conjunto de dados,

sendo diretamente impactado pela predominância da classe DDoS.

Para fins de simplificação, o desempenho computacional do classificador BDM

como sistema integrado foi estimado a partir da soma dos custos de seus três níveis

hierárquicos, desconsiderando o eventual overhead associado ao tráfego de dados entre os

modelos. Embora tal custo exista, presume-se que seu impacto não seja significativo no

desempenho global. O tempo médio de treinamento foi de aproximadamente 109 minutos,

valor consideravelmente superior ao observado nos classificadores planos - 39 minutos

no binário e 64 minutos no multiclasse. Esse aumento, entretanto, é restrito à fase de

construção do modelo e, portanto, não compromete sua utilização prática em produção.

Durante a inferência, o tempo médio de teste por amostra foi de 19 microssegundos,

superior ao binário (5 microssegundos) e ao multiclasse (11 microssegundos), mas ainda

suficientemente baixo para aplicações em tempo real. Em termos de memória, o BDM

apresentou tamanho de aproximadamente 373.624 bytes, significativamente maior que os

classificadores planos - 123.464 bytes no binário e 128.344 bytes no multiclasse.

Esses aumentos de tempo e memória são esperados, uma vez que o classificador

BDM envolve a execução sequencial de três modelos distintos. Tal complexidade adicio-

nal, no entanto, é compensada pela capacidade do classificador em combinar os pontos

fortes das abordagens binária e multiclasse, atendendo ao objetivo central desta investiga-

ção. Ainda assim, os resultados apontam oportunidades para pesquisas futuras voltadas

à redução dos custos computacionais do BDM, de modo a torná-lo mais eficiente sem

comprometer sua robustez na classificação hierárquica.

4.4 Avaliação do Classificador BRDM

Diante dos erros de predição observados na avaliação do classificador BDM, foi pro-

posto um segundo classificador hierárquico, denominado BRDM, que incorpora um nível

adicional voltado à identificação de ataques do tipo Recon. A principal motivação para

essa nova abordagem foi a elevada taxa de confusão envolvendo os ataques de reconhe-

cimento, o que comprometeu a precisão na distinção entre certas categorias. A avaliação

do BRDM seguiu a mesma metodologia adotada para o BDM, sendo estruturada em três

etapas: análise individual dos modelos, investigação do comportamento do classificador

integrado e avaliação do desempenho computacional.
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4.4.1 Desempenho Individual dos Modelos

Para avaliar a qualidade preditiva dos modelos que compõem o classificador BRDM,

foram calculadas métricas tradicionais de desempenho de forma individualizada. Assim

como no caso do BDM, os erros provenientes de modelos de níveis superiores da hierarquia

não foram propagados para os demais, de modo que os resultados refletem exclusivamente

a capacidade de cada modelo isoladamente, em seus respectivos cenários de classificação.

Assim, os valores reportados não têm como finalidade a comparação direta entre as eta-

pas, mas sim a descrição do desempenho alcançado por cada nível da hierarquia de forma

independente. A Tabela 14 apresenta os resultados médios obtidos em dez execuções.

Tabela 14 – Resultado das métricas de desempenho preditivo para os modelos que com-
põem o classificador BRDM.

Benigno Recon DDoS Multi-Ataque
Acurácia 0,9962 0,9984 0,9999 0,9986
Precisão 0,9694 0,9719 0,9998 0,9897
Recall 0,9814 0,9604 0,9998 0,8595
F1 0,9753 0,9661 0,9998 0,9089

O modelo benigno do classificador BRDM opera da mesma forma que no classifica-

dor BDM. Assim, como esperado, ele obteve os mesmos valores observados no classificador

binário e no modelo benigno do BDM, confirmando a consistência e robustez desse modelo

para discriminação entre instâncias benignas e maliciosas.

O modelo Recon, incluído especificamente no BRDM para lidar com as confu-

sões observadas entre ataques de reconhecimento e outras categorias, apresentou métricas

bastante satisfatórias. Com acurácia de 99,84%, precisão de 97,19%, recall de 96,05% e

F1-Score de 96,61%, esse modelo demonstrou boa capacidade de identificar ataques Recon,

equilibrando baixo índice de falsos positivos e elevada taxa de detecção.

O modelo DDoS manteve desempenho excepcional, com todas as métricas próxi-

mas de 100%. A acurácia foi de 99,99%, enquanto precisão, recall e F1-Score ficaram em

99,98%. Esse desempenho é consistente com os resultados observados no BDM e reforça

a facilidade de distinguir ataques volumétricos de DDoS em relação a outras categorias

de tráfego, tanto pela clara diferença nos padrões de tráfego quanto pela forte represen-

tatividade dessa classe no conjunto de dados.

Por fim, o modelo Multi-Ataque, responsável por classificar simultaneamente DoS,

Mirai, Spoofing, Web-Based e Brute Force, apresentou resultados superiores aos obtidos

na última etapa do classificador BDM. Tal resultado era esperado uma vez que a remoção

prematura dos ataques do tipo Recon reduziu a complexidade desse modelo. O recall foi

de 85,95%, evidenciando uma taxa de detecção satisfatória, por mais que ainda apresente

dificuldades em reconhecer todas as instâncias reais das classes minoritárias. A precisão
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foi significativamente mais alta (98,97%), resultando em um F1-Score de 90,89%, o que

aponta um baixo índice de falsos positivos e um bom equilíbrio entre a precisão e o

recall. Esses valores indicam que, apesar da complexidade da tarefa multiclasses e do

desbalanceamento entre categorias, o modelo conseguiu uma boa assertividade geral.

4.4.2 Análise do Classificador Integrado

A avaliação do classificador BRDM como sistema integrado seguiu a mesma meto-

dologia adotada para o BDM, considerando as matrizes de confusão de cada nível hierár-

quico e tabelas que consolidam o desempenho por classe original. As matrizes apresentadas

correspondem à mesma execução utilizada na análise dos classificadores analisados anteri-

ormente, com o mesmo particionamento entre treino e teste. Assim como no caso anterior,

cada execução experimental manteve a associação de todas as instâncias com suas classes

de origem, possibilitando o cálculo dos acertos, erros e valores de recall por categoria,

mesmo em níveis de classificação binária.

Dessa forma, a análise do BRDM buscou compreender não apenas o desempenho

de cada modelo isolado, mas também a contribuição de cada estágio da hierarquia para

o processo completo de filtragem. O ponto de partida continua sendo o modelo Benigno,

seguido pela etapa de detecção específica de ataques de Recon, e posteriormente pelos

classificadores DDoS e Multi-Ataque. Essa estrutura permite avaliar em que medida a

inclusão de um nível intermediário dedicado a ataques de reconhecimento contribui para

reduzir confusões observadas na abordagem BDM.

Começando pelo modelo Benigno, a Figura 15 apresenta a matriz de confusão

correspondente, enquanto a Tabela 15 detalha os resultados obtidos para cada classe

original. É importante destacar que, embora o processo de treinamento seja equivalente ao

realizado no classificador binário tradicional (separação entre tráfego benigno e malicioso),

os resultados obtidos não foram idênticos aos observados no modelo BDM. Isso ocorreu

porque, neste experimento, não foi possível reutilizar diretamente o classificador binário

como foi feito para o BDM. Assim, foi necessário treinar um novo modelo e, devido ao

caráter estocástico do algoritmo Random Forest, pequenas variações nos resultados finais

foram inevitáveis.

Analisando a matriz, o BRDM classificou corretamente 4.847.940 das 4.859.998

instâncias maliciosas, resultando em 12.058 falsos negativos. Para o tráfego benigno, fo-

ram corretamente identificadas 190.937 das 197.672 instâncias. Dessa forma, o modelo

apresentou desempenho equivalente ao classificador binário tradicional na filtragem de

ataques, reduzindo a ocorrência de falsos negativos e atendendo a um dos principais ob-

jetivos deste trabalho. A Tabela 15 complementa essa análise ao avaliar esse desempenho

ao longo das dez execuções.
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Tabela 16 – Análise das classes originais para o nível 2 do classificador BRDM.

Total de Registros Acertos Erros Recall
DoS 1159197 1159196 1 0,9999
Mirai 380552 380551 1 0,9999
DDoS 3162100 3162096 4 0,9999
Spoofing 80955 78621 2334 0,9711
Recon 58608 54016 4592 0,9216
Web 4314 3799 515 0,8806
BruteForce 2160 1857 303 0,8597

Considerando a média das execuções, de um total de 58.608 ataques Recon, 54.016

foram corretamente reconhecidos, resultando em um recall de 92,16% ao considerar ape-

nas a filtragem desse tipo de ataque. Quanto às demais classes, apenas 3.158 das 4.789.278

instâncias foram incorretamente atribuídas a Recon (99,93% de acerto para outros ata-

ques), evidenciando baixo nível de confusão. As maiores taxas de confusão ocorreram nos

ataques Brute Force e Web-Based, seguidos por Spoofing, enquanto as categorias DoS, Mi-

rai e DDoS apresentaram valores de recall superiores a 99,99%, evidenciando baixíssima

suscetibilidade a erros de classificação nesse nível.

As instâncias corretamente classificadas como não Recon no segundo nível são

encaminhadas ao terceiro, cujo objetivo é identificar ataques do tipo DDoS. A Figura 17

apresenta a matriz de confusão referente ao modelo DDoS, enquanto a Tabela 17 detalha

o desempenho em relação a cada classe original. Essa etapa permite avaliar a capacidade

do classificador em reconhecer ataques volumétricos em meio às demais categorias de

intrusão, já excluídas as instâncias de Recon.

A matriz de confusão demonstra a elevada eficácia do modelo, que identificou

corretamente 3.161.831 das 3.162.098 instâncias da classe DDoS encaminhadas a este

nível, resultando em apenas 267 falsos negativos. Esse desempenho é comparável ao obtido

pelo classificador BDM, evidenciando consistência nos resultados. Em relação às demais

categorias de ataque, a confusão com DDoS mostrou-se mínima: apenas 215 instâncias

foram incorretamente atribuídas a essa classe em um universo de 1.624.205 amostras, o que

confirma a robustez do modelo na rejeição de falsos positivos. A Tabela 17 complementa

essa análise ao indicar em detalhe quais categorias apresentaram maior propensão a serem

confundidas com tráfego de ataque distribuído.

Considerando a média das execuções, de um total de 3.162.096 ataques DDoS,

3.161.825 foram corretamente reconhecidos, resultando em um recall de 99,99% para essa

categoria. Quanto às demais classes, apenas 207 das 1.278.025 instâncias foram incorreta-

mente atribuídas a DDoS (99,98% de acerto para outros ataques), o que demonstra baixo

nível de confusão. Observa-se ainda que os ataques Brute Force, Spoofing e Web-Based

não apresentaram nenhum erro de classificação, alcançando recall perfeito. As classes Mi-
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77.895 acertos, o BRDM elevou esse valor para 78.762 acertos, evidenciando que a etapa

de filtragem de ataques Recon contribuiu para reduzir as confusões dessa classe. Em am-

bos os casos, as classes minoritárias, Web-Based e Brute Force, permaneceram como as

mais desafiadoras, refletindo o impacto do desbalanceamento do conjunto de dados e resul-

tando em quedas perceptíveis de desempenho. Ainda assim, o BRDM demonstrou ganhos

relevantes também nessas categorias. Assim, embora os dois modelos demonstrem elevada

eficácia na detecção das classes predominantes, o BRDM se destaca por mitigar parte das

confusões tanto em classes intermediárias quanto minoritárias, enquanto o BDM revela

maior fragilidade nesses cenários.

Para sustentar essa análise, a Tabela 18 contabiliza a média de acertos e erros de

cada categoria para o modelo multi-ataque ao longo de dez execuções.

Tabela 18 – Análise das classes originais para o nível 4 do classificador BRDM.

Total de Registros Acertos Erros Recall
DoS 1158993 1158970 23 0,9999
Mirai 380548 380533 15 0,9999
Spoofing 78621 78592 29 0,9996
BruteForce 1857 1382 475 0,7442
Web 3799 2103 1696 0,5535

Analisando a tabela, a classe DoS, composta por 1.158.993 instâncias, apresentou

1.158.970 acertos e apenas 23 erros, resultando em um recall de 99,99%. De forma seme-

lhante, a classe Mirai, com 380.548 amostras, obteve 380.533 classificações corretas e 15

incorretas, também atingindo um recall de 99,99%. Esses valores demonstram que o clas-

sificador é altamente eficaz na identificação de ataques volumosos e recorrentes, refletindo

sua capacidade de generalização frente a padrões majoritários.

A classe Spoofing, embora menor que as anteriores, também apresentou desempe-

nho robusto, com 78.592 acertos em 78.621 instâncias e apenas 29 erros, alcançando um

recall de 99,96%. Esse resultado indica que o modelo mantém bom nível de discriminação

mesmo em categorias intermediárias, ainda que se observe um leve aumento no número

relativo de erros em comparação às classes mais numerosas.

Em contrapartida, as classes minoritárias demonstraram desempenho significati-

vamente inferior. A categoria Brute Force, composta por 1.857 amostras, obteve 1.382

acertos e 475 erros, com recall de apenas 74,42%. Já a classe Web, com 3.799 instâncias,

apresentou apenas 2.103 classificações corretas e 1.696 equivocadas, resultando em um

recall de 55,35%. Esses valores evidenciam que a hierarquia proposta, embora contribua

para reduzir ambiguidades em classes intermediárias, ainda não é suficiente para mitigar

totalmente os efeitos do desbalanceamento extremo das categorias minoritárias.

Contabilizando o total de erros e acertos em cada um dos níveis, durante as dez

execuções, foi possível montar uma tabela para o classificador BRDM como um todo,
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analisando o seu desempenho por classe. Esses resultados são mostrados na Tabela 19.

Tabela 19 – Análise das classes alvo do classificador BRDM.

Total de Registros Acertos Erros Recall
Mirai 380553 380533 20 0,9999
DDoS 3162103 3161825 278 0,9999
DoS 1159198 1158970 228 0,9998
Benigno 197672 190828 6844 0,9653
Spoofing 87563 78592 8971 0,8975
Recon 63760 54016 9744 0,8471
BruteForce 2352 1382 970 0,5875
Web 4469 2103 2366 0,4705

A análise consolidada das classes originais para o classificador BRDM evidencia

um comportamento heterogêneo entre categorias majoritárias e minoritárias. As classes

Mirai, DDoS e DoS, que concentram a maior parte das instâncias no conjunto de dados,

apresentaram um excelente desempenho, com recall de 99,99% e 99,98%, confirmando

a robustez do modelo frente a ataques volumétricos e recorrentes. O tráfego Benigno,

embora volumoso, apresentou taxa de acerto inferior (96,53%), com mais de 6.800 ins-

tâncias mal classificadas como maliciosas, evidenciando certa dificuldade do classificador

em evitar falsos positivos. Nas classes intermediárias, como Spoofing (89,75%) e Recon

(84,71%), nota-se desempenho satisfatório, mas ainda limitado em relação às categorias

majoritárias, indicando maior suscetibilidade a confusões. Já as categorias minoritárias,

Brute Force (58,75%) e Web-Based (47,05%), apresentaram os menores valores de recall,

com quase metade das instâncias sendo incorretamente atribuídas a outras classes. Esses

resultados evidenciam que, embora o BRDM seja altamente eficaz para detectar classes

predominantes, seu desempenho é significativamente impactado pelo desbalanceamento

do conjunto de dados.

Comparando os resultados consolidados dos classificadores BDM e BRDM, observa-

se que ambos alcançaram desempenho notável nas classes majoritárias, com recall próximo

de 100% para DDoS, DoS e Mirai, confirmando a robustez de ambas as abordagens frente

a esses tipos de ataques. O tráfego benigno apresentou desempenho equivalente em ambos

os modelos, com recall de 96,53%, resultado coerente com o fato de que o processo de trei-

namento aplicado aos dois classificadores foi o mesmo. No entanto, observam-se diferenças

pontuais no tratamento das categorias intermediárias, ainda que os valores obtidos sejam

próximos. O BRDM apresentou desempenho superior ao BDM na detecção de ataques do

tipo Spoofing (89,75% contra 88,80%), sugerindo uma melhora na capacidade de reduzir

confusões por meio da filtragem hierárquica. Por outro lado, o BRDM obteve desempe-

nho ligeiramente inferior em relação à classe Recon (84,71% contra 85,63%), evidenciando

que a introdução da hierarquia não necessariamente beneficia todas as categorias de ma-

neira uniforme. Nas classes minoritárias, ambos os classificadores obtiveram desempenhos
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abaixo do desejável, mas o BRDM apresentou avanços importantes, com Brute Force atin-

gindo 58,75% contra 51,36% no BDM e Web-Based alcançando 47,05% frente a 43,52%.

Dessa forma, embora as duas arquiteturas sejam eficazes na detecção das classes predo-

minantes, o BRDM mostra-se mais vantajoso por mitigar parte das limitações observadas

em categorias menos representativas, ainda que o impacto do desbalanceamento continue

influenciando significativamente o desempenho global.

Os resultados obtidos pelo BRDM também evidenciam que esse modelo conseguiu

integrar as vantagens dos classificadores binários e multiclasse, alcançando um equilíbrio

entre eficácia na filtragem de ataques e capacidade de distinguir múltiplos tipos de intru-

são. A introdução de um nível específico para a identificação de ataques do tipo Recon

contribuiu para mitigar confusões recorrentes no BDM, em especial nas classes Spoofing,

Brute Force e Web-Based. Dessa forma, a abordagem hierárquica não apenas preserva a

robustez observada nas classes majoritárias, como também promove ganhos relevantes em

categorias mais desafiadoras. Portanto, o BRDM mostra-se uma alternativa promissora

para reduzir sobreposições entre classes e aprimorar a detecção de ataques em cenários

caracterizados pela alta complexidade e desbalanceamento dos dados.

4.4.3 Avaliação Computacional

Para complementar a análise do classificador BRDM, foi realizada uma avaliação

em termos de desempenho computacional. A Tabela 20 apresenta os resultados médios

obtidos para cada um dos modelos que compõem a hierarquia, considerando dez execuções

independentes.

Tabela 20 – Resultado das métricas de desempenho computacional para os modelos que
compõem o classificador BRDM.

Benigno Recon DDoS Multi-Ataque
Tempo de Treino 39,11 min 49,63 min 45,34 min 14,52 min
Tempo de Teste 0,005 ms 0,005 ms 0,006 ms 0,006 ms
Tamanho 123.464 bytes 123.464 bytes 123.464 bytes 125.920 bytes

Com relação ao desempenho computacional dos modelos isolados, observa-se que

o tempo de treinamento mais elevado ocorreu no modelo Recon, com média de 49,63 mi-

nutos, seguido pelo modelo DDoS, com 45,34 minutos. Já o modelo Benigno, responsável

pela separação entre tráfego legítimo e malicioso, apresentou tempo de treinamento pró-

ximo ao observado no BDM (39,11 minutos). O modelo multi-ataque, apesar de lidar com

múltiplas classes, foi consideravelmente mais rápido para treinar, demandando apenas

14,52 minutos para ser construído, possivelmente em razão de a quantidade de registros

envolvidos ser significativamente menor que nos modelos anteriores. No que diz respeito

ao tempo de inferência, todos os modelos apresentaram valores bastante reduzidos, vari-

ando entre 0,005 e 0,006 milissegundos por instância. Quanto ao tamanho em memória,
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os modelos que utilizam a abordagem binária ocuparam um espaço de 123.464 bytes,

enquanto o modelo multi-ataque ocupou 125.920 bytes.

Para fins de simplificação, o desempenho computacional do classificador BRDM

como sistema integrado foi estimado pela soma dos custos de seus quatro níveis hierár-

quicos, desconsiderando o eventual overhead associado à comunicação entre modelos. O

tempo total de treinamento foi de aproximadamente 149 minutos, superior ao observado

no BDM (109 minutos) e também aos classificadores planos, que demandaram 39 minutos

no binário e 64 minutos no multiclasse. Esse aumento é restrito à fase de construção do

modelo e, portanto, não compromete sua utilização em produção. Durante a inferência, o

tempo médio de teste por amostra foi de 22 microssegundos, maior que no BDM (19 mi-

crossegundos), mas ainda adequado para cenários de detecção em tempo real. Em termos

de memória, o BRDM apresentou tamanho total aproximado de 496.312 bytes, também

superior ao BDM (373.624 bytes) e, consequentemente, aos classificadores planos.

Esse crescimento em tempo e uso de memória é esperado, uma vez que o BRDM

incorpora quatro modelos na hierarquia, um a mais que o BDM. Apesar disso, o custo

adicional é compensado pela proposta de maior especialização na detecção de ataques

de reconhecimento, buscando reduzir confusões identificadas na etapa anterior. Assim,

o BRDM apresenta-se como uma solução computacionalmente mais exigente, mas que

busca entregar ganhos qualitativos em termos de classificação hierárquica.

4.4.4 Experimento com XGBoost

Tendo em vista que o BRDM se sobressaiu em relação às demais abordagens

testadas, esta pesquisa buscou investigar a mesma abordagem hierárquica substituindo,

em cada um dos níveis, o algoritmo de classificação Random Forest pelo Extreme Gradient

Boosting (XGBoost). A escolha desse algoritmo fundamenta-se em estudos recentes que

apontam o XGBoost como uma alternativa promissora para problemas de classificação

utilizando o conjunto de dados CICIoT2023 (ESTEVES, 2025).

O processo de construção do BRDM foi mantido, alterando-se apenas o algoritmo

empregado em cada nível da hierarquia. Os experimentos foram conduzidos no mesmo

ambiente computacional, preservando-se as divisões de treino e teste em todas as dez

execuções independentes, de modo a garantir condições justas de comparação.

Entretanto, o desempenho preditivo obtido com essa nova configuração mostrou-se

inferior ao observado com o uso do Random Forest. Por esse motivo, a análise dos resulta-

dos será apresentada de forma mais sucinta, contemplando: (i) o desempenho individual

dos modelos que compõem a hierarquia, (ii) a tabela consolidada de erros e acertos para

cada classe no classificador integrado e (iii) a avaliação do desempenho computacional.

Primeiramente, para a avaliação individual de cada modelo, foram calculadas as
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métricas tradicionais de desempenho médio ao longo das dez execuções. Os resultados

estão sintetizados na Tabela 21.

Tabela 21 – Resultado das métricas de desempenho preditivo para os modelos que com-
põem o classificador BRDM XGBoost.

Benigno Recon DDoS Multi-Ataque
Acurácia 0,9952 0,9979 0,9998 0,9984
Precisão 0,9618 0,9589 0,9998 0,9435
Recall 0,9766 0,9509 0,9997 0,7898
F1 0,9691 0,9549 0,9997 0,8432

A análise dos resultados médios do classificador BRDM XGBoost evidencia um

comportamento heterogêneo entre os diferentes níveis da hierarquia. O modelo binário

inicial apresentou desempenho consistente, com acurácia de 99,52% e valores equilibrados

de precisão (96,18%) e recall (97,66%), resultando em um F1 de 96,91%, indicando um

bom desempenho geral para este modelo. No segundo nível, o modelo Recon obteve acu-

rácia ligeiramente superior (99,79%), mas apresentou valores mais modestos de precisão

(95,89%) e recall (95,09%), refletindo maior suscetibilidade a confusões nessa categoria,

ainda que mantendo desempenho satisfatório (F1 de 95,49%).

Já o modelo DDoS destacou-se como o nível mais robusto da hierarquia, alcan-

çando alta acurácia (99,98%) e métricas extremamente elevadas em todas as dimensões

(precisão de 99,98%, recall de 99,97% e F1 de 99,97%). Em contrapartida, o modelo

Multi-Ataque apresentou a maior fragilidade, apesar da alta acurácia (99,84%). A preci-

são manteve-se elevada (94,35%), indicando baixo número de falsos positivos, mas o recall

caiu para 78,98%, refletindo uma quantidade significativa de falsos negativos e um F1 de

apenas 84,32%. Esse resultado mostra que, embora o modelo consiga rejeitar corretamente

instâncias negativas, tem maior dificuldade em detectar todas as ocorrências das classes

minoritárias, comprometendo a sensibilidade global da hierarquia nesse nível. De forma

geral, os resultados sugerem que o BRDM XGBoost manteve alta eficácia para classes

mais volumosas, mas sofreu perda considerável de desempenho na fase de classificação

multiataque, especialmente em termos de recall.

Em seguida, para possibilitar uma avaliação mais aprofundada, os experimentos

contabilizaram o total de erros e acertos por categoria em cada um dos níveis, durante as

dez execuções. Dessa forma, foi possível montar uma tabela para o classificador BRDM

XGBoost contemplando o total de instâncias, número de acertos, número de erros e valor

de recall obtido. Esses resultados são mostrados na Tabela 22.

Analisando a tabela, percebe-se que as classes Mirai, DDoS e DoS apresentaram

um excelente desempenho, com valores de recall próximos a 100%. O tráfego Benigno

apresentou taxa de acerto de 95,63%, que apesar de bom, evidencia certa dificuldade

do modelo. Nas classes intermediárias, como Spoofing (87,82%) e Recon (81,07%), nota-
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Tabela 22 – Análise das classes alvo do classificador BRDM XGBoost.

Total de Registros Acertos Erros Recall
Mirai 380553 380527 26 0,9999
DDoS 3162103 3161619 484 0,9998
DoS 1159198 1158667 531 0,9995
Benigno 197672 189050 8622 0,9563
Spoofing 87563 76905 10658 0,8782
Recon 63760 51695 12065 0,8107
Web 4469 1274 3195 0,2850
BruteForce 2352 512 1840 0,2176

se desempenho satisfatório, mas com maior suscetibilidade a confusões. Já as categorias

minoritárias, Brute Force (21,76%) e Web-Based (28,50%), apresentaram desempenho

significativamente inferior, indicando que o modelo enfrenta dificuldades em detectar cor-

retamente ataques com menor representatividade no conjunto de dados. Essa baixa taxa

de recall sugere que o modelo tende a confundir essas classes com outras mais frequentes,

evidenciando um possível viés de classificação devido ao desbalanceamento de classes.

Comparando os resultados consolidados dos classificadores BRDM XGBoost e

BRDM Random Forest, observa-se que ambos alcançaram desempenho semelhante nas

classes DDoS, DoS, Mirai e Benigno. Contudo, o Random Foret obteve resultados signi-

ficativamente melhores para as classes Spoofing (89,75% contra 87,82%) e Recon (84,71%

contra 81,07%). Essa diferença entre os classificadores foi ainda mais crítica para as cate-

gorias Brute Force (58,75% contra 21,76%) e Web-Based (47,05% contra 28,50%).

Por fim, para completar a análise do classificador BRDM XGBoost, foi feita uma

avaliação em termos de desempenho computacional. A Tabela 23 apresenta os resultados

obtidos por cada um dos modelos, considerando uma média de dez execuções indepen-

dentes.

Tabela 23 – Resultado das métricas de desempenho computacional para os modelos que
compõem o classificador BRDM XGBoost.

Benigno Recon DDoS Multi-Ataque
Tempo de Treino 60,43 s 54,33 s 45,81 s 72,33 s
Tempo de Teste 0,0003 ms 0,0001 ms 0,0001 ms 0,002 ms
Tamanho 5.328 bytes 5.312 bytes 5.296 bytes 5.344 bytes

O desempenho computacional do BRDM XGBoost apresentou resultados bastante

favoráveis em termos de tempo de execução e tamanho dos modelos. Os tempos médios de

treino foram relativamente baixos, variando de 45,81 segundos no modelo DDoS até 72,33

segundos no modelo Multi-Ataque, o que demonstra eficiência no processo de treinamento

mesmo considerando a complexidade da hierarquia. Durante a fase de teste, o tempo de

inferência foi significativamente baixo em todos os casos, com valores variando entre 0,0001
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e 0,002 milissegundos, o que torna a abordagem altamente adequada para cenários que

demandam respostas em tempo real. Além disso, o tamanho final dos modelos foi em

torno de 5 KB cada, evidenciando o baixo consumo de memória e a leveza computacional

dessa solução.

Quando comparado ao BRDM Random Forest, as diferenças são expressivas. En-

quanto o XGBoost necessitou de segundos para treinar cada modelo, o Random Forest

demandou dezenas de minutos, variando de 14,52 minutos (Multi-Ataque) até 49,63 mi-

nutos (Recon), o que representa uma diferença significativa em termos de tempo de treina-

mento. Na fase de teste, ambos apresentaram tempos bastante reduzidos, mas o XGBoost

mais uma vez foi superior ao Random Forest. Em relação ao tamanho dos modelos, o

contraste é evidente: os modelos do Random Forest ultrapassaram 120 KB, enquanto os

do XGBoost permaneceram próximos a 5 KB. Dessa forma, ainda que o desempenho

preditivo do Random Forest seja mais consistente, o XGBoost se destaca amplamente

em eficiência computacional, apresentando-se como uma alternativa mais leve e escalável

para ambientes com restrições de tempo e recursos.

4.5 Considerações e Lições Aprendidas

Esta seção apresenta uma síntese dos principais resultados obtidos nos experimen-

tos, destacando as considerações relevantes e as lições aprendidas a partir da avaliação dos

classificadores planos e hierárquicos para detecção de intrusões em redes IoT. A Tabela

24 resume a comparação entre os experimentos, evidenciando o objetivo central de cada

classificador, bem como suas respectivas vantagens e limitações.
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Tabela 24 – Comparação entre os experimentos.

Objetivo Principal Vantagens Principais Limitações Principais
Modelo
Binário

Distinguir entre tráfego
benigno e malicioso em geral

- Alta sensibilidade na detecção
de ataques (poucos falsos negativos)

- Perda de informações
sobre o tipo específico de ataque

Modelo
Multiclasse

Distinguir entre 8 categorias
de tráfego (benigno e 7 tipos de ataque)

- Granularidade na
identificação de tipos de ataques

- Maior complexidade
e risco de erros com o

aumento do número de classes

- Maior taxa de falsos
negativos para ataques em geral

- Dificuldade e baixa
performance para classes minoritárias

(Web-Based, Brute Force, Recon e Spoofing)

Modelo BDM
Combinar a eficiência

da filtragem binária com a
granularidade da multiclasse

- Combina a alta sensibilidade
do binário com a capacidade

de categorização do multiclasse

- Melhora a interpretabilidade
e a especialização das etapas

de classificação

- Desempenho superior ao multiclasse
plano nas classes Recon e Spoofing

- Custo computacional
total significativamente

maior que classificadores planos

- Desempenho limitado e confusões
persistentes em classes minoritárias

devido ao desbalanceamento

- Desempenho inferior ao
classificador multiclasse para as categorias

Benigno, Brute Force e Web-Based

Modelo BRDM
(Random Forest)

Estender o BDM, adicionando
um nível específico para ataques

de Reconhecimento, visando mitigar
confusões e melhorar a precisão geral

- Combina a alta sensibilidade
do binário com a capacidade

de categorização do multiclasse

- Melhora a interpretabilidade
e a especialização das etapas

de classificação

- Desempenho superior nas classes
Spoofing, Brute Force e Web-Based,

em comparação ao BDM e ao multiclasse

- Custo computacional total
ainda mais elevado que o BDM

- Desempenho ainda impactado pelo
desbalanceamento em categorias minoritárias

- Desempenho ligeiramente inferior
para a classe Recon em comparação ao BDM

Modelo BRDM
(XGBoost)

Investigar a abordagem BRDM
utilizando o algoritmo XGBoost
para comparação de desempenho

e eficiência computacional

- Excelente eficiência computacional

- Desempenho preditivo
inferior ao BRDM Random Forest,

especialmente no modelo Multi-Ataque

- Maior suscetibilidade a confusões
em classes intermediárias e minoritárias
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A análise dos classificadores planos revelou um claro trade-off entre o desempenho

preditivo e a granularidade da detecção. O classificador binário destacou-se pela elevada

sensibilidade na identificação de ataques, reduzindo a probabilidade de falsos negativos, o

que é crucial em cenários de cibersegurança. No entanto, não forneceu informações deta-

lhadas sobre o tipo específico de ataque. Já o classificador multiclasse, embora com menor

desempenho na detecção de ataques, ofereceu a capacidade de distinguir entre diferentes

tipos de ataque, proporcionando informações valiosas para estratégias de mitigação dire-

cionadas. Em termos de eficiência computacional, o classificador binário mostrou-se mais

eficiente, com menor tempo de treinamento (aproximadamente 39 minutos) e de teste

por amostra (0,005 ms), além de um tamanho em memória ligeiramente menor (123.464

bytes) em comparação ao multiclasse (cerca de 64 minutos de treino, 0,011 ms de teste e

128.344 bytes), embora ambos tenham sido considerados viáveis para execução.

Para combinar as vantagens e mitigar as desvantagens dos classificadores planos,

propôs-se o classificador hierárquico BDM (Benigno, DDoS e Multi-Ataque), que explorou

a hierarquia dos ciberataques. O modelo Benigno, no primeiro nível, herdou a alta sensi-

bilidade do classificador binário na identificação de ataques. O modelo DDoS, no segundo

nível, apresentou desempenho excepcional devido à natureza volumétrica e alta represen-

tatividade desses ataques no conjunto de dados, facilitando sua separação e mitigando

o desbalanceamento. O modelo Multi-Ataque, no terceiro nível, conseguiu desempenho

similar ao multiclasse plano na distinção entre tipos de ataques restantes, com ganhos

pontuais em Recon e Spoofing. Contudo, as classes minoritárias Brute Force e Web-Based

continuaram sendo as mais desafiadoras, evidenciando o impacto do desbalanceamento de

classes. O BDM apresentou um tempo médio de treinamento total de aproximadamente

109 minutos e um tamanho de aproximadamente 373.624 bytes, superiores aos classi-

ficadores planos, mas com um tempo de teste por amostra (19 microssegundos) ainda

adequado para aplicações em tempo real.

Dando sequência à investigação, o classificador hierárquico BRDM (Benigno, Re-

con, DDoS e Multi-Ataque) foi desenvolvido para abordar as confusões com ataques de

reconhecimento observadas no BDM, adicionando um nível específico para a detecção de

ataques Recon. O modelo Benigno manteve a consistência na filtragem inicial. A inclu-

são do modelo Recon no segundo nível demonstrou boa capacidade de separar outros

ataques de ataques de reconhecimento, contribuindo para reduzir ambiguidades, embora

seu desempenho na detecção de Recon tenha sido ligeiramente inferior ao do modelo

Multi-Ataque do BDM. Os modelos DDoS e Multi-Ataque subsequentes se beneficiaram

da filtragem prévia de Recon, mostrando desempenho superior em classes intermediárias

(Spoofing) e minoritárias (Brute Force e Web-Based) em comparação ao BDM. O BRDM

demonstrou ser uma alternativa promissora para reduzir sobreposições entre classes e

aprimorar a detecção de ataques em cenários complexos e desbalanceados. Computacio-

nalmente, o BRDM apresentou um tempo total de treinamento de aproximadamente 149
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minutos e um tamanho total de aproximadamente 496.312 bytes, sendo mais exigente

que o BDM e os classificadores planos. No entanto, o tempo de teste por amostra (22

microssegundos) permaneceu aceitável para aplicações em tempo real.

Um experimento adicional com o BRDM, substituindo o algoritmo Random Fo-

rest por XGBoost, revelou um trade-off notável entre desempenho preditivo e eficiência

computacional. O desempenho preditivo geral do BRDM XGBoost foi inferior ao BRDM

Random Forest, especialmente no modelo Multi-Ataque. Isso sugere que o Random Forest

foi mais adequado para lidar com a heterogeneidade e o desbalanceamento da classificação

multiataque. Em contrapartida, a eficiência computacional do XGBoost foi amplamente

superior, com tempos de treinamento medidos em segundos contra minutos para Random

Forest, tempos de teste ainda menores (0,0001 a 0,002 ms) e modelos significativamente

mais leves (aproximadamente 5 KB cada contra mais de 120 KB para Random Forest).

O XGBoost mostrou-se uma alternativa mais escalável para ambientes com restrições de

recursos.

A partir dos experimentos realizados, observou-se que a classificação hierárquica

é uma abordagem promissora para a detecção de intrusões em redes IoT. Ela combina

alta sensibilidade na identificação geral de ataques com a capacidade de caracterizar di-

ferentes tipos de intrusão, superando as limitações dos classificadores planos. A definição

da hierarquia desempenha um papel crucial: a inclusão de níveis intermediários voltados

a classes com características específicas - como ataques volumétricos (DDoS) e prepara-

tórios (Recon) - contribui para refinar a detecção, reduzir ambiguidades e simplificar os

classificadores subsequentes, resultando em ganhos de desempenho.

Entretanto, o desbalanceamento de classes permanece um desafio relevante, mesmo

em arquiteturas hierárquicas, prejudicando a detecção de categorias minoritárias. Além

disso, a escolha do algoritmo de aprendizado de máquina deve ser cuidadosamente consi-

derada, buscando equilibrar desempenho preditivo e eficiência computacional.

Por fim, embora classificadores hierárquicos demandem maior uso de recursos

(tempo de treinamento e memória) em função da sua complexidade, o tempo de infe-

rência mantém-se suficientemente baixo para a maioria das aplicações em tempo real, o

que os torna viáveis em diversos cenários práticos.
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5 Conclusão

Este trabalho de conclusão de curso teve como objetivo principal construir um

classificador hierárquico para detecção de intrusões em redes IoT, capaz de combinar as

qualidades de ambos os classificadores binários e planos. A motivação para este estudo

reside na crescente proliferação de dispositivos IoT e no consequente aumento das vulne-

rabilidades cibernéticas, tornando essencial o desenvolvimento de Sistemas de Detecção

de Intrusão (IDS) mais eficazes para esses ambientes. A abordagem hierárquica surgiu

como uma alternativa promissora para superar as limitações dos classificadores planos

tradicionais, combinando a eficiência da filtragem binária de ataques com a granularidade

da classificação multiclasse.

A metodologia adotada consistiu na extração e pré-processamento de uma suba-

mostra estratificada do conjunto de dados CICIoT2023, seguida pela construção e ava-

liação de classificadores planos (binário e multiclasse) e hierárquicos (BDM e BRDM).

Todos os modelos foram implementados utilizando o algoritmo Random Forest, com um

experimento adicional para o BRDM utilizando XGBoost. A validação do desempenho

preditivo dos modelos propostos foi realizada sistematicamente utilizando o conjunto de

dados CICIoT2023. O desempenho preditivo foi mensurado por métricas como acurácia,

precisão, recall e F1-Score, e o desempenho computacional foi avaliado por tempo de

treinamento, tempo de teste e uso de memória RAM.

Diante dos resultados obtidos, conclui-se que o objetivo principal deste traba-

lho foi alcançado. Os classificadores hierárquicos propostos demonstraram ser capazes de

combinar a alta sensibilidade dos classificadores binários na detecção de ataques com a

capacidade de diferenciação dos classificadores multiclasse, superando as limitações dos

classificadores planos e validando a hipótese de que a organização hierárquica constitui

uma alternativa eficaz para a detecção de intrusões em redes IoT.

Os classificadores planos revelaram um trade-off notável: o classificador binário

destacou-se pela alta sensibilidade na detecção de ataques, crucial para evitar falsos nega-

tivos em cibersegurança, mas sem granularidade. Em contrapartida, o classificador mul-

ticlasse ofereceu a capacidade de distinguir entre diferentes tipos de ataque, sendo eficaz

na detecção de tráfego benigno, mas inferior na detecção de ataques.

Para endereçar essas limitações, foi desenvolvido o classificador hierárquico BDM

(Benigno, DDoS e Multi-Ataque). Ele conseguiu combinar a alta sensibilidade do clas-

sificador binário na detecção de ataques (99,75% de acertos) com a granularidade do

classificador multiclasse na distinção dos tipos de intrusão, atendendo ao objetivo central

desta pesquisa. O modelo Benigno manteve o mesmo desempenho do classificador binário
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na detecção de tráfego legítimo e malicioso. O modelo DDoS, no segundo nível, apresen-

tou desempenho considerável (recall de 99,99%) devido à sua natureza volumétrica e alta

representatividade, reduzindo a complexidade do nível subsequente. Por fim, o modelo

Multi-Ataque, no terceiro nível, obteve resultados comparáveis ao multiclasse plano, com

ganhos pontuais em Recon (+2%) e Spoofing (+1,7%), e perdas em Brute Force (-3,3%)

e Web-Based (-0,1%, valor praticamente desprezível).

A avaliação do classificador BDM possibilitou a análise dos erros em cada nível

hierárquico, permitindo identificar as classes mais problemáticas e os tipos de ataques que

ainda representam desafios. As principais confusões ocorreram entre classes minoritárias,

como Web-Based e Brute Force, que foram frequentemente classificadas como Recon ou

Spoofing. Além disso, embora a taxa de detecção dessas duas últimas tenha aumentado,

observou-se uma considerável sobreposição entre seus padrões, resultando em confusões

recorrentes entre Recon e Spoofing.

Ao investigar diferentes formas de organização hierárquica com o objetivo de re-

duzir as confusões observadas no classificador BDM e aprimorar a detecção de ataques,

foi desenvolvido um segundo classificador hierárquico: o BRDM (Benigno, Recon, DDoS

e Multi-Ataque). Essa arquitetura buscou mitigar, em especial, os erros associados aos

ataques de reconhecimento. O modelo Benigno manteve o mesmo desempenho do clas-

sificador binário na detecção de tráfego legítimo e malicioso. A introdução de um nível

específico para a classe Recon (modelo Recon) demonstrou boa capacidade de identifica-

ção desses ataques (recall de 92,16%). Entretanto, seu principal benefício foi a redução das

confusões de outras classes com Recon, alcançando recall de 99,93% e contribuindo para

diminuir ambiguidades na classificação. Os modelos subsequentes - DDoS e Multi-Ataque

- se beneficiaram dessa filtragem prévia, apresentando desempenho superior em relação

ao BDM. Foram observados ganhos relevantes nas classes Spoofing (+1%), Brute Force

(+7,4%) e Web-Based (+3,5%), ultrapassando também o classificador multiclasses.

Dessa forma, o BRDM demonstrou ser uma alternativa promissora para reduzir

as sobreposições entre classes e aprimorar a detecção de ataques em cenários complexos

e desbalanceados. O modelo não apenas alcançou a capacidade de distinção de tipos

de intrusão do classificador multiclasse, como também a superou em algumas categorias

específicas, como Brute Force e Web-Based (+3,5%).

Entretanto, as principais confusões permaneceram concentradas nas classes mino-

ritárias. Em particular, Brute Force apresentou recall de 58,75% e Web-Based de 47,05%,

o que evidencia que quase metade de suas instâncias foi incorretamente atribuída a ou-

tras classes. Além disso, Spoofing (89,75%) e Recon (84,71%) também mostraram certa

suscetibilidade a erros, embora tenham mantido um desempenho considerado satisfatório.

Sob a perspectiva computacional, o classificador binário demonstrou ser o mais

eficiente, com um tempo médio de treinamento de aproximadamente 39 minutos, um
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tempo de teste por amostra de 0,005 ms e um tamanho de 123.464 bytes em memória

RAM. O classificador multiclasse, por sua vez, foi ligeiramente mais exigente, registrando

cerca de 64 minutos de treinamento, 0,011 ms por amostra no teste e 128.344 bytes de

memória. Já as abordagens hierárquicas apresentaram custos computacionais superiores:

o classificador BDM teve um tempo médio de treinamento total de aproximadamente 109

minutos e um tamanho de cerca de 373.624 bytes, com tempo de teste de 19 microssegun-

dos por amostra. O BRDM, sendo o mais complexo com quatro níveis, demandou cerca

de 149 minutos de treinamento e um tamanho de aproximadamente 496.312 bytes, com

um tempo de teste de 22 microssegundos por amostra.

Um experimento adicional com o BRDM, substituindo o algoritmo Random Fo-

rest por XGBoost, revelou um trade-off notável entre desempenho preditivo e eficiência

computacional. O desempenho preditivo geral do BRDM XGBoost foi inferior ao BRDM

Random Forest, especialmente no modelo Multi-Ataque. Isso sugere que o Random Forest

foi mais adequado para lidar com a heterogeneidade e o desbalanceamento da classificação

multiataque. Em contrapartida, a eficiência computacional do XGBoost foi amplamente

superior, com tempos de treinamento medidos em segundos (variando de 45,81s a 72,33s),

tempos de teste ainda menores (0,0001 a 0,002 ms) e modelos significativamente mais

leves (aproximadamente 5 KB contra mais de 120 KB para Random Forest). O XGBoost

mostrou-se uma alternativa mais escalável para ambientes com restrições de recursos.

A definição da hierarquia mostrou-se um aspecto central: a inclusão de níveis

intermediários dedicados a classes com características específicas, como DDoS e Recon,

contribui para refinar a detecção e reduzir ambiguidades. Além disso, a análise detalhada

dos erros de classificação por categoria revelou-se fundamental para identificar classes

problemáticas e orientar o aprimoramento contínuo dos sistemas.

A partir das análises realizadas, observa-se que os classificadores hierárquicos são

particularmente indicados para cenários em que há forte desbalanceamento entre clas-

ses, elevada heterogeneidade dos ataques e necessidade simultânea de alta sensibilidade

na detecção de tráfego malicioso e caracterização detalhada dos tipos de intrusão. Em

contrapartida, em cenários com restrições severas de recursos computacionais ou em apli-

cações onde apenas a detecção binária de ataques é suficiente, classificadores planos podem

representar uma solução mais adequada.

Em suma, este estudo evidenciou, que a classificação hierárquica constitui uma

abordagem viável e eficaz para a detecção de intrusões em redes IoT, superando o de-

sempenho de classificadores planos em cenários que demandam um equilíbrio entre alta

sensibilidade na identificação de ataques, capacidade de diferenciação entre classes e in-

terpretabilidade dos resultados. Nesse contexto, os modelos BDM e BRDM mostraram-se

capazes de integrar a robustez da detecção binária com a granularidade da classificação

multiclasse, fornecendo subsídios mais precisos para a construção de estratégias de defesa
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cibernética direcionadas.

Para trabalhos futuros, diversas vertentes de pesquisa podem ser exploradas para

aprimorar ainda mais a detecção de intrusões em redes IoT usando classificação hierár-

quica. Primeiramente, é crucial desenvolver e aplicar técnicas para mitigar o desbalance-

amento de classes, um desafio persistente que impactou negativamente o desempenho dos

classificadores hierárquicos, especialmente nas categorias minoritárias como Web-Based e

Brute Force. Além disso, dado que os classificadores hierárquicos, embora eficazes, deman-

dam mais recursos computacionais do que as abordagens planas, há uma oportunidade

para otimizar a eficiência computacional desses modelos, tanto em tempo de treinamento

e teste quanto em uso de memória, possivelmente explorando outras configurações de algo-

ritmos ou arquiteturas que demonstrem um melhor trade-off entre desempenho preditivo

e requisitos de recursos, como sugerido pelo experimento com XGBoost.

Adicionalmente, pode-se investigar diferentes formas de organização da hierarquia

de classificadores, buscando estruturas ainda mais refinadas que explorem as caracterís-

ticas diferenciais dos ataques para reduzir a confusão entre classes e otimizar a detecção,

assim como o BRDM aprimorou o BDM. Por fim, a utilização de estratégias de clas-

sificação semi-supervisionada no primeiro nível da hierarquia surge como uma vertente

promissora, especialmente no contexto do Modelo Benign. Essa abordagem permitiria ex-

plorar grandes volumes de dados de tráfego em redes IoT - geralmente não rotulados -

para fortalecer a capacidade de distinção inicial entre tráfego legítimo e malicioso. Com

isso, seria possível reduzir a dependência de bases totalmente rotuladas, que costumam

ser limitadas ou onerosas de obter em cenários reais.
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