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Abstract

AT agents’ strategic interactions in economic settings—a key line of inquiry in Al-agent
economics—have attracted increasing attention amid recent advances in generative AI. We
investigate blockchain-based SWE-Agent outsourcing markets, which link intelligent soft-
ware engineering and software-engineering economics through programmable, transparent,
and auditable mechanisms that centralized platforms rarely expose. We evaluate whether
a blockchain-native SDK for economic network simulations can support controlled, paired
baseline-intervention experiments under fixed conditions in decentralized SWE-Agent

outsourcing markets.

We present SWEChain-SDK, a configurable, extensible blockchain-native SDK that
provides a local sandbox chain for SWE-Agent software outsourcing auctions and event-
complete logging of bids, allocations, payments, and artifacts, together with configuration
metadata sufficient to support re-runnable experiments under comparable conditions. Using
SWEChain-SDK, we conduct paired simulation experiments that vary one policy dimension
at a time—(A) comparative advantage via agent specialization, (B) competitive bidding
via bidders’ price-signal utilization, and (C) principal-weighted selection via quality-signal
utilization—while holding rules, datasets, random seeds, time base, and the agent pool
fixed. We report the observed paired differences in task completion, outsourcing cost,
and revenue concentration, making trade-offs explicit. The results show that SWEChain-
SDK supports controlled baseline-intervention experiments on decentralized SWE-Agent

outsourcing markets.

We contribute (i) a conceptual and terminological framing of SWE-Agent Economics as
a domain linking intelligent software engineering and software-engineering economics; (ii)
SWEChain-SDK, a blockchain-native SDK for controlled studies of decentralized, auction-
based SWE-Agent outsourcing markets under comparable conditions; and (iii) a public,
evaluation-ready release of the SDK—including simulation code, configuration manifests,
and event logs—for further empirical studies of decentralized SWE-Agent outsourcing

markets.
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Engineering Agent Economics; Blockchain.
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CHAPTER ].

Introduction

This dissertation investigates how autonomous Software-Engineering Agents (SWE-Agents)
can be studied rigorously when they interact as economic decision-makers in decentralized
outsourcing markets implemented on blockchain-style infrastructure. It follows the emerg-
ing line of Al-agent economics, which analyzes autonomous Artificial Intelligence (AI)
agents’ objectives, information, and strategic behavior in economic settings, and instan-
tiates this agenda in software engineering by focusing on blockchain-based SWE-Agent
outsourcing markets. Rather than evaluating SWE-Agents as isolated predictors, the dis-
sertation treats them as participants in an operational environment where explicit rules for
task allocation, pricing, information disclosure, and winner selection shape outcomes such
as task completion, outsourcing cost, and the concentration of revenue across agents. To
make such studies feasible and credible, the dissertation designs, develops, and empirically
evaluates SDK for SWE-Agent Economic Simulations on SWEChain (SWEChain-SDK), a
configurable, extensible blockchain-native Software Development Kit (SDK) that provides
a local sandbox chain for SWE-Agent outsourcing auctions and supports controlled
economic network simulations in which policies can be varied while other experimental

conditions remain fixed and runs can be re-executed under comparable conditions.

We evaluate whether such a blockchain-native SDK for economic network simulations
can support controlled, paired baseline-intervention experiments under fixed conditions
in decentralized SWE-Agent outsourcing markets. Concretely, we use SWEChain-SDK
to run paired simulation experiments that vary one policy dimension at a time—(A)
comparative advantage via agent specialization, (B) competitive bidding via bidders’ price-
signal utilization, and (C) principal-weighted selection via quality-signal utilization—and
we report the observed paired differences in task completion, outsourcing cost, and revenue
concentration, making trade-offs explicit.

This chapter explains the motivation for the work, states the problem addressed, lays
out the objectives and research questions, sketches the methodological approach, clarifies
scope and limitations, highlights the expected significance and contributions, and outlines

the structure of the dissertation.
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1.1 Context and Motivation

In current practice, most capable SWE-Agents are not deployed as standalone systems
but as services and assistants embedded in centralized platforms. Code and collaboration
are concentrated on GitHub, which now hosts both the dominant social coding infras-
tructure and Al coding assistants such as GitHub Copilot that run inside mainstream
Integrated Development Environments (IDEs) like Visual Studio Code and Visual Studio
(GitHub, 2023; Microsoft, 2023). The underlying models are typically provided as cloud
Application Programming Interfaces (APIs) by a small number of vendors, including
OpenAT’s GPT-4 (OPENAI, 2023), Anthropic’s Claude 3 family (Anthropic, 2024), and
code-specialized models such as DeepSeek-Coder (GUO et al., 2024). Al-first editors such
as Cursor integrate these models directly into the development environment and connect
to centralized repositories over Git or GitHub, further tying agent behavior to the policies
and infrastructure of a few platform providers (Anysphere, 2024; PENG et al., 2023). As
a result, both the model capabilities and the operational context of many SWE-Agents
are effectively mediated by centralized code-hosting and model-serving platforms.

Recent advances in generative Large Language Models (LLMs) have renewed interest
in Al-agent economics, which studies autonomous Al agents as economic decision-makers
and analyzes how their objectives, information, and strategic behavior shape outcomes in
markets and related economic environments. Within software engineering, this connects
directly to SWE-Agents: agents that plan, implement, and maintain software artifacts,
increasingly with LLMs embedded as components for perception, code synthesis, refactoring,
and explanation. At the same time, recent work on the efficiency of local Al inference
makes the underlying infrastructure constraints more concrete. Saad-Falcon et al. (SAAD-
FALCON et al., 2025) introduce Intelligence Per Watt (IPW) as task accuracy per unit of
power and conduct a large-scale study across more than twenty local language models,
eight hardware accelerators, and one million single-turn chat and reasoning queries. They
show that, as of 2025, small local models with at most 20B active parameters can correctly
answer 88.7% of such queries, that IPW has improved 5.3x from 2023 to 2025 through
combined model and hardware advances, and that hybrid local-cloud routing can cut
energy, compute, and monetary cost by roughly 60-80% while maintaining output quality.
Taken together, these developments suggest that economically meaningful LLMs workloads
are increasingly serviceable by programmable local and hybrid infrastructures, and that
the economic behavior of SWE-Agents within these infrastructures is an object of study
in its own right.

Autonomous SWE-Agents couple LLMs with developer tools to plan tasks, write and
modify code, run builds and tests, and verify results. Unlike single-shot code completion
systems, these agents operate as multi-step workflows: they decompose problems into
sub-tasks, call tools such as compilers and test runners, examine intermediate outputs,

and iterate until a stopping condition—often an acceptance test or reviewer criterion—is
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satisfied. In many frameworks, agents maintain working memory across steps and can
collaborate via explicit roles, for example dividing responsibilities between a planner, an
implementer, and a reviewer. As these agents become more capable and more common,
they no longer just emit code in response to prompts; they make sequential decisions,

adjust to feedback, and compete for limited tasks.

When many such agents operate concurrently on a stream of software tasks, their
interactions resemble an economic system. Each agent consumes priced resources such
as model inference tokens, CPU and GPU time, and network bandwidth; each competes
for tasks that vary by domain, complexity, and risk; and each settles outcomes against
verifiable criteria such as test suites, static analysis checks, or human approval. In this
setting, rules governing task allocation and payment become first-order determinants of
behavior. A canonical rule used in procurement is the reverse auction, where a task owner
solicits bids and the lowest acceptable bid wins; a pay-as-bid auction pays the winner
exactly the submitted bid rather than a uniform market price, which is straightforward
to implement and audit but can encourage strategic bidding below true cost. Practical
deployments also decide which bids are admissible by enforcing thresholds such as required
tags or prior success rates, set maximum acceptable prices via reserves, choose deterministic
tie-breaking when offers are equivalent, and decide which information is visible during the
process, for example whether the current best admissible bid is revealed. The combination
of these choices determines who works on what, at what price, how quickly the process

converges, and how rewards are distributed across agents.

Studying these effects credibly requires an environment where the rules are pro-
grammable, the events are observable, and the runs are reproducible. By programmable,
we mean that a researcher can implement and swap allocation and pricing rules, change
timing parameters, and adjust what information is revealed without rewriting large parts
of the system. By observable, we mean that every important state change—task cre-
ation, bid submission, updates to the standing best admissible bid, winner selection, and
settlement—is recorded with stable identifiers and timestamps so that the entire process
can be reconstructed and audited. By reproducible, we mean that experiments can be
re-run with shared random seeds, stable ordering rules, and event-complete logs, so that

independent groups can obtain comparable results from the same experimental setup.

In this dissertation, we use the term comparable conditions to describe paired runs that
share the same controlled elements of the experimental setup—including auction rules and
parameters, task datasets and their ordering, the SWE-Agent pool and configurations,
and the random seeds that govern task assignment and agent decisions—while differing
only in the specific policy under study. Comparable conditions do not require that all
low-level sources of variation (such as nondeterminism inside LLMs) be eliminated; instead,
they require that the experimental design and configuration be aligned closely enough

that observed differences in outcomes can be meaningfully attributed to the policy change
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rather than to background drift or uncontrolled changes in the environment.

Similarly, we use the term event-complete logging to refer to logs that capture every
economically relevant state change in the marketplace at the level of abstraction used
in this dissertation. Event-complete logs contain, for each trial, all task-creation events,
all bids and their attributes, all updates to the standing best admissible bid, all winner
selections, all settlement events, and pointers to the resulting artifacts. This does not
mean that every low-level protocol message or internal implementation detail of the chain
is persisted in the artifact bundle; rather, it means that the logs are sufficiently complete
to reconstruct the sequence of market interactions, recompute the outcome measures
reported in later chapters, and support additional analyses under the same experimental

configuration.

A large share of contemporary software-engineering activity, however, runs through a
small set of centralized platforms. GitHub is now the dominant social coding site and a
primary data source for mining software repositories, with work such as Kalliamvakou et
al. and Cosentino et al. documenting both its central role and systematic biases in the data
it exposes (KALLIAMVAKOU et al., 2014; COSENTINO; IZQUIERDO; CABOT, 2017).
Online labor platforms such as Upwork are canonical examples of digital labor markets
for software and related work, and have been extensively studied by the International
Labour Organization (ILO) and others as intermediaries that control access to tasks,
pay, and reputation (BERG et al., 2018; GRAY; SURI, 2019; AZEVEDO; MENDONCA,
2023). Proprietary LLM services accessed via APIs (for example, GPT-4-style foundation
models) are increasingly embedded in development workflows, but are typically offered as
“limited-access” black boxes whose architectures, training data, and deployment details
are only partially disclosed (BOMMASANTI et al., 2021; BOMMASANTI et al., 2024).
In parallel, peer-to-peer code collaboration systems such as Radicle, open-access LLMs
like BLOOM, and blockchain-based work platforms such as Gitcoin illustrate alternative
designs that emphasize open artifacts, protocol-level coordination, and distributed control
rather than reliance on a single hosting provider (Radicle Team, 2021; SCAO et al., 2022;
Gitcoin, 2022).

Centralized services shape what information is visible about code, work, and model
behavior, and to whom. On GitHub, for example, researchers have shown that public
repository and activity data are rich but systematically biased: forks, mirrors, inactive
projects, and non-standard workflows can all confound naive interpretations, highlighting
that the platform operator has a more complete view of development than external
analysts relying on the public interface (KALLIAMVAKOU et al., 2014; COSENTINO;
IZQUIERDO; CABOT, 2017). The ILO’s study of digital labor platforms similarly finds
that workers on freelancing and microtask platforms often lack transparency about how
tasks are matched, evaluated, and paid, with key signals and algorithms controlled by
the platform (BERG et al., 2018). Ethnographic work such as Gray and Suri’s Ghost
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Work reinforces this picture of informational asymmetry in platform-mediated labor
(GRAY; SURI, 2019), while systematic reviews of algorithmic management on digital labor
platforms highlight the role of non-transparent, data-driven mechanisms in allocating
work and evaluating performance (AZEVEDO; MENDONCA, 2023). In the LLM domain,
surveys of foundation models and the Foundation Model Transparency Index describe
leading proprietary models as highly opaque, with limited disclosure about training data
and deployment practices (BOMMASANI et al., 2021; BOMMASANTI et al., 2024), and
Casper et al. argue that black-box access alone is insufficient for rigorous audits (CASPER
et al., 2024). More broadly, recent work on data curation in machine learning, such
as Dohmatob et al’s theory of when smaller, curated datasets can outperform using
“all available data”, underscores that selection and filtering decisions critically shape
model capabilities (DOHMATOB; PEZESHKI; ASKARI-HEMMAT, 2025). Open and
decentralized alternatives do not automatically remove these asymmetries, but they change
the technical baseline: Radicle’s peer-to-peer “sovereign forge” gives each participant a full
local copy of repository history, and open-access models like BLOOM release architectures
and weights, making it technically possible to pin the artifacts that define an agent’s
capabilities and the curated data it is trained on (Radicle Team, 2021; SCAO et al., 2022).

GitHub, digital labor platforms, and proprietary LLM APIs also function as critical
infrastructure, so their failures or changes can have wide impact. GitHub’s centrality
to modern DevOps pipelines is reflected both in industry practice and in its use as a
primary data source for mining software repositories; as Kalliamvakou et al. emphasize,
this central role makes its outages and policy changes consequential for many projects
at once (KALLIAMVAKOU et al., 2014; COSENTINO; IZQUIERDO; CABOT, 2017).
The ILO documents how digital labor platforms centralize task posting, matching, and
payment, such that interruptions or policy shifts directly affect the incomes and working
conditions of workers (BERG et al., 2018). In the LLM space, work on foundation models
and transparency stresses that many prominent models are only available as managed
cloud services, leaving users with little control over capacity, latency, or upgrade schedules
(BOMMASANTI et al., 2021; BOMMASANTI et al., 2024). Proposals such as Starcloud’s
orbital data centers, which advocate moving large-scale Al training infrastructure off-
planet to relieve terrestrial energy and siting constraints, underline how tightly current Al
workloads are coupled to a small number of centralized infrastructure providers (FEILDEN;
OLTEAN; JOHNSTON, 2024). By contrast, Radicle’s local-first, peer-to-peer architecture
replicates repositories across nodes rather than a single hosting site (Radicle Team, 2021),
open-weight models such as BLOOM can be deployed on infrastructure controlled by the
experimenter (SCAO et al., 2022), and platforms like Gitcoin implement task posting and
payment as transparent smart contracts on public blockchains (Gitcoin, 2022). These
designs are not yet as mature or widely adopted as their centralized counterparts, but

they demonstrate that code, compute, and work allocation can be implemented as explicit
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protocols with fully visible logs—properties that are attractive for controlled SWE-Agent
experiments.

Another core issue is that centralized platforms concentrate governance power over
participants through terms of service, access control, and policy decisions. The ILO’s report
and related work on digital labor emphasize that platform operators set and change rules
on pay, rating, and task access, with workers typically having limited influence or visibility
into these processes (BERG et al., 2018; GRAY; SURI, 2019; AZEVEDO; MENDONCA,
2023). In the foundation-model ecosystem, Bommasani et al. and the Foundation Model
Transparency Index highlight that developers of proprietary models make key choices
about release, safety constraints, and disclosure unilaterally, with downstream users having
little say and limited information about governance practices (BOMMASANTI et al., 2021;
BOMMASANT et al., 2024). Casper et al. explicitly frame the level of access granted for
audits—black-box versus white- or “outside-the-box”—as a central governance decision
(CASPER et al., 2024). Decentralized projects explore different governance arrangements:
Radicle explicitly states that there is “no single entity controlling the network”, relying on
cryptographic identities and project-level control (Radicle Team, 2021), while Gitcoin’s
grants and bounty mechanisms are governed through community processes and on-chain
voting (Gitcoin, 2022). These alternatives are not complete solutions, but they show that
governance rules can be made explicit, versioned, and auditable.

Taken together, these knowledge, infrastructure, and governance constraints make
it important to study alternatives to real-world centralized platforms as experimental
settings for SWE-Agent Economics. When data access paths, infrastructure conditions,
and platform policies can change without being fully logged, it becomes harder to attribute
observed differences in outcomes to a specific policy intervention rather than to background
drift. One such alternative is to use blockchain-based mechanisms as an experimental
testbed for research. Blockchains can encode market rules as on-chain code, record
bids and allocations as on-chain events, and expose an auditable history of interactions.
For experimentation and simulation in this setting, researchers benefit from a local,
configurable, sandboxed environment that behaves like a blockchain-based market but can
be instantiated, configured, and reset as needed, and that produces event-complete logs
suitable for analysis and scripted re-runs under comparable conditions. This motivates
the development of a blockchain-native SDK tailored to economic network simulations in

decentralized SWE-Agent outsourcing markets.

1.2 Problem Statement

This dissertation addresses a practical gap in how we study SWE-Agents that interact
through decentralized outsourcing markets under explicit economic rules. The underlying

aim is to understand how economic mechanisms such as allocation, pricing, information
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disclosure, and winner selection shape outcomes such as task completion, outsourcing cost,
and the concentration of revenue across agents. To obtain credible evidence about these
effects, researchers need tooling that supports controlled experiments in which mechanisms
can be varied under fixed experimental conditions and in which the resulting interactions
are recorded in sufficient detail to be analyzed and audited.

In practice, this calls for research tooling that can run paired baseline—intervention
experiments where only a single policy element is changed, and that records agent inter-
actions and market outcomes in a form suitable for analysis and scripted re-runs, with
shared random seeds and configuration metadata so that runs can be re-executed under
comparable conditions. To the best of our knowledge, no open, blockchain-native, local-first
SDK currently offers this combination of capabilities for SWE-Agent experimentation in
decentralized, auction-based outsourcing markets at the intersection of intelligent software
engineering and software-engineering economics.

The problem this dissertation tackles is therefore to design, implement, and empirically
evaluate such tooling, SWEChain-SDK, so that controlled, paired baseline—intervention ex-
periments under fixed conditions become practically achievable for the study of SWE-Agent

economic mechanisms through economic network simulations.

1.3 Objectives

The overall objective of this dissertation is to investigate whether and how a
blockchain-native SDK for economic network simulations can support controlled, paired
baseline-intervention experiments under fixed conditions in decentralized SWE-Agent
outsourcing markets, in line with the broader agenda of SWE-Agent Economics. More
concretely, the dissertation seeks to shorten the path from a well-posed policy question—for
example, whether revealing the current best admissible bid affects price formation and
convergence—to an executable experiment with auditable outcomes that can be re-run
under comparable conditions.

Concretely, the dissertation aims to:

(i) provide a conceptual and terminological framing of SWE-Agent Economics as the
study of SWE-Agents in economic settings, with a focus on auction-based outsourcing

markets on blockchain-style infrastructures;

(ii) design, implement and evaluate SWEChain-SDK, a configurable, extensible
blockchain-native SDK that provides a local sandbox chain for SWE-Agent out-
sourcing auctions and event-complete logging of bids, allocations, payments, and

artifacts to support economic network simulations;

(iii) develop an experimental setup for paired baseline—intervention simulations in which

a single policy variable—such as comparative advantage via agent specialization,
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competitive bidding via bidders’ price-signal utilization, or principal-weighted se-
lection via quality-signal utilization—is varied while rules, datasets, random seeds,

time base, and the agent pool are held constant;

(iv) use this setup to conduct and analyze simulation experiments that assess how these
policy dimensions affect task completion, outsourcing cost, and the concentration of

revenue across agents, reporting paired differences to make trade-offs explicit; and

(v) package and release SWEChain-SDK, together with simulation code and artifacts,
in an evaluation-ready form that supports scripted re-runs and extension of the

experiments reported in this dissertation under comparable conditions.

1.4 Approach and Methodology

The inquiry is organized around a single, primary research question about the SDK as

an enabler of credible, controlled experimentation:

Can a blockchain-native SDK for economic network simulations support con-
trolled, paired baseline—intervention experiments under fixed conditions in

decentralized SWE-Agent outsourcing markets?

In this work, a positive answer to this question means that the SDK lets researchers
configure policy rules, run paired trials under fixed conditions, and obtain event-complete
logs. Here, we use event-complete to mean logs that are intended to capture the state-
changing events relevant to the experiment in enough detail that the reported metrics can
be recomputed from the logs alone. The overall design aims to support independent re-runs
and modest policy variations under comparable conditions. To make this question concrete
and empirically tractable, the dissertation studies three policy dimensions in decentralized
SWE-Agent outsourcing markets, each realized as a paired baseline-intervention simulation

experiment:

0 Comparative advantage via agent specialization (Experiment A): introduc-
ing lightweight agent-side specialization—via private tags and small cost multipliers—

to test how specialization affects routing, task completion, and revenue concentration;

1 Competitive bidding via bidders’ price-signal utilization (Experiment B):
varying the information available to bidders and the prompts that reference current
price signals—for example, whether the current best admissible bid is revealed—to
study how price-signal utilization affects task completion, realized outsourcing cost,
the concentration of revenue across agents, and observed price levels and dispersion;

and
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1 Principal-weighted selection via quality-signal utilization (Experiment C):
replacing price-only selection with a transparent price—quality scoring rule to assess
how quality-signal utilization affects realized software quality, total outsourcing cost,

and the concentration of revenue.

We employ a simulation-based experimental methodology in empirical software en-
gineering. We develop SWEChain-SDK, a blockchain-native SDK for economic network
simulations, and use this SDK as an experimental platform to run agent-based simulations
of decentralized SWE-Agent outsourcing markets under controlled baseline-intervention
conditions.

At the system level, SWEChain-SDK is implemented as an application-specific chain
that encodes procurement auctions with pay-as-bid pricing. SWE-Agents interact with this
chain by submitting bids, receiving allocations, and settling tasks. The chain and associated
runtimes emit event-complete logs for key state changes, including task creation, bid
submission, updates to the standing best admissible bid, winner selection, and settlement
events. At the experimental level, the empirical part of the dissertation relies on controlled,
paired baseline-intervention simulations built on SWEChain-SDK. Rather than attempting
to optimize a single mechanism, we use the SDK to run network-vs-network comparisons
in which baseline and intervention settings differ only in one localized, versioned policy
module. We use the event-complete logs produced by SWEChain-SDK to compute
outcome measures that capture both efficiency and distribution. These include measures
of participation and coverage, price levels and dispersion, convergence behavior, realized
software quality, and the concentration of revenue across agents. All derived tables used
to produce figures are computed from the logged events, and the artifacts needed for

replication under comparable conditions are made available alongside the code.

1.5 Scope, Assumptions, Delimitations, and Limita-

tions

The empirical evaluation in this dissertation is scoped to small, controlled simulation
experiments whose primary purpose is to evaluate SWEChain-SDK as an experimental
platform. The focus is to examine whether a blockchain-native SDK can support controlled,
paired baseline-intervention experiments under fixed conditions, not to provide definitive
evidence about real-world software-engineering outsourcing markets. As assumptions, the
simulations consider autonomous SWE-Agents in a single-market setting with pay-as-bid
procurement auctions and deterministic ordering. Runs are short, executed locally, and use
fixed task sets, a finite agent pool, shared random seeds, and explicit timing and ordering
rules so that baseline and intervention differ only in the policy under test. As delimitations,

only a small set of policy rules is varied—specialization, price-signal visibility, and winner
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selection—and outcomes are summarized mainly in terms of task completion, outsourcing
cost, and revenue concentration.

These choices impose clear limitations. Workloads are synthetic and short, agents do
not learn or adapt within a trial, and quality is measured through simple, observable proxies.
As a result, the experiments do not capture the scale, diversity, or strategic behavior of
production settings, and effects that depend on real-world variability in organizations, data,
or infrastructure are intentionally out of scope. The empirical results should therefore be
read primarily as an evaluation of what SWEChain-SDK can support as an experimental

SDK, rather than as a comprehensive assessment of decentralized SWE-Agent markets.

1.6 Significance and Contributions

This dissertation is situated at the intersection of intelligent software engineering and
software-engineering economics, under the working label of SWE-Agent Economics. Its
significance lies in treating decentralized, auction-based SWE-Agent outsourcing markets
as a setting in which Al agents act as economic decision-makers and in providing research
tooling that makes controlled economic network simulations of such markets practically

achievable under comparable conditions.

In this context, the dissertation makes three main contributions:

(i) it develops a conceptual and terminological framing of SWE-Agent Economics as a
domain linking intelligent software engineering and software-engineering economics,

with decentralized SWE-Agent outsourcing markets as the central case;

(ii) it presents SWEChain-SDK, a configurable, extensible blockchain-native SDK for
controlled studies of decentralized, auction-based SWE-Agent outsourcing markets
under comparable conditions, providing a local sandbox chain and event-complete
logging of bids, allocations, payments, and artifacts to support controlled, paired

baseline—intervention experiments under fixed conditions; and

(iii) it releases a public, evaluation-ready bundle of SWEChain-SDK—including sim-
ulation code and artifacts such as configurations, datasets, manifests, logs, and
figure-generation scripts—to support scripted re-runs and extension of the experi-

ments reported in the dissertation under comparable conditions.

Together, these contributions provide an environment and artifact set for studying
SWE-Agent outsourcing markets in a way that is transparent, auditable, and repeatable

under clearly defined experimental setups.
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1.7 Dissertation Structure

The remainder of the dissertation is organized to move from conceptual framing,
through system design and methodology, to experimental evaluation and implications.

Chapter 2 introduces the necessary background and terminology. It reviews intelligent
software engineering and SWE-Agents, software-engineering economics and outsourcing
markets, Al-agent economics, and blockchain-based mechanisms, and uses these strands to
motivate SWE-Agent economics and the architectural requirements for a blockchain-native
SDK for economic network simulations.

Chapter 3 presents the architecture of SWEChain-SDK. 1t states the design goals,
explains how they are instantiated in a local, blockchain-native sandbox for SWE-Agent
outsourcing markets, and describes the main components, including the execution environ-
ment, auction and settlement logic, logging layer, and agent interfaces.

Chapter 4 reports the simulation experiments conducted with SWEChain-SDK. 1t
sets out the experimental design, SWE-Agent models, task datasets, policy configurations,
and metrics, and then presents and analyzes paired baseline-intervention experiments
that vary agent specialization (comparative advantage), bidders’ price-signal utilization,
and principal-weighted quality-signal utilization in winner-selection rules under fixed
conditions.

Chapter 5 situates the dissertation in related work on intelligent software engineer-
ing, software-engineering economics, agent-based and Al-agent economics, mechanism
design, evaluation frameworks, and blockchain-based research infrastructures, and contrasts
existing approaches with the capabilities provided by SWEChain-SDK.

Finally, Chapter 6 summarizes the main findings, reflects on limitations and threats
to validity, and outlines directions for future work on SWE-Agent economics and on
extending SWEChain-SDK, including richer quality models, adaptive agents, and multi-

market settings.



36

Chapter 1.

Introduction




37

CHAPTER

Background

This chapter develops the conceptual foundation for the dissertation. We move from
intelligent software engineering and modern Software-Engineering Agents (SWE-Agents)
to an economic view of software work, then to agent-based simulations as a way to study
economic mechanisms, and finally to blockchain-based decentralized networks as pro-
grammable environments in which to implement and observe those mechanisms. We keep
the focus on constructs that we later reuse in the architecture and simulation chapters and
align the background with the abstract: we are interested in blockchain-based SWE-Agent
outsourcing markets; we use a blockchain-native Software Development Kit (SDK) to
run controlled, paired baseline-intervention experiments under fixed conditions; and we
vary one policy dimension at a time—comparative advantage via agent specialization,
competitive bidding via bidders’ price-signal utilization, and principal-weighted selection
via quality-signal utilization—while measuring task completion, outsourcing cost, and

revenue concentration.

2.1 Intelligent Software Engineering

Intelligent Software Engineering (ISE) extends the classic software-engineering arc—
from NATO’s push for modularity, contracts, and verification (NAUR; RANDELL, 1969;
PARNAS, 1972; HOARE, 1969; DIJKSTRA, 1976) to Continuous Integration and Contin-
uous Delivery (CI/CD)’s culture of repeatable delivery (HUMBLE; FARLEY, 2010)—by
adding data-driven perception, search, and synthesis across the lifecycle (XIE, 2018; HOU
et al., 2024; ZHANG et al., 2023). The basic stance is familiar: interfaces and contracts
should be explicit, claims should be verifiable, and control over change should be repro-
ducible. Modern work adds learned components into this picture, but does not abandon
it.

A central construct in this dissertation is the SWE-Agent: an autonomous software-
engineering agent with an explicit controller and a concrete tool interface. Historically,

controller designs evolved from reactive Finite-State Machines (FSMs) and subsump-
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tion architectures (BROOKS, 1991) through Behavior Trees (BTs) (COLLEDANCHISE;
OGREN, 2018) and Belief-Desire-Intention (Belief-Desire-Intention (BDI)) frameworks
(RAO; GEORGEFF, 1995; WOOLDRIDGE, 2009) to hybrids that combine reactive safety
with deliberative goal management. These architectures share the property that control
flow is explicit and testable: each state and transition can be examined, every action is
whitelisted, and behavior is repeatable under fixed conditions. Transformer-based Large
Language Models (LLMs) (VASWANTI et al., 2017), including code-tuned variants (CHEN
et al., 2021; ROZIERE; GEHRING; AL., 2023; LI; WERRA; AL., 2023), now act as
replaceable subroutines inside such controllers for perception, planning, and code synthesis.
Orchestration patterns such as Reason+Act (interleaved planning and tool use) (ReAct)-
style interleaving of reasoning and tool calls (YAO et al., 2023) and behavior-tree or FSM
executives with guarded transitions provide a way to embed stochastic model calls without

giving up determinism at the controller level.

In this dissertation we use SWE-Agent in a specific and reproducible sense. An agent is
an explicit controller with a documented Agentic Capability Interface (ACI) for repository
and test interaction (for example, list/open/search/edit/run), within which LLM calls
act as stochastic subroutines in semantic states such as plan, implement, and repair.
Deterministic guards based on compiler and test outcomes, schema validation, and simple
invariants gate transitions and termination, and prompts, seeds, decoding parameters,
and environment hashes are recorded. In the SWEChain simulations, these controllers
are implemented as finite-state machines with fixed, hand-designed policies and prompts
rather than as adaptive or learning systems; we cite richer architectures such as BDI
and reinforcement learning only as conceptual predecessors. This explicit, non-learning
controller structure supports comparability and provenance and allows causal attribution
to specific policy choices—such as prompts, agent specialization, bidders’ price-signal
utilization, and principal-weighted quality-signal utilization—rather than to incidental

randomness or uncontrolled adaptation.

Reproducibility follows familiar engineering instincts: make control flow explicit, keep
acceptance objective, and record enough context that another team can retrace the steps.
We realize this by sequencing a small set of semantic states (plan, implement, repair) under
an FSM whose edges are guarded by facts the toolchain can attest: compiles succeed, tests
pass, and schemas validate (HAREL, 1987; COLLEDANCHISE; OGREN, 2018). LLMs
are confined to these states and may propose plans or edits but cannot bypass gates. We
fix random seeds and decoding parameters for LLM calls; pin compilers, interpreters, and
runners in containerized environments (MERKEL, 2014; KLEPPMANN;, 2017); impose
deterministic tie-breaks when scores collide; and serialize non-commutative effects using
defined clocks and ordering (LAMPORT, 1978; SIGELMAN et al., 2010). With the
substrate held still, we can run paired baseline—intervention experiments under fixed

conditions where exactly one policy dimension varies at a time (specialization, price-signal
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utilization, or quality-signal utilization), so that observed differences can be attributed to
that policy rather than to infrastructure drift. This pattern supplies the “agent” side of
the SWE-Agent Economics framing used later.

2.2 Software Engineering Economics

Software engineering economics (Software Engineering Economics (SEE)) provides
constructs for treating software work as production under scarcity and for describing
mechanisms that allocate work and payments. Economics studies choice under scarcity:
ends exceed means, so agents allocate limited resources and accept opportunity costs
(ROBBINS, 1932; SAMUELSON; NORDHAUS, 2010; VARIAN, 2014). Read through
this lens, the NATO reports did more than name a “software crisis”—they recast software
development as a production process with explicit decision variables and constraints
(NAUR; RANDELL, 1969). Modularity and explicit interfaces make delivered functionality
and integration work countable; formal specifications and verification convert quality into
a contractible objective; configuration control and versioning turn effort, rework, and
schedule slippage into observables. Trade-offs among cost, schedule, scope, and quality
can therefore be modeled as objectives and constraints, estimated as priors, and updated
from data (BOEHM, 1981; BOEHM et al., 2000).

Classical results quantify these levers. Brooks explained declining and sometimes nega-
tive marginal productivity from late staffing due to rising communication and coordination
costs (JR., 1975). Putnam’s Rayleigh-Norden life-cycle model traced the schedule—effort
frontier (PUTNAM; MYERS, 1992), and parametric models such as COCOMO related
effort to size via multiplicative drivers and diseconomies of scale (BOEHM, 1981; BOEHM
et al., 2000). Prevention and appraisal investments such as inspections and testing rise
non-linearly to contain interaction effects as systems scale (BANKER; KAUFFMAN;
MOREY, 1994), and technical debt names an explicit intertemporal trade-off between
expedient design and future rework (CUNNINGHAM, 1992). Because software is labor-
intensive, human heterogeneity matters; disciplined processes and feedback loops (for
example, via CI/CD) help make cost, latency, and quality observable and manageable
(HUMBLE; FARLEY, 2010).

We view software outsourcing through the lens of mechanism design. A requester
has a task with scoped deliverables, a deadline, a budget or reserve, and executable
acceptance tests. Potential suppliers (firms, teams, or SWE-Agents) have private costs
and limited capacity, and must decide whether to enter and, where applicable, at what
price. Mechanisms repair information and coordination frictions by specifying an allocation
rule, a payment rule, and an information policy (KRISHNA, 2009a; KLEMPERER, 2004;
MYERSON, 1981; LAFFONT; MARTIMORT, 2002). Reverse posted-price mechanisms

are simple and suitable for standardized work; reverse sealed-bid first-price auctions
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provide fast cost screening; scoring or multi-attribute auctions fold non-price attributes
such as expected quality and latency into a weighted score that is cleared competitively
(CHE, 1993). Information policy and clearing cadence (continuous versus frequent-batch)
affect participation, competition, and racing behavior (KLEMPERER, 2004; BUDISH;
CRAMTON; SHIM, 2015a). We use the term software outsourcing auction for institutions
that map scoped tasks, budgets or reserves, and acceptance tests to allocations and
payments via explicit rules, under adverse selection and moral hazard (AKERLOF, 1970;
HOLMSTROM; MILGROM, 1991).

Outcomes of interest include task completion rates, latency distributions, cost per
accepted task, price dispersion, and concentration in revenues or market share. Classical
diagnostics such as Lorenz curves, Gini indices, and top-k shares summarize how work
and reward concentrate or spread (FENTON; BIEMAN, 2014; GINI, 1912; EASLEY;
KLEINBERG, 2010). In this dissertation we implement only a narrow family of reverse-
procurement and scoring auctions on a single chain and vary a small number of governed
parameters and agent-side policies, rather than exploring the full space of auction formats.
SEE furnishes the language for these mechanisms and the metrics used to compare them

in simulation.

2.3 Agent-Based Simulations

Agent-based modeling (Agent-Based Modeling (ABM)) and agent-based computational
economics (Agent-Based Computational Economics (ACE)) link local decision rules and
institutional settings to system-level outcomes (RAILSBACK; GRIMM, 2019; EPSTEIN;
AXTELL, 1996; TESFATSION, 2002). Systems are represented as populations of hetero-
geneous agents with local state, information, and decision rules, interacting under frictions
and timing. Local rules for search, bidding, implementation, and review, together with
institutional levers for allocation, payments, and cadence, jointly generate macro outcomes
such as throughput, congestion, coordination cost, concentration, and inequality. This
picture matches software task markets, where small changes in auction rules or timing
can induce large shifts in who participates, how aggressively they bid, and how work and
rewards concentrate.

Foundational examples provide design patterns rather than blueprints. Schelling’s
segregation model showed how mild local preferences over neighborhood composition
can yield macro-level segregation (SCHELLING, 1971a). Axelrod’s iterated-prisoner’s-
dilemma tournaments operationalized strategy evaluation as an open competition in a fixed
environment, with heterogeneous strategies interacting repeatedly under noise (AXELROD,
1984). The Santa Fe artificial stock market connected simple trading heuristics to price
dynamics and volatility (ARTHUR et al., 1997), while models such as Sugarscape and
Echo linked resource and credit dynamics to distributional outcomes (EPSTEIN; AXTELL,
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1996; HOLLAND, 1995). RoboCup Simulation and NetLogo illustrated how standardized
environments and tooling can turn agent-based models into reusable benchmarks (KITANO;
VELOSO et al., 1997; WILENSKY, 1999). We draw on these precedents mainly for three
ideas: fix rules and instrumentation, allow heterogeneous strategies, and evaluate outcomes

from logged traces.

In software engineering, this general ABM view maps naturally to ecosystems of hetero-
geneous actors—developers, teams, tools, platforms, and clients—whose local decisions and
interactions generate system-level outcomes (ABDEL-HAMID; MADNICK, 1991). We use
modeling primitives that mirror software reality. Agents carry state (skills, private costs,
backlog, reputation, liquidity), capabilities (search, bid, implement, review, test), and
decision rules ranging from simple heuristics to learned policies. Tasks encode requirements,
dependencies, and acceptance tests. Resources include developer time, compute, data,
and budget. Institutions govern allocation and payments (for example, reverse auctions
and reserves), information policy, and cadence (continuous versus frequent-batch clear-
ing). Environments encode arrivals, dependencies, queues, search and matching frictions,
and time-zone or handoff costs. Interaction protocols cover search and entry, bidding
and awarding, delivery and review, and dispute resolution. These ingredients support
experiments that ask how specific policy choices map to performance and distributions,
including concentration diagnostics such as Lorenz and Gini curves (FENTON; BIEMAN;,
2014; GINI, 1912).

In this dissertation we use generative-agent modeling in a constrained way. We embed
generative components such as LLMs inside explicit executives FSMs and gate them
with deterministic checks (compilation and tests, schema validation) (COLLEDANCHISE;
OGREN, 2018; OUYANG et al., 2024). Prompts, tool calls, outputs, seeds, decoding
parameters, and environment hashes are journaled so that runs can be rerun under compa-
rable conditions. Agent policies are fixed across trials; we do not allow cross-trial learning
or adaptation, and instead focus on how mechanism and configuration changes affect
outcomes under a given family of controller and prompt designs. Outcome variables track
both levels and distributions: primary observables include cost (developer time, compute,
and fees), schedule (lead and cycle time), and quality (defects, rework, and acceptance),
while market observables include surplus, price dispersion, and concentration indices
(FENTON; BIEMAN, 2014; GINI, 1912). Empirical game-theoretic analysis Empirical
Game-Theoretic Analysis (EGTA) suggests ways to summarize induced incentives before
comparing mechanism variants under comparable conditions (WELLMAN, 2006); here
we borrow its emphasis on fixed environments and reproducible comparisons without

implementing a full EGTA pipeline.

Experimental design follows guidance from empirical software engineering (WOHLIN
et al., 2012; KITCHENHAM et al., 2009). In the broader simulation literature, verifica-

tion, validation, and uncertainty quantification (Verification, Validation, and Uncertainty
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Quantification (VVUQ)) are treated as necessary checks rather than optional extras:
implementations are verified against specifications and invariants, behaviors are validated
against stylized facts and traces from version control and issue trackers, and Monte Carlo
replication and sensitivity analysis are used to characterize uncertainty (SARGENT, 2013;
OBERKAMPF; ROY, 2010; LAW, 2015; FENTON; BIEMAN;, 2014). In this dissertation
we adopt only a subset of these practices. We design paired baseline-intervention experi-
ments under fixed seeds and toolchains, block by workload mix where appropriate, and
pre-specify outcomes, but we do not carry out large-scale Monte Carlo replication or full
VVUQ campaigns. Tournament-style evaluations, such as Axelrod’s iterated-prisoner’s-
dilemma experiments, motivate the idea of a fixed environment in which different strategies
can be compared under identical conditions; in our case, we run a closed set of hand-
designed policies rather than an open competition. These choices keep the simulations

small and controlled, and they are sufficient for the goals of this dissertation.

2.4 Blockchain Decentralized Networks

We now introduce the environments in which we implement mechanisms and run
experiments. We treat blockchains and related decentralized networks as programmable,
auditable substrates for economic mechanisms. We use this section to explain why
application-specific chains are appropriate for SWE-Agent outsourcing experiments and to
define basic terminology for consensus, finality, and execution that we use later when we
describe SDK for SWE-Agent Economic Simulations on SWEChain (SWEChain-SDK).

Blockchains address a coordination problem in open, adversarial networks: independent
machines that do not trust one another need to construct, verify, and preserve a single
canonical sequence of state updates without a central intermediary. The solution ties
together an append-only ledger, digitally signed transactions, and a consensus protocol that
selects a unique total order of valid transactions. When combined with a deterministic state
transition function, these primitives realize a replicated state machine: every honest node
processes the same ordered input stream and converges to the same state (NAKAMOTO,
2008; GARAY; KIAYTAS; LEONARDOS, 2015; EYAL; SIRER, 2014; KIAYTAS et al., 2017,
BUTERIN; GRIFFITH, 2017). A crypto-economic layer aligns incentives: participants
who expend resources to propose and validate blocks are compensated via rewards and
fees, while protocol-enforced penalties (for example, slashing in proof-of-stake systems)
make deviation costly.

Programmability extends this model from payments to general stateful coordination.
A virtual machine with explicit gas metering executes untrusted code safely; contracts can
escrow assets, emit events, and settle based on deterministic predicates (BUTERIN, 2014;
WOOD, 2014). Application-specific chains specialize this model: they reuse consensus

and networking layers but define their own modules and parameters. For our purposes,
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an application-specific chain is most naturally viewed as code that implements an eco-
nomic mechanism with explicit rules for admission, ordering, execution, settlement, and

governance.

Single-chain designs couple all applications into one execution environment, one mem-
pool, and one fee market. As usage diversifies, this coupling can become a source of
confounds: demand spikes in one domain propagate as congestion and higher inclusion
costs to unrelated workloads, and the economic value of transaction ordering induces
Maximal Extractable Value (MEV) strategies that skew fee and inclusion patterns (DAIAN
et al., 2020a; ROUGHGARDEN, 2021). One response is a move to networks of chains
with explicit choices over security sharing, inter-chain messaging, and execution packaging.
Modularity decouples execution, ordering, and data availability so each can scale or spe-
cialize independently; sovereignty with interconnection deploys application-specific chains
that control their own consensus parameters, mempool and fee policies, and governance,
while interconnecting through verifiable cross-chain messaging (KWON; BUCHMAN;, 2016;
FOUNDATION, 2020). For this dissertation, we need only a simple point in this design
space: a single, sovereign application-specific chain running locally as a deterministic state

machine.

Cosmos SDK with CometBFT consensus provides such a substrate: modules define
application logic; the base application routes messages and queries; deterministic finality is
obtained once a local quorum commits a block (BUCHMAN, 2018; KWON; BUCHMAN,
2016). We adopt this setting to minimize cross-application coupling and exogenous
noise: there is no MEV, no competing chains, and no adversarial network. Instead,
Software-Engineering Chain (application-specific blockchain) (SWEChain) is run as a
single-node appchain whose code, parameters, and genesis are fixed per experiment profile.
A blockchain-based application-specific chain can then be treated as code that implements
an economic mechanism: the mechanism, in the market-design sense, maps participants’
messages to allocations and payments under a specified information and timing policy;
on the chain, this mapping is realized as a deterministic state machine with protocol
parameters for admission (signature and nonce checks), ordering (consensus and mempool
policy), pricing (fee mechanism), and settlement (finality semantics). Under this view, an
agent is software that observes on-chain state, forms a strategy within transparent rules,

and submits signed transactions to realize objectives.

Historically, autonomous agents on ledgers precede current LLM-based systems. In
Ethereum Virtual Machine (EVM)-based decentralized finance, for example, keepers
watch collateralization and trigger protocol-specified auctions; liquidators close unsafe
loans; and searchers scan public mempools and on-chain liquidity for arbitrage and
back-run opportunities (DAIAN et al., 2020a; ANGERIS et al., 2020). In Cosmos
appchains, deterministic finality simplifies state-contingent strategies and Inter-Blockchain

Communication (IBC) relayers act as first-class agents that carry light-client-verified
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packets between sovereign chains (FOUNDATION, 2020; KWON; BUCHMAN, 2016;
BUCHMAN, 2018). We do not model these details here; they serve only as examples that
the same general pattern repeats: mechanisms are encoded as software with explicit rules,
and agents operate within those rules. This view motivates our later choice to implement

SWE-Agent outsourcing auctions as modules in a Cosmos SDK appchain.

2.5 Discussion

This discussion gives a working definition and scope for what we call SWE-Agent
Economics. We use the term as a convenient label for a specific intersection of existing
areas. From intelligent software engineering, we take SWE-Agents to be autonomous
software-engineering agents with explicit controllers (for example, FSMs, behavior trees, or
BDI-style executives), documented tool interfaces, and objective acceptance checks on their
outputs (NAUR; RANDELL, 1969; PARNAS, 1972; HOARE, 1969; DIJKSTRA, 1976;
HUMBLE; FARLEY, 2010; BROOKS, 1991; RAO; GEORGEFF, 1995; WOOLDRIDGE,
2009; COLLEDANCHISE; OGREN, 2018; HOU et al., 2024; ZHANG et al., 2023). From
software engineering economics, we take the view that software work is carried out under
constraints on budget, calendar time, and attention, and that trade-offs among cost,
schedule, scope, and quality can be expressed as objectives and feasible frontiers (BOEHM,
1981; BOEHM et al., 2000). Mechanism design and procurement supply language for
explicit task-allocation rules: allocation rules map bids to winners, payment rules map bids
to transfers, information policies describe what is visible to whom and when, and properties
such as Incentive Compatibility (IC) and Individual Rationality (IR) are design targets
rather than slogans (CHE, 1993; KRISHNA, 2009b; KLEMPERER, 2004; CRAMTON;
SHOHAM; STEINBERG, 2006; MYERSON, 1981; LAFFONT; MARTIMORT, 2002).
We use software outsourcing auction to mean an institution in which a requester posts
a scoped task with a budget and executable acceptance tests, potential suppliers decide
whether to participate (and, where applicable, at what price), and an explicit mechanism
clears and settles on verifiable delivery.

Agent-based modeling and market modeling provide constructs for linking local decision
rules to system-level behavior in such settings. We assume heterogeneous agents with
private information and bounded decision procedures, interacting under institutional
rules and timing, generate observable outcomes such as throughput, latency distributions,
cost per accepted task, price dispersion, and inequality in revenues or market share
(RAILSBACK; GRIMM, 2019; EPSTEIN; AXTELL, 1996; SHOHAM; LEYTON-BROWN,
2009; FENTON; BIEMAN;, 2014; GINI, 1912). We use outcome for metrics computed
from event-level traces, including completion rates and simple network summaries on
issue—agent graphs. Simulation-based studies, with verification, validation, and uncertainty

quantification (VVUQ) treated as standard practice, are a common way to explore how
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changes in rules affect these outcomes (ABDEL-HAMID; MADNICK, 1991; LAW, 2015;
SARGENT, 2013; OBERKAMPF; ROY, 2010; WOHLIN et al., 2012; KITCHENHAM et
al., 2009). Blockchain and related decentralized systems then supply concrete environments
in which mechanisms are implemented as code: an application-specific chain can be viewed
as a deterministic state machine with software-defined transition rules, parameters, and
events, and consensus and finality provide a canonical sequence of state changes (BUTERIN,
2014; WOOD, 2014; BUCHMAN;, 2018; KWON; BUCHMAN, 2016). We use environment
to mean a specific configuration of such a system—for example, a Cosmos SDK appchain
with CometBFT consensus, particular module code, parameter sets, and fee policy—in
which admission checks, ordering, settlement, and governance are fixed and observable, and

which emits height-stamped events for messages, state changes, and parameter updates.

Within this vocabulary, we use SWE-Agent Economics in this dissertation to refer to the
study of autonomous SWE-Agents, engineered in the intelligent software engineering sense,
acting as economic decision makers in task markets whose objectives and mechanisms
are drawn from software engineering economics and whose behavior is analyzed with
agent-based and market-modeling methods. A SWE-Agent is an explicit, testable coding
agent with a defined tool interface; a task is a scoped software work item with a budget
or reserve and machine-executable acceptance criteria; a mechanism is a rule system
that maps agents’ messages to allocations and payments under a specified information
and timing policy; an environment is a concrete execution setting that implements the
mechanism as software with particular ordering, fee, and governance properties; and
outcomes are efficiency, quality, market-structure, and distributional metrics derived from
event-level traces (BOEHM, 1981; BOEHM et al., 2000; RAILSBACK; GRIMM, 2019;
EPSTEIN; AXTELL, 1996; FENTON; BIEMAN, 2014; GINI, 1912; KLEMPERER, 2004).
This is a working definition, narrow enough to be grounded in the cited background and
broad enough to cover the cases we actually study. It sits alongside, rather than replaces,
related areas such as Al-agent economics and ACE, which already examine autonomous
agents in economic environments (SHOHAM; LEYTON-BROWN;, 2009; RAILSBACK;
GRIMM, 2019; EPSTEIN; AXTELL, 1996), and blockchain economics, which already
treats blockchains as economic mechanisms with explicit fee markets and governance
(BUTERIN, 2014; WOOD, 2014; BUCHMAN, 2018; KWON; BUCHMAN, 2016). The
term SWE-Agent Economics highlights the intersection where agents are SWE-Agents
in this software-engineering sense, tasks are software tasks with executable tests, and
mechanisms and outcomes are described using the language of software engineering

economics and market design.

The remainder of the dissertation focuses on a concrete subclass of this intersection.
We restrict attention to settings in which tasks are software outsourcing issues, suppliers
are SWE-Agents, and mechanisms are auction-based market designs deployed on a decen-

tralized blockchain. Concretely, each task is a software work item with explicit scope, a
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budget or reserve, and machine-executable acceptance tests; suppliers are autonomous
SWE-Agents that read issues, estimate costs, decide whether to participate, implement,
and submit evidence of completion under explicit controller logic; and mechanisms are
reverse procurement or scoring auctions with parameters for reserves, eligibility filters,
scoring weights, penalties, and clearing cadence, implemented as on-chain modules on an
application-specific chain (CHE, 1993; KRISHNA, 2009b; KLEMPERER, 2004; CRAM-
TON; SHOHAM; STEINBERG, 2006; BUDISH; CRAMTON; SHIM, 2015b; MYERSON,
1981; LAFFONT; MARTIMORT, 2002; BUCHMAN, 2018; KWON; BUCHMAN, 2016).
SWEChain-SDK is one concrete realization of this subclass: a blockchain-native SDK that
instantiates SWE-Agent outsourcing auctions on a local Cosmos SDK appchain, exposes
a small set of governed parameters (such as reserve semantics, eligibility filters, scoring
weights, and auction duration), and couples the chain to deterministic workload generators
and agent runtimes. Runs are driven by manifests; randomized components are seeded;
toolchains and binaries are pinned; and on-chain events and off-chain agent actions are
logged at a level of detail sufficient to reconstruct metrics and figures or to script additional
runs under comparable conditions. In the simulations reported here, agent policies are
fixed across trials; we do not allow cross-trial learning or adaptation, and instead focus on
how mechanism and configuration changes affect outcomes under a given policy family.
We then use this SDK to conduct paired simulation experiments that vary one policy
dimension at a time—(A) comparative advantage via agent specialization, (B) competitive
bidding via bidders’ price-signal utilization, and (C) principal-weighted selection via
quality-signal utilization—while keeping rules, datasets, random seeds, time base, and
the agent pool fixed, and we report the observed paired differences in task completion,
outsourcing cost, and revenue concentration. The discussion in this section names and
narrows the slice of existing work that we build on and provides a reference point for the

architecture and experiments developed in the rest of the dissertation.
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CHAPTER

SWEChain-SDK Architecture

In the background chapter we introduced SWE-Agent Economics as a working label
for the intersection of intelligent software engineering and software-engineering economics,
centered on task markets, incentive rules, and information structures. This chapter moves
from that general framing to a blockchain-native architectural instantiation: SWEChain-
SDK, a blockchain-native software development kit designed to support controlled, paired
baseline—intervention experiments under fixed conditions in decentralized SWE-Agent

outsourcing markets.

This dissertation states three main aims for SWEChain-SDK. First, it should pro-
vide a local, blockchain-based sandbox chain for SWE-Agent outsourcing auctions with
programmable, transparent, and auditable mechanisms that centralized platforms rarely
expose. In this work, that role is played by a Cosmos-SDK appchain, SWEChain, that im-
plements a software outsourcing issue market via a custom issuemarket module. Second,
SWEChain-SDK should support controlled, paired experiments that vary a single policy
dimension at a time—comparative advantage via agent specialization (Experiment A), com-
petitive bidding via bidders’ price-signal utilization (Experiment B), or principal-weighted
selection via quality-signal utilization (Experiment C)—while keeping rules, datasets,
random seeds, time base, and the agent pool fixed. Third, it should provide event-complete
logging of bids, allocations, payments, and artifacts, together with configuration metadata

sufficient to support re-runnable experiments under comparable conditions.

At a system level, SWEChain-SDK is intended as a compact, local-first toolkit for con-
trolled economic network simulations of decentralized, auction-based software-engineering
markets. The guiding principle is to isolate the effect of one policy variable at a time
by composing small binaries with clear inputs and outputs, deterministic behavior where
feasible, and version-pinned environments. Concretely, the SDK ecosystem provides: (i) a
local Cosmos SDK blockchain (SWEChain) that encodes and enforces outsourcing auction
rules via the issuemarket module; (ii) access layers that expose SWEChain functionality
to humans (via the swechaind command-line interface) and to SWE-Agents (via a Model

Context Protocol (MCP) bridge); and (iii) companion simulation, agent, dashboard, and
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analytics tooling that prepare datasets and manifests, run paired trials, and turn event
streams into metrics and figures. Determinism is encouraged by seeding randomized
components, pinning toolchains, and keeping module parameters and binaries stable across

baseline and intervention.

The public GitHub repository swechain-sdk! serves as the canonical gateway to this
ecosystem. It provides the stable entry point referenced in this dissertation and in the
evaluation-ready release mentioned in the abstract. Internally, swechain-sdk organizes
the SWEChain appchain implementation, MCP servers, agent runners, simulation drivers,
dashboards, and analytics utilities as versioned components. The gateway repository
does not require there to be a single implementation of each off-chain role; rather, it
curates a reference set of MCP servers, agent runners, and simulation drivers used in this
dissertation, while allowing alternative implementations to be plugged in if they adhere
to the same contracts. This indirection allows the SDK’s internal layout and auxiliary
repositories to evolve over time while preserving a fixed, citable external reference for the

architecture described here.

At the system-context level, the primary user is a researcher who configures experiments
and inspects results. Figure 1 depicts this view. The researcher interacts with the
SWEChain-SDK system, which is shown as a single yellow box representing the appchain
and its surrounding tooling. The system executes on a single local host machine under
the researcher’s control, and interacts with two external services: a LeetCode-like task
corpus that provides programming problems for the synthetic data generation engine
(SDGE), and a remote or local LLM service such as Ollama or OllamaCloud, which is
used by MCP tools for model calls. The arrows indicate how the researcher configures
experiments and inspects results, how SDGE consumes the external corpus as input, how
SWEChain-SDK uses LLM inference via MCP, and how all of these activities are hosted

on the local machine.

L <https://github.com/lascam-UFU /swechain-sdk>
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Figure 1 - SWEChain-SDK system context. The researcher configures experiments and
inspects results; SWEChain-SDK runs on a local host machine, consuming a
LeetCode-like task corpus through SDGE and accessing LLM services through
MCP tools.

Blockchain appchains provide a technically and economically expressive substrate for
SWE-Agent experiments: they allow researchers to encode auction and settlement rules
as auditable on-chain logic, isolate fee and ordering markets to reduce cross-application
confounds, and produce canonical event streams suitable for detailed provenance. In this
dissertation, SWEChain is used to execute “network-vs-network” comparisons in which
baseline and intervention share rules, datasets, seeds, and agent pool, and differ only in a
policy dimension such as specialization, price-signal utilization, or quality-signal utilization.
The outcome is a controlled baseline-intervention experiment that can, in principle, be
audited and re-run under comparable conditions using the same experimental setup, much

like a software build.

3.1 Architectural Requirements

This section distills the architectural requirements that follow from the research
agenda in the abstract and from the conceptual framing of SWE-Agent Economics in the
background chapter. We state the requirements as architecturally significant requirements
(ASRs) and then relate them to the SDK’s realization.
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From the perspective of this dissertation, the architecture is expected to satisfy at least
the following ASRs:

(d R1 — Reproducibility under comparable conditions. It should be possible to
re-run a paired baseline-intervention experiment under comparable conditions from
published artifacts and experiment logs that record chain and agent behavior at the
level needed for the study, with rules, datasets, seeds, and toolchains held fixed as

far as practicable.

1 R2 — Controlled variation (ceteris paribus). Experiments should be able to
vary a single policy dimension at a time (for example, specialization, price-signal
utilization, quality-signal utilization) while holding all other aspects—mechanism,

workload, agent pool, and random draws—fixed.

1 R3 — Mechanism transparency and auditability. Market rules for admission,
matching, pricing, and settlement should be encoded as verifiable code, with governed
parameters and provenance that allow auditors to reconstruct outcomes and identify

the effect of policy changes.

1 R4 — Agent heterogeneity and policy diversity. The architecture should
support heterogeneous SWE-Agents with different specializations, bidding heuristics,
and information-use strategies, without compromising the determinism or safety of

the underlying mechanism.

d R5 — Observability and network analysis. The system should expose struc-
tured data that support not only aggregate Key Performance Indicators (KPIs)
such as throughput and cost, but also network-level analysis (for example, degree
distributions, assortativity) and distributional analysis (for example, inequality in

revenues).

d R6 — Configurability and extensibility. Researchers should be able to introduce
new mechanisms, policies, tools, and analytics without breaking existing experiments
or invalidating previous results, and with clear boundaries between mechanism-level

and experiment-level changes.

(d R7 — Practicality for local experimentation. The SDK should remain small
and local-first so that experiments, including the A/B/C simulations in the abstract,

can be run on a single machine using reproducible scripts and profiles.

These requirements link directly to the contributions stated in the abstract: R1 and R2
support controlled, paired baseline-intervention experiments under shared experimental
setups; R3-R5 support SWE-Agent economic analysis with detailed provenance; R6 aligns
with the claim that SWEChain-SDK is configurable and extensible; and R7 ensures the
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SDK is usable as a practical research artifact. Later sections of this chapter revisit these
requirements explicitly for SWEChain-SDK.

Table 1 maps conceptual needs in this domain to decentralized requirements and to

concrete SWEChain-SDK design choices. It provides a bridge between the abstract domain

framing and the ASRs.

Table 1 — Conceptual needs in decentralized SWE-Agent economics, corresponding decen-
tralized requirements, and their realization in SWEChain-SDK.

Conceptual need

Decentralized requirement

Realization in the SDK

Mechanism as code

Ceteris-paribus identifica-
tion

Shared state & auditabil-

ity

Agent heterogeneity

Information & scoring

Network analysis
Comparable KPIs

Reproducibility & prove-
nance

Verifiable, governed market
rules; deterministic outcomes
where possible

Vary one policy, hold others
fixed

Auditable record of transitions

Specialization, information-use,
bidding heuristics

Transparent, governed policy
and prompt changes

Structure beyond aggregates

Stable efficiency and quality
metrics

Experiment logs and artifacts
that support re-running paired
trials under comparable condi-
tions and auditing outcomes

Cosmos appchain with swechain and
issuemarket modules (messages, pa-
rameters, events), deterministic tie-
breaking policies, escrow via bank

Paired baseline-intervention mani-
fests; fixed seeds/datasets/schedules;
pinned toolchains

ABCI events keyed by height; dev-
genesis and run headers; experiment-
specific exports used by analytics
tools

Controllers (FSM/BT) with private
tag sets; LLM subroutines confined
to guarded states; policy described
in files

On-chain parameters (disclosure
flags, scoring weights) via parameter-
update messages, and off-chain
prompt /controller configurations; all
height-stamped or versioned
Bipartite issue—agent graphs; de-
gree/assortativity; inequality metrics
(for example, Gini/HHI)

Metrics engine computing through-

put, p95 latency, cost per task,
pass/rework, price dispersion

Stable  filenames; checksums;
commit and genesis recorded in
run_header. json and related head-
ers

The remainder of the chapter describes how these requirements are addressed through

design principles, the composition of on-chain and off-chain components, and the configu-
ration and extension surfaces of SWEChain-SDK.
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3.2 Design Principles

The design philosophy of SWEChain-SDK is explicitly Unix-like. The SDK favors a
small, correctness-critical kernel, narrow and stable interfaces, plain and inspectable data,
and compositions of simple programs over large, monolithic services. The architecture
is intended to allow decentralized SWE-Agent outsourcing markets to be expressed as
code on a local chain, while experiment policy and analysis stay in separate, scriptable
layers that can evolve without compromising determinism or auditability where these are
achievable.

On chain, the kernel is a Cosmos SDK application (BaseApp plus a small set of modules,
including the custom swechain and issuemarket modules). Off chain, orchestration,
agents, tools, dashboards, and analytics are standalone processes that communicate
through typed files and streams. The swechain-sdk gateway repository does not collapse
these into a single binary; instead, it collects the chain, MCP servers, agent runners,
simulation drivers, dashboards, and analytics utilities into a coherent release with pinned
versions and reproducible profiles. This split preserves a clear trust boundary between
consensus state and research tooling and makes it possible to change methods at the edges
without disturbing the deterministic core.

Doing one thing well starts at the module boundary. issuemarket is scoped to auctions
and bids: it owns a namespaced store and a focused surface of messages, queries, parameters,
and events. Identity, balances and escrow, and governance remain the responsibility of
base modules. By keeping consensus logic minimal and explicit, the module remains
testable and auditable at the level of detail required for this study. Cross-module effects
are expressed via typed keeper calls and events rather than implicit side effects.

Composition is treated as dataflow. On chain, ABCI events form the primary stream:
each state transition emits types and attributes sufficient to reconstruct relevant causal
chains by height. Off chain, manifests, logs, and metrics are treated as text streams:
JSONL and CSV with stable schemas that tools (and humans) can read, write, and pipe
together. Agents consume events, maintain local memory in bbolt-backed stores, and
invoke tools over stdio protocols; this mirrors the Unix “pipe simple programs together”
idea in a setting oriented toward simulation-based studies of SWE-Agent economics. For
each auction, the chain’s event stream includes explicit events for bids, winner selection,
and settlement transfers, so that the economic outcomes studied in this dissertation can
be reconstructed from logs and analysis outputs.

Mechanism and policy are separated. Mechanism lives in the deterministic state
machine—message handlers, keeper methods, and bounded BeginBlock/EndBlock hooks.
Policy lives in governed parameters and off-chain configuration, including agent controllers
and prompts. Market rule changes are gated by parameter-update messages and height-
stamped; experimental conditions are captured in file-backed manifests with checksums

and seeds. The same binary kernel can host several experiments, while differing policies
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do not need to compromise safety or liveness. This separation is important for credible
baseline—intervention comparisons.

Interfaces are narrow, explicit, and stable. On chain, gRPC/REST expose module
messages and queries, and event types and fields form a public contract.? Off chain, the
simulation drivers, agents, and tools exchange versioned JSON messages and report failures
as data. Any component is replaceable if it preserves its contract: a new sampler, agent
state, or tool can be introduced without touching the chain or rewriting unrelated services.

Plain data is preferred over complex abstractions. Event and agent logs are JSONL;
metrics are CSV; manifests are explicitly versioned. Artifacts are intended to be as easy
to read as to write, enabling straightforward inspection. Configuration is declarative and
file-backed; environment variables are used only for ephemeral secrets; every run writes
a header with commit identifiers, genesis checksums, parameter snapshots, and profile
versions. This shortens the path from “what happened?” to “show me the evidence.” In
practice, we combine automated analysis scripts with lightweight inspection tools such as
a terminal block explorer for SWEChain and a TUI browser over per-agent bbolt files;
screenshots of these tools are provided in Appendix D.

Reproducibility under fixed experimental setups is pursued through determinism and
pinning. The chain is deterministic by construction; experiments fix seeds, pin toolchains,
and wait for height 1 before orchestration. Node and build profiles codify timeouts, fee
policy, and versions so developer, continuous-integration, and long-run modes can be
aligned. In the Unix spirit, these profiles are parameterized invocations of the same
programs, which reduces drift between environments.

Failure is treated as a source of data rather than something to hide. When work cannot
proceed, the SDK logs inputs, decisions, and errors into the same structured streams
that support analytics. On-chain invariants and ante handlers are intended to fail closed;
off-chain processes fail fast with bounded retries and typed reasons; nothing mutates global
state without an associated trail. Treating “errors as data” means that the files used to
generate figures also record cases such as timeouts or mispriced bids.

Extensibility is incremental and orthogonal. New capability arrives as new modules,
messages, parameters, queries, events, tools, states, or analytics sinks, rather than as silent
reinterpretations of existing semantics. On chain, migration handlers and export/import
parity support long-lived contracts; off chain, regression tests and artifact comparisons
can be used to guard against unintended changes. Keeping pieces small, making contracts
obvious, and connecting them with simple dataflows allows the SDK to accommodate new
SWE-Agent market designs while preserving comparability with prior experiments.

Finally, the technology stack is chosen to support these aims. The kernel is implemented

in Go to obtain static binaries, predictable performance, mature tooling (go mod, vet,

2 In this chapter we refer to events by conceptual names such as “auction created” and “bid submitted”;

the concrete Cosmos SDK event types follow the standard type/attribute naming and are documented
in the SDK repository.
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lint), and strong protobuf/gRPC support; Cosmos SDK and CometBFT provide a
deterministic state-machine substrate with clear module boundaries. Around that verifiable
core, the rest of SWEChain-SDK behaves like a toolbox: the chain is the journal, events
are the pipes, manifests and logs are the files, and experiments are compositions of simple
programs that instantiate the research agenda of SWE-Agent Economics in concrete,

controlled simulation settings.
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Figure 2 - SWEChain-SDK containers and responsibilities. Within a single local host
environment, the SWEChain appchain provides the deterministic auction
mechanism; off-chain containers implement SDGE, trial execution, native and
external agent runtimes, MCP bridges, custom analytics, an artifact store, and
a live dashboard. External services provide LLM inference and a LeetCode-like
problem corpus.



o6 Chapter 3. SWEChain-SDK Architecture

To describe the structure of SWEChain-SDK, we adopt views in the spirit of the C4
model, moving from the system context in Figure 1 to a container-level view of the main
runtime elements and then to component-level views of the SWEChain appchain and the

native agent runtime used in the experiments.

At the context level, Figure 1 emphasizes three roles. The researcher, shown as a
person node, configures experiments, runs trials, and inspects logs, metrics, and figures.
SWEChain-SDK, shown as a system node, provides a local blockchain-based sandbox
for SWE-Agent outsourcing experiments with paired baseline-intervention trials, SWE-
Agents executed via a native agent runtime, and custom analytics. The environment node
indicates that the entire system executes on a single research machine, which hosts the
SWEChain node, the trial engine, the agent runtime, and the analytics tooling. Two
external systems, the LLM services and the LeetCode-like task corpus, are connected as
dependencies: the first provides model calls accessed through MCP tools, and the second

provides problem data used by SDGE to construct synthetic task datasets.
At the container level, the SWEChain-SDK architecture separates the deterministic

on-chain kernel from off-chain services and artifacts. Figure 2 provides this container
view. The large dashed outline labeled “Environment: Local host machine” corresponds
to the local host already introduced in the context diagram; within this environment, the
figure distinguishes between an “On-chain: SWEChain node” region and an “Off-chain:
SWEChain-SDK & experiments” region, and shows the researcher and external services at
the top.

Inside the off-chain region, the SDGE container generates synthetic LeetCode-style
task datasets and emits task sets and trial manifests. The trial engine container consumes
these manifests, initializes and configures the SWEChain node according to a given profile,
and coordinates the execution of paired baseline and intervention runs. It is responsible
for starting the node with a specific genesis file and configuration profile, waiting for the

chain to reach a stable height, and launching the agent runtimes.

The native agent orchestrator container runs swechain_agent processes. It is built
on top of mcphost, reads finite-state-machine (FSM) configurations and MCP-access
configuration files, executes SWE-Agents according to these FSMs, and maintains per-
agent state and journals in bbolt-backed files. During a trial, each native agent process
obtains auction and chain state via MCP tools, calls additional tools as needed, and
decides when to submit bids and solutions. The use of bbolt for local persistence does not
change on-chain economics but makes it easier to inspect agent-level state and behavior;

Appendix D includes an example of browsing these files with a TUI bbolt browser.

The figure shows two kinds of MCP server containers. The swechain-mcp-server
is a core MCP bridge that wraps the swechaind command-line interface as tools for
opening auctions, submitting bids, querying auction state, and similar operations. The

MCP extension servers region collects two examples: a concrete lc-mcp-server, which
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exposes LeetCode-style tasks and metadata as tools, and an abstract “other MCP servers”
node representing additional tools that could be contributed by other researchers. These
extension containers are optional and live at the SDK’s extension boundary: any MCP
server that adheres to the same input/output contracts can be attached without modifying
the chain.

The Ezxternal SWE-Agent runtimes container indicates that researchers are not re-
stricted to the native agent runtime. They may bring their own agent implementations—for
example, written in other languages, using different controller architectures, or integrating
with external lab infrastructures—and connect them to SWEChain-SDK via the same
swechain-mcp-server. As long as these agents speak the same MCP tool protocols and
respect the chain’s transaction and event model, they can participate in the same auctions

as the native agents and be evaluated under the same experimental conditions.

The custom analytics container represents simulation-experiment-specific tooling, such
as the trial card utility and the simA_results, simB_results, and simC_results
programs used later in the dissertation. These tools read experiment logs (including agent
journals) from the artifact store and emit metrics tables and figures. The artifact store
itself is shown as a dedicated container: it holds manifests, run headers, agent event
streams, chain event exports where needed, metrics tables, and generated figures, all
under the researcher’s control. A lightweight live dashboard container consumes the same
streams and presents a near-real-time view of the current trial. Screenshots of the live

dashboard interface are provided in Appendix D.

Within the on-chain region, the SWEChain appchain container is labeled as a system
rather than a generic container to emphasize that it implements the deterministic mech-
anism under study. It is instantiated as a single-node Cosmos SDK application on the
local host and exposes RPC, REST, and gRPC endpoints for queries and transactions.
The appchain owns the on-chain state for accounts, balances, issues, bids, and settlements,
and emits the events that drive the economic analysis. During development and debug-
ging, a terminal block explorer is often attached to the running node to inspect blocks,
transactions, and events; Appendix D includes a screenshot of such an explorer attached

to a SWEChain simulation run.

At the bottom of Figure 2, the external services region mirrors the context diagram.
LLM providers such as Ollama or OllamaCloud are shown as external systems that perform
model calls on behalf of MCP tools, and the LeetCode-like task corpus is shown as the
source corpus for SDGE synthetic tasks. The arrows from MCP servers to LLM providers
indicate that some MCP tools perform LLM inference remotely rather than on the local
machine; the arrow from the external corpus to SDGE indicates that SDGE is seeded from

a pre-existing problem set but outputs synthetic datasets under fixed seeds.

The next two figures refine the container view by decomposing the SWEChain appchain

and the native agent runtime into their main components.
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Figure 3 — SWEChain appchain components. The SWEChain application is a Cosmos
SDK app that wires the issuemarket module into BaseApp, exposes messages
and queries, and relies on base modules such as auth, bank, and gov for identity,
balances, and governance.
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Figure 3 focuses on the SWEChain appchain. The top-level system box represents the
SWEChain application as a Cosmos SDK app that wires the swechain and issuemarket
modules into BaseApp. BaseApp is responsible for routing transactions and queries through
protobuf message and query services and for implementing the ABCI interface, while the
issuemarket module owns auction state, enforces invariants, and coordinates module-level
logic for opening issues, accepting bids, selecting winners, and settling payments. Message
and query services provide the transaction and query endpoints for the issue market over
gRPC and REST and invoke the keeper’s business logic. Governed parameters capture
policy (for example, auction duration, disclosure flags, scoring weights), and any bounded
BeginBlock/EndBlock behavior can be configured through hooks. Typed ABCI events are
emitted for issues, bids, awards, and settlements and can be consumed directly by analysis
tools or exported from the node for downstream economic analysis. Base modules such as

auth, bank, and gov provide identity, escrow, settlement, and governance functionality.

System:
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Built on mcphost with bbolt-backed per-agent state;
executes FSM-configured SWE agents.
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Legend
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Figure 4 — Native agent runtime components. The swechain_agent binary loads FSM-
based policies, invokes MCP tools via mcphost, and maintains per-agent mem-
ory and journals in a local bbolt-backed store. The finite-state-machine structure
constrains agent behavior while still allowing heterogeneous policies.

Figure 4 decomposes the native swechain_agent runtime used in the experiments.

The agent runtime system loads policy files that describe finite-state-machine controllers,
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heuristics, and budgets, and MCP-access profiles that specify which MCP tools are available
to each agent. A policy loader component translates these files into an internal controller
specification. The controller then executes the finite-state machine step by step: given
the current state, a view of local memory, and previous tool outputs, it proposes a next
state. A guards/validator component checks that the proposed transition is allowed by
the FSM graph and that any memo fields respect the expected schema; if a transition is
not allowed, the validator forces a safe fallback state. This finite-state-machine mechanism
is the main way in which SWEChain-SDK constrains agent behavior: every decision must
correspond to a labeled state and a permitted transition, and only those states are allowed

to trigger tool calls or transactions.

Within each step, the controller may read from or write to the local memory store,
which is persisted in a bbolt-backed database as a single JSON object per agent, issue
MCP tool calls via the MCP client (for example, to ask an LLM to propose a bid price,
query SWEChain state through an MCP bridge, or attempt a code solution), and instruct
a transaction-sending tool to build and submit bids or solutions. All decisions, tool calls,
retries, and outcomes are recorded by the journal writer into an append-only journal stored
in the same per-agent bbolt database; these structured event streams are later consumed by
the analytics tools. Because the controller is driven by a fixed FSM and bounded heuristics,
and because all randomness is either seeded or delegated to LLMs under fixed settings,
the native agent runtime fits the architectural requirements for controlled experiments

while still allowing heterogeneous policies and specializations across agents.

Although we do not include a separate sequence diagram, the runtime flow for a paired
baseline—intervention trial can be summarized as follows. The researcher first prepares a
manifest that specifies datasets, seeds, agent pool, and policy settings for baseline and
intervention. The trial engine then initializes a SWEChain node with a specific genesis file
and node profile, starts the SWEChain MCP server, the problem MCP server, and one or
more native agent runtimes configured by their FSM and MCP-access files, and runs the
baseline scenario to completion. During this run, SWE-Agents obtain auction state via
MCP tools, update their local memory stores, call MCP tools from guarded FSM states,
submit bids and solutions through MCP-exposed transaction tools, and write structured
journals. The chain emits ABCI events that can be queried by tooling, and the agents emit
journals that are written to the artifact store alongside a run_header. json. The system
is then reset or reinitialized under identical conditions, except for the intended policy
change (for example, specialization parameters, disclosure flags, or scoring weights), and
the intervention scenario is run. External SWE-Agent runtimes, if present, can participate
in the same flow by calling the swechain-mcp-server rather than being spawned by the

native runtime.

Finally, analytics utilities read the paired artifacts and compute metrics and figures,

including task completion, outsourcing cost, revenue concentration, and, where relevant,
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network-level statistics such as degree distributions or inequality indices. In each paired
experiment, the baseline and intervention share the same manifests for datasets, seeds, and
agent pool, and differ only in the policy dimension under study. The orchestration code,
packaged under the swechain-sdk gateway repository, runs the baseline and intervention
under identical node and build profiles, writing headers that pin the commit, genesis
checksum, parameter snapshot, and configuration. This structure provides the architectural
basis for the A/B/C simulations described in the abstract and supports R1, R2, and R7.

3.4 Configurability and Extensibility

The abstract describes SWEChain-SDK as configurable and extensible. This section
makes those claims precise by outlining configuration surfaces and extension pathways in
prose.

The SDK separates consensus-governed policy from experiment-level knobs and build
profiles. Consensus-facing settings are typed and height-stamped on chain; orchestration
and agent behavior are declared in file-backed manifests; build and node profiles pin
toolchains and runtime tolerances.

On the on-chain side, configuration surfaces include issuemarket parameters such as
auction duration, minimum decrement, reserve semantics, fee policy, disclosure switches,
and scoring weights. These are intended to be governed by parameter-update messages and
changed only by authorized actors, at known heights, with explicit parameter snapshots
in exports. Genesis templates specify the chain identifier, initial accounts and balances,
parameter baselines, and any pre-seeded state; they can be generated from templates
and recorded with checksums in run headers. Node runtime configuration, such as
RPC/REST/gRPC bindings, indexer settings, mempool options, minimum gas prices, and
logging levels, is encapsulated in node and application configuration profiles that can be
pinned per experiment profile.

On the off-chain side, configuration surfaces include trial manifests, agent policies,
MCP profiles, build and toolchain profiles, and analytics profiles. Trial manifests fix seeds,
task sets, specialization parameters, agent pool size and roles, and deadlines; they are
file-backed, versioned, and hashed, so that the workload and policy for a run can be
reconstructed. Agent policies specify controller topology (FSM or BT), guards, heuristics,
budgets, and retry strategies; they are expressed as structured files and can be swapped
without touching the chain. MCP profiles define endpoints, timeouts, concurrency limits,
and tool allow/deny lists for each MCP server, with secrets injected via environment
variables and the profile structure recorded as a file. Build and toolchain profiles pin
versions of the core language runtime, libraries, and build tools (for example, Go, Cosmos
SDK, CometBFT, and protocol buffer compilers) and are recorded via go.mod, continuous-

integration workflows, and explicit versioning. Analytics profiles select metrics, binning
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schemes, and figure styles and formats and control how raw event and journal data are
aggregated into tables and figures. Experiments are re-runnable: chain parameters are
frozen for each trial, node profiles are fixed, and all settings are captured in manifests
and run headers. The chain enforces escrow, award, and closure rules; orchestration stays
declarative; tools are scoped per profile; and figures are regenerated from the same recorded
inputs. Together, these mechanisms address R1-R3 and R6 by making configuration

explicit and inspectable.

The SDK can evolve through well-bounded on-chain modules and off-chain plug-ins
while maintaining comparability across experiments. On the on-chain side, new capabilities
are introduced as explicit additions rather than as silent changes to existing behavior. For
example, new market features are implemented as new modules or as new messages and
queries that live alongside the existing ones, rather than by changing what the original
messages do. Configuration switches and feature flags default to “off” so that simply
upgrading the binary does not alter market behavior until policies are deliberately changed.
When upgrades require changes to the structure of on-chain state, they are implemented as
deterministic transformations that can be run and checked against archived chain states,

so that historical experiments remain interpretable and comparable over time.

On the off-chain side, extension pathways include orchestrator plug-ins that operate
as pure functions on manifests and emit additional logs or metrics without mutating
chain state; new agent states and guards that expand the FSM or BT vocabulary while
preserving determinism and recording topology snapshots; new MCP tools that introduce
additional capabilities with stable input/output schemas, isolation, and resource caps; new
analytics sinks that write additional metrics or figures under stable filenames and schemas
without side effects on upstream artifacts; and new dashboards that consume existing
event and metrics streams and render them differently without mutating chain or journal
data. The native agent runtime and its bbolt-backed state, and the MCP-based block
explorer and bbolt browsers illustrated in Appendix D, are examples of such extensions at

the tooling layer.

New functionality in issuemarket is best introduced as additional messages, queries,
and parameters rather than as silent changes to existing behavior. Winners, escrow, and
closure semantics can remain invariant, while extensions such as dispute flows add new
events and deadlines without altering basic bid and award behavior. Off chain, agent
specialization and new tools expand capability without affecting the chain. Reproducibility
under fixed experimental setups is supported by keeping seeds, manifests, and toolchains
pinned and by validating changes with deterministic tests and artifact comparisons. These

practices collectively address R6 while protecting R1-R3.
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3.5 Discussion

The architecture of SWEChain-SDK operationalizes the conceptual framing of SWE-
Agent Economics introduced earlier in the dissertation and provides the technical founda-
tion for the simulation-based experiments presented in subsequent chapters. The public
gateway repository swechain-sdk collects the appchain implementation, access bridges,
agent runtimes, simulation drivers, dashboards, and analytics tooling described in this
chapter into a single, versioned research artifact.

The architecture links intelligent software engineering and software-engineering eco-
nomics through a configurable, extensible, and reproducible platform for studying decen-
tralized, auction-based SWE-Agent outsourcing markets. Within the broader domain
of SWE-Agent Economics, we focus on a specific and economically salient class of set-
tings: blockchain-based SWE-Agent outsourcing auctions in which autonomous agents
compete to complete software tasks under programmable market rules. Because issues,
bids, allocations, and payments are all linked to agent identities in the chain state and
logs, SWEChain-SDK naturally induces bipartite issue-agent graphs and derived network
statistics (for example, degree distributions, assortativity, and revenue concentration) that
are used in later chapters.

At a high level, the architecture turns this framing into a concrete experimental
instrument. The Cosmos-based appchain encodes mechanism-level rules—admission,
bidding, pricing, allocation, and settlement—as deterministic state-machine logic with
governed parameters and typed events. Off-chain orchestration, agents, tools, dashboards,
and analytics then act as programmable “lab equipment” around that mechanism: manifests
define paired baseline—intervention runs under fixed seeds and datasets; agent controllers
implement bidding and execution policies using finite-state machines and prompts; MCP
servers expose problem-access and model-calling capabilities; and analytics programs turn
experiment logs into metrics and figures. This division of responsibilities makes it feasible
to realize the abstract requirement of a blockchain-native SDK for economic network
simulations that can support controlled, paired baseline-intervention experiments under
fixed conditions in decentralized SWE-Agent outsourcing markets.

Configurability and extensibility follow from the same principles. On-chain parameters
capture market rules that are intended to be verifiable and governed—durations, fee and
reserve policies, disclosure switches, scoring weights, and closure behavior—and can be
changed at known heights. Experiment-level knobs for datasets, seeding, agent policies
(including prompts), and tool profiles live in versioned files that can be edited, diffed, and
reused. Extension points on both sides are explicit: on chain, new modules, messages, and
hooks arrive as additions with migrations and event schemas; off chain, new samplers, agent
states, MCP tools, dashboards, and analytics sinks compose against stable contracts. This
makes it possible to introduce new SWE-Agent market variants or experimental policies

while remaining within the same architectural envelope and retaining comparability with
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the experiments reported in this work.

Every state transition that matters to the study emits at least one typed event; every
agent decision is logged as a structured journal entry; errors and timeouts are treated
as data rather than silently swallowed. Figures in later chapters are therefore grounded
in concrete files such as experiment logs, agent journals, manifests, and metrics tables.
This makes it possible for other researchers, in principle, to rebuild the same plots, re-
run paired trials under comparable conditions, or extend the experiments with modified
policies using the same logs and manifests that back the evaluation-ready SDK release.
Appendix D complements this chapter by illustrating the practical inspection tools used
during development and experimentation.

The same architecture also admits a disciplined evolution path for the SDK itself.
New agent behaviors, dashboards, or tooling integrations can be introduced off chain
without compromising safety or reproducibility, provided their inputs and outputs adhere
to existing schemas. Design patterns such as semantic versioning, explicit feature flags,
and regression tests over artifacts are compatible with this architecture and can be used
to manage change in a research tool that is expected to be reused and extended beyond
this dissertation.

Finally, the architecture is intentionally neutral with respect to economic design within
its design scope. SWEChain-SDK does not prescribe a single “correct” outsourcing
mechanism or agent strategy; within the space of Cosmos-based auction markets with
MCP-based SWE-Agents, it provides a concrete, blockchain-native SDK that makes it
practical to implement different mechanisms, configure different policies (on chain and in
agent controllers and prompts), and observe how SWE-Agents behave in decentralized
outsourcing markets under controlled conditions derived from experiment logs. In this
sense, the architecture helps connect the abstract domain of SWE-Agent Economics with
the empirical simulations in the following chapters: it provides a concrete way to set up
the paired baseline—intervention experiments described in the abstract, run them under

fixed conditions, observe them in real time, and analyze them with detailed provenance.



65

CHAPTER 4

SWEChain-SDK Simulation Experiments

We evaluate whether SWEChain-SDK supports controlled, paired baseline-intervention

experiments under fixed conditions in decentralized Software-Engineering Agent (SWE-Agent)

outsourcing markets. In all three experiments we run a baseline and an intervention on the

same tasks, agents, seeds, and auction parameters; only one policy dimension varies. This

matches the abstract’s emphasis on blockchain-based SWE-Agent outsourcing markets, on

a blockchain-native SDK for economic network simulations, and on paired experiments

that highlight differences in task completion, outsourcing cost, and revenue concentration

under fixed conditions.

Table 2 summarizes the three interventions and the primary outcome measures and

visuals, aligned with the abstract’s focus on task completion, outsourcing cost, and revenue

concentration.

Table 2 — Simulation experiments, interventions, and main outcome measures.

Experiment

Intervention

Metrics / visualizations

A — Compar-
ative advantage
via agent spe-
cialization

B — Compet-
itive  bidding
via bidders’
price-signal
utilization

C — Principal-

weighted se-
lection via
quality-signal
utilization

Agents receive private special-
ization tags and small in-niche
/ out-of-niche cost multipliers
(versus an all-generalist base-
line).

Bidders’ prompts explicitly in-
struct agents to use the cur-
rent standing best admissible
bid when deciding whether and
how to bid.

Principal replaces a price-only
winner rule with a fixed price—
quality scoring rule over struc-
tured bids.

Winner-task alignment (assortativ-
ity), assignment rate, revenue concen-
tration; trial-card dashboards, agent
finite-state machines, and baseline—
intervention comparison plots.

Discount from reserve (level/disper-
sion), a simple convergence proxy, par-
ticipation and competition indicators,
revenue concentration; trial-card dash-
boards, bidder finite-state machines,
and four-panel comparison plots.

Cost-to-completion, first-pass success,
discount from reserve, participation,
revenue concentration; trial-card dash-
boards, principal finite-state machines,
and headline comparison plots.
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Across all three experiments, baseline and intervention runs share the same tasks,
agents, random seeds, and auction parameters; only the stated policy dimension is varied.
The paired design is therefore intended to reduce confounding from incidental randomness
and input changes, although the results remain single-case studies for the specific workloads

considered rather than broad population estimates.

In all simulations, programmatic randomness is controlled through an explicit random_seed
recorded in each trial’s JavaScript Object Notation (JSON). The Synthetic Data Gen-
eration Engine (SDGE) generator distinguishes between an experiment-level base seed,
supplied on the command line via -seed, and the per-trial seeds that are actually used dur-
ing sampling. Internally, the seed for trial ¢ is computed as trialSeed = baseSeed + t;
for example, running SDGE with -seed 1111 yields random_seed = 1112 for trial 001,
1113 for trial 002, and so on. This offset is intentional: the base seed serves as a
single handle for reproducing an entire experiment, while trial-specific seeds ensure that
each trial has its own deterministic pseudo-random stream, even if downstream code
were to forget to reseed. Given a fixed base seed, problem corpus, and configuration,
SDGE therefore produces the same sequence of per-trial seeds, the same sampled task
sets, the same agent pools (including specialization tags and accuracy profiles), and the
same orchestration schedules. In the paired baseline—intervention design, the baseline and
intervention manifests for a given trial index share the same per-trial seed, so all seeded
randomness (for example, task selection and tag assignment) is aligned across the pair and
the only intended difference is the policy under study (such as specialization or scoring).
Randomness internal to Large Language Model (LLM) inference is not controlled by these
seeds; instead, reproducibility under comparable conditions is supported by pinning model
configurations and toolchains and by recording event-complete logs. This design allows
a reviewer to verify that (i) a single base seed is sufficient to regenerate the full family
of trials and (ii) within each baseline-intervention pair, seeded stochastic elements are

synchronized, preserving the ceteris paribus structure of the experiments.

The SWEChain issuemarket environment faced by a single SWE-Agent has several prop-
erties that motivate the choice of metrics. From the agent’s perspective, the environment
is partially observable (agents see only the task description, a small history, and selected
price signals, not the full global state), strategic (other agents are also optimizing bids, so
outcomes depend on their behavior), sequential (bids and responses unfold over multiple
steps), dynamic (the set of active auctions and bids evolves over time), discrete (actions
and state changes occur at discrete blocks and steps), and inherently multi-agent. The
trial-card and experiment-specific metrics are chosen to summarize how agents perform
and interact in this kind of environment along three main dimensions: task completion,

outsourcing cost, and revenue concentration.

Common experimental pipeline and tooling. All three simulation experiments rely on a

common tool, trial card, to extract and visualize economic and network outcomes from
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the blockchain. The goal is to give each run a single, reproducible summary that fixes the
meaning of completion, cost, competition, and concentration across experiments and to use
the same summary structure when comparing baseline and intervention conditions. For
each experiment we therefore show four economic/network figures built from the canonical

trial card exports:
1. a baseline trial card;
2. an intervention trial card;
3. a paired trial-card comparison;
4. an experiment-specific “results” figure.

In addition, each experiment includes agent-level figures that show the finite-state machines
(FSMs) executed by the relevant agents under baseline and intervention conditions. These
FSMs clarify how the policy dimension is implemented at the control-flow and prompt
level.

In its default compute mode, trial_card connects to the local SWEChain node and
queries the issuemarket module for all auctions and bids at a chosen block height. It
normalizes bid amounts, reconstructs the lowest admissible winning bid for each auction,
and aggregates auction-level and bidder-level statistics. The tool writes a canonical
JSON summary (trial_card. json) together with a single-run figure (trial_card.svg,

converted to trial_card.pdf) that presents the main metrics in a compact dashboard.

Trial-card metrics and terminology

Because the same terminology appears in all trial-card and paired-comparison figures,
this section summarizes the main quantities and how they are computed. Interpretations
of high versus low values are discussed in the Simulation Results and Discussion sections

for each experiment.

The trial-card Volume block reports how active the marketplace was in a run:
A Auctions total is the number of auctions instantiated.
 Auctions with bids counts auctions that received at least one bid.
O Completed (with winning bid) counts auctions that clear with a winner.

[ Completion rate is the share of auctions that clear, that is, completed auctions

divided by total auctions.

The Auction competition block characterizes how competitive the auctions are:



68 Chapter 4. SWEChain-SDK Simulation Experiments

[ Bids total counts all bids submitted in the run.
 Mean bids per auction averages the number of bids across all auctions.

0 Single- / multi-bid auctions reports how many auctions have exactly one bid versus

at least two bids, together with their shares.

(A For multi-bid auctions, the best—second gap is the average difference between the
winning price and the second-best price, and the best—second ratio is the average

ratio of second-best to winning price.

The Economic outcomes block focuses on outsourcing cost and price dispersion:
Q Total outsourcing cost is the sum of payments over all completed auctions in the run.

 Mean cost per completed task is total cost divided by the number of completed

auctions.

O Win price min/med/max reports the minimum, median, and maximum winning

prices.

O Win price std dev / CV report the standard deviation of winning prices and its

coefficient of variation (the standard deviation divided by the mean winning price).

The Network and participation block reflects how agents share in the work:
Q Distinct bidders counts how many agents submit at least one bid.
Q Distinct winning bidders counts how many agents win at least one auction.
Q Bidders with at least one win is the fraction of bidders who win at least once.

U Unique bidder—auction pairs counts bidder—auction combinations with at least one
bid.

Q Mean distinct bidders per auction is the average number of bidding agents per

auction.
 Mean auctions per bidder is the average number of auctions on which an agent bids.

A Mean wins per winning bidder is the average number of wins among those bidders

who win at least once.

The Revenue concentration block summarizes inequality in how revenue is distributed:
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[ Starting from each agent’s total revenue (sum of payments over its wins), a revenue
Gini coefficient is computed on a zero-to-one scale. A value of zero means perfectly
equal revenue (all active agents earn the same); a value close to one means that

almost all revenue goes to a single agent.

U The revenue Herfindahl-Hirschman Index (Herfindahl-Hirschman Index (HHI))

sums squared revenue shares; higher values mean more concentration.

A Top-1, Top-3, and Top-5 revenue shares report the fraction of total revenue earned
by the highest-earning agent, by the top three agents, and by the top five agents,

respectively.

In these experiments, a revenue Gini reported as 0.000 usually has one of two interpre-
tations: either the run has no completed auctions (so all agents earn zero, and revenue
inequality is mechanically zero), or all winning agents receive exactly the same payment.

Neither case is an error; both are boundary cases of perfectly equal revenue.

The paired baseline-intervention trial-card comparisons, generated in -compare mode,
condense the same metrics into a side-by-side view: for each selected quantity, the card
shows the baseline level, the intervention level, and their difference. For example, a paired

card in Simulation C might report:
a Completion: B: 69.6%, I: 50.0%, A = —19.6 percentage points;
(d Mean cost per task: B: 22.05, I: 15.69, A = —6.36 tokens;
 Revenue Gini: B: 0.343, I: 0.357, A = +0.014;
 Revenue HHI: B: 0.0736, I: 0.0770, A = 40.0034;
 Top-3 revenue share: B: 33.8%, I: 37.9%, A = +4.1 percentage points.

Here “B” refers to the baseline run and “I” to the intervention. The differences are always
reported as intervention minus baseline, so negative values mean the intervention is lower
on that metric and positive values mean it is higher. The paired card format is reused
across the three experiments; how to interpret high versus low values for the metrics that

appear is discussed in the Simulation Results and Discussion sections for each experiment.

Taken together, these trial-card metrics provide a common vocabulary for the three
simulation experiments. The Simulation Results and Discussion sections refer back to this
vocabulary when interpreting baseline—intervention differences and headline figures for

each policy dimension.
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4.1 Simulation Experiment A — Comparative Advan-

tage via Agent Specialization

Simulation A evaluates a minimal marketplace modification: each agent privately
receives a small set of specialization tags (e.g., DP, Graphs) and is nudged—via prompts
and small cost multipliers—to bid in those niches. The aim is to increase specialist—
task alignment (who wins what) without lowering the auction clearance rate. This
operationalizes comparative advantage in autonomous software-work routing while holding

auction rules and infrastructure fixed.

4.1.1 Experimental Design

We ask whether private, agent-side specialization increases winner—task assortativity
while keeping the assignment rate at least as high as a seed-matched baseline with no
specialization. In the baseline, agents act as generalists: they see no private tags and
face neutral cost multipliers. In the intervention, each agent i is assigned a private tag
set S;; prompts explicitly encourage bidding on tasks whose primary tag lies in .S;; and
the simulator applies a small in-niche cost discount with a small out-of-niche penalty. All
other marketplace rules—timing, eligibility, fees, and clearing logic—remain identical.

Matching quality is summarized by a categorical assortativity coefficient r over a

winner-bucket x task-tag contingency table {ej;} with margins ar = ;e and by = ¥, exs:

_— Dok Ckk — 2k Qi
1= parby

Here the winner bucket equals a task’s primary tag if the winner’s private tags include it,
and Other otherwise. Thus r ~ 1 indicates strong tag-level alignment (winners typically
have tags that match the tasks they win), r ~ 0 resembles chance given the observed base
rates, and r < 0 signals systematic mismatch (winners tend to lack the relevant tags).
This metric is used because the central question in Simulation A is whether specialization
helps route work to more suitable agents; assortativity provides a single, interpretable
summary of that alignment.

Participation is tracked via the assignment rate (auctions with a winner divided by
auctions launched), together with summary statistics on competition (bids per auction,
share of multi-bid auctions, and distinct bidders) and realized outsourcing cost (mean cost
per completed task). Revenue concentration is summarized by the Gini and HHI of agent
revenue and by the revenue share of the top winners, using the definitions introduced
earlier in the chapter. These metrics are chosen because they translate the qualitative idea
of “specialists doing the right tasks” into concrete questions: does specialization increase
or reduce coverage, how much more or less do buyers pay, and does specialization spread

work across more agents or concentrate wins in a few specialists?
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Agent control structure and specialization prompts

The specialization intervention is implemented at the agent controller level, using a
finite-state machine that orchestrates perception, bidding, and error handling. In both
baseline and intervention, agents follow a similar control structure: they receive a task,
interpret it, decide whether to bid, and either submit a structured bid or decline. What

changes is how specialization information is injected into that process.

Figure 5 — Finite-state machine for the baseline agents in Simulation A. Control flow
covers task intake, generic reasoning, bidding, submission, and error handling,
with no specialization tags or niche-specific prompts.

Figure 5 shows the finite-state machine executed by the baseline agents. The main
states handle task intake, reasoning, bidding, submission, and error recovery. The bidding
state is parameterized by a prompt that summarizes the task and principal but treats
all tasks symmetrically: there are no private tags and no explicit instructions to favor
particular task types. Cost reasoning is generic and does not depend on any notion of

niche.

Figure 6 — Finite-state machine for specialization-enabled agents in Simulation A. The
overall control structure mirrors the baseline, but the bidding state now accesses
private tag sets and niche-sensitive cost multipliers, and the prompt explicitly
encourages in-niche participation.

Figure 6 shows the corresponding finite-state machine for the specialization-enabled

agents. The high-level control flow is kept intentionally similar to the baseline, but the
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bidding path now includes access to each agent’s private tag set S; and to small in-niche
and out-of-niche cost multipliers. The bidding prompt includes an explicit block that lists
the agent’s tags, reminds the agent that tasks whose primary tag matches .S; are likely
to be good fits, and asks the agent to consider these tags when deciding whether to bid
and how to set the price. The cost reasoning state incorporates the multipliers so that
in-niche bids tend to be cheaper and out-of-niche bids slightly more expensive, relative to

the unspecialized baseline.

By presenting these two FSMs side by side, the chapter makes clear that Simulation A
varies a specific component of agent behavior: the presence of private specialization tags
and associated prompt and cost adjustments. Other aspects of the controller, such as

retry logic and error handling, remain aligned between baseline and intervention.

4.1.2 Simulation Results and Discussion

M Completion M Auctions with bids [l Concentration

Volume

Auctions total: 16
Completion rate 21259 Auctions with bids: 2 (12.5%)
Completed (with winning bid): 2 (12.5%)
Auction competition
Bids total: 8
Mean bids per auction: .50
Auctions with bids - 0.1250 Single / multi-bid auctions: 0/ 2 (0.0% / 100.0%)
Best-second gap / ratio: 8.0000 / 1.800

Economic outcomes

Total outsourcing cost: 20.0000
Mean cost per completed task: 10.0000
Revenue Gini  0.0000 Win price min/med/max: 10.0000 / 10.0000 / 10.0000
Win price std dev/ CV: 0.0000 / ©.0000
Network & concentration
Distinct bidders: 4
Distinct winning bidders: 2
Unique bidder-auction pairs: 7
Mean distinct bidders/auction: 0.31
Mean auctions per bidder: ™75
Mean wins per winning bidder: 1.00
Revenue Gini / HHL: 0.0000 / 0.5000

Height: 248 + Generated: 2025-11-21706:46:44Z

0.00 0.25 0.50 0.75 1.00
Ratios (0-1): completion, participation, and revenue concentration

Figure 7 — Simulation A baseline configuration (generalist agents). Canonical trial-card
summary for a single run under the fixed SimA workload. The baseline clears
almost no auctions, so realized cost and revenue concentration are effectively
Z€ero.
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M Completion M Auctions with bids [ Concentration

Volume

Auctions total: 23
Completion rate 0.1304 Auctions with bids: 3 (13.0%)
Completed (with winning bid): 3 (13.0%)
Auction competition
Bids total: 6
Mean bids per auction: 0.26
Auctions with bids - 0.1304 Single / multi-bid auctions: 2/ 1 (66.7% / 33.3%)
Best-second gap / ratio: 1.0000 / 1.100
Economic outcomes
Total outsourcing cost: 30.0000
Mean cost per completed task: 10.0000
Revenue Gini  0.0000 Win price min/med/max: 10.0000 / 10.0000 / 10.0000
Win price std dev/ CV: 0.0000 / ©.0000
Network & concentration
Distinct bidders: 3
Distinct winning bidders: 8
Top-1 revenue share _ 0.3333 Bidders with at least one win: 100.0%
Unique bidder-auction pairs: 6
Mean distinct bidders/auction: 0.17
Mean auctions per bidder: 2.00
Mean wins per winning bidder: 1.00
Revenue Gini / HHL: 0.0000 / 0.3333
Height: 251 » Generated: 2025-11-21T07:08:11Z

0.00 0.25 0.50 0.75 1.00
Ratios (0-1): completion, participation, and revenue concentration

Figure 8 — Simulation A intervention configuration (specialization-enabled agents with
private tags and cost multipliers). Compared to Figure 7, more auctions attract
bids, some auctions clear, realized outsourcing cost becomes positive, and
revenue is no longer degenerate.

Figures 7 and 8 show the single-run economic and network trial cards for the baseline
and specialization-enabled configurations under the same tasks, agents, and seeds. In
the baseline trial card, agents behave as generalists and rarely commit to numeric bids.
Most auctions either receive no admissible bids or only non-executable content, leading
to a completion rate close to zero, negligible realized outsourcing cost, and zero revenue
concentration by construction (all agents earn zero, so the revenue Gini is 0.000). Network-
side metrics reflect the same picture: there are few bidder—auction pairs, low mean bids

per auction, and almost no observed winner activity.

Under specialization (Figure 8), the pattern shifts. The combination of entry nudges
and mild in-niche discounts increases the number of auctions with bids and produces a
non-trivial share of cleared auctions. Mean cost per completed task becomes positive, and
revenue concentration quantities such as the Gini, HHI, and top-k revenue shares become
meaningful: a small set of agents now earn the available revenue. Participation metrics
also become more informative: additional bidder—auction pairs are observed, and a subset

of bidders converts bids into wins, increasing the share of bidders with at least one win.
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M Baseline [ Intervention

Simulation A — Agent specialization
Headlines
Completion:
Mean cost/task:
Revenue Gini:
Revenue HHIL:

© 12.5% I: 13.0% A +0.5 pp
10.0000 1: 10.0000 A +0.0000
: 0.000 I: 0.000 A +0.000

: 0.5000 I: 0.3333 A -0.1667

oo

: 12.5%
Completion

@

-@  Market structure
Multi-bid auctions (share): B: 100.0% I: 33.3% A -66.7 pp
Bidders ever winning: B: 50.0% I: 100.0% A +50.0 pp
Top-3 revenue share: B: 100.0% I1: 100.0% A +0.0 pp

Heights — baseline: 248, intervention: 251

Mean cost/task -9

s

.0

S

.. 0.000
Revenue Gini

0.000

Figure 9 — Simulation A paired comparison. Baseline and intervention levels and differences
on coverage, competition, cost, and revenue concentration under identical tasks,
agents, and seeds.

The paired comparison (Figure 9) summarizes these changes as level-versus-delta panels.
For this workload and time budget, specialization moves the system from a degenerate
baseline (almost no completions) to a regime where a modest fraction of tasks clears. As
soon as tasks begin to clear, realized outsourcing cost and revenue concentration cease
to be trivially zero: buyers now pay positive amounts for completed work, and those
payments accrue to the small set of agents who win. In other words, specialization is
associated with more work getting done, with the resulting revenue flowing to the subset

of agents that successfully operate in their niches.
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Simulation A — No specialization vs specialization-enabled
Effect of agent specialization on coverage, winner diversity, market participation, and realized outsourcing cost

Auction coverage: completed auctions Winner diversity: share of bidders with wins

14% 12.5% 13.0% 110% 100.0%

7% 55% 50.0%
0% 0% -

No specialization Specialization-enabled No specialization Specialization-enabled

Market participation: mean distinct bidders per auction Realized cost: mean cost per completed task (token per task)
0.3 0.31 11.0 10.00 10.00
0.17

0.2 59
0.0 0.0

No specialization Specialization-enabled No specialization Specialization-enabled

Trial Summary and Interpretation
Il No specialization (baseline condition) [ Specialization-enabled (intervention condition)

No specialization (baseline trial): 16 auctions, 2 completed, 2 bidders with wins.
Specialization-enabled (intervention trial): 23 auctions, 3 completed, 3 bidders with wins.
Coverage (completion rate): 12.5% - 13.0%.

Winner diversity (share of bidders with wins): 50.0% - 100.0%.

Market participation (mean distinct bidders per auction): 0.31 - 0.17.

Figure 10 — Simulation A headline results. Four-panel comparison of the baseline (gener-
alist agents) and the intervention (specialization-enabled agents) on auction
coverage (completion rate), winner diversity (fraction of bidders with at least
one win), mean distinct bidders per auction (participation), and mean cost
per completed task.

Finally, the headline Simulation A figure (Figure 10) collects four run-level metrics that
summarize the effect of specialization for this workload. In this figure, auction coverage is
the completion rate, the share of launched auctions that clear with a winning bid; higher
coverage means more tasks are successfully assigned. Winner diversity is the share of
bidders with at least one win; higher winner diversity means that revenue is spread across
more of the active bidders rather than being captured by just one or two specialists. Market
participation is the mean number of distinct bidders per auction; higher participation
indicates that, on average, more agents are willing to compete for each task. Realized
cost is the mean cost per completed task in tokens, so higher values mean the buyer pays
more on average for each completed task. These metrics are appropriate for Simulation A
because the central policy lever is specialization: we want to know whether specialization
helps more tasks clear, whether it pulls in more agents, whether it spreads or concentrates
wins, and what cost buyers pay for these changes.

Taken together, Figures 7-10 suggest a simple interpretation for this particular paired
run. First, specialization is associated with improved coverage: auctions that would

otherwise remain idle now attract admissible bids and clear. Second, the distribution of
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wins broadens: a larger fraction of active bidders obtain at least one win, which shows
up as higher winner diversity and more bidder—auction pairs than in the trivial baseline.
Third, realized outsourcing cost becomes positive rather than trivially zero, which is
expected once work is actually being performed. Fourth, revenue concentration is non-zero
but mechanically sensitive to the small number of completed auctions: when only a
few tasks clear, any agent who wins one of them captures a large revenue share. These
observations are conditional on the specific configuration and workload; they illustrate how
SWEChain-SDK can be used to probe the implications of a specialization policy under

controlled but necessarily simplified conditions.

4.1.3 Threats to Validity and Limitations

The main threat to validity in Simulation A is the small effective sample size of
completed auctions in the baseline and intervention runs. When only a handful of tasks
clear, summary statistics such as the winner—task assortativity r, the Gini of revenue, or
the share of bidders with wins become noisy and highly sensitive to individual auctions.
We partially mitigate this by working with a seed-matched baseline-intervention pair
and by publishing the underlying contingency tables and trial cards so that alternative

statistics can be recomputed, but the small number of completions remains a limitation.

A second limitation is the stylized nature of both tasks and agents. Specialization tags
are assigned rather than learned; agent policies are finite-state and prompt-driven; and the
cost structure is simplified to highlight a single mechanism. This makes Simulation A a
useful test bed for the SDK’s experimental pipeline, but it also means that the quantitative

effect sizes should not be read as direct estimates for production systems.

Third, the short time budget and fixed agent pool restrict the range of equilibrium
behaviors that can arise. For instance, we do not model long-run adaptation, tag reallo-
cation, or agents strategically reshaping their specialization to chase profitable tags. As
a result, Simulation A underestimates dynamic phenomena such as agents drifting into

dominant niches or principals adapting their posting behavior.

Finally, the winner inference rules and tag mappings introduce their own modeling
choices. When explicit winner events are missing but valid numeric bids exist, we infer
winners by selecting the lowest admissible bid; alternative tie-breaking or quality-weighted
rules could produce different concentration patterns. The tag hierarchy and the mapping
from raw task descriptions to primary tags are also simplified. These are acceptable
compromises for a first experiment and for achieving reproducibility within the chosen
environment, but they limit external validity. Subsequent experiments in the dissertation

revisit some of these design choices under richer workloads and longer runs.
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4.2 Simulation Experiment B — Competitive Bidding

via Bidders’ Price-Signal Utilization

Simulation B studies how bidder-facing prompts that explicitly call out the standing best
admissible bid relate to pricing, competition, and participation when all other marketplace
elements are held fixed. We compare a seed-matched baseline-intervention pair of runs
in which bidders see the same task and principal fields and the same best-bid field in
their input, but only the intervention prompt instructs them to take the current best
bid into account when deciding whether and how to bid. The agent pool, effective costs
(including any specialization), auction rules, and payment logic remain constant across

the two conditions.

4.2.1 Experimental Design

The main question is whether prompting bidders to explicitly consider the current
best admissible bid, on top of the usual task and principal information, is associated with
tighter pricing and different competitive behavior, and how these changes relate to task

completion.

All bidding agents share a common controller and JSON output schema. For each
auction, the agent receives a structured description of the task (identifier, deadline, required
skills, and a coarse difficulty estimate), basic principal-history fields (for example, past
acceptance and repair rates), and the current standing best admissible bid when one exists.
The chain and event stream expose the same fields in both arms; the only difference is

how strongly the prompt tells the agent to use the best-bid information.

We define two regimes. In the baseline (best-bid neutral) condition, the prompt
describes the task and principal and instructs the agent to propose a bid based on its
private costs, the deadline, and principal reputation. The current best admissible bid
is present in the input schema but is not highlighted in the system prompt and is not
mentioned in the instructions, and the agent is not explicitly asked to react to it. In the
intervention (best-bid attentive) condition, the same task and principal fields and best-bid
field are provided, but the system prompt includes a dedicated section for the current best
admissible bid and explicitly instructs the agent to take it into account: the agent is asked
to assess whether the current best bid looks plausible given the task and principal, and
then to decide whether to undercut, match, or abstain given its own cost structure and
risk tolerance. The intervention is therefore purely prompt-level: both arms have access
to the same information, but only the intervention makes the best-bid field salient and

normatively relevant for bidding.

Beyond raw prices, we instrument two derived quantities for each auction. A buyer-
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discount-from-reserve score

clear reserve
P il
a reserve
Dq

reserve
a

captures how far the clearing price pc®® falls below a coarse reserve p implied by task
difficulty. Here s, < 0 means the buyer pays less than the reserve (a discount), s, = 0
means the buyer pays exactly the reserve, and s, > 0 would mean paying above reserve.
Smaller (more negative) values of s, correspond to better prices for the buyer, and lower
dispersion of s, across auctions indicates more predictable pricing. This metric is used in
Simulation B because the treatment is all about how agents react to price signals; discount
from reserve provides a normalized way to compare prices across tasks with different

implied costs.

A simple convergence proxy

o= tclose o t*

a — Vg a

measures the time between the first appearance of the final clearing price ¢} and the
auction close t&°¢. Smaller 7, means the auction effectively “settles” earlier relative to
close, while larger 7, indicates that prices continue to change closer to the deadline. This
proxy is included because one practical goal of using price signals is to stabilize auctions

sooner, reducing unnecessary bidding late in the process.

Guardrail metrics mirror the chapter-level focus on participation and concentration. We
track the number of distinct bidders per auction, the assignment rate (fraction of auctions
with a winner), and the concentration of wins across agents via the Herfindahl-Hirschman
Index (HHI) and top-k revenue shares. Task-level acceptance and rework metrics are
derived from the events stream in the same way as in Simulation A. As in Simulation A,
baseline and intervention use the same tasks, agents, random seeds, timing budgets, and
auction parameters. The resulting paired differences in the reported metrics are therefore
at least consistent with the prompt-level treatment of best-bid information playing a
central role, although they should still be interpreted as specific to this workload and

configuration.

Bidder finite-state machines and price signals

Agent behavior in Simulation B is controlled by two agent specification files,
agent_B_baseline.json and agent_B_intervention. json, stored under simB/config/
in the repository. The two specifications are deliberately kept as close as possible: they
share the same finite-state machine, retry policies, memory filters, and language-model
sampling configuration. The main design choice is how the current best admissible bid is

surfaced and used inside the bidding state.
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Figure 11 — Finite-state machine for the baseline bidder in Simulation B. The current best
admissible bid is present in the structured input but is not emphasized in the
bidding prompt, which focuses on costs, deadlines, and principal reputation.

Figure 11 shows the finite-state machine executed by the baseline bidder. States for
task intake, reasoning, bidding, submission, and error handling are the same as in the
other experiments, and the bidding state is parameterized by a prompt that summarizes
the task, principal, and historical context without highlighting the current best admissible
bid as a decision driver. The best-bid value is present in the structured input but is treated

as an ordinary field rather than a focal piece of information.

Figure 12 — Finite-state machine for the intervention bidder in Simulation B. The control
flow is identical to the baseline, but the bidding state includes an explicit
price-signal block that makes the current best admissible bid salient in the
prompt and asks the agent to react to it.

Figure 12 shows the corresponding finite-state machine for the intervention. The
control-flow structure is intentionally identical, but the bidding state now includes a
dedicated price-signal block that surfaces the current best admissible bid together with
explicit instructions: the agent is told to consider whether the best bid is plausible given
the task and principal, and then to decide whether to undercut, match, or abstain. In this
sense, the intervention does not add new information; instead, it changes how existing
information is framed and prioritized in the bidding logic.

By keeping the finite-state machines and sampling configuration fixed and changing

only the contents of the bidding prompts, the experiment is designed to highlight the
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role of price-signal utilization. Any paired differences in completion, outsourcing cost,
competition, or revenue concentration between the two runs are consistent with that design
choice being an important driver, but they should still be read as exploratory evidence

rather than as definitive causal estimates.

Trial execution follows the shared pattern introduced in Simulation A. The task set
and agent pool are prepared; the auction configuration, runtime budget, and random
seeds for task order, bid timing, and tie-breaks are fixed; the baseline run is executed and
per-auction and run-level metrics are computed; the intervention run is executed under
the same seeds and inputs; and auction pairs are then formed and compared. Prompt
templates and CLI commands for this experiment are documented in Appendix B, together

with a reproducibility protocol that reconstructs the trial artifacts and figures.

4.2.2 Simulation Results and Discussion

M Completion Ml Auctions with bids [ Concentration

Volume
Auctions total: 22
Completion rate 0.7273 Auctions with bids: 16 (72.7%)
Completed (with winning bid): 16 (72.7%)
Auction competition
Bids total: 83
Mean bids per auction: S
Best-second gap / ratio: 7.7500 / 1.608
Economic outcomes
Total outsourcing cost: 450.0000
Mean cost per completed task: 28.1250
Revenue Gini _ 0.3033 Win price min/med/max: 10.0000 / 30.0000 / 30.0000
Win price std dev / CV: 4.9608 / 0.1764

Network & concentration

Distinct bidders: 18
Distinct winning bidders: 17
Top-1 revenue share - 0.1020 Bidders with at least one win: 94.4%
Unique bidder-auction pairs: 78
Mean distinct bidders/auction: 3.23
Mean auctions per bidder: 4.33
Mean wins per winning bidder: BB
Revenue Gini / HHL: 0.3033 / 0.0757
Top-3 revenue share 0.3059 Top-1/3/5 revenue share: 0.102 / ©.306 / 0.476

Height: 308 + Generated: 2025-11-19T06:53:09Z

0.00 0.25 0.50 0.75 1.00
Ratios (0-1): completion, participation, and revenue concentration

Figure 13 — Simulation B baseline configuration (best-bid neutral prompts). Canonical
trial-card summary for a single run under the fixed SimB workload.
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M Completion M Auctions with bids ¥ Concentration

Volume
Auctions total: 22
Completion rate 0.4545 Auctions with bids: 10 (45.5%)
Completed (with winning bid): 10 (45.5%)
Auction competition
Bids total: 92
Mean bids per auction: 4.18
Auctions with bids _ 0.4545 Single / multi-bid auctions: 3/ 7 (30.0% / 70.0%)
Best-second gap / ratio: 1.0000 / 1.396

Economic outcomes

Total outsourcing cost: 106 . 0000
Mean cost per completed task: 10.6000
Revenue Gini 0.4356 Win price min/med/max: 1.0000 / 8.5000 / 25.0000
Win price std dev/ CV: 8.4876 / 0.8007

Network & concentration

Distinct bidders: 19
Distinct winning bidders: 11
Top-1 revenue share - 0.2148 Bidders with at least one win: 57.9%
Unique bidder-auction pairs: 68
Mean distinct bidders/auction: 3.00
Mean auctions per bidder: 3.58
Mean wins per winning bidder: 155
Revenue Gini / HHL: 0.4356 / 0.1452
Top-3 revenue share — 0.5705 Top-1/3/5 revenue share: 0.215 / 0.570 / 0.792

Height: 254 + Generated: 2025-11-19T07:14:52Z

o
=)
5]

0.25 0.50 0.75 1.00
Ratios (0-1): completion, participation, and revenue concentration

Figure 14 — Simulation B intervention configuration (best-bid attentive prompts that
explicitly expose and highlight the current standing best admissible bid).
Canonical trial-card summary for the paired intervention run.

Figures 13 and 14 present the single-run economic and network trial cards for the
baseline and intervention conditions. Each card summarizes the number of auctions and
bids, completion and assignment rates, the distribution of winning prices, competition
indicators such as the share of multi-bid auctions and mean bids per auction, and revenue-
concentration metrics including the Gini coefficient, HHI, and top-k revenue shares, all
defined in the chapter introduction. The two single-run cards show that the baseline
and intervention configurations are broadly comparable in scale and structure. The most
visible differences appear in completion, competition intensity, and the distribution of

revenue across bidders.
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M Baseline [ Intervention

Simulation B — Price-signal utilization
Headlines
Completion:

Mean cost/task:
Revenue Gini:
Revenue HHIL:
45.5% Market structure
Multi-bid auctions (share): B: 81.2% I: 70.0% A -11.3 pp
Bidders ever winning: B: 94.4% I: 57.9% A -36.5 pp
Top-3 revenue share: B: 30.6% I: 57.0% A +26.5 pp

1 72.7% 1: 45.5% A -27.3 pp
28.1250 I: 10.6000 A -17.5250
©0.303 I: 0.436 A +0.132

1 ©0.0757 1: 0.1452 A +0.0694

I}

i 7
Completion

oo

Heights — baseline: 308, intervention: 254

3
-

Mean cost/task

10.6000

. 0.303
Revenue Gini

IS
&

Figure 15 — Simulation B paired comparison. Baseline versus intervention levels and
differences on completion, competition, pricing, and revenue concentration for
the seed-matched trial pair.

The paired comparison in Figure 15 makes these run-level differences more explicit. In
this seed-matched trial pair, enabling price-signal prompts is associated with a substantial
reduction in the mean cost per completed task and a downward shift in the distribution of
winning prices, but also with a reduction in the completion rate and weaker competition
as measured by the share of multi-bid auctions and the mean number of bids per auction.
The paired metrics for participation and revenue show how wins are redistributed across
bidders when the prompt makes price signals salient: in this configuration, more of the
total revenue is captured by the subset of agents that remain competitive under the new
regime. These patterns are consistent with a story in which price-signal prompts make

bidders more selective in when they participate and more aggressive when they do bid.
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Simulation B — Neutral vs price-signal prompts
Effect of price-signal prompts on coverage, price competition, and realized outsourcing cost

Auction coverage: completed auctions Price competition: share of multi-bid auctions
80% 72.7% 89% 81.2%
70.0%
45.5%
40% 45%
0% 0%
Neutral prompts Price-signal prompts Neutral prompts Price-signal prompts
Price competition: mean best-second winning-price gap (token) Realized cost: mean cost per completed task (token per task)
8.5 7.75 30.9 28.12
4.3 159
10.60
1.00
0.0 0.0
Neutral prompts Price-signal prompts Neutral prompts Price-signal prompts

Trial Summary and Interpretation
Il Neutral prompts (baseline condition) [ Price-signal prompts (intervention condition)

Neutral prompts (baseline trial): 22 auctions (16 with bids), 83 bids.

Price-signal prompts (intervention trial): 22 auctions (10 with bids), 92 bids.

Completion (cleared auctions): 72.7% - 45.5%.

Paired cleared auctions across both conditions: 10; in this trial, price-signal prompts have lower winning prices on 100.0% of them.
In this trial, price-signal prompts are associated with lower prices but also fewer cleared auctions.

Figure 16 — Simulation B headline results. Four-panel comparison of baseline (best-bid-
neutral prompts) and intervention (best-bid-attentive prompts) on auction
coverage (completion rate), share of multi-bid auctions, mean best-second
winning-price gap in multi-bid auctions, and mean cost per completed task.
The summary box at the bottom restates the number of auctions, the number
of auctions with bids, and the share of paired auctions in which price-signal
prompts lower the winning price.

Figure 16 complements these views with a compact, Simulation-B-specific summary
constructed directly from the canonical trial card exports. In this figure, auction
coverage is again the completion rate, the share of launched auctions that clear with a
winning bid. The share of multi-bid auctions measures how often auctions attract genuine
competition (at least two bids) rather than behaving as take-it-or-leave-it offers; higher
values mean competition is more common. The mean best-second winning-price gap is
the average difference (in tokens) between the winning price and the second-best price
in multi-bid auctions; a smaller gap indicates tighter price competition, while a larger
gap suggests that the winner could have bid higher without being undercut. The mean
cost per completed task is the average winning price across completed auctions, so lower
values mean cheaper outsourcing for the buyer at the observed completion rate. The
boxed summary at the bottom of the figure restates the number of auctions, the number
of auctions with bids, and the completion rates in each condition, together with the share
of paired auctions on which price-signal prompts lead to a lower winning price.

These headline metrics are chosen for Simulation B because they make the main



84 Chapter 4. SWEChain-SDK Simulation Experiments

trade-offs visible in simple terms: does making price signals salient help the buyer by
lowering prices, does it change how often auctions behave as real competitions rather than
singleton offers, and how does it affect the share of tasks that actually clear? For this
particular seeded workload, the figure shows that price-signal prompts reduce completion
but improve prices on the auctions that do clear, and they narrow the best—second gap,
indicating tighter competition where bidding occurs.

From an engineering perspective, Simulation B illustrates that SWEChain-SDK can
express bidder-side information policies at the prompt level without changing the underlying
auction code or the on-chain state schema. The best-bid field already exists as on-chain
state; the mechanism and datasets are unchanged; and only the way in which that
information is surfaced in the prompt is altered. The resulting changes in completion,
pricing, and revenue concentration can be traced back to a specific, versioned configuration

that can be inspected and rerun in a controlled environment.

4.2.3 Threats to Validity and Limitations

Several caveats qualify the interpretation of Simulation B. First, the number of usable
auction pairs after applying the outlier rule is modest, and the experiment reports a single
seed-matched baseline—intervention trial run for this configuration. This was a deliberate
scope, compute, and time choice: the dissertation focuses on building and validating the
platform and the experimental protocol, and leaves larger-scale experimentation with many
independent trials and parameter sweeps as future work. The figures should therefore be
read as an internally consistent case study of what the platform can express rather than as
definitive population-level estimates of the effect of price-signal prompts in all SWE-Agent
markets.

Second, the treatment works purely through prompt text. In both arms, the best-bid
field is technically available in the input; the difference is whether the prompt highlights it
and instructs the agent to reason about it. This is appropriate for evaluating SWEChain-
SDK as an experimentation platform for prompt-level policy changes, but it also means that
effect sizes depend on how responsive the underlying language model is to prompt wording
and on how stable that responsiveness remains over time and across model updates.

Third, agent policies are fixed for the duration of a trial and do not adapt across
auctions. This isolates the effect of the prompt change in the short run but abstracts
away learning dynamics and longer-run strategy shifts, such as tacit collusion, chronic
underbidding, or strategic avoidance of certain principals, that might emerge in repeated
play with price-signal information. Incorporating adaptive or meta-learning agents is an
important direction for subsequent work.

Third, the convergence proxy 7, depends on orchestration choices such as how frequently
bids are submitted and evaluated within the fixed runtime budget. Different timing

parameters could change absolute levels of 7, even if the qualitative contrast between



4.8. Simulation Experiment C' — Principal-Weighted Selection via Quality-Signal Utilization 85

neutral and price-signal prompts remains similar. By keeping timing constant across arms
and publishing the underlying event logs, the experiment permits alternative operational
definitions of convergence and post hoc sensitivity analysis, but the metrics reported here
correspond to one specific orchestration regime.

Finally, as in Simulation A, these experiments are run under a particular choice of model,
hardware, and network configuration. While the reproducibility protocol in Appendix B is
designed to support reruns on similar machines with the same model identifier, different
inference stacks or hardware constraints could interact with timing and budget parameters
in ways that shift completion and pricing levels, even when the qualitative comparison

between neutral and price-signal prompts remains broadly similar.

4.3 Simulation Experiment C — Principal-Weighted

Selection via Quality-Signal Utilization

The third experiment moves from bidder-side information to principal-side selection.
Here we test whether replacing a price-only winner rule with a transparent price—quality
scoring rule is associated with changes in cost-to-completion and first-pass success under

the same tasks, agents, bids, and runtime parameters.

4.3.1 Experimental Design

The research question is whether a fixed, documented price—quality scoring rule,
applied by the principal agent to structured bid summaries, can be implemented within
SWEChain-SDK and whether, for the chosen workload, it is associated with lower total
cost-to-completion and higher first-pass success, without clear signs of degraded price
efficiency or participation.

In all conditions, bidders return a structured record containing: (i) a bid amount, (ii) a
predicted probability that the submission will pass acceptance tests, and (iii) a predicted
implementation duration. The auction format, reserve prices, payment rule (pay-as-bid),
and eligibility thresholds match the earlier experiments.

In the baseline (price-only) condition, the principal is instructed, via its system prompt,
to select the lowest admissible bid, with deterministic tie-breaking based on bidder
identifiers. Predicted quality and duration are logged but ignored in the decision. In the
intervention (price—quality scoring) condition, the principal instead applies a linear scoring

rule of the form

o — o —

Score, (1) = wy - pass_prob,; — w, - bid_amount,; — wy - lateness_hours, ;,

with weights (wg, w., wy) fixed ex ante and lateness measured as predicted delay beyond

the task deadline. The prompt instructs the principal to compute this score for each bid,
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to select the highest-scoring bidder, and to log both the chosen rule and the per-bid scores
for audit. Higher scores mean that, according to the chosen weights, the bid offers better
expected quality-for-price-and-timeliness; lower scores mean the opposite. This metric is
used because Simulation C asks whether principals can move beyond pure price competition
toward multi-attribute selection, and how such a move relates to cost-to-completion and

success rates.

For each auction a, we define
Oa = Ct(z()) + Tq,

where ¢©

) is the initial payment and r, aggregates penalties and rework costs; C, is

interpreted as cost-to-completion. A higher C, means that, for that auction, the buyer
had to pay more in total (initial payment plus any penalties or repeats) before the

task was accepted; a lower C, means cheaper completion. First-pass success (First-Pass
Success (FPS)) is

1
FPS = Z;Fa,

where F;, = 1 if the first submission passes acceptance tests and 0 otherwise. FPS close to
one means that most tasks succeed on the first attempt; FPS close to zero means that
most tasks require rework. These metrics are central in Simulation C because they capture
exactly what a quality-sensitive principal might care about: how often the first try is good

enough, and how much it ultimately costs to get tasks over the finish line.

Pricing is monitored via the same discount-from-reserve metric s, as in Simulation B,
and participation is summarized by the median number of distinct bidders per auction
and the HHI of wins. As in the previous experiments, metrics are computed on auction

pairs that pass the outlier rule, and randomness is controlled via seed-matched runs.

Principal finite-state machines and scoring policy

The selection rule in Simulation C is implemented at the principal agent level, through
a finite-state machine that consumes structured bids, evaluates them, and chooses a winner.
Bidders reuse the bidding controllers from the previous experiments; the main variation

lies in how the principal processes their submissions.
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Figure 17 — Finite-state machine for the baseline principal in Simulation C. After collecting
and validating bids, the principal applies a price-only selection rule: it chooses
the lowest admissible bid and logs predicted quality and lateness without
using them in the decision.

Figure 17 shows the baseline principal controller. The FSM includes states for collecting
bids until the auction closes, parsing and validating them, and then selecting a winner.
In the baseline configuration, the winner-selection state applies a simple rule: among all
admissible bids, it chooses the one with the lowest price, breaking ties deterministically by
bidder identifier. Predicted pass probabilities and lateness estimates are passed through

and logged but do not influence the selection decision.

Figure 18 — Finite-state machine for the intervention principal in Simulation C. The control
flow for collecting and validating bids is unchanged, but the winner-selection
state is replaced by a price—quality scoring rule that combines predicted pass
probability, price, and predicted lateness according to fixed weights.

Figure 18 shows the principal finite-state machine under the price-quality scoring
intervention. The early stages of the controller (bid collection and validation) mirror
the baseline, but the winner-selection state is replaced by a scoring state that computes
Score, (i) for each bid, using the fixed weights (w,, w., wy) and the structured fields in
the bid. The principal then selects the highest-scoring bidder, logs the score components
for each bid, and records the chosen rule. Prompt text in the scoring state reminds the
principal of the trade-offs between predicted quality, price, and lateness and instructs it to

apply the stated scoring rule rather than ad hoc heuristics.
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Presenting these FSMs clarifies that Simulation C varies a specific part of the principal’s
control logic while leaving the underlying auction code and bidder behavior unchanged.
The comparison between baseline and intervention runs thus speaks to how this scoring
policy behaves under the chosen workload and configuration, rather than to a more general

class of quality-sensitive rules.

4.3.2 Simulation Results and Discussion

M Completion M Auctions with bids [l Concentration

Volume

Auctions total: 56
Completion rate 076364 Auctions with bids: 39 (69.6%)

Completed (with winning bid): 39 (69.6%)

Auction competition

Bids total: 129

Mean bids per auction: 2.30

Best-second gap / ratio: 13.9474 / 2.316

Economic outcomes

Total outsourcing cost: 860.0000
Mean cost per completed task: 22.0513
Revenue Gini 0.3427 Win price min/med/max: 10.0000 / 25.0000 / 30.0000
Win price std dev / CV: 9.1790 / 0.4163
Network & concentration
Distinct bidders: 20
Distinct winning bidders: 19
Top-1 revenue share - 0.1382 BT‘:I‘ders mfith at IeasF one vfrin: 95.0%
Unique bidder-auction pairs: 129
Mean distinct bidders/auction: 2.20
Mean auctions per bidder: 6.45
Mean wins per winning bidder: 3.74
Revenue Gini / HHL: 0.3427 / 0.0736
Top-3 revenue share 0.3382 Top-1/3/5 revenue share: 0.138 / ©.338 / 0.497

Height: 451 + Generated: 2025-11-19T08:10:01Z

0.00 0.25 0.50 0.75 1.00
Ratios (0-1): completion, participation, and revenue concentration

Figure 19 — Simulation C baseline configuration: canonical trial-card summary for price-
only selection, including completion, outsourcing cost, participation, and
revenue concentration.
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M Completion Ml Auctions with bids ¥ Concentration

Volume
Auctions total: 72
Completion rate 0.5000 Auctions with bids: 36 (50.0%)
Completed (with winning bid): 36 (50.0%)
Auction competition
Bids total: 121
Mean bids per auction: 1.68
Auctions with bids — 0.5000 Single / multi-bid auctions: 7/ 29 (19.4% / 80.6%)
Best-second gap / ratio: 15.0000 / 2.549

Economic outcomes

Total outsourcing cost: 565.0000
Mean cost per completed task: 15.6944
Revenue Gini 0.3572 Win price min/med/max: 5.0000 / 10.0000 / 30.0000
Win price std dev/ CV: 8.9871 / 0.5726

Network & concentration

Distinct bidders: 20
Distinct winning bidders: 19
Top-1 revenue share - 0.1327 Bidders with at least one win: 95.0%
Unique bidder-auction pairs: 120
Mean distinct bidders/auction: 1.60
Mean auctions per bidder: 6.00
Mean wins per winning bidder: B8R
Revenue Gini / HHL: 0.3572 / 0.0770
Top-3 revenue share _ 0.3791 Top-1/3/5 revenue share: 0.133 / 0.379 / 0.512

Height: 519 + Generated: 2025-11-19T08:54:44Z

o
=)

0 0.25 0.50 0.75 1.00
Ratios (0-1): completion, participation, and revenue concentration

Figure 20 — Simulation C intervention configuration: canonical trial-card summary for
principal-weighted selection under the same tasks, agents, and seeds as the
baseline.

Figures 19 and 20 show the canonical trial-card summaries for the baseline and
intervention runs, respectively. As in the earlier experiments, each card reports completion,
outsourcing cost, competition, participation, and revenue-concentration metrics under the

common definitions introduced at the start of the chapter.

M Baseline [ Intervention

Simulation C — Price-quality selection
Headlines

Completion: B: 69.6% I: 50.0% A -19.6 pp

Mean cost/task: B: 22.0513 I: 15.6944 A -6.3568
Completion Revenue Gini: B: ©.343 I: 0.357 A +0.014

Revenue HHI: B: 0.0736 I: 0.0770 A +0.0034

Market structure

Multi-bid auctions (share): B: 79.5% I: 80.6% A +1.1 pp
Bidders ever winning: B: 95.0% I: 95.0% A +0.0 pp
Top-3 revenue share: B: 33.8% I: 37.9% A +4.1 pp

Heights — baseline: 451, intervention: 519

Mean cost/task

15.6944

. 0.343
Revenue Gini

35

Figure 21 — Simulation C paired comparison. Baseline versus intervention differences on
auction-level economic and network metrics after applying the outlier rule.

The paired comparison in Figure 21 reports baseline-intervention differences at the
auction level for the same core metrics: cost-to-completion C,, FPS, discount from reserve,

participation, and concentration. Each panel shows baseline levels, intervention levels, and
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paired differences for the auctions that pass the outlier rule, under the shared seed-matched

protocol.
Simulation C — Price-only vs principal-weighted selection
Effect of principal-weighted selection on coverage, winner diversity, revenue concentration, and realized outsourcing cost
Auction coverage: completed auctions Winner diversity: share of bidders with at least one win
100% 100% 95.0% 95.0%
69.6%
50.0%
i . i
0% 0%
Price-only selection Principal-weighted selection Price-only selection Principal-weighted selection
Revenue concentration: Gini of winner revenue Realized cost: mean cost per completed task (token per task)
0.39 24.26
034 0.36 22.05
) l -
0.00 0.00

Price-only selection Principal-weighted selection Price-only selection Principal-weighted selection

Trial Summary and Interpretation
[l Price-only selection (baseline condition) [ Principal-weighted selection (intervention condition)

Price-only selection (baseline trial): 56 auctions (39 with bids), 129 bids.
Principal-weighted selection (intervention trial): 72 auctions (36 with bids), 121 bids.
Completion (cleared auctions): 69.6% - 50.0%.

Winner diversity (share of bidders with at least one win): 95.0% - 95.0%.

Revenue concentration (winner revenue Gini): 0.343 - 0.357.

Figure 22 — Simulation C headline results. Four-panel comparison of baseline (price-only
winner rule) and intervention (principal-weighted price—quality scoring) on
auction coverage (completion rate), winner diversity (fraction of bidders with
at least one win), revenue concentration (revenue Gini), and mean cost per
completed task.

Finally, Figure 22 condenses the main results into four headline metrics that parallel
the Simulation A and B summaries. Auction coverage is again the completion rate,
the share of auctions that clear with a winner; higher coverage means more tasks are
completed. Winner diversity is the share of bidders with at least one win, so higher winner
diversity means that more of the active bidders receive some revenue instead of a few
agents dominating the market. Revenue concentration is measured by the Gini coefficient
of winner revenue; values closer to zero indicate more equal revenue shares, while higher
values indicate that payments are more concentrated in a small subset of agents. Realized
cost is the mean cost per completed task in tokens, which summarizes how expensive it is,
on average, to get a task to completion under each winner-selection rule. These metrics
are appropriate for Simulation C because the policy lever directly targets the trade-off
between price and expected quality: we want to see whether quality-sensitive selection
changes how many tasks succeed, how much they cost, and how unevenly rewards are

distributed across agents.
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For the chosen configuration, the quality-adjusted rule appears to change both cost-
to-completion and FPS relative to the price-only baseline, while keeping participation
within a similar range. The detailed effect sizes are documented in the appendix; at a high
level, the experiment illustrates how principal-side policies implemented as prompt-level
evaluation rules over structured bids can be expressed and examined in SWEChain-SDK
without modifying the underlying auction code.

From an engineering standpoint, Simulation C shows how marketplaces can move
beyond pure price competition while retaining explicit, inspectable decision criteria. The
scoring rule is fixed, documented, and encoded in prompts; per-bid scores are logged; and
runs can be reconstructed from the published manifests and logs. In practice, designers
could sweep over alternative weight vectors (wy, w., wy), introduce non-linear penalties for
severe lateness, or couple the scoring rule with specialization and price-signal treatments
to explore richer design spaces. The key point for this dissertation is that such policies
can be encoded, versioned, and evaluated within SWEChain-SDK under controlled, paired
conditions and that they have visible consequences for task completion, outsourcing cost,

and revenue concentration in the simulated markets considered here.

4.3.3 Threats to Validity and Limitations

Several considerations qualify the interpretation of Simulation C. First, FPS is sensitive
to acceptance-test strictness and timeout parameters; while these are fixed across arms,
alternative acceptance harnesses could shift absolute levels even if paired differences persist.
Second, the structured fields used in scoring (predicted pass probability and lateness)
are model outputs and may be miscalibrated; miscalibration can attenuate or distort the
apparent benefits of quality-sensitive scoring. Third, the chosen linear scoring with fixed
weights (wg, we, wy) is only one of many plausible rules; different weights or non-linear
penalties could change effect sizes and trade-offs. Fourth, as in the earlier experiments,
the number of usable auction pairs after the outlier rule can be modest, so small-sample
fluctuations remain an important concern. Finally, bidders do not adapt strategies across
auctions in this setup; longer-run equilibria (for example, shading against quality-sensitive
principals or shifting participation toward principals with particular scoring rules) are out

of scope for this controlled comparison.

4.4 Discussion

Simulation A operationalizes comparative advantage via private specialization tags and
cost multipliers on the bidder side. Simulation B studies bidder-side price-signal utilization
by making the current best admissible bid salient in the bidding prompt. Simulation C
moves to principal-side policy, introducing a price—quality scoring rule over structured bids

in place of a pure price winner rule. Across these three simulation experiments we vary a
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single policy dimension at a time under a tightly specified environment and examine how
the observed outcomes differ between baseline and intervention runs. Each experiment is
based on a single seed-matched baseline-intervention pair, and all results are conditional
on the specific workloads, parameter settings, and models used. Because we report a
single seed-matched baseline-intervention pair per experiment, the results are illustrative
for the specific seeded workloads and should not be interpreted as averaging over many

independent random seeds.

Within these limits, the experiments provide concrete case studies of how simple,
programmable policy changes relate to task completion, outsourcing cost, and revenue
concentration in decentralized SWE-Agent outsourcing markets. The chapter keeps the
focus on the three outcome families highlighted in the abstract and introduction. For
task completion, we monitor both assignment rates (completion as a share of launched
auctions) and, where relevant, first-pass success. For outsourcing cost, we track mean cost
per completed task and related price statistics, sometimes normalized by rough reserve
levels. For revenue concentration, we use the revenue Gini, HHI, and top-k revenue shares
derived from the trial cards. Presenting these quantities through the same trial-card
dashboards, paired-comparison cards, and experiment-specific summary figures allows us
to compare baseline and intervention regimes within each simulation and, at a high level,

to align the three experiments under a common empirical vocabulary.

Taken together, the experiments support the dissertation’s claim that a blockchain-
native SDK such as SWEChain-SDK can host controlled, paired baseline-intervention
studies of decentralized SWE-Agent outsourcing markets with event-level provenance. In
this setting, market-design ideas familiar from economics and operations—comparative
advantage, price-signal utilization, and multi-attribute scoring—are not just informal
guidelines; they are encoded as concrete configurations of code and prompts that can
be versioned, executed, and examined. For each experiment, we hold tasks, seeds, and
infrastructure fixed; toggle a single policy dimension; and compare the resulting trial-card
summaries and derived plots. The observed differences are not guaranteed to generalize
beyond the specific workloads and models considered, but they illustrate how SWEChain-
SDK can be used to study SWE-Agent markets in a way that is explicit about mechanisms,

transparent about data, and grounded in event-level logs.

Finally, the chapter highlights a practical pattern for future work in SWE-Agent
Economics. Mechanisms and agent policies can be encoded as code and prompts; tasks,
seeds, and infrastructure can be fixed in manifests; single policy dimensions can be varied
while others are held constant; and events can be logged at sufficient granularity to
support re-analysis. SWEChain-SDK provides the concrete tooling for this pattern; the
experiments in this chapter demonstrate how it can be applied in a small set of illustrative
scenarios. Subsequent work can build on this pattern by enlarging the space of workloads

and policies, by increasing the number of independent runs, and by introducing adaptive
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agents and richer equilibrium behaviors, while retaining the same emphasis on controlled

comparisons, transparent mechanisms, and event-level provenance.
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CHAPTER

Related Work

AT agents’ strategic interactions in economic settings—a key line of inquiry in Al-agent
economics—have attracted increasing attention amid recent advances in generative AI. We
focus on blockchain-based SWE-Agent outsourcing markets, which link intelligent software
engineering and software-engineering economics through programmable, transparent, and
auditable mechanisms that centralized platforms rarely expose. We evaluate whether a
blockchain-native SDK for economic network simulations can support controlled, paired
baseline-intervention experiments under fixed conditions in decentralized SWE-Agent
outsourcing markets. Against this backdrop, this chapter situates the dissertation within
three strands of related work. First, it reviews work that models agents as decision-makers
embedded in markets and networks. Second, it surveys recent efforts that explicitly frame
Al-agent economics and construct virtual agent markets or exchanges. Third, it discusses
experimental platforms and SDKs for Al agents and positions SWEChain-SDK with
respect to these systems by highlighting the remaining research gap.

5.1 Agents, Markets, and Computational Economics

Classical work on autonomous agents and multi-agent systems provides the concep-
tual basis for viewing software entities as decision-makers with state, goals, and policies.
Cognitive and symbolic architectures such as Soar (LAIRD; NEWELL; ROSENBLOOM,
1987), BDI agents (RAO; GEORGEFF, 1995; WOOLDRIDGE, 2000), and planning for-
malisms like STRIPS and PDDL (FIKES; NILSSON, 1971; MCDERMOTT, 1998) model
agents as goal-directed problem solvers under constraints, while behavior-based approaches
emphasize reactive control and layered architectures (BROOKS, 1986; BROOKS, 1991;
GAT, 1998; BONASSO et al., 1997). Multi-agent systems work then formalizes coordina-
tion, communication, and organizational structures (WOOLDRIDGE, 2009; JENNINGS;
SYCARA; WOOLDRIDGE, 1998; JENNINGS, 2000), and standard reinforcement-learning
and decision-theoretic formulations treat agents as policy-bearing processes in stochastic
environments with partial observability (KAELBLING; LITTMAN; CASSANDRA, 1998;
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SUTTON; BARTO, 2018). These ideas align with viewing SWE-Agents as bounded,
tool-using processes that must make economic decisions under interface, budget, and

information constraints.

Agent-based modeling and simulation extend these concepts to large populations of
interacting agents. Classic models such as Schelling’s segregation dynamics (SCHELLING,
1971b), El Farol (ARTHUR, 1994), and Axelrod’s work on cooperation (AXELROD,
1984) show how simple local rules can generate rich macro-level patterns. General-
purpose ABM frameworks and surveys (WILENSKY, 1999; NIAZI; HUSSAIN, 2011)
codify best practices for building and analyzing agent-based models, including seed control,
sensitivity analysis, and careful reporting of outcomes. Methodological work in simulation
(LAW, 2015; EPSTEIN; AXTELL, 1996; RAILSBACK; GRIMM, 2019; SARGENT, 2013;
OBERKAMPF; ROY, 2010) emphasizes verification, validation, and experimental design
so that simulation results are robust and interpretable. These practices motivate the
design of SDKs that support reproducible runs under fixed conditions, with explicit control

over randomness, timing, and configuration.

Agent-based computational economics (ACE) applies ABM techniques to markets and
macroeconomic environments (TESFATSION, 2002; TESFATSION, 2006; TESFATSION,
2022). Agents are firms, households, or intermediaries that follow behavioral rules instead
of solving analytically tractable optimization problems. Work by Axtell, Farmer, Tesfatsion,
and others argues that agent-based models are well suited to studying out-of-equilibrium
dynamics, institutional detail, and distributional outcomes (AXTELL, 2000; FARMER;
GEANAKOPLOS, 2009; ARTHUR et al., 1997; TESFATSION, 2002). Classical economic
foundations on incentives, information, and institutions—from Robbins and Samuelson’s
definitions of economic behavior (ROBBINS, 1932; SAMUELSON; NORDHAUS, 2010) to
Coase, Hurwicz, and Laffont—Martimort on firms, mechanisms, and principal-agent rela-
tionships (COASE, 1937; HURWICZ, 1972; LAFFONT; MARTIMORT, 2002)—provide
the language used in this dissertation to discuss task allocation, information disclosure,

and incentive compatibility.

Networked views of markets further enrich this picture. Work on social and economic
networks shows how topology shapes diffusion, bargaining power, and inequality (JACK-
SON, 2008; JACKSON, 2010; EASLEY; KLEINBERG, 2010; CALVO-ARMENGOL;
JACKSON, 2004; GABAIX, 2009; BARABASI; ALBERT, 1999; ACEMOGLU et al.,
2012). Inequality and concentration measures such as the Gini coefficient, Atkinson index,
and Herfindahl-Hirschman index (HHI) provide compact diagnostics of how rewards
are distributed across agents (GINI, 1912; ATKINSON, 1970; COWELL, 2011). For
software-engineering markets, this suggests viewing SWE-Agents and task issuers as a
bipartite economic network whose structure and flows (tasks, tokens, artifacts) are shaped
by mechanism rules and agent policies, and whose efficiency and equity can be measured

with standard tools from econometrics and network science.
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5.2 Al-Agent Economics and Virtual Agent Markets

Recent work proposes Al-agent economics as a distinct research agenda that studies au-
tonomous Al agents as economic decision-makers. Yang and Zhai articulate ten principles
for Al-agent economics (YANG; ZHAI, 2025), emphasizing that agents should be modeled
with explicit objectives, constraints, and information sets; that mechanisms and environ-
ments should be formally specified; and that evaluation should consider welfare, stability,
robustness, and alignment with human objectives. Their framing calls for experimental
substrates that expose economic interfaces (allocations, prices, budgets, constraints) rather
than only task-level accuracy, and that enable systematic study of how mechanism design
and agent policies interact.

Building on this conceptual foundation, Tomasev et al. introduce Virtual Agent
Economies (TOMASEV et al., 2025), which provide environments where learning agents
interact through markets for virtual goods and services. These economies are designed
to support policy evaluation, distributional analysis, and stress-testing of multi-agent
systems. Yang et al’s Agent Fzchange (YANG et al., 2025) similarly proposes an exchange
architecture in which Al agents trade services under defined market rules to study pricing,
liquidity, and strategic behavior. In both cases, agents are embedded in explicit markets,
but the domains tend to focus on generic goods, media, or synthetic services rather than
software-engineering tasks.

Complementary studies place language models directly into auction and bargaining
environments. Chen et al. evaluate strategic planning and execution in an auction arena
where language-model agents bid for items under different rules (CHEN et al., 2024).
Shah et al. examine language models as auction participants, comparing their strategic
behaviors and outcomes across mechanisms (SHAH et al., 2025). These settings treat
auctions as testbeds for reasoning and responsiveness to incentives, and they highlight
both the promise and fragility of using LLM agents in economic contexts.

A broader ecosystem of agent benchmarks evaluates Al agents on web, desktop, and
app interaction rather than explicit markets. WebShop, WebArena, VisualWebArena, and
BrowserGym assess agents on shopping or navigation tasks (YAO et al., 2022; ZHOU et
al., 2024; KOH et al., 2024; BrowserGym Team, 2024), while OSWorld, AndroidWorld,
AppWorld, and related platforms focus on desktop or mobile interaction and multi-step
tool use (WANG; LI et al., 2024; CHANG et al., 2025; TRIVEDI et al., 2024). Other
environments such as MineDojo, BEHAVIOR-1K, and OmniGibson provide rich physical
or virtual worlds for open-ended tasks (FAN et al., 2022; LI et al., 2024; OmniGibson
Contributors, 2024). These platforms typically measure success rates, completion times, or
reward in task-centric benchmarks. They rarely expose explicit market structures, prices,
or welfare metrics, and they do not aim to model software-engineering marketplaces.

Within software engineering, systems such as SWE-Agent (YANG et al., 2024; SWE-
agent Contributors, 2025; SWE-AGENT. .., 2025) and OpenHands (WANG et al., 2025;
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OpenHands Contributors, 2025) focus on automated software-development workflows,
repository-level evaluation, and human-in-the-loop integration. They are often evaluated
against benchmarks like SWE-bench (JIMENEZ et al., 2024; YANG et al., 2023), which
measure an agent’s ability to resolve real-world issues and pass associated tests. These
systems bring agents closer to realistic SWE workflows, but their evaluation pipelines
emphasize correctness and throughput rather than explicit economic interactions, prices,
or surplus. Economic aspects, when present, are implicit (e.g., time-to-completion or
resource usage), not encoded as market mechanisms.

Taken together, this body of work establishes Al-agent economics as a conceptual um-
brella and provides a variety of agent environments—from virtual economies and exchanges
to SWE-focused tools and generic agent benchmarks. However, these environments either
focus on generic goods or financial assets, or treat economic interactions as evaluation

tools rather than primary objects of study in software-engineering task markets.

5.3 Research Gap and Positioning

Existing experimental platforms and SDKs for Al agents provide important building
blocks, but they leave a gap for domain-specific, economics-aware infrastructures tailored
to software-engineering markets.

Multi-agent orchestration frameworks such as AutoGen, CAMEL, MetaGPT, Voyager,
and related systems (WU; YANG; AL., 2023; LI et al., 2023; HONG et al., 2023; WANG et
al., 2023; DU et al., 2023; SHEN et al., 2023) offer abstractions for role decomposition, tool
invocation, and conversation-based coordination. They demonstrate that orchestration
choices (roles, tool contracts, memory scopes, retry policies) can significantly affect task
outcomes. However, they typically run on general-purpose compute platforms, log events
in ad hoc formats, and do not treat economic observables (bids, allocations, payments,
penalties) or mechanism parameters as first-class, versioned entities. Reproducing experi-
ments that compare mechanism variants or policy interventions across time is therefore
difficult.

Blockchain infrastructures offer an alternative substrate with stronger guarantees about
ordering, finality, and auditability. Systems such as Bitcoin and Ethereum (NAKAMOTO,
2008; BUTERIN, 2014; WOOD, 2014; GARAY; KIAYIAS; LEONARDOS, 2015; EYAL;
SIRER, 2014; KIAYTAS et al., 2017; BUTERIN; GRIFFITH, 2017) establish a transaction
log with consensus-based ordering. Appchain frameworks like Tendermint/CometBEFT
and the Cosmos SDK (KWON;, 2014; KWON; BUCHMAN, 2016; CONTRIBUTORS,
2023; FOUNDATION, 2020) allow designers to fix consensus rules, block cadence, and
application logic, and to encode domain-specific modules (e.g., auctions, governance) as
explicit state machines. Research on MEV and transaction-fee mechanisms (DAIAN et
al., 2020b; ROUGHGARDEN, 2021; ANGERIS et al., 2020) shows that general-purpose
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mempools and fee markets can introduce non-stationary noise and strategic behavior, which
is undesirable for tightly controlled experiments. Agent-like actors in DeFi (liquidators,
arbitrageurs, searchers) demonstrate the feasibility of on-chain economic agents but focus
on financial assets rather than software-engineering tasks, and they typically operate in
environments where mempool dynamics are part of the object of study rather than a

controlled background.

Reproducible computational research and provenance work argues that scientific soft-
ware systems should expose manifests, dataflow, and configuration metadata to enable
independent recomputation (GIL et al., 2007; WILSON et al., 2017). Simulation method-
ology in software engineering and related fields (MONTGOMERY, 2017; WOHLIN et al.,
2012; LAW, 2015; SARGENT, 2013; OBERKAMPF; ROY, 2010) stresses clear estimands,
controlled confounders, and transparent reporting of design choices. Recent efforts in
energy and resource accounting for machine-learning experiments (STRUBELL; GANESH;
MCCALLUM, 2019; MASANET et al., 2020; HENDERSON et al., 2020) further argue for
tracking computational cost as part of experimental results. Yet most Al-agent platforms
and orchestration frameworks do not integrate these concerns into their core abstractions;
manifests, seeds, and configuration hashes are usually handled by external scripts or
documentation rather than enforced by the execution environment.

In software engineering, there is also a gap between Al-assisted developer tools and
economic analyses of platforms and labor markets. Developer-focused systems such as
GitHub Copilot and related tools (GitHub, 2023; Microsoft, 2023; PENG et al., 2023,
KALLIAMVAKOU, 2022; YETISTIREN et al., 2023; PEARCE et al., 2021; PERRY et al.,
2023; ASARE; NAGAPPAN; ASOKAN, 2024; TIAN et al., 2023) emphasize productivity
and correctness but do not model or expose the economic mechanisms by which work is
allocated, priced, and settled. Platform-economics and labor studies, in turn, analyze
centralized systems (e.g., Upwork-style markets) where mechanisms and data are only
partially observable (BERG et al., 2018; GRAY; SURI, 2019; EINAV; FARRONATO;
LEVIN, 2016; TADELIS, 2016; AGRAWAL et al., 2015). This limits the possibility of
controlled experimental manipulation of mechanism rules in realistic software-task settings.

Against this background, Al-agent economics provides conceptual foundations and
high-level platforms for studying Al agents as economic actors (YANG; ZHAI, 2025;
TOMASEV et al., 2025; YANG et al., 2025; CHEN et al., 2024; SHAH et al., 2025), but

there is still a missing piece:

1 Existing virtual agent economies and exchanges focus on generic goods or services,

not software-engineering tasks bound to repositories, tests, and artifacts.

1 Existing SWE-Agent frameworks focus on automation and evaluation of software

workflows, not on explicit market mechanisms, prices, or welfare metrics.
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1 Existing blockchain systems demonstrate agent-like behavior in financial domains, but
rely on public mempools and fee markets that complicate controlled, seed-matched

experimentation.

This dissertation addresses that gap by evaluating whether a blockchain-native SDK
for economic network simulations can support controlled, paired baseline-intervention
experiments under fixed conditions in decentralized SWE-Agent outsourcing markets. We
present SWEChain-SDK, a configurable, extensible blockchain-native SDK that provides
a local sandbox chain for SWE-Agent outsourcing auctions and event-level logging of
bids, allocations, payments, and artifacts, enabling analysis and scripted re-runs of paired
trials under comparable conditions. We conduct paired simulation experiments that vary
one policy dimension at a time—(A) comparative advantage via agent specialization, (B)
competitive bidding via bidders’ price-signal utilization, or (C) principal-weighted selection
via quality-signal utilization—while holding rules, datasets, random seeds, time base,
and the agent pool fixed, and report the observed paired differences in routing, pricing,
participation, and concentration. In doing so, the dissertation extends emerging Al-agent
economics work into blockchain-based SWE-Agent outsourcing markets and contributes a
reusable, evaluation-ready SDK and artifact set for reproducible studies of decentralized

SWE-Agent economic networks.
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CHAPTER

Conclusion and Future Work

AT agents’ strategic interactions in economic settings—a key line of inquiry in Al-agent
economics—have attracted increasing attention amid recent advances in generative Al.
This dissertation focuses on blockchain-based SWE-Agent outsourcing markets, which link
intelligent software engineering and software-engineering economics through programmable,
transparent, and auditable mechanisms that centralized platforms rarely expose. Within
this setting, the central question is whether a blockchain-native SDK for economic network
simulations can support controlled, paired baseline-intervention experiments under fixed
conditions in decentralized SWE-Agent outsourcing markets.

The work is organized around SWEChain-SDK, a blockchain-native software develop-
ment kit that provides a local sandbox chain for SWE-Agent outsourcing auctions and
event-complete logging of bids, allocations, payments, and artifacts. On top of this chain,
the dissertation designs and runs paired simulation experiments that vary exactly one
policy dimension at a time while holding rules, datasets, random seeds, time base, and
the agent pool constant. This chapter revisits the main contributions, summarizes the
empirical findings together with their limitations, and outlines directions for future work
grounded in the configurability and extensibility of SWEChain-SDK.

6.1 Summary and Contributions

The first contribution is a conceptual and terminological framing of SWE-Agent Eco-
nomics. SWE-Agent Economics, as defined in Chapter 2, studies Software-Engineering
Agents (SWE-Agents) as economic decision-makers in auction-based task markets imple-
mented on blockchain-style infrastructures. In this framing, SWE-Agents are software-
engineering agents that participate in outsourcing markets whose admission, matching,
pricing, information, and settlement rules are explicit and programmable. By treating these
markets as economic networks, the dissertation links recent work on Al-agent economics
to software engineering and software-engineering economics, and positions SWE-Agent

markets as a concrete setting in which strategic interactions between autonomous software
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systems can be studied empirically.

The second contribution is the design and implementation of SWEChain-SDK as a
blockchain-native experimental platform. The SDK is implemented as an application-
specific chain that encodes reverse procurement auctions with pay-as-bid pricing, fixed
step cadence, deterministic tie-breaking, and explicit, versioned parameters for reserves,
eligibility thresholds, penalties, and information visibility. This design provides a controlled
environment in which SWE-Agents can bid for tasks, receive allocations, and settle
payments under transparent rules. Event-complete logging of bids, allocations, payments,
and artifacts, together with configuration manifests and shared seeds, supports scripted,
seed-matched reruns and re-analysis under comparable conditions and enables external

inspection, visualization, and verification.

The third contribution is an evaluation-ready artifact package and a set of illustrative
simulation experiments built on top of this platform. The primary artifact bundle is released
as an open-source repository at <https://github.com/lascam-UFU /swechain-sdk>, which
hosts the SDK code, configuration files, seeds, logs, and scripts for figure generation
and analysis. These materials enable scripted reruns and extensions of the experiments
under comparable conditions. Using this bundle, the dissertation conducts three paired
experiments in decentralized SWE-Agent outsourcing markets. Experiment A varies
comparative advantage via agent specialization, Experiment B varies bidders’ price-
signal utilization, and Experiment C varies principal-weighted selection via quality-signal
utilization. Across all three, the methodology emphasizes matched baseline-intervention
comparisons under fixed conditions rather than one-off performance claims or mechanism
optimization.

Taken together, these contributions answer the dissertation’s research questions. The
primary question asked whether a blockchain-native SDK for economic network simulations
can support controlled, paired baseline-intervention experiments under fixed conditions
in decentralized SWE-Agent outsourcing markets. The architecture in Chapter 3, the
simulation workflow in Chapter 4, and the accompanying appendices show that SWEChain-
SDK can host seed-matched baseline and intervention runs with fixed tasks, agent pools,
timing, and auction parameters, and can record event-complete logs and manifests that
support scripted reruns and re-analysis; within the scope of the workloads and infrastructure

considered here, this provides an affirmative answer to that question.

A second line of inquiry asked how bidder-side policy levers relate to task completion,
outsourcing cost, and revenue concentration. Simulation A shows that introducing private
specialization tags and mild in-niche cost discounts is associated with slightly higher
coverage and much higher winner diversity, while leaving mean cost per completed task
similar and concentrating realized revenue in the relatively small set of agents that
successfully operate in their niches. Simulation B shows that making the standing best

admissible bid salient in bidder prompts reduces completion and participation on some
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tasks but improves prices on the auctions that do clear and narrows the best—second price
gap, consistent with tighter competition where bidding occurs. A third question asked how
principal-side policies that combine price and predicted quality behave relative to a price-
only winner rule. Simulation C demonstrates that replacing a pure price rule with a fixed,
documented price—quality scoring rule can be implemented within SWEChain-SDK and,
for the chosen configuration, is associated with changes in cost-to-completion and first-pass
success and with shifts in revenue concentration, while keeping participation within a
similar range. Within the limits of the single seed-matched trial pair per experiment, these
results collectively illustrate how SWEChain-SDK can be used to encode, execute, and
examine bidder-side and principal-side policies and to study their effects on completion,

cost, and concentration in decentralized SWE-Agent outsourcing markets.

6.2 Findings and Limitations

The simulation experiments evaluate whether a blockchain-native Software Devel-
opment Kit (SDK) for economic network simulations can support controlled, paired
baseline—intervention experiments under fixed conditions in decentralized SWE-Agent
outsourcing markets, as stated in the abstract. Across all three experiments, SWEChain-
SDK provides a local sandbox chain, seed-matched runs, and a common trial-card and
paired-comparison pipeline that report differences in task completion, outsourcing cost,
and revenue concentration.

Experiment A shows that SWEChain-SDK can encode a simple agent-side specialization
policy and reveal its effects through the standard metrics. Specialization tags, prompt
nudges, and small in-niche and out-of-niche cost multipliers are introduced by configuration
and prompts only, while the auction code and workload are held fixed. For the seeded
workload studied here, the paired trial cards and summary figures show that this change
is associated with different assignment rates, winner—task alignment, and winner diversity.

Experiment B shows that bidder-facing price-signal policies can be expressed and exam-
ined without modifying the on-chain mechanism. The only difference between baseline and
intervention is how the current best admissible bid is surfaced and emphasized in bidding
prompts. Under fixed tasks, agents, seeds, and auction parameters, SWEChain-SDK
records paired differences in completion, competition, pricing, and revenue concentration
that are at least consistent with this prompt-level treatment of price signals mattering.

Experiment C shows that principal-side winner-selection policies can also be imple-
mented and compared under fixed conditions. A price-only rule and a fixed price—quality
scoring rule are both realized as principal controllers that consume the same structured
bids. Using the same trial-card and comparison tooling, the SDK reports how cost-to-
completion, first-pass success, participation, and revenue concentration differ between

these two configurations for the chosen workload.
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Across all experiments, baseline and intervention runs share the same chain configura-
tion, tasks, agents, and seeds; only the policy under study changes. The released logs and
manifest files are intended to let others recompute the reported metrics and run additional
comparisons under comparable conditions.

These findings come with clear limitations. The experiments are run at modest
scale with synthetic workloads and a simplified task taxonomy; the SWE-Agents follow
finite-state controllers with fixed prompts and simple bidding strategies; and mechanism
coverage is restricted to pay-as-bid reverse auctions with simple reserves and penalties.
The evaluation emphasizes efficiency, participation, and revenue concentration, and does
not model human developers, clients, or governance processes. Within these constraints,
the experiments should be read as an evaluation of what SWEChain-SDK can express and
measure under controlled, paired conditions, rather than as direct estimates of behavior in

deployed SWE-Agent marketplaces.

6.3 Future Work

The configurability and extensibility of SWEChain-SDK open several directions for
future work that deepen both the agent side and the mechanism side of SWE-Agent
Economics.

One direction is to move from fixed policies to learning and adaptive SWE-Agents.
Because the chain exposes clear economic signals—such as allocations, payments, and
penalties—it is natural to integrate reinforcement learning or bandit-style adaptation,
allowing agents to tune their bidding, participation, and task-selection strategies over
time. This would make it possible to study questions about convergence, stability, and
robustness when many learning agents interact in the same market, and to examine how
different mechanisms shape or constrain emergent strategies.

A second direction is to broaden the family of mechanisms implemented in the SDK
while retaining the matched-trial methodology. Uniform-price auctions, VCG-like mecha-
nisms, combinatorial or package auctions, and richer reputation and history-dependent
eligibility policies can all be encoded as variations in modules and configuration. With
these in place, SWEChain-SDK could support systematic comparisons of efficiency, revenue,
and distributional properties across a wider design space, as well as robustness studies
under collusion, sybil attacks, or adversarial bidding behavior.

A third direction is to extend the system-level architecture beyond a single chain. By
connecting SWEChain-SDK to other application-specific chains through inter-blockchain
communication, future work could explore cross-chain outsourcing, settlement, and security,
and could vary latency, finality, and fee regimes across chains. Embedding the SDK into
larger experimental pipelines—with schedulers, logging services, and orchestrators for large

batches of trials—would push the platform toward a full-scale laboratory for Al-agent



6.3. Future Work 105

economics in software engineering.

A fourth direction is to add explicit human-in-the-loop components and real repositories.
A dedicated human-facing layer on top of SWEChain-SDK is being prototyped in the
swechain-human repository at <https://github.com/lascam-UFU /swechain-human>,
with the goal of allowing users to submit tasks, review artifacts, approve or reject outcomes,
and override or re-allocate work while decisions remain logged on-chain. Another natural
step is to bind auctions to actual issues, branches, and continuous-integration pipelines,
so that some tasks correspond to real changes in real codebases. This would support

evaluation of mixed human—agent workflows and oversight policies that combine automated

markets with human judgment.

Welcome, moresearch
SWECHAIN
1000000

- ' Software Engineering Economics 01:33 AM
SWECHAIN

Software Engineering Economics is a crucial aspect of
software development that focuses on balancing costs,
benefits, and risks over time. Here are the key components
and considerations

SWEChain is o local blockchain for SWE-Agents economic exper i 1. Time Value of Money (TVM):

- Discounting future cash flows

- Calculating present value of investments

Considering project duration and ROI timeline
Sign in with GitHub
2. Risk Management:

Identifying potential risks early
Developing mitigation strategies

SEL Z Universidade - Assessing probability and impact of different scenarios
Uj Federal de

Uberlandia

s

SEL Universidade
- Uj Federal de
----- Uberlandia

Figure 23 — Illustrative view of human participation alongside SWE-Agents in future

SWEChain-SDK deployments.

A fifth direction concerns evaluation methodology and governance. Future work can
enrich welfare and fairness metrics to better reflect the objectives of clients, developers,
and platform operators; examine long-run dynamics such as entry, exit, specialization, and
concentration under different policy regimes; and prototype governance processes—on-
chain or off-chain—for updating parameters and modules in SWEChain-SDK. These steps
would connect the technical design of SWE-Agent marketplaces to institutional questions
about accountability, alignment, and control.

A sixth, more open-ended direction is to turn SWEChain-SDK into the core of an
ongoing tournament-style testchain, in the spirit of Axelrod’s iterated-prisoner’s-dilemma
tournaments. In such a setting, researchers could bring their own agents and task
distributions, deploy them under shared rules and schedules, and observe how strategies
and mechanisms perform over long horizons. A persistent testchain of this kind would

act as a living benchmark suite for SWE-Agent Economics, enabling comparative studies
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of agent designs, prompting strategies, and mechanisms across many contributors, and
providing a common reference point for reproducible experiments that extend beyond a
single dissertation. All of these extensions deepen the same SWE-Agent Economics agenda
defined in Chapter 2, by exploring how different mechanisms and agent behaviors shape
task completion, outsourcing cost, and revenue concentration in decentralized SWE-Agent
markets.

Taken together, the dissertation treats decentralized SWE-Agent outsourcing markets as
a concrete setting for Al-agent economics in software engineering and provides evidence that
a blockchain-native SDK can support controlled, paired baseline-intervention experiments
under fixed conditions. It presents SWEChain-SDK, a configurable, extensible blockchain-
native SDK that provides a local sandbox chain for SWE-Agent software outsourcing
auctions and event-complete logging of bids, allocations, payments, and artifacts, together
with configuration metadata sufficient for re-runnable paired runs under comparable
conditions, and makes these artifacts publicly available at <https://github.com/lascam-
UFU /swechain-sdk>. It conducts paired simulation experiments that vary one policy
dimension at a time—comparative advantage via agent specialization, competitive bidding
via bidders’ price-signal utilization, and principal-weighted selection via quality-signal
utilization—while holding rules, datasets, random seeds, time base, and the agent pool
fixed, and reports the resulting paired differences in efficiency (task completion and
outsourcing cost), network structure, and inequality (revenue concentration) in SWE-
Agent outsourcing markets. The hope is that this combination of conceptual framing,
experimental platform, and initial evidence can serve as a foundation for broader work at
the intersection of intelligent software engineering, software-engineering economics, and

Al-agent economics.
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APPENDIX

Simulation Experiment A

A.1 Overview

This appendix documents all technical steps required to reproduce Simulation A,
including data generation, chain initialization, agent execution, economic and network
metric extraction, and Simulation A-specific specialization analysis. All commands and
artifacts correspond to the public repository.

Simulation A varies one policy dimension: whether SWE-Agents behave as generalists
or as specialists with private tag sets and small in-niche/out-of-niche cost multipliers. The
baseline configuration treats all agents as generalists; the intervention configuration enables
specialization in the trial data. All other elements, including dataset, agent pool, random
seeds, auction rules, and execution timing, are held fixed. Thus, observed differences
reflect the marginal effect of comparative advantage via specialization under otherwise
identical conditions.

Simulation A uses two layers of results:

1. an experiment-independent layer of economic and network metrics, extracted by
the tool trial_card (completion, cost, inequality, and participation structure) from

each run’s on-chain auctions and bids; and

2. a Simulation A-specific specialization visualization, extracted by the tool simA_results

from the canonical trial_card. json files for baseline and intervention.

The dependency is one-way: trial_card in compute mode talks to the local swechaind
node and writes canonical, simulation-agnostic trial_card. json files that contain both
aggregate metrics and auction- and bid-level microdata. simA_results is a pure offline
tool that reads these JSON files to produce the Simulation A specialization figure. The
compare mode of trial_card also reads the same trial_card. json files to produce a
paired economic trial card. Neither compare mode nor simA_results accesses the chain.

In the specialization figure for Simulation A, the focus is on how enabling specialist

tags changes who wins which tasks and how often auctions clear.
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A.2 Data Engineering

Simulation A uses a deterministic dataset snapshot data/problems. json. Paired trial

files are generated using:

./bin/sdge --paired \
-problems-file ./data/problems.json \
-trials 1 -problems 200 -agents 20 -seed 1111 \
-specialist -spec-tags 2 \
-output-dir ./simA/data

This emits, with identical task order and agent pool:
J simA/data/baseline/trial_001.json
(J simA/data/intervention/trial_001. json

The baseline and intervention files share the same sampled tasks and sequence; the
specialization intervention is encoded in the trial metadata (private tag sets and cost
multipliers), not by changing the agent finite-state machine.

Each condition also has a manifest listing trial files and hashes. These manifests

support checking that the paired datasets match and that no files changed between runs.

A.3 Host Execution Environment
Simulation A was executed on:
[ Debian GNU/Linux 12 (x86_64)
1 AMD Ryzen 7 5800H, 27 GiB RAM
0 Go 1.24.7, Git 2.39.5
1 Ollama 0.12.9 running model gpt-oss:120b-cloud

Language model sampling configuration (temperature, top-p, maximum tokens) is
pinned in the agent specification file and reused for both conditions. Any reproduction
should use the same model identifier and similar hardware, or at least document the

differences.
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A.4 Blockchain Configuration

Simulation A uses a dedicated SWEChain instance with fixed:

[ genesis file and chain identifier;

[ account balances and initial token distribution;

[ software outsourcing auction parameters (duration, grace periods, tick size);
[ consensus and gas settings.

The experiment requires that baseline and intervention runs use identical chain pa-
rameters. This is enforced by exporting and comparing parameter snapshots before each

run.

A.5 Agent Configuration

Simulation A uses a single agent specification:
(d simA/config/agent. json

The same agent configuration is used for both baseline and intervention. The difference
between conditions comes from the data: in the intervention trial file, agents receive
private specialization tags and cost multipliers in their local state and prompts; in the
baseline trial file, they behave as generalists. Finite-state machine, retry policies, memory
filters, and language model settings are identical across arms.

The finite-state machine makes the agent behavior explicit and ensures that any
differences in outcomes can be traced to the presence or absence of specialization in the

data rather than unrelated control-flow changes.

A.6 Reproducibility Protocol

This section enumerates the steps needed to regenerate all Simulation A artifacts,
including runs, economic and network metrics, the paired economic trial card, and the

Simulation A-specific specialization figure. All paths are relative to the repository root.

Phase 1 — Build Binaries
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go build -o bin/sdge ./src/sdge.go

go build -o bin/trial ./src/trial.go

go build -o bin/swechain_agent ./src/swechain_agent.go
go build -o bin/trial_card ./src/trial_card.go

go build -o bin/simA_results ./simA/src/simA_results.go

This produces the deterministic data generator (sdge), the trial orchestrator (trial),
the agent binary (swechain_agent), the canonical metrics tool (trial_card), and the

Simulation A-specific specialization tool (simA_results).

Phase 2 — Generate Paired Trials

./bin/sdge --paired \
-problems-file ./data/problems.json \
-trials 1 -problems 200 -agents 20 -seed 1111 \
-specialist -spec-tags 2 \
-output-dir ./simA/data

This produces:
J simA/data/baseline/trial_001.json
(J simA/data/intervention/trial_001.json

plus manifests that record which trial files belong to each condition. The baseline and

intervention trial files share task order and agent lists by construction.

Phase 3 — Initialize SWEChain for Baseline

./start_swechain.sh 20
swechaind query auction params -o json \

> simA/baseline_params. json

The start_swechain.sh script starts a local SWEChain node with 20 validators and
a fixed configuration. The exported parameters in simA/baseline_params. json are used

later to confirm that the intervention run uses the same mechanism.
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Phase 4 — Run the Baseline Trial

./bin/trial -minutes 20 \
-agent-bin ./bin/swechain_agent \
-spec ./simA/config/agent.json \
-trial ./simA/trials/baseline \
-dbdir ./simA/trials/baseline db \
./simA/data/baseline/trial_001. json

This runs the baseline configuration (generalists) for 20 minutes of wall-clock time,
producing per-agent databases and journals under simA/trials/baseline_db/ and all

on-chain auction and bid events for the baseline condition.

Phase 5 — Baseline Economic and Network Metrics (trial_card
Compute Mode)

While the baseline chain state is still present, compute the canonical economic and

network metrics and microdata:

./bin/trial card \
--bin swechaind \
--node tcp://localhost:26657 \
--home "${HOME}/.swechain" \
—--outdir ./simA/artifact/baseline \

—-—output text

This writes:

(d simA/artifact/baseline/trial_card. json
1 simA/artifact/baseline/trial_card.svg
d simA/artifact/baseline/trial card.pdf

The single-run baseline card is copied as figs/simA_baseline_trial card.pdf for
use in the dissertation figures. The JSON file trial_card. json provides the canonical

baseline metrics and microdata for all downstream paired analyses.
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Phase 6 — Reset Chain for Intervention

Before running the intervention condition, restart the chain and verify that the mecha-

nism parameters match the baseline:

./start_swechain.sh 20

swechaind query auction params -o json \
> simA/intervention_params. json

diff -u simA/baseline_params. json \

simA/intervention_params. json

The diff command should report no differences. Any discrepancy indicates a configu-

ration drift that must be fixed before proceeding.

Phase 7 — Run the Intervention Trial

./bin/trial -minutes 20 \
-agent-bin ./bin/swechain_agent \
-spec ./simA/config/agent.json \
-trial ./simA/trials/intervention \
-dbdir ./simA/trials/intervention_db \

./simA/data/intervention/trial 001.json

This uses the same dataset, agents, random seeds, and timing as the baseline run, but
with specialization enabled in simA/data/intervention/trial_001.json (private tag
sets and cost multipliers). The resulting on-chain history is the intervention counterpart

of the baseline history.

Phase 8 — Intervention Economic and Network Metrics (trial_card
Compute Mode)

While the intervention chain state is still present, compute the canonical metrics and

microdata:
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./bin/trial card \
--bin swechaind \
--node tcp://localhost:26657 \
--home "${HOME}/.swechain" \
—--outdir ./simA/artifact/intervention \

—-—output text

This writes:

(d simA/artifact/intervention/trial _card. json
(d simA/artifact/intervention/trial_card.svg
(d simA/artifact/intervention/trial_ card.pdf

The single-run intervention card is copied as figs/simA_intervention_trial card.pdf
for use in the dissertation figures. At this point, both conditions have their own

trial_card. json files, generated under identical chain parameters.

Phase 9 — Paired Economic Comparison (trial_card Compare
Mode)

With both trial_card. json files in place, the paired baseline-intervention economic

trial card is generated offline, without accessing the chain:

./bin/trial_card --compare \
--baseline ./simA/artifact/baseline/trial card.json \
--intervention ./simA/artifact/intervention/trial_card.json \
--outdir ./simA/artifact/compare \
--label "Simulation A - Agent specialization" \

—-—output text

This writes:

1 simA/artifact/compare/trial_pair.json
1 simA/artifact/compare/trial_pair.svg
1 simA/artifact/compare/trial_pair.pdf

The paired economic trial card is copied as figs/simA_trial_pair.pdf for use in the

dissertation figures.
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Phase 10 — Specialization Visualization (simA_results)

Finally, the Simulation A-specific specialization figure is generated offline from the same
canonical metrics files. The simA_results program reads the baseline and intervention
trial_card. json files under simA/artifact/ and emits an SVG that is converted to

PDF via rsvg-convert:

./bin/simA results \
—artifact-dir ./simA/artifact \
-out-pdf ./simA/artifact/compare/simA_results.pdf

This writes:
1 simA/artifact/compare/simA_results.svg
1 simA/artifact/compare/simA_results.pdf

The PDF is copied as figs/simA_results.pdf for use in the dissertation figures.
Because simA_results operates purely on the trial_card. json microdata, this phase

does not depend on any particular chain height being kept alive.

A.7 Limits, Assumptions, and Validation

Simulation A enforces that the only policy change between conditions is the presence
of private specialization tags and cost multipliers in the trial data. All other parameters,
including dataset, seeds, agent pool, prompts, auction rules, timing, and chain parameters,
are held fixed.

Language model stochasticity means individual token sequences may differ across
reruns, even with the same seeds and configuration. However, the recorded configuration
and protocol are strong enough to reproduce the experimental setup and to check whether
the qualitative and quantitative patterns in task completion, assortativity, outsourcing
cost, and revenue concentration persist.

Validation consists of:

1. checking that baseline and intervention trial files share identical task order and agent

lists, and that the manifests show the expected pairing;

2. verifying that simA/baseline _params. jsonand simA/intervention_params. json
are identical, confirming that the blockchain mechanism did not change across

conditions;
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3. recomputing economic and network metrics via trial_card for both conditions and
confirming that the regenerated single-run cards match the reported values up to

ordinary numeric and rendering tolerances;

4. recomputing the paired economic trial card via trial_card in compare mode and the
specialization figure via simA_results from the stored trial_card. json files, and
confirming that the observed patterns in completion, cost, and revenue concentration

are consistent with those in the dissertation figures;

5. for the specialization figure specifically, checking that the counts in any summary box
(numbers of auctions, auctions with bids, bidders, and paired problems) match those
implied by the underlying trial_card. json microdata, and that any tag-—winner

patterns agree with the recorded allocations and revenues.

Under this protocol, a reader with access to the public repository, the same model
identifier, and a similar machine can rerun Simulation A, regenerate both the economic
trial cards and the Simulation A specialization figure from the canonical JSON artifacts,
and verify the main economic and network findings associated with enabling SWE-Agent

specialization.
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APPENDIX B

Simulation Experiment B

B.1 Overview

This appendix documents all technical steps required to reproduce Simulation B,
including data generation, chain initialization, agent execution, economic and network
metric extraction, and Simulation B-specific bid-landscape analysis. All commands and
artifacts correspond to the public repository.

Simulation B varies one policy dimension: whether bidding prompts explicitly expose
and emphasize on-chain price signals. The baseline configuration keeps the current
best admissible bid in the input schema but does not highlight it in the prompts; the
intervention configuration adds a dedicated price-signal block and instructs bidders to use
it. All other elements, including dataset, agent pool, random seeds, auction rules, and
execution timing, are held fixed. Thus, observed differences reflect the marginal effect of
price-signal utilization under otherwise identical conditions.

Simulation B uses two layers of results:

1. an experiment-independent layer of economic and network metrics, extracted by
the tool trial_card (completion, cost, inequality, and participation structure) from

each run’s on-chain auctions and bids; and

2. a Simulation B-specific paired bid-landscape visualization, extracted by the tool
simB_results from the canonical trial_card. json files for baseline and interven-

tion.

The dependency is one-way: trial card in compute mode talks to the local swechaind
node and writes canonical, simulation-agnostic trial_card. json files that contain both
aggregate metrics and bid-level microdata. simB_results is a pure offline tool that reads
these JSON files to produce the Simulation B bid-landscape figure. The compare mode
of trial_card also reads the same trial card. json files to produce a paired economic

trial card. Neither compare mode nor simB_results accesses the chain.
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In the bid-landscape figure for Simulation B, horizontal position always represents bid
or winning price, measured in SWEChain tokens per task. The vertical axis is categorical:
separate horizontal bands are used to distinguish baseline and intervention, and non-
winning bids are given small vertical jitter within their band purely for visibility. There is
no second quantitative axis beyond price, which avoids over-interpreting vertical placement

inside each band.

B.2 Data Engineering

Simulation B uses a deterministic dataset snapshot data/problems. json. Paired trial

files are generated using:

./bin/sdge --paired \
-problems-file ./data/problems.json \
-trials 1 -problems 200 -agents 20 -seed 1111 \
-output-dir ./simB/data

This emits:
(d simB/data/baseline/trial_001.json
1 simB/data/intervention/trial 001.json

with identical task order and agent pool but separate configuration metadata. The file-
level metadata makes the condition labels explicit and supports checking that the paired

datasets match.

B.3 Host Execution Environment

Simulation B was executed on:

1 Debian GNU/Linux 12 (x86_ 64)

1 AMD Ryzen 7 5800H, 27 GiB RAM

O Go 1.24.7, Git 2.39.5

1 Ollama 0.12.9 running model gpt-oss:120b-cloud

Language model sampling configuration (temperature, top-p, maximum tokens) is
pinned in the agent specification files and used for both conditions. Any reproduction
should use the same model identifier and similar hardware, or at least document the

differences.
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B.4 Blockchain Configuration
Simulation B uses a dedicated SWEChain instance with fixed:
[ genesis file and chain identifier;
[ account balances and initial token distribution;
O software outsourcing auction parameters (duration, grace periods, tick size);
1 consensus and gas settings.

The experiment requires that baseline and intervention runs use identical chain pa-
rameters. This is enforced by exporting and comparing parameter snapshots before each

rumn.

B.5 Agent Configuration

Two agent specifications are used:
1 simB/config/agent B baseline.json
(J simB/config/agent_B_intervention. json

They differ only in the presence of an explicit price-signal block in the bidding prompts.
Both share the same finite-state machine, retry policies, memory filters, and language
model settings.

The finite-state machines make the agent behavior explicit and ensure that any differ-
ences in outcomes can be traced to the presence or absence of price-signal information

rather than unrelated control-flow changes.

B.6 Reproducibility Protocol

This section enumerates the steps needed to regenerate all Simulation B artifacts,
including runs, economic and network metrics, the paired economic trial card, and the

Simulation B-specific bid-landscape figure. All paths are relative to the repository root.

Phase 1 — Build Binaries
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go build -o bin/sdge ./src/sdge.go

go build -o bin/trial ./src/trial.go

go build -o bin/swechain_agent ./src/swechain_agent.go
go build -o bin/trial_card ./src/trial_card.go

go build -o bin/simB_results ./simB/src/simB_results.go

This produces the deterministic data generator (sdge), the trial orchestrator (trial),
the agent binary (swechain_agent), the canonical metrics tool (trial_card), and the

Simulation B-specific bid-landscape tool (simB_results).

Phase 2 — Generate Paired Trials

./bin/sdge --paired \
-problems-file ./data/problems.json \
-trials 1 -problems 200 -agents 20 -seed 1111 \
-output-dir ./simB/data

This produces:
(J simB/data/baseline/trial_001.json
(J simB/data/intervention/trial_001.json

plus manifests that record which trial files belong to each condition. The baseline and

intervention trial files share task order and agent lists by construction.

Phase 3 — Initialize SWEChain for Baseline

./start_swechain.sh 20
swechaind query auction params -o json \

> simB/baseline_params. json

The start_swechain.sh script starts a local SWEChain node with 20 validators and
a fixed configuration. The exported parameters in simB/baseline_params. json are used

later to confirm that the intervention run uses the same mechanism.
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Phase 4 — Run the Baseline Trial

./bin/trial -minutes 20 \
-agent-bin ./bin/swechain_agent \
-spec ./simB/config/agent B_baseline.json \
-trial ./simB/trials/baseline \
-dbdir ./simB/trials/baseline db \
./simB/data/baseline/trial_001. json

This runs the baseline configuration for 20 minutes of wall-clock time, producing
per-agent databases and journals under simB/trials/baseline_db/ and all on-chain

auction and bid events for the baseline condition.

Phase 5 — Baseline Economic and Network Metrics (trial_card
Compute Mode)

While the baseline chain state is still present, compute the canonical economic and

network metrics and microdata:

./bin/trial card \
--bin swechaind \
--node tcp://localhost:26657 \
--home "${HOME}/.swechain" \
—--outdir ./simB/artifact/baseline \

—-—output text

This writes:

(d simB/artifact/baseline/trial_card. json
(d simB/artifact/baseline/trial_card.svg
d simB/artifact/baseline/trial card.pdf

The single-run baseline card is copied as figs/simB_baseline_trial card.pdf for
use in the dissertation figures. The JSON file trial_card. json provides the canonical

baseline metrics and bid-level microdata for all downstream paired analyses.
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Phase 6 — Reset Chain for Intervention

Before running the intervention condition, restart the chain and verify that the mecha-

nism parameters match the baseline:

./start_swechain.sh 20

swechaind query auction params -o json \
> simB/intervention_params.json

diff -u simB/baseline_params. json \

simB/intervention_params. json

The diff command should report no differences. Any discrepancy indicates a configu-

ration drift that must be fixed before proceeding.

Phase 7 — Run the Intervention Trial

./bin/trial -minutes 20 \
-agent-bin ./bin/swechain_agent \
-spec ./simB/config/agent B_intervention. json \
-trial ./simB/trials/intervention \
-dbdir ./simB/trials/intervention db \
./simB/data/intervention/trial 001.json

This uses the same dataset, agents, random seeds, and timing as the baseline run,
but with the price-signal prompt block enabled in agent B_intervention.json. The

resulting on-chain history is the intervention counterpart of the baseline history.

Phase 8 — Intervention Economic and Network Metrics (trial_card
Compute Mode)

While the intervention chain state is still present, compute the canonical metrics and

microdata:
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./bin/trial card \
--bin swechaind \
--node tcp://localhost:26657 \
--home "${HOME}/.swechain" \
—--outdir ./simB/artifact/intervention \

—-—output text

This writes:

(d simB/artifact/intervention/trial _card. json
(d simB/artifact/intervention/trial_card.svg

(d simB/artifact/intervention/trial_ card.pdf

The single-run intervention card is copied as figs/simB_intervention_trial card.pdf.
At this point, both conditions have their own trial_card. json files, generated under

identical chain parameters.

Phase 9 — Paired Economic Comparison (trial_card Compare
Mode)

With both trial_card. json files in place, the paired baseline-intervention economic

trial card is generated offline, without accessing the chain:

./bin/trial_card --compare \
--baseline ./simB/artifact/baseline/trial card.json \
--intervention ./simB/artifact/intervention/trial_card.json \
--outdir ./simB/artifact/compare \
--label "Simulation B - Price-signal utilization" \

—-—output text

This writes:

1 simB/artifact/compare/trial_pair. json
1 simB/artifact/compare/trial_pair.svg

1 simB/artifact/compare/trial_pair.pdf

The paired economic trial card is copied as figs/simB_trial_pair.pdf for use in the

dissertation figures.
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Phase 10 — Paired Bid-Landscape Comparison (simB_results)

Finally, the Simulation B-specific paired bid-landscape figure is generated offline from
the same canonical metrics files. The simB_results program reads the baseline and
intervention trial_card. json files under simB/artifact/ and emits an SVG that is

converted to PDF via rsvg-convert:

./bin/simB_results \
-—artifact-dir ./simB/artifact \
—-out-pdf ./simB/artifact/compare/simB_results.pdf

This writes:
1 simB/artifact/compare/simB_results.svg
1 simB/artifact/compare/simB_results.pdf

The PDF is copied as figs/simB_results.pdf for use in the dissertation figures.
Because simB_results operates purely on the trial_card.json microdata, this phase
does not depend on any particular chain height being kept alive. In the resulting figure,
the horizontal axis represents bid or winning price in SWEChain tokens per task; the two
bands distinguish baseline and intervention; and within each band non-winning bids are

jittered vertically for visibility while winning bids lie on a fixed horizontal line.

B.7 Limits, Assumptions, and Validation

Simulation B enforces that the only policy change between conditions is the presence
of price signals in the bidding prompts. All other parameters, including dataset, seeds,
agent pool, prompts (apart from the price-signal block), auction rules, timing, and chain
parameters, are held fixed.

Language model stochasticity means individual token sequences may differ across
reruns, even with the same seeds and configuration. However, the recorded configuration
and protocol are strong enough to reproduce the experimental setup and to check whether
the qualitative and quantitative patterns in task completion, outsourcing cost, competition,
and revenue concentration persist.

Validation consists of:

1. checking that baseline and intervention trial files share identical task order and agent

lists, and that the manifests show the expected pairing;
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2. verifying that simB/baseline_params. json and simB/intervention_params.json
are identical, confirming that the blockchain mechanism did not change across

conditions;

3. recomputing economic and network metrics via trial_card for both conditions and
confirming that the regenerated single-run cards match the reported values up to

ordinary numeric and rendering tolerances;

4. recomputing the paired economic trial card via trial_card in compare mode and the
bid-landscape figure via simB_results from the stored trial_card. json files, and
confirming that the observed patterns in winning prices, bid dispersion, competition,

and revenue concentration are consistent with those in the dissertation figures;

5. for the bid-landscape figure specifically, checking that the counts in the summary box
(numbers of auctions, auctions with bids, bids, and paired problems) match those
implied by the underlying trial_card.json microdata, and that all winning-bid
markers and mean-price reference lines agree with the recorded winning prices and

mean cost per completed task.

Under this protocol, a reader with access to the public repository, the same model
identifier, and a similar machine can rerun Simulation B, regenerate both the economic trial
cards and the Simulation B bid landscape from the canonical JSON artifacts, and verify
the main economic and network findings associated with enabling bidders’ price-signal

utilization.
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APPENDIX C

Simulation Experiment C

C.1 Overview

This appendix documents all technical steps required to reproduce Simulation C,
including data generation, chain initialization, agent execution, economic and network
metric extraction, and Simulation C-specific price—quality analysis. All commands and
artifacts correspond to the public repository.

Simulation C varies one policy dimension: how the principal closes software outsourcing
auctions once bids have been placed. The baseline configuration uses a price-only rule
that selects the lowest admissible bid subject to reserve and eligibility conditions. The
intervention configuration replaces this with a transparent price—quality rule in which
quality is proxied by the match between a bidder’s specialization tags and the problem’s
tags. Both configurations encourage bidders to surface their specialization explicitly in
their prompts so that it can be used as a quality signal. All other elements, including
dataset, agent pool, random seeds, auction rules, and execution timing, are held fixed.
Thus, observed differences reflect the marginal effect of principal-weighted quality-signal
utilization under otherwise identical conditions.

Simulation C uses two layers of results:

1. an experiment-independent layer of economic and network metrics, extracted by
the tool trial_card (completion, cost, inequality, and participation structure) from

each run’s on-chain auctions and bids; and

2. a Simulation C-specific price—quality comparison, extracted by the tool simC_results
from the canonical trial_card. json files and trial databases for baseline and inter-

vention.

As in Simulation B, the dependency is one-way. In compute mode, trial card talks
to the local swechaind node and writes canonical, simulation-agnostic trial_card. json

files that contain aggregate metrics and microdata. The compare mode of trial card
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and the simC_results tool are pure offline consumers of these JSON artifacts and the

per-agent trial databases; neither accesses the chain.

C.2 Data Engineering

Simulation C uses a deterministic dataset snapshot data/problems. json and a single
synthetic trial that is reused for both baseline and intervention. The trial is generated
once with specialized agents so that both arms share the same problems, order, and
specialization tags.

Synthetic data are produced with the sdge tool. Assuming the binary has been built as
bin/sdge and the problem cache is available at . /data/problems. json, the Simulation C

trial is generated via:

./bin/sdge \
-problems-file ./data/problems.json \
-trials 1 -problems 200 -agents 20 \
-seed 1111 \
-specialist -spec-tags 2 \
-output-dir ./simC/data

This emits:
J simC/data/trial_001.json
(d simC/data/manifest.json

where trial_001. json encodes 200 problems, 20 agents, per-agent specialization tags,
cost profiles, and a fixed problem order. The manifest records file hashes and basic
metadata.

To ensure that baseline and intervention runs are perfectly paired, this single trial is

duplicated into separate baseline and intervention directories:

mkdir -p ./simC/data/baseline ./simC/data/intervention

cp ./simC/data/trial_001.json ./simC/data/baseline/
cp ./simC/data/trial_001.json ./simC/data/intervention/

cp ./simC/data/manifest.json ./simC/data/baseline/

cp ./simC/data/manifest.json ./simC/data/intervention/
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After these steps, both:
(1 simC/data/baseline/trial_001. json and
J simC/data/intervention/trial_001. json

refer to the same synthetic trial, with identical problems, ordering, agent pool, and
specialization tags. Comparative advantage is therefore present in both arms; the only

intended difference is the principal’s winner-selection policy.

C.3 Host Execution Environment

Simulation C was executed on the same local workstation used for Simulation B:
[ Debian GNU/Linux 12 (x86_64)

1 AMD Ryzen 7 5800H, 27 GiB RAM

O Go 1.24.7, Git 2.39.5

1 Ollama 0.12.9 running model gpt-oss:120b-cloud

Language model sampling configuration (temperature, top-p, maximum tokens) is
pinned in the agent specification files and used for both conditions. Any reproduction

should use the same model identifier and similar hardware, or at least document deviations.

C.4 Blockchain Configuration

Simulation C uses a dedicated SWEChain instance with fixed:

1 genesis file and chain identifier;

[ account balances and initial token distribution;

0 software outsourcing auction parameters (duration, grace periods, tick size);
1 consensus and gas settings.

As in Simulation B, the experiment requires that baseline and intervention runs use
identical chain parameters, apart from the winner-selection rule encoded in the auction
module. In the baseline configuration, winners are chosen by lowest admissible bid (price-
only). In the intervention configuration, winners are chosen by a deterministic price-quality

scoring rule in which quality is proxied by specialization tags surfaced by bidders.
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Consistency of all other parameters is enforced by exporting and comparing parameter
snapshots before each run. Any difference detected in the exported JSON files must be

resolved before using the results in the paired comparison.

C.5 Agent Configuration
Two agent specifications are used:
1 simC/config/agent_C_baseline.json
J simC/config/agent_C_intervention. json

Both files configure the same finite-state machine, retry policy, memory filters, and
language model settings. Agents discover their wallet, open auctions for their own
assignments, place bids on other agents’ auctions, accept and announce winners, code
solutions, and periodically update a simple profit-and-loss summary.

In both baseline and intervention:
[ agents read their specialization tags from memory (as injected by the synthetic trial);

(A bidders are explicitly instructed to prioritize auctions whose problem tags overlap

with their specialization; and

(A bidders are encouraged to surface a compact summary of their specialization as part

of their bidding behavior, so that it can act as a quality signal.

The only conceptual difference between the two specifications lies in the principal’s
accepting logic. In the baseline configuration, the accepting prompts describe and reinforce
price-only selection: the principal closes auctions by choosing the lowest admissible bid,
subject to reserve and eligibility checks. In the intervention configuration, the accepting
prompts describe and reinforce the chain’s price—quality scoring rule, which weighs both
price and specialization-based quality when closing auctions.

These finite-state machines make the agent behavior explicit and ensure that any
differences in outcomes can be traced to the change in winner-selection policy rather than

unrelated control-flow changes.

C.6 Reproducibility Protocol

This section enumerates the steps needed to regenerate all Simulation C artifacts,
including runs, economic and network metrics, the paired economic trial card, and the
Simulation C-specific price—quality comparison. All paths are relative to the repository

root.
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Phase 1 — Build Binaries

go build -o bin/sdge ./src/sdge.go

go build -o bin/trial ./src/trial.go

go build -o bin/swechain_agent ./src/swechain_agent.go
go build -o bin/trial_card ./src/trial_card.go

go build -o bin/simC_results ./simC/src/simC_results.go

This produces the deterministic data generator, trial orchestrator, agent binary, canon-

ical metrics tool, and the Simulation C analysis tool.

Phase 2 — Generate the Synthetic Trial

./bin/sdge \
-problems-file ./data/problems.json \
-trials 1 -problems 200 -agents 20 \
-seed 1111 \
-specialist -spec-tags 2 \
-output-dir ./simC/data

This writes simC/data/trial_001. json and simC/data/manifest.json. The trial

includes 200 problems, 20 agents, specialization tags, and a fixed problem order.

Phase 3 — Prepare Baseline and Intervention Data

mkdir -p ./simC/data/baseline ./simC/data/intervention

cp ./simC/data/trial_001.json ./simC/data/baseline/
cp ./simC/data/trial_001.json ./simC/data/intervention/

cp ./simC/data/manifest.json ./simC/data/baseline/

cp ./simC/data/manifest.json ./simC/data/intervention/

This ensures that baseline and intervention use the same trial file and manifest, making

the pairing explicit.
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Phase 4 — Initialize SWEChain for Baseline

./start_swechain.sh 20
swechaind query auction params -o json \

> simC/baseline_params. json

The start_swechain.sh script starts a local SWEChain node with a fixed configura-

tion. The exported parameters are saved for later comparison.

Phase 5 — Run the Baseline Trial

./bin/trial -minutes 20 \
-agent-bin ./bin/swechain_agent \
-spec ./simC/config/agent C_baseline.json \
-trial ./simC/trials/baseline \
-dbdir ./simC/trials/baseline _db \
./simC/data/baseline/trial_001.json

This runs the baseline configuration for 20 minutes of wall-clock time, producing
per-agent databases and journals under simC/trials/baseline_db/ and all on-chain

auction and bid events for the baseline condition.

Phase 6 — Baseline Economic and Network Metrics (trial_card
Compute Mode)

While the baseline chain state is still present, compute the canonical economic and

network metrics and microdata:

./bin/trial card \
--bin swechaind \
--node tcp://localhost:26657 \
--home "${HOME}/.swechain" \
--outdir ./simC/artifact/baseline \

——output text

This writes:
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1 simC/artifact/baseline/trial_card. json
d simC/artifact/baseline/trial_card.svg
d simC/artifact/baseline/trial_card.pdf

The single-run baseline card is copied as figs/simC_baseline_trial_card.pdf for

use in the dissertation figures.

Phase 7 — Reset Chain for Intervention

Before running the intervention condition, restart the chain and verify that the mecha-

nism parameters match the baseline:

./start_swechain.sh 20

swechaind query auction params -o json \
> simC/intervention_params.json

diff -u simC/baseline_params. json \

simC/intervention_params. json

The diff command should report no differences. Any discrepancy indicates configura-

tion drift that must be corrected before continuing.

Phase 8 — Run the Intervention Trial

./bin/trial -minutes 20 \
-agent-bin ./bin/swechain_agent \
-spec ./simC/config/agent C_intervention.json \
—-trial ./simC/trials/intervention \
-dbdir ./simC/trials/intervention_db \

./simC/data/intervention/trial 001. json

This uses the same dataset, agents, random seeds, and timing as the baseline run, but
with the price—quality winner-selection rule enabled in the chain configuration and rein-
forced in agent_C_intervention. json. The resulting on-chain history is the intervention

counterpart of the baseline history.
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Phase 9 — Intervention Economic and Network Metrics (trial_card
Compute Mode)

While the intervention chain state is still present, compute the canonical metrics and

microdata:

./bin/trial card \
--bin swechaind \
--node tcp://localhost:26657 \
--home "${HOME}/.swechain" \
--outdir ./simC/artifact/intervention \

——output text

This writes:

1 simC/artifact/intervention/trial_card. json

1 simC/artifact/intervention/trial_card.svg

1 simC/artifact/intervention/trial_card.pdf

The single-run intervention card is copied as figs/simC_intervention_trial card.pdf

for use in the dissertation figures.

Phase 10 — Paired Economic Comparison (trial_card Compare
Mode)

With both trial_card. json files in place, the paired baseline-intervention economic

trial card is generated offline, without accessing the chain:

./bin/trial_card --compare \
--baseline ./simC/artifact/baseline/trial_card.json \
--intervention ./simC/artifact/intervention/trial_card.json \
—--outdir ./simC/artifact/compare \
—--label "Simulation C - Price-quality selection" \

——output text

This writes:
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1 simC/artifact/compare/trial_pair.json
1 simC/artifact/compare/trial_pair.svg
1 simC/artifact/compare/trial_pair.pdf

The paired economic trial card is copied as figs/simC_trial_pair.pdf for use in the

dissertation figures.

Phase 11 — Price—Quality Comparison (simC_results)

Finally, the Simulation C-specific analysis is generated offline from the same canonical
metrics files and the per-agent trial databases. The simC_results program reads the
baseline and intervention artifacts under simC/artifact/ and emits an SVG that is

converted to PDF:

./bin/simC_results \

-baseline-dbdir ./simC/trials/baseline _db \
-intervention-dbdir ./simC/trials/intervention db \
—artifact-dir ./simC/artifact \

-out-pdf ./simC/artifact/compare/simC_results.pdf

This writes:
1 simC/artifact/compare/simC_results.svg
1 simC/artifact/compare/simC_results.pdf

The PDF is copied as figs/simC_results.pdf for use in the dissertation figures.
Because simC_results operates purely on the stored JSON artifacts and trial databases,

this phase does not depend on any particular chain height being kept alive.

C.7 Limits, Assumptions, and Validation

Simulation C enforces that the only policy change between conditions is the winner-
selection rule applied by the principal. Both arms use the same synthetic trial (problems,
order, agents, specialization tags), and both encourage bidders to expose their special-
ization as a quality signal. All other parameters, including auction rules, timing, chain
configuration, and agent finite-state machines, are held fixed.

Language model stochasticity implies that individual token sequences may differ across

reruns, even with the same configuration. However, the recorded configuration and
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protocol are strong enough to reproduce the experimental setup and to check whether the
qualitative and quantitative patterns in task completion, outsourcing cost, price dispersion,
and revenue concentration persist.

Validation consists of:

1. checking that simC/data/baseline/trial_001. json and simC/data/intervention/trial_001. js
are identical (or share the same hash recorded in the manifest), confirming that

both arms use the same synthetic trial;

2. verifying that simC/baseline_params. json and simC/intervention_params.json
are identical, confirming that the blockchain mechanism did not change across

conditions apart from the intended winner-selection policy;

3. recomputing economic and network metrics via trial_card for both conditions and
confirming that the regenerated single-run cards match the reported values up to

ordinary numeric and rendering tolerances;

4. recomputing the paired economic trial card via trial card in compare mode and
the Simulation C figure via simC_results from the stored artifacts, and confirming
that the observed patterns in allocations, prices, and revenue concentration are

consistent with those in the dissertation figures; and

5. checking that counts and summary statistics reported in the Simulation C figure
(for example, numbers of auctions, completed tasks, and the distribution of revenue
shares) match those implied by the underlying trial card.json microdata and

trial databases.

Under this protocol, a reader with access to the public repository, the same model
identifier, and a similar machine can rerun Simulation C, regenerate both the economic
trial cards and the Simulation C price—quality analysis from the canonical artifacts, and

verify the main findings associated with principal-weighted quality-signal utilization.
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Tooling and Inspection

This appendix documents three practical inspection tools used during the development
and evaluation of SWEChain-SDK: a terminal block explorer for the SWEChain appchain,
a live dashboard for monitoring paired trials, and a TUI browser over the native agent
runtime’s bbolt-backed state files. These tools are conveniences rather than requirements
for reproducibility: they operate on the same on-chain events and agent-level logs that

drive the metrics and figures in the simulation chapters.

D.1 Terminal Block Explorer for SWEChain

During runs, the SWEChain node exposes its RPC endpoint on the local host. To
inspect blocks, transactions, and events without leaving the terminal, we use a command-
line block explorer that attaches directly to this RPC interface. For a given trial, the

explorer is pointed at the same node directory and RPC address as the simulation code.

Figure 24 shows an example of this explorer attached to a SWEChain instance during
a trial. The screenshot illustrates the main views used in practice: a list of recent blocks
with heights and hashes, details for the selected block (including transactions and their
type tags), and decoded events with their key—value attributes. This view makes it
straightforward to confirm that auctions are being created with the expected parameters,
that bids are being submitted at the expected heights, and that settlement transfers occur

when auctions close.
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Figure 24 — Terminal block explorer attached to a SWEChain node for a simulation run.
The explorer renders blocks, transactions, and their events directly from the
node’s RPC endpoint, making it easy to inspect auction creation, bidding,
and settlement at the block level.

The explorer is not used to generate any of the quantitative results in this dissertation.
Instead, it serves as a sanity-check and inspection tool during development and debugging,
complementing the automated extraction of event streams into chain_events. jsonl and

related artifacts described in the main text.

D.2 Live Dashboard for Paired Trials

The live dashboard is a visualization layer over the same structured data that supports
the offline analytics. It consumes exported chain events and agent journals, aggregates

them into high-level indicators, and presents them as panels and time series.

Figure 25 shows a screenshot of the dashboard during a paired trial. At a glance, the
dashboard surfaces the current chain height, the number of open and closed auctions, bid
counts, task completion over time, and per-agent balances or revenues. This helps the
researcher monitor progress, detect stalled agents or unusual bidding patterns, and verify

that the baseline and intervention runs are proceeding under the intended workloads.
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Type: Auctian

Label: [LC-&] Median of Two Sorted Arrays -
Hard - Tags:Array,Binary Search,Divide and
Conguer [6)

Owner :
cosmos16gc7780dddtpzemecIxamynlxlrahOnrcihilk
Status: open

Reward: 8.984@

Floor: B.988

Degree: 6

Bids received: &

Figure 25 — Live dashboard for a paired trial. The dashboard presents near-real-time views
of chain height, auctions, bids, and agent status using the same event streams
and journals that later feed the offline analytics.

Importantly, the dashboard is strictly read-only with respect to the chain and agent
runtimes. It does not send transactions or control signals; it only reads from the event and
metrics streams written to the artifact store. As such, it does not change the semantics of
a run and does not affect any of the experimental results, but it provides a useful “glass

box” view over the architecture described in Chapter 3.

D.3 Browsing Agent State with boltbrowser

The native agent runtime is built on mcphost and uses bbolt as an embedded key-value
store for per-agent state. For each agent, the runtime maintains a bbolt database file that
stores buckets such as meta, memory, and journal, alongside any additional structures

used by the controller. These files live under trial-specific directories, for example:

simA/trials/baseline_db/agent_001.bbolt
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simA/trials/intervention_db/agent_001.bbolt

To inspect the contents of these databases without writing custom code, we use a
terminal UI browser for bbolt files. Figure 26 shows a screenshot of this browser opened
on an agent’s database file for a baseline run. The left pane lists buckets, and the right
pane shows key-value pairs within the selected bucket, with values decoded as UTF-8

where appropriate.

journal
17

378 STATE=Bidding\n\nReturn EXACTLY ONE JSON object

Figure 26 — Browsing a native agent’s bbolt-backed state file with a TUI bbolt browser.
Buckets such as meta, memory, and journal allow inspection of controller
configuration, in-run state, and append-only decision logs for a particular
agent.

The bbolt browser is especially useful for cross-checking that controller configurations,
step transitions, and memo fields match the JSON journals exported for analysis. For
example, it can be used to confirm that a given agent’s private specialization tags and cost
multipliers match the policy expected for Experiment A, or that its bidding-related state
evolves as intended under the price-signal and quality-signal policies in Experiments B
and C.

As with the block explorer and live dashboard, the bbolt browser is not part of the
core experimental pipeline. The browser serves only as a low-level inspection tool that
provides additional confidence that the native agent runtime’s internal state is consistent

with the higher-level metrics and figures reported in the simulation chapters.
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