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Epigraph

“The real genius of AI isn’t in thinking like us, but in

showing us new ways to think.”
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Abstract

AI agents’ strategic interactions in economic settings—a key line of inquiry in AI-agent

economics—have attracted increasing attention amid recent advances in generative AI. We

investigate blockchain-based SWE-Agent outsourcing markets, which link intelligent soft-

ware engineering and software-engineering economics through programmable, transparent,

and auditable mechanisms that centralized platforms rarely expose. We evaluate whether

a blockchain-native SDK for economic network simulations can support controlled, paired

baseline–intervention experiments under fixed conditions in decentralized SWE-Agent

outsourcing markets.

We present SWEChain-SDK, a configurable, extensible blockchain-native SDK that

provides a local sandbox chain for SWE-Agent software outsourcing auctions and event-

complete logging of bids, allocations, payments, and artifacts, together with configuration

metadata sufficient to support re-runnable experiments under comparable conditions. Using

SWEChain-SDK, we conduct paired simulation experiments that vary one policy dimension

at a time—(A) comparative advantage via agent specialization, (B) competitive bidding

via bidders’ price-signal utilization, and (C) principal-weighted selection via quality-signal

utilization—while holding rules, datasets, random seeds, time base, and the agent pool

fixed. We report the observed paired differences in task completion, outsourcing cost,

and revenue concentration, making trade-offs explicit. The results show that SWEChain-

SDK supports controlled baseline–intervention experiments on decentralized SWE-Agent

outsourcing markets.

We contribute (i) a conceptual and terminological framing of SWE-Agent Economics as

a domain linking intelligent software engineering and software-engineering economics; (ii)

SWEChain-SDK, a blockchain-native SDK for controlled studies of decentralized, auction-

based SWE-Agent outsourcing markets under comparable conditions; and (iii) a public,

evaluation-ready release of the SDK—including simulation code, configuration manifests,

and event logs—for further empirical studies of decentralized SWE-Agent outsourcing

markets.



Keywords: Intelligent Software Engineering; Software Engineering Economics; Software

Engineering Agent Economics; Blockchain.
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Chapter 1

Introduction

This dissertation investigates how autonomous Software-Engineering Agents (SWE-Agents)

can be studied rigorously when they interact as economic decision-makers in decentralized

outsourcing markets implemented on blockchain-style infrastructure. It follows the emerg-

ing line of AI-agent economics, which analyzes autonomous Artificial Intelligence (AI)

agents’ objectives, information, and strategic behavior in economic settings, and instan-

tiates this agenda in software engineering by focusing on blockchain-based SWE-Agent

outsourcing markets. Rather than evaluating SWE-Agents as isolated predictors, the dis-

sertation treats them as participants in an operational environment where explicit rules for

task allocation, pricing, information disclosure, and winner selection shape outcomes such

as task completion, outsourcing cost, and the concentration of revenue across agents. To

make such studies feasible and credible, the dissertation designs, develops, and empirically

evaluates SDK for SWE-Agent Economic Simulations on SWEChain (SWEChain-SDK), a

configurable, extensible blockchain-native Software Development Kit (SDK) that provides

a local sandbox chain for SWE-Agent outsourcing auctions and supports controlled

economic network simulations in which policies can be varied while other experimental

conditions remain fixed and runs can be re-executed under comparable conditions.

We evaluate whether such a blockchain-native SDK for economic network simulations

can support controlled, paired baseline–intervention experiments under fixed conditions

in decentralized SWE-Agent outsourcing markets. Concretely, we use SWEChain-SDK

to run paired simulation experiments that vary one policy dimension at a time—(A)

comparative advantage via agent specialization, (B) competitive bidding via bidders’ price-

signal utilization, and (C) principal-weighted selection via quality-signal utilization—and

we report the observed paired differences in task completion, outsourcing cost, and revenue

concentration, making trade-offs explicit.

This chapter explains the motivation for the work, states the problem addressed, lays

out the objectives and research questions, sketches the methodological approach, clarifies

scope and limitations, highlights the expected significance and contributions, and outlines

the structure of the dissertation.



26 Chapter 1. Introduction

1.1 Context and Motivation

In current practice, most capable SWE-Agents are not deployed as standalone systems

but as services and assistants embedded in centralized platforms. Code and collaboration

are concentrated on GitHub, which now hosts both the dominant social coding infras-

tructure and AI coding assistants such as GitHub Copilot that run inside mainstream

Integrated Development Environments (IDEs) like Visual Studio Code and Visual Studio

(GitHub, 2023; Microsoft, 2023). The underlying models are typically provided as cloud

Application Programming Interfaces (APIs) by a small number of vendors, including

OpenAI’s GPT-4 (OPENAI, 2023), Anthropic’s Claude 3 family (Anthropic, 2024), and

code-specialized models such as DeepSeek-Coder (GUO et al., 2024). AI-first editors such

as Cursor integrate these models directly into the development environment and connect

to centralized repositories over Git or GitHub, further tying agent behavior to the policies

and infrastructure of a few platform providers (Anysphere, 2024; PENG et al., 2023). As

a result, both the model capabilities and the operational context of many SWE-Agents

are effectively mediated by centralized code-hosting and model-serving platforms.

Recent advances in generative Large Language Models (LLMs) have renewed interest

in AI-agent economics, which studies autonomous AI agents as economic decision-makers

and analyzes how their objectives, information, and strategic behavior shape outcomes in

markets and related economic environments. Within software engineering, this connects

directly to SWE-Agents: agents that plan, implement, and maintain software artifacts,

increasingly with LLMs embedded as components for perception, code synthesis, refactoring,

and explanation. At the same time, recent work on the efficiency of local AI inference

makes the underlying infrastructure constraints more concrete. Saad-Falcon et al. (SAAD-

FALCON et al., 2025) introduce Intelligence Per Watt (IPW) as task accuracy per unit of

power and conduct a large-scale study across more than twenty local language models,

eight hardware accelerators, and one million single-turn chat and reasoning queries. They

show that, as of 2025, small local models with at most 20B active parameters can correctly

answer 88.7% of such queries, that IPW has improved 5.3× from 2023 to 2025 through

combined model and hardware advances, and that hybrid local–cloud routing can cut

energy, compute, and monetary cost by roughly 60–80% while maintaining output quality.

Taken together, these developments suggest that economically meaningful LLMs workloads

are increasingly serviceable by programmable local and hybrid infrastructures, and that

the economic behavior of SWE-Agents within these infrastructures is an object of study

in its own right.

Autonomous SWE-Agents couple LLMs with developer tools to plan tasks, write and

modify code, run builds and tests, and verify results. Unlike single-shot code completion

systems, these agents operate as multi-step workflows: they decompose problems into

sub-tasks, call tools such as compilers and test runners, examine intermediate outputs,

and iterate until a stopping condition—often an acceptance test or reviewer criterion—is
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satisfied. In many frameworks, agents maintain working memory across steps and can

collaborate via explicit roles, for example dividing responsibilities between a planner, an

implementer, and a reviewer. As these agents become more capable and more common,

they no longer just emit code in response to prompts; they make sequential decisions,

adjust to feedback, and compete for limited tasks.

When many such agents operate concurrently on a stream of software tasks, their

interactions resemble an economic system. Each agent consumes priced resources such

as model inference tokens, CPU and GPU time, and network bandwidth; each competes

for tasks that vary by domain, complexity, and risk; and each settles outcomes against

verifiable criteria such as test suites, static analysis checks, or human approval. In this

setting, rules governing task allocation and payment become first-order determinants of

behavior. A canonical rule used in procurement is the reverse auction, where a task owner

solicits bids and the lowest acceptable bid wins; a pay-as-bid auction pays the winner

exactly the submitted bid rather than a uniform market price, which is straightforward

to implement and audit but can encourage strategic bidding below true cost. Practical

deployments also decide which bids are admissible by enforcing thresholds such as required

tags or prior success rates, set maximum acceptable prices via reserves, choose deterministic

tie-breaking when offers are equivalent, and decide which information is visible during the

process, for example whether the current best admissible bid is revealed. The combination

of these choices determines who works on what, at what price, how quickly the process

converges, and how rewards are distributed across agents.

Studying these effects credibly requires an environment where the rules are pro-

grammable, the events are observable, and the runs are reproducible. By programmable,

we mean that a researcher can implement and swap allocation and pricing rules, change

timing parameters, and adjust what information is revealed without rewriting large parts

of the system. By observable, we mean that every important state change—task cre-

ation, bid submission, updates to the standing best admissible bid, winner selection, and

settlement—is recorded with stable identifiers and timestamps so that the entire process

can be reconstructed and audited. By reproducible, we mean that experiments can be

re-run with shared random seeds, stable ordering rules, and event-complete logs, so that

independent groups can obtain comparable results from the same experimental setup.

In this dissertation, we use the term comparable conditions to describe paired runs that

share the same controlled elements of the experimental setup—including auction rules and

parameters, task datasets and their ordering, the SWE-Agent pool and configurations,

and the random seeds that govern task assignment and agent decisions—while differing

only in the specific policy under study. Comparable conditions do not require that all

low-level sources of variation (such as nondeterminism inside LLMs) be eliminated; instead,

they require that the experimental design and configuration be aligned closely enough

that observed differences in outcomes can be meaningfully attributed to the policy change
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rather than to background drift or uncontrolled changes in the environment.

Similarly, we use the term event-complete logging to refer to logs that capture every

economically relevant state change in the marketplace at the level of abstraction used

in this dissertation. Event-complete logs contain, for each trial, all task-creation events,

all bids and their attributes, all updates to the standing best admissible bid, all winner

selections, all settlement events, and pointers to the resulting artifacts. This does not

mean that every low-level protocol message or internal implementation detail of the chain

is persisted in the artifact bundle; rather, it means that the logs are sufficiently complete

to reconstruct the sequence of market interactions, recompute the outcome measures

reported in later chapters, and support additional analyses under the same experimental

configuration.

A large share of contemporary software-engineering activity, however, runs through a

small set of centralized platforms. GitHub is now the dominant social coding site and a

primary data source for mining software repositories, with work such as Kalliamvakou et

al. and Cosentino et al. documenting both its central role and systematic biases in the data

it exposes (KALLIAMVAKOU et al., 2014; COSENTINO; IZQUIERDO; CABOT, 2017).

Online labor platforms such as Upwork are canonical examples of digital labor markets

for software and related work, and have been extensively studied by the International

Labour Organization (ILO) and others as intermediaries that control access to tasks,

pay, and reputation (BERG et al., 2018; GRAY; SURI, 2019; AZEVEDO; MENDONÇA,

2023). Proprietary LLM services accessed via APIs (for example, GPT-4–style foundation

models) are increasingly embedded in development workflows, but are typically offered as

“limited-access” black boxes whose architectures, training data, and deployment details

are only partially disclosed (BOMMASANI et al., 2021; BOMMASANI et al., 2024).

In parallel, peer-to-peer code collaboration systems such as Radicle, open-access LLMs

like BLOOM, and blockchain-based work platforms such as Gitcoin illustrate alternative

designs that emphasize open artifacts, protocol-level coordination, and distributed control

rather than reliance on a single hosting provider (Radicle Team, 2021; SCAO et al., 2022;

Gitcoin, 2022).

Centralized services shape what information is visible about code, work, and model

behavior, and to whom. On GitHub, for example, researchers have shown that public

repository and activity data are rich but systematically biased: forks, mirrors, inactive

projects, and non-standard workflows can all confound naive interpretations, highlighting

that the platform operator has a more complete view of development than external

analysts relying on the public interface (KALLIAMVAKOU et al., 2014; COSENTINO;

IZQUIERDO; CABOT, 2017). The ILO’s study of digital labor platforms similarly finds

that workers on freelancing and microtask platforms often lack transparency about how

tasks are matched, evaluated, and paid, with key signals and algorithms controlled by

the platform (BERG et al., 2018). Ethnographic work such as Gray and Suri’s Ghost
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Work reinforces this picture of informational asymmetry in platform-mediated labor

(GRAY; SURI, 2019), while systematic reviews of algorithmic management on digital labor

platforms highlight the role of non-transparent, data-driven mechanisms in allocating

work and evaluating performance (AZEVEDO; MENDONÇA, 2023). In the LLM domain,

surveys of foundation models and the Foundation Model Transparency Index describe

leading proprietary models as highly opaque, with limited disclosure about training data

and deployment practices (BOMMASANI et al., 2021; BOMMASANI et al., 2024), and

Casper et al. argue that black-box access alone is insufficient for rigorous audits (CASPER

et al., 2024). More broadly, recent work on data curation in machine learning, such

as Dohmatob et al.’s theory of when smaller, curated datasets can outperform using

“all available data”, underscores that selection and filtering decisions critically shape

model capabilities (DOHMATOB; PEZESHKI; ASKARI-HEMMAT, 2025). Open and

decentralized alternatives do not automatically remove these asymmetries, but they change

the technical baseline: Radicle’s peer-to-peer “sovereign forge” gives each participant a full

local copy of repository history, and open-access models like BLOOM release architectures

and weights, making it technically possible to pin the artifacts that define an agent’s

capabilities and the curated data it is trained on (Radicle Team, 2021; SCAO et al., 2022).

GitHub, digital labor platforms, and proprietary LLM APIs also function as critical

infrastructure, so their failures or changes can have wide impact. GitHub’s centrality

to modern DevOps pipelines is reflected both in industry practice and in its use as a

primary data source for mining software repositories; as Kalliamvakou et al. emphasize,

this central role makes its outages and policy changes consequential for many projects

at once (KALLIAMVAKOU et al., 2014; COSENTINO; IZQUIERDO; CABOT, 2017).

The ILO documents how digital labor platforms centralize task posting, matching, and

payment, such that interruptions or policy shifts directly affect the incomes and working

conditions of workers (BERG et al., 2018). In the LLM space, work on foundation models

and transparency stresses that many prominent models are only available as managed

cloud services, leaving users with little control over capacity, latency, or upgrade schedules

(BOMMASANI et al., 2021; BOMMASANI et al., 2024). Proposals such as Starcloud’s

orbital data centers, which advocate moving large-scale AI training infrastructure off-

planet to relieve terrestrial energy and siting constraints, underline how tightly current AI

workloads are coupled to a small number of centralized infrastructure providers (FEILDEN;

OLTEAN; JOHNSTON, 2024). By contrast, Radicle’s local-first, peer-to-peer architecture

replicates repositories across nodes rather than a single hosting site (Radicle Team, 2021),

open-weight models such as BLOOM can be deployed on infrastructure controlled by the

experimenter (SCAO et al., 2022), and platforms like Gitcoin implement task posting and

payment as transparent smart contracts on public blockchains (Gitcoin, 2022). These

designs are not yet as mature or widely adopted as their centralized counterparts, but

they demonstrate that code, compute, and work allocation can be implemented as explicit
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protocols with fully visible logs—properties that are attractive for controlled SWE-Agent

experiments.

Another core issue is that centralized platforms concentrate governance power over

participants through terms of service, access control, and policy decisions. The ILO’s report

and related work on digital labor emphasize that platform operators set and change rules

on pay, rating, and task access, with workers typically having limited influence or visibility

into these processes (BERG et al., 2018; GRAY; SURI, 2019; AZEVEDO; MENDONÇA,

2023). In the foundation-model ecosystem, Bommasani et al. and the Foundation Model

Transparency Index highlight that developers of proprietary models make key choices

about release, safety constraints, and disclosure unilaterally, with downstream users having

little say and limited information about governance practices (BOMMASANI et al., 2021;

BOMMASANI et al., 2024). Casper et al. explicitly frame the level of access granted for

audits—black-box versus white- or “outside-the-box”—as a central governance decision

(CASPER et al., 2024). Decentralized projects explore different governance arrangements:

Radicle explicitly states that there is “no single entity controlling the network”, relying on

cryptographic identities and project-level control (Radicle Team, 2021), while Gitcoin’s

grants and bounty mechanisms are governed through community processes and on-chain

voting (Gitcoin, 2022). These alternatives are not complete solutions, but they show that

governance rules can be made explicit, versioned, and auditable.

Taken together, these knowledge, infrastructure, and governance constraints make

it important to study alternatives to real-world centralized platforms as experimental

settings for SWE-Agent Economics. When data access paths, infrastructure conditions,

and platform policies can change without being fully logged, it becomes harder to attribute

observed differences in outcomes to a specific policy intervention rather than to background

drift. One such alternative is to use blockchain-based mechanisms as an experimental

testbed for research. Blockchains can encode market rules as on-chain code, record

bids and allocations as on-chain events, and expose an auditable history of interactions.

For experimentation and simulation in this setting, researchers benefit from a local,

configurable, sandboxed environment that behaves like a blockchain-based market but can

be instantiated, configured, and reset as needed, and that produces event-complete logs

suitable for analysis and scripted re-runs under comparable conditions. This motivates

the development of a blockchain-native SDK tailored to economic network simulations in

decentralized SWE-Agent outsourcing markets.

1.2 Problem Statement

This dissertation addresses a practical gap in how we study SWE-Agents that interact

through decentralized outsourcing markets under explicit economic rules. The underlying

aim is to understand how economic mechanisms such as allocation, pricing, information
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disclosure, and winner selection shape outcomes such as task completion, outsourcing cost,

and the concentration of revenue across agents. To obtain credible evidence about these

effects, researchers need tooling that supports controlled experiments in which mechanisms

can be varied under fixed experimental conditions and in which the resulting interactions

are recorded in sufficient detail to be analyzed and audited.

In practice, this calls for research tooling that can run paired baseline–intervention

experiments where only a single policy element is changed, and that records agent inter-

actions and market outcomes in a form suitable for analysis and scripted re-runs, with

shared random seeds and configuration metadata so that runs can be re-executed under

comparable conditions. To the best of our knowledge, no open, blockchain-native, local-first

SDK currently offers this combination of capabilities for SWE-Agent experimentation in

decentralized, auction-based outsourcing markets at the intersection of intelligent software

engineering and software-engineering economics.

The problem this dissertation tackles is therefore to design, implement, and empirically

evaluate such tooling, SWEChain-SDK, so that controlled, paired baseline–intervention ex-

periments under fixed conditions become practically achievable for the study of SWE-Agent

economic mechanisms through economic network simulations.

1.3 Objectives

The overall objective of this dissertation is to investigate whether and how a

blockchain-native SDK for economic network simulations can support controlled, paired

baseline–intervention experiments under fixed conditions in decentralized SWE-Agent

outsourcing markets, in line with the broader agenda of SWE-Agent Economics. More

concretely, the dissertation seeks to shorten the path from a well-posed policy question—for

example, whether revealing the current best admissible bid affects price formation and

convergence—to an executable experiment with auditable outcomes that can be re-run

under comparable conditions.

Concretely, the dissertation aims to:

(i) provide a conceptual and terminological framing of SWE-Agent Economics as the

study of SWE-Agents in economic settings, with a focus on auction-based outsourcing

markets on blockchain-style infrastructures;

(ii) design, implement and evaluate SWEChain-SDK, a configurable, extensible

blockchain-native SDK that provides a local sandbox chain for SWE-Agent out-

sourcing auctions and event-complete logging of bids, allocations, payments, and

artifacts to support economic network simulations;

(iii) develop an experimental setup for paired baseline–intervention simulations in which

a single policy variable—such as comparative advantage via agent specialization,
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competitive bidding via bidders’ price-signal utilization, or principal-weighted se-

lection via quality-signal utilization—is varied while rules, datasets, random seeds,

time base, and the agent pool are held constant;

(iv) use this setup to conduct and analyze simulation experiments that assess how these

policy dimensions affect task completion, outsourcing cost, and the concentration of

revenue across agents, reporting paired differences to make trade-offs explicit; and

(v) package and release SWEChain-SDK, together with simulation code and artifacts,

in an evaluation-ready form that supports scripted re-runs and extension of the

experiments reported in this dissertation under comparable conditions.

1.4 Approach and Methodology

The inquiry is organized around a single, primary research question about the SDK as

an enabler of credible, controlled experimentation:

Can a blockchain-native SDK for economic network simulations support con-

trolled, paired baseline–intervention experiments under fixed conditions in

decentralized SWE-Agent outsourcing markets?

In this work, a positive answer to this question means that the SDK lets researchers

configure policy rules, run paired trials under fixed conditions, and obtain event-complete

logs. Here, we use event-complete to mean logs that are intended to capture the state-

changing events relevant to the experiment in enough detail that the reported metrics can

be recomputed from the logs alone. The overall design aims to support independent re-runs

and modest policy variations under comparable conditions. To make this question concrete

and empirically tractable, the dissertation studies three policy dimensions in decentralized

SWE-Agent outsourcing markets, each realized as a paired baseline–intervention simulation

experiment:

❏ Comparative advantage via agent specialization (Experiment A): introduc-

ing lightweight agent-side specialization—via private tags and small cost multipliers—

to test how specialization affects routing, task completion, and revenue concentration;

❏ Competitive bidding via bidders’ price-signal utilization (Experiment B):

varying the information available to bidders and the prompts that reference current

price signals—for example, whether the current best admissible bid is revealed—to

study how price-signal utilization affects task completion, realized outsourcing cost,

the concentration of revenue across agents, and observed price levels and dispersion;

and
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❏ Principal-weighted selection via quality-signal utilization (Experiment C):

replacing price-only selection with a transparent price–quality scoring rule to assess

how quality-signal utilization affects realized software quality, total outsourcing cost,

and the concentration of revenue.

We employ a simulation-based experimental methodology in empirical software en-

gineering. We develop SWEChain-SDK, a blockchain-native SDK for economic network

simulations, and use this SDK as an experimental platform to run agent-based simulations

of decentralized SWE-Agent outsourcing markets under controlled baseline–intervention

conditions.

At the system level, SWEChain-SDK is implemented as an application-specific chain

that encodes procurement auctions with pay-as-bid pricing. SWE-Agents interact with this

chain by submitting bids, receiving allocations, and settling tasks. The chain and associated

runtimes emit event-complete logs for key state changes, including task creation, bid

submission, updates to the standing best admissible bid, winner selection, and settlement

events. At the experimental level, the empirical part of the dissertation relies on controlled,

paired baseline–intervention simulations built on SWEChain-SDK. Rather than attempting

to optimize a single mechanism, we use the SDK to run network-vs-network comparisons

in which baseline and intervention settings differ only in one localized, versioned policy

module. We use the event-complete logs produced by SWEChain-SDK to compute

outcome measures that capture both efficiency and distribution. These include measures

of participation and coverage, price levels and dispersion, convergence behavior, realized

software quality, and the concentration of revenue across agents. All derived tables used

to produce figures are computed from the logged events, and the artifacts needed for

replication under comparable conditions are made available alongside the code.

1.5 Scope, Assumptions, Delimitations, and Limita-

tions

The empirical evaluation in this dissertation is scoped to small, controlled simulation

experiments whose primary purpose is to evaluate SWEChain-SDK as an experimental

platform. The focus is to examine whether a blockchain-native SDK can support controlled,

paired baseline–intervention experiments under fixed conditions, not to provide definitive

evidence about real-world software-engineering outsourcing markets. As assumptions, the

simulations consider autonomous SWE-Agents in a single-market setting with pay-as-bid

procurement auctions and deterministic ordering. Runs are short, executed locally, and use

fixed task sets, a finite agent pool, shared random seeds, and explicit timing and ordering

rules so that baseline and intervention differ only in the policy under test. As delimitations,

only a small set of policy rules is varied—specialization, price-signal visibility, and winner
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selection—and outcomes are summarized mainly in terms of task completion, outsourcing

cost, and revenue concentration.

These choices impose clear limitations. Workloads are synthetic and short, agents do

not learn or adapt within a trial, and quality is measured through simple, observable proxies.

As a result, the experiments do not capture the scale, diversity, or strategic behavior of

production settings, and effects that depend on real-world variability in organizations, data,

or infrastructure are intentionally out of scope. The empirical results should therefore be

read primarily as an evaluation of what SWEChain-SDK can support as an experimental

SDK, rather than as a comprehensive assessment of decentralized SWE-Agent markets.

1.6 Significance and Contributions

This dissertation is situated at the intersection of intelligent software engineering and

software-engineering economics, under the working label of SWE-Agent Economics. Its

significance lies in treating decentralized, auction-based SWE-Agent outsourcing markets

as a setting in which AI agents act as economic decision-makers and in providing research

tooling that makes controlled economic network simulations of such markets practically

achievable under comparable conditions.

In this context, the dissertation makes three main contributions:

(i) it develops a conceptual and terminological framing of SWE-Agent Economics as a

domain linking intelligent software engineering and software-engineering economics,

with decentralized SWE-Agent outsourcing markets as the central case;

(ii) it presents SWEChain-SDK, a configurable, extensible blockchain-native SDK for

controlled studies of decentralized, auction-based SWE-Agent outsourcing markets

under comparable conditions, providing a local sandbox chain and event-complete

logging of bids, allocations, payments, and artifacts to support controlled, paired

baseline–intervention experiments under fixed conditions; and

(iii) it releases a public, evaluation-ready bundle of SWEChain-SDK—including sim-

ulation code and artifacts such as configurations, datasets, manifests, logs, and

figure-generation scripts—to support scripted re-runs and extension of the experi-

ments reported in the dissertation under comparable conditions.

Together, these contributions provide an environment and artifact set for studying

SWE-Agent outsourcing markets in a way that is transparent, auditable, and repeatable

under clearly defined experimental setups.
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1.7 Dissertation Structure

The remainder of the dissertation is organized to move from conceptual framing,

through system design and methodology, to experimental evaluation and implications.

Chapter 2 introduces the necessary background and terminology. It reviews intelligent

software engineering and SWE-Agents, software-engineering economics and outsourcing

markets, AI-agent economics, and blockchain-based mechanisms, and uses these strands to

motivate SWE-Agent economics and the architectural requirements for a blockchain-native

SDK for economic network simulations.

Chapter 3 presents the architecture of SWEChain-SDK. It states the design goals,

explains how they are instantiated in a local, blockchain-native sandbox for SWE-Agent

outsourcing markets, and describes the main components, including the execution environ-

ment, auction and settlement logic, logging layer, and agent interfaces.

Chapter 4 reports the simulation experiments conducted with SWEChain-SDK. It

sets out the experimental design, SWE-Agent models, task datasets, policy configurations,

and metrics, and then presents and analyzes paired baseline–intervention experiments

that vary agent specialization (comparative advantage), bidders’ price-signal utilization,

and principal-weighted quality-signal utilization in winner-selection rules under fixed

conditions.

Chapter 5 situates the dissertation in related work on intelligent software engineer-

ing, software-engineering economics, agent-based and AI-agent economics, mechanism

design, evaluation frameworks, and blockchain-based research infrastructures, and contrasts

existing approaches with the capabilities provided by SWEChain-SDK.

Finally, Chapter 6 summarizes the main findings, reflects on limitations and threats

to validity, and outlines directions for future work on SWE-Agent economics and on

extending SWEChain-SDK, including richer quality models, adaptive agents, and multi-

market settings.
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Chapter 2

Background

This chapter develops the conceptual foundation for the dissertation. We move from

intelligent software engineering and modern Software-Engineering Agents (SWE-Agents)

to an economic view of software work, then to agent-based simulations as a way to study

economic mechanisms, and finally to blockchain-based decentralized networks as pro-

grammable environments in which to implement and observe those mechanisms. We keep

the focus on constructs that we later reuse in the architecture and simulation chapters and

align the background with the abstract: we are interested in blockchain-based SWE-Agent

outsourcing markets; we use a blockchain-native Software Development Kit (SDK) to

run controlled, paired baseline–intervention experiments under fixed conditions; and we

vary one policy dimension at a time—comparative advantage via agent specialization,

competitive bidding via bidders’ price-signal utilization, and principal-weighted selection

via quality-signal utilization—while measuring task completion, outsourcing cost, and

revenue concentration.

2.1 Intelligent Software Engineering

Intelligent Software Engineering (ISE) extends the classic software-engineering arc—

from NATO’s push for modularity, contracts, and verification (NAUR; RANDELL, 1969;

PARNAS, 1972; HOARE, 1969; DIJKSTRA, 1976) to Continuous Integration and Contin-

uous Delivery (CI/CD)’s culture of repeatable delivery (HUMBLE; FARLEY, 2010)—by

adding data-driven perception, search, and synthesis across the lifecycle (XIE, 2018; HOU

et al., 2024; ZHANG et al., 2023). The basic stance is familiar: interfaces and contracts

should be explicit, claims should be verifiable, and control over change should be repro-

ducible. Modern work adds learned components into this picture, but does not abandon

it.

A central construct in this dissertation is the SWE-Agent: an autonomous software-

engineering agent with an explicit controller and a concrete tool interface. Historically,

controller designs evolved from reactive Finite-State Machines (FSMs) and subsump-
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tion architectures (BROOKS, 1991) through Behavior Trees (BTs) (COLLEDANCHISE;

ÖGREN, 2018) and Belief–Desire–Intention (Belief–Desire–Intention (BDI)) frameworks

(RAO; GEORGEFF, 1995; WOOLDRIDGE, 2009) to hybrids that combine reactive safety

with deliberative goal management. These architectures share the property that control

flow is explicit and testable: each state and transition can be examined, every action is

whitelisted, and behavior is repeatable under fixed conditions. Transformer-based Large

Language Models (LLMs) (VASWANI et al., 2017), including code-tuned variants (CHEN

et al., 2021; ROZIÈRE; GEHRING; AL., 2023; LI; WERRA; AL., 2023), now act as

replaceable subroutines inside such controllers for perception, planning, and code synthesis.

Orchestration patterns such as Reason+Act (interleaved planning and tool use) (ReAct)-

style interleaving of reasoning and tool calls (YAO et al., 2023) and behavior-tree or FSM

executives with guarded transitions provide a way to embed stochastic model calls without

giving up determinism at the controller level.

In this dissertation we use SWE-Agent in a specific and reproducible sense. An agent is

an explicit controller with a documented Agentic Capability Interface (ACI) for repository

and test interaction (for example, list/open/search/edit/run), within which LLM calls

act as stochastic subroutines in semantic states such as plan, implement, and repair.

Deterministic guards based on compiler and test outcomes, schema validation, and simple

invariants gate transitions and termination, and prompts, seeds, decoding parameters,

and environment hashes are recorded. In the SWEChain simulations, these controllers

are implemented as finite-state machines with fixed, hand-designed policies and prompts

rather than as adaptive or learning systems; we cite richer architectures such as BDI

and reinforcement learning only as conceptual predecessors. This explicit, non-learning

controller structure supports comparability and provenance and allows causal attribution

to specific policy choices—such as prompts, agent specialization, bidders’ price-signal

utilization, and principal-weighted quality-signal utilization—rather than to incidental

randomness or uncontrolled adaptation.

Reproducibility follows familiar engineering instincts: make control flow explicit, keep

acceptance objective, and record enough context that another team can retrace the steps.

We realize this by sequencing a small set of semantic states (plan, implement, repair) under

an FSM whose edges are guarded by facts the toolchain can attest: compiles succeed, tests

pass, and schemas validate (HAREL, 1987; COLLEDANCHISE; ÖGREN, 2018). LLMs

are confined to these states and may propose plans or edits but cannot bypass gates. We

fix random seeds and decoding parameters for LLM calls; pin compilers, interpreters, and

runners in containerized environments (MERKEL, 2014; KLEPPMANN, 2017); impose

deterministic tie-breaks when scores collide; and serialize non-commutative effects using

defined clocks and ordering (LAMPORT, 1978; SIGELMAN et al., 2010). With the

substrate held still, we can run paired baseline–intervention experiments under fixed

conditions where exactly one policy dimension varies at a time (specialization, price-signal
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utilization, or quality-signal utilization), so that observed differences can be attributed to

that policy rather than to infrastructure drift. This pattern supplies the “agent” side of

the SWE-Agent Economics framing used later.

2.2 Software Engineering Economics

Software engineering economics (Software Engineering Economics (SEE)) provides

constructs for treating software work as production under scarcity and for describing

mechanisms that allocate work and payments. Economics studies choice under scarcity:

ends exceed means, so agents allocate limited resources and accept opportunity costs

(ROBBINS, 1932; SAMUELSON; NORDHAUS, 2010; VARIAN, 2014). Read through

this lens, the NATO reports did more than name a “software crisis”—they recast software

development as a production process with explicit decision variables and constraints

(NAUR; RANDELL, 1969). Modularity and explicit interfaces make delivered functionality

and integration work countable; formal specifications and verification convert quality into

a contractible objective; configuration control and versioning turn effort, rework, and

schedule slippage into observables. Trade-offs among cost, schedule, scope, and quality

can therefore be modeled as objectives and constraints, estimated as priors, and updated

from data (BOEHM, 1981; BOEHM et al., 2000).

Classical results quantify these levers. Brooks explained declining and sometimes nega-

tive marginal productivity from late staffing due to rising communication and coordination

costs (JR., 1975). Putnam’s Rayleigh–Norden life-cycle model traced the schedule–effort

frontier (PUTNAM; MYERS, 1992), and parametric models such as COCOMO related

effort to size via multiplicative drivers and diseconomies of scale (BOEHM, 1981; BOEHM

et al., 2000). Prevention and appraisal investments such as inspections and testing rise

non-linearly to contain interaction effects as systems scale (BANKER; KAUFFMAN;

MOREY, 1994), and technical debt names an explicit intertemporal trade-off between

expedient design and future rework (CUNNINGHAM, 1992). Because software is labor-

intensive, human heterogeneity matters; disciplined processes and feedback loops (for

example, via CI/CD) help make cost, latency, and quality observable and manageable

(HUMBLE; FARLEY, 2010).

We view software outsourcing through the lens of mechanism design. A requester

has a task with scoped deliverables, a deadline, a budget or reserve, and executable

acceptance tests. Potential suppliers (firms, teams, or SWE-Agents) have private costs

and limited capacity, and must decide whether to enter and, where applicable, at what

price. Mechanisms repair information and coordination frictions by specifying an allocation

rule, a payment rule, and an information policy (KRISHNA, 2009a; KLEMPERER, 2004;

MYERSON, 1981; LAFFONT; MARTIMORT, 2002). Reverse posted-price mechanisms

are simple and suitable for standardized work; reverse sealed-bid first-price auctions
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provide fast cost screening; scoring or multi-attribute auctions fold non-price attributes

such as expected quality and latency into a weighted score that is cleared competitively

(CHE, 1993). Information policy and clearing cadence (continuous versus frequent-batch)

affect participation, competition, and racing behavior (KLEMPERER, 2004; BUDISH;

CRAMTON; SHIM, 2015a). We use the term software outsourcing auction for institutions

that map scoped tasks, budgets or reserves, and acceptance tests to allocations and

payments via explicit rules, under adverse selection and moral hazard (AKERLOF, 1970;

HOLMSTRÖM; MILGROM, 1991).

Outcomes of interest include task completion rates, latency distributions, cost per

accepted task, price dispersion, and concentration in revenues or market share. Classical

diagnostics such as Lorenz curves, Gini indices, and top-k shares summarize how work

and reward concentrate or spread (FENTON; BIEMAN, 2014; GINI, 1912; EASLEY;

KLEINBERG, 2010). In this dissertation we implement only a narrow family of reverse-

procurement and scoring auctions on a single chain and vary a small number of governed

parameters and agent-side policies, rather than exploring the full space of auction formats.

SEE furnishes the language for these mechanisms and the metrics used to compare them

in simulation.

2.3 Agent-Based Simulations

Agent-based modeling (Agent-Based Modeling (ABM)) and agent-based computational

economics (Agent-Based Computational Economics (ACE)) link local decision rules and

institutional settings to system-level outcomes (RAILSBACK; GRIMM, 2019; EPSTEIN;

AXTELL, 1996; TESFATSION, 2002). Systems are represented as populations of hetero-

geneous agents with local state, information, and decision rules, interacting under frictions

and timing. Local rules for search, bidding, implementation, and review, together with

institutional levers for allocation, payments, and cadence, jointly generate macro outcomes

such as throughput, congestion, coordination cost, concentration, and inequality. This

picture matches software task markets, where small changes in auction rules or timing

can induce large shifts in who participates, how aggressively they bid, and how work and

rewards concentrate.

Foundational examples provide design patterns rather than blueprints. Schelling’s

segregation model showed how mild local preferences over neighborhood composition

can yield macro-level segregation (SCHELLING, 1971a). Axelrod’s iterated-prisoner’s-

dilemma tournaments operationalized strategy evaluation as an open competition in a fixed

environment, with heterogeneous strategies interacting repeatedly under noise (AXELROD,

1984). The Santa Fe artificial stock market connected simple trading heuristics to price

dynamics and volatility (ARTHUR et al., 1997), while models such as Sugarscape and

Echo linked resource and credit dynamics to distributional outcomes (EPSTEIN; AXTELL,
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1996; HOLLAND, 1995). RoboCup Simulation and NetLogo illustrated how standardized

environments and tooling can turn agent-based models into reusable benchmarks (KITANO;

VELOSO et al., 1997; WILENSKY, 1999). We draw on these precedents mainly for three

ideas: fix rules and instrumentation, allow heterogeneous strategies, and evaluate outcomes

from logged traces.

In software engineering, this general ABM view maps naturally to ecosystems of hetero-

geneous actors—developers, teams, tools, platforms, and clients—whose local decisions and

interactions generate system-level outcomes (ABDEL-HAMID; MADNICK, 1991). We use

modeling primitives that mirror software reality. Agents carry state (skills, private costs,

backlog, reputation, liquidity), capabilities (search, bid, implement, review, test), and

decision rules ranging from simple heuristics to learned policies. Tasks encode requirements,

dependencies, and acceptance tests. Resources include developer time, compute, data,

and budget. Institutions govern allocation and payments (for example, reverse auctions

and reserves), information policy, and cadence (continuous versus frequent-batch clear-

ing). Environments encode arrivals, dependencies, queues, search and matching frictions,

and time-zone or handoff costs. Interaction protocols cover search and entry, bidding

and awarding, delivery and review, and dispute resolution. These ingredients support

experiments that ask how specific policy choices map to performance and distributions,

including concentration diagnostics such as Lorenz and Gini curves (FENTON; BIEMAN,

2014; GINI, 1912).

In this dissertation we use generative-agent modeling in a constrained way. We embed

generative components such as LLMs inside explicit executives FSMs and gate them

with deterministic checks (compilation and tests, schema validation) (COLLEDANCHISE;

ÖGREN, 2018; OUYANG et al., 2024). Prompts, tool calls, outputs, seeds, decoding

parameters, and environment hashes are journaled so that runs can be rerun under compa-

rable conditions. Agent policies are fixed across trials; we do not allow cross-trial learning

or adaptation, and instead focus on how mechanism and configuration changes affect

outcomes under a given family of controller and prompt designs. Outcome variables track

both levels and distributions: primary observables include cost (developer time, compute,

and fees), schedule (lead and cycle time), and quality (defects, rework, and acceptance),

while market observables include surplus, price dispersion, and concentration indices

(FENTON; BIEMAN, 2014; GINI, 1912). Empirical game-theoretic analysis Empirical

Game-Theoretic Analysis (EGTA) suggests ways to summarize induced incentives before

comparing mechanism variants under comparable conditions (WELLMAN, 2006); here

we borrow its emphasis on fixed environments and reproducible comparisons without

implementing a full EGTA pipeline.

Experimental design follows guidance from empirical software engineering (WOHLIN

et al., 2012; KITCHENHAM et al., 2009). In the broader simulation literature, verifica-

tion, validation, and uncertainty quantification (Verification, Validation, and Uncertainty
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Quantification (VVUQ)) are treated as necessary checks rather than optional extras:

implementations are verified against specifications and invariants, behaviors are validated

against stylized facts and traces from version control and issue trackers, and Monte Carlo

replication and sensitivity analysis are used to characterize uncertainty (SARGENT, 2013;

OBERKAMPF; ROY, 2010; LAW, 2015; FENTON; BIEMAN, 2014). In this dissertation

we adopt only a subset of these practices. We design paired baseline–intervention experi-

ments under fixed seeds and toolchains, block by workload mix where appropriate, and

pre-specify outcomes, but we do not carry out large-scale Monte Carlo replication or full

VVUQ campaigns. Tournament-style evaluations, such as Axelrod’s iterated-prisoner’s-

dilemma experiments, motivate the idea of a fixed environment in which different strategies

can be compared under identical conditions; in our case, we run a closed set of hand-

designed policies rather than an open competition. These choices keep the simulations

small and controlled, and they are sufficient for the goals of this dissertation.

2.4 Blockchain Decentralized Networks

We now introduce the environments in which we implement mechanisms and run

experiments. We treat blockchains and related decentralized networks as programmable,

auditable substrates for economic mechanisms. We use this section to explain why

application-specific chains are appropriate for SWE-Agent outsourcing experiments and to

define basic terminology for consensus, finality, and execution that we use later when we

describe SDK for SWE-Agent Economic Simulations on SWEChain (SWEChain-SDK).

Blockchains address a coordination problem in open, adversarial networks: independent

machines that do not trust one another need to construct, verify, and preserve a single

canonical sequence of state updates without a central intermediary. The solution ties

together an append-only ledger, digitally signed transactions, and a consensus protocol that

selects a unique total order of valid transactions. When combined with a deterministic state

transition function, these primitives realize a replicated state machine: every honest node

processes the same ordered input stream and converges to the same state (NAKAMOTO,

2008; GARAY; KIAYIAS; LEONARDOS, 2015; EYAL; SIRER, 2014; KIAYIAS et al., 2017;

BUTERIN; GRIFFITH, 2017). A crypto-economic layer aligns incentives: participants

who expend resources to propose and validate blocks are compensated via rewards and

fees, while protocol-enforced penalties (for example, slashing in proof-of-stake systems)

make deviation costly.

Programmability extends this model from payments to general stateful coordination.

A virtual machine with explicit gas metering executes untrusted code safely; contracts can

escrow assets, emit events, and settle based on deterministic predicates (BUTERIN, 2014;

WOOD, 2014). Application-specific chains specialize this model: they reuse consensus

and networking layers but define their own modules and parameters. For our purposes,
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an application-specific chain is most naturally viewed as code that implements an eco-

nomic mechanism with explicit rules for admission, ordering, execution, settlement, and

governance.

Single-chain designs couple all applications into one execution environment, one mem-

pool, and one fee market. As usage diversifies, this coupling can become a source of

confounds: demand spikes in one domain propagate as congestion and higher inclusion

costs to unrelated workloads, and the economic value of transaction ordering induces

Maximal Extractable Value (MEV) strategies that skew fee and inclusion patterns (DAIAN

et al., 2020a; ROUGHGARDEN, 2021). One response is a move to networks of chains

with explicit choices over security sharing, inter-chain messaging, and execution packaging.

Modularity decouples execution, ordering, and data availability so each can scale or spe-

cialize independently; sovereignty with interconnection deploys application-specific chains

that control their own consensus parameters, mempool and fee policies, and governance,

while interconnecting through verifiable cross-chain messaging (KWON; BUCHMAN, 2016;

FOUNDATION, 2020). For this dissertation, we need only a simple point in this design

space: a single, sovereign application-specific chain running locally as a deterministic state

machine.

Cosmos SDK with CometBFT consensus provides such a substrate: modules define

application logic; the base application routes messages and queries; deterministic finality is

obtained once a local quorum commits a block (BUCHMAN, 2018; KWON; BUCHMAN,

2016). We adopt this setting to minimize cross-application coupling and exogenous

noise: there is no MEV, no competing chains, and no adversarial network. Instead,

Software-Engineering Chain (application-specific blockchain) (SWEChain) is run as a

single-node appchain whose code, parameters, and genesis are fixed per experiment profile.

A blockchain-based application-specific chain can then be treated as code that implements

an economic mechanism: the mechanism, in the market-design sense, maps participants’

messages to allocations and payments under a specified information and timing policy;

on the chain, this mapping is realized as a deterministic state machine with protocol

parameters for admission (signature and nonce checks), ordering (consensus and mempool

policy), pricing (fee mechanism), and settlement (finality semantics). Under this view, an

agent is software that observes on-chain state, forms a strategy within transparent rules,

and submits signed transactions to realize objectives.

Historically, autonomous agents on ledgers precede current LLM-based systems. In

Ethereum Virtual Machine (EVM)-based decentralized finance, for example, keepers

watch collateralization and trigger protocol-specified auctions; liquidators close unsafe

loans; and searchers scan public mempools and on-chain liquidity for arbitrage and

back-run opportunities (DAIAN et al., 2020a; ANGERIS et al., 2020). In Cosmos

appchains, deterministic finality simplifies state-contingent strategies and Inter-Blockchain

Communication (IBC) relayers act as first-class agents that carry light-client-verified
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packets between sovereign chains (FOUNDATION, 2020; KWON; BUCHMAN, 2016;

BUCHMAN, 2018). We do not model these details here; they serve only as examples that

the same general pattern repeats: mechanisms are encoded as software with explicit rules,

and agents operate within those rules. This view motivates our later choice to implement

SWE-Agent outsourcing auctions as modules in a Cosmos SDK appchain.

2.5 Discussion

This discussion gives a working definition and scope for what we call SWE-Agent

Economics. We use the term as a convenient label for a specific intersection of existing

areas. From intelligent software engineering, we take SWE-Agents to be autonomous

software-engineering agents with explicit controllers (for example, FSMs, behavior trees, or

BDI-style executives), documented tool interfaces, and objective acceptance checks on their

outputs (NAUR; RANDELL, 1969; PARNAS, 1972; HOARE, 1969; DIJKSTRA, 1976;

HUMBLE; FARLEY, 2010; BROOKS, 1991; RAO; GEORGEFF, 1995; WOOLDRIDGE,

2009; COLLEDANCHISE; ÖGREN, 2018; HOU et al., 2024; ZHANG et al., 2023). From

software engineering economics, we take the view that software work is carried out under

constraints on budget, calendar time, and attention, and that trade-offs among cost,

schedule, scope, and quality can be expressed as objectives and feasible frontiers (BOEHM,

1981; BOEHM et al., 2000). Mechanism design and procurement supply language for

explicit task-allocation rules: allocation rules map bids to winners, payment rules map bids

to transfers, information policies describe what is visible to whom and when, and properties

such as Incentive Compatibility (IC) and Individual Rationality (IR) are design targets

rather than slogans (CHE, 1993; KRISHNA, 2009b; KLEMPERER, 2004; CRAMTON;

SHOHAM; STEINBERG, 2006; MYERSON, 1981; LAFFONT; MARTIMORT, 2002).

We use software outsourcing auction to mean an institution in which a requester posts

a scoped task with a budget and executable acceptance tests, potential suppliers decide

whether to participate (and, where applicable, at what price), and an explicit mechanism

clears and settles on verifiable delivery.

Agent-based modeling and market modeling provide constructs for linking local decision

rules to system-level behavior in such settings. We assume heterogeneous agents with

private information and bounded decision procedures, interacting under institutional

rules and timing, generate observable outcomes such as throughput, latency distributions,

cost per accepted task, price dispersion, and inequality in revenues or market share

(RAILSBACK; GRIMM, 2019; EPSTEIN; AXTELL, 1996; SHOHAM; LEYTON-BROWN,

2009; FENTON; BIEMAN, 2014; GINI, 1912). We use outcome for metrics computed

from event-level traces, including completion rates and simple network summaries on

issue–agent graphs. Simulation-based studies, with verification, validation, and uncertainty

quantification (VVUQ) treated as standard practice, are a common way to explore how
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changes in rules affect these outcomes (ABDEL-HAMID; MADNICK, 1991; LAW, 2015;

SARGENT, 2013; OBERKAMPF; ROY, 2010; WOHLIN et al., 2012; KITCHENHAM et

al., 2009). Blockchain and related decentralized systems then supply concrete environments

in which mechanisms are implemented as code: an application-specific chain can be viewed

as a deterministic state machine with software-defined transition rules, parameters, and

events, and consensus and finality provide a canonical sequence of state changes (BUTERIN,

2014; WOOD, 2014; BUCHMAN, 2018; KWON; BUCHMAN, 2016). We use environment

to mean a specific configuration of such a system—for example, a Cosmos SDK appchain

with CometBFT consensus, particular module code, parameter sets, and fee policy—in

which admission checks, ordering, settlement, and governance are fixed and observable, and

which emits height-stamped events for messages, state changes, and parameter updates.

Within this vocabulary, we use SWE-Agent Economics in this dissertation to refer to the

study of autonomous SWE-Agents, engineered in the intelligent software engineering sense,

acting as economic decision makers in task markets whose objectives and mechanisms

are drawn from software engineering economics and whose behavior is analyzed with

agent-based and market-modeling methods. A SWE-Agent is an explicit, testable coding

agent with a defined tool interface; a task is a scoped software work item with a budget

or reserve and machine-executable acceptance criteria; a mechanism is a rule system

that maps agents’ messages to allocations and payments under a specified information

and timing policy; an environment is a concrete execution setting that implements the

mechanism as software with particular ordering, fee, and governance properties; and

outcomes are efficiency, quality, market-structure, and distributional metrics derived from

event-level traces (BOEHM, 1981; BOEHM et al., 2000; RAILSBACK; GRIMM, 2019;

EPSTEIN; AXTELL, 1996; FENTON; BIEMAN, 2014; GINI, 1912; KLEMPERER, 2004).

This is a working definition, narrow enough to be grounded in the cited background and

broad enough to cover the cases we actually study. It sits alongside, rather than replaces,

related areas such as AI-agent economics and ACE, which already examine autonomous

agents in economic environments (SHOHAM; LEYTON-BROWN, 2009; RAILSBACK;

GRIMM, 2019; EPSTEIN; AXTELL, 1996), and blockchain economics, which already

treats blockchains as economic mechanisms with explicit fee markets and governance

(BUTERIN, 2014; WOOD, 2014; BUCHMAN, 2018; KWON; BUCHMAN, 2016). The

term SWE-Agent Economics highlights the intersection where agents are SWE-Agents

in this software-engineering sense, tasks are software tasks with executable tests, and

mechanisms and outcomes are described using the language of software engineering

economics and market design.

The remainder of the dissertation focuses on a concrete subclass of this intersection.

We restrict attention to settings in which tasks are software outsourcing issues, suppliers

are SWE-Agents, and mechanisms are auction-based market designs deployed on a decen-

tralized blockchain. Concretely, each task is a software work item with explicit scope, a
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budget or reserve, and machine-executable acceptance tests; suppliers are autonomous

SWE-Agents that read issues, estimate costs, decide whether to participate, implement,

and submit evidence of completion under explicit controller logic; and mechanisms are

reverse procurement or scoring auctions with parameters for reserves, eligibility filters,

scoring weights, penalties, and clearing cadence, implemented as on-chain modules on an

application-specific chain (CHE, 1993; KRISHNA, 2009b; KLEMPERER, 2004; CRAM-

TON; SHOHAM; STEINBERG, 2006; BUDISH; CRAMTON; SHIM, 2015b; MYERSON,

1981; LAFFONT; MARTIMORT, 2002; BUCHMAN, 2018; KWON; BUCHMAN, 2016).

SWEChain-SDK is one concrete realization of this subclass: a blockchain-native SDK that

instantiates SWE-Agent outsourcing auctions on a local Cosmos SDK appchain, exposes

a small set of governed parameters (such as reserve semantics, eligibility filters, scoring

weights, and auction duration), and couples the chain to deterministic workload generators

and agent runtimes. Runs are driven by manifests; randomized components are seeded;

toolchains and binaries are pinned; and on-chain events and off-chain agent actions are

logged at a level of detail sufficient to reconstruct metrics and figures or to script additional

runs under comparable conditions. In the simulations reported here, agent policies are

fixed across trials; we do not allow cross-trial learning or adaptation, and instead focus on

how mechanism and configuration changes affect outcomes under a given policy family.

We then use this SDK to conduct paired simulation experiments that vary one policy

dimension at a time—(A) comparative advantage via agent specialization, (B) competitive

bidding via bidders’ price-signal utilization, and (C) principal-weighted selection via

quality-signal utilization—while keeping rules, datasets, random seeds, time base, and

the agent pool fixed, and we report the observed paired differences in task completion,

outsourcing cost, and revenue concentration. The discussion in this section names and

narrows the slice of existing work that we build on and provides a reference point for the

architecture and experiments developed in the rest of the dissertation.
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Chapter 3

SWEChain-SDK Architecture

In the background chapter we introduced SWE-Agent Economics as a working label

for the intersection of intelligent software engineering and software-engineering economics,

centered on task markets, incentive rules, and information structures. This chapter moves

from that general framing to a blockchain-native architectural instantiation: SWEChain-

SDK, a blockchain-native software development kit designed to support controlled, paired

baseline–intervention experiments under fixed conditions in decentralized SWE-Agent

outsourcing markets.

This dissertation states three main aims for SWEChain-SDK. First, it should pro-

vide a local, blockchain-based sandbox chain for SWE-Agent outsourcing auctions with

programmable, transparent, and auditable mechanisms that centralized platforms rarely

expose. In this work, that role is played by a Cosmos-SDK appchain, SWEChain, that im-

plements a software outsourcing issue market via a custom issuemarket module. Second,

SWEChain-SDK should support controlled, paired experiments that vary a single policy

dimension at a time—comparative advantage via agent specialization (Experiment A), com-

petitive bidding via bidders’ price-signal utilization (Experiment B), or principal-weighted

selection via quality-signal utilization (Experiment C)—while keeping rules, datasets,

random seeds, time base, and the agent pool fixed. Third, it should provide event-complete

logging of bids, allocations, payments, and artifacts, together with configuration metadata

sufficient to support re-runnable experiments under comparable conditions.

At a system level, SWEChain-SDK is intended as a compact, local-first toolkit for con-

trolled economic network simulations of decentralized, auction-based software-engineering

markets. The guiding principle is to isolate the effect of one policy variable at a time

by composing small binaries with clear inputs and outputs, deterministic behavior where

feasible, and version-pinned environments. Concretely, the SDK ecosystem provides: (i) a

local Cosmos SDK blockchain (SWEChain) that encodes and enforces outsourcing auction

rules via the issuemarket module; (ii) access layers that expose SWEChain functionality

to humans (via the swechaind command-line interface) and to SWE-Agents (via a Model

Context Protocol (MCP) bridge); and (iii) companion simulation, agent, dashboard, and
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analytics tooling that prepare datasets and manifests, run paired trials, and turn event

streams into metrics and figures. Determinism is encouraged by seeding randomized

components, pinning toolchains, and keeping module parameters and binaries stable across

baseline and intervention.

The public GitHub repository swechain-sdk1 serves as the canonical gateway to this

ecosystem. It provides the stable entry point referenced in this dissertation and in the

evaluation-ready release mentioned in the abstract. Internally, swechain-sdk organizes

the SWEChain appchain implementation, MCP servers, agent runners, simulation drivers,

dashboards, and analytics utilities as versioned components. The gateway repository

does not require there to be a single implementation of each off-chain role; rather, it

curates a reference set of MCP servers, agent runners, and simulation drivers used in this

dissertation, while allowing alternative implementations to be plugged in if they adhere

to the same contracts. This indirection allows the SDK’s internal layout and auxiliary

repositories to evolve over time while preserving a fixed, citable external reference for the

architecture described here.

At the system-context level, the primary user is a researcher who configures experiments

and inspects results. Figure 1 depicts this view. The researcher interacts with the

SWEChain-SDK system, which is shown as a single yellow box representing the appchain

and its surrounding tooling. The system executes on a single local host machine under

the researcher’s control, and interacts with two external services: a LeetCode-like task

corpus that provides programming problems for the synthetic data generation engine

(SDGE), and a remote or local LLM service such as Ollama or OllamaCloud, which is

used by MCP tools for model calls. The arrows indicate how the researcher configures

experiments and inspects results, how SDGE consumes the external corpus as input, how

SWEChain-SDK uses LLM inference via MCP, and how all of these activities are hosted

on the local machine.

1 <https://github.com/lascam-UFU/swechain-sdk>
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From the perspective of this dissertation, the architecture is expected to satisfy at least

the following ASRs:

❏ R1 – Reproducibility under comparable conditions. It should be possible to

re-run a paired baseline–intervention experiment under comparable conditions from

published artifacts and experiment logs that record chain and agent behavior at the

level needed for the study, with rules, datasets, seeds, and toolchains held fixed as

far as practicable.

❏ R2 – Controlled variation (ceteris paribus). Experiments should be able to

vary a single policy dimension at a time (for example, specialization, price-signal

utilization, quality-signal utilization) while holding all other aspects—mechanism,

workload, agent pool, and random draws—fixed.

❏ R3 – Mechanism transparency and auditability. Market rules for admission,

matching, pricing, and settlement should be encoded as verifiable code, with governed

parameters and provenance that allow auditors to reconstruct outcomes and identify

the effect of policy changes.

❏ R4 – Agent heterogeneity and policy diversity. The architecture should

support heterogeneous SWE-Agents with different specializations, bidding heuristics,

and information-use strategies, without compromising the determinism or safety of

the underlying mechanism.

❏ R5 – Observability and network analysis. The system should expose struc-

tured data that support not only aggregate Key Performance Indicators (KPIs)

such as throughput and cost, but also network-level analysis (for example, degree

distributions, assortativity) and distributional analysis (for example, inequality in

revenues).

❏ R6 – Configurability and extensibility. Researchers should be able to introduce

new mechanisms, policies, tools, and analytics without breaking existing experiments

or invalidating previous results, and with clear boundaries between mechanism-level

and experiment-level changes.

❏ R7 – Practicality for local experimentation. The SDK should remain small

and local-first so that experiments, including the A/B/C simulations in the abstract,

can be run on a single machine using reproducible scripts and profiles.

These requirements link directly to the contributions stated in the abstract: R1 and R2

support controlled, paired baseline–intervention experiments under shared experimental

setups; R3–R5 support SWE-Agent economic analysis with detailed provenance; R6 aligns

with the claim that SWEChain-SDK is configurable and extensible; and R7 ensures the
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SDK is usable as a practical research artifact. Later sections of this chapter revisit these

requirements explicitly for SWEChain-SDK.

Table 1 maps conceptual needs in this domain to decentralized requirements and to

concrete SWEChain-SDK design choices. It provides a bridge between the abstract domain

framing and the ASRs.

Table 1 – Conceptual needs in decentralized SWE-Agent economics, corresponding decen-
tralized requirements, and their realization in SWEChain-SDK.

Conceptual need Decentralized requirement Realization in the SDK

Mechanism as code Verifiable, governed market
rules; deterministic outcomes
where possible

Cosmos appchain with swechain and
issuemarket modules (messages, pa-
rameters, events), deterministic tie-
breaking policies, escrow via bank

Ceteris-paribus identifica-
tion

Vary one policy, hold others
fixed

Paired baseline–intervention mani-
fests; fixed seeds/datasets/schedules;
pinned toolchains

Shared state & auditabil-
ity

Auditable record of transitions ABCI events keyed by height; dev-
genesis and run headers; experiment-
specific exports used by analytics
tools

Agent heterogeneity Specialization, information-use,
bidding heuristics

Controllers (FSM/BT) with private
tag sets; LLM subroutines confined
to guarded states; policy described
in files

Information & scoring Transparent, governed policy
and prompt changes

On-chain parameters (disclosure
flags, scoring weights) via parameter-
update messages, and off-chain
prompt/controller configurations; all
height-stamped or versioned

Network analysis Structure beyond aggregates Bipartite issue–agent graphs; de-
gree/assortativity; inequality metrics
(for example, Gini/HHI)

Comparable KPIs Stable efficiency and quality
metrics

Metrics engine computing through-
put, p95 latency, cost per task,
pass/rework, price dispersion

Reproducibility & prove-
nance

Experiment logs and artifacts
that support re-running paired
trials under comparable condi-
tions and auditing outcomes

Stable filenames; checksums;
commit and genesis recorded in
run_header.json and related head-
ers

The remainder of the chapter describes how these requirements are addressed through

design principles, the composition of on-chain and off-chain components, and the configu-

ration and extension surfaces of SWEChain-SDK.
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3.2 Design Principles

The design philosophy of SWEChain-SDK is explicitly Unix-like. The SDK favors a

small, correctness-critical kernel, narrow and stable interfaces, plain and inspectable data,

and compositions of simple programs over large, monolithic services. The architecture

is intended to allow decentralized SWE-Agent outsourcing markets to be expressed as

code on a local chain, while experiment policy and analysis stay in separate, scriptable

layers that can evolve without compromising determinism or auditability where these are

achievable.

On chain, the kernel is a Cosmos SDK application (BaseApp plus a small set of modules,

including the custom swechain and issuemarket modules). Off chain, orchestration,

agents, tools, dashboards, and analytics are standalone processes that communicate

through typed files and streams. The swechain-sdk gateway repository does not collapse

these into a single binary; instead, it collects the chain, MCP servers, agent runners,

simulation drivers, dashboards, and analytics utilities into a coherent release with pinned

versions and reproducible profiles. This split preserves a clear trust boundary between

consensus state and research tooling and makes it possible to change methods at the edges

without disturbing the deterministic core.

Doing one thing well starts at the module boundary. issuemarket is scoped to auctions

and bids: it owns a namespaced store and a focused surface of messages, queries, parameters,

and events. Identity, balances and escrow, and governance remain the responsibility of

base modules. By keeping consensus logic minimal and explicit, the module remains

testable and auditable at the level of detail required for this study. Cross-module effects

are expressed via typed keeper calls and events rather than implicit side effects.

Composition is treated as dataflow. On chain, ABCI events form the primary stream:

each state transition emits types and attributes sufficient to reconstruct relevant causal

chains by height. Off chain, manifests, logs, and metrics are treated as text streams:

JSONL and CSV with stable schemas that tools (and humans) can read, write, and pipe

together. Agents consume events, maintain local memory in bbolt-backed stores, and

invoke tools over stdio protocols; this mirrors the Unix “pipe simple programs together”

idea in a setting oriented toward simulation-based studies of SWE-Agent economics. For

each auction, the chain’s event stream includes explicit events for bids, winner selection,

and settlement transfers, so that the economic outcomes studied in this dissertation can

be reconstructed from logs and analysis outputs.

Mechanism and policy are separated. Mechanism lives in the deterministic state

machine—message handlers, keeper methods, and bounded BeginBlock/EndBlock hooks.

Policy lives in governed parameters and off-chain configuration, including agent controllers

and prompts. Market rule changes are gated by parameter-update messages and height-

stamped; experimental conditions are captured in file-backed manifests with checksums

and seeds. The same binary kernel can host several experiments, while differing policies
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do not need to compromise safety or liveness. This separation is important for credible

baseline–intervention comparisons.

Interfaces are narrow, explicit, and stable. On chain, gRPC/REST expose module

messages and queries, and event types and fields form a public contract.2 Off chain, the

simulation drivers, agents, and tools exchange versioned JSON messages and report failures

as data. Any component is replaceable if it preserves its contract: a new sampler, agent

state, or tool can be introduced without touching the chain or rewriting unrelated services.

Plain data is preferred over complex abstractions. Event and agent logs are JSONL;

metrics are CSV; manifests are explicitly versioned. Artifacts are intended to be as easy

to read as to write, enabling straightforward inspection. Configuration is declarative and

file-backed; environment variables are used only for ephemeral secrets; every run writes

a header with commit identifiers, genesis checksums, parameter snapshots, and profile

versions. This shortens the path from “what happened?” to “show me the evidence.” In

practice, we combine automated analysis scripts with lightweight inspection tools such as

a terminal block explorer for SWEChain and a TUI browser over per-agent bbolt files;

screenshots of these tools are provided in Appendix D.

Reproducibility under fixed experimental setups is pursued through determinism and

pinning. The chain is deterministic by construction; experiments fix seeds, pin toolchains,

and wait for height 1 before orchestration. Node and build profiles codify timeouts, fee

policy, and versions so developer, continuous-integration, and long-run modes can be

aligned. In the Unix spirit, these profiles are parameterized invocations of the same

programs, which reduces drift between environments.

Failure is treated as a source of data rather than something to hide. When work cannot

proceed, the SDK logs inputs, decisions, and errors into the same structured streams

that support analytics. On-chain invariants and ante handlers are intended to fail closed;

off-chain processes fail fast with bounded retries and typed reasons; nothing mutates global

state without an associated trail. Treating “errors as data” means that the files used to

generate figures also record cases such as timeouts or mispriced bids.

Extensibility is incremental and orthogonal. New capability arrives as new modules,

messages, parameters, queries, events, tools, states, or analytics sinks, rather than as silent

reinterpretations of existing semantics. On chain, migration handlers and export/import

parity support long-lived contracts; off chain, regression tests and artifact comparisons

can be used to guard against unintended changes. Keeping pieces small, making contracts

obvious, and connecting them with simple dataflows allows the SDK to accommodate new

SWE-Agent market designs while preserving comparability with prior experiments.

Finally, the technology stack is chosen to support these aims. The kernel is implemented

in Go to obtain static binaries, predictable performance, mature tooling (go mod, vet,

2 In this chapter we refer to events by conceptual names such as “auction created” and “bid submitted”;
the concrete Cosmos SDK event types follow the standard type/attribute naming and are documented
in the SDK repository.
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lint), and strong protobuf/gRPC support; Cosmos SDK and CometBFT provide a

deterministic state-machine substrate with clear module boundaries. Around that verifiable

core, the rest of SWEChain-SDK behaves like a toolbox: the chain is the journal, events

are the pipes, manifests and logs are the files, and experiments are compositions of simple

programs that instantiate the research agenda of SWE-Agent Economics in concrete,

controlled simulation settings.
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To describe the structure of SWEChain-SDK, we adopt views in the spirit of the C4

model, moving from the system context in Figure 1 to a container-level view of the main

runtime elements and then to component-level views of the SWEChain appchain and the

native agent runtime used in the experiments.

At the context level, Figure 1 emphasizes three roles. The researcher, shown as a

person node, configures experiments, runs trials, and inspects logs, metrics, and figures.

SWEChain-SDK, shown as a system node, provides a local blockchain-based sandbox

for SWE-Agent outsourcing experiments with paired baseline–intervention trials, SWE-

Agents executed via a native agent runtime, and custom analytics. The environment node

indicates that the entire system executes on a single research machine, which hosts the

SWEChain node, the trial engine, the agent runtime, and the analytics tooling. Two

external systems, the LLM services and the LeetCode-like task corpus, are connected as

dependencies: the first provides model calls accessed through MCP tools, and the second

provides problem data used by SDGE to construct synthetic task datasets.

At the container level, the SWEChain-SDK architecture separates the deterministic

on-chain kernel from off-chain services and artifacts. Figure 2 provides this container

view. The large dashed outline labeled “Environment: Local host machine” corresponds

to the local host already introduced in the context diagram; within this environment, the

figure distinguishes between an “On-chain: SWEChain node” region and an “Off-chain:

SWEChain-SDK & experiments” region, and shows the researcher and external services at

the top.

Inside the off-chain region, the SDGE container generates synthetic LeetCode-style

task datasets and emits task sets and trial manifests. The trial_engine container consumes

these manifests, initializes and configures the SWEChain node according to a given profile,

and coordinates the execution of paired baseline and intervention runs. It is responsible

for starting the node with a specific genesis file and configuration profile, waiting for the

chain to reach a stable height, and launching the agent runtimes.

The native agent orchestrator container runs swechain_agent processes. It is built

on top of mcphost, reads finite-state-machine (FSM) configurations and MCP-access

configuration files, executes SWE-Agents according to these FSMs, and maintains per-

agent state and journals in bbolt-backed files. During a trial, each native agent process

obtains auction and chain state via MCP tools, calls additional tools as needed, and

decides when to submit bids and solutions. The use of bbolt for local persistence does not

change on-chain economics but makes it easier to inspect agent-level state and behavior;

Appendix D includes an example of browsing these files with a TUI bbolt browser.

The figure shows two kinds of MCP server containers. The swechain-mcp-server

is a core MCP bridge that wraps the swechaind command-line interface as tools for

opening auctions, submitting bids, querying auction state, and similar operations. The

MCP extension servers region collects two examples: a concrete lc-mcp-server, which
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exposes LeetCode-style tasks and metadata as tools, and an abstract “other MCP servers”

node representing additional tools that could be contributed by other researchers. These

extension containers are optional and live at the SDK’s extension boundary: any MCP

server that adheres to the same input/output contracts can be attached without modifying

the chain.

The External SWE-Agent runtimes container indicates that researchers are not re-

stricted to the native agent runtime. They may bring their own agent implementations—for

example, written in other languages, using different controller architectures, or integrating

with external lab infrastructures—and connect them to SWEChain-SDK via the same

swechain-mcp-server. As long as these agents speak the same MCP tool protocols and

respect the chain’s transaction and event model, they can participate in the same auctions

as the native agents and be evaluated under the same experimental conditions.

The custom analytics container represents simulation-experiment-specific tooling, such

as the trial_card utility and the simA_results, simB_results, and simC_results

programs used later in the dissertation. These tools read experiment logs (including agent

journals) from the artifact store and emit metrics tables and figures. The artifact store

itself is shown as a dedicated container: it holds manifests, run headers, agent event

streams, chain event exports where needed, metrics tables, and generated figures, all

under the researcher’s control. A lightweight live dashboard container consumes the same

streams and presents a near-real-time view of the current trial. Screenshots of the live

dashboard interface are provided in Appendix D.

Within the on-chain region, the SWEChain appchain container is labeled as a system

rather than a generic container to emphasize that it implements the deterministic mech-

anism under study. It is instantiated as a single-node Cosmos SDK application on the

local host and exposes RPC, REST, and gRPC endpoints for queries and transactions.

The appchain owns the on-chain state for accounts, balances, issues, bids, and settlements,

and emits the events that drive the economic analysis. During development and debug-

ging, a terminal block explorer is often attached to the running node to inspect blocks,

transactions, and events; Appendix D includes a screenshot of such an explorer attached

to a SWEChain simulation run.

At the bottom of Figure 2, the external services region mirrors the context diagram.

LLM providers such as Ollama or OllamaCloud are shown as external systems that perform

model calls on behalf of MCP tools, and the LeetCode-like task corpus is shown as the

source corpus for SDGE synthetic tasks. The arrows from MCP servers to LLM providers

indicate that some MCP tools perform LLM inference remotely rather than on the local

machine; the arrow from the external corpus to SDGE indicates that SDGE is seeded from

a pre-existing problem set but outputs synthetic datasets under fixed seeds.

The next two figures refine the container view by decomposing the SWEChain appchain

and the native agent runtime into their main components.
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heuristics, and budgets, and MCP-access profiles that specify which MCP tools are available

to each agent. A policy loader component translates these files into an internal controller

specification. The controller then executes the finite-state machine step by step: given

the current state, a view of local memory, and previous tool outputs, it proposes a next

state. A guards/validator component checks that the proposed transition is allowed by

the FSM graph and that any memo fields respect the expected schema; if a transition is

not allowed, the validator forces a safe fallback state. This finite-state-machine mechanism

is the main way in which SWEChain-SDK constrains agent behavior: every decision must

correspond to a labeled state and a permitted transition, and only those states are allowed

to trigger tool calls or transactions.

Within each step, the controller may read from or write to the local memory store,

which is persisted in a bbolt-backed database as a single JSON object per agent, issue

MCP tool calls via the MCP client (for example, to ask an LLM to propose a bid price,

query SWEChain state through an MCP bridge, or attempt a code solution), and instruct

a transaction-sending tool to build and submit bids or solutions. All decisions, tool calls,

retries, and outcomes are recorded by the journal writer into an append-only journal stored

in the same per-agent bbolt database; these structured event streams are later consumed by

the analytics tools. Because the controller is driven by a fixed FSM and bounded heuristics,

and because all randomness is either seeded or delegated to LLMs under fixed settings,

the native agent runtime fits the architectural requirements for controlled experiments

while still allowing heterogeneous policies and specializations across agents.

Although we do not include a separate sequence diagram, the runtime flow for a paired

baseline–intervention trial can be summarized as follows. The researcher first prepares a

manifest that specifies datasets, seeds, agent pool, and policy settings for baseline and

intervention. The trial engine then initializes a SWEChain node with a specific genesis file

and node profile, starts the SWEChain MCP server, the problem MCP server, and one or

more native agent runtimes configured by their FSM and MCP-access files, and runs the

baseline scenario to completion. During this run, SWE-Agents obtain auction state via

MCP tools, update their local memory stores, call MCP tools from guarded FSM states,

submit bids and solutions through MCP-exposed transaction tools, and write structured

journals. The chain emits ABCI events that can be queried by tooling, and the agents emit

journals that are written to the artifact store alongside a run_header.json. The system

is then reset or reinitialized under identical conditions, except for the intended policy

change (for example, specialization parameters, disclosure flags, or scoring weights), and

the intervention scenario is run. External SWE-Agent runtimes, if present, can participate

in the same flow by calling the swechain-mcp-server rather than being spawned by the

native runtime.

Finally, analytics utilities read the paired artifacts and compute metrics and figures,

including task completion, outsourcing cost, revenue concentration, and, where relevant,
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network-level statistics such as degree distributions or inequality indices. In each paired

experiment, the baseline and intervention share the same manifests for datasets, seeds, and

agent pool, and differ only in the policy dimension under study. The orchestration code,

packaged under the swechain-sdk gateway repository, runs the baseline and intervention

under identical node and build profiles, writing headers that pin the commit, genesis

checksum, parameter snapshot, and configuration. This structure provides the architectural

basis for the A/B/C simulations described in the abstract and supports R1, R2, and R7.

3.4 Configurability and Extensibility

The abstract describes SWEChain-SDK as configurable and extensible. This section

makes those claims precise by outlining configuration surfaces and extension pathways in

prose.

The SDK separates consensus-governed policy from experiment-level knobs and build

profiles. Consensus-facing settings are typed and height-stamped on chain; orchestration

and agent behavior are declared in file-backed manifests; build and node profiles pin

toolchains and runtime tolerances.

On the on-chain side, configuration surfaces include issuemarket parameters such as

auction duration, minimum decrement, reserve semantics, fee policy, disclosure switches,

and scoring weights. These are intended to be governed by parameter-update messages and

changed only by authorized actors, at known heights, with explicit parameter snapshots

in exports. Genesis templates specify the chain identifier, initial accounts and balances,

parameter baselines, and any pre-seeded state; they can be generated from templates

and recorded with checksums in run headers. Node runtime configuration, such as

RPC/REST/gRPC bindings, indexer settings, mempool options, minimum gas prices, and

logging levels, is encapsulated in node and application configuration profiles that can be

pinned per experiment profile.

On the off-chain side, configuration surfaces include trial manifests, agent policies,

MCP profiles, build and toolchain profiles, and analytics profiles. Trial manifests fix seeds,

task sets, specialization parameters, agent pool size and roles, and deadlines; they are

file-backed, versioned, and hashed, so that the workload and policy for a run can be

reconstructed. Agent policies specify controller topology (FSM or BT), guards, heuristics,

budgets, and retry strategies; they are expressed as structured files and can be swapped

without touching the chain. MCP profiles define endpoints, timeouts, concurrency limits,

and tool allow/deny lists for each MCP server, with secrets injected via environment

variables and the profile structure recorded as a file. Build and toolchain profiles pin

versions of the core language runtime, libraries, and build tools (for example, Go, Cosmos

SDK, CometBFT, and protocol buffer compilers) and are recorded via go.mod, continuous-

integration workflows, and explicit versioning. Analytics profiles select metrics, binning
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schemes, and figure styles and formats and control how raw event and journal data are

aggregated into tables and figures. Experiments are re-runnable: chain parameters are

frozen for each trial, node profiles are fixed, and all settings are captured in manifests

and run headers. The chain enforces escrow, award, and closure rules; orchestration stays

declarative; tools are scoped per profile; and figures are regenerated from the same recorded

inputs. Together, these mechanisms address R1–R3 and R6 by making configuration

explicit and inspectable.

The SDK can evolve through well-bounded on-chain modules and off-chain plug-ins

while maintaining comparability across experiments. On the on-chain side, new capabilities

are introduced as explicit additions rather than as silent changes to existing behavior. For

example, new market features are implemented as new modules or as new messages and

queries that live alongside the existing ones, rather than by changing what the original

messages do. Configuration switches and feature flags default to “off” so that simply

upgrading the binary does not alter market behavior until policies are deliberately changed.

When upgrades require changes to the structure of on-chain state, they are implemented as

deterministic transformations that can be run and checked against archived chain states,

so that historical experiments remain interpretable and comparable over time.

On the off-chain side, extension pathways include orchestrator plug-ins that operate

as pure functions on manifests and emit additional logs or metrics without mutating

chain state; new agent states and guards that expand the FSM or BT vocabulary while

preserving determinism and recording topology snapshots; new MCP tools that introduce

additional capabilities with stable input/output schemas, isolation, and resource caps; new

analytics sinks that write additional metrics or figures under stable filenames and schemas

without side effects on upstream artifacts; and new dashboards that consume existing

event and metrics streams and render them differently without mutating chain or journal

data. The native agent runtime and its bbolt-backed state, and the MCP-based block

explorer and bbolt browsers illustrated in Appendix D, are examples of such extensions at

the tooling layer.

New functionality in issuemarket is best introduced as additional messages, queries,

and parameters rather than as silent changes to existing behavior. Winners, escrow, and

closure semantics can remain invariant, while extensions such as dispute flows add new

events and deadlines without altering basic bid and award behavior. Off chain, agent

specialization and new tools expand capability without affecting the chain. Reproducibility

under fixed experimental setups is supported by keeping seeds, manifests, and toolchains

pinned and by validating changes with deterministic tests and artifact comparisons. These

practices collectively address R6 while protecting R1–R3.
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3.5 Discussion

The architecture of SWEChain-SDK operationalizes the conceptual framing of SWE-

Agent Economics introduced earlier in the dissertation and provides the technical founda-

tion for the simulation-based experiments presented in subsequent chapters. The public

gateway repository swechain-sdk collects the appchain implementation, access bridges,

agent runtimes, simulation drivers, dashboards, and analytics tooling described in this

chapter into a single, versioned research artifact.

The architecture links intelligent software engineering and software-engineering eco-

nomics through a configurable, extensible, and reproducible platform for studying decen-

tralized, auction-based SWE-Agent outsourcing markets. Within the broader domain

of SWE-Agent Economics, we focus on a specific and economically salient class of set-

tings: blockchain-based SWE-Agent outsourcing auctions in which autonomous agents

compete to complete software tasks under programmable market rules. Because issues,

bids, allocations, and payments are all linked to agent identities in the chain state and

logs, SWEChain-SDK naturally induces bipartite issue–agent graphs and derived network

statistics (for example, degree distributions, assortativity, and revenue concentration) that

are used in later chapters.

At a high level, the architecture turns this framing into a concrete experimental

instrument. The Cosmos-based appchain encodes mechanism-level rules—admission,

bidding, pricing, allocation, and settlement—as deterministic state-machine logic with

governed parameters and typed events. Off-chain orchestration, agents, tools, dashboards,

and analytics then act as programmable “lab equipment” around that mechanism: manifests

define paired baseline–intervention runs under fixed seeds and datasets; agent controllers

implement bidding and execution policies using finite-state machines and prompts; MCP

servers expose problem-access and model-calling capabilities; and analytics programs turn

experiment logs into metrics and figures. This division of responsibilities makes it feasible

to realize the abstract requirement of a blockchain-native SDK for economic network

simulations that can support controlled, paired baseline–intervention experiments under

fixed conditions in decentralized SWE-Agent outsourcing markets.

Configurability and extensibility follow from the same principles. On-chain parameters

capture market rules that are intended to be verifiable and governed—durations, fee and

reserve policies, disclosure switches, scoring weights, and closure behavior—and can be

changed at known heights. Experiment-level knobs for datasets, seeding, agent policies

(including prompts), and tool profiles live in versioned files that can be edited, diffed, and

reused. Extension points on both sides are explicit: on chain, new modules, messages, and

hooks arrive as additions with migrations and event schemas; off chain, new samplers, agent

states, MCP tools, dashboards, and analytics sinks compose against stable contracts. This

makes it possible to introduce new SWE-Agent market variants or experimental policies

while remaining within the same architectural envelope and retaining comparability with
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the experiments reported in this work.

Every state transition that matters to the study emits at least one typed event; every

agent decision is logged as a structured journal entry; errors and timeouts are treated

as data rather than silently swallowed. Figures in later chapters are therefore grounded

in concrete files such as experiment logs, agent journals, manifests, and metrics tables.

This makes it possible for other researchers, in principle, to rebuild the same plots, re-

run paired trials under comparable conditions, or extend the experiments with modified

policies using the same logs and manifests that back the evaluation-ready SDK release.

Appendix D complements this chapter by illustrating the practical inspection tools used

during development and experimentation.

The same architecture also admits a disciplined evolution path for the SDK itself.

New agent behaviors, dashboards, or tooling integrations can be introduced off chain

without compromising safety or reproducibility, provided their inputs and outputs adhere

to existing schemas. Design patterns such as semantic versioning, explicit feature flags,

and regression tests over artifacts are compatible with this architecture and can be used

to manage change in a research tool that is expected to be reused and extended beyond

this dissertation.

Finally, the architecture is intentionally neutral with respect to economic design within

its design scope. SWEChain-SDK does not prescribe a single “correct” outsourcing

mechanism or agent strategy; within the space of Cosmos-based auction markets with

MCP-based SWE-Agents, it provides a concrete, blockchain-native SDK that makes it

practical to implement different mechanisms, configure different policies (on chain and in

agent controllers and prompts), and observe how SWE-Agents behave in decentralized

outsourcing markets under controlled conditions derived from experiment logs. In this

sense, the architecture helps connect the abstract domain of SWE-Agent Economics with

the empirical simulations in the following chapters: it provides a concrete way to set up

the paired baseline–intervention experiments described in the abstract, run them under

fixed conditions, observe them in real time, and analyze them with detailed provenance.
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Chapter 4

SWEChain-SDK Simulation Experiments

We evaluate whether SWEChain-SDK supports controlled, paired baseline–intervention

experiments under fixed conditions in decentralized Software-Engineering Agent (SWE-Agent)

outsourcing markets. In all three experiments we run a baseline and an intervention on the

same tasks, agents, seeds, and auction parameters; only one policy dimension varies. This

matches the abstract’s emphasis on blockchain-based SWE-Agent outsourcing markets, on

a blockchain-native SDK for economic network simulations, and on paired experiments

that highlight differences in task completion, outsourcing cost, and revenue concentration

under fixed conditions.

Table 2 summarizes the three interventions and the primary outcome measures and

visuals, aligned with the abstract’s focus on task completion, outsourcing cost, and revenue

concentration.

Table 2 – Simulation experiments, interventions, and main outcome measures.

Experiment Intervention Metrics / visualizations

A — Compar-
ative advantage
via agent spe-
cialization

Agents receive private special-
ization tags and small in-niche
/ out-of-niche cost multipliers
(versus an all-generalist base-
line).

Winner–task alignment (assortativ-
ity), assignment rate, revenue concen-
tration; trial-card dashboards, agent
finite-state machines, and baseline–
intervention comparison plots.

B — Compet-
itive bidding
via bidders’
price-signal
utilization

Bidders’ prompts explicitly in-
struct agents to use the cur-
rent standing best admissible
bid when deciding whether and
how to bid.

Discount from reserve (level/disper-
sion), a simple convergence proxy, par-
ticipation and competition indicators,
revenue concentration; trial-card dash-
boards, bidder finite-state machines,
and four-panel comparison plots.

C — Principal-
weighted se-
lection via
quality-signal
utilization

Principal replaces a price-only
winner rule with a fixed price–
quality scoring rule over struc-
tured bids.

Cost-to-completion, first-pass success,
discount from reserve, participation,
revenue concentration; trial-card dash-
boards, principal finite-state machines,
and headline comparison plots.
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Across all three experiments, baseline and intervention runs share the same tasks,

agents, random seeds, and auction parameters; only the stated policy dimension is varied.

The paired design is therefore intended to reduce confounding from incidental randomness

and input changes, although the results remain single-case studies for the specific workloads

considered rather than broad population estimates.

In all simulations, programmatic randomness is controlled through an explicit random_seed

recorded in each trial’s JavaScript Object Notation (JSON). The Synthetic Data Gen-

eration Engine (SDGE) generator distinguishes between an experiment-level base seed,

supplied on the command line via -seed, and the per-trial seeds that are actually used dur-

ing sampling. Internally, the seed for trial t is computed as trialSeed = baseSeed + t;

for example, running SDGE with -seed 1111 yields random_seed = 1112 for trial_001,

1113 for trial_002, and so on. This offset is intentional: the base seed serves as a

single handle for reproducing an entire experiment, while trial-specific seeds ensure that

each trial has its own deterministic pseudo-random stream, even if downstream code

were to forget to reseed. Given a fixed base seed, problem corpus, and configuration,

SDGE therefore produces the same sequence of per-trial seeds, the same sampled task

sets, the same agent pools (including specialization tags and accuracy profiles), and the

same orchestration schedules. In the paired baseline–intervention design, the baseline and

intervention manifests for a given trial index share the same per-trial seed, so all seeded

randomness (for example, task selection and tag assignment) is aligned across the pair and

the only intended difference is the policy under study (such as specialization or scoring).

Randomness internal to Large Language Model (LLM) inference is not controlled by these

seeds; instead, reproducibility under comparable conditions is supported by pinning model

configurations and toolchains and by recording event-complete logs. This design allows

a reviewer to verify that (i) a single base seed is sufficient to regenerate the full family

of trials and (ii) within each baseline–intervention pair, seeded stochastic elements are

synchronized, preserving the ceteris paribus structure of the experiments.

The SWEChain issuemarket environment faced by a single SWE-Agent has several prop-

erties that motivate the choice of metrics. From the agent’s perspective, the environment

is partially observable (agents see only the task description, a small history, and selected

price signals, not the full global state), strategic (other agents are also optimizing bids, so

outcomes depend on their behavior), sequential (bids and responses unfold over multiple

steps), dynamic (the set of active auctions and bids evolves over time), discrete (actions

and state changes occur at discrete blocks and steps), and inherently multi-agent. The

trial-card and experiment-specific metrics are chosen to summarize how agents perform

and interact in this kind of environment along three main dimensions: task completion,

outsourcing cost, and revenue concentration.

Common experimental pipeline and tooling. All three simulation experiments rely on a

common tool, trial_card, to extract and visualize economic and network outcomes from
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the blockchain. The goal is to give each run a single, reproducible summary that fixes the

meaning of completion, cost, competition, and concentration across experiments and to use

the same summary structure when comparing baseline and intervention conditions. For

each experiment we therefore show four economic/network figures built from the canonical

trial_card exports:

1. a baseline trial card;

2. an intervention trial card;

3. a paired trial-card comparison;

4. an experiment-specific “results” figure.

In addition, each experiment includes agent-level figures that show the finite-state machines

(FSMs) executed by the relevant agents under baseline and intervention conditions. These

FSMs clarify how the policy dimension is implemented at the control-flow and prompt

level.

In its default compute mode, trial_card connects to the local SWEChain node and

queries the issuemarket module for all auctions and bids at a chosen block height. It

normalizes bid amounts, reconstructs the lowest admissible winning bid for each auction,

and aggregates auction-level and bidder-level statistics. The tool writes a canonical

JSON summary (trial_card.json) together with a single-run figure (trial_card.svg,

converted to trial_card.pdf) that presents the main metrics in a compact dashboard.

Trial-card metrics and terminology

Because the same terminology appears in all trial-card and paired-comparison figures,

this section summarizes the main quantities and how they are computed. Interpretations

of high versus low values are discussed in the Simulation Results and Discussion sections

for each experiment.

The trial-card Volume block reports how active the marketplace was in a run:

❏ Auctions total is the number of auctions instantiated.

❏ Auctions with bids counts auctions that received at least one bid.

❏ Completed (with winning bid) counts auctions that clear with a winner.

❏ Completion rate is the share of auctions that clear, that is, completed auctions

divided by total auctions.

The Auction competition block characterizes how competitive the auctions are:
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❏ Bids total counts all bids submitted in the run.

❏ Mean bids per auction averages the number of bids across all auctions.

❏ Single- / multi-bid auctions reports how many auctions have exactly one bid versus

at least two bids, together with their shares.

❏ For multi-bid auctions, the best–second gap is the average difference between the

winning price and the second-best price, and the best–second ratio is the average

ratio of second-best to winning price.

The Economic outcomes block focuses on outsourcing cost and price dispersion:

❏ Total outsourcing cost is the sum of payments over all completed auctions in the run.

❏ Mean cost per completed task is total cost divided by the number of completed

auctions.

❏ Win price min/med/max reports the minimum, median, and maximum winning

prices.

❏ Win price std dev / CV report the standard deviation of winning prices and its

coefficient of variation (the standard deviation divided by the mean winning price).

The Network and participation block reflects how agents share in the work:

❏ Distinct bidders counts how many agents submit at least one bid.

❏ Distinct winning bidders counts how many agents win at least one auction.

❏ Bidders with at least one win is the fraction of bidders who win at least once.

❏ Unique bidder–auction pairs counts bidder–auction combinations with at least one

bid.

❏ Mean distinct bidders per auction is the average number of bidding agents per

auction.

❏ Mean auctions per bidder is the average number of auctions on which an agent bids.

❏ Mean wins per winning bidder is the average number of wins among those bidders

who win at least once.

The Revenue concentration block summarizes inequality in how revenue is distributed:
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❏ Starting from each agent’s total revenue (sum of payments over its wins), a revenue

Gini coefficient is computed on a zero-to-one scale. A value of zero means perfectly

equal revenue (all active agents earn the same); a value close to one means that

almost all revenue goes to a single agent.

❏ The revenue Herfindahl–Hirschman Index (Herfindahl–Hirschman Index (HHI))

sums squared revenue shares; higher values mean more concentration.

❏ Top-1 , Top-3, and Top-5 revenue shares report the fraction of total revenue earned

by the highest-earning agent, by the top three agents, and by the top five agents,

respectively.

In these experiments, a revenue Gini reported as 0.000 usually has one of two interpre-

tations: either the run has no completed auctions (so all agents earn zero, and revenue

inequality is mechanically zero), or all winning agents receive exactly the same payment.

Neither case is an error; both are boundary cases of perfectly equal revenue.

The paired baseline–intervention trial-card comparisons, generated in –compare mode,

condense the same metrics into a side-by-side view: for each selected quantity, the card

shows the baseline level, the intervention level, and their difference. For example, a paired

card in Simulation C might report:

❏ Completion: B: 69.6%, I: 50.0%, Δ = −19.6 percentage points;

❏ Mean cost per task: B: 22.05, I: 15.69, Δ = −6.36 tokens;

❏ Revenue Gini: B: 0.343, I: 0.357, Δ = +0.014;

❏ Revenue HHI: B: 0.0736, I: 0.0770, Δ = +0.0034;

❏ Top-3 revenue share: B: 33.8%, I: 37.9%, Δ = +4.1 percentage points.

Here “B” refers to the baseline run and “I” to the intervention. The differences are always

reported as intervention minus baseline, so negative values mean the intervention is lower

on that metric and positive values mean it is higher. The paired card format is reused

across the three experiments; how to interpret high versus low values for the metrics that

appear is discussed in the Simulation Results and Discussion sections for each experiment.

Taken together, these trial-card metrics provide a common vocabulary for the three

simulation experiments. The Simulation Results and Discussion sections refer back to this

vocabulary when interpreting baseline–intervention differences and headline figures for

each policy dimension.
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4.1 Simulation Experiment A — Comparative Advan-

tage via Agent Specialization

Simulation A evaluates a minimal marketplace modification: each agent privately

receives a small set of specialization tags (e.g., DP, Graphs) and is nudged—via prompts

and small cost multipliers—to bid in those niches. The aim is to increase specialist–

task alignment (who wins what) without lowering the auction clearance rate. This

operationalizes comparative advantage in autonomous software-work routing while holding

auction rules and infrastructure fixed.

4.1.1 Experimental Design

We ask whether private, agent-side specialization increases winner–task assortativity

while keeping the assignment rate at least as high as a seed-matched baseline with no

specialization. In the baseline, agents act as generalists: they see no private tags and

face neutral cost multipliers. In the intervention, each agent i is assigned a private tag

set Si; prompts explicitly encourage bidding on tasks whose primary tag lies in Si; and

the simulator applies a small in-niche cost discount with a small out-of-niche penalty. All

other marketplace rules—timing, eligibility, fees, and clearing logic—remain identical.

Matching quality is summarized by a categorical assortativity coefficient r over a

winner-bucket×task-tag contingency table {ekl} with margins ak =
∑

l ekl and bl =
∑

k ekl:

r =

∑
k ekk −

∑
k akbk

1 −
∑

k akbk

.

Here the winner bucket equals a task’s primary tag if the winner’s private tags include it,

and Other otherwise. Thus r ≈ 1 indicates strong tag-level alignment (winners typically

have tags that match the tasks they win), r ≈ 0 resembles chance given the observed base

rates, and r < 0 signals systematic mismatch (winners tend to lack the relevant tags).

This metric is used because the central question in Simulation A is whether specialization

helps route work to more suitable agents; assortativity provides a single, interpretable

summary of that alignment.

Participation is tracked via the assignment rate (auctions with a winner divided by

auctions launched), together with summary statistics on competition (bids per auction,

share of multi-bid auctions, and distinct bidders) and realized outsourcing cost (mean cost

per completed task). Revenue concentration is summarized by the Gini and HHI of agent

revenue and by the revenue share of the top winners, using the definitions introduced

earlier in the chapter. These metrics are chosen because they translate the qualitative idea

of “specialists doing the right tasks” into concrete questions: does specialization increase

or reduce coverage, how much more or less do buyers pay, and does specialization spread

work across more agents or concentrate wins in a few specialists?
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wins broadens: a larger fraction of active bidders obtain at least one win, which shows

up as higher winner diversity and more bidder–auction pairs than in the trivial baseline.

Third, realized outsourcing cost becomes positive rather than trivially zero, which is

expected once work is actually being performed. Fourth, revenue concentration is non-zero

but mechanically sensitive to the small number of completed auctions: when only a

few tasks clear, any agent who wins one of them captures a large revenue share. These

observations are conditional on the specific configuration and workload; they illustrate how

SWEChain-SDK can be used to probe the implications of a specialization policy under

controlled but necessarily simplified conditions.

4.1.3 Threats to Validity and Limitations

The main threat to validity in Simulation A is the small effective sample size of

completed auctions in the baseline and intervention runs. When only a handful of tasks

clear, summary statistics such as the winner–task assortativity r, the Gini of revenue, or

the share of bidders with wins become noisy and highly sensitive to individual auctions.

We partially mitigate this by working with a seed-matched baseline–intervention pair

and by publishing the underlying contingency tables and trial cards so that alternative

statistics can be recomputed, but the small number of completions remains a limitation.

A second limitation is the stylized nature of both tasks and agents. Specialization tags

are assigned rather than learned; agent policies are finite-state and prompt-driven; and the

cost structure is simplified to highlight a single mechanism. This makes Simulation A a

useful test bed for the SDK’s experimental pipeline, but it also means that the quantitative

effect sizes should not be read as direct estimates for production systems.

Third, the short time budget and fixed agent pool restrict the range of equilibrium

behaviors that can arise. For instance, we do not model long-run adaptation, tag reallo-

cation, or agents strategically reshaping their specialization to chase profitable tags. As

a result, Simulation A underestimates dynamic phenomena such as agents drifting into

dominant niches or principals adapting their posting behavior.

Finally, the winner inference rules and tag mappings introduce their own modeling

choices. When explicit winner events are missing but valid numeric bids exist, we infer

winners by selecting the lowest admissible bid; alternative tie-breaking or quality-weighted

rules could produce different concentration patterns. The tag hierarchy and the mapping

from raw task descriptions to primary tags are also simplified. These are acceptable

compromises for a first experiment and for achieving reproducibility within the chosen

environment, but they limit external validity. Subsequent experiments in the dissertation

revisit some of these design choices under richer workloads and longer runs.
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4.2 Simulation Experiment B — Competitive Bidding

via Bidders’ Price-Signal Utilization

Simulation B studies how bidder-facing prompts that explicitly call out the standing best

admissible bid relate to pricing, competition, and participation when all other marketplace

elements are held fixed. We compare a seed-matched baseline–intervention pair of runs

in which bidders see the same task and principal fields and the same best-bid field in

their input, but only the intervention prompt instructs them to take the current best

bid into account when deciding whether and how to bid. The agent pool, effective costs

(including any specialization), auction rules, and payment logic remain constant across

the two conditions.

4.2.1 Experimental Design

The main question is whether prompting bidders to explicitly consider the current

best admissible bid, on top of the usual task and principal information, is associated with

tighter pricing and different competitive behavior, and how these changes relate to task

completion.

All bidding agents share a common controller and JSON output schema. For each

auction, the agent receives a structured description of the task (identifier, deadline, required

skills, and a coarse difficulty estimate), basic principal-history fields (for example, past

acceptance and repair rates), and the current standing best admissible bid when one exists.

The chain and event stream expose the same fields in both arms; the only difference is

how strongly the prompt tells the agent to use the best-bid information.

We define two regimes. In the baseline (best-bid neutral) condition, the prompt

describes the task and principal and instructs the agent to propose a bid based on its

private costs, the deadline, and principal reputation. The current best admissible bid

is present in the input schema but is not highlighted in the system prompt and is not

mentioned in the instructions, and the agent is not explicitly asked to react to it. In the

intervention (best-bid attentive) condition, the same task and principal fields and best-bid

field are provided, but the system prompt includes a dedicated section for the current best

admissible bid and explicitly instructs the agent to take it into account: the agent is asked

to assess whether the current best bid looks plausible given the task and principal, and

then to decide whether to undercut, match, or abstain given its own cost structure and

risk tolerance. The intervention is therefore purely prompt-level: both arms have access

to the same information, but only the intervention makes the best-bid field salient and

normatively relevant for bidding.

Beyond raw prices, we instrument two derived quantities for each auction. A buyer-
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discount-from-reserve score

sa =
pclear

a − preserve

a

preserve
a

captures how far the clearing price pclear

a falls below a coarse reserve preserve

a implied by task

difficulty. Here sa < 0 means the buyer pays less than the reserve (a discount), sa = 0

means the buyer pays exactly the reserve, and sa > 0 would mean paying above reserve.

Smaller (more negative) values of sa correspond to better prices for the buyer, and lower

dispersion of sa across auctions indicates more predictable pricing. This metric is used in

Simulation B because the treatment is all about how agents react to price signals; discount

from reserve provides a normalized way to compare prices across tasks with different

implied costs.

A simple convergence proxy

τa = tclose

a − t?
a

measures the time between the first appearance of the final clearing price t?
a and the

auction close tclose

a . Smaller τa means the auction effectively “settles” earlier relative to

close, while larger τa indicates that prices continue to change closer to the deadline. This

proxy is included because one practical goal of using price signals is to stabilize auctions

sooner, reducing unnecessary bidding late in the process.

Guardrail metrics mirror the chapter-level focus on participation and concentration. We

track the number of distinct bidders per auction, the assignment rate (fraction of auctions

with a winner), and the concentration of wins across agents via the Herfindahl–Hirschman

Index (HHI) and top-k revenue shares. Task-level acceptance and rework metrics are

derived from the events stream in the same way as in Simulation A. As in Simulation A,

baseline and intervention use the same tasks, agents, random seeds, timing budgets, and

auction parameters. The resulting paired differences in the reported metrics are therefore

at least consistent with the prompt-level treatment of best-bid information playing a

central role, although they should still be interpreted as specific to this workload and

configuration.

Bidder finite-state machines and price signals

Agent behavior in Simulation B is controlled by two agent specification files,

agent_B_baseline.json and agent_B_intervention.json, stored under simB/config/

in the repository. The two specifications are deliberately kept as close as possible: they

share the same finite-state machine, retry policies, memory filters, and language-model

sampling configuration. The main design choice is how the current best admissible bid is

surfaced and used inside the bidding state.
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trade-offs visible in simple terms: does making price signals salient help the buyer by

lowering prices, does it change how often auctions behave as real competitions rather than

singleton offers, and how does it affect the share of tasks that actually clear? For this

particular seeded workload, the figure shows that price-signal prompts reduce completion

but improve prices on the auctions that do clear, and they narrow the best–second gap,

indicating tighter competition where bidding occurs.

From an engineering perspective, Simulation B illustrates that SWEChain-SDK can

express bidder-side information policies at the prompt level without changing the underlying

auction code or the on-chain state schema. The best-bid field already exists as on-chain

state; the mechanism and datasets are unchanged; and only the way in which that

information is surfaced in the prompt is altered. The resulting changes in completion,

pricing, and revenue concentration can be traced back to a specific, versioned configuration

that can be inspected and rerun in a controlled environment.

4.2.3 Threats to Validity and Limitations

Several caveats qualify the interpretation of Simulation B. First, the number of usable

auction pairs after applying the outlier rule is modest, and the experiment reports a single

seed-matched baseline–intervention trial run for this configuration. This was a deliberate

scope, compute, and time choice: the dissertation focuses on building and validating the

platform and the experimental protocol, and leaves larger-scale experimentation with many

independent trials and parameter sweeps as future work. The figures should therefore be

read as an internally consistent case study of what the platform can express rather than as

definitive population-level estimates of the effect of price-signal prompts in all SWE-Agent

markets.

Second, the treatment works purely through prompt text. In both arms, the best-bid

field is technically available in the input; the difference is whether the prompt highlights it

and instructs the agent to reason about it. This is appropriate for evaluating SWEChain-

SDK as an experimentation platform for prompt-level policy changes, but it also means that

effect sizes depend on how responsive the underlying language model is to prompt wording

and on how stable that responsiveness remains over time and across model updates.

Third, agent policies are fixed for the duration of a trial and do not adapt across

auctions. This isolates the effect of the prompt change in the short run but abstracts

away learning dynamics and longer-run strategy shifts, such as tacit collusion, chronic

underbidding, or strategic avoidance of certain principals, that might emerge in repeated

play with price-signal information. Incorporating adaptive or meta-learning agents is an

important direction for subsequent work.

Third, the convergence proxy τa depends on orchestration choices such as how frequently

bids are submitted and evaluated within the fixed runtime budget. Different timing

parameters could change absolute levels of τa even if the qualitative contrast between
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neutral and price-signal prompts remains similar. By keeping timing constant across arms

and publishing the underlying event logs, the experiment permits alternative operational

definitions of convergence and post hoc sensitivity analysis, but the metrics reported here

correspond to one specific orchestration regime.

Finally, as in Simulation A, these experiments are run under a particular choice of model,

hardware, and network configuration. While the reproducibility protocol in Appendix B is

designed to support reruns on similar machines with the same model identifier, different

inference stacks or hardware constraints could interact with timing and budget parameters

in ways that shift completion and pricing levels, even when the qualitative comparison

between neutral and price-signal prompts remains broadly similar.

4.3 Simulation Experiment C — Principal-Weighted

Selection via Quality-Signal Utilization

The third experiment moves from bidder-side information to principal-side selection.

Here we test whether replacing a price-only winner rule with a transparent price–quality

scoring rule is associated with changes in cost-to-completion and first-pass success under

the same tasks, agents, bids, and runtime parameters.

4.3.1 Experimental Design

The research question is whether a fixed, documented price–quality scoring rule,

applied by the principal agent to structured bid summaries, can be implemented within

SWEChain-SDK and whether, for the chosen workload, it is associated with lower total

cost-to-completion and higher first-pass success, without clear signs of degraded price

efficiency or participation.

In all conditions, bidders return a structured record containing: (i) a bid amount, (ii) a

predicted probability that the submission will pass acceptance tests, and (iii) a predicted

implementation duration. The auction format, reserve prices, payment rule (pay-as-bid),

and eligibility thresholds match the earlier experiments.

In the baseline (price-only) condition, the principal is instructed, via its system prompt,

to select the lowest admissible bid, with deterministic tie-breaking based on bidder

identifiers. Predicted quality and duration are logged but ignored in the decision. In the

intervention (price–quality scoring) condition, the principal instead applies a linear scoring

rule of the form

Scorea(i) = wq · ̂pass_proba,i − wc · bid_amounta,i − w` · ̂lateness_hoursa,i,

with weights (wq, wc, w`) fixed ex ante and lateness measured as predicted delay beyond

the task deadline. The prompt instructs the principal to compute this score for each bid,
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to select the highest-scoring bidder, and to log both the chosen rule and the per-bid scores

for audit. Higher scores mean that, according to the chosen weights, the bid offers better

expected quality-for-price-and-timeliness; lower scores mean the opposite. This metric is

used because Simulation C asks whether principals can move beyond pure price competition

toward multi-attribute selection, and how such a move relates to cost-to-completion and

success rates.

For each auction a, we define

Ca = c(0)
a + ra,

where c(0)
a is the initial payment and ra aggregates penalties and rework costs; Ca is

interpreted as cost-to-completion. A higher Ca means that, for that auction, the buyer

had to pay more in total (initial payment plus any penalties or repeats) before the

task was accepted; a lower Ca means cheaper completion. First-pass success (First-Pass

Success (FPS)) is

FPS =
1

A

∑

a

Fa,

where Fa = 1 if the first submission passes acceptance tests and 0 otherwise. FPS close to

one means that most tasks succeed on the first attempt; FPS close to zero means that

most tasks require rework. These metrics are central in Simulation C because they capture

exactly what a quality-sensitive principal might care about: how often the first try is good

enough, and how much it ultimately costs to get tasks over the finish line.

Pricing is monitored via the same discount-from-reserve metric sa as in Simulation B,

and participation is summarized by the median number of distinct bidders per auction

and the HHI of wins. As in the previous experiments, metrics are computed on auction

pairs that pass the outlier rule, and randomness is controlled via seed-matched runs.

Principal finite-state machines and scoring policy

The selection rule in Simulation C is implemented at the principal agent level, through

a finite-state machine that consumes structured bids, evaluates them, and chooses a winner.

Bidders reuse the bidding controllers from the previous experiments; the main variation

lies in how the principal processes their submissions.
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For the chosen configuration, the quality-adjusted rule appears to change both cost-

to-completion and FPS relative to the price-only baseline, while keeping participation

within a similar range. The detailed effect sizes are documented in the appendix; at a high

level, the experiment illustrates how principal-side policies implemented as prompt-level

evaluation rules over structured bids can be expressed and examined in SWEChain-SDK

without modifying the underlying auction code.

From an engineering standpoint, Simulation C shows how marketplaces can move

beyond pure price competition while retaining explicit, inspectable decision criteria. The

scoring rule is fixed, documented, and encoded in prompts; per-bid scores are logged; and

runs can be reconstructed from the published manifests and logs. In practice, designers

could sweep over alternative weight vectors (wq, wc, w`), introduce non-linear penalties for

severe lateness, or couple the scoring rule with specialization and price-signal treatments

to explore richer design spaces. The key point for this dissertation is that such policies

can be encoded, versioned, and evaluated within SWEChain-SDK under controlled, paired

conditions and that they have visible consequences for task completion, outsourcing cost,

and revenue concentration in the simulated markets considered here.

4.3.3 Threats to Validity and Limitations

Several considerations qualify the interpretation of Simulation C. First, FPS is sensitive

to acceptance-test strictness and timeout parameters; while these are fixed across arms,

alternative acceptance harnesses could shift absolute levels even if paired differences persist.

Second, the structured fields used in scoring (predicted pass probability and lateness)

are model outputs and may be miscalibrated; miscalibration can attenuate or distort the

apparent benefits of quality-sensitive scoring. Third, the chosen linear scoring with fixed

weights (wq, wc, w`) is only one of many plausible rules; different weights or non-linear

penalties could change effect sizes and trade-offs. Fourth, as in the earlier experiments,

the number of usable auction pairs after the outlier rule can be modest, so small-sample

fluctuations remain an important concern. Finally, bidders do not adapt strategies across

auctions in this setup; longer-run equilibria (for example, shading against quality-sensitive

principals or shifting participation toward principals with particular scoring rules) are out

of scope for this controlled comparison.

4.4 Discussion

Simulation A operationalizes comparative advantage via private specialization tags and

cost multipliers on the bidder side. Simulation B studies bidder-side price-signal utilization

by making the current best admissible bid salient in the bidding prompt. Simulation C

moves to principal-side policy, introducing a price–quality scoring rule over structured bids

in place of a pure price winner rule. Across these three simulation experiments we vary a
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single policy dimension at a time under a tightly specified environment and examine how

the observed outcomes differ between baseline and intervention runs. Each experiment is

based on a single seed-matched baseline–intervention pair, and all results are conditional

on the specific workloads, parameter settings, and models used. Because we report a

single seed-matched baseline–intervention pair per experiment, the results are illustrative

for the specific seeded workloads and should not be interpreted as averaging over many

independent random seeds.

Within these limits, the experiments provide concrete case studies of how simple,

programmable policy changes relate to task completion, outsourcing cost, and revenue

concentration in decentralized SWE-Agent outsourcing markets. The chapter keeps the

focus on the three outcome families highlighted in the abstract and introduction. For

task completion, we monitor both assignment rates (completion as a share of launched

auctions) and, where relevant, first-pass success. For outsourcing cost, we track mean cost

per completed task and related price statistics, sometimes normalized by rough reserve

levels. For revenue concentration, we use the revenue Gini, HHI, and top-k revenue shares

derived from the trial cards. Presenting these quantities through the same trial-card

dashboards, paired-comparison cards, and experiment-specific summary figures allows us

to compare baseline and intervention regimes within each simulation and, at a high level,

to align the three experiments under a common empirical vocabulary.

Taken together, the experiments support the dissertation’s claim that a blockchain-

native SDK such as SWEChain-SDK can host controlled, paired baseline–intervention

studies of decentralized SWE-Agent outsourcing markets with event-level provenance. In

this setting, market-design ideas familiar from economics and operations—comparative

advantage, price-signal utilization, and multi-attribute scoring—are not just informal

guidelines; they are encoded as concrete configurations of code and prompts that can

be versioned, executed, and examined. For each experiment, we hold tasks, seeds, and

infrastructure fixed; toggle a single policy dimension; and compare the resulting trial-card

summaries and derived plots. The observed differences are not guaranteed to generalize

beyond the specific workloads and models considered, but they illustrate how SWEChain-

SDK can be used to study SWE-Agent markets in a way that is explicit about mechanisms,

transparent about data, and grounded in event-level logs.

Finally, the chapter highlights a practical pattern for future work in SWE-Agent

Economics. Mechanisms and agent policies can be encoded as code and prompts; tasks,

seeds, and infrastructure can be fixed in manifests; single policy dimensions can be varied

while others are held constant; and events can be logged at sufficient granularity to

support re-analysis. SWEChain-SDK provides the concrete tooling for this pattern; the

experiments in this chapter demonstrate how it can be applied in a small set of illustrative

scenarios. Subsequent work can build on this pattern by enlarging the space of workloads

and policies, by increasing the number of independent runs, and by introducing adaptive



4.4. Discussion 93

agents and richer equilibrium behaviors, while retaining the same emphasis on controlled

comparisons, transparent mechanisms, and event-level provenance.
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Chapter 5

Related Work

AI agents’ strategic interactions in economic settings—a key line of inquiry in AI-agent

economics—have attracted increasing attention amid recent advances in generative AI. We

focus on blockchain-based SWE-Agent outsourcing markets, which link intelligent software

engineering and software-engineering economics through programmable, transparent, and

auditable mechanisms that centralized platforms rarely expose. We evaluate whether a

blockchain-native SDK for economic network simulations can support controlled, paired

baseline–intervention experiments under fixed conditions in decentralized SWE-Agent

outsourcing markets. Against this backdrop, this chapter situates the dissertation within

three strands of related work. First, it reviews work that models agents as decision-makers

embedded in markets and networks. Second, it surveys recent efforts that explicitly frame

AI-agent economics and construct virtual agent markets or exchanges. Third, it discusses

experimental platforms and SDKs for AI agents and positions SWEChain-SDK with

respect to these systems by highlighting the remaining research gap.

5.1 Agents, Markets, and Computational Economics

Classical work on autonomous agents and multi-agent systems provides the concep-

tual basis for viewing software entities as decision-makers with state, goals, and policies.

Cognitive and symbolic architectures such as Soar (LAIRD; NEWELL; ROSENBLOOM,

1987), BDI agents (RAO; GEORGEFF, 1995; WOOLDRIDGE, 2000), and planning for-

malisms like STRIPS and PDDL (FIKES; NILSSON, 1971; MCDERMOTT, 1998) model

agents as goal-directed problem solvers under constraints, while behavior-based approaches

emphasize reactive control and layered architectures (BROOKS, 1986; BROOKS, 1991;

GAT, 1998; BONASSO et al., 1997). Multi-agent systems work then formalizes coordina-

tion, communication, and organizational structures (WOOLDRIDGE, 2009; JENNINGS;

SYCARA; WOOLDRIDGE, 1998; JENNINGS, 2000), and standard reinforcement-learning

and decision-theoretic formulations treat agents as policy-bearing processes in stochastic

environments with partial observability (KAELBLING; LITTMAN; CASSANDRA, 1998;
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SUTTON; BARTO, 2018). These ideas align with viewing SWE-Agents as bounded,

tool-using processes that must make economic decisions under interface, budget, and

information constraints.

Agent-based modeling and simulation extend these concepts to large populations of

interacting agents. Classic models such as Schelling’s segregation dynamics (SCHELLING,

1971b), El Farol (ARTHUR, 1994), and Axelrod’s work on cooperation (AXELROD,

1984) show how simple local rules can generate rich macro-level patterns. General-

purpose ABM frameworks and surveys (WILENSKY, 1999; NIAZI; HUSSAIN, 2011)

codify best practices for building and analyzing agent-based models, including seed control,

sensitivity analysis, and careful reporting of outcomes. Methodological work in simulation

(LAW, 2015; EPSTEIN; AXTELL, 1996; RAILSBACK; GRIMM, 2019; SARGENT, 2013;

OBERKAMPF; ROY, 2010) emphasizes verification, validation, and experimental design

so that simulation results are robust and interpretable. These practices motivate the

design of SDKs that support reproducible runs under fixed conditions, with explicit control

over randomness, timing, and configuration.

Agent-based computational economics (ACE) applies ABM techniques to markets and

macroeconomic environments (TESFATSION, 2002; TESFATSION, 2006; TESFATSION,

2022). Agents are firms, households, or intermediaries that follow behavioral rules instead

of solving analytically tractable optimization problems. Work by Axtell, Farmer, Tesfatsion,

and others argues that agent-based models are well suited to studying out-of-equilibrium

dynamics, institutional detail, and distributional outcomes (AXTELL, 2000; FARMER;

GEANAKOPLOS, 2009; ARTHUR et al., 1997; TESFATSION, 2002). Classical economic

foundations on incentives, information, and institutions—from Robbins and Samuelson’s

definitions of economic behavior (ROBBINS, 1932; SAMUELSON; NORDHAUS, 2010) to

Coase, Hurwicz, and Laffont–Martimort on firms, mechanisms, and principal–agent rela-

tionships (COASE, 1937; HURWICZ, 1972; LAFFONT; MARTIMORT, 2002)—provide

the language used in this dissertation to discuss task allocation, information disclosure,

and incentive compatibility.

Networked views of markets further enrich this picture. Work on social and economic

networks shows how topology shapes diffusion, bargaining power, and inequality (JACK-

SON, 2008; JACKSON, 2010; EASLEY; KLEINBERG, 2010; CALVÓ-ARMENGOL;

JACKSON, 2004; GABAIX, 2009; BARABÁSI; ALBERT, 1999; ACEMOGLU et al.,

2012). Inequality and concentration measures such as the Gini coefficient, Atkinson index,

and Herfindahl–Hirschman index (HHI) provide compact diagnostics of how rewards

are distributed across agents (GINI, 1912; ATKINSON, 1970; COWELL, 2011). For

software-engineering markets, this suggests viewing SWE-Agents and task issuers as a

bipartite economic network whose structure and flows (tasks, tokens, artifacts) are shaped

by mechanism rules and agent policies, and whose efficiency and equity can be measured

with standard tools from econometrics and network science.
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5.2 AI-Agent Economics and Virtual Agent Markets

Recent work proposes AI-agent economics as a distinct research agenda that studies au-

tonomous AI agents as economic decision-makers. Yang and Zhai articulate ten principles

for AI-agent economics (YANG; ZHAI, 2025), emphasizing that agents should be modeled

with explicit objectives, constraints, and information sets; that mechanisms and environ-

ments should be formally specified; and that evaluation should consider welfare, stability,

robustness, and alignment with human objectives. Their framing calls for experimental

substrates that expose economic interfaces (allocations, prices, budgets, constraints) rather

than only task-level accuracy, and that enable systematic study of how mechanism design

and agent policies interact.

Building on this conceptual foundation, Tomasev et al. introduce Virtual Agent

Economies (TOMASEV et al., 2025), which provide environments where learning agents

interact through markets for virtual goods and services. These economies are designed

to support policy evaluation, distributional analysis, and stress-testing of multi-agent

systems. Yang et al.’s Agent Exchange (YANG et al., 2025) similarly proposes an exchange

architecture in which AI agents trade services under defined market rules to study pricing,

liquidity, and strategic behavior. In both cases, agents are embedded in explicit markets,

but the domains tend to focus on generic goods, media, or synthetic services rather than

software-engineering tasks.

Complementary studies place language models directly into auction and bargaining

environments. Chen et al. evaluate strategic planning and execution in an auction arena

where language-model agents bid for items under different rules (CHEN et al., 2024).

Shah et al. examine language models as auction participants, comparing their strategic

behaviors and outcomes across mechanisms (SHAH et al., 2025). These settings treat

auctions as testbeds for reasoning and responsiveness to incentives, and they highlight

both the promise and fragility of using LLM agents in economic contexts.

A broader ecosystem of agent benchmarks evaluates AI agents on web, desktop, and

app interaction rather than explicit markets. WebShop, WebArena, VisualWebArena, and

BrowserGym assess agents on shopping or navigation tasks (YAO et al., 2022; ZHOU et

al., 2024; KOH et al., 2024; BrowserGym Team, 2024), while OSWorld, AndroidWorld,

AppWorld, and related platforms focus on desktop or mobile interaction and multi-step

tool use (WANG; LI et al., 2024; CHANG et al., 2025; TRIVEDI et al., 2024). Other

environments such as MineDojo, BEHAVIOR-1K, and OmniGibson provide rich physical

or virtual worlds for open-ended tasks (FAN et al., 2022; LI et al., 2024; OmniGibson

Contributors, 2024). These platforms typically measure success rates, completion times, or

reward in task-centric benchmarks. They rarely expose explicit market structures, prices,

or welfare metrics, and they do not aim to model software-engineering marketplaces.

Within software engineering, systems such as SWE-Agent (YANG et al., 2024; SWE-

agent Contributors, 2025; SWE-AGENT. . . , 2025) and OpenHands (WANG et al., 2025;
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OpenHands Contributors, 2025) focus on automated software-development workflows,

repository-level evaluation, and human-in-the-loop integration. They are often evaluated

against benchmarks like SWE-bench (JIMENEZ et al., 2024; YANG et al., 2023), which

measure an agent’s ability to resolve real-world issues and pass associated tests. These

systems bring agents closer to realistic SWE workflows, but their evaluation pipelines

emphasize correctness and throughput rather than explicit economic interactions, prices,

or surplus. Economic aspects, when present, are implicit (e.g., time-to-completion or

resource usage), not encoded as market mechanisms.

Taken together, this body of work establishes AI-agent economics as a conceptual um-

brella and provides a variety of agent environments—from virtual economies and exchanges

to SWE-focused tools and generic agent benchmarks. However, these environments either

focus on generic goods or financial assets, or treat economic interactions as evaluation

tools rather than primary objects of study in software-engineering task markets.

5.3 Research Gap and Positioning

Existing experimental platforms and SDKs for AI agents provide important building

blocks, but they leave a gap for domain-specific, economics-aware infrastructures tailored

to software-engineering markets.

Multi-agent orchestration frameworks such as AutoGen, CAMEL, MetaGPT, Voyager,

and related systems (WU; YANG; AL., 2023; LI et al., 2023; HONG et al., 2023; WANG et

al., 2023; DU et al., 2023; SHEN et al., 2023) offer abstractions for role decomposition, tool

invocation, and conversation-based coordination. They demonstrate that orchestration

choices (roles, tool contracts, memory scopes, retry policies) can significantly affect task

outcomes. However, they typically run on general-purpose compute platforms, log events

in ad hoc formats, and do not treat economic observables (bids, allocations, payments,

penalties) or mechanism parameters as first-class, versioned entities. Reproducing experi-

ments that compare mechanism variants or policy interventions across time is therefore

difficult.

Blockchain infrastructures offer an alternative substrate with stronger guarantees about

ordering, finality, and auditability. Systems such as Bitcoin and Ethereum (NAKAMOTO,

2008; BUTERIN, 2014; WOOD, 2014; GARAY; KIAYIAS; LEONARDOS, 2015; EYAL;

SIRER, 2014; KIAYIAS et al., 2017; BUTERIN; GRIFFITH, 2017) establish a transaction

log with consensus-based ordering. Appchain frameworks like Tendermint/CometBFT

and the Cosmos SDK (KWON, 2014; KWON; BUCHMAN, 2016; CONTRIBUTORS,

2023; FOUNDATION, 2020) allow designers to fix consensus rules, block cadence, and

application logic, and to encode domain-specific modules (e.g., auctions, governance) as

explicit state machines. Research on MEV and transaction-fee mechanisms (DAIAN et

al., 2020b; ROUGHGARDEN, 2021; ANGERIS et al., 2020) shows that general-purpose
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mempools and fee markets can introduce non-stationary noise and strategic behavior, which

is undesirable for tightly controlled experiments. Agent-like actors in DeFi (liquidators,

arbitrageurs, searchers) demonstrate the feasibility of on-chain economic agents but focus

on financial assets rather than software-engineering tasks, and they typically operate in

environments where mempool dynamics are part of the object of study rather than a

controlled background.

Reproducible computational research and provenance work argues that scientific soft-

ware systems should expose manifests, dataflow, and configuration metadata to enable

independent recomputation (GIL et al., 2007; WILSON et al., 2017). Simulation method-

ology in software engineering and related fields (MONTGOMERY, 2017; WOHLIN et al.,

2012; LAW, 2015; SARGENT, 2013; OBERKAMPF; ROY, 2010) stresses clear estimands,

controlled confounders, and transparent reporting of design choices. Recent efforts in

energy and resource accounting for machine-learning experiments (STRUBELL; GANESH;

MCCALLUM, 2019; MASANET et al., 2020; HENDERSON et al., 2020) further argue for

tracking computational cost as part of experimental results. Yet most AI-agent platforms

and orchestration frameworks do not integrate these concerns into their core abstractions;

manifests, seeds, and configuration hashes are usually handled by external scripts or

documentation rather than enforced by the execution environment.

In software engineering, there is also a gap between AI-assisted developer tools and

economic analyses of platforms and labor markets. Developer-focused systems such as

GitHub Copilot and related tools (GitHub, 2023; Microsoft, 2023; PENG et al., 2023;

KALLIAMVAKOU, 2022; YETIŞTIREN et al., 2023; PEARCE et al., 2021; PERRY et al.,

2023; ASARE; NAGAPPAN; ASOKAN, 2024; TIAN et al., 2023) emphasize productivity

and correctness but do not model or expose the economic mechanisms by which work is

allocated, priced, and settled. Platform-economics and labor studies, in turn, analyze

centralized systems (e.g., Upwork-style markets) where mechanisms and data are only

partially observable (BERG et al., 2018; GRAY; SURI, 2019; EINAV; FARRONATO;

LEVIN, 2016; TADELIS, 2016; AGRAWAL et al., 2015). This limits the possibility of

controlled experimental manipulation of mechanism rules in realistic software-task settings.

Against this background, AI-agent economics provides conceptual foundations and

high-level platforms for studying AI agents as economic actors (YANG; ZHAI, 2025;

TOMASEV et al., 2025; YANG et al., 2025; CHEN et al., 2024; SHAH et al., 2025), but

there is still a missing piece:

❏ Existing virtual agent economies and exchanges focus on generic goods or services,

not software-engineering tasks bound to repositories, tests, and artifacts.

❏ Existing SWE-Agent frameworks focus on automation and evaluation of software

workflows, not on explicit market mechanisms, prices, or welfare metrics.



100 Chapter 5. Related Work

❏ Existing blockchain systems demonstrate agent-like behavior in financial domains, but

rely on public mempools and fee markets that complicate controlled, seed-matched

experimentation.

This dissertation addresses that gap by evaluating whether a blockchain-native SDK

for economic network simulations can support controlled, paired baseline–intervention

experiments under fixed conditions in decentralized SWE-Agent outsourcing markets. We

present SWEChain-SDK, a configurable, extensible blockchain-native SDK that provides

a local sandbox chain for SWE-Agent outsourcing auctions and event-level logging of

bids, allocations, payments, and artifacts, enabling analysis and scripted re-runs of paired

trials under comparable conditions. We conduct paired simulation experiments that vary

one policy dimension at a time—(A) comparative advantage via agent specialization, (B)

competitive bidding via bidders’ price-signal utilization, or (C) principal-weighted selection

via quality-signal utilization—while holding rules, datasets, random seeds, time base,

and the agent pool fixed, and report the observed paired differences in routing, pricing,

participation, and concentration. In doing so, the dissertation extends emerging AI-agent

economics work into blockchain-based SWE-Agent outsourcing markets and contributes a

reusable, evaluation-ready SDK and artifact set for reproducible studies of decentralized

SWE-Agent economic networks.
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Chapter 6

Conclusion and Future Work

AI agents’ strategic interactions in economic settings—a key line of inquiry in AI-agent

economics—have attracted increasing attention amid recent advances in generative AI.

This dissertation focuses on blockchain-based SWE-Agent outsourcing markets, which link

intelligent software engineering and software-engineering economics through programmable,

transparent, and auditable mechanisms that centralized platforms rarely expose. Within

this setting, the central question is whether a blockchain-native SDK for economic network

simulations can support controlled, paired baseline–intervention experiments under fixed

conditions in decentralized SWE-Agent outsourcing markets.

The work is organized around SWEChain-SDK, a blockchain-native software develop-

ment kit that provides a local sandbox chain for SWE-Agent outsourcing auctions and

event-complete logging of bids, allocations, payments, and artifacts. On top of this chain,

the dissertation designs and runs paired simulation experiments that vary exactly one

policy dimension at a time while holding rules, datasets, random seeds, time base, and

the agent pool constant. This chapter revisits the main contributions, summarizes the

empirical findings together with their limitations, and outlines directions for future work

grounded in the configurability and extensibility of SWEChain-SDK.

6.1 Summary and Contributions

The first contribution is a conceptual and terminological framing of SWE-Agent Eco-

nomics. SWE-Agent Economics, as defined in Chapter 2, studies Software-Engineering

Agents (SWE-Agents) as economic decision-makers in auction-based task markets imple-

mented on blockchain-style infrastructures. In this framing, SWE-Agents are software-

engineering agents that participate in outsourcing markets whose admission, matching,

pricing, information, and settlement rules are explicit and programmable. By treating these

markets as economic networks, the dissertation links recent work on AI-agent economics

to software engineering and software-engineering economics, and positions SWE-Agent

markets as a concrete setting in which strategic interactions between autonomous software
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systems can be studied empirically.

The second contribution is the design and implementation of SWEChain-SDK as a

blockchain-native experimental platform. The SDK is implemented as an application-

specific chain that encodes reverse procurement auctions with pay-as-bid pricing, fixed

step cadence, deterministic tie-breaking, and explicit, versioned parameters for reserves,

eligibility thresholds, penalties, and information visibility. This design provides a controlled

environment in which SWE-Agents can bid for tasks, receive allocations, and settle

payments under transparent rules. Event-complete logging of bids, allocations, payments,

and artifacts, together with configuration manifests and shared seeds, supports scripted,

seed-matched reruns and re-analysis under comparable conditions and enables external

inspection, visualization, and verification.

The third contribution is an evaluation-ready artifact package and a set of illustrative

simulation experiments built on top of this platform. The primary artifact bundle is released

as an open-source repository at <https://github.com/lascam-UFU/swechain-sdk>, which

hosts the SDK code, configuration files, seeds, logs, and scripts for figure generation

and analysis. These materials enable scripted reruns and extensions of the experiments

under comparable conditions. Using this bundle, the dissertation conducts three paired

experiments in decentralized SWE-Agent outsourcing markets. Experiment A varies

comparative advantage via agent specialization, Experiment B varies bidders’ price-

signal utilization, and Experiment C varies principal-weighted selection via quality-signal

utilization. Across all three, the methodology emphasizes matched baseline–intervention

comparisons under fixed conditions rather than one-off performance claims or mechanism

optimization.

Taken together, these contributions answer the dissertation’s research questions. The

primary question asked whether a blockchain-native SDK for economic network simulations

can support controlled, paired baseline–intervention experiments under fixed conditions

in decentralized SWE-Agent outsourcing markets. The architecture in Chapter 3, the

simulation workflow in Chapter 4, and the accompanying appendices show that SWEChain-

SDK can host seed-matched baseline and intervention runs with fixed tasks, agent pools,

timing, and auction parameters, and can record event-complete logs and manifests that

support scripted reruns and re-analysis; within the scope of the workloads and infrastructure

considered here, this provides an affirmative answer to that question.

A second line of inquiry asked how bidder-side policy levers relate to task completion,

outsourcing cost, and revenue concentration. Simulation A shows that introducing private

specialization tags and mild in-niche cost discounts is associated with slightly higher

coverage and much higher winner diversity, while leaving mean cost per completed task

similar and concentrating realized revenue in the relatively small set of agents that

successfully operate in their niches. Simulation B shows that making the standing best

admissible bid salient in bidder prompts reduces completion and participation on some
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tasks but improves prices on the auctions that do clear and narrows the best–second price

gap, consistent with tighter competition where bidding occurs. A third question asked how

principal-side policies that combine price and predicted quality behave relative to a price-

only winner rule. Simulation C demonstrates that replacing a pure price rule with a fixed,

documented price–quality scoring rule can be implemented within SWEChain-SDK and,

for the chosen configuration, is associated with changes in cost-to-completion and first-pass

success and with shifts in revenue concentration, while keeping participation within a

similar range. Within the limits of the single seed-matched trial pair per experiment, these

results collectively illustrate how SWEChain-SDK can be used to encode, execute, and

examine bidder-side and principal-side policies and to study their effects on completion,

cost, and concentration in decentralized SWE-Agent outsourcing markets.

6.2 Findings and Limitations

The simulation experiments evaluate whether a blockchain-native Software Devel-

opment Kit (SDK) for economic network simulations can support controlled, paired

baseline–intervention experiments under fixed conditions in decentralized SWE-Agent

outsourcing markets, as stated in the abstract. Across all three experiments, SWEChain-

SDK provides a local sandbox chain, seed-matched runs, and a common trial-card and

paired-comparison pipeline that report differences in task completion, outsourcing cost,

and revenue concentration.

Experiment A shows that SWEChain-SDK can encode a simple agent-side specialization

policy and reveal its effects through the standard metrics. Specialization tags, prompt

nudges, and small in-niche and out-of-niche cost multipliers are introduced by configuration

and prompts only, while the auction code and workload are held fixed. For the seeded

workload studied here, the paired trial cards and summary figures show that this change

is associated with different assignment rates, winner–task alignment, and winner diversity.

Experiment B shows that bidder-facing price-signal policies can be expressed and exam-

ined without modifying the on-chain mechanism. The only difference between baseline and

intervention is how the current best admissible bid is surfaced and emphasized in bidding

prompts. Under fixed tasks, agents, seeds, and auction parameters, SWEChain-SDK

records paired differences in completion, competition, pricing, and revenue concentration

that are at least consistent with this prompt-level treatment of price signals mattering.

Experiment C shows that principal-side winner-selection policies can also be imple-

mented and compared under fixed conditions. A price-only rule and a fixed price–quality

scoring rule are both realized as principal controllers that consume the same structured

bids. Using the same trial-card and comparison tooling, the SDK reports how cost-to-

completion, first-pass success, participation, and revenue concentration differ between

these two configurations for the chosen workload.
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Across all experiments, baseline and intervention runs share the same chain configura-

tion, tasks, agents, and seeds; only the policy under study changes. The released logs and

manifest files are intended to let others recompute the reported metrics and run additional

comparisons under comparable conditions.

These findings come with clear limitations. The experiments are run at modest

scale with synthetic workloads and a simplified task taxonomy; the SWE-Agents follow

finite-state controllers with fixed prompts and simple bidding strategies; and mechanism

coverage is restricted to pay-as-bid reverse auctions with simple reserves and penalties.

The evaluation emphasizes efficiency, participation, and revenue concentration, and does

not model human developers, clients, or governance processes. Within these constraints,

the experiments should be read as an evaluation of what SWEChain-SDK can express and

measure under controlled, paired conditions, rather than as direct estimates of behavior in

deployed SWE-Agent marketplaces.

6.3 Future Work

The configurability and extensibility of SWEChain-SDK open several directions for

future work that deepen both the agent side and the mechanism side of SWE-Agent

Economics.

One direction is to move from fixed policies to learning and adaptive SWE-Agents.

Because the chain exposes clear economic signals—such as allocations, payments, and

penalties—it is natural to integrate reinforcement learning or bandit-style adaptation,

allowing agents to tune their bidding, participation, and task-selection strategies over

time. This would make it possible to study questions about convergence, stability, and

robustness when many learning agents interact in the same market, and to examine how

different mechanisms shape or constrain emergent strategies.

A second direction is to broaden the family of mechanisms implemented in the SDK

while retaining the matched-trial methodology. Uniform-price auctions, VCG-like mecha-

nisms, combinatorial or package auctions, and richer reputation and history-dependent

eligibility policies can all be encoded as variations in modules and configuration. With

these in place, SWEChain-SDK could support systematic comparisons of efficiency, revenue,

and distributional properties across a wider design space, as well as robustness studies

under collusion, sybil attacks, or adversarial bidding behavior.

A third direction is to extend the system-level architecture beyond a single chain. By

connecting SWEChain-SDK to other application-specific chains through inter-blockchain

communication, future work could explore cross-chain outsourcing, settlement, and security,

and could vary latency, finality, and fee regimes across chains. Embedding the SDK into

larger experimental pipelines—with schedulers, logging services, and orchestrators for large

batches of trials—would push the platform toward a full-scale laboratory for AI-agent
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of agent designs, prompting strategies, and mechanisms across many contributors, and

providing a common reference point for reproducible experiments that extend beyond a

single dissertation. All of these extensions deepen the same SWE-Agent Economics agenda

defined in Chapter 2, by exploring how different mechanisms and agent behaviors shape

task completion, outsourcing cost, and revenue concentration in decentralized SWE-Agent

markets.

Taken together, the dissertation treats decentralized SWE-Agent outsourcing markets as

a concrete setting for AI-agent economics in software engineering and provides evidence that

a blockchain-native SDK can support controlled, paired baseline–intervention experiments

under fixed conditions. It presents SWEChain-SDK, a configurable, extensible blockchain-

native SDK that provides a local sandbox chain for SWE-Agent software outsourcing

auctions and event-complete logging of bids, allocations, payments, and artifacts, together

with configuration metadata sufficient for re-runnable paired runs under comparable

conditions, and makes these artifacts publicly available at <https://github.com/lascam-

UFU/swechain-sdk>. It conducts paired simulation experiments that vary one policy

dimension at a time—comparative advantage via agent specialization, competitive bidding

via bidders’ price-signal utilization, and principal-weighted selection via quality-signal

utilization—while holding rules, datasets, random seeds, time base, and the agent pool

fixed, and reports the resulting paired differences in efficiency (task completion and

outsourcing cost), network structure, and inequality (revenue concentration) in SWE-

Agent outsourcing markets. The hope is that this combination of conceptual framing,

experimental platform, and initial evidence can serve as a foundation for broader work at

the intersection of intelligent software engineering, software-engineering economics, and

AI-agent economics.
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APPENDIX A

Simulation Experiment A

A.1 Overview

This appendix documents all technical steps required to reproduce Simulation A,

including data generation, chain initialization, agent execution, economic and network

metric extraction, and Simulation A-specific specialization analysis. All commands and

artifacts correspond to the public repository.

Simulation A varies one policy dimension: whether SWE-Agents behave as generalists

or as specialists with private tag sets and small in-niche/out-of-niche cost multipliers. The

baseline configuration treats all agents as generalists; the intervention configuration enables

specialization in the trial data. All other elements, including dataset, agent pool, random

seeds, auction rules, and execution timing, are held fixed. Thus, observed differences

reflect the marginal effect of comparative advantage via specialization under otherwise

identical conditions.

Simulation A uses two layers of results:

1. an experiment-independent layer of economic and network metrics, extracted by

the tool trial_card (completion, cost, inequality, and participation structure) from

each run’s on-chain auctions and bids; and

2. a Simulation A-specific specialization visualization, extracted by the tool simA_results

from the canonical trial_card.json files for baseline and intervention.

The dependency is one-way: trial_card in compute mode talks to the local swechaind

node and writes canonical, simulation-agnostic trial_card.json files that contain both

aggregate metrics and auction- and bid-level microdata. simA_results is a pure offline

tool that reads these JSON files to produce the Simulation A specialization figure. The

compare mode of trial_card also reads the same trial_card.json files to produce a

paired economic trial card. Neither compare mode nor simA_results accesses the chain.

In the specialization figure for Simulation A, the focus is on how enabling specialist

tags changes who wins which tasks and how often auctions clear.
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A.2 Data Engineering

Simulation A uses a deterministic dataset snapshot data/problems.json. Paired trial

files are generated using:

./bin/sdge --paired \

-problems-file ./data/problems.json \

-trials 1 -problems 200 -agents 20 -seed 1111 \

-specialist -spec-tags 2 \

-output-dir ./simA/data

This emits, with identical task order and agent pool:

❏ simA/data/baseline/trial_001.json

❏ simA/data/intervention/trial_001.json

The baseline and intervention files share the same sampled tasks and sequence; the

specialization intervention is encoded in the trial metadata (private tag sets and cost

multipliers), not by changing the agent finite-state machine.

Each condition also has a manifest listing trial files and hashes. These manifests

support checking that the paired datasets match and that no files changed between runs.

A.3 Host Execution Environment

Simulation A was executed on:

❏ Debian GNU/Linux 12 (x86_64)

❏ AMD Ryzen 7 5800H, 27 GiB RAM

❏ Go 1.24.7, Git 2.39.5

❏ Ollama 0.12.9 running model gpt-oss:120b-cloud

Language model sampling configuration (temperature, top-p, maximum tokens) is

pinned in the agent specification file and reused for both conditions. Any reproduction

should use the same model identifier and similar hardware, or at least document the

differences.
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A.4 Blockchain Configuration

Simulation A uses a dedicated SWEChain instance with fixed:

❏ genesis file and chain identifier;

❏ account balances and initial token distribution;

❏ software outsourcing auction parameters (duration, grace periods, tick size);

❏ consensus and gas settings.

The experiment requires that baseline and intervention runs use identical chain pa-

rameters. This is enforced by exporting and comparing parameter snapshots before each

run.

A.5 Agent Configuration

Simulation A uses a single agent specification:

❏ simA/config/agent.json

The same agent configuration is used for both baseline and intervention. The difference

between conditions comes from the data: in the intervention trial file, agents receive

private specialization tags and cost multipliers in their local state and prompts; in the

baseline trial file, they behave as generalists. Finite-state machine, retry policies, memory

filters, and language model settings are identical across arms.

The finite-state machine makes the agent behavior explicit and ensures that any

differences in outcomes can be traced to the presence or absence of specialization in the

data rather than unrelated control-flow changes.

A.6 Reproducibility Protocol

This section enumerates the steps needed to regenerate all Simulation A artifacts,

including runs, economic and network metrics, the paired economic trial card, and the

Simulation A-specific specialization figure. All paths are relative to the repository root.

Phase 1 — Build Binaries
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go build -o bin/sdge ./src/sdge.go

go build -o bin/trial ./src/trial.go

go build -o bin/swechain_agent ./src/swechain_agent.go

go build -o bin/trial_card ./src/trial_card.go

go build -o bin/simA_results ./simA/src/simA_results.go

This produces the deterministic data generator (sdge), the trial orchestrator (trial),

the agent binary (swechain_agent), the canonical metrics tool (trial_card), and the

Simulation A-specific specialization tool (simA_results).

Phase 2 — Generate Paired Trials

./bin/sdge --paired \

-problems-file ./data/problems.json \

-trials 1 -problems 200 -agents 20 -seed 1111 \

-specialist -spec-tags 2 \

-output-dir ./simA/data

This produces:

❏ simA/data/baseline/trial_001.json

❏ simA/data/intervention/trial_001.json

plus manifests that record which trial files belong to each condition. The baseline and

intervention trial files share task order and agent lists by construction.

Phase 3 — Initialize SWEChain for Baseline

./start_swechain.sh 20

swechaind query auction params -o json \

> simA/baseline_params.json

The start_swechain.sh script starts a local SWEChain node with 20 validators and

a fixed configuration. The exported parameters in simA/baseline_params.json are used

later to confirm that the intervention run uses the same mechanism.
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Phase 4 — Run the Baseline Trial

./bin/trial -minutes 20 \

-agent-bin ./bin/swechain_agent \

-spec ./simA/config/agent.json \

-trial ./simA/trials/baseline \

-dbdir ./simA/trials/baseline_db \

./simA/data/baseline/trial_001.json

This runs the baseline configuration (generalists) for 20 minutes of wall-clock time,

producing per-agent databases and journals under simA/trials/baseline_db/ and all

on-chain auction and bid events for the baseline condition.

Phase 5 — Baseline Economic and Network Metrics (trial_card

Compute Mode)

While the baseline chain state is still present, compute the canonical economic and

network metrics and microdata:

./bin/trial_card \

--bin swechaind \

--node tcp://localhost:26657 \

--home "${HOME}/.swechain" \

--outdir ./simA/artifact/baseline \

--output text

This writes:

❏ simA/artifact/baseline/trial_card.json

❏ simA/artifact/baseline/trial_card.svg

❏ simA/artifact/baseline/trial_card.pdf

The single-run baseline card is copied as figs/simA_baseline_trial_card.pdf for

use in the dissertation figures. The JSON file trial_card.json provides the canonical

baseline metrics and microdata for all downstream paired analyses.



126 APPENDIX A. Simulation Experiment A

Phase 6 — Reset Chain for Intervention

Before running the intervention condition, restart the chain and verify that the mecha-

nism parameters match the baseline:

./start_swechain.sh 20

swechaind query auction params -o json \

> simA/intervention_params.json

diff -u simA/baseline_params.json \

simA/intervention_params.json

The diff command should report no differences. Any discrepancy indicates a configu-

ration drift that must be fixed before proceeding.

Phase 7 — Run the Intervention Trial

./bin/trial -minutes 20 \

-agent-bin ./bin/swechain_agent \

-spec ./simA/config/agent.json \

-trial ./simA/trials/intervention \

-dbdir ./simA/trials/intervention_db \

./simA/data/intervention/trial_001.json

This uses the same dataset, agents, random seeds, and timing as the baseline run, but

with specialization enabled in simA/data/intervention/trial_001.json (private tag

sets and cost multipliers). The resulting on-chain history is the intervention counterpart

of the baseline history.

Phase 8 — Intervention Economic and Network Metrics (trial_card

Compute Mode)

While the intervention chain state is still present, compute the canonical metrics and

microdata:
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./bin/trial_card \

--bin swechaind \

--node tcp://localhost:26657 \

--home "${HOME}/.swechain" \

--outdir ./simA/artifact/intervention \

--output text

This writes:

❏ simA/artifact/intervention/trial_card.json

❏ simA/artifact/intervention/trial_card.svg

❏ simA/artifact/intervention/trial_card.pdf

The single-run intervention card is copied as figs/simA_intervention_trial_card.pdf

for use in the dissertation figures. At this point, both conditions have their own

trial_card.json files, generated under identical chain parameters.

Phase 9 — Paired Economic Comparison (trial_card Compare

Mode)

With both trial_card.json files in place, the paired baseline–intervention economic

trial card is generated offline, without accessing the chain:

./bin/trial_card --compare \

--baseline ./simA/artifact/baseline/trial_card.json \

--intervention ./simA/artifact/intervention/trial_card.json \

--outdir ./simA/artifact/compare \

--label "Simulation A — Agent specialization" \

--output text

This writes:

❏ simA/artifact/compare/trial_pair.json

❏ simA/artifact/compare/trial_pair.svg

❏ simA/artifact/compare/trial_pair.pdf

The paired economic trial card is copied as figs/simA_trial_pair.pdf for use in the

dissertation figures.
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Phase 10 — Specialization Visualization (simA_results)

Finally, the Simulation A-specific specialization figure is generated offline from the same

canonical metrics files. The simA_results program reads the baseline and intervention

trial_card.json files under simA/artifact/ and emits an SVG that is converted to

PDF via rsvg-convert:

./bin/simA_results \

-artifact-dir ./simA/artifact \

-out-pdf ./simA/artifact/compare/simA_results.pdf

This writes:

❏ simA/artifact/compare/simA_results.svg

❏ simA/artifact/compare/simA_results.pdf

The PDF is copied as figs/simA_results.pdf for use in the dissertation figures.

Because simA_results operates purely on the trial_card.json microdata, this phase

does not depend on any particular chain height being kept alive.

A.7 Limits, Assumptions, and Validation

Simulation A enforces that the only policy change between conditions is the presence

of private specialization tags and cost multipliers in the trial data. All other parameters,

including dataset, seeds, agent pool, prompts, auction rules, timing, and chain parameters,

are held fixed.

Language model stochasticity means individual token sequences may differ across

reruns, even with the same seeds and configuration. However, the recorded configuration

and protocol are strong enough to reproduce the experimental setup and to check whether

the qualitative and quantitative patterns in task completion, assortativity, outsourcing

cost, and revenue concentration persist.

Validation consists of:

1. checking that baseline and intervention trial files share identical task order and agent

lists, and that the manifests show the expected pairing;

2. verifying that simA/baseline_params.json and simA/intervention_params.json

are identical, confirming that the blockchain mechanism did not change across

conditions;
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3. recomputing economic and network metrics via trial_card for both conditions and

confirming that the regenerated single-run cards match the reported values up to

ordinary numeric and rendering tolerances;

4. recomputing the paired economic trial card via trial_card in compare mode and the

specialization figure via simA_results from the stored trial_card.json files, and

confirming that the observed patterns in completion, cost, and revenue concentration

are consistent with those in the dissertation figures;

5. for the specialization figure specifically, checking that the counts in any summary box

(numbers of auctions, auctions with bids, bidders, and paired problems) match those

implied by the underlying trial_card.json microdata, and that any tag–winner

patterns agree with the recorded allocations and revenues.

Under this protocol, a reader with access to the public repository, the same model

identifier, and a similar machine can rerun Simulation A, regenerate both the economic

trial cards and the Simulation A specialization figure from the canonical JSON artifacts,

and verify the main economic and network findings associated with enabling SWE-Agent

specialization.
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APPENDIX B

Simulation Experiment B

B.1 Overview

This appendix documents all technical steps required to reproduce Simulation B,

including data generation, chain initialization, agent execution, economic and network

metric extraction, and Simulation B-specific bid-landscape analysis. All commands and

artifacts correspond to the public repository.

Simulation B varies one policy dimension: whether bidding prompts explicitly expose

and emphasize on-chain price signals. The baseline configuration keeps the current

best admissible bid in the input schema but does not highlight it in the prompts; the

intervention configuration adds a dedicated price-signal block and instructs bidders to use

it. All other elements, including dataset, agent pool, random seeds, auction rules, and

execution timing, are held fixed. Thus, observed differences reflect the marginal effect of

price-signal utilization under otherwise identical conditions.

Simulation B uses two layers of results:

1. an experiment-independent layer of economic and network metrics, extracted by

the tool trial_card (completion, cost, inequality, and participation structure) from

each run’s on-chain auctions and bids; and

2. a Simulation B-specific paired bid-landscape visualization, extracted by the tool

simB_results from the canonical trial_card.json files for baseline and interven-

tion.

The dependency is one-way: trial_card in compute mode talks to the local swechaind

node and writes canonical, simulation-agnostic trial_card.json files that contain both

aggregate metrics and bid-level microdata. simB_results is a pure offline tool that reads

these JSON files to produce the Simulation B bid-landscape figure. The compare mode

of trial_card also reads the same trial_card.json files to produce a paired economic

trial card. Neither compare mode nor simB_results accesses the chain.
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In the bid-landscape figure for Simulation B, horizontal position always represents bid

or winning price, measured in SWEChain tokens per task. The vertical axis is categorical:

separate horizontal bands are used to distinguish baseline and intervention, and non-

winning bids are given small vertical jitter within their band purely for visibility. There is

no second quantitative axis beyond price, which avoids over-interpreting vertical placement

inside each band.

B.2 Data Engineering

Simulation B uses a deterministic dataset snapshot data/problems.json. Paired trial

files are generated using:

./bin/sdge --paired \

-problems-file ./data/problems.json \

-trials 1 -problems 200 -agents 20 -seed 1111 \

-output-dir ./simB/data

This emits:

❏ simB/data/baseline/trial_001.json

❏ simB/data/intervention/trial_001.json

with identical task order and agent pool but separate configuration metadata. The file-

level metadata makes the condition labels explicit and supports checking that the paired

datasets match.

B.3 Host Execution Environment

Simulation B was executed on:

❏ Debian GNU/Linux 12 (x86_64)

❏ AMD Ryzen 7 5800H, 27 GiB RAM

❏ Go 1.24.7, Git 2.39.5

❏ Ollama 0.12.9 running model gpt-oss:120b-cloud

Language model sampling configuration (temperature, top-p, maximum tokens) is

pinned in the agent specification files and used for both conditions. Any reproduction

should use the same model identifier and similar hardware, or at least document the

differences.
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B.4 Blockchain Configuration

Simulation B uses a dedicated SWEChain instance with fixed:

❏ genesis file and chain identifier;

❏ account balances and initial token distribution;

❏ software outsourcing auction parameters (duration, grace periods, tick size);

❏ consensus and gas settings.

The experiment requires that baseline and intervention runs use identical chain pa-

rameters. This is enforced by exporting and comparing parameter snapshots before each

run.

B.5 Agent Configuration

Two agent specifications are used:

❏ simB/config/agent_B_baseline.json

❏ simB/config/agent_B_intervention.json

They differ only in the presence of an explicit price-signal block in the bidding prompts.

Both share the same finite-state machine, retry policies, memory filters, and language

model settings.

The finite-state machines make the agent behavior explicit and ensure that any differ-

ences in outcomes can be traced to the presence or absence of price-signal information

rather than unrelated control-flow changes.

B.6 Reproducibility Protocol

This section enumerates the steps needed to regenerate all Simulation B artifacts,

including runs, economic and network metrics, the paired economic trial card, and the

Simulation B-specific bid-landscape figure. All paths are relative to the repository root.

Phase 1 — Build Binaries
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go build -o bin/sdge ./src/sdge.go

go build -o bin/trial ./src/trial.go

go build -o bin/swechain_agent ./src/swechain_agent.go

go build -o bin/trial_card ./src/trial_card.go

go build -o bin/simB_results ./simB/src/simB_results.go

This produces the deterministic data generator (sdge), the trial orchestrator (trial),

the agent binary (swechain_agent), the canonical metrics tool (trial_card), and the

Simulation B-specific bid-landscape tool (simB_results).

Phase 2 — Generate Paired Trials

./bin/sdge --paired \

-problems-file ./data/problems.json \

-trials 1 -problems 200 -agents 20 -seed 1111 \

-output-dir ./simB/data

This produces:

❏ simB/data/baseline/trial_001.json

❏ simB/data/intervention/trial_001.json

plus manifests that record which trial files belong to each condition. The baseline and

intervention trial files share task order and agent lists by construction.

Phase 3 — Initialize SWEChain for Baseline

./start_swechain.sh 20

swechaind query auction params -o json \

> simB/baseline_params.json

The start_swechain.sh script starts a local SWEChain node with 20 validators and

a fixed configuration. The exported parameters in simB/baseline_params.json are used

later to confirm that the intervention run uses the same mechanism.
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Phase 4 — Run the Baseline Trial

./bin/trial -minutes 20 \

-agent-bin ./bin/swechain_agent \

-spec ./simB/config/agent_B_baseline.json \

-trial ./simB/trials/baseline \

-dbdir ./simB/trials/baseline_db \

./simB/data/baseline/trial_001.json

This runs the baseline configuration for 20 minutes of wall-clock time, producing

per-agent databases and journals under simB/trials/baseline_db/ and all on-chain

auction and bid events for the baseline condition.

Phase 5 — Baseline Economic and Network Metrics (trial_card

Compute Mode)

While the baseline chain state is still present, compute the canonical economic and

network metrics and microdata:

./bin/trial_card \

--bin swechaind \

--node tcp://localhost:26657 \

--home "${HOME}/.swechain" \

--outdir ./simB/artifact/baseline \

--output text

This writes:

❏ simB/artifact/baseline/trial_card.json

❏ simB/artifact/baseline/trial_card.svg

❏ simB/artifact/baseline/trial_card.pdf

The single-run baseline card is copied as figs/simB_baseline_trial_card.pdf for

use in the dissertation figures. The JSON file trial_card.json provides the canonical

baseline metrics and bid-level microdata for all downstream paired analyses.
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Phase 6 — Reset Chain for Intervention

Before running the intervention condition, restart the chain and verify that the mecha-

nism parameters match the baseline:

./start_swechain.sh 20

swechaind query auction params -o json \

> simB/intervention_params.json

diff -u simB/baseline_params.json \

simB/intervention_params.json

The diff command should report no differences. Any discrepancy indicates a configu-

ration drift that must be fixed before proceeding.

Phase 7 — Run the Intervention Trial

./bin/trial -minutes 20 \

-agent-bin ./bin/swechain_agent \

-spec ./simB/config/agent_B_intervention.json \

-trial ./simB/trials/intervention \

-dbdir ./simB/trials/intervention_db \

./simB/data/intervention/trial_001.json

This uses the same dataset, agents, random seeds, and timing as the baseline run,

but with the price-signal prompt block enabled in agent_B_intervention.json. The

resulting on-chain history is the intervention counterpart of the baseline history.

Phase 8 — Intervention Economic and Network Metrics (trial_card

Compute Mode)

While the intervention chain state is still present, compute the canonical metrics and

microdata:
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./bin/trial_card \

--bin swechaind \

--node tcp://localhost:26657 \

--home "${HOME}/.swechain" \

--outdir ./simB/artifact/intervention \

--output text

This writes:

❏ simB/artifact/intervention/trial_card.json

❏ simB/artifact/intervention/trial_card.svg

❏ simB/artifact/intervention/trial_card.pdf

The single-run intervention card is copied as figs/simB_intervention_trial_card.pdf.

At this point, both conditions have their own trial_card.json files, generated under

identical chain parameters.

Phase 9 — Paired Economic Comparison (trial_card Compare

Mode)

With both trial_card.json files in place, the paired baseline–intervention economic

trial card is generated offline, without accessing the chain:

./bin/trial_card --compare \

--baseline ./simB/artifact/baseline/trial_card.json \

--intervention ./simB/artifact/intervention/trial_card.json \

--outdir ./simB/artifact/compare \

--label "Simulation B — Price-signal utilization" \

--output text

This writes:

❏ simB/artifact/compare/trial_pair.json

❏ simB/artifact/compare/trial_pair.svg

❏ simB/artifact/compare/trial_pair.pdf

The paired economic trial card is copied as figs/simB_trial_pair.pdf for use in the

dissertation figures.
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Phase 10 — Paired Bid-Landscape Comparison (simB_results)

Finally, the Simulation B-specific paired bid-landscape figure is generated offline from

the same canonical metrics files. The simB_results program reads the baseline and

intervention trial_card.json files under simB/artifact/ and emits an SVG that is

converted to PDF via rsvg-convert:

./bin/simB_results \

-artifact-dir ./simB/artifact \

-out-pdf ./simB/artifact/compare/simB_results.pdf

This writes:

❏ simB/artifact/compare/simB_results.svg

❏ simB/artifact/compare/simB_results.pdf

The PDF is copied as figs/simB_results.pdf for use in the dissertation figures.

Because simB_results operates purely on the trial_card.json microdata, this phase

does not depend on any particular chain height being kept alive. In the resulting figure,

the horizontal axis represents bid or winning price in SWEChain tokens per task; the two

bands distinguish baseline and intervention; and within each band non-winning bids are

jittered vertically for visibility while winning bids lie on a fixed horizontal line.

B.7 Limits, Assumptions, and Validation

Simulation B enforces that the only policy change between conditions is the presence

of price signals in the bidding prompts. All other parameters, including dataset, seeds,

agent pool, prompts (apart from the price-signal block), auction rules, timing, and chain

parameters, are held fixed.

Language model stochasticity means individual token sequences may differ across

reruns, even with the same seeds and configuration. However, the recorded configuration

and protocol are strong enough to reproduce the experimental setup and to check whether

the qualitative and quantitative patterns in task completion, outsourcing cost, competition,

and revenue concentration persist.

Validation consists of:

1. checking that baseline and intervention trial files share identical task order and agent

lists, and that the manifests show the expected pairing;
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2. verifying that simB/baseline_params.json and simB/intervention_params.json

are identical, confirming that the blockchain mechanism did not change across

conditions;

3. recomputing economic and network metrics via trial_card for both conditions and

confirming that the regenerated single-run cards match the reported values up to

ordinary numeric and rendering tolerances;

4. recomputing the paired economic trial card via trial_card in compare mode and the

bid-landscape figure via simB_results from the stored trial_card.json files, and

confirming that the observed patterns in winning prices, bid dispersion, competition,

and revenue concentration are consistent with those in the dissertation figures;

5. for the bid-landscape figure specifically, checking that the counts in the summary box

(numbers of auctions, auctions with bids, bids, and paired problems) match those

implied by the underlying trial_card.json microdata, and that all winning-bid

markers and mean-price reference lines agree with the recorded winning prices and

mean cost per completed task.

Under this protocol, a reader with access to the public repository, the same model

identifier, and a similar machine can rerun Simulation B, regenerate both the economic trial

cards and the Simulation B bid landscape from the canonical JSON artifacts, and verify

the main economic and network findings associated with enabling bidders’ price-signal

utilization.
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APPENDIX C

Simulation Experiment C

C.1 Overview

This appendix documents all technical steps required to reproduce Simulation C,

including data generation, chain initialization, agent execution, economic and network

metric extraction, and Simulation C-specific price–quality analysis. All commands and

artifacts correspond to the public repository.

Simulation C varies one policy dimension: how the principal closes software outsourcing

auctions once bids have been placed. The baseline configuration uses a price-only rule

that selects the lowest admissible bid subject to reserve and eligibility conditions. The

intervention configuration replaces this with a transparent price–quality rule in which

quality is proxied by the match between a bidder’s specialization tags and the problem’s

tags. Both configurations encourage bidders to surface their specialization explicitly in

their prompts so that it can be used as a quality signal. All other elements, including

dataset, agent pool, random seeds, auction rules, and execution timing, are held fixed.

Thus, observed differences reflect the marginal effect of principal-weighted quality-signal

utilization under otherwise identical conditions.

Simulation C uses two layers of results:

1. an experiment-independent layer of economic and network metrics, extracted by

the tool trial_card (completion, cost, inequality, and participation structure) from

each run’s on-chain auctions and bids; and

2. a Simulation C-specific price–quality comparison, extracted by the tool simC_results

from the canonical trial_card.json files and trial databases for baseline and inter-

vention.

As in Simulation B, the dependency is one-way. In compute mode, trial_card talks

to the local swechaind node and writes canonical, simulation-agnostic trial_card.json

files that contain aggregate metrics and microdata. The compare mode of trial_card
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and the simC_results tool are pure offline consumers of these JSON artifacts and the

per-agent trial databases; neither accesses the chain.

C.2 Data Engineering

Simulation C uses a deterministic dataset snapshot data/problems.json and a single

synthetic trial that is reused for both baseline and intervention. The trial is generated

once with specialized agents so that both arms share the same problems, order, and

specialization tags.

Synthetic data are produced with the sdge tool. Assuming the binary has been built as

bin/sdge and the problem cache is available at ./data/problems.json, the Simulation C

trial is generated via:

./bin/sdge \

-problems-file ./data/problems.json \

-trials 1 -problems 200 -agents 20 \

-seed 1111 \

-specialist -spec-tags 2 \

-output-dir ./simC/data

This emits:

❏ simC/data/trial_001.json

❏ simC/data/manifest.json

where trial_001.json encodes 200 problems, 20 agents, per-agent specialization tags,

cost profiles, and a fixed problem order. The manifest records file hashes and basic

metadata.

To ensure that baseline and intervention runs are perfectly paired, this single trial is

duplicated into separate baseline and intervention directories:

mkdir -p ./simC/data/baseline ./simC/data/intervention

cp ./simC/data/trial_001.json ./simC/data/baseline/

cp ./simC/data/trial_001.json ./simC/data/intervention/

cp ./simC/data/manifest.json ./simC/data/baseline/

cp ./simC/data/manifest.json ./simC/data/intervention/
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After these steps, both:

❏ simC/data/baseline/trial_001.json and

❏ simC/data/intervention/trial_001.json

refer to the same synthetic trial, with identical problems, ordering, agent pool, and

specialization tags. Comparative advantage is therefore present in both arms; the only

intended difference is the principal’s winner-selection policy.

C.3 Host Execution Environment

Simulation C was executed on the same local workstation used for Simulation B:

❏ Debian GNU/Linux 12 (x86_64)

❏ AMD Ryzen 7 5800H, 27 GiB RAM

❏ Go 1.24.7, Git 2.39.5

❏ Ollama 0.12.9 running model gpt-oss:120b-cloud

Language model sampling configuration (temperature, top-p, maximum tokens) is

pinned in the agent specification files and used for both conditions. Any reproduction

should use the same model identifier and similar hardware, or at least document deviations.

C.4 Blockchain Configuration

Simulation C uses a dedicated SWEChain instance with fixed:

❏ genesis file and chain identifier;

❏ account balances and initial token distribution;

❏ software outsourcing auction parameters (duration, grace periods, tick size);

❏ consensus and gas settings.

As in Simulation B, the experiment requires that baseline and intervention runs use

identical chain parameters, apart from the winner-selection rule encoded in the auction

module. In the baseline configuration, winners are chosen by lowest admissible bid (price-

only). In the intervention configuration, winners are chosen by a deterministic price–quality

scoring rule in which quality is proxied by specialization tags surfaced by bidders.
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Consistency of all other parameters is enforced by exporting and comparing parameter

snapshots before each run. Any difference detected in the exported JSON files must be

resolved before using the results in the paired comparison.

C.5 Agent Configuration

Two agent specifications are used:

❏ simC/config/agent_C_baseline.json

❏ simC/config/agent_C_intervention.json

Both files configure the same finite-state machine, retry policy, memory filters, and

language model settings. Agents discover their wallet, open auctions for their own

assignments, place bids on other agents’ auctions, accept and announce winners, code

solutions, and periodically update a simple profit-and-loss summary.

In both baseline and intervention:

❏ agents read their specialization tags from memory (as injected by the synthetic trial);

❏ bidders are explicitly instructed to prioritize auctions whose problem tags overlap

with their specialization; and

❏ bidders are encouraged to surface a compact summary of their specialization as part

of their bidding behavior, so that it can act as a quality signal.

The only conceptual difference between the two specifications lies in the principal’s

accepting logic. In the baseline configuration, the accepting prompts describe and reinforce

price-only selection: the principal closes auctions by choosing the lowest admissible bid,

subject to reserve and eligibility checks. In the intervention configuration, the accepting

prompts describe and reinforce the chain’s price–quality scoring rule, which weighs both

price and specialization-based quality when closing auctions.

These finite-state machines make the agent behavior explicit and ensure that any

differences in outcomes can be traced to the change in winner-selection policy rather than

unrelated control-flow changes.

C.6 Reproducibility Protocol

This section enumerates the steps needed to regenerate all Simulation C artifacts,

including runs, economic and network metrics, the paired economic trial card, and the

Simulation C-specific price–quality comparison. All paths are relative to the repository

root.



C.6. Reproducibility Protocol 145

Phase 1 — Build Binaries

go build -o bin/sdge ./src/sdge.go

go build -o bin/trial ./src/trial.go

go build -o bin/swechain_agent ./src/swechain_agent.go

go build -o bin/trial_card ./src/trial_card.go

go build -o bin/simC_results ./simC/src/simC_results.go

This produces the deterministic data generator, trial orchestrator, agent binary, canon-

ical metrics tool, and the Simulation C analysis tool.

Phase 2 — Generate the Synthetic Trial

./bin/sdge \

-problems-file ./data/problems.json \

-trials 1 -problems 200 -agents 20 \

-seed 1111 \

-specialist -spec-tags 2 \

-output-dir ./simC/data

This writes simC/data/trial_001.json and simC/data/manifest.json. The trial

includes 200 problems, 20 agents, specialization tags, and a fixed problem order.

Phase 3 — Prepare Baseline and Intervention Data

mkdir -p ./simC/data/baseline ./simC/data/intervention

cp ./simC/data/trial_001.json ./simC/data/baseline/

cp ./simC/data/trial_001.json ./simC/data/intervention/

cp ./simC/data/manifest.json ./simC/data/baseline/

cp ./simC/data/manifest.json ./simC/data/intervention/

This ensures that baseline and intervention use the same trial file and manifest, making

the pairing explicit.
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Phase 4 — Initialize SWEChain for Baseline

./start_swechain.sh 20

swechaind query auction params -o json \

> simC/baseline_params.json

The start_swechain.sh script starts a local SWEChain node with a fixed configura-

tion. The exported parameters are saved for later comparison.

Phase 5 — Run the Baseline Trial

./bin/trial -minutes 20 \

-agent-bin ./bin/swechain_agent \

-spec ./simC/config/agent_C_baseline.json \

-trial ./simC/trials/baseline \

-dbdir ./simC/trials/baseline_db \

./simC/data/baseline/trial_001.json

This runs the baseline configuration for 20 minutes of wall-clock time, producing

per-agent databases and journals under simC/trials/baseline_db/ and all on-chain

auction and bid events for the baseline condition.

Phase 6 — Baseline Economic and Network Metrics (trial_card

Compute Mode)

While the baseline chain state is still present, compute the canonical economic and

network metrics and microdata:

./bin/trial_card \

--bin swechaind \

--node tcp://localhost:26657 \

--home "${HOME}/.swechain" \

--outdir ./simC/artifact/baseline \

--output text

This writes:
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❏ simC/artifact/baseline/trial_card.json

❏ simC/artifact/baseline/trial_card.svg

❏ simC/artifact/baseline/trial_card.pdf

The single-run baseline card is copied as figs/simC_baseline_trial_card.pdf for

use in the dissertation figures.

Phase 7 — Reset Chain for Intervention

Before running the intervention condition, restart the chain and verify that the mecha-

nism parameters match the baseline:

./start_swechain.sh 20

swechaind query auction params -o json \

> simC/intervention_params.json

diff -u simC/baseline_params.json \

simC/intervention_params.json

The diff command should report no differences. Any discrepancy indicates configura-

tion drift that must be corrected before continuing.

Phase 8 — Run the Intervention Trial

./bin/trial -minutes 20 \

-agent-bin ./bin/swechain_agent \

-spec ./simC/config/agent_C_intervention.json \

-trial ./simC/trials/intervention \

-dbdir ./simC/trials/intervention_db \

./simC/data/intervention/trial_001.json

This uses the same dataset, agents, random seeds, and timing as the baseline run, but

with the price–quality winner-selection rule enabled in the chain configuration and rein-

forced in agent_C_intervention.json. The resulting on-chain history is the intervention

counterpart of the baseline history.
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Phase 9 — Intervention Economic and Network Metrics (trial_card

Compute Mode)

While the intervention chain state is still present, compute the canonical metrics and

microdata:

./bin/trial_card \

--bin swechaind \

--node tcp://localhost:26657 \

--home "${HOME}/.swechain" \

--outdir ./simC/artifact/intervention \

--output text

This writes:

❏ simC/artifact/intervention/trial_card.json

❏ simC/artifact/intervention/trial_card.svg

❏ simC/artifact/intervention/trial_card.pdf

The single-run intervention card is copied as figs/simC_intervention_trial_card.pdf

for use in the dissertation figures.

Phase 10 — Paired Economic Comparison (trial_card Compare

Mode)

With both trial_card.json files in place, the paired baseline–intervention economic

trial card is generated offline, without accessing the chain:

./bin/trial_card --compare \

--baseline ./simC/artifact/baseline/trial_card.json \

--intervention ./simC/artifact/intervention/trial_card.json \

--outdir ./simC/artifact/compare \

--label "Simulation C — Price-quality selection" \

--output text

This writes:
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❏ simC/artifact/compare/trial_pair.json

❏ simC/artifact/compare/trial_pair.svg

❏ simC/artifact/compare/trial_pair.pdf

The paired economic trial card is copied as figs/simC_trial_pair.pdf for use in the

dissertation figures.

Phase 11 — Price–Quality Comparison (simC_results)

Finally, the Simulation C-specific analysis is generated offline from the same canonical

metrics files and the per-agent trial databases. The simC_results program reads the

baseline and intervention artifacts under simC/artifact/ and emits an SVG that is

converted to PDF:

./bin/simC_results \

-baseline-dbdir ./simC/trials/baseline_db \

-intervention-dbdir ./simC/trials/intervention_db \

-artifact-dir ./simC/artifact \

-out-pdf ./simC/artifact/compare/simC_results.pdf

This writes:

❏ simC/artifact/compare/simC_results.svg

❏ simC/artifact/compare/simC_results.pdf

The PDF is copied as figs/simC_results.pdf for use in the dissertation figures.

Because simC_results operates purely on the stored JSON artifacts and trial databases,

this phase does not depend on any particular chain height being kept alive.

C.7 Limits, Assumptions, and Validation

Simulation C enforces that the only policy change between conditions is the winner-

selection rule applied by the principal. Both arms use the same synthetic trial (problems,

order, agents, specialization tags), and both encourage bidders to expose their special-

ization as a quality signal. All other parameters, including auction rules, timing, chain

configuration, and agent finite-state machines, are held fixed.

Language model stochasticity implies that individual token sequences may differ across

reruns, even with the same configuration. However, the recorded configuration and
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protocol are strong enough to reproduce the experimental setup and to check whether the

qualitative and quantitative patterns in task completion, outsourcing cost, price dispersion,

and revenue concentration persist.

Validation consists of:

1. checking that simC/data/baseline/trial_001.json and simC/data/intervention/trial_001.json

are identical (or share the same hash recorded in the manifest), confirming that

both arms use the same synthetic trial;

2. verifying that simC/baseline_params.json and simC/intervention_params.json

are identical, confirming that the blockchain mechanism did not change across

conditions apart from the intended winner-selection policy;

3. recomputing economic and network metrics via trial_card for both conditions and

confirming that the regenerated single-run cards match the reported values up to

ordinary numeric and rendering tolerances;

4. recomputing the paired economic trial card via trial_card in compare mode and

the Simulation C figure via simC_results from the stored artifacts, and confirming

that the observed patterns in allocations, prices, and revenue concentration are

consistent with those in the dissertation figures; and

5. checking that counts and summary statistics reported in the Simulation C figure

(for example, numbers of auctions, completed tasks, and the distribution of revenue

shares) match those implied by the underlying trial_card.json microdata and

trial databases.

Under this protocol, a reader with access to the public repository, the same model

identifier, and a similar machine can rerun Simulation C, regenerate both the economic

trial cards and the Simulation C price–quality analysis from the canonical artifacts, and

verify the main findings associated with principal-weighted quality-signal utilization.
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APPENDIX D

Tooling and Inspection

This appendix documents three practical inspection tools used during the development

and evaluation of SWEChain-SDK : a terminal block explorer for the SWEChain appchain,

a live dashboard for monitoring paired trials, and a TUI browser over the native agent

runtime’s bbolt-backed state files. These tools are conveniences rather than requirements

for reproducibility: they operate on the same on-chain events and agent-level logs that

drive the metrics and figures in the simulation chapters.

D.1 Terminal Block Explorer for SWEChain

During runs, the SWEChain node exposes its RPC endpoint on the local host. To

inspect blocks, transactions, and events without leaving the terminal, we use a command-

line block explorer that attaches directly to this RPC interface. For a given trial, the

explorer is pointed at the same node directory and RPC address as the simulation code.

Figure 24 shows an example of this explorer attached to a SWEChain instance during

a trial. The screenshot illustrates the main views used in practice: a list of recent blocks

with heights and hashes, details for the selected block (including transactions and their

type tags), and decoded events with their key–value attributes. This view makes it

straightforward to confirm that auctions are being created with the expected parameters,

that bids are being submitted at the expected heights, and that settlement transfers occur

when auctions close.
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Figure 24 – Terminal block explorer attached to a SWEChain node for a simulation run.
The explorer renders blocks, transactions, and their events directly from the
node’s RPC endpoint, making it easy to inspect auction creation, bidding,
and settlement at the block level.

The explorer is not used to generate any of the quantitative results in this dissertation.

Instead, it serves as a sanity-check and inspection tool during development and debugging,

complementing the automated extraction of event streams into chain_events.jsonl and

related artifacts described in the main text.

D.2 Live Dashboard for Paired Trials

The live dashboard is a visualization layer over the same structured data that supports

the offline analytics. It consumes exported chain events and agent journals, aggregates

them into high-level indicators, and presents them as panels and time series.

Figure 25 shows a screenshot of the dashboard during a paired trial. At a glance, the

dashboard surfaces the current chain height, the number of open and closed auctions, bid

counts, task completion over time, and per-agent balances or revenues. This helps the

researcher monitor progress, detect stalled agents or unusual bidding patterns, and verify

that the baseline and intervention runs are proceeding under the intended workloads.
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