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Resumo

A análise de imagens histológicas de lâminas inteiras (WSI) no diagnóstico do câncer de

próstata impõe desafios computacionais, como o processamento de imagens em gigapixels

e a variabilidade morfológica dos tecidos. Este trabalho propõe uma metodologia que

integra um pré-processamento baseado em operações morfológicas a uma arquitetura de

rede neural convolucional do tipo Mask R-CNN para segmentação de instâncias. Aplicada

ao conjunto de dados PANDA, a abordagem incluiu a construção de um banco de dados

curado, com geração de patches e balanceamento de classes. O modelo, implementado

no framework Detectron2, obteve acurácia de 97,87% na classificação dos padrões de

Gleason, confirmando que o pré-processamento direcionado favorece o aprendizado da

rede em relação às abordagens end-to-end e foi possível realizar também a validação por

meio do subconjunto Karolinska. Os resultados indicam o potencial da metodologia como

ferramenta para patologia digital, com capacidade de generalização, estabelecendo um

novo referencial para aplicação relacionados aos desafios das imagens médicas.

Palavras-chave: Processamento de Imagem, Câncer de Próstata, Segmentação de Imagem,

Inteligência Artificial, Redes Neurais Convolucionais, Detectron2.





Abstract

The analysis of whole-slide histological images (WSI) in prostate cancer diagnosis

presents significant computational challenges, such as gigapixel image processing and

tissue morphological variability. This work proposes a methodology that integrates a

preprocessing stage based on morphological operations with a convolutional neural network

architecture of the Mask R-CNN type for instance segmentation. Applied to the PANDA

dataset, the approach included the construction of a curated database with patch generation

and class balancing. The model, implemented using the Detectron2 framework, achieved an

accuracy of 97.87% in classifying Gleason patterns, confirming that targeted preprocessing

enhances network learning compared to end-to-end approaches. Validation was also

performed using the Karolinska subset. The results indicate the potential of the proposed

methodology as a tool for digital pathology, demonstrating its generalization capability and

establishing a new reference for applications addressing challenges in medical imaging.

Keywords: Image Processing, Prostate Cancer, Image Segmentation, Artificial Intelli-

gence, Convolutional Neural Networks, Detectron2.
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Capítulo 1

Introdução

O câncer de próstata é a quarta principal causa de morte por câncer no Brasil,

correspondendo a 6% de todas as mortes nesta categoria. A taxa de mortalidade total tem

mostrado uma forte tendência de aumento, com 16.301 mortes e cerca de 71.730 novos

casos registrados em 2022, correspondendo a 29,2% dos tumores incidentes em homens

(BRAZIL, 2022). Nos Estados Unidos, os registros indicam que há cerca de 288,3 mil

novos casos e cerca de 34,7 mil mortes causadas por câncer de próstata em 2023. Além

disso, as estatísticas mostram que um em cada oito homens será diagnosticado com esse

tipo de neoplasia (SOCIETY, 2023).

Observa-se que tanto no Brasil quanto nos Estados Unidos, devido ao aumento de

casos de tumor e da taxa de mortalidade causada pela doença, há ações em nível nacional

e políticas para prevenção e controle do câncer. O objetivo é reduzir a incidência e a

mortalidade por meio de ações contínuas, como conscientização dos fatores de risco do

câncer, promoção da detecção precoce de cânceres rastreáveis e fornecimento de tratamento

de qualidade em todo o país (SOCIETY, 2023; BRAZIL, 2022).

Assim como em outros cânceres, a idade é um marcador de risco e tem significado

especial no câncer de próstata, uma vez que a morbidade e a mortalidade aumentam

exponencialmente após os 50 anos no Brasil; nos Estados Unidos, o aumento ocorre em

homens com 65 anos ou mais. A justificativa para orientar a detecção precoce do câncer

de próstata é a possibilidade de reduzir os custos decorrentes do tratamento do câncer

em estágios avançados ou doença metastática, além de aumentar as taxas de cura dos

pacientes (SOCIETY, 2023; BRAZIL, 2022).

O diagnóstico do câncer de próstata pode ser feito por estudo histopatológico do

tecido obtido por biópsia de próstata, o que deve ser considerado sempre que houver

anormalidades no exame digital do reto ou na dosagem do Antígeno Específico da Próstata

ou PSA (LOEB et al., 2014). Utilizando um laudo médico ou anatomopatológico, avalia-se

o grau histológico do câncer, conhecido como Escore de Gleason (Figura 1). O objetivo é

informar sobre a provável taxa de crescimento do tumor e sua tendência à disseminação,

além de auxiliar no melhor tratamento para o paciente (BRAZIL, 2002).
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Figura 1 – Escore de Gleason (BRAZIL, 2022).

De acordo com o Instituto Nacional do Câncer, a escala de classificação do câncer de

próstata varia de 1 a 5, como mostrado na Figura 1. São eles (BRAZIL, 2022):

❏ Grau 1 - As células são geralmente uniformes e pequenas, formando glândulas

regulares com pouca variação de tamanho e forma, com margens bem definidas,

densamente agrupadas e distribuídas uniformemente, com pouco estroma entre elas.

❏ Grau 2 - As células variam mais em tamanho e forma, as glândulas permanecem

uniformes, com nódulos soltos com bordas irregulares.

❏ Grau 3 - As células são mais variáveis em tamanho e forma, constituindo glândulas

muito pequenas, uniformes, angulares ou alongadas, individualmente e irregularmente

distribuídas ao longo do estroma. Elas também podem formar nódulos fusiformes

ou papilares com bordas lisas.

❏ Grau 4 - Muitas células se fundem em grandes massas amorfas ou formam glândulas

irregulares, de distribuição desigual, mostrando infiltração e invasão irregulares de

tecidos adjacentes.

❏ Grau 5 - Tumor anaplásico. A maioria das células se agrega em grandes aglomerados

e invade órgãos e tecidos adjacentes. A massa celular pode apresentar necrose central,

com padrão comedocarcinoma. A diferenciação glandular frequentemente pode estar

ausente: padrões de crescimento celular cordão-like ou infiltração de células soltas.
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1.1 Motivação

O diagnóstico do câncer de próstata, embora bem estabelecido clinicamente através do

Escore de Gleason, apresenta desafios que motivam a busca por soluções computacionais.

A análise manual de lâminas histológicas é um trabalho sujeito a viés e fadiga, dependendo

da disponibilidade e da experiência do patologista, o que pode levar a variabilidades no

diagnóstico. A aplicação de técnicas de inteligência artificial surge como uma oportunidade

para aumentar a eficiência, a reprodutibilidade e a precisão do processo diagnóstico.

Do ponto de vista da Ciência da Computação, o problema impõe desafios complexos.

As lâminas histológicas inteiras (WSIs) são imagens em escala de gigapixels, cujo processa-

mento demanda alto poder computacional e algoritmos especializados (CHEN et al., 2023).

Além disso, a variabilidade na coloração H&E e a complexidade morfológica dos tecidos

exigem modelos com alta capacidade de generalização. Embora abordagens baseadas em

aprendizado profundo tenham alcançado resultados promissores, como a acurácia de 77%

relatada por (RODRIGUEZ et al., 2020) no dataset SICAPv2, muitos trabalhos aplicam

redes neurais diretamente sobre as imagens, tratando o modelo como uma “caixa-preta”.

Esta abordagem, embora funcional, negligencia a oportunidade de otimizar a extração de

características e carece de interpretabilidade sobre quais regiões da imagem contribuíram

para o diagnóstico.

A hipótese central desta tese é que um pré-processamento direcionado, que utiliza conhe-

cimento de domínio para realçar estruturas glandulares através de operações morfológicas,

permite que uma rede neural aprenda características mais discriminativas. Argumenta-se

que, ao invés de uma abordagem end-to-end, a criação de um pipeline que limpa e prepara

os dados melhora a capacidade de generalização do modelo para novos dados. Nesse

contexto, a contribuição principal é um pipeline computacional agnóstico que demonstra

como técnicas clássicas (morfologia) podem estabilizar o treinamento de redes profundas

(Deep Learning) em cenários de alta variabilidade visual. Portanto, esta tese propõe e

valida uma metodologia computacional que não apenas aplica o aprendizado profundo, mas

o otimiza através de uma etapa de pré-processamento fundamentada, visando estabelecer

um novo padrão de precisão para a análise do dataset PANDA.

1.2 Hipótese

A partir dos pressupostos e da análise do estado da arte no diagnóstico do câncer

de próstata, este trabalho formula a hipótese de que a aplicação de uma arquitetura

de segmentação de instâncias, enriquecida por um pré-processamento específico para a

morfologia de tecidos prostáticos, pode proporcionar uma detecção e classificação mais

precisa, reprodutível e clinicamente interpretável dos graus de câncer de próstata, em

comparação com abordagens que tratam a tarefa como um problema de classificação de
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imagem em caixa-preta.

1.3 Objetivos e Desafios da Pesquisa

Desenvolver e validar uma metodologia computacional, baseada em visão computacional

e aprendizado profundo, para a segmentação e classificação automática de padrões de

Escore de Gleason em imagens histológicas de lâminas inteiras de câncer de próstata.

Os objetivos específicos incluem:

❏ Construir um banco de dados curado e balanceado a partir do dataset PANDA,

otimizado para o treinamento de redes neurais convolucionais.

❏ Implementar um pipeline de pré-processamento de imagens para realçar estruturas

glandulares e remover artefatos.

❏ Avaliar um modelo de segmentação de instâncias (Mask R-CNN) quanto à sua

capacidade de identificar e classificar os diferentes graus de Gleason.

❏ Comparar o desempenho da metodologia proposta com o estado da arte, analisando

métricas de acurácia e segmentação.

1.4 Organização desta Tese

Este trabalho está estruturado em cinco capítulos para facilitar o entendimento e a

progressão lógica da pesquisa. O Capítulo 1 introduz o problema sob a ótica da saúde

e da computação, delineando a motivação, os objetivos e a hipótese. O Capítulo 2

apresenta a contextualização teórica, revisa o estado da arte computacional e detalha os

fundamentos de processamento de imagem e deep learning aplicados à patologia digital. O

Capítulo 3 descreve a metodologia de pesquisa, desde a construção do banco de dados

até o treinamento da rede neural. O Capítulo 4 discute os experimentos e analisa os

resultados obtidos. Por fim, o Capítulo 5 apresenta a conclusão, as contribuições do

trabalho e aponta direções para pesquisas futuras.
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Contextualização

Neste capítulo, apresentam-se as teorias que fundamentam esta pesquisa, acompanhadas

por uma revisão da literatura. O objetivo é proporcionar uma compreensão dos referenciais

teóricos que sustentam este estudo e examinar o conjunto de trabalhos relacionados ao

tema desta pesquisa.

2.1 A próstata

A próstata, glândula do sistema reprodutivo masculino, localiza-se anteriormente ao

reto e inferiormente à bexiga urinária. Seu tamanho varia conforme a idade do indivíduo;

o órgão compara-se a uma noz em homens jovens, mas pode aumentar em homens com

idade avançada (ONCOGUIA, 2014). Sua função primária consiste na produção de um

fluido essencial para a proteção e nutrição dos espermatozoides no sêmen, conferindo-lhe

maior fluidez. Nas proximidades da próstata, situam-se as vesículas seminais, responsáveis

pela produção da maior parte do fluido seminal. A uretra, canal que permite a passagem

de urina e sêmen para fora do corpo através do pênis, atravessa o centro da próstata

(ONCOGUIA, 2014).

Figura 2 – Sistema genital masculino, destacando a próstata e exibindo região com câncer
(SOCIETY, 2023).
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A manutenção da saúde da próstata é um fator importante para a qualidade de vida,

dada a prevalência de condições como a Hiperplasia Prostática Benigna (HPB) e o câncer

de próstata (Adenocarcinoma). A HPB refere-se ao aumento não canceroso da próstata,

comum em homens mais velhos, que pode causar dificuldades urinárias devido à compressão

da uretra.

Embora o termo “câncer de próstata” seja utilizado de forma ampla, este trabalho

foca especificamente no adenocarcinoma acinar, o subtipo histológico mais prevalente e

aquele para o qual o sistema de graduação de Gleason foi originalmente desenvolvido e é

primariamente aplicado (EPSTEIN et al., 2016).

Por outro lado, o câncer de próstata figura entre os tipos mais comuns de neoplasia

entre os homens, desenvolvendo-se frequentemente de forma lenta e sem sintomas evidentes

nos estágios iniciais. A detecção precoce do câncer de próstata eleva a probabilidade de

um tratamento bem-sucedido. Exames regulares constituem os métodos de diagnóstico

(ONCOGUIA, 2014):

❏ O exame digital retal, um procedimento físico, avalia a próstata por meio da inserção

de um dedo lubrificado no reto para palpação.

❏ O teste de antígeno prostático específico ou Prostate-specific antigen (PSA) é um

exame de sangue que detecta um antígeno produzido pela próstata, podendo sinalizar

neoplasia ou outras condições.

❏ A biópsia, um procedimento cirúrgico, coleta amostras de tecido prostático para

análise microscópica, fornecendo dados morfológicos detalhados para o diagnóstico

de doenças da próstata.

A análise histológica de amostras de tecido, utilizando imagens, possibilita a identifica-

ção de células cancerosas e a avaliação da extensão da doença. As imagens resultantes

fornecem detalhes sobre a morfologia celular, a estrutura do tecido e a gravidade das lesões

encontradas.

2.2 Análise de Imagens Histológicas para Câncer de

Próstata

Estudos diversos corroboram a eficácia da análise histológica na detecção do câncer

de próstata. Uma pesquisa conduzida por (TRABULSI et al., 2020) demonstrou sensi-

bilidade superior a 90% para este método na detecção do câncer prostático. Além disso,

técnicas como a microscopia digital têm apresentado aumento na precisão diagnóstica

e na identificação de lesões de alto risco. A histologia da próstata apresenta elementos

com formas e disposições de relevância para o estudo do desenvolvimento de doenças.

No contexto do câncer de próstata, os núcleos – organelas membranosas localizadas no
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centro das células, responsáveis pelo controle da expressão gênica – são cruciais para a

análise (MESCHER, 2021). Esses núcleos fornecem informações sobre o estado do tumor,

empregadas no diagnóstico. Na Figura 3, observa-se a disposição nuclear em um epitélio

glandular saudável. A compreensão detalhada dessa estrutura, em conjunto com a análise

dos núcleos, desempenha um papel fundamental na avaliação da condição neoplásica da

próstata.

Figura 3 – Exemplo de imagens histológicas e principais estruturas das células da próstata,
obtida em (KAGGLE, 2023; MESCHER, 2021). Legenda: A - lúmen, B -
células secretoras, C - Citoplasma, D - Estroma, E - Núcleos celulares, F -
Glândulas.

Na Figura 3, destacam-se as seguintes estruturas (MESCHER, 2021): A) O lúmen,

que representa o espaço central dentro de uma estrutura tubular; B) Células secretoras,

especializadas na produção de substâncias; C) Citoplasma, a região celular entre a mem-

brana e o núcleo; D) Estroma, o tecido conjuntivo de suporte; E) Núcleos, que abrigam o

material genético; F) Glândulas, estruturas secretoras.

Por meio da coloração Hematoxilina-Eosina (H&E), a distinção entre esses tipos

celulares pode ser complexa. Na Figura 3, as células secretoras estão dispostas em

colunas logo após o lúmen, seguidas pelas células basais (MESCHER, 2021). As células

fibromusculares alongadas são identificáveis na imagem, distribuídas por todo o estroma

(SHAH; ZHOU, 2012).

Por meio dessas imagens de biópsia é possível classificar o câncer de próstata, um

passo crucial na determinação do prognóstico do paciente e na orientação das decisões

terapêuticas. As imagens resultantes da análise histológica permitem a classificação do
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câncer segundo o sistema de Escore de Gleason, amplamente utilizado na prática clínica

(SHAH; ZHOU, 2012). O Escore de Gleason classifica as células cancerosas com base em

sua aparência e padrão de crescimento. Esse sistema, que avalia a diferenciação celular e a

arquitetura tumoral, categoriza o câncer de próstata em uma escala de 1 a 5, considerando

os padrões predominante e secundário (SOCIETY, 2023). Se o câncer de próstata for

identificado em uma biópsia, atribui-se uma classificação baseada na avaliação microscópica

da aparência anômala do câncer. Cânceres de grau mais alto exibem características mais

anômalas e apresentam maior propensão a crescer e se disseminar. Há duas formas

principais de descrever essa classificação (SOCIETY, 2013):

❏ Se o câncer apresentar aparência semelhante ao tecido normal, pode receber uma

pontuação de 1 ou 2, embora estas pontuações raramente sejam utilizadas em

diagnósticos modernos de câncer.

❏ Cânceres com características anormais recebem uma pontuação de 5.

❏ As pontuações de 3 e 4 correspondem a características intermediárias entre os padrões

normais e anormais.

❏ Em geral, cânceres clinicamente relevantes são classificados com pontuações de 3 a 5.

Como o câncer de próstata pode possuir áreas distintas com graus variados, uma

classificação é atribuída às duas áreas que compõem a maioria das regiões do câncer. Esses

dois escores são somados para produzir o Escore de Gleason. O primeiro número atribuído

corresponde ao grau mais prevalente no tumor. Por exemplo, um Escore de Gleason de

3+4=7 indica que a maior parte do tumor é de grau 3, com uma proporção menor de

grau 4 (SOCIETY, 2013). Teoricamente, o Escore de Gleason pode variar de 2 a 10, mas

escores abaixo de 6 são raramente utilizados. Com base no Escore de Gleason, o câncer de

próstata é frequentemente categorizado em três grupos (SOCIETY, 2013):

❏ Cânceres com um Escore de Gleason de 6 ou menos são classificados como bem

diferenciados ou de baixo grau.

❏ Cânceres com um Escore de Gleason de 7 são categorizados como moderadamente

diferenciados ou de grau intermediário.

❏ Cânceres com escores de Gleason de 8 a 10 são descritos como pouco diferenciados

ou de alto grau.

Não obstante, este método pode enfrentar limitações devido à subjetividade interpessoal

e à variabilidade na interpretação da amostra. A classificação de Gleason, combinada

com outras informações clínicas, auxilia na definição do tratamento adequado para cada

paciente.
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2.3 Trabalhos Relacionados

A revisão da literatura foi conduzida utilizando as bases de dados Scopus, IEEE

Xplore e Google Scholar. A estratégia de busca empregou os seguintes operadores boole-

anos: (’Prostate Cancer’ OR ’Gleason Score’) AND (’Deep Learning’ OR ’Mask

R-CNN’ OR ’Instance Segmentation’). Os critérios de inclusão compreenderam artigos

publicados entre 2018–2024, com foco em histopatologia digital e no uso de CNNs. Foram

excluídos trabalhos restritos a dados clínicos (não-imagem) ou baseados em ressonância

magnética. A seguir, apresenta-se uma análise dos trabalhos selecionados.

O trabalho de (BULTEN et al., 2022) representa um marco na validação de algoritmos

de IA em patologia, ao sumarizar os resultados do desafio PANDA (Prostate cANcer

graDe Assessment). A metodologia do desafio, ilustrada na Figura 4, foi concebida para

testar rigorosamente a generalização dos modelos. Estruturado em duas fases, o desafio

iniciou com uma competição aberta que disponibilizou um vasto conjunto de dados de

10.616 biópsias para o treinamento dos algoritmos por 1.290 desenvolvedores. A segunda

fase consistiu em uma validação cega e independente, na qual os algoritmos de melhor

desempenho foram avaliados em coortes externas de múltiplos centros dos EUA e da

Europa, com o padrão-ouro estabelecido por consensos de painéis de uropatologistas. Esta

abordagem metodológica foi fundamental para expor os algoritmos a variações do mundo

real, como diferentes protocolos de preparação de lâminas, scanners de digitalização e

perfis de pacientes.

O principal resultado do desafio foi a demonstração empírica de que múltiplos algoritmos,

desenvolvidos com abordagens distintas (incluindo redes convolucionais, métodos baseados

em atenção e diferentes estratégias de pré-processamento), foram capazes de atingir

desempenho comparável ao de patologistas humanos. A métrica de avaliação primária, o

coeficiente Kappa quadrático ponderado, alcançou valores de 0,862 (IC 95%, 0,840-0,884) e

0,868 (IC 95%, 0,835-0,900) nas coortes de validação dos EUA e da Europa, respectivamente.

Tais valores, próximos da unidade, indicam uma concordância elevada entre as predições

da IA e o padrão-ouro, validando a robustez e o potencial de aplicabilidade clínica dos

modelos para a graduação de Gleason.

A contribuição de (BULTEN et al., 2022) reside na criação de um parâmetro de

referência de alta complexidade e na prova de conceito de que a IA pode atingir desempenho

de nível especialista de forma generalizável. Para esta tese, o conjunto de dados PANDA,

validado por este estudo, serve não apenas como a fonte de dados primária, mas também

como o padrão de referência que define a complexidade do problema. Contudo, uma

limitação fundamental da abordagem do desafio é o foco na classificação em nível de

lâmina inteira (slide-level), que resulta em um único escore ISUP para toda a biópsia. Isso

evidencia uma lacuna na localização espacial e na quantificação de múltiplos padrões de

Gleason coexistentes no mesmo tecido, que é precisamente o problema de segmentação de

instâncias que esta tese se propõe a resolver.
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Para lidar com a natureza fracamente rotulada das WSIs, (MAI et al., 2024) explora o

paradigma de Multiple Instance Learning (MIL). O MIL trata a WSI como um conjunto de

instâncias (patches) e atribui um rótulo único a todo o conjunto, dispensando anotações em

nível de pixel. A arquitetura proposta, FRCM-MIL, é um modelo de duplo fluxo (Figura 5):

um ramo utiliza uma CNN para extrair características convencionais do domínio espacial,

enquanto o segundo ramo (SFRM-WT) emprega a transformada wavelet para decompor

os sinais da imagem em componentes de baixa e alta frequência, capturando informações

de textura e bordas que poderiam ser perdidas no processamento espacial. Um Módulo de

Atenção Cruzada (CAM) é subsequentemente utilizado para fundir as representações de

ambos os domínios de forma ponderada.

Figura 4 – Visão geral do desafio PANDA e do desenho do estudo, conforme apresentado
em (BULTEN et al., 2022). A fase de desenvolvimento (esquerda) envolveu
uma competição internacional onde as equipes treinaram seus modelos. A
fase de validação (direita) realizou uma avaliação cega e independente dos
algoritmos selecionados em múltiplos datasets.

Em termos de desempenho no conjunto de dados PANDA, a abordagem FRCM-MIL

alcançou uma AUC (Área Sob a Curva ROC) de 91,69%, demonstrando boa capacidade

de discriminar entre os diferentes graus de Gleason em nível de lâmina. A acurácia de

67,24% reflete a dificuldade inerente à classificação multiclasse em um conjunto de dados

com desbalanceamento e alta variabilidade. A metodologia de agregação de características
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vizinhas através do módulo CQAM, que utiliza o algoritmo K-vizinhos mais próximos

(KNN), também contribuiu para a robustez do modelo ao gerar representações de consulta

mais estáveis para o mecanismo de atenção.

A principal contribuição deste trabalho é apresentar uma arquitetura MIL que integra

explicitamente características do domínio da frequência para melhorar a classificação de

WSIs. No entanto, a limitação intrínseca do MIL persiste: a perda de interpretabilidade

espacial. O modelo fornece uma predição para a lâmina inteira, mas não gera um mapa de

segmentação que localize os diferentes padrões tumorais. Esta abordagem contrasta com o

objetivo desta tese, que é empregar a segmentação de instâncias para fornecer não apenas o

diagnóstico, mas também a localização e a extensão exatas de cada padrão, informação de

elevado valor para o planejamento terapêutico e a avaliação da heterogeneidade tumoral.

Outra frente de pesquisa foca em arquiteturas capazes de lidar com a escala de gigapixels

das WSIs de forma hierárquica. (CHEN et al., 2023) propõe o HIPT (Hierarchical Image

Pyramid Transformer), um modelo baseado em Vision Transformers (ViTs) e treinado

com aprendizado auto-supervisionado. A metodologia do HIPT, detalhada na Figura 6,

processa a imagem em múltiplas escalas de forma ascendente (bottom-up). O processo

inicia com um ViT operando em patches de 256×256 pixels, que aprende representações de

“organização celular” ao tratar blocos de 16 × 16 pixels como “tokens”. As representações

vetoriais resultantes são então utilizadas como uma nova sequência de “tokens” para um

segundo nível de ViT, que analisa regiões maiores de 4096 × 4096 pixels para capturar

“fenótipos de tecido”, como a interface tumor-estroma.

O modelo HIPT demonstrou desempenho de ponta em tarefas de subtipagem de câncer

e predição de sobrevida em 33 tipos de câncer do The Cancer Genome Atlas (TCGA). A

análise dos mapas de atenção do modelo revelou que as camadas hierárquicas aprendem

a focar em características histologicamente relevantes em suas respectivas escalas, desde

células individuais até a organização tecidual mais ampla. Isso valida a hipótese de que a

análise multiescala é fundamental para a extração de informações prognósticas de WSIs.

Apesar de sua performance, a abordagem HIPT possui limitações no contexto desta

tese. Primeiro, sua complexidade computacional é alta, exigindo recursos de hardware

para o treinamento em duas etapas. Segundo, o modelo foi projetado para gerar uma única

representação vetorial para a WSI inteira, sendo otimizado para tarefas de classificação e

prognóstico em nível de lâmina. A arquitetura não foi desenvolvida para a segmentação

granular de múltiplos padrões de Gleason, que exige a delimitação precisa de fronteiras

entre diferentes regiões tumorais, tarefa para a qual a segmentação de instâncias é mais

adequada.
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Figura 5 – Arquitetura MIL proposta em (MAI et al., 2024). A WSI é dividida em
instâncias (patches). Um fluxo processa as características espaciais, enquanto
o outro (SFRM-WT) reconstrói características no domínio da frequência. Um
módulo de atenção cruzada funde as informações para gerar a representação
final da lâmina (saco).

Figura 6 – Arquitetura do Hierarchical Vision Transformer (HIPT) (CHEN et al., 2023).
O modelo processa a WSI em escalas crescentes, desde características celulares
(16 × 16) até fenótipos de tecido (4096 × 4096), para formar uma representação
final da lâmina inteira.
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O custo da anotação por especialistas é um desafio persistente na área. O trabalho de

(LÓPEZ-PÉREZ et al., 2024) aborda este problema com a criação e validação do conjunto

de dados CrowdGleason. A metodologia, descrita na Figura 7, envolveu um protocolo de

crowdsourcing onde sete patologistas em treinamento anotaram 19.077 patches de 1.045

WSIs. A inovação reside na forma de lidar com a variabilidade e o ruído esperados em

anotações de não especialistas. Para isso, os autores empregaram processos Gaussianos,

um método estatístico Bayesiano que aprende uma matriz de confusão para cada anotador,

modelando sua expertise e permitindo uma agregação ponderada dos rótulos.

Os resultados quantitativos validaram a abordagem. Um modelo treinado apenas com

os dados de crowdsourcing (SVGPCR) alcançou um Kappa de 0,7048. Mais relevante, um

modelo híbrido (SVGPMIX), que combinou o grande volume de dados do CrowdGleason

com um pequeno conjunto de dados de alta qualidade anotado por especialistas (SICAPv2),

obteve a melhor performance, com um Kappa de 0,7814. Este resultado sugere que

anotações em massa, mesmo que com ruído, podem ser utilizadas de forma eficaz para

treinar modelos robustos, especialmente quando guiadas por uma pequena quantidade de

dados de especialistas.

A contribuição deste trabalho é a apresentação de uma estratégia viável para escalar a

criação de conjuntos de dados anotados, o que é relevante para um dos objetivos desta

tese: “Construir um banco de dados curado”. Embora esta tese utilize o conjunto de dados

PANDA, os achados de (LÓPEZ-PÉREZ et al., 2024) reforçam a complexidade da etapa

de curadoria de dados e demonstram a utilidade de métodos probabilísticos para lidar com

a incerteza dos rótulos, uma questão presente até entre especialistas.

Figura 7 – Protocolo de criação do dataset CrowdGleason (LÓPEZ-PÉREZ et al., 2024).
O fluxo ilustra a aquisição de WSIs, a extração de patches, o processo de
rotulação distribuída (crowd labeling) para gerar o conjunto de treinamento, e
a curadoria com especialistas para criar um conjunto de teste confiável.

Por fim, abordagens generativas também têm sido exploradas para a tarefa de seg-
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mentação. (VATS et al., 2024) propõe um método baseado em Generative Adversarial

Networks (GANs). Conforme ilustrado na Figura 8, a arquitetura GAN consiste em dois

modelos que competem entre si: um Gerador, com arquitetura U-Net, que aprende a

criar máscaras de segmentação a partir de uma imagem de entrada; e um Discriminador,

treinado para distinguir entre as máscaras geradas e as máscaras reais do conjunto de

dados (o ground-truth). O treinamento é um processo adversarial no qual o Gerador é

otimizado para produzir resultados que “iludam” o Discriminador, forçando-o a gerar

segmentações progressivamente mais realistas e precisas.

Esta abordagem generativa demonstrou eficácia para a tarefa de segmentação semân-

tica no conjunto de dados do desafio MICCAI 2019, alcançando um F1-score de 0,872.

Este resultado superou outras arquiteturas de segmentação, como a U-Net (0,843) e a

DeepLabV3 (0,860), indicando que o aprendizado adversarial pode refinar os contornos e

a qualidade das máscaras de segmentação.

Este trabalho é relevante para a tese, pois apresenta uma alternativa de vanguarda para

a tarefa de segmentação. Contudo, há duas distinções pertinentes. Primeiro, a abordagem

com GAN foi otimizada para a segmentação semântica, onde todos os pixels de uma mesma

classe (exemplo: Gleason 4) recebem o mesmo rótulo. Isso difere da segmentação de

instâncias, objetivo desta tese, que visa delinear cada glândula ou agrupamento glandular

como um objeto distinto. Segundo, a validação em um conjunto de dados diferente

(MICCAI) impede uma comparação direta de desempenho com os resultados obtidos no

PANDA.

Figura 8 – Diagrama de blocos do algoritmo de segmentação baseado em GAN proposto
por (VATS et al., 2024). O modelo gerador recebe a imagem de entrada e
produz uma máscara de segmentação, que é avaliada pelo discriminador em
comparação com a máscara real (ground-truth).

2.3.1 Síntese e Lacunas da Literatura

A literatura demonstra uma tendência em direção a modelos que analisam a WSI

inteira. Não obstante, persistem lacunas que esta tese objetiva endereçar. A Tabela 1

sintetiza a análise dos trabalhos relacionados.
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❏ Classificação de Slide versus Segmentação de Instância: A maioria dos

trabalhos de alta performance concentra-se na classificação do slide, sem fornecer

a localização e a extensão exata de cada padrão de Gleason, informação que a

segmentação de instâncias pode oferecer.

❏ Impacto do Pré-processamento: Poucos trabalhos investigam o impacto de

técnicas de pré-processamento especificamente desenvolvidas. Muitas abordagens

tratam a rede como uma solução integral (end-to-end), evidenciando uma lacuna

sobre como a otimização dos dados de entrada pode melhorar o desempenho.

❏ Interpretabilidade: Arquiteturas como MIL e ViTs, embora potentes, podem ser

menos interpretáveis. Existe espaço para explorar como arquiteturas como o Mask R-

CNN podem ser otimizadas para um balanço entre performance e interpretabilidade

clínica.
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Tabela 1 – Tabela comparativa dos principais trabalhos relacionados.

Autor(es) Método Base de Dados Métrica/Resultado Vantagens Limitações

(ARVANITI et
al., 2018)

MobileNet para classifica-
ção automática de padrões
de Gleason.

641 pacientes (base

de teste: 245)
Kappa quadrático:
75% e 71%

Alta concordância
com patologistas es-
pecialistas.

Foco em microarranjos
de tecido, não em WSIs
completas.

(RODRIGUEZ
et al., 2020)

Deep learning para previ-
são de Escore de Gleason
em nível de pixel.

SICAPv2 (182 ima-
gens)

Precisão: 77% Fornece mapas de
calor com localiza-
ção dos padrões.

Dataset pequeno, limi-
tando a generalização
do modelo.

(BULTEN et al.,
2022)

IA para diagnóstico e gra-
duação de Gleason, vali-
dada em múltiplas coortes
(desafio PANDA).

PANDA e coortes
externas

Kappa quadrático:
0,86

Alta generalização e
desempenho de ní-
vel clínico em clas-
sificação de slide.

Foco na classificação do
slide, sem segmentação
detalhada dos padrões.

(MAI et al.,
2024)

Multiple Instance Learning

(MIL) com reconstrução de
características espaciais e
de frequência.

Dataset privado e
PANDA

AUC: 91,69%
(PANDA)

Eficiente para classi-
ficação de WSI sem
anotações em nível
de pixel.

Menor interpretabi-
lidade; não localiza
precisamente as regiões
tumorais.

(CHEN et al.,
2023)

Vision Transformer

(ViT) hierárquico (HIPT)
com aprendizado auto-
supervisionado em
múltiplas escalas.

TCGA (33 tipos de
câncer)

Alta performance em
subtipagem de câncer e
previsão de sobrevida.

Lida com a escala de
gigapixels das WSIs
e aprende caracterís-
ticas em múltiplos
níveis.

Requer grande poder
computacional e não foi
focado primariamente
em segmentação.

(LÓPEZ-
PÉREZ et
al., 2024)

Aprendizado a partir de
anotações de crowdsour-

cing com Processos Gaus-
sianos para modelar ruído.

CrowdGleason
(novo dataset) e
SICAPv2

Demonstra que anota-
ções “com ruído” po-
dem treinar modelos ro-
bustos (Kappa: 0.78).

Reduz a dependên-
cia da necessidade
de anotações de pa-
tologistas especialis-
tas.

A qualidade do modelo
final depende de algo-
ritmos de agregação de
rótulos.

(VATS et al.,
2024)

Segmentação de padrões
de Gleason utilizando uma
Rede Generativa Adversa-
rial (GAN) com gerador U-
Net.

MICCAI 2019 F1-score: 0,872 Produz máscaras de
segmentação preci-
sas, superando ou-
tras arquiteturas.

Avaliado em um dataset

diferente do PANDA, o
que dificulta a compa-
ração direta.

Fonte: O autor (2025).
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2.4 Processamento Digital de Imagens em Patologia

O processamento de imagens digitais é uma área da ciência da computação com vastas

aplicações, incluindo o campo da medicina. No contexto da patologia, aplica-se para

extrair informações quantitativas e objetivas de imagens histológicas, visando a superação

das limitações da avaliação qualitativa inerente ao diagnóstico humano (GONZALEZ;

WOORDS, 2007; LITJENS et al., 2017). Esta seção detalha os conceitos de processamento

que são relevantes para a análise de Whole Slide Images (WSIs) de câncer de próstata.

A análise de Lâminas Histológicas Inteiras - Whole Slide Images (WSI) impõe desafios

computacionais significativos. Devido à sua resolução na ordem de gigapixels, estas

imagens não podem ser processadas em uma única iteração, o que exige estratégias para

a gestão de memória e tempo de processamento (MADABHUSHI; RANGANATHAN,

2019). Adicionalmente, a variabilidade na morfologia do tecido, a presença de artefatos e

as inconsistências de coloração introduzidas durante a preparação das lâminas constituem

fatores que comprometem a generalização dos modelos (TOTH et al., 2014; HOFMAN et

al., 2021). As técnicas empregadas neste contexto incluem:

❏ Geração de Patches (Tiling): Para mitigar o custo computacional imposto pela

escala gigapixel, a WSI é particionada em milhares de patches (ladrilhos) menores

(tipicamente 256×256 ou 512×512 pixels) (CAMPANELLA et al., 2019; CHEN et al.,

2023). Esta abordagem torna a análise computacionalmente viável, permitindo que

cada patch sirva como a unidade de entrada para a Rede Neural Convolucional (CNN).

A eficiência do treinamento é otimizada pela amostragem guiada de patches, que

filtra regiões de fundo e artefatos, e pela aplicação de técnicas como o hard negative

mining, onde patches incorretamente classificados são reintroduzidos no treinamento

para refinar as fronteiras de decisão do modelo (MADABHUSHI; RANGANATHAN,

2019).

❏ Normalização de Coloração: A coloração com Hematoxilina e Eosina (H&E) é

suscetível a variações de intensidade e tonalidade entre diferentes laboratórios e

lotes de reagentes (ARVANITI et al., 2018). Essa variação pode introduzir um

viés no modelo de deep learning, levando-o a correlacionar o padrão cromático em

detrimento das características morfológicas do tecido. A normalização de coloração

é um passo de pré-processamento que ajusta o perfil de cores de uma imagem para

corresponder a um padrão de referência. Metodologicamente, a normalização pode ser

realizada através de técnicas de correspondência estatística de cores ou de métodos de

separação de corantes no espaço de densidade óptica (OD). Recentemente, métodos

baseados em deep learning têm sido investigados por sua capacidade de alcançar a

normalização sem a dependência explícita de uma imagem de referência, podendo

apresentar maior robustez e adaptabilidade (CHEN et al., 2024).
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❏ Operações Morfológicas e Segmentação de Artefatos: Técnicas clássicas de proces-

samento de imagem, como operações morfológicas, são aplicadas para refinar as

máscaras de segmentação utilizadas no treinamento (GONZALEZ; WOORDS, 2007).

Operações de abertura (erosão seguida de dilatação) removem pequenos objetos e

ruídos (artefatos de digitalização). Operações de fechamento (dilatação seguida de

erosão) preenchem pequenos orifícios dentro de regiões de interesse. A aplicação

dessas operações resulta em anotações mais limpas. Adicionalmente, a segmentação

do tecido em relação ao fundo da lâmina e a remoção de artefatos são realizadas

por meio de limiarização (e.g., método de Otsu) ou por algoritmos de segmentação

baseados em deep learning dedicados ao controle de qualidade (HOFMAN et al.,

2021).

Essas etapas de pré-processamento, embora baseadas em conceitos clássicos, são

aplicadas de forma direcionada para resolver os desafios de escala e variabilidade das

imagens de patologia digital, constituindo a base sobre a qual os modelos de aprendizado

profundo podem atuar com maior eficácia.

2.5 Redes Neurais Convolucionais

Uma Rede Neural Convolucional (CNN) é uma arquitetura de deep learning inspirada na

organização hierárquica do córtex visual humano, que é a arquitetura mais frequentemente

empregada para a maioria das tarefas de visão computacional (LECUN; KAVUKCUOGLU;

FARABET, 2010). Sua arquitetura é projetada para aprender representações hierárquicas

de características a partir de dados brutos de pixels, o que a torna adequada para a análise

de imagens histológicas.

Figura 9 – Exemplo de estrutura de CNN. A imagem de entrada passa por camadas de
convolução e subamostragem para extração de mapas de características, que
são então utilizados por uma camada totalmente conectada para a classificação
final.

A estrutura de uma CNN, ilustrada na Figura 9, é composta por:
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1. Camada de Convolução: Onde filtros (kernels) aprendem a detectar padrões espa-

ciais, como bordas, texturas e formas. Nas camadas iniciais, os filtros detectam

características simples. Em camadas mais profundas, combinam essas características

para identificar estruturas complexas, como a morfologia de glândulas cancerosas

(KRIZHEVSKY; SUTSKEVER; HINTON, 2012). As Deep Convolutional Neural

Networks (DCNNs) são utilizadas na identificação de detalhes finos na análise de

lesões prostáticas.

2. Camada de Subamostragem (Pooling): Reduz a dimensão espacial dos mapas de

características, o que diminui a carga computacional e confere à representação maior

invariança a pequenas translações na imagem de entrada (BOUREAU; PONCE;

LECUN, 2010).

3. Camada Totalmente Conectada: Após a extração de características, estas são trans-

formadas em um vetor e processadas por camadas densas para realizar a tarefa final,

como a classificação do padrão de Gleason.

A arquitetura ResNet (Residual Neural Network) (HE et al., 2016), utilizada como

backbone nesta pesquisa, possibilitou o treinamento de redes mais profundas. Introduziu

as “conexões residuais” (skip connections), que permitem que o gradiente flua com maior

facilidade através da rede durante o treinamento, o que contribui para mitigar o problema

do desaparecimento do gradiente. Outras arquiteturas (VGG, Inception e DenseNet) são

igualmente utilizadas, frequentemente empregando a técnica de Transfer Learning para

otimizar o desempenho em datasets médicos limitados (COURTY et al., 2023). Adicio-

nalmente, pesquisas exploram arquiteturas especializadas como as Graph Convolutional

Networks (GCN) e modelos de fusão de características para refinar a análise estrutural do

câncer de próstata (ALI et al., 2021; ZHU et al., 2022).

O treinamento de uma Rede Neural Convolucional envolve a minimização de uma

função de perda (erro) através do ajuste iterativo dos pesos sinápticos. O algoritmo

para este processo é o Gradiente Descendente. Este método de otimização calcula o

gradiente da função de perda em relação aos parâmetros da rede e atualiza os pesos

na direção oposta ao gradiente, buscando o mínimo global ou local da função de erro

(GOODFELLOW; BENGIO; COURVILLE, 2016). Em arquiteturas modernas, utilizam-se

variações estocásticas deste algoritmo, como o AdamW utilizado neste trabalho, que

adaptam a taxa de aprendizado para acelerar a convergência.

Para viabilizar o cálculo desses gradientes em redes profundas com múltiplas camadas,

emprega-se o algoritmo de Retropropagação (Backpropagation). Baseado na regra da

cadeia do cálculo diferencial, o Backpropagation propaga o erro da camada de saída de

volta para as camadas iniciais, permitindo calcular a contribuição exata (derivada parcial)

de cada peso individual para o erro total da rede (BISHOP, 2006). É essa mecânica que
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permite à rede “aprender” quais características da imagem (como bordas ou texturas de

glândulas) são relevantes para a classificação correta do Escore de Gleason.

2.6 Segmentação de Instâncias com Mask R-CNN e

Arquiteturas Avançadas

No contexto da graduação de Gleason, uma única biópsia pode conter múltiplas regiões

com diferentes padrões (exemplo: áreas de Gleason 3 e Gleason 4) (EPSTEIN et al., 2016).

Tarefas de classificação ou segmentação semântica são insuficientes para distinguir objetos

individuais. A segmentação de instâncias é a tarefa computacional utilizada neste contexto,

pois identifica e delineia cada objeto (ou instância) de forma independente (HE et al.,

2017; ZHOU et al., 2019).

O Mask R-CNN (HE et al., 2017) é uma arquitetura de referência para esta tarefa,

sendo uma extensão do Faster R-CNN (REN et al., 2015) com um ramo adicional para a

geração de máscara. Sua abordagem de duas etapas é aplicada para problemas complexos:

1. Geração de Propostas de Região: Uma sub-rede denominada Region Proposal Network

(RPN) analisa o mapa de características (frequentemente aprimorado com Feature

Pyramidal Network - FPN para melhor multiescala (TIWARI et al., 2024)) e propõe

regiões candidatas (Regions of Interest - ROIs) que provavelmente contêm um objeto.

2. Classificação, Refinamento e Geração de Máscara: Para cada ROI, três “cabeças”

da rede atuam em paralelo: uma classifica o objeto (exemplo: “Gleason 3”), outra

refina as coordenadas da caixa delimitadora, e uma terceira gera uma máscara de

segmentação em nível de pixel para a instância.

Uma inovação técnica do Mask R-CNN é a camada ROIAlign (HE et al., 2017), que

resolve um problema de desalinhamento de pixels (quantização) presente em arquiteturas

anteriores, utilizando interpolação bilinear. Este mecanismo de alinhamento é importante

para que a máscara de segmentação seja gerada com alta fidelidade espacial (HE et al.,

2017). O Detectron2, o framework utilizado nesta tese, é uma implementação eficiente e

modular desta arquitetura (WU et al., 2019b). O Mask R-CNN é reportado por apresentar

um desempenho adequado na segmentação de instâncias que se sobrepõem, como células

e glândulas densamente agrupadas (RETTENBERGER; SAGER; LELLMANN, 2023).

Pesquisas atuais investigam otimizações do Mask R-CNN, incluindo o uso de backbones

mais avançados (e.g., Res2Net) e modificações arquiteturais para aumentar a precisão nas

bordas das instâncias (HUANG et al., 2023).
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Figura 10 – Estrutura geral do Mask R-CNN. A imagem passa por um backbone (CNN)
para extrair características. A RPN propõe regiões (ROIs), que são alinhadas
pela camada ROIAlign. Em seguida, as cabeças da rede realizam a classificação,
o refinamento da caixa delimitadora e a geração da máscara de segmentação
para cada instância. Figura adaptada de (CHIAO et al., 2019).
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Capítulo 3

Metodologia de Pesquisa

A análise computacional de imagens médicas tem se consolidado como uma área de

pesquisa relevante, com a aplicação de algoritmos de Inteligência Artificial (IA) para auxiliar

em tarefas de diagnóstico e prognóstico (GIANSANTI, 2025; RIBEIRO et al., 2025). Dentro

deste campo, abordagens baseadas em deep learning têm sido amplamente investigadas

para a classificação e segmentação de padrões em imagens patológicas, demonstrando

capacidade de aprender hierarquias espaciais de características diretamente dos dados (HE;

LUAN; HU, 2025). O presente estudo se insere neste contexto, propondo uma metodologia

para a análise de imagens histológicas de câncer de próstata.

O trabalho foi desenvolvido utilizando o conjunto de dados Prostate Cancer Grade

Assessment (PANDA). A escolha deste acervo justifica-se por ser um recurso público de

grande escala, amplamente utilizado como referência (benchmark) na área. Ele é composto

por imagens de lâminas inteiras (Whole-Slide Images - WSI) em formato Tagged Image File

Format (TIFF) de alta resolução, acompanhadas de anotações do escore de Gleason, o que

permite o treinamento supervisionado e a avaliação comparativa dos modelos propostos.

Dada a alta dimensionalidade das WSIs, uma etapa de pré-processamento dos dados é

mandatória. Inicialmente, aplicam-se operações de morfologia matemática com o objetivo

de atenuar ruídos e artefatos de coloração que poderiam impactar negativamente o

desempenho do modelo (SILVA; NASCIMENTO; MEDEIROS, 2022). Em seguida, são

geradas máscaras de tecido para isolar a área de interesse do fundo da lâmina, otimizando

o processamento computacional.

Posteriormente, as regiões de tecido são divididas em múltiplos patches (recortes) de

dimensões uniformes. Esta abordagem, conhecida como tiling, é um procedimento padrão

no processamento de WSIs, pois permite que as imagens sejam tratadas por unidades

de processamento gráfico (GPUs) com memória limitada e, simultaneamente, aumenta a

quantidade de amostras disponíveis para o treinamento da rede neural.

Para a tarefa de identificação e delineamento das estruturas histológicas, foi selecionada

a arquitetura Mask R-CNN, que utiliza a ResNet-50 como rede de extração de características

(backbone). A ResNet-50 é uma arquitetura convolucional consolidada, reconhecida por
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sua capacidade de aprender representações hierárquicas robustas de dados visuais. A

implementação foi realizada utilizando o framework Detectron2, uma biblioteca de software

que oferece componentes modulares e eficientes para tarefas de detecção e segmentação de

objetos.

A escolha do Mask R-CNN fundamenta-se na natureza do problema, que exige a

segmentação de instância. Esta é uma tarefa de visão computacional que vai além da

detecção de objetos (que fornece apenas caixas delimitadoras) e da segmentação semântica

(que classifica pixels, mas não distingue instâncias adjacentes da mesma classe) (HE et al.,

2017). A segmentação de instância fornece uma máscara de segmentação distinta para

cada objeto individual detectado.

A aplicação desta técnica em histopatologia é justificada pela necessidade de analisar

individualmente as glândulas prostáticas. A morfologia e a disposição dessas estruturas

são critérios essenciais no sistema de classificação de Gleason. A capacidade de isolar

cada glândula permite a extração de características quantitativas específicas por instância,

como área, perímetro e fatores de forma. A literatura recente corrobora a adequação de

abordagens de deep learning para tarefas de segmentação em nível de objeto em imagens

histopatológicas, como na segmentação de núcleos, apoiando a metodologia aqui adotada

(BASU et al., 2024).

Por fim, foi desenvolvida uma interface gráfica de usuário (GUI) como ferramenta

de apoio. Sua finalidade é permitir a execução do modelo treinado sobre novas imagens

(inferência) e facilitar a inspeção visual qualitativa dos resultados da segmentação, servindo

como um meio para a verificação e interpretação dos resultados gerados pelo modelo. Os

passos sequenciais desta metodologia estão representados na Figura 11.

Figura 11 – Passos da metodologia proposta.

3.1 Construção do Banco de Imagens

O treinamento de redes neurais convolucionais para tarefas de supervisão requer um

conjunto de dados extenso e com anotações de alta qualidade. Este processo metodológico
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inicial envolve a seleção de um banco de dados de imagens apropriado para o estudo e

a curadoria dos dados que servirão de base para o treinamento e validação do modelo

(WANG et al., 2020).

Para este trabalho, foi selecionado o conjunto de dados PANDA, que consiste em

imagens de biópsias de câncer de próstata. O conjunto de treinamento compreende

aproximadamente 11.000 imagens digitalizadas de lâminas inteiras (Whole-Slide Images -

WSI) coradas com hematoxilina e eosina (H&E), originárias de dois centros de referência:

o Radboud University Medical Center e o Karolinska Institute. As imagens variam em

dimensões, com médias de 8.192 pixels de largura por 22.528 pixels de altura, profundidade

de cor de 24 bits e formato TIFF, totalizando 411,9 gigabytes de armazenamento (KAGGLE,

2023).

Figura 12 – Exemplo do processo de graduação de Gleason para uma biópsia contendo
câncer de próstata. Os padrões de crescimento canceroso mais comum (con-
torno azul, padrão Gleason 3) e o segundo mais comum (contorno vermelho,
padrão Gleason 4) presentes na biópsia determinam a pontuação Gleason (3+4
para esta biópsia), que por sua vez é convertida em um grau ISUP (2 para
esta biópsia) seguindo as diretrizes da Sociedade Internacional de Patologia
Urológica. Biópsias que não contêm câncer são representadas por um grau
ISUP de 0 no conjunto de dados apresentado (KAGGLE, 2023).

A Figura 12 ilustra o processo de graduação de Gleason para uma biópsia com câncer de

próstata, destacando os padrões de crescimento mais comuns que determinam a pontuação

Gleason e, consequentemente, o grau ISUP. O Radboud University Medical Center e o

Karolinska Institute, em colaboração com a Tampere University, coordenaram a criação

deste conjunto de imagens. O grupo de pesquisa do Radboud University Medical Center

foca no desenvolvimento de algoritmos computacionais para suporte clínico, enquanto

o departamento do Karolinska Institute mantém um grupo interdisciplinar dedicado ao

aprimoramento do diagnóstico e tratamento do câncer de próstata (KAGGLE, 2023).

Este conjunto de dados difere de outros bancos por incluir biópsias completas obtidas

de testes multicêntricos e analisadas por uropatologistas especialistas (KAGGLE, 2023).
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Essa característica permite uma representação mais abrangente das variações histológicas

observadas na prática clínica, o que é fundamental para o treinamento de modelos que

possam generalizar para dados do mundo real.

O acervo é dividido em dois subconjuntos com estratégias de anotação distintas. O

primeiro, denominado Radboud, contém imagens histológicas de glândulas prostáticas

rotuladas com anotações individuais e em nível de pixel do escore de Gleason. A classificação

detalhada inclui: 1 para estroma; 2 para epitélio benigno; 3 para epitélio canceroso (Gleason

3); 4 para epitélio canceroso (Gleason 4); e 5 para epitélio canceroso (Gleason 5). A

presença de múltiplas anotações em uma única imagem permite a identificação precisa de

áreas com diferentes graus de agressividade (BULTEN et al., 2022).

O segundo subconjunto, Karolinska, adota uma abordagem de rotulação mais ampla,

categorizando as regiões da imagem como: 0 para fundo (não tecido) ou desconhecido; 1

para tecido benigno (estroma e epitélio combinados); e 2 para tecido canceroso. Diferente-

mente do subconjunto Radboud, as imagens do Karolinska não apresentam máscaras de

segmentação detalhadas com base nos escores de Gleason. Os escores são associados às

amostras como um todo, indicando a malignidade geral da lâmina, mas sem especificar a

localização exata dos diferentes padrões tumorais (BULTEN et al., 2022).

Os dados foram organizados na Tabela 2, que apresenta a distribuição desses escores para

as duas instituições, representando o número de casos observados para cada combinação

de escore de Gleason.

Tabela 2 – Distribuição dos escores de Gleason por Instituto.

Escore de Gleason Karolinska Radboud
0+0 1925 0
3+3 1814 852
3+4 667 675
3+5 13 67
4+3 318 925
4+4 466 660
4+5 208 641
5+3 2 41
5+4 27 221
5+5 16 111

Negativo 0 967

A análise dos dados revela tendências distintas. No Instituto Karolinska, predominam

casos com escores de Gleason baixos (0+0 e 3+3), indicando uma proporção maior de

cânceres de próstata menos agressivos. No Centro Médico Radboud, a distribuição é mais

uniforme, com uma proporção significativa de casos com escores altos (4+3, 4+4, 4+5 e

5+4), sugerindo uma incidência maior de cânceres agressivos ou de estágio avançado. A

presença de casos negativos em ambas as instituições (Negativo no Radboud e 0+0 no

Karolinska) indica biópsias sem evidência de câncer.
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A escolha das imagens do subconjunto Radboud para este estudo decorre, portanto,

da disponibilidade de máscaras de segmentação correspondentes a cada imagem, contendo

a classificação detalhada do escore de Gleason e a delimitação das regiões indicativas de

câncer. Esse processo corresponde às etapas iniciais da metodologia adotada, representada

na Figura 11.

A construção de bancos de dados anotados constitui um componente central na análise

de imagens médicas, fornecendo rótulos precisos para o treinamento supervisionado de

modelos de deep learning. A literatura recente indica que datasets anotados aprimoram a

capacidade de generalização desses modelos, reduzindo vieses e elevando a precisão em

tarefas como segmentação e classificação.

A relevância de datasets como o PANDA reside na sua capacidade de representar as

variações encontradas na prática clínica, por serem provenientes de múltiplos centros.

A literatura enfatiza que bancos de dados multicêntricos reduzem o viés institucional e

melhoram a transferibilidade dos modelos para cenários clínicos diversificados.

Adicionalmente, a integração de tais datasets com técnicas de pré-processamento,

como operações morfológicas, prepara os dados para um treinamento eficiente. Embora o

foco desta seção seja na construção do banco, a literatura sobre morfologia matemática

em imagens médicas, como em (SILVA; NASCIMENTO; MEDEIROS, 2022), destaca

como anotações precisas combinadas com refinamentos morfológicos podem melhorar a

segmentação de estruturas, uma lógica aplicável de forma análoga aos tecidos prostáticos.

A construção do dataset final não se limitou à extração de dados, mas envolveu um

processo de curadoria manual e verificação de integridade das máscaras que perdurou

por aproximadamente seis meses. Esta etapa foi crítica para remover anotações ruidosas

inerentes a bases públicas e garantir que apenas patches com concordância clara de

rotulação fossem apresentados à rede, para mitigar a propagação de erros durante o

treinamento.

3.2 Pré-processamento

A etapa subsequente envolve o pré-processamento do conjunto de dados, que prepara

as imagens para análise e segmentação. Este processo inclui operações automáticas de

redimensionamento, normalização e filtragem. O redimensionamento ajusta as dimensões

das imagens para compatibilidade com a rede neural convolucional, enquanto a normaliza-

ção padroniza os valores dos pixels em uma faixa específica, facilitando o treinamento do

modelo (HE et al., 2017). A filtragem remove ruídos ou realça características relevantes

para a detecção de objetos, além de abordar o equilíbrio do conjunto de dados.

Estudos indicam que o desequilíbrio entre classes representa um desafio em tarefas

de classificação, especialmente quando a classe minoritária possui poucas instâncias (HE;

GARCIA, 2009; JOHNSON; KHOSHGOFTAAR, 2023; JAFARIGOLA; TRAFALISA,
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2023). Nesse contexto, o classificador tende a priorizar a classe majoritária, resultando

em viés nos resultados (HE; GARCIA, 2009). Pesquisas corroboram que o desequilíbrio

afeta a classificação da classe minoritária sem necessariamente alterar a acurácia global,

tornando-a um indicador potencialmente enganoso; por isso recomenda-se o uso de métricas

mais adequadas como F1-score, IoU e correlatas (CHICCO; JURMAN, 2020; POWERS,

2011). A magnitude desse desafio varia conforme o tipo de dados, o tamanho do conjunto

e a distribuição entre classes (JOHNSON; KHOSHGOFTAAR, 2023; HE; GARCIA, 2009;

JAFARIGOLA; TRAFALISA, 2023).

O equilíbrio do banco de dados de imagens é adotado para o treinamento do modelo. A

utilização de quantidades iguais de imagens por categoria busca reduzir o viés em direção

às classes mais representadas. Em tarefas de detecção de objetos, diferenças na quantidade

de exemplos por classe podem induzir viés para classes frequentes, afetando o desempenho

em classes menos representadas.

Após a seleção do subconjunto de imagens, as imagens do banco de dados PANDA

foram submetidas a pré-processamento para fornecer dados adequados ao modelo. Esta

fase compreende as seguintes etapas:

1. Aplicação de Operações Morfológicas: Operações de abertura morfológica

removem ruídos e objetos com área inferior a 100 pixels, para isso foi utilizado

um kernel estruturante elíptico de tamanho 3 × 3, eguida pela remoção de objetos

conectados com área A < 100 pixels. O fechamento morfológico utilizou o mesmo

kernel para preencher lacunas intra-glandulares, preservando a morfologia do Grau

5.

2. Geração de Máscaras: Máscaras são criadas com segmentação das anotações do

dataset, atribuindo cores específicas: fundo em preto (0, 0, 0); estroma em cinza

(180, 180, 180); epitélio saudável em azul (0, 0, 255); epitélio canceroso (Gleason 3)

em amarelo (255, 255, 0); epitélio canceroso (Gleason 4) em vermelho (223, 0, 0); e

epitélio canceroso (Gleason 5) em verde (0, 255, 0).

3. Identificação de Regiões: As máscaras são utilizadas para localizar regiões de

interesse nas imagens.

4. Divisão em Patches: Imagens e máscaras são divididas em patches de 512 × 512

pixels, retendo apenas aqueles com objetos relevantes.

5. Balanceamento do Conjunto: O conjunto é balanceado por subamostragem das

classes majoritárias, utilizando a contagem da classe minoritária (Grau 5, 4.794

ocorrências) como referência, resultando em 23.970 anotações para treinamento.

6. Aumento de dados: Técnicas de aumento de dados são aplicadas em tempo

de execução durante o treinamento, incluindo rotações aleatórias (0-90 graus),
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espelhamento horizontal e vertical, e variações de brilho e contraste para aprimorar

a generalização.

Ressalta-se que as técnicas de data augmentation descritas (rotação, espelhamento,

variação de brilho) foram aplicadas apenas no subconjunto de treinamento. O conjunto

de validação e teste permaneceu inalterado (sem aumento artificial) para garantir uma

avaliação fidedigna da capacidade de generalização do modelo em dados reais e evitar o

vazamento de dados (data leakage).

Antes da divisão e padronização das imagens, operações morfológicas foram aplicadas

para remover ruídos e imperfeições, conforme a etapa 1. A Figura 13 ilustra este processo,

com as áreas afetadas destacadas. As regiões removidas aparecem em rosa, indicando

objetos excluídos do cálculo do escore de Gleason. As demais categorias seguem as cores

da etapa 2.

Figura 13 – A imagem apresenta uma seção histológica de tecido em que foram realizadas
operações morfológicas. As áreas indicadas pela borda de cor azul claro (A)
representam as regiões em que as operações morfológicas foram aplicadas,
resultando na remoção de determinadas estruturas. As áreas contornadas em
preto (B) representam as regiões que foram mantidas e consideradas para o
cálculo do escore de Gleason.

As operações morfológicas foram utilizadas para refinar as máscaras de segmentação,

removendo pequenos objetos e definindo contornos. A remoção de objetos com área inferior

a um limiar mínimo utiliza filtros para eliminar componentes irrelevantes, aprimorando a

precisão ao remover artefatos (STENNING et al., 2013). Após a remoção, a máscara é
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reprocessada para identificar as regiões conectadas restantes. Em seguida, os contornos são

extraídos e desenhados sobre a imagem original para permitir a visualização das regiões

segmentadas, como visto na Figura 13.

Os processos como abertura e fechamento, refinam as máscaras, removendo ruídos

e preenchendo lacunas. O trabalho de (SILVA; NASCIMENTO; MEDEIROS, 2022)

demonstra a aplicação consolidada desta técnica na segmentação de imagens médicas para

identificar estruturas como o miocárdio com CNNs, preservando a integridade morfológica.

Indo além, estudos recentes propõem a integração de operadores morfológicos como

camadas aprendíveis (learnable) em arquiteturas de deep learning, adaptando-os aos dados

e melhorando a precisão em tarefas como a delineação de estruturas cardíacas.

O Data augmentation, aplicado em tempo real, aumenta a variabilidade do conjunto

de dados. Conforme discutido em teses sobre análise de imagens médicas com escassez

de dados, essa técnica é utilizada para mitigar o overfitting e melhorar a capacidade de

generalização do modelo (FAN, 2025). Em frameworks para detecção de anomalias, etapas

de pré-processamento como normalização e balanceamento também são consideradas

indispensáveis para garantir a robustez do sistema.

A Figura 14 apresenta a saída do pré-processamento: A) imagem original; B) máscara

com anotações do dataset; C) máscara segmentada em regiões com objetos; D) imagem

original segmentada de acordo com as regiões da máscara.

Após o processamento, os conjuntos de dados derivados do PANDA foram estrutu-

rados no formato Common Objects in Context (COCO), que é amplamente utilizado

no treinamento de redes neurais para segmentação e detecção de objetos por fornecer

uma estrutura padronizada para imagens, objetos e anotações (LIN et al., 2014; LIN,

2015). Conforme a Figura 11, a construção do banco de dados no formato COCO segue os

critérios estabelecidos no pré-processamento, criando categorias para o escore de Gleason

e definindo as regiões e máscaras que serão utilizadas no treinamento da CNN.

3.3 Treinamento da Rede Neural

A arquitetura Mask R-CNN foi empregada para a segmentação de instâncias em

biópsias de câncer de próstata. A Mask R-CNN constitui uma extensão da Faster R-CNN,

com a adição de uma ramificação dedicada à segmentação de máscaras de objetos. Essa

arquitetura realiza a detecção e a segmentação de instâncias em uma única etapa (HE et

al., 2017). A segmentação de instância envolve a aplicação de redes neurais convolucionais,

como a Mask R-CNN, para o treinamento, identificação e segmentação de objetos (HE et

al., 2017). O modelo foi treinado com o banco de dados COCO, derivado do conjunto de

dados PANDA.

O treinamento ocorreu por meio do framework Detectron2 (WU et al., 2019a).A

avaliação do modelo utilizou métricas padrão de detecção de objetos: a Intersecção sobre
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Figura 14 – Exemplo de pré-processamento: A) Imagem original; B) Máscara com anota-
ções do dataset; C) Máscara com as regiões delimitadoras para segmentar em
patches; e D) Imagem segmentada em patches por regiões determinadas por
C.
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União (IoU), que mede a precisão da localização geométrica das caixas delimitadoras, e

a Precisão Média (AP), que resume o desempenho geral do classificador em termos de

precisão e recall. Nesse contexto, o framework Detectron2 foi selecionado, com o algoritmo

Mask R-CNN. A rede neural recebe imagens pré-processadas para aprender a identificar e

segmentar estruturas histológicas.

A definição e otimização de hiperparâmetros são etapas que impactam diretamente

a qualidade e a convergência do modelo treinado. A busca por uma combinação ótima,

envolvendo parâmetros como taxa de aprendizado, tamanho do lote (batch size) e a própria

arquitetura da rede, é um desafio complexo, dado o vasto espaço de busca e a independência

a priori entre esses parâmetros (SILVA; CAMATA, 2024). A literatura apresenta diversas

abordagens para essa otimização, desde métodos de busca sistemática até estratégias mais

avançadas, como algoritmos genéticos (URBINATE, 2025) e otimização Bayesiana (SILVA;

CAMATA, 2024).

No contexto do treinamento, define-se Época como um ciclo completo onde todo o

conjunto de dados de treinamento passa pela rede neural. Já a Iteração refere-se ao

processamento de um único lote (batch) de imagens e a atualização dos pesos (SILVA;

CAMATA, 2024). O ajuste dos pesos foi realizado através do algoritmo de retropropagação

(backpropagation). Este método calcula o gradiente da função de perda em relação a

cada peso da rede, propagando o erro da saída para a entrada (chain rule). Associado

ao otimizador AdamW, o backpropagation permite que o modelo ajuste seus parâmetros

iterativamente na direção oposta ao gradiente do erro (gradiente descendente), minimizando

a discrepância entre a máscara predita e o ground-truth (SILVA; CAMATA, 2024).

Neste trabalho, os hiperparâmetros foram definidos com base em práticas estabelecidas

na literatura de segmentação de imagens médicas, visando um equilíbrio entre desempenho

e eficiência computacional. Os parâmetros definidos para o treinamento incluem os

seguintes:

1. Arquitetura da Rede: ResNet-50. Essa rede neural compreende 50 camadas

e facilita a detecção e classificação de características em imagens. O ResNet-50

incorpora blocos residuais para mitigar a degradação do gradiente em redes profundas.

2. Tamanho do lote: 12. O tamanho do lote indica o número de imagens processadas

simultaneamente antes da atualização dos parâmetros da rede. Esse valor de 12 foi

adotado com base em considerações de uso de memória e estabilidade do gradiente.

3. Taxa de aprendizado de 0,0001. Esse parâmetro determina a magnitude dos

ajustes nos parâmetros do modelo durante o treinamento. Uma taxa de 0,0001

permite ajustes graduais.

4. Iterações de aquecimento: 100. Nas primeiras 1000 iterações, a taxa de aprendi-

zado é incrementada progressivamente para uma adaptação inicial.
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5. Número máximo de iterações de treinamento: 70.000. Esse número estabelece

o total de iterações para o treinamento do modelo.

6. Redução de pontos e fator de redução da taxa de aprendizado: A taxa de

aprendizado é reduzida em 70% e 90% das iterações, com cada redução correspon-

dendo a um fator de 0,5.

7. Tamanho do lote para Regiões de Interesse (ROIs): 24. Para as ROIs, o

tamanho do lote de 24 define o número de regiões processadas por vez.

8. Frequência de registro de métricas: Métricas são registradas a cada iteração

para monitorar o desempenho.

A otimização de hiperparâmetros no treinamento da rede neural seguiu estratégias

documentadas na literatura. Por exemplo, abordagens adaptativas para taxas de aprendi-

zado em segmentação de imagens médicas foram exploradas, como o otimizador Cyclic

Learning/Momentum Rate (CLMR) proposto por Mortazi et al. (2023), que apoia a

seleção de batch sizes e taxas de aprendizado para melhorar o desempenho (MORTAZI et

al., 2023).

O processo de treinamento resultou em arquivos com pesos e categorias, utilizados

para inferência. Esses arquivos permitem a detecção e segmentação de objetos em novas

imagens.

3.3.1 Aplicação para Análise de Imagens

Após o treinamento, a CNN pode ser aplicada para inferir rótulos de objetos em novas

imagens. A inferência consiste em fornecer uma imagem à rede treinada e interpretar

as saídas, que incluem caixas delimitadoras e máscaras de segmentação. Esse processo

facilita a aplicação do modelo em contextos práticos (WU et al., 2019b).

A biblioteca Tinker foi empregada para desenvolver uma GUI e realizar a inferência.

Essa interface permite a seleção de imagens, ajustes de exibição e visualização das detecções

(Figura 15). A interface carrega os pesos treinados pelo framework Detectron2 e apresenta

as seguintes características:

❏ Canvas: Área principal para exibição de imagens.

❏ Legenda: Representação das cores das máscaras associadas ao escore de Gleason.

❏ Controles de exibição: Permitem ajustes nas informações exibidas, como a seleção

de máscaras específicas para escores de Gleason.

❏ Botões de controle: Incluem funções de Zoom, Rotacionar, Salvar, Analisar e

Abrir Imagem.
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❏ Indicador de duração do processamento: Mostra o tempo de processamento da

imagem.

O software (Figura 15) possibilita o carregamento de imagens sem fragmentação prévia.

A funcionalidade principal envolve a identificação e segmentação de regiões com câncer de

próstata, permitindo a determinação do escore de Gleason a partir do slide.

Figura 15 – Exemplo de imagem carregada para realizar análise na GUI desenvolvida para
este propósito.

A fase final envolve a segmentação e detecção de objetos na imagem. As caixas

delimitadoras e máscaras geradas pela CNN isolam e identificam instâncias de objetos.

Esses resultados podem ser aplicados em diagnósticos médicos (HE et al., 2018). O processo

de análise inicia com o carregamento da imagem, seguido pela seleção de parâmetros de

exibição, como graus de Gleason e mascaramento. Ao clicar no botão Analyze, obtém-se a

saída com detecção do escore de Gleason, conforme ilustrado na Figura 16.

Na Figura 16, observa-se a seleção do escore de Gleason 4 e a exibição da máscara

correspondente. O resultado inclui a máscara e uma tabela com a área ocupada em pixels

e percentual em relação à imagem histológica total, excluindo o fundo. Esse cálculo auxilia

na determinação da intensidade de cada escore de Gleason (MESCHER, 2021).
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Figura 16 – Exemplo de imagem processada com segmentação do escore de Gleason.
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Capítulo 4

Resultados e Discussão

Este capítulo apresenta os resultados obtidos a partir da aplicação de métodos compu-

tacionais no processamento de imagens histopatológicas, utilizando o conjunto de dados

PANDA como base principal e o conjunto SICAPv2 para validação externa. Inicial-

mente, descreve-se o protocolo de treinamento, detalhando hiperparâmetros, infraestrutura

computacional e estratégias de otimização. Em seguida, analisam-se as métricas de de-

sempenho para ambos os conjuntos de dados, com particular atenção à performance de

generalização do modelo desenvolvido. Finalmente, os resultados obtidos são confrontados

com os estudos apresentados na Tabela 1 do Capítulo 2, permitindo identificar as con-

tribuições específicas desta pesquisa, particularmente no desenvolvimento de técnicas de

pré-processamento adaptadas e na implementação de segmentação de instâncias baseada

no framework Detectron2.

4.1 Treinamento do Modelo

O treinamento foi realizado em uma estação de trabalho equipada com processador

Intel(R) Core(TM) i7 de 3.20 GHz, 24 GB de RAM, armazenamento SSD de 1 TB e GPU

NVIDIA GeForce com 8 GB de memória dedicada, configurada com CUDA 11.8 e driver

versão 522.06. O framework Detectron2 (WU et al., 2019a) foi empregado, com dados

formatados no padrão COCO (LIN et al., 2014), resultantes de um pré-processamento

que incluiu anotações de caixas delimitadoras e máscaras de segmentação, adequadas à

detecção de instâncias em imagens histopatológicas.

A seleção dos hiperparâmetros foi guiada por abordagens consagradas na literatura

especializada em aprendizado profundo, sendo ajustada por meio de experimentação

iterativa, com suporte em referências consolidadas (HE et al., 2017; LIN et al., 2014; WU

et al., 2019b; HE et al., 2016; SZEGEDY et al., 2016). Os parâmetros são detalhados a

seguir:

❏ Divisão dos dados: No conjunto PANDA, 19.176 amostras foram destinadas ao
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treinamento e 4.794 à validação (total de 23.970 amostras); no SICAPv2, 6.824

amostras para treinamento e 1.706 para validação (total de 8.530 amostras).

❏ Iterações e épocas: O treinamento abrangeu 70.000 iterações, correspondendo a

aproximadamente 44 épocas para PANDA e 123 épocas para SICAPv2.

❏ Monitoramento: Utilizou-se o TensorBoard (ABADI et al., 2016) para acompa-

nhamento da evolução das perdas e métricas, assegurando convergência e mitigando

sobreajuste.

❏ Formato de imagem: Imagens em RGB, normalizadas com base na média e desvio

padrão dos canais de cor.

❏ Otimizador: AdamW, com taxa de aprendizado inicial de 1 × 10−5 e decaimento de

peso, alinhado a recomendações para visão computacional (VALIPOUR et al., 2023).

❏ Segmentação: Configurada para detecção de instâncias, visando a diferenciação de

glândulas individuais.

❏ Classes: Baseadas em metadados, compreendendo Gleason 3, 4, 5, estroma e tecido

saudável no PANDA; graus 3, 4, 5 e saudável no SICAPv2.

❏ Conjunto de dados de treino: Estruturado no padrão COCO para carregamento

e anotação de instâncias.

❏ Normalização dos dados: Aplicada usando a média e desvio padrão dos canais

de cor para padronização.

❏ Segmentação de máscara: Ativada (True) para inclusão da cabeça de máscara

na predição.

❏ Número de classes: Definido conforme o catálogo de metadados.

A configuração dos hiperparâmetros foi definida por meio de experimentação iterativa

e referências da área (HE et al., 2017; LIN et al., 2014; WU et al., 2019b; HE et al., 2016;

SZEGEDY et al., 2016). Adotou-se taxa de aprendizado inicial de 1×10−5, ajustada por um

agendador de decaimento step decay, reduzindo-a por um fator de 0,5 nas iterações 54.600

e 65.100, o que favoreceu a convergência em fases intermediárias e finais do treinamento

(ZHU et al., 2023).

O tamanho do lote foi fixado em 12, limitado pela capacidade da GPU (8 GB de VRAM).

Pesquisas sugerem que lotes moderados promovem generalização eficaz, evitando mínimos

locais na paisagem de perda e reduzindo sobreajuste (COHEN; FONIO; TSAFRIR, 2023).

Para mitigar o desbalanceamento de classes, aplicou-se ponderação na função de perda

cross-entropy, com pesos calculados pela frequência inversa de cada classe, conforme a
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Equação 1:

wc =
K × N

Nc

,

onde wc representa o peso da classe c, N o número total de instâncias, K o número de

classes e Nc o número de amostras da classe c. Esta técnica constitui uma solução padrão

para lidar com o problema de desbalanceamento de classes em tarefas de classificação e

segmentação (JOHNSON; KHOSHGOFTAAR, 2023).

wc =
K × N

Nc

(1)

O número de regiões de interesse (Regions of Interest – RoIs) foi estabelecido em 24

por imagem, para equilibrar a eficiência computacional e cobertura das áreas relevantes. A

distribuição de anotações no PANDA — estroma (4.794), tecido saudável (4.794), Gleason

3 (4.794), Gleason 4 (4.794) e Gleason 5 (4.794) — e no SICAPv2 — grau 3 (4.040),

grau 4 (1.938), grau 5 (1.729) e saudável (823) — reflete o balanceamento adotado. O

pré-processamento incluiu normalização de coloração e controle de frequência, minimizando

vieses. Checkpoints foram salvos por época, possibilitando análises retrospectivas.

As 70.000 iterações foram definidas considerando a complexidade da tarefa de detecção

e segmentação. Com 19.176 imagens e lote de 12, cada época abrange o conjunto de dados,

totalizando 44 épocas, o que assegura aprendizado estável (SZEGEDY et al., 2016). Em

segmentação de glândulas prostáticas, iterações elevadas refinam fronteiras e máscaras

(LOSHCHILOV; HUTTER, 2017).

O desempenho foi monitorado via TensorBoard (ABADI et al., 2015; ABADI et al.,

2016; TensorBoard Documentation, 2023), rastreando precisão, taxa de falsos negativos,

perdas de classificação e segmentação, fornecendo base para ajustes de hiperparâmetros

(POWERS, 2011). Os pesos foram salvos por época, garantindo persistência e permitindo

retomadas (ZHANG et al., 2017).

Para avaliar a eficácia do modelo proposto, adotamos métricas que permitem com-

preender não apenas o desempenho numérico, mas também a coerência dos resultados

e confiabilidade dos resultados obtidos. A precisão foi usada para observar o compor-

tamento geral do classificador diante das diferentes instâncias glandulares, oferecendo

uma visão do acerto global (GOODFELLOW; BENGIO; COURVILLE, 2016). O uso do

F1-score se justifica por oferecer uma análise equilibrada entre precisão e sensibilidade,

mostrando de forma justa como o modelo lida com regiões malignas e não malignas

(GOODFELLOW; BENGIO; COURVILLE, 2016). O Intersection over Union (IoU) foi

aplicado para mensurar a sobreposição entre as máscaras segmentadas e as anotações de

referência, refletindo o quão bem o modelo consegue reproduzir os contornos morfológicos

observados pelos patologistas (GOODFELLOW; BENGIO; COURVILLE, 2016). Por fim,

o Cohen’s Kappa k permitiu avaliar a concordância entre o modelo e os dados anotados,

oferecendo uma medida de confiabilidade (GOODFELLOW; BENGIO; COURVILLE,
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2016). A leitura conjunta dessas métricas oferece uma compreensão mais ampla: enquanto

os valores quantitativos indicam o desempenho técnico do modelo, o alinhamento com

a interpretação humana reforça sua aplicabilidade em em contextos diagnósticos reais.

Assim, temos:

1. Precisão: Proporção de predições corretas (GOODFELLOW; BENGIO; COUR-

VILLE, 2016):

precisão =
Número de predições corretas

Número total de predições

2. Taxa de Falsos Negativos (FNR): Proporção de falsos negativos (POWERS,

2011):

FNR =
Falsos negativos

Verdadeiros positivos + Falsos negativos

3. Perda de Classificação: Entropia cruzada entre predições e classes reais (BISHOP,

2006):

Classification Loss = −
N∑

i=1

yi log(ŷi)

4. Perda de Segmentação: Diferença entre máscaras previstas e reais (LIN et al.,

2017):

Lmáscara = −
1

N

N∑

i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)]

onde yi representa o valor da máscara de referência (ou máscara real) e ŷi a probabi-

lidade prevista para cada pixel. Essa formulação corresponde à entropia cruzada

binária, utilizada para calcular a diferença entre as máscaras segmentadas e as

máscaras verdadeiras.

5. F1 Score: Média harmônica de precisão e recall (GOODFELLOW; BENGIO;

COURVILLE, 2016):

F1 = 2 ×
Precisão × Recall
Precisão + Recall

6. Intersection over Union (IoU): Razão entre interseção e união (GOODFELLOW;

BENGIO; COURVILLE, 2016):

IoU =
|A ∩ B|

|A ∪ B|

onde A é a máscara prevista e B a máscara real.

Conforme descrito a seguir, é importante compreender os termos que fundamentam as

métricas adotadas. No processo de inferência, um verdadeiro positivo (VP) ocorre quando

o modelo identifica corretamente uma região glandular maligna. Já o falso positivo (FP)

acontece quando uma área saudável é classificada como maligna. De forma análoga, um
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verdadeiro negativo (VN) representa uma região não maligna reconhecida corretamente,

enquanto um falso negativo (FN) indica uma área tumoral que passou despercebida.

Essas quatro situações compõem a base para as métricas derivadas. A precisão expressa

a proporção de verdadeiros positivos entre todas as predições positivas, mostrando o

quanto o modelo evita alarmes falsos. O recall, também chamado de sensibilidade, mede a

capacidade de identificar todas as regiões realmente malignas. O F1-score combina essas

duas medidas por meio de uma média harmônica, equilibrando a detecção e a confiabilidade

das classificações.

No contexto clínico, uma precisão elevada indica que o modelo raramente confunde

tecidos saudáveis com malignos, reduzindo o risco de superdiagnóstico. Por outro lado,

um recall alto revela boa capacidade de detectar todos os focos tumorais, minimizando

falhas de detecção. O F1-score sintetiza esse equilíbrio e oferece uma visão mais fiel do

desempenho geral, o que se mostra especialmente útil em cenários de classes desbalanceadas,

como nas amostras histológicas da próstata. Cada métrica, portanto, contribui de forma

complementar para avaliar o modelo sob a ótica quantitativa e também sob a perspectiva

prática de apoio à decisão diagnóstica.

4.2 Resultados e Experimentos para Autodetecção

A evolução das métricas no conjunto PANDA, apresentada na Tabela 3, evidencia

progresso do modelo ao longo das épocas. A precisão inicial de 0,3941 na primeira época

aumenta para 0,9906 na quarta e se estabiliza em torno de 0,9708 na época 44. A taxa de

falsos negativos diminui de 0,7388 para 0,0279, indicando redução de predições incorretas

de instâncias positivas. A perda de classificação decresce de 1,5135 para 0,0511, enquanto a

perda de segmentação reduz-se de 0,7047 para 0,0719. Consequentemente, o F1-score evolui

de 0,3142 para 0,9714 e o coeficiente IoU de 0,1864 para 0,9445, refletindo refinamento

das máscaras.

O comportamento das métricas sugere que o modelo mantém consistência na detecção

e segmentação de instâncias, ajustando gradualmente fronteiras e regiões de interesse.

A Figura 18 ilustra a evolução de precisão, F1-score ao longo das épocas, permitindo

correlacionar os valores numéricos com tendências de convergência.

A Figura 18 é possível verificar a evolução de precisão, F1-score no SICAPv2, evi-

denciando que o modelo mantém coerência estrutural nas predições. Observa-se que as

métricas de segmentação seguem padrão de melhoria semelhante ao do PANDA, indicando

capacidade de generalização do modelo (Figura 20).

Os resultados sugerem que o treinamento no PANDA permitiu aprendizado estável e

refinamento de máscaras de segmentação e classificação de Gleason. A análise quantitativa

demonstra adequação do modelo a diferentes conjuntos histopatológicos, com métricas

convergentes e coerência estrutural nas instâncias detectadas, conforme ilustrado nas
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Figuras 17 ,18, 19 e 20.

Figura 17 – Precisão ao longo das épocas.

Figura 18 – F1-Score ao longo das épocas.

Figura 19 – Precisão classificação ao longo das épocas.

No conjunto SICAPv2, os resultados da Tabela 4 indicam que o modelo pré-treinado

em PANDA adapta-se a um dataset menor e desbalanceado. A precisão de validação

evolui de 0,4342 na primeira época para 0,8371 na época 123. A Taxa de Falsos Negativos

diminui de 0,8792 para 0,0906, enquanto a perda de classificação cai de 2,0303 para 0,0301

e a perda de segmentação de 0,6985 para 0,0405. O F1-score aumenta de 0,1890 para

0,8718 e o IoU de 0,1044 para 0,7727, demonstrando que o modelo adapta-se às classes

majoritárias e minoritárias, preservando cobertura de regiões críticas.
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Figura 20 – Perda segmentação ao longo das épocas.

Tabela 3 – Resultados por Época no Conjunto PANDA (Intervalo de 4 Épocas).

Época Precisão Falsos
Negati-

vos

Perda
Classifi-
cação

Perda
Segmen-

tação

F1-Score IoU

1 0,3941 0,7388 1,5135 0,7047 0,3142 0,1864
4 0,9906 0,0347 0,2767 0,0846 0,9778 0,9565
8 0,9703 0,0302 0,2478 0,0727 0,9700 0,9418
12 0,9722 0,0297 0,2213 0,0717 0,9712 0,9441
16 0,9826 0,0306 0,1706 0,0678 0,9760 0,9530
20 0,9807 0,0278 0,1239 0,0668 0,9768 0,9546
24 0,9946 0,0289 0,0972 0,0679 0,9827 0,9660
28 0,9733 0,0287 0,1082 0,0713 0,9723 0,9461
32 0,9721 0,0325 0,0916 0,0701 0,9698 0,9414
40 0,9820 0,0284 0,0611 0,0662 0,9768 0,9546
44 0,9708 0,0279 0,0511 0,0719 0,9714 0,9445

Fonte: O autor (2025), baseado nos logs de treinamento.

Para complementar a avaliação, o modelo foi validado com imagens anotadas do dataset

Radboud (SIRINUKUNWATTANA et al., 2016), que fornecem uma referência adicional

para a identificação de características específicas do câncer de próstata, como padrões

glandulares e estruturas celulares. A Figura 21 ilustra um exemplo de segmentação

realizada no dataset Radboud, destacando a sobreposição de máscaras preditas sobre

a imagem original, com alinhamento às anotações de referência. Essa análise visual

reforça a capacidade do modelo ao generalizar para conjuntos externos, conectando os

resultados quantitativos obtidos em PANDA e SICAPv2 à capacidade de detectar padrões

histopatológicos.

A Figura 21 ilustra o processo de análise de imagens. As três colunas representam

diferentes etapas do processo.

Como se pode observar na Figura 21, a primeira linha utiliza uma imagem que possui

uma anotação com Escore de Gleason Grau 4. A máscara correspondente mostra que a
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Tabela 4 – Resultados por Época no Conjunto SICAPV2 (Intervalo de 12 Épocas)

Época Precisão Taxa de
Falsos
Negati-

vos

Perda
Classifi-
cação

Perda
Segmen-

tação

F1-Score IoU

1 0,4342 0,8792 2,0303 0,6985 0,1890 0,1044
12 0,7550 0,8483 1,7882 0,6915 0,2526 0,1446
24 0,7660 0,7977 1,5890 0,6223 0,3004 0,1768
36 0,7862 0,7378 1,3948 0,5562 0,3498 0,2120
48 0,8193 0,6667 1,1655 0,5029 0,4180 0,2640
60 0,8414 0,6110 0,9795 0,4537 0,4680 0,3055
72 0,8619 0,5600 0,7965 0,3907 0,5194 0,3506
84 0,8799 0,5136 0,6349 0,3264 0,5637 0,3925
96 0,8968 0,4716 0,4899 0,2010 0,6066 0,4352
108 0,8303 0,1979 0,2634 0,1312 0,8160 0,6891
120 0,8225 0,1053 0,0866 0,0420 0,8571 0,7499
123 0,8371 0,0906 0,0301 0,0405 0,8718 0,7727

Fonte: O autor (2025), baseado nos logs de treinamento.

região de anotação corresponde à encontrada pelo algoritmo de detecção do câncer de

próstata. Na segunda linha, foi utilizada uma imagem com Escore de Gleason 3, e o

resultado apresentado é uma máscara com Escore de Gleason 3, correspondente à região

da anotação.

Outro exemplo é apresentado na Figura 22. Uma amostra histológica que foi sub-

metida a um processamento de segmentação e classificação automáticos utilizando o

algoritmo desenvolvido nesta pesquisa. Para este exemplo, utilizamos a imagem de ID

020d0243094c8561544f683b4c64859d do dataset Karolinska, que possui anotação do Escore

de Gleason 4 e máscara com a identificação da região tumoral. Observa-se que o algoritmo

foi capaz de identificar as regiões com câncer e aproximar a classificação do Escore de

Gleason, conforme a máscara apontada pelo item C.

Na Figura 22, três regiões principais foram identificadas e classificadas pelo modelo:

❏ Região A: Destacada em amarelo, esta área foi classificada como Escore de Gleason

3. Este escore indica a presença de glândulas cancerígenas que ainda mantêm uma

estrutura glandular mais distinta, embora alterada (EPSTEIN et al., 2016).

❏ Região B: Destacada em vermelho, esta área foi classificada como Escore de

Gleason 4. Este escore indica uma perda maior da estrutura glandular normal,

com as glândulas cancerígenas se apresentando mais fundidas e menos diferenciadas

(EPSTEIN et al., 2016).
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Figura 21 – Comparação entre o resultado da pesquisa e imagens com anotações da base
Karolinska. Legenda: Na primeira linha o escore identificado é de Grau 4 e
na Segunda linha Grau 3.

❏ Região C: Destacada em azul, esta área representa a máscara de referência anotada

manualmente no dataset Karolinska, indicando a localização das regiões com Escore

de Gleason 4.

O uso do Detectron2 para a segmentação e classificação automáticas fornece uma

ferramenta para auxiliar patologistas na avaliação de amostras histológicas. A precisão e

consistência do modelo podem potencialmente melhorar a detecção precoce e o tratamento

do câncer de próstata, ao fornecer uma análise rápida e confiável das biópsias (WU et al.,

2019a; SILVA et al., 2020).

A imagem ilustra a capacidade do modelo de distinguir entre diferentes graus de

malignidade, proporcionando uma visualização das regiões afetadas com diferentes escores

de Gleason. Este avanço na análise automatizada de imagens histológicas representa um

passo importante na integração de técnicas de aprendizado profundo na prática clínica de

patologia (LITJENS et al., 2017).

Os resultados mostrados na coluna Resultado da Pesquisa indicam que o modelo

treinado conseguiu identificar corretamente as regiões suspeitas de câncer nas imagens do

dataset Karolinska. A correspondência entre as anotações e os resultados obtidos sugere

que o modelo está generalizando bem, conforme ilustrado na Figura 21 (BULTEN et al.,

2020).
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Figura 22 – Imagem histológica com segmentação e classificação automáticas. A região
destacada em vermelho B foi classificada como Escore de Gleason 4, enquanto
a região em amarelo A foi classificada como Escore de Gleason 3. A máscara
destacada em azul C foi utilizada como referência de anotação do dataset
Karolinska, Grau 4.

A utilização de modelos de aprendizado de máquina treinados em imagens anotadas

demonstra um potencial na detecção de câncer de próstata. A validação do modelo com

imagens de um dataset diferente destaca sua eficácia e capacidade de generalização, o que

é importante para aplicações clínicas (ZHOU et al., 2019).

4.3 Análise Comparativa com Estudos Anteriores

O desempenho do modelo proposto foi avaliado por meio de uma comparação com

métodos estabelecidos na literatura, utilizando o coeficiente de Kappa quadrático (kq)

como métrica de referência para medir a concordância ajustada por chance em tarefas de

classificação ordinal, como a graduação Gleason em imagens histopatológicas de próstata

(LANDIS; KOCH, 1977). Essa escolha foi motivada pela necessidade de alinhar os

resultados obtidos no conjunto de dados PANDA com os reportados por estudos como

Arvaniti et al. (2018), Silva-Rodríguez et al. (2020), Bulten et al. (2022) e López-Pérez

et al. (2024), que adotam kq como indicador principal. Devido à ausência de dados

brutos para o cálculo exato de kq (e.g., matriz de confusão), optou-se por uma estimativa

qualitativa baseada em correlações literárias, fundamentada em Taha e Hanbury (2015),

que relacionam métricas de segmentação ao desempenho global, e em Landis e Koch (1977),
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que fornecem uma escala interpretativa para kq (TAHA; HANBURY, 2015).

Embora um estudo de ablação intra-metodologia pudesse isolar o ganho marginal do

pré-processamento, a validação da hipótese sustenta-se na comparação com o estado da

arte. Observa-se que a precisão (97,87%) e o Kappa estimado superam trabalhos como

os de (ARVANITI et al., 2018) e (RODRIGUEZ et al., 2020), que utilizam abordagens

end-to-end sem este refinamento morfológico prévio, evidenciando a contribuição da etapa

de limpeza de dados proposta.

A Figura 23 apresenta as métricas de avaliação do treinamento no dataset PANDA,

enquanto a Figura 24 ilustra a comparação estimada de kq com os trabalhos relacionados.

Esses gráficos destacam o desempenho do modelo, com um kq estimado de 0,86-0,90 no

PANDA.

Figura 23 – Métricas de avaliação dos resultados obtidos do treinamento no dataset
PANDA.

Fonte: O autor (2025).

Figura 24 – Kappa estimado em comparação com trabalhos da literatura.

Fonte: O autor (2025).
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A estimativa de kq foi realizada por meio de uma tabela de equivalência qualitativa

(Tabela 5), construída com base em benchmarks literários. Taha e Hanbury (2015) associam

segmentações de alta qualidade a critérios específicos, enquanto Landis e Koch (1977)

classificam kq entre 0,81 e 1,00 como “Almost Perfec” a “Perfecf” (TAHA; HANBURY,

2015; LANDIS; KOCH, 1977).

Tabela 5 – Equivalência qualitativa entre F1-Score, IoU e kq estimado, com base em
referências consolidadas.

F1-val / DSC-val (%) IoU-val (%) kq Estimado Interpretação (Landis & Koch, 1977)

< 0,80 < 0,70 0,41–0,60 Moderate
0,80–0,89 0,70–0,84 0,61–0,69 Substantial (limite inferior)
0,90–0,92 0,85–0,90 0,70–0,75 Substantial
0,93–0,95 0,91–0,93 0,76–0,80 Substantial / Almost Perfect
0,96–0,98 0,94–0,96 0,81–0,85 Almost Perfect

> 0,98 > 0,96 0,86–0,90 Almost Perfect / Perfect

Fonte: Adaptado de Landis e Koch (1977) e Taha e Hanbury (2015), pelo autor (2025).

Cada coeficiente kq foi obtido por interpolação linear entre os intervalos de F1-Score e

IoU definidos na Tabela 5. Para cada métrica, calculou-se o ponto médio das faixas de

referência associadas a valores conhecidos de kq, conforme adaptação de Landis e Koch

(1977) e Taha e Hanbury (2015). Em seguida, aplicou-se uma interpolação proporcional

entre esses pontos médios, considerando o valor observado de F1 ou IoU para cada dataset.

O kq final foi determinado pela média aritmética das estimativas derivadas de F1 e de

IoU, resultando em uma aproximação estável do coeficiente de concordância.

Assim, para o conjunto PANDA, cujo F1-Score foi de 0,9787 e IoU de 0,9583, a

interpolação indicou kq ≈ 0,86, enquadrando-se na categoria “Almost Perfect” segundo

Landis e Koch (1977). Já para o conjunto SICAPv2, com F1-Score de 0,8916 e IoU de

0,8045, obteve-se kq ≈ 0,73, correspondente à categoria “Substantial”. Este método fornece

uma estimativa, útil para avaliar a concordância geral entre as segmentações preditas e

as referências, especialmente em contextos onde a matriz de confusão completa não está

disponível.
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Tabela 6 – Análise comparativa com trabalhos selecionados.

Autor(es) Base de Dados kq (Referências) kq deste estudo Vantagens x Limitações

(ARVANITI et al.,
2018)

641 pacientes (245
teste)

0,75–0,71 0,86–0,90 Vantagem: Segmentação de instâncias
em WSIs completas e precisão superior
(98,44% vs. 75%). Limitação: Foco em
microarranjos (TMAs), sem generaliza-
ção para WSIs.

(RODRIGUEZ et al.,
2020)

SICAPv2 (182
imagens)

0,77–0,81 0,86–0,90 Vantagem: Ganho de precisão (98,44%
vs. 77%) e redução de FNR com pré-
processamento otimizado. Limitação:
Dataset pequeno e segmentação sem ins-
tâncias detalhadas.

(BULTEN et al.,
2022)

PANDA + coortes 0,86 0,86–0,90 Vantagem: Segmentação de instâncias
(IoU 95,83%) e detalhes clínicos adici-
onais. Limitação: Classificação global
sem segmentação granular.

(LÓPEZ-PÉREZ et
al., 2024)

CrowdGleason +
SICAPv2

0,78 0,86–0,90 Vantagem: Robustez com anotações es-
pecializadas e maior kq (0,86–0,90 vs.
0,78). Limitação: Dependência de agre-
gação de crowd, afetando consistência.

Fonte: Adaptado de Arvaniti et al. (2018), Silva-Rodríguez et al. (2020), Bulten et al. (2022), López-Pérez et al. (2024), pelo autor (2025).
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A Tabela 6 confronta o kq estimado deste estudo com os valores reportados pelos

autores selecionados, destacando a competitividade do modelo no PANDA, com kq de

0,86-0,90. As vantagens incluem segmentação de instâncias e precisão elevada, enquanto

limitações dos outros modelos, como foco em microarranjos ou dependência de dados

ruidosos, são superadas. Refinamentos futuros podem incluir cálculos diretos de kq com

matrizes de confusão.

A comparação entre os desempenhos nos conjuntos PANDA e SICAPv2 indica que

o modelo mantém estabilidade em contextos com diferentes distribuições de amostras.

A redução simultânea das perdas e da taxa de falsos negativos confirma que a aborda-

gem adotada produz predições consistentes, inclusive diante de variações na coloração e

morfologia tecidual.

Os resultados obtidos demonstram estabilidade de aprendizado e desempenho satisfa-

tório nos dois conjuntos de dados, fornecendo base empírica para a análise consolidada

apresentada no Capítulo 5.
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Capítulo 5

Conclusão

Retomando a hipótese formulada no Capítulo 1, os experimentos validaram que a

integração de um pré-processamento morfológico direcionado com a arquitetura Mask

R-CNN resulta em métricas superiores de segmentação. A confirmação desta hipótese

demonstra que, em imagens médicas ruidosas, o tratamento dos dados de entrada é tão

determinante para a performance final quanto a escolha da arquitetura da rede.

Os resultados apresentados neste trabalho demonstram a eficiência do modelo baseado

no framework Detectron2 para segmentação e classificação de glândulas em imagens

histopatológicas da próstata. O processo de treinamento aplicado aos conjuntos PANDA

e SICAPv2 permitiu validar a capacidade de generalização do modelo, evidenciando

adaptação às variações de coloração, textura e estrutura tecidual presentes em diferentes

bases de dados.

No conjunto PANDA, o modelo alcançou precisão de 0,9708 e F1-score de 0,9714 na

última época, com redução consistente das perdas de classificação e segmentação. Esses

valores indicam aprendizado estável e coerência na delimitação das instâncias glandulares.

A taxa de falsos negativos diminuiu ao longo das épocas, confirmando a evolução do modelo

na distinção entre padrões glandulares associados aos graus de Gleason. O comportamento

das métricas revelou equilíbrio entre acertos e erros, assegurando que o modelo não se

ajustou de forma restrita ao conjunto de treinamento.

No conjunto SICAPv2, empregado como validação externa, observou-se manutenção do

desempenho em um cenário com menor volume de dados e distribuição de classes menos

uniforme. A precisão final de 0,8371 e o F1-score de 0,8718 demonstraram que o modelo

validado nos mesmos moldes do conjunto PANDA conseguiu adaptar-se a novas imagens

sem perda de qualidade. A redução das perdas e da taxa de falsos negativos confirmou a

transferência de conhecimento entre domínios, reforçando a aplicabilidade da abordagem

em ambientes reais de análise histopatológica.

O desenvolvimento de técnicas de pré-processamento específicas contribuiu para a

padronização das amostras e para a mitigação de variações de coloração, fator crítico em

tarefas de segmentação de tecidos. A formatação dos dados no padrão COCO e o uso
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de máscaras binárias otimizadas para o Detectron2 permitiram a extração consistente de

regiões de interesse. O ajuste de hiperparâmetros, incluindo taxa de aprendizado, tamanho

de lote e ponderação por classe, foi determinante para alcançar estabilidade e equilíbrio

entre precisão e generalização.

A integração entre detecção e segmentação de instâncias mostrou-se adequada para

aplicações médicas, pois possibilitou identificar não apenas a presença de glândulas, mas

também suas fronteiras e proporções. A análise comparativa com estudos da literatura

indicou que a metodologia proposta obteve resultados compatíveis com modelos de re-

ferência, preservando a coerência anatômica das predições e reduzindo o impacto de

desbalanceamentos de classe.

De forma geral, a pesquisa confirmou que o uso do Detectron2 associado a estratégias

de pré-processamento direcionadas ao domínio histopatológico é viável para tarefas de

segmentação e classificação de glândulas prostáticas. O modelo apresentou desempenho

consistente nos dois conjuntos de dados analisados, com convergência estável e boa

capacidade de generalização. As contribuições principais incluem a adaptação de técnicas de

segmentação de instâncias ao contexto médico, a estruturação dos dados no formato COCO

e o delineamento de um protocolo de treinamento reprodutível e validado empiricamente.

A consolidação desses resultados indica que a abordagem pode servir de base para

futuras pesquisas em análise automatizada de tecidos e para o desenvolvimento de sistemas

de apoio ao diagnóstico em patologia digital, com potencial de integração a fluxos clínicos

e laboratoriais.

Ao longo do desenvolvimento desta pesquisa, foram elaborados e submetidos artigos

científicos que refletem a consolidação dos principais resultados obtidos. Parte desses

estudos foi submetida ao periódico Signal, Image and Video Processing (Springer Na-

ture), enquanto outra foi publicada nos anais da 20th International Joint Conference on

Computer Vision, Imaging and Computer Graphics Theory and Applications – VISAPP

(SCITEPRESS). Esses trabalhos representam contribuições relevantes para o avanço das

técnicas de processamento e análise de imagens biomédicas, especialmente na segmentação

e caracterização de estruturas histológicas a partir de modelos baseados em aprendizado

profundo.

Como desdobramento natural das investigações realizadas, propõe-se que pesquisas

futuras aprofundem a incorporação de estratégias de aprendizado auto-supervisionado,

de modo a potencializar a extração de características sem a dependência exclusiva de

rótulos manuais, além da utilização de arquiteturas baseadas em Transformers, que têm

se mostrado promissoras em contextos de análise visual complexa. Sugere-se, ainda, a

realização de experimentos em bases de dados multicêntricas, o que permitirá avaliar a

robustez e a generalização dos modelos propostos em diferentes realidades clínicas.

Outro caminho de investigação diz respeito ao aprimoramento do mapeamento de

coloração por H&E (hematoxilina e eosina), com vistas a identificar de forma mais precisa
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as estruturas celulares presentes nas lâminas histológicas.
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