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Resumo

A andlise de imagens histolégicas de laminas inteiras (WSI) no diagndstico do cancer de
prostata impoe desafios computacionais, como o processamento de imagens em gigapixels
e a variabilidade morfolégica dos tecidos. Este trabalho propoe uma metodologia que
integra um pré-processamento baseado em operagoes morfologicas a uma arquitetura de
rede neural convolucional do tipo Mask R-CNN para segmentacao de instancias. Aplicada
ao conjunto de dados PANDA, a abordagem incluiu a construgdo de um banco de dados
curado, com geracao de patches e balanceamento de classes. O modelo, implementado
no framework Detectron2, obteve acurdcia de 97,87% na classificacao dos padroes de
Gleason, confirmando que o pré-processamento direcionado favorece o aprendizado da
rede em relacao as abordagens end-to-end e foi possivel realizar também a validagao por
meio do subconjunto Karolinska. Os resultados indicam o potencial da metodologia como
ferramenta para patologia digital, com capacidade de generalizagao, estabelecendo um

novo referencial para aplicacao relacionados aos desafios das imagens médicas.

Palavras-chave: Processamento de Imagem, Cancer de Préstata, Segmentacao de Imagem,

Inteligéncia Artificial, Redes Neurais Convolucionais, Detectron2.






Abstract

The analysis of whole-slide histological images (WSI) in prostate cancer diagnosis
presents significant computational challenges, such as gigapixel image processing and
tissue morphological variability. This work proposes a methodology that integrates a
preprocessing stage based on morphological operations with a convolutional neural network
architecture of the Mask R-CNN type for instance segmentation. Applied to the PANDA
dataset, the approach included the construction of a curated database with patch generation
and class balancing. The model, implemented using the Detectron2 framework, achieved an
accuracy of 97.87% in classifying Gleason patterns, confirming that targeted preprocessing
enhances network learning compared to end-to-end approaches. Validation was also
performed using the Karolinska subset. The results indicate the potential of the proposed
methodology as a tool for digital pathology, demonstrating its generalization capability and

establishing a new reference for applications addressing challenges in medical imaging.

Keywords: Image Processing, Prostate Cancer, Image Segmentation, Artificial Intelli-

gence, Convolutional Neural Networks, Detectron2.
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CAPITULO

Introducao

O cancer de prostata é a quarta principal causa de morte por cancer no Brasil,
correspondendo a 6% de todas as mortes nesta categoria. A taxa de mortalidade total tem
mostrado uma forte tendéncia de aumento, com 16.301 mortes e cerca de 71.730 novos
casos registrados em 2022, correspondendo a 29,2% dos tumores incidentes em homens
(BRAZIL, 2022). Nos Estados Unidos, os registros indicam que héa cerca de 288,3 mil
novos casos e cerca de 34,7 mil mortes causadas por cancer de préstata em 2023. Além
disso, as estatisticas mostram que um em cada oito homens sera diagnosticado com esse
tipo de neoplasia (SOCIETY, 2023).

Observa-se que tanto no Brasil quanto nos Estados Unidos, devido ao aumento de
casos de tumor e da taxa de mortalidade causada pela doenca, ha agdes em nivel nacional
e politicas para prevencao e controle do cancer. O objetivo é reduzir a incidéncia e a
mortalidade por meio de agoes continuas, como conscientizagao dos fatores de risco do

cancer, promocao da deteccao precoce de canceres rastreaveis e fornecimento de tratamento
de qualidade em todo o pais (SOCIETY, 2023; BRAZIL, 2022).

Assim como em outros canceres, a idade é um marcador de risco e tem significado
especial no cancer de préstata, uma vez que a morbidade e a mortalidade aumentam
exponencialmente apés os 50 anos no Brasil; nos Estados Unidos, o aumento ocorre em
homens com 65 anos ou mais. A justificativa para orientar a detec¢ao precoce do cancer
de prostata é a possibilidade de reduzir os custos decorrentes do tratamento do cancer
em estagios avancados ou doencga metastatica, além de aumentar as taxas de cura dos
pacientes (SOCIETY, 2023; BRAZIL, 2022).

O diagnostico do cancer de prostata pode ser feito por estudo histopatologico do
tecido obtido por bidpsia de préstata, o que deve ser considerado sempre que houver
anormalidades no exame digital do reto ou na dosagem do Antigeno Especifico da Prostata
ou PSA (LOEB et al., 2014). Utilizando um laudo médico ou anatomopatoldgico, avalia-se
o grau histolégico do cancer, conhecido como Escore de Gleason (Figura 1). O objetivo é
informar sobre a provavel taxa de crescimento do tumor e sua tendéncia a disseminagao,

além de auxiliar no melhor tratamento para o paciente (BRAZIL, 2002).
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Capitulo 1. Introdugdo

Figura 1 — Escore de Gleason (BRAZIL, 2022).

De acordo com o Instituto Nacional do Céncer, a escala de classificagao do cancer de

prostata varia de 1 a 5, como mostrado na Figura 1. Sao eles (BRAZIL, 2022):

O Grau 1 - As células sao geralmente uniformes e pequenas, formando glandulas

regulares com pouca variagao de tamanho e forma, com margens bem definidas,

densamente agrupadas e distribuidas uniformemente, com pouco estroma entre elas.

Grau 2 - As células variam mais em tamanho e forma, as glandulas permanecem

uniformes, com nddulos soltos com bordas irregulares.

Grau 3 - As células sdo mais varidveis em tamanho e forma, constituindo glandulas
muito pequenas, uniformes, angulares ou alongadas, individualmente e irregularmente
distribuidas ao longo do estroma. Elas também podem formar nédulos fusiformes

ou papilares com bordas lisas.

Grau 4 - Muitas células se fundem em grandes massas amorfas ou formam glandulas
irregulares, de distribuicao desigual, mostrando infiltragao e invasao irregulares de

tecidos adjacentes.

Grau 5 - Tumor anaplasico. A maioria das células se agrega em grandes aglomerados
e invade 6rgaos e tecidos adjacentes. A massa celular pode apresentar necrose central,
com padrao comedocarcinoma. A diferenciacdo glandular frequentemente pode estar

ausente: padrdes de crescimento celular cordao-like ou infiltragdo de células soltas.
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1.1 Motivacao

O diagnéstico do cancer de prostata, embora bem estabelecido clinicamente através do
Escore de Gleason, apresenta desafios que motivam a busca por solugoes computacionais.
A anélise manual de laminas histolégicas é um trabalho sujeito a viés e fadiga, dependendo
da disponibilidade e da experiéncia do patologista, o que pode levar a variabilidades no
diagnostico. A aplicacao de técnicas de inteligéncia artificial surge como uma oportunidade
para aumentar a eficiéncia, a reprodutibilidade e a precisao do processo diagnostico.

Do ponto de vista da Ciéncia da Computacao, o problema impoe desafios complexos.
As laminas histolégicas inteiras (WSIs) sdo imagens em escala de gigapixels, cujo processa-
mento demanda alto poder computacional e algoritmos especializados (CHEN et al., 2023).
Além disso, a variabilidade na coloragao H&E e a complexidade morfologica dos tecidos
exigem modelos com alta capacidade de generalizagdo. Embora abordagens baseadas em
aprendizado profundo tenham alcancado resultados promissores, como a acurédcia de 77%
relatada por (RODRIGUEZ et al., 2020) no dataset SICAPv2, muitos trabalhos aplicam
redes neurais diretamente sobre as imagens, tratando o modelo como uma “caixa-preta”.
Esta abordagem, embora funcional, negligencia a oportunidade de otimizar a extracao de
caracteristicas e carece de interpretabilidade sobre quais regides da imagem contribuiram
para o diagnoéstico.

A hipoétese central desta tese é que um pré-processamento direcionado, que utiliza conhe-
cimento de dominio para realgar estruturas glandulares através de operagdes morfoldgicas,
permite que uma rede neural aprenda caracteristicas mais discriminativas. Argumenta-se
que, ao invés de uma abordagem end-to-end, a criacdo de um pipeline que limpa e prepara
os dados melhora a capacidade de generalizacao do modelo para novos dados. Nesse
contexto, a contribuicao principal é um pipeline computacional agnostico que demonstra
como técnicas cldssicas (morfologia) podem estabilizar o treinamento de redes profundas
(Deep Learning) em cenarios de alta variabilidade visual. Portanto, esta tese propde e
valida uma metodologia computacional que nao apenas aplica o aprendizado profundo, mas
o otimiza através de uma etapa de pré-processamento fundamentada, visando estabelecer

um novo padrao de precisdo para a analise do dataset PANDA.

1.2 Hipoétese

A partir dos pressupostos e da andlise do estado da arte no diagndstico do cancer
de prostata, este trabalho formula a hipotese de que a aplicacao de uma arquitetura
de segmentacao de instancias, enriquecida por um pré-processamento especifico para a
morfologia de tecidos prostaticos, pode proporcionar uma deteccao e classificagdo mais
precisa, reprodutivel e clinicamente interpretavel dos graus de cancer de préstata, em

comparagao com abordagens que tratam a tarefa como um problema de classificacao de
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imagem em caixa-preta.

1.3 Objetivos e Desafios da Pesquisa

Desenvolver e validar uma metodologia computacional, baseada em visao computacional
e aprendizado profundo, para a segmentacao e classificacdo automatica de padroes de
Escore de Gleason em imagens histologicas de laminas inteiras de cancer de prostata.

Os objetivos especificos incluem:

1 Construir um banco de dados curado e balanceado a partir do dataset PANDA,

otimizado para o treinamento de redes neurais convolucionais.

1 Implementar um pipeline de pré-processamento de imagens para realcar estruturas

glandulares e remover artefatos.

[ Avaliar um modelo de segmentacao de instdncias (Mask R-CNN) quanto a sua

capacidade de identificar e classificar os diferentes graus de Gleason.

(d Comparar o desempenho da metodologia proposta com o estado da arte, analisando

métricas de acuracia e segmentacao.

1.4 Organizacao desta Tese

Este trabalho estd estruturado em cinco capitulos para facilitar o entendimento e a
progressao légica da pesquisa. O Capitulo 1 introduz o problema sob a 6tica da saude
e da computacao, delineando a motivagao, os objetivos e a hipdtese. O Capitulo 2
apresenta a contextualizacao tedrica, revisa o estado da arte computacional e detalha os
fundamentos de processamento de imagem e deep learning aplicados a patologia digital. O
Capitulo 3 descreve a metodologia de pesquisa, desde a construgao do banco de dados
até o treinamento da rede neural. O Capitulo 4 discute os experimentos e analisa os
resultados obtidos. Por fim, o Capitulo 5 apresenta a conclusao, as contribuigoes do

trabalho e aponta dire¢oes para pesquisas futuras.
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CAPITULO

Contextualizacao

Neste capitulo, apresentam-se as teorias que fundamentam esta pesquisa, acompanhadas
por uma revisao da literatura. O objetivo é proporcionar uma compreensao dos referenciais
tedricos que sustentam este estudo e examinar o conjunto de trabalhos relacionados ao

tema desta pesquisa.

2.1 A proéstata

A prostata, glandula do sistema reprodutivo masculino, localiza-se anteriormente ao
reto e inferiormente a bexiga urindria. Seu tamanho varia conforme a idade do individuo;
0 6rgao compara-se a uma noz em homens jovens, mas pode aumentar em homens com
idade avangada (ONCOGUIA, 2014). Sua fungao priméria consiste na producao de um
fluido essencial para a protecao e nutricao dos espermatozoides no sémen, conferindo-lhe
maior fluidez. Nas proximidades da préostata, situam-se as vesiculas seminais, responsaveis
pela producao da maior parte do fluido seminal. A uretra, canal que permite a passagem

de urina e sémen para fora do corpo através do pénis, atravessa o centro da prostata
(ONCOGUIA, 2014).

Uretra

Penis s

Figura 2 — Sistema genital masculino, destacando a préstata e exibindo regiao com cancer
(SOCIETY, 2023).
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A manutencao da saude da prostata é um fator importante para a qualidade de vida,
dada a prevaléncia de condigoes como a Hiperplasia Prostética Benigna (HPB) e o cancer
de préstata (Adenocarcinoma). A HPB refere-se ao aumento nao canceroso da prostata,
comum em homens mais velhos, que pode causar dificuldades urinarias devido a compressao
da uretra.

Embora o termo “cancer de prostata” seja utilizado de forma ampla, este trabalho
foca especificamente no adenocarcinoma acinar, o subtipo histoldgico mais prevalente e
aquele para o qual o sistema de graduagao de Gleason foi originalmente desenvolvido e é
primariamente aplicado (EPSTEIN et al., 2016).

Por outro lado, o cancer de préstata figura entre os tipos mais comuns de neoplasia
entre os homens, desenvolvendo-se frequentemente de forma lenta e sem sintomas evidentes
nos estagios iniciais. A detecgao precoce do cancer de prostata eleva a probabilidade de

um tratamento bem-sucedido. Exames regulares constituem os métodos de diagndstico
(ONCOGUIA, 2014):

[ O exame digital retal, um procedimento fisico, avalia a préstata por meio da insercao

de um dedo lubrificado no reto para palpacao.

1 O teste de antigeno prostatico especifico ou Prostate-specific antigen (PSA) é um
exame de sangue que detecta um antigeno produzido pela préstata, podendo sinalizar

neoplasia ou outras condicoes.

A bidpsia, um procedimento cirirgico, coleta amostras de tecido prostatico para
analise microscopica, fornecendo dados morfolégicos detalhados para o diagnodstico

de doencas da prostata.

A anadlise histolégica de amostras de tecido, utilizando imagens, possibilita a identifica-
cao de células cancerosas e a avaliacdo da extensao da doencga. As imagens resultantes
fornecem detalhes sobre a morfologia celular, a estrutura do tecido e a gravidade das lesoes

encontradas.

2.2 Analise de Imagens Histologicas para Cancer de

Prostata

Estudos diversos corroboram a eficacia da analise histologica na deteccao do cancer
de préstata. Uma pesquisa conduzida por (TRABULSI et al., 2020) demonstrou sensi-
bilidade superior a 90% para este método na deteccao do cdncer prostitico. Além disso,
técnicas como a microscopia digital tém apresentado aumento na precisao diagnoéstica
e na identificacao de lesoes de alto risco. A histologia da préstata apresenta elementos
com formas e disposi¢oes de relevancia para o estudo do desenvolvimento de doencas.

No contexto do cancer de prostata, os niicleos — organelas membranosas localizadas no
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centro das células, responséaveis pelo controle da expressao génica — sdo cruciais para a
analise (MESCHER, 2021). Esses ntcleos fornecem informagoes sobre o estado do tumor,
empregadas no diagnostico. Na Figura 3, observa-se a disposi¢ao nuclear em um epitélio
glandular saudavel. A compreensao detalhada dessa estrutura, em conjunto com a andlise
dos ntucleos, desempenha um papel fundamental na avaliagao da condi¢ao neoplésica da

prostata.

Figura 3 — Exemplo de imagens histolégicas e principais estruturas das células da préstata,
obtida em (KAGGLE, 2023; MESCHER, 2021). Legenda: A - limen, B -
células secretoras, C - Citoplasma, D - Estroma, E - Nucleos celulares, F -
Glandulas.

Na Figura 3, destacam-se as seguintes estruturas (MESCHER, 2021): A) O lamen,
que representa o espaco central dentro de uma estrutura tubular; B) Células secretoras,
especializadas na producao de substancias; C) Citoplasma, a regido celular entre a mem-
brana e o nucleo; D) Estroma, o tecido conjuntivo de suporte; E) Nicleos, que abrigam o
material genético; F) Glandulas, estruturas secretoras.

Por meio da coloracao Hematoxilina-Eosina (H&E), a distingdo entre esses tipos
celulares pode ser complexa. Na Figura 3, as células secretoras estao dispostas em
colunas logo apds o lamen, seguidas pelas células basais (MESCHER, 2021). As células
fibromusculares alongadas sao identificaveis na imagem, distribuidas por todo o estroma
(SHAH; ZHOU, 2012).

Por meio dessas imagens de bidpsia é possivel classificar o cancer de préstata, um
passo crucial na determinacao do prognéstico do paciente e na orientagao das decisoes

terapéuticas. As imagens resultantes da analise histologica permitem a classificacao do
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cancer segundo o sistema de Escore de Gleason, amplamente utilizado na pratica clinica
(SHAH; ZHOU, 2012). O Escore de Gleason classifica as células cancerosas com base em
sua aparéncia e padrao de crescimento. Esse sistema, que avalia a diferenciacao celular e a
arquitetura tumoral, categoriza o cancer de prostata em uma escala de 1 a 5, considerando
os padroes predominante e secundéario (SOCIETY, 2023). Se o céncer de prostata for
identificado em uma bidpsia, atribui-se uma classificacao baseada na avaliacdo microscopica
da aparéncia andmala do cancer. Cénceres de grau mais alto exibem caracteristicas mais
andomalas e apresentam maior propensao a crescer e se disseminar. H& duas formas

principais de descrever essa classificagdo (SOCIETY, 2013):

[ Se o cancer apresentar aparéncia semelhante ao tecido normal, pode receber uma
pontuacao de 1 ou 2, embora estas pontuacoes raramente sejam utilizadas em

diagnodsticos modernos de cancer.
(d Canceres com caracteristicas anormais recebem uma pontuacgao de 5.

( As pontuacoes de 3 e 4 correspondem a caracteristicas intermediarias entre os padroes

normais e anormais.

(A Em geral, canceres clinicamente relevantes sao classificados com pontuacgoes de 3 a 5.

Como o cancer de prostata pode possuir areas distintas com graus variados, uma
classificagao é atribuida as duas areas que compoem a maioria das regioes do cancer. Esses
dois escores sao somados para produzir o Escore de Gleason. O primeiro niimero atribuido
corresponde ao grau mais prevalente no tumor. Por exemplo, um Escore de Gleason de
3+4=T7 indica que a maior parte do tumor ¢ de grau 3, com uma propor¢ao menor de
grau 4 (SOCIETY, 2013). Teoricamente, o Escore de Gleason pode variar de 2 a 10, mas
escores abaixo de 6 sao raramente utilizados. Com base no Escore de Gleason, o cancer de

prostata é frequentemente categorizado em trés grupos (SOCIETY, 2013):

[ Canceres com um Escore de Gleason de 6 ou menos sao classificados como bem

diferenciados ou de baixo grau.

1 Canceres com um Escore de Gleason de 7 sdao categorizados como moderadamente

diferenciados ou de grau intermediario.

( Canceres com escores de Gleason de 8 a 10 sao descritos como pouco diferenciados

ou de alto grau.

Nao obstante, este método pode enfrentar limitagoes devido a subjetividade interpessoal
e a variabilidade na interpretacao da amostra. A classificacdo de Gleason, combinada
com outras informacoes clinicas, auxilia na definicao do tratamento adequado para cada

paciente.
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2.3 Trabalhos Relacionados

A revisao da literatura foi conduzida utilizando as bases de dados Scopus, IEEE
Xplore e Google Scholar. A estratégia de busca empregou os seguintes operadores boole-
anos: (’Prostate Cancer’ OR ’Gleason Score’) AND (’Deep Learning’ OR ’Mask
R-CNN’ OR ’Instance Segmentation’). Os critérios de inclusao compreenderam artigos
publicados entre 20182024, com foco em histopatologia digital e no uso de CNNs. Foram
excluidos trabalhos restritos a dados clinicos (ndo-imagem) ou baseados em ressonancia
magnética. A seguir, apresenta-se uma analise dos trabalhos selecionados.

O trabalho de (BULTEN et al., 2022) representa um marco na validacao de algoritmos
de TA em patologia, ao sumarizar os resultados do desafio PANDA (Prostate cANcer
graDe Assessment). A metodologia do desafio, ilustrada na Figura 4, foi concebida para
testar rigorosamente a generalizacao dos modelos. Estruturado em duas fases, o desafio
iniciou com uma competicao aberta que disponibilizou um vasto conjunto de dados de
10.616 bidpsias para o treinamento dos algoritmos por 1.290 desenvolvedores. A segunda
fase consistiu em uma validacao cega e independente, na qual os algoritmos de melhor
desempenho foram avaliados em coortes externas de multiplos centros dos EUA e da
Europa, com o padrao-ouro estabelecido por consensos de painéis de uropatologistas. Esta
abordagem metodolégica foi fundamental para expor os algoritmos a variagoes do mundo
real, como diferentes protocolos de preparacao de laminas, scanners de digitalizagao e
perfis de pacientes.

O principal resultado do desafio foi a demonstracao empirica de que multiplos algoritmos,
desenvolvidos com abordagens distintas (incluindo redes convolucionais, métodos baseados
em atengao e diferentes estratégias de pré-processamento), foram capazes de atingir
desempenho comparavel ao de patologistas humanos. A métrica de avaliacao primaria, o
coeficiente Kappa quadratico ponderado, alcangou valores de 0,862 (IC 95%, 0,840-0,884) e
0,868 (IC 95%, 0,835-0,900) nas coortes de valida¢ao dos EUA e da Europa, respectivamente.
Tais valores, préximos da unidade, indicam uma concordancia elevada entre as predigoes
da TA e o padrao-ouro, validando a robustez e o potencial de aplicabilidade clinica dos
modelos para a graduacao de Gleason.

A contribuicdo de (BULTEN et al., 2022) reside na criacdo de um parametro de
referéncia de alta complexidade e na prova de conceito de que a IA pode atingir desempenho
de nivel especialista de forma generalizavel. Para esta tese, o conjunto de dados PANDA,
validado por este estudo, serve ndo apenas como a fonte de dados primaria, mas também
como o padrao de referéncia que define a complexidade do problema. Contudo, uma
limitagao fundamental da abordagem do desafio é o foco na classificacao em nivel de
lamina inteira (slide-level), que resulta em um tnico escore ISUP para toda a bidpsia. Isso
evidencia uma lacuna na localizagdo espacial e na quantificacao de miltiplos padroes de
Gleason coexistentes no mesmo tecido, que é precisamente o problema de segmentagao de

instancias que esta tese se propoe a resolver.
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Para lidar com a natureza fracamente rotulada das WSIs, (MAI et al., 2024) explora o
paradigma de Multiple Instance Learning (MIL). O MIL trata a WSI como um conjunto de
instancias (patches) e atribui um rétulo tnico a todo o conjunto, dispensando anotagdes em
nivel de pizel. A arquitetura proposta, FRCM-MIL, é um modelo de duplo fluxo (Figura 5):
um ramo utiliza uma CNN para extrair caracteristicas convencionais do dominio espacial,
enquanto o segundo ramo (SFRM-WT) emprega a transformada wavelet para decompor
os sinais da imagem em componentes de baixa e alta frequéncia, capturando informacoes
de textura e bordas que poderiam ser perdidas no processamento espacial. Um Modulo de
Atengao Cruzada (CAM) é subsequentemente utilizado para fundir as representagoes de

ambos os dominios de forma ponderada.
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Figura 4 — Visao geral do desafio PANDA e do desenho do estudo, conforme apresentado
m (BULTEN et al., 2022). A fase de desenvolvimento (esquerda) envolveu
uma competicao internacional onde as equipes treinaram seus modelos. A
fase de validagdo (direita) realizou uma avaliagdo cega e independente dos
algoritmos selecionados em multiplos datasets.

Em termos de desempenho no conjunto de dados PANDA, a abordagem FRCM-MIL
alcancou uma AUC (Area Sob a Curva ROC) de 91,69%, demonstrando boa capacidade
de discriminar entre os diferentes graus de Gleason em nivel de ldmina. A acuracia de
67,24% reflete a dificuldade inerente a classificagdo multiclasse em um conjunto de dados

com desbalanceamento e alta variabilidade. A metodologia de agregacao de caracteristicas
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vizinhas através do médulo CQAM, que utiliza o algoritmo K-vizinhos mais proximos
(KNN), também contribuiu para a robustez do modelo ao gerar representagoes de consulta

mais estaveis para o mecanismo de atencao.

A principal contribuicao deste trabalho é apresentar uma arquitetura MIL que integra
explicitamente caracteristicas do dominio da frequéncia para melhorar a classificacao de
WSIs. No entanto, a limitacao intrinseca do MIL persiste: a perda de interpretabilidade
espacial. O modelo fornece uma predicao para a lamina inteira, mas nao gera um mapa de
segmentacao que localize os diferentes padroes tumorais. Esta abordagem contrasta com o
objetivo desta tese, que é empregar a segmentacao de instancias para fornecer nao apenas o
diagnéstico, mas também a localizagao e a extensao exatas de cada padrao, informacao de

elevado valor para o planejamento terapéutico e a avaliagao da heterogeneidade tumoral.

Outra frente de pesquisa foca em arquiteturas capazes de lidar com a escala de gigapixels
das WSIs de forma hierdarquica. (CHEN et al., 2023) propoe o HIPT (Hierarchical Image
Pyramid Transformer), um modelo baseado em Vision Transformers (ViTs) e treinado
com aprendizado auto-supervisionado. A metodologia do HIPT, detalhada na Figura 6,
processa a imagem em multiplas escalas de forma ascendente (bottom-up). O processo
inicia com um ViT operando em patches de 256 x 256 pizels, que aprende representagoes de
“organizacao celular” ao tratar blocos de 16 x 16 pizels como “tokens”. As representagoes
vetoriais resultantes sao entao utilizadas como uma nova sequéncia de “tokens” para um
segundo nivel de ViT, que analisa regices maiores de 4096 x 4096 pizels para capturar

“fenotipos de tecido”, como a interface tumor-estroma.

O modelo HIPT demonstrou desempenho de ponta em tarefas de subtipagem de cancer
e predicao de sobrevida em 33 tipos de cancer do The Cancer Genome Atlas (TCGA). A
analise dos mapas de atencao do modelo revelou que as camadas hierarquicas aprendem
a focar em caracteristicas histologicamente relevantes em suas respectivas escalas, desde
células individuais até a organizagao tecidual mais ampla. Isso valida a hipdtese de que a

analise multiescala é fundamental para a extracdo de informagoes prognosticas de WSIs.

Apesar de sua performance, a abordagem HIPT possui limitagdes no contexto desta
tese. Primeiro, sua complexidade computacional é alta, exigindo recursos de hardware
para o treinamento em duas etapas. Segundo, o modelo foi projetado para gerar uma tnica
representacao vetorial para a WSI inteira, sendo otimizado para tarefas de classificacao e
prognoéstico em nivel de lamina. A arquitetura nao foi desenvolvida para a segmentacao
granular de multiplos padroes de Gleason, que exige a delimitacao precisa de fronteiras
entre diferentes regides tumorais, tarefa para a qual a segmentacao de instancias ¢ mais

adequada.
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Stage 1: Feature extraction and selection
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Figura 5 — Arquitetura MIL proposta em (MAI et al., 2024). A WSI é dividida em
instancias (patches). Um fluxo processa as caracteristicas espaciais, enquanto
o outro (SFRM-WT) reconstréi caracteristicas no dominio da frequéncia. Um
modulo de atencao cruzada funde as informagoes para gerar a representagao
final da lamina (saco).
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Figura 6 — Arquitetura do Hierarchical Vision Transformer (HIPT) (CHEN et al., 2023).
O modelo processa a WSI em escalas crescentes, desde caracteristicas celulares
(16 x 16) até fendtipos de tecido (4096 x 4096), para formar uma representagao
final da lamina inteira.
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O custo da anotacao por especialistas é um desafio persistente na area. O trabalho de
(LOPEZ—PEREZ et al., 2024) aborda este problema com a criagao e validagao do conjunto
de dados CrowdGleason. A metodologia, descrita na Figura 7, envolveu um protocolo de
crowdsourcing onde sete patologistas em treinamento anotaram 19.077 patches de 1.045
WSIs. A inovacgao reside na forma de lidar com a variabilidade e o ruido esperados em
anotagoes de nao especialistas. Para isso, os autores empregaram processos Gaussianos,
um método estatistico Bayesiano que aprende uma matriz de confusdo para cada anotador,
modelando sua expertise e permitindo uma agregacao ponderada dos rétulos.

Os resultados quantitativos validaram a abordagem. Um modelo treinado apenas com
os dados de crowdsourcing (SVGPCR) alcangou um Kappa de 0,7048. Mais relevante, um
modelo hibrido (SVGPMIX), que combinou o grande volume de dados do CrowdGleason
com um pequeno conjunto de dados de alta qualidade anotado por especialistas (SICAPv2),
obteve a melhor performance, com um Kappa de 0,7814. Este resultado sugere que
anotagoes em massa, mesmo que com ruido, podem ser utilizadas de forma eficaz para
treinar modelos robustos, especialmente quando guiadas por uma pequena quantidade de
dados de especialistas.

A contribuicao deste trabalho é a apresentacao de uma estratégia viavel para escalar a
criagao de conjuntos de dados anotados, o que ¢é relevante para um dos objetivos desta
tese: “Construir um banco de dados curado”. Embora esta tese utilize o conjunto de dados
PANDA, os achados de (LOPEZ—PEREZ et al., 2024) reforcam a complexidade da etapa
de curadoria de dados e demonstram a utilidade de métodos probabilisticos para lidar com

a incerteza dos rotulos, uma questao presente até entre especialistas.
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Figura 7 — Protocolo de criacio do dataset CrowdGleason (LOPEZ-PEREZ et al., 2024).
O fluxo ilustra a aquisicaio de WSIs, a extracao de patches, o processo de
rotulacao distribuida (crowd labeling) para gerar o conjunto de treinamento, e
a curadoria com especialistas para criar um conjunto de teste confidvel.

Por fim, abordagens generativas também tém sido exploradas para a tarefa de seg-
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mentacao. (VATS et al., 2024) propoe um método baseado em Generative Adversarial
Networks (GANs). Conforme ilustrado na Figura 8, a arquitetura GAN consiste em dois
modelos que competem entre si: um Gerador, com arquitetura U-Net, que aprende a
criar méscaras de segmentacao a partir de uma imagem de entrada; e um Discriminador,
treinado para distinguir entre as mascaras geradas e as mascaras reais do conjunto de
dados (o ground-truth). O treinamento é um processo adversarial no qual o Gerador é
otimizado para produzir resultados que “iludam” o Discriminador, forcando-o a gerar
segmentacoes progressivamente mais realistas e precisas.

Esta abordagem generativa demonstrou eficicia para a tarefa de segmentacao seman-
tica no conjunto de dados do desafio MICCAI 2019, alcangando um F1-score de 0,872.
Este resultado superou outras arquiteturas de segmentagao, como a U-Net (0,843) e a
DeepLabV3 (0,860), indicando que o aprendizado adversarial pode refinar os contornos e
a qualidade das méascaras de segmentacao.

Este trabalho é relevante para a tese, pois apresenta uma alternativa de vanguarda para
a tarefa de segmentacao. Contudo, hé duas distingoes pertinentes. Primeiro, a abordagem
com GAN foi otimizada para a segmentacao semantica, onde todos os pizels de uma mesma
classe (exemplo: Gleason 4) recebem o mesmo rétulo. Isso difere da segmentacao de
instancias, objetivo desta tese, que visa delinear cada glandula ou agrupamento glandular
como um objeto distinto. Segundo, a validagdo em um conjunto de dados diferente

(MICCAI) impede uma comparagao direta de desempenho com os resultados obtidos no
PANDA.

Segmentation results

<

ot SRR

‘ Loss calculation

Ground-truth

Input/image

Figura 8 — Diagrama de blocos do algoritmo de segmentagao baseado em GAN proposto
por (VATS et al., 2024). O modelo gerador recebe a imagem de entrada e
produz uma mascara de segmentacao, que é avaliada pelo discriminador em
comparagao com a mascara real (ground-truth).

2.3.1 Sintese e Lacunas da Literatura

A literatura demonstra uma tendéncia em diregdo a modelos que analisam a WSI
inteira. Nao obstante, persistem lacunas que esta tese objetiva enderecar. A Tabela 1

sintetiza a analise dos trabalhos relacionados.
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1 Classificagcao de Slide versus Segmentacao de Instincia: A maioria dos
trabalhos de alta performance concentra-se na classificacao do slide, sem fornecer
a localizagdo e a extensao exata de cada padrao de Gleason, informacao que a

segmentacao de instancias pode oferecer.

1 Impacto do Pré-processamento: Poucos trabalhos investigam o impacto de
técnicas de pré-processamento especificamente desenvolvidas. Muitas abordagens
tratam a rede como uma solugao integral (end-to-end), evidenciando uma lacuna

sobre como a otimizacao dos dados de entrada pode melhorar o desempenho.

 Interpretabilidade: Arquiteturas como MIL e ViTs, embora potentes, podem ser
menos interpretaveis. Existe espago para explorar como arquiteturas como o Mask R-
CNN podem ser otimizadas para um balanco entre performance e interpretabilidade

clinica.



Tabela 1 — Tabela comparativa dos principais trabalhos relacionados.

Autor(es)

Método

Base de Dados

Métrica/Resultado

Vantagens

Limitacoes

(ARVANITI et
al., 2018)

(RODRIGUEZ
et al., 2020)

(BULTEN et al.,
2022)

(MAT et al,
2024)

(CHEN et al.,
2023)

(LOPEZ-
PEREZ et
al., 2024)

(VATS
2024)

et al.,

MobileNet para classifica-
¢ao automaética de padroes
de Gleason.

Deep learning para previ-
sdo de Escore de Gleason
em nivel de pizel.

TA para diagnéstico e gra-
duacdo de Gleason, vali-
dada em multiplas coortes
(desafio PANDA).
Multiple Instance Learning
(MIL) com reconstrucao de
caracteristicas espaciais e
de frequéncia.

Vision Transformer
(ViT) hierarquico (HIPT)
com aprendizado auto-
supervisionado em
multiplas escalas.
Aprendizado a partir de
anotacoes de crowdsour-
cing com Processos Gaus-
sianos para modelar ruido.

Segmentacado de padroes
de Gleason utilizando uma,
Rede Generativa Adversa-
rial (GAN) com gerador U-
Net.

641 pacientes (base
de teste: 245)

SICAPv2 (182 ima-
gens)

PANDA e coortes

externas

Dataset privado e
PANDA

TCGA (33 tipos de

cancer)

CrowdGleason
(novo dataset) e
SICAPv2

MICCATI 2019

Kappa quadratico:

5% e 1%

Precisdo: 77%

Kappa quadratico:
0,86

AUC: 91,69%
(PANDA)

Alta performance em
subtipagem de cancer e
previsao de sobrevida.

Demonstra que anota-
¢oes “com ruido” po-
dem treinar modelos ro-
bustos (Kappa: 0.78).

F1-score: 0,872

Alta concordancia
com patologistas es-
pecialistas.

Fornece mapas de
calor com localiza-
¢ao dos padroes.
Alta generalizacao e
desempenho de ni-
vel clinico em clas-
sificacao de slide.
Eficiente para classi-
ficacao de WSI sem
anotacdes em nivel
de pixel.

Lida com a escala de
gigapixels das WSIs
e aprende caracteris-
ticas em multiplos
niveis.

Reduz a dependén-
cia da necessidade
de anotagoes de pa-
tologistas especialis-
tas.

Produz mascaras de
segmentacdo preci-
sas, superando ou-
tras arquiteturas.

Foco em microarranjos
de tecido, ndo em WSIs
completas.

Dataset pequeno, limi-
tando a generalizagao
do modelo.

Foco na classificacao do
slide, sem segmentacao
detalhada dos padroes.

Menor  interpretabi-
lidade; nao localiza
precisamente as regioes
tumorais.

Requer grande poder
computacional e nao foi
focado primariamente
em segmentacao.

A qualidade do modelo
final depende de algo-
ritmos de agregacao de
rotulos.

Avaliado em um dataset
diferente do PANDA, o
que dificulta a compa-
racao direta.

Fonte: O autor (2025).
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2.4 Processamento Digital de Imagens em Patologia

O processamento de imagens digitais é uma area da ciéncia da computacao com vastas
aplicagoes, incluindo o campo da medicina. No contexto da patologia, aplica-se para
extrair informagoes quantitativas e objetivas de imagens histologicas, visando a superagao
das limitagoes da avaliagdo qualitativa inerente ao diagnéstico humano (GONZALEZ;
WOORDS, 2007; LITJENS et al., 2017). Esta segao detalha os conceitos de processamento
que sdo relevantes para a andlise de Whole Slide Images (WSIs) de cancer de préstata.

A anélise de Laminas Histologicas Inteiras - Whole Slide Images (WSI) impée desafios
computacionais significativos. Devido a sua resolucdo na ordem de gigapixels, estas
imagens nao podem ser processadas em uma unica iteracao, o que exige estratégias para
a gestao de memoria e tempo de processamento (MADABHUSHI; RANGANATHAN,
2019). Adicionalmente, a variabilidade na morfologia do tecido, a presenca de artefatos e
as inconsisténcias de coloragao introduzidas durante a preparacao das laminas constituem
fatores que comprometem a generaliza¢ao dos modelos (TOTH et al., 2014; HOFMAN et

al., 2021). As técnicas empregadas neste contexto incluem:

0 Geragiao de Patches (Tiling): Para mitigar o custo computacional imposto pela
escala gigapixel, a WSI é particionada em milhares de patches (ladrilhos) menores
(tipicamente 256 x 256 ou 512 x 512 pixels) (CAMPANELLA et al., 2019; CHEN et al.,
2023). Esta abordagem torna a analise computacionalmente vidvel, permitindo que
cada patch sirva como a unidade de entrada para a Rede Neural Convolucional (CNN).
A eficiéncia do treinamento é otimizada pela amostragem guiada de patches, que
filtra regioes de fundo e artefatos, e pela aplicacao de técnicas como o hard negative
mining, onde patches incorretamente classificados sao reintroduzidos no treinamento
para refinar as fronteiras de decisdo do modelo (MADABHUSHI; RANGANATHAN,
2019).

O Normalizagao de Coloragio: A coloragdo com Hematoxilina e Eosina (H&E) é
suscetivel a variagoes de intensidade e tonalidade entre diferentes laboratorios e
lotes de reagentes (ARVANITI et al., 2018). Essa variacao pode introduzir um
viés no modelo de deep learning, levando-o a correlacionar o padrao cromatico em
detrimento das caracteristicas morfologicas do tecido. A normalizagdao de coloracao
é um passo de pré-processamento que ajusta o perfil de cores de uma imagem para
corresponder a um padrao de referéncia. Metodologicamente, a normalizacao pode ser
realizada através de técnicas de correspondéncia estatistica de cores ou de métodos de
separagao de corantes no espago de densidade 6ptica (OD). Recentemente, métodos
baseados em deep learning tém sido investigados por sua capacidade de alcancar a
normalizacao sem a dependéncia explicita de uma imagem de referéncia, podendo
apresentar maior robustez e adaptabilidade (CHEN et al., 2024).
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Q Operacoes Morfologicas e Segmentagio de Artefatos: Técnicas classicas de proces-
samento de imagem, como operagoes morfolégicas, sao aplicadas para refinar as
mascaras de segmentagao utilizadas no treinamento (GONZALEZ; WOORDS, 2007).
Operagoes de abertura (erosao seguida de dilatagdo) removem pequenos objetos e
ruidos (artefatos de digitaliza¢ao). Operagoes de fechamento (dilatacao seguida de
erosio) preenchem pequenos orificios dentro de regides de interesse. A aplicac¢ao
dessas operagoes resulta em anotagoes mais limpas. Adicionalmente, a segmentagao
do tecido em relagao ao fundo da lamina e a remocao de artefatos sao realizadas
por meio de limiarizac¢ao (e.g., método de Otsu) ou por algoritmos de segmentagao
baseados em deep learning dedicados ao controle de qualidade (HOFMAN et al.,
2021).

Essas etapas de pré-processamento, embora baseadas em conceitos classicos, sao
aplicadas de forma direcionada para resolver os desafios de escala e variabilidade das
imagens de patologia digital, constituindo a base sobre a qual os modelos de aprendizado

profundo podem atuar com maior eficacia.

2.5 Redes Neurais Convolucionais

Uma Rede Neural Convolucional (CNN) é uma arquitetura de deep learning inspirada na
organizacao hierarquica do cortex visual humano, que é a arquitetura mais frequentemente
empregada para a maioria das tarefas de visdo computacional (LECUN; KAVUKCUOGLU;
FARABET, 2010). Sua arquitetura é projetada para aprender representagoes hierdrquicas
de caracteristicas a partir de dados brutos de pizels, o que a torna adequada para a analise

de imagens histoldgicas.

Convolugdo  Subamostragem Convolugdo Subamostragem Completamente conectada
——————————————————————————— F——————— ==

Imagem de Entrada Extragcdo dos mapas de caracteristicas Classificagdo

Figura 9 — Exemplo de estrutura de CNN. A imagem de entrada passa por camadas de
convolugao e subamostragem para extragao de mapas de caracteristicas, que

sao entao utilizados por uma camada totalmente conectada para a classificacao
final.

A estrutura de uma CNN, ilustrada na Figura 9, é composta por:
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1. Camada de Convolugao: Onde filtros (kernels) aprendem a detectar padroes espa-
ciais, como bordas, texturas e formas. Nas camadas iniciais, os filtros detectam
caracteristicas simples. Em camadas mais profundas, combinam essas caracteristicas
para identificar estruturas complexas, como a morfologia de glandulas cancerosas
(KRIZHEVSKY; SUTSKEVER; HINTON, 2012). As Deep Convolutional Neural
Networks (DCNNs) sao utilizadas na identificacdo de detalhes finos na andlise de

lesbes prostaticas.

2. Camada de Subamostragem (Pooling): Reduz a dimensao espacial dos mapas de
caracteristicas, o que diminui a carga computacional e confere a representacao maior
invarianga a pequenas translagoes na imagem de entrada (BOUREAU; PONCE;
LECUN, 2010).

3. Camada Totalmente Conectada: ApoOs a extracao de caracteristicas, estas sdo trans-
formadas em um vetor e processadas por camadas densas para realizar a tarefa final,

como a classificagdo do padrao de Gleason.

A arquitetura ResNet (Residual Neural Network) (HE et al., 2016), utilizada como
backbone nesta pesquisa, possibilitou o treinamento de redes mais profundas. Introduziu
as “conexoes residuais” (skip connections), que permitem que o gradiente flua com maior
facilidade através da rede durante o treinamento, o que contribui para mitigar o problema
do desaparecimento do gradiente. Outras arquiteturas (VGG, Inception e DenseNet) sao
igualmente utilizadas, frequentemente empregando a técnica de Transfer Learning para
otimizar o desempenho em datasets médicos limitados (COURTY et al., 2023). Adicio-
nalmente, pesquisas exploram arquiteturas especializadas como as Graph Convolutional
Networks (GCN) e modelos de fusdo de caracteristicas para refinar a analise estrutural do
cancer de prostata (ALI et al., 2021; ZHU et al., 2022).

O treinamento de uma Rede Neural Convolucional envolve a minimizacao de uma
funcao de perda (erro) através do ajuste iterativo dos pesos sindpticos. O algoritmo
para este processo ¢ o Gradiente Descendente. Este método de otimizagao calcula o
gradiente da funcao de perda em relacdo aos parametros da rede e atualiza os pesos
na direcado oposta ao gradiente, buscando o minimo global ou local da func¢do de erro
(GOODFELLOW; BENGIO; COURVILLE, 2016). Em arquiteturas modernas, utilizam-se
variacoes estocasticas deste algoritmo, como o AdamW utilizado neste trabalho, que
adaptam a taxa de aprendizado para acelerar a convergéncia.

Para viabilizar o calculo desses gradientes em redes profundas com multiplas camadas,
emprega-se o algoritmo de Retropropagacao (Backpropagation). Baseado na regra da
cadeia do calculo diferencial, o Backpropagation propaga o erro da camada de saida de
volta para as camadas iniciais, permitindo calcular a contribui¢ao exata (derivada parcial)

de cada peso individual para o erro total da rede (BISHOP, 2006). E essa mecanica que
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permite a rede “aprender” quais caracteristicas da imagem (como bordas ou texturas de

glandulas) sao relevantes para a classifica¢ao correta do Escore de Gleason.

2.6 Segmentacao de Instiancias com Mask R-CNN e

Arquiteturas Avancadas

No contexto da graduacao de Gleason, uma tnica biépsia pode conter miiltiplas regides
com diferentes padroes (exemplo: dreas de Gleason 3 e Gleason 4) (EPSTEIN et al., 2016).
Tarefas de classificagdo ou segmentacao semantica sao insuficientes para distinguir objetos
individuais. A segmentacao de instancias é a tarefa computacional utilizada neste contexto,
pois identifica e delineia cada objeto (ou instdncia) de forma independente (HE et al.,
2017; ZHOU et al., 2019).

O Mask R-CNN (HE et al., 2017) é uma arquitetura de referéncia para esta tarefa,
sendo uma extensao do Faster R-CNN (REN et al., 2015) com um ramo adicional para a

geracao de mascara. Sua abordagem de duas etapas é aplicada para problemas complexos:

1. Geracao de Propostas de Regiao: Uma sub-rede denominada Region Proposal Network
(RPN) analisa o mapa de caracteristicas (frequentemente aprimorado com Feature
Pyramidal Network - FPN para melhor multiescala (TTWARI et al., 2024)) e propoe

regides candidatas (Regions of Interest - ROls) que provavelmente contém um objeto.

2. Classificagdo, Refinamento e Geragao de Mdscara: Para cada ROI, trés “cabecas”

da rede atuam em paralelo: uma classifica o objeto (exemplo: “Gleason 3”), outra
refina as coordenadas da caixa delimitadora, e uma terceira gera uma mascara de

segmentacao em nivel de pizel para a instancia.

Uma inovagao técnica do Mask R-CNN é a camada ROIAlign (HE et al., 2017), que
resolve um problema de desalinhamento de pizels (quantizacao) presente em arquiteturas
anteriores, utilizando interpolacao bilinear. Este mecanismo de alinhamento é importante
para que a mascara de segmentacao seja gerada com alta fidelidade espacial (HE et al.,
2017). O Detectron2, o framework utilizado nesta tese, é uma implementagao eficiente e
modular desta arquitetura (WU et al., 2019b). O Mask R-CNN é reportado por apresentar
um desempenho adequado na segmentacao de instancias que se sobrepoem, como células
e glandulas densamente agrupadas (RETTENBERGER; SAGER; LELLMANN;, 2023).
Pesquisas atuais investigam otimizacoes do Mask R-CNN; incluindo o uso de backbones

mais avangados (e.g., Res2Net) e modificagoes arquiteturais para aumentar a precisao nas
bordas das instancias (HUANG et al., 2023).
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Figura 10 — Estrutura geral do Mask R-CNN. A imagem passa por um backbone (CNN)
para extrair caracteristicas. A RPN propde regides (ROIs), que sdo alinhadas
pela camada ROIAlign. Em seguida, as cabegas da rede realizam a classificacao,
o refinamento da caixa delimitadora e a geracao da mascara de segmentagao
para cada instdncia. Figura adaptada de (CHIAO et al., 2019).
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CAPITULO

Metodologia de Pesquisa

A andlise computacional de imagens médicas tem se consolidado como uma &area de
pesquisa relevante, com a aplicagao de algoritmos de Inteligéncia Artificial (IA) para auxiliar
em tarefas de diagnéstico e progndstico (GIANSANTI, 2025; RIBEIRO et al., 2025). Dentro
deste campo, abordagens baseadas em deep learning tém sido amplamente investigadas
para a classificacdo e segmentacao de padroes em imagens patologicas, demonstrando
capacidade de aprender hierarquias espaciais de caracteristicas diretamente dos dados (HE;
LUAN; HU, 2025). O presente estudo se insere neste contexto, propondo uma metodologia
para a analise de imagens histologicas de cancer de prostata.

O trabalho foi desenvolvido utilizando o conjunto de dados Prostate Cancer Grade
Assessment (PANDA). A escolha deste acervo justifica-se por ser um recurso publico de
grande escala, amplamente utilizado como referéncia (benchmark) na area. Ele é composto
por imagens de laminas inteiras ( Whole-Slide Images - WSI) em formato Tagged Image F'ile
Format (TIFF) de alta resolucao, acompanhadas de anotagoes do escore de Gleason, o que
permite o treinamento supervisionado e a avaliagao comparativa dos modelos propostos.

Dada a alta dimensionalidade das WSIs, uma etapa de pré-processamento dos dados é
mandatoéria. Inicialmente, aplicam-se operacoes de morfologia matematica com o objetivo
de atenuar ruidos e artefatos de coloragao que poderiam impactar negativamente o
desempenho do modelo (SILVA; NASCIMENTO; MEDEIROS, 2022). Em seguida, sao
geradas méscaras de tecido para isolar a area de interesse do fundo da lamina, otimizando
o processamento computacional.

Posteriormente, as regides de tecido sao divididas em multiplos patches (recortes) de
dimensoes uniformes. Esta abordagem, conhecida como tiling, ¢ um procedimento padrao
no processamento de WSIs, pois permite que as imagens sejam tratadas por unidades
de processamento grafico (GPUs) com memoria limitada e, simultaneamente, aumenta a
quantidade de amostras disponiveis para o treinamento da rede neural.

Para a tarefa de identificagdo e delineamento das estruturas histolégicas, foi selecionada
a arquitetura Mask R-CNN, que utiliza a ResNet-50 como rede de extragao de caracteristicas

(backbone). A ResNet-50 é uma arquitetura convolucional consolidada, reconhecida por
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sua capacidade de aprender representagoes hierarquicas robustas de dados visuais. A
implementagao foi realizada utilizando o framework Detectron2, uma biblioteca de software
que oferece componentes modulares e eficientes para tarefas de deteccao e segmentacao de
objetos.

A escolha do Mask R-CNN fundamenta-se na natureza do problema, que exige a
segmentacao de instancia. Esta é uma tarefa de visdo computacional que vai além da
detecgao de objetos (que fornece apenas caixas delimitadoras) e da segmentacdo semantica
(que classifica pixels, mas nao distingue instancias adjacentes da mesma classe) (HE et al.,
2017). A segmentagao de instdncia fornece uma mascara de segmentacao distinta para
cada objeto individual detectado.

A aplicacao desta técnica em histopatologia é justificada pela necessidade de analisar
individualmente as glandulas prostaticas. A morfologia e a disposi¢ao dessas estruturas
sdo critérios essenciais no sistema de classificacdo de Gleason. A capacidade de isolar
cada glandula permite a extragdo de caracteristicas quantitativas especificas por instancia,
como area, perimetro e fatores de forma. A literatura recente corrobora a adequacao de
abordagens de deep learning para tarefas de segmentacao em nivel de objeto em imagens
histopatolégicas, como na segmentacao de ntcleos, apoiando a metodologia aqui adotada
(BASU et al., 2024).

Por fim, foi desenvolvida uma interface grafica de usuédrio (GUI) como ferramenta
de apoio. Sua finalidade é permitir a execu¢ao do modelo treinado sobre novas imagens
(inferéncia) e facilitar a inspecao visual qualitativa dos resultados da segmentagao, servindo
como um meio para a verificagdo e interpretagao dos resultados gerados pelo modelo. Os

passos sequenciais desta metodologia estao representados na Figura 11.

Pré-processamento Detectron CNN (Mask R-CNN)

Aprendizado de maquina
Base de Selecionar

imagens imagens para
PANDA processamento

&

Banco de Imagens

Banco de dados

o BBE8

Segmentagdo e

detecgdo — .
‘ Resultado

Figura 11 — Passos da metodologia proposta.

3.1 Construcao do Banco de Imagens

O treinamento de redes neurais convolucionais para tarefas de supervisao requer um

conjunto de dados extenso e com anotacoes de alta qualidade. Este processo metodoldgico
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inicial envolve a selecao de um banco de dados de imagens apropriado para o estudo e
a curadoria dos dados que servirao de base para o treinamento e validacao do modelo
(WANG et al., 2020).

Para este trabalho, foi selecionado o conjunto de dados PANDA, que consiste em
imagens de biopsias de cancer de prostata. O conjunto de treinamento compreende
aproximadamente 11.000 imagens digitalizadas de laminas inteiras ( Whole-Slide Images -
WSI) coradas com hematoxilina e eosina (H&E), origindrias de dois centros de referéncia:
o Radboud University Medical Center e o Karolinska Institute. As imagens variam em
dimensoes, com médias de 8.192 pixels de largura por 22.528 pixels de altura, profundidade
de cor de 24 bits e formato TIFF, totalizando 411,9 gigabytes de armazenamento (KAGGLE,
2023).
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Figura 12 — Exemplo do processo de graduacgao de Gleason para uma biépsia contendo
cancer de prostata. Os padrdes de crescimento canceroso mais comum (con-
torno azul, padrao Gleason 3) e o segundo mais comum (contorno vermelho,
padrao Gleason 4) presentes na biépsia determinam a pontuagao Gleason (344
para esta bidpsia), que por sua vez é convertida em um grau ISUP (2 para
esta bidpsia) seguindo as diretrizes da Sociedade Internacional de Patologia
Urolégica. Bidopsias que nao contém cancer sao representadas por um grau
ISUP de 0 no conjunto de dados apresentado (KAGGLE, 2023).

A Figura 12 ilustra o processo de graduacao de Gleason para uma bidpsia com cancer de
prostata, destacando os padroes de crescimento mais comuns que determinam a pontuagao
Gleason e, consequentemente, o grau ISUP. O Radboud University Medical Center e o
Karolinska Institute, em colaboracao com a Tampere University, coordenaram a criacao
deste conjunto de imagens. O grupo de pesquisa do Radboud University Medical Center
foca no desenvolvimento de algoritmos computacionais para suporte clinico, enquanto
o departamento do Karolinska Institute mantém um grupo interdisciplinar dedicado ao
aprimoramento do diagnéstico e tratamento do cancer de prostata (KAGGLE, 2023).

Este conjunto de dados difere de outros bancos por incluir biépsias completas obtidas

de testes multicéntricos e analisadas por uropatologistas especialistas (KAGGLE, 2023).
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Essa caracteristica permite uma representacao mais abrangente das variagoes histologicas
observadas na pratica clinica, o que é fundamental para o treinamento de modelos que
possam generalizar para dados do mundo real.

O acervo ¢ dividido em dois subconjuntos com estratégias de anotacao distintas. O
primeiro, denominado Radboud, contém imagens histolégicas de glandulas prostéaticas
rotuladas com anotagoes individuais e em nivel de pixel do escore de Gleason. A classificagio
detalhada inclui: 1 para estroma; 2 para epitélio benigno; 3 para epitélio canceroso (Gleason
3); 4 para epitélio canceroso (Gleason 4); e 5 para epitélio canceroso (Gleason 5). A
presenca de multiplas anotagoes em uma tnica imagem permite a identificacao precisa de
areas com diferentes graus de agressividade (BULTEN et al., 2022).

O segundo subconjunto, Karolinska, adota uma abordagem de rotulagdo mais ampla,
categorizando as regides da imagem como: 0 para fundo (ndo tecido) ou desconhecido; 1
para tecido benigno (estroma e epitélio combinados); e 2 para tecido canceroso. Diferente-
mente do subconjunto Radboud, as imagens do Karolinska nao apresentam méscaras de
segmentacao detalhadas com base nos escores de Gleason. Os escores sao associados as
amostras como um todo, indicando a malignidade geral da lamina, mas sem especificar a
localizagao exata dos diferentes padroes tumorais (BULTEN et al., 2022).

Os dados foram organizados na Tabela 2, que apresenta a distribuicao desses escores para
as duas instituicoes, representando o niimero de casos observados para cada combinacao

de escore de Gleason.

Tabela 2 — Distribuigao dos escores de Gleason por Instituto.

Escore de Gleason | Karolinska | Radboud
0+0 1925 0
3+3 1814 852
3+4 667 675
345 13 67
4+3 318 925
444 466 660
445 208 641
5+3 2 41
o5+4 27 221
o5+5 16 111

Negativo 0 967

A andlise dos dados revela tendéncias distintas. No Instituto Karolinska, predominam
casos com escores de Gleason baixos (040 e 3+3), indicando uma propor¢do maior de
canceres de prostata menos agressivos. No Centro Médico Radboud, a distribui¢ao é mais
uniforme, com uma proporgao significativa de casos com escores altos (443, 4+4, 4+5 e
5+4), sugerindo uma incidéncia maior de canceres agressivos ou de estdgio avangado. A
presenca de casos negativos em ambas as institui¢oes (Negativo no Radboud e 040 no

Karolinska) indica biépsias sem evidéncia de cancer.
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A escolha das imagens do subconjunto Radboud para este estudo decorre, portanto,
da disponibilidade de mascaras de segmentagao correspondentes a cada imagem, contendo
a classificacao detalhada do escore de Gleason e a delimitacao das regides indicativas de
cancer. Esse processo corresponde as etapas iniciais da metodologia adotada, representada
na Figura 11.

A construcao de bancos de dados anotados constitui um componente central na anélise
de imagens médicas, fornecendo rétulos precisos para o treinamento supervisionado de
modelos de deep learning. A literatura recente indica que datasets anotados aprimoram a
capacidade de generalizacao desses modelos, reduzindo vieses e elevando a precisao em
tarefas como segmentacao e classificagao.

A relevancia de datasets como o PANDA reside na sua capacidade de representar as
variagoes encontradas na pratica clinica, por serem provenientes de multiplos centros.
A literatura enfatiza que bancos de dados multicéntricos reduzem o viés institucional e
melhoram a transferibilidade dos modelos para cenérios clinicos diversificados.

Adicionalmente, a integracao de tais datasets com técnicas de pré-processamento,
como operagoes morfologicas, prepara os dados para um treinamento eficiente. Embora o
foco desta secao seja na construcao do banco, a literatura sobre morfologia matematica
em imagens médicas, como em (SILVA; NASCIMENTO; MEDEIROS, 2022), destaca
como anotacoes precisas combinadas com refinamentos morfolégicos podem melhorar a
segmentacao de estruturas, uma logica aplicavel de forma andloga aos tecidos prostaticos.

A construcao do dataset final ndo se limitou a extracao de dados, mas envolveu um
processo de curadoria manual e verificacao de integridade das mascaras que perdurou
por aproximadamente seis meses. Esta etapa foi critica para remover anotacoes ruidosas
inerentes a bases publicas e garantir que apenas patches com concordancia clara de
rotulagao fossem apresentados a rede, para mitigar a propagacao de erros durante o

treinamento.

3.2 Pré-processamento

A etapa subsequente envolve o pré-processamento do conjunto de dados, que prepara
as imagens para analise e segmentacao. Este processo inclui operagoes automaticas de
redimensionamento, normalizacao e filtragem. O redimensionamento ajusta as dimensoes
das imagens para compatibilidade com a rede neural convolucional, enquanto a normaliza-
¢ao padroniza os valores dos pixels em uma faixa especifica, facilitando o treinamento do
modelo (HE et al., 2017). A filtragem remove ruidos ou realga caracteristicas relevantes
para a deteccao de objetos, além de abordar o equilibrio do conjunto de dados.

Estudos indicam que o desequilibrio entre classes representa um desafio em tarefas

de classificagio, especialmente quando a classe minoritaria possui poucas instancias (HE;
GARCIA, 2009; JOHNSON; KHOSHGOFTAAR, 2023; JAFARIGOLA; TRAFALISA,
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2023). Nesse contexto, o classificador tende a priorizar a classe majoritéria, resultando
em viés nos resultados (HE; GARCIA, 2009). Pesquisas corroboram que o desequilibrio
afeta a classificacdo da classe minoritaria sem necessariamente alterar a acuracia global,
tornando-a um indicador potencialmente enganoso; por isso recomenda-se o uso de métricas
mais adequadas como Fl-score, loU e correlatas (CHICCO; JURMAN, 2020; POWERS,
2011). A magnitude desse desafio varia conforme o tipo de dados, o tamanho do conjunto
e a distribuigao entre classes (JOHNSON; KHOSHGOFTAAR, 2023; HE; GARCIA, 2009;
JAFARIGOLA; TRAFALISA, 2023).

O equilibrio do banco de dados de imagens é adotado para o treinamento do modelo. A
utilizacao de quantidades iguais de imagens por categoria busca reduzir o viés em direcao
as classes mais representadas. Em tarefas de deteccao de objetos, diferencas na quantidade
de exemplos por classe podem induzir viés para classes frequentes, afetando o desempenho
em classes menos representadas.

Apbs a selecao do subconjunto de imagens, as imagens do banco de dados PANDA
foram submetidas a pré-processamento para fornecer dados adequados ao modelo. Esta

fase compreende as seguintes etapas:

1. Aplicacao de Operagoes Morfolégicas: Operagoes de abertura morfologica
removem ruidos e objetos com area inferior a 100 pixels, para isso foi utilizado
um kernel estruturante eliptico de tamanho 3 x 3, eguida pela remocao de objetos
conectados com area A < 100 pixels. O fechamento morfologico utilizou o mesmo
kernel para preencher lacunas intra-glandulares, preservando a morfologia do Grau
5.

2. Geracao de Mascaras: Mascaras sao criadas com segmentacao das anotacoes do
dataset, atribuindo cores especificas: fundo em preto (0, 0, 0); estroma em cinza
(180, 180, 180); epitélio saudavel em azul (0, 0, 255); epitélio canceroso (Gleason 3)
em amarelo (255, 255, 0); epitélio canceroso (Gleason 4) em vermelho (223, 0, 0); e

epitélio canceroso (Gleason 5) em verde (0, 255, 0).

3. Identificagdo de Regides: As mascaras sao utilizadas para localizar regides de

interesse nas imagens.

4. Divisao em Patches: Imagens e méscaras sao divididas em patches de 512 x 512

pixels, retendo apenas aqueles com objetos relevantes.

5. Balanceamento do Conjunto: O conjunto é balanceado por subamostragem das
classes majoritarias, utilizando a contagem da classe minoritaria (Grau 5, 4.794

ocorréncias) como referéncia, resultando em 23.970 anotagoes para treinamento.

6. Aumento de dados: Técnicas de aumento de dados sao aplicadas em tempo

de execugao durante o treinamento, incluindo rotagoes aleatérias (0-90 graus),
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espelhamento horizontal e vertical, e variagoes de brilho e contraste para aprimorar

a generalizagao.

Ressalta-se que as técnicas de data augmentation descritas (rotagdo, espelhamento,
variagao de brilho) foram aplicadas apenas no subconjunto de treinamento. O conjunto
de validagao e teste permaneceu inalterado (sem aumento artificial) para garantir uma
avaliacao fidedigna da capacidade de generalizacao do modelo em dados reais e evitar o
vazamento de dados (data leakage).

Antes da divisao e padronizagdo das imagens, operacoes morfolégicas foram aplicadas
para remover ruidos e imperfei¢oes, conforme a etapa 1. A Figura 13 ilustra este processo,
com as areas afetadas destacadas. As regioes removidas aparecem em rosa, indicando
objetos excluidos do célculo do escore de Gleason. As demais categorias seguem as cores

da etapa 2.

Figura 13 — A imagem apresenta uma segao histologica de tecido em que foram realizadas
operacoes morfolégicas. As areas indicadas pela borda de cor azul claro (A)
representam as regioes em que as operagoes morfologicas foram aplicadas,
resultando na remocao de determinadas estruturas. As areas contornadas em
preto (B) representam as regides que foram mantidas e consideradas para o
calculo do escore de Gleason.

As operagoes morfologicas foram utilizadas para refinar as méscaras de segmentacao,
removendo pequenos objetos e definindo contornos. A remocgao de objetos com area inferior
a um limiar minimo utiliza filtros para eliminar componentes irrelevantes, aprimorando a

precisao ao remover artefatos (STENNING et al., 2013). Apds a remogao, a mascara é
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reprocessada para identificar as regioes conectadas restantes. Em seguida, os contornos sao
extraidos e desenhados sobre a imagem original para permitir a visualizacdo das regioes
segmentadas, como visto na Figura 13.

Os processos como abertura e fechamento, refinam as mascaras, removendo ruidos
e preenchendo lacunas. O trabalho de (SILVA; NASCIMENTO; MEDEIROS, 2022)
demonstra a aplicagao consolidada desta técnica na segmentacao de imagens médicas para
identificar estruturas como o miocardio com CNNs, preservando a integridade morfolégica.
Indo além, estudos recentes propoem a integracao de operadores morfolégicos como
camadas aprendiveis (learnable) em arquiteturas de deep learning, adaptando-os aos dados
e melhorando a precisao em tarefas como a delineacao de estruturas cardiacas.

O Data augmentation, aplicado em tempo real, aumenta a variabilidade do conjunto
de dados. Conforme discutido em teses sobre andlise de imagens médicas com escassez
de dados, essa técnica é utilizada para mitigar o overfitting e melhorar a capacidade de
generaliza¢ao do modelo (FAN, 2025). Em frameworks para detecgao de anomalias, etapas
de pré-processamento como normalizacdo e balanceamento também sdao consideradas
indispensaveis para garantir a robustez do sistema.

A Figura 14 apresenta a saida do pré-processamento: A) imagem original; B) méscara
com anotagoes do dataset; C) mascara segmentada em regides com objetos; D) imagem
original segmentada de acordo com as regioes da méscara.

Apbs o processamento, os conjuntos de dados derivados do PANDA foram estrutu-
rados no formato Common Objects in Context (COCO), que é amplamente utilizado
no treinamento de redes neurais para segmentacao e deteccao de objetos por fornecer
uma estrutura padronizada para imagens, objetos e anotagoes (LIN et al., 2014; LIN,
2015). Conforme a Figura 11, a construgao do banco de dados no formato COCO segue os
critérios estabelecidos no pré-processamento, criando categorias para o escore de Gleason

e definindo as regioes e mascaras que serdao utilizadas no treinamento da CNN.

3.3 Treinamento da Rede Neural

A arquitetura Mask R-CNN foi empregada para a segmentacao de instancias em
biépsias de cancer de prostata. A Mask R-CNN constitui uma extensao da Faster R-CNN,
com a adicao de uma ramificagdo dedicada a segmentagao de mascaras de objetos. Essa
arquitetura realiza a detecgdo e a segmentacao de instancias em uma tnica etapa (HE et
al., 2017). A segmentagao de instancia envolve a aplicagao de redes neurais convolucionais,
como a Mask R-CNN;, para o treinamento, identificacao e segmentacao de objetos (HE et
al., 2017). O modelo foi treinado com o banco de dados COCO, derivado do conjunto de
dados PANDA.

O treinamento ocorreu por meio do framework Detectron2 (WU et al., 2019a).A

avaliacao do modelo utilizou métricas padrao de deteccao de objetos: a Interseccao sobre
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Figura 14 — Exemplo de pré-processamento: A) Imagem original; B) Méscara com anota-
¢oes do dataset; C) Méscara com as regioes delimitadoras para segmentar em
patches; e D) Imagem segmentada em patches por regides determinadas por

C.
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Uniao (IoU), que mede a precisao da localizagao geométrica das caixas delimitadoras, e
a Precisao Média (AP), que resume o desempenho geral do classificador em termos de
precisao e recall. Nesse contexto, o framework Detectron2 foi selecionado, com o algoritmo
Mask R-CNN. A rede neural recebe imagens pré-processadas para aprender a identificar e
segmentar estruturas histologicas.

A definicdo e otimizacao de hiperparametros sao etapas que impactam diretamente
a qualidade e a convergéncia do modelo treinado. A busca por uma combinagdo 6tima,
envolvendo pardmetros como taxa de aprendizado, tamanho do lote (batch size) e a propria
arquitetura da rede, é¢ um desafio complexo, dado o vasto espaco de busca e a independéncia
a priori entre esses parametros (SILVA; CAMATA, 2024). A literatura apresenta diversas
abordagens para essa otimizacao, desde métodos de busca sistematica até estratégias mais
avangadas, como algoritmos genéticos (URBINATE, 2025) e otimizagao Bayesiana (SILVA;
CAMATA, 2024).

No contexto do treinamento, define-se Epoca como um ciclo completo onde todo o
conjunto de dados de treinamento passa pela rede neural. Ja a Iteracao refere-se ao
processamento de um unico lote (batch) de imagens e a atualizagao dos pesos (SILVA;
CAMATA, 2024). O ajuste dos pesos foi realizado através do algoritmo de retropropagagao
(backpropagation). Este método calcula o gradiente da func¢do de perda em relagao a
cada peso da rede, propagando o erro da saida para a entrada (chain rule). Associado
ao otimizador AdamW, o backpropagation permite que o modelo ajuste seus parametros
iterativamente na dire¢ao oposta ao gradiente do erro (gradiente descendente), minimizando
a discrepancia entre a mascara predita e o ground-truth (SILVA; CAMATA, 2024).

Neste trabalho, os hiperparametros foram definidos com base em praticas estabelecidas
na literatura de segmentacao de imagens médicas, visando um equilibrio entre desempenho
e eficiéncia computacional. Os parametros definidos para o treinamento incluem os

seguintes:

1. Arquitetura da Rede: ResNet-50. Essa rede neural compreende 50 camadas
e facilita a deteccao e classificagdo de caracteristicas em imagens. O ResNet-50

incorpora blocos residuais para mitigar a degradacao do gradiente em redes profundas.

2. Tamanho do lote: 12. O tamanho do lote indica o nimero de imagens processadas
simultaneamente antes da atualizacao dos parametros da rede. Esse valor de 12 foi

adotado com base em consideragoes de uso de memoria e estabilidade do gradiente.

3. Taxa de aprendizado de 0,0001. Esse parametro determina a magnitude dos
ajustes nos parametros do modelo durante o treinamento. Uma taxa de 0,0001

permite ajustes graduais.

4. Tteragoes de aquecimento: 100. Nas primeiras 1000 iteragoes, a taxa de aprendi-

zado é incrementada progressivamente para uma adaptacao inicial.
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5. Ntimero maximo de iteragoes de treinamento: 70.000. Esse nimero estabelece

o total de iteragoes para o treinamento do modelo.

6. Redugao de pontos e fator de redugao da taxa de aprendizado: A taxa de
aprendizado é reduzida em 70% e 90% das iteracoes, com cada reducao correspon-

dendo a um fator de 0,5.

7. Tamanho do lote para Regioes de Interesse (ROIs): 24. Para as ROIs, o

tamanho do lote de 24 define o niimero de regides processadas por vez.

8. Frequéncia de registro de métricas: Métricas sdo registradas a cada iteracao

para monitorar o desempenho.

A otimizacao de hiperpardmetros no treinamento da rede neural seguiu estratégias
documentadas na literatura. Por exemplo, abordagens adaptativas para taxas de aprendi-
zado em segmentacao de imagens médicas foram exploradas, como o otimizador Cyclic
Learning/Momentum Rate (CLMR) proposto por Mortazi et al. (2023), que apoia a
selegao de batch sizes e taxas de aprendizado para melhorar o desempenho (MORTAZI et
al., 2023).

O processo de treinamento resultou em arquivos com pesos e categorias, utilizados
para inferéncia. Esses arquivos permitem a deteccao e segmentacao de objetos em novas

imagens.

3.3.1 Aplicagao para Analise de Imagens

Apéds o treinamento, a CNN pode ser aplicada para inferir rotulos de objetos em novas
imagens. A inferéncia consiste em fornecer uma imagem a rede treinada e interpretar
as saidas, que incluem caixas delimitadoras e méscaras de segmentacao. Esse processo
facilita a aplicacdo do modelo em contextos praticos (WU et al., 2019b).

A biblioteca Tinker foi empregada para desenvolver uma GUI e realizar a inferéncia.
Essa interface permite a selecao de imagens, ajustes de exibicao e visualizacao das detecgoes
(Figura 15). A interface carrega os pesos treinados pelo framework Detectron2 e apresenta

as seguintes caracteristicas:
(d Canvas: Area principal para exibicao de imagens.
(1 Legenda: Representacao das cores das méscaras associadas ao escore de Gleason.

(1 Controles de exibicao: Permitem ajustes nas informagoes exibidas, como a sele¢ao

de mascaras especificas para escores de Gleason.

(1 Botoes de controle: Incluem func¢oes de Zoom, Rotacionar, Salvar, Analisar e

Abrir Imagem.



58 Capitulo 8. Metodologia de Pesquisa

(1 Indicador de duracao do processamento: Mostra o tempo de processamento da

imagem.

O software (Figura 15) possibilita o carregamento de imagens sem fragmentacao prévia.
A funcionalidade principal envolve a identificacdo e segmentacao de regides com cancer de

prostata, permitindo a determinacao do escore de Gleason a partir do slide.

# Detection Score of Gleason - ] ®
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I Display Boxes
Zoom + Rotate Zoom - Save Image Analyze Open Image

Processing Time:  4.01 segundos

Figura 15 — Exemplo de imagem carregada para realizar analise na GUI desenvolvida para
este proposito.

A fase final envolve a segmentacao e deteccao de objetos na imagem. As caixas
delimitadoras e méscaras geradas pela CNN isolam e identificam instancias de objetos.
Esses resultados podem ser aplicados em diagnoésticos médicos (HE et al., 2018). O processo
de analise inicia com o carregamento da imagem, seguido pela selecao de parametros de
exibi¢ao, como graus de Gleason e mascaramento. Ao clicar no botao Analyze, obtém-se a
saida com deteccao do escore de Gleason, conforme ilustrado na Figura 16.

Na Figura 16, observa-se a selecao do escore de Gleason 4 e a exibi¢ao da méscara
correspondente. O resultado inclui a mascara e uma tabela com a area ocupada em pixels
e percentual em relacao a imagem histologica total, excluindo o fundo. Esse célculo auxilia
na determinagao da intensidade de cada escore de Gleason (MESCHER, 2021).
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Figura 16 — Exemplo de imagem processada com segmentacao do escore de Gleason.
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CAPITULO

Resultados e Discussao

Este capitulo apresenta os resultados obtidos a partir da aplicacao de métodos compu-
tacionais no processamento de imagens histopatologicas, utilizando o conjunto de dados
PANDA como base principal e o conjunto SICAPv2 para validacao externa. Inicial-
mente, descreve-se o protocolo de treinamento, detalhando hiperparametros, infraestrutura
computacional e estratégias de otimizacao. Em seguida, analisam-se as métricas de de-
sempenho para ambos os conjuntos de dados, com particular atencao a performance de
generalizagdo do modelo desenvolvido. Finalmente, os resultados obtidos sao confrontados
com os estudos apresentados na Tabela 1 do Capitulo 2, permitindo identificar as con-
tribuicoes especificas desta pesquisa, particularmente no desenvolvimento de técnicas de
pré-processamento adaptadas e na implementacao de segmentacao de instancias baseada

no framework Detectron?.

4.1 Treinamento do Modelo

O treinamento foi realizado em uma estacao de trabalho equipada com processador
Intel(R) Core(TM) i7 de 3.20 GHz, 24 GB de RAM, armazenamento SSD de 1 TB e GPU
NVIDIA GeForce com 8 GB de meméria dedicada, configurada com CUDA 11.8 e driver
versao 522.06. O framework Detectron2 (WU et al., 2019a) foi empregado, com dados
formatados no padrao COCO (LIN et al., 2014), resultantes de um pré-processamento
que incluiu anotagoes de caixas delimitadoras e méscaras de segmentacao, adequadas a
deteccao de instancias em imagens histopatologicas.

A selecao dos hiperparametros foi guiada por abordagens consagradas na literatura
especializada em aprendizado profundo, sendo ajustada por meio de experimentacao
iterativa, com suporte em referéncias consolidadas (HE et al., 2017; LIN et al., 2014; WU
et al., 2019b; HE et al., 2016; SZEGEDY et al., 2016). Os parametros sao detalhados a

seguir:

(1 Divisao dos dados: No conjunto PANDA, 19.176 amostras foram destinadas ao
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a

treinamento e 4.794 a validacao (total de 23.970 amostras); no SICAPv2, 6.824

amostras para treinamento e 1.706 para validagao (total de 8.530 amostras).

Iteragoes e épocas: O treinamento abrangeu 70.000 iteragoes, correspondendo a

aproximadamente 44 épocas para PANDA e 123 épocas para SICAPv2.

Monitoramento: Utilizou-se o TensorBoard (ABADI et al., 2016) para acompa-
nhamento da evolucao das perdas e métricas, assegurando convergéncia e mitigando

sobreajuste.

Formato de imagem: Imagens em RGB, normalizadas com base na média e desvio

padrao dos canais de cor.

Otimizador: AdamW, com taxa de aprendizado inicial de 1 x 107 e decaimento de

peso, alinhado a recomendagbes para visao computacional (VALIPOUR et al., 2023).

Segmentacgao: Configurada para detec¢ao de instancias, visando a diferenciagdo de

glandulas individuais.

Classes: Baseadas em metadados, compreendendo Gleason 3, 4, 5, estroma e tecido

saudavel no PANDA; graus 3, 4, 5 e saudavel no SICAPv2.

Conjunto de dados de treino: Estruturado no padrao COCO para carregamento

e anotacao de instancias.

Normalizagao dos dados: Aplicada usando a média e desvio padrao dos canais

de cor para padronizacao.

Segmentacgao de mascara: Ativada (True) para inclusdo da cabeca de méscara

na predicao.

Numero de classes: Definido conforme o catalogo de metadados.

A configuracao dos hiperparametros foi definida por meio de experimentacao iterativa
e referéncias da drea (HE et al., 2017; LIN et al., 2014; WU et al., 2019b; HE et al., 2016;
SZEGEDY et al., 2016). Adotou-se taxa de aprendizado inicial de 1x 107°, ajustada por um

agendador de decaimento step decay, reduzindo-a por um fator de 0,5 nas iteracoes 54.600

e 65.100, o que favoreceu a convergéncia em fases intermedidrias e finais do treinamento
(ZHU et al., 2023).

O tamanho do lote foi fixado em 12, limitado pela capacidade da GPU (8 GB de VRAM).
Pesquisas sugerem que lotes moderados promovem generalizacgao eficaz, evitando minimos
locais na paisagem de perda e reduzindo sobreajuste (COHEN; FONIO; TSAFRIR, 2023).

Para mitigar o desbalanceamento de classes, aplicou-se ponderagao na funcao de perda

cross-entropy, com pesos calculados pela frequéncia inversa de cada classe, conforme a
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Equacao 1:
K xN
=N

onde w, representa o peso da classe ¢, N o ntimero total de instancias, K o niimero de

We

classes e N. o nimero de amostras da classe c¢. Esta técnica constitui uma solugao padrao
para lidar com o problema de desbalanceamento de classes em tarefas de classificacao e
segmentagao (JOHNSON; KHOSHGOFTAAR, 2023).

_K><N
=N

(1)

We

O nimero de regioes de interesse (Regions of Interest — Rols) foi estabelecido em 24
por imagem, para equilibrar a eficiéncia computacional e cobertura das areas relevantes. A
distribui¢ao de anotagoes no PANDA — estroma (4.794), tecido saudével (4.794), Gleason
3 (4.794), Gleason 4 (4.794) e Gleason 5 (4.794) — e no SICAPv2 — grau 3 (4.040),
grau 4 (1.938), grau 5 (1.729) e saudavel (823) — reflete o balanceamento adotado. O
pré-processamento incluiu normalizacao de coloragao e controle de frequéncia, minimizando
vieses. Checkpoints foram salvos por época, possibilitando andlises retrospectivas.

As 70.000 iteragoes foram definidas considerando a complexidade da tarefa de deteccao
e segmentacao. Com 19.176 imagens e lote de 12, cada época abrange o conjunto de dados,
totalizando 44 épocas, o que assegura aprendizado estavel (SZEGEDY et al., 2016). Em
segmentacao de glandulas prostéticas, iteragoes elevadas refinam fronteiras e mascaras
(LOSHCHILOV; HUTTER, 2017).

O desempenho foi monitorado via TensorBoard (ABADI et al., 2015; ABADI et al.,
2016; TensorBoard Documentation, 2023), rastreando precisao, taxa de falsos negativos,
perdas de classificagao e segmentacao, fornecendo base para ajustes de hiperparametros
(POWERS, 2011). Os pesos foram salvos por época, garantindo persisténcia e permitindo
retomadas (ZHANG et al., 2017).

Para avaliar a eficacia do modelo proposto, adotamos métricas que permitem com-
preender nao apenas o desempenho numérico, mas também a coeréncia dos resultados
e confiabilidade dos resultados obtidos. A precisao foi usada para observar o compor-
tamento geral do classificador diante das diferentes instancias glandulares, oferecendo
uma visao do acerto global (GOODFELLOW; BENGIO; COURVILLE, 2016). O uso do
F1-score se justifica por oferecer uma analise equilibrada entre precisao e sensibilidade,
mostrando de forma justa como o modelo lida com regioes malignas e nao malignas
(GOODFELLOW; BENGIO; COURVILLE, 2016). O Intersection over Union (loU) foi
aplicado para mensurar a sobreposicao entre as mascaras segmentadas e as anotacoes de
referéncia, refletindo o quao bem o modelo consegue reproduzir os contornos morfologicos
observados pelos patologistas (GOODFELLOW; BENGIO; COURVILLE, 2016). Por fim,
o Cohen’s Kappa k permitiu avaliar a concordancia entre o modelo e os dados anotados,
oferecendo uma medida de confiabilidade (GOODFELLOW; BENGIO; COURVILLE,



64 Capitulo 4. Resultados e Discussdo

2016). A leitura conjunta dessas métricas oferece uma compreensao mais ampla: enquanto
os valores quantitativos indicam o desempenho técnico do modelo, o alinhamento com
a interpretacao humana reforca sua aplicabilidade em em contextos diagnodsticos reais.

Assim, temos:

1. Precisao: Proporgao de predigoes corretas (GOODFELLOW; BENGIO; COUR-

VILLE, 2016):
Numero de predigoes corretas

recisao =
p Numero total de predigoes

2. Taxa de Falsos Negativos (FNR): Proporcao de falsos negativos (POWERS,

2011):
Falsos negativos

FNR

~ Verdadeiros positivos + Falsos negativos

3. Perda de Classificagao: Entropia cruzada entre predigoes e classes reais (BISHOP,
2006):
N
Classification Loss = — Y _ y; log(;)
i=1
4. Perda de Segmentagao: Diferenca entre méascaras previstas e reais (LIN et al.,
2017):

1 X . N
Linsscara = N > lyilog(g) + (1 — i) log(1 — 4s)]
=1

onde y; representa o valor da méascara de referéncia (ou méscara real) e g; a probabi-
lidade prevista para cada pixel. Essa formulagao corresponde a entropia cruzada
binaria, utilizada para calcular a diferenga entre as mascaras segmentadas e as

mascaras verdadeiras.

5. F1 Score: Média harmoénica de precisao e recall (GOODFELLOW; BENGIO;

COURVILLE, 2016):

Precisa 11
Fl— 9 « recisao X Reca

Precisao + Recall

6. Intersection over Union (IoU): Razao entre interse¢io e unido (GOODFELLOW;
BENGIO; COURVILLE, 2016):

|AN B

I pu—
U=110B

onde A é a mascara prevista e B a mascara real.

Conforme descrito a seguir, é importante compreender os termos que fundamentam as
métricas adotadas. No processo de inferéncia, um verdadeiro positivo (VP) ocorre quando
o modelo identifica corretamente uma regiao glandular maligna. J& o falso positivo (FP)

acontece quando uma area saudavel é classificada como maligna. De forma andloga, um
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verdadeiro negativo (VN) representa uma regiao nao maligna reconhecida corretamente,
enquanto um falso negativo (FN) indica uma area tumoral que passou despercebida.

Essas quatro situa¢oes compoem a base para as métricas derivadas. A precisao expressa
a proporcao de verdadeiros positivos entre todas as predigoes positivas, mostrando o
quanto o modelo evita alarmes falsos. O recall, também chamado de sensibilidade, mede a
capacidade de identificar todas as regioes realmente malignas. O F'I-score combina essas
duas medidas por meio de uma média harmonica, equilibrando a detecgao e a confiabilidade
das classificagoes.

No contexto clinico, uma precisao elevada indica que o modelo raramente confunde
tecidos saudéaveis com malignos, reduzindo o risco de superdiagnéstico. Por outro lado,
um recall alto revela boa capacidade de detectar todos os focos tumorais, minimizando
falhas de deteccao. O F'I-score sintetiza esse equilibrio e oferece uma visao mais fiel do
desempenho geral, o que se mostra especialmente 1til em cenarios de classes desbalanceadas,
como nas amostras histologicas da préstata. Cada métrica, portanto, contribui de forma
complementar para avaliar o modelo sob a oOtica quantitativa e também sob a perspectiva

pratica de apoio a decisao diagnéstica.

4.2 Resultados e Experimentos para Autodeteccao

A evolugao das métricas no conjunto PANDA, apresentada na Tabela 3, evidencia
progresso do modelo ao longo das épocas. A precisao inicial de 0,3941 na primeira época
aumenta para 0,9906 na quarta e se estabiliza em torno de 0,9708 na época 44. A taxa de
falsos negativos diminui de 0,7388 para 0,0279, indicando redugao de predigoes incorretas
de instancias positivas. A perda de classificagao decresce de 1,5135 para 0,0511, enquanto a
perda de segmentacao reduz-se de 0,7047 para 0,0719. Consequentemente, o F1-score evolui
de 0,3142 para 0,9714 e o coeficiente IoU de 0,1864 para 0,9445, refletindo refinamento
das mascaras.

O comportamento das métricas sugere que o modelo mantém consisténcia na detecgao
e segmentacdo de instancias, ajustando gradualmente fronteiras e regioes de interesse.
A Figura 18 ilustra a evolugao de precisao, Fl-score ao longo das épocas, permitindo
correlacionar os valores numéricos com tendéncias de convergéncia.

A Figura 18 é possivel verificar a evolugao de precisao, Fl-score no SICAPv2, evi-
denciando que o modelo mantém coeréncia estrutural nas predi¢oes. Observa-se que as
métricas de segmentacao seguem padrao de melhoria semelhante ao do PANDA, indicando
capacidade de generalizacao do modelo (Figura 20).

Os resultados sugerem que o treinamento no PANDA permitiu aprendizado estavel e
refinamento de mascaras de segmentacao e classificagao de Gleason. A andlise quantitativa
demonstra adequagao do modelo a diferentes conjuntos histopatolégicos, com métricas

convergentes e coeréncia estrutural nas instancias detectadas, conforme ilustrado nas
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Figuras 17 ,18, 19 e 20.
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Figura 17 — Precisao ao longo das épocas.
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Figura 18 — F'1-Score ao longo das épocas.
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Figura 19 — Precisao classificacao ao longo das épocas.

No conjunto SICAPv2, os resultados da Tabela 4 indicam que o modelo pré-treinado
em PANDA adapta-se a um dataset menor e desbalanceado. A precisao de validagao
evolui de 0,4342 na primeira época para 0,8371 na época 123. A Taxa de Falsos Negativos
diminui de 0,8792 para 0,0906, enquanto a perda de classificacao cai de 2,0303 para 0,0301
e a perda de segmentacao de 0,6985 para 0,0405. O Fl-score aumenta de 0,1890 para
0,8718 e o IoU de 0,1044 para 0,7727, demonstrando que o modelo adapta-se as classes

majoritarias e minoritarias, preservando cobertura de regides criticas.
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Perda Segmentacao
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Figura 20 — Perda segmentacao ao longo das épocas.

Tabela 3 — Resultados por Epoca no Conjunto PANDA (Intervalo de 4 Epocas).

Epoca Precisao Falsos Perda Perda F1-Score IoU
Negati- Classifi- Segmen-
vos cacao tacao
1 0,3941 0,7388 1,5135 0,7047 0,3142 0,1864
4 0,9906 0,0347 0,2767 0,0846 0,9778 0,9565
8 0,9703 0,0302 0,2478 0,0727 0,9700 0,9418
12 0,9722 0,0297 0,2213 0,0717 0,9712 0,9441
16 0,9826 0,0306 0,1706 0,0678 0,9760 0,9530
20 0,9807 0,0278 0,1239 0,0668 0,9768 0,9546
24 0,9946 0,0289 0,0972 0,0679 0,9827 0,9660
28 0,9733 0,0287 0,1082 0,0713 0,9723 0,9461
32 0,9721 0,0325 0,0916 0,0701 0,9698 0,9414
40 0,9820 0,0284 0,0611 0,0662 0,9768 0,9546
44 0,9708 0,0279 0,0511 0,0719 0,9714 0,9445

Fonte: O autor (2025), baseado nos logs de treinamento.

Para complementar a avaliagdo, o modelo foi validado com imagens anotadas do dataset
Radboud (SIRINUKUNWATTANA et al., 2016), que fornecem uma referéncia adicional
para a identificacdo de caracteristicas especificas do cancer de prostata, como padroes
glandulares e estruturas celulares. A Figura 21 ilustra um exemplo de segmentacgao
realizada no dataset Radboud, destacando a sobreposicao de méscaras preditas sobre
a imagem original, com alinhamento as anotagoes de referéncia. Essa analise visual
reforga a capacidade do modelo ao generalizar para conjuntos externos, conectando os
resultados quantitativos obtidos em PANDA e SICAPv2 a capacidade de detectar padroes
histopatologicos.

A Figura 21 ilustra o processo de andlise de imagens. As trés colunas representam
diferentes etapas do processo.

Como se pode observar na Figura 21, a primeira linha utiliza uma imagem que possui

uma anotacao com Escore de Gleason Grau 4. A méscara correspondente mostra que a
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Tabela 4 — Resultados por Epoca no Conjunto SICAPV?2 (Intervalo de 12 Epocas)

Epoca Precisao Taxa de Perda Perda F1-Score IoU
Falsos Classifi- Segmen-
Negati- cagao tacao
vOos
1 0,4342 0,8792 2,0303 0,6985 0,1890 0,1044
12 0,7550 0,8483 1,7882 0,6915 0,2526 0,1446
24 0,7660 0,7977 1,5890 0,6223 0,3004 0,1768
36 0,7862 0,7378 1,3948 0,5562 0,3498 0,2120
48 0,8193 0,6667 1,1655 0,5029 0,4180 0,2640
60 0,8414 0,6110 0,9795 0,4537 0,4680 0,3055
72 0,8619 0,5600 0,7965 0,3907 0,5194 0,3506
84 0,8799 0,5136 0,6349 0,3264 0,5637 0,3925
96 0,8968 0,4716 0,4899 0,2010 0,6066 0,4352
108 0,8303 0,1979 0,2634 0,1312 0,8160 0,6891
120 0,8225 0,1053 0,0866 0,0420 0,8571 0,7499
123 0,8371 0,0906 0,0301 0,0405 0,8718 0,7727

Fonte: O autor (2025), baseado nos logs de treinamento.

regiao de anotacao corresponde a encontrada pelo algoritmo de deteccao do cancer de
prostata. Na segunda linha, foi utilizada uma imagem com Escore de Gleason 3, e o
resultado apresentado é uma mascara com Escore de Gleason 3, correspondente a regiao
da anotacao.

Outro exemplo é apresentado na Figura 22. Uma amostra histologica que foi sub-
metida a um processamento de segmentacao e classificacdo automaticos utilizando o
algoritmo desenvolvido nesta pesquisa. Para este exemplo, utilizamos a imagem de 1D
020d0243094¢85615441683b4c64859d do dataset Karolinska, que possui anotagao do Escore
de Gleason 4 e mascara com a identificagdo da regiao tumoral. Observa-se que o algoritmo
foi capaz de identificar as regides com cancer e aproximar a classificacdo do Escore de

Gleason, conforme a mascara apontada pelo item C.

Na Figura 22, trés regioes principais foram identificadas e classificadas pelo modelo:

1 Regiao A: Destacada em amarelo, esta area foi classificada como Escore de Gleason
3. Este escore indica a presenca de glandulas cancerigenas que ainda mantém uma
estrutura glandular mais distinta, embora alterada (EPSTEIN et al., 2016).

1 Regiao B: Destacada em vermelho, esta area foi classificada como Escore de
Gleason 4. Este escore indica uma perda maior da estrutura glandular normal,
com as glandulas cancerigenas se apresentando mais fundidas e menos diferenciadas
(EPSTEIN et al., 2016).



4.2. Resultados e Experimentos para Autodetecgdo 69

Imagem Original Mascara da Anotacao Resultado da Pesquisa

CA
RO

Figura 21 — Comparacgao entre o resultado da pesquisa e imagens com anotagoes da base
Karolinska. Legenda: Na primeira linha o escore identificado é de Grau 4 e
na Segunda linha Grau 3.

1 Regiao C: Destacada em azul, esta area representa a mascara de referéncia anotada
manualmente no dataset Karolinska, indicando a localizacao das regidoes com Escore
de Gleason 4.

O uso do Detectron2 para a segmentacao e classificagao automaticas fornece uma
ferramenta para auxiliar patologistas na avaliacdo de amostras histolégicas. A precisao e
consisténcia do modelo podem potencialmente melhorar a detecgao precoce e o tratamento
do céancer de préstata, ao fornecer uma andlise rapida e confidvel das bidpsias (WU et al.,
2019a; SILVA et al., 2020).

A imagem ilustra a capacidade do modelo de distinguir entre diferentes graus de
malignidade, proporcionando uma visualizacao das regides afetadas com diferentes escores
de Gleason. Este avanco na analise automatizada de imagens histolégicas representa um
passo importante na integracao de técnicas de aprendizado profundo na pratica clinica de
patologia (LITJENS et al., 2017).

Os resultados mostrados na coluna Resultado da Pesquisa indicam que o modelo
treinado conseguiu identificar corretamente as regides suspeitas de cancer nas imagens do
dataset Karolinska. A correspondéncia entre as anotacoes e os resultados obtidos sugere
que o modelo estd generalizando bem, conforme ilustrado na Figura 21 (BULTEN et al.,
2020).
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Figura 22 — Imagem histolégica com segmentacao e classificacdo automaticas. A regiao
destacada em vermelho B foi classificada como Escore de Gleason 4, enquanto
a regiao em amarelo A foi classificada como Escore de Gleason 3. A maéscara
destacada em azul C foi utilizada como referéncia de anotagao do dataset
Karolinska, Grau 4.

A utilizacdo de modelos de aprendizado de maquina treinados em imagens anotadas
demonstra um potencial na deteccdo de cancer de prostata. A validacao do modelo com
imagens de um dataset diferente destaca sua eficacia e capacidade de generalizacao, o que

é importante para aplicagoes clinicas (ZHOU et al., 2019).

4.3 Analise Comparativa com Estudos Anteriores

O desempenho do modelo proposto foi avaliado por meio de uma comparacdo com
métodos estabelecidos na literatura, utilizando o coeficiente de Kappa quadratico (kq)
como métrica de referéncia para medir a concordancia ajustada por chance em tarefas de
classificagdo ordinal, como a graduagao Gleason em imagens histopatologicas de préstata
(LANDIS; KOCH, 1977). Essa escolha foi motivada pela necessidade de alinhar os
resultados obtidos no conjunto de dados PANDA com os reportados por estudos como
Arvaniti et al. (2018), Silva-Rodriguez et al. (2020), Bulten et al. (2022) e Lopez-Pérez
et al. (2024), que adotam kg como indicador principal. Devido a auséncia de dados
brutos para o célculo exato de kq (e.g., matriz de confusdo), optou-se por uma estimativa
qualitativa baseada em correlagoes literarias, fundamentada em Taha e Hanbury (2015),

que relacionam métricas de segmentagao ao desempenho global, e em Landis e Koch (1977),



4.8. Andlise Comparativa com Estudos Anteriores 71

que fornecem uma escala interpretativa para kg (TAHA; HANBURY, 2015).

Embora um estudo de ablacao intra-metodologia pudesse isolar o ganho marginal do
pré-processamento, a validagao da hipdtese sustenta-se na comparagao com o estado da
arte. Observa-se que a precisao (97,87%) e o Kappa estimado superam trabalhos como
os de (ARVANITI et al., 2018) e (RODRIGUEZ et al., 2020), que utilizam abordagens
end-to-end sem este refinamento morfologico prévio, evidenciando a contribuicao da etapa
de limpeza de dados proposta.

A Figura 23 apresenta as métricas de avaliagdo do treinamento no dataset PANDA,
enquanto a Figura 24 ilustra a comparacao estimada de kg com os trabalhos relacionados.

Esses graficos destacam o desempenho do modelo, com um kq estimado de 0,86-0,90 no
PANDA.
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Figura 23 — Métricas de avaliacdo dos resultados obtidos do treinamento no dataset

PANDA.
Fonte: O autor (2025).
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Figura 24 — Kappa estimado em comparac¢ao com trabalhos da literatura.

Fonte: O autor (2025).



72 Capitulo 4. Resultados e Discussdo

A estimativa de kq foi realizada por meio de uma tabela de equivaléncia qualitativa
(Tabela 5), construida com base em benchmarks literarios. Taha e Hanbury (2015) associam
segmentagoes de alta qualidade a critérios especificos, enquanto Landis e Koch (1977)
classificam kq entre 0,81 e 1,00 como “Almost Perfec” a “Perfectf” (TAHA; HANBURY,
2015; LANDIS; KOCH, 1977).

Tabela 5 — Equivaléncia qualitativa entre F1-Score, IoU e k, estimado, com base em
referéncias consolidadas.

Fl-val / DSC-val (%) IoU-val (%) k, Estimado Interpretacio (Landis & Koch, 1977)

< 0,80 < 0,70 0,41-0,60 Moderate
0,80-0,89 0,70-0,84 0,61-0,69 Substantial (limite inferior)
0,90-0,92 0,85-0,90 0,70-0,75 Substantial
0,93-0,95 0,91-0,93 0,76-0,80 Substantial / Almost Perfect
0,96-0,98 0,94-0,96 0,81-0,85 Almost Perfect

> 0,98 > 0,96 0,86-0,90 Almost Perfect / Perfect

Fonte: Adaptado de Landis e Koch (1977) e Taha e Hanbury (2015), pelo autor (2025).

Cada coeficiente kq foi obtido por interpolagao linear entre os intervalos de F1-Score e
IoU definidos na Tabela 5. Para cada métrica, calculou-se o ponto médio das faixas de
referéncia associadas a valores conhecidos de k¢, conforme adaptacao de Landis e Koch
(1977) e Taha e Hanbury (2015). Em seguida, aplicou-se uma interpolagido proporcional
entre esses pontos médios, considerando o valor observado de F1 ou IoU para cada dataset.
O kq final foi determinado pela média aritmética das estimativas derivadas de F1 e de
IoU, resultando em uma aproximacao estavel do coeficiente de concordéancia.

Assim, para o conjunto PANDA, cujo F1-Score foi de 0,9787 e IoU de 0,9583, a
interpolacao indicou kq =~ 0,86, enquadrando-se na categoria “Almost Perfect” segundo
Landis e Koch (1977). Ja para o conjunto SICAPv2, com F1-Score de 0,8916 e IoU de
0,8045, obteve-se kq =~ 0,73, correspondente a categoria “Substantial”. Este método fornece
uma estimativa, Util para avaliar a concordancia geral entre as segmentacoes preditas e
as referéncias, especialmente em contextos onde a matriz de confusao completa nao esta

disponivel.



Tabela 6 — Andalise comparativa com trabalhos selecionados.

Autor(es) Base de Dados  k; (Referéncias) Fk, deste estudo

Vantagens x Limitacgoes

(ARVANITI et al.,, 641 pacientes (245 0,75-0,71
2018) teste)

(RODRIGUEZ et al., SICAPv2 (182 0,77-0,81
2020) imagens)

(BULTEN et al., PANDA + coortes 0,86
2022)

(LOPEZ-PEREZ et CrowdGleason + 0,78
al., 2024) SICAPv2

0,86-0,90

0,86-0,90

0,86-0,90

0,86-0,90

Vantagem: Segmentacao de instancias
em WSIs completas e precisdo superior
(98,44% vs. 75%). Limitacao: Foco em
microarranjos (TMAs), sem generaliza-
¢do para WSIs.

Vantagem: Ganho de precisao (98,44%
vs. 77%) e redugdo de FNR com pré-
processamento otimizado. Limitacgao:
Dataset pequeno e segmentagao sem ins-
tancias detalhadas.

Vantagem: Segmentacao de instancias
(IoU 95,83%) e detalhes clinicos adici-
onais. Limitacao: Classificacdo global
sem segmentacao granular.

Vantagem: Robustez com anotacoes es-
pecializadas e maior k, (0,86-0,90 vs.
0,78). Limitagao: Dependéncia de agre-
gacao de crowd, afetando consisténcia.

Fonte: Adaptado de Arvaniti et al. (2018), Silva-Rodriguez et al. (2020), Bulten et al. (2022), Lopez-Pérez et al. (2024), pelo autor (2025).
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A Tabela 6 confronta o kq estimado deste estudo com os valores reportados pelos
autores selecionados, destacando a competitividade do modelo no PANDA, com kg de
0,86-0,90. As vantagens incluem segmentacao de instancias e precisao elevada, enquanto
limitagoes dos outros modelos, como foco em microarranjos ou dependéncia de dados
ruidosos, sdo superadas. Refinamentos futuros podem incluir célculos diretos de kg com
matrizes de confusao.

A comparacao entre os desempenhos nos conjuntos PANDA e SICAPv2 indica que
o modelo mantém estabilidade em contextos com diferentes distribui¢cbes de amostras.
A reducao simultanea das perdas e da taxa de falsos negativos confirma que a aborda-
gem adotada produz predi¢oes consistentes, inclusive diante de variagoes na coloracao e
morfologia tecidual.

Os resultados obtidos demonstram estabilidade de aprendizado e desempenho satisfa-
torio nos dois conjuntos de dados, fornecendo base empirica para a analise consolidada

apresentada no Capitulo 5.
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CAPITULO

Conclusao

Retomando a hipdétese formulada no Capitulo 1, os experimentos validaram que a
integracao de um pré-processamento morfolégico direcionado com a arquitetura Mask
R-CNN resulta em métricas superiores de segmentagao. A confirmacao desta hipdtese
demonstra que, em imagens médicas ruidosas, o tratamento dos dados de entrada ¢é tao
determinante para a performance final quanto a escolha da arquitetura da rede.

Os resultados apresentados neste trabalho demonstram a eficiéncia do modelo baseado
no framework Detectron2 para segmentacao e classificacao de glandulas em imagens
histopatologicas da prostata. O processo de treinamento aplicado aos conjuntos PANDA
e SICAPv2 permitiu validar a capacidade de generalizacao do modelo, evidenciando
adaptacgao as variagoes de coloracao, textura e estrutura tecidual presentes em diferentes
bases de dados.

No conjunto PANDA, o modelo alcangou precisao de 0,9708 e Fl-score de 0,9714 na
ultima época, com reducgao consistente das perdas de classificacao e segmentacao. Esses
valores indicam aprendizado estavel e coeréncia na delimitagdo das instancias glandulares.
A taxa de falsos negativos diminuiu ao longo das épocas, confirmando a evolu¢ao do modelo
na disting¢ao entre padroes glandulares associados aos graus de Gleason. O comportamento
das métricas revelou equilibrio entre acertos e erros, assegurando que o modelo nao se
ajustou de forma restrita ao conjunto de treinamento.

No conjunto SICAPv2, empregado como validacao externa, observou-se manutencao do
desempenho em um cenario com menor volume de dados e distribuicao de classes menos
uniforme. A precisao final de 0,8371 e o Fl-score de 0,8718 demonstraram que o modelo
validado nos mesmos moldes do conjunto PANDA conseguiu adaptar-se a novas imagens
sem perda de qualidade. A redugao das perdas e da taxa de falsos negativos confirmou a
transferéncia de conhecimento entre dominios, reforcando a aplicabilidade da abordagem
em ambientes reais de analise histopatologica.

O desenvolvimento de técnicas de pré-processamento especificas contribuiu para a
padronizacao das amostras e para a mitigacao de variagoes de coloragao, fator critico em

tarefas de segmentagao de tecidos. A formatacao dos dados no padrao COCO e o uso
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de mascaras binarias otimizadas para o Detectron2 permitiram a extragao consistente de
regioes de interesse. O ajuste de hiperparametros, incluindo taxa de aprendizado, tamanho
de lote e ponderacgao por classe, foi determinante para alcancar estabilidade e equilibrio

entre precisao e generalizagao.

A integracao entre deteccao e segmentacao de instancias mostrou-se adequada para
aplicagoes médicas, pois possibilitou identificar ndo apenas a presenca de glandulas, mas
também suas fronteiras e proporgoes. A analise comparativa com estudos da literatura
indicou que a metodologia proposta obteve resultados compativeis com modelos de re-
feréncia, preservando a coeréncia anatomica das predigoes e reduzindo o impacto de

desbalanceamentos de classe.

De forma geral, a pesquisa confirmou que o uso do Detectron2 associado a estratégias
de pré-processamento direcionadas ao dominio histopatoldgico é viavel para tarefas de
segmentacao e classificacao de glandulas prostaticas. O modelo apresentou desempenho
consistente nos dois conjuntos de dados analisados, com convergéncia estavel e boa
capacidade de generalizacao. As contribuicoes principais incluem a adaptacgao de técnicas de
segmentagao de instancias ao contexto médico, a estruturacao dos dados no formato COCO

e o delineamento de um protocolo de treinamento reprodutivel e validado empiricamente.

A consolidacao desses resultados indica que a abordagem pode servir de base para
futuras pesquisas em analise automatizada de tecidos e para o desenvolvimento de sistemas
de apoio ao diagnostico em patologia digital, com potencial de integracao a fluxos clinicos

e laboratoriais.

Ao longo do desenvolvimento desta pesquisa, foram elaborados e submetidos artigos
cientificos que refletem a consolidagao dos principais resultados obtidos. Parte desses
estudos foi submetida ao periédico Signal, Image and Video Processing (Springer Na-
ture), enquanto outra foi publicada nos anais da 20th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications — VISAPP
(SCITEPRESS). Esses trabalhos representam contribuigoes relevantes para o avanco das
técnicas de processamento e analise de imagens biomédicas, especialmente na segmentacao
e caracterizagao de estruturas histologicas a partir de modelos baseados em aprendizado
profundo.

Como desdobramento natural das investigacoes realizadas, propoe-se que pesquisas
futuras aprofundem a incorporacao de estratégias de aprendizado auto-supervisionado,
de modo a potencializar a extragao de caracteristicas sem a dependéncia exclusiva de
rotulos manuais, além da utilizagdo de arquiteturas baseadas em Transformers, que tém
se mostrado promissoras em contextos de analise visual complexa. Sugere-se, ainda, a
realizagao de experimentos em bases de dados multicéntricas, o que permitira avaliar a

robustez e a generalizacdo dos modelos propostos em diferentes realidades clinicas.

Outro caminho de investigagao diz respeito ao aprimoramento do mapeamento de

coloracao por H&E (hematoxilina e eosina), com vistas a identificar de forma mais precisa
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as estruturas celulares presentes nas laminas histologicas.



78

Capitulo 5. Conclusdo




79

Referencias

ABADI, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. 2015. TensorFlow White Paper. <https://www.tensorflow.org/>.

. TensorFlow: A System for Large-Scale Machine Learning. 2016. 265-283 p.

ALI, H. L. et al. Deep learning in prostate cancer diagnosis and gleason grading in
histopathology images: An extensive study. Informatics in Medicine Unlocked, v. 26,
p. 100755, 2021. DOI: https://doi.org/10.1016/j.imu.2021.100755.

ARVANITI, E. et al. Automated gleason grading of prostate cancer tissue microarrays via
deep learning. Scientific reports, Nature Publishing Group, v. 8 n. 1, p. 1-11, 2018.
DOI: https://doi.org/10.1038 /s41598-018-30535-1.

BASU, A. et al. A survey on recent trends in deep learning for nucleus segmentation from
histopathology images. Evolving Systems, Springer, v. 15, n. 1, p. 203-248, 2024. DOI:
https://doi.org/10.1007 /s12530-023-09491-3.

BISHOP, C. M. Pattern Recognition and Machine Learning. [S.1.]: Springer, 2006.
DOLI: https://doi.org/10.1007/978-0-387-45528-0.

BOUREAU, Y.-L.; PONCE, J.; LECUN, Y. A theoretical analysis of feature pooling in
visual recognition. Proceedings of the 27th International Conference on Machine
Learning (ICML-10), p. 111-118, 2010. DOT: https://doi.org/10.1.1.213.8025.

BRAZIL. Programa nacional de controle de cancer da préstata: documento de
consenso. Brasilia: INCA, 2002. <https://bvsms.saude.gov.br/bvs/publicacoes/cancer_
da_ prostata.pdf>. Retrieved 04 24, 2022.

. Cancer de préstata. 2022. <https://inca.gov.br/tipos-de-cancer/
cancer-de-prostata>. Retrieved 06 04, 2022.

BULTEN, W. et al. Artificial intelligence for diagnosis and gleason grading of prostate
cancer: a retrospective, multicohort study. Nature Medicine, Nature Publishing Group,
v. 28, n. 1, p. 154-163, 2022. DOL: https://doi.org/10.1038/s41591-021-01620-2.

. Automated deep-learning system for gleason grading of prostate cancer using
biopsies: a diagnostic study. The Lancet Oncology, Elsevier, v. 21, n. 2, p. 233-241,
2020. DOI: https://doi.org/10.1016,/S1470-2045(19)30739-9.



80 Referéncias

CAMPANELLA, G. et al. Clinical-grade computational pathology using weakly supervised
deep learning on whole slide images. Nature medicine, Nature Publishing Group, v. 25,
n. 8, p. 1301-1309, 2019. DOI: https://doi.org/10.1038/s41591-019-0508-1.

CHEN, R. J. et al. Scaling vision transformers to gigapixel ima-
ges via hierarchical self-supervised learning. p. 4164-4175, 2023. DOI:
https://doi.org/10.1109/CVPR52688.2022.01567.

CHEN, X. et al. Stain normalization of histopathological images based on
deep learning: A review. Micromachines, v. 15, n. 8, p. 1032, 2024. DOI:
https://doi.org/10.3390/diagnostics15081032.

CHIAO, J.-Y. et al. Detection and classification the breast tumors using
mask r-cnn on sonograms. PubMed Central, v. 98, n. 5, May 2019. DOI:
https://doi.org/10.1097/MD.0000000000015200.

CHICCO, D.; JURMAN;, G. The advantages of the matthews correlation coefficient (mcc)
over f1 score and accuracy in binary classification evaluation. BMC Genomics, BioMed
Central, v. 21, n. 1, p. 6, 2020. DOI: https://doi.org/10.1186/s12864-019-6413-7.

COHEN, G.; FONIO, E.; TSAFRIR, D. The surprising effect of batch-size on deep
learning generalization. 2023.

COURTY, J. et al. Deep learning methodologies applied to digital pathology in
prostate cancer: A systematic review. Diagnostics, v. 13, n. 16, p. 2683, 2023. DOI:
https://doi.org/10.3390/diagnostics13162676.

EPSTEIN, J. I. et al. The 2014 international society of urological pathology (isup)
consensus conference on gleason grading of prostatic carcinoma: Definition of grading
patterns and proposal for a new grading system. The American journal of surgical
pathology, Lippincott Williams & Wilkins, v. 40, n. 2, p. 244-252, 2016. DOI:
https://doi.org/10.1097/PAS.0000000000000530.

FAN, K. Machine Learning Techniques for Medical Image Analysis with Data
Scarcity. Tese (Doutorado) — University of Southampton, 2025.

GIANSANTI, D. Revolutionizing medical imaging: The transformative role of artificial
intelligence in diagnostics and treatment. Diagnostics, v. 15, n. 12, p. 1557, 2025. DOI:
https://doi.org/10.3390/diagnostics15121557.

GONZALEZ, R. C.; WOORDS, R. E. Digital Image Processing. 3. ed. Upper Saddle
River: Pearson Education International, 2007.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.1.]: MIT Press,
2016. DOIL https://doi.org/10.1016/C2016-0-04274-1.

HE, H.; GARCIA, E. A. Learning from imbalanced data. IEEE Transactions on
Knowledge and Data Engineering, v. 21, n. 9, p. 1263-1284, Sept. 2009. DOI:
https://doi.org/10.1109/ TKDE.2008.239.

HE, K. et al. Mask r-cnn. p. 2961-2969, 2017. DOI:
https://doi.org/10.1109/ICCV.2017.322.



Referéncias 81

. Mask r-cnn. Computer Vision and Pattern Recognition, p. 9, 01 24 2018.
DOI: https://doi.org/10.48550/arXiv.1703.06870.

. Deep residual learning for image recognition. p. 770-778, 2016. DOLI:
https://doi.org/10.1109/CVPR.2016.90.

HE, L.; LUAN, L.; HU, D. Deep learning-based image classification for ai-assisted
integration of pathology and radiology in medical imaging. Frontiers in Medicine, v. 12,
p. 1574514, 2025. ISSN 2296-858X. DOI: https://doi.org/10.3389 /fmed.2025.1574514.

HOFMAN, N. A. et al. Developing image analysis pipelines of whole-slide images:
Pre- and post-processing. Diagnostic Pathology, v. 16, n. 1, p. 1-13, 2021. DOI:
https://doi.org/10.1186/s13000-021-01103-y.

HUANG, J. et al. Improvement of road instance segmentation algorithm based
on the modified mask r-cnn. Electronics, v. 12, n. 22, p. 4699, 2023. DOI:
https://doi.org/10.3390/electronics12224699.

JAFARIGOLA, E.; TRAFALISA, T. B. A review of machine learning techniques in
imbalanced data and future trends. Preprint submitted to Elsevier, 2023. School of
Industrial and Systems Engineering, University of Oklahoma, 202 W. Boyd St., Room
124, Norman, Oklahoma 73019, USA. Email: elaheh.jafarigol @ou.edu (Corresponding
author). doi: 10.48550/arXiv.2310.07917.

JOHNSON, J. M.; KHOSHGOFTAAR, T. M. A survey of deep learning with imbalanced
data. Journal of Big Data, v. 10, n. 1, p. 82, 2023. DOI: https://doi.org/10.1186/s40537-
023-00763-5.

KAGGLE. kaggle.com. 2023. Retrieved from <https://www.kaggle.com/c/
prostate-cancer-grade-assessment>.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
p. 1097-1105, 2012. DOI: https://doi.org/10.1145/3065386.

LANDIS, J. R.; KOCH, G. G. The measurement of observer agreement for
categorical data. [S.1.]: JSTOR, 1977. 159-174 p. DOL: https://doi.org/10.2307,/2529310.

LECUN, Y.; KAVUKCUOGLU, K.; FARABET, C. Convolutional networks and applicati-
ons in vision. Proceedings of 2010 IEEE International Symposium on Circuits and
Systems, IEEE, p. 253-256, 2010. DOI: https://doi.org/10.1109/ISCAS.2010.5537907.

LIN, T.-Y. et al. Feature pyramid networks for object detection. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [S.1.:
s.n.], 2017. p. 936-944. DOI: https://doi.org/10.1109/CVPR.2017.106.

. Microsoft COCO: Common objects in context. In: European Conference on
Computer Vision (ECCV). [S.L: s.n.], 2014. DOI: https://doi.org/10.1007/978-3-319-
10602-148.

LIN, T.-Y. M. Microsoft coco: Common objects in context. Computer Vision and
Pattern Recognition, p. 15, 2015. DOI: https://doi.org/10.48550/arXiv.1405.0312.



82 Referéncias

LITJENS, G. et al. A survey on deep learning in medical image analy-
sis. Medical image analysis, Elsevier, v. 42, p. 60-88, 2017. DOI:
https://doi.org/10.1016/j.media.2017.07.005.

LOEB, S. et al. Overdiagnosis and overtreatment of prostate cancer. European Urology,
v. 65, n. 6, p. 10, 2014. DOI: https://doi.org/10.1016/j.eururo.2013.12.062.

LOPEZ-PEREZ, Y. et al. The crowdgleason dataset: Learning the gleason grade from
crowds and experts. Computer Methods and Programs in Biomedicine, Elsevier,
v. 257, p. 108472, 2024. DOI: https://doi.org/10.1016/j.cmpb.2024.108472.

LOSHCHILOV, I.; HUTTER, F. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

MADABHUSHI, A.; RANGANATHAN, H. Deep learning for whole slide image analysis:
An overview. Clinical Cancer Research, v. 25, n. 18, p. 5427-5436, 2019. DOI:
https://doi.org/10.1158/1078-0432.CCR-18-3568.

MALI C. et al. The application of multi-instance learning based on feature reconstruction
and cross-mixing in the gleason grading of prostate cancer from whole-slide images.
Quantitative Imaging in Medicine and Surgery, AME Publishing Company, v. 14,
n. 7, p. 5076, 2024. DOI: https://doi.org/10.21037/qims-24-1985.

MESCHER, A. L. Junqueira’s Basic Histology: Text and Atlas. 16. ed. Indiana,
USA: MC Graw Hill, 2021.

MORTAZI, A. et al. Selecting the best optimizers for deep learning-based medical image
segmentation. Frontiers in Radiology, v. 3, p. 1175473, 2023. ISSN 2673-8740. DOI:
https://doi.org/10.3389/fradi.2023.1175473.

ONCOGUIA. Cancer de proéstata. 2014. Retrieved 12 30, 2023, from <https:
//www.oncoguia.org.br/conteudo/a-prostata/770/149/>.

POWERS, D. M. W. Evaluation: From precision, recall and f-measure to roc, informedness,
markedness and correlation. Journal of Machine Learning Technologies, v. 2, n. 1, p.
37-63, 2011. DOI: https://doi.org/10.48550/arXiv.2010.16061.

REN, S. et al. Faster r-cnn: Towards real-time object detection with region proposal
networks. Advances in neural information processing systems, p. 91-99, 2015.

RETTENBERGER, L.; SAGER, F.; LELLMANN, S. Mask r-cnn outperforms u-net
in instance segmentation for overlapping cells. Current Directions in Biomedical
Engineering, v. 9, n. 1, p. 335-338, 2023. DOI: https://doi.org/10.1515/cdbme-2023-1084.

RIBEIRO, R. D. et al. Impacto da inteligEncia artificial na medicina: RevisAo
bibliogrAfica sobre diagnOstico, tratamento e sistemas de apoio A decisAo. LUMEN ET
VIRTUS, XVI, n. XLIV, p. 217-233, 2025. DOI: https://doi.org/10.56238 /levv16n44-018.

RODRIGUEZ, J. S. et al. Going deeper through the gleason scoring scale: An automatic
end-to-end system for histology prostate grading and cribriform pattern detection.
Computer Methods and Programs in Biomedicine, v. 195, p. 105637, 10 01 2020.
DOLI: https://doi.org/10.1016/j.cmpb.2020.105637.



Referéncias 83

SHAH, R. B.; ZHOU, M. Prostate Biopsy Interpretation: An Illustrates Guide.
Berlin: Springer, 2012. DOI: https://doi.org/10.1007/978-3-642-21369-4,.

SILVA, F. d. A.; NASCIMENTO, A. A. d.; MEDEIROS, L. M. d. Uso da morfologia
matematica na segmentacao de imagens médicas para identificar o miocardio com
redes neurais convolucionais. Proceeding Series of the Brazilian Society of
Computational and Applied Mathematics, SBMAC, v. 9, n. 1, 2022.

SILVA, R. et al. An automated deep-learning-based approach for gleason grading of
prostate cancer using histopathological images. Scientific Reports, Nature Publishing
Group, v. 10, n. 1, p. 1-12, 2020. DOI: https://doi.org/10.1038/s41598-020-65680-y.

SILVA, R. E.; CAMATA, J. J. Otimizacdo de hiperparametros de re-
des neurais guiadas pela fisica em problema convectivo-difusivo. 2024. DOI:
https://doi.org/10.5753 /sscad.stendido.2024.244373.

SIRINUKUNWATTANA, K. et al. Gland segmentation in colon histology images: The
gland segmentation challenge contest. Medical image analysis, Elsevier, v. 35, p.
489-502, 2016. DOT: https://doi.org/10.1016/j.media.2016.08.008.

SOCIETY, A. C. What Is Prostate Cancer? 2013. <https://www.cancer.org/cancer/
types/prostate-cancer /about /what-is-prostate-cancer.html>. Retrieved 12 30, 2023.

. Facts & Figures 2023. 2023. <https://www.cancer.org/cancer/prostate-cancer/
about /key-statistics.html>. Retrieved from cancer.org.

STENNING, D. et al. Morphological image analysis and its application to sunspot
classification. v. 209, 01 2013. DOI: https://doi.org/10.1007/978-1-4614-3520-431.

SZEGEDY, C. et al. Rethinking the inception architecture for computer vision. p.
2818-2826, 2016. DOT: https://doi.org/10.1109/CVPR.2016.308.

TAHA, A. A.; HANBURY, A. Metrics for evaluating 3D medical image segmentation:
analysis, selection, and tool. BMC Medical Imaging, BioMed Central, v. 15, n. 1,
p. 29, 2015. DOI: https://doi.org/10.1186/s12880-015-0068-x.

TensorBoard Documentation. TensorBoard: Visualizing Learning. 2023.
<https://www.tensorflow.org/tensorboard>.

TIWARI, S. et al. Nuclei detection and segmentation of histopathological images using a
feature pyramidal network variant of a mask r-cnn. Computational Intelligence and
Neuroscience, v. 2024, p. 1-13, 2024. DOI: https://doi.org/10.1155/2024/7619280.

TOTH, R. J. et al. Histostitcher: An informatics software platform for reconstructing

whole-mount prostate histology using the extensible imaging platform framework. Journal
of Pathology Informatics, v. 5, n. 1, p. 8, 2014. DOI: https://doi.org/10.4103/2153-
3539.129441.

TRABULSI, E. J. et al. Optimum imaging strategies for advanced prostate cancer: Asco
guideline. Journal of Clinical Oncology, American Society of Clinical Oncology, v. 38,
n. 17, p. 1963-1996, Jun 2020. ISSN 1527-7755. Epub 2020 Jan 15.



84 Referéncias

URBINATE, E. F. Métodos para melhoria do desempenho de redes neurais
profundas em previsao de séries temporais. Tese (Dissertacao (Mestrado em
Ciéncias)) — Escola Politécnica da Universidade de Sao Paulo, 2025.

VALIPOUR, M. et al. A survey on deep learning optimizers: A performance-oriented
taxonomy and a guideline for practitioners. ACM Computing Surveys, v. 56, n. 1, p.
1-40, 2023. DOI: https://doi.org/10.1145/3605775.

VATS, S. et al. Segmenting tumor gleason pattern using generative ai and digital
pathology: Use case of prostate cancer on miccai dataset. Preprints.org, 06 2024. DOI:
https://doi.org/10.20944 /preprints202406.2019.v1.

WANG, P. et al. PANDA: A gigapixel-level human-centric video dataset. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). [S.].: s.n.], 2020. DOI: https://doi.org/10.1109/CVPR42600.2020.00333.

WU, Y. et al. Detectron2. 2019. Software available from
https://github.com/facebookresearch/detectron2.

. Detectron2: A pytorch-based modular object detection library. arXiv preprint
arXiv:1904.04514, 2019. DOI: https://doi.org/10.1007/s10489-021-02884-x.

ZHANG, C. et al. Understanding deep learning requires rethinking generalization. 2017.
Disponivel em: <https://openreview.net/forum?id=Sy8gdB9xx>.

ZHOU, X. et al. A context-aware deep learning model for simultaneous gland and nuclei
segmentation in prostate histopathology images. Medical image analysis, Elsevier,
v. 60, p. 101623, 2019. DOI: https://doi.org/10.1016/j.media.2019.101623.

ZHU, X. et al. Fusing hand-crafted and deep-learning features in a convolutional neural
network model to identify prostate cancer in pathology images. Frontiers in Oncology,
v. 12, p. 994950, 2022. DOI: https://doi.org/10.3389/fonc.2022.994950.

. A survey on transfer learning. ACM Transactions on Intelligent Systems
and Technology, v. 14, n. 4, p. 1-28, 2023. DOI: https://doi.org/10.1145/3569421.



	Folha de rosto
	Folha de aprovação
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de siglas
	Sumário
	Introdução
	Motivação
	Hipótese
	Objetivos e Desafios da Pesquisa
	Organização desta Tese

	Contextualização
	A próstata
	Análise de Imagens Histológicas para Câncer de Próstata
	Trabalhos Relacionados
	Síntese e Lacunas da Literatura

	Processamento Digital de Imagens em Patologia
	Redes Neurais Convolucionais
	Segmentação de Instâncias com Mask R-CNN e Arquiteturas Avançadas

	Metodologia de Pesquisa
	Construção do Banco de Imagens
	Pré-processamento
	Treinamento da Rede Neural
	Aplicação para Análise de Imagens


	Resultados e Discussão
	Treinamento do Modelo
	Resultados e Experimentos para Autodetecção
	Análise Comparativa com Estudos Anteriores

	Conclusão
	Referências

