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RESUMO 

A aplicação de deep learning na ciência dos materiais representa uma nova fronteira 

para acelerar a descoberta e a otimização de novas tecnologias. Este trabalho tem 

como objetivo realizar uma revisão sistemática da literatura para mapear o estado da 

arte, as metodologias, os desafios e as tendências futuras no uso de redes neurais 

profundas para a previsão de propriedades mecânicas. A metodologia consistiu na 

análise de 73 artigos científicos publicados entre 2017 e 2025. Os resultados indicam 

um crescimento exponencial do campo a partir de 2020, com um foco predominante 

na predição de propriedades como resistência à tração e fadiga. Constatou-se o 

domínio das Redes Neurais Convolucionais (CNNs), impulsionado pelo uso de 

imagens de microestrutura como dado de entrada, e a utilização de abordagens 

híbridas que combinam dados experimentais e sintéticos para a construção dos 

bancos de dados. Conclui-se que, apesar da alta acurácia preditiva dos modelos, os 

principais desafios residem na sua natureza de "caixa-preta", que limita a 

interpretabilidade, e na garantia de generalização para cenários reais. A tendência 

futura aponta para a consolidação de técnicas de Inteligência Artificial Explicável (XAI) 

e a integração desses modelos em plataformas de Projeto Inverso de Materiais, 

marcando a transição de uma ciência de dados puramente preditiva para uma 

abordagem prescritiva. 

Palavras-chave: aprendizado profundo; ciência dos materiais; propriedades 
mecânicas; revisão sistemática; inteligência artificial. 
 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

The application of deep learning in materials science represents a new frontier for 

accelerating the discovery and optimization of emerging technologies. This study aims 

to conduct a systematic literature review to map the state of the art, methodologies, 

challenges, and future trends in the use of deep neural networks for predicting 

mechanical properties. The methodology involved the analysis of 73 scientific articles 

published between 2017 and 2025. The results indicate an exponential growth of the 

field since 2020, with a predominant focus on predicting properties such as tensile 

strength and fatigue. Convolutional Neural Networks (CNNs) dominate the landscape, 

driven by the use of microstructure images as input data, alongside hybrid approaches 

that combine experimental and synthetic datasets for database construction. Despite 

the high predictive accuracy of the models, the main challenges lie in their "black-box" 

nature, which limits interpretability, and in ensuring generalization to real-world 

scenarios. Future trends point to the consolidation of Explainable Artificial Intelligence 

(XAI) techniques and the integration of such models into Inverse Materials Design 

platforms, marking the transition from a purely predictive data-driven science to a 

prescriptive approach. 

Keywords: deep learning; materials science; mechanical properties; systematic 
review; artificial intelligence. 
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1 INTRODUÇÃO 

Nos últimos anos, a ciência e a engenharia dos materiais têm testemunhado 

uma revolução impulsionada por avanços em inteligência artificial, consolidando a 

ciência de dados como o "quarto paradigma" da descoberta científica, ao lado da 

teoria, experimentação e simulação (Agrawal & Choudhary, 2016). Dentro desse 

novo cenário, o deep learning (aprendizado profundo) emergiu como uma 

metodologia particularmente poderosa, contrastando com abordagens estatísticas 

tradicionais ao oferecer a capacidade de modelar relações altamente complexas e 

não lineares diretamente de dados brutos. 

A aplicação do deep learning se mostra especialmente promissora para a 

predição de propriedades mecânicas de materiais, uma tarefa tradicionalmente 

dependente de ensaios laboratoriais caros e demorados. Modelos de aprendizado 

profundo são capazes de mapear a complexa relação entre as variáveis de entrada 

— como composição química, parâmetros de processo ou imagens de 

microestrutura — e as propriedades resultantes, como resistência à tração, dureza 

e vida em fadiga, acelerando drasticamente o ciclo de desenvolvimento de novos 

materiais (Liu et al., 2021). 

Contudo, a implementação bem-sucedida desses modelos não é trivial e 

enfrenta um conjunto de desafios interconectados que definem a fronteira da 

pesquisa atual. O primeiro e mais fundamental deles é a construção de um banco de 

dados robusto, uma vez que o deep learning é inerentemente dependente de 

grandes volumes de dados, cuja obtenção experimental na ciência dos materiais é 

frequentemente inviável (Chen, 2024). Isso leva à necessidade de lidar com a 

complexidade dos dados, que frequentemente são heterogêneos, combinando 

informações numéricas, séries temporais e imagens de alta dimensionalidade. 

Além do desafio dos dados, surge a barreira da interpretabilidade. A natureza 

de "caixa-preta" da maioria dos modelos de deep learning é um obstáculo crítico para 

sua adoção em aplicações de engenharia, onde a confiança e a compreensão do 

processo de decisão são fundamentais (Zhang et al., 2019). Por fim, garantir a 

generalização das predições — ou seja, a capacidade do modelo de performar bem 

em dados novos e não vistos, especialmente ao transpor o "hiato" entre dados de 

simulação e resultados experimentais — permanece como um dos maiores desafios 

técnicos a serem superados (Li & Zhang, 2020). 
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Diante deste panorama, o objetivo deste trabalho é realizar uma revisão 

sistemática da literatura sobre a aplicação de deep learning na previsão de 

propriedades mecânicas, buscando mapear o estado da arte e analisar criticamente 

como a comunidade científica tem abordado os desafios mencionados. O estudo visa 

identificar as principais arquiteturas, os métodos de construção de dados, as 

estratégias para garantir a generalização e as técnicas emergentes de 

interpretabilidade que moldam o futuro da área. 

2 FUNDAMENTAÇÃO TEÓRICA 

2.1 INTELIGÊNCIA ARITIFICAL: PANORAMA HISTÓRICO E EVOLUÇÃO 

A Inteligência Artificial (IA) surgiu como campo de pesquisa formal em meados 

da década de 1950, tendo como marco inicial a conferência de Dartmouth, em 1956, 

considerada o berço teórico dessa área. Foi nesse evento, proposto por John 

McCarthy, que o termo "Inteligência Artificial" foi cunhado, solidificando os objetivos 

de pesquisa para as próximas décadas (Russell; Norvig, 2020). Os primeiros 

trabalhos tinham como base os paradigmas simbólicos, ou seja, sistemas 

especialistas que buscavam representar explicitamente o conhecimento humano por 

meio de regras lógicas. Nesse período, o entusiasmo foi grande, mas a limitação 

computacional e a rigidez dos métodos dificultaram aplicações mais amplas, levando 

a crises conhecidas como invernos da IA, especialmente no final dos anos 1970 e 

no final dos anos 1980, quando o financiamento para a área foi drasticamente 

reduzido (Crevier, 1993). 

Nos anos 1980 e 1990, com o avanço de métodos estatísticos, a IA ingressou 

em uma nova fase: a do aprendizado de máquina (Machine Learning – ML). 

Diferentemente da lógica simbólica, o ML assume que um sistema pode aprender a 

partir de dados, ajustando seus parâmetros para melhorar gradualmente o 

desempenho preditivo. Técnicas como as Máquinas de Vetores de Suporte (SVM), 

árvores de decisão e redes neurais artificiais rasas ganharam grande destaque, 

impulsionadas pelo desenvolvimento de algoritmos como a retropropagação (Bishop, 

2006). Embora mais eficazes na prática, essas metodologias ainda enfrentavam 

barreiras quando aplicadas a bases de dados complexas e de grande dimensão. 

A virada paradigmática ocorreu a partir da década de 2010, quando o aumento 

do poder computacional, associado ao uso massivo de unidades de processamento 
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gráfico (GPUs), tornou possível o treinamento de redes neurais com múltiplas 

camadas ocultas — fenômeno que consagrou o termo deep learning (aprendizado 

profundo) (LeCun; Bengio; Hinton, 2015). O marco mais emblemático dessa 

transição foi o concurso de reconhecimento de imagens ImageNet em 2012, no qual 

o modelo AlexNet (uma rede neural profunda) superou todos os concorrentes de 

forma significativa, demonstrando o poder dessa nova abordagem (Krizhevsky; 

Sutskever; Hinton, 2012). A partir daí, o deep learning tornou-se pilar central da IA 

contemporânea, expandindo seus usos em visão computacional, processamento de 

linguagem natural, previsão de séries temporais e, mais recentemente, na ciência 

dos materiais.  

2.2 REDES NEURAIS ARTIFICIAS: CONCEITOS FUNDAMENTAIS 

O conceito de neurônio artificial foi proposto por McCulloch e Pitts, em 1943, 

como uma tentativa de simular computacionalmente as funções lógicas do cérebro 

humano. Embora esse modelo fosse incapaz de aprender, ele estabeleceu a base 

teórica para o campo. Posteriormente, o modelo de Perceptron, desenvolvido por 

Rosenblatt em 1958, representou um avanço significativo ao propor a primeira 

arquitetura capaz de aprender e reconhecer padrões lineares. Apesar de suas 

limitações para lidar com problemas não lineares, detalhadas na crítica de Minsky e 

Papert (1969), o perceptron plantou as bases para o desenvolvimento de modelos 

mais robustos nas décadas seguintes (Haykin, 2009). 

Uma rede neural consiste em um conjunto de neurônios artificiais 

interconectados, organizados em camadas: camada de entrada, camadas ocultas e 

camada de saída. Cada conexão possui um peso sináptico, ajustado por algoritmos 

de treinamento com o objetivo de reduzir o erro de previsão. A popularização do 

método da retropropagação (backpropagation) por Rumelhart, Hinton e Williams 

(1986) foi crucial para permitir o treinamento eficaz de redes com múltiplas camadas, 

ajustando os pesos da rede para otimizar a performance. Esses avanços estão 

detalhados em diversas obras de referência que consolidam o campo (Goodfellow, 

Bengio & Courville, 2016). 

A maior contribuição do deep learning está no uso de múltiplas camadas ocultas 

(deep layers), que permitem a modelagem de fenômenos altamente não lineares e 

a construção de representações hierárquicas de dados complexos. Em vez de 
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depender de características extraídas manualmente, uma rede profunda aprende a 

identificar e organizar essas características de forma automática. Esse processo 

garante que, mesmo em sistemas de elevada dimensionalidade como 

microestruturas de materiais, seja possível correlacionar variáveis aparentemente 

desconexas e extrair informações valiosas (Goodfellow, Bengio & Courville, 2016). 

 

2.3 ARQUITETURAS DE REDES NEURAIS 

A evolução das redes neurais deu origem a diferentes arquiteturas, cada qual 

mais adequada a determinados tipos de dados e problemas. 

2.3.1 REDES NEURAIS ARTIFICIAIS E FEEDFORWARD 

Ao longo da evolução do aprendizado de máquina, diferentes arquiteturas de 

redes neurais foram concebidas com o objetivo de superar limitações técnicas e 

ampliar a gama de aplicações possíveis. As Redes Neurais Artificiais (ANNs) são 

modelos computacionais inspirados no sistema nervoso biológico, projetados para 

processar informações e prever resultados a partir de dados de entrada (AZARAFZA 

et al., 2022). Estruturalmente, uma ANN consiste em um conjunto de unidades de 

processamento chamadas neurônios artificiais, que são organizados em camadas: 

uma camada de entrada (que recebe os dados brutos), uma ou mais camadas 

ocultas (responsáveis pelo processamento não linear) e uma camada de saída (que 

fornece o resultado da predição) (AZARAFZA et al., 2022). Essa estrutura permite 

que a rede estabeleça relações complexas e não lineares entre as variáveis de 

entrada e saída, oferecendo uma solução mais robusta que modelos analíticos ou 

empíricos tradicionais (JUNG et al., 2020). 

As primeiras e mais fundamentais implementações são as redes FeedForward, 

nas quais a informação flui em uma única direção, da camada de entrada para a de 

saída, sem a presença de ciclos ou laços de realimentação (AZARAFZA et al., 2022). 

O treinamento dessas redes ocorre por meio de um processo de otimização, como 

o algoritmo de retropropagação (backpropagation), onde os pesos das conexões 

entre os neurônios são ajustados iterativamente para minimizar o erro entre os 

valores previstos pela rede e os valores reais observados (JUNG et al., 2020). 

A transição para modelos mais poderosos ocorreu com o advento do deep 
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learning (aprendizado profundo), que se refere ao uso de redes neurais com 

múltiplas camadas ocultas (AZARAFZA et al., 2022). Uma rede com essa 

característica é denominada Rede Neural Profunda (DNN). A principal vantagem de 

uma DNN em relação a uma rede rasa (shallow network) reside em sua capacidade 

de aprender representações hierárquicas e extrair características informativas dos 

dados de forma automática, sem a necessidade de intervenção manual (AZARAFZA 

et al., 2022). Em muitos casos, essas redes profundas são compostas por camadas 

onde todos os neurônios de uma camada estão conectados a todos os neurônios da 

camada seguinte, sendo também chamadas de Redes Totalmente Conectadas 

(FCNNs), cuja diferença estrutural pode ser observada na Figura 1. 

 
Figura 1 - Esquema comparativo entre uma rede neural rasa (Shallow Neural Network) e 

uma rede neural profunda (Deep Neural Network). 

 

Fonte: adaptado de AZARAFZA et al., 2022 

 

A aplicação de arquiteturas DNN e FCNN tem se mostrado extremamente 

eficaz na ciência dos materiais para prever propriedades mecânicas complexas. 

Estudos utilizam essas redes para prever o índice de resistência e parâmetros de 

rigidez em rochas como o margito (AZARAFZA et al., 2022), e para determinar 

propriedades de tração em aços de alta resistência com base em suas frações 

volumétricas microestruturais (JUNG et al., 2020). Da mesma forma, modelos de 

deep learning são empregados para estimar a resistência ao escoamento de aços 

laminados a quente (CUI et al., 2022) e para prever a resistência à tração de peças 

produzidas por manufatura aditiva (ZHANG et al., 2019). 

Apesar de seu alto desempenho, a implementação de redes neurais profundas 

apresenta desafios significativos. Um dos principais é a necessidade de grandes 

volumes de dados rotulados para o treinamento, o que nem sempre é viável em 
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aplicações de engenharia, onde a obtenção de dados experimentais é cara e 

demorada (CUI et al., 2022). Além disso, devido ao elevado número de parâmetros 

a serem ajustados, as DNNs são suscetíveis ao Overfitting, fenômeno no qual o 

modelo se especializa excessivamente nos dados de treinamento e perde sua 

capacidade de generalizar para novos dados. (AZARAFZA et al., 2022). 

Finalmente, uma das limitações mais críticas das redes neurais é sua natureza 

de "caixa-preta" (black box), que torna difícil interpretar como e por que o modelo 

chega a uma determinada previsão (ZHANG et al., 2019). Essa falta de 

interpretabilidade é uma barreira para a adoção em aplicações críticas, onde a 

confiabilidade e a compreensão do processo de decisão são fundamentais. Para 

contornar essa dificuldade, pesquisadores têm explorado métodos como a 

Propagação de Relevância por Camadas (LRP – Layer-wise Relevance 

Propagation), que busca decompor a predição da rede para quantificar a contribuição 

de cada variável de entrada no resultado (ZHANG et al., 2019). 

 

2.3.2 REDES NEURAIS CONVULACIONAIS 

As Redes Neurais Convolucionais (CNNs, do inglês Convolutional Neural 

Networks) são uma classe especializada de redes neurais profundas, projetadas 

primariamente para processar dados que possuem uma topologia de grade, como 

imagens (LI et al., 2019; YANG et al., 2020). Diferentemente das redes neurais 

totalmente conectadas, as CNNs são arquitetadas para capturar e preservar 

relações espaciais nos dados de entrada, o que as torna excepcionalmente eficazes 

para tarefas de análise de microestruturas de materiais (HERRIOTT; SPEAR, 2020). 

Sua principal vantagem reside na capacidade de aprender e extrair características 

hierárquicas de forma automática, eliminando a necessidade de pré-processamento 

extensivo e extração manual de descritores microestruturais (HERRIOTT; SPEAR, 

2020). 

A arquitetura de uma CNN é estruturada para processar informações 

espaciais de forma eficiente e é composta, fundamentalmente, por três tipos de 

camadas: convolucionais, de agrupamento (pooling) e totalmente conectadas (YU et 

al., 2023). Uma representação visual do fluxo de dados através dessas camadas em 

um modelo profundo é apresentada na 2.2. 



 

19 
 

1. Camadas Convolucionais: São o núcleo da rede e realizam a operação de 

convolução (YU et al., 2023). Elas utilizam um conjunto de filtros (ou kernels), 

que são pequenas matrizes de pesos aprendidos, que deslizam sobre a 

imagem de entrada. Cada filtro é especializado em detectar uma 

característica local específica, como bordas, texturas ou formas (YU et al., 

2023). A principal diferença em relação a uma rede densa é o uso de campos 

receptivos locais, onde cada neurônio se conecta apenas a uma pequena 

região da camada anterior, permitindo que a rede foque em padrões locais de 

forma eficiente (LI et al., 2019). O resultado da operação de convolução é um 

mapa de características (feature map), que indica a presença daquela 

característica específica na imagem (YU et al., 2023). 

2. Camadas de Pooling (Agrupamento): Geralmente inseridas após as 

camadas convolucionais, sua função é reduzir a dimensionalidade espacial 

dos mapas de características, tornando a representação mais compacta e 

computacionalmente mais gerenciável (LI et al., 2019; YU et al., 2023). A 

operação mais comum é o max pooling, que seleciona o valor máximo de uma 

vizinhança, mantendo as informações mais salientes e conferindo à rede um 

certo grau de invariância à translação (YU et al., 2023). 

3. Camadas Totalmente Conectadas (Fully Connected): Localizadas no final 

da rede, essas camadas recebem os mapas de características de alto nível, 

já processados e compactados, e os utilizam para realizar a tarefa final de 

classificação ou regressão (LI et al., 2019; YU et al., 2023). Elas funcionam 

de maneira análoga a uma rede neural feedforward tradicional, conectando 

cada neurônio de uma camada a todos os neurônios da camada seguinte para 

fazer a predição final (YU et al., 2023). 

O grande poder das CNNs reside em sua capacidade de construir uma 

representação hierárquica dos dados. As camadas iniciais aprendem a identificar 

características simples e de baixo nível (e.g., bordas de grãos). Conforme os dados 

avançam para camadas mais profundas, esses padrões simples são combinados 

para formar características mais complexas e abstratas, como a morfologia de uma 

fase inteira ou a distribuição geral dos constituintes em uma amostra (LI et al., 2019). 

Essa habilidade permite que a CNN estabeleça um mapeamento implícito e 

altamente complexo entre a imagem da microestrutura e suas propriedades 
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mecânicas efetivas (LI et al., 2019). 

Devido a essa característica, as CNNs têm sido amplamente aplicadas na 

engenharia de materiais para prever o comportamento mecânico a partir de imagens. 

Elas são utilizadas para prever curvas completas de tensão-deformação de 

compósitos, onde a natureza local da convolução se mostra ideal para aprender os 

efeitos espaciais da propagação de trincas (YANG et al., 2020). Na manufatura 

aditiva, CNNs 3D processam dados volumétricos da microestrutura (como a 

orientação cristalográfica de cada ponto) para prever propriedades mecânicas locais, 

superando modelos de aprendizado de máquina mais tradicionais que dependem de 

descritores microestruturais médios (HERRIOTT; SPEAR, 2020). Outras aplicações 

incluem a predição do módulo de elasticidade efetivo em rochas de xisto com base 

em imagens de sua estrutura mesoescala (LI et al., 2019) e a avaliação da 

resistência à compressão de materiais cimentícios, onde a rede aprende a 

correlação entre a composição e as condições de exposição e a resistência final (YU 

et al., 2023). 

 
Figura 2 - Arquitetura de uma Rede Neural Convolucional Profunda. 

 

Fonte: adaptado de YU et al., 2023 

Uma implementação específica e avançada dessa abordagem é a Rede de 

Relação Metalografia-Propriedade (MPR-Net), desenvolvida para prever a relação 

entre a microestrutura e as propriedades mecânicas do aço inoxidável 316L 

produzido por fusão em leito de pó a laser (LPBF) (ZHANG et al., 2024). A MPR-Net 

é uma CNN profunda, baseada na arquitetura VGGNet, composta por 13 camadas 

convolucionais e 3 camadas totalmente conectadas, conforme detalhado na Figura 

3 (ZHANG et al., 2024). O grande diferencial desse modelo não está apenas em sua 

capacidade de prever com alta precisão a resistência à tração e a dureza Vickers 

diretamente de imagens metalográficas, mas também em sua interpretabilidade. 
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Utilizando técnicas de visualização de características, como o Mapeamento de 

Ativação de Classe Ponderado por Gradiente (Grad-CAM), a MPR-Net permite 

identificar quais regiões e padrões na microestrutura (como a morfologia da poça de 

fusão) são mais influentes para a predição de uma determinada propriedade 

mecânica (ZHANG et al., 2024). Essa capacidade de "abrir a caixa-preta" do modelo 

de deep learning é fundamental para conectar as predições computacionais aos 

mecanismos físicos de formação de grãos e, assim, otimizar os parâmetros do 

processo de fabricação de forma mais informada (ZHANG et al., 2024). 

 
Figura 3 - Arquitetura da rede MPR-Net. 

 

Fonte: adaptado de ZHANG et al., 2024. 

2.3.3 REDES NEURAIS RECORRENTES E LSTM 

Enquanto as CNNs são especializadas em dados com estrutura espacial, as 

Redes Neurais Recorrentes (RNNs) foram desenvolvidas para lidar com dados 

sequenciais ou séries temporais, onde a ordem e o contexto são fundamentais (XU 

et al., 2023). A principal característica de uma RNN é a sua capacidade de reter 

informações de passos anteriores para influenciar a saída do passo atual, criando 

uma forma de memória (ZHANG et al., 2019). Essa arquitetura é ideal para modelar 

processos dinâmicos e sequenciais, como os encontrados na manufatura, onde o 

histórico de eventos, como os ciclos térmicos em cada camada de impressão, afeta 

diretamente as propriedades do produto (ZHANG et al., 2019). 

A estrutura de uma RNN simples é caracterizada por um laço de 

realimentação, onde a saída do neurônio em um passo de tempo (t-1) é reintroduzida 

como parte da entrada para o próximo passo de tempo (t), conforme esquematizado 

na Figura 4 (ZHANG et al., 2019). No entanto, as RNNs tradicionais sofrem de uma 

limitação significativa conhecida como o problema do desaparecimento do gradiente 
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(vanishing gradient problem). Durante o treinamento com o algoritmo de 

retropropagação no tempo (backpropagation through time), o gradiente do erro pode 

diminuir exponencialmente à medida que se propaga para trás através de longas 

sequências, tornando a rede incapaz de aprender dependências de longo prazo 

(ZHANG et al., 2019). 

 
Figura 4 - Diagrama de uma Rede Neural Recorrente (RNN). 

 

Fonte: adaptado de ZHANG et al., 2019. 

 

Para superar essa limitação, foi desenvolvida uma arquitetura de RNN mais 

sofisticada e poderosa: a rede de Memória de Longo Prazo (LSTM, do inglês Long 

Short-Term Memory) (ZHANG et al., 2019; XU et al., 2023). A LSTM introduz uma 

estrutura de célula mais complexa, projetada especificamente para reter e acessar 

informações por longos períodos, mitigando o problema do desaparecimento do 

gradiente (ZHANG et al., 2019; TAO et al., 2021). O núcleo da célula LSTM é o 

estado da célula (cell state), que atua como uma esteira transportadora de 

informações, permitindo que os dados fluam através da sequência com poucas 

alterações. A principal inovação da LSTM é a sua capacidade de adicionar ou 

remover informações do estado da célula por meio de estruturas reguladoras 

chamadas portões (gates), cuja arquitetura interna é detalhada na Figura 5 (HAN et 

al., 2025). Esses portões são compostos por uma função de ativação sigmoide e 

uma operação de multiplicação, controlando seletivamente o fluxo de informação 

(XU et al., 2023). Uma célula LSTM típica possui três portões principais: 

 Portão de Esquecimento (Forget Gate): Decide quais informações 

do estado da célula anterior devem ser descartadas. Ele analisa a 
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saída anterior (h_t-1) e a entrada atual (x_t) e gera um valor entre 0 

(esquecer completamente) e 1 (manter completamente) para cada 

número no estado da célula (ZHANG et al., 2019; HAN et al., 2025). 

 Portão de Entrada (Input Gate): Determina quais novas informações 

serão armazenadas no estado da célula. Este processo tem duas 

etapas: primeiro, uma camada sigmoide decide quais valores serão 

atualizados; em seguida, uma camada tanh cria um vetor de novos 

valores candidatos que podem ser adicionados ao estado (ZHANG et 

al., 2019; HAN et al., 2025). 

 Portão de Saída (Output Gate): Define qual será a saída da célula. A 

saída é baseada no estado da célula, mas é uma versão filtrada. Uma 

camada sigmoide decide qual parte do estado da célula será liberada, 

e essa decisão é então multiplicada pelo estado da célula passado por 

uma função tanh para produzir a saída final (h_t) (ZHANG et al., 2019; 

HAN et al., 2025). 

Essa arquitetura de portões permite que a LSTM aprenda de forma 

independente as interações entre as camadas e capture dependências de longo 

prazo, tornando-a ideal para modelar processos complexos como a fabricação de 

compósitos (TAO et al., 2021) e a manufatura aditiva (ZHANG et al., 2019). Em 

aplicações na ciência dos materiais, as LSTMs são utilizadas para processar sinais 

de sensores camada por camada em processos de impressão 3D para prever a 

resistência à tração da peça final (ZHANG et al., 2019), para reconhecer condições 

de carregamento em ensaios de fadiga a partir de dados sequenciais de ultrassom 

(TAO et al., 2021), e para prever propriedades mecânicas de aços com base na 

sequência de parâmetros de processo (XU et al., 2023; HAN et al., 2025). Outra 

variante popular, a Unidade Recorrente Fechada (GRU), simplifica a arquitetura da 

LSTM fundindo os portões de esquecimento e entrada em um único "portão de 

atualização", oferecendo desempenho semelhante com maior eficiência 

computacional (XU et al., 2023). 
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Figura 5 - Arquitetura de uma célula LSTM. 

 

Fonte: adaptado de XU et al., 2023. 

2.3.4 REDE PROFUNDA DE CRENÇAS 

A Uma Rede Profunda de Crenças (DBN) é um modelo de aprendizado 

profundo composto por múltiplas camadas de Máquinas de Boltzmann Restritas 

(RBMs, do inglês Restricted Boltzmann Machines) empilhadas, com uma camada 

final de rede neural feedforward (como uma BPN) para realizar a tarefa de regressão 

ou classificação (FANG et al., 2021). As RBMs são redes neurais não 

supervisionadas que aprendem a extrair uma representação hierárquica e de alto 

nível dos dados de entrada (AKRICHI et al., 2019). A estrutura hierárquica de uma 

DBN, formada pelo empilhamento de RBMs, é esquematizada na Figura 6. 

 

 

Figura 6- Arquitetura de uma Rede Profunda de Crenças (DBN). 

 

Fonte: adaptado de AKRICHI et al., 2019 
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O processo de treinamento de uma DBN ocorre em duas fases distintas: 

1. Pré-treinamento não supervisionado (Unsupervised Pre-training): As 

camadas de RBMs são treinadas sequencialmente, uma de cada vez, de 

baixo para cima. A camada oculta de uma RBM serve como a camada visível 

(entrada) para a RBM seguinte. Este pré-treinamento generativo otimiza os 

pesos iniciais da rede, o que reduz o risco de a rede convergir para um ótimo 

local e se mostra eficaz mesmo com conjuntos de dados limitados (FANG et 

al., 2021; AKRICHI et al., 2019). 

2. Ajuste Fino Supervisionado (Supervised Fine-tuning): Após o pré-

treinamento, os pesos da rede são ajustados finamente usando um algoritmo 

supervisionado, como a retropropagação (backpropagation), para otimizar o 

desempenho do modelo na tarefa específica de predição (FANG et al., 2021; 

AKRICHI et al., 2019). 

Essa arquitetura se mostrou eficaz na previsão da capacidade axial de perfis 

de aço formados a frio (FANG et al., 2021) e na predição da precisão geométrica em 

processos de conformação incremental de ponto único (AKRICHI et al., 2019), 

demonstrando um desempenho superior em comparação com redes neurais rasas. 

2.3.5 REDE GENERATIVA ADVERSIAL CONDICIONAL (cGAN) 

A Rede Generativa Adversarial Condicional (cGAN) é um modelo de 

aprendizado profundo pertencente à família das redes generativas, projetado para 

tarefas de tradução de imagem para imagem (OH; KI, 2019). Uma cGAN é composta 

por duas redes neurais que competem entre si em um "jogo de minimax de dois 

jogadores": o Gerador (G) e o Discriminador (D), cuja estrutura e interação são 

esquematizadas na Figura 7  (JIANG et al., 2020). 

 O Gerador (G): Tem como objetivo aprender a mapear uma imagem de 

entrada (a "condição") para uma imagem de saída. Por exemplo, ele pode 

receber uma distribuição de temperatura e tentar gerar a distribuição de 

dureza correspondente (OH; KI, 2019). Frequentemente, sua arquitetura é 

baseada em uma rede do tipo codificador-decodificador (encoder-decoder), 

como a U-Net, que utiliza camadas convolucionais para extrair características 

e camadas desconvolucionais (ou convolucionais transpostas) para 
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reconstruir a imagem de saída (OH; KI, 2019). 

 O Discriminador (D): É treinado para distinguir entre as imagens "reais" (do 

conjunto de dados de treinamento) e as imagens "falsas" (geradas pelo 

Gerador). Ele recebe um par de imagens (a entrada condicional e uma 

imagem de saída, que pode ser real ou falsa) e deve determinar a 

autenticidade da saída (JIANG et al., 2020). 

 

Figura 7- Estrutura de uma Rede Generativa Adversarial Condicional (cGAN). 

 

Fonte: adaptado de JIANG et al., 2020 

 

Durante o treinamento, o Gerador tenta produzir imagens cada vez mais 

realistas para "enganar" o Discriminador, enquanto o Discriminador se aprimora em 

identificar as falsificações (OH; KI, 2019). Esse processo adversarial força o Gerador 

a aprender a distribuição de dados real e a gerar saídas de alta fidelidade. As cGANs 

são particularmente poderosas para prever campos de dados complexos, como a 

distribuição de tensões de von Mises em estruturas sob diferentes geometrias e 

condições de contorno (JIANG et al., 2020) ou a tradução de mapas de temperatura 

em mapas de dureza em tratamentos térmicos a laser (OH; KI, 2019). 

2.4 PROPRIEDADES MECÂNICAS 

2.4.1 RESISTÊNCIA À TRAÇÃO E AO ESCOAMENTO  

A resposta de um material a uma força externa aplicada é descrita por suas 

propriedades mecânicas, que são fundamentais para o projeto e a análise de 

qualquer componente estrutural. Dentre as mais importantes estão a Resistência à 

Tração (ou Limite de Resistência à Tração, LRT) e a Resistência ao Escoamento (ou 
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Limite de Escoamento, LE), ambas obtidas a partir do ensaio de tração uniaxial 

(JUNG et al., 2020; ZHANG et al., 2019). Este ensaio consiste em submeter um 

corpo de prova com geometria padronizada a uma força de tração crescente até a 

sua fratura, registrando continuamente a relação entre a tensão (força por unidade 

de área) e a deformação (alteração percentual no comprimento). O resultado é um 

gráfico conhecido como curva tensão-deformação, que serve como uma "impressão 

digital" do comportamento mecânico do material, conforme ilustrado na Figura 8 

(ZHANG et al., 2019). 

O Limite de Escoamento (LE), ou Yield Strength (YS), representa a tensão na 

qual o material começa a sofrer deformação plástica, ou seja, uma deformação 

permanente que não é recuperada após a remoção da carga (JUNG et al., 2020). 

Antes de atingir o YS, o material se deforma elasticamente, retornando à sua forma 

original se a força for removida. O US é um parâmetro crítico no projeto de 

engenharia, pois geralmente define o limite superior de tensão que um componente 

pode suportar em serviço sem sofrer deformações permanentes. 

À medida que a força de tração continua a aumentar após o escoamento, o 

material passa por um processo de encruamento, no qual ele se torna mais resistente 

à deformação. A tensão continua a subir até atingir um ponto máximo, que é definido 

como a Resistência à Tração (RT), ou Tensile Strength (TS) (JUNG et al., 2020). 

Este valor representa a máxima tensão que o material pode suportar antes de iniciar 

o processo de estricção (redução localizada da área da seção transversal) que 

culmina na fratura (ZHANG et al., 2019). Em materiais frágeis, a fratura pode ocorrer 

com pouca ou nenhuma deformação plástica, e a resistência à tração é 

simplesmente a tensão máxima registrada no momento da ruptura (ZHANG et al., 

2019). 

Essas duas propriedades são profundamente influenciadas pela 

microestrutura do material, que, por sua vez, é determinada pela composição 

química e pelas condições do processo de fabricação, como laminação e tratamento 

térmico (CUI et al., 2022; JUNG et al., 2020). A combinação complexa desses fatores 

determina a presença e a fração volumétrica de diferentes fases microestruturais 

(como ferrita, bainita e martensita), que governam o comportamento mecânico final 

do aço (JUNG et al., 2020). Prever com precisão o YS e a RT a partir desses 

parâmetros de entrada é um dos principais objetivos da ciência dos materiais 



 

28 
 

moderna, impulsionando o desenvolvimento de modelos computacionais avançados 

baseados em inteligência artificial (CUI et al., 2022; JUNG et al., 2020). 

 
Figura 8 - Curva tensão-deformação típica para um material metálico, ilustrando a definição 

do Limite de Escoamento (Yield Strength) e da Resistência à Tração (Tensile Strength) 

 

Fonte: adaptado de ZHANG et al., 2019 

2.4.2 DUREZA 

Dureza é uma propriedade mecânica fundamental que quantifica a resistência 

de um material à deformação plástica localizada, como a penetração, o risco ou a 

indentação (JAYAKUMAR; LAKSHMIPATHY, 2022). Em aplicações de engenharia, 

a dureza é um indicador crucial da qualidade e do desempenho de um material, pois 

está diretamente correlacionada com sua resistência ao desgaste e, em muitos 

casos, com sua resistência mecânica (OH; KI, 2019; JAYAKUMAR; 

LAKSHMIPATHY, 2022). No contexto de aços e outras ligas metálicas, a dureza é 

profundamente influenciada pela microestrutura, sendo uma das principais 

propriedades a serem otimizadas durante processos de tratamento térmico, como a 

têmpera a laser (OH; KI, 2019). 

A medição da dureza é tipicamente realizada por meio de ensaios de 

indentação, nos quais um penetrador com geometria padronizada é pressionado 

contra a superfície do material sob uma carga controlada por um tempo específico 
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(NIU et al., 2024; JAYAKUMAR; LAKSHMIPATHY, 2022). Após a remoção da carga, 

a dimensão da marca de indentação deixada na superfície é medida, sendo crucial 

a utilização de técnicas de microscopia para a correta calibração e análise dessas 

marcas, como ilustrado na Figura 9. Diferentes métodos de ensaio são classificados 

com base no tipo de penetrador utilizado, como os ensaios Brinell (esfera de aço), 

Rockwell (cone de diamante ou esfera) e Vickers (pirâmide de diamante) 

(JAYAKUMAR; LAKSHMIPATHY, 2022). 

O ensaio de dureza Vickers (HV), por exemplo, utiliza um penetrador piramidal 

de diamante com um ângulo específico entre as faces (OH; KI, 2019). A dureza 

Vickers é calculada a partir da carga aplicada dividida pela área superficial da 

indentação. Esse método é amplamente utilizado por sua precisão e por cobrir uma 

vasta gama de durezas. A obtenção de um mapa de dureza em uma seção 

transversal de uma peça, por exemplo, permite visualizar o efeito de um tratamento 

térmico, identificando a profundidade e a extensão da zona afetada pelo calor (OH; 

KI, 2019). A capacidade de prever a distribuição de dureza com base nos parâmetros 

de processo é um objetivo central na ciência dos materiais, pois permite a otimização 

de tratamentos para alcançar o desempenho desejado sem a necessidade de 

extensos ensaios experimentais (OH; KI, 2019; NIU et al., 2024). 

 
Figura 9 - Imagens de microscopia óptica e de microscopia eletrônica de varredura utilizadas 

para calibrar as posições do indentador nos testes de dureza Vickers. 

 

Fonte: adaptado de NIU et al., 2024 



 

30 
 

2.4.3 FADIGA 

A fadiga é um fenômeno complexo de acúmulo de dano que se manifesta em 

materiais submetidos a carregamentos cíclicos, sendo um dos principais 

mecanismos de falha em componentes estruturais (ZHANG et al., 2021; MALEKI et 

al., 2022). Sua principal característica é a capacidade de levar uma estrutura à fratura 

mesmo quando os níveis de tensão aplicados são significativamente inferiores à 

resistência ao escoamento do material (ZHANG et al., 2021). O processo de falha 

por fadiga é tipicamente dividido em três estágios: iniciação da trinca, onde pequenas 

fissuras se formam em pontos de alta concentração de tensão; propagação da trinca, 

onde a fissura cresce a cada ciclo de carregamento; e, finalmente, a fratura final, que 

ocorre de forma súbita quando a seção transversal remanescente do material não é 

mais capaz de suportar a carga aplicada. 

A vida em fadiga de um componente, ou seja, o número de ciclos que ele pode 

suportar antes de falhar sob um determinado nível de tensão, é uma propriedade 

crítica para garantir a segurança e a confiabilidade de estruturas de engenharia 

(MALEKI et al., 2022). Tradicionalmente, o comportamento de um material sob fadiga 

é caracterizado pela curva S-N (também conhecida como curva de Wöhler), que 

plota a amplitude da tensão (S) em função do número de ciclos até a falha (N), como 

ilustrado na Figura 10 (MALEKI et al., 2022). 

A natureza estatística do fenômeno da fadiga, influenciada por múltiplos 

fatores como geometria, condições de carregamento e, crucialmente, a 

microestrutura, torna sua previsão um desafio significativo (ZHANG et al., 2021). 

Abordagens tradicionais para prever a vida em fadiga dependem de modelos 

empíricos e ensaios experimentais extensivos, que são caros e demorados. Em 

resposta a essas limitações, métodos baseados em dados, especialmente modelos 

de aprendizado profundo, têm emergido como ferramentas poderosas para prever a 

vida em fadiga, aprendendo as complexas relações não lineares diretamente dos 

dados de processo e material (ZHANG et al., 2021; MALEKI et al., 2022). 
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Figura 10 - Curva S-N típica para o aço AISI 1045, mostrando a relação entre a amplitude de 
tensão (Stress amplitude) e o número de ciclos até a falha (Number of cycles to failure). 

 

Fonte: adaptado de MALEKI et al., 2022 

2.4.4 TENACIDADE 

Já a tenacidade é uma propriedade mecânica que descreve a capacidade de 

um material de absorver energia e sofrer deformação plástica antes de fraturar 

(ANWAR et al., 2021). Diferente da resistência, que mede a força que um material 

pode suportar, a tenacidade representa a energia total que ele pode absorver até a 

sua ruptura. Uma das maneiras mais diretas de visualizar e quantificar a tenacidade 

é através da área sob a curva tensão-deformação, obtida em um ensaio de tração, 

como ilustrado na Figura 11 (ANWAR et al., 2021). Um material pode possuir alta 

resistência, mas ser frágil (baixa tenacidade), enquanto outro pode ter menor 

resistência, mas ser muito mais tenaz, sendo capaz de suportar grandes 

deformações antes de falhar. 

Um conceito mais específico e de grande importância na engenharia é a 

tenacidade à fratura (K_Ic), que mede a resistência de um material à propagação de 

uma trinca pré-existente (MOTOTAKE et al., 2022). Este é um parâmetro crítico para 

o projeto de componentes estruturais, pois governa a tolerância a defeitos. A análise 

da superfície de fratura, conhecida como fratografia, é uma ferramenta poderosa 

para entender os mecanismos de falha e pode, inclusive, ser utilizada para prever 

quantitativamente a tenacidade à fratura de um material (MOTOTAKE et al., 2022). 
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Na prática industrial, uma das formas mais comuns de avaliar a tenacidade é 

através de ensaios de impacto, como o ensaio Charpy com entalhe em V (CVN) (WU 

et al., 2021). Neste teste, um corpo de prova padronizado com um entalhe é 

submetido ao impacto de um pêndulo com energia conhecida. A energia absorvida 

pelo material durante a fratura, conhecida como energia de impacto, é uma medida 

direta de sua tenacidade sob altas taxas de deformação (WU et al., 2021). Esta 

propriedade é crucial para materiais utilizados em aplicações que exigem alta 

confiabilidade, como em aços para a indústria automotiva e de construção, pois 

indica a capacidade do material de resistir a cargas de choque sem sofrer uma fratura 

frágil (WU et al., 2021).  

 
Figura 11 - Curva Tensão vs. Deformação para um polímero auto-regenerativo, onde a área 
sob a curva representa a tenacidade (Toughness) do material, ou seja, a energia absorvida 

antes da fratura 

 

Fonte: adaptado de ANWAR et al., 2021. 

2.4.5 RESISTÊNCIA AO DESGASTE 

A resistência ao desgaste é a propriedade que descreve a capacidade de um 

material de resistir à perda progressiva de material de sua superfície devido ao 

movimento relativo contra uma superfície adjacente (SHEN et al., 2022). Em 

aplicações de engenharia, especialmente em componentes submetidos a atrito e 

contato deslizante, como engrenagens, rolamentos e ferramentas de usinagem, a 
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resistência ao desgaste é um fator crítico que determina a vida útil, a confiabilidade 

e a eficiência do componente (WANG et al., 2020). A falha por desgaste pode levar 

à perda de precisão dimensional, aumento do consumo de energia e, em casos 

extremos, à falha catastrófica do sistema mecânico (WANG et al., 2020). 

O comportamento de um material sob desgaste é influenciado por uma 

complexa interação de fatores, incluindo as propriedades do próprio material (como 

dureza e microestrutura), as condições de operação (carga, velocidade, 

temperatura) e a natureza das superfícies em contato (SHEN et al., 2022). Em aços, 

por exemplo, a estabilidade da microestrutura na camada superficial, como a 

austenita retida em aços carburizados, desempenha um papel decisivo na 

resistência ao desgaste, pois governa fenômenos como o encruamento a frio e a 

transformação martensítica induzida por deformação durante o atrito (SHEN et al., 

2022). 

Para avaliar a resistência ao desgaste, um dos métodos experimentais mais 

comuns é o ensaio de pino sobre disco (pin-on-disk), esquematizado na Figura 12

 . Neste ensaio, um pino feito do material a ser testado é pressionado com uma 

carga constante contra um disco giratório. A taxa de desgaste é então quantificada 

medindo-se a perda de massa do pino ou o volume de material removido ao longo 

de uma determinada distância de deslizamento (SHEN et al., 2022). A análise da 

superfície desgastada, geralmente realizada por meio de Microscopia Eletrônica de 

Varredura (MEV), como mostrado na Figura 13, revela os mecanismos de desgaste 

dominantes, como abrasão (riscamento), adesão (transferência de material) e a 

formação de camadas tribológicas (ou tribolayers), que são camadas superficiais 

modificadas formadas durante o processo de deslizamento (SHEN et al., 2022). 
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Figura 12 - Esquema do ensaio de desgaste do tipo pino sobre disco (pin-on-disk). 

 

Fonte: adaptado de SHEN et al., 2022. 

 

Figura 13 - Imagem de MEV da superfície desgastada de um corpo de prova, mostrando as 
marcas de desgaste e a formação de uma camada tribológica (tribolayer) após o ensaio. 

 

Fonte: adaptado de SHEN et al., 2022) 
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3 APLICAÇÕES DE CASO 

Após a fundamentação das principais arquiteturas de deep learning e das 

propriedades mecânicas de interesse, esta seção tem como objetivo ilustrar a 

aplicação prática desses conceitos por meio de uma análise de casos de uso 

extraídos da literatura científica recente. O propósito é demonstrar como diferentes 

modelos de inteligência artificial estão sendo empregados para resolver problemas 

concretos na ciência e engenharia dos materiais. Cada estudo selecionado será 

resumido, destacando a metodologia utilizada, o desafio abordado e os principais 

resultados quantitativos e qualitativos alcançados, oferecendo um panorama do 

estado da arte em ação. 

Sang Ye(YE et al., 2019) propôs o uso Rede Neural Convolucional (CNN), 

para prever as propriedades elásticas de compósitos, como o módulo de Young e o 

coeficiente de Poisson, diretamente a partir de imagens de microestruturas. A CNN 

foi treinada com um banco de dados gerado por simulações de elementos finitos e 

demonstrou alta precisão, alcançando um erro médio (RMSE) de apenas 0,38 GPa 

para o módulo de Young e 0,0010 para o coeficiente de Poisson. O estudo destaca 

a eficácia do modelo mesmo para microestruturas complexas e não vistas durante o 

treinamento, superando abordagens analíticas tradicionais. 

Lu Lu (LU et al., 2020) em seu trabalho, utilizou deep learning para mapear 

diretamente as curvas de carga-deslocamento da indentação para propriedades 

elastoplásticas, como o limite de escoamento e o expoente de encruamento. O 

modelo alcançou uma precisão notável, com um coeficiente de determinação (R²) 

superior a 0,99 para todas as propriedades previstas, validando a abordagem como 

uma alternativa rápida e confiável aos complexos métodos de análise inversa. 

No estudo de Yuichiro Murakami (MURAKAMI et al., 2024), o foco foi a 

previsão de propriedades mecânicas de ligas de alumínio a partir de suas 

microestruturas. Utilizando uma Rede Neural Convolucional, o modelo foi treinado 

para analisar imagens metalográficas e prever o limite de resistência à tração, o 

alongamento na fratura, o módulo de Young e o limite de escoamento. Os resultados 

foram excelentes, com o modelo alcançando um R² de 0,978 na previsão do módulo 

de Young, demonstrando a capacidade do deep learning de capturar as complexas 

relações entre a morfologia das fases e o comportamento mecânico. 

Explorando a capacidade da IA generativa, o trabalho de Zhenze Yang (YANG 
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et al., 2021) utilizou uma Rede Generativa Adversarial Condicional (cGAN) para 

prever campos completos de tensão e deformação em compósitos hierárquicos. O 

modelo aprendeu a traduzir a geometria da microestrutura diretamente em mapas 

de tensão, alcançando uma precisão impressionante não apenas nos campos de 

dados, mas também nas propriedades derivadas, como a rigidez e a tenacidade. 

Qualitativamente, a cGAN foi capaz de capturar com fidelidade os locais de alta 

concentração de tensão, provando seu potencial para acelerar drasticamente as 

análises de elementos finitos. 

Visando aprimorar a técnica de Correlação de Imagem Digital (DIC), Ru Yang 

(YANG et al., 2022) desenvolveu uma abordagem baseada em deep learning com 

duas CNNs para medição de deslocamento e deformação. O modelo alcançou um 

erro de medição de deformação extremamente baixo, na ordem de 10⁻⁵, e 

demonstrou ser até 100 vezes mais rápido que os softwares comerciais, 

representando um avanço significativo para a caracterização de materiais em tempo 

real. 

No campo da tomografia computadorizada (TC), o trabalho de Hao Gong 

(GONG et al., 2020) apresentou uma CNN para realizar a decomposição de materiais 

diretamente a partir de imagens de TC de dupla energia. O modelo foi capaz de 

estimar a distribuição de densidade de diferentes materiais (como iodo e gordura) 

com alta precisão, alcançando um erro relativo médio de apenas 1,3% para o iodo 

em doses de radiação clinicamente relevantes. Este caso de uso demonstra o 

potencial do deep learning para substituir processos de inversão complexos em 

técnicas de imagem avançadas. 

Explorando o comportamento de materiais granulares, Tongming Qu (QU et 

al., 2021) utilizou uma Rede Neural Recorrente (RNN) para prever as relações de 

tensão-deformação a partir de dados de ensaios triaxiais simulados. O modelo 

aprendeu a prever a evolução da tensão com base no histórico de deformação, 

alcançando um coeficiente de determinação (R²) de 0,98. Qualitativamente, o estudo 

validou a capacidade das RNNs de modelar a histerese e a dependência do caminho, 

características complexas do comportamento constitutivo dos materiais. 

Focando na previsão da resistência à tração de concretos de ultra-alto 

desempenho reforçados com fibras (UHPFRC), Xin Luo (LUO; MATSUMOTO, 2025) 

desenvolveu uma abordagem inovadora utilizando uma CNN. O modelo foi treinado 
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para, a partir de imagens da superfície do material, primeiro prever a localização da 

futura trinca de fratura e, em seguida, usar essa informação para estimar a 

resistência à tração. A metodologia alcançou uma alta correlação com os dados 

experimentais, com um R² de 0,89, demonstrando o potencial da IA para prever a 

falha em materiais complexos e heterogêneos. 

Para lidar com o desafio de bancos de dados pequenos, Chunyuan Cui (CUI 

et al., 2022) desenvolveu um modelo de deep learning guiado por metalurgia física 

para prever o limite de escoamento de aços laminados a quente. A abordagem 

utilizou princípios metalúrgicos para criar um grande banco de dados "virtualmente 

rotulado" para pré-treinar a rede, que foi então refinada com um pequeno conjunto 

de dados experimentais. O modelo final alcançou uma precisão impressionante, com 

um erro médio absoluto de apenas 15.8 MPa, superando modelos que não utilizaram 

o pré-treinamento. 

No estudo de Zhikun Huang (HUANG et al., 2024), uma abordagem de deep 

learning foi aplicada para prever a resistência à fadiga de ligas ferrosas. O modelo 

foi treinado com uma base de dados que incluía composição química, parâmetros de 

tratamento térmico e propriedades mecânicas. A rede neural alcançou uma alta 

capacidade de generalização, com um coeficiente de correlação de 0,95 entre os 

valores previstos e os experimentais, demonstrando ser uma ferramenta eficaz para 

acelerar o projeto de materiais resistentes à fadiga. 

Para corrigir distorções de imagem em ensaios mecânicos de alta 

temperatura, Yuhan Gao (GAO et al., 2024) desenvolveu um modelo de deep 

learning baseado em Transformers para a técnica de Correlação de Imagem Digital 

(DIC). O modelo foi treinado para corrigir as distorções causadas pelo fluxo de ar 

térmico, um problema que afeta a precisão das medições. A abordagem se mostrou 

altamente eficaz, reduzindo o erro médio de medição de deformação em mais de 

80% em comparação com imagens não corrigidas. 

No campo da análise de falhas em compósitos, Daniel Vuong (VUONG, 2023) 

desenvolveu um modelo de deep learning 3D para a segmentação automática de 

quebras de fibra em imagens de tomografia de polímeros reforçados com fibra de 

carbono. Utilizando uma arquitetura baseada na U-Net 3D, o modelo alcançou um 

Coeficiente de Similaridade de Dice (Dice Score) de 0,81, indicando uma alta 

sobreposição entre as quebras de fibra segmentadas pela IA e as anotações 
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manuais de especialistas. Este trabalho destaca a capacidade da IA em automatizar 

a análise microestrutural 3D, uma tarefa tradicionalmente manual e demorada. 

Para a classificação da resistência à tração em juntas soldadas, o trabalho de 

Somphop Chiaranai (CHIARANAI et al., 2023) empregou um modelo de ensemble 

de Redes Neurais Convolucionais (CNNs). A abordagem utilizou imagens da 

superfície do cordão de solda para classificar a resistência da junta em três 

categorias (baixa, média, alta). O modelo final alcançou uma acurácia de 

classificação impressionante de 98,33%, demonstrando o potencial do deep learning 

como uma ferramenta de controle de qualidade não destrutivo e automatizado para 

processos de soldagem por fricção e mistura. 

4 DESAFIOS E LIMITAÇÕES 

Embora as seções anteriores tenham destacado o potencial transformador do 

deep learning na previsão de propriedades mecânicas, evidenciando sua acurácia e 

versatilidade em diversos estudos de caso, a adoção e aprimoramento dessas 

metodologias não estão isentos de obstáculos. Os modelos, por mais precisos que 

sejam, operam em um campo complexo e multifacetado, onde fatores como a 

natureza dos dados, a necessidade de interpretabilidade e a capacidade de 

generalização representam desafios críticos. 

Esta seção se propõe a analisar, de forma aprofundada, as principais barreiras 

enfrentadas pela literatura revisada. A discussão se concentrará em quatro pontos-

chave: a construção e a qualidade dos dados de treinamento, a natureza de "caixa 

preta" dos modelos e a busca por interpretabilidade, as dificuldades em garantir a 

generalização e a robustez das predições, e, por fim, os desafios mais amplos que a 

pesquisa futura busca superar. Ao abordar criticamente estas limitações, o presente 

trabalho contribui com uma visão mais completa e realista da aplicação do deep 

learning na ciência e engenharia de materiais, fornecendo um guia essencial para o 

desenvolvimento de soluções mais confiáveis e aplicáveis em um ambiente real. 

4.1 CONSTRUÇÃO E QUALIDADE DE DADOS 

A Um dos desafios mais significativos e fundamentais para a aplicação bem-

sucedida de deep learning na ciência dos materiais é a construção de um banco de 

dados grande, confiável e de alta qualidade (ZHANG et al., 2021). Diferentemente 
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de outras áreas onde os dados digitais são abundantes, na engenharia de materiais 

cada ponto de dado frequentemente corresponde a um ensaio experimental caro e 

demorado ou a uma simulação computacional intensiva (LI et al., 2020; SHEN et al., 

2022). A obtenção de dados puramente experimentais em grande volume é, na 

maioria dos casos, inviável devido ao alto custo de equipamentos, tempo de ensaio 

e necessidade de mão de obra especializada (LONG et al., 2023). 

Para contornar essa limitação, a literatura aponta o uso de dados sintéticos 

como uma estratégia fundamental. Muitos estudos geram vastos bancos de dados 

por meio de simulações computacionais, como o Método dos Elementos Finitos 

(MEF). Gholami et al. (2023), por exemplo, geraram 9000 imagens 2D sintéticas de 

microestruturas de hidrogéis para treinar modelos e prever suas propriedades 

mecânicas. De forma semelhante, Shang et al. (2023) criaram um banco de dados 

com 10.240 microestruturas 3D de Ti-6Al-4V usando o método de elementos finitos 

de plasticidade cristalina (CPFEM). Outros trabalhos focam na geração de curvas de 

dados, como o de Long et al. (2023), que produziu 10.000 conjuntos de dados de 

curvas de indentação carga-deslocamento. A Figura 14 ilustra um fluxo de trabalho 

exemplar, onde simulações térmicas 3D são usadas para gerar distribuições de 

temperatura que servem como entrada para um modelo de deep learning (CGAN) 

que prevê a distribuição de dureza (OH; KI, 2019). 

Contudo, a dependência de dados sintéticos introduz um novo desafio: o 

"hiato de realidade" (reality gap) entre os domínios simulado e experimental (PYLE 

et al.). Os resultados de ensaios físicos são inerentemente sujeitos a variabilidade e 

ruído, decorrentes de flutuações no processo de fabricação, imprecisões nos 

equipamentos ou condições ambientais. Modelos treinados exclusivamente com 

dados de simulação "perfeitos" podem falhar ao serem aplicados a dados 

experimentais "ruidosos". O trabalho de Pyle et al. demonstra essa questão ao tentar 

caracterizar trincas, onde o modelo foi treinado em um grande volume de dados 

simulados, mas precisou de técnicas de adaptação de domínio para funcionar com 

um conjunto limitado de apenas 15 amostras experimentais. 

Finalmente, para que o aprendizado supervisionado seja eficaz, os dados 

precisam ser não apenas abundantes, mas também limpos e bem rotulados. A 

rotulagem — o processo de associar cada entrada (e.g., uma imagem de 

microestrutura) a uma saída correta (e.g., sua resistência à tração) — deve ser 
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precisa. Quando os dados são compilados de diversas fontes da literatura, como no 

estudo de Zhang et al. (2021) sobre fadiga e fluência do aço 316, um esforço 

significativo de curadoria é necessário para garantir a consistência, tratar valores 

ausentes e normalizar os dados, assegurando que o modelo aprenda correlações 

físicas verdadeiras em vez de ruído experimental. 

 
Figura 14 - Fluxo de trabalho para geração de banco de dados via simulação. 

 

Fonte: adaptado de OH; KI, 2019. 

4.2 COMPLEXIDADE E QUALIDADE DOS DADOS 

Além do desafio de obter um grande volume de dados, a própria natureza das 

informações na ciência dos materiais impõe barreiras significativas. Os modelos de 

deep learning precisam lidar com uma alta complexidade, decorrente da 

heterogeneidade e da dimensionalidade dos dados, e garantir a qualidade destes 

para que as previsões sejam fisicamente coerentes e confiáveis. 

A complexidade se manifesta na variedade de tipos de dados que precisam 

ser integrados. Os bancos de dados de materiais raramente são compostos apenas 

por valores numéricos escalares. Eles frequentemente incluem dados heterogêneos 

como: imagens 2D e 3D de microestruturas, dados sequenciais de séries temporais 

e dados de campo (CHEN, 2024). A previsão da plasticidade dependente do 

caminho, por exemplo, é um fenômeno altamente não linear que exige que o modelo 

processe toda a história da deformação. Para treinar uma rede recorrente (RNN) 

capaz de prever esse comportamento, Mozaffar et al. (2019) geraram um banco de 
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dados com 10.000 caminhos de deformação aleatórios. Em outro exemplo inovador, 

para estimar a dureza de um material pelo toque, Yuan et al. (2017) alimentaram um 

modelo de deep learning com mais de 12.000 leituras táteis, que consistiam em 

imagens de alta resolução (320x240 pixels) geradas por um sensor especializado. 

A integração desses dados multimodais é um desafio, mas a qualidade e a 

representatividade de cada tipo de dado são igualmente cruciais. A calibração de 

modelos constitutivos elastoplásticos, por exemplo, depende fundamentalmente da 

qualidade dos dados experimentais. Para capturar comportamentos complexos, é 

necessário ir além de ensaios uniaxiais simples e utilizar ensaios heterogêneos — 

como o ensaio em chapas com furos, que geram campos de deformação completos e 

não uniformes, conforme ilustrado na Figura 15. Para treinar modelos de aprendizado 

de máquina com essa finalidade, Bastos et al. (2022) utilizaram um banco de dados 

de 2500 ensaios virtuais, onde cada ensaio fornecia 200 frames de dados de campo 

completo (full-field data). A obtenção e o processamento desses dados são mais 

complexos, mas fornecem informações muito mais ricas e de maior qualidade para a 

identificação precisa dos parâmetros do material (BASTOS et al., 2022). O sucesso 

do modelo de deep learning depende, portanto, não apenas da quantidade de dados, 

mas de sua capacidade de representar fielmente a física do problema, garantindo que 

os dados de entrada sejam de alta fidelidade (FANG et al., 2021). 

 

Figura 15 - Exemplo de ensaio heterogêneo (a) e o mapa de deformação (b) de campo 
completo resultante. 
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Fonte: adaptado de BASTOS et al., 2022. 

4.3 INTERPRETABILIDADE DOS MODELOS 

Apesar do alto desempenho preditivo, uma das limitações mais críticas dos 

modelos de deep learning, como as Redes Neurais Profundas (DNNs), é sua 

natureza de "caixa-preta" (black box) (TAO et al., 2021; ZHANG et al., 2019). Essa 

característica refere-se à dificuldade em compreender o processo de raciocínio 

interno do modelo, ou seja, como e por que ele chega a uma determinada previsão 

a partir dos dados de entrada (ZHANG et al., 2024). Em aplicações de engenharia e 

ciência dos materiais, onde a segurança, a confiabilidade e a validação física são 

primordiais, a falta de interpretabilidade é uma barreira significativa para a adoção e 

a confiança nesses modelos (LIU et al., 2021). A necessidade de transparência é tão 

relevante que normativas globais, como as diretrizes da União Europeia para uma 

"IA de Confiança", destacam a explicabilidade como um pilar para sistemas de 

inteligência artificial robustos e éticos. 

Para contornar esse desafio, a comunidade de pesquisa tem desenvolvido 

diversas técnicas de Inteligência Artificial Explicável (XAI), que buscam "abrir a caixa-

preta" e fornecer insights sobre o processo de decisão do modelo. Entre os métodos 

mais proeminentes aplicados na ciência dos materiais estão: 

 Propagação de Relevância por Camadas (LRP – Layer-wise Relevance 
Propagation): Esta técnica decompõe a predição final de uma rede neural e 

propaga sua "relevância" para trás, camada por camada, até a entrada. O 

resultado é uma quantificação da contribuição de cada variável de entrada 

para a saída final. Por exemplo, em um estudo para prever a resistência à 

tração na manufatura aditiva, a LRP foi utilizada para analisar um modelo de 

deep learning, revelando que a altura da camada (layer height) era o 

parâmetro de processo com maior relevância, contribuindo com 40% para a 

predição (ZHANG et al., 2019). 

 SHAP (SHapley Additive exPlanations): Baseado na teoria dos jogos, o 

SHAP calcula a contribuição marginal de cada característica para a predição, 

considerando todas as combinações possíveis de características. Em um 

estudo sobre a previsão da resistência útil remanescente (RUS) em 

compósitos, a análise SHAP demonstrou que a característica "energia" dos 
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sinais de ultrassom era, de longe, o preditor mais influente, com um valor 

SHAP médio de aproximadamente 0.4, superando significativamente outras 

características (TAO et al., 2021). De forma similar, o SHAP foi usado para 

identificar que os elementos de liga Cr, Mo e W são os mais importantes para 

a estabilidade da austenita retida em aços, fornecendo uma validação física 

para as predições do modelo (SHEN et al., 2022). 

 Grad-CAM (Gradient-weighted Class Activation Mapping): Específico para 

modelos baseados em convolução (CNNs), o Grad-CAM utiliza os gradientes 

da última camada convolucional para produzir um mapa de calor que destaca 

as regiões mais importantes da imagem de entrada para uma determinada 

decisão. Conforme ilustrado na Figura 16, em um estudo com a rede MPR-

Net para prever propriedades do aço 316L, o Grad-CAM revelou que o modelo 

focava na morfologia e nos limites da poça de fusão para prever a resistência 

à tração, conectando a predição da IA a um mecanismo microestrutural 

conhecido (ZHANG et al., 2024). 

Essas técnicas são fundamentais não apenas para validar se o modelo está 

aprendendo correlações fisicamente coerentes, mas também para extrair novo 

conhecimento científico, otimizar processos e guiar o desenvolvimento de novos 

materiais de forma mais informada. 

 
Figura 16 - Visualização de características da MPR-Net usando Grad-CAM. 

 

Fonte: adaptado de ZHANG et al., 2024. 
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4.4 GENERALIZAÇÃO 

A Um dos desafios mais persistentes no desenvolvimento de modelos de deep 

learning é garantir sua capacidade de generalização, ou seja, sua habilidade de fazer 

previsões precisas para dados novos e nunca antes vistos. O principal obstáculo à 

generalização é o fenômeno do sobreajuste (overfitting), que ocorre quando um 

modelo se ajusta excessivamente aos dados de treinamento, memorizando seus 

ruídos e particularidades em vez de aprender as relações subjacentes (CHEN, 

2024). Um modelo sobreajustado pode apresentar um desempenho excelente no 

conjunto de treinamento, mas falhar drasticamente quando exposto a novos dados, 

tornando-o inútil para aplicações práticas. 

Na ciência dos materiais, onde os dados são caros e muitas vezes limitados, 

o risco de overfitting é particularmente alto. Para mitigar esse problema, uma prática 

padrão e indispensável é a divisão do banco de dados em conjuntos distintos: 

treinamento, validação e teste. O conjunto de treinamento é usado para ajustar os 

pesos do modelo; o conjunto de validação é usado para otimizar os hiperparâmetros 

(como a arquitetura da rede ou a taxa de aprendizado) e monitorar o overfitting 

durante o treinamento; e o conjunto de teste, mantido "oculto" durante todo o 

processo, serve para a avaliação final e imparcial da capacidade de generalização 

do modelo (BASTOS et al., 2022; NIKOLIĆ; ČANAĐIJA, 2023). Por exemplo, Bastos 

et al. (2022), ao desenvolverem um modelo para identificação de parâmetros de 

materiais, dividiram seu banco de dados de 2500 ensaios virtuais em 70% para 

treinamento, 15% para validação e 15% para teste. 

A técnica de validação cruzada (cross-validation) é uma abordagem ainda 

mais robusta, especialmente para bancos de dados menores. Nela, os dados são 

divididos em k subconjuntos (ou folds), e o modelo é treinado k vezes, utilizando, a 

cada vez, um subconjunto diferente para teste e o restante para treinamento. Isso 

garante que todos os dados sejam utilizados tanto para treinar quanto para testar o 

modelo, fornecendo uma estimativa mais estável e confiável de seu desempenho em 

dados novos. 

O desafio final da generalização é a capacidade de um modelo, muitas vezes treinado 

com dados de simulação, de prever corretamente o comportamento de materiais em 

cenários do mundo real. Fang et al. (2021) abordaram exatamente este ponto ao 

treinar uma Rede de Crenças Profundas (DBN) com um vasto banco de dados de 
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10.500 pontos gerados por análise de elementos finitos. A verdadeira prova de 

generalização do modelo foi sua aplicação para prever a capacidade axial de perfis 

de aço a partir de resultados experimentais encontrados na literatura. Como 

demonstrado na Figura 17, embora com um certo grau de conservadorismo, as 

previsões do modelo seguiram a tendência dos dados experimentais, validando sua 

capacidade de transpor o "hiato de realidade" entre a simulação e o experimento. 

 

Figura 17 - Comparação entre as previsões de um modelo DBN (treinado com dados de 
simulação). 

 

Fonte: adaptado de FANG et al., 2021. 

5 TENDÊNCIAS FUTURAS 

À medida que a aplicação do deep learning na ciência dos materiais 

amadurece, o foco da pesquisa transcende a simples busca por precisão preditiva, 

avançando em direção a sistemas de inteligência artificial mais integrados, confiáveis 

e autônomos. As tendências futuras apontam para a superação dos desafios de 

dados e interpretabilidade por meio de inovações em metodologias de treinamento, 

arquiteturas de modelos e a fusão com outras tecnologias da Indústria 4.0. 

Para contornar o desafio da escassez de dados experimentais, o campo está 

se movendo em direção a estratégias mais eficientes, como o Aprendizado por 

Transferência (Transfer Learning) e a Adaptação de Domínio (Domain Adaptation). 

Essas abordagens permitem que um modelo treinado em um domínio com dados 

abundantes (como simulações) seja ajustado para operar em um domínio com dados 

limitados (como ensaios experimentais ou dados de diferentes sensores), mitigando 

o "hiato de realidade" entre o virtual e o físico (SIAHPOUR et al., 2020; LI; ZHANG, 
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2020). A IA Generativa, por meio de modelos como as Redes Generativas 

Adversariais (GANs), também surge como uma solução poderosa, capaz de criar 

dados sintéticos de alta fidelidade — como imagens de microestruturas — para 

aumentar os bancos de dados de treinamento e tornar os modelos preditivos mais 

robustos (CHEN, 2024; MALASHIN et al., 2025). 

Paralelamente, para solucionar o problema da "caixa-preta", a Inteligência 

Artificial Explicável (XAI) continuará a ser uma área de intensa pesquisa, buscando 

tornar os modelos mais transparentes e confiáveis para aplicações críticas de 

engenharia (CHEN, 2024). Olhando para o futuro, a tendência mais impactante é a 

integração do deep learning em plataformas de Projeto Inverso de Materiais (Inverse 

Materials Design). Em vez de apenas prever a propriedade de uma microestrutura 

existente (o problema direto), esses sistemas são capazes de, a partir de um 

conjunto de propriedades-alvo, explorar o vasto espaço de design para propor novas 

microestruturas e os parâmetros de processo ideais para fabricá-las, como ilustrado 

na Figura 18 (SHANG et al., 2023). 

 

Figura 18 - Esquema de um framework de projeto inverso de materiais. 

 

Fonte: adaptado de SHANG et al., 2023. 

A integração dessas técnicas com tecnologias da Indústria 4.0, como a 
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Internet das Coisas (IoT), permitirá a criação de "gêmeos digitais" (digital twins), onde 

sensores em tempo real alimentam modelos de IA que monitoram a saúde e o 

desempenho de componentes durante toda a sua vida útil (MONDAL; GOSWAMI, 

2024). No entanto, à medida que esses sistemas se tornam mais autônomos e 

capazes de gerar conteúdo e tomar decisões, as questões éticas sobre o uso 

responsável da tecnologia, a validação de dados sintéticos e a confiabilidade das 

previsões em cenários de alto risco se tornarão cada vez mais prementes, exigindo 

diretrizes claras para garantir a segurança na engenharia do futuro. 

6 METODOLOGIA 

6.1 TIPO DE ESTUDO 

O presente trabalho caracteriza-se como uma revisão sistemática da 

literatura, conduzida com base em protocolo replicável e transparente de busca, 

seleção e análise de artigos acadêmicos. De acordo com Kitchenham (2004), esse 

tipo de estudo difere de revisões narrativas ou meramente bibliográficas por seguir 

critérios metodológicos explícitos que permitem a reprodutibilidade dos resultados 

obtidos. A adoção dessa abordagem confere maior rigor científico e possibilita não 

apenas sintetizar o estado da arte, mas também identificar lacunas de pesquisa e 

tendências futuras na interseção entre ciência dos materiais e deep learning. 

6.2 PROCEDIMENTO DE COLETA DE DADOS 

A coleta dos dados foi conduzida a partir de perguntas norteadoras, 

formuladas com o objetivo de direcionar a pesquisa e garantir foco na área de 

interesse. Entre as principais questões formuladas, destacam-se:  

 Quais metodologias de deep learning têm sido mais utilizadas na 

previsão de propriedades mecânicas? 

 Quais são os principais desafios e tendências relatados na literatura 

recente?. 

Para responder a essas questões, foram consultadas bases acadêmicas de 

ampla cobertura internacional, através do Google Scholar. Essas bases foram 

selecionadas por contemplarem tanto periódicos de alto impacto em ciência dos 

materiais quanto revistas especializadas em inteligência artificial. 

A estratégia de busca foi elaborada por meio da combinação de descritores 
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relacionados a técnicas de inteligência artificial e propriedades mecânicas. As 

principais expressões utilizadas foram: 

("deep learning" OR "neural network") AND ("mechanical properties" OR 

"tensile strength" OR "hardness" OR "fracture toughness" OR "fatigue"). 

O recorte temporal adotado compreendeu o período de 2017 até 2025, com o 

intuito de privilegiar estudos recentes, refletindo a rápida evolução do campo e a 

incorporação de deep learning às áreas tradicionais de ciência e engenharia dos 

materiais. 

Inicialmente, a busca retornou aproximadamente 73 artigos elegíveis, que 

foram posteriormente filtrados conforme os critérios de inclusão e exclusão descritos 

na seção 6.3. Após essa triagem, consolidou-se um conjunto final de estudos 

selecionados que serviu de base para a análise desenvolvida neste trabalho. 

6.3 ESTRUTURA DE ANÁLISE E CLASSIFICAÇÃO 

Após a seleção final dos artigos, o material foi sistematicamente classificado 

e analisado com base em categorias pré-definidas. Essa taxonomia foi criada para 

refletir tanto os aspectos técnicos da ciência dos materiais quanto as dimensões 

computacionais do deep learning. A análise permitiu não só a síntese do 

conhecimento, mas também a identificação de lacunas e tendências na área. 

As categorias de classificação, que guiaram a análise nos capítulos 

subsequentes, foram: 

 Propriedades Mecânicas: Os estudos foram categorizados pelo 

parâmetro central investigado. As propriedades incluídas foram 

resistência à tração, dureza, tenacidade, resistência à compressão, 

fadiga, resistência ao desgaste, resistência ao escoamento, fratura e 

resitência a decomposição. Além disso, foram consideradas 

abordagens mistas, que integraram múltiplas propriedades em 

paralelo. 

 Metodologias de Deep Learning: Esta categoria focou nas 

arquiteturas de redes neurais utilizadas. As classificações incluíram 

redes neurais convolucionais (CNNs), redes neurais recorrentes 

(RNNs), redes neurais artificiais e feedforward. Também foram 

observadas outras arquiteturas e abordagens mistas. 
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 Complexidade dos Dados: Os artigos foram organizados com base 

na natureza dos dados de entrada. As classificações abrangeram 

dados numéricos tabulares, textuais, imagens (microestruturais), séries 

temporais, e dados gerados por simulações como Molecular Dynamics 

e Finite Element Method (FEM). Também foram identificados estudos 

que usaram dados sintéticos ou abordagens mistas, combinando 

diferentes tipos de dados. 

 Interpretabilidade dos Modelos: Esta categoria explicitou a 

abordagem analítica dos estudos em relação à transparência de seus 

modelos. As classificações distinguiram modelos tratados como "caixa-

preta", daqueles que usaram métodos de Aprendizado de Máquina 

Explicável (XAI) para maior clareza nos resultados. 

 Generalização: Este eixo classificou os estudos com base em sua 

abordagem para garantir a robustez e a aplicabilidade das previsões a 

novos dados. Foram consideradas técnicas de mitigação de  overfitting, 

desempenho por material, uso de validação cruzada, validação 

simples, abordagens mistas entre outras abordagens. 

 Construção de Banco de Dados: Por fim, foi criada uma categoria 

dedicada à construção e organização dos dados, reconhecendo o 

papel crucial dessa etapa no sucesso das aplicações de deep learning. 

Os artigos foram analisados com base em bancos criados a partir de 

coletas via experimento, no tamanho e diversidade das amostras, na 

padronização dos registros e no uso de estratégias como data 

augmentation, geração artificial de dados e abordagens mistas. 

 

7 RESULTADOS E DISCUSSÕES 

A presente seção apresenta uma análise detalhada do corpus de 73 artigos 

selecionados, publicados no período de 2017 a 2025. O objetivo é mapear o estado 

da arte na aplicação de deep learning na ciência dos materiais, identificando 

tendências, lacunas e os principais focos da comunidade científica. A discussão será 

organizada em eixos temáticos, seguindo a estrutura de classificação definida na 

metodologia, conectando os resultados quantitativos com os fundamentos teóricos e 
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os desafios práticos já discutidos neste trabalho. 

A aplicação de deep learning para a previsão de propriedades mecânicas de 

materiais é um campo de pesquisa notavelmente recente e em franca expansão. A 

Figura 19 ilustra a distribuição dos artigos selecionados por ano de publicação, 

revelando uma tendência de crescimento acentuado e consistente, o que indica um 

aumento no interesse da comunidade científica pelo tema. 

 

 

 
Figura 19 - Distribuição de Artigos por Ano de Publicação. 

 
 

Observa-se que o período inicial (2017-2019) representa uma fase 

exploratória, com um número ainda incipiente de publicações. Este período foi 

marcado pela aplicação de arquiteturas já consolidadas em outras áreas, como as 

Redes Neurais Convolucionais (CNNs) e Redes de Crenças Profundas (DBNs), para 

validar a viabilidade do deep learning em problemas de materiais. A partir de 2020, 

o campo entra em uma fase de crescimento acelerado, atingindo um pico de 

produção em 2021, com 14 artigos. Posteriormente, a estabilização no número de 

artigos pode indicar uma fase de consolidação da área, após a natural diminuição do 

pico de novidade associado à introdução de uma tecnologia disruptiva. É notável que 

cerca de 85% de toda a produção científica analisada (62 dos 73 artigos) foi 
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publicada a partir desse ano. 

Essa expansão pode ser diretamente associada à superação de alguns dos 

desafios que discutimos no Tópico 4. O aumento expressivo de publicações coincide 

com a consolidação de técnicas para a construção de bancos de dados via simulação 

computacional, uma solução direta para a escassez de dados experimentais. Além 

disso, a análise temporal revela o surgimento de temas mais sofisticados. Por 

exemplo, os primeiros artigos focados em Interpretabilidade (XAI) começam a 

aparecer de forma mais consistente a partir de 2020, e a Aprendizagem por 

Transferência (Transfer Learning), uma solução para o desafio da Generalização, 

também surge nesse período mais maduro da pesquisa. Isso indica que, após uma 

fase inicial de validação da precisão dos modelos, a comunidade científica passou a 

se dedicar a tornar os modelos de deep learning mais robustos, transparentes e 

aplicáveis a cenários do mundo real. 

O estudo das propriedades mecânicas investigadas revela um foco 

concentrado da comunidade científica em áreas específicas, refletindo tanto a 

relevância industrial quanto a maturidade da aplicação de deep learning para cada 

tipo de problema. A Figura 20, que apresenta a distribuição dos artigos por 

propriedade, evidencia uma clara predominância de estudos voltados para a 

previsão de propriedades fundamentais, como Resistência à Tração e Resistência 

ao Escoamento. 
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Figura 20 - Distribuição dos artigos por Propriedade Mecânica Estudada. 

 

 

Tabela 1 - Concordância dos artigos por Propriedade Mecânica Estudada. 

Propriedades Mecânicas Autores Relacionados 

Resistência à Tração 

 

 

 

(Carl Herriott, 2020); (Wei-gang Li, 

2019); (Haoliang Jiang, 2020); 

(Somphop Chiaranai, 2023); (Xin Luo, 

2025); (Jianjing Zhang, 2019); 
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 (Zhizhou Zhang, 2024); (Fasikaw 

Kibrete, 2023); (Lei Han, 2025); (Jesús 

de-Prado-Gil, 2022); (Daniel Vuong, 

2023) 

Resistência à Compressão 

(Mohammad Azarafza, 2022); (Xiang 

Li, 2019); (Brian Gallagher, 2018); 

(Yang Yu, 2023); (Zhiyuan Fang, 

2021) 

Fadiga 

(Si-Yu Shao, 2017); (Jingye Yang, 

2021); (Xiao-Cheng Zhang, 2021); 

(Erfan Maleki, 2021); (Xin Zhang, 

2021); (Chongcong Tao, 2021); 

(Steph-Yves M. Louis, 2020); (Zhikun 

Huang, 2024); (Xiang Li, 2020); 

(Shahin Siahpour, 2020); (Muhammad 

Muzammil Azad, 2024) 

Resistência ao Escoamento 

(Mojtaba Mozaffar, 2019); (Yasin 

Shokrollahi, 2023); (Ivan P. Malashin, 

2025); (Im Doo Jung, 2020); 

(Chunyuan Cui, 2022); (Xiao Shang, 

2023); (Lei Han, 2025); (Yuhan Gao, 

2024); (Chia-Wei Hsu, 2021); (Zhizhou 

Zhang, 2020) 

Dureza 

(Fu-Zhi Dai, 2019); (Soo Young Lee, 

2020); (Junbo Niu, 2023); (Vijay 

Kakani, 2021); (Wenzhen Yuan, 2017); 

(Sehyeok Oh, 2019); (Xu Long, 2023); 

(Selvarasu Saminathan Jayakumar 

Lakshmipathy, 2021); (Samgeeth Sen, 

2023); (Filip Nikolić, 2023) 

Tenacidade 
(Jing-Ang Zhu, 2021); (Hashina 

Parveen Anwar Al, 2022); (Sofien 
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Akrichi, 2019); (Si-wei Wu, 2020) 

Análise de Fratura 
(Y. Mototake, 2022); (Muhammad 

Muzammil Azad, 2024) 

Resistência ao Desgaste 
(Mingming Shen, 2022); (Mingwei 

Wang, 2020) 

Resistência à Torção (Kimia Gholami, 2023) 

Decomposição (Hao Gong, 2020) 

Misto 

(Sang Ye, 2019); (Gang Xu, 2022); 

(Hamed Bolandi, 2022); (Lu Lu, 2020); 

(Yuichiro Murakami, 2024); (Zhenze 

Yang, 2021); (Erfan Maleki, 2023); 

(Kamal Choudhary, 2022); (Zhenze 

Yang, 2021); (Ru Yang, 2022); 

(Tongming Qu, 2021); (Charles Yang, 

2020); (Ravi Kiran Bollinenia, 2025); 

(Zhenru Chen, 2024); (Varun 

Raaghav, 2025); (Shiming Liu, 2021); 

(Richard J. Pyle, 2022) 

 

Essas duas propriedades, somadas à categoria "Misto" (que frequentemente 

engloba a predição simultânea de múltiplos parâmetros da curva tensão-

deformação), correspondem a 48% de todos os artigos analisados. Essa 

concentração é esperada, pois, como discutido no Tópico 3, a curva tensão-

deformação é a "impressão digital" do comportamento mecânico de um material, e a 

previsão precisa desses limites é um passo fundamental para validar a eficácia de 

qualquer modelo de IA. A relativa facilidade em obter grandes volumes de dados de 

tração, seja por ensaios padronizados ou por simulações, reforça  essa tendência, 

alinhando-se diretamente ao desafio da Construção do Banco de Dados que 

abordamos no Tópico 4. 

Em segundo lugar, a Fadiga desponta como uma das áreas de maior 

interesse, representando 14% dos estudos. Este foco se justifica pela complexidade 

e pelo alto valor agregado da previsão da vida em fadiga, um problema onde os 
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métodos tradicionais são notoriamente caros e demorados. A capacidade dos 

modelos de deep learning, especialmente as Redes Neurais Recorrentes (RNNs) de 

lidar com o acúmulo de dano ao longo do tempo, faz desta uma área de aplicação 

natural e de grande impacto industrial. 

Propriedades como Dureza (13%) e Resistência à Compressão (7%) também 

recebem atenção considerável. Em contraste, áreas mais complexas ou de nicho, 

como Tenacidade (5%), Resistência ao Desgaste (3%) e Análise de Fratura (3%), 

aparecem com menor frequência. Esta distribuição sugere uma lacuna na literatura 

e uma oportunidade para futuras pesquisas, possivelmente indicando que a 

modelagem desses fenômenos exige dados mais complexos (como campos de 

deformação ou imagens de superfícies desgastadas), o que nos conecta diretamente 

ao desafio da Complexidade e Qualidade dos Dados. 

O exame das metodologias de deep learning adotadas na literatura mostra 

preferência por certas arquiteturas, o que está diretamente ligado à natureza dos 

dados e aos problemas específicos da ciência dos materiais. A Figura 21 que detalha 

a distribuição dos artigos por tipo de rede neural, mostra um domínio expressivo das 

Redes Neurais Convolucionais (CNNs), que foram utilizadas em 43% dos estudos 

analisados. 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

56 
 

Figura 21 - Distribuição dos artigos por Rede Neural Utilizada. 

 
 

Tabela 2 - Concordância dos artigos por Metodologia de IA Empregada. 

Rede Neural utilizada Autores relacionados 

Redes Neurais Convolucionais 

(Sang Ye, 2019); (Xiang Li, 2019); 

(Carl Herriott, 2020); (Kimia Gholami, 

2023); (Wei-gang Li, 2019); (Hamed 
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Bolandi, 2022); (Brian Gallagher, 

2018); (Yuichiro Murakami, 2024); (Xin 

Zhang, 2021); (Y. Mototake, 2022); 

(Hashina Parveen Anwar Al, 2022); 

(Zhenze Yang, 2021); (Yang Yu, 

2023); (Ru Yang, 2022); (Hao Gong, 

2020); (Charles Yang, 2020); 

(Muhammad Muzammil Azad, 2024); 

(Somphop Chiaranai, 2023); (Xin Luo, 

2025); (Yasin Shokrollahi, 2023); 

(Mingming Shen, 2022); (Xiao Shang, 

2023); (Steph-Yves M. Louis, 2020); 

(Filip Nikolić, 2023); (Yuhan Gao, 

2024); (Daniel Vuong, 2023); (Zhenru 

Chen, 2024); (Varun Raaghav, 2025); 

(Zhizhou Zhang, 2020); (Shiming Liu, 

2021); (Xiang Li, 2020); (Richard J. 

Pyle, 2022); (Shahin Siahpour, 2020) 

Redes Neurais Recorrentes 

(Gang Xu, 2022); (Chongcong Tao, 

2021); (Mojtaba Mozaffar, 2019); 

(Tongming Qu, 2021); (Jianjing Zhang, 

2019); (Xu Long, 2023); (Lei Han, 

2025); (Mingwei Wang, 2020) 

Redes Neurais Feedforward 

(Mohammad Azarafza, 2022); (Lu Lu, 

2020); (Jingye Yang, 2021); (Erfan 

Maleki, 2021); (Im Doo Jung, 2020); 

(Chunyuan Cui, 2022); (Selvarasu 

Saminathan Jayakumar Lakshmipathy, 

2021); (Samgeeth Sen, 2023); (Jesús 

de-Prado-Gil, 2022) 

cGAN 
(Zhenze Yang, 2021); (Haoliang Jiang, 

2020); (Sehyeok Oh, 2019) 
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DBN 
(Si-Yu Shao, 2017); (Sofien Akrichi, 

2019); (Zhiyuan Fang, 2021) 

MPR-Net (Zhizhou Zhang, 2024) 

Deep Learning Potential (Fu-Zhi Dai, 2019) 

Misto 

(Jing-Ang Zhu, 2021); (Soo Young 

Lee, 2020); (Xiao-Cheng Zhang, 

2021); (Erfan Maleki, 2023); (Junbo 

Niu, 2023); (Vijay Kakani, 2021); 

(Kamal Choudhary, 2022); (Wenzhen 

Yuan, 2017); (Si-wei Wu, 2020); 

(Fasikaw Kibrete, 2023); (Ravi Kiran 

Bollinenia, 2025); (Zhikun Huang, 

2024); (Lei Han, 2025); (Chia-Wei Hsu, 

2021); (Muhammad Muzammil Azad, 

2024); (Ivan P. Malashin, 2025) 
 

Essa predominância das CNNs é uma consequência direta do desafio da 

Complexidade dos Dados, discutido no Tópico 4.2. Umaparcela significativa da 

pesquisa na área utiliza imagens de microestrutura como principal fonte de dados 

para prever propriedades mecânicas. Como apresentado no Tópico 2, as CNNs são 

arquiteturas especializadas na extração de características espaciais, o que as torna 

a ferramenta ideal para aprender as complexas relações entre a morfologia da 

microestrutura e o desempenho do material. 

As Redes Neurais Feedforward (agrupando aqui as arquiteturas ANN, DNN, 

FCNN e Feedforward tradicionais) e as Redes Neurais Recorrentes (RNNs) 

(incluindo LSTMs) também figuram com relevância, correspondendo a 12% e 11% 

dos trabalhos, respectivamente. O uso de RNNs está associado a problemas que 

envolvem dados sequenciais, como a previsão de curvas de tensão-deformação ou 

a análise de processos de fabricação que evoluem no tempo, como a manufatura 

aditiva. 

Arquiteturasi especializadas, como as Redes de Crenças Profundas (DBNs) 

e as Redes Generativas Adversariais (cGANs), embora menos frequentes (ambas 
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com 4%), representam a fronteira da pesquisa. O uso de DBNs, por exemplo, é uma 

resposta ao desafio da escassez de dados, enquanto as cGANs são uma tendência 

futura para a geração de dados sintéticos e o projeto inverso de materiais. Por fim, a 

categoria "Misto", com 20%, indica uma  crescente para o uso de arquiteturas 

híbridas ou de múltiplos modelos (ensemble), buscando combinar as forças de 

diferentes redes para resolver problemas ainda mais complexos. 

A igura 7.4 mostra a natureza dos dados de entrada  evidenciando a crescente 

sofisticação dos modelos de deep learning e a sua capacidade de lidar com 

informações heterogêneas. Embora os dados numéricos tabulares ainda 

representem uma parcela significativa (28%), refletindo a abordagem tradicional de 

alimentar redes neurais com parâmetros de processo e composição química, a 

tendência aponta para o uso de dados mais complexos e multimodais. 

 

Figura 22 - Distribuição dos artigos por Tipo de Dado de Entrada. 
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Tabela 3 - Concordância dos artigos por Tipo de Dado de Entrada. 

Tipo de Dado de Entrada Autores relacionados 

Númerico 

(Mohammad Azarafza, 2022); (Lu Lu, 

2020); (Soo Young Lee, 2020); (Erfan 

Maleki, 2021); (Junbo Niu, 2023); 

(Sofien Akrichi, 2019); (Yang Yu, 

2023); (Zhiyuan Fang, 2021); 

(Tongming Qu, 2021); (Ivan P. 

Malashin, 2025); (Im Doo Jung, 2020); 

(Chunyuan Cui, 2022); (Xu Long, 

2023); (Lei Han, 2025); (Si-wei Wu, 

2020); (Selvarasu Saminathan 

Jayakumar Lakshmipathy, 2021); 

(Samgeeth Sen, 2023); (Jesús de-

Prado-Gil, 2022); (Filip Nikolić, 2023); 

(Zhenru Chen, 2024) 

Imagens 

(Brian Gallagher, 2018); (Y. Mototake, 

2022); (Hashina Parveen Anwar Al, 

2022); (Wenzhen Yuan, 2017); (Ru 

Yang, 2022); (Hao Gong, 2020); 

(Muhammad Muzammil Azad, 2024); 

(Xin Luo, 2025); (Mingming Shen, 

2022); (Xiao Shang, 2023); (Fasikaw 

Kibrete, 2023); (Somphop Chiaranai, 

2023); (Daniel Vuong, 2023) 

Séries Temporais 

(Si-Yu Shao, 2017); (Gang Xu, 2022); 

(Jingye Yang, 2021); (Xin Zhang, 

2021); (Chongcong Tao, 2021); 

(Mojtaba Mozaffar, 2019); (Xiang Li, 

2020); (Shahin Siahpour, 2020); 

(Muhammad Muzammil Azad, 2024) 
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Método dos Elementos Finitos 

(Hamed Bolandi, 2022); (Yasin 

Shokrollahi, 2023); (Yuhan Gao, 2024); 

(Chia-Wei Hsu, 2021); (Shiming Liu, 

2021); (Richard J. Pyle, 2022) 

Misto 

(Sang Ye, 2019); (Xiang Li, 2019); 

(Carl Herriott, 2020); (Jing-Ang Zhu, 

2021); (Kimia Gholami, 2023); 

(Wei-gang Li, 2019); (Yuichiro 

Murakami, 2024); (Zhenze Yang, 

2021); (Xiao-Cheng Zhang, 2021); 

(Erfan Maleki, 2023); (Vijay Kakani, 

2021); (Kamal Choudhary, 2022); 

(Zhenze Yang, 2021); (Charles Yang, 

2020); (Haoliang Jiang, 2020); 

(Jianjing Zhang, 2019); (Sehyeok Oh, 

2019); (Zhizhou Zhang, 2024); (Steph-

Yves M. Louis, 2020); (Ravi Kiran 

Bollinenia, 2025); (Zhikun Huang, 

2024); (Mingwei Wang, 2020); (Varun 

Raaghav, 2025); (Zhizhou Zhang, 

2020) 

Dinâmica Moleculas (Fu-Zhi Dai, 2019) 

 

A categoria Misto, que representa a combinação de diferentes tipos de dados 

(como imagens e parâmetros numéricos), é a mais prevalente, com 32% dos artigos. 

Isso indica que a comunidade científica reconhece a necessidade de fornecer aos 

modelos um contexto mais rico, combinando, por exemplo, a microestrutura visual 

com as condições de processamento. Essa abordagem está alinhada com o desafio 

da Complexidade e Qualidade dos Dados discutido no Tópico 4, onde a integração 

de fontes de informação heterogêneas é fundamental para capturar a física completa 

do problema. 

O uso direto de imagens (17%) e séries temporais (12%) também é notável e 
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se correlaciona diretamente com a popularidade das arquiteturas de IA que 

analisaremos a seguir. O crescimento no uso de imagens de microestrutura justifica 

o domínio das CNNs, enquanto os dados de séries temporais, como curvas de 

tensão-deformação ou sinais de sensores, são o domínio das RNNs e LSTMs. 

Cerca de 8% dos estudos utilizam dados provenientes diretamente do Método 

dos Elementos Finitos (FEM). Este dado reforça nossa discussão sobre a 

Construção do Banco de Dados, mostrando que a simulação computacional não é 

apenas uma ferramenta para gerar grandes volumes de dados, mas também uma 

fonte de dados de alta complexidade, como campos de tensão e deformação, que 

são essenciais para treinar modelos capazes de prever respostas mecânicas 

complexas. 

O levantamento da abordagem de interpretabilidade dos modelos, cujos 

dados estão compilados na Figura 23, revela um dos maiores desafios e, ao mesmo 

tempo, uma das mais significativas áreas de crescimento para a aplicação de deep 

learning na ciência dos materiais. Os resultados são contundentes: uma esmagadora 

maioria de 76% dos artigos (60 dos 73 analisados) trata os modelos de IA como uma 

"Caixa-Preta" (Black Box). 

Este dado quantitativo corrobora diretamente a discussão do Tópico 4.3, 

evidenciando que o foco principal da pesquisa até o momento tem sido a validação 

da capacidade preditiva dos modelos, muitas vezes em detrimento da compreensão 

de seus mecanismos internos de decisão. Os pesquisadores, em grande parte, 

demonstram que os modelos funcionam, mas não exploram o "porquê" de 

funcionarem. Essa abordagem, embora eficaz para muitas tarefas, representa uma 

barreira para a adoção da IA em aplicações de alta responsabilidade na engenharia, 

onde a confiança e a validação física são indispensáveis. 

No entanto, a análise também aponta para uma tendência futura promissora. 

Um total de 17% dos estudos (14 artigos) já emprega ativamente técnicas de 

Inteligência Artificial Explicável (XAI). A presença desses métodos, embora ainda 

minoritária, indica uma crescente conscientização da comunidade científica sobre a 

necessidade de transparência. Como vimos no Tópico 5, o uso de técnicas como 

SHAP e Grad-CAM está se tornando mais comum para validar se as previsões dos 

modelos estão alinhadas com o conhecimento metalúrgico e físico, transformando a 

IA de uma simples ferramenta de predição em um potencial instrumento para a 
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descoberta de novo conhecimento científico. A pequena fração de artigos 

classificados como "Misto" (2,6%) representa, provavelmente, trabalhos que, embora 

não apliquem uma técnica de XAI formal, realizam análises de sensibilidade 

paramétrica para entender a influência das variáveis de entrada. 

 
Figura 23 - Distribuição dos artigos por Abordagem de Interpretabilidade. 

 

 

 

Tabela 4 - Concordância dos artigos por Abordagem de Interpretabilidade. 

Abordagem de Interpretabilidade Autores relacionados 

Caixa-Preta 
(Sang Ye, 2019); (Si-Yu Shao, 2017); 

(Mohammad Azarafza, 2022); (Xiang 
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Li, 2019); (Carl Herriott, 2020); (Fu-Zhi 

Dai, 2019); (Jing-Ang Zhu, 2021); 

(Kimia Gholami, 2023); (Gang Xu, 

2022); (Wei-gang Li, 2019); (Hamed 

Bolandi, 2022); (Lu Lu, 2020); (Brian 

Gallagher, 2018); (Yuichiro Murakami, 

2024); (Zhenze Yang, 2021); (Jingye 

Yang, 2021); (Xiao-Cheng Zhang, 

2021); (Erfan Maleki, 2021); (Xin 

Zhang, 2021); (Erfan Maleki, 2023); 

(Junbo Niu, 2023); (Vijay Kakani, 

2021); (Y. Mototake, 2022); (Hashina 

Parveen Anwar Al, 2022); (Kamal 

Choudhary, 2022); (Sofien Akrichi, 

2019); (Zhenze Yang, 2021); (Mojtaba 

Mozaffar, 2019); (Wenzhen Yuan, 

2017); (Zhiyuan Fang, 2021); (Ru 

Yang, 2022); (Hao Gong, 2020); 

(Tongming Qu, 2021); (Charles Yang, 

2020); (Haoliang Jiang, 2020); 

(Muhammad Muzammil Azad, 2024); 

(Xin Luo, 2025); (Yasin Shokrollahi, 

2023); (Im Doo Jung, 2020); (Sehyeok 

Oh, 2019); (Xiao Shang, 2023); (Xu 

Long, 2023); (Lei Han, 2025); (Steph-

Yves M. Louis, 2020); (Si-wei Wu, 

2020); (Selvarasu Saminathan 

Jayakumar Lakshmipathy, 2021); (Ravi 

Kiran Bollinenia, 2025); (Zhikun 

Huang, 2024); (Mingwei Wang, 2020); 

(Jesús de-Prado-Gil, 2022); (Filip 

Nikolić, 2023); (Yuhan Gao, 2024); 

(Daniel Vuong, 2023); (Shiming Liu, 
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2021); (Xiang Li, 2020); (Richard J. 

Pyle, 2022); (Shahin Siahpour, 2020); 

(Muhammad Muzammil Azad, 2024) 

XAI 

(Soo Young Lee, 2020); (Chongcong 

Tao, 2021); (Yang Yu, 2023); (Jianjing 

Zhang, 2019); (Ivan P. Malashin, 

2025); (Chunyuan Cui, 2022); (Zhizhou 

Zhang, 2024); (Fasikaw Kibrete, 2023); 

(Somphop Chiaranai, 2023); (Zhenru 

Chen, 2024); (Chia-Wei Hsu, 2021); 

(Varun Raaghav, 2025); (Zhizhou 

Zhang, 2020) 

Misto 
(Mingming Shen, 2022); (Samgeeth 

Sen, 2023) 

 

O mape das estratégias de generalização empregadas nos artigos, detalhada 

na Figura 24, é crucial para avaliar a maturidade e a robustez das pesquisas na área. 

Garantir que um modelo de deep learning seja capaz de generalizar, ou seja, de 

fazer previsões precisas para dados novos, é o objetivo final de qualquer aplicação 

prática. Os dados revelam uma forte consciência da comunidade científica sobre 

esse desafio. 
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Figura 24 - Distribuição dos artigos por Técnica de Generalização. 

 

 

Tabela 5 - Concordância dos artigos por Técnica de Generalização. 

Técnica de Generalização Autores relacionados 

Validação 

(Sang Ye, 2019); (Si-Yu Shao, 2017); 

(Mohammad Azarafza, 2022); (Kimia 

Gholami, 2023); (Wei-gang Li, 2019); 

(Yuichiro Murakami, 2024); (Soo 

Young Lee, 2020); (Xiao-Cheng 

Zhang, 2021); (Erfan Maleki, 2021); 

(Erfan Maleki, 2023); (Junbo Niu, 

2023); (Kamal Choudhary, 2022); 
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(Sofien Akrichi, 2019); (Zhenze Yang, 

2021); (Mojtaba Mozaffar, 2019); 

(Zhiyuan Fang, 2021); (Ru Yang, 

2022); (Hao Gong, 2020); (Tongming 

Qu, 2021); (Charles Yang, 2020); 

(Haoliang Jiang, 2020); (Xin Luo, 

2025); (Jianjing Zhang, 2019); (Yasin 

Shokrollahi, 2023); (Mingming Shen, 

2022); (Xiao Shang, 2023); (Xu Long, 

2023); (Lei Han, 2025); (Si-wei Wu, 

2020); (Selvarasu Saminathan 

Jayakumar Lakshmipathy, 2021); 

(Zhikun Huang, 2024); (Samgeeth 

Sen, 2023); (Yuhan Gao, 2024); 

(Daniel Vuong, 2023); (Zhenru Chen, 

2024); (Chia-Wei Hsu, 2021); (Zhizhou 

Zhang, 2020); (Shiming Liu, 2021) 

Misto 

(Jing-Ang Zhu, 2021); (Gang Xu, 

2022); (Lu Lu, 2020); (Chongcong Tao, 

2021); (Yang Yu, 2023); (Wenzhen 

Yuan, 2017); (Muhammad Muzammil 

Azad, 2024); (Fasikaw Kibrete, 2023); 

(Ravi Kiran Bollinenia, 2025); (Jesús 

de-Prado-Gil, 2022) 

Transferência de Aprendizado 

(Chunyuan Cui, 2022); (Xiang Li, 

2020); (Richard J. Pyle, 2022); (Shahin 

Siahpour, 2020) 

Desempenho por Material 

(Fu-Zhi Dai, 2019); (Zhenze Yang, 

2021); (Vijay Kakani, 2021); (Hashina 

Parveen Anwar Al, 2022) 

Validação Cruzada 
(Xiang Li, 2019); (Carl Herriott, 2020); 

(Hamed Bolandi, 2022); (Brian 
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Gallagher, 2018); (Jingye Yang, 2021); 

(Xin Zhang, 2021); (Y. Mototake, 

2022); (Ivan P. Malashin, 2025); (Im 

Doo Jung, 2020); (Sehyeok Oh, 2019); 

(Zhizhou Zhang, 2024); (Steph-Yves 

M. Louis, 2020); (Mingwei Wang, 

2020); (Filip Nikolić, 2023); (Somphop 

Chiaranai, 2023); (Varun Raaghav, 

2025); (Muhammad Muzammil Azad, 

2024) 

 

A abordagem mais comum é a validação simples (hold-out validation), 

utilizada em 50,0% dos estudos. Nessa técnica, o banco de dados é dividido em 

conjuntos de treinamento e teste, sendo uma prática fundamental para uma primeira 

avaliação do desempenho do modelo. Em segundo lugar, a validação cruzada 

(cross-validation), uma técnica mais robusta e computacionalmente mais intensiva, 

foi adotada em 22,0% dos trabalhos. Como discutido no Tópico 4.4, a validação 

cruzada é especialmente valiosa em cenários com dados limitados — uma realidade 

comum na ciência dos materiais —, pois garante que todos os dados sejam utilizados 

tanto para treinamento quanto para teste, oferecendo uma estimativa mais confiável 

da performance de generalização do modelo. 

É interessante notar que 5% dos artigos utilizam explicitamente a 

Aprendizagem por Transferência (Transfer Learning) como estratégia de 

generalização. Esta abordagem, que também foi apontada como uma tendência 

futura no Tópico 5, é uma solução direta para o desafio de adaptar modelos 

treinados, muitas vezes com dados de simulação, para domínios com dados 

experimentais escassos, mitigando o "hiato de realidade". 

A categoria "Misto" (13%) agrupa estudos que combinam múltiplas técnicas, 

como validação simples com regularização (e.g., dropout) ou outras formas de 

controle de overfitting. A avaliação de desempenho por material (5%) mostra a 

diversidade de métodos empregados para assegurar que os modelos não estejam 

apenas "memorizando" os dados de treinamento, mas sim aprendendo as relações 
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físicas subjacentes que governam as propriedades dos materiais. 

A análise das estratégias para a construção de bancos de dados, apresentada 

na Figura 25 vai ao cerne do principal desafio prático da aplicação de deep learning 

na ciência dos materiais. Os dados revelam um campo dividido, buscando equilibrar 

a fidelidade dos dados experimentais com a escalabilidade dos dados sintéticos. 

 
Figura 25 - Distribuição dos artigos por Estratégia de Construção do Banco de Dados. 

 

 
Tabela 6 - Concordância dos artigos por Técnica de Generalização. 

Estratégia de Construção do Banco Artigos relacionados 
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de Dados 

Coleta via Ensaio 

(Si-Yu Shao, 2017); (Brian Gallagher, 

2018); (Yuichiro Murakami, 2024); 

(Jingye Yang, 2021); (Xiao-Cheng 

Zhang, 2021); (Erfan Maleki, 2021); 

(Xin Zhang, 2021); (Erfan Maleki, 

2023); (Sofien Akrichi, 2019); 

(Chongcong Tao, 2021); (Yang Yu, 

2023); (Wenzhen Yuan, 2017); (Xin 

Luo, 2025); (Jianjing Zhang, 2019); 

(Ivan P. Malashin, 2025); (Mingming 

Shen, 2022); (Zhizhou Zhang, 2024); 

(Steph-Yves M. Louis, 2020); (Si-wei 

Wu, 2020); (Selvarasu Saminathan 

Jayakumar Lakshmipathy, 2021); 

(Zhikun Huang, 2024); (Samgeeth 

Sen, 2023); (Mingwei Wang, 2020); 

(Jesús de-Prado-Gil, 2022); (Somphop 

Chiaranai, 2023); (Xiang Li, 2020); 

(Richard J. Pyle, 2022); (Shahin 

Siahpour, 2020) 

Data Augmentation (Muhammad Muzammil Azad, 2024) 

Geração de Dados 

(Sang Ye, 2019); (Xiang Li, 2019); 

(Carl Herriott, 2020); (Fu-Zhi Dai, 

2019); (Jing-Ang Zhu, 2021); (Kimia 

Gholami, 2023); (Hamed Bolandi, 

2022); (Lu Lu, 2020); (Zhenze Yang, 

2021); (Soo Young Lee, 2020); (Y. 

Mototake, 2022); (Mojtaba Mozaffar, 

2019); (Zhiyuan Fang, 2021); (Ru 

Yang, 2022); (Tongming Qu, 2021); 

(Charles Yang, 2020); (Haoliang Jiang, 
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2020); (Yasin Shokrollahi, 2023); (Xiao 

Shang, 2023); (Xu Long, 2023); (Lei 

Han, 2025); (Ravi Kiran Bollinenia, 

2025); (Yuhan Gao, 2024); (Chia-Wei 

Hsu, 2021); (Shiming Liu, 2021) 

Misto 

(Junbo Niu, 2023); (Vijay Kakani, 

2021); (Kamal Choudhary, 2022); 

(Zhenze Yang, 2021); (Hao Gong, 

2020); (Muhammad Muzammil Azad, 

2024); (Im Doo Jung, 2020); 

(Chunyuan Cui, 2022); (Sehyeok Oh, 

2019); (Fasikaw Kibrete, 2023); 

(Zhenru Chen, 2024); (Varun 

Raaghav, 2025); (Zhizhou Zhang, 

2020) 

Padronização (Gang Xu, 2022) 

Rotulagem Manual e Assistida (Daniel Voung, 2023) 

Tamanho e Diversidade 

(Mohammad Azarafza, 2022); 

(Wei-gang Li, 2019); (Filip Nikolić, 

2023) 

Variabilidade (Hashina Parveen Anwar Al, 2022) 

 

Observa-se uma distribuição quase equitativa entre a Coleta via ensaio (37%) 

e a Geração de Dados por simulação (33%). Este balanço reflete diretamente a 

discussão do Tópico 4.1. Por um lado, a coleta experimental continua sendo o pilar 

para garantir que os modelos sejam treinados com dados que representam a 

realidade física. Por outro, a expressiva quantidade de estudos que recorrem à 

geração de dados sintéticos (via FEM, Dinâmica Molecular, etc.) confirma que esta 

é a principal estratégia da comunidade científica para superar a limitação de custo e 

tempo dos ensaios físicos, permitindo a criação dos grandes volumes de dados que 

os modelos de deep learning demandam. 
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A categoria "Misto", com 17%, é particularmente reveladora. Ela representa 

uma tendência sofisticada e crescente, onde os pesquisadores combinam o melhor 

dos dois mundos: utilizam um conjunto menor de dados experimentais de alta 

fidelidade para validar, calibrar ou refinar modelos que foram pré-treinados em 

grandes volumes de dados sintéticos. Essa abordagem híbrida é uma das soluções 

mais eficazes para o problema do "hiato de realidade" entre simulação e 

experimento, que discutimos no Tópico 4.4 sobre Generalização. 

As demais categorias, embora menos frequentes, apontam para técnicas 

emergentes e focos específicos. O "Data Augmentation" (1%) e a preocupação com 

"Tamanho e Diversidade" (4%) mostram uma crescente maturidade na curadoria dos 

dados. A menção a “Rotulagem Manual e Assistida” (1%) destaca a importância da 

qualidade dos rótulos, um ponto crucial para o sucesso do aprendizado 

supervisionado. Em suma, os dados mostram que a construção de um banco de 

dados robusto é um campo de pesquisa ativo, com uma clara evolução de uma 

dependência exclusiva de ensaios para uma sinergia inteligente entre dados 

experimentais e sintéticos. 

Para concluir, os resultados desta revisão sistemática pintam o retrato de um 

campo de pesquisa em rápida maturação, que, após validar a viabilidade do deep 

learning para prever propriedades fundamentais como a resistência à tração e a 

fadiga, agora se volta para desafios mais complexos. A análise quantitativa expõe 

um claro movimento da comunidade científica em direção ao uso de dados de 

imagem e simulação para alimentar arquiteturas especializadas, como as CNNs, que 

já dominam o cenário com 43% das aplicações. No entanto, a investigação também 

revela os principais gargalos que definirão as tendências futuras: a esmagadora 

predominância de modelos "Caixa-Preta" (76% dos estudos), que evidencia a 

necessidade urgente de avanços em interpretabilidade (XAI), e a busca contínua por 

estratégias robustas para a construção de bancos de dados e a generalização dos 

modelos, onde a sinergia entre dados experimentais e sintéticos surge como a 

solução mais promissora. 
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8 CONSIDERAÇÕES FINAIS 

Este estudo, por meio de uma revisão sistemática da literatura, concluiu que a 

aplicação de deep learning para a previsão de propriedades mecânicas de materiais 

é um campo de pesquisa recente e em crescimento acelerado. A análise revelou um 

foco predominante em arquiteturas de Redes Neurais Convolucionais (CNNs), 

impulsionado pela crescente utilização de imagens de microestrutura como dado de 

entrada. Verificou-se também que os estudos se concentram na predição de 

propriedades fundamentais, como resistência à tração e fadiga, e que a superação 

da escassez de dados experimentais tem sido contornada por uma sinergia entre 

ensaios físicos e a geração de grandes volumes de dados sintéticos via simulação 

computacional. 

Apesar do sucesso preditivo dos modelos, a pesquisa demonstrou que 

desafios críticos persistem e definem a fronteira atual do conhecimento. A principal 

limitação identificada é a natureza de "Caixa-Preta" da maioria dos modelos, que, 

embora precisos, carecem de interpretabilidade, dificultando a validação física de 

suas decisões. Adicionalmente, a construção de bancos de dados robustos e a 

capacidade de generalização dos modelos para dados do mundo real, transpondo o 

"hiato" entre simulação e realidade, continuam a ser barreiras significativas. 

Portanto, constatou-se que o campo está em um ponto de transição: de uma 

fase inicial focada em validar a acurácia dos modelos, para uma etapa de 

amadurecimento que busca criar ferramentas de IA mais robustas, transparentes e 

confiáveis. A tendência futura aponta para a integração desses modelos em sistemas 

de Projeto Inverso de Materiais, onde a inteligência artificial poderá não apenas 

prever, mas também guiar a descoberta e o desenvolvimento de novos materiais 

com propriedades otimizadas. 
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