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RESUMO

A aplicagao de deep learning na ciéncia dos materiais representa uma nova fronteira
para acelerar a descoberta e a otimizagdo de novas tecnologias. Este trabalho tem
como objetivo realizar uma revisao sistematica da literatura para mapear o estado da
arte, as metodologias, os desafios e as tendéncias futuras no uso de redes neurais
profundas para a previsao de propriedades mecanicas. A metodologia consistiu na
analise de 73 artigos cientificos publicados entre 2017 e 2025. Os resultados indicam
um crescimento exponencial do campo a partir de 2020, com um foco predominante
na predicdo de propriedades como resisténcia a tracdo e fadiga. Constatou-se o
dominio das Redes Neurais Convolucionais (CNNs), impulsionado pelo uso de
imagens de microestrutura como dado de entrada, e a utilizagdo de abordagens
hibridas que combinam dados experimentais e sintéticos para a construgdo dos
bancos de dados. Conclui-se que, apesar da alta acuracia preditiva dos modelos, os
principais desafios residem na sua natureza de "caixa-preta", que limita a
interpretabilidade, e na garantia de generalizagdo para cenarios reais. A tendéncia
futura aponta para a consolidag&o de técnicas de Inteligéncia Artificial Explicavel (XAl)
e a integracdo desses modelos em plataformas de Projeto Inverso de Materiais,
marcando a transigdo de uma ciéncia de dados puramente preditiva para uma
abordagem prescritiva.

Palavras-chave: aprendizado profundo; ciéncia dos materiais; propriedades
mecanicas; revisao sistematica; inteligéncia artificial.



ABSTRACT

The application of deep learning in materials science represents a new frontier for
accelerating the discovery and optimization of emerging technologies. This study aims
to conduct a systematic literature review to map the state of the art, methodologies,
challenges, and future trends in the use of deep neural networks for predicting
mechanical properties. The methodology involved the analysis of 73 scientific articles
published between 2017 and 2025. The results indicate an exponential growth of the
field since 2020, with a predominant focus on predicting properties such as tensile
strength and fatigue. Convolutional Neural Networks (CNNs) dominate the landscape,
driven by the use of microstructure images as input data, alongside hybrid approaches
that combine experimental and synthetic datasets for database construction. Despite
the high predictive accuracy of the models, the main challenges lie in their "black-box"
nature, which limits interpretability, and in ensuring generalization to real-world
scenarios. Future trends point to the consolidation of Explainable Artificial Intelligence
(XAl) techniques and the integration of such models into Inverse Materials Design
platforms, marking the transition from a purely predictive data-driven science to a

prescriptive approach.

Keywords: deep learning; materials science; mechanical properties; systematic
review; artificial intelligence.
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1 INTRODUGAO

Nos ultimos anos, a ciéncia e a engenharia dos materiais tém testemunhado
uma revolugdo impulsionada por avangos em inteligéncia artificial, consolidando a
ciéncia de dados como o "quarto paradigma" da descoberta cientifica, ao lado da
teoria, experimentagao e simulagao (Agrawal & Choudhary, 2016). Dentro desse
novo cenario, o deep learning (aprendizado profundo) emergiu como uma
metodologia particularmente poderosa, contrastando com abordagens estatisticas
tradicionais ao oferecer a capacidade de modelar relagdes altamente complexas e

nao lineares diretamente de dados brutos.

A aplicagdo do deep learning se mostra especialmente promissora para a
predicdo de propriedades mecanicas de materiais, uma tarefa tradicionalmente
dependente de ensaios laboratoriais caros e demorados. Modelos de aprendizado
profundo sdo capazes de mapear a complexa relacdo entre as variaveis de entrada
— como composigdo quimica, parametros de processo ou imagens de
microestrutura — e as propriedades resultantes, como resisténcia a tracao, dureza
e vida em fadiga, acelerando drasticamente o ciclo de desenvolvimento de novos

materiais (Liu et al., 2021).

Contudo, a implementagédo bem-sucedida desses modelos nao € trivial e
enfrenta um conjunto de desafios interconectados que definem a fronteira da
pesquisa atual. O primeiro e mais fundamental deles é a construgcdo de um banco de
dados robusto, uma vez que o deep learning é inerentemente dependente de
grandes volumes de dados, cuja obtengdo experimental na ciéncia dos materiais é
frequentemente inviavel (Chen, 2024). Isso leva a necessidade de lidar com a
complexidade dos dados, que frequentemente sdo heterogéneos, combinando

informagdes numéricas, séries temporais e imagens de alta dimensionalidade.

Além do desafio dos dados, surge a barreira da interpretabilidade. A natureza
de "caixa-preta" da maioria dos modelos de deep learning € um obstaculo critico para
sua adocgédo em aplicagbes de engenharia, onde a confianga e a compreensao do
processo de decisdo sao fundamentais (Zhang et al., 2019). Por fim, garantir a
generalizagao das predigcbes — ou seja, a capacidade do modelo de performar bem
em dados novos e nao vistos, especialmente ao transpor o "hiato" entre dados de
simulagao e resultados experimentais — permanece como um dos maiores desafios

técnicos a serem superados (Li & Zhang, 2020).
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Diante deste panorama, o objetivo deste trabalho é realizar uma reviséao
sistematica da literatura sobre a aplicagdo de deep learning na previsdao de
propriedades mecanicas, buscando mapear o estado da arte e analisar criticamente
como a comunidade cientifica tem abordado os desafios mencionados. O estudo visa
identificar as principais arquiteturas, os métodos de construcdo de dados, as
estratégias para garantir a generalizacdo e as técnicas emergentes de

interpretabilidade que moldam o futuro da area.
2 FUNDAMENTAGAO TEORICA

2.1 INTELIGENCIA ARITIFICAL: PANORAMA HISTORICO E EVOLUGAO

A Inteligéncia Artificial (IA) surgiu como campo de pesquisa formal em meados
da década de 1950, tendo como marco inicial a conferéncia de Dartmouth, em 1956,
considerada o berco tedrico dessa area. Foi nesse evento, proposto por John
McCarthy, que o termo "Inteligéncia Artificial" foi cunhado, solidificando os objetivos
de pesquisa para as proximas décadas (Russell; Norvig, 2020). Os primeiros
trabalhos tinham como base os paradigmas simbdlicos, ou seja, sistemas
especialistas que buscavam representar explicitamente o conhecimento humano por
meio de regras logicas. Nesse periodo, o entusiasmo foi grande, mas a limitagao
computacional e a rigidez dos métodos dificultaram aplicagdes mais amplas, levando
a crises conhecidas como invernos da IA, especialmente no final dos anos 1970 e
no final dos anos 1980, quando o financiamento para a area foi drasticamente
reduzido (Crevier, 1993).

Nos anos 1980 e 1990, com o avanco de métodos estatisticos, a IA ingressou
em uma nova fase: a do aprendizado de maquina (Machine Learning — ML).
Diferentemente da légica simbdlica, o ML assume que um sistema pode aprender a
partir de dados, ajustando seus parédmetros para melhorar gradualmente o
desempenho preditivo. Técnicas como as Maquinas de Vetores de Suporte (SVM),
arvores de decisdo e redes neurais artificiais rasas ganharam grande destaque,
impulsionadas pelo desenvolvimento de algoritmos como a retropropagacao (Bishop,
2006). Embora mais eficazes na pratica, essas metodologias ainda enfrentavam
barreiras quando aplicadas a bases de dados complexas e de grande dimensé&o.

A virada paradigmatica ocorreu a partir da década de 2010, quando o aumento

do poder computacional, associado ao uso massivo de unidades de processamento
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grafico (GPUs), tornou possivel o treinamento de redes neurais com multiplas
camadas ocultas — fendbmeno que consagrou o termo deep learning (aprendizado
profundo) (LeCun; Bengio; Hinton, 2015). O marco mais emblematico dessa
transigéo foi o concurso de reconhecimento de imagens ImageNet em 2012, no qual
o modelo AlexNet (uma rede neural profunda) superou todos os concorrentes de
forma significativa, demonstrando o poder dessa nova abordagem (Krizhevsky;
Sutskever; Hinton, 2012). A partir dai, o deep learning tornou-se pilar central da IA
contemporanea, expandindo seus usos em visdo computacional, processamento de
linguagem natural, previsdo de séries temporais e, mais recentemente, na ciéncia

dos materiais.

2.2 REDES NEURAIS ARTIFICIAS: CONCEITOS FUNDAMENTAIS

O conceito de neurébnio artificial foi proposto por McCulloch e Pitts, em 1943,
como uma tentativa de simular computacionalmente as fungdes légicas do cérebro
humano. Embora esse modelo fosse incapaz de aprender, ele estabeleceu a base
tedrica para o campo. Posteriormente, o modelo de Perceptron, desenvolvido por
Rosenblatt em 1958, representou um avango significativo ao propor a primeira
arquitetura capaz de aprender e reconhecer padroes lineares. Apesar de suas
limitagSes para lidar com problemas nao lineares, detalhadas na critica de Minsky e
Papert (1969), o perceptron plantou as bases para o desenvolvimento de modelos

mais robustos nas décadas seguintes (Haykin, 2009).

Uma rede neural consiste em um conjunto de neurdnios artificiais
interconectados, organizados em camadas: camada de entrada, camadas ocultas e
camada de saida. Cada conexao possui um peso sinaptico, ajustado por algoritmos
de treinamento com o objetivo de reduzir o erro de previsao. A popularizagdo do
método da retropropagacgao (backpropagation) por Rumelhart, Hinton e Williams
(1986) foi crucial para permitir o treinamento eficaz de redes com multiplas camadas,
ajustando os pesos da rede para otimizar a performance. Esses avangos estao
detalhados em diversas obras de referéncia que consolidam o campo (Goodfellow,
Bengio & Courville, 2016).

A maior contribuicdo do deep learning esta no uso de multiplas camadas ocultas
(deep layers), que permitem a modelagem de fenémenos altamente nao lineares e

a construcdo de representacdes hierarquicas de dados complexos. Em vez de
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depender de caracteristicas extraidas manualmente, uma rede profunda aprende a
identificar e organizar essas caracteristicas de forma automatica. Esse processo
garante que, mesmo em sistemas de elevada dimensionalidade como
microestruturas de materiais, seja possivel correlacionar variaveis aparentemente

desconexas e extrair informagdes valiosas (Goodfellow, Bengio & Courville, 2016).

2.3 ARQUITETURAS DE REDES NEURAIS

A evolugao das redes neurais deu origem a diferentes arquiteturas, cada qual

mais adequada a determinados tipos de dados e problemas.

2.3.1 REDES NEURAIS ARTIFICIAIS E FEEDFORWARD

Ao longo da evolugédo do aprendizado de maquina, diferentes arquiteturas de
redes neurais foram concebidas com o objetivo de superar limitagbes técnicas e
ampliar a gama de aplicagdes possiveis. As Redes Neurais Artificiais (ANNs) sao
modelos computacionais inspirados no sistema nervoso biologico, projetados para
processar informacgoes e prever resultados a partir de dados de entrada (AZARAFZA
et al., 2022). Estruturalmente, uma ANN consiste em um conjunto de unidades de
processamento chamadas neurdnios artificiais, que s&o organizados em camadas:
uma camada de entrada (que recebe os dados brutos), uma ou mais camadas
ocultas (responsaveis pelo processamento nao linear) e uma camada de saida (que
fornece o resultado da predi¢cao) (AZARAFZA et al., 2022). Essa estrutura permite
que a rede estabelega relagcbes complexas e nao lineares entre as variaveis de
entrada e saida, oferecendo uma solugdo mais robusta que modelos analiticos ou

empiricos tradicionais (JUNG et al., 2020).

As primeiras e mais fundamentais implementacdes sao as redes FeedForward,
nas quais a informacéao flui em uma unica dire¢do, da camada de entrada para a de
saida, sem a presenca de ciclos ou lagos de realimentagao (AZARAFZA et al., 2022).
O treinamento dessas redes ocorre por meio de um processo de otimizagdo, como
o algoritmo de retropropagacéo (backpropagation), onde os pesos das conexdes
entre os neurdnios sdo ajustados iterativamente para minimizar o erro entre os

valores previstos pela rede e os valores reais observados (JUNG et al., 2020).

A transicdo para modelos mais poderosos ocorreu com o advento do deep
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learning (aprendizado profundo), que se refere ao uso de redes neurais com
multiplas camadas ocultas (AZARAFZA et al.,, 2022). Uma rede com essa
caracteristica € denominada Rede Neural Profunda (DNN). A principal vantagem de
uma DNN em relagdo a uma rede rasa (shallow network) reside em sua capacidade
de aprender representagdes hierarquicas e extrair caracteristicas informativas dos
dados de forma automatica, sem a necessidade de intervencao manual (AZARAFZA
et al., 2022). Em muitos casos, essas redes profundas sdo compostas por camadas
onde todos os neurdnios de uma camada estao conectados a todos os neurénios da
camada seguinte, sendo também chamadas de Redes Totalmente Conectadas

(FCNNSs), cuja diferencga estrutural pode ser observada na Figura 1.

Figura 1 - Esquema comparativo entre uma rede neural rasa (Shallow Neural Network) e
uma rede neural profunda (Deep Neural Network).

Deep neural network Shallow neural network

Input layer Hidden layers Output layer Input layer Hidden layer  Output layer

A

OO OGH e
el eliexielt7
FRASFA RERSEAS -

Fonte: adaptado de AZARAFZA et al., 2022

A aplicacdo de arquiteturas DNN e FCNN tem se mostrado extremamente
eficaz na ciéncia dos materiais para prever propriedades mecéanicas complexas.
Estudos utilizam essas redes para prever o indice de resisténcia e parametros de
rigidez em rochas como o margito (AZARAFZA et al., 2022), e para determinar
propriedades de tracdo em acgos de alta resisténcia com base em suas fracoes
volumétricas microestruturais (JUNG et al., 2020). Da mesma forma, modelos de
deep learning sdo empregados para estimar a resisténcia ao escoamento de agos
laminados a quente (CUI et al., 2022) e para prever a resisténcia a tragao de pecgas

produzidas por manufatura aditiva (ZHANG et al., 2019).

Apesar de seu alto desempenho, a implementagao de redes neurais profundas
apresenta desafios significativos. Um dos principais € a necessidade de grandes

volumes de dados rotulados para o treinamento, o que nem sempre é viavel em
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aplicacbes de engenharia, onde a obtengdo de dados experimentais € cara e
demorada (CUI et al., 2022). Além disso, devido ao elevado numero de parametros
a serem ajustados, as DNNs s&o suscetiveis ao Overfitting, fenbmeno no qual o
modelo se especializa excessivamente nos dados de treinamento e perde sua

capacidade de generalizar para novos dados. (AZARAFZA et al., 2022).

Finalmente, uma das limitagdes mais criticas das redes neurais € sua natureza
de "caixa-preta" (black box), que torna dificil interpretar como e por que o modelo
chega a uma determinada previsao (ZHANG et al., 2019). Essa falta de
interpretabilidade € uma barreira para a adocdo em aplicagdes criticas, onde a
confiabilidade e a compreensado do processo de decisdo sdo fundamentais. Para
contornar essa dificuldade, pesquisadores tém explorado métodos como a
Propagacdo de Relevancia por Camadas (LRP - Layer-wise Relevance
Propagation), que busca decompor a predigdo da rede para quantificar a contribuigao

de cada variavel de entrada no resultado (ZHANG et al., 2019).

2.3.2 REDES NEURAIS CONVULACIONAIS

As Redes Neurais Convolucionais (CNNs, do inglés Convolutional Neural
Networks) sao uma classe especializada de redes neurais profundas, projetadas
primariamente para processar dados que possuem uma topologia de grade, como
imagens (LI et al., 2019; YANG et al., 2020). Diferentemente das redes neurais
totalmente conectadas, as CNNs sao arquitetadas para capturar e preservar
relagdes espaciais nos dados de entrada, o que as torna excepcionalmente eficazes
para tarefas de analise de microestruturas de materiais (HERRIOTT; SPEAR, 2020).
Sua principal vantagem reside na capacidade de aprender e extrair caracteristicas
hierarquicas de forma automatica, eliminando a necessidade de pré-processamento
extensivo e extragdo manual de descritores microestruturais (HERRIOTT; SPEAR,
2020).

A arquitetura de uma CNN é estruturada para processar informacoes
espaciais de forma eficiente e é composta, fundamentalmente, por trés tipos de
camadas: convolucionais, de agrupamento (pooling) e totalmente conectadas (YU et
al., 2023). Uma representacao visual do fluxo de dados através dessas camadas em
um modelo profundo € apresentada na 2.2.
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1. Camadas Convolucionais: S30 o nucleo da rede e realizam a operagao de
convolugao (YU et al., 2023). Elas utilizam um conjunto de filtros (ou kernels),
que sao pequenas matrizes de pesos aprendidos, que deslizam sobre a
imagem de entrada. Cada filtro é especializado em detectar uma
caracteristica local especifica, como bordas, texturas ou formas (YU et al.,
2023). A principal diferengca em relagdo a uma rede densa € o uso de campos
receptivos locais, onde cada neurdnio se conecta apenas a uma pequena
regido da camada anterior, permitindo que a rede foque em padrdes locais de
forma eficiente (LI et al., 2019). O resultado da operagao de convolugdo € um
mapa de caracteristicas (feature map), que indica a presenga daquela

caracteristica especifica na imagem (YU et al., 2023).

2. Camadas de Pooling (Agrupamento): Geralmente inseridas apds as
camadas convolucionais, sua funcao é reduzir a dimensionalidade espacial
dos mapas de caracteristicas, tornando a representagdo mais compacta e
computacionalmente mais gerenciavel (LI et al., 2019; YU et al., 2023). A
operagao mais comum € o max pooling, que seleciona o valor maximo de uma
vizinhanga, mantendo as informagdes mais salientes e conferindo a rede um

certo grau de invariancia a translagao (YU et al., 2023).

3. Camadas Totalmente Conectadas (Fully Connected): Localizadas no final
da rede, essas camadas recebem os mapas de caracteristicas de alto nivel,
ja processados e compactados, e os utilizam para realizar a tarefa final de
classificagao ou regressao (LI et al., 2019; YU et al., 2023). Elas funcionam
de maneira analoga a uma rede neural feedforward tradicional, conectando
cada neurdnio de uma camada a todos os neurdnios da camada seguinte para

fazer a predigao final (YU et al., 2023).

O grande poder das CNNs reside em sua capacidade de construir uma
representacao hierarquica dos dados. As camadas iniciais aprendem a identificar
caracteristicas simples e de baixo nivel (e.g., bordas de grdos). Conforme os dados
avangam para camadas mais profundas, esses padrdes simples sdo combinados
para formar caracteristicas mais complexas e abstratas, como a morfologia de uma
fase inteira ou a distribuicdo geral dos constituintes em uma amostra (LI et al., 2019).
Essa habilidade permite que a CNN estabeleca um mapeamento implicito e
altamente complexo entre a imagem da microestrutura e suas propriedades
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mecanicas efetivas (LI et al., 2019).

Devido a essa caracteristica, as CNNs tém sido amplamente aplicadas na
engenharia de materiais para prever o comportamento mecanico a partir de imagens.
Elas sdo utilizadas para prever curvas completas de tensdo-deformacdo de
compositos, onde a natureza local da convolugao se mostra ideal para aprender os
efeitos espaciais da propagacédo de trincas (YANG et al., 2020). Na manufatura
aditiva, CNNs 3D processam dados volumétricos da microestrutura (como a
orientagao cristalografica de cada ponto) para prever propriedades mecanicas locais,
superando modelos de aprendizado de maquina mais tradicionais que dependem de
descritores microestruturais médios (HERRIOTT; SPEAR, 2020). Outras aplicagdes
incluem a predicdo do modulo de elasticidade efetivo em rochas de xisto com base
em imagens de sua estrutura mesoescala (LI et al., 2019) e a avaliacédo da
resisténcia a compressao de materiais cimenticios, onde a rede aprende a
correlagdo entre a composic¢ao e as condi¢gdes de exposicao e a resisténcia final (YU
et al., 2023).

Figura 2 - Arquitetura de uma Rede Neural Convolucional Profunda.
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Fonte: adaptado de YU et al., 2023

Uma implementacao especifica e avangada dessa abordagem € a Rede de
Relagdo Metalografia-Propriedade (MPR-Net), desenvolvida para prever a relagéao
entre a microestrutura e as propriedades mecanicas do a¢o inoxidavel 316L
produzido por fus&o em leito de po a laser (LPBF) (ZHANG et al., 2024). A MPR-Net
€ uma CNN profunda, baseada na arquitetura VGGNet, composta por 13 camadas
convolucionais e 3 camadas totalmente conectadas, conforme detalhado na Figura
3 (ZHANG et al., 2024). O grande diferencial desse modelo n&o esta apenas em sua
capacidade de prever com alta precisdo a resisténcia a tracéo e a dureza Vickers
diretamente de imagens metalograficas, mas também em sua interpretabilidade.
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Utilizando técnicas de visualizacdo de caracteristicas, como o Mapeamento de
Ativacdo de Classe Ponderado por Gradiente (Grad-CAM), a MPR-Net permite
identificar quais regides e padrdes na microestrutura (como a morfologia da poga de
fusdo) sado mais influentes para a predicdo de uma determinada propriedade
mecanica (ZHANG et al., 2024). Essa capacidade de "abrir a caixa-preta" do modelo
de deep learning é fundamental para conectar as predigbes computacionais aos
mecanismos fisicos de formagédo de gréos e, assim, otimizar os parametros do

processo de fabricagdo de forma mais informada (ZHANG et al., 2024).

Figura 3 - Arquitetura da rede MPR-Net.
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Fonte: adaptado de ZHANG et al., 2024.

2.3.3 REDES NEURAIS RECORRENTES E LSTM

Enquanto as CNNs sdo especializadas em dados com estrutura espacial, as
Redes Neurais Recorrentes (RNNs) foram desenvolvidas para lidar com dados
sequenciais ou séries temporais, onde a ordem e o contexto sdo fundamentais (XU
et al., 2023). A principal caracteristica de uma RNN é a sua capacidade de reter
informacdes de passos anteriores para influenciar a saida do passo atual, criando
uma forma de memoria (ZHANG et al., 2019). Essa arquitetura € ideal para modelar
processos dindmicos e sequenciais, como os encontrados na manufatura, onde o
histoérico de eventos, como os ciclos térmicos em cada camada de impressao, afeta

diretamente as propriedades do produto (ZHANG et al., 2019).

A estrutura de uma RNN simples € caracterizada por um lago de
realimentac&o, onde a saida do neurénio em um passo de tempo (t-1) € reintroduzida
como parte da entrada para o préximo passo de tempo (t), conforme esquematizado
na Figura 4 (ZHANG et al., 2019). No entanto, as RNNs tradicionais sofrem de uma

limitagao significativa conhecida como o problema do desaparecimento do gradiente
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(vanishing gradient problem). Durante o treinamento com o algoritmo de
retropropagacao no tempo (backpropagation through time), o gradiente do erro pode
diminuir exponencialmente a medida que se propaga para tras através de longas
sequéncias, tornando a rede incapaz de aprender dependéncias de longo prazo
(ZHANG et al., 2019).

Figura 4 - Diagrama de uma Rede Neural Recorrente (RNN).
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Fonte: adaptado de ZHANG et al., 2019.

Para superar essa limitagao, foi desenvolvida uma arquitetura de RNN mais
sofisticada e poderosa: a rede de Meméria de Longo Prazo (LSTM, do inglés Long
Short-Term Memory) (ZHANG et al., 2019; XU et al., 2023). A LSTM introduz uma
estrutura de célula mais complexa, projetada especificamente para reter e acessar
informagdes por longos periodos, mitigando o problema do desaparecimento do
gradiente (ZHANG et al., 2019; TAO et al., 2021). O nucleo da célula LSTM é o
estado da célula (cell state), que atua como uma esteira transportadora de
informacdes, permitindo que os dados fluam através da sequéncia com poucas
alteragdes. A principal inovacdo da LSTM é a sua capacidade de adicionar ou
remover informagdes do estado da célula por meio de estruturas reguladoras
chamadas portdes (gates), cuja arquitetura interna é detalhada na Figura 5 (HAN et
al., 2025). Esses portdes sdo compostos por uma fungdo de ativagdo sigmoide e
uma operagao de multiplicagdo, controlando seletivamente o fluxo de informagéo

(XU et al., 2023). Uma célula LSTM tipica possui trés portdes principais:

e Portao de Esquecimento (Forget Gate): Decide quais informagdes
do estado da célula anterior devem ser descartadas. Ele analisa a
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saida anterior (h_t-1) e a entrada atual (x_t) e gera um valor entre 0
(esquecer completamente) e 1 (manter completamente) para cada
numero no estado da célula (ZHANG et al., 2019; HAN et al., 2025).

o Portdo de Entrada (Input Gate): Determina quais novas informagodes
serdo armazenadas no estado da célula. Este processo tem duas
etapas: primeiro, uma camada sigmoide decide quais valores serao
atualizados; em seguida, uma camada tanh cria um vetor de novos
valores candidatos que podem ser adicionados ao estado (ZHANG et
al., 2019; HAN et al., 2025).

e Portao de Saida (Output Gate): Define qual sera a saida da célula. A
saida é baseada no estado da célula, mas é uma versao filtrada. Uma
camada sigmoide decide qual parte do estado da célula sera liberada,
e essa decisao € entdao multiplicada pelo estado da célula passado por
uma fungao tanh para produzir a saida final (h_t) (ZHANG et al., 2019;
HAN et al., 2025).

Essa arquitetura de portdes permite que a LSTM aprenda de forma
independente as interagdes entre as camadas e capture dependéncias de longo
prazo, tornando-a ideal para modelar processos complexos como a fabricacdo de
compdsitos (TAO et al.,, 2021) e a manufatura aditiva (ZHANG et al., 2019). Em
aplicagdes na ciéncia dos materiais, as LSTMs sao utilizadas para processar sinais
de sensores camada por camada em processos de impressao 3D para prever a
resisténcia a tragao da peca final (ZHANG et al., 2019), para reconhecer condi¢des
de carregamento em ensaios de fadiga a partir de dados sequenciais de ultrassom
(TAO et al., 2021), e para prever propriedades mecanicas de agos com base na
sequéncia de parametros de processo (XU et al., 2023; HAN et al., 2025). Outra
variante popular, a Unidade Recorrente Fechada (GRU), simplifica a arquitetura da
LSTM fundindo os portdes de esquecimento e entrada em um unico "portdo de
atualizacao", oferecendo desempenho semelhante com maior eficiéncia

computacional (XU et al., 2023).
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Figura 5 - Arquitetura de uma célula LSTM.
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Fonte: adaptado de XU et al., 2023.

2.3.4 REDE PROFUNDA DE CRENCAS

A Uma Rede Profunda de Crencas (DBN) € um modelo de aprendizado
profundo composto por multiplas camadas de Maquinas de Boltzmann Restritas
(RBMs, do inglés Restricted Boltzmann Machines) empilhadas, com uma camada
final de rede neural feedforward (como uma BPN) para realizar a tarefa de regressao
ou classificacdo (FANG et al.,, 2021). As RBMs sdo redes neurais nao
supervisionadas que aprendem a extrair uma representacao hierarquica e de alto
nivel dos dados de entrada (AKRICHI et al., 2019). A estrutura hierarquica de uma

DBN, formada pelo empilhamento de RBMs, é esquematizada na Figura 6.

Figura 6- Arquitetura de uma Rede Profunda de Crengas (DBN).
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Fonte: adaptado de AKRICHI et al., 2019
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O processo de treinamento de uma DBN ocorre em duas fases distintas:

. Pré-treinamento nao supervisionado (Unsupervised Pre-training): As

camadas de RBMs sao treinadas sequencialmente, uma de cada vez, de
baixo para cima. A camada oculta de uma RBM serve como a camada visivel
(entrada) para a RBM seguinte. Este pré-treinamento generativo otimiza os
pesos iniciais da rede, o que reduz o risco de a rede convergir para um 6timo
local e se mostra eficaz mesmo com conjuntos de dados limitados (FANG et
al., 2021; AKRICHI et al., 2019).

Ajuste Fino Supervisionado (Supervised Fine-tuning): Apdés o pré-
treinamento, os pesos da rede sao ajustados finamente usando um algoritmo
supervisionado, como a retropropagacao (backpropagation), para otimizar o
desempenho do modelo na tarefa especifica de predicdo (FANG et al., 2021;
AKRICHI et al., 2019).

Essa arquitetura se mostrou eficaz na previsao da capacidade axial de perfis

de aco formados a frio (FANG et al., 2021) e na predigdo da precisdo geomeétrica em

processos de conformagao incremental de ponto unico (AKRICHI et al., 2019),

demonstrando um desempenho superior em comparagao com redes neurais rasas.

2.3.5 REDE GENERATIVA ADVERSIAL CONDICIONAL (cGAN)

A Rede Generativa Adversarial Condicional (cGAN) é um modelo de

aprendizado profundo pertencente a familia das redes generativas, projetado para

tarefas de traduc&o de imagem para imagem (OH; Kl, 2019). Uma cGAN & composta

por duas redes neurais que competem entre si em um "jogo de minimax de dois

jogadores": o Gerador (G) e o Discriminador (D), cuja estrutura e interacdo sao

esquematizadas na Figura 7 (JIANG et al., 2020).

O Gerador (G): Tem como objetivo aprender a mapear uma imagem de
entrada (a "condi¢gao") para uma imagem de saida. Por exemplo, ele pode
receber uma distribuicdo de temperatura e tentar gerar a distribuicdo de
dureza correspondente (OH; KI, 2019). Frequentemente, sua arquitetura é
baseada em uma rede do tipo codificador-decodificador (encoder-decoder),
como a U-Net, que utiliza camadas convolucionais para extrair caracteristicas

e camadas desconvolucionais (ou convolucionais transpostas) para
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reconstruir a imagem de saida (OH; KI, 2019).

« O Discriminador (D): E treinado para distinguir entre as imagens "reais" (do
conjunto de dados de treinamento) e as imagens "falsas" (geradas pelo
Gerador). Ele recebe um par de imagens (a entrada condicional e uma
imagem de saida, que pode ser real ou falsa) e deve determinar a
autenticidade da saida (JIANG et al., 2020).

Figura 7- Estrutura de uma Rede Generativa Adversarial Condicional (cGAN).

Fonte: adaptado de JIANG et al., 2020

Durante o treinamento, o Gerador tenta produzir imagens cada vez mais
realistas para "enganar" o Discriminador, enquanto o Discriminador se aprimora em
identificar as falsificagées (OH; Kl, 2019). Esse processo adversarial forga o Gerador
a aprender a distribuicdo de dados real e a gerar saidas de alta fidelidade. As cGANs
sao particularmente poderosas para prever campos de dados complexos, como a
distribuicdo de tensdes de von Mises em estruturas sob diferentes geometrias e
condigdes de contorno (JIANG et al., 2020) ou a tradugado de mapas de temperatura

em mapas de dureza em tratamentos térmicos a laser (OH; Kl, 2019).
2.4 PROPRIEDADES MECANICAS

2.4.1 RESISTENCIA A TRAGAO E AO ESCOAMENTO

A resposta de um material a uma forga externa aplicada é descrita por suas
propriedades mecanicas, que sado fundamentais para o projeto e a analise de
qualquer componente estrutural. Dentre as mais importantes estdo a Resisténcia a

Tragao (ou Limite de Resisténcia a Tracdo, LRT) e a Resisténcia ao Escoamento (ou
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Limite de Escoamento, LE), ambas obtidas a partir do ensaio de tragdo uniaxial
(JUNG et al., 2020; ZHANG et al., 2019). Este ensaio consiste em submeter um
corpo de prova com geometria padronizada a uma forga de tragédo crescente até a
sua fratura, registrando continuamente a relagdo entre a tenséo (for¢ga por unidade
de area) e a deformacéo (alteragdo percentual no comprimento). O resultado € um
grafico conhecido como curva tensao-deformacéao, que serve como uma "impressao
digital" do comportamento mecanico do material, conforme ilustrado na Figura 8
(ZHANG et al., 2019).

O Limite de Escoamento (LE), ou Yield Strength (YS), representa a tensao na
qual o material comega a sofrer deformagao plastica, ou seja, uma deformagao
permanente que ndo é recuperada apos a remogao da carga (JUNG et al., 2020).
Antes de atingir o YS, o material se deforma elasticamente, retornando a sua forma
original se a forga for removida. O US é um parédmetro critico no projeto de
engenharia, pois geralmente define o limite superior de tensdo que um componente

pode suportar em servico sem sofrer deformagdes permanentes.

A medida que a forga de tracdo continua a aumentar apés o escoamento, o
material passa por um processo de encruamento, no qual ele se torna mais resistente
a deformacéo. A tensao continua a subir até atingir um ponto maximo, que é definido
como a Resisténcia a Tragao (RT), ou Tensile Strength (TS) (JUNG et al., 2020).
Este valor representa a maxima tensdo que o material pode suportar antes de iniciar
o processo de estricgdo (reducdo localizada da area da secado transversal) que
culmina na fratura (ZHANG et al., 2019). Em materiais frageis, a fratura pode ocorrer
com pouca ou nenhuma deformagcdo plastica, e a resisténcia a tracido é
simplesmente a tensdo maxima registrada no momento da ruptura (ZHANG et al.,
2019).

Essas duas propriedades sao profundamente influenciadas pela
microestrutura do material, que, por sua vez, € determinada pela composi¢ao
guimica e pelas condi¢cdes do processo de fabricagdo, como laminagéao e tratamento
térmico (CUI et al., 2022; JUNG et al., 2020). A combinagao complexa desses fatores
determina a presenca e a fragao volumétrica de diferentes fases microestruturais
(como ferrita, bainita e martensita), que governam o comportamento mecanico final
do aco (JUNG et al.,, 2020). Prever com precisdo o YS e a RT a partir desses
parametros de entrada € um dos principais objetivos da ciéncia dos materiais
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moderna, impulsionando o desenvolvimento de modelos computacionais avancados
baseados em inteligéncia artificial (CUI et al., 2022; JUNG et al., 2020).

Figura 8 - Curva tensao-deformacéo tipica para um material metalico, ilustrando a definigao
do Limite de Escoamento (Yield Strength) e da Resisténcia a Tragao (Tensile Strength)
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Fonte: adaptado de ZHANG et al., 2019

2.4.2 DUREZA

Dureza € uma propriedade mecanica fundamental que quantifica a resisténcia
de um material a deformacao plastica localizada, como a penetragéo, o risco ou a
indentacao (JAYAKUMAR; LAKSHMIPATHY, 2022). Em aplicagdes de engenharia,
a dureza € um indicador crucial da qualidade e do desempenho de um material, pois
esta diretamente correlacionada com sua resisténcia ao desgaste e, em muitos
casos, com sua resisténcia mecanica (OH; KI, 2019; JAYAKUMAR;
LAKSHMIPATHY, 2022). No contexto de agos e outras ligas metalicas, a dureza é
profundamente influenciada pela microestrutura, sendo uma das principais
propriedades a serem otimizadas durante processos de tratamento térmico, como a
témpera a laser (OH; Kl, 2019).

A medicdo da dureza é tipicamente realizada por meio de ensaios de
indentagdo, nos quais um penetrador com geometria padronizada € pressionado

contra a superficie do material sob uma carga controlada por um tempo especifico
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(NIU et al., 2024; JAYAKUMAR; LAKSHMIPATHY, 2022). Apds a remogao da carga,
a dimensao da marca de indentagéo deixada na superficie € medida, sendo crucial
a utilizagcao de técnicas de microscopia para a correta calibragao e analise dessas
marcas, como ilustrado na Figura 9. Diferentes métodos de ensaio sao classificados
com base no tipo de penetrador utilizado, como os ensaios Brinell (esfera de ago),
Rockwell (cone de diamante ou esfera) e Vickers (piramide de diamante)
(JAYAKUMAR; LAKSHMIPATHY, 2022).

O ensaio de dureza Vickers (HV), por exemplo, utiliza um penetrador piramidal
de diamante com um angulo especifico entre as faces (OH; Kl, 2019). A dureza
Vickers é calculada a partir da carga aplicada dividida pela area superficial da
indentacao. Esse método € amplamente utilizado por sua precisdo e por cobrir uma
vasta gama de durezas. A obtencdo de um mapa de dureza em uma segao
transversal de uma pega, por exemplo, permite visualizar o efeito de um tratamento
térmico, identificando a profundidade e a extensédo da zona afetada pelo calor (OH,;
Kl, 2019). A capacidade de prever a distribuicdo de dureza com base nos parametros
de processo é um objetivo central na ciéncia dos materiais, pois permite a otimizagao
de tratamentos para alcangar o desempenho desejado sem a necessidade de

extensos ensaios experimentais (OH; Kl, 2019; NIU et al., 2024).

Figura 9 - Imagens de microscopia Optica e de microscopia eletrbnica de varredura utilizadas
para calibrar as posicoes do indentador nos testes de dureza Vickers.

Fonte: adaptado de NIU et al., 2024
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2.4.3 FADIGA

A fadiga é um fenbmeno complexo de acumulo de dano que se manifesta em
materiais submetidos a carregamentos ciclicos, sendo um dos principais
mecanismos de falha em componentes estruturais (ZHANG et al., 2021; MALEKI et
al., 2022). Sua principal caracteristica € a capacidade de levar uma estrutura a fratura
mesmo quando os niveis de tensdo aplicados séo significativamente inferiores a
resisténcia ao escoamento do material (ZHANG et al., 2021). O processo de falha
por fadiga é tipicamente dividido em trés estagios: iniciagao da trinca, onde pequenas
fissuras se formam em pontos de alta concentragao de tenséo; propagacéao da trinca,
onde a fissura cresce a cada ciclo de carregamento; e, finalmente, a fratura final, que
ocorre de forma subita quando a secao transversal remanescente do material ndo é

mais capaz de suportar a carga aplicada.

A vida em fadiga de um componente, ou seja, o numero de ciclos que ele pode
suportar antes de falhar sob um determinado nivel de tensédo, € uma propriedade
critica para garantir a seguranga e a confiabilidade de estruturas de engenharia
(MALEKI et al., 2022). Tradicionalmente, o comportamento de um material sob fadiga
€ caracterizado pela curva S-N (também conhecida como curva de Wahler), que
plota a amplitude da tens&o (S) em fungcdo do numero de ciclos até a falha (N), como
ilustrado na Figura 10 (MALEKI et al., 2022).

A natureza estatistica do fenbmeno da fadiga, influenciada por multiplos
fatores como geometria, condigbes de carregamento e, crucialmente, a
microestrutura, torna sua previsdo um desafio significativo (ZHANG et al., 2021).
Abordagens tradicionais para prever a vida em fadiga dependem de modelos
empiricos e ensaios experimentais extensivos, que sado caros e demorados. Em
resposta a essas limitagcoes, métodos baseados em dados, especialmente modelos
de aprendizado profundo, tém emergido como ferramentas poderosas para prever a
vida em fadiga, aprendendo as complexas relagdes nao lineares diretamente dos
dados de processo e material (ZHANG et al., 2021; MALEKI et al., 2022).
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Figura 10 - Curva S-N tipica para o aco AlISI 1045, mostrando a relagao entre a amplitude de
tensao (Stress amplitude) e 0 numero de ciclos até a falha (Number of cycles to failure).
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Fonte: adaptado de MALEKI et al., 2022

2.4.4 TENACIDADE

Ja a tenacidade é uma propriedade mecanica que descreve a capacidade de
um material de absorver energia e sofrer deformacao plastica antes de fraturar
(ANWAR et al., 2021). Diferente da resisténcia, que mede a forga que um material
pode suportar, a tenacidade representa a energia total que ele pode absorver até a
sua ruptura. Uma das maneiras mais diretas de visualizar e quantificar a tenacidade
€ através da area sob a curva tensdo-deformacao, obtida em um ensaio de tragao,
como ilustrado na Figura 11 (ANWAR et al., 2021). Um material pode possuir alta
resisténcia, mas ser fragil (baixa tenacidade), enquanto outro pode ter menor
resisténcia, mas ser muito mais tenaz, sendo capaz de suportar grandes

deformacdes antes de falhar.

Um conceito mais especifico e de grande importancia na engenharia € a
tenacidade a fratura (K_Ic), que mede a resisténcia de um material a propagacgao de
uma trinca pré-existente (MOTOTAKE et al., 2022). Este € um parametro critico para
o projeto de componentes estruturais, pois governa a tolerancia a defeitos. A analise
da superficie de fratura, conhecida como fratografia, € uma ferramenta poderosa
para entender os mecanismos de falha e pode, inclusive, ser utilizada para prever
quantitativamente a tenacidade a fratura de um material (MOTOTAKE et al., 2022).
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Na pratica industrial, uma das formas mais comuns de avaliar a tenacidade é
através de ensaios de impacto, como o ensaio Charpy com entalhe em V (CVN) (WU
et al.,, 2021). Neste teste, um corpo de prova padronizado com um entalhe é
submetido ao impacto de um péndulo com energia conhecida. A energia absorvida
pelo material durante a fratura, conhecida como energia de impacto, € uma medida
direta de sua tenacidade sob altas taxas de deformacdo (WU et al., 2021). Esta
propriedade € crucial para materiais utilizados em aplicagdes que exigem alta
confiabilidade, como em acos para a industria automotiva e de construgao, pois
indica a capacidade do material de resistir a cargas de choque sem sofrer uma fratura
fragil (WU et al., 2021).

Figura 11 - Curva Tenséao vs. Deformagao para um polimero auto-regenerativo, onde a area
sob a curva representa a tenacidade (Toughness) do material, ou seja, a energia absorvida
antes da fratura
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Fonte: adaptado de ANWAR et al., 2021.

2.4.5 RESISTENCIA AO DESGASTE

A resisténcia ao desgaste é a propriedade que descreve a capacidade de um
material de resistir a perda progressiva de material de sua superficie devido ao
movimento relativo contra uma superficie adjacente (SHEN et al., 2022). Em
aplicagdes de engenharia, especialmente em componentes submetidos a atrito e

contato deslizante, como engrenagens, rolamentos e ferramentas de usinagem, a
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resisténcia ao desgaste € um fator critico que determina a vida util, a confiabilidade
e a eficiéncia do componente (WANG et al., 2020). A falha por desgaste pode levar
a perda de precisdo dimensional, aumento do consumo de energia e, em casos

extremos, a falha catastrofica do sistema mecanico (WANG et al., 2020).

O comportamento de um material sob desgaste é influenciado por uma
complexa interagao de fatores, incluindo as propriedades do proprio material (como
dureza e microestrutura), as condicbes de operagdo (carga, velocidade,
temperatura) e a natureza das superficies em contato (SHEN et al., 2022). Em acos,
por exemplo, a estabilidade da microestrutura na camada superficial, como a
austenita retida em acos carburizados, desempenha um papel decisivo na
resisténcia ao desgaste, pois governa fenébmenos como o encruamento a frio e a
transformacao martensitica induzida por deformagéo durante o atrito (SHEN et al.,
2022).

Para avaliar a resisténcia ao desgaste, um dos métodos experimentais mais
comuns € o ensaio de pino sobre disco (pin-on-disk), esquematizado na Figura 12

. Neste ensaio, um pino feito do material a ser testado é pressionado com uma
carga constante contra um disco giratorio. A taxa de desgaste € entdo quantificada
medindo-se a perda de massa do pino ou o volume de material removido ao longo
de uma determinada distancia de deslizamento (SHEN et al., 2022). A analise da
superficie desgastada, geralmente realizada por meio de Microscopia Eletrénica de
Varredura (MEV), como mostrado na Figura 13, revela os mecanismos de desgaste
dominantes, como abrasdo (riscamento), adesado (transferéncia de material) e a
formacdo de camadas triboldgicas (ou tribolayers), que sdo camadas superficiais

modificadas formadas durante o processo de deslizamento (SHEN et al., 2022).
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Figura 12 - Esquema do ensaio de desgaste do tipo pino sobre disco (pin-on-disk).
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Fonte: adaptado de SHEN et al., 2022.

Figura 13 - Imagem de MEV da superficie desgastada de um corpo de prova, mostrando as
marcas de desgaste e a formagao de uma camada triboldgica (tribolayer) apds o ensaio.

Fonte: adaptado de SHEN et al., 2022)
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3 APLICACOES DE CASO

Apos a fundamentagdo das principais arquiteturas de deep learning e das
propriedades mecéanicas de interesse, esta se¢do tem como objetivo ilustrar a
aplicagao pratica desses conceitos por meio de uma analise de casos de uso
extraidos da literatura cientifica recente. O propdsito € demonstrar como diferentes
modelos de inteligéncia artificial estdo sendo empregados para resolver problemas
concretos na ciéncia e engenharia dos materiais. Cada estudo selecionado sera
resumido, destacando a metodologia utilizada, o desafio abordado e os principais
resultados quantitativos e qualitativos alcangados, oferecendo um panorama do

estado da arte em agéo.

Sang Ye(YE et al., 2019) propds o uso Rede Neural Convolucional (CNN),
para prever as propriedades elasticas de compdsitos, como o0 mdédulo de Young e o
coeficiente de Poisson, diretamente a partir de imagens de microestruturas. A CNN
foi treinada com um banco de dados gerado por simulagdes de elementos finitos e
demonstrou alta precisao, alcangando um erro médio (RMSE) de apenas 0,38 GPa
para o médulo de Young e 0,0010 para o coeficiente de Poisson. O estudo destaca
a eficacia do modelo mesmo para microestruturas complexas e nao vistas durante o

treinamento, superando abordagens analiticas tradicionais.

Lu Lu (LU et al., 2020) em seu trabalho, utilizou deep learning para mapear
diretamente as curvas de carga-deslocamento da indentagdo para propriedades
elastoplasticas, como o limite de escoamento e o expoente de encruamento. O
modelo alcangou uma precisao notavel, com um coeficiente de determinagao (R?)
superior a 0,99 para todas as propriedades previstas, validando a abordagem como

uma alternativa rapida e confiavel aos complexos métodos de analise inversa.

No estudo de Yuichiro Murakami (MURAKAMI et al., 2024), o foco foi a
previsdo de propriedades mecanicas de ligas de aluminio a partir de suas
microestruturas. Utilizando uma Rede Neural Convolucional, o modelo foi treinado
para analisar imagens metalograficas e prever o limite de resisténcia a tragcao, o
alongamento na fratura, o médulo de Young e o limite de escoamento. Os resultados
foram excelentes, com o modelo alcangcando um R? de 0,978 na previsao do modulo
de Young, demonstrando a capacidade do deep learning de capturar as complexas
relagdes entre a morfologia das fases e o comportamento mecanico.

Explorando a capacidade da IA generativa, o trabalho de Zhenze Yang (YANG
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et al., 2021) utilizou uma Rede Generativa Adversarial Condicional (cGAN) para
prever campos completos de tensédo e deformagdo em compdsitos hierarquicos. O
modelo aprendeu a traduzir a geometria da microestrutura diretamente em mapas
de tensao, alcangando uma precisao impressionante ndo apenas nos campos de
dados, mas também nas propriedades derivadas, como a rigidez e a tenacidade.
Qualitativamente, a cGAN foi capaz de capturar com fidelidade os locais de alta
concentracdo de tensao, provando seu potencial para acelerar drasticamente as

analises de elementos finitos.

Visando aprimorar a técnica de Correlagdo de Imagem Digital (DIC), Ru Yang
(YANG et al., 2022) desenvolveu uma abordagem baseada em deep learning com
duas CNNs para medi¢ao de deslocamento e deformacédo. O modelo alcangou um
erro de medicdo de deformacdo extremamente baixo, na ordem de 107°% e
demonstrou ser até 100 vezes mais rapido que os softwares comerciais,
representando um avanco significativo para a caracterizagdo de materiais em tempo

real.

No campo da tomografia computadorizada (TC), o trabalho de Hao Gong
(GONG et al., 2020) apresentou uma CNN para realizar a decomposig¢ao de materiais
diretamente a partir de imagens de TC de dupla energia. O modelo foi capaz de
estimar a distribuicdo de densidade de diferentes materiais (como iodo e gordura)
com alta precisao, alcangando um erro relativo médio de apenas 1,3% para o iodo
em doses de radiacao clinicamente relevantes. Este caso de uso demonstra o
potencial do deep learning para substituir processos de inversdo complexos em

técnicas de imagem avangadas.

Explorando o comportamento de materiais granulares, Tongming Qu (QU et
al., 2021) utilizou uma Rede Neural Recorrente (RNN) para prever as relagbes de
tensdo-deformacédo a partir de dados de ensaios triaxiais simulados. O modelo
aprendeu a prever a evolugdo da tensdo com base no histérico de deformacao,
alcangando um coeficiente de determinagao (R?) de 0,98. Qualitativamente, o estudo
validou a capacidade das RNNs de modelar a histerese e a dependéncia do caminho,

caracteristicas complexas do comportamento constitutivo dos materiais.

Focando na previsdo da resisténcia a tracdo de concretos de ultra-alto
desempenho refor¢ados com fibras (UHPFRC), Xin Luo (LUO; MATSUMOTO, 2025)

desenvolveu uma abordagem inovadora utilizando uma CNN. O modelo foi treinado
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para, a partir de imagens da superficie do material, primeiro prever a localizagao da
futura trinca de fratura e, em seguida, usar essa informagdo para estimar a
resisténcia a tragdo. A metodologia alcangou uma alta correlagdo com os dados
experimentais, com um R? de 0,89, demonstrando o potencial da |IA para prever a

falha em materiais complexos e heterogéneos.

Para lidar com o desafio de bancos de dados pequenos, Chunyuan Cui (CUI
et al., 2022) desenvolveu um modelo de deep learning guiado por metalurgia fisica
para prever o limite de escoamento de agos laminados a quente. A abordagem
utilizou principios metalurgicos para criar um grande banco de dados "virtualmente
rotulado" para pré-treinar a rede, que foi entdo refinada com um pequeno conjunto
de dados experimentais. O modelo final alcangou uma precisao impressionante, com
um erro médio absoluto de apenas 15.8 MPa, superando modelos que nao utilizaram

0 pré-treinamento.

No estudo de Zhikun Huang (HUANG et al., 2024), uma abordagem de deep
learning foi aplicada para prever a resisténcia a fadiga de ligas ferrosas. O modelo
foi treinado com uma base de dados que incluia composi¢cao quimica, parametros de
tratamento térmico e propriedades mecanicas. A rede neural alcangou uma alta
capacidade de generalizagdo, com um coeficiente de correlacdo de 0,95 entre os
valores previstos e os experimentais, demonstrando ser uma ferramenta eficaz para

acelerar o projeto de materiais resistentes a fadiga.

Para corrigir distorcbes de imagem em ensaios mecanicos de alta
temperatura, Yuhan Gao (GAO et al.,, 2024) desenvolveu um modelo de deep
learning baseado em Transformers para a técnica de Correlagédo de Imagem Digital
(DIC). O modelo foi treinado para corrigir as distorgbes causadas pelo fluxo de ar
térmico, um problema que afeta a precisdo das medi¢des. A abordagem se mostrou
altamente eficaz, reduzindo o erro médio de medi¢cao de deformacdo em mais de

80% em comparagcédo com imagens nao corrigidas.

No campo da andlise de falhas em compésitos, Daniel Vuong (VUONG, 2023)
desenvolveu um modelo de deep learning 3D para a segmentacao automatica de
quebras de fibra em imagens de tomografia de polimeros reforgados com fibra de
carbono. Utilizando uma arquitetura baseada na U-Net 3D, o modelo alcangou um
Coeficiente de Similaridade de Dice (Dice Score) de 0,81, indicando uma alta

sobreposi¢cao entre as quebras de fibra segmentadas pela IA e as anotagbes
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manuais de especialistas. Este trabalho destaca a capacidade da IA em automatizar

a analise microestrutural 3D, uma tarefa tradicionalmente manual e demorada.

Para a classificagao da resisténcia a tragao em juntas soldadas, o trabalho de
Somphop Chiaranai (CHIARANAI et al., 2023) empregou um modelo de ensemble
de Redes Neurais Convolucionais (CNNs). A abordagem utilizou imagens da
superficie do corddo de solda para classificar a resisténcia da junta em trés
categorias (baixa, média, alta). O modelo final alcangou uma acuracia de
classificagao impressionante de 98,33%, demonstrando o potencial do deep learning
como uma ferramenta de controle de qualidade nao destrutivo e automatizado para

processos de soldagem por fricgdo e mistura.

4 DESAFIOS E LIMITAGOES

Embora as seg¢des anteriores tenham destacado o potencial transformador do
deep learning na previsédo de propriedades mecanicas, evidenciando sua acuracia e
versatilidade em diversos estudos de caso, a adogdo e aprimoramento dessas
metodologias ndo estado isentos de obstaculos. Os modelos, por mais precisos que
sejam, operam em um campo complexo e multifacetado, onde fatores como a
natureza dos dados, a necessidade de interpretabilidade e a capacidade de

generalizagao representam desafios criticos.

Esta secdo se propbde a analisar, de forma aprofundada, as principais barreiras
enfrentadas pela literatura revisada. A discussao se concentrara em quatro pontos-
chave: a construgcdo e a qualidade dos dados de treinamento, a natureza de "caixa
preta" dos modelos e a busca por interpretabilidade, as dificuldades em garantir a
generalizacao e a robustez das predigdes, e, por fim, os desafios mais amplos que a
pesquisa futura busca superar. Ao abordar criticamente estas limitagdes, o presente
trabalho contribui com uma visdo mais completa e realista da aplicacdo do deep
learning na ciéncia e engenharia de materiais, fornecendo um guia essencial para o

desenvolvimento de solugdes mais confiaveis e aplicaveis em um ambiente real.

4.1 CONSTRUGAO E QUALIDADE DE DADOS

A Um dos desafios mais significativos e fundamentais para a aplicagao bem-
sucedida de deep learning na ciéncia dos materiais € a constru¢ao de um banco de

dados grande, confiavel e de alta qualidade (ZHANG et al., 2021). Diferentemente
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de outras areas onde os dados digitais sdo abundantes, na engenharia de materiais
cada ponto de dado frequentemente corresponde a um ensaio experimental caro e
demorado ou a uma simulagdo computacional intensiva (LI et al., 2020; SHEN et al.,
2022). A obtencdo de dados puramente experimentais em grande volume é, na
maioria dos casos, inviavel devido ao alto custo de equipamentos, tempo de ensaio

e necessidade de mao de obra especializada (LONG et al., 2023).

Para contornar essa limitacao, a literatura aponta o uso de dados sintéticos
como uma estratégia fundamental. Muitos estudos geram vastos bancos de dados
por meio de simulacbes computacionais, como o Método dos Elementos Finitos
(MEF). Gholami et al. (2023), por exemplo, geraram 9000 imagens 2D sintéticas de
microestruturas de hidrogéis para treinar modelos e prever suas propriedades
mecanicas. De forma semelhante, Shang et al. (2023) criaram um banco de dados
com 10.240 microestruturas 3D de Ti-6Al-4V usando o método de elementos finitos
de plasticidade cristalina (CPFEM). Outros trabalhos focam na geragéo de curvas de
dados, como o de Long et al. (2023), que produziu 10.000 conjuntos de dados de
curvas de indentagéo carga-deslocamento. A Figura 14 ilustra um fluxo de trabalho
exemplar, onde simulagbes térmicas 3D sao usadas para gerar distribuicbes de
temperatura que servem como entrada para um modelo de deep learning (CGAN)
que prevé a distribuigdo de dureza (OH; KI, 2019).

Contudo, a dependéncia de dados sintéticos introduz um novo desafio: o
"hiato de realidade" (reality gap) entre os dominios simulado e experimental (PYLE
et al.). Os resultados de ensaios fisicos s&o inerentemente sujeitos a variabilidade e
ruido, decorrentes de flutuagdes no processo de fabricagdo, imprecisdes nos
equipamentos ou condigdes ambientais. Modelos treinados exclusivamente com
dados de simulagdo "perfeitos" podem falhar ao serem aplicados a dados
experimentais "ruidosos". O trabalho de Pyle et al. demonstra essa questao ao tentar
caracterizar trincas, onde o modelo foi treinado em um grande volume de dados
simulados, mas precisou de técnicas de adaptacdao de dominio para funcionar com

um conjunto limitado de apenas 15 amostras experimentais.

Finalmente, para que o aprendizado supervisionado seja eficaz, os dados
precisam ser ndo apenas abundantes, mas também limpos e bem rotulados. A
rotulagem — o processo de associar cada entrada (e.g., uma imagem de
microestrutura) a uma saida correta (e.g., sua resisténcia a tracdo) — deve ser
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precisa. Quando os dados sdo compilados de diversas fontes da literatura, como no
estudo de Zhang et al. (2021) sobre fadiga e fluéncia do ago 316, um esforgo
significativo de curadoria € necessario para garantir a consisténcia, tratar valores
ausentes e normalizar os dados, assegurando que o modelo aprenda correlagdes

fisicas verdadeiras em vez de ruido experimental.

Figura 14 - Fluxo de trabalho para geracao de banco de dados via simulagao.
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Fonte: adaptado de OH; KI, 2019.

4.2 COMPLEXIDADE E QUALIDADE DOS DADOS

Além do desafio de obter um grande volume de dados, a prépria natureza das
informagdes na ciéncia dos materiais impde barreiras significativas. Os modelos de
deep learning precisam lidar com uma alta complexidade, decorrente da
heterogeneidade e da dimensionalidade dos dados, e garantir a qualidade destes

para que as previsdes sejam fisicamente coerentes e confiaveis.

A complexidade se manifesta na variedade de tipos de dados que precisam
ser integrados. Os bancos de dados de materiais raramente sdo compostos apenas
por valores numéricos escalares. Eles frequentemente incluem dados heterogéneos
como: imagens 2D e 3D de microestruturas, dados sequenciais de séries temporais
e dados de campo (CHEN, 2024). A previsdo da plasticidade dependente do
caminho, por exemplo, € um fenémeno altamente nao linear que exige que o modelo
processe toda a historia da deformacado. Para treinar uma rede recorrente (RNN)

capaz de prever esse comportamento, Mozaffar et al. (2019) geraram um banco de
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dados com 10.000 caminhos de deformacao aleatdrios. Em outro exemplo inovador,
para estimar a dureza de um material pelo toque, Yuan et al. (2017) alimentaram um
modelo de deep learning com mais de 12.000 leituras tateis, que consistiam em
imagens de alta resolugao (320x240 pixels) geradas por um sensor especializado.

A integracdo desses dados multimodais € um desafio, mas a qualidade e a
representatividade de cada tipo de dado s&o igualmente cruciais. A calibragéo de
modelos constitutivos elastoplasticos, por exemplo, depende fundamentalmente da
qualidade dos dados experimentais. Para capturar comportamentos complexos, €
necessario ir além de ensaios uniaxiais simples e utilizar ensaios heterogéneos —
como o ensaio em chapas com furos, que geram campos de deformagao completos e
nao uniformes, conforme ilustrado na Figura 15. Para treinar modelos de aprendizado
de maquina com essa finalidade, Bastos et al. (2022) utilizaram um banco de dados
de 2500 ensaios virtuais, onde cada ensaio fornecia 200 frames de dados de campo
completo (full-field data). A obtengdo e o processamento desses dados sdo mais
complexos, mas fornecem informagdes muito mais ricas e de maior qualidade para a
identificacdo precisa dos parametros do material (BASTOS et al., 2022). O sucesso
do modelo de deep learning depende, portanto, nao apenas da quantidade de dados,
mas de sua capacidade de representar fielmente a fisica do problema, garantindo que
os dados de entrada sejam de alta fidelidade (FANG et al., 2021).

Figura 15 - Exemplo de ensaio heterogéneo (a) e o mapa de deformagéao (b) de campo
completo resultante.
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Fonte: adaptado de BASTOS et al., 2022.

4.3 INTERPRETABILIDADE DOS MODELOS

Apesar do alto desempenho preditivo, uma das limitagdes mais criticas dos
modelos de deep learning, como as Redes Neurais Profundas (DNNs), € sua
natureza de "caixa-preta" (black box) (TAO et al., 2021; ZHANG et al., 2019). Essa
caracteristica refere-se a dificuldade em compreender o processo de raciocinio
interno do modelo, ou seja, como e por que ele chega a uma determinada previsao
a partir dos dados de entrada (ZHANG et al., 2024). Em aplicagdes de engenharia e
ciéncia dos materiais, onde a seguranca, a confiabilidade e a validagao fisica sao
primordiais, a falta de interpretabilidade € uma barreira significativa para a adocéao e
a confianga nesses modelos (LIU et al., 2021). A necessidade de transparéncia € tao
relevante que normativas globais, como as diretrizes da Uni&o Europeia para uma
"IA de Confianga", destacam a explicabilidade como um pilar para sistemas de

inteligéncia artificial robustos e éticos.

Para contornar esse desafio, a comunidade de pesquisa tem desenvolvido
diversas técnicas de Inteligéncia Artificial Explicavel (XAl), que buscam "abrir a caixa-
preta" e fornecer insights sobre o processo de decisdo do modelo. Entre os métodos

mais proeminentes aplicados na ciéncia dos materiais estao:

« Propagacao de Relevancia por Camadas (LRP — Layer-wise Relevance
Propagation): Esta técnica decompde a predi¢ao final de uma rede neural e
propaga sua "relevancia" para tras, camada por camada, até a entrada. O
resultado € uma quantificacdo da contribuicdo de cada variavel de entrada
para a saida final. Por exemplo, em um estudo para prever a resisténcia a
tracdo na manufatura aditiva, a LRP foi utilizada para analisar um modelo de
deep learning, revelando que a altura da camada (layer height) era o
parametro de processo com maior relevancia, contribuindo com 40% para a
predicdo (ZHANG et al., 2019).

« SHAP (SHapley Additive exPlanations): Baseado na teoria dos jogos, o
SHAP calcula a contribuicdo marginal de cada caracteristica para a predicao,
considerando todas as combinagdes possiveis de caracteristicas. Em um
estudo sobre a previsdo da resisténcia util remanescente (RUS) em
compositos, a analise SHAP demonstrou que a caracteristica "energia" dos
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sinais de ultrassom era, de longe, o preditor mais influente, com um valor
SHAP médio de aproximadamente 0.4, superando significativamente outras
caracteristicas (TAO et al., 2021). De forma similar, o SHAP foi usado para
identificar que os elementos de liga Cr, Mo e W sdo os mais importantes para
a estabilidade da austenita retida em acos, fornecendo uma validacao fisica

para as predi¢des do modelo (SHEN et al., 2022).
o Grad-CAM (Gradient-weighted Class Activation Mapping): Especifico para

modelos baseados em convolugédo (CNNs), o Grad-CAM utiliza os gradientes
da ultima camada convolucional para produzir um mapa de calor que destaca
as regides mais importantes da imagem de entrada para uma determinada
decisdo. Conforme ilustrado na Figura 16, em um estudo com a rede MPR-
Net para prever propriedades do a¢o 316L, o Grad-CAM revelou que o modelo
focava na morfologia e nos limites da poca de fusao para prever a resisténcia
a tragdo, conectando a predicdo da IA a um mecanismo microestrutural
conhecido (ZHANG et al., 2024).

Essas técnicas sdo fundamentais ndo apenas para validar se 0 modelo esta
aprendendo correlacdes fisicamente coerentes, mas também para extrair novo
conhecimento cientifico, otimizar processos e guiar o desenvolvimento de novos

materiais de forma mais informada.

Figura 16 - Visualizagao de caracteristicas da MPR-Net usando Grad-CAM.

260

. ofef+tl - ‘M

N
(=}
o

N
wv
o

N
5
o

Prediction
Prediction
N
w
o

N
w
o

220 1
220 1
210 1

210

218.7 222.0 223.2 224.9 225.4 240.5 240.9 242.1 242.9 243.7 248.2 250.1 218.7 222.0 223.2 224.9 225.4 240.5 240.9 242.1 242.9 243.7 248.2 250.1
Label Label

Fonte: adaptado de ZHANG et al., 2024.

43



4.4 GENERALIZAGAO

A Um dos desafios mais persistentes no desenvolvimento de modelos de deep
learning é garantir sua capacidade de generalizagao, ou seja, sua habilidade de fazer
previsdes precisas para dados novos e nunca antes vistos. O principal obstaculo a
generalizagdo € o fenbmeno do sobreajuste (overfitting), que ocorre quando um
modelo se ajusta excessivamente aos dados de treinamento, memorizando seus
ruidos e particularidades em vez de aprender as relagdes subjacentes (CHEN,
2024). Um modelo sobreajustado pode apresentar um desempenho excelente no
conjunto de treinamento, mas falhar drasticamente quando exposto a novos dados,
tornando-o inutil para aplicagdes praticas.

Na ciéncia dos materiais, onde os dados sao caros e muitas vezes limitados,
o risco de overfitting é particularmente alto. Para mitigar esse problema, uma pratica
padrao e indispensavel € a divisdo do banco de dados em conjuntos distintos:
treinamento, validagao e teste. O conjunto de treinamento é usado para ajustar os
pesos do modelo; o conjunto de validagao € usado para otimizar os hiperparametros
(como a arquitetura da rede ou a taxa de aprendizado) e monitorar o overfitting
durante o treinamento; e o conjunto de teste, mantido "oculto" durante todo o
processo, serve para a avaliagdo final e imparcial da capacidade de generalizagao
do modelo (BASTOS et al., 2022; NIKOLIC; CANADBIJA, 2023). Por exemplo, Bastos
et al. (2022), ao desenvolverem um modelo para identificacdo de parametros de
materiais, dividiram seu banco de dados de 2500 ensaios virtuais em 70% para
treinamento, 15% para validacido e 15% para teste.

A técnica de validagdo cruzada (cross-validation) € uma abordagem ainda
mais robusta, especialmente para bancos de dados menores. Nela, os dados sao
divididos em k subconjuntos (ou folds), e o modelo é treinado k vezes, utilizando, a
cada vez, um subconjunto diferente para teste e o restante para treinamento. Isso
garante que todos os dados sejam utilizados tanto para treinar quanto para testar o
modelo, fornecendo uma estimativa mais estavel e confiavel de seu desempenho em

dados novos.

O desafio final da generalizacao € a capacidade de um modelo, muitas vezes treinado
com dados de simulagao, de prever corretamente o comportamento de materiais em
cenarios do mundo real. Fang et al. (2021) abordaram exatamente este ponto ao

treinar uma Rede de Crengas Profundas (DBN) com um vasto banco de dados de
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10.500 pontos gerados por analise de elementos finitos. A verdadeira prova de
generalizagdo do modelo foi sua aplicagao para prever a capacidade axial de perfis
de aco a partir de resultados experimentais encontrados na literatura. Como
demonstrado na Figura 17, embora com um certo grau de conservadorismo, as
previsdes do modelo seguiram a tendéncia dos dados experimentais, validando sua

capacidade de transpor o "hiato de realidade" entre a simulagao e o experimento.

Figura 17 - Comparacgao entre as previsdées de um modelo DBN (treinado com dados de
simulagéo).
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Fonte: adaptado de FANG et al., 2021.

5 TENDENCIAS FUTURAS

A medida que a aplicacdo do deep learning na ciéncia dos materiais
amadurece, o foco da pesquisa transcende a simples busca por precisdo preditiva,
avancando em direcao a sistemas de inteligéncia artificial mais integrados, confiaveis
e autbnomos. As tendéncias futuras apontam para a superacao dos desafios de
dados e interpretabilidade por meio de inovagbes em metodologias de treinamento,

arquiteturas de modelos e a fusdo com outras tecnologias da Industria 4.0.

Para contornar o desafio da escassez de dados experimentais, o campo esta
se movendo em diregdo a estratégias mais eficientes, como o Aprendizado por
Transferéncia (Transfer Learning) e a Adaptacdo de Dominio (Domain Adaptation).
Essas abordagens permitem que um modelo treinado em um dominio com dados
abundantes (como simulagdes) seja ajustado para operar em um dominio com dados
limitados (como ensaios experimentais ou dados de diferentes sensores), mitigando

o "hiato de realidade" entre o virtual e o fisico (SIAHPOUR et al., 2020; LI; ZHANG,
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2020). A IA Generativa, por meio de modelos como as Redes Generativas
Adversariais (GANs), também surge como uma solugao poderosa, capaz de criar
dados sintéticos de alta fidelidade — como imagens de microestruturas — para
aumentar os bancos de dados de treinamento e tornar os modelos preditivos mais
robustos (CHEN, 2024; MALASHIN et al., 2025).

Paralelamente, para solucionar o problema da "caixa-preta", a Inteligéncia
Artificial Explicavel (XAl) continuara a ser uma area de intensa pesquisa, buscando
tornar os modelos mais transparentes e confiaveis para aplicagdes criticas de
engenharia (CHEN, 2024). Olhando para o futuro, a tendéncia mais impactante é a
integragao do deep learning em plataformas de Projeto Inverso de Materiais (/nverse
Materials Design). Em vez de apenas prever a propriedade de uma microestrutura
existente (o problema direto), esses sistemas sao capazes de, a partir de um
conjunto de propriedades-alvo, explorar o vasto espago de design para propor novas
microestruturas e os parametros de processo ideais para fabrica-las, como ilustrado
na Figura 18 (SHANG et al., 2023).

Figura 18 - Esquema de um framework de projeto inverso de materiais.
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A integragdo dessas técnicas com tecnologias da Industria 4.0, como a
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Internet das Coisas (loT), permitira a criagao de "gémeos digitais" (digital twins), onde
sensores em tempo real alimentam modelos de |IA que monitoram a saude e o
desempenho de componentes durante toda a sua vida util (MONDAL; GOSWAMI,
2024). No entanto, a medida que esses sistemas se tornam mais autbnomos e
capazes de gerar conteudo e tomar decisbes, as questbes éticas sobre o uso
responsavel da tecnologia, a validagdo de dados sintéticos e a confiabilidade das
previsbes em cenarios de alto risco se tornardo cada vez mais prementes, exigindo

diretrizes claras para garantir a seguranga na engenharia do futuro.
6 METODOLOGIA

6.1 TIPO DE ESTUDO

O presente trabalho caracteriza-se como uma revisao sistematica da
literatura, conduzida com base em protocolo replicavel e transparente de busca,
selecdo e analise de artigos académicos. De acordo com Kitchenham (2004), esse
tipo de estudo difere de revisdes narrativas ou meramente bibliograficas por seguir
critérios metodoldgicos explicitos que permitem a reprodutibilidade dos resultados
obtidos. A adogao dessa abordagem confere maior rigor cientifico e possibilita ndo
apenas sintetizar o estado da arte, mas também identificar lacunas de pesquisa e

tendéncias futuras na intersecdo entre ciéncia dos materiais e deep learning.

6.2 PROCEDIMENTO DE COLETA DE DADOS

A coleta dos dados foi conduzida a partir de perguntas norteadoras,
formuladas com o objetivo de direcionar a pesquisa e garantir foco na area de
interesse. Entre as principais questdes formuladas, destacam-se:

e Quais metodologias de deep learning tém sido mais utilizadas na

previsdo de propriedades mecanicas?

e Quais sao os principais desafios e tendéncias relatados na literatura

recente?.

Para responder a essas questdes, foram consultadas bases académicas de
ampla cobertura internacional, através do Google Scholar. Essas bases foram
selecionadas por contemplarem tanto peridédicos de alto impacto em ciéncia dos

materiais quanto revistas especializadas em inteligéncia artificial.

A estratégia de busca foi elaborada por meio da combinagdo de descritores
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relacionados a técnicas de inteligéncia artificial e propriedades mecéanicas. As

principais expressoes utilizadas foram:

("deep learning" OR "neural network") AND ("mechanical properties" OR

"tensile strength" OR "hardness" OR "fracture toughness" OR "fatigue").

O recorte temporal adotado compreendeu o periodo de 2017 até 2025, com o
intuito de privilegiar estudos recentes, refletindo a rapida evolugdo do campo e a
incorporagao de deep learning as areas tradicionais de ciéncia e engenharia dos

materiais.

Inicialmente, a busca retornou aproximadamente 73 artigos elegiveis, que
foram posteriormente filtrados conforme os critérios de inclusao e exclusdo descritos
na secao 6.3. Apds essa triagem, consolidou-se um conjunto final de estudos
selecionados que serviu de base para a analise desenvolvida neste trabalho.

6.3 ESTRUTURA DE ANALISE E CLASSIFICAGAO

Apos a selegao final dos artigos, o material foi sistematicamente classificado
e analisado com base em categorias pré-definidas. Essa taxonomia foi criada para
refletir tanto os aspectos técnicos da ciéncia dos materiais quanto as dimensodes
computacionais do deep learning. A andlise permitiu ndo sé a sintese do

conhecimento, mas também a identificacdo de lacunas e tendéncias na area.

As categorias de classificagdo, que guiaram a analise nos capitulos

subsequentes, foram:

e Propriedades Mecéanicas: Os estudos foram categorizados pelo
parametro central investigado. As propriedades incluidas foram
resisténcia a tracdo, dureza, tenacidade, resisténcia a compressao,
fadiga, resisténcia ao desgaste, resisténcia ao escoamento, fratura e
resiténcia a decomposi¢cdo. Além disso, foram consideradas
abordagens mistas, que integraram multiplas propriedades em

paralelo.

e Metodologias de Deep Learning: Esta categoria focou nas
arquiteturas de redes neurais utilizadas. As classificagdes incluiram
redes neurais convolucionais (CNNs), redes neurais recorrentes
(RNNs), redes neurais artificiais e feedforward. Também foram

observadas outras arquiteturas e abordagens mistas.
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e Complexidade dos Dados: Os artigos foram organizados com base
na natureza dos dados de entrada. As classificagcbes abrangeram
dados numéricos tabulares, textuais, imagens (microestruturais), séries
temporais, e dados gerados por simulagdes como Molecular Dynamics
e Finite Element Method (FEM). Também foram identificados estudos
que usaram dados sintéticos ou abordagens mistas, combinando

diferentes tipos de dados.

¢ Interpretabilidade dos Modelos: Esta categoria explicitou a
abordagem analitica dos estudos em relagao a transparéncia de seus
modelos. As classificagdes distinguiram modelos tratados como "caixa-
preta", daqueles que usaram métodos de Aprendizado de Maquina
Explicavel (XAl) para maior clareza nos resultados.

e Generalizagao: Este eixo classificou os estudos com base em sua
abordagem para garantir a robustez e a aplicabilidade das previsdes a
novos dados. Foram consideradas técnicas de mitigagédo de overfitting,
desempenho por material, uso de validacdo cruzada, validagao
simples, abordagens mistas entre outras abordagens.

e Construcao de Banco de Dados: Por fim, foi criada uma categoria
dedicada a construgdo e organizagdo dos dados, reconhecendo o
papel crucial dessa etapa no sucesso das aplicagdes de deep learning.
Os artigos foram analisados com base em bancos criados a partir de
coletas via experimento, no tamanho e diversidade das amostras, na
padronizacdo dos registros e no uso de estratégias como data

augmentation, geracgéo artificial de dados e abordagens mistas.

7 RESULTADOS E DISCUSSOES

A presente se¢do apresenta uma analise detalhada do corpus de 73 artigos
selecionados, publicados no periodo de 2017 a 2025. O objetivo € mapear o estado
da arte na aplicacdo de deep learning na ciéncia dos materiais, identificando
tendéncias, lacunas e os principais focos da comunidade cientifica. A discussao sera
organizada em eixos tematicos, seguindo a estrutura de classificagdo definida na

metodologia, conectando os resultados quantitativos com os fundamentos tedricos e
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os desafios praticos ja discutidos neste trabalho.

A aplicacdo de deep learning para a previsao de propriedades mecéanicas de
materiais € um campo de pesquisa notavelmente recente e em franca expansao. A
Figura 19 ilustra a distribuicdo dos artigos selecionados por ano de publicacéo,
revelando uma tendéncia de crescimento acentuado e consistente, o que indica um

aumento no interesse da comunidade cientifica pelo tema.

Figura 19 - Distribuicdo de Artigos por Ano de Publicacéo.
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Observa-se que o periodo inicial (2017-2019) representa uma fase
exploratéria, com um numero ainda incipiente de publicagbes. Este periodo foi
marcado pela aplicagdo de arquiteturas ja consolidadas em outras areas, como as
Redes Neurais Convolucionais (CNNs) e Redes de Crengas Profundas (DBNSs), para
validar a viabilidade do deep learning em problemas de materiais. A partir de 2020,
o campo entra em uma fase de crescimento acelerado, atingindo um pico de
producao em 2021, com 14 artigos. Posteriormente, a estabilizagdo no numero de
artigos pode indicar uma fase de consolidagao da area, apos a natural diminui¢gao do
pico de novidade associado & introdugéo de uma tecnologia disruptiva. E notavel que

cerca de 85% de toda a producdo cientifica analisada (62 dos 73 artigos) foi
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publicada a partir desse ano.

Essa expansao pode ser diretamente associada a superacéo de alguns dos
desafios que discutimos no Tépico 4. O aumento expressivo de publicagdes coincide
com a consolidacio de técnicas para a construgao de bancos de dados via simulagao
computacional, uma solucao direta para a escassez de dados experimentais. Além
disso, a analise temporal revela o surgimento de temas mais sofisticados. Por
exemplo, os primeiros artigos focados em Interpretabilidade (XAl) comegam a
aparecer de forma mais consistente a partir de 2020, e a Aprendizagem por
Transferéncia (Transfer Learning), uma solugao para o desafio da Generalizagao,
também surge nesse periodo mais maduro da pesquisa. Isso indica que, apos uma
fase inicial de validagao da precisdo dos modelos, a comunidade cientifica passou a
se dedicar a tornar os modelos de deep learning mais robustos, transparentes e

aplicaveis a cenarios do mundo real.

O estudo das propriedades mecanicas investigadas revela um foco
concentrado da comunidade cientifica em areas especificas, refletindo tanto a
relevancia industrial quanto a maturidade da aplicagao de deep learning para cada
tipo de problema. A Figura 20, que apresenta a distribuicdo dos artigos por
propriedade, evidencia uma clara predominancia de estudos voltados para a
previsdo de propriedades fundamentais, como Resisténcia a Tracdo e Resisténcia

ao Escoamento.
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Figura 20 - Distribuicdo dos artigos por Propriedade Mecanica Estudada.
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Tabela 1 - Concordancia dos artigos por Propriedade Mecanica Estudada.

Propriedades Mecanicas Autores Relacionados

Resisténcia a Tragéo (Carl Herriott, 2020); (Wei-gang Li,

2019); (Haoliang Jiang, 2020);
(Somphop Chiaranai, 2023); (Xin Luo,
2025); (Jianjing Zhang, 2019);
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Resisténcia a Compressao

Fadiga

Resisténcia ao Escoamento

Dureza

Tenacidade

(Zhizhou Zhang, 2024); (Fasikaw
Kibrete, 2023); (Lei Han, 2025); (Jesus
de-Prado-Gil, 2022); (Daniel Vuong,
2023)

(Mohammad Azarafza, 2022); (Xiang
Li, 2019); (Brian Gallagher, 2018);
(Yang Yu, 2023); (Zhiyuan Fang,

2021)

(Si-Yu Shao, 2017); (Jingye Yang,
2021); (Xiao-Cheng Zhang, 2021);
(Erfan Maleki, 2021); (Xin Zhang,
2021); (Chongcong Tao, 2021);
(Steph-Yves M. Louis, 2020); (Zhikun
Huang, 2024); (Xiang Li, 2020);
(Shahin Siahpour, 2020); (Muhammad
Muzammil Azad, 2024)

(Mojtaba Mozaffar, 2019); (Yasin
Shokrollahi, 2023); (lvan P. Malashin,
2025); (Im Doo Jung, 2020);
(Chunyuan Cui, 2022); (Xiao Shang,
2023); (Lei Han, 2025); (Yuhan Gao,
2024); (Chia-Wei Hsu, 2021); (Zhizhou
Zhang, 2020)

(Fu-Zhi Dai, 2019); (Soo Young Lee,
2020); (Junbo Niu, 2023); (Vijay
Kakani, 2021); (Wenzhen Yuan, 2017);
(Sehyeok Oh, 2019); (Xu Long, 2023);
(Selvarasu Saminathan Jayakumar
Lakshmipathy, 2021); (Samgeeth Sen,
2023); (Filip Nikoli¢, 2023)
(Jing-Ang Zhu, 2021); (Hashina
Parveen Anwar Al, 2022); (Sofien
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Akrichi, 2019); (Si-wei Wu, 2020)

(Y. Mototake, 2022); (Muhammad
Muzammil Azad, 2024)

Analise de Fratura

(Mingming Shen, 2022); (Mingwei
Resisténcia ao Desgaste

Wang, 2020)
Resisténcia a Tor¢ao (Kimia Gholami, 2023)
Decomposigao (Hao Gong, 2020)

(Sang Ye, 2019); (Gang Xu, 2022);
(Hamed Bolandi, 2022); (Lu Lu, 2020);
(Yuichiro Murakami, 2024); (Zhenze
Yang, 2021); (Erfan Maleki, 2023);
(Kamal Choudhary, 2022); (Zhenze

Misto Yang, 2021); (Ru Yang, 2022);
(Tongming Qu, 2021); (Charles Yang,
2020); (Ravi Kiran Bollinenia, 2025);
(Zhenru Chen, 2024); (Varun
Raaghav, 2025); (Shiming Liu, 2021);
(Richard J. Pyle, 2022)

Essas duas propriedades, somadas a categoria "Misto" (que frequentemente
engloba a predigdo simultdnea de multiplos parametros da curva tensédo-
deformagdo), correspondem a 48% de todos os artigos analisados. Essa
concentracido € esperada, pois, como discutido no Tépico 3, a curva tensao-
deformacéo é a "impresséo digital" do comportamento mecanico de um material, e a
previsdo precisa desses limites € um passo fundamental para validar a eficacia de
qualquer modelo de IA. A relativa facilidade em obter grandes volumes de dados de
tracao, seja por ensaios padronizados ou por simulagdes, reforca essa tendéncia,
alinhando-se diretamente ao desafio da Constru¢cdo do Banco de Dados que
abordamos no Tépico 4.

Em segundo lugar, a Fadiga desponta como uma das areas de maior
interesse, representando 14% dos estudos. Este foco se justifica pela complexidade
e pelo alto valor agregado da previsdo da vida em fadiga, um problema onde os
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métodos tradicionais sdo notoriamente caros e demorados. A capacidade dos
modelos de deep learning, especialmente as Redes Neurais Recorrentes (RNNs) de
lidar com o acumulo de dano ao longo do tempo, faz desta uma area de aplicagéo
natural e de grande impacto industrial.

Propriedades como Dureza (13%) e Resisténcia a Compressao (7%) também
recebem atencdo consideravel. Em contraste, areas mais complexas ou de nicho,
como Tenacidade (5%), Resisténcia ao Desgaste (3%) e Analise de Fratura (3%),
aparecem com menor frequéncia. Esta distribuicdo sugere uma lacuna na literatura
e uma oportunidade para futuras pesquisas, possivelmente indicando que a
modelagem desses fenbmenos exige dados mais complexos (como campos de
deformacgéao ou imagens de superficies desgastadas), o que nos conecta diretamente

ao desafio da Complexidade e Qualidade dos Dados.

O exame das metodologias de deep learning adotadas na literatura mostra
preferéncia por certas arquiteturas, o que esta diretamente ligado a natureza dos
dados e aos problemas especificos da ciéncia dos materiais. A Figura 21 que detalha
a distribuicao dos artigos por tipo de rede neural, mostra um dominio expressivo das
Redes Neurais Convolucionais (CNNs), que foram utilizadas em 43% dos estudos
analisados.
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Figura 21 - Distribuicdo dos artigos por Rede Neural Utilizada.
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Tabela 2 - Concordancia dos artigos por Metodologia de |IA Empregada.

Rede Neural utilizada Autores relacionados

(Sang Ye, 2019); (Xiang Li, 2019);
Redes Neurais Convolucionais (Carl Herriott, 2020); (Kimia Gholami,
2023); (Wei-gang Li, 2019); (Hamed
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Redes Neurais Recorrentes

Redes Neurais Feedforward

cGAN

Bolandi, 2022); (Brian Gallagher,
2018); (Yuichiro Murakami, 2024); (Xin
Zhang, 2021); (Y. Mototake, 2022);
(Hashina Parveen Anwar Al, 2022);
(Zhenze Yang, 2021); (Yang Yu,
2023); (Ru Yang, 2022); (Hao Gong,
2020); (Charles Yang, 2020);
(Muhammad Muzammil Azad, 2024);
(Somphop Chiaranai, 2023); (Xin Luo,
2025); (Yasin Shokrollahi, 2023);
(Mingming Shen, 2022); (Xiao Shang,
2023); (Steph-Yves M. Louis, 2020);
(Filip Nikoli¢, 2023); (Yuhan Gao,
2024); (Daniel Vuong, 2023); (Zhenru
Chen, 2024); (Varun Raaghav, 2025);
(Zhizhou Zhang, 2020); (Shiming Liu,
2021); (Xiang Li, 2020); (Richard J.
Pyle, 2022); (Shahin Siahpour, 2020)

(Gang Xu, 2022); (Chongcong Tao,
2021); (Mojtaba Mozaffar, 2019);
(Tongming Qu, 2021); (Jianjing Zhang,
2019); (Xu Long, 2023); (Lei Han,
2025); (Mingwei Wang, 2020)

(Mohammad Azarafza, 2022); (Lu Lu,
2020); (Jingye Yang, 2021); (Erfan
Maleki, 2021); (Im Doo Jung, 2020);
(Chunyuan Cui, 2022); (Selvarasu

Saminathan Jayakumar Lakshmipathy,

2021); (Samgeeth Sen, 2023); (Jesus

de-Prado-Gil, 2022)

(Zhenze Yang, 2021); (Haoliang Jiang,
2020); (Sehyeok Oh, 2019)
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(Si-Yu Shao, 2017); (Sofien Akrichi,

DBN
2019); (Zhiyuan Fang, 2021)
MPR-Net (Zhizhou Zhang, 2024)
Deep Learning Potential (Fu-Zhi Dai, 2019)

(Jing-Ang Zhu, 2021); (Soo Young
Lee, 2020); (Xiao-Cheng Zhang,
2021); (Erfan Maleki, 2023); (Junbo
Niu, 2023); (Vijay Kakani, 2021);
(Kamal Choudhary, 2022); (Wenzhen

Misto Yuan, 2017); (Si-wei Wu, 2020);
(Fasikaw Kibrete, 2023); (Ravi Kiran
Bollinenia, 2025); (Zhikun Huang,
2024); (Lei Han, 2025); (Chia-Wei Hsu,
2021); (Muhammad Muzammil Azad,
2024); (Ivan P. Malashin, 2025)

Essa predominancia das CNNs €& uma consequéncia direta do desafio da
Complexidade dos Dados, discutido no Toépico 4.2. Umaparcela significativa da
pesquisa na area utiliza imagens de microestrutura como principal fonte de dados
para prever propriedades mecanicas. Como apresentado no Toépico 2, as CNNs sao
arquiteturas especializadas na extragao de caracteristicas espaciais, 0 que as torna
a ferramenta ideal para aprender as complexas relagdes entre a morfologia da

microestrutura e o desempenho do material.

As Redes Neurais Feedforward (agrupando aqui as arquiteturas ANN, DNN,
FCNN e Feedforward tradicionais) e as Redes Neurais Recorrentes (RNNs)
(incluindo LSTMs) também figuram com relevéancia, correspondendo a 12% e 11%
dos trabalhos, respectivamente. O uso de RNNs esta associado a problemas que
envolvem dados sequenciais, como a previsao de curvas de tensdo-deformacgao ou
a analise de processos de fabricacdo que evoluem no tempo, como a manufatura

aditiva.

Arquiteturasi especializadas, como as Redes de Crengas Profundas (DBNs)

e as Redes Generativas Adversariais (CGANs), embora menos frequentes (ambas
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com 4%), representam a fronteira da pesquisa. O uso de DBNs, por exemplo, € uma
resposta ao desafio da escassez de dados, enquanto as cGANs sdao uma tendéncia
futura para a geragao de dados sintéticos e o projeto inverso de materiais. Por fim, a
categoria "Misto", com 20%, indica uma crescente para o uso de arquiteturas
hibridas ou de multiplos modelos (ensemble), buscando combinar as forcas de

diferentes redes para resolver problemas ainda mais complexos.

Aigura 7.4 mostra a natureza dos dados de entrada evidenciando a crescente

sofisticagcdo dos modelos de deep learning e a sua capacidade de lidar com

informagdes heterogéneas. Embora os dados numéricos tabulares ainda

representem uma parcela significativa (28%), refletindo a abordagem tradicional de
alimentar redes neurais com parametros de processo e composi¢gao quimica, a

tendéncia aponta para o uso de dados mais complexos e multimodais.

Figura 22 - Distribuicdo dos artigos por Tipo de Dado de Entrada.
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Tabela 3 - Concordancia dos artigos por Tipo de Dado de Entrada.

Tipo de Dado de Entrada

Numerico

Imagens

Séries Temporais

Autores relacionados

(Mohammad Azarafza, 2022); (Lu Lu,
2020); (Soo Young Lee, 2020); (Erfan
Maleki, 2021); (Junbo Niu, 2023);
(Sofien Akrichi, 2019); (Yang Yu,
2023); (Zhiyuan Fang, 2021);
(Tongming Qu, 2021); (lvan P.
Malashin, 2025); (Im Doo Jung, 2020);
(Chunyuan Cui, 2022); (Xu Long,
2023); (Lei Han, 2025); (Si-wei Wu,
2020); (Selvarasu Saminathan
Jayakumar Lakshmipathy, 2021);
(Samgeeth Sen, 2023); (Jesus de-
Prado-Gil, 2022); (Filip Nikoli¢, 2023);
(Zhenru Chen, 2024)

(Brian Gallagher, 2018); (Y. Mototake,
2022); (Hashina Parveen Anwar Al,
2022); (Wenzhen Yuan, 2017); (Ru

Yang, 2022); (Hao Gong, 2020);

(Muhammad Muzammil Azad, 2024);

(Xin Luo, 2025); (Mingming Shen,

2022); (Xiao Shang, 2023); (Fasikaw

Kibrete, 2023); (Somphop Chiaranai,
2023); (Daniel Vuong, 2023)

(Si-Yu Shao, 2017); (Gang Xu, 2022);
(Jingye Yang, 2021); (Xin Zhang,
2021); (Chongcong Tao, 2021);

(Mojtaba Mozaffar, 2019); (Xiang Li,
2020); (Shahin Siahpour, 2020);

(Muhammad Muzammil Azad, 2024)
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(Hamed Bolandi, 2022); (Yasin
Shokrollahi, 2023); (Yuhan Gao, 2024);
(Chia-Wei Hsu, 2021); (Shiming Liu,
2021); (Richard J. Pyle, 2022)

Método dos Elementos Finitos

(Sang Ye, 2019); (Xiang Li, 2019);
(Carl Herriott, 2020); (Jing-Ang Zhu,
2021); (Kimia Gholami, 2023);
(Wei-gang Li, 2019); (Yuichiro
Murakami, 2024); (Zhenze Yang,
2021); (Xiao-Cheng Zhang, 2021);
(Erfan Maleki, 2023); (Vijay Kakani,
2021); (Kamal Choudhary, 2022);
Misto (Zhenze Yang, 2021); (Charles Yang,

2020); (Haoliang Jiang, 2020);
(Jianjing Zhang, 2019); (Sehyeok Oh,
2019); (Zhizhou Zhang, 2024); (Steph-
Yves M. Louis, 2020); (Ravi Kiran
Bollinenia, 2025); (Zhikun Huang,
2024); (Mingwei Wang, 2020); (Varun
Raaghav, 2025); (Zhizhou Zhang,
2020)

Dinamica Moleculas (Fu-Zhi Dai, 2019)

A categoria Misto, que representa a combinag&o de diferentes tipos de dados
(como imagens e parametros numericos), € a mais prevalente, com 32% dos artigos.
Isso indica que a comunidade cientifica reconhece a necessidade de fornecer aos
modelos um contexto mais rico, combinando, por exemplo, a microestrutura visual
com as condigdes de processamento. Essa abordagem esta alinhada com o desafio
da Complexidade e Qualidade dos Dados discutido no Topico 4, onde a integragao
de fontes de informacéao heterogéneas é fundamental para capturar a fisica completa

do problema.

O uso direto de imagens (17%) e séries temporais (12%) também é notavel e
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se correlaciona diretamente com a popularidade das arquiteturas de |IA que
analisaremos a seguir. O crescimento no uso de imagens de microestrutura justifica
o dominio das CNNs, enquanto os dados de séries temporais, como curvas de
tensdo-deformacao ou sinais de sensores, sdo o dominio das RNNs e LSTMs.

Cerca de 8% dos estudos utilizam dados provenientes diretamente do Método
dos Elementos Finitos (FEM). Este dado reforgca nossa discussdo sobre a
Construcdo do Banco de Dados, mostrando que a simulagdo computacional nao &
apenas uma ferramenta para gerar grandes volumes de dados, mas também uma
fonte de dados de alta complexidade, como campos de tensdo e deformacgao, que
sdo essenciais para treinar modelos capazes de prever respostas mecanicas

complexas.

O levantamento da abordagem de interpretabilidade dos modelos, cujos
dados estdo compilados na Figura 23, revela um dos maiores desafios e, a0 mesmo
tempo, uma das mais significativas areas de crescimento para a aplicagao de deep
learning na ciéncia dos materiais. Os resultados sao contundentes: uma esmagadora
maioria de 76% dos artigos (60 dos 73 analisados) trata os modelos de |A como uma
"Caixa-Preta" (Black Box).

Este dado quantitativo corrobora diretamente a discussao do Toépico 4.3,
evidenciando que o foco principal da pesquisa até o momento tem sido a validagao
da capacidade preditiva dos modelos, muitas vezes em detrimento da compreensao
de seus mecanismos internos de decisdo. Os pesquisadores, em grande parte,
demonstram que os modelos funcionam, mas nao exploram o "porqué" de
funcionarem. Essa abordagem, embora eficaz para muitas tarefas, representa uma
barreira para a adogéo da |A em aplicagdes de alta responsabilidade na engenharia,
onde a confianca e a validagao fisica sao indispensaveis.

No entanto, a analise também aponta para uma tendéncia futura promissora.
Um total de 17% dos estudos (14 artigos) ja emprega ativamente técnicas de
Inteligéncia Artificial Explicavel (XAl). A presenca desses métodos, embora ainda
minoritaria, indica uma crescente conscientizacdo da comunidade cientifica sobre a
necessidade de transparéncia. Como vimos no Tdépico 5, o uso de técnicas como
SHAP e Grad-CAM esta se tornando mais comum para validar se as previsdes dos
modelos estdo alinhadas com o conhecimento metalurgico e fisico, transformando a

IA de uma simples ferramenta de predicdo em um potencial instrumento para a
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descoberta de novo conhecimento cientifico. A pequena fragdo de artigos
classificados como "Misto" (2,6%) representa, provavelmente, trabalhos que, embora
nao apliguem uma técnica de XAl formal, realizam analises de sensibilidade

paramétrica para entender a influéncia das variaveis de entrada.

Figura 23 - Distribuicao dos artigos por Abordagem de Interpretabilidade.

Tabela 4 - Concordancia dos artigos por Abordagem de Interpretabilidade.

Abordagem de Interpretabilidade Autores relacionados

(Sang Ye, 2019); (Si-Yu Shao, 2017);
(Mohammad Azarafza, 2022); (Xiang

Caixa-Preta
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Li, 2019); (Carl Herriott, 2020); (Fu-Zhi
Dai, 2019); (Jing-Ang Zhu, 2021);
(Kimia Gholami, 2023); (Gang Xu,

2022); (Wei-gang Li, 2019); (Hamed
Bolandi, 2022); (Lu Lu, 2020); (Brian
Gallagher, 2018); (Yuichiro Murakami,
2024); (Zhenze Yang, 2021); (Jingye
Yang, 2021); (Xiao-Cheng Zhang,
2021); (Erfan Maleki, 2021); (Xin
Zhang, 2021); (Erfan Maleki, 2023);
(Junbo Niu, 2023); (Vijay Kakani,
2021); (Y. Mototake, 2022); (Hashina
Parveen Anwar Al, 2022); (Kamal
Choudhary, 2022); (Sofien Akrichi,

2019); (Zhenze Yang, 2021); (Mojtaba
Mozaffar, 2019); (Wenzhen Yuan,
2017); (Zhiyuan Fang, 2021); (Ru

Yang, 2022); (Hao Gong, 2020);
(Tongming Qu, 2021); (Charles Yang,
2020); (Haoliang Jiang, 2020);
(Muhammad Muzammil Azad, 2024);
(Xin Luo, 2025); (Yasin Shokrollahi,

2023); (Im Doo Jung, 2020); (Sehyeok

Oh, 2019); (Xiao Shang, 2023); (Xu
Long, 2023); (Lei Han, 2025); (Steph-
Yves M. Louis, 2020); (Si-wei Wu,
2020); (Selvarasu Saminathan
Jayakumar Lakshmipathy, 2021); (Ravi
Kiran Bollinenia, 2025); (Zhikun
Huang, 2024); (Mingwei Wang, 2020);
(Jesus de-Prado-Gil, 2022); (Filip
Nikoli¢, 2023); (Yuhan Gao, 2024);
(Daniel Vuong, 2023); (Shiming Liu,
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2021); (Xiang Li, 2020); (Richard J.
Pyle, 2022); (Shahin Siahpour, 2020);
(Muhammad Muzammil Azad, 2024)

(Soo Young Lee, 2020); (Chongcong
Tao, 2021); (Yang Yu, 2023); (Jianjing
Zhang, 2019); (lvan P. Malashin,
2025); (Chunyuan Cui, 2022); (Zhizhou
XAl Zhang, 2024); (Fasikaw Kibrete, 2023);
(Somphop Chiaranai, 2023); (Zhenru
Chen, 2024); (Chia-Wei Hsu, 2021);
(Varun Raaghav, 2025); (Zhizhou
Zhang, 2020)

(Mingming Shen, 2022); (Samgeeth

Misto
Sen, 2023)

O mape das estratégias de generalizagdo empregadas nos artigos, detalhada
na Figura 24, é crucial para avaliar a maturidade e a robustez das pesquisas na area.
Garantir que um modelo de deep learning seja capaz de generalizar, ou seja, de
fazer previsbes precisas para dados novos, é o objetivo final de qualquer aplicagao

pratica. Os dados revelam uma forte consciéncia da comunidade cientifica sobre

esse desafio.
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Figura 24 - Distribuigdo dos artigos por Técnica de Generalizagao.

Validagao, 50%

Tabela 5 - Concordancia dos artigos por Técnica de Generalizaco.

Técnica de Generalizagao Autores relacionados

(Sang Ye, 2019); (Si-Yu Shao, 2017);
(Mohammad Azarafza, 2022); (Kimia
Gholami, 2023); (Wei-gang Li, 2019);
(Yuichiro Murakami, 2024); (Soo
Young Lee, 2020); (Xiao-Cheng
Zhang, 2021); (Erfan Maleki, 2021);
(Erfan Maleki, 2023); (Junbo Niu,
2023); (Kamal Choudhary, 2022);

Validagao
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Misto

Transferéncia de Aprendizado

Desempenho por Material

Validagao Cruzada

(Sofien Akrichi, 2019); (Zhenze Yang,
2021); (Mojtaba Mozaffar, 2019);
(Zhiyuan Fang, 2021); (Ru Yang,

2022); (Hao Gong, 2020); (Tongming
Qu, 2021); (Charles Yang, 2020);
(Haoliang Jiang, 2020); (Xin Luo,

2025); (Jianjing Zhang, 2019); (Yasin

Shokrollahi, 2023); (Mingming Shen,

2022); (Xiao Shang, 2023); (Xu Long,

2023); (Lei Han, 2025); (Si-wei Wu,
2020); (Selvarasu Saminathan
Jayakumar Lakshmipathy, 2021);
(Zhikun Huang, 2024); (Samgeeth
Sen, 2023); (Yuhan Gao, 2024);

(Daniel Vuong, 2023); (Zhenru Chen,

2024); (Chia-Wei Hsu, 2021); (Zhizhou
Zhang, 2020); (Shiming Liu, 2021)
(Jing-Ang Zhu, 2021); (Gang Xu,

2022); (Lu Lu, 2020); (Chongcong Tao,
2021); (Yang Yu, 2023); (Wenzhen

Yuan, 2017); (Muhammad Muzammil

Azad, 2024); (Fasikaw Kibrete, 2023);

(Ravi Kiran Bollinenia, 2025); (Jesus

de-Prado-Gil, 2022)
(Chunyuan Cui, 2022); (Xiang Li,
2020); (Richard J. Pyle, 2022); (Shahin
Siahpour, 2020)

(Fu-Zhi Dai, 2019); (Zhenze Yang,
2021); (Vijay Kakani, 2021); (Hashina
Parveen Anwar Al, 2022)
(Xiang Li, 2019); (Carl Herriott, 2020);
(Hamed Bolandi, 2022); (Brian
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Gallagher, 2018); (Jingye Yang, 2021);
(Xin Zhang, 2021); (Y. Mototake,
2022); (Ilvan P. Malashin, 2025); (Im
Doo Jung, 2020); (Sehyeok Oh, 2019);
(Zhizhou Zhang, 2024); (Steph-Yves
M. Louis, 2020); (Mingwei Wang,
2020); (Filip Nikoli¢, 2023); (Somphop
Chiaranai, 2023); (Varun Raaghav,
2025); (Muhammad Muzammil Azad,
2024)

A abordagem mais comum € a validacdo simples (hold-out validation),
utilizada em 50,0% dos estudos. Nessa técnica, o banco de dados é dividido em
conjuntos de treinamento e teste, sendo uma pratica fundamental para uma primeira
avaliagdo do desempenho do modelo. Em segundo lugar, a validagao cruzada
(cross-validation), uma técnica mais robusta e computacionalmente mais intensiva,
foi adotada em 22,0% dos trabalhos. Como discutido no Tépico 4.4, a validacao
cruzada é especialmente valiosa em cenarios com dados limitados — uma realidade
comum na ciéncia dos materiais —, pois garante que todos os dados sejam utilizados
tanto para treinamento quanto para teste, oferecendo uma estimativa mais confiavel

da performance de generalizagdo do modelo.

E interessante notar que 5% dos artigos utilizam explicitamente a
Aprendizagem por Transferéncia (Transfer Learning) como estratégia de
generalizagdo. Esta abordagem, que também foi apontada como uma tendéncia
futura no Tépico 5, € uma solucdo direta para o desafio de adaptar modelos
treinados, muitas vezes com dados de simulagdo, para dominios com dados

experimentais escassos, mitigando o "hiato de realidade".

A categoria "Misto" (13%) agrupa estudos que combinam multiplas técnicas,
como validagdo simples com regularizagdo (e.g., dropout) ou outras formas de
controle de overfitting. A avaliacdo de desempenho por material (5%) mostra a
diversidade de métodos empregados para assegurar que os modelos nao estejam

apenas "memorizando" os dados de treinamento, mas sim aprendendo as relagbes
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fisicas subjacentes que governam as propriedades dos materiais.

A analise das estratégias para a constru¢ao de bancos de dados, apresentada
na Figura 25 vai ao cerne do principal desafio pratico da aplicagdo de deep learning
na ciéncia dos materiais. Os dados revelam um campo dividido, buscando equilibrar

a fidelidade dos dados experimentais com a escalabilidade dos dados sintéticos.

Figura 25 - Distribuigdo dos artigos por Estratégia de Construgdo do Banco de Dados.

Tabela 6 - Concordancia dos artigos por Técnica de Generalizaco.

Estratégia de Construgao do Banco Artigos relacionados
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de Dados

(Si-Yu Shao, 2017); (Brian Gallagher,
2018); (Yuichiro Murakami, 2024);
(Jingye Yang, 2021); (Xiao-Cheng

Zhang, 2021); (Erfan Maleki, 2021);
(Xin Zhang, 2021); (Erfan Maleki,
2023); (Sofien Akrichi, 2019);
(Chongcong Tao, 2021); (Yang Yu,
2023); (Wenzhen Yuan, 2017); (Xin
Luo, 2025); (Jianjing Zhang, 2019);
(lvan P. Malashin, 2025); (Mingming

Shen, 2022); (Zhizhou Zhang, 2024);

(Steph-Yves M. Louis, 2020); (Si-wei
Wu, 2020); (Selvarasu Saminathan
Jayakumar Lakshmipathy, 2021);
(Zhikun Huang, 2024); (Samgeeth
Sen, 2023); (Mingwei Wang, 2020);

(Jesus de-Prado-Gil, 2022); (Somphop
Chiaranai, 2023); (Xiang Li, 2020);

(Richard J. Pyle, 2022); (Shahin
Siahpour, 2020)

Coleta via Ensaio

Data Augmentation (Muhammad Muzammil Azad, 2024)

(Sang Ye, 2019); (Xiang Li, 2019);
(Carl Herriott, 2020); (Fu-Zhi Dai,
2019); (Jing-Ang Zhu, 2021); (Kimia
Gholami, 2023); (Hamed Bolandi,
2022); (Lu Lu, 2020); (Zhenze Yang,
2021); (Soo Young Lee, 2020); (Y.
Mototake, 2022); (Mojtaba Mozaffar,
2019); (Zhiyuan Fang, 2021); (Ru
Yang, 2022); (Tongming Qu, 2021);
(Charles Yang, 2020); (Haoliang Jiang,

Geracao de Dados



Misto

Padronizacao

Rotulagem Manual e Assistida

Tamanho e Diversidade

Variabilidade

2020); (Yasin Shokrollahi, 2023); (Xiao
Shang, 2023); (Xu Long, 2023); (Lei
Han, 2025); (Ravi Kiran Bollinenia,
2025); (Yuhan Gao, 2024); (Chia-Wei
Hsu, 2021); (Shiming Liu, 2021)

(Junbo Niu, 2023); (Vijay Kakani,
2021); (Kamal Choudhary, 2022);
(Zhenze Yang, 2021); (Hao Gong,
2020); (Muhammad Muzammil Azad,
2024); (Im Doo Jung, 2020);
(Chunyuan Cui, 2022); (Sehyeok Oh,
2019); (Fasikaw Kibrete, 2023);
(Zhenru Chen, 2024); (Varun
Raaghav, 2025); (Zhizhou Zhang,
2020)

(Gang Xu, 2022)
(Daniel Voung, 2023)

(Mohammad Azarafza, 2022);
(Wei-gang Li, 2019); (Filip Nikoli¢,
2023)

(Hashina Parveen Anwar Al, 2022)

Observa-se uma distribuicdo quase equitativa entre a Coleta via ensaio (37%)

e a Geragdo de Dados por simulagao (33%). Este balango reflete diretamente a

discussdo do Topico 4.1. Por um lado, a coleta experimental continua sendo o pilar

para garantir que os modelos sejam treinados com dados que representam a

realidade fisica. Por outro, a expressiva quantidade de estudos que recorrem a

geragao de dados sintéticos (via FEM, Dindmica Molecular, etc.) confirma que esta

€ a principal estratégia da comunidade cientifica para superar a limitagdo de custo e

tempo dos ensaios fisicos, permitindo a criagdo dos grandes volumes de dados que

os modelos de deep learning demandam.
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A categoria "Misto", com 17%, é particularmente reveladora. Ela representa
uma tendéncia sofisticada e crescente, onde os pesquisadores combinam o melhor
dos dois mundos: utilizam um conjunto menor de dados experimentais de alta
fidelidade para validar, calibrar ou refinar modelos que foram pré-treinados em
grandes volumes de dados sintéticos. Essa abordagem hibrida é uma das solugdes
mais eficazes para o problema do "hiato de realidade" entre simulagdo e

experimento, que discutimos no Topico 4.4 sobre Generalizagéo.

As demais categorias, embora menos frequentes, apontam para técnicas
emergentes e focos especificos. O "Data Augmentation” (1%) e a preocupagdo com
"Tamanho e Diversidade" (4%) mostram uma crescente maturidade na curadoria dos
dados. A mencéo a “Rotulagem Manual e Assistida” (1%) destaca a importancia da
qualidade dos roétulos, um ponto crucial para o sucesso do aprendizado
supervisionado. Em suma, os dados mostram que a construcdo de um banco de
dados robusto € um campo de pesquisa ativo, com uma clara evolugido de uma
dependéncia exclusiva de ensaios para uma sinergia inteligente entre dados

experimentais e sintéticos.

Para concluir, os resultados desta revisao sistematica pintam o retrato de um
campo de pesquisa em rapida maturacio, que, apds validar a viabilidade do deep
learning para prever propriedades fundamentais como a resisténcia a tracdo e a
fadiga, agora se volta para desafios mais complexos. A analise quantitativa expoe
um claro movimento da comunidade cientifica em direcdo ao uso de dados de
imagem e simulagéo para alimentar arquiteturas especializadas, como as CNNs, que
ja dominam o cenario com 43% das aplicagdes. No entanto, a investigagao também
revela os principais gargalos que definirdo as tendéncias futuras: a esmagadora
predominéncia de modelos "Caixa-Preta" (76% dos estudos), que evidencia a
necessidade urgente de avangos em interpretabilidade (XAl), e a busca continua por
estratégias robustas para a construgdo de bancos de dados e a generalizagdo dos
modelos, onde a sinergia entre dados experimentais e sintéticos surge como a

solugdo mais promissora.
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8 CONSIDERAGOES FINAIS

Este estudo, por meio de uma reviséo sistematica da literatura, concluiu que a
aplicacao de deep learning para a previsédo de propriedades mecanicas de materiais
€ um campo de pesquisa recente e em crescimento acelerado. A analise revelou um
foco predominante em arquiteturas de Redes Neurais Convolucionais (CNNSs),
impulsionado pela crescente utilizagdo de imagens de microestrutura como dado de
entrada. Verificou-se também que os estudos se concentram na predicdo de
propriedades fundamentais, como resisténcia a tragédo e fadiga, e que a superagao
da escassez de dados experimentais tem sido contornada por uma sinergia entre
ensaios fisicos e a geragédo de grandes volumes de dados sintéticos via simulagao

computacional.

Apesar do sucesso preditivo dos modelos, a pesquisa demonstrou que
desafios criticos persistem e definem a fronteira atual do conhecimento. A principal
limitagao identificada € a natureza de "Caixa-Preta" da maioria dos modelos, que,
embora precisos, carecem de interpretabilidade, dificultando a validagao fisica de
suas decisdes. Adicionalmente, a constru¢cdo de bancos de dados robustos e a
capacidade de generalizagdo dos modelos para dados do mundo real, transpondo o

"hiato" entre simulagéo e realidade, continuam a ser barreiras significativas.

Portanto, constatou-se que o campo esta em um ponto de transicdo: de uma
fase inicial focada em validar a acuracia dos modelos, para uma etapa de
amadurecimento que busca criar ferramentas de |A mais robustas, transparentes e
confiaveis. A tendéncia futura aponta para a integragdo desses modelos em sistemas
de Projeto Inverso de Materiais, onde a inteligéncia artificial podera nao apenas
prever, mas também guiar a descoberta e o desenvolvimento de novos materiais

com propriedades otimizadas.
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