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Resumo

O objetivo deste trabalho é estudar Problemas de Programacao Linear (PPL) e aplicar a
algebra e os a-niveis dos nimeros fuzzy nesses problemas com parametros e variaveis sendo
nimeros reais ou numeros fuzzy. O primeiro problema estudado é um circuito divisor de tensao
que é modelado para determinar os valores dos resistores centralizados, de forma que a im-
pedancia do divisor de tensao da resisténcia seja minima. Trés casos sao analisados para os
componentes do PPL: nimeros reais, nimeros fuzzy do tipo 1 e conjuntos fuzzy do tipo 2. O
primeiro caso foi considerado para validar os outros dois casos. Outra analise que foi realizada
para avaliar os beneficios e restrigoes na utilizacao da algebra e os a-niveis dos ntimeros fuzzy
em um método afim de pontos interiores, o Algoritmo Primal - Afim (APA), na determinagao
da solucao 6tima de um PPL com parametros e variaveis sendo ntimeros reais. O algoritmo
modificado, Algoritmo Primal — Afim Fuzzy (APAF), utilizou nimeros fuzzy triangulares para
cada variavel do PPL e a dlgebra e os a-niveis desses nuimeros. Os resultados obtidos pelo
APAF sao melhores a cada iteracao e o APAF necessita de um niimero menor de iteracoes para
atingir o valor 6timo em comparacao com o APA, considerando o erro absoluto. Este trabalho
também demonstra que um conjunto fuzzy do tipo 2 é uma maneira 1til e perspicaz de modelar
problemas de otimizacao sob incerteza. Para tanto, uma nova representacao de conjuntos fuzzy
com valores intervalares baseada em funcgoes de restricao, denominadas intervalos fuzzy gene-
ralizados, é desenvolvida para a analise de problemas de otimizacao possibilistica nos quais os
parametros sao generalizacoes de nimeros fuzzy intervalares. O objetivo deste estudo é repre-
sentar conjuntos fuzzy intervalares de forma que modelos de otimizagao possibilistica resolvidos
com intervalos fuzzy generalizados resultem em informagoes adicionais sobre o risco associado
as agoes propostas que podem ser tomadas com base em uma estratégia de solugao. Esta me-
todologia utiliza o método da penalidade para reduzir um PPL possibilistico a um problema de
otimizacao nao linear, cujos resultados sao comparados com a resolucao do PPL por a-niveis
cujas solugoes sao defuzificadas via centroide e, possibilidade e necessidade, tomando como
referéncia a solucao do PPL deterministico. Apresenta-se uma aplicacao de uma dieta suple-
mentar a um individuo diagnosticado com deficiéncias nutricionais, com quantidades variaveis
de nutrientes em relacgao aos seus alimentos preferidos, descritas matematicamente por niimeros
fuzzy intervalares. Os resultados obtidos na resolugao do problema de otimizagao possibilistica
com o método da penalidade permitem ao individuo determinar a melhor dieta para atender
as suas necessidades didrias de nutrientes com o menor custo em relacao aos demais métodos
apresentados.

Palavras-chave: Programacao linear, Programacao linear fuzzy, Conjuntos fuzzy do tipo 1,
Conjuntos fuzzy do tipo 2, Circuito Elétrico, Otimizacao, a-nivel, Algebra fuzzy, Conjuntos
fuzzy intervalares, Funcoes de restricao, Otimizacao possibilistica.
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Abstract

The objective of this work is to study Linear Programming Problems (LPP) and apply the
algebra and the a-levels of fuzzy numbers in these problems with parameters and variables
being real numbers or fuzzy numbers. The first problem studied is a voltage divider circuit
that is modeled to determine the values of the centered resistors, so that the impedance of
the voltage divider resistor is minimal. Three cases are analyzed for the LPP components:
real numbers, type-1 fuzzy numbers and type-2 fuzzy sets. The first case was considered to
validate the other two cases. Another analysis was carried out to evaluate the benefits and
restrictions in the use of algebra and the a-levels of fuzzy numbers in an affine method of
interior points, the Primal - Affine Algorithm (APA), in determining the optimal solution of
a LPP with parameters and variables being real numbers. The modified algorithm, Primal —
Affin Fuzzy Algorithm (APAF), used triangular fuzzy numbers for each LPP variable and the
algebra and a-levels of these numbers. The results obtained by APAF are better with each
iteration and APAF requires a smaller number of iterations to reach the optimal value compared
to APA, considering the absolute error. This work also demonstrates that a type-2 fuzzy set
is a useful and insightful way to model optimization problems under uncertainty. Toward this
objective, a new representation of interval-valued fuzzy sets based on constraint functions, called
generalized fuzzy intervals, is developed for the analysis of possibilistic optimization problems
in which the parameters are generalizations of interval-valued fuzzy numbers. The aim of this
study is to represent interval-valued fuzzy sets in a way that possibilistic optimization models
solved with generalized fuzzy intervals result in increased information about the risk associated
with proposed actions that might be taken based on a solution strategy. This methodology
uses the penalty method to reduce a possibilistic LPP into a nonlinear optimization problem,
whose results are compared with the resolution of the LPP by a-levels whose solutions are
defuzzified via centroid and, possibility and necessity, taking as reference the solution of the
deterministic LPP. An application of a supplemental diet is presented to an individual who
has been diagnosed with nutritional deficiencies, with varying amounts of nutrients relative to
their preferred foods, mathematically described by interval-valued fuzzy number. The results
obtained in solving the possibilistic optimization problem using the penalty method allow the
individual to determine the best diet to meet their daily nutrient needs at the lowest cost
compared to the other methods presented.

Keywords: Linear programming , Fuzzy linear programming, Type-1 fuzzy sets, Type-2 fuzzy
sets, Electrical circuit model, Optimization, a-level, Expanded search, Interval-valued fuzzy
sets, Constraint functions, Possibilistic optimization.
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Introducao

Um dos campos mais importantes da Pesquisa Operacional, a Programagao Linear (PL), diz
respeito a modelos que otimizam funcgoes objetivo lineares e as restrigoes nas variaveis de
decisdo. Algoritmos eficientes foram desenvolvidos para PL, dentre os quais destacamos o
ponto interior (NOCEDAL; WRIGHT, 2006), e o algoritmo simplex (DANTZIG, 1987).

A modelagem precisa de dados bem definidos e precisos, o que em geral envolve altos custos
de informacao é uma das questoes importantes da PL. De fato, esta é uma tarefa quase im-
possivel de realizar em muitos casos, devido ao risco ou incerteza em alguns dados (SAHINIDIS,
2004). Muitos fendmenos economicos, fisicos, quimicos e biol6gicos representados por um mo-
delo de programacao linear envolvem parametros que, mesmo o especialista da area em estudo,
nao tem conhecimento preciso desses valores que sao frequentemente imprecisos em problemas
de otimizacao. Uma das teorias utilizada para estudar estas incertezas é a teoria dos conjuntos
fuzzy que modela matematicamente um PPL com essas caracteristicas, desde o trabalho de
Zimmermann (ZIMMERMANN;, 1978) até trabalhos mais atuais (VILLACORTA et al., 2017).
Este problema de PL classica pode ser contornado com o uso de nuimeros fuzzy. A Programacao
Linear Fuzzy (PLF) explica o modelo matemético de uma forma mais realista (VERDEGAY,
1982). Basicamente, considerando alguns dos componentes de um Problema de Programagao
Linear (PPL) como nimeros fuzzy, uma violagao de restrigdo é permitida, e o grau de sa-
tisfacdo de uma restri¢ao é definido como a fungao de pertinéncia da restri¢ao (SAHINIDIS,
2004). Uma das referéncias basicas na area da PLF é devido a Bellman e Zadeh (BELLMAN;
ZADEH, 1973). Em um PPL, a imprecisdo pode estar presente nos coeficientes da func¢ao ob-
jetivo e das restrigoes ou nas variaveis.

Nas ultimas décadas, muitos outros estudos estao sendo realizados considerando como
parametros fuzzy cada um dos componentes de um PPL. Relatamos brevemente algumas
pesquisas que foram realizadas com essa abordagem mostrando a eficiéncia da metodologia
fuzzy aplicada em PPL. Um novo método para resolver problemas de programacao linear com
parametros fuzzy na fungao objetivo foi apresentado no artigo de Wolf et al. (ROMMELFAN-
GER; HANUSCHECK; WOLF, 1989). O método, chamado de ‘a-level related pair formation’,
avalia apenas algumas poucas funcoes objetivo extremas. Para PPL com parametros fuzzy
nas restrigoes um outro método estabelece um indice de classificagao de acordo com o grau
de cumprimento das restricoes. A tomada de decis@ao, com base em uma condicao otimista ou
pessimista, utiliza esse indice para fazer restricoes 'tight or loose’ e obter a solugao 6tima no
espaco de restrigoes fuzzy (LIU, 2001). Métodos que s@o baseados em fungoes de classificagao,
a-nivel, usando resultados de dualidade ou funcoes de penalidade sao utilizados em Ghanbari
et al. (GHANBARI et al., 2020) para investigar PPL com parametros fuzzy nas variaveis, PPL
com parametros fuzzy na fungao objetivo e PPL com parametros fuzzy nas variaveis, restrigoes
e fungao objetivo. Outros estudos propoem um método de classificacao fuzzy para avaliar os va-
lores da fungao objetivo fuzzy e considerar a relacao de desigualdade nas restri¢oes (J IMENEZ
et al., 2007). A generalizagao de métodos de programacao linear fuzzy sdo apresentados com
diferentes metodologias em (DELGADO; VERDEGAY; VILA, 1989) e (FAN; HUANG; YANG,
2013). Em (KAUR; KUMAR, 2013) é proposto um novo método para resolver PPL que mostra
a vantagem do método proposto sobre os métodos existentes e os resultados obtidos sao com-



parados. Para PPL que requerem simetria na modelagem matematica de nimeros fuzzy, varias
pesquisas, entre as quais (CAMARA; JAFELICE, 2025), (GANESAN; VEERAMANI, 2006) e
(EBRAHIMNEJAD; TAVANA, 2014), consideraram numeros fuzzy triangulares simétricos ou
numeros fuzzy trapezoidais simétricos. Essas abordagens caracterizaram adequadamente esses
tipos de problemas.

Um dos avancos recentes na teoria dos conjuntos fuzzy é a teoria dos conjuntos fuzzy tipo 2,
que expande a representacao da incerteza em modelos matematicos. Atualmente, os conjuntos
fuzzy do tipo 1 sao conhecidos como teoria classica dos conjuntos fuzzy. Apesar de recente, a
teoria dos conjuntos fuzzy tipo 2 é rica em resultados tedricos e tem mostrado grande potencial
em aplicagoes como (FIGUEROA-GARCfA; HERNANDEZ, 2014), (JAFELICE; LODWICK,
2021) e (JAFELICE; BERTONE, 2020). Um outro tipo de PLF é a programacao possibilistica,
que reconhece incertezas nos coeficientes da funcao objetivo , bem como em coeficientes das res-
tricoes. A funcao de pertinéncia é usada para representar o grau de satisfacao das restrigoes, as
expectativas do tomador de decisao sobre o nivel da funcao objetivo, e o intervalo de incerteza
dos coeficientes (SAHINIDIS, 2004).

O objetivo desta pesquisa é estudar a incerteza em parametros de problemas de programagao
linear, utilizando abordagens distintas, avaliando e comparando quantitativamente os resultados
obtidos com os valores deterministicos para alguns modelos. Estes propositos foram realizados
em trés trabalhos que sao apresentados a seguir:

e Um circuito elétrico foi modelado por um problema de programacao linear bidimensional
com todos os parametros sendo numeros fuzzy do tipo 1 e tipo 2. A resolucao de cada
PPL com parametros reais obtidos é realizada pelo Método dos Pontos Interiores. A
solugao 6tima na programacao linear fuzzy do tipo 1 é obtida através de uma funcao de
defuzzificagao linear definida nos nimeros fuzzy trapezoidais. Para obter a solugao étima
do tipo 2, considerando cada a-nivel, é resolvido um problema de programacao linear
fuzzy do tipo 1, usando a metodologia anterior. O PPL com nimeros reais é considerado
para validar os outros dois modelos fuzzy. Esta pesquisa foi publicada em (link).

e Posteriormente, inspirado no trabalho anterior, explorou-se a possibilidade de usar a
algebra de niimeros fuzzy em iteracoes do algoritmo para um Método de Pontos Interiores.
Os métodos de Pontos Interiores sao uma classe de métodos de Otimizacao muito estu-
dados atualmente e utilizados principalmente na resolucao de Problemas de Programagao
Linear (BALBO et al., 2010). Em 1984, Karmarkar publicou o seu método Projetivo
para Programacao Linear, gerando um impulso na utilizacao da técnica de Pontos In-
teriores na resolucao de problemas de Otimizagao (KARMARKAR, 1984). Atualmente,
existem métodos variantes do algoritmo original apresentado por Karmarkar, dos quais
o algoritmo Primal-Afim apresentado por Barnes (BARNES, 1986) e por Vanderbei et
al. (VANDERBEI;, MEKETON; FREEDMAN, 1986) que é aplicado na resolucao de
Problemas de Programacao Linear com restrigoes de igualdade. Essa motivagao vem no
sentido de manipular os a-niveis de um nimero fuzzy triangular definido a partir da
solugao inicial obtida pelo método descrito em (FANG; PUTHENPURA, 1993), que per-
mite que os pontos obtidos em cada iteracao sejam parametrizados pela discretizacao dos
a-niveis. Em particular, se o = 1 for fixo em todas as iteracoes, o Método de Ponto Inte-
rior usual é obtido. O objetivo desta abordagem é apresentar um algoritmo modificado,
baseado na representagao de niumeros fuzzy por a-niveis (APAF), que expande o espectro
de busca do Algoritmo Primal Afim (APA) para encontrar a solugdo 6tima de um PPL
com parametros e variaveis sendo nimeros reais, a partir de dez pontos obtidos pela de-
fuzzificagao dos a-niveis de nimeros fuzzy, selecionando aqueles que estao na regiao de
viabilidade em cada iteracao. Os destaques deste estudo sao:



— Apresentam-se as operacoes algébricas fuzzy em cada passo de um dos Métodos de
Pontos Interiores com seu proprio algoritmo.

— A diagonal principal de um granulo de solugoes iniciais obtidas por numeros fuzzy
triangulares simétricos ¢ considerada, cujo valor modal sao os valores das variaveis
da solugao inicial.

— As comparagoes do APAF sao realizadas com o APA, pois este algoritmo realiza
uma busca deterministica pela solucao 6tima, e o APAF é uma extensao do APA, e
em cada iteracao ha a possibilidade de determinar pontos mais préximos da solucao
6tima com valores de « entre 0 e 1.

— Diferentes métodos de defuzzificagao podem gerar diferentes niimeros de iteragoes
para que o FPASA alcance a solugao otima.

— As simulagoes computacionais foram realizadas utilizando o software Matlab e um
dos comandos necessarios para que a programacao computacional fosse realizada
com praticidade era o cell. Este comando se caracteriza por criar matrizes onde
cada elemento também é uma matriz.

Esta pesquisa foi publicada em (link).

Uma outra abordagem utilizada na resolucao de PPL considera a Aritmética Intervalar.
Estudos pioneiros iniciados em 1959, o trabalho considerdvel de Moore e seus colabo-
radores (MOORE, 1969), (MOORE, 1979), (MOORE, 1985), impulsionou a aritmética
intervalar, transformando-a em um campo dinamico de pesquisa, incluindo o desenvol-
vimento da aritmética intervalar padrao. Em (HANSEN, 2001) e (LODWICK, 2007),
a evolucao histérica da aritmética intervalar é amplamente documentada, e uma nova
perspectiva sobre intervalos, conhecida como Aritmética Intervalar Restrita (CIA), foi
apresentada por (LODWICK, 2007). A CIA é uma estrutura conceitualmente sélida que
leva em consideracao todas as variagoes possiveis dentro de um intervalo, redefinindo-o
como uma funcao linear de valor real. Avancos tedricos significativos foram alcangados
pela combinacao da CIA com equacgoes diferenciais ordinarias, particularmente na teoria
dos autovalores intervalares e na estabilidade das equacoes diferenciais lineares intervala-
res, conforme demonstrado por (MIZUKOSHI; LODWICK, 2021). Em um estudo de um
modelo Suscetivel-Infectado-Recuperado, (CECCONELLO; MIZUKOSHI; LODWICK,
2021) utilizaram a CIA para contribuir com a anélise da dindmica da COVID. Também
utilizando a CIA, (MIZUKOSHI; JACQUEMARD; LODWICK, 2020) exploraram a clas-
sificacao de singularidades hiperbdlicas para equacoes diferenciais lineares intervalares
tridimensionais.

A inovagao desenvolvida aqui é a representacao deste tipo de nimero fuzzy intervalar por
meio de fungoes restritas e sua aplicagao a otimizagao em um PPL por meio do método da
penalidade exata em sua resolucao, o que permite estudar a fungao objetivo e as solugoes
do PPL de forma possibilistica. O mesmo PPL também ¢ estudado a partir dos extremos
dos a-niveis dos numeros fuzzy intervalares. Varios PPL obtidos para esses extremos
sao resolvidos e conclui-se que tanto a solugao 6tima quanto o valor étimo podem ser
obtidos usando o principio de extensao de Zadeh aplicado ao nimero fuzzy intervalar. O
estudo da possibilidade e da necessidade em um nimero fuzzy intervalar permite o uso
deste conceito como um método de defuzificacao das solucoes obtidas pelo método dos
a-niveis. Outro método utilizado na defuzzificacao é o centroide, que é um dos métodos
mais importantes para a redugao de conjuntos fuzzy do tipo 2 intervalares, sendo também
uma medida de expectativa popular apresentada em (FIGUEROA—GARCfA; ROMAN-
FLORES; CHALCO-CANO, 2022). Uma andlise dos resultados obtidos na resolucao do
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PPL por esses métodos e uma comparacao dos valores 6timos sao apresentados grafica-
mente. A Figura 1 apresenta um diagrama dos procedimentos realizados para obter a
solucao 6tima do PPL com parametros fornecidos por NFI.

Parametros das Restricoes

NFI
\ 4

PPL

Meétodos de Resolucao
Penalidade a-niveis
Solucdo Otima Fuzzy
Métodos de Defuzzificagao
Centroide Média Esperada
Solucio Otima Solugido Otima Solucdo Otima Comparacdes

Figura 1: Diagrama metodolégico para PPL com NFI.

Portanto, o problema considerado nesta abordagem é:
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numeros fuzzy intervalares.



O perfil deste estudo é:

Falta de informacao sobre os valores dos parametros de entrada que sao conjun-
tos fuzzy intervalares, normalmente gerados por conhecimento especializado ou su-
posicoes adequadas;

— Conjuntos fuzzy intervalares sao traduzidos em nimeros fuzzy intervalares;

— Numeros fuzzy intervalares sao representados como fungoes de intervalos restritos;

Funcoes de intervalo restrito associadas a conjuntos fuzzy intervalares sao aplicados
na otimizagao possibilistica de tal forma que o risco associado a tomada de uma
determinada decisao faca parte da solugao resultante;

Observe que a abordagem da aplicacao de valor intervalar usada aqui é distinta de
(LODWICK; JAMISON;, 2018) em que conjuntos fuzzy intervalares geram dois pares
de distribuigbes envolventes e nao uma. Esta pesquisa foi publicada em (link)

Este trabalho estd organizado da seguinte maneira:

No capitulo 1 é apresentada a fundamentacao tedrica necesséria para o desenvolvimento dos
estudos realizados neste trabalho.

No capitulo 2 é exibido o detalhamento de uma abordagem fuzzy para o modelo matematico
de um circuito elétrico e o método de programacao linear fuzzy para o modelo com os resul-
tados numéricos correspondentes. Trés casos sao analisados, considerando os componentes de
programacao linear reais, nimeros fuzzy do tipo 1 e conjunto fuzzy do tipo 2. O primeiro caso
é considerado para a validagao dos outros casos. A solucao 6tima na programacao linear fuzzy
do tipo 1 é obtida através de uma funcao de defuzzificacao de ordem linear total. O teorema de
representacao dos a-niveis é o método para obter a solucao 6tima do tipo 2. Para cada a-nivel é
resolvido um problema de programacao linear fuzzy do tipo 1 utilizando a metodologia anterior.
Simulagdes numéricas ilustram a metodologia proposta para um caso particular.

No capitulo 3 sao expostos um algoritmo modificado para Algoritmo Primal — Afim (APA)
que utiliza a algebra dos nimeros fuzzy e a aplicacao deste algoritmo modificado em trés PPL,
comparando os resultados obtidos entre o Algoritmo Primal — Afim e o Algoritmo Primal —
Afim modificado, denominado Algoritmo Primal — Afim Fuzzy (APAF). Os resultados obtidos
pelo APAF sao melhores a cada iteracao e o APAF necessita de um niimero menor de iteragoes
para se alcancar o valor 6timo em comparacao com o APA, considerando o erro absoluto.

No capitulo 4 sao apresentados os conjuntos fuzzy intervalares junto com sua nova repre-
sentacao, intervalos fuzzy generalizados, de forma que os modelos de otimizacao possibilisticos
sejam resolvidos com intervalos fuzzy generalizados resultando em mais informagoes sobre o
risco associado as acoes propostas que podem ser tomadas com base em uma estratégia de
solucao. Apresenta-se um caso geral de otimizacao com varios parametros sendo numeros fuzzy
intervalares e uma aplicacao de uma dieta suplementar para um individuo diagnosticado com
deficiéncia nutricional, com quantidades varidaveis de nutrientes em relacao aos seus alimentos
preferidos, o que é descrito matematicamente por um nimero fuzzy intervalar. A resolucao do
mesmo problema é realizada pelo método dos a-niveis e os resultados obtidos sao comparados.

As consideragoes finais sao inseridas no capitulo 5.



Capitulo 1

Fundamentacao Tedrica

1.1 Conjuntos Fuzzy do tipo 1

Nesta segao, estao resumidos os conceitos relevantes de conjuntos fuzzy do tipo 1 (BELLMAN;
ZADEH, 1973).

Definicao 1.1. Dado um conjunto universo, X, o conjunto

A= {(l‘,[LA(QZ)),ZB € X}>

em que 1y : X — [0,1] € uma funcao, é um conjunto fuzzy do tipo 1 sobre X, correspondente
a funcao de pertinéncia fi4.

O conjunto de todos os conjuntos fuzzy do tipo 1 é denotado por F'(X).

Figura 1.1: Conjunto fuzzy A.

1.2 Niveis de um Conjunto Fuzzy

Definigao 1.2. Sejam A um conjunto fuzzy e a € (0,1]. Define-se como a-nivel de A o
conjunto

[Al* ={z € X| pa(z) = a}.

Definicao 1.3. Suporte de um conjunto fuzzy A sao todos os elementos de X que tém grau de
pertinéncia diferente de zero em A e denota-se por supp(A).

6



supp(A)={x € X | pa(x) > 0}.
Assim, o nivel zero de um conjunto fuzzy A é definido da seguinte forma.

Definicao 1.4. O nivel zero de um conjunto fuzzy A do universo X, em que X € um espaco
topoldgico, € o fecho topoldgico do suporte de A, isto é€,

[A]° = supp(A).
fig()

02

0 02 04 06 0.67 08 1 12 133 14 16 18 2

X
Figura 1.2: [A]%* = [0.67,1.33] e supp(A4) = [0, 2].

Na Figura 1.1, tem-se o conjunto fuzzy A = {(z, pa(x)),x € X}, em que X =R e py(z) =
5+ m e na Figura 1.2 sdo apresentados [A]* = [0.67,1.33],a = 0.4 e supp(A) = [0,2].
Na Figura 1.3, tem-se o conjunto fuzzy A = {(z,pa(z)),z € X}, em que X =R e pu(z) =

sen(L),z > 0.32. Nesse caso, supp(A) = [0.32, +o0).

fia()

02 032 04 06 0.63 08 1 2 14 15 18

Figura 1.3: Um conjunto fuzzy A.

Qualquer conjunto fuzzy pode ser considerado como uma familia de conjuntos fuzzy. Essa é
a esséncia de um principio de identidade conhecido como teorema da representacao. O teorema

da representacao afirma que qualquer conjunto fuzzy A pode ser decomposto em uma série de
seus a—niveis (PEDRYCZ; GOMIDE, 1998).

1.3 Principio de Extensao de Zadeh

Essencialmente, o Principio de Extensao de Zadeh é utilizado para obter a imagem de conjuntos
fuzzy através de uma funcao classica.



Definicao 1.5. Sejam f uma funcao tal que f : X — Y e A um subconjunto fuzzy de X. A
extensao de Zadeh de f € a funcao que, aplicada a A, fornece o subconjunto fuzzy B de Y, cuja
fungao de pertinéncia € dada por

sup  pa(z), se f7'(y) #0
() = { wer-1w) ,
0, se f[7y) =10

em que f~1(y) ={z | f(x) =y} (BARROS; BASSANEZI, 2021).

A Figura 1.4 ilustra o Principio de Extensao de Zadeh.

YAL

A

NV

Hp 1

H A4

v

Figura 1.4: Principio de Extensao de Zadeh.

Observagao 1.1. Se A é um conjunto fuzzy de U, com funcao de pertinéncia pa e se f é
injetora, entao a funcgdo de pertinéncia de f(A) € dada por

pray(z) = sup  pa(r) = sup pa(@) = pa(f~'(2))-
@/ ()=2) e/ 1()

Teorema 1.1. Sejam f : U — Z uma fung¢dao continua e A um conjunto fuzzy de U, com
a-niveis compactos e nao vazios (BARROS; BASSANEZI, 2021). Entao, para todo « € [0, 1]
tem-se

[F(A)" = f(IA]). (1.1)

Este resultado indica que os a-niveis do conjunto fuzzy, obtido pela principio de extensao
de Zadeh, coincidem com as imagens dos a-niveis do conjunto fuzzy.

1.4 Numero Fuzzy

Definigao 1.6. O conjunto fuzzy do tipo 1, A, é chamado de nimero fuzzy quando X = R,
existe © € X tal que pa(x) =1, todos os a-niveis sao intervalos nao vazios fechados e o suporte
de A € limitado (Figura 1.5).



Figura 1.5: Um numero fuzzy do tipo 1.

Neste estudo, os niimeros reais sao considerados nimeros fuzzy definidos como singleton de
tipo 1, considerando a fun¢ao de pertinéncia

lsex=r

Mr($)={ 0, se x #r,

conhecida como a funca@o caracteristica do conjunto {r}. Denota-se este nimero fuzzy por 7
(Figura 1.6).

Figura 1.6: Um nimero fuzzy singleton do tipo 1.

1.4.1 Numeros Fuzzy Triangulares

Definicao 1.7. Os numeros fuzzy triangulares sao definidos pela fungao de pertinéncia

(T —a
, sex € |a,m]
m—a
b—m
[ 0, demais casos,

e denotados por A = (a,m,b) (Figura 1.7).



3 O

b X
Figura 1.7: Numero fuzzy triangular A = (a,m,b).
Os a-niveis do nimero fuzzy triangular A = (a, m,b) sao dados por
[A]* = [(m — a)a+ a, (m — b)a + b].

1.4.2 Numeros Fuzzy Trapezoidais
Definicao 1.8. Os numeros fuzzy trapezoidais sao definidos pela funcao de pertinéncia

(T —a

, sex € |a,m]
m—a

1, sex € [m,n)]

pa(z) = (1.3)
b—=x

b, SeTE [n, 0]

[ 0, demais casos,

e denotados por A = (a, m,n,b) (Figura 1.8). O intervalo [m,n] é conhecido como o nicleo do
numero fuzzy trapezoidal A .

Os a-niveis do nimero fuzzy trapezoidal A = (a,m,n,b) sdo dados por

[A]* = [(m —a)a+a, (n —b)a + b].
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Figura 1.8: Numero fuzzy trapezoidal A = (a,m,n,b).

1.4.3 Numeros Fuzzy em Forma de Sino

Definigao 1.9. Os numeros fuzzy em forma de sino sao definidos pela funcdao de pertinéncia
Gaussiana limitada

—(x —m)’

e 0? , se T € [m —d0,m+ 0] (1.4)

pe(w) =
0, caso contrario,

e denotados por G = (m,0,9) (Figura 1.9).

Os a-niveis do nidmero fuzzy em forma de sino G = (m, 0, ) sdo dados por

)
=) = oy/i@ T m o ln(a—lﬂ,seaze(?)

[m — 3, m+ 6], caso contrério.

m— & m m+o X

Figura 1.9: Numero fuzzy em forma de sino G = (m, o, ).
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1.5 Operagoes Aritméticas com Numeros Fuzzy

Definigao 1.10. Sejam A e B dois nimeros fuzzy, e A\ um nimero real (BARROS; BASSA-
NEZI, 2021).

(a)

(b)

(¢)

(d)

(¢)

A soma entre os numeros fuzzy A e B é o numero fuzzy A+ B, cuja func¢do de pertinéncia

s

€

parp(z) = sup min(ua(z), us(y)),
(@.9)€0(2)

em que ¢(z) ={(z,y) | z +y = z}.
A diferenca entre os numeros fuzzy A e B € o numero fuzzy A — B, cuja funcdo de

pertinéncia €

pa—p(z) = sup min(pa(z), us(y)),
(@.)ed(2)

em que ¢(z) = {(v,y) | z —y = z}.

A multiplicacdo entre os numeros fuzzy A e B € o numero fuzzy A - B, cuja funcdo de
pertinéncia €

pap(z) = sup min(pa(x), up(y)),
(z.9)€6(2)

em que ¢(z) = {(z,y) | zy = z}.
A divisao do numero fuzzy A pelo nimero fuzzy B, se 0 ¢ supp(B) é o nimero fuzzy

A/B, cuja funcgdo de pertinéncia é

pa/p(z) = sup  min(pa(z), us(y)),
(2.9)€0(2)

em que ¢(2) = {(z,y) | v/y = z}.

A multiplicacao de um escalar A pelo niumero fuzzy A € o numero fuzzy AA, cuja fungdo
de pertinéncia é

[ (2) MA(A_l’Z% se A 7é 0
A = )
A X0} (%), seA=0

em que X{o} € a fungdo caracteristica de {0}.

Uma maneira alternativa, e mais pratica de se fazer estas operacoes é por meio dos a-niveis
dos conjuntos fuzzy envolvidos, de acordo com a proposicao a seguir.

Proposigao 1.1. Sejam A e B nimeros fuzzy com a-niveis dados, respectivamente, por [A]* =
[af, a$] e [B]* = [b§,08] (BARROS; BASSANEZI, 2021). Entdo valem as sequintes proprieda-

des:
(a)

(b)

A soma entre A e B € o numero fuzzy A+ B cujos a-niveis sdao
[A+ B]* = [A]* 4+ [B]* = [af + b7, a5 + b3].

A diferenca entre A e B € o numero fuzzy A — B cujos a-niveis $ao
[A—B]* = [A]* = [B]* = [a] — b3, a5 — b7].
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(¢c) A multiplicagdo de A por B é o numero fuzzy A- B cujos a-niveis sao
[A- BJ" = [A)" - [BI* = [o¢,ag] - 63, ] = [min P, max P,
em que P = {a - by, a$ - b3, a3 - bY, ag - b5}.
(d) A divisio entre A por B, se 0 ¢ supp(B), é o numero fuzzy A/B cujos a-niveis sao

1 1
= = [a?7ag] ‘N Ta’ 1a | -
[B]* bs " b¢

(e) A multiplicagao de \ por A é o nimero fuzzy NA cujos a-niveis sao

[Aaf, Aag], se A>0

A" = A4] :{ [Aa§, Aa$], se A<0 °

1.5.1 Operagoes com numeros fuzzy triangulares

Para nimeros fuzzy triangulares A; = (a;, m;, b;), i = 1,2,, tem-se da Definigao 1.10 as seguintes
operagoes lineares:

1. Al +A2 = (a1 +a2,m1 +m2,b1 +bg);
2. se A€ R entao A - A = X (ag,my,b1) = (A-ag, \-mq, A by);
3.se A€ R™ entao A- Ay = A (a1, mq,by) = (A-by, \-my, A-aq).

Exemplo 1.1. Neste ezemplo, a soma dos nimeros triangulares A = (1,2,4) e B = (3,4,5) €
determinada utilizando-se o item(a) da Defini¢ao 1.10. A Figura 1.10 apresenta graficamente
a operacao realizada.

p(z)

1

Figura 1.10: Soma dos ntimeros fuzzy A e B.
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Considerando os a-niveis [4;]* = [a, a%] dos nimeros fuzzy triangulares A; = (a;, m;, b;),

i = 1,2, cuja forma simplificada é [4;]* = [(m; —a;)a+a;, (m; —b;)a+b;], tem-se da Proposicao
1.1, as seguintes propriedades:

L [Ar £ A = [afy £ a3y, afy + ady);
2. [MNAL]Y = A[A1]* = [Aafy, Aafy], se A > 0; [AA1]* = A[A1]* = [Aafy, Aafy], se A < 0;
3. [A1As]* = [A1]*[A)* = [minP, max P], em que

P ={af a3, afy a3y, af5a5,, atyas,}.

Logo,

[A1A9]* = ((my — a1)(ma — az)a® + (a1 (ma — ag) + as(my — a1)a) + ayas,

(m1 — bl>(m2 — bg)OéQ + (bl(mQ — bg) —+ b2<m1 — bl)Oé) + b1b2). (15)

Exemplo 1.2. Neste exemplo, as operagoes com os nimeros triangulares A = (2,3,4) e B =
(3,4,5) sao determinadas utilizando-se a Proposi¢ao 1.1.
Tem-se que

[A*=]a+2,4—a] e [B]*=[a+3,5—al.
Entao, pela Proposicio 1.1, obtém-se
(a) [A+ B]* =[2a+ 5,9 — 2q].
()

T

N peemsssssc s e -

Figura 1.11: Soma dos ntmeros fuzzy A e B.

(b) [A— B]*=[2a — 3,1 — 2a].
(c) [A-B]*=[a+2,4—a] - [a+ 3,5 — a] = [min P,max P], em que
P={(a+2)(a+3),(a+2)(5b—a),d—a)(a+3),(4—a)(5—a)}.
Entao, min P = (a4 2)(a+3) e max P = (4 — a)(5 — a). Assim,
[A-B]*=[(a+2)(a+3),4—a)5—a)] =[a®+5a+6,a® —9a + 20].
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Figura 1.13: Produto dos ntimeros fuzzy A e B.

1 1
5—a’ a+3

(d) {%1a=[a+2,4—a]-{ ] Assim,

[%] =[(a+2)/(5—a), (4 —a)/(a+3)]

(e) [3A]® = 3[A]* = [3a+ 6,12 — 3a].

E facil verificar que a soma (Figura 1.11), a diferenga (Figural.12) e a multiplicacdo por
escalar de nimeros fuzzy triangulares resultam em numeros fuzzy triangulares. No entanto,
o mesmo pode nao acontecer com a multiplicagdo (Figura 1.13) e a divisdo de nimeros fuzzy
triangulares (Figura 1.14).
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Figura 1.14: Divisao dos numeros fuzzy A e B.

1.5.2 Operagoes com numeros fuzzy trapezoidais

Para ndmeros fuzzy trapezoidais A; = (a;, my, n;, b;), a;,mi,n;, b, € R, @ = 1,2, tem-se da
Definicao 1.10 as seguintes operacoes lineares:

1. Al +A2 = (CLl +a2,m1 +m2,n1 +n2,61 —|—b2);
2. se A€ RT entdao A - Ay = - (a1, my,ny,b1) = (A -ag, A-my, A-ng, A - by);

3. se A e R™ entéio)\-AIZ/\-(al,ml,bl) = (/\-bl,)\-nl,)\~m1,)\-a1).

Com estas defini¢oes, o conjunto dos nimeros fuzzy trapezoidais ¢ um subespago vetorial de
F(R), que é denotado por Trap(R). Os subespagos vetoriais de Trap(R) dados pelos niimeros
fuzzy trapezoidais A = (a,a,n,b),a,n,b € R (Figura 1.15) e A = (a,m, b,b),a,m,b € R (Figura
1.16) sao denotados, respectivamente, por Trapp(R) e Trapg(R).

()
I

S peeesssssss s s s

b X

Figura 1.15: Numero fuzzy trapezoidal A = (a, a,n,b).
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Figura 1.16: Numero fuzzy trapezoidal A = (a,m, b, b).

b X

Os conceitos basicos de nimeros fuzzy foram exibidos, em particular, nimeros fuzzy trian-
gulares, trapezoidais e em forma de sino, cujos detalhes podem ser encontrados em (BARROS;

BASSANEZI; LODWICK, 2017).

Na préxima segao, serao considerados métodos para se obter resultados numéricos a partir
das informacoes representadas pelos conjuntos fuzzy, de modo a facilitar a analise e a com-
paracao entre as possiveis solugoes dos problemas estudados.

1.5.3 Defuzzificagao

Na teoria dos conjuntos fuzzy pode-se dizer que a defuzzificacao é um processo de se representar
um conjunto fuzzy por um ntimero real. Em sistemas fuzzy, em geral a saida é um conjunto
fuzzy. Assim, deve-se escolher um método para defuzzificar a saida e obter um nimero real que
a represente. Em outras palavras, uma defuzzificacao é uma funcao cujo dominio é o subespaco
vetorial dos numeros fuzzy sobre o conjunto dos niimeros reais. A seguir, serao relacionados
alguns métodos de defuzzificacao.

e Centro de gravidade
Este método de defuzzificagao é semelhante a média ponderada para distribuigao de dados,
com a diferenca que os pesos sao os valores p4(z;) que indicam o grau de compatibilidade
do valor z; com o conceito modelado pelo conjunto fuzzy A (BARROS; BASSANEZI;
LODWICK, 2017).

Para um dominio discreto tem-se

== (1.6)

em que x; pertence ao dominio de ji4.
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Para um dominio continuo tem-se
(1.7)

em que R ¢ a regiao de integracao.

Largest of Maximum (LOM)
Este método consiste em escolher o maior dos pontos (z;), @ = 1,...,n do universo de
discurso com mais alto grau de pertinéncia, dado por (LEEKWIJCK; KERRE, 1999)

LOM(A) = maz(x;) tal que pa(x;) = tmaz- (1.8)

Funcgao de defuzzificagao associada a ordem
No Capitulo 2 utiliza-se uma nova ordem total em um subespaco vetorial particular de
Trap(R), composto pelos nimeros fuzzy

{A = (a,a,n,b), a, n, b € R}. (1.9)

O conjunto descrito em (1.9) é denotado por Trap p(R). E fécil provar que o conjunto
Trapp(R) é, de fato, um subespago de Trap(R).

Seja A € Trapp(R), a nova relagdo de ordem total é construida através da chamada
fungao de defuzzificagao associada a ordem (ADAMO, 1980), dada por

gy(A) =b+~y(n—1b), v€[0,1], (1.10)

em que 7 é um parametro no intervalo [0, 1] definido como parametro de defuzzificacao
de g. Definindo uma relagao de equivaléncia em Trap p(R) como

A é equivalente a B se, e somente se g(A) = g(B), para todos A, B e Trapp(R), (1.11)
e a relacao de ordem

A estd relacionado a B se, e somente se g(A) > g(B), para todos A, B € Trapp(R), (1.12)

é claro que esta relagao é uma ordem total (1.12) sobre Trap p(R), que juntamente com a
relagdo de equivaléncia (1.11), determina uma ordem total neste conjunto, denotada por
“~7. A ordem total (1.12) é usada na no Capitulo 2 para transformar um problema de
programacao linear fuzzy em um PPL classico para obter uma solucao fuzzy do modelo

(2.5).

Além disso, varias propostas para uma relacao de ordem, nao necessariamente uma ordem

total, sobre o conjunto T'rap(R) podem ser encontradas na literatura (ADAMO, 1980; DUBOIS;
PRADE, 1980; PRADE; YAGER; DUBOIS, 1993).

1.6 Conjuntos Fuzzy Intervalares

Conjuntos Fuzzy Intervalares (CFI) sdo extensoes de conjuntos fuzzy (CF). As referéncias
(HAMRAWTI, 2011) e (HAMRAWTI H.; JOHN, 2017) apresentam a teoria basica dos CFI.
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Definicao 1.11. Um conjunto fuzzy intervalar, fl, sobre X € uma funcao definida da sequinte

maneira: .
A X — 1<]0,1], Iwum intervalo
= (U, Tyl

Aqui, A(z) = [u,, 7] € I € [0,1] € um intervalo que representa o grau de pertinéncia de x em
A. Os CFI podem ser descritos usando a representa¢ao cldassica de conjuntos do sequinte modo:

A

A= {(z, [u, w])|r € X, [u,, ] € [0,1]}.

Definigao 1.12. Uma funcdo de pertinéncia inferior (FPI) de um CFI, A, ¢ um conjunto
fuzzy, A, em que A(x) = u, representa o grau de pertinéncia de v em A para Vz.

Defini¢ao 1.13. Uma funcdo de pertinéncia superior (FPS) de um CFI, A, ¢é um conjunto
fuzzy, A, em que A(x) = 7, representa o grau de pertinéncia de x em A para V.

Portanto, um CFI é completamente determinado pelo FPI e FPS, isto é, A= (A, A) que
significa A(z) = [A(z), A(z)], para V.

Defini¢ao 1.14. Um CFI é denominado nimero fuzzy intervalar (NFI) se FPI e FPS sao
numeros fuzzy.

Definicao 1.15. Se A for continua e convezxa, o a-nivel de um NFI, A, ¢ definido da sequinte
forma:

Ay = (A, 4,)
em que A, = [a,(0), 25(0)] ¢ A, = [ay(a),ar(a)], L ¢
ax(0) < Gr(a) .

Na Figura 1.17 é mostrado um ntumero fuzzy intervalar trapezoidal e o a-nivel.

esquerda, R é direita eap(a) < a;(a) <

ar(a) ag(a) ag(a) ar(a) X

Figura 1.17: Um nimero fuzzy intervalar A.
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Definicao 1.16. Um intervalo fuzzy generalizado é um numero fuzzy intervalar, exceto o
core(A) = {x | A(z) =[1,1]}

sendo A(z) =1 e A(x) = 1, ndo precisa ser um singleton, mas pode ser um intervalo de largura
diferente de zero.

Na secao 1.8 serd introduzido o conceito de aritmética intervalar que serd utilizada no estudo
de conjuntos fuzzy intervalares.

1.7 Conjuntos Fuzzy do tipo 2

Definicao 1.17. Um conjunto fuzzy do tipo 2, ,ZL sobre X € o conjunto
A =A{((z,u), pi(z, ) : (z,u) € X x[0,1]},
em que g X x[0,1] = [0,1] € a pertinéncia associada do conjunto fuzzy A.

Exemplo 1.3. A figura 1.18 apresenta um exemplo de um conjunto fuzzy do tipo 2 discreto
dado por

Figura 1.18: Conjunto fuzzy do tipo 2 discreto.
Fonte: (JAFELICE; BERTONE, 2020).

Definicao 1.18. A funcao de pertinéncia secunddria, ) (), de x € a fungao de pertinéncia

do conjunto fuzzy do tipo 1, Z(m), que € obtido pelo corte vertical com o plano paralelo ao eixo

u passando por x. O suporte de A(z) € denotado por I, isto é,

I, ={u:uel0,1], pz(x,u) >0} (1.13)

Note que p15,(u) é uma funcéo de pertinéncia, pois iz, (u) € [0, 1].
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A Figura 1.19 apresenta o conjunto fuzzy do tipo 2 discreto, }L da Figura 1.18 com o plano
paralelo ao eixo u no ponto z = 2,5. O conjunto fuzzy do tipo 1, A(2,5), é dado por

A(2,5) = {(0,3;0,8), (0,5; 1), (0,7;0,4), (10, 2)}.

VB

Figura 1.19: O conjunto fuzzy do tipo 2, Z, com o plano z = 2,5 em azul.
Fonte: (JAFELICE; BERTONE, 2020).

Da defini¢ao 1.18, o conjunto I,, para o conjunto fuzzy do tipo 2, ,Z[’ da Figura 1.19 é dado
por
I, ={0,3;0,5;0,7;1}.

Defini¢ao 1.19. O conjunto, J,, dos pares (z,u) de func¢ao de pertinéncia positiva é chamado
de funcao de pertinéncia primdria de x, isto €,
Jp ={(z,u) :ue|0,1], pz(x,u) > 0}. (1.14)
Note que J, = {z} x I,. Como I, C R, se for conexo, serd um intervalo.

Da defini¢ao 1.19, o conjunto J,, do conjunto fuzzy do tipo 2 discreto Z, da Figura 1.19, é
dado por

Juy = {<27 5; 0, 3)7 (27 5; 0, 5)7 (27 5; 0, 7)7 (27 9; 1)}
Definicao 1.20. O Dominio de Incerteza de Z, DOU(AV) € o suporte de Av, isto €,

DOU(A) = {(z,u) € X x [0,1] : pz(z,u) > 0}

O DOU(A) € o conjunto dos pontos destacados na Figura 1.18 com cor amarela no plano
xOu. Note que, em geral,

DOU(A) = | /.

rxeX
Definicao 1.21. As funcgoes de pertinéncia superior e inferior, denotadas por Eg(x), Hﬁ<x)7
x € X, sao, respectivamente, definidas por
fiz(z) =sup{u:u e [0,1], pz(z,u) >0} =supl,, (1.15)
pi(x) =inf{u:ue (0,1, pz(zr,u) >0} =inf . (1.16)

em que sup I, € o supremo do conjunto I, e inf I, é o infimo do conjunto I,.
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Um conjunto fuzzy do tipo 2 que verifica y1 (z, u) = 1 para todo (z,u) € X x|0, 1] é chamado
de conjunto fuzzy intervalar do tipo 2. Quando esses tipos de conjunto tem p-(z) = Lz(z)
para todos x € X, sao denominados singleton do tipo 2.

Definicao 1.22. A Pegada de Incerteza de A, FOU(A) ¢ o conjunto

FOU(A) = {(z,u) v € X, u € [p;(x), iz(x)]}

em que iz e fiz(x) e estio definidas em (1.15) e (1.16), respectivamente.

Observe que se I, = [p (), fiz(x)], entdo FOU(A) = DOU(A).

A Figura 1.21 apresenta um conjunto fuzzy continuo do tipo 2, B. O objetivo de apresentar
este conjunto especifico é explorar seus componentes, em particular o FOU(B).

Figura 1.20: Superficie que gera o conjunto fuzzy do tipo 2, E, da Figura 1.21.
Fonte: (JAFELICE; BERTONE, 2020).

Exemplo 1.4. O grdfico da superficie dada pela equagdo f(x,u) = —In(x® +u?) é apresentado
na Figura 1.20. Na Figura 1.21, tem-se o grdfico da fungao de pertinencia do conjunto fuzzy
do tipo 2, B, dado por

z=pg(r,u) = —In(z* +v?), 0,36 <2 +u* <1, ue0,1], 0<z<1.

Alguns componentes de B a serem destacados sdo:

e A funcao de pertinéncia secundéria para = 0,3 (Figura 1.21) é dado por

ME(Oa 3) = _ln((oa 3)2 + u2)'
e Para z =0, 3, tem-se que I, = [0,51, 0,95].
e A fungao de pertinéncia priméaria J, para x = 0,3 é o conjunto
J. ={(0,3 ,u):u € I}

e O DOU(E), que é o FOU(E), pois B é um conjunto fuzzy do tipo 2 continuo, é apre-
sentado na Figura 1.22.
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Figura 1.21: Conjunto fuzzy do tipo 2, B.
Fonte: (JAFELICE; BERTONE, 2020).

]

1

X
Figura 1.22: FOU do conjunto fuzzy do tipo 2, B.
Fonte: (JAFELICE; BERTONE, 2020).

Definicao 1.23. Dado um conjunto fuzzy do tipo 2, ;L se todos os valores de pz(x,u) sdo
unitdrios, ou seja, pz(x,u) =1 para todos (x,u) € X x [0,1], A é chamado de conjunto fuzzy
do tipo 2 intervalar.

Um conjunto fuzzy triangular do tipo 2 intervalar, ,2[7 é apresentado na Figura 1.23.
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Figura 1.23: Conjunto fuzzy triangular do tipo 2 intervalar, A.

1.8 Aritmética Intervalar

Nesta secao, sao apresentados alguns conceitos da aritmética intervalar. Primeiramente, ¢é
introduzida a aritmética intervalar padrao proposta por (MOORE, 1969), posteriormente é
apresentada a aritmética intervalar restrita (LODWICK, 1999) a qual fornece as ferramentas
algébricas utilizadas em muitas pesquisas atuais.

Considere

I(R) = {o conjunto de intervalos fechados e limitados da reta real}. (1.17)

1.8.1 Aritmética Intervalar Padrao

Segundo (BARROS; BASSANEZI, 2021) considere A um nimero real e = e y intervalos fechados
tais que:

z=[z, T] ey = [y, §| que pertencem a I(R).
Definigao 1.24. As operagoes da aritmética intervalar padrao (SIA) podem ser definidas como:

(a) A soma entre x ey € o intervalo

c+y=z+y T+7].
(b) A diferenca entre x e y € o intervalo

r—y=lz—7 T-y|.
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(¢c) A multiplicagao de x por um escalar \ é o intervalo
Az, A\Z], se A>0

Az, A\z], se A<0
(d) A multiplica¢ao de x pory € o intervalo
-y = [min(P), max(P)],

Tyl

em que P=[z-y,z-9,7-7,
(e) A divisao de x pory, sey # 0, € o intervalo

z/y =z, 7] B i] .

As operacoes aritméticas para intervalos estendem as respectivas operacoes para nimeros reais.
Observe que cada nimero real pode ser visto como um intervalo fechado com extremos iguais.
Note que o espago intervalar, I(R), com essas opera¢oes nao possui a estrutura de espaco
vetorial, pois a negagdo de A nao é o inverso aditivo de A; i.é., A+ (—1)A # [0,0], a nao
ser que A seja deterministico; i.e., A = [a,al, assim a subtra¢do nao estd bem definida. Uma
primeira implicacao desde fato é que a simplificacao aditiva nao é valida, A+ C = B 4+ (' nao
implica que A = B ou (A+ B) — B = A.

Assim, Lodwick (1999) procurando definir uma dlgebra para o espago intervalar, definiu a
nocao de aritmética intervalar, chamada de aritmética intervalar restrita a qual é detalhada na
proxima secao.

1.8.2 Aritmética Intervalar Restrita

Considerando (MIZUKOSHI; JACQUEMARD; LODWICK, 2020) é apresentada a seguinte de-
finigdo e também sao definidas as operagoes da aritmética intervalar restrita (CIA).

Defini¢ao 1.25. Intervalo Restrito. Um intervalo [z, Z| pode ser representado como uma
funcao linear
z(0) =z + (7 — z)0,

em que 0 < 6 <1.

O espago intervalar que a CIA representa sao os intervalos que pertencem ao espago de
funcgoes lineares, com inclinacao nao negativa, sobre um dominio compacto.

Definicao 1.26. Sejam
z(th) =z + (z — z)bh,

y(t2) =y + (¥ — y)ba,

em que 0 < 61,05 < 1. As operacoes associadas aos intervalos restritos sao
x(6h) xy(02), com x € {+,—,x%,/},0<6,0, < 1.

Uma solugao intervalar pode ser obtida calculando o maximo e minimo da sequinte forma:

min  {z(0;) *y(02)}, max {z(0;)*y(0)}] . (1.18)

0<61,02<1 0<61,02<1
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A ideia desta aritmética é operar em todos os niveis, de forma que para o calculo de uma
determinada operacao considera-se todas as combinacoes possiveis entre os intervalos. A CIA é
uma extensao da aritmética intervalar usual, apresentando, portanto, as mesmas propriedades
que a aritmética intervalar usual. Contudo, essa nova aritmética possui um inverso aditivo,
multiplicativo e detém as leis de distribuigao. Logo, a estrutura algébrica da aritmética inter-
valar restrita é similar a estrutura algébrica da aritmética real. As operacoes aritméticas via
CIA sao obtidas a partir de um problema de otimizacao global restrita. Neste contexto, os
intervalos sao transformados em funcoes lineares, com inclinagao nao negativa definida sobre
o dominio compacto [0,1]. Todas as operagdes sao realizadas neste espago e para voltar ao
espaco dos intervalos, realizam-se dois problemas de otimizacao global com restricao simples:
a minimizagao e a maximizacao.

A seguir, alguns exemplos que permitem evidenciar algumas diferencas existentes entre os

dois tipos de aritméticas. Considere [z] = [z,Z] com uma distribuigao uniforme associada.
Assim,
= ;L T 60 valor esperado de [x],
r—xr 1 :
5 ¢a média da largura da incerteza de [z].
Exemplo 1.5. Sejam [z] = [-2,—-1], [y]=[1,2] e [z] =[-4,—1]. Calcule

(2] [y] + [2] [2] (1.19)

Suponha que cada uma das varidveis tem associada uma distribuicdao uniforme, o resultado do
calculo com o valor esperado €,

83,85 9 15 3

2'2+2'2 4+4 2

Neste cdlculo encontra-se o valor esperado de cada varidvel primeiro e depois realizam-se
as operacoes. Considerando essa mesma operacao utilizando a aritmética intervalar padrao,
tem-se

[—2,—-1][1,2] + [-2,—-1] [-4,-1]) = [-4,-1] + [1,8] = [-3,7]. (1.20)

Neste caso, o valor esperado é2 e a média da larqura da incerteza é 5 (LODWICK; JAMISON,
2018).

Essa representacao carrega a incerteza até o final do calculo e tem um valor esperado préximo
de nossa nocao intuitiva de qual deveria ser a média esperada e contém informacoes sobre o
risco, modelado pela média da largura.

O calculo da operacao do Exemplo 1.5 utilizando aritmética intervalar restrita é:

f(91, 92, 03) = (—2 -+ (91)(1 -+ 02) + (—2 + 91)(—4 + 393)
- 6 - 391 - 202 - 693 + 9192 + 39103.

para 0< 61,92,‘93 <1 Dai,

min f(91762793)7 max f(91702763) = [_276] ) (121>

0<61,02,03<1 0<61,02,03<1

cujo valor esperado é 2 e a média de largura da incerteza é 4.

O valor esperado (1.21) é o mesmo que (1.20), entretanto, a medida da média da largura de
(1.21) é menor.
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Exemplo 1.6. Considere um exemplo mais extremo, mas simples. Calcule

[2] [y] = [2] [v], (1.22)

em que [z] e [y] estao definidos no Exemplo 1.5.
Usando a aritmética intervalar padrao, tem-se,
[—2,—1][1,2] = [-2,—-1][1,2] = [-4,—1] — [-4,-1] = [-4,—-1] + [1,4] = [-3,3] . (1.23)
Usando a aritmética intervalar restrita, tem-se

(=2401) (1+602)—[(—2 4+ 01) (1 + 65)] = —2—205+60,+0,05,—[—2 — 205 + 61 + 0,65] = 0. (1.24)

Os valores esperados sao os mesmos, mas os calculos aritméticos padrao tem uma largura
da incerteza de 3, enquanto o célculo aritmético com o intervalo restrito tem uma largura da

incerteza de 0 (LODWICK; JAMISON, 2018).

1.8.3 Intervalo Fuzzy Generalizado Restrito

Intervalos Fuzzy Generalizados Restritos (IFGR) s@o dois pares de intervalos restritos para cada
a-nivel de um intervalo fuzzy generalizado.

Definicao 1.27. Dado um intervalo fuzzy generalizado cujos a-niveis sdao

A

Ao = {(lar(@); ag(a)] ; [aL(a),ar(@)]) se 0 <a <1}, (1.25)

os IFGR sao dados por

1
1
Ae, A 4 Ad Ad, X

Figura 1.24: Numero fuzzy intervalar triangular A.
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Exemplo 1.7. Neste exemplo € apresentado o niumero fuzzy intervalar A, cujo grdfico € mos-
trado na Figura 1.25, e os IFGR A(Mg.), e A(Aa,).

A Fungio de Pertinéncia Superior (FPS) e Fungio de Pertinéncia Inferior (FPI) de A so
dadas, respectivamente, por:

( 0 se 1< A—ey,x>A+d,
1
A(z) = %(:v —A+e) seA—ea<zx<A (1.26)
—d—(:c—A dy) se A<z < A+ds;
0 2
( 0 se 1< A—ey,x>A+d;
1
A(z) = al(x —A+e) seA—e<x<A (1.27)
—d—(:c—A dy) se A<z <A+d,
0 1

em que di < do, €1 < ey e dy,ds,eq,e9 > 0.
Os a-niveis do NFI A sao dados por:
Av ={(ler(a=1) + A, dy(1 — ) + Al Jealao = 1) + A, ds(1 — ) + A) se 0 < v < 1}, (1.28)
Os IFGR de A, sdo:

A, = (1= a)((da + ex)g, — e2) + 45 (1.29)
A(/\Aa> = (1—0&)((d1+€1))\éa —61)+A. (130)

1.8.4 Operagoes Aritméticas para CFI

A aritmética associada a Intervalos Fuzzy Generalizados Restritos que sao associados a quais-
quer numeros fuzzy intervalares do tipo 2 pode ser realizada através de calculos analiticos ou
numeéricos.

Definicao 1.28. A aritmética associada aos Intervalos Fuzzy Generalizados Restritos para os
CFI, A e B, ¢ dada por

ANz )*B(Mg,), A(Aa)*B(Ap,) se 0 <a <1,

em que 0 < Az ,Aa, <1e0< XA ,Ap <1

forx € {+,—,x,V-}. Se € desejado um resultado intervalar, calculam-se os sequintes minimo
e mdrimo,

LAT”;{A Xa)* Bz}, max {AQx,) * B(s >}]

Oé Ba

{mm {A(Xa)* B(Ap,)}, \max {A(X4) * B(Ap, )}]

AA _,AB
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B+h B+hy X

Figura 1.26: Numero fuzzy intervalar triangular (E)

Exemplo 1.8. Neste exemplo, sao mostrados os cdlculos aritméticos dos intervalos fuzzy ge-
neralizados restritos A(Xz_ ), B(Ag,), A(Ma,), e B(Ap,) que estao associados aos NFI, A e B,
cujos graficos sao mostrados nas Figuras 1.25 e 1.26, respectivamente.

As FPS e FPI de A sio dadas por:

(

0 se t<A—ey,x>A+d

1
A(a) = g(9[;—14+e2) se A—ea<ax <A (1.31)
1
_d_(x_A_dQ) se A<z < A+dy
\ 2
( 0 se x<A—e,z>A+d;
1
Awy={ @-Atea) seA-e<z<4 (1.32)
1

_d_(x—A—dl) se A<e < A+d
\ 1

em que di < dsy, e1 < ey edy,dy,e1,e9 > 0. As FPS e FPI de B sdo dadas por:
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0 se < B—s9,x>B+hy

1
B LloBiw  wBonsess gy
1
_h_(x_B—hQ) se B<xz<B+hy
2
0 se x<B—s,xr>B+h
1
Ba=] te-Biw)  wB-ssics 0
1

——(x—B—h) se B<x<B+h

em que hy < ha, $1 < Sg € hy, ha, s1,82 > 0. Os a-niveis dos CFI A e B sio dados por:

/Alaz{([61(a—1)+A,d1(1—04)+A], lea(a—1)+ A, do(1 —a)+ A]) se 0 <a<1};

(1.35)

By ={([si(a—=1)+ B,hi(1 —a)+ B], [ses(a—1)+ B,hs(1 —a)+ B]) se 0 <a<1}.
(1.36)

Os intervalos fuzzy generalizados restritos de A, e By sao:
A()\Za) = (1 — Oé)((dg + 62))\,4 62) (137)
A()\A&) = (1 — a)((dl + 61))\,4 — 61) (138)
B(Ag,) = (1= a)((ha + s2) A5, — s2) + (1.39)
B<)\EO,) = (1—04)((h1+$1))\§a —81)+B. (140)
Os intervalos (1.41) e (1.42) para conjuntos previamente definidos sao,

{ mln {ANz.)«B(M\g,)}, | max {A(Nz.) * B(\g )}] (1.41)
LAm&r}B {A(Aa,) *B(X\g,)}, ilax {A(Aa,) * B(Ap, )}} (1.42)

para x € {+,—, ><,j} com 0 < )\Za,)\éa <1,0< )\Ea,)\ﬁa <1le0<a<1. Asoperacoes
aritméticas sdo divididas em duas partes, na primeira parte, calcula-se (1.41) e na segunda
parte (1.42).

1. A()‘Z )*B()‘B ) {(1 — Oé)((dg + 62))‘2(1 — 62) + A}*{(l — a)((hg + Sg))\ga — 82) + B},
em cada item mostram-se os cdlculos de uma operacao .
i. AMz) +B(Ag,) =
{(1 — Oé)((dg + 62))\A — 62 + A} + {(1 — ((hg + 82))\§a — 82) + B} =
(1—&)((d2+62)>\Aa—62+(h2+82)>\3a )+A+B

Como A + B é constante, entao
) rmn {AXz)+B(\g,)} =

)‘Za Ba
(1—04)/\m&n { ((dy +e2)Az. — ez + (hy + s2) A5, — s2) }+A+B.
Aq'""Bg
OsAmln {A i)+ B(X }ocorrem quando Az = 0e Az, = 0. Portanto,
Ao Ba
min {ANz)+B(\g)} =(a—1)(e2+s2) + A+ B

Aa? )‘Ba

para cada 0 < o < 1.
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* Jnax {AXz)+B(\g,)} =

Ao’ Ba

(1—oz)/\max {((d2+ e2)Ag, —ea+ (ha+ s2)Ap, — s2)} + A+ B.

Aq? Ba

Os | max {A(Xz.) + B(\g,)} ocorrem quando Az =1 e Az = 1. Portanto,

Aa Ba

max {ANz)+Bg)}=01—-0a)(do+h)+A+B

Ao M Ba
para cada 0 < a < 1.

ii. A(/\ZO) — B<)\§a) = (1 — Oé)((dQ + 62))\Za — (hg + 82))\§a + (82 — €2>> + A— B.
Como A — B é constante, entao

° A;Tlx\rjlga {A Xi.) — B(Ag,) }:
(1—0&))\m111 { d2+62))\A (h2+82))\§a+82—62)}+A—B.

Aq? Ba

Os . mln {A(Xz.) — B(Ag,)} ocorrem quando Az =0 e Az = 1. Portanto,

Ao’ Ba

mln {AXz)—B(g.)} =(a—1)(ha+e2) + A— B

Za Ba

A

para cada 0 < a < 1.
e Os nax {A(Xz.) — B(Mg,)} ocorrem quando Ay =1 e Az = 0. Portanto,

A’ Ba

AEnax {AMz)—BOg )} =1 —a)(do+s)+A—-B

{e3

para cada 0 < a < 1.
1ii. A()\Z&) X B()\Ea) =
(1 — a)*(ds + e2)(ha + s2) Az, A, + (1 — a)B(da + €2) — s2(1 — @)*)Ag, +
(1 — a)A(he + s2) — ea(1 — a)*) A5, + (1 — a)?ezs5 + (v — 1)(Bey 4+ Asy) + AB.

e Se a =1, entao A(Az ) x B(\5,) = AB. Portanto,

mln {A(Ng) 5.)} =ABe jmax {A(Xz.) x B(Ag,)} = AB.

Mo NBo A0 Ba

e Considerando 0 < a < 1, tem-se
(1 — &)2<d2 + 62)(h2 + 82) > 0.

Se (1—a)B(dy+e3) —sa(1—a)?> > 0e (1 —a)A(hy+s9) —ex(1 —a)? > 0, entao

mln {A(Xz.) x B(Ag,)} ocorre quando Az, =0e g =0e

AZ(X a

)\Zr(rje}éa {A ) x B(\g, }ocorre quando Az =1le g =1

Isto é, R IIllIl {A (A1) X B(Ag,)} = (1 —a)%eass + (o — 1)(Bea + Asy) + AB e

Aq? Ba

\max {AXz) x B(Ag.)} = (1 —a)*(ds + ea)(ha + s2) + (1 — &) B(ds + €3) —

Aq? Ba

so(1—a)?+(1—a)A(hy+s2) —ea(1—a)?+ (1 —a)?egso+(a—1)(Beg+ Asy) + AB,
B A

com Sg < <d2+e2> e ey < M

I-a) "% (-
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(1 —a)((da+ ez, —e2) + A
(1 — Oé)((hg + 52))\§a — 82) + B

iv. A(Az,):B(Ag,) =
3 , A
e Sea =1, entdao ANz )'B(Mg,) = 5 com B # 0. Portanto,

: _ A . A
Join {A0g,):808,)} = 5 e max {A0,):B0g,)} = 5 com B £0.

e Considerando 0 < a < 1, calcula-se:

- mi)\n {A(Xz.):B(A\g,)}- O I/{’lin {(1 —a)((d2 + e2)Az, — €2) + A} ocorre
Ao Ba Ao

quando Az = 0. Portanto,

max { (1 — a)((ds + e2) Az, —€2) + A} = —es(1 — ) + A.

M,

O max {(1 = @)((hy + s2)Ag, — s2) + B} ocorre quando A5 = 1. Portanto,
Ba

r/\rljn {(1 = a)((ha + s2)Ag, — s2) + B} = (1 — a)hs + B.

B

Se A—ey(l—a) >0, isto é, ey < 1 , entao

' : A—es(l—a)
Jmin {40)-BOB) = 5 o

. /\g%\);a {A(Xz.):B(Xg,)}. O I/I\I%X {(1 —a)((do + e2)Az, —€2) + A} ocorre

quando Az = 1. Portanto,

max {(1 — Oé)((dQ + 62))‘Za - 62) + A} = (1 — Oé)dg + A.

)\Za

0] r/{lin {(1 = a)((hs + s2) A5, — s2) + B} ocorre quando Ap_ = 0. Portanto,
Ba

r)gin {(1 — Oé)((hQ + 82)>\§a - 52) + B} = —82<1 - Oé) + B.

Ba

Se —s5(1 —a)+ B >0, isto é, sy < 1 , entao

. A+(1—a)d2

nax {400,):B0s,)} = B-si—-a)

. A()‘Aa)*B()\Ea) = {(1 — Oé)((dl + 61)/\Aa — 61) + A}*{(l — Oé)((hl + 81))\§a — 81) + B},
em cada item foram apresentados os resultados de uma operacgao *, os calculos sao reali-
zados de forma semelhante a primeira parte.

i. Para cada 0 < a < 1, tem-se:

)\Amin {AAa )+ B(Ap,)} = (a—1)(e1 +s1) + A+ B;

An?

| max {AAa )+ BAp)} =1 —a)(d + M)+ A+ B.

B
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ii. Para cada 0 < a < 1, tem-se:

Aémvi{; {A(4,) = B(Ag,)} = (@ =1)(ln +e1) + A= B;

o’ B,

max {A()\Aa> — B()‘Ea)} = (1 - Oé)(dl + 81) + A—B.

)\Aa ’Aﬁa

iii. e Sea=1,entdao A(N4 )X B(Ap, )= AB. Portanto,

min {A(As ) x B(Ag, )} = ABe max {A(\s ) x B(\g )} = AB.

A4y B, A4y AB,

e Considerando 0 < a < 1, tem-se:

min {A()\Aa) X B()‘Ea)} = (1 — CL’)2€181 + (Oé — 1)(361 + ASl) + AB e

A4, B,

max {A(AAQ) X B()‘Ea)} =

A4, B

=

(1 — 06)2(611 + €1)(h1 + 81) + (1 — C()B(dl + 61) — 81(1 — Oé)2 + (1 — C()A(hl + 81) —
er(1—a)?*+ (1 —a)?e1s; + (e — 1)(Bey + Asy) + AB, com
59 < (dQ +€2)B e e S (hl + Sl)A'
(o) (o)
. - _ A
iv. e Sea=1,entdao A(A\s )'B(Ap )= 5 com B # 0. Portanto,

min {A(A\a ):B(Ap )} = % e max {A(M\a ):B(Ap)} = % com B # 0.

)\Aa ’ Aﬁa )‘Aa ) )‘Ea

e Considerando 0 < a < 1, tem-se:

A N . . A—e(l—a)

< : = :

Se e; < o entao AAI(?:I)‘Hﬁa {A(AA(X).B(AEQ)} Bri(l—a)
5 . A+(1—a)d1

Se 51 < o entao AAIS%};Q {A(AAQ):B()\EQ)} = m.

Portanto, todos os calculos das propriedade foram realizados para o exemplo proposto.

A aritmética associada a Intervalos Fuzzy Generalizados Restritos que estao associados a
quaisquer numeros fuzzy intervalares do tipo 2 pode ser realizado através de célculos analiticos
ou numeéricos.

1.9 Intervalos Fuzzy Generalizados Restritos para Oti-
mizacao Possibilistica
Esta secao aplica a abordagem encontrada em (LODWICK; JAMISON, 2018) para dados que

sao conjuntos fuzzy intervalares. Note que como ntumeros fuzzy intervalares geram dois inter-
valos por a-nivel, a andlise resultante é diferente, embora relacionada.

1.9.1 Possibilidade e Necessidade

A teoria da possibilidade foi proposta pela primeira vez por (ZADEH, 1978) e mais extensi-
vamente articulado em (DUBOIS; PRADE, 1988). Necessidade foi desenvolvida pela primeira
vez por (DUBOIS; PRADE, 1988). A teoria das possibilidades ¢ a teoria da incerteza dedicada
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a modelagem de informacoes incompletas. E caracterizado pelo uso de duas funcgoes bésicas
de conjunto duplo que avaliam respectivamente a possibilidade e a necessidade de eventos. A
teoria das possibilidades estd na encruzilhada entre conjuntos fuzzy e probabilidade. Pode-se
dizer que o conceito de possibilidade/necessidade é uma generalizagao da incerteza.
Sejam X C R, uma estrutura de subconjuntos de X, o(X), uma sigma &lgebra de X e
A € o(X). Considere
Pos(A) : X CR — [0,1]

g: AC X —1[0,1]. (1.43)

Um conjunto razoavel de hipdteses sobre g sao as seguintes:

g =0eg(X)=1 (1.44)

AC B —g(A) < g(B). (1.45)

Duas consequéncias de (1.43) e (1.44) sao:

9(AN B) <min{g(A),g(B)}; (1.46)

9(AU B) = max{g(A),g(B)}. (1.47)

A incerteza generalizada seréd chamada de medida de possibilidade e medida de necessidade,
satisfazendo (1.43), (1.44) e (1.45), em que a possibilidade satisfaz (1.47) na igualdade e a
necessidade satisfaz (1.46) na igualdade. Também ¢é interessante considerar as distribuigdes
associadas as medidas de possibilidade.

Definicao 1.29. Uma medida de possibilidade, axiomaticamente definida, € uma funcdo Pos
sobre ox de um conjunto universo X C R,

Pos(A) : ox — [0,1]

tal que

Pos(D) =0, Pos(X) =1 (1.48)
e
Pos(AU B) = max{Pos(A), PosB}, A, B € o(X). (1.49)
Se A; € ox, |J A; € ox, entao
i€l
POS(U A;) = sup Pos(4;). (1.50)
icl el

Se € conhecida a possibilidade de um conjunto A, a possibilidade do complemento de A,
Pos(AY), nao é definida como 1 — Pos(A), como na probabilidade. A medida de necessidade
de A serd definida como o “dual”da possibilidade, em que

Nec(A) =1 — Pos(A%), (1.51)

tal que
Nec(AN B) = min{Nec(A), Nec(B)}. (1.52)

34



Definicao 1.30. Dada uma medida de possibilidade, Pos, as distribuicoes de possibilidade e
necessidade associadas a Pos sdo as fungoes
pos(x) : X — [0,1]

tal que
pos(x) = Pos({z}); (1.53)

nec(z) : X — [0,1]

tal que
nec(z) = Nec({x}). (1.54)

1.9.1.1 Possibilidade e Necessidade de Niimeros Fuzzy

Um conjunto fuzzy A sobre o conjunto dos nimeros reais R, definido por sua fungao de per-
tinéncia 3 : R — [0,1], é chamada de quantidade fuzzy. Uma quantidade fuzzy de suporte
finito é aquela tal que o suporte é finito. Tem-se que A deve atuar como uma restricao fuzzy
no valor de alguma varidvel real v, e seguindo (DUBOIS; PRADE, 1987), p4 é interpretado
como uma distribui¢ao de possibilidade m,. Ou seja, m,(z) = pa(x) é o grau de possibilidade
da afirmagao “x é o valor de v”.

Dado um subconjunto B C R, o grau de possibilidade da afirmacao “B contém o valor de
v”é definido por

Pos(B) = max{pa(z) : v € B}. (1.55)

Pos é uma medida de possibilidade e satisfaz o axioma fundamental 1.48, no caso finito.
Neste trabalho, apenas conjuntos fuzzy normais sao considerados, ou seja, existe x € B tal que
pa(z) =1, de modo que Pos(R) = 1 e Pos(f)) = 0. A necessidade de B, Nec(B) = 1—Pos(B°),
em que B¢ é o complementar de B, é interpretada como grau de necessidade da declaracio “B
contém o valor de v”e satisfaz a propriedade dual, em relacao a 1.55,

Nec(B) = min{l — ua(z) : © ¢ B}. (1.56)

1.9.1.2 Determinacao de pos(x) e nec(z) relacionadas a um ntimero fuzzy triangu-
lar.

Considere o nimero fuzzy triangular A = (a, b, ¢), representado na Figura 1.27.
Para qualquer intervalo A,, = (—o0, x¢], e 2, € X, tem-se que

pos(Az,) = max{ua(x),z € A, }
e Para xy < a, tem-se que pos(A,,) = max{0,z € A,,} = 0.
e Para a < zy < b, tem-se que pos(A,,) = max{ua(x),x € Ay} = p1(x).
e Para xy > b, tem-se que pos(A,,) = max{pa(z),r € Ay} = max{l,z € A, } = 1.
Portanto, para z € X, tem-se que
0 se xz>a

pos(z) =< pi(z) sea<z<b | (1.57)
1 se r>b
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Figura 1.27: Numero fuzzy triangular A = (a, b, ¢).
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Figura 1.28: Possibilidade pos(z) relacionada ao nimero fuzzy triangular A = (a, b, ¢).

cujo grafico é mostrado na Figura 1.28.
Analogamente, tem-se que

nec(Az,) = min{l — pa(z),z € Az} = 1 — max{ua(x),x & Ay} =1 — max{pa(z),z > x}.

e Para xy € (—00,b), tem-se que max{pus(z),z > zo} = 1, pois b > zy e u(b) = 1. Logo,
nec(A;) =1—1=0, para x5 € (—00, b).

e Parab < zy < ¢, tem-se que max p4(z) = p2(x), parax > xo. Logo, nec(Ay,) = 1—pa(z),
para b < xy < c.

e Para xy > ¢, tem-se que max pa(x) = 0, para x > xy. Logo, nec(A,,) =1—0 =1, para
Ty > C.

0 se x <b
nec(z) =<9 1—ps(z) se b<z<c . (1.58)
1 se x>c¢

cujo grafico é mostrado na Figura 1.29.
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Figura 1.29: Necessidade nec(x) relacionada ao nimero fuzzy triangular A = (a, b, c).

1.9.1.3 Possibilidade e Necessidade relacionadas a nimeros fuzzy intervalares tri-
angulares

Dada uma informacao parcial sobre a entrada de dados, a incerteza gerada pela informacao

parcial é de dois tipos:

1. Um par de distribuigoes;

2. Quatro distribuigoes.

Suponha que tenha a restrigao
Azy + bxe < ¢, (1.59)

em que o coeficiente dado pelo nimero fuzzy intervalar triangular A vem da falta de informacao
sobre o valor preciso do coeficiente de x1, e os valores b, ¢ € R, isto é, eles sao precisos. A Figura
1.25 mostra um numero fuzzy intervalar triangular para A.

1. Um par de distribuigoes é a representacao triangular de A, dada em equagoes (1.31) e
(1.32).

2. Quatro distribuicoes sao os pares de possibilidade e necessidade relacionadas com o fungao
de pertinéncia inferior e as outras sao a possibilidade e a necessidade relacionadas com a
fungao de pertinéncia superior, que sdo denotadas por pos(x), pos(z), nec(z), e, nec(z),

e dadas por:
( 0 se r<A—ey
1
pos(x) = < 6—(:1: —(A—e€)) se A—ea<x <A (1.60)
2
L 1 se T > A;
( 0 se r<A—e
1
pos(x) = e—(x —(A—e)) se A—eg <z <A (1.61)
— 1
( 1 se x > A




( 0 se v < A

nec(zr) = dil(m—A) se A<z <A+d;
L 1 se x> A+ dy;
( 0 se x< A

nec(x) = d%(m—A) se A<z < A+d
L 1 se x> A+ ds.

A Figura 1.30 mostra pos(z), pos(x), nec(x), e, nec(x).

poss()
- - poss(a)
—-—- nec(x)

—e—nec(z)

Figura 1.30: Quatro distribuicoes.

1.9.2 Funcgoes de Avaliacao na Otimizacao Possibilistica

(1.62)

(1.63)

Muitos tipos diferentes de funcao de avaliacao podem ser encontrados na literatura. Foca-se
em dois tipos para ilustrar os resultados obtidos nos exemplos da aplicagao da nossa teoria.

1.9.2.1 Um par de distribuigoes

Um nimero possibilistico, como A ilustrado na Figura 1.25, gera a-niveis. Em particular, neste
exemplo, os a-niveis sao dados por (1.35) (veja (LODWICK; JAMISON, 2007), (LODWICK;

JAMISON, 2018), (LODWICK; BACHMAN, 2005)). X
A média esperada (E'A) de uma possibilidade quando A é um NFI com a-nivel

Aa = {([QL<O‘>7QR(Q)] ) [EL(O‘)’ER(Q)]) se 0<a< 1}7

¢ definido por

~

~

EA(A) + EA(A)

EA(A) = 5

em que

1 = 1

PAA) = 5 [ (o) +an@)da ¢ BAG) =5 [ @)+ an(a) do.
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Definigao 1.31. (veja (LODWICK; JAMISON, 2007)) A média esperada restrita para um par

de possibilidades para um NFI é

EAu(A)(Ma,) + EAG(A)(\g,)
2

EAq(A)(Aa,, A5,) = (1.66)

em que
1

PALA,) = 5 [ (20(0) + (an(0) —ap(@)s, ) dor e

EAci(Z)()\Za) = % /O 1 (@n(e) + (ar(e) — ar(e))Xz, ) da
com 0 <Az , s <1
Note que
L BAGA) = 3 (BAG(A) O, At ) g =i, -0+ BAG(A) Aty A g g1 )
2. mid(EAu(Ma_, )z.)) = EA(A).

1.9.2.2 Quatro distribuicoes

Os intervalos da fungao de possibilidade/necessidade estao contidos no intervalo [0, 1], tal que
pos(x), nec(x), pos(x), e mec(x) geram os a-niveis que incluam a incerteza como segue:

[pos™ (@), nec™ ()],

[pos ' (), mec ™ (a)].
Definigao 1.32. A média esperada de pos(x), nec(x), pos(x) e nec(x), para um NFI A ¢

~

< EA(A) 4+ EA,,(A
BA,,(A) = EAm4 )‘g n(4) (1.67)
em que
A e -1 ~1 7 1 -1 -1
FEA,,(A) = 5 (pos™ (@) + nec (@) da e EA,,(A) = =3/ (pos—(a) +nec () da.
0
Definigao 1.33. A média esperada restrita de pos(x), nec(x), pos(x) e nec(x), para um NFI
é
1 EAnczA/\n EAnczA/\n
EApnci(A)(Apn1s Apnz) = —2 ()0 1); pci () (Apr2) (1.68)
em que

EApnci(A)()\pnl) = %/0 (pos_l(a) + (M_I(O‘) — @—1@)))\10”1) do e

- 1 [t
B (D) 0a) = 5 [ (5057 ) + (1o (@) = o5~ (@) ) e
0
com 0 < App1 <1 el < Ay < 1.
Note que

~ 1 ~ ~
1. EApn<A) - 5 (EA}mci(A)<)\pnla )\pn2)|)\pn1:)\pn2:0 + EApnci(A)(/\pnla >\pn2)|)\pn1:/\pn2:1) ;
2. Mid(E Appei(Apn1, Apn2)) = EA(A);
3. EA(A) = EA,,(A);

4. EA4(A)(A A7) € E Apnei(A)(Apn1, Apn2) tem expressoes similares.
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1.9.2.3 Centroide para NFI

O centroide é um dos métodos mais importantes para a defuzzificacao de conjuntos/nimeros
fuzzy do Tipo 2 e também é uma medida de expectativa popular, mas os métodos disponiveis
para calculd-lo sao iterativos/algoritmicos, o que é uma questao importante para implementagoes
no mundo real. Neste trabalho, considera-se o método desenvolvido em (FIGUEROA—GARCfA;
ROMAN—FLORES; CHALCO-CANO, 2022) para uma classe de nimeros fuzzy do Tipo 2 In-

tervalar, que utiliza formas fechadas nao iterativas do centroide e seus limites.

Considerando o ntumero fuzzy intervalar triangular A dado na Figura 1.25, definem-se as

seguintes areas a esquerda e a direita:

A A o
.« 4 - Z(x)dx—/ L - Ate)dr=g(A—(A-e) = 2

A—eo A—es €2

A A 2

A A
yAl\:/ A(x)d:v/ l<x—A+el)dag:%(A_(A_el)):e—zl.

A—eq A—eq €1

A A 1

Os centroides correspondentes sao:

| S 2 (A x

_ €9
A) = — A(z)dx = — —(x—A dr =A— =.
o Ci(A) N A_62x () dx ) (x + ey)dx 3
B 1 Atdy o [Atds d
. C,,(A):|Z|/A xA(x)dac:d—2 : —d%(x—A—dg)dx:AjL—Q.
1 A 2 [ g el
A) = — Alx)dz = — —(x—A dr =A— —.
o Ci(A) ] A_61x_(ac) T o (x +ep)dx i
1 A+dy 2 A+-dy d
.CT(A):’A‘/A vA@de =2 | —dﬁl(x—A—dl)dx:A+§1.

o A+d2_ A+do 1 1 d2

A+dy A+dy 1 d1

3

O centroide C (/1) do ntimero fuzzy intervalar triangular A serd limitado da seguinte maneira:

~

C<A> S [C(Al)7C(Ar)]a

cujos limites C'(A;) e C(A,) sdo calculados pelas expressoes

em que as proporgoes sao dadas por

A Ayl + |4, ex+di’
|_r| dl

P, == = ;
A A+ A e+ dy
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p. = |Al|_ __&a |
L T4 A atdy
Pa, = |AT|— _— :
A A et dy

Consequentemente,

CA) = i 0 KA - i;) es + (A + %) dl]; (1.72)
CMﬂ:€¥LbKA—%)q+(A+%>@} (1.73)

Assim, o valor central do intervalo do centroide é dado por:

C(A)+C(A)

Co(A) = 5 , (1.74)
ou seja,
C,(A) = m KA - %2) es + <A + %) dl] +m KA - 6—5) er+ (A + %%cl;l).

Exemplo 1.9. Considerando o NFI triangular A = (A—eq, A—ey1, A, A+dy, A+ds) e calculando

~

C.(A) para alguns valores de eq,e1,d; € ds.

i) Se e; =dy e ey = dy, tem-se que
C(Al) =A-— %(62 — 61), C(A,«) =A + %(62 — 61) (& OC(A) = A.

it) Se e; = dy, ea = kyey, k1 > 1 e dy = kaody, ke > 1 tem-se que

C(Az)zA—%(kl_l), C(AT):A+2(1€2—1)

ki1+1 3 \ky+1
‘ ke —1 Kk —1
p €1 2 — 1=
C.(A)=A+ — — :
(4) + 3 (k2+1 k1+1>
ii1) Substituindo ey = dy = 1, e = 3 e dy = 4, tem-se que k; = 3 e ko = 4. Nesse caso,
tem-se
ClA)=A—L oy —ayl CL(d)= A+
1) — 67 r) — 5 € c — 60

~

Neste exemplo, o calculo de C'(A) é realizado considerando varias opgoes para os extremos
do suporte de A.
No préximo capitulo, é realizada a abordagem fuzzy para o modelo matematico de um circuito
elétrico e a aplicacao de método de programacao linear fuzzy para o obtencao de resultados
numéricos.
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Capitulo 2

Programacao Linear Fuzzy: otimizacao
de um modelo de circuito elétrico

Um circuito elétrico possui componentes caracterizados por diversos parametros, cada um as-
sociado a uma tolerancia, dada pelo fabricante do produto. Por exemplo, uma resisténcia de
48 ohms pode ter tolerancia de £ 10%, devido a temperatura, tempo de uso, entre outros mo-
tivos (GONZALEZ, 2003). Essa gradualidade motivou este estudo a utilizar a abordagem de
programacao linear fuzzy para um problema de divisor de tensao. O valor dado pelo fabricante
do aparelho elétrico é chamado de valor centrado. As tolerancias e os valores centrados per-
mitem um melhor controle sobre os limites sob os quais o circuito continua operando e, assim,
otimizar seu desempenho. O modelo utilizado para esta pesquisa foi construido por Salazar em
(GONZALEZ, 2003). Foram estudados trés casos para os componentes do PPL. O primeiro
caso é para componentes de niimeros reais que propoe-se para validar os outros dois resultados.
O segundo caso refere-se ao numero fuzzy trapezoidal do tipo 1 como componente do PPL. A
solugao 6tima é obtida através de uma funcao de defuzzificagao de ordem linear total, definida
no subespaco dos numeros fuzzy trapezoidais do espago vetorial de niimeros fuzzy. O terceiro
caso estende o segundo caso para conjuntos fuzzy do tipo 2 como componentes do PPL . O
teorema de representacao dos a—niveis é o método para obter a solucao 6tima do tipo 2. Para
a simulagdo numérica para todos os casos é usado o método classico de pontos interiores (NO-
CEDAL; WRIGHT, 2006), utilizando o algoritmo de programagao linear linprog do software
Matlab®, e um algoritmo que reproduz o teorema da representacio.

Um especialista em eletronica poderia utilizar as informagoes obtidas neste estudo, devido
a abordagem fuzzy que estende a gradualidade do caso de problema classico, impondo graus
de relevancia além dos nimeros considerados pelo fabricante. A abordagem com conjuntos
fuzzy do tipo 2, amplia ainda mais a qualidade da gradualidade das tolerancias, de modo a
adicionar um adjetivo ao problema linguistico. Por exemplo, quando o fabricante do dispositivo
recomenda 40% de tolerancia, consideram-se valores exatos entre 0 e 40 para o caso cldssico.
Para conjuntos fuzzy do tipo 1, adiciona-se o adjetivo “cerca de” 40%, e os conjuntos fuzzy do
tipo 2 expressam o “mais ou menos” em torno de 40%. Neste capitulo é apresentado o contetdo
publicado no artigo (BERTONE; JAFELICE; CAMARA, 2017).

2.1 Modelo Matematico de um Circuito Elétrico

O circuito divisor de tensao mostrado em (GONZALEZ, 2003), ilustrado na Figura 2.1 (a), ¢ o
modelo a ser construido nesta secao.

Neste circuito sao considerados dois geradores de tensao, cada um produzindo uma forca
eletromotriz, F; e E5y, medidas em volts. Suponha que £y > FE, para que o circuito mostrado na
Figura 2.1 (a), tenha a corrente no sentido indicado pelas setas. Assume-se que as tolerancias
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E,

G Eio—
Y% =0 I,
G2Bz 0 R R,
E, - =
(a) Modelo do circuito de divisor de (b) Modelo do circuito de divisdo de tensdo paralelo

tensao

Figura 2.1: Circuitos bésicos de divisao de tensao equivalentes.

associadas ao respectivo potencial tém um valor minimo E; e méximo E;, em relacio a
Ei. Analogamente, existe o valor minimo F,, e méximo E;, em relacao a E,. O objetivo
deste modelo é determinar os valores centrados dos resistores, Ry e Ry, para que a impedancia
resistiva do divisor de tensao seja minima. Além disso, como restrigoes, o potencial de saida, Vj,
pertence ao intervalo [Vg™, V], onde o expoente m representa o valor minimo e M, o maximo.
A corrente, Iy, estd no intervalo [I7", I}]. As tolerancias verificam as desigualdades

By > V' > Vg" > BF. (2.1)
A impedancia resistiva total do divisor de tensao é dada pela férmula
Ry Ry
"R R
devido ao fato de que os dois resistores estao em paralelo. Para obter um modelo linear, as
variaveis resisténcias sao substituidas pelas admitancias associadas, que sao dadas pelos valores

inversos G; = 1/R;,i = 0,1,2. Com esta notagao, a admitancia total do divisor de tensao é
Gy = G1 + G5. Assim, a funcdo objetivo do problema é dada por

o =G + Gy,

Ry

que sera maximizada. Denotando por G; e Gy os valores centrados das admitancias G e Ga,
respectivamente, entao tem-se

1 =1—-€e)GelGy =(1—¢€)G,

em que €; e €5 sao duas tolerancias conhecidas. Assim, o problema de programacao linear
proposto é

max (H(G1,G2)), em que H(G1,Gs) = (1 — €1)G1 + (1 — €2)Go. (2.2)

Para expressar as restrigoes sobre as variaveis G; e Go, observa-se, baseado na Figura 1 (b),
que
I =1+ I+ I.
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Consequentemente, tem-se

Vo Vo
G B+ Gy = — + — + 1.
181 + GaLs R1+R2+0
Daf,
GE+GE—V(1+1)+I
1481 22—0R1 R 0

de onde, obtém-se
G1Ey + GoEy — 1y = Vo (G + Gy).
Desse modo,
 EIGy+ EyGy —
N G1+ G, ‘
Analisando o comportamento 1V, em relagao as variacoes de G, G, e Iy, tem-se:
(I) Calculando a derivada parcial de V; em relacdo a Gy, obtém-se

Vo

oV E\(G1 + Gy) — (B1Gy + ExGy — 1)

G, (G + G,)?

E1G1 + E1G2 - E1G1 — E2G2 + IO
(G1 + Gy)?

(2.3)

(Ey — Ey)Gy + 1
(G1 + G9)?

> 0,

devido ao fato de que E; > FE,. Como conclusao, tem-se que Vj decresce a medida que G,
decresce.
(IT) Calculando a derivada parcial de Vj em relagao a Ga, tem-se

W (Ey — E1)G1 + 1y

0~ (GG 0 (24)

pois I = I + I, + I tal que

Iy=1—-1,— I, = G\ By + GoEy — VoG — VoGos.

Portanto,
% - (Ey — E)Gr + Iy
0G4 (G1 + G)?
 GiEy — GiEy + G By + Go By — VoG — VoG
(Gl + G2)2
_ Ey(Gy + Gs) — Vo (G + Gy)
(G1 + Gy)?
BV
G+ Gy
Como E; > VOM > Vgt > EQL, entao Fy < Vj, desse modo Ey — V < 0. Isto implica que
oV
— <0
oG, =
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significando que V| decresce a medida que G5 cresce.
(IT1) Do fato que G1 + G5 > 0, conclui-se que

vy -1 -
oy, G+ G

0,

o que significa que Vj decresce a medida que I cresce.

Consequentemente, V; assumird o seu menor valor, que deseja-se nao ser inferior a Vj",
quando (; assume seu menor valor Gy. Além disso, Gy assume seu maior valor, G5, e a
corrente obtida Iy é I37.

Desse modo, a restricao V" < Vj é equivalente a

E; Gy + E;Gf — 1)

Vi<
0 = Gy + Gy

ou, alternativamente,
yme B (L= e)Gi+ By (14 &)Gs — Iy’
0= (1—-€)G + (1 +€)G, ’

isto é,
(1 —e)(By = Vg6 + (1 +e)(Ey = Vg"Ga>1y".
Similarmente, a restricao Vo<V é equivalente a

(1 +e) (B = V"G + (1 — e) (B — V") Go<Iy".

Consequentemente, o modelo matematico de programacao linear para o problema de divisor de
tensao é dado por

max H(G1,G2) = [(1 — €1)G1 + (1 — €2)Gs)]
(I—e)(Ey = VMG + (1+ ) (BEy —Vi"Ge>1)'

(L+e)(Bf = VMG + (1 — ) (B — VM)Go<I

Usando as notagoes
_ ([ 1—a (G (-1 (0
=(128) o= (8) (%) o= (1)

o— ((1 —e)(Vg" — Ey) (I+e)(Vg" - E2_)>
(L+e) (B —Vg") (1 —e) (B - V)
tem-se a forma matricial para o problema de divisor de tensao
max H(G) = ¢1'G
0G<Y (2.5)
g=>o0.
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2.2 Meétodos de Programacao Linear Fuzzy para o Mo-
delo de Circuito Elétrico

Nesta secao, considera-se o problema de PL descrito na Secao 2.1, que é dado pela forma
matricial (2.5). O objetivo de usar a abordagem PLF é permitir uma violacao de restrigao.
Essa extensao do modelo é feita através dos coeficientes da funcao objetivo, e das restricoes,

utilizando numeros fuzzy para seus coeficientes. Portanto, consideram-se os elementos dos
componentes do PPL H, ©, e T em trés casos:

1. numeros reais (PPL cléssico). Para validar os métodos propostos;

2. numeros fuzzy (PLF do tipo 1). Os coeficientes de H e as entradas de © s@o elementos
de Trapp(R). O vetor Y = (I}, I;"), em que I}M e IT" € R;

3. conjuntos fuzzy do tipo 2 (PLF do tipo 2). Os coeficientes de H e as entradas de © sao
singleton do tipo 2, cujas projegoes no plano (z,u) pertencem a Trap p(R).

O primeiro componente do vetor T é um conjunto fuzzy do tipo 2 definido pela funcao de
pertinéncia

1, se (z,u) = (1", 1),

MW(I’U): r— 1"+ (1 —u)
6L(]_ —U)

$—[6n+5L

, se 0 <u(z) <
oL

exc [Ig”—éL,Ig"],
em que z = [[" — d;, é o minimo do nivel zero.

O segundo componente do vetor T é um conjunto fuzzy do tipo 2 definido pela funcao de
pertinéncia

1, se (z,u) = (13", 1),

e (2, u) = IM 4+ 6p(1 —u) —z

< I(])w—i-(SR—JI
53(1—11,)

pS on

, se 0 < u(x) ex e [ I + 6l

em que z = IM + §r é 0 maximo do nivel zero.

Os graficos desses conjuntos fuzzy do tipo 2 sao mostrados na Figura 2.2 para a restrigao
independente IJ*, e na Figura 2.3 para I37.

A motivacao para estudar o terceiro caso vem novamente, para permitir uma violacao de
restrigdo em termos do intervalo [I;", IM]. Estendendo esse intervalo para [I" — &1, 137 + dg,
para valores escolhidos de d;, e dg para o qual o PL tem solugao, induz a uma regiao factivel,
que chama-se de regiao viavel fuzzy, a ser incluida na regiao factivel crisp. De fato, as restrigoes
do PL associadas a regiao viavel fuzzy sao dadas por

(1 —e)(Br —ViMG + (1 +e)(By — Vg6 > Iy +0r
(1L +e)(Bf = VMG + (1 —e) (B — V"G < If" =4,

que determina a regiao mostrada na Figura 2.4.
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Figura 2.2: O conjunto fuzzy do tipo 2 corres-  Figura 2.3: O conjunto fuzzy do tipo 2 corres-
pondente ao termo independente da segunda  pondente ao termo independente da primeira
restricao. restricao.

Go

045

4{ Regiao de viabilidade crisp

Regiao de viabilidade fuzzy

v
G

Figura 2.4: As regioes de viabilidade crisp e fuzzy para os valores 6, = 0.03 e g = 0.05.

Os valores extremos, para os quais o PL tem solucao, 7, e d sao
0<d,<0.335 e 0<dr<0.207.

Para as simulacoes numéricas da Secao 2.3, os valores escolhidos sao o, = 0.03 e 6z = 0.05.

Por outro lado, o método de resolucao aplicado no caso do PL classico é o ponto interior
(NOCEDAL; WRIGHT, 2006), usando o algoritmo de programagao linear linprog do software
Matlab®.

Para o caso 2, aplica-se a ordem de defuzzificacao g, sobre os coeficientes fuzzy da funcao
objetivo, e as restricoes, para calcular o ponto 6timo pelo método do caso 1.

Para o caso 3, define-se uma familia paramétrica indexada por o de problemas de PL do
tipo 1, obtidos pelos cortes do vetor Y no a—nivel. E resolvido para cada a um problema
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de PL do tipo 1, com o método usado no caso 2. A solucao é obtida aplicando o teorema da
representagao de a—niveis dos conjuntos fuzzy do tipo 2(MENDEL; LIU; ZHAI, 2009).

2.3 Resultados Numéricos

No caso da programacao linear classica, considera-se

—-1.2 1.1 —0.64
H(g1,g2> =06G +09G, ©= ( 0.7 —0.18) e T= ( 0.58 ) J

em que € é +£40%, e €5 é £10%. A solugao 6tima obtida é H(0.9437,0.4477) = 0.9691.
Para o caso 2, os componentes considerados sao:

H(G1,G2) = (0.4,0.6,1,1) G, + (0.6,0.9,1,1) Go,
o_ ((—2-2,-12,-08) (1,1,1.1,1.4) v_ (064
~\ (05,05,07,08  (-0.2,-02,-0.18,-0.12)) ¢ -~ \ 058 /°

Os numeros fuzzy trapezoidais €; e €5 usados para construir os coeficientes da funcao objetivo
H | e as entradas da matriz © sao mostrados na Figura 2.5 e Figura 2.6.

1 ] 1

o8 - 09

ost . 08f

07t . 07

06 ] 0.6

0.5 a5

Pertinéncia
Pertinéncia

0.4 8 0.4

03 4 03r

02 1 02r

01t El 01r

ok ; ; | . 0~
0 0.1 02 03 04 05 06 0.7 11:] 09 1 0 0.1 02 03 04 0.5 06 0.7 08 09 1

Universo Universo

Figura 2.5: O numero fuzzy trapezoidal ¢;  Figura 2.6: O numero fuzzy trapezoidal e,
usado para construir os coeficientes da funcao  usado para construir os coeficientes da funcao
objetivo H. objetivo H.

Os graficos dos coeficientes, 1 — €; e 1 — €5 para a fungao objetivo H, sao mostrados na
Figura 2.7 e Figura 2.8.

As entradas da matriz © sao mostrados na Figura 2.9 e Figura 2.10 (primeira linha), e na
Figura 2.11 e Figura 2.12 (segunda linha).

Considera-se 7 € [0.3,1] j& que valores menores que 0,3 fazem com que a programagao
linear falhe em encontrar solugoes 6timas. Para o valor v = 1 néds tem-se g,(A) = n. Como
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Figura 2.7: Coeficiente 1 — ¢; da fungao obje-
tivo H.
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0.7

0.6

0.5

Pertinéncia

0.4

0.3

0.2

01

08 1 12 14

Universo

16 18 2

Figura 2.9: Simétrico de A;; da matriz ©.

a,(1+¢,)

0.65 07
Universo

0.55 06 0.75 08 0.85

Figura 2.11: Entrada As; da matriz ©.

09r

08

07 r

06

057

Pertinéncia

04r

037

02

01

02 03 04 05 0.7 08 09 1

Universo

06

Figura 2.8: Coeficiente 1 — €5 da fungao obje-
tivo H.

b,(1+c,)

-1.4 -1.35 -1.3 -125 -1.2

Universo

-1.15 -11 -1.05 -1

Figura 2.10: Simétrico de A;, da matriz ©.

b,(1-¢,)

019 018 017 016 015 014 013 012 -0.11
Universo

0.2

Figura 2.12: Entrada Ay da matriz ©.
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consequéncia, o ponto 6timo do caso 2 coincide com o caso 1, e o valor 6timo é o minimo do
nivel 1 do ntimero fuzzy 6timo:

H(0.9437,0.4477) = (0.5517,0.9691, 1.3913, 1.3913).

Outros valores de v resultam em solu¢oes que sao mostradas na Figura 2.13.

Figura 2.13: Os pontos 6timos correspondentes a diferentes valores de 7.

Para cada v, parametro de defuzzificacao no intervalo [0.3, 1], o ponto 6timo é um nimero
fuzzy do tipo 1, pois para cada nivel obtém-se um ponto étimo (crisp), e uma solugao 6tima tra-
pezoidal correspondente neste ponto. Assim, o ponto étimo tem o universo fuzzy determinado
pelo nivel zero 6timo e nivel um étimo, que na Figura 2.14 é representado pelos pontos pretos.
A funcao de pertinéncia é a linha determinada pelos pontos no espaco, cujas duas primeiras
coordenadas sao as coordenadas do ponto 6timo nivel zero e nivel um. A terceira coordenada
é zero e um, respectivamente.

Na Figura 2.15, é mostrado o gréafico da solugao étima do tipo 2 obtida de cada ponto étimo
da Figura 2.14, e sua solugao fuzzy 6tima correspondente. O gradiente de cores cinza em ambas
as figuras sao correspondentes e representam os niveis de 0 a 1.
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Figura 2.14: Os pontos 6timos e seus graus de pertinéncia.

0.8 ;
06 ..

0.4
0.2

Pertinéncia Secundaria

1.4
0.4

0.2
Pertinéncia Primaria 0

0.8

0.4

Universo

Figura 2.15: A solugao fuzzy do tipo 2.

E mostrado na Figura 2.16 os pontos 6timos, e na Figura 2.17 a solucao fuzzy do tipo 2
para valores de vy no intervalo [0.7, 1].
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Figura 2.16: Os pontos 6timos correspondentes aos valores de v € [0.7,1], e seus graus de
pertinéncia.

06 ...+

0'4\___,_:...---" :

Grau de pertinéncia secundario

1.8

1.6

15 Universo
0 .

Figura 2.17: A solugao fuzzy do tipo 2 correspondente a valores de v € [0.7, 1].

Os resultados obtidos a partir da aplicacao da metodologia proposta evidenciaram sua con-
sisténcia e eficacia na resolucao de PPL que incorporam incertezas em alguns de seus dados,
tais como os coeficientes da funcao objetivo, os elementos da matriz de restricoes ou os termos
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independentes do sistema. A modelagem dessas incertezas por meio de representagoes fuzzy
permitiu capturar a variabilidade e a imprecisao inerentes aos parametros do problema, possi-
bilitando a obtencao de solugoes robustas. Dessa forma, a metodologia mostrou-se apropriada
nao apenas para encontrar solugoes viaveis sob incerteza, mas também para analisar a sensibili-
dade do modelo em relacao as variagoes nos dados, o que amplia sua aplicabilidade em cenarios
reais nos quais a informacao disponivel é incompleta, imprecisa ou subjetiva.

No proximo capitulo é apresentado um algoritmo baseado na algebra dos numeros fuzzy
afim de estudar as vantagens e limitacoes dessa utilizacao na busca da soluc¢ao 6tima em PPL.
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Capitulo 3

Algoritmo Modificado para um Método
de Ponto Interior usando Numeros
Fuzzy

O objetivo deste capitulo é aplicar a algebra e os a-niveis dos nimeros fuzzy PPL com
parametros e variaveis sendo nimeros reais, ampliando as possibilidades na busca da solucao
otima. O algoritmo modificado foi baseado no Algoritmo Primal - Afim que descreve as
operacoes para a execucao de um método afim de pontos interiores. No Algoritmo Primal
- Afim (APA) é obtido apenas um ponto a cada iteragao na diregao da solugao 6tima, enquanto
que no algoritmo modificado Algoritmo Primal - Afim Fuzzy (APAF) sdo considerados dez
pontos. Estes pontos sao determinados pela defuzzificacao dos a-niveis de niimeros fuzzy trian-
gulares que foram considerados para cada varidavel do PPL, e dentre estes é escolhido o ponto
mais proximo da solugao 6tima. As simulacoes numéricas foram realizadas para trés PPL com
nimero de variaveis e quantidade de restricoes distintas, e inequagoes com relagoes de ordem
diferentes. Os resultados obtidos pelo APAF sao melhores a cada iteracao e o APAF necessita
de um numero menor de iteracoes para se alcancar o valor étimo em comparagao com o APA,
considerando o erro absoluto.

O algoritmo modificado, baseado na representacao de ntimeros fuzzy por a-niveis, amplia
o espectro de busca do Algoritmo Primal - Afim em direcao a solugao 6tima de um PPL com
entradas e variaveis sendo numeros reais, a partir de dez pontos obtidos pela defuzzificacao
dos a-niveis dos nimeros fuzzy, selecionando aqueles que estao na regiao de viabilidade em
cada iteracao. As simulacoes computacionais foram realizadas no software Matlab e um dos
comandos necessarios para que a programacao computacional fosse realizada com praticidade
foi o cell. Este comando é caracterizado por criar matrizes em que cada elemento também é
uma matriz. Neste capitulo é exibido o contetido publicado no artigo (CAMARA; JAFELICE,
2025).
A seguir é apresentado o APAF, a algebra fuzzy aplicada no algoritmo e o fluxograma corres-
pondente.

3.1 O Algoritmo Primal-Afim Fuzzy em R"

Considera-se o Problema de Programagao Linear:

X -

AX
X

(3.1)

IV AIA
S WA
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em que C' é a matriz transposta de C. A forma padrao deste PPL serd dada por:

Min Q(X) = CTX
AX = B (3.2)
X >0

emque C=[C 0T, A=[A Ile X =[X Xp|T em que I é a matriz identidade de ordem m
e Xr é a matriz m x 1 das variaveis de folga e todas as matrizes sao reais.
Considere que X° = (29,29, 29, 29,...,2%) é um ponto interior da regiao de viabilidade do

PPL (FANG; PUTHENPURA, 1993) e que ¢” = [L 11 1...1](smx1. Neste caso, X € S =
(XeERAX <B e X>0eX'ecS={XeR"AX =B e X > 0}. Utilize as
matrizes A = (@ij)mxn € A = (Cij)mx (ntm)-
Os passos da metodologia sao os seguintes:
Passo 1: Definir €> 0 e determinar o maior d > 0 tal que 72 € S, em que 72 =
(29 —d, 29, 29+d) (25—d, 29, 25+d) ... (2% —d, 2% 2°+d)]", em que cada coordenada de

X ; € um numero fuzzy triangular, tal que para cada a-nivel e a defuzzificacao correspondente a
, . . 0 L N .
um ponto é determinada na vizinhanca de X dentro da regiao de viabilidade. Para determinar

o maior d > 0 tal que 72 € S considerar os vetores EYZ = [V —d) (25—d) ... (22—d)|T
e DYSI = [y +d) (25+d) ... (2°%+ d)]*. Considerar d > 0 com espagamento de 0.1 e

determinar d = max{Z(EYS) < B; (EYS) >0 e E(DYS) < B; (DYS) > 0}. Essas sao
operagoes matriciais usuais.

Passo 2: Para o valor de d encontrado no Passo 1, considerar X = [72 Xg,])T em que
XFd - [(l‘?H_l - d7 :L‘?L—&-h x'(r)z—i-l + d) s (x9z+m - d7 x'(r)z—i-m? x%—&-m + d)]T

Construir a matriz X09 tendo na diagonal as coordenadas de X e os outros elementos da
matriz nulos. Em seguida, determinar o a-nivel de X9 e X0, dados respectivanente por:

(X = =] ] [T e
29 0 .- 0
xog = |
: . 0
L U e
em que [20] = [d(a—1)+20,d1 —a)+ 2], i=1,....,n+m.

Discretizar 0 < a < 1 com espacamento 0.1. Nao considera-se a = 0 devido a ex-
pressao do Centroide (1.6) se anular no denominador. Neste passo, considerar os niumeros
fuzzy triangulares (29 — d,29,2% +d), i = 1,...,n + m. e seus a-niveis dados por [2?]* =
[d(a — 1) + 2¥;d(1 — a) + 2] = [ug,uz), i = 1,...,n + m. Os a-niveis dos nimeros fuzzy

triangulares sao mostrados na Figura 3.1.
Na Figura 3.2 é apresentada uma representagao de parte do granulo referente ao vetor X9
com centro em Xj.

Passo 3: Determinar a matriz ([X09]*)? e calcular A ([X09]*)* AT, para cada «. Neste
passo, obter ([29]%)? = [minP, mazP] em que

P = (da—1) +a7)* (d(a — 1) + 27)(d(1 — a) + 27), (d(1 — a) + 27)*),

ou seja, 2([x?]0‘)2 = [(d(a—1)+29)?, (d(1 —a) +29)%], i = 1,...,n + m. Construir a matriz
([X0g)%)".

25



0 x)—d uy x u; x+d

Figura 3.1: Representacao dos a-niveis dos nimeros fuzzy triangulares.

uh

=A

Figura 3.2: Representaciao da parte do granulo do vetor X§.

. : 2 . .
Passo 4: Defuzzificar, para cada a, cada elemento da matriz A ([X09]*)” AT. E necessario
realizar este procedimento neste passo, pois nao existe o calculo algébrico para determinar a
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matriz inversa tendo como elementos niimeros fuzzy. As matrizes reais obtidas sao denominadas

-1
por (A ([X09])? AT>D. Determinar as matrizes reais [(A ([X09]%)? AT) D} . Para obter as

matrizes com entradas reais (A([X09]%)2AT)p, considerar u; = a(a — 1) + b(a — 1) + c e
b 4 b —4
uy = a(l — a)? + b(1 — a) + c¢. Respectivamente, tem-se, a = 1 — % + \/ i —Z 5 9 e
a a
b 4 b —4
a=1+ 2% \/ it tl 5 ac' Consequentemente, um dos gréaficos da funcao de pertinéncia
a a

definida pelos a-niveis em relacao a u; e uy é apresentado na Figura 3.3. Em seguida, calcular
[(A([X0g]*)2AT) p] ™t = (li)msxim.

\
u

u

a—b+c u c Uy a+b+c

Figura 3.3: Funcao de pertinéncia definida pelos a-niveis.

Passo 5: Calcular as matrizes

21 = [(A(X09)° A7) 17 A (IXOU) = (i

D

para cada a, em que z; = [a., (a — 1) +b. (o — 1)+ ¢, az, (1 —@)? +b., (1 —a) +¢.,,], com

m m m
_ 2 _ 0 _ 012
Az = 2 lipargd®, by, = 30 lpaggaid e ¢, = Y Lipagg(2y)°.
k=1 k=1

k=1
Passo 6: Calcular, para cada «, as matrizes [w’]® = [Z]*C e AT[w°]*, sendo [w?]* =
[Z]2C = (w;)mx1, em que w; = [y, (a0 —1)2+by, (0 — 1) + Cy., @y, (1 —@)? + by, (1 — ) + ¢y, ] com
n+m n n+m n n+m n
Qw, = 3 ¢ 3 lwangd?, by, = 30 ¢; 30 lwaggaid e o, = 30 ¢ 3 lparg(ay)? e AT[w®]* =
=1 k=1 =1 k=1 =1 k=1

(fj)(n+m)><17 €m que

fi=lag(a =12 +bg(a—1)+cp,ap,(1— ) + by, (1 — @) + ¢y

m m m
— . — . — . 3 TrM,,0]a
com ay, = 2%;6%, by, = Zlawbwi ecy = ;a”cwi. Defuzzificar A" [w"]* para obter as
1= 1= 1=

matrizes com entradas reais (A7 [w°]*)p = (8;)(m+m)x1, com o mesmo tipo de defuzzificagao do
Passo 4. Essa defuzzificacao é necessaria para realizar o calculo algébrico do proximo passo.

Passo 7: Calcular as matrizes reais [r’] = C' — (AT[w"]*) ) = (r})n4m)x1, €m que 7; =

(¢j = 55)-
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Passo 8: Calcular os nimeros fuzzy triangulares [V,]* = eT[X09]%[rY], defuzzificar estes

niimeros fuzzy e obter os nimeros reais V), para cada «. Neste passo, [V,]* = T [X09]*[r°] =
n+m n+m

[ay(e = 1) + by, ay(1 — @) + by] ¢é calculado, em que a, = Y drj e b, = > r;ay. Defuzzificar
j=1 j=1
[Vp]*. Para obter os numeros reais V,,, considerar u; = a,(ov — 1) + b, € us = a,(1 — a) +
up — by + ay, —Uu by + ay
b,. Respectivamente, tém-se, a = bty ea = 2+—+ Consequentemente, os

Ay Qy
graficos das funcoes de pertinéncia definidas pelos a-niveis para a defuzzificagao sao como no

Passo 2.

Passo 9: Se [rY] > 0 eV, <€, entdo PARE, pois 0 X? correspondente é a solugao 6tima do
PPL e Q(X") ¢é o seu valor 6timo. Caso contrario, v4 para o Passo 10. Neste passo, avaliar

as desigualdades usuais entre nimeros reais r; > 0, 7 =1,...,n+me V, < €.

Passo 10: Calcular, para cada «, as matrizes [d)]* = —[X0g]*[r°]. Defuzzificar para
cada a cada elemento das matrizes [d)]* e obter as matrizes reais [d})]. Neste passo, calcular
[d)]* = —[X03)°[r°] = ((d));) nsm)x1, em que (d)); = [ag, (o — 1) + b, aq,(1 — a) + bg;] com
aq; = —rjd e by, = —zj?.

Defuzzificar [d)]*. Para obter as matrizes reais [dj], considerar u; = ag; (o — 1) + b, e

up — by, + aq; —Us + ba, + agq.

uy = aq,(1 — a) + bg;. Respectivamente, tém-se que a = T = 2T 4
aq. Qg .

J J
Consequentemente, os graficos das fungoes de pertinéncia definidas pelos a-niveis para a defuz-

zificacao sao como no Passo 2.

Passo 11: Se [dg] > 0, entao PARE, pois o PPL é ilimitado. Se [dg] = 0, entao PARE, pois
o X? correspondente é a solugao 6tima do PPL e Q(X?) é o seu valor 6timo. Caso contrério,
va para o Passo 12. Neste passo, avaliar as desigualdades e igualdades usuais entre niimeros
reais (dj); > 0ou (d)); =0,j=1,...,n+m.

Passo 12: Calcular 79 = min L; (d) ; <0 ¢, em que v é um nimero escolhido
Jj=1,...,n+m —(d2>] Y

no intervalo (0,1). Definir [d)],, como a matriz associada a determinagao de 7. Neste passo,

calcular v utilizando operacoes usuais no conjunto dos nimeros reais e definir [dg]% como a

matriz correspondente a 7g.

Passo 13: Calcular, para cada a, a matriz [XJ |* = [XJ]* 4 70[X05]*[d})]*. Defuzzificar,
para cada a, a matriz [ X ]* e obter matrizes reais X = [Yio Xp,]". Determinar Y}Y tal que
Q(Y}{) = min {Q(Yﬁo),Y}m € g}. Neste passo, calcular [X 1% = [XJ]* + 70[X03]*[d)]* sendo

[(X2)% = () (nymyx1, em que 25 = (p;(a — 1) 4+ q;,p;(1 — ) + ¢;) com p; = (1 +v(d));)d e

q; = (14 0(d);)z). Defuzzificar [X] ]*. Para obter as matrizes reais [X] | = [Xio Xp, ",
considerar u; = pj(a—1)+¢; e ug = p;j(1 — @) 4+ ¢;. Respectivamente, tém-se v = e
Dj

eq = 2+p]+QJ

. Consequentemente, os graficos das fungoes de pertinéncia definidas pelos
Dj
a-niveis para a defuzzificagao sao como no Passo 2.

Passo 14: Calcular X 1W =B-A Yi utilizando operacoes matriciais usuais.

Passo 15: Atualizar X° = [7}7 X ]". Retornar ao Passo 1.
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3.1.1 Fluxograma

Na Figura 3.4 exibe-se um fluxograma que representa esquematicamente o APAF, mostrando
de forma descomplicada a transicao de informacoes entre os passos do algoritmo.

‘<l Inicio >
/ Entrada de dados /
C,C,4,A,% X BXe",€.
Passo 1 Determine  d, X3, X3, [X3]°.
Passos 2 e 3 Determine  [X03], [x09]%, ([xog]“)z.

-1
Passo4  Defuzzificar A([Xog]“)ZAT. Obter(A([Xog]a)zAT) . Calcular(A([Xog]“)zAT) .
D D

1 2

A([Xog]")

Passo 5 Calcular[Z]% = (A([Xog]a)zAT)

D

Passo6  Calcular [w°]% = [Z]%C e AT[w®]%. Defuzzificar A" [w?]*. Obter (AT[w°]%).

Passos7e8 Calcular [r°] = C — (AT[w°]%);, [V,,]a = eT[Xog]a[ro]. Defuzzificar [V;,]a. Obter V,.

; Sim Solugdo 6tima: X°.
Passo9 Wy <€elr’]= 0 Valor étimo: Q(X°) = CTX°.

Nado

Passo 10 Calcular [d?,]a = —[Xg]a[ro]_ Defuzzificar [d;’,]a. Obter [d;’,]. Fim

O PPL é ilimitado. /

Fim

Passo 11 [49] >0

Solugdo 6tima: X°.
Valor 6timo: Q(X°) = cTX°.

( Fim ) Passos 12 e 13 Calcular 7y, [dg’,]y , [X;o]a = [xg]“ + yO[Xog]a[df,]a.

_ T _ —_ _ T
Passos 14 e 15 Caleular X3, = [ X5 |, &b Xk =B-A% , x°=[%} xt] .

Figura 3.4: Fluxograma do APAF.
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A convergéncia do algoritmo modificado APAF é garantida pela convergéncia do algoritmo
APA (FANG; PUTHENPURA, 1993), pois nao hd mudangas no algoritmo, mas sim no niimero
de pontos gerados a cada iteracao. E escolhido a cada iteragao o ponto mais préximo do étimo,
gerando uma sequéncia de pontos que converge para o ponto 6timo, com um nimero menor ou
igual de iteragdes. Observe que o algoritmo modificado APAF é o algoritmo APA se a =1 ¢
considerado em todas as iteragoes.

3.2 Aplicacoes do Algoritmo

Nesta secao, sao apresentados trés exemplos de PPL com regices de viabilidade em R? e R3, a
fim de apresentar o comportamento da busca pela solucao 6tima pelo APA e pelo APAF.

Exemplo 3.1. Para exemplificar a aplicacao do APAF, foi utilizado um PPL resolvido em
(BALBO et al., 2010) e que apresenta as iteragdes obtidas pelo Algoritmo Primal - Afim.
Considere o Problema de Programagao Linear

Min Q(X) = —2x;+ 2y
subject to: w1 —xy < 15
vy < 15 (3.3)
1,19 > 0.
A forma padrao deste PPL é dada por
Min Q(X) = —2x;+ 1z
subject to: x1 —x9+x3 = 15
X1,T2,T3,T4 2 0

em que C=1[-2 1", C=[-2 1 0 0, Z:{(1) _11]’ A:{(l) _11 (1) ﬂ’

B = Hg}, X=[r1 27 e X=[r; x5 a3 x4)7. Consider X°=[10 2 7 137, que
¢ uma solugdo dentro da regiao de viabilidade do PPL, use v = 0.95 e erro absoluto €< 1075
em relagdo ao valor étimo Q(X*) = —45, com X* = (30,15) .

Na Tabela 3.1 € apresentada a comparacao entre os resultados obtidos no APA e APAF.
Neste exemplo, o método de defuzzificacao utilizado € o Centroide.

Tabela 3.1: Resultados de Q(X*) obtidos nos algoritmos estudados.

Iteragoes 1¢ 24 3% 4% 5% 6% 74
APA -31.432636 -38.055655 -44.619831 -44.951338 -44.990187 -44.998302 -44.999661
APAF -32.108098 -44.834111 -44.972095 -44.998510 -44.999778 -44.999986 -44.999998
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Os wvalores da funcao objetivo apresentados na Tabela 3.1 mostram que desde a primeira
iteragao o APAF ja apresenta resultados melhores, ou seja, mais prozimos de Q(X*). Além
disso, ja na sequnda iteragao o valor da funcao objetivo obtido pelo APAF estd a 0.165889 de
Q(X™*). Na sétima iterag¢io o resultado do APAF jd atinge o valor étimo da fun¢do objetivo
para o erro absoluto escolhido, e no APA ainda falta 0.00033 para atingir o valor otimo.

Exemplo 3.2. Neste exemplo, o nimero de desigualdades foi aumentado e uma desigualdade
do tipo > foi usada em uma dessas desigualdades, para ilustrar a aplica¢do do algoritmo nessa
nova Situacao.

O seguinte Problema de Programacao Linear é considerado

Maz Q(X) = x4+ 29
subject to: x4+ x9 > 1
-1 + 21’2 S 16
3r1+ 21y < 24
T,y > 0.
A forma padrdao deste PPL € dada por
—Min(-Q(X) = -z — 1)
subject to: w1 +x9—13 = 1
- + 2]32 +x4 = 16 (3 6)

QZL'l — 31‘2 + x5 = 12
311 + 20 + w6 =
T1,X2,X3,T4,Ts5, Lp Z 0.

1 1
C T T x -1 2
em que C=[-1 -1, C=[-1 -1 0 0 0 0], A= 5 _s|

3 2

1 1 -1 000 1
-1 2 0100 T - ’
A=19 3 00 10| Bl X=b =l e

3 2 0 001 24

X = [1’1 Tog T3 X4 Ty .Tﬁ]T.

No Algoritmo Primal - Afim Fuzzy em R™, descrito na se¢ao 3, a primeira desigualdade
apresentada no conjunto S € convenientemente adequada em relacio as desiqualdades do PPL.
Este ajuste foi necessdario neste exemplo.

Considera-se X° = [1 2 2 13 16 177, que é uma solu¢io dentro da regiao de vi-
abilidade do PPL, utiliza-se v = 0.95 e erro absoluto €< 10~* em relacdo ao wvalor étimo
Q(X*) =11, com X* = (2,9).

Na Figura 3.5 e Figura 3.6 os pontos indicados sao obtidos pelo APAF na primeira iteragao,
em que Pi, i = 1,...,10, correspondem aos a-niveis, a« = 0.1,...,1. Para determinar XI1F,
dez pontos sao obtidos pelo APAF e o ponto da regido de viabilidade que fornece o melhor valor
para a fung¢ao objetivo € selecionado. (X1F=P6). Note que para o =1 o ponto dado é o mesmo
que o obtido pela APA (X1=P10). Este procedimento é repetido a cada itera¢ao, sendo que o
ponto obtido pelo APA nao coincidird com nenhum dos dez pontos determinados pela APAF a
partir da sequnda iteracao. Neste exemplo, o Centroide também é usado como um método de
defuzzificacao.

Nas Figuras 3.7 a 3.10 os caminhos percorridos pelos métodos APA e APAF foram cons-
truidos em busca da solugao otima do PPL, apos seis iteragoes. Na iteragao i, © = 1,--- 6,
APA e APAF geram os pontos Xi e XiF, respectivamente.
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79

7.8

77

3:21 + 2m2 =24

.pP7

7.6

.P8

75 .Pg
P10

22, — 3z, =12

T+ T2 = 1
=2 = 0 N 2z 3 7 5 _7%6 7 N g [ A

Figura 3.5: Regido de viabilidade com o ponto Figura 3.6: Parte da regiao de viabi-

XY=X0 e os dez pontos obtidos pela APAF na lidade com zoom nos dez pontos ob-
primeira iteragao. tidos pela APAF na primeira iteracao

(P1~P2).

Na Figura 3.7 a regiao de viabilidade e o caminho percorrido sao mostrados, a partir de
X0, pelo APA (em azul) e APAF (em vermelho) apds 6 iteragées. Na Figura 3.8 uma se¢do
da regiao de viabilidade € apresentada com zoom para ilustrar que o APAF jd alcanca um
resultado melhor (Table 3.2) do que o APA na primeira iteragao. Na Figura 3.9 € apresentada
uma secao da regiao de viabilidade com zoom na parte superior para ilustrar que o APAF jd
atinge a solugao otima na sexta iteracao com o ponto X6F, de acordo com o erro estabelecido,
enquanto o APA ainda estd longe do ponto otimo com o ponto X6. Na Figura 3.10 uma se¢ao
da regiao de viabilidade € mostrada com zoom na parte superior, onde o ponto X6F estd muito
prozimo do ponto otimo X*.

—x; + 225 = 16
9

—q + 2332 =16

31+ 2z, = 24 3z, + 2z = 24

2331 - 3332 =12

-2 0 N 2 4 P N 10 T

Figura 3.7: Caminhos percorridos na regiao Figura 3.8: Corte com zoom da regiao
de viabilidade, partindo de X°=X0, pelo APA de viabilidade mostrando que o APAF al-
(em azul) e pelo APAF (em vermelho) apds 6 canca um resultado melhor do que o APA
iteragoes. na primeira iteragao.

Na Tabela 3.2 € apresentada a comparacao entre os resultados obtidos na APA e na APAF.
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— Iy + 2582 =16
—xI + 21}2 =16

31}1 + 2(132 =24
3m1 + 2$2 =24

Figura 3.9: Regiao de viabilidade com zoom Figura 3.10:
no topo ilustrando que o APAF atinge a
solugao 6tima na sexta iteragao com o ponto
X6F enquanto o ponto X6 esta mais distante
do ponto étimo.

Regiao de viabilidade com
zoom na parte superior ilustrando a proxi-
midade do ponto X6F ao ponto 6timo X*,
representado por X (em verde).

Tabela 3.2: Resultados de Q(X*) obtidos nos algoritmos estudados.

Iteragoes 19 2¢ 3¢ 49 ¢ 6¢
APA 10.209529 10.905029 10.921516  10.932244  10.939978  10.945900
APAF 10.491436  10.916259 10.971660 10.998484  10.999759 10.999955

Na Tabela 3.2 os valores da fungao objetivo obtidos pelo APAF sao melhores que os valores
obtidos pelo APA em todas as iteragoes. Na sexta iteracao o resultado do APAF jd atinge o
valor dtimo da fungao objetivo e o APA atinge o valor otimo 10.99995959 na décima terceira
iteracao, considerando o erro absoluto ¢ < 1074,

Exemplo 3.3. Neste exemplo, aumentou-se o niumero de varidveis e desigualdade e também
uma desigualdade com o simbolo > para mostrar o bom desempenho do algoritmo também em
R3, com erro absoluto ¢ < 1074, O Problema de Programacao Linear é dado por:

Maz Q(X) = x1+x9 — 23
sujeito a: —x1+ 29+ 13 < 36
7231 — 5%2 + 3563 S 36
3x1 4+ bxg — 1023 < 10 (3.7)
T1+ a9 +x3 < 15
201 —x9+3x3 > 7
T1,%2,x3 > 0.

A forma padrao desta PPL € dada por
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—Min(—Q(X) = —x1— 9+ x3)

sujeito a: — 1 + o + T3 + T4
7ZE1 - 51‘2 + 3£L'3 + x5

3x1 + dxy — 1023 + 26

il
= W W
S O D
—
o«
o
N~—

Ty + 20 +x3t+27 = 15
2561—.’132+3133-338 =7
X1,X2,X3,T4,T5,Te, L7, T8 Z 0

emque C=[-1 -1 1), ¢=[-1 -1 1 0 0 0 0 0,

-1 1 1 -1 1 1 1000 0 36
7 -5 3 7 -5 3 01000 36
A= 3 5 —10|, A= 3 5 —10 0010 0|, B=/[10],
1 1 1 1 1 00010 15
2 —1 3 2 -1 3000 0-1 7
T

X=[r; 20 m3)7 e X=[v1 2o 23 34 25 36 a7 w87,

Sendo X°=1[1 2 3 32 30 27 9 2|7, que é uma solugao interior a regiio de viabi-
lidade do PPL, usa-se v = 0.95 e erro absoluto €< 10~* em relagdo ao valor étimo Q(X*) =
8.195121, com o ponto dtimo X* = (6.981707,4.615853, 3.402439).

As trajetorias descritas pelos métodos APA (em azul) e APAF (em vermelho) em busca da
solucao otima do PPL, partindo de X0, sdo apresentadas nas Figuras 3.11 a 3.14. O APAF
atinge o valor otimo, de acordo com o erro absoluto, na oitava iteracao. A cada iteragao, i,
1=1,---,8, 0s pontos obtidos pelo APA e APAF sdo denotados por Xi e XiF, respectivamente.
Neste PPL, o método de defuzzificacao utilizado foi o LOM por ter atingido o valor étimo com
menos iteracoes que o Centroide.

e x2X3xoF

Figura 3.12: Zoom das trajetérias obtidas

Fi 11: APA e APAF trajetéri i
igura 3 0 trajetorias a partit 1 APA o APAF.

de X°=XO0 até a oitava iteracao.
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X6 X©

Figura 3.13: Zoom de X4F. Figura 3.14: Zoom da sexta itera¢ao, mostrando

a proximidade de X8F do ponto étimo X*, re-
presentado por X (em verde).

Na Tabela 3.3 € apresentada a comparacao entre os resultados obtidos no APA e no APAF.

Tabela 3.3: Resultados de Q(X*) obtidos nos algoritmos estudados.

Tteragoes 1 2@ 3% 44 5% 6% 7 8%

APA 5.236438 6.746586 6.997401 8.023601 8.180095 8.190944 8.194212 8.194363

APAF 5.675869 6.992741 7.827089 8.175832 8.192638 8.194525 8.194952 8.195024

Na Tabela 3.3 os valores da fungao objetivo obtidos pelo APAF sao melhores que os valores
obtidos pelo APA em todas as iteracoes, como nos exemplos anteriores. Na oitava iteracao,
o resultado obtido pelo APAF jd atinge o valor dtimo da funcdo objetivo, considerando o erro
absoluto € < 107*. A fundamentacgdo tedrica do método garante essa eficdcia nos resultados,
devido a busca ampliada em dire¢ao ao ponto otimo em cada iteracao.

Neste capitulo, duas ferramentas matematicas amplamente utilizadas atualmente foram
combinadas: o Método dos Pontos Interiores, em particular, o PASA, e a Teoria dos Conjun-
tos Fuzzy. Os resultados obtidos com o método proposto parecem promissores em eficiéncia,
permitindo expandir a busca por solugoes 6timas em PPL com parametros e variaveis sendo
nimeros reais. A vantagem do método refere-se a uma nova possibilidade de uso da algebra de
numeros fuzzy que permite considerar simultaneamente 10 ou mais pontos interiores nos Pas-
sos do Algoritmo a partir dos a-niveis do nimero fuzzy triangular definido a partir da solugao
inicial. Permitindo assim a escolha, dentre esses pontos, de pontos mais préximos do ponto
6timo a cada iteragdao em relagao ao algoritmo usual. Como o PASA é um caso particular do
FPASA quando o = 1, naturalmente os resultados do FPASA expandem o niimero de possibili-
dades na busca pela solucao 6tima. As limitagoes da algebra de nimeros fuzzy foram resolvidas
pela defuzificagao dos nimeros fuzzy e, consequentemente, pela algebra de ntimeros reais. Os
métodos de defuzificacao Centroide e LOM foram utilizados, e observou-se que o nimero de
iteragoes para atingir a solucao 6tima pelo FPASA variou de acordo com a escolha do método
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de defuzificacao. Nos exemplos considerados, o FPASA necessitou de um nimero menor de
iteragoes para atingir os pontos 6timos para os erros considerados.

No préximo capitulo desenvolve-se a otimizacao possibilistica a partir do ponto de vista de
intervalos fuzzy generalizados de nimeros fuzzy intervalares triangulares, em associacao com o
método da penalidade exata.
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Capitulo 4

Aplicacao da Otimizacao Possibilistica
a Numeros Fuzzy Intervalares: Dieta
Suplementar

Problemas de otimizacao possibilistica e fuzzy utilizam ntimeros fuzzy (formalmente definidos
no Capitulo 1), embora a semantica das entidades de possibilidade e fuzzy seja distinta e os
métodos de solugao correspondentes da otimizagao sejam diferentes (LODWICK; JAMISON,
2007). A maioria dos artigos de pesquisa realiza otimizagao possibilistica e fuzzy por meio de a-
niveis de intervalos fuzzy. Como os a-niveis de um intervalo fuzzy sao um intervalo de valor real
a abordagem aqui desenvolvida utiliza uma representagdo de intervalo restritos (LODWICK,
1999) para as fungoes direita e esquerda que definem um intervalo fuzzy. As entidades funda-
mentais deste estudo sao conjuntos fuzzy com valores intervalares, que geram dois conjuntos de
intervalos de a-niveis. A representacao da incerteza em modelos matematicos pode ser estendida
pela teoria de conjuntos fuzzy do tipo 2. Esta teoria é rica em resultados tedricos e demonstrou
grande potencial em aplicagdes, como pode ser visto em (BERTONE; JAFELICE; CAMARA,
2017; FIGUEROA-GARCIA; HERNANDEZ, 2014; JAFELICE; BERTONE, 2020). A teoria
das possibilidades é uma abordagem simples para lidar com a incerteza em situagoes que envol-
vem informacoes incompletas. Essa teoria emprega duas fungoes que avaliam a possibilidade e
a necessidade de eventos. Ela estd na intersecao de conjuntos fuzzy, probabilidade e raciocinio
nao linear. Embora esteja relacionada a conjuntos fuzzy, considerando uma distribuicao de pos-
sibilidades como um conjunto fuzzy especifico, a teoria das possibilidades difere, pois conjuntos
fuzzy e légica fuzzy se concentram principalmente na representacao de propriedades graduais,
enquanto a teoria das possibilidades lida com a incerteza em proposicoes cléssicas ou fuzzy
(DUBOIS; PRADE, 1978). Observa-se que um conjunto fuzzy com valores intervalares é um
caso particular de um conjunto fuzzy tipo 2 (HAMRAWI, 2011) e de uma nuvem (NEUMAIER,
2004; NEUMAIER, 2005). Os artigos (CHEN; KAWASE, 2000; LIU, 2008; MENDEL; LIU;
ZHAI, 2009) apresentam estudos de conjuntos fuzzy tipo 2 a partir de conjuntos fuzzy com
valores intervalares. Essa metodologia também pode ser encontrada em (TAHAYORI; TET-
TAMANZI.; ANTONI, 2006; WAGNER; HAGRAS, 2008; WAGNER; HAGRAS, 2010). No
entanto, este estudo utiliza uma nova representacao de conjuntos fuzzy com valores intervalares,
baseada em fungdes de intervalos restritos (LODWICK; JAMISON, 2018). Uma aplicacao da
teoria da aritmética de intervalos restritos na analise de sistemas baseados em regras fuzzy de
tipo 2 obteve resultados mais informativos e robustos no estudo da dinamica do HIV, o que
nao seria possivel com abordagens padrao (JAFELICE; LODWICK, 2021). Intervalos fuzzy
sao distribuigdes sobre ntimeros reais que codificam pertencimento a conjuntos ou deficiéncia
de informacao. Ambos sao representados por uma distribuicao tnica, embora sua semantica
e, consequentemente, seus métodos de otimizacao sejam distintos. Quando um modelo de oti-
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mizacao é sobre conjuntos de niimeros fuzzy, que codificam transicao de conjuntos, a otimizacao
é uma otimizagao fuzzy e é resolvida por meio de métodos de agregagao (intersegao fuzzy, por
exemplo). Se a otimizagao for sobre intervalos fuzzy que codificam deficiéncia de informagao,
é uma otimizagao possibilistica e é resolvida por meio de métodos de otimizagao distribuci-
onal (recurso generalizado, arrependimento minimax generalizado, por exemplo (LODWICK;
SALLES-NETO, 2021) discutem a otimizagao flexivel e generalizada de incerteza, que estao
associadas a falta de informagao e sao mais gerais do que a teoria estocastica, que assume distri-
buigoes bem definidas. Em particular, descreve a teoria da incerteza generalizada no contexto
da modelagem de otimizacao. Em problemas de controle étimo com uma fungao objetivo com
valor intervalar, as condigoes de otimalidade sao obtidas a partir da relagao de ordem inferior e
superior no espago intervalar em (LEAL et al., 2021). Além disso, dada uma otimizacao sobre
intervalos fuzzy, a representagao é uma distribuicao tnica. Ao modelar processos nos quais o
risco esta envolvido, como, por exemplo, estruturas de engenharia civil, estruturas mecanicas
como avioes, procedimentos médicos como radioterapia ou investimentos em previdéncia pri-
vada, o que caracteriza esses modelos é que eles sao, em sua maioria, nao deterministicos e nao
estocasticos. Ou seja, eles nao sao representados por uma tnica distribuicao que descreva sua
incerteza. Nesse caso, o que normalmente descreve a distribuicao que captura a incerteza nos
valores de entrada dos parametros de um modelo analitico, ou seja, uma otimizagao em nosso
caso, deve ser mais flexivel. Para esse fim, nossa abordagem é um tipo particular de incerteza
que ¢é limitado por fungoes conhecidas a priori, geradas por conjuntos fuzzy com valores inter-
valares. Neste capitulo é exibido o contetido publicado no artigo (CAMARA; JAFELICE, 2026).

4.1 Otimizacao Possibilistica Restrita com Dupla Distri-
buicao
Sera ilustrada a analise do intervalo fuzzy restrito em otimizacao e entao indica-se a teoria

associada. O problema genérico de otimizagao possibilistica (LODWICK; BACHMAN, 2005),
é

min 2 = f(¢T)
g(d’ b7 f) Z O’
Q = {&7 > 0}.

Agora, considere a fungao penalidade (ZANGWILL, 1967)
hi(3:(a,5.7)) = min {0,3:(a,5, )}

em que §; é a i*" linha das restricdes. Para restricoes de igualdade,

3i(a,b, 7)) 0
hi(gi(a, b, 7)) |Gi(a, b, 7)]
ou
N N N 2
hi(gi(a,b,%)) = mazx (gi(a, b, f)) ,

Para um vetor de penalidade d; > 0 de violacdes da 7" linha, nosso problema de otimizacao
possibilistica é
min F(#) = min (f(é, T) + dTlA1> . (4.1)

e zef)
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Os a-niveis de F', com ¢ e h NFI, sao

P (7,0), En(#,0)] = [£(6(0),7) + d (), f(@(0), 7) + d"h(a), ]

Definicao 4.1. A representacao do intervalo restrito de Fé

~ ~

Fa("f7 XO&) + Ea<f7 Aoz)
9 )

(4.2)

em que F\a(f, o) € Ea(f, A,) sao representagoes do intervalo restrito de Fe E, respectiva-

mente. Note que A, e A\, estao considerando todos os numeros fuzzy intervalares.

4.2 Um Caso Geral de Otimizacao com Numeros Fuzzy
Intervalares

Considere o problema

n
min f(¢, %) = Z CiT;
j=1

sujeito a
n

9i(@;, b, ¥) = Zaiﬂj 20, i=1, =1 (4.3)

7=1

o~ n
gi(Ai, b, %) = ZAijxj >by, t=r-,m

=1

T1, Toy .., Tp >0
> 9 7= T z_ e g . . . .. af ’
emquer >2 r=[r; ro... x,|',C=c1 co ... ¢, a; a1 Qg ... Gip), G;; SA0 NUMEros
reais,com¢=1,...,7—1,7=1,...,n, ¢;, b; sao nimeros reais, comi =1,...,m,j=1,...,n,

eA’i:[Ail AiQ Ain],Aij,i:T,...,m,j:1,...,7’LSéJONFI.

Portanto, a funcao penalidade para as restricoes ¢ =r,...,m, j =1,...,n serd

h,(f,gl,bz) = <maX{O,bZ—Z@Q§']}> s 1 =T,---,Mm. (44)
j=1

Considerando a funcao penalidade 4.4 e a equacgao 4.1, tem-se que

F(@) = chxj + Zdi (max {O, b, — Z;L\]x]}) ,
j=1 i=r j=1
em que
2
max{0,z} = @

Desse modo,

2
. n m dz no_ no__
F(f) = E CiT; + E 5 (bl — E Aija:j> +b1 — E Aija:j
i=r j=1 j=1

J=1
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A representacao intervalar restrita de E é

2
E(#an) =S+ 50 (bi_z,qij (W)ﬁ) =S () 5|

j=1 j=1 *

em que

Ay (Maig) = Ay () + (Ag (@) = Ay, (@) (M) 0= () <1,

comi=r,....,m, j=1,...,n.

A representacao intervalar restrita de Fé

n

2
Fo (f,A(A—ij)Q) =z;cjxj+z‘§ (bi—ZAij (Aw)axj) b -3 Ay (AA—M) g |, (46)
Jj= i=r

j=1 j=1 *

em que

Aij (M), = Aijp (@) + (A (@) = Ay (@) (M), 0< (Ma), <1,

comi=7r,...,m, j=1,...,n.
Substituindo as equagoes (4.5) e (4.6) na equagao (4.2), obtém-se:

o, . - -
. ( (M) (AM)Q) = > g+ 3 S (el + (o + (ol + (), (4)

j=

em que
n

(H)a=bi—) Ay (A@)a%v

j=1

(Hi)o = bi — Z Aij (M), s

=1
_ AN
com (H,;)a, (H;)o dependendo, respectivamente, de <)\Aij> = [(/\M)a o ()\M)a} , ()‘AT'j)a =

[()\m)a ...()\m)a]T, i:r,...,m,edef.
O problema de otimizacao possibilistica resultante é
~ —_—
min F, (f, (Ag) ) ()\Aij)a)
sujeito a

gi(ﬁi,bi,f) = Zaijxj >b, i=1,---,r—1, (4.8)
j=1



4.3 Um Caso Particular de Otimizacao

Considere o problema

min f(¢, Z) = 111+ oo+ ...+

subject to

gl(c?l, bl, [i") = ay1r1 + 199 + ...+ A1y Z bl

92(62, bg, f) = Q9211 + A22X9 4+ ...+ Aon Ly 2 b2

: : (4.9)
Gr—1(Gr—1,br_1, %) = a@E-1121 + a_1)222 + ... + Q1) Tn > by
gr(c/[\;, b, T) = Az + apoxo + ..+ Ay > by
T1, Ty oo, Tp = 0

emque® = [z; Ty ... 7,)0,C=[c1 o ... ], @ = [an an ... am],é\r = [/1 ayy ... am],flé
um NFI (Figura 1.25), em que a,9, . .., Gy, by, a;j, ¢j, b; s80 ntimeros reais, com ¢ =1,...,r—1,
7=1,....,n,er e N, r > 2 de modo que os a-niveis sao

Ao ={([er(@ =)+ A, di(1 = a) + 4], [ea(@ = 1) + A, dy(1 —a) + A]) se 0 < a <1}
(4.10)

Desse modo,

~

he(Z, A, apay ... ) = d, <max{0, —Azy — ayory — ... — appy, + br}>

= max{0, —Ax; — a,0T2 — ... — QppTy + b, }.

Combine a ultima restricao e a funcao objetivo em uma distribuicao possibilistica, para obter

ﬁ(f) = 1]+ oo+ ...+ cpr, +d, (mcm;{O, — Ay — oy — ... — ATy + br}>
= C1T1+Cxos+ ...+ Crx,+
\/(—flxl — Ap9T9 — ... — AppTy + br)2 + (—A]Il — Q2o — ... — CLMLZ'n>
+ dr )
2
em que
)
max{0,z} = Ay
2
A representacao do intervalo restrito de E é
~ 1 5 1
F (T, \,) =+ coxe + ...+ cprn + d, 5 H.+-H,]), (4.11)
em que
H,=—(e;(a—1)+A+(d1(1—a)+ A+er (1 —a)— A)A,)T1 — aaTo — ... — Gy + b (4.12)
A representacao do intervalo restrito de F é
= - 1 [— 1—
Fo(Z X)) = ca1xy + coxg — + ... + cpxy, + d, 5 H, + §Ha , (4.13)
em que
Hy = —(es(a—1)+ A+ (do(l — )+ Adea(l —a) — A2 — Qoo — . .. — Qpn Ty + by (4.14)
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Substituindo as equagoes (4.13) e (4.11) na equagao (4.2), obtém-se:

~ — 1 1— 1 1
Fa(f, )\Q’AO() =T, +Cx9+ ...+ T, + dr (Z_L‘Ha‘ + Z_LHa + Z_l|ﬁa’ + Zﬂa) . (415)

Note que
( 1— 1 —
c1xy + oo + ...+ cpxy + d, §Ha+§ﬂa se Hy,>0 e H,A >0
dy— _
. . cr1+coxs+ ...+, + —H, se Hyo>0 e H, <0
Fo(#, X0 D) = 2
d, _
clx1+czx2+...+cnxn+§ﬂa se Hy,<0 e H,>0;
\ c1x1+ oo+ ...+ cpTy se Hyo<0 e H, <0
para todos x1, s, ..., T, € {2, em que
1171 + Q1202 + ...+ ATy Z bl
0 211 + A92T9 + ...+ QopXy, 2 bg
A(r—1)101 + A(r—1)2T2 + ... + A1)y, = br_q.

O problema de otimizagao obtido pelo método da penalidade combinado com os a-niveis
representados por intervalos restritos é dado por:

min F,(Z, A, A,)
zeN

comogXa,gagl,ogagL

4.3.1 Andlise dos Sinais de H,, e H,

Esta subsegao detalha a andlise dos sinais das equagoes (4.14) e (4.12). Como Azy + a.2xe +
...+ aypx, > b,, considere

Az + apoxo + ...+ Qppr, — b =0, (4.16)

em que 6 > 0. Substituindo (4.16) na equagao (4.14) e equacao (4.12) obtém-se, respectiva-
mente,

H, = (—ei(a—1x; — ((dy +e1)(1 — @)\, x1) — 0, (4.17)
H, = (—ex(a— Dy — ((dy + e2)(1 — a))Aaz1) — 6, (4.18)
em que o estudo dos sinais de H , e H, é feito da seguinte forma:
i) 4,
Considere  H, = (—e1(a— 1)z1 — ((d1 + €1)(1 — a))A,x1) — 6 < 0, entao
€1 0
> — , 0<ax<, > 0. 4.19
- €1 =+ dl (1 — @)(61 + dl)flfl =« 1 ( )
Além disso, para cada 0 < a < 1,
Ada ) =1 —=a)((di +e)da, —er) + A, 0< Ay <1 (4.20)
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A

Note que A4 estd relacionado com o NFI (A), substituindo A, na Definicao 4.1.
Substituindo a desigualdade (4.19) na equagao (4.20), obtém-se

Apg )z a- 2 (4.21)

I
Portanto, para H, <0

(I—a)(—e) +A< ANy ) < (1 —a)di +A e A()\Aa)zA—xi, 0<a<l, (4.22)
1

€1 )
(&) + d1 (1 — a)(el -+ dl)CE’l

<MLL 0<a<], o1>0. (4.23)
Analogamente, para H, > 0
)
(I—a)(—e) TA< ANy )< (1 —a)di +A e ANy )< A——, 0<a<1, (4.24)

T

€1 )

0 - )
€1 +d1 (1 —a)(€1+d1>$1

IN

Ay <

0<a<l, z;>0. (4.25)

Na representacao grafica dos sinais de H,

1—L, As = A—i, Ay, = A—e(l—ap) e Ay = A+ di(1 — ap), para
€11

T
0 < ap < ag. Na Figura 4.1 é mostrada a representacao desses sinais .

aos @8 seguintes notagoes sao usadas: as =

a6 .......................................................................................... /

Q| A [ \

0 A— e A—elAe!IAg A' AnA+d, A+ dy 'A

A,

Figura 4.1: Representacao grafica dos sinais de H .

i) H,
A anélise dos sinais para H, ¢ feito de forma andloga a H , trocando e; por ey e d;
por dy. Na representacao grafica dos sinais de H,,, as seguintes notacoes sao usadas:
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: P } -
0 A—e A, A—e As A A+dy Ag, A+dy A,

Figura 4.2: Representacao gréafica dos sinais de H,.

) )
as=1— —! A(;:A—x—7 Ay =A—e(1—ap) e Ag =A+dy(1— ), para

1
0 < ap < ag. Na Figura 4.2 é exibida a representacao desses sinais.

A proxima subsecao apresenta um método que usa diretamente os a-niveis para resolver os

PPL.

4.3.2 Resolugao do PPL usando a-niveis

A solugao 6tima do PPL possibilistico é determinada a partir dos a-niveis do NFI triangular,
conforme apresentado em (FIGUEROA-GARCIA, 2012). Os valores correspondentes as ex-
tremidades do suporte do NFI, A, sdao denotados por ay(a), a; (), ap(@) e ag(a), para cada
a-nivel. Para cada 0 < a < 1, resolvem-se todos os PPL correspondentes substituindo A no
PPL (4.9) por cada um dos nimeros reais, ar(a), a;(a), az(a) e ag(a), considerando 6 = 0

na equagao (4.16). Os componentes z; das solugoes Gtimas, X* = (z7,25,...,z},), sdo obtidos

rrn
utilizando o Principio de Extensdo de Zadeh para o NFI, A, em que f é crescente (Figura
4.3), decrescente (Figura 4.4) ou combinacao das duas, determinada para cada varidvel. Este
fato decorre da convexidade da regiao de viabilidade e da linearidade das restrigoes do PPL.
O mesmo ocorre com os valores 6timos, Q(X™*), que também sera obtido pelo Principio de
Extensao de Zadeh para o NFI, A.
Os métodos de defuzificacao utilizados para obter a solucao 6tima e o valor 6timo sao

obtidos por meio da desigualdade de Chebyshev (FIGUEROA—GARCfA; ROMAN—FLORES;

—~ ——

CHALCO-CANO, 2022) e calculando FA,,(X*) e EA,,(Q(X*)).
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0 T} (a) zj, (o) zp(a) Tp(a)

* ) N X *
zl — e z —e x x) +dy !l +dsy

X

Figura 4.3: Grafico da aplicacao do Principio de Extensao de Zadeh quando f é uma funcao
crescente.

Ul

0 T L) i)

¥ o, o ¥ * S
i — e i —e T ] +dy x +dy

X

Figura 4.4: Grafico da aplicacao do Principio de Extensao de Zadeh quando f é uma funcao
decrescente.

A abordagem por a-niveis, independentemente de se tratar de um nimero fuzzy tipo 1 ou de
um NFT que pode ser visto como a Pegada de Incerteza (FOU) de um conjunto fuzzy intervalar
do tipo 2 (JAFELICE; BERTONE, 2020), impoe uma restricdo as combinagoes possiveis de
valores de parametros associados ao a-nivel considerado, o que limita a flexibilidade do modelo.
Por outro lado, quando a teoria de intervalos restritos é empregada, as combinacoes de valores
paramétricos tornam-se completas, uma vez que cada A associado a cada parametro do PPL
pode variar independentemente no intervalo [0, 1]. Assim, observa-se que métodos baseados em
a-niveis constituem casos particulares de métodos formulados com base em intervalos restritos,
que oferecem maior generalidade e abrangéncia na representacao da incerteza. A Tabela 4.1
apresenta algumas comparacoes de métodos de benchmark com o método da Penalidade Exata
com Intervalos Restritos (PEIR).

A programacao linear classica, combinada com técnicas de reducao de dimensionalidade,
destaca-se pela eficiéncia computacional e maior interpretabilidade dos resultados. No entanto,
sua limitacao central reside no tratamento da incerteza, uma vez que os parametros nutricio-
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Tabela 4.1: Comparacao entre métodos de resolucao de PPL com incerteza nos parametros.

Método Abordagem Vantagens Limitagoes Comparagao com
da Incerteza PEIR
Programacao  Modelagem Captura Requer in- O PEIR nao depende
Estocastica por meio cenarios formacoes de distribuicoes,
(LI; GROSS- de distri- aleatdrios; probabilisticas modela matemati-
MANN;, 2021) buigdes de solucoes robus- detalhadas; alto camente melhor as
probabilidade tas para médias custo computa- informacgoes incomple-
conhecidas cional tas
Programacao  Reformula Permite um Pode gerar O PEIR oferece me-
Robusta restrigoes tratamento solucoes ex- nos conservadorismo,
(INUIGUCHI, com in- unificado de cessivamente equilibrando robustez
2012) certeza de maultiplos conservadoras; e otimalidade
parametros métodos de dificuldade em
em um otimizacao sob modelar a flexi-
nimero finito incerteza bilidade
de restrigoes
convexas
Programacao  Parametros Representa Os  resultados PEIR evita a neces-
Linear Fuzzy modelados incertezas  im- podem depender sidade de defuzzi-
(BERTONE;  por ntmeros precisas em da técnica de ficacao, generaliza
JAFELICE; fuzzy parametros; defuzzificagao; métodos baseados em
CAMARA, aproximacao complexidade a-niveis
2017) intuitiva em PPL de di-
mensao elevada
Resolucao Parametros Simplicidade; As operacoes en- O PEIR utiliza a
de PPL com representados mnao requer dis- tre parametros CIA, permitindo que
STA (SU-  por inter- tribuigoes com SIA sao os parametros sejam
PRAJITNO; valos com limitadas operados com todas
MOHD, 2010) Aritmética as suas  variacoes
Intervalar no suporte de cada
Padrao (SIA) a-nivel,  ampliando
as possibilidades de
solugoes
Resolucao Utiliza in- Evita a diss Método recente,
de PPL com tervalos cretizagao ainda pouco ex-
PEIR generalizados  dos a-niveis; plorado em larga
restritos e maior precisao; escala
penalizacao equilibrio en-
exata  para tre robustez e
viabilidade otimalidade;

preserva a estru-
tura matematica

do PPL

nais e de custo sao assumidos como deterministicos, restringindo a capacidade do modelo de
capturar a variabilidade inerente aos contextos do mundo real. Por outro lado, abordagens
baseadas em programacao de metas fuzzy e conjuntos fuzzy tipo 2 oferecem maior flexibilidade
na representagao da incerteza (AOUNI; MARTEL; HASSAINE, 2009; BERTONE; JAFELICE;
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CAMARA, 2017). A primeira permite que as metas nutricionais sejam tratadas como objetivos
flexiveis, aproximando o modelo de cenédrios do mundo real, enquanto a segunda expande o tra-
tamento da imprecisao ao modelar explicitamente a variabilidade das fungoes de pertinéncia.
Essas vantagens, no entanto, implicam maior complexidade matematica e computacional, o que
requer métodos de aproximacao mais estruturados. Portanto, a escolha do modelo matematico
depende do equilibrio entre simplicidade e eficiéncia, por um lado, e realismo e capacidade de
representacao, por outro.

Em problemas de programacao linear de alta dimensao, a escalabilidade computacional
torna-se um desafio. Nesse contexto, heuristicas como a amostragem adaptativa (DOMINGO;
GAVALDA; WATANABE, 2002) destacam-se por reduzir o espago de busca por meio da sele¢ao
iterativa de subconjuntos representativos de restri¢coes ou varidaveis, permitindo a incorporacao
progressiva dos elementos mais criticos. Outras estratégias incluem métodos de relaxacao,
algoritmos de decomposicao e procedimentos de busca local (TSENG, 1991; ANGEL, 2006).
Embora nao garantam a solucao 6tima global, fornecem aproximacoes de boa qualidade com
custos computacionais significativamente menores, tornando-as adequadas para aplicacoes em
larga escala ou sob incerteza paramétrica.

A préxima secao contém uma aplicacao de um caso particular do problema de otimizagao
desenvolvido neste estudo. O modelo escolhido descreve a composicao nutricional diferenciada
de potassio em trés tipos diferentes de banana, que podem ou nao estar disponiveis devido a
sazonalidade da colheita dos tipos considerados. Um NFT pode representar adequadamente as
possiveis escolhas de tipos de banana a serem considerados na dieta.

4.4 Aplicacao de Intervalos Fuzzy Generalizados para
Otimizacao: Dieta Suplementar

Um individuo foi diagnosticado com deficiéncia de potassio, zinco e vitamina E apds exames
médicos de rotina. Uma nutricionista solicitou ao individuo que selecionasse, dentre um con-
junto de alimentos, aqueles que seriam mais adequados para essa dieta suplementar que atenda
a pelo menos 50% desses nutrientes. Os alimentos selecionados pelo individuo foram: banana,
kiwi, castanha de caju e castanha do Brasil.

4.4.1 Dieta com um parametro do PPL sendo um NFI triangular

O individuo consome preferencialmente banana nanica, mas seu consumo habitual de banana
varia entre 30% de banana-da-terra e 70% de banana nanica; e 50% banana prata e 50% de
banana nanica. Somente quando ele tem dificuldade de encontrar a banana nanica é que o
individuo ultrapassa esses percentuais de consumo de banana-da-terra ou banana prata em sua
alimentacao Na Tabela 4.2 é mostrada a quantidade de nutrientes em mg por 100 gramas dos
alimentos selecionados.

Tabela 4.2: Quantidade de potdssio em 100 gramas em cada banana utilizada na dieta (BRA-
SILFOODS, 2024).

Banana-da-terra Banana nanica Banana prata
Potéssio (mg) 328 346 357

Como as bananas utilizadas na dieta possuem quantidades diferentes de potassio e semelhan-
tes dos demais nutrientes, o niimero fuzzy intervalar 346 é usado para representar a quantidade
de potassio presente na dieta do individuo. A representagao gréafica de 346 é representado na
Figura 4.5.
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| ]

0 328 340.6 346 351.5 357

Figura 4.5: Grafico do nimero fuzzy intervalar triangular 346.

Note que 340.6=30% de 328 + 70% de 346 e 351.5=50% de 357 + 50% de 346, sao os valores
correspondentes no eixo X da Figura 1.25 para A = 346, e; = 5.4, e = 18, d; = 5.5 e dy = 11.
Na Tabela 4.3 é mostrada a quantidade de nutrientes em mg por 100 gramas dos alimentos
selecionados.

Tabela 4.3: Quantidades dos nutrientes potassio, zinco e vitamina E em 100 gramas dos ali-
mentos utilizados na dieta (BRASILFOODS, 2024).

Banana Kiwi Castanha de Caju Castanha do Brasil
Potdssio (mg) 346 295 660 625
Zinco (mg) 0.16 0.12 5.78 4.28
Vitamina E (mg) 0.07 2.80 0.20 6.29

O modelo matemético para este problema de alimentagao suplementar considerando as
quantidades minimas recomendadas diarias de Potassio, Zinco e Vitamina E para um individuo
adulto, ou seja, 3,51g de Potassio (NUTRITION, 2022), 9mg de Zinco (ARTMED, 2022) e 15mg
of Vitamina E (SCIENCE; SUPPLY, 2022), e os seguintes custos de 100g de cada alimento,
Banana: $0.30 por 100g, Kiwi: $1.50 por 100g, Castanha de Caju: $5.00 por 100g e Castanha
do Brasil: $6.50 por 100g, ¢ dado pelo seguinte PPL:

min@Q(X) = 0.30x; + 1.50z5 + bxg + 6.50x4
3467, + 29575 + 66075 + 625z,> 1755
0.162; + 0.1225 + 5.7873 + 4.2874 > 4.5 (4.26)
0.07z;, + 2.8029 + 0.2075 + 6.2924 > 7.5
T1,T2,T3,Tq > 0,

em que r; ¢ a quantidade de 100g de banana utilizada na dieta, x5 é a quantidade de 100g
de kiwi utilizada na dieta, x3 é a quantidade de 100g de castanha de caju utilizada na dieta
e x4 ¢ a quantidade de 100g de castanha do Brasil utilizada na dieta. Resolvendo o PPL,
considerando o consumo apenas de banana nanica, ou seja o = 1, obtém-se o valor 6timo crisp
Q(X™*) = 7.692650 e a solucao 6tima crisp dada por
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X" = (2.95235564821828, 0.523788424122884, 0, 0.926347776960357). (4.27)

Portanto, a dieta suplementar didria com menor custo de $7.69 consistird em 295.23g banana
nanica, 52.37g de kiwi, 0.00g de castanha de caju e 92.63g de castanha do Brasil.

4.4.2 Quatro Distribuicoes na Dieta Suplementar

A possibilidade superior refere-se ao grau de pertinéncia entre 0 e 1 para as menores quantidades
de potéssio na dieta com o consumo de 100 gramas de banana em que o individuo supera o
limite de consumo de banana-da-terra estabelecido na dieta suplementar, considerando que a
banana-da-terra é aquela que fornece a menor quantidade de potassio entre as trés bananas da
dieta, Figura 4.6.

u A
1
0 328 3406 346 351.5 357 ;
Figura 4.6: Possibilidade Superior.
U A
11
0 328 340.6 346 351.5 357 N

Figura 4.7: Possibilidade Inferior.
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Acrescentando maiores percentuais de banana nanica e diminuindo o consumo de banana-
da-terra, o grau de pertinéncia cresce até atingir o grau de pertinéncia 1, referente ao con-
sumo exclusivo de banana nanica, que é a banana normalmente utilizada pelo individuo na
alimentacao suplementar. Nesta situacao, obtém-se quantidades de potassio entre 328 e 346
miligramas por 100 gramas de banana. A possibilidade inferior descreve as quantidades de
potassio entre 340,6 e 346 miligramas por 100 gramas de banana, o que respeita os limites para
consumo de banana na dieta suplementar, Figura 4.7.

Deste ponto para a direita, atinge-se o grau de pertinéncia 1 para o consumo de qualquer
quantidade de banana nanica superior a 100 gramas didrias. Observe que o consumo 6timo para
o problema crisp ¢ de 295 gramas de banana. Nesse caso, obtém-se quantidades de potéassio
superiores a 346 miligramas na dieta suplementar. Porém, a necessidade superior pode levar o
individuo a ter um consumo exclusivo de banana prata e a necessidade inferior a consumir pelo
menos 50% de banana prata em sua dieta suplementar, Figuras 4.8 e 4.9.

0 328 340.6 346 351.5 357

Figura 4.8: Necessidade Inferior.

0 328 340.6 346 3515 357

Figura 4.9: Necessidade Superior.

As possibilidades e necessidades estao relacionadas as situagoes impostas pelo mercado de
banana que levarao o individuo a ter que fazer escolhas de consumo de percentuais de banana
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nanica e banana-da-terra ou percentuais de bananas nanica e prata, em detrimento de sua
preferéncia por consumo exclusivo de banana nanica em sua dieta suplementar.

4.4.3 Resolugcao do PPL usando Distribuicao Possibilistica para a
Dieta Suplementar

Nesta aplicacao de dieta suplementar, o problema com penalidade exata e fungao de pena-
lidade com valor absoluto tem a mesma solucao que o problema crisp com o parametro de
penalidade d,. = 1. De acordo com (ZANGWILL, 1967), existe um valor d tal que para todo
d, > d, a solugao de um PPL com penalidade exata e funcao de penalidade com valor ab-
soluto e parametro d, tem a mesma solucao que o PPL original. Assim, escolhe-se d, = 1
para o problema de otimizacao usando distribuicao possibilistica com penalidade, na equacao
(4.15). Dessa forma, o estudo da fungao objetivo dependerd do nimero fuzzy intervalar Ae,
consequentemente, pode-se avaliar a fungao objetivo com base na necessidade e possibilidade
de A. Para cada 0 < a < I,com0<M\ <1,0< A, < 1, tem-se o seguinte problema com
penalidade:

1— 1— 1 1
man(X) = 030271 -+ 1501’2 + 51’3 + 650.734 + (Z|Ha| + ZHQ + Z’ﬁal + Zﬁa>

{ 0.1621 + 0.12x9 + 5.78x5 + 4.282,>4.5

0.0721 + 2.80z5 + 0.20z + 6.2024 > 7.5 (4.28)
X1, T, 3,74 > 0,
em que
H, = —5.4(a — 1):61 — 10.9(1 — Q)Aal’l — 346z — 29529 — 66023 — 62524 + 1755, (4.29)
H, = —18(c — 1)z1 — 20(1 — a)Aats — 3462, — 2052 — 66023 — 625x4 + 1755,  (4.30)

A Tabela 4.4 mostra os valores de z7, o5, 2%, z} ¢ Q(X*) para cada a usando distribuicao
possibilistica com penalidade no problema de otimizacao da dieta suplementar. A discretizacao
de a com espagamento 0,1 foi escolhida para permitir comparagoes entre os resultados ob-
tidos por cada método. O método da penalidade exata com intervalos restritos nao requer
tal discretizacao, uma vez que a solucao do problema de otimizacao possibilistica considera
continuamente todos os valores do suporte dos a-niveis .

Tabela 4.4: Valores de 7, x5, 23, x5 e Q(X™).

a 7 73 73 QXY

0 2905371 0.5208311 0.000000 0.9281871 7.686074
0.1 2.910002 0.5211226 0.000000 0.9280058 7.686722
0.2 2.914648 0.5214150 0.000000 0.9278240 7.687373
0.3 2.919309 0.5217083 0.000000 0.9276415 7.688025
0.4 2.923984 0.5220026 0.000000 0.9274585 7.688679
0.5 2.928675 0.5222979 0.000000 0.9272748 7.689336
0.6 2.933381 0.5225941 0.000000 0.9270906 7.689994
0.7 2938101 0.5228912 0.000000 0.9269058 7.690655
0.8 2.942838 0.5231893 0.000000 0.9267204 7.691318
0.9 2.947589 0.5234884 0.000000 0.9265344 7.691983
1 2.952356 0.5237884 0.000000 0.9263478 7.692650
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Em todas as solugoes 6timas, A\, = A, = 1 e a melhor solucao 6tima ocorre para o = 0, isto
¢,
X" =(2.905371,0.5208311,0.000000, 0.9281871)
e Q(X*) =7.686074.

4.4.4 Andlise dos Sinais de H,, e H, para a Dieta Suplementar

A solugdo 6tima crisp (4.27), na equagao (4.16) foi obtida para 6 = 0, A; = A e os sinais de
H, e H, foram definidos para valores de o € [0, 1] com base na subsecao 4.3. Substituindo os
valores dos parametros ey, d; e r; na equagao (4.29), obtém-se

H, =15.9427(1 — a) — 32.1806(1 — ),

e substituindo os valores dos parametros es, dy e z1 na equagao (4.30), obtém-se

H, = 53.1424(1 — o) — 85.6183(1 — a) A,

Observe que o consumo exclusivo de banana nanica esta associado aos valores de H, = 0
e H, = 0. Isso ocorre para H, sea=1ou), =0.4954, com a # 1 e para H,, isso ocorre se
a=1ou ), =0.6206, com a # 1. A representacio grafica de H_ é mostrada na figura 4.10 e
o grafico de H, é similar.

Figura 4.10: Gréfico de H, com escala 1: 1 : 10.

Na aplicacao estudada, quando H, e H, sdo maiores ou iguais a zero, estdo associadas ao
consumo de banana-nanica e banana-da-terra; e quando H, e H, sdo menores ou iguais a zero,
estao associados ao consumo de banana nanica e banana prata. As quantidades de potéassio
A(Xa,) e A(Aa,) correspondentes ao consumo de banana na dieta, considerando os sinais de

H, e H,, sao:

82



Q

o Para H, >0, 0<),<0.4954 ¢ 340.6+ 540 < A(\, ) < 346;
e Para H, <0, 04954 <), <1e346 < A(Ay ) < 351.5 —5.5¢;
e Para A, >0, 0<X, <0.6206 ¢ 328 + 180 < A(\y.) < 346;

e Para H, <0, 0.6206 <)\, <1e346 < A(\z,) < 357 — 1la.

4.4.5 Resolugao do PPL usando a-niveis para a Dieta Suplementar

Para cada a-nivel, os valores correspondentes as extremidades do suporte do nimero fuzzy
intervalar triangular 346, @, (a) = 328 + 18av, a; (o) = 340.6 + 5.4, ap(a) = 351.5 — 5.5a e
ag(a) = 357—11a sao as possibilidades de quantidade de potéssio de acordo com a porcentagem
de cada banana na dieta. Para cada uma dessas possibilidades, o problema de otimizagao é

min@Q(X) = 0.30z; + 1.50z5 + 5x3 + 6.5x4
a(a)r; + 29525 + 660z; + 625z, > 1755
0.162) + 0.1275 + 5.78x5 + 4.28, > 4.5 (4.31)
0.07z1 + 2.80x9 + 0.20x5 + 6.2924 > 7.5
Ty, T2, 13,74 > 0,

em que a(a) representa cada uma dessas possibilidades. Resolvendo o PPL correspondente a
cada um desses nimeros reais a(«), as solugdes 6timas em cada caso sdo obtidas considerando
o mesmo a-nivel dos nimeros fuzzy intervalares 27 dados pelo Principio de Extensao de Zadeh
para o numero fuzzy intervalar triangular 346 em que f ¢é uma funcao afim crescente ou de-
crescente determinada para cada varidvel. Os valores 6timos também sao obtidos considerando
o mesmo a-nivel dos numeros fuzzy intervalares QQ(X*) dado pelo Principio de Extensao de
Zadeh para o numero fuzzy intervalar @, em que f ¢ uma determinada fungao afim crescente
ou decrescente. A Tabela 4.5 mostra os valores das extremidades do suporte de 2] para cada

—

« e a Tabela 4.6 mostra os valores das extremidades do suporte de Q(X*) para cada .

Tabela 4.5: Valores de x} em relagao aos valores ar(«), ay(a), ar(a) e ar(a)

nesta ordem, respectivamente.

@ T1r() z15() zy(a)  Ti(e)

0 3.117342 2999988  2.905370 2.859858
0.1 3.100019  2.995156  2.910002 2.868846
0.2 3.082886  2.990339 2.914648 2.877891
0.3 3.065942  2.985538  2.919309 2.886993
0.4 3.049183 2.980752  2.923984 2.896153
0.5 3.032607  2.975981  2.928675 2.905371
0.6 3.016209 2.971226 2.933381 2.914648
0.7 2999988  2.966486  2.938101 2.923984
0.8 2983941 2961761  2.942838 2.933381
0.9 2968064 2.957051  2.947589  2.942838

1 2.952355  2.952355  2.952355  2.952355

Na Figura 4.11 sao mostrados os a-niveis com os respectivos valores de CX-X\*) Os valores
de Q(X™) obtidos para cada a-nivel pelo método da penalidade exata sdo mostrados em verde.

Observe que, neste caso, os resultados obtidos na Tabela 4.5 estao diminuindo para cada c.
Além disso, &7, 75 e Q(X™) s@o obtidos pelo Principio de Extensao de Zadeh por uma funcao
decrescente e 2 é obtido por uma funcao crescente. Portanto, as solugoes 6timas e os valores
otimos de PPL obtidos para cada a sao como segue:
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Tabela 4.6: Valores de CXX\*) em relagao aos valores ar(«), a;(«), ap(a) e ag(a) nesta ordem,
respectivamente.

a  QX")r(a) QX7)r(a) QX")Lla) QX7)L(@)
0 7.715740 7.699316 7.686074 7.679705
0.1 7.713316 7.698640 7.686722 7.680963
0.2  7.710918 7.697966 7.687373 7.682228
0.3  7.708547 7.697294 7.688025 7.683502
0.4  7.706201 7.696624 7.688679 7.684784
0.5 7.703881 7.695956 7.689336 7.686074
0.6  7.701586 7.695291 7.689994 7.687373
0.7 7.699316 7.694627 7.690655 7.688679
0.8  7.697070 7.693966 7.691318 7.689994
0.9  7.694848 7.693307 7.691983 7.691318

1 7.692650 7.692650 7.692650 7.692650

oy

) o

7.679705 7.686074 7.69265 7.699316 771574 Q(X*)

—

Figura 4.11: Gréafico de Q(X*) para o PPL (4.31).

i) Se a(a) = az(a) entdo X* = (T1r(a), Tar(a),0,Tun(@)) e Q(X*) = Qr(X*)(a);
ii) Se a(a) = ar(a) entao X* = (z,5(a), Zop(@), 0, 24 () e QX™) = Q (X")();
iii) Se a(a) = ap(a) entdo X* = (z,,(a), 251(a), 0, 245(a)) e Q(X™) = Q, (X7)(e);

iv) Se a(a) = @g(a) entdo X* = (Tyz (), Tar (), 0, Zur(a)) e Q(X*) = QL (X*)(a).

Estes resultados estao de acordo com a subsecao 4.3.2 sobre o comportamento da monoto-
nicidade das func¢oes deterministicas utilizando o Principio de Extensao de Zadeh para o NFI
triangular 346.

A defuzzificacao dos resultados obtidos foi realizada pelo método do centroide apresentado
na subsecio 1.9.2 (FIGUEROA-GARCIA; ROMAN-FLORES; CHALCO-CANO, 2022). Sao
calculados os centroides a esquerda C', e a direita Cr do NFI, que no caso do valor 6timo sao
dados por

— —

CL(Q(X*)) =7.690557 e  Cr(Q(X*)) = T7.6981546,

respectivamente. Entao, o centroide sera dado pela média desses valores, que é calculada por

o) = QX)) ; CrlQXY)) _ 7 604356,

84



Similarmente, a solucao 6tima obtida é
C’()/(\*) = (2.964545,0.5245553, 0, 0.9258706).

A defuzzificacao calculada pela média esperada do intervalo fuzzy restrito (Subsecao 1.9.2)
¢ dada por

e | e |

EApnei, (Q(X*)) = 768777, EApnein(Q(X)*)) = 7.700089 e

——

E A (Q(X*)) = 7.693929.

Similarmente,
EA,,(X*) = (2.96149725,0.524364, 0, 0.92599).

Na Figura 4.12 s@o mostrados os valores étimos do PPL possibilistico (4.26), de acordo com
os métodos estudados neste trabalho.

Q(X™) - Crisp 7.69265 7.693929 7.694356

J— 7.686074
C(Q(XY))

—

EAp,(Q(X¥))
. Q(X™) - Método da Penalidade

Figura 4.12: Comparacao dos valores 6timos para o PPL (4.26).

4.4.6 Comparacao dos Resultados

Na analise dos métodos utilizados para resolver o problema da dieta suplementar com um
parametro do PPL sendo um NFTI triangular, observa-se que o melhor resultado foi obtido pelo
Método da Penalidade Exata aplicado ao PPL, no qual os a-niveis do nimero fuzzy interva-
lar foram representados por intervalos fuzzy generalizados restritos, (Figura 4.12). Avaliando
apenas os resultados obtidos pela defuzificacao dos valores 6timos e solucoes étimas, gerados
pela resolucao do PPL para cada a-nivel pelos métodos do centroide (FIGUEROA—GARCfA;
ROMAN-FLORES; CHALCO-CANO, 2022) e EA,,, (Subsegao 1.9.2), observa-se uma pequena
vantagem para FA,,, visto que

—— _——— @ @@ =

[CLQX)), Cr(QXN)] € [BApei, QX)) B Apnei (QIXT)].

4.4.7 Dieta com a quantidade de potassio nos alimentos sendo um
NFI triangular

As quantidades de potassio nos alimentos considerados no problema da dieta suplementar po-
dem ser encontradas com diferentes valores das informagoes nutricionais obtidas no site (BRA-

SILFOODS, 2024), em particular no site do Departamento de Agricultura dos EUA (USDA,
2024). As quantidades de zinco e vitamina E nos alimentos considerados ndo apresentam
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alteracoes significativas nos sites pesquisados. Assim, o problema da dieta suplementar é ana-
lisado considerando os coeficientes correspondentes as quantidades de potassio nos alimentos,
sendo NFT triangulares, dados por:

minQ(X) = 0.30x; + 1.50x9 + 53 + 6.504

3/4\6Q31 + ﬁﬂh + 6/6\(]$3 + 6/2\55134 > 1755
0.07z; 4+ 2.80z9 + 0.2023 +6.2924 > 7.5

X1,X2,T3, T4 Z 07

em que
346 = (328, 340.6, 346, 351.5,357), 295 = (280, 290, 295, 312, 332),
660 = (530, 565, 660, 670, 680), 625 = (600, 610, 625, 659, 675).

Observe que os valores modais dos NFI triangulares Q/SE, 660 e 625 sao, respectivamente, as
quantidades de potéssio do kiwi, da castanha de caju e da castanha-do-pard, respectivamente,
da Tabela 4.2. Para o modelo (4.31) sao usados os mesmos métodos de resolugao do PPL (4.26).
Os resultados obtidos sao resumidos a seguir.

e Resolucao do PPL usando Distribuicao Possibilistica com Penalidade Exata

O Método de Penalidade Exata é aplicado ao PPL no qual os a-niveis dos nimeros
fuzzy intervalares sao representados por intervalos fuzzy generalizados restritos, de acordo
com o problema de otimizagao possibilistica (4.32). O resultado obtido pelo Método da
Penalidade Exata foi Q(X*) = 7.669697 em que X* = (2.788349, 0.5134653, 0,0.9327683),
a=0eXz, =, =1,i=1,23,4 A combinagao de valores possiveis para Az , Aa,,,
1= 1,2,3,4, fornece outras possibilidades para os valores no suporte do NFI triangular,
diferentes dos valores obtidos pelo método dos a-niveis, permitindo ao especialista tomar
decisoes com mais informagoes para a modelagem matematica do problema em estudo.

e Resolucao do PPL usando a-niveis

A resolugao do PPL em relagao aos extremos dos a-niveis dos NFI triangulares, 346 295
660 e 625 fornece a seguinte solugao 6tima X* = (&3, 23, 2%, 3), em que 27, &5, &5 e &5
sao NFI triangulares dados por:

4% = (2.673035, 2.788349, 2.952356, 3.04925, 3.213606);

#: = (0.506207, 0.513465, 0.5237884, 0.529887, 0.540232);
= (0,0,0,0,0):

2% = (0.9161204, 0.922555, 0.9263478, 0.932768, 0.937283).

—

O valor étimo obtido, Q(X*), também é um NFI triangular, dado por

Q(X*) = (7.653558, 7.669697, 7.692650, 7.706210, 7.729213)

Na Figura 4.13 sdo mostrados os a-niveis com os respectivos valores de Q(X*). Os valores
de Q(X™) obtidos para cada a-nivel pelo método de penalidade exata sdo destacados em verde.

—

Calculando o valor 6timo pela defuzzificagio de Q(X*) pelo Método do Centroide e por

EAan( *), os seguintes resultados sao obtidos:
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Figura 4.13: Grafico de Q(X*) para o PPL (4.31).
CrL(Q(X*)) = 7.684139, Cr(Q(X*)) = 7.697187, C(Q(X*)) = 7.69066,

T T

EApnei, (Q(X*)) = 7.677138, EApnei, (Q(X*)) = 7.705180, EA,,(Q(X*)) = 7.69116.

Na Figura 4.14 sdo mostrados os valores 6timos do PPL possibilistico (4.31), segundo os
métodos estudados neste trabalho.

Q(X™) - Crisp 7.69265 - 9066 7.69116

CQX™)

EA,,(Q(X)) 7.669697

. Q(X™) -Método da Penalidade .

Figura 4.14: Comparacao dos valores 6timos para o PPL (4.31).

Analisando os resultados obtidos, observa-se novamente que o menor custo para a dieta
suplementar foi determinado pelo Método da Penalidade Exata aplicado ao PPL em que os
a-niveis dos nimeros fuzzy intervalares foram representados por intervalos fuzzy generalizados

restritos. Além disso, também foram encontrados valores muito préximos para C(Q(X*)) e

T

E A, (Q(X7)), com [CL(QX™)), Cr(Q(XT))] C [EApmeir (Q(X7)), EApneirn QX))

Esse resultado estd relacionado a definicao do método utilizado para realizar a defuzzificagao,
o que pode impactar diretamente nas informacoes fornecidas ao especialista responsavel pela
tomada de decisao. A escolha do método do Centroide para defuzificacao dos NFT representa
varios valores possiveis para um parametro, mas nem sempre reflete totalmente as nuances da
incerteza subjacente. Ao aplicar o método de defuzzificagao EA,,, o resultado obtido é mais
abrangente, fornecendo ao especialista uma visao mais completa das diferentes alternativas
possiveis dentro do contexto de incerteza, o que é particularmente importante em cendrios
onde as variaveis envolvem altos graus de imprecisao ou variabilidade, como é o caso do NFI.

Na formulacao de programacao linear do problema da dieta, aplicacoes praticas frequente-
mente requerem a consideracao de um grande niimero de nutrientes e restri¢oes, o que aumenta a
complexidade computacional e dificulta a interpretacao dos resultados. Nesse contexto, técnicas
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de reducao de dimensionalidade surgem como alternativas promissoras (VELLIANGIRI; ALA-
GUMUTHUKRISHNAN; JOSEPH, 2019). Abordagens estatisticas, como a Andlise de Compo-
nentes Principais (THARWAT, 2016), permitem a sintese de combinagoes lineares de nutrientes
que preservam a variabilidade essencial dos dados, enquanto estratégias de agrupamento funcio-
nal permitem a consolidagao de nutrientes com papéis semelhantes, mantendo assim a coeréncia
nutricional. A integracao dessas técnicas em modelos de otimizagao melhora tanto a escala-
bilidade computacional quanto a usabilidade pratica, levando a solugoes mais interpretaveis e
mais adequadas a contextos aplicados, como dietas hospitalares, programas de suplementacao
e politicas de seguranca alimentar.

Este capitulo demonstrou que um conjunto fuzzy do tipo 2 é uma maneira 1til e perspi-
caz de modelar problemas de otimizacao sob incerteza. Para atingir esse objetivo, uma nova
representacao de conjuntos fuzzy com valores intervalares baseada em funcoes de restricao,
chamados intervalos fuzzy generalizados, foi desenvolvida para a andlise de problemas de oti-
mizacao possibilistas nos quais os parametros sao generalizagoes de nimeros fuzzy com valores
intervalares. Duas abordagens matematicas foram usadas em conjunto para resolver proble-
mas de programacao linear incorporando alguns parametros dados por NFI e seus respectivos
a-niveis, tratados por meio da aritmética dos intervalos restritos. O uso da aritmética de in-
tervalos restritos permite expandir a quantidade de PPL a ser considerada na resolugao do
problema, em relacao ao método dos a-niveis, pois os valores dos parametros de cada um dos
a-niveis do NFI representados como intervalos restritos, percorre o intervalo [0, 1] de forma
independente. A resolucao de PPL com parametros dados por NFI geralmente utiliza métodos
da algebra dos nuimeros fuzzy e a consequente defuzificagao da solugao étima fuzzy obtida.

O uso da aritmética de intervalos restritos permite a resolucao de um tnico problema de
otimizacao nao linear para obter a solugao 6tima para esse tipo de problema. Em ambos os
casos estudados para a dieta suplementar, com um parametro ou quatro parametros dados
por NFTI triangular, o custo 6timo obtido pelo Método da Penalidade Exata com aritmética
de intervalos restritos foi o menor custo em relacao aos métodos estudados. Considerando o
aumento da incerteza com a utilizacao dos quatro parametros dados por NFI triangular, a
possibilidade de solugoes que gerem menores custos para a dieta aumenta, o que ocorreu neste
caso especifico. Este estudo demonstrou como traduzir conjuntos fuzzy intervalares em fungoes
de intervalos restritos, o que, por sua vez, permite a analise de otimizagao possibilistica, na qual
os parametros sao conjuntos fuzzy intervalares. A representacao é capaz de gerar solucoes que
contenham informacgoes sobre o risco associado a tomada de uma decisao possibilistica 6tima.

No proximo capitulo sao apresentadas as consideracoes finais.
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Capitulo 5

Consideracoes Finais

Neste trabalho, foram consideradas algumas abordagens fuzzy em PPL, como métodos de
resolucao envolvendo conjuntos fuzzy do tipo 1 e do tipo 2, estudo do comportamento de
algoritmo de busca da solugao étima de um PPL considerando a algebra dos a-niveis de niimeros
fuzzy e a transformagao de conjuntos fuzzy intervalares em fungoes intervalares restritas na
determinacao da solucao 6tima de PPL.

No Capitulo 2, enfatizando a incerteza existente nas tolerancias de um circuito elétrico suge-
rido pelo fabricante do dispositivo, é proposto neste estudo um problema de programacao linear
fuzzy. Para validar os resultados obtidos, resolve-se o problema classico de programacao linear.
A solugao 6tima do PPL fuzzy do tipo 1 é obtida a partir de uma ordem por defuzzificacao
que pode transformar o problema fuzzy em um PPL classico. A fim de construir uma ordem
otima, varias funcgoes de defuzzificacao sao definidas sobre o subespaco de pertinéncia trape-
zoidal unilateral. A ordem escolhida nesses conjuntos depende dos nimeros reais entre zero e
um. Considerando a fungao de defuzzificacao correspondente aos parametros de defuzzificacao
igual a um, obtém-se o mesmo ponto étimo do problema classico. Completando o estudo de um
modelo de programacao linear fuzzy, o membro independente das restri¢oes é considerado como
um conjunto fuzzy do tipo 2. A solucao é obtida pelo teorema da representacao dos a-niveis,
resolvendo, para cada nivel, um problema de programacao linear fuzzy do tipo 1. Neste caso,
usamos a mesma funcao de defuzzificacao para ordenar o subespaco de pertinéncias trapezoidais
unilaterais com parametros proximos de um, obtendo ponto fuzzy 6timo de relevancia muito
préxima ao ponto classico.

No Capitulo 3 foram combinadas duas ferramentas mateméticas amplamente utilizadas atu-
almente, o método de Pontos Interiores, em particular, Algoritmo Primal-Afim e a Teoria dos
Conjuntos Fuzzy. Os resultados obtidos foram eficientes e o algoritmo modificado proposto per-
mite ampliar a busca por solugoes 6timas em PPL com parametros e variaveis sendo nimeros
reais. A vantagem do método refere-se a uma nova possibilidade de utilizacao da algebra dos
numeros fuzzy que permite considerar simultaneamente 10 ou mais pontos interiores nos Pas-
sos do Algoritmo a partir dos a-niveis do nimero fuzzy triangular definido a partir da solugao
inicial, permitindo a escolha, dentre esses pontos, de pontos mais proximos do ponto 6timo a
cada iteracao em relagao ao algoritmo usual. O Algoritmo Primal-Afim Fuzzy representa uma
nova abordagem para PPL em que parametros e varidveis sao niimeros reais. Essas ferramen-
tas matematicas trazem um novo procedimento que pode ser utilizado em outros problemas de
otimizacao, incorporando novas possibilidades nas resolucoes desses modelos matematicos. Em
trabalhos futuros, o uso da Aritmética de Intervalos Restritos pode ser considerada em pro-
blemas de otimizagao, particularmente no PASA. Esta abordagem surge como uma alternativa
promissora para enriquecer as opgoes disponiveis na expansao do escopo de busca do PASA,
visando alcancar a solugao 6tima de um PPL com parametros e variaveis reais. Isso se deve
ao fato de que a algebra de intervalos restritos nao esta sujeita as limitagoes encontradas na
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algebra de ntimeros fuzzy, como o calculo de matrizes inversas. Esta abordagem pode propor-
cionar maior flexibilidade e eficacia no uso de algoritmos aplicados a resolugao de problemas de
otimizacao.

No Capitulo 4 mostrou-se como transformar conjuntos fuzzy intervalares em fungoes in-
tervalares restritas que, por sua vez, permitem a andlise de otimizagao possibilistica em que
os parametros sao numeros fuzzy intervalares. A representacao é capaz de gerar solugoes que
contém informacoes relacionadas ao risco associado com a tomada de decisao possibilistica
otima. Fica claro, a partir desta pesquisa, que outros problemas de analise matematica, como
modelos de equagoes diferenciais, modelos de equacoes integrais, podem ser abordados usando
os mesmos métodos desenvolvidos aqui.

Como trabalho futuro, pretende-se aplicar a metodologia da aritmética de intervalos res-
tritos em outros problemas de otimizacao com parametros sendo NFI e avaliar os possiveis
ganhos obtidos com a independéncia da variacao dos parametros de cada um dos a-niveis do
NFI. Outras abordagens de otimizacao com conjuntos fuzzy do tipo 2 como parametros pode-
riam ser estudadas por meio dos métodos apresentados, com algumas modificagoes. Destaca-se
a importancia de uma avaliacao computacional para problemas maiores com esse tipo de abor-
dagem, o que se pretende realizar no futuro.

E importante citar os artigos relacionados aos conjuntos fuzzy que foram produzidos du-
rante o processo para a elaboracao deste trabalho.

BERTONE, A. M. A.; JAFELICE, R. 5. M.; CAMARA, M. A.. Fuzzy Linear Programming:
Optimization of an Electric Circuit Model. TENDENCIAS EM MATEMATICA APLICADA
E COMPUTACIONAL, v. 18, p. 419-434, 2017.

JAFELICE, R. S. M.; CABRERA, N. V.; CAMARA, M. A.. Sistemas p-fuzzy utilizando
conjuntos fuzzy do tipo 2 intervalar. In: II Encontro de Biomatematica, 2018, Campinas. II
Encontro de Biomatematica. Campinas: IMECC-UNICAMP, 2018. p. 81-84.

OLIVEIRA, E. P.; JAFELICE, R. S. M.; CAMARA, M. A.. Solucao Numérica das Equacoes
de Saint Venant Utilizando um SBRF. In: XXXVIII Congresso Nacional de Matematica Apli-
cada e Computacional - CNMAC 2018, Campinas: IMECC-UNICAMP, 2018. p. 1-7.

PINZON, L. A. H.; JAFELICE, R. S. M.; CAMARA, M. A.. Estudo da Estabilidade de
um Modelo da Dinamica do HIV com Parametros Intervalares. In: II Reuniao Mineira de
Matematica, 2023, Belo Horizonte. Il Reuniao Mineira de Matematica. Belo Horizonte: Rede
Mineira de Matematica, 2023.

PIANTELLA, A. C.; GALVES, A. P. T.; PRADO, G. L.; CAMARA, M. A.; COSTA,
M. S.; JAFELICE, R. S. M.. Solucao Numérica do Modelo da Deflexdao de uma Placa com
Condi¢ao Inicial via Aritmética Intervalar Restrita. In: XXVII Encontro Nacional de Modela-
gem Computacional e XV Encontro de Ciéncia e Tecnologia dos Materiais, 2024, IThéus. Anais

do Encontro Nacional de Modelagem Computacional e Encontro de Ciéncia e Tecnologia de
Materiais. Recife: Even3, 2024.

CAMARA, M. A.; JAFELICE, R. S. M.. Modified Algorithm for an Interior-Point Method
using Fuzzy Numbers. International Journal of Fuzzy Systems, 2025.
https://doi.org/10.1007/s40815-025-02102-0

PINZON, L. A. H.; JAFELICE, R. S. M.; CAMARA, M. A, BERTONE, A. M. A.. Stabi-
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lity of HIV Dynamic Model with Interval Parameters Depending on Antiretroviral Treatment,
Mathematics and Computers in Simulation, v.240, p. 904-919, 2025.

CAMARA, M.A., JAFELICE, R.M. Application of possibilistic optimization to interval-
valued fuzzy numbers: supplemental diet. Comp. Appl. Math. 45, 75 (2026).
https://doi.org/10.1007/s40314-025-03457-8

Artigo submetido

PIANTELLA, A. C.; GALVES, A. P. T.; PRADO, G. L.; CAMARA, M. A.; COSTA,
M. S.; JAFELICE, R. S. M.. Constraint Interval Arithmetic Applied to Ordinary Differential
Equations, Fuzzy Sets and Systems, 2025.
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