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tat́ıstica da Universidade Federal de Uberlândia, como
parte dos requisitos para a promoção funcional da Classe
Associado D - ńıvel 4 para a Classe E- ńıvelTITULAR.
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Resumo

O objetivo deste trabalho é estudar Problemas de Programação Linear (PPL) e aplicar a
álgebra e os α-ńıveis dos números fuzzy nesses problemas com parâmetros e variáveis sendo
números reais ou números fuzzy. O primeiro problema estudado é um circuito divisor de tensão
que é modelado para determinar os valores dos resistores centralizados, de forma que a im-
pedância do divisor de tensão da resistência seja mı́nima. Três casos são analisados para os
componentes do PPL: números reais, números fuzzy do tipo 1 e conjuntos fuzzy do tipo 2. O
primeiro caso foi considerado para validar os outros dois casos. Outra análise que foi realizada
para avaliar os benef́ıcios e restrições na utilização da álgebra e os α-ńıveis dos números fuzzy
em um método afim de pontos interiores, o Algoritmo Primal - Afim (APA), na determinação
da solução ótima de um PPL com parâmetros e variáveis sendo números reais. O algoritmo
modificado, Algoritmo Primal – Afim Fuzzy (APAF), utilizou números fuzzy triangulares para
cada variável do PPL e a álgebra e os α-ńıveis desses números. Os resultados obtidos pelo
APAF são melhores a cada iteração e o APAF necessita de um número menor de iterações para
atingir o valor ótimo em comparação com o APA, considerando o erro absoluto. Este trabalho
também demonstra que um conjunto fuzzy do tipo 2 é uma maneira útil e perspicaz de modelar
problemas de otimização sob incerteza. Para tanto, uma nova representação de conjuntos fuzzy
com valores intervalares baseada em funções de restrição, denominadas intervalos fuzzy gene-
ralizados, é desenvolvida para a análise de problemas de otimização possibiĺıstica nos quais os
parâmetros são generalizações de números fuzzy intervalares. O objetivo deste estudo é repre-
sentar conjuntos fuzzy intervalares de forma que modelos de otimização possibiĺıstica resolvidos
com intervalos fuzzy generalizados resultem em informações adicionais sobre o risco associado
às ações propostas que podem ser tomadas com base em uma estratégia de solução. Esta me-
todologia utiliza o método da penalidade para reduzir um PPL possibiĺıstico a um problema de
otimização não linear, cujos resultados são comparados com a resolução do PPL por α-ńıveis
cujas soluções são defuzificadas via centroide e, possibilidade e necessidade, tomando como
referência a solução do PPL determińıstico. Apresenta-se uma aplicação de uma dieta suple-
mentar a um indiv́ıduo diagnosticado com deficiências nutricionais, com quantidades variáveis
de nutrientes em relação aos seus alimentos preferidos, descritas matematicamente por números
fuzzy intervalares. Os resultados obtidos na resolução do problema de otimização possibiĺıstica
com o método da penalidade permitem ao indiv́ıduo determinar a melhor dieta para atender
às suas necessidades diárias de nutrientes com o menor custo em relação aos demais métodos
apresentados.

Palavras-chave: Programação linear, Programação linear fuzzy, Conjuntos fuzzy do tipo 1,
Conjuntos fuzzy do tipo 2, Circuito Elétrico, Otimização, α-ńıvel, Álgebra fuzzy, Conjuntos
fuzzy intervalares, Funções de restrição, Otimização possibiĺıstica.
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Abstract

The objective of this work is to study Linear Programming Problems (LPP) and apply the
algebra and the α-levels of fuzzy numbers in these problems with parameters and variables
being real numbers or fuzzy numbers. The first problem studied is a voltage divider circuit
that is modeled to determine the values of the centered resistors, so that the impedance of
the voltage divider resistor is minimal. Three cases are analyzed for the LPP components:
real numbers, type-1 fuzzy numbers and type-2 fuzzy sets. The first case was considered to
validate the other two cases. Another analysis was carried out to evaluate the benefits and
restrictions in the use of algebra and the α-levels of fuzzy numbers in an affine method of
interior points, the Primal - Affine Algorithm (APA), in determining the optimal solution of
a LPP with parameters and variables being real numbers. The modified algorithm, Primal –
Affin Fuzzy Algorithm (APAF), used triangular fuzzy numbers for each LPP variable and the
algebra and α-levels of these numbers. The results obtained by APAF are better with each
iteration and APAF requires a smaller number of iterations to reach the optimal value compared
to APA, considering the absolute error. This work also demonstrates that a type-2 fuzzy set
is a useful and insightful way to model optimization problems under uncertainty.Toward this
objective, a new representation of interval-valued fuzzy sets based on constraint functions, called
generalized fuzzy intervals, is developed for the analysis of possibilistic optimization problems
in which the parameters are generalizations of interval-valued fuzzy numbers. The aim of this
study is to represent interval-valued fuzzy sets in a way that possibilistic optimization models
solved with generalized fuzzy intervals result in increased information about the risk associated
with proposed actions that might be taken based on a solution strategy. This methodology
uses the penalty method to reduce a possibilistic LPP into a nonlinear optimization problem,
whose results are compared with the resolution of the LPP by α-levels whose solutions are
defuzzified via centroid and, possibility and necessity, taking as reference the solution of the
deterministic LPP. An application of a supplemental diet is presented to an individual who
has been diagnosed with nutritional deficiencies, with varying amounts of nutrients relative to
their preferred foods, mathematically described by interval-valued fuzzy number. The results
obtained in solving the possibilistic optimization problem using the penalty method allow the
individual to determine the best diet to meet their daily nutrient needs at the lowest cost
compared to the other methods presented.

Keywords : Linear programming , Fuzzy linear programming, Type-1 fuzzy sets, Type-2 fuzzy
sets, Electrical circuit model, Optimization, α-level, Expanded search, Interval-valued fuzzy
sets, Constraint functions, Possibilistic optimization.

v



Lista de Figuras

1 Diagrama metodológico para PPL com NFI. . . . . . . . . . . . . . . . . . . . . 4

1.1 Conjunto fuzzy A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 [A]0.4 = [0.67, 1.33] e supp(A) = [0, 2]. . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Um conjunto fuzzy A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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2.13 Os pontos ótimos correspondentes a diferentes valores de γ. . . . . . . . . . . . 50
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4.4.7 Dieta com a quantidade de potássio nos alimentos sendo um NFI trian-

gular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Considerações Finais 89

Referências Bibliográficas 92
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Introdução

Um dos campos mais importantes da Pesquisa Operacional, a Programação Linear (PL), diz
respeito a modelos que otimizam funções objetivo lineares e as restrições nas variáveis de
decisão. Algoritmos eficientes foram desenvolvidos para PL, dentre os quais destacamos o
ponto interior (NOCEDAL; WRIGHT, 2006), e o algoritmo simplex (DANTZIG, 1987).

A modelagem precisa de dados bem definidos e precisos, o que em geral envolve altos custos
de informação é uma das questões importantes da PL. De fato, esta é uma tarefa quase im-
posśıvel de realizar em muitos casos, devido ao risco ou incerteza em alguns dados (SAHINIDIS,
2004). Muitos fenômenos econômicos, f́ısicos, quimı́cos e biológicos representados por um mo-
delo de programação linear envolvem parâmetros que, mesmo o especialista da área em estudo,
não tem conhecimento preciso desses valores que são frequentemente imprecisos em problemas
de otimização. Uma das teorias utilizada para estudar estas incertezas é a teoria dos conjuntos
fuzzy que modela matematicamente um PPL com essas caracteŕısticas, desde o trabalho de
Zimmermann (ZIMMERMANN, 1978) até trabalhos mais atuais (VILLACORTA et al., 2017).
Este problema de PL clássica pode ser contornado com o uso de números fuzzy. A Programação
Linear Fuzzy (PLF) explica o modelo matemático de uma forma mais realista (VERDEGAY,
1982). Basicamente, considerando alguns dos componentes de um Problema de Programação
Linear (PPL) como números fuzzy, uma violação de restrição é permitida, e o grau de sa-
tisfação de uma restrição é definido como a função de pertinência da restrição (SAHINIDIS,
2004). Uma das referências básicas na área da PLF é devido a Bellman e Zadeh (BELLMAN;
ZADEH, 1973). Em um PPL, a imprecisão pode estar presente nos coeficientes da função ob-
jetivo e das restrições ou nas variáveis.

Nas últimas décadas, muitos outros estudos estão sendo realizados considerando como
parâmetros fuzzy cada um dos componentes de um PPL. Relatamos brevemente algumas
pesquisas que foram realizadas com essa abordagem mostrando a eficiência da metodologia
fuzzy aplicada em PPL. Um novo método para resolver problemas de programação linear com
parâmetros fuzzy na função objetivo foi apresentado no artigo de Wolf et al. (ROMMELFAN-
GER; HANUSCHECK; WOLF, 1989). O método, chamado de ‘α-level related pair formation’,
avalia apenas algumas poucas funções objetivo extremas. Para PPL com parâmetros fuzzy
nas restrições um outro método estabelece um ı́ndice de classificação de acordo com o grau
de cumprimento das restrições. A tomada de decisão, com base em uma condição otimista ou
pessimista, utiliza esse ı́ndice para fazer restrições ’tight or loose’ e obter a solução ótima no
espaço de restrições fuzzy (LIU, 2001). Métodos que são baseados em funções de classificação,
α-ńıvel, usando resultados de dualidade ou funções de penalidade são utilizados em Ghanbari
et al. (GHANBARI et al., 2020) para investigar PPL com parâmetros fuzzy nas variáveis, PPL
com parâmetros fuzzy na função objetivo e PPL com parâmetros fuzzy nas variáveis, restrições
e função objetivo. Outros estudos propõem um método de classificação fuzzy para avaliar os va-
lores da função objetivo fuzzy e considerar a relação de desigualdade nas restrições (JIMÉNEZ
et al., 2007). A generalização de métodos de programação linear fuzzy são apresentados com
diferentes metodologias em (DELGADO; VERDEGAY; VILA, 1989) e (FAN; HUANG; YANG,
2013). Em (KAUR; KUMAR, 2013) é proposto um novo método para resolver PPL que mostra
a vantagem do método proposto sobre os métodos existentes e os resultados obtidos são com-
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parados. Para PPL que requerem simetria na modelagem matemática de números fuzzy, várias
pesquisas, entre as quais (CAMARA; JAFELICE, 2025), (GANESAN; VEERAMANI, 2006) e
(EBRAHIMNEJAD; TAVANA, 2014), consideraram números fuzzy triangulares simétricos ou
números fuzzy trapezoidais simétricos. Essas abordagens caracterizaram adequadamente esses
tipos de problemas.

Um dos avanços recentes na teoria dos conjuntos fuzzy é a teoria dos conjuntos fuzzy tipo 2,
que expande a representação da incerteza em modelos matemáticos. Atualmente, os conjuntos
fuzzy do tipo 1 são conhecidos como teoria clássica dos conjuntos fuzzy. Apesar de recente, a
teoria dos conjuntos fuzzy tipo 2 é rica em resultados teóricos e tem mostrado grande potencial
em aplicações como (FIGUEROA-GARCÍA; HERNÁNDEZ, 2014), (JAFELICE; LODWICK,
2021) e (JAFELICE; BERTONE, 2020). Um outro tipo de PLF é a programação possibiĺıstica,
que reconhece incertezas nos coeficientes da função objetivo , bem como em coeficientes das res-
trições. A função de pertinência é usada para representar o grau de satisfação das restrições, as
expectativas do tomador de decisão sobre o ńıvel da função objetivo, e o intervalo de incerteza
dos coeficientes (SAHINIDIS, 2004).

O objetivo desta pesquisa é estudar a incerteza em parâmetros de problemas de programação
linear, utilizando abordagens distintas, avaliando e comparando quantitativamente os resultados
obtidos com os valores determińısticos para alguns modelos. Estes propósitos foram realizados
em três trabalhos que são apresentados a seguir:

• Um circúıto elétrico foi modelado por um problema de programação linear bidimensional
com todos os parâmetros sendo números fuzzy do tipo 1 e tipo 2. A resolução de cada
PPL com parâmetros reais obtidos é realizada pelo Método dos Pontos Interiores. A
solução ótima na programação linear fuzzy do tipo 1 é obtida através de uma função de
defuzzificação linear definida nos números fuzzy trapezoidais. Para obter a solução ótima
do tipo 2, considerando cada α-ńıvel, é resolvido um problema de programação linear
fuzzy do tipo 1, usando a metodologia anterior. O PPL com números reais é considerado
para validar os outros dois modelos fuzzy. Esta pesquisa foi publicada em (link).

• Posteriormente, inspirado no trabalho anterior, explorou-se a possibilidade de usar a
álgebra de números fuzzy em iterações do algoritmo para um Método de Pontos Interiores.
Os métodos de Pontos Interiores são uma classe de métodos de Otimização muito estu-
dados atualmente e utilizados principalmente na resolução de Problemas de Programação
Linear (BALBO et al., 2010). Em 1984, Karmarkar publicou o seu método Projetivo
para Programação Linear, gerando um impulso na utilização da técnica de Pontos In-
teriores na resolução de problemas de Otimização (KARMARKAR, 1984). Atualmente,
existem métodos variantes do algoritmo original apresentado por Karmarkar, dos quais
o algoritmo Primal-Afim apresentado por Barnes (BARNES, 1986) e por Vanderbei et
al. (VANDERBEI; MEKETON; FREEDMAN, 1986) que é aplicado na resolução de
Problemas de Programação Linear com restrições de igualdade. Essa motivação vem no
sentido de manipular os α-ńıveis de um número fuzzy triangular definido a partir da
solução inicial obtida pelo método descrito em (FANG; PUTHENPURA, 1993), que per-
mite que os pontos obtidos em cada iteração sejam parametrizados pela discretização dos
α-ńıveis. Em particular, se α = 1 for fixo em todas as iterações, o Método de Ponto Inte-
rior usual é obtido. O objetivo desta abordagem é apresentar um algoritmo modificado,
baseado na representação de números fuzzy por α-ńıveis (APAF), que expande o espectro
de busca do Algoritmo Primal Afim (APA) para encontrar a solução ótima de um PPL
com parâmetros e variáveis sendo números reais, a partir de dez pontos obtidos pela de-
fuzzificação dos α-ńıveis de números fuzzy, selecionando aqueles que estão na região de
viabilidade em cada iteração. Os destaques deste estudo são:
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– Apresentam-se as operações algébricas fuzzy em cada passo de um dos Métodos de
Pontos Interiores com seu próprio algoritmo.

– A diagonal principal de um grânulo de soluções iniciais obtidas por números fuzzy
triangulares simétricos é considerada, cujo valor modal são os valores das variáveis
da solução inicial.

– As comparações do APAF são realizadas com o APA, pois este algoritmo realiza
uma busca determińıstica pela solução ótima, e o APAF é uma extensão do APA, e
em cada iteração há a possibilidade de determinar pontos mais próximos da solução
ótima com valores de α entre 0 e 1.

– Diferentes métodos de defuzzificação podem gerar diferentes números de iterações
para que o FPASA alcance a solução ótima.

– As simulações computacionais foram realizadas utilizando o software Matlab e um
dos comandos necessários para que a programação computacional fosse realizada
com praticidade era o cell. Este comando se caracteriza por criar matrizes onde
cada elemento também é uma matriz.

Esta pesquisa foi publicada em (link).

• Uma outra abordagem utilizada na resolução de PPL considera a Aritmética Intervalar.
Estudos pioneiros iniciados em 1959, o trabalho considerável de Moore e seus colabo-
radores (MOORE, 1969), (MOORE, 1979), (MOORE, 1985), impulsionou a aritmética
intervalar, transformando-a em um campo dinâmico de pesquisa, incluindo o desenvol-
vimento da aritmética intervalar padrão. Em (HANSEN, 2001) e (LODWICK, 2007),
a evolução histórica da aritmética intervalar é amplamente documentada, e uma nova
perspectiva sobre intervalos, conhecida como Aritmética Intervalar Restrita (CIA), foi
apresentada por (LODWICK, 2007). A CIA é uma estrutura conceitualmente sólida que
leva em consideração todas as variações posśıveis dentro de um intervalo, redefinindo-o
como uma função linear de valor real. Avanços teóricos significativos foram alcançados
pela combinação da CIA com equações diferenciais ordinárias, particularmente na teoria
dos autovalores intervalares e na estabilidade das equações diferenciais lineares intervala-
res, conforme demonstrado por (MIZUKOSHI; LODWICK, 2021). Em um estudo de um
modelo Suscet́ıvel-Infectado-Recuperado, (CECCONELLO; MIZUKOSHI; LODWICK,
2021) utilizaram a CIA para contribuir com a análise da dinâmica da COVID. Também
utilizando a CIA, (MIZUKOSHI; JACQUEMARD; LODWICK, 2020) exploraram a clas-
sificação de singularidades hiperbólicas para equações diferenciais lineares intervalares
tridimensionais.
A inovação desenvolvida aqui é a representação deste tipo de número fuzzy intervalar por
meio de funções restritas e sua aplicação à otimização em um PPL por meio do método da
penalidade exata em sua resolução, o que permite estudar a função objetivo e as soluções
do PPL de forma possibiĺıstica. O mesmo PPL também é estudado a partir dos extremos
dos α-ńıveis dos números fuzzy intervalares. Vários PPL obtidos para esses extremos
são resolvidos e conclui-se que tanto a solução ótima quanto o valor ótimo podem ser
obtidos usando o prinćıpio de extensão de Zadeh aplicado ao número fuzzy intervalar. O
estudo da possibilidade e da necessidade em um número fuzzy intervalar permite o uso
deste conceito como um método de defuzificação das soluções obtidas pelo método dos
α-ńıveis. Outro método utilizado na defuzzificação é o centroide, que é um dos métodos
mais importantes para a redução de conjuntos fuzzy do tipo 2 intervalares, sendo também
uma medida de expectativa popular apresentada em (FIGUEROA-GARCÍA; ROMÁN-
FLORES; CHALCO-CANO, 2022). Uma análise dos resultados obtidos na resolução do
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O perfil deste estudo é:

– Falta de informação sobre os valores dos parâmetros de entrada que são conjun-
tos fuzzy intervalares, normalmente gerados por conhecimento especializado ou su-
posições adequadas;

– Conjuntos fuzzy intervalares são traduzidos em números fuzzy intervalares;

– Números fuzzy intervalares são representados como funções de intervalos restritos;

– Funções de intervalo restrito associadas a conjuntos fuzzy intervalares são aplicados
na otimização possibiĺıstica de tal forma que o risco associado à tomada de uma
determinada decisão faça parte da solução resultante;

Observe que a abordagem da aplicação de valor intervalar usada aqui é distinta de
(LODWICK; JAMISON, 2018) em que conjuntos fuzzy intervalares geram dois pares
de distribuições envolventes e não uma. Esta pesquisa foi publicada em (link)

Este trabalho está organizado da seguinte maneira:

No caṕıtulo 1 é apresentada a fundamentação teórica necessária para o desenvolvimento dos
estudos realizados neste trabalho.

No caṕıtulo 2 é exibido o detalhamento de uma abordagem fuzzy para o modelo matemático
de um circuito elétrico e o método de programação linear fuzzy para o modelo com os resul-
tados numéricos correspondentes. Três casos são analisados, considerando os componentes de
programação linear reais, números fuzzy do tipo 1 e conjunto fuzzy do tipo 2. O primeiro caso
é considerado para a validação dos outros casos. A solução ótima na programação linear fuzzy
do tipo 1 é obtida através de uma função de defuzzificação de ordem linear total. O teorema de
representação dos α-ńıveis é o método para obter a solução ótima do tipo 2. Para cada α-ńıvel é
resolvido um problema de programação linear fuzzy do tipo 1 utilizando a metodologia anterior.
Simulações numéricas ilustram a metodologia proposta para um caso particular.

No caṕıtulo 3 são expostos um algoritmo modificado para Algoritmo Primal – Afim (APA)
que utiliza a álgebra dos números fuzzy e a aplicação deste algoritmo modificado em três PPL,
comparando os resultados obtidos entre o Algoritmo Primal – Afim e o Algoritmo Primal –
Afim modificado, denominado Algoritmo Primal – Afim Fuzzy (APAF). Os resultados obtidos
pelo APAF são melhores a cada iteração e o APAF necessita de um número menor de iterações
para se alcançar o valor ótimo em comparação com o APA, considerando o erro absoluto.

No caṕıtulo 4 são apresentados os conjuntos fuzzy intervalares junto com sua nova repre-
sentação, intervalos fuzzy generalizados, de forma que os modelos de otimização possibiĺısticos
sejam resolvidos com intervalos fuzzy generalizados resultando em mais informações sobre o
risco associado às ações propostas que podem ser tomadas com base em uma estratégia de
solução. Apresenta-se um caso geral de otimização com vários parâmetros sendo números fuzzy
intervalares e uma aplicação de uma dieta suplementar para um indiv́ıduo diagnosticado com
deficiência nutricional, com quantidades variáveis de nutrientes em relação aos seus alimentos
preferidos, o que é descrito matematicamente por um número fuzzy intervalar. A resolução do
mesmo problema é realizada pelo método dos α-ńıveis e os resultados obtidos são comparados.

As considerações finais são inseridas no caṕıtulo 5.
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Caṕıtulo 1

Fundamentação Teórica

1.1 Conjuntos Fuzzy do tipo 1

Nesta seção, estão resumidos os conceitos relevantes de conjuntos fuzzy do tipo 1 (BELLMAN;
ZADEH, 1973).

Definição 1.1. Dado um conjunto universo, X, o conjunto

A = {(x, µA(x)), x ∈ X},

em que µA : X → [0, 1] é uma função, é um conjunto fuzzy do tipo 1 sobre X, correspondente
à função de pertinência µA.

O conjunto de todos os conjuntos fuzzy do tipo 1 é denotado por F (X).

Figura 1.1: Conjunto fuzzy A.

1.2 Nı́veis de um Conjunto Fuzzy

Definição 1.2. Sejam A um conjunto fuzzy e α ∈ (0, 1]. Define-se como α-ńıvel de A o
conjunto

[A]α = {x ∈ X | µA(x) ≥ α}.

Definição 1.3. Suporte de um conjunto fuzzy A são todos os elementos de X que têm grau de
pertinência diferente de zero em A e denota-se por supp(A).
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supp(A)= {x ∈ X | µA(x) > 0}.
Assim, o ńıvel zero de um conjunto fuzzy A é definido da seguinte forma.

Definição 1.4. O ńıvel zero de um conjunto fuzzy A do universo X, em que X é um espaço
topológico, é o fecho topológico do suporte de A, isto é,

[A]0 = supp(A).

Figura 1.2: [A]0.4 = [0.67, 1.33] e supp(A) = [0, 2].

Na Figura 1.1, tem-se o conjunto fuzzy A = {(x, µA(x)), x ∈ X}, em que X = R e µA(x) =
−1
2
+ 1

1+(x−1)2
e na Figura 1.2 são apresentados [A]α = [0.67, 1.33], α = 0.4 e supp(A) = [0, 2].

Na Figura 1.3, tem-se o conjunto fuzzy A = {(x, µA(x)), x ∈ X}, em que X = R e µA(x) =
sen( 1

x
), x ≥ 0.32. Nesse caso, supp(A) = [0.32,+∞).

Figura 1.3: Um conjunto fuzzy A.

Qualquer conjunto fuzzy pode ser considerado como uma famı́lia de conjuntos fuzzy. Essa é
a essência de um prinćıpio de identidade conhecido como teorema da representação. O teorema
da representação afirma que qualquer conjunto fuzzy A pode ser decomposto em uma série de
seus α−ńıveis (PEDRYCZ; GOMIDE, 1998).

1.3 Prinćıpio de Extensão de Zadeh

Essencialmente, o Prinćıpio de Extensão de Zadeh é utilizado para obter a imagem de conjuntos
fuzzy através de uma função clássica.
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Figura 1.5: Um número fuzzy do tipo 1.

Neste estudo, os números reais são considerados números fuzzy definidos como singleton de
tipo 1, considerando a função de pertinência

µr(x) =

{
1 se x = r
0, se x ̸= r,

conhecida como a função caracteŕıstica do conjunto {r}. Denota-se este número fuzzy por r
(Figura 1.6).

Figura 1.6: Um número fuzzy singleton do tipo 1.

1.4.1 Números Fuzzy Triangulares

Definição 1.7. Os números fuzzy triangulares são definidos pela função de pertinência

µA(x) =





x− a

m− a
, se x ∈ [a,m]

b− x

b−m
, se x ∈ [m, b]

0, demais casos,

(1.2)

e denotados por A = (a,m, b) (Figura 1.7).
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Figura 1.7: Número fuzzy triangular A = (a,m, b).

Os α-ńıveis do número fuzzy triangular A = (a,m, b) são dados por

[A]α = [(m− a)α + a, (m− b)α + b].

1.4.2 Números Fuzzy Trapezoidais

Definição 1.8. Os números fuzzy trapezoidais são definidos pela função de pertinência

µA(x) =





x− a

m− a
, se x ∈ [a,m]

1, se x ∈ [m,n]

b− x

b− n
, se x ∈ [n, b]

0, demais casos,

(1.3)

e denotados por A = (a,m, n, b) (Figura 1.8). O intervalo [m,n] é conhecido como o núcleo do
número fuzzy trapezoidal A .

Os α-ńıveis do número fuzzy trapezoidal A = (a,m, n, b) são dados por

[A]α = [(m− a)α + a, (n− b)α + b].
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Figura 1.8: Número fuzzy trapezoidal A = (a,m, n, b).

1.4.3 Números Fuzzy em Forma de Sino

Definição 1.9. Os números fuzzy em forma de sino são definidos pela função de pertinência
Gaussiana limitada

µG(x) =





e

−(x−m)2

σ2 , se x ∈ [m− δ,m+ δ]

0, caso contrário,

(1.4)

e denotados por G = (m, σ, δ) (Figura 1.9).

Os α-ńıveis do número fuzzy em forma de sino G = (m, σ, δ) são dados por

[A]α =





[
m− σ

√
ln(α−1),m+ σ

√
ln(α−1)

]
, se α ≥ e

−



δ

σ2




[m− δ,m+ δ] , caso contrário.
.

Figura 1.9: Número fuzzy em forma de sino G = (m, σ, δ).
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1.5 Operações Aritméticas com Números Fuzzy

Definição 1.10. Sejam A e B dois números fuzzy, e λ um número real (BARROS; BASSA-
NEZI, 2021).

(a) A soma entre os números fuzzy A e B é o número fuzzy A+B, cuja função de pertinência
é

µA+B(z) = sup
(x,y)∈ϕ(z)

min(µA(x), µB(y)),

em que ϕ(z) = {(x, y) | x+ y = z}.

(b) A diferença entre os números fuzzy A e B é o número fuzzy A − B, cuja função de
pertinência é

µA−B(z) = sup
(x,y)∈ϕ(z)

min(µA(x), µB(y)),

em que ϕ(z) = {(x, y) | x− y = z}.

(c) A multiplicação entre os números fuzzy A e B é o número fuzzy A · B, cuja função de
pertinência é

µA·B(z) = sup
(x,y)∈ϕ(z)

min(µA(x), µB(y)),

em que ϕ(z) = {(x, y) | xy = z}.

(d) A divisão do número fuzzy A pelo número fuzzy B, se 0 /∈ supp(B) é o número fuzzy
A/B, cuja função de pertinência é

µA/B(z) = sup
(x,y)∈ϕ(z)

min(µA(x), µB(y)),

em que ϕ(z) = {(x, y) | x/y = z}.

(e) A multiplicação de um escalar λ pelo número fuzzy A é o número fuzzy λA, cuja função
de pertinência é

µλA(z) =

{
µA(λ

−1z), se λ ̸= 0

χ{0}(z), se λ = 0
,

em que χ{0} é a função caracteŕıstica de {0}.

Uma maneira alternativa, e mais prática de se fazer estas operações é por meio dos α-ńıveis
dos conjuntos fuzzy envolvidos, de acordo com a proposição a seguir.

Proposição 1.1. Sejam A e B números fuzzy com α-ńıveis dados, respectivamente, por [A]α =
[aα1 , a

α
2 ] e [B]α = [bα1 , b

α
2 ] (BARROS; BASSANEZI, 2021). Então valem as seguintes proprieda-

des:

(a) A soma entre A e B é o número fuzzy A+B cujos α-ńıveis são

[A+B]α = [A]α + [B]α = [aα1 + bα1 , a
α
2 + bα2 ].

(b) A diferença entre A e B é o número fuzzy A− B cujos α-ńıveis são

[A− B]α = [A]α − [B]α = [aα1 − bα2 , a
α
2 − bα1 ].
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(c) A multiplicação de A por B é o número fuzzy A · B cujos α-ńıveis são

[A · B]α = [A]α · [B]α = [aα1 , a
α
2 ] · [bα1 , bα2 ] = [minP,maxP ],

em que P = {aα1 · bα1 , aα1 · bα2 , aα2 · bα1 , aα2 · bα2}.

(d) A divisão entre A por B, se 0 /∈ supp(B), é o número fuzzy A/B cujos α-ńıveis são

[
A

B

]α
=

[A]α

[B]α
= [aα1 , a

α
2 ] ·
[
1

bα2
,
1

bα1

]
.

(e) A multiplicação de λ por A é o número fuzzy λA cujos α-ńıveis são

[λA]α = λ[A]α =

{
[λaα1 , λa

α
2 ], se λ ≥ 0

[λaα2 , λa
α
1 ], se λ < 0

.

1.5.1 Operações com números fuzzy triangulares

Para números fuzzy triangulares Ai = (ai,mi, bi), i = 1, 2,, tem-se da Definição 1.10 as seguintes
operações lineares:

1. A1 + A2 = (a1 + a2,m1 +m2, b1 + b2);

2. se λ ∈ R+ então λ · A1 = λ · (a1,m1, b1) = (λ · a1, λ ·m1, λ · b1);

3. se λ ∈ R− então λ · A1 = λ · (a1,m1, b1) = (λ · b1, λ ·m1, λ · a1).

Exemplo 1.1. Neste exemplo, a soma dos números triangulares A = (1, 2, 4) e B = (3, 4, 5) é
determinada utilizando-se o item(a) da Definição 1.10. A Figura 1.10 apresenta graficamente
a operação realizada.

Figura 1.10: Soma dos números fuzzy A e B.
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Considerando os α-ńıveis [Ai]
α = [aαi1, a

α
i2] dos números fuzzy triangulares Ai = (ai,mi, bi),

i = 1, 2, cuja forma simplificada é [Ai]
α = [(mi−ai)α+ai, (mi−bi)α+bi], tem-se da Proposição

1.1, as seguintes propriedades:

1. [A1 ± A2]
α = [aα11 ± aα21, a

α
12 ± aα22];

2. [λA1]
α = λ[A1]

α = [λaα11, λa
α
12], se λ ≥ 0; [λA1]

α = λ[A1]
α = [λaα12, λa

α
11], se λ < 0;

3. [A1A2]
α = [A1]

α[A2]
α = [minP,maxP ], em que

P = {aα11aα21, aα11aα22, aα12aα21, aα12aα22}.
Logo,

[A1A2]
α = ((m1 − a1)(m2 − a2)α

2 + (a1(m2 − a2) + a2(m1 − a1)α) + a1a2,

(m1 − b1)(m2 − b2)α
2 + (b1(m2 − b2) + b2(m1 − b1)α) + b1b2). (1.5)

Exemplo 1.2. Neste exemplo, as operações com os números triangulares A = (2, 3, 4) e B =
(3, 4, 5) são determinadas utilizando-se a Proposição 1.1.

Tem-se que

[A]α = [α + 2, 4− α] e [B]α = [α + 3, 5− α].

Então, pela Proposição 1.1, obtém-se

(a) [A+B]α = [2α + 5, 9− 2α].

Figura 1.11: Soma dos números fuzzy A e B.

(b) [A− B]α = [2α− 3, 1− 2α].

(c) [A · B]α = [α + 2, 4− α] · [α + 3, 5− α] = [minP,maxP ], em que

P = {(α + 2)(α + 3), (α + 2)(5− α), (4− α)(α + 3), (4− α)(5− α)}.
Então, minP = (α + 2)(α + 3) e maxP = (4− α)(5− α). Assim,

[A · B]α = [(α + 2)(α + 3), (4− α)(5− α)] = [α2 + 5α + 6, α2 − 9α + 20].
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Figura 1.12: Diferença dos números fuzzy A e B.

Figura 1.13: Produto dos números fuzzy A e B.

(d)

[
A

B

]α
= [α + 2, 4− α] ·

[
1

5− α
,

1

α + 3

]
. Assim,

[
A

B

]α
= [(α + 2)/(5− α), (4− α)/(α + 3)].

(e) [3A]α = 3[A]α = [3α + 6, 12− 3α].

É fácil verificar que a soma (Figura 1.11), a diferença (Figura1.12) e a multiplicação por
escalar de números fuzzy triangulares resultam em números fuzzy triangulares. No entanto,
o mesmo pode não acontecer com a multiplicação (Figura 1.13) e a divisão de números fuzzy
triangulares (Figura 1.14).
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Figura 1.14: Divisão dos números fuzzy A e B.

1.5.2 Operações com números fuzzy trapezoidais

Para números fuzzy trapezoidais Ai = (ai,mi, ni, bi), ai,mi, ni, bi ∈ R, i = 1, 2, tem-se da
Definição 1.10 as seguintes operações lineares:

1. A1 + A2 = (a1 + a2,m1 +m2, n1 + n2, b1 + b2);

2. se λ ∈ R+ então λ · A1 = λ · (a1,m1, n1, b1) = (λ · a1, λ ·m1, λ · n1, λ · b1);

3. se λ ∈ R− então λ · A1 = λ · (a1,m1, b1) = (λ · b1, λ · n1, λ ·m1, λ · a1).

Com estas definições, o conjunto dos números fuzzy trapezoidais é um subespaço vetorial de
F (R), que é denotado por Trap(R). Os subespaços vetoriais de Trap(R) dados pelos números
fuzzy trapezoidais A = (a, a, n, b), a, n, b ∈ R (Figura 1.15) e A = (a,m, b, b), a,m, b ∈ R (Figura
1.16) são denotados, respectivamente, por TrapD(R) e TrapE(R).

Figura 1.15: Número fuzzy trapezoidal A = (a, a, n, b).
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Figura 1.16: Número fuzzy trapezoidal A = (a,m, b, b).

Os conceitos básicos de números fuzzy foram exibidos, em particular, números fuzzy trian-
gulares, trapezoidais e em forma de sino, cujos detalhes podem ser encontrados em (BARROS;
BASSANEZI; LODWICK, 2017).

Na próxima seção, serão considerados métodos para se obter resultados numéricos a partir
das informações representadas pelos conjuntos fuzzy, de modo a facilitar a análise e a com-
paração entre as posśıveis soluções dos problemas estudados.

1.5.3 Defuzzificação

Na teoria dos conjuntos fuzzy pode-se dizer que a defuzzificação é um processo de se representar
um conjunto fuzzy por um número real. Em sistemas fuzzy, em geral a sáıda é um conjunto
fuzzy. Assim, deve-se escolher um método para defuzzificar a sáıda e obter um número real que
a represente. Em outras palavras, uma defuzzificação é uma função cujo domı́nio é o subespaço
vetorial dos números fuzzy sobre o conjunto dos números reais. A seguir, serão relacionados
alguns métodos de defuzzificação.

• Centro de gravidade
Este método de defuzzificação é semelhante à média ponderada para distribuição de dados,
com a diferença que os pesos são os valores µA(xi) que indicam o grau de compatibilidade
do valor xi com o conceito modelado pelo conjunto fuzzy A (BARROS; BASSANEZI;
LODWICK, 2017).

Para um domı́nio discreto tem-se

C(A) =

n∑
i=1

xiµA(xi)

n∑
i=1

µA(xi)
, (1.6)

em que xi pertence ao domı́nio de µA.
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Para um domı́nio cont́ınuo tem-se

C(A) =

∫
R
xµA(x)dx∫

R
µA(x)dx

, (1.7)

em que R é a região de integração.

• Largest of Maximum (LOM)
Este método consiste em escolher o maior dos pontos (xi), i = 1, . . . , n do universo de
discurso com mais alto grau de pertinência, dado por (LEEKWIJCK; KERRE, 1999)

LOM(A) = max(xi) tal que µA(xi) = µmax. (1.8)

• Função de defuzzificação associada à ordem
No Caṕıtulo 2 utiliza-se uma nova ordem total em um subespaço vetorial particular de
Trap(R), composto pelos números fuzzy

{A = (a, a, n, b), a, n, b ∈ R}. (1.9)

O conjunto descrito em (1.9) é denotado por Trap D(R). É fácil provar que o conjunto
Trap D(R) é, de fato, um subespaço de Trap(R).

Seja A ∈ Trap D(R), a nova relação de ordem total é constrúıda através da chamada
função de defuzzificação associada à ordem (ADAMO, 1980), dada por

gγ(A) = b+ γ(n− b), γ ∈ [0, 1], (1.10)

em que γ é um parâmetro no intervalo [0, 1] definido como parâmetro de defuzzificação
de g. Definindo uma relação de equivalência em Trap D(R) como

A é equivalente a B se, e somente se g(A) = g(B), para todos A, B ∈ Trap D(R), (1.11)

e a relação de ordem

A está relacionado a B se, e somente se g(A) > g(B), para todos A, B ∈ Trap D(R), (1.12)

é claro que esta relação é uma ordem total (1.12) sobre Trap D(R), que juntamente com a
relação de equivalência (1.11), determina uma ordem total neste conjunto, denotada por
“⪰”. A ordem total (1.12) é usada na no Caṕıtulo 2 para transformar um problema de
programação linear fuzzy em um PPL clássico para obter uma solução fuzzy do modelo
(2.5).

Além disso, várias propostas para uma relação de ordem, não necessariamente uma ordem
total, sobre o conjunto Trap(R) podem ser encontradas na literatura (ADAMO, 1980; DUBOIS;
PRADE, 1980; PRADE; YAGER; DUBOIS, 1993).

1.6 Conjuntos Fuzzy Intervalares

Conjuntos Fuzzy Intervalares (CFI) são extensões de conjuntos fuzzy (CF). As referências
(HAMRAWI, 2011) e (HAMRAWI H.; JOHN, 2017) apresentam a teoria básica dos CFI.
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Definição 1.16. Um intervalo fuzzy generalizado é um número fuzzy intervalar, exceto o

core(Â) = {x | Â(x) = [1, 1]}

sendo A(x) = 1 e A(x) = 1, não precisa ser um singleton, mas pode ser um intervalo de largura
diferente de zero.

Na seção 1.8 será introduzido o conceito de aritmética intervalar que será utilizada no estudo
de conjuntos fuzzy intervalares.

1.7 Conjuntos Fuzzy do tipo 2

Definição 1.17. Um conjunto fuzzy do tipo 2, Ã, sobre X é o conjunto

Ã = {((x, u), µÃ(x, u)) : (x, u) ∈ X × [0, 1]},

em que µÃ : X × [0, 1] → [0, 1] é a pertinência associada do conjunto fuzzy Ã.

Exemplo 1.3. A figura 1.18 apresenta um exemplo de um conjunto fuzzy do tipo 2 discreto
dado por

Ã = {((−2; 0, 1); 0, 4), ((−2; 0, 5); 0, 8), ((−2; 0, 9); 1),
((−2, 5; 0, 3); 0, 8), ((−2, 5; 0, 5); 1), ((−2, 5; 0, 7); 0, 4), ((−2, 5; 1); 0, 2),
((4, 5; 0, 1); 2), ((4, 5; 0, 4); 1), ((4, 5; 0, 9); 0, 7)}

Figura 1.18: Conjunto fuzzy do tipo 2 discreto.
Fonte: (JAFELICE; BERTONE, 2020).

Definição 1.18. A função de pertinência secundária, µÃ(x)(u), de x é a função de pertinência

do conjunto fuzzy do tipo 1, Ã(x), que é obtido pelo corte vertical com o plano paralelo ao eixo

u passando por x. O suporte de Ã(x) é denotado por Ix, isto é,

Ix = {u : u ∈ [0, 1], µÃ(x, u) > 0}. (1.13)

Note que µÃ(x)(u) é uma função de pertinência, pois µÃ(x)(u) ∈ [0, 1].
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A Figura 1.19 apresenta o conjunto fuzzy do tipo 2 discreto, Ã, da Figura 1.18 com o plano
paralelo ao eixo u no ponto x = 2, 5. O conjunto fuzzy do tipo 1, Ã(2, 5), é dado por

Ã(2, 5) = {(0, 3; 0, 8), (0, 5; 1), (0, 7; 0, 4), (1; 0, 2)}.

Figura 1.19: O conjunto fuzzy do tipo 2, Ã, com o plano x = 2, 5 em azul.
Fonte: (JAFELICE; BERTONE, 2020).

Da definição 1.18, o conjunto Ix2
para o conjunto fuzzy do tipo 2, Ã, da Figura 1.19 é dado

por
Ix2

= {0, 3; 0, 5; 0, 7; 1}.
Definição 1.19. O conjunto, Jx, dos pares (x, u) de função de pertinência positiva é chamado
de função de pertinência primária de x, isto é,

Jx = {(x, u) : u ∈ [0, 1], µÃ(x, u) > 0}. (1.14)

Note que Jx = {x} × Ix. Como Ix ⊂ R, se for conexo, será um intervalo.

Da definição 1.19, o conjunto Jx2
do conjunto fuzzy do tipo 2 discreto Ã, da Figura 1.19, é

dado por

Jx2
= {(2, 5; 0, 3), (2, 5; 0, 5), (2, 5; 0, 7), (2, 5; 1)}

Definição 1.20. O Domı́nio de Incerteza de Ã, DOU(Ã) é o suporte de Ã, isto é,

DOU(Ã) = {(x, u) ∈ X × [0, 1] : µÃ(x, u) > 0}

O DOU(Ã) é o conjunto dos pontos destacados na Figura 1.18 com cor amarela no plano
xOu. Note que, em geral,

DOU(Ã) =
⋃

x∈X

Jx

.

Definição 1.21. As funções de pertinência superior e inferior, denotadas por µÃ(x), µÃ
(x),

x ∈ X, são, respectivamente, definidas por

µÃ(x) = sup{u : u ∈ [0, 1], µÃ(x, u) > 0} = sup Ix, (1.15)

µ
Ã
(x) = inf{u : u ∈ [0, 1], µÃ(x, u) > 0} = inf Ix. (1.16)

em que sup Ix é o supremo do conjunto Ix e inf Ix é o ı́nfimo do conjunto Ix.
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Um conjunto fuzzy do tipo 2 que verifica µÃ(x, u) = 1 para todo (x, u) ∈ X×[0, 1] é chamado
de conjunto fuzzy intervalar do tipo 2. Quando esses tipos de conjunto tem µ

Ã
(x) = µÃ(x)

para todos x ∈ X, são denominados singleton do tipo 2.

Definição 1.22. A Pegada de Incerteza de Ã, FOU(Ã) é o conjunto

FOU(Ã) = {(x, u) : x ∈ X, u ∈ [µ
Ã
(x), µÃ(x)]}

em que µÃ e µ
Ã
(x) e estão definidas em (1.15) e (1.16), respectivamente.

Observe que se Ix = [µ
Ã
(x), µÃ(x)], então FOU(Ã) = DOU(Ã).

A Figura 1.21 apresenta um conjunto fuzzy cont́ınuo do tipo 2, B̃. O objetivo de apresentar
este conjunto espećıfico é explorar seus componentes, em particular o FOU(B̃).

Figura 1.20: Superf́ıcie que gera o conjunto fuzzy do tipo 2, B̃, da Figura 1.21.
Fonte: (JAFELICE; BERTONE, 2020).

Exemplo 1.4. O gráfico da superf́ıcie dada pela equação f(x, u) = −ln(x2+u2) é apresentado
na Figura 1.20. Na Figura 1.21, tem-se o gráfico da função de pertinência do conjunto fuzzy
do tipo 2, B̃, dado por

z = µB̃(x, u) = −ln(x2 + u2), 0, 36 ≤ x2 + u2 ≤ 1, u ∈ [0, 1], 0 ≤ z ≤ 1.

Alguns componentes de B̃ a serem destacados são:

• A função de pertinência secundária para x = 0, 3 (Figura 1.21) é dado por

µB̃(0, 3) = −ln((0, 3)2 + u2).

• Para x = 0, 3, tem-se que Ix = [0, 51, 0, 95].

• A função de pertinência primária Jx para x = 0, 3 é o conjunto

Jx = {(0, 3 , u) : u ∈ Ix}.

• O DOU(B̃), que é o FOU(B̃), pois B̃ é um conjunto fuzzy do tipo 2 cont́ınuo, é apre-
sentado na Figura 1.22.
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Figura 1.21: Conjunto fuzzy do tipo 2, B̃.
Fonte: (JAFELICE; BERTONE, 2020).

Figura 1.22: FOU do conjunto fuzzy do tipo 2, B̃.
Fonte: (JAFELICE; BERTONE, 2020).

Definição 1.23. Dado um conjunto fuzzy do tipo 2, Ã, se todos os valores de µÃ(x, u) são

unitários, ou seja, µÃ(x, u) = 1 para todos (x, u) ∈ X × [0, 1], Ã é chamado de conjunto fuzzy
do tipo 2 intervalar.

Um conjunto fuzzy triangular do tipo 2 intervalar, Ã, é apresentado na Figura 1.23.
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Figura 1.23: Conjunto fuzzy triangular do tipo 2 intervalar, Ã.

1.8 Aritmética Intervalar

Nesta seção, são apresentados alguns conceitos da aritmética intervalar. Primeiramente, é
introduzida a aritmética intervalar padrão proposta por (MOORE, 1969), posteriormente é
apresentada a aritmética intervalar restrita (LODWICK, 1999) a qual fornece as ferramentas
algébricas utilizadas em muitas pesquisas atuais.

Considere

I(R) = {o conjunto de intervalos fechados e limitados da reta real}. (1.17)

1.8.1 Aritmética Intervalar Padrão

Segundo (BARROS; BASSANEZI, 2021) considere λ um número real e x e y intervalos fechados
tais que:

x = [x, x̄] e y =
[
y, ȳ

]
que pertencem a I(R).

Definição 1.24. As operações da aritmética intervalar padrão (SIA) podem ser definidas como:

(a) A soma entre x e y é o intervalo

x+ y =
[
x+ y, x̄+ ȳ

]
.

(b) A diferença entre x e y é o intervalo

x− y =
[
x− ȳ, x̄− y

]
.
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(c) A multiplicação de x por um escalar λ é o intervalo

λ · x =





[λx, λx̄] , se λ ≥ 0

[λx̄, λx] , se λ < 0
.

(d) A multiplicação de x por y é o intervalo

x · y = [min(P ),max(P )] ,

em que P =
[
x · y, x · ȳ, x̄ · ȳ, x̄ · y

]
.

(e) A divisão de x por y, se y ̸= 0, é o intervalo

x/y = [x, x̄] ·
[
1

ȳ
,
1

y

]
.

As operações aritméticas para intervalos estendem as respectivas operações para números reais.
Observe que cada número real pode ser visto como um intervalo fechado com extremos iguais.
Note que o espaço intervalar, I(R), com essas operações não possui a estrutura de espaço
vetorial, pois a negação de A não é o inverso aditivo de A; i.é., A + (−1)A ̸= [0, 0], a não
ser que A seja determińıstico; i.e., A = [a, a], assim a subtração não está bem definida. Uma
primeira implicação desde fato é que a simplificação aditiva não é válida, A+ C = B + C não
implica que A = B ou (A+B)− B = A.

Assim, Lodwick (1999) procurando definir uma álgebra para o espaço intervalar, definiu a
noção de aritmética intervalar, chamada de aritmética intervalar restrita a qual é detalhada na
próxima seção.

1.8.2 Aritmética Intervalar Restrita

Considerando (MIZUKOSHI; JACQUEMARD; LODWICK, 2020) é apresentada a seguinte de-
finição e também são definidas as operações da aritmética intervalar restrita (CIA).

Definição 1.25. Intervalo Restrito. Um intervalo [x, x̄] pode ser representado como uma
função linear

x(θ) = x+ (x̄− x)θ,

em que 0 ≤ θ ≤ 1.

O espaço intervalar que a CIA representa são os intervalos que pertencem ao espaço de
funções lineares, com inclinação não negativa, sobre um domı́nio compacto.

Definição 1.26. Sejam
x(θ1) = x+ (x̄− x)θ1,

y(θ2) = y + (ȳ − y)θ2,

em que 0 ≤ θ1, θ2 ≤ 1. As operações associadas aos intervalos restritos são

x(θ1) ∗ y(θ2), com ∗ ∈ {+,−,×, /}, 0 ≤ θ1, θ2 ≤ 1.

Uma solução intervalar pode ser obtida calculando o máximo e mı́nimo da seguinte forma:
[

min
0≤θ1,θ2≤1

{x(θ1) ∗ y(θ2)} , max
0≤θ1,θ2≤1

{x(θ1) ∗ y(θ2)}
]
. (1.18)
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A ideia desta aritmética é operar em todos os ńıveis, de forma que para o cálculo de uma
determinada operação considera-se todas as combinações posśıveis entre os intervalos. A CIA é
uma extensão da aritmética intervalar usual, apresentando, portanto, as mesmas propriedades
que a aritmética intervalar usual. Contudo, essa nova aritmética possui um inverso aditivo,
multiplicativo e detém as leis de distribuição. Logo, a estrutura algébrica da aritmética inter-
valar restrita é similar à estrutura algébrica da aritmética real. As operações aritméticas via
CIA são obtidas a partir de um problema de otimização global restrita. Neste contexto, os
intervalos são transformados em funções lineares, com inclinação não negativa definida sobre
o domı́nio compacto [0, 1]. Todas as operações são realizadas neste espaço e para voltar ao
espaço dos intervalos, realizam-se dois problemas de otimização global com restrição simples:
a minimização e a maximização.

A seguir, alguns exemplos que permitem evidenciar algumas diferenças existentes entre os
dois tipos de aritméticas. Considere [x] = [x, x̄] com uma distribuição uniforme associada.
Assim,

x+ x̄

2
é o valor esperado de [x],

x̄− x

2
é a média da largura da incerteza de [x].

Exemplo 1.5. Sejam [x] = [−2,−1] , [y] = [1, 2] e [z] = [−4,−1] . Calcule

[x] [y] + [x] [z] . (1.19)

Suponha que cada uma das variáveis tem associada uma distribuição uniforme, o resultado do
cálculo com o valor esperado é,

−3

2
.
3

2
+

−3

2
.
−5

2
=

−9

4
+

15

4
=

3

2
.

Neste cálculo encontra-se o valor esperado de cada variável primeiro e depois realizam-se
as operações. Considerando essa mesma operação utilizando a aritmética intervalar padrão,
tem-se

[−2,−1] [1, 2] + [−2,−1] [−4,−1] = [−4,−1] + [1, 8] = [−3, 7] . (1.20)

Neste caso, o valor esperado é 2 e a média da largura da incerteza é 5 (LODWICK; JAMISON,
2018).

Essa representação carrega a incerteza até o final do cálculo e tem um valor esperado próximo
de nossa noção intuitiva de qual deveria ser a média esperada e contém informações sobre o
risco, modelado pela média da largura.

O cálculo da operação do Exemplo 1.5 utilizando aritmética intervalar restrita é:

f(θ1, θ2, θ3) = (−2 + θ1)(1 + θ2) + (−2 + θ1)(−4 + 3θ3)

= 6− 3θ1 − 2θ2 − 6θ3 + θ1θ2 + 3θ1θ3.

para 0 ≤ θ1, θ2, θ3 ≤ 1. Dáı,
[

min
0≤θ1,θ2,θ3≤1

f(θ1, θ2, θ3), max
0≤θ1,θ2,θ3≤1

f(θ1, θ2, θ3)

]
= [−2, 6] , (1.21)

cujo valor esperado é 2 e a média de largura da incerteza é 4.

O valor esperado (1.21) é o mesmo que (1.20), entretanto, a medida da média da largura de
(1.21) é menor.
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Exemplo 1.7. Neste exemplo é apresentado o número fuzzy intervalar Â, cujo gráfico é mos-
trado na Figura 1.25, e os IFGR A(λAα

), e A(λAα
).

A Função de Pertinência Superior (FPS) e Função de Pertinência Inferior (FPI) de Â são
dadas, respectivamente, por:

A(x) =





0 se x < A− e2, x > A+ d2
1

e2
(x− A+ e2) se A− e2 ≤ x ≤ A

− 1

d2
(x− A− d2) se A < x ≤ A+ d2;

(1.26)

A(x) =





0 se x < A− e2, x > A+ d1
1

e1
(x− A+ e1) se A− e1 ≤ x ≤ A

− 1

d1
(x− A− d1) se A < x ≤ A+ d1,

(1.27)

em que d1 < d2, e1 < e2 e d1, d2, e1, e2 ≥ 0.

Os α-ńıveis do NFI Â são dados por:

Âα = {([e1(α− 1) + A, d1(1− α) + A], [e2(α− 1) + A, d2(1− α) + A]) se 0 ≤ α ≤ 1} . (1.28)

Os IFGR de Âα são:

A(λAα
) = (1− α)((d2 + e2)λAα

− e2) + A; (1.29)

A(λAα
) = (1− α)((d1 + e1)λAα

− e1) + A. (1.30)

1.8.4 Operações Aritméticas para CFI

A aritmética associada a Intervalos Fuzzy Generalizados Restritos que são associados a quais-
quer números fuzzy intervalares do tipo 2 pode ser realizada através de cálculos anaĺıticos ou
numéricos.

Definição 1.28. A aritmética associada aos Intervalos Fuzzy Generalizados Restritos para os
CFI, Â e B̂, é dada por

A(λAα
) ∗B(λBα

) , A(λAα
) ∗B(λBα

) se 0 ≤ α ≤ 1,

em que 0 ≤ λAα
, λAα

≤ 1 e 0 ≤ λBα
, λBα

≤ 1

for ∗ ∈ {+,−,×,∇·}. Se é desejado um resultado intervalar, calculam-se os seguintes mı́nimo
e máximo, [

min
λ
Aα

,λ
Bα

{
A(λAα

) ∗B(λBα
)
}
, max
λ
Aα

,λ
Bα

{
A(λAα

) ∗B(λBα
)
}]

[
min

λAα
,λBα

{
A(λAα

) ∗B(λBα
)
}
, max
λAα

,λBα

{
A(λAα

) ∗B(λBα
)
}]

.
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B(x) =





0 se x < B − s2, x > B + h2

1

s2
(x− B + s2) se B − s2 ≤ x ≤ B

− 1

h2

(x− B − h2) se B < x ≤ B + h2

; (1.33)

B(x) =





0 se x < B − s1, x > B + h1

1

s1
(x− B + s1) se B − s1 ≤ x ≤ B

− 1

h1

(x− B − h1) se B < x ≤ B + h1

(1.34)

em que h1 < h2, s1 < s2 e h1, h2, s1, s2 ≥ 0. Os α-ńıveis dos CFI Â e B̂ são dados por:

Âα = {([e1(α− 1) + A, d1(1− α) + A] , [e2(α− 1) + A, d2(1− α) + A]) se 0 ≤ α ≤ 1} ;
(1.35)

B̂α = {([s1(α− 1) + B, h1(1− α) + B] , [s2(α− 1) + B, h2(1− α) + B]) se 0 ≤ α ≤ 1} .
(1.36)

Os intervalos fuzzy generalizados restritos de Âα e B̂α são:

A(λAα
) = (1− α)((d2 + e2)λAα

− e2) + A; (1.37)

A(λAα
) = (1− α)((d1 + e1)λAα

− e1) + A; (1.38)

B(λBα
) = (1− α)((h2 + s2)λBα

− s2) + B; (1.39)

B(λBα
) = (1− α)((h1 + s1)λBα

− s1) + B. (1.40)

Os intervalos (1.41) e (1.42) para conjuntos previamente definidos são,

[
min

λ
Aα

,λ
Bα

{
A(λAα

) ∗B(λBα
)
}
, max
λ
Aα

,λ
Bα

{
A(λAα

) ∗B(λBα
)
}]

(1.41)

[
min

λAα
,λBα

{
A(λAα

) ∗B(λBα
)
}
, max
λAα

,λBα

{
A(λAα

) ∗B(λBα
)
}]

(1.42)

para ∗ ∈ {+,−,×, .
.
} com 0 ≤ λAα

, λAα
≤ 1, 0 ≤ λBα

, λBα
≤ 1 e 0 ≤ α ≤ 1. As operações

aritméticas são divididas em duas partes, na primeira parte, calcula-se (1.41) e na segunda
parte (1.42).

1. A(λAα
)∗B(λBα

) =
{
(1− α)((d2 + e2)λAα

− e2) + A
}
∗
{
(1− α)((h2 + s2)λBα

− s2) + B
}
,

em cada item mostram-se os cálculos de uma operação ∗.

i. A(λAα
) + B(λBα

) ={
(1− α)((d2 + e2)λAα

− e2) + A
}
+
{
(1− α)((h2 + s2)λBα

− s2) + B
}
=

(1− α)((d2 + e2)λAα
− e2 + (h2 + s2)λBα

− s2) + A+B.

Como A+B é constante, então

• min
λ
Aα

,λ
Bα

{
A(λAα

) + B(λBα
)
}
=

(1− α) min
λ
Aα

,λ
Bα

{
((d2 + e2)λAα

− e2 + (h2 + s2)λBα
− s2)

}
+ A+B.

Os min
λ
Aα

,λ
Bα

{
A(λAα

) + B(λBα
)
}
ocorrem quando λAα

= 0 e λBα
= 0. Portanto,

min
λ
Aα

,λ
Bα

{
A(λAα

) + B(λBα
)
}
= (α− 1)(e2 + s2) + A+B

para cada 0 ≤ α ≤ 1.
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• max
λ
Aα

,λ
Bα

{
A(λAα

) + B(λBα
)
}
=

(1− α) max
λ
Aα

,λ
Bα

{
((d2 + e2)λAα

− e2 + (h2 + s2)λBα
− s2)

}
+ A+B.

Os max
λ
Aα

,λ
Bα

{
A(λAα

) + B(λBα
)
}
ocorrem quando λAα

= 1 e λBα
= 1. Portanto,

max
λ
Aα

,λ
Bα

{
A(λAα

) + B(λBα
)
}
= (1− α)(d2 + h2) + A+B

para cada 0 ≤ α ≤ 1.

ii. A(λAα
)− B(λBα

) = (1− α)((d2 + e2)λAα
− (h2 + s2)λBα

+ (s2 − e2)) + A− B.

Como A− B é constante, então

• min
λ
Aα

,λ
Bα

{
A(λAα

)− B(λBα
)
}
=

(1− α) min
λ
Aα

,λ
Bα

{
((d2 + e2)λAα

− (h2 + s2)λBα
+ s2 − e2)

}
+ A− B.

Os min
λ
Aα

,λ
Bα

{
A(λAα

)− B(λBα
)
}
ocorrem quando λAα

= 0 e λBα
= 1. Portanto,

min
λ
Aα

,λ
Bα

{
A(λAα

)− B(λBα
)
}
= (α− 1)(h2 + e2) + A− B

para cada 0 ≤ α ≤ 1.

• Os max
λ
Aα

,λ
Bα

{
A(λAα

)− B(λBα
)
}
ocorrem quando λAα

= 1 e λBα
= 0. Portanto,

max
λ
Aα

,λ
Bα

{
A(λAα

)− B(λBα
)
}
= (1− α)(d2 + s2) + A− B

para cada 0 ≤ α ≤ 1.

iii. A(λAα
)× B(λBα

) =
(1− α)2(d2 + e2)(h2 + s2)λAα

λBα
+ ((1− α)B(d2 + e2)− s2(1− α)2)λAα

+
((1− α)A(h2 + s2)− e2(1− α)2)λBα

+ (1− α)2e2s2 + (α− 1)(Be2 + As2) + AB.

• Se α = 1, então A(λAα
)× B(λBα

) = AB. Portanto,

min
λ
Aα

,λ
Bα

{
A(λAα

)× B(λBα
)
}
= AB e max

λ
Aα

,λ
Bα

{
A(λAα

)× B(λBα
)
}
= AB.

• Considerando 0 ≤ α < 1, tem-se

(1− α)2(d2 + e2)(h2 + s2) ≥ 0.

Se (1−α)B(d2+ e2)− s2(1−α)2 ≥ 0 e (1−α)A(h2+ s2)− e2(1−α)2 ≥ 0, então

min
λ
Aα

,λ
Bα

{
A(λAα

)× B(λBα
)
}
ocorre quando λAα

= 0 e λBα
= 0 e

max
λ
Aα

,λ
Bα

{
A(λAα

)× B(λBα
)
}
ocorre quando λAα

= 1 e λBα
= 1.

Isto é, min
λ
Aα

,λ
Bα

{
A(λAα

)× B(λBα
)
}
= (1− α)2e2s2 + (α− 1)(Be2 +As2) +AB e

max
λ
Aα

,λ
Bα

{
A(λAα

)× B(λBα
)
}
= (1− α)2(d2 + e2)(h2 + s2) + (1− α)B(d2 + e2)−

s2(1−α)2+(1−α)A(h2+s2)−e2(1−α)2+(1−α)2e2s2+(α−1)(Be2+As2)+AB,

com s2 ≤
(d2 + e2)B

(1− α)
e e2 ≤

(h2 + s2)A

(1− α)
.
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iv. A(λAα
) ·
·
B(λBα

) =
(1− α)((d2 + e2)λAα

− e2) + A

(1− α)((h2 + s2)λBα
− s2) + B

• Se α = 1, então A(λAα
) ·
·
B(λBα

) =
A

B
, com B ̸= 0. Portanto,

min
λ
Aα

,λ
Bα

{
A(λAα

) ·
·
B(λBα

)
}
=

A

B
e max

λ
Aα

,λ
Bα

{
A(λAα

) ·
·
B(λBα

)
}
=

A

B
com B ̸= 0.

• Considerando 0 ≤ α < 1, calcula-se:

- min
λ
Aα

,λ
Bα

{
A(λAα

) ·
·
B(λBα

)
}
. O min

λ
Aα

{
(1− α)((d2 + e2)λAα

− e2) + A
}
ocorre

quando λAα
= 0. Portanto,

max
λ
Aα

{
(1− α)((d2 + e2)λAα

− e2) + A
}
= −e2(1− α) + A.

O max
λ
Bα

{
(1− α)((h2 + s2)λBα

− s2) + B
}
ocorre quando λBα

= 1. Portanto,

min
λ
Bα

{
(1− α)((h2 + s2)λBα

− s2) + B
}
= (1− α)h2 +B.

Se A− e2(1− α) ≥ 0, isto é, e2 ≤
A

1− α
, então

min
λ
Aα

,λ
Bα

{
A(λAα

)
·
·B(λBα

)
}
=

A− e2(1− α)

B + h2(1− α)
.

- max
λ
Aα

,λ
Bα

{
A(λAα

) ·
·
B(λBα

)
}
. O max

λ
Aα

{
(1− α)((d2 + e2)λAα

− e2) + A
}

ocorre

quando λAα
= 1. Portanto,

max
λ
Aα

{
(1− α)((d2 + e2)λAα

− e2) + A
}
= (1− α)d2 + A.

O min
λ
Bα

{
(1− α)((h2 + s2)λBα

− s2) + B
}
ocorre quando λBα

= 0. Portanto,

min
λ
Bα

{
(1− α)((h2 + s2)λBα

− s2) + B
}
= −s2(1− α) + B.

Se −s2(1− α) + B > 0, isto é, s2 <
B

1− α
, então

max
λ
Aα

,λ
Bα

{
A(λAα

)
·
·B(λBα

)
}
=

A+ (1− α)d2
B − s2(1− α)

.

2. A(λAα
)∗B(λBα

) =
{
(1− α)((d1 + e1)λAα

− e1) + A
}
∗
{
(1− α)((h1 + s1)λBα

− s1) + B
}
,

em cada item foram apresentados os resultados de uma operação ∗, os cálculos são reali-
zados de forma semelhante à primeira parte.

i. Para cada 0 ≤ α ≤ 1, tem-se:

min
λAα

,λBα

{
A(λAα

) + B(λBα
)
}
= (α− 1)(e1 + s1) + A+B;

max
λAα

,λBα

{
A(λAα

) + B(λBα
)
}
= (1− α)(d1 + h1) + A+B.

32



ii. Para cada 0 ≤ α ≤ 1, tem-se:

min
λAα

,λBα

{
A(λAα

)− B(λBα
)
}
= (α− 1)(h1 + e1) + A− B;

max
λAα

,λBα

{
A(λAα

)− B(λBα
)
}
= (1− α)(d1 + s1) + A− B.

iii. • Se α = 1, então A(λAα
)× B(λBα

) = AB. Portanto,

min
λAα

,λBα

{
A(λAα

)× B(λBα
)
}
= AB e max

λAα
,λBα

{
A(λAα

)× B(λBα
)
}
= AB.

• Considerando 0 ≤ α < 1, tem-se:

min
λAα

,λBα

{
A(λAα

)× B(λBα
)
}
= (1− α)2e1s1 + (α− 1)(Be1 + As1) + AB e

max
λAα

,λBα

{
A(λAα

)× B(λBα
)
}
=

(1−α)2(d1+ e1)(h1+ s1)+ (1−α)B(d1+ e1)− s1(1−α)2+(1−α)A(h1+ s1)−
e1(1− α)2 + (1− α)2e1s1 + (α− 1)(Be1 + As1) + AB, com

s2 ≤
(d2 + e2)B

(1− α)
e e1 ≤

(h1 + s1)A

(1− α)
.

iv. • Se α = 1, então A(λAα
) ·
·
B(λBα

) =
A

B
com B ̸= 0. Portanto,

min
λAα

,λBα

{
A(λAα

) ·
·
B(λBα

)
}
=

A

B
e max

λAα
,λBα

{
A(λAα

) ·
·
B(λBα

)
}
=

A

B
com B ̸= 0.

• Considerando 0 ≤ α < 1, tem-se:

Se e1 ≤
A

1− α
, então min

λAα
,λBα

{
A(λAα

) ·
·
B(λBα

)
}
=

A− e1(1− α)

B + h1(1− α)
;

Se s1 <
B

1− α
, então max

λAα
,λBα

{
A(λAα

) ·
·
B(λBα

)
}
=

A+ (1− α)d1
B − s1(1− α)

.

Portanto, todos os cálculos das propriedade foram realizados para o exemplo proposto.

A aritmética associada a Intervalos Fuzzy Generalizados Restritos que estão associados a
quaisquer números fuzzy intervalares do tipo 2 pode ser realizado através de cálculos anaĺıticos
ou numéricos.

1.9 Intervalos Fuzzy Generalizados Restritos para Oti-

mização Possibiĺıstica

Esta seção aplica a abordagem encontrada em (LODWICK; JAMISON, 2018) para dados que
são conjuntos fuzzy intervalares. Note que como números fuzzy intervalares geram dois inter-
valos por α-ńıvel, a análise resultante é diferente, embora relacionada.

1.9.1 Possibilidade e Necessidade

A teoria da possibilidade foi proposta pela primeira vez por (ZADEH, 1978) e mais extensi-
vamente articulado em (DUBOIS; PRADE, 1988). Necessidade foi desenvolvida pela primeira
vez por (DUBOIS; PRADE, 1988). A teoria das possibilidades é a teoria da incerteza dedicada
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à modelagem de informações incompletas. É caracterizado pelo uso de duas funções básicas
de conjunto duplo que avaliam respectivamente a possibilidade e a necessidade de eventos. A
teoria das possibilidades está na encruzilhada entre conjuntos fuzzy e probabilidade. Pode-se
dizer que o conceito de possibilidade/necessidade é uma generalização da incerteza.

Sejam X ⊆ R, uma estrutura de subconjuntos de X, σ(X), uma sigma álgebra de X e
A ∈ σ(X). Considere

Pos(A) : X ⊆ R → [0, 1]

e

g : A ⊆ X → [0, 1]. (1.43)

Um conjunto razoável de hipóteses sobre g são as seguintes:

g(∅) = 0 e g(X) = 1 (1.44)

A ⊆ B → g(A) ≤ g(B). (1.45)

Duas consequências de (1.43) e (1.44) são:

g(A ∩ B) ≤ min{g(A), g(B)}; (1.46)

g(A ∪ B) ≥ max{g(A), g(B)}. (1.47)

A incerteza generalizada será chamada de medida de possibilidade e medida de necessidade,
satisfazendo (1.43), (1.44) e (1.45), em que a possibilidade satisfaz (1.47) na igualdade e a
necessidade satisfaz (1.46) na igualdade. Também é interessante considerar as distribuições
associadas às medidas de possibilidade.

Definição 1.29. Uma medida de possibilidade, axiomaticamente definida, é uma função Pos
sobre σX de um conjunto universo X ⊂ R,

Pos(A) : σX → [0, 1]

tal que

Pos(∅) = 0, Pos(X) = 1 (1.48)

e

Pos(A ∪ B) = max{Pos(A), PosB}, A,B ∈ σ(X). (1.49)

Se Ai ∈ σX ,
⋃
i∈I

Ai ∈ σX , então

Pos(
⋃

i∈I

Ai) = sup
i∈I

Pos(Ai). (1.50)

Se é conhecida a possibilidade de um conjunto A, a possibilidade do complemento de A,
Pos(AC), não é definida como 1 − Pos(A), como na probabilidade. A medida de necessidade
de A será definida como o “dual”da possibilidade, em que

Nec(A) = 1− Pos(AC), (1.51)

tal que

Nec(A ∩B) = min{Nec(A), Nec(B)}. (1.52)

34



Definição 1.30. Dada uma medida de possibilidade, Pos, as distribuições de possibilidade e
necessidade associadas a Pos são as funções

pos(x) : X → [0, 1]

tal que
pos(x) = Pos({x}); (1.53)

nec(x) : X → [0, 1]

tal que
nec(x) = Nec({x}). (1.54)

1.9.1.1 Possibilidade e Necessidade de Números Fuzzy

Um conjunto fuzzy A sobre o conjunto dos números reais R, definido por sua função de per-
tinência µÂ : R → [0, 1], é chamada de quantidade fuzzy. Uma quantidade fuzzy de suporte
finito é aquela tal que o suporte é finito. Tem-se que A deve atuar como uma restrição fuzzy
no valor de alguma variável real v, e seguindo (DUBOIS; PRADE, 1987), µA é interpretado
como uma distribuição de possibilidade πv. Ou seja, πv(x) = µA(x) é o grau de possibilidade
da afirmação “x é o valor de v”.

Dado um subconjunto B ⊂ R, o grau de possibilidade da afirmação “B contém o valor de
v”é definido por

Pos(B) = max{µA(x) : x ∈ B}. (1.55)

Pos é uma medida de possibilidade e satisfaz o axioma fundamental 1.48, no caso finito.
Neste trabalho, apenas conjuntos fuzzy normais são considerados, ou seja, existe x ∈ B tal que
µA(x) = 1, de modo que Pos(R) = 1 e Pos(∅) = 0. A necessidade de B,Nec(B) = 1−Pos(BC),
em que BC é o complementar de B, é interpretada como grau de necessidade da declaração “B
contém o valor de v”e satisfaz a propriedade dual, em relação a 1.55,

Nec(B) = min{1− µA(x) : x /∈ B}. (1.56)

1.9.1.2 Determinação de pos(x) e nec(x) relacionadas a um número fuzzy triangu-
lar.

Considere o número fuzzy triangular A = (a, b, c), representado na Figura 1.27.
Para qualquer intervalo Ax0

= (−∞, x0], e xo ∈ X, tem-se que

pos(Ax0
) = max{µA(x), x ∈ Ax0

}

• Para x0 < a, tem-se que pos(Ax0
) = max{0, x ∈ Ax0

} = 0.

• Para a ≤ x0 < b, tem-se que pos(Ax0
) = max{µA(x), x ∈ Ax0

} = µ1(x).

• Para x0 ≥ b, tem-se que pos(Ax0
) = max{µA(x), x ∈ Ax0

} = max{1, x ∈ Ax0
} = 1.

Portanto, para x ∈ X, tem-se que

pos(x) =





0 se x > a
µ1(x) se a ≤ x < b
1 se x ≥ b

, (1.57)

35



Figura 1.27: Número fuzzy triangular A = (a, b, c).

Figura 1.28: Possibilidade pos(x) relacionada ao número fuzzy triangular A = (a, b, c).

cujo gráfico é mostrado na Figura 1.28.
Analogamente, tem-se que

nec(Ax0
) = min{1− µA(x), x ̸∈ Ax0

} = 1−max{µA(x), x ̸∈ Ax0
} = 1−max{µA(x), x > x0}.

• Para x0 ∈ (−∞, b), tem-se que max{µA(x), x > x0} = 1, pois b > x0 e µ(b) = 1. Logo,
nec(Ax0

) = 1− 1 = 0, para x0 ∈ (−∞, b).

• Para b ≤ x0 ≤ c, tem-se que maxµA(x) = µ2(x), para x > x0. Logo, nec(Ax0
) = 1−µ2(x),

para b ≤ x0 ≤ c.

• Para x0 ≥ c, tem-se que maxµA(x) = 0, para x > x0. Logo, nec(Ax0
) = 1− 0 = 1, para

x0 ≥ c.

nec(x) =





0 se x < b
1− µ2(x) se b ≤ x < c

1 se x ≥ c
. (1.58)

cujo gráfico é mostrado na Figura 1.29.
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Figura 1.29: Necessidade nec(x) relacionada ao número fuzzy triangular A = (a, b, c).

1.9.1.3 Possibilidade e Necessidade relacionadas a números fuzzy intervalares tri-
angulares

Dada uma informação parcial sobre a entrada de dados, a incerteza gerada pela informação
parcial é de dois tipos:

1. Um par de distribuições;

2. Quatro distribuições.

Suponha que tenha a restrição

Âx1 + bx2 ≤ c, (1.59)

em que o coeficiente dado pelo número fuzzy intervalar triangular Â vem da falta de informação
sobre o valor preciso do coeficiente de x1, e os valores b, c ∈ R, isto é, eles são precisos. A Figura
1.25 mostra um número fuzzy intervalar triangular para Â.

1. Um par de distribuições é a representação triangular de Â, dada em equações (1.31) e
(1.32).

2. Quatro distribuições são os pares de possibilidade e necessidade relacionadas com o função
de pertinência inferior e as outras são a possibilidade e a necessidade relacionadas com a
função de pertinência superior, que são denotadas por pos(x), pos(x), nec(x), e, nec(x),
e dadas por:

pos(x) =





0 se x < A− e2
1

e2
(x− (A− e2)) se A− e2 ≤ x ≤ A

1 se x > A;

(1.60)

pos(x) =





0 se x < A− e1
1

e1
(x− (A− e1)) se A− e1 ≤ x ≤ A

1 se x > A;

(1.61)

37





Definição 1.31. (veja (LODWICK; JAMISON, 2007)) A média esperada restrita para um par
de possibilidades para um NFI é

EAci(Â)(λAα
, λAα

) =
EAci(Â)(λAα

) + EAci(Â)(λAα
)

2
(1.66)

em que

EAci(Â)(λAα
) =

1

2

∫ 1

0

(
aL(α) + (aR(α)− aL(α))λAα

)
dα e

EAci(Â)(λAα
) =

1

2

∫ 1

0

(
aL(α) + (aR(α)− aL(α))λAα

)
dα

com 0 ≤ λAα
, λAα

≤ 1.

Note que

1. EA(Â) =
1

2

(
EAci(Â)(λAα

, λAα
)|λAα

=λ
Aα

=0 + EAci(Â)(λAα
, λAα

)|λAα
=λ

Aα
=1

)
;

2. mid(EAci(λAα
, λAα

)) = EA(Â).

1.9.2.2 Quatro distribuições

Os intervalos da função de possibilidade/necessidade estão contidos no intervalo [0, 1], tal que
pos(x), nec(x), pos(x), e nec(x) geram os α-ńıveis que incluam a incerteza como segue:

[pos−1(α), nec−1(α)],

[pos−1(α), nec−1(α)].

Definição 1.32. A média esperada de pos(x), nec(x), pos(x) e nec(x), para um NFI Â é

EApn(Â) =
EApn(Â) + EApn(Â)

2
(1.67)

em que

EApn(Â) =
1

2

∫ 1

0

(
pos−1(α) + nec−1(α)

)
dα e EApn(Â) =

1

2

∫ 1

0

(
pos−1(α) + nec−1(α)

)
dα.

Definição 1.33. A média esperada restrita de pos(x), nec(x), pos(x) e nec(x), para um NFI
é

EApnci(Â)(λpn1, λpn2) =
EApnci(Â)(λpn1) + EApnci(Â)(λpn2)

2
(1.68)

em que

EApnci(Â)(λpn1) =
1

2

∫ 1

0

(
pos−1(α) + (nec−1(α)− pos−1(α))λpn1

)
dα e

EApnci(Â)(λpn2) =
1

2

∫ 1

0

(
pos−1(α) + (nec−1(α)− pos−1(α))λpn2

)
dα,

com 0 ≤ λpn1 ≤ 1 e 0 ≤ λpn2 ≤ 1.

Note que

1. EApn(Â) =
1

2

(
EApnci(Â)(λpn1, λpn2)|λpn1=λpn2=0 + EApnci(Â)(λpn1, λpn2)|λpn1=λpn2=1

)
;

2. mid(EApnci(λpn1, λpn2)) = EA(Â);

3. EA(Â) = EApn(Â);

4. EAci(Â)(λAα
, λAα

) e EApnci(Â)(λpn1, λpn2) tem expressões similares.
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1.9.2.3 Centroide para NFI

O centroide é um dos métodos mais importantes para a defuzzificação de conjuntos/números
fuzzy do Tipo 2 e também é uma medida de expectativa popular, mas os métodos dispońıveis
para calculá-lo são iterativos/algoŕıtmicos, o que é uma questão importante para implementações
no mundo real. Neste trabalho, considera-se o método desenvolvido em (FIGUEROA-GARCÍA;
ROMÁN-FLORES; CHALCO-CANO, 2022) para uma classe de números fuzzy do Tipo 2 In-
tervalar, que utiliza formas fechadas não iterativas do centroide e seus limites.

Considerando o número fuzzy intervalar triangular Â dado na Figura 1.25, definem-se as
seguintes áreas à esquerda e à direita:

• |Al| =
∫ A

A−e2

A(x) dx =

∫ A

A−e2

1

e2
(x− A+ e2) dx =

1

2
(A− (A− e2)) =

e2
2
.

• |Ar| =
∫ A+d2

A

A(x) dx

∫ A+d2

A

− 1

d2
(x− A− d2) dx =

1

2
(A+ d2 − A) =

d2
2
.

• |Al| =
∫ A

A−e1

A(x) dx

∫ A

A−e1

1

e1
(x− A+ e1) dx =

1

2
(A− (A− e1)) =

e1
2
.

• |Ar| =
∫ A+d1

A

A(x) dx

∫ A+d1

A

− 1

d1
(x− A− d1) dx =

1

2
(A+ d1 − A) =

d1
2
.

Os centroides correspondentes são:

• Cl(A) =
1

|Al|

∫ A

A−e2

xA(x) dx =
2

e2

∫ A

A−e2

x

e2
(x− A+ e2) dx = A− e2

3
.

• Cr(A) =
1

|Ar|

∫ A+d2

A

xA(x) dx =
2

d2

∫ A+d2

A

− x

d2
(x− A− d2) dx = A+

d2
3
.

• Cl(A) =
1

|Al|

∫ A

A−e1

xA(x) dx =
2

e1

∫ A

A−e1

x

e1
(x− A+ e1) dx = A− e1

3
.

• Cr(A) =
1

|Ar|

∫ A+d1

A

xA(x) dx =
2

d1

∫ A+d1

A

− x

d1
(x− A− d1) dx = A+

d1
3
.

O centroide C(Â) do número fuzzy intervalar triangular Â será limitado da seguinte maneira:

C(Â) ∈ [C(Al), C(Ar)], (1.69)

cujos limites C(Al) e C(Ar) são calculados pelas expressões

C(Al) = Cl(A) pAl
+ Cr(A) pAr

; (1.70)

C(Ar) = Cl(A) pAl
+ Cr(A) pAr

; (1.71)

em que as proporções são dadas por

pAl
=

|Al|
|Al|+ |Ar|

=
e2

e2 + d1
;

p
Ar

=
|Ar|

|Al|+ |Ar|
=

d1
e2 + d1

;
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p
Al

=
|Al|

|Al|+ |Ar|
=

e1
e1 + d2

;

pAr
=

|Ar|
|Al|+ |Ar|

=
d2

e1 + d2
.

Consequentemente,

C(Al) =
1

e2 + d1

[(
A− e2

3

)
e2 +

(
A+

d1
3

)
d1

]
; (1.72)

C(Ar) =
1

e1 + d2

[(
A− e1

3

)
e1 +

(
A+

d2
3

)
d2

]
. (1.73)

Assim, o valor central do intervalo do centroide é dado por:

Cc(Â) =
C(Al) + C(Ar)

2
, (1.74)

ou seja,

Cc(Â) =
1

2(e2 + d1)

[(
A− e2

3

)
e2 +

(
A+

d1
3

)
d1

]
+

1

2(e1 + d2)

[(
A− e1

3

)
e1 +

(
A+

d2
3

)
d2

]
.

(1.75)

Exemplo 1.9. Considerando o NFI triangular Â = (A−e2, A−e1, A,A+d1, A+d2) e calculando
Cc(Â) para alguns valores de e2, e1, d1 e d2.

i) Se e1 = d1 e e2 = d2, tem-se que

C(Al) = A− 1
3
(e2 − e1), C(Ar) = A+ 1

3
(e2 − e1) e Cc(Ã) = A.

ii) Se e1 = d1, e2 = k1e1, k1 > 1 e d2 = k2d1, k2 > 1 tem-se que

C(Al) = A− e1
3

(
k1 − 1

k1 + 1

)
, C(Ar) = A+

e1
3

(
k2 − 1

k2 + 1

)

e

Cc(Â) = A+
e1
3

(
k2 − 1

k2 + 1
− k1 − 1

k1 + 1

)
.

iii) Substituindo e1 = d1 = 1, e2 = 3 e d2 = 4, tem-se que k1 = 3 e k2 = 4. Nesse caso,
tem-se

C(Al) = A− 1

6
, C(Ar) = A+

1

5
e Cc(Â) = A+

1

60
.

Neste exemplo, o cálculo de C(Â) é realizado considerando várias opções para os extremos
do suporte de Â.
No próximo caṕıtulo, é realizada a abordagem fuzzy para o modelo matemático de um circuito
elétrico e a aplicação de método de programação linear fuzzy para o obtenção de resultados
numéricos.
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Caṕıtulo 2

Programação Linear Fuzzy: otimização
de um modelo de circuito elétrico

Um circuito elétrico possui componentes caracterizados por diversos parâmetros, cada um as-
sociado a uma tolerância, dada pelo fabricante do produto. Por exemplo, uma resistência de
48 ohms pode ter tolerância de ± 10%, devido a temperatura, tempo de uso, entre outros mo-
tivos (GONZÁLEZ, 2003). Essa gradualidade motivou este estudo a utilizar a abordagem de
programação linear fuzzy para um problema de divisor de tensão. O valor dado pelo fabricante
do aparelho elétrico é chamado de valor centrado. As tolerâncias e os valores centrados per-
mitem um melhor controle sobre os limites sob os quais o circuito continua operando e, assim,
otimizar seu desempenho. O modelo utilizado para esta pesquisa foi constrúıdo por Salazar em
(GONZÁLEZ, 2003). Foram estudados três casos para os componentes do PPL. O primeiro
caso é para componentes de números reais que propõe-se para validar os outros dois resultados.
O segundo caso refere-se ao número fuzzy trapezoidal do tipo 1 como componente do PPL. A
solução ótima é obtida através de uma função de defuzzificação de ordem linear total, definida
no subespaço dos números fuzzy trapezoidais do espaço vetorial de números fuzzy. O terceiro
caso estende o segundo caso para conjuntos fuzzy do tipo 2 como componentes do PPL . O
teorema de representação dos α−ńıveis é o método para obter a solução ótima do tipo 2. Para
a simulação numérica para todos os casos é usado o método clássico de pontos interiores (NO-
CEDAL; WRIGHT, 2006), utilizando o algoritmo de programação linear linprog do software
Matlab®, e um algoritmo que reproduz o teorema da representação.

Um especialista em eletrônica poderia utilizar as informações obtidas neste estudo, devido
à abordagem fuzzy que estende a gradualidade do caso de problema clássico, impondo graus
de relevância além dos números considerados pelo fabricante. A abordagem com conjuntos
fuzzy do tipo 2, amplia ainda mais a qualidade da gradualidade das tolerâncias, de modo a
adicionar um adjetivo ao problema lingúıstico. Por exemplo, quando o fabricante do dispositivo
recomenda 40% de tolerância, consideram-se valores exatos entre 0 e 40 para o caso clássico.
Para conjuntos fuzzy do tipo 1, adiciona-se o adjetivo “cerca de” 40%, e os conjuntos fuzzy do
tipo 2 expressam o “mais ou menos” em torno de 40%. Neste caṕıtulo é apresentado o conteúdo
publicado no artigo (BERTONE; JAFELICE; CÂMARA, 2017).

2.1 Modelo Matemático de um Circuito Elétrico

O circuito divisor de tensão mostrado em (GONZÁLEZ, 2003), ilustrado na Figura 2.1 (a), é o
modelo a ser constrúıdo nesta seção.

Neste circuito são considerados dois geradores de tensão, cada um produzindo uma força
eletromotriz, E1 e E2, medidas em volts. Suponha que E1 > E2 para que o circuito mostrado na
Figura 2.1 (a), tenha a corrente no sentido indicado pelas setas. Assume-se que as tolerâncias
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(a) Modelo do circuito de divisor de
tensão

(b) Modelo do circuito de divisão de tensão paralelo

Figura 2.1: Circuitos básicos de divisão de tensão equivalentes.

associadas ao respectivo potencial têm um valor mı́nimo E−
1 e máximo E+

1 , em relação a
E1. Analogamente, existe o valor mı́nimo E−

2 , e máximo E+
2 , em relação a E2. O objetivo

deste modelo é determinar os valores centrados dos resistores, R1 e R2, para que a impedância
resistiva do divisor de tensão seja mı́nima. Além disso, como restrições, o potencial de sáıda, V0,
pertence ao intervalo [V m

0 , V M
0 ], onde o expoente m representa o valor mı́nimo e M , o máximo.

A corrente, I0, está no intervalo [Im0 , IM0 ]. As tolerâncias verificam as desigualdades

E−
1 ≥ V M

0 ≥ V m
0 ≥ E+

2 . (2.1)

A impedância resistiva total do divisor de tensão é dada pela fórmula

R0 =
R1 R2

R1 +R2

,

devido ao fato de que os dois resistores estão em paralelo. Para obter um modelo linear, as
variáveis resistências são substitúıdas pelas admitâncias associadas, que são dadas pelos valores
inversos Gi = 1/Ri, i = 0, 1, 2. Com esta notação, a admitância total do divisor de tensão é
G0 = G1 +G2. Assim, a função objetivo do problema é dada por

G−
0 = G−

1 +G−
2 ,

que será maximizada. Denotando por G1 e G2 os valores centrados das admitâncias G1 e G2,
respectivamente, então tem-se

G−
1 = (1− ϵ1)G1 e G−

2 = (1− ϵ2)G2,

em que ϵ1 e ϵ2 são duas tolerâncias conhecidas. Assim, o problema de programação linear
proposto é

max (H(G1,G2)) , em que H(G1,G2) = (1− ϵ1)G1 + (1− ϵ2)G2. (2.2)

Para expressar as restrições sobre as variáveis G1 e G2, observa-se, baseado na Figura 1 (b),
que

I = I1 + I2 + I0.
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Consequentemente, tem-se

G1E1 +G2E2 =
V0

R1

+
V0

R2

+ I0.

Dáı,

G1E1 +G2E2 = V0(
1

R1

+
1

R2

) + I0,

de onde, obtém-se
G1E1 +G2E2 − I0 = V0(G1 +G2).

Desse modo,

V0 =
E1G1 + E2G2 − I0

G1 +G2

.

Analisando o comportamento V0 em relação às variações de G1, G2, e I0, tem-se:
(I) Calculando a derivada parcial de V0 em relação a G1, obtém-se

∂V0

∂G1

=
E1(G1 +G2)− (E1G1 + E2G2 − I0)

(G1 +G2)2

=
E1G1 + E1G2 − E1G1 − E2G2 + I0

(G1 +G2)2

=
(E1 − E2)G2 + I0

(G1 +G2)2

> 0,

(2.3)

devido ao fato de que E1 > E2. Como conclusão, tem-se que V0 decresce à medida que G1

decresce.
(II) Calculando a derivada parcial de V0 em relação a G2, tem-se

∂V0

∂G2

=
(E2 − E1)G1 + I0

(G1 +G2)2
< 0, (2.4)

pois I = I1 + I2 + I0 tal que

I0 = I − I1 − I2 = G1E1 +G2E2 − V0G1 − V0G2.

Portanto,
∂V0

∂G2

=
(E2 − E1)G1 + I0

(G1 +G2)2

=
G1E2 −G1E1 +G1E1 +G2E2 − V0G1 − V0G2

(G1 +G2)2

=
E2(G1 +G2)− V0(G1 +G2)

(G1 +G2)2

=
E2 − V0

G1 +G2

.

Como E−
1 ≥ V M

0 ≥ V m
0 ≥ E+

2 , então E2 < V0, desse modo E2 − V0 < 0. Isto implica que

∂V0

∂G2

< 0,
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significando que V0 decresce à medida que G2 cresce.

(III) Do fato que G1 +G2 > 0, conclui-se que

∂V0

∂I0
=

−1

G1 +G2

< 0,

o que significa que V0 decresce à medida que I0 cresce.

Consequentemente, V0 assumirá o seu menor valor, que deseja-se não ser inferior a V m
0 ,

quando G1 assume seu menor valor G−
1 . Além disso, G2 assume seu maior valor, G+

2 , e a
corrente obtida I0 é IM0 .

Desse modo, a restrição V m
0 ≤ V0 é equivalente a

V m
0 ≤E−

1 G
−
1 + E−

2 G
+
2 − IM0

G−
1 +G+

2

ou, alternativamente,

V m
0 ≤E−

1 (1− ϵ1)G1 + E−
2 (1 + ϵ2)G2 − IM0

(1− ϵ1)G1 + (1 + ϵ2)G2

,

isto é,

(1− ϵ1)(E
−
1 − V m

0 )G1 + (1 + ϵ2)(E
−
2 − V m

0 )G2≥IM0 .

Similarmente, a restrição V0≤V M
0 é equivalente a

(1 + ϵ1)(E
+
1 − V M

0 )G1 + (1− ϵ2)(E
+
2 − V M

0 )G2≤Im0 .

Consequentemente, o modelo matemático de programação linear para o problema de divisor de
tensão é dado por

maxH(G1,G2) = [(1− ϵ1)G1 + (1− ϵ2)G2]

(1− ϵ1)(E
−
1 − V m

0 )G1 + (1 + ϵ2)(E
−
2 − V m

0 )G2≥IM0

(1 + ϵ1)(E
+
1 − V M

0 )G1 + (1− ϵ2)(E
+
2 − V M

0 )G2≤Im0

Usando as notações

ϵ =

(
1− ϵ1
1− ϵ2

)
, G =

(
G1

G2

)
, Υ =

(
−IM0
Im0

)
, O =

(
0
0

)
,

e

Θ =

(
(1− ϵ1)(V

m
0 − E−

1 ) (1 + ϵ2)(V
m
0 − E−

2 )
(1 + ϵ1)(E

+
1 − V M

0 ) (1− ϵ2)(E
+
2 − V M

0 )

)

tem-se a forma matricial para o problema de divisor de tensão

maxH(G) = ϵTG

ΘG≤Υ

G ≥ O.

(2.5)
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2.2 Métodos de Programação Linear Fuzzy para o Mo-

delo de Circuito Elétrico

Nesta seção, considera-se o problema de PL descrito na Seção 2.1, que é dado pela forma
matricial (2.5). O objetivo de usar a abordagem PLF é permitir uma violação de restrição.
Essa extensão do modelo é feita através dos coeficientes da função objetivo, e das restrições,
utilizando números fuzzy para seus coeficientes. Portanto, consideram-se os elementos dos
componentes do PPL H, Θ, e Υ em três casos:

1. números reais (PPL clássico). Para validar os métodos propostos;

2. números fuzzy (PLF do tipo 1). Os coeficientes de H e as entradas de Θ são elementos
de Trap D(R). O vetor Υ = (IM0 , Im0 ), em que IM0 e Im0 ∈ R;

3. conjuntos fuzzy do tipo 2 (PLF do tipo 2). Os coeficientes de H e as entradas de Θ são
singleton do tipo 2, cujas projeções no plano (x, u) pertencem a Trap D(R).

O primeiro componente do vetor Υ é um conjunto fuzzy do tipo 2 definido pela função de
pertinência

µIm
0
(x, u) =





1, se (x, u) = (Im0 , 1),

x− Im0 + δL(1− u)

δL(1− u)
, se 0 ≤ u(x) ≤ x− Im0 + δL

δL
e x ∈ [Im0 − δL, I

m
0 ],

em que x = Im0 − δL é o mı́nimo do ńıvel zero.

O segundo componente do vetor Υ é um conjunto fuzzy do tipo 2 definido pela função de
pertinência

µIM
0
(x, u) =





1, se (x, u) = (IM0 , 1),

IM0 + δR(1− u)− x

δR(1− u)
, se 0 ≤ u(x) ≤ IM0 + δR − x

δR
e x ∈ [IM0 , IM0 + δR],

em que x = IM0 + δR é o máximo do ńıvel zero.

Os gráficos desses conjuntos fuzzy do tipo 2 são mostrados na Figura 2.2 para a restrição
independente Im0 , e na Figura 2.3 para IM0 .

A motivação para estudar o terceiro caso vem novamente, para permitir uma violação de
restrição em termos do intervalo [Im0 , IM0 ]. Estendendo esse intervalo para [Im0 − δL, I

M
0 + δR],

para valores escolhidos de δL e δR para o qual o PL tem solução, induz a uma região fact́ıvel,
que chama-se de região viável fuzzy, a ser inclúıda na região fact́ıvel crisp. De fato, as restrições
do PL associadas à região viável fuzzy são dadas por

(1− ϵ1)(E
−
1 − V m

0 )G1 + (1 + ϵ2)(E
−
2 − V m

0 )G2 ≥ IM0 + δR

(1 + ϵ1)(E
+
1 − V M

0 )G1 + (1− ϵ2)(E
+
2 − V M

0 )G2 ≤ Im0 − δL

que determina a região mostrada na Figura 2.4.
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de PL do tipo 1, com o método usado no caso 2. A solução é obtida aplicando o teorema da
representação de α−ńıveis dos conjuntos fuzzy do tipo 2(MENDEL; LIU; ZHAI, 2009).

2.3 Resultados Numéricos

No caso da programação linear clássica, considera-se

H(G1,G2) = 0.6 G1 + 0.9 G2, Θ =

(
−1.2 1.1
0.7 −0.18

)
e Υ =

(
−0.64
0.58

)
,

em que ϵ1 é ±40%, e ϵ2 é ±10%. A solução ótima obtida é H(0.9437, 0.4477) = 0.9691.
Para o caso 2, os componentes considerados são:

H(G1,G2) = (0.4, 0.6, 1, 1) G1 + (0.6, 0.9, 1, 1) G2,

Θ =

(
(−2,−2,−1.2,−0.8) (1, 1, 1.1, 1.4)
(0.5, 0.5, 0.7, 0.8) (−0.2,−0.2,−0.18,−0.12)

)
e Υ =

(
−0.64
0.58

)
.

Os números fuzzy trapezoidais ϵ1 e ϵ2 usados para construir os coeficientes da função objetivo
H, e as entradas da matriz Θ são mostrados na Figura 2.5 e Figura 2.6.

Figura 2.5: O número fuzzy trapezoidal ϵ1
usado para construir os coeficientes da função
objetivo H.

Figura 2.6: O número fuzzy trapezoidal ϵ2
usado para construir os coeficientes da função
objetivo H.

Os gráficos dos coeficientes, 1 − ϵ1 e 1 − ϵ2 para a função objetivo H, são mostrados na
Figura 2.7 e Figura 2.8.

As entradas da matriz Θ são mostrados na Figura 2.9 e Figura 2.10 (primeira linha), e na
Figura 2.11 e Figura 2.12 (segunda linha).

Considera-se γ ∈ [0.3, 1] já que valores menores que 0,3 fazem com que a programação
linear falhe em encontrar soluções ótimas. Para o valor γ = 1 nós tem-se gγ(A) = n. Como
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consequência, o ponto ótimo do caso 2 coincide com o caso 1, e o valor ótimo é o mı́nimo do
ńıvel 1 do número fuzzy ótimo:

H(0.9437, 0.4477) = (0.5517, 0.9691, 1.3913, 1.3913).

Outros valores de γ resultam em soluções que são mostradas na Figura 2.13.

Figura 2.13: Os pontos ótimos correspondentes a diferentes valores de γ.

Para cada γ, parâmetro de defuzzificação no intervalo [0.3, 1], o ponto ótimo é um número
fuzzy do tipo 1, pois para cada ńıvel obtém-se um ponto ótimo (crisp), e uma solução ótima tra-
pezoidal correspondente neste ponto. Assim, o ponto ótimo tem o universo fuzzy determinado
pelo ńıvel zero ótimo e ńıvel um ótimo, que na Figura 2.14 é representado pelos pontos pretos.
A função de pertinência é a linha determinada pelos pontos no espaço, cujas duas primeiras
coordenadas são as coordenadas do ponto ótimo ńıvel zero e ńıvel um. A terceira coordenada
é zero e um, respectivamente.

Na Figura 2.15, é mostrado o gráfico da solução ótima do tipo 2 obtida de cada ponto ótimo
da Figura 2.14, e sua solução fuzzy ótima correspondente. O gradiente de cores cinza em ambas
as figuras são correspondentes e representam os ńıveis de 0 a 1.
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Figura 2.14: Os pontos ótimos e seus graus de pertinência.

Figura 2.15: A solução fuzzy do tipo 2.

É mostrado na Figura 2.16 os pontos ótimos, e na Figura 2.17 a solução fuzzy do tipo 2
para valores de γ no intervalo [0.7, 1].
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independentes do sistema. A modelagem dessas incertezas por meio de representações fuzzy
permitiu capturar a variabilidade e a imprecisão inerentes aos parâmetros do problema, possi-
bilitando a obtenção de soluções robustas. Dessa forma, a metodologia mostrou-se apropriada
não apenas para encontrar soluções viáveis sob incerteza, mas também para analisar a sensibili-
dade do modelo em relação às variações nos dados, o que amplia sua aplicabilidade em cenários
reais nos quais a informação dispońıvel é incompleta, imprecisa ou subjetiva.

No próximo caṕıtulo é apresentado um algoritmo baseado na álgebra dos números fuzzy
afim de estudar as vantagens e limitações dessa utilização na busca da solução ótima em PPL.
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Caṕıtulo 3

Algoritmo Modificado para um Método
de Ponto Interior usando Números
Fuzzy

O objetivo deste caṕıtulo é aplicar a álgebra e os α-ńıveis dos números fuzzy PPL com
parâmetros e variáveis sendo números reais, ampliando as possibilidades na busca da solução
ótima. O algoritmo modificado foi baseado no Algoritmo Primal - Afim que descreve as
operações para a execução de um método afim de pontos interiores. No Algoritmo Primal
- Afim (APA) é obtido apenas um ponto a cada iteração na direção da solução ótima, enquanto
que no algoritmo modificado Algoritmo Primal - Afim Fuzzy (APAF) são considerados dez
pontos. Estes pontos são determinados pela defuzzificação dos α-ńıveis de números fuzzy trian-
gulares que foram considerados para cada variável do PPL, e dentre estes é escolhido o ponto
mais próximo da solução ótima. As simulações numéricas foram realizadas para três PPL com
número de variáveis e quantidade de restrições distintas, e inequações com relações de ordem
diferentes. Os resultados obtidos pelo APAF são melhores a cada iteração e o APAF necessita
de um número menor de iterações para se alcançar o valor ótimo em comparação com o APA,
considerando o erro absoluto.

O algoritmo modificado, baseado na representação de números fuzzy por α-ńıveis, amplia
o espectro de busca do Algoritmo Primal - Afim em direção à solução ótima de um PPL com
entradas e variáveis sendo números reais, a partir de dez pontos obtidos pela defuzzificação
dos α-ńıveis dos números fuzzy, selecionando aqueles que estão na região de viabilidade em
cada iteração. As simulações computacionais foram realizadas no software Matlab e um dos
comandos necessários para que a programação computacional fosse realizada com praticidade
foi o cell. Este comando é caracterizado por criar matrizes em que cada elemento também é
uma matriz. Neste caṕıtulo é exibido o conteúdo publicado no artigo (CAMARA; JAFELICE,
2025).
A seguir é apresentado o APAF, a álgebra fuzzy aplicada no algoritmo e o fluxograma corres-
pondente.

3.1 O Algoritmo Primal-Afim Fuzzy em Rn

Considera-se o Problema de Programação Linear:

Min Q (X) = C
T
X

A X ≤ B
X ≥ 0

(3.1)
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em que C
T
é a matriz transposta de C. A forma padrão deste PPL será dada por:

Min Q (X) = CTX
A X = B

X ≥ 0
(3.2)

em que C = [C 0]T , A = [A I] e X = [X XF ]
T em que I é a matriz identidade de ordem m

e XF é a matriz m× 1 das variáveis de folga e todas as matrizes são reais.
Considere que X0 = (x0

1, x
0
2, x

0
3, x

0
4, . . . , x

0
n) é um ponto interior da região de viabilidade do

PPL (FANG; PUTHENPURA, 1993) e que eT = [1 1 1 1 . . . 1](n+m)×1. Neste caso, X
0 ∈ S =

{X ∈ Rn|A X < B e X > 0} e X0 ∈ S = {X ∈ Rn+m|AX = B e X > 0}. Utilize as
matrizes A = (aij)m×n e A = (aij)m×(n+m).

Os passos da metodologia são os seguintes:

Passo 1: Definir ϵ> 0 e determinar o maior d > 0 tal que X
0

d ∈ S, em que X
0

d =
[(x0

1−d, x0
1, x

0
1+d) (x0

2−d, x0
2, x

0
2+d) . . . (x0

n−d, x0
n, x

0
n+d)]T , em que cada coordenada de

X
0

d é um número fuzzy triangular, tal que para cada α-ńıvel e a defuzzificação correspondente a

um ponto é determinada na vizinhança de X
0
dentro da região de viabilidade. Para determinar

o maior d > 0 tal que X
0

d ∈ S considerar os vetores EX
0

d = [(x0
1−d) (x0

2−d) . . . (x0
n−d)]T

e DX
0

d = [(x0
1 + d) (x0

2 + d) . . . (x0
n + d)]T . Considerar d > 0 com espaçamento de 0.1 e

determinar d = max{A(EX
0

d) < B; (EX
0

d) > 0 e A(DX
0

d) < B; (DX
0

d) > 0}. Essas são
operações matriciais usuais.

Passo 2: Para o valor de d encontrado no Passo 1, considerar X0
d = [X

0

d XFd
]T em que

XFd
= [(x0

n+1 − d, x0
n+1, x

0
n+1 + d) . . . (x0

n+m − d, x0
n+m, x

0
n+m + d)]T .

Construir a matriz X00d tendo na diagonal as coordenadas de X0
d e os outros elementos da

matriz nulos. Em seguida, determinar o α-ńıvel de X0
d e X00d, dados respectivanente por:

[X0
d ]

α = [[x0
1]

α [x0
2]

α . . . [x0
n+m]

α]T e

[X00d]
α =




[x0
1]

α 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 [x0

n+m]
α




em que [x0
i ]

α = [d(α− 1) + x0
i , d(1− α) + x0

i ], i = 1, . . . , n+m.
Discretizar 0 < α ≤ 1 com espaçamento 0.1. Não considera-se α = 0 devido a ex-

pressão do Centroide (1.6) se anular no denominador. Neste passo, considerar os números
fuzzy triangulares (x0

i − d, x0
i , x

0
i + d), i = 1, . . . , n + m. e seus α-ńıveis dados por [x0

i ]
α =

[d(α − 1) + x0
i ; d(1 − α) + x0

i ] = [u1, u2], i = 1, . . . , n + m. Os α-ńıveis dos números fuzzy
triangulares são mostrados na Figura 3.1.

Na Figura 3.2 é apresentada uma representação de parte do grânulo referente ao vetor X0
d

com centro em X0.

Passo 3: Determinar a matriz ([X00d]
α)

2
e calcular A ([X00d]

α)
2
AT , para cada α. Neste

passo, obter ([x0
i ]

α)2 = [minP,maxP ] em que

P = (d(α− 1) + x0
i )

2, (d(α− 1) + x0
i )(d(1− α) + x0

i ), (d(1− α) + x0
i )

2),

ou seja, ([x0
i ]

α)2 = [(d(α − 1) + x0
i )

2, (d(1 − α) + x0
i )

2], i = 1, . . . , n + m. Construir a matriz
([X00d]

α)
2
.

55





matriz inversa tendo como elementos números fuzzy. As matrizes reais obtidas são denominadas

por
(
A ([X00d]

α)
2
AT
)
D
. Determinar as matrizes reais

[(
A ([X00d]

α)
2
AT
)
D

]−1

. Para obter as

matrizes com entradas reais (A([X00d]
α)2AT )D, considerar u1 = a(α − 1)2 + b(α − 1) + c e

u2 = a(1 − α)2 + b(1 − α) + c. Respectivamente, tem-se, α = 1 − b

2a
+

√
4au1 + b2 − 4ac

4a2
e

α = 1+
b

2a
−
√

4au2 + b2 − 4ac

4a2
. Consequentemente, um dos gráficos da função de pertinência

definida pelos α-ńıveis em relação a u1 e u2 é apresentado na Figura 3.3. Em seguida, calcular
[(A([X00d]

α)2AT )D]
−1 = (lij)m×m.

Figura 3.3: Função de pertinência definida pelos α-ńıveis.

Passo 5: Calcular as matrizes

[Z]α =
[(

A
(
[X00d]

α
)2

AT
)
D

]−1

A
(
[X00d]

α
)2

= (zij)m×(n+m),

para cada α, em que zij = [azij(α− 1)2 + bzij(α− 1) + czij , azij(1−α)2 + bzij(1−α) + czij ], com

azij =
m∑
k=1

likakjd
2, bzij =

m∑
k=1

likakjx
0
kd e czij =

m∑
k=1

likakj(x
0
k)

2.

Passo 6: Calcular, para cada α, as matrizes [w0]α = [Z]αC e AT [w0]α, sendo [w0]α =
[Z]αC = (wi)m×1, em que wi = [awi

(α−1)2+bwi
(α−1)+cwi

, awi
(1−α)2+bwi

(1−α)+cwi
] com

awi
=

n+m∑
j=1

cj
n∑

k=1

likakjd
2, bwi

=
n+m∑
j=1

cj
n∑

k=1

likakjx
0
kd e cwi

=
n+m∑
j=1

cj
n∑

k=1

likakj(x
0
k)

2 e AT [w0]α =

(fj)(n+m)×1, em que

fj = [afj(α− 1)2 + bfj(α− 1) + cfj , afj(1− α)2 + bfj(1− α) + cfj ],

com afj =
m∑
i=1

aijawi
, bfj =

m∑
i=1

aijbwi
e cfj =

m∑
i=1

aijcwi
. Defuzzificar AT [w0]α para obter as

matrizes com entradas reais (AT [w0]α)D = (sj)(n+m)×1, com o mesmo tipo de defuzzificação do
Passo 4. Essa defuzzificação é necessária para realizar o cálculo algébrico do próximo passo.

Passo 7: Calcular as matrizes reais [r0] = C −
(
AT [w0]α

)
D

= (rj)(n+m)×1, em que rj =
(cj − sj).
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Passo 8: Calcular os números fuzzy triangulares [Vp]
α = eT [X00d]

α[r0], defuzzificar estes
números fuzzy e obter os números reais Vp, para cada α. Neste passo, [Vp]

α = eT [X00d]
α[r0] =

[av(α − 1) + bv, av(1− α) + bv] é calculado, em que av =
n+m∑
j=1

drj e bv =
n+m∑
j=1

rjx
0
j . Defuzzificar

[Vp]
α. Para obter os números reais Vp, considerar u1 = av(α − 1) + bv e u2 = av(1 − α) +

bv. Respectivamente, têm-se, α =
u1 − bv + av

av
e α =

−u2 + bv + av
av

. Consequentemente, os

gráficos das funções de pertinência definidas pelos α-ńıveis para a defuzzificação são como no
Passo 2.

Passo 9: Se [r0] ≥ 0 e Vp ≤ϵ, então PARE, pois o X0 correspondente é a solução ótima do
PPL e Q(X0) é o seu valor ótimo. Caso contrário, vá para o Passo 10. Neste passo, avaliar
as desigualdades usuais entre números reais rj ≥ 0, j = 1, . . . , n+m e Vp ≤ ϵ.

Passo 10: Calcular, para cada α, as matrizes [d0y]
α = −[X00d]

α[r0]. Defuzzificar para
cada α cada elemento das matrizes [d0y]

α e obter as matrizes reais [d0y]. Neste passo, calcular
[d0y]

α = −[X00d]
α[r0] = ((d0y)j)(n+m)×1, em que (d0y)j = [adj(α − 1) + bdj , adj(1 − α) + bdj ] com

adj = −rjd e bdj = −rjx
0
j .

Defuzzificar [d0y]
α. Para obter as matrizes reais [d0y], considerar u1 = adj(α − 1) + b

j
e

u2 = adj(1− α) + bdj . Respectivamente, têm-se que α =
u1 − bdj + adj

adj
e α =

−u2 + bdj + adj
adj

.

Consequentemente, os gráficos das funções de pertinência definidas pelos α-ńıveis para a defuz-
zificação são como no Passo 2.

Passo 11: Se [d0y] > 0, então PARE, pois o PPL é ilimitado. Se [d0y] = 0, então PARE, pois
o X0 correspondente é a solução ótima do PPL e Q(X0) é o seu valor ótimo. Caso contrário,
vá para o Passo 12. Neste passo, avaliar as desigualdades e igualdades usuais entre números
reais (d0y)j > 0 ou (d0y)j = 0, j = 1, . . . , n+m.

Passo 12: Calcular γ0 = min
j=1,...,n+m

{
γ

−(d0y)j
; (d0y)j < 0

}
, em que γ é um número escolhido

no intervalo (0, 1). Definir [d0y]γ0 como a matriz associada a determinação de γ0. Neste passo,
calcular γ0 utilizando operações usuais no conjunto dos números reais e definir [d0y]γ0 como a
matriz correspondente a γ0.

Passo 13: Calcular, para cada α, a matriz [X1
γ0
]α = [X0

d ]
α + γ0[X00d]

α[d0y]
α. Defuzzificar,

para cada α, a matriz [X1
γ0
]α e obter matrizes reais X1

γ0
= [X

1

γ0
XFγ0

]T . Determinar X
1

γ tal que

Q(X
1

γ) = min
{
Q(X

1

γ0
), X

1

γ0
∈ S

}
. Neste passo, calcular [X1

γ0
]α = [X0

d ]
α + γ0[X00d]

α[d0y]
α sendo

[X1
γ0
]α = (x1

j)(n+m)×1, em que x1
j = (pj(α − 1) + qj, pj(1 − α) + qj) com pj = (1 + γ0(d

0
y)j)d e

qj = (1 + γ0(d
0
y)j)x

0
j . Defuzzificar [X1

γ0
]α. Para obter as matrizes reais [X1

γ0
] = [X

1

γ0
XFγ0

]T ,

considerar u1 = pj(α− 1)+ qj e u2 = pj(1−α)+ qj. Respectivamente, têm-se α =
u1 + pj − qj

pj

e α =
−u2 + pj + qj

pj
. Consequentemente, os gráficos das funções de pertinência definidas pelos

α-ńıveis para a defuzzificação são como no Passo 2.

Passo 14: Calcular X1
Fγ

= B − A X
1

γ utilizando operações matriciais usuais.

Passo 15: Atualizar X0 = [X
1

γ X1
Fγ
]T . Retornar ao Passo 1.
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3.1.1 Fluxograma

Na Figura 3.4 exibe-se um fluxograma que representa esquematicamente o APAF, mostrando
de forma descomplicada a transição de informações entre os passos do algoritmo.

Figura 3.4: Fluxograma do APAF.
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A convergência do algoritmo modificado APAF é garantida pela convergência do algoritmo
APA (FANG; PUTHENPURA, 1993), pois não há mudanças no algoritmo, mas sim no número
de pontos gerados a cada iteração. É escolhido a cada iteração o ponto mais próximo do ótimo,
gerando uma sequência de pontos que converge para o ponto ótimo, com um número menor ou
igual de iterações. Observe que o algoritmo modificado APAF é o algoritmo APA se α = 1 é
considerado em todas as iterações.

3.2 Aplicações do Algoritmo

Nesta seção, são apresentados três exemplos de PPL com regiões de viabilidade em R2 e R3, a
fim de apresentar o comportamento da busca pela solução ótima pelo APA e pelo APAF.

Exemplo 3.1. Para exemplificar a aplicação do APAF, foi utilizado um PPL resolvido em
(BALBO et al., 2010) e que apresenta as iterações obtidas pelo Algoritmo Primal - Afim.

Considere o Problema de Programação Linear

Min Q(X) = −2x1 + x2

subject to: x1 − x2 ≤ 15
x2 ≤ 15

x1, x2 ≥ 0.

(3.3)

A forma padrão deste PPL é dada por

Min Q(X) = −2x1 + x2

subject to: x1 − x2 + x3 = 15
x2 + x4 = 15

x1, x2, x3, x4 ≥ 0

(3.4)

em que C = [−2 1]T , C = [−2 1 0 0]T , A =

[
1 −1
0 1

]
, A =

[
1 −1 1 0
0 1 0 1

]
,

B =

[
15
15

]
, X = [x1 x2]

T e X = [x1 x2 x3 x4]
T . Consider X0 = [10 2 7 13]T , que

é uma solução dentro da região de viabilidade do PPL, use γ = 0.95 e erro absoluto ϵ≤ 10−5

em relação ao valor ótimo Q(X∗) = −45, com X∗ = (30, 15) .
Na Tabela 3.1 é apresentada a comparação entre os resultados obtidos no APA e APAF.

Neste exemplo, o método de defuzzificação utilizado é o Centroide.

Tabela 3.1: Resultados de Q(Xk) obtidos nos algoritmos estudados.

Iterações 1a 2a 3a 4a 5a 6a 7a

APA -31.432636 -38.055655 -44.619831 -44.951338 -44.990187 -44.998302 -44.999661

APAF -32.108098 -44.834111 -44.972095 -44.998510 -44.999778 -44.999986 -44.999998
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Os valores da função objetivo apresentados na Tabela 3.1 mostram que desde a primeira
iteração o APAF já apresenta resultados melhores, ou seja, mais próximos de Q(X∗). Além
disso, já na segunda iteração o valor da função objetivo obtido pelo APAF está a 0.165889 de
Q(X∗). Na sétima iteração o resultado do APAF já atinge o valor ótimo da função objetivo
para o erro absoluto escolhido, e no APA ainda falta 0.00033 para atingir o valor ótimo.

Exemplo 3.2. Neste exemplo, o número de desigualdades foi aumentado e uma desigualdade
do tipo ≥ foi usada em uma dessas desigualdades, para ilustrar a aplicação do algoritmo nessa
nova situação.

O seguinte Problema de Programação Linear é considerado

Max Q(X) = x1 + x2

subject to: x1 + x2 ≥ 1
−x1 + 2x2 ≤ 16
2x1 − 3x2 ≤ 12
3x1 + 2x2 ≤ 24

x1, x2 ≥ 0.

(3.5)

A forma padrão deste PPL é dada por

−Min(−Q(X) = −x1 − x2)
subject to: x1 + x2 − x3 = 1

−x1 + 2x2 + x4 = 16
2x1 − 3x2 + x5 = 12
3x1 + 2x2 + x6 = 24

x1, x2, x3, x4, x5, x6 ≥ 0.

(3.6)

em que C = [−1 − 1]T , C = [−1 − 1 0 0 0 0]T , A =




1 1
−1 2
2 −3
3 2


,

A =




1 1 −1 0 0 0
−1 2 0 1 0 0
2 −3 0 0 1 0
3 2 0 0 0 1


, B =




1
16
12
24


, X = [x1 x2]

T e

X = [x1 x2 x3 x4 x5 x6]
T .

No Algoritmo Primal - Afim Fuzzy em Rn, descrito na seção 3, a primeira desigualdade
apresentada no conjunto S é convenientemente adequada em relação às desigualdades do PPL.
Este ajuste foi necessário neste exemplo.

Considera-se X0 = [1 2 2 13 16 17]T , que é uma solução dentro da região de vi-
abilidade do PPL, utiliza-se γ = 0.95 e erro absoluto ϵ≤ 10−4 em relação ao valor ótimo
Q(X∗) = 11, com X∗ = (2, 9).

Na Figura 3.5 e Figura 3.6 os pontos indicados são obtidos pelo APAF na primeira iteração,
em que Pi, i = 1, . . . , 10, correspondem aos α-ńıveis, α = 0.1, . . . , 1. Para determinar X1F,
dez pontos são obtidos pelo APAF e o ponto da região de viabilidade que fornece o melhor valor
para a função objetivo é selecionado. (X1F=P6). Note que para α = 1 o ponto dado é o mesmo
que o obtido pela APA (X1=P10). Este procedimento é repetido a cada iteração, sendo que o
ponto obtido pelo APA não coincidirá com nenhum dos dez pontos determinados pela APAF a
partir da segunda iteração. Neste exemplo, o Centroide também é usado como um método de
defuzzificação.

Nas Figuras 3.7 a 3.10 os caminhos percorridos pelos métodos APA e APAF foram cons-
trúıdos em busca da solução ótima do PPL, após seis iterações. Na iteração i, i = 1, · · · , 6,
APA e APAF geram os pontos Xi e XiF, respectivamente.
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Figura 3.5: Região de viabilidade com o ponto
X0=X0 e os dez pontos obtidos pela APAF na
primeira iteração.

Figura 3.6: Parte da região de viabi-
lidade com zoom nos dez pontos ob-
tidos pela APAF na primeira iteração
(P1≈P2).

Na Figura 3.7 a região de viabilidade e o caminho percorrido são mostrados, a partir de
X0, pelo APA (em azul) e APAF (em vermelho) após 6 iterações. Na Figura 3.8 uma seção
da região de viabilidade é apresentada com zoom para ilustrar que o APAF já alcança um
resultado melhor (Table 3.2) do que o APA na primeira iteração. Na Figura 3.9 é apresentada
uma seção da região de viabilidade com zoom na parte superior para ilustrar que o APAF já
atinge a solução ótima na sexta iteração com o ponto X6F, de acordo com o erro estabelecido,
enquanto o APA ainda está longe do ponto ótimo com o ponto X6. Na Figura 3.10 uma seção
da região de viabilidade é mostrada com zoom na parte superior, onde o ponto X6F está muito
próximo do ponto ótimo X∗.

Figura 3.7: Caminhos percorridos na região
de viabilidade, partindo de X0=X0, pelo APA
(em azul) e pelo APAF (em vermelho) após 6
iterações.

Figura 3.8: Corte com zoom da região
de viabilidade mostrando que o APAF al-
cança um resultado melhor do que o APA
na primeira iteração.

Na Tabela 3.2 é apresentada a comparação entre os resultados obtidos na APA e na APAF.
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Figura 3.9: Região de viabilidade com zoom
no topo ilustrando que o APAF atinge a
solução ótima na sexta iteração com o ponto
X6F enquanto o ponto X6 está mais distante
do ponto ótimo.

Figura 3.10: Região de viabilidade com
zoom na parte superior ilustrando a proxi-
midade do ponto X6F ao ponto ótimo X∗,
representado por X (em verde).

Tabela 3.2: Resultados de Q(Xk) obtidos nos algoritmos estudados.

Iterações 1a 2a 3a 4a 5a 6a

APA 10.209529 10.905029 10.921516 10.932244 10.939978 10.945900

APAF 10.491436 10.916259 10.971660 10.998484 10.999759 10.999955

Na Tabela 3.2 os valores da função objetivo obtidos pelo APAF são melhores que os valores
obtidos pelo APA em todas as iterações. Na sexta iteração o resultado do APAF já atinge o
valor ótimo da função objetivo e o APA atinge o valor ótimo 10.99995959 na décima terceira
iteração, considerando o erro absoluto ϵ ≤ 10−4.

Exemplo 3.3. Neste exemplo, aumentou-se o número de variáveis e desigualdade e também
uma desigualdade com o śımbolo ≥ para mostrar o bom desempenho do algoritmo também em
R3, com erro absoluto ϵ ≤ 10−4. O Problema de Programação Linear é dado por:

Max Q(X) = x1 + x2 − x3

sujeito a: − x1 + x2 + x3 ≤ 36
7x1 − 5x2 + 3x3 ≤ 36
3x1 + 5x2 − 10x3 ≤ 10

x1 + x2 + x3 ≤ 15
2x1 − x2 + 3x3 ≥ 7

x1, x2, x3 ≥ 0.

(3.7)

A forma padrão desta PPL é dada por
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−Min(−Q(X) = −x1 − x2 + x3)
sujeito a:− x1 + x2 + x3 + x4 = 36

7x1 − 5x2 + 3x3 + x5 = 36
3x1 + 5x2 − 10x3 + x6 = 10

x1 + x2 + x3 + x7 = 15
2x1 − x2 + 3x3 − x8 = 7

x1, x2, x3, x4, x5, x6, x7, x8 ≥ 0.

(3.8)

em que C = [−1 − 1 1]T , C = [−1 − 1 1 0 0 0 0 0]T ,

A =




−1 1 1
7 −5 3
3 5 −10
1 1 1
2 −1 3



, A =




−1 1 1 1 0 0 0 0
7 −5 3 0 1 0 0 0
3 5 −10 0 0 1 0 0
1 1 1 0 0 0 1 0
2 −1 3 0 0 0 0 −1



, B =




36
36
10
15
7



,

X = [x1 x2 x3]
T e X = [x1 x2 x3 x4 x5 x6 x7 x8]

T .

Sendo X0 = [1 2 3 32 30 27 9 2]T , que é uma solução interior à região de viabi-
lidade do PPL, usa-se γ = 0.95 e erro absoluto ϵ≤ 10−4 em relação ao valor ótimo Q(X∗) =
8.195121, com o ponto ótimo X∗ = (6.981707, 4.615853, 3.402439).

As trajetórias descritas pelos métodos APA (em azul) e APAF (em vermelho) em busca da
solução ótima do PPL, partindo de X0, são apresentadas nas Figuras 3.11 a 3.14. O APAF
atinge o valor ótimo, de acordo com o erro absoluto, na oitava iteração. A cada iteração, i,
i = 1, · · · , 8, os pontos obtidos pelo APA e APAF são denotados por Xi e XiF, respectivamente.
Neste PPL, o método de defuzzificação utilizado foi o LOM por ter atingido o valor ótimo com
menos iterações que o Centroide.

Figura 3.11: APA e APAF trajetórias a partir
de X0=X0 até a oitava iteração.

Figura 3.12: Zoom das trajetórias obtidas
pelo APA e APAF.
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Figura 3.13: Zoom de X4F. Figura 3.14: Zoom da sexta iteração, mostrando
a proximidade de X8F do ponto ótimo X∗, re-
presentado por X (em verde).

Na Tabela 3.3 é apresentada a comparação entre os resultados obtidos no APA e no APAF.

Tabela 3.3: Resultados de Q(Xk) obtidos nos algoritmos estudados.

Iterações 1a 2a 3a 4a 5a 6a 7a 8a

APA 5.236438 6.746586 6.997401 8.023601 8.180095 8.190944 8.194212 8.194363

APAF 5.675869 6.992741 7.827089 8.175832 8.192638 8.194525 8.194952 8.195024

Na Tabela 3.3 os valores da função objetivo obtidos pelo APAF são melhores que os valores
obtidos pelo APA em todas as iterações, como nos exemplos anteriores. Na oitava iteração,
o resultado obtido pelo APAF já atinge o valor ótimo da função objetivo, considerando o erro
absoluto ϵ ≤ 10−4. A fundamentação teórica do método garante essa eficácia nos resultados,
devido à busca ampliada em direção ao ponto ótimo em cada iteração.

Neste caṕıtulo, duas ferramentas matemáticas amplamente utilizadas atualmente foram
combinadas: o Método dos Pontos Interiores, em particular, o PASA, e a Teoria dos Conjun-
tos Fuzzy. Os resultados obtidos com o método proposto parecem promissores em eficiência,
permitindo expandir a busca por soluções ótimas em PPL com parâmetros e variáveis sendo
números reais. A vantagem do método refere-se a uma nova possibilidade de uso da álgebra de
números fuzzy que permite considerar simultaneamente 10 ou mais pontos interiores nos Pas-
sos do Algoritmo a partir dos α-ńıveis do número fuzzy triangular definido a partir da solução
inicial. Permitindo assim a escolha, dentre esses pontos, de pontos mais próximos do ponto
ótimo a cada iteração em relação ao algoritmo usual. Como o PASA é um caso particular do
FPASA quando α = 1, naturalmente os resultados do FPASA expandem o número de possibili-
dades na busca pela solução ótima. As limitações da álgebra de números fuzzy foram resolvidas
pela defuzificação dos números fuzzy e, consequentemente, pela álgebra de números reais. Os
métodos de defuzificação Centroide e LOM foram utilizados, e observou-se que o número de
iterações para atingir a solução ótima pelo FPASA variou de acordo com a escolha do método
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de defuzificação. Nos exemplos considerados, o FPASA necessitou de um número menor de
iterações para atingir os pontos ótimos para os erros considerados.

No próximo caṕıtulo desenvolve-se a otimização possibiĺıstica a partir do ponto de vista de
intervalos fuzzy generalizados de números fuzzy intervalares triangulares, em associação com o
método da penalidade exata.
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Caṕıtulo 4

Aplicação da Otimização Possibiĺıstica
a Números Fuzzy Intervalares: Dieta
Suplementar

Problemas de otimização possibiĺıstica e fuzzy utilizam números fuzzy (formalmente definidos
no Caṕıtulo 1), embora a semântica das entidades de possibilidade e fuzzy seja distinta e os
métodos de solução correspondentes da otimização sejam diferentes (LODWICK; JAMISON,
2007). A maioria dos artigos de pesquisa realiza otimização possibiĺıstica e fuzzy por meio de α-
ńıveis de intervalos fuzzy. Como os α-ńıveis de um intervalo fuzzy são um intervalo de valor real
a abordagem aqui desenvolvida utiliza uma representação de intervalo restritos (LODWICK,
1999) para as funções direita e esquerda que definem um intervalo fuzzy. As entidades funda-
mentais deste estudo são conjuntos fuzzy com valores intervalares, que geram dois conjuntos de
intervalos de α-ńıveis. A representação da incerteza em modelos matemáticos pode ser estendida
pela teoria de conjuntos fuzzy do tipo 2. Esta teoria é rica em resultados teóricos e demonstrou
grande potencial em aplicações, como pode ser visto em (BERTONE; JAFELICE; CÂMARA,
2017; FIGUEROA-GARCÍA; HERNÁNDEZ, 2014; JAFELICE; BERTONE, 2020). A teoria
das possibilidades é uma abordagem simples para lidar com a incerteza em situações que envol-
vem informações incompletas. Essa teoria emprega duas funções que avaliam a possibilidade e
a necessidade de eventos. Ela está na interseção de conjuntos fuzzy, probabilidade e racioćınio
não linear. Embora esteja relacionada a conjuntos fuzzy, considerando uma distribuição de pos-
sibilidades como um conjunto fuzzy espećıfico, a teoria das possibilidades difere, pois conjuntos
fuzzy e lógica fuzzy se concentram principalmente na representação de propriedades graduais,
enquanto a teoria das possibilidades lida com a incerteza em proposições clássicas ou fuzzy
(DUBOIS; PRADE, 1978). Observa-se que um conjunto fuzzy com valores intervalares é um
caso particular de um conjunto fuzzy tipo 2 (HAMRAWI, 2011) e de uma nuvem (NEUMAIER,
2004; NEUMAIER, 2005). Os artigos (CHEN; KAWASE, 2000; LIU, 2008; MENDEL; LIU;
ZHAI, 2009) apresentam estudos de conjuntos fuzzy tipo 2 a partir de conjuntos fuzzy com
valores intervalares. Essa metodologia também pode ser encontrada em (TAHAYORI; TET-
TAMANZI.; ANTONI, 2006; WAGNER; HAGRAS, 2008; WAGNER; HAGRAS, 2010). No
entanto, este estudo utiliza uma nova representação de conjuntos fuzzy com valores intervalares,
baseada em funções de intervalos restritos (LODWICK; JAMISON, 2018). Uma aplicação da
teoria da aritmética de intervalos restritos na análise de sistemas baseados em regras fuzzy de
tipo 2 obteve resultados mais informativos e robustos no estudo da dinâmica do HIV, o que
não seria posśıvel com abordagens padrão (JAFELICE; LODWICK, 2021). Intervalos fuzzy
são distribuições sobre números reais que codificam pertencimento a conjuntos ou deficiência
de informação. Ambos são representados por uma distribuição única, embora sua semântica
e, consequentemente, seus métodos de otimização sejam distintos. Quando um modelo de oti-
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mização é sobre conjuntos de números fuzzy, que codificam transição de conjuntos, a otimização
é uma otimização fuzzy e é resolvida por meio de métodos de agregação (interseção fuzzy, por
exemplo). Se a otimização for sobre intervalos fuzzy que codificam deficiência de informação,
é uma otimização possibiĺıstica e é resolvida por meio de métodos de otimização distribuci-
onal (recurso generalizado, arrependimento minimax generalizado, por exemplo (LODWICK;
SALLES-NETO, 2021) discutem a otimização flex́ıvel e generalizada de incerteza, que estão
associadas à falta de informação e são mais gerais do que a teoria estocástica, que assume distri-
buições bem definidas. Em particular, descreve a teoria da incerteza generalizada no contexto
da modelagem de otimização. Em problemas de controle ótimo com uma função objetivo com
valor intervalar, as condições de otimalidade são obtidas a partir da relação de ordem inferior e
superior no espaço intervalar em (LEAL et al., 2021). Além disso, dada uma otimização sobre
intervalos fuzzy, a representação é uma distribuição única. Ao modelar processos nos quais o
risco está envolvido, como, por exemplo, estruturas de engenharia civil, estruturas mecânicas
como aviões, procedimentos médicos como radioterapia ou investimentos em previdência pri-
vada, o que caracteriza esses modelos é que eles são, em sua maioria, não determińısticos e não
estocásticos. Ou seja, eles não são representados por uma única distribuição que descreva sua
incerteza. Nesse caso, o que normalmente descreve a distribuição que captura a incerteza nos
valores de entrada dos parâmetros de um modelo anaĺıtico, ou seja, uma otimização em nosso
caso, deve ser mais flex́ıvel. Para esse fim, nossa abordagem é um tipo particular de incerteza
que é limitado por funções conhecidas a priori, geradas por conjuntos fuzzy com valores inter-
valares. Neste caṕıtulo é exibido o conteúdo publicado no artigo (CAMARA; JAFELICE, 2026).

4.1 Otimização Possibiĺıstica Restrita com Dupla Distri-

buição

Será ilustrada a análise do intervalo fuzzy restrito em otimização e então indica-se a teoria
associada. O problema genérico de otimização possibiĺıstica (LODWICK; BACHMAN, 2005),
é

min ẑ = f(ĉ, x⃗)

ĝ(â, b̂, x⃗) ≥ 0,
Ω = {x⃗|x⃗ ≥ 0}.

Agora, considere a função penalidade (ZANGWILL, 1967)

ĥi(ĝi(â, b̂, x⃗)) = min
{
0, ĝi(â, b̂, x⃗)

}

em que ĝi é a ith linha das restrições. Para restrições de igualdade,

ĝi(â, b̂, x⃗)) = 0

ĥi(ĝi(â, b̂, x⃗)) = |ĝi(â, b̂, x⃗)|
ou

ĥi(ĝi(â, b̂, x⃗)) = max
(
ĝi(â, b̂, x⃗)

)2
.

Para um vetor de penalidade di > 0 de violações da ith linha, nosso problema de otimização
possibiĺıstica é

min
x⃗∈Ω

F̂ (x⃗) = min
x⃗∈Ω

(
f(ĉ, x⃗) + dT ĥ

)
. (4.1)
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Os α-ńıveis de F̂ , com ĉ e ĥ NFI, são

[F̂L(x⃗, α), F̂R(x⃗, α)] =
[
f(ĉ(α), x⃗) + dT ĥ(α)L, f(ĉ(α), x⃗) + dT ĥ(α)R

]
,

[F̂L(x⃗, α), F̂R(x⃗, α)] =
[
f(ĉ(α), x⃗) + dT ĥ(α)

L
, f(ĉ(α), x⃗) + dT ĥ(α)

R

]
.

Definição 4.1. A representação do intervalo restrito de F̂ é

F̂α(x⃗, λα, λα) =
F̂ α(x⃗, λα) + F̂ α(x⃗, λα)

2
, (4.2)

em que F̂ α(x⃗, λα) e F̂ α(x⃗, λα) são representações do intervalo restrito de F̂ e F̂ , respectiva-
mente. Note que λα e λα estão considerando todos os números fuzzy intervalares.

4.2 Um Caso Geral de Otimização com Números Fuzzy

Intervalares

Considere o problema

min f(c⃗, x⃗) =
n∑

j=1

cjxj

sujeito a

gi(⃗ai, bi, x⃗) =
n∑

j=1

aijxj ≥ bi, i = 1, · · · , r − 1

gi(
̂⃗
Ai, bi, x⃗) =

n∑

j=1

Âijxj ≥ bi, i = r, · · · ,m

x1, x2, . . . , xn ≥ 0

(4.3)

em que r ≥ 2, x⃗ = [x1 x2 . . . xn]
T , c⃗ = [c1 c2 . . . cn], a⃗i = [ai1 ai2 . . . ain], aij são números

reais, com i = 1, . . . , r−1, j = 1, . . . , n, cj, bi são números reais, com i = 1, . . . ,m, j = 1, . . . , n,

e
̂⃗
Ai = [Âi1 Âi2 . . . Âin], Âij, i = r, . . . ,m, j = 1, . . . , n são NFI.

Portanto, a função penalidade para as restrições i = r, . . . ,m, j = 1, . . . , n será

hi(x⃗,
̂⃗
Ai, bi) =

(
max

{
0, bi −

n∑

j=1

Âijxj

})
, i = r, · · · ,m. (4.4)

Considerando a função penalidade 4.4 e a equação 4.1, tem-se que

F̂ (x⃗) =
n∑

j=1

cjxj +
m∑

i=r

di

(
max

{
0, bi −

n∑

j=1

Âijxj

})
,

em que

max{0, x} =

√
x2 + x

2
.

Desse modo,

F̂ (x⃗) =
n∑

j=1

cjxj +
m∑

i=r

di
2



√√√√
(
bi −

n∑

j=1

Âijxj

)2

+ bi −
n∑

j=1

Âijxj


 .
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A representação intervalar restrita de F̂ é

F̂α

(
x⃗, λ(Aij)α

)
=

n∑

j=1

cjxj +
m∑

i=r

di

2




√√√√√

bi −

n∑

j=1

Aij

(
λAij

)
α
xj




2

+ bi −
n∑

j=1

Aij

(
λAij

)
α
xj


 , (4.5)

em que

Aij

(
λAij

)
α
= Aij

L
(α) +

(
Aij

R
(α)− Aij

L
(α)
)(

λAij

)
α
, 0 ≤

(
λAij

)
α
≤ 1,

com i = r, . . . ,m, j = 1, . . . , n.

A representação intervalar restrita de F̂ é

F̂α

(
x⃗, λ(Aij)α

)
=

n∑

j=1

cjxj +

m∑

i=r

di

2




√√√√√

bi −

n∑

j=1

Aij

(
λAij

)
α
xj




2

+ bi −
n∑

j=1

Aij

(
λAij

)
α
xj


 , (4.6)

em que

Aij

(
λAij

)
α
= AijL(α) +

(
AijR(α)− AijL(α)

) (
λAij

)
α
, 0 ≤

(
λAij

)
α
≤ 1,

com i = r, . . . ,m, j = 1, . . . , n.

Substituindo as equações (4.5) e (4.6) na equação (4.2), obtém-se:

F̂α

(
x⃗,
−−−−−→(
λAij

)
α
,
−−−−→(
λAij

)
α

)
=

n∑

j=1

cjxj +
m∑

i=r

di
4

(
|(H i)α|+ (H i)α + |(H i)α|+ (H i)α

)
, (4.7)

em que

(H i)α = bi −
n∑

j=1

Aij

(
λAij

)
α
xj,

(H i)α = bi −
n∑

j=1

Aij

(
λAij

)
α
xj,

com (H i)α, (H i)α dependendo, respectivamente, de
−−−−−→(
λAij

)
α
=
[
(λAi1)α . . . (λAin)α

]T
,
−−−−→(
λAij

)
α
=

[(λAi1)α . . . (λAin)α]
T , i = r, . . . ,m, e de x⃗.

O problema de otimização possibiĺıstica resultante é

min F̂α

(
x⃗,
−−−−−→(
λAij

)
α
,
−−−−→(
λAij

)
α

)

sujeito a

gi(⃗ai, bi, x⃗) =
n∑

j=1

aijxj ≥ bi, i = 1, · · · , r − 1, (4.8)

em que 0 ≤
−−−−−→(
λAij

)
α
≤ 1, 0 ≤

−−−−→(
λAij

)
α
≤ 1 e 0 ≤ α ≤ 1.
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4.3 Um Caso Particular de Otimização

Considere o problema

min f(c⃗, x⃗) = c1x1 + c2x2 + . . .+ cnxn

subject to
g1(⃗a1, b1, x⃗) = a11x1 + a12x2 + . . .+ a1nxn ≥ b1
g2(⃗a2, b2, x⃗) = a21x1 + a22x2 + . . .+ a2nxn ≥ b2

...
...

gr−1(⃗ar−1, br−1, x⃗) = a(r−1)1x1 + a(r−1)2x2 + . . .+ a(r−1)nxn ≥ br−1

gr( ̂⃗ar, br, x⃗) = Âx1 + ar2x2 + . . .+ arnxn ≥ br
x1, x2, . . . , xn ≥ 0

(4.9)

em que x⃗ = [x1 x2 . . . xn]
T , c⃗ = [c1 c2 . . . cn], a⃗i = [ai1 ai2 . . . ain], ̂⃗ar = [Â ar2 . . . arn], Â é

um NFI (Figura 1.25), em que ar2, . . . , arn, br, aij, cj, bi são números reais, com i = 1, . . . , r−1,
j = 1, . . . , n, e r ∈ N, r ≥ 2 de modo que os α-ńıveis são

Âα = {([e1(α− 1) + A, d1(1− α) + A] , [e2(α− 1) + A, d2(1− α) + A]) se 0 ≤ α ≤ 1} .
(4.10)

Desse modo,

hr(x⃗, Â, ar2, . . . , arn) = dr

(
max{0,−Âx1 − ar2x2 − . . .− arnxn + br}

)

= max{0,−Âx1 − ar2x2 − . . .− arnxn + br}.

Combine a última restrição e a função objetivo em uma distribuição possibiĺıstica, para obter

F̂ (x⃗) = c1x1 + c2x2 + . . .+ cnxn + dr

(
max{0,−Âx1 − ar2x2 − . . .− arnxn + br}

)

= c1x1 + c2x2 + . . .+ cnxn+

+ dr




√
(−Âx1 − ar2x2 − . . .− arnxn + br)2 + (−Âx1 − ar2x2 − . . .− arnxn)

2


 ,

em que

max{0, x} =

√
x2 + x

2
.

A representação do intervalo restrito de F̂ é

F̂ α(x⃗, λα) = c1x1 + c2x2 + . . .+ cnxn + dr

(
1

2

√
H2

α +
1

2
Hα

)
, (4.11)

em que

Hα = −(e1(α−1)+A+(d1(1−α)+A+ e1(1−α)−A)λα)x1−ar2x2− . . .−arnxn+ br. (4.12)

A representação do intervalo restrito de F̂ é

F̂ α(x⃗, λα) = c1x1 + c2x2 −+ . . .+ cnxn + dr

(
1

2

√
H

2

α +
1

2
Hα

)
, (4.13)

em que

Hα = −(e2(α−1)+A+(d2(1−α)+A+ e2(1−α)−A)λα)x1−ar2x2− . . .−arnxn+ br. (4.14)
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Substituindo as equações (4.13) e (4.11) na equação (4.2), obtém-se:

F̂α(x⃗, λα, λα) = c1x1 + c2x2 + . . .+ cnxn + dr

(
1

4
|Hα|+

1

4
Hα +

1

4
|Hα|+

1

4
Hα

)
. (4.15)

Note que

F̂α(x⃗, λα, λα) =





c1x1 + c2x2 + . . .+ cnxn + dr

(
1

2
Hα +

1

2
Hα

)
se Hα ≥ 0 e Hα ≥ 0;

c1x1 + c2x2 + . . .+ cnxn +
dr
2
Hα se Hα ≥ 0 e Hα < 0;

c1x1 + c2x2 + . . .+ cnxn +
dr
2
Hα se Hα < 0 e Hα ≥ 0;

c1x1 + c2x2 + . . .+ cnxn se Hα < 0 e Hα < 0;

para todos x1, x2, . . . , xn ∈ Ω, em que

Ω =





a11x1 + a12x2 + . . .+ a1nxn ≥ b1
a21x1 + a22x2 + . . .+ a2nxn ≥ b2

...
...

a(r−1)1x1 + a(r−1)2x2 + . . .+ a(r−1)nxn ≥ br−1.

O problema de otimização obtido pelo método da penalidade combinado com os α-ńıveis
representados por intervalos restritos é dado por:

min
x⃗∈Ω

F̂α(x⃗, λα, λα)

com 0 ≤ λα, λα ≤ 1, 0 ≤ α ≤ 1.

4.3.1 Análise dos Sinais de Hα e Hα

Esta subseção detalha a análise dos sinais das equações (4.14) e (4.12). Como Ax1 + ar2x2 +
. . .+ arnxn ≥ br, considere

Ax1 + ar2x2 + . . .+ arnxn − br = δ, (4.16)

em que δ ≥ 0. Substituindo (4.16) na equação (4.14) e equação (4.12) obtém-se, respectiva-
mente,

Hα = (−e1(α− 1)x1 − ((d1 + e1)(1− α))λαx1)− δ, (4.17)

Hα = (−e2(α− 1)x1 − ((d2 + e2)(1− α))λαx1)− δ, (4.18)

em que o estudo dos sinais de Hα e Hα é feito da seguinte forma:

i) Hα

Considere Hα = (−e1(α− 1)x1 − ((d1 + e1)(1− α))λαx1)− δ ≤ 0, então

λα ≥ e1
e1 + d1

− δ

(1− α)(e1 + d1)x1

, 0 ≤ α < 1, x1 > 0. (4.19)

Além disso, para cada 0 ≤ α ≤ 1,

A(λAα
) = (1− α)((d1 + e1)λAα

− e1) + A, 0 ≤ λAα
≤ 1. (4.20)
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Tabela 4.1: Comparação entre métodos de resolução de PPL com incerteza nos parâmetros.
Método Abordagem

da Incerteza
Vantagens Limitações Comparação com

PEIR
Programação
Estocástica
(LI; GROSS-
MANN, 2021)

Modelagem
por meio
de distri-
buições de
probabilidade
conhecidas

Captura
cenários
aleatórios;
soluções robus-
tas para médias

Requer in-
formações
probabiĺısticas
detalhadas; alto
custo computa-
cional

O PEIR não depende
de distribuições,
modela matemati-
camente melhor as
informações incomple-
tas

Programação
Robusta
(INUIGUCHI,
2012)

Reformula
restrições
com in-
certeza de
parâmetros
em um
número finito
de restrições
convexas

Permite um
tratamento
unificado de
múltiplos
métodos de
otimização sob
incerteza

Pode gerar
soluções ex-
cessivamente
conservadoras;
dificuldade em
modelar a flexi-
bilidade

O PEIR oferece me-
nos conservadorismo,
equilibrando robustez
e otimalidade

Programação
Linear Fuzzy
(BERTONE;
JAFELICE;
CÂMARA,
2017)

Parâmetros
modelados
por números
fuzzy

Representa
incertezas im-
precisas em
parâmetros;
aproximação
intuitiva

Os resultados
podem depender
da técnica de
defuzzificação;
complexidade
em PPL de di-
mensão elevada

PEIR evita a neces-
sidade de defuzzi-
ficação, generaliza
métodos baseados em
α-ńıveis

Resolução
de PPL com
SIA (SU-
PRAJITNO;
MOHD, 2010)

Parâmetros
representados
por inter-
valos com
Aritmética
Intervalar
Padrão (SIA)

Simplicidade;
não requer dis-
tribuições

As operações en-
tre parâmetros
com SIA são
limitadas

O PEIR utiliza a
CIA, permitindo que
os parâmetros sejam
operados com todas
as suas variações
no suporte de cada
α-ńıvel, ampliando
as possibilidades de
soluções

Resolução
de PPL com
PEIR

Utiliza in-
tervalos
generalizados
restritos e
penalização
exata para
viabilidade

Evita a dis-
cretização
dos α-ńıveis;
maior precisão;
equiĺıbrio en-
tre robustez e
otimalidade;
preserva a estru-
tura matemática
do PPL

Método recente,
ainda pouco ex-
plorado em larga
escala

nais e de custo são assumidos como determińısticos, restringindo a capacidade do modelo de
capturar a variabilidade inerente aos contextos do mundo real. Por outro lado, abordagens
baseadas em programação de metas fuzzy e conjuntos fuzzy tipo 2 oferecem maior flexibilidade
na representação da incerteza (AOUNI; MARTEL; HASSAINE, 2009; BERTONE; JAFELICE;
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CÂMARA, 2017). A primeira permite que as metas nutricionais sejam tratadas como objetivos
flex́ıveis, aproximando o modelo de cenários do mundo real, enquanto a segunda expande o tra-
tamento da imprecisão ao modelar explicitamente a variabilidade das funções de pertinência.
Essas vantagens, no entanto, implicam maior complexidade matemática e computacional, o que
requer métodos de aproximação mais estruturados. Portanto, a escolha do modelo matemático
depende do equiĺıbrio entre simplicidade e eficiência, por um lado, e realismo e capacidade de
representação, por outro.

Em problemas de programação linear de alta dimensão, a escalabilidade computacional
torna-se um desafio. Nesse contexto, heuŕısticas como a amostragem adaptativa (DOMINGO;
GAVALDÀ; WATANABE, 2002) destacam-se por reduzir o espaço de busca por meio da seleção
iterativa de subconjuntos representativos de restrições ou variáveis, permitindo a incorporação
progressiva dos elementos mais cŕıticos. Outras estratégias incluem métodos de relaxação,
algoritmos de decomposição e procedimentos de busca local (TSENG, 1991; ANGEL, 2006).
Embora não garantam a solução ótima global, fornecem aproximações de boa qualidade com
custos computacionais significativamente menores, tornando-as adequadas para aplicações em
larga escala ou sob incerteza paramétrica.

A próxima seção contém uma aplicação de um caso particular do problema de otimização
desenvolvido neste estudo. O modelo escolhido descreve a composição nutricional diferenciada
de potássio em três tipos diferentes de banana, que podem ou não estar dispońıveis devido à
sazonalidade da colheita dos tipos considerados. Um NFI pode representar adequadamente as
posśıveis escolhas de tipos de banana a serem considerados na dieta.

4.4 Aplicação de Intervalos Fuzzy Generalizados para

Otimização: Dieta Suplementar

Um indiv́ıduo foi diagnosticado com deficiência de potássio, zinco e vitamina E após exames
médicos de rotina. Uma nutricionista solicitou ao indiv́ıduo que selecionasse, dentre um con-
junto de alimentos, aqueles que seriam mais adequados para essa dieta suplementar que atenda
a pelo menos 50% desses nutrientes. Os alimentos selecionados pelo indiv́ıduo foram: banana,
kiwi, castanha de caju e castanha do Brasil.

4.4.1 Dieta com um parâmetro do PPL sendo um NFI triangular

O indiv́ıduo consome preferencialmente banana nanica, mas seu consumo habitual de banana
varia entre 30% de banana-da-terra e 70% de banana nanica; e 50% banana prata e 50% de
banana nanica. Somente quando ele tem dificuldade de encontrar a banana nanica é que o
indiv́ıduo ultrapassa esses percentuais de consumo de banana-da-terra ou banana prata em sua
alimentação Na Tabela 4.2 é mostrada a quantidade de nutrientes em mg por 100 gramas dos
alimentos selecionados.

Tabela 4.2: Quantidade de potássio em 100 gramas em cada banana utilizada na dieta (BRA-
SILFOODS, 2024).

Banana-da-terra Banana nanica Banana prata
Potássio (mg) 328 346 357

Como as bananas utilizadas na dieta possuem quantidades diferentes de potássio e semelhan-
tes dos demais nutrientes, o número fuzzy intervalar 3̂46 é usado para representar a quantidade
de potássio presente na dieta do indiv́ıduo. A representação gráfica de 3̂46 é representado na
Figura 4.5.
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nanica e banana-da-terra ou percentuais de bananas nanica e prata, em detrimento de sua
preferência por consumo exclusivo de banana nanica em sua dieta suplementar.

4.4.3 Resolução do PPL usando Distribuição Possibiĺıstica para a
Dieta Suplementar

Nesta aplicação de dieta suplementar, o problema com penalidade exata e função de pena-
lidade com valor absoluto tem a mesma solução que o problema crisp com o parâmetro de
penalidade dr = 1. De acordo com (ZANGWILL, 1967), existe um valor d tal que para todo
dr > d, a solução de um PPL com penalidade exata e função de penalidade com valor ab-
soluto e parâmetro dr tem a mesma solução que o PPL original. Assim, escolhe-se dr = 1
para o problema de otimização usando distribuição possibiĺıstica com penalidade, na equação
(4.15). Dessa forma, o estudo da função objetivo dependerá do número fuzzy intervalar Â e,
consequentemente, pode-se avaliar a função objetivo com base na necessidade e possibilidade
de Â. Para cada 0 ≤ α ≤ 1, com 0 ≤ λα ≤ 1, 0 ≤ λα ≤ 1, tem-se o seguinte problema com
penalidade:

minQ(X) = 0.30x1 + 1.50x2 + 5x3 + 6.50x4 +

(
1

4
|Hα|+

1

4
Hα +

1

4
|Hα|+

1

4
Hα

)

{
0.16x1 + 0.12x2 + 5.78x3 + 4.28x4≥4.5
0.07x1 + 2.80x2 + 0.20x3 + 6.29x4≥7.5 (4.28)

x1, x2, x3, x4 ≥ 0,

em que

Hα = −5.4(α− 1)x1 − 10.9(1− α)λαx1 − 346x1 − 295x2 − 660x3 − 625x4 + 1755, (4.29)

Hα = −18(α− 1)x1 − 29(1− α)λαx1 − 346x1 − 295x2 − 660x3 − 625x4 + 1755, (4.30)

A Tabela 4.4 mostra os valores de x∗
1, x

∗
2, x

∗
3, x

∗
4 e Q(X∗) para cada α usando distribuição

possibiĺıstica com penalidade no problema de otimização da dieta suplementar. A discretização
de α com espaçamento 0, 1 foi escolhida para permitir comparações entre os resultados ob-
tidos por cada método. O método da penalidade exata com intervalos restritos não requer
tal discretização, uma vez que a solução do problema de otimização possibiĺıstica considera
continuamente todos os valores do suporte dos α-ńıveis .

Tabela 4.4: Valores de x∗
1, x

∗
2, x

∗
3, x

∗
4 e Q(X∗).

α x∗
1 x∗

2 x∗
3 x∗

4 Q(X∗)
0 2.905371 0.5208311 0.000000 0.9281871 7.686074
0.1 2.910002 0.5211226 0.000000 0.9280058 7.686722
0.2 2.914648 0.5214150 0.000000 0.9278240 7.687373
0.3 2.919309 0.5217083 0.000000 0.9276415 7.688025
0.4 2.923984 0.5220026 0.000000 0.9274585 7.688679
0.5 2.928675 0.5222979 0.000000 0.9272748 7.689336
0.6 2.933381 0.5225941 0.000000 0.9270906 7.689994
0.7 2.938101 0.5228912 0.000000 0.9269058 7.690655
0.8 2.942838 0.5231893 0.000000 0.9267204 7.691318
0.9 2.947589 0.5234884 0.000000 0.9265344 7.691983
1 2.952356 0.5237884 0.000000 0.9263478 7.692650
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• Para Hα ≥ 0, 0 ≤ λα ≤ 0.4954 e 340.6 + 5.4α ≤ A(λAα
) ≤ 346;

• Para Hα ≤ 0, 0.4954 ≤ λα ≤ 1 e 346 ≤ A(λAα
) ≤ 351.5− 5.5α;

• Para Hα ≥ 0, 0 ≤ λα ≤ 0.6206 e 328 + 18α ≤ A(λAα
) ≤ 346;

• Para Hα ≤ 0, 0.6206 ≤ λα ≤ 1 e 346 ≤ A(λAα
) ≤ 357− 11α.

4.4.5 Resolução do PPL usando α-ńıveis para a Dieta Suplementar

Para cada α-ńıvel, os valores correspondentes às extremidades do suporte do número fuzzy
intervalar triangular 3̂46, aL(α) = 328 + 18α, aL(α) = 340.6 + 5.4α, aR(α) = 351.5 − 5.5α e
aR(α) = 357−11α são as possibilidades de quantidade de potássio de acordo com a porcentagem
de cada banana na dieta. Para cada uma dessas possibilidades, o problema de otimização é

minQ(X) = 0.30x1 + 1.50x2 + 5x3 + 6.5x4



a(α)x1 + 295x2 + 660x3 + 625x4≥1755
0.16x1 + 0.12x2 + 5.78x3 + 4.28x4 ≥ 4.5
0.07x1 + 2.80x2 + 0.20x3 + 6.29x4 ≥ 7.5

(4.31)

x1, x2, x3, x4 ≥ 0,

em que a(α) representa cada uma dessas possibilidades. Resolvendo o PPL correspondente a
cada um desses números reais a(α), as soluções ótimas em cada caso são obtidas considerando
o mesmo α-ńıvel dos números fuzzy intervalares x̂∗

i dados pelo Prinćıpio de Extensão de Zadeh

para o número fuzzy intervalar triangular 3̂46 em que f é uma função afim crescente ou de-
crescente determinada para cada variável. Os valores ótimos também são obtidos considerando
o mesmo α-ńıvel dos números fuzzy intervalares Q̂(X∗) dado pelo Prinćıpio de Extensão de

Zadeh para o número fuzzy intervalar 3̂46, em que f é uma determinada função afim crescente
ou decrescente. A Tabela 4.5 mostra os valores das extremidades do suporte de x̂∗

1 para cada

α e a Tabela 4.6 mostra os valores das extremidades do suporte de Q̂(X∗) para cada α.

Tabela 4.5: Valores de x∗
1 em relação aos valores aL(α), aL(α), aR(α) e aR(α)

nesta ordem, respectivamente.
α x1R(α) x1R(α) x1L(α) x1L(α)
0 3.117342 2.999988 2.905370 2.859858
0.1 3.100019 2.995156 2.910002 2.868846
0.2 3.082886 2.990339 2.914648 2.877891
0.3 3.065942 2.985538 2.919309 2.886993
0.4 3.049183 2.980752 2.923984 2.896153
0.5 3.032607 2.975981 2.928675 2.905371
0.6 3.016209 2.971226 2.933381 2.914648
0.7 2.999988 2.966486 2.938101 2.923984
0.8 2.983941 2.961761 2.942838 2.933381
0.9 2.968064 2.957051 2.947589 2.942838
1 2.952355 2.952355 2.952355 2.952355

Na Figura 4.11 são mostrados os α-ńıveis com os respectivos valores de Q̂(X∗). Os valores
de Q(X∗) obtidos para cada α-ńıvel pelo método da penalidade exata são mostrados em verde.

Observe que, neste caso, os resultados obtidos na Tabela 4.5 estão diminuindo para cada α.
Além disso, x̂∗

1, x̂
∗
2 e Q̂(X∗) são obtidos pelo Prinćıpio de Extensão de Zadeh por uma função

decrescente e x̂∗
4 é obtido por uma função crescente. Portanto, as soluções ótimas e os valores

ótimos de PPL obtidos para cada α são como segue:
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Tabela 4.6: Valores de Q̂(X∗) em relação aos valores aL(α), aL(α), aR(α) e aR(α) nesta ordem,
respectivamente.

α Q(X∗)R(α) Q(X∗)R(α) Q(X∗)L(α) Q(X∗)L(α)

0 7.715740 7.699316 7.686074 7.679705
0.1 7.713316 7.698640 7.686722 7.680963
0.2 7.710918 7.697966 7.687373 7.682228
0.3 7.708547 7.697294 7.688025 7.683502
0.4 7.706201 7.696624 7.688679 7.684784
0.5 7.703881 7.695956 7.689336 7.686074
0.6 7.701586 7.695291 7.689994 7.687373
0.7 7.699316 7.694627 7.690655 7.688679
0.8 7.697070 7.693966 7.691318 7.689994
0.9 7.694848 7.693307 7.691983 7.691318
1 7.692650 7.692650 7.692650 7.692650

Figura 4.11: Gráfico de Q̂(X∗) para o PPL (4.31).

i) Se a(α) = aL(α) então X∗ = (x1R(α), x2R(α), 0, x4L(α)) e Q(X∗) = QR(X
∗)(α);

ii) Se a(α) = aL(α) então X∗ = (x1R(α), x2R(α), 0, x4L(α)) e Q(X∗) = Q
R
(X∗)(α);

iii) Se a(α) = aR(α) então X∗ = (x1L(α), x2L(α), 0, x4R(α)) e Q(X∗) = Q
L
(X∗)(α);

iv) Se a(α) = aR(α) então X∗ = (x1L(α), x2L(α), 0, x4R(α)) e Q(X∗) = QL(X
∗)(α).

Estes resultados estão de acordo com a subseção 4.3.2 sobre o comportamento da monoto-
nicidade das funções determińısticas utilizando o Prinćıpio de Extensão de Zadeh para o NFI
triangular 3̂46.

A defuzzificação dos resultados obtidos foi realizada pelo método do centroide apresentado
na subseção 1.9.2 (FIGUEROA-GARCÍA; ROMÁN-FLORES; CHALCO-CANO, 2022). São
calculados os centroides à esquerda CL e à direita CR do NFI, que no caso do valor ótimo são
dados por

CL(Q̂(X∗)) = 7.690557 e CR(Q̂(X∗)) = 7.6981546,

respectivamente. Então, o centroide será dado pela média desses valores, que é calculada por

C(Q̂(X∗)) =
CL(Q̂(X∗)) + CR(Q̂(X∗))

2
= 7.694356.
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alterações significativas nos sites pesquisados. Assim, o problema da dieta suplementar é ana-
lisado considerando os coeficientes correspondentes às quantidades de potássio nos alimentos,
sendo NFI triangulares, dados por:

minQ(X) = 0.30x1 + 1.50x2 + 5x3 + 6.50x4



3̂46x1 + 2̂95x2 + 6̂60x3 + 6̂25x4 ≥ 1755
0.16x1 + 0.12x2 + 5.78x3 + 4.28x4 ≥ 4.5
0.07x1 + 2.80x2 + 0.20x3 + 6.29x4 ≥ 7.5

(4.32)

x1, x2, x3, x4 ≥ 0,

em que

3̂46 = (328, 340.6, 346, 351.5, 357), 2̂95 = (280, 290, 295, 312, 332),

6̂60 = (530, 565, 660, 670, 680), 6̂25 = (600, 610, 625, 659, 675).

Observe que os valores modais dos NFI triangulares 2̂95, 6̂60 e 6̂25 são, respectivamente, as
quantidades de potássio do kiwi, da castanha de caju e da castanha-do-pará, respectivamente,
da Tabela 4.2. Para o modelo (4.31) são usados os mesmos métodos de resolução do PPL (4.26).
Os resultados obtidos são resumidos a seguir.

• Resolução do PPL usando Distribuição Possibiĺıstica com Penalidade Exata

O Método de Penalidade Exata é aplicado ao PPL no qual os α-ńıveis dos números
fuzzy intervalares são representados por intervalos fuzzy generalizados restritos, de acordo
com o problema de otimização possibiĺıstica (4.32). O resultado obtido pelo Método da
Penalidade Exata foi Q(X∗) = 7.669697 em que X∗ = (2.788349, 0.5134653, 0, 0.9327683),
α = 0 e λA1i

= λA
1i
= 1, i = 1, 2, 3, 4. A combinação de valores posśıveis para λA1i

, λA
1i
,

i = 1, 2, 3, 4, fornece outras possibilidades para os valores no suporte do NFI triangular,
diferentes dos valores obtidos pelo método dos α-ńıveis, permitindo ao especialista tomar
decisões com mais informações para a modelagem matemática do problema em estudo.

• Resolução do PPL usando α-ńıveis

A resolução do PPL em relação aos extremos dos α-ńıveis dos NFI triangulares, 3̂46, 2̂95,
6̂60 e 6̂25, fornece a seguinte solução ótima X∗ = (x̂∗

1, x̂
∗
2, x̂

∗
3, x̂

∗
4), em que x̂∗

1, x̂
∗
2, x̂

∗
3 e x̂∗

4

são NFI triangulares dados por:

x̂∗
1 = (2.673035, 2.788349, 2.952356, 3.04925, 3.213606);

x̂∗
2 = (0.506207, 0.513465, 0.5237884, 0.529887, 0.540232);

x̂∗
3 = (0, 0, 0, 0, 0);

x̂∗
4 = (0.9161204, 0.922555, 0.9263478, 0.932768, 0.937283).

O valor ótimo obtido, Q̂(X∗), também é um NFI triangular, dado por

Q̂(X∗) = (7.653558, 7.669697, 7.692650, 7.706210, 7.729213)

.

Na Figura 4.13 são mostrados os α-ńıveis com os respectivos valores de Q̂(X∗). Os valores
de Q(X∗) obtidos para cada α-ńıvel pelo método de penalidade exata são destacados em verde.

Calculando o valor ótimo pela defuzzificação de Q̂(X∗) pelo Método do Centroide e por

EApnQ̂(X∗), os seguintes resultados são obtidos:
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de redução de dimensionalidade surgem como alternativas promissoras (VELLIANGIRI; ALA-
GUMUTHUKRISHNAN; JOSEPH, 2019). Abordagens estat́ısticas, como a Análise de Compo-
nentes Principais (THARWAT, 2016), permitem a śıntese de combinações lineares de nutrientes
que preservam a variabilidade essencial dos dados, enquanto estratégias de agrupamento funcio-
nal permitem a consolidação de nutrientes com papéis semelhantes, mantendo assim a coerência
nutricional. A integração dessas técnicas em modelos de otimização melhora tanto a escala-
bilidade computacional quanto a usabilidade prática, levando a soluções mais interpretáveis e
mais adequadas a contextos aplicados, como dietas hospitalares, programas de suplementação
e poĺıticas de segurança alimentar.

Este caṕıtulo demonstrou que um conjunto fuzzy do tipo 2 é uma maneira útil e perspi-
caz de modelar problemas de otimização sob incerteza. Para atingir esse objetivo, uma nova
representação de conjuntos fuzzy com valores intervalares baseada em funções de restrição,
chamados intervalos fuzzy generalizados, foi desenvolvida para a análise de problemas de oti-
mização possibilistas nos quais os parâmetros são generalizações de números fuzzy com valores
intervalares. Duas abordagens matemáticas foram usadas em conjunto para resolver proble-
mas de programação linear incorporando alguns parâmetros dados por NFI e seus respectivos
α-ńıveis, tratados por meio da aritmética dos intervalos restritos. O uso da aritmética de in-
tervalos restritos permite expandir a quantidade de PPL a ser considerada na resolução do
problema, em relação ao método dos α-ńıveis, pois os valores dos parâmetros de cada um dos
α-ńıveis do NFI representados como intervalos restritos, percorre o intervalo [0, 1] de forma
independente. A resolução de PPL com parâmetros dados por NFI geralmente utiliza métodos
da álgebra dos números fuzzy e a consequente defuzificação da solução ótima fuzzy obtida.

O uso da aritmética de intervalos restritos permite a resolução de um único problema de
otimização não linear para obter a solução ótima para esse tipo de problema. Em ambos os
casos estudados para a dieta suplementar, com um parâmetro ou quatro parâmetros dados
por NFI triangular, o custo ótimo obtido pelo Método da Penalidade Exata com aritmética
de intervalos restritos foi o menor custo em relação aos métodos estudados. Considerando o
aumento da incerteza com a utilização dos quatro parâmetros dados por NFI triangular, a
possibilidade de soluções que gerem menores custos para a dieta aumenta, o que ocorreu neste
caso espećıfico. Este estudo demonstrou como traduzir conjuntos fuzzy intervalares em funções
de intervalos restritos, o que, por sua vez, permite a análise de otimização possibiĺıstica, na qual
os parâmetros são conjuntos fuzzy intervalares. A representação é capaz de gerar soluções que
contenham informações sobre o risco associado à tomada de uma decisão possibiĺıstica ótima.

No próximo caṕıtulo são apresentadas as considerações finais.
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Caṕıtulo 5

Considerações Finais

Neste trabalho, foram consideradas algumas abordagens fuzzy em PPL, como métodos de
resolução envolvendo conjuntos fuzzy do tipo 1 e do tipo 2, estudo do comportamento de
algoŕıtmo de busca da solução ótima de um PPL considerando a álgebra dos α-ńıveis de números
fuzzy e a transformação de conjuntos fuzzy intervalares em funções intervalares restritas na
determinação da solução ótima de PPL.

No Caṕıtulo 2, enfatizando a incerteza existente nas tolerâncias de um circuito elétrico suge-
rido pelo fabricante do dispositivo, é proposto neste estudo um problema de programação linear
fuzzy. Para validar os resultados obtidos, resolve-se o problema clássico de programação linear.
A solução ótima do PPL fuzzy do tipo 1 é obtida a partir de uma ordem por defuzzificação
que pode transformar o problema fuzzy em um PPL clássico. A fim de construir uma ordem
ótima, várias funções de defuzzificação são definidas sobre o subespaço de pertinência trape-
zoidal unilateral. A ordem escolhida nesses conjuntos depende dos números reais entre zero e
um. Considerando a função de defuzzificação correspondente aos parâmetros de defuzzificação
igual a um, obtém-se o mesmo ponto ótimo do problema clássico. Completando o estudo de um
modelo de programação linear fuzzy, o membro independente das restrições é considerado como
um conjunto fuzzy do tipo 2. A solução é obtida pelo teorema da representação dos α-ńıveis,
resolvendo, para cada ńıvel, um problema de programação linear fuzzy do tipo 1. Neste caso,
usamos a mesma função de defuzzificação para ordenar o subespaço de pertinências trapezoidais
unilaterais com parâmetros próximos de um, obtendo ponto fuzzy ótimo de relevância muito
próxima ao ponto clássico.

No Caṕıtulo 3 foram combinadas duas ferramentas matemáticas amplamente utilizadas atu-
almente, o método de Pontos Interiores, em particular, Algoritmo Primal-Afim e a Teoria dos
Conjuntos Fuzzy. Os resultados obtidos foram eficientes e o algoritmo modificado proposto per-
mite ampliar a busca por soluções ótimas em PPL com parâmetros e variáveis sendo números
reais. A vantagem do método refere-se a uma nova possibilidade de utilização da álgebra dos
números fuzzy que permite considerar simultaneamente 10 ou mais pontos interiores nos Pas-
sos do Algoritmo a partir dos α-ńıveis do número fuzzy triangular definido a partir da solução
inicial, permitindo a escolha, dentre esses pontos, de pontos mais próximos do ponto ótimo a
cada iteração em relação ao algoritmo usual. O Algoritmo Primal-Afim Fuzzy representa uma
nova abordagem para PPL em que parâmetros e variáveis são números reais. Essas ferramen-
tas matemáticas trazem um novo procedimento que pode ser utilizado em outros problemas de
otimização, incorporando novas possibilidades nas resoluções desses modelos matemáticos. Em
trabalhos futuros, o uso da Aritmética de Intervalos Restritos pode ser considerada em pro-
blemas de otimização, particularmente no PASA. Esta abordagem surge como uma alternativa
promissora para enriquecer as opções dispońıveis na expansão do escopo de busca do PASA,
visando alcançar a solução ótima de um PPL com parâmetros e variáveis reais. Isso se deve
ao fato de que a álgebra de intervalos restritos não está sujeita às limitações encontradas na
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álgebra de números fuzzy, como o cálculo de matrizes inversas. Esta abordagem pode propor-
cionar maior flexibilidade e eficácia no uso de algoritmos aplicados à resolução de problemas de
otimização.

No Caṕıtulo 4 mostrou-se como transformar conjuntos fuzzy intervalares em funções in-
tervalares restritas que, por sua vez, permitem a análise de otimização possibiĺıstica em que
os parâmetros são números fuzzy intervalares. A representação é capaz de gerar soluções que
contém informações relacionadas ao risco associado com a tomada de decisão possibiĺıstica
ótima. Fica claro, a partir desta pesquisa, que outros problemas de análise matemática, como
modelos de equações diferenciais, modelos de equações integrais, podem ser abordados usando
os mesmos métodos desenvolvidos aqui.

Como trabalho futuro, pretende-se aplicar a metodologia da aritmética de intervalos res-
tritos em outros problemas de otimização com parâmetros sendo NFI e avaliar os posśıveis
ganhos obtidos com a independência da variação dos parâmetros de cada um dos α-ńıveis do
NFI. Outras abordagens de otimização com conjuntos fuzzy do tipo 2 como parâmetros pode-
riam ser estudadas por meio dos métodos apresentados, com algumas modificações. Destaca-se
a importância de uma avaliação computacional para problemas maiores com esse tipo de abor-
dagem, o que se pretende realizar no futuro.

É importante citar os artigos relacionados aos conjuntos fuzzy que foram produzidos du-
rante o processo para a elaboração deste trabalho.

BERTONE, A. M. A.; JAFELICE, R. S. M.; CAMARA, M. A.. Fuzzy Linear Programming:
Optimization of an Electric Circuit Model. TENDÊNCIAS EM MATEMÁTICA APLICADA
E COMPUTACIONAL, v. 18, p. 419-434, 2017.

JAFELICE, R. S. M.; CABRERA, N. V.; CAMARA, M. A.. Sistemas p-fuzzy utilizando
conjuntos fuzzy do tipo 2 intervalar. In: II Encontro de Biomatemática, 2018, Campinas. II
Encontro de Biomatemática. Campinas: IMECC-UNICAMP, 2018. p. 81-84.

OLIVEIRA, E. P.; JAFELICE, R. S. M.; CAMARA, M. A.. Solução Numérica das Equações
de Saint Venant Utilizando um SBRF. In: XXXVIII Congresso Nacional de Matemática Apli-
cada e Computacional - CNMAC 2018, Campinas: IMECC-UNICAMP, 2018. p. 1-7.

PINZON, L. A. H.; JAFELICE, R. S. M.; CAMARA, M. A.. Estudo da Estabilidade de
um Modelo da Dinâmica do HIV com Parâmetros Intervalares. In: II Reunião Mineira de
Matemática, 2023, Belo Horizonte. II Reunião Mineira de Matemática. Belo Horizonte: Rede
Mineira de Matemática, 2023.

PIANTELLA, A. C.; GALVES, A. P. T.; PRADO, G. L.; CAMARA, M. A.; COSTA,
M. S.; JAFELICE, R. S. M.. Solução Numérica do Modelo da Deflexão de uma Placa com
Condição Inicial via Aritmética Intervalar Restrita. In: XXVII Encontro Nacional de Modela-
gem Computacional e XV Encontro de Ciência e Tecnologia dos Materiais, 2024, Ilhéus. Anais
do Encontro Nacional de Modelagem Computacional e Encontro de Ciência e Tecnologia de
Materiais. Recife: Even3, 2024.

CAMARA, M. A.; JAFELICE, R. S. M.. Modified Algorithm for an Interior-Point Method
using Fuzzy Numbers. International Journal of Fuzzy Systems, 2025.
https://doi.org/10.1007/s40815-025-02102-0

PINZON, L. A. H.; JAFELICE, R. S. M.; CAMARA, M. A, BERTONE, A. M. A.. Stabi-
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lity of HIV Dynamic Model with Interval Parameters Depending on Antiretroviral Treatment,
Mathematics and Computers in Simulation, v.240, p. 904-919, 2025.

CAMARA, M.A., JAFELICE, R.M. Application of possibilistic optimization to interval-
valued fuzzy numbers: supplemental diet. Comp. Appl. Math. 45, 75 (2026).
https://doi.org/10.1007/s40314-025-03457-8

Artigo submetido

PIANTELLA, A. C.; GALVES, A. P. T.; PRADO, G. L.; CAMARA, M. A.; COSTA,
M. S.; JAFELICE, R. S. M.. Constraint Interval Arithmetic Applied to Ordinary Differential
Equations, Fuzzy Sets and Systems, 2025.
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