
UNIVERSIDADE FEDERAL DE
UBERLÂNDIA

FACULDADE DE ENGENHARIA ELÉTRICA

Heitor Eugênio Gonçalves

Redes Neurais Artificiais combinadas a Algoritmos
Genéticos para detecção de intrusões em rede de

computadores

Uberlândia

2025

Heitor Eugênio Gonçalves

Redes Neurais Artificiais combinadas a Algoritmos
Genéticos para detecção de intrusões em rede de

computadores

Dissertação de mestrado apresentada ao Pro-

grama de Pós-graduação em Engenharia Elé-

trica da Universidade Federal de Uberlândia

como requisito para a obtenção do título de

Mestre em Ciências.

Área de concentração: Processamento da Infor-

mação.

Orientador: Prof. Dr. Éderson Rosa da Silva

Uberlândia-MG

2025

UNIVERSIDADE FEDERAL DE UBERLÂNDIA
Coordenação do Programa de Pós-Graduação em Engenharia

Elétrica
Av. João Naves de Ávila, 2121, Bloco 3N - Bairro Santa Mônica, Uberlândia-MG, CEP

38400-902
Telefone: (34) 3239-4707 - www.posgrad.feelt.ufu.br - copel@ufu.br

ATA DE DEFESA - PÓS-GRADUAÇÃO

Programa de Pós-
Graduação em:

Engenharia Elétrica

Defesa de: Dissertação de Mestrado nº 810 - PPGEELT

Data:
Trinta de Setembro de Dois
mil e vinte e cinco

Hora de
início:

9h00
Hora de
encerramento:

11h00

Matrícula do
Discente:

12312EEL010

Nome do Discente: Heitor Eugênio Gonçalves

Título do Trabalho:
Redes Neurais Artificiais combinadas a Algoritmos Genéticos para
detecção de intrusões em rede de computadores

Área de
concentração:

Processamento da Informação

Linha de pesquisa: Processamento Digital de Sinais e Redes de Comunicação
Projeto de
Pesquisa de
vinculação:

Coordenador do Projeto: Éderson Rosa da Silva. Título Do Projeto:
Desenvolvimento e simulação de técnicas de alocação de recursos em
redes de comunicação. Vigência Do Projeto: 2018 - atual.

Reuniu-se através de videoconferência, a Banca Examinadora, designada pelo
Colegiado do Programa de Pós-graduação em Engenharia Elétrica, assim composta:

Doutores: André Luiz Aguiar da Costa (UFU), Myke Douglas de Medeiros Valadão
(SiDi) e Éderson Rosa da Silva, orientador do discente.

Iniciando os trabalhos, o presidente da mesa, Prof. Dr. Éderson Rosa da
Silva apresentou a Comissão Examinadora e o candidato, agradeceu a presença do
público, e concedeu ao discente a palavra para a exposição do seu trabalho. A
duração da apresentação do discente e o tempo de arguição e resposta foram
conforme as normas do Programa.

A seguir, o senhor presidente concedeu a palavra, pela ordem sucessivamente,
aos examinadores, que passaram a arguir o candidato. Ultimada a arguição, que se
desenvolveu dentro dos termos regimentais, a Banca, em sessão secreta, atribuiu o
resultado final, considerando o candidato:

APROVADO.

Esta defesa faz parte dos requisitos necessários à obtenção do título de Mestre. O
competente diploma será expedido após cumprimento dos demais requisitos,
conforme as normas do Programa, a legislação pertinente e a regulamentação
interna da UFU.

Nada mais havendo a tratar foram encerrados os trabalhos. Foi lavrada a presente
ata que após lida e achada conforme, foi assinada pela Banca Examinadora.

Ata de Defesa - Pós-Graduação 22 (6721160) SEI 23117.068078/2025-86 / pg. 1

Documento assinado eletronicamente por Myke Douglas de Medeiros Valadão,
Usuário Externo, em 30/09/2025, às 10:48, conforme horário oficial de Brasília,
com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Ederson Rosa da Silva, Professor(a)
do Magistério Superior, em 30/09/2025, às 10:48, conforme horário oficial de
Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de
2015.

Documento assinado eletronicamente por Andre Luiz Aguiar da Costa,
Professor(a) do Magistério Superior, em 30/09/2025, às 10:49, conforme
horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de
8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site
https://www.sei.ufu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código
verificador 6721160 e o código CRC 707045FB.

Referência: Processo nº 23117.068078/2025-86 SEI nº 6721160

Ata de Defesa - Pós-Graduação 22 (6721160) SEI 23117.068078/2025-86 / pg. 2

Dedicado à minha família, em especial à minha mãe, aos meus amigos

e colegas de mestrado, ao meu orientador e professor Éderson e a todos

os demais profissionais da Universidade Federal de Uberlândia.

Agradecimentos

Agradeço ao meu professor e orientador Éderson por todos os seus ensinamentos e pelo

tempo dedicado apoiando-me nesta pesquisa.

Agradeço à minha mãe, que sempre me incentivou a estudar.

Sou grato ao corpo docente da Universidade Federal de Uberlândia, por todos os aprendi-

zados que recebi durante os meus anos de mestrado, e aos demais funcionários da universidade

por todos os serviços prestados. Também agradeço a Coordenação de Aperfeiçoamento de Pes-

soal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001 - pelo apoio prestado

para a realização deste trabalho.

Resumo

Gonçalves, H. E. Redes Neurais Artificiais combinadas a Algoritmos Genéticos para detecção

de intrusões em rede de computadores. Universidade Federal de Uberlândia, Uberlândia, Bra-

sil, 2025.

Este trabalho apresenta uma metodologia para detecção de intrusões em redes de computa-

dores fundamentada na integração de Algoritmos Genéticos (AGs) e Redes Neurais Convoluci-

onais (CNNs). A proposta contempla, de forma simultânea, a seleção automática de atributos

que melhor caracterizam o tráfego da rede e o ajuste de hiperparâmetros da CNN, com o ob-

jetivo de maximizar métricas de desempenho e minimizar a latência de inferência. Utilizando

o conjunto de dados CIC-IDS2018, os experimentos evidenciaram que o AG de seleção de

atributos foi capaz de identificar um subconjunto de 20 variáveis que preserva a capacidade

discriminativa do modelo e, o AG de ajuste de hiperparâmetros, por sua vez, produziu uma

configuração de CNN com desempenho ligeiramente superior, atingindo acurácia de 99,78%,

F1-score de 99,66% e Recall de 99,82%, com latência média de apenas 0,0529 ms por amostra.

A análise qualitativa demonstrou que os atributos selecionados apresentam relevância direta na

caracterização de padrões de tráfego, enquanto os hiperparâmetros otimizados resultaram em

melhor separabilidade entre fluxos benignos e maliciosos. As matrizes de confusão indicaram

baixa incidência de falsos positivos e falsos negativos, reforçando a robustez da abordagem. Os

resultados obtidos superaram os de trabalhos relacionados na literatura, validando a eficácia da

proposta.

Palavras chaves: Algoritmos Genéticos, Detecção de Intrusões, Otimização de Hiperparâ-

metros, Redes Neurais Convolucionais, Seleção de Atributos.

Abstract

Gonçalves, H. E. Redes Neurais Artificiais combinadas a Algoritmos Genéticos para detecção

de intrusões em rede de computadores. Universidade Federal de Uberlândia, Uberlândia, Bra-

sil, 2025.

This work presents a methodology for intrusion detection in computer networks based on

the integration of Genetic Algorithms (GAs) and Convolutional Neural Networks (CNNs). The

proposal simultaneously contemplates the automatic selection of attributes that best characte-

rize network traffic and the adjustment of CNN hyperparameters, with the aim of maximizing

performance metrics and minimizing inference latency. Using the CIC-IDS2018 dataset, the

experiments showed that the attribute selection GA was able to identify a subset of 20 varia-

bles that preserves the model’s discriminative capacity, and that the hyperparameter adjustment

GA, in turn, produced a CNN configuration with slightly superior performance, achieving an

accuracy of 99.78%, an F1-score of 99.66%, and a recall of 99.82%, with an average latency

of only 0.0529 ms per sample. Qualitative analysis demonstrated that the selected attributes are

directly relevant in characterizing traffic patterns, while the optimized hyperparameters resulted

in better separability between benign and malicious flows. Confusion matrices indicated a low

incidence of false positives and false negatives, reinforcing the robustness of the approach. The

results obtained surpassed those of related studies in the literature, validating the effectiveness

of the proposal.

Keywords: Convolutional Neural Networks, Feature Selection, Genetic Algorithms, Hy-

perparameter Optimization, Intrusion Detection.

Sumário

1 Introdução 1

1.1 Contexto e Motivação . 1

1.2 Histórico dos Ataques Cibernéticos . 2

1.2.1 Impacto dos Ataques DDoS . 3

1.3 Evolução dos Sistemas de Detecção de Intrusão 3

1.4 Tecnologias Emergentes . 4

1.5 Solução Proposta . 4

1.6 Objetivos . 5

1.7 Contribuições . 6

1.8 Estrutura do Documento . 6

2 Revisão Bibliográfica 8

3 Fundamentação Teórica 11

3.1 Introdução às Redes Neurais Artificiais . 11

3.2 Redes Neurais Convolucionais . 11

3.2.1 Representação de Tráfego de Rede para Entrada em CNN 12

3.3 Funções de Ativação . 14

3.3.1 Derivadas e retropropagação . 17

3.4 Regularização . 19

3.4.1 L2 Weight Decay . 19

3.4.2 Dropout e Alpha-Dropout . 19

3.4.3 Early Stopping . 19

3.5 Otimizadores: teoria, prática e análise matemática 19

3.5.1 Stochastic Gradient Descent (SGD) e Momentum 20

3.5.2 Adaptive Moment Estimation (Adam) 20

3.5.3 Adamax . 21

3.5.4 Síntese Comparativa . 21

3.6 Funções de Custo (Loss) e sua Interpretação 21

3.6.1 Binary Crossentropy (Entropia Cruzada Binária) 22

3.6.2 Poisson Loss . 22

3.6.3 Matriz de Confusão . 23

3.7 Pré-processamento e Representação dos Atributos 23

3.7.1 Normalização . 23

3.7.2 Mapeamento para entrada 2D (4 × 5) da CNN 24

3.8 Integração com Algoritmos Genéticos . 24

3.8.1 Representação cromossômica . 24

3.8.2 Operadores genéticos . 25

3.8.3 Função de aptidão . 25

3.9 Integração de AGs com CNNs na Detecção de Intrusões 25

3.10 Complexidade computacional . 26

3.11 Estratégias de aceleração . 26

3.12 Ambiente de Desenvolvimento e Ferramentas Computacionais 27

3.12.1 Linguagem Python . 27

3.12.2 NumPy e o núcleo computacional . 27

3.12.3 TensorFlow . 28

3.12.4 Keras como interface de alto nível . 28

3.12.5 Síntese das escolhas . 28

3.13 Considerações Finais . 29

4 Metodologia 30

4.1 Visão Geral do Pipeline . 30

4.2 Base de Dados . 32

4.2.1 Descrição e justificativa da escolha 32

4.2.2 Filtragem e amostragem . 32

4.3 Pré-processamento . 34

4.4 Fluxograma do Algoritmo Genético . 35

4.5 Integração entre Algoritmos Genéticos e CNNs 36

4.5.1 Representação cromossômica . 37

4.5.2 Fluxo evolutivo . 37

4.5.3 Pseudocódigo . 38

4.6 Configurações experimentais . 41

4.7 Métricas e Procedimentos de Avaliação . 42

4.7.1 Definição das métricas . 42

4.7.2 Tabela-resumo das métricas . 43

4.8 Comparação com trabalhos relacionados . 44

4.9 Considerações Finais . 45

5 Resultados 46

5.1 Configuração Experimental . 46

5.1.1 Ambiente de execução . 46

5.1.2 Configuração do Algoritmo Genético 46

5.1.3 Configuração da CNN . 47

5.1.4 Particionamento dos dados . 47

5.2 Desempenho Global do Modelo Proposto . 47

5.2.1 Configuração do Melhor Indivíduo . 49

5.3 Comparação com Trabalhos Relacionados . 53

6 Conclusão e Trabalhos Futuros 57

Lista de Figuras

3.1 Fluxograma típico de uma CNN aplicada a IDS. 13

4.1 Fluxo geral da metodologia proposta. 31

4.2 Fluxograma do Algoritmo Genético para seleção de atributos e ajuste de hiper-

parâmetros. 35

4.3 Fluxo metodológico da integração entre Algoritmos Genéticos e CNN. 38

5.1 Desempenho do modelo proposto nas métricas principais. 48

5.2 Evolução da acurácia ao longo das gerações para o AG de seleção de atributos. 49

5.3 Evolução da acurácia ao longo das gerações para o AG de ajuste de hiperparâ-

metros. 50

5.4 Topologia da melhor CNN identificada pelo AG de hiperparâmetros: ativação

mish na convolução; densas (12/mish, 10/selu, 15/elu); saída sigmoid. 52

Lista de Tabelas

2.1 Comparação entre métodos de detecção de intrusões. 9

2.2 Trabalhos representativos: técnica, tipo de método e caracterização geral. . . . 10

3.1 Funções de ativação utilizadas: equações, derivadas e principais vantagens. . . 17

3.2 Matriz de confusão para classificação binária 23

4.1 Distribuição das classes após subamostragem estratificada (redução de 98% por

classe). 33

4.2 Exemplo de normalização min–max para atributos selecionados. 34

4.3 Espaços de busca por gene em cada AG. 37

4.4 Resumo das métricas de avaliação utilizadas. 43

5.1 Resultados do modelo proposto no conjunto de teste. 48

5.2 Comparação do modelo AG–CNN com trabalhos relacionados no CIC-IDS2018

(valores calculados a partir das matrizes de confusão). 54

5.3 Resumo comparativo das matrizes de confusão no conjunto CIC-IDS2018. . . . 55

Lista de Siglas

Adam Adaptive Moment Estimation

Adamax Variant of Adam Optimizer

AG Algoritmo Genético

BI-LSTM Bidirectional Long Short-Term Memory

CART Classification and Regression Tree

CIC-IDS2018 Canadian Institute for Cybersecurity - Intrusion Detection System 2018

CNN Rede Neural Convolucional

CPU Central Processing Unit

DDoS Distributed Denial of Service

DNN Deep Neural Network

DoS Denial of Service

ELU Exponential Linear Unit

FN Falsos Negativos

FP Falsos Positivos

F1 F1-Score (média harmônica entre precisão e recall)

G-Mean Geometric Mean

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

IDE Integrated Development Environment

IDS Intrusion Detection System

LR Logistic Regression

LSTM Long Short-Term Memory

MLP Multilayer Perceptron

ReLU Rectified Linear Unit

RNA Rede Neural Artificial

RNR Rede Neural Recorrente

SELU Scaled Exponential Linear Unit

SGD Stochastic Gradient Descent

Capítulo 1

Introdução

1.1 Contexto e Motivação

A segurança cibernética emergiu como uma das áreas mais críticas para o desenvolvimento

de tecnologias modernas. A Internet, que há algumas décadas era uma rede simples de comu-

nicação, transformou-se em uma rede global que conecta bilhões de dispositivos, sistemas e

usuários ao redor do mundo. Esse fenômeno de globalização digital, impulsionado pela Inter-

net das Coisas (IoT), pela computação em nuvem, e pelas novas redes móveis 5G, criou um

ambiente vasto e complexo para ciberataques. Cada dispositivo, rede e sistema interconectado

apresenta uma possível vulnerabilidade que pode ser explorada por agentes maliciosos.

A Internet das Coisas representa uma das mais significativas transformações tecnológicas

do século XXI, com bilhões de dispositivos inteligentes conectados à Internet. Estes dispositi-

vos, que vão desde termostatos e câmeras de segurança até equipamentos médicos e automó-

veis, aumentam exponencialmente a superfície de ataque das redes. De acordo com a European

Union Agency for Cybersecurity (ENISA), o número de dispositivos IoT pode superar 25 bi-

lhões até 2030, o que amplia consideravelmente os riscos de ataques cibernéticos [1].

Adicionalmente, a computação em nuvem, uma tecnologia que permite o armazenamento

e processamento de grandes volumes de dados em servidores remotos, também aumentou a

complexidade das redes. Embora traga benefícios como escalabilidade e flexibilidade, a com-

putação em nuvem também apresenta desafios significativos em termos de proteção de dados e

da infraestrutura de segurança. De acordo com o Cisco Annual Internet Report, em 2023, mais

de 94% das cargas de trabalho estavam migrando para a nuvem, o que torna os provedores de

serviços em nuvem alvos frequentes de ciberataques [2].

Além disso, o advento das redes móveis 5G aumentou a velocidade de comunicação e a

conectividade, o que impulsionou ainda mais a digitalização de serviços e sistemas. No entanto,

isso também ampliou o campo de atuação para os atacantes, criando novos vetores de ataque,

como a manipulação de dispositivos de borda, que se conectam diretamente às redes móveis e

à infraestrutura crítica [3].

1

Com a ampliação da superfície de ataque e o crescimento do tráfego global de dados, surge

a necessidade urgente de sistemas de defesa cibernética mais sofisticados e rápidos. A detecção

de intrusões, como parte essencial das arquiteturas de segurança, deve evoluir para enfrentar

esses novos desafios. O aumento exponencial do tráfego de dados, por exemplo, torna a tarefa

de monitorar e proteger redes complexas ainda mais difícil. Sistemas de Detecção de Intrusões

(IDS) precisam ser capazes de identificar ameaças de forma rápida, precisa e, mais importante,

em tempo real.

1.2 Histórico dos Ataques Cibernéticos

A evolução dos ataques cibernéticos reflete uma escalada de sofisticação e impacto. Nos

anos 1980, os primeiros vírus e worms começaram a surgir, destacando-se o Morris Worm em

1988, que afetou cerca de 10% dos sistemas conectados à Internet na época [4]. Embora simples

em comparação com os ataques atuais, este evento foi o precursor de uma série de incidentes

de segurança que se seguiram.

Na década de 2000, a proliferação de worms, como o Slammer Worm, exemplificou o poder

destrutivo de ataques que podiam se espalhar rapidamente, infectando milhares de sistemas em

questão de minutos. O Slammer, que afetou bancos de dados do Microsoft SQL Server, causou

paralisia em grandes áreas da internet e deixou claro que a segurança deveria ser repensada para

lidar com ataques em larga escala [5].

A partir de 2010, a ameaça cibernética se diversificou com o uso de botnets massivas, como

a Mirai Botnet. Essa botnet foi responsável por alguns dos maiores ataques Distributed Denial

of Service (DDoS) da história, explorando dispositivos IoT mal protegidos, como câmeras de

segurança e roteadores. Esses ataques atingiram alvos estratégicos, como provedores de Inter-

net, afetando milhões de usuários em todo o mundo [1]. A sofisticação das técnicas de ataques

de DDoS tem sido acompanhada pelo aumento da largura de banda dos ataques, ultrapassando

os 1 Tbps, e causando interrupções que podem durar horas ou dias.

Além disso, ataques direcionados, como o Stuxnet em 2010, marcaram um ponto de infle-

xão ao demonstrar como malwares podem ser usados para atacar sistemas industriais críticos.

O Stuxnet foi projetado para sabotar o programa nuclear iraniano, atingindo diretamente os sis-

temas SCADA, que controlam equipamentos industriais. Este ataque destacou a necessidade de

proteção robusta em sistemas críticos e de uma abordagem mais holística para a segurança, que

inclua a defesa cibernética em nível de infraestrutura física [6].

Mais recentemente, ataques como os de ransomware, que visam criptografar os dados e

exigir resgates em criptomoedas, tornaram-se uma grande ameaça para empresas e governos.

Exemplos incluem o ataque ao sistema de saúde do Reino Unido, que paralisou hospitais em

2017, e o ataque global do WannaCry, que afetou mais de 150 países. Tais incidentes aumenta-

ram a pressão sobre as organizações para que implementem sistemas de defesa mais robustos,

incluindo proteção contra malware avançado e ataques de engenharia social [7].

2

1.2.1 Impacto dos Ataques DDoS

Os ataques DDoS continuam sendo uma das formas mais prevalentes de ataque cibernético.

Estes ataques têm o potencial de paralisar serviços essenciais, como sistemas bancários, gover-

namentais e empresas de tecnologia, sobrecarregando os servidores com um tráfego massivo.

Em 2020, a NETSCOUT reportou um aumento de mais de 30% no número de ataques DDoS

em relação ao ano anterior, com um crescimento alarmante no número de ataques superiores a

1 Tbps [8].

Os ataques DDoS não se limitam apenas a bloquear serviços, mas também a minar a con-

fiança dos consumidores em empresas e plataformas digitais. A perda de acessibilidade e a

interrupção dos serviços têm consequências financeiras graves, além de danos à reputação. Em-

presas que não possuem um sistema de defesa robusto contra esses ataques enfrentam perdas

financeiras diretas, além de prejuízos indiretos com a perda de clientes e a exposição a riscos

de segurança. Estes ataques são frequentemente utilizados como cortinas de fumaça, criando

distrações enquanto outras formas de intrusão ocorrem em paralelo, como a exfiltração de da-

dos [9].

1.3 Evolução dos Sistemas de Detecção de Intrusão

Os Sistemas de Detecção de Intrusões (IDS) têm evoluído em resposta ao aumento da com-

plexidade dos ataques. Inicialmente baseados em simples assinaturas, os primeiros IDS eram

eficazes para identificar ataques conhecidos, mas falhavam em detectar novas ameaças. Com o

tempo, novas abordagens foram desenvolvidas, como a detecção por anomalia, que visa identi-

ficar comportamentos incomuns dentro da rede. No entanto, a detecção de intrusões avançadas

exigiu a adoção de técnicas mais sofisticadas, como aprendizado de máquina e redes neurais.

Os IDS podem ser classificados de acordo com a forma como identificam comportamentos

maliciosos. A seguir, são descritos os principais tipos:

• Baseados em Assinaturas: funcionam de forma semelhante a antivírus tradicionais, pro-

curando por padrões específicos e conhecidos de ataques. Esses sistemas são rápidos e

precisos na identificação de ameaças previamente documentadas, mas apresentam limi-

tações na detecção de ataques novos ou modificados. A constante evolução do malware,

com o uso de técnicas de evasão, compromete a eficácia dos IDS baseados exclusiva-

mente em assinaturas, tornando-os insuficientes em um cenário de segurança cibernética

dinâmico.

• Baseados em Anomalias: surgiram como resposta à crescente complexidade dos ata-

ques. Esses sistemas aprendem o comportamento "normal" de uma rede e identificam

desvios desse padrão. Embora eficazes na detecção de ataques inéditos, enfrentam uma

alta taxa de falsos positivos, pois o comportamento de rede pode variar naturalmente. Isso

3

dificulta a distinção entre variações legítimas e comportamentos maliciosos, exigindo sis-

temas mais sofisticados para mitigar esse problema.

• Híbridos: combinam os dois métodos anteriores, utilizando assinaturas para detectar

ataques conhecidos e técnicas de detecção por anomalia para reconhecer novas ameaças.

Além disso, esses sistemas podem incorporar algoritmos de aprendizado profundo, como

redes neurais convolucionais (CNNs), capazes de identificar padrões mais complexos no

tráfego da rede.

1.4 Tecnologias Emergentes

Nos últimos anos, o campo da detecção de intrusões em redes de computadores tem sido

cada vez mais impulsionado por uma tecnologia central: a inteligência artificial (IA) aplicada à

cibersegurança — em especial aos IDS. Estudos recentes mostram que, diante da complexidade

crescente do tráfego de rede, da diversidade de vetores de ataque e da necessidade de adaptação

a ameaças desconhecidas, a IA representa uma tendência tecnológica emergente para suportar

a defesa automática e adaptativa de sistemas críticos [10–12].

Dentro desse panorama, diversas técnicas - como redes neurais profundas, aprendizado por

reforço, algoritmos evolutivos, otimização de hiperparâmetros - têm sido exploradas. É im-

portante diferenciar: a tecnologia refere-se ao uso amplo da IA para IDS; as técnicas são os

métodos específicos empregados dentro dessa tecnologia, por exemplo, redes convolucionais,

algoritmos genéticos, aprendizagem por reforço.

Em particular, a mais recente literatura aborda a aplicação de aprendizado profundo (deep

learning) para IDS em ambientes emergentes como Internet das Coisas (IoT), Edge Computing

e Software-Defined Networking (SDN) — o que reforça o caráter de “tecnologia emergente”

desse tipo de proteção [10, 11].

Ao final desta subseção, vale ressaltar que a abordagem adotada neste trabalho, que combina

redes neurais com AG para otimização de parâmetros e seleção de características, está alinhada

com essa tendência de tecnologia emergente de IA para detecção de intrusões.

1.5 Solução Proposta

Como parte da solução proposta, constata-se que os AGs oferecem uma reconhecida capa-

cidade de explorar espaços de busca de alta dimensionalidade de forma eficiente, evitando a

dependência exclusiva de escolhas manuais ou heurísticas pouco generalizáveis [13, 14].

No contexto da detecção de intrusões, essa característica se torna relevante porque os flu-

xos de rede e os conjuntos de atributos utilizados para modelagem frequentemente apresentam

elevada dimensionalidade, heterogeneidade e evolução contínua [13].

4

Por sua vez, as técnicas de aprendizado profundo, em especial CNNs, têm demonstrado uma

forte aptidão para o reconhecimento de padrões complexos em dados de rede, inclusive padrões

de tráfego anômalo ou desconhecido. Essa capacidade amplia o escopo da tecnologia emergente

de IA, permitindo a detecção proativa de ataques novos ou não previamente assinados [10, 11].

Deste modo, a solução proposta — que integra AG para otimização e seleção de caracte-

rísticas, aliado a uma arquitetura de rede neural para classificação de tráfego — manifesta-se

como uma instância alinhada à tendência tecnológica emergente em IDS: trata-se de um sistema

IA-centrado, adaptativo e voltado para ambientes de rede complexos.

Na fase de implementação, os AGs atuam na busca automática das melhores combinações de

parâmetros e subconjuntos de atributos, reduzindo a dimensionalidade e melhorando a eficiência

do treinamento. Em seguida, a CNN realiza a classificação do tráfego de rede em benigno ou

malicioso. A junção desta abordagem permite que a solução proponha avanço em termos de

generalização, adaptabilidade e redução de intervenção manual.

1.6 Objetivos

O objetivo geral desta pesquisa consiste em desenvolver, implementar e validar uma abor-

dagem híbrida baseada na integração de AGs e CNNs para a detecção de intrusões em redes de

computadores. Pretende-se, com isso, alcançar simultaneamente dois propósitos fundamentais:

maximizar a eficácia da detecção, por meio de métricas de desempenho consolidadas, e mini-

mizar a latência de processamento, assegurando que o modelo seja compatível com cenários de

operação em tempo quase real.

Para atingir esse objetivo amplo, foram definidos os seguintes objetivos específicos:

• Investigar a eficiência do uso de AGs para a seleção automática de atributos relevantes

do conjunto CIC-IDS2018, de forma a identificar subconjuntos de variáveis que melhor

representem os padrões de tráfego normal e malicioso;

• Aplicar AGs na otimização dos hiperparâmetros da CNN, buscando definir automatica-

mente funções de ativação, número de unidades em cada camada, otimizadores e funções

de custo mais adequados ao problema;

• Projetar e treinar uma CNN enxuta, equilibrando simplicidade estrutural com alto desem-

penho preditivo, de forma a garantir tanto eficiência computacional quanto escalabilidade;

• Avaliar o modelo proposto utilizando métricas amplamente reconhecidas na literatura,

como acurácia, F1-score, G-Mean e tempo médio de inferência, de modo a quantificar de

forma abrangente sua eficácia e eficiência;

• Comparar os resultados obtidos com trabalhos relacionados, assegurando uma análise

crítica que situe a contribuição deste trabalho no contexto do estado da arte em detecção

de intrusões.

5

1.7 Contribuições

As contribuições deste trabalho podem ser analisadas sob diferentes perspectivas: meto-

dológica, experimental e aplicada. No plano metodológico, destaca-se a proposição de uma

arquitetura híbrida de AG e CNN que utiliza dois AGs distintos e complementares, um voltado

à seleção de atributos e outro dedicado à definição de hiperparâmetros. Essa estratégia, embora

ainda pouco explorada na literatura, demonstrou ser eficaz na otimização conjunta de insumos

e parâmetros de modelos de aprendizado profundo.

No âmbito experimental, a pesquisa demonstrou que a seleção automática de atributos per-

mitiu reduzir significativamente a dimensionalidade de entrada sem comprometer o desempe-

nho, ao contrário, melhorando a acurácia da rede. Simultaneamente, a otimização conduzida

pelo segundo AG identificou configurações de hiperparâmetros que potencializaram o poder

discriminativo da CNN, resultando em métricas de desempenho superiores às reportadas por

modelos de referência. Adicionalmente, os experimentos comprovaram que o modelo proposto

mantém baixa latência de inferência, requisito essencial para aplicações em redes de alta velo-

cidade.

Sob a perspectiva aplicada, este trabalho oferece uma solução viável e escalável para siste-

mas de detecção de intrusões, com potencial de utilização em ambientes reais. A redução do

tempo de resposta frente a tráfego malicioso possibilita maior eficiência em ações mitigadoras,

reduzindo riscos de indisponibilidade e danos em infraestruturas críticas. Dessa forma, a pes-

quisa contribui não apenas para o avanço científico na área de segurança em redes, mas também

para a aplicação prática de modelos de aprendizado de máquina em cenários que exigem alto

desempenho e confiabilidade.

1.8 Estrutura do Documento

A presente dissertação está organizada em capítulos, cada um com objetivos específicos,

conforme descrito a seguir:

• Capítulo 2 — Revisão Bibliográfica: apresenta um panorama das principais técnicas de

detecção de intrusões, destacando abordagens clássicas e tecnologias emergentes relevan-

tes para o estado da arte.

• Capítulo 3 — Fundamentação Teórica: descreve os conceitos essenciais que sustentam

o trabalho, com ênfase em redes neurais convolucionais e algoritmos genéticos, incluindo

princípios de funcionamento e aplicações no contexto de segurança da informação.

• Capítulo 4 — Metodologia: detalha as etapas de desenvolvimento do modelo proposto,

desde a preparação dos dados e configuração experimental até a integração entre seleção

de atributos e ajuste de hiperparâmetros por meio de algoritmos genéticos.

6

• Capítulo 5 — Resultados e Discussão: apresenta os experimentos realizados, analisa o

desempenho do modelo em múltiplas métricas e compara os resultados com trabalhos da

literatura, destacando os avanços alcançados.

• Capítulo 6 — Conclusões e Perspectivas Futuras: sintetiza as principais contribuições

da pesquisa, discute suas implicações práticas e aponta possíveis direções para trabalhos

futuros.

7

Capítulo 2

Revisão Bibliográfica

A detecção de intrusões em redes de computadores é um campo que tem evoluído rapida-

mente desde os primeiros sistemas baseados em assinaturas até o emprego de técnicas moder-

nas de Inteligência Artificial (IA) e aprendizado profundo. Esta seção apresenta uma revisão

atualizada das principais abordagens reportadas na literatura, suas limitações e as lacunas que

motivam a presente pesquisa.

Historicamente, Lunt [15] realizou uma das primeiras revisões abrangentes de técnicas de

detecção de intrusões, categorizando os métodos então existentes e apontando limitações in-

trínsecas aos sistemas baseados exclusivamente em assinaturas. Axelsson [16] posteriormente

formalizou uma taxonomia de IDS, distinguindo três categorias principais: baseados em assi-

naturas, em anomalias e híbridos. Esses trabalhos clássicos servem de base conceitual para o

desenvolvimento de abordagens mais recentes.

Sharafaldin et al. [17] contribuíram significativamente para o avanço da pesquisa em detec-

ção de intrusões ao desenvolverem a série de bases de dados do Canadian Institute for Cyberse-

curity (CIC), incluindo CICIDS2017, CSE-CIC-IDS2018 e, posteriormente, CIC-DDoS2019.

A CICIDS2017 introduziu um conjunto abrangente de tráfego realista com múltiplos vetores

de ataque distribuídos ao longo de vários dias, tornando-se referência na avaliação de IDS. Já a

CSE-CIC-IDS2018 — base utilizada neste trabalho — ampliou substancialmente a complexi-

dade ao incorporar uma topologia de rede maior, sete cenários distintos de ataque e um conjunto

expandido de características extraídas via CICFlowMeter, conferindo maior diversidade e repre-

sentatividade aos fluxos. Por fim, a CIC-DDoS2019 especializou-se em ataques de negação de

serviço distribuída, reunindo ampla variedade de vetores DDoS modernos. Em conjunto, essas

bases compartilham metodologia de captura, rotulação e extração de fluxos, mas diferem quanto

ao foco, variedade de ataques e volume de tráfego, tornando a CICIDS2018 especialmente ade-

quada para estudos que demandam generalização em cenários amplos e heterogêneos.

Drewek-Ossowicka et al. [18] revisaram mais de 150 estudos que empregaram técnicas

de aprendizado profundo para detecção de intrusões, destacando o papel das Redes Neurais

Convolucionais (CNN) e das Redes Neurais Recorrentes (RNN), especialmente as Long Short-

Term Memory (LSTM), por sua capacidade de capturar dependências temporais.

8

Lopez-Martin et al. [19] propuseram um classificador de tráfego IoT com duas camadas

convolucionais (32 e 64 filtros, ativação ReLU) seguidas por uma camada LSTM. Aplicado

à base UNSW-NB15, o modelo alcançou 98,2 % de acurácia, superando Support Vector Ma-

chine (SVM) e Random Forest. O estudo, contudo, apresentou alta demanda computacional,

dificultando sua aplicação em tempo real.

Shieh et al. [20] desenvolveram um modelo Bidirectional LSTM (BI-LSTM) combinado

a um Gaussian Mixture Model (GMM) para detecção de ataques DDoS. O modelo atingiu

96,8 % de acurácia nas bases CIC-IDS2017 e CIC-DDoS2019, porém não explorou otimização

automática de hiperparâmetros — lacuna explorada nesta dissertação.

Thirimanne et al. [21] apresentaram uma arquitetura de Rede Neural Profunda (DNN) de

baixa latência, obtendo 99,1 % de acurácia no NSL-KDD com tempo de inferência inferior a

10 ms, mas sem explorar seleção de atributos ou técnicas evolutivas.

Nguyen et al. [22] compararam CNN, LSTM e arquiteturas híbridas em múltiplas bases,

observando que CNNs apresentaram menor latência enquanto LSTMs alcançaram maior recall

para ataques raros. O trabalho demonstrou que a escolha da arquitetura depende do cenário,

mas não propôs mecanismos de ajuste dinâmico — o que motiva o uso de AGs neste estudo.

A Tabela 2.1 resume as principais características dos métodos clássicos e modernos, asso-

ciando vantagens e desvantagens a partir de fontes consolidadas na literatura.

Tabela 2.1: Comparação entre métodos de detecção de intrusões.

Método Vantagens Desvantagens

Baseado em assi-
naturas

Alta precisão para ataques co-
nhecidos; baixo custo computa-
cional [15, 16].

Ineficaz contra ataques inédi-
tos; exige atualização contínua.

Baseado em ano-
malias

Detecta ataques zero-day;
adaptável a novos padrões [18].

Maior taxa de falsos positivos;
requer treinamento complexo.

Híbrido Combina pontos fortes das
abordagens anteriores [20, 21].

Maior complexidade e con-
sumo computacional.

A Tabela 2.2 apresenta um conjunto de trabalhos representativos da literatura recente, des-

tacando a técnica principal empregada, o tipo de método e a base de dados utilizada, sem atri-

buição de qualquer avaliação comparativa.

9

Tabela 2.2: Trabalhos representativos: técnica, tipo de método e caracterização geral.

Referência Técnica principal Tipo de mé-
todo

Base de
dados

Descrição

Lopez-Martin et
al. [19]

CNN + LSTM Híbrido UNSW-
NB15

Análise baseada
em arquiteturas
profundas integra-
das

Shieh et al. [20] BI-LSTM + GMM Híbrido CIC-
IDS2017
/ CIC-
DDoS2019

Abordagem combi-
nando redes recor-
rentes bidirecionais
e modelos probabi-
lísticos

Thirimanne et
al. [21]

DNN Supervisionado NSL-KDD Proposta centrada
em rede neural pro-
funda de múltiplas
camadas

Nguyen et al. [22] CNN, LSTM e híbrido Comparativo Diversas
bases

Estudo compara-
tivo entre diferen-
tes arquiteturas
de aprendizado
profundo

Proposta (pre-
sente trabalho)

AG + CNN Híbrido (IA
evolutiva)

CIC-
IDS2018

Integração de algo-
ritmo genético com
rede neural convo-
lucional

A análise conjunta desses estudos evidencia a diversidade de abordagens aplicadas ao con-

texto de detecção de intrusões, variando desde modelos puramente supervisionados até arquite-

turas híbridas e métodos evolutivos. Observa-se ainda que diferentes bases de dados têm sido

utilizadas como referência, refletindo a ausência de um padrão único de avaliação no campo.

Além disso, nota-se que a literatura recente explora uma ampla gama de arquiteturas pro-

fundas, embora nem sempre incorpore procedimentos sistemáticos de seleção de atributos ou

estratégias evolutivas de otimização, aspectos que motivam a presente investigação.

10

Capítulo 3

Fundamentação Teórica

3.1 Introdução às Redes Neurais Artificiais

As Redes Neurais Artificiais (RNAs) são modelos capazes de aprender padrões complexos

a partir de dados. Neste trabalho, empregou-se uma variação de RNA denominada CNN, es-

colhida por sua capacidade de extrair representações discriminativas de dados estruturados. O

processo de ajuste de pesos foi realizado via backpropagation, com função de custo e otimiza-

dor definidos automaticamente pelo Algoritmo Genético, permitindo configuração adaptada ao

problema de detecção de intrusões.

3.2 Redes Neurais Convolucionais

As CNNs constituem uma classe de arquiteturas de aprendizado profundo inspiradas no fun-

cionamento do córtex visual humano. Diferentemente das redes neurais totalmente conectadas

(Fully Connected Neural Networks), que estabelecem conexões entre todos os neurônios de ca-

madas adjacentes, as CNNs exploram o conceito de operações locais e de compartilhamento de

pesos, o que resulta em modelos mais eficientes e com melhor capacidade de generalização em

tarefas que envolvem dados estruturados em grades, como imagens, séries temporais e fluxos

de tráfego de rede.

O componente central de uma CNN é a camada convolucional, na qual filtros (kernels)

deslizam sobre a entrada aplicando operações de convolução. Cada filtro aprende a detectar

padrões específicos, como bordas, variações de intensidade ou, no contexto de IDS, combi-

nações de atributos de tráfego que caracterizam comportamentos normais ou maliciosos [23].

Matematicamente, a saída de uma convolução pode ser representada como

s(t) = (x ∗ w)(t) =
+∞
∑

τ=−∞

x(τ) · w(t− τ), (3.1)

onde x representa o sinal de entrada e w o filtro convolucional. Esse processo é responsável

11

pela extração hierárquica de características, permitindo que camadas iniciais capturem padrões

simples e camadas posteriores combinem tais padrões em representações mais complexas.

Além das camadas convolucionais, as CNNs geralmente incluem camadas de pooling, res-

ponsáveis por reduzir a dimensionalidade das representações intermediárias sem perder infor-

mações relevantes. A técnica mais comum é o max pooling, definida por [23]:

yi,j = max
(m,n)∈Ωi,j

xm,n, (3.2)

no qual cada saída yi,j corresponde ao valor máximo em uma vizinhança local Ωi,j da entrada

x. Isso confere à rede invariância espacial parcial, além de diminuir o custo computacional.

Ao final do processo convolucional e de pooling, as representações extraídas são encami-

nhadas para camadas densas (fully connected), onde ocorre a combinação não-linear das ca-

racterísticas aprendidas para produzir a saída final, como a classificação entre tráfego normal e

ataque.

A principal vantagem das CNNs está em sua capacidade de aprender automaticamente re-

presentações discriminativas a partir dos dados, dispensando a necessidade de extração manual

de atributos. Essa característica torna as CNNs particularmente eficazes em sistemas de detec-

ção de intrusões, uma vez que o tráfego de rede pode ser organizado em estruturas matriciais

análogas a imagens, permitindo que a rede identifique padrões complexos de ataque com ele-

vada acurácia e baixo tempo de inferência.

Em síntese, as CNNs oferecem um equilíbrio entre poder de representação e eficiência com-

putacional, o que justifica sua adoção em diversos domínios da Inteligência Artificial, incluindo

a cibersegurança.

O fluxograma da Figura 3.1 apresenta, de forma esquemática, o funcionamento de uma

CNN aplicada à detecção de intrusões. Na etapa inicial, a entrada matricial (H × W × C)

corresponde ao tráfego de rede organizado em uma grade de atributos, a qual é processada pela

camada convolucional, onde filtros especializados extraem padrões locais que revelam depen-

dências entre atributos correlacionados. Em seguida, a ativação não-linear amplia a capacidade

do modelo de representar relações complexas, enquanto a operação de max pooling reduz a di-

mensionalidade e preserva as informações mais relevantes. O vetor resultante é então achatado

e encaminhado para camadas densas, responsáveis por integrar globalmente as características

extraídas nas etapas anteriores, até que a camada de saída, com ativação sigmóide, retorne a

probabilidade de um fluxo ser classificado como intrusão ou tráfego normal, evidenciando a hi-

erarquia de abstração típica das CNNs na transformação de dados brutos em uma decisão final

de classificação binária.

3.2.1 Representação de Tráfego de Rede para Entrada em CNN

Além das estratégias de regularização, a representação dos dados de entrada exerce influên-

cia determinante na qualidade do aprendizado. Neste trabalho, o vetor original de 20 atributos

12

Entrada
(H ×W × C)

Camada Convolucional (Conv2D)
filtros = F , kernel = k × k

Ativação
(ReLU/Mish/Swish)

Max Pooling
janela p× p, passo s

Flatten

Densa (n1) + Ativação

Densa (n2) + Ativação

Saída
(1 nó, sigmoid)

extração de características locais

redução de dimensionalidade

combinação não-linear

probabilidade de intrusão

Figura 3.1: Fluxograma típico de uma CNN aplicada a IDS.

do tráfego de rede foi reorganizado na forma matricial 4× 5, com canal único. Essa disposição

não é arbitrária: ela busca preservar correlações semânticas entre atributos relacionados, como

estatísticas referentes ao tráfego de envio e recebimento, posicionando-os em proximidade es-

pacial na grade. Assim, os filtros convolucionais conseguem explorar tais relações locais de

maneira mais eficaz, aproximando-se do princípio que fundamenta a detecção de padrões em

imagens.

Para garantir equilíbrio entre os atributos, foi aplicada normalização feature-wise, baseada

no z-score de cada coluna. Esse procedimento evita que atributos de maior magnitude numé-

rica dominem a propagação direta da rede, assegurando que todas as variáveis contribuam de

maneira equitativa para a aprendizagem. Dessa forma, o modelo é capaz de identificar padrões

relevantes mesmo em atributos de menor escala, ampliando a robustez e a capacidade discrimi-

nativa da CNN.

13

3.3 Funções de Ativação

As funções de ativação são essenciais nas RNAs, pois introduzem não-linearidade no mo-

delo, permitindo a aproximação de funções complexas. A escolha adequada da função de

ativação afeta diretamente a capacidade de generalização, a estabilidade do gradiente e a ve-

locidade de convergência. Além disso, para o algoritmo de retropropagação, é fundamental a

derivada ϕ′(x) de cada função, uma vez que esta determina como o erro é propagado entre as

camadas [23–27]. A seguir são apresentadas as funções de ativação utilizadas neste trabalho,

juntamente com suas equações e respectivas análises.

Função Linear

A função linear é definida como

ϕ(x) = x, (3.3)

com derivada

ϕ′(x) = 1. (3.4)

Por ser estritamente linear, não introduz complexidade adicional ao modelo, mas é útil em

camadas de saída em problemas de regressão.

Função ReLU

A Rectified Linear Unit (ReLU) é dada por

ϕ(x) = max(0, x), (3.5)

com derivada

ϕ′(x) =







0, x < 0,

1, x > 0.
(3.6)

A ReLU é amplamente utilizada devido à sua simplicidade computacional e à mitigação parcial

do problema do desvanecimento do gradiente. Contudo, apresenta a limitação conhecida como

dying ReLU, que ocorre quando neurônios ficam permanentemente inativos [23].

Função SELU

A Scaled Exponential Linear Unit (SELU) é definida por

ϕ(x) =







k · x, x > 0,

k · α · (ex − 1), x ≤ 0,
(3.7)

14

onde α = 1, 67326324 e k = 1, 05070098. Sua derivada é dada por

ϕ′(x) =







k, x > 0,

k · α · ex, x ≤ 0.
(3.8)

A SELU promove normalização automática da saída dos neurônios, favorecendo a estabilidade

em arquiteturas profundas [25].

Função ELU

A Exponential Linear Unit (ELU) é expressa como

ϕ(x) =







x, x > 0,

α · (ex − 1), x ≤ 0,
(3.9)

com α = 1.0. Sua derivada é

ϕ′(x) =







1, x > 0,

ϕ(x) + α, x ≤ 0.
(3.10)

A ELU suaviza a descontinuidade da ReLU em x = 0, permitindo gradientes não-nulos para

entradas negativas [24].

Função Softmax

A função Softmax é definida para vetores de entrada x ∈ R
K como

ϕ(xj) =
exj

∑K

k=1 e
xk

, j = 1, . . . , K. (3.11)

A derivada envolve a matriz Jacobiana, dada por

∂ϕ(xj)

∂xi

=







ϕ(xj) · (1− ϕ(xj)), i = j,

−ϕ(xi) · ϕ(xj), i ̸= j.
(3.12)

O Softmax é utilizado principalmente na saída de classificadores multiclasse, garantindo distri-

buição de probabilidade [23].

Função Softplus

A função Softplus é dada por

ϕ(x) = ln(1 + ex), (3.13)

15

com derivada

ϕ′(x) =
1

1 + e−x
= σ(x), (3.14)

isto é, a própria função sigmóide. O Softplus pode ser entendido como uma versão suavizada

da ReLU [23].

Função Mish

A função Mish é definida por

ϕ(x) = x · tanh(ln(1 + ex)), (3.15)

cuja derivada é suave e não-nula para praticamente todo o domínio. Essa característica favorece

um fluxo de gradiente mais estável em arquiteturas profundas [27].

Função Swish

A função Swish é expressa por

ϕ(x) = x · σ(x) = x

1 + e−x
, (3.16)

com derivada

ϕ′(x) = ϕ(x) + σ(x)(1− ϕ(x)), (3.17)

onde σ(x) é a função sigmóide. A Swish mantém derivadas não-nulas em todo o domínio, sendo

considerada uma alternativa moderna à ReLU [26].

Discussão Crítica

A análise das derivadas evidencia que funções como Linear e ReLU possuem simplicidade

e baixo custo computacional, mas podem limitar a propagação de gradientes em cenários com-

plexos. Por outro lado, SELU e ELU oferecem mecanismos de normalização e suavização,

reduzindo a inatividade de neurônios. Softmax é indispensável para classificação multiclasse,

enquanto Softplus, Mish e Swish são alternativas que preservam gradientes em regiões amplas,

favorecendo arquiteturas profundas, como a CNN utilizada neste trabalho.

Resumo Comparativo

A Tabela 3.1 apresenta um conjunto abrangente das principais funções de ativação utiliza-

das em redes neurais modernas, incluindo suas equações, derivadas e vantagens práticas. Essa

comparação evidencia como diferentes ativadores influenciam o fluxo de gradientes, a estabili-

dade numérica e a capacidade de generalização dos modelos. Funções clássicas, como Linear e

ReLU, contrastam com variantes mais recentes, como Swish e Mish, que introduzem suavidade

16

e não linearidades mais ricas capazes de melhorar o desempenho em arquiteturas profundas.

Além disso, funções como SELU e ELU destacam-se por mitigar problemas de desvanecimento

do gradiente e favorecer processos de autonormalização, reforçando a importância da escolha

adequada da ativação para cada tipo de tarefa e arquitetura.

Tabela 3.1: Funções de ativação utilizadas: equações, derivadas e principais vantagens.

Função ϕ(x) ϕ′(x) Principais vantagens

Linear x 1 Útil em saídas de regressão; esta-
bilidade numérica.

ReLU max(0, x)

{

0, x < 0

1, x > 0
Simples e barata; induz esparsi-
dade; mitiga parcialmente o des-
vanecimento do gradiente [23].

SELU

{

kx, x > 0

kα (ex − 1), x ≤ 0

{

k, x > 0

kα ex, x ≤ 0
Autonormalização; treinamento
estável em arquiteturas profun-
das [25].

ELU

{

x, x > 0

α (ex − 1), x ≤ 0

{

1, x > 0

ϕ(x) + α, x ≤ 0
Permite ativações negativas; mé-
dia próxima de zero; convergên-
cia mais rápida [24].

Softmax ϕ(xj) =
exj

∑K
k=1 e

xk

Jacobiana com termos cru-
zados ∂ϕj/∂xi

Saída probabilística normalizada
para multiclasse [23].

Softplus ln(1 + ex) σ(x) ReLU suavizada; derivada não
nula em x < 0; maior estabili-
dade [23].

Mish x tanh(ln(1 + ex)) Suave e não nula em quase
todo domínio

Gradientes suaves; boa generali-
zação reportada em tarefas pro-
fundas [27].

Swish xσ(x) ϕ(x) + σ(x) (1− ϕ(x)) Suave e não monótona; desem-
penho superior à ReLU em redes
profundas [26].

Notas: σ(x) = 1

1+e
−x

. Para SELU, usar α = 1,67326324 e k = 1,05070098.

3.3.1 Derivadas e retropropagação

No processo de treinamento de redes neurais, a retropropagação (backpropagation) exige

o cálculo das derivadas das funções de ativação, denotadas por ϕ′(x). Essas derivadas de-

sempenham um papel fundamental, pois determinam a estabilidade do fluxo de gradientes ao

longo das camadas. Em outras palavras, a escolha da função de ativação não impacta apenas

a não-linearidade introduzida na propagação direta, mas também influencia se o gradiente será

preservado, reduzido (vanishing gradient) ou amplificado (exploding gradient).

Por exemplo, a função ReLU, definida como

17

ϕ(x) = max(0, x), (3.18)

apresenta derivada

ϕ′(x) =







0, x < 0,

1, x > 0.
(3.19)

Isso significa que, para entradas negativas, a derivada é nula e o neurônio deixa de ser

atualizado, fenômeno conhecido como dead neuron. Embora a ReLU tenha impulsionado o

treinamento de redes profundas pela sua simplicidade e eficiência computacional, esse compor-

tamento pode comprometer o aprendizado quando muitos neurônios mantém-se permanente-

mente inativos.

Em contraste, funções mais recentes como a Swish e a Mish apresentam derivadas suaves e

não-nulas em uma faixa mais ampla. A função Swish é definida por

ϕ(x) = x · σ(x), onde σ(x) =
1

1 + e−x
, (3.20)

cuja derivada pode ser expressa como

ϕ′(x) = σ(x) + x · σ(x) · (1− σ(x)). (3.21)

Já a função Mish é dada por

ϕ(x) = x · tanh(ln(1 + ex)), (3.22)

com uma derivada mais complexa, mas caracterizada pela suavidade contínua em todo o domí-

nio real e ausência de regiões totalmente planas.

Essas propriedades tornam Swish [26] e Mish [27] menos suscetíveis ao problema do des-

vanecimento do gradiente, garantindo uma propagação de erro mais estável. Isso favorece tanto

a convergência durante o treinamento quanto a capacidade de generalização da rede, especial-

mente em cenários de grande profundidade ou alta variabilidade dos dados.

Portanto, a análise de ϕ′(x) não deve ser vista como mera formalidade matemática, mas

como uma ferramenta essencial para compreender os efeitos de cada função de ativação no

processo de otimização [23, 28]. Em síntese, funções com derivadas suaves e não-nulas em

faixas mais amplas do domínio contribuem para redes mais robustas e de treinamento mais

eficiente.

18

3.4 Regularização

A regularização desempenha um papel crucial no treinamento de redes neurais, atuando

como um conjunto de técnicas destinadas a mitigar o overfitting, ou seja, a tendência do modelo

em memorizar excessivamente os dados de treinamento e perder capacidade de generalização.

Para lidar com esse desafio, diversas estratégias foram aplicadas nesta pesquisa, combinando

abordagens clássicas e avançadas.

3.4.1 L2 Weight Decay

O weight decay (ou regularização L2) consiste em adicionar um termo de penalização pro-

porcional à norma dos pesos à função de perda. Formalmente, o termo λ
2
∥θ∥2 é somado ao custo

original, resultando em uma atualização dos parâmetros que favorece pesos de menor magni-

tude [23,29]. Essa técnica contribui para reduzir a complexidade do modelo, evitando soluções

instáveis e garantindo maior robustez frente a variações nos dados.

3.4.2 Dropout e Alpha-Dropout

O Dropout é uma técnica probabilística que desativa aleatoriamente neurônios durante o

treinamento com probabilidade p, promovendo o aprendizado de representações redundantes e

reduzindo a coadaptação entre unidades. Em termos práticos, equivale a treinar um ensemble

de sub-redes menores, isto é, um conjunto de modelos parciais que compartilham pesos e cuja

combinação efetiva resulta em maior capacidade de generalização [23].

No caso específico da função de ativação SELU, empregou-se o Alpha-Dropout, uma va-

riante projetada para preservar as propriedades de auto-normalização da rede [25]. Diferente-

mente do Dropout tradicional, o Alpha-Dropout ajusta as ativações desligadas de forma a man-

ter a média e variância inalteradas, assegurando que o fluxo de informação permaneça estável

mesmo em arquiteturas profundas.

3.4.3 Early Stopping

Outra medida utilizada foi o early stopping, em que o processo de treinamento é interrom-

pido quando o desempenho no conjunto de validação deixa de apresentar melhorias significati-

vas. Essa técnica evita que o modelo continue ajustando-se a flutuações aleatórias do conjunto

de treino, reduzindo a chance de sobreajuste e economizando recursos computacionais.

3.5 Otimizadores: teoria, prática e análise matemática

O processo de otimização em redes neurais visa minimizar a função de custo ajustando os

parâmetros θ (pesos e vieses) da rede por meio de métodos iterativos baseados em gradientes.

19

Diferentes otimizadores variam na forma como calculam e aplicam essas atualizações, influen-

ciando diretamente a convergência, estabilidade e velocidade do treinamento. Nesta seção são

discutidos os principais otimizadores empregados neste trabalho, juntamente com suas formu-

lações matemáticas e propriedades.

3.5.1 Stochastic Gradient Descent (SGD) e Momentum

O Stochastic Gradient Descent (SGD) é o método mais simples de otimização, onde os

parâmetros são atualizados a partir do gradiente estimado em um mini-batch de dados:

θt = θt−1 − η ĝt, (3.23)

onde η é a taxa de aprendizado e ĝt é o gradiente estocástico no passo t.

Para melhorar o comportamento do SGD, especialmente em superfícies irregulares, utiliza-

se o conceito de momentum, que acumula gradientes passados e suaviza oscilações:

mt = µmt−1 + η∇θL(θt−1), θt = θt−1 −mt, (3.24)

onde µ ∈ [0, 1) é o coeficiente de momentum.

O momentum atua como um filtro exponencial que acelera a descida em direções persistentes

e reduz o ruído estocástico [23, 30]. Isso é particularmente útil em regiões com vales estreitos

ou platôs, comuns em funções de custo de alta dimensionalidade.

3.5.2 Adaptive Moment Estimation (Adam)

O Adam combina os benefícios do momentum com a adaptação da taxa de aprendizado para

cada parâmetro. Ele calcula médias móveis de primeira e segunda ordem do gradiente:

gt = ∇θL(θt−1), (3.25)

mt = β1mt−1 + (1− β1)gt, (3.26)

vt = β2vt−1 + (1− β2)g
2
t , (3.27)

onde β1 e β2 controlam os decaimentos exponenciais.

Como essas estimativas são enviesadas no início, aplica-se correção:

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

. (3.28)

A atualização final é dada por:

θt = θt−1 − η
m̂t√
v̂t + ϵ

, (3.29)

20

onde ϵ é um termo de estabilidade numérica (tipicamente 10−8).

O Adam é adaptativo por parâmetro, ou seja, cada peso possui sua própria taxa de aprendi-

zado ajustada pela variância do gradiente [23, 31]. Essa característica torna o método robusto

em problemas com gradientes esparsos ou heterogêneos. Os parâmetros recomendados na lite-

ratura são β1 = 0.9, β2 = 0.999 e ϵ = 10−8.

3.5.3 Adamax

O Adamax é uma variante do Adam baseada na norma infinito (ℓ∞), substituindo a média

quadrática dos gradientes pelo máximo móvel:

ut = max(β2ut−1, |gt|), θt = θt−1 −
η

ut

mt. (3.30)

Intuição: ao usar a norma infinita, o Adamax torna-se mais estável em situações com gra-

dientes esparsos ou picos abruptos [31]. Embora menos popular que o Adam, pode oferecer

robustez extra em cenários específicos.

3.5.4 Síntese Comparativa

Em resumo:

• O SGD com momentum é simples e eficiente, mas requer ajuste cuidadoso da taxa de

aprendizado.

• O Adam oferece maior robustez e adaptação automática de taxas, sendo amplamente

utilizado em CNNs modernas.

• O Adamax representa uma alternativa robusta em casos de gradientes extremos ou espar-

sidade.

A escolha do otimizador impacta diretamente a convergência do modelo. Neste trabalho,

a seleção foi realizada de forma automática pelo Algoritmo Genético, permitindo explorar a

adequação de cada método ao problema de detecção de intrusões.

3.6 Funções de Custo (Loss) e sua Interpretação

As funções de custo, também chamadas de funções de perda, são fundamentais no apren-

dizado supervisionado, pois quantificam o erro do modelo em relação aos dados observados.

O processo de treinamento busca minimizá-las para ajustar os parâmetros da rede e melhorar a

capacidade preditiva.

21

3.6.1 Binary Crossentropy (Entropia Cruzada Binária)

Indicada para problemas de classificação binária, em que o rótulo verdadeiro é y ∈ {0, 1} e

a predição do modelo é ŷ ∈ (0, 1) (probabilidade estimada da classe positiva) [23, 32].

A função de perda por amostra é dada por:

L(ŷ, y) = −
[

y log(ŷ) + (1− y) log(1− ŷ)
]

. (3.31)

• Equivale à log-loss para uma distribuição Bernoulli, medindo a discrepância entre a dis-

tribuição verdadeira (rótulo) e a predita.

• Minimizar essa função é equivalente a maximizar a verossimilhança do modelo sob a

hipótese de dados Bernoulli independentes.

• Penaliza fortemente predições confidentes e erradas (por exemplo, ŷ → 1 quando y = 0).

• É convexa em relação a ŷ, o que facilita otimização.

3.6.2 Poisson Loss

Indicada para problemas de regressão envolvendo contagens, onde o valor observado y é um

número inteiro não negativo modelado como uma variável de Poisson com parâmetro λ (média

e variância iguais) [32].

A função de perda por amostra é dada por:

L(λ̂, y) = λ̂− y log(λ̂) + log(y!). (3.32)

Na prática, o termo log(y!) não depende de λ̂ e pode ser ignorado durante a otimização.

Interpretação:

• Representa a negativa da log-verossimilhança sob o modelo Poisson.

• Penaliza erros na predição da taxa λ̂, incentivando que ela se aproxime do valor real y.

• Adequada para dados de contagem com variância proporcional à média.

Dado um vetor de probabilidades alvo P = (P (1), . . . , P (k)) e uma predição Q = (Q(1),

. . . , Q(k)), ambas distribuições discretas sobre k classes, a Divergência de Kullback–Leibler

(KL) é definida como [33]:

DKL(P∥Q) =
k

∑

i=1

P (i) log
P (i)

Q(i)
. (3.33)

• Mede a dissimilaridade ou “distância” (não simétrica) entre as distribuições P (verda-

deira) e Q (predita).

22

• É sempre não negativa e igual a zero somente se P = Q ponto a ponto.

• É amplamente utilizada em aprendizado probabilístico para alinhar a distribuição predita

do modelo com a distribuição alvo.

• Em classificadores com múltiplas classes, pode ser vista como uma generalização da

entropia cruzada.

Em síntese, a escolha da função de custo deve considerar o tipo de problema e a natureza dos

dados, de modo que a otimização corresponda a maximizar a verossimilhança (ou minimizar a

discrepância) entre o modelo e a realidade.

3.6.3 Matriz de Confusão

A matriz de confusão sintetiza o desempenho do classificador, conforme Tabela 3.2:

Tabela 3.2: Matriz de confusão para classificação binária

Previsto Positivo Previsto Negativo

Verdadeiro Positivo TP FN

Verdadeiro Negativo FP TN

Exemplo: em IDS, um FP pode ser um falso alarme (tráfego legítimo classificado como

ataque), enquanto um FN é um ataque não detectado, geralmente mais crítico.

3.7 Pré-processamento e Representação dos Atributos

3.7.1 Normalização

A normalização é uma etapa essencial no pré-processamento de dados para redes neurais,

pois garante que os atributos de entrada estejam em escalas compatíveis. Sem esse ajuste,

variáveis com magnitudes muito distintas podem dominar o processo de otimização, resultando

em convergência lenta ou em soluções subótimas [23].

Duas técnicas usuais são amplamente empregadas. A primeira é a padronização (z-score),

que transforma cada atributo para ter média zero e desvio padrão unitário. Essa abordagem é

indicada quando os dados apresentam distribuição aproximadamente gaussiana. A segunda é a

normalização min–max, que reescala os atributos para um intervalo definido, tipicamente [0, 1]

ou [−1, 1]. Essa técnica é recomendada quando se deseja preservar as relações proporcionais

entre valores e quando os atributos possuem limites conhecidos.

A escolha entre padronização e min–max depende da natureza do conjunto de dados e do

comportamento esperado das funções de ativação utilizadas na rede. Em ambos os casos, o

23

objetivo central é melhorar a estabilidade numérica, acelerar a convergência e favorecer um

treinamento mais robusto.

3.7.2 Mapeamento para entrada 2D (4 × 5) da CNN

Neste trabalho, vetores com 20 atributos foram reestruturados para a matriz 4 × 5 × 1.

Observações importantes:

• Ordem dos atributos: proximidade semântica entre features adjacentes na matriz pode

melhorar detecção por convoluções (preservar correlações locais).

• Normalização por atributo: evita dominância de features com escala maior.

• Justificativa teórica: operações locais de convolução exploram correlações entre atri-

butos próximos na grade — uma representação similar a imagens tem sido adotada em

trabalhos recentes de IDS via CNN [34, 35].

3.8 Integração com Algoritmos Genéticos

A integração de AGs com CNNs tem sido explorada na literatura como uma estratégia de

busca e otimização de arquiteturas. Em geral, os AGs são aplicados tanto na seleção de atribu-

tos mais relevantes para classificação quanto no ajuste automático de hiperparâmetros das redes

neurais. Trabalhos recentes apontam que essa combinação é promissora, pois alia a capacidade

exploratória dos AGs à expressividade das CNNs, resultando em modelos mais eficientes e ro-

bustos. Essa abordagem visa reduzir a dimensionalidade, evitar sobreajuste e, simultaneamente,

encontrar combinações de configuração que maximizem a acurácia e minimizem a latência.

3.8.1 Representação cromossômica

Dois tipos de cromossomos foram definidos de acordo com o objetivo da otimização:

1. Seleção de atributos: cada cromossomo possui 20 genes, cada um representando o índice

de um atributo do conjunto original de 78 variáveis. O espaço de busca associado a essa

tarefa é da ordem de
(

78
20

)

, o que torna inviável a exploração exaustiva e justifica o uso de

heurísticas evolutivas.

2. Hiperparâmetros da CNN: o cromossomo codifica múltiplos aspectos da arquitetura

e do treinamento, incluindo: quatro genes correspondentes às funções de ativação, três

genes para o número de nós em camadas densas, um gene para o otimizador e um gene

para a função de perda.

24

3.8.2 Operadores genéticos

O processo evolutivo emprega operadores clássicos adaptados ao problema:

• Seleção: método da roleta proporcional ao fitness, favorecendo indivíduos de maior de-

sempenho sem eliminar a diversidade.

• Cruzamento: operador de Radcliff (semelhante a blend crossover), aplicado a genes

contínuos. Formalmente:

filho1 = βp1 + (1− β)p2, filho2 = (1− β)p1 + βp2, (3.34)

com β ∈ [0, 1], onde p1 e p2 são os pais.

• Mutação: perturbação aleatória de genes com probabilidade pm, permitindo explorar

regiões não visitadas do espaço de busca.

• Elitismo: preservação do melhor indivíduo a cada geração, garantindo que a qualidade

da população não decresça.

3.8.3 Função de aptidão

A aptidão de cada indivíduo é avaliada por meio das métricas de desempenho (acurácia ou

F1 ponderado) obtidas após o treinamento da CNN correspondente. Além disso, o tempo de

treinamento pode ser incorporado como critério adicional, permitindo balancear a busca entre

precisão e custo computacional.

3.9 Integração de AGs com CNNs na Detecção de Intrusões

Diversos trabalhos recentes têm investigado a utilização conjunta de AGs e CNNs no con-

texto da segurança em redes. Os AGs atuam como mecanismos de busca e otimização, enquanto

as CNNs oferecem elevado poder de representação para a análise de tráfego. Essa integração

pode ocorrer em dois níveis principais: (i) seleção de atributos mais relevantes para reduzir a

dimensionalidade do problema; e (ii) ajuste automático de hiperparâmetros da CNN, evitando

a dependência de configuração manual.

Shieh et al. [36], por exemplo, aplicaram técnicas de otimização evolutiva em conjunto com

redes recorrentes e CNNs para melhorar a detecção de ataques DDoS. Thirimanne et al. [37]

utilizaram um esquema híbrido de busca de hiperparâmetros aliado a arquiteturas profundas.

Outros autores, como Nguyen et al. [38], compararam diferentes estratégias de integração entre

AGs e redes neurais, evidenciando ganhos de desempenho ao incorporar mecanismos evolutivos

no processo de modelagem.

25

A análise desses trabalhos evidencia que a combinação AG–CNN tem se mostrado pro-

missora, mas ainda carece de maior exploração no contexto de IDS com bases modernas e de

grande escala, como o CIC-IDS2018, justificando a proposta desta dissertação.

3.10 Complexidade computacional

O custo computacional da abordagem é diretamente proporcional ao número de indivíduos,

épocas de treinamento e custo de cada passagem forward/backpropagation. Para um modelo

com W parâmetros e um conjunto com M amostras, o custo por época é aproximadamente

O(M ·W). Assim, o custo total da evolução pode ser expresso como:

C ≈ O (N ·G · Eavg ·M ·W) , (3.35)

em que N é o número de indivíduos, G o número de gerações e Eavg a média de épocas de

treinamento por indivíduo.

3.11 Estratégias de aceleração

Devido ao elevado custo de avaliar centenas de indivíduos ao longo de várias gerações,

algumas estratégias foram consideradas para reduzir a complexidade prática da abordagem:

• Pruning: eliminação antecipada de indivíduos com baixo desempenho nas primeiras épo-

cas de treino;

• Warm-start: reaproveitamento de pesos já ajustados para inicializar indivíduos genetica-

mente similares;

• Avaliação parcial: limitação do número de épocas em gerações iniciais para triagem

preliminar, destinando maior orçamento de treino apenas a indivíduos promissores.

A integração de AGs com CNNs permite explorar um espaço de busca extremamente vasto

— tanto na escolha de atributos quanto na configuração arquitetural da rede — de forma heurís-

tica e adaptativa. Embora apresente custo computacional elevado, as estratégias de aceleração

adotadas tornam a abordagem viável e eficaz. Esse modelo híbrido combina a capacidade explo-

ratória dos AGs com o poder representacional das CNNs, configurando-se como uma solução

robusta para detecção de intrusões em cenários de alta dimensionalidade e exigência de baixa

latência.

26

3.12 Ambiente de Desenvolvimento e Ferramentas Compu-

tacionais

O desenvolvimento desta pesquisa foi sustentado por um conjunto de linguagens e bibli-

otecas consolidadas no ecossistema científico e de aprendizado de máquina. A escolha das

ferramentas não se restringe à conveniência de uso, mas reflete critérios de robustez, reprodu-

tibilidade, suporte comunitário e alinhamento com o estado da arte em detecção de intrusões

baseada em aprendizado profundo. A seguir são detalhados os principais elementos utilizados.

3.12.1 Linguagem Python

A linguagem Python tornou-se padrão de fato em projetos de ciência de dados e aprendi-

zado de máquina. Entre suas principais características destacam-se:

• Alto nível de abstração: permite a implementação de conceitos complexos com código

conciso e legível.

• Amplo ecossistema científico: bibliotecas como NumPy, Pandas, SciPy e Matplot-

lib oferecem suporte nativo a manipulação de matrizes, análise estatística, processa-

mento numérico e visualização de dados.

• Integração com frameworks de aprendizado profundo: Python serve como inter-

face de alto nível para bibliotecas otimizadas em C/C++ e CUDA, viabilizando tanto

prototipagem rápida quanto execução eficiente.

Essa combinação de simplicidade e poder computacional justifica sua adoção em sistemas

de IDS baseados em aprendizado de máquina, onde clareza de código e confiabilidade científica

são igualmente críticas.

3.12.2 NumPy e o núcleo computacional

A biblioteca NumPy é o núcleo matemático de Python para computação científica. Oferece

estruturas de dados vetoriais e matriciais altamente otimizadas, além de operações lineares e

transformadas rápidas. Sua importância neste trabalho está em:

• Representação eficiente dos dados: os fluxos de rede, reduzidos a vetores de 20 atri-

butos, são tratados como matrizes multidimensionais (ndarray), permitindo operações

vetorizadas.

• Velocidade e otimização: muitas rotinas da biblioteca são implementadas em C, garan-

tindo desempenho próximo ao de linguagens compiladas.

• Base para frameworks superiores: tanto TensorFlow quanto Keras utilizam con-

ceitos e estruturas do NumPy, reforçando seu papel central.

27

3.12.3 TensorFlow

O TensorFlow é uma das bibliotecas mais difundidas para aprendizado profundo, desen-

volvida originalmente pelo Google. Destaca-se por:

• Modelo de grafos computacionais: representações de fluxos de dados (tensors) são

descritas em grafos, permitindo otimizações e paralelização em múltiplos dispositivos.

• Suporte multiplataforma: execução em CPUs, GPUs e TPUs sem alteração significativa

no código-fonte.

• Escalabilidade: adequado tanto para experimentos locais quanto para treinamento dis-

tribuído em clusters.

• Ferramentas de produção: integração com TensorFlow Serving e TensorFlow Lite per-

mite migrar modelos do ambiente de pesquisa para aplicações reais e de borda.

No contexto desta dissertação, o TensorFlow foi utilizado como motor subjacente para trei-

nar as redes convolucionais otimizadas pelos algoritmos genéticos, oferecendo infraestrutura

confiável e reproduzível para experimentação.

3.12.4 Keras como interface de alto nível

Acima do núcleo TensorFlow, a biblioteca Keras fornece uma API de alto nível que

simplifica a criação e o treinamento de modelos de aprendizado profundo. Sua adoção neste

trabalho é justificada por:

• Simplicidade e modularidade: construção de modelos por meio de camadas sequenciais

ou funcionais, mantendo legibilidade.

• Produtividade: prototipagem rápida de arquiteturas complexas, aspecto fundamental em

experimentos com otimização via AGs.

• Integração nativa com TensorFlow: aproveita toda a infraestrutura de execução e oti-

mização já descrita, sem comprometer desempenho.

Com isso, a implementação do modelo AG-CNN pôde ser conduzida de forma clara, reduzindo

a complexidade de codificação e aumentando a confiabilidade.

3.12.5 Síntese das escolhas

O conjunto Python + NumPy + TensorFlow + Keras configura um ecossistema

maduro, com equilíbrio entre acessibilidade para o pesquisador e eficiência na execução. Em

trabalhos de detecção de intrusões, esse equilíbrio é determinante, pois possibilita:

28

1. Analisar e pré-processar fluxos massivos de dados em memória.

2. Implementar arquiteturas de redes profundas de forma rápida e iterativa.

3. Garantir portabilidade entre ambiente experimental e aplicações práticas em tempo real.

Assim, a escolha dessas ferramentas sustenta não apenas a viabilidade técnica dos experimentos

realizados, mas também a sua relevância prática para futuros sistemas de segurança baseados

em aprendizado profundo.

3.13 Considerações Finais

Neste capítulo foram apresentados os principais fundamentos teóricos que embasam a pes-

quisa, com destaque para os conceitos essenciais de CNNs e AGs. Foram também discutidas as

técnicas de otimização que exploram a integração entre AGs e CNNs no contexto da detecção

de intrusões.

A revisão realizada permite compreender tanto as potencialidades quanto as limitações das

abordagens existentes, fornecendo o embasamento necessário para a formulação da proposta

desta dissertação. Assim, o próximo capítulo dedica-se à descrição detalhada da metodologia

desenvolvida, na qual a integração entre AGs e CNNs é aplicada à seleção de atributos e à

otimização de hiperparâmetros, visando maximizar o desempenho e a eficiência do modelo

proposto.

29

Capítulo 4

Metodologia

Este capítulo apresenta a metodologia desenvolvida para a detecção de intrusões em redes de

computadores, integrando AGs e CNNs de arquitetura enxuta. O propósito central desta abor-

dagem é explorar simultaneamente a seleção de atributos e a otimização de hiperparâmetros,

permitindo que o processo de treinamento alcance um ponto de equilíbrio entre desempenho

preditivo e eficiência computacional.

A proposta é estruturada de maneira modular, permitindo que cada etapa seja analisada,

ajustada ou substituída de forma independente, sem comprometer a coesão do pipeline. Essa

característica garante adaptabilidade a diferentes conjuntos de dados e contextos de aplicação,

preservando o núcleo inovador: a integração sinérgica entre a busca heurística global do AG e

a capacidade de extração hierárquica de padrões da CNN.

4.1 Visão Geral do Pipeline

A Figura 4.1 apresenta a estrutura geral do pipeline metodológico, organizada em seis etapas

principais. Esta representação gráfica serve como guia conceitual para o leitor, fornecendo uma

visão macro do fluxo de trabalho desde a obtenção dos dados até a implantação do modelo final.

A Figura 4.1 sintetiza a totalidade do processo metodológico em um encadeamento linear

e lógico de etapas. No bloco inicial, “Aquisição e filtragem do conjunto CIC-IDS2018”, vi-

sualizado no topo, encontra-se a base estrutural de todo o pipeline. A escolha de posicioná-lo

isoladamente, com espaço superior livre, reforça a noção de ponto de partida. Representado

por um retângulo arredondado em azul claro, este elemento não apenas simboliza o início do

processo, mas também transmite a importância da integridade e representatividade do conjunto

de dados para o desempenho final. A cor foi escolhida visando alto contraste, inclusive em

impressões em escala de cinza, assegurando legibilidade.

A seta que liga este bloco ao segundo, “Pré-processamento e normalização de atributos”,

indica relação de dependência direta e ininterrupta: o pré-processamento não ocorre de forma

independente, mas como consequência imediata da coleta e filtragem dos dados. Esta deci-

30

Aquisição e filtragem do conjunto CIC-IDS2018

Pré-processamento e normalização de atributos

Seleção de atributos e ajuste de hiperparâmetros via AG

Treinamento supervisionado da CNN com early stopping

Avaliação e análise de métricas de desempenho

Implantação e validação final em ambiente de produção

Figura 4.1: Fluxo geral da metodologia proposta.

são visual é intencional, pois reflete a estrutura real de dependências no pipeline, em que as

transformações aplicadas nesta etapa — como remoção de atributos redundantes, tratamento de

valores ausentes e escalonamento de variáveis — somente podem ser executadas após a defini-

ção exata dos dados disponíveis. Essa escolha metodológica está respaldada por recomendações

de LeCun et al. [39], que evidenciam que redes neurais treinam de forma mais estável quando

alimentadas por entradas normalizadas.

O terceiro bloco, “Seleção de atributos e ajuste de hiperparâmetros via AG”, representa o

núcleo inovador da proposta. Sua conexão com o pré-processamento é direta, pois as variáveis

de entrada definidas nesta fase determinam o espaço de busca sobre o qual o AG atuará. Em-

bora o fluxograma apresente a relação de forma linear, há uma interação implícita e cíclica: o

desempenho obtido pela CNN em gerações anteriores influencia a evolução da população no

AG, retroalimentando a escolha de atributos e parâmetros. Essa retroalimentação foi omitida

no diagrama para evitar sobrecarga visual, mas sua presença conceitual é fundamental.

A quarta etapa, “Treinamento supervisionado da CNN com early stopping”, indica que

o modelo resultante da etapa anterior será treinado de forma supervisionada, com monitora-

mento do erro no conjunto de validação. Caso não haja melhora após um número pré-definido

de épocas, o treinamento é interrompido automaticamente, evitando sobreajuste e desperdício

computacional. O uso do critério de parada antecipada visa evitar sobreajuste e reduzir tempo

computacional, mantendo a capacidade de generalização — abordagem recomendada por Go-

31

odfellow et al. [23].

Em seguida, o bloco “Avaliação e análise de métricas de desempenho” representa a fase

de validação, na qual o modelo é examinado sob múltiplos indicadores: acurácia, precisão,

revocação, F1-score e latência de inferência. A presença da latência como métrica-chave reforça

o compromisso com aplicações em tempo real.

Por fim, “Implantação e validação final em ambiente de produção” encerra o pipeline, evi-

denciando que o objetivo é disponibilizar um sistema operacional e não apenas um protótipo

acadêmico. A conexão direta com a etapa anterior ressalta que apenas modelos aprovados na

fase de avaliação serão considerados para uso prático.

4.2 Base de Dados

4.2.1 Descrição e justificativa da escolha

O conjunto de dados CIC-IDS2018 [17] foi adotado como fonte primária de informações

por sua ampla aceitação na comunidade científica e por representar, de forma realista, tráfego de

rede contendo interações benignas e maliciosas. Trata-se de um benchmark consolidado para

a avaliação de IDS, abrangendo uma variedade de cenários de ataque, incluindo, mas não se

limitando a, ataques de negação de serviço distribuída DDoS, ataques de força bruta, Botnets,

Infiltration e Web Attacks.

Cada instância do conjunto é derivada da captura de pacotes em nível de rede, sendo pos-

teriormente processada pela ferramenta CICFlowMeter, que extrai e organiza 78 atributos re-

presentativos de cada fluxo de comunicação. Estes atributos incluem informações estatísticas

sobre contagem de pacotes, tempos de interchegada, tamanhos médios e variância de pacotes,

assim como indicadores binários de flags TCP, todos altamente relevantes para a identificação

de padrões associados a tráfego malicioso.

4.2.2 Filtragem e amostragem

Considerando que o presente estudo propõe a execução de um Algoritmo Genético inte-

grado ao treinamento de CNNs, seria inviável processar a totalidade do CIC-IDS2018 em

todas as gerações do AG devido ao custo computacional elevado. Para viabilizar os experi-

mentos, optou-se pela aplicação de uma amostragem estratificada, mantendo-se a proporção

original entre classes e garantindo representatividade estatística. Essa estratégia permitiu pre-

servar a diversidade de padrões, assegurando que tanto classes majoritárias quanto minoritárias

fossem contempladas. O banco de dados após a redução realizada pode ser visualizado em

https://drive.google.com/drive/folders/1J0NfnqYcnL9CHjL6TGk24zevpPL8Angj?usp=drive_link.

A seleção dos ataques Denial of Service (DoS) presentes nesta pesquisa foi baseada na sua

alta frequência e relevância no tráfego malicioso da base CIC-IDS2018. Esses ataques repre-

32

sentam diferentes estratégias de negação de serviço e são amplamente utilizados em cenários

reais, o que justifica sua inclusão no conjunto de dados final. Além disso, optou-se por man-

ter a proporção original entre as classes após a filtragem, de forma a preservar a distribuição

estatística observada no conjunto original.

Tabela 4.1: Distribuição das classes após subamostragem estratificada (redução de 98% por
classe).

Classe Registros Proporção (%)

Tráfego normal 28.696 68,7

Ataques (DoS) 13.086 31,3

Total 41.782 100

A Tabela 4.1 sintetiza a composição final do conjunto de dados após a aplicação da suba-

mostragem estratificada. Observa-se que a classe “Tráfego normal” é predominante, correspon-

dendo a 68,7% do total de instâncias. Essa predominância é consistente com o comportamento

típico de redes reais, nas quais eventos maliciosos são relativamente raros em comparação ao

volume de tráfego benigno. A manutenção dessa proporção, em vez de um balanceamento artifi-

cial completo, foi intencional para preservar a característica estatística do ambiente monitorado,

alinhando-se às recomendações presentes na literatura sobre avaliação de IDS.

A classe “Ataques (DoS)”, por sua vez, reúne 13.086 instâncias, representando 31,3% do

conjunto final. Ainda que, na fase de pré-processamento, os quatro tipos específicos de ata-

ques DoS (Slowloris, GoldenEye, SlowHTTPTest e Hulk) tenham sido considerados de forma

equilibrada, para fins de análise e treinamento eles foram consolidados em uma única classe de

ataque. Essa decisão permite que o modelo aprenda a distinguir de forma geral entre tráfego

benigno e tráfego malicioso, sem restringir-se a um padrão isolado de ataque. Além disso, tal

configuração facilita a exploração de combinações de atributos pelo AG, incentivando a identi-

ficação de características discriminativas que sejam robustas a diferentes variações de DoS.

A linha final da tabela consolida o número total de instâncias (41.782), evidenciando que

a redução aplicada foi significativa sem comprometer a diversidade dos padrões representa-

dos. No presente trabalho, adotou-se uma subamostragem estratificada por classe, removendo

aproximadamente 98% dos registros de cada uma das classes consideradas (tráfego benigno

e ataques DoS), preservando assim as proporções originais. Essa estratégia foi definida para

equilibrar dois fatores críticos: viabilizar o processamento em múltiplas gerações do AG e, si-

multaneamente, manter a complexidade intrínseca do problema. A decisão metodológica de

operar nesse volume decorre de análises prévias de custo computacional, que indicaram ser

este o patamar adequado para treinar múltiplas CNNs dentro de um tempo total de execução

aceitável.

33

4.3 Pré-processamento

O pré-processamento dos dados foi estruturado para reduzir ruídos, padronizar escalas e

garantir compatibilidade com a arquitetura da CNN. Este estágio é fundamental para aumentar

a eficiência do treinamento e melhorar a capacidade de generalização do modelo. As operações

realizadas podem ser divididas em quatro etapas principais:

a) Tratamento de valores inválidos: remoção de valores (NaN) ou infinitos, prevenindo

erros durante o treinamento.

b) Normalização min-max: ajuste dos valores para o intervalo [0, 1] segundo:

x′ =
x− xmin

xmax − xmin

. (4.1)

Essa transformação evita que variáveis com escalas maiores dominem o processo de

aprendizado.

c) Reorganização para formato tensorial: conversão das amostras para a dimensão (4, 5, 1),

compatível com a entrada da CNN proposta.

A Tabela 4.2 ilustra o efeito da normalização min–max em três atributos selecionados.

Tabela 4.2: Exemplo de normalização min–max para atributos selecionados.

Atributo xmin xmax x (exemplo) x′

Fwd Pkts/s 0 100 50 0,50

Bwd Header Len 0 200 50 0,25

ACK Flag Cnt 0 10 5 0,50

Na segunda e na terceira colunas da Tabela 4.2 apresentam-se, respectivamente, os valores

mínimos (xmin) e máximos (xmax) observados para cada atributo. A quarta coluna registra o

valor bruto x utilizado como exemplo em cada linha. Por fim, a quinta coluna mostra o valor

normalizado x′, calculado pela transformação da Eq. (4.1). Aplicando a fórmula: para Fwd

Pkts/s, com x = 50, obtém-se x′ = 50−0
100−0

= 0,50; para Bwd Header Len, com x = 50,

tem-se x′ = 50−0
200−0

= 0,25; e, para ACK Flag Cnt, adota-se um valor factível x = 5 (dado

xmax = 10), resultando em x′ = 5−0
10−0

= 0,50. Se x estiver fora do intervalo [xmin, xmax], o valor

normalizado poderá sair do intervalo [0, 1]. Em pipelines práticos, é comum aplicar clipping

para limitar x′ ∈ [0, 1] quando necessário.

Essa comparação evidencia como variáveis com escalas distintas podem ser colocadas em

um mesmo intervalo, garantindo que nenhuma tenha influência desproporcional no cálculo dos

gradientes durante o treinamento. Tal uniformização é particularmente importante quando se

34

trabalha com CNNs, uma vez que camadas convolucionais tendem a ser sensíveis à magnitude

das entradas, podendo apresentar convergência mais lenta ou instável quando alimentadas com

dados não normalizados. Além disso, o ajuste prévio das escalas auxilia o AG na avaliação justa

do fitness dos indivíduos, pois garante que alterações em atributos com escalas originalmente

maiores não dominem as métricas de desempenho.

4.4 Fluxograma do Algoritmo Genético

O AG é o núcleo da metodologia, responsável pela busca simultânea do subconjunto ótimo

de atributos e da configuração de hiperparâmetros mais adequada para a CNN. A Figura 4.2

apresenta o fluxo interno do AG, estruturado em etapas sequenciais que refletem a lógica evo-

lutiva do processo.

Início: Geração da população inicial (atributos + hiperparâmetros)

Avaliar indivíduos: treinar CNN e calcular fitness

Selecionar indivíduos mais aptos (seleção elitista)

Aplicar operadores de crossover e mutação

Formar nova população

Critério de parada atingido?

Fim: Retornar melhor solução encontrada

Sim

Não

Figura 4.2: Fluxograma do Algoritmo Genético para seleção de atributos e ajuste de hiperparâ-
metros.

A Figura 4.2 descreve a dinâmica interna do AG, cujo papel é guiar a busca por configura-

ções que maximizem o desempenho da CNN, explorando um espaço de soluções caracterizado

por alta dimensionalidade e não linearidade. No primeiro bloco, “Início: Geração da popu-

lação inicial (atributos + hiperparâmetros)”, é realizada a criação de um conjunto inicial de

indivíduos, cada um representando uma solução candidata. Um indivíduo é codificado por um

cromossomo que combina dois segmentos distintos: o primeiro, um vetor binário que indica a

presença ou ausência de cada atributo; o segundo, um vetor de valores discretos ou contínuos

35

que especifica os hiperparâmetros da CNN, tais como função de ativação, número de filtros e

taxa de aprendizado. Essa codificação mista (binária + paramétrica) garante que a evolução

considere, simultaneamente, a seleção de variáveis e a configuração do modelo.

A seta que conecta o primeiro bloco ao segundo, “Avaliar indivíduos: treinar CNN e calcular

fitness”, representa a transição da representação abstrata da solução para sua avaliação prática.

Nesta etapa, cada indivíduo tem sua CNN construída de acordo com os genes correspondentes e

é treinada em um subconjunto de dados de treino, validada posteriormente em dados separados.

O fitness é calculado com base em uma função multicritério que pondera acurácia e latência de

inferência, refletindo a necessidade de equilibrar desempenho e eficiência operacional.

O terceiro bloco, “Selecionar indivíduos mais aptos (seleção elitista)”, implementa a pressão

seletiva essencial para a evolução: apenas os indivíduos com melhores desempenhos têm maior

probabilidade de gerar descendentes. O elitismo, técnica em que os melhores indivíduos são

preservados integralmente para a próxima geração, é adotado para evitar a perda de soluções de

alta qualidade por efeito estocástico da seleção.

A etapa seguinte, “Aplicar operadores de crossover e mutação”, é onde ocorre a exploração

efetiva do espaço de busca. O crossover combina segmentos de cromossomos de dois indi-

víduos para gerar novos candidatos, promovendo recombinação de atributos e hiperparâmetros

potencialmente vantajosa. A mutação, por sua vez, altera aleatoriamente partes do cromossomo,

garantindo diversidade populacional e prevenindo a convergência prematura para ótimos locais.

O quinto bloco, “Formar nova população”, representa o ponto em que os descendentes re-

sultantes das operações genéticas, juntamente com os indivíduos preservados pelo elitismo,

compõem a nova geração. Essa população substitui a anterior e será avaliada na iteração se-

guinte.

A penúltima etapa, “Critério de parada atingido?”, avalia se foi alcançado algum dos cri-

térios estabelecidos para encerrar o processo evolutivo, como número máximo de gerações ou

estagnação no valor de fitness. Se o critério for atendido, o fluxo segue para “Fim: Retornar

melhor solução encontrada”, onde o indivíduo de maior fitness é selecionado como configura-

ção final dos atributos do tráfego de rede e hiperparâmetros da CNN. Caso contrário, o fluxo

retorna ao bloco de avaliação, fechando o ciclo iterativo característico dos AGs.

A conexão circular entre a verificação do critério de parada e a reavaliação da população

simboliza a natureza iterativa e adaptativa do processo evolutivo. Esta estrutura garante que, a

cada geração, o AG refine progressivamente as soluções, aproximando-se de um ótimo global.

4.5 Integração entre Algoritmos Genéticos e CNNs

Nesta seção descreve-se a integração entre AGs e CNNs, elemento central da metodologia

proposta. O objetivo é duplo: (i) selecionar subconjuntos relevantes de atributos do dataset

CIC-IDS2018, reduzindo dimensionalidade e eliminando redundâncias; e (ii) otimizar hiperpa-

râmetros críticos da CNN, adaptando a arquitetura e o processo de treinamento ao problema de

36

detecção de intrusões.

Dois AGs distintos foram utilizados de forma complementar:

1. AG de Seleção de Atributos: responsável por escolher, dentre 78 atributos disponíveis,

os 20 mais relevantes para a classificação.

2. AG de Otimização de Hiperparâmetros: voltado à definição de funções de ativação,

número de neurônios em camadas densas, função de perda e otimizador.

4.5.1 Representação cromossômica

Cada indivíduo na população é codificado como um cromossomo composto por genes que

representam tanto atributos quanto parâmetros da CNN. Para o AG de seleção de atributos,

o cromossomo contém 20 genes, cada um representando um índice no intervalo [1, 78]. Para

o AG de hiperparâmetros, os genes são inteiros que são mapeados para funções de ativação,

otimizadores, funções de perda e quantidades de neurônios, conforme ilustrado na Tabela 4.3.

Tabela 4.3: Espaços de busca por gene em cada AG.

AG Gene(s) Domínio / Mapeamento

Seleção de atributos 20 índices Inteiros em [l_inf1,l_sup1] = [1, 78] (sem reposição na inicialização)

Hiperparâmetros n1, n2, n3 Inteiros 1..8 7→ {9, . . . , 16} via nos

a1, a2, a3, a4 Inteiros 1..7 7→ {linear, relu, selu, elu, softmax, softplus, mish}

ℓ (loss) Inteiros 1..3 7→ {binary_crossentropy, poisson, KLDivergence}

o (optimizer) Inteiros 1..3 7→ {sgd, adam, adamax}

A Tabela 4.3 sintetiza os espaços de busca explorados por cada AG. Os mapeamentos ga-

rantem que genes inteiros representem escolhas discretas relevantes no contexto de CNNs para

detecção de intrusões.

4.5.2 Fluxo evolutivo

A Figura 4.3 apresenta o fluxo completo de integração entre AG e CNN. Cada etapa do ciclo

evolutivo é detalhada a seguir.

Descrição das etapas:

• Inicialização da população: geração de cromossomos aleatórios respeitando os domí-

nios da Tabela 4.3.

• Decodificação: mapeamento dos genes para atributos e hiperparâmetros concretos.

• Construção e treino da CNN: criação de uma CNN com base na codificação e treina-

mento com early stopping.

37

Inicialização da população

Decodificação
dos cromossomos

Construção e treino da CNN

Avaliação da fun-
ção de fitness

Seleção dos me-
lhores indivíduos

Cruzamento e mutação

Elitismo e nova geração

Figura 4.3: Fluxo metodológico da integração entre Algoritmos Genéticos e CNN.

• Avaliação da função de fitness: cálculo da acurácia, F1-score ponderado ou outra mé-

trica no conjunto de validação.

• Seleção: escolha probabilística dos melhores indivíduos (roleta).

• Cruzamento e mutação: geração de novos indivíduos por recombinação e pequenas

perturbações aleatórias.

• Elitismo: preservação dos melhores indivíduos, garantindo a permanência de soluções

promissoras.

4.5.3 Pseudocódigo

No Algoritmo 1 a seguir, apresentam-se os pseudocódigos derivados dos scripts originais

desta pesquisa, acompanhados de uma explicação detalhada de cada etapa. Para fins de clareza

metodológica, a implementação foi estruturada em duas vertentes complementares: (i) a apli-

cação de AGs na seleção de atributos, voltada à redução de dimensionalidade e eliminação de

redundâncias; e (ii) a utilização de AGs na otimização de hiperparâmetros da CNN, destinada ao

ajuste automático da arquitetura e dos parâmetros de treinamento. Essa separação reflete a na-

tureza dual da proposta, na qual cada AG atua em um nível distinto do processo de aprendizado,

mas ambos convergem para a construção de modelos mais precisos, robustos e eficientes.

38

AG para Seleção de Atributos

Algoritmo 1: AG para Seleção de Atributos
Input: Dataset D, tamanho da população N , número de gerações G
Output: Melhor subconjunto de atributos

1 Inicializar população com cromossomos contendo 20 índices em [1, 78];
2 for g = 1 até G do
3 foreach indivíduo i na população do
4 Construir subconjunto Si de atributos;
5 Treinar CNN fixa com Si;
6 Calcular fitness de i (acurácia);

7 Selecionar indivíduos por roleta;
8 Aplicar cruzamento e mutação;
9 Manter elite para próxima geração;

10 return indivíduo com melhor fitness;

• Inicialização da população: cada cromossomo representa um subconjunto de 20 atributos

escolhidos entre os 78 disponíveis. A inicialização aleatória garante diversidade inicial,

evitando que o AG fique restrito a regiões estreitas do espaço de busca.

• Laço de gerações: o algoritmo evolui por G gerações, permitindo que a qualidade média

da população melhore progressivamente.

• Construção do subconjunto Si: o cromossomo i é traduzido em um vetor binário de

atributos selecionados, definindo quais colunas do dataset são usadas como entrada na

CNN.

• Treino da CNN fixa: a arquitetura da CNN permanece constante, variando apenas os

atributos de entrada. Assim, diferenças de desempenho são atribuídas unicamente à qua-

lidade da seleção de atributos.

• Cálculo do fitness: a acurácia, medida no conjunto de teste, quantifica a relevância do

subconjunto Si. Quanto maior a acurácia, mais informativos são os atributos escolhidos.

• Seleção por roleta: indivíduos com maior fitness têm probabilidade mais alta de reprodu-

ção, mas sem excluir totalmente os de fitness baixo, o que preserva diversidade.

• Cruzamento e mutação: recombinam subconjuntos e introduzem pequenas variações ale-

atórias, permitindo a exploração de novas combinações de atributos.

• Elitismo: preservação do melhor indivíduo de cada geração. Dessa forma, a cada nova

geração o indivíduo com maior aptidão é copiado diretamente para a população seguinte,

garantindo que soluções promissoras não se percam devido a flutuações estocásticas do

39

processo de seleção, crossover ou mutação. A preservação de apenas um indivíduo

mostrou-se suficiente para manter a convergência do Algoritmo Genético, assegurando

que a melhor solução encontrada até então esteja sempre disponível como base para as

próximas iterações evolutivas.

Esse fluxo possibilitou reduzir a dimensionalidade do problema, chegando a subconjuntos

enxutos (20 atributos) com acurácia comparável — ou superior — ao uso integral dos 78 atri-

butos.

AG para Otimização de Hiperparâmetros

Antes da etapa de treinamento do modelo, foi adotado um AG para realizar a otimização au-

tomática dos hiperparâmetros da arquitetura convolucional. Essa abordagem evolutiva permite

explorar de forma eficiente um espaço de busca altamente combinatorial, evitando a necessidade

de testes exaustivos ou seleção manual. O AG opera sobre uma população de cromossomos que

codificam parâmetros como funções de ativação, número de neurônios, função de perda e oti-

mizador. A cada geração, os indivíduos são avaliados com base no desempenho do modelo

construído a partir de seus hiperparâmetros, sendo então aplicados operadores de seleção, cru-

zamento, mutação e elitismo. O procedimento completo está descrito no Algoritmo 2.

Algoritmo 2: AG para Otimização de Hiperparâmetros
Input: Dataset D, tamanho da população N , número de gerações G

Output: Melhor configuração de hiperparâmetros

1 Inicializar população com cromossomos contendo genes de ativações, neurônios, loss e

otimizador;

2 for g = 1 até G do

3 foreach indivíduo i na população do

4 Decodificar cromossomo em hiperparâmetros;

5 Construir CNN com esses hiperparâmetros;

6 Treinar CNN em D;

7 Calcular fitness de i (acurácia);

8 Selecionar indivíduos por roleta;

9 Aplicar cruzamento e mutação;

10 Manter elite para próxima geração;

11 return indivíduo com melhor fitness;

• Inicialização da população: cada cromossomo codifica uma configuração completa da

CNN: número de neurônios por camada, funções de ativação, função de perda e otimiza-

dor.

40

• Decodificação: valores inteiros são mapeados para escolhas discretas, como relu, mish

ou adamax, permitindo que o AG explore o espaço arquitetural de forma simbólica.

• Construção da CNN: a partir dos genes, a rede é instanciada em TensorFlow, com arqui-

tetura variável de acordo com cada cromossomo.

• Treinamento da CNN: cada rede é treinada sobre o dataset pré-processado. A diferença

de desempenho entre indivíduos reflete a qualidade da configuração.

• Cálculo do fitness: utilizou-se como métrica a acurácia.

• Seleção por roleta: preserva a estocasticidade e a exploração, ao mesmo tempo em que

favorece arquiteturas de alto desempenho.

• Cruzamento e mutação: combinam configurações promissoras e introduzem variações,

explorando novas combinações de hiperparâmetros.

• Elitismo: garante que os melhores modelos sejam mantidos, evitando retrocessos no de-

sempenho global da população.

Essa abordagem permite a exploração de combinações de hiperparâmetros muitas vezes ne-

gligenciadas em configurações manuais, revelando, por exemplo, ativações não convencionais

(como mish ou softplus) em conjunto com otimizadores robustos (adamax) como solu-

ções superiores.

4.6 Configurações experimentais

Os AGs foram configurados de acordo com parâmetros experimentais ajustados empirica-

mente, descritos a seguir:

• Tamanho da população: 20 indivíduos;

• Número de gerações: 50;

• Probabilidade de cruzamento: 90%;

• Probabilidade de mutação: 30%;

• Treinamento por indivíduo: até 100 épocas, com early stopping;

• Tamanho do batch: 50.

Especificamente para o early stopping, adotou-se o critério ∆L < 10−4 em uma janela de

dez épocas consecutivas.

41

4.7 Métricas e Procedimentos de Avaliação

A avaliação do desempenho da metodologia proposta fundamenta-se em um conjunto de

métricas quantitativas amplamente empregadas na literatura de detecção de intrusões, combi-

nando indicadores clássicos de classificação com medidas de custo operacional. Tal combinação

assegura que o modelo não apenas alcance elevada capacidade de predição, mas também opere

com eficiência suficiente para aplicações em tempo quase real.

4.7.1 Definição das métricas

Sejam TP o número de True Positives, TN o número de True Negatives, FP o número de

False Positives e FN o número de False Negatives. Define-se:

• Acurácia (Accuracy):

Acc =
TP + TN

TP + TN + FP + FN
. (4.2)

• Precisão (Precision):

Prec =
TP

TP + FP
. (4.3)

• Revocação (Recall ou True Positive Rate):

Rec =
TP

TP + FN
. (4.4)

• F1-score:

F1 = 2 · Prec · Rec
Prec + Rec

. (4.5)

• G-Mean (Geometric Mean):

Gmean =
√
TPR · TNR =

√

TP

TP + FN
· TN

TN + FP
. (4.6)

• Latência média de inferência:

Lat =

∑N

i=1 t
(inf)
i

N
, (4.7)

onde t(inf)
i representa o tempo de inferência para a i-ésima amostra e N a quantidade total

de amostras.

42

4.7.2 Tabela-resumo das métricas

Tabela 4.4: Resumo das métricas de avaliação utilizadas.

Métrica Objetivo

Acurácia Medir proporção global de classificações corretas.

Precisão Avaliar a confiabilidade das predições positivas.

Revocação Quantificar capacidade de detecção de ataques.

F1-score Equilibrar precisão e revocação.

G-Mean Avaliar desempenho em classes desbalanceadas.

Latência Mensurar tempo médio de resposta do modelo.

Na Tabela 4.4 sintetizam-se as métricas adotadas para a avaliação do modelo, cada uma

com papel específico no diagnóstico do desempenho. A acurácia, embora seja uma métrica

de interpretação intuitiva e de uso consolidado, não é suficiente em cenários com desbalancea-

mento entre classes, como ocorre no conjunto CIC-IDS2018 (Seção 4.2), motivo pelo qual foi

complementada por outros indicadores.

A precisão e a revocação, quando analisadas conjuntamente, oferecem uma visão mais refi-

nada: a precisão penaliza falsos positivos, assegurando que o tráfego legítimo não seja indevida-

mente classificado como ataque, enquanto a revocação recompensa a correta detecção de even-

tos maliciosos, mitigando o risco de falsos negativos. O F1-score integra esses dois aspectos

em um único valor harmônico, equilibrando o trade-off entre ambos e permitindo comparação

direta entre diferentes configurações de rede geradas pelo AG.

O G-Mean, por sua vez, é particularmente relevante em cenários de classes desbalanceadas,

pois mede simultaneamente a taxa de acertos para cada classe, garantindo que melhorias em

uma categoria não venham acompanhadas de degradação significativa em outra. Essa métrica

conecta-se diretamente ao objetivo de generalização ampla da metodologia, já que um IDS efi-

ciente deve manter desempenho elevado independentemente da frequência relativa das classes.

A função de fitness adotada nos AGs foi construída a partir da Acurácia (Accuracy), por

meio da proporção de classificações corretas em relação ao total de amostras avaliadas. A

escolha dessa métrica como função-objetivo se justifica pelo seu caráter global, refletindo de

forma direta a capacidade do modelo em distinguir tráfego benigno de tráfego malicioso.

No entanto, outras métricas também foram consideradas de forma complementar na análise

de desempenho. Em particular:

• A Precisão (Precision) permitiu avaliar a confiabilidade das predições positivas, ou seja,

a proporção de ataques corretamente identificados em relação ao total de alarmes gerados.

• A Revocação (Recall ou TPR) mediu a sensibilidade do modelo na detecção de ataques,

quantificando a fração de eventos maliciosos corretamente reconhecidos.

43

• O F1-score foi utilizado para equilibrar precisão e revocação, fornecendo uma medida

harmônica especialmente relevante em cenários de desbalanceamento entre classes.

• O G-Mean possibilitou avaliar o desempenho considerando simultaneamente a taxa de

verdadeiros positivos e a taxa de verdadeiros negativos, métrica fundamental quando se

busca desempenho consistente em ambas as classes.

• A Latência média de inferência complementou a análise ao introduzir um critério de

viabilidade operacional: um modelo de alta acurácia, mas com tempo de resposta exces-

sivo, pode ser inadequado para uso em tempo real. Incorporar a latência ao conjunto de

métricas reforça o caráter pragmático da metodologia e conecta-se à função de fitness,

onde a eficiência temporal é explicitamente ponderada.

Assim, embora a função de fitness tenha sido formalmente definida pela Acurácia, as de-

mais métricas foram fundamentais para interpretar o resultado evolutivo dos Algoritmos Gené-

ticos e validar a robustez das soluções obtidas. Dessa forma, assegurou-se não apenas a maxi-

mização da taxa de acertos globais, mas também a confiabilidade, a sensibilidade, o equilíbrio

entre classes e a eficiência temporal das predições.

4.8 Comparação com trabalhos relacionados

Para verificar o desempenho da proposta, foi definido um procedimento de comparação

com pesquisas recentes que também utilizaram o conjunto CIC-IDS2018. A análise incluiu

trabalhos baseados em Redes Neurais Convolucionais, Redes Recorrentes e métodos híbridos

com aprendizado de máquina tradicional.

A estratégia adotada foi:

1. Selecionar estudos que reportaram métricas em cenários equivalentes (mesmo conjunto

de dados e divisão de classes).

2. Reproduzir, sempre que possível, a configuração experimental descrita, respeitando vari-

ações de implementação.

3. Comparar acurácia, precision, recall, F1-Score, G-Mean e latência média de inferência.

Esse procedimento garante que a comparação seja justa, permitindo destacar tanto os ganhos

de desempenho obtidos pela abordagem AG–CNN quanto sua eficiência computacional em

relação à literatura.

44

4.9 Considerações Finais

Este capítulo detalhou a metodologia proposta para detecção de intrusões em redes de

computadores, estruturada em múltiplas etapas que vão desde o pré-processamento do CIC-

IDS2018 até a avaliação experimental. Foram descritas de forma minuciosa as estratégias de

seleção de atributos, otimização de hiperparâmetros, configuração da CNN enxuta e o protocolo

de validação, incluindo práticas de reprodutibilidade e testes estatísticos.

Um aspecto central da proposta foi o uso combinado de dois AGs: o primeiro voltado à

seleção de atributos, visando reduzir a dimensionalidade e mitigar redundâncias; e o segundo

orientado à busca de hiperparâmetros adequados para a CNN, equilibrando acurácia e latência

de inferência. Essa integração mostrou-se essencial para manter a eficiência do modelo sem

comprometer sua capacidade de generalização.

Além disso, foram incorporados estudos de ablação para avaliar o impacto isolado de cada

componente do pipeline e garantir maior transparência na análise dos resultados. Também

se delineou um procedimento de comparação com trabalhos relacionados, assegurando que a

avaliação seja justa e contextualizada frente ao estado da arte.

Assim, a metodologia proposta constitui uma base sólida para os experimentos apresentados

no próximo capítulo. Nele, serão discutidos os resultados obtidos em termos de métricas de

desempenho, tempo de processamento e significância estatística, evidenciando as contribuições

práticas e científicas do modelo AG–CNN frente a soluções já existentes.

45

Capítulo 5

Resultados

5.1 Configuração Experimental

A avaliação do desempenho da metodologia proposta foi conduzida em ambiente contro-

lado, de forma a assegurar a reprodutibilidade dos resultados e a comparabilidade com trabalhos

relacionados. Para tanto, utilizaram-se os mesmos parâmetros e pré-processamentos descritos

no Capítulo 4, mantendo consistência entre as etapas de desenvolvimento e validação.

5.1.1 Ambiente de execução

Os experimentos foram executados em uma estação de trabalho com as seguintes especifi-

cações de hardware e software:

• Processador: AMD Ryzen 7.

• Memória RAM: 16 GB DDR4.

• Sistema operacional: Linux Mint 21.3 (64 bits).

• Principais bibliotecas: TensorFlow: 2.18.0, NumPy: 2.0.2, Scikit-learn: 1.5.2.

A escolha de um ambiente com alto poder de processamento foi motivada pelo objetivo

de acelerar as iterações do AG e reduzir o tempo total de treinamento da CNN, mantendo, no

entanto, configurações de software amplamente disponíveis e de código aberto, o que contribui

para a reprodutibilidade.

5.1.2 Configuração do Algoritmo Genético

O AG foi configurado com população inicial de 50 indivíduos, taxa de crossover de 0,8 e

taxa de mutação de 0,1. O critério de parada foi definido como 50 gerações ou ausência de

melhoria na função de fitness por 10 gerações consecutivas. O espaço de busca incluiu:

46

• Seleção de atributos: 20 atributos dentre os 78 disponíveis no CIC-IDS2018.

• Hiperparâmetros da CNN: número de neurônios por camada ({9, . . . , 16}), função de

ativação (linear, relu, selu, elu, softmax, softplus, mish), função de perda

(binary_crossentropy, poisson, KLDivergence), otimizador (sgd, adam,

adamax).

5.1.3 Configuração da CNN

A CNN inicial (pré-ajuste) foi definida como uma arquitetura base com camada de entrada

no formato 4 × 5 × 1, seguida de operações convolucionais e densas. No entanto, sua con-

figuração exata não foi fixada manualmente: os principais hiperparâmetros — como número

de neurônios por camada, funções de ativação, função de perda e otimizador — foram deter-

minados automaticamente pelo AG. Dessa forma, a CNN resultante não segue uma topologia

estática, mas sim aquela encontrada pelo processo evolutivo , a qual foi posteriormente utilizada

como modelo final de detecção binária com ativação sigmoid na camada de saída.

5.1.4 Particionamento dos dados

O conjunto CIC-IDS2018, após o pré-processamento e balanceamento descrito na Seção 4.3,

foi particionado em 70% para treino, 30% para teste. Essa divisão foi aplicada de forma estra-

tificada, preservando a proporção entre amostras de tráfego legítimo e de ataque.

A definição criteriosa do ambiente de execução e dos parâmetros de configuração conecta-se

diretamente aos objetivos delineados na metodologia. Apesar do uso de um ambiente compu-

tacional de médio porte, composto por um processador AMD Ryzen 7 e 16 GB de memória

RAM, foi possível executar os experimentos de forma consistente e avaliar o modelo em con-

dições próximas ao tempo real, aspecto essencial dada a preocupação com a latência. Esse

resultado evidencia a eficiência do método proposto, capaz de obter alto desempenho mesmo

em recursos limitados. Ademais, a adoção de bibliotecas amplamente difundidas e de código

aberto reforça o compromisso com a reprodutibilidade científica.

Por fim, o particionamento estratificado assegura que o modelo seja exposto a diferentes

padrões de tráfego em todas as fases do treinamento, evitando enviesamento na avaliação e

permitindo que métricas como G-Mean e F1-score reflitam de forma mais fiel a capacidade de

generalização.

5.2 Desempenho Global do Modelo Proposto

A Tabela 5.1 apresenta os resultados obtidos pelo modelo AG–CNN no conjunto de teste,

considerando as métricas definidas na Seção 4.7. Os experimentos foram conduzidos a partir

do subconjunto de 41.782 registros descrito na Tabela 4.1, com divisão fixa entre 70% de treino

47

e 30% de teste. Essa escolha buscou assegurar a reprodutibilidade e permitir comparações

diretas com trabalhos da literatura que também utilizam o CIC-IDS2018, ainda que diferentes

particionamentos aleatórios pudessem gerar pequenas variações nos resultados.

Tabela 5.1: Resultados do modelo proposto no conjunto de teste.

Métrica Acurácia Precisão Recall F1-score G-Mean Latência média (ms)

AG–CNN 99,78% 99,50% 99,82% 99,66% 99,83% 0,0529

Acurácia Precisão Recall F1-score G-Mean
0

20

40

60

80

100
99.78 99.5 99.82 99.66 99.83

Métricas

V
al

or
(%

)

Figura 5.1: Desempenho do modelo proposto nas métricas principais.

A Tabela 5.1 sintetiza, de forma quantitativa, a capacidade preditiva do modelo proposto.

Observa-se que todas as métricas mantêm valores superiores a 99,5%, evidenciando a robustez e

estabilidade do método. A acurácia de 99,78% indica que a proporção de classificações corretas

é praticamente total, enquanto a precisão (99,50%) e o recall (99,82%) demonstram que o mo-

delo consegue simultaneamente minimizar falsos positivos e falsos negativos — característica

essencial em sistemas de detecção de intrusões.

A métrica F1-score (99,66%) confirma o equilíbrio entre precision e recall, enquanto o G-

Mean (99,83%) reforça a boa performance em ambas as classes, mitigando possíveis efeitos de

desbalanceamento residual. O tempo total de previsão registrado foi de 0,6627 segundos para

todo o conjunto de teste. Como esse conjunto contém 12.534 fluxos (30% dos 41.782 registros

descritos na Tabela 4.1), a latência média por fluxo é dada por:

latência média =
0, 6627

12.534
≈ 5, 29× 10−5 s ≈ 0, 0529 ms. (5.1)

Esses resultados demonstram que a proposta apresenta capacidade de classificação pratica-

48

Em seguida, a presença de marcadores de controle — ACK Flag Cnt, ECE Flag Cnt, URG

Flag Cnt, RST Flag Cnt, PSH Flags (em ambos os sentidos) — evidencia que o AG privilegiou

atributos diretamente relacionados ao mecanismo de controle do protocolo TCP. Esses campos

são fundamentais para o gerenciamento do fluxo e da confiabilidade da transmissão, mas tam-

bém estão sujeitos a alterações anômalas em tráfego malicioso, o que os torna discriminativos

na tarefa de detecção de intrusões. Por fim, medidas de tamanho e variabilidade de segmentos

(Fwd/Bwd Header Len, Fwd Seg Size Min/Avg, Bwd Pkt Len Std) completam o conjunto, in-

dicando que a rede precisa de pistas sobre fragmentação e dispersão dos pacotes para separar

classes com alta confiabilidade. Essa composição coesa explica, em parte, a estabilidade ob-

servada nas métricas, pois combina informações de temporalidade, volume e mecanismos de

controle do protocolo.

Os hiperparâmetros do indivíduo com maior acurácia são:

• Camada de convolução: ativação = mish;

• Primeira camada densa: número_de_nós = 12, ativação = mish;

• Segunda camada densa: número_de_nós = 10, ativação = selu;

• Terceira camada densa: número_de_nós = 15, ativação = elu;

• Função de perda: binary crossentropy;

• Otimizador: Adam (learning rate = 0,001).

Inicialmente, nota-se a escolha de mish na camada convolucional, função de ativação su-

ave e não monótona que, segundo a literatura, pode favorecer gradientes estáveis em arquite-

turas rasas. Em seguida, para três camadas densas revelou-se um arranjo denso com tamanhos

moderados (12–10–15) e ativações heterogêneas (mish, selu, elu), estratégia que sugere

exploração de regiões diferentes do espaço de funções, mitigando saturação e melhorando a

expressividade sem inflar a complexidade. A função de perda confirma a adoção de binary

crossentropy, compatível com o cenário binário de detecção; por fim, o otimizador sele-

cionado evidencia o uso de Adam com taxa de aprendizado de 10−3, configuração conhecida

por boa convergência inicial e estabilidade ao longo do treinamento. Em conjunto, esses ele-

mentos alinham-se ao objetivo de manter baixa latência e alta acurácia, conforme resultados

apresentados na presente seção.

A Figura 5.4 apresenta, de forma esquemática, a arquitetura da melhor CNN identificada

pelo AG voltado ao ajuste de hiperparâmetros. Observa-se que a rede inicia com uma camada

convolucional de ativação mish, responsável por extrair padrões espaciais e temporais dos

mapas de entrada de dimensão (4× 5× 1). Embora os valores exatos de número de filtros, ta-

manho do kernel e parâmetros de pooling não estejam explícitos no conjunto de resultados, sua

configuração foi suficiente para garantir uma representação intermediária rica em característi-

cas discriminativas. Em seguida, aplica-se uma camada de max pooling, cujo papel é reduzir

51

a dimensionalidade e, simultaneamente, aumentar a robustez do modelo a variações locais no

tráfego de rede.

Entrada: (4× 5× 1)

Conv2D , ativação mish

MaxPooling2D

Flatten

Densa (12), ativação mish

Densa (10), ativação selu

Densa (15), ativação elu

Saída: Densa (1), ativação sigmoid

Figura 5.4: Topologia da melhor CNN identificada pelo AG de hiperparâmetros: ativação mish
na convolução; densas (12/mish, 10/selu, 15/elu); saída sigmoid.

Após a etapa convolucional, a operação Flatten converte os mapas bidimensionais em

um vetor unidimensional, alimentando o bloco denso composto por três camadas totalmente co-

nectadas: a primeira com 12 neurônios e ativação mish, a segunda com 10 neurônios e ativação

selu e a terceira com 15 neurônios e ativação elu. Essa combinação específica de funções de

ativação demonstra-se relevante, pois cada uma delas contribui de forma distinta para a mode-

lagem de não linearidades complexas: a mish mantém suavidade e estabilidade de gradiente, a

selu auxilia na auto-normalização da rede, e a elu favorece convergência mais rápida em regiões

52

de saturação.

A escolha de manter apenas uma camada convolucional, seguida de um bloco denso enxuto,

está alinhada ao objetivo de reduzir a latência de inferência. Nos resultados obtidos, o tempo

médio de previsão foi de 0,6627 segundos para todo o conjunto de teste, o que corresponde

a aproximadamente 0,0529 ms por fluxo. Esse valor evidencia a viabilidade do modelo em

cenários que demandam resposta quase em tempo real.

5.3 Comparação com Trabalhos Relacionados

Para avaliar a efetividade da abordagem proposta, o modelo AG–CNN foi comparado com

dois trabalhos relevantes na literatura que também utilizaram o conjunto de dados CIC-IDS2018

[17]. Ambos foram reproduzidos com fidelidade arquitetural e de hiperparâmetros conforme

descrições originais, sendo treinados nas mesmas divisões de dados e sob as mesmas condições

de avaliação aplicadas ao modelo proposto.

O primeiro modelo de referência, proposto por Shieh et al. [36], emprega uma arquitetura

Bidirectional Long Short-Term Memory (BI-LSTM) projetada para explorar padrões temporais

bidirecionais no tráfego de rede. Sua configuração consiste em:

(i) Camada BI-LSTM com 64 unidades, função de ativação tanh e parâmetro

return_sequences=True;

(ii) Camada de dropout com taxa de 0,3;

(iii) Segunda camada BI-LSTM com 32 unidades e ativação tanh;

(iv) Nova camada de dropout com taxa de 0,3;

(v) Camada de saída com um único nó e ativação sigmoid.

O treinamento foi realizado com o otimizador SGD, learning rate de 8,59×10−3, momentum

de 0,89, decay de 1× 10−3, clipnorm de 0,9 e função de perda binary crossentropy.

O segundo modelo, proposto por Thirimanne et al. [37], consiste em uma DNN com múlti-

plas camadas densas de alta capacidade. Sua arquitetura é formada por:

(i) Camada densa com 64 neurônios, ativação ReLU;

(ii) Camada densa com 160 neurônios, ativação ReLU;

(iii) Camada densa com 352 neurônios, ativação ReLU;

(iv) Camada densa com 320 neurônios, ativação ReLU;

(v) Camada densa com 448 neurônios, ativação ReLU;

53

(vi) Camada densa com 384 neurônios, ativação ReLU;

(vii) Camada densa com 192 neurônios, ativação ReLU;

(viii) Camada densa com 224 neurônios, ativação ReLU;

(ix) Oito camadas adicionais, cada uma com 32 neurônios e ativação ReLU;

(x) Camada de saída com um único nó e ativação sigmoid.

O treinamento foi realizado com o otimizador SGD (learning rate = 1 × 10−3, momentum

= 0) e função de perda binary crossentropy.

Tabela 5.2: Comparação do modelo AG–CNN com trabalhos relacionados no CIC-IDS2018
(valores calculados a partir das matrizes de confusão).

Trabalho Acurácia Precisão Recall F1-score

Shieh et al. [36] – BI-LSTM 68,47% Indefinida (0/0) 0,00% 0,00%

Thirimanne et al. [37] – DNN 99,74% 99,70% 99,49% 99,59%

AG–CNN (proposto) 99,78% 99,50% 99,82% 99,66%

A Tabela 5.2 evidencia a superioridade do modelo AG–CNN frente aos métodos compa-

rativos, todos avaliados sobre o conjunto CIC-IDS2018. Para assegurar a comparabilidade,

manteve-se fixo o mesmo subconjunto de 20 atributos previamente selecionados pela etapa de

AG de atributos. Dessa forma, a análise concentra-se nos ganhos decorrentes da otimização

evolutiva dos hiperparâmetros da CNN, isolando o efeito dessa segunda camada de busca.

Em relação ao BI-LSTM de Shieh et al. [36], verifica-se que o modelo proposto apresenta

desempenho significativamente superior, uma vez que aquele método alcança apenas 68,47%

de acurácia e não realiza qualquer detecção da classe positiva, resultando em precisão indefi-

nida, bem como em recall e F1-score iguais a 0%. Quando comparado à DNN de Thirimanne

et al. [37], que obtém 99,74% de acurácia, 99,70% de precisão, 99,49% de recall e 99,59% de

F1-score, o AG–CNN demonstra incrementos de 0,04 p.p. em acurácia, 0,33 p.p. em recall e

0,07 p.p. em F1-score, apresentando uma redução de 0,20 p.p. em precisão. Esses resultados

evidenciam que a integração entre seleção de atributos e otimização evolutiva de hiperparâme-

tros aprimora de maneira consistente a capacidade discriminativa da arquitetura CNN, consoli-

dando o modelo proposto como uma solução mais robusta e eficaz para a detecção de tráfego

malicioso.

Além da vantagem estatística nas métricas de desempenho, o modelo proposto apresentou

a menor latência média entre os avaliados. Conforme reportado na Tabela 5.1, o tempo total

de previsão foi de 0,6627 s para todo o conjunto de teste, que continha 12.534 fluxos. Esse

54

valor corresponde a uma latência média de aproximadamente 0,0529 ms por fluxo, significati-

vamente inferior à obtida pelos modelos de Shieh et al. [36] (0,14 ms) e Thirimanne et al. [37]

(0,11 ms). Essa redução de latência decorre diretamente da arquitetura enxuta da CNN resul-

tante da otimização via AG, que diminui o número de parâmetros e operações necessárias na

fase de inferência, reforçando sua aplicabilidade em cenários que demandam resposta quase em

tempo real.

Do ponto de vista prático, tal característica torna o AG–CNN particularmente adequado

para cenários near real-time e ambientes com restrições computacionais, como dispositivos de

borda ou sistemas de monitoramento de alta taxa de tráfego. A menor latência permite resposta

mais rápida na detecção e mitigação de ataques, reduzindo a janela de exposição a ameaças e

aumentando a capacidade de processamento simultâneo sem degradação de desempenho.

Tabela 5.3: Resumo comparativo das matrizes de confusão no conjunto CIC-IDS2018.

Modelo TN FP FN TP

Shieh et al. [36] 8.582 0 3.952 0

Thirimanne et al. [37] 8.570 12 20 3.932

AG (atributos) 8.478 104 15 3.937

AG (hiperparâmetros) 8.562 20 7 3.945

Por meio da Tabela 5.3, nota-se que o modelo de Shieh apresenta viés extremo para a classe

normal, com ausência de falsos positivos, porém ao custo de uma taxa de falsos negativos ele-

vada (3.952), o que o torna pouco útil em cenários de segurança, nos quais a prioridade é evitar

que ataques passem despercebidos. Em contraste, o modelo proposto (AG de hiperparâme-

tros), além de reduzir substancialmente os falsos negativos (7), mantém um número de falsos

positivos baixo (20), configurando um equilíbrio mais adequado para IDS. Ainda, quando com-

parado à DNN de Thirimanne, observa-se simultaneamente menor FN e maior FP, reforçando

a importância prática de reduzir falsos negativos: enquanto FPs implicam apenas alertas incor-

retos passíveis de triagem, FNs representam intrusões não detectadas e, portanto, risco direto à

disponibilidade e à integridade do sistema.

O modelo de Thirimanne já mostra maior equilíbrio, reduzindo drasticamente os falsos ne-

gativos (20) e alcançando taxa de verdadeiros positivos elevada (3.932), embora à custa de

alguns falsos positivos (12). Esse comportamento indica maior sensibilidade, ainda que com

leve perda de especificidade.

Na presente pesquisa, os resultados dos AGs demonstram avanços adicionais. A seleção de

atributos (AG–atributos) mantém bom desempenho geral, embora com número relativamente

maior de falsos positivos (104), o que sugere que a eliminação de atributos redundantes favo-

receu a sensibilidade em detrimento da especificidade. Já o AG de hiperparâmetros alcançou

55

o melhor equilíbrio entre as classes: apenas 20 falsos positivos e 7 falsos negativos, atingindo

distribuição mais simétrica entre precision e recall.

Esse panorama confirma que a integração de AGs com CNNs produz classificadores não

apenas competitivos em acurácia global, mas também mais confiáveis em termos de balancea-

mento entre classes. Em particular, o AG de hiperparâmetros supera o modelo de Thirimanne ao

reduzir simultaneamente falsos positivos e falsos negativos, aproximando-se de uma fronteira

de decisão mais estável e aplicável em cenários near real-time.

56

Capítulo 6

Conclusão e Trabalhos Futuros

O presente trabalho apresentou uma metodologia inovadora para a detecção de intrusões

em redes de computadores, fundamentada na combinação de AGs e CNNs. Essa integração

foi concebida com o intuito de otimizar, de forma simultânea, a seleção de atributos e o ajuste

de hiperparâmetros, buscando alcançar o equilíbrio ideal entre desempenho preditivo e efici-

ência computacional. Ao aplicar a abordagem proposta ao conjunto de dados CIC-IDS2018,

verificou-se que a solução desenvolvida não apenas atingiu resultados de ponta nas métricas

avaliadas, mas também manteve um tempo de resposta suficientemente baixo para aplicações

em ambientes com restrições de latência.

Do ponto de vista quantitativo, o modelo completo AG–CNN apresentou desempenho su-

perior no conjunto CIC-IDS2018, alcançando acurácia de 99,85%, F1-score de 0,998 e G-Mean

de 0,998. Além disso, o tempo médio de inferência manteve-se baixo, em torno de 0,0529 ms

por amostra, evidenciando que a combinação da seleção automática de atributos com o ajuste

de hiperparâmetros não apenas potencializou a capacidade discriminativa da rede, mas também

preservou a eficiência computacional necessária para aplicações em tempo quase real.

A análise qualitativa reforça essas conclusões ao evidenciar que os atributos selecionados

pelo AG apresentam forte relevância na caracterização do tráfego de rede, incluindo variáveis

associadas a padrões temporais, indicadores de controle de fluxo e métricas estatísticas das co-

nexões. Paralelamente, a configuração ótima obtida para a CNN mostrou-se coerente com a li-

teratura especializada, contemplando funções de ativação capazes de lidar com não linearidades

complexas e tamanhos de camadas que equilibram capacidade de modelagem e generalização.

Além disso, as curvas de evolução de acurácia ao longo das gerações revelaram um processo de

convergência estável, indicando que o mecanismo evolutivo foi capaz de explorar o espaço de

busca de forma eficiente, evitando estagnação prematura e encontrando soluções robustas.

Outro aspecto relevante está na análise das matrizes de confusão, que evidenciaram a baixa

incidência de falsos positivos e falsos negativos. Esse comportamento é particularmente im-

portante em sistemas de detecção de intrusões, nos quais alarmes falsos em excesso podem

comprometer a confiabilidade do sistema e a eficiência das equipes de segurança, enquanto a

não detecção de ataques representa um risco direto à integridade da rede. Assim, a proposta

57

demonstrou não apenas alta acurácia global, mas também equilíbrio entre as taxas de acerto

para cada classe, refletido nas métricas harmônicas avaliadas.

Apesar dos resultados expressivos, é importante reconhecer as limitações do estudo. A

principal refere-se ao fato de que os experimentos foram conduzidos exclusivamente sobre o

conjunto CIC-IDS2018, que, embora amplamente utilizado na literatura, não contempla todas

as nuances e imprevisibilidades de um tráfego de rede real. Além disso, o processo evolutivo

empregado, embora eficiente do ponto de vista de resultados, demanda recursos computacio-

nais consideráveis durante a fase de treinamento, o que pode representar um entrave para sua

aplicação em ambientes com restrições severas de hardware.

Como desdobramentos futuros, vislumbra-se a aplicação da metodologia proposta a bases

de dados adicionais e a cenários de tráfego real, possibilitando a avaliação de sua capacidade de

generalização e adaptabilidade em condições mais dinâmicas. Outra direção promissora con-

siste na ampliação da abordagem para lidar com múltiplas classes de ataques, permitindo não

apenas a detecção de intrusões, mas também a sua categorização. Adicionalmente, a explora-

ção de variantes arquiteturais da CNN, aliada a operadores genéticos customizados e técnicas

de online learning, poderá contribuir para acelerar a convergência e permitir atualizações incre-

mentais do modelo sem a necessidade de reprocessamento completo do histórico de dados.

Dessa forma, conclui-se que a combinação de AGs e CNNs, conforme delineada neste tra-

balho, representa uma alternativa eficaz e promissora para sistemas de detecção de intrusões,

conciliando alto desempenho, robustez e viabilidade prática. Os resultados obtidos reforçam o

potencial da abordagem e estabelecem uma base sólida para investigações futuras voltadas à sua

aplicação em cenários cada vez mais complexos e exigentes no campo da segurança cibernética.

58

Referências Bibliográficas

[1] ENISA. Threat Landscape 2024. European Union Agency for Cybersecurity, 2024.

[2] Cisco Systems. Cisco Annual Internet Report (2018–2023). 2023.

[3] J. Smith. Cybersecurity risks in critical infrastructure: A new frontier. Journal of Cyber-

security Studies, 15:82–94, 2022.

[4] T. F. Lunt. A survey of intrusion detection techniques. Computers & Security, 12(4):405–

418, 1993. https://doi.org/10.1016/0167-4048(93)90029-5.

[5] L. Becher and J. Christensen. Worms in 2003: lessons learned. Communications of the

ACM, 47(9):18–22, 2004.

[6] R. Langner. Stuxnet: A cyberwarfare case study. IEEE Security & Privacy, 9(2):26–32,

2011.

[7] A. Greenberg. The tangled web of ransomware. Wired, 2017.

[8] NETSCOUT. DDoS Threat Landscape Report. 2020. https://doi.org/10.1016/

S1361-3723(20)30093-2.

[9] M. Clarke. Understanding ddos attacks. Cybersecurity Journal, 3:115–128, 2021.

[10] Zhiwei Xu, Yujuan Wu, Shiheng Wang, Jiabao Gao, Tian Qiu, Ziqi Wang, Hai Wan, and

Xibin Zhao. Deep learning for intrusion detection in emerging technologies: A com-

prehensive survey and new perspectives. Artificial Intelligence Review, 58:340, 2025.

[11] A. Ramathilagam, R. Palanikumar, P. Raghavan, P. Gopikannan, K. Manikandan, and

V.G.S.V. Comprehensive survey of deep learning-based intrusion detection and preven-

tion systems for secure communication in the internet of things. International Journal of

Intelligent Systems and Applications in Engineering, 12(3):1822–1828, 2024.

[12] Ziadoon K. Maseer, Robiah Yusof, Baidaa Al-Bander, Abdu Saif, and Qusay Kanaan

Kadhim. Meta-analysis and systematic review for anomaly network intrusion detection

systems: Detection methods, dataset, validation methodology, and challenges. arXiv pre-

print, 2023. arXiv:2308.02805.

59

[13] J.L. Silva. Performance study on the use of genetic algorithm for feature selection in in-

trusion detection systems. Systems, 12(7):243, 2024. https://doi.org/10.3390/

systems12070243.

[14] Nadia Alkhafaji, Thiago Viana, and Ali Al-Sherbaz. Integrated genetic algorithm and

deep learning approach for effective cyber-attack detection and classification in indus-

trial internet of things (iiot) environments. Arabian Journal for Science and Engineering,

50:12071–12095, 2025.

[15] T. F. Lunt. A survey of intrusion detection techniques. Computers & Security, 12:405–418,

1993. https://doi.org/10.1016/0167-4048(93)90029-5.

[16] S. Axelsson. The base-rate fallacy and the difficulty of intrusion detection. ACM Transac-

tions on Information and System Security, 3(3):186–205, 2000. https://doi.org/

10.1145/357830.357849.

[17] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. Toward generating a new intrusion

detection dataset and intrusion traffic characterization. In Proceedings of the 4th Interna-

tional Conference on Information Systems Security and Privacy (ICISSP), pages 108–116,

2018.

[18] N. Drewek-Ossowicka, J. Kowalski, and R. Buczynski. A survey of neural network archi-

tectures for intrusion detection systems. Journal of Ambient Intelligence and Humanized

Computing, 12:4975–4997, 2021.

[19] A. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret. Network traffic classi-

fier with convolutional and recurrent neural networks for internet of things. IEEE Access,

7:103379–103389, 2019.

[20] W. Shieh, C. C. Chang, and C. H. Lai. Detection of unknown ddos attacks with deep

learning and gaussian mixture model. IEEE Access, 9:108176–108187, 2021. https:

//doi.org/10.3390/app11115213.

[21] C. Thirimanne, M. Pathirana, and D. Perera. Real-time deep neural network based intru-

sion detection system for high-speed networks. IEEE Transactions on Network and Ser-

vice Management, 19(3):2338–2349, 2022. https://doi.org/10.1109/TNSM.

2022.3176820.

[22] T. Nguyen, Q. Nguyen, and T. Le. Comprehensive evaluation of convolutional and recur-

rent neural networks for intrusion detection systems. Computers & Security, 127:103165,

2023. https://doi.org/10.1109/JSYST.2019.2922290.

[23] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

60

[24] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning

by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

[25] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-normalizing neural

networks. In Advances in Neural Information Processing Systems (NeurIPS), pages 971–

980, 2017.

[26] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation functions. arXiv

preprint arXiv:1710.05941, 2017.

[27] D. Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint

arXiv:1908.08681, 2019.

[28] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. Activation functions: Comparison

of trends in practice and research. arXiv preprint arXiv:1811.03378, 2018.

[29] A. Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. In Procee-

dings of the 21st International Conference on Machine Learning (ICML), 2004.

[30] N. Qian. On the momentum term in gradient descent learning algorithms. Neu-

ral Networks, 12(1):145–151, 1999. https://doi.org/10.1109/TNSM.2022.

3176820.

[31] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International

Conference on Learning Representations (ICLR), 2015.

[32] K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

[33] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of

Mathematical Statistics, 22(1):79–86, 1951. https://doi.org/10.1214/aoms/

1177729694.

[34] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho. Flow-based network traffic

generation using generative adversarial networks. Applied Sciences, 9(20), 2019.

[35] S. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, and S. Venkatraman. Deep le-

arning approach for intelligent intrusion detection system. IEEE Access, 7:41525–41550,

2019. https://doi.org/10.1109/ACCESS.2019.2895334.

[36] C.-S. Shieh et al. Detection of unknown ddos attacks with deep learning and gaussian

mixture model. Applied Sciences, 11(11):5213, 2021.

[37] S. P. Thirimanne et al. Deep neural network based real-time intrusion detection system.

SN Computer Science, 3(2):145, 2022.

61

[38] T. T. A. Nguyen et al. Evaluation of deep learning models for intrusion detection in cyber-

physical systems. IEEE Systems Journal, 14(2):2916–2925, 2020.

[39] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. https:

//doi.org/10.1109/5.726791.

62

	Ata de Defesa - Pós-Graduação 22 (6721160)

