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Resumo

Gongalves, H. E. Redes Neurais Artificiais combinadas a Algoritmos Genéticos para deteccdo
de intrusoes em rede de computadores. Universidade Federal de Uberlandia, Uberlandia, Bra-
sil, 2025.

Este trabalho apresenta uma metodologia para deteccdo de intrusdes em redes de computa-
dores fundamentada na integracdo de Algoritmos Genéticos (AGs) e Redes Neurais Convoluci-
onais (CNNs). A proposta contempla, de forma simultanea, a selecdo automatica de atributos
que melhor caracterizam o trafego da rede e o ajuste de hiperpardmetros da CNN, com o ob-
jetivo de maximizar métricas de desempenho e minimizar a laténcia de inferéncia. Utilizando
o conjunto de dados CIC-IDS2018, os experimentos evidenciaram que o AG de selecdo de
atributos foi capaz de identificar um subconjunto de 20 varidveis que preserva a capacidade
discriminativa do modelo e, o AG de ajuste de hiperpardmetros, por sua vez, produziu uma
configuracdo de CNN com desempenho ligeiramente superior, atingindo acuricia de 99,78%,
Fl-score de 99,66% e Recall de 99,82%, com laténcia média de apenas 0,0529 ms por amostra.
A andlise qualitativa demonstrou que os atributos selecionados apresentam relevancia direta na
caracterizacao de padrdes de trdfego, enquanto os hiperparametros otimizados resultaram em
melhor separabilidade entre fluxos benignos e maliciosos. As matrizes de confusao indicaram
baixa incidéncia de falsos positivos e falsos negativos, reforcando a robustez da abordagem. Os
resultados obtidos superaram os de trabalhos relacionados na literatura, validando a eficdcia da
proposta.

Palavras chaves: Algoritmos Genéticos, Deteccao de Intrusdes, Otimizacao de Hiperpara-

metros, Redes Neurais Convolucionais, Selecao de Atributos.



Abstract

Gongalves, H. E. Redes Neurais Artificiais combinadas a Algoritmos Genéticos para deteccdo
de intrusoes em rede de computadores. Universidade Federal de Uberlandia, Uberlandia, Bra-
sil, 2025.

This work presents a methodology for intrusion detection in computer networks based on
the integration of Genetic Algorithms (GAs) and Convolutional Neural Networks (CNNs). The
proposal simultaneously contemplates the automatic selection of attributes that best characte-
rize network traffic and the adjustment of CNN hyperparameters, with the aim of maximizing
performance metrics and minimizing inference latency. Using the CIC-IDS2018 dataset, the
experiments showed that the attribute selection GA was able to identify a subset of 20 varia-
bles that preserves the model’s discriminative capacity, and that the hyperparameter adjustment
GA, in turn, produced a CNN configuration with slightly superior performance, achieving an
accuracy of 99.78%, an Fl-score of 99.66%, and a recall of 99.82%, with an average latency
of only 0.0529 ms per sample. Qualitative analysis demonstrated that the selected attributes are
directly relevant in characterizing traffic patterns, while the optimized hyperparameters resulted
in better separability between benign and malicious flows. Confusion matrices indicated a low
incidence of false positives and false negatives, reinforcing the robustness of the approach. The
results obtained surpassed those of related studies in the literature, validating the effectiveness
of the proposal.

Keywords: Convolutional Neural Networks, Feature Selection, Genetic Algorithms, Hy-

perparameter Optimization, Intrusion Detection.
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Capitulo 1

Introducao

1.1 Contexto e Motivacao

A seguranca cibernética emergiu como uma das dreas mais criticas para o desenvolvimento
de tecnologias modernas. A Internet, que hd algumas décadas era uma rede simples de comu-
nicacdo, transformou-se em uma rede global que conecta bilhdes de dispositivos, sistemas e
usudrios ao redor do mundo. Esse fenomeno de globalizacao digital, impulsionado pela Inter-
net das Coisas (10T), pela computacdo em nuvem, e pelas novas redes moveis 5G, criou um
ambiente vasto e complexo para ciberataques. Cada dispositivo, rede e sistema interconectado
apresenta uma possivel vulnerabilidade que pode ser explorada por agentes maliciosos.

A Internet das Coisas representa uma das mais significativas transformacdes tecnoldgicas
do século XXI, com bilhdes de dispositivos inteligentes conectados a Internet. Estes dispositi-
vos, que vao desde termostatos e cameras de seguranga até equipamentos médicos e automo-
veis, aumentam exponencialmente a superficie de ataque das redes. De acordo com a European
Union Agency for Cybersecurity (ENISA), o nimero de dispositivos [oT pode superar 25 bi-
lhdes até 2030, o que amplia consideravelmente os riscos de ataques cibernéticos [1].

Adicionalmente, a computacdo em nuvem, uma tecnologia que permite o armazenamento
e processamento de grandes volumes de dados em servidores remotos, também aumentou a
complexidade das redes. Embora traga beneficios como escalabilidade e flexibilidade, a com-
putacdo em nuvem também apresenta desafios significativos em termos de protecao de dados e
da infraestrutura de seguranca. De acordo com o Cisco Annual Internet Report, em 2023, mais
de 94% das cargas de trabalho estavam migrando para a nuvem, o que torna os provedores de
servicos em nuvem alvos frequentes de ciberataques [2].

Além disso, o advento das redes moveis SG aumentou a velocidade de comunicacdo e a
conectividade, o que impulsionou ainda mais a digitalizacdo de servigos e sistemas. No entanto,
isso também ampliou o campo de atuag@o para os atacantes, criando novos vetores de ataque,
como a manipulacio de dispositivos de borda, que se conectam diretamente as redes méveis e

a infraestrutura critica [3].



Com a ampliagdo da superficie de ataque e o crescimento do trafego global de dados, surge
a necessidade urgente de sistemas de defesa cibernética mais sofisticados e rapidos. A deteccdo
de intrusdes, como parte essencial das arquiteturas de seguranca, deve evoluir para enfrentar
esses novos desafios. O aumento exponencial do trafego de dados, por exemplo, torna a tarefa
de monitorar e proteger redes complexas ainda mais dificil. Sistemas de Deteccdo de Intrusdes
(IDS) precisam ser capazes de identificar ameacas de forma ripida, precisa e, mais importante,

em tempo real.

1.2 Histoérico dos Ataques Cibernéticos

A evolucdo dos ataques cibernéticos reflete uma escalada de sofisticacdo e impacto. Nos
anos 1980, os primeiros virus e worms comecaram a surgir, destacando-se o Morris Worm em
1988, que afetou cerca de 10% dos sistemas conectados a Internet na época [4]. Embora simples
em comparacao com os ataques atuais, este evento foi o precursor de uma série de incidentes
de segurancga que se seguiram.

Na década de 2000, a proliferagdo de worms, como o Slammer Worm, exemplificou o poder
destrutivo de ataques que podiam se espalhar rapidamente, infectando milhares de sistemas em
questdo de minutos. O Slammer, que afetou bancos de dados do Microsoft SQL Server, causou
paralisia em grandes areas da internet e deixou claro que a seguranga deveria ser repensada para
lidar com ataques em larga escala [5].

A partir de 2010, a ameaca cibernética se diversificou com o uso de botnets massivas, como
a Mirai Botnet. Essa botnet foi responsavel por alguns dos maiores ataques Distributed Denial
of Service (DDoS) da histdria, explorando dispositivos IoT mal protegidos, como cdmeras de
seguranca e roteadores. Esses ataques atingiram alvos estratégicos, como provedores de Inter-
net, afetando milhdes de usudrios em todo o mundo [1]. A sofisticacdo das técnicas de ataques
de DDoS tem sido acompanhada pelo aumento da largura de banda dos ataques, ultrapassando
os 1 Tbps, e causando interrupcdes que podem durar horas ou dias.

Além disso, ataques direcionados, como o Stuxnet em 2010, marcaram um ponto de infle-
xao ao demonstrar como malwares podem ser usados para atacar sistemas industriais criticos.
O Stuxnet foi projetado para sabotar o programa nuclear iraniano, atingindo diretamente os sis-
temas SCADA, que controlam equipamentos industriais. Este ataque destacou a necessidade de
protecdo robusta em sistemas criticos e de uma abordagem mais holistica para a seguranga, que
inclua a defesa cibernética em nivel de infraestrutura fisica [6].

Mais recentemente, ataques como os de ransomware, que visam criptografar os dados e
exigir resgates em criptomoedas, tornaram-se uma grande ameaca para empresas € governos.
Exemplos incluem o ataque ao sistema de satide do Reino Unido, que paralisou hospitais em
2017, e o ataque global do WannaCry, que afetou mais de 150 paises. Tais incidentes aumenta-
ram a pressao sobre as organizacdes para que implementem sistemas de defesa mais robustos,

incluindo prote¢do contra malware avangado e ataques de engenharia social [7].



1.2.1 Impacto dos Ataques DDoS

Os ataques DDoS continuam sendo uma das formas mais prevalentes de ataque cibernético.
Estes ataques tém o potencial de paralisar servicos essenciais, como sistemas bancdrios, gover-
namentais e empresas de tecnologia, sobrecarregando os servidores com um trafego massivo.
Em 2020, a NETSCOUT reportou um aumento de mais de 30% no nimero de ataques DDoS
em relacdo ao ano anterior, com um crescimento alarmante no nimero de ataques superiores a
1 Tbps [8].

Os ataques DDoS nao se limitam apenas a bloquear servi¢os, mas também a minar a con-
fianca dos consumidores em empresas e plataformas digitais. A perda de acessibilidade e a
interrupg¢do dos servigos tém consequéncias financeiras graves, além de danos a reputagdo. Em-
presas que ndo possuem um sistema de defesa robusto contra esses ataques enfrentam perdas
financeiras diretas, além de prejuizos indiretos com a perda de clientes e a exposicao a riscos
de seguranca. Estes ataques sdo frequentemente utilizados como cortinas de fumacga, criando
distracdes enquanto outras formas de intrusdo ocorrem em paralelo, como a exfiltragdo de da-
dos [9].

1.3 Evolucao dos Sistemas de Deteccao de Intrusao

Os Sistemas de Deteccao de Intrusdes (IDS) tém evoluido em resposta ao aumento da com-
plexidade dos ataques. Inicialmente baseados em simples assinaturas, os primeiros IDS eram
eficazes para identificar ataques conhecidos, mas falhavam em detectar novas ameagas. Com o
tempo, novas abordagens foram desenvolvidas, como a detec¢do por anomalia, que visa identi-
ficar comportamentos incomuns dentro da rede. No entanto, a detecc@o de intrusdes avancadas
exigiu a adocdo de técnicas mais sofisticadas, como aprendizado de maquina e redes neurais.

Os IDS podem ser classificados de acordo com a forma como identificam comportamentos

maliciosos. A seguir, sdo descritos os principais tipos:

* Baseados em Assinaturas: funcionam de forma semelhante a antivirus tradicionais, pro-
curando por padrdes especificos e conhecidos de ataques. Esses sistemas sdo rdpidos e
precisos na identificacdo de ameacas previamente documentadas, mas apresentam limi-
tacdes na deteccao de ataques novos ou modificados. A constante evolucido do malware,
com o uso de técnicas de evasdo, compromete a eficiacia dos IDS baseados exclusiva-
mente em assinaturas, tornando-os insuficientes em um cendrio de seguranca cibernética

dinamico.

* Baseados em Anomalias: surgiram como resposta a crescente complexidade dos ata-
ques. Esses sistemas aprendem o comportamento "normal” de uma rede e identificam
desvios desse padrdo. Embora eficazes na detec¢do de ataques inéditos, enfrentam uma

alta taxa de falsos positivos, pois o comportamento de rede pode variar naturalmente. Isso



dificulta a distin¢do entre varia¢des legitimas e comportamentos maliciosos, exigindo sis-

temas mais sofisticados para mitigar esse problema.

* Hibridos: combinam os dois métodos anteriores, utilizando assinaturas para detectar
ataques conhecidos e técnicas de deteccao por anomalia para reconhecer novas ameacas.
Além disso, esses sistemas podem incorporar algoritmos de aprendizado profundo, como
redes neurais convolucionais (CNNs), capazes de identificar padroes mais complexos no

trafego da rede.

1.4 Tecnologias Emergentes

Nos ultimos anos, o campo da deteccdo de intrusdes em redes de computadores tem sido
cada vez mais impulsionado por uma tecnologia central: a inteligéncia artificial (1A) aplicada a
ciberseguranga — em especial aos IDS. Estudos recentes mostram que, diante da complexidade
crescente do trafego de rede, da diversidade de vetores de ataque e da necessidade de adaptacdo
a ameacas desconhecidas, a IA representa uma tendéncia tecnoldgica emergente para suportar
a defesa automatica e adaptativa de sistemas criticos [10-12].

Dentro desse panorama, diversas técnicas - como redes neurais profundas, aprendizado por
reforco, algoritmos evolutivos, otimizacdo de hiperpardmetros - tém sido exploradas. E im-
portante diferenciar: a tecnologia refere-se ao uso amplo da IA para IDS; as técnicas sdo os
métodos especificos empregados dentro dessa tecnologia, por exemplo, redes convolucionais,
algoritmos genéticos, aprendizagem por reforco.

Em particular, a mais recente literatura aborda a aplica¢do de aprendizado profundo (deep
learning) para IDS em ambientes emergentes como Internet das Coisas (10T), Edge Computing
e Software-Defined Networking (SDN) — o que refor¢a o carater de “tecnologia emergente”
desse tipo de protecdo [10, 11].

Ao final desta subsecao, vale ressaltar que a abordagem adotada neste trabalho, que combina
redes neurais com AG para otimizacdo de parametros e sele¢do de caracteristicas, estd alinhada

com essa tendéncia de tecnologia emergente de IA para deteccao de intrusdes.

1.5 Solucao Proposta

Como parte da solucdo proposta, constata-se que os AGs oferecem uma reconhecida capa-
cidade de explorar espacos de busca de alta dimensionalidade de forma eficiente, evitando a
dependéncia exclusiva de escolhas manuais ou heuristicas pouco generalizdveis [13, 14].

No contexto da deteccdo de intrusdes, essa caracteristica se torna relevante porque os flu-
xos de rede e os conjuntos de atributos utilizados para modelagem frequentemente apresentam

elevada dimensionalidade, heterogeneidade e evolugao continua [13].



Por sua vez, as técnicas de aprendizado profundo, em especial CNNs, tém demonstrado uma
forte aptiddo para o reconhecimento de padrdes complexos em dados de rede, inclusive padroes
de trafego andmalo ou desconhecido. Essa capacidade amplia o escopo da tecnologia emergente
de IA, permitindo a deteccao proativa de ataques novos ou nio previamente assinados [10, 11].

Deste modo, a solu¢do proposta — que integra AG para otimizagdo e selecdo de caracte-
risticas, aliado a uma arquitetura de rede neural para classificacdo de trafego — manifesta-se
como uma instancia alinhada a tendéncia tecnoldgica emergente em IDS: trata-se de um sistema
IA-centrado, adaptativo e voltado para ambientes de rede complexos.

Na fase de implementacao, os AGs atuam na busca automdtica das melhores combinagdes de
parametros e subconjuntos de atributos, reduzindo a dimensionalidade e melhorando a eficiéncia
do treinamento. Em seguida, a CNN realiza a classificacdo do trafego de rede em benigno ou
malicioso. A junc¢do desta abordagem permite que a solucdo proponha avango em termos de

generalizagado, adaptabilidade e reducdo de intervencao manual.

1.6 Objetivos

O objetivo geral desta pesquisa consiste em desenvolver, implementar e validar uma abor-
dagem hibrida baseada na integracdo de AGs e CNNs para a detec¢do de intrusdes em redes de
computadores. Pretende-se, com isso, alcancar simultaneamente dois propdsitos fundamentais:
maximizar a eficicia da detec¢do, por meio de métricas de desempenho consolidadas, e mini-
mizar a laténcia de processamento, assegurando que o modelo seja compativel com cendrios de
operacdo em tempo quase real.

Para atingir esse objetivo amplo, foram definidos os seguintes objetivos especificos:

* Investigar a eficiéncia do uso de AGs para a selecdo automética de atributos relevantes
do conjunto CIC-IDS2018, de forma a identificar subconjuntos de varidveis que melhor

representem os padrdes de trafego normal e malicioso;

* Aplicar AGs na otimiza¢do dos hiperparametros da CNN, buscando definir automatica-
mente fungdes de ativagio, nimero de unidades em cada camada, otimizadores e fungdes

de custo mais adequados ao problema;

* Projetar e treinar uma CNN enxuta, equilibrando simplicidade estrutural com alto desem-

penho preditivo, de forma a garantir tanto eficiéncia computacional quanto escalabilidade;

* Avaliar o modelo proposto utilizando métricas amplamente reconhecidas na literatura,
como acurécia, F1-score, G-Mean e tempo médio de inferéncia, de modo a quantificar de

forma abrangente sua eficicia e eficiéncia;

* Comparar os resultados obtidos com trabalhos relacionados, assegurando uma andlise
critica que situe a contribui¢do deste trabalho no contexto do estado da arte em deteccao

de intrusoes.



1.7 Contribuicoes

As contribui¢des deste trabalho podem ser analisadas sob diferentes perspectivas: meto-
doldgica, experimental e aplicada. No plano metodolégico, destaca-se a proposicdo de uma
arquitetura hibrida de AG e CNN que utiliza dois AGs distintos e complementares, um voltado
a selecdo de atributos e outro dedicado a defini¢do de hiperparametros. Essa estratégia, embora
ainda pouco explorada na literatura, demonstrou ser eficaz na otimizacdo conjunta de insumos
e parametros de modelos de aprendizado profundo.

No ambito experimental, a pesquisa demonstrou que a selecao automadtica de atributos per-
mitiu reduzir significativamente a dimensionalidade de entrada sem comprometer o desempe-
nho, ao contrério, melhorando a acuricia da rede. Simultaneamente, a otimiza¢do conduzida
pelo segundo AG identificou configuracdes de hiperpardmetros que potencializaram o poder
discriminativo da CNN, resultando em métricas de desempenho superiores as reportadas por
modelos de referéncia. Adicionalmente, os experimentos comprovaram que o modelo proposto
mantém baixa laténcia de inferéncia, requisito essencial para aplicagdes em redes de alta velo-
cidade.

Sob a perspectiva aplicada, este trabalho oferece uma solugdo vidvel e escaldvel para siste-
mas de deteccao de intrusdes, com potencial de utilizacdo em ambientes reais. A reducio do
tempo de resposta frente a trafego malicioso possibilita maior eficiéncia em acdes mitigadoras,
reduzindo riscos de indisponibilidade e danos em infraestruturas criticas. Dessa forma, a pes-
quisa contribui ndo apenas para o avanco cientifico na drea de seguranca em redes, mas também
para a aplicacdo pratica de modelos de aprendizado de mdquina em cendrios que exigem alto

desempenho e confiabilidade.

1.8 Estrutura do Documento

A presente dissertacdo estd organizada em capitulos, cada um com objetivos especificos,

conforme descrito a seguir:

 Capitulo 2 — Revisao Bibliografica: apresenta um panorama das principais técnicas de
deteccao de intrusdes, destacando abordagens clédssicas e tecnologias emergentes relevan-

tes para o estado da arte.

* Capitulo 3 — Fundamentacio Tedrica: descreve os conceitos essenciais que sustentam
o trabalho, com énfase em redes neurais convolucionais e algoritmos genéticos, incluindo

principios de funcionamento e aplicacdes no contexto de seguranca da informacao.

* Capitulo 4 — Metodologia: detalha as etapas de desenvolvimento do modelo proposto,
desde a preparacao dos dados e configuracdo experimental até a integracdo entre selecao

de atributos e ajuste de hiperparadmetros por meio de algoritmos genéticos.



* Capitulo 5 — Resultados e Discussido: apresenta os experimentos realizados, analisa o
desempenho do modelo em multiplas métricas e compara os resultados com trabalhos da

literatura, destacando os avangos alcangados.

» Capitulo 6 — Conclusdes e Perspectivas Futuras: sintetiza as principais contribuigcdes
da pesquisa, discute suas implicag¢des praticas e aponta possiveis dire¢des para trabalhos

futuros.



Capitulo 2
Revisao Bibliografica

A detec¢ao de intrusdes em redes de computadores ¢ um campo que tem evoluido rapida-
mente desde os primeiros sistemas baseados em assinaturas até o emprego de técnicas moder-
nas de Inteligéncia Artificial (IA) e aprendizado profundo. Esta se¢do apresenta uma revisao
atualizada das principais abordagens reportadas na literatura, suas limitagdes e as lacunas que
motivam a presente pesquisa.

Historicamente, Lunt [15] realizou uma das primeiras revisdes abrangentes de técnicas de
deteccao de intrusdes, categorizando os métodos entdo existentes e apontando limitagdes in-
trinsecas aos sistemas baseados exclusivamente em assinaturas. Axelsson [16] posteriormente
formalizou uma taxonomia de IDS, distinguindo trés categorias principais: baseados em assi-
naturas, em anomalias e hibridos. Esses trabalhos classicos servem de base conceitual para o
desenvolvimento de abordagens mais recentes.

Sharafaldin et al. [17] contribuiram significativamente para o avango da pesquisa em detec-
¢ao de intrusdes ao desenvolverem a série de bases de dados do Canadian Institute for Cyberse-
curity (CIC), incluindo CICIDS2017, CSE-CIC-IDS2018 e, posteriormente, CIC-DD0S2019.
A CICIDS2017 introduziu um conjunto abrangente de trafego realista com multiplos vetores
de ataque distribuidos ao longo de vdrios dias, tornando-se referéncia na avaliagdo de IDS. Jd a
CSE-CIC-IDS2018 — base utilizada neste trabalho — ampliou substancialmente a complexi-
dade ao incorporar uma topologia de rede maior, sete cendrios distintos de ataque e um conjunto
expandido de caracteristicas extraidas via CICFlowMeter, conferindo maior diversidade e repre-
sentatividade aos fluxos. Por fim, a CIC-DDo0S2019 especializou-se em ataques de negacdo de
servigo distribuida, reunindo ampla variedade de vetores DDoS modernos. Em conjunto, essas
bases compartilham metodologia de captura, rotulagdo e extracao de fluxos, mas diferem quanto
ao foco, variedade de ataques e volume de trafego, tornando a CICIDS2018 especialmente ade-
quada para estudos que demandam generalizacdo em cendrios amplos e heterogéneos.

Drewek-Ossowicka et al. [18] revisaram mais de 150 estudos que empregaram técnicas
de aprendizado profundo para deteccdo de intrusdes, destacando o papel das Redes Neurais
Convolucionais (CNN) e das Redes Neurais Recorrentes (RNN), especialmente as Long Short-

Term Memory (LSTM), por sua capacidade de capturar dependéncias temporais.



Lopez-Martin et al. [19] propuseram um classificador de trafego IoT com duas camadas
convolucionais (32 e 64 filtros, ativacdo ReLU) seguidas por uma camada LSTM. Aplicado
a base UNSW-NBI15, o modelo alcangou 98,2 % de acuracia, superando Support Vector Ma-
chine (SVM) e Random Forest. O estudo, contudo, apresentou alta demanda computacional,
dificultando sua aplica¢do em tempo real.

Shieh et al. [20] desenvolveram um modelo Bidirectional LSTM (BI-LSTM) combinado
a um Gaussian Mixture Model (GMM) para detec¢do de ataques DDoS. O modelo atingiu
96,8 % de acuricia nas bases CIC-IDS2017 e CIC-DDo0S2019, porém ndo explorou otimizagao
automatica de hiperpardmetros — lacuna explorada nesta dissertacao.

Thirimanne et al. [21] apresentaram uma arquitetura de Rede Neural Profunda (DNN) de
baixa laténcia, obtendo 99,1 % de acurdcia no NSL-KDD com tempo de inferéncia inferior a
10 ms, mas sem explorar selecao de atributos ou técnicas evolutivas.

Nguyen et al. [22] compararam CNN, LSTM e arquiteturas hibridas em multiplas bases,
observando que CNNs apresentaram menor laténcia enquanto LSTMs alcangaram maior recall
para ataques raros. O trabalho demonstrou que a escolha da arquitetura depende do cendério,
mas ndo propds mecanismos de ajuste dindmico — o que motiva o uso de AGs neste estudo.

A Tabela 2.1 resume as principais caracteristicas dos métodos cldssicos e modernos, asso-

ciando vantagens e desvantagens a partir de fontes consolidadas na literatura.

Tabela 2.1: Comparacdo entre métodos de detecc@o de intrusoes.

Método Vantagens Desvantagens

Baseado em assi- Alta precis@o para ataques co- Ineficaz contra ataques inédi-
naturas nhecidos; baixo custo computa- tos; exige atualiza¢do continua.
cional [15,16].

Baseado em ano- Detecta ataques zero-day; Maior taxa de falsos positivos;
malias adaptavel a novos padrdes [18]. requer treinamento complexo.

Hibrido Combina pontos fortes das Maior complexidade e con-
abordagens anteriores [20,21]. sumo computacional.

A Tabela 2.2 apresenta um conjunto de trabalhos representativos da literatura recente, des-
tacando a técnica principal empregada, o tipo de método e a base de dados utilizada, sem atri-

buicdo de qualquer avaliagdo comparativa.



Tabela 2.2: Trabalhos representativos: técnica, tipo de método e caracterizagao geral.

Referéncia Técnica principal Tipo de mé- Base de Descricao
todo dados
Lopez-Martin et CNN + LSTM Hibrido UNSW- Andlise  baseada
al. [19] NB15 em arquiteturas
profundas integra-
das
Shieh et al. [20] BI-LSTM + GMM Hibrido CIC- Abordagem combi-
IDS2017 nando redes recor-
/ CIC- rentes bidirecionais
DDo0S2019 e modelos probabi-
listicos
Thirimanne et DNN Supervisionado NSL-KDD Proposta centrada
al. [21] em rede neural pro-
funda de multiplas
camadas
Nguyenetal. [22] CNN, LSTM e hibrido Comparativo Diversas Estudo compara-
bases tivo entre diferen-
tes arquiteturas
de aprendizado
profundo
Proposta  (pre- AG + CNN Hibrido (IA CIC- Integracao de algo-
sente trabalho) evolutiva) IDS2018 ritmo genético com

rede neural convo-
lucional

A andlise conjunta desses estudos evidencia a diversidade de abordagens aplicadas ao con-

texto de detec¢do de intrusdes, variando desde modelos puramente supervisionados até arquite-
turas hibridas e métodos evolutivos. Observa-se ainda que diferentes bases de dados t€m sido
utilizadas como referéncia, refletindo a auséncia de um padrao dnico de avaliagdo no campo.
Além disso, nota-se que a literatura recente explora uma ampla gama de arquiteturas pro-
fundas, embora nem sempre incorpore procedimentos sistematicos de selecdo de atributos ou

estratégias evolutivas de otimizacdo, aspectos que motivam a presente investigacao.
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Capitulo 3

Fundamentacao Teorica

3.1 Introducao as Redes Neurais Artificiais

As Redes Neurais Artificiais (RNAs) sdo modelos capazes de aprender padrdoes complexos
a partir de dados. Neste trabalho, empregou-se uma variagdo de RNA denominada CNN, es-
colhida por sua capacidade de extrair representacdes discriminativas de dados estruturados. O
processo de ajuste de pesos foi realizado via backpropagation, com fungao de custo e otimiza-
dor definidos automaticamente pelo Algoritmo Genético, permitindo configuracio adaptada ao

problema de deteccao de intrusdes.

3.2 Redes Neurais Convolucionais

As CNNs constituem uma classe de arquiteturas de aprendizado profundo inspiradas no fun-
cionamento do cortex visual humano. Diferentemente das redes neurais totalmente conectadas
(Fully Connected Neural Networks), que estabelecem conexdes entre todos os neurdnios de ca-
madas adjacentes, as CNNs exploram o conceito de operacdes locais e de compartilhamento de
pesos, o que resulta em modelos mais eficientes e com melhor capacidade de generalizacdo em
tarefas que envolvem dados estruturados em grades, como imagens, séries temporais e fluxos
de trafego de rede.

O componente central de uma CNN € a camada convolucional, na qual filtros (kernels)
deslizam sobre a entrada aplicando operagdes de convolugdo. Cada filtro aprende a detectar
padrdes especificos, como bordas, variacdes de intensidade ou, no contexto de IDS, combi-
nacOes de atributos de trafego que caracterizam comportamentos normais ou maliciosos [23].

Matematicamente, a saida de uma convolugdo pode ser representada como

—+00

s(t) = (@xw)(t)= Y z(r)-w(t—7), (3.1)

T=—00

onde z representa o sinal de entrada e w o filtro convolucional. Esse processo € responsédvel
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pela extracdo hierdrquica de caracteristicas, permitindo que camadas iniciais capturem padrdes

simples e camadas posteriores combinem tais padrdes em representacdes mais complexas.
Além das camadas convolucionais, as CNNs geralmente incluem camadas de pooling, res-

ponsdveis por reduzir a dimensionalidade das representacdes intermedidrias sem perder infor-

mac0es relevantes. A técnica mais comum € o max pooling, definida por [23]:

Yij = MaxX Tpp, (3.2)
J (m,n)EQi,j

no qual cada saida y; ; corresponde ao valor mdximo em uma vizinhanga local €; ; da entrada
x. Isso confere a rede invariancia espacial parcial, além de diminuir o custo computacional.

Ao final do processo convolucional e de pooling, as representacdes extraidas sdo encami-
nhadas para camadas densas (fully connected), onde ocorre a combina¢do ndo-linear das ca-
racteristicas aprendidas para produzir a saida final, como a classifica¢do entre trafego normal e
ataque.

A principal vantagem das CNNs estd em sua capacidade de aprender automaticamente re-
presentacdes discriminativas a partir dos dados, dispensando a necessidade de extragdo manual
de atributos. Essa caracteristica torna as CNNs particularmente eficazes em sistemas de detec-
cdo de intrusdes, uma vez que o trifego de rede pode ser organizado em estruturas matriciais
andlogas a imagens, permitindo que a rede identifique padrdes complexos de ataque com ele-
vada acurdcia e baixo tempo de inferéncia.

Em sintese, as CNNs oferecem um equilibrio entre poder de representacao e eficiéncia com-
putacional, o que justifica sua ado¢do em diversos dominios da Inteligéncia Artificial, incluindo
a ciberseguranca.

O fluxograma da Figura 3.1 apresenta, de forma esquemadtica, o funcionamento de uma
CNN aplicada a detec¢do de intrusdes. Na etapa inicial, a entrada matricial (H x W x ()
corresponde ao trafego de rede organizado em uma grade de atributos, a qual € processada pela
camada convolucional, onde filtros especializados extraem padrdes locais que revelam depen-
déncias entre atributos correlacionados. Em seguida, a ativagdo ndo-linear amplia a capacidade
do modelo de representar relagdes complexas, enquanto a operagcdo de max pooling reduz a di-
mensionalidade e preserva as informagdes mais relevantes. O vetor resultante € entdo achatado
e encaminhado para camadas densas, responsdveis por integrar globalmente as caracteristicas
extraidas nas etapas anteriores, até que a camada de saida, com ativacdo sigmdide, retorne a
probabilidade de um fluxo ser classificado como intrusao ou trafego normal, evidenciando a hi-
erarquia de abstracdo tipica das CNNs na transformacao de dados brutos em uma decisdo final

de classificacao bindria.

3.2.1 Representacao de Trafego de Rede para Entrada em CNN

Além das estratégias de regularizagdo, a representacio dos dados de entrada exerce influén-

cia determinante na qualidade do aprendizado. Neste trabalho, o vetor original de 20 atributos
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Entrada
(HxW x(C)

Y

L Camada Convolucional (Conv2D)

extracdo de caracteristicas locais
filtros = I, kernel = k x k } g

Ativagdo
(ReLU/Mish/Swish)

Y

Max Pooling
janela p X p, passo s

= J

reducdo de dimensionalidade

[ Densa (n1) + Ativacao } combinagdo ndo-linear

Y

[ Densa (no) + Ativacio }

} probabilidade de intrusado

Y
Saida
(1 nd, sigmoid)

Figura 3.1: Fluxograma tipico de uma CNN aplicada a IDS.

do trafego de rede foi reorganizado na forma matricial 4 x 5, com canal tinico. Essa disposi¢cao
ndo ¢é arbitrdria: ela busca preservar correlacdes semanticas entre atributos relacionados, como
estatisticas referentes ao trafego de envio e recebimento, posicionando-os em proximidade es-
pacial na grade. Assim, os filtros convolucionais conseguem explorar tais relagdes locais de
maneira mais eficaz, aproximando-se do principio que fundamenta a detec¢do de padrdes em
imagens.

Para garantir equilibrio entre os atributos, foi aplicada normalizagao feature-wise, baseada
no z-score de cada coluna. Esse procedimento evita que atributos de maior magnitude numé-
rica dominem a propagacgdo direta da rede, assegurando que todas as varidveis contribuam de
maneira equitativa para a aprendizagem. Dessa forma, o modelo € capaz de identificar padroes
relevantes mesmo em atributos de menor escala, ampliando a robustez e a capacidade discrimi-
nativa da CNN.
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3.3 Funcoes de Ativacao

As fungdes de ativacdo sao essenciais nas RNAs, pois introduzem nao-linearidade no mo-
delo, permitindo a aproximagdo de funcdes complexas. A escolha adequada da funcdo de
ativacdo afeta diretamente a capacidade de generalizacdo, a estabilidade do gradiente e a ve-
locidade de convergéncia. Além disso, para o algoritmo de retropropagacdo, ¢ fundamental a
derivada ¢’ (x) de cada fungdo, uma vez que esta determina como o erro é propagado entre as
camadas [23-27]. A seguir sdo apresentadas as funcdes de ativacdo utilizadas neste trabalho,

juntamente com suas equacgdes e respectivas andlises.

Funcio Linear

A funcdo linear € definida como

o(z) =z, (3.3)

com derivada

¢(z) = 1. (3.4)

Por ser estritamente linear, ndo introduz complexidade adicional ao modelo, mas ¢ ttil em

camadas de saida em problemas de regressao.

Funcao ReLU

A Rectified Linear Unit (ReLU) é dada por

¢(r) = max(0, x), (3.5)
com derivada
, 0, =<0,
P'(z) = (3.6)
1, =>0.

A ReLU ¢é amplamente utilizada devido a sua simplicidade computacional e a mitigagcdo parcial
do problema do desvanecimento do gradiente. Contudo, apresenta a limitagdo conhecida como
dying ReLU, que ocorre quando neurdnios ficam permanentemente inativos [23].

Func¢io SELU

A Scaled Exponential Linear Unit (SELU) € definida por

k-, x>0,
P(z) = (3.7)
k-a-(e—=1), x<0,
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onde o = 1,67326324 e k = 1,05070098. Sua derivada ¢ dada por

k, x>0,
¢ (x) = (3.8)

k-a-e*, x<0.
A SELU promove normalizagdo automatica da saida dos neur6nios, favorecendo a estabilidade
em arquiteturas profundas [25].
Func¢io ELU

A Exponential Linear Unit (ELU) é expressa como

¢(x) = (3.9)

com o = 1.0. Sua derivada é

1, x>0,
¢'(z) = (3.10)
o) +a, =<0.

A ELU suaviza a descontinuidade da ReLU em x = 0, permitindo gradientes ndo-nulos para

entradas negativas [24].

Funcao Softmax
A funcio Softmax é definida para vetores de entrada v € R¥ como

evi

Zlf:l e’

A derivada envolve a matriz Jacobiana, dada por

o(x;) = j=1,...,K. (3.11)

0g(x;) _ ) olw;)- (1= o(xy)), i=j, (3.12)

O, —o(z) - dlay), i #]

O Softmax € utilizado principalmente na saida de classificadores multiclasse, garantindo distri-
bui¢do de probabilidade [23].

Funciao Softplus

A funcao Softplus € dada por
() =In(l+e"), (3.13)
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com derivada .
, —_—
@) =
isto é, a propria funcdo sigmdide. O Softplus pode ser entendido como uma versdo suavizada
da ReL.U [23].

=o(z), (3.14)

Funcao Mish

A funcdo Mish € definida por
¢(x) = z - tanh(In(1 + €)), (3.15)

cuja derivada € suave e ndo-nula para praticamente todo o dominio. Essa caracteristica favorece

um fluxo de gradiente mais estdvel em arquiteturas profundas [27].

Funcao Swish
A fungdo Swish € expressa por

Z

o) = 0@) = 1,

(3.16)

com derivada
¢'(z) = d(x) + o(z)(1 — ¢(z)), (3.17)

onde o () é a funcdo sigmdide. A Swish mantém derivadas ndo-nulas em todo o dominio, sendo

considerada uma alternativa moderna a ReLLU [26].

Discussiao Critica

A andlise das derivadas evidencia que fungdes como Linear e ReLU possuem simplicidade
e baixo custo computacional, mas podem limitar a propagacdo de gradientes em cendrios com-
plexos. Por outro lado, SELU e ELU oferecem mecanismos de normalizacio e suavizacdo,
reduzindo a inatividade de neur6nios. Softmax € indispensavel para classificacdo multiclasse,
enquanto Softplus, Mish e Swish s@o alternativas que preservam gradientes em regides amplas,

favorecendo arquiteturas profundas, como a CNN utilizada neste trabalho.

Resumo Comparativo

A Tabela 3.1 apresenta um conjunto abrangente das principais fungdes de ativacao utiliza-
das em redes neurais modernas, incluindo suas equacdes, derivadas e vantagens préticas. Essa
comparacao evidencia como diferentes ativadores influenciam o fluxo de gradientes, a estabili-
dade numérica e a capacidade de generaliza¢do dos modelos. Fungdes cldssicas, como Linear e

ReLU, contrastam com variantes mais recentes, como Swish e Mish, que introduzem suavidade
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e ndo linearidades mais ricas capazes de melhorar o desempenho em arquiteturas profundas.
Além disso, fun¢des como SELU e ELU destacam-se por mitigar problemas de desvanecimento
do gradiente e favorecer processos de autonormalizacdo, reforcando a importancia da escolha

adequada da ativagdo para cada tipo de tarefa e arquitetura.

Tabela 3.1: Funcdes de ativacao utilizadas: equagdes, derivadas e principais vantagens.

Funcao o(x) ¢’ (x) Principais vantagens
Linear z 1 Util em saidas de regressio; esta-
bilidade numérica.
0, z<0 . . .
ReLU max(0, x) { Simples e barata; induz esparsi-
1, >0 dade; mitiga parcialmente o des-

vanecimento do gradiente [23].

k >0 )k, >0 . .
SELU { “ - v { - v Autonormalizac¢do; treinamento
ka(e® —1), z<0 |kae®, 2<0 estavel em arquiteturas profun-
das [25].
T, x>0 |1, x>0 . N . <
ELU . Permite ativagOes negativas; mé-
a(e’=1), =<0 |g@)+a, =0 dia préoxima de zero; convergén-
cia mais rdpida [24].
zj
Softmax o(z5) = ;7 Jacobiana com termos cru- Saida probabilistica normalizada
T
D py €7 zados 0¢; /0x; para multiclasse [23].
Softplus In(1+ e®) o(x) ReLU suavizada; derivada nao
nula em z < 0; maior estabili-
dade [23].
Mish x tanh(In(1 + %))  Suave e ndo nulaem quase Gradientes suaves; boa generali-
todo dominio zacdo reportada em tarefas pro-

fundas [27].

Swish xo(z) ¢(z) +o(z) (1 —¢(xr))  Suave e ndo mondtona; desem-
penho superior a ReLU em redes
profundas [26].

Notas: o(x) = H% Para SELU, usar o = 1,67326324 e k = 1,05070098.

3.3.1 Derivadas e retropropagaciao

No processo de treinamento de redes neurais, a retropropagacdo (backpropagation) exige
o célculo das derivadas das fungdes de ativagdo, denotadas por ¢'(x). Essas derivadas de-
sempenham um papel fundamental, pois determinam a estabilidade do fluxo de gradientes ao
longo das camadas. Em outras palavras, a escolha da fungdo de ativacdo nao impacta apenas
a ndo-linearidade introduzida na propagacgdo direta, mas também influencia se o gradiente sera
preservado, reduzido (vanishing gradient) ou amplificado (exploding gradient).

Por exemplo, a funcdo ReLLU, definida como

17



¢(r) = max(0, x), (3.18)

apresenta derivada

0, =<0,
¢ (z) = (3.19)
1, z=>0.

Isso significa que, para entradas negativas, a derivada é nula e o neurdnio deixa de ser
atualizado, fendmeno conhecido como dead neuron. Embora a ReLU tenha impulsionado o
treinamento de redes profundas pela sua simplicidade e eficiéncia computacional, esse compor-
tamento pode comprometer o aprendizado quando muitos neurdnios mantém-se permanente-
mente inativos.

Em contraste, fun¢des mais recentes como a Swish e a Mish apresentam derivadas suaves e

nao-nulas em uma faixa mais ampla. A fungdo Swish € definida por

1
=z d = — 3.20
$la) =+ o(x), ondealz) = T (320
cuja derivada pode ser expressa como
d(x) =0(z)+x- o(x) (1—o0(x)). (3.21)
J4 a funcdo Mish é dada por
¢(z) = x - tanh(In(1 + %)), (3.22)

com uma derivada mais complexa, mas caracterizada pela suavidade continua em todo o domi-
nio real e auséncia de regides totalmente planas.

Essas propriedades tornam Swish [26] e Mish [27] menos suscetiveis ao problema do des-
vanecimento do gradiente, garantindo uma propagacao de erro mais estdvel. Isso favorece tanto
a convergéncia durante o treinamento quanto a capacidade de generalizacao da rede, especial-
mente em cendrios de grande profundidade ou alta variabilidade dos dados.

Portanto, a andlise de ¢'(x) ndo deve ser vista como mera formalidade matematica, mas
como uma ferramenta essencial para compreender os efeitos de cada func¢do de ativacdo no
processo de otimizagdo [23,28]. Em sintese, fun¢des com derivadas suaves e ndao-nulas em
faixas mais amplas do dominio contribuem para redes mais robustas e de treinamento mais

eficiente.
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3.4 Regularizacao

A regularizagdo desempenha um papel crucial no treinamento de redes neurais, atuando
como um conjunto de técnicas destinadas a mitigar o overfitting, ou seja, a tendéncia do modelo
em memorizar excessivamente os dados de treinamento e perder capacidade de generalizagdo.
Para lidar com esse desafio, diversas estratégias foram aplicadas nesta pesquisa, combinando

abordagens cléssicas e avancgadas.

3.4.1 L2 Weight Decay

O weight decay (ou regularizacdo L2) consiste em adicionar um termo de penalizacio pro-
porcional a norma dos pesos a funcio de perda. Formalmente, o termo %H 0]|* é somado ao custo
original, resultando em uma atualizacdo dos parametros que favorece pesos de menor magni-
tude [23,29]. Essa técnica contribui para reduzir a complexidade do modelo, evitando solucdes

instdveis e garantindo maior robustez frente a variagdes nos dados.

3.4.2 Dropout e Alpha-Dropout

O Dropout é uma técnica probabilistica que desativa aleatoriamente neurdnios durante o
treinamento com probabilidade p, promovendo o aprendizado de representagdes redundantes e
reduzindo a coadaptagdo entre unidades. Em termos préaticos, equivale a treinar um ensemble
de sub-redes menores, isto é, um conjunto de modelos parciais que compartilham pesos e cuja
combinacao efetiva resulta em maior capacidade de generalizagcao [23].

No caso especifico da fungdo de ativagdo SELU, empregou-se o Alpha-Dropout, uma va-
riante projetada para preservar as propriedades de auto-normalizag¢do da rede [25]. Diferente-
mente do Dropout tradicional, o Alpha-Dropout ajusta as ativacoes desligadas de forma a man-
ter a média e variancia inalteradas, assegurando que o fluxo de informacdo permaneca estavel

mesmo em arquiteturas profundas.

3.4.3 Early Stopping

Outra medida utilizada foi o early stopping, em que o processo de treinamento € interrom-
pido quando o desempenho no conjunto de validagdo deixa de apresentar melhorias significati-
vas. Essa técnica evita que o modelo continue ajustando-se a flutuacdes aleatdrias do conjunto

de treino, reduzindo a chance de sobreajuste e economizando recursos computacionais.

3.5 Otimizadores: teoria, pratica e analise matematica

O processo de otimizacdo em redes neurais visa minimizar a fun¢do de custo ajustando os

parametros 6 (pesos e vieses) da rede por meio de métodos iterativos baseados em gradientes.
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Diferentes otimizadores variam na forma como calculam e aplicam essas atualizagdes, influen-
ciando diretamente a convergéncia, estabilidade e velocidade do treinamento. Nesta secao sdo
discutidos os principais otimizadores empregados neste trabalho, juntamente com suas formu-

lagdes matematicas e propriedades.

3.5.1 Stochastic Gradient Descent (SGD) e Momentum

O Stochastic Gradient Descent (SGD) é o método mais simples de otimizagcdo, onde os

parametros sdo atualizados a partir do gradiente estimado em um mini-batch de dados:
0r = 0i1 — 13, (3.23)

onde 7 € a taxa de aprendizado e g; é o gradiente estocdstico no passo .
Para melhorar o comportamento do SGD, especialmente em superficies irregulares, utiliza-

se o conceito de momentum, que acumula gradientes passados e suaviza oscilacoes:
my = pmy_y +nVeL(0i—1), O = 01 — iy, (3.24)

onde p € [0, 1) é o coeficiente de momentum.
O momentum atua como um filtro exponencial que acelera a descida em dire¢des persistentes
e reduz o ruido estocdstico [23,30]. Isso € particularmente util em regides com vales estreitos

ou platds, comuns em func¢des de custo de alta dimensionalidade.

3.5.2 Adaptive Moment Estimation (Adam)

O Adam combina os beneficios do momentum com a adaptacao da taxa de aprendizado para

cada parametro. Ele calcula médias méveis de primeira e segunda ordem do gradiente:

gt = VoL (0,_1), (3.25)
my = fimy—1 + (1 — B1)ge, (3.26)
v = Bavi—1 + (1= o)y, (3.27)

onde (3, e 55 controlam os decaimentos exponenciais.

Como essas estimativas sdo enviesadas no inicio, aplica-se correcdo:

my
— =
I 1

~

my

(3.28)

A atualizacgao final é dada por:

(3.29)

20



onde € é um termo de estabilidade numérica (tipicamente 10~%).

O Adam ¢ adaptativo por pardmetro, ou seja, cada peso possui sua propria taxa de aprendi-
zado ajustada pela variancia do gradiente [23,31]. Essa caracteristica torna o método robusto
em problemas com gradientes esparsos ou heterogéneos. Os parametros recomendados na lite-
ratura sdo 5 = 0.9, B, = 0.999 e € = 1075,

3.5.3 Adamax

O Adamax é uma variante do Adam baseada na norma infinito (¢,), substituindo a média

quadratica dos gradientes pelo maximo mével:

U = max(ﬁgut_l, |gt|)7 975 = gt—l — uﬁmt. (330)
t

Intuicdo: ao usar a norma infinita, 0 Adamax torna-se mais estdvel em situagdes com gra-
dientes esparsos ou picos abruptos [31]. Embora menos popular que o Adam, pode oferecer

robustez extra em cendrios especificos.

3.5.4 Sintese Comparativa

Em resumo:

* O SGD com momentum é simples e eficiente, mas requer ajuste cuidadoso da taxa de

aprendizado.

* O Adam oferece maior robustez e adaptacdo automadtica de taxas, sendo amplamente

utilizado em CNNs modernas.

* O Adamax representa uma alternativa robusta em casos de gradientes extremos ou espar-

sidade.

A escolha do otimizador impacta diretamente a convergéncia do modelo. Neste trabalho,
a selecdo foi realizada de forma automadtica pelo Algoritmo Genético, permitindo explorar a

adequacdo de cada método ao problema de deteccdo de intrusoes.

3.6 Funcoes de Custo (Loss) e sua Interpretacao

As funcdes de custo, também chamadas de fun¢des de perda, sdao fundamentais no apren-
dizado supervisionado, pois quantificam o erro do modelo em relagdo aos dados observados.
O processo de treinamento busca minimiza-las para ajustar os parametros da rede e melhorar a

capacidade preditiva.
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3.6.1 Binary Crossentropy (Entropia Cruzada Binaria)

Indicada para problemas de classifica¢do bindria, em que o rétulo verdadeiro é y € {0,1} e
a predi¢do do modelo é y € (0, 1) (probabilidade estimada da classe positiva) [23,32].
A fungdo de perda por amostra é dada por:

L(g,y) = —[ylog(y) + (1 —y)log(1 — )] (3.31)

Equivale a log-loss para uma distribuicdo Bernoulli, medindo a discrepancia entre a dis-

tribuicdo verdadeira (rétulo) e a predita.

* Minimizar essa fungdo é equivalente a maximizar a verossimilhan¢a do modelo sob a
hipétese de dados Bernoulli independentes.

Penaliza fortemente predi¢des confidentes e erradas (por exemplo, y — 1 quando y = 0).

* E convexa em relagdo a ¢, o que facilita otimizagdo.

3.6.2 Poisson Loss

Indicada para problemas de regressdo envolvendo contagens, onde o valor observado y é um
ndmero inteiro nao negativo modelado como uma varidvel de Poisson com parametro A (média
e variancia iguais) [32].

A funcdo de perda por amostra é dada por:

~

L y) =\ —ylog(\) + log(y)). (3.32)

Na pritica, o termo log(y!) ndo depende de de pode ser ignorado durante a otimizagao.
Interpretacio:

* Representa a negativa da log-verossimilhanga sob o modelo Poisson.
* Penaliza erros na predi¢@o da taxa A, incentivando que ela se aproxime do valor real y.
* Adequada para dados de contagem com variancia proporcional a média.

Dado um vetor de probabilidades alvo P = (P(1),..., P(k)) e uma predi¢do @) = (Q(1),

.., Q(k)), ambas distribui¢des discretas sobre k classes, a Divergéncia de Kullback-Leibler
(KL) é definida como [33]:

k

Dra(PIQ) = Y Pli)oe g1

(3.33)

* Mede a dissimilaridade ou “distancia” (nfo simétrica) entre as distribui¢cdes P (verda-
deira) e () (predita).
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* E sempre ndo negativa e igual a zero somente se P = () ponto a ponto.

+ E amplamente utilizada em aprendizado probabilistico para alinhar a distribuicdo predita

do modelo com a distribuicdo alvo.

* Em classificadores com multiplas classes, pode ser vista como uma generalizacdo da

entropia cruzada.

Em sintese, a escolha da funcdo de custo deve considerar o tipo de problema e a natureza dos
dados, de modo que a otimizagdo corresponda a maximizar a verossimilhanga (ou minimizar a

discrepancia) entre o modelo e a realidade.

3.6.3 Matriz de Confusao

A matriz de confusdo sintetiza o desempenho do classificador, conforme Tabela 3.2:

Tabela 3.2: Matriz de confusdo para classificagdo bindria

Previsto Positivo Previsto Negativo

Verdadeiro Positivo TP FN
Verdadeiro Negativo FP TN

Exemplo: em IDS, um FP pode ser um falso alarme (trafego legitimo classificado como

ataque), enquanto um FN é um ataque ndo detectado, geralmente mais critico.

3.7 Pré-processamento e Representaciao dos Atributos

3.7.1 Normalizacio

A normalizacdo € uma etapa essencial no pré-processamento de dados para redes neurais,
pois garante que os atributos de entrada estejam em escalas compativeis. Sem esse ajuste,
varidveis com magnitudes muito distintas podem dominar o processo de otimizacao, resultando
em convergéncia lenta ou em solu¢des subdtimas [23].

Duas técnicas usuais sdo amplamente empregadas. A primeira € a padronizacgdo (z-score),
que transforma cada atributo para ter média zero e desvio padrdo unitario. Essa abordagem ¢é
indicada quando os dados apresentam distribui¢do aproximadamente gaussiana. A segunda € a
normalizagdo min—max, que reescala os atributos para um intervalo definido, tipicamente [0, 1]
ou [—1,1]. Essa técnica é recomendada quando se deseja preservar as relagdes proporcionais
entre valores e quando os atributos possuem limites conhecidos.

A escolha entre padronizacdo e min—max depende da natureza do conjunto de dados e do

comportamento esperado das funcdes de ativacdo utilizadas na rede. Em ambos os casos, o
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objetivo central é melhorar a estabilidade numérica, acelerar a convergéncia e favorecer um

treinamento mais robusto.

3.7.2 Mapeamento para entrada 2D (4 x 5) da CNN

Neste trabalho, vetores com 20 atributos foram reestruturados para a matriz 4 x 5 x 1.

Observagdes importantes:

* Ordem dos atributos: proximidade semantica entre features adjacentes na matriz pode

melhorar detec¢do por convolugdes (preservar correlacdes locais).
* Normalizacao por atributo: evita dominancia de features com escala maior.

* Justificativa tedrica: operacdes locais de convolugdo exploram correlagdes entre atri-
butos préximos na grade — uma representacao similar a imagens tem sido adotada em
trabalhos recentes de IDS via CNN [34, 35].

3.8 Integracao com Algoritmos Genéticos

A integracdo de AGs com CNNs tem sido explorada na literatura como uma estratégia de
busca e otimizacdo de arquiteturas. Em geral, os AGs sdo aplicados tanto na selecdo de atribu-
tos mais relevantes para classificacdo quanto no ajuste automatico de hiperparametros das redes
neurais. Trabalhos recentes apontam que essa combinagdo € promissora, pois alia a capacidade
exploratdria dos AGs a expressividade das CNNs, resultando em modelos mais eficientes e ro-
bustos. Essa abordagem visa reduzir a dimensionalidade, evitar sobreajuste e, simultaneamente,

encontrar combinagdes de configuracdo que maximizem a acurdcia e minimizem a laténcia.

3.8.1 Representacao cromossomica

Dois tipos de cromossomos foram definidos de acordo com o objetivo da otimizagao:

1. Selecao de atributos: cada cromossomo possui 20 genes, cada um representando o indice
de um atributo do conjunto original de 78 varidveis. O espaco de busca associado a essa
tarefa é da ordem de (;g), 0 que torna invidvel a exploracdo exaustiva e justifica o uso de

heuristicas evolutivas.

2. Hiperparametros da CNN: o cromossomo codifica multiplos aspectos da arquitetura
e do treinamento, incluindo: quatro genes correspondentes as fungdes de ativacdo, trés
genes para o ndmero de nés em camadas densas, um gene para o otimizador € um gene

para a func¢ao de perda.
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3.8.2 Operadores genéticos

O processo evolutivo emprega operadores classicos adaptados ao problema:

* Selecao: método da roleta proporcional ao firness, favorecendo individuos de maior de-

sempenho sem eliminar a diversidade.

* Cruzamento: operador de Radcliff (semelhante a blend crossover), aplicado a genes

continuos. Formalmente:

filho; = Bpy + (1 — B)pe, filhoy = (1 — B)p1 + B2, (3.34)

com 3 € [0, 1], onde p; e py sdo os pais.

* Mutacao: perturbacdo aleatdria de genes com probabilidade p,,, permitindo explorar

regides nao visitadas do espago de busca.

* Elitismo: preservacdo do melhor individuo a cada geracdo, garantindo que a qualidade

da populacdo ndo decresga.

3.8.3 Funcao de aptidao

A aptiddo de cada individuo € avaliada por meio das métricas de desempenho (acuricia ou
F1 ponderado) obtidas apds o treinamento da CNN correspondente. Além disso, o tempo de
treinamento pode ser incorporado como critério adicional, permitindo balancear a busca entre

precisdo e custo computacional.

3.9 Integracao de AGs com CNNs na Deteccao de Intrusoes

Diversos trabalhos recentes tém investigado a utiliza¢do conjunta de AGs e CNNs no con-
texto da seguranga em redes. Os AGs atuam como mecanismos de busca e otimizac¢ao, enquanto
as CNNs oferecem elevado poder de representagdo para a andlise de trafego. Essa integragao
pode ocorrer em dois niveis principais: (i) selecdo de atributos mais relevantes para reduzir a
dimensionalidade do problema; e (ii) ajuste automatico de hiperparametros da CNN, evitando
a dependéncia de configuracdo manual.

Shieh et al. [36], por exemplo, aplicaram técnicas de otimizagdo evolutiva em conjunto com
redes recorrentes € CNNs para melhorar a detec¢dao de ataques DDoS. Thirimanne et al. [37]
utilizaram um esquema hibrido de busca de hiperparametros aliado a arquiteturas profundas.
Outros autores, como Nguyen et al. [38], compararam diferentes estratégias de integracdo entre
AGs e redes neurais, evidenciando ganhos de desempenho ao incorporar mecanismos evolutivos

no processo de modelagem.

25



A anélise desses trabalhos evidencia que a combinagdo AG—CNN tem se mostrado pro-
missora, mas ainda carece de maior exploracdo no contexto de IDS com bases modernas e de

grande escala, como o CIC-IDS2018, justificando a proposta desta dissertagao.

3.10 Complexidade computacional

O custo computacional da abordagem € diretamente proporcional ao nimero de individuos,
épocas de treinamento e custo de cada passagem forward/backpropagation. Para um modelo
com W parametros e um conjunto com ) amostras, o custo por época é aproximadamente

O(M - W). Assim, o custo total da evolugdo pode ser expresso como:
CO(N-G-Eyg-M-W), (3.35)

em que N € o numero de individuos, G o nimero de geragdes e I, ,, a média de épocas de

treinamento por individuo.

3.11 Estratégias de aceleracao

Devido ao elevado custo de avaliar centenas de individuos ao longo de varias geragdes,

algumas estratégias foram consideradas para reduzir a complexidade pratica da abordagem:

* Pruning: eliminacdo antecipada de individuos com baixo desempenho nas primeiras épo-

cas de treino;

* Warm-start: reaproveitamento de pesos ja ajustados para inicializar individuos genetica-

mente similares;

* Avaliacido parcial: limitacdo do nimero de épocas em geracdes iniciais para triagem

preliminar, destinando maior orcamento de treino apenas a individuos promissores.

A integracdo de AGs com CNNs permite explorar um espaco de busca extremamente vasto
— tanto na escolha de atributos quanto na configuragdo arquitetural da rede — de forma heuris-
tica e adaptativa. Embora apresente custo computacional elevado, as estratégias de aceleragao
adotadas tornam a abordagem vidvel e eficaz. Esse modelo hibrido combina a capacidade explo-
ratoria dos AGs com o poder representacional das CNNs, configurando-se como uma solugdo
robusta para detecc@o de intrusdes em cendrios de alta dimensionalidade e exigéncia de baixa

laténcia.
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3.12 Ambiente de Desenvolvimento e Ferramentas Compu-

tacionais

O desenvolvimento desta pesquisa foi sustentado por um conjunto de linguagens e bibli-
otecas consolidadas no ecossistema cientifico e de aprendizado de maquina. A escolha das
ferramentas ndo se restringe a conveniéncia de uso, mas reflete critérios de robustez, reprodu-
tibilidade, suporte comunitdrio e alinhamento com o estado da arte em detec¢do de intrusdes

baseada em aprendizado profundo. A seguir sdo detalhados os principais elementos utilizados.

3.12.1 Linguagem Python

A linguagem Python tornou-se padrdo de fato em projetos de ciéncia de dados e aprendi-

zado de mdquina. Entre suas principais caracteristicas destacam-se:

* Alto nivel de abstracao: permite a implementacdo de conceitos complexos com codigo

conciso e legivel.

* Amplo ecossistema cientifico: bibliotecas como NumPy, Pandas, SciPyeMatplot—
1ib oferecem suporte nativo a manipulagdo de matrizes, analise estatistica, processa-

mento numérico e visualizacdo de dados.

* Integracdao com frameworks de aprendizado profundo: Python serve como inter-
face de alto nivel para bibliotecas otimizadas em C/C++ e CUDA, viabilizando tanto

prototipagem rdpida quanto execugdo eficiente.

Essa combinacdo de simplicidade e poder computacional justifica sua ado¢do em sistemas
de IDS baseados em aprendizado de maquina, onde clareza de c6digo e confiabilidade cientifica

sdo igualmente criticas.

3.12.2 NumPy e o nidcleo computacional

A biblioteca NumPy € o nicleo matematico de Python para computagao cientifica. Oferece
estruturas de dados vetoriais e matriciais altamente otimizadas, além de operacdes lineares e

transformadas rapidas. Sua importancia neste trabalho estd em:

* Representacao eficiente dos dados: os fluxos de rede, reduzidos a vetores de 20 atri-
butos, sdo tratados como matrizes multidimensionais (ndarray), permitindo operacdes

vetorizadas.

* Velocidade e otimizacdo: muitas rotinas da biblioteca sdo implementadas em C, garan-

tindo desempenho préximo ao de linguagens compiladas.

* Base para frameworks superiores: tanto TensorFlow quanto Keras utilizam con-

ceitos e estruturas do NumPy, refor¢cando seu papel central.
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3.12.3 TensorFlow

O TensorFlow é uma das bibliotecas mais difundidas para aprendizado profundo, desen-

volvida originalmente pelo Google. Destaca-se por:

* Modelo de grafos computacionais: representacdes de fluxos de dados (tensors) sao

descritas em grafos, permitindo otimizacdes e paralelizacdo em multiplos dispositivos.

* Suporte multiplataforma: execucdo em CPUs, GPUs e TPUs sem alteracao significativa

no codigo-fonte.

* Escalabilidade: adequado tanto para experimentos locais quanto para treinamento dis-

tribuido em clusters.

* Ferramentas de producao: integracao com TensorFlow Serving e TensorFlow Lite per-

mite migrar modelos do ambiente de pesquisa para aplicacdes reais e de borda.

No contexto desta dissertacdo, o TensorF low foi utilizado como motor subjacente para trei-
nar as redes convolucionais otimizadas pelos algoritmos genéticos, oferecendo infraestrutura

confidvel e reproduzivel para experimentacgao.

3.12.4 Keras como interface de alto nivel

Acima do nicleo TensorFlow, a biblioteca Keras fornece uma API de alto nivel que
simplifica a criagc@o e o treinamento de modelos de aprendizado profundo. Sua adoc¢do neste

trabalho € justificada por:

* Simplicidade e modularidade: constru¢do de modelos por meio de camadas sequenciais

ou funcionais, mantendo legibilidade.

* Produtividade: prototipagem rdpida de arquiteturas complexas, aspecto fundamental em

experimentos com otimizagdo via AGs.

* Integracao nativa com TensorFlow: aproveita toda a infraestrutura de execugdo e oti-

mizag¢do ja descrita, sem comprometer desempenho.
Com isso, a implementac¢do do modelo AG-CNN pode ser conduzida de forma clara, reduzindo

a complexidade de codificacdo e aumentando a confiabilidade.

3.12.5 Sintese das escolhas

O conjunto Python + NumPy + TensorFlow + Keras configura um ecossistema
maduro, com equilibrio entre acessibilidade para o pesquisador e eficiéncia na execu¢do. Em

trabalhos de detec¢do de intrusdes, esse equilibrio € determinante, pois possibilita:
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1. Analisar e pré-processar fluxos massivos de dados em memoria.
2. Implementar arquiteturas de redes profundas de forma rdpida e iterativa.
3. Garantir portabilidade entre ambiente experimental e aplica¢des praticas em tempo real.

Assim, a escolha dessas ferramentas sustenta ndo apenas a viabilidade técnica dos experimentos
realizados, mas também a sua relevancia pratica para futuros sistemas de seguranca baseados

em aprendizado profundo.

3.13 Consideracoes Finais

Neste capitulo foram apresentados os principais fundamentos tedricos que embasam a pes-
quisa, com destaque para os conceitos essenciais de CNNs e AGs. Foram também discutidas as
técnicas de otimizagdo que exploram a integracdo entre AGs e CNNs no contexto da detec¢ao
de intrusdes.

A revisdo realizada permite compreender tanto as potencialidades quanto as limita¢des das
abordagens existentes, fornecendo o embasamento necessario para a formulacdo da proposta
desta dissertacdo. Assim, o préximo capitulo dedica-se a descri¢do detalhada da metodologia
desenvolvida, na qual a integracdo entre AGs e CNNs ¢é aplicada a sele¢do de atributos e a
otimizacdo de hiperparametros, visando maximizar o desempenho e a eficiéncia do modelo

proposto.
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Capitulo 4
Metodologia

Este capitulo apresenta a metodologia desenvolvida para a deteccao de intrusdes em redes de
computadores, integrando AGs e CNNs de arquitetura enxuta. O propodsito central desta abor-
dagem € explorar simultaneamente a selecdo de atributos e a otimizacdo de hiperpardmetros,
permitindo que o processo de treinamento alcance um ponto de equilibrio entre desempenho
preditivo e eficiéncia computacional.

A proposta ¢é estruturada de maneira modular, permitindo que cada etapa seja analisada,
ajustada ou substituida de forma independente, sem comprometer a coesdo do pipeline. Essa
caracteristica garante adaptabilidade a diferentes conjuntos de dados e contextos de aplicagdo,
preservando o nucleo inovador: a integracdo sinérgica entre a busca heuristica global do AG e

a capacidade de extracdo hierarquica de padroes da CNN.

4.1 Visao Geral do Pipeline

A Figura 4.1 apresenta a estrutura geral do pipeline metodolégico, organizada em seis etapas
principais. Esta representagdo grafica serve como guia conceitual para o leitor, fornecendo uma
visdo macro do fluxo de trabalho desde a obten¢do dos dados até a implantacao do modelo final.

A Figura 4.1 sintetiza a totalidade do processo metodolégico em um encadeamento linear
e 16gico de etapas. No bloco inicial, “Aquisi¢do e filtragem do conjunto CIC-IDS2018”, vi-
sualizado no topo, encontra-se a base estrutural de todo o pipeline. A escolha de posiciona-lo
isoladamente, com espaco superior livre, refor¢a a no¢dao de ponto de partida. Representado
por um retangulo arredondado em azul claro, este elemento nao apenas simboliza o inicio do
processo, mas também transmite a importancia da integridade e representatividade do conjunto
de dados para o desempenho final. A cor foi escolhida visando alto contraste, inclusive em
impressoes em escala de cinza, assegurando legibilidade.

A seta que liga este bloco ao segundo, “Pré-processamento e normaliza¢do de atributos”,
indica relacdo de dependéncia direta e ininterrupta: o pré-processamento nao ocorre de forma

independente, mas como consequéncia imediata da coleta e filtragem dos dados. Esta deci-
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[Aquisigﬁo e filtragem do conjunto CIC—IDSZOl8}

[Pré—processamento e normalizacdo de atributos}

[Selegﬁo de atributos e ajuste de hiperparametros via AG}

[Treinamento supervisionado da CNN com early stopping}

[Avaliagﬁo e andlise de métricas de desempenho}

[Implantagéo e valida¢do final em ambiente de produgﬁo}

Figura 4.1: Fluxo geral da metodologia proposta.

sdo visual € intencional, pois reflete a estrutura real de dependéncias no pipeline, em que as
transformacdes aplicadas nesta etapa — como remocao de atributos redundantes, tratamento de
valores ausentes e escalonamento de varidveis — somente podem ser executadas apos a defini-
cdo exata dos dados disponiveis. Essa escolha metodoldgica esta respaldada por recomendagdes
de LeCun et al. [39], que evidenciam que redes neurais treinam de forma mais estavel quando
alimentadas por entradas normalizadas.

O terceiro bloco, “Selecdo de atributos e ajuste de hiperparametros via AG”, representa o
nucleo inovador da proposta. Sua conexdo com o pré-processamento € direta, pois as varidveis
de entrada definidas nesta fase determinam o espaco de busca sobre o qual o AG atuard. Em-
bora o fluxograma apresente a relagdo de forma linear, hd uma interagcdo implicita e ciclica: o
desempenho obtido pela CNN em geragdes anteriores influencia a evolu¢iao da populagcdo no
AG, retroalimentando a escolha de atributos e parametros. Essa retroalimentacdo foi omitida
no diagrama para evitar sobrecarga visual, mas sua presenca conceitual é fundamental.

A quarta etapa, “Treinamento supervisionado da CNN com early stopping”, indica que
o modelo resultante da etapa anterior serd treinado de forma supervisionada, com monitora-
mento do erro no conjunto de validacao. Caso nio haja melhora apés um nimero pré-definido
de épocas, o treinamento € interrompido automaticamente, evitando sobreajuste e desperdicio
computacional. O uso do critério de parada antecipada visa evitar sobreajuste e reduzir tempo

computacional, mantendo a capacidade de generalizacio — abordagem recomendada por Go-
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odfellow et al. [23].

Em seguida, o bloco “Avaliacdo e andlise de métricas de desempenho” representa a fase
de validac@o, na qual o modelo é examinado sob multiplos indicadores: acuricia, precisao,
revocacgao, F'1-score e laténcia de inferéncia. A presenca da laténcia como métrica-chave reforca
0 compromisso com aplicagdes em tempo real.

Por fim, “Implantacdo e validacdo final em ambiente de produ¢do” encerra o pipeline, evi-
denciando que o objetivo € disponibilizar um sistema operacional e ndo apenas um protétipo
académico. A conexao direta com a etapa anterior ressalta que apenas modelos aprovados na

fase de avaliacdo serdo considerados para uso pratico.

4.2 Base de Dados

4.2.1 Descricao e justificativa da escolha

O conjunto de dados CIC-IDS2018 [17] foi adotado como fonte primdria de informagdes
por sua ampla aceitagdo na comunidade cientifica e por representar, de forma realista, trafego de
rede contendo intera¢des benignas e maliciosas. Trata-se de um benchmark consolidado para
a avaliacdo de IDS, abrangendo uma variedade de cendrios de ataque, incluindo, mas nao se
limitando a, ataques de negacdo de servigo distribuida DDoS, ataques de forga bruta, Botnets,
Infiltration e Web Attacks.

Cada instancia do conjunto € derivada da captura de pacotes em nivel de rede, sendo pos-
teriormente processada pela ferramenta CICFlowMeter, que extrai e organiza 78 atributos re-
presentativos de cada fluxo de comunicacao. Estes atributos incluem informacgdes estatisticas
sobre contagem de pacotes, tempos de interchegada, tamanhos médios e variancia de pacotes,
assim como indicadores bindrios de flags TCP, todos altamente relevantes para a identificacdo

de padrdes associados a trafego malicioso.

4.2.2 Filtragem e amostragem

Considerando que o presente estudo propde a execucdo de um Algoritmo Genético inte-
grado ao treinamento de CNNs, seria invidvel processar a totalidade do CIC-IDS2018 em
todas as geracdes do AG devido ao custo computacional elevado. Para viabilizar os experi-
mentos, optou-se pela aplicacdo de uma amostragem estratificada, mantendo-se a propor¢ao
original entre classes e garantindo representatividade estatistica. Essa estratégia permitiu pre-
servar a diversidade de padrdes, assegurando que tanto classes majoritdrias quanto minoritdrias
fossem contempladas. O banco de dados apds a redugdo realizada pode ser visualizado em
https://drive.google.com/drive/folders/1JONfnqYcnL9CHjL6TGk24zevpPL8 Angj?usp=drive_link.

A selecao dos ataques Denial of Service (DoS) presentes nesta pesquisa foi baseada na sua

alta frequéncia e relevancia no trafego malicioso da base CIC-IDS2018. Esses ataques repre-
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sentam diferentes estratégias de negacdo de servico e sdo amplamente utilizados em cendrios
reais, o que justifica sua inclusdo no conjunto de dados final. Além disso, optou-se por man-
ter a propor¢do original entre as classes apods a filtragem, de forma a preservar a distribui¢ao

estatistica observada no conjunto original.

Tabela 4.1: Distribuicdo das classes apds subamostragem estratificada (reducao de 98% por
classe).

Classe Registros Proporcao (%)
Trafego normal  28.696 68,7
Ataques (DoS) 13.086 31,3
Total 41.782 100

A Tabela 4.1 sintetiza a composi¢ao final do conjunto de dados apds a aplicacdo da suba-
mostragem estratificada. Observa-se que a classe “Trafego normal” é predominante, correspon-
dendo a 68,7% do total de instancias. Essa predominancia € consistente com o comportamento
tipico de redes reais, nas quais eventos maliciosos sdo relativamente raros em comparagao ao
volume de trafego benigno. A manutenc¢do dessa proporcao, em vez de um balanceamento artifi-
cial completo, foi intencional para preservar a caracteristica estatistica do ambiente monitorado,
alinhando-se as recomendacdes presentes na literatura sobre avaliagao de IDS.

A classe “Ataques (DoS)”, por sua vez, retine 13.086 instancias, representando 31,3% do
conjunto final. Ainda que, na fase de pré-processamento, os quatro tipos especificos de ata-
ques DoS (Slowloris, GoldenEye, SlowHTTPTest e Hulk) tenham sido considerados de forma
equilibrada, para fins de andlise e treinamento eles foram consolidados em uma tdnica classe de
ataque. Essa decisdo permite que o modelo aprenda a distinguir de forma geral entre trafego
benigno e trafego malicioso, sem restringir-se a um padrdo isolado de ataque. Além disso, tal
configuragdo facilita a exploragdo de combinagdes de atributos pelo AG, incentivando a identi-
ficac@o de caracteristicas discriminativas que sejam robustas a diferentes variacdes de DoS.

A linha final da tabela consolida o numero total de instancias (41.782), evidenciando que
a reducdo aplicada foi significativa sem comprometer a diversidade dos padrdes representa-
dos. No presente trabalho, adotou-se uma subamostragem estratificada por classe, removendo
aproximadamente 98% dos registros de cada uma das classes consideradas (trafego benigno
e ataques DoS), preservando assim as proporc¢des originais. Essa estratégia foi definida para
equilibrar dois fatores criticos: viabilizar o processamento em muiltiplas geracdes do AG e, si-
multaneamente, manter a complexidade intrinseca do problema. A decisdo metodoldgica de
operar nesse volume decorre de andlises prévias de custo computacional, que indicaram ser
este o patamar adequado para treinar multiplas CNNs dentro de um tempo total de execugao

aceitavel.
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4.3 Pré-processamento

O pré-processamento dos dados foi estruturado para reduzir ruidos, padronizar escalas e
garantir compatibilidade com a arquitetura da CNN. Este estdgio é fundamental para aumentar
a eficiéncia do treinamento e melhorar a capacidade de generalizacdo do modelo. As operacdes

realizadas podem ser divididas em quatro etapas principais:

a) Tratamento de valores invalidos: remog¢do de valores (NaN) ou infinitos, prevenindo

erros durante o treinamento.

b) Normaliza¢io min-max: ajuste dos valores para o intervalo [0, 1] segundo:

g = L Twin 4.1)

Lmax — Lmin

Essa transformacgdo evita que varidveis com escalas maiores dominem o processo de

aprendizado.

¢) Reorganizacgio para formato tensorial: conversdo das amostras para a dimensao (4, 5, 1),

compativel com a entrada da CNN proposta.

A Tabela 4.2 ilustra o efeito da normalizacdo min—max em trés atributos selecionados.

Tabela 4.2: Exemplo de normaliza¢do min—max para atributos selecionados.

Atributo Tmin Tmax & (exemplo) x
Fwd Pkts/s 0 100 50 0,50
Bwd Header Len O 200 50 0,25
ACK Flag Cnt 0 10 5 0,50

Na segunda e na terceira colunas da Tabela 4.2 apresentam-se, respectivamente, os valores
minimos (Zp,;,) € Maximos (T,.x) observados para cada atributo. A quarta coluna registra o
valor bruto z utilizado como exemplo em cada linha. Por fim, a quinta coluna mostra o valor

normalizado 2/, calculado pela transformacdo da Eq. (4.1). Aplicando a férmula: para Fwd

Pkts/s, com x = 50, obtém-se ' = 15000100 = 0,50; para Bwd Header Len, com x = 50,
tem-se 2/ = 20=0 = 0,25; e, para ACK Flag Cnt, adota-se um valor factivel 2 = 5 (dado
Tmax = 10), resultando em 2’ = % = 0,50. Se z estiver fora do intervalo [Z iy, Tmax], 0 Valor

normalizado poderd sair do intervalo [0, 1]. Em pipelines praticos, é comum aplicar clipping
para limitar 2’ € [0, 1] quando necessdrio.

Essa comparacio evidencia como varidveis com escalas distintas podem ser colocadas em
um mesmo intervalo, garantindo que nenhuma tenha influéncia desproporcional no calculo dos

gradientes durante o treinamento. Tal uniformizacdo € particularmente importante quando se
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trabalha com CNNs, uma vez que camadas convolucionais tendem a ser sensiveis a magnitude
das entradas, podendo apresentar convergéncia mais lenta ou instdvel quando alimentadas com
dados nao normalizados. Além disso, o ajuste prévio das escalas auxilia o AG na avaliagdo justa
do fitness dos individuos, pois garante que alteragdes em atributos com escalas originalmente

maiores ndo dominem as métricas de desempenho.

4.4 Fluxograma do Algoritmo Genético

O AG € o nticleo da metodologia, responsavel pela busca simultanea do subconjunto 6timo
de atributos e da configuracdo de hiperparametros mais adequada para a CNN. A Figura 4.2
apresenta o fluxo interno do AG, estruturado em etapas sequenciais que refletem a légica evo-
lutiva do processo.

EIm’cio: Geracao da populagdo inicial (atributos + hiperparémetros)}

EAvaliar individuos: treinar CNN e calcular ﬁtness}

[Selecionar individuos mais aptos (selecao elitista)]

LAplicar operadores de crossover e mutagﬁo}

E Formar nova populagdo J
[ Critério de parada atingido? } Nao
Sim

EFim: Retornar melhor solucao encontrada]

Figura 4.2: Fluxograma do Algoritmo Genético para sele¢do de atributos e ajuste de hiperpara-
metros.

A Figura 4.2 descreve a dinamica interna do AG, cujo papel € guiar a busca por configura-
coes que maximizem o desempenho da CNN, explorando um espaco de solucdes caracterizado
por alta dimensionalidade e ndo linearidade. No primeiro bloco, “Inicio: Geragao da popu-
lagdo inicial (atributos + hiperparametros)”, € realizada a criacdo de um conjunto inicial de
individuos, cada um representando uma solu¢do candidata. Um individuo € codificado por um
cromossomo que combina dois segmentos distintos: o primeiro, um vetor bindrio que indica a

presenca ou auséncia de cada atributo; o segundo, um vetor de valores discretos ou continuos
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que especifica os hiperparametros da CNN, tais como funcdo de ativacdo, nimero de filtros e
taxa de aprendizado. Essa codificacdo mista (bindria + paramétrica) garante que a evolugdo
considere, simultaneamente, a sele¢ao de varidveis e a configuracdo do modelo.

A seta que conecta o primeiro bloco ao segundo, “Avaliar individuos: treinar CNN e calcular
fitness”, representa a transi¢ao da representacdo abstrata da solucdo para sua avaliacio pratica.
Nesta etapa, cada individuo tem sua CNN construida de acordo com os genes correspondentes e
¢ treinada em um subconjunto de dados de treino, validada posteriormente em dados separados.
O fitness € calculado com base em uma fun¢do multicritério que pondera acuricia e laténcia de
inferéncia, refletindo a necessidade de equilibrar desempenho e eficiéncia operacional.

O terceiro bloco, “Selecionar individuos mais aptos (selecao elitista)”’, implementa a pressao
seletiva essencial para a evolucdo: apenas os individuos com melhores desempenhos t€ém maior
probabilidade de gerar descendentes. O elitismo, técnica em que os melhores individuos sdo
preservados integralmente para a proxima geragao, é adotado para evitar a perda de solucdes de
alta qualidade por efeito estocdstico da selecdo.

A etapa seguinte, “Aplicar operadores de crossover e mutacdo”, € onde ocorre a exploragao
efetiva do espago de busca. O crossover combina segmentos de cromossomos de dois indi-
viduos para gerar novos candidatos, promovendo recombinagdo de atributos e hiperparametros
potencialmente vantajosa. A mutacao, por sua vez, altera aleatoriamente partes do cromossomo,
garantindo diversidade populacional e prevenindo a convergéncia prematura para 6timos locais.

O quinto bloco, “Formar nova populacdo”, representa o ponto em que os descendentes re-
sultantes das operacdes genéticas, juntamente com os individuos preservados pelo elitismo,
compdem a nova geragdo. Essa populacdo substitui a anterior e serd avaliada na iteragcdo se-
guinte.

A penultima etapa, “Critério de parada atingido?”, avalia se foi alcancado algum dos cri-
térios estabelecidos para encerrar o processo evolutivo, como niimero maximo de geragdes ou
estagnacao no valor de fitness. Se o critério for atendido, o fluxo segue para “Fim: Retornar
melhor solu¢@o encontrada”, onde o individuo de maior fitness € selecionado como configura-
¢do final dos atributos do trdfego de rede e hiperparametros da CNN. Caso contrdrio, o fluxo
retorna ao bloco de avaliacdo, fechando o ciclo iterativo caracteristico dos AGs.

A conexao circular entre a verificacdo do critério de parada e a reavaliagdo da populacao
simboliza a natureza iterativa e adaptativa do processo evolutivo. Esta estrutura garante que, a

cada geracdo, o AG refine progressivamente as solucoes, aproximando-se de um 6timo global.

4.5 Integracao entre Algoritmos Genéticos e CNNs

Nesta secdo descreve-se a integracdo entre AGs e CNNs, elemento central da metodologia
proposta. O objetivo € duplo: (i) selecionar subconjuntos relevantes de atributos do dataset
CIC-IDS2018, reduzindo dimensionalidade e eliminando redundancias; e (ii) otimizar hiperpa-

rametros criticos da CNN, adaptando a arquitetura e o processo de treinamento ao problema de
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deteccao de intrusdes.

Dois AGs distintos foram utilizados de forma complementar:

1. AG de Selecao de Atributos: responsavel por escolher, dentre 78 atributos disponiveis,

os 20 mais relevantes para a classificacdo.

2. AG de Otimizacao de Hiperparametros: voltado a definicdo de funcdes de ativagao,

nimero de neurdnios em camadas densas, funcdo de perda e otimizador.

4.5.1 Representacio cromossomica

Cada individuo na populacdo € codificado como um cromossomo composto por genes que
representam tanto atributos quanto parametros da CNN. Para o AG de selecdo de atributos,
o cromossomo contém 20 genes, cada um representando um indice no intervalo [1, 78]. Para
0 AG de hiperparametros, os genes sdo inteiros que sdo mapeados para fun¢des de ativacio,

otimizadores, funcdes de perda e quantidades de neur6nios, conforme ilustrado na Tabela 4.3.

Tabela 4.3: Espacos de busca por gene em cada AG.

AG Gene(s) Dominio / Mapeamento
Selecdo de atributos 20 indices Inteiros em [1_inf1l,1_supl] = [1, 78] (sem reposi¢do na inicializa¢do)
Hiperparametros ny,nNg, N3 Inteiros 1.8 +— {9,...,16} vianos

ai,as,as,aq Inteiros 1.7 — {linear, relu, selu, elu, softmax, softplus, mish}
¢ (loss) Inteiros 1..3 — {binary_crossentropy, poisson, KLDivergence}

o (optimizer) Inteiros 1..3 — {sgd, adam, adamax}

A Tabela 4.3 sintetiza os espacos de busca explorados por cada AG. Os mapeamentos ga-
rantem que genes inteiros representem escolhas discretas relevantes no contexto de CNNs para

deteccao de intrusdes.

4.5.2 Fluxo evolutivo

A Figura 4.3 apresenta o fluxo completo de integragcdo entre AG e CNN. Cada etapa do ciclo
evolutivo é detalhada a seguir.
Descricao das etapas:

* Inicializacao da populacido: geracdo de cromossomos aleatdrios respeitando os domi-
nios da Tabela 4.3.

* Decodificacao: mapeamento dos genes para atributos e hiperparametros concretos.

* Construcao e treino da CNN: criagdo de uma CNN com base na codificagdo e treina-

mento com early stopping.
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Inicializacdao da populacao
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Decodificacao

dos cromossomos
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Construcao e treino da CNN
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Avaliacdo da fun-
cdo de fitness
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Selecdo dos me-
lhores individuos
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Cruzamento e mutacdo

¥

Elitismo e nova geracdo

Figura 4.3: Fluxo metodolégico da integracao entre Algoritmos Genéticos e CNN.

* Avaliacdo da funcao de fitness: célculo da acurécia, F/-score ponderado ou outra mé-

trica no conjunto de validagao.
* Selecao: escolha probabilistica dos melhores individuos (roleta).

* Cruzamento e mutacao: geracdo de novos individuos por recombinagdo e pequenas

perturbacdes aleatorias.

* Elitismo: preservagdo dos melhores individuos, garantindo a permanéncia de solugdes

promissoras.

4.5.3 Pseudocodigo

No Algoritmo 1 a seguir, apresentam-se os pseudocddigos derivados dos scripts originais
desta pesquisa, acompanhados de uma explicacdo detalhada de cada etapa. Para fins de clareza
metodoldgica, a implementagdo foi estruturada em duas vertentes complementares: (i) a apli-
cacdo de AGs na selecdo de atributos, voltada a redu¢do de dimensionalidade e eliminacdo de
redundancias; e (ii) a utilizacdo de AGs na otimizag¢ao de hiperparametros da CNN, destinada ao
ajuste automadtico da arquitetura e dos parametros de treinamento. Essa separagdo reflete a na-
tureza dual da proposta, na qual cada AG atua em um nivel distinto do processo de aprendizado,

mas ambos convergem para a constru¢do de modelos mais precisos, robustos e eficientes.
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AG para Selecao de Atributos

Algoritmo 1: AG para Selecdo de Atributos

A B A W N =

|

10

Input: Dataset D, tamanho da populacdo N, nimero de geracdes GG
Output: Melhor subconjunto de atributos

Inicializar populagdo com cromossomos contendo 20 indices em [1, 78];
for g = 1 até G do

foreach individuo i na populacdo do
Construir subconjunto .S; de atributos;
Treinar CNN fixa com S;;
Calcular fitness de ¢ (acuracia);

Selecionar individuos por roleta;
Aplicar cruzamento € mutacao;
Manter elite para préxima geracao;

return individuo com melhor fitness;

Inicializagdo da populagdo: cada cromossomo representa um subconjunto de 20 atributos
escolhidos entre os 78 disponiveis. A inicializagcdo aleatdria garante diversidade inicial,

evitando que o AG fique restrito a regides estreitas do espaco de busca.

Laco de geragoes: o algoritmo evolui por G geragdes, permitindo que a qualidade média

da populacdo melhore progressivamente.

Construgcdo do subconjunto S;: o cromossomo ¢ € traduzido em um vetor bindrio de
atributos selecionados, definindo quais colunas do dataset sdo usadas como entrada na
CNN.

Treino da CNN fixa: a arquitetura da CNN permanece constante, variando apenas os
atributos de entrada. Assim, diferencas de desempenho sdo atribuidas unicamente a qua-

lidade da selecdo de atributos.

Cdlculo do fitness: a acurdcia, medida no conjunto de teste, quantifica a relevancia do

subconjunto .S;. Quanto maior a acurdcia, mais informativos sao os atributos escolhidos.

Selecdo por roleta: individuos com maior fitness t€m probabilidade mais alta de reprodu-

¢do, mas sem excluir totalmente os de fitness baixo, o que preserva diversidade.

Cruzamento e muta¢do: recombinam subconjuntos e introduzem pequenas variagdes ale-

atérias, permitindo a exploragdo de novas combinacdes de atributos.

Elitismo: preservacdo do melhor individuo de cada geracdo. Dessa forma, a cada nova
geragdo o individuo com maior aptiddo € copiado diretamente para a populacdo seguinte,

garantindo que solucdes promissoras ndo se percam devido a flutuacdes estocdsticas do
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processo de selecdo, crossover ou mutagdo. A preservacdo de apenas um individuo
mostrou-se suficiente para manter a convergéncia do Algoritmo Genético, assegurando
que a melhor solucdo encontrada até entdo esteja sempre disponivel como base para as

préximas iteracdes evolutivas.

Esse fluxo possibilitou reduzir a dimensionalidade do problema, chegando a subconjuntos
enxutos (20 atributos) com acurdcia compardvel — ou superior — ao uso integral dos 78 atri-

butos.

AG para Otimizaciao de Hiperparametros

Antes da etapa de treinamento do modelo, foi adotado um AG para realizar a otimizac¢do au-
tomatica dos hiperpardmetros da arquitetura convolucional. Essa abordagem evolutiva permite
explorar de forma eficiente um espago de busca altamente combinatorial, evitando a necessidade
de testes exaustivos ou selecdo manual. O AG opera sobre uma popula¢do de cromossomos que
codificam parametros como fungdes de ativagdo, nimero de neurdnios, fung¢do de perda e oti-
mizador. A cada geracdo, os individuos sdo avaliados com base no desempenho do modelo
construido a partir de seus hiperparametros, sendo entio aplicados operadores de selecao, cru-

zamento, mutacdo e elitismo. O procedimento completo estd descrito no Algoritmo 2.

Algoritmo 2: AG para Otimiza¢ao de Hiperparimetros
Input: Dataset D, tamanho da populac¢do /V, nimero de geracdes GG

Output: Melhor configuraciao de hiperparametros

1 Inicializar popula¢do com cromossomos contendo genes de ativacdes, neurdnios, loss e

otimizador;

2 for g =1 até G do

3 foreach individuo i na populagdo do

4 Decodificar cromossomo em hiperpardmetros;
5 Construir CNN com esses hiperparametros;

6 Treinar CNN em D;

7 Calcular fitness de ¢ (acuracia);

8 Selecionar individuos por roleta;

9 Aplicar cruzamento e mutagao;
10 Manter elite para préxima geracao;

11 return individuo com melhor fitness;

e Inicializagcdo da populagcdo: cada cromossomo codifica uma configuracdo completa da
CNN: nimero de neurdnios por camada, funcdes de ativacdo, funcdo de perda e otimiza-

dor.
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Decodificagdo: valores inteiros sao mapeados para escolhas discretas, como relu, mish

ou adamax, permitindo que o AG explore o espaco arquitetural de forma simbolica.

Construgdo da CNN': a partir dos genes, a rede € instanciada em TensorFlow, com arqui-

tetura variavel de acordo com cada cromossomo.

Treinamento da CNN': cada rede € treinada sobre o dataset pré-processado. A diferenca

de desempenho entre individuos reflete a qualidade da configuragao.
Cdlculo do fitness: utilizou-se como métrica a acuricia.

Selecdo por roleta: preserva a estocasticidade e a exploragdo, a0 mesmo tempo em que

favorece arquiteturas de alto desempenho.

Cruzamento e mutagdo: combinam configuracdes promissoras € introduzem variagoes,

explorando novas combinagdes de hiperparametros.

Elitismo: garante que os melhores modelos sejam mantidos, evitando retrocessos no de-

sempenho global da populacao.

Essa abordagem permite a exploracido de combinacgdes de hiperparametros muitas vezes ne-

gligenciadas em configuragdes manuais, revelando, por exemplo, ativacdes ndo convencionais

(como mish ou softplus) em conjunto com otimizadores robustos (adamax) como solu-

codes superiores.

4.6

Configuracoes experimentais

Os AGs foram configurados de acordo com pardmetros experimentais ajustados empirica-

mente, descritos a seguir:

Tamanho da populacao: 20 individuos;

Numero de geragdes: 50;

Probabilidade de cruzamento: 90%;

Probabilidade de mutacao: 30%;

Treinamento por individuo: até 100 épocas, com early stopping;

Tamanho do batch: 50.

Especificamente para o early stopping, adotou-se o critério AL < 10~* em uma janela de

dez épocas consecutivas.
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4.7 Meétricas e Procedimentos de Avaliacao

A avaliacido do desempenho da metodologia proposta fundamenta-se em um conjunto de
métricas quantitativas amplamente empregadas na literatura de deteccdo de intrusdes, combi-
nando indicadores cléssicos de classificacdo com medidas de custo operacional. Tal combinagdo
assegura que o modelo ndo apenas alcance elevada capacidade de predi¢do, mas também opere

com eficiéncia suficiente para aplicagdes em tempo quase real.

4.7.1 Definicao das métricas

Sejam T'P o nimero de True Positives, I'N o nimero de True Negatives, F'P o nimero de

False Positives e F'N o nimero de False Negatives. Define-se:

* Acuracia (Accuracy):

TP+ TN
Acc = . 42
T TPITNIFP+FN (4.2)

Precisao (Precision):

TP
Prec= ——~ | 4.3
T TP Y FP (4.3)
* Revocacao (Recall ou True Positive Rate):
TP
= 4.4
Ree = b T FN (4.4)
e Fi-score:
Prec - Rec
F,=92.__—— " 4.5
! Prec + Rec S

G-Mean (Geometric Mean):

TP TN
Gmean TPR - TNR TP+ FN TN+ FP 4.6)

Laténcia média de inferéncia:

it

Lat =
a N

4.7)

onde ¢\

de amostras.

representa o tempo de inferéncia para a i-ésima amostra e N a quantidade total
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4.7.2 Tabela-resumo das métricas

Tabela 4.4: Resumo das métricas de avaliagdo utilizadas.

Métrica Objetivo

Acuricia  Medir proporcao global de classificagdes corretas.
Precisdo Avaliar a confiabilidade das predi¢des positivas.
Revocagdo Quantificar capacidade de deteccdo de ataques.
Fl-score  Equilibrar precisdo e revocagao.

G-Mean Avaliar desempenho em classes desbalanceadas.

Laténcia ~ Mensurar tempo médio de resposta do modelo.

Na Tabela 4.4 sintetizam-se as métricas adotadas para a avaliacdo do modelo, cada uma
com papel especifico no diagnéstico do desempenho. A acuricia, embora seja uma métrica
de interpretacdo intuitiva e de uso consolidado, ndo € suficiente em cendrios com desbalancea-
mento entre classes, como ocorre no conjunto CIC-IDS2018 (Secdo 4.2), motivo pelo qual foi
complementada por outros indicadores.

A precisdo e a revocagdo, quando analisadas conjuntamente, oferecem uma visao mais refi-
nada: a precis@o penaliza falsos positivos, assegurando que o trafego legitimo nao seja indevida-
mente classificado como ataque, enquanto a revocac¢do recompensa a correta detec¢do de even-
tos maliciosos, mitigando o risco de falsos negativos. O FI-score integra esses dois aspectos
em um unico valor harménico, equilibrando o trade-off entre ambos e permitindo comparagao
direta entre diferentes configuracdes de rede geradas pelo AG.

O G-Mean, por sua vez, € particularmente relevante em cendrios de classes desbalanceadas,
pois mede simultaneamente a taxa de acertos para cada classe, garantindo que melhorias em
uma categoria ndo venham acompanhadas de degradacdo significativa em outra. Essa métrica
conecta-se diretamente ao objetivo de generalizagdo ampla da metodologia, j4 que um IDS efi-
ciente deve manter desempenho elevado independentemente da frequéncia relativa das classes.

A funcdo de fitness adotada nos AGs foi construida a partir da Acuracia (Accuracy), por
meio da propor¢do de classificacdes corretas em relagdo ao total de amostras avaliadas. A
escolha dessa métrica como funcdo-objetivo se justifica pelo seu carater global, refletindo de
forma direta a capacidade do modelo em distinguir trafego benigno de trafego malicioso.

No entanto, outras métricas também foram consideradas de forma complementar na andlise

de desempenho. Em particular:

* A Precisao (Precision) permitiu avaliar a confiabilidade das predicdes positivas, ou seja,

a propor¢do de ataques corretamente identificados em relacdo ao total de alarmes gerados.

* A Revocacido (Recall ou TPR) mediu a sensibilidade do modelo na detec¢do de ataques,

quantificando a fra¢do de eventos maliciosos corretamente reconhecidos.
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* O Fl-score foi utilizado para equilibrar precisio e revocagdo, fornecendo uma medida

harmonica especialmente relevante em cendrios de desbalanceamento entre classes.

O G-Mean possibilitou avaliar o desempenho considerando simultaneamente a taxa de
verdadeiros positivos e a taxa de verdadeiros negativos, métrica fundamental quando se

busca desempenho consistente em ambas as classes.

A Laténcia média de inferéncia complementou a andlise ao introduzir um critério de
viabilidade operacional: um modelo de alta acuricia, mas com tempo de resposta exces-
sivo, pode ser inadequado para uso em tempo real. Incorporar a laténcia ao conjunto de
métricas reforca o cardter pragmatico da metodologia e conecta-se a funcdo de fitness,

onde a eficiéncia temporal é explicitamente ponderada.

Assim, embora a funcio de fitness tenha sido formalmente definida pela Acuricia, as de-

mais métricas foram fundamentais para interpretar o resultado evolutivo dos Algoritmos Gené-

ticos e validar a robustez das solugdes obtidas. Dessa forma, assegurou-se ndo apenas a maxi-

mizacdo da taxa de acertos globais, mas também a confiabilidade, a sensibilidade, o equilibrio

entre classes e a eficiéncia temporal das predi¢oes.

4.8 Comparacao com trabalhos relacionados

Para verificar o desempenho da proposta, foi definido um procedimento de comparacao

com pesquisas recentes que também utilizaram o conjunto CIC-IDS2018. A andlise incluiu

trabalhos baseados em Redes Neurais Convolucionais, Redes Recorrentes e métodos hibridos

com aprendizado de mdquina tradicional.

A estratégia adotada foi:

1.

Selecionar estudos que reportaram métricas em cendrios equivalentes (mesmo conjunto

de dados e divisao de classes).

Reproduzir, sempre que possivel, a configuracio experimental descrita, respeitando vari-

acoes de implementacao.

Comparar acurécia, precision, recall, F1-Score, G-Mean e laténcia média de inferéncia.

Esse procedimento garante que a comparagdo seja justa, permitindo destacar tanto os ganhos

de desempenho obtidos pela abordagem AG—CNN quanto sua eficiéncia computacional em

relacdo a literatura.

44



4.9 Consideracoes Finais

Este capitulo detalhou a metodologia proposta para deteccdo de intrusdes em redes de
computadores, estruturada em multiplas etapas que vao desde o pré-processamento do CIC-
IDS2018 até a avaliagdo experimental. Foram descritas de forma minuciosa as estratégias de
selecao de atributos, otimizacao de hiperparametros, configuracdo da CNN enxuta e o protocolo
de validacdo, incluindo praticas de reprodutibilidade e testes estatisticos.

Um aspecto central da proposta foi o uso combinado de dois AGs: o primeiro voltado a
selecdo de atributos, visando reduzir a dimensionalidade e mitigar redundancias; e o segundo
orientado a busca de hiperparametros adequados para a CNN, equilibrando acurécia e laténcia
de inferéncia. Essa integracdo mostrou-se essencial para manter a eficiéncia do modelo sem
comprometer sua capacidade de generalizacdo.

Além disso, foram incorporados estudos de ablacdo para avaliar o impacto isolado de cada
componente do pipeline e garantir maior transparéncia na andlise dos resultados. Também
se delineou um procedimento de comparagdo com trabalhos relacionados, assegurando que a
avaliacdo seja justa e contextualizada frente ao estado da arte.

Assim, a metodologia proposta constitui uma base sélida para os experimentos apresentados
no proximo capitulo. Nele, serdo discutidos os resultados obtidos em termos de métricas de
desempenho, tempo de processamento e significancia estatistica, evidenciando as contribui¢des

praticas e cientificas do modelo AG—CNN frente a solucdes ja existentes.
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Capitulo 5

Resultados

5.1 Configuracao Experimental

A avaliacdo do desempenho da metodologia proposta foi conduzida em ambiente contro-
lado, de forma a assegurar a reprodutibilidade dos resultados e a comparabilidade com trabalhos
relacionados. Para tanto, utilizaram-se os mesmos parametros e pré-processamentos descritos

no Capitulo 4, mantendo consisténcia entre as etapas de desenvolvimento e validacao.

5.1.1 Ambiente de execucao

Os experimentos foram executados em uma estacio de trabalho com as seguintes especifi-

cacoes de hardware e software:

* Processador: AMD Ryzen 7.
¢ Memoria RAM: 16 GB DDR4.
* Sistema operacional: Linux Mint 21.3 (64 bits).

* Principais bibliotecas: TensorFlow: 2.18.0, NumPy: 2.0.2, Scikit-learn: 1.5.2.

A escolha de um ambiente com alto poder de processamento foi motivada pelo objetivo
de acelerar as iteracoes do AG e reduzir o tempo total de treinamento da CNN, mantendo, no
entanto, configuragcdes de software amplamente disponiveis e de cddigo aberto, o que contribui

para a reprodutibilidade.

5.1.2 Configuraciao do Algoritmo Genético

O AG foi configurado com populacao inicial de 50 individuos, taxa de crossover de 0,8 e
taxa de mutacdo de 0,1. O critério de parada foi definido como 50 geracdes ou auséncia de

melhoria na fun¢ao de fitness por 10 geracdes consecutivas. O espaco de busca incluiu:
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* Selecao de atributos: 20 atributos dentre os 78 disponiveis no CIC-IDS2018.

* Hiperpardmetros da CNN: niimero de neur6nios por camada ({9,...,16}), fungdo de
ativacdo (linear, relu, selu, elu, softmax, softplus, mish), funcio de perda
(binary_crossentropy, poisson, KLDivergence), otimizador (sgd, adam,

adamax).

5.1.3 Configuracao da CNN

A CNN inicial (pré-ajuste) foi definida como uma arquitetura base com camada de entrada
no formato 4 x 5 X 1, seguida de operagdes convolucionais e densas. No entanto, sua con-
figuracdo exata nao foi fixada manualmente: os principais hiperparametros — como nimero
de neur6nios por camada, funcdes de ativacdo, funcao de perda e otimizador — foram deter-
minados automaticamente pelo AG. Dessa forma, a CNN resultante ndo segue uma topologia
estdtica, mas sim aquela encontrada pelo processo evolutivo , a qual foi posteriormente utilizada

como modelo final de detec¢do binaria com ativacao sigmoid na camada de saida.

5.1.4 Particionamento dos dados

O conjunto CIC-IDS2018, ap6s o pré-processamento e balanceamento descrito na Se¢ao 4.3,
foi particionado em 70% para treino, 30% para teste. Essa divisdo foi aplicada de forma estra-
tificada, preservando a propor¢ao entre amostras de trafego legitimo e de ataque.

A definicao criteriosa do ambiente de execugdo e dos parametros de configuracao conecta-se
diretamente aos objetivos delineados na metodologia. Apesar do uso de um ambiente compu-
tacional de médio porte, composto por um processador AMD Ryzen 7 e 16 GB de memoria
RAM, foi possivel executar os experimentos de forma consistente e avaliar o modelo em con-
dicdes proximas ao tempo real, aspecto essencial dada a preocupacdo com a laténcia. Esse
resultado evidencia a eficiéncia do método proposto, capaz de obter alto desempenho mesmo
em recursos limitados. Ademais, a ado¢do de bibliotecas amplamente difundidas e de codigo
aberto reforca o compromisso com a reprodutibilidade cientifica.

Por fim, o particionamento estratificado assegura que o modelo seja exposto a diferentes
padrdes de trifego em todas as fases do treinamento, evitando enviesamento na avaliagcdo e
permitindo que métricas como G-Mean e F1-score reflitam de forma mais fiel a capacidade de

generalizagdo.

5.2 Desempenho Global do Modelo Proposto

A Tabela 5.1 apresenta os resultados obtidos pelo modelo AG—CNN no conjunto de teste,
considerando as métricas definidas na Se¢do 4.7. Os experimentos foram conduzidos a partir

do subconjunto de 41.782 registros descrito na Tabela 4.1, com divisdo fixa entre 70% de treino
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e 30% de teste. Essa escolha buscou assegurar a reprodutibilidade e permitir comparacoes
diretas com trabalhos da literatura que também utilizam o CIC-IDS2018, ainda que diferentes

particionamentos aleatérios pudessem gerar pequenas variacdes nos resultados.

Tabela 5.1: Resultados do modelo proposto no conjunto de teste.

Métrica  Acuracia Precisao Recall FI-score G-Mean Laténcia média (ms)

AG-CNN 99.78%  99,50% 99,82% 99,66% 99,83% 0,0529
100 99,78 99.5 99,82 99,66 99,83
80 - -
S 60f .
g
S 40 -
20 -
O I I I I I
Acuracia Precisao Recall F1-score G-Mean
Métricas

Figura 5.1: Desempenho do modelo proposto nas métricas principais.

A Tabela 5.1 sintetiza, de forma quantitativa, a capacidade preditiva do modelo proposto.
Observa-se que todas as métricas mantém valores superiores a 99,5%, evidenciando a robustez e
estabilidade do método. A acurdcia de 99,78% indica que a propor¢ao de classificacdes corretas
€ praticamente total, enquanto a precisao (99,50%) e o recall (99,82%) demonstram que o mo-
delo consegue simultaneamente minimizar falsos positivos e falsos negativos — caracteristica
essencial em sistemas de deteccio de intrusdes.

A métrica FI-score (99,66%) confirma o equilibrio entre precision e recall, enquanto o G-
Mean (99,83%) reforca a boa performance em ambas as classes, mitigando possiveis efeitos de
desbalanceamento residual. O tempo total de previsdo registrado foi de 0,6627 segundos para
todo o conjunto de teste. Como esse conjunto contém 12.534 fluxos (30% dos 41.782 registros

descritos na Tabela 4.1), a laténcia média por fluxo é dada por:

0,6627

~ -5 ~
15531~ 5,29 x 107° s = 0, 0529 ms. 5.1

laténcia média =
Esses resultados demonstram que a proposta apresenta capacidade de classificagcdo pratica-
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mente instantanea em nivel de fluxo, reforcando sua aplicabilidade em ambientes de rede que
demandam deteccao em tempo quase real.

O gréfico da Figura 5.1 complementa a tabela, oferecendo uma visao imediata da proximi-
dade entre as métricas e evidenciando a consisténcia dos resultados. As barras, praticamente
niveladas, indicam que o desempenho é homogéneo em todas as dimensdes avaliadas — con-

sequéncia direta da otimizacao conjunta de atributos e hiperparametros.

5.2.1 Configuracao do Melhor Individuo

Acuracia x Geragao

99.0 A

98.5 A

98.0 A

97.5 A

Acuracia (%)

97.0 A

96.5 A

96.0 1+ ; T T
0 10 20 30 40 50
Geragao

Figura 5.2: Evolugdo da acuricia ao longo das geragoes para o AG de selecdo de atributos.

A Figura 5.2 apresenta a curva de acurdcia do melhor individuo ao longo das geracdes no
AG de selecdo de atributos. Observa-se uma tendéncia ascendente inicial, com crescimento
acentuado nas primeiras iteragdes. Esse comportamento € tipico de cendrios em que solugdes
sub-6timas sdo rapidamente descartadas em favor de combinagdes de atributos mais relevantes.
Apos esse estdgio inicial, observa-se que a curva se estabiliza a partir da 4* geracdo, sinali-
zando a convergéncia do processo evolutivo. Esse comportamento evidencia a eficiéncia do
algoritmo, que realiza uma exploracdo mais ampla do espago de busca nas primeiras iteragoes

e, em seguida, mantém a consisténcia dos resultados, evitando oscilagdes no desempenho.

49
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Figura 5.3: Evolugdo da acuracia ao longo das geragdes para o AG de ajuste de hiperparametros.

A Figura 5.3 apresenta a curva de acurdcia do melhor individuo ao longo das geracdes no AG
de hiperparimetros. Observa-se que o crescimento inicial € abrupto, com a acurdcia atingindo
rapidamente um patamar elevado ja na segunda geracdo. A partir desse ponto, o desempenho
mantém-se estdvel até o final das iteracdes, sem variagdes relevantes. Esse comportamento
indica que, embora o espago de busca dos hiperparametros seja relativamente restrito, suas
combinagdes exercem impacto direto na performance do modelo, permitindo que solugdes pro-
ximas ao 6timo local sejam encontradas de forma precoce. Tal padrdo evidencia nao apenas
a eficiéncia do AG em explorar rapidamente o espaco de solu¢des, mas também a robustez da
configuragdo final encontrada, que se mantém consistente ao longo das geracdes.

Nesta secdo, detalham-se os genes do individuo com maior acuricia encontrado nos expe-
rimentos, contemplando tanto os atributos de entrada selecionados quanto os hiperparametros
6timos da CNN. Esses resultados refletem diretamente o processo evolutivo conduzido pelos
AGs.

Os 20 atributos de entrada do individuo com maior acuracia foram:

Fwd Pkts/s, Bwd PSH Flags, Bwd Header Len, ACK Flag Cnt, Fwd Header Len,
Fwd IAT Mean, ECE Flag Cnt, Fwd IAT Max, Fwd Seg Size Min, Bwd IAT Makx,
Fwd PSH Flags, Idle Mean, Fwd Seg Size Avg, URG Flag Cnt, Bwd Pkt Len Std,
Fwd Pkt Len Min, Flow IAT Std, RST Flag Cnt, Down/Up Ratio, Flow Byts/s.

Na primeira metade da lista, nota-se a predominancia de atributos relacionados a dindmica
temporal do fluxo (e.g., Fwd IAT Mean, Fwd IAT Max, Bwd IAT Max, Flow IAT Std) e a
intensidade do trdfego (Fwd Pkts/s, Flow Byts/s). Esses atributos sdo sensiveis a padroes de
ataques de negacao de servigo e variagdes abruptas no comportamento do canal, sendo, portanto,

particularmente discriminativos.
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Em seguida, a presenca de marcadores de controle — ACK Flag Cnt, ECE Flag Cnt, URG
Flag Cnt, RST Flag Cnt, PSH Flags (em ambos os sentidos) — evidencia que o AG privilegiou
atributos diretamente relacionados ao mecanismo de controle do protocolo TCP. Esses campos
sdo fundamentais para o gerenciamento do fluxo e da confiabilidade da transmissdo, mas tam-
bém estdo sujeitos a alteragdes andmalas em trafego malicioso, o que os torna discriminativos
na tarefa de deteccao de intrusdes. Por fim, medidas de tamanho e variabilidade de segmentos
(Fwd/Bwd Header Len, Fwd Seg Size Min/Avg, Bwd Pkt Len Std) completam o conjunto, in-
dicando que a rede precisa de pistas sobre fragmentacdo e dispersdao dos pacotes para separar
classes com alta confiabilidade. Essa composicdo coesa explica, em parte, a estabilidade ob-
servada nas métricas, pois combina informacdes de temporalidade, volume e mecanismos de
controle do protocolo.

Os hiperparametros do individuo com maior acuricia sdo:

Camada de convolucio: ativacdo = mish;

* Primeira camada densa: nimero_de_nds = 12, ativagdo = mish;

Segunda camada densa: nimero_de_nés = 10, ativagdo = selu;

* Terceira camada densa: nimero_de_nds = 15, ativagdo = elu;

Funcao de perda: binary crossentropy;

Otimizador: Adam (learning rate = 0, 001).

Inicialmente, nota-se a escolha de mish na camada convolucional, funcdo de ativacao su-
ave e ndo mondtona que, segundo a literatura, pode favorecer gradientes estaveis em arquite-
turas rasas. Em seguida, para trés camadas densas revelou-se um arranjo denso com tamanhos
moderados (12-10-15) e ativacdes heterogéneas (mish, selu, elu), estratégia que sugere
exploracdo de regides diferentes do espago de fungdes, mitigando saturagdo e melhorando a
expressividade sem inflar a complexidade. A funcdo de perda confirma a ado¢do de binary
crossentropy, compativel com o cendrio bindrio de deteccdo; por fim, o otimizador sele-
cionado evidencia o uso de Adam com taxa de aprendizado de 10~3, configuragdo conhecida
por boa convergéncia inicial e estabilidade ao longo do treinamento. Em conjunto, esses ele-
mentos alinham-se ao objetivo de manter baixa laténcia e alta acurdcia, conforme resultados
apresentados na presente secao.

A Figura 5.4 apresenta, de forma esquematica, a arquitetura da melhor CNN identificada
pelo AG voltado ao ajuste de hiperparametros. Observa-se que a rede inicia com uma camada
convolucional de ativagdo mish, responsavel por extrair padroes espaciais € temporais dos
mapas de entrada de dimensédo (4 x 5 x 1). Embora os valores exatos de nimero de filtros, ta-
manho do kernel e parametros de pooling nao estejam explicitos no conjunto de resultados, sua
configuracao foi suficiente para garantir uma representacio intermedidria rica em caracteristi-

cas discriminativas. Em seguida, aplica-se uma camada de max pooling, cujo papel é reduzir
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a dimensionalidade e, simultaneamente, aumentar a robustez do modelo a variagdes locais no

trafego de rede.

E Entrada: (4 x 5 x 1) }
[ Conv2D , ativagdo mish j
[ MaxPooling2D }

E Flatten }

[ Densa (12), ativagdo mish j
[ Densa (10), ativagcdo selu }
E Densa (15), ativacdo elu }

[ Saida: Densa (1), ativagdo sigmoid j

Figura 5.4: Topologia da melhor CNN identificada pelo AG de hiperparametros: ativacao mish
na convoluc¢do; densas (12/mish, 10/selu, 15/elu); saida sigmoid.

ApO6s a etapa convolucional, a operagdo Flatten converte os mapas bidimensionais em
um vetor unidimensional, alimentando o bloco denso composto por trés camadas totalmente co-
nectadas: a primeira com 12 neurdnios e ativagdo mish, a segunda com 10 neurdnios e ativacao
selu e a terceira com 15 neurdnios e ativacdo elu. Essa combinacgao especifica de funcoes de
ativacdo demonstra-se relevante, pois cada uma delas contribui de forma distinta para a mode-
lagem de ndo linearidades complexas: a mish mantém suavidade e estabilidade de gradiente, a

selu auxilia na auto-normalizacdo da rede, e a elu favorece convergéncia mais rapida em regioes
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de saturagdo.

A escolha de manter apenas uma camada convolucional, seguida de um bloco denso enxuto,
estd alinhada ao objetivo de reduzir a laténcia de inferéncia. Nos resultados obtidos, o tempo
médio de previsdo foi de 0,6627 segundos para todo o conjunto de teste, o que corresponde
a aproximadamente 0,0529 ms por fluxo. Esse valor evidencia a viabilidade do modelo em

cendrios que demandam resposta quase em tempo real.

5.3 Comparacao com Trabalhos Relacionados

Para avaliar a efetividade da abordagem proposta, 0 modelo AG-CNN foi comparado com
dois trabalhos relevantes na literatura que também utilizaram o conjunto de dados CIC-IDS2018
[17]. Ambos foram reproduzidos com fidelidade arquitetural e de hiperpardmetros conforme
descricdes originais, sendo treinados nas mesmas divisdes de dados e sob as mesmas condi¢des
de avaliacao aplicadas ao modelo proposto.

O primeiro modelo de referéncia, proposto por Shieh et al. [36], emprega uma arquitetura
Bidirectional Long Short-Term Memory (BI-LSTM) projetada para explorar padroes temporais

bidirecionais no trafego de rede. Sua configuragcdo consiste em:

(i) Camada BI-LSTM com 64 unidades, funcao de ativacdo t anh e parametro

return_sequences=True;
(i1)) Camada de dropout com taxa de 0,3;
(ii1)) Segunda camada BI-LSTM com 32 unidades e ativagdo tanh;
(iv) Nova camada de dropout com taxa de 0,3;

(v) Camada de saida com um unico né e ativagdo sigmoid.

O treinamento foi realizado com o otimizador SGD, learning rate de 8,59 x 103, momentum
de 0,89, decay de 1 x 1073, clipnorm de 0,9 e fungdo de perda binary crossentropy.
O segundo modelo, proposto por Thirimanne et al. [37], consiste em uma DNN com muilti-

plas camadas densas de alta capacidade. Sua arquitetura € formada por:

(i) Camada densa com 64 neurdnios, ativagdo ReLU;
(i1)) Camada densa com 160 neurdnios, ativacdo ReLU;
(iii)) Camada densa com 352 neurdnios, ativacdo ReLU;
(iv) Camada densa com 320 neurdnios, ativacdo ReLU;

(v) Camada densa com 448 neurdnios, ativagdo ReLU;
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(vi) Camada densa com 384 neurdnios, ativagdo ReLU;
(vii) Camada densa com 192 neur6nios, ativacdo ReLU;
(viii) Camada densa com 224 neurOnios, ativacdo ReLU;
(ix) Oito camadas adicionais, cada uma com 32 neurOnios e ativacao ReLU;

(x) Camada de saida com um Unico né e ativagdo sigmoid.

O treinamento foi realizado com o otimizador SGD (learning rate = 1 x 1073, momentum

=0) e funcdo de perda binary crossentropy.

Tabela 5.2: Comparacao do modelo AG-CNN com trabalhos relacionados no CIC-IDS2018
(valores calculados a partir das matrizes de confuso).

Trabalho Acuracia Precisao Recall FlI-score

Shieh et al. [36] — BI-LSTM 68,47% Indefinida (0/0) 0,00% 0,00%
Thirimanne et al. [37] — DNN  99,74% 99,70% 99.49%  99,59%
AG-CNN (proposto) 99,78 % 99,50 % 99.82% 99,66 %

A Tabela 5.2 evidencia a superioridade do modelo AG—CNN frente aos métodos compa-
rativos, todos avaliados sobre o conjunto CIC-IDS2018. Para assegurar a comparabilidade,
manteve-se fixo o mesmo subconjunto de 20 atributos previamente selecionados pela etapa de
AG de atributos. Dessa forma, a andlise concentra-se nos ganhos decorrentes da otimizagao
evolutiva dos hiperparametros da CNN, isolando o efeito dessa segunda camada de busca.

Em relagdo ao BI-LSTM de Shieh et al. [36], verifica-se que o modelo proposto apresenta
desempenho significativamente superior, uma vez que aquele método alcanca apenas 68,47%
de acurdcia e nao realiza qualquer deteccao da classe positiva, resultando em precisdo indefi-
nida, bem como em recall e FI-score iguais a 0%. Quando comparado a DNN de Thirimanne
et al. [37], que obtém 99,74% de acuricia, 99,70% de precisdo, 99,49% de recall e 99,59% de
Fl-score, o AG-CNN demonstra incrementos de 0,04 p.p. em acurécia, 0,33 p.p. em recall e
0,07 p.p. em Fl-score, apresentando uma reducao de 0,20 p.p. em precisdo. Esses resultados
evidenciam que a integragdo entre selecao de atributos e otimizagdo evolutiva de hiperparame-
tros aprimora de maneira consistente a capacidade discriminativa da arquitetura CNN, consoli-
dando o modelo proposto como uma solucdo mais robusta e eficaz para a deteccdo de trafego
malicioso.

Além da vantagem estatistica nas métricas de desempenho, o modelo proposto apresentou
a menor laténcia média entre os avaliados. Conforme reportado na Tabela 5.1, o tempo total

de previsdo foi de 0,6627 s para todo o conjunto de teste, que continha 12.534 fluxos. Esse
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valor corresponde a uma laténcia média de aproximadamente 0,0529 ms por fluxo, significati-
vamente inferior a obtida pelos modelos de Shieh et al. [36] (0,14 ms) e Thirimanne et al. [37]
(0,11 ms). Essa reducdo de laté€ncia decorre diretamente da arquitetura enxuta da CNN resul-
tante da otimizacdo via AG, que diminui o nimero de parametros e operacdes necessarias na
fase de inferéncia, refor¢ando sua aplicabilidade em cendrios que demandam resposta quase em
tempo real.

Do ponto de vista pratico, tal caracteristica torna o AG-CNN particularmente adequado
para cendrios near real-time € ambientes com restricdes computacionais, como dispositivos de
borda ou sistemas de monitoramento de alta taxa de trafego. A menor laténcia permite resposta
mais rapida na deteccdo e mitigacdo de ataques, reduzindo a janela de exposicao a ameacas e

aumentando a capacidade de processamento simultaneo sem degradacdo de desempenho.

Tabela 5.3: Resumo comparativo das matrizes de confusio no conjunto CIC-IDS2018.

Modelo TN FP FN TP
Shieh et al. [36] 8582 0 3952 O
Thirimanne et al. [37] 8570 12 20 3.932
AG (atributos) 8478 104 15 3.937

AG (hiperparametros) 8.562 20 7 3.945

Por meio da Tabela 5.3, nota-se que o modelo de Shieh apresenta viés extremo para a classe
normal, com auséncia de falsos positivos, porém ao custo de uma taxa de falsos negativos ele-
vada (3.952), o que o torna pouco util em cendrios de seguranga, nos quais a prioridade € evitar
que ataques passem despercebidos. Em contraste, o modelo proposto (AG de hiperparame-
tros), além de reduzir substancialmente os falsos negativos (7), mantém um ndmero de falsos
positivos baixo (20), configurando um equilibrio mais adequado para IDS. Ainda, quando com-
parado a DNN de Thirimanne, observa-se simultaneamente menor FN e maior FP, reforcando
a importancia pratica de reduzir falsos negativos: enquanto FPs implicam apenas alertas incor-
retos passiveis de triagem, FNs representam intrusdes ndo detectadas e, portanto, risco direto a
disponibilidade e a integridade do sistema.

O modelo de Thirimanne ja mostra maior equilibrio, reduzindo drasticamente os falsos ne-
gativos (20) e alcancando taxa de verdadeiros positivos elevada (3.932), embora a custa de
alguns falsos positivos (12). Esse comportamento indica maior sensibilidade, ainda que com
leve perda de especificidade.

Na presente pesquisa, os resultados dos AGs demonstram avangos adicionais. A selecdo de
atributos (AG-atributos) mantém bom desempenho geral, embora com nimero relativamente
maior de falsos positivos (104), o que sugere que a eliminagao de atributos redundantes favo-

receu a sensibilidade em detrimento da especificidade. Ja o AG de hiperparametros alcancou
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o melhor equilibrio entre as classes: apenas 20 falsos positivos e 7 falsos negativos, atingindo
distribui¢do mais simétrica entre precision e recall.

Esse panorama confirma que a integracdo de AGs com CNNs produz classificadores nao
apenas competitivos em acurdcia global, mas também mais confidveis em termos de balancea-
mento entre classes. Em particular, o AG de hiperparametros supera o modelo de Thirimanne ao
reduzir simultaneamente falsos positivos e falsos negativos, aproximando-se de uma fronteira

de decisdo mais estdvel e aplicavel em cendrios near real-time.
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Capitulo 6
Conclusao e Trabalhos Futuros

O presente trabalho apresentou uma metodologia inovadora para a detec¢ao de intrusdes
em redes de computadores, fundamentada na combinacdo de AGs e CNNs. Essa integracao
foi concebida com o intuito de otimizar, de forma simultinea, a selecao de atributos e o ajuste
de hiperparametros, buscando alcancar o equilibrio ideal entre desempenho preditivo e efici-
éncia computacional. Ao aplicar a abordagem proposta ao conjunto de dados CIC-IDS2018,
verificou-se que a solucdo desenvolvida ndo apenas atingiu resultados de ponta nas métricas
avaliadas, mas também manteve um tempo de resposta suficientemente baixo para aplicacdes
em ambientes com restri¢des de laté€ncia.

Do ponto de vista quantitativo, 0 modelo completo AG—-CNN apresentou desempenho su-
perior no conjunto CIC-IDS2018, alcangando acuricia de 99,85%, Fi-score de 0,998 ¢ G-Mean
de 0,998. Além disso, o tempo médio de inferéncia manteve-se baixo, em torno de 0,0529 ms
por amostra, evidenciando que a combinacao da selecdo automatica de atributos com o ajuste
de hiperparametros ndo apenas potencializou a capacidade discriminativa da rede, mas também
preservou a eficiéncia computacional necessdria para aplicacoes em tempo quase real.

A andlise qualitativa reforca essas conclusdes ao evidenciar que os atributos selecionados
pelo AG apresentam forte relevancia na caracterizagdo do trafego de rede, incluindo varidveis
associadas a padrdes temporais, indicadores de controle de fluxo e métricas estatisticas das co-
nexoes. Paralelamente, a configuracio 6tima obtida para a CNN mostrou-se coerente com a li-
teratura especializada, contemplando funcdes de ativacdo capazes de lidar com ndo linearidades
complexas e tamanhos de camadas que equilibram capacidade de modelagem e generalizagdo.
Além disso, as curvas de evolucdo de acurdcia ao longo das geragdes revelaram um processo de
convergéncia estavel, indicando que o mecanismo evolutivo foi capaz de explorar o espaco de
busca de forma eficiente, evitando estagnacao prematura e encontrando solucdes robustas.

Outro aspecto relevante estd na andlise das matrizes de confusdo, que evidenciaram a baixa
incidéncia de falsos positivos e falsos negativos. Esse comportamento € particularmente im-
portante em sistemas de detec¢do de intrusdes, nos quais alarmes falsos em excesso podem
comprometer a confiabilidade do sistema e a efici€ncia das equipes de seguranga, enquanto a

ndo deteccdo de ataques representa um risco direto a integridade da rede. Assim, a proposta
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demonstrou nio apenas alta acurdcia global, mas também equilibrio entre as taxas de acerto
para cada classe, refletido nas métricas harmonicas avaliadas.

Apesar dos resultados expressivos, € importante reconhecer as limitagcdes do estudo. A
principal refere-se ao fato de que os experimentos foram conduzidos exclusivamente sobre o
conjunto CIC-IDS2018, que, embora amplamente utilizado na literatura, ndo contempla todas
as nuances e imprevisibilidades de um trafego de rede real. Além disso, o processo evolutivo
empregado, embora eficiente do ponto de vista de resultados, demanda recursos computacio-
nais consideraveis durante a fase de treinamento, o que pode representar um entrave para sua
aplicacdo em ambientes com restricdes severas de hardware.

Como desdobramentos futuros, vislumbra-se a aplicacdo da metodologia proposta a bases
de dados adicionais e a cendrios de trafego real, possibilitando a avaliacdo de sua capacidade de
generalizagdo e adaptabilidade em condi¢des mais dindmicas. Outra direcdo promissora con-
siste na ampliacdo da abordagem para lidar com multiplas classes de ataques, permitindo nao
apenas a deteccdo de intrusdes, mas também a sua categorizacdo. Adicionalmente, a explora-
¢do de variantes arquiteturais da CNN, aliada a operadores genéticos customizados e técnicas
de online learning, poderd contribuir para acelerar a convergéncia e permitir atualizagdes incre-
mentais do modelo sem a necessidade de reprocessamento completo do histérico de dados.

Dessa forma, conclui-se que a combinacdo de AGs e CNNs, conforme delineada neste tra-
balho, representa uma alternativa eficaz e promissora para sistemas de deteccao de intrusoes,
conciliando alto desempenho, robustez e viabilidade pratica. Os resultados obtidos reforcam o
potencial da abordagem e estabelecem uma base s6lida para investigacdes futuras voltadas a sua

aplicacao em cendrios cada vez mais complexos e exigentes no campo da segurancga cibernética.
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