
Geração Automática de Relatórios de

Confiabilidade: Projeto e Implementação da

Camada Front-end para Identificação de Causas

de Falhas de Software na Plataforma X-RAT

Nathan Soares Mota

Universidade Federal de Uberlândia

Faculdade de Computação

Bacharelado em Sistemas de Informação

Monte Carmelo

2025

Nathan Soares Mota

Geração Automática de Relatórios de

Confiabilidade: Projeto e Implementação da

Camada Front-end para Identificação de Causas

de Falhas de Software na Plataforma X-RAT

Trabalho de conclusão de curso apresentado

à Faculdade de Computação da Universidade

Federal de Uberlândia, como parte dos requisitos

exigidos para a obtenção do grau Bacharel em

Sistemas de Informação.

Área de concentração: Sistemas de Informação

Orientador: Caio Augusto Rodrigues dos Santos

Monte Carmelo

2025

Este trabalho é dedicado à minha família, especialmente aos meus pais, exemplos de

força, apoio e dedicação ao longo de toda a minha formação.

É também dedicado a mim, pela resiliência diante dos desafios, pelas renúncias e pela

determinação de persistir.

Dedico ainda este trabalho aos amigos que fiz nessa jornada, que tornaram o caminho

mais leve e significativo.

Agradecimentos

Agradeço primeiramente a Deus, pela oportunidade e força ao longo desta jornada.

Aos meus pais e à minha família, sou profundamente grato pelo apoio incondicional, tanto

no aspecto emocional quanto no financeiro, por serem minha base nos momentos difíceis

e minha fonte constante de motivação e inspiração. Sem o suporte de vocês, a realização

deste trabalho não teria sido possível.

Agradeço também a mim mesmo, pela resiliência e determinação que me trouxeram até

aqui. Por ter encarado a mudança para outro estado em busca da minha formação, por ter

permanecido firme mesmo distante da família e dos amigos, e por ter enfrentado o período

da pandemia de COVID-19, no qual precisei trabalhar e lidar com atrasos e desafios que

estenderam minha trajetória acadêmica. Pelas noites em claro, pelos momentos de cansaço

e pela persistência em continuar, apesar de todas as dificuldades — meu reconhecimento

e gratidão a mim mesmo por não ter desistido.

Agradeço igualmente a todos os amigos que fiz nessa caminhada, em especial ao meu

amigo Álvaro, parceiro essencial ao longo deste projeto. Compartilhamos inúmeros dias

de desenvolvimento do sistema, reuniões e alinhamentos constantes por mais de um ano.

Sua dedicação no backend, em conjunto com meu trabalho no frontend, foi fundamental

para tornar este projeto possível.

“Eu sempre fui um sonhador, é isso que me mantém vivo!”

(Racionais MC’s)

Resumo

Sistemas operacionais, como Windows 10 e 11, sustentam atividades críticas em ambientes

pessoais e corporativos, de modo que falhas neste software podem comprometer a

disponibilidade dos serviços e a experiência dos usuários. Nesse cenário, torna-se relevante

analisar sistematicamente eventos de falha e estruturar informações que apoiem o diagnóstico

de causas e o aprimoramento da confiabilidade dos computadores avaliados. Este trabalho

apresenta o desenvolvimento e aprimoramento da plataforma X-RAT (X-Reliability Analysis

Tool), uma ferramenta voltada para a análise e geração automática de relatórios de

confiabilidade de software em sistemas operacionais (SOs), com foco nos Windows 10 e 11. A

plataforma coleta logs, extrai eventos de falha, armazena os dados em um banco de dados e os

processa por meio de algoritmos de categorização das falhas baseada em critérios como falhas

de kernel (OSKNL), serviços (OSSVC), aplicações do sistema (OSAPP) e aplicações do usuário

(USRAPP). Além disso, são calculadas diversas métricas estatísticas, incluindo a frequência das

causas de falhas, a distribuição das falhas por categoria e a ocorrência dessas categorias ao

longo do dia (Madrugada, Manhã, Tarde e Noite) e dos dias da semana. Por fim, a partir dos

tempos entre falhas, aplicam-se métricas de confiabilidade, como MTBF (Mean Time Between

Failures) e MTTF (Mean Time To Failure), bem como análises baseadas em distribuições de

probabilidade. Cada análise é formalizada em um relatório gerado automaticamente pela

plataforma. O objetivo deste trabalho é refatorar integralmente a plataforma previamente

desenvolvida, que atualmente se encontra desatualizada e incompleta. A nova versão terá como

diferencial a inclusão de funcionalidades adicionais, entre elas a coleta automática das falhas e

diagnósticos mais precisos das causas dessas falhas, permitindo uma análise aprofundada e

contribuindo para uma tomada de decisão mais informada no aprimoramento da confiabilidade

dos computadores analisados.

Palavras-chave: Confiabilidade de Software. Sistemas Operacionais. Relatório de Confiabili-

dade. Causas de Falhas.

Abstract

Operating systems such as Windows 10 and 11 support critical activities in both personal

and corporate environments, so failures in this software can compromise service availability and

user experience. In this context, it becomes relevant to systematically analyze failure events and

structure information that supports the diagnosis of root causes and the improvement of the

reliability of the evaluated computers. This work presents the development and enhancement of

the X-RAT platform (X-Reliability Analysis Tool), a tool designed for the analysis and automatic

generation of software reliability reports in operating systems (OSs), focusing on Windows 10

and 11. The platform collects logs, extracts failure events, stores the data in a database, and

processes them through failure categorization algorithms based on criteria such as kernel failures

(OSKNL), service failures (OSSVC), system application failures (OSAPP), and user application

failures (USRAPP). In addition, several statistical metrics are computed, including the frequency

of failure causes, the distribution of failures by category, and the occurrence of these categories

throughout the day (Early Morning, Morning, Afternoon, and Evening) and the days of the

week. Finally, based on the times between failures, reliability metrics such as MTBF (Mean Time

Between Failures) and MTTF (Mean Time To Failure) are applied, as well as analyses based

on probability distributions. Each analysis is formalized in a report automatically generated by

the platform. The goal of this work is to fully refactor the previously developed platform, which

is currently outdated and incomplete. The new version will feature additional functionalities,

including automatic failure collection and more accurate diagnostics of failure causes, enabling

deeper analysis and contributing to more informed decision-making in improving the reliability

of the analyzed computers.

Keywords: Reliability of Software. Operating Systems. Reliability Report. Failure Causes.

Lista de ilustrações

Figura 1 – Fatores que influenciam a escolha entre desenvolvimento dirigido por

plano ou ágil. Fonte: Sommerville, 2018. 29

Figura 2 – Primeira parte do fluxo da plataforma X-RAT 36

Figura 3 – Segunda parte do fluxo da plataforma X-RAT 38

Figura 4 – Fluxo geral da plataforma X-RAT . 40

Figura 5 – Tela de registro de novo usuário. 49

Figura 6 – Tela de gerenciamento de usuários e alteração de permissões. 49

Figura 7 – Tela de autenticação do sistema. 50

Figura 8 – Painel de gerenciamento administrativo da plataforma. 50

Figura 9 – Formulário de cadastro de nova causa de falha. 51

Figura 10 – Interface para listagem, edição e exclusão de causas de falhas. 51

Figura 11 – Tela de consulta detalhada de uma falha específica. 52

Figura 12 – Cadastro de um novo critério de categorização. 52

Figura 13 – Listagem e gerenciamento dos critérios registrados. 52

Figura 14 – Consulta de um critério específico. 53

Figura 15 – Cadastro de um novo critério de categorização para falhas menos fre-

quentes. 53

Figura 16 – Listagem e gerenciamento dos critérios registrados para falhas menos

frequentes. 53

Figura 17 – Consulta de um critério específico para falhas menos frequentes. 53

Figura 18 – Cadastro de novo evento não caracterizado como falha. 54

Figura 19 – Listagem e gerenciamento de eventos não relacionados a falhas. 54

Figura 20 – Consulta individual de evento não caracterizado como falha. 54

Figura 21 – Tela inicial de apresentação da pesquisa. 55

Figura 22 – Interface de upload de arquivos de log do sistema. 55

Figura 23 – Confirmação da cópia do comando de busca dos arquivos de log. 56

Figura 24 – Localização dos arquivos de log do Windows. 57

Figura 25 – Movimentação dos arquivos de log para o Desktop. 57

Figura 26 – Envio dos arquivos .evtx para análise. 58

Figura 27 – Formulário de caracterização do ambiente de uso. 58

Figura 28 – Distribuição temporal das falhas por período e por dia da semana. . . . 59

Figura 29 – Tabela de causas de falhas com frequência e percentual de ocorrência. . 60

Figura 30 – Estatísticas dos tempos entre as falhas (em horas). 60

Figura 31 – Histograma do tempo entre falhas (TBF). 60

Figura 32 – Resultados do teste de aderência (Goodness-of-Fit) e gráficos de confi-

abilidade. 61

Figura 33 – Taxa de falhas (failure rate) h(t) calculada a partir da distribuição

ajustada. 61

Figura 34 – Função densidade de probabilidade (PDF) f(t) dos tempos entre falhas

(TBF). 62

Figura 35 – Interface inicial da plataforma X-RAT no modo claro, com suporte à

internacionalização em PT-BR. 62

Figura 36 – Interface inicial da plataforma X-RAT no modo claro, com suporte à

internacionalização em EN. 63

Figura 37 – Avaliação da interface da plataforma X-RAT utilizando o Lighthouse,

apresentando 94% em Accessibility (Acessibilidade) e 93% em Best

Practices (Boas Práticas). 63

Lista de siglas

S0: Sistema Operacional (Operating System)

OSKNL: Falhas no Kernel (Kernel Failures)

OSSVC: Falhas em Serviços do Sistema Operacional (Operating System Services

Failures)

OSAPP: Falhas em Aplicações do Sistema Operacional (Operating System

Applications Failures)

USRAPP: Falhas de Aplicativos do Usuário (User Application Failures)

LGPD: Lei Geral de Proteção de Dados (General Data Protection Law)

MTBF: Mean Time Between Failures (Tempo Médio Entre Falhas)

MTTF: Mean Time To Failure (Tempo Médio Para Falha)

MTTR: Mean Time To Repair (Tempo Médio Para Reparo)

PDF: Probability Density Function (Função Densidade de Probabilidade)

X-RAT: Plataforma de Análise e Relatórios de Confiabilidade

API: Application Programming Interface (Interface de Programação de Aplicações)

Uptime Institute: Instituto de Estudos e Análise de Data Centers

ISO: International Organization for Standardization (Organização Internacional de

Padronização)

IEC: International Electrotechnical Commission (Comissão Eletrotécnica Internacional)

Sumário

1 INTRODUÇÃO . 19

1.1 Motivação . 20

1.2 Objetivos . 21

1.2.1 Objetivo Geral . 21

1.2.2 Objetivos Específicos . 21

1.3 Contribuições . 22

1.4 Organização da Monografia . 22

2 FUNDAMENTAÇÃO TEÓRICA 25

2.1 Confiabilidade de Software . 25

2.1.1 Métricas de Confiabilidade . 25

2.2 Falhas de Software . 26

2.3 Categorias de Falhas . 27

2.4 Abordagem de desenvolvimento de software 28

2.5 Trabalhos Relacionados . 30

2.6 Síntese e Comparação dos Trabalhos Relacionados 31

2.7 Comparação com versões anteriores 32

3 METODOLOGIA . 35

3.1 Visão Geral . 35

3.2 Dados de Falha . 35

3.3 Método . 36

3.3.1 Pré-processamento . 36

3.3.2 Processamento dos Logs de Falha . 37

3.4 Tecnologias Utilizadas no Front-end 40

3.4.1 Vite . 41

3.4.2 Internacionalização . 41

3.4.3 Tema Escuro (Dark Mode) . 42

3.4.4 Roteamento . 42

3.4.5 Gerenciamento de Estado e Cache . 42

3.4.6 Comunicação com a API . 43

3.4.7 Visualização de Dados . 43

3.4.8 Validação de Formulários . 43

3.4.9 Autenticação . 43

3.5 Tecnologias Utilizadas no Back-end 43

3.5.1 Bibliotecas de Processamento de Logs 44

3.5.2 Manipulação e Estruturação dos Dados 44

3.5.3 Análises Estatísticas . 44

3.5.4 Containerização e Deploy . 44

4 RESULTADOS DA IMPLEMENTAÇÃO 47

4.1 Pré-processamento . 48

4.1.1 Registro de Usuário . 48

4.2 Gerenciamento de Usuários . 49

4.2.1 Login de Usuário . 50

4.2.2 Painel de Administração . 50

4.3 Gerenciamento de Causas de Falhas 51

4.4 Critérios de categorização das falhas 52

4.5 Eventos não caracterizados como falhas 54

4.6 Processamento dos Logs de Falha 55

4.7 Interface e Internacionalização . 62

4.8 Avaliação da Qualidade da Interface 63

5 CONCLUSÃO . 65

REFERÊNCIAS . 69

19

Capítulo 1

Introdução

Os Sistemas computacionais tornaram-se onipresentes na sociedade moderna, sendo

amplamente utilizados em diversos setores essenciais, como saúde, comunicação,

educação, negócios e serviços públicos (PETRICEK, 2020; BENNETT; BRACHMAN,

2010; ESPOSITO; MASTROIANNI, 2002; ABBAS; KHAN; ALI, 2023). Essa

onipresença faz com que as falhas desses sistemas tenham um impacto significativo na

vida humana, causando desde simples inconvenientes até danos catastróficos (MARTIN,

2023; SMITH, 2023). Dentre todas as ameaças ao correto funcionamento de sistemas

computacionais, é amplamente conhecido que as falhas de software são predominantes

(SALFNER; LUTZ; MALEK, 2006; MARTINO, 2014). De acordo com (INSTITUTE,

2021), falhas de software foram a principal causa de 119 interrupções em servidores

relatadas publicamente em 2020.

Nesse contexto, a confiabilidade de software emerge como atributo crítico da

engenharia de sistemas, referindo-se a capacidade de um software desempenhar

corretamente suas funções sob condições específicas durante um período determinado

(ANSI/IEEE, 1991). Esse conceito é fundamental para sistemas em que falhas podem

resultar em sérias consequências, como a interrupção de serviços, perda de dados ou, em

casos mais graves, riscos à segurança. A confiabilidade é frequentemente vista como uma

métrica da qualidade do software, especialmente em ambientes críticos. Conforme

estabelecido por normas internacionais, como a ISO/IEC 9126(AL-KILIDAR; COX;

KITCHENHAM, 2005), confiabilidade pode ser definida pela capacidade do sistema de

se recuperar de falhas ou erros, mantendo o comportamento dentro de limites aceitáveis.

Garantir essa confiabilidade torna-se, portanto, essencial para prevenir interrupções e

assegurar a continuidade dos serviços. Compreender como as falhas de software ocorrem

é uma área de interesse não só para a academia, mas também para a indústria, pois

pode levar a avanços significativos na confiabilidade de sistemas de software.

A análise sistemática de falhas em sistemas operacionais representa um desafio

particularmente relevante, considerando que a maioria das aplicações depende desses

sistemas para funcionar. Quando o sistema operacional falha, todas as aplicações que

20 Capítulo 1. Introdução

operam sobre ele são potencialmente comprometidas. Os trabalhos de (PEIXOTO,

2023) e (LOPES, 2023) alcançaram avanços iniciais relevantes ao desenvolverem a

primeira versão da plataforma X-RAT, voltada à análise de logs de falhas nos sistemas

operacionais Windows 10 e 11. Esses estudos evidenciaram que a análise automatizada

de logs possibilita a identificação de padrões recorrentes de falhas. No entanto, ambos se

limitaram ao desenvolvimento do Back-end da plataforma.

Este trabalho surge, então, da necessidade de superar essas limitações através do

desenvolvimento Full Stack da plataforma X-RAT, contemplando tanto o Front-end

quanto uma refatoração completa do sistema. A proposta inclui a incorporação de

funcionalidades avançadas, com destaque para a identificação automatizada das causas

de falhas. O objetivo central é caracterizar as causas de falhas em computadores com

Windows 10 e 11, identificando fatores contextuais que influenciam seu comportamento

em diferentes ambientes de uso.

Além disso, a plataforma X-RAT é organizada em dois fluxos distintos e

complementares: o fluxo administrativo e o fluxo do participante (usuário). No fluxo

administrativo, acessível mediante autenticação, administradores gerenciam usuários e

permissões, definem e mantêm os critérios de categorização, cadastram e editam as

causas associadas aos códigos hexadecimais e mantêm a lista de eventos que não serão

considerados falhas, atuando sobre um conjunto de CRUD voltados à curadoria e à

configuração da ferramenta. No fluxo do participante, o usuário final interage com a

interface Front-end para localizar e enviar os arquivos de log do Windows

(Application.evtx e System.evtx), preencher o formulário de caracterização do ambiente

(laboratorial, corporativo ou pessoal) e submeter os registros para processamento no

Back-end. No processamento, os arquivos .evtx são extraídos, timestamps são

normalizados com identificação do fuso real, eventos não-falha são filtrados, e os eventos

são automaticamente classificados nas categorias Kernel do Sistema Operacional

(OSKNL), Serviços do Sistema Operacional (OSSVC), Aplicativos do Sistema (OSAPP) e

Aplicativos do Usuário (USRAPP). A partir daí, calcula-se a estatística das causas,

distribuições temporais (períodos do dia e dias da semana), tempos entre falhas (TBF) e

métricas de confiabilidade como MTBF e MTTF, além de testes de aderência para

ajuste de distribuições probabilísticas; por fim, os resultados são apresentados ao

usuário por meio de relatórios automáticos, tabelas e gráficos na interface

internacionalizada da plataforma.

1.1 Motivação

A crescente dependência da sociedade moderna de sistemas computacionais torna a

confiabilidade do software um aspecto essencial, especialmente em ambientes onde

interrupções podem resultar em prejuízos operacionais, econômicos ou de segurança.

1.2. Objetivos 21

Embora os sistemas Windows 10 e 11 registrem detalhadamente eventos e falhas em

seus arquivos de log, esses dados, por si só, não oferecem meios claros e acessíveis para

que usuários ou analistas identifiquem padrões, compreendam as causas das falhas ou

avaliem o nível de confiabilidade dos sistemas. Trabalhos anteriores relacionados à

plataforma X-RAT demonstraram o potencial da análise automatizada desses registros,

porém apresentavam limitações importantes, como ausência de coleta automática, falta

de uma interface integrada e impossibilidade de identificar causas de falhas de forma

sistemática.

Diante dessas lacunas, surge a necessidade de uma solução que automatize tanto a

coleta quanto o processamento e a interpretação dos eventos registrados, apresentando-

os de maneira clara e compreensível. A motivação deste trabalho está, portanto, na

oportunidade de aprimorar a plataforma X-RAT para torná-la capaz de identificar causas

de falhas, contextualizar sua ocorrência em diferentes ambientes e apresentar métricas

de confiabilidade de forma integrada. Com isso, busca-se facilitar a análise de falhas

em sistemas operacionais, tornando-a acessível não apenas a especialistas, mas também

a profissionais e instituições que dependem da estabilidade de seus computadores para

atividades cotidianas. A análise das causas de falhas em sistemas operacionais é crucial

porque falhas podem originar-se em múltiplas camadas: no kernel (núcleo do sistema),

em serviços do SO, em aplicações internas do sistema operacional ou em aplicações do

usuário. Compreender essa pluralidade de origens é fundamental para uma avaliação

abrangente da confiabilidade do sistema como um todo, evitando o viés de considerar

apenas falhas no kernel ou em aplicações específicas.

1.2 Objetivos

1.2.1 Objetivo Geral

Investigar as causas de falhas em computadores que operam com os sistemas Windows

10 e 11, uma vez que são os sistemas operacionais desktop mais amplamente utilizados

atualmente.

1.2.2 Objetivos Específicos

❏ Desenvolver a arquitetura Full Stack da plataforma X-RAT, contemplando tanto o

Front-end quanto o Back-end;

❏ Implementar mecanismos de detecção automática de falhas a partir dos logs do

sistema operacional;

❏ Criar sistema de categorização de falhas baseado nas classes: kernel (OSKNL), ser-

viços (OSSVC), aplicações do sistema (OSAPP) e aplicações do usuário (USRAPP);

22 Capítulo 1. Introdução

❏ Identificar as causas das falhas por meio da interpretação dos códigos hexadecimais

com base na documentação oficial da Microsoft;

❏ Elaborar relatórios detalhados que ofereçam informações relevantes sobre o

comportamento das falhas em ambientes de uso real;

❏ Implementar métricas de confiabilidade como MTBF (Mean Time Between Failures)

e MTTF (Mean Time To Failure) para análise quantitativa.

1.3 Contribuições

Este trabalho contribui para o campo de confiabilidade de software ao:

1. Desenvolver uma nova versão da plataforma X-RAT com foco, mais especificamente,

no Front-end, de modo a proporcionar uma visualização integrada e automatizada

dos resultados de confiabilidade;

2. Implementar um método de identificação e categorização das causas de falhas de

software;

1.4 Organização da Monografia

O presente trabalho está estruturado da seguinte forma:

No Capítulo 2 - Fundamentação Teórica, são apresentados os conceitos essenciais

relacionados à confiabilidade de software e análise de falhas em sistemas operacionais.

Esta seção aborda métricas fundamentais, como MTBF (Mean Time Between Failures)

e MTTF (Mean Time To Failure), além dos tipos de falhas mais recorrentes em sistemas

Windows, categorizando-as em falhas de aplicação, serviços e kernel. Esses conceitos

servem como base para a compreensão da análise de logs e a categorização das falhas, que

são centrais para o desenvolvimento da plataforma X-RAT.

No Capítulo 3 - Especificação da Plataforma, é descrito o processo

metodológico adotado para o desenvolvimento deste trabalho. São apresentadas as

etapas de desenvolvimento e refatoração da plataforma X-RAT, detalhando as etapas de

coleta, processamento e análise de logs. Este capítulo também aborda o ciclo de

desenvolvimento e o estudo de caso que será conduzido para avaliar a eficácia da

plataforma em ambientes variados, como laboratórios, empresas e uso pessoal.

No Capítulo 4 - Resultados da Implementação são apresentados os resultados

da refatoração e implementação da plataforma X-RAT. Este capítulo descreve o fluxo

completo da ferramenta, desde a coleta e envio dos arquivos de log do sistema operacional

e o preenchimento do formulário de caracterização, até a análise e categorização das

falhas. São exibidas as interfaces desenvolvidas, como o painel administrativo, os módulos

1.4. Organização da Monografia 23

de cadastro e gerenciamento de causas de falhas, critérios de categorização e eventos

não caracterizados, além da interface de análise e geração automática dos relatórios de

confiabilidade. Também são mostrados os resultados visuais da plataforma, incluindo

tabelas, gráficos e o suporte à internacionalização.

24 Capítulo 1. Introdução

25

Capítulo 2

Fundamentação Teórica

2.1 Confiabilidade de Software

A confiabilidade de software é um dos atributos mais críticos na engenharia de

sistemas, sendo responsável pela capacidade de um software desempenhar corretamente

suas funções sob condições específicas durante um período determinado. Esse conceito é

fundamental para sistemas em que falhas podem resultar em sérias consequências, como

a interrupção de serviços, perda de dados ou, em casos mais graves, riscos à segurança.

A confiabilidade é frequentemente vista como uma métrica da qualidade do software,

especialmente em ambientes críticos. Conforme estabelecido por normas internacionais,

como a ISO/IEC 9126(AL-KILIDAR; COX; KITCHENHAM, 2005), confiabilidade pode

ser definida pela capacidade do sistema de se recuperar de falhas ou erros, mantendo o

comportamento dentro de limites aceitáveis.

2.1.1 Métricas de Confiabilidade

Nesta seção, são apresentadas as principais métricas utilizadas para medir a

confiabilidade de sistemas de software, conforme descrito no Handbook of Software

Reliability Engineering (LYU et al., 1996). Cada métrica contribui para a avaliação do

desempenho e da robustez do sistema ao longo do tempo, permitindo prever a

ocorrência de falhas e planejar medidas de mitigação.

2.1.1.1 Confiabilidade

A confiabilidade de um sistema, denotada por R(t), é a probabilidade de que o sistema

funcionará corretamente durante um intervalo de tempo t, sem apresentar falhas. A

fórmula é dada por:

R(t) = 1 − F (t)

26 Capítulo 2. Fundamentação Teórica

Onde F (t) é a função de distribuição de falhas, representando a probabilidade

acumulada de falha até o tempo t.

2.1.1.2 Warranty Time

O warranty time é definido como o maior tempo entre falhas observado em um conjunto

de dados, utilizado para determinar o tempo máximo de operação sem falhas. A fórmula

para o warranty time é:

WT = max(TBF)

Onde TBF é o tempo entre falhas observado no sistema.

2.1.1.3 Tempo Médio para Falha (MTTF)

O tempo médio para falha MTTF é o valor esperado do tempo até que ocorra a

primeira falha em um sistema não reparável. É calculado pela integral da função de

confiabilidade:

MTTF =
∫

∞

0

R(t) dt

2.1.1.4 Tempo Médio para Reparo (MTTR)

O tempo médio para reparo MTTR é o tempo esperado para que um sistema seja

restaurado após uma falha. A fórmula para MTTR é dada por:

MTTR =
∫

∞

0

t g(t) dt

Onde g(t) é a função densidade de reparo, descrevendo o tempo necessário para res-

taurar o sistema.

2.1.1.5 Tempo Médio entre Falhas (MTBF)

O tempo médio entre falhas MTBF é utilizado para sistemas que são reparáveis e

representa o tempo médio de operação entre falhas. É dado pela soma do tempo médio

para falha MTTF e o tempo médio para reparo MTTR:

MTBF = MTTF + MTTR

2.2 Falhas de Software

Falhas de software são eventos indesejados que ocorrem quando o serviço fornecido

por um sistema se desvia do serviço correto, ou seja, quando o sistema deixa de executar

2.3. Categorias de Falhas 27

a função para a qual foi projetado, entregando um resultado incorreto. Seguindo a

taxonomia descrita por Avizienis et al. (AVIZIENIS et al., 2004) referenciada em

(SANTOS; JR.; TRIVEDI, 2021), podemos distinguir três conceitos principais

relacionados às falhas de software:

1. Falha: Um evento que ocorre quando o serviço fornecido pelo sistema se desvia do

serviço correto, ou seja, quando o sistema não realiza exatamente o que se espera.

Uma falha nem sempre resulta em uma interrupção completa (como um

travamento), podendo ocorrer em formas mais sutis que afetam a funcionalidade

esperada do software sem necessariamente causar um bloqueio ou encerramento do

sistema.

2. Erro: Refere-se à consequência de uma falta, onde o estado incorreto gerado pela

falta causa uma diferença entre o serviço esperado e o serviço entregue pelo sistema.

Esse estado incorreto pode ser perceptível ou não, mas representa uma discrepância

em relação ao funcionamento correto do sistema.

3. Falta (Fault): A causa de um erro, geralmente relacionada a um defeito ou bug

no código do software. A falta é a origem que, quando ativada sob determinadas

condições, desencadeia uma sequência que leva ao erro e, eventualmente, à falha

observada no serviço do sistema.

Essa definição permite considerar que falhas de software nem sempre causam

interrupções completas, como travamentos ou encerramentos, mas podem incluir eventos

que, embora não desativem o sistema, resultam em um serviço que se desvia do

esperado. Essa abordagem permite uma análise mais abrangente das falhas e evita o

viés de seleção ao considerar apenas falhas que resultam em travamentos ou interrupções

completas do sistema (SANTOS; JR.; TRIVEDI, 2021).

2.3 Categorias de Falhas

A categorização de falhas de software pode ser dividida em dois principais níveis de

análise: falhas do SO e falhas de aplicações do usuário. Essa categorização permite uma

análise detalhada dos diferentes pontos onde as falhas podem ocorrer. Para o sistema

operacional, as falhas podem ocorrer no núcleo do sistema, em serviços operacionais em

segundo plano ou em aplicações que interagem diretamente com o usuário. A seguir, são

descritas essas categorias:

1. Falhas do SO:

28 Capítulo 2. Fundamentação Teórica

a) Falhas no Kernel (OSKNL): Ocorrências de falhas no código do kernel do

sistema operacional, que frequentemente resultam em travamentos ou reinici-

alizações, devido ao impacto direto no gerenciamento de hardware e na execu-

ção de funções críticas do sistema.

b) Falhas em Serviços do Sistema Operacional (OSSVC): Esses serviços

operam no espaço de usuário, executando em segundo plano para fornecer

funcionalidades como gerenciamento de impressão, agendamento de tarefas e

eventos do sistema. Embora essas falhas nem sempre causem uma interrupção

completa, elas resultam em uma degradação do serviço fornecido, afetando a

confiabilidade percebida pelo usuário.

c) Falhas em Aplicações do Sistema Operacional (OSAPP): Compreende

falhas que ocorrem em aplicações internas do sistema, como o gerenciador de

janelas. Essas falhas impactam diretamente a experiência do usuário, mas sem

afetar o núcleo do sistema.

2. Falhas de Aplicações do Usuário (USRAPP): Falhas que ocorrem nas

aplicações de usuário, que são os programas com os quais o usuário interage

diretamente, como editores de texto, navegadores e outros softwares de

produtividade. Como essas falhas acontecem no espaço de usuário, elas não

interferem diretamente no funcionamento do sistema operacional em si, mas

comprometem a funcionalidade e a experiência do usuário ao utilizar a aplicação

específica.

Essa categorização considera que falhas em qualquer uma dessas camadas podem

desviar o serviço fornecido pelo sistema do serviço correto esperado pelo usuário, mesmo

que não resulte necessariamente em um travamento ou reinicialização. Ao analisar as

falhas em múltiplas camadas do sistema operacional, este modelo permite uma avaliação

mais precisa da confiabilidade do sistema operacional como um todo, conforme

recomendado em estudos como o de (SANTOS; JR.; TRIVEDI, 2021), que indicam a

importância de não limitar a análise apenas a falhas no kernel para uma avaliação

completa da confiabilidade do sistema.

2.4 Abordagem de desenvolvimento de software

Segundo (SOMMERVILLE, 2018), a seleção de uma abordagem de desenvolvimento

de software pode ser orientada por uma série de perguntas-chave, que exploram aspectos

técnicos, humanos e organizacionais do sistema, da equipe de desenvolvimento e dos

stakeholders envolvidos. Esses fatores permitem uma análise aprofundada para escolher

entre abordagens de desenvolvimento dirigidas por plano ou ágeis. A Figura 1 apresenta

os fatores considerados para a escolha de cada abordagem.

30 Capítulo 2. Fundamentação Teórica

Considerando as respostas obtidas com base nas perguntas propostas por

(SOMMERVILLE, 2018), foi possível chegar às seguintes conclusões:

O software a ser desenvolvido é de porte pequeno, com complexidade baixa a média e

vida útil curta, o que torna viável a aplicação de uma metodologia ágil, pois não exige um

esforço intenso de documentação para comunicação entre a equipe e o cliente. A equipe de

desenvolvimento é composta por membros experientes e familiarizados com as tecnologias

necessárias, utilizando ferramentas produtivas que facilitam a colaboração e comunicação

interna. Essas características reforçam a adequação de uma metodologia ágil, já que o

trabalho em equipe ocorre de forma eficiente. A implementação pode ser iniciada antes

que o produto esteja totalmente especificado, permitindo entregas incrementais e rápidas,

que podem ser ajustadas com base em feedbacks. Portanto, a abordagem mais adequada

para este projeto é o desenvolvimento de software ágil.

2.5 Trabalhos Relacionados

Esta seção apresenta e discute os trabalhos relacionados, destacando as contribuições

relevantes no contexto deste estudo. A seguir, são descritos os principais projetos e

pesquisas realizados, incluindo os trabalhos desenvolvidos pelo autor, que se relacionam

com o tema abordado.

O trabalho de Oliveira (OLIVEIRA, 2018) foca na análise da confiabilidade do

sistema operacional Windows 10, que utilizou a ferramenta OSRat para explorar dados

de falhas de software. Este estudo contribui ao estruturar um processo de extração e

organização dos dados dos arquivos de log do sistema, seguido por uma análise criteriosa

que facilita a classificação das falhas em diferentes categorias. Essa abordagem é

essencial para compreender os desafios de confiabilidade específicos do Windows 10, um

dos sistemas mais utilizados atualmente, e serve como base para o aprimoramento de

futuras pesquisas na plataforma X-RAT, que busca analisar e prever falhas de forma

mais abrangente.

No trabalho de Santos et al. (SANTOS; MATIAS; TRIVEDI, 2020), foi proposto um

método estatístico para prever falhas de sistemas operacionais com base na associação de

múltiplos eventos de falha. Este estudo se destaca pela aplicação de técnicas avançadas

de análise de dados, que permitiram identificar correlações entre falhas consecutivas. A

abordagem desenvolvida possibilita uma análise mais profunda da confiabilidade do sis-

tema, fornecendo insights para melhorar a prevenção de falhas e a manutenção de siste-

mas críticos.

Santos et al. (SANTOS; JR.; TRIVEDI, 2021) realizaram uma análise detalhada das

causas de falhas tanto em sistemas operacionais quanto em softwares de aplicação em

múltiplos locais. O estudo examinou falhas de diversos tipos, visando identificar padrões

de falhas que impactam a confiabilidade de softwares amplamente utilizados, com foco na

2.6. Síntese e Comparação dos Trabalhos Relacionados 31

variação entre diferentes ambientes operacionais. Esta pesquisa é relevante para entender

como diferentes fatores ambientais influenciam as causas de falhas e para a implementação

de abordagens preventivas.

O trabalho de Diogo Canut Freitas Peixoto (PEIXOTO, 2023) contribuiu com o

desenvolvimento da plataforma X-RAT que implementou uma engine dedicada à análise

automatizada de logs de falhas, focada em sistemas operacionais Windows. Esse projeto

facilitou o processo de leitura e categorização de eventos de falha, estabelecendo uma

base sólida para a geração automática de relatórios de confiabilidade. A partir dessa

estrutura, o presente trabalho amplia o escopo da X-RAT, direcionando a análise para

grupos de computadores em diferentes ambientes e explorando como as características

desses contextos influenciam a frequência e o tipo de falhas. Assim, o estudo atual se

apoia nas funcionalidades desenvolvidas por Peixoto, estendendo-as para uma aplicação

que abrange ambientes variados e possibilita uma compreensão mais ampla dos fatores

que impactam a confiabilidade de sistemas.

O trabalho de Bruno Coelho Lopes (LOPES, 2023) contribuiu com o aprimoramento da

plataforma X-RAT, que introduziu métodos de análise preditiva baseados em padrões de

eventos múltiplos, com foco na antecipação de falhas em sistemas operacionais Windows.

Essa pesquisa forneceu uma base sólida de técnicas que permitiram identificar padrões de

falhas recorrentes, estabelecendo uma estrutura inicial para a análise de confiabilidade.

A partir desses avanços, o presente trabalho expande a análise da X-RAT para múltiplos

grupos de computadores em diferentes ambientes, explorando como fatores contextuais

influenciam a ocorrência de falhas. Dessa forma, a pesquisa atual se apoia nas melhorias

propostas por Lopes, mas direciona o foco para a análise em contextos variados, ampliando

a aplicabilidade e a precisão da plataforma em ambientes específicos.

2.6 Síntese e Comparação dos Trabalhos

Relacionados

Os trabalhos analisados oferecem fundamentos conceituais e experimentais essenciais

para o desenvolvimento deste projeto, especialmente no que se refere à caracterização de

falhas de software, confiabilidade de sistemas operacionais e métodos de análise de

eventos. Em particular, estudos como o de Matias e Oliveira, bem como as pesquisas de

Santos, Matias e Trivedi, reforçam a necessidade de avaliar a confiabilidade do sistema

operacional considerando múltiplas categorias de falhas, o que vai ao encontro da

taxonomia empregada na plataforma X-RAT (SANTOS; JR.; TRIVEDI, 2021; JR. et

al., 2013; JR. et al., 2014; OLIVEIRA, 2018). Esses trabalhos também evidenciam a

relevância de analisar dados reais provenientes de ambientes diversos, o que fundamenta

as escolhas metodológicas adotadas neste TCC. Além disso, pesquisas voltadas para a

predição de falhas e associação múltipla de eventos destacam padrões recorrentes

32 Capítulo 2. Fundamentação Teórica

presentes em ambientes reais, fornecendo subsídios importantes para a extensão e

aprimoramento da X-RAT (SANTOS; MATIAS; TRIVEDI, 2020; LOPES, 2023). Esses

estudos influenciam diretamente a abordagem de extração, processamento e análise

estatística empregada, reforçando a importância de métricas como MTBF, distribuições

de falhas e categorização detalhada dos eventos.

Por outro lado, os trabalhos existentes não contemplam elementos essenciais

abordados neste projeto. Nenhum deles apresenta uma solução integrada com pipeline

completo — desde a coleta automatizada dos arquivos de log até a geração dinâmica e

estruturada de relatórios. Também não há, nessas pesquisas, a implementação de uma

interface moderna, mecanismos de administração da plataforma ou a criação de um

módulo dedicado exclusivamente à identificação estruturada das causas de falhas, de

forma interligada ao fluxo computacional e ao banco de dados. A ausência de uma

plataforma operacional completa limita o uso prático dos resultados apresentados na

literatura.

Dessa forma, este TCC se posiciona como uma evolução prática em relação aos

trabalhos relacionados, ao transformar conceitos e métodos previamente estudados em

uma solução aplicada, automatizada e utilizável em ambientes reais. A nova versão da

plataforma X-RAT, reconstruída e estendida neste trabalho, integra coleta,

categorização, análise estatística e visualização, oferecendo uma ferramenta completa

para diagnóstico e geração automática de relatórios de confiabilidade. Assim, o presente

trabalho estabelece um elo entre a base teórica existente e uma aplicação concreta capaz

de apoiar decisões técnicas relacionadas à confiabilidade de sistemas operacionais,

complementando e ampliando as contribuições encontradas na literatura (PEIXOTO,

2023).

2.7 Comparação com versões anteriores

A versão inicial da plataforma X-RAT apresentava diversas limitações funcionais que

restringiam sua capacidade de apoiar análises de confiabilidade de software. Embora

representasse um avanço importante no sentido de centralizar informações provenientes

de logs do sistema operacional, essa versão ainda dependia de procedimentos manuais,

ferramentas externas e arquivos auxiliares para realizar tarefas fundamentais.

Entre as principais limitações observavam-se: a ausência de um mecanismo

automatizado de coleta de eventos; a dependência de arquivos CSV externos para

filtragem e categorização de falhas; a falta de autenticação de usuários; restrições no

tratamento adequado de timestamps; e a inexistência de informações relacionadas às

causas das falhas registradas. Essas limitações motivaram a evolução da plataforma,

cujo aprimoramento é apresentado posteriormente na seção de Resultados Alcançados.

2.7. Comparação com versões anteriores 33

A Tabela 1 resume as principais características da primeira versão da X-RAT, desta-

cando os aspectos que precisavam ser ampliados ou reestruturados.

Funcionalidade Primeira Versão do X-RAT
Coleta de logs de falhas Não disponível – os logs precisavam ser

coletados manualmente pelo usuário.
Mecanismo de filtro de eventos Dependente de arquivo CSV externo

carregado manualmente pela aplicação.
Mecanismo de categorização de falhas Dependência de arquivo CSV externo

contendo categorias pré-definidas.
Autenticação (Login) Não possuía sistema de login; o acesso era

totalmente aberto.
Transformação de timestamp Conversão automática fixa para o fuso

horário brasileiro (GMT-3), sem
considerar o fuso real da máquina onde
ocorreu a falha.

Formato do relatório Geração de arquivo PDF estático após o
processamento dos eventos.

Informações sobre causas das falhas Não disponível – apenas o registro do
evento era apresentado, sem interpretar o
código associado.

Tabela 1 – Funcionalidades presentes na primeira versão da plataforma X-RAT.

34 Capítulo 2. Fundamentação Teórica

35

Capítulo 3

Especificação da Plataforma

3.1 Visão Geral

Este capítulo descreve o método utilizada para atingir os objetivos da pesquisa,

focando na análise de falhas de software em grupos de computadores e na geração

automática de relatórios de confiabilidade na plataforma X-RAT. A abordagem segue

uma sequência estruturada de passos, desde a coleta de logs e a categorização de eventos

até a análise estatística e a geração de relatórios com métricas de confiabilidade. O

desenvolvimento técnico foi realizado utilizando Python1 com FastAPI2 para o

Back-end, PostgreSQL3 como banco de dados e React4 com Vite5 e TypeScript6 para o

Front-end.

3.2 Dados de Falha

O sistema operacional Windows registra automaticamente logs detalhados de falhas,

abrangendo tanto os componentes do sistema quanto as aplicações do usuário. Esses

registros são essenciais para monitoramento e análise de falhas, permitindo que

informações relevantes sobre o comportamento do sistema sejam armazenadas e

recuperadas para diagnóstico e solução de problemas.

Os logs de falhas no Windows 10 e 11 estão localizados em um diretório específico,

geralmente acessível em C:\Windows\System32\winevt\Logs. Neste local, os arquivos

de log de eventos são salvos no formato .evtx, um padrão de armazenamento estruturado

que permite a organização dos dados de eventos e facilita a recuperação de informações

para análise.

1 Disponível em: <https://www.python.org/>
2 Disponível em: <https://fastapi.tiangolo.com/>
3 Disponível em: <https://www.postgresql.org/>
4 Disponível em: <https://react.dev/>
5 Disponível em: <https://vitejs.dev/>
6 Disponível em: <https://www.typescriptlang.org/>

3.3. Método 37

Com base nos diferentes campos dos eventos de falha, é possível categorizá-los

inicialmente em falhas do sistema operacional e falhas de aplicações de usuário.

No caso do sistema operacional, as falhas podem ser classificadas de forma mais

detalhada em três grupos: falhas no núcleo do sistema, em serviços operacionais de

segundo plano ou em aplicações que interagem diretamente com o usuário

conforme apresentado na Seção 2.3.

❏ Descrição das causas das falhas.

A análise das causas das falhas é conduzida a partir da identificação dos códigos

hexadecimais associados aos eventos, os quais são posteriormente interpretados com

base na documentação oficial da Microsoft (Microsoft, 2021).

❏ Eventos não caracterizados como falhas.

Existem situações em que determinados eventos não devem ser considerados falhas.

Por exemplo, o evento com ID 4319 referente ao NetBT, apenas indica que um

nome duplicado foi detectado na rede TCP (MICROSOFT, 2021). Portanto, este

evento não pode ser considerado uma falha. Desta forma, foi criado este módulo em

que são definidos os eventos que não devem ser classificados como falhas. Durante

o processo de extração dos registros a partir dos arquivos .evtx, caso um evento

pertença a essa lista, ele é automaticamente desconsiderado, não sendo incluído na

base de dados do sistema.

.

3.3.2 Processamento dos Logs de Falha

A segunda parte do fluxo é apresentada na Figura 3, englobando as etapas de coleta

dos logs, extração de eventos de falha, caracterização e geração de relatórios automáticos.

3.3. Método 39

como timestamp e mensagem são registrados, permitindo uma manipulação

estruturada dos dados e facilitando as etapas subsequentes de análise. Além disso,

eventos identificados como não falhas são filtrados automaticamente. Esses

registros são armazenados em um CRUD administrativo, que possibilita consultar,

filtrar, editar e remover elementos da lista conforme apresentado na Seção 3.3.1

❏ Definição do Timezone.

Para garantir a consistência dos dados extraídos, todos os eventos de falha

registrados no sistema são inicialmente configurados em um fuso horário padrão.

Essa padronização é essencial, uma vez que os eventos mantêm o mesmo fuso

horário independentemente da localização geográfica do dispositivo de origem. No

entanto, é importante identificar o momento exato em que as falhas ocorreram.

Assim, a partir dos campos de data e hora presentes nos registros do Reliability

Analysis Component (RAC), foi possível determinar o fuso horário real da

ocorrência de cada falha, permitindo ajustar o campo temporal de cada evento ao

horário local correspondente.

❏ Categorização das Falhas e Identificação de suas Causas.

As falhas são classificadas em diferentes grupos, conforme a categoria identificada.

Utilizando a taxonomia descrita, os eventos são classificados nas seguintes

categorias principais: Kernel do Sistema Operacional (OSKNL), Serviços do

Sistema Operacional (OSSVC), Aplicativos do Sistema Operacional

(OSAPP) e Aplicativos do Usuário (USRAPP). Essa classificação é

fundamental para o estudo, pois permite uma análise detalhada das falhas

conforme sua origem e oferece uma visão estruturada dos diferentes tipos de

eventos que afetam a confiabilidade.

Os códigos que indicam as causas das falhas são atribuídos automaticamente pelo

sistema operacional no momento da ocorrência. Portanto, assume-se que estejam

corretos. Esses códigos, representados em formato hexadecimal, identificam de

forma única as causas das falhas. A interpretação dos valores é realizada com base

na documentação oficial do sistema operacional, o que pode estar sujeito a erros de

interpretação. Entretanto, a maioria desses códigos possui descrições diretas,

representando uma ameaça mínima à validade deste estudo.

❏ Relatório com Métricas, Estatísticas e Gráficos.

Para calcular as métricas apresentadas na Seção 2.1.1, é necessário, primeiramente,

aplicar testes de aderência aos tempos entre falhas (Time Between Failures – TBFs),

a fim de identificar a distribuição de probabilidade que melhor se ajusta aos dados.

Além disso, foram gerados gráficos e estatísticas para analisar os horários e os dias

da semana em que as falhas ocorrem com maior frequência.

40 Capítulo 3. Metodologia

Os relatórios finais incluem toda a análise realizada e são apresentados ao usuário

no Front-end da plataforma.

Após a apresentação separada das duas etapas principais — o pré-processamento e o

processamento dos logs de falha — torna-se possível visualizar o funcionamento integrado

da plataforma. Dessa forma, a Figura 4 apresenta o fluxo completo do sistema, reunindo

em um único diagrama todas as fases descritas anteriormente. Essa visão consolidada

permite compreender como cada componente interage e como as etapas individuais se

articulam para compor o processo de análise automatizada de confiabilidade.

Figura 4 – Fluxo geral da plataforma X-RAT

3.4 Tecnologias Utilizadas no Front-end

Esta seção descreve as tecnologias que foram empregadas no desenvolvimento do Front-

end da plataforma X-RAT, cuja interface foi construída com React e TypeScript. A escolha

3.4. Tecnologias Utilizadas no Front-end 41

das ferramentas teve como base critérios de desempenho, manutenibilidade, suporte a

padrões modernos de desenvolvimento e compatibilidade com os requisitos funcionais e

não funcionais do sistema.

3.4.1 Vite

A escolha do Vite como ferramenta de build e desenvolvimento para o Front-end da

plataforma X-RAT foi motivada por sua arquitetura moderna e desempenho superior

em comparação ao Create React App tradicional. Segundo Gurung (GURUNG, 2022), o

Vite se destaca por adotar uma abordagem baseada em módulos ES nativos para

desenvolvimento, o que resulta em tempos de inicialização extremamente rápidos e

recarregamento instantâneo de módulos alterados, sem a necessidade de reconstruções

completas. Além disso, a estratégia de pré-compilação do Vite, aliada ao uso do esbuild,

um empacotador escrito em Go, proporciona uma performance significativamente

melhor tanto em ambientes de desenvolvimento quanto em builds de produção. Tais

vantagens são especialmente relevantes para este projeto, que demanda agilidade nas

iterações e tempo de resposta eficiente no Front-end.

3.4.2 Internacionalização

A internacionalização (i18n) da interface da plataforma X-RAT foi implementada

utilizando a biblioteca i18next, em conjunto com o módulo react-i18next, permitindo a

tradução dinâmica de todos os textos exibidos no Front-end. Essa abordagem viabiliza

que a aplicação seja apresentada em diferentes idiomas — atualmente português e inglês

— de forma totalmente automatizada e sem a necessidade de recarregar a página.

A configuração do sistema de tradução é realizada por meio de dois arquivos principais,

pt.json e en.json, que armazenam, em formato key-value, todos os textos da interface.

Cada chave representa um identificador semântico do texto, enquanto o valor associado

contém a tradução correspondente no idioma desejado. Dessa forma, a troca de idioma

ocorre de maneira instantânea, bastando alterar o parâmetro linguístico ativo.

Para detectar automaticamente o idioma preferencial do usuário, a aplicação utiliza o

módulo i18next-browser-languagedetector, que identifica o idioma configurado no navega-

dor e o aplica como padrão na inicialização. Caso o idioma detectado não esteja disponí-

vel, a aplicação recorre ao idioma de fallback, definido como inglês.

O processo de inicialização do i18n ocorre no arquivo principal da aplicação (main.tsx),

onde o módulo é importado e integrado ao React. Essa arquitetura garante flexibilidade

na adição de novos idiomas e mantém a coerência textual em todos os componentes da

interface. Com isso, a plataforma X-RAT torna-se acessível a um público mais amplo e

adequada a contextos acadêmicos e corporativos internacionais.

42 Capítulo 3. Metodologia

3.4.3 Tema Escuro (Dark Mode)

A plataforma X-RAT oferece suporte à alternância entre os modos claro e escuro, com

o objetivo de melhorar a experiência do usuário em diferentes condições de luminosidade

e preferências visuais. Essa funcionalidade foi implementada utilizando o Tailwind CSS

em conjunto com um provedor de contexto personalizado denominado ThemeProvider.

O ThemeProvider é responsável por gerenciar o estado global do tema e armazenar a

preferência do usuário no localStorage, garantindo que a configuração escolhida

permaneça ativa entre sessões de uso. A definição inicial do tema segue a configuração

de cor do sistema operacional do usuário, detectada por meio da propriedade

prefers-color-scheme. Internamente, essa propriedade utiliza a API de Media Queries do

JavaScript, acessada pelo método window.matchMedia(), que identifica o modo de cor

(claro ou escuro) configurado no navegador do usuário e ajusta a interface

automaticamente conforme essa preferência.

A alternância entre os temas é realizada dinamicamente pela adição ou remoção da

classe dark no elemento raiz do documento. O Tailwind CSS simplifica a aplicação de

estilos condicionais, permitindo que os componentes da interface utilizem o prefixo dark:

para definir variações de cor, sombra e contraste. Dessa forma, um mesmo componente

pode apresentar automaticamente aparências diferentes conforme o tema ativo, sem

necessidade de duplicar folhas de estilo.

Essa abordagem garante uma experiência visual consistente, reduz o cansaço ocular

em ambientes com pouca iluminação e reforça o foco da plataforma em acessibilidade

e personalização da interface. O suporte ao modo escuro, aliado à internacionalização,

contribui para tornar o Front-end da X-RAT mais inclusivo, moderno e adaptável às

preferências dos usuários.

3.4.4 Roteamento

A navegação entre as diferentes páginas da aplicação foi implementada com a biblioteca

React Router DOM, que fornece mecanismos para controle de rotas e estruturação lógica

de componentes e layouts. Esse recurso permitiu a organização clara entre áreas públicas

e privadas da aplicação, além de facilitar a manutenção e escalabilidade do sistema.

3.4.5 Gerenciamento de Estado e Cache

O gerenciamento de dados assíncronos foi realizado com a biblioteca @tanstack/react-

query, que permitiu armazenar localmente os dados resultantes das requisições ao Back-

end, evitando chamadas desnecessárias à API e garantindo maior fluidez na navegação

entre páginas.

3.5. Tecnologias Utilizadas no Back-end 43

As respostas de algumas requisições críticas, como aquelas associadas à categorização

de falhas, são também persistidas no localStorage, o que permite ao usuário visualizar os

dados mesmo após navegar para outras seções e retornar posteriormente, sem perda de

contexto.

3.4.6 Comunicação com a API

As requisições HTTP entre o Front-end e o Back-end foram implementadas utilizando

a biblioteca Axios, que fornece uma interface simples para envio de dados, tratamento de

erros e interceptação de respostas. A integração entre Axios e React Query foi fundamental

para o desempenho e confiabilidade das interações entre cliente e servidor.

3.4.7 Visualização de Dados

A apresentação dos resultados das análises foi realizada com o uso da biblioteca

Chart.js, responsável pela geração de gráficos dinâmicos e responsivos. Esses gráficos

incluem representações como barras, linhas e setores, que facilitam a interpretação

visual das métricas de confiabilidade e da categorização de falhas.

3.4.8 Validação de Formulários

A validação de formulários e envio de arquivos foi implementada por meio da

biblioteca react-hook-form, em conjunto com o validador zod, possibilitando a definição

de esquemas de validação declarativos. A combinação dessas ferramentas garantiu que

os dados inseridos pelos usuários estivessem corretos antes de serem processados,

inclusive com validações específicas para os arquivos exigidos pela plataforma, como

application.evtx e system.evtx.

3.4.9 Autenticação

Para controle de acesso às rotas privadas da aplicação, foi utilizado o mecanismo de

autenticação baseado em JSON Web Tokens (JWT). A biblioteca jwt-decode permitiu a

decodificação e verificação da validade dos tokens armazenados no localStorage,

assegurando que apenas usuários autenticados tivessem acesso às seções restritas da

plataforma.

3.5 Tecnologias Utilizadas no Back-end

O Back-end da plataforma X-RAT foi implementado em Python 3.11, devido à sua

vasta coleção de bibliotecas para análise de dados, processamento de eventos e integração

com banco de dados. A arquitetura foi organizada em torno da API FastAPI, que fornece

44 Capítulo 3. Metodologia

comunicação RESTful com o Front-end, validação automática de dados e documentação

interativa (Swagger/OpenAPI). O banco de dados utilizado é o PostgreSQL, acessado via

SQLAlchemy ORM, onde são armazenados os eventos extraídos e suas classificações.

3.5.1 Bibliotecas de Processamento de Logs

Para manipulação dos arquivos .evtx, que contêm os registros de falha do Windows,

foram empregadas as bibliotecas:

1. PyEvtxParser : leitura e iteração sobre registros de eventos.

2. lxml e xmltodict: parsing eficiente de estruturas XML.

3. re (expressões regulares): extração de padrões como EventID, Channel e TimeCre-

ated.

3.5.2 Manipulação e Estruturação dos Dados

Os eventos extraídos são transformados em DataFrames utilizando a biblioteca pandas,

permitindo operações como:

1. Normalização de campos (SourceName, CauseCode);

2. Definição e ajuste de timezones com pytz ;

3. Agrupamento, categorização e contagem de falhas.

3.5.3 Análises Estatísticas

A análise de confiabilidade foi realizada com o auxílio da biblioteca SciPy, utilizando

distribuições clássicas de confiabilidade:

1. Weibull, Gamma, Lognormal, Normal e Exponencial.

Foram aplicados testes de aderência (Kolmogorov-Smirnov,Anderson-Darling, AIC) para

selecionar a melhor distribuição para cada conjunto de dados, em linha com trabalhos

anteriores de caracterização de falhas em sistemas operacionais (SANTOS; MATIAS;

TRIVEDI, 2020; SANTOS; JR.; TRIVEDI, 2021).

3.5.4 Containerização e Deploy

Para simplificar a execução local e o processo de implantação, a aplicação foi contei-

nerizada com Docker.

1. O Dockerfile define o ambiente Python com as dependências listadas em

requirements.txt.

3.5. Tecnologias Utilizadas no Back-end 45

2. O Docker Compose orquestra os serviços de aplicação e banco de dados, permitindo

que múltiplos usuários executem o sistema de forma consistente.

Essa estratégia reduz problemas de compatibilidade, acelera o processo de

desenvolvimento em equipe e facilita o deploy em diferentes ambientes.

46 Capítulo 3. Metodologia

47

Capítulo 4

Resultados da Implementação

Este capítulo apresenta os resultados alcançados com o desenvolvimento da nova

versão da plataforma X-RAT. Para contextualizar as melhorias implementadas,

apresenta-se inicialmente uma comparação direta entre as funcionalidades da versão

anterior e os avanços obtidos nesta atualização. Essa comparação permite visualizar de

forma clara as limitações previamente existentes e as evoluções estruturais que

possibilitaram uma análise mais precisa e automatizada das falhas registradas. A

Tabela 2 sintetiza essas diferenças e destaca os principais aprimoramentos realizados.

Funcionalidade Primeira Versão do
X-RAT

Nova Versão do X-RAT

Coleta de logs de falhas Não disponível – logs
precisavam ser coletados
manualmente

Disponível – Possui
sistema de coleta
automática e integrada dos
logs de falhas

Mecanismo de filtro de
eventos

Arquivo CSV externo,
carregado pela aplicação

CRUD integrado na
aplicação

Mecanismo de
categorização de falhas

Arquivo CSV externo,
carregado pela aplicação

CRUD integrado na
aplicação

Autenticação (Login) Não possuía sistema de
login – acesso livre a
qualquer usuário

Possui sistema de login
integrado com
autenticação de usuários
para os mecanismos de
filtro de eventos e
categorização de falhas

Transformação de
timestamp

Converte todos os
timestamps
automaticamente para fuso
horário brasileiro (GMT-3)

Identifica o fuso horário
real do computador no
momento da falha e
converte corretamente

Formato do relatório Arquivo PDF estático
gerado após o
processamento

Relatório dinâmico,
exibido diretamente na
aplicação

Informações de causa de
falhas

Não disponível – o sistema
apenas registrava o evento
de falha

Disponível – o sistema
coleta e armazena as
causas associadas às falhas

Tabela 2 – Comparação entre a primeira e a nova versão do X-RAT.

48 Capítulo 4. Resultados da Implementação

A seguir, apresenta-se o fluxo completo da plataforma X-RAT, descrevendo as etapas

que abrangem desde a coleta dos arquivos de log do sistema operacional (.evtx) e o

preenchimento do formulário de caracterização, até a geração das métricas de

confiabilidade e a categorização automática das falhas. O objetivo é demonstrar como os

dados são processados, transformados e utilizados para compor a análise de

confiabilidade dos sistemas estudados.

4.1 Pré-processamento

A primeira etapa de acesso à plataforma X-RAT é o sistema de autenticação,

desenvolvido exclusivamente para administradores. Essa funcionalidade garante que

apenas usuários autorizados possam acessar as áreas de gerenciamento e realizar

operações sensíveis, assegurando a integridade das informações armazenadas e o controle

sobre os dados processados.

4.1.1 Registro de Usuário

O processo de registro permite a criação de novos usuários na plataforma,

possibilitando o controle e a identificação individual de cada participante do sistema. Ao

realizar o cadastro, o usuário é automaticamente inserido com a função (role) padrão de

usuário comum. Essa categoria de acesso é restrita e destina-se exclusivamente às

funcionalidades básicas, como a visualização e impressão de relatórios públicos ou

demonstrativos gerados pela plataforma. Usuários com essa função não possuem

permissão para autenticação no sistema administrativo, nem podem acessar áreas de

gerenciamento de dados ou configuração. Para que um usuário possa efetuar login e ter

acesso ao painel de administração, é necessário que um administrador altere

manualmente sua função para o nível de administrador. Essa medida garante maior

segurança e controle sobre os acessos ao sistema, evitando o uso indevido das

funcionalidades administrativas. A Figura 5 apresenta a tela de registro de novos

usuários, onde é possível visualizar os campos obrigatórios para o cadastro.

64 Capítulo 4. Resultados da Implementação

Esses resultados reforçam que a nova versão da plataforma proporciona uma

experiência superior ao usuário, com melhor estruturação dos elementos visuais,

navegação mais intuitiva e aderência a práticas recomendadas para aplicações modernas.

Além disso, demonstram que a interface refatorada está alinhada com padrões que

favorecem inclusão, robustez e manutenibilidade.

65

Capítulo 5

Considerações finais e Trabalhos futuros

Este capítulo apresenta as considerações finais sobre o desenvolvimento e os

resultados obtidos com a plataforma X-RAT, relacionando-os aos objetivos propostos e

às contribuições alcançadas ao longo da pesquisa. A seguir, são discutidos como os

objetivos geral e específicos foram atingidos, as principais contribuições deste trabalho e

as perspectivas de aprimoramento para estudos futuros.

A proposta central deste trabalho consistiu em aprimorar a plataforma X-RAT,

originalmente desenvolvida em trabalhos anteriores (PEIXOTO, 2023; LOPES, 2023),

ampliando sua capacidade de análise de confiabilidade de software por meio da

implementação da funcionalidade de identificação das causas de falhas em sistemas

operacionais. Esse aprimoramento permitiu transformar a ferramenta em uma solução

completa, capaz de coletar, processar e analisar automaticamente eventos de falhas,

gerando relatórios detalhados de confiabilidade em computadores reais.

Durante o desenvolvimento, o objetivo geral — investigar as causas de falhas

em computadores que operam com os sistemas Windows 10 e 11, utilizando

uma abordagem automatizada de análise de confiabilidade de software — foi

plenamente atingido. A refatoração da plataforma e o desenvolvimento Full Stack

(Front-end e Back-end) viabilizaram a integração de todas as etapas do processo, desde

a coleta dos arquivos de log, até a categorização das falhas e geração automática dos

relatórios. Com isso, foi possível realizar análises consistentes sobre os eventos de falha,

alinhadas às categorias propostas em estudos clássicos sobre confiabilidade de sistemas

operacionais (JR. et al., 2013; JR. et al., 2014; SANTOS; JR.; TRIVEDI, 2021).

Kernel (OSKNL), Serviços do Sistema (OSSVC) e Aplicações do Sistema (OSAPP) e

aplicações do usuário (USRAPP)

Os objetivos específicos também foram alcançados de forma satisfatória:

❏ Implementar uma metodologia de identificação e categorização das causas

de falhas de software: a categorização foi estruturada de acordo com as três

classes principais — Kernel (OSKNL), Serviços do Sistema (OSSVC) e Aplicações do

66 Capítulo 5. Conclusão

Sistema (OSAPP) — conforme a taxonomia proposta por Matias (JR. et al., 2013)

e consolidada em trabalhos posteriores (JR. et al., 2014; SANTOS; JR.; TRIVEDI,

2021). Essa estrutura possibilitou a associação de eventos a suas respectivas causas

de falhas, tornando o diagnóstico mais preciso e fundamentado.

❏ Desenvolver o Front-end e Back-end integrados da plataforma: o Back-

end, implementado em FastAPI, e o Front-end, desenvolvido em React com suporte à

internacionalização, proporcionaram uma interface intuitiva e acessível, permitindo

que usuários não especializados possam enviar seus arquivos de log e obter relatórios

detalhados automaticamente.

❏ Gerar relatórios automáticos e métricas de confiabilidade: a plataforma

calcula e apresenta métricas como MTBF (Mean Time Between Failures) e taxa de

falhas, além de estatísticas sobre a distribuição dos eventos, permitindo uma visão

quantitativa da confiabilidade dos sistemas analisados.

Dessa forma, os resultados obtidos demonstram que a pesquisa atingiu seus objetivos,

oferecendo uma ferramenta eficaz para análise de confiabilidade de sistemas operacionais,

alinhada com as abordagens empíricas e exploratórias descritas na literatura (JR. et al.,

2013; JR. et al., 2014; SANTOS; JR.; TRIVEDI, 2021; AVIZIENIS et al., 2004).

As principais contribuições deste trabalho concentram-se em três eixos: técnico, me-

todológico e científico.

❏ Contribuição técnica: desenvolvimento de uma plataforma web Full Stack

moderna e modular, que automatiza o processo de análise de confiabilidade de

sistemas operacionais, integrando coleta, processamento e visualização de dados

em uma única solução. Essa integração facilita o uso em ambientes laboratoriais,

corporativos ou pessoais, ampliando o alcance e aplicabilidade do X-RAT.

❏ Contribuição metodológica: implementação de um pipeline completo de análise

baseado em dados reais, utilizando logs de eventos (.evtx) do Windows para iden-

tificar e classificar falhas segundo uma taxonomia consolidada na literatura de con-

fiabilidade (AVIZIENIS et al., 2004; JR. et al., 2013; JR. et al., 2014). Essa abor-

dagem automatizada reduz a subjetividade e o esforço manual na análise, contribu-

indo para a reprodutibilidade dos experimentos.

❏ Contribuição científica: consolidação da plataforma X-RAT como uma

ferramenta de apoio à pesquisa em confiabilidade de software, permitindo a

ampliação dos estudos sobre causas de falhas em sistemas operacionais de

propósito geral, com base em grandes volumes de dados reais. Os resultados

obtidos validam a hipótese de que a maioria das falhas observadas decorre de

componentes de serviços do sistema (OSSVC), corroborando estudos anteriores (JR.

et al., 2014; SANTOS; JR.; TRIVEDI, 2021).

67

Com isso, este trabalho contribui para a continuidade das pesquisas do grupo X-RAT

na Universidade Federal de Uberlândia, fortalecendo o arcabouço experimental existente

e fornecendo uma base para análises mais amplas de confiabilidade e disponibilidade em

sistemas computacionais. Como trabalhos futuros, pretende-se aprimorar a plataforma

X-RAT em dois eixos principais, conforme orientação recebida:

❏ Expansão do conjunto de eventos de falhas classificados: aumentar a base

de dados de eventos e causas de falhas para incluir novas versões de sistemas ope-

racionais e tipos de eventos ainda não classificados, visando melhorar a precisão e a

abrangência da categorização.

❏ Análise de grupos de computadores: incluir uma funcionalidade que permita

comparar métricas de confiabilidade entre diferentes grupos de sistemas (por exem-

plo, ambientes corporativos, educacionais e domésticos), possibilitando a avaliação

de padrões coletivos de falhas e tendências de confiabilidade em larga escala.

68 Capítulo 5. Conclusão

69

Referências

ABBAS, A.; KHAN, M.; ALI, S. The relationship between computers and society:
Impacts, challenges, and opportunities. Journal of Computer Science, 2023.
Disponível em: <https://www.researchgate.net/publication/376642881>.

AL-KILIDAR, H.; COX, K.; KITCHENHAM, B. The use and usefulness of the iso/iec
9126 quality standard. In: IEEE. 2005 International Symposium on Empirical
Software Engineering, 2005. [S.l.], 2005. p. 7–pp.

ANSI/IEEE. Standard, Standard Glossary of Software Engineering Terminology.
New York, NY, USA: The Institute of Electrical and Electronics Engineers, Inc., 1991.
Revisão e redesignação de IEEE Std 729-1983. Aprovado em 1990, muitas vezes citado
como 1991.

AVIZIENIS, A. et al. Basic concepts and taxonomy of dependable and secure computing.
IEEE Transactions on Dependable and Secure Computing, v. 1, p. 11–33, Oct
2004.

BENNETT, J. V.; BRACHMAN, P. S. Hospital Infections. 6. ed. [S.l.]: Lippincott
Williams & Wilkins, 2010. Citado em Woeltje (Use of Computerized Systems in
Healthcare Epidemiology).

BRASIL. Lei nº 13.709, de 14 de agosto de 2018. Lei Geral de Proteção
de Dados Pessoais (LGPD). 2018. <http://www.planalto.gov.br/ccivil_03/
_ato2015-2018/2018/lei/L13709.htm>. Acesso em: set. 2025.

ESPOSITO, F.; MASTROIANNI, C. Information technology and personal computers:
The relational life cycle. In: Proceedings of the International Conference on
Information Systems. [S.l.: s.n.], 2002.

GURUNG, B. An Empirical Evaluation of Vite against Create React App. 2022.
<https://vitejs.dev/>. Acesso em: jul. 2025.

INSTITUTE, U. Annual Global Data Center Survey 2021. 2021.

JR., R. M. et al. Operating system reliability from the quality of experience viewpoint:
An exploratory study. Proceedings of the Brazilian Symposium on Computing
Systems Engineering (SBESC), 2013.

70 Referências

JR., R. M. et al. An empirical exploratory study on operating system reliability. In:
Proceedings of the ACM Symposium on Applied Computing (SAC). [S.l.:
s.n.], 2014. p. 1–8.

LOPES, B. C. Geração Automática de Relatórios de Confiabilidade: Previsão
de falhas de software com base nos padrões de eventos múltiplos na
Plataforma X-RAT. Dissertação (Mestrado) — Universidade Federal de Uberlândia,
Uberlândia, Brasil, dezembro 2023.

LYU, M. R. et al. Handbook of software reliability engineering. [S.l.]: IEEE
computer society press Los Alamitos, 1996. v. 222.

MARTIN, J. Reliability of systems in critical infrastructure. Software Engineering
Journal, v. 45, p. 123–135, 2023.

MARTINO, R. Software Reliability Engineering: Principles and Practice. [S.l.]:
Elsevier, 2014.

METZ, J. Windows XML Event Log (EVTX) format specification. 2023.
<https://github.com/libyal/libevtx/blob/main/documentation/Windows%20XML%
20Event%20Log%20(EVTX).asciidoc>. Acesso em: set. 2025.

Microsoft. Bug Check Code Reference. 2021. Acesso em: 02 out. 2025. Disponível
em: <https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/
bug-check-code-reference2?redirectedfrom=MSDN>.

MICROSOFT. Troubleshooting NetBT Error 4319. 2021. Acesso em: 02 out.
2025. Disponível em: <https://learn.microsoft.com/en-us/answers/questions/357668/
troubleshooting-netbt-error-4319>.

Microsoft. Informações de Ciclo de Vida do Windows 10 e Windows 11. 2023.
<https://learn.microsoft.com/pt-br/lifecycle/products/>. Acesso em: set. 2025.

OLIVEIRA, B. S. Análise da Confiabilidade do Sistema Operacional Windows
10 com a Ferramenta OSRat. Dissertação (Dissertação de Mestrado) — Universidade
Federal de Uberlândia, 2018.

PEIXOTO, D. C. F. Geração Automática de Relatórios de Confiabilidade de
Software: Projeto e Implementação de Engine para a Plataforma X-RAT.
Dissertação (Trabalho de Conclusão de Curso) — Universidade Federal de Uberlândia,
Uberlândia, Brasil, janeiro 2023. Orientador: Rivalino Matias Jr.

PETRICEK, T. Computing and programming in context — introduction. In:
Proceedings of the Programming 2020. [s.n.], 2020. Disponível em: <https:
//kar.kent.ac.uk/82634/>.

SALFNER, F.; LUTZ, P.; MALEK, M. Fault Diagnosis in Computer Systems.
[S.l.]: Springer, 2006.

SANTOS, C. A. R. D.; MATIAS, R. J.; TRIVEDI, K. S. Abordagem estatística para
predição de falhas de sistemas operacionais baseada em associação múltipla de falhas.
Revista Brasileira de Engenharia de Software, v. 8, n. 2, p. 101–115, 2020.

Referências 71

SANTOS, C. A. R. dos; JR., R. M.; TRIVEDI, K. S. A multisite characterization study
on failure causes in system and applications software. In: FEDERAL UNIVERSITY
OF UBERLANDIA AND DUKE UNIVERSITY. Proceedings of the Brazilian
Symposium on Computing Systems Engineering (SBESC). [S.l.], 2021.

SMITH, L. Software failure analysis in modern operating systems. Computer Systems
Review, v. 39, p. 67–81, 2023.

SOMMERVILLE, I. Software Engineering. 10th. ed. Harlow, England: Pearson, 2018.

	Folha de rosto
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de siglas
	Sumário
	Introdução
	Motivação
	Objetivos
	Objetivo Geral
	Objetivos Específicos

	Contribuições
	Organização da Monografia

	Fundamentação Teórica
	Confiabilidade de Software
	Métricas de Confiabilidade
	Confiabilidade
	Warranty Time
	Tempo Médio para Falha (MTTF)
	Tempo Médio para Reparo (MTTR)
	Tempo Médio entre Falhas (MTBF)

	Falhas de Software
	Categorias de Falhas
	Abordagem de desenvolvimento de software
	Trabalhos Relacionados
	Síntese e Comparação dos Trabalhos Relacionados
	Comparação com versões anteriores

	Metodologia
	Visão Geral
	Dados de Falha
	Método
	Pré-processamento
	Processamento dos Logs de Falha

	Tecnologias Utilizadas no Front-end
	Vite
	Internacionalização
	Tema Escuro (Dark Mode)
	Roteamento
	Gerenciamento de Estado e Cache
	Comunicação com a API
	Visualização de Dados
	Validação de Formulários
	Autenticação

	Tecnologias Utilizadas no Back-end
	Bibliotecas de Processamento de Logs
	Manipulação e Estruturação dos Dados
	Análises Estatísticas
	Containerização e Deploy

	Resultados da Implementação
	Pré-processamento
	Registro de Usuário

	Gerenciamento de Usuários
	Login de Usuário
	Painel de Administração

	Gerenciamento de Causas de Falhas
	Critérios de categorização das falhas
	Eventos não caracterizados como falhas
	Processamento dos Logs de Falha
	Interface e Internacionalização
	Avaliação da Qualidade da Interface

	Conclusão
	Referências

