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Resumo

Este trabalho apresenta um modelo baseado em autômatos celulares probabilísticos usado

para representar a dinâmica de movimentação de pessoas (pedestres) por ambientes in-

ternos durante a ocorrência de incêndios. O modelo desenvolvido estende um trabalho

da literatura, adotando cálculos alternativos para o piso estático e novas funcionalidades,

como a inclusão de obstáculos intransponíveis e transponíveis, além de introduzir a propa-

gação de focos de incêndio e sua influência na movimentação das pessoas pelo ambiente.

O objetivo é aumentar o realismo das simulações de evacuação por meio da incorporação

dessas características ao modelo original. Os resultados indicam que a adoção de cálculos

alternativos para o piso estático possibilitou a introdução bem-sucedida de obstáculos no

modelo. Além disso, a presença de obstáculos transponíveis contribuiu para a melhora

da eficiência das simulações em determinadas configurações de ambiente, especialmente

na presença de fogo, quando os pedestres tendem a evitar as regiões próximas às cha-

mas. De modo geral, as extensões implementadas ampliaram a capacidade do modelo de

representar comportamentos complexos de pedestres, preservando, ao mesmo tempo, a

simplicidade inerente aos autômatos celulares.

Palavras-chave: autômatos celulares, dinâmica de pedestres, obstáculos transponíveis,

evacuação de áreas com incêndio.
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1 Introdução

A modelagem da dinâmica de pedestres, em situações normais ou emergenciais,

tem atraído crescente atenção de pesquisadores nas últimas décadas. Estudos empíricos

realizados desde a década de 1960, por meio de observação direta, análise de fotografias

e time-lapses, forneceram resultados que apesar de úteis, tinham aplicação limitada na

previsão da movimentação de pedestres em ambientes com arquiteturas incomuns (HEL-

BING et al., 2001; PAULS, 1984).

Nesse contexto, a modelagem e simulação da dinâmica coletiva de pedestres surge

como uma alternativa mais acessível e eficaz para o estudo da dinâmica populacional. Essa

abordagem permite identificar possíveis problemas na arquitetura de edificações, além

da elaboração de soluções para mitigá-los, visto que compreender o fluxo de pedestres é

fundamental para aprimorar a segurança e funcionalidade de locais públicos (IZQUIERDO

et al., 2009). Aspectos estruturais como a presença de obstáculos, a largura e a localização

das saídas impactam significativamente o fluxo de pessoas (VARAS et al., 2007).

Diversas técnicas vêm sendo utilizadas para modelar o comportamento de pedes-

tres. Uma das primeiras classes de modelos a ganhar notoriedade foram os baseados em

forças sociais, nos quais os indivíduos são influenciados por forças exercidas pelo ambiente

e pelos demais pedestres (HELBING; JOHANSSON, 2011). Outras técnicas, como os mo-

delos de dinâmica de fluidos e Autômatos Celulares (AC), são exemplos de abordagens

que têm se mostrado relevantes.

Em particular, o uso de autômatos celulares permite representar comportamentos

complexos de multidões a partir de regras locais simples, além de possibilitar o paralelismo

durante sua execução, dada a natureza multiagente dos ACs (WOLFRAM, 1983). Este

trabalho apresenta uma versão estentida do modelo de Kirchner e Schadschneider (2002),

que emprega ACs probabilísticos para o estudo do comportamento coletivo. Diversos

ajustes foram realizados a fim de incorporar características presentes em outros modelos da

literatura, dentre os quais destaca-se a adaptação dos pisos estáticos de Varas et al. (2007)

e Alizadeh (2011) com o intuito de incluir obstáculos intransponíveis, a incorporação do

conceito de obstáculos transponíveis proposto por Silva et al. (2025) e a modelagem da

dinâmica de pedestres sob incêndio inspirada em Zheng et al. (2011).

A partir dos experimentos, observa-se que o modelo desenvolvido é capaz de repre-

sentar alguns comportamentos esperados em situações de perigo (ex: incêndio), tais como:

as pessoas evitando as áreas com fogo e buscando rotas alternativas, contornando obstá-

culos intransponíveis quando necessário e atravessando obstáculos transponíveis quando

possível. Os resultados mostram, entretanto, que o comportamento dos pedestres depende
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fortemente dos parâmetros utilizados, de modo que combinações inadequadas podem ge-

rar situações incoerentes com a realidade, por exemplo, quando os pedestres ignoram o

avanço das chamas em sua direção em favor de atravessar obstáculos transponíveis ou

permanecem presos mesmo havendo rotas alternativas livres. De forma geral, as simu-

lações indicam que o modelo final oferece maior realismo e flexibilidade, permitindo a

análise de uma variedade maior de cenários, onde diferentes tipos de obstáculos e fogo

estão presentes.

1.1 Objetivos

O objetivo deste trabalho é desenvolver um modelo de dinâmica populacional ba-

seado em ACs, de modo a representar o comportamento da movimentação de pessoas por

ambientes com obstáculos durante a ocorrência de incêndios. Para alcançar esse objetivo,

os seguintes objetivos específicos foram definidos:

• Estudar modelos de ACs relevantes para a dinâmica de pedestres.

• Implementar o modelo de Kirchner e Schadschneider (2002), de modo a utilizar sua

representação probabilística da movimentação de pedestres e o uso de pisos que

incorporam tanto o conhecimento do ambiente pelos indivíduos quanto a interação

entre eles.

• Integrar estratégias disponíveis na literatura para incorporar dinâmicas de desvio

ou transposição de obstáculos e ajustar o comportamento dos movimentos em de-

corrência de incêndios.

• Avaliar o comportamento do modelo desenvolvido a fim de verificar a efetividade

das alterações em reproduzir os comportamentos esperados.

1.2 Justificativa

A aglomeração de indivíduos em diversos ambientes, como transporte público,

instalações de ensino, eventos artísticos e culturais ou manifestações, é um fenômeno re-

corrente. Em determinadas circunstâncias, até mesmo um simples fluxo de entrada e saída

de pessoas em instalações pode resultar em acidentes (PAULS, 1984). Essas concentrações

de pessoas, quando associadas a situações emergenciais, como a propagação de focos de

incêndio, apresentam grande potencial de causar tumultos e, consequentemente, vítimas,

sejam feridos ou mortos.

Neste contexto, torna-se importante analisar a dinâmica de pedestres em situações

adversas por meio de modelos computacionais que ofereçam uma alternativa mais aces-

sível aos estudos empíricos. A contínua evolução desses modelos permite aumentar sua
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fidelidade em relação ao comportamento real dos pedestres, contribuindo com ferramentas

para a avaliação de riscos e melhoria da segurança predial.

O uso de ACs para modelar a dinâmica de pedestres, além de possibilitar a re-

presentação de comportamentos complexos por meio de regras simples, apresenta maior

eficiência computacional quando comparado a outras classes de modelos. Esse aspecto

contribui para sua ampla adoção, especialmente em aplicações embarcadas.

1.3 Estrutura do Documento

O restante deste trabalho está organizado da seguinte forma:

• Capítulo 2: introduz os conceitos básicos de autômatos celulares e dinâmica de

pedestres, além de apresentar uma revisão dos trabalhos correlatos.

• Capítulo 3: apresenta o modelo base e detalha as adaptações implementadas a fim

de incorporar novas características na dinâmica de pedestre modelada.

• Capítulo 4: descreve as simulações e análises realizadas, com o objetivo de avaliar

cada uma das alterações realizadas.

• Capítulo 5: apresenta as principais conclusões do trabalho e sugestões para pesquisas

futuras.



17

2 Fundamentação Teórica

Este capítulo apresenta os conceitos fundamentais que sustentam este trabalho.

Nas seções a seguir, o conceito e fundamentos dos autômatos celulares, os aspectos centrais

da dinâmica de pedestres e os trabalhos correlatos são abordados.

2.1 Autômatos Celulares

Autômatos Celulares (ACs) são sistemas computacionais formados por células

(agentes) organizadas em uma estrutura espacial, denominada espaço celular ou reti-

culado. Embora cada célula seja individualmente simples, o reticulado de um AC é capaz

de gerar comportamentos coletivos complexos (NEUMANN, 1966; WOLFRAM, 1984).

Tal complexidade emerge da aplicação de um conjunto de regras sobre as vizinhanças lo-

cais das células, cujas interações produzem padrões globais. A capacidade desses sistemas

de gerar padrões complexos, frequentemente observados na natureza, tem despertado o

interesse de pesquisadores de diversas áreas ao longo das últimas décadas (LIMA, 2012).

Os ACs foram originalmente estudados por Stanislaw Ulam e John Von Neumann

no início da década de 1950. Inspirados em sistemas biológicos, ambos buscavam criar

sistemas artificiais capazes de se auto-reproduzir. Destes estudos resultaram cinco dife-

rentes modelos de auto-reprodução, incluindo um modelo de AC constituído por células

contendo um autômato de 29 estados (NEUMANN, 1966).

Posteriormente, na década de 1970, John Conway propôs um dos mais conhecidos

modelos de ACs, o Game of Life (BERLEKAMP; CONWAY; GUY, 1982). Esse modelo

consiste em um AC bidimensional com regras de transição simples, o qual simula um

ambiente em que as células podem permanecer vivas, morrer ou ressuscitar, dependendo

das condições de sua vizinhança (WOLFRAM, 1983). Apesar de sua notoriedade, foi

com a publicação do livro A New Kind of Science, de Stephen Wolfram (WOLFRAM,

2002), que os ACs ficaram amplamente conhecidos e passaram a ser estudados em diversos

campos científicos.

Devido ao fato dos ACs serem suficientemente simples para permitirem análises

matemáticas detalhadas, ao mesmo tempo que geram padrões de comportamento com-

plexos capazes de exibir uma ampla variedade de fenômenos, eles têm sido amplamente

utilizados na modelagem de diversos sistemas físicos, químicos e biológicos (WOLFRAM,

1983). Entre as aplicações, destaca-se a simulação da propagação de incêndios (TINOCO

et al., 2022), o controle de robôs (LIMA, 2017), a criptografia (LIMA, 2012) e a evacuação

de pedestres (KIRCHNER; SCHADSCHNEIDER, 2002).
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2.1.1 Definições e Conceitos Básicos

Autômatos Celulares são modelos computacionais dinâmicos e discretos no tempo,

no espaço e no estado do reticulado, o qual é dividido em células que podem assumir um

estado dentre um conjunto finito de valores discretos (WOLFRAM, 1983). As células têm

seus estados modificados (geralmente de forma síncrona, isto é, todas em simultâneo) a

cada passo de tempo (unidade temporal discreta que representa a atualização do AC)

de acordo com um conjunto de regras de transição que consideram o estado da própria

célula e de suas vizinhas (regra local). Ao aplicar essas regras de transição por t passos

de tempo, é possível obter a evolução espaço-temporal do AC (LIMA, 2012).

O projeto de um AC envolve a definição de quatro elementos principais: conjunto

de estados, espaço celular (dimensionalidade do reticulado e a geometria das células),

o tipo de vizinhança e as regras de transição (BHATTACHARJEE et al., 2020; LIMA,

2017). A seguir, são abordados com mais profundidade cada um desses elementos.

2.1.1.1 Conjunto de estados

O conjunto de estados é um conjunto finito que determina os valores que cada

célula do reticulado pode assumir em qualquer instante durante a evolução de um AC

(BHATTACHARJEE et al., 2020). Por exemplo, no Jogo da Vida de Conway, o conjunto

de estados é composto por apenas dois valores: células vivas (1) e células mortas (0).

2.1.1.2 Espaço celular

A dimensionalidade espacial de um AC está relacionada à forma como as células

estão organizadas e distribuídas no espaço. Um AC pode ser unidimensional (1D), bidi-

mensional (2D) ou até mesmo n-dimensional (nD). Os ACs unidimensionais e bidimen-

sionais são os mais estudados na literatura, enquanto modelos tridimensionais costumam

ser empregados em modelagens mais complexas (MACHADO, 2022).

A geometria ou formato das células do reticulado é fortemente dependente pela

dimensionalidade do AC. Em ACs bidimensionais, a escolha da geometria influencia dire-

tamente na estrutura da vizinhança que pode ser adotada, sendo importante que a soma

dos ângulos externos no ponto de contato entre células não ultrapasse 360∘, a fim de evitar

sobreposição (LIMA, 2017). Na Figura 1, são apresentadas três geometrias comumente

utilizadas na literatura, sendo a quadrangular a mais recorrente.

2.1.1.3 Tipos de vizinhança

A vizinhança de um AC corresponde à região do reticulado em torno de uma

célula específica (célula central) que influencia diretamente a determinação de seu estado

no passo de tempo seguinte (t + 1). Em ACs unidimensionais, essa região normalmente
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Figura 1 – Geometrias mais utilizadas em ACs bidimensionais: (a) triangular, (b) qua-
drangular e (c) hexagonal. Fonte: retirada de Lima (2017).

inclui a própria célula e as células adjacentes dentro de um raio de alcance r. A Figura

2 ilustra a vizinhança em um AC unidimensional, considerando dois valores distintos de

raio (r = 1 e r = 2). Em ambos os casos, a célula central (alvo) é destacada em azul,

enquanto sua vizinhas são evidenciadas em amarelo.

Figura 2 – Vizinhanças em um AC unidimensional em função do raio de alcance: (a) raio
1 e (b) raio 2. Fonte: adaptada de (BHATTACHARJEE et al., 2020).

Já em ACs bidimensionais, as vizinhanças mais utilizadas são as de von Neumann

e de Moore. A vizinhança de von Neumann considera apenas as células nas direções hori-

zontal e vertical enquanto a vizinhança de Moore também inclui as células nas diagonais.

A Figura 3 exemplifica ambas as vizinhanças em um AC bidimensional, considerando o

raio de alcance 1.

Figura 3 – Vizinhanças de raio 1 em um AC bidimensional: (a) vizinhança de von Neu-
mann e (b) vizinhança de Moore. Fonte: (BHATTACHARJEE et al., 2020).

Essas vizinhanças podem ser extendidas e empregadas em ACs tridimensionais,

como ilustrado na Figura 4.

2.1.1.4 Regras de transição

As regras de transição determinam a evolução espaço-temporal de um AC. A partir

do estado inicial do reticulado, seja ele pré-estabelecido ou gerado probabilisticamente,
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Figura 4 – Vizinhanças de raio 1 em um AC tridimensional: (a) vizinhança de von Neu-
mann e (b) vizinhança de Moore. Fonte: adaptado de Lima (2012).

sua aplicação altera os estados das células no passo de tempo t para algum outro estado

no passo de tempo t + 1. De acordo com a maneira como determinam o próximo estado

da célula central, essas regras podem ser classifcadas em: determinísticas, probabilísticas

e temporais (LIMA, 2017).

No modelo de regras determinísticas, cada configuração possível da vizinhança

(estados das células central e vizinhas) é mapeada para um único estado, o qual é assumido

pela célula central que está sendo atualizada no passo de tempo t + 1. Ou seja, o próximo

estado da célula é unicamente determinado pelos estados das células em sua vizinhança

(LIMA, 2017). Na Seção 2.1.2 é apresentado um exemplo AC unidimensional baseado na

chamada Regra 90, a qual é determinística, pois o próximo estado de todas as células é

definido exclusivamente pelas diferentes vizinhanças possíveis.

Na abordagem de regras estocásticas ou probabilísticas, o próximo estado de uma

célula não depende unicamente dos estados de suas vizinhas, mas também de uma dis-

tribuição de probabilidade que define a chance de a célula assumir cada um dos estados

possíveis no passo de tempo seguinte. Esse tipo de regra permite que o AC represente

fenômenos de natureza estocástica, introduzindo incertezas e aleatoriedade, o que pode

gerar comportamentos complexos e imprevisíveis, não observáveis em modelos puramente

determinísticos (FERREIRA, 2023).

O exemplo mais simples deste tipo de regra é um AC onde as células podem

assumir dois estados (células binárias) e o estado no passo de tempo t + 1 é determinado

pelo sorteio de um número aleatório 1 ≤ k ≤ 100, sem considerar o estado atual das células

vizinhas. A Figura 5 ilustra esse processo, onde as células podem assumir os estados e

. Se k ≤ 50, então a célula central mantém seu valor atual; caso contrário, muda para

o outro estado.

No modelo de regras temporais, o estado de uma célula depende diretamente do

número de iterações transcorridas. A partir de uma função temporal, é possível determinar

o estado de uma célula após t passos de tempo, sem levar em consideração o estado de

suas vizinhas (LIMA, 2017). Essa abordagem costuma ser empregada na modelagem de

queima de uma área em incêndios florestais (TINOCO et al., 2022; FERREIRA, 2023).
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Figura 7 – Exemplo de regra de transição de um AC elementar (regra 90). Fonte: autor.

determinístico para o próximo estado da célula central para cada possível configuração de

vizinhança. Como existem 8 configurações de vizinhança, podem ser definidas 28 = 256

regras de transição diferentes para um AC unidimensional elementar com vizinhança de

3 células de raio 1 (WOLFRAM, 1983). Cada regra pode ser representada por 8 bits, que

corresponde às saídas das possíveis configurações. Por exemplo, no caso da Regra 90, esse

número é 01011010 em binário (base 2), que corresponde ao número 90 em decimal (base

10).

A Figura 8 mostra a aplicação da Regra 90 em um reticulado inicial (t0) de

15 células, sendo que apenas a célula mais central está no estado 1. Neste exemplo, a

evolução do AC é mostrada por 8 passos de tempo e considera que as células das bordas

estão conectadas entre si, de modo a completar suas respectivas vizinhanças (regra de

contorno). Uma forma alternativa de interpretar esta regra é considerar que, no próximo

passo de tempo, uma célula assume o estado 1 apenas se suas células vizinhas não forem

iguais. Por exemplo, no instante t0 a célula central, apesar de estar no estado 1, tem duas

vizinhas no estado 0 e, portanto, muda seu estado para 0 no instante t1. Já sua vizinha à

direita tem vizinhas com valores distintos (0 à esquerda e 1 à direita) e, por isso, assume

o estado 1 no instante t1.

Figura 8 – Evolução de um AC elementar a partir da aplicação da regra 90 por oito passos
de tempo. Fonte: autor.

2.1.3 Autômatos Bidimensionais

Os ACs bidimensionais são dispostos em um espaço planar, normalmente represen-

tados por meio de uma grade. Eles são amplamente utilizados na literatura, especialmente

na representação de padrões gráficos, pois se assemelham a imagens pixelizadas (LIMA;

LIMA, 2014). O Game of Life, descrito anteriormente, é o AC bidimensional mais conhe-
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cido. Além dele, diversos modelos de dinâmica de pedestres utilizam essa classe de AC,

incluindo aqueles empregados neste trabalho.

A Figura 9 mostra a evolução temporal de um padrão no Jogo da Vida, conhecido

como glider. Com o passar dos passos de tempo, fica evidente o deslocamento diagonal do

padrão pelo reticulado, gerado pelas regras locais de nascimento, sobrevivência e morte

das células.

t = 0 t = 1 t = 2 t = 3 t = 4

Figura 9 – Evolução temporal de um glider no Jogo da Vida. Fonte: adaptado de (FER-
REIRA, 2023).

2.2 Dinâmica de Pedestres

A dinâmica de pedestres tem sido objeto de estudo desde a década de 1960, quando

análises empíricas, baseadas em observação direta, fotografias e filmes em time-lapse,

constituíam a principal forma de investigação. Inicialmente, essas pesquisas tinham como

objetivo o desenvolvimento de elementos de design e o planejamento de diretrizes para ins-

talações de pedestres, com diversos modelos de simulação sendo propostos para atender a

essas demandas (HELBING et al., 2001). Embora a observação de exercícios reais de eva-

cuação forneça dados relevantes, tais experimentos são caros, demorados e potencialmente

perigosos, tornando-os inviáveis como método padrão para análise de movimentação de

pedestres (SCHADSCHNEIDER et al., 2011).

Como alternativa mais viável, a partir da década de 1970, diversas estratégias

de modelagem populacional começaram a ser empregadas, visando reproduzir fenôme-

nos observados na movimentação de multidões, apoiar o planejamento de infraestruturas

e aumentar a segurança (BELOTTI, 2020). O interesse pela dinâmica de pedestres é

multidisciplinar, envolvendo pesquisadores de áreas como engenharia de tráfego, física,

psicologia, matemática, sociologia, computação, entre outros (DONG et al., 2020). Por

esse motivo, os estudos nessa área podem ser aplicados de formas diversas, incluindo a

gestão de multidões, o projeto de espaços públicos, a criação de ambientes virtuais e a

concepção de ambientes inteligentes (ZHAN et al., 2008).
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2.2.1 Pedestres e Multidões

Os termos pedestre e multidão são conceitos centrais na análise da dinâmica po-

pulacional e, apesar de recorrentes no cotidiano, seus usos informais não correspondem

necessariamente ao sentido acadêmico. Em contextos informais, o termo pedestre refere-se

a pessoas que se deslocam a pé em ambientes externos, usualmente no trânsito. Segundo

o dicionário Priberam (2025), pedestre é aquele "que anda ou está de pé", conferindo ao

termo um sentido mais amplo (DAMAZO, 2024).

Já o termo multidão, em contextos informais, pode ser entendido como um grupo

de pessoas altamente aglomeradas de forma caótica. Na realidade, contudo, as multidões

podem se apresentar de maneiras diversas, com objetivos e motivações distintos (KLÜP-

FEL, 2009).

2.2.2 Comportamento dos Pedestres

Segundo Schadschneider et al. (2011), a modelagem da dinâmica de pedestres deve

levar em consideração três níveis distintos de comportamento: estratégico, tático e ope-

racional. No nível estratégico, os pedestres decidem quais atividades executar e em qual

ordem. No nível tático, são tomadas decisões de curto prazo com base nas decisões estraté-

gicas. Por fim, no nível operacional, ocorrem decisões imediatas. Os aspectos estratégicos e

táticos do comportamento dos pedestres geralmente não são considerados em simulações,

cujo foco costuma permanecer no nível operacional.

Como resultado das decisões que os pedestres tomam considerando todos os níveis

de comportamento, diversos fenômenos emergem da dinâmica coletiva. Alguns exemplos

incluem:

• Seguir a multidão: pedestres tendem a se mover junto a outros, buscando segu-

rança ou orientação.

• Reunião e comportamento de parentesco: pedestres procuram se reunir em

grupos para localizar saídas ou aliviar ansiedade; em casos de parentesco, podem

ocorrer ações de retrocesso, retornando a locais potencialmente perigosos em busca

de familiares ou objetos importantes.

• Arqueamento: quando muitos pedestres tentam acessar uma saída, forma-se uma

aglomeração em formato de arco ao redor da mesma.

• Mais rápido é mais lento: fenômeno paradoxal em que aumentar a velocidade de

movimento dos pedestres pode resultar em evacuação mais lenta (LIMA, 2017).
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2.2.3 Características dos Modelos

Modelos de dinâmica de pedestres apresentam diversas características que devem

ser levadas em consideração em sua modelagem:

2.2.3.1 Granularidade

A granularidade se refere à escala da população usada no modelo, podendo ser

categorizada em microscópica, macroscópica e mesoscópica.

Os modelos de granularidade microscópica, amplamente utilizados na literatura,

caracterizam-se por tratar cada pedestre como uma entidade individual e independente,

capaz de tomar suas próprias decisões com base em um conjunto de regras pré-estabelecidas

(BELOTTI, 2020). São utilizados no estudo de fenômenos que emergem do comporta-

mento individual dos pedestres e de suas interações com outros membros da multidão

(LIMA, 2017; DONG et al., 2020). Ao considerar pedestres de forma individual, é possí-

vel modelar sua heterogeneidade e padrões de comportamento, permitindo a incorporação

de aspectos mais realistas (BELOTTI, 2020). Aspectos como o ambiente, a população e a

sequência de eventos são tratados em detalhe (KLÜPFEL, 2009). Nessa categoria, alguns

exemplos incluem os modelos de autômatos celulares, lattice gas e força social (DONG et

al., 2020).

Na granularidade macroscópica, a população ou multidão é a unidade básica, sendo

considerada como um grupo homogêneo e unido, onde os indivíduos não podem ser diferen-

ciados (SCHADSCHNEIDER et al., 2011). Modelos desse tipo reproduzem as caracterís-

ticas gerais do comportamento do fluxo de pedestres, geralmente ignorando as interações

individuais (DONG et al., 2020). Exemplos incluem modelos de regressão, escolha de rota

e de gases cinéticos (ZHENG; ZHONG; LIU, 2009).

A granularidade mesoscópica incorpora características microscópicas e macroscó-

picas, considerando a multidão como uma massa homogênea enquanto mantém certas

características individuais dos pedestres ou forças internas nas multidões. Modelos de ga-

ses cinéticos e baseados em agentes são exemplos da aplicação dessa granularidade (ZHAN

et al., 2008).

2.2.3.2 Características quantitativas

Espaço, tempo e estado (ex: a velocidade dos pedestres) são as variáveis funda-

mentais na descrição de qualquer modelo de dinâmica de pedestres. Cada uma dessas

variáveis pode ser discreta ou contínua, e todas as combinações entre elas são possíveis.

Por exemplo, em modelos de ACs, todas as variáveis são discretas: o espaço delimitado

por células, o tempo avança em passos discretos e os pedestres podem assumir um número
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finito de estados. Em contraste, em modelos de dinâmica de fluidos, todas as variáveis são

contínuas (SCHADSCHNEIDER et al., 2011).

2.2.3.3 Dinâmica do modelo

A dinâmica dos pedestres em um modelo pode ser determinística ou estocástica.

Na dinâmica determinística, o comportamento em um instante t é completamente de-

terminado pelo estado atual do sistema. Já na dinâmica estocástica, o comportamento é

regido por probabilidades, de modo que os pedestres podem reagir de maneiras diferentes

diante de uma mesma situação. A simples introdução de mecanismos estocásticos em um

modelo de dinâmica de pedestres, como feito por Varas et al. (2007) com a inclusão de

pânico e resolução aleatória de conflitos, pode gerar comportamentos coletivos complexos

(SCHADSCHNEIDER et al., 2011).

2.2.3.4 Interação entre pedestres

A interação entre os pedestres pode ser modelada de duas formas principais: ba-

seada em regras ou baseada em forças. Na abordagem baseada em regras, os pedestres

tomam decisões considerando seus próprios estados, os estados de seus vizinhos e seus ob-

jetivos individuais. Já na abordagem baseada em força, as decisões são influenciadas por

forças percebidas pelos pedestres, que podem ser exercidas por outros indivíduos ou pelo

ambiente.Modelos de autômatos celulares geralmente se enquadram na categoria baseada

em regras, como exemplificado por Varas et al. (2007) e Alizadeh (2011). Por outro lado,

modelos de forças sociais utilizam a abordagem baseada em forças, como demonstrado

por Helbing, Farkas e Vicsek (2000). Para outros tipos de modelo, pode não ser possí-

vel classificá-los em apenas uma categoria, com ambas as abordagens sendo combinadas

(SCHADSCHNEIDER et al., 2011)

2.2.3.5 Fidelidade

A fidelidade de um modelo refere-se ao grau de realismo que ele apresenta. Modelos

de alta fidelidade buscam capturar o máximo possível da complexidade dos fatores que

influenciam a movimentação dos pedestres. Por outro lado, modelos de baixa fidelidade

tratam os pedestres como entidades simplificadas, por exemplo, como partículas sujeitas

a determinadas forças (SCHADSCHNEIDER et al., 2011).

2.2.4 Principais Abordagens para Dinâmica de Pedestres

Diversas abordagens para a simulação da dinâmica populacional surgiram ao longo

das últimas décadas, cada uma com características, vantagens e limitações próprias. Se-

gundo Zheng, Zhong e Liu (2009), os modelos de evacuação podem ser categorizados em
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sete abordagens principais: autômatos celulares, lattice gas, forças sociais, dinâmica de

fluidos, baseados em agentes, teoria dos jogos e experimentos com animais.

Dentro dessas abordagens, os ACs têm sido amplamente aplicados no estudo da

dinâmica populacional. Esses modelos podem ser classificados em duas categorias: mo-

delos baseados em interações entre o ambiente e os pedestres; e modelos baseados na

interação entre pedestres. Na primeira categoria, elementos do ambiente, como largura

das saídas e obstáculos, impactam diretamente no movimento dos pedestres. Na segunda,

são estudados efeitos de fricção e o comportamento bidirecional da multidão (ZHENG;

ZHONG; LIU, 2009).

Os modelos de Lattice Gas constituem uma classe especial de ACs, populariza-

dos na segunda metade da década de 1980, principalmente por Wolfram (1983). Nessa

abordagem, o pedestre é tratado como uma partícula que se movimenta sobre uma grade,

permanecendo nas interseções das linhas. Essa abordagem é muito utilizada no estudo

das características de multidões em diferentes estruturas, por meio de análises de proba-

bilidade e estatísticas (DONG et al., 2020; ZHENG; ZHONG; LIU, 2009).

Por sua vez, nos modelos de força social, os pedestres são influenciados por diferen-

tes tipos de forças que buscam representar matematicamente o comportamento coletivo.

Essas forças incluem aquelas associadas aos desejos e objetivos dos pedestres, e às intera-

ções com outros agentes e com o ambiente. De modo geral, elas podem ser classificadas em

quatro categorias: força de relaxamento, força de repulsão entre agentes, força de repulsão

com as bordas do sistema e força de atração entre agentes, sendo todas formalizadas por

meio de equações diferenciais (BELOTTI, 2020; DONG et al., 2020).

Modelos baseados em dinâmica de fluidos, a movimentação dos pedestres é tratada

como a de um fluido, pois multidões apresentam propriedades similares. Essa abordagem

usa equações diferenciais parciais para descrever a evolução temporal da densidade e da

velocidade de uma multidão (LIMA, 2017).

Os modelos baseados em agentes representam cada pedestre como um agente vir-

tual, cujo comportamento é determinado por regras individuais e influenciado pelo seu

estado, percepção do ambiente e interação com outros agentes. Diferentemente de mo-

delos como os ACs, cujas regras são aplicadas de forma uniforme a todas as células, os

ABMs permitem que indivíduos sigam regras diferentes, capturando de forma mais pre-

cisa a heterogeneidade da população. Embora exijam maior capacidade computacional,

esses modelos oferecem maior flexibilidade e realismo na representação do comportamento

coletivo (ZHENG; ZHONG; LIU, 2009; GOLDSTONE; JANSSEN, 2005).

A teoria dos jogos é um ramo da matemática voltado ao estudo da lógica por trás

da tomada de decisões em interações sociais. Nos modelos baseados nessa teoria, assume-

se que os pedestres agem de forma totalmente racional, buscando maximizar seus ganhos
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(sair o mais rápido possível) por meio de determinadas ações, como a escolha de uma

rota específica. Ao final de cada etapa da simulação, o ganho de cada indivíduo depende

não apenas de suas escolhas, mas também das decisões tomadas pelos demais agentes. A

situação de interação, composta pelo conjunto dos participantes, pelas opções disponíveis

a cada agente e pelos respectivos benefícios, é denominado de jogo (LO et al., 2006).

Por fim, a experimentação com animais constitui uma alternativa aos experimentos

de evacuação em situações de pânico envolvendo humanos, os quais são de difícil execução

devido a restrições éticas e legais. Além disso, apesar dos diversos estudos conduzidos por

meio de simulações numéricas, as dinâmicas de evacuação sob condições de pânico ainda

não são totalmente compreendidas (SALOMA et al., 2003).

No estudo conduzido por Saloma et al. (2003), ratos foram utilizados em experi-

mentos nos quais tentavam escapar de uma piscina de água para uma plataforma seca,

com o objetivo de observar seu comportamento em situações de pânico. De forma se-

melhante, Altshuler et al. (2005) realizaram experimentos com formigas, investigando as

diferenças no processo de evacuação de um ambiente fechado com duas saídas, tanto em

condições normais quanto em situações de pânico — estas últimas simuladas por meio da

introdução de um inseticida. Os resultados mostraram que, sob pânico, as formigas ten-

dem a concentrar-se em uma única saída, enquanto em situações normais utilizam ambas

as saídas de maneira equilibrada. Esses achados estão em concordância com as previsões

teóricas sobre o comportamento humano em evacuações (HELBING; FARKAS; VICSEK,

2000; ZHENG; ZHONG; LIU, 2009).

2.3 Trabalhos Correlatos

Nesta seção, são apresentados alguns dos trabalhos mais relevantes que utilizam

Autômatos Celulares (ACs) na modelagem da dinâmica de pedestres em ambientes fecha-

dos (indoor), tanto em situações normais quanto em cenários de incêndio.

2.3.1 Autômatos Celulares Aplicados na Dinâmica de Pedestres

Diversos modelos de ACs para dinâmica de pedestres foram propostos nas últimas

décadas, sendo amplamente aplicados à simulação de evacuações em diferentes tipos de

ambientes, com ou sem a presença de obstáculos. Varas et al. (2007) desenvolveu um

modelo bidimensional de ACs para simular a evacuação de pedestres em ambientes com

obstáculos intransponíveis, com foco especial em salas de aula. Nesse modelo, é cons-

truído um campo de piso estático, no qual cada célula recebe um valor correspondente

à sua distância em relação às saídas, onde quanto menor o valor, mais próxima à célula

está da saída. Dessa forma, os pedestres são direcionados naturalmente em direção às

saídas ao se moverem por células com valores decrescentes. Embora o modelo seja essen-
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cialmente determinístico, os autores introduziram um grau de indeterminação por meio

de um parâmetro de pânico, que confere aos pedestres uma pequena probabilidade de

permanecerem imóveis, e pela resolução aleatória de conflitos de movimentação, quando

múltiplos pedestres tentam ocupar a mesma célula. Nos experimentos, foram simuladas

evacuações em salas de aula com e sem mesas, variando-se a largura e a posição das saídas.

Os resultados indicaram que o aumento da largura das saídas reduz significativamente o

tempo de evacuação até um determinado limite, além de mostrar que a disposição dos

obstáculos pode gerar gargalos locais, comprometendo a eficiência da evacuação.

Considerando o modelo anterior como referência, Alizadeh (2011) propôs uma ex-

tensão à abordagem baseada em campo de piso, introduzindo o que denominou de campo

de piso dinâmico. Nesse novo modelo, a presença dos pedestres também influencia os va-

lores do campo de piso ao longo do tempo. Assim, quando ocorre acúmulo de pedestres

próximos a uma determinada saída, os valores das células nesta região aumentam, tor-

nando aquele caminho menos atrativo e incentivando parte dos indivíduos a tomar rotas

alternativas. Essa modificação torna o modelo mais realista, pois captura o comporta-

mento adaptativo dos pedestres. A aplicação do modelo em uma sala sem obstáculos e em

restaurantes com obstáculos, demonstrou que o piso dinâmico favorece uma distribuição

mais equilibrada dos pedestres entre as saídas, reduzindo os congestionamentos formados

próximos a elas, o que resulta em menores tempos de evacuação quando comparado com

o modelo puramente estático de Varas et al. (2007).

Em uma linha distinta, o modelo proposto por Kirchner e Schadschneider (2002)

adota uma abordagem biônica baseada na quimiotaxia, buscando descrever as interações

entre pedestres a partir de mecanismos inspirados nos feromônios de alguns insetos. Nesse

modelo, cada pedestre avalia as células de sua vizinhança com base em seu conhecimento

sobre o ambiente e a posição das saídas, bem como na movimentação dos outros pedes-

tres. A partir dessa combinação, são calculadas probabilidades para as células em sua

vizinhança, as quais determinam, de forma estocástica, o movimento de cada pedestre.

A aplicação do modelo em uma sala vazia, com uma ou duas saídas, demonstrou que

diferentes configurações dos parâmetros permitem simular desde comportamentos coope-

rativos até situações de pânico. Além disso, o equilíbrio entre o nível de conhecimento do

ambiente e da movimentação dos outros pedestres é um fator decisivo para o tempo total

de evacuação. Dado que esse modelo foi utilizado como base para a nossa implementação,

uma descrição mais detalhada de seu funcionamento é apresentada na Seção 3.1.

O modelo de Silva et al. (2025) se baseia no trabalho de Varas et al. (2007) e

introduz, além de algumas melhorias, o conceito de obstáculo transponível. Problemas do

modelo original relacionados à movimentação dos pedestres, condicionada à liberação da

célula de menor valor da vizinhança e à possibilidade de pedestres atravessarem diago-

nalmente entre obstáculos foram corrigidos. A nova categoria de obstáculos permite que
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os pedestres os atravessem, e os experimentos realizados demonstraram que sua presença

contribui para a redução do tempo total de evacuação. Mais detalhes sobre este modelo

são apresentados na Seção 3.2.3.

2.3.2 Autômatos Celulares Aplicados na Dinâmica de Pedestres sob Incêndio

O modelo proposto por Zheng et al. (2011) baseia-se no trabalho de Kirchner

e Schadschneider (2002), expandindo-o para incluir a influência do fogo no cálculo das

probabilidades de movimentação dos pedestres. Nesse modelo, a introdução do piso de fogo

permite determinar a área de influência das chamas nas células próximas, de modo que os

pedestres tendem a evitá-las. Em paralelo, ocorre uma simples propagação radial dos focos

de incêndio. Entre os resultados apresentados, destaca-se que focos de incêndio localizados

no centro da sala aceleram uma evacuação, uma vez que os pedestres evitam permanecer

próximos às chamas. Por outro lado, focos iniciados próximos às saídas tendem a inutilizá-

las, obrigando os pedestres a buscar rotas alternativas. Além disso, quanto mais rápido o

fogo se espalha, mais difícil se torna a evacuação, aumentando o número de pedestres que

não conseguem escapar.

Partindo deste modelo, Zheng et al. (2017) propôs uma extensão ao incluir um

campo de piso associado à propagação da fumaça, permitndo analisar sua influência sobre

a movimentação dos pedestres. Nesse modelo, a fumaça se espalha de cima para baixo

no ambiente, obrigando os pedestres a adotarem três posturas durante a movimentação:

em pé, curvados e agachados. A partir das simulações numéricas realizadas, os autores

concluíram que a evacuação é altamente dependente da localização do fogo e da velocidade

de propagação do incêndio e da fumaça.

Por fim, Zhang et al. (2022) apresenta um modelo de AC para a dinâmica de

pedestres em um túnel com focos de incêndio. O fogo é modelado usando princípios da

dinâmica de fluidos e funciona simultaneamente como obstáculo e força repulsora para

os pedestres. Além disso, com base em princípios da teoria dos jogos, os conflitos entre

pedestres são resolvidos de modo que os indivíduos possam cooperar ou competir para

se movimentar. O modelo foi aplicado considerando diferentes localizações das saídas e

variações na densidade populacional. Os resultados indicaram alta frequência de conflitos

entre pedestres e mostraram que saídas únicas, mesmo que mais largas, resultam em

piores tempos de evacuação. Ademais, a presença do fogo influencia significativamente na

redução da eficiência da evacuação.
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3 Desenvolvimento

Este capítulo apresenta o modelo de referência utilizado neste trabalho, descre-

vendo sua estrutura, funcionamento e os cálculos dos campos de piso, bem como as ex-

tensões implementadas para ampliar sua aplicabilidade. Na Seção 3.1, o modelo é deta-

lhado, enquanto na Seção 3.2 são apresentados os cálculos alternativos do piso estático,

a incorporação de obstáculos intransponíveis e transponíveis, e a inclusão da propagação

de incêndio.

3.1 Modelo de Referência

O modelo de Kirchner e Schadschneider (2002) é um dos primeiros trabalhos de

ACs aplicados à dinâmica populacional seguindo os princípios estabelecidos por Burstedde

et al. (2001), o qual estudou a movimentação de pedestres em direções opostas. Com base

nesse trabalho, Kirchner analisou a dinâmica populacional em ambientes amplos e sem

obstáculos, desconsiderando a presença de componentes que limitam a movimentação

dos pedestres. Portanto, ao contrário dos modelos de Varas et al. (2007),Alizadeh (2011)

e Silva et al. (2025), o modelo de Kirchner não contempla nem suporta a presença de

obstáculos internos de forma nativa.

3.1.1 Princípios Básicos do Modelo

O ambiente é discretizado em pequenas células de mesmo tamanho, que podem

assumir os estados de vazia, ocupada por um pedestre ou ocupada por um obstáculo (as

paredes que limitam o ambiente). A cada passo de tempo (t → t+1), um pedestre pode se

movimentar de sua célula atual para alguma das células vizinhas não ocupadas, de acordo

com uma série de probabilidades, conhecidas como probabilidades de transição, determi-

nadas pela interação dos pedestres com dois campos de piso: estático e dinâmico. Esses

campos são construídos de modo que as transições de probabilidade levem os pedestres

para regiões do ambiente com valores mais altos de piso. O piso estático será detalhado

na Seção 3.1.2 e o piso dinâmico na Seção 3.1.3.

Os autores consideraram a vizinhança de von Neumann em seu modelo, permitindo

que o pedestre se mova apenas nas direções horizontal e vertical. As probabilidades de

transição para as diagonais, por sua vez, são nulas.

Na literatura de ACs na dinâmica populacional, é comum estabelecer o tamanho

das células como um quadrado de área 0, 4 × 0, 4 m2, aproximadamente o espaço ocupado

por um pedestre em situações de alta densidade, segundo o trabalho empírico de (WEID-
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MANN, 1992). Além disso, a velocidade média de um pedestre foi calculada como sendo

aproximadamente 1, 3 m/s, o que implica que um passo de tempo leva aproximadamente

0, 3 s (BURSTEDDE et al., 2001).

3.1.2 Campo de Piso Estático

O piso estático (E) é calculado uma única vez no início de uma simulação e per-

manece inalterado até sua conclusão. Por meio dele, é possível especificar áreas de alto

interesse para os pedestres, como saídas de emergência ou janelas. No trabalho em ques-

tão, o piso estático descreve a distância mais curta até alguma saída, sendo calculado

por meio de uma métrica aplicada a cada célula do reticulado, de modo que os valores

aumentem de forma inversamente proporcional em relação à distância para uma saída,

ou seja, quanto mais próxima de uma saída uma célula estiver, maior será seu valor.

A métrica utilizada para o cálculo dos valores de E das células nas posições (i, j)

no modelo de Kirchner é detalhada no Anexo A do artigo Kirchner e Schadschneider

(2002) e funciona da seguinte maneira: o reticulado representando o ambiente deve ser

cercado de células intransponíveis, com exceção de algumas células correspondentes às

saídas, localizadas nas posições {(iT1
, jT1

), ... , (iTl
, jTl

), ... , (iTk
, jTk

)}, onde k é o número

de células que representam saídas e 1 ≤ l ≤ k. A saída dos pedestres do ambiente só é

permitida através dessas células. O valor para cada uma das células é então determinado

por meio da métrica na Equação 3.1, baseada na distância euclidiana:

Eij = min
(iTs

,jTs
)

{

max
(il,jl)

{√

(iTs
− il)2 + (jTs

− jl)2

}

−
√

(iTs
− i)2 + (jTs

− j)2

}

(3.1)

Como se observa na equação, a força de Eij d depende da distância mais curta

para uma saída. O termo max(il,jl)

{√

(iTs
− il)2 + (jTs

− jl)2
}

, em que (il, jl) percorre

todas as células do reticulado, representa a maior distância de qualquer célula para a

saída em (iTs
, jTs

). Esse valor atua como fator de normalização, de modo que as células

mais próximas das saídas recebam valores de campo mais elevados.

A Figura 10 ilustra dois ambientes utilizados por Kirchner e Schadschneider (2002)

como exemplos da aplicação dessa métrica. Em cada ambiente, os quadrados laranja

representam obstáculos intransponíveis (por exemplo, paredes), os quadrados cinza claros

correspondem a células vazias e os quadrados verdes indicam saídas. O ambiente da

Figura 10a, referido como ambiente com saídas concentradas, é uma sala fechada de 33×33

células (desconsiderando as paredes) com uma saída de 5 células de diâmetro localizada

ao centro da parede esquerda. Já o ambiente da Figura 10b, denominado ambiente com

saídas dispersas, é uma sala fechada de 30 × 60 células com dois pares de saídas, de uma

célula de diâmetro cada, localizadas nas extremidades das paredes laterais.
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t t + 1

(a)

(b)

Figura 13 – Processo de decaimento (a) e de difusão (b) de uma partícula do campo de
piso dinâmico. Fonte: autor.

(a) (b) (c)

Figura 14 – Campo de piso dinâmico em diferentes estágios de uma evacuação: (a) está-
gio inicial, (b) estágio intermediário e (c) estágio final. Fonte: adaptada de
Kirchner e Schadschneider (2002).

3.1.4 Regra de Transição

No início da simulação, o piso estático é calculado de acordo com o descrito na Se-

ção 3.1.2 e permanece inalterado ao longo de toda a execução. As regras de atualização do

modelo, incluindo aquelas que descrevem a interação dos pedestres com o piso dinâmico,

são detalhadas a seguir:

1. O piso dinâmico é atualizado de acordo com os processos de difusão e decaimento,

descritas na Seção 3.1.3.

2. Para cada pedestre, as probabilidades de transição pij são calculadas para todas as

células de sua vizinhança. Essas probabilidades consideram tanto a ocupação local

por outros pedestres e obstáculos, quanto os dois campos de piso. Cada campo de
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piso é ponderado por um parâmetro de sensibilidade: kE ∈ [0, ∞[ para o piso estático

e kD ∈ [0, ∞[ para o piso dinâmico. A fórmula utilizada é:

pij = N exp(kDDij) exp(kEEij)(1 − nij)ξij (3.2)

onde:

ocupação por pedestre: nij =







0, sem pedestre

1, com pedestre

ocupação por obstáculo: ξij =







0, para células proibidas: paredes

1, para células livres

normalização: N =




∑

(i,j)

exp(kNdDij) exp(ksSij)(1 − nij)ξij





−1

3. Com base nas probabilidades de transição calculadas, cada pedestres seleciona uma

célula alvo para tentar se movimentar.

4. Caso dois ou mais pedestres tentem ocupar a mesma célula, o conflito é resolvido por

um método probabilístico, permitindo que apenas um complete a movimentação.

5. Após a movimentação, o valor do piso dinâmico é incrementado para a célula de

origem de cada pedestre.

3.1.5 Resolução de Conflitos

Kirchner e Schadschneider (2002) não exemplificam um método probabilístico para

a resolução do conflito entre pedestres, limitando-se a recomendar o procedimento utili-

zado em Burstedde et al. (2001). Nesse método, a resolução de conflitos se baseia em

uma matriz de preferências, que define a direção de movimentação preferencial de cada

pedestre. Como o presente modelo não incorpora essa matriz, optou-se por não utilizar

essa abordagem.

Em vez disso, adotou-se o método de resolução de conflito utilizado por Varas et

al. (2007), caracterizado pelo uso de um teste probabilístico em que todos os pedestres

envolvidos no conflito possuem a mesma chance de sucesso. Após a execução do teste,

apenas uma pedestre se movimenta, enquanto todos os demais permanecem parados. A

Figura 15 exemplifica a resolução de um conflito onde dois pedestres tentam se movimentar

para a célula central de um reticulado 3 × 3, sendo que o pedestre da direita vence o teste

probabilístico e realiza o movimento, enquanto o outro pedestre permanece parado.
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Figura 16 – Mapa de calor do piso estático obtido com a métrica original, correspondente
ao ambiente com saídas concentradas. Fonte: autor.

Embora o piso estático da Figura 16 não seja idêntico ao da Figura 11a, o aumento

dos valores em direção à saída, característica essencial para o funcionamento correto

do modelo, está presente. A Figura 17 ilustra diferentes estágios da movimentação de

pedestres considerando esse piso estático, mostrando como eles vão gradualmente saindo

do ambiente.

(a) t = 0 (b) t = 20 (c) t = 40 (d) t = 60

Figura 17 – Simulação da movimentação de pedestres em diferentes momentos, conside-
rando o piso estático obtido a partir do cálculo original. Fonte: autor.

Por outro lado, o piso estático obtido para o ambiente com saídas dispersas, mos-

trado na Figura 18, difere consideravelmente daquele apresentado na Figura 11b. Nesse

piso, os valores das células aumentam em direção ao centro do ambiente, enquanto que,

no original, as células próximas a cada uma das saídas possuem os valores mais elevados,

e o centro apresenta valores próximos a zero. Tal discrepância contraria a característica

fundamental do modelo de Kirchner, que requer o crescimento dos valores das células em

direção às saídas.

A Figura 19 ilustra o comportamento dos pedestres sobre esse piso estático em

quatro estágios distintos de uma simulação. Ao invés de se dirigirem às quatro saídas

localizadas nas paredes direita e esquerda, os pedestres tendem a se mover em direção
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Figura 18 – Mapa de calor do piso estático obtido com a métrica original, correspondente
ao ambiente com saídas dispersas. Fonte: autor.

ao centro da sala, formando uma concentração de indivíduos. Após alcançar esse estado

(Figura 19d), os pedestres permanecem nele indefinidamente.

(a) t = 0 (b) t = 20

(c) t = 40 (d) t = 60

Figura 19 – Movimentação dos pedestres em diferentes passos da tempo, considerando o
piso estático obtido a partir do cálculo original. Fonte: autor.

3.2.1.1 Método da inversão simples

Uma alternativa simples para viabilizar a aplicação do modelo de Kirchner em

ambientes com saídas em lados opostos é realizar uma simples inversão dos valores do

piso estático. Essa forma de cálculo, denominada de Método da Inversão Simples (MIS),

é calculada por:
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MISij = Vmaior − vij (3.3)

sendo, vij o valor do piso da célula cij obtido a partir do cálculo original; e Vmaior

o maior valor de piso estático presente no reticulado, ou seja:

Vmaior = max
(il,jl)

{vil,jl
} (3.4)

Após a aplicação do MIS, os valores do piso estático são invertidos, de modo que

as células que originalmente possuíam os maiores valores passam a ter os menores, e vice-

versa. Nos ambientes semelhantes ao ambiente com saídas concentradas, a aplicação do

MIS gera um problema semelhante ao observado na Figura 18, com as células próximas

às saídas recebendo valores baixos.

3.2.1.2 Método alternativo

Como nem o cálculo de piso original, nem o MIS solucionam os problemas para

ambos os ambientes, torna-se necessária a elaboração de um novo cálculo que seja mais

genérico e possa ser aplicado a qualquer tipo de cenário.

Kirchner e Schadschneider (2002) descrevem o cálculo de piso original afirmando

que “[...] a força do piso estático depende da distância mais curta para uma saída” 1.

Além disso, o termo max(il,jl)

{√

(iTs
− il)2 + (jTs

− jl)2
}

é utilizado para normalizar os

valores do piso, garantindo que estes aumentem à medida que a distância para uma saída

diminui.

Com base nesses dois princípios, o Método Alternativo (MA) foi concebido. O piso

estático para uma célula cij é calculado a partir da seguinte equação:

MAij = MAX − MA1
ij (3.5)

onde,

MA1
ij = min

(iT s,jT s)

{√

(iT s − i)2 + (jT s − j)2

}

(3.6)

MAX = max
(il,jl)

{

MA1iljl

}

(3.7)

A Equação 3.6 calcula a menor distância entre a célula cij e todas as saídas,

seguindo o primeiro princípio descrito anteriormente. A Equação 3.7 determina a maior
1 "[...] the strength of the static Floor field depends on the shortest distance to an exit." (tradução

própria)
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dessas distâncias, funcionando como fator de normalização e garantindo que os valores do

piso aumentem em direção às saídas, mantendo o princípio do termo do cálculo original.

Na Seção 4.2 será apresentada uma análise detalhada dos pisos estáticos obtidos,

bem como do comportamento dos pedestres sobre eles. Conforme discutido, o Método

Alternativo será utilizado no modelo implementado neste trabalho..

3.2.2 Obstáculos Intransponíveis

A presença de objetos que funcionam como obstáculos para pedestres é comum na

maioria dos ambientes, tornando essencial a consideração desse aspecto em um modelo de

dinâmica populacional. Tanto o cálculo original do piso estático proposto por Kirchner,

quanto os métodos apresentados na Seção anterior desconsideram a existência de obstá-

culos, devido ao uso da distância euclidiana como componente fundamental em todos os

cálculos. Essa medida determina apenas a distância direita entre duas células, sem levar

em conta quaisquer objetos que possam estar entre elas.

A Figura 20 apresenta o ambiente com saídas concentradas (Figura 10a), com a

adição de uma parede de obstáculos intransponíveis à frente da única saída, sendo este

cenário denominado ambiente com barreira na saída.

Figura 20 – Ambiente com barreira na saída. Fonte: autor.

Conforme ilustrado na Figura 21, a aplicação do nétodo alternativo no ambiente

com saídas concentradas (Figura 21a) e no ambiente com barreira na saída (Figura 21b),

não gera qualquer diferença nos valores atribuídos para as células.

A Figura 22 ilustra o comportamento dos pedestres durante uma evacuação no

ambiente com piso estático da Figura 21b. Observa-se que os pedestres se dirigem nor-

malmente para a saída, mas acabam ficando presos atrás da parede de obstáculos, per-

manecendo nessa posição por um longo período. Apenas devido à natureza probabilística

do modelo alguns pedestres conseguem eventualmente contornar a barreira e alcançar a

saída, o que depende puramente do acaso.

De modo a evitar esse tipo de comportamento, o qual não corresponde com a

realidade, é fundamental que o cálculo do piso seja ajustado para considerar a presença
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(a) (b)

Figura 21 – Mapa de calor dos pisos estáticos gerados pelo método alternativo no ambi-
ente com saídas concentradas (a) e no ambiente com barreira na saída (b).
Fonte: autor.

(a) t = 0 (b) t = 20 (c) t = 40 (d) t = 60

Figura 22 – Movimento de pedestres em um ambiente com barreira na saída, considerando
o piso estático calculado pelo método alternativo. Fonte: autor.

de obstáculos. Os modelos propostos por Varas et al. (2007) e Alizadeh (2011), breve-

mente explicados na Seção 2.3, empregam pisos estáticos que levam em conta obstáculos

intransponíveis. Ao contrário do modelo de Kirchner que adota a vizinhança de von Neu-

mann, esses modelos utilizam a vizinhança de Moore, o que permite que os pedestres

se desloquem também nas direções diagonais. Para adequar o modelo implementado às

modificações propostas e representar de forma mais realista o movimento dos pedestres,

a vizinhança de Moore será adotada nas demais extensões.

A seguir, são apresentados os cálculos de piso dos modelos de Varas e Alizadeh,

bem como as adaptações necessárias para integrá-los ao modelo de Kirchner. Nos pisos

adaptados, também é permitida a movimentação diagonal, conforme previsto nos modelos

originais, assim como a difusão diagonal das partículas dinâmicas.
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3.2.2.1 Piso invertido de Varas

O piso estático do modelo de Varas é calculado de forma iterativa, em camadas,

de modo que as células de cada nova camada têm como base os valores atribuídos na

camada anterior. Essa abordagem é conhecida como difusão de distância (NAMETALA;

MARTINS; OLIVEIRA, 2020) e possibilita que a presença dos obstáculos é incorporada

ao piso. Os passos necessários para o cálculo são descritos a seguir:

1. As células correspondentes às saídas recebem o valor 1.

2. Todas as células adjacentes (camada seguinte) às células com valores definidos na

camada anterior recebem valores de acordo com as seguintes regras:

a) Se uma célula tiver valor N, as células na vertical e na horizontal recebem o

valor N + 1. Já as células nas diagonais recebem valores de N + λ, com λ > 1.

Neste trabalho, é mantido o valor adotado por Varas et al. (2007), de λ = 3
2

.

b) Em caso de conflitos na atribuição de valores a uma mesma célula, o menor

valor prevalece.

3. O passo 2 é repetido até que todas as células do reticulado estejam preenchidas e

não haja mais conflitos de valores.

A Figura 23 ilustra a aplicação das regras descritas sobre o recorte de um am-

biente contendo uma única saída, posicionada atrás de uma parede com três células de

comprimento, representadas por células brancas. Observa-se que o processo de cálculo é

realizado camada após camada, iniciando-se pela saída com valor 1.0 e propagando-se ao

redor da parede de obstáculos até que todas as células adjacentes recebem seus respectivos

valores. Com base nesse piso e na regra de movimentação do modelo de Varas, na qual

os pedestres se deslocam para a célula de menor valor em sua vizinhança, um pedestre é

capaz de contornar a parede de obstáculos e alcançar a saída sem dificuldade.

Conforme demonstrado na Figura 23, no piso estático de Varas as células próximas

às saídas apresentam os menores valores, ou seja, o oposto do que ocorre no piso estático do

modelo de Kirchner. Essa característica faz com que os pedestres se acumulem na parede

oposta à saída. Para torná-lo compatível com o modelo implementado, as seguintes regras,

que serão referidas como cálculo estendido, devem ser aplicadas após o cálculo base:

5. Determina-se o maior valor de piso (desconsiderando paredes e obstáculos), denotado

por MAXV aras.

6. O valor do piso estático de cada célula cij deve ser recalculado, como segue:

P
′

ij = MAXV aras − Pij + 1 (3.8)
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na Figura 17, os pedestres conseguem identificar a presença dos obstáculos posicionados

diante da saída e se organizam de modo a contorná-los adequadamente.

(a) t = 0 (b) t = 20 (c) t = 40

Figura 25 – Movimentação de pedestres em um ambiente com barreira na saída, conside-
rando o piso invertido de Varas. Fonte: autor.

O uso do PIV no modelo de Kirchner será indicado como Kirchner-PIV.

3.2.2.2 Piso invertido de Alizadeh

O piso proposto por Alizadeh (2011) é obtido por meio do cálculo individual asso-

ciado a cada saída e a combinação dos valores resultantes ao final do processo. Para cada

saída, dois pesos são definidos: o peso estático, determinado conforme o cálculo de Varas

et al. (2007), e o peso dinâmico, baseado na posição dos pedestres em relação às células

e às saídas.

O peso de uma célula cij em relação a uma saída A, no passo de tempo t, denotado

por W A
t (cij), é determinado por:

W A
t (cij) = W A

static(cij)
︸ ︷︷ ︸

Peso Estático

+ αAlizadeh T A
t (cij)

︸ ︷︷ ︸

Peso Dinâmico

(3.9)

sendo,

• W A
static(cij): o valor do piso estático da célula cij em relação à saída A, calculado

conforme o cálculo base de Varas.

• αAlizadeh : coeficiente de escape de multidões, que controla a influência do piso

dinâmico na movimentação dos pedestres. Para αAlizadeh = 0, o piso dinâmico é ig-

norado, resultando em uma dinâmica de movimentação similar ao modelo de Varas.

Neste trabalho, adotou-se αAlizadeh = 1, que é o mesmo valor utilizado em Alizadeh

(2011), propiciando que alguns pedestres optem por utilizar saídas mais distantes a

fim de evitar grandes aglomerações.
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• T A
t (cij): o valor do piso dinâmico, que corresponde ao número de pedestres mais

próximos da célula cij em relação à saída A no passo de tempo t. O cálculo desse

termo é dado por
3

:

T A
t (cij) =

∣
∣
∣LA

t (cij)
∣
∣
∣ +

∣
∣
∣EA

t (cij)
∣
∣
∣

dA

(3.10)

Considerando Vt como o conjunto de células ocupadas por um pedestre no passo

de tempo t, os conjuntos LA
t (cij) e EA

t (cij) são definidos como:

LA
t (cij) =

{

y | W A
static(y) < W A

static(cij) e y ∈ Vt

}

(3.11)

EA
t (cij) =

{

y | W A
static(y) = W A

static(cij) e y ∈ Vt

}

(3.12)

Por fim, o denominador dA representa a largura da saída A.

Conforme definido nas Equações 3.11 e 3.12, LA
t (cij) e EA

t (cij) são os conjuntos

das células ocupadas por pedestres com piso estático inferior e igual, respectivamente,

com relação a uma célula cij. Dessa forma, os termos
∣
∣
∣LA

t (cij)
∣
∣
∣ e

∣
∣
∣EA

t (cij)
∣
∣
∣ indicam, res-

pectivamente, o número de células ocupadas com piso menor e igual ao da célula cij.

Após a aplicação da Equação 3.9 sobre todas as saídas do ambiente, o peso final

de cada célula cij é o menor peso considerando todas as saídas do ambiente, ou seja:

Wt(cij) = min
{

W A
t (cij) | A é uma saída do ambiente

}

(3.13)

Por se basear no piso estático de Varas, no Modelo de Alizadeh, os pedestres

também preferem se movimentar para células com campos de piso menores. Por esse

motivo, é necessário a aplicação de uma inversão, similar a usada no cálculo do PIV

(Equação 3.8), em todas as células do reticulado. O piso resultante será referido como

Piso Invertido de Alizadeh (PIA).

A Figura 26 apresenta o mapa de calor (heatmap) dos pisos estáticos gerados a

partir do PIA em três momentos distintos de uma simulação (t = 0, 20 e 40) do ambiente

com barreira na saída. Observa-se que os pesos atribuídos às células próximas à saída

diminuem progressivamente à medida que os pedestres vão deixando o ambiente, conforme

exemplificado na Figura 27.

O uso do PIA no modelo de Kirchner será indicado como Kirchner-PIA.
3 A fórmula original inclui a fração 1

2
no segundo termo, a qual foi removida, pois os resultados experi-

mentais obtidos diferem dos apresentados por Alizadeh (2011).
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(a) t = 0 (b) t = 20 (c) t = 40

Figura 26 – Mapa de calor dos pisos estáticos gerados pelo piso invertido de Alizadeh,
em diferentes passos de uma simulação do ambiente com barreira na saída.
Fonte: autor.

(a) t = 0 (b) t = 20 (c) t = 40

Figura 27 – Movimentação dos pedestres em um ambiente com obstáculos, considerando
o piso invertido de Alizadeh. Fonte: autor.

3.2.3 Obstáculos Transponíveis

Os obstáculos incorporados ao modelo de Kirchner por meio do uso de um dos

pisos invertidos são indistinguíveis das paredes que delimitam os ambientes, no sentido

de que bloqueiam totalmente a movimentação através deles. Dessa forma, objetos como

mesas e cadeiras, que podem ser atravessados por pedestres, não são representados de

maneira adequada.

O modelo proposto por Silva et al. (2025), introduz uma nova classe de obstáculos,

denominados obstáculos transponíveis. A ideia fundamental dessa nova classe é permitir

a representação de objetos que, embora dificultem a movimentação, ainda podem ser

atravessados pelos pedestres. Esse modelo estende as regras de cálculo de piso e movi-

mentação de pedestres do modelo de Varas, incorporando novas regras para a introdução

dos obstáculos transponíveis:

1. Durante o cálculo do piso estático, os obstáculos transponíveis são ignorados, de
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o fogo se propaga a cada a/v

b
passos de tempo. A Figura 31 ilustra a propagação de um

incêndio, segundo o modelo apresentado em (ZHENG et al., 2011), a partir de um único

foco iniciado na célula mais ao centro do reticulado. Como pode ser observado, todas

as células na vizinhança de Moore se incendiam a cada expansão (15 passos de tempo),

considerando v = 0, 1 m/s, a = 0, 4 m e b = 4/15 s. Obstáculos transponíveis e pedestres,

quando atingidos pela propagação do fogo, são incendiados, sendo que os pedestres sofrem

óbito nesse caso.

(a) t = 0 (b) t = 15 (c) t = 30

Figura 31 – Propagação do fogo a cada 15 passos de tempo. Fonte: autor.

Células em chamas são vistas pelos pedestres como obstáculos intransponíveis,

inibindo a movimentação em sua direção. As células adjacentes ao fogo podem ser clas-

sificadas em dois tipos: perigosas e arriscadas. As células perigosas estão muito próximas

do fogo e não oferecem nenhuma vantagem para o pedestre e, portanto, também são evi-

tadas. Na prática, a probabilidade de transição para essas células é zero. Por outro lado,

as células arriscadas também estão próximas ao fogo, mas estão posicionadas de forma

a oferecer alguma vantagem durante a movimentação dos pedestres. Células localizadas

entre um foco e um obstáculo intransponível recebem essa classificação. A Figura 32 exem-

plifica ambas as categorias. As células adjacentes ao fogo que também estão próximas a

obstáculos intransponíveis e à saída são classificadas como células arriscadas, represen-

tadas por quadrados amarelos , enquanto as células perigosas são representadas por

quadrados marrons . A importância dessas duas categorias de células próximas ao fogo

será discutida a seguir.

Essas categorias de células referem-se apenas àquelas adjacentes ao fogo, contudo,

a influência do fogo se estende além dessas células. Essa influência é incorporada por

meio do campo de piso de fogo, no qual os valores são definidos de forma inversamente

proporcional à distância da borda do fogo. O valor do piso de fogo para a célula cij é dado

pela Equação 3.14:

Fij =
1/d(i, j)

∑

i

∑

j
1/d(i, j)

(3.14)
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Além do termo Fij, os parâmetros kF e αF ire são utilizados para ajustar a influência

do fogo. O parâmetro kF atua como um fator de escala positivo, amplificando ou atenu-

ando o efeito de Fij. Já αF ire modela o comportamento de tomada de decisões arriscadas

pelos pedestres, quando eles se encontram próximos à saída. Se a distância entre uma

célula e a saída, medida pela métrica de Manhattan, for menor que um valor σ, o valor de

αF ire será 0, 5, caso contrário, αF ire = 1. O parâmetro σ representa a distância máxima

em relação a uma saída, na qual o fogo exerce menor influência sobre as probabilidades de

transição, refletindo a tendência dos pedestres de priorizar a evacuação mesmo sob risco.

A Equação 3.15 é utilizada em todas as situações, com uma única exceção: as

células arriscadas. Por representarem uma oportunidade de rota "mais promissora"para

os pedestres, nessas células adota-se a fórmula original (Equação 3.2), desconsiderando-se

a influência do fogo.

Outros elementos presentes no trabalho de Zheng et al. (2011), como o cálculo

normalizado dos pisos estático e dinâmico, a remoção das saídas consumidas pelas chamas,

a consideração de apenas saídas visíveis aos pedestres (cuja visão não está obstruída pelo

fogo) no cálculo do piso estático, o efeito de inércia sobre os pedestres, a heterogeneidade

de pedestres em relação à sua velocidade de movimento e a possibilidade de todos os

pedestres falharem em uma resolução de conflitos, foram desconsiderados a fim de manter

a simplicidade do modelo proposto.
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4 Simulações e Resultados

Este capítulo apresenta as simulações realizados e os resultados obtidos a partir

das adições ao modelo de Kirchner e Schadschneider (2002). Na primeira seção, destacam-

se informações gerais pertinentes a todos os experimentos. Na segunda seção, verifica-se

como a movimentação dos pedestres durante as simulações é influenciada pelas formas

alternativas de cálculo do piso estático de Kirchner. Na terceira seção, comparam-se as

dinâmicas de evacuação obtidas a partir dos cálculos de piso estático PIV e PIA. Na

quarta seção, analisa-se a movimentação dos pedestres em ambientes com obstáculos

transponíveis. Por fim, na quinta seção, valida-se a capacidade do modelo implementado

de representar a dinâmica de pedestres em ambientes com obstáculos (transponíveis e

intransponíveis) e fogo.

4.1 Considerações Iniciais

O modelo original de Kirchner, assim como suas versões modificadas neste traba-

lho, envolvem diversos parâmetros. Nos experimentos realizados neste capítulo, os parâ-

metros α, δ, kS e KD assumem valores intermediários, conforme os resultados apresentados

por Kirchner e Schadschneider (2002). Os valores adotados são: α = 0, 3, δ = 0, 3, kS = 2

e kD = 1.

Os ambientes utilizados para avaliar cada uma das extensões são apresentados

no início das respectivas seções. Nas simulações em que os pedestres não tenham suas

localizações previamente definidas no ambiente (posições fixas), uma população de 50

pedestres é distribuída aleatoriamente. Ademais, os cenários analisados neste trabalho

representam apenas uma pequena fração das situações possíveis na realidade, sendo que

cenários mais complexos não foram considerados devido à limitação de tempo para o

desenvolvimento da pesquisa.

Para os experimentos cujos resultados foram apresentados na forma de gráfico de

linhas, cada ponto do gráfico foi obtido a partir da média de 1000 simulações realizadas

para cada conjunto de parâmetros.

4.2 Análise do Impacto dos Cálculos de Piso Estático na Movimen-

tação de Pedestres

Esta seção tem como objetivo analisar os efeitos das duas abordagens alternativas

propostas para o cálculo do piso estático no modelo de Kirchner, em comparação com os
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Embora os pedestres se dirijam normalmente às saídas, como esperado, eles tendem a se

concentrar brevemente nos cantos próximos às saídas, um comportamento atípico para

indivíduos tentando abandonar um ambiente. Um fenômeno semelhante é observado com

os pedestres localizados na região entre as duas portas da direita, conforme mostrado nas

Figuras 36c e 36d.

(a) t = 0 (b) t = 20

(c) t = 40 (d) t = 60

Figura 36 – Movimentação de pedestres em diferentes instantes no ambiente com saídas
dispersas, considerando o piso estático calculado pelo MIS. Fonte: autor.

Apesar desses problemas, o MIS quando aplicado nesse ambiente permite o fun-

cionamento do modelo, o que não ocorre para o ambiente com saídas concentradas. Como

ilustrado na Figura 37, as células próximas às saídas recebem valores próximos de zero,

enquanto as células no lado oposto apresentam os maiores valores.

Figura 37 – Mapa de calor do piso estático calculado pelo MIS para o ambiente com
saídas concentradas. Fonte: autor.

Quando esse piso estático é aplicado ao modelo de Kirchner, os pedestres tendem
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a se deslocar para o lado do ambiente sem saídas, como ilustrado na Figura 38. Esse

comportamento é semelhante ao exibido na Figura 19, na medida em que os pedestres se

direcionam à região mais distante de qualquer saída.

(a) t = 0 (b) t = 20 (c) t = 40 (d) t = 60

Figura 38 – Movimentação de pedestres em diferentes instantes no ambiente com saídas
concentradas, considerando o piso estático calculado pelo MIS. Fonte: autor.

O MA, por sua vez, não apresenta os problemas observados na métrica original

nem no MIS. A Figura 39 mostra o piso estático obtido para o ambiente com saídas

dispersas usando essa forma de cálculo. Nesse piso, os valores das células aumentam em

direção às saídas, com a formação de “picos” (maiores valores) próximos a elas, o que

impede a concentração de pedestres nos cantos do ambiente, como observado na Figura

36.

Figura 39 – Mapa de calor do piso estático calculado pelo MA para o ambiente com saídas
dispersas. Fonte: autor.

A movimentação de pedestres sobre esse piso é apresentada na Figura 40. Observa-

se que o deslocamento em direção às saídas ocorre de forma mais fluida, sem que os

pedestres se concentrem nos cantos da sala ou na região entre as saídas.

Por fim, a aplicação do MA no ambiente com saídas concentradas, mostrado na

Figura 41, é coerente com as exigências do modelo, visto que o campo de piso aumenta

em direção à saída. A movimentação dos pedestres sobre esse piso, conforme ilustrado na

Figura 42, ocorre adequadamente em direção às saídas.
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(a) t = 0 (b) t = 20

(c) t = 40 (d) t = 60

Figura 40 – Movimentação de pedestres em diferentes instantes no ambiente com saídas
dispersas, considerando piso estático calculado pelo MA. Fonte: autor.

Figura 41 – Mapa de calor do piso estático pelo MA para o ambiente com saídas concen-
tradas. Fonte: autor.

Considerando que tanto a métrica original como o MIS apresentam falhas na

geração de um piso estático adequado em pelo menos um dos ambientes, enquanto o

MA produz pisos consistentes em todos os casos, esse último será adotado nos demais

experimentos sempre que o modelo original de Kirchner for utilizado.

(a) t = 0 (b) t = 20 (c) t = 40 (d) t = 60

Figura 42 – Movimentação de pedestres em diferentes instantes no ambiente com saídas
concentradas, considerando piso estático calculado pelo MA. Fonte: autor.
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4.3 Análise da Dinâmica de Evacuação em Ambientes com Obstá-

culos Intransponíveis

Conforme demonstrado nas Figuras 25 e 27, o cálculo de piso usando o PIV e o

PIA, respectivamente, tornam o modelo de Kirchner compatível com obstáculos. Nesta

seção, Kirchner-PIV e Kirchner-PIA são aplicados a diferentes ambientes e as dinâmicas

resultantes comparadas quanto à eficiência da evacuação e ao comportamento dos pedes-

tres. Os principais ambientes utilizados nas simulações dos modelos são apresentados na

Figura 43.

(a)

(b) (c)

Figura 43 – Ambientes usados nas simulações do modelo envolvendo cenários com obstá-
culos intransponíveis: (a) sala sem obstáculos e com multidão; (b) restaurante
com distribuição irregular de pedestres; e (c) restaurante com distribuição
uniforme de pedestres. Fonte: adaptado de Alizadeh (2011).

Esses três ambientes são compostos por um reticulado de 20 × 30 células, repre-

sentando os seguintes cenários:

• Sala sem obstáculos e com multidão (Figura 43a): possui duas saídas, localizadas nas

posições (3, 0) e (19, 9), e uma aglomeração de 91 pedestres próxima a segunda saída.

Esse ambiente foi utilizado por Alizadeh (2011) para comparar o comportamento

do piso estático proposto pelo autor com o por Varas et al. (2007).

• Restaurante com distribuição irregular de pedestres (Figura 43b): contém duas saí-

das, localizadas nas posições (19, 8) e (8, 29), e 110 pedestres posicionados em seu
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interior, distribuídos principalmente ao redor das mesas. Esse ambiente foi empre-

gado por Alizadeh (2011) como um dos principais ambientes analisados em seu

trabalho.

• Restaurante com distribuição uniforme de pedestres (Figura 43c): é uma variação do

ambiente anterior, que visa representar um cenário onde os pedestres se distribuem

de forma uniforme pelo ambiente. Um total de 120 pedestres são posicionados ao

redor as mesas, com duas saídas duplas localizadas no centro de cada uma das

paredes laterais.

A Figura 44 apresenta a movimentação dos pedestres no ambiente sem obstáculos,

em três instantes distintos, para as abordagens Kirchner-PIV (Figura 44a) e Kirchner-

PIA (Figura 44b). Na primeira abordagem, todos os pedestres se dirigem para a saída

mais próxima, localizada em (19, 9), enquanto, no modelo Kirchner-PIA, eles, se dividem

entre as duas saídas do ambiente. Além disso, a adoção do piso dinâmico possibilita que

pedestres troquem de saída, caso isso se torne mais vantajoso, como pode ser notado no

passo t = 45 da Figura 44b, que mostra um pedestre se deslocando da saída inferior

(19, 9), onde está a maior concentração das pessoas, dificultando a evacuação, para a

saída superior (3, 0). O comportamento observado na segunda abordagem é coerente com

o apresentado em (ALIZADEH, 2011).

t = 15 t = 30 t = 45

(a)

(b)

Figura 44 – Movimentações dos pedestres na sala sem obstáculos e com multidão, utili-
zando as abordagens Kirchner-PIV (a) e Kirchner-PIA (b). Fonte: autor.

Esse comportamento distinto entre as duas abordagens pode ser compreendido

a partir da análise de seus respectivos pisos estáticos. A Figura 45 apresenta o mapa de

calor dos pisos estáticos do PIV e do PIA. Como o cálculo do PIA envolve um componente

dinâmico (piso dinâmico), para esse modelo é mostrado o mapa de calor em dois momentos

distintos da simulação (t = 0 e t = 45). O fenômeno observado no PIA, em que os pedestres

se dividem entre as saídas, pode ser explicado pela diferença entre os mapas ilustrados

nas Figuras 45a e 45b. O piso calculado pelo PIV apresenta uma separação clara entre as
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saídas (região em amarelo), com uma região de "atração"maior para as células próximas a

saída inferior, considerando o posicionamento da multidão no ambiente. Com isso, todos

os pedestres se dirigem para a saída inferior, pois os valores das células próximas a eles

aumentam em direção a essa saída. Já no cálculo inicial do PIA (Figura 45b), as áreas de

atração das saídas são menores, separadas por uma região com valores mais homogêneos

(vermelho claro). Dessa forma, alguns pedestres encontram-se em regiões do reticulado

cujos valores aumentam em direção a ambas as saídas. Já o comportamento de troca

de saída é explicado pelo piso estático do PIA no instante t = 45 (Figura 45c), que

considera a influência da concentração das pessoas (piso dinâmico), provocando a redução

da influência da saída inferior e o aumento do alcance da saída superior.

(a)

(b) (c)

Figura 45 – Mapas de calor dos pisos estáticos usados nos modelos que tratam obstáculos
para a sala sem obstáculos e com multidão: (a) modelo Kichner-PIV; (b)
modelo Kichner-PIA (t = 0); e (b) modelo Kichner-PIA (t = 45). Fonte:
autor.

O gráfico de linhas da Figura 46 mostra o tempo médio de evacuação conforme

a variação de kD (sensibilidade para o piso dinâmico), evidenciando o impacto de ambos

pisos no tempo médio de evacuação. A diferença entre as médias das duas abordagens

mantém-se em torno de 60 passos conforme o valor de kD aumenta, com o PIA apresen-

tando consistentemente as menores médias. Além disso, o gráfico demonstra que valores

mais elevados de kD impactam de forma distinta cada piso: o PIV mostra-se mais sensível

a esse aumento do que o PIA. Esse comportamento pode ser explicado pelo fato de que
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t = 15 t = 30 t = 45

(a)

(b)

Figura 47 – Movimentações dos pedestres pelo ambiente de restaurante com distribuição
irregular de pessoas: (a) modelo baseado no PIV; e (b) modelo baseado no
PIA. Fonte: autor.

(a)

(b) (c)

Figura 48 – Mapas de calor dos pisos estáticos usados nos modelos que tratam obstácu-
los para o restaurante com distribuição irregular de pedestres: (a) modelo
Kichner-PIV; (b) modelo Kichner-PIA (t = 0); e (b) modelo Kichner-PIA
(t = 45). Fonte: autor.

A Figura 49 mostra a variação do tempo médio de evacuação do restaurante nos

modelos Kirchner-PIV e Kirchner-PIA, em função do valor do parâmetro kD. Nota-se uma
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(a) (b) (c)

(d)

Figura 54 – Ambientes utilizados para a análise da dinâmica de evacuação com obstáculos
transponíveis: (a) restaurante; (b) sala de aula; (c) laboratório de computa-
ção; e (d) anfiteatro. Fonte: autor.

14 × 20 células, possui uma única saída localizada no canto superior direito em (1, 19) e

é preenchido por seis fileiras verticais, cada uma com 10 obstáculos transponíveis repre-

sentando bancadas, onde 60 pedestres estão distribuídos de forma uniforme.

O restaurante com obstáculos transponíveis é semelhante àquele utilizado no expe-

rimento anterior, sendo que as mesas e alguns obstáculos da parte superior direita foram

substituídos por obstáculos transponíveis. Por fim, o anfiteatro é composto por um reticu-

lado de 25 × 39 células, com obstáculos transponíveis representando as fileiras de cadeiras

e algumas mesas, e 190 pedestres distribuídos ao longo dos assentos e pelo ambiente, de

modo que a maior concentração de pessoas esteja entre as fileiras.

Conforme apresentado na Seção 3.2.3, a integração desses obstáculos no modelo de

Kirchner-PIA é gerenciado por dois parâmetros: probabilidade de transposição dos obs-

táculos (τ) e tempo de espera para execução de uma transposição após uma falha (θ). De

modo a avaliar o impacto desses parâmetros na dinâmica de movimentação de ambientes

com obstáculos transponíveis, comparou-se os tempos médios de evacuação (em passos de

tempo) obtidos a partir de diferentes configurações de valores (τ ∈ (0, 1; 0, 3; 0, 5; 0, 7; 0, 9)
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como não é possível atravessar os obstáculos, os indivíduos são obrigados a se deslocar

até a parte inferior do laboratório, resultando em uma expressiva aglomeração ao longo

desse percurso.

t = 10 t = 30 t = 50 t = 70

Figura 59 – Movimentação de pedestres pelo ambiente do laboratório com obstáculos in-
transponíveis (cenário OFF). Fonte: autor.

Em contraste, a Figura 60 mostra a movimentação dos pedestres pelo ambiente

de laboratório com obstáculos transponíveis, com τ = 0, 1 e diferentes valores de θ. No

caso de θ = 0 (Figura 60a), observa-se que os pedestres não seguem o trajeto adotado no

cenário OFF, mas tentam, continuamente, atravessar os obstáculos em direção à saída.

Como resultado, em t = 70, a saída encontra-se praticamente vazia, enquanto os pedestres

permanecem retidos atrás dos obstáculos. Conforme discutido na Seção 3.2.3, esse tipo

de ocorrência representa um dos principais problemas do ABOT. Por outro lado, para

θ = 1, ilustrado na Figura 60b, ao mesmo tempo que os pedestres permanecem estagnados

devido às falhas contínuas nas tentativas de travessia dos obstáculos transponíveis, o valor

reduzido de θ não é suficiente para que cheguem até a parte inferior do ambiente. Isso

faz com que se afastem da saída sem conseguir alcançar uma rota melhor, levando esse

conjunto de parâmetros a apresentar a média de evacuação mais elevada. Já nas Figuras

60c e 60d, correspondentes a θ = 5 e θ = 10, os pedestres continuam tentando atravessar os

obstáculos, mas também buscam contornar as bancadas (como no cenário OFF), quando

falham na tentativa de atravessá-las. Essa combinação de estratégias resulta em tempos

médios ligeiramente menores em comparação com os cenários anteriores.

Em contrapartida, para valores maiores de τ , o comportamento dos pedestres

quando θ é próximo a zero apresenta diferença. A Figura 61 mostra a movimentação dos

pedestres para τ = 0, 7 e diferentes valores de θ. Devido à alta taxa de transponibilidade,

quando θ = 0, os pedestres não ficam presos atrás dos obstáculos enquanto a saída está

vazia, conforme ilustrado na Figura 61a. Já quando θ é mais elevado, como nas Figuras

61b e 61c, os pedestres se concentram mais próximos à saída, tanto no corredor livre como

atrás dos obstáculos.

Por fim, o anfiteatro é o ambiente que apresenta alguns dos comportamentos mais

diferenciados. De forma semelhante ao laboratório, os tempos médios de evacuação do

ambiente, exibido na Figura 62, precisaram ser exibidos em dois gráficos para propiciar

a visualização adequada das curvas para todos os valores de τ . Como pode ser observado
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t = 10 t = 30 t = 50 t = 70

(a)

(b)

(c)

(d)

Figura 60 – Movimentação de pedestres pelo ambiente do laboratório com obstáculos
transponíveis com τ = 0, 1 e diferentes valores de θ: (a) 0; (b) 1 (b); (c)
5; e (d) 10. Fonte: autor.

na Figura 62b, os valores médios para τ = 0, 1, com θ ≤ 5 são mais elevados que a média

do cenário OFF. Além disso, para valores baixos de θ, as médias em geral são maiores

que para valores mais elevados.

A Figura 63 ilustra a dinâmica de movimentação pelo ambiente apenas com obstá-

culos intransponíveis (cenário OFF). Nota-se que o comportamento dos pedestres consiste

em percorrer o espaço vazio entre as fileiras até os corredores laterais e, em seguida, seguir

em direção às saídas localizadas na parte inferior do ambiente.

A Figura 64 apresenta a movimentação dos pedestres no ambiente considerando

algumas combinações notáveis de τ e θ. A Figura 64a mostra o cenário com τ = 0, 1 e

θ = 0, correspondente ao ABOT com uma taxa de transponibilidade muito baixa. Neste

cenário, observa-se que os pedestres tentam continuamente atravessar os obstáculos trans-

poníveis, ainda que com baixo sucesso, comportamento que não condiz com a realidade.

Como consequência, ocorre um acúmulo anormal de pedestre entre as fileiras de cadeiras,

mesmo quando os corredores laterais estão totalmente livres. Esse é mais um problema

decorrente do ABOT.
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t = 10 t = 30 t = 50 t = 70

(a)

(b)

(c)

Figura 61 – Movimentação de pedestres pelo ambiente do laboratório com obstáculos
transponíveis, considerando τ = 0, 7 e diferentes valores de θ: (a) 0; (b) 5; e
(c) 10. Fonte: autor.

Conforme o gráfico da Figura 62, para τ = 0, 1, o tempo médio de evacuação

começa a se estabilizar por volta de θ = 10. A Figura 64b ilustra a movimentação dos

pedestres com esses parâmetros. Diferentemente do comportamento observado quando

θ = 0, os pedestres mostraram uma maior preferência em seguir o fluxo exibido no cenário

OFF, embora alguns consigam ocasionalmente superar os obstáculos.

A medida que τ aumenta, o fluxo de pedestres nos corredores laterais diminui,

enquanto um número maior de indivíduos consegue superar todos os obstáculos transpo-

níveis e alcançar a saída sem precisar contornar as fileiras de cadeiras. As Figuras 64c,

64d e 64e apresentam a movimentação de pedestres considerando θ = 5 e τ de 0, 3, 0, 5 e

0, 7, respectivamente. Como pode ser observado, a preferência em atravessar os obstáculos

fica maior a medida que τ aumenta, reduzindo a movimentação em direção aos corredores

laterais e aumentando a concentração de pessoas nas regiões centrais das fileiras, devido

sua menor distância em relação às saídas.
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t = 20 t = 40 t = 60

(a)

(b)

(c)

(d)

(e)

Figura 64 – Movimentação de pedestres pelo ambiente de anfiteatro em função da confi-
guração dos parâmetros do transponibilidade dos obstáculos:: (a) τ = 0., e
θ = 0, (b) τ = 0.1 e θ = 10, (c) τ = 0, 3 e θ = 5, (d) τ = 0, 5 e θ = 5 ,(e)
τ = 0, 7 e θ = 5. Fonte: autor.
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4.5 O Efeito do Fogo

De modo a avaliar o efeito do fogo na movimentação de pedestres, o modelo foi

aplicado aos ambientes do laboratório e anfiteatro, com e sem sem obstáculos transponí-

veis. Durante este experimento, os parâmetros τ = 0, 5 e θ = 5 foram empregados nas

simulações que envolvem obstáculos transponíveis, pois produzem um comportamento

equilibrado na movimentação dos pedestres entre contornar ou tentar transpor os obstá-

culos.

Os cenários avaliados consideravam um único foco de incêndio, variando apenas sua

localização inicial. Nessas simulações, manteve-se a mesma configuração dos parâmetros

de controle do fogo e da sua influência na movimentação dos pedestres empregada em

(ZHENG et al., 2011), a saber: σ = 6, γ = 8, kF = 600 e v = 0, 1 m/s. Nessa velocidade

de propagação, o fogo se expande a cada 15 passos de tempo.

A Figura 65 mostra a movimentação dos pedestres pelo ambiente do laboratório

sem a presença de fogo, enquanto a Figura 66 mostra como essa dinâmica é modificada a

partir da presença de focos de incêndio em diferentes pontos do ambiente.

t = 0 t = 30 t = 60 t = 90

Figura 65 – Movimentação de pedestres pelo laboratório sem a presença de fogo.

Ao comparar as dinâmicas de movimentação dos pedestres pelos cenários com e

sem fogo, observa-se que focos de incêndio localizados no lado oposto da saída (mais

distantes) não influenciam significativamente na dinâmica de evacuação, como mostrado

nas Figuras 66a e 66d. Por outro lado, quando os focos iniciais estão mais próximos das

saídas, os pedestres tendem a se movimentar de modo a evitar o fogo, como ilustrado

nas Figuras 66b e 66c, em que, em t = 90, todos os pedestres estão localizados atrás

da bancada mais próxima da saída. De forma semelhante, nos cenários das Figuras 66e

e 66f os pedestres evitaram, ou ficaram impossibilitados, de se movimentar próximos ao

corredor inferior, concentrando-se na parte superior do ambiente, próxima à saída.

Nos cenários simulados, nem todos os pedestres conseguem escapar do fogo, seja

por não serem rápidos o suficiente, por estarem posicionados em locais desfavoráveis

quando o fogo começou ou por ficarem impossibilitados de se movimentar devido à pre-

sença de outros pedestres. A Figura 67 apresenta a média de pedestres que vieram a óbito

nas simulações com o ambiente de laboratório de acordo com o posicionamento dos focos

iniciais e considerando o ambiente com e sem obstáculos transponíveis.
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t = 0 t = 30 t = 60 t = 90

(a)

(b)

(c)

(d)

(e)

(f)

Figura 66 – Movimentação de pedestres pelo ambiente do laboratório durante um incên-
dio, de acordo com a posição inicial do fogo: (a) (1, 1); (b) (1, 9); (c) (6, 9);
(d) (12, 1); (e) (12, 9); e (f) (12, 18). Fonte: autor.

Conforme observado na Figura 67a, os focos iniciados nas células (1, 1) ou (12, 1)

são aqueles que causam o menor número de óbitos (em média, menos de uma morte por

simulação), justamente por estarem localizados no lado oposto da saída e, consequente-

mente, não causando sua obstrução. Já a maior média ocorreu quando o fogo começa no

meio dos pedestres (célula (6, 9)), prendendo alguns indivíduos entre as fileiras que, na

impossibilidade de atravessar os obstáculos, são alcançados pelas chamas. Por outro lado,

focos iniciados no corredor localizado na parte inferior do ambiente ocasionaram um nú-

mero intermediário de casualidades, pois ao mesmo tempo que bloqueiam a rota livre dos

pedestres, os mesmos podem escapar ao atravessar os obstáculos. Dessa forma, apenas os

pedestres que falharam repetidamente em atravessar os obstáculos, acabam sendo pegos

pelo fogo

No cenário apenas com obstáculos intransponíveis (Figura 67b), as médias dos
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transponíveis, mostrou-se mais atrativa para os pedestres do que rotas mais longas e

seguras.

t = 0 t = 40 t = 80 t = 120

Figura 69 – Movimentação de pedestres pelo ambiente do anfiteatro sem a presença de
fogo.

t = 0 t = 40 t = 80 t = 120

(a)

(b)

(c)

(d)

(e)

Figura 70 – Movimentação de pedestres pelo ambiente anfiteatro durante um incêndio,
de acordo com a posição inicial do fogo: (a) (2, 19); (b) (11, 9; (c) (11, 19);
(d) (19, 19); e (e) (22, 5). Fonte: autor.
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5 Conclusões

Este trabalho teve como objetivo principal o desenvolvimento de um modelo de

dinâmica populacional baseado em ACs capaz de representar o comportamento de pedes-

tres em ambientes com tipos variados de obstáculos e na presença de incêndios. À partir

do modelo base de Kirchner e Schadschneider (2002), cálculos alternativos para o piso

estático original foram propostos de modo a contornar problemas identificados durante a

implementação.

Em seguida, o modelo foi estendido com a inclusão dos obstáculos intransponíveis,

realizada por meio da adaptação dos pisos estáticos propostos por Varas et al. (2007) e

Alizadeh (2011), originalmente concebidos para isso. Também foi incorporado o conceito

de obstáculos transponíveis proposto por Silva et al. (2025), envolvendo melhorias na

dinâmica de interação dos pedestres com esses obstáculos.

Por fim, a dinâmica de incêndio foi incorporada ao modelo já estendido, a partir de

uma simplificação do modelo de Zheng et al. (2011), tornando o modelo capaz de represen-

tar cenários com a presença de focos de incêndio e a influência do fogo na movimentação

dos pedestres pelo ambiente.

A partir das simulações realizadas, foi possível verificar que o método alternativo

(MA) proposto neste trabalho foi capaz de calcular corretamente o piso estático para

todos os ambientes investigados, sendo também a única forma de cálculo que reproduz

fielmente os exemplos apresentados no trabalho original.

As extensões desenvolvidas ampliaram significativamente as capacidades do mo-

delo. A introdução de obstáculos intransponíveis possibilitou a simulação de ambientes

mais complexos e realistas. Nesse sentido, a adoção de um novo cálculo de piso baseado

no trabalho de Alizadeh (2011), denominado piso invertido de Alizadeh (PIA), promove

uma distribuição mais uniforme dos pedestres entre as diferentes saídas, assim como a

ocorrência do fenômeno de troca de saída pelos pedestres. Resultados experimentais de-

monstraram que, em especial no PIA, os valores atribuídos às células se tornam substan-

cialmente mais elevados, o que aumenta a influência do piso estático nas probabilidades

de transição e, consequentemente, reduz o impacto do piso dinâmico. Entretanto, tal situ-

ação é contornada pela adoção de valores mais elevados para o parâmetro kD (> 10), que

controla a sensibilidade do piso dinâmico. Com esses valores, a influência do piso dinâmico

passa a compensar, em certa medida, a influência mais intensa do piso estático.

Nos experimentos com obstáculos transponíveis, foram observados comportamen-

tos distintos, dependendo da configuração dos obstáculos (formato, tamanho e disposição

em relação à saída) em cada ambiente. Em ambientes compostos por obstáculos me-
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nores, como salas de aula e restaurantes, o impacto sobre o tempo total de evacuação

mostrou-se limitado, embora ainda ligeiramente inferior ao observado em situações com

apenas obstáculos intransponíveis. Por outro lado, em ambientes com obstáculos maiores

ou mais extensos, o impacto no tempo final de evacuação é significativo. Em especial,

para determinadas combinações de parâmetros, sobretudo valores baixos para a proba-

bilidade de transposição dos obstáculos (τ) e para o tempo de espera para execução de

uma transposição após uma falha (θ), o tempo de evacuação aumenta consideravelmente,

ultrapassando a média dos cenários com obstáculos intransponíveis. Esse comportamento

é causado pela baixa eficiência dos pedestres em atravessar os obstáculos, devido ao baixo

valor atribuído a τ ; combinada com sua insistência em tentar atravessar os obstáculos e

ignorar rotas alternativas, consequência do valor baixo de θ.

Com a introdução do fogo no modelo, observou-se que, em geral, os pedestres

evitam aproximar-se dos focos de incêndio e buscam se mover de modo a escapar de

sua propagação. Esse comportamento, entretanto, desaparece na presença de obstáculos

transponíveis no caminho. Em muitas situações, ao insistirem em atravessar esses obs-

táculos, os pedestres acabam ficando muito próximos das chamas, sendo alcançados por

elas ou dificultando a movimentação de outros indivíduos. Apesar disso, a combinação de

obstáculos transponíveis com o fogo pode favorecer a evacuação em situações nas quais os

pedestres estão encurralados pelas chamas, tornando a travessia dos obstáculos a única

rota e fuga.

Por meio dessas alterações, entende-se que o modelo desenvolvido neste trabalho

aprimora as capacidades do modelo original. Ao incorporar suporte a obstáculos, trans-

poníveis ou não, além de modelar a propagação de fogo e sua influência na movimentação

dos pedestres, o modelo final é capaz de simular, com maior realismo, diferentes cenários

de evacuação em ambientes com e sem a ocorrência de incêndios.

Embora o modelo implementado atenda aos objetivos originalmente definidos, ao

longo da pesquisa observou-se algumas limitações e pontos que podem ser melhorados.

Nesse sentido, sugere-se que trabalhos futuros investiguem o uso de métodos probabilís-

ticos para determinar dinamicamente os valores adotados pelos parâmetros de configu-

ração do comportamento dos indivíduos, como o tempo de cooldown e a probabilidade

de travessia pelos obstáculos, de modo a refletir fatores como impaciência, dificuldade

de transposição de obstáculos e mudança de comportamento em função da proximidade

do fogo. Também, recomenda-se a introdução de heterogeneidade nos pedestres quanto

à sua capacidade de atravessar obstáculos transponíveis. Outra evolução natural é a im-

plementação de um esquema aprimorado de propagação do incêndio, controlado por um

modelo mais complexo, no qual diferentes células de obstáculos transponíveis queimem e

propaguem o fogo de forma não uniforme.

Ressalta-se que todas as versões do modelo e as ferramentas desenvolvidas neste
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trabalho estão disponibilizadas nos repositórios indicados no Anexo A.



83

Referências

ALIZADEH, R. A dynamic cellular automaton model for evacuation process with
obstacles. Safety Science, v. 49, p. 315–323, 2011. Citado 11 vezes nas páginas 14, 26,
29, 31, 42, 45, 46, 59, 60, 66 e 80.

ALTSHULER, E.; RAMOS, O.; NÚÑEZ, Y.; FERNÁNDEZ, J.; BATISTA-LEYVA,
A. J.; NODA, C. Symmetry breaking in escaping ants. Am. Nat., University of Chicago
Press, v. 166, n. 6, p. 643–649, dez. 2005. Citado na página 28.

BELOTTI, M. C. T. D. Simulação da dinâmica de multidões baseada no
modelo de forças sociais. Dissertação (Mestrado) — Universidade de São Paulo
— Escola Politécnica, São Paulo, 2020. DOI: <https://doi.org/10.11606/D.3.2020.
tde-19072021-084725>. Citado 3 vezes nas páginas 23, 25 e 27.

BERLEKAMP, E. R.; CONWAY, J. H.; GUY, R. K. Winning Ways for Your
Mathematical Plays, Volume 2: Games in Particular. London and New York:
Academic Press, 1982. Citado na página 17.

BHATTACHARJEE, K.; NASKAR, N.; ROY, S.; DAS, S. A survey of cellular automata:
types, dynamics, non-uniformity and applications. Nat. Comput., Springer Science and
Business Media LLC, v. 19, n. 2, p. 433–461, jun. 2020. Citado 2 vezes nas páginas 18
e 19.

BURSTEDDE, C.; KLAUCK, K.; SCHADSCHNEIDER, A.; ZITTARTZ, J. Simulation
of pedestrian dynamics using a two-dimensional cellular automaton. Physica A:
Statistical Mechanics and its Applications, v. 295, p. 507–525, 2001. Citado 5
vezes nas páginas 31, 32, 33, 36 e 37.

DAMAZO, G. S. Modelo baseado em autômatos celulares para simulação
de dinâmica coletiva de pedestres em ambientes internos. 2024. Trabalho de
Conclusão de Curso (Graduação em Ciência da Computação) – Universidade Federal
de Uberlândia, Uberlândia, 2024. Disponível em: <https://repositorio.ufu.br/handle/
123456789/41926>. Citado na página 24.

DONG, H.; ZHOU, M.; WANG, Q.; YANG, X.; WANG, F. Y. State-of-the-art pedestrian
and evacuation dynamics. IEEE Transactions on Intelligent Transportation
Systems, v. 21, 2020. ISSN 15580016. Https://sci-hub.se/10.1109/TITS.2019.2915014.
Citado 3 vezes nas páginas 23, 25 e 27.

FERREIRA, M. E. d. A. Ajuste evolutivo de parâmetros de autômatos
celulares probabilísticos em modelos de propagação de incêndios.
180 p. Dissertação (Dissertação (Mestrado em Ciência da Computação)) —
Universidade Federal de Uberlândia, Uberlândia, Brasil, mar. 2023. Disponível em:
<https://repositorio.ufu.br/handle/123456789/38738>. Citado 2 vezes nas páginas 20
e 23.

GOLDSTONE, R. L.; JANSSEN, M. A. Computational models of collective behavior.
Trends Cogn. Sci., Elsevier BV, v. 9, n. 9, p. 424–430, set. 2005. Citado na página 27.



Referências 84

HELBING, D.; FARKAS, I.; VICSEK, T. Simulating dynamical features of escape panic.
Nature, Springer Science and Business Media LLC, v. 407, n. 6803, p. 487–490, set.
2000. Citado 2 vezes nas páginas 26 e 28.

HELBING, D.; JOHANSSON, A. Pedestrian, crowd and evacuation dynamics.
In: MEYERS, R. A. (Ed.). Extreme Environmental Events: Complexity in
Forecasting and Early Warning. New York, NY: Springer, 2011. p. 697–716. Citado
na página 14.

HELBING, D.; MOLNÁR, P.; FARKAS, I. J.; BOLAY, K. Self-organizing pedestrian
movement. Environ. Plann. B Plann. Des., SAGE Publications, v. 28, n. 3, p.
361–383, jun. 2001. Citado 2 vezes nas páginas 14 e 23.

IZQUIERDO, J.; MONTALVO, I.; PÉREZ, R.; FUERTES, V. S. Forecasting pedestrian
evacuation times by using swarm intelligence. Physica A, Elsevier BV, v. 388, n. 7, p.
1213–1220, abr. 2009. Citado na página 14.

KIRCHNER, A.; SCHADSCHNEIDER, A. Simulation of evacuation processes using a
bionics-inspired cellular automaton model for pedestrian dynamics. Physica A, Elsevier
BV, v. 312, n. 1-2, p. 260–276, set. 2002. Citado 15 vezes nas páginas 14, 15, 17, 29, 30,
31, 32, 33, 35, 36, 37, 40, 50, 54 e 80.

KLÜPFEL, H. Crowd dynamics phenomena, methodology, and simulation. In:
Pedestrian Behavior. [S.l.]: Emerald Group Publishing Limited, 2009. p. 215–244.
Citado 2 vezes nas páginas 24 e 25.

LIMA, D.; LIMA, H. Autômatos celulares estocásticos bidimensionais aplicados
à simulação de propagação de incêndios em florestas homogêneas. In: Anais
do V Workshop de Computação Aplicada a Gestão do Meio Ambiente e
Recursos Naturais. Porto Alegre, RS, Brasil: SBC, 2014. p. 15–24. ISSN 2595-6124.
Disponível em: <https://sol.sbc.org.br/index.php/wcama/article/view/10907>. Citado
na página 22.

LIMA, D. A. Modelo criptográfico baseado em autômatos celulares
tridimensionais híbridos. Dissertação (Mestrado em Ciências Exatas e da
Terra) — Universidade Federal de Uberlândia, Uberlândia, MG, 2012. DOI:
<https://doi.org/10.14393/ufu.di.2012.341>. Citado 3 vezes nas páginas 17, 18 e 20.

LIMA, D. A. Autômatos celulares e sistemas bio-inspirados aplicados ao
controle inteligente de robôs. Tese (Doutorado em Ciência da Computação)
— Universidade Federal de Uberlândia, Uberlândia, MG, 2017. DOI: <http:
//dx.doi.org/10.14393/ufu.te.2018.26>. Citado 8 vezes nas páginas 17, 18, 19, 20, 21,
24, 25 e 27.

LO, S. M.; HUANG, H. C.; WANG, P.; YUEN, K. K. A game theory based exit selection
model for evacuation. Fire Saf. J., Elsevier BV, v. 41, n. 5, p. 364–369, jul. 2006.
Citado na página 28.

MACHADO, M. M. Simulação do processo de evacuação de pedestres
no restaurante universitário da Universidade Federal de Catalão via
Autômatos Celulares. Catalão, GO: [s.n.], 2022. Trabalho de Conclusão de Curso
(Bacharelado em Ciência da Computação). Disponível em: <https://prod.ufcat.edu.br:
1337/uploads/Matheus_Matos_Machado_74226bfa93.pdf>. Citado na página 18.



Referências 85

NAMETALA, S. C. S.; MARTINS, L. G. A.; OLIVEIRA, G. M. B. A new distance
diffusion algorithm for a path-planning model based on cellular automata. In: 2020
IEEE Congress on Evolutionary Computation (CEC). [S.l.]: IEEE, 2020. Citado
na página 43.

NEUMANN, J. von. Theory of Self-Reproducing Automata. Champaign, IL:
University of Illinois Press, 1966. Citado na página 17.

PAULS, J. The movement of people in buildings and design solutions for means of
egress. Fire Technol., Springer Science and Business Media LLC, v. 20, n. 1, p. 27–47,
fev. 1984. Citado 2 vezes nas páginas 14 e 15.

Priberam. Dicionário Priberam da Língua Portuguesa. 2025. Acesso em: 27 maio
2025. Disponível em: <https://dicionario.priberam.org>. Citado na página 24.

SALOMA, C.; PEREZ, G. J.; TAPANG, G.; LIM, M.; PALMES-SALOMA, C.
Self-organized queuing and scale-free behavior in real escape panic. Proc. Natl. Acad.
Sci. U. S. A., Proceedings of the National Academy of Sciences, v. 100, n. 21, p.
11947–11952, out. 2003. Citado na página 28.

SCHADSCHNEIDER, A.; KIRCHNER, A.; NISHINARI, K. CA approach to collective
phenomena in pedestrian dynamics. In: Cellular Automata: 5th International
Conference on Cellular Automata for Research and Industry (ACRI 2002),
Geneva, Switzerland, October 9–11, 2002, Proceedings. Berlin, Heidelberg:
Springer, 2002. (Lecture Notes in Computer Science, v. 2493), p. 239–248. Citado na
página 37.

SCHADSCHNEIDER, A.; KLINGSCH, W.; KLüPFEL, H.; KRETZ, T.; ROGSCH, C.;
SEYFRIED, A. Evacuation dynamics: Empirical results, modeling and applications.
In: Extreme Environmental Events: Complexity in Forecasting and Early
Warning. New York, NY: Springer New York, 2011. p. 517–550. Citado 4 vezes nas
páginas 23, 24, 25 e 26.

SILVA, E.; DAMAZO, G.; OLIVEIRA, G.; MARTINS, L. Cellular automata-based
model for simulation of collective pedestrian dynamics in indoor environments with
surmountable obstacles. In: Proceedings of the 17th International Conference on
Agents and Artificial Intelligence. [S.l.]: SCITEPRESS - Science and Technology
Publications, 2025. p. 463–471. Citado 9 vezes nas páginas 14, 29, 31, 47, 48, 49, 50, 66
e 80.

TINOCO, C. R.; FERREIRA, H. F.; MARTINS, L. G. A.; OLIVEIRA, G. M. B.
Wildfire simulation model based on cellular automata and stochastic rules. In: Cellular
Automata: 14th International Conference on Cellular Automata for Research
and Industry (ACRI 2022), Salamanca, Spain, September 12–15, 2022,
Proceedings. Cham: Springer, 2022, (Lecture Notes in Computer Science, v. 13402). p.
246–256. Disponível em: <https://doi.org/10.1007/978-3-031-14926-9_22>. Citado 3
vezes nas páginas 17, 20 e 21.

VARAS, A.; CORNEJO, M.; MAINEMER, D.; TOLEDO, B.; ROGAN, J.; MUñOZ,
V.; VALDIVIA, J. Cellular automaton model for evacuation process with obstacles.
Physica A: Statistical Mechanics and its Applications, v. 382, p. 631–642, 2007.
Citado 12 vezes nas páginas 14, 26, 28, 29, 31, 36, 37, 42, 43, 45, 59 e 80.



Referências 86

WEIDMANN, U. Transporttechnik der Fußgänger. Zürich: ETH Zürich, Institut
für Verkehrsplanung, Transporttechnik, Straßen- und Eisenbahnbau (IVT), 1992. v. 80.
(Schriftenreihe des IVT, v. 80). Citado na página 32.

WOLFRAM, S. Statistical mechanics of cellular automata. Reviews of Modern
Physics, American Physical Society (APS), v. 55, n. 3, p. 601–644, jul. 1983. Citado 6
vezes nas páginas 14, 17, 18, 21, 22 e 27.

. Cellular automata as models of complexity. Nature, Springer Science and
Business Media LLC, v. 311, n. 5985, p. 419–424, out. 1984. Citado na página 17.

. A New Kind of Science. Champaign, IL: Wolfram Media, 2002. ISBN
1579550088. Disponível em: <https://www.wolframscience.com>. Citado na página 17.

ZHAN, B.; MONEKOSSO, D. N.; REMAGNINO, P.; VELASTIN, S. A.; XU, L.-Q.
Crowd analysis: a survey. Mach. Vis. Appl., Springer Science and Business Media
LLC, v. 19, n. 5-6, p. 345–357, out. 2008. Citado 2 vezes nas páginas 23 e 25.

ZHANG, Y.; LI, W.; RUI, Y.; WANG, S.; ZHU, H.; YAN, Z. A modified cellular
automaton model of pedestrian evacuation in a tunnel fire. Tunn. Undergr. Space
Technol., Elsevier BV, v. 130, n. 104673, p. 104673, dez. 2022. Citado na página 30.

ZHENG, X.; ZHONG, T.; LIU, M. Modeling crowd evacuation of a building based on
seven methodological approaches. Build. Environ., Elsevier BV, v. 44, n. 3, p. 437–445,
mar. 2009. Citado 4 vezes nas páginas 25, 26, 27 e 28.

ZHENG, Y.; JIA, B.; LI, X. G.; ZHU, N. Evacuation dynamics with fire spreading based on
cellular automaton. Physica A: Statistical Mechanics and its Applications, v. 390,
2011. ISSN 03784371. Https://sci-hub.se/https://doi.org/10.1016/j.physa.2011.04.011.
Citado 7 vezes nas páginas 14, 30, 50, 51, 53, 76 e 80.

ZHENG, Y.; JIA, B.; LI, X.-G.; JIANG, R. Evacuation dynamics considering pedestrians’
movement behavior change with fire and smoke spreading. Saf. Sci., Elsevier BV, v. 92,
p. 180–189, fev. 2017. Citado na página 30.



Apêndices



88

APÊNDICE A – Repositórios

Os repositórios com o código desenvolvido durante este trabalho são:

• Varas-Model: implementação do modelo de Varas.

<https://github.com/DanielGoncalves416/Varas-Model>

• Alizadeh-Model: implementação do modelo de Alizadeh.

<https://github.com/DanielGoncalves416/Alizadeh-Model>

• Kirchner-Model: implementação do modelo base de Kirchner, incluindo todas as

modificações realizadas (inclusão de incêndios realizada na branch fire).

<https://github.com/DanielGoncalves416/Kirchner-Model>

• Zheng-2011-Model: implementação incompleta do modelo de Zheng.

<https://github.com/DanielGoncalves416/Zheng-2011-Model>

• CellularAutomatonExperimentPlotter: programa utilizado para gerar todos os

gráficos deste trabalho.

<https://github.com/DanielGoncalves416/CellularAutomatonExperimentPlotter>
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