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Resumo

Este trabalho tem o objetivo de investigar a aplicação de algoritmos de aprendizado de

máquina na detecção de malwares do tipo trojan, a partir da análise de dados de memória,

utilizando a metodologia de análise e treinamento de modelo descrita em (LEONEL;

MOLINOS; MIANI, 2024). Utilizando o conjunto de dados CIC-MalMem-2022 (Canadian

Institute for Cybersecurity (2022)), foram empregados quatro algoritmos supervisionados,

são eles: (a) Árvore de Decisão, (b) Rede Neural Artificial, (c) Naive Bayes e (d) Support

Vector Machine, com o objetivo de comparar seus desempenhos em termos de acurácia,

interpretabilidade e eficiência computacional. A fim de promover maior transparência e

robustez aos modelos, foi incorporada a técnica SHAP (SHapley Additive exPlanations),

permitindo a análise da importância individual de cada atributo e a subsequente seleção do

conjunto das características. Além da avaliação tradicional por métricas estatísticas como

acurácia, precisão, sensibilidade e F1-score, este trabalho realiza uma análise aprofundada

do tempo de inferência dos modelos em cenários de execução unitária e em blocos. Os

resultados obtidos indicam que a aplicação combinada de técnicas de aprendizado de

máquina e inteligência artificial explicável é eficaz não apenas na detecção de trojans com

alta precisão, mas também na construção de classificadores mais enxutos, interpretáveis

e adaptáveis a contextos com restrições de tempo e recursos.

Palavras-chave: Aprendizado de máquina, trojan, malware, detecção de ameaças, clas-

sificação supervisionada.
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Capítulo 1

Introdução

Os sistemas computacionais são amplamente utilizados em diversos aspectos da vida

moderna, e essa crescente disseminação os torna um campo propenso a várias formas de

vulnerabilidades. Um ataque a um sistema vital pode resultar em consequências que vão

desde perdas financeiras até a exposição de dados sensíveis, danos ambientais e até mesmo

colocar vidas humanas em risco.

Recentemente, vários casos notórios de invasões de sistemas e roubo de informações

vieram à tona. Um exemplo notável foi o ataque à Riot Games (Digital (2023)), onde o

código-fonte de um de seus produtos foi comprometido, afetando o lançamento de novos

conteúdos para o popular jogo "League of Legends". Outro caso de ataque também ocorreu

na empresa Microsoft (GLOBO, 2022), onde a marca teve uma de suas contas compro-

metida por hackers. Os criminosos tiveram acesso a parte do código fonte de produtos da

empresa.

Os ataques à Riot Games e à Microsoft exemplificados refletem a crescente necessidade

de estratégias robustas de segurança da informação, especialmente em um mundo onde

o valor dos dados digitais e a integridade dos sistemas são de importância crítica. A

violação de segurança dessas empresas não apenas expôs dados sensíveis, mas também

destacou a vulnerabilidade de infraestruturas críticas a ataques sofisticados (DIGITAL,

2023; GLOBO, 2022). Tais incidentes demonstram a urgência de incorporar medidas

avançadas de segurança, que podem identificar e mitigar potenciais ameaças antes que

causem danos significativos. A segurança da informação não é mais uma opção, mas

uma necessidade imperativa para proteger propriedades intelectuais e manter a confiança

dos usuários, reforçando a segurança cibernética no desenvolvimento e manutenção de

software.

Esses incidentes refletem uma realidade preocupante: até mesmo grandes corporações,

que teoricamente contam com políticas de segurança robustas, estão suscetíveis a invasões

sofisticadas. Isso reforça a necessidade de soluções mais avançadas e adaptativas no

campo da segurança da informação, especialmente em um cenário onde a integridade de

dados e a proteção de propriedade intelectual são cruciais. A dependência de abordagens
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tradicionais, como antivírus baseados em assinaturas ou firewalls convencionais, mostra-se

cada vez mais limitada diante da evolução constante das ameaças cibernéticas (LEONEL;

MOLINOS; MIANI, 2024).

Nesse cenário, os malwares possuem a finalidade de comprometer a integridade, a con-

fidencialidade ou a disponibilidade de sistemas e dados, representando uma das ameaças

mais prevalentes e danosas. Entre as diversas categorias de malwares, destaca-se o Ca-

valo de Troia, ou simplesmente Trojan, devido à sua capacidade de dissimulação e à

ampla gama de funcionalidades maliciosas que pode incorporar (LIAKOS et al., 2019).

Conforme definido por Mazeika et al. (2023), os Trojans são programas que se apre-

sentam como legítimos e inofensivos, mas que, ao serem executados, permitem o acesso

remoto ao sistema da vítima, frequentemente sem qualquer sinal visível de sua presença.

Essa camuflagem facilita a infiltração em sistemas protegidos e torna sua detecção parti-

cularmente desafiadora.

No que tange à detecção e mitigação de trojans, diferentemente dos métodos tradicio-

nais baseados em assinaturas ou amostras comprometidas, as abordagens de Inteligência

Artificial (IA) conseguem identificar comportamentos anômalos e padrões sutis nos pró-

prios parâmetros do modelo ou em suas respostas à entradas controladas (MAZEIKA et

al., 2023).

A IA, especialmente com o uso de aprendizado de máquina, tem se mostrado pro-

missora na superação dessas limitações. Em vez de depender de inputs com gatilhos

conhecidos, que muitas vezes não estão disponíveis, os métodos baseados em IA analisam

propriedades internas dos modelos para inferir a presença de comportamento oculto. De

acordo com Mazeika et al. (2023), mesmo diante de trojans evasivos projetados para en-

ganar detectores tradicionais, algoritmos mais sofisticados conseguiram manter alta taxa

de detecção, alcançando acurácia próxima de 100%. Isso revela o potencial da IA não

apenas para identificar ameaças ocultas, mas também para desenvolver mecanismos de

defesa resilientes e generalizáveis a diferentes arquiteturas e domínios de aplicação.

Apesar dos avanços notáveis proporcionados pela aplicação de técnicas de Aprendizado

de Máquina (ML) na detecção de trojans, é importante reconhecer que esses métodos ainda

enfrentam limitações significativas, especialmente no que diz respeito à racionalização dos

modelos e à seleção eficiente de atributos. Os resultados ótimos observados em Mazeika

et al. (2023), muitas vezes dependem de conjuntos de dados altamente estruturados e de

recursos computacionais intensivos, o que pode não refletir a complexidade dos cenários

reais de implantação. Além disso, modelos sofisticados tendem a ser menos interpretáveis,

o que dificulta a compreensão das decisões tomadas e a validação dos atributos mais

relevantes para a classificação.

Assim, embora a IA represente uma poderosa aliada na defesa contra ameaças ciberné-

ticas, sua eficácia está condicionada a uma engenharia cuidadosa do conjunto de atributos

e à transparência dos modelos, sob risco de se tornarem caixas-pretas com decisões difíceis
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de auditar ou generalizar em ambientes adversos.

Ante o exposto, este trabalho propõe o estudo e a avaliação de modelos de aprendizado

de máquina aliados a técnicas de inteligência artificial explicável (XAI) com o objetivo de

promover classificadores robustos, interpretáveis e eficazes na detecção de trojans. Além

da avaliação preditiva convencional, baseada em métricas como acurácia, precisão, recall e

F1-Score, este estudo fará uso de explicabilidade com o Valores de Shapley Aditivos para

Explicações (SHAP) sobre o modelo de árvore de decisão para mensurar a contribuição de

cada atributo na decisão dos classificadores. Essa abordagem visa garantir transparência e

confiabilidade no processo de detecção, permitindo que analistas compreendam os padrões

que indicam a presença de comportamento trojanizado, contribuindo para a validação do

modelo em cenários reais.

1.1 Motivação

A crescente sofisticação das ameaças cibernéticas, especialmente aquelas relaciona-

das a malwares discretos como os trojans, evidencia um cenário no qual os mecanismos

tradicionais de defesa se mostram insuficientes (MAZEIKA et al., 2023). A capacidade

dos trojans de se disfarçarem como aplicações legítimas e operarem de maneira silenciosa

compromete diretamente a segurança de sistemas computacionais e vem afetando desde

usuários comuns até infraestruturas críticas de grandes corporações.

Nesse contexto, técnicas de aprendizado de máquina aplicadas à segurança cibernética

têm se destacado por sua capacidade de detectar padrões comportamentais maliciosos,

mesmo quando estes não apresentam características explícitas (LEONEL; MOLINOS; MI-

ANI, 2024). No entanto, a eficácia desses modelos muitas vezes esbarra em desafios como

a complexidade na interpretação dos resultados, o risco de sobreajuste e a dependência

de grandes volumes de dados rotulados e estruturados.

A adoção de abordagens de XAI surge como uma alternativa promissora para mitigar

tais limitações, conferindo maior transparência aos modelos preditivos. Assim, há uma

motivação clara para investigar soluções que aliem alto desempenho preditivo à capacidade

de interpretação, viabilizando sistemas de detecção de ameaças mais confiáveis, robustos

e adequados à realidade dinâmica dos ambientes computacionais contemporâneos.

O presente trabalho é feito para explorar e comprovar essa vantagem, juntamente

combinado com as técnicas explicativas.

1.2 Hipótese

A racionalização de modelos de aprendizado de máquina, por meio da seleção crite-

riosa de atributos relevantes, contribui para a redução do conjunto de características, o
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que resulta em maior eficiência computacional e melhoria da capacidade operacional dos

classificadores, sem comprometer o desempenho na detecção de ameaças como trojans.

1.3 Objetivos

Este trabalho tem como objetivo principal avaliar a eficácia de algoritmos de aprendi-

zado de máquina na detecção de trojans, com ênfase na otimização do conjunto de atri-

butos relevantes e na interpretabilidade dos modelos, utilizando o método SHAP como

recurso explicativo.

Para atingir esse objetivo principal, são estabelecidos os seguintes objetivos secundá-

rios:

o Analisar os principais algoritmos de aprendizado de máquina utilizados para detec-

ção de trojans;

o Tratar e selecionar atributos relevantes a partir de um conjunto de dados de memória

CIC-MalMem-2022;

o Treinar modelos de detecção de trojans utilizando diferentes algoritmos de aprendi-

zado de máquina;

o Avaliar o desempenho dos modelos quanto à acurácia, sensibilidade, especificidade

e tempo de inferência;

1.4 Divisão da Monografia

Esta monografia está estruturada em seis capítulos. O Capítulo 1 introduz o tema

da pesquisa, contextualizando a problemática abordada, sua relevância científica e prá-

tica, além de apresentar os objetivos do estudo e a hipótese formulada. O Capítulo

2 é dedicado à fundamentação teórica, reunindo os principais conceitos sobre malwares,

com ênfase nos trojans, algoritmos de aprendizado de máquina e técnicas de interpretabili-

dade, destacando-se o método SHAP. No Capítulo 3, encontram-se as sínteses de alguns

dos diversos trabalhos relacionados. No Capítulo 4, são detalhados os procedimentos

metodológicos adotados, incluindo as etapas de preparação dos dados, seleção e parame-

trização dos algoritmos, aplicação de métodos para redução de atributos e definição das

métricas de avaliação. O Capítulo 5 apresenta os resultados obtidos nos experimentos,

acompanhados de análises comparativas e interpretações críticas à luz dos objetivos pro-

postos. Por fim, o Capítulo 6 reúne as conclusões do trabalho, ressaltando as principais

contribuições, as limitações encontradas e recomendações para investigações futuras.
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Capítulo 2

Fundamentação Teórica

2.1 Malware

Com o avanço das tecnologias e a crescente dependência de sistemas digitais, o nú-

mero de ameaças virtuais aumentou imensamente. Entre essas ameaças, os malwares se

destacam por sua variedade, complexidade e impactos negativos. O termo malware é

uma abreviação de malicious software. São programas desenvolvidos com o objetivo de

causar danos, roubar informações, assumir o controle de sistemas ou comprometer o fun-

cionamento de dispositivos e redes (KIM; SOLOMON, 2016). De acordo com AVTEST

Institute (2022), mais de 1.3 bilhão de amostras ativas foram registradas em 2022. Esses

softwares maliciosos podem ser separados em diversas categorias, como vírus, worms, ran-

somwares, spywares e trojans, cada um com características e métodos de ataque específicos

(GANDOTRA; BANSAL; SOFAT, 2014).

2.1.1 Principais categorias

o Vírus: Dependem de um arquivo hospedeiro para se propagar e executar suas

instruções maliciosas (COHEN, 1987).

o Worms: São programas autopropagáveis que se disseminam por redes sem a ne-

cessidade de intervenção humana (ZHANG; WANG, 2018).

o Trojans: Apresentam-se como softwares legítimos, mas executam ações maliciosas

de forma dissimulada (DENER; OK; ORMAN, 2022).

o Ransomware: Realiza a criptografia de dados do sistema da vítima com o intuito

de extorsão financeira (MARTIN; KINROSS, 2019).
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2.1.2 Trojans

Trojans são uma classe de ameaças cibernéticas que se disfarçam como softwares legíti-

mos ou inofensivos, mas carregam intencionalmente funções maliciosas com o objetivo de

comprometer a segurança do sistema (HUANG et al., 2020). No contexto de sistemas com-

putacionais, trojans podem ser inseridos em diferentes etapas do ciclo de desenvolvimento

e operação, desde o software até os circuitos integrados (ICs), esses códigos maliciosos

podem permanecer latentes por longos períodos, sendo ativados somente sob condições

específicas, como determinados padrões de entrada ou estados do sistema (HUANG et al.,

2020). Uma vez ativados, podem exfiltrar dados, corromper processos ou oferecer con-

trole remoto a um agente externo, tornando sua detecção particularmente desafiadora,

sobretudo quando seu comportamento mimetiza processos legítimos do sistema.

Ainda de acordo com Huang et al. (2020), a detecção eficaz de trojans exige aborda-

gens que combinem análise comportamental com métodos de inteligência artificial. Neste

contexto, técnicas tradicionais, como análise estática de código ou assinaturas conhecidas,

muitas vezes falham ao identificar ameaças mais sofisticadas.

Nesse cenário, algoritmos de aprendizado de máquina têm se mostrado promissores,

pois conseguem capturar padrões anômalos em dados brutos, como registros de memória

ou traços de consumo de energia, e classificar comportamentos suspeitos mesmo sem

um modelo explícito de ameaça. Além disso, o uso de técnicas explicáveis, como SHAP,

permite compreender quais atributos mais influenciam na decisão do modelo, contribuindo

para a criação de sistemas de detecção mais confiáveis e transparentes. A análise de

inferência dos modelos, incluindo seu tempo de resposta, também é crucial em ambientes

sensíveis, onde decisões em tempo real são exigidas para mitigar rapidamente possíveis

compromissos à segurança (HOSSAIN; ISLAM, 2024; HUANG et al., 2020).

2.2 Inteligência Artifical na Detecção de Trojan

A detecção manual de trojans apresenta limitações significativas em termos de esca-

labilidade e eficiência, principalmente devido ao volume crescente de amostras maliciosas

e às técnicas cada vez mais sofisticadas de ofuscação empregadas por agentes maliciosos.

Nesse contexto, os métodos baseados em inteligência artificial emergem como solução pro-

missora, oferecendo capacidade de análise automatizada de grandes conjuntos de dados

com menor intervenção humana (UCCI; ANIELLO; BALDONI, 2019).

Os sistemas de aprendizado de máquina aplicados à detecção de trojans operam atra-

vés da extração automática de padrões complexos a partir de conjuntos de treinamento

representativos. Como demonstrado por Ahmadi et al. (2016), esses modelos são capazes

de identificar relações não lineares entre características do código executável, comporta-

mento em tempo de execução e artefatos deixados na memória do sistema. A eficácia do

processo depende criticamente da seleção adequada do algoritmo, que deve considerar o
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equilíbrio entre precisão e desempenho computacional (MOSLI et al., 2016), adaptando-se

às particularidades do cenário de análise.

A pesquisa de Damaševičius et al. (2021) comprovou que essa técnica é particular-

mente adequada para a detecção de trojans, com taxa de falsos positivos abaixo de 0,5%

em ambientes controlados, permitindo compensar as limitações individuais de cada modelo

através da integração de diferentes perspectivas de análise. A combinação de classificado-

res especializados em diferentes aspectos do código malicioso tem demonstrado resultados

significativamente melhores quando comparada ao uso de abordagens que empregam ape-

nas uma única técnica de análise (HEMALATHA et al., 2021).

2.3 Soluções Propostas para Superar Desafios na De-

tecção de Trojans

Enquanto abordagens tradicionais baseadas em assinaturas demonstram boa eficácia

na identificação de amostras previamente conhecidas, elas tendem a falhar diante de va-

riantes polimórficas e metamórficas, que alteram sua estrutura para escapar da detecção

(DENER; OK; ORMAN, 2022; HOSSAIN; ISLAM, 2024). Alternativamente, métodos de

análise dinâmica oferecem maior robustez, mas exigem recursos computacionais elevados

e apresentam maior tempo de processamento, o que limita sua aplicação em ambientes

com restrições operacionais. Nesse cenário, têm ganhado destaque soluções baseadas em

técnicas de aprendizado de máquina, especialmente quando aliadas à XAI, que permi-

tem não apenas detectar padrões complexos de comportamento malicioso, mas também

fornecer interpretabilidade quanto às decisões tomadas pelos modelos.

2.3.1 Inteligência Artificial Explicável - XAI

A escolha e uso de técnicas de Inteligência Artificial Explicável (XAI) tem se mostrado

essencial para aumentar a transparência dos modelos de detecção baseados em aprendi-

zado de máquina. Como os trojans, a cada dia mais, empregam métodos sofisticados

para mascarar e dificultar seu comportamento, modelos de deep learning tradicionais

podem atuar como "caixas pretas", dificultando a interpretação de suas decisões (RUI;

GADYATSKAYA, 2024). O XAI permite identificar quais características mais contri-

buem para a classificação, tornando o processo mais auditável e confiável (GEARHART,

2024).

2.3.2 Seleção de Características

As alterações e escolhas das características são essenciais para melhorar a performance

de modelos de detecção de trojans com aprendizado de máquina. Utilizar muitas carac-
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terísticas pode prejudicar o desempenho do classificador, tornando as etapas de testes e

treinamento lentas. Além disso, tem-se o fato de o peso que cada característica representa

no modelo, ou seja, o quão importante e decisiva ela se mostra ser durante as etapas de

classificação.

Neste trabalho, através da XAI, foi utilizado o SHAP para interpretar a importância

de cada característica no modelo. O SHAP permite identificar quais atributos realmente

contribuem para a decisão da detecção, ajudando a reduzir a dimensionalidade do conjunto

de dados sem comprometer a acurácia.

Esse processo de seleção é especialmente importante no caso dos trojans, que costumam

usar técnicas de ofuscação e metamorfismo para dificultar a análise (MAZEIKA et al.,

2023). Através da utilização do SHAP, se tem uma camada adicional de transparência,

permitindo entender o impacto de cada característica, inclusive em amostras adversas ou

mutantes.

2.3.3 Tempo de Inferência

Em determinados ambientes, onde a capacidade de resposta em tempo hábil é essen-

cial, modelos excessivamente complexos podem comprometer a viabilidade operacional ao

demandarem tempos de execução elevados, o que pode atrasar ações críticas e resultar em

consequências indesejadas. Embora métricas estáticas como acurácia, F1-score e recall

sejam amplamente utilizadas para avaliar o desempenho preditivo dos modelos, elas não

são, por si só, indicativas de eficiência prática. Um modelo com alta acurácia pode, por

exemplo, apresentar tempos de inferência demasiadamente longos, tornando-o inadequado

para aplicações em tempo real. Nesse contexto, estratégias como a redução de precisão nu-

mérica e a eliminação de neurônios redundantes em redes neurais têm sido adotadas para

otimizar o equilíbrio entre desempenho e tempo de resposta (CHAUDHARY; MASOOD,

2023). Adicionalmente, a análise de memória volátil combinada com algoritmos leves e

bem ajustados tem se mostrado eficaz na detecção de ameaças, alcançando resultados

expressivos tanto em termos de acurácia quanto de eficiência computacional (NYHOLM

et al., 2022).
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Capítulo 3

Trabalhos relacionados

Em Abualhaj e Al-Khatib (2024), é apresentado um método para detecção de Cavalos

de Troia (Trojans) por meio da análise de dados extraídos da Memória de Acesso Aleatório

(RAM). O experimento tem como objetivo identificar comportamentos anormais, cujas

características são de atividades maliciosas, utilizando o algoritmo de árvore de decisão

como principal classificador. Os experimentos foram realizados com amostras do dataset

Canadian Institute for Cybersecurity (2022), abrangendo várias famílias de trojans. Além

da árvore de decisão, outros algoritmos como Naive Bayes (NB), K-vizinhos mais próximos

(KNN) e Máquina de Vetores de Suporte (SVM) também foram utilizados. Os modelos

foram comparados com base em métricas de desempenho como acurácia, precisão, recall

e F1-score. Os resultados indicam que o classificador Árvore de Decisão (DT) obteve o

melhor desempenho alcançando 99,96% de acurácia, enquanto o NB apresentou o menor

desempenho com 98,41%. De todo modo, o estudo evidencia que a análise de memória é

uma abordagem altamente eficaz para a detecção de Trojans, contribuindo para a melhoria

dos mecanismos de defesa contra ameaças avançadas.

Wadkar, Troia e Stamp (2020) propôs uma abordagem para detectar mudanças evo-

lutivas em famílias de malware, utilizando o algoritmo SVM. Os autores selecionaram 13

famílias de malwares e usaram 55 características extraídas desses arquivos. Durante os

experimentos, os modelos SVM foram treinados para identificar diferenças entre caracte-

rísticas de famílias de malwares em períodos consecutivos. A análise dos pesos atribuídos

pelo SVM a cada característica revelou pontos de mudança significativos no comporta-

mento das famílias. Por exemplo, foi identificado um pico de alteração no comportamento

da família Zbot, indicando um grande período de modificação no código. Também, algu-

mas famílias como DelfInject mostraram pouca ou nenhuma alteração ao longo do tempo,

enquanto outras, como a Vobfus, exibiram instabilidade contínua, sugerindo modificações

frequentes. A partir dessa abordagem, foi possível mapear a evolução de várias famílias

de malwares, identificando tanto picos de grandes alterações quanto períodos de estabi-

lidade, com potencial para auxiliar na detecção de mudanças significativas no código de
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malwares ao longo do tempo.

No trabalho de Carrier (2021), foi desenvolvido um modelo focado na detecção de

malwares a partir da análise de memória, com foco em trojan, spyware e ransomware.

O mesmo tem como objetivo apresentar um melhor desempenho no tempo de execução.

Para isso, os autores utilizaram a ferramenta Volatility Volatility Foundation (2025), e

o extrator VolMemLyzer Lashkari et al. (2021), que acrescentou 26 novas características

voltadas especificamente à identificação de comportamentos maliciosos ocultos, como in-

jeções de código, módulos ausentes e manipulações de processos. O modelo foi construído

com uma abordagem de aprendizado de máquina em duas camadas, combinando diferen-

tes classificadores como DT, Random Forest (RF), SVM, KNN e NB. A primeira camada

processa os dados extraídos, e os resultados são refinados por um classificador final, que

define se o conteúdo da memória é benigno ou maligno. Os testes demonstraram que

a combinação de características específicas com o uso dos vários algoritmos resultou em

uma detecção precisa e com tempo de resposta reduzido. Além disso, os autores destacam

que o modelo foi implementado em Python. O estudo mostrou potencial para aprimorar

métodos tradicionais de detecção, oferecendo um sistema mais leve e adaptado à detecção

de ameaças ocultas em ambientes reais.

O estudo de Al-Ghanem et al. (2025) propõe um modelo de detecção de malwares

usando uma rede neural híbrida, ou seja, a combinação entre Rede Neural Profunda

(DNN) e Rede Neural Convolucional (CNN), com foco tanto em classificação binária

quanto em múltiplas categorias. Os testes foram feitos com dataset (Canadian Institute

for Cybersecurity, 2022). O processo começou com o preparo dos dados, passando pelo

uso de camadas convolucionais, até chegar à classificação final. Para a parte binária, foi

usada a técnica de análise de componentes principais para reduzir os dados e a função

Sigmoid para classificar entre maligno ou benigno. Já na classificação por categorias, que

são os ransomware, trojan e spyware, foi aplicada a técnica de superamostragem sintética

para classes em menor volume para balancear os dados e a função Softmax para gerar

as probabilidades de cada classe. O modelo atingiu 99,5% de acurácia na classificação

binária e 97,9% na classificação por múltiplas classes. Além da acurácia, foram avaliadas

métricas como precisão, recall e F1-score, todas com bons resultados. Além disso, a

estrutura mostrou uma boa capacidade de lidar com dados desbalanceados.

3.1 Síntese dos Trabalhos Correlatos

A análise dos trabalhos relacionados foi essencial para o aprimoramento da proposta

desta monografia, principalmente ao evidenciar que métricas tradicionais como acurácia,

precisão e recall não são, por si só, suficientes para determinar a eficiência real de um
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modelo em ambientes críticos. Essa constatação motivou a inclusão da análise de tempo

de inferência como critério complementar na avaliação dos classificadores. Além disso, as

limitações observadas na interpretabilidade dos modelos em estudos prévios reforçaram

a importância da adoção de técnicas de Inteligência Artificial Explicável (XAI), como o

SHAP, possibilitando não apenas um melhor entendimento das decisões do modelo, mas

também a identificação e eliminação de atributos redundantes. Dessa forma, a monografia

se diferencia ao propor uma abordagem que equilibra desempenho preditivo, interpreta-

bilidade e eficiência computacional, contribuindo para soluções mais robustas e aplicáveis

no contexto da detecção de trojans em memória.

Trabalho Múltiplos Modelos Tempo de Inferência Seleção de características
Abualhaj et al. (2024) ×

Wadkar, Troia e Stamp (2020) ×

Carrier (2021) × × ×

Al-Ghanem et al. (2025)
Presente trabalho × × ×

Tabela 1 – Comparação entre trabalhos correlatos e o presente estudo

Fonte: Autor

3.2 Considerações com Trabalhos Anteriores

Este trabalho baseou-se na metodologia de Leonel, Molinos e Miani (2024), que utilizou

algoritmos de aprendizado de máquina e técnicas como SHAP para detectar ransomwares

a partir da análise de memória do dataset CIC-MalMem-2022. A presente pesquisa adap-

tou essa abordagem para a detecção de trojans, reconhecendo que, embora ambos sejam

malwares, suas diferenças comportamentais podem impactar o desempenho dos modelos

preditivos.

Inicialmente, previa-se uma comparação direta com os resultados de (LEONEL; MO-

LINOS; MIANI, 2024) para investigar um possível enviesamento no dataset, ou seja, a

tendência de favorecer certas categorias de ataque. No entanto, essa etapa não foi reali-

zada devido a limitações de tempo e à necessidade de focar na implementação e avaliação

dos modelos para trojans. A análise comparativa permanece como uma linha promissora

para trabalhos futuros, especialmente no que diz respeito à generalização e à robustez

do dataset frente a diferentes tipos de malwares.
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Capítulo 4

Método

É oportuno salientar que o protocolo experimental empregado neste trabalho foi inte-

gralmente baseado na metodologia proposta por (LEONEL; MOLINOS; MIANI, 2024),

a qual contempla a utilização de algoritmos de aprendizado de máquina, a replicação das

configurações dos modelos e a aplicação do mesmo conjunto de dados, o CIC-MalMem-

2022. A única distinção metodológica refere-se à classe de amostras analisadas: enquanto

os autores originais concentraram-se na detecção de ransomwares, este estudo restringe-se

à identificação de instâncias classificadas como trojans.

A adoção deliberada de um protocolo experimental previamente consolidado tem como

finalidade assegurar a consistência metodológica e, simultaneamente, viabilizar investiga-

ções comparativas entre distintas tipologias de malwares. Tal estratégia favorece uma

análise crítica mais ampla acerca da qualidade, da robustez e da capacidade de genera-

lização do dataset, especialmente quando submetido a métodos de inteligência artificial

explicável (XAI). Dessa forma, busca-se reduzir potenciais vieses decorrentes de variações

no delineamento experimental, conferindo maior rigor e validade aos resultados alcança-

dos.

Este capítulo tem como finalidade apresentar em detalhes o método de pesquisa ado-

tado neste trabalho, destacando como principais contribuições: (i) a descrição sistemática

das etapas conduzidas na construção da proposta; e (ii) a delimitação precisa do escopo

do estudo, estabelecendo os limites e direcionamentos da investigação.

De acordo com a classificação proposta por Wazlawick (2009) e Marconi e Lakatos

(2004), esta pesquisa pode ser caracterizada como aplicada, quantitativa e experimental,

pois trata-se de uma investigação, que pode gerar conhecimento voltado à solução de

problemas concretos no domínio da segurança cibernética, especialmente na detecção

de trojans por meio de técnicas de inteligência artificial. Quanto à abordagem, trata-

se de uma pesquisa quantitativa, uma vez que se fundamenta na análise estatística dos

dados obtidos nos experimentos. Ainda segundo Wazlawick (2009) e Marconi e Lakatos

(2004), o estudo assume natureza experimental, pois envolve a manipulação controlada de

variáveis com o intuito de verificar o impacto no desempenho dos modelos. Essa tipologia
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metodológica visa garantir a objetividade, a reprodutibilidade e a validade dos resultados

obtidos ao longo da investigação.

O método praticado neste trabalho encontra-se dividido em cinco macros seções, são

elas: (a) Percepção da Problemática, (b) Instrumentação, (c) Treinamento dos Modelos,

(d) Seleção das Características e, (e) Análise de Resultados. A Figura 1 ilustra o método

deste trabalho.

Figura 1 – Fluxograma

4.1 Percepção da Problemática

A detecção de trojans representa um desafio crescente na segurança digital, devido à

sua natureza discreta e à capacidade de se disfarçar como software legítimo. Diferente de

malwares destrutivos, os trojans permanecem ativos por longos períodos sem levantar sus-

peitas, dificultando sua identificação por métodos tradicionais baseados em assinaturas.

Este trabalho propõe o uso de técnicas de aprendizado de máquina aplicadas à análise

da memória, visando identificar padrões comportamentais anômalos. Trabalhar com da-

dos da memória permite uma visão detalhada da atividade do sistema, viabilizando a

classificação automática de ameaças, mesmo na ausência de sinais evidentes de ataque.

4.2 Materiais

Para a realização dos experimentos deste trabalho, foi utilizada uma única máquina

com as seguintes configurações de hardware e software. A Tabela 2 resume os principais

componentes e ambiente computacional empregados na execução dos algoritmos e testes:
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Tabela 2 – Especificações da máquina utilizada nos experimentos

Componente Especificação
Modelo do Dispositivo Aspire A515-45 (LAPTOP-T340KQPG)
Processador (CPU) AMD Ryzen 5 5500U with Radeon Graphics @ 2.10 GHz
Memória RAM 8 GB DDR4 (utilizável: 7,35 GB)
Sistema Operacional Windows 11 Home Single Language 64 bits (Versão 24H2)
Armazenamento 512GB SSD
Placa de Vídeo (GPU) Radeon Graphics integrada
Linguagem de Programação Python 3.10
Bibliotecas Utilizadas Scikit-learn, Pandas, NumPy, Matplotlib, SHAP
Ambiente de Execução Jupyter Notebook

4.3 Instrumentação

Nesta seção serão detalhados o conjunto de dados, os algoritmos de inteligência arti-

ficial utilizados para os estudo juntamente com as configurações utilizadas.

4.3.1 Dataset CIC-MalMem-2022

O conjunto de dados utilizado neste trabalho é o CIC-MalMem-2022, desenvolvido

pelo Canadian Institute for Cybersecurity (CIC), o qual reúne amostras de memória ex-

traídas de sistemas comprometidos por diferentes tipos de infecções maliciosas, incluindo

ransomware, trojan, spyware e também amostras benignas (Cybersecurity Research Lab

– University of New Brunswick, 2022). A escolha desse dataset se justifica por sua abran-

gência e riqueza de informações, com 58.596 registros distribuídos em 55 atributos, que

englobam características relacionadas a processos em execução, módulos carregados, aces-

sos a arquivos, conexões de rede, bibliotecas dinâmicas (DLLs) e serviços do sistema.

As amostras estão organizadas em 20 categorias distintas, cada uma representando

uma família específica de malware, o que torna a base especialmente adequada para a

análise comparativa entre comportamentos maliciosos diversos.
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Tabela 3 – Atributos do dataset CIC-MalMem-2022

Atributos
pslist.nproc pslist.nppid

pslist.avg_threads pslist.nprocs64bit

pslist.avg_handlers dlllist.ndlls

dlllist.avg_dlls_per_proc handles.nhandles

handles.avg_handles_per_proc handles.nport

handles.nfile handles.nevent

handles.ndesktop handles.nkey

handles.nthread handles.ndirectory

handles.nsemaphore handles.ntimer

handles.nsection handles.nmutant

ldrmodules.not_in_load ldrmodules.not_in_init

ldrmodules.not_in_mem ldrmodules.not_in_load_avg

ldrmodules.not_in_init_avg ldrmodules.not_in_mem_avg

malfind.ninjections malfind.commitCharge

malfind.protection malfind.uniqueInjections

psxview.not_in_pslist psxview.not_in_eprocess_pool

psxview.not_in_ethread_pool psxview.not_in_pspcid_list

psxview.not_in_csrss_handles psxview.not_in_session

psxview.not_in_deskthrd psxview.not_in_pslist_false_avg

psxview.not_in_eprocess_pool_false_avg psxview.not_in_ethread_pool_false_avg

psxview.not_in_pspcid_list_false_avg psxview.not_in_csrss_handles_false_avg

psxview.not_in_session_false_avg psxview.not_in_deskthrd_false_avg

modules.nmodules svcscan.nservices

svcscan.kernel_drivers svcscan.fs_drivers

svcscan.process_services svcscan.shared_process_services

svcscan.interactive_process_services svcscan.nactive

callbacks.ncallbacks callbacks.nanonymous

callbacks.ngeneric

4.3.2 Algoritmos de Inteligência Artificial

Neste estudo, foram selecionados quatro algoritmos clássicos, cada um representando

uma vertente distinta do campo do aprendizado de máquina. A seleção visa garantir diver-

sidade metodológica, possibilitando uma análise comparativa entre diferentes paradigmas

de classificação aplicados à detecção de trojans. Os modelos escolhidos são:

o Rede Neural Artificial: modelo pertencente à categoria de Aprendizado Profundo,

destaca-se pela sua capacidade de modelar relações complexas entre os atributos,

sendo particularmente útil na detecção de padrões sutis e não lineares, como os

presentes em ataques do tipo trojans. No entanto, requer alto poder computacional

e apresenta maior risco de sobreajuste.

o Naive Bayes: classificador probabilístico baseado no Teorema de Bayes, é eficiente

com dados de alta dimensionalidade e apresenta bom desempenho em problemas

com atributos independentes. Sua simplicidade o torna uma boa referência para



Capítulo 4. Método 27

comparação, apesar das limitações associadas à suposição de independência entre

as variáveis.

o Árvore de Decisão: modelo fundamentado em regras, é amplamente utilizado pela

sua interpretabilidade e desempenho satisfatório em bases tabulares. Na detecção

de trojans, sua transparência é um diferencial importante, embora exija controle

sobre sua complexidade para evitar sobreajuste.

o Support Vector Machine (SVM): modelo pertencente à classe dos classifica-

dores lineares com margem máxima, o SVM oferece alta precisão, especialmente

quando os dados são separáveis de forma clara. É uma técnica robusta na detecção

de trojans, porém sensível à escolha de parâmetros e ao volume de dados, o que

pode impactar seu tempo de processamento.

A diversidade de algoritmos adotada neste estudo permite uma análise comparativa

eficaz da detecção de trojans, equilibrando modelos interpretáveis e técnicas sofisticadas,

o que favorece a compreensão de suas vantagens e limitações em diferentes contextos de

ameaça.

4.3.3 Parâmetros dos Modelos

Todos os modelos foram submetidos à mesma divisão de dados, com validação cruzada

(k-Fold). A Tabela 4 detalha os parâmetros utilizados na confecção dos modelos.

Tabela 4 – Parâmetros dos modelos de classificação utilizados

Algoritmo Parâmetros Principais

Rede Neural Artificial Camadas: 5 (3 Dense com 15, 15 e 8 neurônios, ativação ReLU);
1 camada Dropout (taxa 0,1); 1 camada de saída com 1 neurô-
nio (Sigmoid); 100 épocas; batch_size = 10; otimizador: Adam;
função de perda: binary_crossentropy.

Árvore de Decisão Critério: gini; sem profundidade máxima definida; sem restrição
de número mínimo de amostras por folha (parâmetros padrão da
Scikit-learn).

Naive Bayes Classificador: GaussianNB; distribuição assumida: normal; man-
tido com parâmetros padrão, priorizando simplicidade e eficiên-
cia.

SVM Kernel: linear; parâmetro de regularização: C = 0,1.
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4.4 Treinamento dos Modelos

Os modelos de classificação foram treinados utilizando a estratégia de validação co-

nhecida como Holdout, em que o conjunto de dados foi dividido em duas partes: 80% dos

registros foram utilizados para o treinamento dos algoritmos e os 20% restantes reservados

para o teste e avaliação final do desempenho dos modelos em dados não vistos. Essa divi-

são tem como objetivo simular um cenário real de generalização, avaliando a capacidade

do modelo de fazer previsões sobre novas instâncias.

Complementarmente, foi aplicada a técnica de validação cruzada com k = 5 (5-fold

cross-validation) durante o processo de treinamento. Essa abordagem consiste em parti-

cionar o conjunto de treinamento em cinco subconjuntos (ou folds) de tamanhos aproxi-

madamente iguais, garantindo que a proporção entre as classes seja preservada em cada

divisão.

Em cada iteração, quatro desses subconjuntos são utilizados para treinar o modelo,

enquanto o quinto é usado para validação. O processo se repete cinco vezes, alternando o

fold de validação, e os resultados são posteriormente agregados. Essa técnica aumenta a

robustez estatística das métricas avaliadas, reduz o risco de sobreajuste e contribui para

uma estimativa mais confiável do desempenho dos modelos.

Todos os modelos foram avaliados em condições experimentais padronizadas, utili-

zando as mesmas amostras de dados, técnicas de validação e métricas de desempenho.

Essa uniformidade garante uma comparação igualitária entre os algoritmos, permitindo

analisar de forma justa seu comportamento em termos de acurácia, tempo de inferência

e capacidade de generalização.

Ressalta-se que o protocolo de treinamento adotado neste estudo segue os princípios

descritos em (LEONEL; MOLINOS; MIANI, 2024), assegurando consistência metodoló-

gica e reprodutibilidade dos experimentos.

4.5 Seleção de Características

A seleção de características foi uma etapa fundamental para aprimorar os modelos

de aprendizado de máquina aplicados à detecção de trojans, visando reduzir a dimen-

sionalidade dos dados sem comprometer o desempenho preditivo. Foram utilizadas as

técnicas de Feature Importance e SHAP aplicadas ao classificador de Árvore de Decisão,

permitindo identificar os atributos mais relevantes com base na redução de impureza e

na contribuição individual para as predições. Essa abordagem não apenas otimizou o

tempo de inferência e mitigou o risco de sobreajuste, como também promoveu maior

interpretabilidade e compreensão do comportamento dos modelos.

Após a redução do conjunto de características, todos os modelos foram (re)treinados

com o novo dataset, produzido a partir deste processo de seleção, e a etapa de treinamento



Capítulo 4. Método 29

foi realizada para observação das métricas estáticas definidas neste método.

4.6 Métricas de Avaliação

As curvas de aprendizado foram construídas com base na evolução da acurácia e da

função de perda (loss) ao longo do processo de treinamento. Essas curvas são essenciais

para identificar o comportamento dos modelos durante o ajuste aos dados, permitindo

distinguir entre três cenários comuns:

Para uma avaliação quantitativa dos modelos, foram geradas as respectivas matrizes

de confusão, compostas por quatro elementos fundamentais:

o TP (True Positives): casos de trojan corretamente classificados como trojan;

o TN (True Negatives): casos benignos corretamente classificados como benignos;

o FP (False Positives): casos benignos incorretamente classificados como trojan;

o FN (False Negatives): casos de trojan incorretamente classificados como benig-

nos.

A partir desses valores, foram calculadas as principais métricas de avaliação, conforme

apresentadas na Tabela 5:

Tabela 5 – Fórmulas das métricas de avaliação

Métrica Fórmula

Acurácia (ACC) ACC =
T P +T N

T P +T N+F P +F N

Taxa de Verdadeiros Positivos (TPR) TPR =
T P

T P +F N

Taxa de Falsos Positivos (FPR) FPR =
F P

F P +T N

Essas métricas, aliadas às curvas de aprendizado, possibilitam uma avaliação deta-

lhada do desempenho dos modelos, indicando sua capacidade de identificar corretamente

ameaças (TPR) ao mesmo tempo em que minimizam alarmes falsos (FPR). Para a ge-

ração das visualizações, foi utilizada a linguagem Python (Rossum e Jr (2009)), uma

linguagem de programação de alto nível, interpretada e multiparadigma, essencial para

a manipulação de dados e execução de algoritmos. Essa linguagem foi empregada em

conjunto com as bibliotecas Matplotlib (Hunter (2007)), que forneceu as ferramentas

fundamentais para a criação de gráficos 2D estáticos e curvas de desempenho com con-

trole preciso; Seaborn (Waskom (2021)), que complementou o Matplotlib ao oferecer

uma interface de alto nível para a geração de gráficos estatísticos mais sofisticados e este-

ticamente atraentes, facilitando a visualização de relações complexas nos dados; e Plotly

(Plotly Technologies Inc. (2015)), que possibilitou a criação de gráficos interativos ba-

seados na web, adicionando uma camada de dinamicidade e exploração detalhada aos
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resultados por meio de funcionalidades como zoom e tooltips. Juntas, essas ferramentas

foram cruciais para a criação de gráficos exploratórios, curvas de desempenho e análises

visuais complementares que enriqueceram a avaliação do desempenho dos modelos.

Além da avaliação estática baseada em métricas de desempenho, esta etapa do trabalho

incluiu uma análise dinâmica, voltada para medir o tempo de inferência dos modelos. O

objetivo foi comparar não apenas a eficácia preditiva, mas também a eficiência operacional

de cada algoritmo na classificação de instâncias como benignas ou maliciosas.

A análise foi conduzida em dois cenários distintos: inferência individual e inferência em

bloco. No primeiro, o tempo foi calculado com base na média de 100 classificações isoladas,

enquanto no segundo, utilizou-se a função timeit para medir o tempo necessário para

processar lotes de dados completos. Ambos os métodos foram aplicados a subconjuntos de

validação com 100 instâncias, permitindo avaliar o desempenho dos modelos em diferentes

condições de uso.

Além disso, foi realizado um experimento adicional para comparar o tempo de execução

em blocos com diferentes tamanhos (100, 200 e 300 exemplos), a fim de investigar a

escalabilidade dos modelos. Os resultados foram visualizados por meio de gráficos de

colunas, construídos com auxílio das bibliotecas Matplotlib, time e timeit, evidenciando

o impacto do volume de dados no tempo de processamento e fornecendo subsídios para

avaliar a viabilidade dos modelos em aplicações práticas.
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Capítulo 5

Experimentação e Síntese de

Resultados

Esta seção destaca o experimento realizado neste trabalho, a saber: (a) pré-processamento

do dataset, (b) treinamento dos modelos, que compreende o baseline e o (re)treinamento

após o processo de seleção de características, processo de redução/seleção de característi-

cas e análise de inferência dos modelos otimizados.

5.1 Avaliação do Baseline

Na ótica deste trabalho, o baseline refere-se à avaliação inicial de um modelo ou sistema

antes de qualquer otimização ou aplicação de técnicas avançadas. Ele estabelece uma

referência fundamental de desempenho, servindo como um ponto de comparação para

medir a eficácia de futuras melhorias, como a seleção de características ou o ajuste de

hiperparâmetros. Esse passo é crucial para entender o desempenho intrínseco do modelo

e quantificar o impacto das intervenções subsequentes.

No treinamento inicial realizado no baseline, todos os modelos gerados obtiveram resul-

tados muito satisfatórios, onde os modelos já demonstram um grande potencial e robustez

para detectar trojans através da análise de memória.

5.1.1 Rede Neural

O modelo foi treinado por 100 épocas, utilizando um batch size de 10 amostras, com

manutenção do balanceamento entre as classes benigno e trojan durante todo o processo

de aprendizado. A Figura 2 apresenta as curvas de perda e acurácia ao longo das épocas,

tanto para os conjuntos de treinamento quanto de validação. Observa-se que as curvas

de perda apresentam uma queda acentuada nas primeiras iterações, seguida por uma

estabilização em níveis baixos, enquanto as curvas de acurácia convergem rapidamente

para valores próximos de 100%.
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Figura 2 – Curva de Aprendizado - Rede Neural

A Figura 3 ilustra a matriz de confusão resultante da avaliação do modelo. Foram

identificados 1.940 verdadeiros negativos, correspondentes às amostras benignas corre-

tamente classificadas, e 1.838 verdadeiros positivos, referentes às amostras de trojans

corretamente detectadas. Os erros de classificação foram mínimos, com apenas 15 falsos

positivos (amostras benignas classificadas erroneamente como trojan) e 2 falsos ne-

gativos (casos de trojan não identificados). Esses resultados refletem um alto grau de

precisão e sensibilidade, reforçando a efetividade do modelo.

Figura 3 – Matriz de Confusão - Rede Neural

Considerando os indicadores apresentados, é possível afirmar que a rede neural alcan-

çou um desempenho robusto, com elevada acurácia e baixa taxa de erro. A combinação
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das curvas de aprendizado estáveis com a matriz de confusão altamente favorável com-

prova a eficiência do processo de treinamento e a adequação da arquitetura escolhida para

a tarefa de detecção de ameaças do tipo trojan.

5.1.2 Árvore de Decisão

O modelo de Árvore de Decisão foi avaliado com base em uma estratégia de validação

progressiva, variando o tamanho do conjunto de treinamento e mantendo o balanceamento

entre as classes benigno e trojan. As Figuras 4 e 5 apresentam, respectivamente, a curva de

aprendizado do modelo em termos de acurácia e perdas. Observa-se que o desempenho no

conjunto de treinamento permaneceu consistentemente elevado, com acurácia próxima de

100% para todos os tamanhos de amostra. A acurácia no conjunto de validação, embora

ligeiramente inferior, também apresentou valores elevados, com crescimento progressivo e

estabilidade nas iterações finais.

Figura 4 – Curva de Aprendizado - Árvore de Decisão (Acurácia)

A Figura 6 apresenta a matriz de confusão obtida na etapa de teste do modelo. Fo-

ram registrados 1.955 verdadeiros negativos, representando amostras benignas corre-

tamente classificadas, e 1.838 verdadeiros positivos, correspondentes a amostras de

trojan corretamente identificadas. O modelo cometeu apenas 2 falsos negativos, ou

seja, deixou de identificar dois casos de trojan, e não apresentou qualquer falso positivo,

o que indica uma ótima classificação das amostras benignas.

Diante deste contexto, é observado que a Árvore de Decisão apresentou um desempe-

nho satisfatório, com alta acurácia, precisão e sensibilidade. A ausência de falsos positivos

é especialmente relevante para aplicações em segurança, onde a classificação incorreta de

comportamentos legítimos como maliciosos pode resultar em interrupções indevidas.
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Figura 5 – Curva de Aprendizado - Árvore de Decisão (Loss)

Figura 6 – Matriz de Confusão - Árvore de Decisão

5.1.3 Naive Bayes

O modelo baseado em Naive Bayes foi avaliado por meio de validação progressiva

com diferentes tamanhos do conjunto de treinamento, mantendo o balanceamento entre

as classes benigno e trojan durante todo o processo. A Figura 7 apresenta a curva de

aprendizado em termos de acurácia. Observa-se que os valores de acurácia se mantêm

relativamente altos, variando entre 99,1% e 99,5%, tanto para os dados de treino quanto
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para os dados de validação. Apesar da oscilação inicial da curva de validação, o modelo

demonstrou tendência à estabilização nas iterações com maior volume de dados, sugerindo

uma capacidade de generalização aceitável.

Figura 7 – Curva de Aprendizado - Naive Bayes (Acurácia)

Figura 8 – Curva de Aprendizado - Naive Bayes (Loss)

A Figura 8 exibe o comportamento da função de perda logarítmica para os mesmos

experimentos. Os valores de perda oscilaram levemente ao longo dos diferentes tamanhos

de conjunto de treinamento, com uma leve tendência de redução à medida que o volume

de dados aumentava. A proximidade entre as curvas de treino e validação nessa métrica

reforça a ideia de que, embora o modelo tenda a sobreajustar com conjuntos pequenos,
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ele se estabiliza com a introdução de mais dados, evitando degradação significativa no

desempenho.

A Figura 9 apresenta a matriz de confusão gerada a partir da avaliação final do modelo.

Foram registrados 1.936 verdadeiros negativos e 1.835 verdadeiros positivos, com

19 falsos positivos (amostras benignas incorretamente classificadas como trojan) e 5

falsos negativos (amostras de trojan não identificadas). Esses números indicam um

bom desempenho geral do classificador, ainda que com erros de classificação ligeiramente

superiores aos observados em modelos como Rede Neural e Árvore de Decisão.

Figura 9 – Matriz de Confusão - Naive Bayes

Considerando o conjunto dos resultados apresentados, o modelo Naive Bayes demons-

trou alta capacidade de classificação, apresentando acurácia elevada, perdas moderadas

e desempenho consistente em diferentes volumes de dados. Embora tenha apresentado

maior propensão ao erro em comparação com os modelos mais complexos, trata-se de

uma alternativa viável e eficiente, especialmente em cenários com restrições de tempo ou

recursos computacionais.

5.1.4 Support Vector Machine

A Figura 10 exibe a curva de aprendizado do modelo Support Vector Machine (SVM),

considerando a acurácia em diferentes tamanhos do conjunto de treinamento. Observa-se

que os valores de acurácia permanecem elevados ao longo de todas as etapas, embora sem

prejuízo significativo à generalização. A maior proximidade entre as curvas ocorre por
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volta de 6.000 amostras, indicando que, nesse ponto, o modelo atinge um equilíbrio mais

favorável entre aprendizado e capacidade de predição.

A Figura 11 complementa a análise ao apresentar a curva de perda, uma métrica que

penaliza predições incorretas com elevada confiança. Nota-se uma variação relativamente

baixa ao longo dos diferentes volumes de dados, com estabilidade nas curvas de treino e

validação, o que reforça a robustez do modelo, mesmo frente a pequenas flutuações nos

dados.

Figura 10 – Curva de Aprendizado - SVM (Acurácia)

Figura 11 – Curva de Aprendizado - SVM (Loss)

Já a Figura 12 ilustra a matriz de confusão resultante da avaliação final do modelo.

Foram registrados 1.954 verdadeiros negativos e 1.839 verdadeiros positivos, com
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apenas 1 falso positivo e 1 falso negativo, totalizando um desempenho praticamente

perfeito.

Figura 12 – Matriz de Confusão - SVM

Esses resultados evidenciam a eficácia do SVM na tarefa de classificação, com boa

capacidade de discriminar entre amostras benignas e maliciosas, ao mesmo tempo em que

mantém uma taxa de erro baixa.

5.1.5 Síntese do Baseline

A Tabela 6 ilustra os resultados das métricas estáticas analisadas dos algorimos du-

rante o processo de avaliação do baseline. Ressalta-se que os dados ilustrados na Tabela

6 foram extraídos da média da validação cruzada (5 folds).

Algoritmo Acurácia (média)
Redes Neurais (ANN) 0.9981
Árvore de Decisão (DT) 0.9994
Naive Bayes (NB) 0.9934
Support Vector Machine (SVM) 0.9972

Tabela 6 – Média das acurácias dos algoritmos selecionados
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5.2 Seleção de Características

Visando à redução da dimensionalidade do conjunto de dados e à melhoria do de-

sempenho dos modelos de aprendizado de máquina, foi realizada uma etapa de análise e

seleção de caracaterísticas. Para isso, aplicaram-se duas abordagens complementares: a

técnica de Feature Importance1, associada a algoritmos baseados em árvores de decisão, e

a análise SHAP. Essa etapa foi essencial para identificar atributos redundantes ou pouco

informativos.

5.2.1 Principais Características com Árvore de Decisão

A Figura 13 ilustra a estrutura da árvore de decisão gerada pelo modelo, evidenci-

ando os principais atributos utilizados no processo de classificação das amostras entre

as classes benigno e trojan. Observa-se que a variável svcscan.nservices ocupa a raiz da

árvore, sendo a mais relevante para a separação inicial dos dados. Em seguida, atribu-

tos como svcscan.process_services, dlllist.ndlls, handles.nthread e callbacks.ncallbacks são

recorrentes nos níveis superiores da árvore, indicando sua forte influência na tomada de

decisão.

Figura 13 – Árvore de Decisão no processo de seleção das características

Ainda de acordo com a Figura 13, a métrica Gini, exibida em cada nó, demonstra

que a maioria das subdivisões resulta em grupos altamente puros, com predominância
1 A técnica de Feature Importance estima a relevância de cada atributo para o modelo com base na sua

contribuição na redução da impureza (como Gini ou entropia) ao longo das divisões nas árvores de
decisão. Atributos que mais reduzem a impureza tendem a receber maiores importâncias.
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clara de uma das classes. Essa estrutura revela não apenas a capacidade explicativa do

modelo, mas também destaca quais variáveis possuem maior poder discriminativo, sendo

fundamentais para o entendimento do comportamento das amostras e para a interpretação

transparente das decisões do modelo.

5.2.2 SHAP - SHapley Additive exPlanations

Baseado na análise da importância dos atributos na Árvore de Decisão, pode-se ob-

servar a predominânica de 6 atributos para a decisão do modelo. Após esta seleção inicial

de atributos, a técnica SHAP foi aplicada para compreender com maior profundidade

a influência de cada variável nas decisões do modelo, promovendo maior transparência

e reforçando a confiança na capacidade do classificador em diferenciar comportamentos

benignos e maliciosos.

A Figura 14 apresenta a distribuição dos valores SHAP para os atributos utilizados no

modelo de Árvore de Decisão. Cada ponto no gráfico representa uma instância do con-

junto de dados, sendo sua posição no eixo horizontal o impacto da respectiva característica

na saída do modelo, enquanto as cores indicam a magnitude do valor da característica (de

baixo a alto, em gradiente de azul a rosa). Observa-se que as variáveis svcscan.nservices,

dlllist.ndlls e svcscan.process_services são as que exercem maior influência nas predições

do modelo, evidenciando um impacto significativo tanto positivo quanto negativo, depen-

dendo do valor da variável em cada instância. Além disso, atributos como pslist.nproc,

handles.nthread e handles.ndesktop também contribuem de forma relevante, embora em

menor escala. Este gráfico reforça a importância dessas variáveis para a distinção entre

comportamentos benignos e maliciosos, fornecendo uma explicação interpretável sobre

como o modelo toma suas decisões.

Ante o exposto, com base na seleção de características realizada, a Tabela 7 ilustra os

principais atributos.

Tabela 7 – Principais atributos segundo os valores SHAP – Árvore de Decisão

Ordem Feature Descrição estimada
1 svcscan.nservices Número de serviços identificados pelo scan-

ner de serviços.
2 dlllist.ndlls Quantidade de DLLs carregadas.
3 svcscan.process_services Número de serviços vinculados a processos.
4 pslist.nproc Número de processos ativos.
5 handles.nthread Quantidade de threads manipuladas.
6 handles.ndesktop Número de objetos do tipo desktop.
7 svcscan.kernel_drivers Quantidade de kernel drivers identificados.
8 handles.ntimer Número de timers manipulados.
9 callbacks.ncallbacks Número de callbacks registrados.
10 handles.nsection Quantidade de sections manipuladas.
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Figura 14 – Valores dos atributos usando Árvore de Decisão

5.3 (Re)Avaliação dos Modelos

Com base na análise da Árvore de Decisão e dos valores SHAP apresentados, foi

possível identificar as características mais relevantes para o processo de classificação. A

partir dessa seleção refinada de atributos, todos os modelos foram reavaliados com o

objetivo de mensurar o impacto da redução de dimensionalidade sobre o desempenho.

Nesta nova etapa, os modelos foram novamente treinados e validados, sendo capturado

novamente as métricas de acurácia, precisão, recall e F1-score, sendo ainda adicionado

a análise de desempenho preditivo envolvendo o tempo de inferência, que reflete a

eficiência computacional dos modelos durante a fase de predição.
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5.3.1 Rede Neural

Após o processo de otimização por seleção de características, observa-se que o mo-

delo de Rede Neural manteve desempenho elevado, conforme ilustrado na Figura 15. É

possível observar uma diferença acentuada entre os conjuntos de treino e validação, especi-

almente nas épocas finais, possivelmente causada por variações nos dados ou pela menor

quantidade de atributos disponíveis. No entanto, a acurácia na validação permaneceu

consistentemente superior à do treinamento ao longo de grande parte do processo.

Figura 15 – Curva de Aprendizado - Rede Neural

A matriz de confusão apresentada na Figura 16 reforça a robustez do modelo após

a seleção dos atributos. Foram obtidos 1.908 verdadeiros negativos e 1.880 verda-

deiros positivos, com apenas 6 falsos positivos e 1 falso negativo, o que representa

uma taxa de erro extremamente baixa.
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Figura 16 – Matriz de Confusão - Rede Neural

Esses resultados demonstram que a redução da dimensionalidade não comprometeu

a capacidade da Rede Neural de discriminar eficientemente entre amostras benignas e

trojans. Pelo contrário, ao reduzir a complexidade do modelo, foi possível manter a

acurácia elevada e potencialmente otimizar o tempo de inferência, tornando a solução

ainda mais viável para cenários reais de detecção de ameaças.

5.3.2 Árvore de Decisão

As Figuras 17 e 18, respectivamente, apresentam a curva de aprendizado e de perda do

modelo de Árvore de Decisão em termos de acurácia após a seleção dos atributos. Nota-

se que o desempenho no conjunto de treinamento se mantém praticamente constante,

próximo de 100% em todos os tamanhos de amostras, enquanto a acurácia no conjunto

de validação também se mantém elevada, com pequenas variações e uma tendência à

estabilidade a partir de 6.000 amostras. Essa consistência sugere que o modelo, mesmo

após a redução de atributos, preservou boa capacidade de generalização, sem sofrer com

subajuste ou sobreajuste significativo.
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Figura 17 – Curva de Aprendizado - Árvore de Decisão (Acurácia)

Figura 18 – Curva de Aprendizado - Árvore de Decisão (Loss)
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Complementando a análise, a Figura 19 exibe a matriz de confusão obtida na avaliação

final. O modelo classificou corretamente todas as amostras, totalizando 1.914 verdadei-

ros negativos e 1.881 verdadeiros positivos, sem ocorrência de falsos positivos ou

falsos negativos.

Figura 19 – Matriz de Confusão - Árvore de Decisão

Esse resultado demonstra um bom desempenho do modelo de Árvore de Decisão, con-

firmando sua eficiência tanto em termos preditivos quanto em simplicidade computacional.

5.3.3 Naive Bayes

A Figura 20 apresenta a curva de aprendizado do modelo Naive Bayes em relação à

acurácia após a seleção das características. Observa-se que o desempenho do modelo é

estável e elevado para diferentes tamanhos de conjuntos de treinamento, com acurácia

acima de 99,4% tanto para os dados de treinamento quanto de validação. A proximi-

dade entre as curvas ao longo da maior parte dos testes sugere uma boa capacidade de

generalização e baixo risco de sobreajuste, mesmo após a redução dos atributos.



Capítulo 5. Experimentação e Síntese de Resultados 46

Figura 20 – Curva de Aprendizado - Naive Bayes (Acurácia)

Na Figura 21, é ilustrada a curva de perda a qual indica uma leve elevação da perda

no conjunto de validação à medida que o tamanho do conjunto de dados aumenta. Ainda

assim, o desempenho geral permanece sólido e compatível com os padrões esperados desse

classificador.

Figura 21 – Curva de Aprendizado - Naive Bayes (Loss)

A matriz de confusão exibida na Figura 22 revela um bom desempenho do modelo na

classificação final. Foram registrados 1.868 verdadeiros negativos e 1.872 verdadei-

ros positivos, com 46 falsos positivos e 9 falsos negativos. Esses valores indicam

uma leve tendência ao aumento de falsos positivos em comparação aos modelos mais ro-
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bustos, como a Rede Neural ou a Árvore de Decisão, mas ainda dentro de um intervalo

tolerável para aplicações práticas.

Figura 22 – Matriz de Confusão - Naive Bayes

De forma geral, o Naive Bayes demonstrou ser eficiente, simples e capaz de produzir

resultados satisfatórios mesmo após a seleção de atributos.

5.3.4 Support Vector Machine

As Figuras 23 e 24 apresentam, respectivamente, as curvas de acurácia e perda do

modelo SVM após a seleção de atributos. Observa-se que a acurácia no conjunto de

treinamento se manteve elevada, próxima de 100% para todos os tamanhos de dados,

enquanto a acurácia de validação apresentou crescimento gradual até cerca de 10.000

amostras, indicando que o modelo foi capaz de generalizar bem conforme exposto a maior

volume de dados. A diferença entre as curvas é moderada e esperada para modelos de

margem máxima. Apesar da oscilação pontual em alguns tamanhos de dados, o modelo

demonstrou consistência e boa calibragem probabilística, reforçando sua confiabilidade

mesmo com menor número de atributos.
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Figura 23 – Curva de Aprendizado - SVM (Acurácia)

Figura 24 – Curva de Aprendizado - SVM (Loss)
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A Figura 25 exibe a matriz de confusão, evidenciando um desempenho bastante sólido

do classificador. Foram registrados 1.914 verdadeiros negativos e 1.880 verdadeiros

positivos, com apenas 1 falso negativo e nenhum falso positivo.

Figura 25 – Matriz de Confusão - SVM

Esses resultados destacam a precisão do modelo SVM, especialmente na identificação

de instâncias benignas, além de reforçar seu baixo índice de erro e aplicabilidade prática

em contextos sensíveis à segurança computacional.

5.4 Avaliação do Tempo de Inferência

Todos os modelos foram submetidos a uma análise de tempo de inferência, com o

objetivo de aprofundar a avaliação quanto à sua eficiência operacional e identificar quais

algoritmos apresentam melhor desempenho em termos de tempo de predição.

Para esta avaliação, foram realizados experimentos considerando dois cenários distin-

tos: (a) a inferência individual, em que cada amostra é processada isoladamente, e (b) a

inferência em blocos, com grupos de 100, 200 e 300 instâncias sendo avaliadas simultane-

amente.

Essa abordagem visa não apenas medir o tempo de resposta de cada modelo em

aplicações em tempo real, mas também observar o esforço computacional exigido em

situações de processamento em lote. Os resultados comparativos apresentados nesta seção

fornecem uma visão mais ampla sobre a viabilidade prática de cada modelo, considerando

diferentes demandas operacionais e contextos de uso.
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Tabela 8 – Tempo de inferência para amostras da classe Trojan (em segundos)

Modelo Individual Bloco de 100 Bloco de 200 Bloco de 300
Rede Neural (RN) 0.088250 0.103185 0.106031 0.104525
Árvore de Decisão (DT) 0.001277 0.000996 0.001016 0.000818
Naive Bayes (NB) 0.000940 0.000770 0.000706 0.000801
Support Vector Machine (SVM) 0.000983 0.001001 0.001078 0.001345

Tabela 9 – Tempo de inferência para amostras da classe Benigno (em segundos)

Modelo Individual Bloco de 100 Bloco de 200 Bloco de 300
Rede Neural (RN) 0.088646 0.126598 0.120724 0.133008
Árvore de Decisão (DT) 0.001362 0.001213 0.000910 0.001024
Naive Bayes (NB) 0.000979 0.000817 0.000749 0.000764
Support Vector Machine (SVM) 0.000955 0.000937 0.001056 0.001288

A análise dos tempos de inferência evidencia diferenças significativas no desempenho

computacional entre os modelos avaliados. A Rede Neural, embora apresente elevada

acurácia, demonstrou ser a menos eficiente em termos de tempo, tanto na inferência

individual quanto em bloco, o que pode comprometer sua aplicação em cenários que

exigem respostas rápidas.

Os modelos baseados em Árvore de Decisão, Naive Bayes e SVM apresentaram tempos

de inferência muito inferiores, o que significa maior desempenho e menor esforço compu-

tacional, destacando-se como alternativas mais viáveis para ambientes com restrições de

desempenho.

Entre eles, a Árvore de Decisão demonstrou excelente equilíbrio entre rapidez e preci-

são, especialmente no processamento em blocos. Esses resultados reforçam a importância

de considerar, além da acurácia, a eficiência computacional ao selecionar modelos para

aplicações práticas.
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Capítulo 6

Conclusão

O presente trabalho alcançou êxito em seu objetivo de investigar, de forma explorató-

ria e comparativa, a aplicabilidade de modelos de aprendizado de máquina na detecção de

ameaças do tipo trojan por meio da análise de atributos extraídos da memória volátil do

sistema. A metodologia empregada contemplou uma etapa inicial de pré-processamento

e compreensão do conjunto de dados CIC-MalMem-2022, seguida pela construção e avali-

ação de quatro modelos de classificação supervisionada: Rede Neural, Árvore de Decisão,

Naive Bayes e Máquina de Vetores de Suporte (SVM). Cada um desses algoritmos foi

treinado, testado e validado utilizando técnicas de validação cruzada e curvas de apren-

dizado, possibilitando uma análise comparativa robusta em termos de acurácia, perda,

capacidade de generalização e desempenho computacional.

Através da incorporação da técnica de interpretabilidade SHAP, permitiu não apenas

interpretar os resultados dos modelos de forma mais transparente, mas também identificar

os atributos mais relevantes para a predição, promovendo uma etapa de seleção e redução

da dimensionalidade. Tal refinamento teve como objetivo eliminar atributos redundan-

tes ou pouco informativos, preservando a performance dos modelos e, em alguns casos,

promovendo melhorias nos indicadores de desempenho, especialmente na taxa de falsos

positivos e falsos negativos. A técnica SHAP demonstrou ser eficaz ao evidenciar como

cada atributo influencia individualmente na saída do modelo, agregando valor analítico

tanto na interpretação quanto na validação dos resultados.

A avaliação dos modelos antes e depois da seleção de atributos revelou que a redução

da dimensionalidade não comprometeu significativamente os resultados. Pelo contrário,

modelos como Árvore de Decisão e SVM mantiveram acurácia elevada mesmo com menos

atributos, evidenciando que a remoção criteriosa de variáveis pode contribuir para a cons-

trução de classificadores mais enxutos, interpretáveis e eficazes. Esse aspecto é crucial em

cenários de segurança da informação, nos quais a transparência das decisões e a eficiência

operacional são fundamentais.

Adicionalmente, foi realizada uma análise criteriosa do tempo de inferência dos mo-

delos, tanto em execuções unitárias quanto em blocos de instâncias, permitindo uma
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simulação mais próxima de ambientes de produção. Os testes demonstraram que al-

goritmos como Naive Bayes e Árvore de Decisão apresentam latência reduzida e baixo

consumo computacional, sendo especialmente indicados para aplicações em tempo real,

como sistemas de monitoramento contínuo, resposta automática a incidentes e detecção

embarcada em dispositivos com restrição de hardware. A Rede Neural e o modelo SVM,

embora mais exigentes em termos computacionais, mostraram-se competitivos e apresen-

taram desempenho consistente, o que reforça seu uso em contextos onde a acurácia é o

fator decisivo.

Em síntese, esta pesquisa valida a viabilidade de se construir soluções inteligentes para

detecção de ameaças que aliam precisão, interpretabilidade e eficiência. A combinação

entre algoritmos de aprendizado de máquina, técnicas de redução de dimensionalidade e

métodos de inteligência artificial explicável revelou-se promissora, oferecendo uma base

sólida para aplicações práticas em segurança cibernética. Dessa forma, este trabalho

representa relevância na busca por mecanismos automatizados, confiáveis e transparentes

na defesa contra ameaças digitais.

6.1 Trabalhos Futuros

Como trabalhos futuros, destaca-se a possibilidade de explorar modelos mais avan-

çados de aprendizado profundo, como redes neurais convolucionais (CNNs) aplicadas à

análise de memória, com o objetivo de capturar padrões mais complexos e temporais entre

os dados. Também se sugere validar os modelos desenvolvidos em ambientes dinâmicos

e de coleta em tempo real, como honeypots ou monitores ativos de memória, o que de-

mandaria adaptações quanto à latência, uso de recursos computacionais e robustez frente

a ruídos. A implementação em dispositivos com restrições de hardware, como sensores

de borda ou sistemas embarcados, constitui outra vertente promissora, exigindo o uso

de algoritmos mais leves e eficientes. Além disso, a ampliação da base de dados para

contemplar outras famílias e variantes de malware, como ransomware, worms e rootkits,

permitiria avaliar a generalização do modelo frente a diferentes estratégias maliciosas. A

integração dos classificadores com sistemas de resposta automática também é uma alter-

nativa relevante, viabilizando reações imediatas como isolamento de processos ou alertas,

aproximando a proposta de um sistema operável de detecção e resposta a incidentes.

Também, a investigação de outras técnicas de interpretabilidade baseadas em XAI, como

LIME, Permutation Importance ou DeepLIFT, a fim de comparar diferentes abordagens

de explicação, fortalecer a confiabilidade das predições e adaptar a explicabilidade ao

contexto específico de segurança da informação.
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6.2 Artefatos de Software

Como parte do compromisso com a transparência e reprodutibilidade científica, este

trabalho disponibiliza um artefato digital contendo os códigos, experimentos e recursos

utilizados durante a pesquisa.

O repositório pode ser acessado publicamente por meio do seguinte link:

<https://github.com/dhiogosantos/notebook-tcc-2>.

Nele, encontram-se os scripts de execução, dataset, os gráficos gerados e instruções

para reprodução dos resultados, permitindo que outros pesquisadores ou profissionais da

área possam consultar, validar ou estender as abordagens aqui desenvolvidas.
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