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Resumo
O café representa uma das culturas economicamente mais importantes do mundo, sendo
a América do Sul o principal produtor, seguido da Ásia e Oceania. A produtividade e
qualidade do café dependem significativamente de alguns aspectos como a qualidade do
solo, influenciado pela disponibilidade de nutrientes, como também do clima. Deficiências
de macronutrientes como cálcio (Ca), magnésio (Mg), nitrogênio (N), fósforo (P) e potássio
(K) e enxofre (S) podem causar sintomas visíveis nas folhas de café, levando à redução do
rendimento e da qualidade se não forem tratadas prontamente. Os métodos tradicionais
para diagnosticar deficiências de nutrientes dependem de inspeção manual e análise
laboratorial, o que pode ser demorado, caro e sujeito a erro humano.

Avanços recentes em aprendizado profundo e visão computacional oferecem uma alterna-
tiva promissora para automatizar diagnósticos de saúde de plantas. O modelo de detecção
de objetos “You Only Look Once” (YOLO) demonstrou alta precisão e desempenho em
tempo real em várias aplicações agrícolas, sendo elas detecção de culturas e pragas. Neste
estudo, utilizou-se da oitava versão do framework YOLO para detectar deficiências de
macronutrientes em folhas de café com base em sintomas visuais. O YOLOv8 melhora
seus predecessores com recursos aprimorados de detecção de objetos, melhor generalização
e maior eficiência computacional, tornando-o adequado para essa tarefa.

Nos testes realizados com o dataset BDICAFE, a proposta apresentada nesse trabalho
obteve acurácias de até 95,8%, conforme os testes realizados. Isso demonstra que a
proposta pode servir como uma ferramenta valiosa para agricultores e agrônomos,
permitindo a detecção precoce e o manejo direcionado de nutrientes para otimizar a
produção de café.

Palavras-chave: Visão Computacional, YOLO, BDICAFE, Macronutrientes, Café.
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1 Introdução

O Brasil é o maior produtor de café, abastecendo 30% do mercado global e em
relação ao consumo está atrás apenas dos Estados Unidos. Anualmente o consumo de café
vem aumentando, como também compradores nacionais e internacionais elevaram seus
padrões, exigindo grãos de café de maior qualidade e com características específicas, além
de fiscalizações mais rigorosas para produção. Como resultado, os cafeicultores brasileiros
enfrentam o desafio de manter altos níveis de produção e, ao mesmo tempo, atender a
essas expectativas de maior qualidade do mercado (CHALFOUN; REIS, 2010).

No ambiente de cultivo, o agricultor deve estar preparado para enfrentar diversos
obstáculos que podem colocar sua cultura em risco, sendo os mais comuns o clima, pragas e
deficiência de nutrientes no solo. As variações de abordagem para combater cada problema
são diferentes e dependem muito do momento em que são usadas, levando o agricultor a
ter gastos maiores se não agir de maneira antecipada.

Uma importante abordagem é a detecção precoce de deficiências de nutrientes,
pois é crucial para manter as plantações saudáveis e garantir o rendimento ideal. Quando
as plantas carecem de nutrientes essenciais como cálcio, magnésio, nitrogênio, fósforo,
potássio e enxofre, elas apresentam sintomas como clorose, crescimento atrofiado e
deformação das folhas. Se não forem tratadas, essas deficiências podem levar a estresse
severo nas plantas, produtividade reduzida e, em casos extremos, morte da planta e quebra
de safra. Por estar diretamente associado ao crescimento da planta e desenvolvimento
de frutos, a detecção precoce de deficiência de macronutrientes evita danos irreversíveis
nas plantas como na economia. A intervenção no tempo correto permite que as plantas
recebam cuidados específicos evitando medidas corretivas de emergência, que geralmente
são mais caras e menos eficazes. Outro ponto importante é a suscetibilidade a doenças,
plantas fracas são mais suscetíveis à doenças o que leva a maiores cuidados e mais gastos
para o produtor. Portanto, ao alavancar técnicas de detecção precoce, os agricultores
podem tomar medidas proativas para corrigir deficiências antes que se tornem graves,
melhorando a produtividade, reduzindo o desperdício e garantindo a segurança alimentar.

Nos últimos anos, a sinergia entre visão computacional e agricultura tem impul-
sionado avanços substanciais, especialmente no contexto da agricultura de precisão e na
automação de processos agrícolas, afetando tanto o agricultor como indústrias. Um dos
principais catalisadores dessa transformação é a evolução contínua da arquitetura You
Only Look Once (YOLO), uma família de detectores de objetos que se destaca por sua
elevada eficiência computacional e precisão em tempo real.

A primeira versão do YOLO, proposta por Joseph Redmon em 2016 Redmon
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(2016), representou um marco disruptivo ao consolidar o processo de detecção em uma
única etapa, ou seja com apenas uma passagem pela rede, contrastando com os paradigmas
tradicionais de dois estágios, como os utilizados por Redes Neurais Convolucionais
baseadas em Região (R-CNN) e suas variantes. Essa abordagem permite à rede dividir
a imagem de entrada em uma malha de células e, de forma paralela, inferir as caixas
delimitadoras, também conhecidas como bouding boxes, e as probabilidades de classe, o
que resulta em um desempenho de inferência significativamente mais rápido sem perdas
expressivas em acurácia.

Com a evolução das versões — YOLOv1 ao YOLOv8 — houve uma progressiva
incorporação de aprimoramentos arquiteturais, estratégias avançadas de treinamento e
técnicas de otimização específicas, como detecção de alvos de pequena escala, oclusões
parciais e variações nos domínios dos dados. Cada nova iteração da família YOLO tem
buscado mitigar limitações anteriores (ALIF; HUSSAIN, 2024).

Por se tratar de um problema do campo da visão computacional, pois deficiências
nesses macronutrientes se manifestam visivelmente nas folhas e afetam negativamente a
saúde geral, o uso da rede YOLOv8 para detectar deficiências em folhas de café poderá
alcançar alta precisão, velocidade, eficiência e generalização na identificação e classificação
de sintomas de deficiências devido aos seus recursos avançados de detecção de objetos,
extração robusta de características e processamento em tempo real.

1.1 Objetivos
O estudo tem como objetivo otimizar técnicas de detecção de deficiências em

folhas de plantas de café, contribuindo assim para uma classificação eficiente que ajude
profissionais agrônomos em suas tarefas cotidianas.

Portanto, pretende-se:

• Avaliar o framework YOLOv8 para classificação de deficiência de macronutrientes
em folhas de planta de café;

• Analisar e interpretar filtros na classificação de plantas de folha de café;

1.2 Organização da Monografia
Neste capítulo, foram apresentadas as considerações iniciais, motivação hipótese,

problema e objetivos para o desenvolvimento do método proposto. O restante deste
trabalho está divididos em revisão bibliográfica, desenvolvimento, resultados e conclusão.
No Capítulo 2 da revisão bibliográfica é apresentado a teoria e o estado da arte
de tópicos relacionados problemas de deficiência de macronutrientes na folha de café,
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processamento digital de imagens e métodos de extração de características e classificação.
No Capítulo 3 de desenvolvimento são apresentados os materiais e métodos utilizados
para o desenvolvimento deste projeto, sendo eles: descrição do banco de imagens
utilizado, descrição de técnicas utilizadas para processar imagens, descrição das técnicas
utilizadas nas etapas de extração de características e classificação assim como as métricas
empregadas para avaliação do método proposto. Além disso, apresenta os resultados
obtidos em cada etapa empregada, bem como os resultados quantitativos dos experimentos
e uma breve discussão e análise e por último o Capítulo 4 em que apresenta as
considerações e pesquisas futuras do projeto.
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2 Revisão Bibliográfica

Este capítulo explora o impacto das deficiências de macronutrientes nas plantas
de café e como a visão computacional pode auxiliar na identificação dessas deficiências.
Macronutrientes são essenciais para o crescimento saudável das plantas, e suas deficiências
podem levar a sintomas visíveis, como clorose, murchamento, mudanças de cor e necrose.
Os métodos tradicionais de diagnóstico desses problemas podem ser demorados e exigem
conhecimento especializado, além do envio de amostras para análises laboratoriais.
No entanto, os avanços em visão computacional permitem a detecção automatizada,
precisa e eficiente de deficiências de nutrientes por meio de análise de imagem e
aprendizado de máquina. Este capítulo se aprofunda nos sintomas de deficiências comuns
de macronutrientes e como as tecnologias de visão computacional podem revolucionar a
agricultura de precisão na cafeicultura.

2.1 Deficiências de minerais no café
O solo serve como meio de onde as plantas obtêm os minerais essenciais para

seu desenvolvimento e quando esse meio não contém ou não disponibiliza quantidades
suficientes de nutrientes, algo que pode ser constatado pela análise química do solo, as
plantas não terão suas necessidades nutricionais plenamente atendidas, resultando em
problemas característicos definidos visivelmente devido ao estresse da planta (FAQUIN,
2002).

Em relação às plantas de café os níveis de nutrientes dependem de vários fatores,
como o local em que a planta é cultivada, a época do ano, a idade da planta e
as características genéticas, isso afetará o crescimento da planta, podendo resultar
em crescimento mais lento e menor produtividade ou um crescimento rápido e maior
produtividade. Portanto, é importante garantir que a planta receba nutrientes suficientes,
pois a nutrição mineral adequada é crucial para a produtividade da planta de café,
aumentando a eficiência metabólica da planta (FAQUIN, 2002).

Deficiências de minerais no café se manifestam por meio de vários sintomas nas
folhas, impactando a saúde e a produtividade da planta. Uma visão geral das deficiências
de macronutrientes comuns, seus sintomas e potenciais consequências (Figura 1):

• Cálcio (CA): Murchamento das folhas, colapso do pecíolo; clorose marginal;
manchas nos frutos, morte das gemas;

• Potássio (K): Clorose e depois necrose das pontas e margens;
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• Magnésio (Mg): Clorose internerval seguida ou não da cor vermelho-roxa;

• Nitrogênio (N): Clorose em geral uniforme;

• Fósforo (P): Cor verde azulada com ou sem amarelecimento das margens;

• Enxofre (S): Clorose geralmente uniforme;

Figura 1 – Imagens de folhas de café com suas respectivas deficiências de macronutrientes.

Fonte: Dataset BDICAFE (subseção 3.1.1).

2.2 Processamento de Imagens
O processamento de imagens é um conjunto de passos em que realiza-se operações

em imagens para melhorá-las, extrair informações importantes ou transformá-las em um
formato para o uso final, humanamente interpretável. O processamento de imagens envolve
analisar, manipular e interpretar imagens usando técnicas matemáticas e computacionais
sendo muito utilizado em campos como imagens médicas, robótica, sensoriamento remoto
e entretenimento.

Os passos do processamento de imagens (Figura 2) podem ser divididos em:
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• Aquisição da imagem : Adquirir as imagens usando câmeras, scanners, sensores,
raio X, ultrassom, etc;

• Pré-processamento : Melhorar a qualidade da imagem reduzindo ruído, ajustando
brilho, contraste, removendo fundo, etc;

• Segmentação : Divisão da imagem em regiões importantes;

• Extração de características : Identificar partes importantes das imagens, como
cantos, formas e texturas;

• Classificação : Análise e interpretação das características extraídas;

Figura 2 – Passos do processamento de imagens.

Fonte: Modificado de Hungilo, Emmanuel e Emanuel (2019).

Ocasionalmente, técnicas de pré-processamento podem ser implementadas para
localizar, gerenciar e reduzir artefatos típicos em imagens. Técnicas básicas de proces-
samento de imagens podem ser usadas junto com métodos mais avançados para excluir
falsos positivos e reduzir erros de previsão em nível de pixel.

Para realização de algumas técnicas de pré-processamento faz-se necessária a
modificação no espaço de cores das imagens. O espaço de cores em computação é
um modelo matemático que define a forma como as cores são representadas em um
sistema digital. Ele determina como as cores são combinadas e interpretadas para garantir
consistência entre diferentes dispositivos. Alguns exemplos de espaços de cores são RGB,
HSV e LAB. Segundo Loesdau, Chabrier e Gabillon (2014), o espaço de cor RGB consiste
nas três cores primárias, vermelho, azul e verde, sendo baseado na teoria das cores.
Atualmente a maioria dos aparelhos utiliza esse padrão para suas aplicações. De certo
modo o modelo RGB possui pontos negativos em relação a segmentação de imagens, isso
se deve porque mesmo embora o espaço RGB corresponda ao processamento biológico
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de cores no sistema visual humano, ele não parece se correlacionar com a diferenciação
perceptual humana entre cores. Outro espaço de cores é o HSV, introduzido por Smith
(1978), que busca a percepção de matiz, saturação e valor. A matiz é uma posição no
espectro de cores, saturação pode-se dizer que é a intensidade ou pureza da cor, quanto
mais perto do cinza mais dessaturada é a cor e por final o valor é a luminosidade. O espaço
de cor CIELAB1, normalmente denominado L*a*b ou LAB, é um padrão internacional
projetado para uniformidade perceptual. A intenção é que as diferenças de cores que
um humano percebe como iguais correspondam a distâncias euclidianas iguais no espaço
LAB, sendo assim um dos dois sistemas de coordenadas mais recomendados para comparar
diferenças de cores (SCHWARZ; COWAN; BEATTY, 1987).

Segundo Gonzalez (2009), dentre as diversas técnicas de pré-processamento,
algumas mais comuns são: brilho, contraste e remoção de fundo.

2.2.1 Brilho
No processamento de imagens, brilho se refere à intensidade percebida da luz em

uma imagem. É um atributo escalar que descreve o quão brilhante ou escura é uma
imagem. O ajuste do brilho normalmente parte do princípio de aumentar ou diminuir de
maneira uniforme os valores de intensidade de todos os pixels da imagem.

O principal impacto da mudança do brilho na imagem (Figura 3 - B) é quanto
maior o brilho mais clara é a imagem, do mesmo modo, quanto menor o brilho mais escura.
Deve-se pontuar que, diferentemente do contraste que realça a diferença das partes mais
claras e escuras da imagem o brilho por sua vez altera o nível geral de luz.

2.2.2 Contraste
O contraste se refere à diferença de intensidade ou luminância entre as partes mais

claras e mais escuras de uma imagem. Ele determina o quão bem os detalhes na imagem
se destacam contra o fundo, o com maior contraste tornando os detalhes mais distintos e
menor contraste tornando-os menos perceptíveis (Figura 3 - C).

Contraste é uma medida do intervalo de valores de intensidade de pixel em uma
imagem. Alto contraste melhora a nitidez e os detalhes, tornando as bordas e transições
mais pronunciadas, enquanto baixo contraste resulta em uma imagem com características
menos distinguíveis.
1 Definido pela International Commission on Illumination <https://www.cie.co.at>

https://www.cie.co.at
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Figura 3 – Exemplos da aplicação de pré-processamento na icônica imagem de Albert
Einstein.

Fonte: Figura modificada do UOL.

2.2.3 Remoção de fundo
A técnica de remoção de fundo se refere ao isolamento do objeto do primeiro plano

em relação ao fundo da imagem. Isso é comumente usado em detecção de objetos e envolve
identificar e segmentar o assunto principal do resto da imagem. Exemplo de remoção de
fundo pode ser encontrado na Figura 3 - D.

Abordagens avançadas como segmentação semântica, por exemplo, utilizando os
modelos U-net, podem ser exploradas para identificar objetos com precisão em imagens
complexas.

2.3 Redes Neurais Convolucionais
O aprendizado profundo tem ganhado destaque nos últimos anos, sendo ampla-

mente utilizado em pesquisas devido à sua capacidade de lidar com grandes volumes de
dados de forma rápida e eficaz. Um dos principais usos dessas técnicas está no campo

https://conteudo.imguol.com.br/c/entretenimento/c3/2017/11/24/albert-einstein-1511565360545_v2_900x506.jpg
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do robótica e segurança, onde as Redes Neurais Artificiais (RNA) são aplicadas em
tarefas como segmentação (identificação de objetos e regiões), extração de características e
classificação de imagens, graças à sua versatilidade (ALBAWI; MOHAMMED; AL-ZAWI,
2017).

As Redes Neurais Convolucionais (RNC) estão entre as abordagens mais utilizadas
para a área de visão computacional devido à arquitetura dessas redes ser composta
por camadas que combinadas de forma adequada produzem resultados específicos.
Segundo Yamashita et al. (2018) as principais diferenças das RNCs e algoritmos de
engenharia de características está principalmente na capacidade das RNCs aprenderem
automaticamente, dispensando descritores parametrizados, para realizar tarefas como
extração de características e classificação.

Um exemplo de arquitetura simplificada das RNCs pode ser observado na Figura 4.
Os blocos mais comuns que constituem essas camadas são chamados de convolução,
totalmente conectadas e pooling, sendo que este último não possui parâmetros ajustáveis
(ALBAWI; MOHAMMED; AL-ZAWI, 2017).

Figura 4 – Imagem abstrata de uma RNC simples com camadas convolucionais, pooling
e totalmente conectadas.

Fonte: Traduzido de Alif e Hussain (2024).

2.3.1 Convolução
A convolução é uma operação matemática linear amplamente empregada na área

de visão computacional, a convolução gera uma imagem ou um mapa de características a
partir de uma imagem de entrada. Esse mapa não apenas indica a localização de objetos
na imagem, mas também descreve suas propriedades.

A operação de convolução (Figura 5) é realizada com dois elementos, uma imagem
ou mapa de entrada e um filtro, comumente referido como kernel, ambos representados por
matrizes de valores discretos. O processo começa com a aplicação de uma operação linear,
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elemento por elemento, entre a matriz da imagem e a do filtro, tal processo faz o filtro agir
como um extrator de características que aprende com o tempo a extrair características
importantes da imagem de entrada. O resultado da operação é outra matriz, conhecida
como mapa de características (YAMASHITA et al., 2018).

Figura 5 – Exemplo da operação de convolução, em que um filtro (kernel) realiza
operações elemento a elemento em uma imagem de entrada, resultando assim
em um mapa de características.

Fonte: Autoria própria

Nos modelos de visão computacional, as camadas iniciais são responsáveis por
identificar características básicas, como cores, sombras e ângulos. Já as camadas mais
profundas extraem padrões mais complexos, permitindo que o modelo forme uma
compreensão abrangente da imagem analisada (WU, 2017).

Algumas operações de convolução e pooling são constituídas por Kernel, Stride e
Padding.

2.3.1.1 Kernel

Kernel são matrizes, de tamanho igual ou menor a imagem de entrada, utilizada
para operações de convolução. Essas matrizes “deslizam” pela imagem de entrada
realizando operações de multiplicação elemento a elemento, a saída de cada operação
realizada é chamada de mapa de características, onde cada mapa destaca características
importantes da imagem.

2.3.1.2 Stride

A operação de stride, ou passo em português, se caracteriza pelo espaço, ou passo,
que o kernel anda a cada operação realizada na imagem de entrada.
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Aumentar o tamanho do stride tem como consequências:

• Reduzir custos computacionais.

• Capturar características de alto nível enquanto ignora características menores.

2.3.1.3 Padding

A operação Padding, ou preenchinmento em português, constitui na adição de
uma ou mais linhas e colunas de pixels na borda da imagem de entrada, dependendo do
tamanho do kernel. Na Figura 6 essa linha e coluna estão representados na cor laranja,
exemplificando um padding para um kernel 3x3.

Figura 6 – Exemplo do uso da operação padding.

Fonte: Autoria própria

O padding busca resolver dois problemas dentro das camadas de uma rede neural
convolucional:

• Quanto maior a rede neural convolucional a dimensão espacial do imagem continua
diminuindo levando a perda de informação;

• Os pixels das bordas da imagem de entrada sofrem menos operações convolucionais
ou de pooling em relação aos pixels do centro da imagem, causando perda de
informação das bordas caso alguma característica importante esteja localizada mais
nos cantos da imagem.



Capítulo 2. Revisão Bibliográfica 24

2.3.2 Pooling

O pooling é uma etapa essencial em RNCs, pois é responsável por reduzir a
dimensionalidade dos mapas de características. Esse processo faz um mapeamento dos
valores da entrada em um tamanho menor, condensando o mapa de características
de forma a preservar informações úteis e descartar as menos relevantes. O tipo de
mapeamento depende da operação realizada, os tipos mais comuns são o pooling máximo
onde é escolhido o pixel de maior valor pelo filtro (Figura 7), o pooling mímino onde
o menor é selecionado e pooling médio que é feita uma média dos valores dos pixels
(YAMASHITA et al., 2018).

Figura 7 – Exemplo da operação de max pooling, onde em cada espaço é selecionado o
pixel com maior valor e no final obtem-se uma imagem com dimensionalidade
reduzida.

Fonte: Autoria própria

Segundo Yamashita et al. (2018), essa operação transforma a representação
conjunta de características em dados mais significativos, ao mesmo tempo que introduz
invariância a transformações espaciais e reduz a complexidade computacional para as
camadas subsequentes. Isso ocorre ao eliminar parte das conexões entre as camadas
convolucionais.

Os principais objetivos do pooling são:

• Diminuir o número de parâmetros ou pesos, reduzindo o custo computacional;

• Mitigar o overfitting, pois um método de redução de dimensionalidade eficiente deve
extrair exclusivamente informações relevantes, descartando detalhes desnecessários;

2.3.3 Normalização em lote
A operação de normalização em lote é uma das principais técnicas utilizada no

campo do aprendizado profundo, sendo uma técnica feita para estabilizar a distribuição
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das entradas para uma camada específica durante o treinamento da RNC, sendo realizada
antes da função de ativação da camada anterior. Isso é alcançado por meio da introdução
de camadas adicionais que ajustam por meio da média e variância. Em seguida, essas
entradas normalizadas são geralmente escaladas e deslocadas com base em parâmetros
treináveis, permitindo preservar a capacidade expressiva do modelo.

A normalização de lotes busca:

• Estabilizar o processo de treinamento;

• Melhorar a generalização do modelo;

• Reduzir a sensibilidade dos pesos iniciais;

• Permitir maiores taxas de aprendizado;

2.3.4 Camadas totalmente conectadas
As camadas totalmente conectadas são um tipo de rede neural artificial que busca

simular as estruturas e funções dos neurônios e suas conexões, elas processam e aprendem
informações a partir dos dados. Normalmente nas arquiteturas das RNCs as camadas
totalmente conectadas são implementadas após as operações de convolução e pooling no
bloco final da rede. A partir do momento que todas as características são extraídas, isso
depois de passar pelos blocos de convolução e pooling, ocorre um agrupamento delas
e assim são usadas como entrada para as camadas totalmente conectadas. Dentro dessa
parte, cada saída é conectada a entrada de outra camada com vários neurônios (Figura 8),
e para cada ligação entre camadas ocorrem inúmeras operações onde são ajustadas as
probabilidades para a classificação final (YAMASHITA et al., 2018).

Pode-se dizer que as camadas totalmente conectadas são representações de
neurônios e que, no final do processamento, entregam um resultado. As camadas
totalmente conectadas são responsáveis pela definição das probabilidades de cada amostra
pertencer a uma determinada classe.

2.3.5 U-net e U2-Net
Segundo Siddique et al. (2021), o modelo U-net padrão (exemplificado na Figura 9),

foi inicialmente desenvolvido para realizar segmentação, ou seja, detectar objetos em
imagens e depois separá-los do plano de fundo. A U-net pode ser dividido em 2 partes
principais: a contração e a expansão.

O primeiro caminho, referente a contração, é constituída de uma RNC básica,
os blocos são divididos em 2 camadas de convoluções 3x3 seguida de uma função de
ativação e um polling máximo, tal bloco é repetido inúmeras vezes. O segundo caminho,
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Figura 8 – Exemplo de 2 camadas totalmente conectadas, observa-se os neurônios da
camada 𝑛1 conectando com os neurônios da camada 𝑛2.

Fonte: Modificado de Ma e Lu (2017).

Figura 9 – Imagem abstrata de uma arquitetura U-net.

Fonte: Siddique et al. (2021)

referente a expansão, é o que torna as arquiteturas U-net destacado das demais RNCs,
pois a cada estágio de forma gradual aumenta-se a imagem, ou mapa de características,
usando uma técnica chamada convolução transposta ou deconvolução (Figura 10). Para
realização da técnica é necessário uma imagem de entrada e um filtro, a técnica consiste
na multiplicação elemento a elemento do filtro pela imagem aumentando assim o tamanho
do mapa de características. Isso ajuda o modelo a reconstruir um mapa de segmentação
detalhado a partir da representação compactada.
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Dentro da estrutura da U-net existem concatenações que combinam informações
dos resultados do caminho de expansão com o estágio do caminho de contração
correspondente, formando-se de maneira imaginária uma arquitetura em formato da letra
U dando assim origem ao nome U-net. Deve-se atentar que antes da concatenação o mapa
de características é recortado devido as diferenças de tamanho dos mapas. A operação de
concatenação permite que a rede retenha detalhes finos de camadas anteriores enquanto
refina a segmentação.

Figura 10 – Exemplo da técnica convolução transposta, onde o objetivo é aumentar o
mapa de características.

Fonte: Autoria própria

Segundo Jiang e Li (2024) e Qin et al. (2020), a arquitetura tradicional das
U2-nets são formadas principalmente por blocos U residuais, que substituem os blocos
convolucionais comuns da U-net, imagina-se uma estrutura recursiva em que cada
bloco da U-net é substituído por uma estrutura similar a ela como demonstrado na
Figura 11, incorporando conexões residuais para mesclar localmente ou multi-escala por
concatenação. Uma das características das U-nets recursivas é que quanto mais profunda
for seus blocos mais poder computacional é necessário, afetando assim o tempo, elemento
principal em tarefas em tempo real.

2.3.6 YOLO
Como afirmado por Terven, Córdova-Esparza e Romero-González (2023), dentro

dos inúmeros algoritmos e modelos de classificação e detecção de objetos, os modelos da
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Figura 11 – Imagem abstrata de uma arquitetura U2-net.

Fonte: Qin et al. (2020)

família YOLO, se consolidam como uma ferramenta essencial para a detecção de objetos
em tempo real devido a sua confiável precisão e velocidade, sendo amplamente utilizada
em robótica, veículos autônomos, sistemas de vigilância por vídeo, como também na esfera
da agricultura para detectar e classificar culturas, pragas e doenças.

O modelo YOLO e suas famílias, desenvolvido por Redmon (2016), foi introduzido
inicialmente na Conferência de Visão computacional e Reconhecimento de Padrões de 2016
como uma abordagem pioneira de detecção de objetos em tempo real de ponta a ponta. O
nome “You Only Look Once”, você só olha uma vez, traduzindo para o português, reflete
sua principal inovação que é realizar a detecção com apenas uma única passagem pela rede.
Isso o diferenciou de métodos anteriores, que dependiam de janelas deslizantes, também
conhecida como sliding window, combinadas com classificadores executados inúmeras
vezes por imagem, aumentando tempo de processamento que em domínios como robótica
ou segurança são muito importantes, ou de técnicas mais recentes que dividiam o processo
em duas etapas, começando com a identificação de regiões propostas e, em seguida,
classificação da região. Os modelos YOLO simplificaram esse fluxo ao adotar uma saída
direta baseada em regressão para prever as detecções.

Neste trabalho foi utilizado o modelo YOLOv8 (You Only Look Once, versão 8)
que vem com novas funcionalidades em relação às versões anteriores, como apresentado
na Tabela 1.
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Tabela 1 – Versões dos modelos YOLO e suas contribuições.
Versão Data Contribuição Framework

V1 2015 Detector de objetos de disparo único Darknet
V2 2016 Treinamento multi-escala, agrupamento dimensional Darknet
V3 2018 Bloco SPP, Darknet-53 Darknet
V4 2020 Ativação baseada em Mish, backbone CSPDarknet-53 Darknet
V5 2020 Detecção sem âncora, ativação baseada em SWISH, PANet PyTorch
V6 2022 Autoatenção, detecção de objetos sem âncora PyTorch
V7 2022 Transformadores, reparametrização E-ELAN PyTorch
V8 2023 GANs, detecções sem âncora PyTorch

Fonte: Alif e Hussain (2024)

2.3.6.1 Arquitetura YOLOv8

O modelo de visão computacional YOLOv8 é a oitava versão da série YOLO de
modelos de detecção e classificação de objetos desenvolvida pela Ultralytics. Esta versão
melhora as anteriores com uma arquitetura mais simplificada, melhor desempenho indo
desde velocidade no processamento até melhores acurácias e possuindo mais flexibilidade.

O ponto principal do framework YOLOv8 é que pode ser usado para diferentes
tarefas como detecção, classificação, segmentação e estimativa de pose, por essa razão
deve-se considerar que para cada nível de tarefa existirá uma rede modelada especifica-
mente para tal fim, além disso o framework vem com níveis de tamanhos de redes como
nano, small, medium, large, extra large o que adiciona ou tira camadas também alterando
a sua estrutura (SOHAN; RAM; REDDY, 2024).

A arquitetura do modelo YOLOv8 está dividida em 3 partes principais: backbone,
neck e head.

2.3.6.1.1 Backbone

Backbone desempenha um papel crucial na extração de informações relevantes
da imagem de entrada. A extração de características realizada pelo backbone é feito
normalmente utilizando uma RNC pré-treinada em grandes conjuntos de dados, como
por exemplo, a ImageNet2. O backbone aprende a capturar informações e características
em diferentes níveis de detalhes ou hierarquias. As primeiras camadas do backbone focam
em padrões básicos como bordas e texturas, enquanto camadas mais profundas captam
características mais complexas, como partes de objetos e informações semânticas.

O YOLOv8 utiliza uma nova rede backbone, que é uma versão aprimorada da
arquitetura CSPDarknet53, composta por 53 camadas convolucionais. Essa arquitetura
incorpora conexões parciais entre estágios, o que melhora o fluxo de informações entre os
2 ImageNet é uma base de dados de imagens classificadas e pode ser acessada em <http://www.

image-net.org>

http://www.image-net.org
http://www.image-net.org


Capítulo 2. Revisão Bibliográfica 30

diferentes níveis da rede. O backbone da oitava versão é formado por diversas camadas
convolucionais organizadas de forma sequêncial.

Além disso, no módulo C2f o mapa de características é dividido, a primeira parte é
concatenada com a outra metade depois de passar por camadas de convoluções resultando
em recursos de alto nível com informações contextuais para aumentar a precisão da
detecção. Já o módulo SPPF (Spatial Pyramid Pooling Faster), camada com poolings
subsequentes e concatenações, identificado na Figura 12 no final em azul mais escuro, e
outras camadas convolucionais subsequentes processam os recursos em diferentes escalas,
contribuindo para uma detecção mais eficiente e precisa (SOHAN; RAM; REDDY, 2024).

Figura 12 – Arquitetura do modelo YOLOv8 da ultralytics.

Fonte: Modificado de Sohan, Ram e Reddy (2024).

2.3.6.1.2 Neck

Segundo Sohan, Ram e Reddy (2024), o neck (pescoço) serve como uma camada
intermediária que conecta o backbone ao estágio de previsão final. Sua função é pegar
os recursos do backbone e refiná-los, melhorando os detalhes espaciais e a compreensão
semântica. No YOLOv8, o neck é criado para ser destacável, o que implica que ele gerencia
abordagens de maneira independente, o que torna o framework versátil, gerando uma
estrutura para cada tipo de tarefa.

Na arquitetura do neck as camadas U (Figura 12), camadas que realizam a
convolução transposta apresentada na Figura 10, possuem objetivo de aumentar a
dimensionalidade dos mapas de características, tornando possível capturar detalhes em
diferentes tamanhos. O neck utiliza uma série de camadas convolucionais para processar
esses mapas, sendo o design cuidadosamente ajustado para equilibrar velocidade e
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precisão, otimizando o número de canais e os tamanhos de kernel em cada camada para
maximizar o desempenho do modelo.

2.3.6.1.3 Head

A head (cabeça) é a parte responsável por fazer as previsões, possuindo 3 blocos de
detecção. Cada bloco lida com diferentes tipos de informações, pois recebe características
de diferentes níveis das camadas do neck. O bloco de detecção pode ser dividido em 2
caminhos: o primeiro caminho é a detecção das caixas delimitadoras e o segundo sendo
responsável pela classificação.

2.3.7 Métodos de amostragem
O método holdout é uma técnica comum em aprendizado de máquina e estatística

usada para avaliar o desempenho de um modelo. O objetivo dessa abordagem é identificar
a configuração de partição que produz a máxima precisão possível. As divisões mais
comuns das partições está em criar um conjunto de treino, validação e teste a partir
do banco de imagens (BAMI; BEHNAMPOUR; DOOSTI, 2025). Para este trabalho
o conjunto de treino resultou em um total de 80% do banco, enquanto o conjunto de
validação e teste ficaram com 10% das imagens cada um. Definem-se as funções de cada
conjunto como:

• Conjunto de treino: Usado pelo modelo para aprendizado de padrões, ajustes de
pesos e parâmetros;

• Conjunto de validação: Usado para ajustar hiperparâmetros, como por exemplo,
taxa de aprendizado, número de camadas e regularização. A também validação
ajuda a monitorar o desempenho do modelo durante o treinamento e previne o
overfitting (o modelo se ajusta muito bem aos dados de treino, mas não generaliza
bem para novos dados, resultando em baixo desempenho em testes), pois ocorre
a avaliação do desempenho generalizado do modelo. Por último, a validação pode
avisar o treinamento caso necessite uma parada antecipada;

• Conjunto de testes: Serve para uma avaliação sem viés do modelo, pois possui
dados que não foram utilizados no treinamento.

2.3.8 Métricas de avaliação
Um problema com apenas duas categorias a serem diferenciadas é chamado de

problema binário, no qual as classes são classificadas como positiva e negativa. Nesse
contexto, define-se que:
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• Verdadeiro Positivo (VP): ocorre quando uma amostra da classe positiva é
corretamente classificada como tal.

• Falso Positivo (FP): ocorre quando uma amostra da classe negativa é incorreta-
mente classificada como sendo da classe positiva.

• Verdadeiro Negativo (VN): corresponde à classificação correta de uma amostra
pertencente à classe negativa.

• Falso Negativo (FN): ocorre quando uma amostra da classe positiva é erronea-
mente classificada como pertencente à classe negativa.

Essa avaliação pode ser representada também como uma matriz de confusão
(Tabela 2):

Tabela 2 – Representação da matriz de confusão para um problema de classe binária.
Classe Prevista

Positvo Negativo

Positivo Verdadeiro Positivo Falso Negativo
Classe Atual

Negativo Falso positivo Verdadeiro Negativo

Para a avaliação do modelo YOLOv8 para classificação de folhas de café foi
utilizado a métrica Acurácia. Como explicado por Bami, Behnampour e Doosti (2025), a
acurácia é calculada como o número de eventos previstos dividido pelo número total de
eventos. Portanto a precisão é a porcentagem das previsões da classe em relação a classe
total. A expressão da métrica de acurácia está descrita na Equação 2.1:

𝐴𝑐𝑢𝑟𝑎́𝑐𝑖𝑎(𝐴𝑐𝑐) = 𝑉 𝑃 + 𝑉 𝑁

𝑉 𝑃 + 𝑉 𝑁 + 𝐹𝑃 + 𝐹𝑁
. (2.1)
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3 Desenvolvimento

O sistema proposto para classificação de folhas de café é composto pelas etapas
de pré-processamento, extração de características e sua classificação seguido da análise
e interpretação dos resultados. Para o pré-processamento ocorre a seleção de imagens a
olho nu de folhas de café, tais imagens são selecionadas e classificadas em relação aos
efeitos colaterais relacionados à falta de macronutrientes. A próxima etapa é a extração
de características e classificação, onde o modelo YOLOv8 foi treinado com o banco de
imagens para análise e interpretação dos resultados.

O sistema foi desenvolvido e treinado utilizando a linguagem Python e um
computador com placa de vídeo RTX 3060, processador de 3,6 GHz (Intel Core I7-9700K)
e 16 GB de memória RAM.

3.1 Materiais e Métodos

3.1.1 Banco de imagens
Em uma parceira entre o Prof. Thiago Pirola Ribeiro e Prof. Enio Tarso de Souza

Costa foi realizado um experimento com mudas de café para gerar estresse nas plantas
por falta de macronutrientes e, assim, conseguir demonstrar tanto visualmente quanto por
meio de análises laboratoriais o que estava indicado na literatura da área.

O experimento utilizou mudas de café Arábica que, inicialmente, foram cultivadas
em bandejas compartilhadas contendo uma solução nutricional completa, ou seja, foram
oferecidos todos os macronutrientes essenciais em quantidades ideais para o bom
desenvolvimento das plantas. Trabalhou-se com 50 mudas no estágio inicial. Após 15 dias,
as plantas foram divididas em sete grupos experimentais, sendo cada grupo composto
por 4 vasos (repetições) para garantir maior controle do experimento. Para seis dos
grupos, retirou-se apenas um macronutriente essencial específico: cálcio (Ca), potássio
(K), magnésio (Mg), nitrogênio (N), fósforo (P) e enxofre (S). O sétimo grupo permaneceu
com a solução completa, contendo todos os nutrientes necessários para o desenvolvimento
ideal (Figura 13).

O experimento foi conduzido durante 140 dias, no qual foram capturadas imagens
em alta resolução com uma câmera Nikon D3100, configurada com ISO 400, lente de
55mm, abertura f/7.1 e velocidade de obturador de 1/60s. Ao final do período, foi criada
uma base de imagens denominada BDICAFE, contendo 16.966 imagens classificadas de
acordo com as deficiências nutricionais obtidas no experimento.
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Figura 13 – Todas as classes definidas no BDICAFE. As classes completo, nitrogênio e
potássio, em destaque, foram as retiradas conforme os experimentos.

3.1.2 YOLOv8
Neste trabalho foi utilizado o modelo YOLOv8 que conta com novas funcionali-

dades em relação às versões passadas (Tabela 1) em sua versão nano, que possui uma
arquitetura mais leve, menos parâmetros, camadas convolucionais mais simples e por isso
utiliza menos poder computacional levando a uma inferência mais rápida em tempo real. A
escolha do framework YOLOv8 se deve principalmente a sua alta acurácia acompanhada
pelo processamento em tempo real. O treinamento foi realizado utilizando a versão nano
do modelo pré-treinado. Mais informações sobre os parâmetros estão no Apêndice A.

Para a realização dos experimentos foi utilizado o dataset BDICAFE com as
imagens selecionadas dos últimos 40 dias, buscando realçar os efeitos da falta de
macronutrientes na planta. E como alternativas também foram adicionados filtros com
aumento de contraste e remoção de fundo.

Isso se deve porque as deficiências mais comum de falta de macronutrientes aparece
como a clorose nas folhas, portanto, o aumento de contraste nas imagens busca realçar
essa característica.

Como última mudança no Dataset utilizou-se a remoção de fundo, sendo esta
aplicada buscando retirar das imagens alguns objetos como mãos, galhos e folhas que não
eram o foco principal, que poderiam atrapalhar o modelo nas suas predições.

3.1.3 Remoção de Fundo
Ao analisar as imagens do Dataset surgiram alguns questionamentos, pois nas

imagens existem um “plano de fundo”: alguns objetos como caule, pecíolo, o vaso e
até mãos poderiam impactar nos resultados. Com isso, levantou-se se a possibilidade
de remoção do plano de fundo para que somente objeto (nesse caso a folha em primeiro
plano) ficasse na imagem.
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Neste trabalho utilizou-se do módulo rembg em Python. Esta ferramenta foi
construída e otimizada especialmente para a remoção automática de fundo de imagens.
O módulo rembg é construído sobre modelos de aprendizado de máquina projetados
para distinguir entre o primeiro plano (objeto de interesse) e o fundo, utilizando-se
de um modelo baseado em U2-Net otimizado para segmentação humana ou de objetos
(Figura 11). Uma das razões do módulo ser utilizado neste trabalho é devido a praticidade,
uma vez que toda a rede é abstraída, sendo somente necessário fornecer a imagem de
entrada e obtém-se como resultado a mesma imagem com o fundo removido (Figura 14).
Visualmente o módulo rembg se mostrou promissor, conseguindo retirar as informação
indesejadas como galhos e mãos por exemplo, porem para uma análise mais detalhada é
necessário realizar uma comparação com uma retirada manual que poderá ser realizada
em um trabalho futuro.

Figura 14 – Exemplo de um resultado da aplicação da biblioteca rembg para uma imagem
do Dataset BDICAFE.

3.1.4 Contraste
Outro questionamento que surgiu foi devido à algumas características das classes

do Dataset. Pôde-se notar que as folhas com deficiências em potássio, nitrogênio e enxofre
(Figura 1) possuem uma característica em comum: a clorose geralmente uniforme. Tal
característica poderia afetar a separação das classes devido à suas similaridades. Com
isso, optou-se pela aplicação de um filtro de contraste onde foi realçado principalmente
as características de clorose devido ao aumento das diferenças das áreas claras e escuras
(explicado na subseção 2.2.2). Para este trabalho foi utilizada a biblioteca Opencv para
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aplicação do filtro: o primeiro passo foi transformar a imagem RBG para LAB, feito isso
foi selecionado o canal de luz L onde foi aplicado um limite de 2 em um grid de 8x8. O
passo final foi retornar a imagem de LAB para RGB, pois o RGB é o padrão mais comum
utilizado. O resultado do contraste em uma imagem de folha de café com clorose pode
ser visualizado na Figura 15. Nota-se o realce das características amarelas da clorose nas
imagens.

Figura 15 – Exemplo do filtro de contraste aplicado sobre uma imagem do Dataset
BDICAFE.

3.2 Experimentos
Para a obtenção das métricas dos modelos treinados, foram realizadas validações

com o conjunto de teste, tal conjunto foi separado previamente, para que o modelo
fosse avaliado com imagens ignoradas no treinamento e na escolha de hiperparâmetros,
buscando simular uma situação mais real.

Depois de realizado a preparação dos dados foi feito o treinamento do modelo
YOLOv8 com os parâmetros descritos no Apêndice A sobre o conjunto inteiro do
Dataset BDICAFE, totalizando 16.966 imagens. O intuito do teste foi analisar se o
modelo consegue capturar os efeitos colaterais, ou informações relevantes das faltas de
macronutrientes nas plantas que são mais complexas de se analisar devido a semelhança
nos estágios iniciais. Como resultado o loss de treino, que é uma métrica utilizada para
verificar o quão bem o modelo está saindo em relação aos dados de entrada, teve uma
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queda contínua enquanto o de validação apresentou alguns picos no final se mantendo em
queda, foi obtido uma acurácia de 55% (Figura 16) no conjunto de testes, demonstrando
que as características visuais das plantas por serem muito parecidas nos estágios iniciais,
tornando difícil a previsão das classes como ilustra a Figura 17.

Figura 16 – Resultados do treinamento utilizando todas as imagens do Dataset
BDICAFE.

Após a obtenção e análise dos resultados foi realizada uma seleção mais rigorosa
das imagens contidas no Dataset. Buscou-se escolher as imagens com características mais
acentuadas da falta de cada macronutriente e, para isso foram separados os últimos 40
dias do experimento, pois os efeitos visuais nas plantas já eram notados visualmente.
Com isso, a partir desse momento, todos os testes foram realizados com essa nova base,
ou seja, com as 669 imagens selecionadas: 96 de cálcio, 142 de completo, 76 de potássio,
95 de magnésio, 59 de nitrogênio, 102 de fósforo e 99 de enxofre. Também foi aplicada
uma técnica de data augmentation (aumento de dados) sobre um conjunto de imagens
de treino e validação composto por 600 amostras. O objetivo principal dessa etapa foi
expandir a diversidade do dataset, melhorar a robustez do modelo e mitigar possíveis
problemas de overfitting, dado o número limitado de imagens disponíveis inicialmente.

Utilizando os recursos nativos de augmentation do framework YOLOv8, o conjunto
de dados foi expandido para aproximadamente o dobro de seu tamanho original,
resultando em cerca de 1.200 imagens. O processo foi realizado automaticamente pelo
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Figura 17 – Matriz de confusão dos testes realizados com todas as imagens do Dataset
BDICAFE. Demonstra a dificuldade do modelo de fazer previsões, sua
acurácia de 55% seria apenas uma previsão aleatória.

pipeline de treinamento da YOLOv8, que oferece uma gama de transformações aplicadas
em tempo de execução.

Após a obtenção desses resultados, os testes foram divididos em três partes:

1. Sem a aplicação de filtro à imagem, ou seja, usando a imagem original;

2. Aplicando filtro para aumento de contraste na imagem original, e

3. Remoção do fundo da imagem original.

Seguiu-se a seguinte sequência para 4 os experimentos desenvolvidos, tendo para
cada um a divisão baseada nas imagens:

1º: Foi treinado o modelo com todas as classes;

2º: Foi retirada a Classe Completo, devido à sua facilidade de confundir o modelo;
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3º: Foi retirada a Classe Completo e Nitrogênio,

4º: Foi retirada a Classe Completo, Nitrogênio e Potássio.

O ponto principal da classe nitrogênio e potássio é que eles dividem uma
característica comum de deficiência – clorose geral – podendo impactar na classificação
do modelo.

3.2.1 1º Experimento
Nesse experimento foi utilizando o Dataset completo, ou seja, contendo todas as

classes e, com essas imagens, foram realizados 3 testes: sem filtragem, aplicado aumento de
contraste e, por último, realizando a remoção de fundo. As tabelas e gráficos resultantes do
processamento de cada teste deste experimento também estão na seção B.1 para consultas.

• 1º Experimento - Sem Filtragem

Com o novo Dataset, (Figura 18), o loss de treino teve uma queda contínua enquanto
o de validação apresentou um aumento no final. Acurácia aumentou, mas ainda
mantendo uma instabilidade, atingindo 70,6% de acurácia no conjunto de teste.
A principal importância do teste foi a matriz de confusão (Figura 19) mostrar
que as principais predições erradas estão nas classes completa, ou seja, as imagens
saudáveis, e nitrogênio.

Devido a dificuldade do modelo predizer as imagens saudáveis, foi retirado do
Dataset essa classe com a suposição de que por algumas imagens das outras classes
possuírem folhas saudáveis, ou folhas ainda no estágio inicial dos efeitos, essa
semelhança poderia estar deixando o modelo indeciso.

• 1º Experimento - Aplicado Aumento de Contraste

O modelo chegou em uma acurácia de 77,9% no conjunto de teste, o loss de treino
teve uma queda contínua enquanto o de validação apresentou um aumento a partir
da época 10, mas não o suficiente para influenciar o modelo. De modo geral a
acurácia se mostrou instável com muitos picos e fundos ficando em torno de 70%
(Figura 20), bem maior do que o Dataset sem filtro, mostrando que o aumento
do contraste facilita a classificação do modelo. Nota-se também pela matriz de
confusão (Figura 21) que a classe completo e nitrogênio influenciam no desempenho
do modelo.

• 1º Experimento - Aplicado Remoção de Fundo

O modelo chegou em uma acurácia de 65,2% no conjunto de teste, o loss de
treino obteve uma queda contínua enquanto o da validação apresentou uma
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Figura 18 – Resultados do treinamento utilizando imagens selecionadas do Dataset
BDICAFE.

queda no começo mas subindo para as épocas finais. A acurácia apresentou um
comportamento com muitos picos e pontos que não ocorreu melhora, ficando abaixo
de 70% (Figura 22), mostrando-se bem inferior ao Dataset sem filtros e contraste.
Nota-se também pela matriz de confusão (Figura 23) que a classe completo e
nitrogênio influenciam no desempenho do modelo.

Como é possivel observar na Tabela 3, é apresentado o resumo dos valores de
acurácia obtidos para o 1º experimento em que foram utilizadas todas as classes.

Tabela 3 – Tabela com a Acurácia para os testes realizados com o Dataset contendo todas
as classes.

Experimento Acurácia
Sem filtro 0,706
Com aumento de contraste 0,779
Com remoção de fundo 0,658
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Figura 19 – Matriz de confusão dos testes realizados com as imagens selecionadas do
Dataset BDICAFE.

Figura 20 – Resultados do treinamento utilizando imagens selecionadas do Dataset
BDICAFE aplicadas sob um filtro de aumento de contraste.
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Figura 21 – Matriz de confusão dos testes realizados com as imagens selecionadas do
Dataset BDICAFE aplicadas sob um filtro de aumento de contraste.

Figura 22 – Resultados do treinamento utilizando imagens selecionadas do Dataset
BDICAFE, aplicadas sob um filtro de remoção de fundo.
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Figura 23 – Matriz de confusão dos testes realizados com as imagens selecionadas do
Dataset BDICAFE, aplicadas sob um filtro de remoção de fundo.

3.2.2 2º Experimento
Para o segundo experimento foi retirada a classe completo, ou seja, que contém

todos os nutrientes. As tabelas e gráficos resultantes do processamento de cada teste deste
experimento estão na seção B.2 para consultas.

• 2º Experimento - Sem a Classe Completa e Sem Filtragem

O loss de treino teve uma queda contínua enquanto o de validação apresentou um
aumento no final, mas diferentemente do experimento retirando a classe completa
nas épocas finais o gráfico (Figura 30) apresentou uma melhora. Acurácia aumentou
no começo mas piorando nas épocas finais. Foi obtido uma acurácia de 87% no
conjunto de teste, mostrando assim que a suposição estava correta, a classe completa
afeta de maneira significativa as outras classes, isso pode ocorrer de duas maneiras,
a diferenças pouco perceptíveis em relação as outras classes, alguma folhas podem
parecer saudáveis devido à uma clorose mais branda por exemplo, induzindo o
sistema ao erro. O segundo ponto está relacionado com o Dataset, para uma melhor
percepção do modelo o correto seria mais imagens com características notáveis de
deficiência. Por fim, a análise da matriz de confusão (Figura 31) demonstra que a
classe nitrogênio influencia na classificação do modelo, sendo a principal classe com
predições erradas.
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• 2º Experimento - Sem a Classe Completa e Aplicando o Aumento de
Contraste

O modelo atingiu uma acurácia de 77,8% no conjunto de teste, o loss de treino
teve uma queda contínua enquanto o de validação apresentou um aumento no final,
mas diferentemente do experimento retirando a classe completa nas épocas finais
o gráfico (Figura 32) apresentou uma melhora. Acurácia apresentou picos mas se
manteve entre 70-80%, não apresentando melhoras em comparação ao teste com
todas as classes mas também sendo bem inferior ao teste sem filtro, observou-se
também na matriz de confusão (Figura 33) o mesmo padrão de interferência da
classe nitrogênio.

• 2º Experimento - Sem a Classe Completa e Aplicando a Remoção de
Fundo

Foi obtido acurácia de 75,5% no conjunto de teste, o loss de treino e validação
tiveram uma queda contínua (Figura 34). A acurácia apresentou um comportamento
com muitos picos, mantendo-se entre 70-80%, não apresentando melhoras em relação
aos testes sem a classe completa mas atingiu melhor acurácia comparado com teste
utilizando todo o Dataset. Observou-se também na matriz de confusão (Figura 35)
o mesmo padrão de interferência da classe nitrogênio e na classe enxofre, seguiu-se
pelo mesmo caminho retirando assim a classe nitrogênio.

Como é possível observar na Tabela 4, é apresentado o resumo dos valores de
acurácia obtidos para o 2º experimento em que foram utilizadas todas as classes do Dataset
exceto a classe completa.

Tabela 4 – Tabela com a Acurácia para os testes realizados com o Dataset sem a classe
completa.

Experimento Acurácia
Sem filtro 0,870
Com aumento de contraste 0,778
Com remoção de fundo 0,755

3.2.3 3º Experimento
Para o terceiro experimento foi retirado a classe completo e nitrogênio. As tabelas

e gráficos resultantes do processamento de cada teste deste experimento estão na seção B.3
para consultas.

• 3º Experimento - Sem a Classe Completa e Nitrogênio e Sem Filtragem
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Como resultado foi obtido 95,8% de acurácia para o conjunto de teste sem filtro.
O loss de treino teve uma queda contínua enquanto o de validação apresentou
um aumento no final, aumentando um pouco mais nas últimas épocas. Acurácia
aumentou no começo, atingindo seu pico rápido e depois se mantendo mais abaixo
do pico nas últimas épocas. A ótima acurácia do modelo se deve principalmente
em relação à clorose geral, efeito consequente da falta de nitrogênio. Devido a
classe nitrogênio não estar no Dataset o modelo pode distinguir melhor o resto
das classes, demonstrando que a clorose referente à falta de potássio e enxofre são
mais distinguíveis, pode-se afirmar também que a necrose na folha e nas pontas
devido à falta de potássio é uma característica a mais para facilitar a predição do
modelo. Por final, analisando a matriz de confusão, o modelo se mostrou com mais
dificuldades em relação à classe enxofre, mas como foram erros menos significativos
optou-se pela retirada da classe potássio para o experimento da subseção 3.2.4, que
apresentou dificuldades maiores para detecção no teste sem a classe completa.

• 3º Experimento - Sem a Classe Completa e Nitrogênio e Aplicando o
Aumento de Contraste

O modelo atingiu uma acurácia de 89,6% no conjunto de teste, o loss de treino
e validação tiveram uma queda contínua apresentando uma melhora . A acurácia
melhorou comparado com o teste sem a classe completo apresentando uma subida
nas primeiras épocas mas caindo nas proximas épocas, melhorando sua previsão em
relação ao teste sem a classe completo, mostrando a influência da classe nitrogênio,
observou-se também na matriz de confusão que a classe potássio possui mais
previsões erradas.

• 3º Experimento - Sem a Classe Completa e Nitrogênio e Aplicando a
Remoção de Fundo

Foi obtido pelo modelo uma acurácia de 85,1% no conjunto de teste, o loss de treino
e validação tiveram uma queda contínua e a acurácia apresentou um comportamento
com muitos picos, mantendo-se perto de 80%, melhorando sua previsão em relação
ao teste sem a classe completo e mostrando a influência da classe nitrogênio, mas
infelizmente ficando bem abaixo dos modelos treinados usando o Dataset sem filtros
e o Dataset com filtro de aumento de contraste, observou-se também na matriz
de confusão que a classe potássio possui previsões erradas e seguiu-se pelo mesmo
caminho dos outros testes.

Como apresentado na Tabela 5, é possível observar o resumo dos valores de acurácia
obtidos para o 3º experimento em que foram utilizadas todas as classes do Dataset exceto
as classes completa e nitrogênio.
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Tabela 5 – Tabela com a acurácia dos testes realizados com o Dataset sem a classe
completa e nitrogênio

Experimento Acurácia
Sem filtro 0,958
Com aumento de contraste 0,896
Com remoção de fundo 0,851

3.2.4 4º Experimento
Para o quarto experimento foram retiradas as classes completa, nitrogênio

e potássio. As tabelas e gráficos resultantes do processamento de cada teste deste
experimento estão na seção B.4 para consultas.

• 4º Experimento - Sem a Classe Completa, Nitrogênio e Potássio e Sem
Filtragem

O ultimo teste realizado foi retirando a classe potássio, junto com completo e
nitrogênio mas não obteve um resultado significativo ou superior, ficando assim
com 95% de acurácia no conjunto de teste, o loss de treino teve uma queda contínua
enquanto o de validação apresentou um aumento a partir da época 10, mas não
o suficiente para influenciar o modelo. Acurácia aumentou já nas primeiras épocas
passando de 90% de acurácia e se mantendo alta ao longo do treinamento, obteve-se
uma matriz de confusão ótima, mas no final demonstrando que a retirada da classe
potássio não influencia muito no modelo.

• 4º Experimento - Sem a Classe Completa, Nitrogênio e Potássio e
Aplicando o Aumento de Contraste

Como teste final aplicado sobre o filtro de aumento de contraste retirou-se a classe
completo, nitrogênio e potássio, conseguindo assim 95% de acurácia no conjunto de
teste, o loss de treino e validação tiveram uma queda contínua apresentando uma
melhora . A acurácia apresentou um comportamento com muitos picos e pontos que
não ocorreu melhora, mantendo-se entre 80-90%., mostrando-se inferior referente
aos outros testes sem filtro e com aumento de contraste. A matriz de confusão não
mostra mais interferências de outras classes.

• 4º Experimento - Sem a Classe Completa, Nitrogênio e Potássio e
Aplicando a Remoção de Fundo

Com o filtro de remoção de fundo o modelo chegou a 92,3% de acurácia no conjunto
de teste, o loss de treino e validação tiveram uma queda contínua, com a validação
sofrendo um aumento no final. A acurácia apresentou um comportamento com
muitos picos, mantendo-se entre 80-90% não apresentando melhoras significativas
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em relação ao contraste ou ao Dataset sem filtro mas mostrou melhora em relação
aos testes com remoção de fundo. A matriz aponta predições erradas principalmente
da classe fósforo.

Como apresentado na Tabela 6, é possível observar o resumo dos valores de acurácia
obtidos para o 3º experimento em que foram utilizadas todas as classes do Dataset exceto
as classes completa, nitrogênio e potássio.

Tabela 6 – Tabela com a acurácia dos testes realizados com o Dataset sem a classe
completa, nitrogênio e potássio

Experimento Acurácia
Sem filtro 0,950
Com aumento de contraste 0,950
Com remoção de fundo 0,923

3.2.5 Análise das Acurácias dos Experimentos
Este estudo apresenta uma análise em tabelas dos experimentos realizados e foi

organizado em três categorias: sem filtro, com aumento de contraste e com remoção de
fundo. Para cada tabela está detalhado os resultados para cada tipo de filtro e cada seleção
de classes utilizada no experimento.

3.2.5.1 Acurácia do Dataset sem filtro

A acurácia geral considerando todas as classes foi de 70,6%, o que indica
um desempenho ruim, mas com espaço para melhorias, possivelmente devido à alta
variabilidade visual entre os tipos de deficiência.

Ao remover a classe “completo” (folhas sem deficiência), a acurácia subiu
significativamente para 87%. Esse aumento sugere que a classe "completo"pode estar
visivelmente próximo a alguns estágios iniciais de deficiência, não demonstrando assim
tantas diferenças visuais, dificultando a distinção da rede.

Quando se exclui também a classe Nitrogênio (N), classe que apresenta sintomas
que podem ser confundidos com outras deficiências, a acurácia atinge 95,8%, indicando
que esta classe representa um desafio adicional para a detecção precisa.

Por fim, com a remoção das classes completo, nitrogênio e potássio, a acurácia
se mantém elevada, em 95%, sendo praticamente igual ao experimento anterior, demons-
trando que não há necessidades de retirar mais classes.

A acurácia dos testes utilizando o Dataset BDICAFE com imagens selecionadas
pode ser vista na Tabela 7.
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Tabela 7 – Tabela com a Acurácia dos testes realizados com o Dataset sem filtros
adicionados

Dataset Acurácia
Todas as classes 0,706
Sem completo 0,870
Sem completo e N 0,958
Sem completo, N e K 0,950

3.2.5.2 Acurácia do Dataset com aumento de contraste

Quando avaliadas todas as classes, a acurácia foi de 77,9%, mostrando que, mesmo
com a diversidade de sintomas, o modelo manteve um desempenho estável. Notavelmente,
ao remover a classe completo, a acurácia praticamente não se alterou, sugerindo que
o aumento de contraste não teve grande efeito em diferenciar folhas saudáveis das
deficientes, possivelmente porque os sintomas de deficiência já eram mais evidentes
visualmente.

A exclusão da classe Nitrogênio (N) resultou em uma acurácia significativamente
maior de 89,6%, o que indica que a deficiência de nitrogênio ainda representa um desafio
considerável para o modelo, mesmo com o contraste aumentado. Isso reforça a hipótese de
que os sintomas dessa deficiência são mais discretos ou similares a outras, exigindo talvez
técnicas adicionais além do contraste para melhor distinção.

Por fim, com a retirada das classes completo, Nitrogênio e potássio, a acurácia
atinge 95%, demonstrando que o modelo responde muito bem ao contraste quando
lida apenas com classes cujos sintomas são mais visualmente destacados. Isso reforça
o benefício da aplicação do filtro de contraste como uma etapa de pré-processamento que
pode aumentar a clareza das características visuais relevantes para a classificação.

Em resumo, o aumento de contraste contribuiu positivamente para a acurácia geral,
especialmente ao lidar com deficiências mais visíveis, e mostrou-se uma etapa promissora
no aprimoramento da detecção como demonstrado na Tabela 8

Tabela 8 – Tabela com a Acurácia dos testes realizados com o Dataset com aumento de
contraste

Dataset Acurácia
Todas as classes 0,779
Sem completo 0,778
Sem completo e N 0,896
Sem completo, N e K 0,950
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3.2.5.3 Acurácia do Dataset com remoção de fundo

Com todas as classes presentes, a acurácia foi de 65,2%, a mais baixa entre os
cenários testados até o momento. Isso sugere que, embora a remoção do fundo possa
reduzir ruídos visuais, ela também pode eliminar informações contextuais úteis como
bordas de folhas que o modelo poderia estar utilizando para auxiliar na classificação.

Ao remover a classe completo, a acurácia subiu para 75,5%, indicando que a
distinção entre folhas saudáveis e deficientes ainda era um desafio significativo, mesmo
com o fundo removido. Essa melhora mostra que, ao focar apenas nas deficiências, o
modelo conseguiu se concentrar melhor nos padrões visuais relevantes.

Excluindo a completo e classe Nitrogênio, a acurácia aumentou para 85,1%,
reforçando que os sintomas relacionados à falta de nitrogênio continuam sendo difíceis de
identificar, mas que a remoção de fundo ajudou a melhorar a performance nesse contexto.

Por fim, ao retirar também a classe Potássio, a acurácia atinge 92,3%, mostrando
um bom desempenho geral com classes visualmente mais distintas. Esse resultado
evidencia que, apesar da acurácia inicial mais baixa, a remoção de fundo pode beneficiar
a rede quando o foco está em deficiências com padrões claros e bem definidos, ao reduzir
distrações e uniformizar a entrada visual.

A acurácia dos testes utilizando o Dataset BDICAFE com imagens selecionadas e
aplicadas sob um filtro de remoção de fundo podem ser vistos na Tabela 9.

Tabela 9 – Tabela com a Acurácia dos testes realizados com o Dataset com remoção de
fundo

Dataset Acurácia
Todas as classes 0,652
Sem completo 0,755
Sem completo e N 0,851
Sem completo, N e K 0,923

3.2.5.4 Melhores Acurácias

A Tabela 10 ilustra as melhores Acurácias dos testes realizados anteriormente.
Percebe-se que quando todas as classes foram consideradas, a aplicação do filtro de
aumento de contraste resultou em uma acurácia razoável. Isso sugere que o contraste
realçado ajuda a evidenciar padrões visuais importantes, mas ainda há limitações na
diferenciação entre classes com sintomas semelhantes, como a classe completo e deficiências
leves.

Ao remover a classe completo, mesmo sem aplicar qualquer filtro nas imagens,
observou-se um aumento expressivo na acurácia. Isso indica que a presença de folhas
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Tabela 10 – Tabela com as melhores Acurácias dos testes realizados.

Dataset Acurácia Experimento
Todas as classes 0,779 Aumento de Contraste
Sem completo 0,870 Sem filtragem
Sem completo e N 0,958 Sem filtragem
Sem completo, N e K 0,950 Sem filtragem e Aumento de Contraste

saudáveis gera ambiguidade na classificação, e que o modelo é mais eficaz ao lidar apenas
com folhas que apresentam algum sintoma de deficiência.

A exclusão adicional da classe Nitrogênio, cujos sintomas podem ser mais sutis ou
facilmente confundidos com outras deficiências, levou a um salto considerável na acurácia.
Esse valor reflete a alta capacidade do modelo de distinguir deficiências mais visíveis,
sugerindo que a falta de nitrogênio é uma das classes mais desafiadoras para a rede.

Mesmo com as classes completo, nitrogênio e potássio removidas a acurácia se
manteve a mesma dos experimento retirando somente a classe completo e nitrogênio,
o mesmo ocorreu com a aplicação do aumento de contraste. Isso demonstra que
independente da filtragem, ou seja, sem filtrou ou com aumento de contraste, não
ocorreram melhoras podendo dizer que piorou já que logicamente retirando um problema
visual deveria ocorrer aumento de acurácia, o que não foi o caso.
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4 Conclusão

Neste Trabalho, estudou-se a eficiência do uso do framework YOLOv8 para
classificação de deficiência de macronutrientes nas folhas de café. Também foram
analisadas algumas abordagens de aplicações de filtros de contraste e remoção de fundo
buscando formas de ajudar o modelo a conseguir uma melhor predição.

Os resultados demonstram que o modelo YOLOv8 consegue extrair características
suficientes em um dataset complexo com poucas imagens e classes desbalanceadas,
conseguindo atingir 95,8% de acurácia. As principais classes que influenciaram nos erros
do modelo foram a classe completa e a classe nitrogênio. A classe completa influencia
principalmente na parte referente as características comuns das folhas, muitas folhas ainda
estão nos estágios iniciais dos efeitos podendo confundir a classificação, o que leva a outro
ponto a ser analisado, o dataset poderia ter mais imagens de deficiências em estágios
finais. Assim, o modelo poderia alcançar acurácias ainda mais altas sem necessidade de
retirar classes. Em relação a classe nitrogênio, a característica principal da falta desse
macronutriente leva a planta a um estado de clorose, onde a folha fica amarelada, e que
também é uma característica comum na falta de enxofre e de potássio demonstrando que
o modelo tem mais dificuldade para separar as classes com tantos efeitos em comum.

É importante destacar que o filtro de aumento de contraste não ajudou a melhorar o
modelo, apesar que nos primeiros testes incluindo todas as classes o contraste demonstrou
realçar os efeitos nas plantas facilitando a classificação. De todo modo, quanto mais classes
conseguirem ser analisadas pelo modelo traz mais benefícios para o agricultor, levando a
crer que não é necessário a aplicação dos filtros, pois foram retiradas mais classes para
obter o mesmo resultado dos testes sem filtro, isso se deve pois o modelo pode-se ajustar
em relação a essa complexidade.

Em relação aos resultados obtidos pelo uso do filtro de remoção de fundo, a
característica principal é a extrema exatidão que o filtro é aplicado, separando muito
bem o objeto do fundo, mas infelizmente o modelo YOLOv8 não apresentou melhoras
significativa comparadas com as imagens normais, chegando a conclusão que o próprio
modelo consegue separar os objetos durante seu aprendizado. Portanto é de se sugerir o
estudo de remoção de fundo com redes neurais mais complexas que a YOLO, podendo
levar assim a resultados melhores.
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4.1 Trabalhos Futuros
Para trabalhos futuros, pretende-se investigar versões mais recentes da família

YOLO, uma vez que novos frameworks costumam trazer melhorias significativas no
processamento das imagens, resultando em classificações mais rápidas e robustas. Essas
atualizações tecnológicas também podem ajudar a minimizar problemas de overfitting,
elevando o potencial de alcançar resultados ainda mais promissores na detecção de
deficiências nutricionais.

Convém destacar ainda que, embora o filtro de remoção de fundo não tenha se
revelado vantajoso no presente trabalho — em parte devido ao aumento de tempo gerado
pela complexidade da rede —, tal técnica pode ser aproveitada em outros modelos de
Redes Neurais Convolucionais (RNCs) mais robustos, como também ser realizado uma
análise mais detalhada comparando com a retirada manual. Como o método isola apenas o
objeto de análise, ele se mostra muito efetivo para problemas em que o tempo de resposta
não seja o principal fator, podendo justificar a adoção de arquiteturas maiores e mais
exigentes em termos computacionais. Outro ponto importante a ser estudado é o teste de
novos parâmetros para o filtro contraste, pois o realce da clorose pode ser um dos fatores
auxiliadores ao modelo.

Por último, pretende-se analisar outras métricas além da acurácia, como recall,
precision e F1-score. Essas medidas fornecem uma avaliação mais detalhada do desempe-
nho em cada classe de deficiência e ajudam a identificar pontos específicos de melhoria no
processo de classificação.
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APÊNDICE A – Parâmetros da YOLOv8

Tabela com os respectivos parâmetros para o treinamento da YOLOv8 nano com
o banco de imagens BDICAFE. Para mais detalhes verifique o Capítulo 3.

Parâmetros Valores
epoch 200

patience 6
batch 2
imgsz 640

pretrained true
val true

degrees 5
translate 0.1
hsv_h 0.2
hsv_s 0.7
hsv_v 0.5
fliplr 0.2
flipud 0.2
shear 0.1
scale 0.1
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APÊNDICE B – Tabelas e Gráficos dos
Experimentos

Neste Apêndice estão as tabelas e gráficos dos experimentos 1, 2, 3 e 4.

B.1 1º Experimento
O primeiro experimento foi realizado com todas as classes.

1. Dataset com todas as classes (Gráficos de Perda e Acurácia - Figura 24 e Matriz de
Confusão - Figura 25).

Figura 24 – Resultados do treinamento utilizando imagens selecionadas do Dataset
BDICAFE.

2. Dataset com todas as classes aplicando aumento de contraste (Gráficos de Perda e
Acurácia - Figura 26 e Matriz de Confusão - Figura 27).

3. Dataset com todas as classes aplicando remoção de fundo (Gráficos de Perda e
Acurácia - Figura 28 e Matriz de Confusão - Figura 29).
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Figura 25 – Matriz de confusão dos testes realizados com as imagens selecionadas do
Dataset BDICAFE.

Figura 26 – Resultados do treinamento utilizando imagens selecionadas do Dataset
BDICAFE aplicadas sob um filtro de aumento de contraste.



APÊNDICE B. Tabelas e Gráficos dos Experimentos 59

Figura 27 – Matriz de confusão dos testes realizados com as imagens selecionadas do
Dataset BDICAFE aplicadas sob um filtro de aumento de contraste.

Figura 28 – Resultados do treinamento utilizando imagens selecionadas do Dataset
BDICAFE, aplicadas sob um filtro de remoção de fundo.
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Figura 29 – Matriz de confusão dos testes realizados com as imagens selecionadas do
Dataset BDICAFE, aplicadas sob um filtro de remoção de fundo.

B.2 2º Experimento
Para o segundo experimento foi retirada a classe completo, ou seja, que contém

todos os nutrientes.

1. Dataset sem a classe completa (Gráficos de Perda e Acurácia - Figura 30 e Matriz
de Confusão - Figura 31).

2. Dataset sem a classe completa aplicando o aumento de contraste (Gráficos de Perda
e Acurácia - Figura 32 e Matriz de Confusão - Figura 33)

3. Dataset sem a classe completa aplicando a remoção de fundo (Gráficos de Perda e
Acurácia - Figura 34 e Matriz de Confusão - Figura 35)

B.3 3º Experimento
Experimentos sem a classe completo e nitrogênio

1. Dataset sem a classe completa (Gráficos de Perda e Acurácia - Figura 36 e Matriz
de Confusão - Figura 37).
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Figura 30 – Resultados do treinamento utilizando imagens selecionadas do dataset
BDICAFE com exclusão da classe completo.

2. Dataset sem a classe completa aplicado a um filtro com aumento de contraste
(Gráficos de Perda e Acurácia - Figura 38 e Matriz de Confusão - Figura 39).

3. Dataset sem a classe completa aplicado a um filtro de remoção de fundo (Gráficos
de Perda e Acurácia - Figura 40 e Matriz de Confusão - Figura 41).

B.4 4º Experimento
Experimentos sem a classe completo, nitrogênio e potássio

1. Dataset sem a classe completa (Gráficos de Perda e Acurácia - Figura 42 e Matriz
de Confusão - Figura 43).

2. Dataset sem a classe completa aplicado a um filtro com aumento de contraste
(Gráficos de Perda e Acurácia - Figura 44 e Matriz de Confusão - Figura 45).

3. Dataset sem a classe completa aplicado a um filtro de remoção de fundo (Gráficos
de Perda e Acurácia - Figura 46 e Matriz de Confusão - Figura 47).
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Figura 31 – Matriz de confusão dos testes realizados com as imagens selecionadas do
dataset BDICAFE com exclusão da classe completo.

Figura 32 – Resultados do treinamento utilizando imagens selecionadas do dataset
BDICAFE, sem a classe saudável, aplicadas sob um filtro de aumento de
contraste.
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Figura 33 – Matriz de confusão dos testes realizados com as imagens selecionadas do
dataset BDICAFE, sem as classe saudável, aplicadas sob um filtro de aumento
de contraste.
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Figura 34 – Resultados do treinamento utilizando imagens selecionadas do dataset
BDICAFE, sem a classe saudável, aplicadas sob um filtro de remoção de
fundo.
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Figura 35 – Matriz de confusão dos testes realizados com as imagens selecionadas do
dataset BDICAFE, sem as classe saudável, aplicadas sob um filtro de remoção
de fundo.

Figura 36 – Resultados do treinamento utilizando imagens selecionadas do dataset
BDICAFE com exclusão da classe completo e nitrogênio.
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Figura 37 – Matriz de confusão dos testes realizados com as imagens selecionadas do
dataset BDICAFE com exclusão da classe completo e nitrogrênio.

Figura 38 – Resultados do treinamento utilizando imagens selecionadas do dataset
BDICAFE, sem as classes saudável e nitrogênio, aplicadas sob um filtro de
aumento de contraste.
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Figura 39 – Matriz de confusão dos testes realizados com as imagens selecionadas do
dataset BDICAFE sem as classe saudável e nitrogênio aplicadas sob um filtro
de aumento de contraste.

Figura 40 – Resultados do treinamento utilizando imagens selecionadas do dataset
BDICAFE, sem as classes saudável e nitrogênio, aplicadas sob um filtro de
remoção de fundo.
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Figura 41 – Matriz de confusão dos testes realizados com as imagens selecionadas do
dataset BDICAFE, sem as classe saudável e nitrogênio, aplicadas sob um
filtro de remoção de fundo.

Figura 42 – Resultados do treinamento utilizando imagens selecionadas do dataset
BDICAFE com exclusão da classe completo, nitrogênio e potássio.
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Figura 43 – Matriz de confusão dos testes realizados com as imagens selecionadas do
dataset BDICAFE com exclusão da classe completo, nitrogrênio e potássio.

Figura 44 – Resultados do treinamento utilizando imagens selecionadas do dataset
BDICAFE, sem as classes saudável, nitrogênio e potássio, aplicadas sob um
filtro de aumento de contraste.
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Figura 45 – Matriz de confusão dos testes realizados com as imagens selecionadas do
dataset BDICAFE sem as classe saudável, nitrogênio e potássio aplicadas
sob um filtro de aumento de contraste.
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Figura 46 – Resultados do treinamento utilizando imagens selecionadas do dataset
BDICAFE, sem a classe saudável, nitrogênio e potássio, aplicadas sob um
filtro de remoção de fundo.
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Figura 47 – Resultados do treinamento utilizando imagens selecionadas do dataset
BDICAFE, sem as classes saudável, nitrogênio e potássio, aplicadas sob um
filtro de remoção de fundo.
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