
UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Mateus Ribeiro Vaz Pereira

CowrieSniffer: Extensão do Honeypot Cowrie

para coleta e monitoramento de URLs

Uberlândia, Brasil

2025

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Mateus Ribeiro Vaz Pereira

CowrieSniffer: Extensão do Honeypot Cowrie para coleta

e monitoramento de URLs

Trabalho de conclusão de curso apresentado
à Faculdade de Computação da Universidade
Federal de Uberlândia, como parte dos requi-
sitos exigidos para a obtenção título de Ba-
charel em Sistemas de Informação.

Orientador: Prof. Dr. Rodrigo Sanches Miani

Universidade Federal de Uberlândia – UFU

Faculdade de Computação

Bacharelado em Sistemas de Informação

Uberlândia, Brasil

2025

Agradecimentos

Agradeço à minha família, Jefferson, Silvia, Felipe e Marcela pelo apoio incondicio-

nal e pela oportunidade de seguir em frente mesmo nos momentos mais desafiadores. Sem

eles, esta conquista não seria possível. São exemplos de dedicação, incentivo e suporte.

Ao meu orientador, Rodrigo Sanches Miani, pela orientação valiosa e pela confiança

depositada em mim desde o início da graduação.

Ao Laboratório de Segurança Cibernética (LSG) da FACOM/UFU, conduzido

pelos professores Rodrigo Sanches Miani e Ivan da Silva Sendin, pelo ambiente de apren-

dizado e pesquisa que contribuiu imensamente para minha formação.

Aos amigos que fiz na faculdade e que levo para a vida, por compartilharem essa

jornada comigo.

E à minha companheira, Julia, que esteve ao meu lado em todas as etapas dessa

conquista, com apoio e motivação ao longo de toda a caminhada acadêmica.

Resumo

Este trabalho apresenta o desenvolvimento do CowrieSniffer, uma ferramenta para aná-

lise e monitoramento de endereços capturados no Honeypot Cowrie. O sistema tem como

objetivo verificar a disponibilidade das URLs utilizadas por atacantes, o que contribui

para a análise de ameaças e o aprimoramento da segurança cibernética. A ferramenta de-

senvolvida atua na coleta das URLs armazenadas nas tabelas downloads e input do banco

de dados do Cowrie, transferindo-as para um banco de monitoramento específico. Em

seguida, a ferramenta realiza a verificação periódica da disponibilidade desses endereços e

atualiza a tabela urls do banco de monitoramento de acordo com as mudanças na dispo-

nibilidade das URLs identificadas. A implementação foi realizada com o uso de Python,

devido à sua versatilidade e facilidade na manipulação de dados, além da utilização de

Docker para garantir a portabilidade do ambiente e MySQL para o armazenamento das

informações coletadas. Os testes realizados demonstraram que a ferramenta é capaz de

processar as informações de maneira eficiente, o que possibilita a análise da persistência

e do tempo de vida de URLs utilizadas por atacantes. Os resultados obtidos durante os

experimentos propostos validaram a eficácia do sistema.

Palavras-chave: Honeypots, Cowrie, Segurança da Informação, Análise de disponibili-

dade em URLs, endereços maliciosos.

Lista de ilustrações

Figura 1 – Diagrama das principais tabelas do banco de dados do Cowrie. Fonte:

Elaborado pelo autor (2025) . 14

Figura 2 – Diagrama de coleta Cowrie. Fonte: Elaborado pelo autor (2025) 19

Figura 3 – Diagrama geral do CowrieSniffer. Fonte: Elaborado pelo autor (2025) . 19

Figura 4 – Diagrama de pacotes da classe Main. Fonte: Elaborado pelo autor (2025) 23

Figura 5 – Diagrama da visão geral do componente URLMonitor. Fonte: Elabo-

rado pelo autor (2025) . 30

Figura 6 – Caso 01: Log do funcionamento da ferramenta. Fonte: Elaborado pelo

autor (2025) . 37

Figura 7 – Caso 01: Tabelas input e downloads do honeypot Cowrie sem registros

e tabela urls do banco de monitoramento desprovida de dados. Fonte:

Elaborado pelo autor (2025) . 37

Figura 8 – Caso 02: Tabela downloads do Cowrie com entradas. Fonte: Elaborado

pelo autor (2025) . 38

Figura 9 – Caso 02: Tabela input do Cowrie com entradas. Fonte: Elaborado pelo

autor (2025) . 38

Figura 10 – Caso 02: Tabela urls do monitoramento inicialmente vazia. Fonte: Ela-

borado pelo autor (2025) . 39

Figura 11 – Caso 02: Log do funcionamento da ferramenta. Fonte: Elaborado pelo

autor (2025) . 39

Figura 12 – Caso 02: Tabela urls do monitoramento com entradas. Fonte: Elaborado

pelo autor (2025) . 40

Figura 13 – Caso 03: Tabela downloads do Cowrie com entradas. Fonte: Elaborado

pelo autor (2025) . 40

Figura 14 – Caso 03: Tabela input do Cowrie com entradas. Fonte: Elaborado pelo

autor (2025) . 41

Figura 15 – Caso 03: Tabela urls do monitoramento com entradas. Fonte: Elaborado

pelo autor (2025) . 41

Figura 16 – Caso 03: Log do funcionamento da ferramenta. Fonte: Elaborado pelo

autor (2025) . 41

Figura 17 – Caso 04: Log 1 do funcionamento da ferramenta. Fonte: Elaborado pelo

autor (2025) . 42

Figura 18 – Caso 04: Registro 1 na tabela urls. Fonte: Elaborado pelo autor (2025) 43

Figura 19 – Caso 04: Log 2 do funcionamento da ferramenta. Fonte: Elaborado pelo

autor (2025) . 43

Figura 20 – Caso 04: Registro 2 na tabela urls. Fonte: Elaborado pelo autor (2025) 44

Lista de abreviaturas e siglas

APT Advanced Persistent Threats

C&C Comando e Controle

DNS Domain Name System

DPI Deep Packet Inspection

ELK Elastic Stack

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

IP Internet Protocol

IoT Internet of things

MySQL Banco de dados relacional de código aberto

NIST National Institute of Standards and Technology

SQL Structured Query Language

SSH Secure Shell

TCP Transmission Control Protocol

TTPs Táticas, técnicas e procedimentos

URL Uniform Resource Locator

Sumário

1 INTRODUÇÃO . 8

1.1 Objetivos . 10

1.1.1 Objetivo Geral . 10

1.1.2 Objetivos Específicos . 10

1.2 Organização da Monografia . 10

2 REVISÃO BIBLIOGRÁFICA . 12

2.1 Fundamentação Teórica . 12

2.1.1 Cibersegurança . 12

2.1.2 Honeypots . 12

2.1.3 Python . 14

2.1.4 MySQL . 14

2.1.5 Docker . 15

2.2 Trabalhos Correlatos . 15

3 DESENVOLVIMENTO . 18

3.1 Visão Geral . 18

3.2 Configuração do banco de dados de monitoramento 19

3.3 Desenvolvimento do arquivo de configuração 21

3.4 Desenvolvimento do componente Main 22

3.5 Desenvolvimento do componente de configuração 24

3.6 Desenvolvimento do componente de manipulação do banco de da-

dos do Cowrie . 25

3.7 Desenvolvimento do componente de manipulação do banco de da-

dos de Monitoramento . 26

3.8 Desenvolvimento do componente URLMonitor 29

4 RESULTADOS . 36

4.1 Caso 1: Inicialização da ferramenta com bancos de dados vazios . . 36

4.2 Caso 2: Inicialização da ferramenta com o banco de dados do Cowrie

populado e o banco de monitoramento vazio 38

4.3 Caso 3: Inicialização da ferramenta com ambos os bancos de dados

populados . 40

4.4 Caso 4: Entradas e análises das URLs 42

4.4.1 URL indisponível . 42

4.4.2 URL sem a utilização do protocolo HTTPS 43

5 CONCLUSÃO . 45

REFERÊNCIAS . 46

ANEXOS 48

ANEXO A – REPOSITÓRIO COWRIESNIFFER 49

8

1 Introdução

A indústria de crimes cibernéticos expande-se de maneira acelerada de acordo

com o estudo de Viraja e Purandare (2021). O crescimento desse tipo de atividade ilícita

observa-se ano após ano, impulsionado pelo desenvolvimento de novas técnicas e tecnolo-

gias cada vez mais sofisticadas. Em resposta, empresas e governos enfrentam a necessidade

contínua de aprimorar suas defesas para superar os desafios impostos por essas ameaças

emergentes. O avanço do cibercrime relaciona-se intrinsecamente a fatores econômicos,

pessoais e ideológicos, o que contribui para a ocorrência de prejuízos financeiros significa-

tivos e danos irreparáveis à reputação de organizações e indivíduos.

Para mitigar essas ameaças e prevenir possíveis ataques, é essencial que as orga-

nizações compreendam e analisem os dados coletados a partir de eventos em suas redes,

como endereços Internet Protocol (IP), domínios, ferramentas e técnicas utilizadas, e,

em casos de ataques direcionados, credenciais como usuário e senha (AL-MOHANNADI;

AWAN; HAMAR, 2020). No entanto, a coleta desses dados em ambientes de produção

apresenta riscos consideráveis, o que exige a utilização de ferramentas específicas para

esse fim. Nesse contexto, os honeypots surgem como uma solução eficaz: sistemas que si-

mulam ambientes de produção com o objetivo de atrair, detectar e monitorar atividades

maliciosas. Conforme descrito por Provos e Holz (2007), os honeypots podem ser classifi-

cados em dois tipos: de baixa interatividade, onde o sistema simulado oferece interações

limitadas ao atacante; e de alta interatividade, que disponibiliza um ambiente realista, o

qual permite que o invasor explore livremente o sistema operacional e seus serviços.

Para Viraja e Purandare (2021), o cibercrime desenvolve-se de maneira contínua

e acelerada. Nesse cenário, empresas e organizações enfrentam vulnerabilidades emer-

gentes e técnicas inovadoras, exploradas por indivíduos e grupos organizados, como as

APTs (Advanced Persistent Threats). Esses grupos caracterizam-se por elevados níveis de

especialização e pela disponibilidade de recursos significativos, o que lhes permite explo-

rar diversos vetores de ataque cibernético para alcançar seus objetivos. Um grupo APT

define-se como uma ameaça sofisticada e persistente, composta por agentes geralmente

patrocinados por Estados ou motivados por interesses financeiros ou ideológicos, capazes

de conduzir campanhas prolongadas e altamente direcionadas contra alvos estratégicos,

com vistas à infiltração, manutenção do acesso e exfiltração de dados sensíveis de maneira

furtiva. Entre seus principais objetivos, destaca-se o estabelecimento inicial e a expansão

contínua de pontos de apoio dentro da infraestrutura das entidades-alvo, o que consiste

em acessos privilegiados, dispositivos comprometidos ou persistência em sistemas críticos.

Esses pontos permitem que o grupo mantenha o controle sobre a rede invadida, facilite

movimentos laterais, colete informações sensíveis de forma contínua e, eventualmente,

Capítulo 1. Introdução 9

conduza novas fases do ataque com maior eficácia e discrição. Em muitos casos, grupos

APT mantêm a perseguição a seus alvos durante longos períodos e propagam-se pela rede

interna por meio do emprego de malwares. Para a obtenção de informações relacionadas

a ataques específicos, pode-se empregar redes de honeypots que simulam ambientes de

produção, desde que apresentem alta similaridade com o ambiente real da organização, o

que potencializa a eficácia na coleta de dados. Dessa forma, os honeypots possibilitam a

identificação de informações valiosas sobre novos malwares e sobre tentativas inéditas de

ataques direcionados a instituições.

O estudo de Mendes (2023) destaca a importância do uso de honeypots no contexto

da Internet of Things (IoT). A adoção dessa tecnologia é particularmente relevante, uma

vez que dispositivos IoT conectam-se constantemente à Internet, muitas vezes transmitem

dados sensíveis ou apresentam configurações inadequadas de segurança. A exploração de

um honeypot em ambientes IoT, conforme abordado no referido trabalho, possibilita a co-

leta de dados valiosos, como endpoints, a quantidade de requisições provenientes de cada

endereço IP e as tentativas de download de malwares. Quando aplicado ao ambiente cor-

porativo, um honeypot pode gerar informações significativas, semelhantes às apresentadas

no estudo, o que auxilia na identificação precoce de ataques. De maneira complementar,

Rodrigues (2017) propõe a utilização de Deep Packet Inspection (DPI) em conjunto com

honeypots para capturar ataques direcionados às camadas de Rede, Transporte e Apli-

cação, o que analisa os logs obtidos e fornece uma série de informações críticas para a

segurança das redes.

Nesse contexto, destaca-se a utilização do Cowrie1, uma ferramenta amplamente

empregada na construção de honeypots, especialmente para a simulação de serviços Secure

Shell (SSH) e Telnet. O Cowrie é um honeypot que permite capturar as credenciais utili-

zadas por atacantes, registra comandos executados e coleta arquivos transferidos durante

tentativas de intrusão, o que oferece dados valiosos para a análise de comportamento

malicioso. Apesar de sua relevância e robustez na coleta de informações, a ferramenta

apresenta limitações no que se refere à análise e visualização dos dados gerados, o que

dificulta a extração de informações relevantes de forma sistemática. Nesse cenário, o pre-

sente trabalho propõe o desenvolvimento de uma solução que aprimora a interpretação

e a visualização das URLs coletadas pelo Cowrie, o que torna-as mais acessíveis e úteis

para a identificação de padrões de ataque e para a tomada de decisões em segurança da

informação.
1 Disponível em https://github.com/cowrie/cowrie

Capítulo 1. Introdução 10

1.1 Objetivos

1.1.1 Objetivo Geral

O objetivo geral deste trabalho é desenvolver uma ferramenta para a análise de

informações capturadas por uma rede de honeypots. A partir da coleta de dados expostos

por atacantes, como URLs, propõe-se a implementação de mecanismos capazes de verificar

a disponibilidade dessas informações.

Para alcançar os objetivos deste trabalho, serão utilizadas as seguintes tecnologias:

Python, Docker, o honeypot Cowrie, o banco de dados MySQL e conhecimentos de redes.

A escolha da linguagem Python justifica-se por sua versatilidade e pela facilidade na

criação de scripts. O honeypot Cowrie foi selecionado em razão de sua simplicidade de

configuração, das funcionalidades de integração e dos recursos de registro de logs. Já o

banco de dados MySQL foi escolhido devido à sua eficiência nas operações e à facilidade

de utilização.

1.1.2 Objetivos Específicos

Os objetivos específicos incluem:

• Criar uma ferramenta em Python para a verificação da disponibilidade das informa-

ções obtidas através dos honeypots.

• Armazenar a URL em um banco de dados, juntamente com as datas de primeiro e

último registro de acesso.

• Conduzir estudos de caso para validar o funcionamento do CowrieSniffer.

1.2 Organização da Monografia

O presente trabalho está estruturado da seguinte maneira: O Capítulo 2 apresenta

uma revisão bibliográfica que fundamenta a teoria utilizada para o desenvolvimento desta

pesquisa. Nele, é realizada uma investigação sobre cibersegurança, conceitos relativos a

honeypots, a linguagem de programação Python, conceitos sobre MySQL, Docker e os

trabalhos correlatos. O Capítulo 3 caracteriza as etapas do desenvolvimento de forma

modularizada, referenciando a visão geral do CowrieSniffer, a configuração inicial do

banco de dados de monitoramento, o desenvolvimento do arquivo de configuração, o de-

senvolvimento do componente Main, do componente de configuração, do componente de

manipulação do banco de dados do honeypot Cowrie, do componente de manipulação do

banco de dados de monitoramento e do componente URLMonitor. O Capítulo 4 discorre

sobre os resultados da pesquisa, descrevendo o caso 1, no qual ambos os bancos de dados

Capítulo 1. Introdução 11

estão vazios; o caso 2, que corresponde à inicialização da ferramenta com o banco de dados

Cowrie populado e o de monitoramento vazio; o caso 3, em que ambos os bancos de dados

estão populados; e o caso 4, cujo objetivo é analisar o comportamento da ferramenta em

relação à adição de novas URLs. Por fim, o Capítulo 5 apresenta as considerações finais

elaboradas a partir dos resultados obtidos, além das propostas para trabalhos futuros.

12

2 Revisão Bibliográfica

Neste capítulo, serão apresentados os conceitos teóricos necessários para a compre-

ensão dos principais conceitos abordados neste trabalho. Além disso, será realizada uma

breve análise de trabalhos correlatos.

2.1 Fundamentação Teórica

2.1.1 Cibersegurança

De acordo com o NIST (National Institute of Standards and Technology), a ciber-

segurança consiste no conjunto de práticas, tecnologias e processos destinados à proteção

de computadores, sistemas de informação e serviços de comunicação contra ataques ciber-

néticos (NIST, 2019). Essa área abrange diversos aspectos de segurança, com o objetivo de

garantir a confidencialidade, a integridade e a disponibilidade dos dados, além de prevenir

o vazamento de informações, o acesso não autorizado e a interrupção de serviços.

Além disso, Stallings (2014) apresenta três conceitos fundamentais que orientam a

prática da cibersegurança. Esses princípios formam uma tríade, composta por confidenci-

alidade, integridade e disponibilidade. Cada um desses elementos representa um objetivo

essencial para a proteção de dados, sistemas de informação e ambientes computacionais.

De acordo com Stallings (2014), esses conceitos são definidos como:

Confidencialidade: assegura que todo acesso deve ser restrito para que informações

confidenciais não estejam disponíveis para indivíduos não autorizados;

Integridade: assegura que uma informação só poderá ser modificada ou acessada por

aquele que detém a autorização específica;

Disponibilidade: garante que um sistema não fique disponível para que ocorra o acesso

e uso rápido da informação.

Esses conceitos estabelecem os objetivos fundamentais da segurança em aplicações

e sistemas. Dessa forma, os três pilares constituem a base essencial para a proteção eficaz

dos ativos informacionais de qualquer organização.

2.1.2 Honeypots

Um honeypot é uma tecnologia associada a um sistema computacional que simula

um ativo cibernético. Esse sistema possui vulnerabilidades de segurança conhecidas ou

Capítulo 2. Revisão Bibliográfica 13

configurações padrão. Seu objetivo é auxiliar na detecção de novos ataques e rastrear

a atividade de um usuário não autorizado. O valor de um honeypot está relacionado à

capacidade de simular cenários reais para capturar novas evidências e fornecer alertas e

previsões (SPITZNER, 2003). Honeypots reduzem os falsos positivos em segurança, assim,

isso permite que cada ambiente seja customizado para identificar os riscos de ataques

dos grupos APTs (do inglês Advanced Persistent Threats). Além disso, de acordo com

Javadpour et al. (2024), o honeypot é uma tecnologia flexível que pode ser adaptada

para diferentes segmentos da computação. Destacam-se duas classificações principais de

honeypots:

Honeypot de baixa interatividade: esse tipo de honeypot é associado a sistemas al-

tamente controlados que demandam poucos recursos. A interação com o usuário é

limitada a comandos e controles básicos, simulando apenas serviços e protocolos.

Honeypot de alta interatividade: essa modalidade de honeypot utiliza sistemas reais,

geralmente estruturados para um ativo cibernético específico. Ele demanda maior

capacidade computacional, permitindo que o atacante tenha controle total sobre o

sistema, uma vez que simula um sistema operacional completo. Para implantar essa

modalidade, é essencial adotar técnicas rigorosas de isolamento para proteger a rede

principal.

No âmbito das tecnologias de honeypots, o honeypot Cowrie destaca-se como uma

ferramenta de código aberto relevante, desenvolvida em Python, que emula serviços SSH

e Telnet para atrair e registrar tentativas de invasão (OOSTERHOF, 2024). O estudo

de Cabral et al. (2021) evidencia sua eficácia na coleta de dados sobre vetores de ataque

contemporâneos, permitindo aos pesquisadores analisar técnicas maliciosas sem compro-

meter sistemas reais. No que concerne à sua integração com o sistema de gerenciamento

de banco de dados MySQL, o Cowrie utiliza um módulo específico que, quando confi-

gurado no arquivo de configuração principal, estabelece conexão com o banco de dados

e automaticamente cria tabelas estruturadas para armazenamento sistemático dos dados

capturados. Entre as principais tabelas, representadas na Figura 1, geradas pelo sistema,

destacam-se: sessions (registra informações básicas de cada sessão estabelecida), auth

(armazena tentativas de autenticação), input (registra comandos inseridos pelos atacan-

tes), downloads (contém informações sobre arquivos baixados durante as sessões) e ttylog

(armazena registros completos da interação do terminal). Esta estruturação em banco de

dados relacional facilita significativamente análises quantitativas e qualitativas posteriores

dos padrões de ataque observados.

Capítulo 2. Revisão Bibliográfica 14

Figura 1 – Diagrama das principais tabelas do banco de dados do Cowrie. Fonte: Elabo-
rado pelo autor (2025)

2.1.3 Python

Python é uma linguagem de programação amplamente reconhecida por sua faci-

lidade de escrita e leitura de códigos. Essa característica possibilita que desenvolvedores

atuem de maneira mais eficaz na criação e integração de sistemas. Sua sintaxe simples

oferece uma ampla variedade de tipos e estruturas de dados, favorecendo a construção de

soluções eficientes. Além disso, a linguagem destaca-se pelo extenso conjunto de biblio-

tecas desenvolvidas por colaboradores ao longo dos anos, o que amplia as possibilidades

de criação de scripts rápidos e flexíveis (MALLOY; POWER, 2017). Portanto, devido a

essas vantagens, a linguagem de programação escolhida para este trabalho será Python.

2.1.4 MySQL

O MySQL é um sistema de gerenciamento de banco de dados relacional de código

aberto. Segundo Suehring (2002), desempenha um papel fundamental no armazenamento,

gerenciamento e recuperação de dados, sendo amplamente utilizado em diversos tipos de

aplicações.

Baseado em um modelo relacional, o MySQL organiza os dados em tabelas separa-

das com relacionamentos entre elas, o que proporciona maior eficiência no processamento

das informações. A linguagem utilizada é o Structured Query Language (SQL), padrão

amplamente adotado para bancos de dados relacionais. Seu principal diferencial reside na

facilidade e flexibilidade de implementação. O MySQL opera eficientemente no modelo

cliente-servidor e destaca-se pela alta velocidade, confiabilidade e facilidade de uso.

Capítulo 2. Revisão Bibliográfica 15

2.1.5 Docker

Segundo Bernstein (2014), o Docker é uma plataforma de código aberto que fornece

um método para automatizar a criação e execução de aplicações em containers portáteis.

Essencialmente, o Docker isola completamente o ambiente da aplicação do sistema ope-

racional hospedeiro, o que garante maior controle sobre a execução e a portabilidade do

software.

Os containers do Docker são instâncias criadas a partir de imagens, que podem

conter desde sistemas operacionais completos até partes específicas de uma aplicação já

configuradas para execução. Essa abordagem possibilita a replicação precisa de ambientes

computacionais. A construção dessas imagens é realizada por meio de arquivos chamados

Dockerfiles, que consistem em scripts que possuem conjuntos de instruções e argumentos.

Esses arquivos automatizam a criação de novas imagens a partir de uma base predefi-

nida, permitindo a configuração e a customização do ambiente conforme necessário. Dessa

forma, os Dockerfiles desempenham um papel fundamental na organização dos artefatos

de implantação e na simplificação do processo de distribuição das aplicações.

De acordo com Ibrahim, Sayagh e Hassan (2021), grande parte das aplicações

modernas compõe-se de múltiplos componentes, o que exige a coordenação de diversos

containers para seu funcionamento. Por exemplo, uma aplicação pode necessitar simulta-

neamente de um servidor web e de um banco de dados. O Docker Compose surge como

uma extensão natural do Docker, o qual permite a definição e a orquestração de aplica-

ções multicontainer. Essa configuração descreve-se em um arquivo de composição (Docker

Compose file), no qual especificam-se as imagens utilizadas, suas configurações e as intera-

ções entre os componentes. Além disso, o Docker Compose possibilita a definição de ações

a serem executadas em caso de falha de um dos componentes, o que torna a administração

da infraestrutura mais eficiente.

2.2 Trabalhos Correlatos

O trabalho de Mehta et al. (2021) utilizou o honeypot Cowrie, cujo principal ob-

jetivo é atrair ataques direcionados aos serviços SSH e FTP, para coletar e analisar

informações sobre invasores. O honeypot adota técnicas que iludem os atacantes ao ofere-

cer respostas aparentemente reais permitindo a interação do usuário. Além de apresentar

uma análise abrangente dos dados coletados, o estudo propôs uma abordagem probabilís-

tica capaz de calcular a probabilidade de padrões de comportamento durante a navegação

de diretórios pelos invasores. Essa abordagem, integrada às funcionalidades do honeypot,

contribui para uma melhor compreensão da dinâmica dos ataques e auxilia na previsão

do próximo movimento do atacante. O trabalho também utilizou o framework ELK para

visualizar os dados extraídos dos logs. Para a análise probabilística, os autores compilaram

Capítulo 2. Revisão Bibliográfica 16

uma lista contendo todas as strings de comandos executados pelos usuários e estabele-

ceram dois dicionários. O primeiro registra a frequência de ocorrência de cada nome de

diretório, enquanto o segundo, um dicionário bidimensional que armazena as transições

entre os diretórios e suas respectivas frequências. A partir desses dados, a probabilidade de

padrões de transição foi calculada por meio do método frequentista, dividindo o número

de acessos a um diretório específico pelo total de ocorrências. Os resultados revelaram

que os países com maior número de ataques originados são China, Estados Unidos, Rús-

sia, Taiwan e Japão. Além disso, o usuário admin foi utilizado em 67% das tentativas,

sendo que 54% delas não envolveram o uso de senha. Na análise probabilística, destacou-

se que o diretório /bin/busybox apresentou uma probabilidade de 10% de ser acessado,

configurando-se como o destino mais provável dentro dos padrões analisados.

Outro trabalho relacionado é o de Năstase et al. (2024), o qual tem como obje-

tivo aprimorar o honeypot Cowrie. O estudo apresenta contribuições significativas tanto

na compreensão da arquitetura do Cowrie quanto na implementação de melhorias no

código-fonte. Ele descreve dois modos de operação do Cowrie: o Emulated Shell Mode, o

qual permite ao atacante executar comandos básicos com interações limitadas, e o Proxy

Mode, o qual oferece interação completa com a máquina, dessa forma permite ao ata-

cante assumir o controle total do sistema. Além disso, o trabalho propõe uma camada

de frontend, a qual atua como um proxy para interceptar mensagens do protocolo SSH,

enquanto a camada de backend recebe as conexões e opera como servidor. Entre os pro-

blemas identificados, destaca-se o uso excessivo de recursos computacionais, causado pela

inicialização simultânea de todas as máquinas virtuais pelo backend, o que sobrecarrega

os núcleos do processador. Para mitigar esse problema, implementou-se um intervalo de

30 segundos na função de criação de máquinas virtuais. Outro problema enfrentado foi a

limitação de uma conexão por máquina virtual. Quando todas as máquinas estavam em

uso, o Cowrie interpretava incorretamente o estado do sistema e tentava desligar todas

as máquinas virtuais. A solução consistiu em remover a verificação de uma variável que

verificava a disponibilidade das máquinas durante a sequência de inicialização. Por fim, o

trabalho também aprimorou a análise dos artefatos gerados, e assim introduziu um evento

de log que associa o snapshot a uma sessão, o qual facilita o processo de correlação que

anteriormente não era suportado.

O experimento conduzido por Cabral et al. (2021) explorou o uso de três ho-

neypots Cowrie configurados de maneiras distintas. Honeypots com configurações padrão

mostram-se mais suscetíveis à detecção por atacantes, os quais frequentemente utilizam

scripts personalizados e ferramentas amplamente conhecidas, como Nmap e Shodan, para

identificá-los, especialmente devido ao fato de o Cowrie ser um projeto de código aberto.

A pesquisa buscou, portanto, desenvolver uma estrutura a qual permitisse a personali-

zação das configurações do Cowrie, com o objetivo de aumentar seu grau de realismo e

eficácia. No experimento, o Cowrie A configurou-se de forma padrão, o qual utilizou as

Capítulo 2. Revisão Bibliográfica 17

portas SSH 22 e 2222, bem como versões e algoritmos conhecidos. Em contrapartida, os

Cowries B e C configuraram-se de maneira personalizada, o que dificultou a detecção por

meio da inclusão de outros protocolos, como HTTP e DNS, e o uso de algoritmos alter-

nativos para SSH. Após 28 dias de coleta de dados, o Cowrie A registrou 49.340 conexões

SSH, enquanto os Cowries B e C apresentaram um incremento de 356% e 400%, respec-

tivamente, no número de conexões em comparação com o Cowrie A. Por fim, a pesquisa

desenvolveu um script em Python para avaliar se um host específico era um honeypot

Cowrie. Durante os testes, o script detectou o Cowrie A como honeypot com 100% de

precisão, mas não conseguiu identificar os Cowries B e C como honeypots, o que reforçou

a eficácia das configurações personalizadas na camuflagem desses sistemas.

18

3 Desenvolvimento

Neste Capítulo, apresenta-se o processo de desenvolvimento do CowrieSniffer1.

Na Seção 3.1, é fornecida uma visão abrangente da aplicação. Em seguida, a Seção 3.2

detalha os aspectos relacionados à configuração do banco de dados de monitoramento,

enquanto a Seção 3.3 descreve o arquivo de configuração utilizado para o armazenamento

de parâmetros essenciais. A Seção 3.4 trata do desenvolvimento do componente principal,

responsável pela orquestração das funcionalidades, e a Seção 3.5 aborda a construção do

módulo de configuração.

Além disso, as Seções 3.6 e 3.7 explicam os componentes responsáveis pela mani-

pulação dos bancos de dados do Cowrie e de monitoramento, respectivamente. Por fim,

a Seção 3.8 apresenta o desenvolvimento do componente URLMonitor, encarregado da

execução periódica dos demais componentes.

3.1 Visão Geral

A ferramenta é constituída por componentes que interagem entre si com o pro-

pósito de monitorar a disponibilidade da URL associada ao atacante, partindo do pres-

suposto de que este já se encontra conectado ao honeypot. A motivação para essa mo-

nitoração contínua decorre da volatilidade característica das infraestruturas cibernéticas

maliciosas, as quais frequentemente são desativadas ou modificadas em curtos períodos

após sua utilização inicial. A coleta de URLs, no ambiente controlado do honeypot, possibi-

lita a identificação e análise de repositórios de malwares, servidores de comando e controle

(C&C) ou plataformas de exfiltração de dados antes que sejam desativadas, constituindo,

assim, um recurso valioso para pesquisadores de segurança e analistas forenses. Além

disso, esse monitoramento ininterrupto permite o estabelecimento de correlações tempo-

rais entre diferentes campanhas de ataque, contribuindo para a compreensão da evolução

tática dos agentes maliciosos e para o desenvolvimento de contramedidas mais eficazes no

âmbito da segurança cibernética.

A Figura 2 ilustra o funcionamento da coleta de informações realizada pelo ho-

neypot Cowrie. Inicialmente, quando o atacante realiza o download de um arquivo por

meio de um comando, como wget ou curl, a URL correspondente é armazenada nas ta-

belas downloads e input. A tabela downloads armazena informações como identificadores,

identificadores de sessões, timestamps, URL do servidor de origem, caminho do arquivo e

hash. Por sua vez, a tabela input registra dados como identificadores, identificadores de
1 Disponível em https://github.com/r1beirin/CowrieSniffer

Capítulo 3. Desenvolvimento 19

sessões, timestamps, realm, success e o campo input, que contém os keystrokes do usuário.

Figura 2 – Diagrama de coleta Cowrie. Fonte: Elaborado pelo autor (2025)

O diagrama apresentado na Figura 3 ilustra a visão geral da ferramenta desenvol-

vida, destacando seu fluxo de funcionamento e as principais decisões implementadas para

o monitoramento das URLs capturadas pelo Cowrie. A ferramenta inicia sua execução e

coleta as URLs armazenadas nas tabelas downloads e input do banco de dados do Cowrie.

Em seguida, o componente URLMonitor processa essas URLs e insere as novas entradas

no banco de dados de monitoramento. Após a inserção, o mesmo componente verifica a

disponibilidade das URLs e atualiza as informações no banco de dados correspondente.

Por fim, o ciclo reinicia-se, o que assegura a continuidade do monitoramento.

Figura 3 – Diagrama geral do CowrieSniffer. Fonte: Elaborado pelo autor (2025)

3.2 Configuração do banco de dados de monitoramento

O funcionamento do banco de dados de monitoramento é baseado na tecnologia

Docker. Para sua criação, é necessária a definição de dois arquivos essenciais:

• schema.sql: Responsável pela estrutura do banco de dados, este arquivo contém

os comandos SQL necessários para definir as tabelas e seus respectivos atributos.

Capítulo 3. Desenvolvimento 20

Conforme indicado na Listagem 3.1, o arquivo schema.sql define a estrutura do

banco de monitoramento. No contexto do monitoramento de URLs, ele cria a tabela

urls, que armazena informações essenciais sobre os acessos registrados.

1 CREATE TABLE urls (

2 id INT AUTO_INCREMENT PRIMARY KEY ,

3 url TEXT NOT NULL ,

4 first_view DATETIME NULL ,

5 last_view DATETIME NULL

6);

Listagem 3.1 – Estrutura para a tabela urls no banco de dados de monitoramento.

• docker-compose.yaml: Responsável por especificar a configuração e orquestração

dos serviços no ambiente Docker. Como ilustrado na Listagem 3.2, o arquivo docker-

compose.yaml orquestra a configuração e o funcionamento do banco de monitora-

mento. Neste caso, ele define um serviço chamado db, que utiliza a imagem oficial

do MySQL e configura um contêiner chamado mysql_monitor. O docker-compose

também define:

– Reinicialização automática do banco de dados com a opção restart: always.

– Configuração de credenciais (MYSQL_ROOT_PASSWORD,

MYSQL_DATABASE, MYSQL_USER e MYSQL_PASSWORD) que devem

ser trocadas.

– Mapeamento de portas, permitindo o acesso ao banco de dados via porta

3306.

– Volumes persistentes, garantindo que os dados armazenados no MySQL não

sejam perdidos entre reinicializações.

– Montagem do arquivo schema.sql, que possibilita a criação da estrutura

do banco de dados durante a inicialização do contêiner.

– Definição de redes Docker , assegurando a comunicação entre containers

dentro de um ambiente isolado.

1 services :

2 db:

3 image: mysql: latest

4 container_name : mysql_monitor

5 restart : always

6 environment :

7 MYSQL_ROOT_PASSWORD : { CHANGE_HERE }

8 MYSQL_DATABASE : { CHANGE_HERE }

9 MYSQL_USER : { CHANGE_HERE }

10 MYSQL_PASSWORD : { CHANGE_HERE }

Capítulo 3. Desenvolvimento 21

11 ports:

12 - "3306:3306"

13 volumes :

14 - db_data :/ var/lib/mysql

15 - ./ schema .sql :/ docker -entrypoint - initdb .d/ schema .sql

16 networks :

17 - my_network

18

19 volumes :

20 db_data :

21 driver : local

22

23 networks :

24 my_network :

25 driver : bridge

Listagem 3.2 – Configuração do container no docker-compose.yaml para inicialização do

banco de dados MySQL de monitoramento.

Essa abordagem baseada em container facilita a implantação e manutenção do banco de

dados. Dessa forma, garante-se a existência de um ambiente controlado para o monitora-

mento das URLs coletadas pelo Cowrie.

3.3 Desenvolvimento do arquivo de configuração

O arquivo de configuração é responsável por guardar as informações do banco de

dados do Cowrie e do monitoramento. Este arquivo contém as configurações necessárias

para a conexão com os bancos de dados utilizados no monitoramento. Ele é dividido em

duas seções:

• CowrieDB: Gerencia as informações de acesso ao banco de dados do Cowrie.

Esse banco é utilizado para armazenar as informações, como downloads, inputs,

keystrokes, do honeypot Cowrie.

• MonitoringDB: Guarda as informações de acesso ao banco de dados. Esse banco

é utilizado para armazenar as informações de monitoramento.

Como ilustrado na Listagem 3.3, o arquivo config.ini contém as informações para

ambas as bases de dados. Dessa forma, garante a conexão adequada entre o CowrieSniffer

e os bancos de dados.

1 [CowrieDB]

2 host = YOUR_HOST

3 user = YOUR_USER

Capítulo 3. Desenvolvimento 22

4 password = YOUR_PASSWORD

5 database = YOUR_DATABASE

6

7 [MonitoringDB]

8 host = YOUR_HOST

9 user = YOUR_USER

10 password = YOUR_PASSWORD

11 database = YOUR_DATABASE

Listagem 3.3 – Arquivo de configuração config.ini para as conexões com os bancos de

dados.

3.4 Desenvolvimento do componente Main

O arquivo principal do sistema é responsável por inicializar as configurações e ins-

tâncias das classes necessárias para o funcionamento do sistema de monitoramento. O

diagrama de pacotes ilustrado na Figura 4 evidencia a organização estrutural hierárquica

do sistema, destacando a modularização e as relações de dependência entre os diversos

pacotes da ferramenta. A arquitetura apresenta uma configuração em camadas onde o

módulo principal main.py desempenha função orquestradora, realizando a importação e

integração dos pacotes especializados: Config para o gerenciamento de configurações; data-

base, que encapsula os manipuladores de persistência específicos, como CowrieDBHandler

e MonitoringDBHandler ; e monitoring, contendo o componente URLMonitor, responsável

pelo ciclo de execução.

Capítulo 3. Desenvolvimento 23

Figura 4 – Diagrama de pacotes da classe Main. Fonte: Elaborado pelo autor (2025)

A Listagem 3.4 apresenta o componente principal, que tem como objetivo inicia-

lizar e orquestrar os processos essenciais para o funcionamento do sistema. Inicialmente,

a classe Config é instanciada, seu objeto acessa configurações do sistema, especificamente

as credenciais e detalhes de conexão dos dois bancos de dados. Com essas informações, o

fluxo de execução instancia objetos das classes CowrieDBHandler e MonitoringDBHan-

dler, responsáveis por gerenciar as interações com os respectivos bancos de dados. Em

seguida, a classe URLMonitor, que gerencia o ciclo de execução dos componentes é ins-

tanciada e inicia sua tarefa de coleta e monitoramento. Esse fluxo garante que o sistema

de monitoramento seja configurado corretamente, com as conexões adequadas aos ban-

cos de dados, e que o URLMonitor inicie suas atividades de monitoramento conforme o

esperado.

1 def main ():

2 config = Config ()

3 cowrie_db_config = config . get_cowrie_db_config ()

Capítulo 3. Desenvolvimento 24

4 monitoring_db_config = config . get_monitoring_db_config ()

5

6 cowrie_db = CowrieDBHandler (cowrie_db_config)

7 monitoring_db = MonitoringDBHandler (monitoring_db_config)

8

9 monitor = URLMonitor (cowrie_db , monitoring_db)

10 monitor .start ()

11

12 if __name__ == '__main__ ':

13 main ()

Listagem 3.4 – Componente principal (main.py) do sistema de monitoramento.

3.5 Desenvolvimento do componente de configuração

A classe do componente de configuração, Config, é responsável por ler e for-

necer as configurações, extraídas do arquivo config.ini, para a conexão com os ban-

cos de dados. Como mostrado na Listagem 3.5, a classe Config contém dois métodos

get_cowrie_db_config() e get_monitoring_db_config(), que retornam um dicionário com

as configurações de cada banco de dados, como o host, usuário, senha e nome do banco.

1 class Config :

2 def get_cowrie_db_config (self):

3 return {

4 'host ': self. config .get('CowrieDB ', 'host '),

5 'user ': self. config .get('CowrieDB ', 'user '),

6 'password ': self. config .get('CowrieDB ', 'password '),

7 'database ': self. config .get('CowrieDB ', 'database ')

8 }

9

10 def get_monitoring_db_config (self):

11 return {

12 'host ': self. config .get('MonitoringDB ', 'host '),

13 'user ': self. config .get('MonitoringDB ', 'user '),

14 'password ': self. config .get('MonitoringDB ', 'password '),

15 'database ': self. config .get('MonitoringDB ', 'database ')

16 }

Listagem 3.5 – Componente Config.py, responsável pela leitura das configurações do

sistema.

Capítulo 3. Desenvolvimento 25

3.6 Desenvolvimento do componente de manipulação do banco de

dados do Cowrie

O componente de manipulação do banco de dados do Cowrie é responsável por

gerenciar a conexão e execução de consultas no banco de dados Cowrie. Esse componente

utiliza a biblioteca mysql.connector para conectar-se ao banco de dados MySQL e realizar

as operações necessárias.

A Listagem 3.6 apresenta a classe CowrieDBHandler, responsável por estabelecer

a conexão com o banco de dados e executar consultas para recuperar dados específicos,

como URLs e entradas do banco de dados do Cowrie. Os métodos get_urls_cowrie() e

get_inputs_cowrie() realizam consultas SQL para retornar dados das tabelas downloads

e input, respectivamente.

1class CowrieDBHandler :

2 def __init__ (self , configDB):

3 self. configDB = configDB

4

5 @contextlib . contextmanager

6 def get_connection (self):

7 connection = None

8 cursor = None

9 try:

10 max_retries = 5

11 for retry in range(max_retries):

12 try:

13 connection = mysql. connector . connect (** self. configDB

)

14 cursor = connection . cursor (dictionary =True , buffered

=True)

15 break

16 except Error as e:

17 print (f"Error connecting to database (attempt {retry

+1}/{ max_retries }): {e}")

18 if retry == max_retries - 1:

19 raise

20 time.sleep (2)

21

22 yield cursor , connection

23

24 finally :

25 if cursor :

26 cursor .close ()

27 if connection and connection . is_connected ():

28 connection .close ()

Capítulo 3. Desenvolvimento 26

29

30 def get_urls_cowrie (self):

31 try:

32 with self. get_connection () as (cursor , connection):

33 query = " SELECT DISTINCT url FROM downloads ORDER BY url

"

34 cursor . execute (query)

35 return cursor . fetchall ()

36

37 except Error as error:

38 print (f"Error executing query on CowrieDB : {error}")

39 return []

40

41 def get_inputs_cowrie (self):

42 try:

43 with self. get_connection () as (cursor , connection):

44 query = " SELECT DISTINCT input FROM input ORDER BY input

"

45 cursor . execute (query)

46 return cursor . fetchall ()

47

48 except Error as error:

49 print (f"Error executing query on CowrieDB : {error}")

50 return []

Listagem 3.6 – Componente CowrieDBHandler.py, responsável pela conexão e execução

de consultas no banco de dados Cowrie.

3.7 Desenvolvimento do componente de manipulação do banco de

dados de Monitoramento

A classe MonitoringDBHandler, representada na Listagem 3.7, é responsável pela

interação com o banco de dados de monitoramento. Ela estabelece a conectividade, insere

novas URLs para monitoramento, atualiza as informações de disponibilidade e realiza

consultas para obter as URLs que estão sendo monitoradas. A classe contém os seguintes

métodos:

• url_monitoring_is_empty(): verifica se o banco de dados está vazio. Retorna

True em caso afirmativo e False caso contrário.

• update_last_view(url): atualiza o campo last_view para uma determinada URL.

Esse campo indica a última vez em que a URL foi checada.

• insert_url(url): insere uma nova URL no banco de dados. A inserção ocorre

apenas caso ela ainda não exista.

Capítulo 3. Desenvolvimento 27

• get_urls_monitoring(): retorna uma lista contendo as URLs monitoradas. Essa

lista reúne todas as URLs que estão sendo acompanhadas pelo sistema.

Essa classe é essencial para o gerenciamento das URLs monitoradas, pois realiza

inserções e atualizações no banco de dados. As operações de inserção e atualização asse-

guram que os dados de monitoramento permaneçam atualizados, enquanto a consulta das

URLs monitoradas facilita a análise do comportamento no âmbito do CowrieSniffer.

1class MonitoringDBHandler :

2 def __init__ (self , configDB):

3 self. configDB = configDB

4

5 @contextlib . contextmanager

6 def get_connection (self):

7 connection = None

8 cursor = None

9 try:

10 max_retries = 5

11 for retry in range(max_retries):

12 try:

13 connection = mysql. connector . connect (** self. configDB

)

14 cursor = connection . cursor (dictionary =True , buffered

=True)

15 break

16 except Error as e:

17 print (f"Error connecting to database (attempt {retry

+1}/{ max_retries }): {e}")

18 if retry == max_retries - 1:

19 raise

20 time.sleep (2)

21

22 yield cursor , connection

23

24 finally :

25 if cursor :

26 cursor .close ()

27 if connection and connection . is_connected ():

28 connection .close ()

29

30 def url_monitoring_is_empty (self):

31 try:

32 with self. get_connection () as (cursor , connection):

33 cursor . execute (" SELECT COUNT (*) AS count FROM urls")

34 result = cursor . fetchone ()

35 return result ['count '] == 0

Capítulo 3. Desenvolvimento 28

36

37 except Error as error:

38 print (f"Error checking if urls table is empty: {error}")

39 return False

40

41 def update_last_view (self , url):

42 try:

43 with self. get_connection () as (cursor , connection):

44 cursor . execute (" SELECT url FROM urls WHERE url = %s", (

url ,))

45 if not cursor . fetchone ():

46 print (f"URL '{url}' does not exist in monitoring .")

47 return

48

49 currentTime = datetime .now ()

50 sql = " UPDATE urls SET last_view = %s WHERE url = %s"

51 cursor . execute (sql , (currentTime , url))

52 connection . commit ()

53

54 print (f" Updated URL: {url}")

55

56 except Error as error:

57 print (f"Error updating URL: {error}")

58

59 def insert_url (self , url):

60 try:

61 with self. get_connection () as (cursor , connection):

62 cursor . execute (" SELECT url FROM urls WHERE url = %s", (

url ,))

63 if cursor . fetchone ():

64 print (f"URL '{url}' already exists in monitoring .")

65 return

66

67 currentTime = datetime .now ()

68 sql = " INSERT INTO urls (url , first_view , last_view)

VALUES (%s, %s, %s)"

69 cursor . execute (sql , (url , currentTime , currentTime))

70 connection . commit ()

71

72 print (f" Inserted URL: {url}")

73

74 except Error as error:

75 print (f"Error inserting URL: {error}")

76

77 def get_urls_monitoring (self):

78 try:

79 with self. get_connection () as (cursor , connection):

Capítulo 3. Desenvolvimento 29

80 query = " SELECT DISTINCT url FROM urls ORDER BY url"

81 cursor . execute (query)

82 return cursor . fetchall ()

83

84 except Error as error:

85 print (f"Error getting URLs from monitoring : {error}")

86 return []

Listagem 3.7 – Componente MonitoringDBHandler.py responsável pela interação com o

banco de dados de monitoramento.

3.8 Desenvolvimento do componente URLMonitor

A Figura 5 apresenta a visão geral do componente URLMonitor. Esse componente é

responsável por todo o funcionamento da estratégia de coleta e verificação das informações

no sistema.

Inicialmente, o sistema verifica se o banco de dados de monitoramento está va-

zio. Caso essa condição seja verdadeira, o banco de monitoramento é preenchido com

as URLs coletadas na tabela downloads do banco de dados do Cowrie, e a variável

last_known_downloads_urls_cowrie_db é atualizada. Se o banco de monitoramento não

estiver vazio, realiza-se a sincronização dessa variável com os endereços presentes na tabela

downloads do banco de dados do Cowrie.

Em sequência, o CowrieSniffer ingressa em um estado condicional de iteração con-

tínua (while true) do qual só será possível sair mediante interrupção manual realizada pelo

usuário. A etapa subsequente consiste na verificação da existência de novas URLs tanto na

tabela downloads quanto na tabela input, ambas pertencentes ao honeypot Cowrie. Caso

sejam identificados novas URLs, estas são inseridas no banco de dados de monitoramento,

e as variáveis responsáveis pelo armazenamento das URLs são devidamente atualizadas

para refletir o estado atual do sistema.

Por fim, o sistema realiza uma verificação de conexão, atualizando os endereços ati-

vos no banco de dados de monitoramento. Essa estrutura cíclica garante que a ferramenta

desenvolvida mantenha um monitoramento contínuo e atualizado das URLs registradas

pelo Cowrie, facilitando a identificação e o acompanhamento dos servidores que hospedam

malwares.

Capítulo 3. Desenvolvimento 30

Figura 5 – Diagrama da visão geral do componente URLMonitor. Fonte: Elaborado pelo
autor (2025)

O código representado na Listagem 3.8 é responsável pelas tarefas de extração, ve-

rificação e monitoramento. Esse componente constitui o núcleo funcional do CowrieSniffer,

assegurando a coleta e a análise contínua das URLs acessadas por agentes maliciosos no

ambiente de honeypot.

A classe URLMonitor mantém conexão com dois bancos de dados principais: o

banco de dados do Cowrie, que armazena os registros de eventos do honeypot, e o banco de

dados de monitoramento, que concentra os endereços identificados para acompanhamento.

Além disso, a classe utiliza duas variáveis da estrutura de dados do tipo set para armazenar

Capítulo 3. Desenvolvimento 31

os últimos registros conhecidos, evitando redundâncias nas novas entradas.

Os principais métodos implementados nesse componente são descritos a seguir.

Cada um deles desempenha funções específicas que contribuem para o funcionamento

integrado da ferramenta.

• extract_urls_from_log(log_entry): responsável pelo processamento e extra-

ção de URLs a partir dos logs do Cowrie. Para isso, emprega expressões regulares

que identificam padrões de endereços na internet, garantindo uma extração precisa.

• verify_connections(): verifica a conectividade das URLs armazenadas no banco

de dados de monitoramento. Para isso, realiza tentativas de conexão TCP nos ende-

reços extraídos, utilizando as portas padrão (443 para HTTPS e 80 para HTTP) ou

uma porta específica. Caso a conexão seja bem-sucedida, a última data de verificação

do endereço é atualizada no banco de dados.

• verify_from_input(): monitora novos registros da tabela input no banco de

dados do Cowrie, extraindo URLs presentes nesses comandos e inserindo-as no banco

de dados de monitoramento para análise posterior.

• verify_download(): analisa a tabela downloads do Cowrie para identificar URLs

associadas a arquivos baixados durante sessões interativas dos atacantes. Caso novos

endereços sejam encontrados, são adicionados à base de monitoramento.

• populate_urls_monitoring(): executado durante a inicialização da ferramenta,

esse método popula a base de monitoramento com as URLs previamente registradas

no Cowrie, garantindo que a análise inicie com um conjunto inicial de endereços.

• run_periodic_tasks(): principal responsável pela execução contínua das tare-

fas do CowrieSniffer. Em ciclos periódicos, o método verifica a presença de novos

endereços nos registros do Cowrie, monitora mudanças nas tabelas input e down-

loads, testa a conectividade dos endereços armazenados e repete todo o processo,

garantindo a atualização constante das informações.

Com essa abordagem, o CowrieSniffer proporciona um monitoramento eficiente

e automatizado das URLs acessadas em um ambiente de honeypot. Tal funcionalidade

possibilita a realização de análises mais aprofundadas sobre o comportamento de agentes

maliciosos.

1 class URLMonitor :

2 def extract_urls_from_log (self , log_entry):

3 url_pattern = r'https ?://[^\s < >\"]+| www \.[^\s < >\"]+ '

4 urls = set(re. findall (url_pattern , log_entry))

5 cleaned_urls = set(url. rstrip (';') for url in urls)

Capítulo 3. Desenvolvimento 32

6 return cleaned_urls

7

8 def verify_connections (self):

9 urls = self. monitoring_db . get_urls_monitoring ()

10

11 # Regex for domain /IP and port (if present)

12 addrPattern = (

13 r'https ?:\/\/ ' # http or https

14 r'((?:\d{1 ,3}\.) {3}\d{1 ,3} ' # IPv4 address

15 r'|' # or

16 r'(?:[a-zA -Z0 -9 -]+\.) +[a-zA -Z]{2 ,}) ' # domain name

17 r'(?::(\ d+))?' # optional port

18)

19

20 for url in urls:

21 if url['url ']:

22 match = re. search (addrPattern , url['url '])

23 if match:

24 host = match.group (1)

25

26 if match.group (2):

27 port = int(match.group (2))

28 else:

29 if url['url ']. startswith ('https '):

30 port = 443

31 else:

32 port = 80

33

34 print (f"[VERIFYING CONNECTION] Testing {host }:{

port}")

35

36 try:

37 with socket . create_connection ((host , port),

timeout =5) as s:

38 print(f"[VERIFYING CONNECTION]

Connection {host }:{ port} successful ")

39 self. monitoring_db . update_last_view (url[

'url '])

40 except socket .error:

41 print (f"[VERIFYING CONNECTION] Connection to

{host }:{ port} failed ")

42 else:

43 print (f"[VERIFYING CONNECTION] Invalid URL

format : {url['url ']}")

44

45 def verify_from_input (self):

46 current_inputs = set(input['input '] for input in self.

Capítulo 3. Desenvolvimento 33

cowrie_db . get_inputs_cowrie ())

47

48 try:

49 if current_inputs != self.

last_known_input_urls_cowrie_db :

50 print (f"[VERIFYING URL] Change Detect on Input on

Cowrie !")

51

52 for input in current_inputs :

53 urls = set(self. extract_urls_from_log (input))

54 if urls:

55 for url in urls:

56 try:

57 self. monitoring_db . insert_url (url)

58 except Exception as e:

59 print (f"[VERIFYING URL] Error adding

URL {url }: {str(e)}")

60

61 self. last_known_input_urls_cowrie_db =

current_inputs

62

63 else:

64 print ("[VERIFYING URL] No change on Input on Cowrie !

")

65

66 except Exception as e:

67 print (f"[VERIFYING URL] Error on verifying : {str(e)}")

68

69 def verify_download (self):

70 try:

71 current_cowrie_urls = set(url['url '] for url in self.

cowrie_db . get_urls_cowrie ())

72

73 if current_cowrie_urls != self.

last_known_dowloads_urls_cowrie_db :

74 print (f"[VERIFYING URL] Change Detect on Downloads

on Cowrie !")

75 monitoring_urls = set(url['url '] for url in self.

monitoring_db . get_urls_monitoring ())

76 new_urls = current_cowrie_urls - monitoring_urls

77

78 if new_urls :

79 for url in new_urls :

80 try:

81 self. monitoring_db . insert_url (url)

82 except Exception as e:

83 print(f"[VERIFYING URL] Error adding URL

Capítulo 3. Desenvolvimento 34

{url }: {str(e)}")

84

85 self. last_known_dowloads_urls_cowrie_db =

current_cowrie_urls

86

87 else:

88 print ("[VERIFYING URL] No change on Downloads on

Cowrie !")

89

90 except Exception as e:

91 print (f"[VERIFYING URL] Error on veryfying : {str(e)}")

92

93 def populate_urls_monitoring (self):

94 print ("[INIT] Initializing population of monitoringDB ")

95 urls = self. cowrie_db . get_urls_cowrie ()

96 initial_urls = set(url['url '] for url in urls)

97 self. last_known_dowloads_urls_cowrie_db = initial_urls

98

99 for url in initial_urls :

100 try:

101 self. monitoring_db . insert_url (url)

102 except Exception as e:

103 print (f"[INIT] Error adding URL {url }: {str(e)}")

104

105 def run_periodic_tasks (self):

106 if self. monitoring_db . url_monitoring_is_empty ():

107 print ("[INIT] MonitoringDB empty")

108 self. populate_urls_monitoring ()

109 else:

110 self. last_known_dowloads_urls_cowrie_db = set(url['url ']

for url in self. cowrie_db . get_urls_cowrie ())

111 print (f"[INIT] State loaded : {self.

last_known_dowloads_urls_cowrie_db }")

112

113 while True:

114 print ("[PERIODIC TASK] Running ...")

115 self. verify_download ()

116 self. verify_from_input ()

117

118 if not self. monitoring_db . url_monitoring_is_empty ():

119 self. verify_connections ()

120

121 print ("[PERIODIC TASK] Finished !", end="\n\n")

122 time.sleep (5)

123

124 def start(self):

Capítulo 3. Desenvolvimento 35

125 self. run_periodic_tasks ()

Listagem 3.8 – Componente URLMonitor.py responsável pelo ciclo de monitoramento

36

4 Resultados

Neste capítulo, são apresentados os estudos de caso realizados para avaliar o funci-

onamento do CowrieSniffer em diversos contextos operacionais. Os cenários selecionados

foram metodicamente definidos com base no processo iterativo de desenvolvimento da

ferramenta, sendo que cada caso representa um desafio técnico específico identificado e

solucionado durante a implementação do CowrieSniffer.

A Seção 4.1 descreve o Caso 1, no qual ambos os bancos de dados, Cowrie e de

monitoramento, encontram-se vazios. A Seção 4.2 aborda o Caso 2, que corresponde à

inicialização da ferramenta com o banco de dados do Cowrie populado e o banco de

monitoramento vazio. A Seção 4.3 trata do Caso 3, em que ambos os bancos de dados já

estão populados no momento da inicialização. Por fim, a Seção 4.4 apresenta o Caso 4,

cujo objetivo é analisar o comportamento da ferramenta diante da adição de novas URLs.

4.1 Caso 1: Inicialização da ferramenta com bancos de dados vazios

Este cenário considera a situação em que tanto o banco de dados do Cowrie quanto

o banco de dados de monitoramento estão vazios. O objetivo desta análise é verificar o

comportamento do CowrieSniffer durante sua inicialização em um ambiente sem registros

prévios.

A Figura 6 apresenta a execução da ferramenta nesse contexto. Inicialmente, con-

vém ressaltar que a implementação foi realizada em um ambiente controlado de rede local,

caracterizando um cenário simulado, sem a necessidade de implantação em infraestrutura

de nuvem. Neste ambiente, a ferramenta detecta que o banco de dados de monitoramento

está vazio e inicia sua população, garantindo que, assim que novos registros forem adicio-

nados ao Cowrie, eles possam ser capturados e monitorados. Esse cenário demonstra que,

mesmo em uma configuração experimental circunscrita a uma rede local, a ferramenta

mantém seu funcionamento contínuo, aguardando a inserção de novas URLs.

Capítulo 4. Resultados 37

Figura 6 – Caso 01: Log do funcionamento da ferramenta. Fonte: Elaborado pelo autor
(2025)

Na Figura 7, verifica-se que ambos os bancos de dados apresentam suas respecti-

vas tabelas sem registros. As duas primeiras consultas evidenciam que as tabelas input

e downloads pertencentes ao banco de dados do Cowrie não contêm nenhum registro.

Adicionalmente, observa-se que a tabela urls do banco de dados de monitoramento, re-

presentada pela terceira consulta, também se encontra desprovida de dados.

Figura 7 – Caso 01: Tabelas input e downloads do honeypot Cowrie sem registros e tabela
urls do banco de monitoramento desprovida de dados. Fonte: Elaborado pelo
autor (2025)

Capítulo 4. Resultados 38

4.2 Caso 2: Inicialização da ferramenta com o banco de dados do

Cowrie populado e o banco de monitoramento vazio

Neste estudo de caso, o banco de dados do Cowrie já contém URLs coletadas

de sessões anteriores, enquanto o banco de dados de monitoramento permanece vazio.

O foco desta análise é compreender como o CowrieSniffer processa os dados históricos

do Cowrie, populando a base de monitoramento e assegurando que nenhuma informação

relevante seja perdida durante a transição inicial.

No início do Caso 2, observa-se que as tabelas do banco de dados do Cowrie já

possuem registros, conforme ilustrado nas Figuras 8 e 9. Em contrapartida, a Figura 10

apresenta o estado inicial da tabela urls, que se encontra vazia.

Figura 8 – Caso 02: Tabela downloads do Cowrie com entradas. Fonte: Elaborado pelo
autor (2025)

Figura 9 – Caso 02: Tabela input do Cowrie com entradas. Fonte: Elaborado pelo autor
(2025)

Capítulo 4. Resultados 39

Figura 10 – Caso 02: Tabela urls do monitoramento inicialmente vazia. Fonte: Elaborado
pelo autor (2025)

Após o início da execução do CowrieSniffer, conforme ilustrado na Figura 11, a

ferramenta inicia a população da tabela urls do banco de dados de monitoramento a partir

dos registros existentes na tabela downloads do banco de dados do Cowrie. Em seguida,

ao realizar sua primeira verificação na tabela inputs, a ferramenta realiza a identificação

de novas entradas e procede com sua inserção na tabela urls. Estas entradas constituem

os comandos digitados durante a sessão via shell, os quais são submetidos a um processa-

mento específico para a extração e captura das URLs neles contidas. Concluída essa etapa

inicial, são realizadas as verificações de disponibilidade das URLs, e o sistema prossegue

com seu ciclo contínuo de monitoramento.

Figura 11 – Caso 02: Log do funcionamento da ferramenta. Fonte: Elaborado pelo autor
(2025)

A Figura 12 apresenta o estado final da tabela urls do banco de dados de moni-

toramento após a inicialização da ferramenta. Esse resultado evidencia a capacidade da

Capítulo 4. Resultados 40

aplicação de identificar e registrar corretamente as URLs extraídas do banco de dados do

Cowrie.

Figura 12 – Caso 02: Tabela urls do monitoramento com entradas. Fonte: Elaborado pelo
autor (2025)

4.3 Caso 3: Inicialização da ferramenta com ambos os bancos de

dados populados

Este cenário tem como objetivo avaliar o funcionamento do CowrieSniffer quando

tanto o banco de dados do Cowrie quanto o banco de monitoramento já possuem re-

gistros. A proposta consiste em analisar o processo de inicialização da ferramenta, com

ênfase no carregamento das variáveis com as URLs existentes e na execução dos testes de

disponibilidade no ambiente monitorado.

As Figuras 13, 14 e 15 apresentam, respectivamente, o estado das tabelas down-

loads e input, pertencentes ao banco de dados do Cowrie, e da tabela urls, localizada no

banco de dados de monitoramento. A partir dessas condições iniciais, a execução do Co-

wrieSniffer, ilustrada na Figura 16, inicia o carregamento dos endereços provenientes da

tabela downloads. Em seguida, é realizada a verificação da tabela input, que também con-

tém URLs; entretanto, como essas já estão registradas no banco de monitoramento, não

é necessária sua reinserção. Por fim, a ferramenta procede com os testes de conectividade

utilizando as URLs previamente armazenadas.

Figura 13 – Caso 03: Tabela downloads do Cowrie com entradas. Fonte: Elaborado pelo
autor (2025)

Capítulo 4. Resultados 41

Figura 14 – Caso 03: Tabela input do Cowrie com entradas. Fonte: Elaborado pelo autor
(2025)

Figura 15 – Caso 03: Tabela urls do monitoramento com entradas. Fonte: Elaborado pelo
autor (2025)

Figura 16 – Caso 03: Log do funcionamento da ferramenta. Fonte: Elaborado pelo autor
(2025)

Capítulo 4. Resultados 42

4.4 Caso 4: Entradas e análises das URLs

Este estudo de caso tem como objetivo analisar o comportamento do CowrieSniffer

diante da adição de novas URLs. A análise visa verificar se a ferramenta é capaz de

detectar essas novas entradas e avaliar a disponibilidade de URLs, tanto indisponíveis

quanto disponíveis na porta 80 do protocolo http. É importante notar que a ferramenta

também pode coletar e verificar URLs provenientes do protocolo HTTPS, utilizando a

porta 443 como ponto de conexão inicial ou ainda em outras portas. A ideia do Caso 4 é

simplesmente mostrar o funcionamento de tal requisito.

4.4.1 URL indisponível

Este caso apresenta uma situação específica em que o endereço monitorado se en-

contra indisponível na porta 3000. Conforme ilustrado na Figura 17, a ferramenta detecta

a inserção da URL por meio da tabela downloads e, em seguida, realiza o teste de co-

nectividade, que resulta em falha devido à indisponibilidade. Posteriormente, a Figura 18

apresenta o registro correspondente no banco de dados de monitoramento, identificado

pela chave primária id de valor 7. Observa-se que, em razão da indisponibilidade da URL

na porta 3000, a coluna last_view não foi atualizada, indicando a ausência de sucesso na

tentativa de conexão.

Figura 17 – Caso 04: Log 1 do funcionamento da ferramenta. Fonte: Elaborado pelo autor
(2025)

Capítulo 4. Resultados 43

Figura 18 – Caso 04: Registro 1 na tabela urls. Fonte: Elaborado pelo autor (2025)

4.4.2 URL sem a utilização do protocolo HTTPS

Nesta situação, observa-se o processo integral de detecção e monitoramento de uma

URL maliciosa quando apresentada sem a utilização do protocolo HTTPS. Inicialmente, o

sistema identifica a presença da URL mediante análise dos registros na tabela downloads.

Após a identificação deste elemento, a ferramenta executa, automaticamente, três ações

sequenciais: (i) realiza a inserção dos dados correspondentes no banco de dados de monito-

ramento; (ii) verifica a disponibilidade da URL através da porta 80 (ressalta-se que, caso

fosse utilizada outra porta aleatória, o CowrieSniffer a identificaria); e (iii) processa essas

informações, procedimento que ocorre automaticamente quando o sistema reconhece o

protocolo HTTP no início da URL, conforme demonstrado na Figura 19. Como resultado

final deste fluxo, a Figura 20 apresenta a URL registrada na ferramenta, juntamente com

sua atualização referente à disponibilidade, sendo este registro identificado univocamente

pela chave primária id de valor 8.

Figura 19 – Caso 04: Log 2 do funcionamento da ferramenta. Fonte: Elaborado pelo autor
(2025)

Capítulo 4. Resultados 44

Figura 20 – Caso 04: Registro 2 na tabela urls. Fonte: Elaborado pelo autor (2025)

45

5 Conclusão

Este trabalho teve como principal objetivo desenvolver uma ferramenta capaz de

coletar, processar e verificar a disponibilidade de URLs capturadas pelo honeypot Cowrie,

contribuindo para o aprimoramento de sua estrutura na área de segurança da informação.

Com base nos estudos de caso realizados, os resultados obtidos permitiram validar o funci-

onamento da ferramenta em cenários específicos de uso do CowrieSniffer, demonstrando

sua eficácia na coleta, tratamento e verificação da disponibilidade de URLs. Portanto,

conclui-se que a ferramenta atingiu plenamente seu principal objetivo.

O desenvolvimento do CowrieSniffer foi estruturado de maneira modular. A arqui-

tetura do sistema CowrieSniffer foi concebida sob uma perspectiva estritamente modular.

Os principais componentes compreendem: o módulo Main, responsável pela orquestração

sistêmica; o módulo de configuração, encarregado da gestão dos parâmetros de conexão;

os módulos de manipulação de banco de dados, tanto do Cowrie quanto do sistema de

monitoramento; e, fundamentalmente, o módulo URLMonitor, que implementa a lógica

central de verificação e atualização das URLs. Durante o processo de desenvolvimento,

diversos desafios técnicos emergiram, tais como: a necessidade de extrair URLs das tabe-

las input e downloads do banco de dados do Cowrie; a implementação de mecanismos de

verificação de disponibilidade em diferentes protocolos (HTTP e HTTPS) e portas; e a

garantia de persistência e consistência dos dados monitorados ao longo do tempo.

O CowrieSniffer constitui ferramenta de notável relevância em análise forense di-

gital, permitindo a coleta de URLs que podem ser analisadas para a identificação de

padrões de persistência em infraestruturas maliciosas. Em ambientes corporativos com

múltiplos honeypots, possibilita a detecção de campanhas direcionadas mediante correla-

ção entre URLs utilizadas por diferentes agentes maliciosos. O monitoramento contínuo

destas URLs fornece dados substanciais sobre o ciclo vital de infraestruturas nocivas,

como servidores de comando e controle (C&C) ou repositórios de malware, elucidando

táticas, técnicas e procedimentos dos atacantes (TTPs).

Além disso, o código da ferramenta foi desenvolvido de forma modular, permi-

tindo fácil manipulação e a inserção de novas funcionalidades. Dessa maneira, diversas

melhorias podem ser implementadas em trabalhos futuros, tais como a incorporação do

CowrieSniffer como um componente nativo do Cowrie, a implementação de uma coluna

no banco de dados de monitoramento para indicar os endereços ativos e o desenvolvimento

de um mecanismo para exibição ou ocultação de logs.

46

Referências

AL-MOHANNADI, H.; AWAN, I.; HAMAR, J. A. Analysis of adversary activities
using cloud-based web services to enhance cyber threat intelligence. Serv. Oriented
Comput. Appl., Springer-Verlag, Berlin, Heidelberg, v. 14, n. 3, p. 175–187, sep
2020. ISSN 1863-2386. Disponível em: <https://doi.org/10.1007/s11761-019-00285-7>.
Citado na página 8.

BERNSTEIN, D. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud
Computing, v. 1, n. 3, p. 81–84, 2014. Citado na página 15.

CABRAL, W. Z.; VALLI, C.; SIKOS, L. F.; WAKELING, S. G. Advanced cowrie
configuration to increase honeypot deceptiveness. In: JØSANG, A.; FUTCHER, L.;
HAGEN, J. (Ed.). ICT Systems Security and Privacy Protection. Cham: Springer
International Publishing, 2021. p. 317–331. ISBN 978-3-030-78120-0. Citado 2 vezes nas
páginas 13 e 16.

IBRAHIM, M. H.; SAYAGH, M.; HASSAN, A. E. A study of how docker compose
is used to compose multi-component systems. Empirical Softw. Engg., Kluwer
Academic Publishers, USA, v. 26, n. 6, nov. 2021. ISSN 1382-3256. Disponível em:
<https://doi.org/10.1007/s10664-021-10025-1>. Citado na página 15.

JAVADPOUR, A.; JA’FARI, F.; TALEB, T.; SHOJAFAR, M.; BENZAïD, C. A
comprehensive survey on cyber deception techniques to improve honeypot performance.
Computers Security, v. 140, p. 103792, 2024. ISSN 0167-4048. Citado na página 13.

MALLOY, B. A.; POWER, J. F. Quantifying the transition from python 2 to 3:
An empirical study of python applications. In: 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM).
[S.l.: s.n.], 2017. p. 314–323. Citado na página 14.

MEHTA, S.; PAWADE, D.; NAYYAR, Y.; SIDDAVATAM, I.; TIWART, A.; DALVI, A.
Cowrie honeypot data analysis and predicting the directory traverser pattern during the
attack. In: 2021 International Conference on Innovative Computing, Intelligent
Communication and Smart Electrical Systems (ICSES). [S.l.: s.n.], 2021. p. 1–4.
Citado na página 15.

MENDES, L. G. Trabalho de Conclusão de Curso, Construção de infraestrutura de
Honeypots IoT usando computação em nuvem. 2023. Universidade Federal de
Uberlândia. Citado na página 9.

NIST. Cybersecurity definition. 2019. Acesso em: 30 de out. 2024. Disponível em:
<https://csrc.nist.gov/glossary/term/cybersecurity>. Citado na página 12.

NăSTASE, V.-I.; MIHăILESCU, M.-E.; WEISZ, S.; DAGILIS, L. V.; MIHAI, D.;
CARABAS, M. Cowrie ssh honeypot: Architecture, improvements and data visualization.
In: 2024 23rd RoEduNet Conference: Networking in Education and Research
(RoEduNet). [S.l.: s.n.], 2024. p. 1–7. Citado na página 16.

Referências 47

OOSTERHOF, M. Cowrie Documentation. 2024. Acesso em: 28 de abril de 2025.
Disponível em: <https://docs.cowrie.org/en/latest/>. Citado na página 13.

PROVOS, N.; HOLZ, T. Virtual honeypots from botnet tracking to intrusion
detection. Upper Saddle River, N.J: Addison-Wesley, 2007. (Safari Books Online.).
ISBN 9780321336323. Citado na página 8.

RODRIGUES, G. A. P. Trabalho de Conclusão de Curso, Análise de tráfego
malicioso direcionado a uma Honeynet com inspeção profunda de pacotes.
2017. Universidade de Brasília. Citado na página 9.

SPITZNER, L. Honeypots: Catching the insider threat. In: Proceedings of the 19th
Annual Computer Security Applications Conference. USA: IEEE Computer
Society, 2003. (ACSAC ’03), p. 170. ISBN 0769520413. Citado na página 13.

STALLINGS, W. Criptografia e Segurança de Redes: Princípios e Práticas. 6.
ed. [S.l.]: Pearson Education, 2014. Citado na página 12.

SUEHRING, S. MySQL Bible. Wiley, 2002. (Bible). ISBN 9780764518614. Disponível
em: <https://books.google.com.br/books?id=bY01hYV3r-gC>. Citado na página 14.

VIRAJA, V. K.; PURANDARE, P. A qualitative research on the impact and challenges
of cybercrimes. Journal of Physics: Conference Series, IOP Publishing, v. 1964,
n. 4, p. 042004, jul 2021. Disponível em: <https://dx.doi.org/10.1088/1742-6596/1964/
4/042004>. Citado na página 8.

Anexos

49

ANEXO A – Repositório CowrieSniffer

O código desenvolvido no decorrer deste trabalho será disponibilizado publica-

mente no GitHub1, permitindo a transparência dos resultados e possibilitando futuras

contribuições da comunidade acadêmica e profissional.

O repositório, intitulado CowrieSniffer, conterá os scripts utilizados para o moni-

toramento das URLs extraídas do honeypot Cowrie, bem como a documentação detalhada

sobre a instalação, configuração e uso da ferramenta.

1 Disponível em https://github.com/r1beirin/CowrieSniffer

	Folha de rosto
	Agradecimentos
	Resumo
	Lista de ilustrações
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Objetivos
	Objetivo Geral
	Objetivos Específicos

	Organização da Monografia

	Revisão Bibliográfica
	Fundamentação Teórica
	Cibersegurança
	Honeypots
	Python
	MySQL
	Docker

	Trabalhos Correlatos

	Desenvolvimento
	Visão Geral
	Configuração do banco de dados de monitoramento
	Desenvolvimento do arquivo de configuração
	Desenvolvimento do componente Main
	Desenvolvimento do componente de configuração
	Desenvolvimento do componente de manipulação do banco de dados do Cowrie
	Desenvolvimento do componente de manipulação do banco de dados de Monitoramento
	Desenvolvimento do componente URLMonitor

	Resultados
	Caso 1: Inicialização da ferramenta com bancos de dados vazios
	Caso 2: Inicialização da ferramenta com o banco de dados do Cowrie populado e o banco de monitoramento vazio
	Caso 3: Inicialização da ferramenta com ambos os bancos de dados populados
	Caso 4: Entradas e análises das URLs
	URL indisponível
	URL sem a utilização do protocolo HTTPS

	Conclusão
	Referências
	Anexos
	Repositório CowrieSniffer

