UNIVERSIDADE FEDERAL DE UBERLANDIA

Mateus Ribeiro Vaz Pereira

CowrieSniffer: Extensao do Honeypot Cowrie
para coleta e monitoramento de URLs

Uberlandia, Brasil

2025

UNIVERSIDADE FEDERAL DE UBERLANDIA

Mateus Ribeiro Vaz Pereira

CowrieSniffer: Extensao do Honeypot Cowrie para coleta

e monitoramento de URLs

Trabalho de conclusao de curso apresentado
a Faculdade de Computagao da Universidade
Federal de Uberlandia, como parte dos requi-
sitos exigidos para a obtencao titulo de Ba-
charel em Sistemas de Informacao.

Orientador: Prof. Dr. Rodrigo Sanches Miani

Universidade Federal de Uberlandia — UFU
Faculdade de Computacao

Bacharelado em Sistemas de Informacao

Uberlandia, Brasil
2025

Agradecimentos

Agradecgo a minha familia, Jefferson, Silvia, Felipe e Marcela pelo apoio incondicio-
nal e pela oportunidade de seguir em frente mesmo nos momentos mais desafiadores. Sem

eles, esta conquista nao seria possivel. Sao exemplos de dedicagao, incentivo e suporte.

Ao meu orientador, Rodrigo Sanches Miani, pela orientagao valiosa e pela confianca

depositada em mim desde o inicio da graduacao.

Ao Laboratério de Seguranga Cibernética (LSG) da FACOM/UFU, conduzido
pelos professores Rodrigo Sanches Miani e Ivan da Silva Sendin, pelo ambiente de apren-

dizado e pesquisa que contribuiu imensamente para minha formacao.

Aos amigos que fiz na faculdade e que levo para a vida, por compartilharem essa

jornada comigo.

E a minha companheira, Julia, que esteve ao meu lado em todas as etapas dessa

conquista, com apoio e motivagao ao longo de toda a caminhada académica.

Resumo

Este trabalho apresenta o desenvolvimento do CowrieSniffer, uma ferramenta para ana-
lise e monitoramento de enderegos capturados no Honeypot Cowrie. O sistema tem como
objetivo verificar a disponibilidade das URLs utilizadas por atacantes, o que contribui
para a andlise de ameacas e o aprimoramento da seguranca cibernética. A ferramenta de-
senvolvida atua na coleta das URLs armazenadas nas tabelas downloads e input do banco
de dados do Cowrie, transferindo-as para um banco de monitoramento especifico. Em
seguida, a ferramenta realiza a verificacdo periddica da disponibilidade desses enderecos e
atualiza a tabela urls do banco de monitoramento de acordo com as mudancas na dispo-
nibilidade das URLs identificadas. A implementacao foi realizada com o uso de Python,
devido a sua versatilidade e facilidade na manipulacao de dados, além da utilizagao de
Docker para garantir a portabilidade do ambiente e MySQL para o armazenamento das
informagoes coletadas. Os testes realizados demonstraram que a ferramenta é capaz de
processar as informacgoes de maneira eficiente, o que possibilita a analise da persisténcia
e do tempo de vida de URLs utilizadas por atacantes. Os resultados obtidos durante os

experimentos propostos validaram a eficicia do sistema.

Palavras-chave: Honeypots, Cowrie, Seguranca da Informacao, Analise de disponibili-

dade em URLs, enderegos maliciosos.

Figura 1
Figura 2
Figura 3
Figura 4
Figura 5

Figura 6

Figura 7

Figura 8

Figura 9

Lista de ilustracoes

Diagrama das principais tabelas do banco de dados do Cowrie. Fonte:

Elaborado pelo autor (2025) 14
Diagrama de coleta Cowrie. Fonte: Elaborado pelo autor (2025) 19
Diagrama geral do CowrieSniffer. Fonte: Elaborado pelo autor (2025) . 19
Diagrama de pacotes da classe Main. Fonte: Elaborado pelo autor (2025) 23

Diagrama da visao geral do componente URLMonitor. Fonte: Elabo-

rado pelo autor (2025) 30
Caso 01: Log do funcionamento da ferramenta. Fonte: Elaborado pelo
autor (2025) 37

Caso 01: Tabelas input e downloads do honeypot Cowrie sem registros

e tabela urls do banco de monitoramento desprovida de dados. Fonte:

Elaborado pelo autor (2025) 37
Caso 02: Tabela downloads do Cowrie com entradas. Fonte: Elaborado
pelo autor (2025) 38
Caso 02: Tabela input do Cowrie com entradas. Fonte: Elaborado pelo
autor (2025) 38

Figura 10 — Caso 02: Tabela urls do monitoramento inicialmente vazia. Fonte: Ela-

borado pelo autor (2025) 39

Figura 11 — Caso 02: Log do funcionamento da ferramenta. Fonte: Elaborado pelo

autor (2025) 39

Figura 12 — Caso 02: Tabela urls do monitoramento com entradas. Fonte: Elaborado

pelo autor (2025) 40

Figura 13 — Caso 03: Tabela downloads do Cowrie com entradas. Fonte: Elaborado

pelo autor (2025) 40

Figura 14 — Caso 03: Tabela input do Cowrie com entradas. Fonte: Elaborado pelo

autor (2025) 41

Figura 15 — Caso 03: Tabela urls do monitoramento com entradas. Fonte: Elaborado

pelo autor (2025) 41

Figura 16 — Caso 03: Log do funcionamento da ferramenta. Fonte: Elaborado pelo

autor (2025) 41

Figura 17 — Caso 04: Log 1 do funcionamento da ferramenta. Fonte: Elaborado pelo

autor (2025) 42

Figura 18 — Caso 04: Registro 1 na tabela urls. Fonte: Elaborado pelo autor (2025) 43

Figura 19 — Caso 04: Log 2 do funcionamento da ferramenta. Fonte: Elaborado pelo

autor (2025) 43

Figura 20 — Caso 04: Registro 2 na tabela urls. Fonte: Elaborado pelo autor (2025) 44

Lista de abreviaturas e siglas

APT Advanced Persistent Threats
C&C Comando e Controle

DNS Domain Name System

DPI Deep Packet Inspection
ELK Elastic Stack

FTP File Transfer Protocol
HTTP Hypertext Transfer Protocol
P Internet Protocol

[oT Internet of things

MySQL Banco de dados relacional de codigo aberto

NIST National Institute of Standards and Technology
SQL Structured Query Language

SSH Secure Shell

TCP Transmission Control Protocol

TTPs Téaticas, técnicas e procedimentos

URL Uniform Resource Locator

1.1
111
1.1.2
1.2

2.1

2.1.1
2.1.2
2.1.3
214
2.15
2.2

3.1
3.2
3.3
3.4
3.5
3.6

3.7

3.8

4.1
4.2

4.3

4.4

441
4472

Sumario

INTRODUCAO i ittt e e et e et e et e e e
Objetivos
Objetivo Geral
Objetivos Especificos

Organizacdao da Monografia

REVISAO BIBLIOGRAFICA
Fundamentacao Teé6rica
Ciberseguranca
Honeypots e
Python
MySQL . . .
Docker e
Trabalhos Correlatos

DESENVOLVIMENTO
Visao Geral
Configuracao do banco de dados de monitoramento
Desenvolvimento do arquivo de configuracao.
Desenvolvimento do componente Main
Desenvolvimento do componente de configuracao
Desenvolvimento do componente de manipulacao do banco de da-

dos do Cowrie
Desenvolvimento do componente de manipulacao do banco de da-

dos de Monitoramentoo oL

Desenvolvimento do componente URLMonitor

RESULTADOS e e e e e e e e e e e e e s
Caso 1: Inicializacao da ferramenta com bancos de dados vazios . .
Caso 2: Inicializacdo da ferramenta com o banco de dados do Cowrie

populado e o banco de monitoramento vazio.
Caso 3: Inicializacao da ferramenta com ambos os bancos de dados

populados
Caso 4: Entradas e analisesdas URLs
URL indisponivel
URL sem a utilizacdo do protocolo HTTPS

CONCLUSAOt e e e e e e e s s s s, 45

REFERENCIAS e e e e e s s, 46

ANEXOS 48

ANEXO A - REPOSITORIO COWRIESNIFFER 49

1 Introducao

A industria de crimes cibernéticos expande-se de maneira acelerada de acordo
com o estudo de Viraja e Purandare (2021). O crescimento desse tipo de atividade ilicita
observa-se ano apos ano, impulsionado pelo desenvolvimento de novas técnicas e tecnolo-
gias cada vez mais sofisticadas. Em resposta, empresas e governos enfrentam a necessidade
continua de aprimorar suas defesas para superar os desafios impostos por essas ameagas
emergentes. O avanco do cibercrime relaciona-se intrinsecamente a fatores econémicos,
pessoais e ideoldgicos, o que contribui para a ocorréncia de prejuizos financeiros significa-

tivos e danos irreparaveis a reputacao de organizagoes e individuos.

Para mitigar essas ameacas e prevenir possiveis ataques, é essencial que as orga-
nizacoes compreendam e analisem os dados coletados a partir de eventos em suas redes,
como enderegos Internet Protocol (IP), dominios, ferramentas e técnicas utilizadas, e,
em casos de ataques direcionados, credenciais como usudrio e senha (AL-MOHANNADI;
AWAN; HAMAR, 2020). No entanto, a coleta desses dados em ambientes de produgao
apresenta riscos consideraveis, o que exige a utilizacao de ferramentas especificas para
esse fim. Nesse contexto, os honeypots surgem como uma solugao eficaz: sistemas que si-
mulam ambientes de producao com o objetivo de atrair, detectar e monitorar atividades
maliciosas. Conforme descrito por Provos e Holz (2007), os honeypots podem ser classifi-
cados em dois tipos: de baixa interatividade, onde o sistema simulado oferece interacoes
limitadas ao atacante; e de alta interatividade, que disponibiliza um ambiente realista, o

qual permite que o invasor explore livremente o sistema operacional e seus servicos.

Para Viraja e Purandare (2021), o cibercrime desenvolve-se de maneira continua
e acelerada. Nesse cendrio, empresas e organizag¢oes enfrentam vulnerabilidades emer-
gentes e técnicas inovadoras, exploradas por individuos e grupos organizados, como as
APTs (Advanced Persistent Threats). Esses grupos caracterizam-se por elevados niveis de
especializacao e pela disponibilidade de recursos significativos, o que lhes permite explo-
rar diversos vetores de ataque cibernético para alcancar seus objetivos. Um grupo APT
define-se como uma ameaga sofisticada e persistente, composta por agentes geralmente
patrocinados por Estados ou motivados por interesses financeiros ou ideoldgicos, capazes
de conduzir campanhas prolongadas e altamente direcionadas contra alvos estratégicos,
com vistas a infiltragao, manutencao do acesso e exfiltragdo de dados sensiveis de maneira
furtiva. Entre seus principais objetivos, destaca-se o estabelecimento inicial e a expansao
continua de pontos de apoio dentro da infraestrutura das entidades-alvo, o que consiste
em acessos privilegiados, dispositivos comprometidos ou persisténcia em sistemas criticos.
Esses pontos permitem que o grupo mantenha o controle sobre a rede invadida, facilite

movimentos laterais, colete informacoes sensiveis de forma continua e, eventualmente,

Capitulo 1. Introdugdo 9

conduza novas fases do ataque com maior eficacia e discricdo. Em muitos casos, grupos
APT mantém a perseguicao a seus alvos durante longos periodos e propagam-se pela rede
interna por meio do emprego de malwares. Para a obtencao de informacgoes relacionadas
a ataques especificos, pode-se empregar redes de honeypots que simulam ambientes de
producao, desde que apresentem alta similaridade com o ambiente real da organizacao, o
que potencializa a eficacia na coleta de dados. Dessa forma, os honeypots possibilitam a
identificacdo de informagoes valiosas sobre novos malwares e sobre tentativas inéditas de

ataques direcionados a instituigoes.

O estudo de Mendes (2023) destaca a importancia do uso de honeypots no contexto
da Internet of Things (IoT). A adocao dessa tecnologia é particularmente relevante, uma
vez que dispositivos IoT conectam-se constantemente a Internet, muitas vezes transmitem
dados sensiveis ou apresentam configuragoes inadequadas de seguranca. A exploracao de
um honeypot em ambientes loT, conforme abordado no referido trabalho, possibilita a co-
leta de dados valiosos, como endpoints, a quantidade de requisi¢oes provenientes de cada
endereco IP e as tentativas de download de malwares. Quando aplicado ao ambiente cor-
porativo, um honeypot pode gerar informacoes significativas, semelhantes as apresentadas
no estudo, o que auxilia na identificacao precoce de ataques. De maneira complementar,
Rodrigues (2017) propoe a utilizagao de Deep Packet Inspection (DPI) em conjunto com
honeypots para capturar ataques direcionados as camadas de Rede, Transporte e Apli-
cagdo, o que analisa os logs obtidos e fornece uma série de informagoes criticas para a

seguranca das redes.

Nesse contexto, destaca-se a utilizacdo do Cowrie!, uma ferramenta amplamente
empregada na construcao de honeypots, especialmente para a simulagao de servigos Secure
Shell (SSH) e Telnet. O Cowrie é um honeypot que permite capturar as credenciais utili-
zadas por atacantes, registra comandos executados e coleta arquivos transferidos durante
tentativas de intrusao, o que oferece dados valiosos para a analise de comportamento
malicioso. Apesar de sua relevancia e robustez na coleta de informagoes, a ferramenta
apresenta limitagoes no que se refere a analise e visualizacdo dos dados gerados, o que
dificulta a extracao de informacoes relevantes de forma sisteméatica. Nesse cenario, o pre-
sente trabalho propoe o desenvolvimento de uma solugao que aprimora a interpretacao
e a visualizacdo das URLs coletadas pelo Cowrie, o que torna-as mais acessiveis e uteis
para a identificacdo de padroes de ataque e para a tomada de decisdes em seguranca da

informagao.

1 Disponfvel em https://github.com/cowrie/cowrie

Capitulo 1. Introdugdo 10

1.1 Objetivos

1.1.1 Objetivo Geral

O objetivo geral deste trabalho é desenvolver uma ferramenta para a analise de
informagoes capturadas por uma rede de honeypots. A partir da coleta de dados expostos
por atacantes, como URLs, propoe-se a implementagao de mecanismos capazes de verificar

a disponibilidade dessas informagoes.

Para alcancar os objetivos deste trabalho, serao utilizadas as seguintes tecnologias:
Python, Docker, o honeypot Cowrie, o banco de dados MyS@QL e conhecimentos de redes.
A escolha da linguagem Python justifica-se por sua versatilidade e pela facilidade na
criacao de scripts. O honeypot Cowrie foi selecionado em razao de sua simplicidade de
configuragao, das funcionalidades de integracao e dos recursos de registro de logs. Ja o
banco de dados MySQL foi escolhido devido a sua eficiéncia nas operagoes e a facilidade

de utilizacao.

1.1.2 Objetivos Especificos

Os objetivos especificos incluem:

o Criar uma ferramenta em Python para a verificagdo da disponibilidade das informa-

¢oOes obtidas através dos honeypots.

o Armazenar a URL em um banco de dados, juntamente com as datas de primeiro e

ultimo registro de acesso.

o Conduzir estudos de caso para validar o funcionamento do CowrieSniffer.

1.2 Organizacao da Monografia

O presente trabalho esta estruturado da seguinte maneira: O Capitulo 2 apresenta
uma revisao bibliografica que fundamenta a teoria utilizada para o desenvolvimento desta
pesquisa. Nele, é realizada uma investigacdo sobre ciberseguranca, conceitos relativos a
honeypots, a linguagem de programacao Python, conceitos sobre MySQL, Docker e os
trabalhos correlatos. O Capitulo 3 caracteriza as etapas do desenvolvimento de forma
modularizada, referenciando a visdo geral do CowrieSniffer, a configuracao inicial do
banco de dados de monitoramento, o desenvolvimento do arquivo de configuracao, o de-
senvolvimento do componente Main, do componente de configuracao, do componente de
manipulagdo do banco de dados do honeypot Cowrie, do componente de manipulagao do
banco de dados de monitoramento e do componente URLMonitor. O Capitulo 4 discorre

sobre os resultados da pesquisa, descrevendo o caso 1, no qual ambos os bancos de dados

Capitulo 1. Introdugdo 11

estao vazios; o caso 2, que corresponde a inicializacao da ferramenta com o banco de dados
Cowrie populado e o de monitoramento vazio; o caso 3, em que ambos os bancos de dados
estao populados; e o caso 4, cujo objetivo é analisar o comportamento da ferramenta em
relacdo a adigdo de novas URLs. Por fim, o Capitulo 5 apresenta as consideragoes finais

elaboradas a partir dos resultados obtidos, além das propostas para trabalhos futuros.

12

2 Revisao Bibliografica

Neste capitulo, serao apresentados os conceitos tedricos necessarios para a compre-
ensao dos principais conceitos abordados neste trabalho. Além disso, sera realizada uma

breve andlise de trabalhos correlatos.

2.1 Fundamentacao Tedrica

2.1.1 Ciberseguranca

De acordo com o NIST (National Institute of Standards and Technology), a ciber-
seguranca consiste no conjunto de praticas, tecnologias e processos destinados a protecao
de computadores, sistemas de informacao e servigos de comunicagao contra ataques ciber-
néticos (NIST, 2019). Essa drea abrange diversos aspectos de seguranga, com o objetivo de
garantir a confidencialidade, a integridade e a disponibilidade dos dados, além de prevenir

o vazamento de informacoes, o acesso nao autorizado e a interrupcao de servigos.

Além disso, Stallings (2014) apresenta trés conceitos fundamentais que orientam a
pratica da ciberseguranca. Esses principios formam uma triade, composta por confidenci-
alidade, integridade e disponibilidade. Cada um desses elementos representa um objetivo
essencial para a protecao de dados, sistemas de informagao e ambientes computacionais.

De acordo com Stallings (2014), esses conceitos sao definidos como:
Confidencialidade: assegura que todo acesso deve ser restrito para que informagoes
confidenciais nao estejam disponiveis para individuos nao autorizados;

Integridade: assegura que uma informacao s6 poderd ser modificada ou acessada por

aquele que detém a autorizagao especifica;
Disponibilidade: garante que um sistema nao fique disponivel para que ocorra o acesso

e uso rapido da informacgao.

Esses conceitos estabelecem os objetivos fundamentais da seguranga em aplicagoes
e sistemas. Dessa forma, os trés pilares constituem a base essencial para a protecao eficaz

dos ativos informacionais de qualquer organizacao.

2.1.2 Honeypots

Um honeypot ¢ uma tecnologia associada a um sistema computacional que simula

um ativo cibernético. Esse sistema possui vulnerabilidades de seguranca conhecidas ou

Capitulo 2. Revisao Bibliogrifica 13

configuragoes padrao. Seu objetivo é auxiliar na deteccao de novos ataques e rastrear
a atividade de um usuario nao autorizado. O valor de um honeypot esta relacionado a
capacidade de simular cendrios reais para capturar novas evidéncias e fornecer alertas e
previsoes (SPITZNER, 2003). Honeypots reduzem os falsos positivos em seguranca, assim,
isso permite que cada ambiente seja customizado para identificar os riscos de ataques
dos grupos APTs (do inglés Advanced Persistent Threats). Além disso, de acordo com
Javadpour et al. (2024), o honeypot é uma tecnologia flexivel que pode ser adaptada
para diferentes segmentos da computacao. Destacam-se duas classificacoes principais de

honeypots:

Honeypot de baixa interatividade: esse tipo de honeypot é associado a sistemas al-
tamente controlados que demandam poucos recursos. A interagdo com o usuario é

limitada a comandos e controles basicos, simulando apenas servigos e protocolos.

Honeypot de alta interatividade: essa modalidade de honeypot utiliza sistemas reais,
geralmente estruturados para um ativo cibernético especifico. Ele demanda maior
capacidade computacional, permitindo que o atacante tenha controle total sobre o
sistema, uma vez que simula um sistema operacional completo. Para implantar essa
modalidade, é essencial adotar técnicas rigorosas de isolamento para proteger a rede

principal.

No ambito das tecnologias de honeypots, o honeypot Cowrie destaca-se como uma
ferramenta de c6digo aberto relevante, desenvolvida em Python, que emula servicos SSH
e Telnet para atrair e registrar tentativas de invasao (OOSTERHOF, 2024). O estudo
de Cabral et al. (2021) evidencia sua eficdcia na coleta de dados sobre vetores de ataque
contemporaneos, permitindo aos pesquisadores analisar técnicas maliciosas sem compro-
meter sistemas reais. No que concerne a sua integragao com o sistema de gerenciamento
de banco de dados MySQL, o Cowrie utiliza um modulo especifico que, quando confi-
gurado no arquivo de configuragao principal, estabelece conexao com o banco de dados
e automaticamente cria tabelas estruturadas para armazenamento sisteméatico dos dados
capturados. Entre as principais tabelas, representadas na Figura 1, geradas pelo sistema,
destacam-se: sessions (registra informacgoes basicas de cada sessdo estabelecida), auth
(armazena tentativas de autenticac¢do), input (registra comandos inseridos pelos atacan-
tes), downloads (contém informagoes sobre arquivos baixados durante as sessoes) e ttylog
(armazena registros completos da interagao do terminal). Esta estruturagdo em banco de
dados relacional facilita significativamente anélises quantitativas e qualitativas posteriores

dos padroes de ataque observados.

Capitulo 2. Revisao Bibliogrifica 14

Banco de dados Cowrie

Tabela Sessions Tabela Input

Tabela Auth Tabela Downloads

Tabela Ttylog

Figura 1 — Diagrama das principais tabelas do banco de dados do Cowrie. Fonte: Elabo-
rado pelo autor (2025)

2.1.3 Python

Python é uma linguagem de programacao amplamente reconhecida por sua faci-
lidade de escrita e leitura de codigos. Essa caracteristica possibilita que desenvolvedores
atuem de maneira mais eficaz na criacdo e integracao de sistemas. Sua sintaxe simples
oferece uma ampla variedade de tipos e estruturas de dados, favorecendo a construcao de
solugoes eficientes. Além disso, a linguagem destaca-se pelo extenso conjunto de biblio-
tecas desenvolvidas por colaboradores ao longo dos anos, o que amplia as possibilidades
de criagao de scripts rapidos e flexiveis (MALLOY; POWER, 2017). Portanto, devido a

essas vantagens, a linguagem de programacao escolhida para este trabalho serd Python.

2.1.4 MySQL

O MySQL é um sistema de gerenciamento de banco de dados relacional de cédigo
aberto. Segundo Suehring (2002), desempenha um papel fundamental no armazenamento,
gerenciamento e recuperagao de dados, sendo amplamente utilizado em diversos tipos de

aplicagoes.

Baseado em um modelo relacional, o MyS@QL organiza os dados em tabelas separa-
das com relacionamentos entre elas, o que proporciona maior eficiéncia no processamento
das informacgoes. A linguagem utilizada é o Structured Query Language (SQL), padrao
amplamente adotado para bancos de dados relacionais. Seu principal diferencial reside na
facilidade e flexibilidade de implementacao. O MySQL opera eficientemente no modelo

cliente-servidor e destaca-se pela alta velocidade, confiabilidade e facilidade de uso.

Capitulo 2. Revisao Bibliogrifica 15

2.1.5 Docker

Segundo Bernstein (2014), o Docker é uma plataforma de codigo aberto que fornece
um método para automatizar a criacao e execucgao de aplicagoes em containers portateis.
Essencialmente, o Docker isola completamente o ambiente da aplicagao do sistema ope-
racional hospedeiro, o que garante maior controle sobre a execucao e a portabilidade do

software.

Os containers do Docker sao instancias criadas a partir de imagens, que podem
conter desde sistemas operacionais completos até partes especificas de uma aplicacao ja
configuradas para execucao. Essa abordagem possibilita a replicacao precisa de ambientes
computacionais. A construgao dessas imagens é realizada por meio de arquivos chamados
Dockerfiles, que consistem em scripts que possuem conjuntos de instrugoes e argumentos.
Esses arquivos automatizam a criacao de novas imagens a partir de uma base predefi-
nida, permitindo a configuragao e a customizagdo do ambiente conforme necessario. Dessa
forma, os Dockerfiles desempenham um papel fundamental na organizacao dos artefatos

de implantagao e na simplificagao do processo de distribuicao das aplicagoes.

De acordo com Ibrahim, Sayagh e Hassan (2021), grande parte das aplicagbes
modernas compoe-se de multiplos componentes, o que exige a coordenagao de diversos
containers para seu funcionamento. Por exemplo, uma aplicacdo pode necessitar simulta-
neamente de um servidor web e de um banco de dados. O Docker Compose surge como
uma extensao natural do Docker, o qual permite a definicdo e a orquestracao de aplica-
¢oes multicontainer. Essa configuracao descreve-se em um arquivo de composicao (Docker
Compose file), no qual especificam-se as imagens utilizadas, suas configuragoes e as intera-
¢Oes entre os componentes. Além disso, o Docker Compose possibilita a definicao de agoes
a serem executadas em caso de falha de um dos componentes, o que torna a administracao

da infraestrutura mais eficiente.

2.2 Trabalhos Correlatos

O trabalho de Mehta et al. (2021) utilizou o honeypot Cowrie, cujo principal ob-
jetivo é atrair ataques direcionados aos servigos SSH e FTP, para coletar e analisar
informagoes sobre invasores. O honeypot adota técnicas que iludem os atacantes ao ofere-
cer respostas aparentemente reais permitindo a interacao do usuario. Além de apresentar
uma analise abrangente dos dados coletados, o estudo propds uma abordagem probabilis-
tica capaz de calcular a probabilidade de padrées de comportamento durante a navegacao
de diretorios pelos invasores. Essa abordagem, integrada as funcionalidades do honeypot,
contribui para uma melhor compreensao da dindamica dos ataques e auxilia na previsao
do préximo movimento do atacante. O trabalho também utilizou o framework FLK para

visualizar os dados extraidos dos logs. Para a analise probabilistica, os autores compilaram

Capitulo 2. Revisao Bibliogrifica 16

uma lista contendo todas as strings de comandos executados pelos usuarios e estabele-
ceram dois dicionarios. O primeiro registra a frequéncia de ocorréncia de cada nome de
diretério, enquanto o segundo, um dicionario bidimensional que armazena as transi¢oes
entre os diretorios e suas respectivas frequéncias. A partir desses dados, a probabilidade de
padroes de transicao foi calculada por meio do método frequentista, dividindo o niimero
de acessos a um diretorio especifico pelo total de ocorréncias. Os resultados revelaram
que os paises com maior nimero de ataques originados sao China, Estados Unidos, Rus-
sia, Taiwan e Japao. Além disso, o usudrio admin foi utilizado em 67% das tentativas,
sendo que 54% delas nao envolveram o uso de senha. Na andlise probabilistica, destacou-
se que o diretério /bin/busybor apresentou uma probabilidade de 10% de ser acessado,

configurando-se como o destino mais provavel dentro dos padroes analisados.

Outro trabalho relacionado é o de Nastase et al. (2024), o qual tem como obje-
tivo aprimorar o honeypot Cowrie. O estudo apresenta contribuicoes significativas tanto
na compreensao da arquitetura do Cowrie quanto na implementacdo de melhorias no
codigo-fonte. Ele descreve dois modos de operagao do Cowrie: o Emulated Shell Mode, o
qual permite ao atacante executar comandos basicos com interacoes limitadas, e o Prozy
Mode, o qual oferece interagao completa com a maquina, dessa forma permite ao ata-
cante assumir o controle total do sistema. Além disso, o trabalho propoe uma camada
de frontend, a qual atua como um proxy para interceptar mensagens do protocolo SSH,
enquanto a camada de backend recebe as conexdes e opera como servidor. Entre os pro-
blemas identificados, destaca-se o uso excessivo de recursos computacionais, causado pela
inicializacao simultanea de todas as maquinas virtuais pelo backend, o que sobrecarrega
os nucleos do processador. Para mitigar esse problema, implementou-se um intervalo de
30 segundos na funcao de criacao de maquinas virtuais. Outro problema enfrentado foi a
limitacao de uma conexao por maquina virtual. Quando todas as maquinas estavam em
uso, o Cowrie interpretava incorretamente o estado do sistema e tentava desligar todas
as maquinas virtuais. A solugdo consistiu em remover a verificagdo de uma variavel que
verificava a disponibilidade das maquinas durante a sequéncia de inicializagdo. Por fim, o
trabalho também aprimorou a andlise dos artefatos gerados, e assim introduziu um evento
de log que associa o snapshot a uma sessao, o qual facilita o processo de correlacao que

anteriormente nao era suportado.

O experimento conduzido por Cabral et al. (2021) explorou o uso de trés ho-
neypots Cowrie configurados de maneiras distintas. Honeypots com configuracoes padrao
mostram-se mais suscetiveis a detecgao por atacantes, os quais frequentemente utilizam
scripts personalizados e ferramentas amplamente conhecidas, como Nmap e Shodan, para
identificd-los, especialmente devido ao fato de o Cowrie ser um projeto de coédigo aberto.
A pesquisa buscou, portanto, desenvolver uma estrutura a qual permitisse a personali-
zacao das configuragoes do Cowrie, com o objetivo de aumentar seu grau de realismo e

eficicia. No experimento, o Cowrie A configurou-se de forma padrao, o qual utilizou as

Capitulo 2. Revisao Bibliogrifica 17

portas SSH 22 e 2222, bem como versoes e algoritmos conhecidos. Em contrapartida, os
Cowries B e C configuraram-se de maneira personalizada, o que dificultou a deteccao por
meio da inclusao de outros protocolos, como HTTP e DNS, e o uso de algoritmos alter-
nativos para SSH. Apos 28 dias de coleta de dados, o Cowrie A registrou 49.340 conexoes
SSH, enquanto os Cowries B e C apresentaram um incremento de 356% e 400%, respec-
tivamente, no nimero de conexdes em comparacao com o Cowrie A. Por fim, a pesquisa
desenvolveu um script em Python para avaliar se um host especifico era um honeypot
Cowrie. Durante os testes, o script detectou o Cowrie A como honeypot com 100% de
precisao, mas nao conseguiu identificar os Cowries B e C como honeypots, o que reforgou

a eficacia das configuragoes personalizadas na camuflagem desses sistemas.

18

3 Desenvolvimento

Neste Capitulo, apresenta-se o processo de desenvolvimento do CowrieSniffer?.
Na Secao 3.1, é fornecida uma visao abrangente da aplicacdo. Em seguida, a Secao 3.2
detalha os aspectos relacionados a configuracao do banco de dados de monitoramento,
enquanto a Se¢ao 3.3 descreve o arquivo de configuracao utilizado para o armazenamento
de parametros essenciais. A Se¢ao 3.4 trata do desenvolvimento do componente principal,
responsavel pela orquestracao das funcionalidades, e a Secao 3.5 aborda a construcao do

modulo de configuracao.

Além disso, as Segoes 3.6 e 3.7 explicam os componentes responsaveis pela mani-
pulagdo dos bancos de dados do Cowrie e de monitoramento, respectivamente. Por fim,
a Secao 3.8 apresenta o desenvolvimento do componente URLMonitor, encarregado da

execucao periodica dos demais componentes.

3.1 Visao Geral

A ferramenta é constituida por componentes que interagem entre si com o pro-
posito de monitorar a disponibilidade da URL associada ao atacante, partindo do pres-
suposto de que este ja se encontra conectado ao honeypot. A motivacao para essa mo-
nitoragao continua decorre da volatilidade caracteristica das infraestruturas cibernéticas
maliciosas, as quais frequentemente sao desativadas ou modificadas em curtos periodos
apos sua utilizacao inicial. A coleta de URLs, no ambiente controlado do honeypot, possibi-
lita a identificacao e analise de repositérios de malwares, servidores de comando e controle
(CEC) ou plataformas de exfiltragao de dados antes que sejam desativadas, constituindo,
assim, um recurso valioso para pesquisadores de seguranca e analistas forenses. Além
disso, esse monitoramento ininterrupto permite o estabelecimento de correlagées tempo-
rais entre diferentes campanhas de ataque, contribuindo para a compreensao da evolucao
tatica dos agentes maliciosos e para o desenvolvimento de contramedidas mais eficazes no

ambito da seguranca cibernética.

A Figura 2 ilustra o funcionamento da coleta de informagoes realizada pelo ho-
neypot Cowrie. Inicialmente, quando o atacante realiza o download de um arquivo por
meio de um comando, como wget ou curl, a URL correspondente é armazenada nas ta-
belas downloads e input. A tabela downloads armazena informacoes como identificadores,
identificadores de sessoes, timestamps, URL do servidor de origem, caminho do arquivo e

hash. Por sua vez, a tabela input registra dados como identificadores, identificadores de

1 Disponfvel em https://github.com/r1beirin/CowrieSniffer

Capitulo 3. Desenvolvimento 19

sessoes, timestamps, realm, success e o campo input, que contém os keystrokes do usuario.

Grava a entrada do atacante

o na tabela Input
wget http://atacante.com/malware §
- Ll
Q > —
‘ Grava a URL oriunda do atacante
na tabela Downloads Banco de dados
Atacante Honeypot Cowrie Cowrie

Figura 2 — Diagrama de coleta Cowrie. Fonte: Elaborado pelo autor (2025)

O diagrama apresentado na Figura 3 ilustra a visao geral da ferramenta desenvol-
vida, destacando seu fluxo de funcionamento e as principais decisdes implementadas para
o monitoramento das URLs capturadas pelo Cowrie. A ferramenta inicia sua execucao e
coleta as URLs armazenadas nas tabelas downloads e input do banco de dados do Cowrie.
Em seguida, o componente URLMonitor processa essas URLs e insere as novas entradas
no banco de dados de monitoramento. Apds a inser¢dao, o mesmo componente verifica a
disponibilidade das URLs e atualiza as informagoes no banco de dados correspondente.

Por fim, o ciclo reinicia-se, o que assegura a continuidade do monitoramento.

CowrieSniffer Banco de dados

P Cowrie

. - C t:
ad S — > | Somponente

Coleta de URLs
nas tabelas de Tratamento das URLs

Download e Input

Insere as novas

Rein_icio de URLs identificadas
ciclo
Atualiza a informagéao Verifica a
a a Informac disponibilidade
mm—— de disponibilidade m——
Componente das URLs
Wb <« URLMonitor | <
Banco de dados Banco de dados
Monitoramento Monitoramento

Figura 3 — Diagrama geral do CowrieSniffer. Fonte: Elaborado pelo autor (2025)

3.2 Configuracao do banco de dados de monitoramento

O funcionamento do banco de dados de monitoramento é baseado na tecnologia

Docker. Para sua criacao, é necesséaria a definicdo de dois arquivos essenciais:

o schema.sql: Responsavel pela estrutura do banco de dados, este arquivo contém

os comandos SQ)L necessarios para definir as tabelas e seus respectivos atributos.

Capitulo 3. Desenvolvimento 20

Conforme indicado na Listagem 3.1, o arquivo schema.sql define a estrutura do

banco de monitoramento. No contexto do monitoramento de URLs, ele cria a tabela

urls, que armazena informagoes essenciais sobre os acessos registrados.

1

CREATE TABLE urls (
id INT AUTO_INCREMENT PRIMARY KEY,
url TEXT NOT NULL,
first_view DATETIME NULL,
last_view DATETIME NULL
)

Listagem 3.1 — Estrutura para a tabela urls no banco de dados de monitoramento.

o docker-compose.yaml: Responsavel por especificar a configuracao e orquestracao

dos servicos no ambiente Docker. Como ilustrado na Listagem 3.2, o arquivo docker-

compose.yaml orquestra a configuracao e o funcionamento do banco de monitora-

mento. Neste caso, ele define um servigo chamado db, que utiliza a imagem oficial

do MySQL e configura um contéiner chamado mysql _monitor. O docker-compose

também define:

— Reinicializagao automatica do banco de dados com a opcao restart: always.

— Configuragao de credenciais (MYSQL ROOT _PASSWORD,

MYSQL DATABASE, MYSQL_ USER e MYSQL PASSWORD) que devem

ser trocadas.

Mapeamento de portas, permitindo o acesso ao banco de dados via porta
3306.

Volumes persistentes, garantindo que os dados armazenados no MySQL nao

sejam perdidos entre reinicializagoes.

Montagem do arquivo schema.sql, que possibilita a criacao da estrutura

do banco de dados durante a inicializagdo do contéiner.

Definicao de redes Docker, assegurando a comunica¢ao entre containers

dentro de um ambiente isolado.

services:
db:

image: mysql:latest

container_name: mysql_monitor

restart: always

environment:
MYSQL_ROOT_PASSWORD: {CHANGE_HERE}
MYSQL_DATABASE: {CHANGE_HERE}
MYSQL_USER: {CHANGE_HERE}
MYSQL_PASSWORD: {CHANGE_HERE}

Capitulo 3. Desenvolvimento 21

11 ports:

12 - "3306:3306"

13 volumes:

14 - db_data:/var/lib/mysql

15 - ./schema.sql:/docker-entrypoint-initdb.d/schema.sql
16 networks:

17 - my_network

18

19 volumes:

20 db_data:

21 driver: local

23 networks:
24 my_network:
25 driver: bridge
Listagem 3.2 — Configuracao do container no docker-compose.yaml para inicializacao do

banco de dados MySQL de monitoramento.

Essa abordagem baseada em container facilita a implantacao e manuten¢ao do banco de
dados. Dessa forma, garante-se a existéncia de um ambiente controlado para o monitora-

mento das URLs coletadas pelo Cowrie.

3.3 Desenvolvimento do arquivo de configuracao

O arquivo de configuragao é responsavel por guardar as informagoes do banco de
dados do Cowrie e do monitoramento. Este arquivo contém as configuracoes necessarias
para a conexao com os bancos de dados utilizados no monitoramento. Ele é dividido em

duas secoes:

o CowrieDB: Gerencia as informagoes de acesso ao banco de dados do Cowrie.
Esse banco é utilizado para armazenar as informacoes, como downloads, inputs,

keystrokes, do honeypot Cowrie.

e MonitoringDB: Guarda as informacoes de acesso ao banco de dados. Esse banco

¢é utilizado para armazenar as informagoes de monitoramento.

Como ilustrado na Listagem 3.3, o arquivo config.ini contém as informacoes para
ambas as bases de dados. Dessa forma, garante a conexao adequada entre o CowrieSniffer

e os bancos de dados.

[CowrieDB]
2 host = YOUR_HOST
3 user = YOUR_USER

Capitulo 3. Desenvolvimento 22

YOUR_PASSWORD
YOUR_DATABASE

password

database

[MonitoringDB]
host = YOUR_HOST
user = YOUR_USER
password = YOUR_PASSWORD
database = YOUR_DATABASE
Listagem 3.3 — Arquivo de configuracao config.ini para as conexdes com os bancos de

dados.

3.4 Desenvolvimento do componente Main

O arquivo principal do sistema é responséavel por inicializar as configuracoes e ins-
tancias das classes necessarias para o funcionamento do sistema de monitoramento. O
diagrama de pacotes ilustrado na Figura 4 evidencia a organizagao estrutural hierarquica
do sistema, destacando a modularizacao e as relacdes de dependéncia entre os diversos
pacotes da ferramenta. A arquitetura apresenta uma configuracao em camadas onde o
modulo principal main.py desempenha fungao orquestradora, realizando a importacao e
integracao dos pacotes especializados: Config para o gerenciamento de configuracoes; data-
base, que encapsula os manipuladores de persisténcia especificos, como CowrieDBHandler
e MonitoringDBHandler; e monitoring, contendo o componente URLMonitor, responsavel

pelo ciclo de execucao.

Capitulo 3. Desenvolvimento 23

app
Config monitoring
Config.py URLMonitor.py
\ A
In;lpgrt Imr')ort
database N main.py
’Impor{ -
. ‘:"’ ,,"
CowrieDBHandler.py Import
MonitoringDBHandler.py A I:l Pacote
--->» Dependéncia/lmportagao

Figura 4 — Diagrama de pacotes da classe Main. Fonte: Elaborado pelo autor (2025)

A Listagem 3.4 apresenta o componente principal, que tem como objetivo inicia-
lizar e orquestrar os processos essenciais para o funcionamento do sistema. Inicialmente,
a classe Config é instanciada, seu objeto acessa configurac¢oes do sistema, especificamente
as credenciais e detalhes de conexao dos dois bancos de dados. Com essas informagoes, o
fluxo de execucgao instancia objetos das classes CowrieDBHandler e MonitoringDBHan-
dler, responsaveis por gerenciar as interagdoes com os respectivos bancos de dados. Em
seguida, a classe URLMonitor, que gerencia o ciclo de execu¢ao dos componentes é ins-
tanciada e inicia sua tarefa de coleta e monitoramento. Esse fluxo garante que o sistema
de monitoramento seja configurado corretamente, com as conexoes adequadas aos ban-
cos de dados, e que o URLMonitor inicie suas atividades de monitoramento conforme o

esperado.

def main():
config = Config()

cowrie_db_config = config.get_cowrie_db_config()

Capitulo 3. Desenvolvimento 24

monitoring_db_config = config.get_monitoring_db_config()
cowrie_db = CowrieDBHandler (cowrie_db_config)
monitoring_db = MonitoringDBHandler (monitoring_db_config)
monitor = URLMonitor (cowrie_db, monitoring_db)

monitor.start ()

if __name__ ==

main ()

Listagem 3.4 — Componente principal (main.py) do sistema de monitoramento.

3.5 Desenvolvimento do componente de configuracao

A classe do componente de configuracao, Config, é responsavel por ler e for-
necer as configuragoes, extraidas do arquivo config.ini, para a conexao com os ban-
cos de dados. Como mostrado na Listagem 3.5, a classe Config contém dois métodos
get__cowrie__db__config() e get_monitoring _db__config(), que retornam um dicionario com

as configuragoes de cada banco de dados, como o host, usuario, senha e nome do banco.

class Config:
def get_cowrie_db_config(self):
return {
'host': self.config.get('CowrieDB', 'host'),
'user': self.config.get('CowrieDB', 'user'),
'password': self.config.get('CowrieDB', 'password'),

"database': self.config.get('CowrieDB', 'database')

def get_monitoring_db_config(self):

return A
'host': self.config.get('MonitoringDB', 'host'),
'user': self.config.get('MonitoringDB', 'user'),
'password': self.config.get('MonitoringDB', 'password'),
"database': self.config.get('MonitoringDB', 'database')
}

Listagem 3.5 — Componente Config.py, responsavel pela leitura das configuragoes do

sistema.

Capitulo 3. Desenvolvimento 25

3.6 Desenvolvimento do componente de manipulacao do banco de

dados do Cowrie

O componente de manipulacdo do banco de dados do Cowrie é responsavel por
gerenciar a conexao e execucao de consultas no banco de dados Cowrie. Esse componente
utiliza a biblioteca mysql.connector para conectar-se ao banco de dados MySQL e realizar

as operacgoes necessarias.

A Listagem 3.6 apresenta a classe CowrieDBHandler, responsavel por estabelecer
a conexao com o banco de dados e executar consultas para recuperar dados especificos,
como URLs e entradas do banco de dados do Cowrie. Os métodos get_urls _cowrie() e
get_inputs _cowrie() realizam consultas SQL para retornar dados das tabelas downloads

e tnput, respectivamente.

lclass CowrieDBHandler:

2 def __init__(self, configDB):
3 self.configDB = configDB
1

5 @contextlib.contextmanager

6 def get_connection(self):
7 connection = None

8 cursor = None

9 try:

10 max_retries = 5

11 for retry in range(max_retries):

12 try:

13 connection = mysql.connector.connect (¥*self.configDB
)

14 cursor = connection.cursor(dictionary=True, buffered
=True)

15 break

16 except Error as e:

17 print (f"Error connecting to database (attempt {retry
+1}/{max_retries}): {e}")

18 if retry == max_retries - 1:

19 raise

20 time.sleep(2)

21

22 yield cursor, connection

23

24 finally:

25 if cursor:

26 cursor.close ()

27 if connection and connection.is_connected():

28 connection.close ()

Capitulo 3. Desenvolvimento 26

46

def get_urls_cowrie(self):
try:
with self.get_connection() as (cursor, connection):
query = "SELECT DISTINCT url FROM downloads ORDER BY url

cursor.execute (query)

return cursor.fetchall ()

except Error as error:
print (f"Error executing query on CowrieDB: {error}")

return []

def get_inputs_cowrie(self):
try:
with self.get_connection() as (cursor, connection):
query = "SELECT DISTINCT input FROM input ORDER BY input

cursor .execute (query)

return cursor.fetchall ()

except Error as error:
print (f"Error executing query on CowrieDB: {errorl}")

return []

Listagem 3.6 — Componente CowrieDBHandler.py, responsavel pela conexao e execugao

de consultas no banco de dados Cowrie.

3.7 Desenvolvimento do componente de manipulacao do banco de

dados de Monitoramento

A classe MonitoringDBHandler, representada na Listagem 3.7, é responsavel pela
interacao com o banco de dados de monitoramento. Ela estabelece a conectividade, insere
novas URLs para monitoramento, atualiza as informacoes de disponibilidade e realiza
consultas para obter as URLs que estao sendo monitoradas. A classe contém os seguintes

métodos:

« url_monitoring _is__empty(): verifica se o banco de dados estd vazio. Retorna

True em caso afirmativo e Fualse caso contrario.

» update__last__view(url): atualiza o campo last_view para uma determinada URL.

Esse campo indica a ultima vez em que a URL foi checada.

» insert__url(url): insere uma nova URL no banco de dados. A inser¢ao ocorre

apenas caso ela ainda nao exista.

Capitulo 3. Desenvolvimento 27

« get__urls_monitoring(): retorna uma lista contendo as URLs monitoradas. Essa

lista retine todas as URLs que estao sendo acompanhadas pelo sistema.

Essa classe ¢ essencial para o gerenciamento das URLs monitoradas, pois realiza
inser¢oes e atualizagoes no banco de dados. As operagoes de insercao e atualizacao asse-
guram que os dados de monitoramento permanecam atualizados, enquanto a consulta das

URLs monitoradas facilita a analise do comportamento no ambito do CowrieSniffer.

lclass MonitoringDBHandler:

9
3
1
5

6

def __init__(self, configDB):
self.configDB = configDB

@contextlib.contextmanager
def get_connection(self):
connection = None

cursor = None
try:
max_retries = 5

for retry in range(max_retries):

try:
connection = mysql.connector.connect (**xself.configDB
)
cursor = connection.cursor(dictionary=True, buffered
=True)
break

except Error as e:
print (f"Error connecting to database (attempt {retry
+1}/{max_retries}): {e}")
if retry == max_retries - 1:
raise

time.sleep (2)

yield cursor, connection

finally:
if cursor:
cursor.close ()
if connection and connection.is_connected():

connection.close ()

def url_monitoring_is_empty(self):
try:
with self.get_connection() as (cursor, connection):
cursor.execute ("SELECT COUNT (%) AS count FROM urls")
result = cursor.fetchone()

return result['count'] == 0

Capitulo 3. Desenvolvimento 28

36

37 except Error as error:

38 print (f"Error checking if urls table is empty: {error}")

39 return False

40

41 def update_last_view(self, url):

42 try:

43 with self.get_connection() as (cursor, connection):

44 cursor.execute ("SELECT url FROM urls WHERE url (
url,))

45 if not cursor.fetchone():

46 print (£"URL '{url}' does not exist in monitoring.")

47 return

48

49 currentTime = datetime.now ()

50 sql = "UPDATE urls SET last_view = %s WHERE url

51 cursor.execute(sql, (currentTime, url))

52 connection.commit ()

53

54 print (f"Updated URL: {url}")

55

56 except Error as error:

57 print (f"Error updating URL: {error}")

58

59 def insert_url(self, url):

60 try:

61 with self.get_connection() as (cursor, connection):

62 cursor.execute ("SELECT url FROM urls WHERE url (
url,))

63 if cursor.fetchone():

64 print (£"URL '{url}' already exists in monitoring.")

65 return

66

67 currentTime = datetime.now ()

68 sql = "INSERT INTO urls (url, first_view, last_view)
VALUES (%s, %s, %s)"

69 cursor .execute(sql, (url, currentTime, currentTime))

70 connection.commit ()

71

72 print (f"Inserted URL: {url}")

73

74 except Error as error:

75 print (f"Error inserting URL: {error}")

76

77 def get_urls_monitoring(self):

78 try:

79 with self.get_connection() as (cursor, connection):

Capitulo 3. Desenvolvimento 29

query = "SELECT DISTINCT url FROM urls ORDER BY url"
cursor .execute (query)

return cursor.fetchall ()

84 except Error as error:
print (f"Error getting URLs from monitoring: {error}")
return []
Listagem 3.7 — Componente MonitoringDBHandler.py responsavel pela interagdo com o

banco de dados de monitoramento.

3.8 Desenvolvimento do componente URLMonitor

A Figura 5 apresenta a visao geral do componente URLMonitor. Esse componente é
responsavel por todo o funcionamento da estratégia de coleta e verificagao das informacgoes

no sistema.

Inicialmente, o sistema verifica se o banco de dados de monitoramento estd va-
zio. Caso essa condicao seja verdadeira, o banco de monitoramento é preenchido com
as URLs coletadas na tabela downloads do banco de dados do Cowrie, e a variavel
last _known downloads urls cowrie db é atualizada. Se o banco de monitoramento nao
estiver vazio, realiza-se a sincronizacao dessa variavel com os enderecos presentes na tabela

downloads do banco de dados do Cowrie.

Em sequéncia, o CowrieSniffer ingressa em um estado condicional de iteragdo con-
tinua (while true) do qual s6 serd possivel sair mediante interrup¢ao manual realizada pelo
usuario. A etapa subsequente consiste na verificacao da existéncia de novas URLs tanto na
tabela downloads quanto na tabela input, ambas pertencentes ao honeypot Cowrie. Caso
sejam identificados novas URLs, estas sao inseridas no banco de dados de monitoramento,
e as variaveis responsaveis pelo armazenamento das URLs sao devidamente atualizadas

para refletir o estado atual do sistema.

Por fim, o sistema realiza uma verificacao de conexao, atualizando os enderecos ati-
vos no banco de dados de monitoramento. Essa estrutura ciclica garante que a ferramenta
desenvolvida mantenha um monitoramento continuo e atualizado das URLs registradas
pelo Cowrie, facilitando a identificagdo e o acompanhamento dos servidores que hospedam

malwares.

Capitulo 3. Desenvolvimento

30

Preenche o banco de dados de
monitoramento com as URLs da tabela
Downloads do banco de dados do Cowrie
e as armazena na variavel
last_known_dowloads_urls_cowrie_db

l Inicio da ferramenta

Coleta as URLs da tabela Downloads e
armazena na variavel
last_known_dowloads_urls_cowrie_db

Sim
Novas URLs na tabela

Ny,
y o

Downloads?

Insere no banco de monitoramento e
atualiza variavel
last_known_dowloads_urls_cowrie_db

Sim

Novas URLs na tabela Inputs?

Insere no banco de monitoramento e
atualiza variavel
last_known_input_urls_cowrie_db

Banco de
monitoramento esta
vazio?

Verifica conex&o.
Atualiza o campo lastView

Figura 5 — Diagrama da visao geral do componente URLMonitor. Fonte: Elaborado pelo

autor (2025)

O codigo representado na Listagem 3.8 é responséavel pelas tarefas de extracao, ve-

rificagdo e monitoramento. Esse componente constitui o niicleo funcional do CowrieSniffer,

assegurando a coleta e a andlise continua das URLs acessadas por agentes maliciosos no

ambiente de honeypot.

A classe URLMonitor mantém conexao com dois bancos de dados principais: o

banco de dados do Cowrie, que armazena os registros de eventos do honeypot, e o banco de

dados de monitoramento, que concentra os enderecos identificados para acompanhamento.

Além disso, a classe utiliza duas varidaveis da estrutura de dados do tipo set para armazenar

Capitulo 3. Desenvolvimento 31

os ultimos registros conhecidos, evitando redundancias nas novas entradas.

Os principais métodos implementados nesse componente sao descritos a seguir.
Cada um deles desempenha funcgoes especificas que contribuem para o funcionamento

integrado da ferramenta.

« extract__urls__from__log(log__entry): responsivel pelo processamento e extra-
cdo de URLs a partir dos logs do Cowrie. Para isso, emprega expressoes regulares

que identificam padrdes de enderecos na internet, garantindo uma extracao precisa.

» verify__connections(): verifica a conectividade das URLs armazenadas no banco
de dados de monitoramento. Para isso, realiza tentativas de conexao T'C'P nos ende-
regos extraidos, utilizando as portas padrao (443 para HTTPS e 80 para HTTP) ou
uma porta especifica. Caso a conexao seja bem-sucedida, a tltima data de verificacao

do endereco ¢é atualizada no banco de dados.

» verify_from__input(): monitora novos registros da tabela input no banco de
dados do Cowrie, extraindo URLs presentes nesses comandos e inserindo-as no banco

de dados de monitoramento para andalise posterior.

» verify _download(): analisa a tabela downloads do Cowrie para identificar URLs
associadas a arquivos baixados durante sessoes interativas dos atacantes. Caso novos

enderecos sejam encontrados, sao adicionados a base de monitoramento.

« populate__urls_monitoring(): executado durante a inicializacdo da ferramenta,
esse método popula a base de monitoramento com as URLs previamente registradas

no Cowrie, garantindo que a analise inicie com um conjunto inicial de enderecos.

o run__periodic__tasks(): principal responsavel pela execugao continua das tare-
fas do CowrieSniffer. Em ciclos peridédicos, o método verifica a presenca de novos
enderecos nos registros do Cowrie, monitora mudancas nas tabelas input e down-
loads, testa a conectividade dos enderegos armazenados e repete todo o processo,

garantindo a atualizacdo constante das informacoes.

Com essa abordagem, o CowrieSniffer proporciona um monitoramento eficiente
e automatizado das URLs acessadas em um ambiente de honeypot. Tal funcionalidade
possibilita a realizagdo de analises mais aprofundadas sobre o comportamento de agentes

maliciosos.

class URLMonitor:

2 def extract_urls_from_log(self, log_entry):
3 url_pattern = r'https?://["\s<>\"]+[wwuw\.["\s<>\"]+"'
4 urls = set(re.findall(url_pattern, log_entry))

5 cleaned_urls = set(url.rstrip(';') for url in urls)

Capitulo 3. Desenvolvimento 32

24

26

27

28

29

31

32

33
34

36

37

38

39

40

41

43

44

46

return cleaned_urls

def verify_connections (self):

urls = self.monitoring_db.get_urls_monitoring ()

Regex for domain/IP and port (if present)
addrPattern = (
r'https?:\/\/"' # http or https
r' ((?:\d{1,3}\.){3}\d{1,3}' # IPv4 address
r'|' # or
r'(?7:[a-zA-Z20-9-1+\.)+[a-zA-Z]1{2,})"' # domain name
r'(?7::(\d+))?"' # optional port

for url in urls:
if url['url']:
match = re.search(addrPattern, url['url'])
if match:

host = match.group (1)

if match.group(2):
port = int (match.group(2))
else:
if url['url'].startswith('https'):
port = 443
else:
port = 80

print (£" [VERIFYING CONNECTION] Testing {hostl}:{
portl}")

try:
with socket.create_connection((host, port),
timeout=5) as s:
print (£" [VERIFYING CONNECTION]
Connection {host}:{port} successful")
self .monitoring_db.update_last_view(urll[
"url'])
except socket.error:
print (£"[VERIFYING CONNECTION] Connection to
{host}:{port} failed")
else:
print (£"[VERIFYING CONNECTION] Invalid URL
format: {url['url']}")

def verify_from_input (self):

current_inputs = set(input['input'] for input in self.

Capitulo 3. Desenvolvimento 33

cowrie_db.get_inputs_cowrie())

47

48 try:

49 if current_inputs != self.
last_known_input_urls_cowrie_db:

50 print (£"[VERIFYING URL] Change Detect on Input on

Cowrie!™")

52 for input in current_inputs:

53 urls = set(self.extract_urls_from_log(input))

54 if urls:

55 for url in urls:

56 try:

57 self .monitoring_db.insert_url (url)
58 except Exception as e:

59 print (£" [VERIFYING URL] Error adding

URL {url}: {str(e)}")
60
61 self.last_known_input_urls_cowrie_db =

current_inputs

62

63 else:

64 print ("[VERIFYING URL] No change on Input on Cowrie!
"

65

66 except Exception as e:

67 print (£" [VERIFYING URL] Error on verifying: {str(e)}")

68

69 def verify_download(self):

70 try:

71 current_cowrie_urls = set(url['url'] for url in self.
cowrie_db.get_urls_cowrie())

72

73 if current_cowrie_urls != self.
last_known_dowloads_urls_cowrie_db:

74 print (£" [VERIFYING URL] Change Detect on Downloads
on Cowrie!")

75 monitoring_urls = set(url['url'] for url in self.
monitoring_db.get_urls_monitoring())

76 new_urls = current_cowrie_urls - monitoring_urls

r

78 if new_urls:

79 for url in new_urls:

80 try:

81 self .monitoring_db.insert_url (url)

82 except Exception as e:

83 print (£" [VERIFYING URL] Error adding URL

Capitulo 3. Desenvolvimento 34

{url}: {str(e)}")

84

85 self.last_known_dowloads_urls_cowrie_db =
current_cowrie_urls

86

87 else:

88 print ("[VERIFYING URL] No change on Downloads on
Cowrie!")

89

90 except Exception as e:

91 print (£" [VERIFYING URL] Error on veryfying: {str(e)l}")

92

93 def populate_urls_monitoring(self):

94 print ("[INIT] Initializing population of monitoringDB")

95 urls = self.cowrie_db.get_urls_cowrie ()

96 initial_urls = set(url['url'] for url in urls)

97 self.last_known_dowloads_urls_cowrie_db = initial_urls

98

99 for url in initial_urls:

100 try:

101 self .monitoring_db.insert_url (url)

102 except Exception as e:

103 print (£" [INIT] Error adding URL {urll}: {str(e)}")

104

105 def run_periodic_tasks(self):

106 if self.monitoring_db.url_monitoring_is_empty ():

107 print ("[INIT] MonitoringDB empty")

108 self .populate_urls_monitoring ()

109 else:

110 self.last_known_dowloads_urls_cowrie_db = set(url['url']
for url in self.cowrie_db.get_urls_cowrie())

111 print (£"[INIT] State loaded: {self.
last_known_dowloads_urls_cowrie_db}")

112

113 while True:

114 print (" [PERIODIC TASK] Running...")

115 self .verify_download ()

116 self .verify_from_input ()

117

118 if not self.monitoring_db.url_monitoring_is_empty () :

119 self .verify_connections ()

120

121 print ("[PERIODIC TASK] Finished!", end="\n\n")

122 time.sleep (5)

123

124 def start(self):

Capitulo 3. Desenvolvimento 35

ot

self.run_periodic_tasks ()

Listagem 3.8 — Componente URLMonitor.py responsavel pelo ciclo de monitoramento

36

4 Resultados

Neste capitulo, sao apresentados os estudos de caso realizados para avaliar o funci-
onamento do CowrieSniffer em diversos contextos operacionais. Os cenarios selecionados
foram metodicamente definidos com base no processo iterativo de desenvolvimento da
ferramenta, sendo que cada caso representa um desafio técnico especifico identificado e

solucionado durante a implementacao do CowrieSniffer.

A Secao 4.1 descreve o Caso 1, no qual ambos os bancos de dados, Cowrie e de
monitoramento, encontram-se vazios. A Secao 4.2 aborda o Caso 2, que corresponde a
inicializacao da ferramenta com o banco de dados do Cowrie populado e o banco de
monitoramento vazio. A Segao 4.3 trata do Caso 3, em que ambos os bancos de dados ja
estdo populados no momento da inicializagdo. Por fim, a Secdo 4.4 apresenta o Caso 4,

cujo objetivo é analisar o comportamento da ferramenta diante da adi¢do de novas URLs.

4.1 Caso 1: Inicializacao da ferramenta com bancos de dados vazios

Este cenario considera a situagdo em que tanto o banco de dados do Cowrie quanto
o banco de dados de monitoramento estao vazios. O objetivo desta andlise é verificar o
comportamento do CowrieSniffer durante sua inicializacao em um ambiente sem registros

prévios.

A Figura 6 apresenta a execucgao da ferramenta nesse contexto. Inicialmente, con-
vém ressaltar que a implementacao foi realizada em um ambiente controlado de rede local,
caracterizando um cenario simulado, sem a necessidade de implantacao em infraestrutura
de nuvem. Neste ambiente, a ferramenta detecta que o banco de dados de monitoramento
esta vazio e inicia sua populagao, garantindo que, assim que novos registros forem adicio-
nados ao Cowrie, eles possam ser capturados e monitorados. Esse cenario demonstra que,
mesmo em uma configuragdo experimental circunscrita a uma rede local, a ferramenta

mantém seu funcionamento continuo, aguardando a insercao de novas URLs.

Capitulo 4. Resultados 37

PS C:\Users\ribeirin\Documents\DirectoryMonitor> python.exe .\main.py
[INIT] MonitoringDB empty
[INIT] Initializing population of monitoringDB
[PERIODIC TASK] Running...
[VERIFYING URL] No change on Downloads on Cowrie!
[VERIFYING URL] No change on Input on Cowrie!
[PERIODIC TASK] Finished!

[PERIODIC TASK] Running...

[VERIFYING URL] No change Downloads on Cowrie!
[VERIFYING URL] No change Input on Cowrie!
[PERIODIC TASK] Finished!

[PERIODIC TASK] Running...

[VERIFYING URL] No change Downloads on Cowrie!
[VERIFYING URL] No change Input on Cowrie!
[PERIODIC TASK] Finished!

Figura 6 — Caso 01: Log do funcionamento da ferramenta. Fonte: Elaborado pelo autor
(2025)

Na Figura 7, verifica-se que ambos os bancos de dados apresentam suas respecti-
vas tabelas sem registros. As duas primeiras consultas evidenciam que as tabelas input
e downloads pertencentes ao banco de dados do Cowrie nao contém nenhum registro.
Adicionalmente, observa-se que a tabela urls do banco de dados de monitoramento, re-
presentada pela terceira consulta, também se encontra desprovida de dados.

mysql> select * from cowrie.input;
Empty set (0.01 sec)

mysql> select * from cowrie.downloads;
Empty set (0.00 sec)

mysql>
mysql>
mysql>

mysql> select * from monitoringdb.urls;
Empty set (0.00 sec)

mysql>
mysql>
mysql>

Figura 7 — Caso 01: Tabelas input e downloads do honeypot Cowrie sem registros e tabela
urls do banco de monitoramento desprovida de dados. Fonte: Elaborado pelo
autor (2025)

Capitulo 4. Resultados 38

4.2 Caso 2: Inicializacao da ferramenta com o banco de dados do

Cowrie populado e o banco de monitoramento vazio

Neste estudo de caso, o banco de dados do Cowrie ja contém URLs coletadas
de sessoes anteriores, enquanto o banco de dados de monitoramento permanece vazio.
O foco desta andlise é compreender como o CowrieSniffer processa os dados histéricos
do Cowrie, populando a base de monitoramento e assegurando que nenhuma informagao

relevante seja perdida durante a transicao inicial.

No inicio do Caso 2, observa-se que as tabelas do banco de dados do Cowrie ja
possuem registros, conforme ilustrado nas Figuras 8 e 9. Em contrapartida, a Figura 10

apresenta o estado inicial da tabela urls, que se encontra vazia.

| ResultGrid |] 4% Fiter Rovs: | edt: g Eb Bl | Epotfimport: HE {8 | wrep cell Content: A
id session timestamp url outfile shasum
|1 e3c0a3915f70 2025-04-04 00:11:48 https://raw.githubusercontent.com/fusionpbx/fusion... var/lib/cowrie/downloads/6b2c... ©6b2c3226809f995379cabc8139...

2 e3c0a3915f70 2025-04-04 00:12:46 https://docs.aws.amazon.com/pdfs/AmazonS3/lates... var/lib/cowrie/downloads/4f03... 4f032cdc1171376d115a67c9b0...
.

Figura 8 — Caso 02: Tabela downloads do Cowrie com entradas. Fonte: Elaborado pelo
autor (2025)

| Result Grid | H 4% Fiter Rows: |edt: g b EL | eportyimport: E K& | wrep call Content: IR
id session timestamp realm success input
3 e3c0a3915f70 2025-04-04 00:10:17
4 e3c0a3915f70 2025-04-04 00:11:30 ™
5 e3c0a3915f70 2025-04-04 00:11:30 Is -la
6 e3c0a3915f70 2025-04-04 00:11:32 Is -la
7 e3c0a3915f70 2025-04-04 00:11:46 wget https://raw.githubusercontent.com/fusionpbx/fusionpbx-install.sh/master/debian/pre-ins...
8 e3c0a3915f70 2025-04-04 00:12:43 wget https://docs.aws.amazon.com/pdfs/AmazonS3/latest/userguide/s3-userguide.pdf
9 e3c0a3915f70 2025-04-04 00:13:29 Is -la | xargs
10 e3c0a3915f70 2025-04-04 00:13:29 Is -la | xargs

11 e3c0a3915f70 2025-04-04 00:13:36
12 e3c0a3915f70 2025-04-04 00:13:36
13 e3c0a3915f70 2025-04-04 00:13:40
14 e3c0a3915f70 2025-04-04 00:13:40
15 e3c0a3915f70 2025-04-04 00:13:46
16 7e59ed9452d1 2025-04-04 00:13:49
17 7e59ed9452d1 2025-04-04 00:13:55
18 7e59ed9452d1 2025-04-04 00:14:28
19 EEQedgflEZdl 2025-04-04 00:14:28

Is -la | xargs | sh
Is -la | xargs | sh
Is -la | xargs | sh | echo oi
Is -la | xargs | sh | echo oi
Is -la | | echo oi

Is -la | echo oi
Is -la | xargs | echo 'dDD0d3kd=="| base64 -d | wget https://www.pudim.com.br/pudim.jpg
Ii-la | xargs | echo dDD0d3kd== | base64 -d | wget https://www.pudim.com.br/pudim.jpg

HULL

|G»—~»—~»—~»—~D»—~D»—~D»—~»—~»—~»—~»—»—»—

Figura 9 — Caso 02: Tabela input do Cowrie com entradas. Fonte: Elaborado pelo autor
(2025)

Capitulo 4. Resultados 39

(™ ¥ 4 @, ol Limitto 1000rows = | g [<F @, (1] (&

1e select * from monitoringdb.urls;

Result Grid | 1 4% Fiter Rows: Edit: m #n i | ExportfImport: {@] | Wrap Cell Content: T
id url first_view last_view
PR UL I | 1o | 1|

Figura 10 — Caso 02: Tabela urls do monitoramento inicialmente vazia. Fonte: Elaborado
pelo autor (2025)

Ap6s o inicio da execugao do CowrieSniffer, conforme ilustrado na Figura 11, a
ferramenta inicia a populacao da tabela urls do banco de dados de monitoramento a partir
dos registros existentes na tabela downloads do banco de dados do Cowrie. Em seguida,
ao realizar sua primeira verificacdo na tabela inputs, a ferramenta realiza a identificacao
de novas entradas e procede com sua insercao na tabela urls. Estas entradas constituem
os comandos digitados durante a sessao via shell, os quais sao submetidos a um processa-
mento especifico para a extragao e captura das URLs neles contidas. Concluida essa etapa
inicial, sdo realizadas as verificagoes de disponibilidade das URLs, e o sistema prossegue

com seu ciclo continuo de monitoramento.

PS C:\Users\ribeirin\Documents\DirectoryMonitor> python.exe .\main.py
[INIT] MonitoringDB empty
[INIT] Initializing population of menitoringDB
Inserted URL: https://raw.githubusercontent.com/fusionpbx/fusionpbx-install.sh/master/debian/pre-install.sh
Inserted URL: https://docs.aws.amazon.com/pdfs/AmazonS3/latest/userguide/s3-userguide.pdf
[PERIODIC TASK] Running...
[VERIFYING URL] No change on Downloads on Cowrie!
[VERIFYING URL] Change Detect on Input on Cowrie!
Inserted URL: https://www.pudim.com.br/pudim.jpg
URL 'https://docs.aws.amazon.com/pdfs/AmazonS3/latest/userguide/s3-userguide.pdf' already exists in monitoring.
URL 'https://www.pudim.com.br/pudim.jpg' already exists in monitoring.
URL 'https://raw.githubusercontent.com/fusionpbx/fusionpbx-install.sh/master/debian/pre-install.sh' already exists in monitoring.
[VERIFYING CONNECTION] Testing docs.aws.amazon.com:ul3
[VERIFYING CONNECTION] Connection docs.aws.amazon.com:UU3 successful
Updated URL: https://docs.aws.amazon.com/pdfs/AmazonS3/latest/userguide/s3-userguide. pdf
[VERIFYING CONNECTION] Testing raw.githubusercontent.com:4d3
[VERIFYING CONNECTION] Connection raw.githubusercontent.com:UU3 successful
Updated URL: https://raw.githubusercontent.com/fusionpbx/fusionpbx-install.sh/master/debian/pre-install.sh
[VERIFYING CONNECTION] Testing www.pudim.com.br:4u3
[VERIFYING CONNECTION] Connection www.pudim.com.br:443 successful
Updated URL: https://www.pudim.com.br/pudim.jpg
[PERIODIC TASK] Finished!

Figura 11 — Caso 02: Log do funcionamento da ferramenta. Fonte: Elaborado pelo autor
(2025)

A Figura 12 apresenta o estado final da tabela urls do banco de dados de moni-

toramento apds a inicializacao da ferramenta. Esse resultado evidencia a capacidade da

Capitulo 4. Resultados 40

aplicacao de identificar e registrar corretamente as URLs extraidas do banco de dados do

Cowrie.

| Result Grid | I 4% Fiter Rows: |edt: g Eb B | exportfimport: Bl K& | wrep cell Content: IR
id url first_view last_view

(1 https://raw.githubusercontent.com/fusionpbx/fusionpbx-install.... 2025-04-03 21:23:27 2025-04-03 21:23:42
2 https://docs.aws.amazon.com/pdfs/AmazonS3/latest/userguide... 2025-04-03 21:23:27 2025-04-03 21:23:42
3 https://www.pudim.com.br/pudim.jpg 2025-04-03 21:23:27 2025-04-03 21:23:42

Figura 12 — Caso 02: Tabela urls do monitoramento com entradas. Fonte: Elaborado pelo
autor (2025)

4.3 Caso 3: Inicializacdo da ferramenta com ambos os bancos de

dados populados

Este cenario tem como objetivo avaliar o funcionamento do CowrieSniffer quando
tanto o banco de dados do Cowrie quanto o banco de monitoramento ja possuem re-
gistros. A proposta consiste em analisar o processo de inicializagdo da ferramenta, com
énfase no carregamento das varidaveis com as URLs existentes e na execugao dos testes de

disponibilidade no ambiente monitorado.

As Figuras 13, 14 e 15 apresentam, respectivamente, o estado das tabelas down-
loads e input, pertencentes ao banco de dados do Cowrie, e da tabela urls, localizada no
banco de dados de monitoramento. A partir dessas condi¢Oes iniciais, a execucao do Co-
wrieSniffer, ilustrada na Figura 16, inicia o carregamento dos enderegos provenientes da
tabela downloads. Em seguida, é realizada a verificacao da tabela input, que também con-
tém URLs; entretanto, como essas ja estao registradas no banco de monitoramento, nao
é necessaria sua reinsercao. Por fim, a ferramenta procede com os testes de conectividade

utilizando as URLs previamente armazenadas.

| ResultGrid | T 43 Fiter Rows: | edi: gl B B | Export/import: B 8 | wrep Call Content: TR

id session timestamp url outfile shasum

1 e3c02a3915f70 2025-04-04 00:11:48 https://raw.githubusercontent.com/fusionpbx/fusion... var/lib/cowrie/downloads/6b2c... 6b2c3226809f395379cabc8139...
2 e3c0a3915f70 2025-04-04 00:12:46 https://docs.aws.amazon.com/pdfs/AmazonS3/lates... var/lib/cowrie/downloads/4f03... 4f032cdc1171376d115a67c9b0...
3 175a76aff307 2025-04-04 00:44:16 https://cdn.mos.cms.futurecdn.net/oFgrisuY7Rfdthg... var/lib/cowrie/downloads/b87a... b87ac52012ch17e0ea5a240589...
4

175a76aff307 2025-04-04 00:44:57 https://media.istockphoto.com/id/1178044335/pt/f...

Figura 13 — Caso 03: Tabela downloads do Cowrie com entradas. Fonte: Elaborado pelo
autor (2025)

Capitulo 4. Resultados 41

Result Grid | HH 4% Fiter Rows: Edit: m #» i | Export/Import: 18 | Wrap Cell Content: T&

id session timestamp realm success input

6 e3c0a3915f70 2025-04-04 00:11:32 1 Is -la

7 e3c0a3915f70 2025-04-04 00:11:46 1 waget https://raw.githubusercontent.com/fusionpbx/fusionpbx-install.sh/master/debian/pre-ins...
8 e3c0a3915f70 2025-04-04 00:12:43 1 waget https://docs.aws.amazon.com/pdfs/AmazonS3/latest/userquide/s3-userguide.pdf

9 e3c0a3915f70 2025-04-04 00:13:29 1 Is -la | xargs

10 e3c0a3915f70 2025-04-04 00:13:29 0 Is -la | xargs

11 e3c0a3915f70 2025-04-04 00:13:36 1 Is -la | xargs | sh

12 e3c0a3915f70 2025-04-04 00:13:36 0 Is -la | xargs | sh

13 e3c0a3915f70 2025-04-04 00:13:40 1 Is -la | xargs | sh | echo oi

14 e3c0a3915f70 2025-04-04 00:13:40 0 Is-la | xargs | sh | echo oi

15 e3c0a3915f70 2025-04-04 00:13:46 1 Is-la | | echo oi

16 7e59ed9452d1 2025-04-04 00:13:49 1

17 7e59ed9452d1 2025-04-04 00:13:55 1 Is -la | echo oi

18 7e59ed9452d1 2025-04-04 00:14:28 1 Is -la | xargs | echo 'dDDOd3kd==" | base64 -d | wget https://www.pudim.com.br/pudim_jpg
19 7e59ed9452d1 2025-04-04 00:14:28 0 Is -la | xargs | echo dDD0d3kd== | base64 -d | wget https://www.pudim.com.br/pudim.jpg

20 175a76aff307 2025-04-04 00:44:16 1 curl https://cdn.mos.cms.futurecdn.net/oFgrjsuY7Rfdthggpgs54D-650-80.jpg.webp -0 image....
21 175a76aff307 2025-04-04 00:44:56 1 /bin/bash echo test | baset4 | curl hitps://media.istockphoto.com/id/1178044335/pt/foto/io-...
s

Figura 14 — Caso 03: Tabela input do Cowrie com entradas. Fonte: Elaborado pelo autor
(2025)

Result Grid | £ 4% Filter Rows: Edit: m oy i | Export/Import: {& | Wrep Cell Content: I&
id url first_view last_view

(1 https://raw.githubusercontent.com/fusionpbx/fusionpbx-install.sh/... 2025-04-03 21:23:27 2025-04-03 21:45:20
2 https://docs.aws.amazon.com/pdfs/AmazonS3/latest/userguidefs3-... 2025-04-03 21:23:27 2025-04-03 21:45:20
3 https://www.pudim.com.br/pudim.jpg 2025-04-03 21:23:27 2025-04-03 21:45:20
4 https://cdn.mos.cms.futurecdn.net/oFgrjsuY7Rfdthggpqs54D-650-8... 2025-04-03 21:44:19 2025-04-03 21:45:20
5 https://media.istockphoto.com/id/1178044335/pt/foto/io-moon-of-... 2025-04-03 21:45:04 2025-04-03 21:45:20
6 https://media.istockphoto.com/id/1178044335/pt/foto/io-moon-of-... 2025-04-03 21:45:04 2025-04-03 21:45:20

.

Figura 15 — Caso 03: Tabela urls do monitoramento com entradas. Fonte: Elaborado pelo
autor (2025)

PS C:\Users\ribeirin\Documents\DirectoryMonitor> python.exe .\main.py
[INIT] State loaded: {'https://media.istockphoto.com/id/1178644335/pt/Foto/io-moon-of-jupiter.webp?s=102Ux1024", 'https://docs.aus.amazon.com/pdfs/Anazons3/latest/userguide/s3-userguide.pdf', 'https://raw.gith
ubusercontent . con/fusionpbx/fusionpbx-install.sh/master/debian/pre-install.sh', 'https://cdn.mos.cms.futurecdn.net/oFgrjsuY7Rfdthggpqs5uD-656-80. jpg.webp'}
[PERIODIC TASK] Running...
[VERIFYING URL] No change on Downloads on Cow
[VERIFYING URL] Change Detect on Input on C
*https://www.pudim.com.br/pudim. jpg' already exists in monitoring.
*https://raw.githubusercontent . com/fusionpbx/fusionpbx-install.sh/master/debian/pre-install.sh' already exists in monitoring
*https://cdn.mos. cms . futurecdn. net/oFgrjsuY7Rfdthggpqs5UD-650-80. jpg.webp' already exists in monitoring.
*https://media. istockphoto.com/id/11780U4335/pt/foto/io-moon-of-jupiter. webp?s=102Ux102Usw=1s&k=208c=VF2ZA6NCrt8I6J7bdPtR-KveqinBAi10rBGSFLZ5KZQ=" already exists in monitoring.
*https://wm.pudim.com.br/pudim. jpg' already exists in monitorin
*https://docs. aws . amazon . com/pdfs/Amazons3/latest /userguide/s3-userguide.pdf' already exists in monitoring.
[VERIFYING CONNECTION] Testing cdn.mos.cms.futurecdn.net:4u3
[VERIFYING CONNECTION] Connection cdn.mos.cms.futurecdn.net:Uu3 successful
pdated URL: https://cdn.mos.cms. futurecdn.net/oFgrjsuY7Rfdthggpqs5uD-650-80. jpg . webp
[VERIFYING CONNECTION] Testing docs.aws.amazon.com:du3
[VERIFYING CONNECTION] Connection docs.aws.amazon.com:Uu3 successful
pdated URL: https://docs.aws.amazon.com/pdfs/AmazonS3/latest/userguide/s3-userguide. pdf
[VERIFYING CONNECTION] Testing media.istockphoto.com:4u3
[VERIFYING CONNECTION] Connection media.istockphoto.com:U3 successful
jpdated URL: https://media.istockphoto.com/id/11780U4335/pt/foto/io-moon-of-jupiter.webp?s=102Ux1024
[VERIFYING CONNECTION] Testing media.istockphoto.com:4u3
[VERIFYING CONNECTION] Connection media.istockphoto.com:4u3 successful
jpdated URL: https://media ockphoto.com/id/11780u4335/pt/foto/io-moon-of-jupiter.wel 102Ux102U8w=158k=20&c=Vf2ZA6Ncrt816J7bdPtR-KvOqiwBAi10rBGsFLZ5kZQ=
[VERIFYING CONNECTION] Testing raw.githubusercontent.com:4u3
[VERIFYING CONNECTION] Connection raw.githubusercontent.com:u43 successful
jpdated URL: https://raw.githul content. com/fusionpbx/fusionpbx-install.sh/master/debian/pre-install.sh
[VERIFYING CONNECTION] Testing pudin. com. br: 443
[VERIFYING CONNECTION] Connection www.pudim.com.br:443 successful
pdated URL: https://www.pudim.com.br/pudim. jpg
[PERIODIC TASK] Finished

Figura 16 — Caso 03: Log do funcionamento da ferramenta. Fonte: Elaborado pelo autor
(2025)

Capitulo 4. Resultados 42

4.4 Caso 4: Entradas e analises das URLs

Este estudo de caso tem como objetivo analisar o comportamento do CowrieSniffer
diante da adigdo de novas URLs. A andlise visa verificar se a ferramenta é capaz de
detectar essas novas entradas e avaliar a disponibilidade de URLs, tanto indisponiveis
quanto disponiveis na porta 80 do protocolo http. E importante notar que a ferramenta
também pode coletar e verificar URLs provenientes do protocolo HTTPS, utilizando a
porta 443 como ponto de conexao inicial ou ainda em outras portas. A ideia do Caso 4 é

simplesmente mostrar o funcionamento de tal requisito.

4.4.1 URL indisponivel

Este caso apresenta uma situacao especifica em que o endereco monitorado se en-
contra indisponivel na porta 3000. Conforme ilustrado na Figura 17, a ferramenta detecta
a insercao da URL por meio da tabela downloads e, em seguida, realiza o teste de co-
nectividade, que resulta em falha devido a indisponibilidade. Posteriormente, a Figura 18
apresenta o registro correspondente no banco de dados de monitoramento, identificado
pela chave priméria id de valor 7. Observa-se que, em razao da indisponibilidade da URL
na porta 3000, a coluna last _view nao foi atualizada, indicando a auséncia de sucesso na

tentativa de conexao.

[PERIODIC TASK] Running...

[VERIFYING URL] Change Detect on Downloads on Cowrie!

[Inserted URL: http://pudim.com.br:3808/script.sh

[VERIFYING URL] No change on Input on Cowrie!

[VERIFYING CONNECTION] Testing pudim.com.br:3000

[VERIFYING CONNECTION] Connection to pudim.com.br:3000 failed

[VERIFYING CONNECTION] Testing cdn.mos.cms.futurecdn.net:uu3

[VERIFYING CONNECTION] Connection cdn.mos.cms.futurecdn.net:4u3 successful

pdated URL: https://cdn.mos.cms.futurecdn.net/oFgrjsuY7Rfdthggpqs5UD-650-88 . jpg . webp
[VERIFYING CONNECTION] Testing docs.aws.amazon.com:4d3

[VERIFYING CONNECTION] Connection docs.aws.amazon.com:443 successful

pdated URL: https://docs.aws.amazon.com/pdfs/Amazon53/latest/userguide/s3-userguide.pdf

[VERIFYING CONNECTION] Testing media.istockphoto.com:i43
[VERIFYING CONNECTION] Connection media.istockphoto.com:uUu3 successful

pdated URL: https://media.istockphoto.com/id/11788U4335/pt/foto/io-moon-of-jupiter.webp?s=182ux1624
[VERIFYING CONNECTION] Testing media.istockphoto.com:443

[VERIFYING CONNECTION] Connection media.istockphoto.com:du3 successful

pdated URL: https://media.istockphoto.com/id/11780U4335/pt/foto/i0-moon-of-jupiter.webp?s=102Ux102U&w=1s8k=208&c=VfzZA6NCrt8I6J7bdPtR-KvOqiwBAilOrBGsFLZ5KZQ=
[VERIFYING CONNECTION] Testing raw.githubusercontent.com:uu3

[VERIFYING CONNECTION] Connection raw.githubusercontent.com:Uu3 successful

pdated URL: https://raw.githubusercontent.com/fusionpbx/fusionpbx-install.sh/master/debian/pre-install.sh
[VERIFYING CONNECTION] Testing www.pudim.com.br:Lu3

[VERIFYING CONNECTION] Connection www.pudim.com.br:443 successful

pdated URL: https://www.pudim.com.br/pudim. jpg

[PERIODIC TASK] Finished!

Figura 17 — Caso 04: Log 1 do funcionamento da ferramenta. Fonte: Elaborado pelo autor
(2025)

Capitulo 4. Resultados 43

Result Grid | 1 4% Fiter Rows: Edit: m oy i | ExportfImport: {48 | Wrap Cell Content: I&
id url first_view last_view
1 https://raw.githubusercontent.com/fusionpbx/fusionpbx-install.sh/... 2025-04-03 21:23:27 2025-04-03 22:12:52
2 https://docs.aws.amazon.com/pdfs/AmazonS3/latest/userguide/s3-... 2025-04-03 21:23:27 2025-04-03 22:12:52
3 https://www.pudim.com.br/pudim.jpg 2025-04-03 21:23:27 2025-04-03 22:12:52
4 https://cdn.mos.cms.futurecdn.net/oFgrjsuY 7Rfdthggpgs54D-650-8... 2025-04-03 21:44:19 2025-04-03 22:12:52
5 https://media.istockphoto.com/id/1178044335/pt/foto/io-moon-of-... 2025-04-03 21:45:04 2025-04-03 22:12:52
6 https Hmedla |stockphoto com,’ld,’l178044335,’pt,’f0t0,’|0 moon-of-... 2025-04- 03 21:45:04 2025-04- 03 22:12:52

7 [hto:/jpudim.com br3000/sariptsh —|2025-04-03 22:08:19 _|2025-04-03 22:08:19 |
8 http.Htestphp.Vulnweb.com,flmages,flogo.glf 2025-04-03 22.11.33 2025-04-03 22.12.52

Figura 18 — Caso 04: Registro 1 na tabela urls. Fonte: Elaborado pelo autor (2025)

442 URL sem a utilizacdo do protocolo HTTPS

Nesta situagao, observa-se o processo integral de deteccao e monitoramento de uma
URL maliciosa quando apresentada sem a utilizacao do protocolo HT'TPS. Inicialmente, o
sistema identifica a presenca da URL mediante andlise dos registros na tabela downloads.
Apés a identificacao deste elemento, a ferramenta executa, automaticamente, trés acoes
sequenciais: (i) realiza a inser¢ao dos dados correspondentes no banco de dados de monito-
ramento; (ii) verifica a disponibilidade da URL através da porta 80 (ressalta-se que, caso
fosse utilizada outra porta aleatéria, o CowrieSniffer a identificaria); e (iii) processa essas
informagoes, procedimento que ocorre automaticamente quando o sistema reconhece o
protocolo HT'TP no inicio da URL, conforme demonstrado na Figura 19. Como resultado
final deste fluxo, a Figura 20 apresenta a URL registrada na ferramenta, juntamente com
sua atualizacdo referente a disponibilidade, sendo este registro identificado univocamente

pela chave primaria id de valor 8.

[PERIODIC TASK] Running. ..

[VERIFYING URL] Change Detect on Downloads on Cowrie!

Inserted URL: http://testphp.vulnweb.com/inages/logo.gif

[VERIFYING URL] Change Detect on Input on Cowrie!
https://www. pudim.com.br/pudim. jpg already exists in monitoring.
*https://docs.aws.amazon. com/pdfs/AmazonS3/latest/userguide/s3-userguide.pdf' already exists in monitoring.
https://www. pudim.com.br/pudim. jpg already exists in monitoring.
*https://raw.githubusercontent.com/fusionpbx/fusionpbx-install.sh/master/debian/pre-install.sh' already exists in monitoring.
*https://cdn.mos. cms . futurecdn.net/oFgrjsuY7Rfdthggpqs5UD-650-80. jpg.webp' already exists in monitoring.
*http://testphp.vulnweb.com/images/logo.gif"' already exists in monitoring.
*https://media.istockphoto.com/id/117804uU335/pt/foto/io-moon-of-jupiter.webp?s=102Ux102U&w=1s&Kk=20&c=Vf2ZA6Ncrt8I16J7bdPtR-KvOqinBAilOrBGsFLz5kZQ=" already exists in monitoring.

[VERIFYING CONNECTION] Testing pudim.com.br:3000

[VERIFYING CONNECTION] Connection to pudim.com.br:3000 failed

[VERIFYING CONNECTION] Testing testphp.vulnweb.com:80

[VERIFYING CONNECTION] Connection testphp.vulnweb.com:88 successful

Updated URL: http://testphp.vulnweb.com/images/logo.gif

[VERIFYING CONNECTION] Testing cdn.mos.cms.futurecdn.net:uu3

[VERIFYING CONNECTION] Connection cdn.mos.cms.futurecdn.net:li3 successful

Updated URL: https://cdn.mos. cus. futurecdn.net/oFgrjsuY7Rfdthggpqs54D-650-80. jpg . webp

[VERIFYING CONNECTION] Testing docs.aws.amazon.com:Ud3

[VERIFYING CONNECTION] Connection docs.aws.amazon.com:4l3 successful

Updated URL: https://docs.ans.amazon. com/pdfs/AnazonS3/latest /userguide/s3-userguide. pdf

[VERTFYING CONNECTION] Testing media.istockphoto.com:Uu3

[VERIFYING CONNECTION] Connection media.istockphoto.com:4l3 successful

Updated URL: https://media.istockphoto.com/id/11780U4335/pt/foto/io-moon-of—jupiter.webp?s=102Ux1824

[VERIFYING CONNECTION] Testing media.istockphoto.com:4u3

[VERIFYING CONNECTION] Connection media.istockphoto.com:4l3 successful

Updated URL: https://media.istockphoto.com/id/117804u335/pt/foto/io-moon-of—jupiter.webp?s=102Ux1024&w=1s&Kk=20&c=VfzZA6Ncrt816J7bdPtR-KvBqiwBAi10rBGsFLz5kZQ=

[VERIFYING CONNECTION] Testing raw.githubusercontent.com:4u3

[VERIFYING CONNECTION] Connection raw.githubusercontent.com:443 successful

Updated URL: https://raw.githubusercontent.com/fusionpbx/fusionpbx-install.sh/master/debian/pre-install.sh

[VERIFYING CONNECTION] Testing www.pudim.com.br:uy3

[VERIFYING CONNECTION] Connection www.pudim.com.br:u43 successful

Updated URL: https://www.pudim.com.br/pudim.jpg

[PERIODIC TASK] Finished!

Figura 19 — Caso 04: Log 2 do funcionamento da ferramenta. Fonte: Elaborado pelo autor
(2025)

Capitulo 4. Resultados

44

| Result Grid | HH

¥ Fiter Rows:

|Ed'|t: |ﬁ| By B |Experh']mport: @ @ |WrapCe||Content: A

url

first_view

last_view

https://raw.githubusercontent.com/fusionpbx/fusionpbx-install.sh/...
https://docs.aws.amazon.com/pdfs/AmazonS3/latest/userguide/s3-...
https://www.pudim.com.br/pudim.jpg
https://cdn.mos.cms.futurecdn.net/oFgrjsuY7Rfdthggpqs54D-650-8...
https://media.istockphoto.com/id/1178044335/pt/foto/io-moon-of-...
https://media.istockphoto.com/id/1178044335/pt/foto/io-moon-of-...
http://pudim.com.br:3000/script.sh

http://testphp.vulnweb.com/images/logo.gif

2025-04-03 21:23:27
2025-04-03 21:23:27
2025-04-03 21:23:27
2025-04-03 21:44:19
2025-04-03 21:45:04
2025-04-03 21:45:04
2025-04-03 22:08:19
2025-04-03 22:11:33

2025-04-03 22:26:16
2025-04-03 22:26:16
2025-04-03 22:26:16
2025-04-03 22:26:16
2025-04-03 22:26:16
2025-04-03 22:26:16
2025-04-03 22:08:19

2025-04-03 22:26:16

Figura 20 — Caso 04: Registro 2 na tabela urls. Fonte: Elaborado pelo autor (2025)

45

5 Conclusao

Este trabalho teve como principal objetivo desenvolver uma ferramenta capaz de
coletar, processar e verificar a disponibilidade de URLs capturadas pelo honeypot Cowrie,
contribuindo para o aprimoramento de sua estrutura na area de seguranca da informacao.
Com base nos estudos de caso realizados, os resultados obtidos permitiram validar o funci-
onamento da ferramenta em cendrios especificos de uso do CowrieSniffer, demonstrando
sua eficacia na coleta, tratamento e verificacdo da disponibilidade de URLs. Portanto,

conclui-se que a ferramenta atingiu plenamente seu principal objetivo.

O desenvolvimento do CowrieSniffer foi estruturado de maneira modular. A arqui-
tetura do sistema CowrieSniffer foi concebida sob uma perspectiva estritamente modular.
Os principais componentes compreendem: o mdédulo Main, responsavel pela orquestracao
sistémica; o modulo de configuragao, encarregado da gestao dos parametros de conexao;
os médulos de manipulagao de banco de dados, tanto do Cowrie quanto do sistema de
monitoramento; e, fundamentalmente, o médulo URLMonitor, que implementa a l6gica
central de verificagdo e atualizagdo das URLs. Durante o processo de desenvolvimento,
diversos desafios técnicos emergiram, tais como: a necessidade de extrair URLs das tabe-
las input e downloads do banco de dados do Cowrie; a implementacao de mecanismos de
verificagdo de disponibilidade em diferentes protocolos (HTTP e HTTPS) e portas; e a

garantia de persisténcia e consisténcia dos dados monitorados ao longo do tempo.

O CowrieSniffer constitui ferramenta de notavel relevancia em andlise forense di-
gital, permitindo a coleta de URLs que podem ser analisadas para a identificacdo de
padroes de persisténcia em infraestruturas maliciosas. Em ambientes corporativos com
multiplos honeypots, possibilita a detec¢ao de campanhas direcionadas mediante correla-
¢ao entre URLs utilizadas por diferentes agentes maliciosos. O monitoramento continuo
destas URLs fornece dados substanciais sobre o ciclo vital de infraestruturas nocivas,
como servidores de comando e controle (CéC') ou repositérios de malware, elucidando

taticas, técnicas e procedimentos dos atacantes (T71Ps).

Além disso, o cédigo da ferramenta foi desenvolvido de forma modular, permi-
tindo facil manipulacdo e a insercdo de novas funcionalidades. Dessa maneira, diversas
melhorias podem ser implementadas em trabalhos futuros, tais como a incorporacao do
CowrieSniffer como um componente nativo do Cowrie, a implementacao de uma coluna
no banco de dados de monitoramento para indicar os enderecos ativos e o desenvolvimento

de um mecanismo para exibi¢ao ou ocultagao de logs.

46

Referencias

AL-MOHANNADI, H.; AWAN, I.; HAMAR, J. A. Analysis of adversary activities
using cloud-based web services to enhance cyber threat intelligence. Serv. Oriented
Comput. Appl., Springer-Verlag, Berlin, Heidelberg, v. 14, n. 3, p. 175-187, sep
2020. ISSN 1863-2386. Disponivel em: <https://doi.org/10.1007/s11761-019-00285-7>.
Citado na pagina 8.

BERNSTEIN, D. Containers and cloud: From Ixc to docker to kubernetes. IEEE Cloud
Computing, v. 1, n. 3, p. 81-84, 2014. Citado na pagina 15.

CABRAL, W. Z.; VALLI, C.; SIKOS, L. F.; WAKELING, S. G. Advanced cowrie
configuration to increase honeypot deceptiveness. In: JOSANG, A.; FUTCHER, L.;
HAGEN, J. (Ed.). ICT Systems Security and Privacy Protection. Cham: Springer
International Publishing, 2021. p. 317-331. ISBN 978-3-030-78120-0. Citado 2 vezes nas
paginas 13 e 16.

IBRAHIM, M. H.; SAYAGH, M.; HASSAN, A. E. A study of how docker compose
is used to compose multi-component systems. Empirical Softw. Engg., Kluwer
Academic Publishers, USA, v. 26, n. 6, nov. 2021. ISSN 1382-3256. Disponivel em:
<https://doi.org/10.1007/s10664-021-10025-1>. Citado na péagina 15.

JAVADPOUR, A.; JA’FARI, F.; TALEB, T.; SHOJAFAR, M.; BENZAiD, C. A
comprehensive survey on cyber deception techniques to improve honeypot performance.
Computers Security, v. 140, p. 103792, 2024. ISSN 0167-4048. Citado na pagina 13.

MALLOQOY, B. A.; POWER, J. F. Quantifying the transition from python 2 to 3:
An empirical study of python applications. In: 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM).
[S.L: s.n.], 2017. p. 314-323. Citado na pagina 14.

MEHTA, S.; PAWADE, D.; NAYYAR, Y.; SIDDAVATAM, I.; TTIWART, A.; DALVI, A.
Cowrie honeypot data analysis and predicting the directory traverser pattern during the
attack. In: 2021 International Conference on Innovative Computing, Intelligent
Communication and Smart Electrical Systems (ICSES). [S.l.: s.n.], 2021. p. 1-4.
Citado na péagina 15.

MENDES, L. G. Trabalho de Conclusao de Curso, Construcao de infraestrutura de
Honeypots IoT usando computagcao em nuvem. 2023. Universidade Federal de
Uberlandia. Citado na pagina 9.

NIST. Cybersecurity definition. 2019. Acesso em: 30 de out. 2024. Disponivel em:
<https://csre.nist.gov/glossary /term /cybersecurity>. Citado na pagina 12.

NaSTASE, V.-1.; MIHAILESCU, M.-E.; WEISZ, S.; DAGILIS, L. V.; MIHAI, D.;
CARABAS, M. Cowrie ssh honeypot: Architecture, improvements and data visualization.
In: 2024 23rd RoEduNet Conference: Networking in Education and Research
(RoEduNet). [S.L.: s.n.], 2024. p. 1-7. Citado na pagina 16.

Referéncias 47

OOSTERHOF, M. Cowrie Documentation. 2024. Acesso em: 28 de abril de 2025.
Disponivel em: <https://docs.cowrie.org/en/latest/>. Citado na pagina 13.

PROVOS, N.; HOLZ, T. Virtual honeypots from botnet tracking to intrusion
detection. Upper Saddle River, N.J: Addison-Wesley, 2007. (Safari Books Online.).
ISBN 9780321336323. Citado na pagina 8.

RODRIGUES, G. A. P. Trabalho de Conclusdo de Curso, Analise de trafego
malicioso direcionado a uma Honeynet com inspecao profunda de pacotes.
2017. Universidade de Brasilia. Citado na pagina 9.

SPITZNER, L. Honeypots: Catching the insider threat. In: Proceedings of the 19th
Annual Computer Security Applications Conference. USA: IEEE Computer
Society, 2003. (ACSAC ’03), p. 170. ISBN 0769520413. Citado na pagina 13.

STALLINGS, W. Criptografia e Seguranca de Redes: Principios e Praticas. 6.
ed. [S.1.]: Pearson Education, 2014. Citado na péagina 12.

SUEHRING, S. MySQL Bible. Wiley, 2002. (Bible). ISBN 9780764518614. Disponivel
em: <https://books.google.com.br/books?id=bY01hYV3r-gC>. Citado na péagina 14.

VIRAJA, V. K.; PURANDARE, P. A qualitative research on the impact and challenges
of cybercrimes. Journal of Physics: Conference Series, [OP Publishing, v. 1964,
n. 4, p. 042004, jul 2021. Disponivel em: <https://dx.doi.org/10.1088/1742-6596,/1964/
4/042004>. Citado na pagina 8.

Anexos

49

ANEXO A - Repositério CowrieSniffer

O codigo desenvolvido no decorrer deste trabalho sera disponibilizado publica-
mente no GitHub', permitindo a transparéncia dos resultados e possibilitando futuras

contribui¢oes da comunidade académica e profissional.

O repositoério, intitulado CowrieSniffer, contera os scripts utilizados para o moni-
toramento das URLs extraidas do honeypot Cowrie, bem como a documentacao detalhada

sobre a instalacao, configuracao e uso da ferramenta.

L Disponivel em https://github.com/r1beirin/CowrieSniffer

	Folha de rosto
	Agradecimentos
	Resumo
	Lista de ilustrações
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Objetivos
	Objetivo Geral
	Objetivos Específicos

	Organização da Monografia

	Revisão Bibliográfica
	Fundamentação Teórica
	Cibersegurança
	Honeypots
	Python
	MySQL
	Docker

	Trabalhos Correlatos

	Desenvolvimento
	Visão Geral
	Configuração do banco de dados de monitoramento
	Desenvolvimento do arquivo de configuração
	Desenvolvimento do componente Main
	Desenvolvimento do componente de configuração
	Desenvolvimento do componente de manipulação do banco de dados do Cowrie
	Desenvolvimento do componente de manipulação do banco de dados de Monitoramento
	Desenvolvimento do componente URLMonitor

	Resultados
	Caso 1: Inicialização da ferramenta com bancos de dados vazios
	Caso 2: Inicialização da ferramenta com o banco de dados do Cowrie populado e o banco de monitoramento vazio
	Caso 3: Inicialização da ferramenta com ambos os bancos de dados populados
	Caso 4: Entradas e análises das URLs
	URL indisponível
	URL sem a utilização do protocolo HTTPS

	Conclusão
	Referências
	Anexos
	Repositório CowrieSniffer

