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RESUMO

Nas ultimas décadas, o interesse pelo estudo de equagdes diferenciais fraciondrias segue uma
crescente. Isso se deve ao grande nimero de aplicagdes que podem ser desenvolvidas a partir
desse conceito. Embora o nimero de contribui¢des tenha aumentado de forma significativa,
vdrios aspectos relacionados a influéncia e ao significado fisico de uma ordem fraciondria ainda
requerem um maior aprofundamento. Além disso, cabe destacar as dificuldades numéricas
oriundas da substitui¢do de uma derivada de ordem inteira por uma fraciondria. Neste trabalho,
os Métodos de Adams-Moulton Fracionario, de Euler Reverso Fraciondario e de Euler Direto
Fraciondrio sdo investigados em aplicacdes em engenharia quimica. Para essa finalidade, sdo
avaliados problemas de simulagdo, inversos e também andlise de plano de fases. Para garantir
a consisténcia dimensional no modelo fraciondrio, é considerado um fator de correcdo. De
maneira geral, foi possivel concluir que todas as abordagens numéricas foram eficientes para a
integracdo de modelos diferenciais fraciondrios com diferentes niveis de complexidade. Todavia,
a melhor estratégia em termos do bindmio custo computacional versus precisio foi o Método de
Adams-Moulton Fracionario. Como esperado, os resultados obtidos demonstraram que a ordem
fraciondria influencia, de forma significativa, os perfis simulados em cada aplicacdo. Neste caso,
¢ importante destacar que, dependendo da ordem fraciondria considerada, perfis fisicamente
invidveis podem ser obtidos. Ao avaliar dois problemas inversos no contexto fracionario, foi
possivel concluir que o valor da funcio objetivo pode ser melhorado, ja que a inclusdo de um
novo parametro (ordem fraciondria) aumenta o nimero de graus de liberdade do problema de
otimizac¢do. Finalmente, em relacdo a andlise do plano de fases, os resultados demonstram que
a variacdo da ordem fraciondria modifica o tempo requerido para o processo entrar em regime

permanente.

Palavras-chave: Equacdes Ordindrias Fraciondrias, Métodos Numéricos Fracionarios, Engenha-

ria Quimica.



ABSTRACT

In recent decades, interest in the study of fractional differential equations has been growing. This
is due to the large number of applications that can be developed from this concept. Although
the number of contributions has increased significantly, several aspects related to the influence
and physical meaning of a fractional order still require further investigation. Moreover, it is
important to highlight the numerical difficulties arising from the substitution of an integer-order
derivative by a fractional one. In this work, the Fractional Adams-Moulton Methods, Fractional
Backward Euler Method, and Fractional Forward Euler Method are investigated in chemical
engineering applications. For this purpose, simulation and inverse problems and phase plane
analysis are evaluated. To ensure dimensional consistency in the fractional model, a correction
factor is considered. In general, it was concluded that all numerical approaches were efficient
for integrating fractional differential models with different levels of complexity. However, the
best strategy in terms of the computational cost versus accuracy trade-off was the Fractional
Adams-Moulton Method. As expected, the obtained results demonstrated that the fractional order
significantly influences the simulated profiles in each application. In this case, it is important
to note that depending on the considered fractional order, physically infeasible profiles may be
obtained. When evaluating two inverse problems in the fractional context, it was concluded that
the objective function value can be improved, as the inclusion of a new parameter (fractional
order) increases the degrees of freedom of the optimization problem. Finally, regarding phase
plane analysis, the results show that the variation of the fractional order modifies the time

required for the process to reach a steady state.

Keywords: Fractional Ordinary Equations, Fractional Numerical Methods, Chemical Engineer-

ing.
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1 INTRODUCAO

O emprego de modelos mateméticos com a finalidade de representar fendmenos ob-
servados na natureza caracteriza-se como uma metodologia de grande importancia, visto que
sua aplicabilidade pode ser atribuida a simulagdes, andlises, projetos, pesquisas, otimizagao e
controle de sistemas na engenharia e em diversas dreas do conhecimento. Em sua amplitude, a
modelagem matematica pode ser aplicada em diversos campos, como na fisica, na quimica, na
biologia, na economia, entre outros. De modo particular, na engenharia quimica, a modelagem
matemadtica, em conjunto com a simulacdo de processos, € vista como uma ferramenta impor-
tante, cujo papel € validar a integridade de um projeto e garantir sua viabilidade operacional,
com base em uma descri¢do numérica fundamentada nas leis de conservagdo da fisica e da
quimica (FRANCO, 2021). Com isso, modelar um sistema de engenharia é predizer o comporta-
mento dos processos de interesse em uma determinada area de conhecimento. Isso € feito por
meio do estudo do comportamento de um processo representado por um conjunto de equagdes
matemadticas com diferentes niveis de complexidade. A modelagem abre a possibilidade de
comparar diferentes entradas e suas respectivas saidas para sistemas onde pode ser invidvel
(fisicamente ou economicamente) a realizacdo de uma série de experimentos. Cabe destacar
que o uso desses modelos é essencial para a comparagdo de diferentes cendrios, bem como na
otimizagdo dos processos, garantindo maior eficiéncia e seguranca na implementagdo pratica, ja
que os riscos e custos associados, por exemplo, as provaveis falhas, podem ser mensurados e,
estrategicamente, minimizados de forma simplificada (OGUNNAIKE; RAY, 1994).

E importante ressaltar que a complexidade de um modelo matemdtico empregado para
representar um dado sistema de engenharia é funcdo das hip6teses consideradas para a sua
elaboracdo, as quais sdo dadas pelo acréscimo de contribui¢des de balancos de massa, energia e
quantidade de movimento (BEQUETTE, 1998). Tais hipdteses, por sua vez, sdo responsaveis por
limitar a abrangéncia da aplicabilidade desses modelos, uma vez que os fenomenos encontrados
na natureza possuem cardter nao linear intrinseco e, como consequéncia disso, sua extrapolacdo
ndo pode ser realizada de maneira simples na maioria das aplicagOes praticas. Tradicionalmente,
os modelos encontrados na literatura sao representados por sistemas de equacdes algébricas (line-
ares e ndo lineares), equacdes diferenciais (ordindrias e parciais), equacdes integro-diferenciais,
equacdes algébrico-diferenciais ou, mais frequentemente, uma combinacdo de todas essas classes.
Dessa forma, € importante destacar que as equacdes diferenciais sdo comumente descritas por
derivadas de ordem inteira, o que simplifica os modelos ao ignorar um operador diferencial com

ordem ndo inteira (fraciondria) na dinamica de cada processo estudado.

Nesse sentido, as Equacdes Diferenciais Ordindrias Fraciondrias (EDOF) e as Equagdes
Diferenciais Parciais Fracionarias (EDPF) generalizam os modelos diferenciais convencionais de

ordens inteiras para uma abordagem mais abrangente, capaz de incorporar o impacto das ordens
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fraciondrias na analise desses modelos (RODRIGUES; OLIVEIRA, 2015). Dessa maneira, é
possivel inferir que essa estrutura caracteriza uma representagdo mais fiel e precisa dos fendmenos
naturais, pois oferece um potencial significativo para a modelagem de sistemas complexos ao

capturar efeitos de memoria, interagdes ndo locais e escalas de tempo multiplas (MACHADO,
2018).

Sendo assim, o interesse pelo estudo de equacdes diferenciais com operadores de ordem
fraciondria se deve a capacidade que esses operadores possuem de incluir termos de forgas
externas, os quais podem variar com o tempo e com o espago. Essa habilidade € avaliada pela
natureza integro-diferencial das equacdes diferenciais fraciondrias, que faz uso de informacdes
contidas nos pontos anteriores da solu¢do, e ndo apenas dos valores atuais e das taxas de variagdo
instantaneas dos sistemas, como € usualmente considerado em equagdes diferenciais ordindrias
de ordem inteira (PODLUBNY et al., 2009). Diante disso, tais equagdes combinam aspectos
de integracdo e diferenciacdo ao longo do tempo ou espaco de forma continua e acumulativa, o
que as torna capazes de modelar fendmenos onde o denominado efeito de memoria e o efeito do
atraso no tempo sao aspectos importantes para uma descricao mais compativel com a realidade
do sistema fisico em andlise. Entre esses sistemas fisicos, pode-se citar a reologia em materiais
viscoelasticos, sistemas de controle ativo com feedback e a transferéncia de calor em materiais
compostos, onde os fluxos de calor podem possuir caracteristicas complexas e interdependentes
que podem ser melhor representados de acordo com o cdlculo fraciondrio (MACHADO et al.,
2010; RODRIGUES; OLIVEIRA, 2015).

Na prética, diferentemente do operador de ordem inteira, o fraciondrio pode ser repre-
sentado de varias formas (PODLUBNY et al., 2009). Neste caso, sob a perspectiva matematica,
para a resolucao de um modelo diferencial fraciondrio, seja de maneira analitica ou numérica,
faz-se necessdrio, primeiramente, escolher o tipo de aproximacao para a derivada fracionéria
que se pretende considerar. Além disso, € importante ressaltar a influéncia da ordem diferencial
fraciondria, a qual possui um papel crucial no comportamento do sistema modelado, no que
tange a resposta dinamica e a sua estabilidade. Por fim, a consisténcia dimensional deve ser
rigorosamente analisada para que a derivada em questdo preserve as unidades pertinentes a
grandeza fisica envolvida; caso contrario, o modelo matemaético ndo sera fisicamente vdlido e,

consequentemente, ndo poderd representar o sistema real de maneira adequada (GODOI, 2022).

No que diz respeito a resolucdo usando estratégias analiticas no contexto fraciondrio, as
transformadas de Laplace e Fourier sdo tradicionalmente utilizadas. No entanto, é fundamental
destacar que solugdes analiticas para equacdes diferenciais fraciondrias nao podem ser obtidas
para todo e qualquer sistema, devido as ndo linearidades presentes nestes modelos, ou seja, s6
existe solucdo analitica para modelos matematicos bem especificos. Na maioria dos problemas, é
necessario recorrer a métodos numéricos para obter tais solu¢des (LIMA; LOBATO; AROUCA,
2018). Neste caso, em linhas gerais, faz-se necessario aplicar técnicas de discretizacdo especificas

para os modelos fraciondrios, como € o caso do Método das Diferencas Finitas (MDF) (LIU;



HOU, 2017).

Portanto, o MDF (Explicito ou Implicito) é classificado como uma das técnicas mais
usuais para a resoluc@o desses modelos, pois, apesar de sua dependéncia com o nimero de
pontos de discretizacao, ele possui simplicidade no que diz respeito aos seus conceitos e a
sua implementacdo (SZEKERES; IZS4K, 2015). Na literatura especializada, diferentes tipos
de estratégias para resolver problemas no contexto fraciondrio podem ser encontrados. Dentre
estas, Lobato et al. (2020) propuseram a extensdo do Método da Colocagdo Ortogonal para a
resolucdo de EDPF como alternativa para minimizar o efeito do nimero de pontos de discre-
tizacao e, consequentemente, a dimensao do problema a ser analisado. Godoi (2022) propds
duas abordagens numéricas, a saber, 0 Método Pseudo-Espectral de Legendre e o Método das
Diferencas Finitas Fraciondrio, para a integracao de EDOF com aplicacdo em fendmenos de

transporte andmalo.

Diante do que foi apresentado, este trabalho tem como foco principal resolver numeri-
camente EDOF. Os principais objetivos sao definidos como segue: 7) implementar estratégias
numéricas para a resolucdo de EDOF; ¢7) avaliar a influéncia da ordem fraciondria durante
a simulagdo de sistemas classicos em engenharia quimica; ¢2¢) propor e resolver problemas
de estimacgdo de parametros em que a ordem fraciondria € uma das incégnitas; 7v) comparar
os resultados obtidos com aqueles reportados considerando outras estratégias; e v) garantir a

consisténcia dimensional dos modelos representados por EDOF.

Este trabalho estd estruturado da seguinte forma: O Capitulo 2 apresenta uma revisao
sobre equacdes diferenciais fraciondrias (contexto historico, tipos de derivadas fracionarias,
métodos analiticos e numéricos), analise dimensional e a descri¢do do problema de otimizacao,
bem como o algoritmo de Evolucdo Diferencial (ED) (STORN; PRICE, 1995). J4 no Capitulo 3,
serdo destacadas as metodologias para a integracdo de uma EDOF e a corre¢do do operador
diferencial no que tange a sua dimensionalidade, além de demonstrar como essas diferentes
abordagens podem ser aplicadas ao cendrio de resolucio de problemas inversos. Os resultados
e discussoes considerando estudos de caso em engenharia quimica com diferentes niveis de
complexidade sdo apresentados no Capitulo 4. Por fim, o Capitulo 5 apresenta as conclusoes e as

sugestdes para trabalhos futuros.






2 REVISAO BIBLIOGRAFICA

A origem do cdlculo fraciondrio esta relacionada com uma troca de correspondéncias
entre os matemdticos L’Hopital e Leibniz no ano de 1695, em que L’Hopital questionava Leibniz
sobre a notagdo que ele havia utilizado para a n-ésima derivada da fung@o linear f(z) = x (D"x)
em uma de suas publicacdes. A indagacdo girava em torno da ddvida sobre a resolugdo caso n
fosse igual a 1/2, e a resposta de Leibniz foi entusiasta para novos estudos acerca do tema, tendo
em vista as potenciais aplicagdes que tais investigacdes poderiam ter para problemas fisicos e
matematicos (LOVERRO, 2004).

Ap0s esse primeiro questionamento, pesquisadores como Leibniz, Euler, Fourier, Laplace,
Lagrange, Lacroix, entre outros, comegaram a avaliar o tema. Contudo, os estudos relacionados
ao célculo fraciondrio eram restritos a investigagoes tedricas matematicas, ou seja, nao havia
uma aplicacdo caracteristica bem definida e consistente do cdlculo fraciondrio na matemética ou
em outras areas do conhecimento. Desse modo, foi apenas no ano de 1832 que foi desenvolvida a
primeira aplicacdo do cdlculo fraciondrio para a solu¢do do problema da tautocronia via avaliagao
de integrais de ordem igual a 1/2 (CAFAGNA, 2007).

Interessado por esse trabalho, Liouville foi o autor do primeiro estudo sistemético sobre
o cdlculo fraciondrio, seguido por Riemann, responsavel por desenvolver a representacdo mais
cldssica de derivada fraciondria, denominada Riemann-Liouville. Em contraste com a abordagem
de Riemann-Liouville, a qual utiliza uma integral para representar a derivada, Griinwald e
Letnikov desenvolveram uma abordagem para derivadas de ordem nao inteira utilizando um
somatorio de uma série infinita onde a ordem inteira é substituida por uma ordem arbitraria
a (LORENZO, 2007). Em seguida, Hadamard (1892) publicou um artigo onde apresentou uma
metodologia capaz de calcular a derivada de ordem ndo inteira de uma func¢do analitica em
termos de sua série de Taylor. Esses estudos contribuiram para a amplia¢do das bases tedricas
do célculo fraciondrio e, consequentemente, estabeleceram fundamentos matematicos rigorosos

para posteriores aplicacdes praticas.

Nessas condicdes, pode-se dizer que a maioria dos estudos relevantes sobre o célculo
fraciondrio foi elaborada de maneira puramente matematica até o final do século XIX. A ascensdo
de anélises que destacavam a andlise de fendmenos naturais teve seu inicio ap6s o ano de 1900,
periodo no qual o tema ganha destaque e revela grandes avancos em aplicacdes de engenharia e
ciéncia (MILLER; ROSS, 1993). Algumas derivadas que podem ser citadas sdo as de autores
como Weyl, Riesz, Marchaud, Caputo e Kolwankar. Weyl desenvolveu uma defini¢ao de derivada
para abordar problemas especificos associados a fun¢des periddicas, oferecendo uma abordagem
que se mostrou fundamental para o estudo de fendmenos oscilatérios e harmonicos (CAMARGO;

OLIVEIRA, 2015). Ja Riesz formulou o teorema do valor médio para integrais fraciondrias
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e introduziu uma nova abordagem relacionada a transformada de Fourier, fato que ampliou a
aplicacdo de estudos de equacdes diferenciais fraciondrias tanto na andlise harmonica quanto em
equacdes diferenciais parciais (DEBNATH; BHATTA, 2007). Enquanto Marchaud ofereceu uma
nova definicao para derivadas de ordem nao inteira o (0 < v < 1). Tal defini¢@o possibilitou que

um maior nimero de problemas fisicos pudessem ser analisados no contexto fraciondrio.

Caputo, revisitando a defini¢ao da derivada fracionaria de Riemann-Liouville, realizou
uma simples modificacdo que se fundamentava na troca da ordem dos operadores da derivada e
da integral. Essa alteracdo simplificou a aplicacio da derivada fraciondria em problemas de valor
inicial ao considerar derivadas inteiras em suas condi¢des iniciais, fato que proporcionou avancos
nas aplicacdes tanto da fisica quanto da engenharia. Kolwankar e Gangal (1996) propuseram
uma reformulacdo da derivada fracionaria de Riemann-Liouville para a inclusdo de fungdes
fractais que nao sdo diferencidveis em qualquer ponto no contexto tradicional. Tal metodologia

aumentou o alcance do célculo fraciondrio em relagdo a um maior conjunto de funcdes.

Além dessas, também se destacam as derivadas de Chen, Hadamard, Osler, Hilfer,
Davidson-Essex, Coimbra, Canavati, Cossar, Jumarie, Caputo-Hadamard e Hilfer-Katugampola
(OLIVEIRA; OLIVEIRA, 2018). Do ponto de vista numérico, cada uma destas derivadas pode
ser empregada para aproximar termos fraciondrios, transformando o problema original em um
equivalente puramente algébrico (PODLUBNY, 1998). De todas as defini¢cdes de derivadas
mencionadas, as mais usuais sdo as de Griinwald-Letnikov, Riemann-Liouville e Caputo, as

quais serdao aprofundadas neste estudo adiante.

2.1 DERIVADAS FRACIONARIAS

Nesta se¢do, € introduzido o conceito de Integral fraciondria, conforme proposto por
Riemann-Liouville, bem como as defini¢des mais tradicionais empregadas para a representacao
de derivadas fraciondrias, a saber, as derivadas de Riemann-Liouville, Caputo e Griinwald-
Letnikov. Também sdo apresentadas algumas aplicagdes dessas derivadas na engenharia, além de

destacar as suas limitagdes.

Entre as diversas formulacdes de derivada fraciondria presentes na literatura, destacam-
se as de Riemann-Liouville e Caputo, as quais sdo as duas configuracOes mais usuais para a
apresentacio de novas formas de modelar uma derivada fraciondria. E importante destacar que a
multiplicidade de defini¢des de derivadas fraciondrias advém da auséncia de uma interpretacao
geométrica e/ou fisica clara, diferentemente do célculo inteiro, onde a derivada estd diretamente
ligada a tangente de uma curva em um ponto especifico. Apesar disso, as derivadas fraciondrias
sdo atribuidas a generalizacdo do conceito de derivadas de ordem inteira e sdo capazes de
fornecer uma descri¢do mais precisa dos fendmenos encontrados na natureza, que comumente

sdo representados por modelos complexos e ndo-lineares (LORENZO, 2007).

Nesse sentido, destaca-se o papel crucial dessas derivadas fraciondrias para a modelagem
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de fendmenos complexos com dindmicas ndo-lineares, como, por exemplo, o estudo da difusao
anOmala, onde a ordem arbitrdria garante uma maior proximidade com a realidade a partir
do momento em que considera os efeitos de memdria e influéncias nao-locais (TATEISHI;
RIBEIRO; LENZI, 2017). Diante desse contexto, de modo divergente das equacdes diferenciais
ordindrias de ordem inteira, que consideram apenas os valores atuais e as taxas de variacao
instantaneas dos sistemas, as derivadas fracionarias levam em conta a influéncia de todos os
estados passados do sistema na solucao atual. Isso € particularmente relevante para a difusao
andmala, como citado acima, onde o comportamento das particulas desvia do padrao esperado
pela Lei de Fick cldssica devido as interacdes complexas que sdo mais bem descritas pela

considerac¢do da dependéncia temporal de maneira ndo-linear (PEDRON, 2003).

2.1.1 INTEGRAL FRACIONARIA DE RIEMANN-LIOUVILLE

Visto que a maioria das formula¢des de derivadas fraciondrias, como a de Riemann-
Liouville e Caputo, envolvem a aplica¢ao de uma integral fraciondria, € fundamental introduzir
sua definicdo previamente (TEODORO; OLIVEIRA; C., 2018). Sendo assim, considere a integral

fraciondria de Riemann-Liouville de ordem « da funcao f definida como:

1

JUf(t) = o) /Ot(t — 1) F(T)dr .1)

onde o« > 0,t > 0e J* = I, sendo I o operador identidade.

2.1.2 DERIVADA DE RIEMMAN-LIOUVILLE

A derivada de Riemman Liouville (g, D F'(z)) é definida como uma de ordem inteira,

mas que estd relacionada com uma integral de ordem arbitréria:

N 1@ [t F()
RLl)x}?(iﬂ)—mﬁ/@v mdt, (22)

onde y € o menor nimero inteiro maior que « e I' € a fung¢do gama.

Ela ¢ amplamente utilizada na obten¢do de solucdes analiticas para as equagdes dife-
renciais de ordem fraciondria. Contudo, essa formulacao apresenta limitagdes no que tange as
suas condig¢des iniciais (complexas), pois sao expressas em termos de uma integral fraciondria.
Tais condi¢des iniciais diminuem a aplicabilidade pratica da abordagem, uma vez que dificul-
tam a interpretacdo do problema (RODRIGUES; OLIVEIRA, 2015). Com isso, a derivada de
Riemann-Liouville, apesar de ter sua utilidade para solu¢des analiticas, ¢ menos conveniente

para a andlise de sistemas fisicos e de engenharia.
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2.1.3 DERIVADA DE CAPUTO

A Defini¢@o da derivada de Caputo (¢ DS F(x)) de uma funcio genérica F'(z) com
relagdo a varidvel independente = é dada por:

T

1 dYF(t)

DiF(z) = —— — )T ———=dt 2.3

D) = g [ty @3
0

em que I' € a Funcdo Gamma e y € um numero inteiro, definido conforme a derivada de

Riemann-Liouville.

Diferentemente da defini¢do de Riemman-Liouville, a derivada de Caputo trata de uma
integral de ordem arbitraria de uma derivada de ordem inteira. Em outras palavras, a principal
diferenca em relacdo a defini¢do anterior € a ordem da diferenciacdo, que, na formulagdo de

Caputo, é aplicada a fungdo F'(¢) dentro da integral, e ndo com o seu resultado.

Sendo assim, a formulacao proposta por Caputo € especialmente relevante devido a sua
capacidade de incorporar condi¢des iniciais com uma interpretacdo fisica clara, ja que essas
sdo dadas em termos de equacdes diferenciais de ordem inteira (CARVALHO; OTTONI, 2018),
diferentemente da derivada de Riemman-Liouville. Essa caracteristica torna a formulacao de
problemas mais intuitiva. No entanto, a complexidade matematica envolvida na resolucao das
equacoes resultantes geralmente torna necessdrio o uso de métodos numéricos. Esses métodos
sao escolhidos conforme a natureza do problema, condicdes de contorno, necessidade de precisdao
e eficiéncia computacional (PODLUBNY et al., 2009).

2.1.4 DERIVADA DE GRUNWALD-LETNIKOV

A Derivada fraciondria de Griinwald-Letnikov (¢, DS F'(z)) de uma fungdo genérica

F(z) com relagdo a varidvel independente z é definida através do limite da seguinte série:

o s 1 «— i al
arDg F(x) = lim (ﬁ % (1) (m) F(x - kh)) (2.4)

em que h € o tamanho do passo de integracdo e « é a ordem fraciondria.

Tal formulagdo € empregada para a resolucdo de equacdes numéricas e pode ser entendida
como uma generalizacdo das formulagdes propostas por Riemann-Liouville e Caputo, pois
ambas podem ser matematicamente obtidas a partir dela (RODRIGUES; OLIVEIRA, 2015).
E importante destacar que a formulacio acima esté ligada a uma soma ponderada de valores
de memoria da fungdo F(x), em que os coeficientes binomiais representam a fungdo de pesos,
determinando a contribui¢do de cada valor passado descrito por F'(z—kh) na derivada fraciondria.
Através de uma andlise matemadtica, é possivel demonstrar que tais coeficientes dependem da
ordem « e possuem a propriedade de decrescer conforme o aumento de k, o qual representa o
ndmero de passos discretos no passado a partir do tempo atual ¢. O valor de £ varia de 0 até t_T“

e corresponde ao nimero de passos necessarios para ir de ¢ até o ponto inicial a.
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De acordo com o supracitado, a derivada de Griinwald-Letnikov tem sua dependéncia
direta na discretizacdo temporal, pois considera todos os valores passados da varidvel a ser
diferenciada. Essa caracteristica traz consigo uma limitagao significativa, a saber, o elevado
custo computacional associado a passos de integracdo com intervalos pequenos (COSTA, 2021).
Portanto, encontrar um equilibrio entre a precisdo desejada e a viabilidade computacional é

crucial ao utilizar essa abordagem.

2.1.5 FUNCAO DE MITTAG-LEFFLER

Entre os anos de 1902 e 1905, Mittag-Leffler introduziram a cldssica fungdo que recebe
os nomes destes matemadticos. Estd é denotada por E,(z), e depende apenas de um pardmetro o
(MITTAG-LEFFLER, 1903). Essa fun¢do foi definida a partir de uma série de poténcias que
abrange a fun¢do Gama e pode ser considerada uma generaliza¢ao da funcdo exponencial para
o cendrio fraciondrio, fato que a torna importante para a resolu¢do de equacdes diferenciais

fracionarias.

Definicio 1. Sejam z € C e o um pardmetro complexo com R(a) > 0. A fungao de
Mittag-Leffler de um parametro é definida como (PODLUBNY et al., 2009):

oo Zn
E.(z) = — 2.5
() g ['(an+1) (25)
onde I'(+) é a Fun¢do Gamma, também denominada de func¢do de Euler de segunda espécie, e

que generaliza o fatorial para nimeros reais e complexos (OLIVEIRA, 2012).

Com o avanco dos estudos no campo do célculo fraciondrio ao longo do século XX, a
funcdo de Mittag-Leffler de dois pardmetros foi introduzida por Humbert e Agarwal (1953).
Posteriormente, Prabhakar (1971) apresentou a funcdo de Mittag-Leffler de trés parametros,

ampliando significativamente suas aplicacdes e a compreensao tedrica da funcio.

Defini¢iio 2. Sejam z € C e p e 5 dois pardmetros complexos com R(«) > 0. A fungdo

de Mittag-Leffler com dois parametros € definida como:

Buslz) =S — (2.6)
: ,; L (pn + f)

onde I'(+) é a fungéo gama.

Definicao 3. Sejam 2z € C e p, 8 e 7y trés parAmetros complexos com R(p) > 0. A

funcdo de Mittag-Leffler com trés parametros € definida por meio de uma série de poténcias:

E,(z) = ; % 2.7

onde -y, € um parametro adicional denominado simbolo de Pochhammer.
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2.2 VALIDADE E CRITERIOS PARA AS DERIVADAS FRA-
CIONARIAS

Diante da diversidade de formulagdes envolvendo derivadas fraciondrias, foi estabelecido
por Ross (1975) um conjunto de critérios, baseado em 5 propriedades, capaz de diferenciar
se uma determinada derivada poderia ser considerada ndo-inteira. Este trabalho forneceu a
primeira estrutura formal para entender como as derivadas de ordem fraciondria poderiam ser
definidas de maneira rigorosa e consistente. Essa abordagem visava garantir se tais derivadas
fraciondrias se caracterizavam como uma extensao suficientemente coerente para as derivadas
inteiras via andlise de linearidade, causalidade e reducdo a derivada classica. Sendo assim, tal
critério consistia em construir uma base matematica sélida e generalizada, sem a necessidade
de considerar sua aplicabilidade em condicdes especificas e individuais de sistemas fisicos e de

engenharia.

Portanto, da mesma maneira que o trabalho de Ross estabeleceu bases tedricas neces-
sdrias, esse direcionou novas pesquisas. Ortigueira e Machado (2015) propuseram adaptacgdes
nos operadores fraciondrios para torna-los mais aplicdveis a sistemas fisicos. Isto se baseava um

alguns critérios, definidos como:

A derivada fraciondria deve ser linear para que a operagdo de diferenciacdo matematica

seja consistente com as propriedades definidas pela dlgebra linear.

* A operagdo de diferenciacio fraciondria, quando a ordem € um inteiro, deve coincidir com
o resultado da diferenciacdo ordindria. Tal propriedade garante que a derivada fraciondria

possa ser considerada uma extensao das derivadas tradicionais.

A aplicacdo sucessiva de duas derivadas fraciondrias de ordem p e [ deve ser igual a
derivada fraciondria de ordem p+3 quando 1 < 0 e 3 < 0, D*D? = DWW f(x), de
acordo com a lei dos expoentes.

A derivada de ordem zero de uma fungio € a prépria fungdo, Dy f(z) = f(x).

A regra de Leibniz generalizada estabelece como a derivada fraciondria de um produto
de fungdes deve ser calculada, isto é; D*(f(z)g(x)) = > pey (1) D*7* f(2) D¥g(x), em

que:
w\ _ Tp+1)
(k;) CT(p—k+1)! 28)

As formulagdes de Riemann-Liouville, Caputo e Griinwald-Letnikov apresentadas nesse
trabalho satisfazem tanto os critérios proposto por Ross (1975) quanto por Ortigueira e Machado
(2015). Neste Trabalho ndo serd apresentada as provas matematicas para tais critérios, contudo
elas estdo presentes em detalhes em (TEODORO, 2019).
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2.3 EQUACAO DIFERENCIAL ORDINARIA FRACIONARIA

Nesta contribuicao, considera-se uma Equacdo Diferencial Ordinéria Fraciondria (EDOF)
definida como (CAFAGNA, 2007):

(2.9)

onde ¢ € a varidvel independente, y é o vetor de vardveis dependentes (7, € o vetor que contém a
condig¢do inicial associada a cada varidvel dependente). f é o vetor que contém o lado direito do
modelo diferencial fraciondrio, v € a ordem fraciondria (o > 0), n = [] € o primeiro inteiro néo

menor que o (0 < a < 1) e T é o tempo final (7" > 0).

2.4 METODOS ANALITICOS E METODOS NUMERICOS

Para a resolugdo da EDOF definida, é importante destacar a diferencga entre os métodos
analiticos e métodos numéricos de solugdao. Os métodos analiticos visam encontrar solu¢coes
exatas e explicitas através de algumas técnicas mateméticas bem estabelecidas e adaptadas para
o contexto fraciondrio, como € o caso da Transformada de Laplace, Funcao de Mittag- Leffler,
Tranformada de Fourier e Expansdo em Série de Poténcias. Contudo, apesar desses métodos
analiticos nao estarem sujeitos a erros de aproximagao numérica, sua solu¢do muitas vezes é
dificil ou até mesmo invidvel de se obter devido a natureza complexa e ndo-linear da EDOF.
Essa limitagdo torna a utilizacdo de métodos analiticos inadequada para a resolugdo de grande

parte das equacdes fraciondrias encontradas em problemas praticos (TEODORO, 2019).

Neste caso, para equagOes fraciondrias complexas ou ndo-lineares o mais usual € a
utilizacdo de diferentes métodos numéricos para a resolucao. Embora tais métodos fornecam
solugdes sujeitas a erros de truncamento e/ou arredondamento, eles sdo preferiveis quando a
solugdo exata ndo € passivel de ser encontrada. Este tipo de estratégia € uma abordagem flexivel
e generalizada, visto que pode ser aplicada em uma série de estudos com diferente niveis de
complexidade (PODLUBNY et al., 2009). Dentre a variedade de métodos numéricos existentes,
ha a classificagdo desses em métodos implicitos e explicitos. Nesse sentido, enquanto nos
métodos explicitos a solucdo em um determinado ponto € calculada através de valores anteriores,
fato que confere certa limitacdo do tamanho do passo no tempo. Os métodos implicitos requerem
a resolucao de sistemas algébricos, provavelmente ndo lineares, a cada passo de integracao,
pois nao dependem apenas de valores anteriores, mas também de valores atuais. Com isso, 0s
métodos implicitos se enquadram como uma metodologia mais robusta, porém com maior custo
computacional (BATHE, 2007).
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2.4.1 METODOS ANALITICOS PARA A RESOLUCAO DE EDOF

As Transformadas de Fourier e de Laplace em conjunto com a Fun¢do de Mittag-Leffler,
desempenham um papel fundamental na resolucdo de EDOF (PODLUBNY, 1998). Estas sao
capazes de simplificar, em casos especificos, a resolucao de tais equagdes. Cada uma dessas
ferramentas possui particularidades especificas no contexto fraciondrio, e seu emprego depende
da natureza e restricdes presentes nas diferentes aplica¢des prdticas no contexto do cédlculo

fracionario.

Diante disso, enquanto as Transformadas de Laplace e de Fourier auxiliam na transforma-
c¢do de derivadas fraciondrias em equacdes algébricas no dominio da frequéncia, com a finalidade
de facilitar a manipulag@o durante a resolucdo de tais equagdes, a Funcdo de Mittag-Leffler pode
ser interpretada como uma generalizacdo da funcdo exponencial, pois desempenha um papel
andlogo para equagdes diferenciais fraciondrias ao que a funcdo exponencial desempenha para

equacoes diferenciais ordindrias lineares (TEODORO, 2019).

2.4.1.1 TRANSFORMADAS DE FOURIER E LAPLACE

A abordagem matemadtica das transformadas de integrais, como as de Fourier e de Laplace,
tém sua importancia na determinacdo das solu¢cdes de EDOF com condicdes de contorno iniciais
ou especificas. A transformada de Laplace, em particular, se destaca como uma abordagem
direta e eficaz para a resolucdo de problemas com condic¢des iniciais. Tal técnica envolve a
transformacdo de equagdes diferenciais no dominio do tempo ¢ em equagdes algébricas no
dominio de s, simplificando a solu¢do do problema. Apds a manipulacdo da equacdo no dominio
s, a transformada inversa € aplicada para o retorno da solu¢do ao dominio de ¢ (BOYCE;
DIPRIMA, 2010). J4 a transformada de Fourier fornece uma perspectiva particular e adequada
para a andlise de sinais e sistemas no dominio da frequéncia, a partir do momento no qual ela é
responsavel por decompor um sinal em seus componentes elementares seno e cosseno (LIMA,
2018).

Definicao 1. Seja f(¢) uma fungdo definida para ¢ > 0. A transformada de f(¢), denotada
por L[f(t)](s) = F(s), é definida como:

L)) = Pl = | o 2.10)

0

onde s é uma varidvel complexa, tal que s = o 4 7, com o € R representando a parte real e 7

sendo a parte imagindria.

Dessa maneira, a transformada de Laplace de uma dada fungéo f(¢) envolve uma integral
imprépria cujos limites inferior e superior sdo, respectivamente, 0 e —oo. Tal fato ocorre, pois
sua aplicagdo envolve problemas causais, ou seja, os valores de f(t) sdo iguais a zero quando
t<0.



2.4. Meétodos Analiticos e Métodos Numéricos 13

Definic¢io 2. No caso particular em que 0 = 0 e os limites sdo iguais a zero e f(t),
s = i1 e F(w) correspondem a transformada de Fourier de f(¢). Neste cendrio, a transformada
F(w) obtida a partir da Transformada de Laplace corresponde diretamente & Transformada de

Fourier de f(t), que é dada por:
FUrwl = [ foear .1

Sendo assim, é possivel dizer que a fun¢éo F'(f)(w), chamada de Transformada de Fou-
rier de f(t), captura todas as informacdes existentes na fungdo original f(¢). Isso ocorre devido
a existéncia da operagdo de transformada inversa, denotada por F'~!, que permite recuperar f(t)
a partir de F'(f)(w) (TITCHMARSH, 1962). Sua defini¢do estd dada a seguir como:

F(t) = FY(F(w)) = — / " F0)e du

:% N

2.4.2 METODOS NUMERICOS PARA A RESOLUCAO DE EDOF

Métodos numéricos como os de Euler e de Adams tém sua importancia na resolucdo de
EDOF, visto que oferecem aproximagdes para o perfil de interesse. Ao considerar o Método de
Euler, é importante destacar que esse método trata-se de uma abordagem numérica linear de
tinico passo, ou seja, para uma fungdo f(¢x,yx) o célculo do préximo passo yi1 depende apenas
de informagdes do ponto atual ¢;, do valor da fun¢do em y;, e, possivelmente, de sua derivada em
t1, dada pela inclinagdo da curva (f(t,yx)). Dessa forma, para cada iteracdo, o préximo valor da
funcao pode ser calculado de maneira independente (MAIOLI, 2015). Diante disso, é possivel
distinguir a técnica numérica mencionada em Método de Euler Direto Fraciondrio e Método de
Euler Reverso Fraciondrio. O primeiro € um método explicito, enquanto o segundo é um método

implicito, que serdo posteriormente explorados de maneira mais detalhada.

Por outro lado, os Métodos de Adams sdo definidos como abordagens numéricas lineares
de mdltiplos passos, o que significa que, ao considerar uma funggo f(tx,yx), o célculo de 11
¢ feito considerando valores anteriores (yx_1, Yx_2, ...), €m vez de depender apenas do valor
atual da fun¢do em ¢, e yi. Dentre essa classe de métodos, destacam-se os Métodos de Adams-
Bashforth e de Adams-Moulton, sendo tais métodos classificados como explicito e implicito,
respectivamente (GARRAPPA, 2010).

Vale ressaltar que, no entanto, a escolha entre empregar métodos numéricos de tnico
passo e de multiplos passos deve ser feita baseando-se nas especificacdes do problema a ser
estudado. Enquanto os métodos numéricos de tinico passo sdo preferiveis para andlises simples,
com curtos intervalos de tempo e poucas restricdes quanto a precisao, os de multiplos passos
conferem a problemas complexos, ou que necessitam da avalia¢do do sistema em longos periodos
de tempo, maior estabilidade e precisao (ATKINSON, 1991).
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Cabe destacar que, para resolver um problema usando uma abordagem implicita, € preciso
avaliar uma equacdo, provavelmente, ndo linear em relagao a incognita yy 1. Na prética, isso
significa que, para integrar um modelo diferencial fraciondrio usando uma estratégia implicita, é
necessario resolver um sistema algébrico, provavelmente, nio linear, a cada passo de integragao.
Essa particularidade proporciona maior estabilidade, mas garante maior complexidade e um

maior custo computacional.

Nesta contribui¢do, serdo detalhadas as abordagens numéricas MERF, o MEDF e MAMF.

2.4.2.1 METOoDO DE EULER REVERSO FRACIONARIO

Do ponto de vista matematico, o Método de Euler Reverso Fracionario (MERF), também

conhecido como Método de Euler Implicito Fracionédrio (MEIF), é dado como:

n—1 ,7 k
t?wl (9) h
= + b; t; ; 2.12
Yh+1 J’Eo i Yo T+ 1) ]Eo: k1 f (Li1,Y41) (2.12)

e os coeficientes b sdo dados pela Eq. 2.14.

2.4.2.2 METODO DE EULER DIRETO FRACIONARIO

O Método de Euler Direto Fracionario (MEDF), também conhecido como Método de

Euler Explicito Fraciondrio (MEEF) € dado como:

n—1 ,5 k
t;wrl (9) h
Yk+1 = on _j! Yo T+ —P(H n 1) JEO bj,k+1f(tjayj) (2.13)

em que [' é a funcdo Gama e os coeficientes b sdo computados como:
biwp1 =k —Jj+1"—(k—7)" (2.14)

2.4.2.3 METODO DE ADAMS-MOULTON FRACIONARIO

Ja o Método de Adams-Moulton € uma estratégia implicita. Neste caso, para atualizar
Yr+1, faz-se necessdrio predizer o valor de y (v, ). Assim, 0 Método de Adams-Moulton

Fraciondrio € descrito como segue:

n—1 ,j k
. . hH
P J+1. ()
Ypy1 = E —Yo + § bjks1f (L5, Y5) (2.15)
k+1 g ]' 0 T(u—{—l) pars 7,k+ (J ])

onde b; 11 sdo os coeficientes definidos pela Eq. 2.14, e y/ +1 € asolugdo preditiva. De posse do

valor predito, o valor de y; 1 (etapa de corre¢ao) é computado como:

n—1 tj

k
. . Bt
Yk+1 = Z ];1?/(()]) + <Z ajpr f (5, y5) + aprrp f(trra, y]];-l)) (2.16)
. =0

= P +2)
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onde a; ;41 s@0 os coeficientes para o método de Adams-Moulton.

Os coeficientes a sdo dados pela Eq. 2.17.

R — (k= p)(k + 1), j=0
g1 =4 (k—j+2)"*2 -2k —j+ 1) 4 (k- 1<j<k (2.17)
L, j=k+1

2.4.2.4 METODO DA COLOCAGCAO ORTOGONAL

No Método da Colocagao Ortogonal, diferentemente dos ja apresentados, a solugdo é
aproximada conforme uma combinacao linear de fun¢des de base (geralmente polinomiais) em
determinados pontos do dominio de interesse (pontos de colocagdo). Sendo assim, a equagao
original deve, obrigatoriamente, satisfazer a func¢io de aproximacao escolhida nos pontos con-
siderados, assim como nas condigdes iniciais e de contorno. Tradicionalmente, a funcao de
aproximacao utilizada € o Polindmio de Lagrange (PL) e os pontos de colocagdo sdao definidos
como as raizes do polindmio ortogonal. Quanto ao uso do PL, a escolha é baseada na redugdo do
custo computacional quando comparado a outras aproximacdes (VILLADSEN; MICHELSEN,
1978). Ja a utilizacdo das raizes do polindmio ortogonal como pontos de colocagdo € justificada
pela diminuicao do nimero de pontos de discretizagdo, e consequente reducao do problema a ser
resolvido (LARANIJEIRA; PINTO, 2001). A metodologia é apresentada de forma detalhada em
Lima (2022).

2.5 ANALISE DIMENSIONAL DE UMA EDOF

Tradicionalmente, os problemas em engenharia sio modelados por equagdes diferenciais
de ordem inteira. No contexto fraciondrio, ao adicionar um operador fraciondrio ao problema
original, faz-se necessdrio avaliar a consisténcia dimensional. Isto €, as unidades em ambos
os lados da equagdo em andlise devem ser iguais para se obter consisténcia no modelo fisico

apresentado, evitando, assim, incoeréncias que possam comprometer a validade do problema.
Para ilustrar a importancia da consisténcia dimensional, considere a aplicacdo da Lei de

Resfriamento de Newton, modelada pela equacao diferencial ordindria de primeira ordem:

dT(t)

=~k (T() — Tow) 218)

onde T'(t) é a temperatura do corpo no tempo t, Ty, € a temperatura do ambiente, k é a constante

de proporcionalidade (com unidade de 1/tempo). Em termos das dimensdes fisicas, no Sistema

SNs

Internacional de Unidades (SI), tém-se:
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Neste caso, a equacdo acima € consistente dimensionalmente. Por outro lado, no contexto
fraciondrio € preciso considerar a ordem fraciondria . Assim, o modelo diferencial é dado

COmo:

doT(t)
dte

=~k (T(t) ~ Taw) 2.19)

Dimensionalmente tém-se:

°C °C
BlHb
Como observado nesta equacao, o modelo € inconsistente dimensionalmente. Portanto,

€ preciso realizar uma correcdo para que o balanco de unidades seja coerente. A seguir, sao

apresentadas duas abordagens para a correcdo dessas unidades em modelos fisicos.

2.5.1 CORREGCAO DAS UNIDADES NOS PARAMETROS DO MODELO

A primeira estratégia consiste na corre¢do direta do pardmetro & (constante de proporcio-
nalidade, que mede a taxa de transferéncia de calor) com base na ordem fraciondria disposta. Tal
técnica nao € atribuida especificamente a nenhum estudioso, mas foi amplamente utilizada em
trabalhos do século XX para a corre¢do dimensional de modelos fraciondrios, como € o caso de
Caputo (1967).

Na Equagdo. 2.19, a ordem « faz com que a dimensao do tempo seja alterada. Nesse
sentido, essa metodologia, para o problema apresentado, se baseia na elevacdo da poténcia para o
pardmetro k, que contém a dimensao tempo, cuja unidade precisa ser corrigida, a fim da garantia

da consisténcia dimensional «, conforme segue:

d°T(t)
dte

= —k*(T(t) — Tamp) (2.20)

Esse procedimento assegura que o produto k(7'(t) — Tymp) tenha as mesmas unidades

que o operador diferencial fraciondrio d*T'(t)/dt®, garantindo a corre¢éo na dimensdo, como

[+ =[]

Além disso, € importante destacar que nessa técnica € preciso analisar as dimensoes e

demonstrado abaixo:

unidades que deverdo ser ajustadas especificamente em cada aplicagdo. Com isso, para esse caso
da Lei de Resfriamento, embora o ajuste direto na unidade do pardmetro % seja matematicamente
vidvel, essa abordagem ndo se mostra usual, pois pode comprometer a interpretacao fisica do

fenOmeno natural.
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2.5.2 FATOR DE CORREGAO DO OPERADOR DIFERENCIAL

Conforme mencionado anteriormente, a corre¢do das unidades via modificacdo dos
parametros do modelo ndo € uma estratégia interessante do ponto de vista fisico, ja que essa
dificulta a interpretagdo fisica. Como alternativa a esta abordagem, pode-se definir um fator de
correcdo para modificar o operador diferencial fraciondrio. Para esta finalidade, é empregada a
defini¢cdo de tempo cosmico proposta por Podlubny (2001) em conjunto com um fator de corre¢do
em modelos diferenciais fraciondrios aplicados a osciladores mecanicos, proposto por Gomez-
Aguilar et al. (2012). Essa estratégia é eficaz para corrigir a inconsisténcia dimensional do
modelo diferencial fracionario, uma vez que multiplica o tempo — a varidvel independente que
contém o termo diferencial fraciondrio — por um fator de correcao que possui a mesma unidade
da varidvel independente, neste caso, o tempo em segundos. Com isso, o termo diferencial

fraciondrio corrigido (no SI) € dado como Podlubny (2001):

1 doT(t) °C
- = | — < .
[U(l_a) e } [ ; 1 ., 0<a<1 (2.21)

onde 1/01=*) & o fator de corregio, sendo ¢ um pardmetro cuja unidade é igual a varidvel a
ser corrigida dimensionalmente e que, segundo Podlubny (2001), pode ser interpretado como a

componente do tempo fraciondrio.

Via andlise dimensional da Eq. 2.21, € possivel dizer que essa é consistente, ja que
ambos os lados possuem a mesma unidade. Ademais, o operador diferencial ordinario pode ser
substituido pelo operador fraciondrio, de acordo com a Eq. 2.22, quando o operador « for igual
a unidade.

d 1 d*T(t)

— =
dt gll=a) dta '

0<a<l (2.22)
Ao aplicar o fator de correcao a lei de resfriamento de Newton dada pela Eq. 2.18,
encontra-se:

1 doT(t)
O-(lfa) dte

= —k(T(t) — Tamp) (2.23)

Se o tem unidade da dimensdo tempo, tem-se que:

) [F) - F]

Por conseguinte, a correciao do operador diferencial fraciondrio proporciona consisténcia
dimensional para o modelo. Além disso € importante destacar que o deve ser igual a unidade para
evitar interferéncia no valor dos perfis a serem simulados. Finalmente, € importante destacar que
esse conceito tém sido amplamente aplicado em diversas areas, como demonstrado em trabalhos
de Goémez-Aguilar et al. (2012) e Podlubny (2001).
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2.6 APLICACOES DO CALCULO FRACIONARIO EM ENGE-
NHARIA E AREAS AFINS

Conforme mencionado neste trabalho, a origem do célculo fracionério € registrada em
uma troca de correspondéncias entre L’Hopital e Leibniz no ano de 1695. Apesar disso, as
aplicagdes praticas comegaram a se consolidar apenas no século XX, especialmente nos campos
da fisica e da engenharia, a medida que estudiosos vislumbravam no célculo fraciondrio uma
oportunidade de enfrentar os desafios exigidos pela modelagem de sistemas ndo lineares e com
dinamicas complexas. Nesse sentido, é importante destacar que, embora sua aplicabilidade seja
recente e muitas vezes restrita, € possivel dizer que a insercdo do calculo fraciondrio na rotina
dos estudiosos ja pode ser vista por meio de trabalhos académicos publicados em diversas areas
do conhecimento, como € o caso da fisica, biologia, economia, engenharia, entre outras. Para
essa finalidade, a seguir sdo apresentadas aplicacdes do cdlculo fraciondrio em diferentes campos

da ciéncia e engenharia.

* Fisica: nessa drea da ciéncia podem ser encontrados trabalhos relacionados a difusao
andmala(GONZALEZ et al., 2005), eletromagnetismo(BOHANNAN; KNAUBER, 2015),
transporte de calor (SIEROCIUK et al., 2013) e dinamica de sistemas cadticos(CHEN et
al., 2012).

* Controle: pode-se encontrar trabalhos envolvendo controladores PID (Proporcional-
Integral-Derivativo) fraciondrios (TYTIUK et al., 2019) e otimizacdo de sistemas di-
namicos (LIMA, 2022).

* Biologia: nesse campo sio contemplados trabalhos relacionados com a difusao de farmacos
em tecidos biolégicos (MAGIN, 2010), e estudos sobre epidemiologia(ROSA; TORRES,
2018).

* Economia: os modelos fraciondrios nessa area sdo aplicados para andlise de risco em fi-
nancas (DING; GRANGER; ENGLE, 1993) e em previsodes de séries temporais (FLORES-
MUNOS; BAEZ-GRACIA; GUTIERREZ-BARROSO, 2018).

» Ciéncia dos Materiais: nessa drea encontram-se trabalhos em temas como reologia de
materiais viscoelasticos (MERAL; ROYSTON; MAGIN, 2010) e analise de materiais
porosos (ZASLAVSKY, 2002).

* Engenharia Mecanica: podem ser encontrados contribui¢des sobre andlise de vibragdes
em estruturas (NIU et al., 2019) e modelagem de sistemas vibratérios com amortecimento
viscoeldstico (AVILA et al., 2010).

Na Engenharia Quimica, o cdlculo fraciondrio tem sido aplicado na modelagem e analise

de processos dinamicos complexos. Neste contexto, pode-se citar o trabalho de MOTTA et al.
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(2017), que consiste na aplica¢do do calculo fraciondrio a generalizagdo matematica da secagem
de bagaco de uva, levando em conta dados de umidade no dominio do tempo em diferentes
temperaturas de secagem. Nesse estudo, a aplicacdo de modelos fraciondrios permitiu a obten¢ao
de maior precisio no ajuste dos dados experimentais em comparacao ao tradicional Modelo de

Page.

Outra aplicagdo recorrente € a modelagem fraciondria da cinética de reatores quimicos,
como exemplo, pode-se citar o estudo de Qureshi e Aziz (2019), onde foi modelado um rea-
tor batelada com a utilizagdo do operador diferencial fracionario do tipo Caputo. O objetivo
do estudo foi simular diferentes perfis de concentracdes ao longo do tempo para diferentes
ordens fraciondrias, a fim de se obter a avaliagdo dos parametros em conjunto com a andlise do

comportamento dindmico do sistema.

O célculo fraciondrio também tem se mostrado promissor no campo de controle de
processos, tanto no que diz respeito ao desenvolvimento de controladores Proporcional-Integral-
Derivativo (PID) fracionarios quanto na aplicagao do controle 6timo. Para os controladores PID
fraciondrios, a avaliacdo de seu desempenho em relacdo aos controladores PID cldssicos pode ser
encontrada no trabalho de Shen (2018). J4 para o Problema de Controle Otimo (PCO), pode-se
dizer que esta € uma metodologia empregada para determinar um vetor de varidveis de controle
com o objetivo de maximizar ou minimizar uma fun¢do objetivo, também chamada de funcao
custo ou indice de desempenho. Essa funcdo pode estar relacionada, por exemplo, a maximizagdo
da eficiéncia de um processo produtivo ou a minimiza¢do do consumo de recursos, como
dgua e energia, em uma planta industrial, sempre respeitando restricdes algébrico-diferenciais
em termos de vetores de variaveis de estado (BRYSON; HO; SIOURIS, 1979) associadas ao
sistema analisado. Essas restricdes, no entanto, podem ser descritas por equacdes diferenciais
fraciondrias, que introduzem a ordem fraciondria como um elemento importante na descri¢ao
dos perfis dindmicos obtidos. Para a resolu¢c@o desse problema Lobato (2008) propde a extensdo
do Método da Colocagdo Ortogonal para o contexto fraciondrio como ferramenta eficiente para a
integracao dos modelos algébrico-diferenciais fraciondrios que constituem o PCO, facilitando
a modelagem e otimizagdo de sistemas dindmicos complexos e aumentando a precisdo desses

modelos.

Além disso, o célculo fracionério tem encontrado aplicacdes importantes na drea da
reologia. No trabalho de Avila et al. (2010) é apresentada a simula¢io do comportamento
dinamico de sistemas estruturais equipados com amortecedores viscoeldsticos, no dominio
do tempo. Nesse estudo, sdo desenvolvidas metodologias para a incorporacdo de modelos
viscoelasticos fracionarios em modelos baseados no Método dos Elementos Finitos, a fim de
obter uma modelagem mais precisa dos fendmenos de amortecimento em materiais viscoeldsticos,
onde a relacao entre varidveis como tensao e deformagao depende da memoria da aplicacdo da

forca.
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2.7 PROBLEMA DE OTIMIZACAO

Do ponto de vista pratico, em modelos diferenciais fenomenoldgicos, a ordem fraciondria
nao é conhecida a priori. Neste caso, a mesma deve ser estimada de forma que os perfis simulados
tenham aderéncia ao fendmeno analisado. Isto pode ser realizado através da formulagdo e
resolucdo de um problema de estimagdo de parametros, também conhecido como problema
inverso. Matematicamente, o problema inverso consiste em uma forma particular de otimizacao
em que a fungdo objetivo representa uma métrica que quantifica a diferenga entre os pontos
simulados pelo modelo proposto e os pontos experimentais. No caso particular do modelo
diferencial fraciondrio, este modelo deve ter como restricao os balangos de massa, energia e

quantidade de movimento, bem como as relacdes constitutivas ou empiricas.

Para resolver este tipo de problema sera considerado como ferramenta de otimizacao o
algoritmo de Evolucao Diferencial (ED), proposto inicialmente por Storn e Price (1995), para
problemas de otimiza¢do mono-objetivo e sem restricdes. A seguir € apresentada uma breve
revisao sobre a definicdo do problema de otimizagdo, sua formulacao matematica, bem como

sua classificacd@o e por fim a descricao do algoritmo de ED.

2.7.1 FORMULACAO MATEMATICA DO PROBLEMA DE OTIMIZA-
GAO

A otimizacdo € uma ferramenta matematica amplamente utilizada para determinar a
melhor solugdo possivel em uma aplicacdo particular. Em sintese, o problema geral de otimizagdo
tem sua metodologia baseada na identificagdo do melhor valor para uma ou n varidveis, classifi-
cadas como varidveis de decisdo (ou de busca ou de projeto, no contexto da engenharia), a fim
de minimizar ou maximizar uma funcdo objetivo, podendo estas serem lineares ou ndo lineares
em relacdo as varidveis do projeto, explicitas ou implicitas, e calculadas por métodos analiticos
ou numéricos. Essas especificacdes sdo responsaveis por dar particularidade a cada fendmeno
analisado. A principal vantagem da otimizacao estd justamente na possibilidade de prever e
ajustar o comportamento de um sistema sem a necessidade de realizar experimentos fisicos
ou testes praticos para cada cendrio distinto. Contudo, o custo computacional deve ser levado
em consideracgdo, especialmente quando o problema envolve um grande nimero de varidveis,

func¢des descontinuas ou fun¢des com multiplos minimos locais, onde raramente se atinge o
minimo global (SARAMAGO, 2003).

De maneira geral, um problema de otimizacdo apresenta as seguintes caracteristicas
Vanderplaats (2001):

* Funcao objetivo: é quem deve ser minimizado ou maximizado. Esta representa a ca-
racteristica a ser aprimorada no sistema. No contexto matemético, uma func¢do objetivo

f(z) depende (de forma explicita ou implicita) das varidveis de projeto (z), podendo ser
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unidimensional, quando depende de uma tdnica varidvel, ou multidimensional, quando

depende de multiplas varidveis de projeto.

* Variaveis de projeto: sdo as incégnitas que, ao serem manipuladas, sdo capazes de

modificar o valor da funcao objetivo.

* Restricoes: sdo fungdes responsaveis por definir os limites dentro dos quais as varidveis

de projeto serdo determinadas. Estas podem ser classificadas como:

1. Restrigdes de Igualdade: representadas como h;(x) = 0. Estas delimitam um espago

de busca onde as varidveis de projeto correspondem a um valor pré-determinado.

2. Restri¢des de Desigualdade: representadas como g;(x) < 0 ou g¢;(x) > 0,

limitam os valores que as varidveis de projeto devem assumir.

3. Restri¢oes Laterais: especificam os limites mdximos € minimos para as varidveis de
projeto. Elas podem ser expressas da seguinte forma: L; < z; < U;, onde L; e U; sdo
os limites inferior e superior, respectivamente, para a varidvel ;. Essas restricdes
sdo fundamentais para garantir que as solugdes 6timas estejam dentro de intervalos

praticaveis.

A formulagdo matematica de um problema de otimiza¢do mono-objetivo € dada com
(DEB, 2001):

min (ou max) f(x) (2.24)
Sujeito a:
hi(x)=0, j=1,....K (2.25)
9:(x) <0, i=1,....H (2.26)
Li<z<U, i=1,....n (2.27)

onde f(x) € a fungdo objetivo que se deseja otimizar, h;(x) = 0 representa as restricdes de
igualdade, g;(x) < 0 representa as restricdes de desigualdade, L; < x; < U, especifica as
restri¢Oes laterais para cada varidvel de decisdo x;, K € o nimero total de restricdes de igualdade,

H € o namero total de restricdes de desigualdade e n € o niimero total de varidveis de projeto.

Em termos matematicos, quando o problema envolve a maximizacdo de f(x), a obtengdo
da solugdo é dada por meio da multiplicagdo da fungdo objetivo por —1. Em outras palavras, o
problema de maximizag@o torna-se igual & minimizag¢do de — f (). Essa equivaléncia demonstra
que todas as solucdes obtidas para um cendrio podem ser transferidos de maneira simples para o
outro sem grandes dificuldades IZMAILOV; SOLODOV, 2014).

2.7.2 CLASSIFICACAO DOS METODOS DE OTIMIZACAO

Nesta secdo sdo apresentadas algumas classifica¢des para auxiliar na escolha do método

de otimiza¢do mais adequado para cada contexto.
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2.7.2.1 CLASSIFICAGAO DE ACORDO COM A ESTRUTURA DA FUNGAO OBJE-
TIVO E RESTRIGCOES

* Programa Linear (PL): tanto a funcdo objetivo quanto as restricdes sdo lineares, tratando-
se de problemas convexos que possuem solugdes bem definidas (BREGALDA; OLI-
VEIRO; BORNSTEIN, 1988). A linearidade garante que, se uma solu¢do 6tima existe, ela
pode ser encontrada nos vértices da regido factivel. Métodos como o Método Simplex e
Método de Pontos Interiores sdo comuns em PL.

* Programacao Nao-Linear: neste tipo de problema, a fun¢@o objetivo ou as restricdes
apresentam pelo menos uma relagdo nao-linear, fazendo com que a andlise da solugdo seja
mais complexa se comparada a programacao linear. Tais problemas podem ser convexos ou
ndo-convexos e a convergéncia para a solucdo global pode ser dificultada com a presenca
de multiplos 6timos locais. (BOYD; VANDENBERGHE, 2004).

2.7.2.2 CLASSIFICAGAO DE ACORDO COM A ESTRATEGIA DE RESOLUGAO

* Métodos Deterministicos: um método de otimizacdo é considerado deterministico quando
ha previsibilidade na solucdo, isto &, ao partir de condicdes iniciais idénticas, a solugdo
do problema serd sempre a mesma. A maioria desses métodos se baseiam no célculo
de derivadas ou em aproximagdes dessas. Para funcdes que sdao continuas, convexas e
unimodais, os resultados sdo satisfatérios (MARTINEZ; SANTOS, 1995).

» Métodos Heuristicos (Nao-deterministico): sao métodos que ndo se baseiam no uso de
informacdes sobre o gradiente da funcao objetivo e das restri¢des para a determinacao da
solugdo 6tima. Estes incorporam elementos de aleatoriedade nas relagdes empregadas para
a geragcdo de um candidato em potencial a solu¢do 6tima. Tal caracteristica permite uma
exploracdo mais ampla do espago de busca ao aumentar as chances de encontrar solugdes
globais. Esses métodos sdo tteis considerando fungdes objetivo e restricdes ndo-lineares
com a presenga de multiplos 6timos locais. Esses métodos, também denominados em
alguns estudos como estocdsticos, possuem aplicagdo na otimizacdo em engenharia quando
aplicados a configuracao de sistemas de controle de processos industriais, com o intuito de

otimizar o rendimento e reduzir falhas (WU et al., 2017).

2.7.2.3 CLASSIFICAGAO PELA QUANTIDADE DE OBJETIVOS

» Métodos Mono-objetivos: envolvem problemas de otimizagdo cujo foco € mantido na

minimiza¢do ou maximizacao de apenas um critério.

* Métodos Multiobjetivos: sdo utilizados quando o intuito é otimizar mais de um critério
ao mesmo tempo. Em um problema multiobjetivo, o resultado € um conjunto de pontos

6timos e que compdem a chamada fronteira de Pareto. Essa fronteira contém os pontos
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mais eficientes, nas quais a avaliacdo da melhoria em um determinado critério leva a piora

em pelo menos um dos outros critérios estudados.

2.7.3 ALGORITMO DE EVOLUGAO DIFERENCIAL

O algoritmo de Evolucao Diferencial (ED), proposto por Storn e Price (1995), € um

método de otimizagdo baseada em populacdo. Em linhas gerais, neste algoritmo a populacao

¢ atualizada via emprego de operagdes vetoriais (soma e subtracdo) aos candidatos da geracao

corrente. Os passos do algoritmo sdo apresentados a seguir:

i.

il.

1il.

1v.

Entrada: Os parametros do algoritmo (tamanho da populacdo, nimero de geragdes,
probabilidade de cruzamento (F), fator ou taxa de perturbacdo Fp, estratégia para a
geracdo de candidatos em potencial e o critério de parada) sdo definidos pelo usudrio.
Além disso, também € necessdrio definir as caracteristicas do problema em andlise (fun¢éo

objetivo, varidveis de projeto e restri¢des).

Inicializacido: A populacao original popo € gerada (aleatoriamente) a partir dos limites
laterais definidos pelo usudrio. Dessa populacdo sdo escolhidos individuos aleatorios /;; ,

I;; 3 € 1, para a atualizac¢@o da populacio.
Mutacao: O individuo J;; , sofre uma mutag@o do tipo:
[ij,M - Iij,a + FP(I’L]7B - Iij,'y) (228)

onde o # B # v, (L;;3 — Lij) é o vetor diferenga, I;; ,; € o vetor mutado e Fp é
responsavel por controlar a amplitude do vetor diferenca a partir da diferenca ponderada.
Também € importante ressaltar que a populagdo deve ser igual ou superior a 3 individuos a

fim de garantir a distin¢d@o entre os individuos selecionados aleatoriamente.

Cruzamento: A operacdo de cruzamento envolve a geracdo de um novo individuo a
partir de popo € pop . Esse individuo gerado /;; ¢ serd comparado com o individuo da
populagdo original I;; o, conhecido como vetor alvo, e com o da populagdo mutada /;;
da seguinte forma:

15 _ Lijavr s€Tanaj < Po (2.29)

Ii;0  caso contrario

onde 7,4 ; € um valor aleatério gerado de forma uniforme entre O e 1 e P representa
a probabilidade do novo candidato herdar os valores das varidveis do vetor mutado ou
doador I;; . Se 14,4, for menor ou igual a probabilidade de cruzamento FP¢, entdo o
componente j do vetor mutado [;; 5, serd utilizado. Caso contrario, o componente serd

tomado do vetor original /;; o.
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v. Selecdo: E a etapa onde se escolhe o melhor individuo analisando o valor da fungio
objetivo. O individuo resultante do cruzamento /;; ¢ serd comparado ao individuo cor-
respondente da populacdo original /;; 0. Se o valor da funcdo objetivo de I;; ~ for menor
que o de I;; o, entdo I;; o substituird I;; o na proxima geragdo; caso contrdrio, I;; o serd

mantido.

vi. Critério de parada: Para finalizar o processo de evolucao dos candidatos, geralmente
emprega-se como critério de parada o nimero maximo de geragdes. Todavia, outros

critérios podem ser empregados, como por exemplo, as tradicionais métricas de erro.

O fluxograma do algoritmo de ED € apresentado na Fig. 1.

Inicio

’ Parametros de entrada ‘

!

Determinar nimero de individuos e inicializar populaciao popo
¥
Operagdo de mutagdo baseada em/;; y = I;j o + Fr(Lijz — Lij~)
v
Cruzamento envolvendo geracdo de novo individuo /;; ¢ a partir de [;; as € 1;j 0

¥
Selec@o por meio da comparag@o entrel;; ¢ gerado e [;; 0

l

O critério de parada foi satisfeito?

Nao

Sim

Fim

Figura 1 — Fluxograma do algoritmo de Evolucao Diferencial.

E importante ressaltar que outras estratégias para a geracio de candidatos em potencial
podem ser empregadas, conforme apresentado por Storn e Price (1995). A convengdo utilizada
por estes autores € dada por DE/X/Y/Z, onde X representa o vetor base utilizado para a mutagao,
Y representa o nimero de pares de vetores que sao considerados na mutagdo e Z diz respeito ao
tipo de cruzamento usado para a geracao do vetor candidato. "bin" representa binomial e "exp"
exponencial. Nesse estudo, a estratégia utilizada serd DE/rand/1/bin, em que 1 indica o nimero
de pares de vetores de diferenca que serdo utilizados na mutacdo e o termo rand significa o vetor

base € selecionado de forma aleatdria para o processo de mutacdo, a qual é dada por:

Lijy1 = Lijo + Fp(Lijp — Lij) (2.30)

onde ;1 € o vetor candidato na proxima geracao € I;; ., 1;; 3 € I;;, sdo vetores individuais

selecionados aleatoriamente a partir da populacao atual.

A utilizagdo desse método de otimizacdo € justificada por meio das vantagens definidas

por Cheng e Hwang (2001), as quais sao listadas abaixo:
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A metodologia possui a capacidade de explorar diferentes regides do espaco de busca de

maneira simultinea para aumentar a chance de encontrar a solu¢do 6tima global;

* Por ser um algoritmo de busca direta (ndo usa informacdes sobre o gradiente da fungdo
objetivo e das restricdes), caracteriza-se como um método eficaz para a resolucdo de

problemas de otimizag¢do em que a fun¢do objetivo é descontinua;

* Sua implementacdo € baseada na simplicidade, visto que candidatos em potencial sdao

gerados via soma e subtracao vetoriais;

* E um método amplamente usado em problemas de otimizacao continua, combinatdrio e de

multiobjetivo;

* E uma alternativa interessante para lidar com popula¢des com um ndmero reduzido de

candidatos.

Tendo em vista as vantagens do algoritmo, sua aplicacido abrange uma diversidade de
casos em diferentes areas. Pode-se dizer que uma das aplicacdes mais promissoras da ED
reside na otimizagao de parametros em sistemas de controle, como é o caso do PID, pela sua
caracteristica de processamento eficaz para métodos multiobjetivos (OSINSKI; LEANDRO;
OLIVEIRA, 2019). Sendo assim a ED desempenha um papel significativo no projeto de plantas
industriais, considerando a efici€ncia operacional e a melhoria da produtividade. Um caso
de destaque € o estudo de Paiva (2019), que aplica esse método de otimizac@o nos ciclos de
refrigeracdo multiestagios localizados em unidades de processamento de gas natural, com o
objetivo de reduzir custos a0 minimizar perdas energéticas e melhorar o desempenho operacional.
Além disso, o estudo de (GARCIA, 2018) destaca a robustez do algoritmo no projeto de
hidrociclones ao incluir dados experimentais, alcangcando baixo consumo energético e alta

eficiéncia de classificacdo sob influéncia de variacdes nas dimensdes e condi¢cdes operacionais.

No préximo capitulo € apresentada a metodologia proposta para a simulagdo de modelos

fraciondrios, bem como a sua utiliza¢do no campo de problemas inversos.
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3 METODOLOGIA

Neste capitulo, serdo apresentadas as metodologias consideradas para a integracao de uma
EDOF e a correcdo do operador diferencial no contexto dimensional, bem como as abordagens
que podem ser empregadas para a resolu¢ao de problemas de estimacao de parametros (inversos)

no campo da engenharia quimica.

3.1 METODOS NUMERICOS PARA A INTEGRACAO DE UMA
EDOF

Conforme mencionado anteriormente, pode ndo ser possivel integrar uma EDOF anali-
ticamente. Neste caso, para resolver a EDOF descrita pela Eq. (2.9), trés métodos numéricos
tradicionais sdo considerados, a saber: o Método de Adams-Moulton Fracionario (MAMF), o Mé-
todo de Euler Reverso Fracionario (MERF) e o Método de Euler Direto Fracionario (MEDF) (LI;
ZENG, 2013).

Para este propésito, sejat; = jh, j=0, 1, ..., N (N é o nimero de pontos de discreti-
zacdo), h = T'/N ¢é o tamanho do passo de integragdo, e y; a solu¢do aproximada de y(¢,) em

t = t;. Considerando a seguinte integral:
tkt+1
Iy = / (teyr — 8)* tg(s)ds, k=0,1,... . N —1 3.1
0
A quadratura acima pode ser aproximada como:
th+1
[k+1 ~ / (tk+1 - 5)0[71Gk+1(8) dS? k= 07 17 s 7N -1 (32)
0

onde G} (s) é a aproximagdo de g(s) no intervalo [0, t*7]. Assim, cada método numérico
(MAMF, MERF e MEDF) pode ser obtido escolhendo uma expressao diferente para G 1(s).

a) Se Gy41(s) for aproximado por:
Gk+1<3)|[tj,tj+1) =g(t;), 0<j<k (3.3)

entdo o MEDF € derivado como:

n—1 j k
o he
— j+1, () Z , o
e ; i T Tt p P 152 G

onde:
bk =k —j+1)%=(k—j)" (3.5)
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b) Se Gy41(s) for aproximado por:

Grr1(8)], 4,00y = 9(tjr1), 0<j<k (3.6)
entdo o MERF ¢ dado por:
n—1 tj+1 () he k
Yht1 = Z ;Tyoj + o+ 1) Z bjkrf (L1, Yjen) (3.7)
=0 i=0

onde b; ;41 € definido pela Eq. (3.5).

¢) O MAMF pode ser escrito como segue:

n—1

y&:gﬁw>2;zmmuw

j_

(3.8)
n—1 J
Ykt1 = Zo Jj,ly(()j) + F(Z+2) (Z aje1f(t, ;) + aryr k+1f(tk+l>yk+1)>
J=
onde:
(ko1 — (k — ) (k + 1)°), j=0
ajrar =19 (k—j+2)°T2 =2k —j+ 1) +(k—j) 1<j<k (39
1, j=k+1

€ bj 41 € definido pela Eq. (3.5).

E importante mencionar que a Eq. (3.7) é implicita. Assim, para determinar yy1, €
necessario conhecer o valor de f no ponto k + 1. Neste caso, um solver nao linear deve ser
empregado para encontrar Y. Similarmente, na Eq. (3.8), o método preditor-corretor € usado

para determinar y, 1, ou seja, yi 41 € 0 passo preditor € Y1 € 0 passo corretor.

Finalmente, embora a abordagem apresentada tenha sido descrita para resolver uma

unica EDOF, a mesma pode ser facilmente estendida para um sistema de EDOFs.

3.2 CORRECAO DO OPERADOR DIFERENCIAL FRACIO-
NARIO

Nesta contribuicdo, cada EDOF representa um sistema fisico em engenharia quimica.
Assim, cada modelo fenomenolégico fracionario deve ser dimensionalmente consistente, ou seja,
a insercao da ordem fraciondria ndo pode violar o equilibrio de unidades na equacgdo. Do ponto
de vista fisico, o operador de derivada temporal d/dt tem dimensdo de tempo inverso [tempo '],
e o operador de derivada temporal fraciondria d®/dt* tem uma dimensdo que corresponde

a [tempo~“]. Assim, para fins de consisténcia, € necessario corrigir as unidades do modelo
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fisico. Para este objetivo, conforme sugerido por Gémez-Aguilar, Razo-Hernandez e Granados-
Lieberman (2014) e considerado por Lima, Lobato e Steffen Jr (2021a) e Lima, Lobato e Steffen

Jr (2021b), um parametro auxiliar o € introduzido no operador temporal fraciondrio:

d_> 1 d“
dt ol-a dte’

m—1<a<m,m=123,... (3.10)

onde o parametro auxiliar tem a dimensdo de tempo e estd associado aos componentes de tempo
fraciondrio do sistema. Para o igual a 1, esse operador fraciondrio torna-se um operador com
ordem inteira. Assim, substituindo esse operador fracionério na Eq. (2.9), o modelo resultante é

dado por:

Jll_a DY(t) = f(t,y(t)), te(0,T],T>0

yD0) =y, j=01,...,n—1

(3.11)

Para evitar a influéncia do parametro o nos perfis fisicos, ele € considerado igual a
unidade, ou seja, a inser¢do do pardmetro auxiliar garante a consisténcia dimensional do modelo

fisico, mas ndo influencia quantitativamente os perfis obtidos.

3.3 ABORDAGEM PARA A RESOLUCAO DE PROBLEMAS
INVERSOS EM ENGENHARIA QUIMICA

Conforme mencionado anteriormente, os fendmenos observados na natureza podem ser
representados por um sistema de EDOFs. Neste caso, a ordem fraciondria nesses modelos pode
ser definida pelo usudrio ou estimada através da formulagdo e resolu¢do de um problema de
estimacao de parametros (também conhecido como problema inverso). Os passos requeridos
para a formulacao e resolucdo de um problema inverso, considerando um método numérico

baseado em populacio, sdo apresentados a seguir e resumidos no fluxograma dado pela Fig. 2:

* Inicialmente, é necessario definir: o otimizador (configuracdes e parametros), as variaveis
de projeto (e os respectivos dominios ou espago de projeto), o modelo fenomenolégico
fraciondrio, a abordagem numérica considerada para a integracdo do modelo diferencial
ordindrio fraciondrio, e os pontos experimentais considerados na formula¢do da fun¢ao

objetivo;

* A partir destas informacdes, o otimizador inicializa o procedimento de obtencdo da
solucdo 6tima gerando (aleatoriamente, a partir do dominio especificado pelo usudrio)

uma populacdo de candidatos em potencial a solu¢do do problema de otimizagao;

* Enquanto um determinado critério de parada (especificado pelo usudrio) nao for satisfeito,
0 processo iterativo continua. Geralmente, o critério de parada considerado € o nimero

maximo de geracdes;
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* Atualizar os individuos da populacao a partir da aplica¢do dos operadores do otimizador
considerado;

* Para cada candidato em potencial, integrar o sistema de EDOFs e, consequentemente,
avaliar a respectiva funcdo objetivo. Neste caso, o melhor candidato, em termos do valor

da func¢do objetivo, € tomado como sendo a melhor solu¢do (na gerag@o corrente);

 Se o critério de parada especificado pelo usudrio for satisfeito, tem-se a solugdo 6tima.

Caso contrdrio, 0 processo iterativo continua.

Inicio
Otimizador |—- Modelo

— - Fenomenologico
‘ Variaveis de Projeto }—- &
| Método Numérico -—‘ Pontos Experimentais
3

‘ Gerar a populacao inicial ‘

Enquanto o critério de parada nao for satisfeito faca

!

Atualizar a populagao de candidatos
aplicando os operadores do otimizador

!

Integrar o sistema de EDOFs para cada
candidato em potencial

!

Avaliar, para cada candidato, a Fungao Objetivo

!

O critério de parada foi satisfeito?
. SIM

‘ Solugdo Otima ‘

9

NAO

Figura 2 — Fluxograma para a formulacao e resolucio de problemas inversos.

No préximo capitulo, sdo apresentadas aplicagdes para validar a metodologia descrita.
Neste caso, destacam-se estudos de caso fraciondrios nas dreas de simulagcdo e de problemas

INVersos.
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4 RESULTADOS E DISCUSSOES

Para aplicar a metodologia apresentada para a simulacdo de uma EDOF, € necessério
seguir 0s seguintes passos: ¢) definir o estudo de caso (modelo fenomenolégico e parametros);
11) definir o método numérico (Método de Adams-Moulton Fracionario (MAMF); Método
de Euler Reverso Fracionario (MERF ou Método de Euler Direto Fracionario (MEDF)) e o
nimero de pontos de discretizacao (/V); #2¢) avaliar se os perfis obtidos sao alterados quando
N € modificado (andlise de sensibilidade); iv) aplicar o fator de correcdo o para garantir a
consisténcia dimensional (para modelos fenomenoldgicos). Cabe ressaltar que este parametro
sempre serd definido como sendo igual a unidade (para que o mesmo nao interfira nos perfis
obtidos).

E importante mencionar que, para resolver uma EDOF usando o MERF (método impli-
cito), foi considerado o Método de Newton (NM). Para isso, a matriz Jacobiana requerida por esta
abordagem € avaliada numericamente. Para inicializar o NM, o vetor de varidveis dependentes é
definido para cada estudo de caso. Finalmente, para interromper esse procedimento iterativo, o

somatério do médulo do erro absoluto (com tolerdncia igual a 10~%) é considerado.

Para avaliar a qualidade da solu¢do obtida por MAMF, MERF e MEDF, o somatério do
moddulo do erro absoluto médio (=) serd computado. Esta métrica € definida como:

[1]

i~ Y)?
:Z% 4.1)

1=1

onde y; representa a solucdo numérica obtida por MAME, MERF e MEDF e Y, representa a
solucdo analitica (quando conhecida), ambas avaliadas no ¢-ésimo ponto e /N é o nimero de
pontos de discretizac@o. Para os casos em que a solu¢do analitica € desconhecida, o computo
da referida métrica serd realizado considerando o Método Predictor-Corrector (PCM) do tipo
Adams-Bashforth-Moulton, o qual € definido como uma combinacao dos métodos de Adams-
Bashforth (explicito) e Adams-Moulton (implicito) (DIETHELM; FREED, 1999), onde o método
explicito € utilizado para prever o valor y; da solucdo enquanto o método implicito tem a
func¢do de corrigir tal previsao. Na estratégia PCM, N sempre foi escolhido igual a 500 (valor
definido apds execugdes preliminares para garantir uma boa solucdo de referéncia). O tempo de
processamento (PT) € calculado usando um computador Desktop AMD Ryzen 7 5800X com
16GB de memoria RAM.
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4.1 VALIDACAO DAS TECNICAS PARA A RESOLUCAO DE
EDOF

Para validar as metodologias propostas para a integracao de equagdes diferenciais fracio-
ndrias, esta se¢ao considera fun¢des matematicas que apresentam solugdo analitica conhecida.

Estas sdo descritas como:

 DF) (DIETHELM; FORD; FREED, 2002):

- Sel<axl
Dy(t) = —y(t), y(0) =1, 0<t <10 4.2)

—Sel<ax<?2

Dy(t) = —y(t), y(0)=1 e 3 (0)=0, 0 <t <10 (4.3)

cuja solugdo analitica, para 0 < a < 2, € dada como:
0 (—ta)k
t) = _ 4.4
y(t) E T (4.4)

 EDF; (DIETHELM; FORD; FREED, 2004):

- Sel<axl
D*y(t) =G, y(0)=0, 0<t<1 4.5)

- Sel<ax<?2

D) =G, y(0)=0¢ y(0)=0, 0<t <1 (4.6)

onde a func¢do G € dada como:

40320 o D(5+a/2) , 9 3 ’
G=—"" >3~ /2 O D+ Zt2—t) —y(1)*?
T(9—a) T(5—a/2) et I3 yt)
4.7)
A solugdo analitica deste estudo de caso é dado como:
_ 48 44+a/2 9 o
y(t) =t°—3t + -t (4.8)

4

E importante destacar que, por se tratar de problemas puramente matematicos, nio é
necessario introduzir o fator de correcao das unidades. Além disso, se « estiver no intervalo
10 1], somente € necessdria uma condig¢do inicial. Por outro lado, se « estiver no intervalo ]1
2], uma condi¢ao adicional € requerida (neste caso, sdo definidas informacdes sobre a primeira

derivada em ¢ igual a zero para cada aplicac@o). Finalmente, ressalta-se que para a execucao do
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MEREF, o qual € um método implicito, € necessario definir uma estratégia numérica para resolver
o problema algébrico diferencial discretizado, bem como uma estimativa inicial para o perfil da
varidvel dependente. Neste caso, foi utilizado o MN para a resolu¢do do modelo ndo linear com

o perfil inicial sendo igual a 0,5 para todo o dominio.

A Tabela 1 apresenta os resultados obtidos considerando as abordagens MAMF, MERF
e MEDF para as equacdes diferenciais fraciondrias £ D F; e EDF5, respectivamente. Para essa
finalidade, sdo avaliadas o ntimero de pontos de discretizacdo N e a ordem fracionaria . Com o
objetivo de analisar a influéncia da ordem fraciondria o € do numero de pontos de discretizacdo
N sobre os resultados, foram avaliados o somatoério do erro absoluto médio (=) e o tempo de

processamento (TP) (em segundos).

Como observado na Tabela 1 € possivel constatar que o aumento do niimero de pontos
de discretizacdo [V, independentemente do valor de o, resulta em uma maior precisdo. Todavia,
esse incremento no valor desse pardmetro implica no aumento do tempo de processamento. Este
resultado ja era esperado visto que, ao se incrementar o valor do pardmetro N, aumenta-se a
dimensiao do problema que deve ser integrado. O maior TP foi requerido pelo Método de Euler
Reverso Fraciondrio, devido a aplicagdo do Método de Newton. A abordagem que resulta em
um melhor custo beneficio, no que tange o bindmio custo computacional versus precisao, em
todas as aplicacoes foi o Método de Adams-Moulton Fracionério. Apesar de ser um método
implicito, sua natureza de passo multiplo permite com que as informacdes de pontos anteriores
sejam aproveitadas de forma a facilitar a convergéncia mais rdpida para o encontro da proxima
solugdo, principalmente quando comparada ao Método de Euler Reverso Fraciondrio. Ao se
avaliar o valor de «, percebe-se que, mesmo sendo um problema puramente matematico, que

este parametro afeta os perfis obtidos.



Tabela 1 — Somatério do erro absoluto médio e tempo de processamento considerando o MAMEF, MERF e MEDF para EDF e EDF.

123

a=0,5 a=0,75 a=1,0 a=1,25 a=1,5

N = TP (s) = TP (s) = TP (s) = TP (s) = TP (s)

50 | 1,85x10~* | 0,00 |2,73x107> | 0,00 1,60x107° 0,00 1,08x107° 0,00 2,83x107° 0,00

100 | 3,93x10~° | 0,01 | 3,83x107°%| 0,01 8,35x107¢% 0,01 1,00x107° 0,01 2,10x1076 0,01

MAMF | 250 |3,91x10°°| 0,01 |3,78x10~"| 0,01 1,91x107° 0,01 4,58x1078 0,01 6,96x1078 0,01

500 [9,31x1077| 0,03 |[6,97x10® | 0,03 | 1,15x10° | 0,03 4,34%x107° 0,03 5,14x107° 0,03

1000 | 2,34x10~7 | 0,10 [2,89x10°%| 0,10 | 7,07x1072 | 0,08 |4,06x10~°] 0,10 | 3,73x10°1° | 0,10

50 [4,65x107°| 0,02 |1,22x10~*| 0,03 2,28x107% 0,02 4,17x1074 0,02 9,22x107* 0,02

o= 100 | 1,52x10~° | 0,11 3,39x107° | 0,11 5,96x107° 0,09 1,07x107* 0,11 2,43x107% 0,11

o | MERF | 250 | 3,20x107% | 0,97 |590x1075| 0,95 9,80x107° 0,68 1,75x107° 0,93 4,01x107° 0,95

& 500 [ 9,00x10~7| 5,62 | 1,50x107% | 5,50 2,50x1076 3,58 4,40x107C 5,52 1,01x107° 5,63
1000 | 3,00x10~" | 36,93 | 4,00x10~" | 37,32 | 6,00x10~7 | 20,85 | 1,10x107% | 37,02 | 2,50x107% | 37,43

50 [525x107*| 0,00 |2,48x10~*| 0,00 2,90x10~* 0,00 495x107% 0,00 1,21x1073 0,00

100 |9,32x10=° | 0,00 |5,07x10=° | 0,00 6,71x107° 0,00 1,17x107% 0,00 2,77x107% 0,00

MEDF | 250 | 1,07x10~° | 0,01 | 7,10x10=°] 0,01 1,03x107° 0,01 1,81x107° 0,01 423x107° 0,01

500 |2,20x10°%| 0,02 | 1,70x107% | 0,02 2,50x1076 0,01 4,50x107C 0,02 1,04x107° 0,02

1000 | 5,00x10~" | 0,05 |4,00x10~" | 0,05 6,0x10~7 0,03 1,10x1076 0,05 2.60x107°° 0,05

50 | 4,99%107° | 0,01 |4,20x10~° | 0,01 2,00x1077 0,01 3,00x1077 0,01 4,00x1077 0,01

100 | 1,14x10° | 0,02 | 7,00x10~" | 0,01 1,07x1078 0,01 3,01x1078 0,01 2,98%x107% 0,01

MAMF | 250 | 1,80x107%| 0,04 |6,41x10°8| 0,03 |2,65x107° | 0,03 1,22x107° 0,03 |9,16x10719 | 0,04

500 | 4,00x10°7| 0,10 | 1,12x107® | 0,10 | 1,64x10~"" | 0,10 | 1,08x10~"™ [ 0,10 | 6,48x10~* | 0,10

1000 | 1,00x10~7 | 0,33 | 1,97x107° | 0,33 | 1,02x10~ | 0,32 [9,59x10~2 | 0,33 |4,53x10°2 | 0,34

50 |2,03x107*] 0,09 |326x107*] 0,08 4,62x107* 0,08 6,05x10~* 0,08 7,41x1077 0,08

- 100 | 522x10=° | 0,39 |8,08x107° | 0,37 1,I13x107* 0,37 1,47x107% 0,38 1,78x107* 0,37

o | MERF | 250 | 8,60x107° | 3,54 | 129x107° | 3,52 1,78x107° 3,24 231x107° 3,52 2,79x107° 3,43
& 500 | 2,20x107% | 22,23 [ 3,20x107% | 22,16 | 4,40x107% | 22,05 | 5,70x107% | 22,01 | 6,90x107% | 22,00
1000 | 6,00x10~7 | 157,02 | 8,00x10~7 | 156,59 | 1,10x107% | 149,36 | 1,40x107° | 163,09 | 1,70x10~° | 158,03

50 |2,86x10~%*] 0,00 |[3,53x10~* | 0,00 4,66x1077 0,00 5,96x107* 0,00 7.17x107% 0,00

100 | 6,67x10=° | 0,01 |8,48x107° | 0,01 1,14x107* 0,00 1,46x107% 0,01 1,76 x107* 0,00

MEDF | 250 | 1,01x10=° | 0,02 | 1,32x10~° | 0,02 1,79x107° 0,02 2,30x107° 0,02 2.77x107° 0,02

500 |2,50x10°% | 0,05 |3,30x107% | 0,05 4,40x1076 0,04 5,70x107° 0,05 6,90x107° 0,05

1000 | 6,00x10~7 | 0,16 | 8,00x10~" | 0,16 1,10x1076 0,14 1,40x1076 0,15 1,70x107° 0,16

*O tempo de processamento é menor do que 0,01 s.

2 Soppymsay “ onjidp)

§2085NIS1
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4.2 SIMULACAO DE ESTUDOS DE CASO EM ENGENHARIA
QUIMICA

Nesta se¢do sdo apresentados estudos de caso tradicionais da drea de engenharia quimica,
a saber, reatores quimicos e bioquimicos. Para esta finalidade, estes sdo simulados para avaliar a
influéncia da ordem fraciondria o e do nimero de pontos de discretizacdo /N nos perfis obtidos,
considerando a metodologia proposta (integracdo dos modelos diferenciais fraciondrios e a

corre¢do dimensional de cada modelo fenomenolégico).

4.2.1 REATOR BATELADA

A primeira aplicagdo envolve a modelagem matemdtica de uma reagdo quimica em
um reator batelada isotérmico (QURESHI; AZIZ, 2019). Neste estudo de caso, a espécie A é
transformada na espécie C' por meio de uma reago intermedidria envolvendo a espécie B. Essa

reacdo pode ser descrita pelo mecanismo sequencial abaixo:
k k
A= B=3C

Os parametros k; e ko s@o as constantes de taxa associadas a reagdo sequencial. O modelo
matemadtico que descreve o balanco de massa desse sistema, tendo em vista o contexto fraciondrio

e a correcdo de suas dimensdes, é dado como segue:

1 D°C,
e e = k04, Ca0) =1 (4.9)
1 D°C
— L = |y Ca — ksC, Cp(0) =0 (4.10)
ol—a dt»
1 D°Ce
O_l_aW — kQCB, Cc<0) — 0 (411)

onde t € o tempo (h) e C4, C'g e C¢ sdo as concentragcdes das espécies (g/L).

Cabe ressaltar que para a aplicagdo do MERF foi empregado o MN considerando, para

cada varidvel dependente, um perfil inicial igual a 0,5 para todo o dominio.

A Tabela 2 apresenta os resultados obtidos considerando [k k2] = [0,3 0,1] (1/h), tempo
final igual a 50 s, e diferentes configuracdes para a ordem fraciondria () e para o nimero de

pontos de discretizag@o (/V) para o problema do reator em batelada.

Como observado para as fun¢des matematicas, o aumento no valor de /N implica no
aumento da precisdo, bem como no tempo de processamento. Nesse sentido, € possivel dizer que
o método mais interessante do ponto de vista do bindmio precisdo versus tempo de processamento
¢ o MAMF.

Na Figura 3 s@o apresentados os perfis de concentracio obtidos para o problema do reator
batelada considerando o MAMF (/N=100) e diferentes ordens fracionarias («=[0,5 0,6 0,7 0,8
0,9 1]).
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Tabela 2 — Erro absoluto médio* e tempo de processamento™* (s) para as abordagens MAMF, MERF e
MEDF para o problema do reator batelada.

N | « MEDF MERF MAMF

50 1,3x 1073%(3,4x 1073)** [ 8,7 x 107* (3,2 x 1071) | 1,9 x 107> (7,8 x 1073%)

100 | 1 2,8 x 1071 (5,5 x 1073) 2,3 x 1071 (1,4 x 10°) |82 x1077(1,2 x 1072?)

250 43x107°(1,3x1072) [3,9%x107°(10,4 x 10°) | 1,2 x 107%(3,6 x 1072)
09| 1,9%x107%(6,8 x 1079) 1,5 x 107%(1,7 x 10°) [ 1,8 x 107%(1,3 x 1072)
0,8 1,4x107%(7,2 x 1079) 9,7 x 1075 (1,7 x 10°) [ 5,1 x 1075(1,3 x 1072)

100 | 0,7 | 1,1 x107%(6,6 x 1073) 5,9 x 107> (1,7 x 10°) | 1,1 x 107> (1,5 x 1072?)
0,6 86x107°(6,3 x 107%) 3,4 x 1075 (1,7 x 10°) | 1,6 x 107° (1,3 x 1072%)
0,5 7,9%x107°(6,4 x 1079) 1,8 x 1072 (1,7 x 10°) [ 1,6 x 107° (1,4 x 1072)

Na Figura 3a (o = 1) € observado o comportamento fisico caracteristico do sistema, em
que a concentragdo da espécie A (reagente) diminui ao longo do tempo enquanto a concentragio
da espécie C' (produto) aumenta ao longo do tempo. Como B é um intermedidrio (é consumido e
produzido), € possivel observar que sua concentracdo inicialmente aumenta com a conversao do

reagente A no produto B e diminui em segundo momento com o aumento da concentracdo de C'

Ja nas Figuras 3b, 3c e 3d, é possivel observar que quanto menor o valor de «, maiores
serdo as concentragdes de A e menores serdo as concentragdes de C, fato que estd ligado a
formacao e consumo do intermedidrio B. Como consequéncia, constata-se que, diferentemente
dos perfis para « igual a unidade onde, praticamente, o estado estaciondrio foi alcangado para
o tempo final especificado (50 h), para a ordem fraciondria, no mesmo intervalo de tempo, o
sistema ainda n@o entrou em regime permanente. Conforme pode ser observado na Fig.3e, para
valores de o > 1 maiores do que a unidade, percebe-se que um comportamento oscilatério para
a concentracdo da espécie A. Tal comportamento ndo condiz com o esperado para o sistema
reacional analisado. Assim, variar a ordem de forma arbitraria pode implicar na obtencao de
resultados fisicamente incoerentes. Neste contexto, percebe-se que, embora na teoria a ordem
fraciondria possa variar livremente, na pratica o seu valor ndo pode ser variado de qualquer forma

para evitar resultados que ndo correspondem ao fendmeno em andlise.

4.2.2 REATOR BI1oQuiMICcO

Nesse segundo estudo de caso avalia-se um reator bioquimico isotérmico, representado
pelas concentracdes de biomassa (z; - g/L), substrato (x5 - g/L) e produto (x5 - g/L), onde s@ao
consideradas as inibi¢des pelo substrato e pelo produto (BEQUETTE, 1998). O modelo dindmico

fraciondrio € descrito matematicamente pelos balancos de massa definidos como:

1 Dal‘l 0748 (1 — ZL‘3/50) i)
_ — 0,202 0) = 10 4.12
gi=a dto <o,12 T2 100545 0202 e w(0) (+12)
1 Dal'Q 1,2 (1 — $3/50) ToT1
— 4,040 — 0,202 — 0) = 10 4.13
oo o eNer (0,12 25+ 0,0454522 ) ©:(0) “4.13)
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Figura 3 — Perfis de concentracdo obtidos para o problema do reator batelada considerando o MAMF e
diferentes ordens fraciondrias.

1 Dal’g
0-1—(1 dta

1,056 (1 — 25/50) 25
0,12 + @ + 0,045452:3

= —0,2027; + ( + 0,2) 21, 23(0) =0 (4.14)

A Tabela 3 apresenta os resultados obtidos considerando o tempo final igual a 50h e
diferentes configuracdes para a ordem fraciondria (o) e para o nimero de pontos de discretizag@o
(N) para o problema do reator bioquimico. E importante ressaltar que para a aplicagio do MERF

foi empregado o MN considerando, para cada varidvel dependente, um perfil inicial igual a 1
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para todo o dominio.

Tabela 3 — Erro absoluto médio* e tempo de processamento™* (s) para as abordagens MAMF, MERF e

MEDF para o problema do reator bioquimico.

N o MEDF MERF MAMEF
50 59%x1071% (9,1 x107%)** | 1,8x1071 (4,9x10~ 1) Niao Convergiu1
100 | 1 5,7x1072 (2,1x107?) 4,6x1072(2,1x10%) Nao Convergido2
250 1,L1x1072 (2,1x107 1) 6,1x1073 (16,3x10% | 1,3x107% (4,7x1072)
09 24x10°3(84x10°2) | 45x10 3 (21,4x10°%) | 7,1x10°7 (5,8x10~2)
0,8 2,2x 1072 (8,5x107?) 3,3x107° (21,4x10% | 6,1x107° (5,4x1072)
250 | 0,7 [ 2,4x1073(84x10°2) | 2,5x103 (21,5x10°) | 8,3x107° (54x10°2)
0,6 3,1x1073 (8,4x107?) 1,9x1072 (21,5x10% | 1,3x107* (5,4x107?)
0,5 45%x1073 (8,4x1072) 1,5x1073 (21,5x10% | 2,1x107* (5,4x107?)
= > 690.
2= > 36.

Os resultados apresentados na Tab. 3 demonstram que todas as abordagens, pelo menos
para valores de /N maiores do que 100 e para diferentes valores de «, convergiram para uma boa
estimativa dos perfis quando comparado com a estratégia PCM. Como esperado, o aumento no
valor do nimero de pontos de discretizacdo resulta em uma redugdo do erro absoluto médio e,
consequentemente, no aumento do tempo de processamento. Enquanto o método MERF requer o
maior tempo de processamento, 0 MEDF apresenta o menor tempo, por ser um método explicito.
Embora o MAMF ndo tenha convergido para N igual a 50 e 100, esta abordagem € a mais

eficiente em termos de custo computacional versus precisdo quando N € igual a 250.

A Figura 4 apresenta os perfis de concentracdo de células, substrato e produto consi-
derando o MAMF para diferentes valores da ordem fraciondria o e pontos de discretizacio

N = 250 no problema de reator bioquimico.

Na Figura 4a € possivel observar que, para ordem fraciondria igual a unidade, tanto a
concentracao de biomassa (1) quanto a de produto (x3) aumentam por conta do rdpido consumo
de substrato (x5), utilizado como alimento. Apds este momento, hd a reducdo do substrato
disponivel e, como consequéncia, diminuicdo da producao de biomassa e produto até que o
estado estaciondrio seja alcangado. Em contrapartida, como o consumo do substrato diminui em
funcdo da reducdo da atividade metabdlica e equilibrio das reacdes quimicas, a sua concentragcao

aumenta até estabilizar no estado estacionario.

Para o < 1 (ver as Figs.4b, 4c e 4d) € possivel observar que a dindmica do processo é
alterada. Neste caso, é possivel observar maiores concentragdes de biomassa no tempo igual a
50h para menores valores de o quando comparado com a ordem inteira. Por outro lado, para
o substrato, sdo observadas menores concentragdes para menores valores de «. Ja em relacao
ao produto, a redu¢do no valor do parametro o implica no desaparecimento do pico observado

para maiores valores da ordem fraciondria. Por fim, a reduc@o no valor da ordem fracionaria
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Figura 4 — Perfis de concentracio obtidos para o problema do reator bioquimico considerando o MAMF e
diferentes ordens fraciondrias.

implica no aumento do tempo necessario para o processo entrar em regime estaciondrio. Por
fim, cabe destacar que todos os perfis apresentados s@o vidveis do ponto de vista fisico. Todavia,

representam dinamicas diferentes com relagc@o ao perfil obtido com ordem inteira.

4.2.3 REATOR CSTR NAO ISOTERMICO

O terceiro estudo de caso refere-se a simulagdo de um reator CSTR (Continuous Stirred
Tank Reactors) nao isotérmico onde acontece uma reacao irreversivel (A se transformando no
produto B) de primeira ordem e exotérmica. Para representar este processo sao consideradas
as seguintes hipdteses (BEQUETTE, 1998): ¢) mistura perfeita; i7) volume constante; 7:7)
propriedades fisicas constantes e 7v) a temperatura do sistema de resfriamento pode ser controlada
diretamente (ndo € necessdrio escrever um balango de energia). Matematicamente, o modelo
diferencial fraciondrio que representa os balancos de massa (para a espécie A) e energia (para o

reator) é dado como:

1 DCy

O-I—a dta

5960,2415
T

=10 — C4 — 34930800 exp (— ) Ca, C4(0)=9 (4.15)
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1 DT 1937 13 5960,2415
=22l 2 416375136 exp [ —
g g 5 10 eXp( T

onde C'4 (kgmol/m3) € a concentragdo da espécie A e T (K) € a temperatura do reator.

)CA, T(0) =300 (4.16)

A Tabela 4 apresenta os resultados obtidos considerando diferentes estratégias numéricas
e valores para a ordem fraciondria para o tempo final igual a 20 h. Para a aplicagdo do MERF foi
considerado o MN com valores iniciais para a concentragdo e temperatura iguais a 1 (kgmol/m3)

e 100 K, respectivamente.

Tabela 4 — Erro absoluto médio* e tempo de processamento™* (s) para as abordagens MAMF, MERF e

MEDF para o problema do reator CSTR no isotérmico.

N | a MEDF MERF MAMF

50 | 1 | 5,6x1072%(6,7x102)%* | 4,1x102 (2,7x10°1) | 2,6x107° (1,5x10~2)

100 | 1 12x10°2(2,1x10°2) | LIx10~2(1,1x10% | 1,2x10°° (2,4x 1072

250 1,Ox103 (1,5x10°2) | 1,7x1073 (82x10°) | 3,6x10~° (4,1x1072)

250 | 0,9 | 1,4x1073 (2,1x102) | 1,3x1073 (10,5x10°) | 42x10~7 (4,5x 10~2)
08| LIx103(2,1x102) |9,6x102(104x10° | 1,9x107° (4,6x10~2)
0,7 | 9,6x10%(2,1x10°2) | 7,1x10~2(10,5x10°) | 5,7x10~° (4,6x10~2)
0,6 LIx103(1,9x10°2) | 5,1x10 % (10,4x10°% | 1,3x10~7 (4,6x10~2)
05| 14x10°(22x10°2) | 3,6x10%(10,4x10°) | 2,7x10~° (4,3x102)

Conforme observado nas aplicacdes anteriores, 0 aumento no valor de /N implica em
uma solu¢@o mais precisa, mas no incremento do tempo de processamento. A abordagem MERF
apresenta o maior tempo de processamento, enquanto o MEDF a menor. J4 0o MAMEF se destaca
por apresentar o melhor custo beneficio em termos da precisdo versus custo computacional (ver
a Tab. 4).

A Figura 5 apresenta os perfis de concentragao e temperatura considerando o MAMF para
diferentes valores de « e pontos de discretizacdo N = 250 no problema de reator nao isotérmico.
Como observado nessas figuras, tanto o perfil de concentracdo quanto o de temperatura sao
influenciados pelo valor de o quando comparado ao perfil obtido com ordem inteira. Para um
tempo final igual a 20 h, observa-se que a reducao de « resulta no aumento da concentragio
C4 e na diminuicdo da temperatura 7" ao longo do tempo, de forma que o tempo final para que
0 processo entre em regime permanente aumente. Isto significa que, para os valores de ordem
fraciondria consideradas, a mudanga no valor de « implica na mudanca na dindmica dos perfis

de C'4 e T, mas ainda sdo obtidos perfis fisicamente vidveis.

4.3 ESTIMACAO DE PARAMETROS CONSIDERANDO MoO-
DELOS FRACIONARIOS

Como destacado anteriormente, um dos objetivos do presente trabalho € determinar
parametros em modelos diferenciais fraciondrios através da formulagdo e resolucio de problemas

de estimacgdo de pardmetros (também conhecido como problemas inversos) considerando pontos
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Figura 5 — Perfis de concentracio obtidos para o problema do reator CSTR néo isotérmico considerando o
MAMF e diferentes ordens fraciondrias.

experimentais reais. Neste caso, além dos parametros desconhecidos nos modelos considerados,
a ordem fraciondria também deve ser determinada. A seguir sdo apresentados dois estudos
de caso. O primeiro considera um reator batelada em que deseja-se obter os parametros que
caracterizam a taxa da reacdo e a ordem fraciondria. J4 o segundo consiste na determinacao dos
parametros cinéticos e da ordem fracionaria. Em ambos os casos considera-se como ferramenta
de otimizagdo o algoritmo de Evolu¢do Diferencial (STORN; PRICE, 1995). Para a integracao
do modelo diferencial fraciondrio serd empregado o MAMEF, por ter o melhor custo-beneficio em

termos de precisdo e tempo de processamento (conforme evidenciado nas aplica¢des anteriores).

4.3.1 REATOR BATELADA

Considere a reacdo em fase liquida que ocorre em um reator batelada a 25°C entre
metanol (CH30H) e trifenil ((CgHj)3CCl) para formar trifenilmetiléter ((CgHj;)3sCOOHj3) e dcido
cloridrico (HC1) (FOGLER, 2020).

CH30H + (CgHj;)3CCl — (CgH;)3COOH3 + HCl
A+B—-C+D

Para uma alimentacdo equimolar, os pontos experimentais referentes a concentragao do

metanol (C'4) em funcio do tempo () sdo apresentados na Tab. 5:

Tabela 5 — Pontos experimentais da rea¢do entre metanol e trifenil.

t (h) 010,278 | 1,389 | 2,78 | 8,33 | 16,66
Ca (mol/dm®) | 1| 0,95 | 0,816 | 0,707 | 0,5 | 0,370

Os balangos de massa para as concentracdoes de metanol e trifenil (Cz) no contexto
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fraciondrio sdo dados por:

1 De
g dt%‘ = —BCPC%E. C4(0) = 1 mol/dm® (4.17)
1 De (
— dth = -3 CPCy, Cp(0) =1 mol/dm’ (4.18)
g

em que (3; (1=1, 2, 3) s@o os pardmetros que caracterizam a expressao da taxa.

Matematicamente, o problema de estimagdo de parametros consiste em determinar os

valores de a e de (3; (1=1, 2, 3) que minimizam o funcional F'O:

Nexp

2
FO Z CA LexTP CA szm) (419)

max(Ca eqp)?

em que 7., € 0 nimero de pontos experimentais, € C'4 ¢, € C'4 s, TEpresentam as concentragdes

de metanol experimental e simulados.

Para resolver o problema de estimagao de parametros proposto, 0s seguintes pontos

devem ser destacados:

* Para a integracdao do modelo diferencial fraciondrio considera-se 0o MAMF usando N igual
a 100 (valor definido ap6s simulagdes preliminares), bem como o tempo total de operacio
igual a 20 h;

* No algoritmo de ED sdo empregados os seguintes parametros: tamanho da populagdo (25),
ndmero de iteracdes/geracdes (50), taxa de perturbacdo (0,8), probabilidade de cruzamento
(0,8) e estratégia DE/rand/1/bin por Storn e Price (1995);

* Os limites para as varidveis de projeto sdo definidas como: 0,8 < a < 1,2; 0,1 < ) <
0,2; 1,4 < 6, <2,4¢0,5 < 3 < 1. Cabe destacar que estas faixas foram definidas apés
execucdes preliminares do algoritmo de ED.

* O algoritmo de ED foi executado 20 vezes para a obtencdo do valor médio e do desvio-

padrdo;

« E importante destacar que os pardmetros do simulador e do otimizador foram escolhidos

apo6s algumas execucdes preliminares para fins de ajuste.

A Tabela 6 apresenta os parametros estimados considerando o MAMEF e o algoritmo
de ED para o problema do reator batelada. Para fins de comparacao, o problema de estimagao
foi resolvido considerando « igual a 1 e « livre (estimado pelo otimizador). Nesta tabela é
possivel observar que, para os dois casos considerados, o algoritmo de ED sempre convergiu
para a mesma solugdo, visto os valores da média e do desvio padrdo apresentados. Ao estimar
a observa-se que o valor do funcional F’'O é menor do que o encontrado quando « € fixo. Este

resultado j4 era esperado visto que, ao estimar a ordem fraciondria, tem-se 0 aumento no nimero
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de graus de liberdade do problema de otimiza¢do. Como consequéncia, pelo menos a priori,
quanto maior o nimero de varidveis de projeto, menor tende a ser o valor do funcional FO.
Por fim, os tempos de processamento requeridos para a resolugdo de cada estudo de caso sao

préoximos, ndo sendo a diferenca tao significativa.

Tabela 6 — Parametros estimados considerando o MAMEF e o algoritmo de ED para o problema do reator
batelada (VM=valor médio e DP=desvio-padrio).

o A1 (dm*/(molh)) | B () B5 () FO () TP (s)
VM I* 0,1780 2,2240 0,7080 3,49x107° 13,96
DP - 5,73x107° 1,25x1071 | 1,26x107! | 3,86x107% | 7,65x1072
VM 0,9213 0,1714 1,5908 0,7327 7,81x107° 15,61
DP | 1,72x1072 1,05x107° 1,11x1071 | 1,68x107% | 1,21x107° | 8,38x 107!

*Ordem fraciondria fixada para fins de comparacao.

Na Figura. 6 sdo apresentados os perfis de concentra¢do simulados e experimentais para
a espécie A considerando os parametros estimados (ver a Tab. 6). Nesta figura, observa-se uma
boa concordancia entre os perfis simulados (« fixo e calculado pelo otimizador) e experimentais.
Todavia, ndo € possivel observar uma diferenca significativa entre os perfis simulados. Apesar
de, visualmente, ndo ser possivel observar uma melhora quando se considera o« computado pelo

otimizador, o valor do funcional F'O é influenciado, conforme observado na Tab. 6.
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Figura 6 — Perfis de concentracdo da espécie A considerando os parametros estimados para o problema
do reator batelada.

Experimental
Simulado (e=1)
Simulado (a=0,9213)

C

4.3.2 FERMENTAGCAO DA CERVEJA

A segunda aplicacdo considera um modelo diferencial fraciondrio empregado para
representar o processo de fermentagdo de um tipo particular de cerveja. Neste modelo, a biomassa,

0 agucar, o etanol e a dicetona vicinal sdo aferidas, bem como a concentragdo de etanol e a taxa
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de di6éxido de carbono. O modelo diferencial fracionario é dado como (LARA et al., 2022):

Oll_a DZZOQ — 1ixCO,, CO4(0) = COy, (4.20)

011—(1 D(:lt‘iD = kyuxCOy —rypV D, VD(0)=VD, 4.21)
Px = Mmax KSS+ 5 (1 - ng;) (4.22)

ftmaz = aIn(T/T,) +b (4.23)

rpy =cI?+dT +e (4.24)

S =S, — ksCOyq (4.25)

E = E, +kgCOy; (4.26)

Neste equacionamento, ¢ (h) é o tempo, CO; (L), VD (ppm), S (g/L) e E representam as
quantidades de diéxido de carbono, dicetona vicinal e actcar e etanol, respectivamente (C'Os, =1
L, DV,=0,006 ppm, S,=72 g/ e E,=2 g/L sdo as quantidades iniciais destes componentes).
ky (=1,74x1072 ppm/LCOy), kg (=3,72x107! g/L), kp=1,62x10"1 gE/L2CO,, Cp (=2,18
L/g), Kg (=12 gS/L2CO»), e T, (=1 °C) sdo parametros cinéticos € jix € rpy S0 expressdes
cinéticas. Além disso, a (h™!), b (h™!),c (°C2h7!),d (°C ' h!) e e (h!) sdo parAmetros que
caracterizam as expressoes de px € rpy, € T' (=19°C) € a temperatura.

Para determinar os parametros cinéticos a, b, ¢, d e e, bem como a ordem fraciondria «

serd formulado um problema de estimacgao de parametros em que a fungéo objetivo F'O € dada

CcOomo:

= CO erp CO sim 2 o= VDem - VDsim 2
FO — Z ( 2.exp 2, ) + Z ( 14 ) +
k=

max(COsg eqp)? max(V Degp)?

—2 (Eea:p - Esim)2
max(Ee,,)?

g (Sexp - Ssim)2

max(Sezp)? *

(4.27)

k=1 k=1

em que 7., € o nimero de pontos experimentais de cada espécie, CO2 czp, V Degp, Seap €
E.., representam as concentragdes de diéxido de carbono, dicetona vicinal, agtcar e etanol
experimentais, € CO2 sim, V Dgim, Ssim € Egin, representam as concentragdes de didxido de

carbono, dicetona vicinal, actcar e etanol simulados.

Os pontos experimentais considerados nesta aplicagc@o sao descritos na Tab. 7 (LARA et
al., 2022).

Para resolver o problema de estimagao de parametros proposto, 0s seguintes pontos

devem ser destacados:

* Para a integracdo do modelo diferencial fraciondrio considera-se 0o MAMF usando NNV igual

a 200 (valor definido apds simulacOes preliminares);
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Tabela 7 — Pontos experimentais das concentracdes de diéxido de carbono, etanol, acticar e dicetona
vicinal.

CO; (g/L) E (g/L) S (g/L) VD (ppm)
0,0000 0,0000 0,1307 0,0002 0,0001 | 71,7949 | 0,0000 | 0,0061
2,0915 0,0000 2,0866 1,1049 2,0869 | 74,9288 | 1,9650 | 0,0065
4,0522 0,0001 4,1778 1,1872 4,0434 | 73,7892 | 4,0611 0,0067
5,8823 0,5681 6,0042 2,0369 6,0002 | 70,9402 | 6,0262 | 0,0069
8,1045 1,1363 8,0921 2,8862 7,9565 | 69,8006 | 8,1222 | 0,0069
10,0654 | 5,11364 | 10,1817 | 3,3094 10,0435 | 67,8063 | 9,9563 | 0,0010
12,1569 | 10,7955 | 12,1406 3,7327 12,1304 | 66,9516 | 12,0524 | 0,0012
18,0392 | 44,3182 | 17,9929 | 10,6279 | 18,0002 | 54,7009 | 18,2096 | 0,34618

21,0458 | 68,7507 | 20,9876 | 13,3509 | 21,1304 | 50,7123 | 21,0917 | 0,8079
24,0523 | 94,8864 | 23,9778 | 17,0966 | 24,1304 | 45,584 | 24,1048 | 0,9847
29,0196 | 132,3862 | 29,0554 | 21,7769 | 29,0873 | 22,7924 | 28,9521 | 1,8450
35,0327 | 151,1367 | 35,0555 | 24,7513 | 35,0879 | 15,9544 | 35,1092 | 1,9899
42,0915 | 154,5457 | 41,9822 | 25,0824 | 42,0021 | 15,0997 | 42,0524 | 1,9829
45,2288 | 155,6823 | 45,1199 | 24,9927 | 45,0052 | 14,2457 | 45,0655 | 1,8939
48,1249 | 25,3294 | 48,2353 | 155,6828 | 48,0001 | 13,6752 | 48,0786 | 1,8050
53,2026 | 157,3866 | 53,0934 | 25,0666 | 52,9565 | 14,2457 | 53,1878 | 1,5450

* No algoritmo de ED sdao empregados os seguintes parametros: tamanho da populagdo
(50), numero de iteragdes/geracdes (250), taxa de perturbagdo (0,8), probabilidade de
cruzamento (0,8) e estratégia DE/rand/1/bin por Storn e Price (1995).

* Os limites para as varidveis de projeto sdo definidas como: 0,05 < o < 1,5; 1078 < a <
2:1078 <0 <2;108<¢<2;1078<d<2;e 1078 < e < 2. Cabe destacar que estas

faixas foram definidas apds execugdes preliminares do algoritmo de ED.

* O algoritmo de ED foi executado 20 vezes para a obtencdo do valor médio e do desvio-

padrdo.

A Tabela 8 apresenta os parametros estimados considerando o MAMEF e o algoritmo de
ED para o problema da fermentacdo da cerveja considerando « igual a 1 e « livre (estimado
pelo otimizador). Nesta tabela é possivel observar que o algoritmo de ED sempre convergiu
para a mesma solucgdo, visto os valores da média e do desvio padrdo apresentados. O valor
do funcional obtido quando se considera « livre (1,67x10~!) é pouco menor do que aquele
obtido para « fixo (1,70x1071), sendo os valores dos outros parimetros proximos. O tempo de
processamento requerido para a resolucdo do problema de otimizagdo onde o é computado €

superior ao requerido quando « € mantido fixo.

Na Figura. 7 sdo apresentados os perfis de concentracao de agucar (), etanol (E), diéxido
de carbono (CO,) e dicetona vicinal (VD) em func¢ao do tempo, considerando os parametros
estimados para o problema de fermentacao de cerveja (ver a Tab. 8). Assim como constatado

para a primeira aplicagdo, ambos os perfis simulados (com « fixo e « livre) sdo concordantes
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Tabela 8 — Parametros estimados considerando o MAMF e o algoritmo de ED para o problema da
fermentacao da cerveja (VM=valor médio e DP=desvio-padrao).

VM DP VM DP
o) I* - 1,0303 1,18x10~*
a (h™h) 8,78x107% | 6,87x1077 | 8,35x107% | 1,89x107°
b(h™h) 3,90x107° 0,0000 3,90x107° 0,0000
c(°C™?h™h 0,0000 0,0000 0,0000 0,0000
d(CC™th™ | 9,08x10~* 0,0000 8,64x107% | 3,28x107"7
e(h™) 2,00x1071 0,0000 2,00x 10719 0,0000
FO (-) 1,70x107* 0,0000 1,67x1071 | 2,75x1077
TP (s) 191,53 6,2101 205,11 4,1422

*Ordem fraciondria fixada para fins de comparacao.

com os pontos experimentais. Todavia, ndo € possivel observar mudancas significativas entre
esses perfis.
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Figura 7 — Perfis de concentragdo de acticar (S), etanol (E), diéxido de carbono (CO2) e dicetona vicinal
(VD) em fung¢do do tempo, considerando os parametros estimados para o problema de fermen-
tagdo de cerveja.
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4.4 PLANO DE FASES NO CONTEXTO FRACIONARIO

O plano de fases ou retrato de fases € uma exibicao visual de certas caracteristicas de
alguns tipos de equagdes diferenciais, tais como a determinacao gréfica de ciclos limites (BE-
QUETTE, 1998). Na pratica, um retrato de fases ¢ um caminho especifico que representa a
evolucdo, no tempo, das varidveis dependentes. Os planos de fase sdo uteis para visualizar o
comportamento dos sistemas fisicos, com interesse particular naqueles que apresentam compor-
tamentos oscilatérios (BEQUETTE, 1998). Além disso, em alguns modelos, os caminhos de
fase podem apresentar o comportamento do tipo espiral convergente para o zero ou infinito, bem

como podem ser do tipo circular, eliptico ou ovéide (BEQUETTE, 1998).

Para avaliar a influéncia da ordem fraciondria no plano de fases considere um reator
de mistura perfeita onde as reacdes elementares A — B — C' e 2A — D ocorrem. Sabendo
que kap, ko e kap sdo as constantes de reacao referentes a reacdo de A para B, de B para
C e A para D, respectivamente, que A puro € alimentado a uma vazio (F') constante e que o
volume (V') é considerado constante, 0 modelo matemético que descreve o comportamento das
concentracoes das espécies A (C'4) e B (Cg) em fungdo do tempo ¢ no contexto fraciondrio é
dado por (BEQUETTE, 1998):

1 DC F
st = 1 (Ca = Ca) = kapCa —kanCh, Cal0) = Cae  (428)
1 DeC F
ol dtaB =~ 08+ kapCa — kpcCp, Cp(0) = Cho (4.29)

onde (4. € a concentragdo de alimentacdo da espécie A e C'y, e Cg, representam as condi¢des

iniciais das espécies A e B, respectivamente.

Para o igual a unidade, k45 igual a 5/6 min—!, kpc igual a 5/3 min~*, k,p igual a 1/6
L/(mol min), C4, igual a 10 mol/L, e F'//V igual a 4/7 min~ ", dois sdo os estados estacionarios.
O primeiro € dado pelo par coordenado (C'4=3 mol/L; C'z=105/94 mol/L), e o segundo por
(C'4=-80/7 mol/L; C'z=-200/47 mol/L), sendo que este tltimo par coordenado ¢ invidvel por
ndo ter significado fisico. Portanto, espera-se que quando o tempo tender a infinito, o sistema
caminhe para o ponto estaciondrio com concentragdes positivas, sendo este ponto coordenado

naturalmente estavel.

Na Figura. 8 sdo apresentados os perfis de concentracdo das espécies A e B em fungdo
do tempo, o estado estacionario (EE) e o plano de fases para o problema do reator CSTR
considerando o MAMF com 500 pontos de discretizacdo e « igual a 1. A condigdo inicial (C's,
(o) considerada em cada simulagdo foi definida a partir da combinacdo entre os pontos contidos
no vetor [0,001 1,25075 2,5005 3,75025 5] (5 pontos igualmente espacados entre 0,001 e 5),
isto é; foram utilizadas as seguintes condicoes iniciais: (0,001 0,001); (0,001 1,25075); (0,001
2,5005); ...; (5 5), totalizando 25 simulacdes para cada valor de o. Cabe destacar que, para todas
as simulacdes, o sempre é considerado igual a unidade para que o mesmo apenas corrija as

unidades, mas ndo interfira no valor dos perfis obtidos.
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Figura 8 — Perfis de concentracdo em funcdo do tempo, estado estaciondrio e plano de fases para o
problema do reator CSTR considerando « igual a 1.

Ja na Figura. 9 sdo apresentados os perfis de concentracdo das espécies A e B em fungdo
do tempo, o estado estaciondrio e o plano de fases para o problema do reator CSTR considerando
diferentes valores para « ([0,8 0,9 1,0 1,1 1,2]), bem com 0 mesmo método numérico e condi¢des
iniciais.

Na Tabela 9 s@o apresentados os valores das concentracdes das espécies A e B para
diferentes ordens fraciondrias e tempos de simulacdo. Para uma comparacao justa, para cada
tempo final de simulag@o (¢y), o valor de NV foi determinado de forma que o incremento de tempo

sempre fosse igual a 0,01 min.

Sendo assim, ao avaliar a Fig . 9 pode-se concluir que ha influéncia direta da ordem
fraciondria no tempo necessdrio para que o sistema encontre o estado estaciondrio. No que
diz respeito ao tempo necessdrio para que o processo alcance o estado estaciondrio, € possivel
observar que o aumento da ordem fraciondria, como por exemplo em o = 1,2, garante um com-
portamento oscilatério com a presenca de um pico anterior a estabiliza¢do no ponto estaciondrio.
Por outro lado, para valores de o menores, o sistema ndo apresenta picos e o estado estacionério

¢ atingido em um maior tempo tanto para C'4 quanto para C'g, como pode ser observado ao se
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Figura 9 — Perfis de concentracdo em funcdo do tempo, estado estaciondrio e plano de fases para o
problema do reator CSTR considerando diferentes valores para a.

Tabela 9 — Estado estaciondrio em func¢do da ordem fraciondria e do tempo de simulac@o para o problema

de reator CSTR.
t=10 min =25 min =50 min
a | Cy (mol/L) | Cg (mol/L) | C'4 (mol/L) | Cg (mol/L) | C'y (mol/L) | C'z (mol/L)
0,8 3,0311 1,1954 3,0143 1,1526 3,0080 1,1370
0,9 3,0120 1,1474 3,0050 1,1294 3,0026 1,1235
1,0 3,0000 1,1170 3,0000 1,1170 3,0000 1,1170
1,1 2,9933 1,1002 2,9976 1,1112 2,9989 1,1143
1,2 2,9904 1,0931 2,9969 1,1094 2,9986 1,1137

comparar ordens fraciondrias maiores. Com isso, pode-se concluir que o estado estaciondrio é

encontrado de maneira mais lenta com valores menores de «, devido a um decaimento dos perfis,

pois para « < 1 o consumo do reagente A pelo modelo fracionario € mais lento, o que implica

na formacao dos produtos B e C' na rea¢do, quando no valor de D.

Em relacdo a andlise do plano de fases, € possivel constatar que quando o = 1, o ponto

de equilibrio do estado estaciondrio € alcancado de maneira mais suave, em que o sistema decai

geralmente sem oscilagdes como pode ser observado na Fig. 8. O aumento da ordem fraciondria
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« acarreta em um comportamento oscilatério em torno do estado estaciondrio, fato que ocorre
devido a uma maior dependéncia do sistema ao seu histdrico tendo em vista as concentragdes

em analise.

4.5 CONSIDERAGOES FINAIS

Este capitulo teve por objetivo apresentar aplica¢des envolvendo a metodologia proposta
para problemas da drea de engenharia quimica. Em primeiro momento foram empregados
os Métodos de Adams-Moulton Fracionario (MAMF), Método de Euler Reverso Fracionario
(MERF) e Método de Euler Direto Fraciondrio (MEDF) para a simulacio de fungdes puramente
matematicas e que apresentavam solucao analitica. Em seguida, foram considerados estudos de
caso em engenharia quimica (reatores quimicos e bioquimicos). Esses estudos possibilitaram a
avaliacdo dos diferentes perfis a partir da mudanca do nimero de pontos de discretizacdo N e da
ordem fraciondria «. Para a aplicacdo do MAMF foram formulados problemas de estimagdo de
parametros considerando modelos diferenciais fraciondrios e dados reais. Por fim, com o intuito
de avaliar a influéncia da ordem fraciondria nos perfis simulados ao longo do tempo, a andlise de

um plano de fases foi realizada.
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5 CONCLUSOES E TRABALHOS FuUTU-
ROS

5.1 CONCLUSOES

O presente trabalho teve como objetivo investigar a influéncia da ordem fraciondria em
modelos tradicionais de engenharia quimica, considerando trés abordagens numéricas, a saber:
o Método de Adams-Moulton Fracionario (MAMF), o Método de Euler Reverso Fracionario
(MERF) e o Método de Euler Direto Fracionario (MEDF). A partir dos resultados apresentados

no capitulo anterior, € possivel destacar os seguintes pontos.

* Os resultados obtidos demonstram que as metodologias propostas (MAMF, MERF e
MEDF) foram capazes de obter boas estimativas em comparacdo com as solu¢des numéri-
cas reportadas usando o Método Preditivo-Corretivo do tipo Adams-Bashforth-Moulton,

para todos os estudos de caso analisados.

* No que tange ao numero de pontos de discretizacdo (/V), o seu aumento implica em um
menor erro absoluto médio. Todavia, esse aumento implica no incremento do tempo de
processamento. Neste caso, deve-se sempre analisar o bindmio custo computacional versus

precisdo para a escolha do melhor valor de V.

* Cabe destacar que, em relacdo ao custo computacional versus precisdo, o Método de

Adams-Moulton Fracionario mostrou-se a estratégia numérica mais eficiente.

* A partir da andlise da influéncia da ordem fraciondria («v) nos perfis simulados, foi possivel
concluir que a variacdo deste pardmetro modifica o comportamento de cada modelo.
Todavia, é¢ importante ressaltar que, dependendo do valor considerado para esse parametro,
o perfil pode ndo condizer com a realidade fisica do problema estudado. Neste caso,
deve-se avaliar a faixa de valores do parametro o de forma que perfis incoerentes ndo

sejam obtidos.

* Em relagdo a estimagdo de parametros (problema inverso), pode-se estimar o valor de «
para sistemas fisicos de interesse. Neste caso, em relagdo a ordem inteira, foi possivel
observar que estimar « resultou em uma melhor aderéncia dos perfis simulados aos pontos
experimentais, conforme o valor da fun¢do objetivo. Cabe destacar que o algoritmo de
Evoluc¢do Diferencial sempre convergiu para uma boa estimativa dos parametros, conforme

os valores da média e do desvio padrao reportados para cada aplicacio.

* Ao avaliar o plano de fases, foi possivel constatar que, para valores de o < 1, o estado

estaciondrio € atingido de forma mais lenta se comparado a o = 1. Para valores em que
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5.2

5.3

a > 1, é possivel observar o comportamento oscilatério do sistema, com visiveis picos
antes de alcancar o estado estaciondrio, sendo este efeito diretamente relacionado a maior
influéncia atribuida aos valores anteriores do sistema (efeito de memdoria). Por fim, para
a = 1, hd um decréscimo suave sem oscilagdes. Sendo assim, o tempo necessario para se

alcancar o estado estaciondrio € influenciado pela ordem fracionéria escolhida.

Finalmente, ao utilizar uma derivada fraciondria, pode-se destacar: 7) o efeito de memoria
associado as derivadas fraciondrias; iz) a generaliza¢ao em relacdo a derivada de ordem
inteira; e 7¢¢) 0 aumento no nimero de graus de liberdade para o sistema em andlise, sem a

mudanca de outras caracteristicas do mesmo.

CONTRIBUICOES DO TRABALHO DE CONCLUSAO DE
CURSO

O presente Trabalho de Conclusao de Curso contribuiu para:
Revisar e organizar o estado da arte no que tange a aplicacdao de modelos fraciondrios em
sistemas dindmicos.

Comparar diferentes métodos de integracdo de equacgdes diferenciais fraciondrias em

termos de custo computacional e precisao.

Investigar a influéncia do ndmero de pontos de discretizacdo na avaliacdo do tempo de

processamento e, consequentemente, no custo computacional.

Analisar sistemas nao lineares constituidos por modelos diferenciais fraciondrios.

CONTRIBUIGOES NA FORMAGAO PROFISSIONAL

Consolidacao e aprimoramento de conhecimentos tedricos e praticos sobre modelagem

matematica fraciondria aplicada a sistemas fisicos em engenharia quimica.

Desenvolvimento da capacidade de andlise critica no que diz respeito ao tratamento
e interpretacdo dos dados obtidos, por meio da metodologia aplicada, com base em

fundamentos fisicos e quimicos de estudos de caso cldssicos em engenharia quimica.

Aprimoramento das habilidades no que tange a linguagens de programagdo, bem como o

contato com ferramentas digitais Uteis para a engenharia e anélise de dados.

Contato e experiéncia com a pesquisa cientifica e sua estruturacdo a partir da revisao

bibliografica, escrita técnica e organizagdo de resultados e discussdes pertinentes.
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* Capacidade de aplicar, no futuro, os conhecimentos adquiridos em processos fisico-
quimicos presentes na industria, com a finalidade de promover tecnologias mais eficientes

e sustentdveis desses processos e otimizacao de sistemas.

5.4 SUGESTOES PARA TRABALHOS FUTUROS

Como propostas para trabalhos futuros pretende-se:
* Propor e resolver modelos baseados em equacdes diferenciais parciais fraciondarias (EDPFs)
que representem processos industriais complexos.

» Formular e resolver problemas inversos envolvendo EDPFs, utilizando dados experimentais

reais.

* Avaliar a aplicabilidade e o desempenho de controladores com ordem fraciondria em

sistemas da engenharia quimica com dindmica complexa.
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