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Resumo

Nas últimas décadas, o interesse pelo estudo de equações diferenciais fracionárias segue uma

crescente. Isso se deve ao grande número de aplicações que podem ser desenvolvidas a partir

desse conceito. Embora o número de contribuições tenha aumentado de forma significativa,

vários aspectos relacionados à influência e ao significado físico de uma ordem fracionária ainda

requerem um maior aprofundamento. Além disso, cabe destacar as dificuldades numéricas

oriundas da substituição de uma derivada de ordem inteira por uma fracionária. Neste trabalho,

os Métodos de Adams-Moulton Fracionário, de Euler Reverso Fracionário e de Euler Direto

Fracionário são investigados em aplicações em engenharia química. Para essa finalidade, são

avaliados problemas de simulação, inversos e também análise de plano de fases. Para garantir

a consistência dimensional no modelo fracionário, é considerado um fator de correção. De

maneira geral, foi possível concluir que todas as abordagens numéricas foram eficientes para a

integração de modelos diferenciais fracionários com diferentes níveis de complexidade. Todavia,

a melhor estratégia em termos do binômio custo computacional versus precisão foi o Método de

Adams-Moulton Fracionário. Como esperado, os resultados obtidos demonstraram que a ordem

fracionária influencia, de forma significativa, os perfis simulados em cada aplicação. Neste caso,

é importante destacar que, dependendo da ordem fracionária considerada, perfis fisicamente

inviáveis podem ser obtidos. Ao avaliar dois problemas inversos no contexto fracionário, foi

possível concluir que o valor da função objetivo pode ser melhorado, já que a inclusão de um

novo parâmetro (ordem fracionária) aumenta o número de graus de liberdade do problema de

otimização. Finalmente, em relação à análise do plano de fases, os resultados demonstram que

a variação da ordem fracionária modifica o tempo requerido para o processo entrar em regime

permanente.

Palavras-chave: Equações Ordinárias Fracionárias, Métodos Numéricos Fracionários, Engenha-

ria Química.



Abstract

In recent decades, interest in the study of fractional differential equations has been growing. This

is due to the large number of applications that can be developed from this concept. Although

the number of contributions has increased significantly, several aspects related to the influence

and physical meaning of a fractional order still require further investigation. Moreover, it is

important to highlight the numerical difficulties arising from the substitution of an integer-order

derivative by a fractional one. In this work, the Fractional Adams-Moulton Methods, Fractional

Backward Euler Method, and Fractional Forward Euler Method are investigated in chemical

engineering applications. For this purpose, simulation and inverse problems and phase plane

analysis are evaluated. To ensure dimensional consistency in the fractional model, a correction

factor is considered. In general, it was concluded that all numerical approaches were efficient

for integrating fractional differential models with different levels of complexity. However, the

best strategy in terms of the computational cost versus accuracy trade-off was the Fractional

Adams-Moulton Method. As expected, the obtained results demonstrated that the fractional order

significantly influences the simulated profiles in each application. In this case, it is important

to note that depending on the considered fractional order, physically infeasible profiles may be

obtained. When evaluating two inverse problems in the fractional context, it was concluded that

the objective function value can be improved, as the inclusion of a new parameter (fractional

order) increases the degrees of freedom of the optimization problem. Finally, regarding phase

plane analysis, the results show that the variation of the fractional order modifies the time

required for the process to reach a steady state.

Keywords: Fractional Ordinary Equations, Fractional Numerical Methods, Chemical Engineer-

ing.
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1 Introdução

O emprego de modelos matemáticos com a finalidade de representar fenômenos ob-

servados na natureza caracteriza-se como uma metodologia de grande importância, visto que

sua aplicabilidade pode ser atribuída a simulações, análises, projetos, pesquisas, otimização e

controle de sistemas na engenharia e em diversas áreas do conhecimento. Em sua amplitude, a

modelagem matemática pode ser aplicada em diversos campos, como na física, na química, na

biologia, na economia, entre outros. De modo particular, na engenharia química, a modelagem

matemática, em conjunto com a simulação de processos, é vista como uma ferramenta impor-

tante, cujo papel é validar a integridade de um projeto e garantir sua viabilidade operacional,

com base em uma descrição numérica fundamentada nas leis de conservação da física e da

química (FRANCO, 2021). Com isso, modelar um sistema de engenharia é predizer o comporta-

mento dos processos de interesse em uma determinada área de conhecimento. Isso é feito por

meio do estudo do comportamento de um processo representado por um conjunto de equações

matemáticas com diferentes níveis de complexidade. A modelagem abre a possibilidade de

comparar diferentes entradas e suas respectivas saídas para sistemas onde pode ser inviável

(fisicamente ou economicamente) a realização de uma série de experimentos. Cabe destacar

que o uso desses modelos é essencial para a comparação de diferentes cenários, bem como na

otimização dos processos, garantindo maior eficiência e segurança na implementação prática, já

que os riscos e custos associados, por exemplo, às prováveis falhas, podem ser mensurados e,

estrategicamente, minimizados de forma simplificada (OGUNNAIKE; RAY, 1994).

É importante ressaltar que a complexidade de um modelo matemático empregado para

representar um dado sistema de engenharia é função das hipóteses consideradas para a sua

elaboração, as quais são dadas pelo acréscimo de contribuições de balanços de massa, energia e

quantidade de movimento (BEQUETTE, 1998). Tais hipóteses, por sua vez, são responsáveis por

limitar a abrangência da aplicabilidade desses modelos, uma vez que os fenômenos encontrados

na natureza possuem caráter não linear intrínseco e, como consequência disso, sua extrapolação

não pode ser realizada de maneira simples na maioria das aplicações práticas. Tradicionalmente,

os modelos encontrados na literatura são representados por sistemas de equações algébricas (line-

ares e não lineares), equações diferenciais (ordinárias e parciais), equações integro-diferenciais,

equações algébrico-diferenciais ou, mais frequentemente, uma combinação de todas essas classes.

Dessa forma, é importante destacar que as equações diferenciais são comumente descritas por

derivadas de ordem inteira, o que simplifica os modelos ao ignorar um operador diferencial com

ordem não inteira (fracionária) na dinâmica de cada processo estudado.

Nesse sentido, as Equações Diferenciais Ordinárias Fracionárias (EDOF) e as Equações

Diferenciais Parciais Fracionárias (EDPF) generalizam os modelos diferenciais convencionais de

ordens inteiras para uma abordagem mais abrangente, capaz de incorporar o impacto das ordens
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fracionárias na análise desses modelos (RODRIGUES; OLIVEIRA, 2015). Dessa maneira, é

possível inferir que essa estrutura caracteriza uma representação mais fiel e precisa dos fenômenos

naturais, pois oferece um potencial significativo para a modelagem de sistemas complexos ao

capturar efeitos de memória, interações não locais e escalas de tempo múltiplas (MACHADO,

2018).

Sendo assim, o interesse pelo estudo de equações diferenciais com operadores de ordem

fracionária se deve à capacidade que esses operadores possuem de incluir termos de forças

externas, os quais podem variar com o tempo e com o espaço. Essa habilidade é avaliada pela

natureza integro-diferencial das equações diferenciais fracionárias, que faz uso de informações

contidas nos pontos anteriores da solução, e não apenas dos valores atuais e das taxas de variação

instantâneas dos sistemas, como é usualmente considerado em equações diferenciais ordinárias

de ordem inteira (PODLUBNY et al., 2009). Diante disso, tais equações combinam aspectos

de integração e diferenciação ao longo do tempo ou espaço de forma contínua e acumulativa, o

que as torna capazes de modelar fenômenos onde o denominado efeito de memória e o efeito do

atraso no tempo são aspectos importantes para uma descrição mais compatível com a realidade

do sistema físico em análise. Entre esses sistemas físicos, pode-se citar a reologia em materiais

viscoelásticos, sistemas de controle ativo com feedback e a transferência de calor em materiais

compostos, onde os fluxos de calor podem possuir características complexas e interdependentes

que podem ser melhor representados de acordo com o cálculo fracionário (MACHADO et al.,

2010; RODRIGUES; OLIVEIRA, 2015).

Na prática, diferentemente do operador de ordem inteira, o fracionário pode ser repre-

sentado de várias formas (PODLUBNY et al., 2009). Neste caso, sob a perspectiva matemática,

para a resolução de um modelo diferencial fracionário, seja de maneira analítica ou numérica,

faz-se necessário, primeiramente, escolher o tipo de aproximação para a derivada fracionária

que se pretende considerar. Além disso, é importante ressaltar a influência da ordem diferencial

fracionária, a qual possui um papel crucial no comportamento do sistema modelado, no que

tange à resposta dinâmica e à sua estabilidade. Por fim, a consistência dimensional deve ser

rigorosamente analisada para que a derivada em questão preserve as unidades pertinentes à

grandeza física envolvida; caso contrário, o modelo matemático não será fisicamente válido e,

consequentemente, não poderá representar o sistema real de maneira adequada (GODOI, 2022).

No que diz respeito à resolução usando estratégias analíticas no contexto fracionário, as

transformadas de Laplace e Fourier são tradicionalmente utilizadas. No entanto, é fundamental

destacar que soluções analíticas para equações diferenciais fracionárias não podem ser obtidas

para todo e qualquer sistema, devido às não linearidades presentes nestes modelos, ou seja, só

existe solução analítica para modelos matemáticos bem específicos. Na maioria dos problemas, é

necessário recorrer a métodos numéricos para obter tais soluções (LIMA; LOBATO; AROUCA,

2018). Neste caso, em linhas gerais, faz-se necessário aplicar técnicas de discretização específicas

para os modelos fracionários, como é o caso do Método das Diferenças Finitas (MDF) (LIU;
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HOU, 2017).

Portanto, o MDF (Explícito ou Implícito) é classificado como uma das técnicas mais

usuais para a resolução desses modelos, pois, apesar de sua dependência com o número de

pontos de discretização, ele possui simplicidade no que diz respeito aos seus conceitos e à

sua implementação (SZEKERES; IZSáK, 2015). Na literatura especializada, diferentes tipos

de estratégias para resolver problemas no contexto fracionário podem ser encontrados. Dentre

estas, Lobato et al. (2020) propuseram a extensão do Método da Colocação Ortogonal para a

resolução de EDPF como alternativa para minimizar o efeito do número de pontos de discre-

tização e, consequentemente, a dimensão do problema a ser analisado. Godoi (2022) propôs

duas abordagens numéricas, a saber, o Método Pseudo-Espectral de Legendre e o Método das

Diferenças Finitas Fracionário, para a integração de EDOF com aplicação em fenômenos de

transporte anômalo.

Diante do que foi apresentado, este trabalho tem como foco principal resolver numeri-

camente EDOF. Os principais objetivos são definidos como segue: i) implementar estratégias

numéricas para a resolução de EDOF; ii) avaliar a influência da ordem fracionária durante

a simulação de sistemas clássicos em engenharia química; iii) propor e resolver problemas

de estimação de parâmetros em que a ordem fracionária é uma das incógnitas; iv) comparar

os resultados obtidos com aqueles reportados considerando outras estratégias; e v) garantir a

consistência dimensional dos modelos representados por EDOF.

Este trabalho está estruturado da seguinte forma: O Capítulo 2 apresenta uma revisão

sobre equações diferenciais fracionárias (contexto histórico, tipos de derivadas fracionárias,

métodos analíticos e numéricos), análise dimensional e a descrição do problema de otimização,

bem como o algoritmo de Evolução Diferencial (ED) (STORN; PRICE, 1995). Já no Capítulo 3,

serão destacadas as metodologias para a integração de uma EDOF e a correção do operador

diferencial no que tange à sua dimensionalidade, além de demonstrar como essas diferentes

abordagens podem ser aplicadas ao cenário de resolução de problemas inversos. Os resultados

e discussões considerando estudos de caso em engenharia química com diferentes níveis de

complexidade são apresentados no Capítulo 4. Por fim, o Capítulo 5 apresenta as conclusões e as

sugestões para trabalhos futuros.
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2 Revisão Bibliográfica

A origem do cálculo fracionário está relacionada com uma troca de correspondências

entre os matemáticos L’Hopital e Leibniz no ano de 1695, em que L’Hopital questionava Leibniz

sobre a notação que ele havia utilizado para a n-ésima derivada da função linear f(x) = x (Dnx)

em uma de suas publicações. A indagação girava em torno da dúvida sobre a resolução caso n

fosse igual a 1/2, e a resposta de Leibniz foi entusiasta para novos estudos acerca do tema, tendo

em vista as potenciais aplicações que tais investigações poderiam ter para problemas físicos e

matemáticos (LOVERRO, 2004).

Após esse primeiro questionamento, pesquisadores como Leibniz, Euler, Fourier, Laplace,

Lagrange, Lacroix, entre outros, começaram a avaliar o tema. Contudo, os estudos relacionados

ao cálculo fracionário eram restritos a investigações teóricas matemáticas, ou seja, não havia

uma aplicação característica bem definida e consistente do cálculo fracionário na matemática ou

em outras áreas do conhecimento. Desse modo, foi apenas no ano de 1832 que foi desenvolvida a

primeira aplicação do cálculo fracionário para a solução do problema da tautocronia via avaliação

de integrais de ordem igual a 1/2 (CAFAGNA, 2007).

Interessado por esse trabalho, Liouville foi o autor do primeiro estudo sistemático sobre

o cálculo fracionário, seguido por Riemann, responsável por desenvolver a representação mais

clássica de derivada fracionária, denominada Riemann-Liouville. Em contraste com a abordagem

de Riemann-Liouville, a qual utiliza uma integral para representar a derivada, Grünwald e

Letnikov desenvolveram uma abordagem para derivadas de ordem não inteira utilizando um

somatório de uma série infinita onde a ordem inteira é substituída por uma ordem arbitrária

α (LORENZO, 2007). Em seguida, Hadamard (1892) publicou um artigo onde apresentou uma

metodologia capaz de calcular a derivada de ordem não inteira de uma função analítica em

termos de sua série de Taylor. Esses estudos contribuíram para a ampliação das bases teóricas

do cálculo fracionário e, consequentemente, estabeleceram fundamentos matemáticos rigorosos

para posteriores aplicações práticas.

Nessas condições, pode-se dizer que a maioria dos estudos relevantes sobre o cálculo

fracionário foi elaborada de maneira puramente matemática até o final do século XIX. A ascensão

de análises que destacavam a análise de fenômenos naturais teve seu início após o ano de 1900,

período no qual o tema ganha destaque e revela grandes avanços em aplicações de engenharia e

ciência (MILLER; ROSS, 1993). Algumas derivadas que podem ser citadas são as de autores

como Weyl, Riesz, Marchaud, Caputo e Kolwankar. Weyl desenvolveu uma definição de derivada

para abordar problemas específicos associados a funções periódicas, oferecendo uma abordagem

que se mostrou fundamental para o estudo de fenômenos oscilatórios e harmônicos (CAMARGO;

OLIVEIRA, 2015). Já Riesz formulou o teorema do valor médio para integrais fracionárias
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e introduziu uma nova abordagem relacionada à transformada de Fourier, fato que ampliou a

aplicação de estudos de equações diferenciais fracionárias tanto na análise harmônica quanto em

equações diferenciais parciais (DEBNATH; BHATTA, 2007). Enquanto Marchaud ofereceu uma

nova definição para derivadas de ordem não inteira α (0 < α < 1). Tal definição possibilitou que

um maior número de problemas físicos pudessem ser analisados no contexto fracionário.

Caputo, revisitando a definição da derivada fracionária de Riemann-Liouville, realizou

uma simples modificação que se fundamentava na troca da ordem dos operadores da derivada e

da integral. Essa alteração simplificou a aplicação da derivada fracionária em problemas de valor

inicial ao considerar derivadas inteiras em suas condições iniciais, fato que proporcionou avanços

nas aplicações tanto da física quanto da engenharia. Kolwankar e Gangal (1996) propuseram

uma reformulação da derivada fracionária de Riemann-Liouville para a inclusão de funções

fractais que não são diferenciáveis em qualquer ponto no contexto tradicional. Tal metodologia

aumentou o alcance do cálculo fracionário em relação a um maior conjunto de funções.

Além dessas, também se destacam as derivadas de Chen, Hadamard, Osler, Hilfer,

Davidson-Essex, Coimbra, Canavati, Cossar, Jumarie, Caputo-Hadamard e Hilfer-Katugampola

(OLIVEIRA; OLIVEIRA, 2018). Do ponto de vista numérico, cada uma destas derivadas pode

ser empregada para aproximar termos fracionários, transformando o problema original em um

equivalente puramente algébrico (PODLUBNY, 1998). De todas as definições de derivadas

mencionadas, as mais usuais são as de Grünwald-Letnikov, Riemann-Liouville e Caputo, as

quais serão aprofundadas neste estudo adiante.

2.1 Derivadas Fracionárias

Nesta seção, é introduzido o conceito de Integral fracionária, conforme proposto por

Riemann-Liouville, bem como as definições mais tradicionais empregadas para a representação

de derivadas fracionárias, a saber, as derivadas de Riemann-Liouville, Caputo e Grünwald-

Letnikov. Também são apresentadas algumas aplicações dessas derivadas na engenharia, além de

destacar as suas limitações.

Entre as diversas formulações de derivada fracionária presentes na literatura, destacam-

se as de Riemann-Liouville e Caputo, as quais são as duas configurações mais usuais para a

apresentação de novas formas de modelar uma derivada fracionária. É importante destacar que a

multiplicidade de definições de derivadas fracionárias advém da ausência de uma interpretação

geométrica e/ou física clara, diferentemente do cálculo inteiro, onde a derivada está diretamente

ligada à tangente de uma curva em um ponto específico. Apesar disso, as derivadas fracionárias

são atribuídas à generalização do conceito de derivadas de ordem inteira e são capazes de

fornecer uma descrição mais precisa dos fenômenos encontrados na natureza, que comumente

são representados por modelos complexos e não-lineares (LORENZO, 2007).

Nesse sentido, destaca-se o papel crucial dessas derivadas fracionárias para a modelagem
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de fenômenos complexos com dinâmicas não-lineares, como, por exemplo, o estudo da difusão

anômala, onde a ordem arbitrária garante uma maior proximidade com a realidade a partir

do momento em que considera os efeitos de memória e influências não-locais (TATEISHI;

RIBEIRO; LENZI, 2017). Diante desse contexto, de modo divergente das equações diferenciais

ordinárias de ordem inteira, que consideram apenas os valores atuais e as taxas de variação

instantâneas dos sistemas, as derivadas fracionárias levam em conta a influência de todos os

estados passados do sistema na solução atual. Isso é particularmente relevante para a difusão

anômala, como citado acima, onde o comportamento das partículas desvia do padrão esperado

pela Lei de Fick clássica devido às interações complexas que são mais bem descritas pela

consideração da dependência temporal de maneira não-linear (PEDRON, 2003).

2.1.1 Integral Fracionária de Riemann-Liouville

Visto que a maioria das formulações de derivadas fracionárias, como a de Riemann-

Liouville e Caputo, envolvem a aplicação de uma integral fracionária, é fundamental introduzir

sua definição previamente (TEODORO; OLIVEIRA; C., 2018). Sendo assim, considere a integral

fracionária de Riemann-Liouville de ordem α da função f definida como:

Jαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1F (τ) dτ (2.1)

onde α > 0, t > 0 e Jα = I , sendo I o operador identidade.

2.1.2 Derivada de Riemman-Liouville

A derivada de Riemman Liouville (RLD
α
xF (x)) é definida como uma de ordem inteira,

mas que está relacionada com uma integral de ordem arbitrária:

RLD
α
xF (x) =

1

Γ(y − α)

dy

dty

∫ t

0

F (t)

(τ − t)α+1−y
dt, (2.2)

onde y é o menor número inteiro maior que α e Γ é a função gama.

Ela é amplamente utilizada na obtenção de soluções analíticas para as equações dife-

renciais de ordem fracionária. Contudo, essa formulação apresenta limitações no que tange as

suas condições iniciais (complexas), pois são expressas em termos de uma integral fracionária.

Tais condições iniciais diminuem a aplicabilidade prática da abordagem, uma vez que dificul-

tam a interpretação do problema (RODRIGUES; OLIVEIRA, 2015). Com isso, a derivada de

Riemann-Liouville, apesar de ter sua utilidade para soluções analíticas, é menos conveniente

para a análise de sistemas físicos e de engenharia.
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2.1.3 Derivada de Caputo

A Definição da derivada de Caputo (CDα
xF (x)) de uma função genérica F (x) com

relação à variável independente x é dada por:

CD
α
xF (x) =

1

Γ(y − α)

x
∫

0

(x− t)y−α−1d
yF (t)

dty
dt (2.3)

em que Γ é a Função Gamma e y é um número inteiro, definido conforme a derivada de

Riemann-Liouville.

Diferentemente da definição de Riemman-Liouville, a derivada de Caputo trata de uma

integral de ordem arbitrária de uma derivada de ordem inteira. Em outras palavras, a principal

diferença em relação à definição anterior é a ordem da diferenciação, que, na formulação de

Caputo, é aplicada à função F (t) dentro da integral, e não com o seu resultado.

Sendo assim, a formulação proposta por Caputo é especialmente relevante devido à sua

capacidade de incorporar condições iniciais com uma interpretação física clara, já que essas

são dadas em termos de equações diferenciais de ordem inteira (CARVALHO; OTTONI, 2018),

diferentemente da derivada de Riemman-Liouville. Essa característica torna a formulação de

problemas mais intuitiva. No entanto, a complexidade matemática envolvida na resolução das

equações resultantes geralmente torna necessário o uso de métodos numéricos. Esses métodos

são escolhidos conforme a natureza do problema, condições de contorno, necessidade de precisão

e eficiência computacional (PODLUBNY et al., 2009).

2.1.4 Derivada de Grünwald-Letnikov

A Derivada fracionária de Grünwald-Letnikov (GLD
α
xF (x)) de uma função genérica

F (x) com relação à variável independente x é definida através do limite da seguinte série:

GLD
α
xF (x) = lim

h→0

(

1

hα

∞
∑

k=0

(−1)k
(

α!

k!(α− k)!

)

F (x− kh)

)

(2.4)

em que h é o tamanho do passo de integração e α é a ordem fracionária.

Tal formulação é empregada para a resolução de equações numéricas e pode ser entendida

como uma generalização das formulações propostas por Riemann-Liouville e Caputo, pois

ambas podem ser matematicamente obtidas a partir dela (RODRIGUES; OLIVEIRA, 2015).

É importante destacar que a formulação acima está ligada a uma soma ponderada de valores

de memória da função F (x), em que os coeficientes binomiais representam a função de pesos,

determinando a contribuição de cada valor passado descrito por F (x−kh) na derivada fracionária.

Através de uma análise matemática, é possível demonstrar que tais coeficientes dependem da

ordem α e possuem a propriedade de decrescer conforme o aumento de k, o qual representa o

número de passos discretos no passado a partir do tempo atual t. O valor de k varia de 0 até t−a
h

e corresponde ao número de passos necessários para ir de t até o ponto inicial a.
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De acordo com o supracitado, a derivada de Grünwald-Letnikov tem sua dependência

direta na discretização temporal, pois considera todos os valores passados da variável a ser

diferenciada. Essa característica traz consigo uma limitação significativa, a saber, o elevado

custo computacional associado a passos de integração com intervalos pequenos (COSTA, 2021).

Portanto, encontrar um equilíbrio entre a precisão desejada e a viabilidade computacional é

crucial ao utilizar essa abordagem.

2.1.5 Função de Mittag-Leffler

Entre os anos de 1902 e 1905, Mittag-Leffler introduziram a clássica função que recebe

os nomes destes matemáticos. Está é denotada por Eα(z), e depende apenas de um parâmetro α

(MITTAG-LEFFLER, 1903). Essa função foi definida a partir de uma série de potências que

abrange a função Gama e pode ser considerada uma generalização da função exponencial para

o cenário fracionário, fato que a torna importante para a resolução de equações diferenciais

fracionárias.

Definição 1. Sejam z ∈ C e α um parâmetro complexo com R(α) > 0. A função de

Mittag-Leffler de um parâmetro é definida como (PODLUBNY et al., 2009):

Eα(z) =
∞
∑

n=0

zn

Γ(αn+ 1)
(2.5)

onde Γ(·) é a Função Gamma, também denominada de função de Euler de segunda espécie, e

que generaliza o fatorial para números reais e complexos (OLIVEIRA, 2012).

Com o avanço dos estudos no campo do cálculo fracionário ao longo do século XX, a

função de Mittag-Leffler de dois parâmetros foi introduzida por Humbert e Agarwal (1953).

Posteriormente, Prabhakar (1971) apresentou a função de Mittag-Leffler de três parâmetros,

ampliando significativamente suas aplicações e a compreensão teórica da função.

Definição 2. Sejam z ∈ C e µ e β dois parâmetros complexos com R(α) > 0. A função

de Mittag-Leffler com dois parâmetros é definida como:

Eµ,β(z) =
∞
∑

n=0

zn

Γ(µn+ β)
(2.6)

onde Γ(·) é a função gama.

Definição 3. Sejam z ∈ C e µ, β e γ três parâmetros complexos com R(µ) > 0. A

função de Mittag-Leffler com três parâmetros é definida por meio de uma série de potências:

Eγ(z) =
∞
∑

k=0

(γ)nz
k

Γ(µn+ β)n!
(2.7)

onde γn é um parâmetro adicional denominado símbolo de Pochhammer.
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2.2 Validade e Critérios para as Derivadas Fra-

cionárias

Diante da diversidade de formulações envolvendo derivadas fracionárias, foi estabelecido

por Ross (1975) um conjunto de critérios, baseado em 5 propriedades, capaz de diferenciar

se uma determinada derivada poderia ser considerada não-inteira. Este trabalho forneceu a

primeira estrutura formal para entender como as derivadas de ordem fracionária poderiam ser

definidas de maneira rigorosa e consistente. Essa abordagem visava garantir se tais derivadas

fracionárias se caracterizavam como uma extensão suficientemente coerente para as derivadas

inteiras via análise de linearidade, causalidade e redução à derivada clássica. Sendo assim, tal

critério consistia em construir uma base matemática sólida e generalizada, sem a necessidade

de considerar sua aplicabilidade em condições específicas e individuais de sistemas físicos e de

engenharia.

Portanto, da mesma maneira que o trabalho de Ross estabeleceu bases teóricas neces-

sárias, esse direcionou novas pesquisas. Ortigueira e Machado (2015) propuseram adaptações

nos operadores fracionários para torná-los mais aplicáveis a sistemas físicos. Isto se baseava um

alguns critérios, definidos como:

• A derivada fracionária deve ser linear para que a operação de diferenciação matemática

seja consistente com as propriedades definidas pela álgebra linear.

• A operação de diferenciação fracionária, quando a ordem é um inteiro, deve coincidir com

o resultado da diferenciação ordinária. Tal propriedade garante que a derivada fracionária

possa ser considerada uma extensão das derivadas tradicionais.

• A aplicação sucessiva de duas derivadas fracionárias de ordem µ e β deve ser igual a

derivada fracionária de ordem µ+β quando µ < 0 e β < 0, DαDβ = D(µ+β)f(x), de

acordo com a lei dos expoentes.

• A derivada de ordem zero de uma função é a própria função, D0f(x) = f(x).

• A regra de Leibniz generalizada estabelece como a derivada fracionária de um produto

de funções deve ser calculada, isto é; Dµ(f(x)g(x)) =
∑

∞

k=0

(

µ
k

)

Dµ−kf(x)Dkg(x), em

que:
(

µ

k

)

=
Γ(µ+ 1)

Γ(µ− k + 1)!
(2.8)

As formulações de Riemann-Liouville, Caputo e Grünwald-Letnikov apresentadas nesse

trabalho satisfazem tanto os critérios proposto por Ross (1975) quanto por Ortigueira e Machado

(2015). Neste Trabalho não será apresentada as provas matemáticas para tais critérios, contudo

elas estão presentes em detalhes em (TEODORO, 2019).



2.3. Equação Diferencial Ordinária Fracionária 11

2.3 Equação Diferencial Ordinária Fracionária

Nesta contribuição, considera-se uma Equação Diferencial Ordinária Fracionária (EDOF)

definida como (CAFAGNA, 2007):
{

Dαy (t) = f(t,y(t)), t ∈ (0,T ], T > 0

y(j)(0) =y
(j)
0 , j = 0, 1, ..., n− 1

(2.9)

onde t é a variável independente, y é o vetor de varáveis dependentes (y0 é o vetor que contém a

condição inicial associada a cada variável dependente). f é o vetor que contém o lado direito do

modelo diferencial fracionário, α é a ordem fracionária (α > 0), n = [α] é o primeiro inteiro não

menor que α (0 < α ≤ 1) e T é o tempo final (T > 0).

2.4 Métodos Analíticos e Métodos Numéricos

Para a resolução da EDOF definida, é importante destacar a diferença entre os métodos

analíticos e métodos numéricos de solução. Os métodos analíticos visam encontrar soluções

exatas e explícitas através de algumas técnicas matemáticas bem estabelecidas e adaptadas para

o contexto fracionário, como é o caso da Transformada de Laplace, Função de Mittag- Leffler,

Tranformada de Fourier e Expansão em Série de Potências. Contudo, apesar desses métodos

analíticos não estarem sujeitos a erros de aproximação numérica, sua solução muitas vezes é

difícil ou até mesmo inviável de se obter devido à natureza complexa e não-linear da EDOF.

Essa limitação torna a utilização de métodos analíticos inadequada para a resolução de grande

parte das equações fracionárias encontradas em problemas práticos (TEODORO, 2019).

Neste caso, para equações fracionárias complexas ou não-lineares o mais usual é a

utilização de diferentes métodos numéricos para a resolução. Embora tais métodos forneçam

soluções sujeitas a erros de truncamento e/ou arredondamento, eles são preferíveis quando a

solução exata não é passível de ser encontrada. Este tipo de estratégia é uma abordagem flexível

e generalizada, visto que pode ser aplicada em uma série de estudos com diferente níveis de

complexidade (PODLUBNY et al., 2009). Dentre a variedade de métodos numéricos existentes,

há a classificação desses em métodos implícitos e explícitos. Nesse sentido, enquanto nos

métodos explícitos a solução em um determinado ponto é calculada através de valores anteriores,

fato que confere certa limitação do tamanho do passo no tempo. Os métodos implícitos requerem

a resolução de sistemas algébricos, provavelmente não lineares, a cada passo de integração,

pois não dependem apenas de valores anteriores, mas também de valores atuais. Com isso, os

métodos implícitos se enquadram como uma metodologia mais robusta, porém com maior custo

computacional (BATHE, 2007).
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2.4.1 Métodos Analíticos para a Resolução de EDOF

As Transformadas de Fourier e de Laplace em conjunto com a Função de Mittag-Leffler,

desempenham um papel fundamental na resolução de EDOF (PODLUBNY, 1998). Estas são

capazes de simplificar, em casos específicos, a resolução de tais equações. Cada uma dessas

ferramentas possui particularidades específicas no contexto fracionário, e seu emprego depende

da natureza e restrições presentes nas diferentes aplicações práticas no contexto do cálculo

fracionário.

Diante disso, enquanto as Transformadas de Laplace e de Fourier auxiliam na transforma-

ção de derivadas fracionárias em equações algébricas no domínio da frequência, com a finalidade

de facilitar a manipulação durante a resolução de tais equações, a Função de Mittag-Leffler pode

ser interpretada como uma generalização da função exponencial, pois desempenha um papel

análogo para equações diferenciais fracionárias ao que a função exponencial desempenha para

equações diferenciais ordinárias lineares (TEODORO, 2019).

2.4.1.1 Transformadas de Fourier e Laplace

A abordagem matemática das transformadas de integrais, como as de Fourier e de Laplace,

têm sua importância na determinação das soluções de EDOF com condições de contorno iniciais

ou específicas. A transformada de Laplace, em particular, se destaca como uma abordagem

direta e eficaz para a resolução de problemas com condições iniciais. Tal técnica envolve a

transformação de equações diferenciais no domínio do tempo t em equações algébricas no

domínio de s, simplificando a solução do problema. Após a manipulação da equação no domínio

s, a transformada inversa é aplicada para o retorno da solução ao domínio de t (BOYCE;

DIPRIMA, 2010). Já a transformada de Fourier fornece uma perspectiva particular e adequada

para a análise de sinais e sistemas no domínio da frequência, a partir do momento no qual ela é

responsável por decompor um sinal em seus componentes elementares seno e cosseno (LIMA,

2018).

Definição 1. Seja f(t) uma função definida para t > 0. A transformada de f(t), denotada

por L[f(t)](s) = F (s), é definida como:

L[f(t)](s) = F (s) =

∫

∞

0

e−stf(t) dt (2.10)

onde s é uma variável complexa, tal que s = σ + iτ , com σ ∈ R representando a parte real e iτ

sendo a parte imaginária.

Dessa maneira, a transformada de Laplace de uma dada função f(t) envolve uma integral

imprópria cujos limites inferior e superior são, respectivamente, 0 e −∞. Tal fato ocorre, pois

sua aplicação envolve problemas causais, ou seja, os valores de f(t) são iguais a zero quando

t < 0.
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Definição 2. No caso particular em que σ = 0 e os limites são iguais a zero e f(t),

s = iτ e F (ω) correspondem à transformada de Fourier de f(t). Neste cenário, a transformada

F (ω) obtida a partir da Transformada de Laplace corresponde diretamente à Transformada de

Fourier de f(t), que é dada por:

F [f(t)] =

∫

∞

−∞

f(t)e−iωt dt (2.11)

Sendo assim, é possível dizer que a função F (f)(ω), chamada de Transformada de Fou-

rier de f(t), captura todas as informações existentes na função original f(t). Isso ocorre devido

à existência da operação de transformada inversa, denotada por F−1, que permite recuperar f(t)

a partir de F (f)(ω) (TITCHMARSH, 1962). Sua definição está dada a seguir como:

f(t) = F−1(F (ω)) =
1

2π

∫

∞

−∞

F (ω)eiωt dω

2.4.2 Métodos Numéricos para a Resolução de EDOF

Métodos numéricos como os de Euler e de Adams têm sua importância na resolução de

EDOF, visto que oferecem aproximações para o perfil de interesse. Ao considerar o Método de

Euler, é importante destacar que esse método trata-se de uma abordagem numérica linear de

único passo, ou seja, para uma função f(tk,yk) o cálculo do próximo passo yk+1 depende apenas

de informações do ponto atual tk, do valor da função em yk e, possivelmente, de sua derivada em

tk, dada pela inclinação da curva (f(tk,yk)). Dessa forma, para cada iteração, o próximo valor da

função pode ser calculado de maneira independente (MAIOLI, 2015). Diante disso, é possível

distinguir a técnica numérica mencionada em Método de Euler Direto Fracionário e Método de

Euler Reverso Fracionário. O primeiro é um método explícito, enquanto o segundo é um método

implícito, que serão posteriormente explorados de maneira mais detalhada.

Por outro lado, os Métodos de Adams são definidos como abordagens numéricas lineares

de múltiplos passos, o que significa que, ao considerar uma função f(tk,yk), o cálculo de yk+1

é feito considerando valores anteriores (yk−1, yk−2, ...), em vez de depender apenas do valor

atual da função em tk e yk. Dentre essa classe de métodos, destacam-se os Métodos de Adams-

Bashforth e de Adams-Moulton, sendo tais métodos classificados como explícito e implícito,

respectivamente (GARRAPPA, 2010).

Vale ressaltar que, no entanto, a escolha entre empregar métodos numéricos de único

passo e de múltiplos passos deve ser feita baseando-se nas especificações do problema a ser

estudado. Enquanto os métodos numéricos de único passo são preferíveis para análises simples,

com curtos intervalos de tempo e poucas restrições quanto à precisão, os de múltiplos passos

conferem a problemas complexos, ou que necessitam da avaliação do sistema em longos períodos

de tempo, maior estabilidade e precisão (ATKINSON, 1991).
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Cabe destacar que, para resolver um problema usando uma abordagem implícita, é preciso

avaliar uma equação, provavelmente, não linear em relação à incógnita yk+1. Na prática, isso

significa que, para integrar um modelo diferencial fracionário usando uma estratégia implícita, é

necessário resolver um sistema algébrico, provavelmente, não linear, a cada passo de integração.

Essa particularidade proporciona maior estabilidade, mas garante maior complexidade e um

maior custo computacional.

Nesta contribuição, serão detalhadas as abordagens numéricas MERF, o MEDF e MAMF.

2.4.2.1 Método de Euler Reverso Fracionário

Do ponto de vista matemático, o Método de Euler Reverso Fracionário (MERF), também

conhecido como Método de Euler Implícito Fracionário (MEIF), é dado como:

yk+1 =
n−1
∑

j=0

tjk+1

j!
y
(j)
0 +

hµ

Γ(µ+ 1)

k
∑

j=0

bj,k+1f(tj+1,yj+1) (2.12)

e os coeficientes b são dados pela Eq. 2.14.

2.4.2.2 Método de Euler Direto Fracionário

O Método de Euler Direto Fracionário (MEDF), também conhecido como Método de

Euler Explícito Fracionário (MEEF) é dado como:

yk+1 =
n−1
∑

j=0

tjk+1

j!
y
(j)
0 +

hµ

Γ(µ+ 1)

k
∑

j=0

bj,k+1f(tj,yj) (2.13)

em que Γ é a função Gama e os coeficientes b são computados como:

bj,k+1 = (k − j + 1)µ − (k − j)µ (2.14)

2.4.2.3 Método de Adams-Moulton Fracionário

Já o Método de Adams-Moulton é uma estratégia implícita. Neste caso, para atualizar

yk+1, faz-se necessário predizer o valor de y (ypk+1). Assim, o Método de Adams-Moulton

Fracionário é descrito como segue:

yPk+1 =
n−1
∑

j=0

tjj+1

j!
y
(j)
0 +

hµ

Γ(µ+ 1)

k
∑

j=0

bj,k+1f(tj, yj), (2.15)

onde bj,k+1 são os coeficientes definidos pela Eq. 2.14, e yPk+1 é a solução preditiva. De posse do

valor predito, o valor de yk+1 (etapa de correção) é computado como:

yk+1 =
n−1
∑

j=0

tjj+1

j!
y
(j)
0 +

hµ

Γ(µ+ 2)

(

k
∑

j=0

aj,k+1f(tj, yj) + ak+1,k+1f(tk+1, y
P
k+1)

)

(2.16)
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onde aj,k+1 são os coeficientes para o método de Adams-Moulton.

Os coeficientes a são dados pela Eq. 2.17.

aj,k+1 =











kµ+1 − (k − µ)(k + 1)µ, j = 0

(k − j + 2)µ+2 − 2(k − j + 1)µ+1 + (k − j)µ+1, 1 ≤ j ≤ k

1, j = k + 1

(2.17)

2.4.2.4 Método da Colocação Ortogonal

No Método da Colocação Ortogonal, diferentemente dos já apresentados, a solução é

aproximada conforme uma combinação linear de funções de base (geralmente polinomiais) em

determinados pontos do domínio de interesse (pontos de colocação). Sendo assim, a equação

original deve, obrigatoriamente, satisfazer a função de aproximação escolhida nos pontos con-

siderados, assim como nas condições iniciais e de contorno. Tradicionalmente, a função de

aproximação utilizada é o Polinômio de Lagrange (PL) e os pontos de colocação são definidos

como as raízes do polinômio ortogonal. Quanto ao uso do PL, a escolha é baseada na redução do

custo computacional quando comparado a outras aproximações (VILLADSEN; MICHELSEN,

1978). Já a utilização das raízes do polinômio ortogonal como pontos de colocação é justificada

pela diminuição do número de pontos de discretização, e consequente redução do problema a ser

resolvido (LARANJEIRA; PINTO, 2001). A metodologia é apresentada de forma detalhada em

Lima (2022).

2.5 Análise Dimensional de uma EDOF

Tradicionalmente, os problemas em engenharia são modelados por equações diferenciais

de ordem inteira. No contexto fracionário, ao adicionar um operador fracionário ao problema

original, faz-se necessário avaliar a consistência dimensional. Isto é, as unidades em ambos

os lados da equação em análise devem ser iguais para se obter consistência no modelo físico

apresentado, evitando, assim, incoerências que possam comprometer a validade do problema.

Para ilustrar a importância da consistência dimensional, considere a aplicação da Lei de

Resfriamento de Newton, modelada pela equação diferencial ordinária de primeira ordem:

dT (t)

dt
= −k (T (t)− Tamb) (2.18)

onde T (t) é a temperatura do corpo no tempo t, Tamb é a temperatura do ambiente, k é a constante

de proporcionalidade (com unidade de 1/tempo). Em termos das dimensões físicas, no Sistema

Internacional de Unidades (SI), têm-se:

[

◦C

s

]

=

[

◦C

s

]
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Neste caso, a equação acima é consistente dimensionalmente. Por outro lado, no contexto

fracionário é preciso considerar a ordem fracionária α. Assim, o modelo diferencial é dado

como:

dαT (t)

dtα
= −k (T (t)− Tamb) (2.19)

Dimensionalmente têm-se:

[

◦C

sα

]

̸=

[

◦C

s

]

Como observado nesta equação, o modelo é inconsistente dimensionalmente. Portanto,

é preciso realizar uma correção para que o balanço de unidades seja coerente. A seguir, são

apresentadas duas abordagens para a correção dessas unidades em modelos físicos.

2.5.1 Correção das Unidades nos Parâmetros do Modelo

A primeira estratégia consiste na correção direta do parâmetro k (constante de proporcio-

nalidade, que mede a taxa de transferência de calor) com base na ordem fracionária disposta. Tal

técnica não é atribuída especificamente a nenhum estudioso, mas foi amplamente utilizada em

trabalhos do século XX para a correção dimensional de modelos fracionários, como é o caso de

Caputo (1967).

Na Equação. 2.19, a ordem α faz com que a dimensão do tempo seja alterada. Nesse

sentido, essa metodologia, para o problema apresentado, se baseia na elevação da potência para o

parâmetro k, que contém a dimensão tempo, cuja unidade precisa ser corrigida, a fim da garantia

da consistência dimensional α, conforme segue:

dαT (t)

dtα
= −kα (T (t)− Tamb) (2.20)

Esse procedimento assegura que o produto k(T (t)− Tamb) tenha as mesmas unidades

que o operador diferencial fracionário dαT (t)/dtα, garantindo a correção na dimensão, como

demonstrado abaixo:

[

◦C

sα

]

=

[

◦C

sα

]

Além disso, é importante destacar que nessa técnica é preciso analisar as dimensões e

unidades que deverão ser ajustadas especificamente em cada aplicação. Com isso, para esse caso

da Lei de Resfriamento, embora o ajuste direto na unidade do parâmetro k seja matematicamente

viável, essa abordagem não se mostra usual, pois pode comprometer a interpretação física do

fenômeno natural.
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2.5.2 Fator de Correção do Operador Diferencial

Conforme mencionado anteriormente, a correção das unidades via modificação dos

parâmetros do modelo não é uma estratégia interessante do ponto de vista físico, já que essa

dificulta a interpretação física. Como alternativa a esta abordagem, pode-se definir um fator de

correção para modificar o operador diferencial fracionário. Para esta finalidade, é empregada a

definição de tempo cósmico proposta por Podlubny (2001) em conjunto com um fator de correção

em modelos diferenciais fracionários aplicados a osciladores mecânicos, proposto por Gómez-

Aguilar et al. (2012). Essa estratégia é eficaz para corrigir a inconsistência dimensional do

modelo diferencial fracionário, uma vez que multiplica o tempo — a variável independente que

contém o termo diferencial fracionário — por um fator de correção que possui a mesma unidade

da variável independente, neste caso, o tempo em segundos. Com isso, o termo diferencial

fracionário corrigido (no SI) é dado como Podlubny (2001):

[

1

σ(1−α)

dαT (t)

dtα

]

=

[

◦C

s

]

, 0 < α ≤ 1 (2.21)

onde 1/σ(1−α) é o fator de correção, sendo σ um parâmetro cuja unidade é igual à variável a

ser corrigida dimensionalmente e que, segundo Podlubny (2001), pode ser interpretado como a

componente do tempo fracionário.

Via análise dimensional da Eq. 2.21, é possível dizer que essa é consistente, já que

ambos os lados possuem a mesma unidade. Ademais, o operador diferencial ordinário pode ser

substituído pelo operador fracionário, de acordo com a Eq. 2.22, quando o operador α for igual

à unidade.

d

dt
→

1

σ(1−α)

dαT (t)

dtα
, 0 < α ≤ 1 (2.22)

Ao aplicar o fator de correção a lei de resfriamento de Newton dada pela Eq. 2.18,

encontra-se:

1

σ(1−α)

dαT (t)

dtα
= −k (T (t)− Tamb) (2.23)

Se σ tem unidade da dimensão tempo, tem-se que:

[

1

s(1−α)

] [

◦C

sα

]

=

[

◦C

s

]

Por conseguinte, a correção do operador diferencial fracionário proporciona consistência

dimensional para o modelo. Além disso é importante destacar que σ deve ser igual a unidade para

evitar interferência no valor dos perfis a serem simulados. Finalmente, é importante destacar que

esse conceito têm sido amplamente aplicado em diversas áreas, como demonstrado em trabalhos

de Gómez-Aguilar et al. (2012) e Podlubny (2001).
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2.6 Aplicações do Cálculo Fracionário em Enge-

nharia e Áreas Afins

Conforme mencionado neste trabalho, a origem do cálculo fracionário é registrada em

uma troca de correspondências entre L’Hopital e Leibniz no ano de 1695. Apesar disso, as

aplicações práticas começaram a se consolidar apenas no século XX, especialmente nos campos

da física e da engenharia, à medida que estudiosos vislumbravam no cálculo fracionário uma

oportunidade de enfrentar os desafios exigidos pela modelagem de sistemas não lineares e com

dinâmicas complexas. Nesse sentido, é importante destacar que, embora sua aplicabilidade seja

recente e muitas vezes restrita, é possível dizer que a inserção do cálculo fracionário na rotina

dos estudiosos já pode ser vista por meio de trabalhos acadêmicos publicados em diversas áreas

do conhecimento, como é o caso da física, biologia, economia, engenharia, entre outras. Para

essa finalidade, a seguir são apresentadas aplicações do cálculo fracionário em diferentes campos

da ciência e engenharia.

• Física: nessa área da ciência podem ser encontrados trabalhos relacionados à difusão

anômala(GONZALEZ et al., 2005), eletromagnetismo(BOHANNAN; KNAUBER, 2015),

transporte de calor (SIEROCIUK et al., 2013) e dinâmica de sistemas caóticos(CHEN et

al., 2012).

• Controle: pode-se encontrar trabalhos envolvendo controladores PID (Proporcional-

Integral-Derivativo) fracionários (TYTIUK et al., 2019) e otimização de sistemas di-

nâmicos (LIMA, 2022).

• Biologia: nesse campo são contemplados trabalhos relacionados com a difusão de fármacos

em tecidos biológicos (MAGIN, 2010), e estudos sobre epidemiologia(ROSA; TORRES,

2018).

• Economia: os modelos fracionários nessa área são aplicados para análise de risco em fi-

nanças (DING; GRANGER; ENGLE, 1993) e em previsões de séries temporais (FLORES-

MUÑOS; BAÉZ-GRACÍA; GUTIÉRREZ-BARROSO, 2018).

• Ciência dos Materiais: nessa área encontram-se trabalhos em temas como reologia de

materiais viscoelásticos (MERAL; ROYSTON; MAGIN, 2010) e análise de materiais

porosos (ZASLAVSKY, 2002).

• Engenharia Mecânica: podem ser encontrados contribuições sobre análise de vibrações

em estruturas (NIU et al., 2019) e modelagem de sistemas vibratórios com amortecimento

viscoelástico (ÁVILA et al., 2010).

Na Engenharia Química, o cálculo fracionário tem sido aplicado na modelagem e análise

de processos dinâmicos complexos. Neste contexto, pode-se citar o trabalho de MOTTA et al.
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(2017), que consiste na aplicação do cálculo fracionário à generalização matemática da secagem

de bagaço de uva, levando em conta dados de umidade no domínio do tempo em diferentes

temperaturas de secagem. Nesse estudo, a aplicação de modelos fracionários permitiu a obtenção

de maior precisão no ajuste dos dados experimentais em comparação ao tradicional Modelo de

Page.

Outra aplicação recorrente é a modelagem fracionária da cinética de reatores químicos,

como exemplo, pode-se citar o estudo de Qureshi e Aziz (2019), onde foi modelado um rea-

tor batelada com a utilização do operador diferencial fracionário do tipo Caputo. O objetivo

do estudo foi simular diferentes perfis de concentrações ao longo do tempo para diferentes

ordens fracionárias, a fim de se obter a avaliação dos parâmetros em conjunto com a análise do

comportamento dinâmico do sistema.

O cálculo fracionário também tem se mostrado promissor no campo de controle de

processos, tanto no que diz respeito ao desenvolvimento de controladores Proporcional-Integral-

Derivativo (PID) fracionários quanto na aplicação do controle ótimo. Para os controladores PID

fracionários, a avaliação de seu desempenho em relação aos controladores PID clássicos pode ser

encontrada no trabalho de Shen (2018). Já para o Problema de Controle Ótimo (PCO), pode-se

dizer que esta é uma metodologia empregada para determinar um vetor de variáveis de controle

com o objetivo de maximizar ou minimizar uma função objetivo, também chamada de função

custo ou índice de desempenho. Essa função pode estar relacionada, por exemplo, à maximização

da eficiência de um processo produtivo ou à minimização do consumo de recursos, como

água e energia, em uma planta industrial, sempre respeitando restrições algébrico-diferenciais

em termos de vetores de variáveis de estado (BRYSON; HO; SIOURIS, 1979) associadas ao

sistema analisado. Essas restrições, no entanto, podem ser descritas por equações diferenciais

fracionárias, que introduzem a ordem fracionária como um elemento importante na descrição

dos perfis dinâmicos obtidos. Para a resolução desse problema Lobato (2008) propõe a extensão

do Método da Colocação Ortogonal para o contexto fracionário como ferramenta eficiente para a

integração dos modelos algébrico-diferenciais fracionários que constituem o PCO, facilitando

a modelagem e otimização de sistemas dinâmicos complexos e aumentando a precisão desses

modelos.

Além disso, o cálculo fracionário tem encontrado aplicações importantes na área da

reologia. No trabalho de Ávila et al. (2010) é apresentada a simulação do comportamento

dinâmico de sistemas estruturais equipados com amortecedores viscoelásticos, no domínio

do tempo. Nesse estudo, são desenvolvidas metodologias para a incorporação de modelos

viscoelásticos fracionários em modelos baseados no Método dos Elementos Finitos, a fim de

obter uma modelagem mais precisa dos fenômenos de amortecimento em materiais viscoelásticos,

onde a relação entre variáveis como tensão e deformação depende da memória da aplicação da

força.



20 Capítulo 2. Revisão Bibliográfica

2.7 Problema de Otimização

Do ponto de vista prático, em modelos diferenciais fenomenológicos, a ordem fracionária

não é conhecida a priori. Neste caso, a mesma deve ser estimada de forma que os perfis simulados

tenham aderência ao fenômeno analisado. Isto pode ser realizado através da formulação e

resolução de um problema de estimação de parâmetros, também conhecido como problema

inverso. Matematicamente, o problema inverso consiste em uma forma particular de otimização

em que a função objetivo representa uma métrica que quantifica a diferença entre os pontos

simulados pelo modelo proposto e os pontos experimentais. No caso particular do modelo

diferencial fracionário, este modelo deve ter como restrição os balanços de massa, energia e

quantidade de movimento, bem como as relações constitutivas ou empíricas.

Para resolver este tipo de problema será considerado como ferramenta de otimização o

algoritmo de Evolução Diferencial (ED), proposto inicialmente por Storn e Price (1995), para

problemas de otimização mono-objetivo e sem restrições. A seguir é apresentada uma breve

revisão sobre a definição do problema de otimização, sua formulação matemática, bem como

sua classificação e por fim a descrição do algoritmo de ED.

2.7.1 Formulação Matemática do Problema de Otimiza-

ção

A otimização é uma ferramenta matemática amplamente utilizada para determinar a

melhor solução possível em uma aplicação particular. Em síntese, o problema geral de otimização

tem sua metodologia baseada na identificação do melhor valor para uma ou n variáveis, classifi-

cadas como variáveis de decisão (ou de busca ou de projeto, no contexto da engenharia), a fim

de minimizar ou maximizar uma função objetivo, podendo estas serem lineares ou não lineares

em relação às variáveis do projeto, explícitas ou implícitas, e calculadas por métodos analíticos

ou numéricos. Essas especificações são responsáveis por dar particularidade a cada fenômeno

analisado. A principal vantagem da otimização está justamente na possibilidade de prever e

ajustar o comportamento de um sistema sem a necessidade de realizar experimentos físicos

ou testes práticos para cada cenário distinto. Contudo, o custo computacional deve ser levado

em consideração, especialmente quando o problema envolve um grande número de variáveis,

funções descontínuas ou funções com múltiplos mínimos locais, onde raramente se atinge o

mínimo global (SARAMAGO, 2003).

De maneira geral, um problema de otimização apresenta as seguintes características

Vanderplaats (2001):

• Função objetivo: é quem deve ser minimizado ou maximizado. Esta representa a ca-

racterística a ser aprimorada no sistema. No contexto matemático, uma função objetivo

f(x) depende (de forma explícita ou implícita) das variáveis de projeto (x), podendo ser
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unidimensional, quando depende de uma única variável, ou multidimensional, quando

depende de múltiplas variáveis de projeto.

• Variáveis de projeto: são as incógnitas que, ao serem manipuladas, são capazes de

modificar o valor da função objetivo.

• Restrições: são funções responsáveis por definir os limites dentro dos quais as variáveis

de projeto serão determinadas. Estas podem ser classificadas como:

1. Restrições de Igualdade: representadas como hj(x) = 0. Estas delimitam um espaço

de busca onde as variáveis de projeto correspondem a um valor pré-determinado.

2. Restrições de Desigualdade: representadas como gi(x) ≤ 0 ou gi(x) ≥ 0,

limitam os valores que as variáveis de projeto devem assumir.

3. Restrições Laterais: especificam os limites máximos e mínimos para as variáveis de

projeto. Elas podem ser expressas da seguinte forma: Li ≤ xi ≤ Ui, onde Li e Ui são

os limites inferior e superior, respectivamente, para a variável xi. Essas restrições

são fundamentais para garantir que as soluções ótimas estejam dentro de intervalos

praticáveis.

A formulação matemática de um problema de otimização mono-objetivo é dada com

(DEB, 2001):

min (ou max) f(x) (2.24)

Sujeito à:

hj(x) = 0, j = 1, . . . , K (2.25)

gi(x) ≤ 0, i = 1, . . . , H (2.26)

Li ≤ xi ≤ Ui, i = 1, . . . , n (2.27)

onde f(x) é a função objetivo que se deseja otimizar, hj(x) = 0 representa as restrições de

igualdade, gi(x) ≤ 0 representa as restrições de desigualdade, Li ≤ xi ≤ Ui especifica as

restrições laterais para cada variável de decisão xi, K é o número total de restrições de igualdade,

H é o número total de restrições de desigualdade e n é o número total de variáveis de projeto.

Em termos matemáticos, quando o problema envolve a maximização de f(x), a obtenção

da solução é dada por meio da multiplicação da função objetivo por −1. Em outras palavras, o

problema de maximização torna-se igual à minimização de −f(x). Essa equivalência demonstra

que todas as soluções obtidas para um cenário podem ser transferidos de maneira simples para o

outro sem grandes dificuldades (IZMAILOV; SOLODOV, 2014).

2.7.2 Classificação dos Métodos de Otimização

Nesta seção são apresentadas algumas classificações para auxiliar na escolha do método

de otimização mais adequado para cada contexto.
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2.7.2.1 Classificação de Acordo com a Estrutura da Função Obje-

tivo e Restrições

• Programa Linear (PL): tanto a função objetivo quanto as restrições são lineares, tratando-

se de problemas convexos que possuem soluções bem definidas (BREGALDA; OLI-

VEIRO; BORNSTEIN, 1988). A linearidade garante que, se uma solução ótima existe, ela

pode ser encontrada nos vértices da região factível. Métodos como o Método Simplex e

Método de Pontos Interiores são comuns em PL.

• Programação Não-Linear: neste tipo de problema, a função objetivo ou as restrições

apresentam pelo menos uma relação não-linear, fazendo com que a análise da solução seja

mais complexa se comparada à programação linear. Tais problemas podem ser convexos ou

não-convexos e a convergência para a solução global pode ser dificultada com a presença

de múltiplos ótimos locais. (BOYD; VANDENBERGHE, 2004).

2.7.2.2 Classificação de Acordo com a Estratégia de Resolução

• Métodos Determinísticos: um método de otimização é considerado determinístico quando

há previsibilidade na solução, isto é, ao partir de condições iniciais idênticas, a solução

do problema será sempre a mesma. A maioria desses métodos se baseiam no cálculo

de derivadas ou em aproximações dessas. Para funções que são contínuas, convexas e

unimodais, os resultados são satisfatórios (MARTÍNEZ; SANTOS, 1995).

• Métodos Heurísticos (Não-determinístico): são métodos que não se baseiam no uso de

informações sobre o gradiente da função objetivo e das restrições para a determinação da

solução ótima. Estes incorporam elementos de aleatoriedade nas relações empregadas para

a geração de um candidato em potencial a solução ótima. Tal característica permite uma

exploração mais ampla do espaço de busca ao aumentar as chances de encontrar soluções

globais. Esses métodos são úteis considerando funções objetivo e restrições não-lineares

com a presença de múltiplos ótimos locais. Esses métodos, também denominados em

alguns estudos como estocásticos, possuem aplicação na otimização em engenharia quando

aplicados à configuração de sistemas de controle de processos industriais, com o intuito de

otimizar o rendimento e reduzir falhas (WU et al., 2017).

2.7.2.3 Classificação pela Quantidade de Objetivos

• Métodos Mono-objetivos: envolvem problemas de otimização cujo foco é mantido na

minimização ou maximização de apenas um critério.

• Métodos Multiobjetivos: são utilizados quando o intuito é otimizar mais de um critério

ao mesmo tempo. Em um problema multiobjetivo, o resultado é um conjunto de pontos

ótimos e que compõem a chamada fronteira de Pareto. Essa fronteira contém os pontos
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mais eficientes, nas quais a avaliação da melhoria em um determinado critério leva à piora

em pelo menos um dos outros critérios estudados.

2.7.3 Algoritmo de Evolução Diferencial

O algoritmo de Evolução Diferencial (ED), proposto por Storn e Price (1995), é um

método de otimização baseada em população. Em linhas gerais, neste algoritmo a população

é atualizada via emprego de operações vetoriais (soma e subtração) aos candidatos da geração

corrente. Os passos do algoritmo são apresentados a seguir:

i. Entrada: Os parâmetros do algoritmo (tamanho da população, número de gerações,

probabilidade de cruzamento (PC), fator ou taxa de perturbação FP , estratégia para a

geração de candidatos em potencial e o critério de parada) são definidos pelo usuário.

Além disso, também é necessário definir as características do problema em análise (função

objetivo, variáveis de projeto e restrições).

ii. Inicialização: A população original popO é gerada (aleatoriamente) a partir dos limites

laterais definidos pelo usuário. Dessa população são escolhidos indivíduos aleatórios Iij,α,

Iij,β e Iij,γ para a atualização da população.

iii. Mutação: O indivíduo Iij,α sofre uma mutação do tipo:

Iij,M = Iij,α + FP (Iij,β − Iij,γ) (2.28)

onde α ̸= β ̸= γ, (Iij,β − Iij,γ) é o vetor diferença, Iij,M é o vetor mutado e FP é

responsável por controlar a amplitude do vetor diferença a partir da diferença ponderada.

Também é importante ressaltar que a população deve ser igual ou superior a 3 indivíduos a

fim de garantir a distinção entre os indivíduos selecionados aleatoriamente.

iv. Cruzamento: A operação de cruzamento envolve a geração de um novo indivíduo a

partir de popO e popM . Esse indivíduo gerado Iij,C será comparado com o indivíduo da

população original Iij,O, conhecido como vetor alvo, e com o da população mutada Iij,M

da seguinte forma:

ICij =







Iij,M se rand,j ≤ PC

Iij,O caso contrário
(2.29)

onde rand,j é um valor aleatório gerado de forma uniforme entre 0 e 1 e PC representa

a probabilidade do novo candidato herdar os valores das variáveis do vetor mutado ou

doador Iij,M . Se rand,j for menor ou igual à probabilidade de cruzamento PC , então o

componente j do vetor mutado Iij,M será utilizado. Caso contrário, o componente será

tomado do vetor original Iij,O.
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v. Seleção: É a etapa onde se escolhe o melhor indivíduo analisando o valor da função

objetivo. O indivíduo resultante do cruzamento Iij,C será comparado ao indivíduo cor-

respondente da população original Iij,O. Se o valor da função objetivo de Iij,C for menor

que o de Iij,O, então Iij,C substituirá Iij,O na próxima geração; caso contrário, Iij,O será

mantido.

vi. Critério de parada: Para finalizar o processo de evolução dos candidatos, geralmente

emprega-se como critério de parada o número máximo de gerações. Todavia, outros

critérios podem ser empregados, como por exemplo, as tradicionais métricas de erro.

O fluxograma do algoritmo de ED é apresentado na Fig. 1.

Início

Parâmetros de entrada

Determinar número de indivíduos e inicializar população popO

Operação de mutação baseada emIij,M = Iij,α + FP (Iij,β − Iij,γ)

Cruzamento envolvendo geração de novo indivíduo Iij,C a partir de Iij,M e Iij,O

Seleção por meio da comparação entreIij,C gerado e Iij,O

O critério de parada foi satisfeito?

Fim

Sim
Não

Figura 1 – Fluxograma do algoritmo de Evolução Diferencial.

É importante ressaltar que outras estratégias para a geração de candidatos em potencial

podem ser empregadas, conforme apresentado por Storn e Price (1995). A convenção utilizada

por estes autores é dada por DE/X/Y/Z, onde X representa o vetor base utilizado para a mutação,

Y representa o número de pares de vetores que são considerados na mutação e Z diz respeito ao

tipo de cruzamento usado para a geração do vetor candidato. "bin" representa binomial e "exp"

exponencial. Nesse estudo, a estratégia utilizada será DE/rand/1/bin, em que 1 indica o número

de pares de vetores de diferença que serão utilizados na mutação e o termo rand significa o vetor

base é selecionado de forma aleatória para o processo de mutação, a qual é dada por:

Iij+1 = Iij,α + FP (Iij,β − Iij,γ) (2.30)

onde Iij+1 é o vetor candidato na próxima geração e Iij,α, Iij,β e Iij,γ são vetores individuais

selecionados aleatoriamente a partir da população atual.

A utilização desse método de otimização é justificada por meio das vantagens definidas

por Cheng e Hwang (2001), as quais são listadas abaixo:
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• A metodologia possui a capacidade de explorar diferentes regiões do espaço de busca de

maneira simultânea para aumentar a chance de encontrar a solução ótima global;

• Por ser um algoritmo de busca direta (não usa informações sobre o gradiente da função

objetivo e das restrições), caracteriza-se como um método eficaz para a resolução de

problemas de otimização em que a função objetivo é descontínua;

• Sua implementação é baseada na simplicidade, visto que candidatos em potencial são

gerados via soma e subtração vetoriais;

• É um método amplamente usado em problemas de otimização contínua, combinatório e de

multiobjetivo;

• É uma alternativa interessante para lidar com populações com um número reduzido de

candidatos.

Tendo em vista as vantagens do algoritmo, sua aplicação abrange uma diversidade de

casos em diferentes áreas. Pode-se dizer que uma das aplicações mais promissoras da ED

reside na otimização de parâmetros em sistemas de controle, como é o caso do PID, pela sua

característica de processamento eficaz para métodos multiobjetivos (OSINSKI; LEANDRO;

OLIVEIRA, 2019). Sendo assim a ED desempenha um papel significativo no projeto de plantas

industriais, considerando a eficiência operacional e a melhoria da produtividade. Um caso

de destaque é o estudo de Paiva (2019), que aplica esse método de otimização nos ciclos de

refrigeração multiestágios localizados em unidades de processamento de gás natural, com o

objetivo de reduzir custos ao minimizar perdas energéticas e melhorar o desempenho operacional.

Além disso, o estudo de (GARCIA, 2018) destaca a robustez do algoritmo no projeto de

hidrociclones ao incluir dados experimentais, alcançando baixo consumo energético e alta

eficiência de classificação sob influência de variações nas dimensões e condições operacionais.

No próximo capítulo é apresentada a metodologia proposta para a simulação de modelos

fracionários, bem como a sua utilização no campo de problemas inversos.
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3 Metodologia

Neste capítulo, serão apresentadas as metodologias consideradas para a integração de uma

EDOF e a correção do operador diferencial no contexto dimensional, bem como as abordagens

que podem ser empregadas para a resolução de problemas de estimação de parâmetros (inversos)

no campo da engenharia química.

3.1 Métodos Numéricos para a Integração de uma

EDOF

Conforme mencionado anteriormente, pode não ser possível integrar uma EDOF anali-

ticamente. Neste caso, para resolver a EDOF descrita pela Eq. (2.9), três métodos numéricos

tradicionais são considerados, a saber: o Método de Adams-Moulton Fracionário (MAMF), o Mé-

todo de Euler Reverso Fracionário (MERF) e o Método de Euler Direto Fracionário (MEDF) (LI;

ZENG, 2013).

Para este propósito, seja tj = jh, j = 0, 1, ..., N (N é o número de pontos de discreti-

zação), h = T/N é o tamanho do passo de integração, e yj a solução aproximada de y(tj) em

t = tj . Considerando a seguinte integral:

Ik+1 =

∫ tk+1

0

(tk+1 − s)α−1g(s) ds, k = 0, 1, . . . , N − 1 (3.1)

A quadratura acima pode ser aproximada como:

Ik+1 ≈

∫ tk+1

0

(tk+1 − s)α−1Gk+1(s) ds, k = 0, 1, . . . , N − 1 (3.2)

onde Gk+1(s) é a aproximação de g(s) no intervalo [0, tk+1]. Assim, cada método numérico

(MAMF, MERF e MEDF) pode ser obtido escolhendo uma expressão diferente para Gk+1(s).

a) Se Gk+1(s) for aproximado por:

Gk+1(s)|[tj ,tj+1)
= g(tj), 0 ≤ j ≤ k (3.3)

então o MEDF é derivado como:

yk+1 =
n−1
∑

j=0

tjj+1

j!
y
(j)
0 +

hα

Γ(α + 1)

k
∑

j=0

bj,k+1f(tj, yj) (3.4)

onde:

bj,k+1 = (k − j + 1)α − (k − j)α (3.5)
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b) Se Gk+1(s) for aproximado por:

Gk+1(s)|[tj ,tj+1)
= g(tj+1), 0 ≤ j ≤ k (3.6)

então o MERF é dado por:

yk+1 =
n−1
∑

j=0

tjj+1

j!
y
(j)
0 +

hα

Γ(α + 1)

k
∑

j=0

bj,k+1f(tj+1, yj+1) (3.7)

onde bj,k+1 é definido pela Eq. (3.5).

c) O MAMF pode ser escrito como segue:



















yPk+1 =
n−1
∑

j=0

tjj+1

j!
y
(j)
0 + hα

Γ(α+1)

k
∑

j=0

bj,k+1f(tj, yj)

yk+1 =
n−1
∑

j=0

tjj+1

j!
y
(j)
0 + hα

Γ(α+2)

(

k
∑

j=0

aj,k+1f(tj, yj) + ak+1,k+1f(tk+1, y
P
k+1)

) (3.8)

onde:

aj,k+1 =











(kα+1 − (k − α)(k + 1)α), j = 0

(k − j + 2)α+2 − 2(k − j + 1)α+1 + (k − j)α+1, 1 ≤ j ≤ k

1, j = k + 1

(3.9)

e bj,k+1 é definido pela Eq. (3.5).

É importante mencionar que a Eq. (3.7) é implícita. Assim, para determinar yk+1, é

necessário conhecer o valor de f no ponto k + 1. Neste caso, um solver não linear deve ser

empregado para encontrar yk+1. Similarmente, na Eq. (3.8), o método preditor-corretor é usado

para determinar yk+1, ou seja, yPk+1 é o passo preditor e yk+1 é o passo corretor.

Finalmente, embora a abordagem apresentada tenha sido descrita para resolver uma

única EDOF, a mesma pode ser facilmente estendida para um sistema de EDOFs.

3.2 Correção do Operador Diferencial Fracio-

nário

Nesta contribuição, cada EDOF representa um sistema físico em engenharia química.

Assim, cada modelo fenomenológico fracionário deve ser dimensionalmente consistente, ou seja,

a inserção da ordem fracionária não pode violar o equilíbrio de unidades na equação. Do ponto

de vista físico, o operador de derivada temporal d/dt tem dimensão de tempo inverso [tempo−1],

e o operador de derivada temporal fracionária dα/dtα tem uma dimensão que corresponde

a [tempo−α]. Assim, para fins de consistência, é necessário corrigir as unidades do modelo
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físico. Para este objetivo, conforme sugerido por Gómez-Aguilar, Razo-Hernández e Granados-

Lieberman (2014) e considerado por Lima, Lobato e Steffen Jr (2021a) e Lima, Lobato e Steffen

Jr (2021b), um parâmetro auxiliar σ é introduzido no operador temporal fracionário:

d

dt
→

1

σ1−α

dα

dtα
, m− 1 < α ≤ m, m = 1, 2, 3, . . . (3.10)

onde o parâmetro auxiliar tem a dimensão de tempo e está associado aos componentes de tempo

fracionário do sistema. Para α igual a 1, esse operador fracionário torna-se um operador com

ordem inteira. Assim, substituindo esse operador fracionário na Eq. (2.9), o modelo resultante é

dado por:






1

σ1−α
Dαy(t) = f(t, y(t)), t ∈ (0,T ], T > 0

y(j)(0) = y
(j)
0 , j = 0, 1, . . . , n− 1

(3.11)

Para evitar a influência do parâmetro σ nos perfis físicos, ele é considerado igual à

unidade, ou seja, a inserção do parâmetro auxiliar garante a consistência dimensional do modelo

físico, mas não influencia quantitativamente os perfis obtidos.

3.3 Abordagem para a Resolução de Problemas

Inversos em Engenharia Química

Conforme mencionado anteriormente, os fenômenos observados na natureza podem ser

representados por um sistema de EDOFs. Neste caso, a ordem fracionária nesses modelos pode

ser definida pelo usuário ou estimada através da formulação e resolução de um problema de

estimação de parâmetros (também conhecido como problema inverso). Os passos requeridos

para a formulação e resolução de um problema inverso, considerando um método numérico

baseado em população, são apresentados a seguir e resumidos no fluxograma dado pela Fig. 2:

• Inicialmente, é necessário definir: o otimizador (configurações e parâmetros), as variáveis

de projeto (e os respectivos domínios ou espaço de projeto), o modelo fenomenológico

fracionário, a abordagem numérica considerada para a integração do modelo diferencial

ordinário fracionário, e os pontos experimentais considerados na formulação da função

objetivo;

• A partir destas informações, o otimizador inicializa o procedimento de obtenção da

solução ótima gerando (aleatoriamente, a partir do domínio especificado pelo usuário)

uma população de candidatos em potencial à solução do problema de otimização;

• Enquanto um determinado critério de parada (especificado pelo usuário) não for satisfeito,

o processo iterativo continua. Geralmente, o critério de parada considerado é o número

máximo de gerações;
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• Atualizar os indivíduos da população a partir da aplicação dos operadores do otimizador

considerado;

• Para cada candidato em potencial, integrar o sistema de EDOFs e, consequentemente,

avaliar a respectiva função objetivo. Neste caso, o melhor candidato, em termos do valor

da função objetivo, é tomado como sendo a melhor solução (na geração corrente);

• Se o critério de parada especificado pelo usuário for satisfeito, tem-se a solução ótima.

Caso contrário, o processo iterativo continua.

Figura 2 – Fluxograma para a formulação e resolução de problemas inversos.

No próximo capítulo, são apresentadas aplicações para validar a metodologia descrita.

Neste caso, destacam-se estudos de caso fracionários nas áreas de simulação e de problemas

inversos.
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4 Resultados e Discussões

Para aplicar a metodologia apresentada para a simulação de uma EDOF, é necessário

seguir os seguintes passos: i) definir o estudo de caso (modelo fenomenológico e parâmetros);

ii) definir o método numérico (Método de Adams-Moulton Fracionário (MAMF); Método

de Euler Reverso Fracionário (MERF ou Método de Euler Direto Fracionário (MEDF)) e o

número de pontos de discretização (N ); iii) avaliar se os perfis obtidos são alterados quando

N é modificado (análise de sensibilidade); iv) aplicar o fator de correção σ para garantir a

consistência dimensional (para modelos fenomenológicos). Cabe ressaltar que este parâmetro

sempre será definido como sendo igual à unidade (para que o mesmo não interfira nos perfis

obtidos).

É importante mencionar que, para resolver uma EDOF usando o MERF (método implí-

cito), foi considerado o Método de Newton (NM). Para isso, a matriz Jacobiana requerida por esta

abordagem é avaliada numericamente. Para inicializar o NM, o vetor de variáveis dependentes é

definido para cada estudo de caso. Finalmente, para interromper esse procedimento iterativo, o

somatório do módulo do erro absoluto (com tolerância igual a 10−8) é considerado.

Para avaliar a qualidade da solução obtida por MAMF, MERF e MEDF, o somatório do

módulo do erro absoluto médio (Ξ) será computado. Esta métrica é definida como:

Ξ =
N
∑

i=1

(yi − Yi)
2

N
(4.1)

onde yi representa a solução numérica obtida por MAMF, MERF e MEDF e Yi representa a

solução analítica (quando conhecida), ambas avaliadas no i-ésimo ponto e N é o número de

pontos de discretização. Para os casos em que a solução analítica é desconhecida, o cômputo

da referida métrica será realizado considerando o Método Predictor-Corrector (PCM) do tipo

Adams-Bashforth-Moulton, o qual é definido como uma combinação dos métodos de Adams-

Bashforth (explícito) e Adams-Moulton (implícito) (DIETHELM; FREED, 1999), onde o método

explícito é utilizado para prever o valor yk da solução enquanto o método implícito tem a

função de corrigir tal previsão. Na estratégia PCM, N sempre foi escolhido igual a 500 (valor

definido após execuções preliminares para garantir uma boa solução de referência). O tempo de

processamento (PT) é calculado usando um computador Desktop AMD Ryzen 7 5800X com

16GB de memória RAM.
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4.1 Validação das Técnicas para a Resolução de

EDOF

Para validar as metodologias propostas para a integração de equações diferenciais fracio-

nárias, esta seção considera funções matemáticas que apresentam solução analítica conhecida.

Estas são descritas como:

• EDF1 (DIETHELM; FORD; FREED, 2002):

– Se 0 < α < 1

Dαy(t) = −y(t), y(0) = 1, 0 < t < 10 (4.2)

– Se 1 < α < 2

Dαy(t) = −y(t), y(0) = 1 e y′(0) = 0, 0 < t < 10 (4.3)

cuja solução analítica, para 0 < α < 2, é dada como:

y(t) =
∞
∑

k=0

(−tα)k

Γ(αk + 1)
(4.4)

• EDF2 (DIETHELM; FORD; FREED, 2004):

– Se 0 < α < 1

Dαy(t) = G, y(0) = 0, 0 < t < 1 (4.5)

– Se 1 < α < 2

Dαy(t) = G, y(0) = 0 e y′(0) = 0, 0 < t < 1 (4.6)

onde a função G é dada como:

G =
40320

Γ (9− α)
t8−α − 3

Γ (5 + α/2)

Γ (5− α/2)
t4−α/2 +

9

4
Γ (α + 1) + Γ

(

3

2
tα/2 − t4

)3

− y(t)3/2

(4.7)

A solução analítica deste estudo de caso é dado como:

y(t) = t8 − 3t4+α/2 +
9

4
tα (4.8)

É importante destacar que, por se tratar de problemas puramente matemáticos, não é

necessário introduzir o fator de correção das unidades. Além disso, se α estiver no intervalo

]0 1], somente é necessária uma condição inicial. Por outro lado, se α estiver no intervalo ]1

2], uma condição adicional é requerida (neste caso, são definidas informações sobre a primeira

derivada em t igual a zero para cada aplicação). Finalmente, ressalta-se que para a execução do
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MERF, o qual é um método implícito, é necessário definir uma estratégia numérica para resolver

o problema algébrico diferencial discretizado, bem como uma estimativa inicial para o perfil da

variável dependente. Neste caso, foi utilizado o MN para a resolução do modelo não linear com

o perfil inicial sendo igual a 0,5 para todo o domínio.

A Tabela 1 apresenta os resultados obtidos considerando as abordagens MAMF, MERF

e MEDF para as equações diferenciais fracionárias EDF1 e EDF2, respectivamente. Para essa

finalidade, são avaliadas o número de pontos de discretização N e a ordem fracionária α. Com o

objetivo de analisar a influência da ordem fracionária α e do número de pontos de discretização

N sobre os resultados, foram avaliados o somatório do erro absoluto médio (Ξ) e o tempo de

processamento (TP) (em segundos).

Como observado na Tabela 1 é possível constatar que o aumento do número de pontos

de discretização N , independentemente do valor de α, resulta em uma maior precisão. Todavia,

esse incremento no valor desse parâmetro implica no aumento do tempo de processamento. Este

resultado já era esperado visto que, ao se incrementar o valor do parâmetro N , aumenta-se a

dimensão do problema que deve ser integrado. O maior TP foi requerido pelo Método de Euler

Reverso Fracionário, devido à aplicação do Método de Newton. A abordagem que resulta em

um melhor custo benefício, no que tange o binômio custo computacional versus precisão, em

todas as aplicações foi o Método de Adams-Moulton Fracionário. Apesar de ser um método

implícito, sua natureza de passo múltiplo permite com que as informações de pontos anteriores

sejam aproveitadas de forma a facilitar a convergência mais rápida para o encontro da próxima

solução, principalmente quando comparada ao Método de Euler Reverso Fracionário. Ao se

avaliar o valor de α, percebe-se que, mesmo sendo um problema puramente matemático, que

este parâmetro afeta os perfis obtidos.
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Tabela 1 – Somatório do erro absoluto médio e tempo de processamento considerando o MAMF, MERF e MEDF para EDF1 e EDF2.

α=0,5 α=0,75 α=1,0 α=1,25 α=1,5
N Ξ TP (s) Ξ TP (s) Ξ TP (s) Ξ TP (s) Ξ TP (s)

E
D
F
1

50 1,85×10−4 0,00∗ 2,73×10−5 0,00 1,60×10−6 0,00 1,08×10−5 0,00 2,83×10−5 0,00
100 3,93×10−5 0,01 3,83×10−6 0,01 8,35×10−8 0,01 1,00×10−6 0,01 2,10×10−6 0,01

MAMF 250 3,91×10−6 0,01 3,78×10−7 0,01 1,91×10−9 0,01 4,58×10−8 0,01 6,96×10−8 0,01
500 9,31×10−7 0,03 6,97×10−8 0,03 1,15×10−10 0,03 4,34×10−9 0,03 5,14×10−9 0,03

1000 2,34×10−7 0,10 2,89×10−8 0,10 7,07×10−12 0,08 4,06×10−10 0,10 3,73×10−10 0,10
50 4,65×10−5 0,02 1,22×10−4 0,03 2,28×10−4 0,02 4,17×10−4 0,02 9,22×10−4 0,02
100 1,52×10−5 0,11 3,39×10−5 0,11 5,96×10−5 0,09 1,07×10−4 0,11 2,43×10−4 0,11

MERF 250 3,20×10−6 0,97 5,90×10−6 0,95 9,80×10−6 0,68 1,75×10−5 0,93 4,01×10−5 0,95
500 9,00×10−7 5,62 1,50×10−6 5,50 2,50×10−6 3,58 4,40×10−6 5,52 1,01×10−5 5,63

1000 3,00×10−7 36,93 4,00×10−7 37,32 6,00×10−7 20,85 1,10×10−6 37,02 2,50×10−6 37,43
50 5,25×10−4 0,00 2,48×10−4 0,00 2,90×10−4 0,00 4,95×10−4 0,00 1,21×10−3 0,00
100 9,32×10−5 0,00 5,07×10−5 0,00 6,71×10−5 0,00 1,17×10−4 0,00 2,77×10−4 0,00

MEDF 250 1,07×10−5 0,01 7,10×10−6 0,01 1,03×10−5 0,01 1,81×10−5 0,01 4,23×10−5 0,01
500 2,20×10−6 0,02 1,70×10−6 0,02 2,50×10−6 0,01 4,50×10−6 0,02 1,04×10−5 0,02

1000 5,00×10−7 0,05 4,00×10−7 0,05 6,0×10−7 0,03 1,10×10−6 0,05 2,60×10−6 0,05

E
D
F
2

50 4,99×10−5 0,01 4,20×10−5 0,01 2,00×10−7 0,01 3,00×10−7 0,01 4,00×10−7 0,01
100 1,14×10−5 0,02 7,00×10−7 0,01 1,07×10−8 0,01 3,01×10−8 0,01 2,98×10−8 0,01

MAMF 250 1,80×10−6 0,04 6,41×10−8 0,03 2,65×10−10 0,03 1,22×10−9 0,03 9,16×10−10 0,04
500 4,00×10−7 0,10 1,12×10−8 0,10 1,64×10−11 0,10 1,08×10−10 0,10 6,48×10−11 0,10

1000 1,00×10−7 0,33 1,97×10−9 0,33 1,02×10−12 0,32 9,59×10−12 0,33 4,53×10−12 0,34
50 2,03×10−4 0,09 3,26×10−4 0,08 4,62×10−4 0,08 6,05×10−4 0,08 7,41×10−4 0,08
100 5,22×10−5 0,39 8,08×10−5 0,37 1,13×10−4 0,37 1,47×10−4 0,38 1,78×10−4 0,37

MERF 250 8,60×10−6 3,54 1,29×10−5 3,52 1,78×10−5 3,24 2,31×10−5 3,52 2,79×10−5 3,43
500 2,20×10−6 22,23 3,20×10−6 22,16 4,40×10−6 22,05 5,70×10−6 22,01 6,90×10−6 22,00

1000 6,00×10−7 157,02 8,00×10−7 156,59 1,10×10−6 149,36 1,40×10−6 163,09 1,70×10−6 158,03
50 2,86×10−4 0,00 3,53×10−4 0,00 4,66×10−4 0,00 5,96×10−4 0,00 7,17×10−4 0,00
100 6,67×10−5 0,01 8,48×10−5 0,01 1,14×10−4 0,00 1,46×10−4 0,01 1,76×10−4 0,00

MEDF 250 1,01×10−5 0,02 1,32×10−5 0,02 1,79×10−5 0,02 2,30×10−5 0,02 2,77×10−5 0,02
500 2,50×10−6 0,05 3,30×10−6 0,05 4,40×10−6 0,04 5,70×10−6 0,05 6,90×10−6 0,05

1000 6,00×10−7 0,16 8,00×10−7 0,16 1,10×10−6 0,14 1,40×10−6 0,15 1,70×10−6 0,16
∗O tempo de processamento é menor do que 0,01 s.
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4.2 Simulação de Estudos de Caso em Engenharia

Química

Nesta seção são apresentados estudos de caso tradicionais da área de engenharia química,

a saber, reatores químicos e bioquímicos. Para esta finalidade, estes são simulados para avaliar a

influência da ordem fracionária α e do número de pontos de discretização N nos perfis obtidos,

considerando a metodologia proposta (integração dos modelos diferenciais fracionários e a

correção dimensional de cada modelo fenomenológico).

4.2.1 Reator Batelada

A primeira aplicação envolve a modelagem matemática de uma reação química em

um reator batelada isotérmico (QURESHI; AZIZ, 2019). Neste estudo de caso, a espécie A é

transformada na espécie C por meio de uma reação intermediária envolvendo a espécie B. Essa

reação pode ser descrita pelo mecanismo sequencial abaixo:

A
k1−→ B

k2−→ C

Os parâmetros k1 e k2 são as constantes de taxa associadas à reação sequencial. O modelo

matemático que descreve o balanço de massa desse sistema, tendo em vista o contexto fracionário

e a correção de suas dimensões, é dado como segue:

1

σ1−α

DαCA

dtα
= −k1CA, CA(0) = 1 (4.9)

1

σ1−α

DαCB

dtα
= k1CA − k2CB, CB(0) = 0 (4.10)

1

σ1−α

DαCC

dtα
= k2CB, CC(0) = 0 (4.11)

onde t é o tempo (h) e CA, CB e CC são as concentrações das espécies (g/L).

Cabe ressaltar que para a aplicação do MERF foi empregado o MN considerando, para

cada variável dependente, um perfil inicial igual a 0,5 para todo o domínio.

A Tabela 2 apresenta os resultados obtidos considerando [k1 k2] = [0,3 0,1] (1/h), tempo

final igual a 50 s, e diferentes configurações para a ordem fracionária (α) e para o número de

pontos de discretização (N ) para o problema do reator em batelada.

Como observado para as funções matemáticas, o aumento no valor de N implica no

aumento da precisão, bem como no tempo de processamento. Nesse sentido, é possível dizer que

o método mais interessante do ponto de vista do binômio precisão versus tempo de processamento

é o MAMF.

Na Figura 3 são apresentados os perfis de concentração obtidos para o problema do reator

batelada considerando o MAMF (N=100) e diferentes ordens fracionárias (α=[0,5 0,6 0,7 0,8

0,9 1]).
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Tabela 2 – Erro absoluto médio∗ e tempo de processamento∗∗ (s) para as abordagens MAMF, MERF e
MEDF para o problema do reator batelada.

N α MEDF MERF MAMF
50 1,3× 10−3 ∗ (3,4× 10−3) ∗∗ 8,7× 10−4 (3,2× 10−1) 1,9× 10−5 (7,8× 10−3)

100 1 2,8× 10−4 (5,5× 10−3) 2,3× 10−4 (1,4× 100) 8,2× 10−7 (1,2× 10−2)
250 4,3× 10−5 (1,3× 10−2) 3,9× 10−5 (10,4× 100) 1,2× 10−8 (3,6× 10−2)

0,9 1,9× 10−4 (6,8× 10−3) 1,5× 10−4 (1,7× 100) 1,8× 10−6 (1,3× 10−2)
0,8 1,4× 10−4 (7,2× 10−3) 9,7× 10−5 (1,7× 100) 5,1× 10−6 (1,3× 10−2)

100 0,7 1,1× 10−4 (6,6× 10−3) 5,9× 10−5 (1,7× 100) 1,1× 10−5 (1,5× 10−2)
0,6 8,6× 10−5 (6,3× 10−3) 3,4× 10−5 (1,7× 100) 1,6× 10−5 (1,3× 10−2)
0,5 7,9× 10−5 (6,4× 10−3) 1,8× 10−5 (1,7× 100) 1,6× 10−5 (1,4× 10−2)

Na Figura 3a (α = 1) é observado o comportamento físico característico do sistema, em

que a concentração da espécie A (reagente) diminui ao longo do tempo enquanto a concentração

da espécie C (produto) aumenta ao longo do tempo. Como B é um intermediário (é consumido e

produzido), é possível observar que sua concentração inicialmente aumenta com a conversão do

reagente A no produto B e diminui em segundo momento com o aumento da concentração de C.

Já nas Figuras 3b, 3c e 3d, é possível observar que quanto menor o valor de α, maiores

serão as concentrações de A e menores serão as concentrações de C, fato que está ligado à

formação e consumo do intermediário B. Como consequência, constata-se que, diferentemente

dos perfis para α igual a unidade onde, praticamente, o estado estacionário foi alcançado para

o tempo final especificado (50 h), para a ordem fracionária, no mesmo intervalo de tempo, o

sistema ainda não entrou em regime permanente. Conforme pode ser observado na Fig.3e, para

valores de α > 1 maiores do que a unidade, percebe-se que um comportamento oscilatório para

a concentração da espécie A. Tal comportamento não condiz com o esperado para o sistema

reacional analisado. Assim, variar a ordem de forma arbitrária pode implicar na obtenção de

resultados fisicamente incoerentes. Neste contexto, percebe-se que, embora na teoria a ordem

fracionária possa variar livremente, na prática o seu valor não pode ser variado de qualquer forma

para evitar resultados que não correspondem ao fenômeno em análise.

4.2.2 Reator Bioquímico

Nesse segundo estudo de caso avalia-se um reator bioquímico isotérmico, representado

pelas concentrações de biomassa (x1 - g/L), substrato (x2 - g/L) e produto (x3 - g/L), onde são

consideradas as inibições pelo substrato e pelo produto (BEQUETTE, 1998). O modelo dinâmico

fracionário é descrito matematicamente pelos balanços de massa definidos como:

1

σ1−α

Dαx1

dtα
=

(

0,48 (1− x3/50) x2

0,12 + x2 + 0,04545x2
2

− 0,202

)

x1, x1(0) = 10 (4.12)

1

σ1−α

Dαx2

dtα
= 4,040− 0,202x2 −

(

1,2 (1− x3/50) x2x1

0,12 + x2 + 0,04545x2
2

)

, x2(0) = 10 (4.13)
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(a) CA, CB e CC (α=1). (b) CA (α=[0,5 0,6 0,7 0,8 0,9 1]).

(c) CB (α=[0,5 0,6 0,7 0,8 0,9 1]). (d) CC (α=[0,5 0,6 0,7 0,8 0,9 1]).

(e) CA (α=[1 1,1 1,2 1,3 1,4 1,5]).

Figura 3 – Perfis de concentração obtidos para o problema do reator batelada considerando o MAMF e
diferentes ordens fracionárias.

1

σ1−α

Dαx3

dtα
= −0,202x3 +

(

1,056 (1− x3/50) x2

0,12 + x2 + 0,04545x2
2

+ 0,2

)

x1, x3(0) = 0 (4.14)

A Tabela 3 apresenta os resultados obtidos considerando o tempo final igual a 50h e

diferentes configurações para a ordem fracionária (α) e para o número de pontos de discretização

(N ) para o problema do reator bioquímico. É importante ressaltar que para a aplicação do MERF

foi empregado o MN considerando, para cada variável dependente, um perfil inicial igual a 1
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para todo o domínio.

Tabela 3 – Erro absoluto médio∗ e tempo de processamento∗∗ (s) para as abordagens MAMF, MERF e
MEDF para o problema do reator bioquímico.

N α MEDF MERF MAMF
50 5,9×10−1* (9,1×10−3)** 1,8×10−1 (4,9×10−1) Não Convergiu1

100 1 5,7×10−2 (2,1×10−2) 4,6×10−2 (2,1×100) Não Convergido2

250 1,1×10−2 (2,1×10−1) 6,1×10−3 (16,3×100) 1,3×10−4 (4,7×10−2)
0,9 2,4×10−3 (8,4×10−2) 4,5×10−3 (21,4×100) 7,1×10−5 (5,8×10−2)
0,8 2,2×10−3 (8,5×10−2) 3,3×10−3 (21,4×100) 6,1×10−5 (5,4×10−2)

250 0,7 2,4×10−3 (8,4×10−2) 2,5×10−3 (21,5×100) 8,3×10−5 (5,4×10−2)
0,6 3,1×10−3 (8,4×10−2) 1,9×10−3 (21,5×100) 1,3×10−4 (5,4×10−2)
0,5 4,5×10−3 (8,4×10−2) 1,5×10−3 (21,5×100) 2,1×10−4 (5,4×10−2)

1 Ξ > 690.
2 Ξ > 36.

Os resultados apresentados na Tab. 3 demonstram que todas as abordagens, pelo menos

para valores de N maiores do que 100 e para diferentes valores de α, convergiram para uma boa

estimativa dos perfis quando comparado com a estratégia PCM. Como esperado, o aumento no

valor do número de pontos de discretização resulta em uma redução do erro absoluto médio e,

consequentemente, no aumento do tempo de processamento. Enquanto o método MERF requer o

maior tempo de processamento, o MEDF apresenta o menor tempo, por ser um método explícito.

Embora o MAMF não tenha convergido para N igual a 50 e 100, esta abordagem é a mais

eficiente em termos de custo computacional versus precisão quando N é igual a 250.

A Figura 4 apresenta os perfis de concentração de células, substrato e produto consi-

derando o MAMF para diferentes valores da ordem fracionária α e pontos de discretização

N = 250 no problema de reator bioquímico.

Na Figura 4a é possível observar que, para ordem fracionária igual à unidade, tanto a

concentração de biomassa (x1) quanto a de produto (x3) aumentam por conta do rápido consumo

de substrato (x2), utilizado como alimento. Após este momento, há a redução do substrato

disponível e, como consequência, diminuição da produção de biomassa e produto até que o

estado estacionário seja alcançado. Em contrapartida, como o consumo do substrato diminui em

função da redução da atividade metabólica e equilíbrio das reações químicas, a sua concentração

aumenta até estabilizar no estado estacionário.

Para α < 1 (ver as Figs.4b, 4c e 4d) é possível observar que a dinâmica do processo é

alterada. Neste caso, é possível observar maiores concentrações de biomassa no tempo igual a

50h para menores valores de α quando comparado com a ordem inteira. Por outro lado, para

o substrato, são observadas menores concentrações para menores valores de α. Já em relação

ao produto, a redução no valor do parâmetro α implica no desaparecimento do pico observado

para maiores valores da ordem fracionária. Por fim, a redução no valor da ordem fracionária
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1

σ1−α

DαT

dtα
=

1937

5
−

13

10
T + 416375136 exp

(

−
5960,2415

T

)

CA, T (0) = 300 (4.16)

onde CA (kgmol/m³) é a concentração da espécie A e T (K) é a temperatura do reator.

A Tabela 4 apresenta os resultados obtidos considerando diferentes estratégias numéricas

e valores para a ordem fracionária para o tempo final igual a 20 h. Para a aplicação do MERF foi

considerado o MN com valores iniciais para a concentração e temperatura iguais a 1 (kgmol/m³)

e 100 K, respectivamente.

Tabela 4 – Erro absoluto médio∗ e tempo de processamento∗∗ (s) para as abordagens MAMF, MERF e
MEDF para o problema do reator CSTR não isotérmico.

N α MEDF MERF MAMF
50 1 5,6×10−2* (6,7×10−3)** 4,1×10−2 (2,7×10−1) 2,6×10−5 (1,5×10−2)

100 1 1,2×10−2 (2,1×10−2) 1,1×10−2 (1,1×100) 1,2×10−6 (2,4×10−2)
250 1,9×10−3 (1,5×10−2) 1,7×10−3 (8,2×100) 3,6×10−9 (4,1×10−2)
250 0,9 1,4×10−3 (2,1×10−2) 1,3×10−3 (10,5×100) 4,2×10−7 (4,5×10−2)

0,8 1,1×10−3 (2,1×10−2) 9,6×10−4 (10,4×100) 1,9×10−6 (4,6×10−2)
0,7 9,6×10−4 (2,1×10−2) 7,1×10−4 (10,5×100) 5,7×10−6 (4,6×10−2)
0,6 1,1×10−3 (1,9×10−2) 5,1×10−4 (10,4×100) 1,3×10−5 (4,6×10−2)
0,5 1,4×10−3 (2,2×10−2) 3,6×10−4 (10,4×100) 2,7×10−5 (4,3×10−2)

Conforme observado nas aplicações anteriores, o aumento no valor de N implica em

uma solução mais precisa, mas no incremento do tempo de processamento. A abordagem MERF

apresenta o maior tempo de processamento, enquanto o MEDF a menor. Já o MAMF se destaca

por apresentar o melhor custo benefício em termos da precisão versus custo computacional (ver

a Tab. 4).

A Figura 5 apresenta os perfis de concentração e temperatura considerando o MAMF para

diferentes valores de α e pontos de discretização N = 250 no problema de reator não isotérmico.

Como observado nessas figuras, tanto o perfil de concentração quanto o de temperatura são

influenciados pelo valor de α quando comparado ao perfil obtido com ordem inteira. Para um

tempo final igual a 20 h, observa-se que a redução de α resulta no aumento da concentração

CA e na diminuição da temperatura T ao longo do tempo, de forma que o tempo final para que

o processo entre em regime permanente aumente. Isto significa que, para os valores de ordem

fracionária consideradas, a mudança no valor de α implica na mudança na dinâmica dos perfis

de CA e T , mas ainda são obtidos perfis fisicamente viáveis.

4.3 Estimação de Parâmetros Considerando Mo-

delos Fracionários

Como destacado anteriormente, um dos objetivos do presente trabalho é determinar

parâmetros em modelos diferenciais fracionários através da formulação e resolução de problemas

de estimação de parâmetros (também conhecido como problemas inversos) considerando pontos
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fracionário são dados por:

1

σ1−α

DαCA

dtα
= −β1C

β2

A Cβ3

B , CA(0) = 1 mol/dm3 (4.17)

1

σ1−α

DαCB

dtα
= −β1C

β2

A Cβ3

B , CB(0) = 1 mol/dm3 (4.18)

em que βi (i=1, 2, 3) são os parâmetros que caracterizam a expressão da taxa.

Matematicamente, o problema de estimação de parâmetros consiste em determinar os

valores de α e de βi (i=1, 2, 3) que minimizam o funcional FO:

FO =

nexp
∑

k=1

(CA,exp − CA,sim)
2

max(CA,exp)2
(4.19)

em que nexp é o número de pontos experimentais, e CA,exp e CA,sim representam as concentrações

de metanol experimental e simulados.

Para resolver o problema de estimação de parâmetros proposto, os seguintes pontos

devem ser destacados:

• Para a integração do modelo diferencial fracionário considera-se o MAMF usando N igual

a 100 (valor definido após simulações preliminares), bem como o tempo total de operação

igual a 20 h;

• No algoritmo de ED são empregados os seguintes parâmetros: tamanho da população (25),

número de iterações/gerações (50), taxa de perturbação (0,8), probabilidade de cruzamento

(0,8) e estratégia DE/rand/1/bin por Storn e Price (1995);

• Os limites para as variáveis de projeto são definidas como: 0,8 ≤ α ≤ 1,2; 0,1 ≤ β1 ≤

0,2; 1,4 ≤ β2 ≤ 2,4 e 0,5 ≤ β3 ≤ 1. Cabe destacar que estas faixas foram definidas após

execuções preliminares do algoritmo de ED.

• O algoritmo de ED foi executado 20 vezes para a obtenção do valor médio e do desvio-

padrão;

• É importante destacar que os parâmetros do simulador e do otimizador foram escolhidos

após algumas execuções preliminares para fins de ajuste.

A Tabela 6 apresenta os parâmetros estimados considerando o MAMF e o algoritmo

de ED para o problema do reator batelada. Para fins de comparação, o problema de estimação

foi resolvido considerando α igual a 1 e α livre (estimado pelo otimizador). Nesta tabela é

possível observar que, para os dois casos considerados, o algoritmo de ED sempre convergiu

para a mesma solução, visto os valores da média e do desvio padrão apresentados. Ao estimar

α observa-se que o valor do funcional FO é menor do que o encontrado quando α é fixo. Este

resultado já era esperado visto que, ao estimar a ordem fracionária, tem-se o aumento no número
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de graus de liberdade do problema de otimização. Como consequência, pelo menos a priori,

quanto maior o número de variáveis de projeto, menor tende a ser o valor do funcional FO.

Por fim, os tempos de processamento requeridos para a resolução de cada estudo de caso são

próximos, não sendo a diferença tão significativa.

Tabela 6 – Parâmetros estimados considerando o MAMF e o algoritmo de ED para o problema do reator
batelada (VM=valor médio e DP=desvio-padrão).

α β1 (dm3/(mol h)) β2 (-) β3 (-) FO (-) TP (s)
VM 1∗ 0,1780 2,2240 0,7080 3,49×10−5 13,96
DP - 5,73×10−5 1,25×10−1 1,26×10−1 3,86×10−9 7,65×10−2

VM 0,9213 0,1714 1,5908 0,7327 7,81×10−6 15,61
DP 1,72×10−2 1,05×10−3 1,11×10−1 1,68×10−2 1,21×10−8 8,38×10−1

∗Ordem fracionária fixada para fins de comparação.

Na Figura. 6 são apresentados os perfis de concentração simulados e experimentais para

a espécie A considerando os parâmetros estimados (ver a Tab. 6). Nesta figura, observa-se uma

boa concordância entre os perfis simulados (α fixo e calculado pelo otimizador) e experimentais.

Todavia, não é possível observar uma diferença significativa entre os perfis simulados. Apesar

de, visualmente, não ser possível observar uma melhora quando se considera α computado pelo

otimizador, o valor do funcional FO é influenciado, conforme observado na Tab. 6.

Figura 6 – Perfis de concentração da espécie A considerando os parâmetros estimados para o problema
do reator batelada.

4.3.2 Fermentação da Cerveja

A segunda aplicação considera um modelo diferencial fracionário empregado para

representar o processo de fermentação de um tipo particular de cerveja. Neste modelo, a biomassa,

o açúcar, o etanol e a dicetona vicinal são aferidas, bem como a concentração de etanol e a taxa
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de dióxido de carbono. O modelo diferencial fracionário é dado como (LARA et al., 2022):

1

σ1−α

DαCO2

dtα
= µXCO2, CO2(0) = CO2◦ (4.20)

1

σ1−α

DαV D

dtα
= kV µXCO2 − rV DV D, V D(0) = V D◦ (4.21)

µX = µmax
S

KS + S

(

1−
CO2

CPS◦

)

(4.22)

µmax = a ln(T/Tp) + b (4.23)

rDV = cT 2 + dT + e (4.24)

S = S◦ − kSCO2 (4.25)

E = E◦ + kECO2; (4.26)

Neste equacionamento, t (h) é o tempo, CO2 (L), V D (ppm), S (g/L) e E representam as

quantidades de dióxido de carbono, dicetona vicinal e açúcar e etanol, respectivamente (CO2◦ =1

L, DV◦=0,006 ppm, S◦=72 g/L e E◦=2 g/L são as quantidades iniciais destes componentes).

kV (=1,74×10−2 ppm/LCO2), kS (=3,72×10−1 g/L), kE=1,62×10−1 gE/L2CO2, CP (=2,18

L/g), KS (=12 gS/L2CO2), e Tp (=1 ◦C) são parâmetros cinéticos e µX e rDV são expressões

cinéticas. Além disso, a (h−1), b (h−1), c (◦C−2 h−1), d (◦C−1 h−1) e e (h−1) são parâmetros que

caracterizam as expressões de µX e rDV , e T (=19◦C) é a temperatura.

Para determinar os parâmetros cinéticos a, b, c, d e e, bem como a ordem fracionária α

será formulado um problema de estimação de parâmetros em que a função objetivo FO é dada

como:

FO =

nexp
∑

k=1

(CO2,exp − CO2,sim)
2

max(CO2,exp)2
+

nexp
∑

k=1

(V Dexp − V Dsim)
2

max(V Dexp)2
+

nexp
∑

k=1

(Sexp − Ssim)
2

max(Sexp)2
+

nexp
∑

k=1

(Eexp − Esim)
2

max(Eexp)2
(4.27)

em que nexp é o número de pontos experimentais de cada espécie, CO2,exp, V Dexp, Sexp e

Eexp representam as concentrações de dióxido de carbono, dicetona vicinal, açúcar e etanol

experimentais, e CO2,sim, V Dsim, Ssim e Esim representam as concentrações de dióxido de

carbono, dicetona vicinal, açúcar e etanol simulados.

Os pontos experimentais considerados nesta aplicação são descritos na Tab. 7 (LARA et

al., 2022).

Para resolver o problema de estimação de parâmetros proposto, os seguintes pontos

devem ser destacados:

• Para a integração do modelo diferencial fracionário considera-se o MAMF usando N igual

a 200 (valor definido após simulações preliminares);
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Tabela 7 – Pontos experimentais das concentrações de dióxido de carbono, etanol, açúcar e dicetona
vicinal.

CO2 (g/L) E (g/L) S (g/L) V D (ppm)
0,0000 0,0000 0,1307 0,0002 0,0001 71,7949 0,0000 0,0061
2,0915 0,0000 2,0866 1,1049 2,0869 74,9288 1,9650 0,0065
4,0522 0,0001 4,1778 1,1872 4,0434 73,7892 4,0611 0,0067
5,8823 0,5681 6,0042 2,0369 6,0002 70,9402 6,0262 0,0069
8,1045 1,1363 8,0921 2,8862 7,9565 69,8006 8,1222 0,0069

10,0654 5,11364 10,1817 3,3094 10,0435 67,8063 9,9563 0,0010
12,1569 10,7955 12,1406 3,7327 12,1304 66,9516 12,0524 0,0012
18,0392 44,3182 17,9929 10,6279 18,0002 54,7009 18,2096 0,34618
21,0458 68,7507 20,9876 13,3509 21,1304 50,7123 21,0917 0,8079
24,0523 94,8864 23,9778 17,0966 24,1304 45,584 24,1048 0,9847
29,0196 132,3862 29,0554 21,7769 29,0873 22,7924 28,9521 1,8450
35,0327 151,1367 35,0555 24,7513 35,0879 15,9544 35,1092 1,9899
42,0915 154,5457 41,9822 25,0824 42,0021 15,0997 42,0524 1,9829
45,2288 155,6823 45,1199 24,9927 45,0052 14,2457 45,0655 1,8939
48,1249 25,3294 48,2353 155,6828 48,0001 13,6752 48,0786 1,8050
53,2026 157,3866 53,0934 25,0666 52,9565 14,2457 53,1878 1,5450

• No algoritmo de ED são empregados os seguintes parâmetros: tamanho da população

(50), número de iterações/gerações (250), taxa de perturbação (0,8), probabilidade de

cruzamento (0,8) e estratégia DE/rand/1/bin por Storn e Price (1995).

• Os limites para as variáveis de projeto são definidas como: 0,05 ≤ α ≤ 1,5; 10−8 ≤ a ≤

2; 10−8 ≤ b ≤ 2; 10−8 ≤ c ≤ 2; 10−8 ≤ d ≤ 2; e 10−8 ≤ e ≤ 2. Cabe destacar que estas

faixas foram definidas após execuções preliminares do algoritmo de ED.

• O algoritmo de ED foi executado 20 vezes para a obtenção do valor médio e do desvio-

padrão.

A Tabela 8 apresenta os parâmetros estimados considerando o MAMF e o algoritmo de

ED para o problema da fermentação da cerveja considerando α igual a 1 e α livre (estimado

pelo otimizador). Nesta tabela é possível observar que o algoritmo de ED sempre convergiu

para a mesma solução, visto os valores da média e do desvio padrão apresentados. O valor

do funcional obtido quando se considera α livre (1,67×10−1) é pouco menor do que aquele

obtido para α fixo (1,70×10−1), sendo os valores dos outros parâmetros próximos. O tempo de

processamento requerido para a resolução do problema de otimização onde α é computado é

superior ao requerido quando α é mantido fixo.

Na Figura. 7 são apresentados os perfis de concentração de açúcar (S), etanol (E), dióxido

de carbono (CO2) e dicetona vicinal (VD) em função do tempo, considerando os parâmetros

estimados para o problema de fermentação de cerveja (ver a Tab. 8). Assim como constatado

para a primeira aplicação, ambos os perfis simulados (com α fixo e α livre) são concordantes





4.4. Plano de Fases no Contexto Fracionário 47

4.4 Plano de Fases no Contexto Fracionário

O plano de fases ou retrato de fases é uma exibição visual de certas características de

alguns tipos de equações diferenciais, tais como a determinação gráfica de ciclos limites (BE-

QUETTE, 1998). Na prática, um retrato de fases é um caminho específico que representa a

evolução, no tempo, das variáveis dependentes. Os planos de fase são úteis para visualizar o

comportamento dos sistemas físicos, com interesse particular naqueles que apresentam compor-

tamentos oscilatórios (BEQUETTE, 1998). Além disso, em alguns modelos, os caminhos de

fase podem apresentar o comportamento do tipo espiral convergente para o zero ou infinito, bem

como podem ser do tipo circular, elíptico ou ovóide (BEQUETTE, 1998).

Para avaliar a influência da ordem fracionária no plano de fases considere um reator

de mistura perfeita onde as reações elementares A → B → C e 2A → D ocorrem. Sabendo

que kAB, kBC e kAD são as constantes de reação referentes à reação de A para B, de B para

C e A para D, respectivamente, que A puro é alimentado a uma vazão (F ) constante e que o

volume (V ) é considerado constante, o modelo matemático que descreve o comportamento das

concentrações das espécies A (CA) e B (CB) em função do tempo t no contexto fracionário é

dado por (BEQUETTE, 1998):

1

σ1−α

DαCA

dtα
=

F

V
(CAe − CA)− kABCA − kADC

2
A, CA(0) = CA◦ (4.28)

1

σ1−α

DαCB

dtα
= −

F

V
CB + kABCA − kBCCB, CB(0) = CB◦ (4.29)

onde CAe é a concentração de alimentação da espécie A e CA◦ e CB◦ representam as condições

iniciais das espécies A e B, respectivamente.

Para α igual a unidade, kAB igual a 5/6 min−1, kBC igual a 5/3 min−1, kAD igual a 1/6

L/(mol min), CAe igual a 10 mol/L, e F/V igual a 4/7 min−1, dois são os estados estacionários.

O primeiro é dado pelo par coordenado (CA=3 mol/L; CB=105/94 mol/L), e o segundo por

(CA=-80/7 mol/L; CB=-200/47 mol/L), sendo que este último par coordenado é inviável por

não ter significado físico. Portanto, espera-se que quando o tempo tender a infinito, o sistema

caminhe para o ponto estacionário com concentrações positivas, sendo este ponto coordenado

naturalmente estável.

Na Figura. 8 são apresentados os perfis de concentração das espécies A e B em função

do tempo, o estado estacionário (EE) e o plano de fases para o problema do reator CSTR

considerando o MAMF com 500 pontos de discretização e α igual a 1. A condição inicial (CA◦

CB◦) considerada em cada simulação foi definida a partir da combinação entre os pontos contidos

no vetor [0,001 1,25075 2,5005 3,75025 5] (5 pontos igualmente espaçados entre 0,001 e 5),

isto é; foram utilizadas as seguintes condições iniciais: (0,001 0,001); (0,001 1,25075); (0,001

2,5005); ...; (5 5), totalizando 25 simulações para cada valor de α. Cabe destacar que, para todas

as simulações, σ sempre é considerado igual a unidade para que o mesmo apenas corrija as

unidades, mas não interfira no valor dos perfis obtidos.
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(a) CA × t. (b) CB × t.

(c) CB × CA. (d) CB × CA (Zoom).

Figura 8 – Perfis de concentração em função do tempo, estado estacionário e plano de fases para o
problema do reator CSTR considerando α igual a 1.

Já na Figura. 9 são apresentados os perfis de concentração das espécies A e B em função

do tempo, o estado estacionário e o plano de fases para o problema do reator CSTR considerando

diferentes valores para α ([0,8 0,9 1,0 1,1 1,2]), bem com o mesmo método numérico e condições

iniciais.

Na Tabela 9 são apresentados os valores das concentrações das espécies A e B para

diferentes ordens fracionárias e tempos de simulação. Para uma comparação justa, para cada

tempo final de simulação (tf ), o valor de N foi determinado de forma que o incremento de tempo

sempre fosse igual a 0,01 min.

Sendo assim, ao avaliar a Fig . 9 pode-se concluir que há influência direta da ordem

fracionária no tempo necessário para que o sistema encontre o estado estacionário. No que

diz respeito ao tempo necessário para que o processo alcance o estado estacionário, é possível

observar que o aumento da ordem fracionária, como por exemplo em α = 1,2, garante um com-

portamento oscilatório com a presença de um pico anterior à estabilização no ponto estacionário.

Por outro lado, para valores de α menores, o sistema não apresenta picos e o estado estacionário

é atingido em um maior tempo tanto para CA quanto para CB, como pode ser observado ao se
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(a) CA × t. (b) CB × t.

(c) CB × CA. (d) CB × CA (Zoom).

Figura 9 – Perfis de concentração em função do tempo, estado estacionário e plano de fases para o
problema do reator CSTR considerando diferentes valores para α.

Tabela 9 – Estado estacionário em função da ordem fracionária e do tempo de simulação para o problema
de reator CSTR.

tf=10 min tf=25 min tf=50 min
α CA (mol/L) CB (mol/L) CA (mol/L) CB (mol/L) CA (mol/L) CB (mol/L)

0,8 3,0311 1,1954 3,0143 1,1526 3,0080 1,1370
0,9 3,0120 1,1474 3,0050 1,1294 3,0026 1,1235
1,0 3,0000 1,1170 3,0000 1,1170 3,0000 1,1170
1,1 2,9933 1,1002 2,9976 1,1112 2,9989 1,1143
1,2 2,9904 1,0931 2,9969 1,1094 2,9986 1,1137

comparar ordens fracionárias maiores. Com isso, pode-se concluir que o estado estacionário é

encontrado de maneira mais lenta com valores menores de α, devido a um decaimento dos perfis,

pois para α < 1 o consumo do reagente A pelo modelo fracionário é mais lento, o que implica

na formação dos produtos B e C na reação, quando no valor de D.

Em relação à análise do plano de fases, é possível constatar que quando α = 1, o ponto

de equilíbrio do estado estacionário é alcançado de maneira mais suave, em que o sistema decai

geralmente sem oscilações como pode ser observado na Fig. 8. O aumento da ordem fracionária
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α acarreta em um comportamento oscilatório em torno do estado estacionário, fato que ocorre

devido a uma maior dependência do sistema ao seu histórico tendo em vista as concentrações

em análise.

4.5 Considerações Finais

Este capítulo teve por objetivo apresentar aplicações envolvendo a metodologia proposta

para problemas da área de engenharia química. Em primeiro momento foram empregados

os Métodos de Adams-Moulton Fracionário (MAMF), Método de Euler Reverso Fracionário

(MERF) e Método de Euler Direto Fracionário (MEDF) para a simulação de funções puramente

matemáticas e que apresentavam solução analítica. Em seguida, foram considerados estudos de

caso em engenharia química (reatores químicos e bioquímicos). Esses estudos possibilitaram a

avaliação dos diferentes perfis a partir da mudança do número de pontos de discretização N e da

ordem fracionária α. Para a aplicação do MAMF foram formulados problemas de estimação de

parâmetros considerando modelos diferenciais fracionários e dados reais. Por fim, com o intuito

de avaliar a influência da ordem fracionária nos perfis simulados ao longo do tempo, a análise de

um plano de fases foi realizada.
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5 Conclusões e Trabalhos Futu-

ros

5.1 Conclusões

O presente trabalho teve como objetivo investigar a influência da ordem fracionária em

modelos tradicionais de engenharia química, considerando três abordagens numéricas, a saber:

o Método de Adams-Moulton Fracionário (MAMF), o Método de Euler Reverso Fracionário

(MERF) e o Método de Euler Direto Fracionário (MEDF). A partir dos resultados apresentados

no capítulo anterior, é possível destacar os seguintes pontos.

• Os resultados obtidos demonstram que as metodologias propostas (MAMF, MERF e

MEDF) foram capazes de obter boas estimativas em comparação com as soluções numéri-

cas reportadas usando o Método Preditivo-Corretivo do tipo Adams-Bashforth-Moulton,

para todos os estudos de caso analisados.

• No que tange ao número de pontos de discretização (N ), o seu aumento implica em um

menor erro absoluto médio. Todavia, esse aumento implica no incremento do tempo de

processamento. Neste caso, deve-se sempre analisar o binômio custo computacional versus

precisão para a escolha do melhor valor de N .

• Cabe destacar que, em relação ao custo computacional versus precisão, o Método de

Adams-Moulton Fracionário mostrou-se a estratégia numérica mais eficiente.

• A partir da análise da influência da ordem fracionária (α) nos perfis simulados, foi possível

concluir que a variação deste parâmetro modifica o comportamento de cada modelo.

Todavia, é importante ressaltar que, dependendo do valor considerado para esse parâmetro,

o perfil pode não condizer com a realidade física do problema estudado. Neste caso,

deve-se avaliar a faixa de valores do parâmetro α de forma que perfis incoerentes não

sejam obtidos.

• Em relação à estimação de parâmetros (problema inverso), pode-se estimar o valor de α

para sistemas físicos de interesse. Neste caso, em relação à ordem inteira, foi possível

observar que estimar α resultou em uma melhor aderência dos perfis simulados aos pontos

experimentais, conforme o valor da função objetivo. Cabe destacar que o algoritmo de

Evolução Diferencial sempre convergiu para uma boa estimativa dos parâmetros, conforme

os valores da média e do desvio padrão reportados para cada aplicação.

• Ao avaliar o plano de fases, foi possível constatar que, para valores de α < 1, o estado

estacionário é atingido de forma mais lenta se comparado a α = 1. Para valores em que
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α > 1, é possível observar o comportamento oscilatório do sistema, com visíveis picos

antes de alcançar o estado estacionário, sendo este efeito diretamente relacionado à maior

influência atribuída aos valores anteriores do sistema (efeito de memória). Por fim, para

α = 1, há um decréscimo suave sem oscilações. Sendo assim, o tempo necessário para se

alcançar o estado estacionário é influenciado pela ordem fracionária escolhida.

• Finalmente, ao utilizar uma derivada fracionária, pode-se destacar: i) o efeito de memória

associado às derivadas fracionárias; ii) a generalização em relação à derivada de ordem

inteira; e iii) o aumento no número de graus de liberdade para o sistema em análise, sem a

mudança de outras características do mesmo.

5.2 Contribuições do Trabalho de Conclusão de

Curso

O presente Trabalho de Conclusão de Curso contribuiu para:

• Revisar e organizar o estado da arte no que tange à aplicação de modelos fracionários em

sistemas dinâmicos.

• Comparar diferentes métodos de integração de equações diferenciais fracionárias em

termos de custo computacional e precisão.

• Investigar a influência do número de pontos de discretização na avaliação do tempo de

processamento e, consequentemente, no custo computacional.

• Analisar sistemas não lineares constituídos por modelos diferenciais fracionários.

5.3 Contribuições na Formação Profissional

• Consolidação e aprimoramento de conhecimentos teóricos e práticos sobre modelagem

matemática fracionária aplicada a sistemas físicos em engenharia química.

• Desenvolvimento da capacidade de análise crítica no que diz respeito ao tratamento

e interpretação dos dados obtidos, por meio da metodologia aplicada, com base em

fundamentos físicos e químicos de estudos de caso clássicos em engenharia química.

• Aprimoramento das habilidades no que tange a linguagens de programação, bem como o

contato com ferramentas digitais úteis para a engenharia e análise de dados.

• Contato e experiência com a pesquisa científica e sua estruturação a partir da revisão

bibliográfica, escrita técnica e organização de resultados e discussões pertinentes.
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• Capacidade de aplicar, no futuro, os conhecimentos adquiridos em processos físico-

químicos presentes na indústria, com a finalidade de promover tecnologias mais eficientes

e sustentáveis desses processos e otimização de sistemas.

5.4 Sugestões para Trabalhos Futuros

Como propostas para trabalhos futuros pretende-se:

• Propor e resolver modelos baseados em equações diferenciais parciais fracionárias (EDPFs)

que representem processos industriais complexos.

• Formular e resolver problemas inversos envolvendo EDPFs, utilizando dados experimentais

reais.

• Avaliar a aplicabilidade e o desempenho de controladores com ordem fracionária em

sistemas da engenharia química com dinâmica complexa.
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