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Resumo

Algoritmos de visão computacional, como redes neurais convolucionais, são usados

para automatizar processos na medicina e apoiar o diagnóstico. Esses algoritmos mini-

mizam o erro humano durante a análise de imagens médicas e reduzem a variabilidade

interoperador. Neste estudo, para apoiar o diagnóstico, foram propostas três estratégias

envolvendo fusão de redes neurais convolucionais. Primeiro, comitês de redes neurais con-

volucionais foram utilizados na tarefa de classificação de imagens gastrointestinais. Em

segundo lugar, através da fusão de modelos convolucionais, foi proposto um novo modelo

para detectar pontos de referência em imagens de cefalogramas laterais, radiografias de

mãos e radiografias de pulmão. A terceira análise testou se o pré-processamento de ima-

gens ajudaria os modelos convolucionais na tarefa de detecção de pontos de referência e

segmentação de regiões. As estratégias propostas foram avaliadas com base em métricas

comuns na literatura, como erro radial médio e F1-score. Além disso, alinhado aos con-

ceitos de computação verde, também foram avaliados o consumo de recursos e as emissões

de poluentes. Para a tarefa de classificação, o comitê proposto obteve F1-score de 0, 910,

correspondendo à literatura, porém, utilizando equipamentos de menor custo. Para de-

tecção de pontos de referência, por meio de fusão de modelos, considerando a taxa de

detecção de sucesso, success detection rate (SDR), entre os pontos de referência previstos

e os pontos de referência originais, alcançamos SDR de 95, 72% para o cefalograma lateral

e 99, 56% para as radiografias de mão, ambos considerando uma distância de até 4mm.

Para radiografias de pulmão, obtivemos um SDR de 84, 21% considerando 6 pixels de dis-

tância. Nossa proposta também reduziu o tempo de execução, o consumo de energia e as

emissões de carbono em cerca de 65%. A estratégia de pré-processamento não apresentou

melhorias significativas nos resultados.

Palavras-chave: Aprendizagem profunda. Comitês. Fusão. Classificação. Raios X.



Abstract

Computer vision algorithms such as convolutional neural networks are used to auto-

mate processes in medicine and support diagnosis. These algorithms minimize human

error during medical image analysis and reduces inter-operator variability. In this study,

to support the diagnosis, three strategies involving fusion of convolutional neural networks

were proposed. First, ensemble architectures were used in the gastrointestinal image clas-

sification task. Second, through the fusion of convolutional models, a new model was

proposed to detect landmarks in images of lateral cephalograms, hand X-rays and lung

X-rays. The third analysis tested whether image preprocessing would help convolutional

models in the task of landmark detection and region segmentation. The proposed strate-

gies were evaluated based on common metrics in the literature such as mean radial error

and F1-score. In addition, aligning with the concepts of green computing, resource con-

sumption and pollutant emissions were also evaluated. For the classification task, the

proposed ensemble achieved an F1-score of 0.910, matching the literature, however, using

lower cost equipment. For landmark detection, through model fusion, considering the suc-

cess detection rate (SDR) between the predicted landmarks and the original landmarks,

we achieved SDR of 95.72% for the lateral cephalogram and 99.56% for the hand x-rays,

both considering a distance up to 4mm. For lung x-rays, we obtained an SDR 84.21%

considering 6 pixels of distance. Our proposal also reduced execution time, energy con-

sumption and carbon emissions by around 65%. The preprocessing strategy showed no

with significant improvements over the results.

Keywords: Deep learning. Ensamble. Fusion. Classification. X-rays.
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Chapter 1

Introduction

Image analysis is widely used in medicine for diagnosis, surgical procedures, and vari-

ous other tasks. However, one of the challenges in the medical field is inter-operator vari-

ability. Different specialists analyzing the same exam at different times can produce dif-

ferent reports. To minimize this problem, computational resources can be utilized (ZENG

et al., 2021; RUNDO et al., 2020; LITJENS et al., 2017).

Improving and interpreting images using computational resources are goals of the

computer vision field. This area has developed and refined algorithms over many years

of research, ranging from traditional techniques such as preprocessing, filtering, and seg-

mentation to recent advances provided by Deep Neural Networks (DNN), a subtype of

Artificial Neural Network (ANN). While the typical structure of an ANN consists of only

a few layers, DNNs have a deeper architecture with more hidden layers, making them

more effective in solving complex problems (STOCKMAN; SHAPIRO, 2001; BAYOUDH

et al., 2021; RUNDO et al., 2020).

The most common type of DNN for image processing is the Convolutional Neural

Networks (CNN). CNNs can be used to classify and detect regions of interest in medical

images (SANTOS et al., 2021; KRIZHEVSKY; SUTSKEVER; HINTON, 2012; SZE et

al., 2017).

Currently, there are several types of CNN architectures with varying numbers of layers,

designed for different types of problems. The expansion of CNNs has been driven by

computational advances of the 21st century and, particularly after 2016, by the use of

graphics processing units Graphic Processing Unit (GPU). Because of their high parallel

processing capacity, GPUs allow the training of deep CNNs in a relatively short time (SZE

et al., 2020; LECUN; BENGIO; HINTON, 2015).

The diversity of CNNs creates opportunities for researchers to integrate different CNN

architectures into their analyses. For instance, some studies propose using CNN ensembles

to solve problems. In an ensemble, several CNNs are combined before the system provides

the final answer. Other studies propose the fusion of networks at different levels of their

architecture (BAYOUDH et al., 2021; RADEVSKI; BENNANI, 2000).
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In this work we will explore the use of an ensemble of CNNs and fusion alternatives in

CNN architectures, in order to contribute to computational solutions to support analysis

of medical images. Furthermore, the resource consumption of the models studied will be

analyzed to indicate solutions that consume less resources.

1.1 Motivation

In the analysis of medical images using computer vision algorithms it is crucial to

minimize errors as much as possible – although some situations allow for a margin of error.

There are instances where computer vision algorithms, such as CNNs, achieve nearly 100%

accuracy on specific datasets. However, there is always room for improvement in other

contexts. Additionally, improvements can be made in terms of resource consumption by

proposing models that achieve objectives more quickly and with less energy use.

In this work, we analyzed the performance of CNNs for two tasks: (i) classification of

gastrointestinal images and (ii) detection of landmarks in images of lateral cephalograms,

hand radiographs, and lung radiographs.

The first part of the study focuses on classifying images of gastrointestinal diseases

using CNNs, justified by the significant negative impact these diseases have on the global

population. In (BORGLI et al., 2020), the authors present a dataset of gastrointestinal

images and report that gastrointestinal cancer results in about 3.5 million new cases per

year worldwide and has a high mortality rate. Using computational resources to aid

diagnosis allows for earlier cancer detection and may reduce the cost of exams.

The other part of the study focuses on detecting landmarks in medical images using

CNNs, which is important because physicians often need to analyze specific regions in a

medical image. For example, analyzing lung regions to diagnose respiratory diseases such

as COVID-19, which affected many people worldwide and requires accurate, quick, and

cost-effective diagnosis (GIEŁCZYK et al., 2022; GAGGION et al., 2022).

Another example of the importance of landmark detection is in lateral cephalograms.

In these images, orthodontists need to identify landmarks to diagnose a patient’s cranio-

facial condition and plan treatment (ZENG et al., 2021).

CNNs are already being used for both image classification and landmark detection in

medical images. However, there is still potential for improvement, as discussed in (MESQUITA

et al., 2023). In works such as (BORGLI et al., 2020) and (BAYOUDH et al., 2021), the

authors discuss enhancing CNN performance through strategies such as CNN ensembles

and fusions, which are the strategies investigated in this work.

1.1.1 Goals

The main goal of this work is to investigate the use of ensemble classifiers and the

influence of fusion methods on the performance of CNNs in medical imaging. The specific
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goals are:

❏ Investigate CNN models used for image classification. Explore various convolutional

neural network architectures and their applications in image classification, evaluat-

ing the models’ performance in terms of accuracy, efficiency, and generalization.

❏ Investigate CNN models used for landmark detection. Examine CNN architectures

specifically designed to detect landmarks in images, assessing their performance in

identifying landmarks and their reliability across different medical image datasets.

❏ Develop and analyze an ensemble architecture for image classification. Design and

implement an ensemble approach that combines multiple CNN models for image

classification. Analyze the performance gains and potential benefits of using ensem-

bles compared to single CNN models.

❏ Compare the performance of CNNs using different types of fusion. Investigate vari-

ous data fusion techniques (such as early fusion, late fusion, and hybrid fusion) and

their impact on CNN performance. Conduct experiments to understand how these

fusion methods affect the accuracy and robustness of CNN models.

❏ Explore image preprocessing methods. Analyze if these preprocessing techniques,

when combined with fusion methods, can improve the performance of CNNs in

landmark detection.

❏ Contribute to the improvement of landmarks detection techniques. Develop new

methodologies or refine existing techniques to increase the accuracy and reliability

of landmark detection, sharing discoveries and insights that can advance the field

and benefit other researchers and professionals.

❏ Develop and analyze a universal CNN model for landmark detection. Create a

versatile CNN model capable of detecting landmarks in different datasets.

❏ Propose solutions aligned with green computing. Explain the cost and resource

consumption for the analyzed models and the proposed models, aiming for more

efficient and environmentally friendly computing solutions.

1.2 Hypothesis

CNNs are a great advance for the image classification task, but there is still possibility

of improvement. This work is being developed on the hypothesis that CNN ensembles and

fusion strategies can generate better results in classification tasks and landmark detection.

Questions to be answered:
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1. Does the use of ensemble classifiers improve the result of CNNs in classification

tasks?

2. Does the use of fusion strategies in CNN architectures improves the performance in

landmark detection tasks?

3. Does the use of preprocessing strategies improves the performance of CNNs applied

to landmark detection?

1.3 Contributions

1. Comparison of performance of CNNs in image classification task.

2. Creation of alternative CNN ensembles for image classification.

3. Performance comparison of CNN models for landmark detection.

4. Proposal of a method for image preprocessing and evaluation of whether prepro-

cessed images enhance CNN performance in landmark detection and region seg-

mentation tasks.

5. Development of a CNN model based on fusion strategies for landmark detection.

1.4 Thesis Organization

This work is organized into an introduction (1), a chapter on theoretical foundations

(2), three chapters (3, 4, 5) detailing the proposals and their respective background,

results, and conclusions, and finally a chapter summarizing the overall conclusions (6).

The theoretical foundation, presented in Chapter 2, reviews some basic concepts about

digital imaging, computer vision, deep learning, ensembles and CNN fusion.

In Chapter 3, a proposal related to the use of ensembles to improve the results of a

classification task is presented. This chapter presents related work, experiments, results

and conclusions on the use of ensemble for classifying images of the gastrointestinal tract.

In Chapter 4, a universal CNN model for landmark detection is described. This chapter

proposes fusion alternatives between models used in landmark detection. Experiments and

results are presented based on the original models and the proposed fusion-based models.

Finally, conclusions are presented based on the performance of distance metrics and the

consumption of computational resources.

In Chapter 5, we analyze whether image preprocessing brings gains to CNN models.

This chapter proposes a preprocessing approach, presents experimental results, and draws

conclusions based on the findings.
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Finally, Chapter 6 summarizes the conclusions drawn from this thesis, highlights

achievements, discusses challenges encountered, and suggests directions for future re-

search.
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Chapter 2

Theoretical foundation

Technological advances occurring in the 21st century allow for an increase in the stor-

age and dissemination of information, in text, image and video formats. Image processing

is important in areas such as medical imaging, autonomous vehicles, facial recognition and

industrial automation. Analyzing the content of images is a task in the area of computer

vision. Computer vision systems can automate complex tasks, improve efficiency, and

enable innovative solutions across multiple domains. CNNs are computer vision sys-

tems that are highly effective in tasks such as image classification, object detection and

facial recognition due to their ability to capture spatial hierarchies and patterns in im-

ages (STOCKMAN; SHAPIRO, 2001; MODERSITZKI, 2009; AGRAWAL et al., 2011;

WOODS, 2011; VOULODIMOS et al., 2018; BAWDEN; ROBINSON, 2020).

CNNs can operate individually or as ensembles. An ensemble of classifiers com-

bines multiple learning algorithms to achieve superior predictive performance compared

to individual models. This approach harnesses the strengths of different models to

mitigate individual weaknesses, thereby aiming for more robust and accurate predic-

tions (KRAWCZYK; SCHAEFER, 2014; KIM et al., 2015).

In addition to ensembles, CNN models can be combined in various ways, a con-

cept known as CNN fusion. CNN fusion involves integrating multiple convolutional

neural networks to create a more comprehensive and accurate model. This process

may include combining different CNN architectures, layers, or features to leverage the

strengths of each component. Fusion aims to enhance the model’s ability to generalize

across diverse datasets and conditions, making it invaluable for advanced computer vision

tasks (RUNDO et al., 2020; BAYOUDH et al., 2021; HÖHN et al., 2021; GAGGION et

al., 2021; GAGGION et al., 2022).

Lastly, it is essential to consider the resource consumption associated with computer

vision tools, aligning with efforts in green computing. This field strives to reduce en-

ergy consumption and minimize the ecological footprint of computing activities. As de-

mand for computing power grows, especially with the surge in deep learning and AI,

green computing becomes increasingly critical. By optimizing algorithms, hardware, and
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data centers for energy efficiency, green computing helps mitigate the environmental im-

pact of technology, promotes sustainability, and ensures responsible use of computing

resources (STRUBELL; GANESH; MCCALLUM, 2019; ANTHONY; KANDING; SEL-

VAN, 2020; BENDER et al., 2021; SELVAN et al., 2022; MASLEJ et al., 2024).

This chapter provides an insight into computer vision, convolutional neural networks,

ensemble of classifiers, data fusion, and green computing.

2.1 Computer vision

Research in computer vision drives the development and enhancement of computa-

tional techniques that enable computers to detect and locate objects in images and videos.

Image classification involves identifying and categorizing the content of images. For

instance, in medical imaging, a physician can classify gastrointestinal images as either

disease-free or showing conditions like polyps or gastritis. Landmark detection and seg-

mentation are techniques used to pinpoint specific features and accurately delineate dif-

ferent parts of an image. Point detection entails identifying and locating specific points

of interest within an image, such as anatomical landmarks critical for monitoring dys-

function progression or surgical planning. Segmentation divides an image into segments

corresponding to distinct regions or objects within the image (MURPHY et al., 2006;

JABRI et al., 2000; PARAGIOS; TZIRITAS, 1999; SWENSSON, 1996).

Since the inception of computer vision research, various techniques have been de-

vised to enhance computational performance in object classification and detection tasks.

Methods such as filters, image enhancement, and machine learning have been pivotal.

As of 2014, CNN has shown promising results for object detection and localization in

images. (GIRSHICK et al., 2014; GIRSHICK et al., 2015). According to Figure 1, deep

learning is a subdomain of machine learning that is part of the field of Artificial Intel-

ligence (AI) and is based on the functioning of the brain (SZE et al., 2017; LECUN;

BENGIO; HINTON, 2015; RUNDO et al., 2020; SZE et al., 2020).
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2.3 Convolutional neural network models

Since the emergence of computers, there have been researches with the objective of

making the computer reproduce biological characteristics; these are bioinspired researches.

Among the bioinspired researches, there is one that simulates the functioning of the brain

through artificial neural networks. The networks undergo many transformations, with

proposals for different architectures to work with different types of data, as reported in

the works of (FUKUSHIMA, 1980; LECUN et al., 1989; KRIZHEVSKY; SUTSKEVER;

HINTON, 2012; LECUN; BENGIO; HINTON, 2015; SZEGEDY et al., 2017; SZE et al.,

2017). Among the types of networks proposed throughout history, in this work, the focus

is to use CNN.

After 2006, with the adoption of data processing using GPU, it became possible to

train networks faster. The gain in training time leads to an increase in the number of layers

in the networks, and consequently, there is an improvement in performance. In the 2012

ImageNet competition, CNN far outperforms the other competitors, nearly halving the

error rates of the best competitors. In Figure 2, it is possible to observe the performance

obtained by networks of different architectures between the years 2012 and 2015; it is

noted that the performance in 2015 was better than in 2012, the error decreased, and the

number of layers of the networks increased (KRIZHEVSKY; SUTSKEVER; HINTON,

2012; LECUN; BENGIO; HINTON, 2015; RUSSAKOVSKY et al., 2015; SZE et al.,

2017; SZE et al., 2020).
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cific variant of the EfficientNet architecture, where “b0” indicates the baseline variant of

EfficientNet.

The class of algorithms called MobileNet is a lightweight CNN designed for mobile

and embedded vision applications. It utilizes depth-wise separable convolutions, split-

ting the standard convolution operation into depth-wise and point-wise convolutions.

MobileNetV2 (SANDLER et al., 2018) improves the state of the art performance of mo-

bile models on multiple tasks and benchmarks as well as across a spectrum of different

model sizes (HOWARD et al., 2017). This reduces parameters and computations, making

MobileNetV2 models suitable for resource-constrained environments, such as images or

videos (DONG et al., 2020), without compromising performance.

ResNet introduced residual connections, enabling the network to learn residual map-

pings and overcome the vanishing gradient problem (LITJENS et al., 2017; HE et al.,

2016). ResNet architectures, like ResNet-152, have achieved exceptional performance in

image classification tasks, revolutionizing deep learning (BORGLI et al., 2020; HE et al.,

2016).

In addition to the use of different architectures or different types of networks, there

may also be the combination of networks in ensembles; in (LECUN; BENGIO; HINTON,

2015), the authors present the possibility of combining CNNs with Recurrent Neural

Networks (RNN) that use reinforcement learning to decide which region of the image to

look at.

Allied to deep networks, to improve performance in object classification and detection

tasks, it is possible to combine resources through fusion, a subject that is detailed in the

next section.

2.4 Ensemble of Classifiers

Collaborative decision-making involving individuals with diverse characteristics is com-

monplace in human interactions, particularly in business environments. This behavior can

be replicated by computers through ensemble classifiers. Ensembles consistently yield

strong results in classification tasks; however, their performance heavily relies on select-

ing appropriate classifiers and effective methods for combining classifier responses. In

an ensemble, classifiers with varying characteristics and capabilities collaborate to de-

rive optimal solutions for classification problems, as depicted in Figure 4 (RADEVSKI;

BENNANI, 2000; AKSELA, 2003; KIM et al., 2015).
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other patient data for the diagnosis of skin diseases. The authors emphasize that there

are few studies focused on data fusion for the classification of medical images (LI et al.,

2020a).

In another work, the authors in (VADDI; MANOHARAN, 2020) propose the fusion

of spectral and spatial information for the classification task using a simple design CNN

network architecture. In (GRAPOV et al., 2018) emphasizes the possibility of integrating

omic data with other types of data, including medical images. In (ADERGHAL et al.,

2017) explore the possibility of fusing information from different brain projections using

a CNN architecture. Instead of working with the entire volume of the brain, the authors

propose the fusion of CNNs from the sagittal, coronal, and axial projections of the brain.

Based on related work, it can be seen that data fusion is a resource explored as a way

to improve classification tasks.

2.6 Green computing: energy consumption and car-

bon dioxide emissions in computational applica-

tions

The adoption of GPU-based data processing has facilitated the proliferation of CNN

models with increased layers, resulting in substantial gains in accuracy. However, this

trend has also led to heightened GPU usage, thereby increasing energy consumption

and carbon dioxide emissions, contributing to global warming (STRUBELL; GANESH;

MCCALLUM, 2019; ANTHONY; KANDING; SELVAN, 2020; BENDER et al., 2021;

SELVAN et al., 2022; MASLEJ et al., 2024).

In (HODAK; GORKOVENKO; DHOLAKIA, 2019), experiments were conducted on

Lenovo ThinkSystem SR670 servers, primarily utilized for Deep Learning (DL). The find-

ings revealed that GPUs accounted for 70% of energy consumption during the execution

of CNN models, while the CPU and RAM accounted for 15% and 10%, respectively.

In order to align computing practices with global efforts to mitigate carbon emissions,

developers must monitor the energy consumption and carbon emissions associated with

training CNN models (ANTHONY; KANDING; SELVAN, 2020; HENDERSON et al.,

2020; SELVAN et al., 2022). Several tools have been proposed and made available to

calculate energy consumption and carbon emissions during CNN training, such as those

presented in (LACOSTE et al., 2019; HENDERSON et al., 2020; ANTHONY; KAND-

ING; SELVAN, 2020; BUDENNYY et al., 2022).

In this work, we will use the tool proposed by (ANTHONY; KANDING; SELVAN,

2020)1 to monitor the energy consumption and carbon emissions associated with the

studied models. This tool enables consumption predictions from the initial training epoch,
1 <https://github.com/lfwa/carbontracker>
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supports various environments, and automatically reports the average gCO2/kWh for the

region in which the server operates.
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Chapter 3

Ensemble Architectures Analysis in

Classification Task

The human Gastrointestinal (GI) tract is susceptible to several abnormal mucosal

findings, including life-threatening diseases (BORGLI et al., 2020). GI cancer alone

accounts for millions of new cases annually, emphasizing the need for improved endo-

scopic performance and systematic screening (JHA et al., 2020). Gastrointestinal exams

and colonoscopy are essential procedures to investigate the human GI tract (JHA et al.,

2021). These tests play a vital role in the diagnosis and management of gastrointesti-

nal conditions, contributing to the early detection, treatment and prevention of serious

complications (HICKS et al., 2021; JHA et al., 2021; BORGLI et al., 2020). However,

current endoscopic scoring systems lack standardization and are subjective (JHA et al.,

2021; BORGLI et al., 2020).

In this context, artificial intelligence (AI) enabled computer-assisted diagnostic sys-

tems, particularly machine learning, have shown promise in healthcare, but the scarcity of

medical data impedes progress (BORGLI et al., 2020; JHA et al., 2020). To solve this, we

used a dataset, called HyperKvasir, a large dataset of gastrointestinal images and videos

collected during real exams (BORGLI et al., 2020). The dataset contains over 1.1 × 105

images and 374 videos and representing anatomical landmarks as well as pathological and

normal findings (BORGLI et al., 2020).

Over the years, machine learning has evolved into deep learning algorithms, relying pri-

marily on the DNN. Convolutional neural networks (CNN), a type of DNN, have emerged

as a powerful tool for image analysis and classification, including medical imaging tasks.

CNN ensemble architectures have been widely employed to improve predictive accuracy

by combining the outputs of various models. These sets leverage the diversity of indi-

vidual CNN models to improve overall performance. In addition, fusion techniques are

employed to effectively integrate predictions from multiple CNN models (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012; SZE et al., 2017).

In this work, based on (COSTA et al., 2023), our main objective is to propose a new
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ensemble architecture and efficient fusion techniques for CNNs in the classification of

GI tract diseases using the HyperKvasir dataset, aiming to obtain better results than in

the literature and to optimize computational resources. To achieve this, we performed a

thorough literature review to identify relevant studies on the use of deep learning methods

in similar health domains. In addition, we performed several experiments to evaluate the

effectiveness of our proposed approach.

3.1 Background

Since the emergence of computers, there have been research efforts to make them

reproduce biological characteristics; these are known as bioinspired research. Among

the bioinspired research, there is one that seeks to simulate the functioning of the brain

through artificial neural networks. These networks have undergone many transformations,

as reported in the papers (FUKUSHIMA, 1980; LECUN et al., 1989; KRIZHEVSKY;

SUTSKEVER; HINTON, 2012; LECUN; BENGIO; HINTON, 2015; SZEGEDY et al.,

2017; SZE et al., 2017; SZE et al., 2020). This section provides an overview of the Hyper-

Kvasir database (BORGLI et al., 2020), the dataset utilized in this study. We reviewed

the literature on deep learning in digital imaging and consider general model (BORGLI et

al., 2020) as a reference for our research. Our objective is to establish a robust foundation

by analyzing the dataset and surveying related studies.

3.1.1 HyperKvasir Dataset

The HyperKvasir dataset1 is composed of images and videos. The dataset content was

collected between 2008 and 2016, in a hospital in Norway. In this work, 10639 instances

available in the dataset are used. The images are separated into 23 classes, in Figure 9

it is possible to see examples of images contained in the dataset. The Classes are Z-line,

Pylorus, Retroflex stomach, Barrett’s, Short segment, Esophagitis grade A, Esophagitis

grade B-D, Cecum, Retroflex rectum, Terminal ileum, Polyps, Ulcerative colitis grade

0-1, Ulcerative colitis grade 1, Ulcerative colitis grade 1 − 2, Ulcerative colitis grade 2,

Ulcerative colitis grade 2 − 3, Ulcerative colitis grade 3, Hemorrhoids, Dyed lifted polyps,

Dyed resection margins, BBPS 0 − 1, BBPS 2 − 3, Impacted stool. The dataset offers a

file (.csv) with the division of classes studied by Borgli (BORGLI et al., 2020).

3.1.2 Related Works

In our study, we started by establishing a solid foundation using the reference arti-

cle (BORGLI et al., 2020). Expanding upon this work, we created a comprehensive graph,

illustrated in Figure 10, to visually illustrate the interconnectedness of relevant papers
1 Available at: <https://datasets.simula.no/hyper-kvasir>.
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Figure 10 – Graph for connected papers to (BORGLI et al., 2020), which uses Hyper-
Kvasir image and video dataset for gastrointestinal endoscopy. In the image
it shows “Borgli, 2019” because the system considered the year in which the
base was created and not the year of publication which is 2020.

detection, which can improve the efficiency and accuracy of medical diagnoses. Besides

that, these papers served as the foundation for our study, as they utilized various CNNs

for different approaches to GI problems.

3.1.3 Background model

In (BORGLI et al., 2020), the authors proposed a classification model represented in

Figure 11. The model is composed of pre-trained CNNs, DenseNet161 and ResNet152.

Each CNN model is a function, M , composed of a set of subfunctions (convolution,

pooling, batch normalization, softmax, optimizer, etc.) which, in this case, given an

input image −→χ , a learning rate value η and the number of epochs e, returns an output
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Table 1 – State of the art summarization considering GI dataset for medical diagnoses.
Study Task Architecture Methodology Dataset SbP

HyperKvasir, a comprehensive multi-
class image and video dataset for
gastrointestinal endoscopy (BORGLI et al., 2020)

Gastrointestinal
polyp
Classification

Pre-trained (ResNet-50,
ResNet-152, DenseNet-161
Averaged ResNet-152 +
DenseNet-161, ResNet-152
+ DenseNet-161+MLP

Five different deep CNN
were trained and evaluated
using standard classification
metrics.

HyperKvasir 100

Kvasir-SEG: A Segmented Polyp
Dataset (JHA et al., 2020)

Gastrointestinal
polyp
Segmentation

Fuzzy c-mean clustering,
ResUNet CNN

Preprocessing steps, FCM
algorithm, Data augmenta-
tion, ResU-Net implemen-
tation details, Qualitative
comparison of FCM clus-
tering and ResUNet results

Kvasir-SEG 19.7

The endotect 2020 challenge: eva-
luation and Comparison of Classi-
fication, Segmentation and Infer-
ence time for endoscopy (HICKS et al., 2021)

Gastrointestinal
polyp detection
and segmentation

CNN (ResNet-152),
CNN (Mask Scoring R-
CNN, DeepLab V3+)

Automatic segmentation of
polyps, Real-time analysis

HyperKvasir 24.8

An Extensive Study on Cross-dataset
Bias and Evaluation Metrics Interpre-
tation for Machine Learning Applied
to Gastrointestinal tract Abnormality
Classification (THAMBAWITA et al., 2020)

Gastrointestinal
tract diseases
Identification
and
Segmentation

CNN (ResNet-152, Dense
Net-161) and addtional
MLP

GF-based approaches, Deep
neural networks, Cross-data-
set evaluations, Automated
identification of GI tract
diseases

CVC-12k,
CVC-356-plus,
CVC-612-plus,
2018 Medico

20.6

Real-Time Polyp Detection, Localiza-
tion and segmentation in colonoscopy
Using Deep Learning (JHA et al., 2021)

Gastrointestinal
polyp detection,
localization and
segmentation

CNN (YOLOv4 with
Darknet53 backbone),
Segmentation networks
(Colon SegNet, UNet+
ResNet34 backbone,
Deep-Labv3+,
PSPNet, HRNet)

Object detection and locali-
zation using YOLOv4 with
Dark-net53 backbone and
Cross-Stage-Partial-Con-
nections (CSP), Semantic
segmentation + different
UNet, Deep-Labv3+,
PSPNet, HRNet

Kvasir-SEG 13.8

Medico Multimedia Task at Media
Eval 2020: Automatic Polyp Seg-
mentation (JHA et al., 2020)

Gastrointestinal
polyp
segmentation

CNN, Dice similarity
coefficient (DSC) and
mean Intersection over
Union (mIoU)

Algorithm Speed Efficien-
cy, Framesper-second (FPS)
while segment colonoscopic
images

Kvasir-Seg 12.8

An objective comparison of detec-
tion and segmentation algorithms
for artefactsin clinical endoscopy
(ALI et al., 2020)

Hollow-organs
generalization,
detection and
segmentation

Mask R-CNN,
RetinaNet,
Cascade R-CNN,
DeepLabV3

Transfer learning, ensemble
techniques, out-of-sample
generalization, 2-training
separate batches, 7 prevalent
artefact types

EAD2019
(2192 unique
video, 475
video frames +
mask anno-
tations, addi=
tional 195,
122, and 51
videos)

12

A comprehensive study on colorectal
polyp segmentation with ResUNet++,
conditional random Field and Test-
Time Augmentation (JHA et al., 2021)

Gastrointestinal
polyp
Segmentation

CNN ResUNet++

Conditional Random Field
(CRF) and TestTime Aug-
mentation (TTA), Dice
coefficient (DSC), Inter-
section over Union (IoU),
mean IoU (mIoU), AUC-
ROCand data augmentation

Kvasir-SEG,
CVC-ClinicDB,
CVC-ColonDB,
ETIS-Larib
Polyp DB,
ASU-Mayo
Clinic Colo-
noscopy Video
Database,
CVC-Video
ClinicDB

13.1

Pyramidal segmentation of Medical
Images using Adversarial Training
(NAESS et al., 2021)

Gastrointestinal
polyp
Segmentation
and localization

U-Net and Pix2Pix

Learning to segment within
several grids, Grid augmen-
tation, Cross-data training
and testing

Kvasir-SEG
(validation,
testing),
CVCClinic
DB (testing)

12.7

Automated identification of human
gastrointestinal tract abnormalities
based on deep convolutional neural
network with endoscopic images
(IQBAL et al., 2022)

Gastrointestinal
polyp
abnormality
identification

DCNN (HGANet)

HGANet with multiple rou-
tes, various image resolu-
tions, and several convo-
lutional layers. Pre-proces-
sing involves cropping,
downsampling and removal
of undesired artifacts.
Augmentation techniques
are applied to balance the
classes.

Kvasir-Cap-
sule

12.4

−→
P , according to the Equation 2:

−→
P i = M(−→χ , η, e) (2)

The output,
−→
P , is a probability vector that indicates the probability that −→v i belongs

to one of the classes of the problem. The vector
−→
P = [c1, c2, c3, · · · , c23], where c ∈ C

for each GI class and |C| = 23. Given a dataset with 10639 gastrointestinal images,
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the model identifies positive instances correctly. TN represents correct predictions of

the negative class, where the model identifies negative instances correctly. FP refers to

incorrect predictions of the positive class, where the model identifies negative instances

as positive. FN represents incorrect predictions of the negative class, where the model

identifies positive instances as negative (SARKAR; BALI; SHARMA, 2018).

Matthews correlation coefficient, which is a measure of the quality of binary (two-class)

classification models. It takes into account TP, TN, FP and FN to provide a balanced

assessment of the model’s performance, as shown in Equation 4. The MCC ranges from

[−1, +1], where a value of (+1) indicates a perfect classification, (0) indicates a random

classification, and (−1) indicates a completely wrong classification. MCC values closer to

(+1) indicate better performance of the classification model (CHICCO; JURMAN, 2020).

MCC =
TP × TN − FP × FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4)

Micro-average is a method of aggregating the performance metrics across all classes in a

multi-class classification problem. The formulas for micro-average precision (miP ) (Eq.

5), recall (miR) (Eq. 6), and F1-score (miF1) (Eq. 7) are as follows (TAKAHASHI et

al., 2022):

miP =
TP

TP + FP
(5)

miR =
TP

TP + FN
(6)

miF1 =
2 × (miP × miR)

(miP + miR)
(7)

Macro-average, on the other hand, calculates the performance metrics for each class

individually and then takes the average across all classes. The formulas for macro-average

precision (maP ) (Eq. 8), recall (maR) (Eq. 9), and F1-score (maF1) (Eq. 10) are as

follows (TAKAHASHI et al., 2022):

maP =

∑n
i (Precisioni)

n
(8)

maR =

∑n
i (Recalli)

n
(9)

maF1 =

∑n
i (F1_scorei)

n
(10)

where precisioni, recalli, and F1-scorei represent the precision, recall, and F1-score of

class i, and n is the total number of classes. By using micro and macro averaging, we can

gain insights into the overall performance of the classification model, considering both the

individual class performance and the overall performance across all classes.
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3.3 Results and Discussion

In this section, we present a comprehensive analysis of various aspects related to CNNs

and their fusion configurations. Firstly, we discuss the analysis for individual CNNs. Next,

we explore the evaluation of fusion configurations and CNN performance metrics. In the

experiments involving average fusion and voting fusion, 768 combinations were performed,

however, in the results sections we present the nine best results. In these experiments,

fusion occurs during the tests and the output layer values that define which problem class

the input instance belongs to are fused.

Furthermore, we investigate the fusion with optimal training CNN models. Lastly,

we conduct a comprehensive analysis of resource consumption for the CNN models. By

examining these four aspects, we gain a comprehensive understanding of the individual

and fused CNN models, their performance metrics, optimal training configurations, and

resource requirements. This knowledge enables us to make informed decisions and design

more effective and resource-efficient CNN-based systems.

3.3.1 Analysis for individual convolutional neural networks

In this section, we evaluate the individual performance of the CNN models and their

effectiveness in tackling the given task. This analysis provides insights into the strengths

and weaknesses of each individual model. Table 2 present differents CNNs and configura-

tions, such as Learning Rate (LR), in addition, performance metrics, including Matthews

correlation coefficient (MCC), precision, recall, and F1-score. Each row represents a dif-

ferent CNN model, denoted by M1 to M7. Each model was evaluated with 6 LR’s, the

best results are presented in the Table 2. Analyzing the results, it can be observed that

Table 2 – Individual convolutional neural networks results.

ID
CNN

Models
LR

Macro Average Micro Average
MCC

Precision Recall F1-Score Precision Recall F1-Score
M1 DenseNet121 0.0030 0.6149 0.6004 0.5986 0.8929 0.8929 0.8929 0.8839
M2 DenseNet161 0.0030 0.6190 0.6016 0.6045 0.9025 0.9025 0.9025 0.8942
M3 DenseNet201 0.0030 0.6199 0.5963 0.5991 0.8972 0.8972 0.8972 0.8884
M4 EfficientNet_b0 0.0050 0.5952 0.6078 0.5955 0.8902 0.8902 0.8902 0.8810
M5 MobileNetV2 0.0030 0.5999 0.5976 0.5928 0.8856 0.8856 0.8856 0.8760
M6 ResNet152 0.0050 0.6252 0.6068 0.6094 0.9007 0.9007 0.9007 0.8923
M7 VGG16 0.0030 0.5893 0.5936 0.5874 0.8846 0.8846 0.8846 0.8749

different CNN models achieve varying levels of performance across the evaluated metrics.

Among the models, M2 (DenseNet161) stands out with the highest precision, recall, F1-

score, and MCC values. On the other hand, M5 (MobileNetV2) and M7 (VGG16) exhibit

slightly lower performance in terms of precision, recall, F1-score, and MCC.
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3.3.2 Analysis of fusion configurations and CNN performance

metrics

In this section, we explore different fusion techniques and assess their impact on the

overall performance of the system. The table 3 presents the nine best results obtained

from the fusion of multiple convolutional neural networks (CNNs), ensembles, using the

average method. Each row in the table represents a different fusion scenario, denoted by

Fi, where multiple CNN models (M1 to M7) are combined, where (Y) indicates the presence

of a model in the fusion configuration, while (N) denotes the absence of that model.

The table also includes the LR used for each fusion scenario. The evaluation metrics

used to assess the performance of the fusion approach are precision, recall, F1-score, and

MCC. Analyzing the results, it can be seen that different ensemble architectures and their

fusion responses generate varying levels of performance in the evaluated metrics. Among

Table 3 – Results obtained with fusion of CNN by average.

Fi M1 M2 M3 M4 M5 M6 M7 LR
Macro Average Micro Average

MCC
Precision Recall F1-Score Precision Recall F1-Score

1 N Y N Y N Y Y 0.0030 0.6312 0.6085 0.6084 0.9101 0.9101 0.9101 0.9025
2 Y Y Y Y N Y Y 0.0030 0.6402 0.6121 0.6143 0.9101 0.9101 0.9101 0.9025
3 N Y N Y N Y Y 0.0050 0.6395 0.6180 0.6187 0.9100 0.9100 0.9100 0.9023
4 Y Y Y Y Y Y Y 0.0030 0.6334 0.6138 0.6150 0.9100 0.9100 0.9100 0.9023
5 Y Y N Y N Y Y 0.0030 0.6360 0.6114 0.6118 0.9100 0.9100 0.9100 0.9023
6 Y Y Y N N Y Y 0.0030 0.6399 0.6105 0.6139 0.9097 0.9097 0.9097 0.9019
7 Y Y N Y N Y Y 0.0050 0.6265 0.6165 0.6154 0.9097 0.9097 0.9097 0.9020
8 Y Y Y N Y Y Y 0.0030 0.6352 0.6105 0.6123 0.9096 0.9096 0.9096 0.9018
9 N Y N N N Y N 0.0030 0.6347 0.6061 0.6102 0.9074 0.9074 0.9074 0.8995

the merger scenarios, F3 displays the highest F1-score value for macro-average. This

scenario combines specific CNN models (M2, M4, M6 and M7) and achieves remarkable

performance in correctly classifying positive and negative instances.

These scenarios show the effectiveness of ensemble methods to improve classification

accuracy. Fusion F1 stands out, achieving relatively high values of accuracy, recall, F1-

score and MCC, for micro average. This suggests that the combination of models M2,

M4, M6 and M7 with an LR of η = 0.003 leads to successful predictions with high

accuracy and completeness. Considering the CNN models that appeared more frequently

in the fusion experiments, the models M2, M6 and M7 were used in a greater number

of experiments. This suggests that these models have a greater impact on the overall

performance of the ensemble architectures. Table 4 shows the top nine CNN fusion using

a voting mechanism where each model in the ensemble makes an independent prediction,

and the final prediction is based on the highest number of votes. Upon analyzing the

results, it is evident that the performance of the fusion models varies depending on the

specific combination of CNN models used. F2 stands out as it achieves the highest values

in terms of F1-score for macro (0.6158), F1-score for micro average (0.9089) and MCC

(0.9012). This combination includes models M1, M2, M3, M4, and M7, indicating that

these models contribute significantly to the overall performance of the fusion model.
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Table 4 – Results obtained with CNN fusion by vote.

Fi M1 M2 M3 M4 M5 M6 M7 LR
Macro Average Micro Average

MCC
Precision Recall F1-Score Precision Recall F1 Score

1 N Y Y Y N Y Y 0.0030 0.6359 0.6093 0.6102 0.9089 0.9089 0.9089 0.9011
2 Y Y Y Y N N Y 0.0030 0.6416 0.6138 0.6158 0.9089 0.9089 0.9089 0.9012
3 Y Y N Y N Y Y 0.0030 0.6308 0.6125 0.6125 0.9088 0.9088 0.9088 0.9011
4 Y Y Y N N Y Y 0.0030 0.6403 0.6124 0.6157 0.9088 0.9088 0.9088 0.9010
5 N Y Y Y Y Y Y 0.0030 0.6264 0.6104 0.6102 0.9084 0.9084 0.9084 0.9006
6 Y Y Y Y N Y N 0.0030 0.6288 0.6079 0.6080 0.9084 0.9084 0.9084 0.9005
7 Y Y Y Y Y Y Y 0.0030 0.6290 0.6096 0.6097 0.9082 0.9082 0.9082 0.9003
8 N Y N N N Y Y 0.0030 0.6376 0.6112 0.6146 0.9081 0.9081 0.9081 0.9002
9 N Y N N N Y N 0.0050 0.6308 0.6121 0.6147 0.9038 0.9038 0.9038 0.8956

3.3.3 Fusion with optimal training CNN models

In this section, we explore the integration of specific CNN models to further enhance

the system’s performance and achieve superior results. The results refer to proposal

two, presented in Section 3.2.1. Table 5 presents the results of the fusion of trained

CNN models using different combinations. In our experiments, in F b
4
, considering the

amount of CNNs that make up the fusion, we had the best performance compared to

other combinations, considering both micro-average, F1-score (0.9126) and MCC (0.9051).

Overall, the analysis of the fusion results indicates that the combinations involving M b
2
,

Table 5 – Fusion with trained CNN models.* Refers to the combination of CNNs presented
in (BORGLI et al., 2020).

F b
i M b

1
M b

2
M b

3
M b

4
M b

5
M b

6
M b

7
LR

Macro Average Micro Average
MCC

Precision Recall F1-Score Precision Recall F1-Score
1* N Y N N N Y N 0.0010 0.6330 0.6150 0.6170 0.9100 0.9100 0.9100 0.9020
2 N Y N N N N Y 0.0030 0.6340 0.6172 0.6202 0.9081 0.9081 0.9081 0.9002
3 N Y N N N Y Y 0.0030 0.6339 0.6212 0.6246 0.9121 0.9121 0.9121 0.9046
4 N Y N Y N Y Y 0.0030 0.6328 0.6211 0.6232 0.9126 0.9126 0.9126 0.9051
5 N Y Y Y N Y Y 0.0030 0.6298 0.6215 0.6227 0.9124 0.9124 0.9124 0.9049
6 Y Y Y Y N N Y 0.0030 0.6273 0.6163 0.6178 0.9110 0.9110 0.9110 0.9034
7 Y Y Y Y N Y Y 0.0030 0.6290 0.6193 0.6214 0.9128 0.9128 0.9128 0.9053

M b
4
, M b

6
, and M b

7
generally lead to better performance, with higher F1-scores and MCC

values. The presence of M b
1

and M b
5

does not contribute significantly to the overall

performance improvement.

3.3.4 Resource Consumption Analysis for CNN Models

In Table 6, we present details such as the CNN model name, GPU model used for

execution, GPU RAM capacity, execution time in minutes, and the number of parameters

for each model. To measure the execution time and GPU consumption, the timeit module

and the psutil library were used, respectively. All network models, M1 to M7, utilize

the Tesla V100-SXM2-16GB GPU model. Additionally, the F b∗

1
model (BORGLI et al.,

2020) employs the Tesla V100-SMX2-16GB, while fusion models F b
2

to F b
7
, for Table 5

and Table 6, utilize the Nvidia A100-SXM-40GB GPU model. Models F b
2

to F b
7

consume

more GPU RAM and more execution time, so they needed to be executed on another
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Table 6 – Resource consumption for network models.
Individual Models Fusion Models

CNN
models

GPU model
RAM
GPU
(GB)

Execution
Time (m)

Parameters
CNN

models
GPU model

RAM
GPU
(GB)

Execution
Time (m)

Parameters

M1 tesla v100-sxm2-16gb 6.2 92.0 6977431 F b∗

1
tesla v100-sxm2-16gb 15.8 113.2 84713742

M2 tesla v100-sxm2-16gb 10.0 94.9 26522807 F b
2

nvidia a100-sxm-40gb 15.7 55.5 160877582
M3 tesla v100-sxm2-16gb 8.9 89.9 18137111 F b

3
nvidia a100-sxm-40gb 22.7 82.9 219068517

M4 tesla v100-sxm2-16gb 4.6 80.9 4037011 F b
4

nvidia a100-sxm-40gb 24.7 98.5 223105528
M5 tesla v100-sxm2-16gb 4.2 86.2 2253335 F b

5
nvidia a100-sxm-40gb 31.0 89.6 241242639

M6 tesla v100-sxm2-16gb 8.1 101.3 58190935 F b
6

nvidia a100-sxm-40gb 28.9 110.3 190029135
M7 tesla v100-sxm2-16gb 7.0 109.8 134354775 F b

7
nvidia a100-sxm-40gb 35.9 124.5 248220070

GPU model.

These data allow us to analyze the computational cost associated with achieving the

results presented in Table 3, Table 4, and Table 5.

In Table 3, the F1 result, including M2, M4, M6, and M7, achieved the highest F1-

score (0.9101) with the least number of models used for micro-average. The models were

executed individually on the GPU, resulting in a total GPU consumption equal to the

highest consumption among the individual models, which is 10GB for M2. Thus, the

proposed ensemble F1 with CNN model averaging has a maximum GPU consumption of

10GB.

In Table 4, using the technique of fusion by vote, the ensemble F2 achieved the highest

F1-score of 0.9089 for micro and F1-score of 0.6158 for macro. The set F2 consisted of

models M1, M2, M3, M4 and M7. The GPU consumption for the set F1 corresponds to

that of the model M2, which is 10GB.

In Fusion with optimal training CNN models, as shown in Table 5, for F b∗

1
, the F1-

score is 0.910, which matches our proposal in Table 3. The approach in (BORGLI et

al., 2020), F b∗

1
, requires 15.8GB of GPU, as the best models M b

2
and M b

6
are trained

together. Building upon the combination of models proposed in (BORGLI et al., 2020),

we introduce ensembles F b
2

to F b
7
, with F b

4
achieving the best result. Figure 15 depicts a

bubble chart illustrating that we have achieved comparable results (indicated by the blue

and red bubbles) when compared to the fusion model F b∗

1
in Table 5 (green bubble), as

presented in (BORGLI et al., 2020).

Our proposal F1 in Table 3 attained the same results while utilizing 10GB of GPU,

which is 36.7% less than the consumption of (BORGLI et al., 2020) with 15.8GB GPU.

The purple bubbles demonstrate that our ensemble architectures using Fusion with opti-

mal training CNN models obtain better results than (BORGLI et al., 2020), albeit at a

higher GPU cost.
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Chapter 4

Fusion of CNNs for Medical Images

Landmarks Detection

With technological advances, AI tools, such as CNN models, have been used in the task

of detecting landmarks. These models automate landmark detection, reducing the need for

manual intervention, saving time and resources. CNNs can be applied in different contexts

and types of images, from cephalograms to cancer detection and monitoring (CANDEMIR

et al., 2013; JAEGER et al., 2014; GIRSHICK et al., 2015; LITJENS et al., 2017; RUNDO

et al., 2020; BAYOUDH et al., 2021).

The detection of landmarks in lateral cephalograms is essential for orthodontists, as

it facilitates the diagnosis and monitoring of the evolution of craniofacial conditions, in

addition, it facilitates treatment planning such as surgeries and implants (ZENG et al.,

2021). The detection of landmarks is essential for the analysis of lung regions, being

crucial in the diagnosis of respiratory diseases, such as COVID-19 (GIEŁCZYK et al.,

2022; GAGGION et al., 2022).

In this chapter we focus on performing CNN fusion to detect landmarks in medical

images. In works such as Borgli et al. (BORGLI et al., 2020) and Bayoudh et al. (BAY-

OUDH et al., 2021), the authors discuss the improvement of CNNs in solving problems

through strategies such as CNN committees and CNN fusions. We use datasets containing

lateral cephalograms, hand x-rays and lung x-rays, with the aim of detecting landmarks.

Furthermore, in line with green computing, this work presents the energy consumption

and carbon emissions of the studied CNN models.

4.1 Background

With improvements in GPU technology, several convolutional neural network models

have been proposed in the last decade. In this work we explore the use of the models

proposed by (CHEN et al., 2019) and (ZHU et al., 2021; ZHU et al., 2022). The (CHEN

et al., 2019) model was used to detect points in lateral cephalograms. The (ZHU et al.,
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2021; ZHU et al., 2022) model, described by the authors as a universal model, was used to

detect points on lateral cephalograms, hand radiographs, and lung radiographic images.

We propose to fuse both models with the aim of obtaining a universal model that achieves

better results in landmark detection.

4.1.1 Datasets for landmark detection

The dataset used contains 400 images of lateral cephalograms1. This dataset was

used in IEEE 2015 ISBI Grand Challenge#1. In this dataset, the goal is to detect 19

landmarks, as seen in Figure 16 (LINDNER et al., 2016). A dataset containing hand

Figure 16 – Lateral cephalogram with 19 landmarks.

x-rays2 was also used. It contains 1390 images. In this dataset, the goal is is to detect

37 reference points, as shown in Figure 17. The third dataset used in this work contains

500 x-rays images of the lung3. The images were labeled by radiologists (JAEGER et al.,

2013; CANDEMIR et al., 2013; JAEGER et al., 2014). In these images, six landmarks

are relevant, as shown Figure 18.
1 <https://figshare.com/s/37ec464af8e81ae6ebbf>
2 <https://ipilab.usc.edu/research/baaweb/>
3 <https://www.kaggle.com/datasets/kmader/pulmonary-chest-xray-abnormalities>
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Figure 17 – Example of hand radiography with the 37 landmarks.

Figure 18 – Example of lung X-ray image with the 6 landmarks.

4.2 Deep learning models for object and region de-

tection

The human brain is adapted to identify and interpret visual patterns, allowing us to

recognize objects efficiently and accurately. The human ability to detect objects in images
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is crucial for visual perception and understanding, enabling us to interpret environments

and make appropriate decisions based on available visual information. In areas such as

security and medicine, humans (experts) need to detect objects, people, organs or regions

of interest to make decisions (GONZALEZ; WOODS, 2009; REDMON et al., 2016).

Computational advancement allows many object detection tasks to be performed by

computational algorithms such as deep neural networks. With the use of deep neural

networks, it becomes possible to extract complex features and learn hierarchical repre-

sentations of images. The ability of CNNs to automatically learn objects’ discriminating

features, combined with training on large labeled datasets, significantly boosts the ability

to detect objects in images. Detectors based on CNNs can identify objects of different

sizes and poses and in different contexts (REDMON et al., 2016; LITJENS et al., 2017;

BOCHKOVSKIY; WANG; LIAO, 2020; PAYER et al., 2019).

You Only Look Once (YOLO) is a model of deep neural networks for objects iden-

tification of different sizes and positions within the image, without the need to apply

a sliding window. The YOLO system models detection as a regression problem. It di-

vides the image into a grid and for each grid cell predicts a number of bounding boxes,

a confidence value for those boxes, and probabilities that the bounding boxes belong to

a class (REDMON et al., 2016; REDMON; FARHADI, 2017; BOCHKOVSKIY; WANG;

LIAO, 2020).

The YOLO models represent an important advance in the area. These models are

known for their efficiency and accuracy in real-time detection, allowing fast and accu-

rate identification of objects in images and videos. These models have positively im-

pacted areas such as industrial automation and computer vision (REDMON et al., 2016;

BOCHKOVSKIY; WANG; LIAO, 2020).

The various versions of YOLO are being tested on large datasets for the detection

of objects such as COCO and PASCAL VOC. In these baseline works, there is no in-

depth study of the use of YOLO in medical imaging. One of the problems with using

YOLO in medical imaging is that it focuses more on speed for real-time detection than on

accuracy. In computer analysis of medical images, the main goal is accuracy (REDMON et

al., 2016; REDMON; FARHADI, 2017; REDMON; FARHADI, 2018; BOCHKOVSKIY;

WANG; LIAO, 2020; WANG; BOCHKOVSKIY; LIAO, 2021; WANG; BOCHKOVSKIY;

LIAO, 2023; WANG; LIAO; YEH, 2022).

Other studies such as (PAYER et al., 2019; CHEN et al., 2019; ZENG et al., 2021;

ZHU et al., 2021) present techniques to detect regions in medical images. These studies

are focused on accuracy.

Payer et al., in (PAYER et al., 2016) and (PAYER et al., 2019), propose the use of heat

maps as a way to filter out relevant landmarks. According to the authors, the proposal

incorporates the spatial configuration of anatomical landmarks in a CNN-based heat map

regression framework. Thus, the studies perform well in locating landmarks and do not
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4.3.3 Evaluation metrics

To evaluate the predictions of our models, we employ two metrics: the Mean Radial

Error (MRE) and the Sucess Detection Rate (SDR). The MRE quantifies the Euclidean

distance from the predicted reference point to the point manually marked by an expert.

It is calculated using Equation 15 (ZENG et al., 2021):

MREj =

∑N
i=1

Ei
j

N
(15)

where N is the total number of images and the error is given by Ei
j = ||ρp

j − ρm
j ||2 for the

image i, landmark j and ||.||2 represents the Euclidean norm function. Since ρp
j = (xp

j , yp
j )

and ρm
j = (xm

j , ym
j ), ρp

j are the predicted landmarks and ρm are the marked landmarks.

When dealing with reference points in medical images, there might be an acceptable

margin of error in detecting these points. For instance, there could be scenarios where the

system cannot deviate more than 2mm from the predicted point compared to the point

marked by the expert. Therefore, to calculate the success detection rate for τmm, we use

the following expression (ZENG et al., 2021):

SDRτ =
count(ρp

j : ||ρp
j − ρm

j ||2) ≤ τ

N
(16)

The count() function is used to count how many reference points predicted by the

model are at a distance smaller than τ mm from the point marked by the expert. Fur-

thermore, the standard deviation (STD) was calculated using the std() method from the

numpy library.

4.4 Results and Discussion

The experiments were carried out in the Google Colab environment, using a Tesla T4

GPU. Combining the datasets of lateral cephalograms, dataset containing radiographs of

the hand and dataset containing radiographic images of the lung, there are 875 images

for training, 113 for validation and 592 for testing.

As we propose, through fusion, an improvement in the universal model presented in

Section 4.2.2, we use the same measurements used by the authors in the original work,

MRE and SDR. For the lateral cephalograms dataset, the authors use four SDR measure-

ments to present the results, 2mm, 2.5mm, 3mm, 4mm. For the dataset of radiographs

of the hand, the SDR measurements to present the results were 2mm, 4mm, 10mm. In

the dataset of radiographs of the lung, measurements of 3px, 6px, 9px were considered.

To analyze energy consumption and carbon emissions we consider the experiments

carried out with the server running in Singapore. The average carbon emission per energy

consumed (CO2/kWh) for Singapore is 463.9. In the experiments, we report the estimated
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energy consumption (kWh), equivalent carbon emissions (CO2eq) and the equivalence of

kilometers (Km) traveled by a car.

4.4.1 Experiments using Proposal I - Fusion with full models

In these experiments, the results obtained by running the model presented in Sec-

tion 4.3.1 are presented. This model is used for landmark detection, it supports hetero-

geneous datasets with different numbers of landmarks. The new model combines charac-

teristics of the universal model (Sections 4.2.1) and non-universal (Section 4.2.2). These

models were run separately to check if the results coincided with the results presented

in the theoretical basis. The universal model run for 100 epochs and the non-universal

model run for 400 epochs. The results obtained through the execution of the precursor

models, for the cephalometric images dataset, can be seen in the Table 8. After running

the non-universal model (Section 4.2.1), it is estimated that model training uses 1.15 kWh

of electricity contributing to 0.53 kg of CO2eq. This is equivalent to 4.98 km traveled

by car. For the universal model (Section 4.2.2), it is estimated that model training uses

0.66 kWh of electricity contributing to 0.30 kg of CO2eq. This is equivalent to 2.84 km

traveled by car.

Table 8 – Results of running the universal and non-universal model for the cephalometric
image dataset.

Tests

Head

MRE

(mm)

SDR(%)

2mm 2.5mm 3mm 4mm

Chen et al. Section 4.2.1 1.35 81.03 87.77 92.06 96.57

Zhu et al. Section 4.2.2 1.49 76.99 84.08 89.62 94.93

The new universal model was trained four times over 50 epochs using four different

random seeds. In Table 9 and 10, the results of the responses from the two modules of

the new model are shown. Each “Run” present in the tables corresponds to a random

seed. The various executions were to check whether the model presents stable results.

Through the Tables, it is possible to see that at different times the model was executed, it

showed little variation in results. The result of the first part (Table 9) is the best result of

the CNN model created through fusion, for detecting landmarks in medical images. This

result is used in comparison with the results of the literature.

After running the model proposed in this Section, it is estimated that model training

uses 0.87 kWh of electricity contributing to 0.40 kg of CO2eq. This is equivalent to 3.76

km traveled by car.

In Section 4.4.3 we compare the result of this proposal with the proposal by (ZHU et al.,

2021; ZHU et al., 2022) and with our second proposal which is presented in Section 4.4.2.
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Table 9 – Results referring to the response of Module 1 of the proposed model.

Tests
Head Hand Chest

MRE
(mm)

STD
(mm)

SDR(%) MRE
(mm)

STD
(mm)

SDR(%) MRE
(px)

STD
(mm)

SDR(%)
2mm 2.5mm 3mm 4mm 2mm 4mm 10mm 3px 6px 9px

Run 1 1.46 2.09 79.20 85.66 90.84 95.75 0.62 1.91 97.29 99.43 99.75 4.00 4.08 51.63 82.52 92.28
Run 2 1.46 1.89 78.80 85.16 89.89 95.37 0.62 1.83 97.29 99.43 99.69 4.12 4.57 49.59 81.71 93.50
Run 3 1.43 1.48 78.57 84.93 90.06 95.62 0.61 1.59 97.21 99.43 99.77 4.85 18.22 56.91 83.74 93.50
Run 4 1.43 1.48 79.62 85.24 90.40 95.31 0.57 1.32 97.37 99.57 99.85 4.36 7.53 54.47 81.71 89.02
Run
average

1.45 1.74 79.05 85.25 90.30 95.51 0.60 1.67 97.29 99.46 99.76 4.33 8.60 53.15 82.42 92.07

Table 10 – Results referring to the response of Module 2 of the proposed model.

Tests
Head Hand Chest

MRE
(mm)

STD
(mm)

SDR(%) MRE
(mm)

STD
(mm)

SDR(%) MRE
(px)

STD
(mm)

SDR(%)
2mm 2.5mm 3mm 4mm 2mm 4mm 10mm 3px 6px 9px

Run 1 2.06 1.46 59.64 70.34 80.00 90.86 1.06 3.31 92.70 99.00 99.62 5.20 8.72 37.40 73.58 88.21
Run 2 2.03 1.43 60.88 71.79 80.65 91.41 1.05 2.95 92.01 99.00 99.60 5.23 7.72 38.21 70.73 86.99
Run 3 2.02 1.44 60.80 71.71 80.91 91.05 1.02 3.00 93.10 99.15 99.65 4.91 4.12 39.84 72.36 85.37
Run 4 2.02 1.40 60.46 72.15 81.33 91.28 1.03 2.83 92.76 99.13 99.66 5.37 7.69 35.77 72.76 87.40
Run
average

2.03 1.43 60.45 71.49 80.72 91.15 1.04 3.02 92.64 99.07 99.63 5.18 7.06 37.80 72.36 86.99

4.4.2 Experiments using Proposal II - Fusion with partial mod-

els

This section presents the results obtained by running the model presented in Sec-

tion 4.3.1. The proposed model is a fusion of the model presented in Section 4.2.1 with

part of the model presented in Section 4.2.2. The new model detects landmarks in het-

erogeneous datasets and with different numbers of landmarks. The model is executed in

two steps. In the first step, heat maps are merged, with α = 0.6536, γ = 0.3464. In the

second stage, the heat maps are not merged and weights are added to the loss combi-

nation, υ = 0.40, τ = 0.60. Both steps were performed for 10 epochs. Different values

for the parameters α, γ, υ and τ were tested, however, this work presents the parameter

settings for which we obtain the best results. The experiment was carried out 12 times

with different random seeds, as shown in Table 11. The result is the average of the 12

experiments. In Table 12, 6 experiments are presented with υ = 0.30 and τ = 0.70.

Table 11 – Results of the new model with partial fusion (υ = 0.40. τ = 0.60).

Tests
Head Hand Chest

MRE
(mm)

STD
(mm)

SDR(%) MRE
(mm)

STD
(mm)

SDR(%) MRE
(px)

STD
(mm)

SDR(%)
2mm 2.5mm 3mm 4mm 2mm 4mm 10mm 3px 6px 9px

Run 1 1.40 1.36 79.71 85.98 90.72 95.85 0.55 0.99 97.67 99.60 99.93 4.02 4.27 55.28 82.11 89.84
Run 2 1.42 1.87 80.42 85.98 90.48 95.56 0.56 1.28 97.74 99.56 99.83 3.36 2.79 60.57 85.77 95.53
Run 3 1.43 1.28 78.53 84.63 89.58 95.12 0.57 1.16 97.47 99.66 99.87 3.97 3.42 49.59 82.93 93.90
Run 4 1.42 1.41 79.56 85.68 90.42 95.68 0.55 1.25 97.70 99.62 99.91 3.65 3.33 55.28 83.74 93.09
Run 5 1.41 1.28 79.68 85.73 90.63 95.77 0.57 1.18 97.72 99.56 99.85 3.65 3.92 60.16 86.99 94.72
Run 6 1.44 1.36 79.35 85.41 90.25 96.00 0.57 1.27 97.75 99.53 99.87 3.43 3.29 57.72 85.77 94.72
Run 7 1.41 1.43 79.66 86.17 90.59 95.75 0.58 1.54 97.63 99.52 99.85 3.90 3.92 54.88 82.93 89.84
Run 8 1.44 1.37 79.09 85.47 89.94 95.14 0.76 3.34 97.16 99.17 99.45 3.87 3.63 57.32 81.30 92.28
Run 9 1.43 1.30 79.03 85.43 90.44 95.71 0.56 1.24 97.52 99.67 99.90 3.30 2.66 56.10 89.84 95.93
Run 10 1.41 1.87 80.38 86.46 91.18 96.34 0.54 0.72 97.65 99.67 99.96 3.57 3.16 60.16 82.93 92.28
Run 11 1.37 1.20 80.78 86.93 91.39 96.29 0.57 1.35 97.47 99.56 99.85 3.92 3.36 50.00 81.71 91.06
Run 12 1.41 1.31 80.23 85.85 90.29 95.49 0.57 1.46 97.64 99.60 99.87 3.60 3.21 55.69 84.55 92.68
Run
average

1.41 1.42 79.70 85.81 90.49 95.72 0.58 1.40 97.59 99.56 99.84 3.69 3.41 56.06 84.21 92.99
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Table 12 – Results of the new model with partial fusion (υ = 0.30, τ = 0.70).

Tests
Head Hand Chest

MRE
(mm)

STD
(mm)

SDR(%) MRE
(mm)

STD
(mm)

SDR(%) MRE
(px)

STD
(mm)

SDR(%)
2mm 2,5mm 3mm 4mm 2mm 4mm 10mm 3px 6px 9px

Run 1 1,39 1,24 80,40 86,23 91,14 96,04 0,54 0,93 97,69 99,62 99,94 4,05 4,10 55,69 80,08 90,24
Run 2 1,42 2,38 80,55 86,29 90,61 95,85 0,58 1,52 97,83 99,54 99,79 4,31 13,17 59,76 83,74 95,53
Run 3 1,45 1,49 78,74 84,82 89,41 95,18 0,57 1,18 97,45 99,61 99,88 3,81 3,22 50,81 83,74 94,31
Run 4 1,44 1,71 79,09 85,33 90,27 95,62 0,56 1,26 97,67 99,62 99,90 3,69 3,29 55,69 81,30 93,50
Run 5 1,45 1,39 79,39 85,52 90,15 95,16 0,56 1,04 97,71 99,60 99,87 3,64 3,32 56,91 84,55 93,50
Run 6 1,43 1,28 78,97 85,20 89,94 95,89 0,59 1,37 97,54 99,49 99,79 3,37 2,78 56,50 85,37 93,90
Run
average

1,43 1,58 79,52 85,56 90,25 95,62 0,57 1,22 97,65 99,58 99,86 3,81 4,98 55,89 83,13 93,50

After running the model proposed in this Section, it is estimated that model training

uses 0.23 kWh of electricity contributing to 0.11 kg of CO2eq. This is equivalent to 0.98

km traveled by car.

In Section 4.4.3, the results presented in this section and the results of Proposal I are

compared to the results presented in the literature.

4.4.3 Discussion

In this section, we compare the results of our proposals with results from the literature.

Table 13 shows that, our proposals in the last two lines of the table, on average, presented

better results than those presented in the literature.

Table 13 – Evaluation metrics – * indicates that the values were obtained in the cited
papers. In bold are the best results. Underlined are the second best results.

Studies
Head Hand Chest

MRE
(mm)

SDR(%) MRE
(mm)

SDR(%) MRE
(px)

SDR(%)
2mm 2.5mm 3mm 4mm 2mm 4mm 10mm 3px 6px 9px

U-Net* 12.45 52.08 60.04 66.54 73.68 6.14 81.16 92.46 93.76 5.61 51.67 82.33 90.67
GU2Net* 1.54 77.79 84.65 89.41 94.93 0.84 95.40 99.35 99.75 5.57 57.33 82.67 89.33

Fusion with full models (Ours) 1.45 79.05 85.25 90.30 95.51 0.60 97.29 99.46 99.76 4.33 53.15 82.42 92.07
Fusion with partial models (Ours) 1.41 79.70 85.81 90.49 95.72 0.58 97.59 99.56 99.84 3.69 56.06 84.21 92.99

We observed that Proposal I, compared to the model proposed by (ZHU et al., 2021;

ZHU et al., 2022), has better results, however, it takes longer to execute 50 epochs during

the training stage. The increase in time occurs because in the fusion of models, at each

iteration, the loss is calculated at five different moments. A loss is calculated for Module 1

heat maps, Module 2 heat maps, and the two Module 2 displacement maps. Additionally,

the GPU RAM consumption increases.

In the experiment related to Proposal II, we observed that the execution time of the

new model is slightly longer than previous proposals (ZHU et al., 2021; ZHU et al., 2022)

because the loss is calculated at two different times. However, the proposed model achieves

good results early. To achieve the best results, our model ran for 20 epochs, while the

literature proposal ran for 100 epochs. After the experiments, Proposal II proved to be

the best solution.

Figure 33 shows the performance by landmark point detection for all dataset. The

comparison is performed between the original model and the Proposal II model. It is
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Chapter 5

Influence of preprocessed images on the

performance of CNNs

In image analysis, a common task is preprocessing. This step is essential for the opti-

mal performance of many techniques. In this chapter, we propose a preprocessing method

based on histogram equalization and Benford’s distribution. Histogram equalization aims

to enhance image contrast and quality by redistributing pixel intensities. The application

of Benford’s law involves presegmentation of the image based on statistical distributions

observed in the leading digits of pixel values.

Additionally, we conducted an analysis to determine whether CNNs used for land-

mark detection or region segmentation perform better when evaluated on datasets with

preprocessed images. We check whether models trained on the original dataset and the

dataset with preprocessed images, when fused, achieve better performance. In alignment

with green computing, we also assessed the resource consumption of the models.

5.1 Background

This section provides an insight into image preprocessing, histogram equalization,

fundamentals of Benford’s law and the hybridGNet model used for region segmentation.

5.1.1 Image preprocessing

The high capacity of convolutional neural networks allows them to process images

with their original values, dimensions, and pixels. However, in some cases, the perfor-

mance of convolutional networks can be improved with the use of suitable preprocessing

methods. Authors report in articles the influence of preprocessing on the performance of

CNNs (TABIK et al., 2017; ÖZTÜRK; AKDEMIR, 2018; AFIFI; BROWN, 2019; LIN;

CHANG, 2021; ARABIAN et al., 2021; GIEŁCZYK et al., 2022).
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By means of Benford’s law, a logarithmic distribution is observed for the most signif-

icant digit of a number, given by the Equation 17 (BERGER; HILL, 2011).

Prob(D1 = d1) = log10(1 + d−1

1
) (17)

for d1 = {1, 2, 3, 4, 5, 6, 7, 8, 9} and D1 is the most significant digit of a number.

In the literature, Benford’s law is commonly used to detect fraud in accounting

data (DURTSCHI et al., 2004). However, in the area of image processing, some au-

thors use Benford’s law in different situations. In (JOLION, 2001) and (ACEBO; SBERT,

2005), situations are shown in which images do or do not present the characteristics of Ben-

ford’s law. In (MAKRUSHIN et al., 2018) and (PARNAK; DAMAVANDI; KAZEMITABAR,

2022), the authors use Benford’s law to detect image fraud. In (WELLS et al., 2007)

and (AL-BANDAWI; DENG, 2019), the law is used in image distortion analysis. In (AL-

BANDAWI; DENG, 2019), the authors even use Benford’s law in preprocessing. The first

digit frequency information is used to compose a feature vector in a system that classifies

distortions in images. In this work, the law is used as a preprocessing alternative.

5.1.3 Histogram equalization

Histogram equalization is a contrast enhancement technique that seeks to distribute

pixel values within the range of image intensity. If the intensity range of an image cor-

responds to all integer values between 0 and 255, but the image consists of only 40% of

the values in this range, histogram equalization seeks to generate a new image in which

the percentage of values in the range from 0 to 255 tends to 100%. The histogram equal-

ization is expressed by Equation 18 (PIZER et al., 1987; GONZALEZ; WOODS, 2009;

ABDULLAH-AL-WADUD et al., 2007).

sk = T (rk) = (L − 1)
k

∑

j=0

pr(rj) =
(L − 1)

MN

k
∑

j=0

nj (18)

Being L − 1 the value of 255, k = 0, 1, 2, ..., L − 1, rk the value of the pixel before

transformation, sk the value output pixel after transformation, T (rk) is the histogram

equalization transform, M and N the image dimensions, nj is the image pixel quan-

tity with the intensity (rj and pr(rj) is the probability estimate that rj occurs in the

image (GONZALEZ; WOODS, 2009). Histogram equalization is a commonly used tech-

nique for preprocessing images (GONZALEZ; WOODS, 2009; SHIN; KIM; KWON, 2016;

ALWAWI; ABOOD, 2021).
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5.1.4 HybridGNet for region detection

HybridGNet1 is an architecture for region segmentation based on landmarks in medi-

cal chest x-ray images. In (GAGGION et al., 2021; GAGGION et al., 2022) the authors

demonstrate the performance of the network to segment the lung, heart and clavicle

regions. HybridGNet combines traditional convolutional neural networks with graph con-

volutional neural networks to increase the accuracy of segmenting anatomical structures,

Figure 36. By integrating graph convolutional neural networks, the model can better cap-

ture the complex relationships between anatomical landmarks, leading to more accurate

segmentation results (GAGGION et al., 2021; GAGGION et al., 2022).

HybridGNet

Standard encoder-decoder
architecture

graph spectral convolutions

Concatenation

Figure 36 – The HibridGNet model combines the features of a standard convolutions ar-
chitecture with graph spectral convolutions.

The model’s hybrid approach leverages local and global image information, enabling

detection of anatomical details not found in conventional models. As described (GAG-

GION et al., 2021; GAGGION et al., 2022), HybridGNet performed better than tradi-

tional landmark based models, making it reliable for segmenting anatomical regions in

medical applications (GAGGION et al., 2021; GAGGION et al., 2022).

5.2 Proposal

The first proposal is to preprocess datasets through histogram equalization and a

method based on Benford’s law. The second proposal is to use CNNs to process images
1 Available at: <https://github.com/ngaggion/HybridGNet>
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5.3.1 Experiments and results with universal model and image

preprocessing

This section presents the results of the fusion of a model trained with original images

and a model trained with images fitted to the Benford curve.

For each dataset the universal model (ZHU et al., 2021; ZHU et al., 2022), presented

in Section 4.2.2, was trained four times for each dataset, using the random seeds 03,

42, 56, 99 and the original model parameters. Each time the model was trained for 100

epochs. Table 14 shows the average values of the results for training the model with

original datasets and the model with Benford datasets.

In the testing phase, the response of each model trained with the original datasets

was fused with the response of each model trained with the Benford datasets, resulting in

16 combinations. The average results of the combinations were calculated, and the final

result can be seen in the last line of Table 14.

Table 14 – Universal model run results for the original datasets and for the Benford
datasets

Tests
Head Hand Chest

MRE
(mm)

SDR(%) MRE
(mm)

SDR(%) MRE
(px)

SDR(%)
2mm 2.5mm 3mm 4mm 2mm 4mm 10mm 3px 6px 9px

Model with original datasets 1.48 77.95 84.24 89.55 95.09 0.76 95.45 99.01 99.80 6.25 43.09 72.87 86.18
Model with Benford datasets 1.68 72.87 80.27 86.45 93.51 0.82 95.44 99.06 99.67 5.19 41.46 77.54 88.92
Fusion of model outputs 1.44 78.36 84.63 89.81 95.33 0.72 96.07 99.26 99.81 4.35 47.13 79.34 90.42

The universal model was run for 100 epochs, for a mix of three datasets (lateral

cephalograms, hand radiographs and lung radiographic), spent 7.52 hours, consumed

0.66 kWh and emitted 0.30 kg of CO2eq. This is equivalent to 2.84 km traveled by car.

For model fusion, resource consumption is doubled because the model is executed twice

for the same period.

5.3.2 Experiments and results with HybridGNet and image pre-

processing

This section presents the results of instances of the HybridGNet model trained on two

different datasets. Firstly, the model is trained and tested twice (with different random

seeds) with images from the original dataset, the final result is the average of the test

outputs. In the second approach, the model is trained and tested twice with images from

the Benford dataset, the average of the test outputs produces the final result. In the last

approach, during testing, an average fusion occurs between each landmark obtained with

the model trained on the original dataset and each landmark obtained with the model

trained on the Benford dataset, resulting in 4 combinations. The average result between

the combinations was calculated.

In Table 15, the results of the experiment are available. Results are shown for the

model being trained for 1000 epochs, 1500 epochs, and 2500 epochs. The amount of
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epoch corresponds to the values presented in the HybridGNet base article. In the case of

fusion, the number of epochs is doubled, as the fusion occurs between two models that

were trained for the same number of epochs. The results for using the original dataset

are in the first row of results. In the second line are the results related to the use of

the Benford dataset. In the last line are the results referring to the fusion between the

models’ responses during the test. The results related to the original dataset are the best,

the fusion did not produce any improvements.

Table 15 – HybridGNet model run results for the original datasets and for the Benford
datasets

Tests
Dice Hausdorff (mm)

1000 1500 2500 1000 1500 2500
HybridGNet with original dataset 0.9326 0.9372 0.9387 14.58 13.79 13.86
HybridGNet with Benford dataset 0.9274 0.9292 0.9314 15.88 15.58 15.20

Test
Dice Hausdorff (mm)

2000 3000 5000 2000 3000 5000
HybridGNet with response fusion 0.9308 0.9354 0.9366 15.06 14.45 14.20

In Figure 49 we can see the ground truth regions, the regions obtained by the model

trained with the original dataset, the regions found by the model trained with the Benford

dataset and the regions delimited through fusion.

In addition to the metrics involving the quality of the markings, we consider pre-

senting the resource consumption to train the model. To execute 1000 iterations in the

HybridGNet model, 12.29 hours were spent and it is estimated that this execution uses

0.70 kWh of electricity contributing to 0.32 kg of CO2eq. This is equivalent to 3.01 km

traveled by car. When running 1500 iterations, 18.47 hours were spent and an estimated

1.17 kWh of electricity was used, contributing to 0.54 kg of CO2eq. This is equivalent to

5.04 km traveled by car. In the end, after 2500 iterations, 31.04 hours were spent. It is

estimated that 2.11 kWh of electricity was used, contributing to 0.98 kg of CO2eq. This

is equivalent to 9.11 km traveled by car.
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Chapter 6

Conclusion

Technological advances have increased the use of images as an alternative for diagnos-

ing diseases. However, human analysis of countless images can be exhaustive and prone

to errors. To aid in the analysis of medical images and reduce the likelihood of errors,

computer vision algorithms, particularly CNNs, have demonstrated strong performance.

These algorithms are capable of analyzing large sets of data and identifying patterns

among the data that would be difficult for a human to notice. In the area of medi-

cal images, studies that seek alternatives to aid diagnosis through computer vision are

important, as they can make diagnosis quick, cheap and accessible.

In this study, we analyze the performance of CNNs in classification tasks and land-

mark detection tasks. For the classification task, we compare different CNN ensemble

architectures. We describe architectures that achieve the results shown in related work

and use fewer computational resources. In classification tasks, the findings of this study

highlight the significant contribution of DenseNet161 and ResNet152 to the fusion process

in all experiments. Furthermore, our findings demonstrate a similar level of performance

compared to the previous model, as indicated by an F1-score of 0.9100 and MCC of

0.9020. Remarkably, our approach achieves this performance using just 10GB of GPU

RAM, in contrast to the previous model’s requirement of 15.8GB.

In the image classification task, we concluded that it is important to evaluate different

strategies, since different alternatives led to similar results. When the results are similar, it

is interesting to opt for a strategy that reduces financial costs and reduces the consumption

of resources such as electricity.

The Chapter 4 task is divided into two proposals. In the first proposal, we created a

universal CNN model based on a network model fusion strategy. This universal model

performed well in the landmark detection task. The proposed model achieved an im-

provement of approximately 2% in the point distance metric. Furthermore, the training

is performed shorter time, which reduces energy consumption and carbon emissions by

approximately 65%. For this proposal, we conclude that fusion is capable of improv-

ing performance and reducing resource consumption, however, finding a correct fusion
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alternative is a difficult task.

In the Chapter 5, we seek to improve CNN performance through image preprocessing.

We use original datasets and preprocessed datasets by histogram equalization and using

the Benford method. We individually analyzed, for each dataset, the performance of the

universal model and HybridGNet, we also evaluated the results of the models in a late

fusion process. We conclude that the proposed preprocessing did not improve the model’s

performance. These results demonstrate the robustness of the CNNs which, for the ana-

lyzed datasets, managed to achieve good performance without the aid of the preprocessing

proposal. This result does not preclude future research into other preprocessing alterna-

tives, it only demonstrates that the histogram equalization associated with the Benford

method did not bring benefits to the models analyzed.

These findings contribute to our understanding of the performance of individual mod-

els, fusion techniques, and feature utilization, paving the way for the design and implemen-

tation of more efficient and effective deep learning-based systems in image classification

and landmark detection tasks.

The main challenge was accessing sufficient computing resources. Furthermore, to

propose a fusion-based model there is a need for many experiments to identify the best

way to combine the models. Future research should explore model compression techniques

to reduce computational requirements. Furthermore, more experiments and analysis are

needed to identify optimal model combinations and refine the fusion process. Evaluating

fusion alternatives on different datasets is crucial for evaluating performance and resource

utilization. Our study brought contributions that are presented in the next section.

6.1 Main Contributions

As the main contribution to this work, we propose a fusion-based model that achieves

better accuracy than the literature and reduces energy consumption and carbon emissions

by approximately 65%. The proposed model is also capable of jointly processing different

datasets with different numbers of landmarks.

Furthermore, we analyze and compare different CNNs during gastrointestinal image

classification. We propose, implement and compare different CNN committee architec-

tures based on classification quality metrics and computational resource consumption.

6.2 Future works

In future work there is the possibility of applying the ensemble of classifiers to other

datasets and testing other networks in the composition of the ensembles. For the landmark

detection task, it is interesting to test the fusion of the universal model with the graph
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spectral convolutions layers of the HybridGNet model. Furthermore, it can be assessed

whether other preprocessing alternatives can help with the performance of the models.

6.3 Contributions in Bibliographic Production

❏ A paper was published in the BRAZILIAN CONFERENCE ON INTELLIGENT

SYSTEMS (BRACIS) (CAPES extract - A4), the title of the article is as follows:

Ensemble architectures and efficient fusion techniques for Convolutional Neural Net-

works: an analysis on resource optimization strategies (COSTA et al., 2023).

❏ A paper entitled “Medical images landmarks detection by CNN fusion and energy

consumption analysis” was submitted to the journal Biomedical Signal Processing

and Control. The current status of the submission is under review.
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