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Resumo

Algoritmos de visdo computacional, como redes neurais convolucionais, sao usados
para automatizar processos na medicina e apoiar o diagnéstico. Esses algoritmos mini-
mizam o erro humano durante a andlise de imagens médicas e reduzem a variabilidade
interoperador. Neste estudo, para apoiar o diagndstico, foram propostas trés estratégias
envolvendo fusao de redes neurais convolucionais. Primeiro, comités de redes neurais con-
volucionais foram utilizados na tarefa de classificacao de imagens gastrointestinais. Em
segundo lugar, através da fusdo de modelos convolucionais, foi proposto um novo modelo
para detectar pontos de referéncia em imagens de cefalogramas laterais, radiografias de
maos e radiografias de pulmao. A terceira andlise testou se o pré-processamento de ima-
gens ajudaria os modelos convolucionais na tarefa de deteccdo de pontos de referéncia e
segmentacao de regioes. As estratégias propostas foram avaliadas com base em métricas
comuns na literatura, como erro radial médio e FI-score. Além disso, alinhado aos con-
ceitos de computacao verde, também foram avaliados o consumo de recursos e as emissoes
de poluentes. Para a tarefa de classificagao, o comité proposto obteve F1-score de 0,910,
correspondendo a literatura, porém, utilizando equipamentos de menor custo. Para de-
teccao de pontos de referéncia, por meio de fusao de modelos, considerando a taxa de
detecgao de sucesso, success detection rate (SDR), entre os pontos de referéncia previstos
e os pontos de referéncia originais, alcancamos SDR de 95, 72% para o cefalograma lateral
e 99,56% para as radiografias de mao, ambos considerando uma distancia de até 4mm.
Para radiografias de pulmao, obtivemos um SDR de 84, 21% considerando 6 pixels de dis-
tancia. Nossa proposta também reduziu o tempo de execugao, o consumo de energia e as
emissoes de carbono em cerca de 65%. A estratégia de pré-processamento nao apresentou

melhorias significativas nos resultados.

Palavras-chave: Aprendizagem profunda. Comités. Fusao. Classificagdo. Raios X.



Abstract

Computer vision algorithms such as convolutional neural networks are used to auto-
mate processes in medicine and support diagnosis. These algorithms minimize human
error during medical image analysis and reduces inter-operator variability. In this study,
to support the diagnosis, three strategies involving fusion of convolutional neural networks
were proposed. First, ensemble architectures were used in the gastrointestinal image clas-
sification task. Second, through the fusion of convolutional models, a new model was
proposed to detect landmarks in images of lateral cephalograms, hand X-rays and lung
X-rays. The third analysis tested whether image preprocessing would help convolutional
models in the task of landmark detection and region segmentation. The proposed strate-
gies were evaluated based on common metrics in the literature such as mean radial error
and Fl-score. In addition, aligning with the concepts of green computing, resource con-
sumption and pollutant emissions were also evaluated. For the classification task, the
proposed ensemble achieved an F1-score of 0.910, matching the literature, however, using
lower cost equipment. For landmark detection, through model fusion, considering the suc-
cess detection rate (SDR) between the predicted landmarks and the original landmarks,
we achieved SDR of 95.72% for the lateral cephalogram and 99.56% for the hand x-rays,
both considering a distance up to 4mm. For lung x-rays, we obtained an SDR 84.21%
considering 6 pixels of distance. Our proposal also reduced execution time, energy con-
sumption and carbon emissions by around 65%. The preprocessing strategy showed no

with significant improvements over the results.

Keywords: Deep learning. Ensamble. Fusion. Classification. X-rays.
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CHAPTER

Introduction

Image analysis is widely used in medicine for diagnosis, surgical procedures, and vari-
ous other tasks. However, one of the challenges in the medical field is inter-operator vari-
ability. Different specialists analyzing the same exam at different times can produce dif-
ferent reports. To minimize this problem, computational resources can be utilized (ZENG
et al., 2021; RUNDO et al., 2020; LITJENS et al., 2017).

Improving and interpreting images using computational resources are goals of the
computer vision field. This area has developed and refined algorithms over many years
of research, ranging from traditional techniques such as preprocessing, filtering, and seg-
mentation to recent advances provided by Deep Neural Networks (DNN), a subtype of
Artificial Neural Network (ANN). While the typical structure of an ANN consists of only
a few layers, DNNs have a deeper architecture with more hidden layers, making them
more effective in solving complex problems (STOCKMAN; SHAPIRO, 2001; BAYOUDH
et al., 2021; RUNDO et al., 2020).

The most common type of DNN for image processing is the Convolutional Neural
Networks (CNN). CNNs can be used to classify and detect regions of interest in medical
images (SANTOS et al., 2021; KRIZHEVSKY; SUTSKEVER; HINTON, 2012; SZE et
al., 2017).

Currently, there are several types of CNN architectures with varying numbers of layers,
designed for different types of problems. The expansion of CNNs has been driven by
computational advances of the 21st century and, particularly after 2016, by the use of
graphics processing units Graphic Processing Unit (GPU). Because of their high parallel
processing capacity, GPUs allow the training of deep CNNs in a relatively short time (SZE
et al., 2020; LECUN; BENGIO; HINTON, 2015).

The diversity of CNNs creates opportunities for researchers to integrate different CNN
architectures into their analyses. For instance, some studies propose using CNN ensembles
to solve problems. In an ensemble, several CNNs are combined before the system provides
the final answer. Other studies propose the fusion of networks at different levels of their
architecture (BAYOUDH et al., 2021; RADEVSKI; BENNANI, 2000).
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In this work we will explore the use of an ensemble of CNNs and fusion alternatives in
CNN architectures, in order to contribute to computational solutions to support analysis
of medical images. Furthermore, the resource consumption of the models studied will be

analyzed to indicate solutions that consume less resources.

1.1 Motivation

In the analysis of medical images using computer vision algorithms it is crucial to
minimize errors as much as possible — although some situations allow for a margin of error.
There are instances where computer vision algorithms, such as CNNs, achieve nearly 100%
accuracy on specific datasets. However, there is always room for improvement in other
contexts. Additionally, improvements can be made in terms of resource consumption by
proposing models that achieve objectives more quickly and with less energy use.

In this work, we analyzed the performance of CNNs for two tasks: (i) classification of
gastrointestinal images and (ii) detection of landmarks in images of lateral cephalograms,
hand radiographs, and lung radiographs.

The first part of the study focuses on classifying images of gastrointestinal diseases
using CNNs, justified by the significant negative impact these diseases have on the global
population. In (BORGLI et al., 2020), the authors present a dataset of gastrointestinal
images and report that gastrointestinal cancer results in about 3.5 million new cases per
year worldwide and has a high mortality rate. Using computational resources to aid
diagnosis allows for earlier cancer detection and may reduce the cost of exams.

The other part of the study focuses on detecting landmarks in medical images using
CNNs, which is important because physicians often need to analyze specific regions in a
medical image. For example, analyzing lung regions to diagnose respiratory diseases such
as COVID-19, which affected many people worldwide and requires accurate, quick, and
cost-effective diagnosis (GIELCZYK et al., 2022; GAGGION et al., 2022).

Another example of the importance of landmark detection is in lateral cephalograms.
In these images, orthodontists need to identify landmarks to diagnose a patient’s cranio-
facial condition and plan treatment (ZENG et al., 2021).

CNNs are already being used for both image classification and landmark detection in
medical images. However, there is still potential for improvement, as discussed in (MESQUITA
et al., 2023). In works such as (BORGLI et al., 2020) and (BAYOUDH et al., 2021), the
authors discuss enhancing CNN performance through strategies such as CNN ensembles

and fusions, which are the strategies investigated in this work.

1.1.1 Goals

The main goal of this work is to investigate the use of ensemble classifiers and the

influence of fusion methods on the performance of CNNs in medical imaging. The specific
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goals

a

1.2

are:

Investigate CNN models used for image classification. Explore various convolutional
neural network architectures and their applications in image classification, evaluat-

ing the models’ performance in terms of accuracy, efficiency, and generalization.

Investigate CNN models used for landmark detection. Examine CNN architectures
specifically designed to detect landmarks in images, assessing their performance in

identifying landmarks and their reliability across different medical image datasets.

Develop and analyze an ensemble architecture for image classification. Design and
implement an ensemble approach that combines multiple CNN models for image
classification. Analyze the performance gains and potential benefits of using ensem-

bles compared to single CNN models.

Compare the performance of CNNs using different types of fusion. Investigate vari-
ous data fusion techniques (such as early fusion, late fusion, and hybrid fusion) and
their impact on CNN performance. Conduct experiments to understand how these

fusion methods affect the accuracy and robustness of CNN models.

Explore image preprocessing methods. Analyze if these preprocessing techniques,
when combined with fusion methods, can improve the performance of CNNs in

landmark detection.

Contribute to the improvement of landmarks detection techniques. Develop new
methodologies or refine existing techniques to increase the accuracy and reliability
of landmark detection, sharing discoveries and insights that can advance the field

and benefit other researchers and professionals.

Develop and analyze a universal CNN model for landmark detection. Create a

versatile CNN model capable of detecting landmarks in different datasets.

Propose solutions aligned with green computing. Explain the cost and resource
consumption for the analyzed models and the proposed models, aiming for more

efficient and environmentally friendly computing solutions.

Hypothesis

CNNs are a great advance for the image classification task, but there is still possibility

of improvement. This work is being developed on the hypothesis that CNN ensembles and

fusion strategies can generate better results in classification tasks and landmark detection.

Questions to be answered:
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1. Does the use of ensemble classifiers improve the result of CNNs in classification
tasks?

2. Does the use of fusion strategies in CNN architectures improves the performance in

landmark detection tasks?

3. Does the use of preprocessing strategies improves the performance of CNNs applied

to landmark detection?

1.3 Contributions

1. Comparison of performance of CNNs in image classification task.
2. Creation of alternative CNN ensembles for image classification.
3. Performance comparison of CNN models for landmark detection.

4. Proposal of a method for image preprocessing and evaluation of whether prepro-
cessed images enhance CNN performance in landmark detection and region seg-

mentation tasks.

5. Development of a CNN model based on fusion strategies for landmark detection.

1.4 Thesis Organization

This work is organized into an introduction (1), a chapter on theoretical foundations
(2), three chapters (3, 4, 5) detailing the proposals and their respective background,
results, and conclusions, and finally a chapter summarizing the overall conclusions (6).

The theoretical foundation, presented in Chapter 2, reviews some basic concepts about
digital imaging, computer vision, deep learning, ensembles and CNN fusion.

In Chapter 3, a proposal related to the use of ensembles to improve the results of a
classification task is presented. This chapter presents related work, experiments, results
and conclusions on the use of ensemble for classifying images of the gastrointestinal tract.

In Chapter 4, a universal CNN model for landmark detection is described. This chapter
proposes fusion alternatives between models used in landmark detection. Experiments and
results are presented based on the original models and the proposed fusion-based models.
Finally, conclusions are presented based on the performance of distance metrics and the
consumption of computational resources.

In Chapter 5, we analyze whether image preprocessing brings gains to CNN models.
This chapter proposes a preprocessing approach, presents experimental results, and draws

conclusions based on the findings.
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Finally, Chapter 6 summarizes the conclusions drawn from this thesis, highlights
achievements, discusses challenges encountered, and suggests directions for future re-

search.
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CHAPTER 2

Theoretical foundation

Technological advances occurring in the 21st century allow for an increase in the stor-
age and dissemination of information, in text, image and video formats. Image processing
is important in areas such as medical imaging, autonomous vehicles, facial recognition and
industrial automation. Analyzing the content of images is a task in the area of computer
vision. Computer vision systems can automate complex tasks, improve efficiency, and
enable innovative solutions across multiple domains. CNNs are computer vision sys-
tems that are highly effective in tasks such as image classification, object detection and
facial recognition due to their ability to capture spatial hierarchies and patterns in im-
ages (STOCKMAN; SHAPIRO, 2001; MODERSITZKI, 2009; AGRAWAL et al., 2011,
WOODS, 2011; VOULODIMOS et al., 2018; BAWDEN; ROBINSON, 2020).

CNNs can operate individually or as ensembles. An ensemble of classifiers com-
bines multiple learning algorithms to achieve superior predictive performance compared
to individual models. This approach harnesses the strengths of different models to
mitigate individual weaknesses, thereby aiming for more robust and accurate predic-
tions (KRAWCZYK; SCHAEFER, 2014; KIM et al., 2015).

In addition to ensembles, CNN models can be combined in various ways, a con-
cept known as CNN fusion. CNN fusion involves integrating multiple convolutional
neural networks to create a more comprehensive and accurate model. This process
may include combining different CNN architectures, layers, or features to leverage the
strengths of each component. Fusion aims to enhance the model’s ability to generalize
across diverse datasets and conditions, making it invaluable for advanced computer vision
tasks (RUNDO et al., 2020; BAYOUDH et al., 2021; HOHN et al., 2021; GAGGION et
al., 2021; GAGGION et al., 2022).

Lastly, it is essential to consider the resource consumption associated with computer
vision tools, aligning with efforts in green computing. This field strives to reduce en-
ergy consumption and minimize the ecological footprint of computing activities. As de-
mand for computing power grows, especially with the surge in deep learning and Al,

green computing becomes increasingly critical. By optimizing algorithms, hardware, and
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data centers for energy efficiency, green computing helps mitigate the environmental im-
pact of technology, promotes sustainability, and ensures responsible use of computing
resources (STRUBELL; GANESH; MCCALLUM, 2019; ANTHONY; KANDING; SEL-
VAN, 2020; BENDER et al., 2021; SELVAN et al., 2022; MASLEJ et al., 2024).

This chapter provides an insight into computer vision, convolutional neural networks,

ensemble of classifiers, data fusion, and green computing.

2.1 Computer vision

Research in computer vision drives the development and enhancement of computa-
tional techniques that enable computers to detect and locate objects in images and videos.

Image classification involves identifying and categorizing the content of images. For
instance, in medical imaging, a physician can classify gastrointestinal images as either
disease-free or showing conditions like polyps or gastritis. Landmark detection and seg-
mentation are techniques used to pinpoint specific features and accurately delineate dif-
ferent parts of an image. Point detection entails identifying and locating specific points
of interest within an image, such as anatomical landmarks critical for monitoring dys-
function progression or surgical planning. Segmentation divides an image into segments
corresponding to distinct regions or objects within the image (MURPHY et al., 2006;
JABRI et al., 2000; PARAGIOS; TZIRITAS, 1999; SWENSSON;, 1996).

Since the inception of computer vision research, various techniques have been de-
vised to enhance computational performance in object classification and detection tasks.
Methods such as filters, image enhancement, and machine learning have been pivotal.
As of 2014, CNN has shown promising results for object detection and localization in
images. (GIRSHICK et al., 2014; GIRSHICK et al., 2015). According to Figure 1, deep
learning is a subdomain of machine learning that is part of the field of Artificial Intel-
ligence (AI) and is based on the functioning of the brain (SZE et al., 2017; LECUN;
BENGIO; HINTON, 2015; RUNDO et al., 2020; SZE et al., 2020).
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Artificial Intelligence

Machine Learning

Brain-Inspired

Neural Networks
Deep
Learning

Figure 1 — Fields of Artificial Intelligence. Adapted from (SZE et al., 2020).

Various CNN architectures have shown promising results across different applications;
however, opportunities for improvement remain. In more complex scenarios, combining
CNNs with different architectures in an ensemble approach has been beneficial. Ensem-
bles aggregate responses from classifiers with diverse characteristics and competencies to
optimize classification accuracy (LECUN; BENGIO; HINTON, 2015; KIM et al., 2015;
SZE et al., 2017; JO; NHO; SAYKIN, 2019; RUNDO et al., 2020; SZE et al., 2020).

Another strategy to enhance CNN performance involves integrating secondary infor-
mation. Models fusion techniques facilitate the incorporation of supplementary data.
Fusion can occur at different stages: early fusion integrates data before CNN processing,
late fusion combines data post-processing, and intermediate fusion merges characteristics
of both approaches (GRAPOV et al., 2018; RUNDO et al., 2020; BAYOUDH et al., 2021;
HOHN et al., 2021).

2.2 Digital image

A digital image is derived from an analog signal through processes of sampling and
quantization. The digital image is a matrix formed by ¢ pixels, such that ¢ = (z,y), and
the intensity of ¢, given by f(¢), according to Equation 1. The digital image is represented
as a matrix N x M (WOODS, 2011; GONZALEZ; WOODS, 2009; MODERSITZKI, 2009;
GOSHTASBY, 2005)
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2.3 Convolutional neural network models

Since the emergence of computers, there have been researches with the objective of
making the computer reproduce biological characteristics; these are bioinspired researches.
Among the bioinspired researches, there is one that simulates the functioning of the brain
through artificial neural networks. The networks undergo many transformations, with
proposals for different architectures to work with different types of data, as reported in
the works of (FUKUSHIMA, 1980; LECUN et al., 1989; KRIZHEVSKY; SUTSKEVER,;
HINTON, 2012; LECUN; BENGIO; HINTON, 2015; SZEGEDY et al., 2017; SZE et al.,
2017). Among the types of networks proposed throughout history, in this work, the focus
is to use CNN.

After 2006, with the adoption of data processing using GPU, it became possible to
train networks faster. The gain in training time leads to an increase in the number of layers
in the networks, and consequently, there is an improvement in performance. In the 2012
ImageNet competition, CNN far outperforms the other competitors, nearly halving the
error rates of the best competitors. In Figure 2, it is possible to observe the performance
obtained by networks of different architectures between the years 2012 and 2015; it is
noted that the performance in 2015 was better than in 2012, the error decreased, and the
number of layers of the networks increased (KRIZHEVSKY; SUTSKEVER; HINTON,
2012; LECUN; BENGIO; HINTON, 2015; RUSSAKOVSKY et al., 2015; SZE et al.,
2017; SZE et al., 2020).
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Figure 2 — Evolution of the performance of CNNs in the ImageNet competition. From
top to bottom: the first graph shows that error decreased between 2011 and
2015; over the same period, the second graph shows that the number of layers
in neural networks has increased. Adapted from (SZE et al., 2020) and (RUS-
SAKOVSKY et al., 2015)

The fundamental architecture of a CNN comprises an input layer, convolutional lay-
ers, fully connected layers, and an output layer. Additionally, pooling layers, activation
functions, softmax function, and dropout are important in CNN performance. (LECUN;
BENGIO; HINTON, 2015; SZE et al., 2017; KRIZHEVSKY; SUTSKEVER; HINTON,
2012).

Figure 3 shows the architecture of the AlexNet network, the winner of the ImageNet
competition in 2012 (KRIZHEVSKY; SUTSKEVER; HINTON;, 2012). Among some con-
volution layers, there is pooling layers, which is a type of subsampling that can take into
account the mean, sum, or maximum value (max pooling) in a sample. An activation
function is used between the convolution layers, and such a function can be a sigmoid,
hyperbolic tangent, ReLu, Leaky ReLu, or exponential LU, with the ReLu function,
f(z) = max(0,z), being the most traditional in CNNs. After the fully connected layer,
the softmax function is used, establishes the percentage of probability of the input ob-

ject about the classes of the problem. During the training of the network, dropout is
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used, which forces neurons to learn to value communication with other neurons and not
just a fixed flow of communication, preventing the network from specializing just to the
training dataset (LECUN; BENGIO; HINTON, 2015; SZE et al., 2017; KRIZHEVSKY;
SUTSKEVER; HINTON;, 2012).

Convolutional Convolutional Convolutional Convolutional Convolutional
Layer Layer Layer Layer Layer
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S @ﬁ Q” ?I = ’ 13 dense | |dense]
155 . =
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of 4 pooling pooling B Full  Softmax
3 a8 Connected
Figure 3 — AlexNet network architecture. Adapted from: (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012).

Since AlexNet, numerous CNN architectures have been proposed. These architectures
have significantly advanced object detection and classification in images, each offering
unique features and achieving notable results in diverse contexts.

The VGG algorithm is a popular CNN architecture known for its simplicity and ef-
fectiveness. VGG is still popular for medical data (LITJENS et al., 2017), though recent
landmark studies are using VGG16 (TAMMINA, 2019). It consists of 16 convolutional
layers followed by fully connected layers. The VGG16 algorithm employs small convo-
lutional filters and max-pooling layers in a homogeneous architecture. Despite its larger
parameter count, VGG16 has demonstrated strong performance in various computer vi-
sion tasks, particularly image classification (LITJENS et al., 2017).

DenseNets are Densely Connected deep neural networks that tackle the vanishing gra-
dient problem and promote feature reuse (HUANG et al., 2017). They introduce a dense
connectivity pattern where each layer is directly connected to every other layer. This fa-
cilitates information flow and encourages feature reuse, leading to improved gradient flow
and enhanced model performance. There are variations of the DenseNet architectures,
such as DenseNet121, DenseNet161, and DenseNet201. The numbers (121, 161, 201) rep-
resent the number of layers in each respective DenseNet variant. On the other hand,
EfficientNet is a family of CNNs that achieve state of the art performance with compu-
tational efficiency (TAN; LE, 2019). These networks employ a compound scaling method
that uniformly scales the network width, depth, and resolution. By optimizing the scal-
ing coefficients, EfficientNet achieves high accuracy while maintaining a smaller model

size and reduced computational requirements (TAN; LE, 2019). Efficientnet b0 is a spe-
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cific variant of the EfficientNet architecture, where “b0” indicates the baseline variant of
EfficientNet.

The class of algorithms called MobileNet is a lightweight CNN designed for mobile
and embedded vision applications. It utilizes depth-wise separable convolutions, split-
ting the standard convolution operation into depth-wise and point-wise convolutions.
MobileNetV2 (SANDLER et al., 2018) improves the state of the art performance of mo-
bile models on multiple tasks and benchmarks as well as across a spectrum of different
model sizes (HOWARD et al., 2017). This reduces parameters and computations, making
MobileNetV2 models suitable for resource-constrained environments, such as images or
videos (DONG et al., 2020), without compromising performance.

ResNet introduced residual connections, enabling the network to learn residual map-
pings and overcome the vanishing gradient problem (LITJENS et al., 2017; HE et al.,
2016). ResNet architectures, like ResNet-152, have achieved exceptional performance in
image classification tasks, revolutionizing deep learning (BORGLI et al., 2020; HE et al.,
2016).

In addition to the use of different architectures or different types of networks, there
may also be the combination of networks in ensembles; in (LECUN; BENGIO; HINTON,
2015), the authors present the possibility of combining CNNs with Recurrent Neural
Networks (RNN) that use reinforcement learning to decide which region of the image to
look at.

Allied to deep networks, to improve performance in object classification and detection
tasks, it is possible to combine resources through fusion, a subject that is detailed in the

next section.

2.4 Ensemble of Classifiers

Collaborative decision-making involving individuals with diverse characteristics is com-
monplace in human interactions, particularly in business environments. This behavior can
be replicated by computers through ensemble classifiers. Ensembles consistently yield
strong results in classification tasks; however, their performance heavily relies on select-
ing appropriate classifiers and effective methods for combining classifier responses. In
an ensemble; classifiers with varying characteristics and capabilities collaborate to de-
rive optimal solutions for classification problems, as depicted in Figure 4 (RADEVSKI;
BENNANTI, 2000; AKSELA, 2003; KIM et al., 2015).
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Figure 4 — Example architecture for ensemble of classifiers.

In ensembles architectures of classifiers, generating the final answer is a crucial task,
and it is necessary to choose a good method (fusion method) for collective decision-making;
methods based on static weights, voting, simple average, or weighted exponential average
are often used (KRAWCZYK; SCHAEFER, 2014; KIM et al., 2015). In (KRAWCZYK;
SCHAEFER, 2014), instead of traditional fusing methods, a perceptron neural network
was used to fuse the ensemble response, which increased the overall classification accuracy.

The use of an ensemble of classifiers is reported in several works, such as (KRAWCZYK;
SCHAEFER, 2014), in which the authors propose a less aggressive and more efficient ap-
proach for the diagnosis of breast cancer, performing the identification of cancer through
thermal images. Additionally, an ensemble of classifiers is used to automatically classify
features extracted from breast thermography. In (KIM et al., 2015), the authors use a
database with images of faces from the real world, Static Facial Expressions in the Wild
(SFEW 2.0), and they propose an ensemble of convolutional neural networks (CNNs) to
analyze facial expressions. The returns generated by the networks are pooled based on
the exponentially weighted average and simple average rule; the class that was chosen by

more classifiers is defined as the ensemble’s answer.

2.5 Convolutional Neural Networks Fusion

A physician, when diagnosing a patient, can rely on information from imaging tests,
blood tests, and also on information arising from questions asked to the patient. The
volume of patient data has become greater due to the emergence of new resources for
acquiring them. This increase in data overwhelms physicians during decision-making. To
aid in medical diagnosis, the use of algorithms to integrate and process large volumes of
data is increasing.

Relevant information can be learned by algorithms automatically from images. Het-
erogeneous and multimodal imaging data can be integrated (undergo fusion) to reduce
randomness and redundancy in order to improve diagnosis (RUNDO et al., 2020; BAY-
OUDH et al., 2021; HOHN et al., 2021).
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There are cases in which a fusion occurs between features generated by different CNNs
trained on the same dataset. In other situations, features from CNNs of the same type,
trained on different parts of the dataset, are fused (RUNDO et al., 2020; BAYOUDH et
al., 2021; HOHN et al., 2021).

Different types of images can be fused and made available to a classifier; the fusion
can be early, in which the data will be integrated before being made available to the
classifier, as shown in Figure 5. There is late fusion, in which the different types of data
are passed to different classifiers, and the responses of the classifiers are integrated, as
shown in Figure 6. Finally, there is the intermediate fusion, which joins the concepts of
early fusion and late fusion, as shown in Figure 7 (BAYOUDH et al., 2021).

Datatype 1 —

Data type 2 F

Figure 5 — Early Fusion. Adapted from: (BAYOUDH et al., 2021).

—» Fusion Classifier

Datatype 1 —» Classifier 1

Data type 2 ’—) Classifier 2

Figure 6 — Late fusion. Adapted from: (BAYOUDH et al., 2021).
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Data type 2 L) Classifier 2
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Figure 7 — Intermediate fusion. Adapted from: (BAYOUDH et al., 2021).

In literature we can find examples of the use of data fusion to improve the classification

task. In (LI et al., 2020a), the authors propose the fusion of dermoscopic images with
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other patient data for the diagnosis of skin diseases. The authors emphasize that there
are few studies focused on data fusion for the classification of medical images (LI et al.,
2020a).

In another work, the authors in (VADDI; MANOHARAN;, 2020) propose the fusion
of spectral and spatial information for the classification task using a simple design CNN
network architecture. In (GRAPOV et al., 2018) emphasizes the possibility of integrating
omic data with other types of data, including medical images. In (ADERGHAL et al.,
2017) explore the possibility of fusing information from different brain projections using
a CNN architecture. Instead of working with the entire volume of the brain, the authors
propose the fusion of CNNs from the sagittal, coronal, and axial projections of the brain.

Based on related work, it can be seen that data fusion is a resource explored as a way

to improve classification tasks.

2.6 Green computing: energy consumption and car-
bon dioxide emissions in computational applica-

tions

The adoption of GPU-based data processing has facilitated the proliferation of CNN
models with increased layers, resulting in substantial gains in accuracy. However, this
trend has also led to heightened GPU usage, thereby increasing energy consumption
and carbon dioxide emissions, contributing to global warming (STRUBELL; GANESH;
MCCALLUM, 2019; ANTHONY; KANDING; SELVAN, 2020; BENDER et al., 2021;
SELVAN et al., 2022; MASLEJ et al., 2024).

In (HODAK; GORKOVENKO; DHOLAKIA, 2019), experiments were conducted on
Lenovo ThinkSystem SR670 servers, primarily utilized for Deep Learning (DL). The find-
ings revealed that GPUs accounted for 70% of energy consumption during the execution
of CNN models, while the CPU and RAM accounted for 15% and 10%, respectively.

In order to align computing practices with global efforts to mitigate carbon emissions,
developers must monitor the energy consumption and carbon emissions associated with
training CNN models (ANTHONY; KANDING; SELVAN, 2020; HENDERSON et al.,
2020; SELVAN et al., 2022). Several tools have been proposed and made available to
calculate energy consumption and carbon emissions during CNN training, such as those
presented in (LACOSTE et al., 2019; HENDERSON et al., 2020; ANTHONY; KAND-
ING; SELVAN, 2020; BUDENNYY et al., 2022).

In this work, we will use the tool proposed by (ANTHONY; KANDING; SELVAN,
2020)! to monitor the energy consumption and carbon emissions associated with the

studied models. This tool enables consumption predictions from the initial training epoch,

1 <https://github.com/lfwa/carbontracker>
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supports various environments, and automatically reports the average gCOo/kEW h for the

region in which the server operates.
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CHAPTER

Ensemble Architectures Analysis in

Classification Task

The human Gastrointestinal (GI) tract is susceptible to several abnormal mucosal
findings, including life-threatening diseases (BORGLI et al., 2020). GI cancer alone
accounts for millions of new cases annually, emphasizing the need for improved endo-
scopic performance and systematic screening (JHA et al., 2020). Gastrointestinal exams
and colonoscopy are essential procedures to investigate the human GI tract (JHA et al.,
2021). These tests play a vital role in the diagnosis and management of gastrointesti-
nal conditions, contributing to the early detection, treatment and prevention of serious
complications (HICKS et al., 2021; JHA et al., 2021; BORGLI et al., 2020). However,
current endoscopic scoring systems lack standardization and are subjective (JHA et al.,
2021; BORGLI et al., 2020).

In this context, artificial intelligence (AI) enabled computer-assisted diagnostic sys-
tems, particularly machine learning, have shown promise in healthcare, but the scarcity of
medical data impedes progress (BORGLI et al., 2020; JHA et al., 2020). To solve this, we
used a dataset, called HyperKvasir, a large dataset of gastrointestinal images and videos
collected during real exams (BORGLI et al., 2020). The dataset contains over 1.1 x 10°
images and 374 videos and representing anatomical landmarks as well as pathological and
normal findings (BORGLI et al., 2020).

Over the years, machine learning has evolved into deep learning algorithms, relying pri-
marily on the DNN. Convolutional neural networks (CNN), a type of DNN, have emerged
as a powerful tool for image analysis and classification, including medical imaging tasks.
CNN ensemble architectures have been widely employed to improve predictive accuracy
by combining the outputs of various models. These sets leverage the diversity of indi-
vidual CNN models to improve overall performance. In addition, fusion techniques are
employed to effectively integrate predictions from multiple CNN models (KRIZHEVSKY;
SUTSKEVER; HINTON, 2012; SZE et al., 2017).

In this work, based on (COSTA et al., 2023), our main objective is to propose a new
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ensemble architecture and efficient fusion techniques for CNNs in the classification of
GI tract diseases using the HyperKvasir dataset, aiming to obtain better results than in
the literature and to optimize computational resources. To achieve this, we performed a
thorough literature review to identify relevant studies on the use of deep learning methods
in similar health domains. In addition, we performed several experiments to evaluate the

effectiveness of our proposed approach.

3.1 Background

Since the emergence of computers, there have been research efforts to make them
reproduce biological characteristics; these are known as bioinspired research. Among
the bioinspired research, there is one that seeks to simulate the functioning of the brain
through artificial neural networks. These networks have undergone many transformations,
as reported in the papers (FUKUSHIMA, 1980; LECUN et al., 1989; KRIZHEVSKY;
SUTSKEVER; HINTON, 2012; LECUN; BENGIO; HINTON, 2015; SZEGEDY et al.,
2017; SZE et al., 2017; SZE et al., 2020). This section provides an overview of the Hyper-
Kvasir database (BORGLI et al., 2020), the dataset utilized in this study. We reviewed
the literature on deep learning in digital imaging and consider general model (BORGLI et
al., 2020) as a reference for our research. Our objective is to establish a robust foundation

by analyzing the dataset and surveying related studies.

3.1.1 HyperKvasir Dataset

The HyperKvasir dataset! is composed of images and videos. The dataset content was
collected between 2008 and 2016, in a hospital in Norway. In this work, 10639 instances
available in the dataset are used. The images are separated into 23 classes, in Figure 9
it is possible to see examples of images contained in the dataset. The Classes are Z-line,
Pylorus, Retroflex stomach, Barrett’s, Short segment, Esophagitis grade A, Esophagitis
grade B-D, Cecum, Retroflex rectum, Terminal ileum, Polyps, Ulcerative colitis grade
0-1, Ulcerative colitis grade 1, Ulcerative colitis grade 1 — 2, Ulcerative colitis grade 2,
Ulcerative colitis grade 2 — 3, Ulcerative colitis grade 3, Hemorrhoids, Dyed lifted polyps,
Dyed resection margins, BBPS 0 — 1, BBPS 2 — 3, Impacted stool. The dataset offers a
file (. csv) with the division of classes studied by Borgli (BORGLI et al., 2020).

3.1.2 Related Works

In our study, we started by establishing a solid foundation using the reference arti-
cle (BORGLI et al., 2020). Expanding upon this work, we created a comprehensive graph,

illustrated in Figure 10, to visually illustrate the interconnectedness of relevant papers

1 Available at: <https://datasets.simula.no/hyper-kvasir>.
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Figure 8 — Example of images present in the gastrointestinal disease image database.
From left to right: image of cecum class, polyp class, esophagitis grade-a class,
polyp class.

in our research field. To create the graph we used the online tool Connected Papers?,
the metrics of this tool are based on Co-citation and Bibliographic Coupling (KESSLER,
1963; OSAREH, 1996). This graph provides a valuable representation of the network of
related literature, with a specific focus on the HyperKvasir image and video dataset for
gastrointestinal endoscopy, as discussed by (BORGLI et al., 2020).

Upon analyzing the graph, we identified a total of 41 studies connected to the article
(BORGLI et al., 2020), resulting in a set of 42 relevant studies for our research. However,
we established inclusion criteria, considering only studies published after 2019, that is,
after the publication date of the base article. Additionally, we excluded systematic litera-
ture reviews or survey studies from our analysis. The 10 remaining studies were evaluated
for their degree of similarity to the base article, represented by the similarity index Similar
based-Paper (SbP), ranging from 12% to 100%. The higher the SbP value, the greater
the similarity between the article and the base work (previous paper (BORGLI et al.,
2020)), which is relevant to the results obtained in our research.

To gather related works for our paper, each article was thoroughly reviewed based on
the following parameters: Study name and year, Task performed, CNN Architecture
used, Methodology approach, Dataset and SbP. These parameters were used to assess
and categorize the papers, ensuring that they align with the focus and objectives of our
research. By analyzing each article based on these criteria, we were able to identify and
select relevant works that contribute to our study.

Table 1 shows several studies in the context of gastrointestinal endoscopy. The studies

cover a range of tasks such as polyp classification, segmentation, detection, localization,

2 Available at: <https://www.connectedpapers.com/main>>.
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Figure 9 — Instance distribution by class.

and abnormality identification. Various deep learning architectures, including CNNs like
ResNet-152, DenseNet-161, U-Net, Pix2Pix and HGANet are utilized in these studies.
Different methodologies and techniques such as Fuzzy C-Means Clustering, ResUNet,
Conditional Random Fields, Test-Time Augmentation, and Adversarial Training are also
employed. Multiple datasets are used for evaluation, including the HyperKvasir and the
EAD2019 datasets. The achieved SbP rank is used as a performance metric, with higher
values indicating better results, which means is most similar to paper (BORGLI et al.,
2020).

These studies provided valuable insights and advancements in leveraging deep learning
and clustering techniques for gastrointestinal endoscopy. They contribute to the devel-

opment of automated systems for polyp classification, segmentation, and abnormality
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Figure 10 — Graph for connected papers to (BORGLI et al., 2020), which uses Hyper-
Kvasir image and video dataset for gastrointestinal endoscopy. In the image
it shows “Borgli, 2019” because the system considered the year in which the
base was created and not the year of publication which is 2020.

detection, which can improve the efficiency and accuracy of medical diagnoses. Besides
that, these papers served as the foundation for our study, as they utilized various CNNs

for different approaches to GI problems.

3.1.3 Background model

n (BORGLI et al., 2020), the authors proposed a classification model represented in
Figure 11. The model is composed of pre-trained CNNs, DenseNet161 and ResNet152.
Each CNN model is a function, M, composed of a set of subfunctions (convolution,
pooling, batch normalization, softmax, optimizer, etc.) which, in this case, given an

input image 7, a learning rate value 17 and the number of epochs e, returns an output
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Table 1 — State of the art summarization considering GI dataset for medical diagnoses.

Study Task Architecture Methodology Dataset SbP
Pre-trained (ResNet-50, . . .
HyperKvasir, a comprehensive multi- Gastrointestinal | ResNet-152, DenseNet-161 f\:ri ?igi:gtaize}:‘;i aNted
class image and video dataset for polyp Averaged ResNet-152 + usin;" s tan(i‘u‘d cl‘ll&;%iﬁcat‘ilon HyperKvasir 100
gastrointestinal endoscopy (BORGLI et al., 2020) | Classification DenseNet-161, ResNet-152 11;ctrt;(;s ‘ o
+ DenseNet-161+MLP ) '
Preprocessing steps, FCM
Gastrointestinal algorithm, Data augmenta-
Kvasir-SEG: A Segmented Polyp ;01‘ Y') o Fuzzy c-mean clustering, tion, ResU-Net implemen- Kvasir-SEG 197
Dataset (JHA et al., 2020) POE . ResUNet CNN tation details, Qualitative ) :
Segmentation . N
comparison of FCM clus-
tering and ResUNet results
The endotect 2020 challenge: eva- e . e
luation and Comparison of Classi- (’dhtr()lIlt%tl,lml CNN (ResNet-lu_Z), Automatic segmentation of . -
. § . polyp detection CNN (Mask Scoring R~ ! . HyperKvasir 24.8
fication, Segmentation and Infer- and segmentation | CNN, DeepLab V3+) polyps, Real-time analysis
ence time for endoscopy (HICKS et al., 2021) ¢ & ! Y P
An Extensive Study on Cross-dataset Gastrointestinal GF-based approaches, Deep CVC-12k
Bias and Evaluation Metrics Interpre- tract di; es CNN (ResNet-152, Dense | neural networks, Cross-data- éVC 3"67 s
tation for Machine Learning Applied Identification Net-161) and addtional set evaluations, Automated ove 61)2 F lu;’ 20.6
to Gastrointestinal tract Abnormality and MLP identification of GI tract 2618 Me di}(): o v
Classification (THAMBAWITA et al., 2020) Segmentation diseases
CNN (YOLOv4 with thect de':tectlon and loc'ah—
. zation using YOLOv4 with
. . Darknet53 backbone), .
. . . Gastrointestinal . Dark-net53 backbone and
Real-Time Polyp Detection, Localiza- . Segmentation networks \ "
. o - . ! polyp detection, Cross-Stage-Partial-Con- o
tion and segmentation in colonoscopy . (Colon SegNet, UNet+ . . Kvasir-SEG 13.8
. R localization and ) nections (CSP), Semantic
Using Deep Learning (JHA et al., 2021) . ResNet34 backbone, . .
segmentation segmentation + different
Deep-Labv3+, P
PSPNet, HRNet) UNet, Deep-Labv3+,
“’ B PSPNet, HRNet
Medico Multimedia Task at Media Gastrointestinal CNN, ADICC similarity Algorithm Speed Efficien-
; coefficient (DSC) and cy, Framesper-second (FPS) .
Eval 2020: Automatic Polyp Seg- polyp . . X Kvasir-Seg 12.8
. . mean Intersection over while segment colonoscopic
mentation (JHA et al., 2020) segmentation ) .
Union (mloU) images
EAD2019
(2192 unique
An objective comparison of detec- Hollow-organs Mask R-CNN, ;F;S:lslfclll;;}a?:ll:i? :::1111:10 Z;gzg’ f;i ZYBHE‘S n
tion and segmentation algorithms generalization, RetinaNet, . ’n r'Ollir t7i n ‘Q»trkainilr)l ) mask annc _' 12
for artefactsin clinical endoscopy detection and Cascade R-CNN, generauzation, & ask anno-
(ALI et al., 2020) ‘ seementation DeepLabV3 separate batches, 7 prevalent | tations, addi=
o e ¢ bl artefact types tional 195,
122, and 51
videos)
Kvasir-SEG,
CVC-ClinicDB,
Conditional Random Field CVC-ColonDB,
A comprehensive study on colorectal . . (CRF) ‘an(l TCSLTHH(T‘ Aug- ETIS-Larib
olyp seementation with ResUNet -4+ Gastrointestinal mentation (TTA), Dice Polyp DB,
fonvdlijﬁoial o Mol s Toat polyp CNN ResUNet+-+ coefficient (DSC), Inter- ASU-Mayo 13.1
Time Audment‘ltion (]HA ot al "2'021) Segmentation section over Union (IoU), Clinic Colo-
e - : o mean IoU (mloU), AUC- noscopy Video
ROCand data augmentation | Database,
CVC-Video
ClinicDB
. . . Gastrointestinal Learning to segment within Kvaiﬂr_S_EG
Pyramidal segmentation of Medical ol coveral erids. Grid atemen (validation,
Images using Adversarial Training gc :\III;)CIIt“ttion U-Net and Pix2Pix tétiofl aros;—(latw tméi)nm testing), 12.7
(NAESS et al., 2021) grentation ot @ Wralling | cvoClinic
and localization and testing .
DB (testing)
HGANet with multiple rou-
tes, various image resolu-
Automated identification of human R UOI}S’ and several convo-
sastrointestinal tract abnormalities Gastrointestinal lutional layers. Pre-proces-
based on deep convolutional neural polyp . DCNN (HGANet) St mvolve,js (Troppmg, Kvasir-Cap- 12.4
twork witl losconic images abnormality downsampling and removal sule
IeLWOrK Wil enCoscopic Images identification of undesired artifacts.

(IQBAL et al., 2022)

Augmentation techniques
are applied to balance the
classes.

?, according to the Equation 2:

=

M(X,n,e)

(2)

The output, ?, is a probability vector that indicates the probability that o, belongs

to one of the classes of the problem. The vector ? = [c1,¢9,c3,+ -+, Co3], where ¢ € C

for each GI class and |C| = 23. Given a dataset with 10639 gastrointestinal images,
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Figure 11 — Previous model (BORGLI et al., 2020) for CNN models training and fusion
process.

7, divided into two splits, one set with 5315 images and another set with 5324 images,
the validation split is used in testing. The model proposed in (BORGLI et al., 2020)
alternates sets for training and validation. The final response of the model is the average
of the results of the two splits. For each split, the authors trained the CNNs models
M, and M, respectively, DenseNet161 and ResNet152, using n = 0.001, e = 50, the
optimizer Stochastic Gradient Descent (SGD) and batch size 32; M; and M, generated
the responses ?1 and ?2, respectively. After training, the best weight set W for each
model was found and the best-trained models M} and M& are saved. Using the trained

models, a model M"Y is created:

PY = MY(X,n, e, M?, MP), (3)

since ? ?b and ?b are output of M? and M2, respectively.

3.2 Proposal

In this chapter, we have two proposals. The first proposal sought to overcome the
literature results using fewer GPU resources than the second proposal, which is an expan-
sion of what the authors propose in (BORGLI et al., 2020). The second proposal sought
to verify whether other CNN fusions, even using more GPU resources, outperformed the
literature results. The dataset for training and testing contains 10639 gastrointestinal
images and has two divisions, one part with 5315 images and another part with 5324

images. The CNNs models used are accessible through the Pytorch framework.

3.2.1 Fusion and ensemble processes

Our first proposal was to individually train a set of CNNs models { My, My, Ms, ..., M, }
and get their respective answers {?1, ?2, cee ?n}, forn = 7. The CNNs were DenseNet121,
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DenseNet161, DenseNet201, EfficientNet b0, MobileNetV2, ResNet152 e VGG16. Pre-
trained models in ImageNet-1K, available in PyTorch, were used. To minimize the prob-
lem of class imbalance, data augmentation was used. Each model was trained adopting
the following values for n = {0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.005}, e = 50, SGD
and batch size 32, as shown in Figure 12. In the set of values of n there is the present
value in (BORGLI et al., 2020) and some higher and lower values. The loss function
used during training was cross entropy. After training, each model was tested and the
responses were fused. Each network could participate or not in the fusion. During the
tests, the networks’ responses were fused, forming all possible combinations between the
seven networks. Fusions occur between trained models with the same learning rate, the

total of fusions were 2" X 6.

Train Output - 23 classes

DenseNet121 —— Learning rate
DenseNet161 ———p—— 0.0001 Pylorus
—— Retroflex stomach
DenseNet201 | ——p—— 0.0003
Endoscopic EfficientNet_b0 }—4}— 0.0005
images dataset - [ }
ResNet152 }—4—— 0.003
VGG16 }—4— 0.005

Z-line

Barreit's

h 4

Retroflex rectum

Terminal lleum

Hemorrhoids

Polyps

Figure 12 — Our proposal for ensemble architecture for training and fusion process.

For this proposal, two fusion alternatives were analyzed, by average and by voting. In
average fusion, each trained model, M;, generates an output ?Z and the fusion is given by
?T = % o ?i, where n is the number of models of CNNs and ?T is the average output
of the models that make up the fusion, according to Figure 13 (a). In fusion by voting,
considering the values in Figure 13 (a), each network that makes up the fusion votes in
the class that receives the highest percentage of probability, as shown in Figure 13 (b).
In case of a tie, the first tiebreaker considered the number of times the class was in first
and second place in the voting. If the tie remains, among the classes that met the first
tiebreaker criterion, the one with the highest percentage of probability is chosen.

In our second proposal, illustrated in Figure 14, we used the model combination strat-
egy presented by (BORGLI et al., 2020), but we performed tests with other CNN models.
Models were created with different fusions of pre-trained CNNs, so M" was the compo-
sition of best models {M?, ME, ... M?P}, for different values of 2 < n < 7, in Figure 14

presents a fusion of models. Each chosen model was trained individually for 50 epochs.
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(a) Fusion by mean scheme. (b) Fusion by voting scheme.

Figure 13 — Different fusion schemes for combining models.

The best trained were fused to form a new model, which was trained for another 50

epochs.
individual training ' Output-23classes | | Fusion model training )
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Figure 14 — Representation of the model training process. Models are trained individually.
The best trained models are fused and retrained.

In the first proposal, with trained models, it is possible to perform fusions between
models without having to train them again. In the second proposal, each new fusion

generates a new model that needs to be trained.

3.2.2 Evaluation methodology

Our approach involved the utilization of four metrics - precision, recall, F1l-score,
and Matthews correlation coefficient (MCC) — to evaluate the performance of our model
and gain valuable insights. Additionally, we employed both macro and micro averages
to further analyze the overall performance of our model (SARKAR; BALI; SHARMA,
2018).

In classification tasks, true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) are commonly used terms that represent the outcomes of the

predictions made by a model. TP refers to correct predictions of the positive class, where
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the model identifies positive instances correctly. TN represents correct predictions of
the negative class, where the model identifies negative instances correctly. FP refers to
incorrect predictions of the positive class, where the model identifies negative instances
as positive. FN represents incorrect predictions of the negative class, where the model
identifies positive instances as negative (SARKAR; BALL; SHARMA, 2018).

Matthews correlation coefficient, which is a measure of the quality of binary (two-class)
classification models. It takes into account TP, TN, FP and FN to provide a balanced
assessment of the model’s performance, as shown in Equation 4. The MCC ranges from
[—1, +1], where a value of (41) indicates a perfect classification, (0) indicates a random
classification, and (—1) indicates a completely wrong classification. MCC values closer to
(+1) indicate better performance of the classification model (CHICCO; JURMAN, 2020).

VOO — TPxTN—FPxFN (@)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Micro-average is a method of aggregating the performance metrics across all classes in a
multi-class classification problem. The formulas for micro-average precision (miP) (Eq.
5), recall (miR) (Eq. 6), and Fl-score (miF'l) (Eq. 7) are as follows (TAKAHASHI et
al., 2022):

, TP , 2 X (miP x miR)
P=_-" Fl=
M TPy FP (5) m (miP + miR) @
TP
miR (6)

T TP+ FN

Macro-average, on the other hand, calculates the performance metrics for each class
individually and then takes the average across all classes. The formulas for macro-average
precision (maP) (Eq. 8), recall (maR) (Eq. 9), and Fl-score (maF'1) (Eq. 10) are as
follows (TAKAHASHI et al., 2022):

"(Precision; nF1 A
P — > (Precision;) (8) maFl — S M(F1_score;) (10)
n n
maR = i (fiecall;) (R;calli) (9)

where precision;, recall;, and F1l-score; represent the precision, recall, and F1-score of
class 7, and n is the total number of classes. By using micro and macro averaging, we can
gain insights into the overall performance of the classification model, considering both the

individual class performance and the overall performance across all classes.
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3.3 Results and Discussion

In this section, we present a comprehensive analysis of various aspects related to CNNs
and their fusion configurations. Firstly, we discuss the analysis for individual CNNs. Next,
we explore the evaluation of fusion configurations and CNN performance metrics. In the
experiments involving average fusion and voting fusion, 768 combinations were performed,
however, in the results sections we present the nine best results. In these experiments,
fusion occurs during the tests and the output layer values that define which problem class
the input instance belongs to are fused.

Furthermore, we investigate the fusion with optimal training CNN models. Lastly,
we conduct a comprehensive analysis of resource consumption for the CNN models. By
examining these four aspects, we gain a comprehensive understanding of the individual
and fused CNN models, their performance metrics, optimal training configurations, and
resource requirements. This knowledge enables us to make informed decisions and design

more effective and resource-efficient CNN-based systems.

3.3.1 Analysis for individual convolutional neural networks

In this section, we evaluate the individual performance of the CNN models and their
effectiveness in tackling the given task. This analysis provides insights into the strengths
and weaknesses of each individual model. Table 2 present differents CNNs and configura-
tions, such as Learning Rate (LR), in addition, performance metrics, including Matthews
correlation coefficient (MCC), precision, recall, and Fl-score. Each row represents a dif-
ferent CNN model, denoted by M; to M;. Each model was evaluated with 6 LR’s, the

best results are presented in the Table 2. Analyzing the results, it can be observed that

Table 2 — Individual convolutional neural networks results.

CNN Macro Average Micro Average .
D Models LR Precision | Recall | F1-Score | Precision | Recall | F1-Score Mee

M | DenseNet121 0.0030 | 0.6149 0.6004 0.5986 0.8929 0.8929 0.8929 0.8839
M, | DenseNet161 0.0030 | 0.6190 0.6016 0.6045 0.9025 | 0.9025 | 0.9025 | 0.8942
Ms; | DenseNet201 0.0030 | 0.6199 0.5963 0.5991 0.8972 0.8972 0.8972 0.8884
M, | EfficientNet_ b0 | 0.0050 | 0.5952 0.6078 0.5955 0.8902 0.8902 0.8902 0.8810
My | MobileNetV2 0.0030 | 0.5999 0.5976 0.5928 0.8856 0.8856 0.8856 0.8760
Mg | ResNet152 0.0050 | 0.6252 | 0.6068 | 0.6094 0.9007 0.9007 0.9007 0.8923

Mz | VGG16 0.0030 | 0.5893 0.5936 | 0.5874 0.8846 0.8846 | 0.8846 | 0.8749

different CNN models achieve varying levels of performance across the evaluated metrics.
Among the models, M, (DenseNet161) stands out with the highest precision, recall, F1-
score, and MCC values. On the other hand, M5 (MobileNetV2) and M7 (VGG16) exhibit

slightly lower performance in terms of precision, recall, F1-score, and MCC.
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3.3.2 Analysis of fusion configurations and CNN performance

metrics

In this section, we explore different fusion techniques and assess their impact on the
overall performance of the system. The table 3 presents the nine best results obtained
from the fusion of multiple convolutional neural networks (CNNs), ensembles, using the
average method. Each row in the table represents a different fusion scenario, denoted by
F;, where multiple CNN models (M to M7) are combined, where (Y) indicates the presence
of a model in the fusion configuration, while (N) denotes the absence of that model.
The table also includes the LR used for each fusion scenario. The evaluation metrics
used to assess the performance of the fusion approach are precision, recall, F1-score, and
MCC. Analyzing the results, it can be seen that different ensemble architectures and their

fusion responses generate varying levels of performance in the evaluated metrics. Among

Table 3 — Results obtained with fusion of CNN by average.

Macro Average Micro Average .
Fo| My My My My | M | M | My LR Precision | Recall | F1-Score | Precision | Recall | F1-Score MCC
0.0030 0.6312 0.6085 0.6084 0.9101 | 0.9101 | 0.9101 | 0.9025
0.0030 | 0.6402 0.6121 0.6143 0.9101 0.9101 0.9101 0.9025

0.0050 | 0.6395 | 0.6180 | 0.6187 0.9100 0.9100 | 0.9100 | 0.9023
0.0030 | 0.6334 | 0.6138 | 0.6150 0.9100 0.9100 | 0.9100 | 0.9023
0.0030 | 0.6360 0.6114 | 0.6118 0.9100 0.9100 | 0.9100 | 0.9023
0.0030 | 0.6399 0.6105 | 0.6139 0.9097 0.9097 | 0.9097 | 0.9019
0.0050 | 0.6265 0.6165 | 0.6154 0.9097 0.9097 | 0.9097 | 0.9020
0.0030 | 0.6352 0.6105 | 0.6123 0.9096 0.9096 | 0.9096 | 0.9018
0.0030 | 0.6347 | 0.6061 | 0.6102 0.9074 0.9074 | 0.9074 | 0.8995
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the merger scenarios, Fj displays the highest Fl-score value for macro-average. This
scenario combines specific CNN models (M, My, Mg and M7) and achieves remarkable
performance in correctly classifying positive and negative instances.

These scenarios show the effectiveness of ensemble methods to improve classification
accuracy. Fusion Fj stands out, achieving relatively high values of accuracy, recall, F1-
score and MCC, for micro average. This suggests that the combination of models M,
My, Mg and M; with an LR of n = 0.003 leads to successful predictions with high
accuracy and completeness. Considering the CNN models that appeared more frequently
in the fusion experiments, the models My, Mg and M; were used in a greater number
of experiments. This suggests that these models have a greater impact on the overall
performance of the ensemble architectures. Table 4 shows the top nine CNN fusion using
a voting mechanism where each model in the ensemble makes an independent prediction,
and the final prediction is based on the highest number of votes. Upon analyzing the
results, it is evident that the performance of the fusion models varies depending on the
specific combination of CNN models used. F5 stands out as it achieves the highest values
in terms of Fl-score for macro (0.6158), Fl-score for micro average (0.9089) and MCC
(0.9012). This combination includes models My, My, Ms, My, and M, indicating that

these models contribute significantly to the overall performance of the fusion model.
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Table 4 — Results obtained with CNN fusion by vote.

Macro Average Micro Average
Fo| My My | My | My | My | M | My LR Precision | Recall %1—SCOI'6 Precision | Recall %1 Score MCC
1| N| Y| Y| Y| NJ]Y | Y 0003]| 0.6359 0.6093 0.6102 0.9089 0.9089 0.9089 0.9011
2/ Y| Y| Y| Y | N|N|Y 0003/ | 0.6416 | 0.6138 | 0.6158 0.9089 | 0.9089 | 0.9089 | 0.9012
3/Y | Y | N|Y | N|Y|Y|0.003]| 06308 0.6125 0.6125 0.9088 0.9088 0.9088 0.9011
41Y | Y| Y| N|N|Y|Y|0.003]| 0.6403 0.6124 0.6157 0.9088 0.9088 0.9088 0.9010
50/ N|lY | Y| Y | Y| Y | Y |0.0030| 06264 0.6104 0.6102 0.9084 0.9084 0.9084 0.9006
6| Y| Y| Y|Y | N|Y | N/ 0.003/| 06288 0.6079 0.6080 0.9084 0.9084 0.9084 0.9005
7T1Y | Y| Y| Y]Y | Y |Y]0.003]| 0.6290 0.6096 0.6097 0.9082 0.9082 0.9082 0.9003
8 N| Y| N|N|N/|Y | Y 0.003/| 06376 0.6112 0.6146 0.9081 0.9081 0.9081 0.9002
9| N Y| N|N|N/|[Y | N | 0.005/| 0.6308 0.6121 0.6147 0.9038 0.9038 0.9038 0.8956

3.3.3 Fusion with optimal training CNN models

In this section, we explore the integration of specific CNN models to further enhance
the system’s performance and achieve superior results. The results refer to proposal
two, presented in Section 3.2.1. Table 5 presents the results of the fusion of trained
CNN models using different combinations. In our experiments, in F}, considering the
amount of CNNs that make up the fusion, we had the best performance compared to
other combinations, considering both micro-average, F1-score (0.9126) and MCC (0.9051).

Overall, the analysis of the fusion results indicates that the combinations involving M2,

Table 5 — Fusion with trained CNN models.* Refers to the combination of CNNs presented
in (BORGLI et al., 2020).

y | a | . Macro Average Micro Average .
Y My Mg Mg My Mg Mg Mz | LR Precision | Recall %71—5(:ore Precision | Recall %1—Score Mec
/' N|Y | N|N|N|Y | N/|0.0010| 0.633 | 06150 | 0.6170 0.9100 | 0.9100 | 0.9100 | 0.9020
2| NJY | N|N|N/|N/|Y|0003/| 0.6340 | 0.6172 | 0.6202 0.9081 | 0.9081 | 0.9081 | 0.9002
3IN|Y | N|N|N|Y|Y]|00030)| 06339 |0.6212| 0.6246 | 0.9121 | 0.9121 | 0.9121 | 0.9046
4 | N| Y| N|]Y | N|Y|Y | 0003]| 06328 | 06211 | 0.6232 0.9126 | 0.9126 | 0.9126 | 0.9051
5 N Y | Y |Y |N|Y|Y|0003| 06298 | 0.6215 | 0.6227 0.9124 | 0.9124 | 0.9124 | 0.9049
6 Y | Y| Y |Y | N|N]|Y/ 00030| 06273 | 0.6163 | 0.6178 0.9110 | 0.9110 | 0.9110 | 0.9034
7Y | Y| Y|Y | N|Y|Y|0003/| 06290 | 0.6193 | 0.6214 0.9128 | 0.9128 | 0.9128 | 0.9053

M, Mg, and M? generally lead to better performance, with higher Fl-scores and MCC
values. The presence of M? and M? does not contribute significantly to the overall

performance improvement.

3.3.4 Resource Consumption Analysis for CNIN Models

In Table 6, we present details such as the CNN model name, GPU model used for
execution, GPU RAM capacity, execution time in minutes, and the number of parameters
for each model. To measure the execution time and GPU consumption, the timeit module
and the psutil library were used, respectively. All network models, M; to M7, utilize
the Tesla V100-SXM2-16GB GPU model. Additionally, the F* model (BORGLI et al.,
2020) employs the Tesla V100-SMX2-16GB, while fusion models F?¢ to F?2, for Table 5
and Table 6, utilize the Nvidia A100-SXM-40GB GPU model. Models F? to F? consume

more GPU RAM and more execution time, so they needed to be executed on another
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Table 6 — Resource consumption for network models.

Individual Models Fusion Models
RAM . RAM .
rr(ljol:]il;s GPU model GPU ??;Ceut(lrzr)l Parameters n?olzgs GPU model GPU ?’i{r‘feut(lr?:; Parameters

(GB) (GB)
M, tesla v100-sxm2-16gb 6.2 92.0 6977431 P tesla v100-sxm2-16gb | 15.8 113.2 84713742
M, tesla v100-sxm2-16gb | 10.0 94.9 26522807 b nvidia al00-sxm-40gb | 15.7 55.5 160877582
M tesla v100-sxm2-16gh 8.9 89.9 18137111 F? nvidia al00-sxm-40gb | 22.7 82.9 219068517
My tesla v100-sxm2-16gb 4.6 80.9 4037011 Ff nvidia al00-sxm-40gh | 24.7 98.5 223105528
Ms; tesla v100-sxm2-16gb | 4.2 86.2 2253335 F? nvidia al00-sxm-40gb | 31.0 89.6 241242639
Mg tesla v100-sxm2-16gh 8.1 101.3 58190935 Fé’ nvidia al00-sxm-40gh | 28.9 110.3 190029135
M; tesla v100-sxm2-16gh 7.0 109.8 134354775 F7b nvidia al00-sxm-40gb | 35.9 1245 248220070

GPU model.

These data allow us to analyze the computational cost associated with achieving the
results presented in Table 3, Table 4, and Table 5.

In Table 3, the Fj result, including My, My, Mg, and M7, achieved the highest F1-
score (0.9101) with the least number of models used for micro-average. The models were
executed individually on the GPU, resulting in a total GPU consumption equal to the
highest consumption among the individual models, which is 10GB for M,. Thus, the
proposed ensemble F; with CNN model averaging has a maximum GPU consumption of
10GB.

In Table 4, using the technique of fusion by vote, the ensemble F;, achieved the highest
F1l-score of 0.9089 for micro and F1l-score of 0.6158 for macro. The set f5 consisted of
models My, My, M3, M, and M;. The GPU consumption for the set F; corresponds to
that of the model M,, which is 10GB.

In Fusion with optimal training CNN models, as shown in Table 5, for FP*, the F1-
score is 0.910, which matches our proposal in Table 3. The approach in (BORGLI et
al., 2020), F*, requires 15.8GB of GPU, as the best models M and M¢ are trained
together. Building upon the combination of models proposed in (BORGLI et al., 2020),
we introduce ensembles F? to F2, with F achieving the best result. Figure 15 depicts a
bubble chart illustrating that we have achieved comparable results (indicated by the blue
and red bubbles) when compared to the fusion model F?* in Table 5 (green bubble), as
presented in (BORGLI et al., 2020).

Our proposal Fj in Table 3 attained the same results while utilizing 10GB of GPU,
which is 36.7% less than the consumption of (BORGLI et al., 2020) with 15.8GB GPU.
The purple bubbles demonstrate that our ensemble architectures using Fusion with opti-
mal training CNN models obtain better results than (BORGLI et al., 2020), albeit at a
higher GPU cost.
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Figure 15 — Bubble chart for resource consumption analysis and comparative results. The
diameter of the bubbles is associated with GPU consumption.
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CHAPTER

Fusion of CNNs for Medical Images

Landmarks Detection

With technological advances, Al tools, such as CNN models, have been used in the task
of detecting landmarks. These models automate landmark detection, reducing the need for
manual intervention, saving time and resources. CNNs can be applied in different contexts
and types of images, from cephalograms to cancer detection and monitoring (CANDEMIR
et al., 2013; JAEGER et al., 2014; GIRSHICK et al., 2015; LITJENS et al., 2017; RUNDO
et al., 2020; BAYOUDH et al., 2021).

The detection of landmarks in lateral cephalograms is essential for orthodontists, as
it facilitates the diagnosis and monitoring of the evolution of craniofacial conditions, in
addition, it facilitates treatment planning such as surgeries and implants (ZENG et al.,
2021). The detection of landmarks is essential for the analysis of lung regions, being
crucial in the diagnosis of respiratory diseases, such as COVID-19 (GIELCZYK et al.,
2022; GAGGION et al., 2022).

In this chapter we focus on performing CNN fusion to detect landmarks in medical
images. In works such as Borgli et al. (BORGLI et al., 2020) and Bayoudh et al. (BAY-
OUDH et al., 2021), the authors discuss the improvement of CNNs in solving problems
through strategies such as CNN committees and CNN fusions. We use datasets containing
lateral cephalograms, hand x-rays and lung x-rays, with the aim of detecting landmarks.
Furthermore, in line with green computing, this work presents the energy consumption

and carbon emissions of the studied CNN models.

4.1 Background

With improvements in GPU technology, several convolutional neural network models
have been proposed in the last decade. In this work we explore the use of the models
proposed by (CHEN et al., 2019) and (ZHU et al., 2021; ZHU et al., 2022). The (CHEN
et al., 2019) model was used to detect points in lateral cephalograms. The (ZHU et al.,
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2021; ZHU et al., 2022) model, described by the authors as a universal model, was used to
detect points on lateral cephalograms, hand radiographs, and lung radiographic images.
We propose to fuse both models with the aim of obtaining a universal model that achieves

better results in landmark detection.

4.1.1 Datasets for landmark detection

The dataset used contains 400 images of lateral cephalograms!. This dataset was

used in IEEFE 2015 ISBI Grand Challenge#1. In this dataset, the goal is to detect 19
landmarks, as seen in Figure 16 (LINDNER et al., 2016). A dataset containing hand

Figure 16 — Lateral cephalogram with 19 landmarks.

x-rays? was also used. It contains 1390 images. In this dataset, the goal is is to detect
37 reference points, as shown in Figure 17. The third dataset used in this work contains
500 x-rays images of the lung®. The images were labeled by radiologists (JAEGER et al.,
2013; CANDEMIR et al., 2013; JAEGER et al., 2014). In these images, six landmarks

are relevant, as shown Figure 18.

<https://figshare.com/s/37ec464af8e81aebebbf>
<https://ipilab.usc.edu/research /baaweb />

3 <https://www.kaggle.com/datasets/kmader /pulmonary-chest-xray-abnormalities>
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Figure 17 — Example of hand radiography with the 37 landmarks.

1

Figure 18 — Example of lung X-ray image with the 6 landmarks.

4.2 Deep learning models for object and region de-

tection

The human brain is adapted to identify and interpret visual patterns, allowing us to

recognize objects efficiently and accurately. The human ability to detect objects in images
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is crucial for visual perception and understanding, enabling us to interpret environments
and make appropriate decisions based on available visual information. In areas such as
security and medicine, humans (experts) need to detect objects, people, organs or regions
of interest to make decisions (GONZALEZ; WOODS, 2009; REDMON et al., 2016).

Computational advancement allows many object detection tasks to be performed by
computational algorithms such as deep neural networks. With the use of deep neural
networks, it becomes possible to extract complex features and learn hierarchical repre-
sentations of images. The ability of CNNs to automatically learn objects’ discriminating
features, combined with training on large labeled datasets, significantly boosts the ability
to detect objects in images. Detectors based on CNNs can identify objects of different
sizes and poses and in different contexts (REDMON et al., 2016; LITJENS et al., 2017;
BOCHKOVSKIY; WANG; LIAO, 2020; PAYER et al., 2019).

You Only Look Once (YOLO) is a model of deep neural networks for objects iden-
tification of different sizes and positions within the image, without the need to apply
a sliding window. The YOLO system models detection as a regression problem. It di-
vides the image into a grid and for each grid cell predicts a number of bounding boxes,
a confidence value for those boxes, and probabilities that the bounding boxes belong to
a class (REDMON et al., 2016; REDMON; FARHADI, 2017; BOCHKOVSKIY; WANG;
LIAO, 2020).

The YOLO models represent an important advance in the area. These models are
known for their efficiency and accuracy in real-time detection, allowing fast and accu-
rate identification of objects in images and videos. These models have positively im-
pacted areas such as industrial automation and computer vision (REDMON et al., 2016;
BOCHKOVSKIY; WANG; LIAO, 2020).

The various versions of YOLO are being tested on large datasets for the detection
of objects such as COCO and PASCAL VOC. In these baseline works, there is no in-
depth study of the use of YOLO in medical imaging. One of the problems with using
YOLO in medical imaging is that it focuses more on speed for real-time detection than on
accuracy. In computer analysis of medical images, the main goal is accuracy (REDMON et
al., 2016; REDMON; FARHADI, 2017; REDMON; FARHADI, 2018; BOCHKOVSKIY;
WANG; LITAO, 2020; WANG; BOCHKOVSKIY; LIAO, 2021; WANG; BOCHKOVSKIY;
LIAO, 2023; WANG; LIAO; YEH, 2022).

Other studies such as (PAYER et al., 2019; CHEN et al., 2019; ZENG et al., 2021;
ZHU et al., 2021) present techniques to detect regions in medical images. These studies
are focused on accuracy.

Payer et al., in (PAYER et al., 2016) and (PAYER et al., 2019), propose the use of heat
maps as a way to filter out relevant landmarks. According to the authors, the proposal
incorporates the spatial configuration of anatomical landmarks in a CNN-based heat map

regression framework. Thus, the studies perform well in locating landmarks and do not
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rely on large datasets. In the studies, the authors propose the automatic detection of
regions in hand radiography images, cephalometric images, and computed tomography of
the spine.

In (CHEN et al., 2019), the authors adopt the combination of heat maps, displacement
maps, and pixel regression voting to propose a deep learning model that automatically
detects cephalometric landmarks with high accuracy. In (LEE et al., 2020), the authors
also automatically detect cephalometric landmarks using trust regions and Bayesian con-
volutional neural networks. In the study proposed by (ZENG et al., 2021), the authors
combine three models of CNNs to automatically detect cephalometric landmarks. In (ZHU
et al., 2021) and (ZHU et al., 2022), propose a universal deep learning model for land-
marks detection in medical images, including cephalometric images. In Figure 19, in the
first column, it is possible to see the landmarks made by specialists. In the second column,
the landmarks predicted by a CNN model. In the third column, the comparison between
predicted and original landmarks. In the last column, the more yellow the points are,
the greater the correspondence between the points, i.e., the distance in mm between the

points is smaller.

Figure 19 — Example of using CNN to detect landmarks in cephalometric images.

In a systematic review and meta-analysis presented in (MESQUITA et al., 2023),
the authors report that Al techniques are adopted for the detection of cephalometric
landmarks and reach an accuracy of 79% and 90%, considering an error of 2 and 3mm,

respectively (MESQUITA et al., 2023). Using CNNs; there is still possibility of improve-
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ment, considering the 2mm error margin. In (ZENG et al., 2021) the author mentions
that 2mm is the most clinically accepted accuracy range.

A point of intersection between some studies addressed in this section is the automatic
identification of landmarks in cephalometric images. According to Table 7, four studies
present test results with datasets of cephalometric images. For the 2mm margin of error,
the values range from 73.33 to 82.11.

Table 7 — Results presented in related works.

Cephalometric
Studies MRE SDR(%)
(mm) 2mm 2.5mm 3mm 4mm
Payer et al. (PAYER et al., 2019) - 73.33 78.76 83.24 89.75
Chen et al. (CHEN et al., 2019) 1.33 80.86 87.76 92.04 96.79
Lee et al. (LEE et al., 2020) 1.53 82.11 88.63 92.28 95.96
Shu et al. (ZHU et al., 2021) 1.54 TT.79 84.65 89.41 94.93

Analyzing Table 7, it was possible to integrate two studies, the proposal by Chen et
al. (CHEN et al., 2019) with the proposal by Shu et al. (ZHU et al., 2021), to generate a
new universal model for detecting landmarks in medical images. In this Chapter, in the
next sections, we will explore the studies presented by (CHEN et al., 2019) and (ZHU et
al., 2021).

4.2.1 Model Attentive Feature Pyramid Fusion and Regression-
Voting

In (CHEN et al., 2019) the author proposes a framework? composed of the modules
Feature Extraction, Attentive Feature Pyramid Fusion (AFPF) and Prediction, as illus-

trated in Figure 20.
' . Attentive feature ' '
Image Featt:;izitlgctlon pyramid fusion Prediction module Output
‘ modeule

Figure 20 — Model attentive feature pyramid Fusion and regression-Voting processing
steps.

The feature extraction module receives input images with dimensions (h X w), in RGB
format. The images are passed through layers extracted from VGG19, available in the
Pytorch framework. The layers can be divided into 4 blocks, as show in Figure 21, each

block contains convolutions and max pooling. The output data of one block becomes

4 <https://github.com /runnanchen/Anatomic- Landmark-Detection>
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the input data of the next block. As the image passes through the blocks, more features
are generated and the dimension of each feature is reduced. The outputs produced by
each block are adjusted with upsampling and 1 x 1 kernel convolutions, generating 64
features of dimensions (h/4,w/4). The outputs of the blocks, with the same dimensions
and the same number of features, are concatenated and generate a feature map, which is
the output value of the feature extraction module (CHEN et al., 2019).

( Feature extraction module )

Block 1
Conv
(100,80)*256 (200160184
Block 2
Conv

Image
(800,640)

(200.160)°64

Feature
Adjustment Features

(200,160)°256 (200,160)*256

{25,201°512

Block 4
Conv

A 7

Figure 21 — Processing steps of feature extraction module. The input image is subjected
to the first of four convolution blocks. The dimensions of the outputs of each
convolution block are adjusted and concatenated.

Feature maps are processed in the AFPF module. In this module, feature maps
undergo dilated convolutions to create the feature pyramid. This convolution inserts
space between each kernel value, it enlarges the kernel. Dilated convolutions allow them
to cover a larger region of the input and, therefore, improve the accuracy of the reference
point estimation. Additionally, AFPF contains a mechanism that learns attention weights
for each reference point (CHEN et al., 2019).

The AFPF module produces a tensor T' with the size (3n, h,w), 3n is composed of n
heat maps and 2n offset maps; n is the number of landmarks. Heat maps H are used
to delimit the approximate area of the reference point, H is H(z,y). Offset maps O
are regressors to locate the precise position of the reference point, O is O(01,02) with
01 = O(x,y) and 02 = O(z,y) (CHEN et al., 2019; PAPANDREOU et al., 2017). In the
prediction module, heat maps and offset maps are combined to predict the locations of
reference points (CHEN et al., 2019; PAPANDREOU et al., 2017).

During model training, for each pixel location p;, such that p; = (z,y), and landmarks
ln, being l,, = (z,y), the probability of p; being within a circular domain of radius R is
calculated such that H,(p;) is 1 if p; — [, < R and 0 otherwise. The loss function Ly
is defined as the average logistic losses between the predicted heat map and the actual
heat map. Displacement maps are used to predict the 2D displacement vector between
pi and [,,, such that O,(p;) = (I, — p;)/R. The L, loss function is defined as the L1 loss
between the predicted and actual offset maps. The loss is calculated only for points within

radius R and not across all pixels of the displacement maps. The final loss function is as
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follows (CHEN et al., 2019; PAPANDREOU et al., 2017):

L(8) = aLy(0) + (1 — a)L,(6), (11)

The value of 0 corresponds to the values of offset maps and heat maps.

4.2.2 Model Universal Anatomical Landmark Detection

The model proposed by authors (ZHU et al., 2021; ZHU et al., 2022) is called the
universal model® for detecting anatomical landmarks. According to the authors, datasets
from different types of medical images can share related characteristics, such as anatomical

landmarks, show in Figure 22. The authors cite features such as likely location on corners,

Local network
Dat i DoubleCo
D Conv2d, ~ . p
Dataset; Mix (I:? ?:JI (1x64) Down Down Down T
P Kernel (64, 128, k) (128, 256, k) (256, 512, k) (512, 512, k)
(1x1) J J .
( ( ﬁ
Dataset, Conv2c 1 1
classes, (64 x classes) Up Up Up - Up
(nxm) Kernel (128, 64, k) (256, 128, k) (512,256, k) | (1024 512, k)
1x1

DilatedConvk -
e (64, 64, dilation) — (_[dilations] <= 0 ) ——"0

Figure 22 — Details of the universal anatomical landmark detection model. Adapted
from: (ZHU et al., 2021)

edges, ends of curves, surfaces, etc. The model seeks to leverage common knowledge across
datasets to achieve greater efficiency (ZHU et al., 2021; ZHU et al., 2022). The model
automatically detects points of interest in medical images. The model’s final response
results from the fusion of the response of a local module L and a global module G, as
shown in Figure 23. The local module is based on U-Net (ZHU et al., 2021; ZHU et al.,
2022).

®  <https://github.com/MIRACLE-Center/YOLO_ Universal_Anatomical _Landmark_ Detection>
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Figure 23 — Model universal anatomical landmark detection processing steps. The input
image is submitted to the local network and the global network. The local
network output is processed by global network. The local and global network
outputs are combined to generate the final answer.

The local module comprises a down-sample and an up-sample, as illustrated in Fig-
ure 24. The down-sample blocks are composed of convolutions and maximum pooling, as
the input image is down-sampled, features with smaller dimensions are created in greater
quantities. The up block receives an input from the previous up block and an input from
the down block. As data passes through the up blocks, the number of features decreases
and the dimensions of the features increase. The relationship that exists between the
down and up blocks is a connection to reestablish the dimensions of the data at each step,
until reaching the original dimensions, which are the dimensions of the input (ZHU et al.,
2021; ZHU et al., 2022).
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Figure 24 — Down and up convolution blocks of the universal anatomical landmark detec-
tion model.

Before starting to train the model proposed by (ZHU et al., 2021; ZHU et al., 2022),
the landmarks are transformed into heat maps, show in Figure 25, using a Gaussian
function (Equation 12). Given a dataset D; that contains images Si, Sy = Sk(z,y),

and each image has corresponding landmarks 1,,, I,, = l,(z,y), such that j is number of
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datasets, k is the number of images in a dataset and n is the number of landmarks in an
image, the Gaussian function is as follows (ZHU et al., 2021; ZHU et al., 2022):

(x1.y1) | (x2¥2) | (x3¥3) | (xay4) (x5¥5)

¥

Gaussian Function

|

Figure 25 — Transformation of landmarks made by experts into heat maps.

1 (SEk - xkn)Q + (yk - ykn)Q
exp(— ,
V2o 202

where Y}, is the n heat maps for each landmarks contained in k& images.

Ykn =

(12)

During training, models G and L produce, respectively, tensors 79 and T' of size
(n, h,w). These tensors are combined resulting in a final tensor F' — therefore Fy, = T{ OT}.
The model loss is calculated by comparing the tensor F' with the heat maps Y, show in
Equation 13 (ZHU et al., 2021; ZHU et al., 2022).

Ly= > —ylogf—(1-y)log(l-f) (13)

After training, during testing, for each image in the dataset the model generates a set
of landmarks, F}, heat maps, from which the positions of the highest values are extracted,

the landmarks, depicted in Figure 26.

4.3 Proposals

In this chapter, seeking to improve the performance of models for landmark detection,

two proposals are reported. In the first proposal, the two complete models are fused,
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Figure 26 — Extraction of points in heat maps.

presented in Section 4.2.1 and 4.2.2. In the second proposal, the two models are fused,
however, not all parts of the models are used. In both proposed models, fusion occurs
during training between features from intermediate layers of the network and during

testing by combining the outputs of two models.

4.3.1 Proposal I - Fusion with full models

We propose a model based on the fusion of two modules, M? is the main model, such
that MP(M*, M?). Module 1, M, is based on the model proposed by (ZHU et al., 2021;
ZHU et al., 2022) and module 2, M?, is based on the model proposed by (CHEN et al.,
2019), as depicted by Figure 27.

Before fusing the model, we observed that in the feature extraction module proposed
in (CHEN et al., 2019), the feature maps were created from VGG19 layers (Figure 21).
From these observations, we concluded that the feature maps could be created using the
resources of the layers of the down block proposed in (ZHU et al., 2021; ZHU et al.,
2022). In this block, there are layers similar to those extracted from VGG19, as shown
in Figure 28. Therefore, the feature extraction block and the down block form the link
between the two models.

In addition to the creation of the link between the two models, it was necessary to
adapt the entire (CHEN et al., 2019) proposal, so that it could act universally as proposed
in (ZHU et al., 2021; ZHU et al., 2022). Module 2 was adapted to process images from
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Figure 27 — Module 1 corresponds to the universal anatomical landmark detection model.
Module 2 are the steps relating to the attentive feature pyramid fusion and
regression-voting model. The fusion of modules occurs through the down-

sample and feature extraction stage.
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Figure 28 — The down convolution blocks are adapted for the feature extraction mod-
ule. The input image is subjected to the first of six convolution blocks. The
dimensions of the outputs of each convolution block are adjusted and con-

catenated.

different datasets and with different dimensions.

During the model training stage, the function to calculate the loss for each interaction
is different for M'! and M?. Equation 13 is used to calculate the output loss of M* while
Equation 11 for the loss of M?2. Using the PyTorch framework it was possible to define

a retroactive function for both outputs. In this way, the model parameters were updated
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recursively based on the responses of the two modules, Out! and Out?. In the training
process, the model instances used in the testing stage were saved in two stages.

The instance M?P*! was saved when the Out! output of M! reached the lowest loss
value, and another instance M} was saved when the response of Out? of M? reached
the lowest loss value. During the testing phase, the model’s final response was the fusion

of the responses from the two saved models (Mt and M&est). This process is illustrated

in Figure 29.

( Best model N
) — Out? F
Best Model 1 | —
(M, besty ‘ 4){ Out2 | - * out™
| Best Model 2 | [ out — ‘){ Out? ’
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Figure 29 — Both best models generate two responses. The answers are combined to
generate the final answer.

The output Out! is a tensor of dimensions (n,h,w) and output Out? is a tensor of
dimensions (n,2); n are the landmarks, and (h x w) the dimensions of the input image.
The output Out! is the sum of the outputs Out' and the output Out? is the sum of the
outputs Out®. The sum is performed using heat maps values normalized between 0 and
1.

4.3.2 Proposal II - Fusion with partial models

During the training of the model proposed by (CHEN et al., 2019), it was possible
to observe the processing time of one dataset is similar to the processing time to process
three datasets for the model proposed by (ZHU et al., 2021; ZHU et al., 2022). Through
this observation, we consider proposing a second main model, U.

In this proposal, the models presented by (ZHU et al., 2021; ZHU et al., 2022)
and (CHEN et al., 2019) are, respectively, Module 1, M' and Module 2, M?, of U,
such that U(M*, M?). The U model is trained in two steps.

In the first stage, the heat maps of M* and M? are fused, as shown in Figure 30.
In M*! the local sub-module network L generates n heat maps in the form of a tensor
T! of size (n,h,w), n is the number of landmarks, h is the height of the input image
and w is the width. The attentive feature Pyramid fusion sub-module AFPF, in M?2,
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generates offset maps that we do not use in our proposal and heat maps which is a tensor
TP of size (n,h,w). A tensor T is obtained through the fusion of heat maps, such that
T/ = oT' +~TP (the sum of o and v values is always equal to 1). The global network
sub-module G, of the module M?, processes the input image and the tensor obtained
by fusion 77/ and generates an output tensor 79. The output F of the module M" is a
combination of the tensors 7' and T, such that Fj, = TJ ® T}, k is the number of images
and the ® is pixel-wise multiplication, as presented on (ZHU et al., 2021; ZHU et al.,
2022). The loss for M* output is calculated using Equation 13.

-
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Figure 30 — Fusion between modules one and two. The modules are combined through
the down-sample and feature extraction steps and through heat maps.

In the M? module, the heat maps obtained by fusion, tensor T/, are processed by
an argmaz function that returns the position (z,y) in the n heat maps that have the
largest value, resulting in an output tensor F'? with size (n,2) — these are the prediction
landmarks. The L2 loss is used to evaluate the response of the module M? (Equation 14).
The final loss L/ = (LM' + LM*)/2. At the end of the first training stage, the parameters

of the model U that obtained the lowest loss, U, are stored.

Ly= Y (c—p)? (14)

meCy,nekF?
Cy, is a tensor of size (n,2) with the marked landmarks.

In the second stage, training starts from the UP**! parameters and the model does not
fuse the heat maps, as shown in Figure 31. The heat maps of M? are processed by the
argmax function to generate the output tensor F2. In addition, the heat maps are to the
G sub-module of M!. The final loss is calculated as follows: L/ = (vLM' +7LM*)/2 (the
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sum of v and 7 values is always equal to 1). After the second training stage the best
model U, U%t is stored. In the testing stage, the test dataset is submitted to the best-
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Figure 31 — Fusion between modules one and two. The modules are combined through
the down-sample and feature extraction steps and the heat map from module
two is submitted to the global network from module one.

stored models UY*" and U*' and the final answer is a combination of the answer from
M, such that F"* = F* 4+ F/2. To obtain the final landmarks, an argmaz function
is used, landmarks?™*® = argmaz(F, ,fred), where landmarks?™? is a tensor of size (n,2)
(Figure 32).
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Figure 32 — Both best models generate one response. The answers are combined to gen-
erate the final answer.
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4.3.3 Evaluation metrics

To evaluate the predictions of our models, we employ two metrics: the Mean Radial
Error (MRE) and the Sucess Detection Rate (SDR). The MRE quantifies the Euclidean
distance from the predicted reference point to the point manually marked by an expert.
It is calculated using Equation 15 (ZENG et al., 2021):

L E
MRE; = ;\7 z (15)
where N is the total number of images and the error is given by EJZ = Hp? — p;”\ |2 for the

image 4, landmark j and ||.||2 represents the Euclidean norm function. Since p? = (2%, 4%)
and pT' = (27, y7"), p are the predicted landmarks and p™ are the marked landmarks.

When dealing with reference points in medical images, there might be an acceptable
margin of error in detecting these points. For instance, there could be scenarios where the
system cannot deviate more than 2mm from the predicted point compared to the point
marked by the expert. Therefore, to calculate the success detection rate for rmm, we use
the following expression (ZENG et al., 2021):

count(¢h : |65 = plle) < 7
_ A (16)

The count() function is used to count how many reference points predicted by the
model are at a distance smaller than 7 mm from the point marked by the expert. Fur-
thermore, the standard deviation (STD) was calculated using the std() method from the
numpy library.

4.4 Results and Discussion

The experiments were carried out in the Google Colab environment, using a Tesla T4
GPU. Combining the datasets of lateral cephalograms, dataset containing radiographs of
the hand and dataset containing radiographic images of the lung, there are 875 images
for training, 113 for validation and 592 for testing.

As we propose, through fusion, an improvement in the universal model presented in
Section 4.2.2, we use the same measurements used by the authors in the original work,
MRE and SDR. For the lateral cephalograms dataset, the authors use four SDR measure-
ments to present the results, 2mm, 2.5mm, 3mm, 4mm. For the dataset of radiographs
of the hand, the SDR measurements to present the results were 2mm, 4mm, 10mm. In
the dataset of radiographs of the lung, measurements of 3px, 6px, 9px were considered.

To analyze energy consumption and carbon emissions we consider the experiments
carried out with the server running in Singapore. The average carbon emission per energy

consumed (C'Oy/kWh) for Singapore is 463.9. In the experiments, we report the estimated
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energy consumption (kWh), equivalent carbon emissions (COzeq) and the equivalence of

kilometers (Km) traveled by a car.

4.4.1 Experiments using Proposal I - Fusion with full models

In these experiments, the results obtained by running the model presented in Sec-
tion 4.3.1 are presented. This model is used for landmark detection, it supports hetero-
geneous datasets with different numbers of landmarks. The new model combines charac-
teristics of the universal model (Sections 4.2.1) and non-universal (Section 4.2.2). These
models were run separately to check if the results coincided with the results presented
in the theoretical basis. The universal model run for 100 epochs and the non-universal
model run for 400 epochs. The results obtained through the execution of the precursor
models, for the cephalometric images dataset, can be seen in the Table 8. After running
the non-universal model (Section 4.2.1), it is estimated that model training uses 1.15 kWh
of electricity contributing to 0.53 kg of C'Oseq. This is equivalent to 4.98 km traveled
by car. For the universal model (Section 4.2.2), it is estimated that model training uses
0.66 kWh of electricity contributing to 0.30 kg of C'Oseq. This is equivalent to 2.84 km

traveled by car.

Table 8 — Results of running the universal and non-universal model for the cephalometric
image dataset.

Head
Tests MRE SDR(%)
(mm) 2mm 2.5mm 3mm 4mm
Chen et al. Section 4.2.1 1.35 81.03 87.77 92.06 96.57
Zhu et al. Section 4.2.2 1.49 76.99 84.08 89.62 94.93

The new universal model was trained four times over 50 epochs using four different
random seeds. In Table 9 and 10, the results of the responses from the two modules of
the new model are shown. Each “Run” present in the tables corresponds to a random
seed. The various executions were to check whether the model presents stable results.
Through the Tables, it is possible to see that at different times the model was executed, it
showed little variation in results. The result of the first part (Table 9) is the best result of
the CNN model created through fusion, for detecting landmarks in medical images. This
result is used in comparison with the results of the literature.

After running the model proposed in this Section, it is estimated that model training
uses 0.87 kWh of electricity contributing to 0.40 kg of C'Oseq. This is equivalent to 3.76
km traveled by car.

In Section 4.4.3 we compare the result of this proposal with the proposal by (ZHU et al.,
2021; ZHU et al., 2022) and with our second proposal which is presented in Section 4.4.2.
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Table 9 — Results referring to the response of Module 1 of the proposed model.

Head Hand Chest

Tests | MRE | STD SDR(%) MRE | STD SDR(%) MRE | STD SDR(%)

(mm) | (mm) | 2mm | 2.5mm | 3mm | 4mm | (mm) | (mm) | 2mm | 4mm | 10mm | (px) | (mm) | 3px | 6px | 9px
Run 1 1.46 | 2.09 | 79.20 | 85.66 | 90.84 | 95.75 | 0.62 | 1.91 | 97.29 | 99.43 | 99.75 | 4.00 | 4.08 | 51.63 | 82.52 | 92.28
Run 2 1.46 | 1.89 | 78.80 | 85.16 | 89.89 | 95.37 | 0.62 | 1.83 | 97.29 | 99.43 | 99.69 | 4.12 | 4.57 | 49.59 | 81.71 | 93.50
Run 3 1.43 1.48 | 78.57 | 84.93 |90.06 | 95.62 | 0.61 1.59 | 97.21 | 99.43 | 99.77 | 4.85 | 18.22 | 56.91 | 83.74 | 93.50
Run 4 1.43 1.48 | 79.62 | 85.24 |90.40 | 95.31 | 0.57 1.32 | 97.37 | 99.57 | 99.85 | 4.36 | 7.53 | 54.47 | 81.71 | 89.02

i“err’age 145 | 174 | 79.05 | 85.25 |90.30 | 9551 | 0.60 | 1.67 | 97.29 | 99.46 | 99.76 | 4.33 | 8.60 | 53.15 | 82.42 | 92.07
Table 10 — Results referring to the response of Module 2 of the proposed model.
Head Hand Chest
Tests | MRE | STD SDR(%) MRE | STD SDR(%) MRE | STD SDR(%)

(mm) | (mm) | 2mm | 2.5mm | 3mm | 4mm | (mm) | (mm) | 2mm | 4mm | 10mm | (px) | (mm) | 3px | 6px | 9px
Run 1 2.06 1.46 | 59.64 | 70.34 | 80.00 | 90.86 | 1.06 3.31 | 92.70 | 99.00 | 99.62 | 5.20 | 8.72 | 37.40 | 73.58 | 88.21
Run 2 2.03 1.43 | 60.88 | 71.79 | 80.65 | 91.41 | 1.05 2.95 |92.01 | 99.00 | 99.60 | 5.23 | 7.72 | 38.21 | 70.73 | 86.99
Run 3 2.02 1.44 | 60.80 | 71.71 | 80.91 | 91.05 | 1.02 3.00 | 93.10 | 99.15 | 99.65 | 4.91 4.12 | 39.84 | 72.36 | 85.37
Run 4 2.02 | 1.40 | 60.46 | 72.15 |81.33|91.28 | 1.03 | 2.83 | 92.76 | 99.13 | 99.66 | 5.37 | 7.69 | 35.77 | 72.76 | 87.40

iﬁiage\ 2.03 | 1.43 | 60.45 | 71.49 | 80.72 | 91.15 | 1.04 | 3.02 | 92.64 | 99.07 | 99.63 | 5.18 | 7.06 | 37.80 | 72.36 | 86.99

4.4.2 Experiments using Proposal II - Fusion with partial mod-

els

This section presents the results obtained by running the model presented in Sec-
tion 4.3.1. The proposed model is a fusion of the model presented in Section 4.2.1 with
part of the model presented in Section 4.2.2. The new model detects landmarks in het-
erogeneous datasets and with different numbers of landmarks. The model is executed in
two steps. In the first step, heat maps are merged, with a = 0.6536, v = 0.3464. In the
second stage, the heat maps are not merged and weights are added to the loss combi-
nation, v = 0.40, 7 = 0.60. Both steps were performed for 10 epochs. Different values
for the parameters «, v, v and 7 were tested, however, this work presents the parameter
settings for which we obtain the best results. The experiment was carried out 12 times
with different random seeds, as shown in Table 11. The result is the average of the 12

experiments. In Table 12, 6 experiments are presented with v = 0.30 and 7 = 0.70.

Table 11 — Results of the new model with partial fusion (v = 0.40. 7 = 0.60).

Head Hand Chest
Tests | MRE | STD SDR(%) MRE | STD SDR(%) MRE | STD SDR(%)

(mm) | (mm) | 2mm | 2.5mm | 3mm | 4mm | (mm) | (mm) | 2mm | 4mm | 10mm | (px) | (mm) | 3px | 6px | 9px
Run 1 1.40 1.36 | 79.71 | 85.98 [90.72 | 95.85 | 0.55 | 0.99 | 97.67 | 99.60 | 99.93 | 4.02 | 4.27 | 55.28 | 82.11 | 89.84
Run 2 | 1.42 1.87 | 80.42 | 85.98 [90.48 | 95.56 | 0.56 | 1.28 | 97.74 | 99.56 | 99.83 | 3.36 | 2.79 | 60.57 | 85.77 | 95.53
Run 3 | 1.43 1.28 | 78.53 | 84.63 | 89.58 | 95.12 | 0.57 | 1.16 | 97.47 | 99.66 | 99.87 | 3.97 | 3.42 | 49.59 | 82.93 | 93.90
Run4 | 1.42 | 141 | 79.56 | 85.68 |90.42 | 95.68 | 0.55 | 1.25 | 97.70 | 99.62 | 99.91 | 3.65 | 3.33 | 55.28 | 83.74 | 93.09
Run5 | 1.41 | 1.28 | 79.68 | 85.73 | 90.63 | 95.77 | 0.57 | 1.18 | 97.72| 99.56 | 99.85 | 3.65 | 3.92 | 60.16 | 86.99 | 94.72
Run 6 | 1.44 1.36 | 79.35 | 85.41 |90.25 | 96.00 | 0.57 1.27 | 97.75 | 99.53 | 99.87 | 3.43 | 3.29 | 57.72 | 85.77 | 94.72
Run 7 | 141 1.43 | 79.66 | 86.17 | 90.59 | 95.75 | 0.58 1.54 | 97.63 | 99.52 | 99.85 | 3.90 | 3.92 | 54.88 | 82.93 | 89.84
Run8 | 1.44 | 1.37 | 79.09 | 85.47 |89.94|95.14 | 0.76 | 3.34 | 97.16 | 99.17 | 99.45 | 3.87 | 3.63 | 57.32 | 81.30 | 92.28
Run9 | 143 1.30 | 79.03 | 85.43 |90.44 | 95.71 | 0.56 | 1.24 | 97.52 | 99.67 | 99.90 | 3.30 | 2.66 | 56.10 | 89.84 | 95.93
Run 10 | 1.41 1.87 | 80.38 | 86.46 |91.18 | 96.34 | 0.54 | 0.72 | 97.65 | 99.67 | 99.96 | 3.57 | 3.16 | 60.16 | 82.93 | 92.28
Run 11 | 1.37 | 1.20 | 80.78 | 86.93 | 91.39 | 96.29 | 0.57 | 1.35 | 97.47 | 99.56 | 99.85 | 3.92 | 3.36 | 50.00 | 81.71 | 91.06
Run 12 | 1.41 1.31 | 80.23 | 85.85 [90.29 | 9549 | 0.57 | 1.46 | 97.64 | 99.60 | 99.87 | 3.60 | 3.21 | 55.69 | 84.55 | 92.68
Run 1.41 1.42 | 79.70 | 85.81 [90.49 | 95.72 | 0.58 | 1.40 | 97.59 | 99.56 | 99.84 | 3.69 | 3.41 | 56.06 | 84.21 | 92.99

average
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Table 12 — Results of the new model with partial fusion (v = 0.30, 7 = 0.70).

Head Hand Chest

Tests | MRE | STD SDR(%) MRE | STD SDR(%) MRE | STD SDR(%)
(mm) | (mm) | 2mm | 2,5mm | 3mm | 4mm | (mm) | (mm) | 2mm | 4mm | 10mm | (px) | (mm) | 3px | 6px | 9px
Run1 | 1,39 | 1,24 | 8040 | 8623 | 01,14 | 96,04 | 0,54 | 0,93 | 97,69 | 99,62 | 99,94 | 4,05 | 4,10 | 55,60 | 80,08 | 90,24
Run2 | 1,42 | 2,38 | 80,55 | 86,29 | 90,61 | 95,85 | 0,58 | 1,52 | 97,83 | 99,54 | 99,79 | 4,31 | 13,17 | 59,76 | 83,74 | 95,53
Run 3 1,45 | 1,49 | 78,74 | 84,82 [89,41|95,18 | 0,57 | 1,18 | 97,45 | 99,61 | 99,88 | 3,81 | 3,22 | 50,81 | 83,74 | 94,31
Run 4 1,44 | 1,71 | 79,09 | 85,33 |90,27 | 95,62 | 0,56 | 1,26 | 97,67 | 99,62 | 99,90 | 3,69 | 3,29 | 55,69 | 81,30 | 93,50

Run 5 1,45 | 1,39 | 79,39 | 85,52 | 90,15 | 95,16 | 0,56 | 1,04 | 97,71 | 99,60 | 99,87 | 3,64 | 3,32 | 56,91 | 84,55 | 93,50
Run 6 1,43 | 1,28 | 78,97 | 85,20 | 89,94 | 9589 | 0,59 | 1,37 | 97,54 | 99,49 | 99,79 | 3,37 | 2,78 | 56,50 | 85,37 | 93,90
itlerrlage 1,43 | 1,58 | 79,52 | 85,56 | 90,25 | 95,62 | 0,57 | 1,22 | 97,65 | 99,58 | 99,86 | 3,81 | 4,98 | 55,89 | 83,13 | 93,50

After running the model proposed in this Section, it is estimated that model training
uses 0.23 kWh of electricity contributing to 0.11 kg of COseq. This is equivalent to 0.98
km traveled by car.

In Section 4.4.3, the results presented in this section and the results of Proposal I are

compared to the results presented in the literature.

4.4.3 Discussion

In this section, we compare the results of our proposals with results from the literature.
Table 13 shows that, our proposals in the last two lines of the table, on average, presented

better results than those presented in the literature.

Table 13 — Evaluation metrics — * indicates that the values were obtained in the cited

papers. In bold are the best results. Underlined are the second best results.

Head Hand Chest
Studies MRE SDR(%) MRE SDR(%) MRE SDR(%)
(mm) | 2mm [ 2.5mm | 3mm | 4mm | (mm) [ 2mm | 4mm [ 10mm | (px) | 3px | 6px | 9px
U-Net* 12.45 | 52.08 60.04 | 66.54 | 73.68 | 6.14 | 81.16 | 92.46 | 93.76 5.61 | 51.67 | 82.33 | 90.67
GU2Net* 1.54 | 77.79 84.65 89.41 | 94.93 | 0.84 | 9540 | 99.35 | 99.75 5.57 | 57.33 | 82.67 | 89.33
Fusion with full models (Ours) _1.45 | 79.05 85.25 90.30 | 95.51 | 0.60 | 97.29 | 99.46 | 99.76 | 4.33 | 53.15 | 82.42 | 92.07
Fusion with partial models (Ours) | 1.41 | 79.70 | 85.81 | 90.49 | 95.72 | 0.58 | 97.59 | 99.56 | 99.84 | 3.69 | 56.06 | 84.21 | 92.99

We observed that Proposal I, compared to the model proposed by (ZHU et al., 2021,
ZHU et al., 2022), has better results, however, it takes longer to execute 50 epochs during
the training stage. The increase in time occurs because in the fusion of models, at each
iteration, the loss is calculated at five different moments. A loss is calculated for Module 1
heat maps, Module 2 heat maps, and the two Module 2 displacement maps. Additionally,
the GPU RAM consumption increases.

In the experiment related to Proposal II, we observed that the execution time of the
new model is slightly longer than previous proposals (ZHU et al., 2021; ZHU et al., 2022)
because the loss is calculated at two different times. However, the proposed model achieves
good results early. To achieve the best results, our model ran for 20 epochs, while the
literature proposal ran for 100 epochs. After the experiments, Proposal II proved to be
the best solution.

Figure 33 shows the performance by landmark point detection for all dataset. The

comparison is performed between the original model and the Proposal II model. It is
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Figure 33 — From top to bottom: the first graph shows the model’s performance for each
point in the hand radiography dataset. The graph on the left shows the
performance, per point, for the lateral cephalogram dataset. The graph on
the right shows the performance for the lung X-ray dataset.

observed that the Proposal II model, created by fusion, achieved better results in detecting
multiple points.

Analyzing energy consumption and carbon dioxide emissions, the non-universal model
presented the worst performance, needed to be run for 400 epochs, just for the lateral
cephalogram dataset, spent 11.41 hours, consumed 1.15 kWh and emitted 0.53 kg of
C'O2eq. The universal model was run for 100 epochs, for a mix of three datasets (lateral
cephalograms, hand radiographs and lung radiographic), spent 7.52 hours, consumed
0.66 EWh and emitted 0.30 kg of CO2eq. Proposal II, a fusion between the universal
and non-universal model, obtained the best performance. It spent 2.31 hours, consumed
0.23 EWh and emitted 0.11 kg of CO2eq, reducing execution time, energy consumption
and carbon emissions by around 65%. Furthermore, this proposal used a mix of three
datasets. In Figure 34 it is possible to visualize the C'Oseq for the models trained and

presented in this chapter. The graph shows that the non-universal model is the one
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Figure 34 — Estimated carbon emission for each model.

that consumes the most resources and our proposal for partial fusion between the models
consumes less resources to achieve the results in the literature.
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CHAPTER

Influence of preprocessed images on the

performance of CNNs

In image analysis, a common task is preprocessing. This step is essential for the opti-
mal performance of many techniques. In this chapter, we propose a preprocessing method
based on histogram equalization and Benford’s distribution. Histogram equalization aims
to enhance image contrast and quality by redistributing pixel intensities. The application
of Benford’s law involves presegmentation of the image based on statistical distributions
observed in the leading digits of pixel values.

Additionally, we conducted an analysis to determine whether CNNs used for land-
mark detection or region segmentation perform better when evaluated on datasets with
preprocessed images. We check whether models trained on the original dataset and the
dataset with preprocessed images, when fused, achieve better performance. In alignment

with green computing, we also assessed the resource consumption of the models.

5.1 Background

This section provides an insight into image preprocessing, histogram equalization,

fundamentals of Benford’s law and the hybridGNet model used for region segmentation.

5.1.1 Image preprocessing

The high capacity of convolutional neural networks allows them to process images
with their original values, dimensions, and pixels. However, in some cases, the perfor-
mance of convolutional networks can be improved with the use of suitable preprocessing
methods. Authors report in articles the influence of preprocessing on the performance of
CNNs (TABIK et al., 2017; OZTURK; AKDEMIR, 2018; AFIFI; BROWN, 2019; LIN;
CHANG, 2021; ARABIAN et al., 2021; GIELCZYK et al., 2022).
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In convolutional neural networks, a common preprocessing process is data augmen-
tation. This process consists of applying different transformations to the training and
validation set, seeking to reduce overfitting and noise sensitivity. However, other tra-
ditional preprocessing techniques can be used, such as mean filter, median filter, Sobel
filter, and histogram equalization, among others. These techniques allow you to high-
light important data or remove irrelevant data from the image before it is processed by
CNN (SONKA et al., 1993; TABIK et al., 2017; OZTURK; AKDEMIR, 2018; AFIFI;
BROWN, 2019; LIN; CHANG, 2021; ARABIAN et al., 2021; GIELCZYK et al., 2022).

In this chapter, experiments are performed that seek to improve the detection of
regions in images using CNNs. Histogram equalization and Benford’s law techniques are

combined to perform the preprocessing of the images analyzed by the CNNs.

5.1.2 Benford’s law

Benford’s law, known as the law of the first digit, was observed by Simon Newcomb
in 1881, but became famous through the publications of Frank Benford in 1938. Later,
Theodore P. Hill proved that this law is universally applicable, being invariant to scale and
base. Benford’s law deals with the statistics of natural phenomena. In a set of numbers
that quantify a natural phenomenon, it is common to observe Benford’s law. This law
says that, considering the digits from 1 to 9, the probability that the digit 1 appears as
the first digit of a number, in a set of numbers that represents a natural phenomenon,
is greater than the probability that the digit 2 appears as the first digit of a number.
The probability of digit 2 is greater than the probability of digit 3, and so on, up to
digit 9, as shown in Figure 35 (BENFORD, 1938; HILL, 1995; ACEBO; SBERT, 2005;

Distribution based on Benford's law

probabilities
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- w N w w w

o
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Digits

Figure 35 — Logarithmic distribution of digits using Benford’s law. Adapted from: (BEN-
FORD, 1938)

SAMBRIDGE; TKALCIC; JACKSON, 2010; BERGER; HILL, 2011).
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By means of Benford’s law, a logarithmic distribution is observed for the most signif-
icant digit of a number, given by the Equation 17 (BERGER; HILL, 2011).

Prob(Dy = dy) = logio(1 + d") (17)

for d; = {1,2,3,4,5,6,7,8,9} and D; is the most significant digit of a number.

In the literature, Benford’s law is commonly used to detect fraud in accounting
data (DURTSCHI et al., 2004). However, in the area of image processing, some au-
thors use Benford’s law in different situations. In (JOLION, 2001) and (ACEBO; SBERT,
2005), situations are shown in which images do or do not present the characteristics of Ben-
ford’slaw. In (MAKRUSHIN et al., 2018) and (PARNAK; DAMAVANDI; KAZEMITABAR,
2022), the authors use Benford’s law to detect image fraud. In (WELLS et al., 2007)
and (AL-BANDAWI; DENG, 2019), the law is used in image distortion analysis. In (AL-
BANDAWT; DENG, 2019), the authors even use Benford’s law in preprocessing. The first
digit frequency information is used to compose a feature vector in a system that classifies

distortions in images. In this work, the law is used as a preprocessing alternative.

5.1.3 Histogram equalization

Histogram equalization is a contrast enhancement technique that seeks to distribute
pixel values within the range of image intensity. If the intensity range of an image cor-
responds to all integer values between 0 and 255, but the image consists of only 40% of
the values in this range, histogram equalization seeks to generate a new image in which
the percentage of values in the range from 0 to 255 tends to 100%. The histogram equal-
ization is expressed by Equation 18 (PIZER et al., 1987; GONZALEZ; WOODS, 2009;
ABDULLAH-AL-WADUD et al., 2007).

=Tl = (L= 1) 3 ) = S S, (18)

Being L — 1 the value of 255, k = 0,1,2,..., L — 1, r; the value of the pixel before

transformation, s the value output pixel after transformation, 7'(ry) is the histogram

equalization transform, M and N the image dimensions, n; is the image pixel quan-
tity with the intensity (r; and p,(r;) is the probability estimate that r; occurs in the
image (GONZALEZ; WOODS, 2009). Histogram equalization is a commonly used tech-
nique for preprocessing images (GONZALEZ; WOODS, 2009; SHIN; KIM; KWON, 2016;
ALWAWTI; ABOOD, 2021).
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5.1.4 HybridGNet for region detection

HybridGNet! is an architecture for region segmentation based on landmarks in medi-
cal chest x-ray images. In (GAGGION et al., 2021; GAGGION et al., 2022) the authors
demonstrate the performance of the network to segment the lung, heart and clavicle
regions. HybridGNet combines traditional convolutional neural networks with graph con-
volutional neural networks to increase the accuracy of segmenting anatomical structures,
Figure 36. By integrating graph convolutional neural networks, the model can better cap-
ture the complex relationships between anatomical landmarks, leading to more accurate
segmentation results (GAGGION et al., 2021; GAGGION et al., 2022).

HybridGNet

Standard encoder-decoder
architecture

graph spectral convolutions

Concatenation

Figure 36 — The HibridGNet model combines the features of a standard convolutions ar-
chitecture with graph spectral convolutions.

The model’s hybrid approach leverages local and global image information, enabling
detection of anatomical details not found in conventional models. As described (GAG-
GION et al., 2021; GAGGION et al., 2022), HybridGNet performed better than tradi-
tional landmark based models, making it reliable for segmenting anatomical regions in
medical applications (GAGGION et al., 2021; GAGGION et al., 2022).

5.2 Proposal

The first proposal is to preprocess datasets through histogram equalization and a

method based on Benford’s law. The second proposal is to use CNNs to process images

L Available at: <https://github.com/ngaggion/HybridGNet>
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from the original datasets and modified datasets and, in addition, perform the fusion of

models trained with the different datasets.

5.2.1 Proposal I - Creating image dataset using a method based

on Benford’s law

In this chapter we call the proposed method the Benford method. It is applied to
images in gray levels, with pixel values between 0 and 255. Before applying the Benford
method, the first action was to equalize the histogram. This procedure helped to balance
the gray levels of the image, preventing the gray levels from being concentrated in a few
values.

After applying histogram equalization to the images in the original dataset, through

Figure 37 it is possible to observe how much the histogram equalization brings the distri-

Comparison with the benford distribution Comparison with the benford distribution Comparison with the benford distribution

50 —»— Original benford distribution 50 —— Original benford distribution ] —— Original benford distribution
Image distribution with histogram equalization image distribution with histogram equalization 40 Image distribution with histogram equalization
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(a) Graph for the dataset with im- (b) Graph for the dataset with ra- (¢) Graph for the dataset with ra-
ages of lateral cephalograms. diograph images of the hand. diographic images of the lung.

Figure 37 — Graphs that show the approximation of the Benford curve, in each dataset,
after the histogram equalization. In the graphs, the blue line with the symbol
» indicates the original Benford distribution (literature standard). The green
line with the x symbol shows the original distribution of the dataset. The
orange line with the e symbol shows the distribution of the dataset after the
images have gone through histogram equalization.

bution of pixels in the original images closer to the Benford distribution. Observing the
green line in Figures 37(a), 37(b), 37(c), it is noticeable that the distribution of pixels
in original images (green line) were far from the Benford distribution (blue line). After
equalizing the histogram, data represented by the orange line, the distribution of pixels
in the images in the dataset was close to the Benford distribution (blue line).

In Figure 38 it is possible to view the original image and the same image after going
through histogram equalization. After equalizing the histogram, regions of the images
were extracted based on Benford’s law.

For image processing based on Benford’s law, consider a dataset of images A;; with

x pixel values that vary between 0 and 255, Equation 19.
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Figure 38 — From left to right: the first is the original image and the second is the original
image after equalizing the histogram.
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To1 T2z -+ Topn

Aij = (19)
Tml Tm2 - Tmn

For Vz,;; € A;; has been, Equacao 20:

LﬁgJ, .Tij € [10,99]

fz) = B
inj Tij € [100, 255]

10247

Now consider an intermediate matrix that receives the result of f(z), Aj; = f(z), consid-
ering that d € {1,2,---,9}, for all d the function g(z), Equation 21, generates a binary
image when applied a f(z), tal que Sf; = g(f(z)).

1, T € A; =d
g(x) = { Ly (21)
0, w4 € Aj; #
At the end of the process, for each A;; image, nine images {S*, 5?, ..., S?} are generated,
these images are called segments, as shown in Figure 39. Resulting in the finite union of

d =9 segmented images, described in Equation 22.

9
Si=U S5 (22)
d=1

Some parts generated from the image with the equalized histogram were selected, as
shown in Figure 41. The selection of images considered Benford’s law, which shows that
approximately 40% of the values start with the digits 1 and 2. Thus, images 1 and 2

were selected. The images representing the other digits contained contour information.
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Figure 39 — Image equalization and bitplane images. From top to bottom: the first is the
original image after equalizing the histogram. In the first sequence of images,
from left to right, the first image shows all the pixels that start with the digit
1 (S1), the second one refers to all the pixels that start with the digit 2 (S55),
and so on, until the last image of the second sequence , in which all pixels
starting with the digit 9 (Sy) are represented.

Contour details and stroke thickness were considered criteria for selecting another image.
The image showing pixels starting with the digit 9 had thin lines; however, it was observed
that in some situations there was a loss of contour information. The image containing
the pixels starting with the digit 8 was chosen, as it presented many contour details and
fine lines. The image selection process for digit 8 is manual based on data observation.
Therefore, images referring to the digits 1 (S7), 2 (52) and 8 (Sg) were selected.

The selected images were joined using a sum operation, resulting in the image shown
in Figure 41. This image was transformed into a binary image, where the white pixels
have the value 1, and the black pixels have the value 0.

The binary image was multiplied by the original image, which underwent histogram
equalization, generating a new image, as shown in Figure 42. The new image highlighted
only the regions where the pixels had values starting with the digits 1, 2 and 8.

Each original image went through this sequence of procedures, generating a new set

of data, as shown in Figure 43.
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Figure 40 — From left to right: in the first sequence of images, the first and second images
were selected, which present the pixels that start with the digit 1 (S7) and
2 (S3), respectively. In the second sequence of images, the third image is
selected, which presents all pixels that begin with the digit 8 (Sg).

Figure 41 — This image shows the sum result of images in which the pixels starting with
the digits 1 (S51), 2 (52) and 8 (Sg) are white.

5.2.2 Proposal II - Datasets with Benford images and CNN for

landmark detection

The dataset with images generated based on Benford’s law and the original dataset
were submitted, for training, to a CNN model proposed by (ZHU et al., 2021; ZHU et al.,
2022) and presented in Section 4.2.2. At the end of training, the best models are stored,
those in which the parameters produced the best results, as shown in Figure 44.

During the testing stage, the model responses are fused. The heatmaps generated from
the original datasets were fused with the heatmaps generated from the Benford datasets
via a summation operation. From the heat maps resulting from the sum, the vector of

points was generated, as shown in Figure 45.
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Figure 42 — The original image is multiplied by the image resulting from the sum of
selected images.
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Figure 43 — Steps of the method based on Benford’s law.

In Figure 46 the process of fusing the responses of the CNNs is represented. The
original image contains the original marks (ground truth). To the left of the original
image, in the first image, there are the landmarks detected from the original dataset
image. The second image is the comparison of ground truth with the landmarks detected
from the original dataset image. To the right of the original image, in the first image,
there are the landmarks detected from the Benford dataset image. In the second image
is the comparison of ground truth with the landmarks detected from the Benford dataset
image. In the center, below the original image, are the markings resulting from the fusion.
The third central image is the comparison of ground truth with the landmarks obtained

through the fusion. The fusion is the sum of the landmarks obtained based on the original
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Figure 44 — Training the universal anatomical landmark detection model with the original
dataset and the Benford dataset.
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Figure 45 — Fusion process of the universal model trained with the original dataset and
the model trained with the Benford dataset. The output of the models are
heat maps and the fusion is the sum of the heat maps. The landmarks are
extracted from the summed heat maps.

dataset and the landmarks obtained with the Benford dataset.

When using HybridGNet, Section 5.1.4, the process during the training phase is the
same as shown in Figure 44. The model is trained and at the end of training the best
models are stored. In the testing phase, the responses for the models trained on the two

datasets are averaged, as shown in Figure 47.
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Figure 46 — Process of fusion the answers from CNNs.

5.3 Results and discussion

The experiments presented in this section evaluate the contribution of datasets created
using the Benford method for landmark detection and region segmentation. In experi-
ments involving landmark detection the universal model, Section 4.2.2, is used. The
HybridGNet architecture, Section 5.1.4, is used in experiments involving region segmen-
tation based on the relationship between anatomical landmarks.

In the experiments, four datasets with the original images and four datasets with the
images processed by the Benford method is used, as shown in Figure 48.

For the experiments involving the universal model, the datasets of lateral cephalo-
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Figure 47 — Fusion process of the HybridGNet model trained with the original dataset
and the model trained with the Benford dataset. The output of the models
are vectors with the positions of the landmarks, the fusion and final response
is the average between the vectors.

grams, dataset containing radiographs of the hand and dataset containing radiographic
images of the lung, presented in Section 4.1.1, is used. The training set is composed of
130 images from the lateral cephalogram dataset, 550 images from the hand radiography
dataset and 195 images from the lung radiography dataset; totaling 875 images for train-
ing. For validation, 20 lateral cephalogram images, 59 hand X-rays and 34 lung X-rays
were used; a total of 113 images for validation. In the test phase, 250 lateral cephalogram
images, 301 hand X-ray images and 41 lung X-ray images were processed; a total of 592
images for testing. The metrics to evaluate the model’s performance is the MRE and
SDR, Section 4.3.3.

When carrying out the experiments with the HybridGNet architecture, the dataset
from the Japanese Society of Radiological Technology (JSRT) was used. The dataset
contains 247 X-Ray images of the chest. Fach image in the dataset features 166 landmarks
that delimit the regions of the lungs, heart and clavicles (SHIRAISHI et al., 2000). For
the experiment, the dataset was split with 70% of images for training, 10% for validation,
and 20% of images for testing.

To evaluate the HybridGNet model, the Dice coefficient and Hausdorff distance (HD)

metrics were used. To calculate the Dice coefficient between a source and a target image,
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Figure 48 — Comparison of images from the original dataset with images created based
on the Benford method.

the object of interest in each image is first binarized, and then the similarity between the
source and target objects is measured by comparing their overlap. Hausdorff Distance is
defined as the maximum distance between two objects (set of points). The distance unit
is typically a value in mm (HUTTENLOCHER; KLANDERMAN; RUCKLIDGE, 1993;
LI et al., 2020b; CARASS et al., 2020).
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5.3.1 Experiments and results with universal model and image

preprocessing

This section presents the results of the fusion of a model trained with original images
and a model trained with images fitted to the Benford curve.

For each dataset the universal model (ZHU et al., 2021; ZHU et al., 2022), presented
in Section 4.2.2, was trained four times for each dataset, using the random seeds 03,
42, 56, 99 and the original model parameters. Each time the model was trained for 100
epochs. Table 14 shows the average values of the results for training the model with
original datasets and the model with Benford datasets.

In the testing phase, the response of each model trained with the original datasets
was fused with the response of each model trained with the Benford datasets, resulting in
16 combinations. The average results of the combinations were calculated, and the final

result can be seen in the last line of Table 14.

Table 14 — Universal model run results for the original datasets and for the Benford

datasets
Head Hand Chest
Tests MRE SDR(%) MRE SDR(%) MRE SDR(%)
(mm) | 2mm | 2.5mm | 3mm | 4mm | (mm) | 2mm | 4mm | 10mm | (px) | 3px 6px 9px

Model with original datasets | 1.48 | 77.95 | 84.24 | 89.55 | 95.09 | 0.76 | 95.45 | 99.01 | 99.80 | 6.25 | 43.09 | 72.87 | 86.18
Model with Benford datasets | 1.68 | 72.87 | 80.27 | 86.45 | 93.51 | 0.82 | 95.44 | 99.06 | 99.67 | 5.19 | 41.46 | 77.54 | 88.92
Fusion of model outputs 1.44 | 78.36 | 84.63 | 89.81 | 95.33 | 0.72 | 96.07 | 99.26 | 99.81 | 4.35 | 47.13 | 79.34 | 90.42

The universal model was run for 100 epochs, for a mix of three datasets (lateral
cephalograms, hand radiographs and lung radiographic), spent 7.52 hours, consumed
0.66 kW h and emitted 0.30 kg of C'O2eq. This is equivalent to 2.84 km traveled by car.
For model fusion, resource consumption is doubled because the model is executed twice

for the same period.

5.3.2 Experiments and results with HybridGNet and image pre-

processing

This section presents the results of instances of the HybridGNet model trained on two
different datasets. Firstly, the model is trained and tested twice (with different random
seeds) with images from the original dataset, the final result is the average of the test
outputs. In the second approach, the model is trained and tested twice with images from
the Benford dataset, the average of the test outputs produces the final result. In the last
approach, during testing, an average fusion occurs between each landmark obtained with
the model trained on the original dataset and each landmark obtained with the model
trained on the Benford dataset, resulting in 4 combinations. The average result between
the combinations was calculated.

In Table 15, the results of the experiment are available. Results are shown for the

model being trained for 1000 epochs, 1500 epochs, and 2500 epochs. The amount of
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epoch corresponds to the values presented in the HybridGNet base article. In the case of
fusion, the number of epochs is doubled, as the fusion occurs between two models that
were trained for the same number of epochs. The results for using the original dataset
are in the first row of results. In the second line are the results related to the use of
the Benford dataset. In the last line are the results referring to the fusion between the
models’ responses during the test. The results related to the original dataset are the best,

the fusion did not produce any improvements.

Table 15 — HybridGNet model run results for the original datasets and for the Benford
datasets

Dice Hausdorff (mm)
1000 1500 2500 1000 | 1500 | 2500
HybridGNet with original dataset | 0.9326 | 0.9372 | 0.9387 | 14.58 | 13.79 | 13.86
HybridGNet with Benford dataset | 0.9274 | 0.9292 | 0.9314 | 15.88 | 15.58 | 15.20
Dice Hausdorff (mm)
2000 3000 5000 2000 | 3000 | 5000
HybridGNet with response fusion | 0.9308 | 0.9354 | 0.9366 | 15.06 | 14.45 | 14.20

Tests

Test

In Figure 49 we can see the ground truth regions, the regions obtained by the model
trained with the original dataset, the regions found by the model trained with the Benford
dataset and the regions delimited through fusion.

In addition to the metrics involving the quality of the markings, we consider pre-
senting the resource consumption to train the model. To execute 1000 iterations in the
HybridGNet model, 12.29 hours were spent and it is estimated that this execution uses
0.70 kW h of electricity contributing to 0.32 kg of C'O2eq. This is equivalent to 3.01 km
traveled by car. When running 1500 iterations, 18.47 hours were spent and an estimated
1.17 kW h of electricity was used, contributing to 0.54 kg of CO2eq. This is equivalent to
5.04 km traveled by car. In the end, after 2500 iterations, 31.04 hours were spent. It is
estimated that 2.11 kW h of electricity was used, contributing to 0.98 kg of CO2eq. This

is equivalent to 9.11 km traveled by car.
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Figure 49 — From left to right: The images and markings in the first column are original.
In the second column, the organs are delimited by the HybridGNet model
trained with the original dataset. In the third column, the organs are delim-
ited by the HybridGNet model trained with the Benford dataset. In the last
column, the organs are delimited by fusing the responses of a HybridGNet
trained with the original dataset and another HybridGNet trained with the
Benford dataset.
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CHAPTER

Conclusion

Technological advances have increased the use of images as an alternative for diagnos-
ing diseases. However, human analysis of countless images can be exhaustive and prone
to errors. To aid in the analysis of medical images and reduce the likelihood of errors,
computer vision algorithms, particularly CNNs, have demonstrated strong performance.

These algorithms are capable of analyzing large sets of data and identifying patterns
among the data that would be difficult for a human to notice. In the area of medi-
cal images, studies that seek alternatives to aid diagnosis through computer vision are
important, as they can make diagnosis quick, cheap and accessible.

In this study, we analyze the performance of CNNs in classification tasks and land-
mark detection tasks. For the classification task, we compare different CNN ensemble
architectures. We describe architectures that achieve the results shown in related work
and use fewer computational resources. In classification tasks, the findings of this study
highlight the significant contribution of DenseNet161 and ResNet152 to the fusion process
in all experiments. Furthermore, our findings demonstrate a similar level of performance
compared to the previous model, as indicated by an Fl-score of 0.9100 and MCC of
0.9020. Remarkably, our approach achieves this performance using just 10GB of GPU
RAM, in contrast to the previous model’s requirement of 15.8GB.

In the image classification task, we concluded that it is important to evaluate different
strategies, since different alternatives led to similar results. When the results are similar, it
is interesting to opt for a strategy that reduces financial costs and reduces the consumption
of resources such as electricity.

The Chapter 4 task is divided into two proposals. In the first proposal, we created a
universal CNN model based on a network model fusion strategy. This universal model
performed well in the landmark detection task. The proposed model achieved an im-
provement of approximately 2% in the point distance metric. Furthermore, the training
is performed shorter time, which reduces energy consumption and carbon emissions by
approximately 65%. For this proposal, we conclude that fusion is capable of improv-

ing performance and reducing resource consumption, however, finding a correct fusion
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alternative is a difficult task.

In the Chapter 5, we seek to improve CNN performance through image preprocessing.
We use original datasets and preprocessed datasets by histogram equalization and using
the Benford method. We individually analyzed, for each dataset, the performance of the
universal model and HybridGNet, we also evaluated the results of the models in a late
fusion process. We conclude that the proposed preprocessing did not improve the model’s
performance. These results demonstrate the robustness of the CNNs which, for the ana-
lyzed datasets, managed to achieve good performance without the aid of the preprocessing
proposal. This result does not preclude future research into other preprocessing alterna-
tives, it only demonstrates that the histogram equalization associated with the Benford
method did not bring benefits to the models analyzed.

These findings contribute to our understanding of the performance of individual mod-
els, fusion techniques, and feature utilization, paving the way for the design and implemen-
tation of more efficient and effective deep learning-based systems in image classification
and landmark detection tasks.

The main challenge was accessing sufficient computing resources. Furthermore, to
propose a fusion-based model there is a need for many experiments to identify the best
way to combine the models. Future research should explore model compression techniques
to reduce computational requirements. Furthermore, more experiments and analysis are
needed to identify optimal model combinations and refine the fusion process. Evaluating
fusion alternatives on different datasets is crucial for evaluating performance and resource

utilization. Our study brought contributions that are presented in the next section.

6.1 Main Contributions

As the main contribution to this work, we propose a fusion-based model that achieves
better accuracy than the literature and reduces energy consumption and carbon emissions
by approximately 65%. The proposed model is also capable of jointly processing different
datasets with different numbers of landmarks.

Furthermore, we analyze and compare different CNNs during gastrointestinal image
classification. We propose, implement and compare different CNN committee architec-

tures based on classification quality metrics and computational resource consumption.

6.2 Future works

In future work there is the possibility of applying the ensemble of classifiers to other
datasets and testing other networks in the composition of the ensembles. For the landmark

detection task, it is interesting to test the fusion of the universal model with the graph
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spectral convolutions layers of the HybridGNet model. Furthermore, it can be assessed

whether other preprocessing alternatives can help with the performance of the models.

6.3 Contributions in Bibliographic Production

(1 A paper was published in the BRAZILIAN CONFERENCE ON INTELLIGENT
SYSTEMS (BRACIS) (CAPES extract - A4), the title of the article is as follows:
Ensemble architectures and efficient fusion techniques for Convolutional Neural Net-

works: an analysis on resource optimization strategies (COSTA et al., 2023).

(d A paper entitled “Medical images landmarks detection by CNN fusion and energy
consumption analysis” was submitted to the journal Biomedical Signal Processing

and Control. The current status of the submission is under review.
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