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Abstract

Unconventional superconductivity has been an important topic of research since its dis-

covery in CeCu2Si2 (with Tc = 0.7K), by Frank Steglich and collaborators in 1979. Its

importance greatly increased in 1986 when Bednorz and Müller discovered superconduc-

tivity with Tc = 35K in a cuprate ceramic material. Since then, several different families

of unconventional superconductors have been discovered. In all of them, the pairing

mechanism is believed to not be via phonons, thus the ‘unconventional’ sobriquet. All of

these families clearly present electronic correlations, which are universally believed to be

involved in the pairing mechanism. The fact that the many-body problem involved has

no known solution explains the longevity of this problem. In this dissertation, we apply

the Matrix Random Phase Approximation to study superconductivity in LaCrAsO. We

vary the chemical potential to induce a Lifshitz transition, i.e., a change in the topology

of the Fermi surface, and study superconductivity across this transition. We find that spin

singlet pairing is induced by spin fluctuations of ferromagnetic character, which results in

the triplet pairing being competitive with the singlet pairing, although not dominant. In

addition, the dxy (B2g) symmetry of the gap function (with nodes along the coordinate

axes)does not vary across the Lifshitz transition. Finally, across the Lifshitz transition,

the outer edges of the electron pockets, close to the Brillouin zone boundary, accumulate

the majority of the amplitude of the gap function, while the hole pocket (located around

the Brillouin zone center) presents almost no gap function amplitude.

Keywords— Unconventional superconductivity, Matrix Random Phase Approximation, Lifshitz

transition
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1 Introduction

The discovery of superconductivity in Mercury, by Heike Kamerlingh Onnes in 1911 (ONNES,

1911), with critical temperature Tc = 4.15K, launched one of the most vibrant areas of research

in Physics, in the twentieth century. At first, a very slow increase in Tc seemed to indicate that

applications would be very scarce (see Fig. 1). However, in 1986, the discovery of superconduc-

tivity in the cuprates (LaBaCuO) (BEDNORZ; MÜLLER, 1986), with Tc = 35K, started a

new era in superconductivity research. As shown in Fig. 1, this started a vertiginous increase in

Tc, which has achieved the remarkable value of Tc = 133K, measured in the cuprate material

HgBa2Ca2Cu3O8+¶ (SCHILLING et al., 1993). These new materials have a pairing mechanism

(not understood yet) different from that present in the so-called conventional superconductors

(the metal elements, for example, with lower Tc), and thus were christened unconventional

superconductors.

Figure 1 – Schematic description of Tc evolution since 1911, when Hg superconductivity
was discovered by Kamerling Onnes. Figure obtained from the Wikipedia entry
‘High-temperature superconductivity’.

In this dissertation, focused on unconventional superconductivity, we will explore,

using the Matrix Random Phase Approximation (MRPA) (TAKIMOTO; HOTTA; UEDA,

2004; GRASER et al., 2009), the (possible) superconducting properties of the compound

LaCrAsO (WANG et al., 2017; PIZARRO et al., 2017) [isostructural to LaFeAsO, which is a

member of an extensive family of high-Tc Iron superconductors (SCALAPINO, 2012; DAI; HU;

DAGOTTO, 2012; DAGOTTO, 2013)]. The application of the RPA approximation, also called

fluctuation exchange (FLEX) approximation, to study superconductivity in the single-band

Hubbard model (HUBBARD, 1963), was proposed in 1989 by Douglas Scalapino’s group (BICK-
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ERS; SCALAPINO; WHITE, 1989) right after the discovery of high-Tc superconductivity in the

cuprates (BEDNORZ; MÜLLER, 1986). The extension of the RPA method to treat a multi-band

Hubbard model (appropriate for heavy-fermions (STEWART, 1984) and iron pnictides, thus

requiring the use of the matrix RPA) was proposed by Takimoto et al. (TAKIMOTO; HOTTA;

UEDA, 2004) in 2004. Along the years, the community involved in the development of the

technique settled in the use of the FLEX acronym to denote self-consistent calculations, while

the RPA (or MRPA) acronym was reserved to non-self-consistent calculations. The Hubbard

model is the simplest effective model of fermions with local interactions that is believed by

many to describe many of the phases observed in the cuprates (ANDERSON, 1987). In addition,

it is believed to exhibit superconductivity arising from purely repulsive interactions (KOHN;

LUTTINGER, 1965; MAITI; CHUBUKOV, 2013) and has been extensively applied to explore a

variety of unconventional superconducting systems. See Ref. (LONG, 1991), and the following

papers in the same volume, for a comprehensive discussion of the Hubbard model.

As mentioned above, in this dissertation, we will use the MRPA spin-fluctuation pairing

scheme to calculate the particle-particle scattering vertex for a multi-band Hubbard model

description of LaCrAsO, and, from it, obtain the gap function of the leading superconducting

instability of the model. The use of the matrix RPA is necessary, since all five Chromium 3d

bands cross the Fermi energy in the electronic structure of the Chromium oxide layer (which

hosts superconductivity) in LaCrAsO. In the case of the cuprates, like La2CuO4, the high-Tc

community has long accepted (after much fight...) the single-band Hubbard model as the minimal

model to describe it, where one can revert to the use of the simpler non-matrix flavor of RPA,

which is substantially less costly from the computational point of view, and whose results are

considerably simpler to interpret.

What justifies using the RPA and not the Bardeen-Cooper-Schrieffer (BCS) theory (BARDEEN;

COOPER; SCHRIEFFER, 1957) to analyze high-Tc superconductors? The BCS theory, in its

original variational form, is valid when the typical energies characterizing the superconduct-

ing state (critical temperature Tc and gap ∆, for example) are much smaller than all other

energy scales entering the problem. The diminutive value of these energy scales (Tc and ∆) is

caused by the weakness of the effective attraction between the electrons forming the Cooper

pairs (COOPER, 1956). As a result, BCS theory is said to be a weak coupling theory. In

cases where this coupling is no longer small (even in conventional superconductors, like Pb

and Hg 1), a ‘strong coupling’ theory is necessary. In reality, there are a few different theories

that incorporate strong coupling interactions, like the Eliashberg theory (MARSIGLIO, 2020)

(also called Migdal-Eliashberg theory), or, as in our case, the RPA approximation to calculate

the Bethe-Salpeter kernel (MALIK, 2016), which is used to calculate the pairing vertex using

quantum field theory 2. It can be shown that the BCS equations, for an elemental superconductor,

obtained via a variational approach (i.e., BCS theory) may also be obtained via this alternative

1 While the BCS theory result for the ratio 2∆(0)/kBTc is 3.53 [which is the measured value for Al,
a BCS superconductor (MATTHIAS; GEBALLE; COMPTON, 1963)], it takes the value 4.3 for
Pb (GIAEVER; HART; MEGERLE, 1962) and 4.6 for Hg (BERMON; GINSBERG, 1964).

2 The Bethe-Salpeter equation treats time-dependent two-particle interactions. Being a many-body
problem, its solution has to resort to some approximation, which in our case is the MRPA.
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approach based on a temperature-generalized Bethe-Salpeter equation, employing as its kernel

the one-phonon propagator (MALIK, 2016). One may view Cooper pairs in the latter approach

as being bound together via the ‘glue’ provided by a single spring. In the case of a non-elemental

superconductor (MgB2, for example, with Tc = 39K (KORTUS, 2007)) a superpropagator is

employed as the kernel, thus the Cooper pairs will be bound together by the stronger glue

provided by a composite spring. It is this feature that causes Tc enhancement for a non-elemental

superconductor. A superpropagator represents the propagation of a weighted superposition of

multiple quanta. Thus, a field-theoretic construct exists which may be used in going from the

scenario of two electrons bound via the exchange of a single phonon to the scenario where

they are bound via the exchange of multiple phonons, that naturally arises in non-elemental

superconductors.

Another important question that is relevant to high Tc systems simulated by the Hubbard

model is the following. Can superconductivity arise from purely repulsive interactions? That is,

without the help of phonons, which originate from outside the Fermi sea. A seminal proposal

by Kohn and Luttinger (KOHN; LUTTINGER, 1965) suggests a positive answer. Indeed,

their proposal is based on the fact that the combination of charge screening in metals and a

discontinuous drop of n(k) (electron occupancy) at the Fermi surface results in an oscillatory

potential of the form cos(2kF r+ϕ)/r3. They then posit that “It is plausible to suppose that, similarly,

the effective interaction between the fermions themselves will have a long-range oscillatory

part. By taking advantage of the attractive regions, Cooper pairs can form, thus giving rise to

superconductivity”. Obviously, regions where the electron density is less than the average will

have a net positive charge, generating an attraction between two electrons. It is interesting to

reproduce here the first paragraph of this seminal paper (KOHN; LUTTINGER, 1965):

It is the purpose of this note to point out a new mechanism which provides an instability

against Cooper-pair formation. We find that a weakly interacting system of fermions cannot remain

normal down to the absolute zero of temperature, no matter what the form of the interaction.

This mechanism has nothing to do with the conventional electron-phonon attractive interaction in

metals, or the long-range attractive van der Waals forces in He3. It is present even in the case of

purely repulsive forces between the particles, and (it) is due to the sharpness of the Fermi surface

for the normal system.

One major experimental aspect of high-Tc superconductivity is the almost universal

presence of an antiferromagnetic (AF) phase close to the superconducting one (see Fig. 2).

This is true of the cuprates, iron-pinictides and -chalcogenides, the recently discovered nick-

elates (PICKETT, 2021), and also true of some heavy fermions and actinides. For a recent

review of this particular aspect, please see Ref. (SCALAPINO, 2012). Obviously, as shown in

Fig. 2, hole- (or, sometimes, electron-) doping is necessary to bring down the Néel temperature,

destroying the Mott insulator phase, and generate a so-called strange metal, thus ushering in

the superconducting phase. This fact, the closeness of superconductivity to an AF phase, led

many to believe that paramagnons (excitations present in the remaining AF short-range order)

would form the ‘glue’ responsible for Cooper pair formation in heavy-fermions, some organic

superconductors (Bechgaard salts), and possibly also in the cuprates. This became known as



14 Chapter 1. Introduction

the paramagnon spin fluctuation mechanism (SCALAPINO, 1999). The first theory showing

the importance of spin fluctuations for superconductivity was proposed by Bob Schrieffer in

1966 (BERK; SCHRIEFFER, 1966), where he showed that paramagnon spin fluctuations could

suppress superconductivity in nearly-ferromagnetic materials. That result spurred a lot of activ-

ity in the field. Indeed, right after Schrieffer’s results, it was proposed that paramagnon spin

fluctuations provide the p-wave pairing mechanism responsible for superfluidity in He3 (FAY;

LAYZER, 1968; LAYZER; FAY, 1974).

Figure 2 – Schematic phase diagram for the cuprates, showing the presence, at very low
hole doping (≲ 0.05), of an antiferromagnetic phase, associated to a Mott
insulator phase (zero doping). After the suppression of magnetic order, a
superconducting dome is present, with a maximum transition temperature at
optimal doping. (BATLOGG; VARMA, 2000)

It is in that tradition of Cooper pairs formed through paramagnon-exchange that the

MRPA technique is presented, and understood, in this dissertation, centered in a Chromium

pnictide material.

This dissertation is organized as follows: in Chapter 2 we provide a motivation for the

subject analyzed, where we initially situate it in the context of unconventional superconductivity

as a whole, providing some historic perspective, including a brief formal analysis of Cooper

pair formation and the Bardeen-Cooper-Schrieffer (BCS) theory. In Chapter 3, we present

the methods used in this dissertation: the tight-binding (TB) method and the MRPA. The

TB method will be developed in the context of Wannier orbitals, obtained through Density

Functional Theory (DFT) 3. In Chapter 4 we present a historical perspective about Chromium-

pnictides superconductors and our MRPA results for LaCrAsO. We close with our conclusions

and perspectives for future work in Chapter 5. Some of the more technical material is relegated

to the Appendices. Despite its extension, we elected to provide the code used, for completeness,

in the Appendices.
3 Although the LaCrAsO TB parameters we used were obtained from the literature (WANG et al., 2017),

we developed extensive knowledge on obtaining ‘ab-initio’ TB parameters via the DFT+Wannier90
strategy. Results for graphene are presented to illustrate that.
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2 Superconductivity

2.1 Historic Perspective

In 1957, John Bardeen, Leon Cooper, and John Robert Schrieffer (BCS) (BARDEEN;

COOPER; SCHRIEFFER, 1957) proposed a theoretical model that describes pairs of electrons,

with opposite momenta and spin, which couple through electron-phonon interaction, to describe

the superconducting state of ordinary metals. Superconductivity is the phenomenon in which

resistivity vanishes below a critical temperature Tc and magnetic flux is ejected from the material.

The BCS theory, where pairing is mediated by phonons, describes the so-called conventional

superconductors. Pairing in the so-called unconventional superconductors (HIRSCH; MAPLE;

MARSIGLIO, 2015; STEWART, 2017) is believed to be caused by the exchange of spin and/or

charge fluctuations between the pairing electrons. Paradoxically, the ‘glue’ for the pairing (the

fluctuations) are caused by the repulsion between the electrons. Indeed, the many (spin and

charge) ordered phases present, for example, in the phase diagram of the cuprates (DAGOTTO,

1994), are believed to provide the order parameter, whose fluctuations (paramagnons in the case

of spins (SCALAPINO, 2012; WANG et al., 2022)) are the bosons exchanged by the electrons in

Cooper pairs. A prominent idea in the field is that spin fluctuations are the unifying concept for

all unconventional superconductors (SCALAPINO, 2012).

In 1911, H. K. Onnes carried out experiments measuring the resistivity of Hg at low

temperatures, and with these experiments (ONNES, 1911), the first superconductor in history

was discovered, with a transition temperature Tc = 4.2K(MATTHIAS; GEBALLE; COMPTON,

1963). With the discovery of that new phase of matter, various other metas were found to be

superconductors, such as Pb (Tc = 7.19K) (MATTHIAS; GEBALLE; COMPTON, 1963), Nb

(Tc = 9.25K) (WEBB, 1969), etc. However, for a long time, superconductors consisted of a single

element, until NbN (Tc = 16K) (SHY; TOTH; SOMASUNDARAM, 1973) was discovered to be

a superconductor.

The search for other superconductors continued throughout the rest of the 20th century,

resulting in the discovery of unconventional superconductors in the 1980s. In the 21st century,

experiments have not stopped. In 2001, the superconductor MgB2 (Tc = 39K) (NAGAMATSU

et al., 2001) was synthesized, and Iron superconductors were discovered (SCALAPINO, 2012).

2.2 BCS Theory

In the following subsections, we will summarize the basis and formalism of the BCS

theory.
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2.2.1 Cooper pairs

Although the electrostatic interaction between two electrons is repulsive, it was long

suspected that ionic vibrations of the lattice can produce a net attractive potential. It was Leon

Cooper who first showed (COOPER, 1956) that an attractive interaction, no matter how weak it

is, in the presence of a Fermi Sea, can generate a bound state in a pair of electrons |⃗k↑, −k⃗³ð
added to the system. Thus, electrons on the Fermi surface of a metal will pair up to form bound

states, so that the ground state energy is reduced. Therefore, the Fermi surface is no longer

stable, since more electrons may pair up, to form Cooper pairs, and lower the system’s energy.

The metal may then transition from the so-called normal state to the superconducting state,

which is a ‘coherent’ superposition of Cooper pairs.

A ‘hand waving’ description of Cooper pairing goes along the following lines: A free

electron in a metal produces an attractive interaction in the nearby positively charged lattice

ions. As the ion mass is many times greater than the electron mass, the ion velocity is much less

than the electron velocity. Thus, after the electron has already moved out of the lattice region it

perturbed, a net concentration of positive charge remains, generating an attractive potential for

other nearby electrons. It turns out that this potential is more effective in attracting electrons of

opposite momentum and spin to the electron that caused the lattice distortion in the first place,

thus the effective potential is responsible for the formation of the Cooper pair.

In the following, we provide a heuristic description of the Cooper pair instability, based

on Ref. (MANGIN; KAHN, 2016).

2.2.1.1 Single-particle analysis

We will consider the Hamiltonian H0, written in its eigenstate basis, denoted |1ð, |2ð, |3ð and |4ð,
whose eigenvalues are degenerate, i.e., εi = ε, for all i. Next, we add an potential V̂ to the system,

obtaining a perturbed Hamiltonian H = H0 + V̂ , where ïi|V̂ |jð = V̂ij = −V (where V > 0), and

then calculate the eigenvalues and eigenstates of the perturbed Hamiltonian, whose eigenvalue

equation in matrix form is given by 1















ε − V − E −V −V −V

−V ε − V − E −V −V

−V −V ε − V − E −V

−V −V −V ε − V − E





























c1

c2

c3

c4















=















0

0

0

0















. (2.1)

Thus, the characteristic equation is given by

E4 + (4V − 4ε)E3 + (6ε2 − 12V ε)E2 − (4ε3 − 12V ε2)E + (ε4 − 4V ε3) = 0,

(E − ε)3(4V − (ε − E)) = 0. (2.2)

From this expression, we obtain four eigenenergies, three of which are degenerate, E´ = Eµ =

E¶ = ε, and one lower than the others, E³ = ε − 4V . The eigenvector associated with the lowest

1 Note that the perturbation is taken as being such that, besides lowering the energy of each H0

eigenstate, it also ‘scatters’ an electron from any eigenstate to any other eigenstate, with the same
amplitude (−V ). As will become clear soon, this is essential for Cooper-pair formation.
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energy is given by a symmetric linear combination of the all the H0 eigenstates,

|³ð =
1√
4

[|1ð + |2ð + |3ð + |4ð].

Thus, it is the gain in energy obtained by phase-space delocalization that produces a state with

lower energy than the others, as the three other eigenstates are less delocalized than |³ð, since

they are linear combinations of just two original eigenstates 2.

Now, consider the generalized case, where the Hamiltonian H0 has N eigenstates with

energy ε and we add, as above, a scattering potential V̂ to the system. As a result, we get (N − 1)

degenerate states with energy ε and one state with energy ε − NV . The lowest energy eigenstate

|³ð, which we call a bound state, is again a symmetric linear combination of the N eigenstates of

H0.

We can also consider another type of generalization. We will assume that the eigenstates

of H0 are non-degenerate, where ε1 < ε2 < ε3 < ε4, and add the same scattering potential V̂ to

the system. We have to solve four equations, given by

ci

V
=

c1 + c2 + c3 + c4

εi − E
, (2.3)

where i ∈ [1, 4]. Summing all four equations, and simplifying, we obtain the relation

1

V
=

4
∑

i=4

1

εi − E
. (2.4)

Figure 3 shows the possible solutions to Eq. (2.4), where the perturbed eigenenergies are

indicated by red-dots. From it, we see that, again, there is one (and only one) eigenenergy that

is considerably lower than the lowest of the original ϵi. The eigenstate associated to this lowest

energy is similar to the simplified case described above. Now, all coefficients are still positive,

but they obey the inequalities c1 > c2 > c3 > c4 > 0,

|³ð = c1|1ð + c2|2ð + c3|3ð + c4|4ð.

Thus, phase space delocalization is still the mechanism that lowers the energy of the

|³ð state. However, a balance has to be achieved, where states with higher unperturbed energy

should contribute less to the bound state.

2.2.1.2 System of electron pairs

We will now consider a two-electron system, where there are four single-particle states, two

with energy ε (|1ð ≡ |⃗k↑ð and |2ð ≡ | − k⃗³ð) and two with energy ε′ (|3ð ≡ |⃗k′
↑ð and |4ð ≡ | − k⃗′

³ð),
2 It is very transparent that it is the form of the perturbation V̂ , which scatters equally each H0

eigenstate into each other, with a negative matrix element V̂ij = −V , that results in the symmetric |³ð
state with equal participation of all the unperturbed eigenstates.
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ε1 ε2 ε3 ε4Eα

E
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V
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∑
i

1

ε
i
−
E

Figure 3 – Graphical solution of relation (2.4). The red dots indicate the eigenenergies,
where the leftmost one corresponds to E³, the bound state. It is clear that, as
V increases (and thus 1/V decreases), E³ decreases.

where ε < ε′. As we are considering a two-particle system, the basis of the total Hamiltonian must

be modified, since the quantum system must be described by |j, j′ð states, where j, j′ ∈ [1, 4].

Two-electron states with opposite momenta and spin are the ones that are coupled by the

electron-phonon interaction (BARDEEN; COOPER; SCHRIEFFER, 1957). Note that, with

the single-particle states just defined above, there are only two possible two-electron states that

satisfy the condition of opposite momenta and spin, viz., (|1, 2ð = |⃗k↑, −k⃗³ð and |3, 4ð = |⃗k′
↑, −k⃗′

³ð),
with energies 2ε and 2ε′, respectively. We will call them pair-states. On the other hand, there are

four two-electron states that do not satisfy this condition, viz., (|1, 3ð = |⃗k↑, k⃗′
↑ð, |1, 4ð = |⃗k↑, −k⃗′

³ð,
|2, 3ð = | − k⃗³, k⃗′

↑ð, and |2, 4ð = | − k⃗³, −k⃗′
³ð), with energy ε + ε′. Now, we add the V̂ perturbation

(electron-phonon coupling), however, as remarked above, the scattering potential only operates

on the pair states. Schematically, we represent the scattering caused by the V potential by Fig.

4, where a pair state close to the Fermi energy is scattered into another pair state.

Based on the considerations in the above paragraph, the total Hamiltonian H = H0 + V̂

has a diagonal block, consisting of a 4 × 4 matrix with ε + ε′ diagonal matrix-elements, and a

2 × 2 matrix, involving the pair-states, given by

H2×2
pair =





2ε − V −V

−V 2ε′ − V



 , (2.5)

where, as the reader may already anticipate, it is crucial for the electron-phonon interaction to

be also active in scattering one pair-state into another, as indicated by the off-diagonal matrix

elements in Eq. (2.5).
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Figure 4 – Representation of the scattering of pair states via a V potential. The green
circle represents the Fermi surface.

The H2×2
pair eigenenergies, in the pair-state subspace, are given by

Epair = [ε + ε′ − V ] ±
√

(ε − ε′)2 + V 2.

Thus, the introduction of the electron-phonon coupling results in three types of eigenstates:

a bonding state, i.e., a quantum state with the lowest energy, its corresponding antibonding

state, and the ε + ε′ states, which do not involve pair-states. In the next subsection, we will

generalize the procedure just outlined, by considering a pair of electrons added to a metal.

2.2.1.3 Cooper Pair: Bound state

We will consider a metal at temperature T = 0K, in which the states below the Fermi

energy εF are filled. Then, we will assume that two extra electrons are added, with energy εF ,

and consider all the other electrons as being frozen. As the BCS pairing-interaction takes place

via phonon mediation, the scattering of these two electrons between two pair-states, |⃗k↑, −k⃗³ð
and |⃗k′

↑, −k⃗′
³ð, can only take place inside the energy interval εF < ε

k⃗
< εF + ℏÉD, where ℏÉD

is the Debye energy (the characteristic energy of the phonon spectra for the metal of interest).

Additionally, we redefine the energy of a free electron in a |⃗kð state, taking as reference the Fermi

energy εF , as

À
k⃗

= ε
k⃗

− εF =
ℏ

2

2m
(k2 − k2

F ),

À
k⃗

∼= ℏ
2kF

m
(k − kF ), (2.6)

where the approximation k + kF = 2kF was made in Eq. (2.6), since ℏÉD j εF . Once we add

the electron-phonon interaction, i.e., a perturbation that lowers the energy of the pair-states and

generates scattering between them, we will have a situation identical to that in Eqs. (2.1) and
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(2.5). Thus, we expect to obtain a bound state with energy E³, which can be obtained via an

equation similar to Eq. (2.4), given by

1

V
=

kc
∑

kF

1

2À
k⃗

− E³
, (2.7)

where ℏ
2k2

c/2m = εF + ℏÉD. If we consider that there is a continuum of accessible pair-states, we

can transform the sum into an integral in energy, given by

1

V
=

∫

ℏÉD

0
Ä(ε)

dε

2ε − E³
, (2.8)

where Ä(ε) is the density of states per volume unit and E³ is the bound-state energy. If we

consider that the integration interval is small, we may consider the density of states as a constant,

calculated at the Fermi energy, Ä(ε) ⇒ Ä(εF ). Thus, the integral becomes trivial, and we obtain

1

V
=

Ä(εF )

2
ln

[

1 − 2ℏÉD

E³

]

. (2.9)

Using the fact that E³ j ℏÉD, we may neglect the 1 in the ln argument and the

approximate analytical expression for E³ is given by

E³ = −2ℏÉDe−2/V Ä(εF ), (2.10)

where we see that the bound state energy is proportional to the phonon energy scale ℏÉD.

Furthermore, E³ decreases exponentially with the product of the effective potential V and the

density of states at the Fermi energy Ä(εF ).

We may define the binding energy Eb = −E³ as the lowering of the two extra electrons

energy by their association to form a Cooper pair, which, as already discussed above, is delocalized

over the available pair-states above the Fermi surface. Consequently, given two electrons with

energy εF and at a sufficiently low temperature, if an attractive potential is applied, which

scatters pair-states among themselves with amplitude −V , a so-called Cooper pair is formed, with

a binding energy given by the negative of Eq. (2.10).

2.2.2 Many Cooper pairs

While Cooper considered only a single pair of electrons (COOPER, 1956), the theory of

Bardeen, Cooper and Schrieffer (BCS theory) considered that many electrons in the solid could

form bonded pairs in the ground state. Their effective Hamiltonian is given by

H =
∑

k⃗Ã

À
k⃗
c 

k⃗Ã
c

k⃗Ã
+

1

N

∑

k⃗k⃗′

V
k⃗k⃗′

c 
k⃗↑

c 
−k⃗³

c
−k⃗′³

c
k⃗′↑

, (2.11)

where c 
k⃗Ã

(c
k⃗Ã

) are electron creation (annihilation) operators with momentum k⃗ and spin Ã 3

and À
k⃗

= ε
k⃗

− µ, where µ is the chemical potential. The second term in the Hamiltonian describes

3 For more details about second quantization, please see Appendix A.
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the scattering from the pair-state |⃗k′
↑, −k⃗′

³ð to |⃗k↑, −k⃗³ð. Furthermore, in BCS theory we can

consider a simplified potential, where the scattering potential is given by

V
k⃗k⃗′

=











−V if εF − ℏÉD < ε
k⃗

and ε
k⃗′

< εF + ℏÉD

0 otherwise.

To solve Hamiltonian (2.11), BCS performs a decoupling via the mean-field approximation

c 
k⃗↑

c 
−k⃗³

c
−k⃗³

c
k⃗↑

∼= ïc
−k⃗³

c
k⃗↑

ðc 
k⃗↑

c 
−k⃗³

+ ïc 
k⃗↑

c 
−k⃗³

ðc
−k⃗³

c
k⃗↑

− ïc
−k⃗³

c
k⃗↑

ðïc 
k⃗↑

c 
−k⃗³

ð,

and defines the gap function as

∆
k⃗

= − 1

N

∑

k⃗′

V
k⃗k⃗′

ïc
−k⃗′³

c
k⃗′↑

ð. (2.12)

Once we have the Hamiltonian written in terms of the gap function in the mean-field

approximation, we can perform the Bogoliubov transformation. That transformation allows us to

describe the system using Bogoliubov quasiparticles, which are linear combinations of electrons

and holes. The transformed Hamiltonian is given by

HBCS = EBCS +
∑

k⃗Ã

E
k⃗
µ 

k⃗Ã
µ

k⃗Ã
, (2.13)

where µ
k⃗Ã

are fermionic operators, and E
k⃗

=
√

À2
k⃗

+ |∆
k⃗
|2. We can determine the gap function

in terms of the Bogoliubov operators (2.14), considering ïµ 

k⃗′↑
µ

k⃗′↑
ð = nF (E

k⃗′
), ïµ

−k⃗′³
µ 

−k⃗′³
ð =

1 − nF (E
k⃗′

) and nF (E
k⃗′

) = 1/(1 + e´E
k⃗′ ).

∆
k⃗

= − 1

N

∑

k⃗′

V
k⃗k⃗′

∆
k⃗′

2E
k⃗′

(

1 − 2nF (E
k⃗′

)
)

(2.14)

We will take a particular case, where the gap function does not depend on k⃗ (∆
k⃗

→ ∆),

also called the s-wave4. To realize the case, the potential must not depend on k⃗ (V
k⃗k⃗′

= −V0), so

we have

1 =
V0

N

∑

k<kD

1

2Ek
tanh

( Ek

2kBT

)

⇒ 1 = V0

∫

ℏÉb

−ℏÉb

dε
Ä(ε)√

ε2 + ∆2
tanh

(

√
ε2 + ∆2

2kBT

)

(2.15)

At the limit ∆ → 0, we can determine the critical temperature (Tc), given by

1

V0ÄF
=

∫

ℏÉD

0

dε

ε
tanh

( ε

2kBTc

)

Tc =
2ℏÉDeµ′

ÃkB
e−1/V0ÄF . (2.16)

For the first time, a microscopic theory explains the low critical temperatures of the

superconducting phase (BARDEEN; COOPER; SCHRIEFFER, 1957), due to exponential

4 The most general treatment for s-wave is when the function has no nodes.
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dependence. It should also be noted that regardless of the weakness of the V0 coupling, the theory

predicted a superconducting phase transition.

Therefore, the lowest energy of the system is due to the attractive potential between

electrons of opposite momenta and spin, and so the state corresponding to this energy is a

delocalized state in all accessible pair-states |⃗k↑, −k⃗³ð close to the Fermi level. For Cooper pairs,

the pair-states have a probability of occupation (|v
k⃗
|2) given by

|v
k⃗
|2 =

1

2

[

1 − À
k⃗

√

À2
k⃗

+ |∆|2
]

, (2.17)

while the probability of being unoccupied is |u
k⃗
|2 = 1 − |v

k⃗
|2, Fig 5.

Due to the nature of Cooper pair formation, the occurrence of scattering between pair-

states at the Fermi energy is fundamental to the establishment of the superconducting ground

state. Indeed, this can be understood by noticing that the superconducting gap ∆ is given by

∆ = V
∑

k⃗

Ç
k⃗

= V
∑

k⃗

v
k⃗
u

k⃗
. (2.18)

where Ç
k⃗

= u
k⃗
v

k⃗
(see solid black curve in Fig. 5) measures the participation of each pair-state in

gap formation, being |v
k⃗
|2 the probability for pair-states to be occupied and |u

k⃗
|2 = 1 − |v

k⃗
|2

the probability for pair-states to be unoccupied. Thus, in the hypothetical situation where all

pair-states below the Fermi energy are fully occupied (red dash-dotted curve in Fig. 5), the

superconducting gap ∆ vanishes, since u
k⃗
v

k⃗
= 0 for all k⃗. Therefore, a pair-state is effective in

participating in the formation of the superconducting ground state if it can be both the origin of

a scattering event (|v
k⃗
|2 > 0, i.e., partially occupied) and the destination of a scattering event

(|u
k⃗
|2 < 1, i.e., partially unoccupied).
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Figure 5 – Probability for pair-states to be occupied (|vk⃗|2, black dash-dotted curve) and
unoccupied (|uk⃗|2 = 1 − |vk⃗|2, black dotted curve). Çk⃗ = uk⃗vk⃗ measures the
participation of each pair-state in gap formation, i.e., ∆ =

∑

k⃗ Çk⃗. The red dash-
dotted curve indicates a hypothetical situation, with fully occupied pair-states
below the Fermi energy, that results in a vanishing gap, since the product uk⃗vk⃗

vanishes for all k⃗. Adapted from Ref. (MANGIN; KAHN, 2016).
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3 Methods

In this chapter we will present the techniques used in the multiorbital RPA calculation,

in particular a brief explanation of the tight-binding model, the essence of RPA and the study of

the convergence of the RPA calculation.

3.1 Tight-Binding Method

When working with solids, a priori, we need to consider all the atomic orbitals of each

chemical element and their interactions. This is the approach taken by Density Functional Theory

(DFT), using the Kohn-Sham approximation to treat the electron interactions. The Kohn-Sham

approximation (KOHN; SHAM, 1965; ENGEL; DREIZLER, 2011) maps the complex interacting

electron system onto a system of non-interacting electrons moving in an effective potential, which

includes the effects of electron exchange and correlation. An alternative approach is to treat

the solid at a qualitative level, by using a tight-binding (TB) approach, which we will describe

in this chapter. The great advantage of the TB method is that it allows the study of model

Hamiltonians (which describe strong correlations between electrons, like the Hubbard model),

beyond the mean-field level.

If we consider a collection of neutral atoms isolated by a few centimeters, the wave

function of the electrons of each element can be well described as atomic wave functions. However,

in order to form a solid, the distance between the atoms must be reduced, and as a result, the

electronic levels will be modified due to the interaction among the electrons. In other words,

for the electrons closest to the nucleus, the interactions between the electrons of neighboring

atoms can be almost negligible, so their wave functions remain the same as the electronic levels

of an isolated atom. As for the electrons in the valence layer, the interactions with neighboring

atoms are more relevant and their wave functions can be modified. The TB approach deals

precisely with this description, where the wave functions of the electrons in the valence layer are

overlapped with those of neighboring atoms, and the electrons in the inner layers remain atomic

in description.

We will now consider a non-interacting fermionic system1 whose Hamiltonian is given by

Hfree =
∑

k⃗,Ã

ϵfree

k⃗
c 

k⃗Ã
c

k⃗Ã
, (3.1)

where

ϵfree

k⃗
=

p2

2m
=

ℏ
2k2

2m

is the energy dispersion. In position space, the Hamiltonian becomes

Hfree =
1

N

∑

ijÃ

∑

k⃗

ϵfree

k⃗
eik⃗·(r⃗i−r⃗j)c iÃcjÃ, (3.2)

1 For more details about the second quantization, please see Appendix A.
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and we will define the hopping amplitude as

tij ≡ 1

N

∑

k⃗

ϵfree

k⃗
eik⃗·(r⃗i−r⃗j). (3.3)

If we consider that the non-interacting fermions are in a Bravais lattice with well-localized

potentials at each site, then the scattering energy changes, and consequently the hopping

amplitude also changes. As a result, the fermions tend to be more localized on the lattice sites.

Thus, the tight-binding approximation is given by

tij =











−t, if i and j are nearest neighbors

0, otherwise,

and the tight-binding Hamiltonian is given by

HTB = −t
∑

ïijð,Ã

(c iÃcjÃ + c jÃciÃ), (3.4)

where ïijð signifies that we are considering only nearest-neighbor hoppings.

In the DFT approximation, the wave functions are maybe described by Bloch functions,

the same ones that the TB approximation is based on, where the atomic wave functions are known

as Wannier functions. These bands can be defined for any type of electronic band, regardless of

whether the TB approximation works. The difference is that if the band to be described is not of

the TB type, the Wannier functions will not be of the atomic orbital type. In Appendix C we

demonstrate a case where the DFT bands of a porphyrin-type molecule embedded in graphene

were calculated, and from the DFT bands, the Wannierization was carried out, i.e., the Wannier

functions that best describe the bands of the material were calculated.

In order to exemplify how to obtain the hopping parameters for a physical system, we will

consider a unit cell with 2 carbon atoms based on hexagonal symmetry, and perform the DFT

calculation using the Quantum Espresso software (GIANNOZZI et al., 2009; GIANNOZZI et al.,

2017), and obtain the band structure, FIG. 6, and the wave functions for graphene. Based on

these results, the wave functions were analyzed, in which the orbitals used to reproduce the DFT

bands were s, px, py and pz (for the first carbon atom in the base), and pz (for the second carbon

in the base). In addition to reproducing the band structure curves, the hopping parameters up to

the eighth neighbour were also calculated. To demonstrate the result, the on-site hopping matrix

is given by

HGR
on site =





















−12.94691 −1.99017 −1.99017 0.00000 0.00000

−1.99017 −12.94691 −1.99017 0.00000 0.00000

−1.99017 −1.99017 −12.94691 0.00000 0.00000

0.00000 0.00000 0.00000 −1.80484 −2.87254

0.00000 0.00000 0.00000 −2.87254 −1.80484





















, (3.5)

where the diagonal elements are the orbital energies of the orbitals used in the wannierization,

following the order CA :s, px, py, pz, and CB :pz, while the off-diagonal elements are hopping

between the orbitals on the site itself, which is the description of the Ã and Ã bonds of graphene.
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Figure 6 – DFT (black curves) and Wannier (red curves) band structure for graphene. At
the K point, both curves reproduce the Dirac cone characteristic of graphene.

3.2 Matrix Random Phase Approximation Method

The MRPA method (TAKIMOTO; HOTTA; UEDA, 2004; GRASER et al., 2009) is

a many-body approach (BICKERS; SCALAPINO; WHITE, 1989) to study unconventional

superconductivity in materials whose band structure, around the Fermi level, depends on two or

more orbitals. The method takes into account spin and charge fluctuations, treated at the RPA

level, which may result in electron pairing (SCALAPINO, 1995; SCALAPINO, 1999; MORIYA;

UEDA, 2000). Details of the development of some of the equations shown in this section can be

found in the review article (BICKERS; SCALAPINO, 1989).

As shown in Fig. 7, the starting point is to write the Hamiltonian that includes multi-

ple orbitals for both the kinetic energy, where the tight-binding parameters are obtained via

DFT+Wannier90 calculation (Eq. 4.1), and the Coulomb interaction terms, described by the

intra-orbital, inter-orbital, exchange interaction, and pair hopping terms (Eq.(4.2)).

The next step in the method is to calculate the electronic interacting susceptibility of the

system, both for the spin and charge sectors. Those susceptibilities describe the response of the

physical system to small variations in spin and/or charge, and can indicate a phase instability,

such as a transition to an ordered magnetic state, a charge-ordered state, or the formation of

a superconducting state (SCALAPINO, 1995; SCALAPINO, 1999; MORIYA; UEDA, 2000).

Those interacting susceptibilities are obtained, through MRPA (Eqs. (3.11) and (3.12)), from

the non-interacting susceptibility Ç0 (Eq. (3.10)).

Finally, the last stage of the method is the calculation of the pairing vertex at the Fermi
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surface points k and k′ (Γ(k, k′) in Eq. (3.19)), followed by the diagonalization of the integrand

in Eq. (3.21). Those Fermi surface points, k and k′, form a set of discrete pair scattering points

(see, for example, Fig. 7), which transform a continuous integrand function into a discrete set

of scattering events. This way, the indexes of the matrix to be diagonalized may be defined.

The larger the number of k and k′ points, the better is the convergence to the continuum (see

convergence analysis in section 3.2.6). In the calculation of the pairing vertex, the effective

interactions (spin and charge fluctuations) that mediate the scattering of Cooper pairs were taken

into account via MRPA, for singlet- and triplet-pairing in Eqs. (3.17) and (3.18), respectively.

As shown in Eq. (3.21), the eigenvalues of the pairing vertex (denoted ¼³, whose highest value is

normalized to 1) define the strength of the different pairing symmetries, which can be assessed by

determining the irreducible representation of the corresponding eigenvector g³ (which describes

the value of the gap function at the Fermi surface).

Figure 7 – Schematic representation of the stages involved in the MRPA method. The
tight-binding Hamiltonian is diagonalized, producing the bands and the Fermi
surface (FS), then, the non-interacting susceptibility Ç0 is calculated, Eq. (3.10).
With it, the spin and charge interacting susceptibilities (Çs and Çc, Eqs. (3.14)
and (3.13), respectively) are calculated at the RPA level. Using those interacting
susceptibilities, calculated at each point k and k′ of the Fermi surface, we can
calculate the pairing vertex (Γ) for singlet- and triplet-pairing, Eqs. (3.17) and
(3.18), respectively.

3.2.1 Fermi Surface

By construction, the Fermi surface will be given by the set of k⃗F points, where E(k⃗F ) = µ,

i.e., the Fermi surface defines the boundary in momentum space where the energy of the electrons

is equal to the Fermi energy.
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There are a few ways of calculating the Fermi surface, and the most widely used is the

ab-initio method such as DFT, where it is possible to determine the dispersion relation E(k⃗)

with high precision. In our case, we have the tight-binding parameters derived from the DFT

calculation, so we developed a code in FORTRAN90, where we calculate the Fermi surface for

each doping of interest, please see Appendix B.1 for more details. Experimentally, it is possible to

map the Fermi surface using the angle-resolved photoemission spectroscopy (ARPES) technique

(HüFNER, 2003).

3.2.2 Non-Interacting Susceptibility - Ç0

Susceptibility is, by definition, the response of a physical system when an external

disturbance is applied. In particular, when we neglect the contributions of Coulomb interactions,

we are working with the non-interacting susceptibility Ç0. The non-interacting susceptibility can

also be called Lindhard susceptibility, because in 1954 physicist Jens Lindhard described the

electronic susceptibility of a gas of free electrons (LINDHARD, 1954; ASHCROFT; MERMIN,

1976).

The spin operator for an orbital s is defined as

S⃗s(q) =
1

2

∑

k,³´

d 
s³(k + q)Ã⃗³´ds´(k), (3.6)

where ³ and ´ are spin indices. We can calculate the spin susceptibility from the Matsubara

spin-spin correlation function (GRASER et al., 2009)

[ÇRP A
spin ]st =

1

3

∫ ´

0
dÄeiÉÄ ïTÄ S⃗s(q, Ä)S⃗s(−q, 0)ð (3.7)

for Ä being the imaginary time and É a Matsubara frequency. On the other hand, we can define

the Fourier component of the charge density for the s orbital as being

ns(q) =
∑

k,³´

d 
s³(k + q)ds´(k)¶³´ . (3.8)

In the same way, we can calculate the charge susceptibility by

[ÇRP A
charge]

s
t (q, iÉ) =

∫ ´

0
dÄeiÉÄ ïTÄ ns(q, Ä)ns(−q, 0)ð (3.9)

In the non-interacting and more general case, the non-interacting susceptibility can be

written as

(Ç0)pq
st (q, É) = − 1

N

∑

k,µ¿

as
µ(k)ap∗

µ (k)aq
¿(k + q)at∗

¿ (k + q)

É + E¿(k + q) − Eµ(k) + i0+
[f(E¿(k + q)) − f(Eµ(k))] (3.10)

where as
µ(k) are elements of the matrix that connect the orbital and the band spaces, i.e., they are

the components of the eigenvectors resulting from the diagonalization of the initial Hamiltonian.

For the Fortran code that calculates the non-interacting susceptibility Ç0, please, see Appendix

D.3.
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When a vector k⃗ + q⃗ takes one part of the Fermi surface to another part of the Fermi

surface, q⃗ is said to be a nesting vector. Thus, when the nesting vector exists, E(k +q)−E(k) = 0

in the relation (3.10), and then with the accumulation of several nesting vectors, a peak in the

non-interacting susceptibility is created.

The non-interacting susceptibility is the starting point for developing the MRPA method,

which in turn considers Coulomb interactions, as will be shown in the next section.

3.2.3 Interacting Susceptibility - ÇRPA

Once we have the non-interacting susceptibility Ç0, Eq. (3.10), we can calculate the

charge and spin susceptibilities, given by the Dyson equations (3.11) and (3.12), please see at

Ref. (GRASER et al., 2009). Both charge and spin susceptibilities will measure the response of

the system to a corresponding external perturbation.

(ÇRP A
charge)

pq
st = (Ç0)pq

st − (ÇRP A
charge)

pq
uv(U c)uv

wz(Ç0)wz
st (3.11)

(ÇRP A
spin )pq

st = (Ç0)pq
st + (ÇRP A

spin )pq
uv(U s)uv

wz(Ç0)wz
st (3.12)

Inverting the Dyson equation, we obtain the charge and spin susceptibilities, Eqs. (3.13)

and (3.14), respectively.

ÇRP A
charge = Ç0(1 + U cÇ0)−1 (3.13)

ÇRP A
spin = Ç0(1 − U sÇ0)−1 (3.14)

If we take the diagonal of the interacting susceptibility tensor for the spin and charge

cases, we obtain the relations (3.15) and (3.16), respectively.

ÇRP A
S (q⃗) =

1

2

∑

sp

(ÇRP A
spin )pp

ss(q⃗, 0) (3.15)

ÇRP A
c (q⃗) =

1

2

∑

sp

(ÇRP A
charge)

pp
ss(q⃗, 0) (3.16)

The inclusion of Coulomb interactions in the susceptibilities is in Section 4.2.3, and the

code for obtaining the interacting susceptibilities is in Appendix D.4. These susceptibilities have a

fundamental role in the next section, where we will show how the pairing vertex (Γ) is calculated.

3.2.4 Pairing vertex - Γ

Considering that the pairing mechanism responsible for superconductivity is through

spin and/or charge fluctuations, we can calculate the pairing vertex in the MRPA approximation,

where we have, for the singlet case (GRASER et al., 2009),

Γpq
st (k⃗, k⃗′, É) =

[3

2
USÇRP A

S (k⃗ − k⃗′, É)US +
1

2
US − 1

2
UCÇRP A

c (k⃗ − k⃗′, É)UC +
1

2
UC

]tq

ps
. (3.17)
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For the triplet case (TAKIMOTO; HOTTA; UEDA, 2004), the Γpq
st (k⃗, k⃗′, É) equation to

be considered is given by

Γpq
st (k⃗, k⃗′, É) =

[

− 1

2
USÇRP A

S (k⃗ − k⃗′, É)US +
1

2
US − 1

2
UCÇRP A

c (k⃗ − k⃗′, É)UC +
1

2
UC

]tq

ps
. (3.18)

Considering only the real part of the pairing interaction at É = 0, from the Kramers–

Kronig relation, and considering that most the relevant effects occur at the Fermi surface, we

can calculate the scattering from the pair-state (k⃗, −k⃗) on the Fermi surface point k (labeled as

i) to the pair-state (k⃗′, −k⃗′) on the Fermi surface point k′ (labeled as j),

Γij(k⃗, k⃗′) =
∑

stpq

at,∗
¿i (−k⃗)as,∗

¿i (k⃗)Re[Γpq
st (k⃗, k⃗′, 0)]ap

¿j(k⃗′)aq
¿j(−k⃗′), (3.19)

where Γij is only the symmetric part of the pairing vertex

1

2
[Γij(k⃗, k⃗′) + Γij(k⃗, −k⃗′)] (3.20)

for the spin singlet subspace. We assume only the symmetric part to ensure that the resulting

pairing wave function is consistent with the symmetry properties of the singlet states.

3.2.5 Eigenvalue equation - ¼³ and g³

Our goal is to find the pairing-functions, and their symmetries, that satisfy the following

expression,

−
∑

j

∮

Cj

dk⃗′
∥

2Ã

1

2ÃvF (k⃗′)
Γij(k⃗, k⃗′)g³(k⃗′) = ¼³g³(k⃗), (3.21)

where ¼³ indicates the eigenvalues of the pairing vertex, with corresponding eigenvectors g³(k⃗)

(gap-function).

We will break down the Eq.(3.21), to understand its components term by term. The first

elements that stand out are the sum and the integral, where the sum computes the contribution

of all the pockets on the Fermi surface, while the integral goes through each point on the Fermi

surface, which has been previously discretized in to a set of points.

The Fermi velocity is defined by vF (k⃗) = |∇
k⃗
E¿(k⃗)| and the factor (1/2ÃvF (k⃗)) is a

normalization factor, while the pairing vertex represents the effective interaction between the

pair-states k⃗ and k⃗′ in pockets i and j of the Fermi surface, respectively. This interaction function

incorporates the contributions of the electronic interactions in the material.

The g³(k⃗) is the momentum-dependent pairing gap-function, which describes the paired

state of the system in the pairing channel ³, where ¼³ is the eigenvalue associated with the

pairing channel ³. For more details on the calculation and the code used, see Appendix D.5.

3.2.6 Convergence Study

In computer simulations, one of the most fundamental steps during the production of

results is to ensure that the input parameters provide converged data. In this context, for the
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MRPA method, the best way to assess the convergence of the simulation is by checking if (and

how) the symmetry of the leading gap function (eigenvector of the highest eigenvalue of the

integrand in Eq. (3.21)) changes with the parameters of the simulation. The relevant parameters

to test convergence are those that control the discretization of the BZ and the discretization of

the Fermi surface.

Equation (3.21) gives us the eigenvalues and eigenvectors for a given value of U , for a

given discretization of the Brillouin zone (for the calculation of Ç0), and a given discretization of

the Fermi surface (to determine the dimension of the matrix to be diagonalized). To illustrate the

convergence of the simulations, we evaluate the symmetry of the eigenvectors at doping n = 4.35,

Fig 8, as we progressively improve the resolution of both discretizations.

The Brillouin zone is discretized in the interval [−Ã, Ã) into N points, both on the kx

and ky axes, and the non-interacting susceptibility Ç0 is calculated at those points. The points

q = k − k′, where Ç0 must be calculated (to then calculate the pairing vertex), are not part of

the points that form the grid in which the BZ was discretized. Thus, for each point q = k − k′,

we take the four closest points in the Brillouin zone grid (where Ç0 has been calculated) and

interpolate the value of Ç0 at q. With that, we can calculate the pairing vertex Γ(k⃗, k⃗′) that

scatters a pair-state between points k and k′ located at the Fermi surface.
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Figure 8 – Gap-function results for the leading eigenvalue of the pairing vertex, obtained
from Eq. (3.21). The results from panel (a) to (c) are for BZ grids 32 × 32,
64 × 64, and 128 × 128, respectively, where N is the number of qx (and qy)
values that discretize the BZ. Since the eigenvalues ¼ depend on U , we chose
the U values (for each different N simulation) so that the leading eigenvalues
are similar in all three cases. Note that the discretization of the Fermi surface
is fixed at 196 points (indicated by circles). The color map indicates the value
of the gap-function at each point on the Fermi surface. The gap-function
symmetries are indicated. We see that from N = 32 to N = 64 there is a
change from B1g to B2g (D4h symmetry group), indicating that there was no
convergence yet, which is achieved for N = 128.

It is expected that with a finer resolution in the BZ discretization (larger N values), the

interpolation of the non-interacting susceptibility Ç0 should be more precise, and consequently

the matrix elements of the pairing vertex Γ will be more precise, and thus its eigenvalues and

eigenvectors should converge, with higher N values, to the correct superconducting state. As
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shown by the legends indicating the symmetry of the gap-function in each panel, the N = 32

results had not converged yet. Convergence is obtained for N = 128. Obviously, increasing the

discretization of the Brillouin zone implies a substantial increase in computational cost, so the

calculations were only possible thanks to the use of the computing clusters ate CENAPAD-

SP (CENAPAD-SP, ), where the Ç0 simulation with a 128 × 128 grid took about 17 hours, with

a total memory cost of 123 G!B 2

With the convergence of the BZ discretization (for 128 × 128), we can evaluate how the

discretization of the Fermi surface affects the convergence of the symmetry of the pairing vertex

Γ(k⃗, k⃗′), see Fig. 9.
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Figure 9 – Gap function for the leading eigenvalue for Eq. (3.21) for a given value of U ,
where the BZ discretization of is fixed at 128×128 points. In panels (a), (b) and
(c), we have the FS discretizations with 196, 308, and 420 points, respectively.
Notice

According to Fig. 9, the symmetry of the gap function was preserved with an increase in

the number of points on the FS. However, taking in account a larger number of pair scattering

events, at fixed U = 0.62, resulted in an increase of the leading eigenvalue, from 0.33 to 0.38 (an

increase of almost 20%).

In order to ensure convergence of the gap-function, a final change was made to the BZ

discretization, going from 128 × 128 points to 158 × 158 points, see Fig. 10.

In all the following simulations in this dissertation, the parameters used were as follows:

• Points in the Brillouin zone: 158 × 158;

• Points in the Fermi surface: 420;

• Temperature: 10−4K

• Green’s function imaginary part: 10−5

2 Notice that the calculation of Ç0 at a q point of the BZ requires a sum over all points in the BZ, please,
see Eq. (3.10).
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Figure 10 – Gap-function for the leading eigenvalue ¼ = 0.75, for 158 × 158 BZ discretiza-
tion, and 420 points on the Fermi surface. The gap-function has dxy symmetry
and takes the largest amplitudes at the outer edges of the pockets.
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4 Chromium Superconductors

Based on the concepts and predictions of BCS theory, we should also introduce the other

classes of superconductors, the so-called unconventional superconductors (UcS). As a definition

for UcS we will use the electron pairing mechanism, i.e., the attraction between the pairs and

the formation of a superconducting state is due to other mechanisms that the BCS theory does

not explain (STEWART, 2017) , for example spin fluctuation.

That definition creates a problem: the variety of materials with different pairing mecha-

nisms between electron pairs. However, some characteristics are commonly found in this class of

materials. The first characteristic is that most UcS have strong electronic correlations, differing in

the atomic orbitals that are strongly interacting, for example, the organic superconductors have

pairing dependent on the p-electrons (Jérome, D. et al., 1980; PARKIN et al., 1983), whereas the

cuprates or iron superconductors have strongly correlated d-shell electrons (DAGOTTO, 1994;

ORENSTEIN; MILLIS, 2000; KIM et al., 2021) or the heavy fermions are dependent on the

f -shell (STEWART, 1984; VARMA, 2020).

The second common feature found in UcS is the instabilities in the materials, the main

one being antiferromagnetism (STEWART, 2017; STEGLICH et al., 1979; DAGOTTO, 1994),

but charge density waves (CDW) can also be found (AISHWARYA et al., 2023; VENDITTI;

CAPRARA, 2023). Another property common to these compounds is their bidimensional behavior,

which plays an important role in the formation of UcS. To illustrate this behavior, we will use

cuprates. The resistivity in the ab-plane of the crystallographic axes can be 1000 times lower

than the resistivity along the c-axis (STEWART, 2017).

Despite the identification of common properties in UcS, there is still no microscopic

theory capable of describing the pairing mechanisms, as the BCS theory has done. Below, we

will provide a historical overview of the subclasses of UcS.

4.1 Historic Perspective

In 1979, the first UcS was discovered, CeCu2Si2 (Tc = 0.6K) (STEGLICH et al., 1979),

in which the superconducting phase coexists with local magnetic moments, which in turn, the

BCS theory does not explain the materials superconductivity. The discovery of CeCu2Si2 began

the search for new superconducting compounds with increasingly higher critical temperatures.

The CeCu2Si2 compound is classified as a heavy-fermion, where some heavy-fermions

are unconventional superconductors. This name comes from the fact that conduction electrons

can have an effective mass of over 1000 times the rest mass of the free electron. It was then

discovered that the high effective mass of electrons plays a fundamental role in contributing to

the resistivity of materials via electron-electron interaction.

Despite the new discovery, the scientific community’s interest soon shifted to another class
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of compounds, the so-called Cuprates, where some cuprates are unconventional superconductors.

Cuprates are stacked materials that have planes of CuO2 and other planes with ions, usually

formed by the elements lanthanum, barium, strontium. The first cuprate discovered was BaLaCuO

in 1986 (BEDNORZ; MÜLLER, 1986), at the time the highest critical temperature ever detected

was Tc = 23K, while BaLaCuO has Tc = 35K. Throughout the remaining years of the 20th century,

the scientific community searched for cuprates with increasingly higher Tc, reaching the point

where the current record of Tc = 138K was obtained for the compound Hg12Tl3Ba30Ca30Cu45O127

(CAO et al., 2021), at ambient pressure.

In addition to the high critical temperatures of cuprates, the superconductivity of this

subclass is intrinsically associated with the doping of the materials, where it is possible to obtain

two different dopings, one with electrons and one with holes. Both different dopings appear to

have different pairing mechanisms, and therefore each will have different critical temperatures,

with the hole doping having the highest critical temperature. Although the pairing mechanism of

cuprates is not yet fully understood, the role that cuprates have played in the discovery of new

UcS is of great importance, particularly in the discovery of iron superconductors.

In 2008, high critical temperature iron superconductors (KAMIHARA et al., 2008) were

discovered, and similar to cuprates, the new materials have a plane with iron atoms, and above

and below the plane are a variety of ions, such as N, P, As, Sb, Bi, called pnictides, or O, S, Se,

Te, called chalcogenides. Where only the pnictides have 1111 systems formed by RFeAsO (R are

rare earth elements).

Despite the variety of compounds, the vast majority are not described by the BCS

theory, in which calculations for these materials the critical temperature is around 1K, while

experimentally Tc ∼ 50K. Thus, the formation of the superconducting phase is associated

with the Coulomb interaction between the electrons. However, it has been discovered that this

interaction in iron superconductors is weaker than in cuprates, and therefore the theoretical

treatment can be easier.

As with cuprates, the doping of iron superconductors is extremely important. In general,

when the compounds are not doped, the materials exhibit a magnetic phase (spin density wave),

predominantly antiferromagnetic. (DAGOTTO, 2013) Furthermore, doping with electrons or

holes leads to three phases. The first is the Nematic phase, where a structural transformation

takes place in which the elements align in a preferential direction but have no positional order.

(STEWART, 2017)The second is the superconducting phase, and the third is the coexistence of

these phases. However, the latter only occurs when doped with electrons.

The idea for explaining superconductivity in these materials is associated with the

Coulomb interaction, but in principle only the electrons on the Fermi surfaces can take part in

pair formation. Thus, spin fluctuations arise in order to increase the interactions between the

electrons in the Fermi surface pockets, via the momentum q⃗ that connects the hole and electron

pockets, which is the same as that which existed in the spin density wave state.

Research into iron-based high critical temperature superconductors began with the

groundbreaking discovery of 26K superconductivity in LaFeAsO doped with F (KAMIHARA
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et al., 2008). Since 2008, several other superconductors with a similar structure have been

synthesized. All of these superconductors have FeAs or FeSe layers, widely considered to be the

main component of these iron-based superconductors, just as CuO2 layers are essential for high-Tc

cuprates (DAGOTTO, 1994). The numerous similarities between iron-based superconductors

and cuprates lie not only in the quasi-two-dimensional characteristics of the active layers, but

also in the proximity of magnetically ordered states which, in various theoretical approaches,

are considered responsible for inducing superconductivity through unconventional phonon-

independent pairing mechanisms. However, at least in the case of As-based iron superconductors,

the original magnetic compounds are metallic, unlike the Mott insulators found in cuprates,

which establishes a significant difference between cuprates and pnictides.

Following the discovery of iron-based superconductivity, the search for superconducting

phases with other transition metals began, in particular for Manganese and Chromium. In 2009,

the first works with Manganese began to be published, BaMn2As2 is an isostructural compound

to BaFe2As2, where at TN = 625K it is an antiferromagnetic insulator (SINGH; ELLERN;

JOHNSTON, 2009; SINGH et al., 2009), and with hole doping the insulator-metal transition takes

place causing a small reduction of TN and of the ordered magnetic moment (SATYA et al., 2011).

This suggests that the holes interact weakly with the Mn spins. However, no superconducting

phase has yet been discovered for BaMn2As2. In the compound LaMnAsO1−xHx (for x f 0.73)

the substitution of oxygen for hydrogen results in the suppression of the antiferromagnetic

order and the insulator-metal transition (HANNA et al., 2013), yet without the formation of a

superconducting phase.

As for the Chromium compound, in 2013 LaCrAsO was synthesized with electron dopings

(PARK et al., 2013), where the compound is a metal with a G-type magnetic structure, itinerant

antiferromagnetism and a magnetic moment of 1.57µB , similar to iron superconductors. Also in the

work done by Park et al. (PARK et al., 2013), the authors suggest that a superconducting phase

should emerge, but it has not been observed. There are also theoretical studies that suggest that

replacing Cr with Mn (electron doping) should lead to the emergence of a superconducting phase

(PIZARRO et al., 2017; WANG et al., 2017). The study of the emergence of superconductivity

in this material is the subject of this dissertation.

With the cuprates discovered in the 1980s, other isostructural compounds were theorized,

one of them being the so-called Nickelates. However, in 2019 this compound NdNiO2 was

synthesized for the first time, and by replacing Nd with Sr (hole doping), a superconducting

phase was found in thin films at Tc ∼ 15K (LI et al., 2019). Doping with Sr minimizes the

self-doping effect, increases p − d hybridization and produces Ni2+ dopants with low spin

(S = 0, non-magnetic). The crystal structure of infinite-layer nickelates NdNiO2 is similar to

that of cuprates, where superconductivity occurs in the NiO2 planes, similarly to cuprates,

where superconductivity emerges in the CuO2 planes. However, there is still no consensus in

the scientific community regarding the pairing mechanism of nickelates, but understanding the

mechanism of nickelates may be the key to understanding the pairing mechanism of cuprates.
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4.2 MRPA results

Using the five Cr 3d orbitals, the tight-binding model can satisfactorily represent the

electronic states near the Fermi surface. The hopping integrals entering in the expressions for

T µ¿(k) (see Eq. (4.1)) can be found in Ref. (WANG et al., 2017). They were obtained from a

full DFT band structure calculation through a Wannierization procedure (WANG et al., 2017),

as described for graphene in Chap. 3.

The independent electron Hamiltonian HTB describing LaCrAsO (WANG et al., 2017) is

given by

HTB =
∑

kÃµ¿

T µ¿(k)d 
kµÃd

k¿Ã , (4.1)

where d
k¿Ã creates an electron with momentum k, spin Ã, in an orbital ¿ that is either t2g (xy,

zx, yz) or eg (3z2 − r2) and (x2 − y2). In Fig. 11, the band structure and the density of states

DOS are in panels (a) and (b), respectively.
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Figure 11 – (a) Band structures on the high symmetry lines on the Γ − X − M − Γ path
for the d orbitals of Cr. (b) Density of States (DOS) in the same energy range
as panel (a). (c) Zoom in on the band structure to indicate the dopings (in
red) analyzed in this work and their respective chemical potentials (µ), Table
4.2, which are important for the construction of Figure 13.

The total Hamiltonian HT = HTB + HMB includes, besides HTB, also the many-body

term HMB (KUBO, 2007):

HMB = U
∑

i,µ

niµ↑niµ³ + U ′
∑

i,µ<¿

niµni¿

+J
∑

i,µ<¿

∑

Ã,Ã′

d 
i,µÃd 

i,¿Ã′diµÃ′di¿Ã

+J ′
∑

i,µ ̸=¿

d 
iµ↑d

 
iµ³di¿³di¿↑, (4.2)

where µ, ¿ denote the Cr 3d-orbitals, ni,¿ is the electron density of the orbital ¿ at a Chromium

site i. We will use the usual relations U ′ = U − 2J , as well as J = J ′, which are imposed by
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symmetry (DAGOTTO; HOTTA; MOREO, 2001). Following standard procedure, we will fix

the ratio J/U = 0.25 and vary U (MARTINS; MOREO; DAGOTTO, 2013). As mentioned in

Chap. 3, increasing U may lead to a divergence in either the spin or charge susceptibility, which

in turn leads to a divergence in the pairing vertex (see lower panel in Fig. 7), which may indicate

a system instability towards superconductivity. Note that our energy unit is electron volt.

In 2013, Park, Sang-Won et al. succeeded for the first time in synthesizing stable

compounds of LaCrAsO doped with electrons (PARK et al., 2013). This allowed them to

investigate the electronic and magnetic structure of the compounds without and with doping

(PIZARRO et al., 2017; WANG et al., 2017). Due to the Cr-O planes present in LaCrAsO

compounds, such as appear in iron superconductors (KAMIHARA et al., 2008) and cuprates,

the search for a superconducting phase in this new compound was initiated.

The first paper to suggest theoretical evidence of a possible superconducting phase was

Pizzaro, J. M. et at. (PIZARRO et al., 2017), Fig. 12, where starting from the DFT calculation

they carried out RPA with a modification of the band structure and found the dxy symmetry of

the gap function at n = 4.5 doping. After that, Wang, Wan-Sheng et al. performed a Functional

Renormalization Group (FRG) calculation for different dopings of LaCrAsO (WANG et al., 2017).

In the work of Wang, for dopings with holes the phase found was antiferromagnetic, while for

some dopings with electrons the superconducting phase was found, whose gap function symmetry

is dx2−y2 .

Based on previous work and using the codes discussed in Appendix B, we converged

different chemical potentials, at their respective dopings, where there is a possibility of the

superconducting phase being found for LaCrAsO. The dopings (n and n′) and their respective

chemical potentials (µ) for the tight-binding model described by the equation (4.1) are shown in

Table 4.2.

n n′ µ

4.35 0.35 11.539008998897742

4.36 0.36 11.540694083256154

4.37 0.37 11.542516834614567

4.38 0.38 11.544137834163733

4.39 0.39 11.545758426686644

4.40 0.40 11.547335178229595

4.41 0.41 11.548726897740130

4.42 0.42 11.550048458228074

4.43 0.43 11.551103369992505

4.44 0.44 11.552440161555978

4.45 0.45 11.553850062385736
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Figure 12 – Schematic of the simplified phase diagram for electron-doped LaCrAsO, where
the Cr sites are replaced by Mn. For both low (PARK et al., 2013) and high
(HANNA et al., 2013) doping, the system has an antiferromagnetic phase.
For intermediate doping, it is possible that there is a superconducting phase
(PIZARRO et al., 2017). Adapted from Ref. (PIZARRO et al., 2017).

4.2.1 Fermi Pockets

Using the values of the chemical potentials in Table 4.2, we diagonalized the Hamiltonian

(4.1) in the entire Brillouin zone and obtained its eigenvalues E(k⃗). We show in Fig. 13 the Fermi

surface for each doping in Table 4.2.

In Fig. 13 and 14, between the dopings n = 4.42 and n = 4.43 there is a change in

the topology of the Fermi surface, called the Lifshitz transition. The Lifshitz transition is the

change in the topology of the Fermi surface formed by the occupied quantum states of the

material (LIFSHITZ et al., 1960; VOLOVIK, 2017), and this phenomenon can be associated

with unconventional superconductivity, which coincides with the limit doping up to which an

anomalous metallic phase (pseudo-gap) is observed in the vicinity of the superconducting phase

and the doping characteristic of the Lifshitz transition. (BENHABIB et al., 2015; DOIRON-

LEYRAUD et al., 2017). Additionally, this transition involves the emergence of points where the

energy spectrum becomes zero within a system of many fermions, indicating that the conventional
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Figure 13 – Fermi surfaces in the Brillouin zone, with panels a) − k) being the respective
dopings n = 4.35, 4.36, 4.37, 4.38, 4.39, 4.40, 4.41, 4.42, 4.43, 4.44, 4.45 . Note
that a Lifshitz transition (LIFSHITZ et al., 1960) occurs between dopings
n = 4.42 and n = 4.43, for more detail, please see Fig. 14.

Fermi surface is no longer part of this process. In more accessible terms, it is a quantum phase

transition connected to shifts in the electronic structure of a material.

In condensed matter physics, such a transition can be noticed when there is a transfor-
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Figure 14 – Fermi surface in the Brillouin zone for dopings n = 4.42 and n = 4.43.
Compared to the blue circles (panel (a)) and the green squares (panel (b)), the
orientation of the Fermi surface curve has changed, i.e., the Lifshitz transition
has occurred.

mation in the shape of the Fermi surface due to changes in external conditions, such as pressure

or magnetic field. These changes can result in different electronic properties for the material,

affecting its conductivity, for example.

For iron superconductors, on the other hand, when this Lifshitz transition occurs, the

superconductivity in the M -centred electron pocket is slightly suppressed. In addition, a possible

small superconducting gap with a dome-shaped doping dependence is observed in the new

electron pocket at Γ (REN et al., 2017). And for LaCrAsO doping with electrons, superconducting

instability appears close to the Lifshitz transition (PIZARRO et al., 2017).

4.2.2 Non-Interacting Susceptibility - Ç0

According to Section 3.2.6, we have established a standard for realizing RPA calculations.

In this section, we will show the results of the non-interacting susceptibility (equation (3.10)), Fig.

15. We have selected three dopings of interest, two before and one after the Lifshitz transition,

where the aim is to evaluate how the susceptibility is affected when the topology of the Fermi

surface is modified.

About the results in Fig. 15, note that even after the Lifshitz transition, the non-

interacting susceptibility does not change much, except that closer to the transition, there is a

concentration of non-interacting susceptibility around the Γ point, please see Fig. 16. This may

be an indication of a trend seen in Fig. 17, where the interacting susceptibility diverges at the Γ

point.
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Figure 15 – Heat map of non-interacting susceptibility in the first Brillouin zone for the
dopings n = 4.35, 4.41 and 4.45, in the panels a), b) and c), respectively. Note
that the non-interacting susceptibility does not diverge, and its lowest value
is located at the Γ point, while it assumes the highest values around the M
point.

Figure 16 – Non-interacting susceptibility in the high symmetry lines Γ − X − M − Γ for
the dopings n = 4.35, 4.41 and 4.45, in the panels a), b) and c), respectively.
At dopings n = 4.41 and n = 4.45 there was an increase in the peak around
the Γ point, when compared to the n = 4.35 doping.

With the results of the non-interacting susceptibility in the three dopings of interest, in

the next section we will introduce the electronic interactions and evaluate how they contribute

to the properties of this system.

4.2.3 Interacting Susceptibility - ÇRPA

From the interaction Hamiltonian (4.2), we can show the non-zero matrix elements,

according to Ref. (GRASER et al., 2009).

(U c)aa
aa = U ; (U c)bb

aa = 2U ′ − J ; (U c)ab
ab = −U ′ + 2J ; (U c)ba

ab = J ′

(U s)aa
aa = U ; (U s)bb

aa = J ; (U s)ab
ab = −U ′; (U s)ba

ab = J ′

Now, the Hamiltonian model that includes Coulomb interactions will be considered, and

once we have it, we will evaluate how these interactions affect the interacting susceptibility

(equations (3.15) and (3.16)), separating the contributions from the spins and the charges, Fig.
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17. This separation is important to assess which fluctuation (spin or charge) is more probable to

generate magnetic or superconducting instabilities, i.e., which interaction will be responsible for

the ‘glue’ of the Cooper pairs.

Γ X M Γ

χ
R
P
A

a)

n = 4.35

U = 0.57

U = 0.56

Γ X M Γ

b)

n = 4.41

U = 0.44
U = 0.43

Γ X M Γ

c)

n = 4.45

U = 0.49
U = 0.48

Figure 17 – Spin (solid and dash dotted lines) and charge (dashed and dotted lines)
interacting susceptibility, with panels a), b) and c) being the respective
dopings n = 4.35, 4.41 and 4.45. For each panel, we show the value of U that
causes the spin susceptibility to diverge (black line) and the value of U before
the divergence (red line).

Comparing the curves in Figure 17, when we evaluate the same dopings with the same U

values, we see that the spin susceptibility contributions diverge, while the charge susceptibility

do not.

In particular, when the U value increases, the charge susceptibility decreases, while

the spin susceptibility increases. This behavior suggests that the system is affected more by

spin fluctuations than charge fluctuations, i.e. the interaction that contributes most to the

superconducting ‘glue’ (if the superconducting phase exists, please see section 4.2.4) will be the

spin fluctuation.

The behavior of the interacting susceptibilities indicates that there are strong spin

fluctuations, and these could be precursors of a magnetic order. In particular, the ÇRPA
S divergence

near the Γ point suggests the formation of a ferromagnetic-type magnetic instability, see panel

b) and c), in Fig. 17. While in panel a), in addition to the same magnetic instability, the spin

susceptibility to order is also incommensurable, since the peak of the divergence is not at the

point of symmetry.

In Ref. (BERK; SCHRIEFFER, 1966), the authors evaluated how magnetic ordering can

affect the unconventional superconducting phase of a physical system. The authors concluded

that antiferromagnetic ordering can influence the increase in critical temperature (Tc), as in

cuprates, while ferromagnetism decreases the critical temperature. From this perspective, the
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calculation of the spin susceptibility suggests that in the dopings studied for LaCrAsO, the

critical temperature should be low, compared to cuprates, for example.

In the next section, we will show the calculation of the pairing vertex.

4.2.4 Pairing Vertex - Γ

In this section, we discuss the results of the pairing vertex and its diagonalization. We

calculate ¼³ as a function of the parameter U , for three different dopings. These results are

presented in Fig. 18, for n = 4.35 4.41, and 4.45, in panels (a) to (c), respectively. We show

results for the 4 highest eigenvalues in each panel, presenting results for singlet pairing (solid

curves).

In Fig. 19, we show the singlet pairing gap-function for the leading eigenvalue, for all

three dopings, for values of U such that in all three panels the leading eigenvalue is in the range

0.9 ± 0.05, for the same dopings as in Fig. 18. An analysis of results indicates that the gap

function symmetry remains constant, dxy (B2g), across the Lifshitz transition.
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Figure 18 – Four highest singlet pairing eigenvalues ¼³ as a function of U , at dopings
n = 4.35, 4.41, and 4.45, in panels (a) to (c), respectively. The solid curves
are for singlet pairing channels, while the dashed curves are for triplet pairing
channels.

In Fig. 18, the behavior of the eigenvalues in relation to U is exponential, which is to be

expected when compared to Ref. (GRASER et al., 2009). It is important to mention that the

RPA method is valid for 0 f ¼³ f 1. When ¼³ = 0, it indicates no pairing interactions for the

given value of U . If ¼³ = 1, there is maximum pairing interaction, in which case the formation of

a a superconducting state is possible. For ¼³ > 1, the RPA method presents convergence and

instability problems, not allowing a valid physical interpretation of the results.

Also in Fig 18, we see that the curves for the triplet pairing have higher values of ¼³ for

the same values of U , compared to the singlet pairing channel. In Fig 17, the divergence in spin

susceptibility indicates a tendency for the system to order ferromagnetically, while in Fig 18, the
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singlet channels are prioritized over the triplet type, despite the fact that both compete with

each other as the channel responsible for forming the superconducting state.
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Figure 19 – The corresponding leading spin-singlet gap-function for the results in Fig. 18.
We choose U values for each doping such that the leading eigenvalue is in the
range 0.9 ± 0.05. The leading gap-function symmetry, dxy (B2g), is preserved
across the Lifshitz transition.

In the work by Wang, Wan-Sheng, et al. (WANG et al., 2017), the authors performed

functional Renormalization Group (fRG) calculations for n = 4.35, and find that the symmetry

of the gap function is dx2−y2(B1g). However, in Fig. 19, dxy(B2g) symmetry was found for the

same doping, in the singlet calculations. This difference is due to the different technique used in

both works (MRPA vs. fRG).

The difference in symmetry, in relation to Ref. (WANG et al., 2017) can be explained

when we analyze panel a) of Fig. 18, in which the first and second-highest eigenvalues (in the

singlet pairing case) are close together. It is worth mentioning that the symmetry of the gap

function for the second highest ¼³ is dx2−y2(B1g). Therefore, there is competition between pairing

channels of different symmetries, and each of the methods discussed, both in this dissertation

and in the Ref. (WANG et al., 2017), prioritize certain pairing channels.

In Fig. 19, for the three dopings, the highest coefficients are concentrated at the edges

of the outermost pockets in the Brillouin zone. This suggests that the pairing states are being

influenced by the Lifshitz transition, since the concentration of states is present precisely in the

pockets that have had their topology altered, see Fig. 13 for how the Lifshitz transition occurred.

This result may suggest that the Lifshitz transition, in addition to modifying the topol-

ogy of the bands, in correlated systems can influence pairing mechanisms, in this case the

superconducting mechanism via spin fluctuations.

Although the Lifshitz transition modifies the topology of the bands and can influence

the pairing, it can be seen that the symmetry of the pairing channels did not change after the

topological transition. In addition, the accumulation of g³ in some regions of the pockets may be

indicative of the proximity of a Lifshitz transition.
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5 Conclusions

In this work, we used the MRPA method to study the superconducting properties of

LaCrAsO. The main motivation for that is to check if its doping-vs-temperature phase diagram

presents magnetic and superconducting phases located nearby each other. This would make these

Chromium superconductors similar to the cuprates and the iron pnictides. The main conclusions

are as follows.

In Fig. 13 and Fig. 14, when changing the doping between n = 4.35 and n = 4.45, we

verify that LaCrAsO has a Lifshitz transition between (approximately) n = 4.42 and n = 4.43.

The gap function symmetry obtained, dxy (B2g), across the Lifshitz transition does not change.

According to the results in Fig. 17, when including interactions, we can see that the charge

susceptibility does not exert any influence on the system, contrary to the spin susceptibility,

which tends to diverge, indicating a possible magnetic instability.

Furthermore, in Fig. 17, near the Lifshitz transition, the spin susceptibility suggests a

ferromagnetic-type magnetic instability for all the dopings studied. At doping n = 4.35, there is

some incommensurability (the divergence does not occur exactly at Γ). Despite a tendency for

short-range ferromagnetic fluctuations, singlet pairing is dominant, although triplet pairing is

not negligible.

Functional RG calculations (WANG et al., 2017) for the same doping as in Fig. 19(a),

resulted in a different leading symmetry for singlet pairing, dx2−y2 , than the one obtained by us

with MRPA, dxy. This is not surprising, since both methods are widely different, and we found,

using MRPA, that the sub-leading gap-function symmetry is dx2−y2 , with an eigenvalue close

to the leading one [see Fig. 18(a) - the black curve corresponds to dxy symmetry, while the red

curve corresponds to dx2−y2 symmetry].

With regard to the future prospects of this work, there are three approaches to be

explored. Firstly, due to the high computational cost of carrying out the MRPA calculation, the

implementation of a parallelized Fortran90 code would represent an advance in performance in

terms of execution time, mainly for the Ç0 calculations, which are the most time and memory

demanding.

The second is the technical side of the MRPA method. The calculation of the pairing

vertex via MRPA is an intricate many-body problem, which results in the diagonalization of the

Bethe-Salpeter kernel. A better understanding of how these equations are obtained would be an

interesting project in itself as part of a PhD thesis.

In Fig. 11(a), around the BZ M point, there is a flat band and thus the density of

states shows a peak. This peak in the density of states is called a Van Hove singularity. This

singularity can be indicative of superconductivity with a higher critical temperature, as there

is more available pairing between the electrons. However, this topic was not covered in this

dissertation, and in the future this issue could be investigated in detail.
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APPENDIX A – Second Quantization

Consider a N -site crystal lattice, where the sites are labelled as r⃗i where i = 1, · · · , N),

where each quantum state is represented in terms of electron occupation at each site, viz.,

|n1, · · · , nN ð. Creation and annihilation of electrons, with spin Ã, on the i-th site are given by

the operators

c i,Ã|n1Ã, · · · , niÃ, · · · , nNÃð =
√

niÃ + 1|n1Ã, · · · , niÃ + 1, · · · , nNÃð, (A.1)

ci,Ã|n1Ã, · · · , niÃ, · · · , nNÃð =
√

niÃ|n1Ã, · · · , niÃ − 1, · · · , nNÃð, (A.2)

which obey the anticommutation relations

{ciÃ, c jÃ′} = ¶ij¶ÃÃ′ ,

{ciÃ, cjÃ′} = {c iÃ, c jÃ′} = 0.

In momentum space, the operators create or annihilate particles with momentum k⃗, so

that

c 
k⃗Ã

|0ð = |⃗k, Ãð, (A.3)

c
k⃗Ã

|⃗k, Ãð = |0ð, (A.4)

where |0ð is the vacuum state. Using the closure relation
∑

³ |³ðï³| = 1, we can change the basis,

where the creation and annihilation operators in momentum space can be written in terms of

the operators in position space, given by

c 
k⃗Ã

=
1

N

∑

j

eik⃗·r⃗j c jÃ (A.5)

c
k⃗Ã

=
1

N

∑

j

e−ik⃗·r⃗j cjÃ (A.6)

(A.7)

and by using the Fourier transform, we can write the creation and annihilation operators in

terms of the operators in reciprocal space.
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APPENDIX B – Solution of the Hubbard

model via the Hartree-Fock approximation

Before starting to study superconductivity, a study was carried out on the Hubbard

model (B.1) and one of its possible ways of obtaining the model’s solution, the Hartree-Fock

method.

H = −t
∑

ijÃ

c iÃcjÃ + U
∑

i

ni↑ni³ (B.1)

Where t is the hopping term between sites in the unit cell, c iÃ (ciÃ) are creation (annihilation)

operators, and U is the Hubbard term responsible for the interaction between electrons in the

same site, and niÃ is the number operator.

The Hartree-Fock method is a self-consistent calculation (please see Section B.2) for

evaluating the occupation of up and down spins at each site in the unit cell. So we built a code

capable of determining the magnetic phases of a square lattice with two base sites, depending on

the value of the Hubbard term U and the number of electrons in the system ne, i.e. depending

on the doping of the material.

The code produced can be summarized by the schematic diagram in Figure.20, where

the difference between the initial and final electron occupancies at each site is always evaluated

to determine the convergence of the self-consistent calculation.

From the self-consistent calculation, we were able to produce a magnetic phase diagram

for the square lattice with two base sites, as shown in Figure 21 1. Note that the magnetic phase

diagram respects the particle-hole symmetry that the Hamiltonian has. In addition, it can be

seen that at zero doping, i.e. one electron per site, the system exhibits an antiferromagnetic

phase regardless of the value of U .

B.1 Chemical Potential - µ

In addition to learning about systems with electron interactions, the Hubbard model

code was fundamental for calculating the chemical potential used in the RPA code, in which the

same logic for calculating the chemical potential for the Hubbard model was used in the RPA

1 The results of this project were presented at the Autumn Meeting of the Brazilian Physics Society in
2023.
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Figure 20 – Schematic representation of self-consistent calculation. In brown are the
program inputs, where the initial inputs are U , t and ne, and the electron
occupancies by sites. In green are the steps to be followed to obtain the new
occupancies. The blue lozenge checks the convergence of the occupancies, and
if they converge, the final step of the calculation is done in the orange box,
where the Total Energy and Entropy are obtained.

calculations. The Figure 22 shows schematically how the chemical potential is calculated in both

systems studied.
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Figure 21 – Magnetic phase diagram obtained by varying the interaction (U) and the
doping of the system (ne). There are three magnetic phases: Ferromagnetism
(red dot), Antiferromagnetism (blue dot) and Paramagnetism (green dot). For
half filling (ne/2), the system is antiferromagnetic regardless of the value of U .
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Figure 22 – Diagram of the chemical potential calculation (µ). The yellow frame represents
the code’s inputs: the system’s doping and the tight-binding Hamiltonian.
In the green rectangular boxes, the diagonalization of the Hamiltonian and
the density of states are calculated, and from these the Fermi energy (EF ),
responsible for the first approximation of µ, is estimated. On the green diamond
and starting from EF we use the bisection method and check µ at the ends of
the interval until a tolerance of 10

−7 is reached. The final chemical potential
is the average of µ at the ends of the bisection interval after convergence.
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B.2 Hartree-Fock code

In this section, we provide the self-consistent code written in FORTRAN90, link: <https:

//github.com/HGMendonca/Hartree-Fock---Square-lattice>
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APPENDIX C – DFT calculation for

porphyrin in graphene

In the last 20 years the DFT method has become more relevant in the study of

solids (VERMA; TRUHLAR, 2020), in particular in the area of band structure, phonon cal-

culation, charge distribution, among others. In order to understand the physical effects of a

porphyrin-like molecule embedded in graphene, we performed a DFT calculation for the struc-

ture shown in Fig. 23, using the open-source Quantum Espresso software (GIANNOZZI et

al., 2009; GIANNOZZI et al., 2017). Using the software, we converged on the atomic po-

sitions with the lowest potential energy, found the symmetry of the solid, calculated the

wave functions for all the electrons, and calculated the band structure of the material. We

used the pseudopotentials Fe.pbe-spn-kjpaw_psl.1.0.0.UPF, N.pbe-n-kjpaw_psl.1.0.0.UPF and

C.pbe-n-kjpaw_psl.1.0.0.UPF from the Quantum Espresso pseudopotential database: <http:

//www.quantum-espresso.org/pseudopotentials>

Figure 23 – Porphyrin-like molecular structure embedded in graphene with orthorhombic
D4h symmetry. Iron atom, Nitrogen atom and Carbon atom in red, blue and
purple respectively.

Once we had all the DFT results from Quantum Espresso, we wannierized the system

using the open-source software Wannier90 (MOSTOFI et al., 2014), which reproduced the DFT

bands using the Wannier basis, Fig. 24, projecting the dxy; dxz; dyz; dz2 , dx2−y2 atomic orbitals

onto the Iron atom, the s; px; py; pz orbitals onto the Nitrogen atoms, and the same representation

for the graphene unit cell onto the Carbon atoms, Fig. 6.
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Figure 24 – DFT (black curves) and Wannier (red curves) band structure for porphyrin-
like embedded in graphene. Near the Fermi level, the flat curves indicate the
location of the d-type orbitals of the iron atom.

From the results of the wannierization, we obtain the hoppings of the TB Hamiltonian in

the Wannier basis.

A posteriori, we will include correlation effects via the Density Matrix Renormalization

Group (DMRG) (WHITE, 1992; BÜSSER; MARTINS; FEIGUIN, 2013), but for this, the tight-

binding orbitals need to be based on the atomic basis and not the Wannier basis. We hope that

in the future, with the help of the PAOFLOW (Buongiorno Nardelli et al., 2018; CERASOLI et

al., 2021) software, we will be able to converge the orbitals in the desired basis from the DFT

data.

All the input files are available at the link: <https://github.com/HGMendonca/DFT-Wannier90>.
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APPENDIX D – RPA code

In this appendix we will present the codes developed in each stage of the RPA calculation,

in each Section we will present the modules and a summary of what each of them have done. For

all the codes presented, the case that will be shown is for doping n = 4.35. All the codes are

available at the link: <https://github.com/HGMendonca/LaCrAsO---MRPA-Method>.

It is necessary to make it clear that in all the codes where "CALL CHEMPOT" is used,

the value of µ is taken for doping n = 4.35, which is why we did not put this code in this

dissertation; the list of values of µ has already been shown in Table 4.2. It should also be noted

that the "input-ws.dat" file stores the hopping parameters provided by (WANG et al., 2017).

All the "interface" modules define the invariable parameters in all the codes and also define the

global variables of the codes.

D.1 Electronic structure

To calculate the band structure, a FORTRAN90 code was created with a module

(’interface’), a subroutine (’TIGHTB(BKX,BKY)’) and a main program (’PATH’), and the code

will be presented in that order. All the codes are available at the link: <https://github.com/

HGMendonca/LaCrAsO---MRPA-Method/tree/main/Band-structure>.

D.2 Fermi surface

Calculating the Fermi surface requires a module ("interface"), three subroutines ("chempot",

"tight" and "alphabeta") and a main programme ("band"). The codes are available at the link:

<https://github.com/HGMendonca/LaCrAsO---MRPA-Method/tree/main/FS>.

D.3 Calculation of χ0

We calculated Ç0 in the entire Brillouin zone, using the "interface" module and the

"chempot" and "tight" subroutines, as well as the main "SUSPOL" code. The codes are avail-

able at the link: <https://github.com/HGMendonca/LaCrAsO---MRPA-Method/tree/main/

Non-interacting>.

D.4 Calculation of χS and χC

To calculate the interacting susceptibilities, we needed a module ("interface"), a main

code ("rpasus"), and four subroutines, two of which are "chempot" and "tight". The codes
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are available at the link: <https://github.com/HGMendonca/LaCrAsO---MRPA-Method/tree/

main/Interacting>.

D.5 Calculation of Γ and the eigenvalues and eigenvectors

The last step refers to the Γ calculus and its diagonalisation. To do this, we use a module

("interface"), five subroutines ("susbicub", "bcuint", "bcucof", "eigenvalue" and "diagonal"), and a

main code ("eigensg"). The codes are available at the link: <https://github.com/HGMendonca/

LaCrAsO---MRPA-Method/tree/main/Gamma>.
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