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SENA, J. P. Projeto 6timo-robusto de estruturas inteligentes para aumento
de desempenho da vida em fadiga e harvesting de energia de vibracgao.

2024. Tese de Doutorado, Universidade Federal de Uberlandia, Uberlandia.

Resumo

A analise de fadiga em estruturas submetidas a carregamentos aleatorios é mais eficiente
no dominio da frequéncia devido ao menor custo computacional, levando em conta o
ganho pela utilizacao de métodos como a base modal de Ritz e a metamodelagem com
redes neurais. Dentre os métodos de controle de vibragao, materiais inteligentes, especial-
mente os piezoelétricos, tém se destacado pela possibilidade de coleta de energia, gracas
a sua capacidade de funcionar como sensores e atuadores, além de serem leves e de fécil
manuseio. A associagao de circuitos shunt ao material PZT é realizada pela sintoniza-
cao dos elementos do circuito, que requer um processo de otimizacao para obtencao dos
parametros 6timos. Este trabalho propoe uma metodologia 6tima-robusta para o projeto
de sistemas dinamicos que utilizam controle passivo visando reduzir a fadiga estrutural
e aumentar a energia colhida. Foram analisados quatro casos principais: otimizacao do
circuito com camada completa; otimizacao do circuito com tratamento parcial; otimizacao
topologica por localizacao de patches; e otimizacao topolégica por densidade de camada
PZT. As técnicas de otimizagao empregadas, considerando incertezas nos parametros dos
circuitos, mostraram-se eficazes na obtencao de melhores resultados em comparagao aos

métodos tradicionais.

Palavras-chave: Estruturas inteligentes, Harvesting, Fadiga, Circuito shunt, Otimizagao

topologica



SENA, J. P. Optimal-robust design of smart structures to enhance the
performances of fatigue life and vibration energy harvesting. 2024. PhD

Thesis, Universidade Federal de Uberlandia, Uberlandia.

Abstract

Fatigue analysis in structures subjected to random loads is more efficient in the frequency
domain due to lower computational cost, considering the gains from using methods such
as the Ritz modal basis and neural network metamodeling. Among vibration control
methods, smart materials, especially piezoelectrics, have stood out due to their energy
harvesting capabilities, functioning as both sensors and actuators, and being lightweight
and easy to handle. The association of shunt circuits with PZT material is achieved by
tuning the circuit elements, which requires an optimization process to obtain the optimal
parameters. This work proposes a robust-optimal methodology for designing dynamic
systems using passive control to reduce structural fatigue and increase harvested energy.
Four main cases were analyzed: full-layer circuit optimization; partial treatment circuit
optimization; topological optimization by patch location; and topological optimization by
PZT layer density. The optimization techniques employed, considering uncertainties in
circuit parameters, proved effective in achieving better results compared to traditional

methods.

Keywords: Smart structures, Harvesting, Fatigue, Shunt circuit, Topology optimization
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Chapter 1

Introduction

Fatigue analysis in structures subjected to random loads is more efficient when
using the frequency domain, due to the computational cost efficiency involved (ROSA;
LIMA, 2015). Additionally, multiaxial fatigue analyses are not trivial in the time domain,
requiring consideration of some more widespread theories, such as those pointed out in the
study by Weber (1999), which, combined with material properties, allow for the assess-
ment of the structure’s failure possibility (BORESI; CHONG; LEE, 2010; DOWLING,
2007).

Stochastic finite element fatigue analysis has a high computational cost, given
that there are numerous evaluations of calculation routines through parameters obtained
by a generator, such as the Latin Hypercube (FLORIAN, 1992) and evaluated by the
Monte Carlo method (RUBINSTEIN, 1981). Therefore, there is a need to reduce the
numerical model to perform the analyses more efficiently while maintaining the reliability
of the results. One option to reduce uses the Ritz modal basis (LAMBERT; KHALLJ;
PAGNACCO, 2007), which enables satisfactory computational gains for application in
thin plate models (ROSA; LIMA, 2015). Other methods available in the literature can
also be considered for robust reduction of stochastic models (GERGES, 2013).

In addition to the need for fatigue analysis in structures subjected to random
loads, mitigating such vibration effects proves to be important, for instance, by using
smart materials. The concept of smart structures or adaptive structures is also used in
this work, as these structures can transform environmental energy into some type of action

or adaptation to this new environment, aiming to maintain their predetermined perfor-
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mance (FARIA, 2006). Static and/or dynamic disturbances applied to a structure can
be addressed with the design of a smart structure. These structures can be implemented
such that signals from sensors indicate changes in the environment, causing the struc-
ture to adapt to these new configurations, with a control system handling all these tasks.
Thus, it is possible to create a structure with all this embedded technology, ensuring its
performance autonomously (SANTANA, 2007).

Piezoelectric (PZT) materials stand out among the available smart materials
because they can be manufactured in various shapes, are lightweight, minimally intrusive,
and easy to handle, with a wide range of applications (GRIPP; RADE, 2018; LI et al.,
2016). These materials also have the characteristic of being used both as sensors and
actuators, as well as being easily commercially available and adaptable to different types
of structures, such as plates, shells, beams, and curved structures (FARIA, 2006).

Various control techniques have been suggested across different engineering dis-
ciplines for vibration attenuation and control (BALAJI; KARTHIK SELVAKUMAR,
2020). When it comes to active control systems, they require the use of amplifiers,
associated detection electronics, and control systems, which makes their applications
difficult. Among the various approaches, passive control using smart materials has re-
cently attracted significant research attention. The piezoelectric patch associated with
a monomodal shunt circuit, in particular, has demonstrated wide applications due to its
distinctive characteristics (GRIPP; RADE, 2018). One of these characteristics is the abil-
ity to absorb deformation energy from a vibrating system and convert it into electrical
energy, which can be harnessed for electronic devices (DE MARQUI et al., 2010; ER-
TURK, 2011). Consequently, vibration energy harvesting (VEH), or energy harvesting,
has emerged as a promising alternative for small-scale devices, particularly for aircraft
that require a limited amount of operational power (LI et al., 2016).

Both vibration control and energy harvesting problems require tuning their
respective circuits to achieve effective output. For shunt circuits, although there are direct
methods that do not require optimization routines to achieve good parameters (RAZE
et al., 2020; HAGOOD; FLOTOW, 1991), most studies on parameter tuning in vibration
control propose some type of optimization methodology (VIANA; VALDER STEFFEN,
2006; MARAKAKIS et al., 2022; AOUALI et al., 2021). Additionally, small variations in

circuit parameters can lead to efficiency losses. Considering this, numerical optimization
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techniques that account for the inherent uncertainties in circuit parameters are necessary
to obtain more robust designs in such studies. The same problem is faced when considering
the parameters of a vibration energy harvester, as the circuit configuration is crucial
for reducing internal energy dissipation, achieving impedance matching, and improving
energy conversion efficiency (ZHANG et al., 2022; SCHOEFTNER; BUCHBERGER,
2013).

Recent research highlights the intentional integration of nonlinearities in vi-
bration energy harvesters, both to account for the real-world application conditions of
structures that inherently possess nonlinearities and to optimize system performance for
maximum energy harvesting compared to linear resonant counterparts (MAHMOUDI,;
KACEM; BOUHADDI, 2014; DREZET; KACEM; BOUHADDI, 2018; AOUALI; KACEM;
BOUHADDI, 2022). Despite the model’s enrichment, adding nonlinearities increases the
complexity of solving the systems and consequently leads to higher computational costs
for obtaining results (DAQAQ et al., 2014).

An interesting methodology used to improve structural performance in the ini-
tial phase of conceptual design is topology optimization, which has attracted significant
attention in recent years due to its potential applications in the development of advanced
electromechanical systems. Various solution approaches, such as PEMAP-P (Piezoelec-
tric Material with Penalization and Polarization) (KOGL; SILVA, 2005; NAKASONE;
SILVA, 2010), SIMP (Solid Isotropic Material with Penalization) (GUZMAN; SILVA;
RUBIO, 2020), and MMA (Method of Moving Asymptotes) (HOMAYOUNI-AMLASHI
et al., 2020), have been explored. The use of gradient-based mathematical programming
(KANG; WANG, 2010) and genetic algorithms (GA) (WANG; TAI; QUEK, 2006), in-
cluding other methods like Sequential Linear Programming (SLP) (SILVA; KIKUCHI,
1999), has also been employed to solve topology optimization problems for PZT struc-
tures (ZHANG; KANG, 2014; KANG; WANG; LUO, 2012; HOMAYOUNI-AMLASHI
et al., 2020; NOH; YOON, 2012).

The consideration of PZT material properties in the structure has been inves-
tigated using techniques such as parametric positioning (SILVA, 2014; MOTTA MELLO
et al., 2014; ZHANG; KANG; LI, 2014) and the density of the PZT layer for vibration
control (ZHANG; KANG, 2013) and energy harvesting (ZHENG; CHANG; GEA, 2009).

These comprehensive investigations contribute to the advancement of topology optimiza-
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tion techniques in piezoelectric structures. Therefore, the objective of this work is to
propose an optimal topological design of a vibration energy harvester device, reducing

fatigue damage and vibration of the smart structure with the shunt conversion circuit.

1.1 Current research overview

With the aim of situating the topic of the work, a simplified version of the
mapping study methodology was carried out, based on the initial methodology described
by Bailey et al. (2007) and Petersen et al. (2008), also conducted by Sena et al. (2022).
Using terms or keywords for the initial filtering of studies of interest, this system consists
of searching bibliographic material registered in scientific databases.

Two scientific databases were used, namely the Coordenagao de Aperfeigoa-
mento de Pessoal de Nivel Superior (CAPES) Periodicals Portal (namely Periddicos
CAPES) and the Web of Science Portal. Based on the research problem and initial
searches on the topic, it was possible to define the main terms of the mapping as "En-
ergy Harvesting", "Fatigue" and "Topology Optimization". Thus, three combinatorial
arrangements of these three terms with an "AND" operator allow for narrowing down
articles with a theme closely related to the desired one.

The initial search initially employed filters to discard studies not pertinent to
the topic, such as works from other fields of knowledge. A scarcity of studies in languages
other than English and Portuguese was observed, resulting in the non-application of this
initial filter. Additionally, all selected articles for analysis were previously peer-reviewed.
The search results can be represented in a Venn diagram, as shown in Fig. 1.1 and Fig.
1.2:

Initially, the proximity of the results between the databases is noticed. The
number of results for searches containing only one term was much higher than the rest,
indicating that representing these results in the diagram would not be adequate due to
the predominance of values. The observation of a considerable amount of work resulting
from the combination of two terms suggests a clear academic interest in exploring these
specific themes, highlighting their relevance and potential for further analysis. Finally,
the inclusion of all three terms in a single search revealed a knowledge gap in the existing

literature, emphasizing the importance and necessity of addressing this research topic in
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Periodicos CAPES

Energy Harvesting Fatigue

Topology Optimization
Figure 1.1: Venn diagram of Peridédicos CAPES combination search results.

Web of Science

Energy Harvesting Fatigue

Topology Optimization

Figure 1.2: Venn diagram of Web of Science combination search results.

the context of the present project.

Another interesting analysis to be made consists of examining the publication
year of the results found. In Fig. 1.3 and Fig. 1.4, we can see, for both databases, the
number of publications per year. The increasing curve, starting around the 2000s until
the present day, indicates the growing interest in the topics, as well as their timeliness.
Technological development that allows advances in the manufacturing of smart materials,
as well as computational advances in processing large models, explains this increase in
academic interest in the theme.

Finally, a quantitative survey by scientific journal was conducted for both

databases in Tab. 1.1 and Tab. 1.2, which contain the six journals with the highest
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Figure 1.3: Number of publications per year from the Periédicos CAPES platform.

Web of Science

a5k @ Energy Harvest. + Fatigue .
@ Energy Harvest. + Topol. Optim. “
30+ @ Fatigue + Topol. Optim.
n
< 25 ’..
e ®
< 20 08 ® ep
—
<)
2 sl ® o
515 o o %5
“ L [ ]
10 LA g
sl e . ee®
°
° e 0 o0 o
° e L] L] : L] L]
O 1 1 1 1
2000 2005 2010 2015 2020

Year of publishing

Figure 1.4: Number of publications per year from the Web of Science platform.
number of publications in the research set. This analysis makes it explicit that, despite

the close values in the results of the quantitative diagrams, there are still differences

between the databases regarding journals.
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Periodicos Capes

Scientific journal Publications
Structural and multidisciplinary optimization 30
Journal of intelligent material systems and structures 23
Smart materials and structures 21
Journal of physics: Conference series 16
Energies 13
Computer methods in applied mechanics and engineering 13

Table 1.1: Number of publications per scientific journal in the Periédicos CAPES

database.
Web of Science
Scientific journal Publications
Structural and multidisciplinary optimization 27
Smart materials and structures 20
Journal of intelligent material systems and structures 20
Nano energy 11
Sensors 10
ACS applied materials & interfaces 8

Table 1.2: Number of publications per scientific journal in the Web of Science

database.

1.2 Objectives

The objective is to develop a robust optimal methodology for the design of a
passive control technique for dynamic systems aimed at reducing the effects of fatigue
response and increasing the amount of collected energy, taking into account circuit pa-
rameters and the distribution of the piezoelectric layer. Based on the stochastic finite

element method with the aid of neural network metamodeling and multi-objective genetic
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optimization methods, the aim is to define the optimal design of a structure subjected
to external loading for a compromise between maximum harvested vibration energy and

minimum fatigue damage accumulation with a reduced CPU computation time.

1.2.1 Specific objectives

e Designing monomodal shunt electrical circuits with different topologies;

e Damping vibrations passively on thin flat panels using monomodal shunt electrical
circuits;
e Vibration energy harvesting by associating collection circuits with piezoelectric ma-

terials in the structure;

e Performing robust optimization of monomodal shunt circuit parameters to increase

fatigue life.

e Performing robust optimization of monomodal shunt circuit parameters to increase

harvested energy.

e Proposition, development, and application of robust reduction bases in the compu-

tational model and metamodeling using neural networks;

¢ Adding the topology of the piezoelectric layer to the robust optimization process for

increased fatigue life and harvested energy;

e Obtaining the optimal robust characteristics of the system for a compromise between

the two objectives.



Chapter 11

Background theory

2.1 Multilayer plate models

The displacement field at a specific point on the plate is described, in condensed

form, by:

U(x,y,z,t) = {u(x,y,z,t) v(x,y, z,t) w(x,y,z,t)}T : (2.1)

According to the First-order Shear Deformation Theory (FSDT) for mechanical
modeling of plates, displacements in space are defined by five degrees of freedom, including
rotations ¢y and 1, about the z and y axes, respectively (REDDY, 1997). The relationship

between displacements and degrees of freedom is determined as:

U(«'anazat) :U()(l’,y,t) +Z¢X(‘T7y7t) ) (22&)
v(x7 y’ Z7t> - /Uo(x7 y’ t) + zwy(x’ y7 t) b (2'2b)
w(z,y, z,t) = wo(z,y,t) . (2.2¢)

The displacement field can be simplified as:

U(z,y,z,t) = A2)u(z,y,t) , (2.3)

where the matrix A, (z) and the degree of freedom vector u(z,y,t) are represented by:
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10000 00010
Ay(2)=Ag+2zA1=1|0 100 0] +2]{0 00 0 1|, (2.4a)
00100 00000
U(%?J?t):{uo(x,y,t) vo(z,y,t) wolx,y,t) Us(z,y,t) wy(x,y,t)}. (2.4b)

The relationship between displacements and strains from Linear Elasticity The-

ory, for the presented FSDT theory, results in:

f wo o _Ov 0w
oo Y oy’ T 0z
ov  Ow ou Ow ou Ov
W gty e ta W gy tar

Combining Eqgs. 2.2 and 2.5, the matrix relationship of Eq. 2.6 is obtained. To

(2.5)

facilitate further analysis, the strains are separated according to the type of effect, namely

bending and shear:

ev(2,Y, 2,t) = Dy(2)u(z,y,t) = (Dvo + 2Du1) u(z,y,t) , (2.6a)
es(r,y,2,1) = Dyou(z,y,t) , (2.6b)
where:
0 0
7 0O 0 00 0 0 0 7 0
0 g 0 0 0 000 O aﬁ
Dy = Y , Dy = 1,
0 0O 0 00 000 O 0 (2 7)
o 0 o 0
5 5 000 000 5 5
0 0 2 01
D, - %
00 — 10
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Based on the theoretical FSDT modeling presented, it is possible to build a
model using the finite element method, using an eight-node flat plate element from the
Serendipity family (REDDY, 1997), as shown in Fig. 2.1, which presents the element
in both natural and local coordinates. The element has unitary dimensions in natural

coordinates and dimensions (a, b) in local coordinates, where @ = a/2 and b = b/2.

- y
7 (-1,1) 6 (0,1) 5 (1,1) 7 (-a,b)
[ 2 L 2 ®
4 (1,0
8 (-1,0)e ° > ¢ 8 (-a,0)
[ 4 {4 @ _ — _
1(-1-1) 2 (0,-1) 3 (1,-1) 1 (-a,-b) 2 (0,-b) 3 (a,-b)

Figure 2.1: Rectangular element with eight nodes, in natural and global coordi-

nates, respectively.

The relationship between natural and local coordinates, with z; and y; corre-

spond to the coordinates of the i-th node of the element, is described according to:

= (233(;4 ﬂiz;g;)xs) = %U & r= % [E(xy — 28) + T4 + 28] = %L : (2.8a)
CQy—wye—wy) 2y 1 B _nb
ﬁ—w— , y_2[77(y6 Y2) + Y6 + y2] = 5 (2.8b)

With this relationship in mind, the Jacobian matrix of the linear transformation

between natural and local coordinates can be defined as:

or oy
R RS 112y — g) 0
J = T2 0 (Y6 —y2)| ~ (29)
or oy
[ On O |

with a determinant equal to J = det(J) = ab/4.
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The correspondence between the total displacement of the finite element and
the nodal displacement is achieved with the aid of Shape Functions, or Interpolation
Functions. These functions are obtained from the polynomial approximation of the node
behavior in the element, and for the Serendipity element, they correspond to the expres-

sions:

(M) [a-90-nc—n-1)

Na(€,m) 2(1—€2)(1—1)

N3(€,m) L+ —n)(E—n—1)

Nigm) | 1 2(1+€)(1—1P) (210
Nsem) | A a+oa+nE+n-1)

Ne(&,n) 2(1 = €)1 +n)

N7 (€,m) (1= +n)(=§+n—1)

[ Nsem) | 20-90-p)

/

The finite element then has 5 degrees of freedom per node, totaling 40 de-
grees of freedom per element, that is, the elemental displacement is equal to u, =
{ui,vi,wi,wm,@byi}[mxu, with 4 = 1,2,...8. The interpolation matrix IN(&,7)sx40, for
the FSDT theory used, follows the structure presented as:

-Nl 0 0 0 0 Ny O O 0 0 O ]
0O Ny O 0 0 0 Ny O 0O 0 O
N=10 0 N O O O O Ny ... Ng O 0] (2.11)
o 0o o0 N O O 0 0 ... 0 Ng O
I o 0o o o0 N O 0 0 ... 0 0 Ng_

In a simplified manner, the displacement of the finite element can be represented

as:

u(f, 77,15) = N(€>77)ue(t) ) (212)

with:

U(&,n,2,t) = AuN(E n)u(t) . (2.13)
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The mechanical strains of the element can be described in terms of the shape

matrix:

€b(€, n,z, t) = (DbO + ZDbl) N(g, n)ue(t) = (Bb() —+ ZBbl) Ue , (214&)
es(w,y, 2,t) = DyoIN (§,n)uc(t) = Byu, . (2.14b)

With the displacement and strain in hand, it is possible to obtain the mass
and stiffness matrices from the calculation of kinetic energy and the strain energy, both

obtained respectively by:

3

E.= %/pkUTU dv, , (2.15a)
k=1 Ve

P, = /aTs dv, , (2.15b)
k=1 Ve

where pj is the density of the material of layer k, V, is the volume of the finite element,
and U is the variation of the displacement field over time. Substituting the values in Eq.
2.15a, the elemental mass matrix is obtained as a function of the physical characteristics

of the element:

Mg, =" / peNTATAN dV, . (2.16)
k=1,
At this point, before performing the integration of the shape functions, the

process of factoring the result of the matrix multiplication A = Ay + 2z A; is carried out
according to the degree of z. This process facilitates the calculation of the integral and
assists in the inclusion of uncertainties present in the parameters through factored random
variables of the matrices. The Eq. 2.17 describes the result of the factoring, resulting
in the elemental mass matrix of Eq. 2.18, where 2z, and 2., indicate the coordinates of

layer k:

AY = AlA,, (2.17a)
A® = ATA + AT A, , (2.17b)
A® = ATA, | (2.17c)
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n Zk+1 1 1

Mg, =) / / / pNT (AD + 2A@ 4 22 A®) N J dndéds (2.18)

k=17 215

The matrix of material properties depends on the planes of symmetry, reducing
the independent stiffness terms in certain types of materials. The classification of these
materials is carried out in three main categories: isotropic, orthotropic, and anisotropic
(REDDY, 2006). Generalizing the formulation for orthotropic materials, we have the
material properties matrix C, and the relation between stress and strain o = Ce is fully

described in Eq. 2.19.

( ) B 7 ( )
01 Cii Cip Cig 0 0 0 €1
02 Oy Cy Co 0 0 0 €2
o3| _ Uy Cs C33 0 0 0 €3 (2.19)
(o) 0 0 0 044 0 0 4
o5 0 0 0 0 Cs O €5
L Og J i 0 0 0 0 0 066_ L €6 J

The separation of the properties matrix C' is also performed according to the

type of effect (bending and shear), as shown in:

Cnu Ci2 Ciz3 O
Cy; Coy C 0 C 0
C, — 91 Cag Cas | c.— 44 . (2.20)
Cs1 Cs Csz 0 0 Css

0 0 0 Ces

Substituting the terms in the strain energy of Eq. 2.15b, and relating the stress
and strain values along with the material properties matrix, we obtain the stiffness matrix

in terms of bending and shear effects:

Ki=>" / B Cyp By J dV, | (2.21a)
k:lve
K¢ = Z/B;CskBqu av, , (2.21b)

k=1 Ve
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where By, = (Bpo + 2By;) and By, = By = B;. Analogously to the mass matrix, the
terms of the stiffness matrix can be factored in terms of the degree of the term z only for

the bending effects matrix, according to:

B})) = BJ,CyiByy , (2.22a)
B\ = B},Cy, By + B],Cy. By (2.22b)
B{)) = B],CyBy; . (2.22¢)

The result of this factorization corresponds to the elemental stiffness matrix,

described as:

K¢ = / (ij} +2B% 4 zQBS;)) Jdv. (2.23a)
k=1 Ve
Ki=>" / B! C,.B.J dV, . (2.23b)

With this, it is possible to assemble the global mechanical problem from the
global matrices of the system, considering the relation K|, = K + K. These are
obtained following the classic procedure of connecting the system in finite elements. The

result of the equation of motion is described in the mechanical problem by:

Mii(t) + Kou(t) = £(t) (2.24)

where u(t) is the vector of global degrees of freedom, and f(¢) represents the vector of
generalized forces. Considering N as the number of finite elements, the global matrices

correspond to:

N N
M, =M, Ku= U1 K. - (2.25)
n=1 n=

2.2 Electromechanical problem

The Mixed Theory is used for modeling laminated composite structures with
piezoelectric elements, combining the Equivalent Layer Theory with the Theory of Dis-

crete Equivalent Layers. Thus, mechanical displacements are calculated using a single
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equivalent layer, while electrical potentials are discretely distributed along the piezoelec-
tric layers. The mechanical displacement fields are then approximated via FSDT, while
the electrical potential is approximated as (SARAVANOS; HEYLIGER, 1995; CHEE,
2000):

(I)k(xa Y, <, t) = Lkd(Z)q)k([E, Y, t) + Lku(z)q)k+1 (ZE, Y, t) ) (226)

where ®(;) corresponds to the electrical potential of the k-th layer, ®; and @, are the
electrical potentials at the lower and upper interfaces of the k-th layer, and Lgq(z) =
(zge1 — 2) /(241 — 2) and Ly, (2) = (2 — 2x) /(2541 — 2x) are the transverse interpolation
functions, given by the coordinates of the lower and upper electrical potentials, respec-
tively.

One can also define the electrical potential of the k-th layer in terms of the shape
functions N, (&, 1) and the nodal electrical potentials ¢, according to (SARAVANOS;
HEYLIGER, 1995):

@1 (8,1, 2, 1) = Li(2)Nu(§, n) Per(t) = Na (€, 1, 2) Per(t) - (2.27)

The electric field of layer k£ is defined by the negative gradient of the electric
potential, as shown in (BOYLESTAD, 2004):

E(k)(€7777 th) = —VNq)(f, , Z)d)ek(t) = _B<I>(£77I7 Z)¢ek(t) : (228)

The elastic-piezoelectric-dielectric matrix, which includes the electromechani-
cal coupling and the relationships between mechanical stresses o, mechanical strains e,
electric displacements D, and electric field E, is given by (CHEE, 2000):
o| _ C: —e| |e | (2.20)
D € Xt E
where e; represents the dielectric constants and 7x; is the electric permittivity matrix, al-
ready accounting for the composite fibers. The element stiffness matrices of the electrome-

chanical system are obtained from the deformation energy with the electrical component

(FARIA, 2006):
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U, = / (e€'c —E"D) av.. (2.30)
Ve
Combining Egs. 2.29 and 2.30, it is possible to obtain the mechanical, elec-

tromechanical, and electrical stiffness matrices from the results of the following integrals

(FARIA, 2006):

ze+1 1 1

Kﬁu:i / //(BICBH)J dndédz (2.31)
k=1

zr —1—1

zr+1 1 1

K¢, :é / / / (BleBg)J dndédz (2.32)

zr —1—1

ze+1 1 1

K;b:i / //(—ngB¢)J dndédz . (2.33)

oz —1 -1

Knowing that Bg; = Bgio + 2Bgi1 and that Bgg = Bgg, it is possible to

perform a new separation in terms of the multipliers z, following:

Bl(jl)c = ByyenrBaio (2.34a)
By} = BljewBai + Bl eniBoio | (2.34b)
By} = B ewBan | (2.34c)
B}, = BioXBaio . (2.35a)
B = BlyxiBai + Bl xiBao . (2.35b)
B = By, x:Bui , (2.35¢)

which determine the electromechanical and electrical stiffness matrices, respectively:

ze+1 1 1

Ko=), / / / (B + =B, + #*Bf)) + (BlieaBuo) | J dndedz . (2.36)
k=1

oz —1 -1
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Zk+1 1 1

Kio =Y / / / [(Bi‘,?+zB§,§>+z2B§,§))+(B£OXkBq,O) J dpdedz . (2.37)
k=1

z —1—1

The matrix equation of motion, obtained after using classical finite element
assembly techniques, is finally described in Eq. 2.38, with K, and Kg¢ being the global
electromechanical and electrical matrices, respectively, Ko = K3, ®(t), ®(t) is the
matrix of global electrical potentials, and g(t) is the vector containing global electrical

charges:

0 0 (I)(t> K<I>u Kq>¢, (I)(t) q(t)

2.2.1 Model reduction method

In dynamic modeling, iterative adjustment and optimization processes along
with the dimensions of the global matrices due to the large number of degrees of freedom
result in high computational costs. Model reduction aims to create a reduced basis that
reproduces the dynamic responses of nominal models, even after modifications, which is
essential for rapid and economical reanalysis in iterative adjustment and optimization pro-
cesses, especially in fatigue analysis and topological analysis due to the computationally
expensive matrix calculations involved.

Using modal approximations, the system’s equations of motion are projected
onto a reduced basis to decrease the number of degrees of freedom, thus accelerating
the numerical solution of the problem, under the premise that exact responses can be

approximated by solutions in a reduced subspace, as:

u, =Tu , (2.39)

where the matrix T' € CV*NE corresponds to the reduction basis, u, € CN? denotes the

reduced responses, and N R represents the modes retained in the basis, with NR < N.
In the context of obtaining reduction bases, Gerges (2013) suggested techniques

such as the Ritz modal basis enriched with static residuals due to external efforts, suitable

for linear structures with known physical characteristics. The basis consists of the first
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N, modes (modal response U,,,q of the nominal system) and enriched with the static

residual Uj resulting from the application of a unit force F' to the structure:

U=K,F. (2.40)

The number of modes to be used depends on specific criteria, with a recom-
mendation of using 1.5 times the maximum desired frequency in the area of interest
(MACIEL; BARBOSA, 2015; ROSA; LIMA, 2015). The results of the static analysis
should be coupled with truncated vibration modes, resulting in the following enriched

basis:

T = [Umod Us] . (2.41)

To utilize the reduction basis, the new matrices of mechanical mass and stiffness
are calculated by multiplying the respective global matrices by the reduction basis. The
electromechanical stiffness matrices are obtained by applying the basis to the mechanical
portion of the degrees of freedom, and the electrical stiffness matrix does not undergo the

mechanical reduction process, as:

M, =T"M,T, 92.42a

K =T"K,T, 2.42b

K,=T'K, (2.42¢

~—" N ~—

K., = KT . (2.42d

2.3 Shunt circuit tuning in the model

2.3.1 Inclusion of the shunt circuit in the model

Representing the equations in the Fourier domain, neglecting the initial condi-

tions, we have (ZAMBOLINI-VICENTE, 2000; RIBEIRO; LIMA, 2015):

(K + jwCeq — WMy )U (w) + K6®(w) = F(w) , (2.43)
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K%U(w) —+ K@@‘I’(w) = Q(w) . (244)

By combining and rearranging these equations, two Frequency Response Func-
tions (FRFs) can be obtained for the analysis of the electromechanical system. The
mechanical FRF H, is obtained by isolating the mechanical displacements U per applied
unit force F. The electrical FRF corresponds to the electrical potential ® per applied
unit force F'. To do this, Boylestad (2004) presents that the electric current in a circuit
corresponds to the variation of electric charge over time, which in turn is proportional to

the inverse of impedance times the electric potential, according to Ohm’s second law:

L =) =Z27'0(1) . (2.45)

This relationship allows obtaining the vector of electric charges Q(w) that cir-

culates through the shunt circuit given by:

Q) = (=) 2 @Dew) (2.46)

Jw
where the matrix of electrical impedances Z and the variable L; represent the choice
between the independent electric potentials associated with the electrodes where the shunt
circuits are connected.
Combining the previous equations with Eq. 2.44, we obtain:
Z Y w
KaouU(w) + (KM) - #Li) B(w) =0 (2.47)
Jw

The equation describing the mechanical FRF and the electrical FRF of the
electromechanical system is given by Eq. 2.48, considering that the term [KCM]| =
(Kyy + jwCeq — w?M,,) is used for a better representation of the equations and that for

a single circuit the matrix L; is not necessary:

H,(w) = [[KC’M] — Ky < Koo — MLZ) o K@u] 7 : (2.48)

1 -1
H@(Q)) = |:K¢,u[KCM]_1Ku¢, + jw_Z - Kq>q>:| Kq;u[KCM]_l . (249)
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2.3.2 Shunt circuit tuning

Among the different configurations of shunt circuits described in the literature
(LESIEUTRE, 1998), such as resistive, resonant, capacitive, and switched, the choice is
made considering the type of application. The resonant circuit, composed of a resistor
and an inductor, is relevant due to its ability to adjust to different frequencies, similar
to a Dynamic Vibration Absorber (DVA). There are two main configurations: parallel
resonant and series resonant. In Fig. 2.2, the representation of a resistive and parallel

resonant circuit is shown.

shunt shunt

't \‘ """"""""""""" 't \‘
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
! ' R ! . R I
; : : :
| ! i |
i I i i
‘\ ________ t’ __________________________ ‘\ ________ t’

(a) (b)

Figure 2.2: Shunt circuits (a) Resistive (b) Resonant in parallel.

For the vibration control of the structure, it is necessary to tune the shunt
circuit to the mode or modes that need to be attenuated. Tuning involves adjusting
the parameters of the circuit, such as resistors, inductors, and capacitors, to match the
equivalent impedance of the circuit to the desired configurations. By analyzing its transfer
function and applying the relationships between the natural frequencies and the ideal
damping factor for the system, tuning can be performed at a specific frequency based on

the formulation proposed by Hagood and Flotow (1991):

2k, 1
RO = Ve e 1 (2.50)
pztwn (]. + kl]) ﬁCpthnkij
1
L(s) L(p) _ (2‘51)

opt ) opt 27
e e R e (1-%)
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where (s) and (p) are indicators of series and parallel circuits respectively, Cp,; is the
capacitance of the piezoelectric patch, w,, is the natural frequency in the mode of interest,
and k;; is the coupling factor.

The Eqgs. 2.50 and 2.51 show that the ideal resistances and inductances for series
and parallel resonant circuits vary inversely with the natural frequency of the system. For
systems with low natural frequencies, the required inductances are high, making the use of
conventional inductors impractical. This drives the interest in synthetic inductors, which
are more compact and lightweight, and can achieve suitable inductance values.

The correct choice of the circuit’s electrical impedance shifts the peak of the loss
factor curve to the frequency that needs to be attenuated, thereby dissipating the vibration
in the desired mode (HAGOOD; FLOTOW, 1991). The aim is to design resonant shunt
circuits both in parallel (WU, 1998) and in series (FLEMING; BEHRENS; MOHEIMANT,
2002), whose tunings are detailed by Silva (2014).

To obtain the equivalent impedances Z of each circuit, first the impedance of
each type of component is calculated (resistor and inductor, respectively), in the frequency

domain, by the following relationships:

Zres(w) = R, (2.52)
Zina(w) = jwlL | (2.53)
where R is the resistance and L is the inductance. The total impedance values are

calculated for the resistive circuit Zg, for the series resonant circuit ZF(fﬁ, and for the

parallel resonant circuit ZP({PB by, respectively:

IR = Zres (2.54)
Zf({s]i = Zres T Zind ) (255)
LyesZi
Z(p) _ res%ind . 9
RL Zrcs + Zind ( 56)

2.3.3 Calculation of power in shunt circuits

In an analysis of ideal direct current circuits, Boylestad (2004) describes that

the power of a circuit is given by the relation:
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P=VI, (2.57)

with P being the circuit power, V' the electrical voltage, and I the electric current passing

through the system.

i t=0 Ao t=0
— 00— 00 i, =0

Q0
+ Vi VT£ A% v

v T = R R 4+ L Vi
. R v, VT% § R
A L
L |
(a) (b) (c)

Figure 2.3: Electrical diagram of the circuits (a) Resistive (b) Resonant in series

(c¢) Resonant in parallel.

To calculate the current values in different circuits, we need to analyze the
components present and their configuration. Figure 2.3 displays the necessary information
for circuit analysis. For the resistive circuit, the voltage across the circuit is the same as
the voltage across the resistor, so V = Vg = RI. Similarly, in the parallel resonant circuit,
the system voltage is the same as that across both components, with V = Vg =V}, = RI.
For the series resonant circuit, by Kirchhoff’s law, the system voltage equals the sum of
the voltages across the components (V' = Vi + V1), resulting in:

dr

—RI—-L—=0. 2.
V- RI-L5 =0 (2.58)

Solving the Ordinary Differential Equation (ODE), it’s possible to obtain the
value of the current in the system as a function of time ¢ as shown in the graph in Fig.

2.4:

Considering a steady-state system to be analyzed, for all described circuits, the

resulting power of the system will have the value:

P=—. (2.60)
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Figure 2.4: Graph of current over time.

In finite element analysis, the calculated voltage corresponds to the electric
potential per unit force in the frequency domain Hg(w). Thus, the calculated power

Y (w) corresponds to:

_Hj
==t

In optimization processes and practical applications, the frequency of interest

T (w) (2.61)

corresponds to the maximum power, i.e., at the natural frequencies of the structure. In
the analyses conducted in this work, the calculated value at the frequency w; of the first

vibration mode will be used for the calculation of scalar power.

2.4 Stress response under random loads in the frequency
domain

The fatigue analysis in the time domain requires knowledge of the entire tem-
poral analysis, thus recording the stress history in the structure. In addition to the high
computational cost involved in this type of analysis, another problem with this type of
analysis is the evaluation of convolution integrals for numerical analyses, especially in the
context of random loadings (LAMBERT; KHALLJ; PAGNACCO, 2007).

An alternative in this case is solving the problem in the frequency domain,

where it is only necessary to obtain the external forces and the power spectral densi-
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ties (LAMBERT; KHALIJ; PAGNACCO, 2007). According to Bendat (2010), the four

statistical properties required to describe a Gaussian random process X are:

Mean and mean squared - the mean i, and the variance s? represent the central ten-
dency and dispersion around the process, respectively; the mean square 12 provides

an estimate of the variance.

Probability density function - the function p(x) assigns a probability value to each
possible value of the discrete random variable, with the area under the curve equaling

one.

Autocorrelation function - the function R,(7) corresponds to the influence of the
variation of values along the process, with 7 corresponding to the desired lag in

measurement.

Power spectral density - also called the autospectral density function, ¢, (w) repre-
sents the rate of change of the mean square value as a function of frequency, obtained

from the Fourier transform of the autocorrelation functions.

Assuming an external loading f(¢) with properties ¢pf(w) and Ry(7) equal to the

power spectral density matrix and autocorrelation function, resulting in a displacement

u(t) and consequently the properties ¢, (w) and R, (7) related to this displacement. These

values are calculated using:

o

Pu(w) = / Ry(r)e 7t dr | (2.62a)

—0o0

oo

or(w) = / Re(r)e ¥t dr . (2.62b)

—0o0

After applying the Fourier transform, the spectral density equations result in,

now depending on the autocorrelation functions:

Ry(1) = / (W)t dr | (2.63a)

Re(r) = / dr(w)e dr (2.63b)
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By definition, the autocorrelation function of a stationary random process is

given by:
Ry(7)=E [u®)u'(t+7)] =E [u(t — 7)u"(t)] , (2.64a)
Elg(@)] = [ glalple) do (2.64D)

where E [e] corresponds to the mathematical expectation or the expected value of a ran-
dom variable.
Based on the original developments presented by Lambert, Khalij, and Pagnacco

(2007), the previous equation is rewritten according to the definition:
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The function g(t) corresponds to the system’s response to the application of a

unit impulse, and is given by:

g(t) = / G(w)e’" dw . (2.66)

The loading function f(t) can be described according to, considering that it is

a stationary and ergodic process:

/f@—Mﬂﬁ+T—Qdﬁ_/f@ﬂﬁ+r+A—Qdﬁ—&ﬁ+A—Q. (2.67)

Substituting Eq. 2.67 into Eq. 2.66, we obtain:

Ru(r) = / / gV Re(r + A — O)gT(¢) dAC . (2.68)

—00 —00

With this equation, it is possible to calculate the displacement response of

the structure subjected to random loading in the time domain, which does not depend
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on t and corresponds to a linear system. By definition, the system response will be a
stationary random process if the input excitation also has this characteristic. Therefore,
we rewrite the power spectral density function and the autocorrelation function of the

loading according to:

ulw) = / / / GOV Re(r + A — OgT(C) dAdC | & dr | (2.69)
Ri(t+X—() = / oe(w)e O dy (2.70)

Combining the two previous equations and using the definition of the impulse

function ¢(t), along with some mathematical manipulations, we arrive at:

/g()\) / Br(w)e T dwgT(¢) dAd( | & dr

:/ /g()\)e—jc&\ d)\ x /¢f(w)ejw(r+)\—C) dw % /gT(C)eij ¢ oIt dr
:/ G(w) X /¢f(w)ejw(7+>\—<) dw % GH(w) oWt qr
= G(w) / Re(m)e*™ | GM(w) ,

(2.71)

which defines the value of the power spectral density of the displacement. In simplified

form:

Du(w) = G(w)e(w)GH (w) . (2.72)
Considering the displacement-strain relationships, as well as the stress-strain

relationships in finite elements, the power spectral density matrix of stress results in:

¢s(w) = CBG(w)ps(w)GNw)B'CT (2.73)
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cI))(X,XX (I)XX,yy (I)XX,ZZ (I)XX,yz (I)XX,ZX (I)XX,Xy
Pyyrx Pyyyy Pyyin Pyyye Py Pyyxy
(I)zz,xx (Dzz,yy CI)ZZ,ZZ (Dzz,yz (I)zz,zx (bzz,xy
Ps(w) = : (2.74)
Pyrpe Pynyy Pyazn Pyays Pyaax Pyaxy
q)zx,xx q)zx,yy q)zx,zz q)zx,yz q)zx,zx q)zx,xy
[P Py Py Pryye Pryix Pryy

2.5 Fatigue analysis in dynamic systems

2.5.1 Spectral moments

According to the definition presented by Bendat (2010), a Gaussian stationary
process ¢s(w) has a set of values called spectral moments related to the Power Spectral
Density (PSD) of that process, where the spectral moment \,, has degree m and is

calculated by:

1 (o.9]
A = Py /wmgbs(w) dw . (2.75)

From the information contained in the moments, it is possible to calculate some
important statistical characteristics, such as the number of crossings of a level b in a period
T with positive slope, the number of crossings of zero with positive slope, and the number

of maxima in a period T with, repectively:

T X b?
N L [x = 2.
b 2 )\0 eXP ( 2)\0) ’ ( 76)
T [Xs

T [N
Nmax - 27T )\2 . (2-78)

Another spectral measure of the signal is bandwidth, which can be narrowband

or wideband, depending on the presence of significant values in a certain frequency range.
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To indicate the bandwidth, the factor as is used, which is the ratio of the number of zero
crossings to the number of maxima:
Ny A1

— = 2.79
(0%} Nmax /—)\0)\2 ’ ( )

which tends to zero for wideband processes and tends to one for narrowband processes.

2.5.2 Uniaxial fatigue life

As described by Chen, Wang, and Guedes Soares (2011), the number of stress
cycles that a structure can withstand before failure occurs is known as fatigue life Ny,
where fatigue strength is the prediction of this life using the S-N characteristic curve
together with the Palmgren-Miner rule. The S-N curve of a material corresponds to a
two-segment curve representing the number of cycles it withstands at a given stress range.
These values are calculated using linear regression of experimental data, as seen in the
ABS Rules for Building and Classing Steel Vessels (ABS, 2010). The S-N curve can be

represented as:

NS™ = (Y, — N < 107ciclos , (2.80)

NS™12 = (Y, = N > 10"ciclos , (2.81)

where N equals the number of load cycles to failure, S is the stress range, and my,
my2, Cr1, and Cyy are the exponents and coefficients of fatigue strength as a material
characteristic (CHEN; WANG; GUEDES SOARES, 2011). An example of a generic S-N
curve is shown in Fig. 2.5, with the correspondence of each stress range and number of
cycles.

The Palmgren-Miner rule, first cited by Palmgren (1924) and later combined
with Miner’s rule, allowed the definition of accumulated damage in a structure subjected

to k different stress ranges S;(1 < i < k) with n; cycles each, using:

k
n;
D:Zﬁ<1, (2.82)
i=1 "'

where N; is the number of loading cycles under the stress range S; in the S-N curve. When

the accumulated damage value equals 1, fatigue failure occurs.
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Figure 2.5: Relationship between voltage and cycles to failure on an S-N curve.

Fatigue life can be estimated using accumulated damage and the time interval
related to the signal used in the previous calculations. The fatigue life, where T is the

time considered in the analysis, is obtained with:

_ Iy

Ny D

(2.83)

The rainflow method is used to simplify a complex load history into a set of
elementary load cycles, using the signal peaks to do so. It was first proposed by Endo et
al. (1974), with the signal peaks and valleys being rotated to the vertical axis, resembling
a pagoda roof with rainwater running off. The Fig. 2.6 shows an example of a signal
being counted using the rainflow method (MILNE; KARIHALOO, 2003).

There are three basic rules for the rainflow method: rainflow starts from each
peak or valley, but does not start while rain is flowing downward; rainflow stops when the
magnitude of the next peak or valley is equal to or greater than the first peak or valley;
rainflow stops when it encounters the previous rainflow. Each interval is counted as half
a cycle. When the counted half cycles occur in pairs of equal magnitudes, they form a

complete cycle (MILNE; KARIHALOO, 2003).
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Time

Figure 2.6: Example of the rainflow cycle counting method and name analogy.

2.5.3 Multiaxial fatigue life

The proposition to use the octahedral plane as the plane of maximum stresses,
made by Sines (1959), is based on the second invariant of the deviatoric stress tensor (.J3).
This proposition is based on the calculation of the damage coefficient Do, which char-
acterizes the condition of the structure regarding structural system failure. Other factors,
such as the mean hydrostatic stress p,(t) and the multiaxial fatigue strength factors ¢ ;
and f 1, determine whether the system has collapsed by resulting in accumulated damage

greater than 1. The formulation of damage by the Sines criterion is:

Dsines = JQ?a ol Lph (t)]

= : (2.84)

where /Js, is the estimate of the square root of the second invariant of the deviatoric
stress tensor, o = %&f—l) — V6, E [pn(t)] = 219% and Sy is the ultimate tensile

strength.
Estimation of the square root of the second invariant of the deviation
tensor

According to Boresi (2011), by definition, we have the second invariant of the

deviatoric stress tensor, where d(t) corresponds to the deviatoric stress tensor:
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(D) = %d(t) d(t) . (2.85)

In the specific case where the loading is proportional and in phase, the values

of the second invariant are calculated using the stress components:

Vo = \/ é [(Ux,a —0y2)2 + (Oya — 02a)? 4+ (040 — 0xa)? + 6(Taya + Tyza + Txza)? ] ,
(2.86)
with 0, , and 7;; , being the estimated values for the normal and shear stresses, respectively.
The Eq. 2.86 can be simplified based on a decomposition in a five-dimensional
Euclidean space D.(t) = [D(t), Da(t), Ds(t), Dy(t), D5(t)], where (LAMBERT; PAG-
NACCO; KHALLJ, 2010):

Dy(t) = ? (ax(t) - %Uy(t) - lo—z(t)) , (2.87a)
Da(t) = 50y(1) — 50ult) (2.87h)

Ds(t) = 1y (t) (2.87¢)

Dy(t) = 1y,(t) , (2.87d)

Ds(t) = T, (t) . (2.87¢)

The Eq. 2.86 can be rewritten considering the new Euclidean space, resulting

n:

V/Ia(f) = \/D3(#) + D3(t) + D3() + D3(t) + DX(t) . (2.88)

or, considering proportional loading in phase:

V J2,a = \/D%,a—i_D%,a—i_Dg,a—i_Dia_'—Dg,a : (289)

Other methods for estimating the value of \/E are necessary in cases where
the loading is non-proportional and out of phase. Li and Freitas (2002) describes a method
that considers an ellipse with two semi-axes R; and R, that encloses the circumscribed
loading path, thus including the effects of non-proportionality. To calculate the value of

the square root of the second invariant according to the ellipse shown in Fig. 2.7, we use:
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VI =1/R2+ R . (2.90)

Minimum circumscribed circle
¢ VI ()

__— Minimum
circumscribed
ellipse

Figure 2.7: Load path and minimum ellipse circumscribed according to the theory

presented (LAMBERT; PAGNACCO; KHALLJ, 2010).

This formulation is limited to two-dimensional space, making it impossible to
apply to the initially presented case. Therefore, Lambert, Pagnacco, and Khalij (2010)
propose a theory to include the loading path in a prismatic shell, better representing non-
proportional loadings to obtain the value of \/E We then rewrite Eq. 2.90 in terms of

the dimensions of the prismatic shell, resulting in:

VTom =R+ B3+ RS+ R34+ R?. (2.91)

Adaptation of the Sines criterion for random loading

In the case of random variables, the determination of values is not performed
directly. Instead, the value of the mathematical expectation, or expected value, is cal-
culated. The fatigue index for the Sines criterion is calculated, for random loadings,

according to:

E D] = = Vo] t+1aE pa®)] (2.92)

Considering zero hydrostatic pressure, the problem results in knowing the prop-

erty t 1 and estimating | [\ /J2a|, as in:
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E [Dsines] = M (293)

where:

I VAN ES VE (R} +E[RY] +E [R3) + E[RY] +E [R2] . (2.94)

The following steps are necessary to determine the axes R; of the prism in
the five-dimensional space for the case of random loading (LAMBERT; PAGNACCO;
KHALILJ, 2010):

a. D.(t) — one of the vector components D'(t), linearly associated to D(t) through
the equation D'(t) = PpD(t);

b. Pp — obtained through the eigenvectors of the covariance matrix V [D(t)];

c. X;(t) = Di(t) — E[D}] — a Gaussian random process with zero mean and spectral

moments A, ;(D5);
d. N(a,0,T) — the number of passages by the value aq in the [0, T] interval,
e. Ti(o) — the time of the first crossing at the level ap;

f. R = nax, X;(t) — the maximum value reached by X; in the [0, 7] interval.

It is possible to calculate the probability that the maximum value does not

exceed the level o in a time interval (0,7") using:

P[R; < ap] = P [Ti(ag) > T] = P[N(ap,0,T) = 0] . (2.95)

In Eq. 2.76, the expectation of the number of crossings results in:

with Ny, equal to the number of crossings through zero with positive slope.

According to Preumont (1985), the Gumbel distribution is the best fit for the

previous equation, and it is calculated according to:
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Pr,(a) = exp <—exp (“ _60‘())) . (2.97)

The Gumbel distribution assumes that previous states are not necessary for
predicting subsequent states as long as the current state is known, according to a Marko-
vian process. The mode p;, dispersion [(;, bandwidth parameters x, and k,, and the

irregularity factor function d; are calculated following:

i = 1/ 21n (I‘iuNgﬂ') s (298&)

B— (2.98D)

\/ 2 hl (HaN07i> ’

1.5(1 —e®%) §; < 0.5

Ky = , (2.98¢)
0.94 0; > 0.5

70  6; <05

Ko = , (2.98d)
4.05 6, >0.5

A2
=1 = i 2.
J; Yoo (2.98¢)

Using the properties of the Gumbel distribution, it is possible to formulate the

expectation and variance of R; as described in:

E 9] = Vo1 +78i) (2.99a)
ViR = do, = S (2.99b)

where v ~ 0.57721 is the Euler-Mascheroni constant.

The statistical characterization of \/Jo. = /PR3 + R} + R3 + R? + R is per-
formed based on the statistical properties of the semi-axes fR;, assuming that there is
no correlation between them. Estimating the square of the square root of the second

invariant, we have:

E[J.) = E[R]] + E [R3] + E [R3] + E [R]] + E [RF] , (2.100a)

V [J0] = V [R2] + V [RE] + V [R2] +V [R2] + V [R2] . (2.100b)
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Then, the lack of correlation between the random variables allows for the rela-

tionships to be performed:

E[®]] =E[R]" +V[R] (2.101a)
VIR =E [(%? -E [9%5})2] —E[®!] -E[R®] . (2.101b)
The only unknown in Eq. 2.101 is the term E [R}], which can be obtained from

statistical properties of random variables, corresponding to:

E [R!] = / R! APy, = 4E [R,]*V [R)] +2—52V [9%2»]2+48C3\7{—§E 97, V[R]Y?, (2.102)

with (3 = 1.20206 being the Apery constant.
From the assumption that ,/J2 ., being a random variable and a combination
of R, is also described by the Gumbel probability distribution, it is possible to establish

the relationship described in:

~ —? = 22 12 V6 _ __13/2
E [d;J =4E [ d2,a:| \% [\/ dQ,a:| + gV [ dz,a] + 48C3?E [\/ \jQ,a:| \Y |:\/\j2,a:|
(2.103)
The expectation and variance expressions are then rewritten as follows:
E[35.) = E2al” — V[320] (2.104a)

2
% [\/32@] = E[Joa] — E [\/324 . (2.104b)
By substituting Eq. 2.103 into Eq. 2.104, we obtain an equation whose only

unknown is the value E [\ /32@}, as shown in:

Bl + V2] ~ 48 [Vi2.] (el - B [Vaw] ) - 2 (Elbaal - B [V3a] 2>2

— 48§3§E [\/E] <E [J2..) — E [ 32,3}2)3/2 =0.
(2.105)

The estimation of the value of E [\ /J2.a| 1s performed by solving the previous

equation using the Newton-Raphson method, thus obtaining the second invariant of the
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deviatoric tensor inserted in a random process. The Sines coefficient is finally calculated

for fatigue damage expectation.

2.6 Multi-objective optimization

The existence of multiple objectives in a problem results in a set of optimal
solutions, known as Pareto-optimal solutions, instead of a single solution. In the absence
of additional information, it is not possible to determine the superiority of one Pareto-
optimal solution over another. This requires the user to seek as many Pareto-optimal
solutions as possible so that, based on prior problem information, they can define the best
outcome. Classical optimization methods, including multi-criteria decision-making meth-
ods, propose converting the multi-objective optimization problem into a single-objective
optimization problem, emphasizing one Pareto-optimal solution at a time. This method-
ology requires repeating the optimization process, hoping to obtain a different solution in
each simulation run, which has proven to be not very effective (ESCHENAUER; OSY-
CZKA, 1990; DEB et al., 2002).

A vector of objective functions F,(x) of size m, with a vector G.(x) of con-
straints with boundary conditions, dependent on the design variable vector & belonging

to the search space 2, form a multi-objective optimization problem as follows:

win B(e) = [fu(@) ful@) .. fole)]
st. Ge(a) <0 . (2.106)

x €

Among the algorithms available for multi-objective optimization problems, the
Non-dominated Sorting Genetic Algorithm (NSGA) proves to be a good option due to its
efficiency in finding the Pareto solution. Initially described by Srinivas and Deb (1994),
it assigns a cost to each solution based on its dominance. First, a population of solutions
is randomly generated and evaluated for the objective functions. The solutions are then

saved in a temporary population containing the non-dominated solutions in another set



57

with an assigned cost of 1. These solutions are then recombined using mutation methods,
and the process restarts for the second generation.

An evolution of this algorithm was developed by the same authors (DEB et al.,
2002). NSGA-II calculates the cost of a solution considering not only the solutions that
dominate it, but also the solutions it dominates. A crowding distance is also calculated for
each solution to implement elitism. To calculate this distance, first the larger and closer

values, as well as the smaller and closer values of each objective function, are calculated

as follows (SIMON, 2013):

foi(@) = max{foiy) 3 foily) < fai(2)} . (2.107)
o (@) =min{foi(y) 3 fu(y) > fu(@)} , (2.108)

where fu;(z) is the value of the i-th objective function of variable z, and the crowding

distance is calculated as follows:

d(z) = Z( )~ f) - (2.109)

=1

In each generation, the non-dominated curves form a scale according to their
rank (or cost). From the moment the rank 1 solutions reach a value desired by the

designer, the optimization process is terminated, as shown in Fig. 2.8.

2.6.1 Robust multi-objective optimization

Numerical optimization techniques can face obstacles due to several factors. For
example, objective functions may have discontinuities, design variables may have different
sensitivities, estimating initial values for these variables may be complicated, and model
results may contain noise. Furthermore, most real-world applications have uncertainties
associated with the problem, since some parameters are obtained by estimates or cannot
be calculated in advance (VANDERPLAATS, 1984; KOBIS, 2013).

Taking uncertainties into account in design variables adds complexity to the
optimization problem, and although the literal meaning of optimization differs from the
meaning of robustness (MARCZYK, 2000), this consideration is essential to ensure op-

timal and robust solutions, especially for more realistic practical applications. Further-
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Figure 2.8: Pareto curves (a) Population of solutions (DEB et al., 2002) (b) Dom-
ination of solutions by rank (VERMA; PANT; SNASEL, 2021).

more, it is important to mention that the need for high precision in manufacturing can
significantly increase the cost of building optimized systems, making them economically
unfeasible in many cases (BEYER; SENDHOFF, 2007; MOREIRA, 2015).

Among the techniques for robust optimization design, the vulnerability func-
tion methodology proves to be efficient in describing a set of sub-optimal solutions with
different degrees of sensitivity to variations in design variables. These functions simulta-
neously minimize the objective functions and the vulnerability of each of these functions.
As a measure of dispersion, the problem described in Eq. 2.106 now also considers the

vulnerability functions Vy,, of each objective f,;(x) (LIMA, 2007):

min F(@) = | fu(x) Vi,(x) fol@) V(@) .. fon(@) vfom(a:)]
s.t. Ge(x) <0 ., (2.110)
x € ()

with the vulnerability functions, also known as coefficient of variation, being defined by

the dispersion measure:
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O'f
vy, = e 2.111
d Hfo ( )

where oy, and py, correspond to the standard deviation and mean of the function f,,

respectively, within a design variable variation space for each iteration.

2.7 Definition of the probabilistic model for robust de-
sign

The probabilistic modeling of each parameter of the shunt electrical circuit,
using the Maximum Entropy Method, involves obtaining the probability density function
that best defines a given random variable considering the available information about
it (SOIZE, 2012). This method allows the selection of a distribution with maximum
uncertainty using a set of distributions that satisfy the constraints of a given random
variable. According to Shannon (1948), a random variable X with a distribution p(X)

has an entropy measure equal to:

S(p(X)) = / p(X)In (p(X)) dX . (2.112)

By using the method of Lagrange multipliers, it’s possible to construct a func-
tional for the entropy of the probability density function p(X). Maximizing this functional
yields the expression for the most probable probability density function of the random

variable:

p(X) =exp (—1 + i/\i)@) : (2.113)

where A; are the Lagrange multipliers obtained from the n + 1 constraint equations of the
statistical moments of the random variable X.

Considering uncertainties in the shunt circuit requires analyzing these probabil-
ities in each circuit element, with the resistor and inductor values considered as random
variables in the system. These variables have known intervals (R, L € ]0,+oc[), known
means (E[R] = R, E[L] = L), and finite dispersions (E[In(R)] = cg V |cr| < +o0
, E[ln(L)] = ¢ ¥V |er] < +00). Solving Equation 2.113 and applying the restrictions
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of the statistical moments yields the following probability functions for resistance and

inductance (ZAMBOLINI-VICENTE, 2000):

1

O ) L O S R

ok

1/1\2 1 [L\#* L
pu(L) L(ag> r(%) (L) eXp( 5%L) / (2.115)

b

where dr and 6y, correspond to the dispersion value of the resistive and inductive param-

eters, respectively, and I'(e) is the Gamma function defined by:

I'X) = /0+OO tXTexp (—t) dt . (2.116)

The power calculation and fatigue response functions of the model, used in
the optimization process, now depend on the random values of the impedance Z(w, ) of
the shunt circuit, where 6 indicates a random perturbation. In this context, the Latin
Hypercube Sampling (LHS) method will be employed for the dispersion levels to be in-
vestigated. Additionally, during the sample generation process, the probability density
functions obtained for each random parameter characterizing the different types of shunt

circuits considered in this work will be taken into account.

2.8 Metamodeling using artificial neural networks

The use of genetic algorithms to solve the Multi-objective Robust Optimiza-
tion Problem (MROP) in structural dynamics is computationally expensive for obtaining
solutions. The function call for each individual to define vulnerability at high dispersion
levels makes it impossible to obtain results in a feasible time. Therefore, it is necessary to
introduce methods to approximate functions in order to reduce these computational costs
(WYSOCKI et al., 2021). Two commonly used methods for reducing processing time are
metamodeling analyses using neural networks and model reduction in finite elements.

Regarding new methodologies for multidimensional estimates, neural networks
represent a promising technology due to their ability to be trained and used to inves-

tigate systems involving nonlinear dynamics (MOHAMMADI-AMIN; GHADIRI, 2013).
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Artificial Neural Networks (ANNs) are computational models composed of neurons, or
perceptrons, which have weighted connections between them, forming an input layer, one
or more hidden layers, and an output layer, as shown in Figure 2.9. Each neuron cor-
responds to a nonlinear activation processing of the adjacent layers. This characteristic
allows the use of ANNs as an approximation of complex functions (DADRAS ESLAM-
LOU; HUANG, 2022).

Input Signals  gynaptic Hidden layer

Weights
Output layer

X4 Input layer /4
X W Activation I

. Sum  Function . '
Wiz gﬂfj, Output ¥, %‘{ ‘ “v/

RO
BN
/A\\.A
. N\

Threshold Input
(Bias)
(a) Components of a neuron. (b) Neural network with a hidden layer.
Figure 2.9: Representative scheme of an Artificial Neural Network

(MOHAMMADI-AMIN; GHADIRI, 2013; DADRAS ESLAMLOU; HUANG,
2022).

For training and adjusting the weights of a neural network, the backpropaga-
tion method is used, where values of previously calculated solutions are used along with
optimization algorithms to make these adjustments. The goal of the optimizations is to
reduce the difference between the intended value Y and the calculated value Y (SAJEDI;
LIANG, 2019). Among the various measures of mean difference ¢,,, the minimum squared
error is widely used and is calculated by:

2

Y, - Y; (2.117)

1 n
em = MSE = ~ ‘
During an epoch, pre-calculated samples are divided into training and testing

sets. The training samples are used in the optimization backpropagation process of the

weights. After these samples pass through, the error is calculated using the testing sam-
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ples, which then defines the performance of that epoch. Various criteria can be used
to define the number of epochs, with the main ones being designer-defined and the early
stopping criterion, which ends training once a minimum average error is reached. Another
concern during training is overfitting, when the network loses its ability to generalize to
new data. Regularization techniques, data augmentation, and cross-validation can be em-
ployed to limit the model’s complexity and improve the overall performance of the neural

network.



Chapter 111

Numerical model verification

For verification of the implemented numerical model, according to the theory
mentioned, arbitrary data from a plate structure were used in two main cases: single-
layer and multilayer with the insertion of piezoelectric material. Within the single-layer
case, the use of two types of materials was compared: isotropic and orthotropic. In the
multilayer case, only isotropic and piezoelectric materials were used.

In this, arbitrary data from a plate structure were used for comparison between
modal analysis and the analysis of the Frequency Response Function (FRF) and the Power
Spectral Density (PSD). The comparisons for validation consider the implementation done
in this work, the commercial software ANSYS, and a code developed by the laboratory
considering the Classical Laminate Theory (CLT).

In the modal analysis, the following cases were compared:

1. Comparison between code, ANSYS and classical theory - Without piezoelectric layer

2. Comparison between the code and ANSYS - With piezoelectric layer
In the harmonic analysis, the following cases were considered:

1. Comparison between code and classical theory - No damping

2. Comparison between the code and classical theory - With damping
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3.1 Structure data

The structure chosen for validation consists of a plate with dimensions [, =
0.3 m and Iy, = 0.2 m and a thickness of 0.8 mm. In the multilayer analysis, the thickness
of the piezoelectric material layer is 0.3 mm. As a boundary condition, the two shorter
side edges were clamped. The chosen mesh has dimensions of 10x 10, that is, nine divisions
in each direction, totaling 100 elements. Figure 3.1 shows the geometric characteristics of

the structure and the boundary conditions.

1 Structure
Ml Fixed support

h T I

ly

Figure 3.1: Proposed structure for analyzing model validation.

For the harmonic analysis, a frequency band of [0, 300] Hz with 1500 points was
considered, and Rayleigh damping parameters equal to & = 0 and 8 =5 x 107° (ROSA;
LIMA, 2015). These parameters multiply the mass and stiffness matrices, respectively, to

obtain the proportional damping matrix.

3.1.1 Material data

According to Reddy (1997), the relationship between strain and stress in the
FSDT theory for isotropic materials is given by Eq. 3.1, or alternatively in the matrix
form described by:

e=So, (3.1)
4 3\ B 7 A
Exx % -% 0 0 0 Oxx
Eyy —5 % 0 0 0 Oyy
gyz = 0 0 é 0 0 Oy (32)
Exz 0 0 0 é 0 Oz
[ Exy I 0 0 0 O é_ | Oy |
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By calculating the inverse of the matrix S, it is possible to obtain the material
property matrix C', which depends only on the elastic moduli and the Poisson’s ratio.

Thus, it results in:

- UQE_l UQEi]l 0 0 0
s +- 0 0 0
St=c=| o 0 G 0 0 (3.3)
0 0 0 G 0
0 0 0 0 G

The shear modulus G is calculated as a function of £ and v, according to:

E
G:2u+y)' (3:4)

The shear correction coefficient used in the FSDT model follows:

E= , (3.5)
0 kGh

where k£ = 5/6 and h corresponds to the layer thickness. Thus, for Aluminum, chosen
material for the structure, and PZT G1195 for the piezoelectric material, the mechanical

characteristics are described in Tab. 3.1.

Property Aluminum PZT G1195
Elastic Modulus - E (M Pa) 70 63
Poisson’s ratio - v 0.33 0.3
Density - p (kg/m?) 2700 7700

Table 3.1: Physical properties of materials.

In the ANSYS software, the SHELL281 element type was used, which considers
the FSDT theory of plates with 8 nodes per element and 5 degrees of freedom per node,

totaling 40 degrees of freedom per element.
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3.1.2 Mesh Convergence

A mesh convergence analysis was conducted with the first three natural frequen-
cies, starting from a division of elements 3 x 3 and increasing one element in each direction
per iteration, as shown in Fig. 3.2. It can be observed that, from the 10 x 10 mesh, the
values stabilize, with no frequency changes in subsequent iterations. Considering that the
processing time follows an exponential regression of value t(n) = 3 x 1075n%912 with n
being the number of mesh divisions, it is not computationally feasible to choose a very
refined mesh for this type of problem. It was decided to use a mesh with 12 x 12 elements

in the present work.

Mesh Convergence

300+ —— Mode 1
—— Mode 2
2501 —— Mode 3
—— Mode 4

200

Natural Frequency (Hz)
&
(==}
T

—_

o

(e]
T

(S8
o
T

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Elements

Figure 3.2: Results of the first four Natural Frequencies according to the number

of divisions.

3.1.3 Modal Analysis

For the comparison of modal analysis, only the first 5 vibration modes of the
structure were used. The results of the two analyses are described in Table 3.2. The
piezoelectric material layer does not have electromechanical coupling at this stage of
the verification of the code developed in the Python programming language. Only the
mechanical implementation of the two materials was validated in these results.

For better visualization of the results, the same results are presented graphically

in Figure 3.3. It can be observed that the values, although not exact, have satisfactory
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Without PZT layer

With PZT layer

Mode Code ANSYS Classic Code ANSYS
1 49.69 48.99  48.61 54.31 52.95
2 68.29 67.35  67.09 74.64 73.42
3 140.72  135.50 134.41 143.70  146.26
4 158.69  162.64 154.17 153.75  169.84
5 168.07  247.13 161.68 183.44  176.69

Table 3.2: Natural frequencies (Hz) for the first 5 modes of vibration.

proximity, allowing verification of the mechanical part of the model implementation. The

differences observed between the results, especially between the code proposed in this

work and ANSYS, are due to the different theories of multilayer plates used by the latter.
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2507 mm Cédigo
ANSYS
B Classica

200 -

=
L 150

Freqéncia

=
o
o

50

1 2 3 4

Modo de vibrar

(a)

Figure 3.3: Natural frequencies (a) Without PZT layer (b) With PZT layer.
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The vibration modes and modal displacements are illustrated in Fig. 3.4, ac-

cording to the results from the ANSYS software.

3.1.4 Harmonic response analysis

To obtain the Frequency Response Functions (FRFs) for comparison purposes,

a unit force was applied at the central node of the plate in the direction of the z axis, and
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Figure 3.4: Modal displacements by vibration mode.

the responses were obtained at the same point. The results, both for the case without

damping and for the case with damping, are presented in Fig. 3.5.
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Figure 3.5: FRFs (a) Undamped system (b) Damped system



69

Through the analysis of the amplitudes of the FRFs for both investigated cases,
a good correlation between the models can be noticed. However, there is a degradation
in the correlation between resonances as the frequency increases. This can be explained
by the difference in the theories employed by both models. In the implemented theory
(FSDT), there is a correction for transverse shear, which achieves a good approximation
as the thickness increases. On the other hand, in the classical theory (CLT), the effects

of transverse shear deformations and transverse normal deformation are neglected.

3.2 Analysis of electromechanical coupling in the fre-
quency domain

According to Moheimani and Fleming (2006), the resonant shunt circuit behaves
analogously to a Dynamic Vibration Absorber, in which a relatively small second-order
system is attached to the dynamics of the global system. This behavior is of interest for
fatigue analysis in structures. The electromechanical data of the piezoelectric patch are

described in the following table:

Property PZT G1195

X11, X225 X33 - (F/m)  1.5930e-08

€15, €24 - (C/?TLQ) OOO
€31 - (C/m2) -18.30
€32, €33 - (C’/m2) -9.01

Table 3.3: Electrical properties of piezoelectric patch.

3.2.1 Modal analysis with electromechanical coupling

Table 3.4 shows the results obtained from the electromechanical system for two
scenarios: open circuit and closed circuit.

The difference in the values found corresponds to what is expected for this type
of analysis. According to Erturk (2011), with the short circuit, there is no admittance

between the poles of the piezoelectric ceramic (Y (w) — 0), indicating that the structure
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Mode Open Circuit Short Circuit
1 54.3171 54.3088
2 74.6393 74.6393
3 144.8559 143.7032
4 153.7479 153.7479
5 183.4365 183.4365

Table 3.4: Natural frequencies (Hz) for electromechanical coupling.

will have only the mechanical properties acting on the stiffness of the system. For the
open circuit case, as there is no connection between the poles, the admittance is considered

infinite (Y (w) — o0), increasing the overall stiffness of the system and consequently the

natural frequencies.

3.2.2 Frequency response with shunt circuit

Using different configurations of the resonant shunt circuit, it is possible to
obtain variations in the frequency response function graphs, according to Figs. 3.6 and
3.7. For comparative purposes and to understand the influence of the variation of values
on the results, two cases were considered: first with constant inductance and variation in

resistance, then varying the inductance and keeping the resistance constant.

FRF in the middle of the structure

No coupling
R=1

R=10
R=100

10! -
R=1000

R=10000
R=100000

10° 4

FRF |m/N]|

10—1 4

54.26 54.28 54.30 54.32 54.34

Frequency [Hz|

Figure 3.6: Variation in shunt circuit resistance - FRF First mode.
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Figure 3.7: Variation of shunt circuit inductance - FRF First mode.

In the first case, it is noticeable that there is a change in the resonance peak
value, indicating an attenuation in the displacement of the structure at the studied point.
It is also noticeable that there is a limit value of resistance that corresponds to the highest
possible attenuation for the structural conditions. In the second case, it is evident that
there is no attenuation in the peak value, but there is a translation of the peak, indicating

a variation in the structure’s frequency.

3.2.3 Power spectral density with shunt circuit

The voltage responses of the previous shunt circuit configurations were also
obtained, as described in the literature review. The spectral loading considered was white
noise with intensity ¢; = 85 x 10 Pa?/Hz, for the entire frequency band analyzed. The
system response tensor has 3 principal values for stress analysis in the plane stress state:
axial stress in the x and y directions, and shear stress zy. By considering constant
impedance and varying resistance values, it is possible to compare the results for each
stress according to Figs. 3.8, 3.9, and 3.10.

A curious fact in this application is that since the chosen loading has constant
excitation across frequency, the attenuation generated by the shunt circuit in the PSD

has the same characteristics as the attenuation in the FRF.
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3.3 Neural network training

In order to reduce the calculation time of the objective functions, a neural
network metamodel was defined where the design variables correspond to the inputs, and
the expected objectives correspond to the outputs. Thus, among all the optimization
cases studied in this work, the possible design variables are the elements of the shunt
circuit (resistance R and inductance L) and the elements of the FEM model that have
a piezoelectric layer, i.e., each element of the structure corresponds to a binary input
indicating the presence or absence of this element. As for the two output values, the
fatigue indicator E [Dgpes] and the collected power indicator T were considered. Based on
analyses performed with the problem, the chosen neural network architecture corresponds

to:
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Figure 3.11: The architecture of the neural network used, with N equal to the

number of elements, and C equal to the number of circuit parameters.

It can be noticed that the hidden layers have Rectified Linear Unit (ReLU) ac-
tivation function. In addition, a dropout rate, which consists of not utilizing a percentage
of connections between neurons during training, was inserted in each layer in order to

reduce overfitting effects. Finally, an L2 regularizer, also known as Ridge regression, was
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added to the hidden layers to add a quadratic magnitude of the coefficients as a penalty
term to the loss function.

For the generation of the data used in training the network, a search space was
defined for the design variables of R = [10',10°] and L = [107!,10?], following other works
in the same area and commercially available values. For the input elements, the density
d; € {0, 1} corresponds to the boolean value of the presence of a PZT layer in element i.
A parametric routine was created to generate the data, using pseudo-random values from
a normal distribution within the space of each variable.

Finally, the chosen weight optimization algorithm was Nadam, which corre-
sponds to an adaptation of the Adam algorithm (Adaptive Moment Estimation) with
incorporated Nesterov momentum concepts. A separation rate of 80% and 20% in the
training and testing data over 50 epochs, respectively. Additionally, an early stopping cri-
terion was defined, which monitors the loss function value of the testing data, interrupting

the routine if these values indicate overfitting.
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Figure 3.12: History of resistive circuit training.

After generating a dataset of 166 thousand pre-calculated results, the training
history of the neural network for the parallel resistive and resonant circuit in Figs. 3.12
and 3.13 respectively, resulted in an MSE of 0.02 and 0.04, respectively. Using 20% of
the dataset for model verification, results taken randomly and not used in the training of

the network, it is possible to obtain the regression result of the real values and predicted
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Figure 3.13: Resonant circuit training history.

values. Figures 3.14 and 3.15 correspond to the results of both objectives for the resistive

and resonant circuit, respectively.
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Figure 3.14: Regression result of the resistive circuit model.

By training the neural network, the model can be directly used for evaluating
the objective functions. Another major advantage of using the metamodel is the use
of tensors to represent input and output data, which make predictions with almost no

computational overhead. This allows for the insertion of robustness calculation based on
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Figure 3.15: Resonant circuit model regression result.

the mean and standard deviation, without significantly increasing processing time.



Chapter 1V

Shunt circuit optimization

In this chapter, the optimization process will focus on optimizing the elements
of the shunt circuit, and the influence that the optimization results have on fatigue levels

and the amount of harvested energy.

4.1 Monoaxial fatigue life gain

For the monoaxial fatigue life analysis, an analytical model was considered for
the vibrations of a cantilever beam under transversal base excitation. This model is widely
used in energy harvesting analyses, where the goal is to extract vibration from the system
in the form of electrical energy through a coupled electrical circuit. In this regard, a
bimorph beam (metallic substructure covered with layers of piezoceramic), as shown in
Fig. 4.1, harmonically excited at the base and with a mass at the tip (M;), was modeled
(ERTURK, 2011).

il.‘::l:'j r

h(t)

| 4
i f £
=

x=0 x=L

(] Piezoceramic [ Substructure — Electrodes * Poling direction

Figure 4.1: Schematic diagram of vibration control with shunt circuit.
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The Fig. 4.1 depicts the oscillatory base in translation g(¢) and rotation (h(t)).
However, all analyses conducted neglect the excitation by rotation. Additionally, some
assumptions of the model are: Euler-Bernoulli beam model with piezoelectric coupling;
coupled electromechanical equations for beams oscillating transversely; linear elastic de-
formations; internal and external damping mechanisms; perfect bonding between the
substructure and the piezoceramics; continuous and ideal piezoelectric electrode with
negligible thickness; polarization in the direction 3 of the piezoceramics; and the induced
electric field is uniform along the length of the beam.

Given the assumed hypotheses and the constitutive relations of piezoelectricity,

it is possible to write the equation governing the forced vibration of the system described

in(ERTURK, 2011):

OMw(w,t) P wer(z, 1) Oyl (, 1)
[ Y Y )
ort S T owor T ot
OPwrer(z, 1) dé(z) dé(x — L)

5 Yu(t) % 4 = —[m+ M6(x — L)]

Y

0wy (x, 1) (4.1)

ot? ’

where Y1 is the flexural rigidity under short-circuit condition, wye(x,t) is the transverse
displacement of the beam (neutral line) relative to the base at position = and time ¢, ¢, is
the viscous damping coefficient of the air, ¢, is the strain-rate damping coefficient (appears
as an effective term ¢,/ for the composite structure), m is the mass per unit length of the
beam, M, is the mass at the tip, d(x) is the Dirac delta function, 9 is the inverse coupling
coefficient (depends on whether the circuit is connected in series or parallel), and v(t) is
the voltage across the electrodes of each piezoceramic layer.

The displacement of the beam can be represented as a series of eigenfunctions,
based on proportional damping. Solving for the relative displacement in the frequency

domain, the following representation of the relative displacement is obtained:

i jwb, F,
0 . w? — w? + j2¢ww
wrel(xat) - Z F. -0, = 00
r=1 . e
Y(w) + jwCs* + le%

¢ ()
jwh? w? — w? + j2¢w,w

—w? + 2 ww
(4.2)

where ng is the equivalent capacitance, Y (w) is the admittance of the shunt circuit. For

each mode 7, there is the external loading applied to the structure F,, the electromechan-
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ical coupling term 6., the natural frequency w,, the eigenfunction ¢,, and the damping
factor (.

Bauchau (2009) describes that, in the case of cross-sections symmetric with
respect to a plane perpendicular to the neutral axis, the stress in the beam is calculated

according to:

d*w(x)
da?

oxx() = =YYy (4.3)

where ¢ is the height of the cross-section of maximum stress (maximum stress is |g| =
+h/2) and Y; is the elastic modulus of the material.

With this, applying the known values and using the admittance as Y = 1/R, it
is possible to obtain the Frequency Response Function (FRF) of the stress at the beam
tip. This function contains information on the influence of the shunt circuit on the total
displacement of the structure. As it is already known, the displacement at the tip of
a cantilever beam is directly proportional to the deformation and stress present in the
structure. Finding the minimum value of the peak of a specific vibration mode in the
displacement FRF provides a resistance value in the shunt circuit that corresponds to
minimum vibration in the structure. Therefore, this resistance results in the minimum
stress at the cross-section near the base, resulting in an optimal model with less stress
accumulation in the time domain. Thus, an optimization problem can be formulated using
the peak of the stress FRF as the objective function to be minimized, and the resistance
R as the design variable.

The characteristics defined for the structure are described in Table 4.1, where
the structure is an aluminum 2024-T3 beam and the piezoelectric layer is of type PZT-4
(LIPSKI, 2016; EFUNDA, 2021).

Using eight vibration modes for superposition and solving the equation of mo-
tion, a vertical displacement of Wy = 25.4 mm, an excitation frequency of w = 1.5 krad/s,
and a test window of ¢ = 200 s were defined, according to values available for experimental
testing. Conducting an analysis in open and closed circuits, we observe in Fig. 4.2 the
difference in response in an open and closed circuit, where a decrease in displacement
amplitude can be observed.

Following this, optimization of the displacement FRF was performed using an
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Structure PZT
Length (L) (mm) 100 100
Width (b) (mm) 30 30
Thickness (hg, hy) (mm) 1 0.3 (cada)
Thickness Aluminum 2024-T3  PZT-4
Density (ps, pp) (kg/m?2) 2780 7500
Elastic modulus (Y;, ¢f)) (GPa) 73.1 81.3
Piezoelectric Constant (é31) (C/m?2) — —10
Permittivity constant (%) (nF/m) — 12.74
Fatigue constant (Ct) 3.15e14 —
Fatigue exponent (my) 4.10 —

Table 4.1: Geometric and material values.
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Figure 4.2: History of stress at the base of the beam (most stressed region).

NSGAII genetic algorithm. Setting up the optimization problem with 10,000 function
evaluations, the algorithm calculates the optimal resistance as R = 39633.92 Q2. Figure 4.3

contains the displacement FRF' at the tip of the structure over a wide range of resistances,
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including the previously calculated optimal resistance. The curve of the optimal peak is
clearly distinguished compared to the other values.

FRF - Tip displacement
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Figure 4.3: FRF of the displacement at the beam tip for various cases and the

optimal case.

Using the same resistance values mentioned earlier, a fatigue analysis was per-
formed with the rainflow cycle counting method applied to the stress history. The most
stressed part of the beam is exactly at the fixed support, and the results of the analysis
are shown in Fig. 4.4. The optimal resistance value consists of the highest fatigue life
expectancy equal to Ny = 212.28 h, which is inversely proportional to damage and has
the lowest damage D = 2.61714 x 1074,

The initial analysis with an analytical beam allows us to observe the positive
and direct influence on the fatigue life of the structure. Due to the simplicity of the
studied model, the optimization process is fast and can converge to optimal results in a

short time, enabling its application in structural monitoring projects.
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Lifetime for each shunt resistance

200 4

Resistance (£2) Damage Life (s) | Life (h)
L.00e+4-00 4.83331e-04 | 41,3795 | 114.94
1.00e+01 4.553038e-04 | 43,9523 | 122.09
1.00e+02 4.73684e-04 | 42,2223 | 117.28
1.00e+403 5.03390e-04 | 39,7306 | 110.36
1.00e+04 3.578T8e-04 | 55,8849 | 155.24
3.96e4-04 2.61714e04 | 76,4194 | 212.28
1.00e+05 2.72172e-04 | 73,4830 | 204.12
1.00e+06 2.80886e-04 | 68,0927 | 191.63
1.00e+-07 2.581240e-04 | 71,1135 | 197.54
1.00e+08 2.81501e-04 | 710478 | 197.35
L.00e+09 2.865391e-04 | 69,7858 | 193.85

175 4

L5 4

Resistance (22

Liel 1Liel 1.0e2 1.0ed 1.dled iGL‘m)4 Lies Liefi 1.0eT 108 1.0e9

Figure 4.4: Bar graph of fatigue life in hours and complete results.

4.2 Multiaxial fatigue life gain

To analyze the effects of the shunt circuit on the structure with the optimal
values resulting from the optimization process, an aluminum plate structure with a piezo-
electric layer was selected as shown in Fig. 4.5. The finite element model consists of a
mesh of 12 x 12 elements with a free-clamped boundary condition and an external loading
with white noise of 10° Pa®/Hz at the free end. This loading is used at all frequency
points in the fatigue calculation. The material properties follow the data in Tab. 4.1
with an equivalent damping Ceq = 5 X 107° K. The geometric data of the structure are
L, =140 mm, L, = 110 mm, A, = 0.6 mm, and h, = 0.1 mm.

The presented structure will be used in the sequential optimizations. Initially,
the optimization will focus on the shunt circuit elements, considering the single objective of
fatigue life, and subsequently, on the amount of collected energy. For each optimization,
robustness influence was considered. This initial analysis allows quantifying the local
influence of the circuit for each objective, as well as identifying the influence of robustness
on the objective functions. The optimization problem takes the following form, where
VE[D.neo] 18 the vulnerability function of the Sines fatigue estimate, R € [10',10°] and

L € [1072,10]:
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N h, I,

! - | HH

Figure 4.5: Schematic of the board structure.

T
I1I21’IIIII Fo = |E [Dsines] V]E[Dsines}]

s.t. Rmin S R S Rmax ' (44>

Lmin S L S Lmax

After 200 generations with a population of 100 individuals, and using a spread
of 5% with 1000 trials, the following results are obtained for the resistive circuit with
the population of non-dominated outcomes, disregarding the inductance portion in the
optimization problem:

The curve exhibits a behavior similar to linear, indicating that the fatigue index
varies linearly with the resistance variation. This characteristic can be justified by the
influence of the resistive shunt circuit on the Frequency Response Functions, directly
affecting the fatigue damage of the structure. In the resistive circuit curve, it is possible
to clearly visualize the result with higher damage and lower variation (R = 12.00 Q),
lower damage and higher variation (R = 21.31 §2), and compromise between the two
values (R = 16.65 Q).

In the resonant circuit, the non-dominated results are shown in Fig. 4.7.

The fatigue values in the resonant system are similar to those in the resistive

circuit, also maintaining the linearity of the curve. However, the level of variability
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appears to be lower than in the resistive circuit, resulting in a more robust system. It
is possible to select the three results in the same way, with higher damage and lower
variation (R = 7.77 k2, L = 9.99 H), lower damage and higher variation (R = 81.51 k,
L =9.99 H), and compromise between the two values (R = 80.18 k2, L = 9.99 H). It
is noticeable that, in this analysis, the inductance values tend to approach the maximum

limits of the optimization problem.

4.3 Enhanced harvested energy

In the energy harvesting analysis, the optimization problem takes the following

general form, with the same limiting values for the variables:

min FY = [_T VT]T

R L
St. Ruw < R < Ruax ° (4.5)

Lmin S L S Lmax

The inversion of sign in the power values was used, as the analysis’s interest is
to obtain maximum power results. The same parameters were used for energy harvesting
analysis. For the resistive circuit, without considering the inductance portion in the
optimization, the following Pareto curve is obtained:

In the case of energy, besides the mirrored curvature (maximization problem),
the curve does not exhibit a linear characteristic due to the inclusion of complex terms in
the power calculation. The variability values have a wide range compared to the results
of the resonant circuit. Considering the three points of interest, we have the following: for
minimum power and minimum variability (R = 250.54 €2), maximum power and maximum
variability (R = 230.39 2), and a compromise between the results (R = 238.76 ().

In the resonant circuit there is the following Pareto curve:

It’s possible to visualize the same curve shape, but with less significant results
and variability within a smaller range. Nevertheless, the results do not surpass those of the

resistive circuit. The points of interest are for minimum power and minimum variability
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(R =1397.24 Q, L = 5.06 H), maximum power and maximum variability (R = 410.04 €,
L =4.29 H), and a compromise between the results (R = 407.09 2, L = 4.67 H).

4.4 Compromise between harvested power and dynamic
fatigue

From the latest examples, it’s possible to conclude that the values of the shunt
circuit parameters have a direct influence on vibration control and fatigue gain, as well
as in the case of vibration energy harvesting. Despite being counterintuitive, the idea of
optimizing a shunt circuit to meet both needs is intriguing. To verify this possibility, a
manual sweep of resistance values was performed on a plate structure, resulting in the

normalized values shown in Fig. 4.10.

Objective functions comparison
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Figure 4.10: Analysis of normalized fatigue and energy collection values.

It’s noticeable that as we increase the resistance values, both curves reach peak
values, eventually returning to a baseline value. Observing the maximum and minimum
values, there’s a range of resistance between maximum energy and the minimum fatigue
value. This range indicates the possibility of defining a multi-objective compromise with

non-dominated values in a Pareto curve, allowing the designer to choose the best result
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that suits their application.
The robust optimization problem presented earlier is related, incorporating the
collection power and damage expectancy as objective functions, along with their respective

variabilities, as shown in:

.
. R _
min F' = |-T Vr E[Dyne V]E[Dsmesﬂ

S.t. Rpin SR < Ry . (46)

Lmin S L S Lmax

The same parameters were used to solve the optimization problem in the resis-
tive circuit. Due to the additional dimensions introduced in the problem, an analysis of
all objectives together becomes impractical. Therefore, initially, the focus of interest is on
the two main objectives, as shown in Fig. 4.11. A regularity in the curve is observed, with
a considerable range of results and the possibility of choosing the most suitable result for
the application. Consequently, for the maximum power result, R = 250.13 € is obtained,
for minimum fatigue R = 2963.77 (), and for the compromise between the two results
R =1107.79 Q.

The vulnerability values of each objective function can be compared with their
respective objective functions, as shown in Fig. 4.12. Due to the complexity introduced
in the problem, the variability curves do not exhibit a regular Pareto-like shape as in
the other results. Additionally, the graphs show that the maximum, minimum, and
compromise values are all the same result point, indicating that, in terms of variability,
there is only one optimal solution compared to its specific function. Nevertheless, as in
the previous results, the variability values are on the scale of 1 x 1072, highlighting the
inherent robustness of the problem.

The same optimization problem is computed for the parallel resonant circuit.
The results are presented in Fig. 4.13, showing a relatively linear curve, enabling the se-
lection of results for maximum power (R = 408.09 2, L = 4.33 H), minimum fatigue dam-
age (R =8153.96 Q, L = 9.99 H), and compromise between the results (R = 1132.16 (2,

L =9.12 H). An interesting characteristic to discuss is the presence of a cluster of solu-
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Figure 4.12: Non-dominated optimal solutions in robust power and fatigue analysis

with resistive circuit for vulnerability.

tions at the beginning of the Pareto curve. Initially, they are clearly not dominated by the

others. However, in a multi-objective analysis of higher dimensions than three, selecting

non-dominated points is not trivial.

Similarly, the vulnerability analyses for each objective function show irregular-
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Figure 4.13: Non-dominated optimal solutions in robust power and fatigue analysis

with resonant circuit.

ities in the curves, as seen in Fig. 4.14. In the power analysis, the points of maximum

and minimum are close, whereas in the damage graph, there is still a possibility of selec-

tion between minimum damage and minimum variability. However, the low vulnerability

values limit the choice of solutions based solely on robustness, resulting in an analysis

focused on the main objectives.
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Chapter V
Topology optimization

In this chapter, the topological influence of the piezoelectric layer will be incor-
porated into the optimization problem, analyzing the advantages of using PZT elements

at strategic points.

5.1 Multi-objective parametric optimization

A cantilever beam structure was chosen to assess the compromise between the
two objectives along with the inclusion of topology in the optimization problem. As shown
in Fig. 5.1, the piezoelectric patch was inserted at the base of the structure, connected
to the shunt circuit with impedance Z(w), modeled by the FSDT plate theory. Both a

resistive and a parallel resonant circuit were analyzed and compared.

% :@ i /Eéi

Figure 5.1: Schematic model of the beam structure and the shunt circuit.

Combining the amount of harvested energy with the fatigue damage indicator,
and incorporating the circuit parameters along with geometric parameters of the patch,

we have the multi-objective optimization problem described in:
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T
min F, = |:_T E [Dsines]
R,L 5,0,
s.t. Rmin S R S Rmax
Lmin S L S LmaX

6min < 6t7 51 S 5max

where the geometric parameters d; and d; correspond to the percentage of thickness and
length of the piezoelectric layer relative to the base structure.

The proposed simulation concerns a beam with a length of 750 mm, width
of 60 mm, and thickness of 5 mm, made of aluminum with a modulus of elasticity £ =
70 GPa, Poisson’s ratio v = .33, density p = 2700 kg/m?, tensile strength R,, = 343 MPa,
and shear stress 71 = 92 MPa. The limits of the design variables are [0, 1] kS for resistance
R, [0,10] H for inductance L, and [10%, 40%] for the ratios d; and §;. The optimal results
located on the Pareto frontier are shown in Fig. 5.2. This figure illustrates the results
for both resistive and resonant cases. Points a and b represent the best compromise
between harvested power and damage. The corresponding optimal design variables are

summarized in Table 5.1.

Solution R L Ot 0 fi fa
a 1000 Q2 — 0.35 0.30 12mW - g_1 0.73
b 6229 10H 0.37 030 5mW-.g= ! 0.73

Table 5.1: Optimal non-dominated parameters (a: resistive case, b: resonant case).

For this specific modeled structure, the positions of the boundaries show that
the resistive circuit presents the best compromise between the objectives. For the same
level of damage, it produces a higher harvested power. One possible explanation for
this behavior could be the main characteristic of the resonant circuit, which attenuates
vibrations by introducing an electrical resonance and acting as a mechanical absorber, in

contrast to the resistive circuit.
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Optimisation results
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Figure 5.2: Optimal design variables (a: resistive case, b: resonant case).

5.2 Modal Strain Energy

As observed in previous studies on energy harvesting, the incorporation of
patches is determined by the manufacturing process of the piezoelectric ceramic, which
is the main factor in choosing the location of the PZT layer. Consequently, an intelli-
gent approach to patch integration involves strategically positioning them in regions that

exhibit high levels of modal strain energy, according to:

E, =0/K0,, (5.2)

where ©; is the modal displacement of the i-th mode (ZHAO et al., 2020). Considering
the plate structure, the modal strain energy is calculated for each mode. The criterion
for piezoelectric placement follows the percentage of strain energy, where the placement
is made in the region covering 60% of the total modal strain energy, resulting in the
configuration of a single patch covering the elements near the support region for both
structures. The result of the piezoelectric layer is depicted in Fig. 5.3:

The same optimization problem as in Eq. 4.6 was solved, but with a reduced
amount of piezoelectric layer. Following the same population and generation parameters,

the results for the resistive circuit are shown in Fig. 5.4, with the points of maximum power
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Energia de deformacao Camada PZT

Figure 5.3: Modal strain energy of the first mode and the distribution of the

piezoelectric layer.

(R = 1843.48 ), minimum fatigue (R = 3289.59 ), and the compromise between the two
objectives (R = 4070.17 ). Despite obtaining a regular curve, there is a concentration
of results in certain regions, indicating that a smaller amount of piezoelectric layer results

in a more significant influence of circuit parameters on the linearity of the results.
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Figure 5.4: Non-dominated optimal solutions in robust power and fatigue analysis

with resistive circuit in partial treatment.

In the resonant circuit, however, the curve of results for the main objectives has
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an irregular shape, with a concentration of results at maximum power and a dispersion
of the remaining results. However, the selection of the desired results can still be made,
with maximum power (R = 1501.67 2, L = 9.99 H), minimum fatigue (R = 2189.66 (2,
L =0.25 H), and compromise between the two objectives (R = 71.76 €, L = 8.44 H).
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Figure 5.5: Non-dominated optimal solutions in robust power and fatigue analysis

with resonant circuit in partial treatment.

Indeed, both in the resistive and resonant circuits, comparing the results with
the previous analysis of the complete PZT layer, it is noticeable that there are lower power
values and higher fatigue damage. A superficial interpretation suggests that there was no
gain in applying the partial treatment, as both objectives are inferior to those previously
presented. However, it is essential to consider that the amount of piezoelectric material
in the structure is a crucial factor for certain applications due to the increase in mass,
manufacturing limitations, and practical constraints. Therefore, achieving results with
the partial treatment close to those of the complete layer, even with approximately 21%

of the material used, represents a significant design gain.

5.3 Location of piezoelectric patches

A second approach is carried out, now considering the placement of piezoelectric

patches on the structure. The number of rectangular patches is defined parametrically
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before the optimization, and the design variables added to the optimization problem follow

the definition in Fig. 5.6:
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Figure 5.6: Patch distribution methodology.

The new constraints added to the optimization problem describe the distance
between the patches (dr and dy) and the length of the patches in each direction (pz and
py). These variables correspond to the number of elements in the finite element model,
thus p,d € Z. The subscript in d;; and p;; corresponds to the location in the i-th row in
the primary direction and in the j-th row in the secondary direction. In the general case,

the additional constraints are:

;

0 <dwzij < dTmax ied{l,...,n}; ge{l,...,ny}
0 < dyij < dymax ie{l,...,ny}; 7€{l,...,ny}
1 < prjj < pTimax ie{l,...,ne}; 7€{l,...,ny}

1 < pyij < PYmax ie{l,...,ny}; 7€{1,...,ng}

\
with ny as the number of patches in the z and y directions, respectively. The maximum

, (5.3)

number of each parameter is carefully calculated based on the chosen number of patches
and a maximum coverage percentage of the piezoelectric layer. This methodology can
also be applied to a beam structure, where a one-dimensional version is applied and the
constraints in the y direction are not considered. The complete optimization problem for

the location of the patches is represented by:
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N
R,L,d:lg,ldig?,pw,py FOR - [_T Vr  E[Dgines] VE[Dyined]
S.t. Rmin < R < Rpax
Linin < L < Lijax
0 < da < demay : (5.4)

0 < dy < dymax
1 < px < prmax

1 < pY < PYmax

The insertion of geometric parameters of the piezoelectric layer, along with the
robust analysis of the electromechanical system, results in a problem with a higher degree
of complexity in calculating optimal solutions. This can be observed in the results of Fig.
5.7 for the resistive circuit. The Pareto curve is not as well-defined as previously, with
the presence of several dispersed points throughout the graph and some with the same
variable results. It is also evident that the primary benefit of the analysis was the increase
in energy, but at the cost of a high level of fatigue damage. In the points of interest, we
have maximum power (R = 8923.11 ), minimum fatigue index (R = 75307.59 §2), and
the compromise between the two results (R = 70250.50 Q).

Similarly, the results from Fig. 5.8 for the resonant circuit show a gain in
the collected energy, but with a smaller increase in structural fatigue damage. In this
optimization problem, the resonant circuit proves to be more advantageous for the desired
objectives. The selected points of interest are maximum power (R = 3624.72 Q, L =
9.87 H), minimum fatigue damage (R = 32011.89 Q, L = 5.32 H), and the compromise
between objectives (R = 35.84 Q, L = 8.72 H).

With the selected points, it is possible to obtain the distribution of the PZT
layer along the structure for each of the points, as shown in Fig. 5.9 for the resistive circuit
and Fig. 5.10 for the resonant circuit. It is observed that the concentration of patches
near the base results in greater energy harvesting, while patches in the central regions

closer to the free edge result in less fatigue damage. Consequently, the compromise result
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Figure 5.7: Non-dominated optimal solutions in robust power and fatigue analysis

with resistive circuit in patch distribution.
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Figure 5.8: Non-dominated optimal solutions in power and fatigue analysis robust

with resonant circuit in patch distribution.

exhibits a transitional characteristic between the two extreme outcomes.
The quantity of patches, defined parametrically before solving the optimization
problem, has a significant influence on the results. Additionally, this parameter requires a

sufficiently large number of elements in both directions to obtain coherent results. Another



100

[ IStruct

WmprzT

(a) Maximum power (b) Compromise (¢) Minimum damage

Figure 5.9: Patch placement optimization with resistive circuit.
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Figure 5.10: Patch placement optimization with resonant circuit.

limiting factor in this methodology is that the reference coordinates for the patch locations

are always one of the structure’s bases, resulting in configurations without symmetry axes.

5.4 Piezoelectric Layer Density

In topology optimization problems, especially in static problems, the use of the
finite element method has the advantage of allowing the mechanical influence of each
element to be weighted in the overall calculation of responses. However, at the same
time, the number of finite elements in the mesh limits the detail of the results, requiring
a preliminary analysis of the applications of the final design.

In the electromechanical problem, the idea of topological optimization is similar
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to static topological analyses, but with a focus on the influence of the PZT layer. This
methodology is used to define a nonlinear distribution of the piezoelectric layer throughout
the structure. For this, the influence of the piezoelectric material of each element is
considered by the binary presence or absence of the layer (p € Zy) and its contribution
to the global mechanical and electrical matrices for the total number of elements e in the

structure:

M = ey )

pzt

KIEZJ} = peK{e}

ue,pzt

K - K@ 4, K

uu,st uu,pzt

{e} _ {e}
Ky = peK g om -

In addition to the base optimization problem, the constraint > p.V.—fyv > V. <
0 is added for each element e, with fy being equal to the maximum coverage percentage
and p. € {0,1}. The constraints can be represented in vector forms, where ppyr is the

coverage density vector and N is the number of elements in the structure:

T
min FR=|_ o ‘
R,L.ppyr ° T Vr E [Dblneb] V]E[Dsmcs]
s.t. Rmin S R S Rmax
Lmin S L S Lmax . (59)

sum(ppzr)/N — fv <0

przr € {0,1}

Still within the scope of integrating the topology of the piezoelectric layer into
the optimization problem, we see in Fig. 5.11 the dispersion of non-dominated results in
the case of the resistive circuit. Nevertheless, there is a defined sequence of results on
a Pareto frontier. Therefore, we define the points of interest as maximum power (R =
5221.64 ), minimum fatigue damage (R = 66996.57¢2), and the compromise between the
objectives (R = 70367.44 Q).

Finally, solving the optimization problem for the resonant circuit presented
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Figure 5.11: Non-dominated optimal solutions in robust power and fatigue analysis

with resistive circuit in PZT layer density.

in Fig. 5.12 allows us to select points of interest, with higher collected energy (R =
1487.23 Q, L = 9.99 H), lower fatigue damage (R = 31266.96 €2, L = 2.43 H), and the
compromise between the two objectives (R = 58.09 Q, L =9.04 H).
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Figure 5.12: Non-dominated optimal solutions on robust power and fatigue analysis

with resonant circuit at PZT layer density.

In the piezoelectric layer density problem, a wider range of results is observed,
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with maximum and minimum values surpassing previous analyses. The power reaches
values of 1.15x 10~* W - g72, while the damage reaches 0.276 in its minimum values. This
explicitly demonstrates that considering topology in the optimization problem, where the
definition of the piezoelectric layer location is more freely determined, allows for increased
efficiency of the structure considering the chosen objectives.

When viewing the results of interest in Figs. 5.13 and 5.14, we initially notice
the irregular shapes of the piezoelectric material distribution. Upon closer inspection,
there is a pattern of concentration for both circuits towards maximum energy harvesting,
which consists of a concentration of the layer at the fixed base of the structure. For the
configuration of minimum damage, the results show a shift of the concentration towards

the more central region of the plate, with small clusters at the upper and lower ends.

Finally, in the compromise case, we see a combination of the two aforementioned cases.

[ ]Struct WPZT

.

(a) Maximum power (b) Compromise (¢) Minimum damage

Figure 5.13: Optimization of PZT layer density with resistive circuit.

One limitation of this methodology is the distribution of piezoelectric material
without considering the quantity of neighboring elements that also have the PZT portion.
This is evident from the presence of isolated elements in the presented results. Addi-
tionally, different layer distributions with similar resistance and impedance values can
generate results close to the objective functions. This makes it difficult for optimization

algorithms to differentiate and select these specific cases.
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Figure 5.14: Optimization of PZT layer density with resonant circuit.

5.5 Comparison with fine mesh

After the conclusions from the previous analyses, a final comparison was con-
ducted, now using a beam and a plate structure with the same characteristics as before
(Fig. 5.15), except for the number of elements (a finer mesh of 18 x 14 elements for the
plate and 18 x 4 for the beam), deterministic calculation without robustness, and con-
sidering only a resistive shunt circuit. For this purpose, similarly, a neural network was

trained with a larger amount of input data, in a narrower resistance range of [10%,10%].

[

The Pareto curves containing the non-dominated results are shown in Figure 5.16.

L

X

y
(plate)

() s

Figure 5.15: Components of the structure (a) Plate (b) Beam (c) Resistive circuit.

In both structures, the distribution of patches along with the strain energy ex-

hibits the worst non-dominated results. In the beam, the strain energy consists of only one
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Figure 5.16: Results for the three circuit cases.

point, indicating the maximum resistance for all non-dominated solutions. Additionally,
solutions with higher collected energy have a fatigue indicator greater than 1, implying a
failure of this structure. Regarding the plate, although other fronts dominate the patches,
it can be noted that it can collect more energy in the extremely superior solutions than
the reference case of the circuit. As for the density case, the results only outperform the
others in the plate structure. It is important to highlight its better performance compared
to the reference circuit optimization, even with less piezoelectric material and therefore
less weight added to the structure. Finally, the resulting distribution of the piezoelectric
layer is presented in Fig. 5.17, for the patch and layer density cases of each structure.

The compromise solutions for the patch case show a more scattered concentra-
tion for the beam and a more centralized location for the plate. Along the solution curve,
we observe a transition from positioning closer to the fixed support to an area in the
middle-right. These solutions result in an intermediate configuration to minimize fatigue
and maximize harvested energy.

Regarding the density case of the piezoelectric layer, although there are some
random shapes of the PZT layer, there is a clear scattered concentration in small regions
along the length of the beam, following the same logic as the patch case. For the plate,
the solution has a large region closer to the fixed support that assimilates the region with
the highest modal energy. In the rest of the structure, some voids appear in the central

area along with small regions at the free edge.
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Figure 5.17: Beam distribution (a) patches, (b) density; Plate distribution (c)
patches, (d) density.

To quantify the gain of the objectives, we use two necessary factors for the

following analyses. The first is the percentage coverage of the piezoelectric layer Cy in:

N
Co, = ;[ZT , (5.10)

which is defined by the ratio between the number of piezoelectric elements Npyr and the
total number of finite elements in the structure N. This factor allows us to analyze the
amount of gain in a given objective by the amount of piezoelectric material added to the
structure. This value ranges from (0, 1], with 1 representing full coverage of the structure
with PZT material, as in the case of optimization of the circuit only.

The second factor used to quantify the results is the Relative Efficiency RE,),

as:

T

RE, = ———
K E [Dsines] ’

(5.11)

which this value does not have a defined range, but it allows for the comparison between
two distinct results. Its interpretation is based on the amount of energy harvested per

accumulated fatigue damage factor. The higher the relative efficiency values, the more
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energy the chosen configuration will be able to collect with a better compromise concerning
the fatigue damage present in the structure.

Selecting the results of the best compromise between the two objectives from
each of the 4 presented cases, we can summarize them in Tab. 5.2, where the percentage
coverage of the piezoelectric layer, the results of the best compromise for each objective,
the value of the ratio between the objective and the percentage coverage, and the relative

efficiency are presented.

C% T E [Dsines] T/C% E [Dsines] /C% REn (T)

Circuit 1,00 2,22 0,56 2,22 0,56 3,96

Density 0,50 2,18 0,66 4,36 1,32 3,30
Beam

Patches 0,50 2,05 0,70 4,10 1,40 2,93

Strain Energy 0,22 1,82 0,73 8,19 3,29 2,49

Density 0,50 1,07 0,31 2,14 0,62 3,45

Circuit 1,00 0,99 0,35 0,99 0,35 2,80
Plate

Strain Energy 0,21 0,91 0,38 4,41 1,84 2,39

Patches 0,18 1,03 0,45 5,64 2,47 2,29

Table 5.2: Summary of the objectives results sorted by Relative Efficiency.

It is first verified that the value of energy harvesting per percentage of cover-
age, for both the beam and the plate, is higher than the case of complete coverage of the
structure by the piezoelectric layer, where optimization is performed only on the circuit.
There are also much higher harvesting values for the beam in the case of modal deforma-
tion energy, being the best case when analyzing only the first objective. For the plate,
the distribution of patches shows the highest energy collection per piezoelectric element
added to the structure.

However, as the analysis also involves the amount of accumulated fatigue dam-
age, a trade-off between high levels of harvested energy and high levels of damage is
observed. This can be explained by the mechanical factor added to the structure when
inserting a larger amount of piezoelectric elements, due to the consequent increase in stiff-

ness. Thus, a complete layer of PZT material results in greater stiffness and consequently
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less damage per amount of PZT layer.

Finally, the relative efficiency factor shows that, in the case of the beam, a
complete layer of PZT material has the highest value for both objectives factor. Next
is the case of density, followed by patches and modal deformation energy. In the plate
structure, the density case of the PZT layer comes first, followed by the complete layer in
second place. It can be concluded that in the case of the beam, due to the limitation of the
structure’s width, the optimization process cannot vary the locality of the piezoelectric
elements, thus limiting the efficiency values. In the plate, however, a greater dispersion
of the PZT elements is observed, which allows the optimization algorithm to search for

the best result.



Chapter VI

Conclusion and perspectives

Conclusion

This work aimed to investigate, analyze, and propose an optimal-robust method-
ology for designing piezoelectric shunt circuits for vibration attenuation and energy har-
vesting from vibration in structures subjected to dynamic loading. For this purpose,
numerical methods were used to obtain responses to external loads and create a dataset
of solutions, which was used to train a metamodel by artificial neural networks, necessary
for evaluating the objective functions of multi-objective optimization problems. Solving
this problem allows the definition of optimal parameters for maximum energy harvesting,
taking into account the minimum accumulated damage in the structure.

The results firstly showed that the variability of design variables has a low
influence on the objective functions, indicating that the system is inherently robust. Fur-
thermore, another conclusion drawn was the complexity of the results when optimizing
the topology of the piezoelectric layer along with the parameters of the shunt circuit.
Secondly, the calculation of optimal values in the optimization problems resulted in an
increase in fatigue life and higher collected energy power, allowing for a choice between
the trade-off between these two objectives.

These results have significant implications, particularly in demonstrating the
possibility of increasing collected energy by altering the topological configurations of the
piezoelectric material. The energy gain, without implying a loss of structural life, results
in a model resilient to operating conditions. Another significant factor is the use of neural

networks in conjunction with electrical parameters, topological parameters, statistical
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results of multiaxial fatigue, and power generated by the system. The metamodeling of
dynamic systems has already found extensive application over the years, but advances in
new architectures and methodologies enable the use of increasingly complex structures in
a facilitated manner, as demonstrated in the present work.

Another important result was the user’s ability to choose the most suitable case
for their needs. In multi-objective optimizations, selecting the best results is not trivial,
as seen in the cases presented here. We observe that some cases are more suitable where
the amount of harvested energy is the main factor to be decided, while other cases are
more advisable for lower accumulation of fatigue damage. However, a key result of the
research was the proof of the relative efficiency of using the density method compared to
traditional methods and those presented here, which, under the same boundary conditions,
can achieve a better trade-off between energy harvesting and fatigue damage.

From a theoretical standpoint, the application of the proposed methodology
for structural pre-conception appears feasible, assisting the designer in defining the best
configurations for the study at hand. However, considering the technical limitations of
utilization, such as the fabrication of piezoelectric elements in irregular shapes and the
connection of these elements in a single shunt circuit, it is evident that its application

becomes challenging.
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domain. XLI Ibero-Latin-American Congress on Computational Meth-

ods in Engineering (CILAMCE-2020), Foz do Iguagu, 2020.

Perspectives

Some points are interesting to explore in more detail, suggested as further re-

search. One of them is the association of other types of shunt circuits, such as series
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resonant circuits, capacitive circuits, and multimodal circuits. The influence of each of

these types can help in better harnessing vibration energy. Another suggestion would be

to create a more generic neural network that allows for a freer design of the structure

during optimization. This factor enables a wide application in real-world problems with-

out the need to create a new dataset for every change in design conditions. Finally, in

addition, comparing different boundary conditions would allow the methodology to be ex-

plored in different types of structures, encompassing other types of mechanical structure

applications.

Specific suggestions for future work:

Definition of a general metamodel with a deep neural network to obtain the dy-
namic responses of electromechanical structures, for different types of meshes and

physical /geometric characteristics;

Application of the optimal-robust methodology in multimodal shunt circuits to ex-
plore the attenuation of simultaneous vibrating modes, in addition to increasing the

energy harvesting range;

Inclusion of topological constraints in the optimization process to meet practical

application limitations, such as clustering and convolutional filters;

Comparison between different types of boundary conditions, such as supports and

applied forces;
Development of an experiment bench for practical validation of theoretical results;

Association of a network of circuits shunt with different polarizations in the piezo-

electric elements of the structure.
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