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VASCONCELLOS, L. G. S. Dinâmica dos Fluidos Computacional Avançada na
Análise de Padrões de Manchas de Sangue: Investigação das Propriedades
Não Newtonianas para Aplicações Forenses. 2024. 179f. Dissertação de Mestrado,
Universidade Federal de Uberlândia, Uberlândia/MG, Brasil.

Resumo

Visando preencher uma lacuna significativa no entendimento científico, realizamos simu-
lações de gotas de sangue humano e animal em queda livre e seu impacto em superfície
sólida, explorando as propriedades não newtonianas do sangue. Os resultados revelaram
que modelos constitutivos simples, como o power-law, são inadequados para contextos
forenses devido a níveis de viscosidade não físicos em taxas de cisalhamento elevadas
ou muito baixas. Comparações entre modelos mostraram variações substanciais na dis-
tribuição de viscosidade interna e na forma final das gotas, destacando a importância de
modelos precisos para a análise forense. Este trabalho, embora não pioneiro, é um dos
poucos no mundo a utilizar Dinâmica dos Fluidos Computacional (CFD) em Análise de
Padrões de Manchas de Sangue (BPA), indicando um caminho promissor para a construção
de um framework robusto para a interpretação de evidências de sangue. As simulações
realizadas com o código MFSim posicionam esta pesquisa na vanguarda da mecânica dos
fluidos forense, oferecendo novas ferramentas para a comunidade internacional de analistas
de padrões de manchas de sangue e estabelecendo um caminho promissor para futuras
investigações científicas.

Palavras-chave: Dinâmica dos Fluidos Computacional, Análise de Padrões de Man-
chas de Sangue, Fluidos não newtonianos, Método VoF



VASCONCELLOS, L. G. S. Advanced Computational Fluid Dynamics in Blood-
stain Pattern Analysis: Investigating Non-Newtonian Properties for Forensic
Applications. 2024. 179p. Master’s Dissertation, Federal University of Uberlândia,
Uberlândia/MG, Brazil.

Abstract

Aiming to fill a significant gap in scientific understanding, we conducted simulations of
human and animal blood droplets in free fall and their impact on solid surfaces, exploring
the non-Newtonian properties of blood. The results revealed that simple constitutive
models, such as the power-law model, are inadequate for forensic contexts due to non-
physical viscosity levels at high or very low shear rates. Comparisons between models
showed substantial variations in internal viscosity distribution and the final shape of
the droplets, highlighting the importance of accurate models for forensic analysis. This
work, although not pioneering, is one of the few in the world to use Computational Fluid
Dynamics (CFD) in Bloodstain Pattern Analysis (BPA), indicating a promising path
towards constructing a robust framework for interpreting blood evidence. The simulations
performed with the MFSim code position this research at the forefront of forensic fluid
mechanics, offering new tools to the international community of bloodstain pattern analysts
and establishing a promising path for future scientific investigations.

Keywords: Computational Fluid Dynamics, Bloodstain Pattern Analysis, Non-
Newtonian Fluids, VoF Method
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1 Introduction

1.1 Contextualization and background
The forensic expertise in Brazil still yearns for a solid and densely diffusive scientific

development in various areas of forensic knowledge. The myriad of factors that interfere
with the diffusion and interest in scientific knowledge in this community in Brazil limits
the majority of these professionals to develop criminal forensic reports in which often
outdated techniques are used, along with standardized but outdated writing sections.
Despite this diatribe, it is clear that some areas of forensic expertise are in an advanced
scientific stage, such as DNA examination laboratories, ballistic comparison laboratories,
audio and video forensic laboratories, etc. However, the experts known as "on-call" - the
majority in the Brazilian scenario - who usually assume the conduct of examinations
and the reporting of crimes against persons, crimes against property, traffic crimes, and
some other natures, often do not qualify enough, do not update themselves with new
techniques and methodologies, do not conduct research in any of the areas they work
in, thus producing results below what is possible and necessary. And this performance
condition is not inexorable, as long as there is greater diffusion of certain knowledge to
the forensic community.

Specifically in crime scenes involving individuals, we encounter the discipline of Blood-
stain Pattern Analysis (BPA), which is further detailed in chapter 2. Briefly introducing
the subject, we have here a highly significant discipline with the real capacity to decisively
assist in the reconstruction - at least partially - of the dynamics that led to a particular
crime scene.

A forensic expert willing to do so can seek training in BPA through various training
programs offered by institutions around the world. Currently, there is a certain maturity in
the field, where generic training programs are being broken down into various specificities
such as:

• Bloodstain documentation

• Classification and terminology

• Surface interactions

• Forensic photography

• Physics and mathematics

• Fabrics and textiles
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• Fluid dynamics

However, as observed by this master’s student during the 40th Annual Conference
of Bloodstain Pattern Analysts (IABPA, 2023), the physical understanding of human
blood fluid dynamics - especially with the aid of computational simulation tools - remains
lacking. The international community embraces material experiments with blood (mostly
non-human and synthetic), the development of mathematical models for some important
questions (such as stain size, angle of impact, area of origin or the influence of relative
humidity on bloodstain formation), but little is studied in depth about the physics involved
in bloodstains, about the behavior of the fluid’s intrinsic properties. And even with
all these separate mathematical models, how can they be used together? This is the
idiosyncrasy of the BPA forensic community.

Attinger et al. (2013) already mentioned this in their paper:

There are currently no simulation tools that solve both the impact of a
drop and the formation of a stain, but current simulation techniques are
ready to address this challenge. These simulation tools could be used for
investigating parameters that are difficult to investigate experimentally,
such as the influence of viscosity, substrate wettability, or drop sizes and
velocities.

1.2 Subject relevance
The current project is aimed at conducting groundbreaking computational simulations

within the realm of fluid mechanics, with a specific focus on the forensic analysis of blood-
stain patterns. Our study distinguishes itself by addressing a substantial gap in scientific
understanding, given the scarcity of comprehensive investigations into computational fluid
dynamics within the forensic domain on a global scale.

The objectives are well-defined: to execute computational simulations of both human
and animal blood droplets in free fall and to scrutinize their impact upon a solid surface.
These simulations will facilitate a deeper comprehension of the non-Newtonian properties
of blood and their repercussions on the bloodstain patterns discernible at crime scenes.

The significance of this project cannot be underestimated. Through computational
simulation, we envision the ability to replicate intricate real-world scenarios in the foresee-
able future, thereby furnishing invaluable insights for forensic inquiries. For instance, we
anticipate being able to pinpoint the origin of a blood droplet based on its morphology and
dispersion characteristics, thereby furnishing unequivocal deductions grounded in physical
principles to resolve criminal investigations.

Moreover, our project is pioneering and exclusive, as we leverage a bespoke compu-
tational code developed internally within the Fluid Mechanics Laboratory, MFLab, at
the Federal University of Uberlândia/MG, Brazil. This distinctive approach empowers us
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to attain a level of granularity and accuracy unattainable through empirical experiments
with blood samples.

1.3 Objectives
From a broader perspective, the objective falls within the formulation of knowledge

regarding the physical behavior of human blood in conditions related to forensic essence,
namely crime scenes containing human blood drops in the analyzed environment. This
understanding, here explored in the form of freely falling droplets, entails extensive work
implementing numerical routines in specific computational code, validations, reading
related articles, aiming to solidify such knowledge.

Specifying the path to be followed in this journey, the following specific objectives can
be defined:

• Numerically implement and validate - in MFSim - non-Newtonian viscosity models

• Model human blood using each previously implemented and validated non-Newtonian
viscosity model in specific physical problems relevant to the forensic perspective

• Compare and discuss the results of the computational simulations performed

• Outline perspectives for future research on the subject

With the present work, it is hoped to provide a deep and solid contribution to the
physical understanding of human blood fluid dynamics for the forensic community -
especially for bloodstain pattern analysts - with this knowledge being convertible into
enhancements in forensic practice related to the subject and also adherence to Standard
Operating Procedures - SOPs.

1.4 Methodology and dissertation structure
This subsection provides an overview of the overall structure of the dissertation,

including the organization of chapters and the topics covered in each chapter. It serves
as a road map for the reader to understand how the research is presented and how the
various components of the study are interconnected.

In chapter 2, Bloodstain Pattern Analysis, the criminal environment in which the object
of study of this dissertation is found is presented. Crime data from Brazil is presented,
demonstrating the factual need for technical-scientific improvement in the area, aiming
to deliver excellent work to society. Furthermore, fundamental concepts of Bloodstain
Pattern Analysis (BPA) will be introduced. This includes an overview of the physics behind



1.5. EXPECTED CONTRIBUTIONS 33

bloodstain formation, types of bloodstains, and the significance of analyzing bloodstain
patterns in forensic investigations.

In chapter 3, human blood will be classified based on its intrinsic characteristics, its
properties, taking into account various bibliographies.

In chapters 4, 5, and 6, the laws of physics that guide all calculations to be performed
in computational modeling are introduced. The entire fluid dynamics system is solved
using balance equations presented in these chapters. The modification introduced in the
equations to appreciate non-Newtonian behavior is also presented. Finally, the various
rheological models implemented in the MFSim computational code and used in various
studies with human blood are introduced.

In chapter 7, the reader is introduced to the computational code in which all simulations
presented in this dissertation were performed: The MFSim.

The following chapter presents all validations performed with the MFSim computational
code before starting any modeling for human blood. At this stage, all implementations for
non-Newtonian fluid modeling had already been made, leaving only the validation of such
additions to the code.

In chapter 9, Performance analysis of blood’s rheological models, a basic comparison is
made between the non-Newtonian viscosity models worked on, from the perspective of
viscosity as a function of shear rate, comparing them with available material experiments.
This chapter provides a prediction of the performance of such rheological models.

Next, in chapter 10, the results of the computational simulations for the free fall of a
human blood droplet are presented, comparing the models used and discussing them.

In chapter 11, several proposed models for representing animal blood are presented,
which were also computationally simulated and compared to the human blood models
discussed in the previous chapter.

Finally, in chapter 12, the conclusions of this project are presented, along with proposals
for future work that can be undertaken.

1.5 Expected contributions
The current research aims to deliver significant quantitative and qualitative outcomes,

enhancing technical and scientific insights crucial for improving forensic practices in
Bloodstain Pattern Analysis (BPA) at crime scenes. This study seeks to advance the un-
derstanding of human blood fluid dynamics, particularly through the use of computational
modeling tools.

A key goal is to develop and validate diverse models addressing various physical
phenomena, such as the interaction of blood droplets with different surfaces, adhesion
properties, wettability, and varying shapes representing human blood volumes. Each



1.6. STUDY LIMITATIONS 34

aspect requires a thorough understanding from a physical perspective, implementation
into computational frameworks, and subsequent validation.

By providing new and essential scientific knowledge on the fluid dynamic behavior of
human blood at crime scenes, this research aims to empower forensic professionals to make
more categorical inferences based on physical principles. Furthermore, it paves the way
for future advancements in computational modeling, potentially serving as an auxiliary
tool for reconstructing crime dynamics through the analysis of bloodstain patterns.

1.6 Study limitations
Despite exclusive dedication, the most significant limitation encountered was time.

The extensive knowledge required to begin obtaining initial results in computational
modeling highlights the need for additional time to overcome various challenges addressed
in this dissertation. However, the current work is already sufficient to generate meaningful
quantitative and qualitative results, contributing positively to BPA procedures at crime
scenes.

There remains a considerable journey towards achieving more realistic computational
simulations, necessitating the development and validation of multiple models for different
physical phenomena, such as droplet-surface interactions, adhesion properties, wettability,
and arbitrary shapes for the initial blood volume. These aspects must be thoroughly
understood, implemented in computational code, and validated.

Moreover, a challenge lies in comprehending the mechanisms within open-source
computational modeling codes. It is imperative for users and researchers to have a
profound understanding of these processes throughout their simulations, as these codes
often operate as "black boxes", limiting insights into their internal workings.
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2 Bloodstain Pattern Analysis

2.1 Introduction
In Brazil, the official practice of criminal forensics is carried out by state and federal

agencies, with 20 states operating independently from the Civil Judiciary Police (SILVA;
BASTOS; OLIVEIRA, 2022). Official criminal forensics serves numerous criminal natures,
including crimes against persons, a nature where bloodstains are commonly found and
warrant categorical analysis using established methodologies (BEVEL; GARNER, 2008).

In the year 2021, the country recorded a total of 47,847 homicides, as presented in
Fig. 1, being 33,039 by firearm. This corresponds to a rate of 15.4 firearm deaths per
100,000 inhabitants. Nine UFs showed positive variations compared to 2020, deserving
attention: Amazonas (53.6 %), Amapá (37.2 %), Rondônia (33.2 %), Mato Grosso do Sul
(27.0 %), and Piauí (26.9 %). Conversely, the largest negative variations were observed in
Acre (-50.0 %), Goiás (-28.4 %), Federal District (-23.7 %), and Sergipe (-20.1 %). This
positive variation in percentages during this period is likely associated with the increased
availability of these firearms. As emphasized in previous editions of the Violence Atlas,
there is a strong consensus in the scientific literature regarding the causal relationship
between the increase in the circulation of firearms and the growth of homicide rates.

Figure 1 – Number of homicides in Brazil (2011-2021). Source: Cerqueira et al. (2023)

In the context of an exceptionally high number of crimes against persons, the quantity
of crime scenes in which forensic experts operate becomes evident. These experts require
an excellent knowledge of bloodstain patterns to interpret them correctly and extract
information that, in many instances, would otherwise go unnoticed. Additionally, there
are some specific conditions that can confuse the expert within his interpretation of the
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bloodstains. As exposed by Raymond, Smith e Liesegang (1996), there are several common
situations where this could be relevant. The accused might have had a lawful encounter
with a victim stained with blood or may assert self-defense. A law enforcement officer could
be shot, leading to accusations of misconduct. Additional instances involve questionable
deaths (such as distinguishing between homicide and suicide) or scenarios where multiple
individuals have bled at the location, and their blood may have mixed. It’s also possible
that a combination of the aforementioned scenarios may have occurred.

2.2 Bloodstain Pattern Analysis: Beginning and function
The analysis of bloodstain patterns has a history of approximately 150 years from

a scientific perspective. According to Bevel e Garner (2008), the first journal in which
authors were able to discuss forensic topics related to blood analysis at crime scenes
was the Viertaljahresschrift fur gerichtliche Medizin (Quarter-Year Writings for Forensic
Medicine), published in Germany between 1850 and 1940.

Furthermore, Bevel e Garner (2008) mentions an article from 1856 written by J. B.
Lassaigne, Neue Untersuchungen zur Erkennung von Blutflecken auf Eisen und Stahl (New
Examination to Differentiate Bloodspots from Iron and Steel), in which he discusses some
marks that appeared to be bloodstains, but were actually caused by insect activity.

Another interesting case is that of the criminologist Henry T. F. Rhodes, who in 1931
published his book Some Persons Unknown, in which he showed the evolution in blood
identification and also the evolution of court requirements, where there was a transition
from testimonies of the type "looks like blood" to "is blood" and, subsequently, to "is blood,
and is human blood."

Bloodstain Pattern Analysis, commonly called BPA, is a forensic discipline that seeks
to elucidate the facts behind a previous event, which is usually a crime. The dispersion,
shape characteristics, volume, pattern, number and size of bloodstains are some of the
parameters measured by an analyst. As formally stated by Bevel e Garner (2008), some
basic bloodstain event types are:

• Blood dispersed from a point/area source by a force (e.g., impact patterns)

• Blood ejected over time from an object in motion (e.g., cast-off patterns)

• Blood ejected in volume over pressure (e.g., spurt and gush patterns)

• Blood dispersed as a function of gravity (e.g., drip, drip trails)

• Blood that accumulates and/or flows on a surface (e.g., pools and flows)

• Blood that is deposited through contact transfer (e.g., smears and pattern transfers)
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Additionally, the information that can be obtained after further examination includes:

• The direction in which a stain was traveling when deposited

• The angle of impact

• The area of origin of impact patterns, in R3

• The direction from which a force was applied

• The nature of object(s) involved in creating the pattern

• In some instances, the approximate number of blows struck during an incident

• The relative position(s) in the scene of the suspect, victim, or other related objects
during the incident

• Movement of individuals and/or objects during and after bloodshed

• Sequencing of multiple events associated with an incident

MacDonell (2009) mention that these further examinations will lead to significant
considerations, in order of decreasing significance:

• The shape of individual bloodstains, which may allow their origin to be determined
in three dimensions

• The size of the individual bloodstains, which suggests the kind of energy that was
available for their production, if they were the result of an impact

• The distribution and concentration of a bloodstain pattern may suggest the distance
between the origin of blood and the surface upon which it was deposited

Many proclaim Herbert MacDonell as the father of modern BPA. The report Flight
Characteristics and Stain Patterns of Human Blood, by MacDonell et al. (1971), was
the result of extensive research on the subject, being published by the Law Enforcement
Assistance Administration (LEAA), where he worked at that time.

As cited by MacDonell (2009), bloodstain patterns, as physical evidence, must first be
detected, preserved, examined, interpreted, and properly presented in court to utilize their
evidentiary value. Contrary to what MacDonell says in his article, this master’s student
does not agree that blood’s surface tension and viscosity properties are sufficiently similar
to those of water that it is unnecessary to formulate an entirely new concept to deal with
blood as a liquid.

And finally, we still have an good definition of BPA, by Kiely (2005), from an interesting
perspective:
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This strictly observation-based forensic tool is a highly specialized crime
scene procedure that is combined with the equally important skills
involved in forensic photography. It is commonly used in homicide and
suicide settings to determine the sequence of events, the distance of the
shooter to the victim, self-defense, mental states such as intent, and a
number of important crime scene dynamics that can be of inestimable
use to both prosecutors and defense counsel.

2.3 Bloodstain Pattern Analysis: Terminologies
In the work Bloodstain Pattern Analysis by one of the greatest authorities on the

subject, Bevel e Garner (2008), an important analysis of terminologies is carried out,
in which the author demonstrates attention and relevance regarding the need for the
physical perspective of terminologies. Starting with the subject matter itself, which has
the following variations:

• Bloodstain pattern interpretation

• Blood spatter analysis

• Bloodstain spatter analysis

• Blood splatter analysis/interpretation

• Bloodstain pattern analysis

Bevel e Garner (2008) point to Bloodstain Pattern Analysis as the most suitable
terminology for the subject. This is because the word analysis implies a structured and
detailed approach to what will be examined at crime scenes. On the other hand, the word
interpretation implies a subjective interpretation.

Furthermore, regarding the use of pattern rather than spatter or splatter, this is due to
the variety of bloodstain types found at crime scenes, with which the forensic analyst will
encounter.

Now, concerning other terms related to the analysis of bloodstain patterns at crime
scenes, terms that will assist the forensic analyst in their analyses:

• Angle of impact: acute angle formed between the displacement vector or velocity
vector and the surface with which the blood drop will come into contact

• Arterial (spurt/gush): Jet of blood generated under pressure, usually due to the
rupture of an artery or the heart

• Atomized blood/Misting: Bloodstain patterns characterized by a cloud of microscopic
blood droplets. In the present work, the use of atomized blood is suggested instead
of misting, due to the physical-theoretical concept of atomization, widely known and
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used in engineering. Tryggvason, Scardovelli e Zaleski (2011) defines atomization as a
striking process in which the mentioned clouds of droplets are produced. Atomization
is usually produced by the ejection of liquids - at high speed - through injector nozzles.
In the case of atomized blood, this refers, for example, to the high-speed impact of
firearm projectiles on the human body, transferring a high linear momentum to the
blood, which will atomize it

• Blood into blood patterns: Occurs when blood is deposited onto a previously created
bloodstain pattern

• Blowback effect: Occurs when blood is deposited inside the barrel of a firearm after
the shot has been fired

• Capillary action: Physically, the capillarity of a fluid refers to its ability to rise
or fall in a capillary tube, which is a thin and narrow tube. This phenomenon is
observed due to the combination of cohesive forces (attraction between molecules of
the fluid itself) and adhesive forces (attraction between molecules of the fluid and the
surface of the tube). Regarding this characteristic being observed at crime scenes,
it refers to patterns formed, for example, when a bloodied hand, on any surface, is
removed from it. Before complete separation of the hand and the surface, the blood
permeating them remains attached to both surfaces due to surface tension, until the
moment of complete separation, leaving a peculiar pattern on the surface (see Fig.
2)

• Cast-off patterns: The ones created from flung blood or projected from an object in
motion or one that suddenly stops some motion (Fig. 3)

• Clot: A gelatinous mass formed by the confluence of blood cells in fibrin

• Contact stain: The ones created by the transfer of blood from one object to another
through physical contact

• Drip/Drip trail: Trail of blood drops formed from an individual or object dripping
blood while moving

• Expectorate Spatter/Blood: Bloodstain patterns created when blood is expelled from
the mouth, nose, or respiratory system under pressure

• Flow: Described as the flow of a mass of blood due to gravity

• Fly spot: Bloodstains similar to spatter, but caused by fly activity

• Impact site: The point where the surface of an arbitrary object, holding a certain
amount of linear momentum, encounters a source of blood and impacts it, transferring
part of that linear momentum to that blood source
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• Non-spatter stains: Bloodstain patterns that do not fit the descriptions above

• Parent stain: Bloodstains that originate satellite, secondary drops, which are ejected
from this main drop after its contact with a surface

• Primary Stain: The main stain of any found pattern

• Ricochet stain: Blood that after impacting an object, has part of its volume separated
from the main portion and ricochets off to another surface or simply falls freely due
to gravity

• Satellite Stain/Spatter : Small secondary drops that separate from a larger drop after
the impact of this latter against an arbitrary surface

• Saturation stain: When a portion of blood is absorbed by a permeable surface (Fig.
4)

• Shadowing/Ghosting/Void: Occurs when a secondary object retains - on its surface -
a portion of a well-defined bloodstain, promoting a discontinuity of the bloodstain
when removed from its initial position

• Skeletonized Stain/Skeletonization: Bloodstain that maintains its original shape and
dimensions even when disturbed

• Smear : Encompasses various types of bloodstains generated by transfers between
surfaces by contact with relative motion

• Spatter Stains: Stains resulting from the impact of free-flying drops on surfaces

• Spines: Characteristics of "lines" of blood formed at the edges of single drops after
impact

• Swipe: When a bloodied object transfers part of that blood to another object or
surface through relative motion

• Wipe: When the surface of any object comes into contact and is moved over a
bloodstain adhered to another surface
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Figure 2 – Distinct linear features are present in the pattern because of the capillary action.
Source: Bevel e Garner (2008)

Figure 3 – Two cast-off patterns. The two distinct linear patterns on the cabinet are
cast-off, produced by a bloody object that was swung right to left. Source:
Bevel e Garner (2008)
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Figure 4 – A saturation stain on a sock. The location of the saturation along the full
length of the top of the sock and lack of full saturation on the bottom assist in
positioning the victim when the saturation occurred. Source: Bevel e Garner
(2008)

Bevel e Garner (2008) proposed - in 2002 - an initial classification for bloodstains (Fig.
5), emphasizing that the difficulty in achieving consensus regarding nomenclature should
not impede the prompt presentation of proposals by the forensic scientific community. Over
time, new propositions are put forth by various scientific bodies worldwide, contributing
to the consensus within the forensic community.

Figure 5 – The first three levels of the bloodstain taxonomy generate two primary categories
(spatter and non-spatter) and four subcategories (linear spatter, non-linear
spatter, regular margin stains, and irregular margin stains). Source: Bevel e
Garner (2008)
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2.4 Expert qualification
As a rule, the expert qualification to perform crime scene investigations as a bloodstain

pattern analyst can vary a lot, depending on how many crime scenes the expert attended,
how many and which courses the expert took, as well as the amount of knowledge in blood
fluid dynamics.

Kiely (2005) mentioned some cases on USA, in which the courts were very willing to
qualify experts on seemingly minimum bases.

In a case in the United States of America, for instance, a death row inmate appealed,
arguing that the police officer who attended the crime scene was not sufficiently qualified
to analyze bloodstains. However, the Supreme Court decided as follows, as excerpted from
Kiely (2005):

The court found that the detective qualified as a blood-spatter analysis
expert because he had attended crime scene management classes, a homi-
cide investigation class, and watched two training videos on blood-spatter
analysis as part of his advanced officer training. “While this training is
not extensive,” the court said, “it is significantly more extensive than
the average person has received and is sufficient to allow the testimony
to be heard by the jury.”44 The court, therefore, allowed the testimony
to stand.

Another interesting case mentioned by Kiely (2005) was Commonwealth v. Begley. In
this case, the physical explanation for the blowback pattern was crucial in solving the
crime, due to the insufficient amount of blood found on a glove and inside the barrel of
the questioned firearm.

Just as in the cases mentioned, there are countless others where the importance of the
forensic expert’s qualification in analyzing bloodstain patterns can be perceived, knowing
that this knowledge has the power to extract categorical information about aspects of the
crime dynamics.

2.5 Scientific research and methodology for BPA
Chalmers (1999) mentions another author’s - J. J. Davies (1968) - definition: "Science

is a structure built upon facts".
In a simpler manner, Laudan (1978) defines science as essentially a problem-solving

activity. Aptly, it states that if problems are the focus of scientific thought, theories are
the end result. Laudan (1978) asserts that theories matter, that they are cognitively
significant insofar as they provide adequate solutions to problems.

Chalmers (1999) also cited a fact about Galileo, addressed by H. D. Anthony (1948):

It was not so much the observations and experiments which Galileo made
that caused the break with tradition as his attitude to them. For him,
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the facts based on them were taken as facts, and not related to some
preconceived idea[...] The facts of observation might, or might not, fit
into an acknowledged scheme of the universe, but the important thing,
in Galileo’s opinion, was to accept the facts and build the theory to fit
them.

Finally, according to Chalmers (1999), facts can be assumed as the basis of science for
three reasons:

• Facts are directly given to careful and unbiased observers through the senses

• Facts are prior to and independent of theory

• Facts constitute a firm and reliable foundation for scientific knowledge

In his work The Logic of Scientific Discovery, Popper (1959) discusses scientific
objectivity and subjective conviction. Popper suggests that these philosophical terms are
the subject of endless debates. However, he argues that the term "objective" is used to
indicate that scientific knowledge must be justified and tested. He asserts that every
new scientific theory should not necessarily be justified or verified but tested. On the
other hand, subjective experience or the feeling of conviction can never justify a scientific
statement.

Kuhn (1996) offers an intriguing approach to scientific research. Firstly, he defines the
term "paradigm" as an accepted "model or pattern" within the community. However, the
sense of the words "model" or "pattern" is not usual in their definition; their essence lies in
their replicability. According to Kuhn, in science, the "model" or "pattern" is an object for
further articulation or specification under new or more rigorous conditions. Thus, science
progresses.

Drawing a parallel with the present work, the paradigm discussed here relates to the
current understanding of the physical behavior of human blood in a forensic context.

Furthermore, it is worth mentioning a passage from Bacon (2011) about the importance
of in-depth scientific research, returning to the understanding of the physical foundations
of fluid dynamic phenomena:

"The best demonstration is, by far, the experiment, provided it be made
diligently and with caution. If we seek to apply it to other facts supposed
to be similar, unless it be done rightly and methodically, it is fallacious.
[...] it is necessary to extend the investigation to the most general of
things."

Forensic disciplines have unnecessarily suffered in the past due to a lack of a consensus
methodology. It is worth noting that in the legal context, forensic disciplines are often
attacked by defense attorneys and prosecutors, attempting to discredit the work performed
by forensic experts.
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Therefore, the establishment of precise methodologies with a strong scientific basis
becomes crucial to deter challenges.

Bevel e Garner (2008) proposes an eight-step methodology to bloodstain pattern
analysts, addressing the "how" of applying the scientific method to bloodstain analysis:

• Become familiar with the entire scene

• Identify the discrete patterns among the many bloodstained surfaces

• Categorize these patterns based on an established taxonomy

• Evaluate aspects of directionality and motion for the pattern

• Evaluate angles of impact, points of convergence, and areas of origin

• Evaluate interrelationships among patterns and other evidence

• Evaluate viable source events to explain the pattern, based on all of the evidence

• Define a best explanation of the events
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3 Blood features and classification

3.1 Introduction
Understanding the physical, physiological, and compositional characteristics of human

blood plays a crucial role in various fields, ranging from medical research to forensic
investigation. In the context of mechanical engineering, this understanding is fundamental
for the computational modeling of blood fluid dynamics.

Viscosity, specific mass and composition are intrinsic factors that influence the behavior
of blood during its flow through the blood vessels. Studies such as those by Chien
(1970) emphasize the importance of these properties for a more accurate understanding of
hemodynamic conditions.

Furthermore, the analysis of bloodstain patterns at crime scenes is an integral part
of forensic investigation. The correct interpretation of these patterns requires knowledge
not only of blood properties but also of how these characteristics manifest in different
scenarios.

In the realm of computational modeling, comprehending the complex interaction
between blood and vascular structures and, in our case, the random structures of a crime
scene, is crucial for developing accurate models. Works like that of Perktold, Rappitsch e
Grasser (1998) delve into hemodynamic modeling, emphasizing the need to consider the
rheological properties of blood.

In conclusion, a comprehensive understanding of human blood characteristics is es-
sential for advancements in both mechanical engineering and forensic investigation. The
interdisciplinary nature of these fields highlights the importance of a holistic approach to
enhance the understanding and practical application of this knowledge.

On the following sections some properties and characteristics of human blood, according
to various sources in the field, will be introduced.

3.2 Blood’s elements
Initially, I quote a passage from Windberger et al. (2017), where he classifies human

blood from a characteristically holistic perspective:

Blood was characterized as a shear-thinning viscoelastic fluid, showing
different degree of thixotropy in relation to RBCs aggregation. Typically,
at low shear rates, RBC aggregates and clusters, while at high shear
rates singularly suspended RBCs contribute to plasma enhancement. It
must be noted that low shear viscosity reflects the specific texture of
blood at low shear which is given by the sum of all attracting forces in
the respective sample, rather than showing RBCs aggregation alone.
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The terms mentioned by Windberger et al. (2017) will be dissected below for a better
understanding of their effects.

According to Weber e Lednev (2020), blood accounts for about 8 % of human body’s
weight or about 5.67 L.

Blood elements include erythrocytes (red blood cells, RBCs), leukocytes (white blood
cells, WBCs) and platelets. RBCs are the most numerous cells in blood (around 50 % of
whole blood volume) because they are needed to tissue respiration. They lack nuclei and
contain hemoglobin (Hb), an iron-containing protein that transports oxygen and carbon
dioxide (GREER et al., 2019).

From a rheological perspective, in complement to the previous paragraph, Merrill
(1969) and Lowe (1988) emphasize that RBCs (see Fig. 6) dominate the rheological
characteristics due to their volumetric concentration to the extent that the influence of
WBCs and platelets becomes imperceptible.

Figure 6 – The normal mature erythrocyte (RBCs) as visualized by the scanning electron
microscope. Source: Greer et al. (2019), Fig. 6.7

It is interesting to reproduce a passage from a lecture given in 1786 by John Hunter
(PALMER, 2015):

"In all inflammatory dispositions . . . blood has an increased disposition
to separate into its component parts, the red globules become less uni-
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formly diffused and their attraction to one another becomes stronger, so
that the blood . . . when spread over any surface, it appears mottled,
the red blood attracting itself and forming spots of red."

This citation already demonstrates, long ago, the understanding of the tendency of
RBCs to aggregate.

On the other hand, WBCs encompass a diverse array of cell types, each with distinct
immune functions and characteristic morphological features. WBCs are nucleated and
consist of neutrophils, lymphocytes, monocytes, eosinophils, and basophils. WBCs account
for approximately 1 % of the whole blood volume.

And finally, the platelets, are cytoplasmic fragments originating from megakaryocytes
in the bone marrow and play a crucial role in hemostasis.

Several preanalytical factors can impact hematologic measurements, and it is essential
to collect specimens in a standardized manner to minimize data variability. Factors such
as patient activity, hydration levels, medications, gender, age, race, smoking, and anxiety
levels can notably influence hematologic parameters.

Additionally, we have plasma, which is a suspension of proteins (such as fibrinogen)
and small molecules in water.

The fibrinogen contained in blood plasma, interacting with RBCs, can produce the
following effects, according to Merrill (1969):

• Inconvenient rapid sedimentation of RBCs

• Syneresis of plasma next to boundary surfaces

• Densification of the red cell core (increase of HCT)

Merrill (1969) points out that the non-Newtonian behavior of human blood is dominated
by the interaction of fibrinogen with RBCs. At normal hematocrit levels, no other plasma
protein seems to have the capacity to promote the formation of a yield stress in RBCs.

3.2.1 Volume of packed red cells (Hematocrit)

Hematocrit (HCT) represents the percentage of a blood sample’s volume occupied by
red cells. The determination of HCT can be performed manually through centrifugation of
blood in a standardized glass tube with a consistent bore, following the method initially
outlined by Greer et al. (2019). The HCT is calculated by comparing the height of the
column of red cells after centrifugation to the total volume of the blood sample.

In his paper, Merrill (1969) cites some medical sources of data, presenting some
mathematical relationships for the viscosity of whole blood at high shear rates, as a
function of HCT level. It also presents the relationship representing the variable yield
stress for the range of shear rates corresponding to the non-Newtonian behavior of human
blood.
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3.2.2 Temperature

The rheological properties of normal human blood are less affected by temperature, at
the non-Newtonian and zero shear rate regimes. Approximately 90 % of tested humans
presented a yield stress of their blood independent of temperature, while other 10 %
showed substantial increase of yield stress as temperature decreased from 37 ◦C to 25 ◦C
(MERRILL, 1969).

3.2.3 Anticoagulants

Cokelet et al. (1963) studied both fresh human blood from a donor without anticoag-
ulants and with anticoagulants in a Couette viscometer, and found that, at reasonable
concentrations, anticoagulants such as heparin, sodium citrate, ACD, EDTA, and sodium
oxalate did not promote significant changes in the rheological properties of whole blood.
They do not play an observable significant role in the fibrinogen-RBCs structure.

3.3 Density of human blood
According to Pedrizzetti et al. (2022) and Pedrizzetti e Perktold (2003) blood density

is approximately 1, 050 kg/m3.
Trudnowski e Rico (1974) mentions that the relative density (see appendix B, sec.

14.2) of blood at 37 ◦C is 1.0506 (95 % confidence interval: 1.0537 − 1.0475), yielding a
density of human blood at 37 ◦C of 1, 050.6 kg/m3. It is important to note that the relative
specific mass is the ratio between the fluid’s specific mass under consideration and the
specific mass of water (Trudnowski e Rico (1974) considered 1, 000 kg/m3 at 4 ◦C) at a
given specific temperature.

Larkin e Banks (2016) and Hulse-Smith, Mehdizadeh e Chandra (2005) mention in
their works that the relative density of human blood ranges between 1.052 e 1.063.

The relative density measured by Raymond, Smith e Liesegang (1996) for human blood
containing ACD or EDTA anticoagulant was in the range 1.056 − 1.061. The relative
density of the blood was measured using a pyknometer graduated to hold a volume of 10 ml
at 20 ◦C. The pyknometer was weighed dry at 37 ◦C with distilled water as a reference
sample at 37 ◦C, with fresh human blood from a number of individuals.

Finally, Attinger et al. (2013) sheds light on a range of values for the density of human
blood, from 1, 052 − 1, 063 kg/m3 at 37 ◦C, taking into account the works of James, Kish
e Sutton (2005) and Rosina et al. (2007).
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3.4 Blood viscosity
Blood viscosity is the result of several features like RBCs, aggregation and deformation,

plasma viscosity, and RBCs-plasma coupling.
Whole blood viscosity varies in accordance with both physical conditions and its

composition (LOWE, 1988). Temperature, HCT, plasma viscosity, and shear rate are
physical conditions that affect blood viscosity. Regarding composition, viscosity is affected,
for example, by the deformability of RBCs, flexibility of their membranes, and Hb concen-
tration. When the shear rate is reduced, RBCs become less deformed and progressively
aggregate through plasma globulins — especially fibrinogen — leading to an increase in
bulk blood viscosity.

Quoting Lowe (1988) on the viscosity of human blood:

Low blood viscosity at high shear rates is due to the considerable de-
formability of normal red cells. Under high-shear conditions, red cells are
oriented in parallel with the flow streamlines, assume an ellipsoidal shape
with their long axes parallel to the direction of flow, and participate in
flow.

Merrill et al. (1966) showed that fibrinogen acts as an adhesive in the reversible
clustering of RBCs. The yield stress, τy, rises with higher concentrations of fibrinogen and
HCT composition. Additionally, they noted that the presence of other plasma proteins
does not have an impact when fibrinogen is absent.

Merrill (1969) asserts that the non-Newtonian behavior of human blood regarding
variations in applied shear rates on fluid elements is much more significant than the
viscoelastic characteristic it also exhibits.

Merrill (1969) discusses the presence of a yield stress in human blood, of which I quote
the following excerpt:

A special problem is posed with blood because it exhibits a "yield stress".
This means that, if in the playing card experiment, one increases from
zero to stress, but keeps it less than a critical value, the response will be
elastic, [...], and on removal of the stress, the shape of the blood film will
be unaltered, i.e., no flow will have occurred. However, if the yield stress
is exceeded, irreversible deformation will occur.

Merrill (1969) also mentions the value of τy = 0.04 dynes/cm2 = 0.004 N/m2.
In this context, Lowe (1988) also mention the reversible deformation (elasticity) of the

bulk flow, but he is unaware of the reason, and presented a table of the yield stress for
human blood from some previous studies:
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Table 1 – Human blood yield stress values. Adapted from Lou e Yang (1993)

HCT (%) τy (mN/m) Sources
46 5 Cokelet et al. (1963)

Normal 10.89 Charm e Kurland (1965)
Normal 0.3-0.2 Charm e Kurland (1972)

42 14.4-25.6 Bate (1977)
18.66 Blair (1959)

Baskurt e Meiselman (2003) states that at medium to high shear rates, there is about
a 4 % increase of blood viscosity per unit increase of HCT (e.g., a change from 45 to 46 %
in HCT increases blood viscosity by 4 %).

Merrill (1969) demonstrates through experimental data that the non-Newtonian be-
havior of human blood occurs approximately when γ̇ ≤ 100 s−1. In Fig. 7, it can be
observed that for values of the shear rate higher than 100 s−1, the linear coefficient of the
curve remains constant, highlighting the Newtonian characteristic of human blood. Due
to this data overlap in Fig. 7 - at low shear rates - Merrill (1969) replotted the data using
the double square root, as shown in Fig. 8. In this image, it is noticeable that at low
shear rates (γ̇1/2 ≤ 5.3 s−1/2), there is a constant linear coefficient, similar to what occurs
for γ̇1/2 ≥ 10.0 s−1/2, indicating Newtonian behavior both at low and high shear rates,
with a transitional region in the middle range of shear rates, where human blood exhibits
non-Newtonian behavior.

Figure 7 – Shear stress (τ) plotted vs. shear rate (γ̇) for a typical normal blood (HCT =
40 % and T = 37 ◦C). Note confusion of points near origin. Source: Merrill
(1969)
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Figure 8 – Same data as in Fig. 7 replotted as square root of shear stress (τ) vs. square
root of shear rate (γ̇) for a typical normal blood (HCT = 40 % and T = 37 ◦C).
Note determination of square root of yield stress τ 1/2

y . Source: Merrill (1969)

As well noted by Merrill (1969), determining the correct viscosity of whole human
blood at low shear rates is a challenging task, due to sedimentation processes and the
formation of a clear plasma layer near the viscometer walls, leading to gross measurement
errors. Therefore, the measurement speed becomes an important parameter to consider.

Moreover, Fåhraeus (1929) observed that under low flow conditions, RBCs in plasma
form a structure of linear aggregates called rouleaux (figure 9), which result from the
aggregation of RBCs by plasma proteins, especially fibrinogen, which form bridges between
adjacent red cells.

Figure 9 – Rouleaux formation. Source: Greer et al. (2019)
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Some important considerations pertain to changes in whole blood viscosity in healthy
individuals, supported by research findings. For instance, Lowe (1988) mentions that
according to some studies, women — especially during reproductive years — exhibit lower
blood viscosity than men, due to reduced HCT levels.

Regarding individuals’ age, newborns have higher blood viscosity than adults due to
elevated HCT levels. Conversely, children have lower viscosity than adults due to decreased
HCT levels. During puberty, hormonal changes lead to increased RBC mass in males,
altering viscosity compared to females.

Despite limited information in the field, Lowe (1988) anticipates lower blood viscosity
values in underdeveloped countries due to lower HCT levels resulting from experiences of
malnutrition, infections and infestations, as well as in regions with colder and extreme
climates.

Moreover, women in menstrual cycles may exhibit high viscosity during the premenstrual
period and low viscosity during menstruation.

Women taking oral contraceptives may experience increased blood viscosity due to
elevated HCT and fibrinogen levels, but not plasma viscosity.

Pregnant women will experience decreased viscosity due to a drop in HCT levels.
Similarly, variations will be noticed in situations such as physical fitness, weight, blood

pressure, blood lipids and lipoproteins, cigarette smoking, alcohol consumption, mental
stress and individual differences.

3.5 Blood interfacial tension
According to Rosina et al. (2007), blood’s interfacial tension is one of the most

important parameters, in special from forensic perspective, due to bloodstain formation on
crime scenes. Raymond, Smith e Liesegang (1996) mentioned that the interfacial tension
pertinent to crime scene reconstruction is essentially that interfacial energy or tension
characterised by a particular blood droplet and air’s interfaces.

As elucidated by Tryggvason, Scardovelli e Zaleski (2011), interfacial tension can be
understood from a molecular perspective, where the interface is not thermodynamically
optimal. Molecularly, the preference of molecules is to exist at either gas or liquid specific
mass, minimizing free energy. The non-optimal conditions near the interface result in
excess energy. From a mechanical standpoint, interfacial tension can be perceived as a
force per unit length acting perpendicularly on any line segment in the interface. These
perspectives are equivalent: stretching the interface requires applying force to it.

Regarding some works on this property, Raymond, Smith e Liesegang (1996) employed
interfacial tension, along with other physical parameters like viscosity and specific mass,
to validate the use of porcine blood as a representative medium for freshly spilled human
blood in crime-related investigations. The assessment of interfacial tension’s impact and its
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correlation with the blood/bile ethanol ratio was explored by Winek, Henry e Kirkpatrick
(1983).

Investigations into the suitability of alumina as a material for cardiovascular applica-
tions, incorporated interfacial tension as a critical parameter (QUEIROZ et al., 2014).

McCuaig et al. (1992) simulated blood flow to examine the influence of interfacial
tension on slow venous bleeding, observing the coating of syringe interfaces and the
formation of a dome over skin laceration bleeding sites.

The chemistry of blood platelet-rich plasma, including interfacial tension values at
37 ◦C and 25 ◦C, was scrutinized by Baier et al. (1985) to establish a method for estimating
the apparent blood compatibility of new biomaterials.

As researched by Rosina et al. (2007), blood’s interfacial tension can be expressed - for
the range 20 ◦C ≤ T ≤ 40 ◦C - as:

σ(T) = −0.473 · T + 70.105 (3.1)

which give us the following graphic:

Figure 10 – Blood’s interfacial tension according to Rosina et al. (2007)

Lee et al. (2020) studied blood substitutes and one of the properties simulated was
interfacial tension that, for real human blood samples, was measured as 47.65 ± 1.25 mN/m
at 20 ◦C.

Attinger et al. (2013) mentioned that at 20 ◦C, blood’s interfacial tension in respect to
the air is approximately 61 mN/m, and at 37 ◦C is close to 52 mN/m.
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4 Fundamental equations of viscous flows

4.1 Introduction
The equations of viscous flows are known for beyond the last century. Current

computational capability to solve numerical problems is limited and can easily become
inefficient depending on the solving problem. For example, at high Reynolds number
(turbulent flow), it’s impossible to solve the complete viscous flows equations in their
complete form.

The basic two balance equations considered here to solve fluids motion are:

• Mass balance (continuity equation)

• Linear momentum balance equation

4.2 Mass balance: Continuity equation
On Eulerian system - appropriated to fluid flow - the balance equations mentioned on

sec. 4.1 must utilize the particle derivative:

Dρ

Dt
+ ρ∇ · u = 0 or ∂ρ

∂t
+ ∇ · (ρu) = 0 (4.1)

If the specific mass is constant (incompressible flow), the term ∂ρ/∂t is set to zero.
Then:

∇ · u = 0 (4.2)

4.2.1 The stream function

The mathematician J. L. Lagrange, in 1755, defined the stream function ψ . The
two-dimensional steady compressible flow in the xy plane, takes the continuity equation
to:

∂

∂x
(ρu) + ∂

∂y
(ρv) = 0 (4.3)

If we define the stream function ψ as:

ρu = ∂ψ

∂y
and ρv = −∂ψ

∂x
(4.4)
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it is noticed that Eq. 4.4 satisfies Eq. 4.3. It leads to a physical significance which means
that lines of constant ψ (dψ = 0) are lines across which there is no mass flow (dṁ = 0),
that is, they are streamlines of the flow. Also, between two streamlines, the value of ψ is
numerically equal to the mass flow between these two streamlines.

4.3 Linear momentum balance
The Newton’s second law is expressed as:

F = m a (4.5)

Dividing all Eq. 4.5 by the volume of the particle, we have:

ρ
Du
Dt

= f = fbody + finterface (4.6)

where f is the applied force per unit of volume of the fluid particle. This force f is divided
into two forces: body forces and interface forces.

The body forces are those applied on the entire fluid particle. This forces are usually
the gravitational field, wrote as:

fbody = ρg (4.7)

being g the vector acceleration of gravity.
External stresses make up the interface forces when applied on the sides of the fluid

particle. All stresses are positive, as the sign convention shown on following figure:

Figure 11 – Stresses convention notation

The quantity stress τij is understood as the tension τ applied on a plane orthogonal to
the i-axis, on j-axis direction. It is defined as:
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τij =


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 (4.8)

This tensor is symmetric to satisfy equilibrium of moments about the three axes of the
element of fluid.

Considering Fig. 11, the total force on the frontal faces in each direction due to stress
is:

dFx = τxxdydz + τyxdxdz + τzxdxdy

dFy = τxydydz + τyydxdz + τzydxdy

dFz = τxzdydz + τyzdxdz + τzzdxdy

(4.9)

If the particle is in equilibrium, these forces in each direction would be balanced by
equal and opposite forces applied on back faces. But, if the particle is accelerating, the
front and back faces stresses will be different by an infinitesimal amount as, for example:

τxx,front = τxx,back + ∂τxx

∂x
dx (4.10)

So, the net force in x direction is:

Fx,net =
(
∂τxx

∂x
dx

)
dydz +

(
∂τyx

∂y
dy

)
dxdz +

(
∂τzx

∂z
dz

)
dxdy (4.11)

or, per unit of volume of the fluid particle:

fx,net = ∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
(4.12)

The previous Eq. 4.12 is the divergent of the vector (τxx, τxy, τxz), the upper row of
the stress tensor (eq. 4.8). Similarly, fy and fz are divergent of the other two rows of the
stress tensor, respectively. So, the total vector interface force can be written as:

finterface = ∇ · τij = ∂τij

∂xj

(4.13)

In this way, the Newton’s law presented on Eq. 4.5 becomes:

ρ
Du
Dt

= ρg + ∇ · τij (4.14)

The above equation is also known as the Cauchy equation of motion, which represents
the balance of linear momentum. It is one of the fundamental equations of continuum
mechanics.

When the fluid is at rest, the viscous stresses vanishes; it has no velocity and no shear
stresses, and the normal stresses become equal to hydrostatic pressure. So, Eq. 4.14
reduces to:
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τxx = τyy = τzz = −p

τij = 0 for i ̸= j

∇p = ρg

(4.15)

4.3.1 Deformation law for Newtonian fluid

As well explained by White (2006), a fluid element can undergo four types of motion
or deformation:

• Translation

• Rotation

• Extensional strain or dilatation

• Shear strain

Consider a square particle of fluid initially positioned as ABCD at a random time t.
After a infinitesimal time dt, the particle is positioned as A′B′C ′D′.

Figure 12 – Distortion of a moving fluid element

The translation is defined by the displacements u dt and v dt of the point B. The rate
of translation are the velocities itself: u and v. In three-dimensional motion, the rate of
translation is u, v and w.
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The angular rotation of the particle about the z-axis is defined by the average counter-
clockwise rotation (by convention) of the two sides BA and BC. It’s visible in the Fig.
12 that the angle α performs a counterclockwise amount rotation of dα, while angle β
performs a clockwise amount rotation of dβ. So, the counterclockwise amount rotation of
the angle β is −dβ. So, the average rotation is:

dΩz = 1
2(dα− dβ) (4.16)

Now, let’s find the angles dα and dβ in function of the velocity derivatives.
First, for an infinitesimal angles ϕ, we can assume that tg ϕ ≈ ϕ. Then, looking at

Fig. 12 we can do:

dα = tg α = lim
dt→0

(
∂v
∂x
dx dt

dx+ ∂u
∂x
dx dt

)
= dv

dx
dt (4.17)

dβ = tg β = lim
dt→0

 ∂u
∂y
dy dt

dy + ∂v
∂y
dy dt

 = du

dy
dt (4.18)

Replacing the Eqs. 4.17 and 4.18 on Eq. 4.16, we find the rate of rotation, that is
given by:

dΩz

dt
= 1

2

(
dv

dx
− du

dy

)
(4.19)

Similarly, in three-dimensional motion, we have the rate of rotation about x and y

axes, as:

dΩx

dt
= 1

2

(
dw

dy
− dv

dz

)
(4.20)

dΩy

dt
= 1

2

(
du

dz
− dw

dx

)
(4.21)

Now, we have the shear strain, which is commonly defined as the average decrease of
the angle between two lines which are initially perpendicular in the unstrained state. As
shown in Fig. 12, the initial lines are the segments BA and BC. So, the shear strain is

γxy = 1
2 (dα + dβ) (4.22)

So, the shear strain rate is:

γ̇xy = 1
2

(
dα

dt
+ dβ

dt

)
= 1

2

(
dv

dx
+ du

dy

)
(4.23)

Similarly, on three-dimensional motion, we have:

γ̇yz = 1
2

(
dv

dz
+ dw

dy

)
(4.24)
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γ̇xz = 1
2

(
du

dz
+ dw

dx

)
(4.25)

And for last, the fourth motion of a fluid particle is the extensional strain or dilatation.
Looking into Fig. 12, the extensional strain on x direction is defined as the fractional
increase in length of the horizontal side of the fluid particle, that is, segment BC. As well
explained by Malkin (1994), the absolute value of B′C ′ −BC is not important, because the
initial length BC might be quite arbitrary, only relative change of the distance between
two sides is important:

γxx = B′C ′ −BC

BC
= (dx+ ∂u/∂x dx dt) − dx

dx
= ∂u

∂x
dt (4.26)

Similarly as we did on the other types of motion, we have the three-dimensional shear
strain rates as:

γ̇xx = ∂u

∂x
γ̇yy = ∂v

∂y
γ̇zz = ∂w

∂z
(4.27)

Join all strain rate components - extensional and shear - we can constitute a second-order
strain rate tensor:


γ̇xx γ̇xy γ̇xz

γ̇yx γ̇yy γ̇yz

γ̇zx γ̇zy γ̇zz

 (4.28)

Regarding the deformation of a particle of fluid, Stokes (1845) developed the three
following postulates:

• The fluid is continuous, and it’s stress tensor, τij, has a linear relation to strain rate
tensor, γ̇ij

• The fluid is isotropic, i.e., it’s properties are independent of the direction, and
therefore the deformation law is independent of the coordinate axes in which it is
expressed

• When do not have strain rate between adjacent particles of fluid, the deformation
must reduce to the hydrostatic pressure, τij = −pδij , where δij is the Kronecker delta
function (δij = 1 if i = j and δij = 0 if i ̸= j)

Therefore, associating the mathematical developments presented earlier with the
postulates of Stokes (1845), the following formulation for the stress tensor is achieved
(further details in chapter 2 of White (2006)) from Eq. 4.14:

τij = −pδij + µ

(
∂ui

∂xj

+ ∂uj

∂xi

)
+ δijλ∇ · ui (4.29)
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4.3.2 The linear momentum balance equations

Now, it’s possible to obtain the linear momentum balance equations by replacing the
stress relations, equation 4.29, on Newton’s law, as:

ρ
Dui

Dt
= ρgi − ∇p + ∂

∂xi

[
µ

(
∂ui

∂xj

+ ∂uj

∂xi

)
+ δijλ∇ · ui

]
(4.30)

Dismembering Eq. 4.30 in scalar form, we have:

ρ
Du

Dt
= ρgx − dp

dx
+ ∂

∂x

(
2µ∂u
∂x

+ λ∇ · u
)

+ ∂

∂y

[
µ

(
∂u

∂y
+ ∂v

∂x

)]

+ ∂

∂z

[
µ

(
∂u

∂z
+ ∂w

∂x

)]

ρ
Dv

Dt
= ρgy − dp

dy
+ ∂

∂x

[
µ

(
∂v

∂x
+ ∂u

∂y

)]
+ ∂

∂y

(
2µ∂v
∂y

+ λ∇ · u
)

+ ∂

∂z

[
µ

(
∂v

∂z
+ ∂w

∂y

)]

ρ
Dw

Dt
= ρgz − dp

dz
+ ∂

∂x

[
µ

(
∂w

∂x
+ ∂u

∂z

)]
+ ∂

∂y

[
µ

(
∂v

∂z
+ ∂w

∂y

)]

+ ∂

∂z

(
2µ∂w

∂z
+ λ∇ · u

)

(4.31)

The above equations can be simplified if we do some thermal decoupling, assuming ρ
and µ constants. With ρ = constant, the term ∇ · u vanishes from the Eqs. 4.30 and 4.31,
due to continuity (Eq. 4.1), also eliminating the λ coefficient. Then, if we assume a fixed
temperature and pressure, turning viscosity term constant, µ = constant, so we have the
simplified linear momentum balance equation for constants viscosity and specific mass:

ρ
Du
Dt

= ρg − ∇p + µ∇2u (4.32)

Now, based on the considerations made in the previous paragraph, if we only disregard
the physical and numerical constancy of viscosity µ, being able to vary it by some specific
criterion, Eq. 4.30 returns to:

ρ
Dui

Dt
= ρgi − ∇p + ∂

∂xi

[
µ

(
∂ui

∂xj

+ ∂uj

∂xi

)]
(4.33)

For this specific case in which viscosity varies, the latter will be linked to the second
Galilean invariant, as will be presented in chapter 5.

4.4 Nondimensional numbers
The dynamics of multifluid and multiphase flows are governed by a variety of nondi-

mensional numbers, depending on the specific conditions driving the flow. Tryggvason,
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Scardovelli e Zaleski (2011) presented these nondimensional numbers on it’s section 2.6.

4.4.1 Reynolds number

The Reynolds number is a dimensionless measure of the relative importance of inertial
and viscous effects in fluid flow. It is defined as the ratio of inertial force to viscous force
and is widely used to predict flow transitions, turbulence, and overall flow behavior.

Re = ρU L

µ
= U L

ν
(4.34)

In the Eq. 4.34 above, U is the characteristic velocity of the flow and L is the
characteristic length of the flow.

4.4.2 Weber number

The Weber number is a dimensionless number describing the relative importance of
inertia and interfacial tension forces in a flow. It is often used in dynamic problems
involving drops and bubbles. For liquids of low viscosity, the deformation of a drop is
determined primarily by the ratio of the aerodynamic forces and the interfacial tension
forces:

We = ρU2 L

σ
(4.35)

The higher the Weber number, the larger are the deforming external pressure forces
compared with the reforming interfacial tension forces.

4.4.3 Ohnesorge number

The Ohnesorge number is a dimensionless number describing the relative importance
of inertia, viscosity, and capillarity in viscous liquid flow problems. It is often used in
contexts of spraying and atomization.

Oh = µ√
ρ σ L

= µ∗
√
ρ∗

√
We

Re
(4.36)

where ρ∗ = ρd/ρc and µ∗ = µd/µc.
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5 Rheology of non-Newtonian fluids

5.1 Introduction
Rheology is a science that deals with the deformation of any material as a result of the

applied stress over it (CARREAU; KEE; CHHABRA, 2021).
It is possible to consider two extremes regarding the response of materials: first, a

non-deformable body, and on the other hand, an inviscid fluid. For the former, the modulus
of elasticity is infinite, while for the latter, the viscosity is zero. Real materials have
properties of modulus of elasticity and viscosity that fluctuate within these two extremes.

Carreau, Kee e Chhabra (2021) consistently summarized, as shown in the table below,
the possible behaviors of fluids between these two extremes:

Inviscid fluid
(ideal case with µ = 0) None

Linear viscous fluid
(Newtonian behavior) Water

Continuum
mechanics

Fluids

Non-linear viscous material Suspensions in Newtonian
media

Linear viscoelastic material Polymer under small
deformation

Non-linear viscoelastic material
Concentrated polymer
solutions or plastics under
large deformation

Non-linear elastic material Rubber

Solids
Linear elastic solid Linear Hookean spring
Non-deformable solid
(ideal case with G = ∞) None

Table 2 – Summary of rheological behavior. Adapted from Carreau, Kee e Chhabra (2021)

In the development of his rheological model, Cross (1965) reinforces that a deep
understanding of the relationship between viscosity and shear rate is a fundamental basis
for comprehending non-Newtonian behavior.

5.2 Fluid behavior

5.2.1 Newtonian fluid

Barnes (2000) defines a Newtonian fluid as:
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A Newtonian liquid is one for which the viscosity—although varying with
temperature and pressure—does not vary with shear rate or time; nor
does such a liquid display any elastic properties or extensional anomalies.

And it’s important establish that - as cited by Barnes (2000) - the word "non-Newtonian"
has a lower case prefix "n" and the word is hyphenated.

According to Rao (1999), typical Newtonian foods are those containing compounds
of low molecular weight, and that do not contain large concentrations of either dissolved
polymers (e.g., pectins, proteins, starches) or insoluble solids.

Now, advancing on the subject, consider the laminar flow of a thin layer of an incom-
pressible fluid between two parallel plates (see Fig. 13). The horizontal force imposed on
the upper plate, creates an opposite friction force to balance the system. This friction
force between the upper plate and the internal fluid may be expressed as a linear relation
to the velocity gradient, as:

F

A
= τyx = µ

(
−dVx

dy

)
= µγ̇yx (5.1)

Figure 13 – Schematic representation of unidirectional shearing flow

The first subscript y on the variables τ and γ̇ represents the interfacial plane where
the shearing is happening, on a normal direction to the flow, while the second subscript x
represents the direction of the force and flow.

The constant of proportionality, µ, is the ratio of shear stress to the shear rate, being
called as the Newtonian viscosity. This constant of proportionality is independent of
the shear stress or shear rate, only depending on the material and its temperature and
pressure.
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Figure 14 – Schematic representation of the constant of proportionality called viscosity, µ

On the above figure, it is notable that the slope of the curve that represents the relation
between shear stress and shear rate is the viscosity µ, and that this one is constant for
Newtonian fluids.

According to Barnes (2000), at high-enough shear rate, all liquids become non-
Newtonian. But, for example, it has even been estimated that pentane becomes non-
Newtonian above shear rates of 5 · 106 s−1, while water has this non-linear behavior at an
1012 s−1 shear rate order.

5.2.2 Non-Newtonian fluid

A Generalized Newtonian Fluid (GNF) is one defined as being purely viscous, depending
solely on the shear rate or stress applied to the fluid element. In many flow configurations,
viscoelasticity does not significantly influence the flow, and non-Newtonian viscosity, η, is
sufficient to describe the fluid’s rheology (BIRD, 1987; CARREAU; KEE; CHHABRA,
2021).

For this class of fluids, the curves of shear stress versus shear rate are non-linear and
some can not starts from the origin. So, in this case, the slope of the curves are not
constant, depending on factors as the flow geometry, pressure, temperature, shear rate
and, sometimes, on the kinematic history of the fluid element.

As stated by Chhabra e Richardson (2011), the non-Newtonian fluids can be grouped
in the three following classes:

• Time-independent fluids: The ones that the shear rate at any point is determined
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only by the value of the shear stress at that point. They are also called as "purely
viscous", "inelastic" or "Generalized Newtonian Fluids" (GNF)

• Time-dependent fluids: The ones also depends on the duration of the shearing and
their kinematic history

• Viscoelastic fluids: These fluids has characteristics of both ideal fluids and elastic
solids, also showing partial elastic recovery, after deformation

Given that the focus of this study revolves particularly around human blood, the
discussion will now delve deeper into time-independent fluids.

5.2.3 Time-independent fluid behavior

The flow behavior of this class of fluid may be described by this constitutive relation:

τ = η(γ̇) · γ̇ (5.2)

It means that the value of γ̇ for each differential part of the fluid is determined by the
shear stress on each one of this points.

Figure 15 – Time-independent flow behavior

The shear-thinning fluid (figure 15) is the most common type fluid observed in non-
Newtonian fluids, and is characterized by an apparent viscosity which decreases with
increasing shear rate. Most of the shear-thinning fluids exhibits - both at very low and
very high shear rates - Newtonian behavior, with a constant viscosity level.
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Rao (1999) tells that is preferred the expression shear-thinning than pseudoplastic,
because it is an accurate description of the shear stress versus shear rate curve.

Figure 16 – Schematic shear-thinning viscosity profile

The viscoplastic fluid behavior is characterized by an yield stress (τ0), below which
flow does not occur. As this yield stress is overcome, the fluid starts to flow, which may
be through a linear or non-linear relation, but it will not pass through the origin.

When the fluid has a linear curve when |τyx| > |τ0|, it is called Bingham plastic fluid,
and it’s characterized by a constant viscosity after the flow starts. On the opposite, when
the fluid has a non-linear curve when |τyx| > |τ0|, it is called yield-pseudoplastic fluid.

Many workers in this field view the yield stress in terms of the transition from a
solid-like (high viscosity) to a liquid-like (low viscosity) state which occurs abruptly over
an extremely narrow range of shear rates or shear stress.

Common examples of viscoplastic fluid behaviour include particulate suspensions,
emulsions, foodstuffs, blood and drilling muds (BARNES, 2000).

And finally, the shear-thickening or dilatant fluids has the behavior of increase viscosity
with increasing shear rate. This sub-class, according to Chhabra e Richardson (2011), has
received very little attention and is found very few reliable data about this subject.

5.3 The Galilean invariant
In the subsequent chapters, we will want to make constitutive equations independent

of the coordinate system. It will be necessary to make scalar rheological parameters like
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the modulus or viscosity as a function of a tensor. To explain, consider how the kinetic
energy depends on the vector velocity. The kinetic energy is given by:

Ek = 1
2mV

2 (5.3)

where V 2 = u · u. Kinetic energy is a function of the scalar product of the velocity
vector, the magnitude of the velocity squared. Thus, u · u does not depend on the
coordinate system; it is the invariant of the vector u.

Along the same line of reasoning, there is only one commonly used invariant of a vector:
it’s magnitude. However, there are three possible invariant scalar functions of a tensor.

For a generic tensor as:

T =


T11 T12 T13

T21 T22 T23

T31 T32 T33

 (5.4)

the three invariants are:

IT = trT = T11 + T22 + T33 (5.5)

IIT = 1
2
[
I2

T − trT2
]

= T11T22 + T11T33 + T22T33

− T12T21 − T23T32 − T13T31 (5.6)

IIIT = detT = T11T22T33 + T12T23T31 + T12T32T21

− T11T23T32 − T21T12T33 − T31T22T13 (5.7)

IT is called the first invariant of the tensor T, IIT the second invariant and IIIT the
third invariant. They are called invariants because no matter the coordinate system used,
the invariants will lead to the same value ever.

Now, it is possible to construct similar measurement to the strain rate tensor, putting
the shear rate in function of it’s invariants, so that is possible to complete the three-
dimensional linear momentum balance equation (eq. 4.30).

The strain rate tensor, S, is given by:

S = 1
2
[
(∇u) + (∇u)T

]
(5.8)

So:
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2S =
[
(∇u) + (∇u)T

]
=


S11 S12 S13

S21 S22 S23

S31 S32 S33

+


S11 S21 S31

S12 S22 S32

S13 S23 S33



2S =


S11 + S11 S12 + S21 S13 + S31

S21 + S12 S22 + S22 S23 + S32

S31 + S13 S32 + S23 S33 + S33


(5.9)

Since the strain rate tensor is symmetric, we can do S12 = S21, S13 = S31 and S23 = S32.
So:

2S =


2S11 2S12 2S13

2S12 2S22 2S23

2S31 2S23 2S33

 (5.10)

The second-order Galilean invariant of the strain rate tensor, II2S, is given by:

II2S = 1
2
[
I2

2S − tr
[
(2S)2

]]
(5.11)

In turn, the first-order Galilean invariant of the strain rate tensor, I2S, is:

I2S = tr(2S) = 2S11 + 2S22 + 2S33 (5.12)

Squaring, is obtained:

I2
2S = (2S11 + 2S22 + 2S33) · (2S11 + 2S22 + 2S33)

I2
2S = 4

[
S2

11 + S2
22 + S2

33 + 2 (S11S22 + S22S33 + S33S11)
]

(5.13)

Solving now tr [(2S)2], we have:

tr
[
(2S)2

]
= tr




2S11 2S12 2S13

2S12 2S22 2S23

2S31 2S23 2S33

 ·


2S11 2S12 2S13

2S12 2S22 2S23

2S31 2S23 2S33


 (5.14)

tr
[
(2S)2

]
= (2S11 · 2S11 + 2S12 · 2S12 + 2S13 · 2S13)

+ (2S12 · 2S12 + 2S22 · 2S22 + 2S23 · 2S23)

+ (2S31 · 2S31 + 2S23 · 2S23 + 2S33 · 2S33) (5.15)
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tr
[
(2S)2

]
= 4 ·

[
S2

11 + S2
22 + S2

33 + 2
(
S2

12 + S2
23 + S2

13

)]
(5.16)

Join 5.13 and 5.16, is obtained:

II2S = 1
2
{
4
[
S2

11 + S2
22 + S2

33 + 2 (S11S22 + S22S33 + S33S11)
]

−4
[
S2

11 + S2
22 + S2

33 + 2
(
S2

12 + S2
23 + S2

13

)]}

II2S = 4
[
(S11S22 + S22S33 + S33S11) −

(
S2

12 + S2
23 + S2

13

)]
(5.17)

5.4 Shear rate in function of Galilean invariant
Here, it is important to emphasize that several different relationships have been found

in the literature∗ between the scalar value γ̇ and the second Galilean invariant, IIT (see
Eq. 5.6). These variations can lead to different results, and the relationship used by the
reference being employed should always be checked during validations of computational
simulations.

For example, Cho e Kensey (1991) utilizes the following relationship between the scalar
γ̇ and the second Galilean invariant :

γ̇ =
√

1
2II2D =

√√√√√1
2

∑
i

∑
j

γ̇ij γ̇ji

 (5.18)

This relationship results in the following final combination of the components of the
strain rate tensor:

γ̇ =
√

2 [(S11S22 + S22S33 + S33S11) + 2 (S2
12 + S2

23 + S2
13)] (5.19)

Similar occurrences happen for the relationships used by Shibeshi e Collins (2005) (eq.
5.20), Siauw, Ng e Mazumdar (2000) (eq. 5.21), and Bilgi e Atalık (2020) (eq. 5.22),
despite the diverse nomenclature:

γ̇ =

√√√√√1
2

∑
i

∑
j

DijDji

 (5.20)

where Dij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
.

∗ In all the relationships presented, the original nomenclature used in the articles has been preserved.
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√
J2 =

√
1
2Vij Vji (5.21)

where Vij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
.

γ̇ =
√
I2/2 =

√
II2D/2 (5.22)

Additionally, Shateyi e Muzara (2020) achieved the same final relationship as Cho e
Kensey (1991) through another proposal:

γ̇ =
[1
2tr(A

2)
] 1

2
(5.23)

where A = ∇v + ∇vT .
On the other hand, Buchanan et al. (2003) caused significant confusion between

terminologies, failing to properly define the relationships between viscosity, total shear
rate, and the second Galilean invariant. The following relationships were indicated in their
paper:

η(IID) and η(γ̇) and γ̇ = 2D (5.24)

D = 1
2
[
∇v + (∇v)T

]
(5.25)

IID = 1
2
[
I2

D + tr
[
(D)2

]]
(5.26)

The scalar of the shear rate found by Eq. 5.26 results in:

IID =
(
S2

11 + S2
22 + S2

33

)
+ (S11S22 + S22S33 + S33S11) +

(
S2

12 + S2
23 + S2

13

)
(5.27)

Neofytou (2005), on the other hand, proceeded to use a different relationship to the
second Galilean invariant, absorbing only the trace of the strain rate tensor, as follows:

|γ̇|=
√

2tr(D2) (5.28)

where D = 1
2

[
∇v + (∇v)T

]
.

This results in a scalar for γ̇ as follows:

γ̇ =
√

2 (S2
11 + S2

22 + S2
33) + 4 (S2

12 + S2
23 + S2

13) (5.29)

Papanastasiou (1987) utilized the following relationship, not specifying the equation -
in terms of the strain rate tensor - used to calculate the second Galilean invariant.

γ̇ =
√
IID (5.30)
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Macosko (1994), on the other hand, indicates Eq. 5.31 for the scalar of the shear rate
in terms of the Galilean invariant, besides presenting Eq. 5.11 - in the initial chapters of
his book - for the second Galilean invariant:

γ̇ =
√
II2S (5.31)

Nisco et al. (2023), with different nomenclature (eq. 5.32), and Skiadopoulos, Neofytou
e Housiadas (2017) arrived at the same relationship for the scalar γ̇ as described by
Neofytou (2005):

γ̇ =
√

2 D(v) : D(v) =
√

2 tr(D(v)2) (5.32)

where D(v) = ∇v+∇vT

2 .

Chandran et al. (2020), finally, also using varied nomenclature, achieved the same
results as Neofytou (2005).

γ̇ = 1
2(∇u + ∇uT ) (5.33)

where γ̇ =
√

2 γ̇ : γ̇.
In this dissertation, for all computational simulations performed, the relation 5.31 was

used to model the shear rate as a function of the Galilean invariant, the latter being
calculated as demonstrated in Eq. 5.17.
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6 Rheological viscosity models for blood

6.1 Introduction
As well highlighted by Barnes (2000), care must be taken when working with rheological

models that represent the physical viscosity of non-Newtonian fluids, as they are developed
for a specific range of shear rates, usually those experienced in real fluid operations within
human body.

For the present research, where blood operates outside human body, we will observe the
behavior of rheological models outside their ranges of shear rates used in their conception,
indicating avenues for further research into the different features promoted by different
models.

Next, rheological models representing viscosity for time-independent non-Newtonian
fluids will be presented, where the shear rate experienced by the fluid elements is the main
factor of viscosity variation. All these models mentioned below have been used to model
human blood viscosity.

To adhere to the most widely used nomenclature in the community (Barnes (2000), Rao
(1999), Malkin (1994), Chhabra e Richardson (2011), Macosko (1994) and Papanastasiou
(1987)), the symbol η will be used to represent the viscosity of a non-Newtonian fluid
when the following rheological models are being considered.

6.2 Shear-thinning models

6.2.1 Power-law model of Oswald de Waele

According to Bird (1987), in the power-law model of Ostwald de Waele (OSTWALD,
1923), the relationship between shear stress and shear rate (both plotted on logarithmic
coordinates) for shear-thinning fluids can be approximated by a straight line within a
limited range of either of these coordinates. For this part of the curve, the following
relationship is applied:

τ = m γ̇n (6.1)

In this case, the viscosity of the power-law fluid (or Ostwald de Waele fluid) is given
by:

η = τ/γ̇ = m γ̇n−1 (6.2)

If:
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• n < 1, the fluid exhibits shear-thinning properties

• n = 1, the fluid exhibits Newtonian behavior

• n > 1, the fluid exhibits shear-thickening behavior

In Eq. 6.2, m and n are two empirical constants known as the fluid consistency index
and the fluid behavior index, respectively. The constant m has the unit of measurement
Pa·sn and the constant n is dimensionless.

Physically, the fluid behavior index n is related to the decay/growth of viscosity. Within
a fixed range of shear rate, as the exponent n increases towards unity, viscosity undergoes
a smoothing in its decline. On the other hand, an increase in the consistency index m

indicates a reduction in the rate of viscosity variation with respect to the shear rate,
resulting in a curve with higher extremities of viscosity values for the same operational
region of shear rate.

While the power-law model provides a straightforward depiction of shear-thinning
behavior, it is not without its limitations. Typically, its applicability is confined to a
restricted range of shear rates, leading to the dependence of the fitted values of m and n
on the considered shear rate range. Additionally, the model does not provide predictions
for zero and infinite shear viscosities, η0 and η∞.

6.2.2 Carreau model

This is a four-parameter model and has a sufficient flexibility to fit a large range of
shear rate (γ̇). The model, according to Bird (1987) and Carreau (1968) is:

η = η∞ + (η0 − η∞)
[
1 + (λγ̇)2

]n−1
2 (6.3)

On (6.3), η0 is the zero-shear rate viscosity, η∞ is the infinite-shear rate viscosity, λ is
a time constant and n is the power-law expoent.

6.2.3 Carreau-Yasuda model

According to Carreau (1968), this is a highly successful five-parameter model and also
has a sufficient flexibility to fit a large range of shear rate (γ̇). According to Bird (1987),
Carreau (1968) and Yasuda (1979), this model is:

η = η∞ + (η0 − η∞) 1
[1 + (λγ̇)a]

1−n
a

(6.4)

On (6.4), the first four parameters are the same from Carreau model and a is a
dimensionless parameter that describes the transition region between zero-shear rate
region and power-law region.
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6.2.4 Cross model

Cross (1965) proposed this four-parameters model:

η = η∞ + (η0 − η∞) 1
1 + [λγ̇]a (6.5)

According to Cross, λ represents a constant associated with the rupture of molecular
linkages.

6.2.5 Simplified Cross model

According to Cross (1965), Steffan et al. (1990), Siauw, Ng e Mazumdar (2000) and
Abbasian et al. (2020), simplified Cross model can be described as:

η = η∞ + (η0 − η∞) 1
1 + λγ̇

(6.6)

6.2.6 Modified Cross model

Cho e Kensey (1991) presented a modification of the Carreau-Yasuda model, simplifying
the expoent of the terms in brackets from n−1

a
to a single m. As expected, both a and m

constants are dimensionless.

η = η∞ + (η0 − η∞) 1
[1 + [λγ̇]a]m (6.7)

6.2.7 Powell-Eyring model

Cho e Kensey used Powell e Eyring (1944) discussion about the relaxation theory of
flow treated according to statistical mechanics, and applied the inverse hyperbolic-sine on
shear rate terms, as:

η = η∞ + (η0 − η∞)
[

sinh−1 λγ̇

λγ̇

]
(6.8)

6.2.8 Modified Power-Eyring model

A modification on Powell-Eyring model was proposed by Cho e Kensey (1989) as:

η = η∞ + (η0 − η∞) ln (λγ̇ + 1)
[λγ̇]a (6.9)
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6.3 Yield-shear-thinning models

6.3.1 Herschel-Bulkley model

In his article, Herschel e Bulkley (1926) says that the flow in a plastic material does
not occur until a certain pressure is reached. This is the yield stress experimented by
some yield-shear-thinning fluids. So, as explained by Rao (1999), it can be included in the
power-law model as:

τ − τ0 = m γ̇n (6.10)

that with some mathematical manipulations is presented by Carreau (1968) and Antonova
(2012) as:

η = τ0

|γ̇|
+ η0|γ̇|n−1 (6.11)

6.3.2 Casson model

Cross (1965) mentioned in his article Rheology of non-Newtonian fluids: A new flow
equation for shear-thinning systems that Casson has developed a theory, applicable to
non-aqueous pigment suspensions, based on the assumption that particles aggregate into
linear chains which can be treated as rigid rods. Abbasian et al. (2020) and Siauw, Ng
e Mazumdar (2000) also described Casson relation on their researches under medical
perspective. So, Casson model (CASSON, 1959) can be described as:

η =
(√

ηc +
√
τc/γ̇

)2
(6.12)

where τc is the same as τ0, the yield stress.

6.3.3 Modified Casson model

Abbasian et al. (2020) and Karimi et al. (2014) mentioned in their medical field articles
the development of the modified Casson equation, devised by Popel e Enden (1993), who
utilized parameters from the method of Quemada (1978):

η =
(

√
ηc +

√
τc√

λ+
√
γ̇

)2

(6.13)

6.3.4 K-L model

Abbasian et al. (2020) brought into play the K-L model mentioned by Karimi et al.
(2014), which is nothing more than a mathematical manipulation of the Casson model.
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η = 1
γ̇

[
τc + ηc

(
α2

√
γ̇ + α1γ̇

)]
(6.14)

6.3.5 Papanastasiou regularization

Some viscosity models, such as Herschel-Bulkley, Casson, and K-L, can easily induce
singularities in regions of the domain where there is no shear rate between adjacent
discrete volumes due to the denominator of these models’ relationships, resulting in
an improper fraction. These singularities are avoided in computational simulations by
adding to the numerator the regularization proposed by Papanastasiou (1987), the term[
1 − exp

(
−n |II2S|1/2

)]
= [1 − exp (−n γ̇)].

According to Papanastasiou e Boudouvis (1997), the exponent n is responsible for
providing a finite stress - at very low shear rates - when discrete elements are subjected to
stresses below the yield limit, avoiding the mentioned singularities. The higher the value
of n, the closer the stress - shear rate curve approaches the original curve, as shown in the
Fig. 17.

Figure 17 – Example curves for increasing values of n for viscoplastic models. Source:
Papanastasiou e Boudouvis (1997)
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7 Computational modeling

7.1 MFSim: CFD plataform
According to the user manual’s own definition:

MFSim is a Computational Fluid Dynamics (CFD) simulation software
continuously developed since 2007 by the Fluid Mechanics Laboratory of
the graduate program of the Mechanical Engineering Faculty (FEMEC)
at the Federal University of Uberlândia (UFU).

Considering only the scope of this dissertation - three-dimensional, two-phase, isother-
mal and incompressible flows of immiscible Newtonian and non-Newtonian fluids - the
functionalities incorporated by MFSim are as follows:

• Finite Volume Method (FVM) for discretization

• Pressure-velocity coupling by Fractional Step method

• Second-order divergent and non-divergent space and time discretization

• Implicit and semi-implicit discretization, fully parametric and variable time step

• Immersed Boundary Method (IBM) technique

• Multiphase simulation: Volume of Fluid (VoF), Front-Tracking and Level-set

• Simulation refinement via dynamic adaptive meshing

As presented by Villar (2007), in MFSim, the numerical discretization of balance
equations is performed in an Eulerian grid, while the equations for the interface motion
are discretized on a moving Lagrangian grid, independent of the Eulerian grid, with
communication between them through interpolations and spreading. These peculiarities
were exploited in the computational simulations carried out in this work.

Furthermore, for all carried out simulations, the temporal discretization was performed
using the Semi Backward Difference Formula (SBDF) method (ASCHER; PETZOLD,
1998; BADALASSI; CENICEROS; BANERJEE, 2003). This method treats the diffusive
term of the linear momentum balance equation implicitly and the advective term explicitly.

In the computational code MFSim, when solving the linear momentum balance equation,
various interpolation schemes for the advective term are employed. Among these, the
Barton scheme is renowned for its ability to capture variations in solutions with high
resolution, minimizing numerical oscillations. This scheme has demonstrated excellent
performance in several preliminary simulations, providing precise and stable results.
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However, when applied to the primary problem of free fall of a human blood droplet onto
a solid surface (see sec. 10.5), the Barton scheme proved unsatisfactory. The high density
ratio (ρ∗ = 895.27) and viscosity ratio (µ∗ = 186.49) present in this specific problem
compromised the accuracy of the scheme, highlighting its limitations in scenarios with
large gradients and discontinuities.

After identifying that the interpolation scheme of the advective term was the main issue,
several other schemes were tested, resulting in the selection of the TVD SUPERBEE. This
scheme, part of the Total Variation Diminishing (TVD) family, features a specific limiter
that combines high resolution with the prevention of non-physical oscillations (HARTEN,
1983; BAI; YANG; ZHOU, 2018). The TVD SUPERBEE proved particularly effective
in preserving the shape of the droplet during the simulation, even under challenging
conditions of high density and viscosity ratios. By implementing the TVD SUPERBEE, it
was possible to achieve more accurate and stable results, demonstrating its superiority
compared to the Barton scheme for this specific type of fluid dynamics problem.

Regarding the computational domain, cubic domains of dimensions [A1, B1, C1] ×
[A2, B2, C2] were considered for all simulations. Concerning discretization, initially, the
domain contains M,N , and L volumes in the x, y, and z directions, respectively, with
computational cell spacings ∆x = A2−A1

M
, ∆y = B2−B1

N
, and ∆z = C2−C1

L
.

As explained by Villar (2007), the center of each computational volume is described by:

xi,j,k = (xi, yj, zk) =
[
A1 +

(
i− 1

2

)
∆x, B1 +

(
j − 1

2

)
∆y, C1 +

(
k − 1

2

)
∆z
]

(7.1)

for 1 ≤ i ≤ M , 1 ≤ j ≤ N , and 1 ≤ k ≤ L.
Also, it is important to emphasize that scalar variables are defined at the center of the

computational volume, while vector variables are defined on faces (HARLOW; WELCH,
1965).

During master’s research, although the primary objective was to simulate blood droplets
in free fall onto a solid surface, it was necessary to conduct several preliminary simulations
in the MFSim code to validate the implementation of rheological models for non-Newtonian
fluids. In all these simulations, both for validation and those within the dissertation’s
scope, I opted to use the Fractional Step method instead of the SIMPLE or SIMPLEC
methods.

Regarding the pressure-velocity coupling, the Fractional Step method takes into account
the role of pressure in incompressible flows, as reported by Chorin (1968), which is to
enforce the incompressibility condition, thus not having a thermodynamic role. The
Fractional Step method proved particularly effective for pressure-velocity coupling in the
linear momentum balance equations. This time discretization method decomposes the
solution into sub-steps, separately addressing velocity updating and pressure correction.
Initially, an intermediate velocity is calculated without the pressure contribution. Then, a
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Poisson equation for pressure is solved to ensure mass conservation. Finally, the velocity
is corrected using the obtained pressure. This approach not only increased the numerical
stability of the simulations but also ensured the accuracy and efficiency required to handle
the complex behaviors of non-Newtonian fluids under the investigated conditions.

Concerning the computational domain mesh, it consists of grouped meshes that are
refined in zones of interest of the problem, such as refinement driven by density, vorticity
or VoF interface criteria. This refinement occurs at a rate of 2 (r = 2), and as the flow
progresses in time, the mesh is refined following the imposed refinement criteria.

The base mesh is called lbase, while the finest mesh is called ltop. Therefore, lbase ≤ l ≤
ltop, and the spacing of the other meshes is defined as:

∆xl+1 = ∆xl

r
(7.2)

∆yl+1 = ∆yl

r
(7.3)

∆zl+1 = ∆zl

r
(7.4)

In the meantime, the finest mesh is applied to the zones of interest, and the solution
in the finer meshes can be approximated by finite differences using the base mesh that
covers the entire domain.

The numerical resolution of fluid dynamics systems entails a high and often prohibitive
computational cost due to the large number of equations to be solved. Therefore, one
solution is the use of the Multigrid method, as pointed out by Maliska (2023). This
method promotes agility in solving the linear systems linked to solving the fluid dynamics
equations of the computational code, and this algorithm is considered one of the fastest
and most efficient for solving the mentioned linear systems, as indicated by Zhang (1997).

Finally, for the final and main simulations of this work, blood droplets were defined
within the computational domain using the Volume of Fluid (VoF) method, in which
the indicator function ϕ was applied with harmonic mean to define the density at the
interface, and with arithmetic mean for viscosity (DUAN et al., 2017; HALLMARK;
CHEN; DAVIDSON, 2019), as follows:

ρ = 1
(1−ϕ)

ρg
+ ϕ

ρl

(7.5)

µ = ϕµl + (1 − ϕ)µg (7.6)

In the previous equations, the subscript l indicates the liquid phase (dispersed phase),
while the subscript g indicates the gas phase (continuous phase).

Furthermore, regarding Immersed Boundary Method (IBM), this one allows for the
efficient representation of complex boundary geometries within a fixed Cartesian grid by
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introducing additional force terms in the momentum equations, which mimic the effect of
the solid boundaries. It is particularly useful for simulating fluid-structure interactions
without the need for mesh conformity to the solid boundaries.

And finally, in all simulations conducted using the MFSim computational code, both
for validation and within the scope of the dissertation, the following numerical methods
were consistently employed: the Fractional Step method, the SBDF and TVD SUPERBEE
schemes, and the Multigrid method for solving the pressure-velocity coupling.
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8 Non-Newtonian viscosity models validation

8.1 Permanent Poiseuille flow

8.1.1 Phisycal modeling

This is an horizontal flow between parallel and fixed flat plates (no-slip), due to
an imposed pressure gradient. Incompressible flow was assumed, in permanent regime,
isothermal and also disregarding gravitational effects.

Figure 18 – Schematic diagram of Poiseuille flow

To maintain a laminar flow of Re = 100, was set ρ = 1 kg/m3, V = 1 m/s, B = 1 m
(depth) and µ = 0.01 Pa·s.

The pressure difference between the fluid’s inlet (x = 0) and outlet (x = L) was set to
−0.6 Pa, calculated using Eqs. 13.20 (see Appendix A) and 8.4.

8.1.2 Algebraic-differential mathematical modeling

As the specific mass is constant (incompressible flow), the term ∂ρ/∂t of mass balance
(eq. 4.1) is set to zero. Then we have:

∇ · u = 0

Applying the physical modeling assumptions described in sec. 8.1.1, the linear momen-
tum balance equation (eq. 4.33) results in:

∂

∂y
(τyx) = ∂p

∂x
(8.1)

The boundary conditions for this problem are:
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 V (h) = 0
V (−h) = 0

. (8.2)

8.1.3 Continuous mathematical modeling

Solving the previous ODE, considering the imposed boundary conditions, it arrives at
the following continuous solution for Newtonian fluids (see Appendix A):

u(y) = Vmax

[
1 −

(
y

h

)2
]

(8.3)

where

Vmax = −φh2

2 (8.4)

and

φ = 1
µ

dp
dx

(8.5)

For non-Newtonian fluids (power-law model), the continuous solution (see Appendix
A) found was:

u(y) = Vmax

[
1 −

(
y

h

) 1
n

+1
]

(8.6)

where

Vmax = − n · φ
n+ 1h

1/n+1 (8.7)

and

φ =
[

1
m

(
dp
dx

)]1/n

(8.8)

It is possible to notice and it was checked that, for the case of n = 1, Eq. 8.6 returns
to the original equation for Newtonian fluids, Eq. 8.3.

8.1.4 Computational modeling

The domain was defined starting from the origin and extending to the coordinates
(L,H,B) = (5.0 m, 1.0 m, 1.0 m). The lbot level was defined as 40 × 8 × 8.

The boundary conditions for the parallelepiped domain were defined as follows for each
of the three velocity components and for pressure.

For the velocity components u, v, and w, the south, north, bottom and top faces were
set with Dirichlet conditions, indicating that the velocity is directly imposed on these faces
(all zero in this case). The west and east faces were set with a Neumann condition.
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For pressure, the south, north, bottom and top faces were set with Neumann conditions.
The west and east faces were set with a Dirichlet condition, where the pressure is directly
imposed, as specified in sec. 8.1.3. These configurations ensure an adequate representation
of the variables of interest at the domain boundaries, allowing the flow to be directed
based on the established pressure drop along the x-axis.

The Courant-Friedrichs-Lewy (CFL) number was set to 0.5. This value was chosen to
ensure the stability of the simulation, ensuring that the time step was sufficiently small to
accurately capture the rapid dynamics of the flow.

The total simulation time was set to 50 s, which is sufficient to reach the desired steady
state.

8.1.5 Computational results

After performing the simulations on the MFSim, the results of the discrete solution
converged to the continuous ones. As expected, for n < 1 (shear-thinning fluids) the
high shear rates regions - occurring near the wall - promotes a reducing on local viscosity,
allowing more fluid advection on flow direction, due to pressure imposed, as shown in Figs.
19 and 20. On the other hand, for n > 1 (shear-thickening fluids), the pressure applied on
the fluid promotes a increasing on local viscosity, creating a imaginative obstacle to normal
flow, reducing, therefore, advection on flow direction. For this last cases, the viscosity
profiles invert on the graph.

Figure 19 – Continuous (full lines) and discrete (dashed lines) solutions for the u-velocity
profiles, for different values of the flow behavior index, n
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Figure 20 – Viscosity profiles for shear-thinning (dashed lines), shear-thickening (thin full
lines) and Newtonian (straight full line) fluids, for different values of the flow
behavior index, n

8.2 Transient Couette flow

8.2.1 Phisycal modeling

It is a horizontal flow between parallel flat plates (no-slip), with no pressure gradient
in the flow direction, among which the upper plate moves at a constant velocity V .
Incompressible and isothermal flow was assumed, in transient regime, disregarding the
gravitational effects.

Figure 21 – Schematic diagram of transient Couette flow
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8.2.2 Algebraic-differential mathematical modeling

As the specific mass is constant (incompressible flow), the term ∂ρ/∂t of mass balance
(eq. 4.1) is set to zero. Then we have:

∇ · u = 0

Applying the physical modeling assumptions described in sec. 8.2.1, the linear momen-
tum balance equation (eq. 4.33) results in:

∂u

∂t
= 1
ρ

∂

∂y
(τyx) (8.9)

The boundary conditions for this problem are:
 u(0, t) = 0
u(h, t) = V

t > 0 (8.10)

u(y, 0) = 0 0 < y < h (8.11)

8.2.3 Continuous mathematical modeling

Solving the previous ODE by Laplace transform (see Appendix A), considering the
imposed boundary conditions, it reached the following continuous solution for Newtonian
fluids:

u(y, t) = V ·
∑[

erf
(

2bn+ a+ b

2
√
t

)
− erf

(
2bn− a+ b

2
√
t

)]
(8.12)

where

a = y√
ν

and

b = h√
ν

For non-Newtonian fluids it was not reached a continuous solution.

8.2.4 Computational modeling

The domain was defined starting from the origin and extending to the coordinates
(L,H,B) = (5.0 m, 1.0 m, 0.25 m). The lbot level was defined as 80 × 16 × 4.



8.2. TRANSIENT COUETTE FLOW 87

The boundary conditions for the parallelepiped domain were defined as follows for each
of the three velocity components and for pressure.

For the velocity component u, the south and north faces were set with Dirichlet
conditions, indicating that the velocity is directly imposed on these faces (zero at south
and the unit at north). The bottom, top, west and east faces were set with a Neumann
condition. For the velocity component v, the south and north faces were also set with
Dirichlet conditions (all zero in this case). The bottom, top, west and east faces were set
with a Neumann condition. For the velocity component w, the only difference on setup to
v, is that bottom and top faces were set with Dirichlet conditions (all zero), indicating a
pseudo-2D performing simulation.

For pressure, the south, north, bottom and top faces were set with Neumann conditions.
The west and east faces were set with a Dirichlet condition, where the pressure is directly
imposed (zero pressure gradient), as specified in sec. 8.2.3.

CFL number was set to 0.5. This value was also sufficiently small to accurately capture
the dynamics of the flow.

The total simulation time was set to 250 s, which is sufficient to reach this problem
steady condition.

8.2.5 Computational results

After performing the simulations on the MFSim platform, the results of the discrete
solution also converged to the continuous ones, for Newtonian fluids, as shown in Fig. 22.
On this case, is clearly observable the diffusion effect occurring from the upper flat plat to
the fluid, until the steady state is reached. As time goes by, linear momentum is diffused
on negative vertical direction, towards the bottom plate.

On the other hand, concerning non-Newtonian models, the power-law model was
activated. For the times indicated in Fig. 22, flow development in relation to the flow
behavior index, n, was analyzed. It is necessary to explain that flow behavior index higher
than 2 it’s unusual, but it was done exclusively to visualize, didactically, the physics
perspective.

Considering that the region of the flow experiencing the highest shear rates is the one
near the upper plate, the greater the value of the parameter n, the more resistance to
flow is perceived in this region. This resistance is transferred to the lower portions of the
domain through diffusion mechanisms, causing the steady-state regime to be reached more
quickly.

In Fig. 23 is possible to verify the shear-thinning and shear-thickening behaviors,
previously explained, for each time indicated in Fig. 22.
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Figure 22 – Continuous (full lines) and discrete (x-symbols) solutions for the u-velocity
profiles, at some specific times, for Newtonian fluid

(a) Time 5.1458s (b) Time 10.3738s

(c) Time 20.2490s (d) Time 30.1241s

Figure 23 – u-velocity profiles for non-Newtonian fluids (power-law) at specific times:
n=0.25 (long dash dot dot), n=0.5 (long dash dot), n=0.75 (long dash),
n=1.25 (dash dot), n=1.5 (dashed), n=1.75 (square dot), n=3 (round dot),
n=5 (thinner solid line) and n=10 (thicker solid line)
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(a) Time 5.1458s (b) Time 10.3738s

(c) Time 20.2490s (d) Time 30.1241s

Figure 24 – Viscosity profiles for non-Newtonian fluids (power-law) at specific times:
n=0.25 (long dash dot dot), n=0.5 (long dash dot), n=0.75 (long dash),
n=1.25 (dash dot), n=1.5 (dashed), n=1.75 (square dot), n=3 (round dot),
n=5 (thinner solid line) and n=10 (thicker solid line)

8.3 Lid-driven cavity flow

8.3.1 Phisycal modeling

The lid-driven cavity is another benchmark used to validate computational results and
features a 1:1:1 cubic cavity on a R3 domain, with five walls set with no-slip boundary
conditions (the vertical ones and the bottom one), while the top wall is defined as a fixed
non-null velocity that drives the cavity flow, as shown in Fig. 25. Note that, using all the
characteristic length, the lid-velocity and the specific mass equals to one, the Reynolds
number is set as Re = 1/µ for a Newtonian fluid. Incompressible and isothermal flow was
assumed, in transient regime, disregarding the gravitational effects.
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Figure 25 – Schematic diagram of the lid-driven cavity flow

8.3.2 Algebraic-differential mathematical modeling

As the specific mass is constant (incompressible flow), the term ∂ρ/∂t of mass balance
(eq. 4.1) is set to zero. Then we have:

∇ · u = 0

Applying the physical modeling assumptions described in the previous section, the
lid-driven cavity problem will uses the full linear momentum balance equation (eq. 4.33)
to be solved, as follows:

ρ
Dui

Dt
= ρgi − ∇p + ∂

∂xi

[
µ

(
∂ui

∂xj

+ ∂uj

∂xi

)]
For the flow of a non-Newtonian fluid inside the cavity, the only modification to the

above equation is that the viscosity will no longer be a constant. This entails, in the
discrete model, calculating its value for each volume of the computational domain by
calling a subroutine within the MFSim code.

The boundary conditions for this problem are:


u(x,H,z)=1, v(x,H,z)=0, w(x,H,z)=0, for 0≤x≤L and 0≤z≤B

u(0,y,z)=0, v(0,y,z)=0, w(0,y,z)=0, for 0≤y≤H and 0≤z≤B

u(L,y,z)=0, v(L,y,z)=0, w(L,y,z)=0, for 0≤y≤H and 0≤z≤B

u(x,y,0)=0, v(x,y,0)=0, w(x,y,0)=0, for 0≤x≤L and 0≤y≤H

u(x,y,B)=0, v(x,y,B)=0, w(x,y,B)=0, for 0≤x≤L and 0≤y≤H

u(x,0,z)=0, v(x,0,z)=0, w(x,0,z)=0, for 0≤x≤L and 0≤z≤B

(8.13)
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8.3.3 Computational modeling

The domain was defined starting from the origin and extending to the coordinates
(L,H,B) = (1.0 m, 1.0 m, 1.0 m). The lbot level was defined as 60 × 60 × 60.

The boundary conditions for the parallelepiped domain were defined as follows for each
of the three velocity components and for pressure.

For the velocity components u, v and w, all faces were set with Dirichlet conditions,
indicating that the velocity is directly imposed on them (all zero, except the lid with
u = 1 m/s).

For pressure, they were all set with Neumann conditions.
CFL number was set to 0.5. This value was also sufficiently small to accurately capture

the rapid dynamics of the flow.
The total simulation time was set to 400 s, which is sufficient to observe the dynamic

flow behavior.

8.3.4 Computational results

After performing the simulations on the MFSim, the results obtained both for Newtonian
and non-Newtonian fluids were validated with previous works (figure 26). Were extracted
u-velocity and v-velocity profiles on z-mean symmetry plane, over a central vector on y and
x directions, respectively. Simulations were conducted both at Re = 100 and Re = 500.

For a power-law non-Newtonian fluid, when n < 1 viscosity decreases, leading to a
thinner boundary layer and less resistance near the lid. Conversely, for n > 1 viscosity
increases with increasing shear rate, resulting in a thicker boundary layer and greater
resistance near the lid.

Within the cavity, these viscosity variations influence vortex formation and flow
resistance transmission. Shear-thinning fluids (n < 1) exhibit smoother flow with larger
and more rapidly forming vortices, as the lower viscosity in high shear regions facilitates
flow development. Shear-thickening fluids (n > 1), on the other hand, show more confined
and less pronounced vortices due to higher viscosity in high shear regions, slowing flow
stabilization. Thus, the power-law model significantly alters fluid dynamics compared to
Newtonian fluids, affecting flow patterns and stabilization times in the cavity.
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Figure 26 – u-velocity profiles for different values of the flow behavior index n, for Re = 100.
MFSim solution: solid lines. References solutions (symbols): Ghia, Ghia e
Shin (1982) (square), Tian, Bharti e Xu (2014) (asterisk), Chai et al. (2011)
(diamond) and Wang et al. (2016) (triangle)

Likewise with the previous u-velocity profiles, the v-velocity following profiles keep the
same physical behaviors.

Figure 27 – v-velocity profiles for different values of the flow behavior index n, for Re = 100.
MFSim solution: solid lines. References solutions (symbols): Ghia, Ghia e
Shin (1982) (square), Tian, Bharti e Xu (2014) (asterisk), Chai et al. (2011)
(diamond) and Wang et al. (2016) (triangle)
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Figure 28 – u-velocity profiles for different values of the flow behavior index n, for Re = 500.
MFSim solution: solid lines. References solutions (symbols): Aguirre et al.
(2018) (triangle)

Figure 29 – v-velocity profiles for different values of the flow behavior index n, for Re = 500.
MFSim solution: solid lines. References solutions (symbols): Aguirre et al.
(2018) (triangle)
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9 Performance analysis of blood’s rheological
models

9.1 Introduction
Lots of material experiments were conducted on last century about human blood

viscosity - most of them under medical perspective - testing influence of some blood
parameters, as RBCs aggregation, HCT, temperature, etc. Despite this many studies, the
majority works at medium and high shear rate ranges. There are a just a few works on
shear rates lower than 0.1 s−1.

In turn, when we discuss research on shear rate ranges within the human body, it is
not perceived very low shear rates inside body organs. For example, Ronco et al. (2002),
when investigating the flow inside a hemodialysis membrane module, found average wall
shear rates from 160 to 760 s−1. Ecker et al. (2021) mentioned other medical researches as
Yap, Saikrishnan e Yoganathan (2012), that found in an in vitro study of aortic valves
1, 700 to 2, 600 s−1 of shear rate. Stone, Jr e Schmidt-Nielsen (1968) investigated blood
viscosity of human and some animals (sheep, goat, dog and camel) with HCT level from
25 % to 69 % and shear rates from 5 to 230 s−1.

We still have Ethier e Simmons (2007), that realized that typical wall shear stresses
are in the range 0.1 to 1.5 Pa for most arteries in humans, which corresponds to wall shear
rates from approximately 30 to 450 s−1.

In addition to that explained in sec. 3.4, about the existence of blood’s yield stress, it
remains a controversial problem, according to Bird, Stewart e Lightfoot (1960).

So, on next table is presented several studies on human blood viscosity, carefully
verified, that were conducted over many different ranges of shear rate and HCT.

As we are interested in the study of blood viscosity from a forensic perspective, the
following figures present viscosity curves by shear rate specifically related to the studies in
Tab. 3 that encompass HCT ≥ 40 % and T ≥ 37 ◦C.

In Fig. 30, are presented the studies where the HCT level is closest to what is considered
normal for human blood, 45 %, and, in Fig. 31, curves related to HCT in the range of
40 % are depicted.
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Table 3 – Material experiments on blood viscosity

Reference Shear rate
range (s−1) Temperature (°C) HCT (%)

Eckmann et al. (2000) 4.5 to 450 10/15/25/37 22.5
Ecker et al. (2021) 10 to 1,000 37 40

Windberger et al. (2003) 0.7 to 94 37 40
Fossum et al. (1997) 0.5 to 201 37 40.9/42.5/44.2
Chien et al. (1966) 0.05 to 50 37 45

Merrill (1969) 1 to 300 37 40
Chien (1975) 0 to 300 37 45
Chien (1987) 1 to 1,000 37 44

Horner, Wagner e Beris (2021) 0.1 to 700 39 45
Rand et al. (1964) 21 to 212 22/27/32/37 20/40/60/80

Macosko (1994) 0.01 to 100 not informed not informed
Barnes (2000) 0.01 to 100 not informed not informed

Figure 30 – Viscosity profiles as a function of the shear rate for some material experiments
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Figure 31 – Viscosity profiles as a function of the shear rate for some material experiments

An important point to be noted with Figs. 30 and 31 is the exponential growth of
viscosity for γ̇ ≤ 1 s−1 and the lack of experimental data for shear rate ranges below this
value. Proceeding with extrapolations to determine the parameters of each rheological
model for blood - under the avaiable experimental shear rate range - may lead computational
modeling to results that do not accurately represent physical reality, if lower shear rates are
found within run simulations. This factor will be thoroughly explored in the simulations
conducted on next sections.

9.2 Rheological models versus material experiments
The following three tables summarize the blood parameters for each model simulated

in MFSim, categorized by model group:

• Table 4 contains values specifically related to the power-law model (eq. 6.1). This
model exhibits shear-thinning behavior without Newtonian plateau regions for low
and high shear rates

• Table 5 contains values specifically related to yield-shear-thinning models, character-
ized by a yield stress that must be exceeded for flow to occur

• Table 6 contains values specifically related to shear-thinning models with Newtonian
plateau regions for low and high shear rates



9.2. RHEOLOGICAL MODELS VERSUS MATERIAL EXPERIMENTS 97

Table 4 – Power-law rheological models’ parameters for blood

Rheological model References Blood parameters

Power-law Liepsch e Moravec (1984) m = 0.042 [Pa · sn]
n = 0.61

Power-law Davies et al. (1990) m = 0.35 [Pa · sn]
n = 0.6

Power-law Antonova (2012) m = 0.01318 [Pa · sn]
n = 0.79

Power-law Karimi et al. (2014)
Shibeshi e Collins (2005)

m = 0.017 [Pa · sn]
n = 0.708

Power-law Siauw, Ng e Mazumdar (2000)
Walburn e Schneck (1976)

m = 0.134 [Pa · sn]
n = 0.785

Power-law Hussain, Kar e Puniyani (1999) m = 0.016915 [Pa · sn]
n = 0.713

Table 5 – Yield-shear-thinning models’ parameters for blood

Rheological model References Blood parameters

Casson Abbasian et al. (2020) η0 = 0.0042 [Pa · s]
τ0 = 0.0038 [Pa]

Casson Siauw, Ng e Mazumdar (2000)
Walburn e Schneck (1976)

η0 = 0.00414 [Pa · s]
τ0 = 0.0038 [Pa]

Modified Casson
Karimi et al. (2014)

Abbasian et al. (2020)
Buchanan et al. (2003)

η0 = 0.002982 [Pa · s]
λ = 4.02 [s]
τ0 = 0.02876 [Pa]

Herschel-Bulkley Antonova (2012)
n = 0.805
η0 = 0.01189 [Pa · s]
τ0 = 0.00415 [Pa]

K-L Karimi et al. (2014)
Abbasian et al. (2020)

n = 1.19523
η0 = 0.0035 [Pa · s]
a = 1
τ0 = 0.005 [Pa]
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Table 6 – Shear-thinning models’ parameters for blood

Rheological model References Blood parameters

Cross Abbasian et al. (2020)
Karimi et al. (2014)

n = 1.45
η0 = 0.0364 [Pa · s]
η∞ = 0.00345 [Pa · s]
λ = 0.38 [s]

Cross Cho e Kensey (1991)
Bird (1987)

n = 1.028
η0 = 0.056 [Pa · s]
η∞ = 0.00345 [Pa · s]
λ = 1.007 [s]

Simplified Cross
Abbasian et al. (2020)
Steffan et al. (1990)

Siauw, Ng e Mazumdar (2000)

η0 = 0.13 [Pa · s]
η∞ = 0.005 [Pa · s]
λ = 8 [s]

Modified Cross Cho e Kensey (1991)

n = 2.406
η0 = 0.056 [Pa · s]
η∞ = 0.00345 [Pa · s]
λ = 3.736 [s]
a = 0.254

Modified Cross Abraham, Behr e
Heinkenschloss (2005)

n = 0.64
η0 = 0.16 [Pa · s]
η∞ = 0.0035 [Pa · s]
λ = 8.2 [s] a = 1.23

Carreau Cho e Kensey (1991)
Shibeshi e Collins (2005)

n = 0.3568
η0 = 0.056 [Pa · s]
η∞ = 0.00345 [Pa · s]
λ = 3.313 [s]

Carreau-Yasuda
Cho e Kensey (1991)
Weddell et al. (2015)
Aguirre et al. (2018)

n = 0.22
η0 = 0.056 [Pa · s]
η∞ = 0.00345 [Pa · s]
λ = 1.902 [s] a = 1.25

Carreau-Yasuda
Abraham, Behr e
Heinkenschloss (2005)

Boyd, Buick e Green (2007)

n = 0.2128
η0 = 0.16 [Pa · s]
η∞ = 0.0035 [Pa · s]
λ = 8.2 [s] a = 0.64

Powell-Eyring Cho e Kensey (1991)
η0 = 0.056 [Pa · s]
η∞ = 0.00345 [Pa · s]
λ = 5.383 [s]

Modified Powell-Eyring Cho e Kensey (1991)
η0 = 0.056 [Pa · s]
η∞ = 0.00345 [Pa · s]
λ = 2.415 [s] a = 1.089
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To facilitate the writing and reading of the data, the following correspondence will be
made regarding the names of the models on Tab. 7 below.

Table 7 – Correspondence for the nomenclature of the models used

Model Reference Nomenclature
to be used

Power-law Liepsch e Moravec (1984) PL1
Power-law Davies et al. (1990) PL2
Power-law Antonova (2012) PL3

Power-law Karimi et al. (2014)
Shibeshi e Collins (2005) PL4

Power-law Siauw, Ng e Mazumdar (2000)
Walburn e Schneck (1976) PL5

Power-law Hussain, Kar e Puniyani (1999) PL6
Casson Abbasian et al. (2020) Casson1

Casson Siauw, Ng e Mazumdar (2000)
Walburn e Schneck (1976) Casson2

Modified Casson
Karimi et al. (2014)
Abbasian et al. (2020)
Buchanan et al. (2003)

ModCasson

Herschel-Bulkley Antonova (2012) HB

K-L Karimi et al. (2014)
Abbasian et al. (2020) KL

Cross Abbasian et al. (2020)
Karimi et al. (2014) Cross1

Cross Cho e Kensey (1991)
Bird (1987) Cross2

Simplified Cross
Abbasian et al. (2020)
Steffan et al. (1990)
Siauw, Ng e Mazumdar (2000)

SimpCross

Modified Cross Cho e Kensey (1991) ModCross1
Modified Cross Abraham, Behr e

Heinkenschloss (2005) ModCross2

Carreau Cho e Kensey (1991)
Shibeshi e Collins (2005) Carreau

Carreau-Yasuda
Cho e Kensey (1991)
Weddell et al. (2015)
Aguirre et al. (2018)

CY1

Carreau-Yasuda
Abraham, Behr e
Heinkenschloss (2005)
Boyd, Buick e Green (2007)

CY2

Powell-Eyring Cho e Kensey (1991) PE
Modified Powell-Eyring Cho e Kensey (1991) ModPE

Figure 32 compares the viscosity profiles of blood - as a function of shear rate -
obtained in material experiments with the power-law rheological model under coefficients
from various references listed in Tab. 4. Figure 32a encompasses the shear rate range
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0.1 ≤ γ̇ ≤ 1, 000 s−1, providing a closer visualization of the correspondence between the
material experiments’ curves and the curves of the rheological models. It can be observed
that the parameters proposed by some references, such as Davies et al., Walburn e Schneck,
and Liepsch e Moravec, did not exhibit good correspondence with material experiments
for human blood under normal conditions (HCT ≈ 45 % and T ≈ 37 ◦C). On the other
hand, coefficients proposed by Hussain, Kar e Puniyani, Karimi et al., and Antonova
showed good correspondence for the shear rate range 10 ≤ γ̇ ≤ 1, 000 s−1 but fell short
in the range γ̇ ≤ 10 s−1, as evident in Fig. 32b. Finally, Fig. 32c highlights the viscosity
values reached by the models at γ̇ = 0.001 s−1, where the model proposed by Davies et al.
diverged from other models, reaching a viscosity value five times higher than the others.

Figure 33 juxtaposes the viscosity profiles of blood, influenced by shear rate, acquired
through material experiments and through shear-thinning rheological models. The coef-
ficients for these models are extracted from various references detailed in Tab. 6. The
graphic in 33a illustrates that these shear-thinning models exhibit a satisfactory fit within
the shear rate range of 0.1 ≤ γ̇ ≤ 1, 000 s−1. However, they initiate their plateau region
over low shear rate—associated with viscosity η0—at approximately γ̇ ≈ 0.1 s−1.

In Fig. 33b, a notable discrepancy in viscosity profiles is observed between experimental
and model data. Shear-thinning models reach a plateau, whereas experimental data
demonstrates an exponential increase in viscosity for γ̇ ≤ 0.1 s−1. For instance, at
γ̇ ≈ 0.05 s−1, ModCross1, Carreau, and PE models exhibit a 98 % deviation in viscosity
compared to the experimental data presented by Chien et al. (1966) (represented by the
full line).

For the second group of shear-thinning models presented in Fig. 34, the behavior of
the models closely resembled the first group from Fig. 33. However, we can observe in
Fig. 34a that the ModCross2, CY2 and SimpCross models exhibited the same exponential
growth curve than experimental data toward γ̇ = 0.1 s−1, in contrast to the CY1 and Cross
models.

In Fig. 34b, we observe that the models, which exhibited exponential growth up to
γ̇ = 0.1 s−1, now begin to deviate significantly from the experimental data and initiate
the formation of their viscosity plateaus for shear rate ranges of γ̇ ≤ 0.1 s−1. Figure 34c
provides a broader view of the viscosity values reached by the models at γ̇ = 0.001 s−1,
where the SimpCross, ModCross2 and CY2 attained a value of approximately γ̇ = 0.15 s−1.
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(a) Shear rate range from 0.1 to 1, 000 s−1

(b) Shear rate range from 0.001 to 1 s−1

(c) Maximum viscosity reached by the models at γ̇ = 0.001 s−1

Figure 32 – Power-law models versus material experiments
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(a) Shear rate range from 0.1 to 1, 000 s−1

(b) Shear rate range from 0.001 to 1 s−1

Figure 33 – Shear-thinning models versus material experiments

Finally, in Fig. 35, we observe that, except for the modified Casson model, the yield-
shear-thinning models were the ones that demonstrated the best correspondence with
experimental data for human blood under normal conditions, across all experimentally
available shear rate ranges. As mentioned earlier, the challenge lies in not fully under-
standing the real behavior of blood viscosity under low rates, γ̇ ≤ 0.05 s−1, which may be
encountered in flow settings different from those that occur within the human body.

Charm e Kurland (1965) highlighted that Casson’s equation can be applied for a wide
range of 2 − 100, 000 s−1 of shear rate, doing tests with a series of viscometers.
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(a) Shear rate range from 0.1 to 1, 000 s−1

(b) Shear rate range from 0.001 to 1 s−1

(c) Maximum viscosity reached by the models at γ̇ = 0.001 s−1

Figure 34 – Shear-thinning models versus material experiments
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(a) Shear rate range from 0.1 to 1, 000 s−1

(b) Shear rate range from 0.001 to 1 s−1

(c) Maximum viscosity reached by the models at γ̇ = 0.001 s−1

Figure 35 – Yield-shear-thinning models versus material experiments
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10 Blood drop’s modeling

10.1 Introduction
Getting close to the purpose of the entire project, is required to run and study some

falling drop simulations. In that regard, MacDonell (2009) points that the degree of spatter
that results when a drop of blood falls onto a surface is far more dependent upon the nature
of the surface than it is on the distance the drop has fallen before it impacted the surface.
But due to the fact that we are simulating 21 cases with different rheological models and
parameters, limitations are necessary due to the available time for the completion of the
work. So, the purpose of this chapter is isolate as many variables as possible, that allows for
a minimally adequate comparison of the non-Newtonian viscosity models implemented in
MFSim, for instance, regarding the pattern formed after impact and the relative diameter
reached after impact, etc.

In that regard, some previous cases were carried out on MFSim, primarily aiming
MFSim’s validation to do this type of modeling, that involves VoF and IBM techniques
and, just after that, activate the non-Newtonian models for blood.

To validate MFSim for VoF and IBM techniques, were used the work provided by Deen,
Annaland e Kuipers (2009). This article presents a complex multifluid flow simulation,
using the previous methods cited.

10.2 Deformation and fragmentation of drops
The breakup process of a drop has been studied since the beginning of the twenty

century, theoretically and experimentally. Hinze (1955) mentioned that the investigation
into the bursting of drops in air stream started before 1904, with the publishing of Lenard
experiments, and mentions in his article three basic types of droplet deformation (see Fig.
36), due to the action of aerodynamic force:

• The droplet undergoes flattening, taking on the shape of a flattened ellipsoid (lentic-
ular deformation). The subsequent changes depend on the internal forces’ magnitude
driving the deformation. It is suggested that the ellipsoid transforms into a torus,
which undergoes stretching and breaks into smaller droplets. This deformation
occurs under the influence of aerodynamic pressures or viscous stresses generated by
parallel and rotating flows

• The initial droplet elongates, forming an extended cylindrical thread or ligament
that eventually breaks into smaller droplets (cigar-shaped deformation). This type
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of deformation requires specific flow conditions such as plane hyperbolic and Couette
flows

• Localized deformations on the droplet interface result in bulges and protuberances
that detach from the parent droplet, forming smaller droplets. This deformation
occurs within irregular flow patterns

Figure 36 – Drop deformation. Source: Hinze (1955)

Hence, the predilection for a particular deformation and breakup type is influenced by
the physical characteristics of the gas and liquid phases, including their specific masses,
viscosities and interfacial tension, as well as the flow pattern surrounding the droplet.
In general, the breakup of a droplet in a flowing stream is guided by dynamic pressure,
interfacial tension and viscous forces.

Hinze has shown theoretically that Wecrit depends not only on Ohnesorge number, Oh,
but also on the way in which the relative velocity changes with time. For Oh = 0 and true
shock exposure, Wecrit ≈ 13 whereas for a falling drop Wecrit ≈ 22.

Figure 37 – Short-flash photographs showing the breakup of a drop at increasing values of
We. Gas oil, D = 39 mm. Wecrit = 13. Source: Hinze (1955)
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According to Lane (1951), three stages can be distinguished in the shatter process:

• Initiation of small disturbances at the interface of the liquid, in the form of local
ripples or protuberances

• Action of air pressure and tangential forces on these disturbances, forming ligaments
which may break up into drops

• Further breakup of these drops in movement through the air

For the first mode of breakup, Lane (1951) has established that at normal atmospheric
conditions there is a limiting value of the relative velocity URcrit

below which breakup does
not occur. For phases whose interfacial tension (σ) lie in the range 0.028 − 0.475 N/m2 -
as the system air-blood -, the relationship is given by:

URcrit
∝
(

σ

Ddrop

)0.5

(10.1)

Concerning the breakup of drops in steady stream of air, Lane (1951) made a series of
experiments where large drops of known size were allowed to fall down the axis of a small
vertical wind tunnel in which a steady downward stream of air of measured velocity could
be maintained. As it came under the influence of the air stream, the drop was seen to
become increasingly flattened, and at a critical velocity of the air it was blown out into
the form of a hollow bag attached to a roughly circular rim. Bursting of this bag produced
a shower of very fine droplets, and the rim, which contained at least 70 % of the mass of
the original spherical drop, broke up later into much larger drops.

Figure 38 – Breakup of a spherical drop by interaction with ambient air. Source: Lefebvre
e McDonell (2017)
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According to Lane (1951), some characteristics of the bursting drop can be interpreted
using established principles of fluid mechanics. When examining the pressure distribution
on the surface of a rigid sphere in a wind tunnel, it is observed that the front of the
sphere experiences positive pressure, while the sides and rear are subjected to reduced
pressure (refer to Fig. 39). Consequently, a liquid drop introduced into an airstream is
expected to flatten on the side facing the positive pressure and elongate at the sides and
rear. This deformation is counteracted by the interfacial tension, which strives to maintain
the drop’s spherical shape, potentially leading to a depression at the center of the drop’s
upper interface.

Figure 39 – Distribution of pressure over interface of rigid sphere in wind tunnel. Source:
Lane (1951)

The deformation of the drop leading to its ultimate breakup is resisted by the force
of interfacial tension, making it important to study the effect of this property of the
liquid. Simple dimensional analysis suggests, and experiments confirmed, this relationship
by using various liquids that cover a wide range of interfacial tensions (from < 0.028 to
0.475 N/m). In each case tested by Lane, the air flow velocity in the wind tunnel, required
to shatter drops of known size, was measured. Anomalous results were observed with drops
of aqueous solutions of interface-active substances, but these could be explained based
on the known variation of the interfacial tension of such solutions over time. Viscosity
appeared to influence the breakup process only when it was very high, as in the case of
glycerol drops, where it tended to retard the breakup of the drop.

According to Hinze (1949), the forces exerted on the surface of the globule include a
tangential component due to the viscosity of the surrounding fluid, and a normal component
resulting from the velocity pressures of the surrounding fluid. For high Reynolds numbers
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(e.g., Re > 1,000), the influence of the tangential forces on deformation is minimal compared
to that of the normal forces and can be disregarded.

Liquid drops released individually from pipettes exhibit initial vibrations. As noted by
Hauser et al. (1935), at the moment of separation, the drop assumes a slightly ellipsoidal
shape with the major axis oriented vertically. This initial deformation triggers free
vibrations.

According to Hsiang e Faeth (1995), at low Ohnesorge numbers (Oh < 0.1), significant
drop deformation (approximately 5 %) commenced at Weber numbers around unity, with
the deformation phase concluding due to breakup onset at Weber numbers between 10 and
20. These transitions were relatively stable regardless of the Ohnesorge number for steady
disturbances. However, higher Ohnesorge numbers extended the Weber number range
for both deformation and breakup regimes when exposed to shock wave disturbances, an
effect explained by phenomenological theory. Another transition, from dome-shaped to
bowl-shaped drops (analogous to the shift between bag and shear breakup), was primarily
associated with Weber and Reynolds numbers under the given conditions. For steady
disturbances, drop deformation was relatively independent of the specific mass ratio
between dispersed and continuous phases but was generally less than that for shock wave
disturbances due to the absence of inertial overshoot. Conversely, drop drag coefficients,
when normalized by the drag coefficient of a solid sphere at the same Reynolds number,
showed strong correlation with the degree of deformation alone.

For any given liquid, the initial condition for breakup is achieved when the aerodynamic
drag is just equal to the surface tension force, that is:

CD

πD2
drop

4 0.5 ρc U
2
rel = πDdrop σ (10.2)

Rearranging the terms, we have:
(
ρc U

2
rel Ddrop

σ

)
crit

= Wecrit = 8
CD

(10.3)

According to Hinze (1949), splitting-up occurs if We is greater than this critical value
Wecrit, and this value has to be determined experimentally. However, such a critical
Weber’s number appears to depend on the variation with time of the air forces and on the
viscosity of the liquid. Now, putting this equations in therms of the maximum stable drop
size:

Dmax = 8σ
CD ρc U2

rel

(10.4)

and the critical velocity is obtained as:

Urelcrit
=
(

8σ
CD ρc Ddrop

)2

(10.5)



10.3. VOF AND IBM VALIDATION 110

10.3 VoF and IBM validation
Direct Numerical Simulation (DNS) of complex multi-fluid flows where it is present

deformable (drops or bubbles) and non-deformable elements (any object’s random-shaped
and impenetrable interfaces) is possible to be solved with Volume of Fluid (VoF) method
and the Immersed Boundary Method (IBM) technique, to represent the dispersed phase
and the impenetrable interfaces, respectively. As presented on chapter 7, MFSim has both
techniques implemented within the computational code and it’ll be validated here, with
the simulation of a falling drop over a rigid and stationary spherical particle, proposed by
Deen, Annaland e Kuipers (2009).

10.3.1 Falling drop over sphere

10.3.1.1 Physical modeling

This concerns the free fall of a drop initially positioned at Sp = (0.025 m, 0.075 m, 0.025 m)
within a domain of dimensions 0.05 m×0.1 m×0.05 m, over a rigid and stationary spherical
particle positioned at Sp = (0.025 m, 0.025 m, 0.025 m). The radius of the drop and rigid
sphere are, respectively, 0.01 m and 0.005 m, and the physical properties of the drop and
the surrounding continuous phase were considered constants, with ρd = 1, 000 kg/m3,
ρc = 100 kg/m3, µd = 0.1 Pa·s and µc = 0.01 Pa·s. The interfacial tension between
continuous and dispersed phases were considered as σ = 0.1N/m. The flow was consid-
ered incompressible and isothermal. Gravitational effects were taken into account, with
g = 10 m/s2.

10.3.1.2 Algebraic-differential mathematical modeling

As the specific mass is constant (incompressible flow), the term ∂ρ/∂t of mass balance
(eq. 4.1) is set to zero. Then we have:

∇ · u = 0

Applying the physical modeling assumptions described in the previous section, this
problem will uses the full linear momentum balance equation (eq. 4.33) to be solved, as
follows:

ρ
Dui

Dt
= ρgi − ∇p + ∂

∂xi

[
µ

(
∂ui

∂xj

+ ∂uj

∂xi

)]
For the fall of a non-Newtonian droplet, the only modification to the above equation

is that the viscosity will no longer be a constant. This entails, in the discrete model,
calculating its value for each internal droplet volume of the computational domain by
calling a subroutine within the MFSim code.
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The boundary conditions for this problem are:


∂p
∂y

=0, for y=H and 0≤x≤L and 0≤z≤B

u(0,y,z)=0, v(0,y,z)=0, w(0,y,z)=0, for 0≤y≤H and 0≤z≤B

u(L,y,z)=0, v(L,y,z)=0, w(L,y,z)=0, for 0≤y≤H and 0≤z≤B

u(x,y,0)=0, v(x,y,0)=0, w(x,y,0)=0, for 0≤x≤L and 0≤y≤H

u(x,y,B)=0, v(x,y,B)=0, w(x,y,B)=0, for 0≤x≤L and 0≤y≤H

u(x,0,z)=0, v(x,0,z)=0, w(x,0,z)=0, for 0≤x≤L and 0≤z≤B

udrop=0, for t=0

(10.6)

10.3.1.3 Computational modeling

The domain was defined starting from the origin and extending to the coordinates
(L,H,B) = (0.048 m, 0.096 m, 0.048 m). The lbot level was defined as 24 × 48 × 24. There
were 3 more refinement levels.

The boundary conditions for the parallelepiped domain were defined as follows for each
of the three velocity components and for pressure.

For the velocity components u, v, and w, the west, east, south, bottom, and top faces
were set with Dirichlet conditions, indicating that the velocity is directly imposed on these
faces (all zero in this case). The north face was set with a Neumann condition.

For pressure, the west, east, south, bottom, and top faces were set with Neumann
conditions. The north face was set with a Dirichlet condition (zero in this case).

The droplet was represented using the VoF method, which is suitable for accurately
capturing the interface between two fluids. Within the VoF settings, the Continuum
Surface Force (CSF) model was used to solve for interfacial tension. This model is
effective in representing the interfacial forces, ensuring that interfacial effects are correctly
incorporated into the simulation.

The rigid and stationary sphere was represented using the IBM technique.
A remeshing procedure was established every 50 iterations. This procedure ensures

that the VoF interface remains covered by the finest available mesh, allowing for an
adequate resolution of the interface and, consequently, an accurate capture of the associated
physical phenomena. The criteria for remeshing were based on the specific mass and
immersed boundary points, ensuring that regions with significant changes in these properties
(tolerance < 0.05) received finer mesh refinement.

CFL number was set to 0.2. This lower value was chosen to ensure the stability of the
simulation, ensuring that the time step was sufficiently small to accurately capture the
rapid dynamics of the flow. With this configuration, the simulation was able to progress
without introducing numerical instabilities, even in regions with high velocity gradients.

The total simulation time was set to 20 ms, which is sufficient to observe the dynamic
behavior of the droplet during the period of interest.
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10.3.1.4 Results

After performing the computational simulation in MFSim, the frames corresponding
to the times indicated in Tab. 8 were extracted, which composes Fig. 41.

Qualitatively, by comparing Figs. 40 and 41, it can be observed that the computational
simulation run in MFSim performed satisfactorily, achieving the same results as Deen,
Annaland e Kuipers (2009).

Table 8 – Deen, Annaland e Kuipers (2009) and MFSim’s simulation times for comparison

Snapshot Reference time from
Deen, Annaland e Kuipers (2009) (s) Time from MFSim (s)

1 0.050 0.0493
2 0.075 0.0757
3 0.100 0.0994
4 0.125 0.1251
5 0.150 0.1502
6 0.175 0.1753

Figure 40 – 3D snapshots from Deen, Annaland e Kuipers (2009) at specific times presented
at Tab. 8
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Figure 41 – 3D snapshots from MFSim at specific times presented at Tab. 8

Furthermore, the computational simulation of a fluid drop falling onto a sphere revealed
distinct fluid dynamic behaviors for Newtonian and non-Newtonian fluids when the power-
law model was activated. For the Newtonian fluid with constant viscosity mu = 0.1, the
drop maintained predictable behavior, with the constant viscosity resulting in uniform flow
and stable interaction with the sphere. In contrast, when the power-law non-Newtonian
fluid model was activated, physically consistent differences were observed, particularly in
regions of high shear rate.

In the case of non-Newtonian fluids, the simulations demonstrated that the drop’s
viscosity varied according to the shear rate, significantly influencing the drop’s behavior
upon contact with the sphere. For the simulation with n = 0.25 (simulation 2), the drop
exhibited pronounced shear-thinning behavior, where the viscosity drastically decreased
in regions of high shear rate. This effect resulted in a considerable increase in the drop’s
velocity, as the reduction in viscosity facilitated the flow. The simulation with n = 0.5
(simulation 3) displayed similar behavior, although less pronounced, resulting in a lower
velocity compared to simulation 2, but still higher than that of the Newtonian fluid.
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Figure 42 – Comparison between Newtonian fluid (left) and power-law non-Newtonian
fluids with different flow index behavior, n

Conversely, the simulation with n = 1.5 (simulation 4) exhibited behavior opposite to
shear-thinning, known as shear-thickening, as introduced in sec. 5.2.3. In this case, the
viscosity significantly increased in regions of high shear rate around the sphere, creating
greater resistance to flow. This behavior resulted in a sharp decrease in the drop’s velocity
and greater difficulty in flowing over the rigid sphere. These observed and demonstrated
characteristics underscore the importance of considering the rheological behavior of non-
Newtonian fluids in fluid dynamic simulations, especially in applications where shear rates
vary significantly, as the fluid’s viscous response can drastically alter the flow dynamics.

10.4 Falling drop deformation
Now that the VoF method and the IBM technique have been properly validated, we will

take another step forward by validating the deformation of a droplet in free fall, according
to its Weber number. Were used the article presented by Kékesi, Amberg e Wittberg
(2014).
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10.4.1 Physical modeling

This concerns the free fall of a particle initially positioned at Sp = (xi, yi, zi) within a
domain of dimensions L × H × B, with AR of L:H:B=1:1:1 and with south (y = 0) and
north (y = H) faces with no pressure difference with the external environment. The flow
was considered incompressible and isothermal. Physical properties are assumed to be
constant. Gravitational effects were taken into account, with g = 9.80665 m/s2.

Figure 43 – Schematic diagram of falling drop physical modeling

The dimensionless fluid dynamic parameters used in the simulations conducted are
presented in the table below, in accordance with the work of Kékesi, Amberg e Wittberg
(2014):

Table 9 – Single drop simulations parameters (KéKESI; AMBERG; WITTBERG, 2014)

Parameter Abbr. Numerical value
Weber number We 0.1, 1, 5, 10 and 12

Reynolds number Re 100
Specific mass ratio ρ∗ 80

Viscosity ratio µ∗ 55.6

10.4.2 Algebraic-differential mathematical modeling

As the specific mass is constant (incompressible flow), the term ∂ρ/∂t of mass balance
(eq. 4.1) is set to zero. Then we have:

∇ · u = 0

Applying the physical modeling assumptions described in the previous section, this
problem will uses the full linear momentum balance equation (eq. 4.33) to be solved, as
follows:
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ρ
Dui

Dt
= ρgi − ∇p + ∂

∂xi

[
µ

(
∂ui

∂xj

+ ∂uj

∂xi

)]
As previously mentioned, for the fall of a non-Newtonian droplet, the only modification

to the above equation is that the viscosity will no longer be a constant. This entails, in the
discrete model, calculating its value for each internal droplet volume of the computational
domain by calling a subroutine within the MFSim code.

The boundary conditions for this problem are:


∂p
∂y

=0, for y=H and 0≤x≤L and 0≤z≤B

u(0,y,z)=0, v(0,y,z)=0, w(0,y,z)=0, for 0≤y≤H and 0≤z≤B

u(L,y,z)=0, v(L,y,z)=0, w(L,y,z)=0, for 0≤y≤H and 0≤z≤B

u(x,y,0)=0, v(x,y,0)=0, w(x,y,0)=0, for 0≤x≤L and 0≤y≤H

u(x,y,B)=0, v(x,y,B)=0, w(x,y,B)=0, for 0≤x≤L and 0≤y≤H

∂p
∂y

=0, for y=0 and 0≤x≤L and 0≤z≤B

udrop=0, for t=0

(10.7)

10.4.3 Computational modeling

The domain was defined starting from the origin and extending to the coordinates
(L,H,B) = (0.16 m, 0.16 m, 0.16 m). The lbot level was defined with 20 volumes in each
direction (20 × 20 × 20). There were 7 more refinement levels, allowing - at its finest
level - the passage of 80 volumes across the droplet diameter. The latter was defined at
Ddrop = 5 mm with its initial position at (L/2, 5H/8, B/2).

The boundary conditions for the parallelepiped domain were defined as follows for each
of the three velocity components and for pressure.

For the velocity components u, v, and w, the west, east, bottom and top faces were set
with Dirichlet conditions, indicating that the velocity is directly imposed on these faces
(all zero in this case). The south and north faces were set with a Neumann condition.

For pressure, the west, east, bottom and top faces were set with Neumann conditions.
The north and south faces were set with a Dirichlet condition (all zero in this case). These
configurations ensure an adequate representation of the variables of interest at the domain
boundaries, allowing for the correct simulation of the flow within the domain.

The droplet was represented using the VoF method; within the VoF settings, the
Continuum Surface Force (CSF) model was used to solve for interfacial tension.

A remeshing procedure was established every 20 iterations. This procedure ensures that
the VoF interface remains covered by the finest available mesh, allowing for an adequate
resolution of the interface and, consequently, an accurate capture of the associated physical
phenomena. The criteria for remeshing were based on the VoF and vorticity, ensuring that



10.4. FALLING DROP DEFORMATION 117

regions with significant changes in these properties (tolerance < 0.01) received finer mesh
refinement.

CFL number was set to 0.5. This value was chosen to ensure the stability of the
simulation, ensuring that the time step was sufficiently small to accurately capture the
rapid dynamics of the flow.

The total simulation time was set to 14 ms, which is sufficient to observe the dynamic
behavior of the droplet during the period of interest.

10.4.4 Results for a Newtonian fluid drop

Firstly, it was observed that for simulations with We = 0.1 and We = 1, the simulation
time was relatively much longer compared to higher We numbers, except for We = 12,
where the droplet breaks, resulting in a significantly longer simulation time.

Table 10 – Simulation time for each Weber number

Weber number Simulation time (h)
0.1 ≈ 15.00
1 9.84
5 4.32
10 3.48
12 ≈ 24.00

Qualitatively comparing the images obtained in the MFSim simulations, it is possible
to align them with the images obtained by Kékesi, Amberg e Wittberg (2014).

Figure 44 – Qualitatively results of simulating Newtonian fluid. We equal to 0.1, 1, 5, 10
and 12, from left to right

10.4.5 Results of simulating non-Newtonian models as Newtonian fluids

With the aim of validating - once again - the non-Newtonian models, they were
configured to represent the same Newtonian fluid as in the previous simulation, in sec.
10.4.1, by appropriately selecting their respective parameters. The configuration of these
parameters is presented in Tab. 11. A value of We = 10 was chosen to visualize a greater
deformation of the droplet.
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After running all the mentioned simulations, the images in Fig. 45 were generated,
showing the same drop shape at We = 10.

Figure 45 – Qualitatively results of non-Newtonian models simulating Newtonian fluid at
the falling drop case
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Table 11 – Non-Newtonian models’ parameters to simulate Newtonian fluid at the present
falling drop case

Figure Rheological model Model’s parameters Simulation time

1 Kékesi, Amberg e
Wittberg (2014) – –

2 Newtonian fluid – –

3 Power-law m = 0.00556 [Pa · sn]
n = 1

4.42h
pc-MFLab

4 Power-law (Davies) m = 0.00556 [Pa · sn]
n = 1

4.90h
Cluster

5 Carreau
n = 1 λ = 0 [s]
η0 = 0.00556 [Pa · s]
η∞ = 0 [Pa · s]

4.95h
Cluster

6 Carreau-Yasuda

n = 1 a = 2
η0 = 0.00556 [Pa · s]
η∞ = 0 [Pa · s]
λ = 0 [s]

4.92h
Cluster

7 Cross
n = 1 λ = 0 [s]
η0 = 0.00556 [Pa · s]
η∞ = 0 [Pa · s]

4.25h
pc-MFLab

8 Simplified Cross
η0 = 0.00556 [Pa · s]
η∞ = 0 [Pa · s]
λ = 0 [s]

4.25h
pc-MFLab

9 Modified Cross

n = 1 a = 1
η0 = 0.00556 [Pa · s]
η∞ = 0 [Pa · s]
λ = 0 [s]

4.25h
pc-MFLab

10 Herschel-Bulkley n = 1 τ0 = 0 [Pa]
η0 = 0.00556 [Pa · s]

4.25h
pc-MFLab

11 Bingham η0 = 0.00556 [Pa · s]
τ0 = 0 [Pa]

4.33h
pc-MFLab

12 Casson η0 = 0.00556 [Pa · s]
τ0 = 0 [Pa]

4.38h
pc-MFLab

13 Modified Casson η0 = 0.00556 [Pa · s]
λ = 1 [s] τ0 = 0 [Pa]

4.91h
Cluster

14 Powell-Eyring
η0 = 0.00556 [Pa · s]
η∞ = 0.00556 [Pa · s]
λ = 1 [s]

4.91h
Cluster

15 Modif. Powell-Eyring
η0 = 0.00556 [Pa · s]
η∞ = 0.00556 [Pa · s]
λ = 1 [s] a = 0

4.91h
Cluster
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10.5 Blood modeling

10.5.1 Physical modeling

This concerns the free fall of an initially spherical particle of human blood (incompress-
ible flow), at a constant external temperature of 25 ◦C (isothermal flow), positioned at
Sp = (xi, yi, zi) within a domain of dimensions L × H × B, whose upper interface has no
pressure difference with the external environment (see Fig. 43). Physical properties are
considered constant, except for the viscosity of the blood particle, which, depending on the
rheological model used in the simulation, will vary with the shear rate. The interfacial ten-
sion of the blood-air system was considered σ = 5.2604 · 10−2 N/m (calculated by Eq. 3.1,
at 37 ◦C), the specific mass of the surrounding air was considered 1.184 kg/m3 (at 25 ◦C),
while the density of human blood was considered 1, 060 kg/m3 (at 37 ◦C). Gravitational
effects were considered, with g = 9.80665 m/s2.

Regarding the parameters for each viscosity model, the ones presented in Tabs. 4, 5
and 6 were considered.

10.5.2 Algebraic-differential mathematical modeling

As the specific mass is constant (incompressible flow), the term ∂ρ/∂t of mass balance
(eq. 4.1) is set to zero. Then we have:

∇ · u = 0

Applying the physical modeling assumptions described in the previous section, this
problem will uses the full linear momentum balance equation (eq. 4.33) to be solved, as
follows:

ρ
Dui

Dt
= ρgi − ∇p + ∂

∂xi

[
µ

(
∂ui

∂xj

+ ∂uj

∂xi

)]
As previously mentioned, for the fall of a non-Newtonian droplet, the only modification

to the above equation is that the viscosity will no longer be a constant. This entails, in the
discrete model, calculating its value for each internal droplet volume of the computational
domain by calling a subroutine within the MFSim code.

The boundary conditions for this problem are:
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∂p
∂y

=0, for y=H and 0≤x≤L and 0≤z≤B

u(0,y,z)=0, v(0,y,z)=0, w(0,y,z)=0, for 0≤y≤H and 0≤z≤B

u(L,y,z)=0, v(L,y,z)=0, w(L,y,z)=0, for 0≤y≤H and 0≤z≤B

u(x,y,0)=0, v(x,y,0)=0, w(x,y,0)=0, for 0≤x≤L and 0≤y≤H

u(x,y,B)=0, v(x,y,B)=0, w(x,y,B)=0, for 0≤x≤L and 0≤y≤H

u(x,0,z)=0, v(x,0,z)=0, w(x,0,z)=0, for 0≤x≤L and 0≤z≤B

udrop=0, for t=0

(10.8)

10.5.3 Computational modeling

The domain was defined starting from the origin and extending to the coordinates
(L,H,B) = (0.16 m, 0.16 m, 0.16 m). The lbot level was defined with 20 volumes in each
direction (20 × 20 × 20). There were 7 more refinement levels, allowing - at its finest level
- the passage of 80 volumes across the droplet diameter (Ddrop/∆ = 80).

Kant e Banerjee (2023), for instance, used a Ddrop/∆ = 75 resolution in an uniform
grid. In addition, the grid resolution is comparable or even better then some previous
studies, i.e., Han e Tryggvason (2001) (Ddrop/∆ = 100), Wadhwa, Magi e Abraham
(2007) (Ddrop/∆ = 35), Kékesi, Amberg e Wittberg (2014) (Ddrop/∆ = 32), Shao, Luo
e Fan (2017) (Ddrop/∆ = 50), Yang et al. (2016) (Ddrop/∆ = 128), Jain et al. (2019)
(Ddrop/∆ = 410).

Thus, defining Ddrop = 5 mm with its initial position at (L/2, 5H/8, B/2), the finest
mesh in the present simulation gives Ddrop/∆ = 80.

The boundary conditions for the parallelepiped domain were defined as follows for each
of the three velocity components and for pressure.

For the velocity components u, v, and w, the west, east, south, bottom, and top faces
were set with Dirichlet conditions, indicating that the velocity is directly imposed on these
faces (all zero in this case). The north face was set with a Neumann condition.

For pressure, the west, east, south, bottom, and top faces were set with Neumann
conditions. The north face was set with a Dirichlet condition, where the pressure is directly
imposed (zero in this case). These configurations ensure an adequate representation of the
variables of interest at the domain boundaries, allowing for the correct simulation of the
flow within the domain.

The droplet was represented using the VoF method, which is suitable for accurately
capturing the interface between two fluids. Within the VoF settings, the Continuum
Surface Force (CSF) model was used to solve for interfacial tension. This model is
effective in representing the interfacial forces, ensuring that interfacial effects are correctly
incorporated into the simulation.

A remeshing procedure was established every 5 iterations. This procedure ensures that
the VoF interface remains covered by the finest available mesh, allowing for an adequate
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resolution of the interface and, consequently, an accurate capture of the associated physical
phenomena. The criteria for remeshing were based on the VoF, ensuring that regions with
significant changes in these properties (tolerance < 0.05) received finer mesh refinement.

CFL number was set to 0.1. This lower value was chosen to ensure the stability of the
simulation, ensuring that the time step was sufficiently small to accurately capture the
rapid dynamics of the flow. With this configuration, the simulation was able to progress
without introducing numerical instabilities, even in regions with high velocity gradients.

The total simulation time was set to 15 ms, which is sufficient to observe the dynamic
behavior of the droplet during the period of interest.

10.5.4 Influence of the viscosity model: fall

First, all models were assessed — both quantitatively and qualitatively — when a
mean velocity about ∥u∥ ≈ 1.00 m/s was reached. Figures 46 to 49 evidence the preserved
spherical shape of the droplet at this instant and the different viscosity patterns promoted
inside it, by a z-mean symmetry plane view (at B/2 in Fig. 43).

First, evaluating the viscosity distribution and imposing a range of 1.85 · 10−5 to 0.01
Pa·s, for better visualization of intensities by the color palette, it is evident from Figs.
46 and 47 that each computationally simulated model has its intrinsic particularities in
the internal viscosity distribution of the drop. However, it is possible to notice a region
(to the east) with higher intensity in almost all models, which corresponds to the highest
measured viscosities. This indicates low shear rates on fluid elements in this region, mainly
related to the internal circulation promoted during the free fall of the drop. Additionally,
greater uniformity and attenuation are perceptible in the K-L, Casson, Modified Casson
and Herschel-Bulkley models, indicating consistency in the results, given that these models
are characterized by a yield stress that prevents fluid movement if this stress is not reached,
despite the use of Papanastasiou regularization (see sec. 6.3.5).

It is important to note that out of the six references found for the power-law model,
only three were successfully executed (as predicted in chapter 9), but not without imposing
minimum and maximum viscosity limits. This is because power-law models promote an
exponential increase in viscosity with the decrease in shear rate, which results in poorly
represented fluid dynamics, where solid-like viscosities are reached. Furthermore, all the
papers reviewed focus on specific situations of internal fluid circulation, where a specific
range of shear rate is fixed. With these considerations, in the free fall of a drop of this fluid,
undoubtedly, shear rates outside this range occur and lead to the discrepancies observed
in the simulations, which necessitated the aforementioned viscosity limitations.

Moving on to the analysis of the internal pressure distribution within the drop (figures
48 and 49), a range of 0 to 50.00 Pa was fixed for better visualization of intensities using the
color palette. When the drop reaches ∥u∥ ≈ 1.00 m/s, almost the same internal pressure
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distribution is observed in all models, with the upper portion of the drop exhibiting a little
higher pressure. Although counterintuitive, this is physically consistent, as the pressure
jump between the dispersed and continuous phases needs to remain constant. Since the
drop is in free fall, a higher upstream pressure and a lower downstream pressure are
observed externally, resulting in a internal little smaller upstream pressure jump and a
internal little larger downstream pressure jump.

(a) Newtonian (b) Carreau

(c) Casson1 (d) Casson2

(e) Cross1 (f) Cross2

(g) CY1 (h) CY2

Figure 46 – Viscosity distribution in the human blood droplet at ∥u∥ ≈ 1 m/s, in the
z-mean symmetry plane
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(a) HB (b) KL

(c) ModCasson (d) ModCross1

(e) ModCross2 (f) ModPE

(g) PE (h) PL3

(i) PL4 (j) PL6

Figure 47 – Viscosity distribution in the human blood droplet at ∥u∥ ≈ 1 m/s, in the
z-mean symmetry plane
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(a) Newtonian (b) Carreau

(c) Casson1 (d) Casson2

(e) Cross1 (f) Cross2

(g) CY1 (h) CY2

(i) HB (j) KL

Figure 48 – Pressure distribution in the human blood droplet at ∥u∥ ≈ 1 m/s, in the
z-mean symmetry plane
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(a) ModCasson (b) ModCross1

(c) ModCross2 (d) ModPE

(e) PE (f) PL3

(g) PL4 (h) PL6

Figure 49 – Pressure distribution in the human blood droplet at ∥u∥ ≈ 1 m/s, in the
z-mean symmetry plane
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10.5.5 Influence of the viscosity model: impact

In second place, all models were assessed on the imminence of the impact, when a mean
velocity about ∥u∥ ≈ 1.43 m/s was reached. Again, the following tables and figures show
the previous analysis at this specific moment of the simulation. It is important to note
that at the moment of impact, We = 0.23 and Oh = 6.53 · 10−3, which implies virtually
no deformation of the drop, as explained in sec. 10.2.

In figures 50 and 51, the maximum viscosity limit imposed, to the collor pallete, to
improve the visualization of the internal distribution of this parameter was reduced to
0.0085 Pa·s. Again, the lowest viscosities were observed in the models with yield stress
(K-L, Casson, Modified Casson and Herschel-Bulkley). However, at the moment of impact,
the models began to exhibit their differences more intensively. There is no longer a specific
region in almost all models where a pattern can be observed. The differences at this
instant are more pronounced.

The PE model, in contrast to all other models, observed a maximum viscosity at the
impact greater than that observed at ∥u∥ ≈ 1.00 m/s, jumping from η ≈ 16.20 mPa·s to
η ≈ 27.25 mPa·s. This can be justified due to its constitutive equation (eq. 6.8), which
includes an inverse hyperbolic sine term.

Figures 54 and 55 illustrate the internal circulation occurring within the drop for
each computationally simulated model and both the internal vortices and those formed
downstream. The color palette aligns with the previously presented viscosity distribution.

The analysis of streamlines, particularly in relation to the stagnation point of the
drop, provides valuable insight into the internal recirculation and its interaction with the
viscosity distribution. Blood, due to its non-Newtonian nature, exhibits viscosity that
varies with the shear rate. Each simulated model represents the relationship between
shear stress and shear rate differently, influencing the viscosity distribution within the
free-falling drop.

The visualization of streamlines reveals regions of recirculation where the internal flow
of the drop deviates and reorganizes due to the interaction between inertia and viscosity.
These recirculations are particularly significant near the stagnation point, where the fluid
decelerates and the shear rate can change drastically.

In the context of models such as power-law, viscosity is strongly dependent on the shear
rate, decreasing as this rate increases. During the fall, regions with a high shear rate, near
the boundaries of the drop, exhibit reduced viscosity, facilitating recirculation. Conversely,
areas of very low shear rate, such as the internal stagnation point of the drop or those
farther from the internal vortices, display higher viscosity, influencing the recirculation
pattern.
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(a) Newtonian (b) Carreau

(c) Casson1 (d) Casson2

(e) Cross1 (f) Cross2

(g) CY1 (h) CY2

(i) HB (j) KL

Figure 50 – Viscosity distribution in the human blood at the verge of droplet impact, in
the z-mean symmetry plane
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(a) ModCasson (b) ModCross1

(c) ModCross2 (d) ModPE

(e) PE (f) PL3

(g) PL4 (h) PL6

Figure 51 – Viscosity distribution in the human blood at the verge of droplet impact, in
the z-mean symmetry plane
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(a) Newtonian (b) Carreau

(c) Casson1 (d) Casson2

(e) Cross1 (f) Cross2

(g) CY1 (h) CY2

(i) HB (j) KL

Figure 52 – Pressure distribution in the human blood at the verge of droplet impact, in
the z-mean symmetry plane
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(a) ModCasson (b) ModCross1

(c) ModCross2 (d) ModPE

(e) PE (f) PL3

(g) PL4 (h) PL6

Figure 53 – Pressure distribution in the human blood at the verge of droplet impact, in
the z-mean symmetry plane
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(a) Newtonian (b) Carreau

(c) Casson1 (d) Casson2

(e) Cross1 (f) Cross2

(g) CY1 (h) CY2

(i) HB (j) KL

Figure 54 – Streamlines along the human blood at the verge of droplet impact, in the
z-mean symmetry plane
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(a) ModCasson (b) ModCross1

(c) ModCross2 (d) ModPE

(e) PE (f) PL3

(g) PL4 (h) PL6

Figure 55 – Streamlines along the the human blood at the verge of droplet impact, in the
z-mean symmetry plane
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Yield-shear-thinning models as Herschel-Bulkley, Casson, modified Casson and K-
L introduce a yield stress that must be overcome for the fluid to begin flowing. This
implies that in recirculation regions where shear stress is insufficient to surpass this yield
stress, viscosity can be significantly elevated, resulting in more restricted flow and greater
resistance to shear. This behavior can cause an accumulation of high-viscosity fluid
in certain regions, affecting the overall dynamics of the drop. This phenomenon was
difficult to observe in these yield-shear-thinning models due to low yield stress and the
Papanastasiou regularization term, which, in discrete terms, does not necessarily prevent
blood flow within the drop if the yield stress is not exceeded.

Additionally, shear-thinning models such as Cross, Carreau, Powell-Eyring and others,
predict viscosity that transitions between two asymptotic limits of high and low shear
rates. During recirculation, as the drop accelerates and decelerates, the viscosity of blood
can vary substantially between these regions, influencing the stability and shape of the
recirculation.

Regarding interfacial tension, it tends to keep the drop cohesive and spherical, while
internal viscosity resists movement and shear. In free fall, the blood drop encounters
inertial forces that attempt to deform it. The viscosity of blood helps to dampen these
deformations, while interfacial tension works to restore the spherical shape. In non-
Newtonian models, the variability of viscosity with shear rate can result in different
deformation and recirculation responses. Within the drop, fluid recirculation is influenced
by the interfacial tension acting on the edges of the drop. Regions of high curvature,
where interfacial tension is more pronounced, can cause pressure variations that affect
internal flow. The viscosity of blood, which can vary with the shear rate, interacts with
these pressure variations to form complex recirculation patterns. For instance, in regions
near the surface of the drop, where the shear rate may be high due to interaction with the
surrounding air, viscosity tends to be lower. In contrast, at the center of the drop, where
the shear rate is lower, viscosity tends to be higher. These viscosity gradients contribute
to the formation of recirculation patterns.

In summary, the internal viscosity distribution of the blood drop is intrinsically linked
to the recirculation patterns, which are driven both by the characteristics of the non-
Newtonian viscosity models used and by the dynamic conditions imposed by free fall.

Finally, the shape of the drop after the impact was evaluated at the instant t ≈ 150 ms.
At this moment, the drop reaches its maximum relative diameter and is on the verge of
retracting due to the imbalance of interfacial forces.

For didactic purposes, Fig. 56 illustrates the physical mechanism of the drop’s edge
filling and its starting retraction in 6 stages.
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Figure 56 – Droplet thick rim formation after impact
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Stage 1 illustrates the initial moments post-impact of the droplet on the surface, during
which it is possible to observe the change in direction of the fluid flow that constitutes the
droplet, while always preserving the balance of linear momentum.

In stage 2, the drop is still increasing in diameter, with the fluid initially located at the
center of the drop moving radially towards the edges. At this instant, the force exerted by
the fluid on the interface is greater than the force exerted by the interface in the opposite
direction on the fluid, but not sufficient to break the interface and allow the expulsion of
part of this fluid from the interior of the drop.

In stage 3, the drop has already reached its relative diameter; the interfacial forces are
sufficient to prevent further increase in the drop’s diameter. However, the fluid from the
center of the drop is still moving towards and accumulating at the edge. The beginning of
a physically consistent internal circulation at the edge of the drop is noted at this instant.

In stages 4 and 5, the volume at the edge of the drop increases to its limit, with the
aforementioned circulation still occurring.

Finally, in stage 6, it is observed that the interfacial forces have started the return of
the fluid accumulated at the edge back to the center of the drop, restoring its interfacial
equilibrium. Nearly all vectors indicate the fluid’s movement towards the center of the
drop.

To perform a qualitative analysis regarding the impact of the droplets, Tab. 12 presents
variations in the aforementioned maximum relative diameter of the droplets compared to
that of a Newtonian blood droplet. The calculation of the relative diameter was based on
the impact area of the droplet on the surface.

The analysis of the differences in maximum relative droplet diameters after impact,
reveals several insights into the performance of various non-Newtonian models compared
to the Newtonian baseline. Starting with the Newtonian model, which has a relative
diameter of 15.79 mm, it is evident that most non-Newtonian models produced diameters
close to this baseline. This indicates that the fundamental dynamics of droplet impact are
preserved across different fluid behaviors, albeit with subtle variations.

Models such as Carreau, Cross2, and KL exhibit minimal variations in diameter
(−0.63 %, −0.19 %, and −0.19 %, respectively). These small deviations suggest that while
these models capture non-Newtonian behavior, they do not significantly alter the impact
dynamics compared to a Newtonian fluid. In contrast, models like Casson1, Casson2,
and ModCasson show moderate reductions in relative diameters (−3.16 %, −3.10 %, and
−2.03 %, respectively). This indicates that yield stress and shear-thinning behaviors,
common in Casson and power-law models, moderately influence the spreading behavior of
droplets upon impact.
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Table 12 – Relative diameter reached by the droplet after impact

Model Relative diameter (mm) Percentage difference
Newtonian 15.79 –
Carreau 15.68 -0.63 %
Casson1 15.29 -3.16 %
Casson2 15.30 -3.10 %
Cross1 15.92 0.82 %
Cross2 15.76 -0.19 %
CY1 15.91 0.76 %
CY2 15.81 0.13 %
HB 16.35 3.55 %
KL 15.76 -0.19 %
ModCasson 15.47 -2.03 %
ModCross1 15.80 0.06 %
ModCross2 15.85 0.38 %
ModPE 15.43 -2.28 %
PE 15.60 -1.20 %
PL3 15.72 -0.44 %
PL4 16.25 2.91 %
PL6 16.12 2.09 %
SimpCross 14.91 -5.57 %

Significant increases in relative diameters are observed in models such as HB (Herschel-
Bulkley) and PL4 (3.55 % and 2.91 %, respectively). These results suggest that incorpo-
rating yield stress and shear-thinning behaviors, especially those with higher power-law
indices, can significantly affect droplet spreading. This likely results from the complex
interactions between the fluid’s resistance to deformation and its flow characteristics
under high shear conditions. On the other hand, the SimpCross model shows the largest
reduction in relative diameter (−5.57 %). This pronounced difference could indicate that
the simplifications inherent in this model fail to capture some critical aspects of droplet
impact dynamics, leading to an underestimation of the spreading diameter.

Understanding these differences is crucial for applications where precise control of
droplet spreading is necessary, as BPA activity. Selecting an appropriate non-Newtonian
model can lead to better predictive capabilities and optimized process parameters. In
conclusion, while many non-Newtonian models exhibit minor to moderate deviations
from the Newtonian baseline, certain models show significant differences that are critical
for applications requiring precise control of droplet behavior. This analysis underscores
the importance of selecting appropriate fluid models to accurately capture the complex
dynamics of non-Newtonian droplet impact, thereby enhancing predictive accuracy and
practical outcomes in relevant engineering applications.
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(a) Newtonian (b) Carreau

(c) Casson1 (d) Casson2

(e) Cross1 (f) Cross2

(g) CY1 (h) CY2

(i) HB (j) KL

Figure 57 – Droplet’s shape after impact, at t ≈ 150 ms
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(a) ModCasson (b) ModCross1

(c) ModCross2 (d) ModPE

(e) PE (f) PL3

(g) PL4 (h) PL6

Figure 58 – Droplet’s shape after impact, at t ≈ 150 ms

Furthermore, concerning splash characteristics, all power-law models (PL3, PL4 and
PL6) accurately replicated the formation of liquid fingers described by Adam (2012).
Despite that, imposing minimum and relative limits on viscosity (with the aim of just
running computational simulations of power-law models) resulted in qualitatively significant
differences in the final shape of the droplet, thereby disproportionately failing to accurately
represent the physics of human blood.

These models effectively captured the projection of thin jets of liquid beyond the
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stain’s edge, resulting in a crown-like appearance along its circumference. This aligns
with the observation that such splash features are predominantly associated with higher
impact velocities. Conversely, under lower speed conditions, the stain’s edge may exhibit a
scalloped appearance, resembling splash patterns without liquid ejection from the stain’s
main body.

That said, the inefficiency of power-law models in representing the behavior of human
blood becomes clear, as they provide dissatisfactory qualitative results primarily due to
the simplicity of their rheological model architecture, which necessitates restrictions for
their appropriate use.
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11 Human blood substitutes

11.1 Introduction
Discussing the use of non-human blood sources, Raymond, Smith e Liesegang (1996)

wrote:

It is common knowledge that pig organ substitution in humans is being
trialled successfully both in Australia and America and that pig and
human blood have very similar Haematocrit (HCT) or Packed Cell
Volumes (PCVs) when fresh. Porcine (pig) blood has been cited by some
as a reasonable alternative to human blood, but a comparison between
the physical parameters of ageing pig and fresh human blood has not
been documented in the literature.

In contrast, in Animal blood in translational research: How to adjust animal blood
viscosity to the human standard, Ecker et al. addresses the challenge of these fluids
accurately replicating the physical properties and behavior of human blood. For instance,
it highlights that pig blood is not recommended for material experiments at low shear
rates (γ̇ ≤ 200 s−1). Similarly, horse blood is not recommended as a representative model
in material experiments for this purpose.

Furthermore, Windberger et al. conducted material experiments measuring the yield
stress of human, horse, and sheep blood at temperatures of 7 ◦C, 22 ◦C, and 37 ◦C, for HCT
levels of 40 %, 50 %, and 60 %. As shown in Tab. 13, Windberger et al. (2017) demonstrates
that at 37 ◦C, there is no yield stress for human blood with a 40 % HCT. This underscores
the need for accurate modeling of human blood, as in forensic applications, blood leaving
the human body at 37 ◦C undergoes thermal variations on the way to reaching any surface,
potentially leading to the eventual appearance of yield stress in blood droplets ejected
during the process. This oversimplification can significantly impact results.

Table 13 – Yield stress (τy) for different temperatures and HCT levels

τy (Pa) Temperature
(°C)

Hematocrit
40 % 50 % 60 %

Human 7 0.021 0.033 0.046
Horse 7 0.033 0.021 0.072
Sheep 7 - - 0.464

Human 22 0.003 0.021 0.021
Horse 22 0.027 0.020 0.060
Sheep 22 - - 0.214

Human 37 - 0.009 0.009
Horse 37 - 0.010 0.054
Sheep 37 - - 0.097
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On the other hand, Horner, Wagner e Beris (2021) conducted measurements on seven
different mammalian species under permanent and transient shear rate conditions. They
also mention that human blood exhibits complex behavior, including shear-thinning be-
havior, viscoelasticity, and thixotropy (COKELET et al., 1963; APOSTOLIDIS; MOYER;
BERIS, 2016; THURSTON, 1972; KOLBASOV et al., 2016; BRUST et al., 2013; CHIEN
et al., 1975; PICART et al., 1998; HORNER et al., 2018). Horner, Wagner e Beris
(2021) compared these seven mammalian species using a protocol developed to produce
reproducible and precise measurements of human hemorheology. Their work aimed to
raise awareness among readers about the significant and complex differences in blood from
different species.

Raymond, Smith e Liesegang (1996) also mentions the need for due attention regarding
that the most obvious difference across species occurs at the low shear rates. Certain species
such as humans, pigs, and horses demonstrate pronounced shear-thinning characteristics,
which is indicated by a significant reduction in viscosity. Conversely, species like chickens,
sheep, and cows display nearly constant viscosity. In species whose blood shows notable
shear-thinning, RBCs tend to form rouleaux at low shear rates, leading to a behavior akin
to yielding. This yielding phenomenon is due to the formation of an aggregate network
among the rouleaux in a stationary state, which can withstand a finite applied stress.

11.2 Ecker viscosity models
The viscosity of animal blood is often used as a substitute for human blood in these

experiments, but it is important to note that the properties of erythrocytes differ among
species, resulting in species-specific shear-thinning behavior of blood suspensions (ECKER
et al., 2021). Therefore, it is not enough to adjust the HCT of an animal blood sample
to mimic the behavior of human blood over the entire range of shear rates present in the
body. Increasing HCT increases viscosity due to the added solid fraction in the suspension.
The human blood reacts differently to changes in shear rate, temperature or HCT than
animal blood, as reported by Stone, Jr e Schmidt-Nielsen (1968), who investigated blood
viscosity of human, sheep, goat, dog and camel with HCT levels ranging from 25 to 70 %
and shear rates from 5 to 230 s−1. A comprehensive comparison of nine mammalian
species, including shear rate variations from 0.7 to 97 s−1, showed no uniform relation of
whole blood viscosity (WBV), plasma viscosity and RBCs aggregation, emphasizing the
complexity of inter species hemorheology (WINDBERGER et al., 2017).

According to measurements made by Ecker et al. (2021) on human and horse bloods,
for example, the human blood didn’t presented difference on WBV irrespective of the
starting temperature point of the experimental setting, which was not observed on horse
blood, that showed differences on viscosity measurements during increasing or decreasing
temperatures.
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11.2.1 Mathematical models from Ecker

Ecker et al. (2021) offered mathematical models derived for some species using a
multi-linear regression approach to describe the influence of shear rate (γ̇), HCT and
temperature (T) on blood viscosity.

Human blood’s constitutive equation:

ln(η) = C1HCT + C2γ̇ + C3T − C4
√
γ̇

− C5
√
T + C6e

1/HCT + C7e
1/γ̇ − C8e

1/T

− C9e
1/(HCT·γ̇) + C10 (11.1)

Porcine blood’s constitutive equation:

ln(η) = [C1 ln(HCT) ln(γ̇) − C2] ln(T ) + C3HCT

− C4γ̇ − C5T − C6
√

HCT + C7
√
γ̇

− C8e
1/(HCT+γ̇) + C9e

1/(γ̇+T ) + C10 ln(HCT) − C11 ln(γ̇) + C12 (11.2)

Ovine blood’s constitutive equation:

ln(η) = C1HCT + C2γ̇ + C3T − C4
√
γ̇

− C5
√
T + C6e

1/HCT + C7e
1/γ̇

− C8e
1/(HCT·γ̇) − C9e

1/(HCT·T ) + C10e
1/(HCT·T ·γ̇) − C11 (11.3)

Equine blood’s constitutive equation:

ln(η) = [(−C1 ln(HCT) + C2) ln(γ̇) + C3 ln(HCT) − C4] ln(T )

+ C5HCT − C6γ̇ − C7T − C8
√

HCT + C9
√
γ̇

+ C10 ln(HCT) − C11 ln(γ̇) + C12 (11.4)

Ecker et al. showed that pig blood cannot be recommended for experiments at low flow
conditions (γ̇ < 200 s−1) even though RBCs properties are similar in pigs and humans
(figure 59). However, pig blood mimics human blood excellently at high flow conditions.
Horse blood is unsuitable as an experimental model in this regard. For several studied
conditions, sheep blood was the closest match to human blood viscosity among the tested
species.
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Figure 59 – Experimental (solid lines) and numerical (symbols) data of human and animals
blood’s viscosity in function of shear rate. Source: Ecker et al. (2021). Human
blood (square), porcine blood (triangle), ovine blood (cross marker) and equine
blood (circle)

11.2.2 About interfacial tension

It is crucial to remember that interfacial tension is also a parameter that influences
the shape the droplet will acquire after impact, as it is one of the components of the force
balance at the blood-air interface.

That said, the interfacial tension for porcine blood was set at 0.057 N/m (RAYMOND;
SMITH; LIESEGANG, 1996), for ovine blood it was set at 0.0480165 N/m (JABER;
VAYRON; HARMAND, 2022) and for equine blood it was set at 0.072309 N/m (ZAITSEV
et al., 2011).

For this round of computational simulations, the interfacial tension of human blood
was also tested on animal blood viscosity models for purely didactic purposes.

11.2.3 Comparison between human and animal’s blood simulations

As was done on last chapter, first, all models were assessed — both quantitatively and
qualitatively — when a mean velocity about ∥u∥ ≈ 1.00 m/s was reached.

Figures 60 to 61 evidence the preserved spherical shape of the droplet at ∥u∥ ≈ 1.0 m/s
and the different viscosity patterns promoted inside it, by a z-mean symmetry plane view
(at B/2 in Fig. 43).
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Qualitatively, we observe in all animal blood models a reduction in the internal viscosity
of the drop, with an even greater proportion seen in Ecker’s human blood model.

When examining the distribution of internal pressure (figure 61), it is physically
perceptible and consistent that, as the interfacial tension of the drop-air system is higher
(in porcine and equine blood), there is a corresponding increase in internal pressure to
reestablish the force balance. The inverse also occurs in ovine blood.

(a) Newtonian (b) Ecker human

(c) Ecker porcine (d) Ecker porcine*

(e) Ecker ovine (f) Ecker ovine*

(g) Ecker equine (h) Ecker equine*

Figure 60 – Viscosity distribution in the human and animal’s blood droplet at ∥u∥ ≈ 1 m/s,
in the z-mean symmetry plane

* Human blood’s interfacial tension was used in these simulations.
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(a) Newtonian (b) Ecker human

(c) Ecker porcine (d) Ecker porcine*

(e) Ecker ovine (f) Ecker ovine*

(g) Ecker equine (h) Ecker equine*

Figure 61 – Pressure distribution in the human and animal’s blood droplet at ∥u∥ ≈ 1 m/s,
in the z-mean symmetry plane

* Human blood’s interfacial tension was used in these simulations.

In second place, all models were assessed on the imminence of the impact, when a
mean velocity about ∥u∥ ≈ 1.43 m/s was reached. Again, the following tables and figures
show the previous analysis at this specific moment (impact) of the droplet.
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(a) Newtonian (b) Ecker human

(c) Ecker porcine (d) Ecker porcine*

(e) Ecker ovine (f) Ecker ovine*

(g) Ecker equine (h) Ecker equine*

Figure 62 – Viscosity distribution in the human and animal’s blood at the verge of droplet
impact, in the z-mean symmetry plane

* Human blood’s interfacial tension was used in these simulations.
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(a) Newtonian (b) Ecker human

(c) Ecker porcine (d) Ecker porcine*

(e) Ecker ovine (f) Ecker ovine*

(g) Ecker equine (h) Ecker equine*

Figure 63 – Pressure distribution in the human and animal’s blood at the verge of droplet
impact, in the z-mean symmetry plane

* Human blood’s interfacial tension was used in these simulations.



11.2. ECKER VISCOSITY MODELS 149

(a) Newtonian (b) Ecker human

(c) Ecker porcine (d) Ecker porcine*

(e) Ecker ovine (f) Ecker ovine*

(g) Ecker equine (h) Ecker equine*

Figure 64 – Relative diameter reached after impact, at t ≈ 150 ms

* Human blood’s interfacial tension was used in these simulations.

To conduct a qualitative analysis regarding the impact of droplets, following Tab. 14
presents the variations in the maximum relative diameter of droplets.
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Table 14 – Maximum relative diameter reached by the droplet after impact

Model Relative diameter (mm) Difference
Newtonian 15.79 –
Ecker’s human model 15.83 0.25 %
Ecker’s porcine model 15.69 -0.63 %
Ecker’s ovine model 15.94 0.95 %
Ecker’s equine model 14.51 -8.11 %
Ecker’s porcine model* 15.84 0.32 %
Ecker’s ovine model* 15.71 -0.51 %
Ecker’s equine model* 15.38 -2.60 %

* Human blood’s interfacial tension was used in these simulations.

As shown in the Tab. 14, the Newtonian model has a reference relative diameter of
15.79 mm. Ecker’s human blood model shows a slight increase to 15.83 mm, representing a
0.25 % difference, indicating that the human blood model behaves very similarly to the
Newtonian model under these conditions. In contrast, Ecker’s porcine model, without
any modification to interfacial tension, shows a slight decrease to 15.69 mm, a −0.63 %
difference, suggesting minor variations in impact dynamics when compared to human
blood.

Interestingly, Ecker’s ovine model exhibits a relative diameter of 15.94 mm, which is a
0.95% increase from the Newtonian model. This suggests that the ovine blood has slightly
different spreading characteristics, likely due to its specific rheological properties. On the
other hand, Ecker’s equine model shows a significant decrease to 14.51 mm, an −8.11%
difference, indicating a substantial divergence in impact behavior from both the Newtonian
and human blood models.

As previously mentioned, to isolate the effect of interfacial tension, further tests were
conducted using human blood’s interfacial tension in the animal blood models. The
results for Ecker’s porcine, ovine, and equine models with this adjustment show diameters
of 15.84 mm (0.32%), 15.71 mm (−0.51%), and 15.38 mm (−2.60%), respectively. These
adjusted results highlight that while interfacial tension plays a role, the inherent rheological
properties of each animal’s blood are crucial in determining the droplet’s impact behavior.
For instance, the significant improvement in the equine model’s diameter from −8.11% to
−2.60% with adjusted interfacial tension highlights the importance of accurately modeling
both viscosity and interfacial tension to predict droplet behavior.

Therefore, this analysis demonstrates that while some animal blood models show
minor differences in relative diameter compared to human blood, others exhibit significant
deviations. These findings underscore the importance of considering both viscosity and
interfacial tension in computational models to accurately capture the complex dynamics
of droplet impact.



151

12 Conclusion

The initial objectives of this project were to conduct groundbreaking computational
simulations within the realm of fluid mechanics, focusing specifically on the forensic
analysis of bloodstain patterns. Our study aimed to address a significant gap in scientific
understanding due to the scarcity of comprehensive investigations into computational fluid
dynamics within the forensic domain on a global scale.

We set out to achieve well-defined objectives: to execute computational simulations of
both human and animal blood droplets in free fall and to scrutinize their impact upon
a solid surface. These simulations were intended to facilitate a deeper comprehension of
the non-Newtonian properties of blood and their repercussions on the bloodstain patterns
discernible at crime scenes.

In terms of the results, it is important to note that nearly all research on human blood
has been conducted from the perspective of hemodynamics, focusing on blood circulation
within the human body. This inherently limits the shear rates experienced by human
blood. Few studies have examined shear rates of human blood outside these limits. In
the forensic context, human blood is subjected to shear rates vastly different from those
within the body.

In this dissertation, various models from the literature that represent human blood
were compared. Each model yielded different results concerning the internal viscosity
distribution of the droplet and the final shape of the droplet upon impact with a solid
surface. While the shapes may appear similar to a layperson, they become distinctly
different upon deeper analysis, considering the constitutive model used, its capabilities,
and its complexities.

Simpler constitutive models, with lower complexity, such as the power-law, which
perform well when representing blood under internal circulation conditions within the
human body, encountered shear rates in typical forensic contexts (free-falling droplet)
that led to non-physical viscosity levels. This rendered the use of this model infeasible in
forensic contexts.

Regarding the animal blood models tested, the resulting shapes after impact were
significantly different from those produced by human blood. This underscores the necessity
for special considerations when using animal blood to study bloodstain patterns at crime
scenes.

These findings are crucial for advancing the forensic analysis of bloodstain patterns,
providing a more scientifically robust framework for interpreting blood evidence at crime
scenes. The distinct behaviors observed in different blood models highlight the importance
of choosing appropriate models for accurate forensic investigations.
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12.1 Discussion of implications
The findings of this study have several theoretical and practical implications.
Firstly, the computational simulations conducted in this research provide a deeper

understanding of the non-Newtonian properties of blood under forensic conditions. This
expands the current body of knowledge, which predominantly focuses on hemodynamic
conditions within the human body, by introducing insights into the behavior of blood at
higher shear rates typical in forensic scenarios.

Moreover, the comparison of various constitutive models revealed significant differences
in the internal viscosity distribution and final shape of blood droplets upon impact. This
highlights the necessity for careful selection of models in forensic analysis to ensure accurate
interpretation of bloodstain patterns. The inadequacy of simpler models like the power-law
in forensic contexts underscores the importance of using more complex and accurate models
that can handle the low and high shear rates experienced by blood droplets in free fall.

12.1.1 Contributions of Computational Fluid Dynamics

Constitutive models for representing the viscosity of non-Newtonian fluids were suc-
cessfully implemented and validated within the MFSim code.

Computational simulations of forensic scenarios, grounded in the laws of physics, were
executed. Although these simulations were simple at this initial stage, they are of extreme
interest to forensic experts working at crime scenes.

From a forensic perspective, this dissertation stands as one of the few studies worldwide
to employ computational fluid dynamics, establishing a fertile ground for the continuation
of this work.

For the international forensic community involved in bloodstain pattern analysis,
computational fluid dynamics emerges as a promising assistant tool for in-depth studies of
bloodstains in various situations.

12.1.2 Contributions of the obtained results

Quantitative and qualitative results were provided, supported by the laws of physics and
of significant interest to the international community of bloodstain pattern analysts. These
results demonstrate the ability to generate diverse final outcomes when using substances
with different intrinsic properties.

Practically, these findings can enhance forensic methodologies by providing a more
robust scientific basis for analyzing bloodstain patterns. Forensic investigators can use
these insights to more accurately determine the origin and trajectory of blood droplets
at crime scenes, leading to more precise reconstructions of criminal events. This can
ultimately contribute to the resolution of criminal cases and the advancement of justice.
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Furthermore, the use of internally developed computational codes at MFLab enables
highly detailed and accurate simulations that surpass the capabilities of empirical ex-
periments. This methodological advancement positions this research at the forefront of
forensic fluid mechanics, setting a new standard for future studies.

Therefore, this study not only starts filling a critical gap in the forensic analysis of
bloodstain patterns but also provides a foundation for future research that can further
refine and expand upon these findings.

12.2 Limitations and future work

12.2.1 Limitations

Several limitations were encountered during this research. Regarding the implemen-
tation of viscosity models for non-Newtonian fluids in the MFSim computational code,
only models for time-independent fluids were implemented. Models for time-dependent
and viscoelastic fluids remain to be implemented. As discussed in chapters 3 and 11,
blood exhibits complex behavior that includes viscoelasticity and thixotropy in addition
to shear-thinning feature, as reported by Cokelet et al. (1963), Apostolidis, Moyer e Beris
(2016), Thurston (1972), Kolbasov et al. (2016), Brust et al. (2013), Chien et al. (1975),
Picart et al. (1998), and Horner et al. (2018).

Due to the extensive number of models tested, only one scenario was examined within
the available timeframe: the impact of a free-falling droplet on a solid surface. Even within
this specific scenario, there were limitations regarding the physical representation, which
require further improvements:

• During the impact, a static contact angle was considered, without accounting for
the dynamic contact line or triple contact line

• Small ejected droplets from the main structure were not analyzed, as this information
was dissipated due to the insufficient mesh resolution, despite being fine. There is
potential to adapt the code to track these small particles using techniques already
implemented in MFSim, such as the dpm method

• Adhesion to the impact surface of the droplet was not considered, which necessitates
appropriate implementation and validation in the MFSim computational code

• The simulations conducted in this dissertation were considered isothermal in their
physical model. However, for a human blood droplet expelled from the body due
to a crime, there is thermal exchange with the environment from expulsion until
impact, which cannot be disregarded. As observed in chapter 11, human blood with
HCT = 40 % at a temperature of 37 ◦C (the internal body temperature) exhibits no
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yield stress, while at 22 ◦C it does, completely changing the internal fluid dynamics
of the expelled blood droplet

• No turbulence model was activated during the simulation. Despite the laminar
regime of the computational modeling conducted in this dissertation, other scenarios
may require the activation of turbulence models to capture fluid dynamic phenomena
that cannot be ignored

• Wind effects, under different orientations, were not considered for evaluating their
quantitative and qualitative impacts on results

Another significant limitation was the difficulty in finding well-documented experimental
data with the aim of computational modeling them. While there are material experiments
involving blood conducted by the forensic community (LABER; EPSTEIN; TAYLOR,
2006), they are often poorly documented for the specific purpose of reproducting them
via computational modeling. There is a lack of information on the type of blood used
(whether human, animal or synthetic) and its physical properties; temperature (ROSINA
et al., 2007) and relative humidity of the environment where the experiment was conducted
(BENABDELHALIM; BRUTIN, 2023), which have a profound impact on the final shape
of the blood droplet after impact; dimensional information of the experiment, droplet
release height, and the units of measurement used (SI, imperial or US customary units);
and the positioning of vertical and frontal cameras that captured the impact, suggesting
parallax issues that hinder the understanding of results.

12.2.2 Future work

Future research directions based on the findings and limitations of this study include:

• Investigation of droplets falling on inclined planes at various angles

• Application of the Immersed Boundary Method technique (see chapter 7) to represent
various objects within the domain

• Tracking of small droplets detached from the main droplet structure using the dpm
method

• Use of wettability and adhesion techniques to improve the physical representation of
the impact and post-impact moments

• Conducting thermal balance in the computational modeling, imposing thermal
boundary and initial conditions compatible with real situations

• Incorporating wind effects into the modeling and evaluating their impacts on the
results
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• Performing material experiments with human blood of specific physical properties,
under specific and controlled thermal and fluid dynamic conditions, well-documented
for subsequent computational modeling.

These suggestions aim to address the identified limitations and pave the way for more
comprehensive and accurate forensic simulations using computational fluid dynamics.

12.3 Closing remarks
In conclusion, this research project represents a pioneering effort in computational

fluid dynamics applied to forensic bloodstain pattern analysis. Our objectives were aimed
at filling critical gaps in understanding the behavior of blood under non-hemodynamic
conditions, specifically in forensic contexts where high and very low shear rates play a
decisive role in pattern formation.

We successfully executed computational simulations of blood droplets in free fall,
employing various viscosity models to capture the complex non-Newtonian behavior of
blood. The comparison of these models revealed significant differences in droplet shape
and internal viscosity distribution upon impact, emphasizing the need for accurate model
selection in forensic investigations.

Despite encountering several challenges and limitations, such as the need for more
comprehensive viscosity models and better-documented experimental data, this study has
laid a solid foundation for future advancements in forensic fluid mechanics. The insights
gained here can significantly enhance the accuracy and reliability of bloodstain pattern
analysis, ultimately aiding forensic experts in reconstructing crime scenes with greater
precision.

The theoretical and practical contributions of this research extend beyond academia,
offering tangible benefits to forensic practitioners worldwide. By integrating computational
fluid dynamics into forensic science, we open new avenues for detailed and systematic
analysis of bloodstain patterns, thereby supporting the pursuit of justice and truth in
criminal investigations.

Looking ahead, further research should focus on refining existing models to encompass
additional fluid properties like viscoelasticity and thixotropy, addressing thermal effects
during droplet flight, and incorporating environmental factors such as wind. Additionally,
conducting well-documented material experiments with human blood under controlled
conditions will be crucial for validating and expanding the applicability of computational
models in forensic settings.

In summary, this dissertation marks a significant step forward in the application of
computational fluid dynamics to forensic science, paving the way for more sophisticated
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methodologies and tools that can revolutionize how blood evidence is analyzed and
interpreted in criminal investigations.
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13 Appendix A

13.1 Poiseuille flow continuous mathematical modeling

13.1.1 Newtonian fluid solution

According to Eq. 4.1, the mass balance in a system is given by:

Dρ

Dt
+ ρ∇ · u = 0 (13.1)

As the specific mass is constant (incompressible flow), the term ∂ρ/∂t is set to zero.
Then:

∇ · u = 0 (13.2)

This leads to:

∂ρ

∂t
+ ρ

∂u

∂x
+ ρ

∂v

∂y
+ ρ

∂w

∂z
= 0 (13.3)

Considering the initially stated assumptions, Eq. 13.3 reduces to:

∂u

∂x
= 0 (13.4)

which translates to there being no gradient, upon reaching the steady flow regime, of the
horizontal component of velocity, u, in the horizontal flow direction, x.

The linear momentum balance is given by Eq. 4.29:

ρ
Dui

Dt
= ρg − ∇p + ∂

∂xi

[
µ

(
∂ui

∂xj

+ ∂uj

∂xi

)
+ δijλ∇ · ui

]
(13.5)

Expanding the axial component of Eq. 13.5, we have:

ρ
Du

Dt
= ρgx − dp

dx
+ ∂

∂x

(
2µ∂u
∂x

+ λ∇ · ui

)
+ ∂

∂y

[
µ

(
∂u

∂y
+ ∂v

∂x

)]

+ ∂

∂z

[
µ

(
∂u

∂z
+ ∂w

∂x

)] (13.6)

Again, considering the initially stated assumptions, Eq. 13.6 reduces to:

dp
dx

= µ
∂2 u

∂y2 (13.7)

Reorganizing the terms, we have:

∂2 u

∂y2 = 1
µ

dp
dx

(13.8)
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Letting 1
µ

dp
dx

= φ, we get:

∂2 u

∂y2 = φ (13.9)

Integrating with respect to y, we get:

∂ u

∂y
= φy + C1 (13.10)

As ∂u
∂y

∣∣∣∣
y=0

= 0, then C1 = 0. Hence:

∂ u

∂y
= φy (13.11)

Integrating once more, we get:

u(y) = φy2

2 + C2 (13.12)

Applying the boundary condition u(+h) = 0, Eq. 13.12 reduces to:

0 = φh2

2 + C2 (13.13)

which gives us C2 = −φ h2

2 .
Therefore, returning to Eq. 13.12, we have:

u(y) = φy2

2 − φh2

2

u(y) = φh2

2

[(
y

h

)2
− 1

]
(13.14)

As the maximum velocity is reached at the center of the geometry, we have:

u(0) = Vmax = −φh2

2 (13.15)

Thus, we can rearrange Eq. 13.14 as follows:

u(y) = Vmax

[
1 −

(
y

h

)2
]

(13.16)

For the calculation of the average flow velocity, we can integrate the found velocity,
u(y), over the cross-sectional area of the flow, as follows.
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Figure 65 – Cross-sectional area of Poiseuille flow

Figure 65 illustrates - in blue - the cross-sectional area of the flow, through which the
fluid flows in the direction indicated by the black arrows. The average flow velocity, when
in steady state, can be represented by:

u = 1
At

∫
u dAt (13.17)

Substituting At = B · 2y, dAt = B · dy, and substituting u by the relationship found in
Eq. 13.16, we get:

u = 1
B · 2y

∫ h

−h
Vmax

[
1 −

(
y

h

)2
]
B dy (13.18)

Rearranging, we have:

u = Vmax

2h

∫ h

−h

(
1 − y2

h2

)
dy

= Vmax

2h

[
y

∣∣∣∣h
−h

− 1
h2

(
y3

3

∣∣∣∣h
−h

)]

= Vmax

2h

[
2h− 1

h2

(
2h3

3

)]

= Vmax

2h

(
4h
3

)
(13.19)

Thus:

u = 2
3 Vmax (13.20)



13.1. POISEUILLE FLOW CONTINUOUS MATHEMATICAL MODELING 172

13.1.2 Non-newtonian fluid solution

Now, starting from Eq. 13.6, seeking a continuous solution for non-Newtonian fluid
using the power-law model, we can no longer take the variable µ out of the divergence,
replacing it with the constitutive equation of the power-law model below:

η = m γ̇n−1 (13.21)

which reduces Eq. 13.6 to:

dp
dx

= ∂

∂y

m(
du

dy

)n−1

· du
dy


dp
dx

= m

[
∂

∂y

(
du

dy

)n]
(13.22)

Rearranging, we have:
[
∂

∂y

(
du

dy

)n]
= 1
m

dp
dx

(13.23)

Integrating with respect to y, we get:
(
du

dy

)n

= 1
m

dp
dx

y + C1 (13.24)

Raising both sides to the power of 1/n:

du

dy
=
[

1
m

dp
dx

y + C1

]1/n

(13.25)

As ∂u
∂y

∣∣∣∣
y=0

= 0, then C1 = 0. Hence:

du

dy
=
[

1
m

dp
dx

y

]1/n

(13.26)

Making:

du =
[

1
m

dp
dx

]1/n

· y1/n dy (13.27)

Let
[

1
m

dp
dx

]
= λ, thus:

du = λ1/n · y1/n dy (13.28)

Integrating, we get:

u(y) = λ
y

1
n

+1

1
n

+ 1 = nλ

n+ 1 y
1
n

+1 + C2 (13.29)
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Applying the boundary condition u(+h) = 0, temos:

u(h) = 0 = nλ

n+ 1 h
1
n

+1 + C2 (13.30)

which provides:

C2 = −nλh
1
n

+1

n+ 1 (13.31)

Substituting into Eq. 13.29, we get:

u(y) = nλ

n+ 1y
1
n

+1 − nλ

n+ 1 h
1
n

+1 (13.32)

u(y) = nλ

n+ 1 h
1
n

+1
[(
y

h

) 1
n

+1
− 1

]
(13.33)

The maximum velocity occurs at u(0) = Vmax:

u(0) = Vmax = − nλ

n+ 1h
1
n

+1 (13.34)

Thus:

u(y) = Vmax

[
1 −

(
y

h

) 1
n

+1
]

(13.35)

13.2 Transient Couette flow continuous mathematical modeling

13.2.1 Newtonian fluid solution

Starting from the linear momentum balance Eq. 4.29 and assuming the physical model
considerations described in sec. 8.2.1, we arrive at the following ODE a be resolved:

∂u

∂t
= ν

∂2u

∂y2 (13.36)

or yet:

ut = ν uyy (13.37)

First, let’s consider the following Laplace transform:

L {u(y, t)} = U(y, s) (13.38)

Applying the transform to the Eq. 13.37, we have:

L {ut} = L {ν uyy} (13.39)

which provides
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sU(y, s) − u(y, 0) = ν
∂2

∂y2 L {u(y, t)} (13.40)

As u(y, 0) = 0 (boundary condition), then:

sU(y, s) = ν
∂2

∂y2 U(y, s) (13.41)

Rearranging:

ν
∂2

∂y2 U(y, s) − sU(y, s) = 0 (13.42)

Now, the ODE of the Eq. 13.42 is a second-order homogeneous. Solving it, we have:

νλ2 − s = 0 (13.43)

Then:

λ = ±
√
s

ν
(13.44)

So the solution becomes:

U(y, s) = C1 e
√

s
ν

y + C2 e
−
√

s
ν

y (13.45)

Now, applying the Laplace transform to the boundary conditions, we have, in the first:

L {u(0, t)} = U(0, s) (13.46)

L {0} = U(0, s)

0 = U(0, s)

which provides:

U(0, s) = 0 (13.47)

The second boundary condition is:

L {u(h, t)} = U(h, s) (13.48)

L {V } = U(h, s)

V L {1} = U(h, s)
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V
1
s

= U(h, s)

which provides

U(h, s) = V

s
(13.49)

Substituting the Eqs. 13.47 and 13.49 into 13.45, we have:
U(0, s) = C1 + C2 = 0

U(h, s) = C1 e
√

s
ν

h + C2 e
−
√

s
ν

h = V
s

(13.50)

Solving C1 and C2, we have:

C1 = V

2s sinh
(√

s
ν
h
) (13.51)

C2 = − V

2s sinh
(√

s
ν
h
) (13.52)

Returning the Eqs. 13.51 and 13.52 into the Eq. 13.45, we have:

U(y, s) = V

2s sinh
(√

s
ν
h
) [e√ s

ν
y − e−

√
s
ν

y
]

(13.53)

Using the definition of hyperbolic sine, we adjust the previous equation to:

U(y, s) = V

2s sinh
(√

s
ν
h
) [2 sinh

(√
s

ν
y
)]

(13.54)

Simplifying, we have:

U(y, s) = V
sinh

(√
s
ν
y
)

s sinh
(√

s
ν
h
) (13.55)

Making a = y√
ν

and b = h√
ν
, we have:

U(y, s) = V
sinh (a

√
s)

s sinh (b
√
s) (13.56)

Now opening the hyperbolic terms, we have:

sinh (a
√
s)

s sinh (b
√
s) = ea

√
s − e−a

√
s

s
(
eb

√
s − e−b

√
s
) (13.57)

Multiplying both the numerator and denominator by e−b
√

s, we have:

sinh (a
√
s)

s sinh (b
√
s) =

e−b
√

s
(
ea

√
s − e−a

√
s
)

s e−b
√

s
(
eb

√
s − e−b

√
s
) = e(a−b)

√
s − e−(a+b)

√
s

s
(
1 − e−2b

√
s
) (13.58)
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Now matching the previous term with geometric series, we have:

1
1 − e−2b

√
s

=
∞∑

n=0
e−2bn

√
s (13.59)

So:

sinh (a
√
s)

s sinh (b
√
s) =

( ∞∑
n=0

e−2bn
√

s

)
·
(
e(a−b)

√
s − e−(a+b)

√
s

s

)
(13.60)

Since the term outside the summation does not affect the summation itself (as it does
not depend on the index n), we will include it within the summation:

sinh (a
√
s)

s sinh (b
√
s) =

∞∑
n=0

[
e(−2bn+a−b)

√
s

s
− e(−2bn−a−b)

√
s

s

]
(13.61)

With this, we can return to the Eq. 13.56, which is:

U(y, s) = V
∞∑

n=0

[
e(−2bn+a−b)

√
s

s
− e(−2bn−a−b)

√
s

s

]
(13.62)

Now, to obtain the function u(y, t), we simply apply the inverse Laplace transform to
U(y, s):

u(y, t) = L −1 {U(y, s)} = L −1
{
V

∞∑
n=0

[
e(−2bn+a−b)

√
s

s
− e(−2bn−a−b)

√
s

s

]}

u(y, t) = V L −1
{ ∞∑

n=0

[
e(−2bn+a−b)

√
s

s
− e(−2bn−a−b)

√
s

s

]}
(13.63)

which provides in the end:

u(y, t) = V
∞∑

n=0

[
erfc

(
2bn− a+ b

2
√
t

)
− erfc

(
2bn+ a+ b

2
√
t

)]
(13.64)

As erfc(x) = 1 − erf(x), therefore:

u(y, t) = V
∞∑

n=0

[
erf

(
2bn+ a+ b

2
√
t

)
− erf

(
2bn− a+ b

2
√
t

)]
(13.65)
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14 Appendix B

14.1 Introduction
The careful use of appropriate nomenclature in scientific discourse is paramount for

ensuring precision, clarity, and effective communication. Terms that accurately reflect the
physical reality of phenomena under study are essential for avoiding misunderstandings and
misinterpretations. In fields such as engineering and physics, where complex interactions
and precise measurements are routine, the correct terminology not only facilitates better
comprehension but also promotes consistency in research and application.

Moreover, using nomenclature that faithfully represents physical concepts helps in
standardizing scientific language across different disciplines and geographical regions.
This standardization is crucial for the reproducibility of experiments and the validation
of theoretical models. By adhering to terms that accurately describe the phenomena,
researchers can more effectively communicate their findings, build upon each other’s work,
and advance the collective knowledge within the scientific community.

14.2 Relative specific mass versus specific gravity
The term specific gravity is widely used, especially in industrial and commercial

contexts. However, this term is somewhat misleading, as it may suggest a direct relationship
with gravitational force, which is not the case. Specific gravity refers to the ratio between
the specific mass of a substance and the specific mass of a reference substance, typically
water at 4 ◦C, where the specific mass is at its maximum and very close to 1, 000 kg/m3.

In contrast, the term relative specific mass is more physically consistent and precise.
This term highlights that we are dealing with a ratio of specific masses, eliminating any
ambiguity associated with the erroneous interpretation of a relationship with gravity.
Relative specific mass, defined as:

Relative Specific Mass = ρsubstance

ρreference
(14.1)

where ρsubstance is the specific mass of the substance in question and ρreference is the
specific mass of the reference substance (usually water), clearly expresses the comparison
between the specific masses of two substances.

Furthermore, the use of the term relative specific mass aligns with the nomenclature
used in various international standards and technical norms, promoting uniformity in
scientific and technical discourse. Adopting this term contributes to clearer communication
and avoids confusion that may arise from imprecise terminology.
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Therefore, it is strongly recommended to adopt the term relative specific mass in
scientific and technical publications, as well as in educational environments, to ensure the
precision and clarity necessary for scientific rigor.

14.3 Surface Tension x Interfacial Tension
Another common misnomer in this area is the use of the term surface tension instead

of the more precise interfacial tension.
The term surface tension is often used to describe the force per unit length acting

along the surface of a liquid in contact with another phase (typically a gas). While
widely understood, this term is not entirely accurate when describing phenomena involving
interfaces between two immiscible liquids or between a liquid and a solid. Surface tension
primarily pertains to the interface between a liquid and a gas, and using it in other contexts
can lead to misunderstandings.

Conversely, the term interfacial tension is more physically consistent and precise.
Interfacial tension refers to the force per unit length existing at the interface between two
different phases, which can be liquid-liquid, liquid-solid, or even liquid-gas. This term
more accurately captures the complexities and nuances of interactions at various types of
interfaces. Interfacial tension, defined as:

Interfacial Tension = F

L
, (14.2)

where F is the force acting along the interface and L is the length over which this force
acts, provides a clear and unambiguous description of the force balance at the interface.

14.4 Yield-pseudoplastic versus yield-shear-thinning
And finally, the last commonly misused term in this field is yield-pseudoplastic,

which should be replaced with the more physically consistent term yield-shear-thinning.
The term yield-pseudoplastic is often used to describe fluids that exhibit a yield stress

followed by shear-thinning behavior. However, this term is somewhat misleading and less
precise. Pseudoplasticity is a general term that denotes shear-thinning behavior without
necessarily implying the presence of a yield stress. Therefore, using yield-pseudoplastic
can cause confusion, as it does not clearly differentiate between simple shear-thinning
fluids and those that exhibit both yield stress and shear-thinning characteristics.

On the other hand, the term yield-shear-thinning is more physically consistent
and precise. This term accurately describes fluids that exhibit a yield stress (a threshold
stress that must be exceeded before flow begins) and shear-thinning behavior (a decrease
in viscosity with increasing shear rate) after yielding. Yield-shear-thinning fluids are
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characterized by a transition from a solid-like state to a fluid-like state upon the application
of a stress greater than the yield stress, followed by a reduction in viscosity with further
increases in shear rate. This term, defined as:

Yield-shear-thinning =

 τ < τy : No flow
τ ≥ τy : Shear-thinning behavior

(14.3)

where τ is the applied shear stress and τy is the yield stress, provides a clear and
unambiguous description of the fluid’s behavior.
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