Transferéncia de Aprendizado por Reforco para

Elasticidade de Servico de Nuvem

Ian Resende da Cunha

G

UFU

UNIVERSIDADE FEDERAL DE UBERLANDIA
FACULDADE DE COMPUTAGAO
PROGRAMA DE POsS-GRADUAGAO EM CIENCIA DA COMPUTAGAO

Uberlandia
2024

Ian Resende da Cunha

Transferéncia de Aprendizado por Reforco para

Elasticidade de Servico de Nuvem

Dissertacao de mestrado apresentada ao
Programa de Pos-graduagao da Faculdade
de Computacdo da Universidade Federal de
Uberlandia como parte dos requisitos para a
obtengao do titulo de Mestre em Ciéncia da

Computacao.
Area de concentracao: Ciéncia da Computacio

Orientador: Rafael Pasquini

Coorientador: Matias Richart

Uberlandia
2024

Ficha Catalografica Online do Sistema de Bibliotecas da UFU
com dados informados pelo(a) préprio(a) autor(a).

Ca72
2024

Cunha, lan Resende da, 1997-

Transfer of Deep Reinforcement Learning for Cloud
Service’s Elasticity [recurso eletronico] / lan Resende
da Cunha. - 2024.

Orientador: Rafael Pasquini.

Coorientador: Matias Richart.

Dissertacado (Mestrado) - Universidade Federal de
Uberlandia, P6s-graduacao em Ciéncia da Computagéo.

Modo de acesso: Internet.

Disponivel em: http://doi.org/10.14393/ufu.di.2024.173

Inclui bibliografia.

Inclui ilustragdes.

1. Computagéo. I. Pasquini, Rafael,1983-, (Orient.).
Il. Richart, Matias,1987-, (Coorient.). III.
Universidade Federal de Uberlandia. Pds-graduagéo em
Ciéncia da Computagéo. IV. Titulo.

CDU: 681.3

Bibliotecarios responsaveis pela estrutura de acordo com o AACR2:

Gizele Cristine Nunes do Couto - CRB6/2091
Nelson Marcos Ferreira - CRB6/3074

Este trabalho € dedicado as criancas adultas que,

quando pequenas, sonharam em se tornar cientistas.

Agradecimentos

Agradego ao meu orientador, Professor Dr. Rafael Pasquini, pela valiosa orientacao,
confianca e compreensao ao longo de todo o trabalho.

Ao meu coorientador, Professor Dr. Matias Richart, e ao Professor Dr. Javier
Baliosian, que colaboraram fortemente para o desenvolvimento deste trabalho, sempre
disponiveis para discussoes e sugestoes.

A minha noiva Isadora, dedico especial reconhecimento pela sua paciéncia incansdvel
e apoio incondicional durante esta jornada. Por restaurar minhas forcas e motivagdo nos
momentos mais dificeis, por compreender minha auséncia em intimeras ocasides e por ser
a melhor companheira que eu poderia pedir. Este trabalho também é seu.

Aos meus pais, Marcio e Edilaine, meu agradecimento por todo o apoio, incentivo e
compreensao em todas as situagoes. Seu sacrificio e dedicagdo em oferecer-me a melhor
educacao possivel, tanto pessoal quanto académica, sdo inestimaveis.

Aos meus familiares que me apoiam e desejam o melhor para mim.

A Noussec, empresa onde trabalho, por aceitar e apoiar constantemente a realizacao
deste trabalho.

E, por fim, aqueles professores da Faculdade de Computacao que fizeram mais do que
seu trabalho, transmitindo e despertando em mim o fascinio pela ciéncia e o desejo de

colaborar nessa jornada de ensino e principalmente constante aprendizado.

“You have power over your mind, not outside events.
Realize this, and you will find strength.”

(Marcus Aurelius)

Resumo

O gerenciamento de recursos em ambientes de computacao de nuvem é um desafio
critico, no qual um mecanismo de orquestracao busca garantir a utilizagdo otimizada
de recursos, mantendo a qualidade do servico, evitando desperdicios e reduzindo cus-
tos. Uma abordagem promissora para automatizar essa tarefa envolve o uso de técnicas
de aprendizado de maquina. No entanto, essa abordagem também enfrenta desafios no
treinamento online em ambientes reais, relacionados a complexidade dos sistemas, longas
duragoes de treinamento, restrigbes de seguranca e rigidez do sistema. Esta dissertacao
tem como objetivo aprimorar e viabilizar o processo de treinamento de Aprendizado por
Reforgo para tarefas relacionadas a orquestragao de recursos de servigos de nuvem, uti-
lizando a Transferéncia de Aprendizado (Transfer Learning - TL). Um ambiente fonte foi
construido, composto por um modelo de simulagao do servico, e o conhecimento adquirido
em treinamento em simulagao foi transferido para aprimorar o novo treinamento no am-
biente do mundo real. Uma analise comparativa entre TL e métodos de treinamento
tradicionais apresenta resultados positivos, incluindo uma reducao substancial no tempo
necessdrio para alcancar um desempenho razoavel, melhorias de até 40% no desempenho
inicial dos agentes e um aprimoramento de até 30% no desempenho geral durante as fases
de treinamento e teste. Por fim, foi demonstrado que um agente treinado em simulacao
pode ser reutilizado diretamente no ambiente real sem treinamento adicional, produzindo

resultados satisfatérios e consistentes.

Palavras-chave: Transferéncia de Aprendizado. Aprendizado por Reforco Profundo.
Aprendizado de Maquina. Orquestracao. Gerenciamento de Recursos. Elasticidade.

Servico de Nuvem. Banco de dados Cassandra.

Transfer of Deep Reinforcement Learning for

Cloud Service’s Elasticity

Ian Resende da Cunha

G

UFU

UNIVERSIDADE FEDERAL DE UBERLANDIA
FACULDADE DE COMPUTAGAO
PROGRAMA DE POsS-GRADUAGAO EM CIENCIA DA COMPUTAGAO

Uberlandia
2024

UNIVERSIDADE FEDERAL DE UBERLANDIA

Coordenagdo do Programa de Pés-Graduagdao em Ciéncia da Computagdo
Av. Jodo Naves de Avila, 2121, Bloco 1A, Sala 243 - Bairro Santa Ménica, Uberlandia-MG, CEP 38400-902
Telefone: (34) 3239-4470 - www.ppgco.facom.ufu.br - cpgfacom@ufu.br

ATA DE DEFESA - POS-GRADUAGAO

Programa de Pés-

Graduacio em: Ciéncia da Computagdo

Defesa de: Dissertagdo de Mestrado, 9/2024, PPGCO

Data: 29 de fevereiro de 2024 Hora de inicio: 09:00 Hora de 12:30
encerramento:

Matricula do 12012CCP003

Discente:

Nome do Discente: | lan Resende da Cunha

Titulo do Trabalho: | Transfer of Deep Reinforcement Learning for Cloud Service’s Elasticity

Area de

x Ciéncia da Computagdo
concentragdo:

Linha de pesquisa: | Sistemas de Computagdo

Projeto de Pesquisa

. ~ SFI2 - Slicing Future Internet Infrastructure
de vinculagdo:

Reuniu-se por videoconferéncia, a Banca Examinadora, designada pelo Colegiado do Programa de Pds-graduagdo em
Ciéncia da Computagdo, assim composta: Professores Doutores: Matias Mario Richart Gutiérrez- University of the Republic
in Uruguay (Coorientador), Rodrigo Sanches Miani - FACOM/UFU, Rodolfo da Silva Villaca - PPGI/UFES e Rafael Pasquini -
FACOM/UFU, orientador do candidato.

Os examinadores participaram desde as seguintes localidades: Matias Mario Richart Gutiérrez - Barcelona/Espanha e
Rodolfo da Silva Villaca- Vitéria/ES . Os outros membros da banca e o aluno participaram da cidade de Uberlandia.

Iniciando os trabalhos o presidente da mesa, Prof. Dr. Rafael Pasquini, apresentou a Comissdo Examinadora e o candidato,
agradeceu a presencga do publico, e concedeu ao Discente a palavra para a exposi¢do do seu trabalho. A duragdo da
apresentagdo do Discente e o tempo de argui¢do e resposta foram conforme as normas do Programa.

A seguir a senhor presidente concedeu a palavra, pela ordem sucessivamente, aos examinadores, que passaram a arguir
ao candidato. Ultimada a argui¢do, que se desenvolveu dentro dos termos regimentais, a Banca, em sessdo secreta,
atribuiu o resultado final, considerando o candidato:

Aprovado

Esta defesa faz parte dos requisitos necessarios a obteng¢do do titulo de Mestre.

Ressalta-se que o Coorientador Matias Mario Richart Gutiérrez, por ser estrangeiro, residente em outro pais e ndo possuir
CPF registrado no Brasil ndo assinara a ata de defesa.

O competente diploma serd expedido apds cumprimento dos demais requisitos, conforme as normas do Programa, a
legislagdo pertinente e a regulamentagdo interna da UFU.

Nada mais havendo a tratar foram encerrados os trabalhos. Foi lavrada a presente ata que apds lida e achada conforme foi
assinada pela Banca Examinadora.

P eil Documento assinado eletronicamente por Rafael Pasquini, Professor(a) do Magistério Superior, em 04/03/2024, as
o . 09:21, conforme horario oficial de Brasilia, com fundamento no art. 62, § 12, do Decreto n2 8.539, de 8 de outubro de

assinatura
' eletrénica 2015.

p eil Documento assinado eletronicamente por Rodrigo Sanches Miani, Professor(a) do Magistério Superior, em
2 ' 04/03/2024, as 10:57, conforme horario oficial de Brasilia, com fundamento no art. 62, § 12, do Decreto n? 8.539, de 8

assinatura
i eletrdnica de outubro de 2015.

pr=
3@'! Documento assinado eletronicamente por RODOLFO DA SILVA VILLACA, Usuario Externo, em 04/03/2024, as 15:59,
' :;;j?g;?c'; 3| conforme horério oficial de Brasilia, com fundamento no art. 62, § 12, do Decreto n? 8.539, de 8 de outubro de 2015.

s3]

1 X- A autenticidade deste documento pode ser conferida no site https://www.sei.ufu.br/sei/controlador_externo.php?
1 acao=documento_conferir&id_orgao_acesso_externo=0, informando o cédigo verificador 5195411 e o cédigo CRC
46A98E1C.

Referéncia: Processo n2 23117.012548/2024-76 SEIn2 5195411

Abstract

Resource management in cloud computing environments is a critical challenge, where
an orchestration mechanism seeks to ensure optimized resource utilization while main-
taining service quality, preventing waste, and reducing costs. A promising approach to
automating this task involves employing machine learning techniques. However, this ap-
proach also faces challenges in real-world online training, related to system complexity,
extended training durations, safety restrictions, and system rigidity. This dissertation
aims to enhance and streamline the Deep Reinforcement Learning training process for
tasks related to the orchestration of cloud service resources by employing the Transfer
Learning (TL) technique. A source environment was built, comprising a simulation of
the target service, and knowledge acquired through simulation training was transferred
to enhance training in the real-world service environment. Comparative analysis between
TL-based and standard training reveals positive outcomes, including a substantial reduc-
tion in time required to achieve reasonable performance, improvements of up to 40% in
the initial performance of agents, and up to a 30% enhancement in overall performance
during training and testing phases. Finally, it was demonstrated that an agent trained
in simulation could be deployed directly into the real environment without additional

training, yielding satisfactory and consistent outcomes.

Keywords: Transfer Learning. Deep Reinforcement Learning. Machine Learning. Or-

chestration. Resource Management. Elasticity. Cloud Service. Cassandra Database.

List of Figures

Figure 1 — Traditional reinforcement learning flow

Figure 2 — DQN’s neural network representation

Figure 3 — NECOS architecture
Figure 4 — Real Environment Module (REM) architecture
Figure 5 — Simulation Environment Module (SEM) architecture
Figure 6 — Experimental research workflow

Figure 7 — Proposed theoretical architecture structure
Figure 8 — Simulink Cassandra node representation
Figure 9 — REM operation workflow,

Figure 10 — Simulation training reward moving average and node usage in Scenario

Figure 11 — Latency and active nodes of a typical episode of SEM source agent
testing phase
Figure 12 — Standard and enriched agents training reward moving average in Sce-
nario 1.o oo
Figure 13 — Standard, Enriched, and Cold Start testing reward moving average in
Scenario 1..
Figure 14 — Standard and Enriched training reward moving average in Scenario 2. .
Figure 15 — Fully Trained Standard and Enriched agents testing, and cold start
testing reward average in Scenario 2.
Figure 16 — Average reward and violation rate of cold start test and, partially

trained and fully trained standard agents, in Scenario 2.

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9

List of Tables

Testbed virtual machines specifications 44
First scenario training parameters 58
Simulation training and testing results for Scenario 1. 59
Training and testing results of Standard agent of Scenario 1 60
Training results of standard and enriched agents of Scenario 1 61
Testing results of standard and enriched agents of Scenario 1 62
Second scenario training parameters 63
Training phase results (100 episodes) of agents in Scenario 2. 64

Testing phase results of standard and enriched agents, fully trained in

100 episodes, and cold start in Scenario 2 65

Table 10 — Testing phase results of partially trained agents (trained for 50 episodes)

and cold start test in Scenario 2 66

AT Artificial Intelligence

DRL Deep Reinforcement Learning

DQN Deep Q-Networks

DNN Deep Neural Networks

IMA Infrastructure & Monitoring Abstraction

ML Machine Learning

NFV Network Function Virtualization

QoS Quality of Service

REM Real Environment Module

RL Reinforcement Learning

RO Resource Orchestrator

Acronyms list

RNN Recurrent Neural Networks

SEM Simulation Environment Module

SDN Software-Defined Networking

SRO Slice Resource Orchestrator

TL Transfer Learning

VM Virtual Machines

1.1
1.2
1.3

2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.4
2.5

3.1
3.2
3.3
3.4

4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.2

Contents

INTRODUCTION ittt it e e 15
Research Goals and Challenges 17
Hypothesis 18
Outline 19
FUNDAMENTALS o it e e et e e e 21
Cloud Resource Management 21
Machine Learning 23
Reinforcement Learning L. 24
Deep Reinforcement Learning 25
Deep Q-Networks Algorithm 26
Transfer Learning 29
NECOS Project 30
Related Work 32
PROPOSALo e e e e e e e 35
Proposed Approach 35
Testbed Environments 36
Research Workflow 38
On the Architectural Specification 40
TEST ENVIRONMENT IMPLEMENTATION 43
Real Environment Module (REM) 44
Cassandra Service Cluster 44
Node Controller 46
Probe Client (Sensor)o 46
Real Load Generator 47

Simulation Environment Module (SEM) 48

4.3
4.3.1
4.3.2
4.4

5.1
5.2
5.2.1
5.2.2

6

6.1
6.2
6.3

RL Module Design 00 49

Goal and Reward Function 49
Specifications 51
Modules Operation Workflow 51
EXPERIMENTAL RESULTS AND ANALYSIS 55
Evaluation Method 55
Experiments and Analysis 57
Scenario 1 L 58
Scenario 2o 63
CONCLUSION o e e e e e e e e e e e e e e e 69
Main Contributions 69
Future Work 70
Contributions in Bibliographic Production 71

BIBLIOGRAPHY i e 73

I hereby certify that I have obtained all legal permissions from the owner(s) of each
third-party copyrighted matter included in my thesis, and that their permissions allow

availability such as being deposited in public digital libraries.

Tan Resende da Cunha

14

LIST OF TABLES

15

CHAPTER].

Introduction

The rise of cloud computing has revolutionized the way we store, manage, and access
data and applications. Cloud computing provides a flexible and scalable way to provision
computing resources on demand, allowing users to access advanced computing resources
without investing in hardware or local infrastructure. As such, it has become a vital part
of the daily operations of modern businesses and has been widely adopted across various
sectors, types, and sizes of companies (EL-GAZZAR, 2014).

However, as the demand for cloud computing services continues to grow, with high
demands for scalability, availability, and security, the challenges of efficiently managing
cloud resources also increase. One of these challenges is the orchestration of cloud com-
puting resources, which involves managing and allocating these resources efficiently and
cost-effectively, aiming to cope with the dynamism of the demand, which is influenced
by the variety of types of infrastructure, environments, technologies, tools, and software

(JENNINGS; STADLER, 2015).

Therefore, this research focuses on the role of the Resource Orchestrator (RO) in the
context of cloud computing and networking infrastructures, the RO is responsible for
managing and scaling the allocation of resources. The management of cloud computing
resources could be performed manually, with human-operated adjustments, by monitor-
ing the structure’s state and adjusting the allocated resources according to the varying

demand.

Another approach that provides a primary level of automation to resource management
would be with human-generated heuristics policy, defining and configuring rules that could
guide the resource orchestration process (BELOGLAZOV; ABAWAJY; BUYYA, 2012).
These heuristics establish, for example, guidelines or thresholds that command when
to perform automatic changes in the level of allocated resources. For instance, when
the level of demand received by a service exceeds the upper-bound value, the platform
understands that it must automatically allocate more resources to the service. Likewise,
when the received demand is lower than the lower-bound value, the platform should release

unnecessary resources.

16 Chapter 1. Introduction

Furthermore, promising approaches employ Artificial Intelligence (AI) and Machine
Learning (ML) techniques in the pursuit of optimized and efficient resource management
and orchestration (MAO et al., 2016; STADLER,; PASQUINI; FODOR, 2017; LI et al.,
2018). Thus, solutions are researched seeking to mitigate related issues, such as service
degradation during peak demand periods, and to provide greater cost savings by using
fewer unnecessary resources.

This work focuses on a ML approach, specifically employing a Deep Reinforcement
Learning (DRL) Algorithm. Reinforcement Learning (RL), an interdisciplinary area of
ML and AI, enables learning from trial-and-error experiences in real-time environments.
By continuously optimizing their decision-making based on rewards and penalties, RL

presents a promising approach to address the outlined challenge.

RL presents continuous and online learning, constantly updating the ML model, its
functions, and policies during utilization. As new states and metrics patterns are per-
ceived, the ML model is adjusted, adapting to the environmental changes. In this way,
we expect that proposing the utilization of an RL algorithm will enable real-time updates

of the ML model, potentially enhancing its versatility, reliability, and resilience.

In recent years, RL has shown remarkable success in several domains, from playing
games to autonomous driving systems (OPENAT et al., 2019; KIRAN et al., 2022). How-
ever, based on the experience we obtained during this research, corroborated by related
research (WANG et al., 2017; QIU et al., 2023; ZHU et al., 2023), we verified that training
RL models directly in real-world practical and critical infrastructures presents several ad-
ditional challenges and limitations because of environmental complexity and operational
characteristics of large-scale and dynamic services and environments, such as:

One critical challenge lies in the system’s time to execute actions and delayed feedback.
Actions do not occur immediately. For instance, it takes time to complete a service
node addition or removal from a cluster. Additionally, the action’s effects in the system,
whether positive or negative, are not promptly observed, requiring a time delay. This
time depends on factors such as stored data volume and bandwidth, potentially leading
to prolonged training periods, which may take weeks to reach the desired performance
level.

Additionally, security concerns impose relevant limitations to training, especially in
critical systems that cannot tolerate downtime or service degradation. The trained agent
must explore the diverse states of the environment, which can lead to failure and undesired
states, especially at the beginning of the training, endangering the integrity of the service,
environment, and data and even posing risks to human safety.

Therefore, investigations towards facilitating the training process in related contexts
of management of cloud resources in real-world settings are necessary and relevant for the
present scenario. Thus, it requires the pursuit of alternatives that could make the process

of training models simpler, faster, and safer.

1.1. Research Goals and Challenges 17

From this premise arises the main proposal of this research, where the primary ob-
jective is to test and validate a technique that could improve the training process of RL
agents over complex scenarios such as real cloud infrastructure environments, employing
the so-called Transfer Learning (TL) technique (PAN; YANG, 2010). Seeking to improve
and make feasible the training of tasks that would otherwise be risky, costly, or impractical
in a real-world setting.

Essentially, transfer learning is a machine learning technique that involves the uti-
lization of knowledge acquired in a source domain to somehow benefit the training and
learning process of an agent in a new target task or domain (TAYLOR; STONE, 2009).

Therefore, within the context of this research, we investigate the interaction between
a simulation service environment and a real-world service environment. The main objec-
tive is to reuse previous knowledge consolidated in a model trained over a simpler and
controlled environment (simulation), by transferring it to the real environment. As a use

case, we adopted a key-value store named Cassandra (Apache, 2016), given that:

1. Cassandra supports elasticity by automatically adjusting the key space when in-

creasing or decreasing the cluster;

2. We found a simulation modeling of Cassandra (DIPIETRO; CASALE; SERAZZI,
2017) that we could extend to our context by implementing it in Simulink (MATH-
WORKS, 2020);

3. Our previous research experience using Cassandra deployments (CUNHA, 2019;
MARQUES et al., 2019; REZENDE, 2020).

In summary, this research investigates the intersection of the two concepts: RL and
TL. We propose a model training strategy that can mitigate some of the major challenges
encountered in training such models in real-world, critical, and complex environments.
Thus, experiments will not be restricted to simulated environments, but also, and mainly,
we will investigate the previously mentioned effects on a real-world environment specifi-

cally built for our tests.

1.1 Research Goals and Challenges

The primary goal of this work is to demonstrate that, with a transfer learning tech-
nique, it is possible to enhance the RL training process in terms of duration and quality,
within the context of resource orchestration in a real distributed cloud service.

Specific objectives that are integrated into the general objective of the research are:

(d G1. Define and implement the necessary elements for the creation of a testbed that

allows the validation of the objectives of this research;

18 Chapter 1. Introduction

d G2. Demonstrate the feasibility of conducting training RL models in both con-

structed simulation and real-world environments;

1 G3. Demonstrate that the RL agent can orchestrate the elasticity of Cassandra,
by coordinating the adjusting of the number of active nodes in the service cluster,

balancing the cost/performance relationship;

(d G4. Evaluate the transfer learning process by comparing the performance and
duration of the standard training, without transfer, with the training enriched by

the knowledge pre-established in simulation.

 G5. Demonstrate through experimentation the behavior of our research proposal,
highlighting key findings on the topics of reinforcement learning and transfer learn-

ing.

1.2 Hypothesis

Given the problems and challenges foreseen in this research, we raise the following

questions:

[Is it viable to integrate a simulation of Cassandra DB with an RL algorithm so that
the environment is suitable for model training? In the same way, is it viable for a

real environment?

1 Is it possible to train tasks in both environments such that the RL training perfor-

mance converges with satisfactory performance?

(Is it possible to automate the orchestration of a service resource in order to utilize
the minimum necessary resources and meet the proposed Quality of Service (QoS)

level in this specific context?

1 Can transfer learning from a simulation environment provide benefits to the RL

training duration and performance in the real-world environment?

Therefore, hypotheses are formulated to guide the development of the work.

H1. The transfer of knowledge acquired in a source simulation environment, enhances

the real-world environment RL training process, in terms of duration or performance.

H2. The RL agent learns to optimize the cost/performance relationship of the in-
frastructure by dynamically balancing the number of active nodes in a Cassandra service

cluster.

1.3. Outline 19

H3. An agent trained only in the source simulation environment, deployed into the
real-world environment without additional training, provides prompt and reasonable per-

formance.

1.3 Outline

This dissertation is organized as follows: Chapter 2 provides details of the background
and related work. Chapter 3 describes the research proposal, the experimental workflow
and the environment architecture. Chapter 4 provides details on the construction of the
testing environment and defines the testing parameters and configurations, while Chapter
5 present the experiments and results obtained by the TL training. Finally, Chapter 6

presents our conclusions and future work.

20

Chapter 1.

Introduction

21

CHAPTER 2

Fundamentals

In this chapter, we present and discuss the key concepts and definitions that underpin
our research. Additionally, we review the related work, offering a concise description and

analysis of the selected studies.

2.1 Cloud Resource Management

Analogous to on-premise computing and network infrastructures, cloud computing
environments and their hosted services are supported by a diverse set of computational
resources. These resources include memory, processing power, network bandwidth, and
storage, as well as computing instances such as Virtual Machines (VM), containers, net-
work slices, or service nodes. Cloud resource management involves the intelligent allo-
cation and utilization of these resources, which is crucial for maintaining performance,
optimizing costs, and ensuring scalability.

Cloud computing has introduced several new concepts and techniques that were previ-
ously unfeasible with traditional local computing infrastructures. One of these attributes
is elasticity, which refers to the cloud’s ability to dynamically allocate and deallocate re-
sources based on current workload demand (AL-DHURAIBI et al., 2018). Elasticity can

be categorized into:

[Horizontal Elasticity: Involves adding or removing complete instances (e.g., virtual
machines or containers) to scale in or out. For instance, resources can be managed
by increasing or decreasing the number of similar computational active nodes of a

distributed service.

1 Vertical Elasticity: Where adjustments are made to the resource capacity of existing
instances, such as memory, processing power, storage, and network capacity, thus,

scaling up or scaling down the allocated resources.

22 Chapter 2. Fundamentals

Elasticity facilitates effective cloud resource management, where one of the primary
objectives is to balance cost and performance. Resource management is a significant
challenge in the cloud domain, where is important for tenants to ensure that their allo-
cated infrastructure and resource can maintain the quality of hosted systems during peak
demands while minimizing resource usage to save on financial and energy costs.

Straightforwardly, this management could be done manually, with human-operated
adjustments made according to the varying needs for resources. Alternatively, autoscal-
ing is a practice aimed at automatically adjusting the number of computational resources
allocated to an application based on real-time demand. One common approach that
provides a primary level of automation to resource management is the human-generated
heuristics policy or rule-based autoscaling (BELOGLAZOV; ABAWAJY; BUYYA, 2012).
This involves defining and configuring rules that guide the resource orchestration process.
These heuristics establish, for example, guidelines or thresholds indicating when to per-
form automatic changes in the level of allocated resources.

Furthermore, promising approaches employ Al and ML techniques in the pursuit of
optimized and efficient resource management (MAO et al., 2016; STADLER; PASQUINT;
FODOR, 2017; LI et al., 2018) known as Al-based autoscaling.

The challenge of managing cloud resources falls into the classic problem of automatic
control or autonomic computing. Kephart e Chess (2003) abstracted this problem as
a control loop consisting of Monitoring, Analysis, Planning, and Execution phases, the
MAPE loop, developed to provide a structured approach for creating self-managing sys-
tems.

The four phases of the MAPE loop continuously repeat itself, ensuring that the system
dynamically adapts to changes and maintains performance without human intervention
(QU; CALHEIROS; BUYYA, 2018):

(1 Monitoring: Metrics on resource usage, performance, and other relevant parameters

are continuously gathered to provide an up-to-date view of the system’s state.

(Analysis: The collected data is analyzed to detect trends, patterns, and anomalies.
The goal is to understand system behavior and identify any deviations from normal

operations that may require intervention.

(1 Planning: Based on the analysis, this step involves creating a plan to address any

detected issues or optimize system performance.

(Q Execution: The final step involves executing the planned actions. This may involve
adjusting resource allocations, deploying additional resources, or making other op-

erational changes to ensure the system effectively adapts to current demands.

AT and ML techniques are well-suited to the MAPE framework, where their attributes

can assist or even fully manage the various phases of the loop. For instance, REZENDE

2.2. Machine Learning 23

(2020) presents a resource orchestrator approach employing ML techniques to facilitate
the development of the Analysis and Planning phases of the MAPE loop by predicting
service quality metrics, detecting anomalies, and planning necessary changes to avoid
service degradation or idle resources.

Certain types of ML algorithms, such as the RL algorithms, present the potential to
be integrated into the entire MAPE loop for cloud resource management, as RL methods

also consist of a training loop with similar stages :

(d Monitor: The initial step in RL involves obtaining an observation of the environment
state from relevant metrics that describe the current system state. Additionally, RL
can optimize monitoring by learning which metrics are most critical for performance

and focusing on those.

 Analyze: RL employs a reward or penalty system based on the state observations
and a predefined reward function, in this way the algorithm learns from the historical
set of information and previous experiences, continually enhancing the agent’s policy
and its capacity to analyze current data to identify anomalies and determine if any

action is necessary.

(1 Plan: The RL algorithm learns optimal resource allocation policies through exten-
sive interactions with the environment. Also, multiple objectives can be balanced,
such as minimizing costs while maximizing performance, thus defining how actions
should be taken.

1 Execute: RL agents are embedded into the environment and interact with it by
executing actions, essential for their trial-and-error learning process. They can au-
tomate the execution of plans by dynamically adjusting resource allocations, scaling

services, and modifying configurations in real-time.

In this work, we will employ a RL algorithm in the context of cloud resource manage-
ment, considering the MAPE loop and its phases for an autonomic computing system,
pursuing the creation of a suitable environment for conducting the primary investigation

into transfer learning in a real-world environment.

2.2 Machine Learning

Machine learning refers to the field of study in AI and computer science that focuses
on the development of algorithms and models that enable the learning from vast data
to make predictions or decisions without being explicitly programmed. Machine learning
involves statistical techniques and algorithms that allow models or agents to improve their

performance on a task through experience, by identifying patterns and relationships in

24 Chapter 2. Fundamentals

data. This scientific field encompasses different categories, including Supervised Learning,
Unsupervised Learning, and Reinforcement Learning.

Supervised Learning algorithms are trained using labeled data, meaning each input
or register has its known corresponding output. During the training phase, the algorithm
receives a set of training inputs along with their respective outputs. The algorithm ana-
lyzes the relationship between input and output, generating a model or function capable
of estimating the labels of an unknown input dataset. In the testing phase, the generated

model is used to estimate the output values of the inputs in the unknown test dataset.

The Unsupervised Learning algorithm must learn from an unlabelled dataset, meaning
the collected data has no information about the respective outcome, and the label is
unknown for the training and testing. The algorithm explores the dataset, attempting
to identify patterns and form groupings among the data. These algorithms are used to

classification, segment text topics, recommend items, and identify outliers in the data.

While also utilizing unlabeled data, Reinforcement Learning diverges from other ma-
chine learning methods in that it does not rely on pre-defined data. Instead, it gathers
information in real time by interacting with the environment through a trial-and-error

learning process that employs a system of actions and rewards.

2.2.1 Reinforcement Learning

Reinforcement learning (KAELBLING; LITTMAN; MOORE, 1996) involves training
agents to make decisions through interaction with an environment. In RL, an agent learns
by taking actions within an environment and receiving feedback in the form of rewards
or penalties. The primary objective is for the agent to develop a strategy, referred to as

a policy, that maximizes cumulative rewards over time.

The RL process involves a continuous interaction between an agent and its environ-
ment. As depicted in Figure 1, the training process initiates with the agent being in a

state St and executing an action At within the environment.

This action induces a transition to a new state St + 1, resulting in a reward Rt + 1.
Consequently, the agent learns from each interaction with the environment, analyzing the
feedback that may be positive, neutral, or negative in relation to the action taken. This
iterative process forms the foundation of the agent’s learning, gradually contributing to

the refinement of its decision-making strategy.

Key aspects and components of RL include:

1. State: The current situation or configuration of the environment. The state rep-
resents what the agent perceives and is a determinant aspect of the algorithm. It

defines the space of action, main variables, and operation of the test environment.

2.2. Machine Learning 25

State St
Action At :
Environment
Reward :
Rt+1 v

State St+1

Figure 1 — Traditional reinforcement learning flow

2. Actions: The decisions or moves available to the agent. Actions define the possible
operations the agent can execute within the training environment to interact with
it.

3. Reward: A feedback value that the environment provides to the agent after it takes
an action. The objective of the agent is to learn a policy that maximizes the cumu-

lative reward over time.

4. Reward Function: The reward function is one of the most relevant aspects of effective
training of RL models. The function must be able to describe and shape the desired
behavior of the agent, positively rewarding those actions that lead to a desired result

for the system and penalizing those that degrade the state of the environment.

Traditional RL demonstrated to be effective in fully observable environments with
discrete state and action spaces tasks. However, when confronted with highly complex

domains, especially those involving continuous and high-dimensional state spaces, it en-

counters difficulties (ARULKUMARAN et al., 2017; ZHU et al., 2023).

2.2.2 Deep Reinforcement Learning

In response to this limitation, an approach known as DRL has emerged (ARULKU-
MARAN et al., 2017). What distinguishes DRL is its integration of Deep Neural Net-
works (DNN) (SCHMIDHUBER, 2015) into the training process of RL agents, enabling
them to navigate more challenging and complex domains with the ability to learn func-
tion approximators. DRL is a subject of research in diverse domains, from game playing
(LAMPLE; CHAPLOT, 2017; OPENAI et al., 2019) to autonomous driving systems (KI-
RAN et al., 2022).

Despite the advancements in Deep Reinforcement Learning (DRL), its application to
real-world domains presents challenges that necessitate further research and innovative so-
lutions. Real-world domains often present unknown or partially observable environments.

This necessitates extensive exploration of the system states, especially in the early stages

26 Chapter 2. Fundamentals

of training, until sufficient information is acquired to enable adequate exploitation of the
knowledge and prevent suboptimal convergence.

This extensive exploration and information-gathering process in practical environ-
ments presents relevant limitations, such as sparse feedback, when the impact of an
action is delayed or infrequent, extending the time needed to training instances. Ad-
ditionally, high-dimensional state and action spaces further emphasize the vast number of
interactions required to comprehend the environment, potentially making it an imprac-
tical activity within any reasonable timeframe. Finally, the nature of critical production
environments prohibits exposure to the inherent risks of the initial exploratory training
process. This process can lead the system to failure states, potentially causing system or
service damage, unavailability, and safety concerns (ZHU et al., 2023; QIU et al., 2023).

Thus, the collection of experience through exploratory interactions in real-world en-
vironments becomes a challenge, not only in terms of time but also in terms of safety,
particularly in domains where poor decisions/actions can lead to failure states in critical
systems such as those related to health, finance, automated vehicles, and government.

Consequently, the pursuit of advancements and novel solutions for the reinforcement
learning process, especially in the context of real-world environments, as mentioned above,
remains relevant. Omne of the proposed and explored solutions is employing Transfer

Learning (TL) techniques.

2.2.3 Deep Q-Networks Algorithm

In (Watkins 1992), the concept of Q-learning is presented as a model-free reinforce-
ment learning algorithm. Like other RL algorithms, it enables an agent to learn opti-
mal strategies through online trial-and-error interactions with an environment. In other
words, it operates in the context of a Markov Decision Process (MDP), which comprises
the concepts of states, actions, transition probabilities, and rewards. The Markov prop-
erty dictates that the future state depends solely on the current state and the respective
action.

The "Q" in Q-Learning symbolizes the quality of actions in different states, referencing
the algorithm’s main feature of evaluating and selecting actions that maximize cumulative
rewards, which relates to the off-policy nature of the algorithm. An off-policy approach
means that the algorithm evaluates and updates a policy different from the one used to
take an action, learning from the experiences, and following a policy other than the one
it is currently trying to optimize.

This is achieved through Q-Values, also known as action values, which are expected
values of future cumulative rewards for each action taken in a given state, represented by
Q(S,a), where S is the current state and a is the action. In Q-learning, these values are

stored in a table of states and actions.

2.2. Machine Learning 27

A branch of the traditional Q-Learning approach is the Deep Q-Networks (DQN)
(MNIH; KAVUKCUOGLU; SILVER, 2015), a model-free, online, and off-policy Deep
Reinforcement Learning technique. Its main difference lies in the estimation of Q values
(expected returns), which, instead of using a table, employ a Deep Neural Network (DNN)
as a function approximator, referred to as the Q-function, depicted in Figure 2. This is
done through interactions and observations of the environment, resulting in Q-values for

each possible action.

State (Sy)

P1

P - —— > Q-Value(Si,A;)
S
P3 |- ——» Q-Value(S,A2)
S —

P4
- ——» Q-Value(S;,Az)

P5

Figure 2 — DQN’s neural network representation

Thus, DQN can be applied to problems with continuous observation spaces and large
state spaces, learning directly from untreated or unlabeled data and information. In
addition to the neural network, DQN introduces the experience replay. Past experiences
are stored in a buffer at each iteration and sampled periodically to assess and update the
neural network, aiming to break the temporal correlation between consecutive experiences
and enhance the stability and efficiency of learning.

Its training process occurs iteratively through continuous interaction between an agent
and the environment. The training loop consists of the steps presented on Algorithm 1.

In the initialization phase, the algorithm must initialize its neural network, used to
perform the Q-function approximation, a crucial component for decision-making. Addi-
tionally, it establishes the experience replay buffer to store and recall past interactions.
Essential hyperparameters, such as the learning rate, discount factor, and exploration-
exploitation strategy (e-greedy policy), are configured to shape the algorithm’s behavior.

As the training initiates, the agent is responsible for interacting with the environment

to observe the current state, take actions, and observe the effects caused by its actions

28 Chapter 2. Fundamentals

Algorithm 1 Training loop
Initialization Phase

Create Replay Buffer
Create RL Agent

Create Neural Network
Setup Action Environment

Training

Start Episode Loop:

Reset Environment

Start Step Loop:
Observe the Current State and Select Action (e-greedy policy)
Apply the Action to the System (environment)
Get Experience: State, Action, Next State, and Reward
Save the Experience in the Replay Buffer
Sample a Batch of Experiences from the Replay Buffer
Train the Online Network with the Experiences and Update Weights
Softly Update the Target Network with Online Network Weights

Save Policy

on subsequent states. The observation or experience captured by the agent comprises the
current state, the action taken, the reward, and the next state.

The deep neural network created for the training process is essential for decision-
making. As depicted in Figure 2, it takes as input the environment state S represented
by a sequence of numerical attributes and generates a QQ-value for each possible action in
that state as output. This Q-value indicates the expected cumulative return or reward
for the respective action.

To dictate the agent’s decision-making process, an e-greedy policy is employed. It
defines the probability of taking completely random actions (exploration) or selecting
the action with the highest return according to the returns calculated by the Q-function
(exploitation).

In each iteration, the selected action is performed, and a related reward is received,
composing the agent’s experience, which is then stored in the experience replay buffer.

The DQN algorithm employs two neural networks, the online Q-network and the target
Q-network. The target Q-network is a copy of the online Q-network, but its parameters
are updated less frequently, while the online Q-network is updated in every iteration.
This is done to enhance the stability of the learning process by providing more consistent
targets.

The experience replay buffer plays a crucial role in the DQN algorithm, allowing
the agent to learn from past interactions. Eventually, a batch of past interactions is
randomly sampled from the buffer and is processed by the online Q-Network, generating
the predicted Q-Values.

During this process, the respective expected target Q-Value is calculated using the

2.8. Transfer Learning 29

separate target Q-Network, introducing the concept of temporal difference loss. This
loss guides the update of the online Q-network’s weights through the gradient descent,
approximating the predicted and target Q-Values. In other words, the temporal difference
loss is the difference between the predicted Q-Value and the target Q-Value.

To enhance stability, the target Q-Network undergoes periodic updates, synchronizing
its weights with the current Q-Network. Episodes continue iteratively, with the algorithm
adapting its policy based on the learned experiences. This cyclical process persists until
a predetermined convergence or termination rule is reached.

The strength of the DQN algorithm lies in its iterative learning approach, contin-
uously optimizing its approximation of the Q function. Through experience replay, it
leverages past interactions to mitigate temporal correlations, improving sample efficiency.
Ultimately, the resulting Q-Network and its weights constitute the learned agent policy,

representing the agent’s decision-making abilities within its environment.

2.3 Transfer Learning

In the context of RL, academic literature commonly defines Transfer Learning (TL)
as a technique that aims to reuse acquired knowledge from a source domain to benefit the
training and learning process of a new target task or domain (TAYLOR; STONE, 2009;
PAN; YANG, 2010).

Pan e Yang (2010), states that TL can be relevant, especially in situations where the
acquisition of necessary data in the target domain is limited or comes at a high cost. In this
way, the context presented in this research aligns with the assertion as we are confronted
with a target domain (real-world domain) characterized by its riskiness, complexity, and
time-consuming nature of obtaining training data through agent exploration, particularly
in the initial training phase. Meanwhile, we employ a source domain (simulation domain),
that enables a simpler, safer, and faster collection of the necessary information.

Taylor e Stone (2009) discusses the motivations behind applying transfer learning to
RL, such as reducing the amount of training time and data needed for new training and
adapting to changes in the environment. The authors also define metrics to measure
and evaluate the benefits of TL, such as jumpstart, total reward, transfer ratio, and time
to threshold. We took these metrics to create our TL evaluation metrics set, which is
discussed in Section 5.1.

In our particular context, TL has the potential to facilitate RL training in complex,
slow, or resource-intensive environments. Among the expected advantages of applying
TL, we anticipate it can improve the accuracy of an RL agent’s predictions, reduce the
required training time, and even enhance the adaptability of an agent.

Our approach is to generate the source knowledge in a simpler, faster, and controllable

environment, such as a simulation environment configured to mirror the real target setting.

30 Chapter 2. Fundamentals

Subsequently, the policy produced by the source agent will be transferred to the real-
world domain, where the anticipated effects and benefits will be tested. The simplified
environment can allow the agent to conduct more interactions in a shorter interval, with
no concerns about system safety, integrity, and availability while exploring the existent
states, including possible failure states.

In TL, the "knowledge" to be transferred can be represented in various ways, for
instance, it is possible to leverage the transfer with sample instances of experiences or
observations (state, action, reward), with action-value functions, with complete or partial
policies, with task features, and with full task models, depending on the strategy and ML
algorithm in use (TAYLOR; STONE, 2009; KAELBLING; LITTMAN; MOORE, 1996).

In our approach, we will conduct the transfer learning using fully trained agent policies
established in the training phase, which encompasses a neural network with its balanced
weights. This is because we are working with the same task for the source and target
domains, while the distinct domains are relatively similar.

The research on TL encompasses a broad range of disciplines and methodologies and is
fragmented across diverse domains. Moreover, it continues to attract new investigations,
as its potential applications are extensive. We expect that the TL approach will be able
to provide benefits within the specific context presented, once again demonstrating its

capacity to boost and facilitate the training and learning process.

2.4 NECOS Project

The NECOS project defines a paradigm that introduces a novel business model called
"Slice-as-a-Service', capable of providing dynamic, flexible, and efficient orchestration of
network slices through the development of innovative technologies for Network Function
Virtualization (NFV) and Software-Defined Networking (SDN), what enables the delivery
of more secure and efficient services (SILVA et al., 2018).

The concept of a network slice is the partitioning of the cloud network infrastructure
to operate independently of other slices. This slicing involves network bandwidth, disk,
memory, and processing resources, where various infrastructure resource providers can
offer slice parts composed of these resource types. These slice parts are aggregated to
compose a complete network slice.

NECOS aims to enable a customer to request customized network slices by providing
a description of their needs to the platform. Figure 3 illustrates a crucial part of the
architecture proposed in the NECOS project (CLAYMAN et al., 2021). Upon receiving
a request from the Tenant Domain, in the Slice Provider, the different types of resources
required to create the desired slice are searched in a Resource Marketplace.

The Slice Provider then selects and aggregates all the available different types of

resources (slice parts) required to form a single end-to-end customized slice for the ten-

2.4. NECOS Project 31

Tenant’s Service le Service
Py Domain (sl Orchestrator Activator

Service
Level

Client to Cloud Interface

v

&

v
vz Service Orchestrator Stice Request interface Slice
§ l'(_l'; Adaptor I Broker
bl 8 @ .l b Slice Instantiation Interface
3 —_ Slice Marketplace interface
g_ @ s @ o Slice Runtime Interface
2 o — g
g
Q .
S | e
Infr. & Mon. Abstraction =
s =] o [=]
: : : :
)
D]) @« D 2]
Adapters 8 = Qo = = 9 2 = = 9 Q 3
ER-Bl S 3 g > 8 ERE-Rel 3
CRER © o = Z I o v B
= 5 0| B = 3w 5 o2
e |2 = K RN © o |= «Q
N - T 2o | =] 8 2
VIM / WiM specific VIM/WiMspegfic @ ™ = 2 S o |me 2 =
Control interface Monitoring Interface : = F =
\ 2 ES 8
e e e AT Fea o\ O D R T permcoog] S 8
! Domain Mgm : Domain Mgm Domain Mgm
.. Edge DC Net Central DC
7\ Resource i Qﬂ) OUQO :
&%~ Domain]

Figure 3 - NECOS architecture

Source: Clayman et al. (2021)

ant. Further, the Slice Resource Orchestrator (SRO), a module of the Slice Provider, is
responsible for monitoring the slice and the service through the Infrastructure & Mon-
itoring Abstraction (IMA) module. It dynamically orchestrates the allocated resources
based on the performance of the provided service(s) in the slice (CLAYMAN et al., 2021).

Thus, the SRO performs the computing resources management of a computational
instance, or network slice, operating as an autoscaling mechanism. The main project
does not specify a singular way of implementing resource autoscaling, but in a derived
work (REZENDE, 2020) the authors propose and develop an approach for intelligent
resource management for the SRO module. In the proposal, it is employed a supervised
machine learning technique using the Recurrent Neural Networks (RNN) algorithm.

It involves offline training an ML model from performance and infrastructure metrics
collected from the service and its host during an initial period. The training goal is to
predict the future value of the service quality metric perceived by the service client in
terms of latency, enabling the platform to proactively adjust the allocated resource levels
if established performance limits are exceeded.

In REZENDE (2020) perspective, the elasticity provided by the RO is the vertical
kind (AL-DHURAIBI et al., 2018), indicating that resource scaling is performed within
the slice parts of the host network slice, adjusting computing resources such as network
bandwidth, processing power, and memory.

Therefore, the NECOS project stands out as a notable example of ML techniques

32 Chapter 2. Fundamentals

applied to cloud computing resource management. It serves as a key reference for our
work, aligning with our main proposal, where the potential implications of TL could not
only benefit and enhance the NECOS environment but also other similar and related

systems.

2.5 Related Work

In this section, we present a review of related works, where we synthesize and analyze
existing studies, methodologies, and findings relevant to our research objectives. Through
this review, we aim to strengthen the theoretical framework, identify key issues, and
highlight areas for further investigation.

In the optimization of service resource management and related contexts, a diverse
range of works has explored the application of Al and ML techniques. We have selected
some that are related to our approach and have contributed in some way to our research
process.

As detailed in Section 2.4, in (REZENDE, 2020), an ML method is employed to provide
vertical resource autoscaling to a platform that manages network slices. The employed ML
method, from supervised learning, requires a time-consuming pre-execution phase where
service operation metrics are collected for offline ML model training. Also, once trained,
the model policy remains fixed, and no new data is incorporated to adapt or improve it,
leading to potential obsolescence and reduced accuracy in dynamic environments.

Therefore, our research incorporates a Reinforcement Learning (RL) method for a
resource orchestrator, where online training enables continuous improvement by updating
the policy in real-time and adapting to changing conditions. RL algorithms also support
transfer learning, the main subject of this study, potentially eliminating the need for
manual data collection and a new model training for each new instance, enabling prompt
deployment of pre-trained agents.

The vertical elasticity method has resource allocation limits within each computing
instance, and beyond a certain resource demand level, it becomes less cost-effective com-
pared to horizontal scaling. Additionally, this approach may overlook the distributed
cloud service’s elasticity capabilities, resulting in suboptimal performance and resource
waste by solely scaling computational resources within a fixed number of computing in-
stances or nodes. Therefore, to overcome these limitations, in our work, we explore
horizontal elasticity.

In (MAO et al., 2016), the authors presented a relatively pioneering proposal for its
time. According to the authors, while most real-life resource management problems, at
the time, were addressed by human-generated heuristics approaches, they introduced and
tested a viable alternative with machine learning by employing a standard RL policy-

gradient algorithm coupled with a neural network representing its policy. The algorithm

2.5. Related Work 33

learns to increase and decrease the capacity of executing computing jobs in a test proto-
type system. As a result, the technique was demonstrated to be capable of outperforming

the compared heuristic strategies in the tested workloads.

In (NOURI et al., 2019), the authors implement a controller powered by RL to scale
up and down the resources of a distributed architecture in response to variable demand
arrival patterns. They employ the Q-learning RL algorithm for this purpose and formulate
a reward function referred to as the "utility function"', which enables the system to specify

a reasonable trade-off between cost and performance in resource provisioning.

Additionally, they use parameters such as the 95th percentile of system response la-
tency and CPU utilization to categorize the current state of both the infrastructure and
the application. The evaluation utilizes the number of violations in the quality of service
and the overall cost of the system. They demonstrate that the constructed system was able
to reduce violations while minimizing infrastructure costs in certain situations, compared
to other control methods without machine learning. However, despite the RL system
converging under certain workloads, it does not guarantee stability under all conditions.
Our methodology for the RL autonomic resource management draws some inspiration
from this work.

In another example of research in resource autoscaling Bitsakos, Konstantinou e
Koziris (2018) uses DRL techniques to train the management of VM resources for NoSQL
database clusters. They demonstrate that their technique is 1.6 times more effective
compared to state-of-the-art techniques using decision trees and standard RL, testing
in simulated environments. This work resembles the resource management scenario we
propose in our research, where we also employ a DRL algorithm (DQN) to manage the
resources of a NoSQL database service cluster (Cassandra). However, their research does
not include the study of TL techniques to enhance training and testing in real-world

environments.

Transfer learning has been applied in a diverse range of domains, including health-
care, finance, and robotics. A notable example of its application is the work in (APOS-
TOLOPOULOS; MPESIANA, 2020), where training models for COVID-19 detection in
X-ray images were challenging due to the limited size of the available training dataset.
However, employing the TL technique boosted the training process, collaborating with
the identification of crucial features and achieving significant detection accuracy.

To the best of our knowledge, few studies have explored this specific intersection
of deep transfer learning and elasticity orchestration of real-world service environments.
However, it was possible to find some cases with significant similarities to our research
proposal.

In (WANG et al., 2017), the authors explore DRL to acquire policies for balancing per-
formance and cost within a cloud provider’s infrastructure. Although some experiments

and training are conducted in a practical cloud environment, the transfer of learning is

34 Chapter 2. Fundamentals

employed only between an extremely simple simulator to a more advanced and realistic
cloud infrastructure simulator.

Wang et al. (2017) report limitations regarding the extended time required for ex-
periments, which affected the quality of the obtained results. While transfer learning
demonstrated some benefits to training in the advanced simulator, its effects on real-
world training were not tested or confirmed. In our experience, the extended time for
real-world training was also an obstacle, that required some adaptations to the experi-
ments. In contrast to the reference work, we tested the TL effects in a real-world scenario
and demonstrated some positive outcomes.

Zhang et al. (2021) leverages a TL approach to facilitate an automated autoscaling
solution, that addresses the challenge of determining the adequate resource allocation to
meet QoS requirements and minimize resource consumption for video streaming systems.
The TL is mainly applied to enhance the system’s adaptability to data rate changes.

When dealing with streaming, the model is bound to a defined input data rate, and if
the client requests a decrease or increase in the video data rate, the TL algorithm reuses
the current ML model for the new rate configuration, avoiding the need to start learning
from scratch for every different data rate, thereby reducing adaptation time.

They also employ a similar mechanism to the one we propose in Chapter 3, of a
library of previously trained models that can be reused. The strategy demonstrated to be
able to reduce resource consumption while ensuring QoS. Our work has similarities but
mainly differs in the application scope, as resource management will be applied to cloud
computing.

Qiu et al. (2023) defines a framework for deploying and managing RL-based agents
in production systems, specifically applied to workload autoscaling in production cloud
environments. They employ an alternative approach to TL, aiming to reduce retraining
costs and enable faster adaptation to new environments. Additionally, they seek to im-
prove training safety, particularly during the initial exploration phase of online training
for production systems.

They demonstrated positive results in terms of adaptation speed and performance
stability when compared to rule-based and standard RL approaches. Although they
employed a different technique than TL, aiming to be more comprehensive and improve
certain aspects, TL remains relevant and can be fundamental for specific scenarios due
to its straightforward and less complex implementation and deployment. We seek to

corroborate this with our work.

35

CHAPTER

Proposal

The main proposal of this research is to investigate and validate the application of a
transfer learning technique aimed at facilitating and making viable the training process
of an RL agent within a real cloud network environment. The objective is to make
improvements in terms of quality of performance (cumulative rewards) and time required
to train. Specifically, the agent will be trained in tasks related to resource orchestration
focusing on horizontal elasticity, within a complex and real environment of a distributed
cloud service.

This research proposal is explored and detailed throughout this chapter. It encom-
passes the presentation of the architecture designed for experimentation and testing pur-

poses, the workflow governing the experiments, and the integration between components.

3.1 Proposed Approach

In response to the main challenges and limitations identified in the realm of RL training
in real network and service environments, we present our approach. Our strategy involves
the development of pre-trained agents, denoted as source agents, within a more straight-
forward, controlled, and secure environment. To achieve this objective, this research aims
to construct and leverage a simulated representation of the actual environment, serving
as a foundation for our experimentation process.

It is expected that the simulation will not only facilitate but also accelerate the RL
training process. Therefore, further testing and adjustments of the various configurations
and hyperparameters of the RL training can become attainable in a timely manner. This
approach may allow the establishment of a hyperparameter set that optimizes the RL
simulation training and also provides benefits to the real environment training.

Following this strategy, after training the source agent within the simulated environ-
ment, where the operation and conditions mirror the actual environment, the acquired

knowledge is transferred. Subsequently, in the real environment, a second agent training

36 Chapter 3. Proposal

process is initiated. However, for the second training, the agent is loaded/enriched with
the knowledge acquired by the simulation source agent.

The transfer of knowledge is expected to enhance the real environment training pro-
cess, enabling the enriched agent to perform better actions from its first iteration, pre-
senting improvements in initial performance and potentially requiring less time to achieve
satisfactory average performance. Such advancements would not be possible in tradi-
tional training without prior knowledge. Consequently, significant improvements in both
training time and agent performance quality are expected.

The use of a simulation environment will not only facilitate the improvement of agent
training in the real environment but will also allow experimentation with the reuse of
pre-trained agents in different settings.

To fulfill the objectives of the research and conduct the proposed experiments, a
comprehensive test environment will be constructed, encompassing both a simulated and

a real environment module.

3.2 Testbed Environments

To conduct knowledge transfer testing within the specified context, it is essential to
establish both a target environment, comprising a real-world cloud service cluster imple-
mentation, and a source environment, which includes a simulation model corresponding
to the actual service.

These environments should have the capability to emulate or simulate the dynamics
and interactions typically observed in cloud environments and services. Specifically, they
should replicate the relationships between services and clients, encompassing the sending
of requests and the reception of the respective responses by the client.

The mentioned service should be distributed, meaning it should be able to operate
with a cluster of distributed service instances, referred to as service nodes. This necessity
arises from the intention to explore the horizontal elasticity of a cloud service, involving
the addition and removal of these service nodes.

As depicted in Figure 4, the architecture designed for the real environment, or target
environment, is presented and referred to as the Real Environment Module (REM). The
REM includes a distributed service cluster, a request load generator, a node controller,
and a sensor client.

Additionally, the RL training module is integrated into the environment to interact
with the service, orchestrating its nodes, monitoring its performance, and thus conducting
the training of RL agents.

The interaction between the service cluster and the load generator is a key aspect of the

experimental environment. The load generator is deployed in an independent machine

3.2. Testbed Environments 37

Real Environment Module - REM
. Request Load
Get Service o]
Metrics Cluster Generator
RL Training
Module Number of (Controller Add/Rmy et
nodes Load

Figure 4 — Real Environment Module (REM) architecture

and generates instances of the stress client sending batches of requests to the cluster
machines in a predefined fashion and duration.

The node controller will facilitate the control and monitoring of the nodes in the service
cluster, while the sensor client, composed of a client replica, will provide live performance
metrics to the RL training. This client should mirror those created in the load generator
to ensure its perception of the quality of service is similar to that of all other clients.

In our research, REM will be used to conduct the primary experiments, which consist
mainly of the evaluation of the learning transfer. This evaluation consists of comparing
the performance of standard RL training (without transfer) with the training enhanced

by previously acquired knowledge (with transfer).

Simulation Environment Module - SEM

@nulated Environment \
RL Training Add/Rmv
Module Get Metrics

Clients

Service
Cluster
Simulation

Simulated Load
Generator

Figure 5 — Simulation Environment Module (SEM) architecture

The Simulation Environment Module (SEM), illustrated by Figure 5, was conceived
to provide the ideal conditions for training the RL agents faster and simpler. Its primary
goal is to facilitate the training process, while possibly enhancing the training of new
agents in the real-world environment through the transfer of learning, by employing a
simulation implementation of the target service.

The module encompasses a simulated environment and an RL Training Module. The

38 Chapter 3. Proposal

simulated service environment replicates the real service cluster environment, consisting
of a simulation model of the service cluster and a simulated request load generator for
simulating client requests. Intentionally designed to operate like the previously presented
real environment, the simulated environment seamlessly integrates with the RL training
module. This integration allows the module to execute horizontal elasticity actions on
the simulated service cluster and monitor its performance.

The main objective of the simulation module is to offer a simpler, faster, and more
consistent environment while preserving the essential characteristics and behaviors of the
real service environment we want to control. Consequently, it provides an ideal setting
for agents to undergo pre-training in activities related to resource orchestration.

Both the real and simulated environments will be integrated with the RL module,
where the RL training will take place, and the agent will interact with the service cluster
(real or simulated). Thus, the agent will be able to modify the default state of the cluster,
adjusting the number of active nodes, while striving to learn and adapt to the proposed

tasks.

3.3 Research Workflow

SEM
Source Agent Training ;
. ‘(ljo_nflgu‘re and Train SEM Save source
initialize simulation —— source agent T i
environment 9 9 policy
REM RO
Training Log
REM Enriched & :
Agent Training Configure and Load source Train REM Save
initialize real agent on > enriched > enriched TestingLog |
environment REM training agent agent policy | :
v
- Analyze
fesing hose [| peromances
P a0ents > in training
9 and testing
REM Standard T i
Agent Training Configure and Train REM Save :
initialize real » standard > standard
environment agent agent policy
Training Log

Figure 6 — Experimental research workflow

For the meanings of the TL technique experimentation, it is defined a research work-
flow with the objective of validating the effects of the knowledge, while assessing whether
such transfer yields discernible benefits or not, in the specified context. Thus, in this

chapter, the research workflow is described.

3.8. Research Workflow 39

The workflow, as illustrated in Figure 6, is divided into two distinct domains: the upper
segment, in orange, indicates task execution within the simulated environment (SEM),
while the lower segment, with a blue background, designates the real environment (REM)
domain. The green circles denote the start point of a new RL training cycle, wherein

three distinct training sessions are conducted for each experiment instance or task.

The first stage of the process is the training of the source agent, which takes place
in the simulation environment module (SEM). The service cluster and load generator
simulations are set up and the necessary hyperparameters are configured, then the RL
agent training is initiated, while a request load is generated to the cluster. Upon the
conclusion of the training, the source agent’s policy is saved and will be reused as the
source of the knowledge transfer in the final stage. The simulated environment plays this
role because the training process occurs significantly faster in this environment compared
to the real environment. Additionally, it provides a simpler and more consistent setting

for the exploratory initial operation of an agent.

Before the transfer learning execution, it is required to establish a base agent in the
real environment, referred to as standard agent, initialized without any prior knowledge.
This agent serves as a baseline for control, comparison, and the assessment of transfer
learning performance. The standard agent is trained under similar conditions to those of
the simulated source agent, meaning it experiences the same level of load stress applied to
the service throughout the experiment execution. Moreover, both agents share identical
configurations, hyperparameters, reward functions, and states. At the conclusion of both
initial training instances, in SEM and in REM, the respective RL agent policy will be

stored for reuse.

Thus, at the final stage of the workflow, both environments will be integrated by the
transfer learning process. The TL is performed by first transferring the SEM source agent
policy to the real environment testbed. Then, in the REM, a second training instance will
be performed, but this time the RL training algorithm is pre-loaded with the source agent
policy in its initiation. In that way, it is expected that the new REM agent, enriched with
prior knowledge, be able to demonstrate improvements during its training in terms of

performance and time to train.

After completing the training, the policies and logs of two agents will be at our disposal
for analysis, both trained in the REM. The first, traditionally trained without transfer
(standard agent) and the second, trained with TL (enriched agent). The performance of
these agents is evaluated during a test phase where the exploration rate (e-greedy policy)
of the DQN algorithm is set to value zero (0), meaning that no random (exploratory)
actions will be executed. This ensures that only optimal decisions are taken based on the

respective policy established during the training period.

This setup enables a comprehensive comparison and analysis of the training and test-

ing performances exhibited by these two distinct agents. Through this, we can assess

40 Chapter 3. Proposal

whether the transfer learning process has the potential to yield significant benefits for the

reinforcement learning (RL) training process within its specific context.

3.4 On the Architectural Specification

P
Tenants Domain
Request New Agent:

Service and]

Infra. Description
- J
e . . N\
Orchestration Domain
Source
Agents Search for Orchestrator
Database Compatible Agent Initializer Orchestrator
§ * Pre-trained RL Agent
g v
g Populate Databdse
S o)
< | Source Agents RL Resource
2 Factory Orchestrator
&
Request New Agents
RL Module d 9 J L
Actions Metrics—
<&
—p Task Training

Infrastructure |& Monitoring Abstraction

i Resource Resource
Service [Management] [Monitoring]

Simulation

Interface to Service and Infra. Domain

Figure 7 — Proposed theoretical architecture structure

As discussed in Chapter 2, the expected results of our work proposal with TL could
enable the idealization of an architecture that integrates the strengths of DRL and TL
into its design, producing new functionalities and components. In this section, we present
the current theoretical architectural specification to organize our research proposal. The
architecture depicted in Figure 7 illustrates this structure, its components, and its rela-
tionships, although it has not been practically implemented and tested within the scope
of this work. The conceived architecture is based on the NECOS project paradigm de-
scribed in Chapter 2, as an example scenario. NECOS is a notable case where the features
and components envisioned by our research would fit, potentially representing a valuable
addition to the existing skill set.

The central component related to our research would be the mechanism responsible for
coordinating resource allocation, the RL-driven Resource Orchestrator for horizontal
elasticity. In this case, it would autonomously manage complete instances of a service

with trained RL agents. This orchestrator can either initiate training from scratch, which

3.4. On the Architectural Specification 41

may not always be feasible or leverage previously acquired knowledge, providing enough
information for the agent to perform reasonably well from the start and gradually improve

its performance.

A key contribution of RL and TL techniques in this scenario is the development
and maintenance of a repository of pre-trained agents, referred to as Source Agents
Database. This repository would comprise agents pre-trained in simulated environments,
simplified test environments, or even those agents fine-tuned on real operational instances
and services (second-level source agents). Similar to a self-service approach, a collection of
pre-trained and ready-to-use RL agents would be integrated to serve new infrastructures

instantiations.

Thus, when a new resource orchestrator is required, the client must provide the neces-
sary information to the system, including host infrastructure characteristics and a descrip-
tion of the service that will be executed. The Orchestrator Initializer should use the
information provided to match and select a pre-trained RL agent among the available op-
tions in the Source Agents Database. Upon identifying a source agent with a satisfactory
level of compatibility, it would be pre-loaded into the intelligent RO. This ensures that
the selected source agent not only exhibits compatibility but also matches the new hosted
service configuration. The methodology for conducting this agent selection is beyond the

scope of this dissertation.

With this approach, the RO mechanism will acquire essential specific knowledge from
the beginning of its operation, potentially enabling it to deliver satisfactory performance
for real and production environments from its initial iteration. Furthermore, it will fa-
cilitate the adaptation and optimization of the agent’s performance within the newly

instantiated environment.

Finally, the running RL agent on the RO, continuously learning and adapting to the
nuances and peculiarities of the service, structure, and demand, can be backed up, feeding
back into the Source Agent Database, composing a new agent available for use in new
orchestrator instances.

As an additional means of loading and keeping the Agent Database up to date, there
could be an additional module that generalizes the role of the simulated environment
built in this work, referred to in Figure 7 as the Source Agents Factory. This module
would be designed to train new source agents for different tasks in distinct services. For
this purpose, simulation models for various relevant services need to be prepared and
integrated into the RL training module.

In this way, when it is detected a gap in the available agents, indicating the need for
a newly trained agent for a specific task or service, either by manual intervention of an
operator or automatically, new training sessions would be initiated. The generated agents
and policies are then used to populate the Source Agents Database, presenting them as

options for future service orchestration instantiations. Thus, some practical aspects in

42 Chapter 3. Proposal

which the researched techniques can contribute have been highlighted.

43

CHAPTER

Experimental Testbed

This section describes the main implementations of the project, such as the node
controller, load generator, DRL algorithm, and simulations, and the development of the
experimentation testbed (REM and SEM), detailing its building and operation charac-

teristics.

To achieve the objectives proposed in this work, detailed in Chapters 1 and 3, it was
necessary to design and build a complete testbed capable of providing all the characteris-
tics and features required to conduct the required experiments. The testbed consists of a
distributed cloud service environment, a load generator mechanism to stress the service,
an RL module to train agents through interactions with the service, and a node controller
to make the integration between the MRL and the real-world service cluster, allowing the

MRL to trigger the necessary adjusting on the cluster.

For our research, we instantiate the proposed architecture in a specific service to per-
form the learning and transfer evaluation. We adopted a key-value distributed database
service named Apache Cassandra Database (Apache Software Foundation, 2019), given
that Cassandra is widely employed within cloud network infrastructures and systems,
and supports elasticity by automatically adjusting the key space when increasing or de-
creasing nodes in the cluster. The Cassandra stressing tool Cassandra-stress is employed

to generate a load of requests in the load generator and the sensor client.

In addition, to complete the experimental environment, it was necessary to build a
simulated environment, mirroring the architecture and structure of the real environment.
This is mainly composed of a simulation model of a Cassandra service cluster. This
simulation also has a stress mechanism that simulates request loads to the simulated
cluster. Then, in the same way as in the real environment, the RL module for training
agents is configured, adjusted, and integrated into the simulated Cassandra environment.

Implementations and integrations are further detailed below.

44 Chapter 4. Test Environment Implementation

Machine ID Description OS Version | RAM | Disk
1to 10 Service instances for Cassandra cluster | Ubuntu 16.04 | 4GB | 50GB
11 Node controller system Ubuntu 16.04 | 4GB | 50GB

12 Load generator Ubuntu 16.04 | 8GB | 20GB
13 RL module and Sensor Client Ubuntu 16.04 | 4GB | 100GB

Table 1 — Testbed virtual machines specifications

4.1 Real Environment Module (REM)

The practical test environment of the Cassandra NoSQL database, designed to conduct
the experiments, was implemented on an infrastructure of physical servers provided by
Faculdade de Computacgao of Universidade Federal de Uberlandia. On these servers are
deployed identical virtual machines orchestrated by OpenStack (RED HAT, INC., 2019).
The real environment consists of 4 parts: the Cassandra service cluster, the Cassandra
node controller, the reinforcement learning module, and the load generator.

Each Cassandra node is a virtual machine running a Cassandra instance, and the built
Cassandra cluster can consist of up to 10 nodes (virtual machines). In addition to the 10
virtual machines that make up the service cluster, the environment has a virtual machine
dedicated to the node controller (it coordinates the entry and exit of cluster nodes) and a
machine dedicated to the machine learning environment where the DQN agent is trained.
Finally, there is a machine dedicated to Cassandra’s request load generator.

Through OpenStack, 13 independent machines were virtualized, as shown in Table 1.
The first 10 machines have the purpose of creating service instances to compose the Cas-
sandra cluster, running Ubuntu 16.04 operating system, 4GB of RAM memory, 1vCPU,
and 50GB of hard disk; one of the machines was assigned to run the node controller
system, also running Ubuntu 16.04 operating system, 4GB of RAM memory, 1vCPU and
50GB of hard disk; another machine assigned to run the load generator, running Ubuntu
16.04 operating system, 8GB of RAM memory, 4vCPU and 20GB of hard disk.

The last one, where the entire RL environment will be implemented with the DQN
algorithm, and the sensor client will be instantiated, running Ubuntu 16.04 operating
system, 4GB of RAM memory, 1vCPU, and 100GB of hard disk.

4.1.1 Cassandra Service Cluster

The Cassandra service cluster is composed of 10 virtualized machines running Apache
Cassandra instances and configured to interconnect and intercommunicate and work as
a cluster for handling client requests. Although we possess a service cluster of 10 nodes,
during the experiments, a maximum of 9 nodes will be used simultaneously, as one will

always remain as a backup in case of any unforeseen issues.

4.1. Real Environment Module (REM) 45

The ten virtual machines that constitute the service’s cluster were equally configured,
using the Bitnami Cassandra virtual machine that comes with the Ubuntu 16 operating
system and with Apache Cassandra v3.11.5 already installed and functional (VMware
Inc., 2020).

However, before starting the service, in each node/instance the configuration file “cas-
sandra.yaml” was modified, which allows the modification of parameters that determine
the initial setup and behavior of the nodes.

In the "cassandra.yaml" file of all cluster machines, the cluster seed nodes are defined.
These nodes are responsible for being an initial gateway for cluster formation and the IP
of the cluster seed nodes must be provided in the configuration file of all machines so the
newly started node knows which seed node to do the first connection.

Seed nodes store information from all nodes that connect to them and send information
from all nodes connected to the cluster to newly connected ones, allowing automatic
cluster formation as nodes are recognized.

In each instance of Cassandra the following configuration parameters have been mod-

ified in the file:

[cluster name: ’Cassandra Cluster’
O seeds: 7192.168.0.104,192.168.0.141”
(1 listen address: IP

1 rpc_address: IP

[endpoint_ snitch: GossipingPropertyFileSnitch

The IP indicates the IP address of the machine where the configuration file is hosted.
The listen address indicates which IP address the other cluster nodes will use to com-
municate with this node. The RPC address serves as the listening address for remote
procedure calls (RPC).

The snitch endpoint indicates how the cluster topology will be communicated between
the nodes, the GossipingPropertyFileSnitch uses the gossip protocol to communicate the
data center and rack where each node is located. As this is a basic and local cluster
configuration in the university’s infrastructure, all nodes are hosted in the same data
center and rack.

The service is started on all the nodes and after verifying that the 10 nodes are active
and properly connected and communicating in uniqueness as a cluster, the keyspace to
be used in the tests can be configured.

The keyspace defines the data types and attributes that will be handled and how they
will be stored during stress tests. To carry out the experiments, the use of Cassandra’s

default keyspace, keyspacel, which has two tables, the standardl and counterl table, was

46 Chapter 4. Test Environment Implementation

defined. The standardl table has 6 columns, one to store a key with a size of 10 bytes
and 5 to store data with a size of 34 bytes each, with the 6 columns totaling 180 bytes
per action.

Keyspacel was configured to be used in a multi-node cluster, and its replication factor
was modified from 1 to 3, so that each data inserted in any cluster node will be replicated
to two more nodes, always keeping 3 copies of each record. After these initial settings,

the cluster is ready to receive client requests.

4.1.2 Node Controller

The DQN algorithm requires the ability to interact with the cluster in order to add and
remove nodes. However, it would not be possible for it to send the Cassandra commands
directly to the service (like decommission to remove and start to add a node) as there
is no way to guarantee that the actions were completed without errors. Additionally, it
is complex to know which node is available to be started from the “node pool”.

Thus, in the real environment, it was necessary to develop a node control system
responsible for orchestrating and monitoring the number of active nodes in the Cassandra
cluster. The node controller source code is available in (CUNHA, 2024).

The system must be able to receive the desired value of active nodes and take the
necessary actions to adjust the cluster to the desired level, either by adding nodes or
removing them.

The script was written in Python and receives as a parameter the value of the nodes
that must be active. The algorithm is then responsible for adjusting the cluster until
reaching the desired number of nodes, the additions and removals of nodes must follow a
specific process to avoid problems in the cluster and data corruption. Only one operation
is performed at a time and the algorithm waits for the recommended time to start the
next addition or removal operation.

In addition, the algorithm has another important function, it monitors the state of the
cluster and keeps two variables updated that are consumed by the RL controller module.
The variables are number of active nodes and the number of target nodes. From these
values, the RL agent is able to know when operations are in progress in the node controller
and how many nodes are active in each training step. All communication between the
machines and between the DQN algorithm and the node controller system is done through
HTTP REST API requests.

4.1.3 Probe Client (Sensor)

DQN training demands constant input of quality-of-service metrics provided by the
Cassandra cluster in terms of response time. To carry out this monitoring and collect the

required metrics, it was proposed to perform operations on the Cassandra cluster directly

4.1. Real Environment Module (REM) 47

from the machine where the training takes place, in this way, it is possible to save the
response metrics continuously in a log that is read by the algorithm during training to
collect the relevant pieces of information.

To carry out operations on the cluster, the stress tool Cassandra-stress is used, which
performs several operations per second on the Cluster, according to defined parameters in
its command execution. Additionally, the tool allows to register the performance metrics
of these operations in a log file.

Thus, the so-called sensor probe client is an instance of the cassandra-stress tool,
used in the same way by the load generator to start clients, and its main function is to
continuously stress the resources of the Cassandra service during the experiments and
record in a log the essential performance metrics obtained every second. It will work as a
performance sensor since the test client is identical to the other clients instantiated by the
load generator in order to stress the cluster and apply the different defined load patterns.

Every second, the following performance metrics referring to the operations performed
are recorded, such as the number of writing and reading operations performed, the average
time of these operations, and the 95th percentile of the latency.

The main performance metrics from the probe client log, that will be used in the
RL training, are, 95 percentile of read latency, latency mean and latency median. It is
expected that these metrics reflect the performance of the Cluster against the request

workloads applied by the Load Generator and are suitable for training.

4.1.4 Real Load Generator

The Load Generator, running on a dedicated virtual machine, is responsible for ap-
plying a variable request load to the cluster to induce fluctuations in the performance
delivered to the clients and will be monitored by the Probe Client. The load generator is
built as a Python script, where different instances of cassandra-stress are created in par-
allel and terminated during the experiment period. This means that multiple instances
of cassandra-stress will be running in parallel at certain times, while at other times fewer
instances will be running.

Each cassandra-stress instance is created with a preset of a 'threads’ parameter, which
determines the number of threads used to perform the operations. Therefore, two variables
directly influence load generation by the stress tool, the number of client or cassandra-
stress instances started by the load generator and the number of threads employed by
each of these instances. In general, the instatiated Cassandra clients (sensor client and
load generator clients), will employ 10 threads each, executing between two thousand
(2000) to eighteen thousand (18000) read requests per second.

An instance of cassandra-stress can emulate a service client, performing operations
continuously and in parallel by threads. As the load level generated by this tool is fixed

based on the specified number of threads or operations per second, a load generation

48 Chapter 4. Test Environment Implementation

script in Python was adapted to allow the creation and deletion of individual instances

of cassandra-stress respecting a standard configured load.

4.2 Simulation Environment Module (SEM)

The SEM is deployed and operated on either a personal computer (Windows 11 op-
erating system, 16GB of RAM memory, intel core i7-10510u 10th gen processor, and
256GB of solid-state drive) or at ClusterUY supercomputing center (NESMACHNOW;
ITURRIAGA, 2019), as part of the established collaborative effort with Universidad de
la Republica, Uruguay (UDELAR). The module encompasses a simulation model of Cas-
sandra service cluster and a simulated request load generator, seamlessly integrated with
the RL module (RICHART, 2022).

The simulation environment replicates the real service cluster environment, consist-
ing of a simulation model of the Cassandra service cluster and a simulated request load
generator for simulating client requests. The Cassandra simulation model and its accom-
panying load generator were derived from the model proposed in (DIPIETRO; CASALE;
SERAZZI, 2017). However, for our research the model was re-implemented using Simulink
by MathWorks (MATHWORKS, 2020). This adaptation was required to enhance flexibil-
ity in the simulation environment, enabling integrations, including the one with the RL

module.

In Simulink, the package MATLAB Engine for Python (MathWorks, 2023) is used,
enabling the python-built DQN algorithm to call MATLAB functions and interact with
the Simulink sandbox, for instance, initiating and restarting the simulation as required.
Moreover, this integration allows the Python DQN algorithm to retrieve the simulation
cluster state and interact with it by executing actions like addition or removal of cluster

nodes.

Similar to the real-world cluster, the simulation model provides the capability to con-
figure the cluster replication factor and consistency level. Additionally, essential perfor-
mance parameters for RL training, such as throughput and response time, are generated

by the simulated service cluster and made accessible for the learning process.

In Figure 8, the implementation of one of the Cassandra nodes using Simulink is illus-
trated. The simulation is based on queuing theory, and each node includes three queuing
engines representing network, CPU, and disk workload. The amount of resources allocated
to nodes for each of these three parameters can be customized. Furthermore, each node
has input and output queues that interconnect all the Cassandra cluster nodes. These
queues allow the node to handle external requests from simulated clients and internode
forwarded requests. Additionally, they enable the forwarding of requests between nodes

and the transmission of responses to clients or other nodes.

4.3. RL Module Design 49

+ Outl
Ini)
outz

- IS £ . Outl — 1 output
W i o= s c1_end
c1_fork cl_disk_queue ¢ disk server

cl_router
@ :
toNodes

class_switch

clnet queve ¢1 et server | cl_initial 4

| L

cl_cpu_queue ¢ cpuf server

=}

fromNodes

decides if reads local andior remote

Figure 8 — Simulink Cassandra node representation

4.3 RL Module Design

In this section, we present the details of the RL Module and training, which constitutes
the core component of the intelligent resource orchestrator implemented in both experi-
mental environments. The main purpose of the RL module is to deploy the RL algorithm
and integrate it into the respective environment, with the goal of training agents to co-
ordinate the addition and removal of service nodes while adapting to varying conditions.
Thus, the chosen RL algorithm will be described, including aspects such as state space,
action space, reward function, and hyperparameters.

In the previous chapters, a set of requirements was identified for the proposed RO
solution, with the objective of mitigating weaknesses identified in the former intelligent RO
solution. One of these requirements involves the ability to initiate operations promptly,
eliminating the necessity for data collection and labeling. Additionally, the RO should
demonstrate the capability to adapt to changes in the environment and, finally, should
be compatible with transfer learning, allowing the reuse of pre-trained agents.

The utilization of DQN algorithm is proposed, seeking to meet the specified require-
ments. As an RL algorithm, DQN performs online training, eliminating the necessity for
pre-collected datasets and allowing agents to progressively enhance their decision-making
capabilities over time, refining their policies and adapting to variations in the environ-
ment. Furthermore, DQN allows for the reuse of pre-trained agents, in this way, the
agent can apply its past learning to speed up the process and enhance overall efficiency

in orchestrating resources.

4.3.1 Goal and Reward Function

One of the key aspects in implementing a Reinforcement Learning (RL) algorithm, is
understanding and defining its main learning goal, that is, how the agent is expected to
behave face of the imposed obstacles. The primary concern for our RO lies in optimizing
the performance of the orchestrated service (for example, in terms of response time of

requests).

50 Chapter 4. Test Environment Implementation

While this goal might lead to training an agent able to prioritize quality service per-
formance, it is possible that the agent would take a simpler and more direct approach,
which would be employing the maximum available resources all the time. However, when
dealing with an actual cloud environment, it is crucial to consider the cost associated with

the usage of each unit of resource, billed based on used time or contracted quota.

Thus, relying on the maximum use of available resources is a precarious or even un-
feasible solution, emphasizing the importance of finding the minimum resources needed
to ensure the desired quality of service. Therefore, the core challenge becomes finding
a balance between resource usage and service performance, recognizing that minimizing

costs can be just as crucial as optimizing performance in cloud environments.

This balance is particularly crucial in shaping the agent’s behavior and the training
orientation, in DRL, this is achieved by a thoughtful selection of the reward function. The
reward function molds the agent’s behavior by returning rewards or penalties based on

the outcomes of its actions.

In our algorithm, the pursuit of performance quality is embedded in the reward func-
tion by only rewarding actions that contributes to compliant service performance. Ac-
tions that degrade performance, violating the latency threshold, receive no reward. This
is achieved by measuring the difference between the minimum performance threshold de-
fined by the service and the actual observed performance parametrized in the function by

the error value.

On the other hand, to consider resource usage in the reward function, the reward
of the compliant actions depends on the amount of resources used to get that perfor-
mance, penalizing high resource usage. Thus, the proposed function incorporates the
cost of usage through the number of Cassandra active nodes. Considering that in a
Cassandra cluster, we have a maximum amount of nodes we can activate and also a
minimum amount of nodes, we proposed the following function: MAX NODES —
((active_nodes — MIN_NODES) *«a). In this way, when the number of active nodes is
higher than the minimum, the reward is decreased. The parameter a controls how much
we penalize as the number of nodes increases, and for our experiments, the adopted value

was 0.75. Therefore, the reward function can be expressed as:

R MAX_NODES — (active_nodes — MIN_NODES) - «, if error <0)
0, otherwise

For our specific use case of Cassandra DB, we choose response latency as our per-
formance metric to control. More specifically, we want to avoid the 95" percentile of
response latency, as measured by the sensor client, to violate the defined threshold, which

is evaluated by the error parameter.

4.4. Modules Operation Workflow 51

4.3.2 Specifications

After defining the reward function, we also need to define the parameters we will read
from the environment which will define our states for the RL algorithm as well as the
actions to take in the environment.

The parameters selected for our Cassandra use case consist of the following metrics
obtained from the sensor client and from the cluster itself: response throughput, which is
the number of requests handled per second by the server; ongoing action, if an addition or
removal action is currently underway; count of active nodes; median and mean response
latency; and delta (difference of actual and target response latency 95 percentile). For
the actions, we consider three possibilities: scaling out, achieved by adding a node to the
cluster; scaling in, achieved by removing a node from the cluster; and maintaining the

current cluster state.

[throughput, action, active nodes, median latency, mean latency, deltal

In addition to the previously presented aspects, two other factors are relevant for the
RL module: the epsilon-greedy (e-greedy) policy and the learning rate. The e-greedy
policy, which determines the rate balance between explorative and exploitative actions,
was set at 0.3 for fixed values. This means that 30% of the actions would be exploratory
or random. In other experiment instances, a variable e-greedy value was configured,
gradually decaying the e-greedy value from 0.3 to 0.1. The learning rate was maintained
at 0.01, a standard value that showed to be suitable within the setup of this work.

Our DQN algorithm (RICHART; CUNHA, 2022), as well as the agent and all required
resources, are implemented in Python 3.6.9 and 3.8.8 (Python Software Foundation, 2021)
employing the TensorFlow library (ABADI et al., 2016) versions 2.6.0 and 2.11.0. The
implementation follows the process and encompasses the aspects prescribed in the DQN
description in Chapter 2.

Finally, the deep neural network used by the DQN algorithm is built as a regular feed-
forward deep neural network, that takes the state as input, with hidden dense layers and
a final layer that outputs action values (expected cumulative reward) for each possible

action.

4.4 Modules Operation Workflow

In this section, the whole operation process is explained, detailing the use of the built
modules and how the interaction/intercommunication between its different parts occurs
during an experiment in the real environment, exposed in Figure 9. The process is the

same in the simulated environment, with some variations.

52 Chapter 4. Test Environment Implementation

Real Environment Module - REM
1.1 - Verify cluster is operational
2 - Initiate 'L __________ 3.2 - Initiate load
DQON 3 generator
Algorithm :
9 : Sensor \g | ... 0
: Client i
i * Request bommmoq
d + Load
1
I I e R EEEEEEEELEEE Service Cluster |g-.......- Load
! Generator
! 3.1-Initiate 4- Get e
i sensor client Metrics
1
!
1
i 5.2 - Adjust nodes
1 1)
1
i 5.1 - Request action A
O - RL Training ! N 1.2 - Verify node controller
Module] Node readiness
< Controller
6 - Get state H
. = : i
: Looooooocoooooocoocoocoooo J
:L __________ 1.3 - Set hyperparameters
for experiment

Figure 9 — REM operation workflow

Prior to initiating the RL training process in the REM, it is necessary to verify that
the service cluster is active and operational. Additionally, it is necessary to ensure the
node controller’s responsiveness and confirm its correct initialization and synchronization
with the current state of the cluster. Within the algorithm, essential hyperparameters,
such as the number of episodes and steps, the performance threshold (target latency), the
learning rate value, and the e-greedy value, need to be set.

Subsequently, DQN training can be initiated in the REM, according to the exper-
iment’s specific presets. At the beginning of the training episode the DQN algorithm
launches the Cassandra sensor client. This sensor client is employed to perform a batch
of requests per second for the service cluster while collecting performance metrics related
to the request’s responses. These service performance metrics are incorporated into the
DQN training process, composing the first portion of the DQN agent’s observation, which
describes the current state of the environment.

Additionally, it is necessary to start the load generator by imposing predefined settings
for the specific experiment shaping its load level and pattern. At the same time, the DQN
process initiates a continuous interaction with the node controller, through HTTP API
requests, receiving the cluster status in terms of the number of active nodes and if there
is any action in progress. This information also composes the DQN agent’s observation
of the environment state.

Furthermore, through the node controller, the DQN process is able to request adjust-

ments in the number of active nodes. At the beginning of each episode, the DQN process

4.4. Modules Operation Workflow 53

check the state of the service cluster and request the adjustment to the required initial
number of nodes.

In every step of a DQN training episode, an action is generated, which means addition,
removal, or maintenance. Thus, the DQN process interacts again with the node controller
to request the necessary action. The node controller then starts the cluster adjustment
process, monitoring its progress until its completion and keeping the DQN algorithm
updated on the status.

During the training phase, the agent will explore the environment states, following
the e-greedy policy and executing its available actions. For each action taken, a new
state is observed, and a reward is granted, indicating whether the action had a positive
or negative effect.

Thus, the observations or experiences are employed in the neural network training,
gradually updating and optimizing its weights, possibly reaching a convergence point.
This process aims to generate a policy capable of efficiently conducting the agent’s actions
within the specific conditions in which it was trained.

In the simulated environment, the main distinction lies in the cluster and load genera-
tor, both created within a simulator. Consequently, within the DQN process, an interface
is implemented to initiate the load generator in each episode and execute the DQN actions
in the Simulink simulated cluster. Additionally, the role of a sensor client is unnecessary,
the service simulation process saves the performance metrics in a log that is accessed and
read by the DQN process.

o4

Chapter 4. Test Environment Implementation

95

CHAPTER

Experimental Results and Analysis

This chapter describes the experimental segment of the project, demonstrating how
the formulated /raised hypotheses were addressed through the proposed experiments and
their outcomes.

In Section 5.1, the method employed for experimentation is described, with the aim of
achieving the objectives outlined in Chapter 1. It also outlines the strategy and approach
used for generating the necessary data, followed by the subsequent analysis and evaluation
of the results.

Section 5.2 details the conducted experiments, their primary outcomes, and a discus-
sion concerning these results and their implications regarding the formulated hypotheses

and the objectives of the research.

5.1 Evaluation Method

The strategy employed for conducting experiments in the constructed testbed, com-
prised of SEM and REM, aims primarily to provide the necessary means for the evaluation
and validation of the raised hypotheses. This is achieved through the analysis of data
and information generated by interactions among the experimental environment modules
during tests. The focus of the experiments is on validating a transfer learning technique
in the context of cloud service resource orchestration.

Upon completion of the required training phases, as described in Section 3.3, there
will be two different agents trained in the real environment: one traditionally trained
without transfer (the standard agent) and the other trained with TL (enriched agent).
The performance of these agents is evaluated during a test phase where the exploration
policy (e-greedy rate) of the DQN algorithm is set to zero. This ensures that only optimal
decisions are taken based on the respective policy established during the training period.

Each training-test set produces information necessary to extract what we refer to as
an evaluation metrics set. This set comprises two instances: training evaluation metrics

and test evaluation metrics. Both include parameters such as episode reward, moving

56 Chapter 5. Experimental Results and Analysis

average reward in each episode of the test, average node usage in each episode, and the

average performance violations for each episode.

1 Episode reward: At each step of a training episode, the agent receives a reward
value based on the reward function or the impact caused by the action taken. This
parameter represents the sum of all these reward values received during the entire

episode.

1 Moving Average Reward: Is the average value of the episode rewards received over

the ten most recent episodes.
1 Average Node Usage: The average of active nodes used for the entire episode.

1 Performance Violations: Counts how many steps registered violations to the 95th

percentile latency threshold.

These performance metrics from both the training and testing phases enable the mea-
surement of additional parameters. These will be utilized in the result analysis, enabling
the comparison and evaluation of the TL training. The key parameters include jumpstart,
final performance, and total reward, which were derived from TL evaluation parameters
introduced in (TAYLOR; STONE, 2009).

(1 Initial Performance: The reward average of the first 10 episodes of a training in-

stance.
1 Jumpstart: The difference in initial performance between two different trainings.

(A Final Performance: The ultimate performance achieved by an agent in the test

phase.

(1 Total Rewards: The overall reward accumulated by an agent, or the average reward

of the entire training.

The extracted evaluation metrics set, from the training and testing of the standard
agent, is compared to the set of metrics extracted from the TL enriched agent. This
comparison aims to determine whether the transfer of learning has provided relevant
benefits to the training process of an agent within the real-world environment. Also,
it enables a identification of specific areas where the benefits were more pronounced or

imperceptible.

5.2. Experiments and Analysis 57

5.2 Experiments and Analysis

The predominant factor influencing the agent’s behavior and its learning is the load
of requests applied to the service. The consequences of the applied load can create a
challenging and unknown environment for the agent, compelling it to make decisions
regarding the level of active resources to maintain minimum service quality and optimal
resource utilization. For the subsequent experiments, a fixed load level was employed
throughout the duration of each experiment.

For the reward function, we set « = 0.75 and MAX NODES and MIN NODES
to 9 and 3 respectively. We set our performance objective to maintain the 95" percentile
of the response time under 300ms.

A relevant aspect of the RL training is the exploration ratio, which determines the
rate balance between exploration and exploitation actions. We use the simple e-greedy
policy, which, given a ratio, randomly chooses between exploration and exploitation when
taking an action. It is set between 0.1 and 0.3, meaning that 10% to 30% of the actions
would be exploratory (random).

In the SEM phase, 600 to 900 episodes will be performed in each training, and each
episode will consist of 150 steps. The episode lasts approximately 25 seconds, resulting
in total training times between 3 and 6 hours. While in REM, 50 to 100 episodes will be
performed in each training, and each episode consists of 18 to 20 steps. On average, the
REM episode lasts between 15 and 25 minutes, resulting in total training times between
18 and 34 hours. For comparison, a single episode of the simulation (SEM) setting, that
lasts an average of 25 seconds, if executed in a real environment (REM) could take more
than 60 hours, while the whole experiment setting (number of episodes and steps) could
lead to more than two years of continuous execution in the real setup.

In the conducted experiments that will be detailed in the sequence, two scenarios are
defined, the first one serves as an initial interaction with the methodology, employs a low
volume of requests per second to the cluster by the load generator, two thousand (2000)
read requests per second for the real-world cluster, and 260 units of load for the simulated
service cluster. The objective is to verify the proper operation of the built structure and
investigate the competence of the DRL algorithm in effectively training agents in both
SEM and REM, in addition to testing the feasibility of the proposed TL technique.

The second scenario increases the complexity of the environment by employing a
greater volume of requests per second by the load generator, eighteen thousand (18000)
read requests per second for the real-world cluster, and 395 load units for the simulated
service cluster. What requires the agent to seek a balance in the cost/performance trade-
off. In the first scenario, we will detail each phase of the SEM and REM training in greater
detail, while in the second scenario, we will mainly focus on analyzing and evaluating the
effects of TL in REM.

Within the experiments in the simulation environment, SEM, only one agent will be

58 Chapter 5. Experimental Results and Analysis

trained, the simulation source agent. While in the real environment, REM, two types of
agents will be trained, firstly the standard agent, which is trained in a traditional way
without any previous knowledge, and the enriched agent, which is trained after transfer of
the learning extracted from the SEM source agent. After the training phase, both agents
pass through a testing phase, which assesses the maximum performance the trained agent
can provide.

In addition to the final test phase, we will run test phases at different maturity points of
the agent training. For instance, in Scenario 2, in additionally to the agent trained for 100
episodes in REM, or fully trained, we will also test the performance of the agent when
trained for 50 episodes in REM, which is referred to partially trained agent. Finally,
TL agents without any REM training will be tested, referred to as Cold Start test as
we employ the SEM source agent acquired knowledge (source agent) promptly in the
real-world environment, evaluating the performance it is capable of providing without

additional training.

5.2.1 Scenario 1

In this initial scenario, a minimal fixed request workload is applied to the service
cluster, ensuring it can handle the demand with its minimum capacity (3 active nodes).
Thus, the agent must learn how to optimize resource usage by removing nodes from the
cluster and sustaining low resource utilization throughout the entire episode. Table 2

shows the parameters that will be used in all training reported in scenario 1.

Table 2 — First scenario training parameters

Load Training Steps | Episodes | E-greedy | Duration
SEM Training 260 load units 150 600 0.3-0.1 3 hr
REM Trainings | 2000 requests/sec 20 50 0.1 18 hr

5.2.1.1 SEM Source Agent

For the first training, conducted in SEM, the experiment was configured with the
parameters shown by Table 2, to the training of the source agent. Each episode comprises
150 steps, and the total experiment consists of 600 episodes. The e-greedy value, initially
set at 0.3, indicates that 30% of the agent’s actions are random, promoting exploration
of unknown states. This randomness is decreased until reaching 0.1 at the final phase of
the training.

The graph in Figure 10 depicts the agent’s moving average reward evolution and
node usage for each episode during the training phase. The performance increases up to
a maximum threshold, evidencing the agent’s decision-making improvement, as it uses

fewer resources (service nodes) to optimize rewards.

5.2. Experiments and Analysis 59

H
IS
S
S
—

=
w
~
ul
T

=
w
%)
o

———

Reward Moving Average

o
w
N
ul

—

“|
I

1275

0 100 200 300 400 500 600
Episode

Figure 10 — Simulation training reward moving average and node usage in Scenario 1.

Table 3 presents both the training and testing results. During training, exploratory
actions are employed to learn to optimize received rewards in the environment. In testing,
the learned policy is exploited, and optimal decisions are made based on the acquired
knowledge. The agent’s optimal performance achieves an average reward of 1478, with an
average node usage of 3.17 nodes, close to the minimum achievable, and a near zero rate
of wviolations, reinforcing the effectiveness of the agent’s training and its effort to optimize

the received reward by utilizing a smaller amount of resources.

Table 3 — Simulation training and testing results for Scenario 1.

Avg Reward | Avg Node Usage | Violations
SEM Source Agent Training 1419 3,64 nodes 1%
SEM Source Agent Testing 1478 3,17 nodes 0,18 %

Figure 11, depicts the source agent behavior on a typical episode of the testing phase,
plotting the active nodes in use and the 95" percentile of latency at each step. Initiating
with six nodes, the agent adjusts its capacity by removing nodes until it reaches the

minimum of 3 nodes, maintaining this configuration until the experiment’s end.

The presented results indicate success in the initial training of an agent for a task
within the context. In this training, the agent demonstrated the ability to adapt to a
load applied to the cluster lower than its response capacity, exploring the attribute of
resource usage efficiency. Thus, the SEM source agent for the scenario is established and

its knowledge will be utilized in the TL process.

60 Chapter 5. Experimental Results and Analysis

300

)
N
w
o

N
(=}
o

=
w
o

1001

Latency 95th Percentil (ms

I AN [\ A /\VV/\/‘“\J\’\
A AV AN e

501

40 60 80 100 120 140
Step

Figure 11 — Latency and active nodes of a typical episode of SEM source agent testing
phase

5.2.1.2 REM Standard Agent

The next step is to conduct the standard agent training in the REM. This training
should be executed in a similar way as the SEM source agent training. Table 2 outlines
the experiment configurations (second row), with adjustments in the number of episodes

and steps (50 and 20, respectively) to align with the limitations of the real environment.

The testing phase results of the REM standard agent, presented in Table 4, reveal
an average reward of 187 and a significant improvement in resource usage compared to
the training phase, with an average of 3.9 nodes against 4.7. This implies the knowl-
edge acquired in the training phase and exploited in the testing phase in the real-world

environment, demonstrating its ability to adapt to the demand received by the service.

Table 4 — Training and testing results of Standard agent of Scenario 1

Avg Reward | Avg Nodes | Violation | Initial Performance

Training - Standard Agent 175.3 4.7 0% 129

Testing - Standard Agent 187.3 3.9 0% -

In Figure 12, the training progress of the standard agent is depicted in blue, with the
moving average reward exhibiting a trend similar to the simulated experiment gradually
approaching the maximum achievable reward. The REM standard agent is established

for the final phase of the experiment to support the evaluation of the TL outcomes.

5.2. Experiments and Analysis 61

5.2.1.3 REM Transfer Learning

The final step involves the actual TL execution by conducting an identical training to
the previous agent, as detailed in Table 2. The difference lies in the pre-initialization of
the training, loading the agent to be trained with knowledge from the SEM source agent.
The training then proceeds as usual, generating the enriched agent.

Figure 12 also shows the moving average reward for the training phase of the REM

enriched agent in orange.

190

180
GJ /
(@)}
o
g 170
<
o
g 160
S
=
T 1s0
©
= /
Q
& 140
/ —— REM Standard Agent Training
130 / REM Enriched Agent Training |
0 10 20 30 40
Episode

Figure 12 — Standard and enriched agents training reward moving average in Scenario 1.

The TL evaluation metrics are collected and analyzed. Key performance results
of both training and testing phases, achieved by the standard and enriched agents, are
presented in Tables 5 and 6.

Both agents achieve a close level of reward in training. While the standard agent
presents a higher and more stable trend after its convergence, the enriched agent presents
a notable improvement in the initial performance of 39.8%, referred as jumpstart. Also,
the average reward for the whole training phase is 4.4% greater for the enriched agent,

and it presents 10.6% lower node usage, as presented in Table 5.

Table 5 — Training results of standard and enriched agents of Scenario 1

Avg Reward | Avg Nodes | Violation | Initial Performance

Training - Standard Agent 175.3 4.7 0% 129

Training - Enriched Agent 183 4.2 0% 180.4

Figure 13 illustrates the moving average reward of both standard and enriched agents
over a 50-episode testing phase. Additionally, the figure exhibits the performance of

the abovementioned cold start test. In Testing phase, the exploration rate of the e-greedy

62 Chapter 5. Experimental Results and Analysis

policy is set to 0 to ensure the agent makes only optimal decisions by exploiting its
knowledge. Both standard and enriched agents deliver high performance, maintaining the
average reward close to the maximum and similar resource usage. However, the enriched
agent exhibits a very stable performance with few variations during the test phase.

Table 6 also presents the performance results of the cold start test. The direct reuse of
the SEM source agent knowledge, with no training in the target real environment, could
provide high performance to the cold start agent test. The cold start agent demonstrates
an average performance at the same level as the standard agent, and very close to the
enriched agent, with a similar average node usage.

Although it begins the test with a slight disadvantage in reward average, after around
10 episodes, it could reach the optimal performance level achieved by the enriched agent

in its testing phase, while slightly outperforming the standard agent.

Table 6 — Testing results of standard and enriched agents of Scenario 1

Avg Reward | Avg Nodes | Violation | Initial Performance
Testing - Standard Agent 187.3 3.9 0% -
Testing - Enriched Agent 188.6 3.8 0% -
Cold Start Test 187.6 3.9 0% 184.7

190

=
o]
(o]

=
o]
o

v, NS /N /\
IR
/7 V

—— Standard Agent Testing |
Enriched Agent Testing
—— Cold Start Test

184

Reward Moving Average

=
0o
N

180
0 10 20 30 40 50

Episode

Figure 13 — Standard, Enriched, and Cold Start testing reward moving average in Sce-
nario 1.

5.2.1.4 Discussion of Scenario 1

In summary, in this scenario, we could initially show the proper functioning of the

constructed testbed and the effectiveness of training conducted in SEM and REM. Fur-

5.2. Experiments and Analysis 63

thermore, even in a simplified task, we could practically demonstrate some of the benefits
of TL in this context.

Finally, we demonstrate the possibility of successfully exploiting the knowledge ac-
quired in a simpler environment, without any or little additional training, over the com-

plex target environment (REM).

Because of the nature of the real-world environment, the total time required for the
training is significantly longer compared to the simulated environment. Approximately
18 hours were needed to complete the 50 episodes of real training, six times longer than

the SEM training for the same task, even with 550 fewer episodes.

This difference reinforces one of the main objectives of the work, which is to positively
impact real environment training in terms of time and quality. Thus, successful reuse
of knowledge acquired in a fraction of time by the SEM source agent could significantly

reduce the real environment’s prolonged training time.

5.2.2 Scenario 2

In this scenario, a more challenging workload is introduced to test the balance between
cost and performance. A fixed moderate request workload is applied to the cluster, so
that any lower number of active nodes than the initial setting (6 nodes), is insufficient to

handle the demand and maintain service quality.

The agent must learn to optimize resource usage to minimize costs, similar to the
previous scenario, but additionally ensuring the quality of the service. Table 7 shows the

parameters that will be used in all training reported in scenario 2.

Table 7 — Second scenario training parameters

Load Training Steps | Episodes | E-greedy | Duration
SEM Training 395 load units 150 900 0.3-0.1 6 hr
REM Trainings | 18000 requests/sec 18 100 0.1 34 hr

The training of the SEM source agent for this scenario is conducted over 900 episodes
of 150 steps, with a total duration of approximately 6 hours. In this scenario, we will

focus on the results and consequences of the REM training.

The complexity of the scenario arises from the behavior of the cluster in the real-world
environment, where although the initial 6 nodes are sufficient to handle the workload, the
cluster requires a warm-up time to reach its full performance, unable to maintain the
required performance at the initial stage. It is expected that as the training progresses,
the agent will learn that maintaining the initial resource capacity, although not profitable

initially, is the path that should generate the highest accumulated reward over time.

64 Chapter 5. Experimental Results and Analysis

5.2.2.1 REM Agents Training

Table 7 details the REM training configurations, conducted similarly to the previous
scenario, but for 100 episodes with 18 steps, due to the higher complexity of the scenario.

The key performance results of both agents training phase are presented in Table 8 and

Figure 14.
120
100 /\\
) : /’//\\/\\ ///
(®)] H
© i
O 80 :
> 5 /
< : \\\
: N
o _/\/\ / J/\\(/\
> 60 : A
o :
: /
3 :
pud /_ 1
© 401 =~ ¥ :
2 v s
K i
20 : —— REM Standard Agent Training |
\\/ REM Enriched Agent Training
R 50th Episode Checkpoint
N ————— :
%% 20 40 60 80

Episode

Figure 14 — Standard and Enriched training reward moving average in Scenario 2.

Figure 14 depicts the moving average reward for both agents during the training
phase. Despite performance fluctuations during training, the enriched agent achieves a
higher level of average reward, particularly in the initial stages, demonstrating a 28%
improvement of the average reward compared to the REM standard agent, as presented
in Table 8. In this scenario, the higher performance reflects the enriched agent’s superior
capacity to avoid performance violations, when the cluster’s capacity is insufficient for
the demand. Thus, the enriched agent demonstrates a notable violation rate 20% lower

than the standard agent during the training period.

Table 8 — Training phase results (100 episodes) of agents in Scenario 2

| Training Phase Results

Avg Reward | Avg Nodes | Violation | Initial Performance
Standard Agent 41.9 5.7 70% 44
Enriched Agent 53.8 7 56% 43

With initial performance values of 4.4 for the standard agent and 43 for the enriched
agent, the difference, or jumpstart, stands at 38.6, representing an improvement of over

800%. This enables the enriched agent to initiate training at a performance level that,

5.2. Experiments and Analysis 65

without TL, would not have been achieved before the 50th episode, according to its

training reward plot evolution.

5.2.2.2 REM Agents Testing:

Figure 15 depicts the moving average reward over a 50-episode testing phase. The
performance of the enriched agent surpasses that of the standard REM agent, exhibiting
a 12% higher and more stable moving average reward, along with a 35% reduction in the
recorded violation rate. The fully trained agents testing phases are presented in Table
9, and Figure 15 presents a plot of the testing phase conducted with the fully trained

agents.

Table 9 — Testing phase results of standard and enriched agents, fully trained in 100
episodes, and cold start in Scenario 2

’ Testing Phase Results ‘

Avg Reward | Avg Nodes | Violation | Initial Perform.
Fully Trained Standard Agent 106 6.2 23% -
Fully Trained Enriched Agent 119 6 15% -
Cold Start Test 70.4 8.1 38% 50

120 //\ j\/

=
o
o

P
N
)
.

Ck
<

N
o

Reward Moving Average

—— Standard Agent Testing
Enriched Agent Testing |
—— Cold Start Test

20

0 10 20 30 40
Episode

Figure 15 — Fully Trained Standard and Enriched agents testing, and cold start testing
reward average in Scenario 2.

The results indicate that the enriched agent, fully trained for 100 episodes, can deliver
optimal performance for the presented workload. The average violation rate of 15% is
close to the minimum possible, as the initial phase of the experiment will always generate

violations regardless of the action taken, because of the warm-up time required for the

66 Chapter 5. Experimental Results and Analysis

cluster to respond appropriately to request loads. On the other hand, the fully trained
standard REM agent, despite its high performance and low violation rate, could not match

the level of performance and stability exhibited by the enriched agent.

5.2.2.3 Partially Trained Agent Testing and Cold Start Test:

Table 10 — Testing phase results of partially trained agents (trained for 50 episodes) and
cold start test in Scenario 2

\ Testing Phase Results

|

Avg Reward | Avg Nodes | Violation | Initial Perform.
Partially Trained Standard Agent 61.5 6.2 53% -
Partially Trained Enriched Agent 92.3 6.4 32% -
Cold Start Test 70.4 8.1 38% 50

In this scenario, an additional testing phase was conducted using the standard and
enriched agents trained at the 50th episode checkpoint. This allowed us to examine what
performance would be provided by the agents if the training was partially conducted
with only 50 episodes. Additionally, we present the cold start test for this scenario, as
mentioned in scenario 1, where an agent loaded with knowledge of SEM source agent is
tested in REM without training.

Tables 9 and 10 show the testing phase results of the partially and fully trained agents,
along with the cold star test result. The partially trained (50 episodes) enriched agent
achieves a performance close to that of the fully trained (100 episodes) standard agent,
despite having a considerably higher violation rate. While, we note that, the partially
trained standard agent could not deliver adequate performance, with an elevated violation
rate and average performance far from the optimal performances.

Figure 16 shows a comparison between the results of the cold start test, the test phase
of the standard agent partially trained (50 episodes), and the fully trained test phase of
the standard agent. While the cold start test did not surpass the average performance
and violation rate of a fully trained standard agent, it did demonstrate that, even without
real-world training, it can offer superior performance quality and a reduced violation rate
than the partially trained standard agent.

Finally, the cold start agent demonstrated to be insufficiently mature to initiate the
test immediately providing high performance, as shown in Figure 15. However, it exhibits
promising results in this scenario, with an initial moving average reward value of 50, which
is a notable achievement for an agent that has not undergone any REM training phase.

Furthermore, it shows an increasing improvement in its average reward throughout
the test phase, reaching, at the end of its 50 episodes, a performance level close to the

optimal performance of the enriched agent’s testing phase.

5.2. Experiments and Analysis 67

100

I Cold Start
Partially Trained

W standard Agent

80 Fully Trained
Standard Agent

I Cold Start
100+ Partially Trained
B Siandard Agent
Fully Trained

Standard Agent

60

40

Average Reward
Violation Rate

No training 50 Episodes 100 Episodes No training 50 Episodes 100 Episodes

Figure 16 — Average reward and violation rate of cold start test and, partially trained and
fully trained standard agents, in Scenario 2.

5.2.2.4 Discussion of Scenario 2

In summary, in this scenario, we could demonstrate the balance between cost and
performance achieved in the training and testing phase of agents, achieving efficient per-
formance, especially with the enriched agent, by learning to maintain the initial node
configuration throughout the episode, even in a counter-intuitive environment.

Furthermore, the obtained results of the TL execution reinforce the initial findings,
once again demonstrating its benefits, even more prominent in the initial performance
during the training of the enriched agent. And this scenario also demonstrates the pursuit
of performance violation prevention.

The test results of partial training reinforce the strength of TL, where even with half
of the original training episodes, the enriched agent could provide adequate performance,
close to the fully trained standard agent (trained in 100 episodes).

The conducted cold start test reinforces the potential to deploy the source agent di-
rectly in the real environment with reasonable performance. Possibly resulting in savings
of between 18 and 34 hours of training in the workloads addressed in this work, by avoiding
the risky training period in critical real-world environments.

In the real world, a simple addition of a node can take hours to be concluded depending
on the cluster’s configuration, workload, and storage. Therefore, the successful application
of such a transfer technique in an environment like this could save days or even weeks
of training time. Additionally, it viabilizes the deployment of such kinds of solutions in
critical environments that cannot afford the risk of undertaking the initial standard wide

exploratory training process.

68

Chapter 5. Experimental Results and Analysis

69

CHAPTER

Conclusion

In this research, we validate a TL technique for cloud service resource orchestration,
aiming to facilitate the training process of DRL agents, reinforcing its viability in critical
real-world environments. We built a source environment comprising a simulation of the
selected distributed service and transferred the agent’s acquired knowledge to enhance
the training of new agents in the real environment.

The first objective (G1) was addressed by the designed architecture for the experimen-
tal environment and the description of how the modules were constructed in Chapters 3
and 4, along with the successful initial trainings conducted in Chapter 5.

We have effectively demonstrated the feasibility of training RL agents in both real and
simulation environments (G2) with the training results outlined and illustrated in Chapter
5, while also proving the capacity of the RL module to interact appropriately with both
simulation and real environments by orchestrating the elasticity of the Cassandra service
nodes (G3).

Finally, objectives G3 and G4 were addressed by experiments involving transfer learn-
ing, where we were able to demonstrate the effectiveness of the technique in providing
benefits to the training and testing of RL agents, in the specific context, in terms of

training duration, initial performance, and average performance.

6.1 Main Contributions

We were able to demonstrate some of the anticipated benefits of Transfer Learning
in RL training over practical real-world scenarios, particularly in its initial performance,
showing improvements ranging from 40% to 800% compared to standard training. Ad-
ditionally, improvements in average performance and savings in training duration for RL
agents were attested and reported, addressing the first hypothesis of this research (H1),
which proposed that it would be possible to gain benefits by acquiring knowledge in a
simple simulation environment and transferring it to the practical environment, enriching

the new training.

70 Chapter 6. Conclusion

The balance of the cost/performance trade-off, observed in the training phases of
scenario 1 with a 10% reduction in node usage and, in scenario 2, with a 34% decrease
in violations, along with the behavior of the agents in test episodes, demonstrating the
pursuit of the least cost possible by reducing node usage and the prevent of performance
violations by maintaining the needed resource active, validates our second hypothesis
(H2), which suggested that it would be possible to train the agent to orchestrate the
service node elasticity, aiming for the cost/performance optimization.

Finally, the capacity of TL to accelerate agent maturity or generate agents ready for
specific situations was evidenced. This was exemplified in the cold start test, where the
agent trained in simulation is tested in the real environment without additional train-
ing. The cold start agent initially demonstrated reasonable performance, sustaining it
throughout the entire experiment. This illustrates the timesaving aspect, where the cold
start agent, with only 3 hours of simulation training, operated near or above the perfor-
mance of the real environment agent, which was additionally trained for 100 episodes in
the real environment, saving from 18 to 34 hours required for the training in the REM
setup.

The highlighted benefits reinforce the theoretical concepts envisioned in Chapter 3 of
the creation of a collection of trained agents, the Source Agents Database, which would
be loaded with ready-to-use agents for orchestrating new and different services and en-
vironments. The cold start test suggests a promising future for the proposed approach,
as we have demonstrated the feasibility of reusing agents in a simplified real-world en-
vironment, potentially evolving to a scenario where agents are successfully transferred
between different services or tasks. TL enables the orchestration of slice services, meeting
the dynamism required for a slice-as-a-service paradigm, right from the beginning of the
slice instantiation.

Additionally, another contribution of the work was the implementation and provision
of the code for the Cassandra node controller and monitor, which, through API requests,
can promptly provide information about the state of the cluster in terms of active nodes
and ongoing actions, and automatically adjusts the cluster to the number of nodes sent
in the request. All experiment log files, trained agents used and source code are publicly
available on (CUNHA, 2024).

6.2 Future Work

In future work, it would be relevant to first enhance the complexity of the conditions
imposed on the service cluster to enable the training of more comprehensive agents capable
of handling a broader and more realistic range of workload patterns. Additionally, it
would be interesting to include trainings with various advanced and sophisticated DRL

algorithms, to compare their performances and specific transfer effects.

6.3. Contributions in Bibliographic Production 71

Furthermore, another aspect to address in future works would be to seek a closer ap-
proximation to real-world production environments in terms of scale, storage capacity, and
geographical factors. Bridging the gap between experimental and real-world setups can
facilitate more accurate evaluations of RL agents and their efficacy in practical contexts.

Finally, the integration of other services into the experimental ecosystem, which de-
mands the training of additional tasks or scenarios, holds potential benefits. This ap-
proach allows the exploration of further TL techniques, leveraging knowledge acquired
from one service scenario to enhance performance in analogous, yet distinct, service en-
vironments.

Transfer learning (TL) is a powerful technique expected to gain increasing relevance,
facilitating the implementation of machine learning solutions in diverse and complex con-

texts.

6.3 Contributions in Bibliographic Production

The work conducted in this dissertation resulted in a paper submitted to the main
track of the 42nd Brazilian Symposium on Computer Networks and Distributed Systems
(SBRC) in 2024, titled "Transfer of Deep Reinforcement Learning for Cassandra’s Elas-

ticity Orchestration”.

2

Chapter 6. Conclusion

73

Bibliography

ABADI, M. et al. Tensorflow: a system for large-scale machine learning. In:
Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation. USA: USENIX Association, 2016. (OSDI’16), p. 265-283. ISBN
9781931971331.

AL-DHURAIBI, Y. et al. Elasticity in cloud computing: State of the art and research
challenges. IEEE Transactions on Services Computing, v. 11, n. 2, p. 430-447,
2018. Disponivel em: <https://doi.org/10.1109/TSC.2017.2711009>.

Apache, S. F. What is Cassandra? 2016. Disponivel em: <http://cassandra.apache.
org/>.

Apache Software Foundation. Cassandra Distributed Database. 2019. Disponivel
em: <http://cassandra.apache.org/>.

APOSTOLOPOULOS, I. D.; MPESIANA, T. A. Covid-19: automatic detection from
x-ray images utilizing transfer learning with convolutional neural networks. Physical
and Engineering Sciences in Medicine, v. 43, n. 2, p. 635-640, 2020. ISSN
2662-4737. Disponivel em: <https://doi.org/10.1007/s13246-020-00865-4>.

ARULKUMARAN, K. et al. Dreep reinforcement learning: A brief survey. IEEE
Signal Processing Magazine, v. 34, n. 6, p. 26-38, 2017. Disponivel em:
<https://doi.org/10.1109/MSP.2017.2743240>.

BELOGLAZOV, A.; ABAWAJY, J.; BUYYA, R. Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing. Future
Generation Computer Systems, v. 28, n. 5, p. 755-768, 2012. ISSN 0167-739X.
Special Section: Energy efficiency in large-scale distributed systems. Disponivel em:
<https://doi.org/10.1016/j.future.2011.04.017>.

BITSAKOS, C.; KONSTANTINOU, I.; KOZIRIS, N. Derp: A deep reinforcement

learning cloud system for elastic resource provisioning. In: 2018 TEEE International
Conference on Cloud Computing Technology and Science (CloudCom). [s.n.],
2018. p. 21-29. Disponivel em: <https://doi.org/10.1109/CloudCom2018.2018.00020>.

CLAYMAN, S. et al. The necos approach to end-to-end cloud-network slicing as a
service. IEEE Communications Magazine, v. 59, n. 3, p. 91-97, 2021. Disponivel
em: <https://doi.org/10.1109/MCOM.001.2000702>.

https://doi.org/10.1109/TSC.2017.2711009
http://cassandra.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
https://doi.org/10.1007/s13246-020-00865-4
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1109/CloudCom2018.2018.00020
https://doi.org/10.1109/MCOM.001.2000702

74 Bibliography

CUNHA, I. Cassandra Node Controller API. Github, 2024. Disponivel em:
<https://github.com /iansmps/dissertation_ repo.git>.

CUNHA, I. R. d. Construcao de mecanismo para suportar a predicao de
tempos de resposta do Cassandra a partir de métricas de Infraestrutura.
2019. Disponivel em: <https://repositorio.ufu.br/handle/123456789/26441>.

DIPIETRO, S.; CASALE, G.; SERAZZI, G. A queueing network model for performance
prediction of apache cassandra. In: Proceedings of the 10th EAI International
Conference on Performance Evaluation Methodologies and Tools on 10th
EAI International Conference on Performance Evaluation Methodologies
and Tools. Brussels, BEL: ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2017. (VALUETOOLS’16), p. 186-193. ISBN
9781631901416. Disponivel em: <https://doi.org/10.4108/eai.25-10-2016.2266606>.

EL-GAZZAR, R. F. A literature review on cloud computing adoption issues in enterprises.
In: BERGVALL-KAREBORN, B.; NIELSEN, P. A. (Ed.). Creating Value for All
Through IT. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. p. 214-242. ISBN
978-3-662-43459-8. Disponivel em: <https://doi.org/10.1007/978-3-662-43459-8 14>.

JENNINGS; STADLER. Resource management in clouds: Survey and research
challenges. Journal of Network and Systems Management, v. 23, p. 567619,
2015. ISSN 1573-7705. Disponivel em: <https://doi.org/10.1007/s10922-014-9307-7>.

KAELBLING, L. P.; LITTMAN, M. L.; MOORE, A. W. Reinforcement learning: A
survey. Journal of artificial intelligence research, v. 4, p. 237-285, 1996. Disponivel
em: <https://doi.org/10.1613/jair.301>.

KEPHART, J.; CHESS, D. The vision of autonomic computing. Computer, v. 36, n. 1,
p. 41-50, 2003. Disponivel em: <https://doi.org/10.1109/MC.2003.1160055>.

KIRAN, B. R. et al. Deep reinforcement learning for autonomous driving: A survey.
IEEE Transactions on Intelligent Transportation Systems, v. 23, n. 6, p.
4909-4926, 2022. Disponivel em: <https://doi.org/10.1109/TITS.2021.3054625>.

LAMPLE, G.; CHAPLOT, D. S. Playing fps games with deep reinforcement learning.
Proceedings of the AAAI Conference on Artificial Intelligence, v. 31, n. 1, Feb.
2017. Disponivel em: <https://doi.org/10.1609/aaai.v31i1.10827>.

LI, R. et al. Deep reinforcement learning for resource management in network
slicing. IEEE Access, v. 6, p. 74429-74441, 2018. Disponivel em: <https:
//doi.org/10.1109/ACCESS.2018.2881964> .

MAO, H. et al. Resource management with deep reinforcement learning. In:
Proceedings of the 15th ACM Workshop on Hot Topics in Networks. New
York, NY, USA: Association for Computing Machinery, 2016. (HotNets '16), p. 50-56.
ISBN 9781450346610. Disponivel em: <https://doi.org/10.1145/3005745.3005750> .

MARQUES, G. et al. Arcabougo de um sistema inteligente de monitoramento para cloud
slices. In: Anais do I Workshop de Teoria, Tecnologias e Aplicagdes de Slicing
para Infraestruturas Softwarizadas. Porto Alegre, RS, Brasil: SBC, 2019. p. 56-68.
Disponivel em: <https://doi.org/10.5753/wslice.2019.7722>.

https://github.com/iansmps/dissertation_repo.git
https://repositorio.ufu.br/handle/123456789/26441
https://doi.org/10.4108/eai.25-10-2016.2266606
https://doi.org/10.1007/978-3-662-43459-8_14
https://doi.org/10.1007/s10922-014-9307-7
https://doi.org/10.1613/jair.301
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1609/aaai.v31i1.10827
https://doi.org/10.1109/ACCESS.2018.2881964
https://doi.org/10.1109/ACCESS.2018.2881964
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.5753/wslice.2019.7722

Bibliography 75

MATHWORKS. Simulation and Model-Based Design. MathWorks, 2020. Disponivel
em: <https://www.mathworks.com/products/simulink.html>.

MathWorks. MATLAB Engine for Python: a module to call matlab from
python. MathWorks, 2023. Disponivel em: <https://pypi.org/project/matlabengine/>.

MNIH, V.; KAVUKCUOGLU, K.; SILVER, D. e. a. Human-level control through deep
reinforcement learning. Nature, Nature Publishing Group, a division of Macmillan
Publishers Limited. All Rights Reserved., v. 518, n. 7540, p. 529-533, fev. 2015. ISSN
0028-0836. Disponivel em: <https://doi.org/10.1038 /nature14236>.

NESMACHNOW, S.; ITURRIAGA, S. Cluster-uy: Collaborative scientific

high performance computing in uruguay. In: TORRES, M.; KLAPP, J. (Ed.).
Supercomputing. Cham: Springer International Publishing, 2019. p. 188-202. ISBN
978-3-030-38043-4. Disponivel em: <https://cluster.uy>.

NOURI, S. M. R. et al. Autonomic decentralized elasticity based on a reinforcement
learning controller for cloud applications. Future Generation Computer
Systems, v. 94, p. 765-780, 2019. ISSN 0167-739X. Disponivel em: <https:
//doi.org/10.1016/j.future.2018.11.049>.

OPENALI et al. Dota 2 with Large Scale Deep Reinforcement Learning. 2019.
Disponivel em: <https://doi.org/10.48550/arXiv.1912.06680>.

PAN, S. J.; YANG, Q. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, v. 22, n. 10, p. 1345-1359, 2010. Disponivel em:
<https://doi.org/10.1109/TKDE.2009.191>.

Python Software Foundation. Python. 2021. Disponivel em: <https://docs.python.org/
3.8 /reference/>.

QIU, H. et al. AWARE: Automate workload autoscaling with reinforcement learning
in production cloud systems. In: 2023 USENIX Annual Technical Conference
(USENIX ATC 23). Boston, MA: USENIX Association, 2023. p. 387-402. ISBN
978-1-939133-35-9. Disponivel em: <https://www.usenix.org/conference/atc23/
presentation /qiu-haoran>.

QU, C.; CALHEIROS, R. N.; BUYYA, R. Auto-scaling web applications in clouds:
A taxonomy and survey. ACM Comput. Surv., Association for Computing
Machinery, New York, NY, USA, v. 51, n. 4, jul 2018. ISSN 0360-0300. Disponivel em:
<https://doi.org/10.1145/3148149>.

RED HAT, INC. Introdugao ao OpenStack. 2019. Disponivel em: <https:
//www.redhat.com/pt-br/topics/openstack>. Acesso em: 11 jul. 2019.

REZENDE, A. G. P. Orquestracao de cloud-network slices orientada a predigao
de métricas de servico a partir do monitoramento da infraestrutura. Dissertacao
(Mestrado), 2020. Disponivel em: <https://doi.org/10.14393/ufu.di.2020.3053>.

RICHART, M. Cassandra Simulink. GitLab, 2022. Disponivel em: <https:
//gitlab.fing.edu.uy/mrichart/cassandra_simulink>.

RICHART, M.; CUNHA, I. Cassandra Elastic DQN. GitLab, 2022. Disponivel em:
<https://gitlab.fing.edu.uy /mrichart /cassandra__elastic_ dqn>.

https://www.mathworks.com/products/simulink.html
https://pypi.org/project/matlabengine/
https://doi.org/10.1038/nature14236
https://cluster.uy
https://doi.org/10.1016/j.future.2018.11.049
https://doi.org/10.1016/j.future.2018.11.049
https://doi.org/10.48550/arXiv.1912.06680
https://doi.org/10.1109/TKDE.2009.191
https://docs.python.org/3.8/reference/
https://docs.python.org/3.8/reference/
https://www.usenix.org/conference/atc23/presentation/qiu-haoran
https://www.usenix.org/conference/atc23/presentation/qiu-haoran
https://doi.org/10.1145/3148149
https://www.redhat.com/pt-br/topics/openstack
https://www.redhat.com/pt-br/topics/openstack
https://doi.org/10.14393/ufu.di.2020.3053
https://gitlab.fing.edu.uy/mrichart/cassandra_simulink
https://gitlab.fing.edu.uy/mrichart/cassandra_simulink
https://gitlab.fing.edu.uy/mrichart/cassandra_elastic_dqn

76 Bibliography

SCHMIDHUBER, J. Deep learning in neural networks: An overview. Neural
Networks, v. 61, p. 85-117, 2015. ISSN 0893-6080. Disponivel em: <https:
//doi.org/10.1016/j.neunet.2014.09.003>.

SILVA, F. S. D. et al. Necos project: Towards lightweight slicing of cloud
federated infrastructures. In: 2018 4th ITEEE Conference on Network
Softwarization and Workshops (NetSoft). [s.n.], 2018. p. 406-414. Disponivel em:
<https://doi.org/10.1109/NETSOFT.2018.8460008>.

STADLER, R.; PASQUINI, R.; FODOR, V. Learning from network device statistics. J.
Netw. Syst. Manage., Plenum Press, USA, v. 25, n. 4, p. 672-698, oct 2017. ISSN
1064-7570. Disponivel em: <https://doi.org/10.1007/s10922-017-9426-7>.

TAYLOR, M. E.; STONE, P. Transfer learning for reinforcement learning domains:
A survey. J. Mach. Learn. Res., JMLR.org, v. 10, p. 1633-1685, dec 2009. ISSN
1532-4435. Disponivel em: <https://dl.acm.org/doi/10.5555/1577069.1755839>.

VMware Inc. Bitnami package for Apache Cassandra. 2020. Disponivel em:
<https://bitnami.com /stack/cassandra>.

WANG, Z. et al. Automated cloud provisioning on aws using deep reinforcement learning.
ArXiv, abs/1709.04305, 2017. Disponivel em: <https://doi.org/10.48550/arXiv.1709.
04305>.

ZHANG, L. et al. Autrascale: An automated and transfer learning solution for streaming
system auto-scaling. In: 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). [s.n.], 2021. p. 912-921. Disponivel em:
<https://doi.org/10.1109/IPDPS49936.2021.00100>.

ZHU, 7. et al. Transfer learning in deep reinforcement learning: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, v. 45, n. 11, p.
13344-13362, 2023. Disponivel em: <https://doi.org/10.1109/TPAMI.2023.3292075>.

https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/NETSOFT.2018.8460008
https://doi.org/10.1007/s10922-017-9426-z
https://dl.acm.org/doi/10.5555/1577069.1755839
https://bitnami.com/stack/cassandra
https://doi.org/10.48550/arXiv.1709.04305
https://doi.org/10.48550/arXiv.1709.04305
https://doi.org/10.1109/IPDPS49936.2021.00100
https://doi.org/10.1109/TPAMI.2023.3292075

	Title page
	Dedication
	Agradecimentos
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	Acronyms list
	Contents
	Introduction
	Research Goals and Challenges
	Hypothesis
	Outline

	Fundamentals
	Cloud Resource Management
	Machine Learning
	Reinforcement Learning
	Deep Reinforcement Learning
	Deep Q-Networks Algorithm

	Transfer Learning
	NECOS Project
	Related Work

	Proposal
	Proposed Approach
	Testbed Environments
	Research Workflow
	On the Architectural Specification

	Test Environment Implementation
	Real Environment Module (REM)
	Cassandra Service Cluster
	Node Controller
	Probe Client (Sensor)
	Real Load Generator

	Simulation Environment Module (SEM)
	RL Module Design
	Goal and Reward Function
	Specifications

	Modules Operation Workflow

	Experimental Results and Analysis
	Evaluation Method
	Experiments and Analysis
	Scenario 1
	SEM Source Agent
	REM Standard Agent
	REM Transfer Learning
	Discussion of Scenario 1

	Scenario 2
	REM Agents Training
	REM Agents Testing:
	Partially Trained Agent Testing and Cold Start Test:
	Discussion of Scenario 2

	Conclusion
	Main Contributions
	Future Work
	Contributions in Bibliographic Production

	Bibliography

