UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA ELÉTRICA

MARCOS FELLIPE DE SOUZA RIBEIRO

ANÁLISE DO MELHORAMENTO DA ESTABILIDADE DE FREQUÊNCIA DO SISTEMA ELÉTRICO ISOLADO DE RORAIMA APÓS A INTRODUÇÃO DE UMA NOVA MATRIZ GERADORA

> Uberlândia 2024

MARCOS FELLIPE DE SOUZA RIBEIRO

Análise Do Melhoramento Da Estabilidade De Frequência Do Sistema Elétrico Isolado De Roraima Após A Introdução De Uma Nova Matriz Geradora

> Dissertação apresentada à Faculdade de Engenharia Elétrica da Universidade Federal de Uberlândia como requisito parcial para obtenção do título de Mestre em Ciências.

> Área de concentração: Sistemas de Energia Elétrica

Orientador: Prof. Dr. Geraldo Caixeta Guimarães

Uberlândia 2024

	Ficha Catalográfica Online do Sistema de Bibliotecas da l com dados informados pelo(a) próprio(a) autor(a).	JFU
R484 2024	Ribeiro, Marcos Fellipe de Souza, 1989- Análise Do Melhoramento Da Estabilidade De Frequência Do Sistema Elétrico Isolado De Roraima Após A Introdução De Uma Nova Matriz Geradora [recurso eletrônico] / Marcos Fellipe de Souza Ribeiro 2024.	à
	Orientador: Geraldo Guimarães Caixeta. Dissertação (Mestrado) - Universidade Federal de Uberlândia, Pós-graduação em Engenharia Elétrica. Modo de acesso: Internet. Disponível em: http://doi.org/10.14393/ufu.di.2024.72 Inclui bibliografia. Inclui ilustrações.	
	 Engenharia elétrica. I. Caixeta, Geraldo Guimarães, 1954-, (Orient.). II. Universidade Federal de Uberlândia. Pós-graduação em Engenharia Elétrica. III. Título. 	
		CDU: 621.3
L	Bibliotecários responsáveis pela estrutura de acordo com o A	ACR2:

Gizele Cristine Nunes do Couto - CRB6/2091 Nelson Marcos Ferreira - CRB6/3074

MARCOS FELLIPE DE SOUZA RIBEIRO

ANÁLISE DO MELHORAMENTO DA ESTABILIDADE DE FREQUÊNCIA DO SISTEMA ELÉTRICO ISOLADO DE RORAIMA APÓS A INTRODUÇÃO DE UMA NOVA MATRIZ GERADORA

Dissertação apresentada à Faculdade de Engenharia Elétrica da Universidade Federal de Uberlândia como requisito parcial para obtenção do título de Mestre em Ciências.

Área de concentração: Sistemas de Energia Elétrica

Orientador: Prof. Dr. Geraldo Caixeta Guimarães

Uberlândia, 26 de fevereiro de 2024.

Banca Examinadora:

Prof. Geraldo Caixeta Guimarães (UFU)

Prof. Thales Lima Oliveira (UFU)

Prof. Guilherme Henrique Alves (UNIUBE)

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Coordenação do Programa de Pós-Graduação em Engenharia Elétrica Av. João Naves de Ávila, 2121, Bloco 3N - Bairro Santa Mônica, Uberlândia-MG, CEP 38400-902 Telefone: (34) 3239-4707 - www.posgrad.feelt.ufu.br - copel@ufu.br

ATA DE DEFESA - PÓS-GRADUAÇÃO

Programa de Pós-Graduação em:	Engenharia Elétrica				
Defesa de:	Dissertação de Mestrado, 791,	PPGEELT			
Data:	Vinte e seis de fevereiro de dois mil e vinte e quatroHora de início:14:00Hora de encerramento:16:00				
Matrícula do Discente:	12122EEL004				
Nome do Discente:	Marcos Fellipe de Souza Ribeiro				
Título do Trabalho:	Análise do Melhoramento da Estabilidade de Frequência do Sistema Elétrico Isolado de Roraima Após a Introdução de Uma Nova Matriz Geradora.				
Área de concentração:	Sistemas de Energia Elétrica				
Linha de pesquisa:	Sistemas Elétricos de Potência				
Projeto de Pesquisa de vinculação:	Coordenador do projeto: Geraldo Caixeta Guimarães. Título do projeto: Análise de técnicas para operação de sistemas elétricos isolados. Agência financiadora: não se aplica. Número do processo na agência financiadora: não se aplica. Vigência do projeto: 2019 – atual.				

Reuniu-se por meio de videoconferência, a Banca Examinadora, designada pelo Colegiado do Programa de Pós-graduação em Engenharia Elétrica, assim composta:

Professores Doutores: Thales Lima de Oliveira (UFU), Guilherme Henrique Alves (UNIUBE) e Geraldo Caixeta Guimarães, orientador do discente.

Iniciando os trabalhos o presidente da mesa, Dr. Geraldo Caixeta Guimarães, apresentou a Comissão Examinadora e o candidato, agradeceu a presença do público, e concedeu ao discente a palavra para a exposição do seu trabalho. A duração da apresentação do discente e o tempo de arguição e resposta foram conforme as normas do Programa.

A seguir o senhor presidente concedeu a palavra, pela ordem sucessivamente, aos examinadores, que passaram a arguir o candidato. Ultimada a arguição, que se desenvolveu dentro dos termos regimentais, a Banca, em sessão secreta, atribuiu o resultado final, considerando o candidato:

APROVADO.

Esta defesa faz parte dos requisitos necessários à obtenção do título de Mestre. O competente diploma será expedido após cumprimento dos demais requisitos, conforme as normas do Programa, a legislação pertinente e a regulamentação interna da UFU.

Nada mais havendo a tratar foram encerrados os trabalhos. Foi lavrada a presente ata que após lida e achada conforme, foi assinada pela Banca Examinadora.

Documento assinado eletronicamente por **Geraldo Caixeta Guimarães**, **Professor(a) do Magistério Superior**, em 26/02/2024, às 16:03, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de outubro de 2015</u>.

Documento assinado eletronicamente por **Thales Lima Oliveira**, **Professor(a) do Magistério Superior**, em 26/02/2024, às 16:03, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de outubro de 2015</u>.

Documento assinado eletronicamente por **Guilherme Henrique Alves**, **Usuário Externo**, em 27/02/2024, às 08:51, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de outubro de 2015</u>.

A autenticidade deste documento pode ser conferida no site <u>https://www.sei.ufu.br/sei/controlador_externo.php?</u> <u>acao=documento_conferir&id_orgao_acesso_externo=0</u>, informando o código verificador **5166097** e o código CRC **1271A7F2**.

Referência: Processo nº 23117.009486/2024-15

SEI nº 5166097

A Deus, meu Criador, o Deus do impossível.

À minha esposa, patrocinadora dos meus sonhos, pelo incentivo e apoio.

AGRADECIMENTOS

Agradeço primeiramente a Deus, pois Ele dá sabedoria e entendimento para àqueles que o buscam.

Ao professor Dr. Geraldo Caixeta Guimarães, pela orientação durante estes anos, e pela dedicação no ensino aplicado em Dinâmica de Sistema Elétricos e por acreditar nesta pesquisa.

Ao professor Dr. Thales Lima Oliveira, pelo apoio concedido nesse estudo, aconselhando o melhor caminho para as simulações e tratamento de dados deste estudo.

Ao meu primo e amigo MSc. Samuel Souto de Oliveira, que me incentivou nesta caminhada acadêmica, não me deixando desistir nos momentos mais desafiadores deste curso.

Sou grato minha amada Esposa Israela Anez Souto Ribeiro, que sempre sonhou comigo e me incentivou a iniciar este curso.

"Mas os que esperam no Senhor renovarão as forças, subirão com asas como águias; correrão, e não se cansarão; caminharão, e não se fatigarão."

(Bíblia, Isaías 40:30,31)

RESUMO

ANÁLISE DO MELHORAMENTO DA ESTABILIDADE DE FREQUÊNCIA DO SISTEMA ELÉTRICO ISOLADO DE RORAIMA APÓS A INTRODUÇÃO DE UMA NOVA MATRIZ GERADORA

A estabilidade de um sistema elétrico garante a qualidade em que a energia elétrica será fornecida ao consumidor final de modo ininterrupto. Estudos e análises de estabilidade devem ser realizados em regimes permanente e transitório com a finalidade de promover soluções mitigatórias de riscos existentes. Este trabalho visa analisar a estabilidade do sistema elétrico isolado de Roraima, que desde 2019 iniciou um processo de transição energética de uma matriz geradora com combustível a óleo diesel para um parque gerador diversificado utilizando biomassa e gás natural. Vários estudos de estabilidade transitória foram realizados para efetuar comparações de desempenho entre o parque gerador atual e antigo. Os resultados obtidos mostraram que a estabilidade de frequência do sistema elétrico isolado de Roraima, após a transição energética, é agora muito mais estável e confiável.

Palavras-chave: Análise de estabilidade transitória; Transição energética; Sistema elétrico isolado; Confiabilidade elétrica; Simulação de fluxo de potência

ABSTRACT

ANALYSIS OF FREQUENCY STABILITY IMPROVEMENT OF RORAIMA'S ISOLATED ELECTRICAL SYSTEM AFTER THE INTRODUCTION OF A NEW GENERATOR MATRIX

The stability of an electrical system guarantees the quality in which electrical energy will be supplied to the final consumer in an uninterrupted manner. Stability studies and analyzes must be carried out on a steady-state and transient-state basis in order to promote mitigating solutions for existing risks. This paper aims to analyze the stability of the isolated electrical system in Roraima, which since 2019 has started an energy transition process from a diesel-fuel generation matrix to a diversified generator park using biomass and natural gas. Several transient stability studies were carried out to perform comparisons between the current and previous generation facilities. The results obtained have shown that the frequency stability of the isolated electrical system in Roraima, after the energy transition, is now much more stable and reliable.

Keywords: Transient stability analysis; Energy transition; Isolated electrical system; Electrical Reliability, Power flow simulation

LISTA DE ILUSTRAÇÕES

Figura 1:Mapa dos Sistemas Isolados, Ciclo 202213
Figura 2: Evolução do subsídio da CCC (2013-2022), em R\$ MM 17
Figura 3: Interligação Brasil- Venezuela 230kV21
Figura 4: Consumo (GWh) Roraima Energia – Horizonte: 2023 a 2027 22
Figura 5: Diagrama eletrogeográfico do sistema Roraima
Figura 6: Previsão de Carga do Sistema Elétrico de Roraima
Figura 7: Diagrama Unifilar do Sistema Elétrico de Roraima 2019 antes do leilão
n° 01/2019
Figura 8: Diagrama Unifilar do Sistema Elétrico de Roraima 2023 após leilão nº
01/2019
Figura 9: Classificação da estabilidade do sistema de potência
Figura 10: Relação ângulo de carga – potência para um alternador de polos
salientes
Figura 11: Máquina síncrona ligada a um barramento de potência infinita 40
Figura 12: Relação ângulo de carga-potência elétrica de uma máquina síncrona
Figura 13: Relação entre a potência e o ângulo de carga para um alternador ligado
a um barramento de potência infinita46
Figura 14: Frequência das UTE do SISOL RR 2020 após perda de geração da
UTE Floresta
Figura 15: Potência ativa das UTE do SISOL RR 2020 após perda de geração da
UTE Floresta
Figura 16: Tensão nos barramentos do SISOL RR 2020 após perda de geração da
UTE Floresta
Figura 17: Ângulo dos geradores remanescentes SISOL RR 2020 após perda de
geração da UTE Floresta51

Figura 18: Frequência das UTE do SISOL RR 2020 após perda de geração da
UTE Floresta e UTE Monte Cristo 2
Figura 19: Potência ativa das UTE do SISOL RR 2020 após perda de geração da
UTE Floresta e UTE Monte Cristo 2
Figura 20: Tensão nos barramentos do SISOL RR 2020 após perda de geração da
UTE Floresta e UTE Monte Cristo 2
Figura 21: Ângulo dos geradores remanescentes SISOL RR 2020 após perda de
geração da UTE Floresta e UTE Monte Cristo 255
Figura 22: Frequência das UTE do SISOL RR 2023 após perda de geração da
UTE Monte Cristo Sucuba
Figura 23: Potência ativa das UTE do SISOL RR 2023 após perda de geração da
UTE Monte Cristo Sucuba
Figura 24: Tensão nos barramentos do SISOL RR 2023 após perda de geração da
UTE Monte Cristo Sucuba58
Figura 25: Ângulo dos geradores remanescentes SISOL RR 2023 após perda de
geração da UTE Monte Cristo Sucuba

LISTA DE TABELAS

Tabela 1:Usinas contratadas no Leilão de Boa Vista e localidades conectadas de
2019
Tabela 2: Empreendimentos Vencedores no Leilão de Geração nº 01/2019-
ANEEL
Tabela 3: Parque gerador termoelétrico antes da transição energética 26
Tabela 4: Parque gerador termoelétrico atual com as usinas disponíveis até 2023
Tabela 5: Plano de Substituição da matriz energética de Roraima 28
Tabela 6: Tensão das barras do SISOL 2020 obtidos com o fluxo de carga
condição inicial de operação68
Tabela 7: Geração e Cargas das barras do SISOL 2020 obtidos com o fluxo de
carga condição inicial de operação69
Tabela 8: Dados de linha do SISOL 2020 obtidos com o fluxo de carga condição
inicial de operação70
Tabela 9: Dados de geradores do SISOL 2020 obtidos com o fluxo de carga
condição inicial de operação71
Tabela 10: Tensão das barras do SISOL 2023 obtidos com o fluxo de carga
condição inicial de operação73
Tabela 11: Geração e Cargas das barras do SISOL 2023 obtidos com o fluxo de
carga condição inicial de operação74
Tabela 12: Dados de linha do SISOL 2023 obtidos com o fluxo de carga condição
inicial de operação75
Tabela 13: Dados de geradores do SISOL 2023 obtidos com o fluxo de carga
condição inicial de operação77

LISTA DE ABREVIATURAS E SIGLAS

- ABNT Associação Brasileira de Normas Técnicas
- CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico
- IBGE Instituto Brasileira de Geografia e Estatística
- UFU Universidade Federal de Uberlândia
- SIN Sistema Interligado Nacional
- SISOL Sistema Isolado
- CCC Conta de Consumo de Combustíveis
- SISOL Sistema Isolado
- ONS Operador Nacional do Sistema
- ANEEL Agência Nacional de Energia Elétrica
- CEPEL Centro de Pesquisas de Energia Elétrica
- EPE Empresa de Pesquisa Energética
- PEL Plano anual da operação elétrica
- UTE Usina Termoelétrica
- UFV Usina Fotovoltaica
- PCH Pequena Central Hidroelétrica
- CMSE Comitê de Monitoramento do Setor Elétrico
- ERAC Esquema Regional de Alívio de Carga
- FACTS "Flexible AC Transmission System"

SUMÁRIO

Caj	pítulo I
IN	FRODUÇÃO 12
1.1	CONSIDERAÇÕES GERAIS12
1.2	OBJETIVO 14
1.3	ESTRUTURA DA DISSERTAÇÃO15
Caj	pítulo II
SIS	TEMAS ELÉTRICOS ISOLADOS 16
2.1	CONSIDERAÇÕES GERAIS16
2.2	CONTEXTO HISTÓRICO DO SISTEMA ELÉTRICO ISOLADO DE RORAIMA
2.3	MATRIZ ENERGÉTICA DO SISTEMA ELÉTRICO DE RORAIMA 22
Caj	pítulo III 29
AS	PECTOS GERAIS SOBRE ESTABILIDADE
3.1	CONSIDERAÇÕES GERAIS 29
3.2	CLASSIFICAÇÃO DE ESTABILIDADE EM SISTEMAS ELÉTRICOS DE POTÊNCIA30
3.3	MÁQUINA SÍNCRONA LIGADA A UM BARRAMENTO DE POTÊNCIA INFINITA

3.4	ESTABILIDADE ESTÁTICA DE UMA MÁQUINA SÍNCRONA 39
3.5	ESTABILIDADE EM REGIME TRANSITÓRIO – CRITÉRIO DAS ÁREAS IGUAIS43
Cap	oítulo IV 47
AN	ÁLISE E SIMULAÇÕES 47
4.1	CONSIDERAÇÕES GERAIS 47
4.2	CASO 1 - SISOL 2020 - PERDA DE GERAÇÃO DE 40MW COM SISTEMA EM CARGA PESADA
4.3	CASO 2 - SISOL 2020 - PERDA DE GERAÇÃO DE 64MW COM SISTEMA EM CARGA PESADA
4.4	CASO 3 - SISOL 2023 - PERDA DE GERAÇÃO DE 40MW COM SISTEMA EM CARGA PESADA
4.5	CASO 4 - SISOL 2023 - PERDA DE GERAÇÃO DE 64MW COM SISTEMA EM CARGA PESADA59
Cap	oítulo V 63
CO	NCLUSÃO 63
RE	FERÊNCIAS BIBLIOGRÁFICAS65
AN	EXO 1
AN	EXO 2

Capítulo I

INTRODUÇÃO

1.1 CONSIDERAÇÕES GERAIS

O sistema elétrico brasileiro tem uma extensa rede de transmissão interligada por todo o país, de acordo com o Operador Nacional do Sistema Elétrico (ONS), são mais de 179 mil quilômetros de linhas de transmissão em todas as regiões do Brasil[1], formando o Sistema Interligado Nacional (SIN) que garante a estabilidade dinâmica entre a oferta e demanda. Mesmo apresentando números expressivos para um sistema de potência, existem regiões que não fazem parte do SIN, em função de longas distâncias e difícil acesso. Sistemas elétricos não conectados ao SIN são denominados tecnicamente pelo ONS de Sistemas Isolados[1].

Atualmente, existem 212 localidades isoladas no Brasil, . A maior parte está na região Norte, nos estados de Rondônia, Acre, Amazonas, Roraima, Amapá e Pará. Entre as capitais, a cidade de Boa Vista (RR) é a única que ainda é atendida por um sistema isolado, conforme mostrado na figura 1 [1,2].

De acordo com plano anual da operação elétrica dos sistemas de transmissão localizados nos sistemas isolados de 2020 (PEL SISOL 2020), elaborado pelo ONS, de 2001 até março de 2019, o suprimento de energia elétrica ao Estado de Roraima foi realizado predominantemente pela Interligação em 230 kV Brasil com o sistema de potência da Venezuela e complementado por meio da geração térmica local, movida a óleo diesel, com a demanda máxima verificada em abril de 2019 de 206,6 MW. Ressalta-se que em 2017 e 2018,

aproximadamente 85% do consumo de Roraima foi suprido pela energia advinda do sistema elétrico Venezuelano.

Figura 1:Mapa dos Sistemas Isolados, Ciclo 2022

Fonte:[2]

De Castro [3], em seu estudo sobre o caso Roraima, afirma que a crescente precariedade do fornecimento venezuelano, derivada da instabilidade política, impôs à população de Roraima a convivência com uma alta frequência de interrupções e instabilidade no fornecimento de eletricidade.

Em março de 2019 houve o interrompimento definitivo do fornecimento da Venezuela, levando o acionamento de usinas termoelétricas à óleo diesel, com custo muito elevado e altos níveis de emissões de gás carbônico. Frente a este cenário crítico de insegurança energética, alto custo de geração de energia e níveis altos de poluição, o governo brasileiro, por meio da Agência Nacional de Energia Elétrica – ANEEL, realizou em 2019 um leilão emergencial de contratação de energia nova com intuito de realizar uma transição energética no parque gerador do estado, levando assim a um aumento da segurança e da independência energética. Com o resultado do leilão, nove projetos foram contratados para substituição da matriz energética vigente em 2019.

Com a saída da interligação em 230 kV Brasil-Venezuela e a substituição do parque gerador no Estado de Roraima, se fazem necessários novos estudos e análises de estabilidade do parque gerador considerando as novas instalações e possíveis cenários de perturbações no sistema não antes previstos, considerando também o aumento da demanda do estado.

1.2 OBJETIVO

Neste contexto, o presente trabalho tem por objetivo geral analisar a estabilidade do sistema elétrico isolado de Roraima, que desde 2019 iniciou um processo de transição energética de uma matriz geradora com combustível a óleo diesel para um parque gerador diversificado utilizando biomassa e gás natural. Vários estudos de estabilidade transitória são necessários para efetuar comparações de desempenho entre o parque gerador atual e antigo.

Como objetivos específicos citam-se os seguintes:

- Investigação do comportamento da frequência e tensão dos barramentos em diversos cenários.
- Análise da alteração do controle secudário de frequência para geradores de maior capacidade de absorção de impactos devidos a desbalanços de carga-geração

Como metodologia, para a análise de estabilidade de frequência utilizou-se os programas desenvolvidos pelo Centro de Pesquisas de Energia Elétrica (CEPEL) para análise de fluxo de potência (*software* ANAREDE) e para análise não linear de transitórios eletromagnéticos (*software* ANATEM).

As bases de dados para este estudo foram coletadas no portal SINtegre [4], que é um portal público do ONS, disponível para sociedade e agentes do setor elétrico.

1.3 ESTRUTURA DA DISSERTAÇÃO

Esta dissertação está organizada em cinco capítulos, fontes de referências e dois anexos. A seguir tem-se uma breve descrição do conteúdo dos capítulos.

O Capítulo I introduz o tema e a importância do desenvolvimento deste trabalho, os objetivos gerais e a estrutura da dissertação.

No Capítulo II é apresentada uma visão geral sobre sistemas elétricos isolados, especificamente o sistema elétrico isolado de Roraima (SISOL-RR), a confiabilidade energética do SISOL-RR, transição energética no SISOL-RR e, por fim, a nova matriz geradora após a transição.

No Capítulo III são expostos os aspectos gerais da estabilidade de frequência e os conceitos gerias sobre o controle de frequência.

O Capítulo IV tem a finalidade de apresentar os resultados de simulações e análise de estabilidade em cenários de perturbação do sistema. O primeiro estudo de caso será análise de estabilidade de frequência em regime transitório considerando o parque gerador de 2020 logo após a interrupção definitiva da interligação em 230 kV Brasil-Venezuela com cenários de corte de carga e perda de geração a fim de verificar a confiabilidade do Sistema Isolado de Roraima (SISOL-RR) da época. O segundo estudo de caso consiste em analisar a estabilidade em regime transitório do parque gerador projetado após a substituição da matriz energética considerando as novas instalações no SISOL-RR. Serão verificados cenários similares de corte de carga e perda de geração do primeiro caso.

Finalmente, o Capítulo V concluí o assunto abordado evidenciando a melhoria apresentada no sistema elétrico isolado de Roraima bem como a confiabilidade que o sistema apresenta frente a perturbações.

Capítulo II

SISTEMAS ELÉTRICOS ISOLADOS

2.1 CONSIDERAÇÕES GERAIS

Cerca de 3 milhões de pessoas são atendidas pelos Sistemas Isolados[5], que têm sua demanda energética provida majoritariamente por usinas termoelétricas que utilizam combustíveis fósseis, principalmente óleo diesel. Apesar do avanço de novas interligações no SIN ocorridos nos últimos anos, o suprimento de energia em sistemas isolados no Brasil tem se mostrado desafiador, seja por ordem política e regulatória, outros por ordem de logística de combustíveis ou outras vezes por ordem técnica.

Como o combustível fóssil utilizado nos Sistemas Isolados não é produzido no mesmo local de geração, a logística de abastecimento se torna dependente de modal rodoviária ou fluvial dependendo da região, estando sujeito a intempéries climáticas em períodos de estiagem dos rios. Em algumas localidades há a necessidade de armazenamento de combustível fossíl de reserva mínima, podendo chegar até seis meses [6].

A geração de energia nesses sistemas isolados exige alto custo, se tornando mais onerosa do que a no SIN em razão do elevado preço do combustível fóssil e da logística complexa de transporte e abastecimento. Dessa forma, para evitar que os habitantes dos Sistemas Isolados paguem uma conta de luz com valor superior à média nacional, o custo adicional de geração nessas localidades em relação ao SIN é pago por todos os consumidores de energia elétrica através de encargo na conta de luz, rateando proporcionalmente. A Conta de Consumo de Combustíveis (CCC) é responsável pelas transações de um encargo pago por todas as distribuidoras e transmissoras de energia elétrica para subsidiar os custos anuais de geração de Sistemas Isolados[7].

Para 2023, o orçamento previsto para a Conta de Consumo de Combustível – CCC, é de cerca de R\$ 12 bilhões, segundo projeção da Agência Nacional de Energia Elétrica (ANEEL)[7]. O custo da CCC deveria cair ao longo do tempo já que várias regiões atendidas por Sistema Isolado foram interconectadas ao SIN. No entanto, enquanto o consumo de energia elétrica em sistemas elétricos isolados caiu pela metade entre 2013 e 2021, a CCC triplicou. Em 2013, o encargo foi de R\$ 700,00 para cada MWh de consumo. Já em 2022, esse número ultrapassou R\$ 4.000,00 para cada MWh [5]. Isso ocorre devido ao aumento de demanda em localidades de sistemas isolados e em paralelo com a maior utilização de óleo diesel para geração de energia, que sofre com a flutuação de preço do mercado internacional.

Apesar de um aumento médio de mais de 30% nos preços do óleo diesel para geradores do Sistema Isolado em 2022, a EPE projeta um novo incremento de 2% nos preços desse combustível em 2023, para uma média nacional de R\$ 6,81/litro de óleo diesel [8].

Figura 2: Evolução do subsídio da CCC (2013-2022), em R\$ Bilhões

Fonte: Adaptado de [9]

Outro impacto observado nas gerações de energia elétrica nos sistemas isolados é o alto índice de emissões proveniente da utilização do óleo diesel, principalmente devido muitas cidades crescerem em torno das usinas, que se tornam fontes de impactos ambientais de emissões de dióxido de carbono (CO2), óxidos de enxofre (SO2 ou SO3), além de outros gases causadores de efeito estufa, como CH4 e NOx.

As usinas a diesel representavam mais de 90% da geração de energia elétrica nos Sistemas Isolados em 2021. A relevante participação do diesel faz com que a geração nos Sistemas Isolados tenha níveis de emissões por MW gerado superiores ao Sistema Interligado Nacional [8].

Para os Sistemas Isolados, em 2024, estima-se cerca de 1,829 MtCO₂ (milhões de toneladas de CO2 equivalente). A título de comparação, em 2020, a emissões estimadas foram de 2,871 MtCO₂, essa redução se deu devido a novas interligações de sistema isolados com o SIN e a entrada de novas usinas termoelétricas de geração a gás natural com emissões bem menores do que o óleo diesel ora utilizado [8].

2.2 CONTEXTO HISTÓRICO DO SISTEMA ELÉTRICO ISOLADO DE RORAIMA

Como já mencionado, o Sistema Elétrico de Roraima é o único que atende uma capital que ainda não está interligado com o SIN. Muitos são os fatores da interligação ainda não ter ocorrida e a falta de priorização de desenvolvimento para região. Um dos pontos mais mencionados é o fato da demora da interligação do Estado do Amazonas ao SIN, que seria uma fase predecessora para então chegar a Roraima.

Conforme [10] há fortes indícios de que Roraima ainda não está interligada, devido ao reduzido colégio eleitoral, somado à pouca preocupação do governo por nunca se apresentar como um ator influente e ser dependente economicamente em relação aos demais estados brasileiros.

Sendo o estado de Roraima situado em uma posição geoestratégia, entre a Venezuela e Guiana Inglesa, em 1995 iniciaram estudos de colaboração energética com os governos da Venezuela e Brasil.

Com o término dos estudos pode-se constatar que para a região o modelo mais indicado para suprimento energético seria a importação de energia elétrica da Venezuela por meio da hidrelétrica de Guri/Macágua, que é considerada a maior hidrelétrica venezuelana. A proposta de uso dessa energia para Boa Vista pode assim ser entendida como uma resultante do principal objetivo, a eletricidade advinda de Guri até o Amazonas. No entanto, surge nesse meio a possibilidade de utilizar o gás da reserva de Urucu para gerar energia elétrica para Manaus [10].

Diante da cooperação energética, ficou estabelecido a exportação de 200MW e a construção de torre de transmissão ao longo do trecho entre os dois países para que a corrente elétrica pudesse chegar à subestação distribuidora [11].

Após seis anos do acordo firmado, somente em 2001 a interligação Brasil-Venezuela 230kV entrou em operação comercial, estando a Eletronorte como administradora oficial, responsável pela manutenção da linha de transmissão.

Com a participação de Guri na realidade roraimense, o estado passa a acreditar na possibilidade de se desenvolver e com ela surgir maiores oportunidades. Desde 2001 Roraima passou a utilizar uma energia limpa como alternativa para substituição do óleo diesel utilizado nas termoelétricas locais.

O acordo bilateral entre os dois países teve duração de vinte anos, com isso os parques geradores movidos a óleo diesel na capital de Roraima, Boa Vista, foram desativados, mantendo somente a unidade UTE Floresta ainda em utilização, sendo mantida para que, caso ocorra algum problema, a mesma possa ser utilizada.

> "Desde julho de 2001, com a implantação da interligação Brasil-Venezuela, o sistema elétrico da Bovesa passou a ser

suprido com a energia adquirida pela Eletronorte junto à empresa venezuelana Edelca. Em consequência dessa interligação, o parque gerador então existente foi parcialmente desativado, permanecendo apenas as unidades da UTE Floresta como reserva operativa parcial. A disponibilidade atual de intercâmbio dessa interligação é de 106,58MW, limite este imposto pelo transformador de corrente da linha. Salientese ainda que a Boa Vista Energia atende, com energia proveniente da Venezuela, a capital do estado, Boa Vista, respondendo pela geração e distribuição de energia elétrica, e realiza o suprimento a sete localidades do interior do estado, pertencentes ao sistema CER: Mucajaí, Tamandaré, Vila Iracema, São Raimundo, Cantá, Santa Cecília e Bonfim". [12]

Contudo, a partir de 2008, com o agravamento da crise político-econômica da Venezuela, iniciou a precarização do sistema elétrico venezuelano, a princípio houve redução da capacidade de envio de energia elétrica do complexo de Guri, uma vez que por questões políticas não conseguia suprir para própria população.

Em consequência das precariedades do sistema elétrico venezuelano e a crise político econômica, e o receio do governo federal brasileiro de interrupção de energia no estado de Roraima, a Eletrobrás reativou usinas termoelétricas a diesel.

Com o passar dos anos o Sistema Elétrico de Roraima ficou ainda mais frágil, com a precariedade e insegurança energética do fornecimento de energia pela Venezuela, somente em 2018 o Estado de Roraima passou por 83 apagões, em 2019 por 37 apagões [13].

Esse acordo bilateral estava previsto para perdurar até 2021, no entanto em 2019 a Venezuela interrompeu o fornecimento de energia. Assim, o atendimento à Roraima passou a ser feito exclusivamente pelo conjunto de termoelétricas a óleo diesel, impondo, simultaneamente, maiores custos (superiores R\$ 1,5 bilhão por ano), altos níveis de emissões de GEE e piora na qualidade do fornecimento [3].

Diante da criticidade envolvida no Sistema Elétrico de Roraima, a ANEEL realizou em 2019 um leilão, Leilão de Geração nº 01/2019-ANEEL, com o objetivo de atacar os três problemas, de modo a garantir a segurança e a confiabilidade energética e reduzir custos e os níveis de poluição. Como resultado do leilão, nove projetos foram contratados com preço médio de R\$ 833/MWh, com a construção de plantas somando 294 MW [14].

Figura 3: Interligação Brasil- Venezuela 230kV

HIDRELÉTRICA DE GURI VENEZUELA Boa Vista Boa Vista Boa Vista Macapá Belém São Luís Manaus UAIMIRI-ATROARI Manaus

Fonte: Revista Veja, 2008

Tabela 1:Usinas contratadas no Leilão de Boa Vista e localidades conectadas de 2019

	Combustivel /		Potência		Datas de Contrato		
Nome da Usina	Тіро	Tecnologia	Nominal (kW)	Efetiva (kW)	Início Contrato	Final Contrato	
Híbrido Forte de São Joaquim	UTE e UFV	Biocombustível Radiação Solar Sistema de Armazenamento	56.218	51.420	28/06/2021	27/06/2036	
UTE BBF Baliza	UTE	Biocombustível e Biomassa	17.616	13.310			
UTE Bonfim	UTE	Cavaco/Resíduo de Madeira	10.000	8.163			
UTE Cantá	UTE	Cavaco/Resíduo de Madeira	10.000	8.163			
UTE Jaguatirica II	UTE	Gás Natural	126.290	117.040	20/00/2021		
UTE Palmaplan Energia 2	UTE	Biocombustível	11.490	10.976			
UTE Pau Rainha	UTE	Cavaco/Resíduo de Madeira	10.000	8.163			
UTE Santa Luz	UTE	Cavaco/Resíduo de Madeira	10.000	8.163			
UTE Monte Cristo Sucuba	UTE	Óleo diesel	42.255	38.116		27/06/2028	

Fonte: [14]

2.3 MATRIZ ENERGÉTICA DO SISTEMA ELÉTRICO DE RORAIMA

O mercado consumidor dos sistemas isolados da Roraima Energia tem predominância do setor residencial seguido dos setores comercial e outros consumos. A Figura 4 apresenta o consumo em GWh por tipo de classe. Após a interligação de Boa Vista ao SIN, prevista para 2026, os setores comercial, rural e outros serviços contribuirão com percentual muito próximo de cerca de 20%.

Figura 4: Consumo (GWh) Roraima Energia – Horizonte: 2023 a 2027

Desde março de 2019 não há importação de energia através do sistema de transmissão da interligação Brasil – Venezuela, pois o mesmo encontra-se fora de operação. O suprimento elétrico da capital é realizado por geração térmica local a diesel, gás natural, biomassa e biodiesel. No mesmo ano, a operação do sistema de Boa Vista e localidades interconectadas passou para responsabilidade do ONS, como estabelecido na Portaria MME n.º 131, de 13 de fevereiro de 2019.

Segundo o Plano Anual da Operação Elétrica dos Sistemas Isolados - PEL SISOL 2023, do ONS [1], com a entrada em operação de todos os empreendimentos vencedores do Leilão de Geração nº 01/2019-ANEEL e a

Fonte: [2]

manutenção da UTE Monte Cristo até a interligação de Roraima com SIN, como recomendado no Plano de Substituição do ONS, a disponibilidade de potência no Sistema Roraima passa a ser de 349,474 MW. Dessa forma, é possível atender a recomendação de montante de reserva de potência operativa para cargas máximas de 330 MW.

O atendimento ao sistema elétrico de Roraima atualmente é realizado exclusivamente pelas usinas térmicas locais, operando de forma isolada. Essa operação, apesar de elevar o custo total da operação do sistema, permitiu aumentar a confiabilidade aos consumidores do Estado, reduzindo sobremaneira a quantidade de blecautes temporários provocados por falhas na antiga interligação com a Venezuela [15]

O sistema elétrico de distribuição do estado de Roraima está sob a responsabilidade da RORAIMA ENERGIA. Na figura 5 podemos ver o diagrama eletrográfico do sistema de Roraima.

Figura 5: Diagrama eletrogeográfico do sistema Roraima

Fonte: [15]

A Figura 6 contempla a previsão de carga do sistema elétrico de Roraima para o PEL SISOL 2024, em comparação com PEL SISOL 2023, considerando as localidades conectadas à SE Boa Vista, onde pode ser verificada que a demanda máxima de 267,57 MW prevista para outubro de 2024 representa um aumento de aproximadamente 21,8% em relação à demanda máxima prevista para o ano anterior.

Figura 6: Previsão de Carga do Sistema Elétrico de Roraima

De acordo com o ONS, a solução estrutural para os problemas de atendimento no fornecimento de energia seria, a interligação de Boa Vista ao SIN através da implantação da LT 500 kV Lechuga – Equador – Boa Vista, licitada em setembro de 2011, tendo a TRANSNORTE como proponente vencedor[16].

Contudo, devido às dificuldades relacionadas à obtenção de licenciamento e complexidades logísticas para a realização das obras, este empreendimento se encontra com grande atraso na sua implementação. Diante da indefinição na execução das obras para a interligação de Roraima ao SIN, visando também garantir maior confiabilidade na operação isolada deste sistema, foi realizado em

Fonte:[15]

31 de maio de 2019, o Leilão Nº 01/2019-ANEEL, denominado Leilão para Suprimento a Boa Vista e Localidades Conectadas [1].

Neste leilão, 9 empreendimentos foram vencedores, totalizando uma disponibilidade de injeção de potência de 294 MW. Dos 9 empreendimentos vencedores no leilão, somente 7 entraram em operação comercial e 1 de forma parcial. Conforme tabela 2, temos a previsão de entrada em operação comercial das Usinas pendentes.

Tabela 2: Empreendimentos Vencedores no Leilão de Geração nº 01/2019-ANEEL

Usina	Disponibilidade de Potência (MW)	Inflexibilidade (MW)	Previsão de Entrada em Operação
UTE Jaguatirica II	117,04	0	Em Operação Comercial
UTE Bonfim	8, <mark>1</mark> 63	4,082	Em Operação Comercial
UTE Cantá	8,163	4,082	Em Operação Comercial
UTE Pau Rainha	<mark>8,1</mark> 63	4,082	Em Operação Comercial
UTE Santa Luz	8,163	4,082	Em Operação Comercial
UTE Monte Cristo Sucuba	38,115	0	Em Operação Comercial
UTE Palmaplan Energia 2	10,976	0	Em Operação Comercial
UTE BBF Baliza UG1	10.010	4,900	Em Operação Comercial
UTE BBF Baliza UG2	13,310	1,700	19/12/2023
Híbrido Forte de São Joaquim	51,42	25,71	11/03/2024
Total	263,513	48,636	

Fonte:[15]

Neste atual estágio, o Sistema Elétrico de Roraima encontra-se em um processo de transição do parque gerador termoelétrico, contando com usinas do parque antigo e do parque licitado do Leilão de Geração nº 01/2019-ANEEL, além da PCH Jatapú, que se integrou a esse sistema em 2021 na região de São João Baliza.

Usina	Potência Instalada	Combustível
UTE Monte Cristo	125,1 MW	Óleo Diesel
UTE Monte Cristo II	28,5 MW	Óleo Diesel
UTE Floresta	40 MW	Óleo Diesel
UTE Distrito	40 MW	Óleo Diesel
UTE Novo Paraíso	12 MW	Óleo Diesel
Total	245,6 MW	-

Tabela 3: Parque gerador antes da transição energética

Figura 7: Diagrama Unifilar do Sistema Elétrico de Roraima 2019 antes do leilão nº 01/2019

Fonte:[16]

Using	Potência	Combustível	
Usina	Instalada		
UTE Monte Cristo	83 MW	Óleo Diesel	
UTE Monte Cristo II	28,5 MW	Óleo Diesel	
UTE Floresta	35,0 MW	Óleo Diesel	
UTE Distrito	40,0 MW	Óleo Diesel	
UTE Novo Paraíso	12,0 MW	Óleo Diesel	
UTE Jaguatirica II	140 MW	Gás Natural	
UTE Bonfim	8,1 MW	Biomassa	
UTE Cantá	8,163 MW	Biomassa	
UTE Pau Rainha	8,163 MW	Biomassa	
UTE Santa Luz	8,163 MW	Biomassa	
PCH Jatapu	5,0 MW	Hidroelétrica	
UTE BBF Baliza UG1	7,00	Biomassa	
UTE Palmaplan Energia 2	10,976 MW	Biomassa	
UTE Monte Cristo Sucuba	38,115 MW	Óleo Diesel	
Total	404,28 MW	-	

Tabela 4: Parque gerador atual com as usinas disponíveis até 2023

O processo de entrada em operação dos novos projetos e de desativação das usinas atuais seguiram as diretrizes estabelecidas na Revisão 3 do Plano de Substituição do Parque Gerador do Sistema Elétrico de Roraima [17], o qual foi aprovado pelo Comitê de Monitoramento do Setor Elétrico - CMSE.

Na tabela 5 podemos ver os marcos do processo de substituição da matriz energética do parque gerador de Roraima e a entrada dos novos projetos e de desativação das usinas atuais para transição.

Figura 8: Diagrama Unifilar do Sistema Elétrico de Roraima 2023 após leilão nº 01/2019

Fonte:[15]

Tabela 5:	Plano de	Substituição	da matriz	energética	de Roraima

Usina	Marco Para Desativação	Status/Previsão
Transferência Parcial da UTE Monte Cristo (42,25 MW) para UTE Monte Cristo Sucuba	30 dias após a entrada em operação plena das UTEs da OXE Energia (4x8,163 MW) E das 03 UGs da UTE Jaguatirica II (120 MW)	Já realizado
UTE Novo Paraíso (12 MW)	Com a manutenção da UTE Floresta até 30 dias após a entrada do Parque Híbrido Forte de São Joaquim, a desativação da UTE Novo Paraíso poderá ser realizada nas condições atuais	Habilitada para desativação
UTE Floresta (35 MW)	30 dias após a entrada em operação plena do Parque Híbrido Forte de São Joaquim (51,42 MW)	Previsão 11/04/2024
UTE Distrito (40 MW) UTE Monte Cristo II (28,5 MW)	Não há marco para desativação. A desativação das UTEs Monte Cristo II e Distrito não pode permanecer vinculada à entrada em operação do Parque Híbrido Forte de São Joaquim (51,42 MW).	Pelo menos até Dezembro/2024
UTE Monte Cristo Total (83 MW)	30 dias após a contratação e entrada em operação de Solução de Reserva de Potência Sistêmica Adicional ou após Interligação do Sistema Roraima ao SIN	A definir

Fonte:[17]

Capítulo III

ASPECTOS GERAIS SOBRE ESTABILIDADE

3.1 CONSIDERAÇÕES GERAIS

Inicialmente, os sistemas de potência consistiam exclusivamente de um gerador que fornecia energia aos postes de iluminação pública de uma pequena área urbana. Para este tipo de sistema, a estabilidade não representava um fator relevante e os requisitos de qualidade eram mínimos. Com o aumento da demanda e da tecnologia no setor, a geração de energia elétrica fora dos centros urbanos tornou-se necessária. Assim, passaram a existir os sistemas de transmissão e distribuição, e consequentemente a interligação entre sistemas de potências [18].

Durante a operação normal do sistema, podem ocorrer perturbações que afetam localmente ou até mesmo todo o sistema interligado, prejudicando o fornecimento de energia elétrica à população. Essas perturbações acarretam oscilações eletromecânicas no eixo dos geradores, o que compromete a velocidade do rotor, a tensão terminal e a potência elétrica gerada. Desta forma, a análise de estabilidade frente a perturbações tornou-se um assunto de suma importância na operação dos sistemas elétricos [19].

Cada vez mais a sociedade tem demandado o uso de energia elétrica em suas atividades diárias. Sistemas elétricos de potência tem sido forçado a trabalhar com confiabilidade na entrega de energia para seus consumidores, operando em seus limites de estabilidade. Isto ocorre em razão do crescimento contínuo da demanda e de dificuldades de instalação de novas linhas de transmissão e unidades geradoras.

A confiabilidade de um sistema elétrico é medida pela capacidade do sistema funcionar numa situação de equilíbrio em condições normais e de

perturbação. O sistema é dito estável se após a ocorrência destas perturbações continuar a funcionar em sincronismo.[20]

Segundo [20], se a perturbação for pequena e de curta duração o sistema tende a voltar ao mesmo ponto de funcionamento, o que já não sucederá se a perturbação for grande ou de longa duração. Por outro lado, se surgir um desequilíbrio entre a carga do sistema e a potência que estava a ser fornecida ao sistema, a exploração do sistema terá que ser continuada em outro ponto de funcionamento do sistema. Todas as máquinas síncronas terão, porém, que continuar a funcionar em sincronismo para que o sistema continue a ser estável. Os estudos de estabilidade procuram determinar o comportamento das máquinas síncronas após a ocorrência da perturbação.

3.2 CLASSIFICAÇÃO DE ESTABILIDADE EM SISTEMAS ELÉTRICOS DE POTÊNCIA

O estudo sobre estabilidade de potência pode ser realizado em regime permanente de estabilidade onde o sistema responde a pequenas oscilações por um longo período, no qual é avaliado a frequência no domínio do tempo ($\Delta f/\Delta t$), ou em regime transitório onde o sistema responde a grandes perturbações em um curto período e até a sua recuperação para o estado permanente.

O estudo de estabilidade em sistemas elétricos de potência se divide em: estabilidade angular, estabilidade de frequência e estabilidade de tensão.

- Estabilidade angular: associada à capacidade do gerador síncrono permanecer em sincronismo após a perturbação.
- Estabilidade de tensão: está ligada à capacidade do sistema em permanecer com os valores das tensões de todos os barramentos, dentro dos limites operacionais depois da ocorrência da perturbação.
- Estabilidade de frequência: associada à capacidade do sistema em manter a frequência próxima do valor nominal, após um distúrbio da rede, resultado de um desequilíbrio entre a carga e a geração [20].

Figura 9: Classificação da estabilidade do sistema de potência.

Fonte: Adaptado de [21]

A estabilidade angular do rotor é a capacidade de uma máquina síncrona se manter em sincronismo após uma perturbação no sistema.

O problema de estabilidade angular envolve o estudo das oscilações eletromecânicas inerentes aos sistemas de potência. É preciso haver um equilíbrio entre o torque mecânico das máquinas motrizes e o torque eletromagnético dos geradores que operam em paralelo, de modo que as velocidades das máquinas fiquem constantes e sincronizados.

Quando o sistema é perturbado há uma aceleração ou desaceleração dos rotores das máquinas de acordo com o caso. Se o tempo de resposta de um gerador for momentaneamente mais rápido do que outro gerador em paralelo, a posição angular do rotor em relação à máquina mais lenta avançará, essa diferença angular transfere parte da carga da máquina mais lenta para a máquina mais rápida.

Em sistemas isolados ou regiões remotas é comum que o fornecimento de energia seja feito exclusivamente por moto-geradores a diesel, o que torna o sistema mais lento a respostas às perturbações em comparação com sistemas com diversidade de turbogeradores, o que em termos gerais, é um grande desafio manter a estabilidade neste tipo de sistema. A estabilidade de frequência refere-se à capacidade de um sistema elétrico de potência manter a frequência após a ocorrência de uma grande perturbação, resultando num desequilíbrio entre a geração e a carga. E isto dependerá da capacidade do sistema para restaurar o equilíbrio entre a produção e a geração, com o mínimo de perdas de cargas [21].

Em situação de subfrequência, em alguns sistemas, é adotado relés de proteção para corte de carga em valores pré-estabelecidos visando minimizar os efeitos de baixa frequência nos geradores. No Sistema Interligado Nacional (SIN) nomeia-se essa proteção com a sigla ERAC, que significa "Esquema Regional de Alívio de Carga".

O ERAC efetua o corte automático de cargas por meio de atuadores, como relés. Quando é detectada uma taxa de variação de frequência no tempo $(\Delta f/\Delta t)$, desliga-se, assim, cargas previamente estabelecidas, sendo que em cada estágio a porcentagem de corte segue um determinado valor de subfrequência.

"Geralmente, problemas de estabilidade de frequência estão associados a inadequações nas respostas dos equipamentos, má coordenação dos equipamentos de controle e de proteção ou reserva de geração insuficiente."[21].

A observação do comportamento da frequência permite inferir sobre o modo de funcionamento das máquinas de um sistema elétrico. Nos estudos e na operação dos sistemas essa grandeza elétrica varia numa estreita faixa cujos limites não devem ser violados para não acarretar a perda de sincronismo de algumas máquinas.[22]

A estabilidade de tensão pode ser dita como a capacidade de um sistema de potência em manter suas tensões constantes em todas as barras do sistema após ser submetido a algum tipo de perturbação a partir de uma dada condição de funcionamento inicial [21]. A queda progressiva das tensões de barras de um sistema pode ser associada com a estabilidade angular. Para suprir esse desequilíbrio, alguns equipamentos como reatores shunt, capacitores e dispositivos FACTS são alocados nas barras e/ou nas linhas de transmissão. Ou seja, o aumento da instabilidade angular leva a instabilidade da tensão e, por consequência, a instabilidade do sistema.[22]

O estudo da estabilidade de tensão justifica-se, pois os sistemas atuais trabalham em seus limites, e é de grande importância no planejamento de longo prazo se considerar os efeitos de sobrecarga e possíveis instabilidades de ângulo [23]

Uma classificação de acordo com a natureza das perturbações ocorridas pode ser a seguinte:

Estabilidade Transitória: refere-se a capacidade dos geradores síncronos permanecerem em sincronismo, após a ocorrência de uma grande perturbação. [24], [25]. Ao analisar a estabilidade a grandes perturbações deseja-se investigar a capacidade do sistema elétrico em absorver os grandes impactos causados por modificações estruturais sensíveis, como curto circuitos, saídas de linhas, efeitos em cascata, etc., que dão origem a desligamentos temporários, também conhecidos como blecautes [26] .Nesse caso, as não-linearidades inerentes aos sistemas de potência não podem ser desprezadas e a análise do sistema é conhecida como um estudo de *Estabilidade Transitória*. A resposta resultante do sistema envolve grandes excursões dos ângulos dos geradores e é influenciada pela relação não-linear entre potência e ângulo. [21]

Segundo a definição do IEEE, diz-se que um sistema de potência é estável do ponto de vista da estabilidade transitória para uma condição de operação particular e para uma dada grande perturbação se, após a ocorrência da perturbação, o sistema é capaz de alcançar uma condição de operação aceitável.

Estabilidade de Regime Permanente: refere-se a capacidade dos geradores síncronos permanecerem em sincronismo quando o sistema é submetido as pequenas perturbações.[24], [25]. Estudos que pressupõem uma perturbação

infinitesimal do ponto de operação (regime quase-estático) procuram verificar se o ponto de operação é um ponto de equilíbrio instável, ou seja, se uma pequena perturbação pode acarretar o aparecimento de oscilações de amplitudes crescentes que levarão a perda de sincronismo. Este último tipo de análise tem sido chamado de Estabilidade Dinâmica. Sendo assim, para o estudo de pequenas perturbações as equações diferenciais que representam o sistema podem ser linearizadas em torno de um ponto de operação estável, nesse tipo de estudo, preocupa-se com o comportamento à longo prazo do sistema, portanto, a influência de reguladores e governadores deve ser levada em consideração.

A estabilidade estática é voltada para o conhecimento dos limites operativos em condições de regime permanente.

Já a referência [21] classifica a estabilidade de acordo com o horizonte de tempo após o defeito. Assim para tempos de análise após a perturbação temos:

- Curto prazo ou transitório: 0 até 10 segundos.
- Meio prazo: 10 segundos até 5 minutos.
- Longo prazo: de 5 minutos até 10 minutos.

A estabilidade dinâmica, termo também aparece na literatura como uma classe de estabilidade angular do rotor. No entanto, tem sido utilizado para designar diferentes fenômenos por diferentes autores. Na literatura norteamericana, tem sido utilizada principalmente para denotar estabilidade de pequenas perturbações na presença de controles automáticos (em particular, os controles de excitação), distinto da clássica estabilidade de estado estático sem controle. A literatura Europeia, o termo referido por estabilidade dinâmica tem sido utilizado para designar a estabilidade transitória (KUNDUR et al., 2004).

3.3 MÁQUINA SÍNCRONA LIGADA A UM BARRAMENTO DE POTÊNCIA INFINITA

A equação eletromecânica do movimento dinâmico de uma máquina síncrona pode ser expressa por:

$$M\frac{d^2\theta}{dt^2} = P_a \tag{1}$$

onde:

M – Momento angular de inércia;

 P_a – Potência aceleradora aplicada ao corpo em rotação ($P_a = P_m - P_e$);

 θ – Posição angular do rotor em relação a um eixo de referência;

t-Tempo.

No caso de uma máquina síncrona, considerando a sua potência nominal como a potência de base, teremos a seguinte equação de oscilação (*swing equation*) [26]:

$$\frac{H}{\pi f_0} \frac{d^2 \delta}{dt^2} + D \frac{d\delta}{dt} = P_m - P_e = P_a \tag{2}$$

Em que:

H – Constante de inércia;

 δ – Ângulo do rotor em relação a um eixo de referência móvel;

t – Tempo;

D – Coeficiente de amortecimento;

 P_m - Potência mecânica fornecida pela turbina ao alternador;

 P_e – Potência elétrica fornecida pelo alternador;

 P_a – Potência aceleradora.

A potência ativa fornecida ou consumida por uma máquina síncrona de rotor de polos salientes ligada a um barramento de potência infinita, é dada pela expressão.

$$P = \frac{VE}{X_d} sen\delta + \frac{V^2}{2} \left(\frac{1}{X_q} - \frac{1}{X_d}\right) sen2\delta$$
(3)

em que

V – Tensão nos terminais da máquina síncrona;

- E F.e.m. interna gerada na máquina;
- δ Ângulo elétrico de potência ou de carga da máquina síncrona;
- X_q Reatância de eixo em quadratura (transversal ao eixo);
- X_d Reatância de eixo direto (longitudinal ao eixo).

De modo geral em um grande Sistema Elétrico de Potência, os barramentos nos quais as máquinas síncronas de maior potência estão ligadas, podem ser considerados como barramentos de potência infinita. Assim sendo, dizemos que a tensão é constante, porque as eventuais variações no regime de funcionamento da máquina síncrona não são suficientes para modificar a tensão ou a frequência da rede.

Para uma dada corrente de excitação, a potência fornecida ou recebida pela máquina síncrona será então apenas função do ângulo do rotor.

Seja θ a posição angular do rotor (em ângulos elétricos). Como θ está continuamente a variar no tempo é preferível medir a posição angular do rotor em relação a um eixo de referência síncrono.

Se δ for o ângulo elétrico do rotor em relação a um eixo de referência que gira na velocidade síncrona ω_s , em graus elétricos por segundo, temos:

$$\theta = \omega_s t + \delta \tag{4}$$

Derivando duas vezes em relação ao tempo se conclui que a aceleração angular é igual à derivada segunda em relação ao tempo do ângulo elétrico do rotor.

$$\frac{d^2\theta}{dt^2} = \frac{d^2\delta}{dt^2} \quad (5)$$

Assim, a equação (1) toma a seguinte forma:

$$M\frac{d^2\delta}{dt^2} = P_a \tag{6}$$

Num determinado ponto de funcionamento em regime síncrono $P_m = P_e$, e, portanto, $P_a = 0$, pelo que se obtém:

$$M\frac{d^2\delta}{dt^2} = zero$$

A figura 10 mostra a representação gráfica da equação (3) para o caso de uma máquina síncrona de rotor de polos salientes. Nessas deve-se empregar duas reatâncias ($X_d \ e \ X_q$) porque a relutância ao longo do eixo direto é menor do que a relutância ao longo do eixo em quadratura, fazendo $X_d > X_q$.

Nas máquinas de rotor de polos lisos ou rotor cilíndrico, a relutância do circuito magnético é independente da direção considerada (zona polar ou zona interpolar) pelo que a reatância transversal ou em quadratura (X_q) é maior e igual a reatância longitudinal ou de eixo direto (X_d) . Assim, pode-se utilizar uma única reatância neste tipo de máquina, sendo empregado tanto X_d ou, como ocorre em várias referências, denominá-la como reatância síncrona e representar por X_s . Para estas máquinas a equação (3) tomará a forma:

$$P = \frac{VE}{X_d} sen\delta \tag{7}$$

Figura 10: Relação ângulo de carga – potência para um alternador de polos salientes

Fonte: [20]

Na equação (3), para a máquina síncrona de rotor de polos salientes, o primeiro termo representa a maior parte da potência fornecida pelo alternador, sendo chamada de potência de excitação. O segundo termo, chamado de potência de relutância, quando comparado com o primeiro, tem um valor muito pequeno, representando, em regra, apenas 10% a 20% da potência total fornecida pelo alternador.

A análise da equação (3) de um alternador de polos salientes irá mostrar que a potência máxima que ele pode fornecer ocorre para um ângulo de carga inferior a 90°. Já a equação (7) representa a potência de um turbo alternador, cujo rotor é cilíndrico ou de polos lisos, e esta indica que o valor máximo é atingido para um ângulo de carga igual a 90°.

No caso de um turbo-alternador ligado a um barramento de potência infinita e com uma corrente de excitação constante a equação (7) toma a forma:

$$P = P_{m \acute{a} x} sen \delta$$

Onde:

$$P_{max} = \frac{EV}{X_s} = Constante$$

Como facilmente se vê, quando δ se torna maior do que aquele que fornece a potência máxima (> 90° para as máquinas de rotor cilíndrico), geralmente devido a uma tentativa para se obter uma potência superior a $P_{máx}$ ocorrerá na realidade uma diminuição da potência fornecida pelo alternador. Neste caso, a máquina torna-se instável e perde o sincronismo. A perda de sincronismo traduz-se na prática numa pulsação de corrente entre o alternador e o barramento de potência infinita à medida que os polos entram e saem do sincronismo.

3.4 ESTABILIDADE ESTÁTICA DE UMA MÁQUINA SÍNCRONA

O limite de estabilidade estática de uma máquina síncrona é definido como a máxima potência que pode ser transmitida entre um barramento de produção e um barramento de consumo, sem perda de sincronismo para o sistema

Como de conhecimento, a carga de um Sistema Elétrico de Potência está continuamente variando, pelo que o sistema está permanentemente sujeito a pequenas perturbações. O objetivo dos estudos de estabilidade estática está basicamente relacionado com a determinação dos valores máximos de carga das máquinas síncronas de forma a que possam suportar pequenas variações da carga sem perda de sincronismo.

Considere uma máquina trifásica (de rotor cilíndrico) ligada a um barramento de potência infinita através de uma linha de reatância X. A resistência e a reatância capacitiva da linha foram desprezadas. Na figura 11 está o esquema unifilar do sistema.

Figura 11: Máquina síncrona ligada a um barramento de potência infinita

Admitamos que o sistema está em funcionamento estável e fornecendo potência $P_{e0} = P_m$ à qual corresponde o ângulo de carga δ_0 , como está representado na figura 12.

O comportamento dinâmico desse sistema pode ser representado pelas equações abaixo:

$$M\frac{d^2\delta}{dt^2} = P_m - P_e = P_a \qquad (8)$$

$$P_e = \frac{VE}{X_d + X} sen\delta = P_{max} sen\delta$$

Figura 12: Relação ângulo de carga-potência elétrica de uma máquina síncrona

Suponhamos que se verifica um pequeno acréscimo da potência elétrica consumida pelo sistema de ΔP . Como a potência da máquina primária P_m se mantém constante (a ação dos reguladores de velocidade é lenta quando comparada com a dinâmica da energia no sistema), o ângulo de carga do alternador passa para ($\delta_0 + \Delta \delta$). Linearizando em torno do ponto (P_{e0} , δ_0) podemos escrever:

$$\Delta P = \left(\frac{\partial P_e}{\partial \delta}\right)_{\delta = \delta_0} \Delta \delta$$

Lembrando que $P_m = P_{e0}$, e que $\delta = \delta_0 + \Delta \delta$, o deslocamento de $\Delta \delta$ pode ser descrito por

$$M\frac{d^2(\Delta\delta)}{dt^2} = P_m - (P_{e0} + \Delta P) = -\Delta P$$

ou

$$M\frac{d^{2}(\Delta\delta)}{dt^{2}} + \left(\frac{\partial P_{e}}{\partial\delta}\right)_{\delta=\delta_{0}}\Delta\delta = 0$$

ou

$$\left[Mp^{2} + \left(\frac{\partial P_{e}}{\partial \delta}\right)_{\delta = \delta_{0}}\right] \Delta \delta = 0$$

Em que

$$p = \frac{d}{dt}$$

A estabilidade do sistema para pequenas perturbações é determinada pela equação característica

$$Mp^{2} + \left(\frac{\partial P_{e}}{\partial \delta}\right)_{\delta = \delta_{0}} = 0$$

Cujas raízes são:

$$p = \pm \sqrt{\frac{-\left(\frac{\partial P_e}{\partial \delta}\right)_{\delta = \delta_0}}{M}}$$
(9)

Enquanto $-\left(\frac{\partial P_e}{\partial \delta}\right)_{\delta=\delta_0}$ for positivo as raízes são números imaginários puros e conjugados e isto significa que o sistema é oscilatório em torno de δ_0 . Considerando as resistências da linha e das bobinas amortecedoras do alternador, cujos efeitos foram desprezados no modelo analisado, essas oscilações do sistema tendem a ser amortecidas. Assim, para pequenos acréscimos de potência, o sistema será **estável** quando $\left(\frac{\partial P_e}{\partial \delta}\right)_{\delta=\delta_0} > 0$.

Quando $\left(\frac{\partial P_e}{\partial \delta}\right)_{\delta=\delta_0}$ for negativo, as raízes da equação (9) são números reais, sendo um positivo e outro negativo, mas de igual amplitude. O ângulo de carga crescerá indefinidamente após a ocorrência de uma pequena perturbação e o sincronismo é rapidamente perdido. O sistema será então **instável** para $\left(\frac{\partial P_e}{\partial \delta}\right)_{\delta=\delta_0} < 0.$

Assim designamos o coeficiente de sincronização $\left(\frac{\partial P_e}{\partial \delta}\right)_{\delta = \delta_0}$.

Um importante requisito para que um ponto de operação seja considerado aceitável, é de que o gerador não deve sair da zona estável para pequenas variações de carga que ocorrem temporariamente, causando variações na potência elétrica de saída do gerador [27]

Para o barramento de potência infinita da figura 11, consideramos $|E| \in |V|$ como se mantendo constantes. E para um gerador de rotor cilíndrico o sistema será instável se

$$\frac{EV}{X}COS\delta_0 < 0 \text{ ou } \delta_0 > 90^\circ$$

Neste caso, a potência máxima que pode ser transmitida, sem perda de estabilidade (estabilidade estática), ocorrerá para $\delta_0 = 90^\circ$ e é dada pela equação

$$P_{m\acute{a}x} = \frac{|E||V|}{X} \tag{10}$$

3.5 ESTABILIDADE EM REGIME TRANSITÓRIO – CRITÉRIO DAS ÁREAS IGUAIS

Segundo [28] o modelo clássico das máquinas síncronas pode ser utilizado dentro do estudo de estabilidade transitória desde que as seguintes suposições sejam atendidas. São elas:

- A potência mecânica P_m fornecida pela máquina primária permanece constante, uma vez que se espera modificações na rede elétrica antes que as ações de controle possam ser realizadas na turbina, devido essas serem de ordem mecânica e, portanto, mais lentas.
- Os efeitos de amortecimento (potência assíncrona) são desprezados.
- A máquina síncrona é representada eletricamente por uma tensão constante E' atrás de uma reatância transitória Xd'.
- O ângulo mecânico do rotor δ_m é coincidente com o ângulo elétrico δ de E'.

Para [29], o estudo de estabilidade transitória é de grande importância prática, pois aborda fenômenos de grande impacto para o sistema elétrico. Possibilitando a previsão do seu comportamento, após a condição atípica ao qual ele foi submetido. Podendo dessa forma, antecipar as devidas mudanças que devem ser efetuadas na rede para que ocorrida uma falta o sistema seja capaz de se recuperar e alcançar uma condição estável de equilíbrio.

Para um sistema constituído por uma máquina síncrona conectada a um barramento infinito ou duas máquinas finitas, pode-se determinar se máquina será capaz de manter o sincronismo, estabilidade, utilizando o critério das áreas iguais[27]. Esse critério é de grande importância dentro dos estudos de estabilidade, pois permite que se conheça o comportamento do sistema sem a necessidade de se recorrer à resolução da equação de oscilação das máquinas, uma vez que a matemática necessária para isso é complexa e sem o auxílio de ferramentas computacionais se torna praticamente inviável.

O critério das áreas iguais é baseado no princípio de conservação de energia do sistema [25]. Se houver um desbalanceamento entre a potência de entrada fornecida pela máquina primária e a potência elétrica de saída, haverá um desbalanceamento de energia. Este desbalanceamento ou balanceamento que serão decisivos em relação a estabilidade da máquina.

Segundo [25] "A energia de um sistema físico é uma função que depende apenas do seu estado, ou seja, sua posição e velocidade".

Como se viu, a equação de oscilação de uma máquina síncrona ligada a um barramento de potência infinita, desprezando a ação amortecedora é expressa pela equação (8). Multiplicando ambos os membros desta equação por $\frac{d\delta}{dt}$ temos:

$$M\frac{d^2\delta}{dt^2}\frac{d\delta}{dt} = (P_m - P_e)\frac{d\delta}{dt} \to \frac{1}{2}M\frac{d}{dt}\left(\frac{d\delta}{dt}\right)^2 = (P_m - P_e)\frac{d\delta}{dt} \quad (11)$$

Integrando ambos os termos temos

$$\left(\frac{d\delta}{dt}\right)^2 = \int_{\delta_0}^{\delta} \frac{2}{M} (P_m - P_e) d\delta \rightarrow \frac{d\delta}{dt} = \sqrt{\int_{\delta_0}^{\delta} \frac{2}{M} (P_m - P_e) d\delta}$$
(12)

ou

$$\frac{d\delta}{dt} = \sqrt{\int_{\delta_0}^{\delta} \frac{2}{M} P_a d\delta} \quad (13)$$

Em que δ_0 é o ângulo inicial do rotor, quando a máquina está funcionando em sincronismo, antes da perturbação (nesta condição tem-se d δ /dt = 0). O ângulo δ deixará de oscilar e o alternador ficará novamente funcionando em regime de sincronismo depois da perturbação, quando novamente d δ /dt = 0.

Assim, das equações (12) e (13) conclui-se que para retornar ao regime permanente será necessário que:

$$\int_{\delta_0}^{\delta} (P_m - P_e) d\delta = \int_{\delta_0}^{\delta} P_a d\delta = 0 \quad (14)$$

Esta integral pode ser escrita da seguinte forma

$$\int_{\delta_0}^{\delta} P_a d\delta = \int_{\delta_0}^{\delta_t} P_m d\delta + \int_{\delta_t}^{\delta} (P_m - P_{max} sen\delta) d\delta = 0 \quad (15)$$

Onde δ_t corresponde ao ângulo de "trip" ou o ângulo limite de chaveamento para eliminação de uma perturbação de forma a tornar o sistema estável.

Aplicando esta equação para o caso de uma falta franca (quando $P_e = 0$), conforme ilustrado na figura 13, então, o primeiro membro desta igualdade corresponderá à área A_1 (que é numericamente positiva) e o segundo membro à área A_2 (que é numericamente negativa). A área A_1 corresponde à energia aceleradora e a área A_2 à energia desaceleradora. Para que o sistema seja estável é necessário que a soma destas duas áreas seja nula, ou seja, as duas áreas devem ser iguais. Esta é a razão pela qual o critério é designado por **critério das áreas iguais**.

Fonte: [20]

Como já foi referido, o critério das áreas iguais para a análise da estabilidade transitória obriga a que a área representando a energia aceleradora e a área representando a energia desaceleradora (figura 13) sejam iguais para o sistema ser estável. Fisicamente o critério exprime que o rotor deve ser capaz de devolver ao sistema toda a energia absorvida da turbina durante o período de aceleração.

Capítulo IV

ANÁLISE E SIMULAÇÕES

4.1 CONSIDERAÇÕES GERAIS

Desde 2017 o ONS assumiu o planejamento de operações dos sistemas isolados do Brasil, inclusive o de Roraima [16]. Desde então são coletados dados históricos de operação do SISOL RR em todos os patamares de carga para estudos de estabilidade do sistema, bem como para o planejamento energético.

As bases de dados para este estudo foram coletadas no portal SINtegre, que é um portal público do ONS, disponível para sociedade e agentes do setor elétrico.

As bases são de eventos históricos e estão no formato do *software* desenvolvido pelo Centro de Pesquisas de Energia Elétrica (CEPEL) para análise de fluxo de potência (via o *software* ANAREDE) e para análise não linear de transitórios eletromagnéticos (via o *software* ANATEM).

4.2 CASO 1 - SISOL 2020 - PERDA DE GERAÇÃO DE 40MW COM SISTEMA EM CARGA PESADA

Para este caso de referência considera-se o patamar de carga pesado do SISOL RR 2020 com a configuração do parque gerador da figura 7. Antes da perturbação o sistema está em equilíbrio com geração total em 215,86 MW e a UTE Floresta com geração de 40 MW, correspondente a aproximadamente 18% da geração total, conforme tabela 9 do Anexo 1.

Os parâmetros dos elementos do sistema a serem analisados estão contemplados nas tabelas de 6 a 9 do Anexo 1. Adotou-se o instante de 1 segundo como sendo o marco inicial para ocorrência da perda de geração da UTE Floresta. De acordo com a simulação realizada, indicada nas figuras 14 a 17, obtémse os seguintes eventos após a perda de geração de 40 MW da UTE Floresta:

i) em t = 1,211 segundos, atuação do ERAC, estágio 1, por subfrequência absoluta do sistema de 59,22 Hz,

ii) em t = 1,332 segundos, atuação do ERAC, estágio 2, por subfrequência absoluta do sistema de 58,92 Hz,

iii) em t = 1,361 segundos, Estágio 1, rejeição de carga de 9% ou 18,6MW do sistema,

iv) em t = 1,482 segundos, Estágio 2, rejeição de carga de 9% ou 18,6MW do sistema.

FREQUÊNCIA UTE MONTE CRISTO FREQUÊNCIA UTE FLORESTA FREQUÊNCIA UTE DISTRITO INDUSTRI FREQUÊNCIA UTE MONTE CRISTO II FREQUÊNCIA UTE MOVO PARAÍSO 60,4 60,2 60 59,8 59,6 59,4 59,2 59 58.8 0,5 1,5 2,5 4,5 5,5 3,5 segundos

Figura 14: Frequência das UTE do SISOL RR 2020 após perda de geração da UTE Floresta

Pela Figura 14 nota-se que no instante 1 segundo houve uma queda súbita da frequência dos geradores remanescentes no sistema. Isto ocorreu devido ao desequilíbrio entre a potência elétrica da carga do sistema e a potência dos grupos geradores remanescentes ($P_{geração} < P_{carga}$) causando desaceleração das máquinas. Somente após a segunda rejeição de carga no instante 1,482s, a frequência do sistema retornou à estabilização próximo dos 60 Hz iniciais com a atuação dos reguladores de velocidades dos geradores sincronizados.

Na Figura 15, observa-se no instante 1s, os geradores remanescentes se sensibilizam com a perda de geração da UTE Floresta realizando um controle primário de geração nos primeiros segundos após a perturbação. Após a atuação do ERAC estágio 2, as UTE Novo Paraíso, Monte Cristo II, e Distrito Industrial retornam aos seus patamares de carga inicial e a UTE Monte Cristo realiza o controle secundário do sistema, elevando sua geração de 100MW iniciais para 108MW, contribuindo para o restabelecimento do sistema em 60Hz.

Na Figura 16 evidencia-se o afundamento de tensão no instante da perda de geração da UTE Floresta. Esse fenômeno é esperado pois o sistema se encontra em sobrecarga logo após a perda de geração. A atuação correta dos reguladores de tensão nos geradores remanescentes foi fundamental para retornar a sua estabilidade. Nos instantes 1,361s e 1,482s observa-se o amortecimento da tensão após os alívios de carga pelo ERAC até sua estabilização. A tensão mais baixa cai para um valor menor do que 0,95 p.u.

Quando analisamos a linearidade do sistema nos primeiros segundos após a perturbação, nota-se que há grande variação de amplitude dos ângulos δ , em que δ é o ângulo de carga dos geradores. Isto é ilustrado na Figura 17 onde pode-se observar grandes variações do ângulo δ dos geradores remanescentes no sistema evidenciando a dificuldade do sistema retornar à estabilidade. Somente após a atuação do ERAC o ângulo δ tende a estabilizar.

Figura 15: Potência ativa das UTE do SISOL RR 2020 após perda de geração da UTE Floresta.

Figura 16: Tensão nos barramentos do SISOL RR 2020 após perda de geração da UTE Floresta.

Figura 17: Ângulo dos geradores remanescentes SISOL RR 2020 após perda de geração da UTE Floresta.

4.3 CASO 2 - SISOL 2020 - PERDA DE GERAÇÃO DE 64MW COM SISTEMA EM CARGA PESADA

Para este caso de referência considera-se o patamar de carga pesada do SISOL RR 2020 com a configuração do parque gerador da figura 7, porém será realizado a perda de geração de aproximadamente 30% para observar o comportamento dinâmico do SISOL 2020.

Antes da perturbação o sistema está em equilíbrio com geração total em 215,86 MW e as perdas de geração são a UTE Floresta com geração de 40 MW e a UTE Monte Cristo 2 com geração de 24MW, conforme tabela 9.

Os parâmetros dos elementos do sistema a serem analisado estão contemplados nas tabelas de 6 a 9. Adotou-se o instante de 1 segundo como sendo o marco inicial para ocorrência das duas perdas de geração (UTE Floresta e UTE Monte Cristo 2).

De acordo com a simulação realizada, obtém-se os seguintes eventos após a perda de geração de 40 MW da UTE Floresta e 24MW da UTE Monte Cristo 2:

i) em t = 1,0930 segundos, atuação do ERAC estágio 1 por subfrequência absoluta do sistema de 59,22 Hz,

ii) em t = 1,1500 segundos, atuação do ERAC estágio 2 por subfrequência absoluta do sistema de 58,92 Hz,

iii) em t = 1,2070 segundos, atuação do ERAC estágio 3 por subfrequência absoluta do sistema de 58,62 Hz,

iv) em t = 1,2430 segundos, Estágio 1, rejeição de carga de 9% ou 18,6
MW do sistema,

v) em t = 1,2860 segundos, segundos, atuação do ERAC estágio 4 por subfrequência absoluta do sistema de 58,20 Hz,

vi) em t = 1,3000 segundos, Estágio 2, rejeição de carga de 9% ou 18,6MW do sistema,

vii) em t = 1,3570 segundos, Estágio 3, rejeição de carga de 11% ou 23,2
MW do sistema,

viii) em t = 1,4360 segundos, Estágio 4, rejeição de carga de 11% ou 23,2MW do sistema,

ix) em t = 2,9830 segundos, Relé de sobretensão MOD. 6 da barra 8831
FLORES-RR069 em operação. Ajuste - 1.150 pu.

x) em t = 4,9830 segundos, Comando para abertura do disjuntor. Relé de sobretensão MOD. 6 da barra 8831 FLORES-RR069.

Como esperado, na Figura18 observa-se no instante 1s um afundamento muito mais acentuado de frequência nos geradores remanescentes comparado com o CASO 1, pois a perda de geração foi 12% maior. Neste caso observa-se atuação do ERAC até o estágio 4, com rejeição total de carga de 84,2MW, aproximadamente 40%.

Nota-se também que, em comparação ao CASO 1, o sistema demora muito mais tempo para retornar a estabilidade. Na Figura 18 e Figura 19, observa-se que após o instante 1s, os geradores remanescentes se sensibilizam com a perda de geração da UTE Floresta e UTE Monte Cristo 2 realizando um controle primário de geração nos primeiros segundos após a perturbação, retornando à frequência próxima do valor inicial de 60Hz com a atuação dos reguladores de velocidades dos geradores remanescentes no instante 4,93s.

Assim como no CASO 1, a atuação dos reguladores de tensão nos geradores remanescentes foi fundamental para retornar a sua estabilidade. No instante 1,18s a tensão chegou ao seu menor valor no barramento do CENTRO-RR69 em 0,8984pu, somente após a atuação do ERAC estágio 4 no instante 1,4360s houve amortecimento da tensão.

Na Figura 20, as variações do ângulo δ dos geradores remanescentes no sistema evidenciando a dificuldade do sistema retornar à estabilidade somente com os 3 geradores remanescentes, UTE Monte Cristo, UTE Novo Paraíso e UTE Distrito. Somente após a atuação do ERAC o ângulo δ tende a estabilizar.

Figura 18: Frequência das UTE do SISOL RR 2020 após perda de geração da UTE Floresta e UTE Monte Cristo 2

Figura 20: Tensão nos barramentos do SISOL RR 2020 após perda de geração da UTE Floresta e UTE Monte Cristo 2

4.4 CASO 3 - SISOL 2023 - PERDA DE GERAÇÃO DE 40MW COM SISTEMA EM CARGA PESADA

Para este caso de referência consideramos o patamar de carga pesado do SISOL RR 2023 com a configuração do parque gerador da Tabela 4 e as barras 8874 e 8875 como referência, sendo que elas correspondem as unidades TG11 e TG12 da UTE Jaguatirica II, realizando o controle secundário de frequência.

Antes da perturbação o sistema está em equilíbrio com geração total em 215,74 MW. Para fins de análise comparativa, é simulada a perda de geração de quantidade de geração praticamente igual àquela do Caso 1, de 40MW, porém da UTE Monte Cristo Sucuba, de 38,115MW. O valor de geração perdida corresponde a aproximadamente 18% do valor total da geração inicial do sistema.

Os parâmetros dos elementos do sistema a serem analisados estão contemplados nas tabelas de 10 a 13 do Anexo 2.

Destaca-se que, neste cenário, as UTE Monte Cristo II, UTE Novo Paraíso, UTE Distrito e UTE Floresta não estão despachadas, atendendo o plano de substituição do parque gerador de Roraima[17].

De acordo com o relatório de simulação do software ANAREDE, não foi atuado o ERAC em nenhum momento. Evidencia-se na Figura 22 que a frequência chega próximo ao nível de atuação do estágio 1 do ERAC (59,22Hz) e logo se restabelece retornando para sua estabilidade. A subfrequência no instante 1s é bem similar com o primeiro caso no momento da perda de geração da UTE Monte Cristo Sucuba (Figura 22). No instante 2,48s a frequência atinge seu menor valor após a perturbação em valor absoluto de 59,23Hz.

Figura 22: Frequência das UTE do SISOL RR 2023 após perda de geração da UTE Monte Cristo Sucuba

Nota-se também na Figura 22, que a frequência tende a demorar mais para estabilização, pois não há atuação do ERAC para facilitar o retorno a estabilidade, forçando o sistema a absorver a geração perdida.

De acordo com Figura 23, os primeiros 2 segundos da perturbação, usinas remanescentes no sistema colaboram com regulação primária da geração enquanto a as unidades TG11 e TG12 da UTE Jaguatirica II realizam o controle secundário com tendência de elevação de potência ativa até a estabilização da frequência em 60Hz.

Na Figura 24, nota-se afundamento de tensão muito similar ao Caso 1, porém com amplitudes menores de variação, evidenciando um amortecimento no afundamento de tensão logo após a regulação do sistema. A tensão de barramento fica acima de 0,95.

Analisando a estabilidade angular dos SISOL RR 2023, pode-se observar na Figura 25 que ocorre uma menor variação do ângulo δ logo após a perturbação do sistema, logo retornando para estabilidade do sistema, sem atuação de alívio de carga, evidenciando que o sistema é muito mais confiável para grandes perturbações e tem capacidade de manter as máquinas sincronizadas durante transitórios.

Figura 23: Potência ativa das UTE do SISOL RR 2023 após perda de geração da UTE Monte Cristo Sucuba

Figura 24: Tensão nos barramentos do SISOL RR 2023 após perda de geração da UTE Monte Cristo Sucuba.

Figura 25: Ângulo dos geradores remanescentes SISOL RR 2023 após perda de geração da UTE Monte Cristo Sucuba

4.5 CASO 4 - SISOL 2023 - PERDA DE GERAÇÃO DE 64MW COM SISTEMA EM CARGA PESADA

Para este caso de referência considera-se o patamar de carga pesado do SISOL RR 2023 com a configuração do parque gerador da figura 8 e as barras 8874 e 8875 como referência realizando o controle secundário de frequência, que correspondem as unidades TG11 e TG12 da UTE Jaguatirica II.

Antes da perturbação o sistema está em equilíbrio com geração total em 215,74 MW. Para fins de análise comparativa, será simulado a perda de um valor de geração próximo ao do Caso 2, de 64MW, removendo geradores da UTE Monte Cristo Sucuba 40MW e das UTEs Bonfim, Canta e Pau Rainha com geração de 8MW cada. O valor de geração perdida corresponde a aproximadamente 30% do valor total da geração inicial do sistema. Os parâmetros dos elementos do sistema a serem analisados estão contemplados nas tabelas de 10 a 13 no anexo 2.

De acordo com a simulação realizada, obtém-se os seguintes eventos após a perda de geração de 40 MW da UTE Floresta mais 24MW das UTE Bonfim, UTE Canta e UTE Pau Rainha:

i) em t = 1,4690 segundos, atuação do ERAC estágio 1 por subfrequência absoluta do sistema de 59,22 Hz,

ii) em t = 1,6190 segundos, Estágio 1, rejeição de carga de 9% ou 18,6
MW do sistema,

Nota-se na Figura26 com a perda de geração total de 64MW que, como no Caso 2, o SISOL 2023 se mostrou muito mais estável em perturbações transitórias do que o SISOL 2020, atuando somente o estágio 1 do ERAC e logo normalizando a frequência próximo a inicial de 60Hz. No Caso 2, o SISOL 2020 com a mesma perda de geração de 64MW atuou até o estágio 4 do ERAC.

Nota-se na Figura 27, a variação de potência ativa dos geradores remanescente no sistema. Assim como no caso 3, usinas remanescentes no sistema colaboram com regulação primária da geração enquanto a as unidades TG11 e TG12 da UTE Jaguatirica II realizam o controle secundário com tendência de elevação de potência ativa até a estabilização da frequência em 60Hz.

Analisando o comportamento das tensões nas barras na Figura 28, observamos as amplitudes de tensão no decorrer da perturbação são baixas, evidenciando um comportamento mais estável em comparação ao Caso 2. Isso é esperado neste caso, pois no SISOL 2023 há mais geradores conectados no sistema em comparação ao SISOL 2020 o que ajuda no amortecimento no regime transitório.

Analisando a estabilidade angular dos SISOL RR 2023 para este caso, podemos observar na Figura 29 que ocorre menor variação do ângulo δ logo após a perturbação do sistema em comparação, e logo retornando para estabilidade do sistema, mesmo com atuação do ERAC, evidenciando que o sistema é muito mais confiável para grandes perturbações e tem capacidade de manter as máquinas sincronizadas durante regimes transitórios.

Figura 26: Frequência das UTE do SISOL RR 2023 após perda de geração da UTE Monte Cristo Sucuba, UTE Bonfim, UTE Canta e UTE Pau Rainha

Figura 27: Potência ativa das UTE do SISOL RR 2023 após perda de geração da UTE Monte Cristo Sucuba, UTE Bonfim, UTE Canta e UTE Pau Rainha

Figura 28: Tensão nos barramentos do SISOL RR 2023 após perda de geração da UTE Monte Cristo Sucuba, UTE Bonfim, UTE Canta e UTE Pau Rainha

Figura 29: Ângulo dos geradores remanescentes SISOL RR 2023 após perda de geração da UTE Monte Cristo Sucuba, UTE Bonfim, UTE Canta e UTE Pau Rainha

Capítulo V

CONCLUSÃO

Este trabalho apresentou uma análise do melhoramento de estabilidade do sistema isolado de Roraima após a implementação de uma nova matriz geradora. Para a análise comparativa foi realizado simulações em quatro casos, com dados reais do sistema antes (vide Anexo 1) e após (vide Anexo 2) a implementação da nova matriz para validar o melhoramento de estabilidade.

Nos Casos 1 e 3 foi realizado perda de geração de 40MW e nos Casos 2 e 4 foi realizado perda de geração de 64MW com a finalidade de criar cenários de grandes perturbações similares no SISOL RR e avaliar o comportamento da estabilidade no parque gerador antigo de 2020 e no parque gerador atual 2023.

Comparando os casos 1 e 3, evidencia-se que no parque de geração antigo (caso 1), em face da perda de geração de 40MW, este apresentou frequência 58,92Hz, tensões de barramento abaixo de 0,95 p.u., variações bruscas no ângulo delta. Este necessitou da atuação de dois estágios do ERAC. Já com relação ao parque de geração novo (caso 3), diante da mesma perturbação, este apresentou frequência mínima de 59,30Hz, tensões acima de 0,95 p.u. e variações menos bruscas do ângulo δ mesmo com uma sobrecarga após a perturbação levemente maior que no caso 1.

Analisando os casos 2 e 4, observa-se que no parque de geração antigo (caso 2), em face da perda de geração de 64MW, este apresentou frequência 58,2Hz, tensões de barramento abaixo de 0,89 p.u., variações bruscas no ângulo delta. Por causa disso este necessitou da atuação de quatro estágios do ERAC para normalização do sistema. O mesmo evento aplicado no parque gerador novo (caso

4), evidenciou-se uma brusca variação de frequência, atingindo valor de 59,22Hz, porém com maior amortecimento do sistema, com necessidade de atuação somente do estágio 1 do ERAC para estabilização do sistema.

Baseados nas análises dos quatro casos pode-se concluir que a transição energética proposta no Leilão ocorrido em 2019, proporcionou a adição de usinas ao sistema com controle de velocidade e tensão muito mais eficientes que o parque gerador anterior, tornando o sistema mais confiável a e diminuindo os riscos de interrupção no fornecimento de energia elétrica ao Estado de Roraima.

Para estudos futuros, o tema ainda poderá ser amplamente abordado, principalmente no âmbito do controle automático de geração, uma vez que não há implantação deste SISOL RR.

Além disso, cabem mais análises ou estudos visando a otimização do sistema isolado, considerando outros barramentos como referência.

REFERÊNCIAS BIBLIOGRÁFICAS

- Operador Nacional Do Sistema Elétrico, "PEL SISOL 2023 Plano Anual da Operação Elétrica dos Sistemas Isolados", 2022.
- [2] Empresa de Pesquisa Energética, "Planejamento do Atendimento aos Sistemas Isolados Horizonte 2023-2027 Ciclo 2022", 2022. [Online]. Disponível em: www.epe.gov.br
- [3] N. De Castro, M. Moszkowicz, e A. Alves, "Transição Energética em Sistemas Isolados: o caso de Roraima", 2020.
- [4] Operador Nacional Do Sistema, "Portal SINtegre". Acessado: 12 de março de 2024. [Online]. Disponível em: https://sintegre.ons.org.br/paginas/busca.aspx
- [5] Data Zoom Amazônia, "Como os Sistemas Isolados (SIs) da Amazônia Legal afetam o custo de energia elétrica?" Acessado: 15 de novembro de 2023. [Online]. Disponível em: https://datazoomamazonia.com.br/2023/01/30/como-os-sistemasisolados-sis-da-amazonia-legal-afetam-o-custo-de-energia-eletrica/
- [6] Empresa de Pesquisa Energética, "Instruções para Elaboração e Apresentação de Projetos. Alternativos aos Projetos de Referência", 2014. Acessado: 15 de novembro de 2023. [Online]. Disponível em: https://energypedia.info/images/7/74/Instruções_para_Elaboração_e_Apresentaç ão_de_Projetos_Alternativos_aos_Projetos_de_Referência.pdf
- [7] Agência Nacional de Energia Elétrica, "Nota Técnica nº 215/2022-SGT-SRG-SFF-SRD/ANEEL", 2022. Acessado: 15 de novembro de 2023. [Online]. Disponível em: antigo.aneel.gov.br/web/guest/consultaspublicas?p_p_id=participacaopublica_WAR_participacaopublicaportlet&p_p_lif ecycle=2&p_p_state=normal&p_p_mode=view&p_p_cacheability=cacheLevelP age&p_p_col_id=column-

2&p_p_col_pos=1&p_p_col_count=2&_participacaopublic

- [8] Empresa de Pesquisa Energética, "Planejamento do Atendimento aos Sistemas Isolados Horizonte 2023-2027", Rio de Janeiro, 2022.
- [9] TR Soluções, "CCC com menos diesel e mais baterias: quais serão os efeitos para o consumidor?" Acessado: 15 de novembro de 2023. [Online]. Disponível em: https://static.poder360.com.br/2023/08/CCC-estudo-projecao-TR-solucoes.pdf

- [10] A. F. P. Santos, J. N. S. Dos Anjos, e E. M. Senhoras, "Securitização energética na fronteira Brasil-Venezuela:uma discussão sobre o complexo de guri", Boa Vista, 2012.
- [11] O. F. Barbosa, "Energia elétrica: impacto no crescimento econômico do município de Boa Vista – RR", UFRR, Boa Vista, 2009.
- [12] Eletronorte, "Plano de Atendimento de Energia Elétrica ", Boa Vista, Roraima, 2003.
- [13] L. Amaral E E. Militão, "Amazônia às escuras", UOL. Acessado: 14 de novembro de 2023. [Online]. Disponível em: https://noticias.uol.com.br/reportagensespeciais/sem-linhao-de-transmissao-roraima-esta-sob-risco-de-repetir-apagaodo-amapa/#cover
- [14] Empresa de Pesquisa Energética, "Resultado do Leilão para suprimento a Boa Vista e localidades conectadas 2019", 2019. [Online]. Disponível em: http://leilaopublico.ccee.org.br/lsi/RelatorioFinal.aspx
- [15] Operador Nacional Do Sistema Elétrico, "PEL SISOL 2024 Plano Anual da Operação Elétrica dos Sistemas Isolados", 2023.
- [16] Operador Nacional Do Sistema Elétrico, "PEL SISOL 2020 Plano Anual da Operação Elétrica dos Sistemas Isolados", 2019.
- [17] Operador Nacional Do Sistema Elétrico, "Nota Técnica ONS DPL-REL -0545/2022 - Plano de Substituição do Parque Gerador de Roraima", 2023.
- [18] A. Sanfelice Bazanella, "Métodos Analíticos para a Síntese de Controladores em Sistemas de Potência", 1997.
- [19] A. Karimi, "Power system damping controllers design using a backstepping Power system damping controllers design using a backstepping control technique control technique", 2008. [Online]. Disponível em: https://researchrepository.wvu.edu/etd <u>https://doi.org/10.33915/etd.4388</u>
- [20] F. M. Barbosa, "Estabilidade de Sistemas Elétricos de Energia", 2013.
- [21] P. Kundur *et al.*, "Definition and classification of power system stability", *IEEE Transactions on Power Systems*, vol. 19, n° 3, p. 1387–1401, ago. 2004, https://doi.org/10.1109/TPWRS.2004.825981
- [22] V. Siqueira, "Análise da Estabilidade Dinâmica em Sistemas Elétricos por Meio de Interface Gráfica", 2016.
- [23] T. Van Cutsem, "Voltage Instability: Phenometrâ, Countermeasures, and Analysis Methods", 2000. <u>https://doi.org/10.1109/5.823999</u>
- [24] V. F. Da Costa, "Análise de Estabilidade Transitória em Sistemas de Energia Elétrica", Universidade Estadual de Campinas, Campinas, 1981.
- [25] Bretas G. N. E Alberto L. F. C, "Estabilidade Transitória em sistemas Eletroenergéticos.", EESC-USP, São Carlos, 2000.
- [26] L. C. Zanetta Jr, Fundamentos de Sistemas Elétricos de Potência, 1º ed. São Paulo: Fisica, 2006.
- [27] Stevenson Jr, *Elementos de análise de sistemas de potência*. São Paulo: McGraw-Hill do Brasil, 1986.
- [28] G. C. Guimarães, *Estabilidade de Sistemas Elétricos de Potência*. Uberlândia: UFU, 2016.
- [29] M. Franco Silva, "Estudo de estabilidade transitória de sistemas elétricos de potência utilizando o método passo-a-passo para cálculo da curva de oscilação da máquina síncrona.", UFU, Uberlândia.
- [30] Operador Nacional Do Sistema Elétrico, "Casos de Referência do PEL SISOL 2020", 2020.

ANEXO 1

Este anexo contém os dados utilizados no *software* ANAREDE para estudos de fluxo de potência e no *software* ANATEM para simulações de estabilidade dinâmica no **SISOL 2020**.

Número	Nome Barra	Tipo	Tensão Base (kV)	Limite Tensão (p.u.)	Tensão (p.u.)	Tensão (kV)	Ângulo (graus)
8806	MUCAJA-RR069	0 - PQ	69	0,950-1,050	0,991	68,4	-13
8807	MUCAJA-RR013	0 - PQ	13,8	0,950-1,050	1	13,8	-18
8808	CARACA-RR069	0 - PQ	69	0,950-1,050	0,985	68	-20
8809	CARACA-RR013	0 - PQ	13,8	0,950-1,050	1	13,8	-25
8810	NPARAI-RR069	0 - PQ	69	0,950-1,050	1,011	69,8	-24
8811	NPARAI-RR013	0 - PQ	13,8	0,950-1,050	1	13,8	-26
8812	NPARAUTE-7GR	1- PV	13,8	0,950-1,050	1,02	14,1	-23
8813	RORAIN-RR069	0 - PQ	69	0,950-1,050	0,978	67,5	-27
8814	RORAIN-RR013	0 - PQ	13,8	0,950-1,050	0,96	13,2	-33
8815	NPAUTE-RR069	0 - PQ	69	0,950-1,050	1,011	69,8	-24
8816	BONFIM-RR069	0 - PQ	69	0,950-1,050	1,043	72	-11
8817	BONFIM-RR013	0 - PQ	13,8	0,950-1,050	1,03	14,2	-13
8818	SUCUBA-RR069	0 - PQ	69	0,950-1,050	1,035	71,4	-7,8
8819	SUCUBA-RR013	0 - PQ	13,8	0,950-1,050	1,018	14	-9,9
8832	D.INDU-RR069	0 - PQ	69	0,950-1,050	1,027	70,9	-6,3
8821	SJBALI-RR069	0 - PQ	69	0,950-1,050	1,002	69,1	-26
8822	SJBALI-RR013	0 - PQ	13,8	0,950-1,050	0,96	13,2	-29
8823	DIST-UTE28GR	1- PV	13,8	0,950-1,050	1	13,8	-5,9
8824	EQUATO-RR013	0 - PQ	13,8	0,950-1,050	0,975	13,5	-7,8
8825	EQUATO-RR069	0 - PQ	69	0,950-1,050	1,022	70,5	-5,9
8826	CENTRO-RR013	0 - PQ	13,8	0,950-1,050	1	13,8	-16
8827	CENTRO-RR069	0 - PQ	69	0,950-1,050	0,976	67,3	-10
8829	MCRIST-RR069	0 - PQ	69	0,950-1,050	1,025	70,7	-3,6
8853	BVISTA-RR069	0 - PQ	69	0,950-1,050	1,025	70,7	-3,6
8831	FLORES-RR069	0 - PQ	69	0,950-1,050	1,024	70,7	-5,3
8830	FLOREUTE28GR	1- PV	13,8	0,950-1,050	1	13,8	-5,7
8834	MCR-II-RR069	0 - PQ	69	0,950-1,050	1,019	70,3	-3,8
8833	MCRI2UTE23GR	1- PV	1	0,800-1,200	1	1	2,04
8835	MCRI-UTE31GR	2 - Referência	1	0,800-1,200	1,03	1	0
8861	SATELI-RR013	0 - PQ	13,8	0,950-1,050	1	13,8	-8
8860	SATELI-RR069	0 - PQ	69	0,950-1,050	1,021	70,4	-5,1
8881	MATA.M-RR069	0 - PQ	69	0,950-1,050	1,034	71,3	-7,6

Tabela 6: Tensão das barras do SISOL 2020 obtidos com o fluxo de cargacondição inicial de operação

Fonte: [30]

Número	Nome Barra	Geração Ativa (MW)	Geração Reativa (Mvar)	Geração Reativa Mínima (Mvar)	Geração Reativa Máxima (Mvar)	Carga Ativa (MW)	Carga Reativa (Mvar)
8806	MUCAJA-RR069						
8807	MUCAJA-RR013					8	2,3
8808	CARACA-RR069						
8809	CARACA-RR013					6,7	1,9
8810	NPARAI-RR069						
8811	NPARAI-RR013					2	0,6
8812	NPARAUTE-7GR	12	3,917	-3,5	11,2		
8813	RORAIN-RR069						
8814	RORAIN-RR013					11,2	3,2
8815	NPAUTE-RR069						
8816	BONFIM-RR069						
8817	BONFIM-RR013					4,4	1,3
8818	SUCUBA-RR069						
8819	SUCUBA-RR013					3,1	0,9
8832	D.INDU-RR069						
8821	SJBALI-RR069						
8822	SJBALI-RR013					3,5	1
8823	DIST-UTE28GR	40	-0,043	-11,2	36,4	37,4	10,7
8824	EQUATO-RR013					17	4,9
8825	EQUATO-RR069						
8826	CENTRO-RR013					54,9	15,7
8827	CENTRO-RR069						
8829	MCRIST-RR069						
8853	BVISTA-RR069						
8831	FLORES-RR069						
8830	FLOREUTE28GR	40	-0,031	-11,2	36,4	44,7	12,8
8834	MCR-II-RR069						
8833	MCRI2UTE23GR	24	-3,15	-4,6	20,7		
8835	MCRI-UTE31GR	99,86	10,72	-37,2	37,2		
8861	SATELI-RR013					18,4	5,3
8860	SATELI-RR069						
8881	MATA.M-RR069						

Tabela 7: Geração e Cargas das barras do SISOL 2020 obtidos com o fluxo de carga condição inicial de operação

Fonte: [30]

DE	Nome DE	PARA	Nome PARA	Resistência (%)	Reatância (%)	Susceptância (Mvar)
8806	MUCAJA- RR069	8808	CARACA- RR069	43,75	84,29	1,369
8832	D.INDU- RR069	8825	EQUATO- RR069	1,19	7,32	0,14
8808	CARACA- RR069	8810	NPARAI-RR069	54,12	104,4	1,679
8810	NPARAI- RR069	8813	RORAIN-RR069	21,97	42,24	0,685
8810	NPARAI- RR069	8821	SJBALI-RR069	33,43	64,33	1,044
8815	NPAUTE- RR069	8810	NPARAI-RR069	0	0,001	
8832	D.INDU- RR069	8831	FLORES-RR069	1,67	8,64	0,1687
8827	CENTRO- RR069	8853	BVISTA-RR069	6,38	21,35	0,402
8832	D.INDU- RR069	8818	SUCUBA- RR069	30,65	58,96	0,956
8853	BVISTA- RR069	8829	MCRIST-RR069	0,01	0,1	
8832	D.INDU- RR069	8806	MUCAJA- RR069	27,18	52,29	0,848
8831	FLORES- RR069	8853	BVISTA-RR069	2,4	14,71	0,29
8834	MCR-II- RR069	8825	EQUATO- RR069	2,52	15,48	0,31
8853	BVISTA- RR069	8860	SATELI-RR069	3,43	11,48	0,2344
8860	SATELI- RR069	8831	FLORES-RR069	1,28	4,29	0,0875
8816	BONFIM- RR069	8881	MATA.M- RR069	54,03	85,24	1,325
8832	D.INDU- RR069	8881	MATA.M- RR069	19,18	33,52	0,5256
8827	CENTRO- RR069	8831	FLORES-RR069	1,15	3,88	0,0941
8853	BVISTA- RR069	8834	MCR-II-RR069	0,16	1	0,02
8851	BVISTA- RR230	8883	JAGUAT-RR230	0,1351	0,6749	1,2605

Tabela 8: Dados de linha do SISOL 2020 obtidos com o fluxo de carga condição inicial de operação

8880	JACITA- RR069	8853	BVISTA-RR069	13,42	25,82	0,413
8884	MC.SUC- RR069	8885	SEC.MC-RR069	8,35	18,33	1,034
8885	SEC.MC- RR069	8818	SUCUBA- RR069	20,433	39,307	0,6373
8885	SEC.MC- RR069	8832	D.INDU-RR069	10,217	19,653	0,3187
8882	SERLUA- RR069	8881	MATA.M- RR069	14,63	28,16	0,452
8821	SJBALI- RR069	8820	JATAPUPCH069	39,45	75,96	1,233

Fonte: [30]

Tabela 9: Dados de geradores do SISOL 2020 obtidos com o fluxo de carga condição inicial de operação

Barra	Nome Barra	Geração Ativa (MW)	Geração Reativa (Mvar)	Geração Ativa Mínima (MW)	Geração Ativa Máxima (MW)
8812	NPARAUTE- 7GR	12	3,917	0	Ilimitada
8823	DIST-UTE28GR	40	-0,043	0	Ilimitada
8830	FLOREUTE28GR	40	-0,031	0	Ilimitada
8833	MCRI2UTE23GR	24	-3,15	0	Ilimitada
8835	MCRI-UTE31GR	99,86	10,72	0	Ilimitada

Fonte: [30]

ANEXO 2

Este anexo contém os dados utilizados no *software* ANAREDE para estudos de fluxo de potência e no *software* ANATEM para simulações de estabilidade dinâmica no **SISOL 2023**.

Número	Nome Barra	Tipo	Tensão Base (kV)	Limite Tensão (p.u.)	Tensão (p.u.)	Tensão (kV)	Ângulo (graus)
7661	CENTEN-RR069	0 - PQ	69	0,800-1,200	0,993	68,5	-9,9
7662	CENTEN-RR013	0 - PQ	13,8	0,800-1,200	0,984	13,6	-13
8806	MUCAJA-RR069	0 - PQ	69	0,950-1,050	0,972	67,1	-8,6
8807	MUCAJA-RR013	0 - PQ	13,8	0,950-1,050	1	13,8	-10
8808	CARACA-RR069	0 - PQ	69	0,950-1,050	0,982	67,8	-4,8
8809	CARACA-RR013	0 - PQ	13,8	0,950-1,050	0,984	13,6	-6,4
8810	NPARAI-RR069	0 - PQ	69	0,950-1,050	1,02	70,4	1,93
8811	NPARAI-RR013	0 - PQ	13,8	0,950-1,050	0,978	13,5	0,8
8868	MC.SU2UTE000	1- PV	13,8	0,950-1,050	1	13,8	3,69
8813	RORAIN-RR069	0 - PQ	69	0,950-1,050	1,033	71,3	2,2
8814	RORAIN-RR013	0 - PQ	13,8	0,950-1,050	0,996	13,7	3,09
8815	NPAUTE-RR069	0 - PQ	69	0,950-1,050	1,02	70,4	1,93
8816	BONFIM-RR069	0 - PQ	69	0,950-1,050	0,994	68,6	-9
8817	BONFIM-RR013	0 - PQ	13,8	0,950-1,050	1,025	14,1	-11
8818	SUCUBA-RR069	0 - PQ	69	0,950-1,050	0,993	68,5	-7,2
8819	SUCUBA-RR013	0 - PQ	13,8	0,950-1,050	1	13,8	-8,7
8820	JATAPU-RR069	0 - PQ	69	0,950-1,050	1,031	71,1	6
8821	SJBALI-RR069	0 - PQ	69	0,950-1,050	1,027	70,9	6,14
8822	SJBALI-RR013	0 - PQ	13,8	0,950-1,050	0,97	13,4	2,24
8823	DIST-UTE-000	0 - PQ	13,8	0,950-1,050	1	13,8	-13
8824	EQUATO-RR013	0 - PQ	13,8	0,950-1,050	0,975	13,5	-14
8825	EQUATO-RR069	0 - PQ	69	0,950-1,050	0,997	68,8	-9
8826	CENTRO-RR013	0 - PQ	13,8	0,950-1,050	1	13,8	-15
8827	CENTRO-RR069	0 - PQ	69	0,950-1,050	1	69	-11
8829	MCRIST-RR069	0 - PQ	69	0,950-1,050	1,023	70,6	-7,2
8830	FLOREUTE-000	0 - PQ	13,8	0,950-1,050	1	13,8	-15
8831	FLORES-RR069	0 - PQ	69	0,950-1,050	0,999	68,9	-10
8832	D.INDU-RR069	0 - PQ	69	0,950-1,050	0,991	68,4	-9,2
8875	JAG.GBUTE000	2 - Referência	13,8	0,950-1,050	1,015	14	-1,9
8834	MCR-II-RR069	0 - PQ	69	0,950-1,050	1,021	70,4	-7,3
8869	PALMAUTE-2GR	1- PV	13,8	0,950-1,050	1	13,8	3,29

Fonte: [30]

44563	APIAURR013	0 - PQ	13,8	0,800-1,200	0,938	12,9	-13
44562	IRACEM-RR013	0 - PQ	13,8	0,800-1,200	0,939	13	-12
8853	BVISTA-RR069	0 - PQ	69	0,950-1,050	1,023	70,6	-7,2
44561	APIAURR034	0 - PQ	34,5	0,800-1,200	0,947	32,7	-11
44560	IRACEM-RR034	0 - PQ	34,5	0,800-1,200	0,946	32,6	-11
44559	MUCAJA-RR034	0 - PQ	34,5	0,800-1,200	0,969	33,4	-9,9
8870	BALIZ1UTE000	1- PV	13,8	0,950-1,050	1,02	14,1	10,4
8861	SATELI-RR013	0 - PQ	13,8	0,950-1,050	1	13,8	-13
8860	SATELI-RR069	0 - PQ	69	0,950-1,050	1,003	69,2	-9,7
8881	MATA.M-RR069	0 - PQ	69	0,950-1,050	1,013	69,9	-7
8882	SERLUA-RR069	0 - PQ	69	0,950-1,050	1,034	71,3	-4,5
44566	SERLUA-RR013	0 - PQ	13,8	0,800-1,200	1,039	14,3	-0,02
8865	BONFIMUTE000	1- PV	13,8	0,950-1,050	1,04	14,4	0,118
8866	CANTA-UTE000	1- PV	13,8	0,950-1,050	1,04	14,4	0,118
8880	JACITA-RR069	0 - PQ	69	0,950-1,050	1,041	71,8	-5
8873	STA.LUUTE000	1- PV	13,8	0,950-1,050	1,04	14,4	-2,6
8872	P.RAINUTE000	1- PV	13,8	0,950-1,050	1,04	14,4	-2,6
8857	BVIST1-RR000	0 - PQ	990	0,950-1,050	0,997	987	-7,3
8858	BVIST2-RR000	0 - PQ	990	0,950-1,050	0,997	987	-7,3
8859	BVIST3-RR000	0 - PQ	990	0,950-1,050	0,996	986	-7,4
8851	BVISTA-RR230	0 - PQ	230	0,950-1,050	1,011	232,5	-5,2
8883	JAGUAT-RR230	0 - PQ	230	0,950-1,050	1,014	233,2	-4,9
		2 -					
8874	JAG.GAUTE000	Referência	13,8	0,950-1,050	1,015	14	-1,9
8835	MCRISTUTE000	1- PV	4,2	0,800-1,200	1,025	4,3	-6,3
8876	JAG.VAUTE000	1- PV	13,8	0,950-1,050	1,04	14,4	-0,8
8885	SEC.MC-RR069	0 - PQ	69	0,950-1,050	1,005	69,3	-5,2
8884	MC.SUC-RR069	0 - PQ	69	0,950-1,050	1,008	69,6	-0,41
8867	MC.SU1UTE000	1- PV	13,8	0,950-1,050	1	13,8	5,25
44558	BBFBAL-RR069	0 - PQ	69	0,800-1,200	1,03	71,1	6,78
8871	BALIZ2UTE000	1- PV	13,8	0,950-1,050	1,02	14,1	13,4

Tabela 10: Tensão das barras do SISOL 2023 obtidos com o fluxo de carga condição inicial de operação

Número	Nome Barra	Geração Ativa (MW)	Geração Reativa (Mvar)	Geração Reativa Mínima (Mvar)	Geração Reativa Máxima (Mvar)	Carga Ativa (MW)	Carga Reativa (Mvar)
7662	CENTEN-RR013					21,3	6,3
8807	MUCAJA-RR013					3,4	1,6
8809	CARACA-RR013					3,6	1,1
8811	NPARAI-RR013					1,4	0,6
8868	MC.SU2UTE000	18	-1,25	-7,88	11,8		
8814	RORAIN-RR013					7,7	2,3
8817	BONFIM-RR013					3,6	1
8819	SUCUBA-RR013					3,4	1,2
8822	SJBALI-RR013					8	1,9
8823	DIST-UTE-000					21	8,1
8824	EQUATO-RR013					18,2	4,4
8826	CENTRO-RR013					41	10,6
8830	FLOREUTE-000					50,9	14,5
8875	JAG.GBUTE000	27,42	14,07	-16,6	36,48		
8834	MCR-II-RR069						
8869	PALMAUTE-2GR	10	4,186	-11,5	8,7		
44563	APIAURR013					1,2	0,3
44562	IRACEM-RR013					1,5	0,4
8870	BALIZ1UTE000	9,8	-1,24	-3,37	7,28		
8861	SATELI-RR013					20,8	5,6
8865	BONFIMUTE000	8	0,4078	-3,4	6,8		
8866	CANTA-UTE000	8	0,4078	-3,4	6,8		
8873	STA.LUUTE000	8	-0,087	-3,4	6,8		
8872	P.RAINUTE000	8	-0,087	-3,4	6,8		
8874	JAG.GAUTE000	27,42	14,07	-18	34		
8835	MCRISTUTE000	25	3,121	-7	16		
8876	JAG.VAUTE000	33	12,87	-14,5	28,02		
8867	MC.SU1UTE000	22	-1,69	-9,45	14,2		
8871	BALIZ2UTE000	8.1	-0.226	-3.04	6.9		

Tabela 11: Geração e Cargas das barras do SISOL 2023 obtidos com o fluxo de carga condição inicial de operação

Fonte: [30]

DE	Nome DE	PARA	Nome PARA	Resistência (%)	Reatância (%)	Susceptância (Mvar)
7661	CENTEN-RR069	8832	D.INDU- RR069	0,818	4,2789	0,0817
8806	MUCAJA-RR069	8808	CARACA- RR069	43,75	84,29	1,369
8808	CARACA-RR069	8815	NPAUTE- RR069	54,107	104,38	1,6786
8810	NPARAI-RR069	8813	RORAIN- RR069	21,97	42,24	0,685
8810	NPARAI-RR069	8821	SJBALI- RR069	33,43	64,33	1,044
8815	NPAUTE-RR069	8810	NPARAI- RR069	0,013	0,025	0,0004
8821	SJBALI-RR069	8820	JATAPU- RR069	39,45	75,96	1,233
8853	BVISTA-RR069	8860	SATELI- RR069	3,43	11,48	0,2344
8827	CENTRO-RR069	8853	BVISTA- RR069	6,38	21,35	0,402
8827	CENTRO-RR069	8831	FLORES- RR069	1,15	3,88	0,0941
8831	FLORES-RR069	7661	CENTEN- RR069	0,8002	4,1859	0,0799
8831	FLORES-RR069	8853	BVISTA- RR069	2,4	14,71	0,29
8832	D.INDU-RR069	8806	MUCAJA- RR069	27,18	52,29	0,848
8832	D.INDU-RR069	8816	BONFIM- RR069	59,51	114,89	1,869
8832	D.INDU-RR069	8818	SUCUBA- RR069	30,65	58,96	0,956
8832	D.INDU-RR069	8825	EQUATO- RR069	1,19	7,32	0,14
8834	MCR-II-RR069	8825	EQUATO- RR069	2,52	15,48	0,31
8869	PALMAUTE- 2GR	8814	RORAIN- RR013	1,8331	4,2833	0,0002
44559	MUCAJA-RR034	44561	APIAU RR034	140,86	173,02	0,2802
44559	MUCAJA-RR034	44560	IRACEM- RR034	109,63	134,58	0,2179
8860	SATELI-RR069	8831	FLORES- RR069	1,28	4,29	0,0875
8853	BVISTA-RR069	8829	MCRIST- RR069	0,01	0,1	0,0817

Tabela 12: Dados de linha do SISOL 2023 obtidos com o fluxo de carga condição inicial de operação

8832	D.INDU-RR069	8881	MATA.M- RR069	19,18	33,52	1,369
8816	BONFIM-RR069	8881	MATA.M- RR069	54,03	85,24	1,6786
8882	SERLUA-RR069	8881	MATA.M- RR069	14,63	28,16	0,685
8865	BONFIMUTE000	44566	SERLUA- RR013	1,4665	3,4267	1,044
8866	CANTA-UTE000	44566	SERLUA- RR013	1,4665	3,4267	0,0004
8853	BVISTA-RR069	8834	MCR-II- RR069	0,16	1	1,233
8880	JACITA-RR069	8853	BVISTA- RR069	13,42	25,82	0,2344
8851	BVISTA-RR230	8883	JAGUAT- RR230	0,1351	0,6749	0,402
8885	SEC.MC-RR069	8818	SUCUBA- RR069	20,433	39,307	0,0941
8885	SEC.MC-RR069	8832	D.INDU- RR069	10,217	19,653	0,0799
8884	MC.SUC-RR069	8885	SEC.MC- RR069	4,77	20,461	0,29
44558	BBFBAL-RR069	8821	SJBALI- RR069	3,1409	6,0362	0,848

Fonte: [30]

Barra	Nome Barra	Geração Ativa (MW)	Geração Reativa (Mvar)	Geração Ativa Mínima (MW)	Geração Ativa Máxima (MW)
8868	MC.SU2UTE000	18	-1,25	0	Ilimitada
8875	JAG.GBUTE000	27,42	14,07	0	Ilimitada
8869	PALMAUTE-2GR	10	4,186	0	Ilimitada
8870	BALIZ1UTE000	9,8	-1,24	0	Ilimitada
8865	BONFIMUTE000	8	0,4078	0	Ilimitada
8866	CANTA-UTE000	8	0,4078	0	Ilimitada
8873	STA.LUUTE000	8	-0,087	0	Ilimitada
8872	P.RAINUTE000	8	-0,087	0	Ilimitada
8874	JAG.GAUTE000	27,42	14,07	0	Ilimitada
8835	MCRISTUTE000	25	3,121	0	Ilimitada
8876	JAG.VAUTE000	33	12,87	0	Ilimitada
8867	MC.SU1UTE000	22	-1,69	0	Ilimitada
8871	BALIZ2UTE000	8,1	-0,226	0	Ilimitada
9488	JATAPUPCH005	3	0	0	Ilimitada

Tabela 13: Dados de geradores do SISOL 2023 obtidos com o fluxo de carga condição inicial de operação

Fonte: [30]