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Resumo

Para fornecer conectividade a vários dispositivos, incluindo IoT, o 5G depende de

tecnologias como Virtualização de Funções de Rede (NFV) e Computação de Borda Mul-

tiacesso (MEC). Devido aos fluxos de rede continuamente variáveis, o gerenciamento de

recursos desses dispositivos é uma das tarefas mais importantes que requerem algoritmos

dinâmicos para dimensionar os recursos finitos de forma eficiente e satisfazer os requi-

sitos de QoS. Por esta razão, a combinação de mecanismos reativos de escalonamento

automático e modelos de estimativa de recursos baseados em IA são previstos como facil-

itadores promissores.

Este trabalho propõe o RAFE (Resource Auto-scaling For Everything), um frame-

work para dimensionar automaticamente aplicações VNF e MEC, reagindo e antecipando

mudanças nos requisitos de recursos através de Aprendizado de Máquina, processos de

treinamento distribuídos, múltiplos modelos de IA, e revalidação. Para tanto, primeira-

mente conduzimos uma análise aprofundada e comparação de vários algoritmos de ML

aplicados em diversos contextos comumente enfrentados por aplicações de borda e nu-

vem. Empregando conjuntos de dados abertos, conduzimos uma avaliação abrangente de

desempenho desses algoritmos em vários cenários frequentemente encontrados na borda

da rede. Avaliamos sua eficácia em contextos univariados e multivariados, abrangendo

previsões em uma e várias etapas, bem como tarefas envolvendo regressão e classificação.

Além disso, apresentamos detalhadamente a arquitetura e os mecanismos do framework

proposto e apresentamos um testbed de orquestração baseado em Docker para avaliar seu

desempenho e funcionalidade em uma configuração adequada.

Além disso, foi validado e comparado o desempenho dos mecanismos de escalona-

mento automático implementados não apenas na carga de trabalho de rede esperada, mas

também em uma carga de trabalho diferente e não vista, para avaliar o desempenho em

relação a mudanças expressivas nos padrões aprendidos. Além disso, a integrabilidade e

os efeitos de longa operação do RAFE através da eficácia da revalidação são validados.

Os resultados experimentais mostram que o esquema proposto alcançou excelente desem-

penho na previsão e gestão de recursos, ao mesmo tempo que exigiu um curto período



de tempo para treinar os modelos de previsão. Ademais, as soluções híbridas e preditivas

superam a solução reativa no que diz respeito à latência para reação às mudanças de

tráfego, mas principalmente, a abordagem híbrida é fundamental para alcançar a relação

custo-benefício e, ao mesmo tempo, garantir bons resultados sobre padrões imprevistos.

Por fim, RAFE apresentout um desempenho geral notável para escalonamento automático

de aplicações de borda e em nuvem, apresentando também grande integrabilidade.

Palavras-chave: Escalonamento automático. Aprendizado de máquina. Redes Neu-

rais Profundas. Gestão de recursos. Funções de rede virtual. Computação de borda

multiacesso. Previsão de recursos..
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Abstract

To provide connectivity to multiple devices, including IoT, 5G relies on technologies

like Network Function Virtualization (NFV) and Multi-access Edge Computing (MEC).

Due to the continuously varying network flows, the resource management of these devices

is one of the most important tasks that require dynamic algorithms to scale the finite

resources efficiently and to satisfy QoS requirements. For this reason, the combination of

reactive autoscaling mechanisms and AI-driven resource estimation models are foreseen

as promising enablers.

This work proposes RAFE (Resource Auto-scaling For Everything), a framework to

auto-scale VNF and MEC applications, reacting and anticipating resource requirement

changes through Machine Learning (ML), distributed training processes, multiple AI mod-

els, and revalidation. To this end, we first conduct an in-depth analysis and comparison

of several ML algorithms applied in diverse contexts commonly faced by edge and cloud

applications. Employing open datasets, we conducted a comprehensive performance eval-

uation of these algorithms in various scenarios frequently encountered at the network’s

edge. We assessed their effectiveness in univariate and multivariate contexts, encompass-

ing one-step and multistep forecasting and tasks involving regression and classification.

Furthermore, we detail the architecture and mechanisms of the proposed framework and

present a Docker-based orchestration testbed to assess its performance and functionality

in a suitable configuration.

Moreover, we validate and compare the performance of the implemented autoscaling

mechanisms over the expected network workload and a different and unseen workload

to assess the performance over expressive changes in the learned patterns. Additionally,

we evaluated RAFE’s integrability and long operation effects through the revalidation

effectiveness. Experimental results show that the proposed scheme achieved outstanding

performance in predicting and managing resources while requiring a short time to train

the forecasting models. Additionally, the hybrid and the predictive solutions outperform

the reactive solution in terms of latency to traffic change reaction. Still, principally,

the hybrid approach is fundamental to achieving cost-effectiveness while ensuring good



results over unforeseen patterns. Finally, RAFE shows outstanding overall performance

for auto-scaling edge and cloud applications, presenting great integrability.

Keywords: Auto-Scaling. Machine Learning. Deep Neural Networks. Resource Manage-

ment. Virtual Network Functions. Multi-Access Edge Computing. Resource Prediction..
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Chapter 1

Introduction

The advent of the 5th generation of mobile technology Fifth Generation (5G) and its

successors Beyond 5G (B5G) and Sixth-Generation (6G), in addition to the crescent num-

ber of connected Internet of Things (IoT) devices has ushered in a new era characterized

by the ever-growing demands of innovative applications across various vertical industries,

including manufacturing, automotive, healthcare, and agriculture. These applications are

mainly distinguished by ultra-low latency, exceptionally high throughput, and increased

connectivity density (LI; XU; ZHAO, 2018). The cloud-centric model is commonly em-

ployed to enable these applications. However, it encounters several challenges, including

bandwidth, latency, uninterrupted service, resource constraints, and security concerns

(KHAN et al., 2019).

To solve these challenges, over the past decade, numerous endeavors have been made to

extend the traditional centralized cloud computing model towards a more geographically

distributed approach (SITTóN-CANDANEDO et al., 2019). This approach strategically

distributes computational, networking, and storage resources closer to data sources or

end-user applications. For instance, the geo-distributed cloud computing model (WU et

al., 2015) seeks to partition processing tasks and allocate them to data centers near the

network’s edge. Additionally, the concept of mobile cloud computing has introduced a

paradigm where cloud computing resources are provisioned based on physical proximity,

leveraging local wireless internet access points (QI; GANI, 2012).

In the context of Edge Computing, particularly Multi-Access Edge Computing (MEC),

has emerged as a network architecture concept defined by European Telecommunications

Standards Institute (ETSI). MEC sits between the cloud and intelligent end-devices,

providing cloud computing capabilities, encompassing computing, storage, data manage-

ment, and network resources brought to the edges of the cellular network. This strategic

placement of MEC facilitates hosting applications that must be near the end-user, signif-

icantly reducing user experience delays and relieving the load on the transport network

(PRIYA et al., 2019). MEC’s ambitions include enhancing interoperability among service

providers, enabling real-time processing and analytics, supporting mobility, accommodat-
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ing geographic distribution, and adapting to various devices and node factors.

All these approaches aim to satisfy and enable the crescent demands for hardware

resources. However, these resources are finite. The resources available at Mobile Edge

(ME) nodes, at the edge network, and even at the cloud are limited in physical and virtual

capacity and represent costs for the operators. Therefore, efficient resource management

becomes imperative (MUSADDIQ et al., 2018; JENNINGS; STADLER, 2015).

To address this requirement, solutions such as NFV offer flexibility and programma-

bility by virtualizing MEC applications into what are known as Virtual MEC Application

Functions (VMAFs) (SCIANCALEPORE et al., 2016). These VMAFs can be easily

deployed and scaled in response to the demands of end-users consuming the services.

Additionally, one of the fundamental features of NFV is elasticity, which allows VMAFs

to acquire and release resources following fluctuating demands dynamically. Therefore,

resource allocation is not a straightforward task. While current virtualization platforms

offer autoscaling capabilities triggered manually, often in a reactive manner (e.g., scaling

up a VMAF when CPU utilization reaches 80%), there’s a growing need for a predictive

autoscaling mechanism (which can be integrated with the management or control centers,

as the MANO in an NFV architecture). Such a mechanism would proactively adjust re-

sources to match the workload handled by the VMAF without human intervention. In this

context, Deep Learning (DL) algorithms, including time series forecasting, come into play

to develop predictive autoscaling solutions that enhance resource utilization efficiency.

1.1 Motivation

The new era of communication services demands high throughput, low latency, and

high availability (JIANG et al., 2021). Even a modest increase in the number of con-

nected or cyber-physical objects brings about significant changes in the computing land-

scape (JIANG et al., 2021). This shift can potentially unleash a surge of computation

and hyper-connectivity that existing infrastructure struggles to handle while maintaining

historical levels of service quality (LI et al., 2016). Therefore, precise resource allocation

is fundamental for addressing these challenges in cloud-based applications and across the

network, in Virtual Network Function (VNF), MEC applications, and IoT devices.

However, resource management in NFV and MEC environments constitutes a complex

and critical element (MUSADDIQ et al., 2018). This entails efficiently utilizing comput-

ing, storage, and networking resources to ensure optimal performance and user experience.

One of the primary challenges in VNF and MEC resource management is coping with dy-

namic workloads (HAIBEH; YAGOUB; JARRAY, 2022a). The demand for services and

applications can fluctuate rapidly due to user behavior, time of day, and special events.

As a result, resource allocation must be capable of adapting in real-time to meet these

varying demands. Failure to allocate resources dynamically can lead to performance bot-
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tlenecks, service degradation, and dissatisfied users. Furthermore, as the number of VNFs

and MEC applications grows, the resource management system must scale accordingly to

accommodate the increased demand (LLORENS-CARRODEGUAS et al., 2021). More-

over, the number of connected devices, the heterogeneity of the network, the variability

of traffic patterns, and the need to maintain low latency and high reliability require the

development of sophisticated autoscaling approaches that can enable the VNFs and MEC

applications to scale dynamically to meet the demand (HERRERA; BOTERO, 2016).

Designing effective resource allocation policies is vital to optimizing resource utilization

in cloud and edge environments. Resource allocation policies determine how resources are

distributed among different instances (of VNFs and MEC applications) based on priority,

service-level agreements, and Quality of Service (QoS) requirements. Creating policies

that prioritize critical network functions and latency-sensitive applications while ensuring

fair resource allocation for less demanding workloads is a challenge that requires careful

consideration and continuous refinement (QU; CALHEIROS; BUYYA, 2016). Addition-

ally, energy efficiency is an increasingly critical aspect of resource management in this area

(ETEMADI; GHOBAEI-ARANI; SHAHIDINEJAD, 2021). Optimizing resource usage to

minimize energy consumption becomes essential with the growing focus on sustainability

and reduced carbon footprints. Resource managers must incorporate dynamic power man-

agement, workload consolidation, and other energy-efficient strategies into their resource

management practices. This is especially more complex in VNF and MEC environments,

which, due to the heterogeneous hardware landscape of edge environments, can introduce

further complexity into resource management (SAHNI; VIDYARTHI, 2017). Different

edge servers and devices have varying capabilities, making it challenging to optimize

resource allocation to meet the unique requirements of different VNFs and MEC applica-

tions. Efficient resource management should consider the capabilities and limitations of

diverse hardware to maximize performance and cost-effectiveness.

As the final point, resource management strategies should also include failure detection

and recovery mechanisms. Failures are inevitable in a distributed and dynamic environ-

ment like in NFV and MEC. To address that, the resource management system should

be able to detect failures promptly and react to maintain service continuity and mini-

mize downtime (VINAY; KUMAR, 2016). Moreover, a delicate balance must be struck

between cost and QoS. To ensure QoS, more VMAF instances or CPU resources may

need to be allocated, but this increases costs. Therefore, the autoscaling mechanism must

consider the economic implications of its decisions to minimize total expenditure while

maintaining an acceptable QoS level as stipulated in Service Level Agreements (SLAs)

between end-users and application providers. Balancing performance requirements with

cost considerations demands sophisticated resource optimization algorithms and continu-

ous monitoring of resource usage and demand patterns (SINGH et al., 2019).
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1.2 Objectives and Research Challenges

Therefore, this work’s main goal is to propose and evaluate a framework for optimum

auto-scaling of applications placed both at the edge and at the core of the network,

being compatible with ETSI Management and Orchestration reference software stack and

enabling hybrid scaling through reactive mechanisms AI-based predictive mechanisms.

To achieve such higher goals, some specific goals should be considered, namely:

❏ Investigate and review the state of the art on Machine Learning for Time-Series

Forecasting, Network Functions Virtualization, and Multi-Access Edge Computing;

❏ Investigate the concept of optimal auto-scaling of edge and cloud applications in

terms of performance and cost-effectiveness, reviewing its general objectives, as well

as obstacles present in their conception and the limitations to achieve optimum

results over complex network scenarios;

❏ Select the most suitable algorithms and mechanisms to enable the auto-scaling of

different kinds of applications placed anywhere in the network;

❏ Design and implement a framework, using open-source technologies, capable of

achieving near-optimum performance in dynamic auto-scaling of edge and cloud

applications across various network traffic scenarios. The framework must demon-

strate adaptability to emerging traffic patterns, ensuring seamless scalability and

efficiency in resource utilization.

❏ Using experimental approaches, evaluate the framework to assess its features and

capabilities.

1.3 Hypothesis

Once the previously presented objectives are established, the hypothesis is supported,

and it is possible to propose and evaluate an architecture to address the auto-scaling

challenges for both edge and cloud-placed applications. To this end, a hybrid auto-

scaling framework can be proposed for optimum management of different applications,

including VNF, MEC, and cloud applications. To this end, it should be compatible with

ETSI’s Management and Orchestration software stack to offer integrability, have a core

concept for effectively running over hardware resource constraints, have failure detection

and recovery, and adapt itself to unexpected changes in network traffic patterns.
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1.4 Contributions

The contributions of this work can be divided into two main parts. The first part

focuses on selecting the most suitable forecasting algorithms for the framework proposed

in the second part. To achieve this, a comprehensive investigation of various time series

forecasting algorithms based on Machine Learning (ML) is conducted. Multiple datasets

obtained from VNF monitoring, encompassing diverse trends, seasonality, sizes, and fea-

tures, are employed to assess the key factors that influence the prediction performance.

Moreover, several experiments are carried out to address the dynamic nature of edge en-

vironments, involving the implementation and training of each algorithm using different

forecasting approaches and variations. These experiments aim to determine the perfor-

mance of the algorithms in common scenarios encountered in cloud and edge computing.

Finally, the overall results are compared to identify the algorithms integrated into the

auto-scaling framework proposed in the second part.

In the second part, this work proposes and evaluates a novel approach to address the

auto-scaling challenges of both edge and cloud applications. This solution combines reac-

tive and predictive methods to ensure optimal scaling decisions. Moreover, it introduces

a core concept that effectively handles hardware resource constraints through the dis-

tributed execution of ML training and resource-consuming tasks. It introduces a diverse

set of tools designed to address the dynamic nature of edge and cloud environments. A

multi-univariate-models approach is applied to achieve optimum results and keep a low

time for training the model. A re-validation mechanism is also introduced to effectively

manage the workload pattern changes inherent in network environments. This compre-

hensive suite of tools aims to optimize the performance and adaptability of auto-scaling

in these complex and ever-changing contexts.

Therefore, among the main contributions of this work are:

1. an empirical evaluation of multiple ML algorithms and Deep Neural Networkss

(DNNs) for predicting the consumption of computational resources in VNF and

MEC environments, comparing algorithms and training paradigms using time-series

data from multiple datasets with diverse data patterns (we implemented and as-

sessed these approaches across numerous variations commonly encountered when

designing forecasting techniques for scaling edge and cloud applications);

2. a hybrid auto-scaling framework that enables a reactive mechanism based on thresh-

old rules and a predictive mechanism based on time series forecasting using deep-

learning models (using multi-univariate models instead of a single multivariate

model);

3. an infrastructure that satisfies the requests for optimum auto-scaling of different

kinds of applications, including VNFs, MEC applications, and cloud-placed appli-
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cations;

4. an architecture that enables the use of multiple AI models, instead of the commonly

used multivariate models, with a distributed training mechanism and invalidation

mechanisms that manage the model’s life cycles and enable the adaption to the

changes in the network patterns;

5. a testbed including a Docker-based orchestration structure to host VNF/MEC ap-

plications and simulate different network traffic patterns;

6. a performance assessment of the proposed framework considering scalability and

performance, validating the autoscaling mechanisms over a seen and learned traf-

fic pattern and a different and unseen workload. (this last one validates how the

proposed framework and different autoscaling mechanisms perform over expressive

changes in the learned traffic workloads);

7. an experimental study assessing the performance of the different autoscaling mech-

anisms, comparing the reactive, the predictive, and the hybrid approaches.

1.5 Outline

This dissertation is structured into five chapters. In Chapter 2, we delve into the theo-

retical and practical aspects that clarify the various subjects encompassed by the research

objectives and their validity. We extensively explore computing system technologies, in-

cluding Machine Virtualization, Network Functions Virtualization, the Internet of Things,

Edge Computing, Machine Learning Forecasting, and the core concepts of Auto-Scaling

Mechanisms.

Chapter 3 outlines the dissertation proposal, offering insights into the implementa-

tion specifics and the framework organization, presenting the various components, their

respective functions, and the methodologies applied.

Moving on to Chapter 4, we present multiple comprehensive experimental assessments

that underscore the achievement of each objective and furnish an in-depth analysis of how

this work stands compared to prior proposals.

Chapter 5 discusses the conclusions drawn from developing and experimenting with the

proposed solution. Moreover, this chapter identifies potential projects and initiatives, both

of a productive and test-oriented nature, that can be realized by adopting the proposed

architecture.
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Chapter 2

Background and Related Work

Information technology has witnessed a steady evolution, marked by the extensive vir-

tualization of its infrastructure for several years now (CHOWDHURY; BOUTABA, 2010).

The network is the next step as operators strive to stay abreast of these rapid changes.

Currently, not only cloud-placed applications but also IoT devices, VNFs, and MEC ap-

plications are huge consumers of bandwidth, demanding unparalleled levels of flexibility

and speed from networks (CRUZ; ACHIR; VIANA, 2022; ABBAS et al., 2018; HAIBEH;

YAGOUB; JARRAY, 2022b). However, expanding networks to accommodate peak traffic

loads surpasses the capabilities of most operators due to the exorbitant maintenance costs

and extensibility (CHIANG et al., 2023).

Incrementing this challenge, the network’s edge, with its proximity to end-users and

IoT devices, requests unparalleled speed and responsiveness. It’s the realm of real-time

data processing, low-latency, and mission-critical applications. In the network’s midway,

the NFV virtualizes network functions to enable the edge’s high bandwidth, speed, and

flexibility demand. Additionally, the cloud serves as the centralized powerhouse, providing

vast computational capabilities and storage. These solutions, as a whole, share a com-

mon demand for balancing resource allocation and optimizing performance (HAIBEH;

YAGOUB; JARRAY, 2022b). Auto-scaling, the ability to dynamically allocate resources

based on real-time demand, plays a pivotal role in this context, offering cost-efficient per-

formance for the applications to fulfill this demand. In this exploration, we delve into

the auto-scaling-related fundamentals for applications placed anywhere in the networks,

from the edge to the cloud, uncovering its potential to ensure optimal resource allocation,

minimize costs, and deliver seamless, high-performance computing experiences.

The remainder of this chapter is structured as follows. To introduce the targeted ap-

plications of auto-scaling within this work, firstly, in Section 2.1, we delve into the benefits

of Network Functions Virtualization (NFV) and the impacts that drive its adoption. This

section provides a foundational understanding of NFV, including its architectural frame-

work and components. In Section 2.2, we provide an overview of Edge Computing, Multi-

Access Edge Computing (MEC) applications, and the Internet of Things (IoT) paradigm,
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delving into their core concepts, principles, and advantages. This section particularly fo-

cuses on the network’s edge and fog, key technologies for the current and future networks,

and emerging solutions. Section 2.3 introduces the concept of time-series forecasting as a

key element in predictive auto-scaling solutions. We elucidate the main mechanisms for

predictive scaling, which center around machine-learning algorithms, presenting various

categories and key algorithm architectures. In Section 2.4, we delve into the concepts

and enablers related to auto-scaling, elucidating the scalable resources and monitoring

essentials for effective resource allocation. Finally, Section 2.5 provides a comprehensive

summary of the current state of the art in related research and works.

2.1 Network Function Virtualization

Network Functions Virtualization (NFV) is a paradigm shift driven by the need for

greater agility, efficiency, and scalability in the telecommunications and networking in-

frastructure (SOUSA et al., 2019). At its core, NFV is based on server virtualization.

It involves the abstraction and virtualization of network functions, traditionally realized

through dedicated hardware appliances, into software-based instances that can run on

standardized compute resources. NFV also facilitates the establishment of an ecosystem

with the capability to oversee, allocate resources, monitor, and deploy virtualized network

entities (RAY; KUMAR, 2021).

One of the fundamental technical characteristics of Virtual Network Functions (VNFs)

is the concept of decoupling (HAWILO et al., 2014). NFV decouples network functions

(such as load balancers, firewalls, or Intrusion Detection Systems (IDSs), traditionally

were tightly bound to dedicated and specific hardware appliances) from the hardware, en-

abling them to operate as independent software components or VNFs on general-purpose

servers, storage, and networking equipment. Virtualization plays a main role in NFV

once this decoupling is usually achieved through solutions like containerization and hy-

pervisors (HAN et al., 2015), which enables the creation of Virtual Machines (VMs) or

containers to host the VNFs. This level of flexibility enhances service agility, allowing

network operators to rapidly deploy new services, adjust capacity, and optimize resource

allocation (BONFIM; DIAS; FERNANDES, 2019).

As networks continue to evolve to meet the demands of emerging technologies like

5G and edge computing, NFV remains a foundational concept in modern telecommu-

nications infrastructure, decoupling and virtualizing network functions from proprietary

hardware to deliver increased scalability, agility, and interoperability to network services

(SOUSA et al., 2019). Moreover, NFV also introduces performance optimization and

resource allocation challenges once efficiently distributing computational resources, like

CPU, memory, and network bandwidth, among various VNFs running on the same phys-

ical hardware is essential to optimize utilization and avoid bottlenecks (SCHARDONG;
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NUNES; SCHAEFFER-FILHO, 2021).

2.1.1 Benefits of NFV

NFV offers many benefits that revolutionize how telecommunications and networking

services are designed, deployed, and managed. Some of the key advantages of NFV

include:

1. Cost Efficiency: NFV eliminates the need for dedicated, specialized hardware

appliances for various network functions. This consolidation leads to significant

cost savings on procurement, maintenance, and power consumption.

2. Flexibility and Scalability: NFV enables the dynamic scaling of network func-

tions based on real-time demand. Service providers can allocate or release resources

as needed, ensuring optimal resource utilization. Moreover, it enables rapid service

deployment, accelerating the deployment of new network services and functions and

reducing time-to-market for innovative offerings.

3. Resource Optimization: NFV allows efficient resource utilization by sharing

physical infrastructure among multiple virtualized functions, reducing resource under-

utilization. Additionally, it enables resource isolation through virtualization tech-

nologies, ensuring that one function’s performance or security issues do not impact

others.

4. Improved Network Management: it introduces centralized orchestration and

management, simplifying the configuration and monitoring of network services. Fur-

thermore, it facilitates automation operations, reducing manual intervention in net-

work management tasks and minimizing human errors.

5. Enhanced Service Agility: NFV enables on-demand services, with rapid provi-

sioning and modification of services to meet changing customer requirements and

market demands. Moreover, it includes service-chaining capabilities that allow the

creation of complex service chains by orchestrating multiple VNFs in a specific order.

6. Vendor Neutrality: NFV promotes vendor neutrality by standardizing interfaces

and protocols. Service providers can choose best-of-breed VNFs and infrastructure

components from different vendors, offering easier interoperability between them.

7. Reduced Capital Expenditure (CapEx) and Operating Expenditure (OpEx):

With NFV, there is less dependency on expensive proprietary hardware, leading to

reduced CapEx due to lower hardware costs. Also, NFV simplifies network man-

agement and reduces the need for extensive physical deployments, resulting in lower

OpEx.
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8. Network Resilience and Fault Tolerance: NFV supports self-healing mecha-

nisms where failed VNF instances can be automatically replaced, ensuring network

continuity. Also, it enables dynamic load balancing to distribute traffic evenly and

improve network resilience.

9. Edge Computing and 5G Enablement: NFV is crucial for delivering services

at the network edge, essential for latency-sensitive applications and 5G network

capabilities.

10. Green Computing: By consolidating hardware and optimizing resource usage,

NFV can reduce energy consumption and contribute to more environmentally friendly

networks.

2.1.2 NFV Architecture

NFV enables third-party software to operate on standardized and shared hardware,

opening up multiple possibilities for network management (ANVITH et al., 2019). Within

this context, the virtualized instantiation of network functions is called a Virtual Network

Function (VNF). Each VNF is specifically engineered to fulfill a distinct network func-

tion, whether it be routing, switching, firewalling, network load balancing, and so forth

(KUNDIMANA; VYUKUSENGE; TSYM, 2021).

Various providers can present a range of VNFs, allowing service providers to select a

chain combination of functions that align with their requirements (ANVITH et al., 2019).

This diversity in choices underscores the necessity for standardization in their virtual en-

vironment management, which is a key driver for its technical success. Industry bodies

like the ETSI have defined specifications and interfaces to ensure interoperability between

VNFs and NFV infrastructure components. These standards ensure that a deployed VNFs

is not restricted to particular hardware configurations and is versatile enough to function

in any compatible environment and multi-vendor ecosystem. This allows network opera-

tors to select the best functions and infrastructure components while ensuring seamless

integration (HOFFMANN et al., 2018). Therefore, a critical requirement is a reference

architecture that offers consistency and uniformity in deploying and developing VNFs,

regardless of the specific methodologies involved.

The Industry Specification Group of the European Telecommunications Standards In-

stitute (ISG ETSI) has devised over 100 distinct specifications and reports dedicated to

the virtualization of network functions (DAHMEN-LHUISSIER, 2021), with a primary

emphasis on the management and orchestration of virtualized resources. From an archi-

tectural perspective, these NFV specifications outline and delineate the prerequisites for

virtualization, the infrastructure components, their interfaces, and the protocols and APIs

for managing these interfaces. Another set of specifications ISG NFV presents pertains

to the structure and format of artifact deployment and packaging models utilized within
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❏ Virtual Network Function Virtual Infrastructure (VNFVI): The VNFVI

block is the foundation for the virtualized network functions. It comprises the

physical and virtual resources necessary to support the VNFs (MECHTRI et al.,

2017). This includes computing, storage, and networking resources, both hardware

and virtualized, that are abstracted and managed to create a flexible infrastructure.

❏ Management and Orchestration (MANO): The MANO block functions as the

control layer with the primary role of orchestrating and overseeing the management

and allocating role of both VNFs and the VNFVI (KOMAREK et al., 2017).

The MANO layer, responsible for overseeing and managing all entities within the

architecture, possesses a comprehensive awareness of the usage, operational status, and

utilization statistics of each architectural block (YU; YANG; FUNG, 2020). As a re-

sult, MANO serves as the most suitable interface for operating systems and the central

hub for collecting network data. It operates as an independent section within the ar-

chitecture but collaborates closely with the VNFVI and VNF blocks. Within this layer,

comprehensive resource management occurs within the VNFVI layer, encompassing re-

source creation, deletion, and allocation to VNFs. Furthermore, it guarantees the effi-

cient deployment, maintenance, and optimization of network services to align with SLAs

(ORDONEZ-LUCENA et al., 2017).

The MANO management component can be defined as a combination of three func-

tional components: (1) NFV Orchestrator (NFVO): responsible for new network services

and VNFs. The NFVO coordinates the overall management and orchestration of VNFs.

It receives service requests, interprets them, and translates them into actions to instan-

tiate VNFs and manage resources (ORDONEZ-LUCENA et al., 2017). (2) VNF Man-

ager (VNFM): the VNFM focuses on the lifecycle of individual VNFs. It interacts with

the NFVO to instantiate, configure, monitor, and terminate VNF instances. It is also re-

sponsible for coordinating and adapting to configure and report the events between NFV

infrastructure, and element management systems/network (PAGANELLI et al., 2017).

(3) Virtualized Infrastructure Manager (VIM): is responsible for managing the VNFVI

resources, controlling and managing the computational, storage, and network resources

in NFV infrastructure. It communicates with the NFVO and VNFM to allocate and

optimize these physical and virtual resources (PANAGIOTIS et al., 2020).

VNFs depend on the availability of virtual hardware, simulated by software resources

running on physical hardware. The ETSI NFV framework makes this possible through

the infrastructure component (NFVI), which encompasses physical hardware resources,

the virtualization layer, and virtual resources (LAL et al., 2017). This flexible, functional

component can be extended and scaled from a single physical host to multiple intercon-

nected local devices. The virtualization layer is integral to the VNFVI functional block.

It directly interacts with the host machine’s hardware components, providing a simpli-
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fied and abstracted view of computing, storage, and networking resources for VNFs. In

essence, the virtualization layer decouples VNFs from the underlying hardware of the

host machine, granting them access to a computational resource management interface

(PAGANELLI et al., 2017).

The VNFVI block is composed of three components: (1) Virtualization Layer: This

component includes hypervisors and virtualization technologies responsible for creating

virtual machines (VMs) or containers to host VNF instances. It abstracts the underlying

hardware, enabling resource sharing and isolation among VNFs (ALWAKEEL; ALNAIM;

FERNANDEZ, 2019); (2) Physical Infrastructure: The physical infrastructure represents

the actual hardware, such as servers, switches, and storage devices, on which the virtu-

alized resources are instantiated (PANAGIOTIS et al., 2020). (3) Resource Pool: This

encompasses all available resources within the VNFVI, including CPU, memory, storage

capacity, and network bandwidth. Resource management ensures efficient allocation to

VNFs based on their requirements (KAUR; MANGAT; KUMAR, 2022)

Finally, the VNF layer is the deployment ground for virtualized functions and com-

prises the VNFs block along with its associated management functional block known

as VNF-Manager. It typically falls under the purview of an Element Management Sys-

tem (EMS). The EMS is pivotal in various functions, including adjustments, monitoring,

fault remediation, configuration, accounting, performance assessment, and security. Its

scope aligns with the traditional EMS, acting as a communication bridge, connecting

the northern and southern parts of the network management landscape and interfac-

ing with network management systems and VNFs, respectively. In the Telecom Service

Provider (TSP) environment, an EMS holds the capacity to furnish critical information

through operational support systems.

When transitioning from physical to virtual devices, network operators often prefer not

to overhaul existing management tools and applications, including Operations Support

System and Business Support System (OSS/BSS) (XIE et al., 2017). The ETSI framework

does not force a change in these tools as part of the NFV transformation. Instead, it

encourages improving and developing tools and systems capable of utilizing the functional

blocks within the management architecture and reaping benefits like elasticity and agility.

The ETSI framework offers a solution in the form of the NFV Orchestrator, which extends

the current OSS/BSS functionalities and manages both the operational and deployment

aspects of VNFVI and VNF (GONZALEZ et al., 2018).

2.1.3 Message Flow in NFV Architecture

To provide a more comprehensive insight, Figure 2 illustrates the intricate interplay

among the core components of the ETSI architecture in the context of basic service

implementation. This process unfolds through the following steps:
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7. Upon the successful completion of VM creation, VIM acknowledges this achievement

and communicates the status back to NFVO.

8. NFVO promptly informs VNFM that the necessary VMs are ready, poised to facil-

itate the deployment of VxFs.

9. The VxFs block proceeds to configure the VxFs by specific parameters.

10. Following the successful configuration of the VxFs, VNFM notifies NFVO that the

VxFs are fully prepared, configured, and primed for immediate utilization.

2.2 Edge Computing and IoT

The concept of fog computing was introduced by industry and academia to address the

challenges mentioned in the last section and fulfill the demand for a computing paradigm

that operates near connected devices (PAN et al., 2018). Fog computing serves as a

bridge between the cloud and edge devices, facilitating computing, storage, networking,

and data management at network nodes situated at the network’s edge. It’s important to

emphasize that edge computing is not situated directly on IoT devices but is positioned

as close as a single network hop away from them (ADEGBIJA; LYSECKY; KUMAR,

2019). Therefore, within a local IoT network, the edge can sometimes extend beyond a

single network hop away from IoT devices.

2.2.1 Edge Computing

Edge computing represents a departure from the traditional centralized cloud com-

puting model, offering a geo-distributed approach that brings computing resources closer

to the network’s edge, where data is generated and consumed. The original concept of

cutting-edge computing is to provide computing, storage, and network resources close

to the user, following open standards and ensuring widespread accessibility (CAO et al.,

2020).

The core principles of edge computing can be summarized as follows:

1. Proximity to Data: Edge computing situates computational resources closer to

data sources at the network’s periphery. This minimizes latency and empowers

real-time data processing, making it well-suited for applications demanding rapid

response times (ADEGBIJA; LYSECKY; KUMAR, 2019).

2. Redundancy and Reliability: Edge systems often integrate redundancy and

fault-tolerance mechanisms to ensure high availability and reliability, even in chal-

lenging and unpredictable environments (BHARDWAJ; KRISHNA, 2021).
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3. Data Filtering and Analysis: Edge devices can filter, pre-process, and analyze

data at its origin. This reduces the volume of data requiring transmission to cen-

tralized cloud servers, lowering bandwidth demands (CAO et al., 2020).

4. Distributed Architecture: Edge systems adopt a distributed structure composed

of local processing nodes or devices. These nodes encompass a variety of com-

ponents, including IoT devices, edge servers, gateways, and more, enabling data

processing at the source (BHARDWAJ; KRISHNA, 2021).

It’s worth noting that while fog computing and edge computing both share the common

objective of relocating computing and storage resources toward the network periphery and

closer to end devices, it’s important to note that these paradigms are not synonymous.

According to the OpenFog Consortium, edge computing is often called fog computing.

However, they draw a distinction, highlighting that fog computing operates hierarchically,

delivering computing, networking, storage, control, and acceleration capabilities across a

wide spectrum, from IoT devices to the cloud. In contrast, edge computing typically fo-

cuses on cutting-edge computational tasks (CHIANG et al., 2017). Furthermore, Chiang

et al. (2017) articulate that "fog encompasses cloud, core, edge, customers, and things,"

emphasizing that fog computing aims to provide continuous support for cloud computing

services for IoT devices rather than treating network edges as isolated computing plat-

forms. They also stress that fog computing establishes a horizontal platform designed to

facilitate common fog computing functions across diverse sectors and application domains,

encompassing traditional telecommunications services and beyond.

2.2.2 Multi-Access Edge Computing

In the context of Edge Computing, Multi-Access Edge Computing, often referred

to simply as MEC, is a paradigm that extends the capabilities of edge computing to

support multiple access technologies, such as 4G, 5G, B5G, 6G, wired connections, and

so on. Unlike traditional cloud computing, where data is sent to distant data centers for

processing, MEC pushes computing power to the edge of the network, often within the

proximity of base stations or access points (closer to the point of data generation and

consumption) (SPINELLI; MANCUSO, 2021). This paradigm, formerly called Mobile

Edge Computing, has evolved beyond its initial focus on mobile-specific tasks, expanding

its scope to encompass a broader array of applications (MAO et al., 2017).

Both edge computing and MEC services operate at the periphery of the Internet,

functioning effectively even with limited or no Internet connectivity. However, MEC

differs in that it establishes connectivity through various networks, including WAN, WiFi,

and cellular connections. At the same time, edge computing is generally agnostic to

the type of connectivity (e.g., LAN, WiFi, cellular) (TALEB et al., 2017). The diverse

applications of MEC span a wide range of industries and use cases, including connected
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through virtualized infrastructure. Furthermore, SDN and NFV enable network engi-

neers and, potentially, enterprise application developers to create their orchestrators,

which coordinate resource provisioning across multiple layers (YALA; FRANGOUDIS;

KSENTINI, 2018).

2.2.3 Virtual MEC Application Functions

Virtual MEC Application Functions (VMAF) is a joint of concepts and technologies,

NFV and MEC, to use the VNF’s flexibility and programmability to enable MEC appli-

cations to be virtualized, which enables them to be easily deployed and scaled based on

end-users demands (SCIANCALEPORE et al., 2016). VMAFs is based in the Virtual

Mobile Edge Computing (vMEC) paradigm, which leverages cloud computing resources

to provide low-latency and high-performance services at the edge of the network and host

it at the fog/edge layer of the network using VNFs (NKENYEREYE et al., 2021).

One key function of VMAF applications is real-time data processing and analytics.

By processing data at the network’s edge, VMAF applications can reduce latency signifi-

cantly compared to traditional cloud computing approaches. This capability is crucial for

applications such as autonomous vehicles, augmented reality, and industrial automation,

where timely decision-making is imperative (CHAUDHRY et al., 2020). Dynamic resource

allocation is another important function of VMAF applications. These applications can

intelligently distribute computational resources to meet the varying demands of different

services and devices at the edge. This function optimizes resource utilization and ensures

that critical applications receive the necessary resources to operate efficiently, enhancing

the overall quality of service (SCIANCALEPORE et al., 2016).

Additionally, VMAF applications facilitate seamless mobility and connectivity. They

can seamlessly migrate and replicate services across different edge nodes, ensuring users

experience uninterrupted service even as they move within the network. This capability is

vital for applications like video streaming and online gaming, where continuity of service

is critical (NKENYEREYE et al., 2021). Security is another critical aspect of VMAF

application functions. These applications incorporate robust security measures to pro-

tect data and services at the edge. They can implement encryption, access control, and

threat detection mechanisms to safeguard against cyber threats, ensuring the integrity

and confidentiality of data processed at the edge.

Furthermore, VMAF applications support efficient content delivery. They can cache

and deliver content closer to the end-users, reducing the load on the core network and

minimizing latency. This function is especially beneficial for content-rich applications,

distribution networks, and online services, enhancing the user experience (MA et al.,

2022). Consequently, these functionalities underscore the pivotal role of VMAF as an

indispensable technology in shaping the future of edge computing.
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2.2.4 Internet of Things

The Internet of Things (IoT) has been outlined as "Things that have identities and

virtual personalities operating in smart spaces using intelligent interfaces to connect and

communicate within the social, environmental, and user contexts" (TAN; WANG, 2010).

It involves the integration of a multitude of devices and sensors into a coherent network,

enabling them to collect, transmit, and exchange data autonomously, ultimately facilitat-

ing real-time decision-making and control.

This area holds the promise of making a significant positive impact on the global

economy. Projections indicate that the global economic influence of IoT could range from

USD 2.7 trillion to 6.2 trillion by the year 2025 (AL-FUQAHA et al., 2015). It represents

a vast ecosystem encompassing an array of heterogeneous physical objects, ranging from

appliances and facilities to vehicles, farms, factories, and more. The primary goal of IoT

is to enhance the efficiency of numerous applications, spanning logistics, manufacturing,

agriculture, urban computing, home automation, assisted living, and real-time computing

(ALSHARIF et al., 2023).

This comprehensive network of interconnected objects has ushered in a new era of

connectivity and automation. Typically, an IoT system adheres to a cloud-centric ar-

chitecture known as the Cloud-centric Internet of Things (CIoT). In this architectural

framework, physical objects are resources managed by central servers (BHOLE et al.,

2023). Additionally, devices at the network’s periphery connect to the internet via inter-

mediary gateway nodes, including modems, routers, switches, cellular base stations, and

similar components (WU et al., 2021).

Despite the common utilization of the CIoT model in IoT implementations, this ar-

chitecture faces a set of burgeoning challenges in the IoT landscape:

1. Latency: Meeting stringent end-to-end latency control requirements poses chal-

lenges for the cloud, particularly in industrial smart grid systems, autonomous

vehicle networks, virtual and augmented reality applications, healthcare, and el-

derly care applications, where network latency can have detrimental consequences

(BHOLE et al., 2023).

2. Bandwidth: The exponential growth in high-frequency data rates generated by IoT

objects surpasses the current available bandwidth. For instance, a connected car

can produce tens of megabytes of data per second, encompassing route information,

speeds, vehicle conditions, driver status, environmental conditions, weather, etc.

Autonomous vehicles, in particular, can generate gigabytes of data per second due to

real-time video streaming, rendering exclusive reliance on a remote cloud impractical

(MINOVSKI; ÅHLUND; MITRA, 2020).
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3. Resource Constraints: Many IoT devices grapple with limited resources, hinder-

ing their ability to execute complex computational tasks and resulting in significant

energy expenditure for continuous data transmission to the cloud (BHOLE et al.,

2023).

4. Uninterrupted Connectivity: The substantial distance between the cloud and

IoT devices can lead to unstable and intermittent network connectivity issues. In

scenarios like CIoT-based vehicles, disconnections at intermediary nodes between

the vehicle and the distant cloud can impede proper functioning (WU et al., 2021).

5. Security: A substantial portion of IoT devices may lack sufficient resources to

defend against cyber-attacks. Devices reliant on the distant cloud for security soft-

ware updates can be targeted by attackers, who may also manipulate IoT devices

by sending counterfeit data to the cloud (Mohamad Noor; HASSAN, 2019).

In addressing the challenges mentioned above, key technologies such as edge comput-

ing, VNF, MEC, and VMAF emerge as pivotal solutions poised to fulfill the requirements

of IoT devices (YU et al., 2018). Consequently, IoT stands out as a main beneficiary

and consumer of the capabilities offered by edge computing. Ongoing IoT initiatives

hold the potential to bridge socioeconomic disparities, enhance the equitable allocation

of global resources to those in greatest need, and deepen our comprehension of the planet

(BUYYA; SRIRAMA, 2019). This, in turn, enables us to adopt a more proactive rather

than reactive stance, addressing edge computing solutions as a possible enabler.

A crucial aspect to highlight is that, in the context of the network’s edge and fog

environment, a significant attribute is its proximity to end users. This proximity exposes

it to human events and migrations and positions it as a facilitator for real-time, ultra-

low latency, and critical applications. However, this distinctive feature poses a notable

challenge, primarily due to the constrained availability of hardware in these environments.

Consequently, achieving optimal resource allocation becomes imperative to unlock the full

potential of this setup, which requires optimum auto-scaling solutions.

2.3 Machine Learning for Time-Series Forecasting

In the past decade, there has been a significant surge in interest in handling vast vol-

umes of data. This can be attributed to the widespread adoption of smart sensors and the

continuous data generation by social media platforms (PLAGERAS et al., 2018). How-

ever, this situation presents new challenges, including data storage on disks and providing

necessary computational resources. In this context, the field of big data analytics emerges

as a crucial process (SAGIROGLU; SINANC, 2013). It efficiently gathers, organizes, and

analyzes large datasets to uncover patterns and extract valuable insights.
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This area encompasses numerous research fields. Nevertheless, regression techniques

have recently gained significant popularity, primarily driven by advancements in ma-

chine learning-based architectures designed specifically to handle temporally indexed data

(LARA-BENITEZ; CARRANZA-GARCIA; RIQUELME, 2021). A prime example of this

trend is the application of regression methods to time series data, particularly in the do-

main of time series forecasting (AHMAD; CHEN, 2020).

2.3.1 Time-Series Forecasting

A time series is a sequence of values arranged chronologically and observed over time.

While time is a continuously measured variable, the values within a time series are sampled

at regular intervals, maintaining a fixed sampling frequency (CHATFIELD, 2003). Given

this definition, it’s challenging to identify any physical or chemical phenomena that don’t

involve variables changing over time. Consequently, developing time series forecasting

methods is valuable and prevalent across numerous scientific fields.

Time series models can be categorized as either univariate (involving a single time-

dependent variable) or multivariate (involving multiple time-dependent variables). For

univariate time series, let y = y(t − L), . . . , y(t − 1), y(t), y(t + 1), . . . , y(t + h) represent

a given time series with historical data comprising L values. Here, each y(t − i), for

i = 0, . . . , L, represents the recorded value of the variable y at time t− i. The forecasting

process involves estimating the value of y(t + 1), denoted as ŷ(t + 1), to minimize the

error, typically represented as a function of y(t + 1)− ŷ(t + 1). This prediction can also

extend to situations where the prediction horizon, h, is greater than one, i.e., when the

goal is to predict the next h values after y(t), denoted as y(t + i) for i = 1, . . . , h. In such

cases, the optimal prediction is achieved by minimizing the function:

h
∑

i=1

(y(t + i)− ŷ(t + i))2 (1)

On the other hand, multivariate time series can be represented in matrix form, as in

Equation 2, where yi(t −m) denotes a set of time series with i = {1, 2, . . . , n}. Here, m

ranges from 0 to L, as m = {0, 1, . . . , L}, encompassing historical data and the current

sample, and for the future h values, m = {−1,−2, . . . ,−h}. Typically, one time series

is designated as the target series (the one to be predicted), while the remaining ones are

called independent time series.
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Time-series forecasting, in turn, is a methodical approach employed to examine time

series data using statistical techniques and modeling to anticipate future trends and pro-

vide valuable insights for strategic decision-making (LIM; ZOHREN, 2021). It is impor-

tant to note that these predictions are not always precise, and the accuracy of forecasts

can vary significantly, particularly when dealing with variables that tend to fluctuate

frequently alongside external factors beyond our control (TORRES et al., 2021). Nev-

ertheless, forecasting offers valuable insights into the probabilities of different potential

outcomes. Generally, the more comprehensive and detailed the available data, the more

reliable the forecasts tend to be (CHATFIELD, 2003).

Time-series forecasting has many applications, to name a few: financial analysis

(SEZER; GUDELEK; OZBAYOGLU, 2019, 2019; YAN; OUYANG, 2017); energy and

fuels, such as for power system planning and operating (LI et al., 2019; WU et al.,

2019; SHAO et al., 2020); image and video analysis (ATTO; BENOIT; LAMBERT,

2020; WANG et al., 2019b; IENCO et al., 2019); industry, such as process planning

(MEHDIYEV et al., 2017), construction equipment recognition (RASHID; LOUIS, 2019)

or organization improvements (HUANG; ZANNI-MERK; CRéMILLEUX, 2019; WANG

et al., 2019a); and health care diagnosis and prognosis (CHAMBON et al., 2018; BUI et

al., 2018; ZEROUAL et al., 2020). Additionally, as investigated in this work, time-series

forecasting can be used to predict hardware resources for enabling predictive auto-scaling.

Time-series forecasting algorithms are diverse, each with distinct attributes and ap-

plications. Generally, they can be broadly categorized into three main groups: Statisti-

cal Methods, Regression-Based Algorithms, and Neural Networks (CHATFIELD, 2003).

Statistical Methods consist of algorithms that leverage mathematical operations on his-

torical data to forecast future values in the time series. Notable examples within this

category include well-known techniques such as AutoRegressive Integrated Moving Aver-

age (ARIMA) and Exponential Smoothing (ETS) (JAIN; MALLICK, 2017). Furthermore,

Regression-Based Algorithms and Neural Networks are components of machine learning-

based approaches, which play a central role in this study and will be explored further in

the subsequent sections.
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2.3.2 Machine Learning for Time-Series Forecasting

Machine Learning for Time-Series Forecasting is a cutting-edge and multidisciplinary

field combining machine learning algorithms’ power with the intricate dynamics of tempo-

ral data (ZHOU, 2021). Time-series forecasting is vital in various domains, from finance

and economics to weather prediction, energy consumption management, and industrial

production planning.

It involves predicting future values in a sequential data set based on historical ob-

servations, offering invaluable insights into patterns, trends, and potential changes that

influence a time-dependent variable (MAULUD; ABDULAZEEZ, 2020). The application

of machine learning techniques in this domain has revolutionized the accuracy and preci-

sion of forecasts, offering a dynamic framework to tackle complex, real-world challenges

where understanding and predicting temporal relationships are critical (ZHOU, 2021).

Within the realm of Machine Learning for Time-Series Forecasting, there is a diverse

range of algorithms and models, each catering to different data characteristics and fore-

casting goals. This field empowers organizations to unlock deeper insights from their data,

leading to optimized decision-making, resource allocation, and risk management (RONG;

BAO-WEN, 2018).

From traditional statistical methods like ARIMA and Exponential Smoothing to ad-

vanced neural network architectures like Long Short-Term Memory (LSTM) and convolu-

tional approaches, the toolkit for time-series forecasting is vast and adaptable (MAULUD;

ABDULAZEEZ, 2020). Given the breadth and diversity of this field, this study embarks

on a comprehensive comparison of various machine learning algorithms to identify the

most suitable candidate for the predictive auto-scaling framework. To this end, the com-

pared algorithms, Decision Trees (DT), Random Forest, and SVR will be discussed in this

section, and the ones based on deep neural networks will be discussed in the next section.

2.3.2.1 Decision Trees (DT) - Regression Trees

A decision tree, akin to a tree structure in computer science (KUNDU; BERTINO,

2008), exhibits a hierarchical arrangement featuring nodes interconnected by edges. It

effectively categorizes data by posing questions at each node branchingly. Regression

trees are a fundamental machine-learning technique for predictive modeling and data

analysis. They belong to the broader category of decision trees, which are versatile tools

for classification and regression tasks.

Regression Trees work by recursively partitioning the dataset into subsets based on

the values of input features and then assigning a numerical prediction to each subset.

Here’s a step-by-step explanation of how regression trees operate:

1. Selecting a Feature for Splitting: Constructing a decision tree commences with the

entire dataset at the root node. This algorithm assesses each feature to identify the
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optimal approach for dividing the data into subsets. The feature selection hinges

on a criterion, typically the reduction in mean squared error (MSE). The objective

is to pinpoint a feature and a partition point that minimizes the MSE within each

resulting subset.

2. Data Splitting: The data is segmented into subsets after determining the best feature

and partition point. Each subset represents a branch stemming from the current

node. For instance, when predicting house prices based on the number of bedrooms,

the data can be segregated into subsets like "bedrooms ≤ 3" and "bedrooms > 3."

3. Iterative Procedure: Constructing the tree extends recursively for each branch (child

node). The same methodology is applied at each child node to select the most

suitable feature and partition the data. This recursive process continues until a

predefined stopping criterion is met. Common halting conditions include reaching a

maximum tree depth, having insufficient data points in a node, or failing to achieve

a significant reduction in MSE.

4. Assignment of Predictions to Leaf Nodes: Once a terminal node or leaf node is

reached, i.e., when the stopping criterion is satisfied, the model assigns a numeric

prediction. This prediction usually corresponds to the mean or median of the tar-

get variable within the dataset associated with that leaf. This prediction is the

estimated value for the instances that lead to that leaf.

5. Traversal and Prediction: To generate a prediction for a new data point, it is tra-

versed through the tree by adhering to the decisions at each internal node, contingent

on the feature values of the data point. When it arrives at a leaf node, the prediction

linked to that leaf is employed as the final output.

As a Decision Tree algorithm, the Regression Tree is a robust and versatile tool suit-

able for classification tasks and datasets featuring non-linear relationships. It offers the

advantage of straightforward inference and the clear delineation of relationships between

variables, making it a relatively intuitive choice compared to some other algorithms (LOH,

2014). Furthermore, Decision Trees can automatically select features, particularly when

specific conditions are met, leveraging information gain (LOH, 2011). However, it’s more

susceptible to overfitting (LOH, 2014), a common issue in machine learning where a model

captures noise or intricacies in the training data to such an extent that it fails to generalize

well to unseen data, and due that, requests some additional steps to prevent the model

overfitting, as hyperparameter tuning, pre-pruning or post-pruning processes (BRAMER,

2013).
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2.3.2.2 Random Forest

Random Forest is an algorithm that combines multiple randomized decision trees

and synthesizes their predictions through averaging. It has demonstrated remarkable

effectiveness in scenarios where the count of variables greatly surpasses the number of

observations (BREIMAN, 2001).

Figure 4 – Random Forest trees structure (KHAN et al., 2021).

As presented in Fig. 4, the Random Forest is a robust ensemble learning algorithm

with a foundation in tree-based methods. It assembles a collection of decision trees, each

constructed from a randomly chosen subset of the training dataset. These trees work

in unison by casting their votes to determine the final class assignment for a given test

object. The Random Forest algorithm generates decision trees from diverse data samples,

accumulates predictions from each tree, and ultimately arrives at the most favorable

outcome through a voting mechanism.

To grasp the functioning of the Random Forest algorithm, we can break it down into

the following steps: (1) initiates with the random selection of samples from the dataset,

while (2) proceeds to construct a decision tree for each of these samples, subsequently

obtaining prediction results from every tree. Moving on to (3), the algorithm engages in

a voting process, where each predicted result contributes to the decision-making. Finally,

in (4), the algorithm culminates by selecting the prediction result that garners the most

votes as the ultimate prediction result.

Random Forest is a potent ensemble machine learning algorithm extensively employed



46 Chapter 2. Background and Related Work

in predictive tasks (BELGIU; DRAGUT, 2016). It excels at averting the problem of

overfitting, a common pitfall in single decision tree models, by aggregating predictions

from multiple trees and utilizing random data subsets for each tree, thereby exhibiting

a propensity for effective generalization on unseen data (SHEYKHMOUSA et al., 2020).

It also furnishes a valuable metric for gauging the significance of different features, facili-

tating feature selection, and enhancing interpretability. Furthermore, the parallelizability

of Random Forest is a notable advantage, making it well-suited for high-performance

computing and the analysis of large datasets (BELGIU; DRAGUT, 2016).

Nonetheless, the algorithm does come with certain drawbacks. Its computational de-

mands and time requirements can be substantial, especially when dealing with many

trees or features (SHEYKHMOUSA et al., 2020). This complexity can restrict its ap-

plication in real-time scenarios or resource-constrained environments. Moreover, Ran-

dom Forest may encounter challenges when handling imbalanced datasets, where the

majority class tends to dominate the feature selection process, potentially hampering

the model’s ability to learn from minority class samples (ANTONIADIS; LAMBERT-

LACROIX; POGGI, 2021). Additionally, the storage requirements can be onerous, par-

ticularly for models with many trees, posing potential difficulties in resource-constrained

settings (SHEYKHMOUSA et al., 2020).

2.3.2.3 Support Vector Regression (SVR)

Support Vector Regression (SVR) by (SCHOLKOPF; SMOLA, 2001) is a variant of

Support Vector Machines (SVM) and is designed to forecast continuous values, making use

of the concept of support vectors and aiming to find the optimal hyperplane to separate

data points. It manages the complexity of finding a hyperplane that best fits the data by

adding a penalty term to the error function and allowing a margin of error. To illustrate

this method using a linear model, let’s consider the prediction formula:

f(x) = wT x + b (3)

In this equation, w represents the weight vector, b denotes the bias, and x is the input

vector. For training data, where m = 1, 2, . . . , M , we have xm as the m-th training input

vector and ym as the corresponding target output. The error function is defined as:

J =
1

2
‖w‖2 + C

M
∑

m=1

|ym − f(xm)|ε (4)

Here, the first term in the error function penalizes model complexity, while the second

term is the ε-insensitive loss function. The ε-insensitive loss function, |ym − f(xm)|ε, is

defined as |ym− f(xm)|ε = max{0, |ym− f(xm)| − ε}. It does not penalize errors that fall
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below ε, providing some flexibility for parameter adjustments to reduce model complexity.

The optimal solution for minimizing the error function is as follows:

f(x)∗ =
M
∑

m=1

(α∗

m − αm)xT
mx + b (5)

Here, αm and α∗

m are Lagrange multipliers. Training vectors with non-zero Lagrange

multipliers are referred to as support vectors, a fundamental concept in SVR theory. Non-

support vectors do not directly influence the solution, and the count of support vectors

serves as a measure of model complexity (ZHANG; O’DONNELL, 2020).

This model extends to the nonlinear case through the use of the kernel function K,

resulting in the solution:

f(x) =
M
∑

m=1

(α∗

m − αm)K(xm, x) + b (6)

One common kernel is the Gaussian kernel (Assuming a width of σK (the standard

deviation of the Gaussian function)). However, to achieve optimal results, especially

when dealing with diverse and complex datasets, it is imperative to follow a meticulous

approach like the one outlined in this work. This approach involves carefully defining

hyperparameters, as exemplified in (YANG; SHAMI, 2020), experimenting with various

kernel functions to identify the one that most effectively captures the data’s underlying

patterns and relationships.

2.3.3 Deep Learning for Time-Series Forecasting

Deep Learning for Time-Series Forecasting represents a cutting-edge approach that

harnesses the power of artificial Neural Networks (NN) to decipher intricate temporal

patterns and deliver highly accurate predictions for sequential data (LIM; ZOHREN,

2021). This field has gained prominence due to its ability to handle complex time-

dependent relationships, making it a promising avenue for applications in finance, health-

care, weather prediction, and various other domains (TORRES et al., 2021). Deep learn-

ing models, such as Recurrent Neural Networkss (RNNs) and Long Short-Term Mem-

orys (LSTMs), can capture nuanced dependencies in time-series data, enabling orga-

nizations to make informed decisions and anticipate future trends with unprecedented

accuracy (LIM; ZOHREN, 2021).

Comparing Deep Learning with traditional Machine Learning approaches for time-

series forecasting reveals some fundamental distinctions. While both approaches aim to

make predictions based on historical data, deep learning models usually perform better in

handling long-range dependencies and intricate temporal relationships (AHMED et al.,

2010). Deep learning leverages the hierarchical structure of neural networks to uncover
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hidden patterns within data, which can be particularly advantageous when dealing with

intricate, multidimensional time-series data (TORRES et al., 2021). However, deep learn-

ing models tend to be computationally more intensive. They may require larger datasets,

making them most effective when dealing with complex, high-dimensional time-series data

where their capacity to capture intricate patterns shines. In contrast, traditional machine

learning methods are often more interpretable. They can be effective in scenarios with

less complex data patterns, but their performance may wane as data complexity increases

(LECUN; BENGIO; HINTON, 2015a).

In essence, the choice between deep learning and traditional machine learning for time-

series forecasting should be driven by the specific characteristics and requirements of the

data and the complexity of the forecasting task at hand (SHINDE; SHAH, 2018). This

is why this work conducts an empirical evaluation, comparing multiple machine learning

and deep learning algorithms to identify the most suitable for the proposed auto-scaling

application.

The toolkit for time-series forecasting based on deep learning is vast and adaptable

(MAULUD; ABDULAZEEZ, 2020), so this study embarks on a comprehensive compari-

son of various machine learning algorithms to identify the most suitable candidate for the

predictive auto-scaling framework. To this end, continuing to present the compared algo-

rithms, GRU, LSTM, Bi-LSTM, CNN-LSTM, Enc-Dec-LSTM, and Enc-Dec-CNN-LSTM

algorithms will be discussed in this section.

2.3.3.1 Gated Recurrent Unit (GRU)

In essence, Recurrent Neural Networkss (RNNs) are better suited for capturing rela-

tionships within sequential data types. The basic RNN, often referred to as the simple

RNN, incorporates a recurrent hidden state described by the equation:

ht = g(Wxt + Uht−1 + b) (7)

Here, xt represents the external input vector at time t with dimension m, ht signifies

the hidden state with dimension n, g is an element-wise activation function like the logistic

function, hyperbolic tangent function, or Rectified Linear Unit (ReLU), and W , U , and b

denote appropriately sized parameters, comprising two weight matrices and a bias vector.

Specifically, W is an n × m matrix, U is an n × n matrix, and b is an n × 1 matrix

(or vector). Capturing long-term dependencies with simple RNNs is challenging due

to the tendency of stochastic gradients to either vanish or explode in lengthy sequences

(LECUN; BENGIO; HINTON, 2015b). To address these issues, two specific models, Long

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), have been introduced

to mitigate the problems of vanishing and exploding gradients.
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essentially governed by the basic Equation (14), each having its distinct set of parameters

and replacing g with the logistic function. The logistic function confines the gating signals

to 0 and 1. The specific mathematical representation of the gating signals can be expressed

as vector equations:

it = σ(Wixt + Uiht−1 + bi) (15)

ft = σ(Wfxt + Ufht−1 + bf ) (16)

ot = σ(Woxt + Uoht−1 + bo) (17)

Here, σ denotes the logistic nonlinearity, and each gate comprises two matrices and

a bias vector as parameters. Consequently, the total number of parameters for the three

gates and the memory cell structure is as follows: Wi, Ui, bi, Wf , Uf , bf , Wo, Uo, bo, Wc, Uc, bc.

All these parameters are updated and stored at each training step.

The number of parameters in the LSTM model is four times greater than that in

the simple RNN model presented in Equation (7). Assuming that the cell state is n-

dimensional and the input signal is m-dimensional, the total parameters in the LSTM

RNN model can be expressed as 4 × (n2 + n ·m + n). However, numerous studies, such

as (SHEWALKAR, 2018), have indicated that the LSTM model outperforms a simple

RNN in most scenarios, mainly when dealing with long-term data sequences. This hap-

pens because, using the hidden state, LSTM can efficiently manage and learn using past

information and patterns.

2.3.3.3 Bidirectional LSTM (Bi-LSTM)

While the LSTM cell effectively leverages past information within a sequence to learn

data patterns and information, it cannot utilize future information. To clarify, within an

input sequence like [..., t − 2, t − 1, t, t + 1, t + 2...], at time x when the LSTM model is

evaluating the value at t, it is influenced by past values t − 1, t − 2, . . . and learns from

these historical patterns.

However, the LSTM architecture does not take advantage of the future information,

specifically t + 1, t + 2, . . ., which is already present in the dataset during this period

at time x. To address these limitations of the LSTM cell, in (SCHUSTER; PALIWAL,

1997), the authors introduced Bidirectional Recurrent Neural Networks (BRNN). The

BRNN comprises two distinct LSTM hidden layers that produce analogous outputs but

in opposing directions. This innovative architecture enables the incorporation of both

preceding and forthcoming information in the output layer.

Evolving this architecture, the Bidirectional Long Short-Term Memory (Bi-LSTM)

architecture, as presented in Fig. 7, consists of two unidirectional LSTMs that analyze
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Figure 7 – BI-LSTM architecture (XIANG et al., 2020).

a sequence in both forward and reverse directions. This arrangement can be thought of

as two distinct LSTM networks: one receives the input sequence in its original order,

while the other processes it in reverse (HUANG; XU; YU, 2015). Each LSTM network

generates a probability vector as its output; the ultimate result is a fusion of these two sets

of probabilities. In a Bi-LSTM, an input sequence X = (X1, X2, . . . , Xm) is computed

in both the forward direction, resulting in
−→
ht = (

−→
h1,
−→
h2, . . . ,

−→
hm), and in the backward

direction, resulting in
←−
ht = (

←−
h1,
←−
h2, . . . ,

←−
hn). The final output of this cell, denoted as yt,

in LSTM defined in equation (14), in Bi-LSTM is formed by combining both
−→
ht and

←−
ht .

Consequently, the final output sequence appears as y = (y1, y2, . . . , yt, . . . , yn).

In conclusion, Bidirectional LSTM can offers a versatile and powerful solution for

modeling sequences, its ability to capture long-range dependencies and make use of both

preceding and forthcoming information in the output layer, proved great adaptability in

handling complex architectures in works as in Siami-Namini, Tavakoli e Namin (2019),

Song et al. (2022), Raihan e Ahmed (2023).

2.3.3.4 Convolutional Neural Network LSTM (CNN-LSTM)

The Convolutional Neural Networks (CNN) is a neural network model introduced in

(LECUN et al., 1998). It is a type of Feedforward Neural Network (FNN), in which

the information is only processed in one direction, with connections between nodes not

forming cycles. CNN primarily consists of two key components: the convolution layer and

the pooling layer. Each convolution layer comprises multiple convolution kernels. After

the convolution operation in the convolution layer, data features are extracted. However,

these extracted features often have high dimensions. To address this issue and reduce the

network training cost, a pooling layer is typically added following the convolution layer to

decrease the feature dimensions. The formula for the convolution operation is given as:

lt = tanh(xt ∗ kt + bt) (18)
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the data and ensure its compatibility with the decoder network as input. This practice

is commonly adopted to prevent any contextual information from the encoder network

from unintentionally affecting the decoder network (BADRINARAYANAN; KENDALL;

CIPOLLA, 2017).

Encoder-decoder architectures, such as the Enc-Dec-LSTM, are particularly effective

for tasks involving sequences, where the input and output length can vary (WANG; SU;

DING, 2021). They have been successfully applied to various natural language processing

tasks, including machine translation, text summarizing, and image-to-text (where the

encoder encodes an image, and the decoder generates its textual description) or image-

related tasks (CHEN et al., 2018; SERBAN et al., 2017; CHO et al., 2014).

2.3.3.6 Encoder-Decoder CNN-LSTM (Enc-Dec-CNN-LSTM)

The Encoder-Decoder CNN-LSTM (Enc-Dec-CNN-LSTM), similarly to the last pre-

sented algorithm, Enc-Dec-LSTM, follows the encoder-decoder paradigm in deep learn-

ing. However, this architecture combines a CNN unit as the encoder component and an

LSTM unit as the decoder component. The concept behind this model is to harness the

strengths of a CNN-LSTM structure while incorporating the encoder-decoder framework

(VOSOUGHI; VIJAYARAGHAVAN; ROY, 2016).

This algorithm architecture is particularly effective for tasks involving long sequences,

multiple outputs, and classification (HAQUE; YOUSUF; RANA, 2018). It has been

successfully applied to various tasks, such as natural language processing (VOSOUGHI;

VIJAYARAGHAVAN; ROY, 2016), image denoising and restoration (HAQUE; YOUSUF;

RANA, 2018), and image forgeries detection (BAPPY et al., 2019).

2.4 Auto-Scaling and Resource Management

In today’s rapidly evolving technological landscape, where the demand for online ser-

vices and applications can strongly vary, auto-scaling and resource management have

become crucial (QU; CALHEIROS; BUYYA, 2018). Auto-scaling is a dynamic and adap-

tive approach to provisioning computing resources that allows systems to adjust their

capacity to meet changing workloads (MAO; HUMPHREY, 2011). This is a critical as-

pect for both cloud computing and edge-based systems, for example, IoT, VNFs, and

MEC applications. It enables efficient handling of fluctuations in user traffic and op-

timizing resource utilization while ensuring the stability and reliability of their services

(LORIDO-BOTRAN; MIGUEL-ALONSO; LOZANO, 2014a).
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2.4.1 Auto-Scaling

Cloud-hosted applications encompass a wide spectrum of systems, ranging from web

applications to batch jobs, map-reduce tasks, video streaming services, and many oth-

ers. To enable this vast extension, a key characteristic of cloud computing is elasticity

(DURAO et al., 2014). However, this attribute presents a duality, for while it empow-

ers applications to seamlessly scale resources up or down, aligning with the workload

demands, the fine art of resource allocation remains a complex challenge. The most de-

sirable item for this context would be a system that can autonomously and intelligently

adapt resources to the workload that an application handles while minimizing the need

for human intervention or even surpassing it (SRIVASTAVA; KHAN, 2018).

Both cloud-hosted and edge or fog-placed, as IoT devices, VNFs, and MEC applica-

tions imply a wide variety of applications that request dynamic resource management

and auto-scaling. For example: (1) IoT devices generate vast data, so an auto-scaling

mechanism is critical for handling the variable and often unpredictable loads generated

by these devices. A smart city, for example, with thousands of IoT sensors, may experi-

ence peaks in data flow during certain events or times of the day. Auto-scaling ensures

that the necessary computing resources are provisioned to process this data in real-time

(VERMA; BALA, 2021). (2) MEC brings computing resources closer to the network

edge, reducing latency and improving responsiveness. Auto-scaling is used to manage the

allocation of these edge resources. As the number of edge nodes or devices connecting to

MEC increases, auto-scaling ensures that sufficient compute capacity is available at the

edge to meet processing and storage needs. MEC can cache and deliver content at the

edge, reducing the load on central data centers. Auto-scaling is vital in ensuring that the

edge servers automatically scale up or down to handle content delivery requests efficiently,

especially during peak demand periods (LEE et al., 2021). (3) 5G introduces network

slicing, where a single physical network can be divided into multiple virtual networks

with different characteristics. Auto-scaling plays a crucial role in creating and managing

these network slices, allowing for dynamic allocation and optimization of resources based

on the unique requirements of each slice. 5G’s low latency capabilities enable real-time

communication, essential for autonomous vehicles and telemedicine applications. Auto-

scaling ensures that the computing infrastructure can respond to fluctuating data rates

and maintain low latency even during peak usage (REN et al., 2016).

Traditional, static provisioning methods often lead to over-provisioning, resulting in

underutilized resources and inflated costs, or under-provisioning, causing performance

bottlenecks and service disruptions during traffic spikes (HEINZE et al., 2014). Auto-

scaling addresses these challenges by enabling systems to adapt automatically, scaling

resources up or down as needed, thereby ensuring optimal performance, efficient resource

utilization, and cost-effectiveness (QU; CALHEIROS; BUYYA, 2018). Moreover, auto-

scaling gives the following benefits:
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❏ Optimal Resource Utilization: Auto-scaling ensures that computing resources

are used efficiently. It allows organizations to scale up during periods of high de-

mand and scale down during lulls, minimizing the waste of resources and reducing

operational costs.

❏ High Availability: Auto-scaling enhances system reliability by automatically ad-

justing capacity. If one part of the infrastructure fails, the system can quickly

recover by launching new instances or nodes, ensuring high availability.

❏ Improved Performance: Applications can maintain consistent performance levels

even during traffic spikes. Auto-scaling dynamically allocates additional resources,

such as more virtual machines or containers, to handle increased workloads.

❏ Cost Optimization: By scaling resources according to demand, organizations can

avoid overprovisioning, which can be expensive. Auto-scaling allows businesses to

pay for what they use and reduce infrastructure costs.

❏ Response to Dynamic Workloads: In scenarios with unpredictable workloads

or variable patterns, such as e-commerce websites during sales events, auto-scaling

adapts quickly to accommodate the changing traffic.

2.4.1.1 Auto-Scaling Types and Strategies

Resource scaling can take two primary forms: horizontal scaling and vertical scaling

(LORIDO-BOTRAN; MIGUEL-ALONSO; LOZANO, 2014a). In horizontal scaling, the

fundamental unit of resource adjustment is the server replica, typically running within a

Virtual Machine (VM). New server replicas can be seamlessly added or removed when

demand fluctuates to accommodate the workload variations. On the other hand, vertical

scaling, also known as scaling up or down, involves modifying resources allocated to an

existing VM, such as increasing or decreasing CPU power or memory allocation.

Auto-scaling can be implemented through various strategies tailored to specific use

cases and requirements. The most common strategies include but is not limited to:

❏ Reactive Scaling: This strategy responds to predefined threshold values, scaling

resources up or down when certain metrics cross critical levels. For example, if CPU

utilization exceeds 80%, additional VM instances may be provisioned.

❏ Predictive Scaling: Predictive scaling uses historical data and machine learning

algorithms to forecast future resource requirements. This approach is more proac-

tive, allowing systems to scale before performance degrades.

❏ Queuing theory: Queuing theory, a mathematical framework dedicated to the

precise analysis of waiting for lines or queues, plays a crucial role in modeling the
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behavior of systems. When a client request enters the system with an average arrival

rate of k, it is queued until it proceeds for processing. However, two primary draw-

backs are associated with the application of queuing theory (LORIDO-BOTRAN;

MIGUEL-ALONSO; LOZANO, 2014a). Firstly, it relies on certain assumptions

that may not always hold in real-time environments, making it less suitable for

practical applications. Secondly, queuing theory may not be the best fit for systems

that demand high levels of criticality.

❏ Scheduled Scaling: In situations where traffic patterns are known in advance,

scheduled scaling can be employed. This is one of the simplest strategies and allows

for automatically adjusting resources based on a predetermined schedule, such as

scaling up during peak business hours and down during off-peak times.

Additionally, some auto-scaling frameworks employ hybrid approaches, which use mul-

tiple strategies simultaneously or interspersed.

2.4.1.2 Auto-Scaling Components

The auto-scaling mechanisms often involve a combination of hardware and software

components that adjust resource allocation dynamically (CASTRO et al., 2019). Their

primary components include:

❏ Control Plane: The control plane manages the auto-scaling policies and triggers

the scaling actions. It takes inputs from the monitoring systems and applies prede-

fined rules and policies to determine when and how scaling should occur.

❏ Monitoring and Metrics: Various metrics and monitoring systems are employed

to determine when scaling actions are necessary. These could include CPU utiliza-

tion, memory usage, network traffic, or custom application-specific metrics.

❏ Scalable Resources: The scaled resources are typically virtual machines (VMs),

containers, or serverless functions. These resources are grouped into instances, and

scaling decisions affect these groups.

In the next sub-sections, we delve into these components, highlighting the main con-

cepts applied in this work. It is worth highlighting that this work proposes a solution

that plays a control plane role in the auto-scaling context.

2.4.2 Virtualization

The scalable resources for an auto-scaling mechanism are usually related, but not

limited, to virtualized instances. Scalable resource management refers to the ability to

dynamically allocate and distribute resources (such as computing power, memory, storage,
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and network bandwidth) as needed to meet the demands of an application or system (QU;

CALHEIROS; BUYYA, 2018). The primary goal is to ensure that resources are used

efficiently and that system performance remains optimal even when workloads change.

Aiming at these scalable requirements, virtualization is a main enabler once it em-

powers the simultaneous operation of multiple operating systems or applications atop a

solitary physical infrastructure. This technology accomplishes it by providing each appli-

cation an abstract representation of the hardware (MANSOURI; BABAR, 2021). Conse-

quently, these applications or operating systems can function in isolation while utilizing

the same hardware resources efficiently.

VNF started as a cloud enabler while many applications and predominantly all net-

work devices relied on proprietary and tailored software. The remarkable success of

server virtualization enticed network operators to explore this solution in edge environ-

ments (BEHRAVESH; CORONADO; RIGGIO, 2019). Consequently, this shift prompted

equipment suppliers and manufacturers to depart from the rigid confines of personalized,

single-purpose devices to a virtualized environment (BHARDWAJ; KRISHNA, 2021).

Nowadays, virtualization plays a vital role not only in the context of cloud computing

but also is fundamental to enable edge computing in NFV infrastructure and MEC en-

vironment (BEHRAVESH; CORONADO; RIGGIO, 2019). Therefore, an auto-scaling

application can leverage the broad utilization of virtualization mechanisms to use them

as scalable resources.

Virtualization can be consolidated using Full, Paravirtualization, Hardware-Assisted,

and OS-level virtualization (SIERRA-ARRIAGA; BRANCO; LEE, 2020). These last two

showed themselves as the most prominent scalable resource (KUKADE; KALE, 2015) and

have virtual machines and containerization as the main examples. These technologies are

broadly applied in cloud and edge computing and are commonly used as scaling objects

of auto-scaling solutions. However, the choice of virtualization technologies can have pros

and cons and impact the overall performance results of the auto-scaling frameworks. To

this end, we delve into both technologies in the following sections.

2.4.2.1 Virtual Machines (VMs)

Virtualization establishes a segregated virtual hardware environment where an oper-

ating system or application operates independently. This resulting environment is com-

monly called a Virtual Machine (VM) (ZHANG et al., 2018). As highlighted in Fig. 10

(left image), the VM environment comprises three key components: the hypervisor (or

virtual machine manager), the host operating system, and the guest operating system (or

server).

The host operating system, often termed the host OS, runs directly on the physical

hardware, must support virtualization, and has the necessary applications installed (TAO

et al., 2019). The host OS maintains full visibility over the complete hardware resources
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2020).

Container-based virtualization is an OS-level virtualization technique that offers a

controlled, confined, and segmented environment for running applications within a host

operating system (CASALICCHIO, 2019). As pictured in Fig. 10 (right image), different

from VMs, containers virtualize at the operating system level, sharing the host operating

system’s kernel and abstracting the user space, allowing multiple containers to run on the

same OS instance. The ability to employ this form of virtualization stems directly and

originates in the concerted efforts to establish kernel-level support for isolation between

applications (BESERRA et al., 2017).

Containers are highly efficient in resource utilization once they have a smaller footprint

and share resources with the host OS, making it possible to run many containers on

a single host (POTDAR et al., 2020a). This characteristic is particularly interesting

for auto-scaling (even more so in IoT and MEC contexts once they often face resource

constraints), as it allows a more cost-effective scaling to meet changing workloads and

ensures optimal resource utilization in dynamic computing environments.

Therefore, due to this match of better resource utilization and shorter starting time

with the objectives of the desired framework, in this work, we target and use container-

ization as the virtualization technology and scaling unit in the comparisons.

2.4.3 Monitoring and Metrics

One of the main factors for optimum resource management and auto-scaling is the

quality of the monitored metrics (SUKHIJA; BAUTISTA, 2019). Moreover, gaining in-

sights into the condition of a system is of utmost importance in guaranteeing its de-

pendability and equilibrium. Access to information regarding a system’s well-being and

efficiency enables teams to respond promptly to issues and bolsters security when imple-

menting service modifications (TURNBULL, 2018).

One of the most effective approaches to understanding the system is based on robust

monitoring that compiles metrics, visualizes data, and alerts operators whenever anoma-

lies are detected (SUKHIJA; BAUTISTA, 2019). The four key indicators of monitoring

(BEYER et al., 2016), are as follows:

❏ Latency: Latency quantifies the time required for a system to respond to a re-

quest or execute a specific operation. This parameter holds particular significance

for systems that demand real-time responsiveness. Elevated latency can indicate

performance bottlenecks or limitations in available resources, potentially resulting

in an unsatisfactory user experience.

❏ Traffic: Monitoring traffic encompasses tracking the volume of data or requests

traversing a system. Sudden surges in traffic can exert pressure on system resources

and lead to performance degradation. By vigilant surveillance of traffic patterns,
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teams can preemptively adapt their infrastructure to accommodate increased work-

loads.

❏ Errors: Errors constitute a fundamental component of system well-being. Moni-

toring the frequency of errors, whether they manifest as application errors, network

glitches, or system malfunctions, is imperative for promptly identifying issues need-

ing attention. Elevated error rates may signify software glitches, network distur-

bances, or hardware malfunctions demanding immediate resolution.

❏ Saturation: Saturation denotes the degree to which system resources, such as CPU,

memory, or disk space, are in use. Monitoring resource saturation aids teams in

comprehending when their infrastructure is nearing its capacity thresholds. Timely

identification and mitigation of resource saturation can forestall system failures and

uphold seamless operations.

2.4.3.1 Prometheus

Prometheus is an open-source monitoring system centered around metrics (TURN-

BULL, 2018). Developed primarily in Go and distributed under the Apache 2.0 license,

Prometheus is characterized by its simple yet powerful data model and a query language

that facilitates the analysis of application and infrastructure performance (SUKHIJA;

BAUTISTA, 2019). One of Prometheus’s distinguishing features is its data model, which

uniquely identifies each time series using a name and an unordered set of key-value pairs

called labels. This innovation allows for aggregation based on any of these labels, enabling

analysis by various attributes such as process, data center, or user-defined service labels

(TURNBULL, 2018).

"Prometheus simplifies metric exposure through a straightforward text format, elim-

inating the need for complex configurations or manual metric definitions. Additionally,

Prometheus leverages PromQL, a powerful query language, for creating alerts and dash-

boards, streamlining the monitoring process (SABHARWAL; PANDEY, 2020). This con-

trasts with other monitoring systems requiring individual alerts for each machine or ap-

plication. Furthermore, Prometheus integrates seamlessly with visualization tools like

Grafana (GRAFANA, 2023a), enabling comprehensive monitoring of metrics and alerts

through user-friendly dashboards.

Prometheus stands out for its efficiency and simplicity. A single Prometheus server

can handle millions of data samples per second (TURNBULL, 2018). It’s a single, stat-

ically linked binary accompanied by a configuration file. All Prometheus components

are container-friendly and seamlessly integrate with existing infrastructure, eliminating

complexities that can impede configuration management tools. Importantly, Prometheus

is designed to be an integral component that integrates with the existing infrastructure

rather than being a standalone management platform (CHEN; XIAN; LIU, 2020).
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Being a metrics-centric monitoring system, Prometheus’ core purpose is to oversee

systems’ holistic well-being, behavior, and performance rather than becoming entangled

in individual events (TURNBULL, 2018). This alignment with auto-scaling principles

places it as an essential tool for enabling optimal resource management systems.

2.5 Related Work

This section presents approaches that relate to and underlie our solution. The de-

ployment process in NFV and MEC contexts faces significant challenges, including the

resource allocation required by the VNFs or MEC applications.

In Lorido-Botran, Miguel-Alonso e Lozano (2014b) a comprehensive survey about the

auto-scaling techniques is presented and authors suggested that the majority of the works

can be classified into one or more of the following categories: threshold-based rules, re-

inforcement learning, control theory, queuing theory, and time series analysis. In Yu,

Yang e Fung (2020), the current state of the art on VNF resource allocation is discussed,

highlighting the fundamental research challenges and introducing a classification of the

main approaches that offer solutions to address them. It categorizes the auto-scaling tech-

nologies into four categories: threshold-based rules (reactive auto-scaling), reinforcement

learning, control and queuing theories, and time series analysis (predictive autoscaling).

The following sections are structured utilizing these same categories for a better anal-

ysis.

2.5.1 Reactive Auto-Scaling

In the reactive approach, previous works can be divided into two main categories based

on how threshold levels are defined: statically pre-defined, commonly based on threshold

rules, or dynamically updated, usually based on reinforcement learning, control theory,

or queue theory.

2.5.1.1 Threshold-based Rules

The approach involves the authors defining performance metrics and predetermined

scaling thresholds to trigger a scaling action. The authors commonly define two threshold

levels, namely scale− int and scale− outt), to determine whether the load reduces below

or exceeds the respective limits, thus triggering the scaling process accordingly. In Han

et al. (2012) authors presented a lightweight approach based on predefined utilization

thresholds of CPU usage to satisfy QoS response time requirements rules, aiming for auto-

scaling of cloud applications. In Dutta, Taleb e Ksentini (2016) proposed a scalability

mechanism that enables cloud-native 5G systems to dynamically and automatically scale

up or down resources of a virtualized environment based on static thresholds. However,



64 Chapter 2. Background and Related Work

such approaches may result in oscillating behavior, mainly when dealing with a spiky

workload, where there is a high variance of the metrics, which can present a high response

time to respond to a change in the workload, affecting the overall system performance.

2.5.1.2 Reinforcement Learning, Control Theory, and Queue Theory

On the other hand, some other works address the limitations of fixed threshold-based

rules, proposing mechanisms that allow the scaling policies to be updated based on dy-

namic or adaptive thresholds. This context’s main enabling technologies and methods are

Reinforcement Learning, Control Theory, and Queue Theory.

Reinforcement Learning (RL) is a methodology that enhances a policy concerning a

given objective by interacting with an environment, where an agent perceives the state of

the environment, takes actions that modify the state of the environment, and receives a

reward signal based on those actions (MATSUO et al., 2022). Works using this strategy

mainly implement a trial-and-error approach to learn each state’s most suitable scaling

action. In Arteaga, Risso e Rendon (2017) and Horovitz e Arian (2018), the authors pro-

posed algorithms based on Q-Learning. This model-free off-policy reinforcement learning

tries different thresholds and learns their optimal values, enabling dynamic auto-scaling

according to the application’s behavior. In Lu, Yu e Pan (2022), the authors enable the

use of reinforcement learning with the Semi-Markov Decision Process (SMDP), modeling

an auto-scaling algorithm for elastic cloud workflow, which enables automatic scaling of

cloud workflow services in advance and adapts to changes in traffic earlier. However, de-

spite its benefits, RL algorithms have drawbacks such as extended training duration and

suboptimal to poor performance until a satisfactory solution is achieved and learned.

In the auto-scaling context, control theory is used to design controllers that can adjust

the resources allocated to a system based on its workload. The controller receives inputs

such as the current workload, resource utilization, and performance metrics and produces

outputs such as the number of instances to add or remove (DIAO et al., 2005). In

Padala et al. (2009), the authors propose an automated control framework for managing

multiple virtualized resources in a data center environment. Their approach is based

on a control theory framework, which enables the system to automatically adjust the

allocation of resources in response to changes in workload demand. The validation results

showed particularly good results where workloads can be highly dynamic. In Kalyvianaki,

Charalambous e Hand (2014), the authors presented a scheme incorporating the Kalman

filter into control theory feedback controllers to dynamically allocate CPU resources to

virtual machines. The validation results showed that the proposed controller can self-

configure itself with a 4.8% performance penalty in high-intensity workload changes.

On the other hand, the queue theory deals with the analysis of waiting lines and how

to optimize them. It can be used to analyze the arrival rate of requests, the service

time, and the utilization rate of resources, and with that is possible to determine the
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expected waiting time for requests and the capacity required to handle them efficiently

(YADUVANSHI; SHARMA; MORE, 2019). In Huang et al. (2016), authors used queuing

theory to model the web application’s behavior in VMs and learn the system’s performance

under different traffic loads. The proposed approach involved monitoring metrics related

to the web application, such as the number of requests per second, response time, and

queue length, and using them to estimate the arrival rate and service rate of the system,

which are then used to calculate the expected queue length and response time. Based on

these calculations, the system can determine whether to add or remove VMs to maintain

the desired performance.

In Shahin (2017) authors propose a queuing-theory-based approach that can allocate

resources to Software as a Service (SaaS) applications in response to changes in demand,

the approach involves modeling the SaaS application as a queueing system, where requests

are represented as arriving customers and resources are represented as servers. Based on

this model, the authors derive analytical expressions for performance metrics, such as

response time and throughput, which can be used to optimize the allocation of resources.

The authors then used these expressions to develop a dynamic resource allocation algo-

rithm to adjust the number of servers based on current demand and workload.

However, although these approaches, based on dynamic and adaptive thresholds, per-

form better than static approaches, they remain reactive solutions with similar weak-

nesses.

2.5.2 Predictive Auto-Scaling (Time Series Analysis)

The predictive mode utilizes forecasting techniques, such as time series analysis and

time series forecasting, to enable systems to learn historical sequences and anticipate

future needs, using these predictions to make scalability decisions. This approach is de-

signed to address the limitations of reactive auto-scaling, which can result in delays in

scaling up or down and may lead to the over-provisioning of resources (BHARANIDHA-

RAN; JAYALAKSHMI; MAYILVAHANAN, 2022). Predictive auto-scaling utilizes pre-

dictive analytics and machine learning techniques to forecast future demand and adjust

resources accordingly. This approach analyzes historical usage data to identify patterns

and trends in demand. Based on this analysis, machine learning models are trained to

forecast future demand and resource needs. Predictive auto-scaling algorithms then use

these forecasts to adjust the system’s allocated resources proactively (PETROPOULOS

et al., 2022). This allows the system to scale up or down before anticipated demand

changes, minimizing delays and improving resource utilization.

A thorough examination of various machine learning models for time series forecast-

ing was presented in Bontempi, Taieb e Borgne (2013), which included SVMs, artificial

neural networks, and K-Nearest Neighbors (KNN) regressor. There is already a consider-

able amount of literature in the 5G domain that explores using machine learning models
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for time series forecasting, which is then used to predict traffic loads and enable VNF

autoscaling.

In Alawe et al. (2018), the authors introduced the application of DNN in the VNF

requirement prediction field, proposing an LSTM model to learn and predict the future

resource needs for a 5G core Access and Mobility Management Function (AMF). This one

ensures User Equipment (UE) authentication, authorization, and mobility management

in a 5G core network. They trained a model using a collected network dataset, validated it

using a discrete event simulator to simulate the traffic, and compared it with the threshold-

based solutions. In a similar vein, the authors in Moradi, Ahmadi e Nikbazm (2022),

compared multiple machine learning algorithms, including Support Vector Regression

(SVR), Decision Tree (DT) and KNN using a real dataset of collected VNFs metrics.

In Kim et al. (2019b), the authors proposed a prediction machine learning model based

on CAT-LSTM, that uses a single model to analyze the entire Service Function Chaining

(SFC) and predict the future resource demand of a VNF. The analysis of the results

showed how SFC data can aid in forecasting the resource consumption patterns of VNFs.

Still, this approach presupposes a strong, stable, and constant relationship between VNFs

in the SFC. Similarly, in Scalingi et al. (2019), using months of Internet traffic requests,

the authors trained and compared the performance of LSTM, Gated Recurrent Unit

(GRU) and Arima machine learning algorithms. Moreover, they introduced a prototype

architecture based on the docker framework to evaluate the algorithms.

In Zaman, Rahman e Naznin (2019), proposed VNF requirement prediction based on

DNN and LSTM networks employing Synthetic Minority Oversampling Technique and

Batch Normalization layer to address the issue of an imbalanced dataset. They also

examined the effect of varying feature vector sizes and the number of hidden layers on

prediction accuracy. Additionally, they introduced and assessed the efficacy of hybrid

LSTM models such as CNN-LSTM and Bi-LSTM models. Likewise, in Tao et al. (2021),

a prediction model based on LSTM is designed to predict resource demands in NFV-

enabled Clouds. Additionally, exploring some cost minimization models and flow routing,

the authors proposed a polynomial algorithm based on the Markov chain to find the

near-optimal solution for the VNF scaling routing.

2.5.3 Auto-scaling Frameworks

Auto-scaling is an increasingly important feature for modern applications. It is a crit-

ical feature for cloud-based and 5G edge applications, enabling them to respond dynam-

ically to changes in demand while ensuring optimal performance and resource utilization

(VERMA; BALA, 2021).

In the cloud, auto-scaling is a key feature of commercial cloud platforms such as

Amazon Web Services (AWS) (AWS, 2023) and Google Cloud Platform (GCP) (GOOGLE,

2023b) with solutions like Kubernetes (KUBERNETES, 2023). These platforms allow



2.5. Related Work 67

users to define scaling policies based on CPU utilization, network traffic, and queue

length metrics. They can scale resources in terms of vertical and horizontal elasticity

in response to changes in these metrics. However, a limitation of these commercial solu-

tions is that they are limited to be used with the underlying infrastructure for monitoring

and managing associated with themselves.

In the case of the AWS Auto Scaling (SCALING, 2023), this one provides a reactive

scaling based on thresholds defined by the user policies and can offer a predictive scaling

that will learn patterns if the metrics are exported to CloudWatch (an AWS log solution),

and only is available for some metrics like CPU and memory and is restricted run a pro-

cess every day to use the previous 14 days of data to create an hourly forecast for the next

48 hours (DOCS, 2023). Moreover, Kubernetes Horizontal Pod Autoscaler (HPA) is used

by Google Kubernetes Engine (GKE) in GCP to decrease or increase the number of Pods

in response to workload’s CPU and memory demand (KUBERNETES-DOCS, 2023),

and has some open-source projects like Predictive Horizontal Pod Autoscaler (PHPA)

(THOMPSON, 2019) that enable predictive auto-scaling. Nevertheless, Kubernetes suf-

fers the same limitations, requiring monitoring and managing tools to be the solutions

provided by the framework and limiting the available metrics that can be used in the

auto-scaling process.

Similarly, in the 5G edge domain, auto-scaling is becoming increasingly important

for applications that run at the network edge, where resource constraints and latency

requirements make it challenging to meet changing demand patterns (DUC et al., 2019).

One example of a 5G edge application that mostly requires auto-scaling functionality

is the MEC platform. MEC allows developers to run applications at the network edge,

providing low-latency access to essential resources and services for functionalities like

video streaming applications, augmented reality applications, and autonomous vehicle

applications (CRUZ; ACHIR; VIANA, 2022). In this approach, most solutions are offered

or integrated into network service orchestration tools. The principal is the Open Source

MANO (OSM) (OSM, 2020a) is an open-source orchestrator from ETSI that provides

VNFs life-cycle management, offering a service architecture based on containers that bring

modularity to the solution. However, in the auto-scaling context, OSM only offers a

reactive auto-scaling feature based on thresholds that are limited to a few telemetry

metrics like CPU, memory, disk usage, and network packet and only when using some

specific tools such as VIMs (OSM, 2020b) and does not offer predictive approaches to

estimate future workload demand and adjust resources accordingly.

Likewise, in the search and academic work context, a considerable amount of literature

proposes different mechanisms and frameworks to enable the auto-scaling of applications.

Following, we describe a short survey containing some of these.

In Zafar et al. (2022) proposed a framework based on OpenStack components with

Gnocchi and validated the efficacy of using Gnocchi in a VNF auto-scaling scenario, show-
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ing better results when compared to the legacy Ceilometer configuration in OpenStack

in terms of storage size, memory utilization in processing and management of metrics,

and delay in alarm evaluations. The authors in Nicodemus, Boeres e Rebello (2020) in-

troduced VEMoC, a container-based tool incorporating vertical memory elasticity. Their

approach monitors the recent memory consumption for each instance. It uses linear equa-

tions based on minimum and maximum memory thresholds to predict the future memory

need without affecting the containers’ performance.

In Vu et al. (2020), the auto-scaling placement and flow migration got more atten-

tion. The authors explore the NF state transfer and flow migration in NFV auto-scaling,

proposing a framework that handles these functions, adding elasticity to the VNF coor-

dinated control. Moreover, they use OpenStack with a Kubernetes driver to handle the

scaling and managing processes. However, the proposed solution does not handle predic-

tive approaches. Similarly, in Al-Dhuraibi et al. (2017) authors proposed ElasticDocker, a

tool based on IBM’s autonomic computing MAPE-K principles, to enable an autonomous

vertical elasticity for Docker containers. Their system scales up and down both CPU and

memory container resources according to application workload. However, the proposed

system does not support predictive approaches to estimate future workload demand and

adjust resources accordingly. Similarly, the paper Bharanidharan, Jayalakshmi e May-

ilvahanan (2022) introduces a framework for predictive horizontal scaling of Kubernetes

pods using custom metrics and orchestration through Kubernetes and using an approach

that leverages LSTM to predict future demand. However, it uses a predefined dataset

and does not handle the monitoring and data acquisition process.

2.5.4 State of the art summary

Table 1 highlights a comparative analysis of the diverse solutions identified within the

state-of-the-art literature, visually describing the aforementioned works. Several aspects

were examined for each proposal. First, the solution’s approach can be Threshold-based

Rules, Reinforcement Learning, Control Theory, Time Series Analysis, or Policies. Second

and third, if the works provide or not auto-scaling reactive and prediction mechanisms.

Fourth, the contribution category, as a Research Contribution (work only proposes a

concept or idea, without practical implementation), a Research Project (work implements

and validates an auto-scaling solution restrained to a specific scenario, not applicable to

the market), or an Autoscaling Tool (work provides a full functional auto-scaling tool).

Fifth, the main technologies applied in the solution. Sixth, if the work has mechanisms

to handle changes in workload patterns, such as new training in predefined intervals or

continuous learning. Seventh, for cases where the solution provides a predictive approach

based on AI models, this column shows the utilized approach, which can be a single model

or, in the case of this work, a multi-model approach. Eighth, the solution’s architecture,

if it’s a monolithic or distributed. And finally, eighth, where the target applications are
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placed in the network.
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Table 1 – State of the art summary.

Approach
Reactive
Autoscal-

ing

Predictive
Autoscal-

ing
Category Enabling

Technologies

React to
Changes

in
Workload
Pattern

AI
Model

Ap-
proach

Archi-
tecture

Applications
Network
Placing

Han et al.
(2012)

Threshold
Rules ¥ ○ Research

Project
Static

thresholds - - Monolithic Cloud / Core

Dutta, Taleb
e Ksentini

(2016)

Threshold
Rules ¥ ○ Research

Project
Static

thresholds - - Monolithic Edge

Arteaga,
Risso e
Rendon
(2017)

Reinforcement
Learning ¥ ○ Research

Project

Q-Learning and
Gaussian
Processes

- - Monolithic Edge

Horovitz e
Arian (2018)

Reinforcement
Learning ¥ ○ Research

Project Q-Learning - - Monolithic Cloud / Core

Lu, Yu e Pan
(2022)

Reinforcement
Learning ¥ ○

Research
Contribu-

tion

Semi-Markov
Decision

Process (SMDP)
- - - Cloud / Core

Padala et al.
(2009)

Control
Theory ¥ ○ Research

Project Control Theory - - Monolithic -

Kalyvianaki,
Charalam-

bous e Hand
(2014)

Control
Theory ¥ ○

Research
Contribu-

tion

Control Theory
and Kalman

Filter
- - - -

Huang et al.
(2016)

Queue
Theory ¥ ○ Research

Project Queue Theory - - Monolithic Cloud / Core

Shahin
(2017)

Queue
Theory ¥ ○ Research

Project Queue Theory - - Monolithic Cloud / Core

Alawe et al.
(2018)

Time Series
Analysis ○ ¥

Research
Contribu-

tion
LSTM - Single

Model - Edge

Moradi,
Ahmadi e
Nikbazm
(2022)

Time Series
Analysis ○ ¥

Research
Contribu-

tion

SVR, DT and
KNN - Single

Model Monolithic Edge

Kim et al.
(2019b)

Time Series
Analysis ○ ¥

Research
Contribu-

tion
CAT-LSTM - Single

Model - Edge

Scalingi et al.
(2019)

Time Series
Analysis ○ ¥

Research
Contribu-

tion
GRU - Single

Model - Edge

Zaman,
Rahman e

Naznin
(2019)

Time Series
Analysis ○ ¥

Research
Contribu-

tion

LSTM,
CNN-LSTM

and
Bidirectional-

LSTM

- Single
Model - Edge

Tao et al.
(2021)

Time Series
Analysis ○ ¥ Research

Project LSTM - Single
Model Monolithic Cloud / Core

EC2/ECS -
AWS (2023),

Scaling
(2023)

Threshold
Rules and

Time Series
Analysis

¥ ¥ Autoscaling
Tool

Static
Thresholds and

Proprietary
AI-Based
Algorithm

New
training

every 24h

Single
Model - Cloud / Core

GKE -
Google

(2023b),
Kubernetes

(2023),
Thompson

(2019)

Threshold
Rules and

Time Series
Analysis

¥ ¥ Autoscaling
Tool

Static
Thresholds and

Linear
Regression or
Holt-Winters
Smoothing

New
training

every 24h

Single
Model - Cloud / Core

OSM (2020b) Threshold
Rules ¥ ○ Autoscaling

Tool
Static

Thresholds - -
Monolithic

/ Dis-
tributed

Edge

Zafar et al.
(2022)

Threshold
Rules ¥ ○ Autoscaling

Tool
Static

Thresholds - - Monolithic Edge

Nicodemus,
Boeres e
Rebello
(2020)

Threshold
Rules ¥ ○ Autoscaling

Tool
Static

Thresholds - - Monolithic Edge

Vu et al.
(2020)

Threshold
Rules ¥ ○ Autoscaling

Tool
Static

Thresholds - - Monolithic Edge

Al-Dhuraibi
et al. (2017) Policies ¥ ○ Autoscaling

Tool
MAPE-K
principles - - Monolithic Edge

Bharanidharan,
Jayalakshmi
e Mayilva-

hanan (2022)

Time Series
Analysis ○ ¥ Research

Project LSTM and GRU - Single
Model Monolithic Cloud
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Chapter 3

Resource Auto-Scaling For Everything

Resource management in NFV and MEC environments is a complex and critical aspect

that involves efficiently utilizing computing, storage, and networking resources to ensure

cost-effectiveness Quality of Service (QoS). Network Functions Virtualization (NFV) im-

plements Virtual Network Function (VNF)s, which are software-based network functions

that can be deployed and orchestrated in virtualized environments. In contrast, Multi-

Access Edge Computing (MEC) brings computation and storage capabilities closer to

end-users at the network edge. By combining VNF and MEC technologies, organizations

can benefit from improved flexibility, agility, and reduced latency for various applica-

tions and services. However, this integration also brings numerous resource management

challenges that must be addressed for successful deployment and operation.

One of the primary challenges in VNF and MEC resource management is handling

dynamic workloads (HAIBEH; YAGOUB; JARRAY, 2022a). The demand for services

and applications can fluctuate rapidly due to user behavior, time of day, and special

events. As a result, resource allocation must be able to adapt in real-time to meet these

varying demands. Failure to allocate resources dynamically can lead to performance

bottlenecks, service degradation, and dissatisfied users. Moreover, as the number of VNFs

and MEC applications grows, the resource management system must scale accordingly to

accommodate the increased demand (LLORENS-CARRODEGUAS et al., 2021).

Designing effective resource allocation policies is vital to optimizing resource utilization

in VNF and MEC environments. Resource allocation policies determine how resources

are distributed among different VNFs and MEC instances based on priority, Service Level

Agreements (SLAs), and QoS requirements. Creating policies that prioritize critical net-

work functions and latency-sensitive applications while ensuring fair resource allocation

for less demanding workloads is a challenge that requires careful consideration and con-

tinuous refinement (QU; CALHEIROS; BUYYA, 2016).

Moreover, energy efficiency is an increasingly critical resource management aspect

in VNF and MEC environments (ETEMADI; GHOBAEI-ARANI; SHAHIDINEJAD,

2021). Optimizing resource usage to minimize energy consumption becomes essential
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with the growing focus on sustainability and reduced carbon footprints. Resource man-

agers must incorporate dynamic power management, workload consolidation, and other

energy-efficient strategies into their resource management practices. This is especially

more complex in VNF and MEC environments, which, due to the heterogeneous hard-

ware landscape of the edge domain, can introduce further complexity into resource man-

agement (SAHNI; VIDYARTHI, 2017). Different edge servers and devices have varying

capabilities, making it challenging to optimize resource allocation to meet the unique

requirements of different VNFs and MEC applications. Efficient resource management

should consider the capabilities and limitations of diverse hardware to maximize perfor-

mance and cost-effectiveness.

Resource management strategies should also include failure detection and recovery

mechanisms. Failures can be inevitable in a distributed and dynamic environment like

in NFV and MEC. To handle that, the resource management system should be able to

detect failures promptly and automatically recover using strategies such as redistributing

workloads to healthy instances to maintain service continuity and minimize downtime

(VINAY; KUMAR, 2016). Moreover, achieving cost-effective resource management is a

fundamental challenge in NFV and MEC deployments (SINGH et al., 2019). Balancing

performance requirements with cost considerations demands sophisticated resource op-

timization algorithms and continuous resource usage and demand patterns monitoring.

Cost optimization is crucial, especially in large-scale VNF and MEC deployments, where

efficient resource utilization can significantly impact operational expenses (ETEMADI;

GHOBAEI-ARANI; SHAHIDINEJAD, 2021).

3.1 Challenges Addressed

Designing an auto-scaling mechanism that can properly handle the dynamism of both

the edge and cloud environments is challenging due to the substantial differences between

edge infrastructure and traditional cloud infrastructure (ARABNEJAD et al., 2017).

Three intrinsic characteristics distinguish their development: Firstly, traditional cloud

computing primarily relies on high-performance servers and networks concentrated in a

few centralized locations. On the other hand, edge computing, specifically when dealing

with NFV and IoT infrastructures, often face constraints in the available hardware re-

sources. This presents a significant obstacle to employing efficient yet resource-intensive

techniques for auto-scaling, such as utilizing machine-learning-based algorithms to predict

future resource consumption. Secondly, Multi-Access Edge Computing (MEC) infrastruc-

ture comprises a diverse array of heterogeneous resources, each with distinct capacities,

reliability, and usability. This heterogeneity introduces challenges in ensuring uniform

monitoring and management and achieving optimal resource utilization. Lastly, edge

computing resources, especially within IoT, NFV, and MEC environments, exhibit re-
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markable dynamism. They frequently enter and exit the network based on various fac-

tors such as service usage, failures, policies, and maintenance operations. As a result,

the auto-scaling system must be adaptable and responsive to cater to these ever-changing

conditions.

Aiming these challenges, the study is divided into two main parts. The first part

focuses on selecting the most suitable forecasting algorithms for the proposed applica-

tion. To achieve this, a comprehensive investigation of various time series forecasting

algorithms based on ML is conducted. Multiple datasets obtained from VNF monitor-

ing, encompassing diverse trends, seasonality, sizes, and features, are employed to assess

the key factors influencing the prediction performance. Moreover, several experiments

are carried out to address the dynamic nature of edge environments, involving the im-

plementation and training of each algorithm using different forecasting approaches and

variations. These experiments aim to determine the performance of the algorithms in

common scenarios encountered in edge computing. The overall results are compared to

identify the algorithms integrated into the proposed auto-scaling framework.

In the second part, this work proposes and evaluates the RAFE (Resource Auto-scaling

For Everything), a novel framework to address the auto-scaling challenges of both edge

and cloud applications. This solution combines reactive and predictive methods to ensure

optimal scaling decisions. Moreover, it introduces a core concept that effectively handles

hardware resource constraints through the distributed execution of deep-learning model

training and resource-consuming tasks. It introduces a diverse set of tools designed to

address the dynamic nature of edge and cloud environments. A multi-univariate-models

approach is applied to achieve optimum results and keep a low time for training the

model. A re-validation mechanism is also introduced to effectively manage the workload

pattern changes inherent in network environments. This comprehensive suite of tools

aims to optimize the performance and adaptability of auto-scaling in these complex and

ever-changing contexts.

The first part, termed "Algorithms Selection", is discussed in detail in the following

section and the second part, referred to as the "RAFE Architecture", is presented in

sequence.

3.2 Algorithms Selection

This first phase centers on selecting the optimal predictive algorithms tailored to dis-

tinct scenarios encountered in time series forecasting of hardware resources within Edge,

MEC, and IoT environments. This entails a thorough investigation of diverse machine

learning-driven time series forecasting algorithms and the conduction of a series of exper-

iments. These experiments encompass the deployment and training of each algorithm,

employing diverse forecasting methods and variations to effectively address the dynamic
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nature of edge environments.

These processes are presented in this section as follows: (i) the datasets derived from

VNFs monitoring, covering a wide range of trends, seasonal patterns, sizes, and attributes,

which were chosen to evaluate the key factors that can impact the predictive accuracy;

(ii) the pre-processing techniques applied to each dataset and for each evaluated sce-

nario/variation, to prepare the data and improve the results; (iii) the compared ML-based

time series forecasting algorithms; (iv) the different variations of time series forecasting

approaches evaluated in this work, and why they were chosen due to their impact in

the auto-scaling; (v) the hyperparameter optimization processes applied to find the op-

timal configurations for each algorithm in each scenario; and finally, (vi) the simulation

environment built to compare the algorithms and the metrics used to this comparison.

3.2.1 Datasets

Two datasets were used in this work to validate the impact of the data used in the

training process on the algorithm’s performance. The first comprises a few samples with

multiple features (fewer rows but many columns), and the other has many samples with

fewer features (many rows but fewer columns). Table 2 highlights their differences and

summarizes each dataset’s number of samples and features. This discrepancy allowed us

to measure the impact in each algorithm of having less or more data and fewer or more

features to be processed in the training process.

Table 2 – Datasets composition in the number of samples and features.

Samples Features

KDN 755 86

BONO 177,038 5

The first dataset, referred to as the KDN dataset, was provided in Mestres et al.

(2017) and comprises the monitoring results of three distinct VNFs: OVS, Firewall, and

Snort. OVS is a versatile virtual switch with multiple implemented network interfaces

and protocols. The Firewall acts as a traffic regulator for incoming and outgoing network

traffic, enforcing predefined security policies. Additionally, the Snort system functions as

an intrusion detection system. The dataset utilized in this study includes 86 input features

that capture various traffic characteristics such as port number, source IP, destination IP,

and more. The output variable of interest is the measured CPU usage. For this work,

we have focused exclusively on the Firewall dataset comprising 755 samples. Figure 11

illustrates the utilized univariate form of this dataset, using the CPU feature.

The second dataset, referred to as the BONO dataset, was provided in Bendriss (2018)

and is the output of monitoring a Clearwater stack. Clearwater is an open-source envi-

ronment based on VNF, that utilizes SIP as a call control mechanism for voice and video
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In this work, we analyze and compare multiple ML-based algorithms across various

scenarios, considering the number of input features and exploring univariate and multivari-

ate settings. To ensure the datasets align with each scenario’s requirements, appropriate

adjustments are made. In the univariate variations, where the datasets are composed of a

single feature, we specifically use the CPU metric for the KDN dataset (depicted in Fig.

11) and the number of network packets per second for the BONO dataset (depicted in

Fig. 12). For the multivariate variations, we utilize all features of each dataset available

after the preprocessing.

Dataset Decomposition: To split the datasets, we adopt a 70%:20%:10% rule-of-thumb

approach for both datasets. We allocated 70% of the data as training datasets, 20% as

validation datasets, and the remaining 10% as test datasets. This decomposition ensures

a balanced distribution of data for training, validating, and evaluating the performance

of our models.

3.2.2 Data Preprocessing

Data preprocessing plays a crucial role in machine learning, impacting the perfor-

mance and accuracy of models (MAHARANA; MONDAL; NEMADE, 2022). It involves

preparing and transforming raw data into a suitable format that learning algorithms

can effectively utilize. By performing tasks such as data cleaning (handling missing val-

ues, noise, outliers, and inconsistencies), data integration (merging data from multiple

sources), data transformation (normalizing or discretizing data), and data reduction (se-

lecting relevant subsets), data preprocessing helps to enhance data quality, reduce noise,

and remove inconsistencies (RAMÍREZ-GALLEGO et al., 2017).

In this work, we initiated the preprocessing phase by implementing a data integration

step exclusively for the BONO dataset. This dataset presented a unique challenge as

its data was distributed across multiple files, one for each metric. To address this, we

consolidated information related to CPU usage, memory utilization, network usage in

bytes, and the count of network packets into a unified source. This process was executed

by grouping the data based on timestamp values, ensuring consistency across all sources

within the BONO dataset. Moreover, a data-cleaning procedure was also applied to the

BONO dataset. The missing values were statistically estimated by computing the mean

of the nearest values in the sequence, thereby enhancing the overall data quality.

Furthermore, we applied data normalization processing for both datasets, BONO and

KDN, using a minimum-maximum re-scaling approach. We employed a min-max scaler,

independently translating each feature to a predefined range between -1 and 1. The

rescaling process was accomplished by applying the following formula to each feature:

Xscaled =
X −min(X)

max(X)−min(X)
× (b− a) + a (19)
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where X represents the original feature values, min(X) and max(X) denote the mini-

mum and maximum values of the feature, and a and b represent the desired range (−1 and

1 in this case). This systematic normalization ensures uniformity, improves the compa-

rability of features, and preserves the relationships between data points (MAHARANA;

MONDAL; NEMADE, 2022). This normalization was deemed necessary due to the dis-

parate scales and units of features present in both datasets.

In the concluding phase of the preprocessing pipeline, exclusive to the BONO dataset,

we opted for a simplification approach to speed up the training processes. This involved

re-sampling the dataset at 15-minute intervals, a departure from its original 30-second

interval configuration. The re-sampling process entailed selecting the maximum value

within each period.

3.2.3 Algorithms

In this work, we selected nine algorithms categorized into three distinct groups: Clas-

sical Machine Learning Algorithms, Neural Networks, and Encoder-Decoder Neural Net-

works. Within machine learning, these algorithms embody supervised learning processes

that leverage statistical techniques and methodologies to discern patterns and formulate

predictions from data (RAY, 2019). Examples of these machine learning algorithms in-

clude, but are not limited to, K-Nearest Neighbor, Support Vector Machines, Decision

Trees, and Logistic Regression.

Neural Networks (NN) algorithms represent a class of machine learning models in-

spired by the structure and function of biological brain networks. Comprising intercon-

nected nodes known as artificial neurons or "units," these networks are organized into

layers. Each unit receives inputs, applies weights, conducts computations, and forwards

the output to the subsequent layer (SAMEK et al., 2021). Notable examples of NN al-

gorithms include Multilayer Perceptron (MLP), CNN, RNN, and LSTM. Additionally,

encoder-decoder neural network algorithms constitute specific variations within the neu-

ral network framework. They comprise two integral components: an encoder, responsible

for condensing input data into a latent representation, and a decoder, tasked with gener-

ating the desired output based on the encoded representation (CHEN et al., 2017). Ex-

amples of encoder-decoder neural network architectures include Encoder-Decoder LSTM

and Encoder-Decoder CNN-LSTM.

The chosen algorithms can be summarized as:
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Table 3 – Compared machine learning algorithms.

Algorithm Category

Random Forest Classical

Decision Trees (DT) Classical

Support Vector Regression (SVR) Classical

Gated Recurrent Unit (GRU) Neural Network

Long Short-Term Memory (LSTM) Neural Network

Bi-LSTM Neural Network

CNN-LSTM Neural Network

Encoder-Decoder LSTM Enc-Dec Neural Network

Encoder-Decoder CNN-LSTM Enc-Dec Neural Network

3.2.4 Time Series Forecasting Modalities/Variations

In the realm of time series forecasting, especially concerning resource prediction, the

preparation and organization of data involve several approaches, as highlighted in a study

by Lim et al. (LIM; ZOHREN, 2021). The most pertinent options include: (1) Structuring

monitored metrics as univariate or multivariate datasets. (2) Executing predictions in

either a single-step or multi-step fashion. (3) Approaching the problem by modeling it

using either regression or classification methodologies.

Univariate datasets consist of a single variable or feature, distinct from multivariate

ones encapsulating multiple variables or features. Univariate analysis is dedicated to com-

prehending the distribution and patterns of a single variable, while multivariate analysis

delves into understanding the relationships between variables and their mutual influences

(GARIBO-MORANTE; TELLEZ, 2021).

Moreover, predicting in a single-step manner involves forecasting the value of a time

series at a single future time point based on past values. This method, also known as one-

step ahead prediction or autoregression (AN; ANH, 2015), is characterized by its focus on

immediate future values. In contrast, multi-step prediction entails forecasting the values of

a time series over multiple future time points, referred to as k-step ahead prediction. This

method is inherently more challenging, requiring the model to capture nuanced patterns

and trends in the data while making reasonable assumptions about future behavior (AN;

ANH, 2015). Multi-step prediction often demands more sophisticated models and larger

datasets for effective training.

Approaching the time series forecasting problem as a supervised learning task involves

regression or classification approaches. Regression is employed to predict continuous

values, such as prices or probabilities, based on input variables (FAOUZI, 2022). For
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example, predicting the price of a house based on its size, number of bedrooms, and

location. On the other hand, classification is used to predict discrete class labels, such

as types of objects or document categories (FAOUZI, 2022). An illustrative instance of

classification is predicting whether an email is spam or not based on its content.

Table 4 – Variations

Features Prediction Steps Task Type

1 univariate one-step regression

2 multivariate one-step regression

3 univariate multi-step regression

4 univariate one-step classification

Therefore, to assess the efficacy of each algorithm as a time series forecasting model,

it is imperative to implement and compare their performance across different variations.

Each algorithm was consequently instantiated in four distinct variations in this study, as

detailed in Table 4.

In our initial and foundational variation, we employ a univariate dataset to predict

a single step into the future, treating the task as a regression problem. This variation

establishes the baseline for our analysis.

Moving to the second variation, we delve into the multivariate perspective, investigat-

ing the impact of utilizing multiple features as inputs rather than a singular feature. This

consideration proves crucial in scenarios where the forecasted output is contingent upon

multiple variables. For instance, incorporating historical CPU and memory consumption

data becomes indispensable when predicting the number of VNF instances.

The third variation explores the multi-step approach, evaluating the efficacy of pre-

dicting multiple steps rather than just one. This variation can potentially reduce the

number of interactions with trained models, easing the burden on monitoring solutions.

Accurately forecasting multiple future steps diminishes the necessity for frequent input

compositions. This leads to enhanced efficiency and reduced computational overhead—a

significant advantage for real-world IoT, MEC or Edge applications.

Lastly, the fourth variation transforms the forecasting problem into a classification

rather than a regression task. This exploration assesses the effect of predicting discrete

class labels instead of continuous values, simplifying the forecasting solution. This ap-

proach proves particularly useful in scenarios with well-defined classes, such as in less com-

plex residential IoT infrastructures, where the range of possible instances to be predicted

is limited. By adopting a classification approach, we leverage the inherent categorization

of the data, streamlining the forecasting process and facilitating decision-making.

Examining the algorithms across these diverse variations allows us to gauge how each

algorithm adapts to the scenarios encountered by IoT and edge devices. This comparative
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analysis facilitates the assessment of the versatility and suitability of each algorithm in

different contexts, providing insights into its strengths and weaknesses. Moreover, it

presents an opportunity to identify a potentially universal algorithm that performs well

across all scenarios or to determine which algorithm excels in specific contexts.

3.2.5 Hyperparameter Optimization

To find the optimal parameters for a neural network model, an exhaustive explo-

ration of hyperparameters is imperative to achieve accurate predictions for a given input.

Our methodology employed techniques such as grid search and babysitting, conducting

a systematic search within the hyperparameter space. This approach entailed methodi-

cally testing different combinations of hyperparameters to identify the configuration that

yields the best results for each model. By leveraging these techniques, we ensured a thor-

ough exploration of the hyperparameter space, striving to determine the most suitable

configuration.

In the case of classical machine learning algorithms, distinct hyperparameters may

be necessary owing to their reliance on diverse statistical structures. Throughout this

process, the parameters considered for the Decision Tree and Random Forest algorithms

encompassed the number of estimators, the maximum number of features, the maximum

depth, and the bootstrap (if the method for sampling data points is based on replacement).

Parameters such as the kernel, gamma, C, and epsilon were considered for the Support

Vector Regression algorithm. The ensuing section delineates the specifics of our search

space for these algorithms:

RANDOM-FOREST and DT:

❏ Number of Estimators: 200 to 2000 in intervals of 200.

❏ Max Features: sqrt, log2, and auto.

❏ Max Depth: 10 to 100 in intervals of 10, or None.

❏ Bootstrap: True or False.

SVR:

❏ Kernel: rbf, poly and sigmoid.

❏ Gamma: 1, 0.1, 0.01 and 0.001.

❏ C: 0.1, 1, 10 and 100.

❏ Epsilon: 0.05 and 0.1.

For the algorithms based on neural networks, the parameters considered during this

process included the number of hidden layers and nodes per layer, the batch size, the
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learning rate, the regularization parameter (as a dropout probability), the activation

function, and the loss function. For the encoder-decoder-based algorithms, aiming to find

the optimal structures, as they involve the combination of two networks (an encoder and a

decoder), the hidden layers and nodes per layer hyperparameters in the search space were

duplicated, allowing independent configuration of these parameters for each network. The

following provides an overview of the search space we explored to determine the optimal

hyperparameters:

NEURAL NETWORKS:

❏ Hidden layers: 1 to 5.

❏ Nodes per layer: 32, 64, 128, or 256.

❏ Learning rate: 0.01, 0.01, or None.

❏ Batch size: 32, 64, or 128.

❏ Dropout probability: 0.2 or 0.5.

❏ Activation functions: tanh or linear.

❏ Loss function: mean squared error or mean absolute error.

Aiming to determine the optimal values for the combination of input data and fore-

casting structure, each algorithm’s hyperparameter tuning processes were iterated 8 times.

This repetition was conducted individually for each prediction modality/variation, and

this entire procedure was replicated for each dataset.

3.2.6 Algorithm Comparison

Upon determining the optimal configurations for each algorithm and scenario, we

embarked on 10 model training iterations for each of the 72 variations. These variations

combined 9 algorithms, 4 forecasting structures, and 2 datasets, resulting in 720 models.

This extensive training allowed us to discern the best-performing model for each problem.

In evaluating the models, we considered metrics such as Mean Squared Error (MSE)

and Mean Absolute Error (MAE) for regression models and Accuracy and Cross-Entropy

for classification models. Additionally, we meticulously calculated and recorded the Time

to Train and the Time to Prediction for each iteration. This comprehensive analysis

enabled us to gauge the average time required to train a model and the average time for

a trained model to generate predictions when given input data.

Implementation of classical machine learning algorithms in this study was executed

using Scikit-learn (PEDREGOSA et al., 2011). Meanwhile, neural-network-based algo-

rithms were implemented using TensorFlow (ABADI et al., 2016) and Keras (CHOLLET
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et al., 2015). Scikit-learn, often called sklearn, is a Python library for machine learn-

ing that provides an extensive array of tools and algorithms for tasks ranging from data

preprocessing to model evaluation. In contrast, TensorFlow is an open-source library con-

centrating on neural networks and deep learning. When coupled with Keras, it furnishes

a user-friendly and efficient high-level API for defining neural networks, incorporating

various pre-defined neural layers like dense, recurrent, and convolutional layers.

All training and comparison processes were conducted within distinct virtual machines

hosted and managed on the Google Cloud Platform (GCP) (GOOGLE, 2023b). Each

process operated in its isolated instance, equipped with 2 virtual CPUs (vCPUs) and 8GB

of memory. This approach ensured dedicated and independent resources for seamless and

reliable computations.

3.3 RAFE

In this section, we delve into the second phase of our work, focusing on the RAFE

(Resource Auto-scaling For Everything) framework. The solution proposes a holistic tech-

nique combining responsive auto-scaling, facilitated by threshold-based regulations, and

proactive auto-scaling through sophisticated time series analysis. The framework inte-

grates a distributed architecture, self-training mechanisms, auto hyperparameter defini-

tion, distributed learning, and a revalidation mechanism to accomplish this.

The ensuing discussion unfolds structured: (i) Problem Statement: A comprehensive

exploration of the challenges at hand, offering an overview of the proposed solution and

how it seamlessly integrates to address and resolve the auto-scaling problem. (ii) RAFE

Architecture: A detailed examination of the RAFE framework’s architecture, shedding

light on its structural design and the pivotal components that empower its robust auto-

scaling capabilities. (iii) Reactive Auto-scaling Approach: Elaboration on the reactive

auto-scaling methodology, outlining how the framework promptly responds to fluctuations

in demand through threshold-based regulations. (iv) Predictive Auto-scaling Approach:

In-depth insight into the predictive auto-scaling approach, elucidating how the framework

anticipates future resource requirements using advanced time series analysis. (v) Config-

urability: A thorough exploration of how RAFE can be configured, providing a practical

understanding of the framework’s adaptability and customization options.

3.3.1 Problem Statement

Consider a 5G mobile network with multiple base stations, each one equipped with

a resource-constrained ME Host that is capable of hosting VNF or MEC applications.

Assume that this, as a generic MEC application, is hosted on the ME Host in a virtual

machine or a container (in this work, we will only consider applications hosted on con-

tainers in reason of the best performance presented by this approach in terms of resource





84 Chapter 3. Resource Auto-Scaling For Everything

required. This prediction then instructs the resource allocation mechanism to add or

remove instances to meet the forecasted number.

To ensure compliance with the ETSI-NFV architecture, RAFE’s auto-scaling modules,

including their embedded resource allocation mechanism/algorithm, must communicate

with the orchestrator, donated MANO in this domain, which is responsible for resource

allocation in this NFV architecture (MECHTRI et al., 2017). The auto-scaling modules

contact this orchestrator to add or remove VNF instances. Conversely, in a cloud envi-

ronment, this resource allocation process proposed for RAFE can be seamlessly executed

by substituting the MANO and ETSI-NFV architecture components with a container or

virtual machine manager, such as Kubernetes Engine (KUBERNETES, 2023) or Elastic

Container Service (AWS, 2023).

The subsequent section will delve into RAFE’s architecture and implementation de-

tails.

3.3.2 Architecture

Each implemented module that composes the RAFE framework is presented in this

section, and details of their implementations are discussed. However, due to the com-

plexity, the reactive and the predictive auto-scaling modules are discussed in detail in

the following sections, where dedicated focus is given to each. The RAFE’s architecture

is visually depicted in Fig. 14, offering insight into the interconnected modules. These

modules are categorized as follows:

Reactive and Predictive Modules: At the framework’s core lie the reactive and predic-

tive auto-scaling modules, serving as the pivotal components responsible for driving scale

decisions. The synergy between these two modules gives rise to the hybrid approach.

Supporting this core functionality, the additional modules serve as supplements, collec-

tively enhancing the overall performance and functionality of the auto-scaling framework.

Due to their complexity, we delve into a detailed examination of their structures and

implementations in the subsequent sections.

Northbound Interface (NBI): Defined as an interface facilitating communication with

a higher-level component (SHI; ZENG; WU, 2020), the northbound interface in this ar-

chitecture takes the form of an API constructed using Flask (GRINBERG, 2018). This

API is designed to expose services that enable the management and monitoring of the

application. Beyond its role in application oversight, the northbound interface serves as a

communication channel between the application and the workers. Through strategically

defined endpoints, the interface allows workers to request past metric values, transmit

trained models, and register the completion of the training process.

Metric Reader: This module serves as a versatile abstraction designed to facilitate

communication with diverse monitoring systems, time series databases, or any entity

responsible for storing past metric values. Its primary responsibilities include querying





86 Chapter 3. Resource Auto-Scaling For Everything

Despite its nomenclature, this module extends its utility beyond MANO connections. It

offers compatibility with any orchestration tool capable of managing target application

instances and executing scale-in and scale-out actions as needed. Providing an abstrac-

tion layer, the MANO Interactor Module accommodates diverse MANOs or orchestration

mechanisms by implementing plugins. These connections require the definition of four

essential methods: one to retrieve the current number of instances for a given VNF or

MEC application, and three others that effect changes in the instance count—namely,

scale-in (decrementing the instance count by one), scale-out (incrementing the instance

count by one), and scale-to (adjusting the instance count to meet a specified number).

This module’s flexibility is demonstrated through common integration cases, such as OSM

(ETSI, 2016a) for edge applications—a project aligned with ETSI’s NFV architecture and

Kubernetes Engine or Docker for cloud or server applications. Notably, in this study, a

Docker and a OSM connector plugin were implemented, facilitating interaction between

this module and the container management engine to execute scale actions seamlessly.

Cron Manager: Given the recurrent and scheduled nature of the reactive and predic-

tive modules, a dedicated module was crafted to oversee these processes as scheduled jobs

efficiently. Leveraging the APScheduler (APSCHEDULER, 2012) library, this module

enables the queuing of Python code execution, offering the flexibility to run tasks as soon

as possible, at specified future times, or on a recurring schedule (SOOSAI; JAGDALE,

2014). Notably, the module stands out for its utilization as a scheduler library that sup-

ports CRON syntax, an integral feature enhancing flexibility and simplifying the definition

of application configurations. Beyond task scheduling, this module takes charge of the

persistence and recovery of scheduled arrangements, a critical aspect of the resilience of

the RAFE framework. This capability ensures that data and processes can be recovered

without loss in case of failures, allowing fast and concise failure recovery. Every scheduled

and recurrent process within RAFE, including the periodic evaluations of all auto-scaling

mechanisms, is managed and triggered by this module.

Config Loader: The proposed architecture envisions a singular instance of RAFE

overseeing auto-scaling operations for multiple applications (which can be VNFs, MEC

applications, cloud-hosted apps, etc.) simultaneously. Moreover, it uses a multiple models

approach, which will be discussed in the following sections, which train and output mul-

tiple models for each application. Given this multiplicity, a robust configuration system

must accommodate extensive setups and facilitate the required elasticity. This module

allows the configurations to be set statically, at startup-time and during runtime. It

achieves this by initially loading the configurations from a YAML syntax or receiving new

configuration updates through the NBI. This least, provides a convenient means to specify

and modify settings without necessitating a restart. Finally, operating as the custodian of

configurations within RAFE, this module oversees a spectrum of settings, including con-

nection strings for integrated monitoring tools, identifications of the target applications,



3.3. RAFE 87

multiple metrics for each application, intervals for scaling evaluations, thresholds, and

auxiliary parameters vital for configuring auto-scaling mechanisms. The Config Loader

efficiently loads and exposes these configurations to other modules in a structured for-

mat designed for easy consumption. A config file example is presented in the following

sections.

Storage: In pursuit of resilience and monitorability, RAFE necessitates the persistent

storage of the target applications settings, metrics, schedule configurations, and training

results. To fulfill this requirement, the Storage Module establishes a layer atop an SQLite

Database, a dependable, self-contained, C-language library implementing a small yet fully-

featured SQL database engine (SQLITE, 2000). RAFE’s architecture also integrates with

a Redis database, capable of in-memory storage and disk persistence through point-in-time

snapshots or the Append Only File (AOF) persistence option. However, the decision was

made to opt for SQLite. This choice was driven by a desire to mitigate data loss in case

of failures and to prevent potential performance degradation from operation slowdowns

associated with the AOF persistence option (TANG; FAN, 2016). Therefore, tasked with

handling read, update, write, and delete operations within the database, the Storage

Module extends its role to provide storage as a service to all other modules, ensuring

seamless interaction with the persistent data layer.

Monitoring: Dedicated to overseeing the RAFE’s architecture, the Monitoring Module

provides essential visibility into predicted values, scale decisions, and overall metrics. This

functionality is instrumental in managing and assessing the applications within the frame-

work. The Monitoring Module leverages a Prometheus Node Exporter (EXPORTER,

2015) to expose the generated RAFE’s metrics. These metrics are then scraped and re-

tained by a Prometheus instance, enabling consumption by analytic tools or facilitation for

network operator handling. While not within the scope of this work, it’s noteworthy that

for visualizing the metrics outputted by this module, we employ Grafana (GRAFANA,

2023a) as a dashboard monitoring tool. Through this integration, we created charts that

track RAFE results and performance, enhancing the accessibility and interpretability of

the monitored data.

Worker: Time series forecasting poses inherent challenges, particularly with lengthy

sequences. Deep Learning (DL) algorithms offer notable advantages in tackling such fore-

casting tasks, given their ability to automatically handle and learn temporal dependencies

and structures (LECUN; BENGIO; HINTON, 2015b). However, it’s crucial to acknowl-

edge that the training process for these models can be a resource-intensive task (ZHANG;

QI, 2005). The Worker Module was introduced to maintain RAFE’s core lightweight and

leverage the benefits of distributed and scalable training processes. Operated indepen-

dently from the core application, the Worker Module adopts an event-driven mechanism

structured around Celery (CELERY, 2013), a flexible distributed queue system, and uti-

lizes a Redis database (REDIS, 2009) as a broker for event coordination. This architec-
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with the specified thresholds to support the scaling decisions. The module in RAFE

responsible for this process is the Reactive Auto-Scaling Module. As presented in Fig.

15, it initiates by loading the interval I, configured by the operator, for each configured

target application (which can include VNF, MEC or a cloud application). This interval

dictates when the reactive auto-scaling process will execute. As an example, a predefined

interval with CRON syntax such as */1 * * * * triggers the reactive procedure every

minute."

At each execution, the reactive auto-scaling process adheres to the steps outlined in

Figure 15, encompassing the following key actions: (i) Manage and Trigger Procedure:

Utilizing the CRON Manager, the procedure is managed and triggered at regular intervals

(I). (ii) Retrieve Metrics and Scaling Criteria: Through the Config Loader Module, all

relevant metrics linked to the assessed VNF/MEC/cloud application are fetched. Addi-

tionally, the module retrieves the scaling criteria, specifying the configured thresholds for

scaling in or out. (iii) Read Current Metric Values: Armed with the knowledge of metrics

and their retrieval methods, the Metric Reader Module is employed. This module con-

nects to the designated metric storage, such as Prometheus Storage, to request the latest

values for each metric. (iv) Compare Metrics and Make Scaling Decision: Each metric

value is compared with the defined scale-in and scale-out thresholds in the scaling criteria.

A scaling decision is reached through the decision algorithm, which will be elaborated in

detail later in this section. (v) Interact with MANO Module: The MANO Interactor

Module is engaged to initiate a scale-out or scale-in action. This action increases or

decreases the number of instances by one."

Diving into the threshold validation and the scaling decision processes, they were

implemented following the equations (20), (21) and (22).

P (t) =

∑X(t)
i=1 γ(i, t)

X(t)
(20)

I(t) =























−1 if P (t) < tmin

0 if tmin ≤ P (t) ≤ tmax

1 if P (t) > tmax

(21)

As depicted in Equation (20), for each configured metric γ, X(t) represents the number

of instances at time t. Here, γ(i, t) denotes the value of the metric for instance i at time t.

Accordingly, P (t) is defined as the mean value of metric γ at time t for every instance of a

single VNF/MEC application. Upon determining the mean value at the evaluated time,

the scale decision, or the increment or decrement over the number of instances (I(t)),

is defined by Equation (21). This equation selects the value based on the configured

scaling criteria, where tmin is the threshold to scale-in, representing the minimum value
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of the metric for a single instance, and tmax is the threshold to scale-out, representing the

maximum value of the metric for a single instance.

X(t + 1) = max (instmin, min (instmax, X(t) + I(t))) (22)

Finally, to determine the new number of instances X at the next time t + 1, X(t + 1)

can be calculated as specified in Equation (22). This equation represents the sum of the

current number of instances X(t) with the increment (I(t)). A combination of the min

and max functions is then applied to this result, ensuring that the number of instances

remains within the bounds of the configured minimum (instmin) and maximum (instmax)

allowed for the application. These thresholds and limits are configurable by the operator

and are retrieved using the Config Loader module.

3.3.4 Predictive Auto-Scaling with Deep Learning

For optimal auto-scaling results, relying solely on a reactive solution may not be

sufficient to address swift changes in network traffic and the resulting fluctuations in

resource demands. In such cases, the auto-scaling solution might fail to instantiate all

the required instances promptly, leading to potential SLA violations, high latency, or

even service interruptions (HOFFMANN; TRIVEDI; MALEK, 2007). To mitigate this

challenge, a plausible solution involves predicting future resource consumption based on

historical data, effectively transforming the problem into a time series forecasting challenge

(ALAWE et al., 2018). In alignment with this approach, this work proposes converting

the forecasting problem into a supervised learning task using deep learning algorithms.

As depicted in Subramanya e Riggio (2021), time series forecasting becomes incredibly

challenging with long sequences, multivariate data (when a time series includes more

than one time-dependent variable), and multi-step forecasts. Deep learning approaches

offer significant advantages for these cases, including automated learning of temporal

dependencies and handling temporal structures such as trends and seasonality.

In this way, constructing a supervised learning model with deep learning and for time

series forecasting typically involves the following steps (JIANG; GRADUS; ROSELLINI,

2020):

1. Collect and Clean the Training Data: Begin by assembling and organizing a

dataset that accurately represents the problem. Thoroughly clean the dataset to

eliminate errors or inconsistencies.

2. Choose a Model: Navigate through various supervised learning models, including

decision trees, support vector machines, and neural networks. The selection process

involves identifying the most suitable model that addresses the specific requirements

of the problem.
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3. Train the Model: With a chosen model and a refined dataset, initiate the training

process. This involves teaching the model to predict new data by feeding it the

training data. Adjust the model’s internal parameters to minimize the error between

its predictions and the actual values in the training data.

4. Evaluate the Model: Following the training phase, assess the model’s perfor-

mance using a separate dataset known as the test set. This evaluation provides

insights into how well the model generalizes to new, unseen data.

5. Fine-Tune the Model: If the model’s performance falls short of expectations,

revisit and fine-tune it. Adjust hyperparameters or explore alternative model ar-

chitectures. This iterative process may involve repeating steps 3 and 4 multiple

times.

6. Deploy the Model: Once a trained and fine-tuned model is achieved, deploy it

for practical use. This deployment may involve integration into a more extensive

software system or deployment as a standalone service, allowing the model to predict

new data effectively.

Therefore, all these steps must be systematically encompassed to implement a pre-

dictive auto-scaling mechanism in RAFE. The subsequent sections will detail the imple-

mented approach adopted in RAFE for these steps.

3.3.4.1 Forecasting Problem Statement

To create a dataset for the training process, we first need to monitor and collect

historical data on the target metrics or features. In this process, we define the step as

the interval between monitoring evaluations, time-lag as the number of steps in the past

used as input to forecast, and training-factor as a multiplier that when multiplied by

the time-lag, determines the amount of previous data used for training. For instance,

with a 1-minute step, a time lag of 60, and a training factor of 10, metrics are monitored

every minute, the module uses the past 60 minutes to predict the next value, and the

previous 600 minutes are used for training. In RAFE, these parameters can be individually

configured for each monitored application (VNF/MEC/cloud application), and they are

loaded using the Config Loader module.

Before delving into the construction of forecasting models in RAFE, it’s essential to

understand the most common approaches. When dealing with time series forecasting, we

have different ways to organize and prepare the data; on the scope of resource predic-

tion, the most suitable options are (LIM; ZOHREN, 2021): (1) deal with the monitored

metrics as univariate or multivariate datasets. (2) predict in a single-step or multi-step

manner, and (3) model the problem as a supervised learning problem using regression or

classification approaches.
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Univariate datasets consist of a singular variable or feature, while multivariate datasets

encompass multiple variables or features. In a univariate dataset, the emphasis is on

scrutinizing and comprehending the distribution and patterns of a solitary variable. This

variable can be numerical, such as a person’s age, or categorical, such as a person’s gen-

der. Techniques for univariate analysis, including histograms and box plots, prove valu-

able for visualizing and understanding the characteristics of a single variable (GARIBO-

MORANTE; TELLEZ, 2021). Conversely, multivariate datasets involve multiple vari-

ables, and the focal point is understanding the relationships between these variables and

their mutual influence. Multivariate analysis employs techniques like scatter plots and

multiple regression analysis to comprehend these relationships and unveil underlying pat-

terns in the data. For instance, a univariate dataset might encompass data on the ages

of a group of people. In contrast, a multivariate dataset could include age, gender, and

income information within the same group (GARIBO-MORANTE; TELLEZ, 2021). In a

multivariate dataset, the analysis could extend to examining how age, gender, and income

interact and influence one another.

Single-step prediction entails forecasting the value of a time series at a lone future

time point, relying on past values. This method, also known as one-step ahead prediction

or autoregression, is exemplified by scenarios like predicting tomorrow’s temperature in

a daily time series of temperatures. On the other hand, multi-step prediction involves

forecasting the values of a time series across numerous future time points, termed as k-

step ahead prediction, where k denotes the number of steps into the future for the forecast

(AN; ANH, 2015). The complexity of multi-step prediction surpasses that of single-step

prediction, as it necessitates the model to discern patterns and trends in the data and

make reasonable assumptions about future occurrences (AN; ANH, 2015). Accomplishing

multi-step prediction often demands more sophisticated models and an increased volume

of training data.

In supervised learning, regression involves predicting a continuous value, such as a

price or a probability. A practical regression example is a model forecasting a house’s cost

based on size, number of bedrooms, location, etc. Regression models undergo training

using labeled examples comprising inputs and their corresponding continuous targets

(FAOUZI, 2022). On the other hand, classification is the process of predicting a discrete

class label, indicating the type of an object or the document category. For instance, a

classification model could discern whether an email is spam or not or predict the type of

an animal based on its features (FAOUZI, 2022). Classification models are trained using

labeled examples of inputs along with their corresponding class labels.

From this perspective, in this work, we modeled the forecasting problem as a single-

step univariate regression problem for RAFE’s predictive module. This decision was

significantly influenced by the outcomes of the initial phase of this work, which includes

a comprehensive comparison of algorithms across various scenarios. These results are
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thoroughly presented in Section 4.2.

In broad terms, we opted for a single-step prediction strategy due to its tendency to

yield superior results compared to multi-step prediction (AN; ANH, 2015). This strategy

not only requires less training data to achieve good performance but also proves more

adaptable to changes in network traffic patterns (these facts are supported by our em-

pirical tests and corroborated by studies such as (ZHANG et al., 2021) and (LIJUAN;

GUOHUA, 2016)). Additionally, we chose to train one model for each metric employed

on predictive auto-scaling. This decision allowed us to maintain all datasets as univariate,

simplifying the training process. The advantages include increased speed, improved distri-

bution, reduced resource requirements, and enhanced results. This approach also provides

greater flexibility to the framework, enabling it to retrain only the necessary models and

eliminating the need for resource-intensive feature selection techniques, such as correla-

tion matrix analysis, Recursive Feature Elimination with Cross-Validation (RFECV), or

genetic algorithms (LI et al., 2017; MORADI; AHMADI; NIKBAZM, 2022). Moreover,

we chose to treat forecasting as a regression problem. Given its ability to forecast contin-

uous values, this choice mainly allows the framework to harness horizontal and vertical

scaling strategies.

Furthermore, adopting the strategy of employing distinct univariate models for each

target metric served a dual purpose: not only did it enable us to work with more straight-

forward pre-processing methods, thanks to the reduced complexity of the datasets, but it

also streamlined the overall modeling approach. In this context, RAFE’s pre-processing

involves a fundamental step—decomposing the generated dataset into training and test

subsets. We adhered to a rule-of-thumb decomposition, allocating 85% to the training

dataset and 15% to the test dataset. This preparatory step readies the data for model

construction and initiates the training phase.

3.3.4.2 Time series forecasting with BI-LSTM

Long Short-Term Memory (LSTM) has been adopted in many time series prediction

problems, adding convolutional layers to capture temporal patterns on top of these layers

proved immensely supportive in some cases (HOCHREITER; SCHMIDHUBER, 1997).

The predictive mechanism developed in RAFE uses a Bidirectional Long Short-Term

Memory (Bi-LSTM) architecture to make the predictions. This algorithm was chosen

based on results achieved by the first part of this work, which is discussed in Section

??. Moreover, the main reasons for this choice are highlighted in Section 4.3. We opted

for the Bi-LSTM due to its consistently favorable performance and low training times,

as demonstrated by our extensive testing across various scenarios. This preference is

especially highlighted when dealing with single-step univariate regression tasks, which

aligns with the design of RAFE’s prediction mechanism.

The Bidirectional Long Short-Term Memory (Bi-LSTM) architecture is built upon
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the LSTM framework by leveraging not just the past data but also the future insights

present in training input as well(HUANG; XU; YU, 2015). This architecture employs

two unidirectional LSTMs structures that process a sequence in both forward and reverse

directions.

In RAFE, the Bi-LSTM model construction can be described as follows: Initially,

the model ingests metric values through the input layer, directing them through one to

four dense Bidirectional LSTM hidden layers. These layers are configured with 32, 64,

128, or 256 nodes per layer, where each successive layer contains half the nodes of its

predecessor. For instance, if the hyperparameter tuning prescribes two hidden layers with

256 nodes each, the initial layer comprises 256 nodes, while the subsequent layer holds 128

nodes. After traversing these layers, a dropout layer featuring a 0.2 dropout probability

is introduced to enhance the model’s robustness for regression output. To finalize the

model structure, a dense layer incorporating 32 nodes is introduced to compress data

dimensionality, with the output layer culminating in a single node dedicated to regression

output. Backpropagation is facilitated using an efficient variant of Stochastic Gradient

Descent (Stochastic Gradient Descent (SGD)) known as ADAM, employing learning rates

set at 0.001, 0.01, 0.1, or 1.0, along with a Mean Squared Error (MSE) loss function.

Training persists for a maximum of 200 epochs, during which the loss is computed, and

the weight matrix is iteratively updated for subsequent epochs based on the learning

rate. The primary objective is to minimize the loss at each epoch and converge toward a

local minimum. Once the model is defined and fitted to the training data, it can predict

subsequent time steps.

Moreover, in RAFE, each model training procedure incorporates a hyperparameter

tuning process to determine the optimal parameters for the Bi-LSTM-based model. The

utilized hyperparameter search space for the model composition is discussed in detail in

the next section.

3.3.4.3 Model Training

Defining the parameters of a neural network model involves specifying critical aspects

such as the number of hidden layers, the nodes within each layer, the activation functions,

and other crucial factors. This process entails searching for optimal hyperparameters

that yield the most accurate predictions. However, this pursuit can be resource-intensive,

particularly in an extensive search space or hyperparameter tuning strategies that evaluate

several parameter combinations.

In this work, we tackled these challenges by employing a random search algorithm as

our search strategy. This approach aims to conduct a fixed number of iterations, provid-

ing results that may not always pinpoint the most accurate parameters but consistently

demonstrate similar outcomes. Notably, the random search strategy significantly reduces

the time required to identify an optimal set of hyperparameters compared to methods
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such as grid search (LIASHCHYNSKYI; LIASHCHYNSKYI, 2019). In RAFE, the pro-

cess of finding optimal hyperparameters for the model is guided by the following search

space:

❏ Hidden layers: 1 to 4.

❏ Batch size: 32, 64, 128, or 256.

❏ Nodes per layer: 32, 64, 128, or 256.

❏ Learning rate: 0.001, 0.01, 0.1, or 1.0.

❏ Activation function: tanh or linear.

❏ Dropout probability: 0.2 or 0.4.

❏ Loss functions: MSE or MAE.

❏ Maximum of trials: 10.

❏ Maximum of epochs: 200.

❏ Early Stopping Patience: 30.

The above hyperparameter search space was chosen to create a versatile solution for

predicting metrics based on historical values, focusing on efficient training times. To this

end, we had the following motivations: starting with the hidden layers parameter, we

opted for a relatively low range as the dataset is consistently univariate, often achieving

satisfactory results with a single layer, thereby minimizing training time. Regarding nodes

per layer and batch size, we selected a range spanning multiples of 8 between 32 and 256.

The batch size was aligned within the same range to ensure each batch contained at least

one complete sample. We set a maximum number of epochs at 200 to allow the model to

converge. Early stop callbacks were incorporated to halt training if the loss value fails to

decrease within a patience range of 30 epochs.

To model the Deep Neural Networks (DNN), we used TensorFlow (ABADI et al.,

2016), an open-source machine learning and artificial intelligence library. TensorFlow

offers a high-level API known for its cleanliness, uniformity, and efficiency. It allows users

to structure the neural network model using the Sequential API or the Subclassing API.

These APIs can be seamlessly integrated as standalone and fully configurable modules.

TensorFlow also includes a diverse array of predefined neural layers, activation functions,

loss functions, and regularization schemes.

The subsequent section will delve into integrating this model into the proposed archi-

tecture.

3.3.4.4 Model Revalidation (Suspension and Invalidation)

The network exhibits inherent variability in workload demands (MARSDEN, 2011).

This variability poses a significant challenge, particularly in NFV and MEC domains, char-

acterized by diverse resource requirements and network traffic patterns. Managing this

dynamic workload landscape presents complex challenges for auto-scaling mechanisms.
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The need for efficient resource allocation becomes apparent in these changing workloads,

requiring auto-scaling systems to continuously monitor and adapt resource provisioning

to align with fluctuating demands (SUBRAMANYA; RIGGIO, 2021).

Predictive auto-scaling mechanisms, significant when leveraging deep learning method-

ologies, excel in optimizing capacity planning, accommodating complex workloads, im-

proving energy efficiency, and furnishing data-driven insights that empower informed

decision-making and elevate the user experience (JOSHI; HADI, 2015). However, de-

spite their prowess in forecasting performance needs, these approaches rely on the data

employed during the training phase. These mechanisms learn patterns from the time se-

ries data used as input. Consequently, if there is a drastic shift in workload, the model’s

performance can suffer since it is unacquainted with the new patterns. This knowledge

gap can lead to inaccurate estimations, causing performance deterioration during peak

utilization and unwarranted resource expenditure during periods of reduced activity. This

is also highlighted in our second experiment, presented in Section 5.4.

RAFE introduces a model suspension-invalidation mechanism, also called model reval-

idation. This process is designed to identify instances where the predictive models lose

their accuracy and effectiveness due to changing conditions or unexpected events. RAFE

achieves this by monitoring the ongoing performance of these models. At predefined,

user-configurable intervals, RAFE captures two crucial metrics: the current number of

instances and the number of instances predicted by the model. Therefore, when an ex-

pressive difference between these values is detected, the reactive module actively works

to adapt to the new workflow pattern, while the predictive module may only be causing

disruptions.

This process occurs in two distinct steps. In the initial step, the model is temporar-

ily suspended to enhance overall system performance during short-term fluctuations in

workload patterns. Subsequently, in the second step, the model is invalidated, signifying a

scenario where the suspension has been invoked multiple times or has been in effect for an

extended duration. This dynamic approach enables RAFE to maintain model accuracy

and system efficiency in changing conditions. The determination of whether to suspense

a model or not adheres to the following expression:

∑n
i=1 |oi − pi|

n
≥ t (23)

In Equation (23), oi signifies a vector representing the observed number of instances

at time i, while pi denotes a vector representing the predicted number of instances si-

multaneously. Here, n represents the total number of data points, and t signifies a

user-configurable threshold specified by the operator. Essentially, the model invalida-

tion mechanism computes the Mean Absolute Error (MAE) between the predicted and

actual number of instances and subsequently uses a configurable threshold to inform the

decision-making process.
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identification) on a Celery queue. A Redis database manages this queue, which queues

the requests and implements a publisher–subscriber architecture.

Therefore, this event is subsequently consumed by a subscribed worker (2). The

worker executes a Celery Job, which involves requesting the necessary data, applying pre-

processing functions, and constructing and training a new model. These workers have been

designed to be versatile, allowing distribution and hosting in diverse environments. This

design choice ensures that the resource-intensive process of training a deep learning model

is kept separate from the auto-scaling orchestrator. For example, it permits deploying the

auto-scaling orchestrator on the edge while the workers are deployed on cloud servers.

However, deploying the RAFE core and one or more workers on the same host may

incur performance penalties due to the substantial resources required for machine learning

training processes and potential demands for multiple models. In line with the ETSI’s

NFV reference architecture, we recommend hosting the RAFE core with the MANO

and deploying the workers on other hosts. Additionally, a brief communication time can

significantly enhance scaling results.

The worker, tasked with managing the training process, initiates the retrieval of his-

torical data to serve as a dataset. It accomplishes this by sending an HTTP request (3)

to the exposed RAFE core NBI, specifying the VNF/MEC application and the metric

name. Upon receiving this request, the core’s service verifies the configured parameters

for the specified VNF/MEC application and metric. It retrieves crucial information such

as step, time lag, training factor, and details on where and how the metric is stored (4).

Subsequently, the core requests past metric values from the metric storage, represented by

a Prometheus time-series database (5, 6). While Prometheus is employed as the primary

data source in this work, it’s noteworthy that the architecture allows for the seamless

implementation of alternative data sources. As a final step, the core furnishes the worker

with the retrieved past metric values and the corresponding configuration parameters,

facilitating the commencement of the training process.

With the acquired data, in step (7), the worker commences the pre-processing and

training phase. It begins by decomposing a dataset into training and test sets, adhering

to an 85%/15% rule-of-thumb split. Subsequently, the worker constructs an LSTM neural

network and iteratively trains it multiple times using various hyperparameters, employ-

ing a random search strategy for hyperparameter tuning. The evaluation of generated

models involves comparing the mean squared error of the loss function during predic-

tions on the validation dataset. Based on this assessment, the worker identifies the best

model, emphasizing its ability to generalize effectively to unseen data. Once the training

process is complete and the optimal model is defined, the worker finalizes the procedure

by transmitting the model definition file in Hierarchical Data Format (HDF) format (8)

through the core’s NBI. This file encapsulates the model’s weights and network compo-

sition. Subsequently, the core forwards the model to the predictive auto-scaling module
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(9), integrating it to forecast future values.

As step (10) outlined, the Predictive Auto-Scaling Module can start its operation once

it has at least one valid and trained model for the specified metrics. This process can be

defined as:

(i) At each T time (which T can be configured through the Config Module as a CRON),

the CRON Module triggers a single-step auto-scaling prediction event.

(ii) For each configured metric, the Predictive Auto-Scaling Module requests the Metric

Reader Module for the most recent stored metrics and gets these values.

(iii) Loads all the stored AI models through the Model Interactor Module. Using the

metrics from the second step, it uses them as input for the models and receives as

output the predicted amount of that metric for one step in the future.

(iv) With these predictions, the Predictive Auto-Scaling Module requests the configured

maximum value per instance of each metric through the Config Module.

(v) The module then applies the expression defined in Equation 24 (which will be de-

tailed in sequence) and gets. As a result, the number of replicas should be instan-

tiated for the target VNF / MEC application.

(vi) Finally, once the value, the Predictive Module communicates with the configured

MANO or Orchestration Layer through the MANO Interactor Module, requesting

the scale-in or scale-out of instances to match the exact number of predicted in-

stances.

Equation 24 defines the algorithm used to determine the predicted number of instances

based on multiple metrics, models, and predictions. In this equation, D represents the

set of configured metrics for the predictive mechanism, P (x) is the predicted value for

the metric x, and M(x) is the configured maximum allowed value of the metric x per

instance.

max
xεD

⌈

P (x)

M(x)

⌉

(24)

Therefore, the predicted number of instances is calculated by rounding up the division

of the predicted value by the maximum allowed value per instance for each configured

metric and then selecting the maximum value among these results. This expression en-

sures that the minimum number of instances required to handle the predicted workload

is ready to manage this demand without compromising the QoS and efficiently utilizing

resources.
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3.3.5 Configurability

A reusable framework must be broadly configurable and fine-tuned to meet multiple

demands (ATOUI et al., 2020). To this end, as previously mentioned, RAFE can be

configured using the services exposed in the NBI or a YAML file. In this section, we

showcase a real-world configuration for RAFE, highlighting the application’s versatility

and capacity to satisfy specific demands of different applications, irrespective of its type

or location in the network. This example also offers valuable insights into the practical

implementation of our proposed solution and its potential applicability within the network

landscape.

RAFE’s configuration can be done through the use of the following YAML structure:

Listing 1 – YAML structure used for RAFE configuration

1 - app-id: app

2

3 metrics:

4 - name: cpu_usage_percentage

5 expression: container_cpu_usage_seconds_total{name=~"app.*"}[15s]

6 source: prometheus_monitor

7

8 scaling-policy:

9 cooldown-time: 120

10 max-instance-count: 20

11 min-instance-count: 1

12

13 reactive-scaling:

14 enabled: true

15 cron: "*/10 * * * * *"

16 scaling-criteria:

17 - metric: cpu_usage_percentage

18 scale-in-relational-operation: LT

19 scale-in-threshold: 0.15

20 scale-out-relational-operation: GT

21 scale-out-threshold: 0.4

22

23 predictive-scaling:

24 enabled: false

25 cron: "*/1 * * * *"

26 config:

27 scaling-type: single-step
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28 future-steps: 10

29 time-lag: 72

30 training-factor: 14 # multiplied by time-lag to get the amount

31 # of training data || default: 20

32 step: 1m

33 scaling-criteria:

34 - metric: cpu_usage_percentage

35 max-value-per-instance: 0.4

36 revalidation:

37 enabled: true

38 cron: "*/5 * * * *"

39 monitoring-interval: "*/10 * * * * *"

40 threshold: 1.8 # MAE threshold

41 invalidate: 5 # invalidate after X suspensions

42 steps-limit: 30

The document presented in Listing 1 provides an example of configuring RAFE’s

hybrid auto-scaling for a single application using a single metric (CPU usage in this

case). RAFE expects a YAML structure with a list of applications at the root level,

where each item defines an application to be monitored and managed for auto-scaling

services. Each application should have an associated unique identifier.

For each application, the operator must specify the scaling policy, which includes pa-

rameters such as cooldown time and soft minimum and maximum limits for the number

of instances. Additionally, there is the option to configure the reactive and predictive

modules and enable the hybrid mechanism by activating both of these modules. Each

auto-scaling method (reactive and predictive) has specific configurations, as outlined ear-

lier in this chapter in their respective sections. Notably, the revalidation mechanism is

customizable within the predictive scaling section. For more flexibility and ease of con-

figuration, all the schedules and intervals can be specified using the cron syntax (RAFE’s

Cron Module manages all cron-related tasks).

This document section illustrated RAFE’s adaptability and flexibility, designed to be

seamlessly deployable across diverse network environments.
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Chapter 4

Algorithm Selection Results

The contributions of this research can be delineated into two parts. The first part

concentrates on the selection of the most appropriate forecasting algorithms to be used in

RAFE’s prediction mechanism. To accomplish this, an exhaustive exploration of multiple

machine learning-based time series forecasting algorithms is conducted. Diverse datasets,

sourced from VNF monitoring, encompassing a wide variation of trends, seasonality pat-

terns, dataset sizes, and features, are utilized to evaluate how each algorithm handles each

factor. Furthermore, to simulate the dynamic characteristics of edge environments, a se-

ries of experiments are executed involving the deployment and training of each algorithm

over various forecasting methodologies and configurations. These experiments evaluate

the algorithm performance in typical edge and cloud computing scenarios. At last, the

collective outcomes are compared to identify the algorithms best suited for integration

into RAFE, the proposed auto-scaling solution.

In the following sections, first, we showcase the outcomes from our algorithm compar-

ison and delve into a comprehensive analysis of these findings, analyzing several forecast-

ing categories: univariate/multivariate, one-step/multi-step, and regression/classification.

This exploration underscores key takeaways that will serve as a base for our subsequent

selection of the most suitable algorithm. These results are pivotal in guiding our choice

of the algorithm and approach to be integrated into the RAFE. Moreover, we introduce

a Docker-based experimental testbed environment, to evaluate RAFE over multiple sce-

narios.

This section presents the outcomes from the procedures outlined in Section 3.2. We

compare multiple machine learning algorithms to define the most appropriate ones for

time series forecasting across various autoscaling strategies. Moreover, this process was

undertaken to establish which algorithms would be applied in the autoscaling mechanism

proposed by this work. To commence, we present the outcomes of hyperparameter tun-

ing, briefly presenting the optimal configurations chosen for each algorithm within each

scenario. Subsequently, we comprehensively appraise each algorithm’s performance across

each simulated scenario, highlighting comparisons and contrasts. Finally, a comprehen-
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sive overview of the algorithmic evaluation is provided, encapsulating the holistic insights

garnered from this comparative analysis.

4.1 Hyperparameter Tuning Results

This outcome and the code and algorithms utilized are hosted and openly available in

Vinhal (2023). This repository encompasses the code of each algorithm with the chosen

hyperparameters and thoroughly compares the architectures employed in both machine-

learning algorithms and neural networks.

4.2 Algorithms Comparison Results

In this section, we use the outcomes of the hyperparameter tuning process to define the

structure of each algorithm. Many of these algorithms, particularly the neural networks,

are influenced by the initial random weights assigned during model generation. To ensure

the robustness and quality of our results, we executed the model creation and training

process 10 times for each algorithm in each comparison. The mean values obtained from

these 10 iterations are then used for comparisons.

To conduct the assessment, using the performed 10 runs for each case, we recorded

the resulting Mean Squared Error (MSE) and Mean Absolute Error (MAE) values for

each item. The performance values are presented in a Confidence Interval (CI) of 95%

likelihood, indicating the range of classification errors expected from the models.

Each subsequent subsection offers a detailed comparison of the results for each algo-

rithm across each forecasting variation (variations are outlined in Section 3.2.4).

4.2.1 Base Analysis (Variation I)

Training each algorithm over the first variation, Table 5 depicts each algorithm’s

performance. This variation, called base variation, involves organizing the data and algo-

rithms within a univariate single-step regression forecasting architecture. The comparison

is conducted by performing 10 simulation runs for each case, and the resulting MSE and

MAE values are recorded for each item. The performance values are presented concerning

a CI of 95% likelihood. Furthermore, we calculate and present the mean Time to Train

and the mean Time to Predict. The former signifies the average time required to build

and train the model. At the same time, the latter represents the average time needed to

obtain the model output once provided with input values.

For the KDN dataset, which has a smaller number of rows but more features, the

LSTM model demonstrated the highest performance, achieving 0.01275 MSE and 0.06261

MAE (its results were plotted in Fig. 17). The GRU model comes in second place with
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Table 5 – Performance results in variation I (univariate - one-step - regression). Ordered
by best to worst results.

Algorithm MSE (CI, 95%) MAE (CI, 95%) Time To Train

LSTM 0.01275 (±0.00024) 0.06261 (±0.00279) 1003.44 s

GRU 0.01285 (±0.00021) 0.05966 (±0.00073) 252.32 s

DT 0.01302 (±1e-18) 0.06293 (±1e-17) 0.01 s

BI-LSTM 0.01327 (±0.00034) 0.06109 (±0.00319) 204.41 s

ENC-DEC-LSTM 0.01347 (±0.00049) 0.06183 (±0.00167) 195.89 s

CNN-LSTM 0.01366 (±0.00034) 0.06426 (±0.00262) 353.57 s

RANDOM-FOREST 0.0141 (±0.0) 0.06563 (±1e-17) 3.91 s

SVR 0.01415 (±0.0) 0.06453 (±0.0) 0.05 s

ENC-DEC-CNN-LSTM 0.02463 (±0.00217) 0.10446 (±0.00725) 245.89 s
(a) For KDN dataset.

Algorithm MSE (CI, 95%) MAE (CI, 95%) Time To Train

BI-LSTM 0.00283 (±4e-05) 0.03928 (±0.00108) 1249.5 s

LSTM 0.00284 (±7e-05) 0.04266 (±0.00245) 1618.67 s

RANDOM-FOREST 0.00298 (±3e-19) 0.03973 (±0.0) 117.34 s

SVR 0.00304 (±3e-19) 0.04547 (±5e-18) 1.08 s

ENC-DEC-LSTM 0.00306 (±0.00018) 0.04389 (±0.00139) 2059.96 s

GRU 0.00322 (±0.00024) 0.04555 (±0.00387) 6023.83 s

ENC-DEC-CNN-LSTM 0.00359 (±0.0004) 0.04471 (±0.00191) 954.01 s

CNN-LSTM 0.00361 (±0.0006) 0.0453 (±0.00451) 3237.01 s

DT 0.01477 (±1e-18) 0.05908 (±7e-17) 0.22 s
(b) For BONO dataset.

comparable results, obtaining a 0.01285 MSE and 0.05966 MAE. The DT algorithm ranks

third, showing a 0.01302 MSE and 0.06293 MAE. On the other hand, the ENC-DEC-CNN-

LSTM algorithm performs the worst among the evaluated models, with an 0.02463 MSE

and 0.10446 MAE, followed by the SVR with an 0.01415 MSE and 0.06453 MAE.

In the case of the BONO dataset, which has a larger number of rows but fewer features,

the BI-LSTM model achieved the highest performance, with 0.00283 MSE and 0.03928

MAE (its results were plotted in the second chart in Fig. 18). Following closely, the LSTM

model secures the second position with 0.00284 MSE and 0.04266 MAE. The RANDOM-

FOREST algorithm ranks third, exhibiting a 0.00298 MSE and 0.03973 MAE. On the

other hand, among the evaluated models, the DT algorithm performs the poorest, yielding

a 0.01477 MSE and 0.05908 MAE, trailed by the CNN-LSTM model with a 0.00361 MSE

and 0.01477 MAE.
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highlights the potential of this base variation (univariate, one-step, regression) mostly

in an IoT/Edge scenario, which requests solutions that can meet the high variability

scenarios requested by the network.

4.2.2 Multivariate Analysis (Variation II)

Table 6 compares algorithm performance in variation II. The table follows a similar

structure as Table 5, and the simulation tests were also conducted in accordance. In

contrast to the base variation, this particular variation employs a multivariate architec-

ture, utilizing the entire dataset with all features as input during both the training and

prediction stages. This deviation departs from the other scenarios, where only a single

feature was utilized.

Table 6 – Performance results in variation II (multivariate - one-step - regression). Or-
dered by best to worst results.

Algorithm MSE (CI, 95%) MAE (CI, 95%) Time To Train

RANDOM-FOREST 0.0158 (±0.0) 0.07282 (±1e-17) 2267.64 s

BI-LSTM 0.01634 (±0.00104) 0.08724 (±0.00546) 1691.22 s

LSTM 0.01681 (±0.00084) 0.08019 (±0.0038) 804.68 s

SVR 0.01814 (±0.0) 0.08479 (±0.0) 5.58 s

DT 0.01817 (±0.00024) 0.08207 (±0.00108) 0.01 s

GRU 0.01844 (±0.00112) 0.08365 (±0.00352) 5435.93 s

CNN-LSTM 0.01859 (±0.00029) 0.08534 (±0.00217) 4521.76 s

ENC-DEC-LSTM 0.01961 (±0.00265) 0.08835 (±0.0089) 4672.04 s

ENC-DEC-CNN-LSTM 0.0217 (±0.00272) 0.09689 (±0.01154) 2643.98 s
(a) For KDN dataset.

Algorithm MSE (CI, 95%) MAE (CI, 95%) Time To Train

BI-LSTM 0.00288 (±0.0002) 0.04129 (±0.00275) 5272.65 s

ENC-DEC-LSTM 0.00335 (±0.00077) 0.03984 (±0.00502) 10132.7 s

CNN-LSTM 0.00366 (±0.00071) 0.04175 (±0.00248) 16819.85 s

GRU 0.00386 (±0.00143) 0.0417 (±0.00437) 6955.56 s

ENC-DEC-CNN-LSTM 0.00441 (±0.00023) 0.04578 (±0.00139) 7021.79 s

LSTM 0.00455 (±0.00188) 0.0467 (±0.00762) 6445.8 s

SVR 0.00461 (±0.0) 0.0529 (±0.0) 7.95 s

RANDOM-FOREST 0.00796 (±0.0) 0.06511 (±0.0) 10327.05 s

DT 0.01705 (±3e-17) 0.05872 (±1e-16) 0.81 s
(b) For BONO dataset.
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In this particular variation, the RANDOM-FOREST and BI-LSTM algorithms demon-

strated the highest performance, with the BI-LSTM ranking first in both datasets, which

emphasizes the versatility of this algorithm. However, when comparing the overall results

(as highlighted in Fig. 19) to the results obtained in the first variation (as depicted in

Fig. 17), the algorithms designed to predict using a multivariate structure yielded to

worst results. Additionally, upon comparing the average training times in Table 6 with

those in Table 5, it is evident that there was an overall increase for nearly all algorithms.

The inferior results observed can be directly attributed to the utilization of multiple

features as input, as this study aims to evaluate performance without employing additional

mechanisms to address the curse of dimensionality (DOKEROGLU; DENIZ; KIZILOZ,

2022), which says that the inclusion of numerous features can result in overfitting and

a decline in model performance. This underscores the necessity for a feature selection

mechanism when dealing with a multivariate approach. Such mechanisms play a critical

role in reducing the dimensionality of the input data. They can be implemented using

various techniques, such as statistical measures, genetic algorithms, and colony optimiza-

tion, as presented in works in (ZHOU; HUA, 2022) and (KARIMI; DOWLATSHAHI;

HASHEMI, 2023). However, these techniques necessitate additional time and hardware

resources (DHAL; AZAD, 2022), which can be limited, particularly in IoT/Edge environ-

ments where resource constraints are prevalent.

4.2.3 Multi-step Analysis (Variation III)

Table 7 illustrates a comparison of algorithm performance in variation III. The table

and simulation tests followed the same approach as the previously mentioned variants.

In this variation, unlike the base scenario, the model generates predictions for multiple

future steps instead of just a single step for each input set.

In the case of the KDN dataset, in this particular variation, the ENC-DEC-CNN-

LSTM algorithm showcased superior performance, achieving a 0.00452 MSE and 0.04644

MAE (its results were plotted in the first chart in Fig. 21). The ENC-DEC-LSTM

algorithm closely followed with comparable results, obtaining a 0.00852 MSE and 0.05917

MAE. The DT algorithm ranked third, demonstrating a 0.01343 MSE and 0.07734 MAE.

Conversely, the GRU algorithm performed the worst among the evaluated models, with

a 0.02144 MSE and 0.10902 MAE, followed by the LSTM with a 0.01991 MSE and 0.101

MAE.

For the BONO dataset, which contains a larger number of rows but fewer features,

the ENC-DEC-CNN-LSTM model achieved the highest performance with 0.00249 MSE

and 0.01567 MAE (its results were plotted in the second chart in Fig. 22). Following

closely, the ENC-DEC-LSTM model secured the second position with an 0.00282 MSE and

0.01935 MAE. The GRU algorithm ranked third, exhibiting a 0.00394 MSE and 0.05056

MAE. On the other hand, among the evaluated models, the DT algorithm performed the
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Table 7 – Performance results in variation III (univariate - multi-step - regression). Or-
dered by best to worst results.

Algorithm MSE (CI, 95%) MAE (CI, 95%) Time To Train

ENC-DEC-CNN-LSTM 0.00452 (±0.00098) 0.04644 (±0.00012) 602.96 s

ENC-DEC-LSTM 0.00852 (±0.00417) 0.05917 (±0.01656) 912.46 s

DT 0.01343 (±0.0) 0.07734 (±0.0) 0.09 s

SVR 0.01425 (±1e-18) 0.08438 (±0.0) 0.11 s

RANDOM-FOREST 0.01705 (±0.0) 0.09536 (±0.0) 27.84 s

BI-LSTM 0.01859 (±0.00384) 0.09761 (±0.01246) 1841.95 s

CNN-LSTM 0.01936 (±0.00259) 0.1019 (±0.00989) 670.98 s

LSTM 0.01991 (±0.00276) 0.101 (±0.0041) 478.98 s

GRU 0.02144 (±0.00223) 0.10902 (±0.00676) 110.81 s
(a) For KDN dataset.

Algorithm MSE (CI, 95%) MAE (CI, 95%) Time To Train

ENC-DEC-CNN-LSTM 0.00249 (±0.00102) 0.01567 (±0.00013) 1546.93 s

ENC-DEC-LSTM 0.00282 (±0.00021) 0.01935 (±0.00122) 1675.26 s

GRU 0.00394 (±0.00014) 0.05056 (±0.00175) 2887.38 s

LSTM 0.00395 (±0.00013) 0.05018 (±0.00156) 971.13 s

RANDOM-FOREST 0.00397 (±6e-19) 0.04872 (±0.0) 1187.83 s

SVR 0.0041 (±6e-19) 0.05584 (±5e-18) 12.22 s

CNN-LSTM 0.00419 (±0.00026) 0.04977 (±0.00134) 4113.52 s

BI-LSTM 0.0042 (±0.00022) 0.04968 (±0.00112) 2686.76 s

DT 0.01004 (±7e-05) 0.07163 (±0.00021) 0.06 s
(b) For BONO dataset.

poorest, yielding a 0.01004 MSE and 0.07163 MAE, trailed by the BI-LSTM model with

a 0.0042 MSE and 0.04968 MAE.

In this variation, it is important to highlight that the ENC-DEC-CNN-LSTM and

ENC-DEC-LSTM algorithms performed significantly better than others when applied to

both datasets. These algorithms were the only ones capable of achieving satisfactory

results in this scenario. Although the overall prediction time was slightly longer than

other variations, it remained under 1 second, which is considered acceptable for most

applications.

Examining the predicted values (as depicted in Fig. 21), it becomes evident that

the encoder-decoder algorithms produced decent results close to the expected values in

the test datasets. However, their performance was slightly lower when compared to the

results obtained in the base variation (illustrated in Fig. 17). This discrepancy can be
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4.2.4 Classification Analysis (Variation IV)

Table 8 compares algorithm performance in variation IV. The table and simulation

tests were conducted using the same methodology as the previously mentioned variants.

In this particular variation, different from the base scenario, the forecasting is performed

through classification rather than regression. It involves predicting the probabilities of

being assigned to a specific class from a fixed number of classes. As observed in Table

8, the cross-entropy results were not computed for the classical algorithms (DT, SVR,

and RANDOM-FOREST) due to constraints with the framework used for measuring this

metric. Consequently, the comparison was based only on the ACC (accuracy) results.

Table 8 – Performance results in variation IV (univariate - one-step - classification). Or-
dered by best to worst results.

Algorithm ACC (CI, 95%) C.E. (CI, 95%) Time To Train

BI-LSTM 0.85714 (±0.00963) 0.46172 (±0.0512) 207.26 s

CNN-LSTM 0.85713 (±0.0079) 0.62572 (±0.08336) 115.16 s

ENC-DEC-LSTM 0.85143 (±0.0115) 0.51387 (±0.02724) 197.95 s

SVR 0.84286 (±0.0) — 0.02 s

DT 0.83429 (±0.01815) — 0.0 s

LSTM 0.83 (±0.03897) 0.65927 (±0.15105) 256.41 s

GRU 0.83 (±0.02125) 0.62711 (±0.05545) 238.3 s

RANDOM-FOREST 0.82857 (±0.0) — 1.04 s

ENC-DEC-CNN-LSTM 0.81071 (±0.07271) 0.86193 (±0.37217) 312.55 s
(a) For KDN dataset.

Algorithm ACC (CI, 95%) C.E. (CI, 95%) Time To Train

CNN-LSTM 0.81566 (±0.01481) 1.17626 (±0.0146) 1080.67 s

BI-LSTM 0.80647 (±0.04619) 1.16248 (±0.06533) 6419.48 s

SVR 0.80125 (±0.0) — 4.11 s

LSTM 0.79729 (±0.02601) 1.16716 (±0.01271) 1647.53 s

RANDOM-FOREST 0.75324 (±0.0) — 16.02 s

ENC-DEC-LSTM 0.74248 (±0.04455) 1.27947 (±0.08448) 10894.73 s

GRU 0.73215 (±0.0551) 1.30274 (±0.09124) 2737.17 s

DT 0.70877 (±0.03744) — 0.02 s

ENC-DEC-CNN-LSTM 0.66169 (±0.01154) 5.91393 (±0.19814) 1122.86 s
(b) For BONO dataset.

In this specific variation of the KDN dataset, the BI-LSTM algorithm displayed su-

perior performance, achieving 0.85714 ACC and 0.46172 CROSS-ENTROPY (its results

were plotted in the first chart in Fig. 23). The ENC-DEC-LSTM model closely fol-
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tics, particularly when approaching forecasting as classification problems. The quantity

of data available during the training phase is not the primary factor; instead, the rela-

tionship between the data’s date, scale, and quality (its generality and diversity) plays a

crucial role in achieving favorable outcomes (DOGAN; BIRANT, 2021).

However, in an IoT/Edge scenario, while obtaining significant results, approaching

the solution as a classification problem instead of a regression problem imposes limits

on the range of predicted values. This can restrict scaling actions to horizontal scaling

approaches, where new instances are added or removed. Predicting scalar values such

as CPU and memory as discrete classes, as done in this approach, may not always be

feasible or optimal (SILVA et al., 2022). It restricts precise optimization and limits the

flexibility of scaling decisions, potentially leading to suboptimal resource utilization at the

edge. This lack of flexibility is detrimental to the IoT, where efficient resource utilization

is crucial.

4.3 Overall Analysis

The findings revealed that when confronted with the diverse scenarios presented in an

IoT/Edge environment, no single algorithm can serve as a universal solution to achieve

optimal results for all demands. However, the results provide valuable guidance for de-

termining effective approaches based on specific variations. For instance, in a common

scenario where the objective is to predict future values of a monitored metric using uni-

variate data and forecasting a single step, the results recommend employing LTSM or

BI-LSTM models. Among these options, BI-LSTM is preferable as it demonstrates a

good performance with fewer network layers, resulting in a shorter training time.

When dealing with multivariate data, our results indicate a preference for the RANDOM-

FOREST and BI-LSTM models. Still, they also highlight that implementing a feature

selection mechanism is crucial to enhance their effectiveness. In scenarios requiring pre-

dictions of multiple steps into the future, such as situations where obtaining input values

for the forecasting model is challenging or expensive or when scaling decisions are dele-

gated to edge elements within the network’s core, the encoder-decoder-based algorithms,

such as ENC-DEC-LSTM or ENC-DEC-CNN-LSTM, presented a clear advantage.

Lastly, if the task at hand involves classification rather than regression, which can

simplify the scaling process, the CNN-LSTM or BI-LSTM algorithm proved to be a good

choice. Nonetheless, it is worth noting that this approach may limit scalability flexibility

by allowing only horizontal scaling actions, potentially compromising resource utilization

efficiency in IoT environments where optimal resource allocation is of utmost importance.

Thus, using the above-found key points, for this work focused on developing an auto-

scaling framework with an advanced predictive forecasting mechanism designed to handle

a diverse range of metrics effectively, we opted to conceptualize the time-series forecasting
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Algorithm Mean Time To Predict
BI-LSTM 249.595 ms

SVR 9.3925 ms
DT 3.3975 ms

ENC-DEC-LSTM 255.925 ms
CNN-LSTM 204.122 ms

GRU 193.955 ms
RANDOM-FOREST 1141.385 ms

ENC-DEC-CNN-LSTM 210.715 ms
LSTM 223.2 ms

Table 9 – Average time of prediction of each algorithm, considering all prediction variation
and datasets.

algorithm as a univariate single-step regression mechanism. This approach was grounded

in utilizing a BI-LSTM model, empowering us to train and predict accurately while achiev-

ing fewer network layers and consequently lower required training time and less hardware

resource demands. This decision was mainly based on the results demonstrated above

and took into account the following considerations and analysis:

❏ Univariate: presenting better results compared to dealing with multivariate scenar-

ios, this approach was chosen to compose the proposed auto-scaling tool influenced

by: (1) It offered a significantly shorter training time, making it compatible with

strategies like training new models instead of retraining old ones. This attribute

aligns well with the proposed re-validation mechanism in RAFE; (2) The univariate

approach tended to consume fewer hardware resources during training and predic-

tion phases due to its simpler data structure. It relies on an array of data rather than

multidimensional matrices, requiring less hardware resources. This factor makes it

particularly suitable for network edge scenarios, and mainly, (3) This approach,

in contrast to others, permitted a finer level of configurability in vertical scaling,

not limiting the solution to horizontal scaling. This adaptability contributes to

achieving optimal performance in the context of auto-scaling (LORIDO-BOTRAN;

MIGUEL-ALONSO; LOZANO, 2014b). The vertical scaling aspect will be explored

in future research efforts. Moreover, it’s worth noting that multiple metrics can be

combined into a single one using a solution as proposed in works like (CUNHA,

2021).

❏ Single-step: as presented in Table 9, the average prediction time, or time to predict,

tends to be smaller than 1 second for all the algorithms. This time is a sufficiently

short duration for the majority of applications to adopt single-step forecasting. Con-

sequently, we opted for the single-step approach, which exhibited superior perfor-

mance in our evaluations and required less time and hardware resources during the

training phases. However, it’s noteworthy that collecting current metric values for
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predictions in certain contexts may cause significant operational costs or introduce

delays. For these cases, a multi-step mechanism can be implemented in future work.

❏ Regression: in contrast to the classification method, which requires a predefined

discrete set of classes, the regression approach does not have such restrictions and is

capable of predicting continuous values. This characteristic holds great significance

for our proposed application, as it aims to be versatile, predicting various metrics

and being suitable for multiple applications. The adoption of a classification ap-

proach could potentially limit the applicability of our method. Moreover, our tests

have shown better performance results in using regression methods compared to

classification methods.

❏ BI-LSTM Algorithm: As previously emphasized, the BI-LSTM algorithms consis-

tently demonstrated high performance across various scenarios, occasionally out-

performing others. Notably, in the first compared variation, base variation, which

closely resembles the methods applied in our proposed mechanism, it presented some

of the best results. Furthermore, it exhibited good performance even when com-

posed with fewer network layers, leading to shorter training times. Consequently,

we have selected the BI-LSTM algorithm as the primary choice for our application.

These insights were the source for building the auto-scaling framework architecture

named RAFE. This architecture introduced several mechanisms to achieve optimal per-

formance, including a retraining process, self-evaluation, and distributed training. The

overarching goal is to maximize the benefits of these selected characteristics while miti-

gating their associated drawbacks. We discussed the details of this proposed architecture

in Section 3.3.2, and its evaluation will be presented in the subsequent sections.
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Chapter 5

Experimental Evaluation and Analysis

The contributions of this research can be delineated into two parts. In the second

part, to simulate the dynamic characteristics of edge environments, a series of experi-

ments are executed involving the deployment and training of each algorithm over various

forecasting methodologies and configurations. These experiments evaluate the algorithm

performance in typical edge and cloud computing scenarios. At last, the collective out-

comes are compared to identify the algorithms best suited for integration into RAFE, the

proposed auto-scaling solution.

This chapter introduces and assesses an innovative approach to address auto-scaling

challenges in edge and cloud applications. This approach combines reactive and predictive

strategies to ensure optimal scaling and policy decisions. Additionally, it introduces the

approach to splitting the application into core and workers, which adeptly manages hard-

ware resource limitations by executing machine learning training and resource-intensive

tasks in a distributed way. The approach also introduces diverse tools crafted to handle the

dynamic nature of edge and cloud environments. A multi-univariate-models approach is

applied to achieve optimum results and keep a low time for training the model. Moreover,

a re-validation mechanism is introduced to effectively handle shifts in workload patterns

inherent in network environments. This comprehensive suite of tools aspires to enhance

the performance and adaptability of auto-scaling in these intricate and ever-evolving con-

texts.

To assess the performance of RAFE, we first carry out three practical experiments in

which we manipulate simulated network traffic and the auto-scaling mechanisms. These

experiments evaluate the effectiveness of RAFE under diverse scenarios, encompassing

both expected and unanticipated traffic patterns. Additionally, we assess the overall

architecture, delving into critical aspects such as the time required for model training,

the resource utilization of the solution, and its capacity for seamless integration.
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5.1 Architecture Evaluation

This section comprehensively evaluates the RAFE (Resource Auto-scaling For Every-

thing) framework. The architectural details are expounded upon in Section 3.3.2. First,

we outline the experimental environment’s architecture, purposefully designed to assess

this auto-scaling framework’s performance. Subsequently, leveraging this dedicated en-

vironment, we conduct a series of experiments. Finally, we present the outcomes and

provide an in-depth analysis.

We initiate the assessments by evaluating RAFE’s performance in terms of QoS and

cost-effectiveness. To this end, we conduct three main experiments to assess RAFE’s per-

formance in: (1) common scenarios, where it has prior knowledge of the traffic patterns (2)

its adaptability in complex scenarios, encompassing entirely novel and untrained traffic

patterns. This is essential, given the inherent variability in network conditions. Moreover,

we evaluate the invalidation mechanism and whether or not RAFE can achieve optimum

results even when drastically different traffic patterns are performed. Other works in

the state of the art do not commonly evaluate these less-explored edge scenarios. How-

ever, they hold significant relevance due to the network’s dynamic nature, which requires

adaptable and responsive auto-scaling applications.

Moreover, we evaluate key factors for the proposed framework. We analyze the time

required to train the deep-learning models used in the predictive module. This is critical

for supporting multiple models and revalidation approaches RAFE proposes. Addition-

ally, we evaluate RAFE’s integration capabilities, as it aspires to operate seamlessly across

different network domains, including IoT, NFV, and MEC applications. To this end, we

examine its compatibility with the widely applied ETSI’s NFV Reference Architecture,

commonly used in VNF and MEC environments. Finally, we provide a comprehensive

analysis of both RAFE’s performance and the findings of this study.

5.2 Experimental Environment

To assess the effectiveness of the proposed framework, we established an experimental

testbed illustrated in Fig. 25. This architecture serves to generate network traffic, oversee

and adjust VNF/MEC applications (functioning as a MANO system aligned with the

ETSI’s VNF reference architecture), monitor the utilization of hardware resources, and

employ RAFE for application auto-scaling.

The K6 (GRAFANA, 2023b) load testing tool generates the network traffic. This

tool facilitated the simulation of Virtual Users (VUs), representing entities capable of

executing HTTP requests based on predefined scripts. By employing K6, we could emulate

a substantial number of concurrent users engaging with VNF/MEC applications in a

specified pattern, introducing variance in the number of requests to yield more realistic
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The workload pattern depicted in Fig. 26a was chosen to simulate a 24-hour interval of

network traffic typical for a VNF/MEC application designed for vehicular or mobile solu-

tions. This pattern includes intensive accesses at 6 AM, 12 PM, and 6 PM—representing

common transit traffic peaks—with maximum VUs of 32, 55, and 40. It’s crucial to note

that due to the temporal equivalence of 1-10, the proposed application was configured

to execute reactive autoscaling validations every 10 seconds (100 seconds in simulation)

and predictive autoscaling validations every 1 minute in real life (10 minutes in simula-

tion). The first traffic load was simulated using the RAFE testbed architecture with only

the predictive autoscaling mechanism. Monitored CPU and memory resource usage data

were used as a dataset to train the AI-based predictive autoscaling mechanism. This same

traffic pattern was employed to validate the performance of all autoscaling mechanisms

implemented by RAFE (predictive, reactive, and hybrid).

However, as network solutions may not always handle the same workload, we in-

troduced an unseen traffic load pattern (Fig. 26b) to evaluate how different autoscaling

approaches react to changes in the learned/expected traffic pattern. Although both traffic

patterns are similar, they simulate slightly different scenarios to assess how the mecha-

nisms handle variations. The patterns also include a significant contrast in the center,

representing a burst of traffic simulating a non-expected and abrupt increase in network

load.

In summary, our first experiment assesses the proposed framework. It compares dif-

ferent autoscaling mechanisms using the testbed and the traffic load described in Fig.

26a to train the predictive model and validate all mechanisms. The second experiment

introduces the second traffic load, described in Fig. 26b, with the previously trained

mechanisms to evaluate their response to untrained and different workloads. We measure

performance based on the QoS offered by the VNF/MEC applications, maintaining a low

timeout of 10 seconds for requests and collecting request errors during each mechanism

evaluation.

Regarding configuration settings for scaling mechanisms, each VNF/MEC application

was configured with a maximum of 500 millicore CPU units and 512 MB of memory.

For reactive autoscaling, the scale-in threshold was set to 150 millicore CPU units, and

the scale-out threshold was set to 400 millicore CPU units to enable prompt reactions to

changes in network traffic. Predictive autoscaling parameters for training included a time

lag of 72, a training factor of 14, and a step of 1 minute (10 minutes in the experiment’s

time equivalence). Considering the time equivalence, these configurations represent the

utilization of the past 168 hours (7 days) of monitored metrics data, collected every 10

minutes, to train a deep learning model for predictive autoscaling. The experimental

evaluations were conducted on a laptop featuring a Ryzen 7 5700U processor with 8 cores

clocked at 1.8 GHz and 16GB of memory.
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5.3 Handling Known Traffic Patterns (Performance

Results)

This initial experiment assesses RAFE’s performance in managing familiar and trained

traffic patterns—a scenario commonly encountered by applications and frequently ex-

plored in state-of-the-art evaluations. The objective here is to subject the mechanism to

a specific traffic pattern, allowing it to undergo training and subsequently reapply the

same pattern to assess performance and ascertain whether the application has effectively

learned from the initial exposure, leading to improved results upon pattern repetition. By

focusing on known and trained patterns, this experiment provides valuable insights into

RAFE’s ability to adapt and optimize its operations based on familiar traffic scenarios.

The repetition of the traffic pattern allows for examining the mechanism’s learning capa-

bilities and capacity to enhance performance over successive encounters with the same set

of conditions. This scenario mirrors real-world conditions where applications often face

recurring patterns, making it critical to evaluate autoscaling mechanisms’ robustness and

learning efficiency.

To this end, first, we simulated the traffic load pattern illustrated in Fig. 26a over a

continuous span of 2 days, equivalent to more than 2 weeks due to the established time

equivalence. As outlined in the testbed definition, all generated requests were directed

toward the VNF/MEC applications. Throughout this period, the RAFE framework was

configured to exclusively employ the reactive autoscaling mechanism. Following the 2-day

simulation under the specified workload, the predictive module used the resulting metrics

to train the forecasting AI models, utilizing the BI-LTSM-based algorithm elucidated

earlier. The consumed CPU and memory metrics were employed as inputs for scale,

leading to the development of two distinct models by the predictive mechanism (one for

each metric).

With these outputted models, we conduct further simulations using the same testbed

and traffic load. For the subsequent 6 hours, the RAFE framework was configured to use

the predictive autoscaling mechanism exclusively. Following this, the process was reiter-

ated for an additional 6 hours, with the framework employing both reactive autoscaling

and predictive autoscaling mechanisms concurrently (hybrid approach).

The results of these interactions are presented in the subsequent sections, organized

according to the context of each scaling mechanism.

5.3.1 Reactive Autoscaling

In this first experiment, RAFE’s Reactive Autoscaling module achieved the results

presented in Fig. 27. The blue line illustrates the number of instances/containers the

reactive module instantiates over time. The horizontal blue bars indicate the number of
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Table 11 – Requests and errors during the first experiment using the predictive method.

Requests Errors Errors (%)

147231 1 0.00067%

Furthermore, to enhance the comprehensibility of the results and provide a quantita-

tive perspective on request errors, Table 11 furnishes data on the total simulated requests,

the instances of request errors encountered during the experiment, and the corresponding

error percentage relative to the total request volume.

Evaluating the performance of RAFE’s predictive module, it is to be noted:

❏ In an overall analysis, this approach shows a more precise alignment between the

number of instances and the network’s behavior, especially when comparing it to

the Reactive Autoscaling approach. In this context, the number of instances closely

mirrors the fluctuations in traffic, displaying remarkably similar patterns.

❏ Notably, the alteration in the number of instances (depicted by the orange line)

occurs before changes in traffic (indicated by the yellow dashed line). This serves

as a demonstration of the effect of forecasting future values.

❏ In Predictive Autoscaling, unlike in the reactive approach, the system can scale

to any number of instances required to match the predicted values, whether it

involves an increase or decrease in the number of instances. This shows significant

improvements in the responsiveness of the system, particularly during sudden traffic

spikes.

❏ It’s worth noting that this approach eliminates any delay in scaling down, effec-

tively preventing the scenario where multiple instances only utilize a fraction of

the allocated resources, as observed in the Reactive Autoscaling approach. This

improvement is achieved by dividing the model’s predicted output by the specified

maximum allocated resources per instance, ensuring optimal resource utilization.

Consequently, this approach maximizes resource efficiency, leading to cost savings

for the operator.

❏ Remarkably, when examining the error rates, as detailed in Table 11, it becomes

evident that this approach outperforms the previous one. It exhibits significantly

fewer errors (almost none) and achieves this with fewer instances, indicating superior

performance while conserving resources.

5.3.3 Hybrid Autoscaling

In turn, the RAFE’s Hybrid Autoscaling module achieved, in the first experiment, the

results presented by Fig. 29. The blue line presents the number of instances/containers the
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instances, resulting in shifts. These fluctuations were a consequence of conflicts aris-

ing between the actions of the Predictive Module and the Reactive Module. These

conflicts occurred when one module initiated a scaling action that contradicted the

scaling decision of the other module.

❏ When comparing the error rates, as depicted in Table 12, with the errors encoun-

tered during validation with other modules, a notable similarity emerges again with

Predictive Scaling. This again underscores the effectiveness and consistency of the

Predictive Scaling approach in delivering favorable results once dealing with a known

traffic pattern.

5.3.4 Experiment Analysis

Analyzing the overall results of the first experiment, Fig. 30 presents and compares

the performance of each autoscaling mechanism (reactive, predictive, and hybrid) imple-

mented in RAFE. In Fig. 30a, the blue, orange, and green lines depict the evolution of

instances/containers over time initiated by the reactive, predictive, and hybrid modules,

respectively. Additionally, To provide a workload reference for comparison, the yellow

dashed line represents the number of VUs or, approximately, the requests per second over

the same duration. Fig. 30b supplements Fig. 30a by incorporating horizontal bars that

represent the occurrence of request errors during the validation of each autoscaling mech-

anism over time. The color coordination ensures a clear correspondence between each

mechanism and its associated request errors, where, for instance, the yellow horizontal

bar aligns with the mechanism represented by the yellow bar, and the same principle

applies to other components.

Table 13 – Requests and errors in each autoscaling mechanism during the first experiment.

Requests Errors Errors (%)

Reactive 142845 1271 0.88977%

Predictive 147231 1 0.00067%

Hybrid 150238 2 0.00133%

Additionally, to complement the insights presented in Fig. 30 and provide a quantita-

tive perspective, Table 13 furnishes details for each assessed autoscaling mechanism. This

includes the count of simulated requests during the experiment, the instances of error

encountered, and the corresponding percentage of errors relative to the total number of

requests. It’s worth noting that the variability in the number of requests stems from the

dynamic nature of the simulated VUs. Rather than simulating a fixed number of requests,

the VUs are designed to mimic various virtual users, introducing realism by simulating

simultaneous requests with some degree of fluctuation.
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In Fig. 30, the green line represents the hybrid approach, employing both reactive and

predictive autoscaling simultaneously. While this hybrid strategy yields similar results to

predictive autoscaling, some distinctions emerge, particularly during abrupt changes in

traffic influenced by divergences with the reactive component.

A closer examination of the errors axis in Fig. 34b and the data in Table 13 reveals

that a reactive autoscaling approach alone may not always meet the requirement for the

correct number of containers to satisfy specific demands. This shortfall can impact the

QoS and extend the overall round-trip time of an NFV/MEC application. Several factors

contribute to this inefficiency: (1) the waiting time between reactive validations, as reac-

tive autoscaling adjusts one instance at a time, sometimes failing to optimize the number

of instances efficiently, particularly during sudden and significant increases/decreases in

traffic. (2) the time required to initiate and make a container available to handle new

requests, where even containers with low startup times compared to virtual machines

(POTDAR et al., 2020b) may impact performance during sudden traffic increases. (3)

the reactive approach relies on thresholds, generating multiple instances with moderate re-

source usage. In contrast, predictive autoscaling leverages past resource usage to forecast

future resource demand, resulting in fewer instances operating within a medium to max-

imum usage of resources. Consequently, predictive autoscaling tends to utilize resources

more effectively.

In conclusion, when dealing with familiar and trained network traffic patterns, predic-

tive and hybrid autoscaling approaches demonstrate a clear advantage over the reactive

approach, outperforming it. As highlighted in Table 13, predictive and hybrid mod-

els introduce almost zero errors, underscoring their robust predictive capabilities. This

prompts the question: "Why not exclusively use the predictive autoscaling mechanism in

RAFE?". The reason is that even applications with well-defined standards, consistently

receiving the same types and quantities of requests, are susceptible to variations in these

patterns (especially NFVs and MEC applications situated at the network’s edge, prone to

encountering diverse workflow patterns). Consequently, an autoscaling framework must

be able to adapt to unforeseen traffic patterns, ensuring the maintenance of quality of

service without compromising performance.

5.4 Handling Unknown Traffic Pattern (Performance

Results)

The second experiment, in turn, is designed to evaluate RAFE under the distinctive

conditions inherent to the mutable nature of the network, where the traffic workload pat-

tern cannot remain the same. We evaluate how each of RAFE’s autoscaling approaches

adeptly manages unforeseen, unlearned, and unexpected traffic patterns. This validation

is less commonly explored in current state-of-the-art works, however, it is a critical as-
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pect, particularly in the context of edge networks, encompassing IoT, VNF, and MEC.

Unlike conventional network scenarios, these contexts are uniquely influenced by the ebb

and flow of human activity in the region where these applications operate. Factors such

as human migrations and events significantly impact the traffic patterns in these scenar-

ios. Therefore, a comprehensive understanding of RAFE’s adaptability to such dynamic

and unpredictable conditions is essential for ensuring its effectiveness in real-world edge

scenarios.

To this end, we conducted additional tests utilizing the same testbed and the previ-

ously trained model derived from the initial experiment. In this iteration, we modified

the traffic configuration to conform to a newly defined pattern as depicted in Fig. 26b.

Upon comparison with the initial traffic pattern presented in Fig. 26a, it becomes evi-

dent that while the two patterns share similarities, they simulate slight variations. This

deliberate adjustment aims to assess how the mechanisms respond to different yet closely

related patterns, emphasizing a pronounced contrast at the center of the pattern. This is

designed to simulate an unexpected surge in traffic, challenging the system’s capacity to

adapt to abrupt changes in the learned patterns.

Notably, for this experiment, the revalidation mechanism of RAFE’s model was in-

tentionally disabled. This deliberate choice allows us to specifically gauge the system’s

resilience and adaptability under conditions where the model is not revalidated, thereby

providing insights into its performance in scenarios with unanticipated traffic variations.

5.4.1 Reactive Autoscaling

In this second experiment, the RAFE’s Reactive Autoscaling module achieved the

results presented by Fig. 31. The blue line presents the number of instances/containers the

reactive module instantiates over time. The horizontal bars in blue represent the number

of request errors over time. Additionally, to reference the workload for the comparison,

the yellow dashed line represents the number of VUs (or approximately the requests per

second) over time for the period.

Furthermore, to complement the visual presentation of results and to provide a quan-

titative perspective on network request errors, Table 14 furnishes data on the total sim-

ulated requests, the instances of request errors encountered during the experiment, and

the corresponding error percentage relative to the total request amount.

Table 14 – Requests and errors during the second experiment using the reactive method.

Requests Errors Errors (%)

148502 942 0,63433%

Assessing the performance of the predictive module, now handling unknown traffic

patterns, some key observations come to light:
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❏ Similar to the observations made in the first experiment, as depicted in Fig. 33, the

hybrid module also exhibited fluctuations in the number of instances, indicative of

rapid shifts in traffic. These fluctuations resulted from conflicts arising between the

actions of the Predictive Module and the Reactive Module. Such conflicts occurred

when one module initiated a scaling action that contradicted the scaling decision of

the other module.

❏ Notably, when comparing the Reactive and Predictive Modules results in this second

experiment, the hybrid module’s performance stands out, showcasing fewer errors

than both modules and demonstrating a closer alignment of the number of instances

with the simulated traffic load over time. This indicates enhanced cost-effectiveness

and performance.

❏ This module’s better performance and cost-effectiveness can be attributed to the

complementary relationship between the Reactive and Predictive Modules. During

untrained/unknown traffic load patterns, the Reactive Module proactively mitigates

issues caused by inaccurate predictions from the Predictive Module. Meanwhile,

during periods of stable traffic, the Predictive Module maintains cost-effectiveness

by instantiating the optimal number of instances in anticipation of traffic changes.

5.4.4 Experiment Analysis

Table 17 – Requests and errors in each autoscaling mechanism during the second experi-
ment.

Requests Errors Errors (%)

Reactive 148502 942 0,63433%

Predictive 152680 4357 2,85368%

Hybrid 148821 650 0,43677%

Analyzing the comprehensive results of the second experiment, Figure 34 and Table

17 provide a detailed account, following the same structure as in Fig. 30 and Table 13,

of the performance of each autoscaling mechanism (reactive, predictive, and hybrid) im-

plemented by the RAFE framework. Analyzing these results, particularly in instances

where the simulated traffic closely resembles the initial traffic load, it is noteworthy that

all algorithms react similarly, yielding results comparable to those achieved in the first

experiment when confronted with minor variations in known traffic patterns. This reit-

erates the advantage and effectiveness of predictive and hybrid approaches in handling

familiar traffic patterns, even with some variation.

Conversely, as depicted in samples 260 to 310 of Figure 34b, when faced with unfa-

miliar/untrained traffic workload patterns that significantly differ from the known ones,
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countering challenges with unseen patterns, it demonstrates the fewest request errors

(as indicated in Table 17) and maintains cost-efficiency by allocating optimal resources

to meet demands. Combining results from both experiments, the hybrid approach of

predictive and reactive autoscaling enables RAFE to sustain resource efficiency without

significant performance impact (or with minimal impact) and respond more effectively to

intensive changes in known traffic patterns than relying solely on predictive scaling. This

provides cost-efficiency and ensures the target applications’ good QoS.

However, a critical observation arises in pursuit of a high service standard: the hybrid

autoscaling mechanism presents expressive overall performance but falls short in handling

unforeseen or untrained traffic patterns. This limitation predominantly arises from the

activation of the predictive mechanism, which, when unfamiliar with a specific pattern,

erroneously anticipates a lower resource demand, leading to incorrect scaling down. This

results in the oscillations depicted in Figure 34b (samples 270-310) and impacts the overall

performance.

This fact underscores the imperative need for a dynamic pattern update or invalidation

mechanism, which can leverage the multiple AI models to carry out these adjustments

selectively based on the specific metrics.

5.5 Model Suspense and Overall Performance Re-

sults

Recognizing the limitations exposed in the previous experiment, where the hybrid

auto-scaling mechanism demonstrated a notable performance shortfall in the face of

unforeseen or untrained traffic patterns, the RAFE’s model suspense and invalidation

mechanism, alternatively referred to as the model revalidation mechanism, takes center

stage. We assess RAFE’s performance in this third experiment when handling unex-

pected/unlearned/unseen traffic patterns. However, unlike the second experiment, we

have enabled RAFE’s model revalidation mechanism this time to validate the RAFE’s

performance with all of its capabilities enabled. This approach also lets us ascertain

whether a hybrid strategy incorporating the suspense/revalidation mechanism can yield

optimal results in the auto-scaling scenario.

To this end, we have trained a new model with the same process depicted in the

first experiment and simulated the changed traffic defined in Fig. 26b, as in the second

experiment. However, to leverage RAFE’s capabilities this time, we used the hybrid

approach with the model revalidation mechanism activated. In addition to the RAFE’s

configurations listed in section 5.2, we have configured the revalidation mechanism with

the following settings:

❏ Monitoring the predicted instances and actual instantiated containers every 10 sec-
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Table 18 – Requests and errors during the third experiment using the hybrid method with
model revalidation mechanism.

Requests Errors Errors (%)

148116 91 0.06144%

Evaluating the performance of RAFE, leveraging all of its capabilities, with the hybrid

auto-scaling approach enhanced by the model revalidation (model suspense) mechanism,

several key observations come to light:

❏ The hybrid module, enhanced by the revalidation mechanism, demonstrates supe-

rior performance when addressing unforeseen or unlearned traffic patterns. This is

affirmed by the significant reduction in error rates, as illustrated in Table 18, where

the difference with other approaches is striking. In managing such traffic patterns,

it achieves an error rate of less than 0.1%, showcasing its exceptional efficacy.

❏ In the time frame delineated by the light blue range in Figure 35, a significant shift in

traffic to an unfamiliar and distinctly different pattern triggers the suspension of the

model. Just before this point, we observe a notable disparity between the predicted

instance count and the actual instances, accompanied by a few errors. During this

juncture, the reactive auto-scaling mechanism responds to the unlearned pattern,

exacerbating the discrepancy between predicted and actual instances. This discrep-

ancy is evaluated by the model revalidation mechanism, leading to the suspension

of the predictive auto-scaling mechanism. As a result, the reactive module takes

over, working independently to optimize its performance. This underscores the ef-

fectiveness of RAFE’s hybrid approach, leveraging its capabilities, even in scenarios

involving unknown or unexpected traffic patterns.

❏ A comparison between RAFE’s hybrid auto-scaling approach with and without the

model revalidation mechanism can be made by contrasting the current experiment

results with the one predominantly featured in Section 5.4.3. Upon analyzing these

results, it becomes evident that the primary challenge posed by an unlearned and

significantly different traffic pattern was effectively addressed by including the reval-

idation mechanism.

RAFE has exhibited expressive performance, consistently delivering optimal results

across a variety of scenarios commonly encountered in IoT, VNFs, MEC, and cloud envi-

ronments. The predictive auto-scaling mechanism within RAFE, powered by deep learn-

ing models, emerges as a key factor contributing to these accomplishments. However,

such forecasting strategies rely on historical data, and a challenge arises when confronting

unknown/untrained patterns that substantially differ from learned patterns. To tackle

this issue, RAFE employs a revalidation mechanism capable of suspending the model
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and, if necessary, requesting a new model training session when the predictive model’s

performance deteriorates. In conjunction with the hybrid approach that combines pre-

dictive and reactive modules, this mechanism is a critical element in achieving optimal

results in terms of QoS and cost-effectiveness.

These three experiments yielded great results in terms of performance for RAFE.

However, it’s to be noted that in none of these experiments were network errors eliminated.

This is primarily attributed to the simulated traffic pattern’s nature, characterized by

numerous rapid traffic peaks and as a consequence of the configurated thresholds and

metrics, which aimed to strike a balance between cost-efficiency and QoS, rather than

prioritizing a zero-error outcome. To attain a zero-error result, network or application

operators/developers can utilize the Config Module provided by RAFE (as depicted in

section 3.3.2) to fine-tune the thresholds with an emphasis on optimizing QoS. Conversely,

the same module can be adjusted to focus on achieving the most cost-effective outcomes,

depending on the specific objectives and priorities of the operator.

5.6 Invalidation of Forecasting Models

Network traffic patterns and the associated hardware resource consumption can exhibit

high levels of dynamism, with abrupt spikes or declines influenced by multiple factors.

For instance, consider an MEC application deployed on a base station, where the traffic

pattern can be dramatically shaped by events that draw large crowds or shifts in popu-

lation, resulting in a markedly different traffic pattern than what was used for training

predictive models. This inherent variability is a characteristic of networks, and RAFE

was designed to address such scenarios.

To tackle this challenge, as previously elucidated, RAFE incorporates a mechanism

known as the "model invalidation mechanism" in the revalidation context. This mechanism

identifies and subsequently invalidates a pre-trained deep learning model when it detects a

significant deterioration in the model’s performance, thus triggering a new model training

process.

To evaluate the effectiveness of this mechanism and assess RAFE’s ability to adapt

by learning new patterns on demand (when these patterns are identified as recurrent), we

experimented within the same scenario proposed in the model suspense evaluation (third

experiment, Section 5.5). We configured a model invalidation threshold to be triggered

after five occurrences of model suspense. Upon triggering, a series of sequential steps

ensued: a new request for model training is made and added to the training queue, a

dedicated worker processes the training request, a new training process is conducted,

a fresh model is created and updated within RAFE’s core application, and finally, the

predictive model is reactivated with the newly trained pattern.
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Table 19 – Time spent to train the AI-based forecasting models used in the Predictive
Module.

Model’s Metric Mean Training Time

CPU 12 min 03 sec (±2 min 34 sec)

MEM 14 min 26 sec (±3 min 12 sec)

training time of approximately 12 minutes, while the models used to understand MEM

patterns necessitated an average training time of around 14 minutes. A 90% confidence

interval accompanied both of these values.

Achieving such low training times, as evidenced by a maximum of 18 minutes, was

of essential significance for our objectives, especially when combined with RAFE’s dis-

tributed architecture, where these training procedures can be executed concurrently. This

efficiency in training time can be attributed to several key factors: (i) the univariate

nature of the datasets, which possess only one dimension, resulting in reduced computa-

tional resource requirements; (ii) the simplified data structure necessitating fewer layers

and nodes in the neural network to achieve satisfactory performance, thus directly im-

pacting the processing time for NN inputs, and (iii) the effectiveness of random search

hyperparameter tuning, when combined with the less complex data structure, in gener-

ating favorable outcomes within a limited number of iterations (CASTAN-LASCORZ et

al., 2022).

5.8 Integration With Other MANO Solutions

To assess RAFE’s suitability for network-wide use and its compatibility with exist-

ing systems, we have integrated RAFE into a widely adopted stack within NFV and

MEC environments, aligning with the ETSI’s NFV Reference Architecture (DAHMEN-

LHUISSIER, 2021). This evaluation gauges RAFE’s adaptability and utility in various

network scenarios. Moreover, it serves as a valuable reference for future endeavors. The

proposed integration leverages established technologies commonly utilized in this context,

as illustrated in Figure 38.

As depicted in this figure, the assembly of elements within ETSI’s NFV architecture

involved the selection of the following technologies:

MANO: For the crucial role of orchestrator and manager, we utilized the Open Source

MANO (OSM) (OSM, 2020a). OSM is one of the market’s most widely adopted tech-

nologies in these capacities. It assumes the responsibility of supervising and overseeing

all entities within the architecture, maintaining a comprehensive awareness of each archi-

tectural block’s usage, operational status, and utilization statistics (YU; YANG; FUNG,

2020).
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them for scrapped by Prometheus.

To enable the predictive and hybrid mechanisms, we also implemented RAFE’s worker

stack, which comprises a Redis instance to work as a queue and one or more RAFE’s Model

Training Workers. Notably, when comparing this integration with an NFV enabler archi-

tecture to the testbed architecture used in previous evaluations, the single modification

made in RAFE was the addition of a plugin designed to interface with OSM, incorporat-

ing just four straightforward methods. This straightforward adaptation underscores the

ease of integrating RAFE into new architectural stacks, requiring only the implementa-

tion of two new plugins, a MANO Interactor, and a Metric Reader. This demonstrates

the flexibility and simplicity of the integration process, making it compatible with various

architectural setups.

In the context of the RAFE assessment, the wrappers labeled as M1 to M4 illustrated

in Fig. 38, represent distinct host machines. In our implementation, these machines corre-

spond to virtual machines hosted within the Compute Engine service on GCP (GOOGLE,

2023b). During our tests, RAFE’s core presented minimal hardware resource consump-

tion, emphasizing that it can safely co-deployed with OSM in a single instance. However,

deploying RAFE’s model training workers in a distributed fashion is advantageous, as

deep learning model training is a resource-intensive task. Furthermore, we positioned the

Prometheus instance on the same host as RAFE to minimize the time required for metric

retrieval. Nonetheless, deploying Prometheus separately and establishing a network link

between the hosts for communication is possible. Regarding allocated resources, hosts

M1, M3, and M4 are equipped with 2 vCPUs and 4GB of memory. In comparison, host

M2 boasts 2 vCPUs and 6GB of memory, meeting the minimum recommended specifica-

tions for hosting OSM effectively.

5.8.1 Experiment Results

Utilizing the methodology outlined in the initial experiment of this work (section

5.3), we simulated traffic over 2 days throughout the architecture, enabling only the

predictive module in RAFE to generate historical metrics. Then, we enabled the predictive

module, which triggered a new model training and utilized the metrics as a dataset. The

entire procedure adhered to the aforementioned architecture, incorporating a distributed

training process, automatically initiating training processes triggered by RAFE.

To evaluate RAFE’s results, comparing them with those observed in the initial ex-

periments, we simulated the identical traffic pattern utilized previously, as delineated in

Figure 26a. This approach enables a comprehensive assessment of RAFE’s performance

across various environments within the workflow. Moreover, we experimented using the

same configuration and traffic load described in the first experiment, presented in section

5.3.
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underscores RAFE’s adaptability without compromising performance when inte-

grated into more complex and distributed architectures, showcasing expressive per-

formance under such conditions.

❏ A minor delay in scaling new instances, as depicted in the chart (Fig. 39), is

noticeable when compared to results from the Docker-based testbed with the same

traffic load and configurations (depicted in Fig. 29). This delay is attributed to the

time required for communication between MANO and VIM, along with readiness

evaluations and health checks, which inherently consume more time in comparison

to the testbed described in Section 5.2. Despite this, the execution time for scaling

actions remains relatively short, primarily due to the concurrent execution of scaling

actions adopted in RAFE, a key factor in responding promptly to traffic changes.

❏ In an overall evaluation of RAFE’s integration capabilities with other widely used

network technologies in different places of the network, it consistently demonstrates

satisfactory effectiveness across different stacks, yielding similar outcomes in both

scenarios.

5.9 Overall Analysis

Table 21 highlights a comparative analysis of the diverse solutions identified within the

state-of-the-art literature, visually describing the aforementioned works. Several aspects

were examined for each proposal. First, the solution’s category can be Threshold-based

Rules, Reinforcement Learning, Control Theory, Time Series Analysis, or Policies. Second

and third, if the works provide or not auto-scaling reactive and prediction mechanisms.

Fourth, the work category, as a Research Contribution (work only proposes a concept

or idea, without practical implementation), a Research Project (work implements and

validates an auto-scaling solution restrained to a specific scenario, not applicable to the

market), or an Autoscaling Tool (work provides a full functional auto-scaling tool). Fifth,

the main technologies applied in the solution. Sixth, if the work has mechanisms to handle

changes in workload patterns, such as new training in predefined intervals, continuous

learning or RAFE’s revalidation module. Seventh, for cases where the solution provides a

predictive approach based on AI models, this column shows the utilized approach, which

can be a single model or, in the case of this work, a multi-model approach. Eighth, the

solution’s architecture, if it’s a monolithic or distributed. And finally, eighth, where the

target applications are placed in the network.

As illustrated in Table 21, RAFE advances the state of the art by introducing and

evaluating an auto-scaling framework designed to accommodate applications deployed

across diverse network locations. Its efficacy is demonstrated by successfully scaling VNFs,

MEC, and cloud-placed applications. The framework’s architectural flexibility allows
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seamless integration with various applications, owing to its conceptual robustness and

generality. This integration extends to multiple monitoring tools and managers through

plugins.

Distinguishing itself from some existing works that adopt either reactive or proactive

auto-scaling methodologies, RAFE adopts a hybrid approach. This approach aims to

ensure system stability while simultaneously anticipating future workload demands. The

framework employs configurable threshold-based policies to prevent failures and leverages

a proactive auto-scaling mechanism developed around a BI-LSTM time series forecasting

model. This proactive approach aims to reduce the response time to network traffic

changes.

Like other works in the field, RAFE analyzes resource usage metrics such as CPU

and memory to dynamically adjust the allocated resources based on workload demand.

Notably, RAFE does not limit itself to a specific monitoring stack or technology, allowing

seamless integration with different monitoring tools through plugins. It only requires

a time-series database (e.g., PrometheusDB, VictoriaMetrics) or a service that returns

monitored metrics.

In addition, recognizing the dynamic nature of networks, we introduce a revalidation

mechanism for RAFE. This mechanism is designed to adeptly manage shifts in work-

flow patterns, ensuring optimal performance for both observed and unforeseen patterns.

Moreover, it facilitates the on-demand request for new models when there are changes in

workload, thus ensuring adaptability to evolving network conditions.

Furthermore, a key contribution of this work lies in its exploration of multiple AI

models, each dedicated to a specific metric. This approach contrasts with existing works

that employ a single model for the entire target application or even a single model for

all applications in service chains. This work also addresses architectural decisions and

model training mechanisms to enhance the advantages and mitigate the drawbacks of

this alternative approach. By implementing distributed training, scalability is achieved,

accelerating model generation. This approach ensures that RAFE’s core remains requiring

few hardware resources, facilitating seamless integration and optimizing cost-efficiency.

Additionally, we introduce a Docker-based testbed implementation to substantiate

the efficacy of our framework. This implementation generates traffic, oversees VNFs, and

manages MEC applications. Essentially, it assumes the role of a MANO entity within

the ETSI’s VNF reference architecture. In assessing the performance of our framework,

we gauged its response using the same pattern/dataset employed in the training process

of our predictive approach. Notably, unlike most existing works, our validation process

goes further. We conducted validation by simulating a distinct and previously unseen

workload pattern. This comprehensive validation approach assesses how our proposed

framework and its various auto-scaling mechanisms perform under significant variations

in the learned network pattern.
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Table 21 – State of the art summary.

Approach
Reactive
Autoscal-

ing

Predictive
Autoscal-

ing
Category Enabling

Technologies

React to
Changes

in
Workload
Pattern

AI
Model

Ap-
proach

Archi-
tecture

Applications
Network
Placing

Han et al.
(2012)

Threshold
Rules ¥ ○ Research

Project
Static

thresholds - - Monolithic Cloud / Core

Dutta, Taleb
e Ksentini

(2016)

Threshold
Rules ¥ ○ Research

Project
Static

thresholds - - Monolithic Edge

Arteaga,
Risso e
Rendon
(2017)

Reinforcement
Learning ¥ ○ Research

Project

Q-Learning and
Gaussian
Processes

- - Monolithic Edge

Horovitz e
Arian (2018)

Reinforcement
Learning ¥ ○ Research

Project Q-Learning - - Monolithic Cloud / Core

Lu, Yu e Pan
(2022)

Reinforcement
Learning ¥ ○

Research
Contribu-

tion

Semi-Markov
Decision

Process (SMDP)
- - - Cloud / Core

Padala et al.
(2009)

Control
Theory ¥ ○ Research

Project Control Theory - - Monolithic -

Kalyvianaki,
Charalam-

bous e Hand
(2014)

Control
Theory ¥ ○

Research
Contribu-

tion

Control Theory
and Kalman

Filter
- - - -

Huang et al.
(2016)

Queue
Theory ¥ ○ Research

Project Queue Theory - - Monolithic Cloud / Core

Shahin
(2017)

Queue
Theory ¥ ○ Research

Project Queue Theory - - Monolithic Cloud / Core

Alawe et al.
(2018)

Time Series
Analysis ○ ¥

Research
Contribu-

tion
LSTM - Single

Model - Edge

Moradi,
Ahmadi e
Nikbazm
(2022)

Time Series
Analysis ○ ¥

Research
Contribu-

tion

SVR, DT and
KNN - Single

Model Monolithic Edge

Kim et al.
(2019b)

Time Series
Analysis ○ ¥

Research
Contribu-

tion
CAT-LSTM - Single

Model - Edge

Scalingi et al.
(2019)

Time Series
Analysis ○ ¥

Research
Contribu-

tion
GRU - Single

Model - Edge

Zaman,
Rahman e

Naznin
(2019)

Time Series
Analysis ○ ¥

Research
Contribu-

tion

LSTM,
CNN-LSTM

and
Bidirectional-

LSTM

- Single
Model - Edge

Tao et al.
(2021)

Time Series
Analysis ○ ¥ Research

Project LSTM - Single
Model Monolithic Cloud / Core

EC2/ECS -
AWS (2023),

Scaling
(2023)

Threshold
Rules and

Time Series
Analysis

¥ ¥ Autoscaling
Tool

Static
Thresholds and

Proprietary
AI-Based
Algorithm

New
training

every 24h

Single
Model - Cloud / Core

GKE -
Google

(2023b),
Kubernetes

(2023),
Thompson

(2019)

Threshold
Rules and

Time Series
Analysis

¥ ¥ Autoscaling
Tool

Static
Thresholds and

Linear
Regression or
Holt-Winters
Smoothing

New
training

every 24h

Single
Model - Cloud / Core

OSM (2020b) Threshold
Rules ¥ ○ Autoscaling

Tool
Static

Thresholds - -
Monolithic

/ Dis-
tributed

Edge

Zafar et al.
(2022)

Threshold
Rules ¥ ○ Autoscaling

Tool
Static

Thresholds - - Monolithic Edge

Nicodemus,
Boeres e
Rebello
(2020)

Threshold
Rules ¥ ○ Autoscaling

Tool
Static

Thresholds - - Monolithic Edge

Vu et al.
(2020)

Threshold
Rules ¥ ○ Autoscaling

Tool
Static

Thresholds - - Monolithic Edge

Al-Dhuraibi
et al. (2017) Policies ¥ ○ Autoscaling

Tool
MAPE-K
principles - - Monolithic Edge

Bharanidharan,
Jayalakshmi
e Mayilva-

hanan (2022)

Time Series
Analysis ○ ¥ Research

Project LSTM and GRU - Single
Model Monolithic Cloud

RAFE
(this work)

Threshold
Rules and

Time Series
Analysis

¥ ¥ Autoscaling
Tool

Static
Thresholds and

BI-LSTM

Revalidation
On

Demand

Multi
Models Distributed Cloud / Core

and Edge
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Conclusion

This work proposed and evaluated RAFE, a framework for enabling hybrid auto-

scaling, with reactive and proactive mechanisms, that can be used across the network

environments for NFV, MEC, and cloud applications. Additionally, it can be coupled to

multiple monitoring and resource orchestration solutions.

RAFE employs threshold-based policies to prevent application failures under heavy

workloads and enables predictive auto-scaling using multiple AI models based on BI-

LSTM to forecast future resource demands. In addition, recognizing the dynamic nature

of networks, RAFE introduces a revalidation mechanism to manage changes in work-

flow patterns adeptly, ensuring optimal performance for both observed and unforeseen

patterns. This mechanism suspends and automatically requests new models when there

are changes in workload, thus ensuring adaptability to network conditions. Furthermore,

RAFE uses multiple AI models, each dedicated to a specific metric. This approach and

RAFE’s distributed training process enable more versatile vertical and horizontal scaling,

speeding up the training processes and keeping the RAFE’s core requiring fewer hardware

resources, enabling better and easier integrability.

In the first part of this work, we evaluated and compared several machine learning-

based forecasting algorithms. We assessed multiple solutions to validate their perfor-

mance, aiming for an optimal solution for each forecasting category: univariate/multivariate,

one-step/multi-step, and regression/classification. Our findings reveal that when con-

fronted with diverse scenarios in an IoT/edge environment, no single algorithm can be

a universal solution to achieve optimal results for all demands. However, our empiri-

cal results offer valuable guidance for selecting and composing a predictive approach in

new projects based on specific necessities. Moreover, it serves as a base for choosing the

predictive approach for RAFE, which uses a Bi-LSTM model and maps the forecasting

problem as a univariate single-step regression problem.

In the second part of this work, we propose and evaluate the RAFE (Resource Auto-

scaling For Everything) framework, designing and implementing a Docker-based orches-

tration testbed to integrate and evaluate it. Furthermore, we compare RAFE’s reactive,
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predictive, and hybrid approach performances over different network scenarios. Addi-

tionally, we assess RAFE’s integrability, connecting it to a commonly used ETSI’s VNF

architecture, RAFE’s requested mean training time, and the effectiveness of RAFE’s

revalidation mechanism.

The findings demonstrate that RAFE effectively maintains system sustainability and

optimizes application performance by offering bal, incorporating a model revalidation

mechanism, the hybrid approach provisioning. Furthermore, RAFE exhibits remarkable

integrability and performance, showcasing resilience even in the face of unexpected traffic

shifts and significant changes in workload.

Additionally, the results highlight numerous advantages of using multiple AI models,

each specifically designed to handle distinct metrics. This approach minimizes the time

required for model training and ensures high-performance outcomes. It offers added flex-

ibility in managing and treating these models individually. The distributed architecture,

featuring a distributed queue mechanism for ML training, upholds the application’s core

as well-suited for diverse network environments ranging from edge to cloud-based systems.

Lastly, incorporating a model revalidation mechanism, the hybrid approach yields

optimal performance across various scenarios. This is particularly evident in improving

results when encountering untrained network traffic patterns and enhancing the overall

adaptability of the solution.

6.1 Publications

This section presents publications directly related to this work. The first publication

is the study about the most suitable machine-learning algorithms for MEC scenarios:

❏ VINHAL, L.; MOREIRA, R.; SILVA, FLÁVIO. A Comparative Analysis of Ma-

chine Learning Techniques for Enhanced Resource Management in Multi-access

Edge Computing. 2023 IEEE 9th World Forum on Internet of Things (WF-

IoT). out. 2023.

Also, there is a publication under preparation that presents RAFE and its hybrid

approach for auto-scaling:

❏ VINHAL, L.; MOREIRA, R.; SILVA, FLÁVIO. Resource Auto-scaling For Every-

thing (RAFE): A Smart Hybrid Auto-Scaling based on Machine Learning. Expert

Systems with Applications. ISSN 0957-4174.

6.2 Future Work

The current study has provided valuable results and insights. However, several avenues

for future research and development can enhance and extend the findings presented here:
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❏ Comparison With Other Frameworks: Compare RAFE with the other state-

of-the-art auto-scaling tools.

❏ Dynamic Threshold Adaptation: Explore adaptive threshold policies, dynami-

cally adjusting the reactive mechanism based on performance metrics and real-time

network conditions. This can lead to more responsive and efficient auto-scaling

decisions in the reactive approach.

❏ Real-World Deployment and Validation: Deploy RAFE in real-world network

environments to gather practical insights and validate its performance under diverse

conditions. Collaborate with industry partners for large-scale deployments.

❏ Auto-Configuration: Research self-configuration mechanisms enable the frame-

work to define its setting autonomously, thus reducing manual intervention.

❏ Vertical Scaling: Assess RAFE with horizontal and vertical scaling. The multi-

model structure allows high configurability and granular scaling, which can be

promising features for optimum vertical scaling.

❏ Federated Learning: Compare and assess RAFE’s distributed learning with fed-

erated learning to evaluate the pros and cons of each approach.

❏ Additional MANO Integrations: Create more MANO integrations for RAFE,

leveraging the plugin-based architecture to implement the connection with multiple

MANO-like solutions.

❏ Open-Source Community Engagement: Consider releasing RAFE as an open-

source project to foster collaboration, gather feedback, and accelerate its develop-

ment. Engaging with the open-source community can lead to rapid advancements

and adoption.
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