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Resumo

O uso de diferentes modelos para fabricacdo de protetores bucais personalizados (PBs) pode
afetar nas propriedades mecénicas e caracteristicas fisicas do etileno acetato de vinila (EVA). Este
estudo teve como objetivo avaliar o efeito do fluxo de trabalho digital sobre as propriedades fisicas
e mecanicas de protetores bucais costumizados. O estudo foi dividido em 2 objetivos especificos:
1) Avaliar o efeito de diferentes materiais para modelos convencionais (gesso odontoldgico) ou
modelos impressos em 3D nas propriedades fisicas e mecanicas do EVA, e suas caracteristicas de
superficie. 2) Avaliar a adaptacdo, espessura e absor¢do de impacto dos PBs customizados de EVA
produzidos usando modelos de gesso convencionais ou impressos 3D. No primeiro objetivo,
placas de EVA foram plastificadas usando 4 tipos de modelos: Gesso tipo IV (GTIV), Gesso tipo IV
resinoso (GTIVR), Resina 3D com tratamento (RI3DcT), Resina 3D sem tratamento de superficie
(RI3DsT). Os EVAs plastificados foram cortados de acordo com a norma ISO 37-11 (n = 30) e usados
para medir dureza Shore A, forca maxima de ruptura, F (N), alongamento, EL (mm), e resisténcia
maxima a ruptura, (MBS,MPa). Macrofotografia e microscopia eletrénica de varredura foram
usadas para classificar a alteracdo da superficie do EVA. No objetivo 2, um modelo typodont com
tecido gengival simulado foi utilizado como referéncia para a confec¢do de PB com dois materiais
de modelos: Gesso tipo IV (GIV-PB) e resina impressa (3DPr-PB) (n = 10), espessura do PB (mm),
adaptacdo interna (mm) e 4rea dos espacos vazios (mm?) entre as duas camadas de EVA foram
mensuradas usando tomografia computadorizada de feixe cbnico e o software Mimics
(Materialize). A absorcdo de impacto do PB foi por meio do teste de extensometria durante
impacto com péndulo com uma esfera de aco em 30° sobre o modelo de typodont com e sem
PBs. Os valores de Shore A diminuiram significativamente, independentemente do tipo de
modelo. O modelo RI3DcT e o GtlV apresentaram valores mais altos de F, El e MBS do que o
GTIVRe o RI3DsT (p <0,05). O RI3DsT resulta em alteracdo grave da superficie do EVA e maior
reducdo das propriedades mecanicas em contato com o modelo. O 3DPr-PB apresentou espessura
semelhante (P =0,371), absor¢do de choque ao GIV-PB (87,0%) e melhor adaptacdo do GIV-MTG
(P < 0,001). O uso de revestimento de gel solivel em dgua durante a pds-cura melhorou as
propriedades mecanicas do EVA de forma semelhante quando plastificado sobre o modelo de

gesso de pedra dental tipo IV. O 3DPr-PB apresentou desempenho semelhante ao do GIV-PB.
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Abstract

Using different models to fabricate custom mouthguards (MGs) can affect the mechanical
properties and physical characteristics of ethylene vinyl acetate (EVA). This study aimed to
evaluate the effect of the digital workflow on the physical and mechanical properties of
customized mouthguards. The study was divided into 2 specific objectives: 1) Evaluate the impact
of different materials for conventional models (dental stone) or 3D-printed models on EVA's
physical and mechanical properties, and its surface characteristics. 2) Evaluate the adaptation,
thickness, and impact absorption of customized EVA mouthguard thermoplastic materials (MTGs)
produced using conventional or 3D-printed models. In the first objective, EVAs were plasticized
using 4 types of models: Type IV dental stone (GTIV), Resinous Type IV dental stone (GTIVR), 3D
resin with surface treatment (RI3DcT), and 3D resin without surface treatment (RI3DsT). The
plasticized EVAs were cut according to ISO 37-Il standard (n = 30) and used to measure Shore A
hardness, maximum force of rupture (F, N), elongation (EL, mm), and maximum rupture strength
(MBS, MPa). Macrophotography and scanning electron microscopy were used to classify the
surface alteration of EVA. In objective 2, a typodont model with simulated gingival tissue was used
as a reference for the fabrication of mouthguards with two model materials: Type IV dental stone
(GIV-MTG) and 3D printed resin (3DPr-MTG) (n = 10). The thickness of the mouthguard (mm),
internal adaptation (mm), and area of voids (mm?2) between the two layers of EVA were measured
using cone-beam computed tomography and Mimics software (Materialize). The impact
absorption of the mouthguard was measured using a pendulum impact test with a steel ball at
30° on the typodont model with and without mouthguards. Shore A values decreased significantly,
regardless of the model type. The RI3DcT model and GTIV showed higher values of F, EL, and MBS
than GTIVR and RI3DsT (p <0.05). RI3DsT resulted in severe surface alteration of EVA and greater
reduction in mechanical properties in contact with the model. 3DPr-MTG showed similar thickness
(P = 0.371), shock absorption to GIV-MTG (87.0%), and better adaptation than GIV-MTG (P <
0.001). The use of water-soluble gel coating during post-curing improved the mechanical
properties of EVA similarly when plasticized over Type IV dental stone models. 3DPr-MTG
performed similarly to GIV-MTG
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|ntrodug50 e Referencial Tedrico

O traumatismo dentario é um dos problemas de saude publica mais comuns, com
prevaléncia que varia entre 15% a 23% em dentes deciduos e permanentes em todo o
mundo.'? As lesdes orofaciais comuns em esportes incluem danos aos tecidos moles,
lesGes labiais, fraturas désseas envolvendo a mandibula, nasal e zigomatico, e lesdes
dentdrias, como fraturas, luxacdes e avulsdes.®?

Os protetores bucais previnem lesdes decorrentes de traumas dentarios, como
fraturas e restauracdes de dentes,® danos a estruturas adjacentes,” ao condilo
mandibular e ao disco articular.® e podem até mesmo prevenir tensdes no germe
permanente no caso de dentes deciduos.’ Diferentes tipos de protetores bucais sdo
descritos na literatura: pré-fabricados, termoplasticos (boil-and-bite) e feitos sob
medida.1°

De acordo com a American Society for Testing and Materials, no caso de
prevencdo de traumas dentdrios em esportes de alto impacto,* protetor bucal feito sob
medida tem sido considerado padrdo ouro em comparagdo com outros protetores
bucais, devido a sua capacidade de proporcionar absorcdo de choque,*®!* reducdo dos
efeitos da forcas geradas pelo impacto nas estruturas dentais e de suporte, e melhor
ajuste.®12 O protetor bucal costumizado oferece desempenho superior em termos de
conforto, ajuste, estabilidade, respirabilidade, fonética e protecdo das estruturas
dentdrias.!314

O desempenho dos protetores bucais customizados depende de varios fatores,
como o tipo de material utilizado para a sua confeccdo, geometria, processo de
fabricacdo e espessura final do protetor bucal.*>® Vérios estudos avaliaram diferentes
materiais para a fabricacdo de protetores bucais personalizados, '/ demonstrando
caracteristicas ideais, como baixa absorcdo de agua, dureza adequada, baixa incidéncia
de delaminacdo,'*® e Gtimas propriedades mecénicas.'* No processo de fabricacdo de
protetores bucais o copolimero de etileno e acetato de vinila (EVA) tem sido o material
de primeira escolha.'®'%2% Assim, é necessario obter um modelo que permita a
reproducdo da anatomia da arcada superior do atleta. Estes modelos podem ser obtidos,

em primeiro lugar, por meio de moldes convencionais empregando, principalmente
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alginato e modelos em gesso, considerados o padrdo ouro. ?! Em segundo lugar, o
aprimoramento de impressfes digitais feitas com um scanner intraoral, tem permitido
reduzir procedimentos clinicos e melhorar o conforto do paciente.???* Nesse sentido, os
escaneres intraorais permitem que as impressfes digitais sejam usadas para fabricar
modelos impressos e produzir protetores bucais personalizados a partir da laminacdo de
EVA nesses modelos.

Entretanto, ainda é incerto se a termo plastificacdo do EVA em modelos impressos
em resina pode comprometer as propriedades mecanicas, as caracteristicas da
superficie, a capacidade de absor¢cdo de impacto e o ajuste dos protetores bucais
personalizados produzidos com EVA. Por isso, este estudo tem como objetivo avaliar por
meio de dois estudos laboratoriais in vitro complementares o mecanico, as caracteristicas
fisicas, o ajuste e a absorcdo de impactos dos protetores bucais personalizados fabricados

com modelos obtidos em gesso e por impressdo 3D.
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CAPITULO 1

ARTIGO 1
Effect of different materials for conventional and 3D-printed models on the mechanical

properties of ethylene-vinyl acetate utilized for fabricating custom-fit mouthguards

Ronddn AKA, Lozada MIT, Soares PBF, Raposo LHA, Soares CJ. Effect of different
materials for conventional and 3D-printed models on the mechanical properties of
ethylene-vinyl acetate utilized for fabricating custom-fit mouthguards. Dent

Traumatol. 2023;00:1-8. doi: 10.1111/edt.12912.
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Abstract

Background/Aim: The interaction between the ethylene-vinyl acetate (EVA) with
distinct materials utilized for obtaining dental models can affect the performance
of resulting mouthguards. This study attempted to evaluate the effect of different
materials for conventional (dental stone) or 3D-printed (resin) models on EVA's physi-
cal and mechanical properties and surface characteristics.

Material and Methods: EVA sheets (Bioart) were laminated over four model types:
GIV, conventional Type IV dental stone model (Zhermak); ReG, resin-reinforced Type
IV dental stone model (Zero Stone); 3DnT, 3D resin printed model (Anycubic) without
surface treatment; 3DT, 3D-printed model (Anycubic) with water-soluble gel (KY Jelly
Lubricant, Johnson & Johnson) coating during post-curing process. The EVA speci-
mens were cut following the 1SO 37-1l standard (n= 30). Shore A hardness was meas-
ured before and after plasticization on the contact (internal) or opposite (external)
surfaces with the model. The breaking force (F, N), elongation (EL, mm), and ultimate
tensile strength (UTS, MPa) were measured using a universal testing machine. Macro-
photography and scanning electron microscopy were adopted for classifying the EVA
surface alteration. Data were analyzed by one-way ANOVA with repeated measures,
followed by Tukey's test (e =.05).

Results: Plasticization significantly decreased Shore A values for the tested EVA
regardless of the model type (p<.001). Higher F, El, and UTS values were verified
for the EVA with 3DT and GIV models compared to ReG and 3DnT (p<.001). 3DnT
models resulted in severe surface alteration and a greater reduction of the mechanical
properties of the EVA.

Conclusion: The interaction of EVA with 3D resin-printed models without surface
treatment or resin-reinforced Type IV dental stone models significantly affected the
physical and mechanical properties of this material. The utilization of water-soluble
gel coating during the post-curing process of 3D resin printed models improved the
mechanical properties of the EVA, similarly when this material was plasticized over
conventional Type IV dental stone model.

© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Dental Traumatology. 2023;00:1-8.

wileyonlinelibrary.com/journal/edt
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1 | INTRODUCTION

The use of mouthguards (MTG) during contact sports is strongly
recommended by the policy statement on Sports Dentistry of the
World Dental Federation, FDI.* MTGs absorb and dissipate impact
energy from physical contact during high-impact sports activity.>*
When manufactured and utilized correctly, a custom-fit MTG can re-
duce the stress on teeth and surrounding tissues, promoting better
adaptation, retention, and comfort.*

The mechanical performance of MTGs in terms of shock ab-
sorption is affected by several factors, such as material type,
manufacturing process, and thickness.”” The athlete's adherence
to MTGs and physical performance depend on these factors.”®
Intraoral impressions taken by a dentist to obtain dental stone
(cast) models are the conventional flow to fabricate custom-fit
MTGs.2?%® Ethylene-vinyl acetate (EVA) is the most popular
material utilized to manufacture custom-fit MTGs owing to its
applicability as a hot-melt adhesive layer that can be easily em-
ployed with thermoforming methods to fabricate a customized
device.**™® The effectiveness of MTGs is also related to the type
of EVA utilized, as well as its physical and mechanical proper-
ties. %13 According to the American National Standards Institute,
EVA must have low water absorption, adequate hardness, impact
resistance, low incidence of delamination, and be biocompatible,
nontoxic, and insipid.*®*®

Dental models can be obtained using Types I,* 111,*7-* or [V,220
dental stones with different curing times (minutes) and expansion
hardening (mm). The dental stones can also be modified, presenting
resin reinforcements in their composition, which can also interact
with the thermo-plasticized EVA. Digital flow has been incorpo-
rated into different dentistry procedures, optimizing several pro-
cesses, minimizing costs, and reducing clinical steps.** The use of
a full digital flow to produce custom-fit MTGs is being established,
with companies working to develop flexible 3D printable materials.
The intraoral scanners allowed to utilize the digital impressions to
fabricate 3D-printed models and produce custom-fit MTGs from the
plasticization of EVA over these models. However, it is still uncertain
if the thermoforming of EVA over 3D resin-printed models can com-
promise the mechanical properties and surface characteristics of the
custom-fit MTGs produced with EVA.

To the best of the author's knowledge, no study has evaluated
whether the interaction between the plasticized EVA with distinct
materials employed for obtaining dental models can affect the
performance of resulting MTGs. Therefore, this study attempted
to evaluate the effect of the contact between different materials
utilized for conventional (dental stone) or 3D-printed (resin) mod-
els on the physical and mechanical properties of the EVA utilized to
make custom-fit MTGs. The null hypothesis was that the mechanical

properties and surface characteristics of the EVA would not be
affected by the model type employed to perform the plasticization.

2 | MATERIALS AND METHODS

Soft circular colored EVA sheets with 3-mm thickness and 15-mm
diameter (Bioart Dental Equipment) were utilized to produce
experimental specimens. The thickness (mm) of the EVA sheets was
measured using a digital caliper (Mitutoyo) before and after the plas-
ticization process (initial and final thickness).

The EVA hardness was measured using Shore A equipment
(Model CV06-113, CV Instruments Europe BV), applying a perpen-
dicular force of 10N for 10s on the EVA specimens at four locations
before and after plasticization, at the contact (internal) and opposite
(external) surfaces with the model (Figure 1A). Four models obtained
with different materials were utilized to plasticize the EVA speci-
mens according to the experimental groups below (n=30).

1) 3DnT model: 3D-printed resin obtained without surface
treatment (Figure 1E). The workflow software (Meshmixer 2017,
Autodesk) was utilized to generate the plate model's stereolithog-
raphy (STL) file. The STL files were imported into a 3D printing
preprocessing software (ChiTuBox, V1.9.0). The model was posi-
tioned at the center of the platform area, and the printed supports
were fabricated. The printing settings were defined: layer height
of .05 mm, bottom layer count of 8, exposure time of 1.5s, and bot-
tom exposure time of 60s.22 An ultraviolet-sensitive (light cured
at 405nm), 3D print resin was utilized (Basic Grey, Anycubic) on a
3D printer (Anycubic Photon Mono X, Anycubic) to build the mod-
els (Figure 1B). The washing process was carried out for 15s, and
the post-cure process for 20min using a post-curing/wash machine
(Cure 2.0, Anycubic).

2) 3DT model: 3D-printed resin obtained similarly to the 3DnT
model, with additional surface treatment coating (Figure 1F). The
washing process was carried out for 15s. During the post-curing
process, a water-soluble transparent gel coating (KY Jelly Lubricant,
Johnson & Johnson), was applied in a layer approximately 3 mm thick
to cover the entire surface of the model (Figure 1C), and the light
exposure post-cure process was then performed for 20min using a
post-curing/wash machine (Figure 1D).

3) GIV model: conventional Type IV dental stone model
(Figure 1G). A 75x 70 mm rectangular metal matrix with two central
holes of 5mm in diameter was adopted as the template for obtaining
the simulated model types.®® An impression of the metal model was
made with alginate (Hydrogum 5, Zhermack). The impression was
cast with Type IV conventional dental stone (Elite Rock, Zhermack).
The water/powder ratio was set according to manufacturer's in-
structions, and hand mixing was carried out for up to 1min.
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FIGURE 1 Specimen fabrication: (A) Shore A measurement before plasticization; (B) 3D printing of models with resin; (C) Water-soluble
transparent gel covering 3D-printed resin model surface; (D) Post-curing process in curing/wash machine of 3D-printed resin model with
treated surface; (E) 3DnT model; (F) 3DT model; (G) GIV model; (H) ReG model; (I) EVA plate heating for 2.5min; (J) EVA plate vacuum for
155; (K) Dumbbell cut of EVA sheets; (L) Aspect of three dumbbell specimens obtained for each EVA sheet; (M) Final aspect of dumbbell

specimen being measured using digital caliper.

4) ReG model: resin-reinforced Type IV dental stone model
(Figure 1H). The alginate impression was obtained similarly to
the GIV model and cast with Type IV resin-reinforced stone (Zero
Stone, Dentona). Water/powder ratio was also set according to
manufacturer's instructions, and hand mixing was performed up
to 1min.

The EVA plasticization over the models was performed using
a vacuum-forming (PlastiVac P7, Bio-Art), and the temperature
of plasticization was recorded at 150s (Figure 1) using an infrared
thermometer (MT 395A, Minipa) at the center of the of heated sur-
face side of the EVA sheet when placed on the heating holder of
the vacuum forming machine, and also on the contact side of the
sheet with the model. All specimens were prepared under vacuum
for 20's according to the manufacturer's recommendation. The EVA
plate was allowed to cool for 15min at room temperature (22°C),
and then separated from the models. After EVA plasticization, the
specimens were trimmed using a certified manual pressure cutting
machine (SOMEH Projects Products and Services) (Figure 1)), using
blade-producing dumbbell specimens according to 1SO 37-2017
standard (Figure 1K). The dimensions of all specimens were checked
with a digital caliper (Mitutoyo) (Figure 1L).

Macro-photography of the specimens was taken with a digital
macro lens camera (DXM-1200; Nikon) for visual analyses of sur-
face characteristics after plasticization (Figure 2). For the scanning
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electron microscopy (SEM) analysis of the EVA, specimens were
cut in dimensions of 10x10mm, cleaned in an ultrasonic bath,
dried, and gold-sputtered (QR 150ES, Quorum). The surface was
analyzed using SEM equipment (VEGA 3 LMU, Tescan) with 20x
and 100x magnifications. The patterns of alterations in the con-
tact surface with the model were defined in four scores: (1) no
alteration, (2) minimal alteration, (3) moderate alteration, and (4)
severe alteration.

For mechanical analysis of the specimens, the dumbbell-shaped
EVA were clamped in two grips in a universal testing machine
(EMIC DL 3000, Instron) and subjected to a tensile strength test
at a speed of 50mm/min until rupture. The maximum displace-
ment (mm) and maximum rupture force (N) were recorded using
the TESC-EMIC software. The ultimate tensile strength (MPa)
was calculated by dividing the rupture force {N) by the specimen
cross-section area (mm?). After testing, the failure mode was clas-
sified by visual analysis according to the following levels: (I) rup-
ture in the middle area; (I1) rupture in the body; (lll) rupture in the
subjection area.

The rupture area (mm?), maximum force at rupture (N), maximum
elongation {mm), ultimate tensile strength (MPa), EVA thickness
(mm), and Shore A hardness data were tested for normal distribu-
tion (Shapiro-Wilk) and equality of variances (Levene's test). The
data were then analyzed by one-way analysis of variance (ANOVA)
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FIGURE 2 Macro-photography and SEM images: (A) 3DT specimen, showing no EVA surface alteration; (B) GIV specimen, demonstrating
negligible alteration in EVA brightness owing to the deposition of dental stone residues; (C) ReG specimen, showing irregular topography and
presence of no-deep depressions; (D) 3DnT specimen, showing severe morphology alterations with irregular surface, characterized by traces
of printed resin; (E) SEM image of 3DT specimen, showing regular surface with resin impression lines on EVA surface; (F) SEM image of GIV
specimen, showing limited roughness on EVA surface; (G) SEM image of ReG specimen, showing no-deep depressions; (H) SEM image of

3DnT specimen, showing severe marphology alterations on EVA surface.

with repeated measures followed by Tukey's test. Failure modes
were analyzed using chi-squared test. All tests employed an a=.05
significance level. All analyses were carried out with the statistical
package Sigma Plot version 13.1. The SEM images of the specimens

were analyzed qualitatively.

3 | RESULTS

The initial and final thickness (mm) of the specimens and the tem-
perature (°C) of the EVA plasticization for all groups are presentedin
Table 1. One-way ANOVA showed no significant difference among
the temperatures required for plasticizing EVA in the four groups
tested (p=.301). One-way ANOVA with repeated measures showed

a significant effect for the moment of the thickness measurement
(p<.001); however, no significant effect was observed for the factor
model type (p=.441). The EVA thickness reduced significantly after
plasticization from 3.1 mm each to a final thickness of 2.1 mm, irre-
spective of the model type (Table 1). All models resulted in a similar
final thickness of the EVA specimens.

The mean Shore A values and standard deviation are shown
in Table 2. One-way ANOVA with repeated measures showed a
significant effect for model type (p <.001), moment of measure-
ment (p<.001), and also for the interaction between the model
type and moment of measurement factors (p<.001). The Shore
A hardness values of EVA before and after plasticization were
similar for GIV, ReG, and 3DT groups, irrespective of the tested
surfaces (internal or external) (p=.321). The 3DnT group showed
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TABLE 1 Temperature of thermo-
plasticization and thickness mean and
standard deviation values for EVA plates
before and after thermo-plasticization.

Models

3D-printed resin—no treatment

Type IV gypsum

Type IV resinous gypsum

3D-printed resin-hydrosoluble gel

5
 Dental Traumatology —“\W| LEYJ—

Temperature Initial thickness Final thickness
(°C) (mm) {mm)
160.3+£7.3A 3.1+0.2 Aa 2.2+0.2 Ab
163.4+88A 3.0+0.3 Aa 2.0+04 Ab
160.6+8.3 A 3.1+0.1Aa 21+03 Ab
163.8+53 A 31+0.2 Aa 21+04 Ab

Note: Different letters mean significant difference among tested groups; capital letters used
for comparing model type and lower caser letters used for compare moment of thickness

measurement.

TABLE 2 Shore A mean and standard
deviation values for EVA plates before
and after thermo-plasticization measured
at contact and non-contact surface of
model.

Models

Type IV gypsum

Type IV resinous gypsum

3D-printed resin-hydroscluble gel

3D-printed resin—no treatment

Noncontact Contact
Initial surface surface
80.2+0.3 Aa 791+1.6 Aa 78.8+0.8 Aa
81.1+0.4 Aa 75.3+3.6 Bb 72.5+4.9 Bc
80.9+0.5 Aa 78.92+1.92 Aa 78.8+1.8 Aa
81.0+0.8 Aa 77.0+31Aa 773123 Aa

Note: Different letters mean significant difference among tested groups; capital letters used for
comparing model type and lower caser letters used for compare surface of EVA and compare the
moment of Shore A measurement.

TABLE 3 Rupture area, force, elongation and ultimate tensile strength after thermo-plasticization.

Models Rupture area (mm?)
3D-printed resin—hydrosoluble gel 52+14A
3D-printed resin—no treatment 50+14A
Type IV gypsum 5.1+1.0A
Type IV resinous gypsum 52+13A

MNote: Different letters mean significant difference among tested groups.

a significant reduction in the Shore A hardness of EVA after plas-
ticization, mainly when measured in the contact surface with the
model (internal surface) (p <.001).

The rupture area (mm?), maximum force at rupture (N), elon-
gation (mm), and ultimate tensile strength (MPa) of the EVA after
plasticization are shown in Table 3. One-way ANOVA showed no sig-
nificant differences for the rupture area of EVA among tested groups
(p=.325). One-way ANOVA showed a significant effect of the model
type on EVA maximum rupture force (p<.001). The GIV and 3DT
groups had the highest and 3DnT the lowest maximum rupture force
values. One-way ANOVA showed a significant effect of the model
type on EVA elongation (p<.001). The 3DnT had significantly lower
elongation than all other groups. One-way ANOVA exhibited a sig-
nificant effect of the model type on EVA ultimate tensile strength
(p<.001). The GIV and 3DT groups had the highest and 3DnT the
lowest ultimate tensile strength.

The failure mode distribution for the specimens according to
the different model types is shown in Table 4. The most frequent
failure mode was located at the constricted area of the specimens,
regardless of the model type employed. Chi-Square test exhibited
no significant difference among failure mode distributions (p=.168).

Ultimate tensile

Force (N) Elongation (%) strength (MPa)
1304249 A 365+32A 257+3.6A
103.5+29.2C 315+41B 209+44C
1255+15.3A 369+34 A 251+33A
116.6+27.7B 36736 A 22.3+4.3B
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TABLE 4 Rupture pattern after tensile strength test.

Models 1 1] 1
3D-printed resin-hydrosoluble gel 14 16 0
3D-printed resin—no treatment 9 21 0
Type IV gypsum 16 14 0
Type |V resinous gypsum 14 16 0

Note: Chi-Squared test showed no significant difference (p=.168).

Representative macrophotography and SEM images of the
EVA surfaces for all tested groups are shown in Figure 2. The vi-
sual analysis showed that 3DT resulted in no EVA surface changes
(Figure 2A), and GIV showed a slight alteration in the EVA bright-
ness, characterized by the deposition of dental stone residues
(Figure 2B). ReG showed irregular topography and the presence of
no-deep depression (Figure 2C). The internal EVA surface in contact
with 3DnT resulted in severe morphology alteration with an irreg-
ular surface, characterized by traces of printed resin impregnated
on the EVA (Figure 2D). The SEM image of the 30T group showed
aregular surface with the resin impression lines represented on the
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EVA (Figure 2E). The GIV showed small roughness on the EVA sur-
face (Figure 2F), and the EVA in contact with ReG confirmed the
presence of little no-deep depressions (Figure 2G). SEM image of
the 3DnT group confirmed the severe morphology alterations on the
EVA surface (Figure 2H).

4 | DISCUSSION

The analysis of the surface alterations and mechanical parameters
of plasticized EVA over different types of materials was able to de-
tect the model effect during the thermoplasticization to produce
custom-fit MTGs. The 3D-printed resin without surface treatment
(3DnT) and resin-reinforced Type IV dental stone (ReG) models sig-
nificantly reduced the physical and mechanical properties of ther-
moplasticized EVA; therefore, the null hypothesis was rejected.

The lack of standardization for manufacturing protocols can lead
to inadequate performance of custom-fit MTGs.*?® Several fac-
tors, such as the type of material adopted,? impression technique/
materials, and thickness of the MTGs, affect its effectiveness and
comfort.”?® EVA is the preferable material for the fabrication of
MTGs because of its plasticization properties and manipulation as
a hot-melt adhesive, with shock resistance capacity and favorable
biocompatibility.?

When manufacturing MTG, the heating temperature should not
be lower than approximately 120°C for EVA sheets. However, if
the temperature exceeds 150°C, the MTG sheets can twisted, and
the formability is deteriorated.?” In the present study, temperature
measurement was conducted on the upper surface of the EVA sheet
near the heated resistance, resulting in a higher temperature value
(160°C). When a second temperature measurement was taken at the
center of the plate on the side in contact with the model, an average
temperature of 130°C was obtained.

EWVA is a thermoplastic composed of a hydrophobic (nonpolar)
rigid polyethylene backbone and a flexible hydrophilic {polar) vinyl
acetate.?® The heating and vacuuming involved in the manufacture
of MTGs might cause orientation changes in the polymer molecules
and induce residual stress on the final structure of the material.??
The residual contaminants in the 3DnT and ReG model types can
increase these alterations, reducing the EVA mechanical properties.

Irregular EVA surfaces, such as that observed after plasticiza-
tion using the 3DnT model, can develop retention areas, such as
grooves or wrinkles where the saliva or other fluids can penetrate,
creating an environment for bacterial accumulation and unpleasant
odors.’®* The irregular internal surface of the MTG can also cause
soft tissue irritation and discomfort, making the MTG unfit for use.
Maintaining a smooth surface is crucial to ensure adequate hygiene
of the MTG.?*%*

Custom-fit MTGs need to properly fit the teeth and soft tis-
sues.” This is typically achieved through individualized impression(s)
of the maxillary arch and production of the final cast model, which
can be performed by conventional or digital techniques. The utiliza-
tion of Type IV conventional dental stone showed better accuracy
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than master models and a better repeatability coefficient.®? The
mixing method had no significant effects on the physical properties
of dental stones.®® The water/powder ratio is an important factor
in achieving better physical properties for the hardened plaster.®*
The present study confirmed that the Type IV conventional dental
stone remains the gold standard for manufacturing MTGs, offering
good surface quality, reduced interaction with EVA material, and
predictability during thermoplasticization. However, Type IV res-
in-reinforced dental stone led EVA specimens to a significant loss of
Shore A hardness, which can result in softer and more flexible MTGs,
reducing the ability of the material to absorb impacts.®

3D-printed resin models without water-soluble gel coating treat-
ment negatively impacted the EVA specimens’ mechanical proper-
ties and surface integrity. The contact of plasticized EVA, under high
temperature, with untreated 3D-printed resin models resulted in the
incorporation of resin residues into the EVA matrix, affecting there-
sulting specimens’ surface heterogeneity and mechanical properties.
During UV curing, oxygen in contact with 3D-printed models inhib-
its polymerization, resulting in an under-cured polymer.®> Moreover,
oxygen can also result in a highly heterogeneous structure.®® This
can interfere with resin polymerization, resulting in incomplete cur-
ing, deformations, or low print quality. This aspect partially explains
the surface alterations observed on the EVA plasticized over 3DnT
models. To avoid this, an oxygen shielding product application over
the 3D-printed model to provide an oxygen-inhibition layer can be
utilized during the curing process, allowing for more efficient and
controlled polymerization. The surface treatment with the applica-
tion of transparent water-soluble transparent gel on the 3D-printed
resin model still allowed the violet light transmission, resulting in
oxygen inhibition and improved polymerization. This aspect can ex-
plain the better performance of the EVA plasticized over 3DT mod-
els and must be included in the protocol for obtaining printed models
for producing custom-fit MTGs.

Considering that the diversity of the thermoforming machines
for producing the MTG, itis suggested to assess whether the type of
machine influences the resulting properties of MTGs. Digital work-
flow in dentistry has become very popular, increasing its importance
in daily procedures. Digital approaches are expected to be more in-
volved in manufacturing MTGs in the next years, owing to comfort,
precision, effectiveness, and customization possibilities.* A full dig-
ital workflow for MTGs would help reduce waste by eliminating the
need for the impression of physic models and facilitate the storage
of patient information to fabricate novel MTGs whenever neces-
sary.”! However, it is vital to consider the proper management of the
3D printing process (for models or MTGs), particularly the disposal
of resin waste generated by supports or equipment cleaning, to pro-
mote proper waste management and environmental care.

5 | CONCLUSION

Within the limitations of the study design, the following conclusions
can be drawn.
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s The interaction of a 3D-printed resin model without surface
treatment compromised the EVA's surface characteristics and
mechanical properties.

* Resin-reinforced Type IV dental stone altered the surface charac-
teristics and mechanical properties of the EVA.

¢ Conventional Type IV dental stone is still considered the gold
standard for manufacturing MTGs owing to its reproducibility,
good surface quality, and lack of negative interaction with EVA.

s Applying a water-soluble transparent gel during the post-curing
of the 3D resin model eliminates the negative effect on EVA
surface and mechanical properties, resulting in a similar perfor-
mance to the gold standard, conventional Type IV dental stone
model.
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Adaptation and biomechanical performance of custom-fit mouthguards produced using

conventional and digital workflows: a comparative in-vitro strain analysis

ABSTRACT

Background/Objectives: The use of different models for the fabrication of custom-fit
mouthguards (MTGs) can affect their final thickness, adaptation, and shock-absorption
properties. This study aimed to evaluate the adaptation, thickness, and shock absorption
of ethylene-vinyl acetate (EVA) thermoplastic MTGs produced using conventional plaster

or three-dimensional (3D) printed models.

Materials and Methods: A typical model with simulated soft gum tissue was used as the
reference model to produce MTGs with the following two different protocols: plast-MTG
using a conventional impression and plaster model (n = 10) and 3DPr-MTG using a digital
scanning and 3D printed model (n = 10). A custom-fit MTG was fabricated using EVA
sheets (Bioart) plasticized over different models. The MTG thickness (mm), internal
adaptation (mm) to the typodontic model, and voids in the area (mm?) between the two
EVA layers were measured using cone-beam computed tomography images and Mimics
software (Materialize). The shock absorption of the MTG was measured using a strain-
gauge test with a pendulum impact at 30° with a steel ball over the typodont model with
and without MTGs. Data were analyzed using one-way analysis of variance with repeated

measurements, followed by Tukey's post hoc tests.

Results: The 3DPr-MTG showed better adaptation than that of the Plast-MTG at the
incisal/occlusal and lingual tooth surfaces (p< 0.001). The 3DPr-MTG showed a thickness

similar to that of the Plast-MTG, irrespective of the measured location. MTGs produced
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using both model types significantly reduced the strain values during horizontal impact
(3DPr-MTG 86.2% and Plast-MTG 87.0%) compared with the control group without MTG

(p< 0.001).

Conclusion: The MTGs showed the required standards regarding thickness, adaptation,
and biomechanical performance, suggesting that the number and volume of voids had no
significant impact on their functionality. 3D printed models are a viable alternative for
MTG production, providing better adaptation than the Plast-MTG at the incisal/occlusal
and lingual tooth surfaces and similar performance as the MTG produced with the

conventional protocol.

Keywords: 3D-printed model; dental stone model; dental trauma; ethylene vinyl acetate;

mechanical properties.

1. INTRODUCTION

Mouthguards (MTG) can absorb impacts and reduce stress and strain transmitted
to the teeth because of trauma during sports activities.!* Use of MTGs decreases the
possibility of tooth fracture and damage to the adjacent tooth structures,> mandibular

condyle, and articular disc.®’

The impact absorption of custom-fit MTGs is affected by several factors, such as
MTG type,®® manufacturing process,'® and the presence of antagonist contacts.?*!
Among the different MTG types, custom-fit MTGs provide superior performance in terms
of comfort, fit, stability, respiratory capacity, phonetics, and protection of dental

structures.’?1* Although these factors influence MTG performance, thickness is the most
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important parameter for shock absorption.*>'” The shock absorption ability can be
improved by increasing the thickness of the MTGs. However, the ideal thickness is limited
to approximately 4.0 mm,* as thicker MTGs might be related to poor athletic

performance, reduced respiratory efficiency, and comfort issues.'®

The effect of the model position on the forming table,'® angle of the model, and
thermoforming method can influence the thickness of the MTGs.'® The shape of the
model is one of the main factors affecting the thickness of custom-fit MTGs. A model with
an acute angle can prevent thinning of the MTG, even if the anterior height of the model

is increased.?°

The adaptation and stability of the MTGs can also contribute to mechanical
performance.'?%%? Custom-fit MTGs offer better adaptation than mouth-formed and
prefabricated MTGs.822The MTG should properly fit and accurately adapt to the maxillary
arch to provide adequate protection and avoid dislodgement on impact. 23?4 MTGs are
fabricated using dental impressions creating individualized adaptation to the patient.?
Clinically, during the MTGs fabrication, plaster models are mounted on an adjustable
articulator that replicates mandibular movements and then adjusted according to the

occlusion and maximum intercuspal position.?>2®

The use of three-dimensional (3D) printed resin models to fabricate the
thermoplastic ethylene-vinyl acetate (EVA) MTGs has emerged as an innovative and
promising area in the field of dentistry.?” The applications of 3D printing in the medical
and dental fields have garnered significant attention in recent years.?® In dentistry, this
technology provides numerous benefits, including increased efficiency, easy

customization of dental appliances and products, highly accurate results.?**° At the same
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way, it is possible to promoting less discomfort for patients sensitive to taste, nausea, and
breathing difficulty,®! and eliminates all fabricating errors encountered by conventional

methods, such as the distortion of impression material.3?

Therefore, the aim of this study was to evaluate the adaptation, thickness, and
mechanical performance of custom-fit MTGs fabricated using a conventional protocol or
digital workflow with 3D-printed models. The null hypothesis was that the adaptation,
thickness, and shock absorption of the MTGs would not be affected by the model used

for plasticization.

2. MATERIALS AND METHODS
A full maxillary typodont model with simulated soft gum tissue (Oclusal Prod.
Odont. Ltda Sdo Paulo, Brazil) was used as a reference to produce the following two

models (Figure 1):

1) Plaster model (Plast-MTG) (n = 10): Wax was molded around the periphery of a
standard impression tray (Figure 1A), and the impression of the typodont model was
made using alginate (Hydrogum V, Zhermack, Italy) (Figure 1B). The materials were
prepared according to the manufacturer’s recommendations. The powder was extracted
from the packaging using a measuring spoon. For each spoon full of powder, a one-third
measure of water sample was added to the mixing bowl and mixed by automatic mixing
(Oubo Algimax Il GX300, Zhejiang, China) until the consistency and color were
homogenous. The impression was cast with type IV dental stone (Elite Rock, Zhermack,
ltaly) using a plaster vibrator (VH Equipamentos, Curitiba, Brazil) (Figure 1C). The

powder/water ratio was determined according to the manufacturer’s instructions. The
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shape and design of the plaster model were standardized according to the following
parameters: the angle of the model formed between the labial surface of the central
incisor and the base of the working model was defined as 90°, a height of 25 mm at the
incisal edge of the maxillary central incisor, and a height of 20 mm at the mesio-buccal
cusp of the maxillary first molar. The palatal extension of the model was 25 mm at the

incisal edge of the maxillary first molar (Figure 1D).

2) 3D resin printed model (3DPr-MTG) (n = 10): The typodont model was scanned using a
3D intraoral scanner (Straumann, Virtuo Vivo, Basel, Switzerland) (Figure 1E).
Stereolithography (STL) files were imported into workflow software (Meshmixer 2017,
Autodesk, San Francisco, United States) to standardize the model (Figure 1F). The files in
OBJ format were imported into 3D printing preprocessing software (ChiTuBox, V1.9.0,
Shenzhen, China). The model was positioned at the center of the platform area and
printed supports were created. The printing settings were as follows: layer height
0.05mm, bottom layer count 6, exposure time 1.5 s, and bottom exposure time 40 s. An
ultraviolet-sensitive (light-cured at 405 nm) 3D printing resin (Basic Grey, Anycubic) was
used on a 3D printer (Anycubic Photon Mono X, Anycubic, Shenzhen, China) to fabricate
3D resin-printed models (Figure 1E). The washing process was conducted for 5 min.
During the post-curing process, a water-soluble transparent gel coating (KY Jelly Lubricant,
Johnson & Johnson, New Jersey, United States) was applied for 10 min to cover the entire
surface of the model with a thickness of 3 mm using a post-curing/wash machine.?’ The
shape and design of the printed model were the same as those of the plaster model

(Figure 1F).
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The MTGs were produced using two soft circular EVA sheets with a thickness of 3
mm and diameter of 15 mm (Bioart Dental Equipment, Sdo Carlos, SP, Brazil) to obtain
specimens with a final thickness of 4 mm (n = 10) (Figure 2A). The first EVA plate was
heated in a vacuum plasticizer (PlastiVac P7, Bio-Art) for 150 s and then prepared by
vacuum forming for 20 s following the manufacturer's recommendations. It was allowed
to cool for 15 min at room temperature (22 °C) (Figure 2B). The first layer of the MTG was
cut at the bottom of the vestibular groove, and a 5-mm palatal extension was performed
using a N° 15 scalpel (Figure 2C), with finishing and polishing of the edge performed with
a Maxicut De Zirconia bur (Figure 2D) and Scotch Brite brushes using a low-speed
handpiece (Figure 2E). The resin monomer (VIPl Flash, VIPI Odonto Products,
Pirassununga, Brazil) (Figure 2F) was applied to the outer surface of the first EVA plate
and inner surface of the second EVA plate (Figure 2G) for 1 min. Air spray was then applied
to the plate surface for 10 s as the final treatment.® The second plate was plasticized for
150 s and bonded over the first EVA plate and stored at room temperature (22 °C) (Figure

2H), thereby obtaining an MTG of 4.0 mm in thickness.

To measure the MTG thickness, internal adaptation to the typodont model, and
presence of voids between the two EVA layers, cone-beam computed tomographic
scanning (i-CAT GXCB-500; Imaging Sciences International, Hatfield, USA), was used with
voxel dimensions of 0.125 mm for each mouthguard on the reference model. A total of
704 sections were obtained with 23 s of acquisition and exposure parameters of 120 kV
and 3.0-7.0 mA. The DICOM files were exported and analyzed using Mimics software
(Materialize Dental, Leuven, Belgium). The files were used to measure the thickness (mm)
of the MTGs (Figure 3), adaptation expressed by the distance (mm) between the external

surface of the typodont model and the internal surface of the MTGs (Figure 4), and area
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(mm?) of the voids present between the two EVA layers of the MTGs at six different
locations: both first molars, first premolars, and central incisors, and at three different

surfaces: occlusal/incisal, buccal, and lingual (Figure 5).

A unidirectional strain gauge (PA-06- 040AB- 120- LEN, Excel Sensors, Sdo Paulo,
Brazil) with a unidirectional electrical internal resistance of 120 Q and grid size of 1 mm?
was attached to the palatal surface of the upper central incisor of the typodont using a
cyanoacrylate resin adhesive (Super Bonder, Loctite, SP, Brazil) (Figure 6A). The typodont
model was fixed to a modified Charpy impact tester to prevent displacement during
impact testing. A pendulum device with a steel ball with 227.0 g and 35.0 mm diameter
was positioned on the center of the labial surface of the left central incisor from a 30-
degree angle without MTG (Figure 6B) and with MTG (Figure 6C). Following previous
studies,'? the strain gauges were oriented parallel to the long axis of the tooth and
parallel to the steel ball that generates the impact. This allowed for precise readings of
the deformation peaks analyzed. The impact was targeted at the center of the tooth at
the strain gauge level (Figure 6D). A control specimen with a strain gauge that was not
subjected to impact was used to compensate for vibration and temperature variations.
Both the strain gauges were connected to a half-bridge Wheatstone circuit. Data were
acquired at 500 Hz and recorded using a signal transformation and data analysis software
(AQDADOS 7.02, AQANALISYS, Lynx, Brazil). Shock absorption (%) was calculated from the

peak strain values using a non-mouth guard control group as a reference.

The MTG thickness (mm), internal adaptation (mm), void area inside the MTGs
(mm?2), strain (uS), and shock absorption (%) were first analyzed for normal distribution

(Shapiro—Wilk test) and homoscedasticity (Levene's test). One-way analysis of variance
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was performed for strain (uS) and shock absorption (%). One-way analysis of variance with
repeated measurements was performed for MTG thickness (mm), internal adaptation
(mm), and void area inside the MTGs (mm?), followed by Tukey's post-hoc tests. All tests
used an a =0.05, and all analyses were performed using the statistical package Sigma Plot

version 13.1 (Systat Software).

3. RESULTS

The mean thicknesses (mm) and standard deviations of the MTGs at different
locations are shown in Figure 7. Plasticization significantly reduced the thickness of all the
MTGs. The 3DPr-MTG showed a thickness similar to that of the Plas-MTG, irrespective of
the location (p= 0.371). Both MTGs had greater thicknesses at the premolars and molars
than at the incisors for the buccal alveolar, buccal tooth, and incisal/occlusal surfaces (p<
0.001). However, in the lingual area, the incisors had greater thicknesses than the
premolars and molars (p< 0.001), and in the lingual alveolar area, the incisors and
premolars had greater thicknesses than the molars (p< 0.001). The greatest thicknesses

were observed on the occlusal surfaces of the premolars and molars.

The mean adaptation (mm) and standard deviation of the MTGs at different
locations are shown in Figure 8. The 3DPr-MTG showed better adaptation than the Plas-
MTG at the incisal/occlusal and lingual tooth surfaces (p< 0.001), and was similar at all
other surfaces. Adaptation was significantly worse in the occlusal and lingual alveolar

locations (p< 0.001). The buccal surfaces and incisors tended to show better adaptation.

The mean void area (mm?) and standard deviation of the MTGs at different

locations are shown in Figure 9. The 3DPr-MTG showed the lowest void area at the lingual
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and buccal locations (p< 0.001), which was similar at all other locations. The void area was

significantly larger in the lingual region (p< 0.001).

The mean of the strain peak (uS) and standard deviations of the horizontal impact
at 30° in the pendulum device are shown in Figure 10. One-way ANOVA showed that
MTGs fabricated using both model types significantly reduced the strain values during
horizontal impact compared with the control group without MTG (p< .001). The 3DPr-
MTG and Plas-MTG had similar strains (P = 0.256). The percentage of shock absorption
for each type of MTG is shown in Figure 10. The 3DPr-MTG demonstrated shock
absorption similar to that of Plas-MTG (86.2% and 87.0%, respectively, compared with the
values obtained for the control group without MTG). The failure mode frequencies
recorded by the macrophotograph analysis are listed in Table 1. The chi-square test
showed that the no-MTG group had a significantly higher severity of failure mode
distribution than both MTG groups (p< .001). None of the 3DPr-MTG or Plast-MTG
specimens exhibited fractures (Type | failure mode). However, the no-MTG group had one
specimen with a root fracture (Type IV) (Figure 6E) and four specimens with fractures of

the lingual alveolar bone (Type IlI).

4. DISCUSSION

The analysis of the adaptation, thickness, and shock absorption of the custom-fit
MTGs demonstrated that the type of model used for MTG fabrication had no significant
influence on the MTG thickness and biomechanical performance. However, the 3DPr-MTG
showed better adaptation than the Plast-MTG at the incisal/occlusal and lingual tooth

surfaces. Therefore, the null hypothesis was rejected.
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The assessment of MTG displacement is a crucial parameter for impact
absorption, as it must remain in the correct position to function properly.t® This is crucial
to prevent injuries resulting from dental trauma, such as tooh fracture,” damage to
adjacent structures, to the mandibular condyle, and the articular disc.!! It can also
prevent the stress concentration on the permanent tooth germ in the case of the trauma

occurred on deciduous teeth.

The adaptation of the MTG to the soft tissue, proximal area, and dental surfaces
has been evaluated in previous studies using a model with silicone test material on an
articulator, as well as directly in the oral cavity.?* In this study, the use of CBCT helped
not only to evaluate the adaptation of the model but also to check the presence of voids
between the two layers of EVA for the MTGs. This method offers a detailed visualization
of the internal surface of the MTG and its adaptation to oral structures, allowing

information to optimize the MTG design and performance during impact absorption.

The MTG thickness is a critical factor affecting the mechanical performance and
shock absorption capacity of mouthguards. It is widely recognized that MTG thickness
decreases after vacuum forming.?! The MTG thickness reduction is influenced by various
factors, including sheet material, forming methods, heating temperature,® and the
design of the plaster model.3>3® Thicknesses of 3—4 mm are typically recommended for
custom-fitted MTG.'® Thus, this study found MTG thickness values similar to the

recommended values irrespective of the model type used.

Although adaptation is an important factor for MTG comfort and effectiveness, the
results indicate that even with small variations in MTG adaptation, consistent and

effective biomechanical performance in protecting against orofacial injuries can be
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ensured.?> This may be attributed to the quality of the EVA material used, which possesses

an ideal elastic modulus for MTG fabrication.3’

The occurrence of void in the EVA thermoforming process was likely due to the
anatomy of the model, where a larger space, primarily around the posterior teeth,
reduced the vacuum's effectiveness. However, despite the presence of the voids between
the EVA layers, no significant effect was observed on the biomechanical performance of
the tested MTGs. The presence of these minimal spaces was probably caused by the

surface treatment of the EVA.10

The adhesion is primarily influenced by the surface energy of the EVA. A reduction
in the interfacial tension or interfacial energy results in stronger attractive forces and
interactions between different materials.®® Additionally, lower contact angles are
associated with better bonding interaction.3® The use of acrylic resin monomer reduced
the contact angle, creating a more reactive EVA surface than in the other groups.® All of

which can explain the minimal occurrence of voids between the EVA layers.

The MTGs met the required standards regarding thickness, adaptation, and
biomechanical performance, suggesting that the number and volume of voids had no
significant impact on their functionality. This finding highlights the robustness of the

manufacturing process and its ability to produce high-quality MTGs.

The use of the typodont model to assess the impact of MTGs proved to be an
effective and reliable strategy in previous studies and in the present work.*? Because of
the difficulty in obtaining more realistic models that adequately represent dental anatomy
and the biomechanical properties of oral tissues, the use of the typodont model is an

adequate and practical alternative.** Although different experimental setups using metal
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or printed resin models have been employed to test MTGs,>#? it is important to note that
all these models exhibit significant differences in the elastic modulus of dental enamel,
dentin, and bone tissues,® consequently being a limitation of this study. The absence of
the periodontal ligament simulation can be also considered as a limitation of this study.
In future studies, the inclusion of a more accurate simulation of the periodontal ligament
could enhance the precision of the results and provide a more comprehensive

understanding of the biomechanical performance of MTGs.

This study showed tooth failure modes similar to those in previous studies and
also similar to the clinical condition of anterior traumatized teeth. ¥*>42 Such fractures
involve the root dentin and pulp and are often associated with periodontal ligament and
alveolar bone damage.*? Their incidence in the permanent dentition is estimated to be
between 0.5% and 7%, with the anterior region of the maxilla, especially the central
incisors, being the most affected area.*> When an impact force is applied to the human
body, two possibilities can occur: if the energy is not sufficient to cause damage, then it
is dissipated as thermal energy by the body.*> However, if the energy is significantly higher
than that can be supported by the tooth structure, it is transformed into destructive
energy that can cause damage to the soft tissues, displacement, and fractures involving

teeth and bone structures.*?

The presence of the MTGs is effective in reducing the deformations resulting from
impacts, highlighting its important protective function during sports activities.® The
pendulum device used in this study was designed similarly to the conventional Charpy
impact test and has been used in previous research.? However, this device does not

simulate the moment during impact, which may limit the accurate representation of real
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dental trauma situations. Additionally, frontal impact was conducted following the
principle of energy conservation using a 30° angle corresponding to 1.0 m/s, which may

not correspond to many other dental trauma situations.*3

In conclusion, the possibility of using 3D-printed models to produce MTGs was
explored, with promising results. The MTGs manufactured using 3D-printed models
showed superior adaptation at specific tooth locations compared with mouthguards
made with conventional plaster models, while maintaining similar thickness in all
measured areas. Additionally, both types of MTGs significantly reduced the deformation
values during horizontal impact when compared with the control group without MTG.
These results suggest that 3D-printed models may be a viable alternative for MTG
production, providing adaptation and performance similar to the current standard

fabrication protocols.
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TABLE 1 Classification of the fracture modes.

Models | non fracture I coronal Il Fracture at IV root

fracture the lingual fracture
alveolar bone

3D-printed 10 - - -

model

mouthguard

Plaster model 10 - - -

— mouthguard

Without 5 - 4 1

mouthguard

FIGURES

(F)

\ \|
v\\h.\. "l

FIGURE 1. Specimen Fabrication: (A) Beading wax; (B) Alginate molding; (C) Plaster
vibrator used to remove air bubbles from the gypsum; (D) Gypsum model; (E) Scanned
with a 3D intraoral scanner (Straumann, Virtuo Vivo); (F) The stereolithography (STL) file
imported to the workflow software (Meshmixer 2017, Autodesk); (G) 3D printer (Anycubic

Photon Mono X, Anycubic); (H) 3D-printed model.

62



FIGURE 2. Mouthguard Fabrication: (A) EVA sheets (Bioart Dental Equipment); (B) The
first EVA plate was allowed to cool; (C) Finishing of the edge; (D) Polishing with Scotch
Brite brushes; (E) Application of Resin monomer (VIPI Flash, VIPI Odonto Products,
Pirassununga, Brazil) (F) Application of Resin monomer (VIPI Flash, VIPI Odonto Products,
Pirassununga, Brazil) on the first EVA plate; (G) Application of Resin monomer on the
second EVA plate; (H) Plasticization of the second EVA plate; (1) Finishing and polishing of

the mouthguard.
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FIGURE 3. MTG thickness measurements: (A) CBCT image of maxillary central incisor was
used for MTG thickness measurements at five locations of the anterior segment; (B) CBCT
image of maxillary first molar with mouthguard for thickness measurement at seven

locations.
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FIGURE 4. Mouthguard adaptation measurements: (A) CBCT image of maxillary central
incisor with mouthguard, for adaptation measurement at the five locations for the
anterior region; (B) CBCT image of maxillary first molar with mouthguard for adaptation

measurement at seven locations.
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FIGURE 5. Mouthguard Void area Measurements: (A) CT-tomography image of maxillary
central incisor with mouthguard, (B) Mouthguard void area measurements between the

layers of EVA.

FIGURE 6. Impact Test: (A) Adaptation of the strain-gauge on the palatal surface maxillary
central incisor; (B) Impact simulation without mouthguard; (C) Impact simulation with
mouthguard, (D) Impact simulation on upper central incisor with strain-gauge on the

palatal aspect, (E) Root fracture post-impact without mouthguard.
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FIGURE 7. Mean of the thickness (mm) and standard deviation values of the

mouthguards at different locations of the 3D-printed model and plaster model.
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FIGURE 8. Mean of the Adaptation (mm) and standard deviation values of the

mouthguards at different locations of the 3D-printed model and plaster model.
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FIGURE 10. Mean of the strain peak (uS) and standard deviation values during the horizontal
impact at 30° using the pendulum device of the specimen without mouthguard, with 3D-printed

model, and mouthguard plaster model.
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Consideragdes Gerais

A partir do desenvolvimento dos dois estudos laboratoriais in vitro descritos

anteriormente, podemos extrair as principais reflexdes sobre o uso do fluxo digital na

confeccdo de protetores bucais customizados:

A interacdo do modelo de resina impressa 3D sem tratamento de superficie
comprometeu as caracteristicas de superficie e propriedades mecanicas do EVA
usado para confecgdo de protetores bucais customizados;

Modelos confeccionados em gesso dental tipo IV reforcado com resina alterou as
caracteristicas de superficie e propriedades mecanicas do EVA;

A aplicacdo de camada de gel transparente soldvel em dgua durante o pds-cura
sobre modelo de resina impressa 3D eliminou o efeito negativo nas caracteristicas
de superficie e propriedades mecanicas do EVA, resultando em um desempenho
semelhante ao modelo de gesso dental tipo IV convencional;

O uso de protetores bucais customizados reduziu significativamente os valores de
deformacdo dos dentes durante o impacto horizontal em comparacdo com os
dentes impactados sem protetores bucais customizados;

Os protetores bucais customizados produzidos utilizando tanto sobre modelos de
gesso (87,0%), como modelos de resina impressa 3D com tratamento de
superficie com gel hidrossoluvel (86,2%) apresentaram alta absor¢do de choque
em comparacao com o impacto sem o uso de protetores bucais customizados;
Pequenas quantidades de bolhas foram observadas entre as duas camadas de
EVA, as quais ndo tiveram efeito significativo no desempenho biomecanico dos
protetores bucais customizados;

Protetores bucais customizados confeccionados sobre modelos de resina
impressa 3D com tratamento de superficie com gel hidrossolivel mostrou melhor
adaptacdo que o protetores bucais customizados confeccionados sobre modelos
de gesso nas localizacGes dos dentes incisais/oclusais e linguais, porém essa
melhora na adaptacdo nao refletiu em melhor desempenho biomecanico;

A impressao digital e a confecgcdo de modelos impressos em resina 3D mostraram

ser uma alternativa vidvel para produzir Protetores bucais customizados com
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desempenho semelhante ao padrdo ouro produzido usando protocolos de

moldagem convencional e modelo de gesso.
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