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“Ay mariposas, no se aguanten más

Hay que crecer aparte y volver

Hacia adelante seguirás

Ya son milagros, rompiendo crisálidas

Hay que volar, hay que encontrar

Su propio futuro”

(Dos oruguitas, Sebastián Yatra)
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Abstract

The modelling of thixotropic elastoviscoplastic (TEVP) materials has made important

advances in recent years, and more numerical studies are needed to validate these models.

The majority of the numerical simulations found in the literature consider only one or

two rheological behaviours, making it impossible to have a deeper discussion about the

interaction between all three main classes of rheological behaviours. An example of the

application of a TEVP material flow is the restart operation of a gelled waxy oil, where

paraffin crystals are deposited, altering the rheological behaviour of the flow. In addition

to the TEVP behaviour of the gelled oil, the transient nature of the restart operation

increases the complexity of the flow. The present work presents an open-source tool capable

of simulating TEVP materials at restart flows, analyzing how this behaviour influences

the flow parameters, such as the flow velocity, the fluidity field and the time to achieve the

developed flow. The adopted geometries are the 4:1 planar contraction and the 1:4 planar

expansion, and the flow is considered incompressible and isothermal. At the beginning

of the simulation, the flow is assumed to be fully structured, at rest, and without any

internal effort. Then, a pressure gradient between the inlet and the outlet is imposed,

accelerating the flow and breaking the internal structure of the material. The simulations

were performed until the flow was considered at a steady-state. The results are presented

in terms of the dimensionless stress field, the normalized fluidity field, the dimensionless

velocities, and the time evolution of the velocity and the fluidity of some specific points of

the domain. The effects of the viscoelasticity, the avalanche time, the construction time

and the dimensionless imposed pressure gradient are discussed individually while the other

parameters are kept constant. The results highlight the importance of considering all three

rheological behaviours simultaneously: the advective transport of the unstructured material

made it possible to have regions with active flow and stress lower than its yield stress, for

example. Increasing the viscoelasticity increased the acceleration at the beginning of the

flow, but the steady-state flow showed itself independent of the Deborah number.
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RESUMO

A modelagem de materiais tixo-elastoviscoplásticos (TEVP) apresentou avanços importan-

tes nos últimos anos, e mais estudos numéricos são necessários para validar esses modelos.

A maioria das simulações numéricas encontradas na literatura consideram apenas um ou

dois comportamentos reológicos, dificultando assim uma análise mais profunda sobre como

as três principais classes de comportamentos reológicos interagem entre si. Um exemplo

de aplicação de um material TEVP é a operação de reinício de escoamento de um duto

preenchido por um óleo parafínico gelificado, onde cristais de parafina são depositados,

alterando o comportamento reológico do escoamento. Além da complexidade do material,

a operação de reinício é por definição uma operação em regime transiente, o que aumenta

as dificuldades para a simulação numérica. O presente trabalho apresenta uma ferramenta

open-source capaz de simular escoamentos de reinício de materiais TEVP, analisando

como o comportamento reológico influencia os parâmetros do escoamento, tais como o

campo de velocidade, o campo de fluidez e o tempo para atingir o regime permanente. As

geometrias adotadas são a contração planar 4:1 e a expansão planar 1:4, e o escoamento é

considerado incompressível e isotérmico. No início da simulação, o material é considerado

como completamente estruturado, em repouso e sem qualquer esforço interno. Então, é

imposto um gradiente de pressão entre a entrada e a saída, acelerando o escoamento e

quebrando a estrutura interna do material. As simulações foram executadas até que o

escoamento seja considerado em regime permanente. Os resultados são apresentados em

termos do campo de tensão adimensional, o campo de fluidez normalizado, o campo de

velocidades adimensional, e a evolução temporal da velocidade e da fluidez de alguns

pontos específicos do domínio. Os efeitos da viscoelasticidade, do tempo de avalanche,

do tempo de construção e do gradiente de pressão adimensional imposto são discutidos

individualmente enquanto os outros parâmetros são mantidos constantes. Os resultados

destacam a importância de considerar todos os três comportamentos reológicos simultane-

amente: o transporte advectivo do material desestruturado possibilitou que o escoamento

apresente regiões com fluxo ativo mesmo com a tensão local inferior à sua tensão de

escoamento, por exemplo. O aumento da viscoelasticidade aumentou a aceleração no início

do escoamento, mas o escoamento em regime permanente mostrou-se independente do

número de Deborah.
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1 INTRODUCTION

Usually, the rheological behaviours are conveniently grouped into three general

classes: the ’purely viscous’ behaviour, the ‘time-dependent’ behaviour, and the viscoelastic

behaviour (CHHABRA; RICHARDSON, 1999). However, this division is purely theoretical,

and a real material often presents a combination of all these three behaviours. Examples

of these complex materials are widely adopted in the oil and food industry, for example.

Even so, only a few studies found in the literature can discuss the interactions between all

these behaviours, and the main reason for this lack of studies is the complexity of these

materials.

The modelling of thixotropic elastoviscoplastic (TEVP) materials has made im-

portant advances in recent years (DE SOUZA MENDES; THOMPSON, 2019; LARSON;

WEI, 2019; VARCHANIS et al., 2019), and more numerical and experimental studies are

needed to validate these works. The majority of the numerical simulations found at the

literature considers only one or two rheological behaviours, making it impossible to have a

deeper discussion about the interaction between all the three main classes of rheological

behaviours.

Another issue is that the numerical obstacles imposed by the complexity of the

rheological behaviour usually leads studies to have important restrictions, such as simple

geometries, for example. Thus, there is also a demand for more numerical simulations of

complex flows, where the flow presents more elaborate characteristics than a viscometric

flow. Once again, only a few works fount in the literature deals with these complex flows,

such as the restart flow.

1.1 Motivation

Numerical works that take into account all three of these rheological behaviours

are relatively rare in the literature. Hence the need to study this research branch deeply,

especially because these different rheological behaviours can interact with each other,

leading to flow patterns different from those observed when a smaller number of behaviours

are considered. Futhermore, the transient character of the restart flow increases the

difficulties and the numerical cost of the simulations, specially when a non viscometric

flow is considered.

Thus, there is a demand for numerical studies that consider more complex rheolog-

ical behaviours, within complex geometries and considering the trasient effects of the flow.

One example of application that has these characteristics is the restart problem, where
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the flow starts at rest and accelerates over time, until reaching the steady-state.

1.2 Objective

The present work seeks to develop an open source tool capable to simulate TEVP

materials at restart flows, analysing how the sum of these behaviours influences operating

parameters, such as the pressure difference needed to re-establish the flow, the evolution

of fluidity (reciprocal of viscosity) over time, and velocity profiles during operation.

The specific objectives of this thesis are:

• Implement an OpenFOAM R⃝ solver capable to solve TEVP transient incompressible

flows;

• Evaluate the capacity of the solver of reproduce each rheological behaviour considered,

comparing its results with carnality and semi analytical solutions;

• Evaluate the numerical uncertainties associated with the mesh adopting a transient

TEVP flow inside of a 4:1 contraction and 1:4 expansion geometry;

• Identify the influence of the Deborah number over the restart flow;

• Identify the influence of the avalanche time over the restart flow;

• Identify the influence of the construction time over the restart flow;

• Identify the influence of the dimensionless pressure gradient over the restart flow.

1.3 Thesis structure

The present thesis is organized into eight chapters. The current chapter presents a

brief context of subject, the main objectives and the thesis structure. Chapter 2 provides

a literature review of the analysed problem, discussing the rheological aspects, the main

models and similar numerical works. Chapter 3 shows a review of the main numerical

methods that can be employed to solve complex flows, such as the TEVP flow. Chapter 4

presents the rheological, physical and numerical methods adopted at the present work,

discussing the main reasons of each choice. The code validation and the mesh quality tests

are shown in the Chapter 5. Chapter 6 presents the obtained results adopting the 1:4

expansion and the 4:1 contraction geometries. Finally, Chapter 7 summarizes the main

results of the present work, and concluding the thesis.



31

2 LITERATURE REVIEW

The first part of this literature review presents an important application of a

TEVP restart problem: the restart of a gelled waxy oil inside transport ducts. The main

rheological characteristics and conditions of this application are presented and discussed.

Then, a review of the experimental studies of restart flows is presented, discussing its

main conclusions. The recent advances of the TEVP modelling are reviewed, followed by a

review of the numerical simulations of complex materials.

2.1 Paraffin oils and the gelling process

Due to the high global demand for oil, offshore production has shown significant

growth in last decades, and this expansion is even more relevant when considering produc-

tion in deep waters from 1990 onwards (CHALA; SULAIMAN; JAPPER-JAAFAR, 2018),

as can be seen in Figure 1. This kind of operation deals with several important technical

issues due to the severe conditions to which it is exposed, such as difficulties in drilling

and transporting processes.

Figure 1 – Offshore oil production.

Source: Chala, Sulaiman & Japper-Jaafar (2018)

The growth of production in deep waters has increased the interest in understanding

the flow of oils where paraffin crystals can be formed and deposited along the flow. This

process can significantly alters the rheology of the oil, specially when a production

shutdown occur (DALLA; SOARES; SIQUEIRA, 2019). At these conditions, several

different rheological behaviours become more relevant, such as viscoplasticity, viscoelasticity

and thixotropy (SIERRA; VARGES; RIBEIRO, 2016). This increase in flow complexity

has a number of implications, increasing technical difficulties and operating costs. Due



32 Chapter 2. LITERATURE REVIEW

to the complex behaviour that gelled oil can present, the restart operation is considered

a significant problem for oil production(VINAY; WACHS; FRIGAARD, 2007), and it

is common for the estimates of the conditions necessary to carry out this operation to

be overestimated (WACHS; VINAY; FRIGAARD, 2009). Several works in the literature

discuss possible reasons for differences between theoretical values and those observed by

the industry. Furthermore, the experimental reproduction of the conditions of the restart

operation can present significant difficulties and costs, generating the demand for numerical

studies about this flow (CHALA; SULAIMAN; JAPPER-JAAFAR, 2018).

Crude oil is a mixture of hydrocarbon compounds, and when more than 5% of the

oil is composed by paraffins it can be considered as a waxy crude oil (ZHANG; LIU, 2008).

Waxy crude oils are considered light oil, and its reserves represent about 20% of world

reserves (FRIGAARD; VINAY; WACHS, 2007), about 80% of China’s oil production

(ZHAO et al., 2017), and a significant part of Brazilian production (CHRISMAN et al.,

2019; NOVAES, 2010). Furthermore, with the decline of other oil reserves, the extraction

of waxy crude oil has grown significantly. (LI et al., 2015).

One of the characteristics of a waxy crude oil is a relatively high wax appearance

temperature (WAT). This temperature defines when the solubility of paraffins drops to

the point of allowing their crystallization and deposition(OH; JEMMETT; DEO, 2009).

Under certain conditions, such as the flow being at rest, this process can lead to the

gelation of the oil, changing its rheological behaviour. This process has been studied

at least since 1920s (REISTLE, 1928; REISTLE, 1932). However, with the increase in

offshore production, this phenomenon has become more relevant, due to the temperature

to which the seabed transport pipelines are exposed, of the order of 5○C (AZEVEDO;

TEIXEIRA, 2003), and the difficulty of maintaining these pipelines. Figure 2 illustrates

how the gelation process can change the rheological behaviour of the oil. Sousa et al. (2023)

present a review of the economic impact of the wax deposition issue. Under laboratory

conditions, concentrations as low as 1% are able to gel the oil (KANÉ et al., 2003).

The wax crystallization and deposition process are a complex phenomenon, and it is

possible to find several revisions on the subject in the modern literature(AIYEJINA et al.,

2011; ALI et al., 2022; ALNAIMAT; ZIAUDDIN, 2020; OLAJIRE, 2021; EL-DALATONY

et al., 2019). The precipitation and deposition of waxes depend of thermodynamic variables,

such as composition, pressure and temperature, and also on the flow characteristics, such

as the flow hydrodynamics, heat and mass transfer, and solid–solid and surface–solid

interactions (HAMMAMI; RATULOWSKI; COUTINHO, 2003). It can be found in the

literature several techniques to deal with the wax deposition, such as controlling the

operation conditions, mechanical methods, chemical treatments, thermal treatments,

coating material, among others(ALI et al., 2022). Even though the extreme environment

around seabed makes wax precipitation unavoidable(CHALA; SULAIMAN; JAPPER-
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Figure 2 – Gelled oil inside a transport pipeline.

Source: Sandu & Wright (2013)

JAAFAR, 2018), some techniques can change the rheological behaviour of the gelled oil,

facilitating its removal, for example(HAO; AL-SALIM; RIDZUAN, 2019; HELSPER; ALI;

LIBERATORE, 2021). The Figure 3 schematically shows how the deposition of paraffin

occurs inside the transport pipeline in operation below the WAT of the oil.

Figure 3 – Schematic representation of the paraffin deposition inside a low temperature
transport pipeline.

Source: Lee et al. (2008)
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Seitzer & Lovell (1981) highlight that the wax deposition conditions change the wax

crystal forms, thus changing its rheological behaviour. Lee et al. (2008) studied the effects

of cooling rates over the gel strength, as a lower cooling rate increase the time for the wax

to move within the fluid, allowing wax crystals to grow more and affecting the strength of

the gel. Tinsley et al. (2009) discussed the effects of a class of compounds in crude oil, the

asphaltenes, upon the crystallization behaviour of a model waxy oil. A higher concentration

of asphaltenes can degrade the microscopic structure of the wax network, reducing the

yield stress. Abivin, Taylor & Freed (2012) discussed the effects of the composition of

thirteen oil samples, and some of the results suggests that the viscoelastic properties are

linked to the asphaltene content. This demonstrates that the gel-like behaviour is also

due to the associating tendency of asphaltenes that creates an elastic network within the

gelled oil. Hou & Zhang (2007), Visintin et al. (2008), Legnani et al. (2020) and Karimi &

Nazar (2020) analysed some factors that may affect the rheological behaviour of gelled

waxy crude oil, such as temperature history, shear history, and composition, for example.

Zhapbasbayev et al. (2021) studied the effect of pour point depressants over the

waxy oil dynamic viscosity and yield stress, considering the temperature dependence of

these two rheological parameters. Tarcha et al. (2014) carried out experiments to verify

the effect of time on the yield stress (τ0) of crude oil. It has been observed that time has an

important impact over τ0. Moreover, the authors highlighted the importance of a critical

deformation, showing that it can be a more relevant property than the yield stress itself.

Andrade & Coussot (2020) stated that the rheological behaviour of wax suspensions is

not only impacted by the temperature but also by the history of the temperature. The

elastic modulus and the yield stress increase when the temperature is decreased, and

the minimum temperature the material has experienced during its preparation can have

influence over them.

Chala, Sulaiman & Japper-Jaafar (2018) presented a review of the main works on

the deposition of paraffin crystals in pipelines. The authors point out that the contraction

suffered by the fluid during the cool-down process has not received enough attention from

the academic community, since this contraction generates nearly empty spaces inside the

pipe, which may even call into question the hypothesis of a single-phase flow. A deeper

analysis of this phenomenon can help to develop more efficient models to estimate the

necessary pressure for the restart operation, for example. Lee et al. (2008) reported that

during the waxy crude oil cool down, it can experience thermal shrinkage, and gas voids

may appear, making the fluid compressible. Chala et al. (2020) analysed the behaviour of

these voids when the waxy crude oil is exposed to a temperature gradient, and Chala et

al. (2022) discussed the effects of the hydrostatic pressure over these voids. Shafquet et

al. (2015) measured 8-14% of gas voids that were formed due to the thermal shrinkage in

a waxy crude oil. Luthi (2013) stated that the ageing below pour point and the thermal

shrinkage causes the appearance of gas voids close to the wall, so that the gelled crude
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does not get in perfect contact with it, decreasing the necessary pressure to restart the

flow. Phillips et al. (2011) reported that the fluid volume shrinkage can induce shear,

which in turn can reduce the pressure required to restart the flow. They have also find

that the rates of shrinkage-flow have a positive correlation with the ratio of pipeline length

and diameter and the cooling rate.

Sulaiman, Chala & Zainur (2019) investigated experimentally the compressibility

of gelled crude oil. Different cooling rates and seabed temperatures were considered. It

was observed that the specimen with higher seabed temperature and slower cooling rates

showed higher compressibility tendencies.

2.2 Experimental studies on the restart operation

Abedi, Mendes & de Souza Mendes (2019) carried out an experimental study with

viscoplastic fluids with and without thixotropic characteristics, aiming to better identify

the relationship between the rheological properties and the minimum pressure gradient for

the resumption of flow in a tube. The authors came to the conclusion that a simple balance

of forces can provide a good estimate of the pressure gradient, a result that contradicts

part of the literature on the subject, where the minimum gradient is typically smaller than

that obtained in the balance of forces. As the study considers materials with and without

thixotropic characteristics, these results suggest that the difference between the balance of

forces value and the value obtained is not due to thixotropic behaviour.

Moisés et al. (2018) studied numerically and experimentally the operation of

restarting the flow of viscoplastic fluids in a horizontal tube. In the experiments, a

thixotropic and a non-thixotropic fluid were adopted. Numerical results managed to

reproduce the main characteristics of the flow, and presented a reasonable agreement with

the experimental results. The effects of thixotropy were analysed using the equilibrium

time and a parameter that controls the breakdown term of the fluid structure. The increase

in the equilibrium time and the decrease in the breakdown parameter caused an increase

in the start-up time. Furthermore, increasing the pressure difference decreases the start-up

time and increases the flow rate.

Dalla, Soares & Siqueira (2019) carried out experiments to obtain the critical stress

necessary for restarting the flow of crude oil and a Carbopol solution in a pipeline. The

results obtained were compared with the yield stress values obtained in a rheometer, taking

into account the four main reasons that could lead to discrepancies between these two

values: the thermal and stress history, the radial temperature distribution, the contraction

suffered by the fluid during the cooling process and the different ways of imposing a flow of

crude oil. Taking these parameters into account, the difference between the values obtained

in the experiment and in the rheometer was considered small. The differences observed in
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flow. To define the model parameter values, a non-linear regression method was adopted.

The authors highlight the importance of extensional flows in the characterization of TEVP

fluids.

Larson & Wei (2019) presented a review on thixotropic behaviour, evaluating

experimental, theoretical and computational aspects. The authors highlight the recent

advances in this field of study, but also point out that there are important challenges

to be overcome. The authors point out a series of limitations in the literature, such as

the difficulty in finding different databases to validate models, for example. Finally, the

authors conclude that the highest priorities at the moment should be to obtain more data

on more complex flows, both through numerical simulations and experimentally, in order

to be able to evaluate the current models.

Giannokostas et al. (2020) proposed a constitutive equation to model the rheological

behaviour of blood, considering it a TEVP fluid. The modelling of thixotropy and the

tensor equation was proposed in order to facilitate the application of the model in more

complex flows. In total, the proposed constitutive equation presents eleven elements, which

were determined through a non-linear regression adopting experimental data from other

works found in the literature. Then, the authors present a series of rheometric flows with

the proposed model, simulating experiments in steady-state and transient state.

2.4 Numerical simulations

The simulation of the start-up flow has been studied in the literature for years,

but the majority of these studies focus only in one or two different rheological behaviour.

Furthermore, numerical works that deal with the simulation of the flow of thixotropic

materials tends to be relatively scarce in the literature, due its complexity and the difficulty

to model this behaviour.

Negrão, Franco & Rocha (2011) presented the results of a one-dimensional mathe-

matical model to solve the equations of mass balance and linear motion of a transient flow

of a TEVP compressible fluid. The results were compared with results from a Newtonian

fluid, a Bingham fluid and a viscoplastic fluid. The main differences between the TEVP

and the viscoplastic models occur at low strain rates. Another important result is that

peak pressure for thixotropic fluids is not always greater than its Newtonian equivalent,

for example.

Jahromi et al. (2011) compared the response of a modified Bautista-Manero

Puig (MBM) model (BAUTISTA et al., 1999; BOEK et al., 2005) and a shear-thinning

exponential Phan-Thien-Tanner (EPTT) model(THIEN; TANNER, 1977) in planar 4:1

rounded-corner contraction flow. The modified Bautista-Manero Puig model has a kinetic

equation for the reciprocal of the viscosity and can predict thixotropy and viscoelasticity,
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and in some cases can incorporate plasticity too(CALDERAS et al., 2013), although the

authors decided to focus on the first two behaviours. The simulations were performed

assuming that the inertia effects are negligible, with solvent/total viscosity ratio of 1/9,

and zero shear viscosity of 8/9, and two different flow conditions were adopted: a strong-

hardening regime and a moderate hardening regime. The results are presented in terms of

the evolution in vortex characteristics, stress and viscosity fields. Comparing the results of

simulations, the authors highlight that there are significant differences observed at We= 1

in the transient development of velocity, stress, pressure and viscosity profiles around the

contraction zone for the MBM moderate hardening regime flow against that of EPTT,

while larger elasticity levels of We= 2 are required for the strong-hardening MBM flow to

detect differences in transient vortex structure development over its EPTT counterpart.

Cheddadi, Saramito & Graner (2012) solved numerically a cylindrical Couette flow

considering an elasto-viscoplastic fluid, adopting a tensor model. Then, the results were

compared with experimental results. The different rheological behaviours interact with

each other, so that a viscoplastic or viscoelastic model can not present the same behaviour

of an elasto-viscoplastic flow. Furthermore, the authors identified that the steady-state

flow under these conditions is not unique: it depends on the initial conditions of the stress

tensor.

Sargentini (2013) adopted the software OpenFOAM R⃝ to perform simulations of

the flow of a viscoplastic fluid modelled by the Bingham function, where the effect of

temperature on several rheological parameters was considered. The author concludes that

the conditions for the resumption of flow do not depend only on the pressure difference,

but also on the local temperature. Furthermore, the pressure difference required for the

restart operation is higher than the pressure difference to maintain the flow once it reaches

steady-state.

López-Aguilar et al. (2015) simulated steady-state flows of TEVP materials over a

4:1:4 axisymmetric, rounded-corner contraction followed by an expansion geometry. Two

models were adopted: a Bingham–Papanastasiou model adapted model, and a new micellar

thixotropic constitutive model (LÓPEZ-AGUILAR et al., 2014) that has a non-linear

differential equation for the fluidity, to represent the structure of the fluid. Considering

elastic and plastic influences separately, the authors evaluated the influence of the yield

stress, the regularization stress growth exponent, the polymeric concentration, and the

thixotropic destruction parameter. The results were presented in terms of flow field features,

such as vortex dynamics, stress field structure, yield front patterns and enhanced pressure

drop. Vortex intensity and size are observed to sharply reduce with increasing yield stress

and elasticity levels. Different yield front patterns were observed, including asymmetric

patterns, depending of the combination combinations of these behaviours.

Link et al. (2015) performed a numerical investigation of an elasto-viscoplastic
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thixotropic fluid flowing through a 1:4 plane expansion, assuming an inertialess steady

flow of an incompressible structured fluid. The adopted model was proposed by Mendes

(2011) and is based on the upper-convected Oldroyd-B constitutive equation, modified to

include the influence of the structure parameter over the shear modulus, the relaxation

time and the viscosity. The authors observed that, for the analysed range of parameters,

elasticity tends to inhibit yielding, which can change significantly the flow pattern and the

shape and size of the unyielded regions.

The work of Oishi, Thompson & Martins (2016) may be the first published work

that captures the transient motions of TEVP materials. To represent the apparent-yield-

stress nature of the complex materials considered, a Bingham model with a bi-viscosity

regularization method was employed. In a first moment, the authors analysed the plane

channel flow subjected to a constant pressure gradient. The TEVP material is considered

stationary and fully structured at the beginning of the numerical simulation, and the

pressure gradient accelerates the flow until it arrives at the fully developed flow condition.

The effects of the thixotropic equilibrium time, yields stress, and Weissenberg number

were illustrated with the structure parameter profile over a cross section of the planar

channel. Then, a more complex problem is analysed, where a block made by a TEVP

material initially at fully-structured square shape is subjected to the action of gravity.

The stress imposed by the gravity force is able to provoke the break down process of

the block, changing its form. Three dimensionless quantities were varied: Weissenberg

number, dimensionless yield stress, and dimensionless thixotropic equilibrium time. The

work presents several images illustrating how these parameters interact with each other,

showing how complex the transient motions of TEVP materials can be. For the analysed

range of parameters, the time scale associated to the elastic response of the material is

faster than the characteristic times scale associated to other behaviours.

In a later work, Oishi, Martins & Thompson (2017) adopted as an initial configura-

tion a trapezoidal block on an inclined plane, considering that the block is constituted by

a TEVP material. Several parameters were varied by the authors, such as the equilibrium

time, the plastic number, the Weissenberg number, and other rheological parameters.

The authors identified the “avalanche effect” in all simulations. Even though the yield

stress, evaluated by the plastic number, was the most relevant property associated with

the evolution of the material flow over the inclined plane, other rheological parameters

had significant influence over the process, highlighting the importance to consider the

interaction between different rheological behaviours. Another important conclusion is that

increasing elasticity can allow a higher deformation of the material without decreasing the

structure parameter.

Cunha, de Souza Mendes & Siqueira (2020) analysed flows of thixotropic viscoplas-

tic fluids inside pipelines, considering the transient regime. Both completely structured
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and completely unstructured initial conditions were adopted, as well as different plastic

numbers. When the fluid begins the simulation completely structured, it is possible to

observe that the flow intensifies rapidly after the microstructure breaks, which represents

the avalanche effect. On the other hand, when the initial condition is the completely

unstructured fluid, the fluidity field may present a discontinuity due to the viscoplastic

characteristics of the fluid. As the adopted fluid does not present viscoelastic characteristics,

the steady-state flow does not depend on the initial condition of the flow.

Siqueira, Pasquali & de Souza Mendes (2020) presented a theoretical and numerical

study of a Couette flow between concentric cylinders, adopting a thixotropic viscoplastic

behaviour for the fluid. The study explores the influence of the initial conditions and the

imposed stress on the flow evolution, and reveals that thixotropic viscoplastic materials

present a permanent regime that is independent of the initial conditions. This result

contrasts with the results presented by Cheddadi, Saramito & Graner (2012), which adopts

an elasto-viscoplastic fluid, without thixotropic behaviour.

Bao & Zhang (2020) presents a numerical study on the restart behaviour of gelled

waxy crude oil pipelines using an elasto-viscoplastic thixotropic model. The study aims to

understand the flow characteristics and predict the restart process of the pipeline after a

shutdown. By numerical simulations, the study provides insights into the transient flow

behaviour, pressure distribution, and wall shear stress during pipeline restart operations,

contributing to the understanding of pipeline operations and potential mitigation strategies

for challenges associated with gelled crude oil transportation. The authors adopted a

modified Dullaert-Mewis model (DULLAERT; MEWIS, 2006) to perform numerical

simulations of pipeline restart and evaluate the effects of compressibility, Reynolds number,

yield stress number and structural breakdown rate. Then, the effect of viscoelasticity on

pipeline restart was analysed by comparing the pipeline restart predictions obtained with

the proposed model and the Teng’s model (TENG; ZHANG, 2013), that do not account

the viscoelasticity. The simulations were done adopting an axisymmetric channel geometry,

and the waxy gel is assumed to be stationary and fully structured prior to restart. At the

begining of the simulation, a pressure gradient is imposed between the inlet and the outlet

of the domain, and this pressure gradient works as the driving force of the flow, accelerating

it until it achieves the fully developed flow state. The flow conditions, such as the adopted

geometry, allowed the authors to adopt a linear distribution of shear stress along the

radial direction, reducing numerical obstacles. Among other conclusions, the authors have

found that as the compressibility of gelled waxy crude oil increases, the restart time and

steady-state velocity at the same restart pressure increases and the minimum required

pressure difference for successful restart decreases. When viscoelasticity of gelled waxy

crude oil is considered, the restart time and the calculated minimum required pressure

gradient for restart decreases.
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Sánchez et al. (2022) implement a modified version of the Bautista-Manero

Puig model using the toolbox RheoTool(PIMENTA; ALVES, 2017), developed with the

software OpenFOAM R⃝, and adopted it to solve simulations in two different geometries:

the contraction 4:1 and the contraction followed by an expansion 4:1:4. They analysed the

effects of the inertia, the viscoelasticity and the thixotropic behaviour over some of the

flow parameters, like the velocity, the normal stresses and the corner vortexes. In a similar

way to Jahromi et al. (2011), the authors adopted two different flow conditions: one with

a relatively quick structural recovery and another with a slightly slow structural recovery.

These two cases where simulated using different values of Reynolds number and Deborah

number, and their effect over the corner vortexes are shown, both in the transient and in

the steady-state.

It is important to highlight that of all the works discussed in this section, only Oishi,

Thompson & Martins (2016) and Oishi, Martins & Thompson (2017) present a fully

numerical simulation of the transient TEVP flows. López-Aguilar et al. (2015) and Link

et al. (2015) adopt a TEVP model, but they consider only the steady-state flow. Negrão,

Franco & Rocha (2011), Siqueira, Pasquali & de Souza Mendes (2020), Cunha, de Souza

Mendes & Siqueira (2020) and Bao & Zhang (2020) assume an analytic solution of their

stress profile, decreasing the numerical costs. Jahromi et al. (2011) and Sánchez et al.

(2022) only considered thixotropic viscoelastic behaviours, while Cheddadi, Saramito &

Graner (2012) only considered elastoviscoplastic flows. These results show the scarcity of

works discussing the transient effects of a complex flow.
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3 NUMERICAL METHOD

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses

numerical methods to solve the governing equations of problems that involve fluid flows.

The two main governing equations are the balance equations of mass and momentum,

but different problems can have different formulations of these two equations, and others

governing equations can be added, or even subtracted, to the mechanical model. A non-

isothermal problem, for example, may need to solve the energy balance equation. Thus,

there is no perfect method or formulation, and each individual problem must be analysed

individually to determine the best configuration for its solution. This chapter presents and

discuss the main characteristics of the numerical method adopted, justifying the author

choices.

The mathematical model for the transient, incompressible and isothermal flow of

a TEVP material consists of four equations: the balance equation of mass, the balance

equation of momentum, the stress equation and the evolution equation for the fluidity (φ).

The numerical method must solve all these equations simultaneously, converging to the

solution, reducing errors and being as stable as possible.

3.1 Discretization method

The discretization method defines how the solver algorithm will obtain a system of

equations that approximate the differential equations in a discrete set of points in time

and space. The main discretization methods are the finite difference method (FDM), finite

volume method (FVM) and finite element method (FEM). In addition to these methods,

it is possible to find hybrid methods. Although some methods are more suitable for certain

types of problems, in a sufficiently fine mesh and with the appropriate parameters, all

methods should converge to the same result.

3.1.1 Finite difference method

The finite difference method (FDM) is the oldest method for the numerical solution

of partial differential equations, and it can also be considered the easiest method to apply

to simple geometries. This method solves the conservation equations in its differential

form: the differential equation is approximated at each mesh node, replacing the partial

derivatives with approximations defined as a function of the values of neighbouring nodes.

Thus, an equation is obtained per grid node, relating the values of each node with the

values of neighboring nodes. Usually, the FDM can not be applied on more complex meshes,
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and it is only applied to simpler geometries, but there are exceptions. The work of Oishi,

Thompson & Martins (2016) applied a FDM scheme to solve a free surface problem,

adopting a TEVP material properties.

3.1.2 Finite volume method

In the finite volume method (FVM) , the mesh is discretized into a finite set of

control volumes, and the balance equations are integrated over these volumes. Then, all

the equation terms are written as functions of the properties values at the centroid of

the control volume. To obtain the properties values at the surfaces of the control volume,

an interpolation scheme is applied. The FVM has two main advantages over the finite

difference method: the finite volume method can be applied to any type of mesh, which

allows the application of this method to flows with more complex geometries, and it

guarantees the conservation of its properties, since conservation is guaranteed in each of

the control volumes, and thus, when adding all the control volumes that make up the

geometric domain, conservation is guaranteed in the mesh as a whole (PATANKAR, 1980).

3.1.3 Finite element method

The finite element method also uses a set of discrete volumes, just like the finite

volume method. However, in the finite element method, the property values are calculated

at the mesh nodes, and an approximation function is used to obtain the values inside

the element. To obtain the coefficients of this approximation function, a weight function

is used. The most attractive characteristic of the FEM is its ability to handle complex

geometries with relative ease. However, the more complex the mesh, the more difficult it

is to solve the algebraic system associated with it, which can decrease the efficiency of the

method. In structural mechanics analysis, the FEM method is the most used method in

simulations. The work of Link et al. (2015) adopts the FEM.

3.1.4 Hybrid methods

As the name suggests, hybrid methods mix different methods features, aiming to

have the best of each method. These methods can be developed for specific problem classes,

and they are not as common in the literature as the FVM and the FEM. López-Aguilar et

al. (2015) adopts an hybrid method, mixing characteristics of the FEM and FVM.

3.2 Solution Methods

The mathematical systems usually have at least two differential equations, like

the momentum balance equation and the mass balance equation for an incompressible
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usually requires less interactions to solve the system and are more stable than segre-

gated methods. These characteristics make coupled methods specially suited for transient

simulations(PIMENTA; ALVES, 2019).

3.2.4 Segregated methods

As the mathematical model can contain several different equations, the segregated

methods solve each equation in sequence. This way the equations can be solved individually,

decreasing the size of the associated matrix, reducing the numerical cost of these operations.

On the other hand, the segregated methods can demand a larger number of iterations

to obtain the solution, as the system as a whole must be solved and the equations can

interact with each other. They are also less stable, when compared to coupled methods.

To bypass these obstacles, some methods try to couple different equations, increasing

the accuracy and stability of these algorithms. The main category of these algorithms are

the pressure-correction algorithms, where an intermediate velocity field is adopted to solve

the mass balance equation, and then the velocity field is corrected using the new pressure

field.

3.2.4.1 SIMPLE

The SIMPLE algorithm is a pressure-correction algorithm proposed by Patankar &

Spalding (1972) in the early 1970s. Figure 9 shows the flowchart of the SIMPLE algorithm

implemented by default at OpenFOAM R⃝, where this algorithm is used to solve steady-state

simulations. In the literature it is possible to find variations of this algorithm, like the

SIMPLEC algorithm(DOORMAAL; RAITHBY, 1984), that is also implemented by default

at OpenFOAM R⃝.

As can be seen in Figure 9, the first equation solved at the SIMPLE algorithm

is the momentum predictor, adopting the pressure values calculated at the previous

iteration. Then, the pressure equation is solved, using the velocity field calculated with the

momentum predictor. This pressure equation is the Poisson equation for pressure, and it

is equivalent to the mass balance equation. Then, the velocity field is corrected, adopting

the new pressure field calculates at the previous step.

3.2.4.2 PISO

The PISO algorithm was proposed by Issa (1986) and its algorithm splits the

operators into an implicit predictor and multiple explicit corrector steps, hence its name:

PISO stands for Pressure Implicit with Splitting of Operator. Figure 10 shows the flowchart

of the PISO algorithm implemented by default at OpenFOAM R⃝, where the multiple explicit

corrector steps previously mentioned are identified as the “PISO loop”. It was originally
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Figure 9 – Schematic representation of SIMPLE algorithm.

Source: adapted from Guerrero (2018)

developed to solve unsteady flows, and the PISO algorithm implemented by default at

OpenFOAM R⃝ kept this feature, even though it is possible to find adaptations of this

algorithm to successfully solve steady-state problems. Another important feature is that,

after performing the defined number of corrections, the algorithm follows to the next time

step, without evaluating if the solution has converged.

3.2.4.3 PIMPLE

The PIMPLE algorithm can be seen as a modification of the PISO algorithm to

incorporate some SIMPLE algorithm features. As can be seen in Figure 11, the PIMPLE

algorithm has both the SIMPLE loop and the PISO loop and it is equivalent to PISO when

the number of outer iterations is equal to the unity. When more than one outer iterations

are performed, the algorithm verify the solution convergence, allowing to improve the

accuracy and the efficiency of the solver simultaneously. The PIMPLE algorithm can be
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Figure 10 – Schematic representation of PISO algorithm.

Source: adapted from Guerrero (2018)

used to solve transient and steady-state problems and usually allows bigger time steps

when compared to the PISO algorithm. The PIMPLE algorithm can also be called PISO

with iterative marching.

3.3 OpenFOAM

OpenFOAM R⃝ is a free, open source CFD software written in C++ language and

it follows object-oriented programming, allowing a high customization capacity. These

features make OpenFOAM R⃝ one of the most used CFD software. Its standard routines

uses the finite volume method to solve several engineering problems, such as complex

fluid flows, chemical reactions, turbulence and heat transfer, for example. Regarding the

complex fluid flows, OpenFOAM R⃝ standard routines can solve generalized Newtonian

fluid (GNF) unsteady flows, viscoelastic flows, and, more recently, thixotropic flows.
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Figure 11 – Schematic representation of PIMPLE algorithm.

Source: adapted from Guerrero (2018)

3.3.1 RheoTool

RheoTool is an open-source toolbox for OpenFOAM R⃝ focused to simulate GNF

and viscoelastic fluids under pressure-driven and/or electrically-driven flows. Its standard

routines offers several models, solvers and tools to help solving complex fluid flows. Such

features include, but are not limited to: coupled solvers, an interface with external sparse

matrix solvers, non-isothermal flows solver, and a log-conformation tensor approach routine

for viscoelastic flows.
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3.4 Stress split

A common strategy to deal with viscoelastic flows is splitting the stress tensor in

two terms: a viscoelastic component and a Newtonian component. This transformation

contribute to the numerical solution of the flow, as each component can be treated

accordingly to its particularities. Adopting a constitutive equation based on the Oldroyd-B

model(OLDROYD, 1950), with the following form:

τ + λ1

▽

τ = 2η0 (D + λ2

▽

D) (3.3)

where λ1 is the relaxation time; λ2 is the retardation time;
▽

τ is the upper-convected time

derivative of stress tensor; η0 is the total viscosity; D is the deformation rate tensor. The

expressions for λ2, D and
▽

τ are:

λ2 = λ1ηs

η0

D = 1

2
[∇u + (∇u)T ]

▽

τ = ∂τ

∂t
+ u ⋅ ∇τ − [(∇u)T ⋅ τ + τ ⋅ (∇u)]

(3.4)

where ηs is the Newtonian component of η0. Splitting τ into its viscoelastic component

(τ p) and its Newtonian component (τ s) and applying these conditions to the constitutive

equation (Equation 3.3), the result is:

τ = τ s + τ p

τ s = 2ηsD

τ p + λ1

▽

τ p = 2ηpD

(3.5)

where ηp is the viscoelastic contribution of η0. Usually, the viscoelastic component is

associated with the polymer, hence the subscribed “p” at ηp, and the Newtonian component

is associated with the solvent, explaining the subscribed “s” at ηs and τs. Equation 3.5

is simpler to numerically solve than Equation 3.3, even though they are analytically

equivalent. Equation 3.5 also allows to deal with each component individually, increasing

the stability of the algorithm.

3.5 Log conformation

The log-conformation tensor methodology (FATTAL; KUPFERMAN, 2004) can

minimize the numerical instabilities frequently observed for high Weissenberg number flows.

This methodology proposes to substitute the stress in Equation 3.3 by another variable, in
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such a way that with this transformation, the extensional components of the deformation

field act additively, rather than multiplicatively. But there are some restrictions to be able

to perform this transformation, specially when non constant properties are considered. If

λ1 and ηp are not considered as constants (adopting that they can vary with the strain

rate, for example), then the ratio
λ1

ηp

must be constant.

Another issue of this methodology is that it was proposed for viscoelastic flows,

and Oishi, Thompson & Martins (2016) declared that, at their TEVP flow simulations, the

time scale associated to the elastic response of the material is faster than the characteristic

times scale associated to other behaviours. Thus, it is expected that this methodology

may not be as efficient for TEVP flows as it is for viscoelastic flows.

3.6 Viscoelastic stabilization methods

As can be seen in Equation 3.3, the constitutive equation of the Oldroyd-B model

lacks an explicit diffusive term, and this characteristic increases the instability of the

solution, increasing its difficulty and even making it impossible some times. A possible

solution for this problem is to include diffusive terms in the equations, splitting the stress

tensor into different components or even adding and subtracting a diffusive term. All

these manipulations are analytically equivalent to the Oldroyd-B model, but at numerical

routines they use different strategies to obtain the solution. The work of Amoreira &

Oliveira (2010) discuss the efficiency of these different strategies. The most relevant

formulations found in the literature are:

• Original formulation: the original formulation is the Equation 3.3 and Equation 3.1,

without any transformation or manipulation. This formulation is unstable and

there are no relevant reason to prefer it over any other formulation(AMOREIRA;

OLIVEIRA, 2010).

• Solvent-polymer stress splitting (SPSS)(DUARTE; MIRANDA; OLIVEIRA, 2008):

This formulation adopts the stress split shown in Section 3.4 and has some physical

background as a viscoelastic fluid is often composed by an elastic polymeric solute

in a Newtonian solvent. This formulation is the most efficient according to the work

of Amoreira & Oliveira (2010), and it is part of the RheoTool standard library, as

the “none” stabilization method. The formulation of this method is composed by

Equation 3.5 and the Equation 3.1 with the following modification:

∇ ⋅ τ = ηs∇
2u + {∇ ⋅ τ p} (3.6)
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• Explicit diffusion (EDIF)(GUéNETTE; FORTIN, 1995): This formulation also adopts

the stress split shown in Section 3.4, but it add and subtract a diffusive term, seeking

to increase its influence over the solution and stabilizing it. This technique is purely

numeric, so there is no physical background to support it. The work of Amoreira &

Oliveira (2010) showed that this formulation usually need more interactions than

the SPSS technique to solve the same problem. This formulation can also be called

the “both sides diffusion” (BSD) and it is part of the Rheotool standard library. The

formulation of this method is composed by Equation 3.5 and the Equation 3.1 with

the following modification:

∇ ⋅ τ = (ηp + ηs)∇2u + {∇ ⋅ τ p − ηp∇
2u} (3.7)

• RheoTool User manual(PIMENTA, 2022) shows an adaptation of the BSD method

and call it “coupling method”(PIMENTA; ALVES, 2017). This method is recom-

mended for most of the cases by the RheoTool User manual(PIMENTA, 2022),

but the formulation that is implemented at the toolbox is only suitable to solve

constitutive equations where ηp is constant. When ηp is not constant, a new term

must be added, which decrease the efficiency of this method, matching it to the

EDIF method efficiency. Equation 3.8 shows how this method is implemented at

RheoTool. The formulation of this method is composed by Equation 3.5 and the

Equation 3.1 with the following modification:

∇ ⋅ τ = (ηp + ηs)∇2u + {∇ ⋅ τ p −∇ ⋅ (ηp∇u)} (3.8)

In Equation 3.6, Equation 3.7, and Equation 3.8 the curly brackets are used to group

the terms that are to be treated as explicit source terms. The choice of the formulation has

direct impact over the efficiency and the stability of the algorithm, and there is no perfect

solution. It is possible to find more formulations in the literature, but usually they are

specific for a family of constitutive equations, or they are equivalent of the ones presented

here.

3.7 Time Scale

The TEVP transient flow has four governing equations, and three of them have a

time derivative, meaning that each equation can have a different timescale. Barnes (1997)

affirms that thixotropic timescales are usually longer than viscoelastic timescales, and

the same was observed by Oishi, Thompson & Martins (2016), for example. This is an

issue, as the smaller timescales acts as a bottleneck to the time step size, and the bigger
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timescales demand a long simulated time. This combination increases the numerical cost

and increase the instability of the routine, as a time step can be too big to accurately

simulate a behaviour at the same time it could be too small to identify the effects of other

behaviour in a reasonable amount of computational time.

The use of a segregated method, like PISO or PIMPLE, increases the numeric costs

even more. As can be seen in Section 3.6, the coupling of the four equations is not simple,

and several terms are treated as explicit source terms, which demands more iterations

to be solved. Even though PIMPLE usually allows bigger time steps when compared to

PISO, it does not ensure a faster simulation, as the explicit terms still need to be solved

iteratively. But the PIMPLE algorithm does ensure that there is a convergence criteria

at each time step, which is an important feature: when the routine is not able to achieve

the convergence at each time step, these numerical errors pile up during the simulation,

changing the transient response, specially on long simulations.

Thus, correctly determining the time step size is of paramount importance. There

is no perfect way to determining it, and time step in the present work is defined by the

smaller time step between three main criteria:

• A maximum Courant number(COURANT; FRIEDRICHS; LEWY, 1967). This

criteria is implemented by default at OpenFOAM R⃝ and it is related to the distance

that any information travels within the mesh during a time step. At the TEVP

re-start problem, the velocity is usually relatively low, so this criteria is the least

adopted between the three;

• A maximum relative change within the time step for the fluidity field and the stress

field: This criteria limits how much the fluidity field and the stress field can change

within a time step. If the partial time derivative of the fluidity is too high at a certain

point of the mesh, the time step size decreases, so the time evolution of the fluidity

field can be accurately described. This criteria is particularly important when the

internal structure of the TEVP material starts to break, leading to the avalanche

effect(COUSSOT et al., 2002);

• A fraction of the total time simulated, limited by a minimum and a maximum values.

As already cited, a TEVP simulation can demand a long simulation time, so this

criteria tries to update the time step size as the simulation progress, for example: the

time step size is always equal to 0.1% of the total simulated time. The time step size

can not increase indefinitely, and this criteria would be redundant at the beginning

of the simulation, so a maximum and a minimum values are defined. This is the

main criteria to define the time step size. It is worthy to mention that, this minimum

time step size is only valid to this particular criteria. The first or the second criteria

can define a smaller time step size.



Part II

Methodology
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4 Modelling

The goal of this section is to discuss the rheological, numerical and physical

modelling adopted to solve the re-start flow of a TEVP material.

4.1 Rheological model

The present work adopts the rheological model proposed by de Souza Mendes,

Abedi & Thompson (2018), and this section presents the model in detail. In their work, de

Souza Mendes, Abedi & Thompson (2018) also discuss how to experimentally obtain each

property of the model, and applies the proposed experimental methodology to obtain the

rheological data for an aqueous suspension of laponite. Their obtained properties were

used as a starting point to the values adopted at the present work, and the differences

between these two properties sets are also discussed at this section.

4.1.1 The stress equation

The adopted stress equation is an adaptation of the Oldroyd-B stress equa-

tion (Equation 3.3),as follows:

φvT + (1 − φv

φ∞
)J (φ∗v) ▽T = 2 ∗D + 2 ∗ ( 1

φ∞
−

φv

φ2
∞

)J (φ∗v) ▽D (4.1)

where φv is the fluidity, φ∞ is the fluidity of the material when fully unstructured, and J

is the compliance. At the original Oldroyd-B stress equation, η0, λ1, and λ2 are constants,

while at Equation 4.1 their counterparts are equal to:

η0 = 1

φv

λ1 = 1

φv

(1 − φv

φ∞
)J (φ∗v)

λ2 = ( 1

φ∞
−

φv

φ2
∞

)J (φ∗v)
(4.2)

The stress split manipulation presented at Section 3.4 can also be applied to

Equation 4.1:

τ p +
1

φv

(1 − φv

φ∞
)J (φ∗v) ▽τ p = 2

φs

D (4.3)
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Thus, it is possible to define a maximum and a minimum values for the fluidity of a specific

material, which allows to define the normalized fluidity φ∗v :

φ∗v = φv − φ0

φ∞ − φ0

(4.6)

where φ0 is the fluidity of the fully structured material, or the minimum fluidity, and

φ∞ is the fluidity of the fully unstructured material, or the maximum fluidity. Thus, the

maximum normalized fluidity is equal to one, when the material is completely unstructured

and the fluidity is maximum, and the minimum normalized fluidity is equal to zero, when

the material is completely structured and the fluidity is minimum. For true yield stress

models, φ0 is equal to zero, and the normalized fluidity is equal to the ratio between the

local fluidity and the fluidity of the fully structured material.

The present model assumes that there is an one-to-one correspondence between

the current fluidity and the current microscopic state, thus there is no need to define a

structure parameter and the normalized fluidity (φ∗v) can be used directly to describe the

structuring level. That is the reason, for example, it is possible to define the compliance J

as a function of only φ∗v , as can be seen in Equation 4.1 to Equation 4.4.

4.1.4 Fluidity evolution equation

The second differential equation that composes the adopted rheological model

is the evolution equation for the fluidity. As a thixotropic material, the changes at the

microscopic state do not happen instantly, so it is necessary to stablish a model that defines

how the microscopic state changes over time. It is expected that, after being exposed to a

certain stress for a sufficient time, the microscopic state would converge to a specific value,

allowing to define an equilibrium fluidity (φ∗eq) function. This way, the fluidity evolution

equation must take into account not only the current state, but also the state it would

converge after a sufficient long time. Equation 4.7 show the adopted fluidity evolution

equation.

∂φ∗v
∂t
+ v ⋅ ∇φ∗v = f (φ∗v , φ∗eq) (4.7)

where f (φ∗v , φ∗eq) is a characteristic of the material. It is important to highlight that the

breakup and the build-up mechanisms are usually different (MEWIS; WAGNER, 2009), so

that f (φ∗v , φ∗eq) may be divided into two functions: the breakup part, where φ∗v < φ∗eq, and

the build up part, where φ∗v > φ∗eq. Also, equilibrium fluidity (φ∗eq) is a function of current

stress (τ ) , so it is possible to write f (φ∗v , φ∗eq) as f (φ∗v , τ )
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equal to the minimum fluidity φ0, and when the value of τ surpasses τ0, the value of φeq

changes drastically, increasing some orders of magnitude. As the value of τ increases, the

value of φeq tends asymptotically to the maximum fluidity of the material, φ∞. If φ0 = 0,

the material is considered as a true yield stress material, while materials with φ0 > 0 are

considered as apparent yield stress materials.

4.1.6 Fully structured material fluidity

In its work, de Souza Mendes, Abedi & Thompson (2018) declared that no Newto-

nian plateau at the low-stress range was observed during the experiments, leading to the

conclusion that φ0 = 0 for the aqueous suspension of laponite studied. This results means

that this suspension is a true yield stress material. Even though Equation 4.8 can model

this behaviour, it poses many numerical problems. For example: the Equation 4.6 can be

re-written as:

φv = φ∗v (φ∞ − φ0) + φ0 (4.11)

where φ∗v can range from zero to one. When φ0 = 0, φv can be equal to zero, which is a

problem, as several expressions are divided by φv, such as Equation 4.3. Siqueira, Pasquali

& de Souza Mendes (2020) and Cunha, de Souza Mendes & Siqueira (2020), whose works

are also based at de Souza Mendes, Abedi & Thompson (2018) paper, adopt φ∗
0
= 10−8,

where:

φ∗0 = φ0

φ∞ − φ0

(4.12)

From a numerical point of view, a φ0 << φ∞ can approximate the solution of a φ0 = 0,

although a φ0 = 0 means that the material is a true yield stress material, while 0 < φ0 << φ∞

means a apparent yield stress material. Furthermore, from a numerical point of view,

the bigger the difference between φ0 and φ∞, the more difficult is to solve Equation 3.1

and Equation 4.1. φ0 and φ∞ defines the minimum and the maximum values of φv, and

Section 3.6 shows that the φv can appear as an explicit term at some formulations. Thus,

the bigger the difference between φ0 and φ∞, the more relevant this term tends to be,

and because of its explicit nature it is specially difficult to solve. At the present work,

φ∗
0
= 10−3 was adopted, as a compromise between the numerical efficiency and the observed

behaviour of the aqueous suspension of laponite.

4.1.7 Avalanche behaviour

The avalanche behaviour in viscoplastic fluids is characterized by the self-feeding

process where the microscopic structure of the material breaks, increasing the fluidity of
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the material, which increases the flow rate, what, in turn, favours more breakage of the

microscopic structure (COUSSOT et al., 2002). This self-feeding process can lead to a

sudden microstructure collapse, where the thixotropic viscoplastic material starts to flow

at a high rate. To model this behaviour of the aqueous laponite suspension, de Souza

Mendes, Abedi & Thompson (2018) proposes the following function when φ∗eq > φ∗v :

f (φ∗v , φ∗eq) = s

t∗a

1

φ∗eq + φ∗
0

(φ∗eq − φ∗v) s+1

s (φ∗v + φ∗0) s−1

s (4.13)

where s is a positive parameter, and t∗a is the dimensionless avalanche time and their

expressions are:

s = 8

exp (φ∗eq/0.09) − 1
+ 1.2 (4.14)

t∗a = αt

(1 − φ∗eq)1.1

(φ∗eq)0.4
(4.15)

where αt is a time constant. Both s and t∗a tends to the infinity when φ∗eq → 0. The ratio s
t∗
a

,

that is present at Equation 4.13, also tends to the infinity when φ∗eq → 0, which means that

f (φ∗v , φ∗eq) not only increases at the vicinity of φ∗eq = 0 but tends to the infinity, making

the microstructural change instantaneous, independent of the current fluidity φ∗v . Even

though Equation 4.13 only rules the domain where φ∗eq > φ∗v and the minimum value of φ∗v

is zero, the condition φ∗eq → 0 is still an issue, so to avoid it the present work adopted a

constant value for s = 2. The same strategy was adopted by Siqueira, Pasquali & de Souza

Mendes (2020) and Cunha, de Souza Mendes & Siqueira (2020).

4.1.8 Construction time

On the other hand, when φ∗eq > φ∗v the internal structure of the material tends to

recover, decreasing the fluidity of the material. This phenomenon normally happens on a

different time scale when compared to the avalanche behaviour: if the avalanche behaviour

can lead to an abrupt change at the microstructure of the material, the change at the

fluidity provoked by the construction time is usually more gradual, and often involves

large time scales. The following expression has proposed (DE SOUZA MENDES; ABEDI;

THOMPSON, 2018) to model the aqueous laponite suspension f (φ∗v , φ∗eq) when φ∗eq < φ∗v :

f (φ∗v , φ∗eq) = φ∗v − φ∗eq

T ∗c
(4.16)

where T ∗c is the dimensionless characteristic time of the microstructure construction process.

At the present work, the following expression was adopt to determine Tc:

T ∗c =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

T
∗

c,0

10
, if τ > τ0

T∗c,0, if τ ≤ τ0

(4.17)
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Thus, the expression for f (φ∗v , φ∗eq) can be obtained adding the functions presented

at the previous and the present section:

f (φ∗v , φ∗eq) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s
t∗
a

1

φ∗
eq
+φ∗

0

(φ∗eq − φ∗v) s+1

s (φ∗v + φ∗
0
) s−1

s , if φ∗v ≤ φ∗eq

φ∗
v
−φ∗

eq

T∗
c

, if φ∗v > φ∗eq

(4.18)

Figure 14 shows the behaviour described by Equation 4.18, adopting different values

of φ∗eq and φ∗v . The red lines mean that f (φ∗v , φ∗eq) is positive (φ∗eq ≥ φ∗v), and f (φ∗v , φ∗eq)
follows the behaviour described by Equation 4.13, while the blue lines mean that f (φ∗v , φ∗eq)
is negative (φ∗eq < φ∗v) and f (φ∗v , φ∗eq) follows Equation 4.16.

Figure 14 – Values of f (φ∗v , φ∗eq) for different φ∗eq and φ∗v , adopting αt = 104, T∗c,0 = 104

and s = 2

4.1.9 Compliance

At its experiments, de Souza Mendes, Abedi & Thompson (2018) obtained a null

first normal stress difference for φ∗v > 0, meaning that J(φ∗v > 0) = 0. But they were not able

to determine J(φ∗v = 0) = J0, even though they clearly identified an elastic behaviour of

the suspension. The condition φ∗v = 0 may not be appropriate to implement at a numerical

simulation, so to avoid any issue, the present work implemented the following compliance

function J(φ∗v)

J(φ∗v) = J0Hv(φ∗J − φ∗v)
(4.19)

this way, when φ∗J > φ∗v , J(φ∗v) = J0, and when φ∗J < φ∗v , J(φ∗v) = 0. To model the behaviour

described by de Souza Mendes, Abedi & Thompson (2018), φ∗J = 10−10 was adopted at the

present work.
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4.2 Physical model

The main studied cases of the present work is the re-start flow of TEVP materials at

a 4:1 planar contraction and at a 1:4 planar expansion geometries. The flow is considered

incompressible and isothermal. Thus, the mass balance equation and the momentum

balance equation are two of the governing equations of these cases, as follow:

∇ ⋅ u = 0

ρ
∂u

∂t
+ ρ (∇u)u = −∇p +∇ ⋅ τ

(4.20)

In addition to them, there are the constitutive equations of the rheological model (Equa-

tion 4.3 and Equation 4.7). The flow is assumed to be initially at rest, fully structured,

and without any internal effort. Then, a pressure gradient between the inlet and the outlet

is imposed, accelerating the flow and breaking the internal structure of the material. The

simulations were performed until the maximum velocity temporal derivative magnitude is

lower than 10−5, when the flow is considered at steady-state.

The incompressible flow hypothesis is contested by some authors, such as Lee et al.

(2008). But considering a compressible flow would add another layer of complexity over

the problem, making the solution more difficult, and likely overshadowing the influence of

the rheological parameters.

The isothermal hypothesis not only reduces one equation to be solved (the energy

balance equation), but also avoids having to define a model where the rheological properties

of the material are also a function of the temperature. Furthermore, the isothermal

hypothesis is coherent with the hypothesis of having an infinite planar channel at the inlet

and that the flow is at rest for sufficient time to be as close to the fully structured state as

possible.

The flow being initially at rest is the main characteristic of a restart flow, and

being initially fully structured is coherent when the flows is at rest for a sufficient amount

of time. On the other hand, the hypothesis of no internal effort at the beginning of the

flow has only chosen to simplify the flow. Phillips et al. (2011), for example, discuss the

existence of residual stresses after the thermal contraction. In theory, the solver adopted

at the present work can solve flows with residual stresses at the begging of the simulation,

but to define an appropriate boundary condition and the initial stress field is not a simple

task.

4.2.1 Geometry and boundary conditions

The present work adopts two geometries: a planar expansion 1:4 and a planar

contraction 4:1, as shown in Figure 15. In both expansion and contraction geometries, the
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the entrance region provoked by the change of height, thus the zero gradient condition at

the outlet region is needed to minimize its influence over the flow.

4.2.2 Dimensionless quantities

A total of eight dimensionless parameters are needed to define the flow. Five of then

are related to the rheological model: φ∗
0
, n, αt, Tc, γ

. ∗
1
. The other three are the dimensionless

imposed pressure gradient (∆p∗), the Deborah number (De) and the Reynolds number

(Re). The definitions of γ
. ∗

1
, ∆p∗, De and Re are:

γ
. ∗

1
= tc ( τ0

K
)

1

n

∆p∗ = pi − po

τ0

De = λ1

tc

Re = ρu2
c

τc

(4.21)

where tc, uc, and τc is the characteristic time, velocity and stress, respectively. pi and po

are the pressure at the inlet and at the outlet, respectively. The expression of tc and τc are

equal to:

tc = 1

τ0 (φ∞ − φ0)
τc = pi − po

Lw
hn

hw

+Ln

(4.22)

As the flow starts at rest and accelerates as the simulation advances, it is an issue

to define a uc and τc that represents the flow. The Equation 4.22 is an estimation of the

maximum stress when the simulations starts, assuming no inertial effects and neglecting the

effects of the abrupt expansion/contraction over the flow. At the simulations, the maximum

stress are located at abrupt expansion/contraction, which makes its estimation really

complicated. However, when t→ 0, the pressure gradient over the narrow channel far enough

of the expansion/contraction is relatively constant around 0.96τc. Thus, Equation 4.22 was

adopted as a good enough estimation. The value of the characteristic velocity is obtained

solving the following expression(THOMPSON; SOARES, 2016):

τc = τ0 +K (uc

lc
)n

+
uc

φ0lc
(4.23)

where lc is the characteristic length, and it is equal to the narrow channel height. Once

again, uc is just an estimation, adopted mainly to define the Reynolds number. The same
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methodology was adopted by Oishi, Thompson & Martins (2016) to determine uc. Even

though the present work does not aim to investigate the inertia effects, they are taken

into account, so the Re must be defined to fully describe the flow.

Finally, the following dimensionless variables were adopted at the present work:

t∗ = t

tc

u∗ = utc

lc
τ
∗ = τ

τ0

(4.24)

4.2.3 Deborah number x Weissenberg number

As discussed by Poole (2012), the Deborah number and the Weissenberg number

are widely used to define the viscoelastic effects, even though they quantify different effects.

As can be seen in Equation 4.21, De represents a ratio between two times, the time of

relaxation over the characteristic time. On the other hand, the Weissenberg number (Wi)

represents the ratio between elastic forces and viscous forces. The Wi expression is often

found as:

Wi = λ1uc

lc
(4.25)

However, as already discussed, the definition of a characteristic velocity at a complex

re-start flow can be quite challenging, thus the present work adopted the Deborah number

to represent the viscoelastic effects.

4.2.4 Rheological parameters values

Table 1 and Table 2 present the values of the rheological parameters found at

the works of de Souza Mendes, Abedi & Thompson (2018), Cunha, de Souza Mendes &

Siqueira (2020) and the present work. At their work, de Souza Mendes, Abedi & Thompson

(2018) was not able to measure the compliance of the material at the fully structured state.

As the present work aims to perform numerical simulations, there is no issue defining an

arbitrary value for this property.

Table 1 – Comparison between the values of φ∗
0
, n, γ

. ∗
1
, and αt found in the literature and

adopted at the present work.

φ∗
0

n γ
. ∗

1
αt

de Souza Mendes, Abedi & Thompson (2018) 0 0.32 0.8 22768.32
Cunha, de Souza Mendes & Siqueira (2020) 10−8 0.3 1 104

Present work 10−3 0.3 1 10 to 104

Another difference the present work tends to adopt lower values for T∗c and αt. The

main reason for that is to accelerate the flow, as a higher αt decrease the rate that the
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Table 2 – Comparison between the values of T∗c , and De found in the literature and
adopted at the present work.

T∗c if τ > τ0 T∗c if τ ≤ τ0 De

de Souza Mendes, Abedi & Thompson (2018) 11153.4 254989.8 -
Cunha, de Souza Mendes & Siqueira (2020) 104 105 0

Present work 0.1 to 104 1 to 105 0 to 10

microstructure of the flow is broken, delaying its steady-state, for example, and increasing

the numerical cost to obtain it. But the biggest difference is the value of φ∗
0
. While de Souza

Mendes, Abedi & Thompson (2018) characterized the aqueous suspension of laponite as an

true yield stress material (φ∗
0
= 0), the present work adopted φ∗

0
= 10−3. The main reason

for that difference is numerical: the lower the φ∗
0
, the more difficult is to solve the stress

equation, as Section 5.1.2.1 explains in detail. Adopting a φ∗
0
= 0 or even φ∗

0
= 10−8 would

increase the numerical cost of these solutions, increasing the time needed to obtain then

in some orders of magnitude.

The value of φ∗
0

represents the difference between the maximum and minimum

fluidity of the material. When the flow has a relatively high stress, the fluidity of the

material inside the flow can vary some orders of magnitude, and changing the value of φ∗
0

from 10−8 to 10−3, for example, has little to no influence over the flow, as the difference

between the maximum and the minimum fluidity inside the flow is already high enough.

The issue is when the flow has relatively low stress, decreasing the maximum fluidity of

the flow and consequently approaching the maximum and minimum values of fluidity of

the flow. For this reason, all the numerical simulations of the present work adopts the

condition of τc ≥ 2τ0, to ensure that the maximum fluidity of the flow is significantly higher

than the minimum fluidity of the material.

4.3 Numerical model

The simulations presented in this work were performed using OpenFOAM R⃝, with

a customized solver implemented by the author. This customized solver can solve Equa-

tion 4.20, Equation 4.3 and Equation 4.18 by adopting the PIMPLE algorithm (Figure 11).

This algorithm was chosen because of its capacity to evaluate the convergence of the solu-

tion, increasing its accuracy. The explicit diffusion technique was adopted as a stabilization

method, without any special strategy to couple the governing equations, like the correction

scheme adopted by Oishi, Thompson & Martins (2016), for example. This way, the explicit

character of the governing equations is enhanced, justifying the adoption of the PIMPLE

algorithm, as it can perform several iterations to solve these explicit terms. The price for

this better accuracy is that the numerical cost is increased. It is important to highlight

that these two strategies, the PIMPLE algorithm and the correction scheme adopted by



4.3. Numerical model 71

Oishi, Thompson & Martins (2016), are not mutually exclusive and can be implemented

together.

Another important aspect is that at a transient simulation, the numerical errors

can accumulate at each time step, and even relatively small errors can lead to important

deviations after several time steps. This can change the transient response of the system,

even though the steady-state response usually is achieved eventually, if the system does

not diverge. This way, the steady-state response does not guarantee the accuracy of the

transient response, and the discretization error estimation(ASME, 2008), for example,

must take these transient elements into account. The PIMPLE algorithm capacity to

evaluate the accuracy of the solution at the end of each iteration is vital here too: this way,

it is possible to refine an unpolished response, while avoiding wasting time and numerical

resources with a good enough solution.

All the other stabilization methods showed to be unstable or did not show any

improvement when compared to the explicit diffusion technique. This instability is probably

due to the explicit character of the system of equations, and probably a more implicit

solution can allow a faster stabilization method. But, as already mentioned in Section 4.1.6,

the viscoplastic behaviour itself increases the explicit character of the system of equations,

making it difficult to obtain a “more implicit solution”.

As explained in Section 4.1.9, only a certain region of the simulated domain showed

viscoelastic properties. Furthermore, there are other numerical bottlenecks, like the already

mentioned explicit character of the governing equations. Thus, the implementation of a

log conformation method, for example, showed no numerical advantage and the present

work does not adopt it.

Even though the RheoTool toolbox has several routines built specifically to solve

complex flows, they did not show any real improvement when compared to the routines

implemented using only the default routines of OpenFOAM R⃝. This way, all simulations

shown in the present work were performed without the need to install the RheoTool

toolbox.
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5 Code validation and Discretization error es-

timation

The main objective of this chapter is to present solid evidence of the accuracy of

the proposed methodology. To validate the code, the results of the proposed routine were

compared with the results of similar works found in the literature. As already mentioned

in Section 2.4, there are only a few numerical works that consider a TEVP behaviour, and

their application or adopted models can vary significantly, making comparisons between

them and the present work more difficult and even impossible. Thus, the code validation

is divided into two parts: a viscoelastic part and a thixotropic viscoplastic part. Then, the

discretization error estimation employed to evaluate the adopted mesh is presented, with

the associated extrapolated error and grid convergence index (GCI).

5.1 Code validation

To validate the viscoelastic behaviour, two different approaches were adopted: an

analytical solution of an Oldroyd-B model flow inside a planar channel and a numerical

solution of the planar contraction Oldroyd-B model flow. Then, the methodology proposed

by Siqueira, Pasquali & de Souza Mendes (2020) was employed to validate the thixotropic

and viscoplastic behaviours of the present work. This methodology consists of a semi-

analytical solution of the flow inside an axisymmetric channel, adopting a stress profile

and using it to numerically solve the transient flow.

5.1.1 Viscoelastic behaviour

The stress equation (Equation 4.1) of the rheological model adopted at the present

work is an adaptation of the Oldroyd-B model (Equation 3.3), so it is relatively simple to

make them equivalent: assuming thixotropic characteristic times (αt and Tt) long enough,

the time derivative of the fluidity (Equation 4.18) tends to zero, allowing the fluidity and

the coefficients of the stress equation (Equation 4.2) to be considered constant.

5.1.1.1 Planar channel

This section numerically reproduces the Poiseuille viscoelastic flow analytical

solution proposed by Waters & King (1970). The adopted geometry is a planar channel

and the fluid is initially at rest, when a constant pressure gradient is imposed over the

domain. To simplify the calculations, the fluid is assumed as fully structured (φv = φ0), and
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αt and T∗c,0 are big enough so that f (φ∗v , φ∗eq)→ 0. Thus, the Oldroyd-B model coefficients

ηp, ηs and λ1 (Equation 3.5) are equal to:

ηp = 1

φ0

−
1

φ∞

ηs = 1

φ∞

λ1 = ( 1

φ0

−
1

φ∞
)J (φ0) = ηpJ0

(5.1)

The inertia effects are neglected and the two dimensionless quantities needed to

define the flow are the Weissenberg number (Wi) and the viscosity ratio (β). Due to the

flow characteristics, a new dimensionless time (t∗ve) and dimensionless velocity (U∗x,ve) are

adopted in this section. The definitions of β, t∗ve and U∗x,ve are:

β = ηs

ηs + ηp

t∗ve = tlc

uc,ve

u∗x,ve = ux

uc,ve

uc,ve = ∂p

∂x

1

2η0

(5.2)

where t is the time, uc,ve and lc are the characteristic velocity and characteristic length,

respectively. For this configuration, the channel height is taken as the characteristic length

and the characteristic velocity is equal to the symmetry velocity of the fully developed

profile. The adopted mesh consists of a 1D mesh with 200 volumes. Figure 16 compares the

temporal evolution of the dimensionless velocity for viscoelastic flows over the symmetry

line for the two approaches: the analytical solution and the numerical solution, obtained

with the routine developed by the author of the present work. The dotted line with x

markers is the analytical solution proposed by Waters & King (1970) while the solid line

is the result obtained with the proposed routine. Three different values of β and of Wi

were adopted. As can be seen, the adopted routine can reproduce the analytical solution

with accuracy.

5.1.2 Thixotropic viscoplastic behaviour

To evaluate the capacity of the adopted routine to replicate the thixotropic vis-

coplastic behaviour, the planar channel flow was simulated by adopting the rheological

model presented in Section 4.1, with J0 = 0. Assuming that the planar channel is long

enough and the inertia and the viscoelastic effects are negligible, the stress equation

(Equation 4.3) and the momentum balance equation (Equation 4.20) can be written as:
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Figure 16 – Temporal evolution of u∗x,ve at the symmetry line. The dotted line with x
markers is the analytical solution proposed by Waters & King (1970) while the
solid line is the result obtained with the proposed routine. Results obtained
adopting (a) Wi = 1 and β = 0.1, 0.01, and 0.001; and (b) β = 0.1 and
Wi = 0.1, 1, and 10.

(a) Wi = 1 and β = 0.1, 0.01, and 0.001

(b) β = 0.1 and Wi = 0.1, 1, and 10

φvτ = 2D

∇ ⋅ τ = ∇p

D = 1

2

∂ux

∂y

(5.3)

The flow is initially at rest and fully structured, and then the Poiseuille flow

condition is adopted, with an imposed pressure gradient. A 1D mesh is adopted to solve
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Equation 4.18 and Equation 5.3, with the no-slip condition at the channel walls. Six

dimensionless quantities are needed to define the flow: φ∗
0
, n, αt, T∗c,0, γ

. ∗
1

and the plastic

number (Pl), which is defined as follows:

Pl = ∣(∂p

∂x
)−1∣ τ0 (5.4)

Solving Equation 5.3, it is possible to obtain that the stress tensor is composed

only of two shear components (τxy and τyx) and its magnitude is defined as:

τxy = ∂p

∂x
y (5.5)

Thus, the evolution of φ∗v and ux can be obtained by integrating Equation 4.18 over

time. A similar methodology was applied by Cunha, de Souza Mendes & Siqueira (2020),

but assuming the axisymmetric channel. Figure 17 and Figure 18 compare the results

obtained with the methodology explained in the present section and results obtained with

the routine developed by the author of the present thesis, the first figure in terms of

the normalized fluidity (φ∗v) and the second one in terms of the dimensionless flow rate

(Q∗). The routine developed by the authors is fully numerical, thus it solves Equation 4.3,

Equation 4.18 and Equation 4.20 by adopting a iteration process. Figure 17 and Figure 18

were obtained assuming φ∗
0
= 10−3, n = 0.3, αt = 104, Tc,0 = 104, γ

. ∗
1
= 1 and three different

values of Pl: 0.01, 0.2 and 0.5. The results of these two different methodologies present a

good agreement, showing that the routine developed in the present work can replicate the

semi-analytical results of the methodology explained in the present section.

5.1.2.1 The numerical effects of φ∗
0

As mentioned in Section 4.1.6, the bigger the difference between φ0 and φ∞, the

more difficult is to solve Equation 3.1 and Equation 4.1. φ∗
0

represents how big is this

difference, thus, the lower the φ∗
0
, the more numerically difficult is to solve the system

of equations. This can be observed in Equation 5.3. For example: assuming φ∗
0
= 10−8,

lc = 1 and Pl = 0.2, the maximum value of τxy is equal to 5τ0, while the values of φv can

change from φv = 10−8 (at y < 0.2lc) to φv ≈ 0.95φ∞ (at y = lc). It means that φv can

change 8 orders of magnitude while τxy only changed from τ0 to 5τ0. It means that D must

also change almost 8 orders of magnitude to solve Equation 5.3. The numerical partial

derivative ∂Ux

∂y
can be written as:

∂Ux

∂y
= U

j+1

x −U
j
x

∆y
(5.6)
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Figure 18 – Temporal evolution of the dimensionless flow rate (Q∗) for Pl: 0.01, 0.2 and
0.5, comparing the results of a fully numerical method and a semi analytical
method.

1911). These methods have been widely investigated and reviewed by many authors, like

Oberkampf, Trucano & Hirsch (2004), for example. As the name suggests, the GCI method

was originally developed to estimate of grid convergence errors, converting error estimates

that are obtained from any grid-refinement ratio into an equivalent grid-doubling estimate.

The extrapolated value ωext, the error from the extrapolated value (eext) and the Grid

Convergence Index (CGI) are defined by the following expressions:

Table 3 – Mesh parameters

Mesh 3 2 1
Elements 2000 4808 10800

h∗ 0.11616 0.07511 0.05029

ωext = ra
21
∗ ω1 − ω2

ra
21
− 1

(5.7)

eext,i = ∣ωext − ωi

ωext

∣ (5.8)

CGI21

fine = 1, 25e21

ra
21
− 1

(5.9)
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where ω is the analysed flow parameter, r is the ratio between the representative element

length (h∗) of two different meshes, a is the theoretical order of accuracy. The subscripts

indicate the mesh where that parameter was obtained, as defined in Table 3. Thus, e21 is

the error between the mesh 2 and 1, as follows:

e21 = ∣ω1 − ω2

ω1

∣ (5.10)

The numerical uncertainties were estimated using the difference between the

extrapolation value and the obtained value in each mesh. The Grid Convergence Index

is stated as an error percentage and provides a confidence bound on the estimated error

band within which the numerically converged solution will likely lie.

Two tests were performed, one with the contraction geometry and another with

the expansion geometry. The tests were performed assuming φ∗
0
= 10−3, n = 0.3, αt = 10,

Tc,0 = 104, γ
. ∗

1
= 1, ∆p∗ = 100, De = 1 and Re = 1.4. The flow parameters adopted to

evaluate the meshes are the horizontal velocity of the points (-10,0), (0,0), and (5,0) for

the contraction test and (-5,0), (0,0) and (10,0) for the expansion test. These points are

over the symmetry line, and they lie over the wide channel, the contraction/expansion

(depending on the test) and the narrow channel. These three points were evaluated at

two different times: t∗ = 1 and t∗ = 10. The results of the contraction test can be found

in Table 4 and the results of the expansion test can be found in Table 5. The maximum

eext of the adopted mesh was below 3%, for both local and global parameters. The CGI

also indicates that the numerical uncertainties are small for this configuration. Figure 19

presents the adopted contraction mesh, showing its refinements near the contraction region.

Table 4 – eext and CGI of the contraction mesh.

t∗ = 1 t∗ = 10

mesh 3 2 1 3 2 1

x∗= (0 0 0)

φ 0.623 0.617 0.611 1.82 1.82 1.83
φext 0.598 1.83

eext(%) 4.21 3.07 2.06 1.31 1.1 0.735
CGI21

fine(%) 2.52 0.926

x∗= (-10 0 0)

φ 0.161 0.158 0.156 0.415 0.41 0.409
φext 0.151 0.409

eext(%) 6.15 4.35 2.91 2.4 1.07 0.719
CGI21

fine(%) 3.54 0.892

x∗= (5 0 0)

φ 0.636 0.623 0.615 2 1.99 2
φext 0.599 2

eext(%) 6.08 3.99 2.67 0.199 0.577 0.386
CGI21

fine(%) 3.25 0.485
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Table 5 – eext and CGI of the expansion mesh.

t∗ = 1 t∗ = 10

mesh 3 2 1 3 2 1

x∗= (0 0 0)

φ 0.605 0.6 0.599 2.01 2 2
φext 0.597 2

eext(%) 1.39 0.492 0.269 1.07 0.733 0.402
CGI21

fine(%) 0.336 0.5

x∗= (10 0 0)

φ 0.151 0.149 0.148 0.459 0.452 0.449
φext 0.147 0.449

eext(%) 2.8 1.27 0.694 3.02 1.37 0.753
CGI21

fine(%) 0.862 0.934

x∗= (-5 0 0)

φ 0.616 0.606 0.603 2.13 2.09 2.07
φext 0.599 2.07

eext(%) 2.91 1.14 0.625 4.12 2.49 1.36
CGI21

fine(%) 0.776 1.68

Figure 19 – Adopted contraction mesh.
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Results
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6 Results

The goal of this section is to present and discuss the results obtained with the

simulation of the restart flow. The results are presented in terms of the dimensionless stress

(τ ∗) field, the normalized fluidity (φ∗v) field, the dimensionless velocities, and the time

evolution of the velocity and the fluidity of some specific points of the domain, dissecting

the complexity of this kind of flow. The effects of the viscoelasticity (De), the avalanche

time (αt), the construction time (T∗c,0) and the dimensionless imposed pressure gradient

(∆p∗) are discussed individually while the other parameters are kept constant.

6.1 The thixotropic viscoplastic flow

The first flow configuration analyzed is the one that considers only the effects of

the thixotropic and viscoplastic behaviours, neglecting any viscoelastic effects (De = 0).

The dimensionless parameters are presented in Table 6. Figure 20 presents the temporal

evolution of the dimensionless velocity at the symmetry line of both the narrow and wide

channel of the expansion geometry, while Figure 21 presents the temporal evolution of the

fluidity at the same locations.

Table 6 – The dimensionless parameters adopted in Section 6.1.

φ∗
0

n γ
. ∗

1
αt T∗c,0 De ∆p∗ Re

10−3 0.3 1 101 104 0 100 1.4

Due to the imposed boundary conditions at the inlet, the flow at the narrow

channel simulates an infinite planar channel flow. Thus, the symmetry line of the narrow

channel tends to be inside a so-called “plug zone”. This plug zone is characterized by

its low stress (τ < τ0), low fluidity (φv ≈ φ0) and velocity profile nearly constant. Thus,

given the viscoplastic behaviour of the fluid (Equation 4.8), the normalized fluidity of the

narrow channel tends to be constant and equals to zero at any point of the symmetry line

far enough of the expansion. However, the narrow channel sample point (-5,0) is not far

enough from the abrupt expansion, and during the development of the flow, the stress of

this point can surpass τ0, which leads to φ∗v > 0, even though it is still at least one order of

magnitude bellow φ∗
0
, meaning that φv ≈ φ0 (Equation 4.11). It is important to highlight

that the condition τ > τ0 for this sample point is true only during a certain period of the

simulation, as can be seen in Figure 22, which presents the stress field for different values

of t∗ and the black zones delimit the regions where τ < τ0. On the other hand, the wide

channel sample point is always at the region where τ < τ0, and all the changes at the φ∗v

shown in Figure 21b are due to the advective transport.
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Figure 20 – Temporal evolution of the dimesionless velocity at symmetry line for (a) the
narrow channel (-5,0) (b) the wide channel (10,0). The adopted dimensionless
parameters are presented at Table 6.

(a) (-5,0)

(b) (10,0)

Figure 21 – Temporal evolution of the normalized fluidity at symmetry line for (a) the
narrow channel (-5,0) (b) the wide channel (10,0). The adopted dimensionless
parameters are presented at Table 6.

(a) (-5,0)

(b) (10,0)



6.1. The thixotropic viscoplastic flow 85

Figure 22 – τ∗ for (a) t∗ = 10−2, (b) t∗ = 100, (c) t∗ = 101, and (d) t∗ = 103. The black areas
have τ < τ0. The adopted dimensionless parameters are presented at Table 6.

(a) t∗ = 10
−2

(b) t∗ = 10
0

(c) t∗ = 10
1

(d) t∗ = 10
3

As the flow starts at rest and fully structured, at the beginning of the simulation

(t∗ < 10−1) it is almost static. During this time, the internal microstructure of the flow is

being broken, but not uniformly, as can be seen in Figure 23. As the flow is almost static,

the transport term is almost null, as can be seen in Figure 21b, where the values of φ∗v

only start to change at the neighbourhood of t∗ = 100 at the wide channel sample point.

Even so, the values of φ∗v are still lower than φ∗
0

until near t∗ = 10. This is relevant, as a

φ∗v << φ∗
0

means that φv ≈ φ0, as can be seen in Equation 4.11. As the time passes, the φ∗v

at the narrow channel walls increases, allowing the flow to accelerate.

With a higher fluidity near the narrow channel walls, flow accelerates, as can

be seen in Figure 20 between t∗ = 0.1 and t∗ = 10. As the flow velocity increases, the
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Figure 23 – φ∗v field for (a) t∗ = 10−4, (b) t∗ = 10−3, (c) t∗ = 10−2, (d) t∗ = 10−1, (e) t∗ = 100,
(f) t∗ = 101, (g) t∗ = 102, and (h) t∗ = 103. The black areas have φ∗v < 10−5. The
adopted dimensionless parameters are presented at Table 6.

(a) t∗ = 10
−4 (b) t∗ = 10

−3

(c) t∗ = 10
−2 (d) t∗ = 10

−1

(e) t∗ = 10
0 (f) t∗ = 10

1

(g) t∗ = 10
2 (h) t∗ = 10

3

relevance of the transport term of Equation 4.7 increases too, forming a “yielded front”

that is transported from the narrow channel through the wide channel, as can be seen in

Figure 23f. This yielded front can be identified by the velocity and φ∗v increase near t∗ = 10

in Figure 20b and Figure 21b, respectively. This yielded front behaviour substantially

changes the flow dynamics inside the wide channel, as the local fluidity φ∗v becomes more

a reflex of the history of the flow, because of the transport term, than a function of local

instantaneous properties, such as the local stress. The driving force of the flow is a constant

pressure gradient between the inlet and the outlet. As the yielded front advances, the

fluidity increases, increasing the flow rate, enhancing the advective transport and allowing

an increase at the narrow channel stress (Figure 22), which, in turn, increases φ∗v . Thus,

there is a complex relationship between all these flow parameters.

Another important aspect is that this yielded front advances with different velocities,

depending, for example, on the wall distance. This behaviour, combined with the fact that

the dimensionless shear stress is always lower at the wide channel when compared to the

narrow channel, leads to a fluidity profile where the maximum fluidity is not necessarily

near the wall, as expected of a planar channel. The flow tends asymptotically to the
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planar channel profile, as can be seen in Figure 23. This asymptotic behaviour delays

the steady-state condition and can change the velocity profile of the wide channel, even

though it is less noteworthy at the narrow channel. As can be seen in Figure 20b, the

horizontal velocity at the symmetry line of the wide channel has a maximum value between

t∗ = 10 and t∗ = 100, and then it starts to decrease. This behaviour is mainly associated

with the position of the yielded front: as the higher velocities lie near the symmetry line,

the transport term is more relevant at this region, increasing the fluidity and allowing a

higher flow rate earlier at the projection of the narrow channel over the wide channel. As

the yielded front spreads, the velocity profile becomes less concentrated, decreasing the

velocity at the symmetry line without necessarily decreasing the total flow rate. Figure 24

shows the velocity profile at the line x∗ = 15 for t∗ = 10, t∗ = 100, and t∗ = 1000.

Figure 24 – u∗x over the line x∗ = 15 at t∗ = 10, t∗ = 100, and t∗ = 1000. The adopted
dimensionless parameters are presented at Table 6.

6.2 The TEVP flow

Before analyzing the effects of the αt, T∗c,0 and ∆p∗, it is important to discuss

the flow patterns of a TEVP flow. The goal of the section is to compare the results

of the simulation with De = 0 and the simulation with De = 1, identifying similarities

and differences. The dimensionless parameters are presented in Table 7. Figure 25 and

Figure 26 compare the temporal evolution of the velocity and φ∗v for De = 0 and De = 1

for the expansion geometry, respectively. The main differences can be found at t∗ < 1,

and the flows are almost indistinguishable for t∗ > 10. This is somewhat expected, as the

viscoelastic effects only occur when φ∗v < 10−10. Thus, the viscoelastic areas decrease as the

fluidity increases.

Table 7 – The dimensionless parameters adopted in Section 6.2.

φ∗
0

n γ
. ∗

1
αt T∗c,0 De ∆p∗ Re

10−3 0.3 1 101 104 0 and 1 100 1.4
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Figure 25 – Temporal evolution of u∗x at symmetry line of (a) the narrow channel (-5,0) (b)
the wide channel (10,0). The adopted dimensionless parameters are presented
at Table 7.

(a) (-5,0)

(b) (10,0)

Figure 26 – Temporal evolution of φ∗v at symmetry line of (a) the narrow channel (-5,0) (b)
the wide channel (10,0). The adopted dimensionless parameters are presented
at Table 7.

(a) (-5,0)

(b) (10,0)
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As a general trend, the velocity increases when the viscoelastic behaviour is

considered. Figure 27 highlights this difference, comparing the velocities of De = 0 and

De = 1 between t∗ = 10−3 and t∗ = 10−1. Even though these velocities are relatively small

when compared with the steady-state flow velocities, the De = 1 velocity can be one order

of magnitude higher than the De = 0 velocity. For the adopted configuration, the maximum

speed between t∗ = 10−3 and t∗ = 10−1 is around 1% and 2% of the steady-state velocity.

Figure 27 – u∗x for De = 0 and De = 1 between t∗ = 10−3 and t∗ = 10−1 for (a) the
narrow channel (-5,0) (b) the wide channel (10,0). The adopted dimensionless
parameters are presented at Table 7.

(a) (-5,0)

(b) (10,0)

Figure 27 also shows that the De = 1 flow presents a velocity decrease during this

interval, even at the narrow channel. Comparing Figure 26 and Figure 27, it is possible to

identify that the velocity peak of Figure 27 occurs at the exact moment when φ∗v surpasses

the φ∗J = 10−10 mark for both the narrow and wide channels. Thus, the increased velocity

is related with to viscoelastic behaviour, and its reduction is related to the absence of the

aforementioned behaviour. Assuming a low enough φ∗
0
, φs ≈ φ0 << φ∞ (Equation 4.4) for

structured fluids (φ∗v < 10−10). This means that Equation 4.5 becomes:

γ ≈ γe >> γv

γ
. ≈ γ

.
e >> γ

.
v

τ = γ
.

φ∞
+

γ
.

v

φs

+
γe

J (φ∗v)
(6.1)
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The behaviour described by Equation 6.1 shows that, assuming a low enough

φ∗
0
, the Jeffreys model tends to behave as a Kelvin-Voigt model, as shown in Figure 28.

This model is characterized by a viscous and an elastic element connected in parallel.

This means that, under the aforementioned circumstances, the material effectively flows

with a fluidity equal to φ∞, that is some orders of magnitude above φv, explaining the

higher acceleration and, consequently, higher velocities. Even though this region shows

a viscoelastic behaviour, it is not an issue, as this just happens for a brief moment and

the velocities involved are relatively small, thus γ is relatively small. Another issue is

that, as soon as τ surpasses τ0, the microstructure of the material starts to break, leading

to φ∗v > 10−10, when the viscoelastic effects cease abruptly. For this new configuration (

φ∗v > 10−10), J(φ∗v) = 0 and the adopted Jeffrey model can be simplified as two viscous

elements connected in parallel. This analogous mechanical system can be simplified into

only one viscous element, with φv = φs + φ∞. Under this new scenario, Equation 4.5 is

equal to:

Figure 28 – Kelvin-Voigt model analogous mechanical system.

Source: (HAJIKARIMI; Moghadas Nejad, 2021)

γ = γv

γ
. = γ

.
v

τ = γ
.

φv

(6.2)

When J(φ∗v) = 0, the stress equation has only three elements: φ∗v , τ and γ
. . φ∗v is

associated with the fluidity evolution equation (Equation 4.7), and γ
. is mainly associated

with the momentum balance equation (Equation 4.20), meaning that they can not change

freely within one time step. On the other hand, τ can change freely, as its time derivative

is not part of the stress equation anymore (J(φ∗v) = 0). This means that, at the moment

when a viscoelastic material achieves the condition φ∗v > 10−10, the effective fluidity of the

flow decreases some orders of magnitude (from φ∞ to φv), while γ
. is somewhat constant
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due to its bonds with other equations. This configuration leads to a stress peak, which

accelerates the breakup process, and after a few time steps the increased fluidity and lower

γ
. allow the stress to decrease. All this described phenomenon happens at a fraction of tc,

but the microstructure breakup can be relevant for a significant part of the simulation,

and can provoke the breakup of regions that would not be broken if the viscoelastic forces

were not considered. Figure 26 shows that both the narrow and the wide channel fluidities

surpass 10−10 before its counterparts at the De = 0 simulation. The stress peak is one of the

reasons why it is common that the φ∗v time evolution is almost vertical when it surpasses

the 10−10 mark when the viscoelastic behaviour is considered. Figure 29 compares the φ∗v

field of the De = 0 and De = 1 at the t∗ = 0.1. The minimum φ∗v at the De = 1 simulation

narrow channel is higher than 10−5, even at the symmetry line, and the φ∗v < 10−5 zones at

the wide channel have substantially decreased.

Figure 29 – φ∗v field at t∗ = 10−1 for (a) De = 0, (b) and De = 1. The adopted dimensionless
parameters are presented at Table 7.

(a) De = 0

(b) De = 1

A few points must be considered about this stress peak: first and more importantly,

the value of φ∗
0

of the present work was chosen due to a numeric reason. Other works in the

literature (DE SOUZA MENDES; ABEDI; THOMPSON, 2018; SIQUEIRA; PASQUALI;

DE SOUZA MENDES, 2020; CUNHA; DE SOUZA MENDES; SIQUEIRA, 2020) consid-

ered lower values of φ∗
0
, which would change the range φ∗v < φ∗

0
, allowing this stress peak

to be more relevant. The second point is that the Heaviside function adopted for J(φ∗v)
(Equation 4.19) is a discontinuous function, making the transition between the elastic

and the inelastic behaviour more abrupt. A continuous function would decrease the stress

peak, even though it would not prevent it if this function changes fast enough. Third, the

stress peak can accelerate the breakup process of regions that would take much more time

to be broken, or even not broken at all. Figure 26b, for example, shows that φ∗v at the
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point (10,0) surpasses 10−10 almost 100 times faster ( from t∗ ≈ 100 to t∗ ≈ 10−2) when the

viscoelastic behaviour is considered. Fourth: as this stress peak lasts only a fraction of the

time, this behaviour is numerical challenging. The involved time derivatives can be really

high, and a poorly dimensioned time step would lead to an unreal increase in fluidity, for

example. Figure 29 illustrates this numerical difficulty, the φ∗v < 10−5 zones have smooth

borders for De = 0, while at De = 1 the borders are far more irregular. The main reason for

this difference is the difficulty to precisely calculating the flow parameters at this period.

Figure 26 also shows that the values of φ∗v can be really unstable between 10−10 <
φ∗v < 10−3, showing oscillations and a complex behaviour. As already discussed, when

φ∗v > 10−10, the viscoelastic effects are null, and when φ∗v << φ∗
0
, φv ≈ φ0, meaning that

the exact value of φ∗v has little to no impact over the other equations (Equation 4.1 and

Equation 4.20). Another issue is that a variation of about 3% at the dimensionless stress

field can change the value of φ∗eq from zero to 10−5, and another increase of 3% at the

dimensionless stress field leads to φ∗eq ≈ 10−4. This way, it is expected that the value of φ∗v

will fluctuate when its exact value lies between 10−10 < φ∗v < 10−3, but this variation does

not compromise the accuracy of the simulation.

6.2.1 The compliance model

To illustrate the influence of the choice of a Heaviside function adopted for the

compliance model, a second compliance model is considered in the present section. Figure 30

and Figure 31 compare two simulations with exactly the same dimensionless parameters,

but considering two different values of φ∗J : (Equation 4.19) one with the value of 10−10

and the other equal to 1. The adopted geometry is the expansion, and the dimensionless

quantities are shown in Table 8. These are the only results presented in this thesis that

do not consider φ∗J = 10−10. As the maximum value of φ∗v is equal to one, it means that

J(φ∗v) = J0 for all the domain. Nevertheless, Equation 4.2 shows that λ1 still decreases

with the increase of φ∗v .

Table 8 – The dimensionless parameters adopted in Section 6.2.1.

φ∗
0

n γ
. ∗

1
αt T∗c,0 De ∆p∗ Re

10−3 0.3 1 101 104 1 100 1.4

Figure 30 shows the velocity oscillations, a characteristic of viscoelastic flows, at

least for some time. The flow with φ∗J = 1 also tends to the flow with φ∗J = 10−10. Combining

Equation 4.21 and Equation 4.2, it is possible to conclude that the increase of the fluidity

decreases the De, even when J(φ∗v) is a constant function. Besides, as the flow starts at

rest and fully structured, the moment when the elastic forces are higher (due to the flow

being fully structured) is also the moment where the viscous forces are higher (due to

the low fluidity characteristic of the fully structured material), decreasing the influence of
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Figure 30 – Influence of the φ∗J over the temporal evolution of the u∗x at the symmetry
line of (a) the narrow channel (-5,0) and (b) the wide channel (10,0). The
adopted dimensionless parameters are presented in Table 8.

(a) (-5,0)

(b) (10,0)

Figure 31 – Influence of the φ∗J over the temporal evolution of the φ∗v at the symmetry
line of (a) the narrow channel (-5,0) and (b) the wide channel (10,0). The
adopted dimensionless parameters are presented in Table 8.

(a) (-5,0)

(b) (10,0)
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the viscoelastic forces over the flow. Finally, as already discussed, the elastic behaviour

has different time scales than the thixotropy behaviour, thus it is somewhat expected

the elastic forces would be more relaxed when the thixotropy starts to show steady-state

characteristics.

Without the stress peak provoked when the viscoelastic effects cease abruptly, the

φ∗v evolution for φ∗J = 1 in Figure 31 presents some similarities with Figure 26, which shows

the φ∗v evolution of the De = 0 simulation, such as the moment when they surpass the

φ∗v = 10−10 mark for both the narrow and wide channel. Furthermore, the φ∗J = 1 flow

tends to have a higher velocity than the φ∗v = 10−10, specially for t∗ < 101. This behaviour

corroborates the conclusion that increasing the viscoelastic behaviour tends to increase

the velocity at the beginning of the simulation.

6.3 The influence of the De

Figure 32 and Figure 33 show the results for four different Deborah numbers: 0, 0.1,

1, and 10, adopting the expansion geometry and the dimensionless parameters presented

in Table 9. As already discussed, the influence of the viscoelastic forces is limited by the

φ∗v < 10−10 condition, which means that as soon as the microstructure starts to break

the viscoelastic effects are interrupted. Thus, the effects of increasing the De are only

shown at relatively small times (t∗ < 10). During this time, the higher the De, the higher

the u∗x, even though the simulations tend to have the same velocity at the steady-state.

Also, increasing De from De = 0.1 to De = 10 increases the relaxation time and J(φ∗v),
which delays the τ growth and allows the narrow channel to stay longer at the condition

φ∗v < 10−10, as can be seen in Figure 33.

Table 9 – The dimensionless parameters adopted in Section 6.3.

φ∗
0

n γ
. ∗

1
αt T∗c,0 De ∆p∗ Re

10−3 0.3 1 101 104 0 to 10 100 1.4

Figure 33 also shows the temporal evolution of φ∗v has a plateau between t∗ = 5∗10−3

and t∗3 ∗ 10−1 for De = 0.1. This plateau is apparently below φ∗J , and the φ∗v evolution

curve does not present the almost vertical behaviour when it surpasses φ∗J . The main

reason for this behaviour is an interpolation error: the present work adopts a FVM method,

which means the flow properties are calculated at the centroid of the volumes. Figure 33

shows the φ∗v values at the symmetry line of the geometry, thus an interpolation method

is adopted to obtain the property value at the boundary of the volume. The centroid of

the volume has φ∗v > φ∗J , but due to the interpolation scheme adopted, the φ∗v value at

the symmetry line does not. Usually, the error introduced by the interpolation scheme

can be considered small, but the values of φ∗v in this region are quite small too, making
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Figure 32 – Influence of the De over the temporal evolution of u∗x at symmetry line of (a)
the narrow channel (-5,0) and (b) the wide channel (10,0) of the expansion
geometry. The adopted dimensionless parameters are presented in Table 9.

(a) (-5,0)

(b) (10,0)

Figure 33 – Influence of the De over the temporal evolution of φ∗v at symmetry line of the
narrow channel (-5,0) of the expansion geometry. The adopted dimensionless
parameters are presented in Table 9.

the interpolation errors relevant to the graph. These values are only used during the

post-processing phase, thus they do not influence the simulation.

Another identifiable behaviour in Figure 32 is that a lower relaxation time leads

to a lower stress peak when φ∗v surpasses 10−10, which in turn preserves more of the wide

channel material under the condition of φ∗v < 10−10 after the stress peak. Figure 34 shows

an interval of Figure 32, highlighting the velocity oscillations at the wide channel between

t∗ = 10−3 and t∗ = 10−1, specially for De = 0.1. These oscillations are provoked by the

interaction between inelastic and viscoelastic zones. In theory, every simulation with De > 0
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has a time interval where the domain can be divided between inelastic and viscoelastic

parts, but the stress peak can break down the majority of the viscoelastic zones before the

interaction between them can produce any visible effects.

Figure 34 – u∗x oscillations between 10−2 < t∗ < 10−1 at the expansion geometry wide
channel. The adopted dimensionless parameters are presented in Table 9.

Figure 35 – Influence of the De over the temporal evolution of u∗x at symmetry line of (a)
the wide channel (-10,0) and (b) the narrow channel (5,0) of the contraction
geometry. The adopted dimensionless parameters are presented in Table 9.

(a) (-10,0)

(b) (5,0)

The contraction geometry results follow the same trend that the expansion results

have shown, as can be seen in Figure 35 and Figure 36: the higher the De, the higher

the u∗x at relatively small times (t∗ < 10), and increasing De from 0.1 to 10 delays the

moment when the stress peak occurs. The simulation with De = 0.1 had a lower stress

peak, and kept a larger portion of its domain under the φv < 10−10. This way, the effects of
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the viscoelastic forces are more evident at De = 0.1 than at De = 10, as can be seen in

Figure 37.

Figure 36 – Influence of the De over the temporal evolution of φ∗v at symmetry line of the
narrow channel (5,0) of the contraction geometry. The adopted dimensionless
parameters are presented in Table 9.

Figure 37 – Effects of the viscoelastic forces cease over u∗x and the oscillations produced
by the interaction between the viscoelastic part and the purely viscous part
of the flow. u∗x obtained at the point (-10,0) of the wide channel. The adopted
dimensionless parameters are presented in Table 9.

6.4 The influence of the αt

As the material starts fully structured, it must first break down the internal

structure before it starts to flow, meaning that αt is one of the main rheological parameters

of the simulations presented in this thesis. A higher αt means that the structure takes

longer to break, usually increasing the time needed to achieve the steady-state. Figure 38

shows the horizontal velocity at the expansion geometry for αt equal to: 100, 101, 102,

103, and 104. The dimensionless parameters adopted in the present section are shown in

Table 10.

For low values of αt, such as 100 and 101, there is a clear yielded front, where the

unstructured material of the narrow channel is transported through the wide channel,
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Table 10 – The dimensionless parameters adopted in Section 6.4.

φ∗
0

n γ
. ∗

1
αt T∗c,0 De ∆p∗ Re

10−3 0.3 1 100 to 104 104 1 100 1.4

Figure 38 – Influence of αt over the temporal evolution of u∗x at symmetry line of (a)
the narrow channel (-5,0) and (b) the wide channel (10,0) at the expansion
geometry. The adopted dimensionless parameters are presented in Table 10.

(a) (-5,0)

(b) (10,0)

increasing the fluidity and the flow velocity as it advances. On the other hand, for higher

αt values, the flow takes more time to break and to accelerate, meaning that the yield

front is diluted over time, specially because the velocities are lower. This behaviour can be

seen in Figure 39, where the temporal evolution of the φ∗v for αt = 104 not only takes more

time to surpass the φ∗v > φ∗
0

mark, but also kept growing continuously after the almost

vertical growth characteristic of the yield front.

Figure 40 shows an example of this diluted yield front, assuming αt = 103 and

t∗ = 100. Figure 23f shows the φ∗v field for αt = 101 and t∗ = 10. Comparing it with Figure 40

clearly shows that the yield front of αt = 103 has a lower φ∗v value, besides its t∗ being ten

times bigger.

Another important aspect of Figure 39 is that the φ∗v values at the steady-state

decrease as the αt increases. As already discussed, the inlet boundary conditions are set

to simulate an infinite planar channel, meaning that the transport term of Equation 4.7

is null and the value of φ∗v can be determined using only local parameters. However, the

same is not true for the expansion region. The expansion region has a higher stress than



6.4. The influence of the αt 99

Figure 39 – Influence of αt over the temporal evolution of φ∗v at symmetry line of the
wide channel (10,0) at the expansion geometry. The adopted dimensionless
parameters are presented in Table 10.

Figure 40 – φ∗v field for αt = 103 and t∗ = 100 at the expansion geometry. The adopted
dimensionless parameters are presented in Table 10.

the narrow channel, leading to microstructure breakdown and making the transport term

non-null. The microstructure breakdown is not instantaneous and its velocity is directly

influenced by αt (Equation 4.18). As the flow advances to the steady-state, the velocities

at the expansion increase, meaning that, when αt is high enough, there is not enough time

to φ∗v → φ∗eq. Figure 41 shows the stress field for αt = 103 and t∗ = 1000, where the black

areas have τ < τ0.

Figure 41 – Stress field for αt = 103 and t∗ = 1000 at the expansion geometry. The adopted
dimensionless parameters are presented in Table 10.
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Figure 42 shows u∗x temporal evolution for different values of αt in the contraction

geometry. As observed at the expansion geometry, increasing αt decreases the velocity and

delays the steady-state, but the contraction geometry results show a higher effect of the

αt variation.

Figure 42 – Influence of αt over the temporal evolution of u∗x at symmetry line of (a)
the wide channel (-10,0) and (b) the narrow channel (5,0) at the contraction
geometry. The adopted dimensionless parameters are presented in Table 10.

(a) (-10,0)

(b) (5,0)

Figure 43 – τ field for αt = 104 at t∗ = 103 at the contraction geometry. The adopted
dimensionless parameters are presented in Table 10.

As can be seen in Figure 43, at the contraction geometry, the material near the

walls flows from a relatively low-stress zone (the wide channel) to a relatively high-stress

zone (the contraction and the narrow channel). This increase in the stress levels led to an

increase at φ∗eq and, consequently, φ∗v . However, this increase at φ∗v is not instantaneous
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and depends on the αt values. A higher αt means the microstructure needs more time

to be broken. This way, it is possible to have an “entrance length” for φ∗v at the narrow

channel, where the microstructure is being continuously broken and transported. This

region has a lower fluidity, which decreases the flow rate. On the other hand, the region

near the symmetry line can have φ∗v > φ∗eq at the narrow channel, meaning that the material

microstructure is being recovered at this region. However, the effects of fluidity near the

symmetry line are lower than the effects of the fluidity near the walls. Figure 44 shows the

φ∗v field for different values of αt at t∗ = 103.

Figure 44 – φ∗v field for (a) αt = 100, (b) αt = 103, and (c) αt = 104 at t∗ = 103 at the
contraction geometry. The adopted dimensionless parameters are presented in
Table 10.

(a) αt = 10
0

(b) αt = 10
3

(c) αt = 10
4

Comparing the results for the expansion geometry (Figure 38) and the contraction

geometry (Figure 42), it is possible to identify two main differences between the flow

behaviours. First, there is no clear evidence of the yield front behaviour in Figure 42, and,

second, the contraction geometry flow achieves a steady-state faster than its counterpart

at the expansion geometry. The main reason for these differences is the fact that, at

the contraction geometry, the material microstructure is been continuously broken. It is

possible to identify a yield front at the contraction geometry, as can be seen in Figure 45,

but its fluidity is still lower than φ∗eq at the narrow channel walls, thus its impact over
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the contraction flow is lower than its effects at the expansion geometry. Besides that,

the stress field is more stable and diluted at the contraction geometry, which helps it to

achieve a steady-state. At the contraction geometry, the wall stress is always higher than

τ0 (Figure 43), for both the wide and the narrow channel.

Figure 45 – Example of yield front for αt = 100 at t∗ = 3.54 at the contraction geometry.
The adopted dimensionless parameters are presented in Table 10.

Due to the boundary conditions adopted, the inlet channel simulates an infinite

planar channel. At the expansion geometry, the inlet channel is the narrow channel, which

has a relatively high stress. This way, the material enters the domain already with high

fluidity, and the advective term transports this high fluidity over the wide channel, allowing

the material to flow even with τ < τ0 at the wide channel and concentrating the stress field

at the narrow channel. On the other hand, for the contraction geometry, the inlet channel

is the wide channel, with a relatively low stress even at its walls. Thus, the material enters

the domain with a lower fluidity and it is continuously broken through the contraction

and the narrow channel. For this reason, the influence of αt is increased at the contraction

geometry.

6.5 The influence of the T∗c,0

In Section 4.1, it was discussed that the breakup time and the construction time

of the thixotropy are modelled in different ways. As can be seen in Equation 4.18, the

build up process is way more linear than the avalanche effect, which can lead to a sudden

microstructure collapse. Besides that, the material starts fully structured, thus it needs

to be broken first, and only after that, the construction dimensionless time can show its

effects. This way, it was expected that all simulations varying T∗c,0 would have a similar

behaviour for lower values of t∗, and only at higher t∗ they would show different behaviours.

Figure 46 shows the influence of the T∗c,0 over the temporal evolution of u∗x for T∗c,0 equal to

10−1, 100, 101, 102, 103, and 104 at the expansion geometry. The dimensionless parameters

are presented in Table 11.
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Table 11 – The dimensionless parameters adopted in Section 6.5.

φ∗
0

n γ
. ∗

1
αt T∗c,0 De ∆p∗ Re

10−3 0.3 1 101 10−1 to 104 1 100 1.4

Figure 46 – Influence of T∗c,0 over the temporal evolution of u∗x at symmetry line of (a)
the narrow channel (-5,0) and (b) the wide channel (10,0) at the expansion
geometry. The adopted dimensionless parameters are presented in Table 11.

(a) (-5,0)

(b) (10,0)

The lower the T∗c,0, the faster the microstructure recovers, and the faster φ∗v → φ∗eq,

if φ∗v > φ∗eq. Thus, when decreasing T∗c,0, φ∗v tends to decrease, decreasing the velocity of the

flow too. This effect is clear at the narrow channel velocities (Figure 46a), but the wide

channel velocities show a more complex behaviour (Figure 46b). Decreasing T∗c,0 increases

the relevance of the build up term in Equation 4.7, to the point where there is no clear

sign of the yield front at the u∗x temporal evolution for T∗c,0 equal to 10−1 and 100. The

yield front behaviour described in the present work is only possible due to a combination

of the breakup term and the advective term of Equation 4.7. Increasing the relevance of

the build up term can make the yield front disappear, as the material microstructure can

recover faster than the flow can transport the unstructured material. From Tc,0 = 101 to

104, there is a clear influence of the yield front. The Tc,0 = 103 and Tc,0 = 104 curves show

the behaviour previously explained, where the yield front advances with different velocities

at the domain, leading to a more uniform velocity profile, decreasing the velocity at the

symmetry line without necessarily decreasing the flow rate.

The stress field at the wide channel is higher when T∗c,0 equal to 10−1, 100 and 101.

Figure 47 shows the dimensionless stress field for Tc,0 = 10−1 and t∗ = 1000. The black
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areas have τ < τ0. On the other hand, Figure 22 shows a simulation for Tc,0 = 104 that

has the τ < τ0 condition at the whole wide channel at t∗ = 1000. When the T∗c,0 is high

enough, the low-stress condition is not an issue, as the material does not have enough time

to recover and it is possible to maintain the flow due to the unstructured material from

the narrow channel transported through the wide channel. The higher stress at the wide

channel for T∗c,0 ≤ 101 reduces the stress at the narrow channel, decreasing the fluidity in it

and slowing down the flow, as can be seen in Figure 46.

Figure 47 – Stress field for Tc,0 = 10−1 and t∗ = 1000 at the expansion geometry. The
adopted dimensionless parameters are presented in Table 11.

Figure 48 – φ∗v for Tc,0 = 102 and (a) t∗ = 100 and (b) t∗ = 650 at the expansion geometry.
The adopted dimensionless parameters are presented in Table 11.

(a) t∗ = 100

(b) t∗ = 650

The Tc,0 = 102 flow is between these two behaviours, where the value of T∗c,0 is able

to recover the material at the wide channel, but at a relatively low rate. This way, the
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material can recover the microstructure of some regions that have been unstructured by

the yield front behaviour, but this process is not fast enough to completely erase all its

consequences. Thus, Tc,0 = 102 has the opposite effect of the Tc,0 = 104 flow: as the flow

advances to the steady-state, the flow is more and more concentrated near the symmetry

line, increasing its velocity. Figure 48 and Figure 49 shows the normalized fluidity field

and the horizontal velocity field for Tc,0 = 102 and t∗ = 100 and t∗ = 650, respectively.

Figure 49 – u∗x for Tc,0 = 102 and (a) t∗ = 100 and (b) t∗ = 650 at the expansion geometry.
The adopted dimensionless parameters are presented in Table 11.

(a) t∗ = 100

(b) t∗ = 650

In the same way, the contraction geometry increases the influence of αt when

compared to the expansion geometry, it decreases the influence of T∗c,0. As the flow starts

fully structured and the inlet channel is the wide channel, the material must first have

its microstructure broken, and then flow to a region with φ∗v > φ∗eq to T∗c,0 be a relevant

parameter. As already discussed, the only region of the contraction geometry that satisfies

these conditions is the region near the symmetry line of the narrow channel.

Figure 50 shows the u∗x temporal evolution for different values of T∗c,0 and Figure 51

shows the φ∗v field for t∗ = 100 and two different values of T∗c,0: 10−1 and 104. The increase

from Tc,0 = 10−1 to Tc,0 = 104 provoked an increase from φ∗v < 10−5 to φ∗v ≈ 0.5 at the sample

point (5,0) of the narrow channel, and this change led to a decrease of ∼ 10% at the local

velocity and a reduction of ∼ 5% at the flow rate. The local velocity has decreased more

due to the tendency to form a plug zone, creating a velocity plateau at the velocity profile,

as can be seen in Figure 52.
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Figure 50 – Influence of T∗c,0 over the temporal evolution of u∗x at the symmetry line of (a)
the wide channel (-10,0) and (b) the narrow channel (5,0) at the contraction
geometry. The adopted dimensionless parameters are presented in Table 11.

(a) (-10,0)

(b) (5,0)

Figure 51 – φ∗v field for the contraction geometry at t∗ = 102 and (a) Tc,0 = 10−1, and (b)
Tc,0 = 104 . The adopted dimensionless parameters are presented in Table 11.

(a) Tc,0 = 10
−1

(b) Tc,0 = 10
4

6.6 The influence of the ∆p∗

The imposed pressure gradient is the driving force of the analyzed flow. In this

section, ∆p∗ ranging from 40 to 120 were tested. The results are shown in Figure 53 for the
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Figure 52 – Velocity profile for the contraction geometry at x∗ = 5 and t∗ = 102 for
Tc,0 = 10−1 and Tc,0 = 104 . The adopted dimensionless parameters are presented
in Table 11.

temporal evolution of the u∗x for the expansion geometry. The dimensionless parameters

are shown in Table 12.

Table 12 – The dimensionless parameters adopted in Section 6.6.

φ∗
0

n γ
. ∗

1
αt T∗c,0 De ∆p∗ Re

10−3 0.3 1 101 104 1 40 to 120 0.0456 to 2.087

Figure 53 – Influence of ∆p∗ over the temporal evolution of u∗x at the symmetry line of
(a) the narrow channel (-5,0) and (b) the wide channel (10,0) at the expansion
geometry. The adopted dimensionless parameters are presented in Table 12.

(a) (-5,0)

(b) (10,0)

As expected, the higher the ∆p∗, the higher the velocities, the faster φ∗v increases

and the faster the flow achieves the steady-state. Due to the rheological dimensionless set,
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all simulations show the effects of the yield front, even the ∆p∗ = 40, which has a relatively

low velocity before the yield front behaviour. Due to its low velocity, the time it takes to

achieve the steady-state is higher.

All simulations of the section have a characteristic stress between 2τ0 and 6τ0. This

means that probably all these simulations have a ∆p∗ relativity higher than the minimum

imposed pressure gradient to re-start the flow. The calculation of τc does not take into

account the effects of the expansion, thus the estimative of τc = τ0 to the minimum imposed

pressure gradient to re-start the flow may not be accurate. For example: the flow for

∆p∗ = 40 has a relatively low velocity and only shows a visible acceleration when almost all

other simulations are already at steady-state, indicating the minimum imposed pressure

gradient may not be distant.

Several images in the previous sections show stress fields where the whole wide

channel of the expansion geometry is under the τ < τ0 condition and the reasons and

consequences of this scenario were discussed. These results may lead to the conclusion

that it is possible to have, under the proposed circumstances, a restart flow with τc ≤ τ0.

However, the presented results are not enough to sustain that conclusion. A ∆p∗ = 20

simulation was originally planned, which means τc = τ0, but it achieves the adopted

steady-state condition before it starts to flow. This ∆p∗ = 20 simulation had φ∗v > φ∗
0

near

the narrow channel walls, and its maximum velocity was around ∣u∗∣ ≈ 10−3. In theory,

this small velocity could be able to transport the material with φ∗v > φ∗
0

through the wide

channel, if the simulation lasts long enough and the T∗c,0 is high enough. However, under

these circumstances, the velocity values are highly influenced by the value of φ∗
0
. Thus, a

deeper analysis of the φ∗
0

influence would be necessary for the correct interpretation of the

results.

Changing the ∆p∗ also impacted the Re, as the density was kept constant. Thus,

the Re values in this section range from 0.0456 (for ∆p∗ = 40) to 2.087 (for ∆p∗ = 120).

These values are estimates and are only used as a reference, to analyze if the inertia forces

are relevant or not.

Figure 54 shows the temporal evolution of u∗x for ∆p∗ values ranging from 40 to 120

at the contraction geometry. As already discussed, the contraction geometry tends to have

lower velocities when compared to the expansion geometry, and the effects of the yield

front are limited. These conditions are critical to lower values of ∆p∗, and the maximum

velocity value for ∆p∗ = 40 is around 10−1, almost one-seventh of the maximum velocity of

∆p∗ = 60, for example.

Figure 55 presents the temporal evolution of the φ∗v at the narrow channel symmetry

line. Decreasing ∆p∗ decreases the stress, decreasing the relevance of the breakup term

of the fluidity evolution equation (Equation 4.7). Decreasing ∆p∗ also decreases the flow

velocity, increasing the time needed to transport φ∗v over the domain. These changes delay
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Figure 54 – Influence of ∆p∗ over the temporal evolution of u∗x at the symmetry line of (a)
the wide channel (-10,0) and (b) the narrow channel (5,0) at the contraction
geometry. The adopted dimensionless parameters are presented in Table 12

.

(a) (-10,0)

(b) (5,0)

the steady-state.

Figure 55 – Influence of ∆p∗ over the temporal evolution of φ∗v at the symmetry line of
the narrow channel (5,0). The adopted dimensionless parameters are presented
in Table 12





Part IV

Final remarks
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7 Conclusions

The present work discussed the effects of several rheological and flow parameters on

the velocity field and the fluidity field on a 4:1 contraction and a 1:4 expansion geometries,

adopting the model proposed by (DE SOUZA MENDES; ABEDI; THOMPSON, 2018).

The adopted model can emulate the viscoelastic, viscoplastic and thixotropic behaviours,

and the rheological parameters of an aqueous suspension of laponite were used as a starting

point for the dimensionless quantities adopted in the present work.

An OpenFOAM R⃝ routine was developed to solve the TEVP flow, taking into

account the inertia effects and considering the flow as incompressible and isothermal. The

flow was initially at rest, fully structured and without any internal effort. Then, a flat

pressure profile was imposed at the inlet and the outlet of the domain, creating a pressure

gradient between them. This pressure gradient served as the driving force of the flow,

breaking its internal microstructure and accelerating it.

During the development of the routine, the numerical tools offered by the toolbox

RheoTool were tested, but none of them showed a real improvement for the algorithm. The

characteristics of the adopted viscoelastic behaviour do not justify the need to implement

a log conformation routine, especially when considering the limitations imposed by this

scheme. Furthermore, the viscoelastic stabilization method recommended by the RheoTool

User manual presented an efficiency equivalent of the efficiency of the explicit diffusion

technique when the term to account the variation of ηp was implemented.

The effects of the De, αt, T∗c,0, and ∆p∗ were analyzed for both geometries. Different

flow behaviours were identified and discussed during the analysis, with a direct impact on

the flow velocity and fluidity.

The flow accelerated faster when the viscoelastic behaviour was considered, even

though the steady-state velocity was the same for both conditions. The compliance

function adopted in the present work predicted that the viscoelastic behaviour was only

relevant when the material was fully structured (φ∗v > 10−10), thus it was expected that the

aforementioned behaviour would be less relevant as the flow develops. Another relevant

behaviour identified was a stress peak at the moment when the viscoelastic behaviour

ceases. This stress peak proved capable of increasing the normalized fluidity even from

areas that usually have τ < τ0 and changing, for example, the relevance of the viscoelastic

regions after this stress peak dissipates. The De > 0 simulations also showed a deceleration

after the stress peak. The origins and consequences of this behaviour were discussed,

highlighting the conditions that increase its relevance.

As the material starts fully structured, its internal microstructure must be broken
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so it can flow. Thus, αt showed to be one of the main dimensionless parameters of the flow.

Increasing it decreases the velocity at both geometries, and it is especially relevant at the

contraction geometry. At the contraction geometry, the material flows from a low-stress

area to a high-stress area, creating an “entrance length”, where the microstructure of

the material is being broken. This entrance length decreases the fluidity of the flow and

decreases the flow velocity. On the other hand, in the expansion geometry, the fluid flows

from a high-stress area to a low-stress area, and the relatively high fluidity material is

transported through the wide channel, allowing higher velocities and allowing the material

to flow with the τ < τ0 condition.

The influence of the T∗c,0 was shown to be more limited than the αt influence.

Usually, the region near the wall has relatively higher stresses and is more relevant to

the flow. This way, T∗c,0 is more relevant at the regions near the symmetry line, with less

relevance over the flow as a whole, but can change the velocity profile inside the domain.

Finally, different values of ∆p∗ were considered. As the material density was kept

constant for the different simulations, changing the ∆p∗ also changed the Re. As the flow

accelerates over time and due to the material complexity, it is not an easy task to define

a characteristic velocity of the flow, thus the Re is only used as a reference, to identify

if the inertia forces are relevant or not. ∆p∗ represents the driving forces of the flow,

and decreasing it increases the time to achieve the steady-state, as a lower ∆p∗ means

lower stresses and velocities, which decreases the magnitude of the breakup term and the

advective transport term of the fluidity evolution equation.

Several results presented in Chapter 6 show that a relevant part of the domain

has τ < τ0, even though its velocity is not null nor constant. This can be explained by the

transport of unstructured material from high-stress zones to low-stress zones. Even though

this behaviour suggests that it is possible to a complex material flow with a pressure

gradient lower than τ0, the presented results are not enough to support this conclusion.

Thus, future works are needed to understand the influence of φ∗
0

and its interactions

with other rheological and operational parameters. The J(φ∗v) function also needs more

attention, even though its effects may be attenuated by the influence of the viscoelastic

forces. Future works should also investigate more complex geometries, especially because

the present work showed that the geometry can have a direct impact on the minimum

pressure gradient to reestablish the steady-state flow.
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