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ABSTRACT

Simultaneous Localization and Mapping (SLAM) is a critical challenge in autonomous mobile
robotics. One of the biggest challenges in engineering is to create solutions that are applicable
in the real world, dealing with uncertainties, forces, and possibilities. This research navigates
these seas. Therefore, this project aims to implement a system using a nano quadcopter with
autonomous flight and laser sensors capable of simultaneous localization and mapping. The
research aspires to present diverse techniques for solving SLAM, covering methods for
reconstructing 2D and 3D maps using an open-source system with Python programming
language. To this end, employing materials developed by the Bitcraze company, the system is
composed of the Crazyflie 2.1 nano quadcopter and two expansion decks to enhance the drone's
capabilities, Multi-ranger Deck (measurement) and the Flow Deck v2 (pose). Furthermore, it
was developed a 3D map of the environment using the point cloud, and a 2D map with the
occupancy grid, using distinct techniques. For the development of the methods, the 3D map and
2D map algorithms, the libraries used are Open3D, VisPy, and Matplotlib. Accomplishing the
results through experiments conducted in physical environments, with diverse scenarios, four
of which applied to the two strategies of flights, Scenario 1 to 4, and two of which were
individual cases, Levels, and Real-Time Visualization. All the methods and solutions developed

operate satisfactorily and run efficiently, with their respective characteristics and performances.

Keywords. SLAM, Nano Quadcopter, LiDAR sensor, Point Cloud, Occupancy Grid, Crazyflie.



RESUMO

A Localizagdo ¢ Mapeamento Simultdneos (SLAM) ¢ um desafio critico na robdtica mével
autonoma. Um dos maiores desafios da engenharia ¢ criar solugdes que sejam aplicaveis no
mundo real, lidando com incertezas, forcas e possibilidades. Assim, a referente pesquisa navega
por esses mares. Dessa forma, este projeto visa a implementacao de um sistema utilizando um
nano quadricoptero com voo autonomo e sensores laser capazes de localizacdo e mapeamento
simultaneos. Além disso, uma das ambi¢des da pesquisa € apresentar diversas técnicas para
métodos de reconstru¢ao de mapas 2D e 3D, usando um sistema open-source (software livre),
escrito na linguagem de programagdo Python. Para esse fim, empregando materiais
desenvolvidos pela empresa Bitcraze, o sistema é composto pelo Cazyflie 2.1, nano
quadricoptero, ¢ dois sensores para aprimorar a capacidade do drone, sendo o Multi-ranger
(para medidas), e o Flow-Deck v2 (para a pose). Ademais, foram desenvolvidos mapas dos
ambientes, sendo que o mapa 3D utiliza a nuvem de pontos e o mapa 2D com a grade de
ocupagao, usando técnicas distintas. Ainda, para o desenvolvimento dos métodos, os algoritmos
dos mapas 3D e 2D, as bibliotecas que foram utilizadas s3o a Open3D, VisPy e Matplotlib. Os
resultados foram obtidos por meio de experimentos conduzidos em ambientes fisicos, sendo
cenarios diferentes, onde aplica-se duas estratégias de voos em quatro deles, Cendrios 1 ao 4, e
dois sendo casos individuais, Niveis e Visualizagdo em Tempo Real. Todos os métodos e as
solucdes desenvolvidas operam de maneira satisfatoria e eficiente, com suas respectivas

caracteristicas e desempenho.

Palavras-chaves. SLAM, Nano Quadricoptero, Sensor LiDAR, Nuvem de Pontos, Grade de
Ocupagdo, Crazyflie.
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Chapter

INTRODUCTION

Technology is constantly progressing, and its direct effect on various areas of society is
remarkable. Science advances proceed closely with technology. Scientists raise questions and
create solutions. Scientists come across questions that involve all areas of humanity. From
questions that begin with "What is the meaning of life?" to "What will be the future of
autonomous robotics, and how much effect will it have on society? On the daily lives of human
beings and life?".

Unfortunately, this work will not be able to answer these questions. However, with the
research proposed, some questions surrounding the area of autonomous robots will have a new
contribution and new perspectives. The principal questions are "Where am I [robot]? Where is
my [robot] position?" and "How is the world around me [robot]?". The work aims to answer
these questions, motivated by the proposed solution to the problem.

According to the authors Siegwart, Nourbakhsh and Scaramuzza (2011), the concept of
a successful and complete mobile robot has a design involving an interdisciplinary field, and it
has to comprehend mechanism and dynamics, control and probability theory, computer vision
and algorithms, and the artificial intelligence.

Mobile robots have many capabilities and applications, with the autonomous capability
being the most important. Four fundamental fields are part of this ability: locomotion,
perception, cognition, and navigation. In addition, examples of these mobile robots include
home robots, transportation robots, aerial, underwater, polar, humanoid, pets, unmanned robots,
and others (Rubio; Valero; Llopis-Albert, 2019). Figure 1.1 illustrates a general system with
the relevant knowledge for an autonomous robot.

Autonomous robots are progressing exponentially, with various uses in different areas.
Therefore, it is possible to notice that aerial robots, in this case, aerial vehicles, also have an
essential role in this evolution. One of these vehicles is UAVs (Unmanned Aerial Vehicles),

and, not different, the applications with UAVs have grown significantly.



Chapter 1 — Introduction 2

Figure 1.1 - General System for a Autonomous Robot.

Position
Localization Global Planning
Map
Envi 7~
nvironment
Local Map J Path

Perception *—@— Motion Control

Source: The author. Adapted from Siegwart, Nourbakhsh and Scaramuzza (2011).

UAVs, also known as drones, are now employed across numerous fields. From search
and rescue, agriculture, construction, and disaster management, revolutionizing industries, and
expanding possibilities, UAVs have taken take advantage of and found utility in numerous
domains (Balestrieri ef al., 2021). As the name explains, UAVs can fly without the presence of
an individual, and they offer a safer alternative for operating in indoor spaces that might be
inaccessible to human operators due to safety concerns, such as hazardous locations. By
eliminating the need for direct human presence in the target area, drones can provide safety
improvement and enable operations in confined indoor environments (Karam, S. et al., 2022).

Among UAVs, the quadcopter is one of the configurations that stands out compared to
conventional vehicles such as helicopters. Belonging to the class of these vehicles, it has a
system with four sets of propellers and rotating wings, and it is not necessary to use a tail rotor
(Lima, 2019).

In addition, the quadcopter system has six degrees of freedom (6-DoF), three of which
are related to the three-dimensional position of the center of gravity (x, y, z) and three to attitude
(¢, 0, Y), and has only four control variables related to the rotational speeds of the actuators
(Souza, 2022), also characterizing it as a UMS, an underactuated mechanical system. Beyond
the complexity of the UMS, quadcopters are nonlinear time-varying systems (NTVS) that can
be affected by uncertainties in the parameters surrounding them, such as aerodynamic
disturbances and sensory noise (Lima, 2019; Raffo, 2011).

Furthermore, considering the development of UAVs, Micro Aerial Vehicles (MAVs)
have been highlighted, with the creation of even smaller vehicles, such as Nano Aerial Vehicles

(NAVs). The capability of operations in indoor environments is fascinating, but they still face
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several challenges, such as the need for positioning systems and limitations on the types of
sensors attached (Lopez et al., 2017). Regardless, the advantage of these NAVs being able to
be replaced or repaired more quickly and easily stands out.

As if autonomously flying was not complex enough, these aerial robots are crossing an
unknown environment, and knowing the poses is challenging for autonomous flight. The drone
must be capable of identifying and avoiding obstacles while mapping and sensing the
environment. In this way, there is often insufficient information, regarding the environment,
which can cause significant challenges for these robots.

Simultaneous Localization and Mapping (SLAM) is a critical challenge in autonomous
mobile robotics. It involves the complex task of reconstructing unknown environments while
concurrently establishing the robot's own position within the generated map (Lai, 2022).
Considering Takleh (2018), the main question is whether a robot could have the ability to map
its surroundings and simultaneously determine its location in that environment.

Therefore, the development of this research aims to contribute to a solution to this
challenge, using an innovative system with sensors attached to a nano quadcopter, with
autonomous flights and decision-making, and provide a new approach to the questions

surrounding the localization and mapping of autonomous robots.

1.1.  Justification

One of the biggest challenges in engineering is to create solutions that are applicable in
the real world, dealing with uncertainties, forces, and possibilities. This research navigates these
seas.

NAVs can operate in various applications, such as inspections, observations, and search
and rescue operations (McGuire, 2019). Due to its various characteristics, such as its low mass
and small size, being supported by four small rotors, and despite its simpler mechanics, the
nano quadcopter still maintains its total capacity. The nano quadcopter is an excellent
alternative for indoor spaces: it can fly close to humans (due to its size) and does not pollute
the environment (due to electric motors) (Lima, 2019; McGuire, 2019). In Figure 1.2 can be

seen two different examples of NAVs.
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Figure 1.2 — Examples of Nano Aerial Vehicles (NAVs).

Source: From McGuire (2019).

On these terms, the Crazyflie 2.1 is known for its affordability, which offers expansion
capabilities through extension ports (Bitcraze, 2022a). The multi-ranger deck, a laser sensor, is
one of the supported hardware extensions for the Crazyflie drone. The combination of
autonomous flight with the ability to map the environment allows the drone to operate
effectively in dynamic, unknown, or hard-to-reach environments.

SLAM plays an indispensable role across various robotics applications and is a
promising solution for environment mapping (Xia et al., 2022). Indoor environments are one
of the most significant application scenarios of SLAM. Solving this type of problem yields
significant benefits for navigation-related tasks, including path planning, robot re-localization,
and human decision-making (Zhou et al., 2022).

By addressing the challenges of working in an unmapped environment, this project
represents a new step in the development of safe and effective drone-based solutions.
Techniques are employed to process and visualize the data, enabling surface reconstruction.

Regarding the fundamental paradigms of robotics, the three related are sense, plan, and
act (Murphy, 2000). Figure 1.3 shows the project system representation, where the robot
interacts with these three categories. It illustrates that the nano quadcopter, with its sensors
(sense), will interact (plan) through perception and action (act) with the environment. The
human icon of a woman is a symbolic representation of the author of this dissertation with

programming.
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Figure 1.3 — Project System Representation.

Programming

Source: The author.

The work is divided into three significant parts to achieve the goal of autonomous flight,
space localization, and environment mapping. In an autonomous flight, the code allows the
drone to recognize its location in three-dimensional space and map the territory with points
detected by the laser sensor (Multi-ranger Deck). To enable autonomous movement, the other
sensor used was Flow Deck. All the items used are from Bifcraze company, well-known and
utilized in numerous research by the master’s and PhD students of the Automation, Electronic
Systems, and Control Laboratory (LASEC), a Federal University of Uberlandia’s laboratory.

Moreover, this project is motivated by the opportunity to contribute and add to studies
in the diverse field of robotic science. The work addresses new techniques for simultaneous
mapping and localization in indoor environments, being able to generate more didactic and
innovative solutions using a nano quadcopter. Hopefully, the research will add and promote
discussions beyond academia, given that SLAM projects are present in countless areas and

applications.
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1.2.  Objectives

This project aims to implement a system using a nano quadcopter with autonomous

flight and laser sensors capable of simultaneous localization and mapping. The system will be

composed of Crazyflie 2.1 and two different decks, Multi-ranger Deck, and Flow Deck v2. In

addition, the work aspires to present diverse techniques for solving SLAM, covering methods

for reconstructing 2D and 3D maps, using an open-source system, with Python programming

language. Moreover, this work's ambition is to help disseminate research and concepts, and the

methodology that will be present offers a new perspective for creating a practical nano

quadcopter system, developed in a computational and scientific language, using open-source

materials and available for general access.

1.2.1. Specific Objectives

The specific objectives are described as follows.

Implementation of the nano quadcopter "SLAM approach" with two different
decks.

Formulation of a script for communication between a central control node and
the drone.

Explore different techniques for plotting the maps generated by the nano
quadcopter - considering point cloud maps.

Implementing a probabilistic model for plotting a 2D map.

Development of experimental tests for static environments and implementing

experimental tests in real-time visualization.

1.3.  Chapter Organization

The structure of this dissertation consists of five chapters, which are listed as follows.

This first chapter, Chapter 1 — Introduction, presents an introduction of the work

proposed. In addition, the chapter highlights the motivations and justifications for choosing the

topic, the general and specific objectives, and how the document is structured.
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Chapter 2 — Simultaneous Localization and Mapping, as the name illustrates, highlights
the challenge of this work, the problem. Based on the problem, the chapter also presents the
solutions using UAVs and significant related work, finishing with considerations.

Chapter 3 - Materials and Methods, is a chapter composed of two main parts: materials
and methods. The first part describes all the components, and the second, the approaches and
techniques used and involved in the proposed solution. Furthermore, the chapter lists the
software tools that allowed the project development.

Results and Discussion is the most important chapter. Chapter 4 explains all the results
achieved, considering all the proposed techniques and scenarios. There is also a discussion and
analysis of the results.

Finally, there is the Chapter 5. Chapter 5 - Conclusions, presents the final considerations

and the ending. There are also details for future work.



Chapter

SIMULTANEOUS LOCALIZATION AND MAPPING

The second chapter highlights the challenge of the Simultaneous Localization and
Mapping problem. Furthermore, it presents a historical narrative of the problem, the solution
advances, and finally, the relevant applications using UAVs.

There are three fundamental challenges that an autonomous robot is supposed to achieve
for autonomous behavior: mapping, localization, and path planning. According to Cyrill
Stachniss (2006), the mapping problem is building the representation given the information
collected by the robot's sensors, as opposed to localization, which is the problem of the robot's
estimated pose within that map. Meanwhile, path planning would be to have the best trajectory
for the robot to move along, leaving one point and arriving at the chosen destination.

These three challenges are connected, and the relationship between them can be seen in

Figure 2.1. The SLAM is a combination of the mapping problem and the localization problem.

Figure 2.1 — The Fundamental Challenges of Robots.

mapping localization

path planning
motion control

Source: The author. Adapted from Stachniss (2009).

Consequently, a robot's Situational Awareness (SA) system is capable of continuously

acquiring new observations, understanding the elements, performing complex reasoning,
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project the state of the world in order to make decisions and execute actions that would let it

accomplish its purposes (Bavle et al., 2023).

2.1. The Problem

During a conference in 1986, the first work published represents the beginning of the
probabilistic methods applied to robotics problems (Rueda Ramos, 2012). They joined at
events, talked, and discussed these possibilities, and as a result, the work by the author‘s Smith
and Cheesman (1986) and Durrant-Whyte (1988) established a statistical basis that describes
the relationship between geometric uncertainty and points/landmarks (Nemra, 2010).

Significant steps in the history of SLAM began in 1986 with discussions of the problem,
sequentially, moving on to the years between 1990 and 1995 with Kalman Filter-based
approaches and finally, in 1995, at the International Symposium on Robotics Research, the
result of the convergence and the creation of the acronym SLAM were presented for the first
time by (Durrant-Whyte; Rye; Nebot, 1996). The work focuses on improving computational
efficiency and solving data association problems. Consequently, over the years, there has been
an interest in the area, which has resulted in conferences partly or entirely dedicated to SLAM
(Nemra, 2010; Rueda Ramos, 2012).

With the problem defined and interest growing, different approaches, applications,
techniques, and methodologies began to surface. One example is the work developed by
Moravec and Elves (1985), which deals with the representation of occupancy grids for
probabilistic maps. Soon after, the authors Thrun, Burgard and Fox (1998) published the first
probabilistic approach to Concurrent Mapping and Localization (CML) for mobile robots. To
this day, these maps are famous in mapping solutions. So much so that the proposal in this paper
also includes a SLAM technique using the occupancy grid.

SLAM algorithms continue to be a promising and exciting area of research, as mapping
and navigation are the keys to allowing robots to interact autonomously with the real world
(Lai, 2022). SLAM technology involves several areas, such as sensing, perception, localization,
mathematics, logic, and the kinematics of the robot mechanism, among others (Dai; Wu; Wang,
2023).

Following these observations, considering that mobile robots are robots capable of
moving around their environment, there are three fundamental systems: locomotion, control,
and sensory. And the classification of these mobile robots varies according to anatomy or

purpose, type of control, functionality, and movement (Ramos, 2012).
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Basically, the robot will have three main structures interacting with the environment:
actuators for action, sensors for perception, and logic for decision-making. The sensors are
essential to solving the SLAM problem since they can provide the position and the information
the robot perceives in the environment in order to represent it. And with this acquisition of
information, the more knowledge it has, the better the decision-making will be.

By the definitions mentioned above, given a SLAM problem and map (m) of the
environment:

e The control inputs are: uy.; = {uy, uy, ..., Uz},
e The observations and/or readings from the robot: z;.; = {z4,25, ..., 27},
e The path: xg.r = {x0,x1, %2, ..., X7}.
Figure 2.2 illustrates the problem of locating the robot, the trajectory, and its

observations.

Figure 2.2 — The Location and Observation of the Robot.

Robot Location Zpiq

Reference Observation

*V

Xr+2
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Source: The author. Adapted from (Yuan; Wang; Xie, 2021).

Based on this, there are two general implementations: Full SLAM and Online SLAM
(Thrun; Burgard; Fox, 2005). Online SLAM estimates only the current vehicle pose while
generating the map and updating it with recent measurements. On the other hand, in the case of
the Full SLAM implementation, the entire trajectory of the vehicle is updated together with the
entire map (Zheng et al., 2023). In other words, Full SLAM has an estimate of the complete
path traveled as if it were keeping a history, unlike Online SLAM, which only has an estimate

of the most recent/current position.
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Furthermore, it is important to mention that in the case of the autonomous vehicle, as
they move from one position to the next, it will continuously take measurements of the
environment, and these measurements can be used in the Theorem of Bayes to estimate the
probability of the next position of the vehicle concerning the map. Also, estimating the next
pose probability estimation in Bayes' Theorem needs to consider previous measurements and
control inputs (Takleh et al., 2018).

Thus, considering the measurements, it is necessary to understand the sensors. Sensors
can be classified into two types: proprioceptive or exteroceptive and passive or active.
Proprioceptive sensors measure values internal to the system (robot), such as motor speed,
orientation, and battery, whereas exteroceptive sensors measure values external to the system
(environment), such as distance to objects and light intensity. Passive sensors are based on
energy into the sensor from the environment, i.e., they are dependent, such as cameras,
microphones, and compasses. Active sensors, on the other hand, emit their own energy and are
also able to measure this result, generally performing better, such as lasers, ultrasonics, and
radars (Siegwart; Nourbakhsh; Scaramuzza, 2011). It is important to remember that sensors
have uncertainties, that is, errors associated with the measurements.

Then, once the perception model is known, there is the location, which indicates the
planning or the navigation on that map. The map is the spatial representation of the environment
based on the readings and perception of different sensors. The mapping process is the
construction or building of a representation (map) of the environment with the information
collected by the sensors. There are many types of representation. For example, maps can be
continuous and metric, discrete and metric, topological or semantic.

In consequence, if there are robots with distinctive characteristics, models and
representations, functionalities, and functions, robots with different systems, structures, and sets
of sensors used, there are different algorithms for the map representation. With different
algorithms existing, there are numerous approaches and research for solving the SLAM
problem in the literature. As follows, this chapter and its sections will mention some of these

works.

2.1.1. Approaches

This section will cite, and mention papers, works, and similarities as examples of

approaches for SLAM.
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A variety of approaches for SLAM exist because of diverse factors, for example, spatial
representation, the structure and dynamics of the environment, and employed sensors
(Sadeghzadeh-Nokhodberiz et al., 2021). Still, robot sensors directly impact the algorithm in
SLAM, and over the years, researchers have focused on 2D laser range finders, 3D LiDAR’s,
and vision sensors (Lopez et al., 2017).

Based on Lai (2022), the evolution of various SLAM approaches has been proposed,
with the development of different algorithms based on the traditional ones, such as FastSLAM,
EKF, Visual SLAM (V-SLAM), Large-Scale Direct (LSD) SLAM, ORB-SLAM (Monocular,
Stereo, and RGB-D cameras), 2D-LiDAR SLAM, GRAPH-SLAM, PF SLAM, Direct Sparse
Mapping. In accordance with Gaia et al. (2023), that in the work discussed survey studies on
SLAM focus on the areas of theoretical issues, multi-robot SLAM, LiDAR (Light Detection
and Ranging) and camera-based SLAM, autonomous driving, dynamic SLAM, and Deep
Learning for SLAM.

According to Aulinas et al. (2008) the Kalman Filters (KF) and Particle Filters (PF)
probabilistic approaches have been prevalent in SLAM since the '90s. Kalman Filters are Bayes
Filters that represent posteriors using Gaussians and rely on the assumption that the state
transition and the measurement functions are linear with added Gaussian noise. The Extended
Kalman Filter (EKF) is a variation of the KF, and its related accommodates the nonlinearities
approximating the robot motion model using linear functions from the environment. On the
other hand, Particle Filters, or the method Sequential Monte Carlo (SMC), is a recursive
Bayesian filter implemented in Monte Carlo simulations. PF represents the distribution by a set
of samples removed from this distribution, able to take highly nonlinear sensors and non-
Gaussian noise.

Conforming to the work of Thrun et al. (2002), FastSLAM is an algorithm that integrates
particle filters and Extended Kalman Filters, exposing a structural property where correlations
in the uncertainty among different map features arise only through robot pose uncertainty. The
algorithm uses a particle filter to sample the robot's trajectories and an extended Kalman filter
to represent the maps acquired by the robot. Soon after, the authors Montemerlo et al. (2003)
published a new paper with version 2.0 of FastSLAM. In this new version, when proposing a
new robot pose, the distribution relies not only on the motion estimate but also on the most
recent sensor measurement.

The LiDAR sensors are promissors in robotics technologies. These sensors can be
combined with other distinct sensors, for example, IMU (Inertial Measurement Unit), cameras,

GPS (Global Positioning System), sonar, and ToF (Time of Flight) sensors. Moreover, the 2D
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LiDAR and 3D LiDAR sensors have a simple difference, one records x and y parameters using
a single axis, whereas the other records x and y measurements around the z-axis (Khan et al.,
2021).

Considering the work of Huang (2021), Visual SLAM, or V-SLAM, treats the camera
as the main sensor and the image as the source of information, while LIDAR-SLAM can carry
out its localization and mapping in more diverse environmental conditions. In other words, is a
set of SLAM techniques that use only images to map the environment and determine the robot's
position.

Examples of recent applications using V-SLAM include the control of humanoid robots,
unmanned aerial vehicles, unmanned ground vehicles, autonomous underwater vehicles, and
lunar vehicles. As well as augmented reality applications (Covolan; Sementille; Sanches, 2020),
which can use a variety of cameras, such as monocular RGB (Red Green Blue), stereo (two
RGB cameras), and RGB-D (in addition to RGB images, pixel depth information).

In (Chan; Wu; Fu, 2018), was introduced a novel method fusing two kinds of laser-
based SLAM and monocular camera-based SLAM, for laser SLAM and visual SLAM fusion
to provide robust localization. The first part of their experiment used a Pioneer 3-DX (a driving
robot) equipped with a webcam and laser rangefinder, and the second part of the experiment
used Pepper as the robot platform.

It is already known that in the mobile robots and aerial vehicles domain, SLAM can
assist in positioning, path planning, autonomous exploration, obstacle avoidance, and
navigation. Besides, SLAM technology also can be used in underwater operations, medical
treatment, unmanned driving, and other fields (Dai; Wu; Wang, 2023).

Following (Malinverni et al., 2018), a system can deal with the comparison of dense
point clouds obtained with different acquisition techniques: Terrestrial Laser Scanner (TLS)
and Mobile Mapping System (MMS). It wants to generate a 3D map incorporating LiDAR and
odometry (wheel encoders) or inertial navigation systems to determine self-motion to solve the
SLAM problem.

Furthermore, this study centers its efforts on developing techniques that utilize LIDAR
methodology. This preference stems from the mention of its excellent potential in comparison
to alternative sensor approaches.

Beyond this, there are various possibilities for applying SLAM, as mentioned above.
One of the possibilities lies in surgery (Scaradozzi; Zingaretti; Ferrari, 2018). Further, it also
can take a different approach, as can be seen in the work of Altinpinar ef al. (2022), who

proposed comparing the environmental maps generated through measurements from a laser
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scan placed on different parts of a wheelchair transformed into an autonomous wheelchair.
Along with Lee et al. (2013), who experimented with graph-based SLAM, and vision-based
localization using an AUV, an Autonomous Underwater Vehicle.

There is also a possibility of including ROS (Robot Operating System) in applications
of SLAM. Another possibility is a cooperative SLAM, and cooperative operations of
autonomous ground robots (AGR) and quadrotors are a reality. For example, Unmanned Aerial
Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) are the most commonly used robots
for civil infrastructure-related applications (Hu; Assaad, 2023). An example is given by (Lin;
Tsai; Tai, 2019), where they propose a cooperative SLAM method that allows one quadrotor to

fly more flexibly and efficiently with an AGR in indoor environments.

2.2. SLAM and UAVs

The potential of UAVs and their applications is surprising, and several applications are
using UAVs. In this section, examples of approaches for the SLAM problem will be mentioned
and cited in papers, works, and similarities.

Numerous autonomous indoor applications require the use of small aerial robots capable
of navigating narrow and confined spaces (Bavle et al., 2020). Although many studies have a
preference for and may require a relatively large drone, small drones are advantageous for
passing through small openings in damaged buildings and providing data for exploration
purposes (Karam, S. et al., 2022).

While quadcopters are relatively simpler compared to helicopters, they still face
challenges when it comes to autonomous navigation. These challenges arise due to several
limitations, including non-linearity, fast dynamics, limited payload capacity, and vibration. The
primary objective of an autonomous flying robot is to achieve a desired destination without the
need for human intervention (Saeedi et al., 2017).

Diverse types of UAVs in the literature are found, such as fixed-wing, single-rotor,
fixed-wing hybrid, and multirotor, with notable applications (Mohsan et al., 2023). The UAVs
can have better performance in maneuvering flexibility, high scalability, portability and
mobility (Ahmed et al., 2022).

Noting that UAVs have many advantages, including high speed, aerial point of view,
and high altitudes, and, for all that, the nano drones demonstrate the potential to be in missions

of dangerous indoor exploration. However, there are some limitations to using these vehicles,
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such as the battery, vibrations, external forces, lost control, and easy damage (Rueda Ramos,
2012; Zhou et al., 2022).

According to Mohsan et. al (2023), for example, the applications can be in disaster
management and Search and Rescue (SAR) where the UAV visits unsafe regions for humans.
Also, an application is UAVs remotely sensed, used for inspection of water quality, gas and oil
yield, famine and geological monitoring, and others. Recently, UAVs have been used in
precision agriculture to obtain information through the installed sensors and, of course, in space
exploration, offering the potential to be in space missions, such as studying the surface and
atmosphere of the planet.

Considering mobility, MAVs can be applicable in missions in confined buildings with
multiple floors, where stairwells or clutter prohibit the motion of ground vehicles, for example.
Shen, Michael and Kumar (2013) discussed this, where the work presents a system design and
methodology that enables autonomous navigation with real-time performance using a micro
vehicle with onboard sensors. Including the results of a generated 3D mapping of multiple
floors with loop closure.

Focusing on emergency response mapping in dangerous places, Karam et. al (2022),
used a quadcopter microdrone equipped with six laser rangefinders and an optical sensor for
mapping and positioning, designed to map indoor spaces with planar structures through graph
optimization. The system is composed of a customized Crazyflie, multi-ranger deck, and flow
deck, and the work proposed a mapping system based on a combination of 1D scanners.

One of the possibilities for multirotor aerial robots using LiDAR is in a situation
awareness system. Sanchez-Lopez (2019) used deep learning in the design and development of
a semantic situation awareness system for multirotor aerial robots based on 2D LIDAR
measurements. The algorithm includes LiDAR for measurements, a Convolutional Neural
Network (CNN) computing the radius and the position of the individual, and an indirect EKF
providing an estimate of the semantic map.

For autonomous drone exploration, the author Von Stumberg et al. (2017) proposes a
method for an autonomous MAYV navigation and exploration with vision-based, LSD-SLAM
(Large-Scale Direct Simultaneous Localization and Mapping) and a Parrot Bebop MAV.
Considering that LSD-SLAM only determines depth at high gradient pixels, texture-less areas
are not directly observed, so the approach considers semi-dense monocular depth measurement
based on motion parallax. The semi-dense depth maps reconstructed with LSD-SLAM create

the 3D occupancy map.
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On the other side, Kuang et al. (2020), propose a real-time UAV path planning system,
estimating the building scene and details through a SLAM framework for autonomous urban
scene reconstruction. The method combines information on reconstructed point clouds and
possible coverage areas, predicting the coverage of the scene. It is a successful and effective
method, but the shadows and power parts of the buildings impact the results.

Following the cases of quadrotor UAVs in SLAM, the work of Fink et al. (2017),
proposes two observer designs for Visual Inertial Localization Mapping (VISLAM) that
combine measurements from an IMU with the existing monocular VSLAM to estimate position,
linear velocity, and accelerometer bias. The observers are based on state transformation and a
Linear Time-Varying (LTV) observer design. Compared with EKF, the observers have better
performance in experiments, but in simulations, the EKF converges faster.

Therefore, applications using nano quadcopters or nano drones are not entirely recent.
As seen in (Niculescu et al., 2023), the authors propose a NanoSLAM, a lightweight and
optimized SLAM approach designed to operate on palm-size UAVs, enabling fully onboard
mapping. The results demonstrate the mapping capabilities in real-world scenarios with a nano
drone (Crazyflie) equipped and a novel commercial RISC-V low-power parallel processor.

The works of Zhou et al. (2022) and Jeong et al. (2022) also used the Crazyflie nano
quadcopter. In Efficient 2D Graph SLAM for Sparse Sensing (Zhou ef al., 2022), two graph
approaches are incorporated, landmark and pose, presenting a graph-based system approach,
incorporating a novel tailored for sparse sensing and an improved loop closure detection
algorithm. Meanwhile, in (Jeong et al., 2022), the work presents a 3D structure mapping
algorithm with an accumulated point cloud that evaluates the proposed method in various
Manhattan world structures and compares the results to the ROS Gmapping algorithm, which
uses a 2D laser scanner.

As can be seen in (Lopez et al., 2017), in drone flights sensors must be carefully selected
due to their limitations. The potential that nano drones have to explore unknown and complex
environments is incredible. Their size and agility make them a safe option for operation close

to humans, and their applications are an extensive area (Miiller et al., 2023).

2.3. Considerations

This chapter presented a brief theoretical background on topics relevant to this
dissertation. It is a fundamental phase since when choosing the approaches for this work, it is

also necessary to find similar works for guidance and a certain degree of novelty.



Chapter 2 — Simultaneous Localization and Mapping 17

Considering all the papers included in the analyses, it is observable that the approach is
differentiated, owing to the conjunct of the sensors utilized and the SLAM techniques designed.
These techniques are in the 3D and 2D domain, the 3D being based on point cloud, and the 2D,
on the famous probabilistic map, the occupancy grid.

Therefore, this project aims to implement a simultaneous localization and mapping
system using a nano quadcopter with autonomous flight and laser sensors, work with data
collected from experiments (physical and determined environments) and apply different

techniques to the SLAM problem.



Chapter

MATERIALS AND METHODS

This chapter is composed of two main parts: materials and methods. The first part
describes all the components, and the second, the approaches and techniques used and involved
in the proposed solution. Furthermore, the chapter lists the software tools that allowed the
project development. The materials listed include the nano quadcopter (Crazyflie 2.1), the
Multi-ranger, and Flow Deck v2. Additionally, a computer and Crazyradio PA are necessary
for operation. To implement the described methods, proficiency in programming, particularly

in Python, is essential.

3.1. Crazyflie 2.1

The nano quadcopter, or nano drone, chosen for this work is Crazyflie 2.1, produced by
Bitcraze company (Bitcraze, 2022a). Crazyflie 2.1 has several advantages, as can be seen in the
previous sections. It costs much less than other nano quadcopters. The support provided by the
company is excellent, and it is an open-source and open-hardware platform.

The nano quadrotor's size is ideal for indoor applications, and the low inertia causes just
a few parts to break after a crash. It can communicate with a phone, PC, and a USB dongle
called Crazyradio (lower latency). The main microcontroller (STM32) is for processing, and
the second microcontroller (nRF51) is for wireless communication (Honig; Ayanian, 2017).
The quadrotor has an IMU onboard consisting of three-axis gyroscopes, accelerometers,
magnetometers model MPU-9250, and a pressure sensor model LPS25H (Souza et al., 2022).
Previously, (Landry, 2015) and (Forster, 2015) discussed mathematical models and system
identification of essential parameters, later used by so many other works.

The Crazyflie is a quadcopter with four rotors, without a tail rotor. The quadcopter has
six degrees of freedom, where three position coordinates in space (x, y, z) and three orientation
angles roll, pitch, and yaw (¢, 8,1). The angles roll (¢), and yaw (y) are clockwise rotating

around the axis. The pitch (8) angle is counterclockwise rotating around the axis.
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Figure 3.1 was captured on one of the flights of the drone and adapted for showing the

angles and the coordinates.

Figure 3.1 - Schematic Diagram of the Nano Quadcopter.

Source: The author.

The nano quadcopter was designed with maximum flexibility, allowing easy
customization and modification. In addition to its standard functionality, the aircraft features a
versatile expansion interface that supports a range of expansion decks.

These decks can be attached either on the top or bottom of the Crazyflie 2.1, providing
enhanced capabilities. Among the available expansion decks, two options were selected for this
project: the Multi-ranger Deck and the Flow Deck v2.

Figure 3.2 illustrates a schematic of the final system. The figure shows the nano
quadcopter with the two decks attached to it in the center. Note that the multiranger is at the
top, and the flow deck is at the bottom, which are the ideal positions for the decks to avoid any

kind of influence on their capabilities. The system operates efficiently.
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Figure 3.2 — Nano Quadcopter with Multi-ranger and Flow Deck v2.

Source: The author.

3.1.1. Dynamic Modeling

Anunderstanding of the dynamic model of the nano quadcopter is required to implement
the algorithms. Specifically, the complete rotation matrix of the system is essential for this
endeavor (Lima, 2015). The following rotation matrices represented the dynamic modeling.

Consequently, the first rotation matrix refers to the rotation around the x-axis by the roll

angle ¢, shown in Equation 3.1.

1 0 0
0 cosp -—sing
0 singp cosg

R(x,¢p) = 3.1

The matrix in Equation 3.2 represents the rotation matrix around the y-axis and the pitch

angle 6.

cosf 0 sinf
32

R(y,9)=[ 0 1 0
—sin@ 0 cos@

Finally, Equation 3.3 shows the rotation matrix around the z-axis and the yaw angle .
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cosyp —siny O
] 33

R(z,lp)=[sinlp cosyy O
0 0 1

The rotation of these angles is delimited by roll angle (—m < ¢ < m), pitch
angle (—g <6< g), and yaw angle (—m < ¢ < ).

The complete rotation matrix, Equation 3.4, is known as the Direction Cosine Matrix.

Defines the coordinate system orientation in relation to the inertial system I.
R; = R(z,¥)R(y,0)R(x, )

cosypcosf cosysinfsing —sinypcose cosysinb cos @ + siny sing
R, =|sinycosf sinysinfsing + cosycose sinysinbcose — cosysing 3.4
—sin @ cos O sin @ cos 8 cos @

3.2.  Multi-ranger Deck

The multi-ranger deck is a laser ranging for measuring distances to objects around. So,
the deck enables it to detect objects in its surroundings. According to specification, it can
measure from four meters up to a few millimeters, varying with light and object surface, and it
can measure distance in all five directions, up, left, right, front, and back (Bitcraze, 2022c). The
default measurement cone of the VL53L1 is 25 degrees. Figure 3.3 illustrates the mechanical
design of the multi-ranger, taken from the deck's datasheet.

The design of the multi-ranger deck is composed of five VL53L1x ToF sensors to
measure the distance up to 4 m within a few millimeters (Bitcraze, 2022c). The laser rangefinder
is a ToF (Time-of-Flight) sensor, often referred to as a LIDAR (Light Detection and Ranging)
sensor, that achieves significant improvements. In other words, LiDAR is a virtual perception
device capable of checking exterior surfaces and is a category of ToF sensors (Khan ef al.,
2021; Siegwart; Nourbakhsh; Scaramuzza, 2011). These type of sensors is indicated for tiny
vehicles, and they can sense an object that appears along their line of sight (Coppola et al.,

2020).
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Figure 3.3 — Mechanical Design of the Multi-ranger Deck.

Source: Multi-ranger Datasheet (2020).

Based on (Siegwart; Nourbakhsh; Scaramuzza, 2011), the Equation 3.5 represents a way
to measure the ToF for the light beam, using a pulsed laser and then measuring the elapsed time
directly, like an ultrasonic sensor. Where d is the distance of the object causing reflection, the

propagation speed of sound c, and t is the time of flight.

d= 3.5

c-t
2

Multi-ranger has been proven to be sufficient in the environment, but with some
limitations, for example, delicate objects are hardly seen (McGuire et al., 2019). Considering
that, it was necessary to understand the uncertainties and the error measurement (Section 3.2.1).

It is highly recommended to pair the Multi-ranger Deck with the Flow Deck to increase
its potential. By combining these decks, the Crazyflie is capable of measuring ground
movement and distance, allowing it to perceive and react to its environment and detect and
avoid obstacles when they are close. Also, allows to navigate and map its surroundings with

improved space understanding. Furthermore, this powerful combination opens the possibilities

for SLAM algorithms.
3.2.1 Error Measurement

The environment can be challenging for a sensor and introduce errors to the

measurements, which might increase over time. So, during the stationary test, a comparison
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was made between the measurements obtained from the multi-ranger sensors and the directly
measured real-world distances. Also, note that during the test, a white, flat wall was used
(although it was not completely flat), with good lighting in the environment.

With the script developed, it is possible to change it internally to point to the correct
data files and the physical measurements of the environment. It will read the files and calculate
the error in terms of percentiles. Taking over sample data, for example, a percentile po, of 90
(pgg) returns a single value (v), which means 90% of the sample data is below this value.
Considering that, the percentile is meaningful since it is possible to check the measurement
error. For example, if the pgy = v [mm)] is equal to say that 90% of measurement errors are less
than v mm.

A single sample is calculated by subtracting the sensor measurement from the real-world
value and using the absolute error value. This process was executed for each measurement and
each sensor, resulting in an array of error values. The error values are sorted in ascending order
to extract the percentile from the sample (5). Considering the Numpy library and (Hyndman,;
Fan, 1996), first need to locate the position which contains po, of S. Equation 3.6 is the locator

formula, where Lp is the position locator.

4

L. =
p 100

«(IS| = 1) + 1 3.6

Thus, Lp has a floating point number. Utilizing the decimal part of Lp to access the
sample at the position in S. At the end, this returns a final percentile's value (po,).

The results are presented in Figure 3.4, which shows the individual errors of each sensor
across all samples. Each test execution involves the collection of 500 data points (samples) to
ensure robustness and consistency in the results.

In Table 3.1, the values of the percentage errors for 50%, 75%, 95%, and 99% are
presented for each sensor, namely back, right, left, and front. To gain a comprehensive
understanding, the analysis considers the 500 values examined for each sensor. It can be
observed that 50% of these values exhibit errors less than 2.0 mm for the back sensor, 5.5 mm
for the right sensor, and so forth. The same analysis can be applied to each sensor and for each
error percentile. In addition, Table 3.2 shows the mean values and standard deviation of the
measurements for each sensor. The distance between the sensor and the wall is 145.00 cm (1450

mm).
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Figure 3.4 — Measurement Error (mm) in Stationary Test.
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Source: The author.

Table 3.1 — Percentage Errors for the Sensors.

Percentile Sensor Back | Sensor Right Sensor Left Sensor Front
50 % 2.0 mm 5.5 mm 2.0 mm 4.0 mm
75 % 4.0 mm 7.0 mm 3.0 mm 6.0 mm
95 % 6.0 mm 10.0 mm 5.0 mm 8.0 mm
99 % 7.0 mm 10.0 mm 6.0 mm 10.0 mm

Source: The author.

Table 3.2 — Mean and Standard Deviation Values for the Sensors Measurements.

Sensor Mean Standard Deviation
Back 144.80 cm 0.217 cm
Right 144.45 cm 0.203 cm
Left 145.00 cm 0.239 cm
Front 145.40 cm 0.204 cm

Source: The author.
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Thus, starting with the most critical case, pgge,, the percentile for the back sensor is less
than 7 mm, the right is less than 10 mm, the left is less than 6 mm, and the front is less than 10
mm. Considering the mean, although the errors are relatively small, the sensors with
considerable uncertainties are the right and front.

Even in stationary executions, the sensor measurements exhibit fluctuations of
approximately 1 cm, which may be deemed acceptable for certain drone use cases. Interestingly,
the scenario with the lowest error across all sensors was observed under optimal lighting
conditions and with white boards present. The assumption for this scenario was to serve as a
baseline, where the drone has good conditions to make the best measurement with as little

interference as possible.
3.3. Flow Deck v2

As seen above, using the multi-ranger and flow deck combination increases Crazyflie's
potential. The Flow Deck v2 enhances the capabilities of Crazyflie 2.1 by providing it with a
comprehensive understanding of its movement in all directions. This advanced expansion deck
combines two essential sensors: the VL53L1x ToF sensor, which measures ground distance
with high precision, and the PMW3901 optical flow sensor, which tracks movement relative to
the ground. Considering that, the next section (Section 3.3.1) will present some of the important
concepts for the functionality of this powerful deck.

The Crazyflie 2.1 with the flow deck transforms into a versatile 3D flying robot. It
becomes capable of executing pre-programmed flight paths with precision in any direction
(Bitcraze, 2022b). Figure 3.5 illustrates the mechanical design of the Flow Deck v2, taken from
the deck's datasheet.

Figure 3.5 — Mechanical Design of the Flow Deck.
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Source: Flow Deck v2 Datasheet (2020).
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The possibility that the optical flow and laser-based altitude measurements give to the
quadcopters is to position themselves within an indoor environment (Kefferputz; McGuire,
2022). Additionally, the Flow Deck v2 offers a significantly stable flying platform for learning
and experimentation. The measures absolute range up to four meters. The ToF measurements
of the flow-deck are also subject to a simple outlier rejection scheme, allowing the Crazyflie to
pass over ground obstacles without causing height jumps.

Unfortunately, it has some relevant limitations. For example, using the flow deck, some
types of floor textures, dark colors and low light conditions, can be challenging for the stability

and flight of the drone (McGuire et al., 2019).

3.3.1 Understanding the Measurement

Based on Bitcraze (2023) the flow deck gives a relative position, which means wherever
the Crazyflie starts in the environment is the (0,0,0) position, the origin. The Extended Kalman
Filter (EKF) is capable of processing information, in this case, flow and height, to determine
velocity, and with this, it is possible to estimate the position with dead reckoning. Figure 3.6
represents this process of the EKF, using Flow Deck v2. The optical flow sensor calculates

pixel flow per frame, and the range sensor measures height up to four meters.

Figure 3.6 — Process of the EKF using Flow Deck v2.

Extended position :(
Kalman Filter

flow

Source: Bitcraze (2023).

A state estimator turns sensor signals into an estimate of the state, an essential part of a
stabilizing system. The EKF can accept more outputs from internal and external sensors and

provides information for pose estimation (position, velocity, and attitude), as shows Figure 3.7.
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Being a recursive filter, the EKF can estimate the current state of Crazyflie based on the
measurements received, taking into account the measurement model and the model of the

system itself (Bitcraze, 2022d).

Figure 3.7 — Process of the EKF.
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Source: The author. Adapted from Bitcraze (2022d).

The EKF used in state estimation is a recommended method for non-linear dynamic
systems and is suitable for sensor fusion, where the information comes from different types of
sensors (Lima et al., 2019). For many IMU-driven navigation systems, the EKF cost is from

the inversion and matrix operations of the gain computation (Greiff, 2017).

3.4. Algorithms — 3D Map

For the algorithm approaches that create 3D maps, it is necessary to consider the points
in (x, ¥, z), and the source used is a point cloud map. The point cloud is an environment
representation that utilizes discrete Cartesian points, and in a 3D environment, the point cloud
is generated from a set of 3D coordinates of points.

A fundamental stage in the creation of maps is data collection. Therefore, the first step
in creating a map of points is to collect data and information. As seen above, the multi-ranger

deck can provide information about obstacles using points.
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Utilizing the multi-ranger deck with the available Crazyflie libraries, it is possible to
retrieve each sensor measurement in millimeters. The measurement is the distance between one
of the sensors and an obstacle, with one value available for each sensor. The measurement
becomes even more beneficial when related to the quadcopter's position information. Utilizing
the data collected by the flow deck with the measurements captured by the multi-ranger deck,
it is possible to create a 3D set of Cartesian points of the environment. Algorithm 1 shows the
basic idea behind generating the data for the point cloud.

The procedure executes for each new measurement v at time t, requiring both the sensor
data and the quadcopter pose p at time z. The pose of the quadcopter includes the position
(x,y,z) and orientation (¢, 8,1) (Siegwart; Nourbakhsh; Scaramuzza, 2011). The procedure
3D rotation_matrix(v, p;) receives a single measurement v in which v is a non-zero integer
value and the nano quadcopter's pose. The return of the procedure is the 3D coordinate of the
measurement. The measurement coordinate is passed into an output. This output is a
representation that, after reading, is transformed using the rotation matrix, returning the

modified coordinates to the output.

Table 3.3 — Algorithm 1.

Algorithm 1. Generate the Point Cloud Data.

I: procedure PROCESS DATA FRAME(v,, p;)

2 for all vin S; do ¢ For each sensor.
3: ¢ < 3d_rotation_matrix(v, p;)
4

add_output(x *,y *,Z *)

Source: The author.

Considering line 3 in Algorithm 1, the idea is that the first step generates a vector from
the nano quadcopter’s position (x,y, z) with the measurement point (sensor reading). In this
case, for example, utilizing the multi-ranger left sensor reading / and the vector 0 as the actual
coordinate, the vector left is created as [ = (0x, 0y + 1, 0,). In other words, a measurement from

the left sensor has the same x, a positive offset in the y, and the same z. It is valid for all the
sensor readings of the four sensors.

As follows, based on (Goldstein; Poole; Safko, 2011), a list of the equations that
represent how all vectors are generated for each of the sensors (F) for the back, f for the front,

[ for the left, and 7* for the right), with the same 3D coordinate of the nano quadcopter.
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b= (ox — b,0y,0;) 3.7
f= (ox+f0y0,) 3.8
[= (04,0, +1,0,) 3.9
7= (05,0, —T,0;) 3.10

With the adequate vector for each measurement of the four sensors, the Direction Cosine
Matrix described in Section 3.1.1 is utilized. Each final value (measurement) is a 3D coordinate,
as can be seen in the following equations. The final calculated values (Vgeps0r-) are added to the

output to generate the point cloud map. Where sensor: b, f, [, and r.

vy = (R, -b)+8 3.11
ve= (R, f)+6 3.12
v= (R -1)+6 3.13
v, = (R*7)+3 3.14

This computation process continues for each subsequent measurement. Because of the
computational cost, the calculation is delegated to another thread to avoid blocking threads
responsible for managing the nano quadcopter.

The calculations for the rotation matrices utilize the NumPy library (Harris et al., 2020).
NumPy is a library for scientific computing in Python. This avoids the need to implement
something already well-established, well-optimized, and tested by the scientific community.
The current work utilizes NumPy for the array operations and the matrices dot products, highly

simplifying the code.

3.4.1 Visualization Approachs

There are different techniques for the visualization of the point cloud data. This work
explores three approaches using two different libraries available in the Python programming
language.

The first approach is the option to visualize using the VisPy library (Campagnola et al.,
2023). This first choice is motivated by the Bitcraze company. VisPy is a powerful interactive

data visualization library designed to leverage the immense computational capabilities of
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modern GPUs, Graphics Processing Units, for 2D and 3D. Utilizing the OpenGL library, VisPy
can display and handle extensive datasets, and users can explore and interact with data in real-
time. VisPy stands out for focusing on performance and delivering fast and smooth
visualizations, even when dealing with complex data.

Sequentially, the second library is the Open3D (Zhou; Park; Koltun, 2018). The Open3D
is an excellent open-source library designed to facilitate the rapid development of software
dealing with 3D data, offering a comprehensive set of meticulously selected data structures and
algorithms in the front end. On the other hand, the back end is highly optimized and geared
towards efficient parallelization, providing optimal performance. Open3D focuses on
simplicity, and its code is clean and versatile, offering easy setup and compilation from sources
across various platforms, maintained through a robust code review mechanism, embracing
contributions from the open-source community and research projects.

Once all the data generated by the nano quadcopter using the multi-ranger deck has been
processed and the 3D coordinates have already been generated, the visualization using these
techniques becomes a matter of drawing the points on the screen. In each measurement, the
values of the four sensors are captured, and four 3D points are added to the point cloud dataset.

In addition to visualization, Open3D allows you to manipulate data for surface reconstruction.

3.5. Algorithms — 2D Map

The third mapping technique used in this work is a map representation based on
probabilities in 2D form. The grid maps discretize the environment into grid cells, where each
cell fills in information about the environment, and a famous algorithm is occupancy grid
mapping. For each cell the algorithm determines a single value, considering the probability
(Stachniss, 2009). Basically, the value of this cell can vary in three modes, one being
free/unoccupied, occupied, and uncertain/unknown, represented by the colors white, black, and
grey, respectively. The Matplotlib library (Hunter, 2007) was used to visualize the occupancy
grid map (2D map).

Addressing the problem of generating consistent maps, occupancy grid treats noisy and
uncertain measurement data, with the assumption that the robot’s pose is known (Thrun;
Burgard; Fox, 2005). There are some advantages to using this algorithm, such as providing the
ability to model unknown areas and using the values directly to update the values of the cell

(Siegwart; Nourbakhsh; Scaramuzza, 2011; Stachniss, 2009).
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Therefore, it is necessary to understand the dynamics of this map. As follows, all the
equations and the potential analyses mentioned are based on the book Probabilistic Robotics
(2005), from the authors Thrun, Burgard and Fox.

It is comprehended that each cell i in the grid is a binary random variable that models
the occupancy (obstacle) in the position associated with the cell. In this way, the probability
can be indicated by the set of (independent) probabilities. Initially, all cells have a value to
indicate the unknown. The principal algorithm for calculating the belief in robotics is the Bayes
filter. The Bayes filter is recursive, regarding the calculated belief at time ¢t is from the belief at
time t — 1. However, it is not adequate for learning maps due to its size, so the approach is to
divide, break the map, and estimate the cells individually.

The fundamental principle of the occupancy grid mapping algorithm is to represent the
map m as the union of all cells (Equation 3.15) and to calculate the posterior probability
distribution over maps based on the available data (Equation 3.16). Where m is the map, z;.; is
the measurements (sensors reading) up to time ¢, and x;., is the path of the nano quadcopter

(pose or state).

m= Y;m; —p(m)= [[;p(m;) 3.15
p(m | Zl:ilxi:t) 316

The map can quickly become unmanageable due to its size, for example, a 100x100
grid has 219090 possible binary maps. The solution to this problem is an approximation using

marginal probability, which can be seen in Equation 3.17.
p(m |z, x;) = H_P(mi | Z1.4 Xi:t) 3.17
L

Also, Figure 3.8 illustrates a graphical mapping model with known poses using the
occupancy grid mapping technique.

Now, there is a problem with the calculation of p(m | zy.;, x;.t). To solve the Equation
3.17, it is necessary to use the Conditional Bayes Theorem with a Markov assumption. The
Bayes filter makes a Markov assumption. The Markov assumption implies that the belief is
adequate to define the history of the robot, like an approximation. Thus, the Markov assumption

postulates that past, and future are independent if one knows the current pose x;.
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Figure 3.8 — Graphical Mapping Model Occupancy Grid.
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Source: The author. Adapted from (Thrun; Burgard; Fox, 2005)

Considering all the concepts presented, Equation 3.18 indicates the application of Bayes
Theorem, and it represents the probability of the occupied cell given that a certain reading has

been considered and the robot is in a certain position.

_ p(zt | mile:t—lixl:t)p(mi | Zl:t—llxl:t)
p(m; | Zyg, X)) = 3.18
P(ze | Z1.p-1,X1.4)

In this way, Equation 3.19 shows the changes that using Markov causes to Equation
3.18, assuming that the current measurement only depends on the current state and the map cell.
Furthermore, the current state without the current measurement does not provide any additional

information about the occupancy of the cell since the events are independent.

Z: | m;, x mM; | Zq.p—1, X1.4—
p(m; | Zye Xisg) = p(ze | my, x)p(m; | 21621, X1.6-1) 319
P(ze | Z1.e—1, X1.)

A further simplification can be obtained, finally reaching Equation 3.20. The current
map depends on the sensor reading and how the environment is, always considering that the
past and future are independent, knowing only the present state or pose of the robot, in this case,

the nano quadcopter.

p(m; | 1.4, Xi.t) = p(m; | ze, x)p(ze | x)p (M | 211 X1.0-1) 320
l 1.6 At p(mi)p(zt | Zl:t_l,xl:t) .
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Unfortunately, the direct manipulation of probabilities can be a complicated task. One
resource that can be used to simplify things is to use the ratio of probabilities, which is also a
way of associating the events occurring for occ (occupied) and free (empty) for cells. This
probability ratio can be called odds, which are the chances. Equation 3.21 illustrates a generic

representation of the chance of event A happening.

p(4)  p(4)

odds(A) = o(A) = p(=4) ~ 1-p(4)

3.21

Thus, Equation 3.20 is manipulated to find the odds based on Equation 3.21 and then
obtained Equation 3.22.

p(my | zy.¢, Xi¢) _
1—pOm; | 200 Xee)
_ p(my |z, %) p(m; | zy.0-1,%10-1) 1 —p(my)
C 1=p(my |z, x) 1= p(my | Zyemq, X1ie-1)  p(My)

3.22

Avoiding rounding problems when multiplying probabilities and considering the
efficiency, it is necessary to use the famous log odds. In other words, it is the log of the odds
and helps with efficiency and numerical instability. Equation 3.23 illustrates the log odds of

event A (generic).

p(4) ) 3.23

log odds(4) = L(4) = log(o(4)) = log <p< 4)

By manipulating Equation 3.22 and Equation 3.23, we finally have Equation 3.24, which

is the elemental equation of the algorithm.

p(mi |Zl:i'xi:t) >

i = 10my | 21,0, 30) = 10g<1 = p(m; | 21 Xiet)
i 1:00 it

It is also possible to recover the probability from the log odds, as seen in Equation 3.25.
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1

C 1+exp (I 3.25

p(mi |Zl;t; xi:t) =1

Algorithm 2 shows the algorithm to update the map on each new measurement. In this
way, on each new measurement, the algorithm loops through all the cells in the view of the
sensor field. Cells outside the field of view remain unchanged. Cells in the field of view are
updated utilizing the prior value and the inverse sensor model. The last term is a constant of the
cell value at time 0.

Table 3.4 — Algorithm 2.

Algorithm 2. Occupancy Grid Algorithm.

1: procedure OCCUPANCY_ GRID MAPPING(m, x¢, z;)

2 for all c in m do

3 if ¢ in perceptual field of z; then

4: My = My_q + inverse_sensor_model(c, x¢, z,) — Mgy
5 else

6 Mee = Me_1,c

Source: The author.

Algorithm 3 shows the procedure for the inverse sensor model utilized to update each
cell. This procedure has two well-defined constants L. and L¢y... These constants represent
the probability of an occupied and free cell, respectively. The arguments are the cell to update,
the pose, and the measurement.

Cells outside the field of view remain at the same value as they are unexplored. Cells at
the edge of the field mean that the measurement has found an obstacle, so the cell is updated as
likely to be occupied. Cells are updated as the probability of being free within the field of view
that has not reached an obstacle. The cell values are then updated using log odds.

The implementation of Algorithm 2 and Algorithm 3 are complete. Now, the effort
becomes to identify the cells within the multi-ranger’s field of view. With the drone pose x;
known and the point reading by the sensor z;, a straight line is drawn between the two pieces
of information. The cell in which x; occupies is updated as probably free, that is, updating as

probably free all the cells in the path between x; and z;.
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Table 3.5 — Algorithm 3.

Algorithm 3. An algorithm for the inverse sensor model.

I: procedure INVERSE SENSOR MODEL(c, x¢, Z;)

if ¢ is not in perceptual field of z; then ¢ Unknown.
return c
if c at the edge of view of z, then ¢ Cell is occupied.

return L, .

if ¢ within the field of view of z; then O Cell is free.

A A S

return Lg, .

Source: The author.

Moreover, note that the characteristics of a sensor are invariant to the absolute
coordinates of the nano quadcopter or grid cell when assuming a measurement. Thus, if the
quadcopter pose can be denoted by x; and the grid cell by m;, the grid cell coordinates are

transferred to the quadcopter local reference frame using Equation 3.26.
cosf —sinf\ [x,. —x
( _ ) m 3.26
sinf cos@ Ym; =Y

The cell identified by x; is updated as probably occupied. Each cell is updated utilizing
the log odds with the defined constant L,.. and Lfyee, and the values are Ly, = 0.9 and
Lfree = 0.1. The constant of the map at time zero is 0.5, initializing all cells with this value,
meaning that there is not enough information available to know the situation.

Since this 1s a grid with cells, the application of the Bresenham algorithm is to identify
the cells in the path between the points x; and z,. More about the Bresenham algorithm will be

clarified in Section 3.5.1.
3.5.1 Bresenham Algorithm

For the Occupancy Grid, it is not necessary to go through the entire map with each new
sensor reading while only updating the cells associated with the readings. Therefore, it is the
justification for the Bresenham algorithm use. Algorithm 4 presents the complete algorithm

with all the steps used in the current work.
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Table 3.6 — Algorithm 4.

Algorithm 4. Bresenham Algorithm.

1: procedure BRESENHAM ALGORITHM(( x1, y1)( X2,¥2))

2: Coordinates <— o
3: dx < xy — Xy
4: dy —y,—
5 p«2xdy—dx
6: p2—2xdy
7 xy2 — 2 (dy — dx)
8: if x; > x, then
9: X < X3
10: Yy
11: Xp <X
12: else
13: X < Xq
14: y<—n
15: Xf < X3
16: Coordinates ||(x,y)
17: while x < x; do
18: x—x+1
19: if p < 0 then
20: p—p+p2
21: else
22: yey+1
23: p<—p+xy2
24: Coordinates ||(x,y)
25: return Coordinates

Source: The author.

The choice of the Bresenham algorithm (Bresenham, 1965) is moved by its simplicity

and efficiency in computer graphics, basically for drawing lines. The algorithm effectively
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avoids division, only using integer values. In addition, the algorithm is efficient in terms of
calculation speed and memory consumption (Bresenham, 1965).

Based on the work of Bresenham (1965), the algorithm assumes a mesh with contiguous
cells. In this manner, given two data points D (x4, y;) and D,(x;, y,) the algorithm follows in
the mesh going to either (x; + 1,y;) or (x; + 1,y; + 1) until it reaches D,. The direction step
might vary with the octant the coordinates are in.

Regarding the first octant, the coordinate selection movements have a recursive
relationship, as seen in Equation 3.27.

Where Aa = x, — x; and Ab =y, — y;.

V,= 2Ab — Aa
{v B {vi + 2Ab — 2Aa ifV,>0 3.27
17V, + 24b ifvV;<0

3.6.  Flight Strategies

After all the concepts presented above, it is still necessary to consider how the nano
quadcopter will travel through the environment. In this way, there are two different styles
developed in this project: a manual path, where the path the drone should take is defined, and
the other, wall following, an autonomous flight where the robot makes its own decisions

according to previously established settings and the environment.

3.6.1 Manual Path

The application for the manual path utilizes the MotionCommander blocking APIS and
the logging framework. This approach requires prior information about the environment.
Knowledge of when to turn, how many meters should the drone fly in some direction, and so
on. The distances must be accurate and optimally include a distance interval from the wall to
tolerate errors and avoid crashes.

The callbacks registered in the logging framework utilize the buffer approach to persist
data. The application sends the commands through the MotionCommander serially, and after

the predefined path finishes, the drone lands and flushes the data to disk before finishing
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execution. The applications developed to utilize the manual path have a more straightforward
implementation. The scripts are usually easier to understand since commands execute serially.

This utilization of the manual path, along with the blocking API, makes a perfect case
for experimentation with the drone. This simplification is powerful and especially useful when
testing the other decks attached. For instance, it enables verifying how to collect data utilizing
the logging framework and persist it to the disk. Because of this facilitation in the experiments,
the current work found that the buffered approach improved the real-world results, making it
evident that the callbacks registered in the logging framework should all be non-blocking.

However, given the simplification in the utilization, it does not come for free. As
mentioned, the MotionCommander API blocks for an established period, expecting the drone
to have completed the movement by then. Unfortunately, this approach is not capable of dealing
with unexpected circumstances or possible errors properly, as it continues executing a
command until the end.

One such example of a restriction of movement happens when the drone directly crashes
against an obstacle. Since the command must execute to the end before returning control to the
caller, it is not possible to recover from a crash or try to move away from the wall. This
restriction renders the utilization, both of the manual path and blocking APIs, unfit for

developing an application for autonomous flight.

3.6.2 Wall Following

The wall following utilizes the MotionCommander with non-blocking commands and
the logging framework to provide autonomous flight. Given the utilization of non-blocking
commands, the drone reacts in each measurement to avoid crashing against obstacles. The wall
following is an application to traverse an unknown environment autonomously.

Oversimplifying how the wall following works, the drone starts at an arbitrary position
and takes flight. The first objective is to be parallel to a wall, so the drone flies to find a wall
and then readjusts its position. The drone continues flying parallel to the wall until finding a
corner, and the adjustment process begins again. This process continues until manually stopping
the application where the drone lands and flushes data to disk.

As expected, comprehending the performance and operation is equally complex, given
the complexity of the code for this behavior. The application starts and executes until the drone

lands, where the core algorithm for wall following is non-blocking. After receiving a
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measurement from the LogConfig, the drone readjusts accordingly with the new readings. The
adjustment loop executes for each new measurement.

The reaction movement to readjust the drone involves sending a command with the
MotionCommander non-blocking API. The application utilizes the buffered approach to persist
the measurements and avoid blocking. To complete the non-blocking requirements, the default
class to listen in the logging framework, the SyncLogger, has to be non-blocking. Extending
the implementation to remove the blocking calls to the events queue was enough to solve the
issue. All these aspects together make the wall following application highly responsive and
non-blocking.

In the wall following algorithm, the drone keeps following the wall indefinitely (wall-
following behavior). Therefore, a stop mechanism is a requirement. This mechanism should
safely land the drone and flush the data to disk. The stop mechanism must happen remotely
through the application and not require external interference applied to the drone, which would
affect the data.

The application developed for the wall following wait for the SIGTERM signal to
trigger the stop procedure. This way, the control node receives the SIGTERM signal and
initiates a graceful shutdown process, which is a two-fold mechanism, also acting as an
"emergency button" if necessary. As the entire procedure is remote, the data is not interfered
with, which would not be the case if physical contact with the drone were to occur.

Another benefit of the non-blocking application is its responsiveness. The application
promptly handles the SIGTERM signal since there is no one blocking to handle the signal. This
responsiveness is essential during experiments, and a force stop is needed. In contrast with the
manual path and its blocking commands, it would not be capable of handling the SIGTERM
signal until the command finished execution.

The autonomous application developed for the wall following is much more complex
than the manual path. As such, it covers all the weak points mentioned in adaptability and
needing previous knowledge of the environment. The drone is capable of autonomously
traversing the environment by following its walls. The drone can adapt and readjust its position

based on the newest readings.

3.7. Considerations

In this chapter, we present the system used in this work, with all its fundamental parts,

as an entirety to create the solution to the SLAM problem. In this way, the chapter covers the
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physical materials, such as the Crazyflie nano quadcopter, the multi-ranger deck for
measurement, and the flow deck for localization, with the main concepts mentioned.

Figure 3.9 summarizes the process (the methodology applied), with the first stage being
data collection through experiments, data processing, and visualization of the solution to the

problem.

Figure 3.9 — General Methodology Process.

Experimental - Algorithms - SLAM
Data 3D and 2D Visualization

Source: The author.

Then, there are the methods described. The methods describe the techniques used to
develop this current work, focusing on mapping, and will be the basis for the results in the next
chapter. The methods are 2D and 3D style maps, with 3D using two different libraries as a
technique and 2D using occupancy grid, a probability map technique.

For general consideration, Table 3.7 illustrates a direct comparison between the two
flight strategies (manual path and wall following) of their main aspects and characteristics. As
a summary, Table 3.8 illustrates the methodologies discussed in this chapter, all of which will
be used for the validation and experiments (Chapter 4). The table provides a concise overview

of the methods employed in the work.

Table 3.7 — Comparison of Flight Strategies.

Characteristics Manual Path (MP) Wall Following (WF)
Prior Knowledge Maximal Minimal
Trajectory Predefined Autonomous
Implementation Straightforward Complex
API Blocking Non-Blocking

Source: The author.
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Table 3.8 — Overview of the Methods.

Methods Library
3D Point Cloud Open 3D, VisPy
3D Surface Open 3D
2D Occupancy Grid Matplotlib

Source: The author.



Chapter E

RESULTS AND DISCUSSION

Chapter 4 explains all the results achieved, considering all the proposed techniques and
scenarios. There is also a discussion and analysis of the results. Overall, the first section (4.1)
presents the initial and principal definitions (settings) for the experiments. The second section
(4.2) refers to Scenario 1, the third (4.3) to Scenario 2, and so on until Scenario 4. The sixth
section (4.6) presents different approaches dealing with some individual cases. In addition,
there are two path approaches that the nano quadcopter, must follow: wall following and manual
path. For each path, there were 2D and 3D maps constructed. However, the individual cases

use the paths approach according to each case.

4.1. Definitions

This section will elucidate important definitions, offering clarity and facilitating a
deeper understanding of each subsequent section. It has been a long journey to achieve the
results described here and conducted numerous experiments over these two years. There was a
lot of trial and error until we arrived at concise solutions to the SLAM problem because we
were dealing with the real world.

Initially, experiments were conducted to ensure that all the materials (nano quadcopter
and its decks) were operational and properly functioning. The primary questions about these
experiments were how the decks work, how to extract information, and how to deal with it.
Then there were the techniques. These techniques need several adjustments on the code to work
as expected, always regarding the environment representation and mapping. The nano
quadcopter location is not global. It is relative and influences directly on the localization
problem.

In order to validate the experiment results, it is necessary to establish the general

parameters for the scenarios. Table 4.1 illustrates a summary of the experiments conducted
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across different environments (scenarios) using the respective maps and flight strategies. MP is

for Manual Path, and WF is for Wall Following.

Table 4.1 — Summary of the Experiments.

Experiment Map Flight
|:| Scenario 1 3D, 2D MP, WF
b Scenario 2 3D, 2D MP, WF
|_||—| Scenario 3 3D, 2D MP, WF
m Scenario 4 3D, 2D MP, WF
= Levels 3D MP
oo Real-Time Visualization 2D WF

Source: The author.

Table 4.2 shows the general settings for the Scenario 1 to 4. Table 4.3 delineates the
color legend for the 3D maps (Open3D Library) to enhance comprehension of the results. In
other words, it shows the representations of the measurements of each sensor by different
colors. For 3D maps using VisPy, there are only two colors presented by points (dots) on the

map: red (pose) and blue (measurements).

Table 4.2 — General Definitions for Scenario 1 to 4.

Scenario 1 to 4
Settings
Manual Path Wall Following
Velocity 0.1 m/s 0.1 m/s
Period 100 ms 100 ms
Default Height 0.3m 0.3m
Distance from Wall - 0.15m

Source: The author.



Chapter 4 — Results and Discussion 44

Table 4.3 — Color Legend (Open3D).

Colors Measurement
Rajah Sensor Back
. Comet Sensor Front
Perano Sensor Left
De York Sensor Right

Source: The author.

4.2. Scenario 1

The first scenario is a simple one. The map should resemble a square since the map is a
simple square with no obstacles. The justification of the environment as the first case is because
of its simplicity.

Setting up the environment is an initial step, using the laboratory space available in
block 1C at the Federal University of Uberlandia. In addition to the wall of the room, cardboard
was positioned to form the other walls. Figure 4.1 shows the architecture of the environment

with its measurements. Figure 4.2 is a photo taken of the first environment.

Figure 4.1 — Architecture of the Scenario 1.

Source: The author.
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Figure 4.2 — Photo of the Scenario 1.

Source: The author.

In this way, the following sections will show the results of each technique for this
environment. Sections 4.2.1 and 4.2.2 will present and discuss the results of each SLAM
technique. The results consider different techniques, and these techniques are presented in the
methods in Chapter 3. There are two forms of behavior (predefined path and wall-following)

for each scenario, with their respective SLAM results.

4.2.1 Manual Path — Scenario 1

Considering the behavior of following a defined path, the commands were
predetermined prior to the experiment. In Table 4.4, these commands are detailed. It was
considered the primary settings from Table 4.2 (Section 4.1), and the commands in a sequence

of forward, sleep, turn left, and sleep (four times) and finally, land at a velocity of 0.1 m/s.

Table 4.4 — Scenario 1 Trajectory MP.

Commander

Forward 1.1m
Sleep Is
Turn Left 90°

4%

Sleep Is
- Land 0.1 m/s

Source: The author.
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Figures 4.3 to 4.6 show the manual path results, in other words, the nano quadcopter's
behavior and path results. For a better visualization, some of the Figures have the same plot,

despite the two different ways of positioning the image.

Figure 4.3 — Open3D Point Cloud in Scenario 1 Using Manual Path.

Source: The author.

Figure 4.4 — Open3D Surface in Scenario 1 Using Manual Path.

Source: The author.
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Figure 4.5 — VisPy Point Cloud in Scenario 1 Using Manual Path.

Source: The author.

In Section 4.7, final considerations will include some comparative information

regarding the occupancy grid map (2D map) and the others 3D maps.

Figure 4.6 — Occupancy Grid in Scenario 1 Using Manual Path.

Source: The author.
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4.2.2  Wall Following — Scenario 1

As the behavior is autonomous, setting the trajectory commands is unnecessary. For this
purpose, the necessary preliminary information is also available in Table 4.2. Figures 4.7 to

4.10 show the wall following results for the Scenario 1.

Figure 4.7 — Open3D Point Cloud in Scenario 1 Using Wall Following.
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Figure 4.8 — Open3D Surface in Scenario 1 Using Wall Following.
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Source: The author.
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Figure 4.9 — VisPy Point Cloud in Scenario 1 Using Wall Following.

Source: The author.

Figure 4.10 — Occupancy Grid in Scenario 1 Using Wall Following.

Source: The author.

In Section 4.7, final considerations will include some comparative information

regarding the occupancy grid map (2D map) and the others 3D maps.
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4.3. Scenario 2

The Scenario 2 has a more rectangular shape and was created with the aim of having a
map with more geometric shapes, and resemble the letter L.

The process for building this scenario was the same as in Scenario 1. An initial step is
setting up the environment using the laboratory space available in block 1C at the Federal
University of Uberlandia. Also, in addition to the wall of the room, cardboard was positioned
to form the other walls. Figure 4.11 shows the architecture of the environment with its
measurements. Figure 4.12 is a photo taken of the second scenario.

In this way, the following sections will show the results of each technique for this
environment. Sections 4.3.1 and 4.3.2 will present and discuss the results of each SLAM

technique.

Figure 4.11 — Architecture of the Scenario 2.

Source: The author.
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Figure 4.12 — Photo of the Scenario 2.

4.3.1 Manual Path — Scenario 2

Source: The author.

Considering a defined path, the commands were predetermined prior to the experiment.

In Table 4.5, these commands are demonstrated.

Table 4.5 — Scenario 2 Trajectory MP.

Commander

I: Forward 0.2m

2:  TurnLeft 90°

3: Forward 24 m

4:  Turn Left 90°

5: Forward 1.4m

6:  TurnLeft 90°

7: Forward 0.3 m

8:  TurnLeft 90°

9: Forward 0.3 m
10:  Turn Left 90°
11: Land 0.1 m/s

Source: The author.
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It was considered the primary setting from Table 4.2 (Section 4.1). The drone pursues a
sequence of forward, sleep, turn left, and sleep. Finally, the drone landed at a velocity of 0.1
m/s. The command sleep (for one second =1 s) is not in Table 4.5 but exists in the code, as the
sequence explained. The distance for the "forward" differs due to the distance of the
environment.

Figures 4.13 to 4.16 show the manual path results, in other words, the nano quadcopter's
behavior and path results. For enhanced visual comprehension, it is worth noting that several
Figures contain identical plots, each positioned differently to illustrate alternative display

methods and improve overall clarity.

Figure 4.13 — Open3D Point Cloud in Scenario 2 Using Manual Path.
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Source: The author.



Chapter 4 — Results and Discussion 53

Figure 4.14 — Open3D Surface in Scenario 2 Using Manual Path.

Source: The author.

Figure 4.15 — VisPy Point Cloud in Scenario 2 Using Manual Path.

Source: The author.
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Figure 4.16 — Occupancy Grid in Scenario 2 Using Manual Path.

Source: The author.

4.3.2 Wall Following — Scenario 2

The behavior is autonomous in the wall following process, so setting the trajectory
commands is nonessential. The necessary preliminary information is also available in Table

4.2. Figures 4.17 to 4.20 illustrate the results for Scenario 2.

Figure 4.17 — Open3D Point Cloud in Scenario 2 Using Wall Following.

Source: The author.
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Figure 4.18 — Open3D Surface in Scenario 2 Using Wall Following.
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Source: The author.

Figure 4.19 — VisPy Point Cloud in Scenario 2 Using Wall Following.

Source: The author.




Chapter 4 — Results and Discussion 56

Figure 4.20 — Occupancy Grid in Scenario 2 Using Wall Following.

Source: The author.

As previously mentioned, in Section 4.7, the final considerations will include some
comparative information regarding the occupancy grid map (2D map) and the other 3D maps

(for both trajectories).

4.4. Scenario 3

The third scenario is an adaptation of the second scenario. Scenario 3 also has a more
rectangular shape, but it has an extra corridor, created with the aim of having a map with more
geometric shapes, with the drone dealing with asymmetrical spaces.

The process for building this scenario was the same as described in Scenarios 1 and 2.
The first step is setting up the environment using the laboratory space available in block 1C at
the Federal University of Uberlandia. The environment used the wall of the room, and the
cardboard was positioned to form the other walls.

Figure 4.21 shows the architecture of the environment with its measurements. Figure
4.22 is a photo taken of the second scenario. The following sections will show the results of
each technique for this environment. Sections 4.4.1 and 4.4.2 will present and discuss the results

of each SLAM technique.
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Figure 4.21 — Architecture of the Scenario 3.

Source: The author.

Figure 4.22 — Photo of the Scenario 3.

Source: The author.

4.4.1 Manual Path — Scenario 3

As earlier mentioned, the commands were predetermined for the experiment,
represented in Table 4.6, also it was considered the settings from Table 4.2 (Section 4.1). The

drone pursues a sequence of forward, sleep, turn left, and sleep. The drone landed at a velocity
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of 0.1 m/s. The command sleep (for one second = 1 s) is not in Table 4.6, but it does exist in

the code, as the sequence explained. The distance for the "forward" differs due to the distance

of the environment. Despite being an environment containing more diverse geometric shapes,

the number of commands is the same as in the previous scenario. Figures 4.23 to 4.26 show the

manual path results.

Table 4.6 — Scenario 3 Trajectory MP.

Commander

1: Forward 0.2 m

2:  Turn Left 90°

3: Forward 1.8 m

4:  Turn Left 90°

5: Forward 2m

6:  Turn Left 90°

7: Forward 0.9 m

8:  TurnLeft 90°

9: Forward 0.1 m
10:  Turn Left 90°
11: Land 0.1 m/s

Source: The author.

Figure 4.23 — Open3D Point Cloud in Scenario 3 Using Manual Path.

Source: The author.
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Figure 4.24 — Open3D Surface in Scenario 3 Using Manual Path.

Source: The author.

Figure 4.25 — VisPy Point Cloud in Scenario 3 Using Manual Path.

Source: The author.
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Figure 4.26 — Occupancy Grid in Scenario 3 Using Manual Path.

Source: The author.

4.4.2 Wall Following — Scenario 3

Figures 4.27 to 4.30 show the wall following, in other words, the nano quadcopter's
behavior and path results. For a better visualization, some of the Figures have the same plot,

despite the two different ways of positioning the image.

Figure 4.27 — Open3D Point Cloud in Scenario 3 Using Wall Following.
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Source: The author.
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Figure 4.28 — Open3D Surface in Scenario 3 Using Wall Following.
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Source: The author.

Figure 4.29 — VisPy Point Cloud in Scenario 3 Using Wall Following.

Source: The author.
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Figure 4.30 — Occupancy Grid in Scenario 3 Using Wall Following.

Source: The author.

As mentioned above, in Section 4.7, the final considerations will include some
comparative information regarding the occupancy grid map (2D map) and the other 3D maps -

both trajectories.

4.5. Scenario 4

The fourth scenario, and the last in this sequence, is an adaptation of the first scenario.
Scenario 4 has a square shape but has an obstacle in the middle, which is a significant difference,
apart from the different measurements.

This scenario is intended to have map results considering a static obstacle in the center.
The process for building this scenario was the same as in the previous scenarios. The
environment was set up in the laboratory space available in block 1C at the Federal University
of Uberlandia. The environment used the wall of the room, and the cardboard was positioned
to form the other walls. Figure 4.31 shows the architecture of the environment with its

measurements. Figure 4.32 is a photo taken of the second scenario.
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In this way, the following sections will show the results of each technique for this

environment. Sections 4.5.1 and 4.5.2 will present and discuss the results of each SLAM

technique.

Figure 4.31 — Architecture of the Scenario 4.
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Source: The author.

Figure 4.32 — Photo of the Scenario 4.

Source: The author.
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4.5.1 Manual Path — Scenario 4

As previously mentioned, the commands were predetermined for the experiment,
represented in Table 4.7, also it was considered the settings from Table 4.2 (Section 4.1).

The nano quadcopter pursues a sequence of forward, sleep, turn left, and sleep. The nano
quadcopter landed at a velocity of 0.1 m/s. The starting point affects the nano quadcopter, so
for two sides (first and fifth command), the distance covered differs from one to another. The
command sleep (for one second = 1 s) is not in Table 4.7, but it does exist in the code, as the

sequence explained.

Table 4.7 — Scenario 4 Trajectory MP.

Commander

l: Forward 1.7 m
2 Turn Left  90°
3 Forward 1.35m
4 Turn Left  90°
5 Forward 1.45m
6:  Turn Left 90°
7 Forward 1.35m
8 Turn Left  90°
9 Land 0.1 m/s

Source: The author.

Figures 4.33 to 4.36 show the manual path results, in other words, the nano quadcopter's
behavior and path results. For a better visualization, some of the Figures have the same plot,

despite the two different ways of positioning the image.
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Figure 4.33 — Open3D Point Cloud in Scenario 4 Using Manual Path.
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Source: The author.

Figure 4.34 — Open3D Surface in Scenario 4 Using Manual Path.
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Source: The author.
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Figure 4.35 — VisPy Point Cloud in Scenario 4 Using Manual Path.

Source: The author.

Figure 4.36 — Occupancy Grid in Scenario 4 Using Manual Path.

Source: The author.

4.5.2 Wall Following — Scenario 4

Figures 4.37 to 4.40 show the wall following, in other words, the nano quadcopter's
behavior and path results. For a better visualization, some of the Figures have the same plot,

despite the two different ways of positioning the image.
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Figure 4.37 — Open3D Point Cloud in Scenario 4 Using Wall Following.
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Source: The author.

Figure 4.38 — Open3D Surface in Scenario 4 Using Wall Following.

Source: The author.
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Figure 4.39 — VisPy Point Cloud in Scenario 4 Using Wall Following.

Source: The author.

Figure 4.40 — Occupancy Grid in Scenario 4 Using Wall Following.

Source: The author.
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As previously mentioned, in Section 4.7, the final considerations will include some
comparative information regarding the occupancy grid map (2D map) and the other 3D maps

(for both trajectories).

4.6. Individual Cases

In this section, two individual cases will be presented. These cases are specific
experiments that have been discussed and contribute with extra analysis. These cases are called

Levels (Section 4.6.1) and Real-Time Visualization (Section 4.6.2).

4.6.1 Levels

Figure 4.41 illustrates the photo taken of the Levels scenario, and in Table 4.8 are the
parameters of this scenario. For the results, only Open 3D Surface and VisPy Point Cloud were
used, as seen in Figure 4.42 and Figure 4.43.

For this case, the drone is positioned in the center of an area with similarity to a square,
takes off to an altitude of 30 cm, performs a gradual 360° rotation, climbs another 20 cm,
performs a 360° rotation, goes up more 20cm and performs a 360° rotation, and finally lands at

a speed of 0.1 m/s to the ground. Therefore, the manual path was used.

Figure 4.41 — Photo of the Levels Scenario.

Source: The author.
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Table 4.8 — Parameters of the Levels Scenario.

Parameters Scenario
Height 0.9 m
Width 1.5m
Length 1.8 m

Source: The author.

Figure 4.42 — Open3D Surface in Levels Scenario.

Source: The author.

Figure 4.43 — Open3D Surface in Levels Scenario.

Source: The author.

This experiment aimed to evaluate the system's performance in the third dimension
across varying levels of data collection. The surface method was selected to observe to see if
the experiment could generate a flat surface by reconstructing the walls with the different levels

of measurements collected. Unfortunately, it was reconstructed only on the level surface. By
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the point cloud method (using VisPy), it is possible to observe the trajectory of the nano

quadcopter.

4.6.2 Real-Time Visualization

Another major challenge of using SLAM lies in its real-time visualization. This
challenge was carried out in a simple scenario, the same scenario described in Scenario 1, in an
environment in a simple square shape. Figure 4.44 illustrates the Scenario Real-Time

Visualization representation as can be seen by the user.

Figure 4.44 — Real-Time Visualization Scenario.

Source: The author.

For the Real-Time Visualization Scenario, it was developed a stream abstraction to
avoid heavy work on the LogConfig callback. The base stream registers the LogConfig to
receive data from the flow deck and multiranger deck.

Once the complete measurements are received, with both the nano quadcopter's pose
and all four sensor measurements, the data is flushed down the stream to subscribers. The
stream accepts multiple subscribers, which are notified on each measurement, meaning that the
actions could happen independently of each other and avoid blocking.

For example, after flushing the measurement, there is a buffer registered in the stream

to later flush the measurement to disk. On the other hand, another stream subscriber calculates
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the point with the rotation matrix and draws it into a canvas for live preview. This setup gave a
better separation of concerns, with each step in the stream being unaware of the existence of
other subscribers. All of this utilizes stream abstraction. This design is based on the reactive

approach (ReactiveX, [s. d.]), although in a much-simplified form.

4.7. Considerations

Generally, the maps for the environments exhibit that the manual path has more
distributed and even measurements that seem like random points, and as a consequence, it has
more uncertainties. However, the wall following has more accurate and accumulated points,
which can indicate fewer uncertainties in the data collected.

Furthermore, for the MP, the surface method has more empty spaces presented in the
figures. For the WF, the maps (in figures) indicate more satisfactory performance in surface
reconstruction, with clear and intense maps and few gaps.

Considering the experimental data, the surface method used in both flight techniques is
one way of manipulating the data. The reconstruction with more grouped data is much more
perceptive, with a surface much better defined, which is the case with wall-following behavior.

For the occupancy grid map, the results using the wall following behavior are more
promising in the first three environments (Scenario 1 to 3). In the fourth environment (Scenario
4), the WF is not performing well, though the manual path is even more unsatisfactory.

Table 4.9 shows the number of scans for building the 2D map respectively in manual
path and wall following. The scan represents a total data set of the quadcopter's information

(measurement and pose).

Table 4.9 — Number of Scans MP and WF (2D Map).

Scenario Scan MP Scan WF
1 639 705
2 637 798
3 774 896
4 749 952

Source: The author.
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For the maps of Scenarios 1 to 4, it is observed that for the MP, the occupancy grid plots
show this accumulation, where the plot gets more white lines where the drone flew, whereas
others still have some small gray area. The corners of the walls in the occupancy grid highlight
this behavior. The corners have a few white lines, but it is mostly gray. As the drone knows
how many degrees to turn, it quickly turns the necessary degrees, causing less information to
be collected.

In contrast, since the wall following utilizes the most recent reading to take action, it
covers more of the environment. Take the wall corners as an example again. The drone needs
to have the measurements to adjust itself to the wall. The inherent way the algorithm works
allows it to collect more details about the environment. This adaptative behavior of the wall
following algorithm leads to more detailed plots.

For the 3D maps, point cloud is another evidence of this behavior. The points collected
by the front and back sensors of the multi-ranger have clusters where the drone flights. There
is even less information collected at the corners when the drone makes a turn. In contrast with
the point cloud from the wall following data, the plot has many more points distributed across
the environment. And, as the drone needs to adjust at the wall corners, the corners have a much
dense quantity of points.

The manual path provides the Crazyflie with a simplified version for experiments. The
development of an application for experimenting is straightforward. However, the more rigid,
the less responsive the nano quadcopter is, making the utilization unfit for developing an
application for autonomous flight. The plots also evidence this behavior, where the occupancy
grid is less detailed, the point cloud has a cluster of points where the drone flies, leaving other
regions uncovered, and the surface reconstruction is incomplete.

By contrast, the wall-following behavior provides the Crazyflie with autonomous flight
capability. The nano quadcopter crosses an unknown environment by following its walls. It
takes action and adjusts its trajectory with measurements captured with the multi-ranger deck.
The data collected also enables the construction of a very detailed occupancy grid map. The
plots generated with the data successfully represent the forms and obstacles from the real-world
environment. The point cloud has a more even distribution of the points, and the surface
reconstruction has few gaps.

Furthermore, it can be seen that all the techniques are efficient, despite the aspects
discussed above. Using Open3D there is manipulation of the data into another type of
representation, and the VisPy is possible to easily insert the location and trajectory of the nano

quadcopter into the representation (the red dots). Furthermore, it can be noted that in the
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occupancy grid technique, many uncertainties are dealt with in the algorithm, giving an even

better representation of the environment.



Chapter E

CONCLUSIONS

Regarding the aims of this project, the research purpose is to implement a system using
a nano quadcopter with autonomous flight and laser sensors capable of simultaneous
localization and mapping, with diverse techniques for solving SLAM, covering methods for
reconstructing 2D and 3D maps, using an open-source system, with Python programming
language. In addition to all the justifications mentioned above, the ambition is to help
disseminate research and concepts in this complex and arduous area of engineering, control,
and automation whilst still brilliant.

The methodology presented offers a new perspective for creating a practical nano
quadcopter system, developed in a computational and scientific language, using open-source
materials and available for general access.

The implementation of the nano quadcopter was operating well with the two different
decks, with Cazyflie 2.1, Multi-ranger, and Flow-Deck v2, and all the methods solutions chosen
for the SLAM problem are working well, operating satisfactory, and running efficiently, with
their respective characteristics, performances, qualities, and issues for improvement.
Considering the results, accomplishing all the objectives of the project with success.

The data collected through the persistence layer allows different visualization
techniques. The current work developed a 3D visualization of the environment utilizing point
cloud maps and a 2D visualization with the occupancy grid map. Since the persistence layers
offer the durability necessary, it is possible to manipulate the data without requiring more
flights. The surface reconstruction is an example of the experimentation possible because of the
persistence layer.

Therefore, the experimental results present that the nano quadcopter system can
successfully map the environment and identify obstacles in its path, as well. However, there are
still improvements to make since the mapping has many out-of-bounds points and irregular
curves. The current work conducted several real-world experimental tests to ensure the system's

robustness. These tests utilize different techniques for flying the nano quadcopter.
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One of the techniques uses a predefined route through the environment, avoiding
obstacles. As such, this technique requires a priori knowledge of the environment. The
development utilizes the basic movement primitives offered by the cflib Python library. The
development is more straightforward and restricted, a good fit for experimenting with the
Crazyflie.

A second, more complete technique, called wall following, enables the Crazyflie to fly
in an unknown environment autonomously. The drone takes measurements utilizing the
extension decks to adjust its trajectory and fly parallel to a wall. Inherently, this technique
requires more information about the environment before taking action. The current work
implements the wall following algorithm in a highly responsive, non-blocking application
capable of gracefully terminating without losing data.

The current work verified the different scenarios with both techniques, collecting the
data and generating the plots for a qualitative visual analysis. Overall, the wall following
resulted in more detailed plots compared to the manual path. The measurements are more
distributed in the environment since the algorithm requires the data collection to move.

On the other hand, the manual path has a defined path, so it can fly directly without
requiring more information. The data collected by the manual path ends up being denser in the
region where the drone flies, while others are not fully covered.

As previously described and noted, all map representations are uncertain since the pose
and the location (relative position) have uncertainty, and so do the sensor readings.

To conclude, the current work also experiments with a live visualization of the drone
flying with the occupancy grid map. This approach has a restriction that the map size needs to
be defined a priori to construct the grid. A size larger than the real (actual map) means
expending computational resources. A size smaller than the actual map world means not
mapping some parts of the environment. A more advanced and robust implementation could

apply computer graphics algorithms to expand the grid on demand.

5.1. Future Work

The current work still has some room for improvement. There are different lines of
future work to improve. There is the data analysis part. There is room for developing tools to
export the data to other visualization or scientific tools, such as MATLAB. The development

of a single tool with all the visualization techniques utilized. On the other hand, it is also
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possible to employ the framework of the current work for persistence and visualization to apply
different SLAM techniques.

The principal improvement is the buffered output keeping all the measurements in
memory, and it could completely interfere with autonomous flight over long periods. The ideal
solution would batch the writes to disk, delegating each write to another thread and avoiding
any blocking operations on the callbacks.

Additional improvements could be applied to the data post-processing. Currently, the
persisted data does not follow any industry standard in the file format. It is a proprietary format
design for the current work. An improvement would be to create a converter to other accepted
formats, and this would open room to analyze the data more easily in other software.

One of the possibilities for solving map optimization would be the use of multiple
robots. One of these approaches was addressed in recent work (Friess et al., 2023) using a
swarm of nano quadcopters (Crazyflie 2.1), which could be a possibility for future work.

It can be observed that the difference in the measurements of each sensor directly
influences the point values obtained. In addition, the current work does not have a closed loop,
and the algorithm does not know that it has already visited such a place in the environment.
According to (Taheri; Xia, 2021), loop closure would be a solution to this, as well as being able
to optimize the robot's pose better and reduce drifts and odometry errors.

For future work, besides improving the points observed, there is the need to implement
the mapping with a simulation in a ROS environment and decision-making on the path, and

another possibility of improvement is the GUI (Graphical User Interface) implementation.



Bibliography

REFERENCES

AHMED, F. et al. Recent Advances in Unmanned Aerial Vehicles: A Review. Arabian Journal
for Science and Engineering, [s. L], v. 47, n. 7, p. 7963-7984, 2022.
https://doi.org/10.1007/s13369-022-06738-0

ALTINPINAR, O. V. et al. Comparison of Autonomous Robot’s Mapping Performance Based
on Number of Lidars And Number of Tours. /n: 2022 INNOVATIONS IN INTELLIGENT
SYSTEMS AND APPLICATIONS CONFERENCE (ASYU), 2022, Antalya, Turkey. 2022
Innovations in Intelligent Systems and Applications Conference (ASYU). Antalya, Turkey:
IEEE, 2022. p. 1-6. Available in: https://ieeexplore.ieee.org/document/9925444/.
https://doi.org/10.1109/ASYUS56188.2022.9925444

AULINAS, J. et al. The SLAM problem: a survey. Proceedings of the 11th International
Conference of the Catalan Association for Artificial Intelligence, [s. L], p. Pages 363-371, 2008.
http://dx.doi.org/10.3233/978-1-58603-925-7-363

BALESTRIERI, E. et al. Sensors and Measurements for UAV Safety: An Overview. Sensors,
[s. L], v. 21, n. 24, p. 8253, 2021. https://doi.org/10.3390/s21248253

BAVLE, H. ef al. From SLAM to Situational Awareness: Challenges and Survey. Sensors, [s.
], v.23,n. 10, p. 4849, 2023. https://doi.org/10.3390/s23104849

BAVLE, H. et al. VPS-SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems.
IEEE Access, [s. L], V. 8, p. 60704-60718, 2020.
https://doi.org/10.1109/ACCESS.2020.2983121

BITCRAZE, A. Crazyflie 2.1 | Bitcraze. [S. 1], 2022a. Available in:

https://www.bitcraze.io/products/crazyflie-2-1/. .


https://doi.org/10.1007/s13369-022-06738-0
https://doi.org/10.1109/ASYU56188.2022.9925444
http://dx.doi.org/10.3233/978-1-58603-925-7-363
https://doi.org/10.3390/s21248253
https://doi.org/10.3390/s23104849
https://doi.org/10.1109/ACCESS.2020.2983121

Bibliography 79

BITCRAZE, A. Flow deck v2 | Bitcraze. [S. [], 2022b. Available in:
https://www.bitcraze.io/products/flow-deck-v2/.

BITCRAZE, A. Go with the Flow: Relative Positioning with the Flow deck. [S. L], 2023.
Available in: https://www.bitcraze.i0/2023/11/go-with-the-flow-relative-positioning-with-the-
flow-deck/.

BITCRAZE, A. Multi-ranger deck | Bitcraze. [S. [], 2022c. Available in:

https://www .bitcraze.io/products/multi-ranger-deck/.

BITCRAZE, A. State Estimation. [S. L], 2022d. Available n:
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-

areas/sensor-to-control/state estimators/#flowdeck-measurement-model.

BRESENHAM, J. E. Algorithm for computer control of a digital plotter. IBM Systems Journal,
[s. L], v.4,n. 1, p. 25-30, 1965. https://doi.org/10.1147/s].41.0025

CAMPAGNOLA, L. et al. Vispy/vispy: Version 0.14.1. Versao v0.14.1. [S. [.]: [object Object],
2023. Available in: https://zenodo.org/record/592490.

CHAN, S.-H.; WU, P.-T.; FU, L.-C. Robust 2D Indoor Localization Through Laser SLAM and
Visual SLAM Fusion. In: 2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS,
MAN, AND CYBERNETICS (SMC), 2018, Miyazaki, Japan. 2018 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). Miyazaki, Japan: IEEE, 2018. p. 1263—
1268. Available n: https://ieeexplore.ieee.org/document/8616217/.
https://doi.org/10.1109/SMC.2018.00221

COPPOLA, M. et al. A Survey on Swarming With Micro Air Vehicles: Fundamental
Challenges and Constraints. Frontiers in Robotics and Al, [s. L], v. 7, p. 18, 2020.
https://doi.org/10.3389/frobt.2020.00018

COVOLAN, J. P. M.; SEMENTILLE, A. C.; SANCHES, S. R. R. A mapping of visual SLAM
algorithms and their applications in augmented reality. /n: 2020 22ND SYMPOSIUM ON
VIRTUAL AND AUGMENTED REALITY (SVR), 2020, Porto de Galinhas, Brazil. 2020
22nd Symposium on Virtual and Augmented Reality (SVR). Porto de Galinhas, Brazil: IEEE,
2020. p. 20-29. Available in:  https://ieeexplore.ieee.org/document/9262630/.
https://doi.org/10.1109/SVR51698.2020.00019



https://doi.org/10.1147/sj.41.0025
https://zenodo.org/record/592490
https://doi.org/10.1109/SMC.2018.00221
https://doi.org/10.3389/frobt.2020.00018
https://doi.org/10.1109/SVR51698.2020.00019

Bibliography 80

DAL Y.; WU, J.; WANG, D. A Review of Common Techniques for Visual Simultaneous
Localization and Mapping. Journal of Robotics, [s. 1], v. 2023, p. 1-21, 2023.
https://doi.org/10.1155/2023/8872822

DURRANT-WHYTE, H. F. Uncertain geometry in robotics. IEEE Journal on Robotics and
Automation, [s. L], v. 4, n. 1, p. 23-31, 1988. https://doi.org/10.1109/56.768

DURRANT-WHYTE, H.; RYE, D.; NEBOT, E. Localization of Autonomous Guided Vehicles.
In: GIRALT, G.; HIRZINGER, G. (org.). Robotics Research. London: Springer London, 1996.
p. 613-625. Available in: http://link.springer.com/10.1007/978-1-4471-1021-7_69.

FINK, G. et al. Observer design for visual inertial SLAM scale on a quadrotor UAV. In: 2017
INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS),
2017, Miami, FL, USA. 2017 International Conference on Unmanned Aircraft Systems
(ICUAS). Miami, FL, USA: IEEE, 2017. p. 830-839. Available in:
http://ieeexplore.ieee.org/document/7991497/. https://doi.org/10.1109/ICUAS.2017.7991497

FORSTER, J. System Identification of the Crazyflie 2.0 Nano Quadrocopter. [s. L], p. 147 p.,
2015. https://doi.org/10.3929/ethz-b-000214143

FRIESS, C. ef al. Fully Onboard SLAM for Distributed Mapping with a Swarm of Nano-
Drones. [S. 1.]: arXiv, 2023. Available in: http://arxiv.org/abs/2309.03678.

GAIA, J. et al. Mapping the Landscape of SLAM Research: A Review. IEEE Latin America
Transactions, [s. L], V. 21, n. 12, p- 1313-1336, 2023.
https://doi.org/10.1109/TLA.2023.10305240

GOLDSTEIN, H.; POOLE, C. P.; SAFKO, J. L. Classical mechanics. Third editioned. United
States: Pearson, 2011.

GREIFF, M. Modelling and Control of the Crazyflie Quadrotor for Aggressive and
Autonomous Flight by Optical Flow Driven State Estimation. 2017. 153 f. Dissertation - Lund
University, Department of Automatic Control, 2017. Available: https://lup.lub.lu.se/student-
papers/search/publication/8905295.

HARRIS, C. R. et al. Array programming with NumPy. Nature, [s. L], v. 585, n. 7825, p. 357—
362, 2020. https://doi.org/10.1038/s41586-020-2649-2



https://doi.org/10.1155/2023/8872822
https://doi.org/10.1109/56.768
https://doi.org/10.1109/ICUAS.2017.7991497
https://doi.org/10.3929/ethz-b-000214143
https://doi.org/10.1109/TLA.2023.10305240
https://doi.org/10.1038/s41586-020-2649-2

Bibliography 81

HONIG, W.; AYANIAN, N. Flying Multiple UAVs Using ROS. In: KOUBAA, A. (org.).
Robot Operating System (ROS). Cham: Springer International Publishing, 2017. (Studies in
Computational Intelligence). V. 707, p. 83-118. Available n:
http://link.springer.com/10.1007/978-3-319-54927-9 3.  https://doi.org/10.1007/978-3-319-
54927-9 3

HU, X.; ASSAAD, R. H. The use of unmanned ground vehicles (mobile robots) and unmanned
aerial vehicles (drones) in the civil infrastructure asset management sector: Applications,

robotic platforms, sensors, and algorithms. Expert Systems with Applications, [s. ], v. 232, p.

120897, 2023. https://doi.org/10.1016/j.eswa.2023.120897

HUANG, L. Review on LiDAR-based SLAM Techniques. /n: 2021 INTERNATIONAL
CONFERENCE ON SIGNAL PROCESSING AND MACHINE LEARNING (CONF-SPML),
2021, Stanford, CA, USA. 2021 International Conference on Signal Processing and Machine
Learning (CONF-SPML). Stanford, CA, USA: IEEE, 2021. p. 163-168. Available in:
https://ieeexplore.ieee.org/document/9707054/. https://doi.org/10.1109/CONEF-
SPML.54095.2021.00040

HUNTER, J. D. Matplotlib: A 2D Graphics Environment. Computing in Science &
Engineering, [s. L], v. 9, n 3, p. 9095  2007. Available in:
https://ieeexplore.ieee.org/document/4160265. https://doi.org/10.1109/MCSE.2007.55

HYNDMAN, R. J.; FAN, Y. Sample Quantiles in Statistical Packages. The American
Statistician, [s. L], V. 50, n. 4, p. 361-365, 1996.
https://doi.org/10.1080/00031305.1996.10473566

JEONG, E. et al. Parsing Indoor Manhattan Scenes Using Four-Point LiDAR on a Micro UAV.
In: 2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND
SYSTEMS (ICCAS), 2022, Jeju, Korea, Republic of. 2022 22nd International Conference on
Control, Automation and Systems (ICCAS). Jeju, Korea, Republic of: IEEE, 2022. p. 708—713.
Available in: https://ieeexplore.ieee.org/document/10003969/.
https://doi.org/10.23919/ICCAS55662.2022.10003969

KARAM, S. et al. MICRO AND MACRO QUADCOPTER DRONES FOR INDOOR
MAPPING TO SUPPORT DISASTER MANAGEMENT. ISPRS Annals of the


https://doi.org/10.1007/978-3-319-54927-9_3
https://doi.org/10.1007/978-3-319-54927-9_3
https://doi.org/10.1016/j.eswa.2023.120897
https://doi.org/10.1109/CONF-SPML54095.2021.00040
https://doi.org/10.1109/CONF-SPML54095.2021.00040
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1080/00031305.1996.10473566
https://doi.org/10.23919/ICCAS55662.2022.10003969

Bibliography 82

Photogrammetry, Remote Sensing and Spatial Information Sciences, [s. L], v. V-1-2022, p.
203-210, 2022. https://doi.org/10.5194/isprs-annals-V-1-2022-203-2022

KARAM, Samer et al. Microdrone-Based Indoor Mapping with Graph SLAM. Drones, [s. /],
v.6,n. 11, p. 352, 2022. https://doi.org/10.3390/drones6110352

KEFFERPUTZ, K.; MCGUIRE, K. Error-State Unscented Kalman-Filter for UAV Indoor
Navigation. n: 2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION
FUSION (FUSION), 2022, Linkoping, Sweden. 2022 25th International Conference on
Information Fusion (FUSION). Linkoping, Sweden: IEEE, 2022. p. 01-08. Available in:
https://ieeexplore.ieee.org/document/9841385/.
https://doi.org/10.23919/FUSION49751.2022.9841385

KHAN, M. U. et al. A Comparative Survey of LiDAR-SLAM and LiDAR based Sensor
Technologies. /n: 2021 MOHAMMAD ALI JINNAH UNIVERSITY INTERNATIONAL
CONFERENCE ON COMPUTING (MAIJICC), 2021, Karachi, Pakistan. 2021 Mohammad Ali
Jinnah University International Conference on Computing (MAJICC). Karachi, Pakistan:
IEEE, 2021. p. 1-8. Available in: https://ieeexplore.ieee.org/document/9526266/.
https://doi.org/10.1109/MAJICC53071.2021.9526266

KUANG, Q. et al. Real-Time UAV Path Planning for Autonomous Urban Scene
Reconstruction. /n: 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND
AUTOMATION (ICRA), 2020, Paris, France. 2020 IEEE International Conference on
Robotics and Automation (ICRA). Paris, France: IEEE, 2020. p. 1156-1162. Available in:
https://ieeexplore.ieee.org/document/9196558/.
https://doi.org/10.1109/ICRA40945.2020.9196558

LAIL T. A Review on Visual-SLAM: Advancements from Geometric Modelling to Learning-
Based Semantic Scene Understanding Using Multi-Modal Sensor Fusion. Sensors, [s. L], v. 22,

n. 19, p. 7265, 2022. https://doi.org/10.3390/s22197265

LANDRY, B. Planning and Control for Quadrotor Flight through Cluttered Environments.
2015. - Massachusetts Institute of Technology, [s. 1], 2015. Available in:
http://hdl.handle.net/1721.1/100608.

LEE, D. et al. Experiments on localization of an AUV using graph-based SLAM. In: 2013
10TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT


https://doi.org/10.5194/isprs-annals-V-1-2022-203-2022
https://doi.org/10.3390/drones6110352
https://doi.org/10.23919/FUSION49751.2022.9841385
https://doi.org/10.1109/MAJICC53071.2021.9526266
https://doi.org/10.1109/ICRA40945.2020.9196558
https://doi.org/10.3390/s22197265

Bibliography 83

INTELLIGENCE (URALI), 2013, Jeju, Korea (South). 2013 10th International Conference on
Ubiquitous Robots and Ambient Intelligence (URAI). Jeju, Korea (South): IEEE, 2013. p. 526—
527. Available n: http://ieeexplore.ieee.org/document/6677329/.
https://doi.org/10.1109/URAI1.2013.6677329

LIMA, G. Modelagem dinamica e controle para navegacao de um veiculo aéreo ndo tripulado
do tipo quadricoptero. 2015. - Universidade Federal de Uberlandia, [s. ], 2015. Available in:
https://repositorio.ufu.br/handle/123456789/14608.

LIMA, G. Planejamento de trajetdrias para quadricopteros em tarefas de perseguicdo. 2019. -
Universidade Federal de  Uberlandia, [s. L], 2019. Available in:
https://repositorio.ufu.br/handle/123456789/27532.

LIMA, G. V. et al Stabilization and Path Tracking of a Mini Quadrotor Helicopter:
Experimental Results. IEEE Latin America Transactions, [s. .], v. 17, n. 03, p. 485-492, 2019.
https://doi.org/10.1109/TLA.2019.8863319

LIN, X.-C.; TSAIL C.-C.; TAI F.-C. Cooperative SLAM of an Autonomous Indoor Quadrotor
Flying Together with an Autonomous Ground Robot. [s. /], 2019. Available in:
https://ieeexplore.ieee.org/document/8765035.

LOPEZ, E. et al. A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System
for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments. Sensors, [s. L], v. 17, n. 4,

p. 802, 2017. https://doi.org/10.3390/s17040802

MALINVERNI, E. S. et al. Evaluating a Slam-Based Mobile Mapping System: a
Methodological Comparison for 3D Heritage Scene Real-Time Reconstruction. /n: 2018
METROLOGY FOR ARCHAEOLOGY AND CULTURAL HERITAGE
(METROARCHAEO), 2018, Cassino FR, Italy. 2018 Metrology for Archaeology and Cultural
Heritage (MetroArchaeo). Cassino FR, Italy: IEEE, 2018. p. 265-270. Available in:
https://ieeexplore.ieee.org/document/9089765/.
https://doi.org/10.1109/MetroArchaeo43810.2018.13684

MCGUIRE, K. N. Indoor swarm exploration with Pocket Drones. 2019. - Delft University of
Technology, [s. L], 2019. https://doi.org/10.4233/uuid:48ed7edc-934e-4dfc-b35c-
fe04dS5caeel



https://doi.org/10.1109/URAI.2013.6677329
https://doi.org/10.1109/TLA.2019.8863319
https://doi.org/10.3390/s17040802
https://doi.org/10.1109/MetroArchaeo43810.2018.13684
https://doi.org/10.4233/uuid:48ed7edc-934e-4dfc-b35c-fe04d55caee1
https://doi.org/10.4233/uuid:48ed7edc-934e-4dfc-b35c-fe04d55caee1

Bibliography 84

MCGUIRE, K. N. et al. Minimal navigation solution for a swarm of tiny flying robots to explore
an unknown environment. Science Robotics, [s. L], v. 4, n. 35, p. eaaw9710, 2019.

https://doi.org/10.1126/scirobotics.aaw9710

MOHSAN, S. A. H. et al. Unmanned aerial vehicles (UAVs): practical aspects, applications,
open challenges, security issues, and future trends. Intelligent Service Robotics, [s. /.], 2023.
Available in: https://link.springer.com/10.1007/s11370-022-00452-4.
https://doi.org/10.1007/s11370-022-00452-4

MONTEMERLO, M. et al. FastSLAM 2.0: An Improved Particle Filtering Algorithm for
Simultaneous Localization and Mapping that Provably Converges. [s. 1], 2003.

MORAVEC, H.; ELFES, A. High resolution maps from wide angle sonar. /n: 1985 IEEE
INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, 1985, St. Louis,
MO, USA. Proceedings. 1985 IEEE International Conference on Robotics and Automation. St.
Louis, MO, USA: Institute of Electrical and Electronics Engineers, 1985. p. 116-121. Available
in: http://ieecexplore.ieee.org/document/1087316/.
https://doi.org/10.1109/ROBOT.1985.1087316

MULLER, H. ef al. Robust and Efficient Depth-Based Obstacle Avoidance for Autonomous
Miniaturized UAVs. IEEE Transactions on Robotics, [s. L], v. 39, n. 6, p. 4935-4951, 2023.
https://doi.org/10.1109/TR0O.2023.3315710

MURPHY, R. Introduction to Al robotics. Cambridge, Mass.: MIT Press, 2000. (Intelligent

robotics and autonomous agents).

NEMRA, A. Robust Airborne 3D Visual Simultaneous Localisation And Mapping. 2010. -
Cranfield University, [s. L], 2010. Available n:
http://dspace.lib.cranfield.ac.uk/handle/1826/6157.

NICULESCU, V. et al. NanoSLAM: Enabling Fully Onboard SLAM for Tiny Robots. IEEE
Internet of Things Journal, [s. L], p. 1-1, 2023. https://doi.org/10.1109/J10T.2023.3339254

RAFFO, G. V. Robust Control Strategies for a QuadRotor Helicopter. An Underactuated
Mechanical System. 2011. - Universidad de Sevilla, [s. /], 2011.


https://doi.org/10.1126/scirobotics.aaw9710
https://doi.org/10.1007/s11370-022-00452-4
https://doi.org/10.1109/ROBOT.1985.1087316
https://doi.org/10.1109/TRO.2023.3315710
https://doi.org/10.1109/JIOT.2023.3339254

Bibliography 85

RAMOS, D. C. Aplicagdo de técnicas de fusdo sensorial para mapeamento e localiza¢ao
simultaneos para robos terrestres. 2012. - Universidade Federal de Santa Catarina, [s. 1], 2012.

Available in: http://repositorio.ufsc.br/xmlui/handle/123456789/100770.

REACTIVEX. ReactiveX: Reactive Extensions for Async Programming. [S. L], [s. d.].
Available in: https://github.com/ReactiveX. .

RUBIO, F.; VALERO, F.; LLOPIS-ALBERT, C. A review of mobile robots: Concepts,
methods, theoretical framework, and applications. International Journal of Advanced Robotic
Systems, [s. L], V. 16, n. 2, p. 172988141983959, 2019.
https://doi.org/10.1177/1729881419839596

RUEDA RAMOS, J. M. G. de. SLAM for drones: simultaneous localization and mapping for
autonomous flying robots. 2012. - Universidad Carlos III de Madrid, [s. /.], 2012. Available in:
http://hdl.handle.net/10016/16099.

SADEGHZADEH-NOKHODBERIZ, N. et al. Dynamics-Based Modified Fast Simultaneous
Localization and Mapping for Unmanned Aerial Vehicles With Joint Inertial Sensor Bias and
Drift Estimation. IEEE Access, [s. L], v. 9, p. 120247-120260, 2021.
https://doi.org/10.1109/ACCESS.2021.3106864

SAEEDI, S. ef al. 3D Mapping for Autonomous Quadrotor Aircraft. Unmanned Systems, [s.
[.],v.05,n. 03, p. 181-196, 2017. https://doi.org/10.1142/S2301385017400064

SANCHEZ-LOPEZ, J. L. et al. Deep learning based semantic situation awareness system for
multirotor aerial robots using LIDAR. In: 2019 INTERNATIONAL CONFERENCE ON
UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2019, Atlanta, GA, USA. 2019 International
Conference on Unmanned Aircraft Systems (ICUAS). Atlanta, GA, USA: IEEE, 2019. p. 899—
908. Available in: https://ieeexplore.ieee.org/document/8797770/.
https://doi.org/10.1109/ICUAS.2019.8797770

SCARADOZZI, D.; ZINGARETTI, S.; FERRARI, A. Simultaneous localization and mapping
(SLAM) robotics techniques: a possible application in surgery. Shanghai Chest, [s. L], v. 2, p.
5-5, 2018. https://doi.org/10.21037/shc.2018.01.01



https://doi.org/10.1177/1729881419839596
https://doi.org/10.1109/ACCESS.2021.3106864
https://doi.org/10.1142/S2301385017400064
https://doi.org/10.1109/ICUAS.2019.8797770
https://doi.org/10.21037/shc.2018.01.01

Bibliography 86

SHEN, S.; MICHAEL, N.; KUMAR, V. Obtaining Liftoff Indoors: Autonomous Navigation in
Confined Indoor Environments. IEEE Robotics & Automation Magazine, [s. /], v. 20, n. 4, p.
40-48, 2013. https://doi.org/10.1109/MRA.2013.2253172

SIEGWART, R.; NOURBAKHSH, I. R.; SCARAMUZZA, D. Introduction to autonomous
mobile robots. 2nd eded. Cambridge, Mass: MIT Press, 2011. (Intelligent robotics and

autonomous agents).

SMITH, R. C.; CHEESEMAN, P. On the Representation and Estimation of Spatial Uncertainty.
The International Journal of Robotics Research, [s. L], v. 5, n. 4, p. 56-68, 1986.
https://doi.org/10.1177/027836498600500404

SOUZA, R. M. J. A. et al. Modified Artificial Potential Field for the Path Planning of Aircraft
Swarms in Three-Dimensional Environments. Sensors, [s. L], v. 22, n. 4, p. 1558, 2022.

https://doi.org/10.3390/s22041558

SOUZA, R. Sistema de identificagdo de fonte de gas utilizando nanoquadricoptero. 2022. -
Universidade Federal de Uberlandia, [s. L], 2022. Available in:
https://repositorio.ufu.br/handle/123456789/36129.

STACHNISS, C. Exploration and mapping with mobile robots. 2006. - Universitétsbibliothek
Freiburg, [s. [.], 2006. Available in: https://freidok.uni-freiburg.de/data/2440.

STACHNISS, C. Robotic Mapping and Exploration. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009. (Springer Tracts in Advanced Robotics). v. 55 Available in:
http://link.springer.com/10.1007/978-3-642-01097-2. https://doi.org/10.1007/978-3-642-
01097-2

TAHERI, H.; XIA, Z. C. SLAM; definition and evolution. Engineering Applications of
Artificial Intelligence, [s. L], V. 97, p. 104032, 2021.
https://doi.org/10.1016/j.engappai.2020.104032

TAKLEH, T. T. O. et al. A Brief Survey on SLAM Methods in Autonomous Vehicle.
International Journal of Engineering & Technology, [s. L], v. 7, n. 4.27, p. 38, 2018.
https://doi.org/10.14419/ijet.v714.27.22477



https://doi.org/10.1109/MRA.2013.2253172
https://doi.org/10.1177/027836498600500404
https://doi.org/10.3390/s22041558
https://doi.org/10.1007/978-3-642-01097-2
https://doi.org/10.1007/978-3-642-01097-2
https://doi.org/10.1016/j.engappai.2020.104032
https://doi.org/10.14419/ijet.v7i4.27.22477

Bibliography 87

THRUN, S. et al. FastSLAM: An Efficient Solution to the Simultaneous Localization And
Mapping Problem with Unknown Data Association. [s. ], 2002.

THRUN, S.; BURGARD, W.; FOX, D. A Probabilistic Approach to Concurrent Mapping and
Localization for Mobile Robots. Machine Learning, [s. /], v. 31, n. 1/3, p. 29-53, 1998.
https://doi.org/10.1023/A:1007436523611

THRUN, S.; BURGARD, W.; FOX, D. Probabilistic robotics. Cambridge, Mass: MIT Press,

2005. (Intelligent robotics and autonomous agents).

VON STUMBERG, L. ef al. From monocular SLAM to autonomous drone exploration. /n:
2017 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR), 2017, Paris. 2017
European Conference on Mobile Robots (ECMR). Paris: IEEE, 2017. p. 1-8. Available in:
http://ieeexplore.ieee.org/document/8098709/. https://doi.org/10.1109/ECMR.2017.8098709

XIA, L. et al. A point-line-plane primitives fused localization and object-oriented semantic
mapping in structural indoor scenes. Measurement Science and Technology, [s. L], v. 33, n. 9,

p- 095017, 2022. https://doi.org/10.1088/1361-6501/ac784c

YUAN, S.; WANG, H.; XIE, L. Survey on Localization Systems and Algorithms for Unmanned
Systems. Unmanned Systems, [s. /], v. 09, n. 02, p. 129-163, 2021.
https://doi.org/10.1142/S230138502150014X

ZHENG, S. et al. Simultaneous Localization and Mapping (SLAM) for Autonomous Driving:
Concept and Analysis. Remote Sensing, [s. /], v. 15, n. 4, p. 1156, 2023.
https://doi.org/10.3390/rs15041156

ZHOU, H. et al. Efficient 2D Graph SLAM for Sparse Sensing. [n: 2022 IEEE/RSJ
INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS),
2022, Kyoto, Japan. 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Kyoto, Japan: IEEE, 2022. p. 6404-6411. Available in:
https://ieeexplore.ieee.org/document/9981200/.
https://doi.org/10.1109/IROS47612.2022.9981200

ZHOU, Q.-Y.; PARK, J.; KOLTUN, V. Open3D: A Modern Library for 3D Data Processing.
[s. L], 2018. Available in: https://arxiv.org/abs/1801.09847.
https://doi.org/10.48550/arXiv.1801.09847



https://doi.org/10.1023/A:1007436523611
https://doi.org/10.1109/ECMR.2017.8098709
https://doi.org/10.1088/1361-6501/ac784c
https://doi.org/10.1142/S230138502150014X
https://doi.org/10.3390/rs15041156
https://doi.org/10.1109/IROS47612.2022.9981200
https://doi.org/10.48550/arXiv.1801.09847

