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ABSTRACT 

 

Wildlife strikes to civil aircraft frequently occur worldwide and are a major safety problem. In 

the United States alone, from 1990 to 2019, approximately 209,950 strikes were recorded, 

causing material damage and loss of life. In this study, we aimed to develop a method for using 

images acquired by remotely piloted aircraft and a process of automatic detection of patterns in 

such images to create a robust monitoring system for detecting animals and birds at the Coe 

Field private airport (8FA4), with a hit rate of 96% or higher for the animals and birds present 

in images at the time of flight.  

 

Keywords: Automatic detection of animals in images; UAV; wildlife strikes to civil aircraft. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



     

 

RESUMO 

 

OVIEDO, MAURYCIO RODRIGUES ESPINOSA. Detecção automática de aves em imagens 

coletadas com aeronaves remotamente pilotadas parauso em gerenciamento de risco à vida 

selvagem em aeroportos, 28 páginas. Dissertação (Mestrado em Agricultura e Ingormações 

Geoespaciais) – Universidade Federal de Uberlandia, Campus Monte Carmelo, Minas Gerais, 

Brasil. 

 

As colisões de animais com aviões são um problema de segurança que ocorre frequentemente 

em todo o mundo. Nos Estados Unidos da América, entre os anos de 1990 e 2019, ocorreram 

cerca de 209.950 colisões, causando danos materiais e perdas de vidas. Este projeto busca 

desenvolver uma metodologia que utilize imagens coletadas por aeronaves pilotadas 

remotamente e um processo automático de detecção de padrões nas imagens, a fim de criar um 

sistema de monitoramento robusto, capaz de detectar animais e aves em um aeroporto privado 

chamado Coe Field (8FA4), com uma taxa de acerto de 96% ou mais dos animais e aves 

presentes nas imagens no momento do voo. 

 

Palavras-chave: Detecção automatica de animais em imagens; UAV; Colisões de animais 

selvagens com aviões. 
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1 INTRODUCTION 

 

Wildlife strikes to civil aircraft are a growing safety and economic concern [1]. Avia-

19 tion accidents resulting from these strikes have gained media and public attention, especially 

after the well-known case of US Airways Flight 1549, which had to make an emergency landing 

in the Hudson River in 2009. Since then, the risk to wildlife and human life has been widely 

debated in the media [2]. Therefore, the Federal Aviation Administration (FAA) produced 

report number 28 entitled Wildlife Strikes to Civil Aircraft in the United  States, 1990–2019. 

From 1990 to 2019, approximately 720 civil aircraft reported aviation accidents 

involving birds, including 52 with land mammals, 44 with bats, and 29 with reptiles, totaling 

745 wild species. Each species has unique characteristics, body, physical density, behavior, and 

habitat. Moreover, 90% of these birds that encounter aircraft are protected species under federal 

law through the Migratory Bird Treaty Act, and the remaining 10% have state or local 

protection [3].  

Wildlife strikes to civil aircraft involving birds or other animals have become an 

increasing concern for the aviation industry in recent years [4,5]. Aviation accidents on January 

15, 2009 and August 15, 2019 highlighted this vulnerability. US Airways Flight 1549 (Airbus 

320), with 155 people on board, made an emergency landing on the Hudson River because 

several Canada geese flew into both engines at 2,900 feet shortly after takeoff  from LaGuardia 

Airport in New York [2,6]. In 2019, Ural Airlines Flight 178, an Airbus 321 with 234 people 

on board, made an emergency landing in a cornfield approximately three nautical miles from 

Zhukovsky International Airport in Moscow, Russia, after seagulls flew into both engines of 

the aircraft [7]. 

The Federal Aviation Administration (FAA) specifies that the first step in risk 

maagement is safety hazard identification [8]. As established by the FAA, all airports operating 

under the Code of Federal Regulations (CFR) Part 139 must conduct a Wildlife Hazard 

Assessment (WHA) when a wildlife strike occurs at an airport or in the nearby areas, involving 

wild and domestic animals beyond the control of their owners. A WHA must be conducted by 

a Qualified Airport Wildlife Biologist (QAWB), who identifies local animals, sometimes 

rudimentarily, using binoculars or just the naked eye. WHA reporting may take up to a year 

because data on wildlife species must incorporate daily and seasonal factors [9], making it a 

laborious task. Therefore, innovative approaches such as machine learning (ML) with Remotely 

Piloted Aircraft (RPA) and high-resolution satellite (HRS) images, which are also used for other 
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purposes and in other contexts and situations [10,11,12,13,14], are being used to detect these 

animals. 

RPAs have been successfully applied in various fields and activities for data collection 

and research projects [15,16,17]. As such, RPAs are becoming a commonly used tool for 

research, commercial, and private purposes. Mlambo et al. [16] indicated that RPAs can be used 

to inspect hazardous wildlife habitats, such as lagoons and farms, in the areas around airports. 

In identifying wildlife attractions, RPAs facilitate access to inaccessible areas by land. 

Moreover, RPAs can be used to monitor wildlife around airports as well as to deter wildlife 

species from living near airports [18]. 

RPAs acquire remote sensing images for wildlife risk assessment owing to their 

versatility, logistical ease, and ability to collect data on demand and at spatial resolutions 

unobtainable by satellites and piloted aircraft. Additionally, they can fly in congested airspace 

and at low altitudes where piloted aircraft cannot operate safely. Fixed-wing RPAs provide an 

opportunity to continuously cover large horizontal and vertical distances at low altitudes with 

high spatial resolution. [19]. Therefore, RPAs can help bridge this major knowledge gap and 

help airport operators conduct a WHA. 

The inclusion of ML is also essential for WHA reporting. A convolutional neural net 

work can extract highly accurate features for classification and prediction [20,21]. 

AbdElrahman et al. [22] examined the potential of using pattern recognition in images to 

observe waders on a local scale. They acquired such images in the Everglades Agricultural Area 

(EAA) and the Goodwin Wildlife Management Area in southern Florida with a small unmanned 

aerial vehicle (UAV) with digital video cameras. They automatically analyzed UAV images 

using pattern recognition techniques to identify and count birds. The algorithm developed 

leveraged the spectral characteristics of the images and matched images of the birds. 

Hong et al. [23] developed deep learning-based bird detection models and estimated 

using aerial photographs acquired by a UAV. They constructed a dataset with aerial 

photographs of wild birds in various environments, including lakes, beaches, reservoirs, and 

farms in South Korea, and applied five different deep learning-based object detection methods 

to analyze UAV aerial photographs. They flagged difficulties in ascertaining whether the 

objects were birds, concluding that the pixel image size of a bird must be larger to improve 

detection performance. Further, Dolbeer et al. [3] recommended robust research projects and 

the use of new technologies and innovative approaches involving  current technologies, as well 

as emphasized the need for public outreach and education as strategies for mitigating the risk 

of wildlife strikes to civil aircraft. 
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Considering the above discussion, we aimed to alleviate these problems by developing 

an innovative system for automatically detecting birds in RPA images. The current method used 

to collect data in airport areas is laborious and often non-standardized, heavily relying on the 

QAWB’s experience. Furthermore, surveys conducted with RPA equipped with cameras 

produce a large dataset, which requires time and training to identify animals. Therefore, our 

system may help to streamline WHA reporting. 

 

2 MATERIALS AND METHODS  

 

The study area was in Florida, United States of America. We collected data at Coe Field 

(8FA4) (Figure 1), a private, general aviation airport in Class G airspace, with a runway of 29° 

00' 37" N latitude and 81° 07' 56" longitude, covering approximately 90,000 m2. 

 

 

Figure 1. Location of data collection. 

 

2.2 Data collection 

  

In this study, we collected remote sensing data using a DJI Mavic 2 Enterprise Drone 

99 with a forward-looking infrared (FLIR) camera. This drone is versatile, safe, efficient, and 
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suitable for short, detailed missions [24]. It has a battery autonomy of approximately 35 

minutes, which can be easily and quickly replaced in the field, improving the data collection 

process and facilitating access to more closed or constraining locations. 

We conducted the flights autonomously and according to flight plans (Figure 2) on 

different days and times to identify daily, seasonal, and other potential variations that could 

affect the results, following all protocols [25]. The QAWB helped the field team develop and 

execute the project. Furthermore, we conducted all flights using DJI Go 4 software, which 

enables researchers to create flight plans and store telemetry data for each flight. The drone 

operator monitored the RPA flight through a ground station screen, including the current 

altitude and speed of the RPA and GPS coordinates. The pilot operated the drone outside the 

control station while another team member monitored the survey through a TV screen inside 

the trailer, recording wildlife activity and identifying habitats that could attract species to the 

area. Another task conducted inside the trailer involved monitoring by aircraft near the location. 

 

 

Figure 2. Proposed framework for automatic detection of forest fires by RPA. 

 

 Whether grid or manual, flights help the team capture multiple images of the location, 

providing QAWB with a better view of the wildlife and highlighting potential locations these 

animals can use. For this purpose, we conducted flights lasting 22 to 28 minutes at an average 

speed of approximately 20 miles per hour. On-site, researchers identified and recorded other 

animals not included in the flight plan, cataloging the species, number of animals, and their 

location. 

 

2.3 You Only Look Once 

 

We designed You Only Look Once (YOLO) for real-time object detection, using 

convolutional neural networks (CNN) to identify objects within an image. YOLO is a popular 
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because it is a fast and highly accurate tool. With a multi-scale architecture and anchor boxes, 

YOLO can enhance its detection performance and the adjustment of bounding boxes, thus 

improving accuracy. In January 2023, Ultralytics [26] updated the latest architecture version, 

YOLOv8, which uses Feature Pyramid Network (FPN). We assessed  model performance using 

the metrics of Mean Average Precision(mAP), Precision, and Recall. 

Mean Average Precision: mAP is the metric used to measure the efficiency of the object 

detection model and is calculated using the average precision in all classes. The higher the mAP, 

the higher the precision of the model, given by equation 1. 

 𝑚𝐴𝑃 = 1𝑛∑𝐴𝑃𝑖𝑛
𝑖=1  

(1) 

 

Precision and recall: precision measures how positively a classification is made. TP  and 

FP stand for True Positive and False Positive, and the number of correctly detected [27] and 

undetected birds, respectively, as expressed below. (Equation 2): 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 
(2) 

 

 

 Recall measures the rate of true positives, indicating the proportion of positive instances 

that were correctly identified, which can be expressed as follows in Equation 3. 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 
(3) 

 

LeCun et al. [27] showed that various studies used YOLO precisely because it provided 

high performance and precision and proposed a method for automatic wildlife detection in 

challenging environments. YOLO architecture has also been applied to develop bird detection 

models in a wind farm [28] and even using UAVs [29, 30]. However, finding animals on-site 

is difficult, as is acquiring enough images to train the network. Therefore, we trained with one 

identification class called the bird. 

In addition, we used 7784 images from the Open Images Dataset to calibrate the neural 

network weights. We used 70% of the images for training, 20% for tests, and 10% for 
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validation. We also used transfer learning from YOLOv4 and YOLOv8 starting from the 137th 

convolution layer of the network (Figure 3). Hence, our models did not learn standard 

information such as lines, edges, and colors from the start. Lastly, we trained with a dataset for 

animal identification for 50 epochs. 

 

 

Figure 3. Bird detection model workflow. 

 

2.4 DALL·E images 

 

 OpenAI revealed the DALL·E tool in early 2021, and it became popular for its ability 

to create several new images from simple sentences. In this study, we calculated some images 

in the DALL·E tool to assess whether birds could be detected in different habitats around 

airports. 

 We created 510 bird images in swamps, plantations, and mangroves to evaluate the 

performance of the bird detection algorithm in these artificially generated environments, and 

Figure 4 shows some detection results. 

 

 

Figure 4. Image produced by the DALL-E tool of a bird in a flooded habitat and plantation 

field. 
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3 RESULTS 

3.2 Test results  

 

In this section, we compare the performance of our YOLOv4 model with the state-of-

the-art object detection model, YOLOv8. [26]. Initially, we attempted to implement the more 

established YOLOv4, but new versions emerged as the architecture continued to evolve. We 

compared using the established metrics, the same dataset, and training parameters. The results 

are shown in graphs for each model tested in this study (Figures 5 and 6). 

 

 

Figure 5. Image with YOLOv4 performance metrics. 
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Figure 6. Image with YOLOv8 performance metrics. 

 

 The training precision reached 75% in the first model (Figure 4), with 58% recall and 

61% mAP. The most recent model, YOLOv8, achieved 81% training precision, with 

approximately 69% recall and 79% mAP, demonstrating a significant improvement in object 

detection over the earlier version of the model. In a previous study testing other YOLO versions, 

such as v2 and v3 [31], Hong achieved mAPs ranging from 58.53 to 54.22%, respectively. 

These results show that the most recent versions outperformed earlier versions based on these 

metrics. 

 

3.3 Bird detection and data visualization software 

 

We developed two software programs in Python [32] to process and visualize the dataset 

even in the field. We chose Python because this high-level, general-purpose programming 

language provides a wide range of libraries, including PyInstaller, to create a single executable 

file. 

We designed the first software to receive and process data, generating a .txt file with the 

input data report and a .xlsx file in table format with latitude and longitude coordinates 
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containing the position of each detected animal. The second software served as a data viewer, 

receiving the data generated by the first software and displaying the image with the detected 

animal in an interface. Another interface also geolocated the sightings. These two software 

programs worked together to provide a complete data processing and visualization solution. 

Python enabled the developers to create efficient and scalable solutions to these problems, 

making the work easier and more automated. Furthermore, combining a report file with a table 

file makes it easier for users to gain insights into the data and to perform additional analyses if 

needed. 

We also developed two software programs to allow users to focus on their main tasks 

without worrying about technical aspects, increasing work efficiency and productivity. 

Moreover, the automation of processes enabled users to save time and reduce human errors in 

animal identification, improving the precision of the results. 

Ease of use and process automation make using the software in image analysis possible, 

enabling efficient, accurate, and standardized data collection and analysis of bird identification 

and distribution. Additionally, the graphical tool provides a clear and intuitive visualization of 

the collected data and results, facilitating the analysis and interpretation of results and their 

access. We tested the software using images collected by an RPA flying over the test area and 

with images artificially generated by the Dall E tool. Table 1 presents data from each collection. 

 

Table 1. Dates of field data collection and the number of images generated by DALL-

E. 

11/08/202

1 

05/15/202

2 

10/21/202

2 

DALL

-E 

DALL

-E 

468 38 100 204 306 

 

The software initially had five files: the first contained configurations of the neural 

network that identified the birds, while the second was a destination folder where the field-

collected data should be placed. The third and fourth were executable files of the tool for data 

detection and spatial visualization. We created the fifth file as an instruction manual for using 

the tool. The user does not need to install any files on their computer to run the software, so 

there are no prerequisite computer skills. 

Once the user adds the data collected in the field to the “images” folder and initiates the 

software's detection process, the first screen shows the images processed by the neural network. 
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When a bird is detected in the image, a new window displays the image with the detection, 

offering image manipulation options, such as zooming, editing, and downloading. 

Once we processed the images collected in the field, we generated a field report (.txt 

file) and another report containing the geospatial information of each bird (.xlsx file). The field 

report contained information on the type of animal found, for example, in which image the 

animal was found, its geospatial coordinates, and the date and time when this record was made. 

With the geolocation information resulting from the field data processing, the second software 

displayed the locations of the sightings for better spatial awareness of where the bird was 

located and observed, further helping the biologist conducting the research. For visualization, 

the tool uses Google Marks to identify the object's location and an identification label. 

 

4 DISCUSSION 

 

Wildlife strikes pose a serious and costly challenge to the aviation industry and 

considerable research efforts worldwide have been made to address this issue. In addition to the 

material damage caused to aircraft, humans and wildlife are also at risk, exacerbating this 

problem. Combining drones with artificial intelligence is a new approach to monitoring and 

identifying wildlife and their habitats in this context. This task relies solely on the on-site 

biologist’s experience and knowledge. This is challenging and tiring because external factors 

can introduce errors to conclusions. Standardizing this data collection and using a neural 

network to select and analyze these data can mitigate errors owing to external factors. 

The search for standardization in these data or a standardized detection system aims to 

measure the factors that best interpret reality or deliver the best results for the user in the field. 

To achieve this goal, we applied some metrics that effectively captured the dataset, such as 

defining a threshold and data processing time. 

The first graphs show the relationship between the threshold and the percentage of 

positives found in the images, highlighting the percentage of correct detections at each 

threshold. We calculated the value using the mean of each dataset. The YOLO neural network 

resizes the images to 448×448, and then a 7×7 convolution is performed on each image. For 

each detection, we estimated the corresponding precision or the level of correlation between 

the data and the original image. When identifying an object in an image, an object detection 

system, such as a computer vision algorithm or a machine learning model,  also provides a score 

associated with that detection. This score indicates how confident the system is because the 

object is present in that image region. Based on these scores, a confidence limit can be applied 
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to filter the detections. In our study, we called this limit a “threshold.” We aimed to identify the 

best or optimal threshold for the trained dataset. 

In both models, the percentage of correct detections ranged from 40 to 70%. At some 

points, the model can better identify the objects in each dataset. The best threshold for  YOLOv4 

was T50 (threshold with 50% confidence) (Figure 7). However, this does not necessarily reflect 

that the model made more correct detections at this threshold than at all others; rather, a higher 

precision score was achieved because it may contain false positives. In the data analysis, the 

threshold that best fits the dataset is T70 because it requires greater confidence than the object 

found in a bird. When comparing them individually, the YOLOv8 model outperformed its v4 

model in all thresholds. (Figure 8). The parameters T60 and T70 detected the same number of 

objects. Hence, 70% confidence should be prioritized to introduce an extra level of certainty 

when processing a new dataset. 

 

 

Figure 7. Relationship between the percentage of animals identified in images and the 

total dataset, where T50 stands for a 50% threshold at each threshold. 

 

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00%

T90 40,70%

T80 51,16%

T70 55,81%

T60 60,47%

T50 63,95%

YOLOv4
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Figure 8. Relationship between the percentage of animals identified in images and the 

total dataset at each threshold. 

 

We also assessed the processing time for each threshold to identify the fastest processing 

value of the dataset. We compared the models in Table 2 using each model's average image 

processing time. The latest model, YOLOv8, is twice as fast as version 4 at some points, with 

no significant difference when varying the confidence threshold of the model because the 

change between them is approximately 0.1 s, which can be disregarded. Determining whether 

the model undergoes significant threshold variations over time would require introducing 

variations to the datasets. 

 

Table 2. Average image processing times for each model tested at different thresholds 

 T50 T60 T70 T80 T90 

YOLO

v4  

1.422

8 

1.389

8 

1.415

9 

1.434

9 

1.504

0 

YOLO

v8  

0.696

8 

0.665

0 

0.787

4 

0.640

4 

0.639

4 

 

Following the same reasoning, we tested the model on various datasets and at different 

times of the year using artificial image generation models. These evaluations aimed at 

measuring the model's speed on different datasets and dates to assess its ability to adapt to 

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00%

T90 53,49%

T80 58,14%

T70 69,77%

T60 69,77%

T50 68,60%

YOLOv8



24 

 

seasonal variations. Figure 9 shows that no significant changes occurred in response to 

variations in the dataset, thus demonstrating the model's adaptability to different data sets. 

 

Figure 9. Variation of the model tested at different times and thresholds using YOLOv8. 

 

The current system stands out for its processing speed in analyzing a set of 600 images 

for bird detection compared to earlier methods used in wildlife risk management research near 

airports. Previously, the procedure required the user to travel to the location  to conduct a WHA. 

The user then visually analyzed a set of images collected by UAV and annotated the birds 

captured in the images. 

Some identification errors may occur in the dataset because the images produced by a 

remotely piloted aircraft are nadir photos of the object. Additionally, some errors may be 

associated with the difficulty in object identification because of bird movement. Other errors 

may be associated with the difficultly in identification when the animal uses its color as a 

camouflage to merge with the image background (Figure 10). 
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Figure 10. Image of the survey conducted around the Coe Field airport, with birds 

identified visu-317 ally but not detected by the software, possibly because their color is the 

same as the background. 

 

5 CONCLUSIONS 

 

The method developed in this study involved the use of images collected by RPAs to 

monitor and identify wildlife around airports, thus facilitating access to areas inaccessible by 

land. This method also included a process of automatic detection of patterns in images, yielding 

a robust monitoring system that helps detect birds in environments near airports. This approach 

helps decision-makers provide rapid responses to mitigate the risk of aviation accidents caused 

by wildlife strikes and QAWBs generate WHAs. 

Further studies should be conducted in different locations with changing environments 

and diverse data collection involving various bird species to enhance bird detection and provide 

more support to field professionals. The use of alternative architectures for this detection type 

should also be explored. 
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