
A stochastic multi-state cellular automata

model and its application in scheduling and

density classification problems

Tiago Ismailer de Carvalho

Universidade Federal de Uberlândia

Faculdade de Computação

Programa de Pós-Graduação em Ciência da Computação

Uberlândia

2020

Tiago Ismailer de Carvalho

A stochastic multi-state cellular automata

model and its application in scheduling and

density classification problems

Tese de doutorado apresentada ao Programa de

Pós-graduação da Faculdade de Computação

da Universidade Federal de Uberlândia como

parte dos requisitos para a obtenção do título

de Doutor em Ciência da Computação.

Área de concentração: Ciência da Computação

Orientador: Gina Maira Barbosa de Oliveira

Uberlândia

2020

20/09/2023, 14:00 SEI/UFU - 1896004 - Ata de Defesa - Pós-Graduação

https://www.sei.ufu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=2146934&infra_siste… 2/2

Documento assinado eletronicamente por Gina Maira Barbosa de Oliveira, Professor(a) do Magistério Superior,
em 04/03/2020, às 15:37, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº
8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Odemir Mar�nez Bruno, Usuário Externo, em 08/04/2021, às 16:47,
conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de
2015.

A auten�cidade deste documento pode ser conferida no site h�ps://www.sei.ufu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 1896004 e o código CRC
1E874307.

Referência: Processo nº 23117.014006/2020-12 SEI nº 1896004

Dedicatória

"A todos que amei. A todos que amo. A todos que amarei.

À Gina por ter sido uma grande parceira na orientação do trabalho. Sua dedicação,

cuidado e atenção transbordam.

À Renilda por sempre lutar pelo melhor para seus filhos. Metade do amor em mim vem

de você.

A Felipe pelo apoio fundamental em vários momentos difíceis dessa tese. Você foi

generoso, amoroso e compreensivo."

P.S. A todos os psicólogos que eu tive que pagar para poder entregar esse negócio

uahsuiashuasuahiush.

Abstract

Cellular automata (CA) consist of identical components (cells), which change states

through time according to a transition rule that considers local information. CA are very

simple but possess an impressive computing capacity and present complex behaviour.

CA are applied to various applications, such as simulation of natural phenomena or for

performing a specific task. The central CA component is the rule that govern the change

in cell states. This rule can be manually designed for a specific problem or discovered

through search methods. However, as the number of states in the cells increases (in the

case of multi-state CA), the size and complexity of the rule grow exponentially, which

makes CA employment difficult. As a solution to this difficulty, this thesis proposes the

‘Stochastic CA with Reduce and Mapping’ (SCA-RM), a model in which the size of CA

rules remains unchanged, regardless of the number of states. This is achieved through

the use of three key components in the proposed CA: (I) ’Reduce,’ which converts any

configuration of states into two states (binary); (II) A traditional CA rule that operates

with only two states; (III) ’Mapping,’ which translates the output state from the binary

rule into an arbitrary state chosen from the original application’s set of states. As a

consequence, proposed model rules are much simpler than traditional CA rules. Initially,

we employed this model to task scheduling, and the results indicate that the proposed CA

significantly outperforms the state-of-the-art solutions based on traditional and totalistic

CAs. This result is due to the efficient simplification of CA rules provided by SCA-RM.

Next, when tested in the multi-state density classification problem, SCA-RM significantly

outperforms the traditional CA model. Therefore, results strongly support SCA-RM as

the best solution for addressing multi-state CA applications. By simplifying CA rules,

SCA-RM opens up new possibilities for the application of cellular automata in a wide

range of applications involving many states.

Keywords: Cellular Automata. Genetic Algorithm. Density Classification Task. Task

Scheduling.

Resumo

Os autômatos celulares (ACs) são compostos por componentes idênticos que mudam

de estado conforme uma regra de transição que considera informação local. ACs são sim-

ples, mas exibem comportamento complexo, sendo estudados na simulação de fenômenos

naturais e para a execução de tarefas específicas. O componente principal dos ACs é a

regra de transição que controla a mudança de estados das células. Tal regra pode ser

desenvolvida manualmente ou encontrada por um método de busca. No entanto, a com-

plexidade da regra cresce exponencialmente em relação ao número de estados nas células,

o que dificulta a aplicação dos ACs nesse caso. Esta tese propõe como solução o AC es-

tocástico com Redução e Mapeamento (SCA-RM), um modelo de AC no qual o tamanho

das regras permanece inalterado, independentemente do número de estados nas células. O

SCA-RM incorpora três componentes: (I) Redução, que converte qualquer configuração

de estados em uma configuração binária; (II) O uso de uma regra de AC tradicional que

considera apenas dois estados; (III) Mapeamento, que converte o estado binário retornado

pela regra tradicional em um estado arbitrário dentre o conjunto de estados da aplicação

original do AC. Dessa forma, as regras do SCA-RM são muito mais simples do que as

regras do AC tradicional. Inicialmente, o modelo proposto foi aplicado no escalonamento

de tarefas, e os resultados indicaram que o SCA-RM produz escalonamentos melhores do

que as soluções estado-da-arte baseadas nos ACs tradicionais e totalísticos. Tal resultado

é consequência da simplificação das regras no SCA-RM. O modelo proposto também foi

aplicado na tarefa da classificação da densidade, sendo que o SCA-RM demonstrou desem-

penho superior ao AC tradicional quando o número de estados é maior que dois. Portanto,

os resultados sugerem que o SCA-RM é a melhor solução para abordar aplicações de AC

com muitos estados. Ao simplificar as regras, o SCA-RM abre novas possibilidades para

o estudo do AC na resolução de problemas com muitos estados.

Palavras-chave: Autômatos Celulares. Algoritmos Genéticos. Tarefa da Classificação

da Densidade. Escalonamento de Tarefas..

List of Figures

Figure 1 – An example of Elementary CA: (a) simple rule; (b) temporal update

of cells. 32

Figure 2 – Traditional and nontraditional neighbourhoods in cellular automata.

The square represents CA cells and an edge represents the exchange of

information among them (the neighbourhood). In the traditional one,

cells consider solely local information. Alternatively, in the nontradi-

tional, the information can be exchanged among cells that are far from

each other . 34

Figure 3 – Classification of spatio-temporal evolution of some transition functions

on elementary CA with one-dimensional 60 cells lattice using two-states

for 60 time-steps. 38

Figure 4 – A task scheduling instance and a solution - (a) program graph Laplace9

(b) Gantt chart: a visual representation of the schedule and its evalu-

ation (540) . 43

Figure 5 – A well-known instance of task scheduling: program graph Gauss18 . . . 44

Figure 6 – System graphs composed of two, three and four fully connected proces-

sors. 44

Figure 7 – A flowchart depicting the overall functioning of a genetic algorithm, an

evolutionary search method evolving many candidate solutions through

genetic operators. 47

Figure 8 – General scheme depicting the CA-based model representation of a prob-

lem instance with four tasks and how the CA schedule this instance to

an architecture with two processors. 54

Figure 9 – Selection of neighbours for Task 11 from Gauss18 by the pseudo-linear

neighbourhood (adapted from (CARNEIRO; OLIVEIRA, 2013)). . . . 56

Figure 10 – Each GA individual is a CA rule when GA is searching for CA rules to

schedule. The population is formed by many rules like this one. 57

Figure 11 – Example of fixed-point crossover combining two parents to generate

two children in the GA. 58

Figure 12 – Example of flip-bit mutation randomly altering a generated child in the

GA. 59

Figure 13 – A cellular automata rule being applied in the lattice over many steps.

This rule is able to solve DCT as it converges all cells to state 0, which

is the major state in the initial configuration of the system. 61

Figure 14 – A flowchart illustrating the updating of the cell in the proposed model.

The input of this process is the state configuration of this cell’s neigh-

bours, as a string on base κ (number of states). The output in the last

step determines the cell state at the next step. 71

Figure 15 – The cell update in the traditional and proposed CA. The proposed

model employs: reduce that converts neighbours states to 1 if they

are equal to central cell state and to 0, otherwise; and mapping that

randomly chooses a state if the rule output is 1 or maintain cell state,

otherwise. 74

Figure 16 – Comparison of traditional CA rules and rules in the proposed model

considering four states and a neighbourhood of five cells. 75

Figure 17 – A general scheme of the cell update in the proposed stochastic CA

with reduce of the neighbourhood and mapping to the original states.

Z2 stands for a binary configuration and Zp stands for a configuration

considering any processors in the system. 79

Figure 18 – Box plots summarising the statistics of training results of SSCS−λ

variations for graphs of the Gauss Family. Experiments consist of 100

GA executions for 4, 8, 12 and 16 processors. Notches highlight a

95% confidence interval for medians. Whiskers mark Quartile1 = 0.5

* Inter Quartile Range (IQR) and Quartile3= 1.5 * IQR, dots present

an execution that returns a makespan value not included between the

whiskers, so with a short IQR, more points are plotted as dots 101

Figure 19 – Box plots summarising statistics on training results of SSCS−λ vari-

ations for graphs of Laplace Family. Experiments consist of 100 GA

executions for 4, 8, 12 and 16 processors. 103

Figure 20 – Box plots summarising statistics on training results of SSCS−λ varia-

tions for graphs of FFT Family. In FFT223 and FFT223B sub-figures,

the numbers 4/8/16 on the x-axis indicate the number of processors. . 104

Figure 21 – Validation of operation phase of SSCS−λ variations for scheduling

Gauss18 to 4, 8 and 16 processors. 108

Figure 22 – Validation of operation phase of SSCS−λ variations for scheduling

Gauss27 to 4, 8 and 16 processors. 109

Figure 23 – Validation of operation phase of SSCS−λ variations for scheduling

Gauss35 to 4, 8 and 16 processors. 110

Figure 24 – Validation of operation phase of SSCS−λ variations for scheduling

Gauss44 to 4, 8 and 16 processors. 111

Figure 25 – Validation of operation phase of SSCS−λ variations for scheduling

Laplace25 to 4, 8 and 16 processors. 112

Figure 26 – Validation of operation phase of SSCS−λ variations for scheduling

Laplace36 to 4, 8 and 16 processors. 113

Figure 27 – Validation of operation phase of SSCS−λ variations for scheduling

Laplace49 to 4, 8 and 16 processors. 114

Figure 28 – Validation of operation phase of SSCS−λ variations for scheduling

Laplace64 to 4, 8 and 16 processors. 115

Figure 29 – Validation of operation phase of SSCS−λ variations for scheduling

FFT39 to 4, 8 and 16 processors. 116

Figure 30 – Validation of operation phase of SSCS−λ variations for scheduling

FFT95 to 4, 8 and 16 processors. 117

Figure 31 – Validation of operation phase of SSCS−λ variations for scheduling

FFT223 to 4, 8 and 16 processors. 118

Figure 32 – Validation of operation phase of SSCS−λ variations for scheduling

FFT223B to 4, 8 and 16 processors. 119

Figure 33 – Traffic-flow transition rule . 124

Figure 34 – Majority transition rule . 124

Figure 35 – Majority rule emerging a stable configuration in the CA with all cells

assuming 0. 125

Figure 36 – Majority rule evolution, the system stabilise with many isolated blocks

of 0s and 1s. 125

Figure 37 – Traffic-flow rule evolving an initial configuration with blocks of states. . 126

Figure 38 – Traffic-flow rule evolving a randomly created initial configuration. . . 126

Figure 39 – Traffic-Majority rule evolution solving DCT. Traffic-flow rule is applied

from step 0 to step 11, and after the majority rule is applied. 127

Figure 40 – Behaviour of dividing blocks of states presented by traffic_3, a tree-

state cellular automata rule similar to traffic rule. 135

Figure 41 – Traffic-Majority rule evolution for three-states cellular automata (white,

black and red). This rule changes all cells to the most frequent state

in the initial system configuration thus solving the DCT. 136

Figure 42 – The best SCA-RM rule found herein evolving the CA lattice for the

solving of three-state DCT. 137

List of Tables

Table 1 – A record of the most relevant CA transition rules for solving DCT in

the literature. The transition evaluation (accuracy %) has shown im-

provements year after year. 65

Table 2 – The growth of the size of the transition and transition search space

as a function of the number of states employed in traditional CA. The

space containing all traditional transitions is huge as current estimations

report 1E+80 atoms in the universe. 69

Table 3 – Complexity of rules size and search related to increasing the processors

number κ. E signifies the size of the neighbourhood of a cell, c signifies

a constant not influenced by the altering of κ. 82

Table 4 – Best (BST) and average (AVG) makespan found in 100 GA executions

in the learning phase of CA-based models SCAS. SOTCS and a stochas-

tic CA (SSCS) compared to the best (BST) and average (AVG) result

obtained by a simple GA that evolves allocations (SGA) and DHLFET

heuristic considering graphs in the Gauss Family. SD stands for stan-

dard deviation, a metric of data spread and variance. 87

Table 5 – Best (BST) and average (AVG) makespan found in 100 GA executions in

the learning phase of CA-based models SCAS. SOTCS and SSCS com-

pared to the best and average results obtained by SGA and DHLFET

considering graphs in the Laplace Family. 88

Table 6 – Best (BST) and average (AVG) makespan found in 100 GA executions

in the learning phase of SCAS. SOTCS and SSCS compared to the

best (BST) and average (AVG) result obtained by SGA and DHLFET

considering graphs in the FFT Family. 89

Table 7 – Best makespan found to schedule graphs belonging to Gauss family

by rules trained on the basis of graphs in Gauss (Gauss set), Laplace

(Laplace set) and FFT (FFT Set) families in the operation phase of

SCAS(SCA), SOTCS (SOT) and SSCS (SCS) compared with the heuris-

tic (DHLFET) and a simple GA (SGA). 93

Table 8 – Best makespan found to schedule graphs belonging to Laplace family

by the rules of Gauss, Laplace and FFT set in the operation phase of

SCAS(SCA), SOTCS (SOT) and SSCS (SCS) compared with DHLFET

and SGA. 94

Table 9 – Average of the best makespan found to schedule FFT graphs by each

best rule trained to graphs grouped by similarity in three sets of rules in

the operation phase of CA-based models compared with DHLFET and

SGA. 95

Table 10 – Performance comparison of traditional CA transitions evolved by ge-

netic algorithms (GA) with the use of adaptive strategies for solving

binary DCT. The numbers represent the amount of rules found with the

specified accuracy. 129

Table 11 – Performance of best transition returned in each of 50 GA runs for

ternary DCT encompassing traditional CA and proposed models based

on stochastic SCA-RM . 133

Table 12 – Performance on ternary DCT for the proposed model (SCA-RM”) us-

ing BESTSCA, the best transition rule found herein and a manually-

designed solution inspired on the best solutions in literature. 139

Table 13 – Performance of transitions returned by 50 GA runs for four-state DCT

encompassing traditional CA and proposed models based on stochastic

SCA-RM . 140

Table 14 – Performance of transitions returned by 50 GA runs for eighth state DCT

encompassing traditional CA and proposed models based on stochastic

SCA-RM . 142

Contents

List of Acronyms . 21

List of Symbols . 23

1 INTRODUCTION . 25

1.1 Objectives . 27

1.2 Text Organisation . 27

2 BACKGROUND . 29

2.1 Cellular Automata . 29

2.1.1 History . 29

2.1.2 Definitions . 31

2.1.3 Rules Complexity . 35

2.1.4 Dynamic Classes of behaviour . 35

2.2 Scheduling . 38

2.2.1 Scheduling Problem Aspect: Tasks Notations D 39

2.2.2 Scheduling Problem Aspect - Machines Environment: A 40

2.2.3 Scheduling Problem Aspect - Processing Restrictions and Constraints: B 40

2.2.4 Scheduling Problem Aspect - optimisation Criteria: C 41

2.2.5 Static Task Scheduling Problem (STSP) 42

2.3 Genetic Algorithm . 45

2.4 Cellular Automata-based Scheduling 48

2.4.1 Literature Review of Schedulers Based on CA 48

2.4.2 General definitions of a CA-based Scheduler (CAS) 53

2.4.3 CAS neighbourhoods η . 54

2.4.4 Genetic Algorithm for Searching out CA rules for Task Scheduling . . . 56

2.5 Density Classification Task . 60

2.5.1 Density Classification Definition . 60

2.5.2 Literature Review . 62

3 PROPOSED MODEL: STOCHASTIC CELLULAR AUTOMATA

WITH REDUCE AND MAPPING 67

3.1 Motivation . 68

3.2 Formal definition of Stochastic CA with Reduce and Mapping 69

3.3 Designing the Stochastic CA with Reduce and Mapping 72

4 THE STOCHASTIC CA (SCA-RM) APPLIED TO TASK SCHEDUL-

ING . 77

4.1 Cellular Automata models proposed to the many states scenario 78

4.1.1 Stochastic CA with mapping-reduce . 78

4.1.2 Totalistic Cellular Automata . 79

4.1.3 Complexity of investigated models . 80

4.1.4 Methodology . 82

4.1.5 Stochastic CA on Task Scheduling . 84

4.1.6 Additional Remarks . 96

4.2 Testing Mapping functions in the Stochastic CA 98

4.2.1 Methodology . 100

4.2.2 Testing different functions as the Stochastic CA mapping for Task Schedul-

ing: Learning phase . 100

4.2.3 Additional Remarks . 120

4.3 Conclusion . 121

5 THE STOCHASTIC CA (SCA-RM) APPLIED TO THE DEN-

SITY CLASSIFICATION TASK 123

5.1 A notable stochastic DCT solution: the traffic-majority rule . . 124

5.2 Methodology . 127

5.3 Stochastic CA on the Density Classification Problem 128

5.3.1 The Binary Density Classification Problem 128

5.3.2 The Multi-state Density Classification Problem - three states 130

5.3.3 FSFC: a manually designed rule compared with the SCA-RM on DCT. 132

5.3.4 Multi-state DCT: four states and beyond 139

5.4 Conclusion . 142

6 FINAL CONCLUSIONS . 145

6.1 Perspectives . 147

REFERENCES . 151

I hereby certify that I have obtained all legal permissions from the owner(s) of each

third-party copyrighted matter included in my thesis, and that their permissions allow

availability such as being deposited in public digital libraries.

Tiago Ismailer de Carvalho.

20 LIST OF TABLES

21

List of Acronyms

CA-Cellular Automata: Complex systems composed of many identical simple com-

ponents that change states on the basis of local information.

CAS-Cellular Automata based Scheduler: A model to schedule tasks to processors

that uses cellular automata as underlying model.

DCT-Density Classification Task-A task studied in the CA context which the model

rule must decide the majority state in the model configuration.

ECA-Elementary CA: A very simple cellular automaton.

GA-Genetic Algorithm: A meta-heuristic search method inspired by Natural Selec-

tion.

HLFET-Highest Level First with Estimate Times IC-Initial Configuration: The

initial state configuration of every state of a cellular automaton.

IQR- Inter Quartile Range

SCA-RM-Stochastic Cellular Automata with functions reduce and mapping-The

model proposed herein, the rules that govern SCA-RM is much simpler than tradi-

tional CA rules when handling many states.

SD-standard deviation

STSP-Static Task Scheduling Problem: A problem where tasks of a program must

be assigned to processors of a system.

22 LIST OF TABLES

23

List of Symbols

α-the spatial organization of cellular automata lattice

β-set of states that a cellular automata cell can assume

B-tasks characteristics and constraints

C-scheduling optimisation criteria

ci,j-communication time between tasks i and j

D-tasks notations

η -determine the neighbours of cellular automata cell

E-neighbourhood size

γ-assigns an initial state to cellular automata cells

gaCross-crossover ratio of a genetic algorithm

gaMut-mutation ratio

gaGen-number of generations

gaP -population size

gaT our-tournament selection between GA individuals

i-an arbitrary cellular automata cell

κ-number of states in a cellular automata

λ-weight of probabilities used in the mapping

M -mapping, a conversion function

n-number of cells of a cellular automata/number of tasks of a program

φ-transition function which governs cellular automata update

P -processors

p-probability

P 1/P 2-probability used in the mapping function

r-cell radius defining the locality of this cell

R-reduce, a conversion function

σ-state of a cellular automata cell

s0-initial state of a cellular automata cell

S-size of a transition function

24 LIST OF TABLES

τ -number of time-steps

t-an arbitrary time-step in cellular automata update

w(i)-processing time

v-threshold of totalistic cellular automata

25

Chapter 1

Introduction

Cellular automata (CA) are composed of simple and identical components (cells),

which have local and limited communication. Notwithstanding such simple definitions,

they possess the property of universal computability (WOLFRAM, 1994). CA is formed

by a discrete number of cells organised into a dimensional lattice in which cells can assume

a discrete number of states. Additionally, the cell state update is determined by a tran-

sition rule that only takes into account the states of other cells in the vicinity. A further

step-by-step application of this rule determines a spatio-temporal evolution of the lattice

in accordance with this transition rule, thereby CA is an example of a dynamic system.

Multi-state CA (BAETENS; BAETS, 2014) designates a CA in which the cell can assume

many states, usually four or more. There is a particularity in those systems as transitions

governing multi-state CA are exceedingly large and complex. Besides, the management

and search for transitions on multi-state CA is laborious. CA are widely employed as a

modelling framework to simulate natural phenomena including biological, physical and

chemical processes (HAEFNER, 2005). On the other hand, many studies explore CA

computing ability, such as in the density classification problem (FATES, 2013), cryp-

tography (WOLFRAM, 1985) and scheduling (SEREDYNSKI; ZOMAYA, 2002). Some

other CA applications are image processing (VEZHNEVETS; KONOUCHINE, 2005),

urban growth (SANTÉ et al., 2010), traffic dynamics (QIAN; FENG; ZENG, 2017) and

multi-agent systems (TINOCO; OLIVEIRA, 2018).

Scheduling is a notable combinatorial optimisation problem, and for which many tech-

niques have been investigated (KWOK; AHMAD, 1999b; ADAM; CHANDY; DICKSON,

1974; JIN; SCHIAVONE; TURGUT, 2008; KUMAR; VIDYARTHI, 2016). Scheduling

involves a set of tasks that ought to be completed by a set of resources/machines. The

objective is to find the arrangement where resources can perform tasks in an optimal

fashion, while minimizing a specific cost criterion. Moreover, Task Scheduling consists of

assigning tasks of a parallel application to the processors of a multiprocessor architecture,

which aims at executing all tasks in the shortest time possible. This is known as a NP-

complete problem (PINEDO, 2008), thus approximate solutions like heuristics (KWOK;

26 Chapter 1. Introduction

AHMAD, 1999b; ADAM; CHANDY; DICKSON, 1974) and meta-heuristic (JIN; SCHI-

AVONE; TURGUT, 2008; KUMAR; VIDYARTHI, 2016) were widely investigated for

this problem. These individual solutions build a specific solution for an instance, and

the scheduling is usually built from scratch. Conversely, a promising solution is based on

cellular automata (CA) as it emphasizes the training of a set of CA transitions that can be

effectively applied to solve multiple instances. The CA-based scheduling (CAS) approach

incorporates a genetic algorithm (GA) to learn transition rules in the scheduling process

(Seredynski, 1998). The objective is to acquire a set of CA rules capable of successfully

scheduling a specific instance. Once these rules are learned, they can be reused to solve

other unseen instances efficiently.

Current computers are composed of parallel processors and an efficient exploitation of

nodes makes for faster computing, so the performance of current systems is related directly

with Task Scheduling. Besides, it is essential to consider architectures with many proces-

sors since commercial processors are composed of up to 40 coores Intel® Xeon™ Platinum

898. By contrast, state-of-the-art schedulers based on CA (CARNEIRO; OLIVEIRA,

2013; AGRAWAL; RAO, 2014; CARVALHO; CARNEIRO; OLIVEIRA, 2018) are un-

able to efficiently schedule eight or more processors. This is due to their employment

of standard CA, as such these models use one state to represent each processor in the

target architecture. Additionally, standard CA transition rules are known to become

very complex when many states are used in the model. Moreover, CA transitions size

exponentially increases to the number of distinct states. This ultimately leads to the im-

practicability of searching for CA transitions. Moreover, state-of-the-art schedulers based

on CA are unable to efficiently schedule for architectures with eight or more processors

due to transitions becoming too complex. This Thesis objective is to proposed a model

able to efficiently use CA rules to schedule systems possessing any number of nodes.

An usual strategy for studying the CA behaviour considers the solving of a compu-

tational task. In addition, the density classification task (DCT) consists of finding CA

transitions able to calculate the most frequent state in the initial state configuration of

the system. We should note that this is trivial for systems with global information, while

CA components counts with only local information and must cooperate in order to ac-

complish a task. DCT is a notable challenge in CA literature which various researchers

have given their contributions (WOLZ; OLIVEIRA, 2008; FATES, 2013; FUKS, 1997).

Furthermore, the multi-state DCT investigate the case where cells assume more than two

states (GABRIELE, 2005) and in this context, the traditional transitions become too

complex. Moreover, this work also aim at efficiently solving the multi-state variation of

DCT.

1.1. Objectives 27

1.1 Objectives

Our main objective is to investigate the current CA alternatives for multi-state prob-

lems and propose a new CA model specially built for solving multi-state CA applications.

Our intentions herein are highlighted below:

— To approach the multi-state CA limitation in which transition rules tend to become

extremely large and complex. This embarrass the search of appropriate rules. Hence,

we aim at proposing a CA model in which transitions stay with the same size

disregarding the number of states employed in the CA model.

— To investigate the reason for the inability of state-of-the-art CA based models to

schedule parallel programs to more than four processors. These models use many

states to represent the processors, and as such, CA transition rules become very

complex when coping with architectures that possess many processors.

— To propose a model of multi-state CA and apply this proposed CA as the underlying

model of a task scheduler which will be able to efficiently schedule architectures with

many processing nodes.

— To consider the quality of the schedule provided by CA rules when compared with

the solutions returned by well-known algorithms investigated for task scheduling in

literature, such as meta-heuristics searching for a set of solutions to one instance

and heuristics building one simple solution.

— To investigate the proposed model for solving multi-state DCT when compared to

traditional CA. When solving this problem, the traditional transitions complexity

increases according to the number of states. On the contrary, in proposed model

the transitions shall remain the same for the handling of any number of states.

This thesis’ major contribution is a CA model called Stochastic CA with Reduce

and Mapping (SCA-RM). Our focus was to design SCA-RM to handle multi-state CA

applications. The key achievement of SCA-RM is that it maintains a constant complexity

of transitions, regardless of the number of states employed. This characteristic makes

SCA-RM well-suited for multi-state CA applications

1.2 Text Organisation

This text is organised as follows: Chapter 2 presents the theories regarding our re-

search, in which, Sec.2.1 presents the cellular automata definition and its dynamical be-

haviour theory; in Sec. 2.2 there is the background of scheduling alongside the formal

28 Chapter 1. Introduction

definition of the Task Scheduling problem investigated herein. Sec. 2.3 presents the con-

cepts of genetic algorithms. In addition, the employment of a GA to train CA rules for

task scheduling is presented in Sec. 2.4). Following this, Chapter 4 presents our major

contribution, the cellular automata model SCA-RM. Furthermore, Chapter 4 considers

the employment of SCA-RM for scheduling to system architectures with many proces-

sors. Chapter 5 reports on the investigation of proposed model in the solving of DCT.

Additionally, Chapter 6 presents the general conclusions and perspectives.

29

Chapter 2

Background

This chapter presents the fundamentals related to our proposal of investigating CA

transition rules for scheduling tasks over processors of a system using GA to search for

such rules. Initially, complex system CA, evolutionary search GA and scheduling problem

are defined. Following, these three concepts are joined together as we define the approach

where these are involved in task scheduling of a parallel program.

2.1 Cellular Automata

In summary, CA are systems composed of simple identical components (cells) that

change states through time, based on local information. This discrete mathematical

model is commonly investigated in the simulation of natural phenomena, such as in physics

(VICHNIAC, 1984; TOFFOLI, 1984), biology (ERMENTROUT; EDELSTEIN-KESHET

et al., 1993; HAEFNER, 2005) and chemistry (KIER; SEYBOLD; CHENG, 2005; RIOS

et al., 2005). The simulations of this kind of phenomena are often performed using

continuous dynamical systems e.g. partial differential equations (PDE) (BANKS; TRAN,

2009). Alternatively, CA modelling puts simple small pieces into a system to interact

over some steps and observing the outcome, while PDE demands much more effort to

analyse the whole original system from which the governing behaviour must be abstracted

(TOFFOLI, 1984). CA is also very simple, fast and can easily be implemented in parallel

providing an efficient alternative. Furthermore, CA is widely investigated for simulation

purposes, which is reinforced by the inclusion of CA into more extensive works that review

mathematical modelling tools (HAEFNER, 2005; TOFFOLI, 1984; RIOS et al., 2005).

2.1.1 History

Notwithstanding the CA simple definition, these models formulation started after the

1950s (WOLFRAM, 2002). The most prominent CA precursor, which eventually led to

their name, was presented by John von Neumann, while trying to develop an abstract

30 Chapter 2. Background

model aiming at mimicking biological self-reproduction (NEUMANN; BURKS, 1966). In

order to build such a model, von Neumann initially conceptualised replicators described

by partial differential equations (PDE), but soon started to consider robotics and object

construction using electronic circuit layout as an analogy, to what is comparable to a robot

self-replication. At the same time, Stanislaw Ulam was studying crystal growth using a

simple 2D lattice as his model (MAINZER; CHUA, 2011). In 1951, von Neumann was

dealing with the huge complexity of building a self-replicating robot when Ulam presented

his crystal grow model and suggested that von Neumann should develop his design as a

mathematical abstraction. Following this methodology, von Neumann simplified his model

ending up with a two-dimensional self-replicator, which was implemented as an algorithm

(BURKS, 1970; WOLFRAM, 2002). The result is the renowned universal constructor

composed of cells that can bear 29 possible colours that are updated based on vicinity

information and very complicated rules manually designed to emulate the operation of

electronic and mechanical devices (NEUMANN; BURKS, 1966). After 14 years (1966),

the definition of this very first cellular automata (BURKS, 1970) was completed by Arthur

W. Burks in (NEUMANN; BURKS, 1966) after von Neumann’s death. The universal

constructor is existing proof that a particular machine could make endless copies of itself

(MAINZER; CHUA, 2011).

Following on from von Neumann studies, two lines of research arose, one focused on

the details of building the actual self-reproducing automata, while the other being a de-

velopment of the mathematical foundations of CA that tried to capture the essence of this

model and identify its properties (WOLFRAM, 2002). Following on, in the 1960s, CA

were perceived as parallel computers and detailed technical theorems were proved regard-

ing their computational abilities approximating CA to Turing Machines. Simultaneously,

some attempts began to connect CA with dynamical systems through mathematical dis-

cussions (WOLFRAM, 2002; SCHIFF, 2011).

To a certain extent, there was a lack of scientific investigation into CA until in 1970s

when the well-known Game of Life CA was proposed by John Conway and popularised

by Martin Gardner in (GARDNER, 1970). Conway defined a two-dimensional CA, where

a component (cell) could be black or white and manually laboured a rule to control how

each component changes its colour. This rule is very simple, deciding the update by

counting the number of black and white cells in the vicinity. The Game of Life achieves

an outstanding complex behaviour, fluctuating between random and ordered patterns

(WOLFRAM, 2002). A frequent feature of the Game of Life is the occurrence of "gliders":

arrangements of cells that move themselves across bi-dimensional space. It is possible to

arrange gliders to build logic gates such as AND, OR and NOT, which can be used to

prove that the Game of Life is a Universal Turing Machine (RENDELL, 2002).

Refer to (SARKAR, 2000) for a more comprehensive CA history.

2.1. Cellular Automata 31

2.1.2 Definitions

Cellular automata are discrete dynamical systems, i.e., all the aspects of this model,

such as time, space and states are discrete. A CA comprises a lattice of identical cells,

where each cell can possess one of a finite number of states and a transition function (rule)

that determines how cell states changes through time. To update a central cell state, the

rule takes into account the states of cells in the vicinity of that cell.

A CA can be formally expressed as quintuple: {α, β, γ, η, φ}:

— α is a dimensional lattice composed of n CA cells.

— β is the set of states that each cell can assume. Often, this set size (κ) is relatively

small. We refer to the state of cell i as σi.

— γ is a function that assigns to every cell of the lattice an initial state s0.

— η is a function that maps every cell i to a set of other cells called the neighbourhood

of i: η(i) . Normally, the neighbourhood size (E= |η|) is the same for all cells and

it typically consists of the closest cells to a cell i.

— φ is the so-called transition function that determines how the state of a cell changes

through time based on the current state of the cell and its neighbours. Also referred

to as transition rule or just rule. The same function φ is usually applied to all cells.

CA involves two basic components: the lattice (α) is composed of a set of cells organ-

ised in dimensional fashion and the transition function (φ) that assigns an output bit (σt
i)

∈ β to each possible neighbourhood configuration. As a complex system, the application

of this rule to the current lattice determines the updating of cells from each time-step.

Considering the update of a cell i, there is a particular selection of cells named neigh-

bourhood η of i. Further, the state of cells in η (neighbours configuration) are taken

into account to decide which bit of the transition rule is used as i state in the next step.

The neighbours of a cell is determined by the parameter radius (r), e.g, in a CA with

uni-dimensional lattice the neighbourhood of i is composed of r closest cells from the left,

cell i and r closest cells from the right. Equation 1 defines the update of the state σi of

the ith cell from time step t to t + 1:

σt+1
i = φ(σt

i⊗r, . . . , σt
i , . . . , σt

i+r) (1)

In the simplest and comprehensively acknowledged CA model, the lattice is one-

dimensional and the cell can assume only two states. This is named elementary 1D

CA (ECA), the lattice (α) is structured with cells aligned side by side and only two states

are allowed β = {0, 1}, κ = 2. Fig. 1 shows a CA transition function with radius r = 1,

32 Chapter 2. Background

Figure 1 – An example of Elementary CA: (a) simple rule; (b) temporal update of cells.

and its function application when starting from the arbitrary initial configuration of 10

cells: [1001001110].

Fig. 1 shows that the rule is applied many times determining the next configuration

of the lattice. The process of applying the rule subsequently for τ time-steps is commonly

referred to as CA spatio-temporal evolution. Note that the evolution of one-dimensional

model generates a two-dimensional space containing τ cell configurations. In addition,

neighbourhood of an ECA with radius r has E = 2r +1 cells. This neighborhood includes

the nearest r cells on both the left and right sides of the central cell, as well as the central

cell itself. Models of greater complexity such as bi-dimensional lattice CA use distinct

strategies to select neighbouring cells.

Another aspect is how to manage the neighbourhood of cells within the limits of the

CA lattice, for instance cells at position 0 of Fig. 1 do not have a cell to the left, while

cell 10 has no closest cell to the right. A common solution is to consider that the closest

cell to the left of cell 0 is the last cell (cell 10). Similarly, the neighbour to the right of

cell 10 is cell 0. This strategy is called lattice as a ring and also similarly applies when a

larger radius is used. All models considered herein employ lattice as a ring.

Another important aspect of CA is the order into which cells are updated. Following

this line of reasoning, two solutions are common:

— Synchronous: All cells are updated at the same time. More specifically, the tran-

sition function is applied to all cells at the same time. The key advantage of this is

that cells can be updated in parallel, making the temporal-evolution of a CA quite

fast. This is the most usual strategy taken in CA literature and state-of-the-art

of CA models in the scheduling process is synchronous (CARNEIRO; OLIVEIRA,

2013; AGRAWAL; RAO, 2014; CARVALHO; CARNEIRO; OLIVEIRA, 2018).

— Asynchronous: Cells are updated one by one, and this updated state is considered

in the updating cells hereafter (BAETENS; WEEËN; BAETS, 2012). It is also

2.1. Cellular Automata 33

known as sequential as the update order follows their numbering in the lattice. This

strategy was used in the first CA models proposed for scheduling (SEREDYNSKI;

ZOMAYA, 2002; SWIECICKA; SEREDYNSKI; ZOMAYA, 2006).

The final key aspect is the strategy for selecting cell neighbours (η). This is a very

important aspect for CA scheduling purposes, since models define the neighbourhood

trying to represent the problem being solved. The neighbourhood determines which state

information of other cells is taken into consideration by the transition function, so the

neighbourhood is strongly related to the behaviour presented in the CA and the ability

of the model to perform tasks (WATTS; STROGATZ, 1998). In some sense, it is related

to communication since the transition function uses information from the neighbours in

the update. Traditionally, CA is acknowledged through its use of very limited and local

communication, e.g. each cell accesses the states of its two nearest cells in the elementary

CA using r = 1. On the other hand, these two aspects can be relaxed in practice. Some

η implementations follow:

— Traditional: The neighbourhood is composed of the closest cells in the spatial

organisation of the lattice strongly priorizing the vicinity information. This is the

standard selection and is also called traditional, local and linear. Initial CA models

developed for scheduling employed this neighbourhood (SEREDYNSKI; ZOMAYA,

2002; SWIECICKA; SEREDYNSKI; ZOMAYA, 2006; CARNEIRO; OLIVEIRA,

2012a).

— Nontraditional: In this strategy, cells that are not close in the dimensional lattice

can be neighbours. Ultimately, it is possible for any cell to be a neighbour to each

other. Sometimes the neighbourhood is represented by a graph with edges represent-

ing the neighbours relationships of the cells. Besides, it can allow for an unrestricted

and non-fixed number of neighbours per cell and nonlocal communication, and is

also referred to as non-linear. Besides, some studies discuss this strategy in the

literature (WATTS; STROGATZ, 1998; MARR; HÜTT, 2009, 2009; MIRANDA;

MACHICAO; BRUNO, 2016; TOMITA; KUROKAWA; MURATA, 2002)

— Pseudo-linear: This strategy is similar to the non-standard approach but with

the number of the neighbours limited and fixed to all cells. Scheduling models

(CARNEIRO; OLIVEIRA, 2013) and (AGRAWAL; RAO, 2014) employ this strat-

egy.

The Figure 2 illustrates two different strategies of neighbourhoods. Note that in the

traditional approach, the neighbourhood of a central (2) is composed of cells in the vicinity

(1, 2, 3), while the number of neighbours is equal for any cell (three). Furthermore, in the

nontraditional one, the neighbourhood can include cells that are not close in the lattice,

34 Chapter 2. Background

such as task 1 being neighbour of task 4. In addition, the nontraditional approach allows a

distinct size of neighbourhood for different cells, for instance, cell 2 neighbours are 1, 2, 3

and 4, whereas cell 3 has only cell 2 in its neighbourhood. Besides, a cell update considers

the states of neighbours, so this updating is based on local and nonlocal information in

traditional and nontraditional neighbourhoods. Furthermore, the so-called pseudo-linear

neighbourhood can be understood as a special nontraditional neighbourhood in which the

number of the neighbours is equal for any cell.

Figure 2 – Traditional and nontraditional neighbourhoods in cellular automata. The
square represents CA cells and an edge represents the exchange of informa-
tion among them (the neighbourhood). In the traditional one, cells consider
solely local information. Alternatively, in the nontraditional, the information
can be exchanged among cells that are far from each other .

A nonlocal neighbourhood with fixed size is also used to improve cryptography in

(MACÊDO; OLIVEIRA; RIBEIRO, 2016). See Sec. 2.4.3 for more details on pseudo-

linear strategy. Eventually, some of the previous assumptions are relaxed such as CA

using stochastic updating (FATES, 2013) and irregular lattice CA (BAETENS; BAETS,

2012).

Most cellular automata (CA) studies employ a small set of states. However, more

recent studies use CA models with over four states. This type of CA is referred to as

a multi-state CA and is investigated in some works such as in (GABRIELE, 2005;

BAETENS; BAETS, 2014). This thesis can be seen as an investigation into the applica-

tions and characteristics of multi-state CA.

2.1. Cellular Automata 35

2.1.3 Rules Complexity

The CA rule is a very important component as this governs the behaviour of the

model. It therefore comes as no surprise that many studies have dealt with CA rules.

Over a short period, many output bits compose a rule and these are used to update the

CA.

A transition function φ is that which decides the state update of a cell i based on the

states of i neighbours. In addition, let E be the number of cells in the neighbourhood,

φ must determine one state (output bit) for each possible neighbourhood configuration.

Therefore, the rule size (S) should be large enough to cover all configurations of central

cell neighbours. Take into consideration elementary CA with radius r = 1 (Fig 1), the

neighbourhood size is three (E = 3), this model is binary, so the list of all neighbourhood

configurations is a combination of a binary string with 3 characters starting with config-

uration (000), then (001), and finishing at (111). More generally, for a CA with κ states,

neighbour state configuration can be represented as a κ-ary string. Mathematically, S

can be expressed as 23 = 8 (S = κE). As shown in Fig 1 eight output bits are necessary,

stemming from a tree neighbourhood on a binary CA. Furthermore, the rule size increases

exponentially to states per cell κ and neighbourhood size.

Now we consider the amount of different transition functions, i.e. the cardinality CA

rules search space. Consider a rule having a length of S, each bit can assume one from

among the possible states κ. Consequently, the rule is a κ-ary string, thus the number of

distinct rules is κS. For instance, on the elementary CA, the rule size S = 8, so to list all

transitions, we start with 00000000 (known as Rule 0) and keep adding 1 to this binary

string until we finishes with 11111111 (Rule 255), so there are 28 = 256 transitions. Since

there are κE neighbourhood configurations/rule bits, the size of rule search space could

be expressed as κκE

. This function heavily grows, so the increment of definitions like

states number κ and neighbourhood size r implies an acute increment in the number of

distinct transition functions, making the search in this space extremely difficult.

2.1.4 Dynamic Classes of behaviour

CA is a dynamical system and as such, it can be represented at any given time by

a tuple of integer numbers (the lattice configuration). The application of the transition

function determines the next configuration on the basis of the current one. Additionally,

this rule is applied generating a sequence of configurations from the CA lattice. The

result of this process is frequently referred to as CA behaviour, CA dynamics or temporal-

evolution.

CA behaviour is one of the most frequent aspects assessed in CA literature. These

studies range from experimental observation of configuration sequence (BAETENS;

BAETS, 2010; CARVALHO; CARNEIRO; OLIVEIRA, 2016)to sophisticated parame-

36 Chapter 2. Background

ters analysing the sequence of configurations (BAETENS; BAETS, 2010; BAETENS;

WEEËN; BAETS, 2012; BAETENS; BAETS, 2015) or parameters for predicting the

dynamics by considering the transition rule (BINDER, 1994; OLIVEIRA; OLIVEIRA;

OMAR, 2001; OLIVEIRA; OLIVEIRA; OMAR, 2000). Besides, findings endorse dynam-

ics influencing results when using CA in many applications, as when scheduling the in-

stability of undesirable chaotic behaviour (CARVALHO; CARNEIRO; OLIVEIRA, 2016;

CARVALHO; OLIVEIRA, 2017; CARVALHO; CARNEIRO; OLIVEIRA, 2018).

Based on the initial lattice configuration α0, a transition function φ and the application

of this rule for τ = j time steps. The resulting spatio-temporal evolution is a configuration

sequence containing some αj starting with j = 0 and finishing with j = τ . Moreover, the

next lattice configuration αj is defined through φ application to the last configuration αj⊗1.

Therefore, resulting dynamics depends on α0 and φ. Commonly, the rule is deterministic

resulting in the same configuration sequence every time that CA is evolved using α0 and φ.

On the other hand, a stochastic function can also be used generating a distinct behaviour

each time the rule is applied to a same initial configuration.

Let a CA evolution be that τ = k steps, the so-called limiting configurations are the

last j steps of the configuration sequence which are frequently analysed to characterise

the evolved dynamics.

Considering standard CA where the number of cells and states are limited, there is also

a limited possible number of distinct configurations of cell states. Therefore, if the rule is

applied to many steps, it is possible that some configurations will repeat. Additionally,

there usually exists a step where the rule determines the update to a configuration that

was already evolved in a previous step. Consequently, if we keep applying the rule, these

configurations will endlessly repeat in the lattice thereafter (cycle). Another possibility

is the evolution to a configuration that does not change when the transition function is

applied. In that case, the CA behaviour evolves into a stable immutable configuration.

Based on these two possibilities the simplest characterisation of dynamics are: variant

(states on limiting configurations change when rule is applied) and invariant (states on

limiting configurations do not change when rule is applied).

The most influential component deciding CA dynamics is the transition rule (WOL-

FRAM, 1983; WOLFRAM, 2002; OLIVEIRA; OLIVEIRA; OMAR, 2001). It is typical

to consider a qualitative classification of rules and dynamics, i.e., the behaviour or rule

is assigned to a class based on the configuration sequence. Many of these classifica-

tions are composed considering the limiting configurations. Wolfram, who is the pio-

neer of proposing behaviour classes, went on to assign rules to each class (WOLFRAM,

1983; WOLFRAM, 1984c; WOLFRAM, 1984b). This process could be quite complex

since it needs to cope with some possibilities of initial configurations and time-step val-

ues (ILACHINSKI, 2001). Although being difficult to classify rules, Wolfram classified

all rules for elementary CA (WOLFRAM, 2002), his classification scheme was refined

2.1. Cellular Automata 37

and expanded in (LI; PACKARD, 1990; LI; PACKARD; LANGTON, 1990). Following

behaviour classes are very similar to Li-Packard, which are based on Wolfram pioneer

classification (WOLFRAM, 1984a).

— Class 0: Null: Evolves a configuration sequence where the limiting configurations

are invariant thus, they are all equivalent. Besides, all cells assume the same state.

— Class 1: Fixed-Point: Evolves a configuration sequence where the limiting con-

figurations do not change when the rule is applied, but at least two cells assume

different states. A spatial shift of the final configuration is possible.

— Class 2: Two-Cycle: Evolves a sequence in which the limiting configurations

repeats two different configurations. The transition function determines that con-

figuration i evolves into configuration j and vice versa with a possible spatial shift.

— Class 3: Periodic: Evolves a sequence in which the transition rule determines

the update to a configuration of i already evolved in the sequence with a possible

spatial shift. Let the first appearance of i be t steps before, the deterministic rule

application for additional t steps, makes i appear again creating a repetition cycle.

Moreover, t is a function independent or weakly dependent on lattice size. I.e., when

a periodic rule is applied to a large lattice its cycle size increases slightly.

— Class 4: Complex: Evolves a sequence presenting a repetition in the limiting

configuration just like Class 3. Alternatively, cycle size t grows exponentially with

lattice size increment. In other words, the evolution generated by this kind of rules

leads to the formation of complex and long-lived patterns travelling and interacting

throughout the lattice.

— Class 5: Chaotic: Evolves a sequence presenting a non-periodic dynamic that

is quite unstable having high entropy. The dynamics abruptly changes when few

values are changed in the configurations. There is a repetition in a certain point

and cycle size grows exponentially with lattice size increment.

Interestingly, classes 0 and 1 are examples of invariant dynamics while the remaining

have a variant behaviour. These classes can indicate how appropriate a CA rule is to a

particular application. For instance, chaotic rules are ideal for cryptography but avoidable

for simulation as in this later case, significant effort is dedicated to build rules and it is

reasonable to avoid instability when this rule are used. Wolfram argued that all rules from

class 4 are capable of universal computation. This was proved for rule 110 of elementary

CA (COOK, 2004; WOLFRAM, 2002).

There are 256 possible transition functions to elementary CA for covering all binary

possibilities for a neighbourhood composed of three cells (Sec 2.1.3). Figure 3 shows the

38 Chapter 2. Background

dynamics of six of these rules and the behaviour class, which emerge using a lattice with

60 cells evolved for 60 steps. This pictures was generated with Mirek’s Celebration tool

(a) Rule 224: Null (b) Rule 108: Fixed-Point (c) Rule 23: Two-Cycle

(d) Rule 97 - Periodic (e) Rule 110 - Complex (f) Rule 30 - Chaotic

Figure 3 – Classification of spatio-temporal evolution of some transition functions on
elementary CA with one-dimensional 60 cells lattice using two-states for 60
time-steps.

It has already been proven that the process of classifying a rule to a class of behaviour

is generally undecidable (II; HURD; YU, 1990). In fact, even the problem of assigning a

rule either to class 0 and 1 is undecidable (II; HURD; YU, 1990). Unfortunately, this is a

limiting aspect of the classification scheme, these classes are an important theory consid-

ered in numerous studies though (WOLFRAM, 1983; WOLFRAM, 1984c; OLIVEIRA;

OLIVEIRA; OMAR, 2000; OLIVEIRA; OLIVEIRA; OMAR, 2001; GOG; CHIRA, 2012;

CARVALHO; CARNEIRO; OLIVEIRA, 2018).

2.2 Scheduling

Scheduling is a widely studied optimisation problem, virtually, there are a countless

variations in definitions related to it, whereas, a large range of techniques (algebraic, prob-

abilistic, simulation), which are already applied to this problem in literature (LAWLER

et al., 1993; PINEDO, 2008; CONWAY; MAXWELL; MILLER, 2003). In a few words,

a scheduling problem involves a set of resources (machines, processors, people) and a set

of tasks (operations, computational routines, duties), whereas a solution (schedule) is a

2.2. Scheduling 39

decision assigning the resources in order to perform the tasks. Usually, this assignment

must consider a time window like machine 1 must perform operation 1, starting at sec-

ond 10 until second 20. The aim is to distribute resources to carry out all tasks in an

optimum fashion, minimizing the cost of executing the tasks. Most common applications

include scheduling of industrial processes, production-planning and computational tasks

(PINEDO, 2008).

A comprehensive scheduling taxonomy is presented in (LAWLER et al., 1993; PINEDO,

2008; BRUCKER, 2004), so we decided to present the problem here following this for-

malism. Besides, there are other classification scheme in literature (CASAVANT; KUHL,

1988; KWOK; AHMAD, 1999a).

Let m machines mi{i = 1, 2, ..., m} aim at the processing of n tasks Tj{j = 1, 2, ..., n}.

A schedule for each task is an allocation of one or more machines at one or more time

intervals, whereas a whole solution is the assignment of all tasks to the machines over a

certain time-period. As such, for each task there are two numbers si and fi that represent

the moment where one (or more) machines started and finished this task execution.

A general and recurrent definition of a scheduling problem is composed of a triplet

A, B, C (PINEDO, 2008; BRUCKER, 2004) where: A describes the machines environ-

ment, B presents characteristics and constraints in regards of the processing of jobs by

the machines, while C represents the objectives to be optimised. In literature there are

many variations of these components resulting in a diverse set of definitions. Besides this

triplet there is a definition of the jobs/tasks, we refer to this as D.

2.2.1 Scheduling Problem Aspect: Tasks Notations D

Some definitions regarding tasks Tj{j = 1, 2, ..., n} are as follows:

— Processing time: The number Pi,j represents the amount of time that a machine i

needs to carry out a task j. Recurrently, machines are identical, thus this processing

time is equal for all machines and expressed as Pj.

— Start and finish time: Numbers sj and fj represent the time when a job j started

and finished its execution. Clearly, fj − sj = Pj

— Release and Due date: Release date rj is the time when a job j becomes available

for processing, so the start of processing of job j must start after rj. On the other

hand, a due date dj determines a time where job j must be completed. Besides, not

respecting rj implies an invalid solution and dj is used to penalise solutions that did

not carried out the task on time (fj > dj).

— Priority A weight wi can represent the cost of maintaining a job waiting for ex-

ecution (like a stocking cost) or determine which job should be completed first

penalising a solution in accordance with it not respecting this priority.

40 Chapter 2. Background

2.2.2 Scheduling Problem Aspect - Machines Environment: A

The definition of resources (machines) mi{i = 1, 2, ..., m} ranges from the quite simple

machine to a complex scenario with many machines organised in series or parallel, where

each of them has distinct characteristics.

— Single Machine: Since all tasks are processed by one machine, the problem is

to decide the order where tasks are carried out and the time where they start and

finish.

— Identical Parallel Machines Each m machine can process in parallel one different

job at some point. Machines can carry out any task j and need the same amount

of time to process it (Pj).

— Unrelated Parallel Machines There are m machines that process tasks in par-

allel, but the time to process the task j in machine i1 differs from the time to carry

out this task on machine i2 (Pi1,j 6= Pi2,j)

— Flow Shop There are m serial machines and each of them should process every

task. In other words, each task must be processed at stage 1 by machine i1, then at

stage 2 by machine i2, and so on. If stages involve more than one identical machine

in parallel, it is called Flexible Flow Shop. The route involving stages and machines

are the same for all tasks.

— Job Shop Equivalent with Flexible Flow Shop except that in Job Shop, each task

has a different set of stages, which can be composed of many parallel machines.

— Open Shop Each job has to be processed on each of the m machines. There is

a different sequence of machines to each job and the scheduler can determine this

sequence.

2.2.3 Scheduling Problem Aspect - Processing Restrictions and

Constraints: B

The following definitions are related to the process of assigning a task to a machine.

— Preemption: Preemption allows the scheduler to interrupt the processing of a job

at any point and put a different job on the machine instead. Thereby, a task can

start once at a given moment, be preempted and then start being processed again

later.

— Precedence Constraints Precedence constraints or dependency determines that

job j2 can only be processed after job j1 has been completed, thus j2 depends on

j1.

2.2. Scheduling 41

— Sequence dependent setup times To each of the tasks j1, j2 it is possible to

determine sj1,j2 meaning that a machine must wait this amount of time to start the

execution of j2 after completing j1. It is also possible to set setup times to the

tasks starting or finishing the execution sequence (s0,j2,sj1,0).

A recurrent variation is to use a dependency setup time (sj) for each task representing the

amount of time needed to transfer this task information to another machine. Therefore, if

a task (j2) depends on tasks j1 and both are assigned to distinct machines, the machine

must wait sj time units to start processing j2. For instance, if j1 finishes at time 10, and

setup time sj1 = 3,then tasks j2 processing can start only at moment (10 + 3 = 13) on

all machines except the one where j1 was carried out.

2.2.4 Scheduling Problem Aspect - optimisation Criteria: C

A scheduling solution can be evaluated according to distinct strategies. Usually, one

function is optimised at a time, but an evaluation function can be composed of many

distinct sub-functions considering distinct solution aspects, such as the time in which

the tasks are completed by the machines, energy-consumption, fair usage of machines

and so on. Usually, most functions are minimised and multi-objective scheduling aims at

optimising many functions at once.

— Makespan: Let the set of time units when each task execution was finished be

Fj = {f1, f2, ..., fn} in a certain schedule, the makespan of this schedule is the

highest number in that set: max({f1, f2, ..., fn}). i.e., the time when the final task

is completed.

— Total Weighted Completion Time: To each task, it is possible to assign a weight

w making up this optimisation function:
∑n

k=1(fk ∗ wk).

— Weighted Tardy Jobs: To each job finished after its due date there is a weight w′,

so the schedule is evaluated by:
∑n′

j′=1 w′′
j, such that there is n jobs where fj′ > dj′ .

— Energy Consumption: To each machine there is a weight w′′ representing the

power consumption of this machine. Let function mac(j) return to the machine

assigned to carry out task j in the schedule. In this case, optimisation functions

take into account the time intervals when the machine was executing jobs. A possible

evaluation is:
∑n

j=1((fj − sj) ∗ w′′
mac(j)).

Previous weights must be of a positive value, so these functions are non-decreasing

in job completion time Fj = {f1, f2, ..., fn}. Recently, researchers have begun to study

objective functions that could decrease even when the job completion time increases. For

instance, sometimes an early date ej determines that a job j must be finished later than

42 Chapter 2. Background

ej and the optimisation function is penalised each time that a tasks finishes too early

fj < ej.

There are algorithms able to optimally solve a scheduling variation in a polynomial

time (BRUCKER, 2004). This is valid when only one machine is available and all tasks

are available for scheduling at the start, e.g. their release time is zero. Notwithstanding

previous restrictions, the objective function should also be monotonic in the relation of

the finishing time of the tasks. In addition, preemption and idle time are forbidden.

When the scheduling problem definition is relaxed such as using two or more machines

the problem is NP-Complete (ULLMAN, 1975). Therefore, to the extreme majority of

scheduling problems there does not exist a method able to provide an optimum solution

in a viable amount of time.

2.2.5 Static Task Scheduling Problem (STSP)

The two components involved in a STSP instance are a parallel program composed

of many tasks and a multiprocessing system. A STSP solution determines a processing

unit for carrying out each task. The information pertaining to the tasks is known a priori

and does not change at all (static) (KWOK; AHMAD, 1999b). STSP is the scheduling

problem studied herein. Using A,B,C,D formalism, this variation can be summarised as:

— Considering D, the release date of all tasks is zero. Likewise, the processing time

of tasks is equal on any machine. There is no due date for tasks and no weight

prioritising tasks.

— Considering A, a set of m identical parallel machines represent a multiprocessor

system. Additionally, the processors have the same clock (speed), so, the amount

of time to finish a task is equal for all processors.

— Considering B, no preemption is allowed, but, there is a precedence constraint among

tasks meaning that a task j can only be processed after the previous task i is

completed (sj >= fi). Moreover, a dependency setup can be related to each of the

tasks i and j, representing the amount of time needed to transfer task i information

to other processors in case the task j depend on i and i and j are executed by

different processors (PINEDO, 2008).

— Considering C, the aim is to find a schedule minimising the time when the final task

is completed, the widely-studied makespan (BRUCKER, 2004; PINEDO, 2008; JIN;

SCHIAVONE; TURGUT, 2008).

Formally, a STSP instance is a parallel application denoted by a weighted directed

acyclic graph G = (V, E), also called a program graph. The set of vertices V represents

the n nodes of the parallel program where each node is a task. E is the set of edges that

2.3. Genetic Algorithm 45

Repeat steps c and d until all tasks are scheduled. This strategy is recurrently employed

in literature as a comparative method for scheduling STSP instances (COSNARD et al.,

1988; KWOK; AHMAD, 1999b; XU et al., 2013; WU; GAJSKI, 1990; XU et al., 2014).

2.3 Genetic Algorithm

Genetic algorithms (GA) are an evolutionary search method based on the Darwinian

Theory of Evolution by Natural Selection. In summary, the environment selects the fittest

individuals that reproduce and survive longer, where less adapted specimens are reduced

to a minority in the population. In this fashion, the individuals more adapted to the

environment tend to produce an offspring that usually maintains their good character-

istics. Holland firstly proposed GA as a computer program that can evolve and adapt

in a virtual environment just as species do in the wild (HOLLAND, 1992). Goldberg

greatly contributed to the GA definition and was also a big propagator of this technique

(GOLBERG, 1989).

An important aspect of GA design is that which measures how good a solution is in

tacking a problem, since this information guides an artificial evolution to generate better

solutions. Notwithstanding, traditional methods need to consider all characteristics of

a problem when building a solution from scratch. By contrast, GA only demands a

function that assigns a numerical value or score to each individual based on its capability

of efficiently solving the problem.

The set of possible solutions to a problem is called GA population. The fitness (quality

function) determines how efficient a solution is to solving the problem, so it indicates if

this candidate is good or not. Then some individuals with good fitness are selected to

be parents, and an offspring is generated containing new solutions that are generated by

combining their parents. Finally, individuals with worse fitness tend to be discarded from

the population. This process is repeated several times to find better solutions. In the

following, the GA components are summarised:

— Individual. This is a representation of the solution for the problem and a point in

the search space. Usually, individuals are a data structure that encodes the genetic

information or characteristics of an individual in the population.

— Initial Population The population is a set composed of many individuals. Further-

more, a key aspect is how initial solutions are created, often, the initial population

is composed of random solutions, but sometimes information about the problem can

be used to provide better initial solutions.

— Fitness Function Considers the individual codification to measure if this individ-

ual represents a good solution for the problem, the function should be a monotone

indication of how close the individual is from the optimum.

46 Chapter 2. Background

— Selection. This operator returns an individual from the population. Typically,

those with better fitness have a greater chance of being chosen. Selection elect

parents to generate the offspring, which are added to the population. An example

of selection is the tournament, that selects i individuals at random and the chosen

parent is the one from among these i which presents the best fitness. Moreover, the

elitism selects the individuals of the population that survive to the next generation,

with the remaining being discarded.

— Crossover. This so-called genetic operator receives two individuals, the parents,

and must provide a offspring that is a combination of the parents, I. E. this opera-

tor must combine the chromosomes from the parents (their codification) to generate

children that is somewhat akin to their parents. There is a probability factor decid-

ing how parents are merged to create children, so it is also a probabilistic operator

mimicking the randomness in natural sexual reproduction. Besides, this parameter

usually combines parts of the parents to create a child.

— Mutation. This genetic operator is applied to the offspring, and it involves ran-

domly altering a portion of the offspring’s genetic material. The extent of the

changes is determined by a probability, which dictates the likelihood and magni-

tude of the alterations.

— Generation. The GA starts the population at generation 0, and then some in-

dividuals are selected to generate offspring using the crossover, whereas, a part of

this offspring goes through mutation. Then, there is a selection among the current

population and the offspring to determine which individuals survive to the next gen-

eration. So, this process is repeated again in generation 1 and so on, this continues

until a certain finishing criteria is reached as in a maximum amount of generations

or when the optimum solution for the problem is found.

Figure 7 presents a GA flow; this figure serves also as a representation of the process

explained previously. Besides, Sec 2.4.4 present an example of GA.

In a well-built (GA), the fitness of the population improves consistently with each suc-

cessive generation; this is usually referred to as GA convergence. There are several tuning

parameters that determine how GA works. To determine the most effective parameter

settings, a common approach is to perform parameter tuning through experimentation.

This involves trying different values for each parameter and evaluating the performance

of the GA using various performance metrics, such as convergence speed, solution quality,

or computation time. The development of GA also involves designing adequate genetic

operators. Additionally, just like in the nature, GA works best when the population

presents a good diversity, that means that GA must avoid individuals to becomes too

2.3. Genetic Algorithm 47

Figure 7 – A flowchart depicting the overall functioning of a genetic algorithm, an evo-
lutionary search method evolving many candidate solutions through genetic
operators.

similar. Moreover, a good diversity helps in covering a broader search space generating

unexpected good solutions and avoiding local maximum/minimum.

An important aspect of GA design is the evolutionary pressure that can aid this

algorithm in successfully solving a problem or not to work at all. This is a measure of the

influence of the fitness on GA functioning. Still, high pressure gives a high importance to

fitness, so, only the best individuals are selected to reproduce or only the best individuals

survive to the next generation. On the contrary, low pressure indicates that GA uses the

mutation in a majority of the offspring and randomly selects individuals to reproduce and

survive. Both of the previous cases force GA not to work properly, a very high pressure

usually makes all individuals converge to a close search space becoming very similar. In

this case, the population diversity diminishes and the GA tends to get stuck in a local

maximum/minimum not finding the best solution to the problem. On the other hand, a

very low pressure ought to provide a good diversity, but the GA with such characteristic

is quite similar to a random search that takes a lot of time to converge or either does

not find good solutions. Therefore, it is very important to found an ideal evolutionary

pressure that forces GA to find global solutions in an adequate and reasonably small

number of generations.

48 Chapter 2. Background

2.4 Cellular Automata-based Scheduling

There are some distinct strategies used by researchers for coping with the challenge of

designing or finding a CA rule providing a desired behaviour. For instance, it is possible

to manually design a transition or to use a search method to obtain rules for solving a

task. Herein, genetic algorithms are the tool used to search for cellular automata rules

able to schedule task to processors. The idea is to evolve CA rules able to learn how to

schedule tasks.

Many strategies have been investigated for task scheduling in literature. These can be

placed into such categories as exact, heuristics and meta-heuristics techniques. The exact

method guarantees finding the optimal solution, such as based on brute force, branch and

bound and dynamic programming algorithms, but they are computationally unfeasible for

practical purposes. Heuristics are algorithms commonly based on list scheduling, cluster-

ing, critical paths and graph partitioning (KWOK; AHMAD, 1999b). However, heuristics

haves a low computational complexity in function of simple greedy choices, but usually

these are sequential and very dependent on the parameters and the definition of each

problem. Thereby, heuristic results are quite far from the optimum (AGRAWAL; RAO,

2014). Alternatively, some meta-heuristics have been applied bringing good makespan

results to scheduling. These techniques benefit from parallelism and results are often

independent to the problem domain. On the other hand, the execution time is usually

higher than in heuristics (JIN; SCHIAVONE; TURGUT, 2008).

Heuristics are well known for building a single response to a given instance of schedul-

ing, by contrast, meta-heuristics manipulate a set of solutions that evolves iteratively.

Still, both methods can be unified as they posses the drawback of requiring additional

effort to decide on a new scheduling for each problem instance. By overlooking exploitable

similarities among solutions, heuristics and meta-heuristics compute each solution from

scratch. By contrast, scheduler systems based on cellular automata aims at extracting

knowledge from the process when scheduling a program graph and reuse it to schedule

other instances. In that approach, the CA rule is trained to a certain degree for stor-

ing the information needed to perform scheduling, thus, bringing reusability and taking

advantage of common properties in problem instances.

Cellular automata-based schedulers (CAS) has two major phases, a learning phase

which relies on GA to search for CA rules, and as such provides an appropriate allocation

of tasks to processors, whereas a set of previously evolved rules is reused to solve unseen

instances of the problem in the operation phase.

2.4.1 Literature Review

Scheduling based on CA was firstly proposed by Seredysnki (SEREDYŃSKI, 1998)

and colleagues (SEREDYNSKI; ZOMAYA, 2002) and their proposal is investigated in

2.4. Cellular Automata-based Scheduling 49

several studies (SWIECICKA; SEREDYNSKI; ZOMAYA, 2006; VIDICA; OLIVEIRA,

2006; GHAFARIAN; DELDARI; AKBARZADEH-T, 2009; CARNEIRO; OLIVEIRA,

2011; CARNEIRO; OLIVEIRA, 2012a; OLIVEIRA; VIDICA, 2012; CARNEIRO;

OLIVEIRA, 2013; AGRAWAL; RAO, 2014; CARVALHO; OLIVEIRA, 2015; MI-

TRA et al., 2015)(BOUTEKKOUK, 2015; KUCHARSKA et al., 2016; CARVALHO;

CARNEIRO; OLIVEIRA, 2016; CARVALHO; CARNEIRO; OLIVEIRA, 2016; CAR-

VALHO; OLIVEIRA, 2017; GĄSIOR; SEREDYŃSKI, 2017; CARVALHO; CARNEIRO;

OLIVEIRA, 2018; OLIVEIRA; CARVALHO, 2018; CARVALHO; MORAIS; OLIVEIRA,

2018; ZEKRIZADEH; KHADEMZADEH; HOSSEINZADEH, 2019). These research

studies employ CA to solve an optimisation problem, which is an original proposal that

has inspired many subsequent studies.

In pioneering studies in which CA is employed to schedule tasks, such as (SEREDYŃSKI,

1998; SWIECICKA; SEREDYNSKI, 2000), the GA population represents CA rules ap-

plied to evolve a spatio-temporal evolution to each of many initial configurations in the

lattice, these rules decides the scheduling and are evaluated according to this result-

ing schedule. Moreover, CA employed an one-dimensional CA lattice and a traditional

neighbourhood, i.e., neighbours comprise of cells to the left and right (known as linear

neighbourhood in literature). Unfortunately, a consequence of this neighbourhood is that

neighbours of a cell are the same, disconsidering the program graph being scheduled as

neighbours. In this work, most rules evolve many lattice configurations to a same alloca-

tion disregarding the program graph given as input. Therefore, there is no indication that

these rules are useful for the scheduling of other instances. In the study (SEREDYŃSKI,

1998) a key contribution is made through the first non-traditional neighbourhoods using

program graph relationships to determine neighbours: those being selected and totalistic

approaches. In the selected neighbourhood, there are three subsets to each task, and each

set is composed of tasks belonging to the set of predecessors, brothers, and successors

of that task in the target program graph. From each set, two neighbours are chosen ac-

cording to the highest value of a graph attribute (blevel and tlevel). Therefore, there are

six neighbours per cell plus the cell itself, thus demanding a very large rule to represent

each possible neighbourhood configuration. The authors argued that GA has a lot of

difficult in searching for rule able to consider the configurations for all seven neighbours.

To overcome such a limitation, they proposed to halve the number of neighbours,

The selected approach is rarely employed in literature, this is due to the limitations of

this neighbourhood, such as: (i) it is only defined for two-processors; (ii) there is no study

measuring the effects of simplifying two task states (i and j) to one state, ranging from 0

to 4; (iii) it reduces the size of the neighbourhood but increases the number of states per

cell (κ). It is equally important to consider that CA rule complexity increases with more

states (Sec. 2.1.3), thus the selected neighbourhood ultimately leads to an increment in

the complexity of the rule.

50 Chapter 2. Background

The authors in (SEREDYŃSKI, 1998) propose a totalistic neighbourhood offering

a simpler nontraditional neighbourhood. The main idea sum up the information of all

tasks into a set of related tasks. On the basis of this sum, this neighbourhood simplifies

neighbouring cell states to four possibilities (0, 1, 2, 3). Therefore, this totalistic approach

employs one less state than through selected neighbourhood providing a simpler CA

rule. Unfortunately, experimental results in (SEREDYNSKI; ZOMAYA, 2002) endorse

that this approach returns a worse schedule than the selected. Therefore, the totalistic

neighbourhood is not employed in subsequent studies (SWIECICKA; SEREDYNSKI;

ZOMAYA, 2006).

Totalistic and selected approaches are also considered in (SEREDYNSKI; ZOMAYA,

2002), which focused on results of operation phase. This paper is similar to

(SEREDYŃSKI, 1998), however, (SEREDYNSKI; ZOMAYA, 2002) focused on experi-

ments using the sequential and parallel updating mode concluding that sequential provides

the best schedule.

In the following, the Seredysnki group aimed at improving the operation phase. Ul-

timately, this ends up in the proposal of a working mode named rescheduling (SWIECI-

CKA; SEREDYNSKI; ZOMAYA, 2006). The training mode returns a database composed

of rules apt for scheduling, so reschedule consists of re-executing the training GA using

some previously trained rules from the initial population. The selection of rules to be

used in the rescheduling is performed by an artificial immune system (AIS), in which the

transition rules of the database are antibodies and some program graphs are antigens, AIS

returns the CA rules providing the best makespan to these antigens. In (SWIECICKA;

SEREDYNSKI; ZOMAYA, 2006), just the linear neighbourhood is considered as well as

architectures having up to eight processors. Remarkably, authors reported great diffi-

culty in evolving rules for four and eight processors due to the size of the rule becoming

extremely large.

The studies (SWIECICKA; SEREDYNSKI, 2000; SEREDYNSKI; ZOMAYA, 2002;

VIDICA; OLIVEIRA, 2006; CARNEIRO; OLIVEIRA, 2011) employed traditional neigh-

bourhood since other neighbourhoods were very complex and undefined to more than

two processors. Recently this limitation has been surpassed by non-traditional neigh-

bourhoods in (CARNEIRO; OLIVEIRA, 2013) and in (AGRAWAL; RAO, 2014). Both

strategies improve scheduling results and are somewhat simple and robust when more

processors are available. Given their relevance, these strategies are presented in Sec.

2.4.3

Despite standard GA being recurrently employed in the training phase, investigations

have also been made into other search strategies in the literature. For instance, in (GHA-

FARIAN; DELDARI; AKBARZADEH-T, 2009), an ant colony optimisation is used to

train CA rules. Moreover, model presented in (VIDICA; OLIVEIRA, 2006) improves

the operation mode by using a joint evolution GA, in which six program graphs are em-

2.4. Cellular Automata-based Scheduling 51

ployed for the evaluation of rules in the learning phase and the fitness is the sum of

makespan related to six instances. On the other hand, a co-evolutionary GA is proposed

in (OLIVEIRA; VIDICA, 2012), the innovation of this study is to evolve simultaneously

a population of program graphs and a population of transition rules to obtain more gen-

eralised rules. On the contrary, state-of-art schedulers based on CA (AGRAWAL; RAO,

2014; CARVALHO; CARNEIRO; OLIVEIRA, 2018; OLIVEIRA; CARVALHO, 2018) rely

on simple GAs and the Joint or co-evolution GA is seen as a considerable improvement

to these.

CAS that relies on a sequential updating CA returned the best results in (SWIECI-

CKA; SEREDYNSKI, 2000; SWIECICKA; SEREDYNSKI; ZOMAYA, 2006), by con-

trast, the parallel update is preferable since it is the only strategy able to exploit the

inherent parallelism of CA (CARNEIRO; OLIVEIRA, 2013). This was the motivation

behind the study in (CARNEIRO; OLIVEIRA, 2011), which aims at proposing a model

taking advantage of parallelism. Authors investigate a GA with less selective pressure

resulting in a model employing parallel updating for which the results are comparable to

results from the sequential CAS.

Investigations conducted in (CARNEIRO; OLIVEIRA, 2012a) and (CARNEIRO; OLIVEIRA,

2012b) employed a unique initial lattice provided by a fixed arbitrary allocation (CARNEIRO;

OLIVEIRA, 2012a) or an initial configuration obtained according to the schedule provided

by simple heuristics (CARNEIRO; OLIVEIRA, 2012b). Results in those papers endorse

both strategies improving reusability. Therefore, modern studies consider only one initial

configuration when evaluating the rules.

Although makespan being the recurring optimising function in CAS, Energy-Aware

scheduling in (AGRAWAL; RAO, 2014) aims at optimising energy consumption of the

processors when calculating the schedule of a given program graph. This is also considered

in (BOUTEKKOUK, 2015), in which they optimise the power consumption in the context

of real-time embedded systems.

Recent investigations identified that the learning phase returns too many rules with

chaotic behaviour (CARNEIRO; OLIVEIRA, 2013; CARVALHO; OLIVEIRA, 2015).

Thereafter, some studies aim at diminishing the instability in the results by lowering

the number of rules with random behaviour. Alternatively, a desired behaviour for the

rules is the fixed-point or a periodic rule with short cycle length characterising some

stability. Some dynamics control parameters are used in order to diminish the num-

ber of chaotic rules. More details of dynamics control is discussed in (CARVALHO;

CARNEIRO; OLIVEIRA, 2016; CARVALHO; CARNEIRO; OLIVEIRA, 2016; CAR-

VALHO; CARNEIRO; OLIVEIRA, 2018), which also presents a state-of-the-art proposed

dynamics control in the scheduling context that greatly reduced chaotic rules. These stud-

ies were developed in the initial step of this doctorate.

CA were already applied to several scheduling contexts. For instance, in (KUCHARSKA

52 Chapter 2. Background

et al., 2016) CA decided the schedule for drilling machines in excavating tunnels. Whereas

(ABDOLZADEH; RASHIDI, 2009) aims to minimise makespan in the Job Shop Schedul-

ing Problem and Aircraft Landing Scheduling is the subject in (HE et al., 2014). Fur-

thermore, CA solves the Task-pull Scheduling in (MITRA et al., 2015), in which authors

search for rules that evolve into a final configuration bearing an even appearance of

states and which implies in an even distribution of tasks to the processors. Addition-

ally, the authors in (MITRA et al., 2015) assert that rules presenting high entropy are

ideal in this context. Currently, there is increasing number of studies considering the

schedule to cloud computing, this is justified since this technology is popular, profitable

and a promising paradigm for computing. Therefore, there is a recent interest in using

the CA approach to schedule in cloud environments (GĄSIOR; SEREDYŃSKI, 2017;

ZEKRIZADEH; KHADEMZADEH; HOSSEINZADEH, 2019)

CAS learn from examples and apply this knowledge to solve other instances. Thus,

CA scheduling is somewhat related to the machine learning (ML) approach. In literature,

there are many more algorithms for directly solving an instance than methods focused on

learning and reusability. On the other hand, many distinct ML algorithms based on neu-

ral networks (NN) were surveyed in (AKYOL; BAYHAN, 2007), these were investigated

on many scheduling variations, such as job-shop and parallel machines problems. In par-

ticular, the study (AGARWAL; PIRKUL; JACOB, 2003) employs an augmented neural

network for task scheduling, this builds a NN that is similar to the program graph rep-

resenting each instance, this builds an NN decides the schedule and was initialised using

many heuristics including random allocations and HLFET. These network weights and

resulting scheduling are adjusted after some iterations with an adaptive ML technique.

The use of this NN framework to 570 random instances resulted in an improvement in

the initial schedule in the majority of cases.

Several heuristics were proposed for the scheduling problem, many of them are sur-

veyed in (KWOK; AHMAD, 1999b), these conclude that HLFET (ADAM; CHANDY;

DICKSON, 1974) is very efficient outperforming others heuristics in many cases. Re-

cently, some meta-heuristics were investigated for scheduling like ant colony optimisation

(MERKLE; MIDDENDORF; SCHMECK, 2000), bee colony optimisation (PAN et al.,

2011), particle swarm optimisation (PSO) (BADAWI; SHATNAWI, 2013), genetic algo-

rithm (OMARA; ARAFA, 2009), Tabu Search (PORTO; RIBEIRO, 1995) and Simulated

annealing (LAARHOVEN; AARTS; LENSTRA, 1992). The former three algorithms are

compared to many heuristics in the comprehensive study (JIN; SCHIAVONE; TURGUT,

2008), this work investigates many real-world instances and concludes that GA and Tabu

Search are more time demanding, but return a better scheduling than other methods. In

addition, several studies proposed a GA and reported it returning a better schedule than

heuristics (OMARA; ARAFA, 2009; MOHAMED; AWADALLA, 2011; WU; GAJSKI,

1990; XU et al., 2014; XU et al., 2013).

2.4. Cellular Automata-based Scheduling 53

A recent research trend is hybridisation; this means combining some methods for

proposing a scheduling system. E.g., GA and heuristics are combined in (MOHAMED;

AWADALLA, 2011; OMARA; ARAFA, 2009) and GA and PSO work together in (KU-

MAR; VIDYARTHI, 2016). In addition, (KUMAR; VIDYARTHI, 2016) propose an elab-

orated algorithm called PSO-GA, this method is compared with HLFET, other heuristics,

simulated annealing, tabu search and standard PSO and GA to schedule real-world and

random instances. PSO-GA provides a significantly better performance than all other

algorithms endorsing hybridisation as a valuable tool when scheduling. This becomes

more relevant when note is made that they obtain this result exploiting less computa-

tional resource in PSO-GA than those used in standard GA and PSO. Additionally, some

improvements to a standard GA to Task Scheduling is presented in (OMARA; ARAFA,

2009). In this paper, many different GA variations are proposed by amalgamating heuris-

tics in GA and these investigate real-world program graphs and randomly generated

instances and inferred that hybrid GA outperformed standard GA.

CAS models present competitive results with meta-heuristics even when the CA rules

are considered for reuse in operation phase (AGRAWAL; RAO, 2014; CARVALHO;

CARNEIRO; OLIVEIRA, 2018). This conclusion is nontrivial demanding a deeper under-

standing of this result and it becomes more noteworthy when one considers that traditional

approaches provides no reusability of solutions.

2.4.2 General definitions of a CA-based Scheduler (CAS)

Here, the use of GA to evolve CA rules to solve STSP is presented. Models using this

strategy focus on the reusability of solutions and has the ability of providing an efficient

solution quite quickly. In this study, schedulers based on CA are used to solve STSP (Sec.

2.2.5), a specific scheduling problem.

CAS determines that each cell of the lattice represents a task of the target program

graph, i.e., if the set of tasks Tj has cardinality n, then, CA lattice (α) has n cells organised

side by side in an one-dimensional fashion. In those models, if a given architecture consists

of P processors, then, the CA set of states per cell (β) has κ = P possible values. For

instance, in a system with two processors (P0 and P1), each cell j can assume state 0

to indicate that the corresponding task (j) is allocated to processor P0, or value 1 (task

j is allocated to P1). In addition, a CA transition rule φ is applied for τ time steps to

determine a final lattice configuration, which makes up the allocation of tasks. Thereby,

the key component is the CA rule since these decide the schedule. It is expected that

an appropriate rule for scheduling generates a CA dynamic that computes a solution for

the problem. To apply the rule and define the allocation, an initial lattice configuration

is necessary, which is determined by a heuristic (CARNEIRO; OLIVEIRA, 2013) or an

arbitrary distribution (CARNEIRO; OLIVEIRA, 2011; CARVALHO; OLIVEIRA, 2017).

Additionally, schedulers receives a program graph composed of n tasks representing the

54 Chapter 2. Background

parallel program and the number of processors in the architecture where these tasks must

be scheduled.

Figure 8 illustrates the scheduling in a CAS, for a program graph with four tasks, to

a multiprocessor system with two-processors (κ = 2). In this figure, a transition rule is

applied for some time-steps deciding a final lattice configuration of 1101, therefore, tasks

1, 2 and 4 are allocated to processor P1, while, task 3 is assigned to processor P0.

Figure 8 – General scheme depicting the CA-based model representation of a problem in-
stance with four tasks and how the CA schedule this instance to an architecture
with two processors.

The resultant scheduling is obtained after two steps: first, the final configuration

defines the allocation of tasks to processors, and then a scheduling policy chooses the

running order of the tasks allocated within each processor. Schedulers based on CA often

uses highest dynamic bottom level first as the scheduling policy. The bottom level (blevel)

of a task is the highest cost between this task and an exit task, and an exit task is a

vertex without a child. The blevel of a node i is presented at the end of Sec. 2.2.5. The

blevel is dynamic whether the weight ci,j is considered if the tasks i and j are allocated to

distinct processors (CARNEIRO; OLIVEIRA, 2013), so the dynamic blevel is dynamically

calculated based on a specific schedule.

The resulting schedule is obtained when the policy is applied to the allocation de-

termined by the CA rule. Therefore, the makespan is calculated based on this schedule

representing the evaluation of the allocation provided by this rule.

2.4.3 CAS neighbourhoods η

Scheduling results using traditional neighbours selection are not very good as this sim-

ple strategy is unable to represent the program graph structure. Besides, the recent mod-

els (CARNEIRO; OLIVEIRA, 2013; AGRAWAL; RAO, 2014) proposes a non-standard

neighbourhood selecting cells neighbours in an effort to mimic the structure of each pro-

gram graph to be scheduled. In later models, the neighbourhood reflects task relations

2.4. Cellular Automata-based Scheduling 55

and this information can be used by the transition function, thus, significantly improving

the scheduling performance.

The so-called pseudo-linear neighbourhood (CARNEIRO; OLIVEIRA, 2013) is able to

capture the spatial relations of the computational tasks in the program graph. To define

the neighbourhood of a cell j, it considers predecessors or successors nodes of j in the

program graph. There is a strategy for prioritising the predecessor or successor defining

which of these will be the selected neighbours, this strategy often uses chosen graph

attributes. Pseudo-linear neighbourhood employs two well-known attributes (KWOK;

AHMAD, 1999b) in task scheduling: the bottom level of a task (or blevel), explained in

Sec. 2.4, and the top level of a task (or tlevel). Consider that an input task be a task

without predecessors, the tlevel of a node i is given by:

tli =







0, if i is an input task;

max j∈predecessors(i)(tlj + cj,i + wj), otherwise.
(3)

where tlj denotes the tlevel of each predecessor of i. The tlevel of the input nodes is

zero. For other nodes, the tlevel is recursively obtained from input nodes.

Given a radius r, the neighbourhood of a cell i (ηi) is defined according to the equation:

ηi = (σblevel(r), . . . , σblevel(1), σi, σtlevel(1), . . . , σtlevel(r)) (4)

The set of successors and predecessors of cell/task i are within a list that is ordered

by blevel in a descending order. In addition, function blevel(x) returns the xth task in

this ordered list. A similar procedure is performed for function tlevel(x), which returns

the xth related task considering the tlevel descending order. For each attribute (blevel

and tlevel), using a neighbourhood with radius r, only the first r tasks in each list are

selected as neighbours. Figure 9 exhibits the neighbourhood for task 11 determined by

the pseudo-linear approach when scheduling the Gauss18 (Fig. 5) graph. The set of

successors and predecessors of task 11 are 6, 8, 12, 13, 14, 15. Using a radius r = 2, tasks

6, 8, 13 and 15 are selected as neighbours of the cell associated to task 11, since they are

related tasks possessing the highest blevel value (tasks 6 and 8) and tlevel (tasks 13 and

15).

Another similar proposal was presented in (AGRAWAL; RAO, 2014). These authors

propose an unnamed neighbourhood eta′
i to a task/cell i that includes two parents (pre-

decessors) and two children (successors) of task i in the program graph. If a node has

more than two successors, then only two of them are selected from all parents of the node,

similarly this is valid for the children. When there are less than 2 successors or predeces-

sors, then some dummy nodes are assigned and they are ignored in the cell state update.

If there are more than 2 related tasks in each group, then the selected neighbours are

the predecessor or successor tasks with highest edge weights in the program graph being

scheduled, i.e., max c(i, j) of any related tasks. This weight represents the amount of

2.4. Cellular Automata-based Scheduling 57

to the makespan related to the schedule that these rules produce. Therefore, GA searches

for CA rules that determine the most efficient allocation for the tasks. In the operation

phase, it is expected that trained rules provide a good allocation of the tasks from unseen

program graphs.

The idea underpinning the scheduling with CA rules is to use a time-consuming GA

to find rules in the learning phase, while the operation phase just consists of applying

returned rules for scheduling a program. Thus, the training process is executed once,

and then, trained rules ought to be used in the scheduling of many program graphs. To

decide task allocation in operation, a rule in directly applied over the CA lattice for some

times-steps, however, this is extremely simple and fast. Therefore, the idea is to use a

slow algorithm that runs once to obtain CA rules able to schedule and then employ these

rules to solve several instances in the very rapid operation phase. Definitions related to

the learning phase GA are as follows.

Individual Representation and Initial Population

The GA population is constituted of CA transition rules, so each individual is a vector

in which output bits represent states used to update cells according to the configuration

of their neighbours. When a model uses a neighbourhood with size three (M = 3), the

individual has eight output bits to cover all possible neighbours configurations. Figure

10 presents an example of an individual in this simple neighbourhood. The population is

composed of gaP = 200 transition functions, and in the initial population each output bit

is chosen from among possible states following normal distribution, therefore, each state

has a chance of 1
κ

to be chosen.

Figure 10 – Each GA individual is a CA rule when GA is searching for CA rules to
schedule. The population is formed by many rules like this one.

Individual Evaluation (Fitness)

Let’s consider the scheduling of a program that is composed of n tasks, in such way

that the lattice has n cells. To evaluate a CA rule, first, an arbitrary initial allocation

of the tasks is calculated. Then, just like in the literature, the rule is applied over the

CA lattice for τ = 3 ∗ n steps. This spatio-temporal evolution determines a final lattice

configuration in which cell states are translated to the task allocations. For instance, a rule

in the evaluation is applied to an initial lattice 0010, determining the final configuration

of 1000, then the resulting allocation is task 1 to processor 1, and tasks 2, 3 and 4 to

58 Chapter 2. Background

processor 0. Next, the resulting schedule is obtained when the scheduling policy is used

defining the order that tasks are executed within each processor. Finally, makespan is

calculated according the schedule and the fitness of the rule is equivalent to this makespan.

Selection

CA rules in the population (gaP = 200) are initialised and evaluated, then the se-

lection must choose the parents, individuals to generate the offspring for the next GA

generation. This so-called selection for reproduction uses tournament gaTour = 2 in

which two individuals are chosen according to normal distribution then, the selected par-

ent is that which possesses the lowest makespan. This selection is applied before the

crossover.

Then the offspring (next generation) is generated and evaluated. Another selection

process is then applied to determine which individuals will survive and be part of the

next generation. This selection for survival uses truncation, where individuals from both

the current population and the offspring are sorted in descending order based on their

makespan. A new population is formed by selecting the top-ranked individuals (with a

population size of gaP = 200), while the remaining individuals are discarded.

Crossover

GA in literature employs a crossover rate of gaCross = 100%, so the offspring size is

equal to the population size (200). Moreover, the combination of solutions is provided by

the fixed-point crossover, initially two rules are selected from the population, and then a

random position i is chosen using normal distribution. Finally, a first child receives first

parent bits from start until the position i and bits from the second parent starting at

position i + 1 to its end n; whereas, the second child receives second parent bits from 0 to

i and the first parents bits from i + 1 to (n). This crossover means that a child inherits

part of its parents output rule, some bits from a parent and remaining bits from another

parent. This is presented in Figure 11, in which, the random position is three and the

children are a combination of their parents according to this point.

Figure 11 – Example of fixed-point crossover combining two parents to generate two chil-
dren in the GA.

Mutation

2.4. Cellular Automata-based Scheduling 59

The mutation rate in this GA is defined per bit rather than per individual, so using

gaMut = 4% of mutation means that each bit of the rule has a chance of 4% to go through

a mutation process. The genetic operator performing mutation is the flip bit, in which a

random position of the vector is drawn (i) and this bit is changed to a value randomly

chosen among the states. Here, the bit suffering mutation can be changed to any different

state/processor following normal distribution. Figure 12 presents the mutation for bit 4,

in that case the rule original output bit was 1 and mutation changed it to 0 by choosing

one state at random.

Figure 12 – Example of flip-bit mutation randomly altering a generated child in the GA.

GA Evolution

The evolution process consists of applying the genetic and selection operators to gener-

ate the individuals offspring and evaluate this offspring, however, rules that provide lower

makespan survive to the next generation. This process is repeated for 200 generations

gaGen = 200. After GA execution, there exists a set of evolved rules that provides a good

solution for scheduling one specific program graph. This training can be repeated for sev-

eral program graphs. These returned rules are used in the operation phase to schedule

other instances.

One can see that the training GA operators are simple, besides, our focus is to im-

prove the scheduling by proposing a CA that is able to efficient handle the case of many

states/processors in the architecture. Therefore, this study sets its efforts toward an study

of cellular automata, rather than trying to improve the genetic algorithm.

Through use of training phase results in a database composed of rules trained by

the GA, it is possible to train rules over several instances generating a large set of CA

transitions. Then in the operation stage, these rules are applied to schedule an unseen

parallel program, these rules generate a temporal evolution and a final lattice configuration

that ultimately determine the tasks allocation to processors. Usually, a set of trained rules

are applied and the best schedule (lowest makespan) returned by these rules is adopted

as the schedule for a particular program.

60 Chapter 2. Background

2.5 Density Classification Task

DCT is one of the most studied task in literature (MITCHELL et al., 1996), the aim

is to unravel how CA is able to compute a task by using local information. Besides, the

CA components must share information and cooperate to conclude the task.

The DCT study contributes on the grasping of CA mechanisms, behaviour and the

process in which this model perform a task. Therefore, DCT research can help any

researcher in the understanding of the solution emerged by this model, which is usually

hard to comprehend.

2.5.1 Density Classification Definition

DCT can be formulated as, given an initial configuration (IC) of a two-state CA, if

there are more 0s than 1s in the IC, the temporal evolution in the CA must change all

cell states to 0; if there more 1s than 0s in the IC, the temporal evolution must change

all cell states to 1. One notes that the temporal evolution is governed by transition rules,

which are in charge of solving DCT. Moreover, the rule concludes this task when cells in

the final configuration assume the most frequent state in the initial configuration; and it

fails otherwise.

In addition, the 1s and 0s can be distributed throughout the CA lattice. The transition

that governs CA have access only to local information, so the solving of DCT demands that

the model transfers information over large distances. Hence, a sort of global coordination

is required in order to share information of cells that are distant one from the other in

the lattice.

In the literature, there are two main approaches to DCT. Researchers can manually

design the CA transitions or an evolutionary technique can be applied to search for rules

apt at solving DCT. The first approach demands a lot of creativity and thinking and the

manual rules are normally outperformed by rule found by an evolutionary search method

(OLIVEIRA; OLIVEIRA; OMAR, 2001). Furthermore, a method such as GA sound

simpler, as it consists of applying transitions to ICs in order to evaluate them and after

employ GA operators to find better rules.

Additionally, let smaj be the most frequent state in one IC, then to evaluate a CA

transition φ for this IC, one follows with:

— apply φ, starting on the IC, for τ steps obtaining the final configuration of states.

— check if all cell states are equivalent to smaj in the final configuration, if this is true

the rule solved the DCT for this IC, and it fails otherwise.

Let us note that the above definition encompasses CA with any number of states.

Besides, multi-state DCT refers to solving the task when the model has more than two

states.

2.5. Density Classification Task 61

This process of solving the two state DCT is illustrated in Fig. 13. The first line of

the figure presents the IC of a lattice with 41 cells, then the transition is applied over 60

time-steps (τ = 60). Additionally, there are more 0s than 1s in the IC, and in the final

configuration the transition converges all cells to state 0, so this rule solved DCT in this

case. The transition in this figure is commonly obtained in the GA proposed by Mitchell

(MITCHELL; HRABER; CRUTCHFIELD, 1993) and it has radius=3. Furthermore, in

the first steps, the rule creates a block of 1s in the middle, but in subsequent transition

applications, the borders of the block of 1s start to become 0 in contact with a block of

0s. This phenomenon moves gradually from the border of the block of 1s to its centre till

every 1 disappears. Furthermore, is quite interesting how this behaviour emerged in the

system.

Figure 13 – A cellular automata rule being applied in the lattice over many steps. This
rule is able to solve DCT as it converges all cells to state 0, which is the major
state in the initial configuration of the system.

The accuracy/fitness of a transition is the percentage of ICs that this rule is able to

successfully complete the DCT. The evaluation is carried out on many ICs generated with

discrete normal distribution (Binomial distribution). In this distribution, the possibility

of drawing 0 and 1 is 50%. The purpose of this process is to cover a wide range of ICs, as

the number of different ICs is exponential, which prevents all of them from being tested.

This measure of performance is widely adopted in literature (MITCHELL et al., 1996;

OLIVEIRA et al., 2009; FATES, 2013).

62 Chapter 2. Background

2.5.2 Literature Review

DCT was idealised by Gacs, Kurdyumov and Levin (GÁCS; KURDYUMOV; LEVIN,

1978). In this seminal study, the task was not named as DCT and their work focused on a

more general investigation of CA rules emergent behaviour. Notwithstanding, this study

presents the rule GKL, a manually designed rule, it was invented as a part of studies of

computation in a binary one-dimensional space. GKL is arguably the most famous and

has persevered as the most efficient DCT rule over many years.

Packard was the first to use a GA to search rules for solving DCT (PACKARD, 1988),

later his investigations were continued by Mitchel, Hraber and Cruchtfield (MITCHELL;

HRABER; CRUTCHFIELD, 1993; MITCHELL; CRUTCHFIELD; HRABER, 1994;

MITCHELL et al., 1996). Moreover, no rule found by these studies outperforms GKL.

Conversely, the implementation details of the Mitchell and Packard experiments are em-

ployed in the majority of subsequent DCT investigations, Sec. 5.2 presents these details.

Another key work is that of (LAND; BELEW, 1995), which proves that there is no

rule able to solve DCT with 100% precision on a binary CA with a small radius. From

this point on, researchers have been competing to search for best rule and thus break the

record of correct ratio classification.

The study by Andre, Bennet and Koza (KOZA et al., 1999) replaced the GA with

genetic programming, another evolutionary search method. This was the first rule able to

outperform GKL. Conversely, these collaborators employed a super computer (in 1996)

that had 64 nodes which allows for a much wider search in the rule space than the GA

investigated by Mitchell/Packard.

The study by (JUILLE; POLLACK, 1998) proposed a sophistication to the GA, which

is the employment of a co-evolutionary method. This GA has two populations, one

composed of CA transitions and the other composed of the initial configurations in which

the rules are tested. Therefore, the evolution follows the predator-prey paradigm and

these two populations compete and evolve together. For instance, when the rules start

to learn and achieve a good accuracy then the initial lattices become harder to classify,

in other words, they become more like random discrete distributions. With this search

technique, these collaborators found JP1, a rule able to outperform all rules previously

published on DCT.

Furthermore, work by (OLIVEIRA; OLIVEIRA; OMAR, 2000) employed the dynamic

control parameters in order to improve the performance of the rules returned by the GA.

The foremost motivation of this work is that rules apt at solving DCT must change all

cells to the same state and this is the null behaviour. The major contribution of this study

was finding rules with a better performance without increasing the search parameters. For

instance, the dynamics control increases the best accuracy found in a Mitchel GA run

from 76.1 to 80.4.

Following this, (OLIVEIRA; BORTOT; OLIVEIRA, 2006) investigated the use of

2.5. Density Classification Task 63

NSGA (a multi-objective optimisation GA) to search out transitions for solving DCT.

This GA evolves many populations with large parameters for finding rules similar to

JP1 (JUILLE; POLLACK, 1998). In the following, these best rules were analysed to

capture some characteristics that they share, these authors proposed some GA operators

for guiding the search for rules with the desired characteristics. As a result, they found a

class of rules that has a similar performance to JP1.

The study (WOLZ; OLIVEIRA, 2008) proposed a two level hierarchical method, in

which the first level is a basic evolutionary search that is embedded into the second

level, a parallel multi-population search algorithm. This search allows for the finding of

7000 rules better than the previously best-known transition, while also returning the best

deterministic radius 3 rule in the literature.

Considering that no single deterministic rule can classify all lattices correctly, Fuks

(FUKS, 1997) found a perfect rule by relaxing one definition in the CA model. He

proposed the use of two CA rules in the evolution, where on the first half steps of the

evolution, the traffic-flow rule is applied and the majority rule is applied for the remaining

time-steps. Traffic-flow transition determines that if the central cell state is 0, then its

new state is taken from the cell to its left, otherwise, its new state is taken from the cell

to its right. This strategy solves binary DCT for every initial configuration. See more

details on these rules in Sec 5.1.

Recently many studies have started considering not only deterministic rules but also

stochastic ones. The following works have been inspired by Fuks (FUKS, 1997) since the

probabilistic solutions employs a combination of two or more rules, moreover, there is

a probability p that decides which of the rules are selected for updating the cell. The

authors (FUKŚ, 2002; SCHÜLE; OTT; STOOP, 2009; FATES, 2013) argued that the

probabilistic nature of stochastic transitions are useful when solving DCT. The study in

(FUKŚ, 2002) presented a stochastic rule composed of three components that work as

follows, for each cell independently: (i) apply a left shift (copy the lattice and move

the configuration to the left) with probability p; (ii) apply a right shift with probability

p; (iii) remain in the same state with probability 1 − 2 ∗ p (keep cell state). Further

still, Schüle et al. (SCHÜLE; OTT; STOOP, 2009) proposed another stochastic rule to

hasten the convergence towards the cells agreement on the major state, in other words,

this rule was designed for the CA to reach the null configuration faster (less time-steps)

than with Fuks rule. The transition proposed by Schüle employs: (i) the majority rule

with probability p; or (ii) the resultant state is an XOR with the three cell neighbours

with probability 1 − p. Later these two rules are compared in (FATES, 2013), Fatés also

proposed the traffic-majority rule that works as follows: to update the cell state it employs

the majority rule with p probability or the traffic-flow rule with probability 1 − p. Fatés

affirms that traffic-majority is the most efficient rule for DCT in a binary 1D CA.

Through the investigation of stochastic rules there emerged a discussion that crossed

64 Chapter 2. Background

into the studies by (FUKŚ, 2002; SCHÜLE; OTT; STOOP, 2009; FATES, 2013), which

was principally how many steps a transition needs to achieve the classification (τ). These

authors identified a significant correlation with precision in the classification to the number

of the steps in the temporal evolution. For instance, Fatés states that his rule can achieve

90% precision, when using a very large number of time-steps. Besides, to achieve such

an outstanding result τ must be very large, our experiments endorses good accuracy

with τ equals 100 times the size of the lattice. On the contrary, the deterministic DCT

benchmark employs τ = 320 time-steps to a lattice with 149 cells.

Some studies relax some of the parameters from the elementary Mitchel / Packard

experiment. For instance, (ALONSO-SANZ; BULL, 2009) report good results with a

modified CA with memory, these collaborators employed a rule similar to Fuks rule, but

interestingly concluded that this rule performs better in standard CA than in the CA

with memory for 1D lattice. Some studies also considered a lattice with two-dimensions

(OLIVEIRA et al., 2009; OLIVEIRA; MARTINS; FYNN, 2011; ALONSO-SANZ; BULL,

2009), a scenario in which Alonso-Sanz affirmed to have achieved the best classification

ratio with his model. Some studies also considered how rules for DCT cope when adding

noise to the lattice (MENDONÇA; SIMÕES, 2018). Finally, studies such as (ALONSO-

SANZ; BULL, 2009; LABOUDI, 2019; GABRIELE, 2005) consider transitions with a

larger radius (more than 3), usually these transitions outperform those using a smaller

radius (LABOUDI, 2019).

Table 1 presents a list of best CA transition rules found for DCT. Considering the

evolutionary search approach (all deterministic entries), the accuracy starts at 76.9% and

shows a subsequent increase to 88.9 % as research continues to improve the search tech-

nique. Emphasis is given here to the point that studies of deterministic rules employ the

same benchmark test for 149 cells, 320 time-steps and radius 3. Moreover, the studies of

stochastic rules also employ 149 cells but the time steps varies considerably in their sim-

ulations, it is uncertain the exact number of steps one needs in order to achieve precisely

this accuracy on the table. For instance, 85.1 for Fuks and SOS rule is due to authors

affirming that both transitions outperform previous solutions such as JP1. Alternatively,

the stochastic solutions surpass deterministic rules but employ many more time-steps.

For instance, in (FATES, 2013) the author reports traffic-majority achieving an accuracy

higher than 90%, the best performance in the literature.

Moreover, the accuracy is not the unique criterion for evaluating transitions. As there

exists a trade-off between quality and time to classify (FATES, 2013). Thus, an alternative

evaluation could measure the proportion of the task a transition solves at each time-step.

2.5. Density Classification Task 65

Table 1 – A record of the most relevant CA transition rules for solving DCT in the lit-
erature. The transition evaluation (accuracy %) has shown improvements year
after year.

Transition Name Year Accuracy Characteristic Time-Steps Authors

GKL 1978 81.6 Manual Design 1490 Gács et al.
MHC 1993 76.9 Deterministic 320 Mitchell et al.
ABK 1996 82.3 Deterministic 320 Koza et al.
JP1 1998 85.1 Deterministic 320 Juille et al.
OPO 2000 80.4 Deterministic 320 G. Oliveira et al.
Fuks 2002 >85.1 Stochastic 2000 Fuks
WO 2008 88.9 Deterministic 320 Wolz and Oliveira
SOS 2009 >85.1 Stochastic 2000 Schule et al.
TM 2013 >90.0 Stochastic 1200 Fatés

66 Chapter 2. Background

67

Chapter 3

Proposed model: Stochastic cellular

automata with Reduce and Mapping

This chapter presents our major contribution: the Stochastic Cellular Automata with

Reduce and Mapping (SCA-RM). SCA-RM was designed in the context of the scheduling

problem as an answer to the severe decay of performance when CA models schedule to

architectures with more than four processors/states. We have identified that this difficulty

is due to CA rules becoming too complex for the handling of a larger number of states.

This altered CA is designed to maintain the CA rule size when more states are used in

the model.

The size of standard CA transitions increases exponentially to the number of states

employed in the model, thus making these transitions very complex when dealing with

eight or more states. This phenomenon is discussed in Sec. 2.1.3. This section elucidates

that the complexity of transitions in SCA-RM remains constant irrespective of the number

of states used. Consequently, the rules of SCA-RM are considerably simpler compared to

traditional rules. This characteristic represents a significant advantage of SCA-RM when

handling CA applications that involve a large number of states in the model, particularly

those exceeding four.

SCA-RM is especially particularly beneficial when combining it with a GA to perform

the search for CA rules, a technique popularized by Mitchell and Packard (PACKARD,

1988; MITCHELL; HRABER; CRUTCHFIELD, 1993; MITCHELL et al., 1996). These

studies are very important in CA field, giving birth to several works which combines an

evolutionary method for searching a set of transition rules that solve a task or simulate a

desired behaviour in a CA. Moreover, in cases where the application requires many states,

such as scheduling and multi-state DCT, the GA is unable to search for transitions due

to the severe increment on transition complexity.

68 Chapter 3. Proposed model: Stochastic cellular automata with Reduce and Mapping

3.1 Motivation

This section aims at clarifying the underpinning reasons regarding transitions turning

out too large in multi-state CA. In addition, this thesis is also motivated by the fact that

many CA models for describing chemical, physical or biological processes are built upon

more than two states (BAETENS; BAETS, 2014).

CA models must employ a relatively large radius (3 or more) in order to be efficient

in complex tasks (OLIVEIRA et al., 2009). Hence, let us consider a CA with radius

= 3. Then, the neighbourhood size is 7, 3 cells from left, 3 from the right and central

cell. Besides, on a binary CA (κ = 2), transitions must assign an output bit/state to each

different configuration of the neighbourhood, a binary string of size 7. Therefore, from the

point of view of mathematics, rule size is the size of the neigbourhood to the power of the

states number, ergo the transition comprises of 128 (27) bits to κ = 2. When κ increases

to four, the transition is composed of 16384 bits that represent each possible configuration

of a quaternary string. Moving forward to eight states, the number of transitions bits

sharply increases to 2097152 (87)!

Note that when a search technique is applied to a multi-state CA, the search space

size is equal to the number of distinct CA rules. Accordingly, the number of different

transitions inherent to a CA with eight states and radius 3 is 82,097,152. This vast search

space renders the search process unmanageable and impractical.

In the following, the mathematical notation of function growth is used to present the

complexity related to the rules and to their search space. The size of the rule greatly

increases to the number of states, so it can be expressed as O(κE). Furthermore, the

search space of transitions increases as a function of their size, then the complexity of

these rules search space is O(κκE). This resembles a double exponential function, one of

the functions that grows quickest, in fact much quicker than the factorial.

Table 2 presents the growth of the size of traditional transitions and their search

space as a function of the number of states. It refers to traditional CA with the smallest

radius (one). One notes that the search for multi-state transitions is still difficult even

in this small radius. Moreover, the search for traditional CA rules for multi-state CA is

unmanageable due to the transition search space size. Therefore, it is no surprise that

the GA is unable to find efficient rules in such a context.

SCA-RM alters the CA update by adding a step that is applied before the transition

rule application, and another step that is applied after this rule returns the state update

(rule output bit). In summary, the functioning of the proposed model can be seen as:

firstly, (i) the standard neighbourhood of a central cell determines a state configuration of

neighbours using κ states; then (ii) a function called Reduce is applied, which converts this

configuration to binary; (iii) a transition rule is applied over the converted configuration,

this rule output is either 0 or 1; finally, (iv) a stochastic function called Mapping converts

the rule output to a value among the original κ states. These two functions were designed

3.2. Formal definition of Stochastic CA with Reduce and Mapping 69

Table 2 – The growth of the size of the transition and transition search space as a function
of the number of states employed in traditional CA. The space containing all
traditional transitions is huge as current estimations report 1E+80 atoms in
the universe.

States Number Transition Size Transition Search Space Size

2 8 256
3 27 7,6256E+12
4 64 3,40282E+38
5 125 2,35099E+87
6 216 1,2041E+168
7 343 7,3897E+289
8 512 2,4103E+462

because the binary transition in SCA-RM can’t handle a configuration of any number

states, (to solve that Reduce is proposed). Besides, the output of this transition is 0/1

and the multi-state CA cells must assume any number of states (κ), ergo we developed

the Mapping to converts a binary value to a κ-ary value

By using mapping and reduce, the transition rule needs only consider binary neighbour

configuration, also, the bits of this rule are also binary as the rule returns only two values.

As such, the governing rule of SCA-RM remains unchanged if the number of states is

increased.

3.2 Formal definition of Stochastic CA with Reduce

and Mapping

Section 3.3 presents the process that culminated in the proposition of SCA-RM. Like-

wise, this chapter conveys a mathematical foundation for this CA.

SCA-RM is similar to traditional CA and can be expressed as the following septuple:

{α, β, γ, η, φ′, R, M}:

— The letter α refers to the dimensional lattice.

— β is the set of states that cells can assume.

— γ defines the initial state configuration of the lattice.

— η determines the neighbours of these cells.

— φ′ is a transition function (table) that assigns 0 or 1 to each possible configuration

of states. This binary function disregards the number of states in β.

— R is a function that converts a string of numbers on any base to a string of numbers

on base 2.

70 Chapter 3. Proposed model: Stochastic cellular automata with Reduce and Mapping

— M is a function that converts a binary value to an n-ary value.

These first four components are the same as those found in the traditional CA (Sec.2.1.2).

Conversely, the traditional CA employs the transition function φ to govern the updating

of the cell, whereas, SCA-RM employs φ′. Yet, both functions assign an output bit/state

to each configuration of the neighbourhood. Transition φ yields an output for each con-

figuration of the neighbourhood, in this case a string on base κ, whereas, φ′ determines

an output only to binary configurations, a string on base 2.

Even though transition φ′ is binary, (β) can have any cardinality such as in traditional

CA. Moreover, the adding of functions Reduce (R) and Mapping (M) have the purpose

of enabling a binary transition to control a lattice with κ states. Moreover, the innovation

of SCA-RM is using a binary transition rule combined with Reduce and Mapping. R

and M are also functions, but instead of being transition functions, they are conversion

functions. R receives as the input a string on base κ and must return a string converted

to base 2. M receives a binary value that signifies two distinct rule decisions and must

convert 0 and 1 to one state from among the κ values ∈ β. These functions alter the cell

updating in SCA-RM as seen in this algorithm:

Let κ ∈ N be the number of states that CA cells assume.

— 1: apply function R to the κ-ary string of neighbour configurations resulting in a

binary string

— 2: apply the converted string from step 1 to transition function φ′ in order to obtain

an output that is either 0 or 1.

— 3: apply the output from step 2 as the mapping input converting this number to

one of the original κ states

— 4: update the cell state to the value returned by M (from step 3)

Figure 14 illustrate this updating process.

Furthermore, some R and M specifications are suggested and discussed further:

1. Reduce: str2 = R(strκ), where strκ is a κ − ary string and str2 is a binary string.

a) R must convert a string on any base to binary.

b) R must maintain the string size.

c) R must arguably be a deterministic function.

2. Mapping: yκ = M(x2), where x2 is either 0 or 1 and yκ is a value from among κ.

a) M must convert a binary integer to an integer among κ.

3.2. Formal definition of Stochastic CA with Reduce and Mapping 71

Figure 14 – A flowchart illustrating the updating of the cell in the proposed model. The
input of this process is the state configuration of this cell’s neighbours, as a
string on base κ (number of states). The output in the last step determines
the cell state at the next step.

b) M should implement a strategy to convert the 0 that is distinct from the

implementation that converts the 1.

c) M must arguably be a stochastic function.

Property 1. b) stems from the fact that altering the size of the string will alter the

information of the neighbourhood and this information is fundamental to CA functioning.

Likewise, property 1. c) relates to the fact that using a stochastic function in this

step would force the conversion to return different binary strings to the same k-ary string.

In our preliminary implementations a deterministic R function returns good results. In

addition, a promising future investigation can considers the use of a stochastic function

as reduce.

On the other hand, property 2. b) is due to M input (x2) being the output of the

transition meaning that the rule selects one from two possibilities. E.g., herein the output

0 signifies that mapping must maintain the cell state, whereas, output 1 denotes that M

should change the cell state to a randomly chosen value. Moreover, this property allows

SCA-RM to present complex behaviour and efficiently solve tasks.

On the topic of property 2. c), in accordance with Fatés, Fuks and Schule, the stochas-

ticity is helpful when performing tasks with CA (FUKŚ, 2002; SCHÜLE; OTT; STOOP,

2009; FATES, 2013). Hence, either R or M should be a non-deterministic function to

print the stochastic characteristic in the model. In addition, preliminary implementation

of deterministic mapping returns poor results. Therefore, here the stochastic nature of

SCA-RM stems from a probabilistic mapping.

Thus, let us take into consideration that φ′ remain unchanged when the cardinality

of β changes. In addition, the same rule that governs a binary SCA-RM can also govern

a ternary and quaternary SCA-MP. Consequently, SCA-RM has the unique attribute of

allowing a rule trained/designed for a specific state number to be employed for updating

72 Chapter 3. Proposed model: Stochastic cellular automata with Reduce and Mapping

a CA with a different number of states. By contrast, transitions of traditional CA are

defined for a specific state number.

On the discussion of implementations of R and M, we identified promising results when

using the central cell state to perform the conversion as the reduce. Besides, the giving

of such importance to the central cell state is recurrent in literature, e.g., outer-totalistic

CA models employ this idea. Moreover, to reduce by converting to 0 any state that is

equal to the central cell state and to 1 otherwise resembles a propitious implementation

for many applications. On the contrary, the mapping function is more dependent upon

the problem domain than reduce, so mapping demands an adaptation to each problem

SCA-RM is currently tackling.

3.3 Designing the Stochastic CA with Reduce and

Mapping

Initially the authors investigated many implementations of Reduce and Mapping. Such

as a reduce and mapping based on the state more/less frequent in the neighbourhood; or

to consider the cell to the left and right in the mapping; or to update the cell to a state

not found in this cell neighbourhood; and also functions considering specific information

of the application the model is tackling. As a result of this experimental process, this

section present implementations of R and M that provided the best results.

This section present the process of designing the proposed model. Based on our

experience dealing with the scheduling problem, the foremost information is whether a

neighbour is assigned to the same or a distinct processor. Therefore, the reduce converts

to 0 any state of the neighbourhood that is allocated to the same processor of the central

cell, i.e., reduce yields 0 for each neighbouring cell that has the same state as the central

cell. Consequently, if the neighbour is allocated to a distinct processor it is converted

to 1, i.e., reduce yields 1 if the neighbour state is different from central cell state. In

this fashion, original states of the cells assuming an arbitrary value in the lattice will be

converted to 0 or 1. Formally, let ci be the central cell of the neighbourhood that is going

to be updated, and any neighbour of this cell cj. Reduce converts cj state to 0 whether

ci and cj states are equal (they are allocated in the same processor), and to 1, otherwise.

Also, let us assume σt
i as the state of the cell i at the time step t. Therefore, the reduce

function R of state σj of any cell cj belonging to the neighbourhood of ci is given by Eq.

5.

R(σj) =







0, if σj = σi

1, otherwise.
(5)

and all neighbours states must be converted before the transition rule update a cell

ci:

3.3. Designing the Stochastic CA with Reduce and Mapping 73

σt+1
i = φ′(R(σt

i⊗r), . . . , R(σt
i), . . . , R(σt

i+r)) (6)

After the reduce step (R), the SCA-RM transition rules (φ′) must manage only binary

configurations, thus this rule size is S = 2m for any number of states, where E represents

the size of the neighbourhood. Therefore, the rule size is not related to the number of

states that the CA cells assume.

The SCA-RM rule is always binary regardless of the number of states. Besides, the

converted configuration is applied to the transition rule returning a binary output, just as

in standard CA. Therefore, after applying the transition rule, which yields a binary bit, a

post-step must convert this bit to one of the values from among the original states. This

function is named as mapping, since it must map a binary value to the set of κ states. In

case the output bit is 0, the mapping returns a state equal to the central cell state in last

time-step, whereas, if the output is 1 then a random value is chosen according to normal

discrete distribution considering κ states. Therefore, the decision rule either maintains

the cell state (0) or changes it to a random value (1). Formally, let ci be the central cell

that is being updated and x2 the resulting state returned by φ′, and random arbitrarily

selecting a value, so the mapping function M is:

M(σt+1
i) =







σt
i , if x2 = 0

random [0, ..., κ]), otherwise.
(7)

Figure 15 compares SCA-RM to the traditional CA when updating the central cell

(cell 5) from time-step 0 to time-step 1. The neighbours of a central cell are the two cells

to the left and to the right (radius=2). For instance, cell 5 neighbours are cells 3, 4, 5,

6, and 7. The traditional CA update consists of checking the states of the cells in the

neighbourhood, then applying a deterministic rule. This rule assigns an output for each

configuration of neighbourhood states. Also, in Figure 15, the traditional rule output for

configuration 23212 is 3, so this value is assigned as the state of cell 5 at the next step. In

contrast, the SCA-RM update is not that straightforward. First, neighbour states are the

input of the Reduce: if this state is different from the central cell, this state is converted

to 0 and is converted to 1; otherwise. Next, this converted configuration is applied to a

deterministic rule. This rule assigns an output for each configuration of neighbourhood

states. Next, this converted configuration is applied to a traditional transition rule that

considers only configurations of two states (0/1) and returns either 0 or 1. Then, SCA-

RM converts this rule output back to one state from the original states (4 in this case).

The Mapping function performs this conversion: if the rule output is 0, then the state of

the cell remains unchanged; if the rule output is 1, then the state is chosen according to

the normal distribution, excluding the current state of the central cell.

In Figure 15, Reduce converts the neighbour configuration (23212) to (10101); and the

binary rule decides that the cell state should change (rule output is 1); so the Mapping

3.3. Designing the Stochastic CA with Reduce and Mapping 75

Figure 16 – Comparison of traditional CA rules and rules in the proposed model consid-
ering four states and a neighbourhood of five cells.

considers only a two-state configuration, since reduce converts the neighbour configura-

tion to binary. Moreover, the central state in the converted neighbourhood is always 0 in

the proposed model, this is a collateral effect of the reduce function since the central cell

state is equal to itself. Besides, the size of the neighbour configuration in the stochastic

CA is 4 due to the pulling out of the central cell state. Therefore, the combination of 4

bits on base 2 is 16, hence transitions in SCA-RM are composed of 16 bits to represent

all possible neighbour configurations. Note that a rule output bit is either 0 or 1 in the

proposed model, while in the traditional CA the rule bits assume one from among four

states. Therefore, rules in the proposed model are simpler than traditional rules when

considering more than two states.

In Sec. 4.1 proposed model is compared with other multi-state CA solutions in liter-

ature. Besides, another visualisation of SCA-RM is presented in Sec.4.1.1.

The foremost SCA-RM principle is the use of two conversion functions, the first func-

tion (reduce) input is a κ-ary string and the output is a binary string. Moreover, the

input of the second function (mapping) is a binary value, and its output is one value

from among κ-ary original states. This model uses a binary rule to handle any number of

states. This model concept is not very complex, alternatively, these two functions must

be adapted especially for the application that is employing SCA-RM.

In the following, the SCA-RM is applied to distinct problems: scheduling and TCD.

The objective is to verify if SCA-RM simplification is helpful to multi-state CA appli-

cations and give hints regarding R and M implementations. In addition, mapping is

performed in two ways (Sec. 4.2), which are by randomly drawing a state and by using

the locality of the cells to influence the update.

76 Chapter 3. Proposed model: Stochastic cellular automata with Reduce and Mapping

77

Chapter 4

A Stochastic CA applied in Task

Scheduling

CA has been applied in several contexts, such as simulating natural phenomena or

studies on computational ability of this model. In the majority of those studies, CA

employs a very small number of states per cell. By contrast, other applications require

the use of many states (multi-state CA), for instance, considering CA-based models for

scheduling, the number of states is given by the number of processors in the architec-

ture. Therefore, to schedule on a computer with 16 processing nodes, the model will

employ many states (16). In addition, the scheduling to modern architectures is a typical

application that employs CA with many states.

The size of CA transition rules increases exponentially to the number of states, there-

fore, rules become quite complex in applications of multi-state CA. This ultimately leads

to GA being unable to find rules in this case. A very established solution to this limitation

is the totalistic CA that sums states and consider this sum to update cells. Further still,

it is expected that rules do not become much complex in totalistic CA when the number

of states increases. By contrast, totalistic CA makes a severe simplification in the states

configuration, usually embarrassing its ability to perform tasks. Herein, we investigate

the totalistic CA skill to schedule tasks, but, it is expected that totalistic CA provides a

poor scheduling performance. Additionally, proposed model SCA-RM (Chapter 3) uses a

non-deterministic updating in CA cells and aims to avoid rules to become much complex

when many states are used, but, in spite of totalistic CA, this model is able to perform

well in a complex problem alike scheduling. The SCA-RM is the underlying CA model

in a proposed scheduler that maintain several characteristics of previous scheduler based

on CA. It will be referred as Synchronous stochastic cellular automata scheduler (SSCS).

An initial study of SCCS was published in (CARVALHO; OLIVEIRA, 2017).

Modern CPUs are composed of many processors; this is true to the majority of comput-

ing devices as, such as desktop and smartphones. Currently, top-notch desktop processor

Intel i9-7980XE has 18 nodes, and presumably this number will increase in the near fu-

78 Chapter 4. The Stochastic CA (SCA-RM) applied to Task Scheduling

ture. On the contrary, the largest number of nodes that state-of-the-art schedulers based

on CA are able to efficiently schedule is to four processors as the performance of these

models severely decays when handling more processors (CARVALHO; OLIVEIRA, 2017).

Additionally, the foremost challenge herein is to schedule with CA on a system with eight

or more processors.

4.1 Cellular Automata models proposed to the many

states scenario

Sec 2.1.3 presents how CA rule size increases when the number of states increases.

Besides, CA rules become very large to cover eight or more states and the search be-

comes unfeasible. To overcome this complexity stemmed from increasing the number of

processors (states), we consider three alternatives to reduce the rule size, two established

solutions from literature the outer-totalistic and totalistic CA and proposed CA model

presented in Chap. 3.

SCAS is a previous state-of-the-art CA-based scheduler (CARNEIRO; OLIVEIRA,

2013), which is compared herein with three alternatives models. In these four models, the

initial lattice configuration is drawn from a sequential uniform distribution of states, this

strategy (CARVALHO; OLIVEIRA, 2017) is uncomplicated, i.e., considering an architec-

ture composed of four processing nodes (represented by states 0, 1, 2 and 3), the initial

configuration is a string of the type (012301230. . .). All models also employ pseudo-linear

neighbourhood (CARNEIRO; OLIVEIRA, 2013).

4.1.1 Stochastic CA with mapping-reduce

Herein it is investigated the CA model SCA-RM, and as the major contribution of

this thesis, it is presented in Chapter 3.

Let us note that SCA-RM employs two functions and a binary transition rule. First,

the reduce function converts neighbourhood configuration to binary as following, if the

state is equal to the state of the central cell it is converted to 0, and to 1 otherwise. Second,

the mapping function converts a binary rule output to any state from among the original

set of states/processors, both functions are discussed in Section 3.3. Figure 17 aims at

illustrating how SCA-RM is employed to schedule tasks in SSCS. The focus on this figure

is the cells updating, the top at this Figure 17 presents a binary transition governing the

update. Then, a lattice composed of 10 cells represents the initial allocation of 10 tasks.

Further still, it is highlighted the updating of cells 3 and 8. Initially, the pseudo-linear

strategy (Sec. 2.4, (CARNEIRO; OLIVEIRA, 2013)) configures the neighbourhood of the

cells, e.g., in case cell 3 neighbours are 7, 1, 3, 5, 10 and based on the current lattice, the

neighbourhood configuration is 32330. Following, when updating cell 3 on the left part,

reduce/reduction converts this configuration to 01001 in this figure. Then, the converted

4.1. Cellular Automata models proposed to the many states scenario 79

configuration is applied to the binary rule which returns 0, so the mapping determines

that the cell state at step t is maintained at step t + 1 (3). In contrast, when updating

cell 8 on the right part, the neighborhood configuration is 02233, reduce converts it to

10011, and the transition output to this configuration is 1,; then the stochastic mapping

function picks state 0 at random, so cell 8 changes to state 0 in the next step.

Figure 17 – A general scheme of the cell update in the proposed stochastic CA with
reduce of the neighbourhood and mapping to the original states. Z2 stands
for a binary configuration and Zp stands for a configuration considering any
processors in the system.

4.1.2 Totalistic Cellular Automata

Totalistic cellular automata (TCA) (WOLFRAM, 1994) is a well-known CA that uses

a transition function considering only the sum of the states of cells neighbouring cell i.

So, instead of considering each individual state, neighbours states are aggregated using a

simple sum. Formally, considering a CA with the traditional neighbourhood η based on

a radius r, the update of a cell i by the transition function φ′′ can be expressed as:

80 Chapter 4. The Stochastic CA (SCA-RM) applied to Task Scheduling

σt+1
i = φ′′(

i+r
∑

j=i⊗r

σt
j) (8)

Therefore, TCA rule determines an output bit to each valid value for the states sum.

Beyond summing the states, it is common to determine a maximum value for the sum,

an integer called threshold (v) (BAETENS; BAETS, 2010). Still, in case the states sum is

bigger than v, then, this CA ignores this sum and use v instead. In literature, the authors

found that sometimes the sum value is very high making the rule somewhat large, so,

using this threshold is a solution to diminish the complexity of the transition rule.

Notwithstanding TCA intrinsic simplicity, studies endorse that this CA can produce

complex behaviour just like standard CA. Additionally, TCA universal computation ca-

pacity is proved in (WOLFRAM, 1994) and Turing machines can be simulated by this

model (GORDON, 1987). Still, TCA simplifies the states of the cells in neighbourhood

to a simple integer. Thus, when using TCA to schedule, it neglects the particular state

of each cell, therefore it is not expected that TCA to lead to a good performance in

scheduling problems. In the following, the proposed scheduler based on TCAs is referred

as STCS (Synchronous totalistic cellular automata scheduler).

Outer-Totalistic Cellular Automata (OTCA)

Well-known OTCA is an especial totalistic model using a transition function φ′′′ that

takes into account the sum of neighbouring states and the state of the central cell i.

TCA ignores the information of individual states of the neighbourhood, and OTCA was

proposed to partially surpass this limitation (MARR; HÜTT, 2009)(BAETENS; BAETS,

2012) by considering at least the central cell state. Equation 9 presents this model state

update.

σt+1
i = φ′′′(

i+r
∑

j=i⊗r

σt
j, σt

i) (9)

Alike in TCAs, a threshold might be determined overcoming the unboundedness

of OTCA rules. OTCA presents complex behaviour like TCA and partially mitigates

the limitation of losing the individual states information. Since OTCA consider the

state/allocation of the central cell / task, we have a feeling that the use of OTCA could

bring better scheduling results than TCA. In the following, the proposed model based on

OTCAs is referred as SOTCS (Synchronous outer-totalistic cellular automata scheduler).

4.1.3 Complexity of investigated models

Previous model SCAS employs the traditional CA updating rule φ (Sec. 2.4), STCS,

SOTCS underlying CA uses totalistic rules φ′′, φ′′′ and SSCS uses a binary transition

function φ′ on SCA-RM. STCS, SOTCS and SSCS employs an aggregation function ap-

plied to states of neighbouring cells, STC, SOTC sums neighbours cell states obtaining

4.1. Cellular Automata models proposed to the many states scenario 81

an integer, while, SSCS converts neighbourhood configuration to binary. Finally, the only

difference among three proposed models and SCAS is the updating function.

TCA transition rule (φ′′) must determine a state (σ) ∈ β to each possibility of states

sum. Considering the threshold as (v), then φ′′ is a string on the base κ formed by v

output bits. Whereas, OTCA rule (φ′′′) ought to consider the states sum and also the

central cell state. Besides φ′′′ uses the central cell state to indicate which of κ distinct

totalistic rules determines the update. In such fashion, φ′′′ is a matrix formed by κ strings

on the base κ and each string has v output bits. Therefore, the threshold is a limiting

factor of φ′′ and φ′′′ complexity and their size could be changed selecting different values

for this parameter. Still, the largest value for (v) is when it assumes the maximum sum

value, considering that the biggest value that a cell can assume is σmax = κ − 1 (since the

states start with 0), and assume the neighbourhood size as E, then the highest threshold

max(v) is E ∗ (κ − 1). The case in which all neighbouring cells assume the state with the

largest value σmax.

Notwithstanding the number of states, SCA-RM transition rule φ′) is a binary string.

Also, reduce converts the state configuration of neighbouring cells to binary, thus, φ′ must

provide an output bit for every binary configuration. Additionally, reduce always converts

the central cell state to 1 (it is equal to itself), so this state can be removed from the

neighbourhood, thus, the size of SCA-RM transitions is 2M⊗1. In such fashion, SCA-RM

rule size depends on the size of the neighbourhood, but does not change when many states

are used.

The table 3 presents CA rules size (S) and the complexity of searching for these rules

in all models considered here. SCAS rule covers all neighbourhood configurations, making

it size to exponentially increase according to the number of states and neighbourhood size.

STCS rule cover each sum possibility lower than the threshold (v) with the maximum v

being E∗κ−1, whereas, SOTCS employs κ TCA rules with maximum size E∗κ−1. SSCS

rule size does not increase when the number of states increases (S complexity is constant

O(1), whereas, totalistic transitions size linearly increases according to κ. Besides, the

rules of SCAS, STCS and SOTCS are κ-ary strings, so the number of all possible rules

is a combination of all possibilities of output bits making the complexity of searching

for these rules to exponentially increase according to κ and this rules size. By contrast,

SSCS rules output bits are always binary, making the complexity/size of transitions search

space independent of the states number. If the threshold in totalistic CAs depends on

κ, their rules remain complex and this ultimately forces the use of a low v disregarding

κ. Therefore, the simplification in the transitions search space provided by totalistic

approaches (O(κκ)) is less robust and efficient than the one obtained by SCA-RM (O(1)).

This table indicates that the simplification of transition functions in SCA-RM is very

effective. Thus, SCA-RM resembles a promising alternative when applications require

many states. The first application of SCA-RM that we regard in our research is the

82 Chapter 4. The Stochastic CA (SCA-RM) applied to Task Scheduling

Table 3 – Complexity of rules size and search related to increasing the processors number
κ. E signifies the size of the neighbourhood of a cell, c signifies a constant not
influenced by the altering of κ.

CA Model Scheduler Rule Size Rule Complexity Rule search space

Traditional SCAS κE O(κc) O(κκc

)
Totalistic STCS E ∗ (κ − 1) O(κ) O(κκ)

Outer-totalistic SOTCS E ∗ (κ − 1) ∗ κ O(κ2) O(κκ2

)
SCA-RM SSCS 2E⊗1 O(1) O(1)

task scheduling. In the following, it is presented many details of this investigation, while

SCA-RM is applied for density classification task in Chapter 5.

4.1.4 Methodology

Schedulers based on CA are investigated to 2, 4, 8, 12 and 16 processors herein.

We selected widely-known program graphs considered in literature (OLTEANU; MARIN,

2011; JIN; SCHIAVONE; TURGUT, 2008; AGRAWAL; RAO, 2014), from which we

proposed new program graphs. We fold similar instances in a so-called program graph

family and address each family separately to provide a more accurate evaluation of the

models. Proposed families are:

— Gauss Family (LU-decomposition) comprises parallel programs solving lin-

ear equations through Gaussian elimination (COSNARD et al., 1988). The pro-

gram graphs of this family are denoted as Gauss18 (COSNARD et al., 1988)(WU;

GAJSKI, 1990), Gauss27 (XU et al., 2013), Gauss35 and Gauss44 (CARVALHO;

CARNEIRO; OLIVEIRA, 2018)

— Laplace Family is composed of graphs representing a differential equation solver

program using the Laplace technique. Based on this program and instances (MO-

HAMED; AWADALLA, 2011), we propose Laplace25, Laplace36, Laplace49 and

Laplace64.

— FFT Family consists of graphs related to programs performing the Fast Fourier

Transform by a parallel implementation of the Cooley-Tukey algorithm (XU et al.,

2014). Based on this program and graphs in literature, we propose graphs FFT39,

FFT95 and FFT223. We also created FFT223b that is similar to FFT223 but with

a slightly higher weight on the vertices.

Instances considered here are formed by small graphs like Gauss18 and proposed

graphs with up to 223 tasks (FFT223). Besides, our research aims at investigating ar-

chitectures having many processors, thus, it is important to regard programs with many

4.1. Cellular Automata models proposed to the many states scenario 83

tasks to be allocated in that processors. We consider two comparative methods to evaluate

the scheduling results obtained with the CA:

— DHLFET (CARNEIRO; OLIVEIRA, 2013) is a deterministic version of DHLFET

(Highest Level First with Estimated Time), where the level of a task is the sum of

the computation costs of tasks belonging to the critical path of this task to any exit

task. This heuristic builds the solution by selecting the task with the highest level

and assigns to the processor that executes this task faster. DHLFET is presented

at the end of Sec. 2.2.5

— SGA (CARNEIRO, 2012) is a simple genetic algorithm that evolves allocations

of tasks among the processors. This GA population determines in which proces-

sor each task will be executed, with the bottom-level policy (Eq. 2) deciding the

running-order within a processor. SGA fitness is the makespan of the scheduling

decided by the allocation and policy, while the parameters and genetic operators

are the same used to train CA rules. Moreover, SGA directly searches for adequate

task allocations, while the GA in training phase of schedulers based on CA evolves

transition rules that decide the allocation.

In the training phase of CA-based scheduler the GA individual is a CA transition rule,

whereas when the GA is directly used to schedule, the individual is a string on base κ

with size n, where n denotes the number of tasks in the program graph. This experiment

refers to 100 GA executions with the best rule found in each execution stored in a rule

database. Furthermore, the quality of the scheduling solution is measured by well-known

makespan (execution time of the latest task), so the objective is to minimise this metric.

Makespan results over several instances are aggregated by geometric mean in order to

show an overall tendency of the makespan. Besides, the dispersion of data is presented

by standard deviation (SD).

The parameters of both GA considered here are: fixed population size of 200, selection

for reproduction by simple tournament, two-point crossover with a rate of 100%, mutation

rate per bit of 4% performed by changing the bit to a random value, selection for next

generation made by truncation, e.g., ordering the offspring and parents on the fitness

and number of generations equals 200. The CA parameters on learning and operation

modes are: time steps τ = 3 ∗ n, where n stands for the lattice size which is equals to

the number of tasks in the program graph, radius = 3 for 2 processors and radius = 1,

otherwise. It is important to notice that models employ synchronous update of CA cells

(Sec. 2.1.2), i.e., all cells states are changed at the same time. For schedulers based

on CA (SSCS, STCS and SOTCS), the radius is changed to three to any number of

processors. These parameters values are the same as used in (CARNEIRO; OLIVEIRA,

2013; CARVALHO; CARNEIRO; OLIVEIRA, 2016; CARVALHO; OLIVEIRA, 2017;

CARVALHO; CARNEIRO; OLIVEIRA, 2018).

84 Chapter 4. The Stochastic CA (SCA-RM) applied to Task Scheduling

All models were coded in the C language using the standard pseudo-random num-

ber generation in the ‘stdlib.h’ library. The experiments were executed on an Intel(R)

Core(TM) i7-7700 CPU 3.60GHz processor. All codes were compiled by GCC with the -O3

optimisation flag. In addition, the computation time/runtime of SSCS/SCA-MP is quite

similar to the running time of previous CAS (more details in (CARVALHO; CARNEIRO;

OLIVEIRA, 2018)). Considering a program with 95 tasks, SSCS needs 1900 seconds to

train all rules, whereas the runtime of the operation phase (to test 1100 rules) is 0.55

seconds (sec). Conversely, the running time of SGA is 1100 seconds, and DHLFET needs

0.0002 sec to find a solution.

Most scheduling studies regards few and simple programs to be scheduled over a low

number of processors, typically no more than four. Moreover, it is common to propose

some artificial programs to provide a good challenge for the models. By contrast, our

study considers several methods to schedule many complex and real-world problems to

architectures with up to 16 processors.

4.1.5 Stochastic CA on Task Scheduling

Herein is assessed how SSCS fares when compared with SOTCS since previously total-

istic solutions performed similarly, other methods commonly investigated in literature are

also considered. These experiments regard twelve programs graphs fold in Gauss, Laplace

and FFT families.

Learning phase

Let us first consider the training phase, results of investigated schedulers for Gauss,

Laplace and FFT program graphs are respectively reported in Tables 4, 5 and 6. These

tables regard SSCS, SOTCS and SCAS along list-heuristic DHLFET and a standard GA.

Still, we assess two kinds of GAs, one that directly evolves the allocation from the tasks

and another that searches for transition rules to provide the schedule in schedulers based

on CA.

There is a large variation in the observed makespan values for program graphs, i.e.,

for FFT family the best makespan varies from 1540 (FFT39) to 9200 (FFT223B). This

appropriately represents the real-world application, in which there are critical programs

that demands more execution time. Moreover, the geometric mean is shown herein to

give a general indication of models performance.

In a first analysis, we consider the three CA models. SCAS was definitely surpassed

by other schedulers based on CA, this is mainly due to a severe performance decay of

SCAS when the number of processors is increased to 8 or more processors. Results en-

dorse SOTCS and SSCS presenting similar training results for Gauss graphs with a slight

advantage for SSCS, but considering Laplace and FFT graphs, SSCS clearly outperforms

remaining models. Therefore, SSCS model can be classified as the most efficient CA

scheduler in the training phase

4.1. Cellular Automata models proposed to the many states scenario 85

The training results of SSCS and SGA are extremely similar to Gauss graphs as

reported by Table 4, with a slight advantage for SGA. In contrast, SSCS training mode

leads to a makespan that is 21% lower than the SGA makespan considering the average

result for all processors number to graphs in Laplace (Table 5) and FFT (Table 6))

families. Furthermore, in case the 2 processors scenario are excluded, SSCS outperforms

SGA by 26% and 29% on Laplace and FFT graphs. Therefore, stochastic CA seem the

most efficient solution for scheduling to many processors.

Training results endorse a conclusion of (AGRAWAL; RAO, 2014), where the authors

report a better scheduling result when using the GA along with a standard CA instead

of just using a direct GA to solve the problem. However, this result were obtained using

a stochastic CA model while the scheduler in (AGRAWAL; RAO, 2014) is based on a

standard CA.

SSCS best (column BST) training makespan is 12%, 38% and 26% averagely faster for

Gauss, Laplace and FFT program graphs when compared with DHLFET; whereas meta-

heuristic approach SGA returns a makespan 13%, 22% and 9% compared to the heuristic

in the average of the respective programs families. Therefore, schedulers based on CA

and SGA seem to be more efficient methods than the heuristic, an identical conclusion

is usually reported in the literature (JIN; SCHIAVONE; TURGUT, 2008; CARNEIRO;

OLIVEIRA, 2013).

The standard deviation (SD) indicates the general behaviour and reliability of the

scheduling models (tables 4, 5, 6.) This metric considers the makespan found in every

100 executions, so the ideal SD (0) signifies that the scheduling method returned the same

"Best" makespan for 100 executions.

DHLFET is a deterministic version of HLFET and returns the same makespan ev-

ery time the heuristic is used to schedule a program, so the SD of DHLFET is always

zero. Moreover, heuristics are more stable than other scheduling methods. Having said

that, schedulers based on GA and CA provide a lower makespan than DHLFET in all

experiments.

Considering instances from Gauss Family (Table 4), a SD ≈= 2 signifies that the

algorithm finds efficient and similar solutions on every run (45 or 47). In contrast, a

SD ≈= 8 indicates much instability, with most solutions being much less efficient than

the "BEST" makespan.

Regarding instances from Laplace (Table 5) and FFT (Table 6), a SD equals 17 means

that the algorithm returns the best schedule on 99 runs and finds the second-best schedule

in the remaining execution. In those tables, a SD ≈= 30 signifies that the scheduler can

consistently find good scheduling on each run. In tables 5 and 6, a larger SD such as 200

means that the scheduling method returns a different makespan on each run, and many

of those returned makespans are much less efficient than the BEST found in 100 runs.

The SD significantly increases when SGA, SCAS, and SOTCS handle architectures

86 Chapter 4. The Stochastic CA (SCA-RM) applied to Task Scheduling

with more processors. Besides, SCAS returns many different and subpar solutions for 8,

12, and 16, which makes the SD larger than 4 in Table 4. Further still, the SD is much

larger in SCAS than in SSCS for Laplace (Tab. 5) and FFT instances (Tab. 6)).

In Table 4, a SD of 110 for SOTCS (Gauss44, 16 processors) signifies that the totalistic

alternative returns many solutions with a significantly high makespan, very far from the

optimum. Furthermore, totalistic CA returns a remarkably high SD for most instances

to 12 and 16 processors, which endorses that the totalistic CA is an unreliable solution

for the multi-state problem. Thus, it is reasonable to assume that the totalistic solution

fails to simplify the complexity of the rules.

SGA returns a similar makespan when scheduling programs to 2 or 4 processors in each

run. In contrast, SGA fails to return a good solution to every run when the number of

processing nodes rises to 12 or more. Nevertheless, SSCS presents a small SD even when

handling 12 or 16 processing nodes. Moreover, SSCS can find a better makespan than

the remaining methods and returns a good makespan constantly. Hence, results suggest

that the SSCS training phase is more stable and efficient than the remaining schedulers.

4
.1

.
C

ellu
la

r
A

u
to

m
a
ta

m
od

els
p
ro

po
sed

to
th

e
m

a
n

y
sta

tes
scen

a
rio

8
7

Table 4 – Best (BST) and average (AVG) makespan found in 100 GA executions in the learning phase of CA-based models SCAS. SOTCS
and a stochastic CA (SSCS) compared to the best (BST) and average (AVG) result obtained by a simple GA that evolves
allocations (SGA) and DHLFET heuristic considering graphs in the Gauss Family. SD stands for standard deviation, a metric
of data spread and variance.

SCAS SOTCS SSCS SGA

Graph P AVG BST SD AVG BST SD AVG BST SD AVG BST SD DHL

Gauss18

2 44.55 44 0.71 47.03 47 0.17 44.55 44 0.71 44.00 44 0.00 54
4 44.12 44 0.46 45.14 44 0.90 46.30 44 0.91 44.57 44 1.18 52
8 44.49 44 1.04 44.87 44 0.88 45.76 44 1.01 47.67 44 2.65 52
12 49.66 44 2.59 47.21 44 1.75 45.32 44 0.95 49.83 44 3.05 52
16 53.88 45 3.40 48.98 45 2.18 45.44 44 0.89 50.58 44 3.11 52

Gauss27

2 71.79 69 1.87 76.76 75 1.20 71.79 69 1.87 69.21 69 0.41 86
4 67.49 67 0.90 68.80 67 1.15 70.57 67 1.55 69.32 67 1.91 79
8 67.90 67 1.78 67.89 67 0.99 71.42 67 1.89 72.65 67 3.36 79
12 92.91 67 9.60 73.95 67 5.67 71.95 67 1.65 75.37 67 3.36 79
16 105.12 76 5.36 96.53 71 10.54 71.52 67 1.81 76.85 69 4.07 79

Gauss35

2 99.22 97 1.28 107.90 106 1.31 99.22 97 1.28 97.58 95 1.04 107
4 92.03 91 1.10 93.61 91 1.85 95.60 92 2.34 93.90 91 1.62 99
8 95.30 91 4.96 93.68 91 1.52 98.04 92 2.45 97.39 91 2.92 99
12 132.02 102 6.06 99.32 91 4.26 98.95 92 2.06 100.24 91 2.92 99
16 139.28 125 3.35 113.69 91 14.30 99.32 94 1.86 100.95 93 3.45 99

Gauss44

2 136.63 131 4.40 144.32 142 3.09 136.63 131 4.40 132.53 131 0.97 145
4 117.69 116 1.76 122.83 116 2.95 125.75 116 4.09 120.18 116 2.53 129
8 129.40 116 10.25 123.24 116 3.24 127.56 118 3.64 124.88 118 3.36 129
12 167.91 157 3.46 147.09 120 12.91 129.21 122 2.23 126.81 116 3.36 129
16 175.09 166 4.54 170.67 128 110.86 129.35 121 2.10 129.62 120 3.92 129

Geo. Mean 87.77 80.33 - 84.32 - 77.53 80.20 76.16 - 80.79 75.80 - 86.47

8
8

C
h
a
p
ter

4
.

T
h
e

S
toch

a
stic

C
A

(S
C

A
-R

M
)

a
p
p
lied

to
T

a
sk

S
ch

ed
u
lin

g

Table 5 – Best (BST) and average (AVG) makespan found in 100 GA executions in the learning phase of CA-based models SCAS. SOTCS
and SSCS compared to the best and average results obtained by SGA and DHLFET considering graphs in the Laplace Family.

SCAS SOTCS SSCS SGA

Graph P AVG BST SD AVG BST SD AVG BST SD AVG BST SD DHL

Laplace25

2 1972.40 1970 5.47 2030.00 2000 30.81 1972.40 1970 5.47 1976.00 1970 11.63 2300
4 1986.10 1970 23.82 1987.60 1970 16.42 1970.00 1970 0.00 2074.20 1970 83.46 2300
8 2299.30 2000 288.13 2017.30 1970 33.59 1970.00 1970 0.00 2191.40 1970 133.71 2300
12 3100.10 2860 90.17 2981.50 2000 228.50 1970.00 1970 0.00 2308.90 1970 143.04 2300
16 3228.60 3000 73.90 3223.20 2980 86.34 1970.00 1970 0.00 2443.80 2000 211.94 2300

Laplace36

2 2507.40 2320 98.54 2681.20 2500 84.54 2507.40 2320 98.54 2555.60 2320 146.85 3200
4 2576.50 2500 77.64 2518.90 2500 17.00 2325.40 2320 16.25 2555.60 2320 121.99 3320
8 3071.00 2740 392.66 2619.10 2500 125.20 2371.20 2320 83.55 2989.70 2680 159.01 3320
12 4143.50 3880 93.59 4013.80 2840 280.39 2433.70 2320 92.34 3081.00 2720 177.29 3320
16 4259.80 4100 80.10 4249.70 4010 80.83 2445.90 2320 84.09 3257.20 2790 197.54 3320

Laplace49

2 3240.20 3020 98.54 3386.20 3370 15.07 3240.20 3020 98.54 3218.80 3020 121.84 4000
4 3240.20 3160 58.47 3250.20 3190 54.07 3066.80 2980 54.07 3489.00 3110 139.22 4300
8 3956.90 3300 453.18 3339.90 3190 118.06 3092.40 2980 64.45 3789.80 3290 190.03 4300
12 5202.40 5000 74.56 5075.40 3270 331.81 3100.20 2980 88.52 3997.20 3560 245.55 4300
16 5286.20 5000 66.76 5275.80 5110 76.57 3123.50 2980 86.34 4116.50 3600 234.51 4300

Laplace64

2 3914.30 3710 113.80 4294.50 4280 53.80 3914.30 3710 113.80 3937.90 3690 112.05 4770
4 3882.90 3690 101.05 3927.60 3710 147.85 3433.70 3320 147.85 4260.90 3900 150.92 4900
8 5027.20 4110 543.78 4029.70 3790 142.76 3571.60 3320 114.01 4629.70 4110 181.56 4900
12 6250.10 5990 77.68 6087.70 4720 376.98 3579.90 3320 86.64 4902.40 4480 236.59 4900
16 6232.70 6200 63.14 6318.00 6080 58.55 3616.40 3320 107.71 5151.90 4580 259.09 4900

Geo. Mean 3560.75 3327.53 - 3460.74 3130.03 - 2708.71 2609.33 - 3211.80 2884.02 - 3537.36

4
.1

.
C

ellu
la

r
A

u
to

m
a
ta

m
od

els
p
ro

po
sed

to
th

e
m

a
n

y
sta

tes
scen

a
rio

8
9

Table 6 – Best (BST) and average (AVG) makespan found in 100 GA executions in the learning phase of SCAS. SOTCS and SSCS compared
to the best (BST) and average (AVG) result obtained by SGA and DHLFET considering graphs in the FFT Family.

SCAS SOTCS SSCS SGA

Graph P AVG BST SD AVG BST SD AVG BST SD AVG BST SD DHL

FFT39

2 1540.60 1540 3.74 1540.00 1540 18.78 1540.60 1540 3.74 1582.60 1540 30.81 2040
4 1534.00 1480 14.10 1537.00 1480 2.00 1419.80 1400 2.00 1613.20 1400 117.10 2040
8 2096.60 1640 215.52 1540.00 1520 15.70 1402.20 1400 7.88 1870.80 1420 87.59 2040
12 2443.80 2140 106.80 2382.60 1540 134.58 1408.80 1400 7.72 2104.40 1740 179.10 2040
16 2532.20 2260 56.30 2511.80 2260 77.73 1409.09 1400 10.05 2277.20 2020 160.44 2040

FFT95

2 3123.60 3100 41.12 3201.40 3200 4.77 3123.60 3100 41.12 3122.20 3100 12.03 3280
4 2392.40 2200 127.28 2240.00 2240 9.12 2105.80 2100 9.12 2527.60 2380 86.83 3040
8 3408.80 2840 133.31 2904.00 2500 212.48 2037.60 2000 21.46 2868.20 2660 79.01 3040
12 3564.00 3460 59.12 3545.80 3300 57.68 2115.60 2060 35.63 3089.90 2780 79.01 3040
16 3584.40 3420 33.81 3575.60 3420 49.03 2115.00 2040 33.10 3143.80 3000 140.67 3040

FFT223

2 6963.60 6940 18.98 6962.80 6960 6.29 6963.60 6940 18.98 6940.00 6940 0.00 7120
4 4930.00 4140 259.61 4711.80 4540 38.28 3901.20 3840 38.28 4115.00 4000 35.97 4220
8 4478.00 4520 81.37 4672.80 4000 66.09 2816.60 2660 38.09 3948.80 3760 72.63 3960
12 4742.40 4520 50.48 4023.20 3260 41.38 2992.20 2900 38.47 4028.40 3880 72.63 3960
16 4711.60 4560 43.06 3871.40 3640 46.48 2779.00 2700 33.28 4077.00 3920 37.75 3960

FFT223B

2 9200.80 9200 2.65 9200.80 9200 5.95 9200.80 9200 2.65 10212.80 9200 0.00 9200
4 6039.40 5760 111.94 5257.60 5040 25.16 5024.80 4960 25.16 5024.00 4960 38.76 5360
8 5281.60 5040 57.59 5948.00 5200 64.10 3494.40 3360 65.18 4368.80 4240 59.08 5360
12 5140.80 4960 53.33 4649.60 4320 59.84 3508.00 3360 47.57 4404.00 4240 87.43 4400
16 5085.60 4880 46.46 4652.00 4160 54.88 3266.44 3200 47.56 4456.00 4240 78.78 4400

Geo. Mean 3723.89 3489.59 - 3520.64 3235.93 2701.95 2652.03 - 3393.44 3157.88 - 3538.11

90 Chapter 4. The Stochastic CA (SCA-RM) applied to Task Scheduling

Operation phase

The chief motivation of scheduling with CA is to use the rules returned by the learning

phase to schedule unseen program graphs in the fast operation phase. The objective is to

find some rules to solve a program graph and then apply these rules to schedule several

instances and tests if these rules provide a good scheduling. Moreover, the operation

performance is crucial for CAS approach.

SSCS and SCAS perform equally to two processors, so this scenario is not considered.

The CA transitions trained on graphs of a same family are grouped in a rule database,

which results in the Gauss rule set, Laplace rule set and FFT rule set. For instance,

the Gauss rule set contains 100 rules learned to solve Gauss18, 100 rules trained on the

basis of Gauss27, and so on. The makespan returned by SCAS, SOTCS and SSCS in

the operation stage is shown in Tables 7, 8 and 9. Table 7 reports the application of

the three sets of rules to schedule only the program graphs in Gauss Family, whereas

Tables 8 and 9 report the makespan obtained to schedule graphs from Laplace and FFT

families. Each entry of these tables is the best makespan obtained by rules trained in

others graphs, i.e., when using the Laplace Set, the result in the Laplace25 rows refers

to the best performing rule trained to Laplace36, Laplace49, Laplace64 when scheduling

Laplace25. Rules trained for the same graph that is being scheduled by the operation

mode are discarded. These tables present the makespan obtained by each set of rules to

highlight how the graph used in the training influences the operation performance.

Our first conclusion is that the lowest makespan is always found by rules trained in the

same family as the graph being scheduled. Therefore, rules trained on the basis of similar

graphs provide a better makespan, irrespective of the scheduler based on CA. The second

general conclusion regards the three CA schedulers in the operation phase: SSCS clearly

surpasses SCAS and SOTCS, regardless of the graph family being scheduled. Both SCAS

and SOTCS models presented difficulties to reuse pre-trained rules in case the number

of processors is eight or more nodes, whereas, SSCS is able to keep a good performance.

Considering these conclusions, the best case for CA models is achieved by SSCS using the

rules trained to the same family as the graph being scheduled in the operation. These

results are highlighted in Tables 7, 8 and 9

Let us compare the best makespan values (BST) obtained at the learning phase of

SSCS (Table 4) with the best makespan values obtained by this model in the operation

mode (Table 7), it is possible to observe that in general the performance decay from

learning to operation mode. Indeed, this is an expected result because the learning mode

concerns many GA iterations to search for a specific rule, especially to schedule the

target program graph. Alternatively, operation mode just reapply pre-trained rules to a

new unseen instance. Notwithstanding this performance loss, the general operation mode

makespan of SSCS is still quite good, e.g., comparing the makespan mean of SSCS in the

learning mode for Gauss graphs (83.15 in Table 4) with the mean of operation stage using

4.1. Cellular Automata models proposed to the many states scenario 91

rules trained for the same family (it increases to 84.88 on Table 7). This last value is

better than the mean values obtained with DHLFET for Gauss family: 89.75, highlighting

the efficiency of SSCS operation performance. Only SGA achieved a better result than

this as SGA returned a makespan mean equal to 80.13. This numbers are obtained using

the average out of all investigated number of processors. Regarding other two families

in this comparison, the mean values returned for SSCS Laplace and FFT graphs in the

learning mode are 2647.50 and 2548.75, whereas, mean values for these graphs in the

operation mode are 2743.75 and 2691.25.

Operation results for Laplace rule set to schedule graphs in Laplace Family (2743.75)

contrasts with the mean values returned DHLFET and SGA (3705.00 and 3065.63, re-

spectively), so it is possible to infer that the reuse in SSCS was even better than the

makespan found by SGA. Besides, conclusions are similar to FFT graphs, as the mean

value returned by SSCS with FFT rule set is (2691.25) which is better than the values

obtained with DHLFET and SGA: 3356.25 and 2963.75. Therefore, task allocations re-

turned by SSCS operation stage are averagely more efficient than the allocations obtained

with a GA directly seeking allocations and much better than the results returned by a

heuristic usually employed in real scheduling applications.

The previous analysis considers the best case to SSCS, which is when rules trained

over similar graphs are employed in the operation stage. Alternatively, a more strict

consideration is to observe SSCS operation results using rules trained over graphs com-

pletely different from the one in the target. For instance, taking into account the average

operation makespan of SSCS obtained by rules trained over graphs of Laplace and FFT

families (84,48 and 88,88), thus SSCS surpasses DHLFET (89,75) and it is surpassed

by SGA (80,13). Moving on to the operation stage to graphs in Laplace family, SSCS

equipped with the rules trained over graphs in Gauss and FFT families returned 3061,25

and 3041,88, in this case SCCS presents better average makespan than DHLFET (3705,00)

and SGA (3065,63). Finally, when scheduling graphs in FFT family by rules trained over

distinct graphs the conclusion is the same, SSCS outperforms remaining methods. There-

fore, SSCS is a superior scheduler even though the graph being scheduled in operation

mode is unlike with the graph used to train the rules. Thus, we conclude that the reuse

of rules in SSCS lead to an efficient task allocation.

The standard deviation (SD), a measure of statistical variation, is also presented in

tables 7, 8 and 9. (what) This SD refers to the variation of the best makespan found

by each program graph, e.g., if Gauss18 is the target of operation using rules from the

Laplace Rule Set, so the SD is calculated on the basis of the best makespan found by

rules previously trained Laplace25, Laplace36, Laplace49, and Laplace64. For the sake of

brevity, the average SD found in each experiment (program graph/number of processors)

is presented in Tables 7, 8 and 9.

In Table 7, the SD in SSCS is averagely half of the SD reported in SCAS and SOTCS.

92 Chapter 4. The Stochastic CA (SCA-RM) applied to Task Scheduling

Moreover, SOTCS generally presents a five times larger variation than SSCS when the

rules trained for FFT graphs are applied to schedule Gauss Graphs. Furthermore, the

best rule from the 100 rules trained by FFT39, FFT95, FFT223 and FFT223B for 12

processors has a makespan of 188, 196, 139 and 160 on SOTCS and 139, 132, 145, and

138 on SSCS. This last analysis is a typical scenario herein, in which SCA-RM allows

for the finding of the best makespan and consistently returns a similar makespan value.

However, the totalistic CA was remarkably unreliable, as it presents some schedulings

with a very large makespan and others with a much smaller makespan.

The variation in Table 8 reports on the operation of Laplace family instances. SCAS

and SSCS present a similar variation, with SSCS being slightly more stable and consistent,

except when using rules from the Gauss Rule Set. Simultaneously, SOTCS presents a

higher SD than other methods in the operation for Laplace Family instances. For instance,

SOTCS SD is almost five times larger than SSCS SD and double SCAS SD when using

the FFT Rule Set.

Considering the operation phase for FFT family (Table 9), SSCS is the most sta-

ble solution, SOTCS is quite inconsistent, and SCAS usually presents a smaller SD than

SOTCS and a larger one compared to the SD identified in SSCS. Considering each investi-

gation scenario formed by Program Graph/Processors Number/Rule Set, SOTCS presents

a more than five times larger SD than SSCS in half of the operation scenarios of graphs

from the FFT Family. For example, in the operation of FFT223B to 16 processors using

the Laplace Rule Set (Laplace25, Laplace36, Laplace49 and Laplace 64), SSCS presents a

SD of 177 (3520, 3600, 3600, 3920), while SOTCS SD is 1669 (8400, 4860, 4860, 6080).

SOTCS statistical variation in the operation mode is larger mainly due to experiments

in which the number of processors is 12 or 16, thus endorsing the difficulty of totalistic CA

in coping with the increment of the state number. Moreover, totalistic CA presented quite

unstable operation results, a strong indication that the totalistic CA model is unreliable

and unstable when solving multi-state CA applications. By contrast, the proposed model

(SCA-RM) returned a lower variation than others schedulers based on CA. Besides, SCA-

RM seems stable and robust, as it returned a similar makespan even when the number of

states/processors increases to 12 or 16. Therefore, based on these results, SCA-RM is a

superior solution to handle multi-state CA applications, and SCA-RM clearly outclasses

totalistic CA for scheduling purposes.

4
.1

.
C

ellu
la

r
A

u
to

m
a
ta

m
od

els
p
ro

po
sed

to
th

e
m

a
n

y
sta

tes
scen

a
rio

9
3

Table 7 – Best makespan found to schedule graphs belonging to Gauss family by rules trained on the basis of graphs in Gauss (Gauss
set), Laplace (Laplace set) and FFT (FFT Set) families in the operation phase of SCAS(SCA), SOTCS (SOT) and SSCS (SCS)
compared with the heuristic (DHLFET) and a simple GA (SGA).

Graph P
SCA SOT SCS SCA SOT SCS SCA SOT SCS

SGA DHL
Gauss Rule Set Laplace Rule Set FFT Rule Set

Gauss18

4 49 46 45 47 47 47 49 46 47 44 52
8 52 49 47 49 47 47 54 49 47 44 52
12 60 51 47 59 49 47 61 49 47 44 52
16 65 65 49 65 65 49 65 65 49 44 52

Gauss27

4 69 72 71 73 76 75 76 74 74 67 79
8 71 76 69 80 77 74 84 74 74 67 79
12 110 89 73 110 78 72 116 78 76 67 79
16 120 112 74 117 115 73 112 115 73 69 79

Gauss35

4 95 97 94 99 106 102 102 103 103 91 99
8 100 94 98 102 107 103 123 103 105 91 99
12 144 107 97 142 116 103 143 113 101 91 99
16 139 153 96 149 150 100 151 153 98 93 99

Gauss44

4 126 127 122 145 144 136 141 146 132 116 129
8 133 133 127 137 142 131 156 131 133 118 129
12 178 139 122 181 150 132 171 139 131 116 129
16 188 194 127 186 191 132 185 207 132 120 129

Geo. Mean 97.67 92.29 79.71 99.67 94.82 82.91 103.14 93.75 82.95 75.17 85.11

STD. DEVN. 5.22 3.32 2.42 4.15 3.44 1.75 4.67 11.06 2.30 - -

9
4

C
h
a
p
ter

4
.

T
h
e

S
toch

a
stic

C
A

(S
C

A
-R

M
)

a
p
p
lied

to
T

a
sk

S
ch

ed
u
lin

g

Table 8 – Best makespan found to schedule graphs belonging to Laplace family by the rules of Gauss, Laplace and FFT set in the operation
phase of SCAS(SCA), SOTCS (SOT) and SSCS (SCS) compared with DHLFET and SGA.

Graph P
SCA SOT SCS SCA SOT SCS SCA SOT SCS

SGA DHL
Gauss Rule Set Laplace Rule Set FFT Rule Set

Laplace25

4 2090 2070 2000 1980 2000 1970 2090 2060 1970 1970 2300
8 2170 2130 2000 2130 2000 1970 2170 2060 1970 1970 2300
12 3310 2190 1980 3220 2170 1970 3290 2300 1970 1970 2300
16 3420 3420 2090 3420 3420 1970 3510 3420 1970 2000 2300

Laplace36

4 2960 2730 2620 2590 2580 2320 2680 2500 2600 2320 3320
8 2960 2960 2780 2920 2590 2320 3130 2790 2620 2680 3320
12 4420 3010 2580 4340 3040 2320 4420 3630 2660 2720 3320
16 4420 4420 2790 4420 4320 2320 4610 4320 2860 2790 3320

Laplace49

4 3710 3690 3290 3340 3300 3150 3670 3540 3200 3110 4300
8 4030 3860 3470 3880 3350 3150 4080 3540 3270 3290 4300
12 5420 4300 3150 5220 4280 3150 5420 3610 3400 3560 4300
16 5520 5410 3580 5520 5400 3150 5200 5420 3600 3600 4300

Laplace64

4 4950 4280 4170 4020 4100 3320 4410 4500 4090 3900 4900
8 5010 4330 4290 4930 4110 3620 5650 4280 3920 4110 4900
12 6320 5050 3840 6510 5020 3600 6420 4990 4200 4480 4900
16 6420 6610 4350 6520 6600 3600 6510 6520 4370 4580 4900

Geo. Mean 3979.47 3579.92 2952.73 3826.93 3432.66 2670.51 3978.12 3522.16 2929.46 2939.76 3561.50

STD. DEVN. 100.34 230.29 149.36 114.50 116.54 103.23 257.27 508.02 134.39 - -

4
.1

.
C

ellu
la

r
A

u
to

m
a
ta

m
od

els
p
ro

po
sed

to
th

e
m

a
n

y
sta

tes
scen

a
rio

9
5

Table 9 – Average of the best makespan found to schedule FFT graphs by each best rule trained to graphs grouped by similarity in three
sets of rules in the operation phase of CA-based models compared with DHLFET and SGA.

Graph P
SCA SOT SCS SCA SOT SCS SCA SOT SCS

SGA DHL
Gauss Rule Set Laplace Rule Set FFT Rule Set

FFT39

4 1720 1620 1460 1540 1540 1420 1580 1640 1420 1400 2040
8 1840 1820 1580 1760 1540 1460 2100 1640 1460 1420 2040
12 2600 2000 1540 2540 1940 1460 2600 1740 1420 1740 2040
16 2600 2600 1460 2600 2600 1460 2600 1880 1460 2020 2040

FFT95

4 3320 3200 2220 2880 2740 2180 1920 1920 2160 2380 3040
8 3360 3020 2180 3120 3020 2060 2400 2240 2060 2660 3040
12 3640 3400 2360 3580 3520 2320 2800 2800 2120 2780 3040
16 3640 3640 2340 3640 3640 2280 2880 2880 2220 3000 3040

FFT223

4 5580 5560 4160 5840 5140 4020 4080 4120 3920 4000 4220
8 5040 4800 3100 4680 4980 3100 4360 4120 2960 3760 3960
12 4860 4980 3240 4860 4860 3200 4520 3940 3120 3880 3960
16 4860 4660 3100 4860 4920 2900 4500 3640 2880 3920 3960

FFT223B

4 7040 6640 5280 7760 6560 5120 5280 5120 5020 4960 5360
8 5520 5360 3600 5440 5600 3760 5040 4000 3520 4240 5360
12 5280 5520 3760 5360 6240 3840 4960 4160 3760 4240 4400
16 5280 5520 3600 5280 4860 3520 4960 4160 3520 4240 4400

Geo. Mean 3844.31 3699.60 2609.38 3763.01 3618.74 2548.14 3299.61 2909.21 2490.79 2944.37 3317.82
STD. DEVN. 220.91 492.82 125.05 145.40 499.10 105.37 338.13 761.84 150.05 - -

96 Chapter 4. The Stochastic CA (SCA-RM) applied to Task Scheduling

4.1.6 Additional Remarks

Herein we proposed some models to schedule tasks of parallel programs in systems with

many multiprocessors. Current computing devices counts with six, eight or more nodes,

whereas, state-of-art schedulers based on CA consider four nodes at most. Schedulers

based on CA use a state to represent each processor and the number of states increases as

more processors require the use of more states in the CA. Besides, traditional CA transi-

tions space exponentially increases when the states number also increases. Furthermore,

the employment of standard CA to schedule lead to very complex rules, which in turn

leads to a poor scheduling performance. As a solution to handle the unmanageable cardi-

nality of traditional CA rules, three non-standard cellular automata models are assessed

herein.

Here, two models rely on totalistic transition function and are renowned strategies to

update CA in literature. We name them as STCS and SOTCS since they rely on totalistic

and outer-totalistic transitions. These models imply in a severe simplification of cell states

since they consider only the sum of them. Therefore, they ignore individual states, so it

is expected totalistic CA to lead to poor scheduling results. In addition, the stochastic

cellular automata with Reduce and Mapping (SCA-RM Chap.3) is the underlying model

of the proposed SSCS (Stochastic Cellular Automata Scheduler). The cardinality of rules

search space on SCA-RM is the same, independently of the number of states. To achieve

such result, SCA-RM uses two functions and binary transition rules, this CA simplifies

neighbourhood states to binary before applying the rule (reduce), and convert back the

binary transition output to a value among the original states (mapping). This section

compares SSCS scheduling performance with the two totalistic models, since they are

a recurrent and effective deterministic solution to reduce rule complexity in other CA

domains.

As a comparison to these proposed schedulers based on CA, we also take into account

some scheduling algorithms: (i) SCAS the state-of-the-art model using standard CA rules

(CARNEIRO; OLIVEIRA, 2013), (ii) efficient list heuristic DHLFET and (iii) a simple

genetic algorithm evolving the tasks allocations to processor. The schedule quality is

measured by the makespan analysis over architectures with 2, 4, 8, 12 and 16 processors.

Investigated instances are fold into Gauss, Laplace and Fast Fourier Transform families

that we address separately to provide more comprehensible results.

CAS involves training and operation stages, in the first a GA optimises some rules to

schedule a specific program, whereas, the second one applies these rules to unseen pro-

grams. Regarding STCS and SOTCS, the second returns a lightly better performance than

the other. In the learning phase totalistic solutions outperformed only SCAS, whereas,

SSCS training phase clearly outperforms all other methods investigated here, including

the totalistic models and SGA. Therefore, the Stochastic CA with mapping-reduce seems

helpful to find a good scheduling, a strong suggestion of the usefulness of the underlying

4.1. Cellular Automata models proposed to the many states scenario 97

scheme with binary transitions, reduction and mapping functions for multi-state cellular

automata applications.

Foremost motivation of a scheduler based on CA is the reuse skill since it is expected

that trained transition rules to present a good schedule to unseen instances in the oper-

ation phase. Totalistic schedulers in operation phase present fair results but are slightly

worse than DHLFET, outperforming SCAS-P. In general, SSCS operation results out-

performs all other techniques. Accordingly, SSCS presented the best makespan among

the 7 approaches herein. This statement is true when considering the mean makespan

out of architectures from 4 to 16 processors. However, its superiority is highlighted when

scheduling for systems using 12 and 16 nodes. Results endorse SSCS as an efficient sched-

uler, both in learning and operation states. We deduce that this is due the stochastic CA

model being able to coup the large rule space stemmed from using many processors in

the target architecture.

Interestingly, operation phase makespan of rules trained over similar instances return

smaller makespan, e.g., whether the program being scheduled and the graph used to train

the rules pertained to the same family. Still, in case rules evolved on different family than

the program in the target, the performance decayed, but are better than the other models

(lightly better than GA). Therefore, the operation scheduling to an instance presents a

fair performance even when using rules trained on the basis of unlike instances.

Considering average makespan, the second-best approach is SGA, especially compared

to the operation phase where it outperforms SSCS in a few cases. However, it must

take into account that the GA performs a new training for each program graph. By

contrast, schedulers based on CA reuse previously evolved rules in the operation phase.

In addition, the operation stage is extremely faster than a genetic algorithm, so SGA

is more a reference technique to operation phase than a competing method. Moreover,

results endorse SGA being the best technique to a few processors, whereas, SSCS is

better than all other methods to more processors and larger programs. So, it is possible

that SSCS will excel when coping with more complex instances. By contrast, SGA is a

very simple method and is a promising investigation to unravel how SSCS results fares

when compared to state-of-art hybrid methods GA and heuristics (OMARA; ARAFA,

2009) or PSO and GA (KUMAR; VIDYARTHI, 2016). Conceivably, this hybrid meta-

heuristics will return a more efficient schedule than SSCS, but in terms of running-time,

we presume that operation stage will need much less computational resources than these

schedulers. Additionally, DHLFET is a task scheduling heuristic with real applications

to this problem being competitive to the operation phase in terms of computational time.

We could observe that in FFT95 case, DHLFET takes a processing time of the same

order of magnitude as the time spent by the application of a single SSCS rule, both take

approximately 5 milliseconds. However, the makespan returned by DHLFET is usually

worse than CA rules, endorsing that the heuristic is less efficient than SSCS. On the

98 Chapter 4. The Stochastic CA (SCA-RM) applied to Task Scheduling

contrary, it is important to remember that operation phase results are obtained out of

400 transition rules.

In SSCS the binary rule has two decisions, it either keeps CA cell state or change it to

a value draw from the discrete normal distribution. Therefore, SCA-RM makes a random

choice from κ−1 states, considering κ processors (current cell state is excluded). However,

distinct probability distributions can perform this step. Moreover, in the following it is

considered alternatives to the mapping resulting in an improved version of SSCS.

Previously in Sec. 4.1 it was investigated the application of SCA-RM (Chapter 3) for

scheduling tasks. This result in SSCS, which significantly outperformed a scheduler based

on totalistic CA, which are a renowned solution for simplifying CA rules. Remarkably,

the reuse of rules in this SSCS presented very good results when compared to recurrent

solutions used in literature, such as genetic algorithms and heuristics.

CA rule employed in scheduling models becomes extremely complex when scheduling

architectures with many processors (CARVALHO; OLIVEIRA, 2017), this lead to a severe

decrease in the performance when dealing with more than 4 processors. SCA-RM is a

CA model proposed in Chapter 3 aiming at surpassing such a limitation. In SCA-RM

a multi-state configuration is reduced to a binary configuration (Reduce), then a binary

transition rule uses this configuration to determine the update, and this rule output, a

binary state, is re-transformed as a multi-state configuration with a stochastic function

(Mapping). This last step was implemented by a random choice among processors, this

is a simple solution that ought to bring some instability in the model. Hence, herein it is

investigated a more sophisticated mapping aiming at moving away from a random choice

in the model.

4.2 Testing Mapping functions in the Stochastic CA

In this section, we investigate a new function for performing the mapping step in SCA-

RM. This function considers the states of neighbours to update a central cell. Most CA

models in the literature consider the neighbours configurations in the updating, a very

important aspect that we are addressing from now on.

Investigated implementations of the mapping mix two probabilistic components, the

first gives the same probability to all states and disregards the neighbours states, whereas,

the second component considers the neighbouring configuration, assigning a higher chance

to states that appear more often in this configuration.

The scheduler based on SCA-RM using these mixed probabilities is named SSCS-

λ. In such model, a binary transition output determines whether cell state changes (0)

or not (1). In such a fashion, if the rule is 1, then the proposed mapping determines

the update according to a probabilistic choice. The model using this mapping is named

as Synchronous Stochastic Cellular Automata Scheduler with a stochastic update based

4.2. Testing Mapping functions in the Stochastic CA 99

on the neighbourhood states (SSCS-λ). An initial study of SCCS-λ was published in

(OLIVEIRA; CARVALHO, 2018).

Proposed mapping is a function assigning to each state σ ∈ κ a distinct probability to

be selected as cell state update. Besides, this probability is represented as real numbers

between 0 and 1 : P ∈ [0, 1], whereas, the chance of state σ to be chosen as cell i update

is: P (σ, i).

The first mapping component (P1) is a uniform distribution, in which each state has

an equal chance of being chosen. Therefore, it is equivalent to the strategy used in the

original SSCS investigated in Sec. 4.1. Assume i as the central cell to be updated, σ as

a cell state among the number of states (κ) and σt
i as the current i state in step t. Thus,

P1 of cell i to assume state σ in the next step t + 1 is:

P1(σ, i) =







0, if σt
i = σ

1
κ⊗1

, otherwise.
(10)

The proposed distribution P2 weighs up neighbour states to define each state prob-

ability to be selected in the cell update. Let i the updating cell, the neighbourhood

configuration ηi and the frequency of a state σ in this configuration F (σ, ηi). Frequency

of σ is a discrete function counting the number of neighbouring cells assuming σ in the

last step. When using mapping, the rule output being 1 imply that i current state must

change, thus, we discard from the neighbourhood configuration all cells assuming the

same state as i current state. This result in a new subset η′
i. P2 of σ is the frequency of

this state in the neighbourhood of cell i (η′
i) divided by the cardinality of η′

i. Therefore,

the probability of central cell (i) to assume state σ is:

P2(σ, i, η′
i) =







0, if σt
i = σ

F (σ,η′

i
)

♣η′

i
♣

, otherwise.
(11)

In the following, we assess how P1 and P2 influences the scheduling performance in

SSCS-λ. Therefore, parameter λ controls whether the probabilistic distribution depends

more on the first (Eq. 10) or the second component (Eq. 11). This parameter weights each

probabilistic function, and gives P1 a higher importance when λ is low and prioritizing

P2, otherwise. The probability distribution used in the mapping can be expressed as:

P (σ, i, η′
i) = (1 − λ) ∗ P1(σ, i) + λ ∗ P2(σ, i, η′

i) (12)

Let us compare the cells update from SSCS-λ = 1 and SSCS, considering the update

of a central cell assuming state 2 and with a neighbourhood configuration of 02233 (cell

8 updating in Fig. 17). In SSCS-λ, the mapping takes into account the frequency of

states in the neighbourhood, in this case state 2 appears twice, but this is the state of

the central cell, so it is ignored from the updating, this results in one appearance of state

0, two appearances of state 3 and no appearance of state 1. Hence, the mapping in the

100 Chapter 4. The Stochastic CA (SCA-RM) applied to Task Scheduling

λ model relies on only in the following probability wheel P2 for states: state 0 with

probability 1
3
, state 1 with probability 0

3
, state 2 with probability 0

3
and finally state 3

with probability 2
3
. In SSCS, the mapping must change cell state from 2 using normal

distribution, so the probabilities P1 to update to states 0, 1, 2, 3 are respectively 1
3

1
3
, 0,

1
3
. Therefore, the probabilities change in SSCS-λ according to the neighbourhood of the

cell, while in SSCS the probabilities are the same (1
κ⊗1

). Finally, if λ = 0.75, this means

that there is 25% to use the uniform distribution P1 and 75% to use the distribution

considering cells locality P2.

4.2.1 Methodology

The majority of definitions in Sec4.1.4 also apply herein. Three families of program

graphs are investigated, Gauss instances are representations of LU decomposition algo-

rithm manipulating triangular matrices (CARVALHO; CARNEIRO; OLIVEIRA, 2018),

Laplace instances represent the Laplace equation solver algorithm (WU; GAJSKI, 1990)

and FFT graphs representing programs performing Fast Fourier Transform (XU et al.,

2014). The same GA and CA parameters presented in Sec. 4.1.4 are employed in SSCS-

λ. Control parameter λ assumes five values: 0, 0.25, 0,5, 0.75, 1. So, the first variant

uses P1 a random choice (just like SSCS), whereas, the last is the most stable, relying

only on P2 a distribution according to neighbours states. In the other variations these

distributions are mixed, the objective is to identify the variation that returns the lowest

makespan. Besides, architectures with 4, 8, 12, 16 nodes are considered. Alternative

methods DHLFET and SGA (Sec4.1.4) are also taken into account in this comparison.

4.2.2 Testing different functions as the Stochastic CA mapping

for Task Scheduling: Learning phase

Experiments herein compare two different implementations of the Mapping in the

stochastic CA. Results regard the best rule found by the GA in each of the 100 runs of

the learning phase.

The figures below present several statistics in some box plots, in which the y-axis

represents the makespan, and the x-axis indicates the scheduling model. Moreover, these

figures are easier to analyse and more concise than a table. However, more detailed results

can be found in (OLIVEIRA; CARVALHO, 2018).

4.2.2.1 Training Phase

Gauss Family

Figure 18 presents results for graphs of the Gauss family as box plots. The x-axis indi-

cates the λ value used in the SSCS-λ variation, while the y-axis represents the makespan

4.2. Testing Mapping functions in the Stochastic CA 101

0 0.25 0.5 0.75 1

67

68

69

70

71

72

73

74

75

76
M

a
k
e
s
p
a
n

Program Graph: Gauss27

0 0.25 0.5 0.75 1
90

91

92

94

96

98

100

102

M
a
k
e
s
p
a
n

Program Graph: Gauss35

0 0.25 0.5 0.75 1

116

118

120

122

124

126

128

130

132

M
a
k
e
s
p
a
n

Program Graph: Gauss44

Figure 18 – Box plots summarising the statistics of training results of SSCS−λ variations
for graphs of the Gauss Family. Experiments consist of 100 GA executions
for 4, 8, 12 and 16 processors. Notches highlight a 95% confidence interval for
medians. Whiskers mark Quartile1 = 0.5 * Inter Quartile Range (IQR) and
Quartile3= 1.5 * IQR, dots present an execution that returns a makespan
value not included between the whiskers, so with a short IQR, more points
are plotted as dots

found in the training phase. A shorter box indicates that the method consistently returns

a similar makespan on every 100 executions. This figure shows that boxes and whisker

distances are relatively small for all λ variations. Hence, SSCS-λ shows stability, and the

results seem reliable. The altering of λ lightly influences the scheduling quality, which is

discussed in the following.

When λ is 0.75 and 1 on Gauss27, the q1 (lower 25% of the data) and the q3 (higher

75% of the data) are 69, so most runs (more than 50%) returned a makespan equals 69.

Besides, in this case, the box size is 0. Besides, in such a scenario, the scheduler returns

the same makespan to every run, the IQR is 0, and the scheduler is reliable and stable.

Additionally, whiskers are drawn based on the IQR value, so the distance among the

whiskers is also 0.

A hint on overall performance is the 95% confidence interval for the median, high-

102 Chapter 4. The Stochastic CA (SCA-RM) applied to Task Scheduling

lighted by the notched area around the central line in Fig. 18. This estimation overlaps

for λ= 0.5, 0.75, and 1 on Gauss27, so these λ variations do not differ with 95% confidence.

On the other hand, these tree variations returned a lower expected median (69) than λ=

0 (expected median is [71.77, 72.23]) and λ= 1 (expected median is [70.77, 71.24]. To

Gauss35 and Gauss44, SSCS with λ= 0.75 and λ= 1 returned lower median than other

models, as it is shown by the notches in Fig 18. Alternatively, if the lowest makespan is

considered, then λ= 0.75 and λ= 1 cannot find the best makespan for Gauss27, which

also occurs for λ= 1 on Gauss35. Therefore, the most stable variations have difficulty

finding the best makespan.

The boxes tend to be shorter as the λ increases and gives more importance to the

mapping that considers the neighbours states (P2). And as short boxes denote less

variation in the models performance, a larger λ make SSCS−λ more stable to graphs of

Gauss Family. On the contrary, this is not true to Gauss44.

Some comparisons can be made to understand better how λ alters the makespan. For

instance, 50% runs to Gauss35 (data between [q1, q3]) situated in the [92, 93] range for λ

= 0.75, while the worst variation for this graph is λ = 0 and has a ∼ 4% to 7.5% higher

makespan [q1=96, q3=100]. Moreover, the highest q1 of experiments tackling Gauss44 is

returned by SSCS−λ = 0 [127], whereas the lowest q1 is [116] reported by SSCS−λ = 1,

so the last returns a makespan 9% lower than λ = 0.

Laplace Fafmily

Fig. 19 reports on the training phase for graphs of the Laplace Family. The variation

in these results is slight, and all λ variations seem robust and stable.

Considering Laplace32 in Fig. 19, the confidence interval of the median overlaps to all

λ variations, hence, these medians do not significantly differ with 95 % certainty. Besides,

λ = 0 is the only discrepant variation as the q3 is ∼ 10% higher in this variation than in

other λ values.

Disregarding the λ variation, the best makespan returned by Laplace49 is only ∼ 10%

lower than the worst makespan, whereas most returned makespans denoted by q1 to q3

present a ∼ 5% of variance.

Alternatively, in Laplace64, the difference between the best and worst makespan in-

creases to ∼ 20% in general to SSCS-λ. Hence, a more considerable variation is identified

in Laplace64 than in the other Laplace instances, a tendency reinforced by the boxes

being generally longer on this graph than on others.

Fig. 19 shows that variation λ = 1 presents smaller boxes to Laplace49 and Laplace64

than other variations. On the other hand, this variation also returns an expected median

significantly higher than other variations.

FFT Family

Fig 20 shows training results for instances belonging to the FFT family. The most

interesting result is that the makespan significantly decays when the architecture has more

4.2. Testing Mapping functions in the Stochastic CA 103

0 0.25 0.5 0.75 1
2300

2320

2350

2400

2450

2500

2550

2600
M

a
k
e

s
p

a
n

Program Graph: Laplace32

0 0.25 0.5 0.75 1
2950

2980
3000

3050

3100

3150

3200

3250

3300

M
a

k
e

s
p

a
n

Program Graph: Laplace49

0 0.25 0.5 0.75 1
3200

3320

3400

3500

3600

3700

3800

3900

4000

M
a

k
e

s
p

a
n

Program Graph: Laplace64

Figure 19 – Box plots summarising statistics on training results of SSCS−λ variations for
graphs of Laplace Family. Experiments consist of 100 GA executions for 4,
8, 12 and 16 processors.

processors. For instances, the best makespan for FFT223 is 3920 on 4 processors, but it

decreases to 2700 on 8 processors.

The FFT95 results is very similar across all numbers of processors. As a result, these

results are plotted within the same graph for all processor configurations.

All SSCS−λ variations present a similar makespan on each run in Fig. 20 as the

deviation between most returned makespan is ≈ 5%. Moreover, the largest deviation

between the best and worst makespan is ≈ 12% in FFT223B, λ=0.75 and 16 processors

(3280 and 3680). Besides, the expected median overlaps for SSCS with λ = 0.25/0.50/0.75;

thus, there is no statistical evidence that these medians are different.

Considering the training phase (Figs 18, 20 and 19), intermediary λ = 0.25/0.50/0.75

usually present boxes and whiskers distance that are smaller than remaining models,

moreover the q1 and q3 is lesser in these three variations than in remaining methods in

general. These three variations mix P1 and P2 in the CA update, so results suggest that

the combination of these two distributions lowers the returned makespan

104 Chapter 4. The Stochastic CA (SCA-RM) applied to Task Scheduling

2000

2050

2100

2150

2200

M
a

k
e

s
p

a
n

Program Graph: FFT95

4 8 16

2600

2800

3000

3200

3400

3600

3800

4000

M
a
k
e
s
p
a
n

Program Graph: FFT223

4 8 16

3500

4000

4500

5000

5500

M
a
k
e
s
p
a
n

Program Graph: FFT223B

Figure 20 – Box plots summarising statistics on training results of SSCS−λ variations for
graphs of FFT Family. In FFT223 and FFT223B sub-figures, the numbers
4/8/16 on the x-axis indicate the number of processors.

4.2. Testing Mapping functions in the Stochastic CA 105

4.2.2.2 Operation phase - Models comparison and statistical validation.

The experiments herein answer two questions. Firstly, what is the average makespan

when SSCS−λ is executed several times? Secondly, how do the scheduling methods fare

in an analysis considering statistical significance?

Four metrics were used to estimate the adequate sample size to validate SSCS results.

Most of these metrics suggest a sample size of 103 to achieve a 95% confidence interval

and 5% variance. Thus, the operation phase is executed 103 times in this validation.

One operation phase run tests all rules in the rule database except by rules trained

to the program graph in target of the operation phase, and then the best makespan is

returned. SSCS−λ is probabilistic, so each run returns a different solution. The makespan

returned in each 103 runs is plotted, resulting in a general view of SSCS−λ performance.

The variations of λ perform very similarly in Sec 4.2.2, so only results with the mapping

using P1(λ=0), one mixed model (λ=0.5), and the one using only P2 (λ=1) are considered

herein. The box plots herein illustrate the usual behaviour of λ variations in the operation

phase. For instance, Figure 21 shows 103 executions of SSCS-λ when Gauss18 is the target

of the operation phase. Each execution tests all rules trained to Gauss27, Gauss35 and

Gauss44 (300 rules), and all rules trained for the four graphs of Laplace (400) and FFT

family (400). Moreover, the heuristic and each run of the standard GA are also plotted

as referential solutions.

The makespan usually returned by a scheduler is highlighted by the notched area

around the median (95% confidence interval). This interval is very short for all SSCSλ

variations in all figures herein. By contrast, the boxes are somewhat long, possibly due

to a considerable variation in the operation results. Moreover, some SSCS executions

return a makespan significantly higher/lower than the median, but generally, this method

is reasonably stable.

Figure 21 reports that the 95% confidence interval for the expected median overlap for

all λ variations to 4 and 8 processors. At the same time, these intervals also overlap with

the GA expected median. Moreover, these methods’ results are not statistically different

when scheduling 4 and 8 processing nodes. On the other hand, SSCS variations present

a lower median and lower q1 and q3 than SGA for 16 nodes. In addition, the DHLFET

makespan is always larger than SSCS and SGA results. The conclusions in this paragraph

are also valid for the first ten of the twelve investigated instances.

Let us consider the validation of operation results of graphs from the Gauss Family in

Figures 21 to 24. SSCS usually returns better scheduling than the DHLFET solution as

the expected medians, q1 and q3 are usually lower in all λ variations than the makespan

returned by DHLFET. DHLFET outperforms SSCS in very few cases, which only occurs

when this scheduler uses the random choice (P1). Additionally, λ=0 variation often

returns a worse solution than λ = 0.5 and λ = 1 variations. Besides, the values of q1, q3,

IQR and box size in the GA and SSCS are similar. For instance, the expected median

106 Chapter 4. The Stochastic CA (SCA-RM) applied to Task Scheduling

of the GA is generally lower than SSCSλ to 4 processors, but these methods expected

median overlaps to 8 and 16 processors (results does not statistically differs with 95%

confidence)

The previous state-of-the-art in CAS (marked as traditional CA) performs similarly

to SSCS variations for 4 processors in all twelve figures herein. In contrast, traditional

CA returns abysmally inefficient solutions when the number of processors increases to 16.

On average, the makespan returned by the traditional CA to 16 processors is double the

makespan returned by SSCS variations. Besides, every SSCS execution returned a much

better solution than traditional CA. In other words, each SSCS run returned a solution

extremely faster than the one found by the traditional CA for all investigated instances.

According to figures 25, 26, 27 and 28, SSCS variations outperform all other methods

to graphs of Laplace family. Interestingly, the q1, q3 and expected median for SSCS vari-

ations are lower than the ones returned by the SGA or the exact value found by DHLFET.

Moreover, to 16 nodes, the heuristic result becomes more similar to the ones returned by

the GA, which signifies a degradation of GA performance in this case. An increase in this

GA parameter may enable this model to find better solutions than DHLFET.

The figures reporting on FFT39 (29) and FFT95 (30) endorse the same conclusions

presented in the last paragraph. Considering the first ten program graphs, it is possible to

conclude that the best schedulers are SSCS using both mapping implementations (λ = 0.5)

or only P2 (λ = 1) as they usually return shorter boxes and smaller makespan. By

contrast, the λ = 1 variation returned much worse solutions than the ones returned by

the remaining λ variations for scheduling FFT223 and FFT223B to 16 processors (figures

31 and 32). As a matter of fact, SSCSλ = 1 and the traditional CA return a ≈ 40% larger

makespan than SSCSλ = 0.5, which makes them the worst schedulers in this scenario.

To unravel such results, we must go beyond the makespan and delve into the scheduling

solutions, I.E. to regard which tasks are assigned to each processor. In the first ten

graphs, the best scheduling solutions tend to assign all tasks to one or two processors.

Alternatively, the best solutions/schedulings for FFT223 and FFT223b tend to assign

tasks to many (even all) processors. The ability to distribute each task to a different

processor is essential for finding good results for FFT223 and FFT223B, but the mapping

used in SSCSλ = 1 tends to assign tasks to the same processor. This limitation justifies

why the variation λ = 1 cannot efficiently schedule the last two program graphs.

Considering all graphs, mixing the two mappings in λ = 0.5 seem to produce the most

robust scheduler and best-performing model overall.

The variation λ = 1 use P2 as the mapping function and is efficient for scheduling

some instances but inefficient for others. Besides, the functions used in the reduce and

mapping can heavily influence SCA-RM performance in multi-state problems. Hence,

an inappropriate function in the reduce/mapping could make SCA-RM transitions work

in an undesired way, and, in this case, SCA-RM can yield poor results for a multi-

4.2. Testing Mapping functions in the Stochastic CA 107

state application. Therefore, designing and testing different conversion functions as the

reduce/mapping is essential when applying SCA-RM to a different problem.

1
0
8

C
h
a
p
ter

4
.

T
h
e

S
toch

a
stic

C
A

(S
C

A
-R

M
)

a
p
p
lied

to
T

a
sk

S
ch

ed
u
lin

gFigure 21 – Validation of operation phase of SSCS−λ variations for scheduling Gauss18 to 4, 8 and 16 processors.

4
.2

.
T

estin
g

M
a
p
p
in

g
fu

n
ctio

n
s

in
th

e
S

toch
a
stic

C
A

1
0
9Figure 22 – Validation of operation phase of SSCS−λ variations for scheduling Gauss27 to 4, 8 and 16 processors.

1
1
0

C
h
a
p
ter

4
.

T
h
e

S
toch

a
stic

C
A

(S
C

A
-R

M
)

a
p
p
lied

to
T

a
sk

S
ch

ed
u
lin

gFigure 23 – Validation of operation phase of SSCS−λ variations for scheduling Gauss35 to 4, 8 and 16 processors.

4
.2

.
T

estin
g

M
a
p
p
in

g
fu

n
ctio

n
s

in
th

e
S

toch
a
stic

C
A

1
1
1Figure 24 – Validation of operation phase of SSCS−λ variations for scheduling Gauss44 to 4, 8 and 16 processors.

1
1
2

C
h
a
p
ter

4
.

T
h
e

S
toch

a
stic

C
A

(S
C

A
-R

M
)

a
p
p
lied

to
T

a
sk

S
ch

ed
u
lin

gFigure 25 – Validation of operation phase of SSCS−λ variations for scheduling Laplace25 to 4, 8 and 16 processors.

4
.2

.
T

estin
g

M
a
p
p
in

g
fu

n
ctio

n
s

in
th

e
S

toch
a
stic

C
A

1
1
3Figure 26 – Validation of operation phase of SSCS−λ variations for scheduling Laplace36 to 4, 8 and 16 processors.

1
1
4

C
h
a
p
ter

4
.

T
h
e

S
toch

a
stic

C
A

(S
C

A
-R

M
)

a
p
p
lied

to
T

a
sk

S
ch

ed
u
lin

gFigure 27 – Validation of operation phase of SSCS−λ variations for scheduling Laplace49 to 4, 8 and 16 processors.

4
.2

.
T

estin
g

M
a
p
p
in

g
fu

n
ctio

n
s

in
th

e
S

toch
a
stic

C
A

1
1
5Figure 28 – Validation of operation phase of SSCS−λ variations for scheduling Laplace64 to 4, 8 and 16 processors.

1
1
6

C
h
a
p
ter

4
.

T
h
e

S
toch

a
stic

C
A

(S
C

A
-R

M
)

a
p
p
lied

to
T

a
sk

S
ch

ed
u
lin

gFigure 29 – Validation of operation phase of SSCS−λ variations for scheduling FFT39 to 4, 8 and 16 processors.

4
.2

.
T

estin
g

M
a
p
p
in

g
fu

n
ctio

n
s

in
th

e
S

toch
a
stic

C
A

1
1
7Figure 30 – Validation of operation phase of SSCS−λ variations for scheduling FFT95 to 4, 8 and 16 processors.

1
1
8

C
h
a
p
ter

4
.

T
h
e

S
toch

a
stic

C
A

(S
C

A
-R

M
)

a
p
p
lied

to
T

a
sk

S
ch

ed
u
lin

gFigure 31 – Validation of operation phase of SSCS−λ variations for scheduling FFT223 to 4, 8 and 16 processors.

4
.2

.
T

estin
g

M
a
p
p
in

g
fu

n
ctio

n
s

in
th

e
S

toch
a
stic

C
A

1
1
9Figure 32 – Validation of operation phase of SSCS−λ variations for scheduling FFT223B to 4, 8 and 16 processors.

120 Chapter 4. The Stochastic CA (SCA-RM) applied to Task Scheduling

4.2.3 Additional Remarks

Herein some probabilistic schemes are used in stochastic CA transition rules applied

to task scheduling. SSCS rely on a random selection of states to update the CA cells. By

contrast, the use of the information of the cell neighbourhood in the mapping is promising

as this information is highly important in CA studies and applications.

Two components are mixed in a probabilistic scheme, which decides the CA cells up-

date: (i) the normal distribution, in which states have the same chance of being selected

in the update, (ii) a proposed distribution that assigns a higher chance to states appearing

more often in the neighbourhood configuration. This second approach is much more sim-

ilar to normal CA models where the update of a cell considers the states of neighbouring

cells. A variable λ determines the weight of each component, i.e., a high value in param-

eter λ signifies neighbourhood states to be more influential in the update, by contrary,

low λ implies cell update being more influenced by uniform distribution. These ideas

result in SSCS-λ. Experiments regard five models λ={0, 0.25, 0.5, 0.75, 1}, with the first

being equivalent to original SSCS (λ=0), whereas, the last uses only the neighbourhood

information discarding normal distribution.

Results endorse that the proposed model using λ= 0.25 0.5, 0.75 is more stable than

SSCS using the random update. In that regard, the usage of intermediary values of λ

employ a more sophisticated probabilistic distribution considering neighbourhoods states

instead of the normal distribution, thus diminishing the significance of the random choice.

On the contrary, when λ=1 the scheduler did not fare well, this is unfortunate because

it is the most suitable model that update cells only based on the states configuration of

the neighbourhood. Therefore, we suspect that the non-deterministic nature of uniform

distribution is somewhat helpful to solve the scheduling problem.

Studies (CARVALHO; CARNEIRO; OLIVEIRA, 2016; CARVALHO; CARNEIRO;

OLIVEIRA, 2016; CARVALHO; CARNEIRO; OLIVEIRA, 2018) endorses that dynamics

control avoid chaotic behaviour and improves scheduling results for traditional CA. On

the contrary, in a preliminary investigation, the stochastic CA model returned more than

80% transitions with a stable behaviour. Hence, dynamics control were not investigated

to SCA-RM as this model already seems to present few rules with chaotic behaviour.

Training results endorse five models performing somewhat similarly with a lightly

better schedule when λ is 0.25 and slightly worse results whether λ = 0 or λ = 1.

Additionally, when trained rules reusability is taken into account in the operation mode,

variations where the two probabilistic components are evenly considered returned the

best schedule. Results of SSCS-λ variations in training and operation phases are better

than efficient list-heuristic DHLFET. The comparison also considers a standard GA that

evolves tasks allocation, this model only outperforms SSCS-λ in the operation phase in

one of three groups of instances. This is a striking result since this GA directly search

for solutions, whereas, SSCS just reuse CA transitions resulting in a quite fast solution

4.3. Conclusion 121

(much faster than SGA).

Results show that the CA rules reuse in SSCS operation stage is more efficient than

SGA for scheduling. This is arguably due to the SGA search space becomes too large

when the number of processors and tasks increases. For instance, an SGA solution to

schedule Gauss18 to 4 processors is an array of 18 positions/tasks in which each position

is either 0, 1, 2, or 3. Simultaneously, for scheduling FFT223 to 16 processors, the GA

individual becomes an array of 223 positions, each assuming one among sixteen values. In

contrast, SSCS search space does not increase when the number of processors and tasks

increases, and this can justify why the SSCS operation stage significantly outperforms the

SGA.

4.3 Conclusion

It is well-known that CA rules become extremely large and complex to deal with a lot

of states in the cells, i.e., the rule size increases exponentially to the number of states.

This chapter investigates a stochastic CA model (SCA-RM), especially built to avoid the

complexity emerged in the CA rule search space when using many states in CA cells.

SCA-RM has 3 principles: (i) apply a function to convert neighbourhood states to binary

before applying the updating rule, (ii) use a binary rule to decide the update, (iii) use

another function to convert the binary rule output to one state among the original ones.

With such machinery, this model is able to maintain the search space size, disregarding

the number of states.

Previous scheduler models based on CA have a lot of difficulty in handling architectures

having eight or more processors due to an unmanageable cardinality in CA rules search

space. Herein, we applied proposed SCA-RM for scheduling and concluded that this

model is efficient to schedule for many-processors. Additionally, SCA-RM can be useful

for other investigations, which evolves CA rules for applications requiring many states.

For that, the functions proposed here must be adapted to other domains. In Chapter

5, it is considered the application of SCA-RM model for solving the multi-state density

classification problem.

SCA-RM is compared with totalistic CA that are a well-established solution to simplify

CA rules in literature. Results suggest that this stochastic CA is significantly better than

totalistic CA for scheduling. Also, an interesting investigation is to compare these types

of CA in other applications that requires many states.

Initially, in SCA-RM, the cell update could be performed by a random choice of

states. Later, we propose an updating method based on mixed probabilistic distribution

considering the states of neighbouring cells and the uniform distribution. This results in

SSCS-λ a CA model that provides a very good schedule outperforming other solutions used

in literature, this conclusion was obtained by investigating real-world parallel programs.

122 Chapter 4. The Stochastic CA (SCA-RM) applied to Task Scheduling

The foremost characteristic of such model is the reusability when transitions are applied

to many problems, finding solutions as fast as heuristics but usually returning a better

schedule than the heuristic approach.

123

Chapter 5

The Stochastic CA applied to Density

Classification Task

Previously in Chapter 3 it is presented the proposed stochastic CA (SCA-RM), which

is further applied for scheduling tasks resulting in solutions with high quality (Chapter

4). This result is due to the SCA-RM feature of simplifying the complexity of the CA

transitions, especially when the number of states increases. In the following, this CA

is applied in a different context, where the challenge is to solve the well-known density

classification task (DCT). This task consists in looking for CA transitions that are able to

decide if the initial configuration of the CA contains more cells that assume the state 0 or

the state 1. DCT (also known as majority task) is a classic problem in CA literature and is

usually investigated in a definition of binary CA (cells assume either state 0 or state 1). On

the other hand, this task can also be considered in CA where cells assume more than two

states (multi-state CA/multi-state DCT) (GABRIELE, 2005; BAETENS; BAETS, 2014).

In this context, the CA model is built on many states, and this makes traditional CA

transitions remarkably complex. Furthermore, multi-state DCT is a suitable application

to validate the efficiency of SCA-RM compared to traditional CA.

DCT is arguably the best and most famous example of what the phenomenon of

emergence in complex systems is. Besides, the research of DCT shred light on what CA

rules can accomplish, and this sort of understanding/knowledge can be helpful to many

CA applications such as Epidemiological and traffic modelling.

In this chapter, our goal is to compare traditional and the proposed CA when solving

DCT. The main objective here is to validate the conclusions obtained in the scheduling

context, in particular, verify if the stochastic CA is an efficient solution to problems in

which cells assume many states. In addition, there are many similarities between DCT

and CA-based task scheduling. In fact, CA-based scheduling was inspired through DCT

investigations (SEREDYŃSKI, 1998). These problems are challenges that CA transition

must undertake, however, DCT is more theoretical and scheduling relates to a real-world

application.

5.2. Methodology 127

Figure 39 – Traffic-Majority rule evolution solving DCT. Traffic-flow rule is applied from
step 0 to step 11, and after the majority rule is applied.

assume this major state. Notwithstanding, this rule relates to study by (FUKS, 1997),

where these collaborators proved that DCT can be perfectly solved by first applying the

traffic-flow rule and then the majority rule.

5.2 Methodology

This section describes the experimental setup herein, which is inspired by studies in

(MITCHELL; CRUTCHFIELD; HRABER, 1994). The experiments refers to a genetic

algorithm used to find CA transition rules able to perform DCT. Those experiments were

conducted using binary (2 states per cell) and multi-state CA (experiments with 3, 4 and

8 states). The major parameters employed in these experiments are described below.

CA parameters are: one-dimensional lattice with 149 cells (n = 149), a radius =

3 and the number of steps in the spatio-temporal evolution is τ = 320. Hence, the

transition is applied to the initial configuration for 320 steps and then the rule passes

the test if in the final configuration all cells assume the most frequent state in the IC. In

(MITCHELL; CRUTCHFIELD; HRABER, 1994) larger number of steps is investigated,

being those experiments returning rules with similar strategies but taking longer to reach

a fixed final configuration. The GA parameter are: (i) population is composed of 100

CA rules to binary DCT and 300 to multi-state DCT; (ii) the rule evaluation (fitness)

consists of applying an individual rule to a hundred initial configurations being the fitness

equivalent to the number of configurations that this rule classified correctly; (iii) an elite

of 20% transitions with the best fitness survive to the next generation; (iv) parents are

randomly selected from among the individuals of this elite group; (v) crossover by fixed-

point crossover and mutation by flip-bit (Sec 2.4.4); (vi) mutation ratio at 3% per rule

128 Chapter 5. The Stochastic CA (SCA-RM) applied to the Density Classification Task

bit and crossover ratio at 80%, which means that the population excluding the elite is

substituted by the offspring; (vii) 100 generation to binary DCT and 200 to multi-state

DCT. This GA similar to the algorithm described in Sec.2.4.4.

As an aside, a crucial aspect is the generation of the initial population and the sampling

generation of ICs employed in the fitness calculation. Furthermore, sampling ICs with

normal discrete distribution results in a distribution in which half of the cells assume

state 0 and the remaining assume 1. These are the most difficult ICs for the solving of

DCT and the GA does not converge when the initial population is generated with uniform

distribution. Hence, there is a need for a more biased distribution in order to the GA make

progress in early generations, thus the uniform distribution is employed (OLIVEIRA et

al., 2009). In addition, the use of uniform distribution is also used to generate the initial

population further enhancing the efficiency of the GA.

The uniform distribution is generated as follows, for a vector with 100 individuals,

for individual 0, each cell has 0% of probability to yield 0 and 100% to yield 1, then for

individual 1, cells possess 1% and 99% to yield 0 and 1, and so on.

On the other hand, the evaluation of rules and final accuracy is performed on 1000

ICs generated with normal distribution, just like in the literature. This method tends to

produce ICs with an even appearance of symbols resulting in a more rigorous evaluation.

Moreover, all results of DCT herein refer to this final accuracy test.

DCT inherently tests the rules into many configurations. Because of this, and for the

sake of brevity, the only statistical validation herein is the standard deviation (SD).

GA is a probabilistic method, so the GA is executed 50 times, and the rule with the

best accuracy is returned each time.

5.3 Stochastic CA on the Density Classification Prob-

lem

Initially, we consider the classic DCT studies on binary CA and then we investigate the

Stochastic CA with Reduce and Mapping for multi-state DCT. Concerning this problem,

the CA transitions must converge all cells to the major state in the initial configuration

and three or more states are employed in the model.

5.3.1 The Binary Density Classification Problem

Herein it is reported a replication of the seminal experiment in (MITCHELL; HRABER;

CRUTCHFIELD, 1993). It addresses 1D binary CA (κ = 2) and the GA is executed once,

and then the population of 100 transitions are tested on 1000 ICs generated according

to binomial distribution. This final test determines the accuracy of the transitions. The

best rule in the replication returned 76.4% of accuracy, which signifies that this transition

5.3. Stochastic CA on the Density Classification Problem 129

solves the DCT in 76.4 % of ICs generated according to binomial distribution. Addition-

ally, four rules in the population did not converge, thus finishing the GA evolution with

a 50% accuracy. Mitchell reported the best result with 76.90% accuracy and on average

five rules did not converge. Hence, this replication seems successful.

A recurrent criticism of this experiment is that the uniform distribution of ICs tends to

hamper the GA search in later generations as when more fitter rules are sought, then the

IC sample becomes less and less challenging for these transitions. Accordingly, uniformly

generated ICs prevent the GA to find better rules. Several techniques can solve this limi-

tation, they are called adaptive strategies and in (OLIVEIRA; MARTINS; FYNN, 2011)

many are considered. The solution employed herein is simple and efficient (OLIVEIRA

et al., 2009; OLIVEIRA; MARTINS; FYNN, 2011), there are two parameters, (i) icth

defines a percentage of the ICs that are generated with binomial distribution, where the

remainder are generated with uniform distribution. The second parameter is the accuracy

threshold ath, it defines that if the best rule classifies a percentage of the ICs larger than

this number, icth is then incremented. In other words, when the rules start to achieve a

good accuracy, then more challenging ICs are generated. The GA starts with icth = 0 (all

ICs are generated uniformly), then if the best rule classifies more than 85% (ath = 85) of

the ICs, then icth is incremented by 5% (OLIVEIRA; MARTINS; FYNN, 2011). There-

fore, in the next GA generation 5% of ICs are generated with normal distribution and

95% with uniform distribution. This process can be triggered until icth = 100, which

signifies that all ICs are generated with only normal distribution exactly as in the final

accuracy test of the rules.

Table 10 – Performance comparison of traditional CA transitions evolved by genetic algo-
rithms (GA) with the use of adaptive strategies for solving binary DCT. The
numbers represent the amount of rules found with the specified accuracy.

Accuracy Range (%) GA GA + Adaptive Strategies

< 50 4 1
>50 and <55 1 2
>55 and <60 0 9
>60 and <65 21 14
>65 and <70 22 22
>70 and <75 1 1
>75 and <80 1 0

>80 0 1

Best 76.1 80.4
Average 66.3 68.4

SD 3.64 4.24

The results on Table 10 refer to rules evolved by GA to classify 1000 ICs generated

with binomial distribution. The row on this table presents the number of rules found with

specific accuracy, e.g., 4 on the first row (< 50), and the second column (GA) signifies

130 Chapter 5. The Stochastic CA (SCA-RM) applied to the Density Classification Task

that GA found 4 rules with accuracy less than 50%, a statistic that diminishes to 1 when

using the adaptive strategies on the next column. Furthermore, the rules returned by the

GA with adaptive ICs are better than those returned by the Mitchel/Packard GA as the

average performance increases by almost 2%. Besides, a new best rule was found with

80.1% of accuracy. The improvement becomes more relevant as there is no increase in the

search parameters.

Hereafter, DCT with more than two states is considered and the adaptive strategy

is employed in all experiments. The performance of rules tend to decrease when solving

DCT for more states, so the accuracy threshold (ath) is 60, 40, 20 for 3, 4 and 8 states

DCT, respectively. Additionally, icth is increased by 5% if the best rule accuracy surpass

the ath.

5.3.2 The Multi-state Density Classification Problem - three

states

DCT studies usually consider only binary CA, even though the task definition does not

restrict it to two states. Moreover, the multi-state DCT seem to be more complex than

binary DCT, since the cells must cooperate to determine the major state among many

possibilities. Besides, in this variation traditional CA rules become remarkably complex

when dealing with so many states. Therefore, it is expected that the GA convergence

drastically worsen when searching for traditional rules to the multi-state DCT. As an

alternative SCA-RM is assessed herein, as it simplifies the transitions making for an

easier search in the multi-state CA context.

5.3.2.1 Definition of the Stochastic CA with mapping-reduce for the multi-

state Density Classification Task.

The stochastic CA employs reduce in order to simplify the state configuration to

binary, it applies this simplified configuration to a binary rule and then the mapping

converts the binary output of the rule to one state among κ states (Chap. 3). Moreover,

the GA to SCA-RM evolves binary rules to govern this model, these transitions can handle

multi-state DCT due to SCA-RM machinery. Some preliminary investigations regarded

variations of functions reduce and mapping resulting in SCA-RM’ and SCA-RM”.

In SCA-RM, the input of function reduce is the state configuration of a central cell’s

neighbours, and it ought to convert this configuration to binary. Reduce was previously

performed by converting any bit of the configuration to 0, whenever this bit is equal to

the central cell state and to 1 otherwise (R). Fortuitously, this same function returned

very good results to multi-state DCT. Hence, giving such importance to central cell state

sounds very reliable when using SCA-RM. Moreover, the SCA-RM models for DCT em-

ploy this function R, and which is presented in Eq. 5

5.3. Stochastic CA on the Density Classification Problem 131

The first implementation of mapping randomly picks a state from among κ if the

binary rule output is 1. Besides, we also considered a mapping function that tends to

update the cell to states more frequent in the neighbourhood configuration (Sec. 4.2).

Note that for scheduling, a mapping is employed that combines these two functions with

parameter λ. After preliminary investigations, we concluded that two variants without λ

fully illustrates how SCA-RM performs on DCT. Hence, we define SCA-RM’ and SCA-

RM” both as employing R as reduction, but when the binary rule output is 1, these

employ different mapping implementations.

SCA-RM’ mapping function is M’, it changes the cell state by randomly choosing one

from among possible states. This mapping was formally presented in Eq. 10 as P1.

SCA-RM” relies on mapping M”, in which the probability of updating to a state is a

proportion of the number of appearances of this state in the neighbourhood divided by the

neighbourhood size. Let us consider the update of 00221 and the binary rule that decides

that the central cell state must change from 2, so state 2 is ignored from the update.

Hence, the state 2 is removed and neighbourhood contains two appearances of 0s and

one appearance of 1 (001), so the probabilities of updating to states are P (σ = 0) = 2
3
,

P (σ = 1) = 1
3

and P (σ = 2) = 0. This mapping was formally presented in Eq. 11 as P2.

One notes that these probabilities are also considered in 4.2. Additionally, SCA-RM’

is equivalent to using λ = 0, while SCA-RM” is equivalent to using λ = 1. Moreover, both

mapping functions employ the decision of maintaining the cell state if the rule output is

0.

Distinct mapping functions can be idealised to approach DCT. Some other functions

were studied, but M’ and M” excelled at illustrating SCA-RM transitions performance.

The binary transition rule of SCA-RM have radius 3, and reduction always converts

the central state to 0, so this value is discarded from the neighbourhood configuration

resulting in 6 states. Thus, this rule size is 26 = 64.

5.3.2.2 Stochastic CA mapping-reduce to a three-state density classification.

Herein the multi-state DCT considers κ = 3, in this case there are three possibilities.

Results refer to the employment of the GA previously presented in Sec. 5.2 and proposed

in (MITCHELL; CRUTCHFIELD; HRABER, 1994), but here it evolves ternary transi-

tions to solve DCT on traditional CA and altered binary transitions to SCA-RM. This

GA is executed 50 times and the best rule found in each execution is tested on randomly

created ICs.

Let us first consider the GA with a population size of 100 and the same number of

generations evolving traditional CA transitions, this GA returns a best rule with 39.50%

of accuracy. For binary DCT the GA returns a best transition with 80.2%, so the per-

formance of traditional transitions severely decreases on ternary DCT. Moreover, to test

if the increment of population size and generations could be helpful, another experiment

132 Chapter 5. The Stochastic CA (SCA-RM) applied to the Density Classification Task

considered a population with 300 rules and 200 generations. Unfortunately, this strategy

was not exactly successful, as the parameters increment allows for finding a slightly better

transition with 40.1 accuracy. Thus, the improvement is minimal, as even the average

improves slightly when evolving traditional transitions (from 34.70 to 35.65).

The increment of GA parameters significantly increases the run-time of the GA; this

impedes a larger increment of the search parameters. Alternatively, a population size

of 300 and 200 generations are employed in the remaining experiments. Accordingly,

increasing the GA parameters helps find better rules in all models.

On table 11 the GA evolves rules for tree models, traditional CA, stochastic SCA-

RM’ and SCA-RM”, it refers to the accuracy of transitions. The best transition on the

stochastic CA (from SCA-RM”) is able to classify 60.0 % of ternary transitions, this

result represents a relative improvement of 50%, when compared to best rule found in

the experiment using the standard CA (40.1%) and an absolute enhancement of 20% in

the solution of the ternary DCT. Moreover, both SCA-RM’ and SCA-RM” allows for

the finding of much greater improved rules than rules sought out for the standard CA.

Notwithstanding, the best accuracy results of the GA suggest that M” is more suitable to

DCT than M’ as SCA-RM” (60.0) achieves almost 4% of a higher accuracy than SCA-RM’

(56.4). A trend supported by the average performance (49.46 with M” versus 48.34 with

M’). In conclusion, DCT transitions of SCA-RM clearly outclass the rules of traditional

CA.

Additionally, the GA was not able to find any rule transition employing the standard

CA model with accuracy higher than 45%, but 12 transitions found for SCA-RM’ are

situated in an accuracy range of >55 and <60, while 10 rules on SCA-RM” present this

performance with one rule able to reach the limit of 60% of accuracy. In addition, 38 of 50

GA runs for SCA-RM” return a transition with accuracy higher than the best transition

found for traditional CA. Hence, the simplification provided by SCA-RM results in a

much better performance for solving ternary DCT.

5.3.3 FSFC: a manually designed rule compared with the SCA-

RM on DCT.

The most efficient rules for DCT are stochastic and are manually designed, so herein

we propose a rule inspired by a thorough analysis of studies by (FUKS, 1997; FUKŚ, 2002;

SCHÜLE; OTT; STOOP, 2009; FATES, 2013). Moreover, the traffic-majority rule (Sec.

5.1) brings together the contribution of these studies and resembles the most efficient rule

(FATES, 2013). Unfortunately, TM definition restricts its use to binary DCT. Hence, the

mechanisms of this rule are studied to inspire the proposition of a similar stochastic rule

for multi-state DCT.

As previously mentioned in Sec. 5.1, TM combines the traffic rule (184) and the

5.3. Stochastic CA on the Density Classification Problem 133

Table 11 – Performance of best transition returned in each of 50 GA runs for ternary
DCT encompassing traditional CA and proposed models based on stochastic
SCA-RM

Accuracy Range Traditional CA SCA-RM’ SCA-RM”

<20 0 0 0
>20 and <25 0 0 0
>25 and <30 0 1 0
>30 and <35 20 4 5
>35 and <40 29 4 7
>40 and <45 1 0 0
>45 and <50 0 3 12
>50 and <55 0 26 15
>55 and <60 0 12 10

>=60 0 0 1

AVG 35.71 48.34 49.46
BEST 40.1 56.4 60.0

SD 1.70 7.32 8.10

majority rule (232). The essential behaviour of TM when solving DCT is to use the traffic-

flow rule to separate blocks of a same state resulting in a configuration with alternate

states, throughout the lattice, in a 012012012 fashion. However, it will remain a small

block of the major state in the configuration, which further traffic-flow rule applications

are unable to separate. Then TM must apply the majority rule to expand this block of

the major state until it covers the whole lattice.

Let us consider a rule for the solving three-state DCT, which is inspired on TM. On

the one hand, expanding the majority rule to this case is straightforward: update the cell

to the most frequent state among neighbours. On the other hand, programming traffic-

flow to multi-state CA turned out to be a laborious job. The difficulty relates to moving

the states to directions where 1DCA only have left and right and the number of states

is higher than 2, i.e., to decide which state goes left and which goes right. Furthermore,

let us focus on traffic-flow foremost behaviour: the breaking of blocks of states (00s, 11s,

22s).

A great deal of effort has been placed in building a rule able to simulate traffic-

flow behaviour on 1D CA with κ = 3. Nevertheless, this behaviour is impossible with

traditional CA rules. Hence, we focused on creating a rule that partially emulates rule

184.

The so-called traffic_3 is composed of three sub-rules:

— I if the central cell state is 0, then update to the state of cell on the right; if the

central cell state is 1 or 2 and the state of cell on the left is 0, then update to 0,

134 Chapter 5. The Stochastic CA (SCA-RM) applied to the Density Classification Task

otherwise maintain the central cell state.

— II if the central cell state is 1, then update to the state of cell on the left; if the

central cell state is 0 or 2 and the state of cell on the right is 1, then update to 1,

otherwise maintain the central cell state.

— III if the central cell state is 2, then update to the state of cell on the right; if the

central cell state is 0 or 1 and the state of cell on the right is 2, then update to 2;

otherwise maintain the central cell state.

At each time-step in the evolution, traffic_3 chooses a sub-rule with probability 1
3

and

uses this sub-rule to update EVERY cell of the lattice.

The sub-rule I updates any cell with state 0 to the state of cell on the right, so a

cell with configuration (...00)001 must assume 1 and a configuration (...000)002 returns

2. Therefore, the configuration will changes to (...00)(010) and by reapplying this rule,

states 1 and 2 start to break into the blocks of 0s (...00)100, this separates the blocks. In

the same fashion, sub-rules II and III separate blocks of 1s and 2s.

Consider the second part of sub-rule I, if central cell state is 1 or 2 and the state of the

cell on the left is 0, then the transition returns 0. Therefore, sub-rule I updates 022/011

to zero, so state 0 is able to enter into the blocks of 2s and 1s from the left. This is similar

to that of sub-rule II (1 breaks into 0s and 2s) and III (2 breaks into 0s and 1s). In the

following, we briefly present the process that led us to this rule.

In order to understand traffic_3 it is fundamental to consider that traffic-flow is a rule

that maintains the quantity of each state in the configuration (number conserving), so

the behaviour aims at transporting states along the lattice and prevents any state from

disappearing from the configuration.

Consider the update of 0010, the second cell neighbourhood is 001 and to divide the

block of 0s this transition must return 1. Note that a zero turned into one, therefore,

to maintain the number conserving property, the configuration 010 must return 0; the

updated configuration is 0100. When the CA rule updates 001 to 0, it is possible that the

update of cell on the left (next cell) has neighbourhood configuration of 010/011/012,

and to maintain the number conserving property these three configurations must return

0. In other words, when a cell changes a 1 to 0, the transition must turn a 1 to 0 in

every possible next configuration, otherwise it could alter the frequency of states across

the whole lattice configuration.

Additionally, when the CA updates 010 to 0, a 1 disappears, so before the rule en-

counters the configuration 010, the cell on the left (previous cell) may possess neighbours

configuration of either 001/101/201, and to maintain the number conserving property,

all of these must return 1. Furthermore, if traffic_3 changes the central cell state, it must

compensate after/before by making another cell assume this state, this is a swap of states.

The definition for traffic3 stems from repeating the previous reasoning for the three states

136 Chapter 5. The Stochastic CA (SCA-RM) applied to the Density Classification Task

Figure 41 – Traffic-Majority rule evolution for three-states cellular automata (white, black
and red). This rule changes all cells to the most frequent state in the initial
system configuration thus solving the DCT.

state surrounded by blocks of a different state to change to the state of the blocks, e.g.,

for some steps a 2 travels into the block of 0s by effect of traffic_3, then the majority rule

is applied and the less frequent state 2, surrounded by blocks of 0s, changes to the most

frequent state (0).

The literature gives no exact indication regarding the values for p. Hence, in order

to determine p, the number of steps τ is fixed and many values of p are tested to 10000

ICs created with binomial distribution. The experimentation results endorse that FSFC

accuracy varies with τ . Hereafter, the ideal p identified in this process is presented.

5.3.3.1 A comparison of FSFC and SCA-RM” in ternary DCT.

The best rule returned by 50 runs is 0020005508F1CD5, this name refers to transition

binary code converted to hexadecimal. Let us refer to this rule as BESTSCA and here

it will go on to represent SCA-RM”. Let us note that FSFC accuracy increases as the

number of time-steps increases. Therefore, herein both rules are compared over many

time-step (τ) values, thus illustrating how they fare in these scenarios.

The BESTSCA evolution for 151 cells is presented in Figure 42. The IC in the figure

possesses 54 cells with state 0 (white), 53 cells with state 1 (black) and 44 cells with state

5.3. Stochastic CA on the Density Classification Problem 137

Figure 42 – The best SCA-RM rule found herein evolving the CA lattice for the solving
of three-state DCT.

2 (red). In the first steps, this rule systematically diminishes the appearances of state 2

until all of them disappears, then the rule take a lot of steps to decide if the cells must

assume the state 0 or the state 1. Finally, all cells assume state 0 and BESTSCA solves

the DCT at step 164. Let us consider this rule behaviour, first, the rule generates big

blocks of 0s and 1s, then the blocks start to spread throughout the lattice. For instance,

a block of 1s is formed and a big block of 0s is also formed in the middle. Second, the rule

makes the 1s to travel into the block of 0s, travelling 1s meet near the end of the evolution

and forms a smaller block of 1s surrounded by 0s. Third, the 1s of this small block travels

again into blocks of 0s and continues to disappear until all cells change to 0. This rule

is found by the GA and no clues or indications was given to the algorithm, therefore

it was outstanding and surprising that BESTSCA presents a quite similar behaviour to

stochastic rules such as FSFC. Alternatively, BESTSCA seems to make the 1s to travel

into the block of 0s from the left and right at the same time, while rules alike traffic-

majority and FSFC make states to travel into blocks either from the left or the right.

Moreover, to deeper study these rules and a compare their behaviour sounds interesting.

138 Chapter 5. The Stochastic CA (SCA-RM) applied to the Density Classification Task

Table 12 refers to accuracy on 1000 ICs generated according to binomial distribution.

BESTSCA equips SCA-RM” and is compared to transition rule FSFC, which updates a

simple stochastic CA without functions reduce and mapping. Let us first consider τ = 320,

the most studied case in the literature. This number of time-steps is employed in the GA

evolving SCA-RM” transitions, but studies of rules similar to FSFC consider at least 2000

time-steps. As a result, FSFC fares quite poorly when the number of steps are that low

(efficacy of 10.4%), whereas the accuracy of BESTSCA on SCA-RM” is 60%. Moreover,

the average for rules found on traditional CA shows an accuracy of 35.71 (Table 11), a

highly improved performance over FSFC. The accuracy of transitions on traditional and

SCA-RM” is remarkably higher than FSFC accuracy when τ = 320, in conclusion, FSFC

performs quite poorly in this case.

In addition, the original traffic-majority rule also performs poorly in the binary DCT

with τ = 320, namely we report an accuracy of 57.9% for this case, a severe decline

from the 90% reported in the literature. This rule accuracy is higher than 90% for larger

values such as τ = 32000. Moreover, rules similar to FSFC demand a larger number of

time-steps to yield an efficient accuracy.

Taking into consideration τ = 3200, in this case FSFC accuracy significantly improves

(41.2%) outperforming the best traditional rule using τ = 320 (40.1%). On the contrary,

BESTSCA still largely outperforms FSFC peaking with an accuracy of 61.1%, a larger

number of steps in this case also increases the accuracy on SCA-RM”. Even though FSFC

improves with τ = 3200, BESTSCA maintains a large performance lead of 20%.

Moving on to τ = 32000, once again we note a significant increase in FSFC perfor-

mance (almost 10%). FSFC and BESTSCA accuracy is 50.1% and 60.2%, so the gap

between the performances of these rules reduces to a half. Moreover, FSFC achieves

an outstanding performance, much better than traditional transitions. Notwithstanding,

SCA-RM” with BESTSCA is able to classify many more ICs with a significant difference

of 10% higher accuracy on DCT. Therefore, SCA-RM” is much better for solving DCT

with κ = 3 over the investigated scenarios.

Consider the average accuracy of SCA-RM” rules found in 50 executions with the GA

on Table 11 (49.46%), so FSFC is able to achieve a similar performance when τ >= 32000.

Hence, the accuracy of FSFC is similar to the accuracy of the transition usually found in

one GA run, but the first employs τ = 32000 and the second employs τ = 320.

Transition BESTSCA seems to improve very slightly as the number of steps increases.

Besides, there is not enough evidences to conclude that rules on SCA-RM” possess a

higher accuracy over a larger τ . On the contrary, Fàtes proved that the traffic-majority

performance increases as a function of the time-steps (FATES, 2013), FSFC also has the

same characteristics as this rule, so FSFC accuracy also increases in accordance with τ

increment. Therefore, there is a sufficiently large τ , in which FSFC will finally outperform

the BESTSCA accuracy returned with τ = 320. We have tested up to τ = 320000,

5.3. Stochastic CA on the Density Classification Problem 139

which results in FSFC reaching an accuracy of 57%. In conclusion, SCA-RM” best rule

outperforms FSFC even when the second employs 1000 times more steps in the temporal

evolution.

Table 12 – Performance on ternary DCT for the proposed model (SCA-RM”) using
BESTSCA, the best transition rule found herein and a manually-designed
solution inspired on the best solutions in literature.

Classifier Time-steps Probability parameter Accuracy (%)

FSFC
320

0.05 10.4
BESTSCA - 60.0

FSFC
3200

0.04 41.2
BESTSCA - 61.1

FSFC
32000

0.04 50.1
BESTSCA’ - 60.2

In closing, the performance of the proposed model is better than the efficiency of the

manually designed rule inspired on the best solutions for DCT in literature. Hence, SCA-

RM” resembles a very efficient solution to ternary DCT. This result is due to the SCA-

RM” skill of simplifying transitions, while still maintaining the computational capacity of

these rules. DCT is another application in which the proposed model enables the search

for efficient CA transitions, thus surpassing the difficulty in the handling of multi-state

CA.

5.3.4 Multi-state DCT: four states and beyond

This section reports on multi-state DCT with four and eight states. Three models are

considered, standard CA relying on deterministic rules and two variants of the proposed

stochastic model. The first (SCA-RM’) tends to randomly chose a state in the cell update,

and a second (SCA-RM”) tends to update to states more frequent in the cell vicinity.

Moreover, the analysis focus on the accuracy of transitions for classifying ICs created

with binomial distribution.

5.3.4.1 Solving multi-state DCT for four states

The solving of quaternary DCT demands that a transition decide from among four

possibilities of the major state in the IC, so the task becomes even harder. Table 13

presents the quantity of transitions found by the GA to a certain range of accuracy,

the best rule found for traditional CA classifies only 28.2% of ICs. On the other hand,

when SCA-RM’ and SCA-RM” models are used, the GA search results in best rules with

accuracy of 39.6% and 50.1%, respectively. Moreover, the average accuracy of a rule

transition found by one GA run is significantly higher in SCA-RM’ and SCA-RM” than

in traditional CA, namely 30.32% and 37.68% against 25.12%. Additionally, the majority

140 Chapter 5. The Stochastic CA (SCA-RM) applied to the Density Classification Task

of traditional transitions have an accuracy close to 25%. Likewise, the mapping M” in

SCA-RM” allows for the finding of 24 transitions with an accuracy range between 30%

and 45% and 10 rules with accuracy between 40% and 51%. Additionally, 42 from 50 GA

runs returns a rule transition of SCA-RM” significantly better than the best traditional

CA rule found across all experiments, while 25 GA runs to SCA-RM’ find a transition

outperforming the best traditional rule. Thus, results from the four-state DCT endorse

the stochastic model as being more efficient than traditional CA.

There is a higher deviation in the accuracy of SCA-RM variations in quaternary DCT

than in ternary DCT. According to Table 13, the best rule in SCA-RM’ classifies 10%

less configurations than SCA-RM”, whereas the average performance of transitions is

7.36% worse in SCA-RM’ than in SCA-RM”. Additionally, best rules of SCA-RM’ have

an accuracy between 35% and 40%, while half of the 50 transition rules evolved to SCA-

RM” surpass 40% of accuracy. Thus, we understand that mapping function M” is more

helpful when solving DCT than M’.

In addition, the accuracy of traditional CA transitions deteriorates when solving DCT

with more states, e.g., best accuracy decays from 40,1% on three state to 28,2% on four

state DCT and average accuracy decreases from 35.71 to 25.12 (Tab. 11). This is mostly

due to traditional transitions becoming larger to represent more states. Interestingly, the

accuracy of transitions in the stochastic CA also decreases from ternary to quaternary

DCT, i.e, best SCA-RM” accuracy goes from 60.1 on three states (Tab. 11) to 50.5 on

the four-state DCT and average performance decays from 49.46 to 37.68. Moreover, this

deterioration is significant and probably it is due to DCT becoming harder to accomplish

when the number of states increases since SCA-RM transitions do not become more

complex to represent more states.

Table 13 – Performance of transitions returned by 50 GA runs for four-state DCT encom-
passing traditional CA and proposed models based on stochastic SCA-RM

Accuracy Range Traditional CA SCA-RM’ SCA-RM”

<20 1 2 0
>20 and <25 26 12 3
>25 and <30 23 6 13
>30 and <35 0 17 1
>35 and <40 0 13 8
>40 and <45 0 0 15
>45 and <50 0 0 9

>50 0 0 1

BEST 28.2 39.6 50.5
AVG 25.12 30.32 37.68
SD 1.41 6.06 7.48

5.3. Stochastic CA on the Density Classification Problem 141

5.3.4.2 Solving multi-state DCT for eight states

Considering now the eight-state DCT, the most difficult variation to be tackled herein.

In such a scenario, traditional CA rules must cover eight states and the radius is three,

so the rule size is 87 = 2, 097, 152. If such a rule is represented in bits, then it would be

necessary 262 KB to represent one rule and the GA population is composed of 300 rules,

so the rules become exceedingly large hampering their representation in the computer.

I.E. current compilers of programming languages do not allow for variables that are large

enough to represent traditional transitions with eight states and radius 3. Therefore, the

radius here is diminished to two on traditional CA resulting in a transition rule with size

equals to 32,768 (85).

Table 14 presents the accuracy of the three CA models, standard CA employ radius

= 2 and remaining models employ radius = 3. Considering the first and second column,

surprisingly traditional CA allows for the finding of rules with better accuracy ranges than

SCA-RM’. Besides, the best traditional rule accuracy (15.2%) is more than the double that

of the best accuracy for SCA-RM’ (7.5), a similar statistic is also found for the average.

In such a scenario, SCA-RM’ is unable to produce solutions that outperforms traditional

CA, as matter fact this variation is much less efficient for eight-state DCT than traditional

CA. This intriguing result is unrelated with the change in the radius since a larger radius

usually increases the accuracy of transition. In order to understand this result, let us

suppose a traditional CA transition in which all bits are 0 (this rule changes any cell

configuration to 0), then this rule generates a null behaviour that simulates the decision

that 0 is the major state on DCT. From a statistical point of view, in the population

of ICs, there are 1
κ

configurations in which state 0 is the major state, then this rule will

classify a fraction of 1
κ

% correctly. A transition that changes all cells to the same state

is always in the GA population of traditional rules as the population is generated with

uniform distribution. Therefore, the GA starts with a rule with 12.5% (1
8
) of accuracy,

a performance that lightly improves as the best rule achieves 15%, besides, the average

for traditional rules is 12.88% suggesting that the majority of rules presents an accuracy

close to 1
8
.

The uniform distribution generates rules with all bits equal to 0, to SCA-RM’ this

signifies to keep all cell states, while in traditional CA this signify a null rule. Moreover,

the GA faces a severe difficulty to find a transition in SCA-RM’ able to solve DCT when

κ = 8. Further still, the mapping M’ chooses a state to update at random and this

function also hinders the search for propitious rules for DCT . Possibly, this explains the

poor performance in SCA-RM’.

SCA-RM” performance is remarkably superior to that of SCA-RM’ on eight-state

DCT. These models differ only on the implementation of function mapping, so the defini-

tions of functions in the stochastic model are crucial and alter model efficiency. Finally,

mapping M” on SCA-RM” allows for a level of accuracy that the other two models are

142 Chapter 5. The Stochastic CA (SCA-RM) applied to the Density Classification Task

Table 14 – Performance of transitions returned by 50 GA runs for eighth state DCT
encompassing traditional CA and proposed models based on stochastic SCA-
RM

Accuracy Range Traditional CA SCA-RM’ SCA-RM”

<5 0 16 0
>5 e <10 2 34 0
>10 e <15 38 0 8
>15 e < 20 10 0 15
>20 e < 25 0 0 13
>25 e < 30 0 0 14

BEST 15.2 7.5 29.6
AVG 12.88 5.17 20.78
SD 1.60 1.02 5.12

unable to approximate thus reinforcing the importance to adapt functions mapping and

reduce to each application that SCA-RM is tackling.

According to the best result on Table 14, the SCA-RM” accuracy with radius=3 is 1.95

times more efficient than standard CA with radius=2 (29.6 against 15.2), this superiority

found with SCA-RM” is similarly confirmed by the average. Besides, every rule found by

the GA on SCA-RM” classifies more lattices than the best rule on standard CA. Hence,

SCA-RM” is a very efficient alternative for simplifying the rules and allows for the search

of rules with a high accuracy to eight-state DCT.

Herein the population size and number of generations is 300 and 200 and a experiment

comprised of 50 GA runs take on average 20 hours to finish. This is a time-demanding

process mostly because of the GA fitness evaluation, which comprises of evolving the CA

lattice for many steps to several ICs in order to measure the transition accuracy.

The performance of transitions declines heavily when the number of states increases,

as the multi-state DCT becomes more difficult. Note that the best rule to ternary DCT

classifies 60% of the ICs, whereas, the best rule on the octanary case peaks with 30% of

accuracy. This endorses multi-state DCT as a quite challenging task.

5.4 Conclusion

In this chapter, it is studied the application of the proposed stochastic CA (SCA-

RM) to multi-state DCT. The DCT or majority problem is a classic challenge in CA

literature, in which a transition must change all cell states to the state most frequent in

the initial configuration of the lattice. In the multi-state variation, the number of states

κ is larger than two, and as κ increases the traditional CA transitions size/complexity

increases exponentially. SCA-RM is a model that maintains the complexity of CA tran-

sition rules, while disregarding the number of states, this model employs transitions that

5.4. Conclusion 143

are much simpler than traditional CA rules. Moreover, the proposed model is compared

to traditional CA for the solving of multi-state DCT.

The analysis herein focuses on the accuracy of transitions, which refers to the percent-

age of ICs created at random that a transition is able to solve the DCT. For three-state

DCT, the stochastic CA returns a transition with an accuracy of 60.0%, an unprecedented

performance, whereas the best rule returned found for traditional CA has an accuracy of

40.1%, the disparity between performances of those models is quite notable in the context

of DCT. At the same time, for four and eight-state DCT, the best accuracy in SCA-RM

is 50.5% and 29.6%, while for standard CA the best accuracy is 28.2% and 15.2%, respec-

tively. Therefore, SCA-RM accomplishes an accuracy significantly higher than standard

CA when considering DCT with more than 2 states.

In addition, two functions are compared in the mapping step of SCA-RM, in which

the CA cell state is updated. The first tends to update to a state chosen randomly, while

a second tends to update to states more frequent in the cell locality. Results endorse

the second as a much better function for DCT. Moreover, the first mapping embarrasses

the transitions in the solving of multi-state DCT with κ = 8. This endorses that the

functions in SCA-RM play a key role in the model and must be adapted to each problem

this model is covering. Further still, a promising study could investigate other functions

to customise SCA-RM in multi-state DCT.

This chapter serves as a validation that SCA-RM successfully reduces the complexity

of rules in multi-state CA. However, the underlying mechanisms of this model still require

further investigation. A future work could study how the altered definition of SCA-RM

affects its behaviour. Besides, there is a deterioration in accuracy, each time the state

number increases. Moreover, the increasing of GA parameters in this case will improve

the accuracy, but it may lead to impractical runtimes in the current implementation of

the experiments.

Since SCA-RM was far superior on multi-state DCT, this produced a challenge to

validate the efficiency of the model, which was to compare it with the manual designed

rules. There is no definition of a such rule to three states in literature, thus we designed a

rule named FSFC. This rule combines the behaviour of two rules, majority and traffic-flow,

reaching a very good accuracy much better than traditional CA transitions. Moreover,

the accuracy in SCA-RM rules is still significantly higher than in FSFC. This endorses

SCA-RM efficiency for this DCT variation.

144 Chapter 5. The Stochastic CA (SCA-RM) applied to the Density Classification Task

145

Chapter 6

Final Conclusions

CA are simple discrete systems that are acknowledged as a massively parallel model.

This later is due each tiny CA component being implemented in parallel. Multi-State

CA are particular cellular automata models in which many states are allowed for CA cell

to assume in a certain time-step. These kind of systems are usually employed in natu-

ral phenomena simulation in biology, chemistry and physics and it is also applied for the

scheduling problem and the majority problem/DCT. The size of transitions governing CA

increases exponentially to the number of states, thus transitions on multi-state CA are

exceedingly large and complex implying in an enormous search space for them. Moreover,

an evolutionary search such as GA for finding propitious CA rules is widely considered in

literature. Furthermore, the search for rules on multi-state is laborious and the efficiency

of searched transitions decay when the CA has more than four states. Chapter 3 presents

this Thesis main contribution, a stochastic CA model in which the transitions complexity

is maintained when the state number increases. Moreover, proposed model yields transi-

tions much simpler than traditional transitions. This model is investigated for two multi

state CA applications, task scheduling in Chapter 4 and DCT in Chapter 5.

Task scheduling consists in assigning the tasks of a parallel program to the processors

of a multiprocessing architecture. It belongs to NP-complete category and there is no ex-

act and efficient solution to this problem. Moreover, several heuristics and meta-heuristics

have already been applied to it. Additionally, this problem is closely related to the perfor-

mance of current computers since these devices have many processing nodes. As such, an

efficient exploitation of processors implies in computers executing the programs faster. In

this context, a distinct approach is investigated here, in which cellular automata rules are

trained to learn about an instance of the scheduling problem (training phase) and later

this knowledge is used to solve other instances (operation phase). Moreover, the methods

usually applied to schedule parallel programs build each solution from scratch, whereas,

CA-based schedulers (CAS) provide reusability returning a cost-effective scheduling in a

fast manner.

Initially, we identified that the previous CA-based schedulers performed poorly when

146 Chapter 6. Final Conclusions

dealing with architectures with many processors. This is due to traditional CA transi-

tions becoming too complex for handling four or more states/processors, which ultimately

makes the search for these unfeasible. In such a context, we proposed the Stochastic

Cellular Automata with Reduce and Mapping (SCA-RM), in which transition

rules do not become more complex to more states/processors. The SCA-RM principle is

to convert states from an arbitrary value to binary and vice versa and use a transition

to update CA, considering only binary values disregarding the original amount of states.

To achieve that, SCA-RM employs two conversion functions named reduce and mapping.

Moreover, in Chapter 4 the proposed model is investigated as a solution for scheduling

with many states/processors; this CA equips the proposed SSCSλ which heavily outper-

forms previous models to schedule systems with more than four nodes.

Totalistic CA are well-known solutions in literature for diminishing standard CA tran-

sition function complexity. This model makes an abrupt simplification by summing the

states in the update. Additionally, in Chapter 4 SCA-RM is compared to the standard

and totalistic solutions in the context of Task Scheduling and the results endorse the

proposed stochastic model severely outperforming them.

In the experiments undertaken here, scheduling models based on CA seems to present

a better makespan in the operation stage when using rules trained over similar instances

with the program graph being scheduled. This suggests that using a technique to measure

the similarity among instances and use this information to select CA rules from a rule

database shows promise.

Schedulers based on CA demand a significant amount of time when training CA tran-

sitions to solve the scheduling problem, but this process results in databases of transitions

that can quickly schedule unseen instances in the operation. Training and operation phase

results from proposed models endorse that they are outperforming many techniques, as

would an efficient heuristic and a simple meta-heuristic. The result is relevant since out-

performed solutions directly build the schedule to each instance, whereas operation phase

relies on the reuse of the transitions. Furthermore, the operation phase of a scheduler

based on CA is as fast as the fastest solutions for Task Scheduling (heuristics) but provides

a more efficient scheduling (faster schedule/lower makespan).

In order to validate the conclusions obtained in the scheduling context, Chapter 5

assess proposed model for solving multi-state DCT. DCT is a well-known computing

challenge in CA literature, it consists in finding a transition able to calculate the state most

frequent in the initial configuration of the CA. To a system with global communication this

task is trivial, but CA components access only local information. Hence, the transition

must emerge a behaviour in which the components ought to cooperate to solve this task.

Usually DCT is considered to a CA with only two states. Besides, multi-state DCT

(GABRIELE, 2005) is the variation of the problem in which the state number is higher

than two. In this case, the traditional transitions become too complex and proposed

6.1. Perspectives 147

model is a promising alternative.

Chapter 5 reports on multi-state DCT with three, four and eight states. Moreover,

traditional CA and SCA-RM are compared in the solving of this task. The transitions

efficiency of SCA-RM outclasses their counterparts in traditional CA by a wide margin

in every experiment. Moreover, stochastic CA rules present a more adequate behaviour

than traditional transitions. Hence, multi-state DCT is other application in which pro-

posed model enables a significant improvement in the performance. Moreover, all models

performance tends to deteriorate every time the number of states increases. Certainly,

this is due DCT becoming harder to accomplish for more states.

Aiming at valuing SCA-RM efficiency in DCT, a hand designed stochastic rule named

FSFC is also proposed to DCT with three states. This rule is inspired by state-of-the-art

solutions for DCT. FSFC outperforms traditional transitions for DCT, but SCA-RM is

much better than it on the vast majority of cases, especially if one considers that FSFC

needed an elevate number of time steps to achieve a good performance in 3-states DCT.

Therefore, the superiority of proposed model over FSFC endorses SCA-RM as a highly

efficient solution to multi-state DCT.

SCA-RM allows for the finding of efficient transition both in the practical scheduling

problem and the theoretical challenge of DCT. There are two key reasons behind these

results. First, it is the ability of SCA-RM to simplify the transitions changing their com-

putational complexity from exponential in relation to the states number (traditional CA)

to a constant complexity disconsidering the number of states. Second, this simplification

in transitions do not influence this rules skill of presenting rich and complex behaviour

able to carry out the solving of difficult tasks. This last reason is the most advantage

of considering SCA-RM in detriment of totalistic CA, which present a less efficient sim-

plification and also seem to hamper the emergence of complex behaviour in CA rules.

Therefore, SCA-RM is promising to the quite diverse applications of multi-state CA,

especially when using a search method for retrieving rules.

6.1 Perspectives

The main contribution of this work is SCA-RM, a CA model in which rules do not

becomes complex when handling many states. This model is investigated in two multi-

state CA applications and the results endorse that SCA-RM provides a state-of-the-art

performance in both tasks. On the other hand, there is still much progress to be achieved

and as we improve fundamentals aspects of multi-state CA applications, many extensions

are possible. In the following, it is presented some works that promise to further enhance

this research.

In relation to CA-based scheduling, many aspects have been improved such as solid

benchmark with more realistic instances and a good performance to systems with more

148 Chapter 6. Final Conclusions

than four nodes. CA-based scheduling provides an extremely rapid solution making them

propitious when the overhead to search a solution is minimum such as in operating system.

On the other hand, in literature this approach was not applied in such context yet.

Linux operational system is well-suited for testing CA approach since it is open system

allowing the changes in this operating system core. Currently, Linux scheduler is named

Completely Fair Scheduler (CFS), an implementation of classic algorithm named weighted

fair queuing (LI; BAUMBERGER; HAHN, 2009). First, it is promising to replicate

this heuristic and compare with state-of-art schedulers based on CA in a set simulation

experiments. Secondly, a further step is to study how to create an alternative Linux

Kernel relying in CA rules as the ones deciding the tasks scheduling. As a consequence, it

would be possible to investigate these approaches in real computers observing the running

time of programs in the operating system. Definitely, this would be a great contribution

for the field of scheduling, the CA literature and hopefully also to Linux based systems.

Using a GA to search CA transitions is widely considered in literature and the major

difficult in this approach is the running time of the experiments, namely, DCT experi-

ments could take up to 20 hours to finish. Herein, CA implementation updates each cell

sequentially. On the other hand, there are many solutions that would massively hasten the

experiments and the major of them consists in running each CA cell in parallel. An estab-

lished alternative is the use of graphic card processing in which many cells are computed

at the same time, each of them in a processing node of the GPU. The named massively

parallel implementations permit to compute CA close to a thousand times faster than

classical CPU implementations (RYBACKI; HIMMELSPACH; UHRMACHER, 2009).

In addition, these implementations shall permit faster experiments and larger parameters

on the search improving significantly the results on scheduling and TCD.

Other future works are:

— A comprehensive study of the properties of the stochastic model, such as the dy-

namical behaviour presented by transition rules in this model and the influence of

using functions reduce and mapping to convert state configurations to binary.

— Cluster scheduling considers architectures with over a hundred processors, and SSCS

was built in particular for scheduling many processors. Moreover, SSCS might excel

in this scheduling problem as the rule complexity does not increase to handle any

number of processors.

— Situate the scheduling based on CA with other renowned strategies that are com-

monly applied to task scheduling in literature in terms of the trade-off between con-

sumed computational resources and the quality of the solutions. Some examples of

the comparable method are the hybrid meta-heuristics in (KUMAR; VIDYARTHI,

2016; OMARA; ARAFA, 2009) or fast heuristic HEFT (TOPCUOGLU; HARIRI;

WU, 2002). This last method must be adapted to the definition of processors with

6.1. Perspectives 149

a same speed as it was proposed to heterogeneous processors. Another interesting

proposal is to compare with artificial neural networks, which alike schedulers based

on CA learn from examples and reuse this knowledge later (AGARWAL; PIRKUL;

JACOB, 2003).

— Apply schedulers based on CA to many other examples of real-world programs.

Furthermore, it is also promising to consider different system architectures when

increasing the cost of communication among processors and systems with 32, 64 or

more processors.

— Consider the optimisation of other scheduling criteria. There are more functions

to evaluate aspects of a scheduling solution besides makespan, a widely studied

one considers the energy consumption related to the scheduling (AGRAWAL; RAO,

2014). Certainly, it would be interesting to assess this aspect in solutions of the

proposed model. A further extension can consider multi-objective optimisation al-

gorithms able to optimise more than one criteria at once.

— Improve the search with a more advanced Genetic Algorithm. For instance, in

the prey-predator GA, both the CA transitions and the problem instances evolve

simultaneously. Furthermore, a simpler approach is to assess individual rules within

a set of program graphs for the scheduling problem. In this scenario, the transition

evaluation can be calculated as the sum of the results obtained for each individual

instance. In this latter approach, the GA would optimize a rule considering multiple

instances concurrently, potentially finding significantly improved rules overall.

— Decrease the running-time of the GA. The GA executes for 15 hours even with a rel-

atively small population and generation parameters. Some alternatives to diminish

the GA running-time are: (i) Distribute multiple instances of the GA across differ-

ent processor cores in a cluster. This parallelization method significantly decreases

the overall execution time of the GA (MORAIS; OLIVEIRA; CARVALHO, 2019).

(ii) Employ GPU cores to update (CA) cells, enabling multiple CA cell updates to

be processed simultaneously. This approach can greatly reduce the computational

time required (RYBACKI; HIMMELSPACH; UHRMACHER, 2009). By employing

those strategies, it is possible to explore larger GA parameters to find more efficient

CA transitions within a more reasonable timeframe.

SCA-RM is a customisable model in which the functions Reduce and Mapping

must need adjustment according to the problem in tackle. Hence various extensions

are possible that shall open new avenues of research, building upon the analysis and

techniques developed herein. In that sense, investigations of the proposed model over

other multi-state CA applications are promising.

150 Chapter 6. Final Conclusions

151

References

ABDOLZADEH, M.; RASHIDI, H. Solving job shop scheduling problem using
cellular learning automata. In: IEEE. 2009 Third UKSim European Symposium
on Computer Modeling and Simulation. [S.l.], 2009. p. 49–54. <https:
//doi.org/10.1109/ems.2009.68>.

ADAM, T. L.; CHANDY, K. M.; DICKSON, J. A comparison of list schedules for parallel
processing systems. Communications of the ACM, Association for Computing
Machinery, v. 17, n. 12, p. 685–690, 1974. <https://doi.org/10.1145/361604.361619>.

AGARWAL, A.; PIRKUL, H.; JACOB, V. S. Augmented neural networks for task
scheduling. European Journal of Operational Research, Elsevier, v. 151, n. 3, p.
481–502, 2003. <https://doi.org/10.1016/S0377-2217(02)00605-7>.

AGRAWAL, P.; RAO, S. Energy-aware scheduling of distributed systems. IEEE
Transactions on Automation Science and Engineering, IEEE, v. 11, n. 4, p.
1163–1175, 2014. <https://doi.org/10.1109/TASE.2014.2308955>.

AKYOL, D. E.; BAYHAN, G. M. A review on evolution of production scheduling with
neural networks. Computers & Industrial Engineering, Elsevier, v. 53, n. 1, p.
95–122, 2007. <https://doi.org/10.1016/j.cie.2007.04.006>.

ALONSO-SANZ, R.; BULL, L. A very effective density classifier two-dimensional
cellular automaton with memory. Journal of Physics A: Mathematical
and Theoretical, IOP Publishing, v. 42, n. 48, p. 485101, 2009. <https:
//doi.org/10.1088/1751-8113/42/48/485101>.

BADAWI, A. A.; SHATNAWI, A. Static scheduling of directed acyclic data
flow graphs onto multiprocessors using particle swarm optimization. Computers
& Operations Research, Elsevier, v. 40, n. 10, p. 2322–2328, 2013. <https:
//doi.org/10.1016/j.cor.2013.03.015>.

BAETENS, J. M.; BAETS, B. D. Phenomenological study of irregular cellular
automata based on lyapunov exponents and jacobians. Chaos: An Interdisciplinary
Journal of Nonlinear Science, American Institute of Physics, v. 20, n. 3, 2010.
<https://doi.org/10.1063/1.3460362>.

. Cellular automata on irregular tessellations. Dynamical Systems, Taylor &
Francis, v. 27, n. 4, p. 411–430, 2012. <https://doi.org/10.1080/14689367.2012.711300>.

152 References

. Towards a comprehensive understanding of multi-state cellular automata. In:
International Conference on Cellular Automata. [S.l.]: Springer-Verlag, 2014. p.
16–24. <https://doi.org/10.1007/978-3-319-11520-7_3>.

. A behavioral analysis of cellular automata. In: SPRINGER-VERLAG.
International Conference on Parallel Computing Technologies. [S.l.], 2015. p.
123–134. <https://doi.org/10.1007/978-3-319-21909-7_13>.

BAETENS, J. M.; WEEËN, P. Van der; BAETS, B. D. Effect of asynchronous updating
on the stability of cellular automata. Chaos, Solitons & Fractals, Elsevier, v. 45, n. 4,
p. 383–394, 2012. <https://doi.org/10.1016/j.chaos.2012.01.002>.

BANKS, H. T.; TRAN, H. T. Mathematical and experimental modeling
of physical and biological processes. [S.l.]: Chapman and Hall/CRC, 2009.
<https://doi.org/10.1201/b17175>.

BINDER, P.-M. Parametric ordering of complex systems. Physical Review E,
American Physical Society, v. 49, n. 3, p. 2023, 1994. <https://doi.org/10.1103/
PhysRevE.49.2023>.

BOUTEKKOUK, F. A cellular automaton based approach for real time embedded
systems scheduling problem resolution. In: Artificial Intelligence Perspectives
and Applications. [S.l.]: Springer-Verlag, 2015. p. 13–22. <https://doi.org/10.1007/
978-3-319-18476-0_2>.

BRUCKER, P. Scheduling Algorithms. [S.l.]: Springer-Verlag, 2004. <https:
//doi.org/10.1007/978-3-540-24804-0>.

BURKS, A. W. Essays on cellular automata. [S.l.]: University of Illinois Press, 1970.

CARNEIRO, M. G. Abordagens Baseadas em Autômatos Celulares Síncronos
para o Escalonamento Estático de Tarefas em Multiprocessadores. Dissertação
(Mestrado) — Faculdade de Computação, Universidade Federal de Uberlândia,
Uberlândia, MG Brasil, 2012.

CARNEIRO, M. G.; OLIVEIRA, G. Cellular automata-based model with synchronous
updating for task static scheduling. In: Proceedings of 17th International
Workshop on Cellular Automata and Discrete Complex System. [S.l.: s.n.],
2011. p. 263–272.

CARNEIRO, M. G.; OLIVEIRA, G. M. SCAS-IS: Knowledge extraction and reuse
in multiprocessor task scheduling based on cellular automata. In: Proceedings of
Brazilian Symposium on Neural Networks (SBRN). [S.l.: s.n.], 2012. p. 142–147.

. Synchronous cellular automata-based scheduler with initialization heuristic to
task scheduling. Automata & JAC 2012, p. 52, 2012. <https://doi.org/10.1007/
s11047-013-9375-8>.

CARNEIRO, M. G.; OLIVEIRA, G. M. B. Synchronous cellular automata-based
scheduler initialized by heuristic and modeled by a pseudo-linear neighborhood.
Natural Computing, Springer Netherlands, v. 12, n. 3, p. 339–351, 2013.
<https://doi.org/10.1007/s11047-013-9375-8>.

References 153

CARVALHO, T. I.; CARNEIRO, M. G.; OLIVEIRA, G. M. A hybrid strategy to evolve
cellular automata rules with a desired dynamical behavior applied to the task scheduling
problem. In: IEEE. Intelligent Systems (BRACIS), 5th Brazilian Conference
on. [S.l.], 2016. p. 492–497. <https://doi.org/10.1109/BRACIS.2016.094>.

. Improving cellular automata scheduling through dynamics control. International
Journal of Parallel, Emergent and Distributed Systems, Taylor & Francis, p.
1–27, 2018. <https://doi.org/10.1080/17445760.2017.1422185>.

CARVALHO, T. I.; CARNEIRO, M. G.; OLIVEIRA, G. M. B. A comparison of
a proposed dynamical direct verification of lattice’s configuration and a forecast
behavior parameter on a cellular automata model to task scheduling. In: SPRINGER
INTERNATIONAL PUBLISHING. International Conference on Cellular
Automata. [S.l.], 2016. p. 258–268. <https://doi.org/10.1007/978-3-319-44365-2_26>.

CARVALHO, T. I.; MORAIS, B. W. D.; OLIVEIRA, G. M. B. Bio-inspired and heuristic
methods applied to a benchmark of the task scheduling problem. In: IEEE. 2018 7th
Brazilian Conference on Intelligent Systems (BRACIS). [S.l.], 2018. p. 516–521.
<https://doi.org/10.1109/BRACIS.2018.00095>.

CARVALHO, T. I.; OLIVEIRA, G. M. Stochastic cellular automata model to reduce
rule space cardinality applied to task scheduling with many processors. In: IEEE. 6th
Brazilian Conference on Intelligent Systems (BRACIS). [S.l.], 2017. p. 115–120.
<https://doi.org/10.1109/BRACIS.2017.27>.

CARVALHO, T. I.; OLIVEIRA, G. M. B. Searching for non-regular neighborhood
cellular automata rules applied to scheduling task and guided by a forecast dynamical
behavior parameter. In: Proceedings of ECAL. [S.l.: s.n.], 2015. p. 538–545.
<http://dx.doi.org/10.7551/978-0-262-33027-5-ch095>.

CASAVANT, T. L.; KUHL, J. G. A taxonomy of scheduling in general-purpose
distributed computing systems. IEEE Transactions on software engineering, IEEE,
v. 14, n. 2, p. 141–154, 1988. <https://doi.org/10.1109/32.4634>.

CONWAY, R. W.; MAXWELL, W. L.; MILLER, L. W. Theory of scheduling. [S.l.]:
Courier Corporation, 2003.

COOK, M. Universality in elementary cellular automata. Complex systems,
[Champaign, IL, USA: Complex Systems Publications, Inc., c1987-, v. 15, n. 1, p. 1–40,
2004.

COSNARD, M. et al. Parallel gaussian elimination on an mimd computer. Parallel
Computing, v. 6, n. 3, p. 275 – 296, 1988. <https://doi.org/10.1016/0167-8191(88)
90070-1>.

ERMENTROUT, G. B.; EDELSTEIN-KESHET, L. et al. Cellular automata approaches
to biological modeling. Journal of theoretical Biology, Elsevier Science, v. 160, n. 1,
p. 97–133, 1993. <https://doi.org/10.1006/jtbi.1993.1007>.

FATES, N. Stochastic cellular automata solutions to the density classification problem.
Theory of Computing Systems, Springer-Verlag, v. 53, n. 2, p. 223–242, 2013.

154 References

FUKS, H. Solution of the density classification problem with two cellular automata
rules. Physical Review E, American Physical Society, v. 55, n. 3, p. R2081, 1997.
<https://doi.org/10.1103/PhysRevE.66.066106>.

FUKŚ, H. Nondeterministic density classification with diffusive probabilistic cellular
automata. Physical Review E, American Physical Society, v. 66, n. 6, p. 066106, 2002.
<https://doi.org/10.1103/PhysRevE.55.R2081>.

GABRIELE, A. R. The density classification problem for multi-states cellular automata.
In: SPRINGER-VERLAG. European Conference on Artificial Life. [S.l.], 2005. p.
443–452. <https://doi.org/10.1007/11553090_45>.

GÁCS, P.; KURDYUMOV, G. L.; LEVIN, L. A. One-dimensional uniform arrays that
wash out finite islands. Problemy Peredachi Informatsii, Russian Academy of
Sciences, v. 14, n. 3, p. 92–96, 1978.

GARDNER, M. Mathematical games: The fantastic combinations of john conway’s
new solitaire game “life”. Scientific American, v. 223, n. 4, p. 120–123, 1970.
<https://doi.org/10.1038/scientificamerican1070-120>.

GĄSIOR, J.; SEREDYŃSKI, F. A sandpile cellular automata-based scheduler and
load balancer. Journal of computational science, Elsevier, v. 21, p. 460–468, 2017.
<https://doi.org/10.1016/j.jocs.2016.08.005>.

GHAFARIAN, T.; DELDARI, H.; AKBARZADEH-T, M.-R. Multiprocessor scheduling
with evolving cellular automata based on ant colony optimization. In: IEEE. Computer
Conference, 2009. CSICC 2009. 14th International CSI. [S.l.], 2009. p. 431–436.
<https://doi.org/10.1109/CSICC.2009.5349618>.

GOG, A.; CHIRA, C. Dynamics of networks evolved for cellular automata
computation. In: SPRINGER-VERLAG. International Conference on Hybrid
Artificial Intelligence Systems. [S.l.], 2012. p. 359–368. <https://doi.org/10.1007/
978-3-642-28931-6_35>.

GOLBERG, D. E. Genetic algorithms in search, optimization, and machine learning.
Addion wesley, v. 1989, n. 102, p. 36, 1989.

GORDON, D. On the computational power of totalistic cellular automata.
Theory of Computing Systems, Springer-Verlag, v. 20, n. 1, p. 43–52, 1987.
<https://doi.org/10.1007/BF01692058>.

HAEFNER, J. W. Modeling Biological Systems:: Principles and Applications.
[S.l.]: Springer-Verlag, 2005. <https://doi.org/10.1007/b106568>.

HE, Y. et al. An improved cellular-automaton-based algorithm for real-time aircraft
landing scheduling. In: IEEE. 2014 Seventh International Symposium on
Computational Intelligence and Design. [S.l.], 2014. p. 284–288. <https:
//doi.org/10.1109/ISCID.2014.243>.

HOLLAND, J. H. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. [S.l.]:
MIT press, 1992. <https://doi.org/10.7551/mitpress/1090.001.0001>.

References 155

II, K. C.; HURD, L. P.; YU, S. Computation theoretic aspects of cellular automata.
Physica D: Nonlinear Phenomena, Elsevier, v. 45, n. 1-3, p. 357–378, 1990.
<https://doi.org/10.1016/0167-2789(90)90194-T>.

ILACHINSKI, A. Cellular automata: a discrete universe. [S.l.]: World Scientific
Publishing Company, 2001. <https://doi.org/10.1142/4702>.

JIN, S.; SCHIAVONE, G.; TURGUT, D. A performance study of multiprocessor task
scheduling algorithms. The Journal of Supercomputing, Springer-Verlag, v. 43, n. 1,
p. 77–97, 2008. <https://doi.org/10.1007/s11227-007-0139-z>.

JUILLE, H.; POLLACK, J. B. Coevolving the" ideal" trainer: Application to the
discovery of cellular automata rules. In: CITESEER. University of Wisconsin. [S.l.],
1998.

KIER, L. B.; SEYBOLD, P. G.; CHENG, C.-K. Modeling chemical systems using
cellular automata. [S.l.]: Springer-Verlag, 2005. v. 1. <https://doi.org/10.1007/
1-4020-3690-6>.

KOZA, J. R. et al. Genetic programming III: Darwinian invention and problem
solving. [S.l.]: Morgan Kaufmann, 1999. v. 3. <https://doi.org/10.1109/TEVC.1999.
788530>.

KUCHARSKA, E. et al. Cellular automata approach for parallel machine scheduling
problem. Simulation, SAGE Publications, v. 92, n. 2, p. 165–178, 2016. <https:
//doi.org/10.1177/0037549715625120>.

KUMAR, N.; VIDYARTHI, D. P. A novel hybrid pso–ga meta-heuristic for
scheduling of dag with communication on multiprocessor systems. Engineering with
Computers, Springer-Verlag, v. 32, n. 1, p. 35–47, 2016. <https://doi.org/10.1007/
s00366-015-0396-z>.

KWOK, Y.-K.; AHMAD, I. Benchmarking and comparison of the task graph scheduling
algorithms. Journal of Parallel and Distributed Computing, Elsevier, v. 59, n. 3,
p. 381–422, 1999.

KWOK, Y. K.; AHMAD, I. Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys, v. 31, n. 4, p. 406–471, 1999.
<https://doi.org/10.1006/jpdc.1999.1578>.

LAARHOVEN, P. J. V.; AARTS, E. H.; LENSTRA, J. K. Job shop scheduling by
simulated annealing. Operations research, INFORMS, v. 40, n. 1, p. 113–125, 1992.
<https://doi.org/10.1287/opre.40.1.113>.

LABOUDI, Z. An effective approach for solving the density classification task by cellular
automata. In: IEEE. 2019 4th World Conference on Complex Systems (WCCS).
[S.l.], 2019. p. 1–8. <https://doi.org/10.1109/ICoCS.2019.8930805>.

LAND, M.; BELEW, R. K. No perfect two-state cellular automata for density
classification exists. Physical review letters, American Physical Society, p. 5148, 1995.
<https://doi.org/10.1103/PhysRevLett.74.5148>.

156 References

LAWLER, E. L. et al. Sequencing and scheduling: Algorithms and complexity.
Handbooks in operations research and management science, Elsevier, v. 4, p.
445–522, 1993. <https://doi.org/10.1016/S0927-0507(05)80189-6>.

LI, T.; BAUMBERGER, D.; HAHN, S. Efficient and scalable multiprocessor
fair scheduling using distributed weighted round-robin. ACM Sigplan Notices,
Association for Computing Machinery New York, NY, USA, p. 65–74, 2009.
<https://doi.org/10.1145/1594835.1504188>.

LI, W.; PACKARD, N. The structure of the elementary cellular automata rule space.
Complex Systems, v. 4, n. 3, p. 281–297, 1990.

LI, W.; PACKARD, N. H.; LANGTON, C. G. Transition phenomena in cellular
automata rule space. Physica D: Nonlinear Phenomena, Elsevier, v. 45, n. 1-3, p.
77–94, 1990. <https://doi.org/10.1016/0167-2789(90)90175-O>.

MACÊDO, H. B.; OLIVEIRA, G. M.; RIBEIRO, C. H. A comparative study between
the dynamic behaviours of standard cellular automata and network cellular automata
applied to cryptography. International Journal of Intelligent Systems, Wiley
Online Library, v. 31, n. 2, p. 189–207, 2016. <https://doi.org/10.1002/int.21751>.

MAINZER, K.; CHUA, L. The universe as automaton: From simplicity
and symmetry to complexity. [S.l.]: Springer-Verlag, 2011. v. 1. <https:
//doi.org/10.1007/978-3-642-23477-4_1>.

MARR, C.; HÜTT, M.-T. Outer-totalistic cellular automata on graphs. Physics
Letters A, Elsevier, v. 373, n. 5, p. 546–549, 2009. <https://doi.org/10.1016/j.physleta.
2008.12.013>.

MENDONÇA, J. R. G.; SIMÕES, R. E. Density classification performance and ergodicity
of the gacs-kurdyumov-levin cellular automaton model iv. Physical Review E, American
Physical Society, v. 98, n. 1, 2018. <https://doi.org/10.1103/PhysRevE.98.012135>.

MERKLE, D.; MIDDENDORF, M.; SCHMECK, H. Ant colony optimization for
resource-constrained project scheduling. In: MORGAN KAUFMANN PUBLISHERS
INC. Proceedings of the 2nd Annual Conference on Genetic and Evolutionary
Computation. [S.l.], 2000. p. 893–900. <https://doi.org/10.1109/TEVC.2002.802450>.

MIRANDA, G. H.; MACHICAO, J.; BRUNO, O. M. Network analysis using spatio-
temporal patterns. In: IOP PUBLISHING. Journal of Physics: Conference Series.
[S.l.], 2016. v. 738, n. 1, p. 012011. <https://doi.org/10.1088/1742-6596/738/1/012011>.

MITCHELL, M.; CRUTCHFIELD, J. P.; HRABER, P. T. Evolving cellular
automata to perform computations: Mechanisms and impediments. Physica
D: Nonlinear Phenomena, Elsevier, v. 75, n. 1-3, p. 361–391, 1994. <https:
//doi.org/10.1016/0167-2789(94)90293-3>.

MITCHELL, M.; HRABER, P.; CRUTCHFIELD, J. P. Revisiting the edge of
chaos: Evolving cellular automata to perform computations. arXiv preprint
adap-org/9303003, 1993. <https://doi.org/10.48550/arXiv.adap-org/9303003>.

References 157

MITCHELL, M. et al. Computation in cellular automata: A selected review.
Nonstandard Computation, VCH Verlagsgesellschaft. Braziller Publishers. New
Perspectives on Cybernetics. G. van de Vijver (ed.). Kluwer, p. 95–140, 1996.
<https://doi.org/10.1002/3527602968.ch4>.

MITRA, A. et al. An analysis of equal length cellular automata (elca) generating linear
rules for applications in distributed computing. Journal of Cellular Automata, v. 10,
2015.

MOHAMED, M. R.; AWADALLA, M. H. Hybrid algorithm for multiprocessor task
scheduling. International Journal of Computer Science Issues, v. 8, p. 40, 2011.

MORAIS, B. W. D.; OLIVEIRA, G. M. B. de; CARVALHO, T. I. de. Evolutionary
models applied to multiprocessor taskscheduling: Serial and multipopulation genetic
algorithm. Revista de Informática Teórica e Aplicada, v. 26, n. 1, p. 11–25, 2019.
<https://doi.org/10.22456/2175-2745.82412>.

NEUMANN, J. von; BURKS, A. W. Theory of self-reproducing automata. [S.l.]:
University of Illinois press, 1966.

OLIVEIRA, G.; MARTINS, L. G.; FYNN, E. Adaptive strategies applied to
evolutionary search for 2d dct cellular automata rules. In: ASSOCIATION FOR
COMPUTING MACHINERY. Proceedings of the 13th annual conference
on Genetic and evolutionary computation. [S.l.], 2011. p. 1147–1154.
<https://doi.org/10.1145/2001576.2001731>.

OLIVEIRA, G. M. et al. Some investigations about synchronization and density
classification tasks in one-dimensional and two-dimensional cellular automata rule
spaces. Electronic Notes in Theoretical Computer Science, Elsevier, v. 252, p.
121–142, 2009. <https://doi.org/10.1016/j.entcs.2009.09.018>.

OLIVEIRA, G. M.; OLIVEIRA, P. D.; OMAR, N. Evolving solutions of the
density classification task in 1d cellular automata, guided by parameters that
estimate their dynamic behavior. Artificial Life, v. 7, p. 428–436, 2000. <https:
//doi.org/10.7551/mitpress/1432.003.0060>.

OLIVEIRA, G. M.; OLIVEIRA, P. P. d.; OMAR, N. Definition and application of
a five-parameter characterization of one-dimensional cellular automata rule space.
Artificial life, MIT Press, v. 7, n. 3, p. 277–301, 2001. <https://doi.org/10.1162/
106454601753238645>.

OLIVEIRA, G. M.; VIDICA, P. M. A coevolutionary approach to cellular automata-
based task scheduling. In: SIRAKOULIS, G. C.; BANDINI, S. (Ed.). Cellular
Automata. [S.l.]: Springer-Verlag, 2012, (Lecture Notes in Computer Science, v. 7495).
p. 111–120. <https://doi.org/10.1007/978-3-642-33350-7_12>.

OLIVEIRA, G. M. B.; CARVALHO, T. I. Sscs-λ: A cellular automata-based scheduler
with stochastic update based on the neighbourhood states. In: IEEE. 2018 IEEE 30th
International Conference on Tools with Artificial Intelligence (ICTAI). [S.l.],
2018. p. 452–457. <https://doi.org/10.1109/ICTAI.2018.00076>.

158 References

OLIVEIRA, G. M. B. de; OLIVEIRA, P. P. de; OMAR, N. Guidelines for dynamics-based
parameterization of one-dimensional cellular automata rule spaces. Complexity, Wiley
Online Library, v. 6, n. 2, p. 63–71, 2000. <https://doi.org/10.1002/cplx.1021>.

OLIVEIRA, P. P. de; BORTOT, J. C.; OLIVEIRA, G. M. The best currently known
class of dynamically equivalent cellular automata rules for density classification.
Neurocomputing, Elsevier, v. 70, n. 1-3, p. 35–43, 2006. <https://doi.org/10.1016/j.
neucom.2006.07.003>.

OLTEANU, A.; MARIN, A. Generation and evaluation of scheduling dags: How to
provide similar evaluation conditions. Computer Science Master Research, v. 1,
n. 1, p. 57–66, 2011.

OMARA, F. A.; ARAFA, M. M. Genetic algorithms for task scheduling problem. In:
Foundations of Computational Intelligence Volume 3. [S.l.]: Springer-Verlag,
2009. p. 479–507. <https://doi.org/10.1007/978-3-642-01085-9_16>.

PACKARD, N. H. Adaptation toward the edge of chaos. Dynamic patterns in
complex systems, World Scientific, v. 212, p. 293–301, 1988.

PAN, Q.-K. et al. A discrete artificial bee colony algorithm for the lot-streaming flow
shop scheduling problem. Information sciences, Elsevier, v. 181, n. 12, p. 2455–2468,
2011. <https://doi.org/10.1016/j.ins.2009.12.025>.

PINEDO, M. L. Scheduling: Theory, Algorithms, and Systems. Third. [S.l.]:
Springer-Verlag, 2008. <https://doi.org/10.1007/978-3-319-26580-3>.

PORTO, S. C.; RIBEIRO, C. C. A tabu search approach to task scheduling on
heterogeneous processors under precedence constraints. International Journal
of high speed computing, World Scientific, v. 7, n. 01, p. 45–71, 1995.
<https://doi.org/10.1142/S012905339500004X>.

QIAN, Y.-S.; FENG, X.; ZENG, J.-W. A cellular automata traffic flow model for
three-phase theory. Physica A: Statistical Mechanics and its Applications,
Elsevier, v. 479, p. 509–526, 2017. <https://doi.org/10.1016/j.physa.2017.02.057>.

RENDELL, P. Turing universality of the game of life. In: Collision-based computing.
[S.l.]: Springer-Verlag, 2002. p. 513–539. <https://doi.org/10.1007/978-1-4471-0129-1_
18>.

RIOS, P. R. et al. Comparison of analytical models with cellular automata simulation of
recrystallization in two dimensions. Materials Research, SciELO Brasil, v. 8, n. 3, p.
341–345, 2005. <https://doi.org/10.1590/S1516-14392005000300020>.

RYBACKI, S.; HIMMELSPACH, J.; UHRMACHER, A. M. Experiments with single
core, multi-core, and gpu based computation of cellular automata. In: IEEE. 2009 first
international conference on advances in system simulation. [S.l.], 2009. p. 62–67.
<https://doi.org/10.1109/SIMUL.2009.36>.

SANTÉ, I. et al. Cellular automata models for the simulation of real-world urban
processes: A review and analysis. Landscape and Urban Planning, Elsevier, p.
108–122, 2010. <https://doi.org/10.1016/j.landurbplan.2010.03.001>.

References 159

SARKAR, P. A brief history of cellular automata. ACM computing surveys
(csur), Association for Computing Machinery, v. 32, n. 1, p. 80–107, 2000.
<https://doi.org/10.1145/349194.349202>.

SCHIFF, J. L. Cellular automata: a discrete view of the world. [S.l.]: John Wiley
& Sons, 2011. v. 45.

SCHÜLE, M.; OTT, T.; STOOP, R. Computing with probabilistic cellular automata. In:
SPRINGER-VERLAG. International Conference on Artificial Neural Networks.
[S.l.], 2009. p. 525–533. <https://doi.org/10.1007/978-3-642-04277-5_53>.

SEREDYŃSKI, F. Scheduling tasks of a parallel program in two-processor systems with
use of cellular automata. Future Generation Computer Systems, Elsevier, v. 14,
n. 5-6, p. 351–364, 1998.

SEREDYNSKI, F.; ZOMAYA, A. Y. Sequential and parallel cellular automata-based
scheduling algorithms. IEEE Trans. Parallel and Distributed Systems, v. 13, n. 10,
p. 1009–1022, 2002. <https://doi.org/10.1109/TPDS.2002.1041877>.

SWIECICKA, A.; SEREDYNSKI, F. Cellular automata approach to scheduling
problem. In: IEEE. Proceedings International Conference on Parallel
Computing in Electrical Engineering. PARELEC 2000. [S.l.], 2000. p. 29–33.
<https://doi.org/10.1109/PCEE.2000.873596>.

SWIECICKA, A.; SEREDYNSKI, F.; ZOMAYA, A. Y. Multiprocessor scheduling
and rescheduling with use of cellular automata and artificial immune system support.
IEEE Trans. on Parallel and Distributed Systems, v. 17, n. 3, p. 253–262, 2006.
<https://doi.org/10.1109/TPDS.2006.38>.

TINOCO, C. R.; OLIVEIRA, G. M. Pheromone interactions in a cellular automata-
based model for surveillance robots. In: SPRINGER-VERLAG. International
Conference on Cellular Automata. [S.l.], 2018. p. 154–165. <https://doi.org/10.
1007/978-3-319-99813-8_14>.

TOFFOLI, T. Cellular automata as an alternative to (rather than an approximation
of) differential equations in modeling physics. Physica D: Nonlinear Phenomena,
Elsevier, v. 10, n. 1-2, p. 117–127, 1984. <https://doi.org/10.1016/0167-2789(84)
90254-9>.

TOMITA, K.; KUROKAWA, H.; MURATA, S. Graph automata: natural expression
of self-reproduction. Physica D: Nonlinear Phenomena, Elsevier, v. 171, n. 4, p.
197–210, 2002. <https://doi.org/10.1016/S0167-2789(02)00601-2>.

TOPCUOGLU, H.; HARIRI, S.; WU, M.-y. Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE transactions
on parallel and distributed systems, IEEE, v. 13, n. 3, p. 260–274, 2002.
<https://doi.org/10.1109/71.993206>.

ULLMAN, J. D. Np-complete scheduling problems. Journal of Computer
and System sciences, Academic Press, v. 10, n. 3, p. 384–393, 1975. <https:
//doi.org/10.1016/S0022-0000(75)80008-0>.

160 References

VEZHNEVETS, V.; KONOUCHINE, V. Growcut: Interactive multi-label nd image
segmentation by cellular automata. In: CITESEER. proc. of Graphicon. [S.l.], 2005.
p. 150–156.

VICHNIAC, G. Y. Simulating physics with cellular automata. Physica D:
Nonlinear Phenomena, Elsevier, v. 10, n. 1-2, p. 96–116, 1984. <https:
//doi.org/10.1016/0167-2789(84)90253-7>.

VIDICA, P. M.; OLIVEIRA, G. M. B. Cellular automata-based scheduling: A new
approach to improve generalization ability of evolved rules. In: . [S.l.: s.n.], 2006. p.
18–23. <https://doi.org/10.1109/SBRN.2006.13>.

WATTS, D. J.; STROGATZ, S. H. Collective dynamics of ‘small-world’networks.
nature, Nature Publishing Group, v. 393, n. 6684, p. 440, 1998. <https:
//doi.org/10.1038/30918>.

WOLFRAM, S. Cellular automata. Los Alamos Science, v. 9, n. 2-21, p. 42, 1983.

. Cellular automata as models of complexity. Nature, Springer-Verlag, v. 311,
n. 5985, p. 419–424, 1984. <https://doi.org/10.1007/BF01217347>.

. Computation theory of cellular automata. Communications in mathematical
physics, Springer-Verlag, v. 96, n. 1, p. 15–57, 1984.

. Universality and complexity in cellular automata. Physica D: Nonlinear
Phenomena, Elsevier, v. 10, n. 1-2, p. 1–35, 1984. <https://doi.org/10.1016/
0167-2789(84)90245-8>.

. Cryptography with cellular automata. In: SPRINGER-VERLAG. Conference
on the Theory and Application of Cryptographic Techniques. [S.l.], 1985. p.
429–432. <https://doi.org/10.1007/3-540-39799-X_32>.

. Cellular automata and complexity: collected papers. [S.l.]: Addison-
Wesley Reading, 1994. v. 1.

. A new kind of science. [S.l.]: Wolfram Media, Inc., Champaign, IL, 2002.

WOLZ, D.; OLIVEIRA, P. P. D. Very effective evolutionary techniques for searching
cellular automata rule spaces. Journal of Cellular Automata, v. 3, n. 4, 2008.

WU, M.-Y.; GAJSKI, D. D. Hypertool: A programming aid for message-passing systems.
IEEE transactions on parallel and distributed systems, IEEE, v. 1, n. 3, p.
330–343, 1990. <https://doi.org/10.1109/71.80160>.

XU, Y. et al. A dag scheduling scheme on heterogeneous computing systems using
double molecular structure-based chemical reaction optimization. Journal of
Parallel and Distributed Computing, Elsevier, v. 73, n. 9, p. 1306–1322, 2013.
<https://doi.org/10.1155/2014/404375>.

. A genetic algorithm for task scheduling on heterogeneous computing systems
using multiple priority queues. Information Sciences, Elsevier, v. 270, p. 255–287,
2014. <https://doi.org/10.1016/j.ins.2014.02.122>.

References 161

ZEKRIZADEH, N.; KHADEMZADEH, A.; HOSSEINZADEH, M. An online
cost-based job scheduling method by cellular automata in cloud computing
environment. Wireless Personal Communications, Springer-Verlag, p. 1–27, 2019.
<https://doi.org/10.1007/s11277-019-06128-0>.

	Title page
	Dedication
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	List of Acronyms
	List of Symbols
	Introduction
	Objectives
	Text Organisation

	Background
	Cellular Automata
	History
	Definitions
	Rules Complexity
	Dynamic Classes of behaviour

	Scheduling
	Scheduling Problem Aspect: Tasks Notations D
	Scheduling Problem Aspect - Machines Environment: A
	Scheduling Problem Aspect - Processing Restrictions and Constraints: B
	Scheduling Problem Aspect - optimisation Criteria: C
	Static Task Scheduling Problem (STSP)

	Genetic Algorithm
	Cellular Automata-based Scheduling
	Literature Review of Schedulers Based on CA
	General definitions of a CA-based Scheduler (CAS)
	CAS neighbourhoods
	Genetic Algorithm for Searching out CA rules for Task Scheduling

	Density Classification Task
	Density Classification Definition
	Literature Review

	Proposed model: Stochastic cellular automata with Reduce and Mapping
	Motivation
	Formal definition of Stochastic CA with Reduce and Mapping
	Designing the Stochastic CA with Reduce and Mapping

	The Stochastic CA (SCA-RM) applied to Task Scheduling
	Cellular Automata models proposed to the many states scenario
	Stochastic CA with mapping-reduce
	Totalistic Cellular Automata
	Complexity of investigated models
	Methodology
	Stochastic CA on Task Scheduling
	Additional Remarks

	Testing Mapping functions in the Stochastic CA
	Methodology
	Testing different functions as the Stochastic CA mapping for Task Scheduling: Learning phase
	Training Phase
	Operation phase - Models comparison and statistical validation.

	Additional Remarks

	Conclusion

	The Stochastic CA (SCA-RM) applied to the Density Classification Task
	A notable stochastic DCT solution: the traffic-majority rule
	Methodology
	Stochastic CA on the Density Classification Problem
	The Binary Density Classification Problem
	The Multi-state Density Classification Problem - three states
	Definition of the Stochastic CA with mapping-reduce for the multi-state Density Classification Task.
	Stochastic CA mapping-reduce to a three-state density classification.

	FSFC: a manually designed rule compared with the SCA-RM on DCT.
	A comparison of FSFC and SCA-RM'' in ternary DCT.

	Multi-state DCT: four states and beyond
	Solving multi-state DCT for four states
	Solving multi-state DCT for eight states

	Conclusion

	Final Conclusions
	Perspectives

	References

