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Resumo

A busca por similaridade aproximada tem sido usada em diversas disciplinas, como
reconhecimento de padrões e aprendizado de máquina, e em aplicações como buscas de
imagens, strings e genoma. Geralmente, essas atividades lidam com um grande volume de
dados de alta dimensão, sendo relevantes tanto o tempo de execução das buscas quanto
o tamanho da memória alocada pela estrutura de dados que responde a essas buscas. A
busca por similaridade aproximada é realizada por meio de elementos de referência, que
estabelecem um compromisso entre o nível de precisão das buscas e o tempo necessário e
memória alocada. Utilizando esta técnica, propomos uma estrutura que opera busca por
similaridade aproximada com uma estrutura de dados compacta que ainda apresenta um
custo linear para construção e busca, e que não se limita a dados de 32 bits. Realizado os
experimentos, conseguimos obter um método que requer menos memória, atingindo 1/3
da mémoria requerida pelo método MSA, ao custo de um aumento no tempo de construção
e busca, demandando até 2,7 e 3,5 o tempo do MSA respectivamente no melhor caso.

Palavras-chave: Busca por similaridade. Estrutura de dados compacta. Vetor de sufixos
métrico.
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Abstract

Approximate similarity searching has been used in several disciplines such as pattern
recognition and machine learning, and applications such as image, strings and genome
searches. Generally, these activities deal with a large volume of high-dimensional data,
with both the execution time of the searches and the size of the memory allocated by the
data structure that responds to these searches being relevant. The approximate similarity
searching is carried out using reference elements, which establish a compromise between
the level of precision of the searches and the time required and allocated memory. Using
this technique, we propose a structure that operates approximate similarity searching with
a compact data structure that still presents a linear cost for construction and search, and
that is not limited to 32-bit data. With the experiments executed, we managed to obtain
a method that requires less memory, achieving 1/3 of the memory required for the MSA,
at the cost of an increase in construction and search time, demanding 2.7 and 3.5 the
time required for the MSA respectively in the best case.

Keywords: Similarity searching. Compact data structures. Metric Suffix Array.
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Chapter 1
Introduction

1.1 Introduction

With the increase in the volume of data in recent times there has consequently been
room for creative ways to manipulate this data. Search and insert operations on data
structures containing millions of nodes can incur a high processing demand. In this con-
text, proximity search operations may require adaptations that allow obtaining a compro-
mise between speed and accuracy. In a similarity search, the operations to measure the
distance between two objects require calculation that involves mathematical operations
like squares and squared roots, as in the case of Euclidean space. These operations are
potentially computational expensive and consequently can make the handling of large
volume of data quite difficult.

Due to this, some alternatives are being used by applications that just require ap-
proximated results instead of exact results. Examples are applications that aim to find
plagiarism by similarity between an article and texts in a database, comparison between
several genomes to find similarities between one or more genes, multimedia searches where
images or videos similar to a given example can be obtained (MOHAMED; MARCHAND-
MAILLET, 2013).

A similarity search involving a query q and a collection of data D are usually done
in two ways: K-nearest neighbor search (K-NN ) and the range query. K-NN returns the
K objects most similar to query q. The range query returns all objects located within a
certain distance from the query q.

For the execution of the similarity search, a collection of data that contains an amount
N of objects oi will be considered. These objects have quantifiable attributes, that is, they
are represented by numerical values, which are used in the calculation of distances. In this
dissertation, these attributes will be called dimensions. Therefore, from these dimensions
it is possible to calculate the distances, in a given vector space, between the data.

For a K-NN search to be carried out, it is necessary to order the distances of objects
oi in relation to a query q. The procedure for obtaining the precise ordering would be
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to calculate the distances of the N objects in relation to q. However, this procedure
can become computationally expensive for a large number of objects. Furthermore, in
applications where very frequently the set of objects does not change, a procedure where
the calculation of distances is done only once and, after that, the successive queries are
carried out by an indirect procedure that reduces the computational cost is desired.

The advantage of this procedure is that the distance calculations would be performed
only once. With the increase of data registers quantity with high dimensionality, the
construction of data structures to perform K-NN and range searches by the exact modality
presents considerable degradation concerning processing performance and data structure
storage memory. Therefore, taking in account that working with exact results could bring
those disadvantages, methods which takes some kind of loss of accuracy can be tolerated
in many applications.

In the last years most works published in the K-NN and range searches have dealt with
the development of data structures which perform those searches via approximate meth-
ods. (VADICAMO; AMATO; GENNARO, 2023) deals with permutation-based indexing
as an approach to large-scale searching, transforming the original objects representation
into a permutation one (MOHAMED; MARCHAND-MAILLET, 2013), thus profiting of
efficient method of indexation.

1.2 Goals and Challenges

Starting from the Metric Suffix Array (MSA) (MOHAMED; MARCHAND-MAILLET,
2013), this work intended to propose, implement and test an improved version, which
could provide a smaller data structure and, consequently, require less memory. For that,
our challenges were to define techniques that can be used together with the MSA so a
compact data structure is produced without the necessity of decompression to perform a
search.

1.3 Contributions

The compact versions of the MSA, being less memory consuming, could be used as
alternative to the MSA when it comes to applications that require large data and relative
low memory to stores the data structure, to the point where it can be avoid or postpone
the transferring of this data structure to lower levels of memory hierarchy.

1.4 Dissertation Organization

Chapter 2 describes concepts and definitions that is used to implement the compact
versions of the MSA. Therefore, an approach to concepts of similarity search, permutation-
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based indexing, encoding techniques and memory hierarchy is made in the chapter.
Chapter 3 gives details of the compact MSA proposed in this work, as well as fur-

ther information about the construction of the cMSA data structure and the process of
retrieving the k nearest neighbors of a query q.

Chapter 4 presents tests performed comparing the MSA with two versions of cMSA.
These data is presented in graph form with explanation of the compared features of the
three implementations.

Chapter 5 discusses about some further improvements that could be made to the cMSA
versions, as well as some other techniques and new approaches that could be implemented
in future contributions for the work presented here.
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Chapter 2
Fundamentals

This chapter briefly presents some concepts and definitions that provide the funda-
mentals required for the development of this dissertation. Section 2.1 gives the fundamen-
tals of the concept of similarity searches and its requirements, giving basis for the range
queries and nearest neighbor queries. Section 2.2 presents the principles for the distances
computation used by the MSA, which is described in section 2.3. The MSA method is
further described in section 2.4 and section 2.5, where the algorithm for these two steps
are presented and explained with more detail. Section 2.6 and section 2.7 introduce two
encoding methods used to implement the cMSA. Finally, section 2.8 briefly discusses some
aspects of memory hierarchy, illustrating how the cMSA could be relevant to real world
applications.

2.1 Similarity searches

The concept of similarity, which plays a fundamental role in the functioning of the
Metric Suffix Array (MSA) (MOHAMED; MARCHAND-MAILLET, 2013), is defined by
functions that return a value that is abstracted as a distance. This distance establishes
the dissimilarity between two objects Oi and Oj, where higher values indicate greater
dissimilarity.

Therefore, a similarity query is understood as a procedure to obtain a set of objects
with respect to a definition of a multidimensional space (SAMET, 2006). In this space,
the distance function establishes a hierarchy between objects in a query, which is used to
compare the similarity between a given object and others that are located nearby. For
the query to function properly, it is necessary that this function employs a metric that
satisfies the properties of symmetry, identity, non-negativity and triangular inequality as
defined below:

Let D = {a1, a2, a3} be a set of objects and d : D×D→ R be a distance, properties
that define a Metric Space are:
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1. Symmetry: d(a1, a2) = d(a2, a1)

2. Identity: d(a1, a1) = 0

3. Non-negativity: 0 ≤ d(a1, a2) <∞

4. Triangular inequality: d(a1, a2) ≤ d(a1, a3) + d(a3, a2)

The types of similarity queries that will be addressed in this work will be the range
query and the k-nearest neighbor query, defined in subsection 2.1.1 and subsection 2.1.2.

Figure 1 – Similarity searches. (a) Range query. (b) Nearest neighbor query
(a)

Oq

rq Oq

(b)

2.1.1 Range Queries

Given a set of objects O, a query q and a search radius r in a metric space, a Metric
Range Query (MRQ) returns all objects in O that lie within the range r of q, or:

MRQ(q, r) = {o | o ∈ O ∧ d(q, o) ≤ r} (1)

2.1.2 Nearest Neighbor Queries

Given a set O, a query q, and an integer k, a k-nearest neighbor query (MkNNQ) finds
k objects in O that are closest to q, or:

MkNNQ(q, k) = {S | S ⊆ O ∧ |S| = k ∧ ∀s ∈ S, ∀o ∈ O − S, d(q, s) ≤ d(q, o)} (2)

Figure 1(a) represents the queries defined in subsection 2.1.1 and Figure 1(b) represents
the queries defined in subsection 2.1.2. In Figure 1(a), the object oq is central to the
search region, whose radius is rq. In this case, we have a scope query MRQ(oq, rq), since
all objects that are at a distance less than or equal to rq are returned in the search.
Figure 1(b) shows the representation of a query to the k = 3 nearest neighbors, that is,
MkNNQ(oq, 3) and, in this case, the search will return the 3 elements with the smallest
distance, that is, possibly greater similarity with oq.
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2.2 Permutation-based Indexing

The concept behind the permutation-based indexes is to obtain the distances between
elements utilizing a set of references objects (FIGUEROA et al., 2017). These distances
are estimated based on the order each element is from the set of references, then this
procedure is repeated for every element, finally establishing the overall distances. To
illustrate this procedure, take for example the case illustrated in Figure 2. This scenario
shows a set of eight objects numbered from zero to seven. Also, there are three reference
objects. Finally, the point q represents a search, i.e. a position from where the objects
must be ranked in relation of the distance from there to each object.

Figure 2 – Distance of the references set from object o0

The procedure starts calculating the distance between an element oi and each reference
ri. Then, a list of references is created, sorted from the nearest to the farthest references.
So, in this case, for o1, we get Lo1 = {r2, r1, r0}.

Now, for object o3, Figure 3 shows that the reference r1 is the nearest, so this is the
first reference appearing in ordered list Lo3 . Reference r0 is the next and reference r2 is the
farthest. So the ordered list for object o3 generated by this process is Lo3 = {r1, r0, r2}.

For object o4, Figure 4 shows that the ordered list generated is Lo4 = {r0, r1, r2} as
reference r0 is the nearest and reference r2 is the farthest.

Proceeding like this for every object on, a list of ordered list is obtained as shown in
Table 1.

After this process, we get the Lq, which is the ordered list of the reference distances
to the query q. With this, we proceed to comparing for each reference the position of
the respective reference occupy in the ordered list Lon of each element. As a permu-
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Figure 3 – Distance of the references set from object o3

Figure 4 – Distance of the references set from object o4

tation based algorithm (PBA), it requires a metric between permutations (FIGUEROA;
PAREDES; REYES, 2018), and for this work, the similarity between the query q and all
the objects oi is measured using the Spearman Footrule Distance (SFD), a metric that
provides good approximations, with a simple and intuitive procedure. This is made by
computing Equation 3 when comparing the ordered lists showed in Table 1. The SFD
method is executed for every object oi and is given by the formula:
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Table 1 – Ordered lists for every objects generated for the example

Obj near mid far
o0 2 1 0
o1 2 1 0
o2 2 1 0
o3 1 0 2
o4 0 1 2
o5 1 2 0
o6 0 1 2
o7 0 1 2

SFD(oi, q) =
∑
|p(Loi

, rj)− p(Lq, rj)| (3)

where Loi
is the ordered references list of object oi, Lq is the sorted references list of the

query q, p(Loi
, rj) returns the position of rj from the ordered list Loi

and p(Lq, rj) returns
the position of rj from the ordered list Lq. Figure 5 shows how the Lq is constructed for
the example in analysis: the reference r1 is the nearest from the query position followed
by reference r0 and reference r2 being the farthest one, thus resulting in Lq = {r1, r0, r2}.

Figure 5 – Distance of the references set from query q

After obtained Lq, the process calculates a SFD value for each object related to the
query q as described in Equation 3. For exemplify how to calculate a SFD value, take
the ordered list of object o0, Lo0 = 2, 1, 0, as shown in Table 1. This list should be
compared with the ordered list of query, Lq = 1, 0, 2, so starting from the first reference
appearing in this list, we have reference r1, which have p(Lq, r1) = 0 (because r1 appears
at the first position at Lq). Looking at Lo0 , reference r1 appears at second position, hence
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p(Lo0 , r1) = 1. Then, the first term of sum shown in Equation 3 is the module of the
difference between those values, that is, |1− 0| = 1. This process is shown in Figure 6(a).
Proceeding to the next reference in Lq, we get reference r0 at position 1. Reference r0 at
ordered list Lo0 is at position 2 and, as show in Figure 6(b), the second term of the sum
is |2− 1| = 1. Finally, the last position at Lq is reference r2, which is the first position at
Lo0 , therefore |0− 2| = 2, as shown in Figure 6(c). The sum of terms results 4, which is
the SFD of object o0.

Figure 6 – Example of SFD value calculation for object o0

Table 2 – SFD values for objects

Obj near mid far SFD
o0 2 1 0 4
o1 2 1 0 4
o2 2 1 0 4
o3 1 0 2 0
o4 0 1 2 2
o5 1 2 0 2
o6 0 1 2 2
o7 0 1 2 2

Table 2 shows the SFD value for the objects. Finally, sorting those values permits to
estimate the distance of the elements from the query position.

As mentioned before, this process allows to estimate a ranking of the distance of the
objects to the query at the cost of precision related to the direct mode, which involve
computationally expensive operations, like square roots. Therefore, this method allows
for faster queries, in a large data environment, at the expense of precision. However, the
level of precision can be improved with the increase of the number of references.

2.3 Metric Suffix Array

The procedure described in section 2.2 can still be quite computationally expensive
when handling a large volume of objects, thus some type of optimization can be used to
improve the time required to processing these distance ranking procedure.
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Let S be a string of length m = |S| comprised of an alphabet Σ. Taking the character
$ to signal the end, so S[m] = $, and S[i] indicating the character at position i in S,
for 0 ≤ i < m, therefore S[i..j] represents the substring S starting at i and ending at
j. The i-th suffix of S is the substring S[i..m] and is denoted by S(i). The suffix array
suff of the string S is an array of integers in the range 0 to m where the suffixes are in
lexicographic order (MANBER; MYERS, 1993).

The Metric Suffix Array (MSA) take advantage of the principles of indexing with a
suffix array. In this method, we concatenate in the ordered lists Loi

, as obtained by the
process described in section 2.2, for all the database objects in an array. We obtain one
single string S over a finite set Σ = R. The length of the string is m = n × N , where
n is the number of reference points and N is the number of objects. At each position of
this data structure, a value of the position of a reference to an object is stored, and this
allows for fast recovering of p(Loi

, rj).
Therefore, for instance, suppose that all lists Loi

shown in Table 1 are concatenated
and a character is added to signal the end ($ in this case). The result is the following
string:

S = 210210210102012120012012$

The sequence of suffixes of S in ascending lexicographic order is denoted by S(suff[0]),
S(suff[1]),..., S(suff[m]) as shown in Figure 7. The suff value denotes the order of
generation of a substring, as show in Figure 7. Suffix arrays are used to locate every
occurrence of substring S(suff[i]) in an effective way for many applications.

These principles are used to efficiently implement the indexation of the MSA which is
described in the section 2.4.

2.4 Indexing

The method described in section 2.2 works as the fundamentals to the procedure
described in this dissertation, because, to optimal memory usage. To start, we construct
an MSA of size m = n × N , where n is the number of references and N is the number
of objects. This array contain a list of indexes, which is separated in n groups, called
buckets. Each bucket is a subarray of size N . The procedure in this methods places the
references in the Loi

in the ith bucket position. Each bucket is related to a reference so
the n-th bucket defined as bukrn receive indexes labeled with n. So, for instance, bukr1

and bukr2 contain indexes labeled as 1 and 2, respectively.
Disposing the indexes in that fashion eases the calculation of the SFD value (Equa-

tion 3) of each object in an iterative procedure. This works by comparing the indexes
with the position of the references in the ordered list Lq.
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Figure 7 – The suffix array of the string S = 210210210102012120012012$
i suff S(suff[i])

0 210210210102012120012012$

1 10210210102012120012012$

2 0210210102012120012012$

3 210210102012120012012$

4 10210102012120012012$

5 0210102012120012012$

6 210102012120012012$

7 10102012120012012$

8 0102012120012012$

9 102012120012012$

10 02012120012012$

11 2012120012012$

12 012120012012$

13 12120012012$

14 2120012012$

15 120012012$

16 20012012$

17 0012012$

18 012012$

19 12012$

20 2012$

21 012$

22 12$

23 2$

24 $

i suff S(suff[i])

0 17 0012012$

1 8 0102012120012012$

2 18 012012$

3 12 012120012012$

4 21 012$

5 10 02012120012012$

6 5 0210102012120012012$

7 2 0210210102012120012012$

8 7 10102012120012012$

9 9 102012120012012$

10 4 10210102012120012012$

11 1 10210210102012120012012$

12 15 120012012$

13 19 12012$

14 13 12120012012$

15 22 12$

16 16 20012012$

17 11 2012120012012$

18 20 2012$

19 6 210102012120012012$

20 3 210210102012120012012$

21 0 210210210102012120012012$

22 14 2120012012$

23 23 2$

24 24 $

Figure 8 – String S as a character sequence showing the position indexes of each character
2 1 0 2 1 0 2 1 0 1 0 2 0 1 2 1 2 0 0 1 2 0 1 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

S = 

Index = 

Obtained in section 2.3, the sequence of characters S is shown in Figure 8 with the
position index for each character. The number stored in each position indicates the
reference in that position, therefore, for instance, positions 0 and 3 store reference r2 and
positions 1 and 4 store reference r1.

Computationally, the MSA is obtained by running through each of the N objects and
for each of the n references and calculated by Equation 4.

MSA[(rj ×N) + oi.id] = (oi.id× n) + p(Loi
, rj) (4)

where p(Loi
, rj) returns the position of rj in the ordered list Loi

, oi.id returns the object
oi identification and rj.id returns the object oi identification.

Algorithm 1 Full permutation indexing
1: for each o ∈ D do
2: Loi

= CreateOrderedList(oi, R)
3: for each r ∈ Loi

do
4: MSA[(rj.id×N) + oi.id] = (oi.id× n) + p(Loi

, rj)
5: end for
6: end for
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Algorithm 1 presents the procedure used to construct the MSA. Line 1 defines that
for every object input, line 2 creates an ordered list for the current object and line 3 and
4, for every reference of this ordered list, the SFD value (Equation 3) is calculated and
stored at an MSA position.

More specifically, line 2 invokes function CreateOrderedList(oi, R), which receives
as arguments the current object oi and the reference set R, returning this reference set
R in a list ordered from the nearest to the farthest to object oi. Line 4 computes the
value as the oi.id times n, which obtains the first position occupied by the i-th object
at the original sequence of character S (Figure 8) plus the distance ranking provided by
function p(Loi

, rj). Function P takes as arguments the ordered list Loi
and reference rj

and returns the distance ranking of reference rj at Loi
. If rj is the nearest of object oi, the

function returns 0; if rj is the farthest, the function returns n−1. This calculated value is
stored at the specific bucket bukrj

and object oi position: the first position of the bucket
bukrj

is obtained from (rj.id×N), which is added to oi.id, arriving at the aforementioned
position. As the Algorithm 1 requires for all objects a run through every reference, in
which the function P is invoked, so function P is invoked n × N times. Knowing that
this function is a simple linear search, the average time required is n/2. Therefore, for the
entire indexing processing, the computational cost is O(n2 ×N), where n is the number
of references and N is the number of objects.

For instance, if we take the reference r2 and the object o5, then the position of the
MSA array is 21, because (rj.id×N) + oi.id = (2× 8) + 5 = 21. The reference r2 appears
at position 1 in the ordered list Lo5 = {1, 2, 0} and, therefore, for the position 21 of the
MSA array, we have the index 16, because (oi.id×n)+p(Loi

, rj) = (5×3)+1. Proceeding
this way for every object and every reference, we obtain the MSA.

2.4.1 Indexing Example

The process to construct the MSA array works as follows: each reference ri is asso-
ciated with a bucket, which is a subarray that contains the position occupied by that
reference i in the string S. So, for instance, in the case being analyzed, if the reference
r0 occupies the position 2 in the string, so it means that for object o0, the reference r0 is
the third nearest reference from object o0 and, in the r0 bucket, the first position (or the
o0 position) will be filled with the 2 index, as it can be seen in Figure 9. Yet for the first
object, proceed as described, we find that the index 1 and index 0 are placed at the first
position of bukr1 and bukr2 respectively (Figure 9), meaning that the references r1 and r2

are second and first nearest to object o0. The line MSA[{0, 8, 16}] = {2, 1, 0} means that
at positions 0, 8 and 16 of MSA are stored the indexes 2, 1 and 0 respectively, because in
the sequence of characters S shown in Figure 8 these are the indexes storing values of 0,
1 and 2 respectively.
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Figure 9 – Distribution of indexes for object o0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MSA[ {0, 8, 16} ] = {2, 1, 0}

For object o1, Figure 10 shows that reference r0 appears at position 5 in the string
and is the farthest element in the ordered list Lo1 as 5 mod 3 = 2. Reference r1 appears
at position 4 in the string, which means that the value 4 is put in next position at bucket
bukr1 and the reference r2, the nearest, as 3 mod 3 = 0, is related with the index 3. The
line MSA[{1, 9, 17}] = {5, 4, 3} means that at positions 1, 9 and 17 of MSA are stored the
indexes 5, 4 and 3 respectively, because in the sequence of characters S shown in Figure 8
these are the indexes storing values of 0, 1 and 2 respectively.

Figure 10 – Distribution of indexes for object o1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2 5 1 4 0 3

MSA[   {1, 9, 17}    ]  =  {5, 4, 3}

Figure 11 shows the distribution for object o2, where index 8 is placed at the next
position of bucket bukr0 , index 7, at the next position of bucket bukr1 and index 6, at the
next position of bucket bukr2 .

Figure 11 – Distribution of indexes for object o2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2 5 8 1 4 7 0 3 6

MSA[   {2, 10, 18}    ]  =  {8, 7, 6}

Figure 13 shows the distribution for object o3, the next position of bucket bukr0 ,
which is position 3 of MSA, receives the index 10, which reference is the second nearest,
as 10 mod 3 = 1; the next position of bucket bukr1 , which is position 11 of MSA, receives
the index 9, which reference is the nearest, as 9 mod 3 = 0 and the next position of bucket
bukr2 , which is position 19 of MSA, receives the index 11, which reference is the farthest,
as 11 mod 3 = 2.

Figure 12 – Distribution of indexes for object o3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2 5 8 10 1 4 7 9 0 3 6 11

MSA[   {3, 11, 19}    ]  =  {10, 9, 11}
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Another example, if reference r1 appears at position 13 in the string, so it means that
the reference r1 is the second nearest from object o4. This is so because for this position,
13 mod 3 = 1. Also we can predict that is object o4 because, as Figure 8 shows, the
index 13 indicates a position that received a reference related to object o4 and this can be
calculated by ⌊index/n⌋. Therefore, the object related to this index is ⌊13/3⌋ = 4. Thus,
the index 13 is filled in the position 4 of the r1 bucket, as shown in Figure 13.

Figure 13 – Distribution of indexes for object o4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2 5 8 10 12 1 4 7 9 13 0 3 6 11 14

MSA[   {4, 12, 20}    ]  =  {12, 13, 14}

Observing Figure 9, Figure 10, Figure 11 and Figure 12 it is easy to see that for the
i-th object, the indexes are placed at the i-th position of each bucket. This procedure is
repeated for every index in the string, so we obtain the MSA, which in the case analyzed
is shown in Figure 14.

Figure 14 – The resulting MSA divided in buckets
bukr0 bukr1 bukr2

2 3 3 2 2 5 1 3 1 3 3 2 4 2 4 3 0 3 3 5 3 2 4 3

2.5 Searching

Once the MSA array is built, queries can be executed directly on the MSA. Therefore
the remaining part of the procedure begins with the calculation of the ordered list Lq which
features a sorted nearest references from the query position. Once the Lq is obtained, the
process to obtain the SFD value for each object from the MSA is performed by Algorithm
2.

Algorithm 2 Full permutation searching
1: for rj ∈ Lq do
2: RefPosQ← j
3: Oid ← 0
4: for k ← (rj.id×N) to k < (rj.id×N) + N do
5: RefPos← (MSA[k] mod n) + 1
6: Acc[Oid]← Acc[Oid] + |RefPosQ− RefPos|
7: Oid ← Oid + 1
8: end for
9: end for

Line 1 of Algorithm 2 proceeds for the each reference, assigning the variables RefPosQ

and Oid to j and 0 respectively (Lines 2 and 3) and then running through the bucket bukrj
,
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from the first element, rj.id×N , to the last of this bucket, (rj.id×N)+ (N −1). At Line
5, RefPos receives (MSA[k] mod n) + 1, decoding the ranking position of the reference
rj for object Oid, Line 6 compares this ranking position with the value RefPosQ and adds
to accumulator Acc at the Oid position. Line 7 increments Oid. The inner loop (Line 4)
repeats N times (N is the number of objects), from o0 to oN−1, updating accumulator Acc.
The outer loop (Line 1) repeats n times (n is the number of references), from r0 to rn−1,
finally achieving the final state of accumulator Acc. The computational cost for searching
is O(n×N). The memory required for the Acc is O(N). The method in its original form
requires the calculation of Acc array in its entirety once the algorithm performs Line 6
once for each object and then for each reference. Further, in the dissertation, we present
alterations to the original proposition such that the generation of the entire Acc is not
required anymore.

2.5.1 Searching Example

For instance, taking the analyzed case, the query returns the ordered list Lq = {1, 0, 2},
which means that the reference r1 is the nearest and the reference r2 is the farthest.
Therefore, we start with the reference r1, which means that we will run through every
element in bucket bukr1 , from the element 8 (rj.id×N = 1× 8 = 8) until the element 15
(before rj.id×N + N = r × 8 + 8 = 16). Following, we proceed for each element of the
bucket which the first one is related with object o0 and the last one, with object o7.

It is obtained the position of r1 in each ordered list Loi
. This will be achieved thanks

to the disposition that each bucket in the MSA presents its elements. Following the case
presented in Figure 15, the position of the reference r1 in the ordered list Lo0 is obtained
by taking the first element of the bucket, that it is 1. As there is 3 references in total, we
take the modulo of 3 contained in an element to find the position of the reference relative
to the current bucket to obtain its rank. In this case the value of RefPos is obtained,
meaning that the reference r1 is the second nearest of the object o0, that is, the position
p(Lo0 , r1) = 2.

In the sequence, the value obtained is compared with the position of reference r1

relative to the query q, that is, to the position p(Lq, r1), which in the case shown in
Figure 15 has a value of 1. In the Algorithm 2 this is made by taking the absolute of the
difference between RefPosQ and RefPos, and then, the result is accumulated in an array
with N elements.

By the Figure 16, proceeding for the second element in bucket bukr1 (element 9 in
the MSA), we get the value 4, related to the object o1. Applying the calculation, that is
(MSA[9] mod 3) + 1, we get the value 2. Taking the absolute of the difference of the two
positions, we get 1, which is added to the accumulator array in the second element.

Yet inside bucket bukr1 and proceeding like this for the rest of elements, the last one
is achieved in Figure 17, which have the value 22, meaning that the object o7 has the
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Figure 15 – Algorithm 2 executed for the first element of the bucket bukr1

Figure 16 – Algorithm 2 executed for the second element of the bucket bukr1

reference r1 as the second nearest, because (22 mod 3) + 1 = 2. Taking the absolute of
the difference of the two positions, we get 1, which is added to the accumulator array in
the last element.

After finishing all calculations for reference r1, we proceed to the next reference, which
is r0 as shown in Figure 18. This cycle starts at the very first position of the MSA, which
have the value of 2, meaning that the object o0 has the reference r0 as the farthest, because
(2 mod 3) + 1 = 3. Taking the absolute of the difference of the two positions, we get 1,
which is added to the accumulator array in the first element.

Proceeding similarly to all elements of bucket bukr0 and, after that, for bucket bukr2 ,
starting with the first element of value 0, as shown in Figure 19, the value added to the
accumulator array is 2, which makes a total of 4 for object o0. Still at bucket bukr2,
proceeding the same way for the remaining objects, we obtain the final result in the accu-
mulator array, which is exactly the same as calculating directly the SFD (Equation 3) for
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Figure 17 – Algorithm 2 executed for the last element of the bucket bukr1

Figure 18 – Algorithm 2 executed for the first element of the bucket bukr0

each object by using Equation 3. In the case analyzed, we get Acc = {4, 4, 4, 0, 2, 2, 2, 2},
as shown in Figure 20. Therefore, this result means that the first three objects have a
distance of 4 from the query q, object o3 has a distance of zero and the last four objects
have a distance of 2 from query q.

Finally, after performing Algorithm 2, we obtain a value for each object that can be
compared with the other object values to determine the proximity of those objects related
to a position determined by a query q. At the end, sorting the accumulator array, we
obtain a sequence in which the first elements are the nearest ones. Then, we can solve
K-NN queries with the k first elements of Acc.
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Figure 19 – Algorithm 2 executed for the first element of the bucket bukr2

Figure 20 – Accumulator array

O0 O1 O2 O3 O4 O5 O6 O7

Acc: 4 4 4 0 2 2 2 2

2.6 Elias Delta Code

In this section, we show how to use the Elias Delta Code (NAVARRO, 2016) to
compress the integers stored in the MSA. In this compression the smaller integers have
the least number of bits. This is very convenient as the new difference MSA proposed is
very likely to display small values compared to N .

The Elias Delta Code of an integer x is constructed by the concatenation of the Gamma
Code of the length of the binary code of x and the binary code of x without the most
significant bit (msb), as shown in Equation 5.

δ(x) = γ(|x|).[x]|x|−1 (5)

where |x| is the length of x in binary and the subscript represents the number of digits
taken from the binary representation, therefore [x]|x|−1 means that the binary code of x is
taken without the most significant bit. The Gamma (γ) Code is obtained from an integer
x by concatenating zeros with the binary code of x, as show in Equation 6.

γ(x) = 0|x|−1.[x]|x| (6)

Thus, to illustrate how the Elias Delta Code works take the decimal 19: in binary
this integer is 10011, which has length 5. So to compute the Delta Code it is required
to calculate γ(|x|) = γ(5) and knowing that the binary code for 5 is 101, by Equation 6
we get γ(5) = 03−1.101 = 00101. Now, to obtain the Delta Code for the decimal 19, we
used the previously result in δ(19) = γ(5).[10011]4 = 001010011.
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The Elias Delta Code provides that an integer x will be coded to have length |δ(x)|
bits such as:

|δ(x)| = |x|+ 2⌊log2(|x|)⌋ (7)

As integers coded will display variable length, the average length in bits will likely be
smaller than the standard fixed 32 bits used for coding integers. In fact, with 32 bits,
the larger number generated by the Elias Delta Code is 16, 777, 215 = 224− 1. Therefore,
every decimal smaller will require 32 bits or less, which means that at that range, the
Elias Delta Code will produce smaller codes and, hence, spare memory. Some examples
of decimals coded with Elias Delta are shown in Figure 21, which can give an idea of
how this codification bit size increase with the grow of the input integer and also how
small numbers can be codified using just a few bits. Figure 22 shows the number of bits
required to encode a decimal by power of 10: for instance, 104 is encoded with 20 bits,
while 106, with 28 bits.

Figure 21 – Examples of decimals encoded by Elias Delta Code

1 = 1
2 = 0100
3 = 0101
4 = 01100
5 = 01101
6 = 01110
7 = 01111
8 = 00100000
9 = 00100001

10 = 00100010
11 = 00100011
12 = 00100100
13 = 00100101
14 = 00100110
15 = 00100111
16 = 001010000
17 = 001010001
18 = 001010010
19 = 001010011
20 = 001010100

16,777,215 = 00001100011111111111111111111111

32 bits

Figure 22 – Number of bits required to Elias Delta encode an integer (power of 10). Ab-
scissa values determine the n in 10n.
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2.7 Simple-9

As an alternative to the Elias Delta Code, the Simple-9 (NAVARRO, 2016) is a tech-
nique that also provides gain in memory while delivers fast decoding, so achieving good
performance. A key concept for this method is the word-RAM, which is memory space
consisting of 32 bits. The strategy of this method is to encode as many numbers as pos-
sible in a 32-bit word and for that it reserves the highest 4 bits of the word to set how
many number are encoded. The next 28 bits are used to accommodate the number of
integers set. So, if the next 28 values to encode are 1 or 2, then one bit for each can be
used. Otherwise, if the next 14 values are up to 4, then 2 bits for each can be used. If
not, if the next 9 numbers are up to 8, then 3 bits for each can be used. In this case a bit
is wasted. The same logic can be applied for a total of 9 possibilities where it can encode
the next ⌊28/m⌋ values using m = 1, 2, 3, 4, 5, 7, 9, 14, or 28 bits per value. Numbers
requiring more than 28 bits cannot be encoded.

As the Elias Delta Code, the Simple-9 encoding is also a data compression standard.
However, differently from the Elias Delta Code, where each value is encoded individually,
this method requires a short sequence of numbers before applying the algorithm to encod-
ing. Thus, to comply with the work presented here, it is necessary the implementation of
a buffer, where the numbers are accumulate before they can be coded in a 32-bit word.

To illustrate how the Simple-9 method, an example is provided in Figure 23: at (a)
the first number put in the buffer is 8, which needs 4 bits to be stored in a 32-bit word.
As more integers can still be stored, we proceed with the next numbers. At (b) 12 is the
next value stored in buffer, which also requires 4 bits to be stored as a binary number,
so the maximum number of bits required for each value is still 4, with a total o 8 bits.
At (c) the third value put in the buffer is 17, which requires 5 bits to be coded in binary.
So, this value is updated, defining the minimal number of bits required to represent those
three values in the buffer. Now these three integers require 15 bits to be stored (5 bit
to each value). Thus, the process continues, always testing if the total number of bits is
equal or larger than 28. At (d) the forth value is 30, which requires 5 bits to be coded.
Therefore, 20 bits are required to store the 4 values. At (e) it is required 5 bits to store
each value, with a total of 25 bits. At this point, any other value put in the buffer will
exceed 28 bits as seen in (f). Therefore, the algorithm proceeds to flush these 5 integers
requiring 5 bits each to a 32-bit word, where the first 4 bits stores the value 5, which is
the number of values that are stored in the next 28 bits.

The memory sparing comes from using 32 to store multiple integers. This method can
store integers up to 28 bits, that is, 228 = 268, 435, 456. Larger numbers cannot be stored.
This limit do not represent a problem to our proposal as this value is far beyond what is
expect to be stored: the differences obtained are equal or smaller than 2n− 1, where n is
the number of references, which are typically of the order of hundreds or thousands. More
so, this technique proves to be easily decoded, as it only requires to split the 28 bits least
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Figure 23 – Example of a procedure to code using a buffer to implement the Simple-9
code

count =  1  buffer 8                 

(a) max. bits = 4  bits 4 

total =  4  

count =  2  buffer 8 12               

(b) max. bits = 4  bits 4 4 

total =  8  

count =  3  buffer 8 12 17             

(c) max. bits = 5  bits 4 4 5 

total =  15  

count =  4  buffer 8 12 17 30           

(d) max. bits = 5  bits 4 4 5 5 

total =  20  

count =  5 buffer 8 12 17 30 27         

(e) max. bits = 5 bits 4 4 5 5 5 

total =  25  

count =  6  buffer 8 12 17 30 27 1       

(f) max. bits = 5       

total =  30  

32-bit word 0101 0000100001100100011111011011

significant bits (lsb) by the number indicated at the head of the word. This guarantees a
constant time at decoding stage.

2.8 Memory hierarchy

The memory hierarchy is the disposition of several levels of memory such that it can
minimize the access time. The memory design is divided into two main types: external
memory, comprising magnetic and optical disks, and internal memory, comprising main
memory, cache memory and CPU registers. As show in Figure 24, the capacity and access
time increases as we move from top to bottom in the memory hierarchy, while the cost
per bit increases as we move from bottom to top. The internal memory is costlier than
external memory.

Figure 24 – Memory hierarchy design
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Table 3 shows features of different levels of memory and, as it can be noted, the sec-
ondary memory has a much larger access time than the superior memory levels. Therefore,
this notable increase in access time motivates the development of compact data structures
that can postpone its storage at that level of memory.

Table 3 – System-supported memory standards
Level 0 1 2 3
Name Register Cache Main Memory Secondary Memory
Size ≤ 1 kB ≤ 16 MB ≤ 16 GB ≤ 2 TB

Access Time 0.25 ns to 0.5 ns 0.5 ns to 25 ns 80 ns to 250 ns 50× 105 ns
Bandwidth 2× 104 to 105 MB/s 5000 to 15000 MB/s 1000 to 5000 MB/s 20 to 150 Mb/s

2.9 Related Works

In recent decades, several data structures have been proposed to accelerate similarity
queries (HJALTASON; SAMET, 2003; SAMET, 2006), including main memory structures
for finding k-nearest neighbors, such as the Vantage-Point Tree (VP-Tree) (YIANILOS,
1993) and the Multi Vantage-Point Tree (MVP-Tree) (BOZKAYA; ÖZSOYOGLU, 1999),
among others, which are structures that extend binary trees for indexing based on a dis-
tance function, whose objective is to solve similarity queries with logarithmic complexity
of time.

Other research, focused on secondary storage, presented algorithms for similarity
queries in R-trees (GUTTMAN, 1984), that are multidimensional disk-based data struc-
tures built in a bottom-up fashion that store the nodes on data blocks of fixed size, such as
B+trees. K-nearest neighbor algorithms were proposed for such structures, in a branch-
and-bound depth-first traversal strategy (ROUSSOPOULOS; KELLEY; VINCENT, 1995;
CIACCIA; PATELLA; ZEZULA, 1997; HJALTASON; SAMET, 2003) or in a best-first
traversal strategy guided by a global active branch list maintained with a priority queue
(HJALTASON; SAMET, 1999; HJALTASON; SAMET, 2003). These query algorithms
were also supported by M-trees (CIACCIA; PATELLA; ZEZULA, 1997), which extends
the R-trees for the metric case, where data is organized only by their relative distances
among each other. These data structures and search algorithms aim at finding exact
answers (CHEN et al., 2022), and they suffer from the dimensionality curse (KORN;
PAGEL; FALOUTSOS, 2001), that limits the scalability of these algorithms.

In the last decade, research has focused on data structures for approximate similar-
ity queries (Approximate k-Nearest Neighbor Queries – ANNQ), aiming at scalability.
(FIGUEROA et al., 2017) proposes several experiments with permutant searching vari-
ations to determinate optimal values of the parameters for k-nearest neighbor queries.
(VADICAMO; AMATO; GENNARO, 2023) proposes a technique that uses space transfor-
mation to perform the permutations in an approximate metric searching context, achiev-
ing notable efficiency in the search phase. (AGUERREBERE et al., 2023) proposes a
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compression method which results in smaller graph-based indices, allowing for better
computational performance and memory storage.

There are specific applications where an exact similarity search is indispensable due
to the critical nature of the tasks involved like in biomedical research and drug discov-
ery, where the identification of similar molecular structures is vital, ensuring precision in
matching biological sequences or chemical structures; forensic analysis, where the match-
ing patterns with an exact similarity search is unavoidable; and other applications related
to security. Similarity search in metric spaces often requires expensive and complex meth-
ods, which still do not provide reasonable response time for large applications. Therefore,
for many applications where inaccurate results are tolerated and, many times, subjective,
it is sufficient to perform approximate similarity search, which normally can be performed
much faster. Approximate similarity search techniques provide improved efficiency when
compared with precise similarity search, at an expense of some imprecision in results, and
use different approaches: (1) by exploiting transformation of the metric space and (2) by
reducing the subset of data to be examined (ZEZULA et al., 2005), the latter being the
mainly approach used in this dissertation. In this context the Spearman Footrule Distance
(SFD) is a method for assessing the accuracy of approximate similarity by measuring the
discrepancy between two ordered (ranked) lists.

Simultaneously to improve of searching performance, we also pursuit ways of spare
memory for the data structure constructed for those approximate similarity searches. So,
for this, we propose the development of a compact structure that handles approximate
similarity searches directly, without data unpacking. (NAVARRO, 2016) presents several
data coding methods and techniques and, from those, the Elias Delta and Simple-9 are
employed in our compact data structure due to its relative simplicity to implement, but
still providing notable memory spare performance. Also those two are well know coding
techniques, which make them standard methods in the data compression field.
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Chapter 3
The Compact Metric Suffix Array

In this chapter we present new strategies intended to reduce memory in spite of time
to proceed in the building of the MSA and performing a query. This gain in memory
could be quite beneficial to applications which could not afford to deal with secondary
memory and can suffer in performance when such data structure need to be divided in
different memory hierarchy.

Therefore, the first feature that can be exploited is that the MSA is partially sorted,
that is, due to its specific bucket-distributed elements, one can note that inside a bucket,
the elements display an ascending order. So, instead of storing those indexes in the
original form, we can get the differences between consecutive positions, but maintaining
the first element of the bucket, in the way shown in the Figure 25.

Figure 25 – Difference array
bukr0 bukr1 bukr2

2 5 8 10 12 17 18 21 1 4 7 9 13 15 19 22 0 3 6 11 14 16 20 23

bukr0 bukr1 bukr2

2 3 3 2 2 5 1 3 1 3 3 2 4 2 4 3 0 3 3 5 3 2 4 3

MSA = 

gap = 

Due to how the MSA is built, it is easy to note that, when taking the differences
between neighbor indexes, the maximum value would be 2×n−1, where n is the number
of references, because in the worst case scenario a reference ri could be the nearest to
object ok and the farthest to the next object ok+1, which case the two indexes in the MSA
would be in a difference of 2×n− 1. So, for the case in analyses, shown in Figure 25, the
largest value is 5, because (2× 3)− 1 = 5. Also, in the best case scenario, the difference
value would be 1, which occurs when a reference ri is the farthest to object ok and the
nearest to the next object ok+1.

This property is very convenient because, usually, the number of references is much
smaller than the number of objects. For instance, in our experiments, objects are in the
order of millions while references are in the order of hundreds. Therefore, we can avoid
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storing very large numbers in the MSA and instead have a maximum value of 2× n− 1,
which is considerably smaller, hence allowing us to reduce memory by using less bits to
store those values.

3.1 Compact MSA: construction

The construction of the MSA starts by taking the indexes of the first object and stores
these indexes at the respective first position of each bucket as it is originally done in the
MSA, as show in Figure 25. However, in compressed MSA, these values are stored using a
method of compression so the construction of this data structure is made directly without
the necessity of constructing the original MSA and then compress it.

The next elements of each bucket are obtained by taking the differences of consecutive
elements. For instance, as shown in Figure 25, in original MSA, the second position of
bucket bukr0 stores value 5; in compressed MSA the value stored is the difference between
the second and first positions, which results 3. The same is applied to every remaining
positions of a bucket, using some method of codification, assuring that this data structure
is constructed directly compressed.

For the Elias Delta Code version of compressed MSA, the values are immediately coded
and stored as an array of 1-bit elements. For the Simple-9 version of compressed MSA,
an auxiliary buffer array is used to store integers until they can be coded encapsulated
in a 32-bit word. In both cases, the processes allows a direct construction of compressed
MSA.

3.2 Compact MSA: searching

To perform a K-NN search, the values stored in the compressed MSA can obtained by
starting from each bucket of the compressed MSA and reversing the codification process.

The original MSA proceeds by reading sequentially a bucket at a time, obtaining only
at the end of the entire process, the Acc array (Figure 20), which would require N elements
(where N is the number of elements of the dataset). This procedure poses an issue to the
compressed MSA, as the structure is constructed using differences. Instead, we propose
to perform an object at a time, so the reading could be performed directly, without the
necessity to retrieve the uncompressed MSA to perform a searching.

Therefore, for the Elias Delta Code version, Figure 26 shows the first step which takes
the first 4 bits of bucket bukr0 , reversing the code and obtaining the index 2. From this
value, we get 2 mod 3 = 2, which means that reference r0 is the farthest from object
o0. For instance, suppose we are executing the query q shown in Figure 5: in this case,
the query ordered list obtained is Lq = 1, 0, 2. Therefore, the algorithm proceeds by
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Figure 26 – Obtaining first element (2) from codified bucket bukr0

0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1

2

bukr0

2
{

comparing the reference r0 rank for object o0 (value 2) with the reference r0 rank for
query (value 1) as established by Equation 3, so we get acc = |2− 1| = 1.

Following, the algorithm proceeds to bucket bukr1 , takes the first bit, reversing the
code and obtaining the index 1, as show in Figure 27. As Lq = 1, 0, 2, to parameter acc is
added the value |1− 0| = 1. Finally, inspecting bucket bukr2 we obtain value 0 as a rank
to reference r2 to object o0, comparing to Lq we get value |0− 2| = 2, which is added to
acc, resulting in acc = 4, which is the SFD distance to query q to object o0.

Figure 27 – Obtaining first element (1) from codified bucket bukr1

1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0

1

bukr1

1

{

In a K−NN search, we can spare memory by storing just the K nearest objects from
query q. To do so, once an object SFD distance is calculated, this object is sent to a
minimum priority queue, where it is compared with the K objects stored. The natural
ordering of priority queue has the object with the smallest acc value at the head of the
queue and thus the ordering is ascending.

Once object o0 is sent to priority queue, we proceed to the second index of bucket bukr0 ,
which is obtaining from the next four bits as shown in Figure 28. The value decoded is
3 which is added to the last index to obtain the index 5 which is placed in the second
position of the bucket.

Note that the reading of a bucket is made sequentially, therefore only the last calcu-
lated index is stored: it is not required to decode and store the entire bucket. Hence, at
Figure 28 stage, only the value 5 is stored for bucket bukr0 for the next object.

As 5 mod 3 = 2, that means reference r0 is the farthest from object o1, and comparing
with Lq = 1, 0, 2, we get acc = |2− 1| = 1.

Figure 29 shows the next step, which gets the next 4 bits of bucket bukr1 , which
decoded has value 3. Accumulate with the last stored value, 1, results in 4, meaning that
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Figure 28 – Obtaining second element (5) from codified bucket bukr0

0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1

2 3

bukr0

2 5
{ {

reference r1 is rank 1 (4 mod 3 = 1). Therefore, comparing with Lq, |1− 0| = 1, which is
added to acc. Finally, proceeding the same for bucket bukr2 results in acc = 4.

Figure 29 – Obtaining second element (4) from codified bucket bukr1

1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0

1 3

bukr1

1 4

{ {

Now the procedure repeats for the object o2 for bucket bukr0 , as shown in Figure 30.
The value stored for bucket bukr0 is 5, which is accumulated to the decoded value 3,
resulting 8. As 8 mod 3 = 2, acc = |2 − 1| = 1. This is repeated for buckets bukr1 and
bukr2 , resulting in acc = 4. Object o2 is sent to the priority queue.

Figure 30 – Obtaining third element (8) from codified bucket bukr0

0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1

2 3 3

bukr0

2 5 8

{ { {

Repeating the process for the remaining string we obtain the complete bucket bukr0

directly as shown in Figure 31. The last object, o7 is compared to Lq resulting in acc = 2,
then this object is sent to the priority queue. At the end, the priority queue stores only
the K nearest objects from query q.

Note that although Figure 31 shows bucket bukr0 entirely decoded, this is just for
presentation sake: in reality, the procedure stores just the previous object index for each
bucket. This guarantees that only n values are stored instead of the much larger n × N

values that would be necessary for the entire decoding of the uncompressed MSA. That
way, the searching process is concluded directly, without decompressing the cMSA.
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Figure 31 – Obtaining last element (21) from codified bucket bukr0

{{ {{{0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1

2 3 3 2 2 5 1 3

bukr0

2 5 8 10 12 17 18 21
{ { {

3.3 Compact MSA: summary

The compact MSA proposed in this work uses the data structure established by the
MSA but, instead of storing the permutation position number directly in the array, as
N ×n typically achieving or even surpassing the order of 232, our strategy is based on the
idea of taking the difference between consecutive elements, which results in much smaller
decimals and then coding those values using standard coding methods. As a result our
proposal are able to achieve better performance in memory storage than the MSA, at a
linear cost of construction and searching. It is worth to mention that the compact data
structure generated by our strategy can perform queries without the necessity of unzip
the data structure: the procedure of searching is performed directly from the compact
array. As another benefit, our data structure is not limited to 32- or 64-bit primitives, as
the number of references or objects can achieve any size, being limited only by the storage
memory size.
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Chapter 4
Experimental Results

For experiments the MSA and the two versions of the cMSA using Elias Delta and
Simple-9 are implemented using C/C++. The three versions were implemented in a way
to maximize resource sharing to obtain the fairest possible comparison: same functions
and variables were used as much as possible. It is worth mention that before the final
C/C++ code, Wolfram Mathematica was used to prototype some parts of the code, as
well to provide some of the figures used in this work and to validate integer encoding
for the Elias Delta. The three versions were also implemented in Java before, due to its
debug easiness. Some aspects of C++ were expected to be used, like dynamic arrays, but
ultimately were not, making the code mainly C compatible.

4.1 Calculating array size beforehand

The first draws of cMSA using the Elias Delta Code and Simple-9 was implemented
using C++ native dynamic structures as vector. However, this approach exhibit unex-
pected memory allocation random behavior when compared with the estimated theoretical
use of memory: the peak memory could achieve almost two fold of what was expected.
This happens due to how those aforementioned C++ dynamic structures behave behind
scenes. Therefore, as the the goal of this work is gain in memory allocation, another
approach was established: instead of using those structures, we calculate the size of final
structure before and, only then, allocate an standard C++ array. This approach increased
the time required to construct the cMSA structure, however proved to solve the erratic
memory allocation behavior as the memory peak allocates exactly what was expected.

4.2 Tests

The central idea behind the tests is to compare how the two versions proposed in this
work stands against the MSA. As the goal of these projects are to spare memory, so it
is expected that the time for generate the main data structure (what will be called here
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indexing) that will be subsequently used for answering demands like k-nearest objects from
a position (will be called here searching) be larger than the MSA. Therefore, we tested
three versions: the MSA and the two compact versions proposed in this dissertation, the
cMSA Delta and the cMSA Simple-9.

To summarize the experiments performed, Table 4 shows that for each subset of the
data employed as input (from 1 to 16 million objects), five experiments with different
number of references were performed, from 128 to 2048 references. It was performed
five different object number inputs, therefore 25 experiments were performed in total.
The value 3 in Table 4 denotes those experiments where all three version were able to
perform. The value 2 denotes those experiments where the MSA was not performed
due to the restriction of the 32-bit primitive type, which prevents experiments where
N × n > 232. For every experiment, it was registered the indexing time, searching time
and memory usage for each version. The searching time values are obtained as an average
for 20 queries.

Table 4 – Summary of the experiments performed
Number of references (n)

Number of objects (N) 128 256 512 1024 2048
1M 3 3 3 3 3
2M 3 3 3 3 3
4M 3 3 3 3 2
8M 3 3 3 2 2
16M 3 3 2 2 2

The tests were executed on a computer configured with an AMD Ryzen 9 5950X 16-
Core processor, 64 GB memory RAM, SSD NVMe 1 TB, Arch Linux kernel 6.4.7-arch1-3
(64 bits). Due to memory limitation, tests that require a memory peak larger than 64
GB were not performed. Also, it is worth mention that the MSA rely on the limitation
of 32 bit integers, so tests with N objects and n references, where N × n > 232 were not
possible to be performed. Such limitation is not observed in the two versions of cMSA
because those utilize the differences as described in Chapter 3.

For the set of tests it was employed two datasets: ANN_SIFT1B1 (JÉGOU; DOUZE;
SCHMID, 2011) and CoPhIR2 (BOLETTIERI et al., 2009). The ANN_SIFT1B Learn-
ing Set dataset contains 100 million objects with 128 dimensions. The CoPhIR dataset
contains 10 million objects with 64 dimensions. These datasets were chosen because they
emulate image database of real world applications, that are likely to contain such number
of high dimensional entries.

In this section, for purpose of naming definition, a test is a set of 20 queries performed
in a context of an specific number of objects and references. For instance, for a case with
1 The ANN_SIFT1B is divided in 4 sets: the set used here is the Learning Set, which has 100 million

registers. Source: http://corpus-texmex.irisa.fr
2 Source: http://cophir.isti.cnr.it
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256 references and 1 million objects, we perform 20 queries to complete a test. Changing
the number of references or objects creates another test.

As a first case, it was used a 256 references fixed to different number of objects. To
yield Figure 32 it were tested 5 inputs of objects: 1, 2, 4, 8 and 16 million of objects. The
goal in this case is to analyse the behavior of the cMSA versions when the object number
is increased. The aspects analyzed for the cMSA versions are indexing time, searching
time and peak memory.

In Figure 32(a), tested with the ANN_SIFT1B dataset as input, is observed that the
indexing time for cMSA Delta and cMSA Simple-9 are larger than the MSA as expected.
Also, it can be noted that the MSA and cMSA versions increase in time as the number of
objects gets larger. When comparing with the tests performed using the CoPhIR dataset
as input, as shown in Figure 32(d), it can be observed a slight reduction in the indexing
time of the MSA and cMSA versions, which is explained by the smaller dimensionality of
this dataset (64 against 128). Both Figure 32(a) and Figure 32(d) show a linear behavior
in the relation of indexing time and object numbers input. Also, it can be observed for
both datasets that both cMSA versions take similar indexing time.

Figure 32(b) and Figure 32(d) show the searching time for the three algorithms to
256 references varying the number of objects input of the ANN_SIFT1B and CoPhIR
datasets respectively. As expected, both graphs are similar once, differently from the
indexing time, where the dimensionality of the input data makes an impact on the number
of mathematical calculations. Now, at the searching step, the number of input dimensions
become indifferent once the data structure obtained do not rely on the dimension size of
the input. As in the indexing step, the searching time increases as the number of objects
increases, in a linear behaviour. Differently of the indexing step, the searching time of
cMSA versions are distinct, with a considerable advantage for the cMSA Simple-9. When
compared to the cMSA Delta, the cMSA Simple-9 requires a simpler decoding, which
allowed faster searching time.

Figure 32(c) and Figure 32(f) show the peak memory for the MSA and the two solu-
tions proposed in this work. The expression ’memory peak’ are used here to express the
maximum value of memory required when running an algorithm. As expected the two
graphs are similar once the dimensionality difference between the two dataset delivers
negligible variation on the data structure generated by the algorithms. Figure 32(c) and
Figure 32(f) demonstrate a better performance of the cMSA algorithms compared to the
MSA, where the cMSA Simple-9 required slightly less memory than cMSA Delta.

Figure 33(a) and Figure 33(d) show for both datasets the comparison of indexing
time of the two cMSA algorithms to the MSA. The MSA is showed as a line at value
1. Figure 33(a) shows that for the ANN_SIFT1B dataset the cMSA Simple-9 takes
approximately 2.8 times the time required for the MSA to generate the data structure,
while the cMSA Delta takes slightly more time, around 2.9 times. One can note an slight



Chapter 4. Experimental Results 41

Figure 32 – Tests with the sets of ANN_SIFT1B and CoPhIR for 256 references
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decrease in the relative indexing time for both cMSA algorithms as the number of objects
input increases.

Figure 33(b) and Figure 33(e) show the searching time ratio of the three algorithms
to the MSA. Again, the MSA is shown as a constant line at value 1. To perform a query
the cMSA Simple-9 requires approximately 3.5 times the time required by the MSA. As
expected the cMSA Delta, due to a more time consuming decoding step, takes more time
to perform the same operation and requires around 13.7 times more time than the MSA.

Figure 33(c) and Figure 33(f) compare the two cMSA versions with the MSA in terms
of memory usage by showing the compression rate. Both datasets display similar behavior
as the dimensionality different makes almost no impact on the size of the data structure
generated. At 256 references the number of objects input shows no significant difference
(less than 1% difference) and cMSA Delta takes 44% of the MSA memory usage, while
cMSA Simple-9 achieves 33% of the MSA memory usage.

Now, to get notion on how the algorithms behave with variation of the number of
references, Figure 34 shows results for an input of 2 million objects for both ANN_SIFT1B
and CoPhIR datasets. As in Figure 32 it can be observed a linear behavior between the
number of references and the output attributes of time.
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Figure 33 – Comparing the cMSA with MSA for 256 references
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Figure 34(a) and Figure 34(d) show how the increase of references translates in the
increase of indexing time. Again, the CoPhIR dataset tests require less time than the
ANN_SIFT1B due to the lower dimensionality. Both cMSA algorithms require almost
the same time at the indexing step and both take more time than the MSA as expected.

Figure 34(b) and Figure 34(e) show the test results for the three algorithms searching
time. The cMSA Delta takes more time at this step than the cMSA Simple-9 as the
later offers a simpler decoding procedure which reflects in a better performance. Again,
both cMSA versions take more time at searching than the MSA. It is worth to mention
the slight spike at 512 references, which makes an otherwise straight line a little jagged.
This happens because of the transition of the average number of integers encoded inside
a 32-bit word: as the number of references increases, the average differences between the
neighbour elements at the buckets of the data structure also increases and eventually they
achieve a value that requires more bits to represent, consequently decreasing the number
of values encoded inside a 32-bit word than it is required at 256 references. So it takes
more time at searching because the data structure had a sudden increase in size compared
to the 256 references test.

Figure 34(c) and Figure 34(f) display the memory required for the three versions:
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both cMSA algorithms show almost the same memory usage and they are smaller that
the MSA. Here the slight spike memory usage by cMSA Simple-9 at 256 references is
explained again by the sudden decrease in the number of integers encoded in a 32-bit
word at 512 references.

Figure 34 – Tests with the sets of ANN_SIFT1B and CoPhIR for 2 million objects
ANN_SIFT1B CoPhIR
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Figure 35 displays how the cMSA versions perform compared with the MSA for
ANN_SIFT1B and CoPhIR datasets to an input of 2 millions objects varying the number
of references.

Figure 35(a) and Figure 35(d) show indexing time ratio for the three algorithms com-
pared to the MSA. The MSA is shown as a line at value 1. For both datasets, it can be
seen that both cMSA versions requires similar indexing time at 128 references, but then,
the cMSA Simple-9 shows a better performance with the increase of references. At 2048
references the cMSA Delta versions approaches 3 times the indexing time required for the
MSA, while the cMSA Simple-9 achieves 2.5 times for the ANN_SIFT1B dataset. The
two graphs also show interesting information: comparatively, the higher dimensionality
provides better performance for both cMSA versions, that is, increases in dimensionality
implies in decrease in indexing time for cMSA when compared to the MSA. That is why
for the CoPhIR dataset, with data with smaller dimensionality, the cMSA Simple-9 and
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cMSA Delta achieve 2.9 and 3.5 times respectively the searching time required by the
MSA.

Figure 35(b) and Figure 35(e) show the performances of the versions at the searching
step compared to the MSA. Tests for both datasets behaved similarly, with the cMSA
Delta requiring more searching time around 12 times required by the MSA, while the
cMSA Simple-9 requiring approximately 3.5 times the searching time required by the
MSA, with a spike of 5.1 with 512 references due the transition to larger difference integers
encoded in a 32-bit word.

Figure 35(c) and Figure 35(f) show the comparison of memory usage of the three
algorithms. Again, the performances are similar for both datasets, with both cMSA
versions requiring less memory than the MSA, but showing an increasing relative memory
usage as the number of references increases. These graphs show a jagged behavior of the
cMSA line due to the transitions of integer binary sizes required for this method. At 128
references, the cMSA Delta and cMSA Simple-9 require 0.4 and 0.3 times memory the
MSA, as this values increase as the number of references increases, achieving 0.5 for both
cMSA versions with 2048 references.

Figure 35 – Comparing the cMSA with MSA for 2 million objects
ANN_SIFT1B CoPhIR
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As a second case, it was used a 1024 references fixed to different number of objects.
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Figure 36 shows tests for different number of objects. However, differently from the
previous experiment, the MSA cannot be tested beyond 4 millions objects input, as the
MSA data structure uses 32-bit integers. To accommodate large number of references ×
objects it would result in a larger data structure: for instance, using 64-bit integers would
result with the MSA requiring twice the memory, which would require an entire new batch
of tests that would rend the MSA to consume even more memory when compared to the
two cMSA versions.

Figure 36(a) and Figure 36(d) show indexing time, where it can be seen that for
r = 1024 and n = 16 millions, cMSA Delta achieves 8000 seconds and cMSA Simple-9
requires 7000 seconds. At n = 4 millions, the MSA, cMSA Simple-9 and cMSA Delta
require 680, 1730 and 2000 seconds respectively. Figure 36(b) and Figure 36(e) show
searching time, where it can be seen cMSA Simple-9 performs better than the cMSA
Delta. Figure 36(c) and Figure 36(f) show memory usage, where it can be seen that the
MSA achieve 16 GB for n = 4 millions objects while both cMSA versions go to slight over
32 GB for n = 16 millions objects. Doubling this number would require slight more than
64 GB which was beyond the memory supported by the test machine.

Figure 36 – Tests with the sets of ANN_SIFT1B and CoPhIR for 1024 references
ANN_SIFT1B CoPhIR
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Now, Figure 37 compares the cMSA versions with the MSA for 1024 references. Fig-
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ure 37(a) shows that the cMSA Delta requires 3 times the indexing time of the MSA while
the cMSA Simple-9 takes 2.5 times the indexing time of the MSA for the ANN_SIFT1B
dataset. Figure 37(d) shows that the cMSA Delta requires 3.5 times the indexing time
of the MSA while the cMSA Simple-9 takes 3 times the indexing time of the MSA for
the CoPhIR dataset. This shows that, comparatively to the MSA, the cMSA versions
performs better with the increase of data dimensionality.

Figure 37(b) and Figure 37(e) show that the cMSA Delta requires around 11 times the
MSA searching time while the cMSA Simple-9 performs much better, requiring around 3
times the MSA searching time.

Figure 37(c) and Figure 37(f) show that for 1024 references, the two cMSA versions
require around 50% of the memory used by the MSA. When compared with Figure 33 it
can be seen that increasing the reference number reduces the data compression capability
of both cMSA versions as expected, as the increasing of reference numbers imply in
increasing of the difference integers encoded.

Figure 37 – Comparing the cMSA with MSA for 1024 references
ANN_SIFT1B CoPhIR
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For the second case, Figure 38 shows tests with 8 million objects while varying the
number of references. Here again, the MSA was tested to 512 references only as it is
limited to number of references × number of objects, which must be smaller than 232
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due to the 32-bit integer data structure limitation. Both Figure 38(a) and Figure 38(d)
show similar performance for both cMSA versions, where the ANN_SIFT1B dataset tests
taking more time due to its larger data dimensionality.

Figure 38(b) and Figure 38(e) show searching time, displaying better performance for
the cMSA Simple-9.

Figure 38(c) and Figure 38(f) show memory usage, where both cMSA versions achiev-
ing 32 GB for 2048 references, while the MSA could only went for 512 references, taking
16 GB.

Figure 38 – Tests with the sets of ANN_SIFT1B and CoPhIR for 8 million objects
ANN_SIFT1B CoPhIR
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Comparing the MSA results for 8 million objects, Figure 39 shows the performance of
the cMSA versions. Figure 39(a) and Figure 39(d) show again that higher dimensionality
delivers better performance from both cMSA versions as for the ANN_SIFT1B dataset
both versions stay under 3 times the indexing time required by the MSA while for the
CoPhIR requires around 3.5 times the indexing time at same step.

Figure 39(b) and Figure 39(e) show that the cMSA Delta demands around 13 times
the MSA searching time while the cMSA Simple-9 requires 4 times the time.

Figure 39(c) and Figure 39(f) show reduction in memory saving for both cMSA versions
as the references number increases, reaching 50% of the MSA memory usage when 512



Chapter 4. Experimental Results 48

references are used.

Figure 39 – Comparing the cMSA with MSA for 8 million objects
ANN_SIFT1B CoPhIR
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Table 5 shows the indexing time required by cMSA Simple-9 (shown as S9) and cMSA
Delta (shown as δ) varying the number of objects from 1 to 16 millions and the number
of references from 128 to 2048 compared with the indexing time required by the MSA
at comparable scenario. As the MSA stores values up to N × n, experiments were those
values surpasses 232 are not executed. Therefore, despite the equivalent experiments with
the compact versions are indeed executed, they are no shown because of the lack of a
MSA equivalent experiment to compare.

For instance, Table 5 shows that for 1 million objects and 128 references, the cMSA
Simple-9 (S9) and the cMSA Delta (δ) took 2.8 times the indexing time required by
the MSA running at the same condition. Another example, for 2 million objects and
2048 references, the cMSA Simple-9 (S9) and the cMSA Delta (δ) took 2.6 and 3.0 times
respectively the indexing time required by the MSA running at the same condition.

Table 6 shows, compared to MSA, the searching time required by cMSA Simple-9
(shown as S9) and cMSA Delta (shown as δ) varying the number of objects from 1 to 16
millions and the number of references from 128 to 2048. For instance, for 1 million objects
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and 128 references, the cMSA Simple-9 (S9) and the cMSA Delta (δ) took 2.6 and 3.0
times respectively the indexing time required by the MSA running at the same condition.

It is worth to mention the similarity of the results between the two datasets: what dis-
tinguish the two datasets are the number of dimensions, that is, the number of parameters
related to each object. The ANN_SIFT1B dataset has 128 parameters for each object,
two times the number of parameters for object of the CoPhIR dataset. After indexing
step, the data structure produced by the MSA and cMSA versions are dimensionally
equivalent for both datasets. Therefore, all operations and calculations are equivalent
time and space wise, which explains the similarity showed by the results presented here.

The results obtained for the memory required by cMSA Simple-9 (shown as S9) and
cMSA Delta (shown as δ) when compared to MSA with the same input is shown in
Table 7. The best results were obtained, as expected, with smaller number of references,
where, at 128 and 256 references, the cMSA Simple-9 (S9) achieved 33% of the memory
required by the MSA and the cMSA Delta (δ) required 39% of the memory used by the
MSA when running with 128 references and 44% with 256 references. On the other side,
with 2048 references, the cMSA Simple-9 (S9) and the cMSA Delta (δ) required 50% and
54% of the memory used by the MSA respectively.

Table 5 – Indexing time for cMSA Simple-9 (S9) and cMSA Delta (δ) compared to MSA
obtained in experiments

Ref 128 256 512 1024 2048
Obj S9 δ S9 δ S9 δ S9 δ S9 δ
1M 2.8 2.8 2.8 2.9 2.7 3.0 2.6 3.0 2.6 3.0
2M 2.8 2.8 2.8 2.9 2.7 3.0 2.6 3.0 2.6 3.0
4M 2.8 2.8 2.8 2.9 2.7 2.9 2.6 3.0 - -
8M 2.8 2.8 2.8 2.9 2.7 2.9 - - - -
16M 2.7 2.8 2.7 2.8 - - - - - -

Table 6 – Searching time for cMSA Simple-9 (S9) and cMSA Delta (δ) compared to MSA
obtained in experiments

Ref 128 256 512 1024 2048
Obj S9 δ S9 δ S9 δ S9 δ S9 δ
1M 3.4 12.0 3.6 13.4 5.6 15.3 3.2 12.1 4.1 11.1
2M 3.3 12.4 3.4 12.8 5.1 13.8 3.0 11.2 3.5 11.4
4M 3.3 12.3 3.4 12.8 5.0 13.7 3.2 12.8 - -
8M 3.2 12.3 3.4 12.7 5.1 14.1 - - - -
16M 3.2 12.2 3.5 12.9 - - - - - -
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Table 7 – Memory allocated by cMSA Simple-9 (S9) and cMSA Delta (δ) in percent to
the memory allocated by MSA obtained in experiments

Ref 128 256 512 1024 2048
Obj S9 δ S9 δ S9 δ S9 δ S9 δ
1M 33% 39% 33% 44% 49% 48% 50% 51% 50% 54%
2M 33% 39% 33% 44% 49% 48% 50% 51% 50% 54%
4M 33% 39% 33% 44% 49% 48% 50% 51% - -
8M 33% 39% 33% 44% 49% 48% - - - -
16M 33% 39% 33% 44% - - - - - -
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Chapter 5
Conclusion

Several applications could benefit from even modest memory reductions as it can mean
the difference between maintain the entire data structure at RAM memory or have to send
chunks of data to disk, which can result in very slow accesses. That is why alternative
solutions like those proposed in this text, that can spare until two thirds of the memory
require by the MSA method, even at the cost slower operations of indexing and searching,
can be considered viable: the more they postpone memory pagination, the better.

The work presented in this dissertation was published and presented at the 38° Simpó-
sio Brasileiro de Bancos de Dados (SBBD) 2023 (ROSA; LOUZA; RAZENTE, 2023) as
a short paper describing features of the MSA method and the encoding techniques used
to implement the cMSA. It was briefly mentioned some test results and some applications
for the cMSA.

5.1 Future improvements

The cMSA could benefit from some further analyzes, taking some improvements like
the implementation of more sophisticated data encoding techniques or use of parallel
computing.

As a further step to this work, it can be mentioned the parallelization of the indexation
and searching steps. The construction of the data structure could be easily divided into
buckets, as the bucket elements are not coupled with each other. In other words, there is no
dependency between the elements of different buckets, as each bucket stores information
related to a unique reference and, by taking the differences of the consecutive elements,
only elements contained inside a bucket correlate to each other. This feature allows for
multithread processing, avoiding that data conflict would not occur between different
computational threads. Also, the decoding processes could be divided without problems,
thus resulting in faster indexation and searching.

Another improvement to this work could be the use of more sophisticated data encod-
ing techniques, that could achieve even higher data compression ratios, so the aspect of
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memory spare could be enforced even more.
As another idea to improve the cMSA would be the use of some C++ library that

could handle dynamically the data structure with no memory penalty as observed with
the C++ standard dynamic array, so the assessment step could be skipped, resulting in
a faster indexation step.
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