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Resumo

Sant’Ana, V. T. Aerodynamic Modeling and Simulation of a Reduced-Scale Generic Fu-

ture Fighter Using Neuro-Fuzzy with Differential Evolution. PhD Dissertation - Federal

University of Uberlândia, November 2023.

A busca por modelos aerodinâmicos precisos em engenharia aeronáutica tem lev-

ado à exploração de técnicas computacionais avançadas. Esta pesquisa explora a

aplicação do Neuro-Fuzzy hibridizado com a Evolução Diferencial (NF-ED) como fer-

ramenta para alcançar um modelo e simulação aerodinâmica com elevada fidelidade

para um modelo em escala reduzida de um caça conhecido como Generic Future

Fighter (GFF). O objetivo principal é desenvolver uma metodologia de identificação

de sistema através de teste em voo para adquirir modelos aerodinâmicos detalhados

e não estacionários, especialmente para esta aeronave, combinando a interpretabili-

dade de Sistemas de Baseados em Regras Fuzzy (SBRF) com a adaptatbilidade das

Redes Neurais Artificiais (RNA). Esta pesquisa apresenta uma comparação entre o

NF-ED e outros métodos de otimização, e também outro método de inferência fuzzy.

Após a obtenção do modelo aerodinâmico não estacionários com base nas aproxi-

mações das séries de Taylor para cada coeficiente de força e momento, é construída

uma simulação de 6 graus de liberdade no ambiente Simulink do Matlab.

Palavras-chave: Modelagem Aerodinâmica. Neuro-Fuzzy. Identificação de Sis-

temas. Teste em voo. Evolução Diferencial.
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Abstract

Sant’Ana, V. T. Aerodynamic Modeling and Simulation of a Reduced-Scale Generic Fu-

ture Fighter Using Neuro-Fuzzy with Differential Evolution. PhD Dissertation - Federal

University of Uberlândia, November 2023.

The pursuit of accurate aerodynamic modeling in aeronautical engineering has

driven the exploration of advanced computational techniques. This research applies

Neuro-Fuzzy Hybridized with Differential Evolution (NF-DE) to develop a high-fidelity

aerodynamic model and simulation for the Generic Future Fighter (GFF), a reduced-

scale aircraft. The primary objective is to create a system identification methodology

through flight testing for detailed and unsteady aerodynamic models. The methodology

combines the interpretability of Fuzzy Inference Systems (FIS) with the adaptability of

Artificial Neural Networks (ANN). The study includes a comparison between NF-DE

and alternative optimization and fuzzy inference methods. After developing unsteady

aerodynamic models based on first Taylor series equations for each force and moment

coefficient, a 6-degrees-of-freedom (DOF) simulation is designed in Matlab’s Simulink

environment.

Keywords: Aerodynamic Modeling. Neuro-Fuzzy. System Identification. Flight

Testing. Differential Evolution.
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Chapter 1

Introduction

This chapter is going to present an overall idea about this study, and it is divided in

three sections:

• Motivation

• Background

• Objectives

1.1 Motivation

In the field of aerospace and flight testing, accurate system identification plays a

critical role in understanding and predicting the behavior of complex aircraft systems.

The ability to model and analyze the dynamics of an aircraft is essential for various

purposes, including flight control design, performance evaluation, and safety assess-

ment. However, due to the inherent complexity and nonlinearity of aircraft systems and

aerodynamics, traditional modeling approaches often fail to capture the intricacies of

their behavior.

Traditional modeling techniques, such as linear regression or system identification

based on parametric models, are limited by their assumptions of linearity and sim-

plified relationships between input and output variables. These approaches struggle

to account for the nonlinear and uncertain nature of real aircraft systems, leading to

inaccurate predictions and suboptimal control strategies.
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To overcome these limitations, advanced modeling techniques like Neuro-Fuzzy

systems have gained significant attention in recent years. Neuro-Fuzzy combines the

strengths of fuzzy logic and neural networks to handle complex and uncertain data,

allowing for more accurate system identification and prediction, and it is important to

emphasize that it is not a "black box" model.

The fuzzy logic component of Neuro-Fuzzy systems enables the representation

and manipulation of linguistic variables and expert knowledge in a structured manner.

It provides a flexible framework for capturing and reasoning about imprecise and uncer-

tain information, making it particularly well-suited for modeling complex systems with

vague or incomplete data.

In parallel, the neural network component of Neuro-Fuzzy systems excels at captur-

ing non-linear relationships and mapping complex input-output patterns. By leveraging

the learning capabilities of neural networks, Neuro-Fuzzy models can adapt and evolve

based on the available data, improving their accuracy and robustness over time.

The application of Neuro-Fuzzy in system identification, particularly in the context of

subscale flight testing and aerodynamic modeling, offers numerous benefits. It enables

the development of more accurate and reliable models that capture the dynamics of

aircraft systems under different operating conditions. These models can aid in flight

control systems design, performance optimization, fault detection, and full-scale aircraft

decision making.

Through this research, the author aims to explore the capabilities of Neuro-Fuzzy

systems in system identification and subscale flight testing, providing valuable insights

into their applicability, strengths, and limitations. By doing so, the contribution to the

advancement of modeling techniques in aviation and open avenues for improved un-

derstanding and performance of full-scale aircraft systems.

1.2 Background

There are different approaches to investigate and build a reliable aerodynamic

model within the system identification research domain, including CFD, wind tunnels,

and flight testing. Although these approaches have proven their worth, they often re-

quire significant resources, time, and specialized knowledge.
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In this context, Artificial Intelligence (AI) has emerged to play a key role. AI-based

methods, such as machine learning and Neuro-Fuzzy systems, offer complementary

help to reduce the resources required to build an aerodynamic model. The pioneers to

use Artificial Neural Networks (ANN) as a tool in the aerodynamic research field were

Rajkumar and Bardina (2002), where the authors used sparse data from an airfoil to

identify the lift coefficient behavior in function of the angle of attack.

One of the most important flight test centers in the world is the NASA Langley

Research Center in Virginia-USA shown in Fig. 1.1, which was founded in 1917 and is

the first civilian aeronautical laboratory in the USA. An important study conducted there

is presented by Brandon and Morelli (2012), where the authors used experimental

data from a full-scale aircraft to train a neuro-fuzzy architecture to obtain a reliable

aerodynamic model for the Aermacchi MB 326M Impala aircraft.

Figure 1.1: Engineers inspecting a capsule in Langley Research Center in 1960.
Source: NASA.

Another memorable work was presented by Brandon and Morelli (2016), where the

authors used orthogonal functions and Neuro-Fuzzy to predict the aerodynamic forces

and moments with online on-board measurements of the input variables during the

flight. The authors made a comparison between the two methods and the Neuro-Fuzzy

performed good accuracy in the unsteady aerodynamic curve prediction.

The work published by Roy and Peyada (2017a) used Neuro-Fuzzy and Genetic

Algorithm to describe the first Taylor series for the lateral forces and moments of the

full-scale aircraft. The same authors also published the longitudinal aerodynamics of

the same aircraft in the same year (ROY; PEYADA, 2017b). A comparison between

Neuro-Fuzzy with Genetic Algorithm (NF-GA) and Neuro-Fuzzy with Differential Evo-

lution (NF-DE) is presented in chapter 4.
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Machine learning (ML) techniques have emerged as a promising approach to de-

velop reliable aerodynamic models for full-scale or reduced-scale aircraft using nu-

merical or experimental data. Tao and Sun (2019) presented a deep learning-based

multi-fidelity approach applied to robust optimization for airfoils and wings under Mach

number uncertainty. Another work using deep learning presented a high-precision non-

linear aerodynamic configuration analysis method, which according to the authors, is

able to provide very good agreement for the pre- and post-stall aerodynamic behavior

and generate the results in less time than intensive methods such as CFD (KARALI et

al., 2021).

The ML techniques are also used to capture some special nonlinearities of the

aerodynamic flow, such as the stall of the aircraft. The work presented by Tatar and

Sabour (2020) is responsible to model this phenomenon using CFD data simulations

of an airfoil using Neuro-Fuzzy and orthogonal functions.

Deep learning (DL) techniques are also used in aerodynamic modeling and opti-

mization. For example, Li, Kou and Zhang (2022) used DL to model the aerodynamic

distribution of a transonic wing, using numerical and experimental results to train the

ANN. The authors consider that high-fidelity data is obtained experimentally, and low-

fidelity data is obtained through numerical simulations, and they found that using only

a small portion of high-fidelity data mixed with a large portion of low-fidelity data was

sufficient to train a deep neural network (DNN) and obtain a good aerodynamic model.

The application of Neuro-Fuzzy in the context of subscale flight testing and system

identification/simulation represents a significant and innovative approach among all

the others found in the literature review. Therefore, this work focuses on using real-

world data obtained from flight tests and other sources to comprehensively analyze

and understand the aerodynamic performance of GFF under an open field unsteady

flight condition.

1.3 Objectives

The Neuro-Fuzzy is a method widely applied to control studies, as the work pre-

sented by Carvalho et al. (2021). However, the objective of this study is to explore the

application of Neuro-Fuzzy systems in the context of system identification and flight
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testing for reduced scale aircraft. By exploiting the interpretability of fuzzy logic and the

adaptive learning capabilities of neural networks, Neuro-Fuzzy models offer promising

potential for accurately capturing the complex aerodynamic behavior of the aircraft.

To achieve this goal, different configurations of Neuro-Fuzzy architectures are tested

and analyzed. These configurations include different combinations of input variables,

membership function shapes, number of membership functions, number of output func-

tions, optimization methods and inference methods, allowing the author to systemat-

ically evaluate their impact on model accuracy and performance. By conducting a

comprehensive comparison of these configurations, the best Neuro-Fuzzy architecture

tested that can effectively address the challenges posed by unsteady aerodynamic sys-

tem identification was achieved and it is described in Section 4. Ultimately, this study

aims to contribute to the advancement of modeling techniques in aviation by provid-

ing valuable insights into the suitability and effectiveness of Neuro-Fuzzy systems in

addressing real-world subscale flight testing and aerodynamic modeling challenges.

This research uses experimental data from a reduced scale version (12% of the

full scale) of a Generic Future Fighter (GFF) first designed by SAAB and the built by

Linköping University (JOUANNET et al., 2012). The experimental data were collected

from flight tests of a remote-controlled (RC) aircraft instrumented with a Pixhawk, a

device for measuring the angle of attack and sideslip angle, and various other instru-

ments. The instrumentation and data acquisition were performed by (RUEDA, 2021) at

Linköping University (LiU), and these data were kindly made available to the author of

this work. The Fig. 1.2 presents the reduced scale aircraft (GFF).

Figure 1.2: Generic Future Fighter (GFF). Source: Courtesy from Linköping University.
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In order to clarify the objectives of this study and to give a better understanding

of what will be approached in this document, the following diagram from Fig. 1.3 is

presented to explain the main steps to achieve the final model.

Figure 1.3: Step diagram of activities. Source: Author.

This study aims to present an innovative methodology to perform system identifi-

cation of a reduced scale fighter aircraft using Neuro-Fuzzy with Differential Evolution.

After the identification is done, a simulation based on the Neuro-Fuzzy results is pre-

sented in the Simulink environment.

In the next chapter of this paper, the basic theory of the applied machine learning

techniques, aerodynamics and flight dynamics of aircraft will be presented.



Chapter 2

Theoretical Approach

This chapter contains an explanation of the methodology used in this document.

First, the Fuzzy Logic theory is explained, followed by the Fuzzy Rule-based System

(FRBS) with an explanation of the most used inference methods. Finally, the Neuro-

Fuzzy, the Differential Evolution, and the Artificial Neural Networks are presented. Fi-

nally, the aerodynamic forces and moments of the aircraft are explained.

2.1 Fuzzy logic

The fuzzy logic can be used in the modeling of vast biological behaviors, like the

growth of violets in the function of water and sunlight, as presented by Jafelice, Barros

and Bassanezi (2012).

Fuzzy logic differs from the classical Boolean logic mainly because the latter can

assume only assume two conditions, 0 or 1, while the first can assume several values

varying between 0 and 1.

A simple example to illustrate fuzzy logic is the classification of people into the cate-

gory of elderly. Depending on the jurisdiction, the law often designates individuals over

the age of sixty as elderly. Using Boolean logic, only people who meet this exact age

criterion are considered elderly. Fuzzy logic, however, introduces a different perspec-

tive by assigning a degree of membership that increases with age, as shown in Fig.

2.1.
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(a) Boolean Logic. (b) Fuzzy Logic.

Figure 2.1: Comparison between Boolean Logic and Fuzzy Logic. Source: Adapted
from classes notation from Prof. João Alberto Fabro and André Schneider de Oliveira.

Based on this, it seems interesting to model a subscale aircraft using this mathe-

matical approach. The logic can be well adapted to the flight dynamics of an aircraft.

The following section gives a better idea of how Fuzzy Logic correlates the input vari-

ables with its outputs.

2.2 Fuzzy Rule-based System

The FRBS has four important structures to present, which can be described on the

following items:

• Input Processor: The input processor converts real numbers into numbers with a

certain degree of membership on fuzzy sets. This process is called fuzzification.

• Rule Bases: The rule bases are linguistic interpretations of the system’s behavior

and, together with the inference machine, can be considered the core of FRBS.

They can be created by prepositions of the type IF...THEN, according to the

expert knowledge. This step is responsible for establishing the relations between

the linguistic variables.

• Inference Machine: The inference machine is responsible for establishing the

association between the input fuzzy sets with the output fuzzy functions (Takagi-

Sugeno method), and this association is guided by the rule bases. knowledge.

• Output Processor: The output processor is responsible for performing the de-

fuzzification, i.e. converting the degree of membership of the fuzzy sets back to
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real numbers.

The FRBS architecture can be seen in Fig. 2.2.

Figure 2.2: FRBS architecture. Source: Adpated from Pereira et al. (2017)

2.2.1 Mamdani Inference Method

According to Jafelice et al. (2004), the defuzzification in the Mamdani inference

method is made through the sum of areas underneath the curve. The resulting area is

analyzed and the answer of the system is the position of the centroid of the entire area.

The example of Mamdani’s inference method is shown in Fig. 2.3.

To describe the Mamdani inference method, it is necessary to propose two arbitrary

rules:

Rule 1: If (X is A1 AND Y is B1) Then (Z is C1)

Rule 2: If (X is A2 AND Y is B2) Then (Z is C2)

The centroid for a continuous domain can be calculated using Eq. 2.1.

G(C) =

∫

R
uiC(zi)

∫

R
C(zi)

(2.1)

where R is the region of integration.

2.2.2 Takagi-Sugeno-Kang Inference Method

The TSK inference method manages the outputs as functions that depend on the

input variables. The output functions have parameters that multiply the input variables.
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Figure 2.3: Mamdani inference method. Source: Adapted from Jafelice et al. (2003)

Fig. 2.4 shows how the TSK inference method works.

It is necessary to propose two arbitrary rules to describe the TSK inference method:

Rule 1: If (X is A1 AND Y is B1) Then (Z is z1)

Rule 2: If (X is A2 AND Y is B2) Then (Z is z2)

Figure 2.4: TSK inference method. Source: Adapted from Jafelice et al. (2003)
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The defuzzification is done by a weighted average between the output functions

multiplied by the weights estimated by the rule bases.

2.2.3 Pondered Individual Analysis

This inference method was first presented by Pereira, Jafelice and Finzi (2022),

and it is very similar to the Mamdani inference method. Nevertheless, it does not

have the area integration anymore, which gives this technique the ability to save some

computational cost and the possibility to maintain a high interpretability of the linguistic

variables.

The technique is based on the mathematical translation of each fuzzy proposition

that composes the rule bases. According to Pereira, Jafelice and Finzi (2022), to per-

form the PIA method it is necessary to understand the following nine steps.

1. The definition of the FRBS inputs and outputs fuzzy sets, and the rule bases,

have the same reasoning adopted in the Mamdani inference method.

2. The point where the membership function has the maximum value (one) is called

the center point (CP). In case that exists a membership function with more than

one CP, it is necessary to make an arithmetic mean between these points to

identify the resultant CP.

3. For each fuzzy rule from FRBS, the effect of increasing or decreasing the input

variable (IN) will perform a different effect on the output variable (OUT), accord-

ing to what type of relationship they have, i.g. directly proportional or inversely

proportional.

• Direct: The representation when the input variable is directly proportional to

the output variable will be IN Dir OUT.

• Inverse: When the correlation between IN and OUT are inversely propor-

tional, the representation will be IN Inv OUT.

• Neutral: To conclude, when it is not possible to infer the relationship be-

tween IN and OUT, the representation will be IN Neut OUT.
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Figure 2.5: PIA inference method. Source: Pereira, Jafelice and Finzi (2022)

4. For any given input variable xi that has a degree of membership equal to µ in

a given membership function, the same degree of membership (µ) is projected

onto the corresponding output variable (yi) membership function according to the

established rule base (Ri). See Figure 2.5. The projection will yield two possible

output candidates, outcand1 and outcand2.

5. In order to select the correct output candidate, it is necessary to consider the

following conditions:

• If in < CP and IN Dir OUT then out = outcand1.

• If in > CP and IN Inv OUT then out = outcand1.

• If in < CP and IN Inv OUT then out = outcand2.

• If in > CP and IN Dir OUT then out = outcand2.

• Other cases are threatened as an arithmetic mean between outcand1 and

outcand2.

6. The process is repeated for each input variable. With respect to the rule bases

Ri, it is possible to define an output contribution contCjm
, according to Eq. 2.2,

where Cj is the output fuzzy set, m is the number of times that Cj was already

correlated in the rule base definition. Also, outki is the selected output value and

ak is the weight associated with the output variable, both in terms of a k input

variables. If all variables have the same effect on the output process, ak = 1 is

assumed.
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contCjm
=

∑nin

k=1 akoutki
∑nin

k=1 ak
(2.2)

7. The next step, after defining the contribution of each rule, is to calculate the value

of the consequent function fCj
of each output fuzzy set Cj. The Eq. 2.3 shows

the calculation for the consequent function, where Tj is the sum of the rules as-

sociated with the set Cj.

fCj
=

∑Tj

m=1wCjm
contCjm

∑Tj

m=1wCjm

(2.3)

8. To identify the weights, it is necessary to understand that the FRBS interprets the

union as the minimum and the intersection as the maximum. Therefore, when a

linguistic rule processes a condition with AND, the weight will be the larger value

(max), and when the rule processes a condition with OR, the weight will be the

smaller value (min). The Eq. 2.4 gives an example of the weight identification

from any rule, where wCjm
is the weight of each rule Ri and WCjm

is the weight of

each consequent function fCj
.

WCj
= max(wCjm

),m = 1, ..., Tj (2.4)

9. Finally, the output of the FRBS can be obtained through defuzzification. For PIA,

the defuzzification is done using the weighted mean method. The Eq. 2.5 shows

the calculation, where nC is the number of fuzzy sets from Z output.

z =

∑nC

j=1WCj
fCj

∑nC

j=1WCj

(2.5)

This section introduced the three fuzzy inference methods that will be evaluated

in Section 4. The following section will introduce the first machine learning technique

developed: Artificial Neural Network.
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2.3 Artificial Neural Networks

This section presents the Artificial Neural Networks (ANN), which is a type of ma-

chine learning that mimics the structure and functions of the human brain, which was

first described by McCulloch and Pitts (1943). ANNs are composed of interconnected

processing units, or nodes/neurons, that work together to solve complex problems.

Neurons are organized into layers, and the connections between neurons are defined

by weights.

The most basic structure of an ANN consists of five structures:

• Input Layer: The input layer receives data or information from the outside world

and passes it on to the next layer.

• Hidden Layer: The hidden layer processes the data by performing mathematical

operations on the input data using the weights assigned to each neuron.

• Output Layer: The output layer produces the final result or prediction based on

the information processed by the hidden layers.

• Activation Function: The activation function determines the output of each neu-

ron in the hidden layer(s) and the output layer. It introduces nonlinearity into the

network.

• Bias: The bias is an additional parameter that is added to each neuron to control

the overall output of the network, helping to make the network more flexible and

better able to adapt to different situations.
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Figure 2.6: Arbitrary ANN architecture. Source: Adapted from Aggarwal et al. (2018)

The output from a neuron (Fig. 2.7) is given by Eq. 2.6 (AGGARWAL et al., 2018).

Figure 2.7: Neuron representation. Source: Adapted from Pereira et al. (2021)

yneuron = δ(
d

∑

j=1

wjxj + b) (2.6)

Where yneuron is the output of the neuron, xj is the input of node j, wj is the weight

associated with input j, d is the number of inputs, and b is the bias. According to Aggar-

wal et al. (2018), the activation functions can be represented by δ and it can assume

different types of functions, e.g., sign, linear function, sigmoid, hyperbolic tangent, etc.,

see Fig. 2.8.
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(a) Linear function (b) Sign function

(c) Sigmoid function (d) Hyperbolic tangent function

Figure 2.8: Activation function examples. Source: Adapted from Aggarwal et al. (2018).

The ANN is been used in several engineering applications, although in the aerody-

namics domain, the pioneers were Rajkumar and Bardina (2002), where the authors

used sparse data of an airfoil to predict the entire lift coefficient curve.

2.4 Neuro-Fuzzy

In this section, the Neuro-Fuzzy architecture is presented, followed by the explana-

tion of each layer separately. The Neuro-Fuzzy was first introduced by (JANG, 1993),

and it is a combination of the interpretability of the Fuzzy Logic and the adaptability of

the Artificial Neural Networks. In Fig. 2.9 it is possible to see the layers that compose

the Neuro-Fuzzy architecture.
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Figure 2.9: Neuro-Fuzzy based on Takagi-Sugeno inference method architecture.
Source: Adapted from Pereira et al. (2017).

First Layer: Each node receives as input only one variable Ii(k), in which is used

in the training process. The output of the node i of the first layer at time k, u(1)i (k), is

given by:

u
(1)
i (k) = Ii(k) (2.7)

Second Layer: In this layer the fuzzification of the input variables is performed,

i.e. the real numbers are transformed into fuzzy subsets with a certain degree of perti-

nence. Membership functions (MF) are constructed to describe the inputs. Considering

that the membership functions are approximated by Gaussian functions, the output of

node ij of layer 2 at time k, u(2)ij (k), is given by:

u
(2)
ij (k) = e

−

(u
(1)
i

(k)−mij(k))
2

2σ2
ij

(k) (2.8)

where mij(k) and σ(2)
ij (k) are the mean and standard deviation, respectively, of the

Gaussian membership function MFij.

Third Layer: The propositions of the type IF...THEN... are implemented, forming

the rule bases of the ANFIS. For each rule, the operators AND and OR are managed

as minimum and maximum, respectively, so that output of the L node from this layer,
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u
(3)
L (k), is a function of the layer 2 for the selected output of rule RL. The total number

of rule bases for each system is defined by Eq. 6.1.

Fourth Layer: The nodes of this layer are known as consequent nodes, and they

are defined as a function fL : Rn → R where fL = f(I1, ..., Ii, ..., In, w1L, ..., wjL, ..., woL, k),

where w1L, ..., wjL, ..., woL are weights that will be determined in the ANFIS training

phase. The output of node L of layer 4, u(4)L (k), is calculated by:

u
(4)
L = u

(3)
L (k)fL(I1, ..., Ii, ..., In, w1L, ..., wjL, ..., woL, k) (2.9)

Fifth Layer: The last layer provides the ANFIS resultant answer and it is given by

the equation:

O(k) =

∑R
L=1 u

(4)
L (k)

∑R
L=1 u

(3)
L (k)

(2.10)

2.5 Optimization Methods

This section presents the optimization methods evaluated in the Neuro-Fuzzy train-

ing. The comparison between the optimization methods was performed using 600 MB

of RAM memory dedicated to MATLAB, with a RAM speed equal to 2133 MHz (DDR4).

The results obtained are presented in the Chapter 4.

2.5.1 Genetic Algorithm

Genetic algorithms (GA) are a type of evolutionary algorithm that is based on the

natural selection of the species (HOLLAND, 1992). The idea of the GA is to create

a population of candidate solutions, evaluate their fitness to the problem, and then

apply genetic operators such as crossover and mutation to produce a new generation

of solutions (population). The process is repeated until a satisfactory solution is found

or a maximum number of 300 generations has been reached (Fig. 2.10).
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Figure 2.10: Genetic algorithm block architecture. Source: Author.

The parameters used in the genetic algorithm are shown in Tab. 2.1. The reinser-

tion rate is 1, which means that every time the weakest individual will be replaced.

Table 2.1: Parameters used in the Genetic Algorithm.

Optim. Parameters Value
Population size 40

Maximum Generation 198
Mutation rate 0.06

Crossover rate 1
Reinsertion rate 1

2.5.2 Differential Evolution

Differential Evolution (DE) was first published by Storn and Price (1997) and since

then it has been widely used by the scientific community. Because of that, this opti-

mization methodology was chosen to optimize the Fuzzy Logic parameters.

According to Storn and Price (1997), the mutation probability (F) needs to be inside

the interval [0, 2] and the crossing probability (CR) ∈ [0, 1], and the value selection has

to be determined by the user. Therefore, the optimization parameters used to acquire

the results can be seen in Tab. 2.2.

Using the DE optimization method to train the Neuro-fuzzy parameters, it took less
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Table 2.2: Optimization parameters used in the Differential Evolution.

Optim. Parameters Value
Number of individuals 150
Number of variables 17-25

Crossing probability (CR) 0.95
Mutation probability (F) 0.4

than a minute (30 seconds) to optimize seventeen variables using more than three hun-

dred data. The Fig. 2.11 depicts the simplified architecture of the differential evolution

applied in this work.

Figure 2.11: Simplified representation of the differential evolution. Source: Author.

2.5.3 Complex-RF

The Complex is an optimization method based on the simplex method (SPENDLEY;

HEXT; HIMSWORTH, 1962), that had been evolved through different contributions, and

the final modification made by Krus et al. (2003) includes a randomization factor (β) and

a forgetting factor (γ), becoming the Complex RF. According to Braun and Krus (2017),

the Complex RF basic procedure is divided in 12 steps.

1. Generate k = 2n test points.

2. Apply a forgetting factor: f(xi) = f(xi) + [1.0− (0.5αRF )
γ/k][max(f)−min(f)].

3. Sort the points by their objective values: f(0.6cm1) ≤ f(0.6cm2) ≤ · · · ≤ f(0.6cmk).

4. Calculate the centroid xc of points 0.6cm1, 0.6cm2, . . . , 0.6cmk−1.
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5. Calculate the reflected point 0.6cmk = 0.6cmc + αRF (0.6cmc − 0.6cmk) +

βxR max(∆x/∆xR)rand(−0.5, 0.5).

6. If no constraints are violated and f(0.6cmk) ≤ f(0.6cmk−1): Go to step 2.

7. Define nc = 0.

8. Define a = 1− e−nc/5.

9. Calculate the contracted point 0.6cmk = [(0.6cmc)(1−a)+(0.6cm1)a+(0.6cmk)]/2.

10. If f(0.6cmk) ≤ f(0.6cmk−1): Go to step 2.

11. Increase nc by 1.

12. Go to step 8.

Where αRF is the reflection factor and k is the number of points. For a problem with

n design variables, αRF = 1.3 and k = 2n provide good results (BOX, 1965).

According to Braun and Krus (2017), ∆x is a vector that carries the uncertainties

for each design variable, which contains the difference between its highest and lowest

value. The xR contains the range between the upper and lower limits for each input

variable. The forgetting factor is responsible to guarantee that the complex consists

predominantly of recently evaluated points, and the random factor is responsible to

increase the escaping chance from local optima, creating momentum to cross flat areas

of objective functions.

2.6 Aircraft Aerodynamics and Flight Dynamics

In this section, the forces and moments that acts on the center of gravity of a remote-

controlled (RC) subscale Generic Future Fighter (GFF), illustrated in Fig. 2.12, are ex-

plained. The presenting aircraft is a 13% scale aircraft, designed and built in Linköping

University (JOUANNET et al., 2012). This remote controlled (RC) reduced scale air-

craft conceptual design was developed by Saab Aeronautics.
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Figure 2.12: Generic Future Fighter RC subscale model. Source: Courtesy of
Linköping University.

The dimensions and mass characteristics of the GFF can be observed in Tab. 2.3.

Every parameter from that table is written in the SI units.

Table 2.3: GFF mass characteristics and geometry. Source: Linköping University.

Parameter Value
Wing span (b) [m] 1.470

Mean aerodynamic chord (c) [m] 0.754
Aspect ratio (A) [-] 2.345

Wing reference area (S) [m2] 0.921
Maximum takeoff weight (MTOW) [kg] 19.200

Operating empty mass [kg] 15.880
Moment of inertia about X-axis (IXX)) [kgm2] 0.560
Moment of inertia about Y-axis (IY Y )) [kgm2] 5.280
Moment of inertia about Z-axis (IZZ)) [kgm2] 5.560

To better explain the 6-DOF (see Fig. 2.13) of the aircraft, the same can be de-

coupled into two important axis, the Longitudinal axis and the Lateral-Directional axis.

Each of them has three degrees of freedom.
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Figure 2.13: GFF body axis six degrees of freedom. Source: Courtesy of Linköping
University and Author.

2.6.1 Longitudinal

Longitudinal aircraft forces and moments are crucial for the aerodynamic model.

Their forces and moments are typically aligned with the flight direction (wind axis).

The most well-known and important force is the aerodynamic lift (Eq. 2.11), which

is generated by the wings and acts perpendicular to the direction of flight. Lift is the

responsible force to keep the aircraft in the air and can vary according to the variation

of the wing shape, airfoil, angle of attack, and more. The lift force can be calculated

using the following equation (ROSKAM, 1998).

LF = CLqS (2.11)

Where CL is the total airplane lift coefficient, q is the dynamic pressure and S is the

reference wing area. Besides the variables included in the lift equation, according to

Anderson (1999), it also depends on the angle-of-attack, control surfaces deflections,

and Mach number or Reynolds number (Eq. 2.12).

Re =
ρ∞V∞c

µ∞

(2.12)

Another important force is the drag, which acts in the opposite way of the relative

wind, and perpendicular to the lift force. The drag caused by the resistance of the air

as the aircraft moves forward is called parasite drag, which is mainly dependent on
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the aircraft’s shape. Also, the drag is directly influenced by the amount of lift, which is

called the induced drag. The total drag is the sum of the induced drag and the parasite

drag and it can be seen in Eq. 2.13 (ROSKAM, 1998).

CD = CD0 +
C2

L

πAe
(2.13)

Where: CD0 is the drag due to aircraft’s shape, CL is the lift coefficient, A is the

wing aspect ratio and e is Oswald’s efficiency factor. Like lift force, the drag force

also depends on the control surface deflections, angle-of-attack, and Mach number or

Reynolds number.

In addition to these forces, there are also longitudinal moments that act around

the aircraft’s center of gravity. The most important is the pitching moment, which is a

rotation of the aircraft around its lateral axis and, to be more precise, it happens around

the aircraft’s Y-axis. In the case of the GFF, the pitching moment is controlled by the

ailerons, which can be deflected in the same direction (acting as elevators) and are

located at the trailing edge of the delta wings, see Fig. 2.14. In addition, when the

ailerons are acting as elevators, the canard is also deflected in the opposite direction

to supplement the pitching moment around the center of gravity.

Figure 2.14: Illustration of GFF’s elevator and canard deflection.

The 3-DOF encompassed by the aircraft’s Longitudinal non-inertial body axis are:

Tangential force, Pitching moment (Y-axis moment), and Vertical force. The Eq. 2.14

(ROSKAM, 1998) shows how these forces and moment are calculated.
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Where ρ is the air’s specific mass, S is the reference wing area, V is the relative

wind velocity, and c is the mean aerodynamic chord.

The forces in X-axis and Z-axis can be obtained through accelerometer measure-

ments (FOSSEN, 2011), but the moments need to be calculated using the gyroscope

information. The Eq. 2.15 is showing how to acquire the pitching moment using gyro-

scope information. The following equation is going to be used to calculate the GFF’s

pitching moment around its center of gravity.

M = (IXX − IZZ)pr + IXZ(p
2
− r2) + IY Y q̇ (2.15)

On the equation above, it is necessary to perform the derivative of the q (pitching

rate). The derivative is acquired using a high-pass filter, and it is better explained in

Chapter 3.











CX

Cm

CZ











=











CX0 + CXα
α + c

2V
CXα̇

α̇ + CXδE
δE + CXδC

δC + c
2V
CXq

q

Cm0 + Cmα
α + c

2V
Cmα̇

α̇ + CmδE
δE + CmδC

δC + c
2V
Cmq

q

CZ0 + CZα
α + c

2V
CZα̇

α̇ + CZδE
δE + CZδC

δC + c
2V
CZq

q










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Each component from Eq. 2.16 is a partial derivatives of the coefficient by the an-

alyzed state variable. According to Etkin and Reid (1995), the Eq. 2.16 can be rewrit-

ten substituting every stability derivative for its partial derivative form. The Eq. 2.17

presents the longitudinal forces and moments coefficient in function of non-dimensional

stability derivatives.
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2.6.2 Lateral-Directional

Lateral-directional forces and moments are critical aspects of aircraft stability and

control. They are responsible for controlling the aircraft’s movement along those axes,

which correspond to the roll, lateral force, and yaw movements of the aircraft.

Lateral forces are those acting perpendicular to the longitudinal axis of the aircraft

and are generated primarily by the wings. When the aircraft rolls, the wings generate

different lift forces that are no longer aligned with the aircraft’s center of gravity, result-

ing in a lateral force. This lateral force is opposed by the ailerons, which are control

surfaces located at the trailing edge of the wings. By deflecting the ailerons in oppo-

site directions, the pilot can control the lateral force and initiate a roll. In the GFF, the

ailerons work as elevators as well, when they are deflected in the same direction.

Directional forces are those acting perpendicular to both the longitudinal and lateral

axes of the aircraft and are generated primarily by the aircraft’s vertical tail. Usually,

the rudder is used in take-off and landing to better control the aircraft. During the flight,

the yaw moment are control only with the ailerons, which is the GFF’s case.

The longitudinal, lateral, and directional forces can be decomposed in forces around

the non-inertial body axis of the aircraft (FX , FY , FZ) (FOSSEN, 2011). This operation

converts the wind axis orientation to the aircraft’s body axis orientation and it is not

necessary to apply in the data acquired for the GFF, see Chapter 3. The rotation

matrix is described by Eq. 2.18.

pbody =








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cos(α)cos(β) −cos(α)sin(β) −sin(α)

sin(β) cos(β) 0

sin(α)cos(β) −sin(α)sin(β) cos(α)











pwind (2.18)

In addition to the lateral and directional forces, aircraft also experience lateral and

directional moments, which are responsible for controlling the aircraft’s rotational mo-

tion along these axes. Similarly to the pitch moment, the lateral and directional mo-

ments need to be calculated using the Pixhawk gyroscope data. The lateral moment

(Eq. 2.19) is generated primarily by the ailerons, which produce a differential lift be-

tween the two wings, resulting in a rolling moment.

L = IXX ṗ− IXZ(ṙ + pq) + (IZZ − IY Y )qr (2.19)
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The directional moment (Eq. 2.20) is generated primarily by the rudder, which pro-

duces a side force that acts at a distance from the aircraft’s center of gravity, resulting

in a yawing moment.

N = IZZ ṙ − IXZ ṗ+ (IY Y − IXX)pq + IXZqr (2.20)

The GFF has a V-tail configuration, and the rudders are barely used. The entire

lateral and directional forces and moments are controlled mainly by the deflection of

the ailerons.

The 3 DOF that belongs to the aircraft’s Lateral-Directional axis are: roll moment

(moment around X-axis), Y force, and yaw moment (moment around Z-axis), and can

be observed in Fig. 2.13. According to Roskam (1998), the forces and moments can

be written as:
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Where b is the GFF wing span.

The forces and moments coefficients can be written in the first order of the Taylor

series (ROSKAM, 1998). For the Lateral-Directional axis, the most correlated vari-

ables for the GFF are sideslip angle, sideslip angle rate, aileron deflection, and canard

deflection.
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Note that not every stability derivative from Eq. 2.22 is going to be used to train the

Neuro-Fuzzy technique, only the high correlated variables are going to be selected.

The non-dimensional stability derivatives (ETKIN; REID, 1995) are going to be obtained

through Eq. 2.23 in Chapter 6.
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At the end of the Longitudinal and Lateral-Directional modeling, it is expected that

the Neuro-Fuzzy model can identify the most important stability derivatives for the GFF.
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Data Analysis

This chapter presents the methodologies used to obtain a reliable and smooth sig-

nal that accurately describes the aircraft’s behavior during flight. Additionally, this chap-

ter is going to elucidate the process of determining the training and validation intervals

for each output variable, providing a rationale for these choices.

For general system measurements, it is common to have unlike noise with the ac-

quired data. According to Larsson (2019), the input and output measurements of a

system can be expressed in Eq. 3.1.

ẋ(t) = a(x(t), u(t), w(t); θ)

y(t) = c(x(t), u(t), v(t); θ)
(3.1)

Where x(t) is a nx × 1 state vector, u(t) is a nu × 1 input vector and w(t) is the

modeled process noise. The nonlinear continuous function a describes the dynamic

model, which can be considered as the Neuro-Fuzzy in this case. The output y(t) is a

ny × 1 vector and v(t) is the modeled measurements noise.

The objective of the measured data is to describe a real system using a computa-

tional model, in other words, to create a system identification tool capable of simulating

the GFF on MatLab, like illustrated in Fig. 3.1.
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Figure 3.1: Exemplification of a system identification. Source: Author.

3.1 Aerodynamic Data Acquisition

According to Fossen (2011), the forces in the X-axis, Y-axis, and Z-axis can be ob-

tained through the signals recorded by the accelerometers of an Inertial Measurement

System (IMU). However, the moments have to be calculated using the Eq. 2.15, 2.19

and 2.20.

In this section, the embedded systems in the GFF that are required to acquire the

complete aerodynamic model will be presented.

3.1.1 GFF instrumentation

This work uses the GFF data, which was acquired with a Pixhawk embedded in the

aircraft, see (LUNDSTRÖM et al., 2016). Typically, the sample acquisition rate from

a Pixhawk’s IMU is 50 Hz. However, in this study, the onboard GFF’s IMU acquisition

frequency was increased by removing the automatic and control code, allowing all

processing efforts to be dedicated to acquiring data. As a result, the sample rate was

increased from 50 Hz to 100 Hz. Figure 3.2 shows the cockpit of the subscale aircraft

with the Pixhawk inside.
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Figure 3.2: GFF embedded systems. Source: Courtesy from Linköping University.

The GFF also has a nose-boom which contains a pitot-static tube and two flow-

direction transducers, one for angle-of-attack (α) measurements and the other one for

sideslipe angle (β) measurements (SOBRON et al., 2016). The Fig. 3.3 shows the

system for acquiring the aerodynamic angles.

Figure 3.3: GFF nose-boom visualization. Source: Courtesy from Linköping University.

3.2 Filtering

This section has the objective to identify and remove unwanted noise. For that, the

Fast Fourier Transform (FFT) of the IMU (Inertial Measurement Unit) was performed

to verify the filter’s frequency. As the name says, the IMU acquires the signal in a

quasi-steady state (inertial), therefore the frequencies above 10 Hz are unwanted in
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this case.

3.2.1 Lowpass Filter

The transfer function of the lowpass filter is shown in Eq. 3.2.

Glowpass =
1

(s/ωf )2 + 2σf/ωf + 1
(3.2)

Where ωf is the cut band or passband frequency and σf is the filter damping. The

cut band frequency and the damping in this case were 10 Hz and 0.7 respectively. The

lowpass filter response is ilustrated in Fig. 3.4.
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Figure 3.4: Lowpass filter magnitude response. Source: Author.

The raw signal is a noisy response of the GFF movements during the flight. In order

to eliminate the noise, the lowpass filter is applied to every variable that is going to be

inserted in the Neuro-Fuzzy box. Figure 3.5 shows the Fast Fourier Transform (FFT)

for the Z-axis accelerometer signal with and without the lowpass filter.
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Figure 3.5: FFT of the GFF Z-axis accelerometer signal. Source: Author.

3.2.2 Highpass Filter

To obtain a signal derivative, it is used a first-order highpass filter or a band pass

filter like presented in Fig. 3.6. The filter’s equation is described in Eq. 3.3.

Ghighpass =
s

(s/ωf )2 + 2σf/ωf + 1
(3.3)
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Figure 3.6: Highpass filter magnitude response. Source: Author.

After filtering all the input and output variables, it is expected to have them all in the

same phase, avoiding signal delay problems.
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3.3 Data Selection

In this section, the author separate the useful data into two sets: training and vali-

dation. The training set will comprise 35,000 data samples, while the validation set will

comprise 11,000 data samples.

The size of the data consist on 94,605 data samples with an acquisition frequency of

100 Hz. The total time that the Pixhawk stayed in the armed mode was 946 seconds.

The useful data is between 25,000 up to 75,000. Figure 3.7 shows the useful data

interval.
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Figure 3.7: GFF angle-of-attack sampling data. Source: Author.

To enhance the training process, the author calculates the Person’s Correlation

Coefficient (PCC) as shown in Eq. 3.4 to evaluate the correlation between the input

and output variables. A high correlation between these variables is crucial to achieve

a higher coefficient of determination (R2) (BRANDON; MORELLI, 2016). Therefore,

by analyzing the PCC values, we can identify which input variables are more strongly

correlated with the output variable and select them for training, which ultimately leads

to a more accurate model.

r =

∑n
i=1(xi − x)(yi − y)

√
∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
(3.4)

The training set was carefully selected to guarantee that none of the validation set

will extrapolate the training set. The training data consists of an amount of 35,000

data sample that is from 39,000 until 74,000. The validation data is in the interval from
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27,000 until 38,000, consisting of a sample of 11,000 data. Figure 3.8 highlights the

training and validation sets.

Figure 3.8: Training set and validation set visualization. Source: Author.

This chapter presented how the GFF aerodynamic data were acquired followed by

the procedures to improve the quality of those signals extracted from Pixhawk SD card.

The following chapter will present the results of the aerodynamic model predicted by

the Neuro-Fuzzy technique.

The Tab. 3.1 presents the correlation among all input variables for the longitudinal

and the lateral-directional axes.

Table 3.1: Correlation between longitudinal and lateral-directional input variables

Longitudinal training data
δE δC α α̇ q

δE 1.000 -0.923 -0.612 -0.424 -0.699
δC 1.000 0.644 0.436 0.867
α 1.000 0.000 0.587
α̇ 1.000 0.458
q 1.000

Longitudinal validation data
δE δC α α̇ q

δE 1.000 -0.996 -0.871 -0.345 -0.878
δC 1.000 0.856 0.347 0.869
α 1.000 0.000 0.647
α̇ 1.000 0.453
q 1

Lateral-directional training data
α β β̇ δA p

α 1.000 0.092 0.046 0.098 0.010
β 1.000 0.312 0.247 0.047
β̇ 1.000 0.370 0.219
δA 1.000 0.844
p 1.000

Lateral-directional validation data
α β β̇ δA p

α 1.000 0.190 0.022 0.183 0.110
β 1.000 0.348 0.300 -0.126
β̇ 1.000 0.221 -0.032
δA 1.000 0.815
p 1.000

The correlations between the input variables and output variables for the longitudi-

nal axes are presented in the Tab. 3.2.
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Longitudinal training set
α α̇ δE δC q

CX 0.5634 0.0464 -0.0362 0.1432 0.2444
Cm -0.1663 0.7625 -0.4079 0.3560 0.2549
CZ -0.9838 -0.0836 0.6873 -0.7509 -0.6747

Longitudinal validation set
α α̇ δE δC q

CX 0.8109 0.0639 -0.6363 0.6294 0.4449
Cm -0.1659 0.7433 -0.2146 0.2217 0.2283
CZ -0.9940 -0.0594 0.9081 -0.9046 -0.7182

Table 3.2: Correlation between inputs and output variables for the longitudinal axes.

The selected variables for each degree of freedom depends on that correlation. The

three most correlated variables were selected as input variables.

The correlation between input variables and output variables for the lateral-directional

axes are presented in the Tab. 3.3.

Lateral-Directional training set
α β β̇ δA p r

Cl -0.0035 -0.2117 -0.2904 0.2662 0.0012 -0.1151
CY -0.4544 -0.5945 -0.5050 -0.1051 -0.1349 -0.3022
Cn 0.0570 0.2695 0.7014 0.7513 0.4687 -0.0329

Lateral-Directional validation set
α β β̇ δA p r

Cl -0.0058 -0.2694 -0.7485 -0.0155 -0.0014 0.0066
CY -0.5310 -0.6493 -0.7085 -0.2911 -0.0426 -0.2283
Cn 0.0588 0.2720 0.8101 0.5080 0.1708 -0.1112

Table 3.3: Correlation between inputs and output variables for the lateral-directional
axes.
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Case Study

This chapter aims to determine the optimal configuration for the Neuro-Fuzzy model.

To achieve this objective, several aspects were evaluated, starting with the perfor-

mance of three different membership function (MF) shapes. After choosing the MF’S

shape, a comparison between three inference methods: Mamdani, Takagi-Sugeno

(TS), and Pondered Individual Analysis (PIA) (PEREIRA; JAFELICE; FINZI, 2022) is

conducted. Additionally, the quality of the training is assessed by evaluating the num-

ber of input and output membership functions, as well as the dependence of the input

variables in the output function. Finally, the chapter concludes with a comparison be-

tween three optimization methods, taking into account the processing time, accuracy,

and robustness of each.

4.1 Comparison between different Membership Func-

tion shapes

This section will present a comparison between three shapes of membership func-

tions using PIA as a fuzzy inference method. The MF shapes analyzed were: trian-

gular, trapezoidal, and Gaussian functions. Also, the number of membership functions

of each input and output variable is maintained between the analysis and it follows the

same MISO system from Section 4.2. This analysis uses experimental data from GFF

flight tests made by Rueda (2021).
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4.1.1 Triangular Membership Functions

Using only triangular MF to describe fuzzy sets did not change the optimization

converging time, but the accuracy was affected, as can be seen in Fig. 4.1. The

resultant coefficient of determination (R2) in this case is 42%.
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Figure 4.1: Training graph for Z force coefficient using triangular MF in Neuro-Fuzzy
with DE. Source: Author.

4.1.2 Trapezoidal Membership Functions

Applying trapezoidal shapes to the input fuzzy sets, the training results are not get-

ting better compared to Fig. 4.1. The ability to fit the experimental flight data is missed

using either triangular or trapezoidal MF. The resultant training from the Neuro-Fuzzy

with trapezoidal shape MF is illustrated in Fig. 4.2. The coefficient of determination in

this case is 39%.
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Figure 4.2: Training graph for Z force coefficient using trapezoidal MF in Neuro-Fuzzy
with DE. Source: Author.

4.1.3 Gaussian Membership Functions

The last membership function shape analyzed is the Gaussian function. The equa-

tion to describe the Gaussian function is described in Eq. 2.8. The coefficient of

determination for this shape of membership function is 95%.
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Figure 4.3: Training graph for Z force coefficient using Gaussian MF in Neuro-Fuzzy
with DE. Source: Author.

The results emphasize that the best membership function shape for this study is the

Gaussian membership functions.
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4.2 Comparison between Fuzzy Inference Methods

The comparison between the three fuzzy inference methods is made to study the

advantages and the disadvantages, e.g. computational cost and accuracy, which are

the most important parameters to be evaluated in each inference method. This eval-

uation was carried out using experimental data from a Generic Future Fighter (GFF),

acquired and supplied by Linköping University.

Each comparison is made using a MISO (Multi Input Single Output) system with

emphases on the CZ because it is the most expressive degree of freedom among all.

The Neuro-Fuzzy configuration counts with two input variables, which are the angle of

attack (α) and the elevator deflection (δe).

The optimization method used for this study is the differential evolution (DE) with

250 generations and with 100 individuals. In terms of evaluation, every fuzzy infer-

ence method is trained using the same configuration, which is three membership func-

tions for the input variables and five membership functions or consequent functions (in

Takagi-Sugeno’s case) for the output.

4.2.1 Neuro-Fuzzy with Mamdani Fuzzy Inference Method

The first evaluation was performed using the Mamdani fuzzy inference method. The

time to perform the optimization is extremely high due to the integration of the area.

Nevertheless, applying the Mamdani fuzzy inference method to the Neuro-Fuzzy with

DE also guaranteed a good curve fitting for the training section. Fig. 4.4a illustrates

the training graph using the Mamdani fuzzy inference method.
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Figure 4.4: Training and validation using the Mamdani fuzzy inference method. Source:
Author.

Although, the validation model is taking twenty times more than Takagi-Sugeno or

even PIA fuzzy inference method. Furthermore, the validation is not good, as can be

seen in Fig. 4.4b.

4.2.2 Neuro-Fuzzy with Takagi-Sugeno Fuzzy Inference Method

This fuzzy inference method allows to reduce the number of fuzzy parameters in the

optimization function because the consequent function can be considered as a single

variable, which can save some computational effort and time.

The training and validation graph can be observed in Fig. 4.5.
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Figure 4.5: Training and validation using the Takagi-Sugeno fuzzy inference method.
Source: Author.
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4.2.3 Neuro-Fuzzy with PIA Fuzzy Inference Method

Here, the new fuzzy inference method developed by (PEREIRA; JAFELICE; FINZI,

2022) is applied to the Neuro-Fuzzy with Differential Evolution. The curve adjustment

for the training can be seen in Fig. 4.6a and the comparison between the three fuzzy

inference methods is shown in the Tab. 4.1.
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Figure 4.6: Training and validation using the PIA fuzzy inference method. Source:
Author.

The validation presented in Fig. 4.6b shows a good curve fitting between the Neuro-

Fuzzy and the flight data, however the Takagi-Sugeno is still better in this application.

Table 4.1: Comparison between the three fuzzy inference method.

Training Time [s] Validation Time [s] R2 [-]
Mamdani 17.210× 103 0.558 97%
TS 0.206× 103 0.026 97%
PIA 3.052× 103 0.176 95%

4.3 Number of Membership Functions for Inputs

This section investigates the number of membership functions of the input variables

that can affect the model in terms of training curve adjustment and evaluates the vari-

ation of the coefficient of determination (R2).

Three different amounts of MF for the input variables of the yawing moment coeffi-

cient (Cn) were trained, and Tab 4.2 shows the parameters and results of this analysis.
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The time to converge the optimization can carry some uncertainty because another

optimization might have been performed at the same time.

Table 4.2: Comparison between the amount of membership functions for the input
variables.

Output Consequent R2 Time [s]
Two MF 3 0.5691 2058
Three MF 5 0.5701 3252
Four MF 7 0.5673 4418
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(a) Two membership functions.
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(b) Three membership functions.
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(c) Four membership functions.

Figure 4.7: Training graph for yaw moment coefficient using different numbers of mem-
bership functions for the inputs. Source: Author.

Analyzing Figs. 4.7a, 4.7b, and 4.7c and Tab. 4.2 it is possible to observe that

the covering percentage from the red curve in the blue curve has not increased, which

means that the quality of the training did not changed considerably, it only increased

the computational cost, see Tab. 4.2. According to Brandon and Morelli (2016), the

number of membership functions of the input variables should vary according to the
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correlation between the input and the output variables proportionally.

4.4 Degree of Dependence of the Input Variables in the

Output Function

This section presents a comparison between the output functions with dependence

on the input variables and the output functions without dependence on input variables,

using the Takagi-Sugeno inference method.

The comparison to evaluate the degree of dependence between output functions

that have input variable dependencies and output variables that are modeled as a

single constant number is performed using the same NF-DE architecture presented

in Fig. 5.5. The coefficient of determination from Fig. 4.8a is 23%, while the same

coefficient for Fig. 4.8b is 54%.
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Figure 4.8: Comparison between input variable dependence in the output constant
function. Source: Author.

The results showed that there are considerable deterioration of the curve fitting

when the output function consider the input variable. However, the computational cost

could not be evaluated because the optimization stopped after 100 consecutive gener-

ations without any improvement in the cost function (coefficient of determination).
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4.5 Optimization Methods Evaluation

This section presents three optimization methods, the Differential Evolution, the

Genetic Algorithm, and the Complex RF. The comparison explores the total processing

time, robustness, and also the accuracy. All the comparisons were made using the

Takagi-Sugeno inference method.

The analysis is performed using numerical data from a reduced-scale model of

Cessna 182 (SANT’ANA et al., 2019). The data was acquired using a flight simulator

known as X-Plane.

4.5.1 Differential Evolution

Using numerical data acquired in X-Plane with a Cessna 182 reduced-scale model

designed inside the plane maker environment. The Neuro-Fuzzy with Differential Evo-

lution (NF-DE) optimization time was about 28 seconds for each convergence, and it

was performed 30 times in a loop. The results of those amount of optimizations for the

Z force coefficient can be observed in Fig. 4.9a.
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Figure 4.9: Robustness analysis over thirty optimization using NF-DE. Source: Author.

The robustness of the Neuro-Fuzzy model with Differential Evolution has been ana-

lyzed using the Mean Squared Error (MSE). The results of this analysis show that even

after thirty optimizations, the result remains around the mean of the solution, present-

ing a low standard deviation. The figure 4.9b shows the normal distribution using the
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Mean Squared Error metric, which illustrates the level of robustness achieved by the

model.

4.5.2 Complex RF

With the same numerical data obtained from X-Plane simulations, the Neuro-Fuzzy

with Complex RF (NF-CRF) was optimized for each convergence step, taking approx-

imately 171 seconds. The optimization was performed 30 times in a loop, and the

results for the Z force coefficient can be seen in Fig. 4.10a.
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Figure 4.10: Robustness analysis over thirty optimization of NF-CRF. Source: Author.

The robustness analysis of the Neuro-Fuzzy model with Complex RF was also con-

ducted using the MSE metric. The results of this analysis are presented in Figure

4.10b, which showcases the achieved level of robustness of the model.

4.5.3 Genetic Algorithm

The analysis using the GA optimization method to find the Neuro-Fuzzy parameters

showed to be a good alternative. Nonetheless, the accuracy and the computational

cost are much worse than the Differential Evolution. The time to obtain forty optimized

individuals containing 17 membership function parameters was 3,433 seconds. After

each optimization, the best individual was selected manually, and then, the optimization

was repeated for 30 times. Fig. 4.11 shows the results of the training over thirty results

for the Z force coefficient, and the MSE error distribution.
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Figure 4.11: Robustness analysis over thirty optimization using NF-GA. Source: Au-
thor.

It is evident from the results that the NF-GA method yields the lowest MSE when

compared to all other optimization methods. However, this advantage must be weighed

against the longer convergence time required by this method.

This chapter presented several configurations of the Neuro-Fuzzy, and the most

efficient NF configuration tested is presented in Table 4.3.

Table 4.3: Optimal Neuro-Fuzzy Configuration

Configuration Parameter Value
Inference Method Takagi-Sugeno

Membership Function Gaussian
Number of Input Variables 3

Number of Input Membership Functions 3
Number of Output Functions 7

Output Functions Constants
Optimization Method Differential Evolution

The configuration presented above is going to be used to obtain the unsteady aero-

dynamic model for the GFF.
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Results

This chapter will present the aerodynamic model for the GFF using Neuro-Fuzzy

with Differential Evolution (NF-DE). Furthermore, the results are discussed and com-

pared with other methodologies. All the training optimization were made using the

Differential Evolution to optimize the parameters from the input and output variables.

Every input variable are normalized in the interval [0,1], to better fit the interval of

the membership functions, see Brandon and Morelli (2016). In addition, the input and

output variables pass through a low-pass (Lp) or high-pass (Hp) filtering process before

entering the neuro-fuzzy optimizer.

5.1 Longitudinal aerodynamic model

5.1.1 Tangential Force (FX)

The architecture used for the X force coefficient utilizes the input variables α, δE

and q to construct the aerodynamic model. Figure 5.1 illustrates the Neuro-Fuzzy (NF)

architecture that has been developed specifically for modeling the X force coefficient.
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Figure 5.1: Schematic representation of the Neuro-Fuzzy for the force coefficient in
X-axis. Source: Author.

For most of the cases, the Neuro-Fuzzy (NF) model is trained using a dataset of

35,000 data points for each variables, if the architecture takes in consider 3 input vari-

ables and one output, it gives a total of 140,000 data points. For the X force coefficient,

the training takes more than 3 hours (12,105 seconds), and the coefficient of determi-

nation (R2) is 44%. To validate the model, 11,000 data points are used for each input

variable, with an accuracy of 46% and a validation time of 0.073 seconds. The training

and validation performance of the model for CX are visualized in Figures 5.2 and 5.3.
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Figure 5.2: Training graph for the tangential moment coefficient. Source: Author.
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Figure 5.3: Validation graph for the tangential moment coefficient. Source: Author.

Table 5.1 presents the membership function parameters optimized for the input vari-

ables of the X force coefficient CX .
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Figure 5.4: Membership functions from the three input variables of the X force coeffi-
cient. Source: Author.
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Table 5.1: Means and standard deviations values of the input membership functions
for X force coefficient.

Mean Std
α (0.0677 0.8000 0.9629) (0.0731 0.3000 0.2270)
δE (0.4000 0.3000 1.0000) (0.3000 0.1559 0.0100)
q (0.0835 0.3102 0.9651) (0.0927 0.3000 0.0100)

The seven output functions optimized by the DE are shown in Table 5.2.

Table 5.2: Consequent values for each output variable.

Consequent function (C)
CX -0.0737 -0.0800 -0.0300 -0.0382 -0.0151 0.0300 0.0400

5.1.2 Pitching Moment (M )

In order to model the pitching moment coefficient, the Neuro-Fuzzy (NF) architec-

ture employs the input variables α, α̇, and δE. The dedicated NF architecture for this

purpose is depicted in Fig. 5.5.

Figure 5.5: Schematic representation of the Neuro-Fuzzy for the moment coefficient
around Y-axis. Source: Author.

The training process for this model takes 12,118 seconds, and the coefficient of

determination (R2) is 71%. To validate the model, 11,000 data points are utilized for

each input variable, resulting in an accuracy of 43% and a validation time of 0.073

seconds. Figures 5.6 and 5.7 shows the training and validation performance of the

model for Cm.
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Figure 5.6: Training graph for the pitching moment coefficient. Source: Author.

0 20 40 60 80 100 120

Time [s]

-0.01

-0.005

0

0.005

0.01

0.015

C
m

GFF Pitch Moment Coeffient (C
m

)

Flight Data

Neuro-Fuzzy

44 46 48 50 52 54 56 58

-5

0

5

10
-3

Figure 5.7: Validation graph for the pitching moment coefficient. Source: Author.

The parameters for the membership functions of the input variables can be seen in

the Tab. 5.3.
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(c) Elevator deflection MFs.

Figure 5.8: Membership functions from the three input variables of the pitch moment
coefficient. Source: Author.

Table 5.3: Means and standard deviations values of the input membership functions
for pitch moment coefficient.

Mean Std
α (0.0110 0.5225 1.0000) (0.0100 0.2500 0.2500)
α̇ (0.1219 0.6672 0.8363) (0.1497 0.2500 0.0741)
δE (0.0939 0.4917 0.8336) (0.1559 0.1500 0.1302)

The output functions are treated as constants, rendering them independent of the

input variables. Table 5.4 provides the optimized values for the seven output functions.

Table 5.4: Consequent values for each output variable.

Consequent function (C)
Cm -0.0452 -0.0200 0 0.0182 0.0192 0.0310 0.0347
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5.1.3 Vertical Force (FZ)

The Z force coefficient is the most straightforward degree of freedom to model

aerodynamically among all aircraft parameters. To build an aerodynamic model us-

ing Neuro-Fuzzy, the input variables α, δe, and q are utilized. Figure 5.9 depicts the

Neuro-Fuzzy architecture designed for modeling the Z force coefficient.

Figure 5.9: Schematic representation of the Neuro-Fuzzy for the force coefficient in
Z-axis. Source: Author.

In this case, the Neuro-Fuzzy (NF) model is trained using 35,000 data points for

each variable, resulting in a total of 140,000 data points. The training process for

the NF-DE takes 10,795 seconds, and the resulting coefficient of determination (R2)

is 96%. For validation, the model is tested using 11,000 data points for each input

variable, with a resulting R2 of 88% and a validation time of 0.090 seconds. Figures

5.10 and 5.11 illustrates the training and validation graph for CZ .
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Figure 5.10: Training graph for the vertical force coefficient. Source: Author.
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Figure 5.11: Validation graph for the vertical force coefficient. Source: Author.

Table 5.5 presents the membership function parameters used for the input variables

of the NF-DE model.
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Figure 5.12: Membership functions from the three input variables of the Z force coeffi-
cient. Source: Author.
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Table 5.5: Means and standard deviations values of the input membership functions
for Z force coefficient.

Mean Std
α (0.2697 0.6329 0.8465) (0.2389 0.0000 0.2500)
δE (0.1437 0.6366 0.9877) (0.2500 0.2205 0.2500)
q (0.1246 0.4866 0.8905) (0.0864 0.2500 0.1182)

Here the output functions are also treated as constants. Table 5.6 displays the

optimized values for the seven output functions.

Table 5.6: Consequent values for each output variable.

Consequent function (C)
CZ -1.2157 -1.0222 -1.1000 -0.9000 -0.2054 0 -0.0343

5.2 Lateral-Directional aerodynamic model

5.2.1 Rolling moment (L)

The roll moment coefficient (Cl) has three input variables, which are β, β̇, and δA.

Fig. 5.13 shows the architecture of the Neuro-Fuzzy for the roll moment coefficient.

Figure 5.13: Schematic representation of the Neuro-Fuzzy for the moment coefficient
around X-axis. Source: Author.

This degree of freedom did not achieved a good curve fitting, see Fig. 5.14. The

coefficient of determination is 31% for the training, and the total time to run 804 gen-

erations is 13,834 seconds. The validation can be performed in only 0.086 seconds,

however the coefficient of determination is bigger than the training’s coefficient, with
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a value of 41% of accuracy. The Figs. 5.14 and 5.15 shows the curve fitting for the

validation set.
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Figure 5.14: Training graph for the rolling moment coefficient. Source: Author.

Upon zooming into specific areas of the training graph, a slight phase discrepancy

between flight data and the Neuro-Fuzzy model becomes evident. This phase variation

may arise from the application of filters to the variables prior to computing the rolling

moment, as demonstrated in Eq. 2.19.
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Figure 5.15: Validation graph for the rolling moment coefficient. Source: Author.

The shape of the input membership functions for the roll moment coefficient is illus-

trated in Fig. 5.16.
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(c) Aileron deflection MFs.

Figure 5.16: Membership functions from the three input variables of the rolling moment
coefficient. Source: Author.

The optimized Neuro-Fuzzy parameters for the input membership functions are

shown in Tab. 5.7.

Table 5.7: Means and standard deviations values of the input membership functions
for rolling moment coefficient.

Mean Std
β (0.3717 0.6241 0.7766) (0.2809 0.1829 0.3000)
β̇ (0.0121 0.5100 0.8690) (0.0604 0.2453 0.2147)
δA (0.0860 0.6701 0.8584) (0.2397 0.2615 0.1113)

The seven constant consequents are shown in Tab. 5.8.

Table 5.8: Consequent values for rolling moment coefficient.

Consequent function (C)
Cl -0.0104 -0.0063 -0.0008 0.0008 0.0042 0.0119 0.0128
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5.2.2 Side Force (FY )

The aerodynamic model to predict the force coefficient in Y-axis takes in consider-

ing the angle of attack (α), the sideslip angle (β) and it’s derivative (β̇). The NF-DE

architecture for the force coefficient in Y-axis is presented in Fig. 5.17.

Figure 5.17: Schematic representation of the Neuro-Fuzzy for the force coefficient in
Y-axis. Source: Author.

In this case, likewise the previous forces and moments, 140,000 data points has

been used to train the model. The training had a total interval of 20,523 seconds to be

completed and the coefficient of determination (R2) was 64%. The validation has an

accuracy of 76% (R2) and 11,000 data points, and the Fig. 5.18 shows the curve fitting

for the training, and the Fig. 5.19 shows the validation.
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Figure 5.18: Training graph for the side force coefficient. Source: Author.
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Figure 5.19: Validation graph for the side force coefficient. Source: Author.

The membership functions for the side force coefficient (CY ) are presented in Fig.

5.20.
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Figure 5.20: Membership functions from the three input variables of the roll moment
coefficient. Source: Author.



Chapter 5. Results 61

The optimized parameters for the input membership functions is illustrated in Tab.

5.9.

Table 5.9: Means and standard deviations values of the input membership functions
for Y-axis force coefficient.

Mean Std
β (0.0084 0.4054 0.8465) (0.1566 0.1986 0.1198)
α (0.0075 0.4156 0.6713) (0.0657 0.1723 0.1961)
β̇ (0.0051 0.4328 0.8548) (0.1942 0.1974 0.1153)

The output constant functions are shown in Tab. 5.10.

Table 5.10: Consequent values for Y-axis force coefficient.

Consequent function (C)
CY -0.0725 -0.0281 -0.0178 0.0024 0.0217 0.0694 0.0666

5.2.3 Yawing Moment (N )

The architecture of the yawing moment coefficient (Cn) has three input variables,

aileron deflection (δA), roll rate (p), and sideslip angle rate (β̇). Fig. 5.21 shows the

schematic for the Neuro-Fuzzy architecture for Cn.

Figure 5.21: Schematic representation of the Neuro-Fuzzy for the moment coefficient
around Z-axis. Source: Author.

To train the Neuro-Fuzzy parameters, a total of 140,000 data points were used, with

35,000 for each variable. The curve fitting for the training resulted in a coefficient of

determination of 80% and took a total time of 16,902 seconds. Fig. 5.22 shows the

curve fitting for the training and Fig. 5.23 shows the curve fitting for the validation. The

coefficient of determination (R2) for the validation set is 74%.
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Figure 5.22: Training graph for the yawing moment coefficient. Source: Author.
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Figure 5.23: Validation graph for the yawing moment coefficient. Source: Author.

The Cn calculation was performed using the Neuro-Fuzzy parameters presented in

Tab. 5.11 and Tab. 5.12, with 11,000 data points for each input variable. Remarkably,

the computation time for this calculation was only 0.073 seconds.

The membership functions for the input variables of the Neuro-Fuzzy architecture

used to train the yaw moment coefficient, is illustrated in Fig. 5.24.
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(a) Aileron deflection MFs. (b) Roll rate MFs.

(c) Sideslip angle rate MFs.

Figure 5.24: Membership functions from the three input variables of the yaw moment
coefficient. Source: Author.

Table 5.11: Means and standard deviations values of the input membership functions
for yaw moment coefficient.

Mean Std
δA (0.2325 0.4690 0.8880) (0.1854 0.1401 0.1764)
p (0.0839 0.4276 0.7718) (0.0603 0.1355 0.0124)
β̇ (0.2388 0.5247 0.7865) (0.1824 0.1504 0.1765)

Table 5.12: Consequent values for Yaw moment.

Consequent function (C)
Cn -0.0099 -0.0079 -0.0017 0.0019 0.0061 0.0099 0.0130

This chapter introduced the Neuro-Fuzzy aerodynamic model developed using ex-

perimental data collected from the GFF reduced scale aircraft. The model predicts the

forces and moments acting in all degrees of freedom using three input variables. This
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configuration was chosen due to the absence of any other input variable with a corre-

lation greater than 0.3. Adding more input variables would increase the computational

cost and make the rule bases more complex, potentially requiring optimization of the

entire rule bases.



Chapter 6

Discussions and Comparisons

This chapter is dedicated to analyse the results obtained in the previous section

and comparing them with other methods commonly used in the aerodynamic modeling

of the GFF. Its purpose is to provide a comprehensive comparison between the results

of the proposed approach and alternative methods employed in this field.

6.1 Stability Derivatives

The stability derivatives of each degree of freedom is going to be presented in this

section. The derivatives are calculated as a function of the input variables.

The rule bases for each force or moment coefficient consist of 27 rules. Each

degree of freedom is designed with three input variables, each of which has three

membership functions, as mentioned in the chapter 4, which are calculated according

to Eq. 6.1, where nMF is the number of membership functions for each input variable

and i is the number of input variables.

Nrules = ni
MF (6.1)

To obtain the stability derivatives, two out of three input variables are declared as

0, which in fuzzy logic means that these variables are always belong to the subset

classified as low. When entering the rule bases, the system determines an interval

within which the results will fall, and this interval is defined by 3 out of 7 output constant

consequents.
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To make it a bit more easier to identify the interval of the following stability deriva-

tives, a 3x9 matrix is created with all these rule bases. The Eq. 6.2 below shows this

structure.

Rules =











C111 C211 C311 C121 C221 C321 C131 C231 C331

C112 C212 C312 C122 C222 C322 C132 C232 C332

C113 C213 C313 C123 C223 C323 C133 C233 C333











(6.2)

In the matrix, each coefficient represents a results output function according to the

values of the input variables. The index of each coefficient is represented by three

numbers, each number corresponding to a specific input variable, respectively the first,

second and third input variable of the fuzzy set. The number 1 means that the input

variable belongs to the fuzzy set defined as low, the number 2 means that the input

belongs to the medium fuzzy set and the number 3 means that the variable belongs

to the high fuzzy set. For example a123 means that the first input variables is low, the

second is medium and the third is high.

Now, the order of the constant consequent functions depends on the proportionality

between the input variable and the output variable. A simple example is illustrated in

Eq. 6.3, where all the input variables are directly proportional to the output variable.

The coefficients of the matrix are defined between 1 and 7, corresponding to the output

constant function that each rule represents, according to the values presented in the

Chapter 5.

Rules =











1 2 3 2 3 4 3 4 5

2 3 4 3 4 5 4 5 6

3 4 5 4 5 6 5 6 7











(6.3)

In the example from Eq. 6.3, reducing the influence of the first and second input

variables to zero means that only the variation of the third variable will matter. This

results in the coefficients C111, C112 and C113, which correspond to the 1, 2 and 3 in

Eq. 6.3. In other words, these numbers represent the first three consequent functions

for this particular FRBS. This specific case represents the yawning moment coefficient

(Cn), where each input variable is directly proportional to the output variable.

This was a brief discussion of the possibilities of the interval for each stability deriva-
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tive. The following subsections will present each one of them.

6.1.1 Tangential Force

The first Taylor order approximation for the tangential force coefficient of the GFF,

based on the input variables used to train the aerodynamic model, can be obtained

from Eq. 6.4. The stability derivatives for CX are also shown in Fig. 6.1.

CX = CX0 + CXα
α + CXδE

δE +
c

2V
CXq

q (6.4)
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Figure 6.1: Tangential force stability derivatives approximations in radians. Source:
Author.

Fig. 6.1a shows that the angle of attack has a linear influence on the tangential force

coefficient, while the elevator deflection has a quadratic behavior on the tangential force

coefficient, as depicted in Fig. 6.1b. Analyzing the Fig. 6.1c, it becomes clear that CXq
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can be considered as zero. Simplifying the stability derivatives as a linear curve, the

first Taylor order equation describing the tangential force coefficient can be seen in Eq.

6.5.

CX = −0.035 + 0.178α + 0.217δE + 0q (6.5)

To evaluate how accurate the Eq. 6.5 is with the Neuro-Fuzzy, the Fig. 6.2 is

presented. It can be seen that the FTO and the NF have a close behavior on the

prediction of the CX .
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Figure 6.2: Prediction comparison between NF and FTO approximation for the side
force coefficient. Source: Author.

6.1.2 Pitching Moment

The pitching moment coefficient can be obtained according to Eq. 6.6, which repre-

sents the FTO for the GFF’s Cm based on the input variables used to train this moment

coefficient. The pitching moment of the GFF is controlled by the canard and the el-

evator deflection. However, these control surfaces are linked together, and they are

indirectly proportional. Therefore, only the elevator deflection is being used. The pitch-

ing moment stability derivatives are presented in Fig. 6.3.
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Cm = Cm0 + Cmα
α +

c

2V
Cmα̇

α̇ + CmδE
δE (6.6)
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Figure 6.3: Pitching moment stability derivatives approximations in radians. Source:
Author.

Fig. 6.3a shows a linear correlation between Cm and α in this particular interval (val-

idation data). However, the correlation between α̇ and the pitching moment coefficient

is better approximated by a quadratic curve. Furthermore, the elevator deflection has

a cubic behavior on Cm. By linear approximations from the curves shown in Fig. 6.3,

the first Taylor order approximation that best describes the pitching moment coefficient

is presented in Eq. 6.7.

Cm = 0.007− 0.051α + 0.037α̇ +−0.066δE (6.7)

To evaluate the accuracy of Eq. 6.7 with the NF validation, the Fig. 6.4 is presented.
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At some points, the FTO is not good enough to predict the value of Cm.
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Figure 6.4: Prediction comparison between NF and FTO approximation for the pitching
moment coefficient. Source: Author.

6.1.3 Vertical Force

The vertical force coefficient, expressed according to Taylor’s theorem, can be rep-

resented by Eq. 6.8. To obtain each term of FTO equation, the stability derivatives for

CZ are plotted and approximated by polynomial curves, as shown in Fig. 6.5.

CZ = CZ0 + CZα
α + CZδE

δE +
c

2V
CZq

q (6.8)
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Figure 6.5: Vertical force stability derivatives approximations in radians. Source: Au-
thor.

The most influential variable on the CZ value is the angle of attack, as shown in

Fig. 6.5a. The elevator deflection and the pitching rate also contribute to the vertical

force coefficient. Fig. 6.5b shows that positive elevator deflection reduces the value of

this coefficient. Furthermore, Fig. 6.5c shows that the pitching rate has a non-linear

impact on the CZ . With these approximations in mind, the first Taylor order expansion

that best represents the Z force coefficient is presented in Eq. 6.9.

CZ = −0.058− 2.920α + 2.185δE −
c

2V
0.046q (6.9)

Using the Eq. 6.9, a comparison between the Neuro-Fuzzy, the First Taylor Order

approximation and the flight data is presented in Fig. 6.6.
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Figure 6.6: Prediction comparison for vertical force coefficient. Source: Author.

6.1.4 Rolling Moment

Based on the input variables used to train the rolling moment coefficient of the GFF,

the Cl can be written according to Eq. 6.10.

Cl = Cl0 + Clββ +
b

2V
Cl

β̇
β̇ + ClδA

δA (6.10)

The stability derivatives for the rolling moment coefficient are presented in Fig. 6.7.
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Figure 6.7: Rolling moment coefficient in function of the input variables. Source: Au-
thor.

The Fig. 6.7a shows that the sideslip angle affects the Cl in a nonlinear way. The

approximated polynomial is a 4th degree polynomial. Additionally, Fig. 6.7b shows the

influence of the sideslip angle rate on this coefficient, which gives a quadratic behavior.

Finally, Fig. 6.7c characterizes the influence of the aileron deflection on the rolling mo-

ment coefficient, making it another influential variable in the rolling moment coefficient.

The Eq. 6.11 represents the FTO written with linear curve approximation of the partial

derivatives of each nondimensional stability derivative.

Cl = 0− 0.046β −
b

2V
0.007β̇ + 0.026δA (6.11)
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Figure 6.8: Prediction comparison between NF and FTO approximation for the rolling
moment coefficient. Source: Author.

6.1.5 Side Force

The first Taylor order series that represent the side force coefficient of the GFF is

presented in Eq. 6.12.

CY = CY0 + CYα
α + CYβ

β +
b

2V
CY

β̇
β̇ (6.12)

The stability derivatives for the side force coefficient are presented in Fig. 6.9.
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Figure 6.9: Side force coefficient in function of the input variables. Source: Author.

The sideslip angle has a remarkable influence on the side force coefficient, as it

can be seen in Fig. 6.9b and Fig. 6.9c. This fundamental dependence makes β the

most important input variable for this force. Furthermore, the angle of attack also has

its collaboration, which is also indispensable, as illustrated in Fig. 6.9a.

Substituting the values found in linear approximation in Eq. 6.12, the first Taylor

order that better describes the side force coefficient can be rewritten as Eq. 6.13

shows.

CY = 0− 0.058α− 0.376β −
b

2V
0.112β̇ (6.13)

Finally, a comparison between the Neuro-Fuzzy prediction and the approximation

using the FTO is presented in Fig. 6.10.
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Figure 6.10: Prediction comparison between NF and FTO approximation for side force
coefficient. Source: Author.

6.1.6 Yawing moment

The first Taylor order series for the yawing moment coefficient is shown in Eq. 6.14.

Cn = Cn0 + CnδA
δA +

b

2V
Cnp

p+
b

2V
Cn

β̇
β̇ (6.14)

The stability derivatives for the Cn are presented in Fig. 6.11.
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Figure 6.11: Yawing moment coefficient in function of the input variables. Source:
Author.

It is noteworthy that the roll rate does not significantly affect the yaw moment co-

efficient. Fig. 6.11b illustrates this variation. However, the aileron deflection and the

sideslip angle rate play a crucial role in influencing this moment coefficient, as depicted

in Fig. 6.11a and 6.11c, respectively.

The first Taylor order equation for the yawing moment coefficient can be expressed

in Eq. 6.15. In Fig. 6.11b the roll rate does not have a linear coefficient on the

interval between [−1.50;−0.25], because it is a constant curve. For values of p above

−0.25rad/s, the stability derivative should be approximated to 3.351 · 10−4.

Cn = 0 + 0.030δA +
b

2V
0p+

b

2V
0.016β̇ (6.15)
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Figure 6.12: Prediction comparison between NF and FTO approximation for yawing
moment coefficient. Source: Author.

Analyzing the results presented, it is possible to notice that the derivatives of the

attitude angles (α̇, β̇, ṗ, q̇ and ṙ) have a greater influence on the prediction of the

aerodynamic model. This is due to the unsteady aerodynamics and low moments of

inertia, which cause the aircraft to oscillate at a high frequency around its center of

gravity.

6.2 Comparison with CFD and Wind Tunnel

The results of the Neuro-Fuzzy predicted aerodynamic model are compared with

the GFF CFD (Euler and Navier-Stokes) results and with the 1:4 reduced scale GFF

wind tunnel (WT) results presented by Larsson et al. (2022). The Figs. 6.13, 6.14 and

6.15 illustrate the difference between the approaches.
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Figure 6.13: Comparison between CFD, Neuro-Fuzzy and Wind Tunnel results for the
tangential force FX . Source: Larsson et al. (2022) and Author.
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Figure 6.14: Comparison between CFD, Neuro-Fuzzy and Wind Tunnel results for the
pitching moment M . Source: Larsson et al. (2022) and Author.
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Figure 6.15: Comparison between CFD, Neuro-Fuzzy and Wind Tunnel results for the
vertical force FZ . Source: Larsson et al. (2022) and Author.

The comparison between the Neuro-Fuzzy, CFD and the WT results is close, es-

pecially when analyzing the CX and CZ . A difference is shown for the pitching moment

coefficient. This difference may be due to the condition of the simulations. It is nec-

essary to remember that the conditions are not similar, the flight data were acquired

under a perturbed condition, and the simulations in WT and CFD were performed in the

steady state. Another factor that could contribute to the difference between the results

is the scale factor.

6.3 Model and Simulation

In this section, the author presents an aerodynamic model using Neuro-Fuzzy. This

aerodynamic model starts with an initial condition and proceeds to predict the values

of the state variables. Figure 6.16 illustrates the Simulink architecture built to simulate

the GFF.
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Figure 6.16: Simulink architecture of the GFF model and simulation. Source: Author.

To create the aerodynamic model and simulation, both linear and nonlinear approxi-

mations are performed using the stability derivatives presented in the previous section.

Only first order polynomial functions are used, with higher order degrees being con-

verted appropriately. The First Taylor Order (FTO) equations are integrated into the

GFF Neuro-Fuzzy Aerodynamic Model function, allowing the calculation of each force

and moment coefficient. These coefficients are determined using the stability deriva-

tives presented in this chapter, as described in subsection 6.1, with the exception of

the rolling moment coefficient, which is estimated based on literature approximations

(RUEDA, 2021).

The calculations to obtain the output of the simulation, which is the rate of the

stability variables, are better explained in the appendix A.

The input U-matrix consists of the deflection of the GFF control surfaces, as pre-

sented in Fig. 6.16. Three conditions are going to be presented: a steady condition,

a step input condition and an unsteady state condition. The control surface signals

for the unsteady simulation are implemented using the "Signal from Workspace" block

available in the Simulink library. It is important to note that in the first two simulations -

steady condition and step input condition - the value of the CYα
was set to zero. This

was done as a simplification method to eliminate the influence of the longitudinal mode

on the lateral-directional mode. In addition, all lateral-directional static stability deriva-

tives were also set to zero.

The calculation of the state angle rates, such as α̇ and β̇, can be calculated accord-
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ing to Fossen (2011). The mathematical expressions are given in Eq. 6.16 and in Eq.

6.17.

α̇ =
uẇ − wu̇

u2 + w2
(6.16)

β̇ =
v̇V − vV̇

V cos(β)
(6.17)

Where V̇ can be obtained through Eq. 6.18

V̇ =
u̇u+ v̇v + ẇw

V
(6.18)

6.3.1 Steady Control Inputs

The steady state simulation of the airplane uses a constant value for the U-matrix

as input, in order to identify the trim condition of the aircraft. The Figure 6.17 shows the

elevator, canard, and aileron deflections as well as the thrust applied during the steady

state simulation. The values of this specific trim condition are presented in Eq. 6.19
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Figure 6.17: Static control deflections over 120 seconds of simulation. Source: Author.

It takes a few seconds for the aircraft to begin to stabilize; however, it still appears to

be stable with fixed control actions. A phugoid oscillation in the longitudinal dynamics

can be observed in Figure 6.18. This behavior occurs because the aircraft is trying to

stabilize itself. Additionally, the simulation was started with the state variable values

shown in equation 6.20.
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Figure 6.18: State variables behavior over 120 seconds of simulation with no control
deflections. Source: Author.

The aircraft model simulated in Simulink appears to be a stable aerodynamic model;

even with a given state condition and deflected control surfaces, the aircraft still damp-

ens its behavior.

6.3.2 Step Input Signals

To evaluate the response of the aircraft, one step deflection signal was randomly

generated by the elevator. The step pulse has 0.4 seconds of duration and it is applied

at second 10. The simulation was run in Simulink with positive elevator deflection step.

The Figure 6.19 shows the amplitudes of the pulse.
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Figure 6.19: Control deflections behavior over 120 seconds of simulation with two
positive step signals. Source: Author.

With the step input signals, the aircraft exhibited a different behavior in terms of

speed and pitching rate. Due to the reduced scale factor the step time interval should

be reduced, because a long elevator perturbation shall be catastrophic. Figure 6.20

shows the results for the second set of step input signals.
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Figure 6.20: State variables behavior over 120 seconds of simulation with two positive
step signals. Source: Author.

The step input signals showed that the aerodynamic model created for the GFF is

a dynamically stable model of the aircraft. However, it is a unsteady condition model,

which means that steady-state conditions are difficult to be simulate.

6.3.3 Unsteady Simulation

The unsteady simulation uses the control surface deflections recorded during the

flight test. In this state, the CYα
stability derivative does not affect the simulation as it

does in the steady state. The Fig. 6.21 presents the control surface variation over time,

and they are presented in the following order: δE, δC , δA and δT .



Chapter 6. Discussions and Comparisons 87

0 20 40 60 80 100 120
-0.05

0

0.05

ra
d

E

0 20 40 60 80 100 120

0

0.05

0.1

ra
d

C

0 20 40 60 80 100 120

-0.04

-0.02

0

0.02

ra
d

A

0 20 40 60 80 100 120

Time [s]

0

50

100

N
e
w

to
n Thrust

Figure 6.21: Control variables behavior over 60 seconds of simulation. Source: Author.

The results of the simulation with unsteady control inputs can be observed in Fig.

6.22, which shows the states of the aircraft (X vector). The simulation was performed

for 110 seconds and the input control surfaces were the real data obtained from the

flight tests of the aircraft. The interval used to feed the model is the same as that shown

in Fig. 3.8.
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Figure 6.22: State variables behavior over 60 seconds of simulation. Source: Author.

It can be observed that the elevator and aileron deflections at 20 seconds and 30

seconds affect the longitudinal motion, explaining some peaks in the u and w velocities,

as well as the pitching rate.

The Z-axis Euler angle (ψ) starts at 6 radians, increases to 11 radians, and then

begins to decrease. This high oscillation can be related to the equation used to cal-

culate angular acceleration, which does not reset to 0 after completing a 2π turn, but

continues to increase in value. The equation 6.21 shows how angular accelerations

are calculated (source: (LARSSON, 2019)).
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The value of the angle of attack of the aircraft was also compared to the flight data.

The behavior of the predicted angle of attack, calculated by Eq. 6.22, is very close to

the flight data. However, when the same approach is extended to the sideslip angle,

there is a greater difference between the prediction and the flight data. The sideslip

angle is calculated with Eq. 6.23.
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α = tan−1(w/u) (6.22)

β = sin−1(v/V ) (6.23)
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Figure 6.23: Comparison between simulated and recorded in the flight test for the angle
of attack . Source: Author.
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Figure 6.24: Comparison between simulated and recorded in the flight for the sideslip
angle. Source: Author.

While the GFF simulation provides a commendable approximation of the aircraft

state variables under varying control states, it requires further improvements to in-

crease its accuracy. The current version of the aerodynamic model, lacks crucial lon-
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gitudinal and lateral-directional damping parameters, such as Cmq
and Cnr

. Future

work should aim to incorporate these elements to promote a more stable and reliable

aerodynamic model.

Nevertheless, despite the need for refinement, the simulation of the GFF provides

a valuable approximation of the aircraft state variables as the control states vary ac-

cording to the input signals given by the pilot during flight testing. This demonstrates

its potential as a basis for further development and improvement in future work.



Chapter 7

Conclusions

This study has introduced an alternative and innovative approach to perform system

identification on a reduced scale fighter aircraft, the GFF, using the Adaptive Network-

based Fuzzy Inference System (ANFIS) or Neuro-Fuzzy. The presented Neuro-Fuzzy

architecture integrates Differential Evolution as an optimization method, predicts pa-

rameters from membership functions and outputs consequent functions.

To select Neuro-Fuzzy with Differential Evolution, three additional configurations

were tested using experimental aerodynamic flight data. These configurations included

two additional optimization methods (Complex RF and Genetic Algorithm) and one ad-

ditional Fuzzy Inference Method (Pondered Individual Analysis). Chapter 4 presents

the comparisons and conclusions. Additionally, the same chapter includes a compar-

ison between the shapes of the membership functions and types of output functions.

The results showed that the NF-DE is the best method tested to perform the system

identification of the GFF.

According to the results presented in Chapter 5, NF-DE is capable of mimicking

the aircraft behavior based on only three input variables and predicting the aircraft

behavior in other flight intervals that fall within the boundaries of the training limits.

However, NF-DE is unable to accurately capture the high peaks of oscillation in all

aerodynamic coefficients. As shown in Section 5, it is apparent that the force and

moment coefficients do not align well with the extremes of the curves.

The flight simulation is capable of replicating the behavior of the GFF by using

Neuro-Fuzzy predictions of the forces and moment coefficients. However, some im-

provements are needed to further refine the simulation. These include incorporating
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damping stability derivatives into the pitching moment coefficient (Cmq
) and yawing

moment coefficient (Cnr
). In addition, increasing the number of input variables in the

Neuro-Fuzzy model would help reduce the error in training and validation.

As future work, it is recommended to increase the number of input variables in an

attempt to capture the missing peaks observed in the training and validation in Chapter

5, also it is important to evaluate the uncertainties alongside the model training. In

addition, it is proposed to more accurately model the thrust and twisting moments of the

aircraft to ensure a better approximation of the tangential aerodynamic force and rolling

moment, respectively. Implementation of these adjustments is expected to significantly

improve the GFF simulation, paving the way for more accurate and reliable modeling.

Finally, a self-adaptive Neuro-Fuzzy will be created to allow the model to self-improve

with on-board data collection.
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Appendix A

Some calculations performed inside the GFF simulation are:

Velocities rate:




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v̇

ẇ




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=
[

1
m
F b
A − wb × V b

]

(A.1)

In this expression:

• F b
A is the aerodynamic forces in the body frame.

• V b is the aircraft velocities in the body frame.

• wb is the angular velocity vector in the body frame.

Angular accelerations:
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
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ṗ
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ṙ
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I
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b

(

M
b
cg −w

b × (Ib ·w
b)
)

]

(A.2)

In this expression:

• I−1
b is the inverse of the inertia matrix in the body frame.

• M b
cg is the moment acting on the center of gravity in the body frame.

• wb is the angular velocity vector in the body frame.

Angular velocities
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(A.3)

Where

Hφ =
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