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Resumo

O desenvolvimento de técnicas que consigam realizar a previsão do tráfego de rede em
uma metrópole podem alimentar aplicações data driven, como orquestradores de funções
virtuais, chamados de Virtual Network Functions (VNF), otimizando a alocação de re-
cursos e aumentando o número de usuários cobertos por redes móveis. Apesar de diversos
estudos terem endereçado este problema, vários não consideraram a relação do tráfego em
diferentes regiões da cidade e nem a informação de estações de transporte público, que
podem prover informações úteis para uma melhor previsão do tráfego de rede.

Nesta pesquisa, propomos uma nova arquitetura de deep learning para prever o tráfego
de rede usando aprendizado por representação e redes neurais recorrentes. O mod-
elo, chamado Mobile Traffic Predictor Enhanced by Neighboring and Transportation
Data (MTP-NT), tem dois principais componentes: o primeiro responsável por apren-
der a partir das séries temporais de uma dada região e o segundo por aprender a partir
das séries temporais das regiões vizinhas e estações de transporte público. O trabalho
também revisa a infraestrutura 5G baseada em especificações 3GPP abertas para explo-
rar formas de implementar a estrutura em uma arquitetura real. Diversos experimentos
foram conduzidos considerando um dataset com dados reais da cidade de Milão, assim
como comparações contra técnicas estado-da-arte amplamente adotadas. Os resultados
mostrados nesta pesquisa demonstram que o uso de informação de transporte público
contribuem para melhorar as previsões em regiões centrais da cidade, assim como em
regiões com demandas aperiódicas, tais como regiões turísticas.

Desta forma, esta pesquisa busca avaliar a performance de modelos de previsão de
tráfego com o uso de dados públicos, com o intuito de validar o ganho de performance
com a agregação de dados de transporte público. A agregação de dados não convencionais
pode ser uma forma de adicionar informação ao modelo por meio de informações até então
não exploradas no escopo desta área de pesquisa.

Palavras-chave: Redes móveis. 5G. Séries temporais. Previsão de tráfego de rede.



NFV. Deep Learning. NTMA.
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Abstract

The development of techniques able to forecast the mobile network traffic in a city can
feed data driven applications, as VNF orchestrators, optimizing the resource allocation
and increasing the capacity of mobile networks. Despite the fact that several studies have
addressed this problem, many did not consider neither the traffic relationship among
city regions nor information from public transport stations, which may provide useful
information to better anticipate the network traffic.

In this dissertation, we propose a new deep learning architecture to forecast the net-
work traffic using representation learning and recurrent neural networks. The framework,
named MTP-NT, has two major components: the first responsible to learn from the time
series of the region to be predicted, and the second one learning from the time series
of both neighboring regions and public transportation stations. The work also reviews
the 5G infrastructure based on open 3GPP specifications to explore ways to implement
the framework in a real architecture. Several experiments were conducted over a dataset
from the city of Milan, as well as comparisons against widely adopted and state-of-the-art
techniques. The results shown in this work demonstrate that the usage of public transport
information contribute to improve the forecasts in central areas of the city, as well as in
regions with aperiodic demands, such as tourist regions.

Thus, this research seeks to evaluate the performance of traffic forecasting models
using public data, in order to validate the performance gain with the aggregation of
public transport data. The aggregation of unconventional data can be a way of adding
information to the model through input that has not been explored in the scope of this
research area.

Keywords: Mobile Networks. 5G. Time Series. Network Traffic Forecasting. NFV.
Deep Learning. NTMA.
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Chapter 1
Introduction

At the end of 2028 there will be near 5 billion of 5G nodes (ERICSSON, 2022). All
connected nodes will generate an average of 100 exabytes of data per quarter, generating
a massive demand of traffic on mobile networks (mainly 3G, 4G, 5G and Wi-Fi). In
this scenario, it will be of crucial importance for mobile network providers being able to
allocate the maximum amount of users and optimizing the network operability leveraging
on Network Function Virtualization (NFV) (Sun et al., 2019). To deal with that, Machine
Learning (ML) and other predictive tools can be used to improve resource allocation and
respond quickly to changes in network traffic.

These tools have a main role in this scenario, so resource allocation (on the user
perspective) and network slicing (on the telecommunications operator perspective) can
achieve better results. There is also other ML usage and research in mobile networks, as
techniques to improve energy efficiency of the network (Niu, 2011), approaches to optimize
resource sharing to the gNodeB (gNB) in 5G networks and data driven procedures for
deployment planning of base stations (Lee et al., 2014).

In addition to the goal of allocating an increasing number of devices with an increasing
demand for bandwidth, 5G networks have additional goals to achieve, as near 1𝑚𝑠 latency,
low energy consumption and almost 100% coverage, for example(Agiwal; Roy; Saxena,
2016). To achieve these objectives, caching in network edges, cloud computing based
infrastructure and many other techniques can be used to improve the network efficiency
and, in almost all of them, Artificial Intelligence (AI) can be used to boost those techniques
and increase the impact on the network.

5G networks, in particular, are designed to be managed through VNF of the Core Net-
work (CN) in a NFV topology - that will be executed in the cloud and/or edge, allowing
resource management in an unified way (Alawe et al., 2018). Besides network manage-
ment, VNF will allow the creation of flexible networks under demand, scaling according
to the amount of resource requested or even to the network traffic itself. However, this
flexibility can create imbalanced networks, with BSs with different capabilities and be-
haviors, causing the overload of the network even before it reaches its maximum capacity
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(Gotzner; Rathgeber, 1998).
As conventional algorithms in network management were designed for static networks,

the imbalance of traffic loads among heterogenous Base Station (BS)s needs to be ad-
dressed. Here, AI models have an important role, with a mathematical modelling that
normally rely on historical data (Wang et al., 2017b; Wang et al., 2017a; Chen et al.,
2015).

AI solutions offers some advantages when used in network problems. As shown in
(Sun et al., 2017) a well designed network for power allocation can be less complex than a
Weighted Minimum Mean-Square Error (WMMSE) algorithm. Those tecniques generally
learn robust patterns and avoid past faults with a better overall performance (Sun et al.,
2019). However, some points can limit the usage of ML solutions. To cite a few:

❏ Do the problem have enough data so a model can be trained and evaluated in?

❏ All the pertinent information related to the problem is being correctly used? All
the information used in the model are pertinent and have a causality relation with
the problem?

❏ The response time of the final architecture allows it to be used in real time?

To review successful works in AI and 5G, this dissertation make a bibliographical
review from both areas, with a theoretical review of ML and the basis of the new gener-
ation of mobile networks and its new paradigm, focusing on the topics of infrastructure
virtualization and the use of data and predictive models in the CN. The subarea of the
junction between the two areas explored in this dissertation is the branch of developing
network traffic prediction models in mobile networks, where ML models are developed
with a focus on assisting the CN in its internal processes by providing network traffic
predictions.

In this dissertation we design a new deep learning architecture to forecast the network
traffic using representation learning and Recurrent Neural Networks (RNN). The pro-
posed framework is called Mobile Traffic Predictor Enhanced by Neighboring and Trans-
portation Data (MTP-NT) and uses a Recurrent Neural Networks (RNN) along with a
representation encoding composed by two main components: one component process in-
formation regarding both neighborhood and public transportation data, which assumes
the concept that information provided by the network traffic analysis among city regions
and, as well as, from public transportation stations may provide useful information to
better predict network traffic; and the other component processes the past time series of
the region of interest to be predicted, which is motivated by the concept that network
usage present high periodicity, and, as consequence, high self correlation in some specific
time intervals (Wang et al., 2017a).
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Considering such a predictive context, the main contributions from our investigations
in this dissertation include:

❏ The development of an easily implementable framework to network traffic predic-
tions;

❏ Reproducibility of our findings given the fact that all the data is available under
Creative Commons Attribution 4.0 International License and the code used in this
work is documented at (de Araújo; Pasquini; Murillo Guimarães Carneiro, 2022)
and its readme can be seen in appendix A;

❏ An implementation based on a General Data Protection Regulation (GDPR) com-
pliant dataset;

❏ Best overall performance among the evaluated time series prediction techniques;

❏ Validation of performance with tests with real world data;

❏ Tests on a highly dense public event on Giuseppe Meazza/San Ciro stadium, in
Milan, validating MTP-NT performance on extreme scenarios of network consump-
tion.

❏ A method to use public transportation data into network traffic modeling;

❏ Testing and usage of feature selection techniques to ensure that just information
that adds value to the overall performance are used;

The integration of public transportation data into network traffic modeling represents
a promising avenue in the aggregation of useful data to the network traffic forecasting
modeling. This data not only enhances the accuracy of traffic models but also shows a
new kind of information that can be explored in projects of this nature.

The development of a replicable framework in open source license is important as not
only aligns with ethical and collaborative values but also fosters a robust and transparent
research ecosystem. Researchers can leverage these techniques to drive innovation, build
upon existing work, and contribute to the collective advancement of knowledge. This is
also important to allow the solution to be implemented and tested in real use cases in the
industry.

According to (ALLIANCE, 2022), 80% of the sites in a city carry 20% of the traffic;
50% of them carry 5% of the traffic; and 50% of the data is consumed in less than 0, 35%
of the area, which creates high stress zonal areas in the network infrastructure (mostly in
central areas). With a high demand for a disproportionately distributed network in large
centers and the deployment of increasingly flexible and virtualized networks, big cities
have a wide range of opportunities to benefit from network usage predictions.
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The simplest case is to allocate more precisely the network core resources, as some
regions of a city might have a lower network demand rather than central regions in peak
areas, for example. Also, as MTP-NT uses public transportation data, in bigger cities,
with more granular and robust public transportation infrastructure, the framework could
perform better predictions compared to cities with smaller public transport infrastruc-
tures.

The overall idea of MTP-NT generalizes to different mobile network technologies.
However, given intrinsic properties of 5G related to Network Function Virtualization, it
creates a favorable scenario to deploy our proposal. Therefore, in this dissertation, we
present our proposal as an exercise of instantiating MTP-NT based on 5G technologies.
We focus on the conceptual definition of key functions from 5G architecture required to
support our proposal.

The dissertation is ordered as it follows: Chapter 2 presents related work about net-
work traffic characterization and network traffic forecasting. The first is a branch of
research that aims to find patterns on the network consumption in different areas of the
city and moments of the day. The second tries to predicts the network demand for further
usage on the mobile network infrastructure.

Chapter 3 gives a theoretical overview of Machine Learning (ML) techniques, focusing
on the main topics related to MTP-NT. Chapter 4 revisits some of the research in the
area of network traffic characterization and network traffic prediction, as well as how the
mobile network backend evolved in the fifth-generation of networks by means of Network
Function Virtualization (NFV) and cloud. It is also shown how MTP-NT could be applied
to the 5G infrastructure in details. The dataset is described, presenting the data used,
the format and any transformations that were made.

In Chapter 5, we delve into a precise mathematical formalization of MTP-NT. This
chapter not only elucidates the mathematical principles underpinning the framework but
also unveils the architectural components of the technique. It provides a comprehensive
overview of how the neural network is structured and details the specific data employed
within each segment (or branch) as it will be later explained.

Chapter 6 shows the results from the experiments by comparing MTP-NT to related
works. Different tests where made to ensure the overall performance of the proposed
framework, making previsions in Base Stations (BSs) with different network usage pat-
terns to ensure that MTP-NT has a good performance regardless the scenario. The main
result of the work, regardless its good overall performance of prediction, is the test of
the framework in a high scale event near Giuseppe Meazza/San Ciro stadium, where the
predictions were able to keep up with a high aperiodic network traffic behavior, as will be
shown later. Different tests varying the amount of data were also performed so that the
impact of increasing the volume of data used can be measured from the point of view of
training time and quality of predictions.
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Chapter 7 contains final considerations of the work, recapitulating all the development
of the work and impact on the current scenario of telecommunications, as well as showing
possible next steps of the research.
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Chapter 2
Related work

As explained by (Xu et al., 2017), the network traffic characterization can be very
useful for both network operators and the government. The modelling of network traf-
fics can be used by the Internet Service Provider (ISP) to customize load balancing and
strategies to specific towers/regions (related to specific traffic patterns) and increase the
optimization of the resource usages as well as Quality of Service (QoS)/Quality of Ex-
perience (QoE). To government and other organizations related to urban planning (as
transport companies, for example) the traffic analysis can be a useful source of land usage
and human economic activites.

There are two main groups of studies related to network traffic analysis: network
traffic characterization and prediction. Investigations that deal with the characterization
of network traffic aim to analyze metrics and mathematical characteristics of network
usage (Xu et al., 2017; Wang et al., 2015; Gotzner; Rathgeber, 1998)

Other studies focus on the development of mathematical models to predict network
traffic and, according to the review in (Boutaba et al., 2018), the problem can be modelled
in two different ways: traffic prediction as a pure Time Series Function (TSF) problem,
where the network traffic is manipulated as a time series function, and as a non-TSF
problem, where other methods are used, such as frequency-domain analysis.

TSF approaches rely on past observations of the data and, to make a viable mathe-
matical model to predict a time series, it’s needed previous past samples to train, validate
and test the model. Unfortunately, in complex telecommunications scenarios and high
speed data links, it might be technically difficult to conduct measurements at the required
speed and granularity.

In this way, some studies try to predict network traffic by other methods and features.
Even though these non-TSF approaches had shown, in general, less accuracy than TSF
approaches, the predictions can be done with more complex models and ensamble learning.
(Boutaba et al., 2018) offers further details and clarification of the main research in the
area.



24 Chapter 2. Related work

2.1 Network traffic characterization

In (Xu et al., 2017), for example, different regions of a city are grouped based on
network usage patterns, dividing them into residential, transport, office, entertainment
and comprehensive areas. The used dataset consists of 9, 600 BSs serving 150, 000 users,
with data from August 1st to August 31st 2014.

The data was condensed in 10-minute samples (the same way as the data used in this
dissertation (Barlacchi et al., 2015)) and, after a data exploration and preprocessing, a
clustering algorithm based on the time series of the network traffic in each region was
performed to find the best arrangement of clusters. The optimal number of clusters was
found using Davies-Bouldin algorithm (Maulik; Bandyopadhyay, 2002).

The resulting 5 clusters, modelled by the network traffic, can be related to their urban
ecology, based initially on human labelling of a few regions and generalized to the rest,
resulting in the residential, transport, office, entertainment and comprehensive areas as
seen in Figure 1.

Figure 1 – Urban areas find throught clustering of network traffic related to their urban
ecology.

Source: (Xu et al., 2017).

Some characteristics of the clusters are also explored in time domain, which are:

1. Weekday-Weekend Traffic Amount Ratio: ratio of weekday and weekend traffic,
which shows how much of the network traffic is concentrated in those different
periods of the week. Residential areas, for example, have an ratio of 1, while office
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areas have a ratio near to two, related to the fact that people don’t tend to go to
these areas and use the network (related to the work days);

2. Peak-Valley Features: the ratio of the maximum and the minimum traffic registered
during the analysis. In transport areas, for example, this peak is 133.33, which
shows the high discrepancy of network usage in rush hours and other periods of the
day in these regions during the week, as can be seen in Figure 2;

3. Time of Traffic Peak and Valley: the analysis of the time of the day of maximum
and minimum network usage can also be a good source of information, showing the
time characteristics of the demand.

Figure 2 – Network traffic sample from a transport region along the week.

Source: (Xu et al., 2017).

The time series are also explored in the frequency domain through Discrete Fourier
Transform (DFT), exploring the contributions related to week, day and halfday period-
icity. After this characterization, the network traffic is modelled through the frequency
components explored, showing good results.

(Wang et al., 2015) explored an arrange of 380, 000 BSs in Shanghai from August 1 to
August 31, 2014. The data also have 10 minute samples for each Base Station (BS) during
the period with recordings of data communication, of which the device’s ID (anonymized),
starting and ending time, BS ID, location and traffic volume. The total amount of data
reaches 1.96 billion entries with a total size of 2.8 PB (92 TB per day, 7 GB per BS on
average).

The work find that the mobile traffic follow a trimodal distribution composed by
compound-exponential, power-law and exponential distribution and that could be possi-
ble to have a R-square of 99% describing the network traffic by means of a trimodal dis-
tribution. Another conclusion was that, in urban regions, the traffic is non-homogeneous,
being centered in specific time and area.
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Besides the study around the trimodal distribution as a way to describe the network
traffic, (Wang et al., 2015) also analyzes the spatial and temporal distribution of the
network traffic, highlighting that the concentration of the network consumption (in both
temporal and spatial terms) as can be seen in Figure 3.

Figure 3 – Network traffic concentration alog the day in Shangai.

Source: (Wang et al., 2015).

As seen in (Xu et al., 2017), the work also discusses the difference in the network traffic
demand related to the urban ecology, as can be seen in Figure 4. All the inhomogeneity
results into a extremely insufficient utilization of network resources.

(Gotzner; Rathgeber, 1998) analyzed the traffic in the city of Berlin between May
1996 and August 1997 and found that the traffic was concentrated in the city center,
generating congestion in these regions in peak hours, while in other points of the city
the network resources were not fully used. This makes the infrastructure reaches the
maximum capacity before all processing power could be used.

Despite the mobile network generation during the study was not the same as today,
the data consumption is much more related with the displacement pattern and behavior,
making the conclusions still valid.

2.2 Network traffic prediction

In the first documented usage of Neural Network (NN) to traffic forecasting, a Multi
Layer Perceptron (MLP) network was used back in 1993, supported by mathematical
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Figure 4 – Network traffic in different regions of the city

Source: (Wang et al., 2015).

proofs from previous years that presume the use of Single Layer Perceptron (SLP) and
MLP to traffic prediction (Cybenko, 1989; Hornik, 1991; Funahashi, 1989). Since then,
much has evolved and recent studies focus on the development of mathematical models to
forecast network traffic (Wang et al., 2017a; Wang et al., 2017b; Hanyu Yang et al., 2021).
In these studies, which are related to the investigation conducted on this dissertation, data
modeling techniques are applied in an attempt to predict the network traffic in the city
infrastructure.

Since then, the Artificial Intelligence (AI) area has evolved and become quite popu-
lar, and in popular programming languages, such as Python, libraries package the main
components used in neural networks, such as TensorFlow and Keras (KERAS, 2023).
MTP-NT is based mainly in Long short-term memory (LSTM) layers (Hochreiter; Schmid-
huber, 1997), dropout layers (Baldi; Sadowski, 2014) and conventional dense layers imple-
mented in Python using Keras. In Section 5 there is a mathematical approach to describe
each of these components.

In (Wang et al., 2017a), a China Mobile database with samples of 2, 844 BSs in the
city of Suzhou, with a coverage area of 6, 500𝑘𝑚2, between May and October of 2015 was
used. The total coverage area of each BS has been simplified to a grid of 500𝑚 × 500𝑚.

The study shows that, despite being widely used, techniques such as Support Vector
Regressor (SVR) and AutoRegressive Moving Average (ARIMA) does not captures rapid
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variation process as it relies basically in mean values of the past series data, as well as
does not captures spatial dependency of the data (such as correlation of neighboring BSs).

To validate that, a preliminary data analysis was performed to explore the data de-
pendency in both temporal and spatial domains. Related to the autocorrelation, the
AutoCorrelation Function (ACF) was used to discover the data dependency in the tem-
poral domain, and the results can be seen in Figure 5. A high downlink and uplink traffic
correlation can be observed in time lags of one or multiple of 24 (hours), showing a daily
pattern.

Figure 5 – Autocorrelation in uplink and downlink data.

Source: (Wang et al., 2017a).

The spatial correlation was also explored using the covariance and the standard devi-
ation. The results can be seen in Table 1. Each of the 7 cells are subsequently located on
the east side of the previous one and the upper part of the table shows the uplink, while
the lower triangular part is for downlink data.

Table 1 – Spatial correlation of a arrange of 7 BSs

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7

Cell 1 1.000 0.167 0.435 0.130 0.040 0.341 0.307
Cell 2 0.396 1.000 0.338 0.129 0.084 0.310 0.222
Cell 3 0.345 0.541 1.000 0.159 0.162 0.697 0.536
Cell 4 0.437 0.439 0.458 1.000 0.104 0.131 0.114
Cell 5 0.360 0.471 0.492 0.508 1.000 0.163 0.080
Cell 6 0.286 0.491 0.550 0.432 0.535 1.000 0.603
Cell 7 0.284 0.506 0.526 0.459 0.535 0.577 1.000

Source: (Wang et al., 2017a)
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With all these considerations, the model developed aims to capture both historical and
spatial data. The architecture relies on a RNN forecast combined with Global Stacked
AutoEncoders (GSAE) (that process all the stations of the grid) and Local Stacked Au-
toEncoders (LSAE), which achieved promising results.

As seen in Figure 6, each BS has its data, combined with its neighborhood time series,
processed through the LSAE and a LSTM, where each data arrange have its own encoder
and LSTM combination, to make the local correlations. Furthermore, the GSAE receives
all data arranges and the output is added in each individual arrange before the LSTM to
embed in the model the global information (as it processes all the data of the grid). The
idea of multiple branches in the model was also explored in the development of MTP-NT
as will be later explained. The hybrid model, with global and local branches, leads to
some benefits, as better representation and support for parallel training, for example.

Figure 6 – Model architecture with LSAE and GSAE arrangements.

Source: (Wang et al., 2017a).

Besides the model complexity, the work reaches a good overall performance, seen in
an evaluation that also observed the performance increase with the increase of hidden
layers in LSAE. This prediction performance improvement depending on the number
of hidden layers can be seen in Figure 7 and a similar approach was also performed in
MTP-NT to explore the possibility of less complex models, best suited to scenarios of
reduced computational resources or faster predictions scenarios.

As seen, (Wang et al., 2017a) adopts some approaches in the model development that
were used in this dissertation, such as the concept of neighborhood region of interest and
LSTM cells to make better predictions based on previous data. The similarity between
the resulting grid arrange from the simplification of coverage regions and the database
used in this dissertation also show similarities to each other.

In (Wang et al., 2017b) the authors investigated an urban area with 5929 towers and
about to 1.5 million users by decomposing the traffic into in-tower (static users who have
not performed a handoff) and inter-tower (users that came from neighboring towers). It
is shown that inter-tower traffic can account for up to 90% of the entire data traffic at a
transportation hub.
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Figure 7 – Prediction performance improvement in Downlink (top) and Uplink (bottom)
scenarios.

Source: (Wang et al., 2017a).

Futhermore, the evolution of public transport led to a more efficient urban mobility
as fast travel within a metropolis, what ends up increasing the correlation between the
BSs that serve public transport hubs and physically distant towers. However, most of the
traffic prediction solutions fails to capture these long-distance spatial dependency of the
traffic. This concept was explored in this dissertation, where, as will be explained later,
the public transport data were directly inserted in the modeling of the predictive model.

(Wang et al., 2017b) has one of the most detailed datasets when compared to the
other works explored in this dissertation, where each entry in the database contains the
user ID, flow create time, connected BS as well as uplink and downlink traffic aggregated
in half hour samples. Unfortunately, this means that the implementation of this project
or a simillar approach might not be possible in regions that follows stricts privacy reg-
ulations, such as GDPR and the brazillian Lei Geral de Proteção de Dados (LGPD), as
the information might led to the personal identification of identity, location and other
information of every network user.

The traffic of each BS was decompose on in-tower and inter-tower traffic, where the
first one is related to stationery users and the second to high mobility users (i.e. those
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who comes from another BS and performs a handoff). Figure 8 shows the decomposition
of the network traffic from three different BSs.

Figure 8 – Decomposition of network traffic with different traffic characteristics. (a) In-
tower traffic dominant, from a residential area; (b) consistent inter-tower dom-
inance along the day, in a shopping mall; (c) Inter-tower traffic dominance at
certain times, from a transit station.

Source: (Wang et al., 2017b).

A graph representation of the data is used, representing a composition of the BS and
the spatial dependency. A Graph Neural Network (GNN) based model was developed to
predict the future network traffic in the towers and results show that even in a unbalanced
database the model has a good overall performance.

In order to contemplate the greatest number of possible scenarios, including abnormal-
ities in network consumption, this work also explored seasonal events (those that repeat
themselves periodically), trends (events that provide a continuous increase or decrease
over time) and, mainly, mobility-independent events. This last set of scenarios aims to
validate the performance of the model in events such as political speeches, shows, sport
games, traffic jams, etc and were also considered on the tests of MTP-NT.

In (Hanyu Yang et al., 2021) a network composed by an ARIMA and a neural network
were proposed, in which the first architecture was used to extract linear components and
the second for non-linear components. Furthermore, the architecture is trained using the
Simulated Annealing (SA), similar to the cooling process of metallurgy. This training
technique presents promising results when compared to traditional time series forecasting
methods.

What has been observed in the area of traffic forecasting is that most of the researches
were not so easily replicable, as the base software codes are not publicly available and
the implementation of such proposals are not available for external use. The most related
works to this proposal can be seen on Table 2, where is shown that most of the research
have little information about the dataset and all of them do not provide the codes to
simplify the reproducibility of the projects.

Each work considers different parameters, as cell neighborhood or the relation between
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Table 2 – Comparison between different network traffic prediction studies.

Ref. Method Dataset Sourcecode avalaible

(Wang et al., 2017a) Autoencoders Private No
(Wang et al., 2017b) Graph Neural Networks Private No
(Sciancalepore et al., 2017) HoltWinters No information No
(Alawe et al., 2018) Deep Learning Private No
(Hanyu Yang et al., 2021) ARIMA and Neural Network Available No

Source: the author

the stations through network handoffs. What is sought is, in short, that relevant informa-
tion correlated to the target is identified in order to allow the construction of a predictive
model by using data as less as possible.

Nonetheless, each described technique has an element that increases considerably the
training time and the execution of the routines, such as the construction of many encoders
or the usage of lots of additional data (from neighboring BSs), making the training process
costly and the model more complex.

In summary, the productions considered during the development of this dissertation -
besides characterization studies (Wang et al., 2015; Gotzner; Rathgeber, 1998; Boutaba
et al., 2018) - can be divided into 7 major topics, directly related to the methodology
used in this work:

Table 3 – Comparison between different network traffic prediction studies.

Ref. LSTM Time
Series Neighborhood Spatial

modelling Events Traditional
models

(Wang et al., 2017a) x x x
(Wang et al., 2017b) x x x x
(Hanyu Yang et al., 2021) x
(Sciancalepore et al., 2017) x
(Alawe et al., 2018) x
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Chapter 3
Theoretical fundamentation

Almost all related work of network traffic prediction as well as MTP-NT itself relies
on ML techniques. This area gained attention in many research areas throughout the last
years because of its capability to solve complex problems without explicit programming,
learning useful information from historical data. The proliferation of data in various
scientific disciplines has reached unprecedented levels, facilitated by advancements in
data collection and storage technologies, boosting ML widely adoption in both academic
and industry scenarios.

The vast majority of ML implementations are based on “conventional” neural networks
and RNN, mainly used in time series modelling because of its capacity to deal with
sequential data (also called time series). All of these will be later explained in this
chapter.

3.1 Neural networks development and training

NN, a cornerstone of modern ML, are computational models that mimic the neural
connections and information processing capabilities of the human brain. Neurons are at
the core of neural networks, which serve as the basic building blocks.

The neuron has three main components: the inputs 𝑋, the weights 𝑊 and the acti-
vation function 𝜃, resulting in the output 𝑦 as seen in Figure 9. Both inputs and weights
are matrices.

First, the inputs 𝑋 are multiplied by the weights 𝑊 and then added to the bias 𝑏, as
seen in Equation 1. The function of the bias is to avoid problems during training when
the inputs are zero.

𝑍 = 𝑋 × 𝑊 + 𝑏 (1)

After that, the result is applied in a activation function 𝜃 as seen in Equation 2.
Activation functions in neural networks are mathematical functions that are applied to
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Figure 9 – Mathematical neuron.

Source: the author

the weighted sum of inputs at each neuron to introduce non-linearity into the neuron’s
response, allowing neural networks to capture intricate patterns and make more expressive
predictions. Commonly used activation functions include the sigmoid function, which
maps inputs to a range between 0 and 1; the hyperbolic tangent function, mapping inputs
to a range between −1 and 1. The Rectified Linear Unit (ReLU) has gained prominence
due to its computational efficiency and ability to mitigate the vanishing gradient problem
(in training).

𝑌 = 𝜃(𝑍) (2)

These neurons (also called cells) are organized in layers in a NN, where groups of
neurons passes its outputs to the next layer. If a NN have one or more layers between
the input and output layers, it is called Deep Neural Network, as it allows even deeper
connections between the neurons as seen in Figure 10.

From all parameters in the NN, just the weights are capable to be changed, as the
inputs are variables external to the network. In neural networks, we say that the weights
are trainable parameters.

To adapt the NN to solve a problem (making the predictions 𝑦 be as close as possible
to the real value 𝑦), there is an iterative process called backpropagation. The method
takes a neural networks output error (the difference between the predictions and the real
values) and propagates this error backwards through the network adapting the weights of
the neurons to minimize the error (or cost function, as it is called in the AI field.

3.2 LSTM

LSTM layers are composed of many LSTM cells, used in time series and image model-
ing, being used in many implementations as language modeling, handwriting recognition,
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Figure 10 – Deep Learning architecture.

Source: (IBM, 2023).

translation tasks, and speech synthesis, e.g. (Graves; Schmidhuber, 2005; Sutskever;
Vinyals; Le, 2014; Graves et al., 2006; Zen et al., 2013). These networks are capable of
learning long-term dependencies using the “cell state”, a mechanism that maintains its
state over time and allows to use past states as input in current and future predictions.
The LSTM layer is composed of many cells, as seen in Figure 11 (with red flags linked to
the equations of the mathematical formalization), interconnected as seen in Figure 12.

Figure 11 – LSTM cell architecture with each equation of the mathematical formalization
pointed out.

Source: the author

Despite the LSTM layer has a single input from the previous layer and a single output
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to the next one, the LSTM cell has three inputs, 𝐶𝑡−1, the 𝑡 − 1 cell state (coming from
the previous LSTM cell ℎ𝑡−1, the previous output, and 𝑥𝑡, the actual input data. From
the layer perspective, 𝑥𝑡 represents the input of the previous layer and ℎ𝑡 the output.

The first step in the LSTM cell is to decide whether the previous state will be pre-
served or not in the “forget gate” with the output in 𝑓𝑡, where 𝑊𝑓 are the weights of the
actual network, (ℎ𝑡−1, 𝑥𝑡) are the concatenated 𝑥𝑡 and ℎ𝑡−1 and 𝑏𝑓 is the bias, as seen in
Equation 3.

𝑓𝑡 = 𝜎 [𝑊𝑓 · (ℎ𝑡−1, 𝑥𝑡) + 𝑏𝑓 ] (3)

The next step is to define the set of previous data which is going to be stored in the
cell state. The operation has 2 steps, where 𝑖𝑡, called “input layer gate”, decides which
values are going to be updated as seen in Equation 4.

𝑖𝑡 = 𝜎 [𝑊𝑖 · (ℎ𝑡−1, 𝑥𝑡) + 𝑏𝑖] (4)

Next, a vector of context candidates 𝐶𝑡 is generated with a hyperbolic tangent oper-
ation as seen in Equation 5.

𝐶𝑡 = 𝑡𝑎𝑛ℎ [𝑊𝑐 · (ℎ𝑡−1, 𝑥𝑡) + 𝑏𝑐] (5)

After all these calculations, the final cell state 𝐶𝑡 is calculated as seen in Equation 6.

𝐶𝑡 = 𝑓𝑡 · 𝐶𝑡−1 + 𝑖𝑡 · 𝐶𝑡 (6)

On the end, the output ℎ𝑡 is calculated through Equation 7 and Equation 8.

𝑜𝑡 = 𝜎 [𝑊𝑜 · (ℎ𝑡−1, 𝑥𝑡) + 𝑏𝑜] (7)

ℎ𝑡 = 𝑜𝑡 · 𝑡𝑎𝑛ℎ (𝐶𝑡) (8)

All operations inside the LSTM cell are neural networks operations, with updatable
weights through backpropagation and the LSTM cells forms a chain of structures in a
layer, as seen in Figure 12. A more detailed and mathematical formalization can be seen
in (Hochreiter; Schmidhuber, 1997; OLAH, 2015).

3.3 Feature selection

Another concept adopted in MTP-NT is the feature selection, which involves the iden-
tification of the most salient features that significantly contribute to accurate classification
outcomes. The primary objective of feature selection is to reduce the dimensionality of
the feature space while preserving or enhancing classification performance. By selecting
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Figure 12 – LSTM layer with a chain of connected cells.

Source: the author

a subset of relevant features, the computational cost is lessened, and the interpretability
of the classification model is improved.

The feature selection was mainly used to identify the temporal components most
pertinent to predicting network usage in MTP-NT. Three feature selection techniques
were tested: Pearson correlation, f-value coefficient and a simple distance-based algorithm
(that picks the components from a given maximum distance).

The Pearson correlation coefficient is a number between -1 and 1 that measures the
strength and the direction of the relationship between two variables. With this infor-
mation, the n-biggest correlated variables (in module) or all variables with a correlation
coefficient above a certain threshold can be selected to compose the model input. The
f-value was used over Scikit Learn (SCIKITLEARN, 2022), a popular data science library
in Python.
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Chapter 4
Framework and preprocessing

As seen in (Gotzner; Rathgeber, 1998) along the day in big cities the network usage
tends to stay concentrated in specific regions during peak hours, while other regions use
to have a lower network usage at that time. This behavior was also explored in (Xu
et al., 2017), where different regions of the city are classified according to their general
composition (residential areas, central areas and so on) and, consequently, segregating
according to their network utilization patterns.

Both observed behaviors might lead to underutilization of core network resources in
certain areas that, in big cities, results in higher infrastructure costs. Residential areas,
for example, tend to have a higher network usage by the beginning and the end of the
day (moments when people tend to be going out or coming home from work) and along
the day the network usage tends to be lower, while in commercial areas the logic used to
be reverse (as the flow of people tend to be more common in business hours).

As new mobile network protocols, such as 5G, are based on infrastructure virtualiza-
tion, the resources could be entirely deployed and dynamically allocated on cloud services,
allowing to dynamically adjust the infrastructure capabilities (linked to the amount of
computational resources available to each service).

With the possibility of leveraging on different computational resources available on
the network infrastructure, the unique issue to minimize costs while achieving agreed
QoS/QoE metrics is the capability to make the right decisions in terms of resource al-
location and to ensure that every part of the system have the necessary resources to
satisfy the network demand, even in highly dynamic scenarios. MTP-NT can provide this
intelligence in strategic areas of the city, as central regions and points with high usage
of computational resources, resulting in potential savings to the network operators. As
mentioned earlier, MTP-NT is a ML model that helps the scheduler to better optimize
the resource allocation process by providing a network traffic prediction.
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4.1 The predictive model in the 5G infrastructure

In previous network infrastructures, some specific functions were performed by middle-
boxes, hardware-based applications as firewall, Intrusion Detection System (IDS), proxy,
encryption, data monitoring and other services. These services were usually deployed
on proprietary hardware, placed at fixed locations and needed specialized personal for
deployment and maintenance (Bari et al., 2016), as seen in Figure 13.

Figure 13 – Conventional network based on proprietary hardware architecture. Source:
the authors.

These middleboxes are static hardware that perform single tasks, not allowing new
functionality and subjecting the telecommunications operator to short deployment and
replacement cycles to keep up with new demands and technologies. A suitable option to
improve this architecture, as seen in new networks like 5G, is the use of NFV, an approach
where those services provided in the network become software based middleboxes, called
Virtual Network Functions (VNF), typically as Virtual Machines or Containers. Instead
of relying on proprietary hardware in the classical middleboxes approach, these functions
are running on both cloud and local servers (on the NFV architecture) and could be
dynamically provisioned based on the network needs.

(Herrera; Botero, 2016) make a brief explanation of the main advantages and usages of
NFV in the industry and, according to European Telecommunications Standards Institute
(ETSI) (ETSI, 2013), some advantages of network virtualization that stand out are:

1. NFV as a service: a NFV can be provided as a service by a network operator similar
to cloud computing services (Rankothge et al., 2015);

2. Virtualization of Core Network (CN) and BSs (Basta et al., 2014);

3. Virtualization of the home environment: installation of new equipment and on-site
technical support can be less frequent (Bronstein; Shraga, 2014);



4.1. The predictive model in the 5G infrastructure 41

4. Virtualization of CDNs (Mangili; Martignon; Capone, 2014; Kim; Lee, 2014).

The main barrier of this new approach is the overall performance, especially in middle-
box chains. Some traffic could flow through various middleboxes based on their needs, e.g.,
a proxy request that need to pass through firewall, Intrusion Detection Systems (IDSs)
and the proxy service itself. However, the literature shows that the NFV can achieve
almost a hardware-based performance (Martins et al., 2014; Hwang, 2014).

Based on the NFV architecture, middleboxes could rely on different local servers or
even remote ones in the cloud, as far as they could achieve the QoS and QoE require-
ments and can also have their resources dynamically optimized, mainly oriented to save
financial and computational resources. This new approach allows also that conventional
middleboxes could be used with cloud as well as general purpose local hardware, allowing
a mix architecture to attend many necessities. An architectural example can be seen in
Figure 14, where al BSs are connected to each other and to local middleboxes as well as
to cloud services thought internet (gray dashed lines).

Figure 14 – Implementation option of NFV architecture to the network in Figure 13.
Source: the authors.

The optimization of NFV services are done by the orchestrator, which find the optimal
scenario to the network services based on service metrics and also on Network Traffic
Monitoring and Analysis (NTMA). NTMA are VNFs that, based on historical data, try
to predict a wide range of network metrics and could be in 8 different categories (Boutaba
R., 2018), including QoS and QoE management and traffic prediction, aligned with the
focus of the architecture proposed in this dissertation.
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As explained in (D’Alconzo et al., 2019), the NTMA have a special problem with
the high volume of data associated to this task, along with speed (needed to both gauge
and process the data). These monitoring tasks pose as big data problems, which have
in common many of the “5V’s” challenges for these kind of architectures, of which it is
possible to highlight:

1. Volume: in Milan itself, Telefonica has 10, 000 base stations to provide mobile net-
work services. The huge volume of data generated in a big city demands data
treatment and processing capable of dealing with the large volume of information
generated in an acceptable speed;

2. Velocity: to supply the scheduler with more granular data, NTMA systems have to
work in forecasts with an increasing frequency, so that the scheduler can work on
an increasingly accurate management of resources.

To feed these traffic prediction applications, a data storage system, capable of main-
taining measurements of the network, is necessary to save previous metrics, to receive
data from current measurements and to supply NTMAs with requested data. To make
this possible, NoSQL solutions are the best alternatives, as they suffer less performance
penalties with large datasets (Han et al., 2011; D’Alconzo et al., 2019) and have some
popular open source options, such as Cassandra and HBase.

4.2 Data flow in MTP-NT

To supply all network traffic information in the database of MTP-NT, flow collectors
(also referred as network exporters and collectors), located at the Radio Access Net-
work (RAN) layer, collect the necessary metrics. In (Barlacchi et al., 2015), the data
is aggregated in squared regions in the city, so one part of the grid do not represents a
respective tower, but a area of the city covered by one or more BSs, as the exact locations
of the Evolved Node B (eNBs) are not disclosed to preserve the coverage strategies of the
network provider. Despite this anonymization, regions can be aggregated based on the
tower that covers them and the predictions made by the framework can be used in this
same aggregation to predict future traffic, now aggregated based on towers. These predic-
tions can be made available through a publish-subscribe messaging system, such as Kafka
for example. The flow collector can be a Network Data Analytics Function (NWDAF), an
network analytics provider as a logical function specified at 3rd Generation Partnership
Project (3GPP) SA2 TS 23.682 (3GPP, 2022) that collects information from the network
and notifies any interested VNF instance about all analytics subscribed over the data
management service.



4.2. Data flow in MTP-NT 43

The NWDAF architecture is quite versatile, as may interface with a Policy Control
Function (PCF) layer (a platform to govern the policy management based on network pa-
rameters and that implements slice-based policies) through a N23 interface, and Network
Slice Selection Functions (NSSF) through N34 interface (Chouman; Manias; Shami, 2022).
The NWDAF can provide useful information to allow automate network issue resolution,
while predictive analytics can be used to predict those network issues in the future.

After the data ingestion and prediction, the network traffic prediction from MTP-
NT can be remapped from the region-based aggregation to a BS-based view (where the
network traffic is compiled by BS and not by region) to allow the predictions to be more
alligned with the scheduler task of fairly distribution of radiotemporal resources by BS
and processing power (on premise and cloud) by BS.

Therefore, the data can be both stored into a database for further use and send it to
other VNF, as NSSF and other components that can take advantage from the predictions.
In order to send the predictions directly to other core network services, the NWDAF can
be used. The NWDAF architecture is quite versatile, as may interface with a PCF entity
(a platform to govern the policy management based on network parameters and that
implements slice-based policies), and interface with NSSF (3GPP, 2022) over a publisher-
subscriber like protocol for internal use in 5G core (3GPP, 2022)). In this way both
the resource allocator of radio resources, from the mobile network layer and the resource
allocator of the computational resources in the processing layer can use these predictions to
make better decisions based on future information and not only in previous measurements
or conventional algorithms.

The complete MTP-NT information flow can be seen in Figure 15 and the complete
step by step information flow, from the RAN layer to the NTMA model, is described as
follows:

Figure 15 – End-to-end information flow to MTP-NT proposed architecture. In black, the
normal requisitions and the dashed purple line shows the publish-subscribe
like communications.

1. Flow collectors collect and compile network traffic data from gNodeBs;
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2. The data reaches the database, on a VNF, from the flow collectors over a publish-
subscribe architecture;

3. The requested data from the database reaches the NTMA model predictors, also on
VNFs;

4. The model processes the data and generates the traffic predictions;

5. The traffic predictions go to a external database to further use, and are made
available through Nnwdaf_AnalyticsSubscription service (3GPP, 2022).

With many options of implementation available, it can be benefic to rely on open
source techonology, as this paradigm promotes equitable access to software solutions,
reducing the reliance on costly licenses and proprietary lock-ins. There are many NoSQL
open source technologies, as the aforementioned Cassandra and Redis, many publisher
subscriber open source options and the general compliance with 3GPP architecture are
interesting options to guarantee an architecture “open first”.

4.3 Dataset

The database used in this study contains 7 groups of data: Grid (Telecom Italia),
Social Pulse (Spazio Dati, DEIB), Telecommunications (Telecom Italia), Precipitations
(Metereotrentino, ARPA), Weather (ARPA), Electricity (SET Distribuizione SPA) and
News (Citynews) for the cities of Milan and Trento, in Italy. This work used the Telecom-
munications dataset in Milan, which contains the mobile network traffic between Novem-
ber 1st, 2013 and December 31st, 2013 on the 10, 000 zonal regions listed in the city,
containing one traffic log at every 10 minutes in each point. The sum of the regions
results in a grid of 100 × 100 over the city of Milan, that covers all the metropolitan area
of the city and each region is, approximately, 0.06𝑘𝑚2.

In this database, the network traffic is measured in Call Detail Records (CDR), and
each CDR is generated every time a user initiates or ends a network connection. For a
given connection, an additional CDR is generated every 15 additional minutes of connec-
tion or if the user transfers more than 5MB over the internet. The CDR are also used in
Short Message Service (SMS) and calls, but this information is not relevant in this work.

It is important to note that this database aggregates network traffic across regions and
not across towers. This means that, after the entire stage of collecting and pre-processing
the original traffic, the network traffic is aggregated in regular regions of 0.06𝑘𝑚2 and
this could have been done to preserve the coverage strategy of the city.

To protect the real dimension of infrastructure capabilities, the numbers of daily op-
eration of the company and to guarantee a GDPR compliant data set, each field of the
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database is multiplied by an anonymization constant 𝑘 defined by Telecom Italia. Futher-
more, there is an anonymization constant to every parameter of the database, in order that
the proportion of the values is kept, at the same time that the real values are protected
and the task of traceback a specific user is impossible. A sample of the telecommunica-
tions data can be seen in Table 4, where the data is: 𝑆𝑞𝑢𝑎𝑟𝑒_𝑖𝑑 (identifying the region of
the mesh), 𝑇𝑖𝑚𝑒_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (with the timestamp of the sample), Country code (a column
used to identify the other side of a phone call, in case of a call in the sample), SMS-in
and SMS-out activity (registering if there is any input or output of message), Call-in
and Call-out activity (recording data input and output via phone call, respectively) and
Internet traffic activity, registering internet connection related CDR).

Table 4 – Original data from the dataframe, showing multiple samples with the same
Square id and Time Interval (in timestamp) to register calls during the mea-
surements (using the Country Code feature).

Square id Time Interval Country code SMS-in activity SMS-out activity Call-in activity Call-out activity Internet traffic activity

1 1383606E+6 0 1.7873E-3 null null null null
1 1383606E+6 33 null null null null 2.6137E-2
1 1383606E+6 39 8.8512E-2 1.4195E-1 1.0804E-1 2.73E-2 9.2032
10 1383606E+6 33 null null null null 2.8653E-2
10 1383606E+6 39 6.7480E-2 1.0631E-1 5.9175E-2 1.0174E-2 5.7891

Source: the author

As can be seen in Table 4, there may be more than one register for a single re-
gion (Square id) in the same time interval. It occurs when there are more than one
sender/receiver of information, so that it can be possible to register traffic from different
phones with different country codes. The 𝑛𝑢𝑙𝑙 samples represents that there is no traffic
for the given BS and time interval, but they are all handled during the processing.

In Figure 16 it is shown a sample of the connection’s numbers in 5 regions (Duomo,
Bocconi, Navigli, Mesiano and Bosco). The X axis represents time throughout the week,
and the Y axis represents the absolute number of connections. Unfortunately, it is not
clear from (Barlacchi et al., 2015) which is the first day of the week in these plots, but the
general idea of weekly seasonality and network usage proportion of more and less crowded
areas can be seen.

In the upper graph, it is possible to observe that each region has its own traffic
pattern. The surroundings of the university (Bocconi) have a drop in traffic on the
weekends, while Duomo and Navigli present more intense traffic, result of a greater flow
of people in those touristic regions. In the bottom graph the disparity between the
traffic amplitude in Duomo (touristic region) and the other regions stands out, making
the traffic in Bosco become almost imperceptible, as it is a less crowded region. Besides
having their differences, which come from the characteristics of each region, the time series
are noticeably correlated, presenting certain periodicity and being a good indicative that
previous samples can be used in the future traffic forecasting.
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Figure 16 – Absolute traffic in 5 regions in Milan: Duomo, Bocconi, Navigli, Mesiano and
Bosco.

Source: (Barlacchi et al., 2015)

Sudden changes in network usage can make the predictions very inaccurate, as network
behavior can be very irregular (D’Alconzo et al., 2019). This concept can also be extended
to the human behavior in general, as the way people move around the city slightly changes
over the time. Despite the changes, patterns can be (usually) identified and models could
be developed as seen in (Pirozmand et al., 2014).

(Wang et al., 2017b) made an analysis of the network traffic dissecting the volume
of data between in-tower (static users who have not performed a handoff) and inter-
tower (users that came from neighboring towers). In this work, it is discussed that the
evolution of public transport led to more efficient and faster travel within a metropolis,
what ends up increasing the correlation between the BSs that serves public transport
hubs and physically distant towers. However, most of the traffic prediction solutions fails
to capture these long-distance spatial dependency of the traffic.

Despite being a strong indicative of being a solution to the long-distance correlation of
network traffic, the literature review carried out in this work did not find any application
of public transport data in improving the performance of network traffic predictive models.

The conclusion is also feasible when analyzed in terms of urban ecology as proposed
in (Wang et al., 2017a). Cities and metropolitan regions tend to expand in area with the
creation of new residential neighborhoods within the city limits. However, as business
and administrative centers tend to remain in the same place, increasingly faster and more
efficient means of transport are built and improved to ensure the smooth functioning of
urban logistics.

In addition to being an indicative of the future flow in certain regions, the transport
hubs also can be used to infer non-periodic events that were not covered in the training,
such as concerts, political speeches, sport events and other activities that were not regular
(Wang et al., 2017b), but may cause a high impact on the network.
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Figure 17 – Mapping of public transport in the city of Milan. In blue, green and red the
metro, tram and bus stops, respectively.

Source: the author

According to (CITIVATIS, 2021), the main public transports in Milan are metro, tram
and bus. The mapping of their main stations can be seen in Figure 17 and the metro
points were mapped from the data of Azienda Trasporti Milanesi (ATM), the subway
company of Milan, available at (ATM, 2021). The tram and bus stops were collected
using Google Maps API. To use these data in the framework, the transportation hubs
are located in terms of the network coverage map (relating a hub to a square id of the
city’s regions) and the final transportation data is a list of square ids that have a tram,
metro or bus station.

This dissertation aims to explore the CDR generated by network connections, as net-
work usage have become the main purpose of mobile devices, increasing its importance
when compared to other types of traffic. However, the other groups of data provided
could be explored in further projects as a way to make more precise predictions. As will
be explained later, MTP-NT has a neural network architecture versatile enough to allow
new sets of information to be inserted through new branches.

4.4 Mathematical formalization of dataset preprocess-
ing

As mentioned before, the original data is structured in such a way that there are more
than one registry per cell per time period and, as this work just uses the network traffic
data, all data with the same square id and time interval were combined and the internet
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traffic activity was added. Thus, there are 10, 000 network traffic logs (one for each region)
and, for each log, there are 8928 traffic samples, 1 for each 10-minute interval and, with
that, the atomic unit of the base station becomes the sum of CDR for 10 minutes in a
given region of the city. The data from Table 4, after the processing, became the data seen
in Table 5. After all processing, there is one sample to each 𝑠𝑞𝑢𝑎𝑟𝑒_𝑖𝑑 and timestamp
combination and the sequence of Internet traffic activity CDR to one 𝑠𝑞𝑢𝑎𝑟𝑒_𝑖𝑑 ordered
by the timestamp is the time series to that designated region, formalizated as 𝑥𝑚,𝑛(𝑡) to
the region (𝑚, 𝑛) in the timestamp 𝑡.

Table 5 – Sample data after the preprocessing process.
Square id Time Interval Country code SMS-in activity SMS-out activity Call-in activity Call-out activity Internet traffic activity

1 1383606E+6 72 9.0299E-2 1.4195E-1 1.0804E-1 2.73E-1 9.2294
10 1383606E+6 72 6.7480E-2 1.0631E-1 5.9175E-2 1.0174E-2 5.8178

Source: the author

The mathematical formalization of a sample from a region 𝑥 in a time period 𝑡 can be
seen as 𝑥𝑚,𝑛(𝑡), where 𝑡 is the timestamp that goes from 13832604𝐸 +5 to 13886166𝐸 +5
and 𝑚, 𝑛 are between 0 and 100 and represents the coordinates of the region. Also, as
mentioned earlier, all 𝑛𝑢𝑙𝑙 samples have been correctly handled and are no longer present
in the data.

As mentioned previously, MTP-NT only processes the internet traffic activity, which
was mainly motivated by the fact that network usage is much more significant in the
volume of data processed by the network infrastructure than the other types of traffic
presented. However, the preprocessing algorithm compiles all traffic sources, which could
be useful in future work that wishes to consider other network traffic modes, especially
considering that telephone calls and even SMS are starting to be treated as packets. (as
Voice over LTE (VoLTE), for example).

After all preprocessing, the data is ready to be ingested by MTP-NT, with one sample
to each region in each timestamp. In the following chapter it will be explained how this
data is handled internally by the framework.
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Chapter 5
MTP-NT as a open source framework

5.1 Mathematical formalization of MTP-NT opera-
tions

To model the degree of proximity of regions in the construction of MTP-NT the con-
cept of neighborhood was used and, as seen in Figure 18, the degree of neighborhood
between two regions implies the distance between them, formalized by Moore neighbor-
hood concept. The Moore neighborhood is a concept used in cellular automata theory
and, in a square grid, a point 𝑚′, 𝑛′ can be considered in 𝑑 neighborhood of a point 𝑚, 𝑛

if it satisfies the following Equation 9:

|𝑚 − 𝑚′| ≤ 𝑑, |𝑛 − 𝑛′| ≤ 𝑑 (9)

In summary, degree 1 neighbors are at Moore neighborhood of 𝑑 = 1 and degree 2
neighbors are at Moore neighborhood of 𝑑 = 2 from the central region, for example. For
a region 𝑥𝑚,𝑛, the group of neighbors 𝑁 with a degree 𝑑 can be seen at Equation 10.

𝑁(𝑥𝑚,𝑛)𝑑 = {𝑥𝑚′,𝑛′ | |𝑚 − 𝑚′| ≤ 𝑑, |𝑛 − 𝑛′| ≤ 𝑑∀𝑚, 𝑛, 𝑚′, 𝑛′ ∈ {0, 1, ..., 99}} (10)

The increment of data is a tradeoff between the size of the model (and subsequently
the computational cost involved into the training and execution) and the quality of the
predictions (as it will be discussed further). MTP-NT experiments was done from 1 to 5
neighbors and, as seen in Table 6, the increment of regions causes a considerable increment
in the number of regions and the number of data points.

As there is a model for each region and each model considers a closed set of neighbor-
hoods and transport hubs, MTP-NT can be an option for grids that cover urban centers of
any size. Naturally, larger regions (and with more regions) will need more models to have
all predictions needed. However, because they are individualized models, it is possible to
distribute and parallelize the execution of MTP-NT.
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Table 6 – Number of regions and data samples in a 24 hour interval with increasing neigh-
borhoods.

Neighborhoods 1 2 3 4 5

Total regions 9 25 49 81 121
Samples in 24 hours 1,296 3,600 7,056 11,664 17,424

Source: the author

Figure 18 – Proposed framework architecture, detailing the two branches used for predic-
tion.

Source: the author

Figure 18 depicts the proposed MTP-NT architecture, describing the data feed in its
two branches, with the neural network highlighted with green dashed line. As seen, Branch
1 receives as input data from the neighborhood until a certain degree 𝑁(𝑥𝑚,𝑛)𝑑, plus data
from transport hubs 𝑇𝑠𝑒𝑙. Note that to feed branch 1 with the most important features
from the transportation system, data from transport hubs 𝑇 are elected by a feature
selection algorithm 𝑓𝑠𝑒𝑙 . The data passes through an encoding layer (Encoding step) to
compression and reduce the overall size of the model and then enters the Processing Step.

Branch 2, in its turn, receives features from the base station 𝑥𝑚,𝑛 (the region being
analyzed at instant 𝑡, represented by 𝑥𝑚,𝑛(𝑡) and processes at Processing Step. The
branch 2 does not have a encoding or a compression layer as branch 1 to make sure no
information of the main time series is lost throughout the neural network layers.

At the final step, both neighboring data and transportation features (Branch 1) and
data from analyzed region (Branch 2) are pipelined through the Concatenate and output
step, which performs the predictions considering both Branches 1 and 2 and concatenate.

The feature selection technique applied to the transport hubs set is represented by a
condition 𝑓𝑠𝑒𝑙

(︁
𝑥𝑚,𝑛 (𝑡) , 𝑥𝑚′,𝑛′ (𝑡)

)︁
provided by a feature selection technique that needs to

be satisfied by the transport region time series. Many feature selection techniques were
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tested, but the best 𝑓𝑠𝑒𝑙 is a simple picking regions under a Moore neighborhood of 20
units.

The set of BSs that covers one or more transport regions is represent as set 𝑇 and the
group of transport regions in 𝑇 that satisfies 𝑓𝑠𝑒𝑙 is 𝑇𝑠𝑒𝑙 and can be represented as seen in
Equation 11.

𝑇𝑠𝑒𝑙 (𝑥𝑚,𝑛) =
{︁
𝑥𝑚′,𝑛′ | 𝑓𝑠𝑒𝑙

(︁
𝑥𝑚,𝑛(𝑡), 𝑥𝑚′,𝑛′(𝑡)

)︁
∀𝑥𝑚′,𝑛′ ∈ 𝑇

}︁
(11)

As mentioned before, MTP-NT was built mostly based on LSTM, Dropout and dense
layers. Dropout layers are used to avoid overfitting and each cell randomly deactivate its
subsequent pair with a given rate (20% in MTP-NT training). For practical purposes,
the layer resets some outputs based on the given frequency, causing some cells to not be
trained randomly.

The other layers used are input layers (KERAS, 2022c), used to instantiate a Keras
tensor and a concat layer (KERAS, 2022a), used to link the two branches concatenating
their output. Regular densely-connected neural network layers (KERAS, 2022b) are also
used in the end to output the predictions.

5.2 MTP-NT’s framework architecture

The computational model can be seen in Figure 19. Here, the branch 1 receives the
series from the sets 𝑁 (𝑥𝑚,𝑛)𝑑 , 1 ≤ 𝑑 ≤ 5 and 𝑇𝑠𝑒𝑙 (when the transport data is used) over
𝐼𝑛𝑝𝑢𝑡_𝑜𝑡ℎ𝑒𝑟 layer. Branch 2 receives the evaluated time series 𝑥𝑚,𝑛(𝑡).

Branch 1 is composed by 5 “substeps” of layers, each one fulfilling a specific objective.
First, the data passes through input layer 𝐼𝑛𝑝𝑢𝑡_𝑜𝑡ℎ𝑒𝑟 and a dense layer 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔_𝑜𝑡ℎ𝑒𝑟_1,
to encode the input data and begin the compression of the data.

After that there is a LSTM layer, with memory capabilities that models sequential
data and a dropout layer (used to avoid overfitting), respectively 𝐿𝑆𝑇𝑀_𝑜𝑡ℎ𝑒𝑟_1 and
𝐷𝑟𝑜𝑝𝑜𝑢𝑡_𝑜𝑡ℎ𝑒𝑟_1 layers. The LSTM layer is particularly important to make temporal
relations of the input data and the output predictions. 144 Units were placed in this and
all other LSTM layers to ensure a maximum persistence of 24 hours of information, as 6
samples every hour (1 sample every 10 minutes), results in 144 samples every day.

Another LSTM (𝐿𝑆𝑇𝑀_𝑜𝑡ℎ𝑒𝑟_2), dense (𝐷𝑒𝑐𝑜𝑑𝑒𝑟_𝑜𝑡ℎ𝑒𝑟_1) and dropout
(𝐷𝑟𝑜𝑝𝑜𝑢𝑡_𝑜𝑡ℎ𝑒𝑟_2) layers were placed in sequence with the same purpose of the previous
substeps. The addition of a dense layer in between LSTM and dropout layers was a result
of empirical tests during the development.

The following dense (𝐷𝑒𝑛𝑠𝑒_𝑜𝑡ℎ𝑒𝑟_2) and a dropout (𝐷𝑟𝑜𝑝𝑜𝑢𝑡_𝑜𝑡ℎ𝑒𝑟_3) layers are
used to learn the overall correlation between the different time series (and also reduce
overfitting) and a final dense layer 𝐷𝑒𝑛𝑠𝑒_𝑜𝑡ℎ𝑒𝑟_3 is used to concatenate the first branch
with the second one over the concatenate (𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒_639) layer.
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Branch 2, responsible to process the time series of the region of interest, don’t have
a encoding step, as it process less information (just one sequence of data). Although
subsequent layers in this branch have fewer units (which may indicate a lower ability to
make connections and refine the predictive capacity), proportionally, this branch has a
higher input data volume and connections ratio than branch 1.

Branch 2 begins with a input layer (𝐼𝑛𝑝𝑢𝑡𝑦), followed by two pairs of LSTM and
dropout layers (𝐿𝑆𝑇𝑀1, 𝐷𝑟𝑜𝑝𝑜𝑢𝑡1, 𝐿𝑆𝑇𝑀2 and 𝐷𝑟𝑜𝑝𝑜𝑢𝑡2). As in branch 1, these pair
of layers were used to make temporal relations with the memory units of LSTM, while
the dropout layers were used to avoid overfitting.

Next, a dense layer 𝐷𝑒𝑛𝑠𝑒1 and a pair of dropout and dense layers (𝐷𝑟𝑜𝑝𝑜𝑢𝑡3 and
𝐷𝑒𝑛𝑠𝑒2) are employed. The dense-dropout pair increases the overall performance of the
neural network in tests performed and are preceded by a dense layer (𝐷𝑒𝑛𝑠𝑒2) to connect
with the first layer in the next step.

Finally, the concatenate and output step receives the outputs of the two branches. In
the end, the output of the model will be the forecast of the network traffic in the region
of interest for the next 10 minutes. Other time intervals were considered, but the work
ended up being focused on the original data interval, with other windows (such as 1-hour
forecasts, for example) being explored in minor tests, although future work could explore
predictions in larger windows, so that their benefits and drawbacks can be effectively
analyzed.

As seen, the model has a series of processing steps, as well as a large number of
trainable parameters. This means that it also has many varibles that can be changed,
such as the number of neighborhoods considered and the adoption (or not) of transport
hubs, for example.

Furthermore, the nature of the problem and the variety of urban ecology in a large
metropolitan center means that the choice of analysis methodology is also very important
in the solution development process. Therefore, in the next chapter MTP-NT evaluation
process will be discussed.
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Figure 19 – Model architecture, highlighting the branches and the different stages of
model processing.

Source: the author
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Chapter 6
Experimental Results

MTP-NT needs to be tested in different scenarios to validate the best parameters
and have the best overview of parameters. As the urban ecology can cause variations in
network consumption patterns, the model have to be evaluated in a slice with diversity of
the database that can reflect different network traffic patterns. To do so, 3 main group of
tests will be performed: distributed tests (to capture and test the framework in different
locations of the city), core tests (validating the framework performance in challenging
scenarios, such as tourist centers and common areas of the city) and a event test (a
mapped event with a high and aperiodic network traffic consumption pattern).

The effectiveness of public transportation data in improving prediction performance
will also be tested and, therefore, these same 3 groups of tests will be replicated in models
processing public transport data and others that do not handle this information.

MTP-NT is flexible, allowing variation in the volume of input data and the complexity
of the model. To validate the performance of models with different magnitudes, the
number of neighborhoods used in the model input (and consequently the general size of
the neural networks) was varied and, to help evaluate the increase in the computational
cost of these tests in relation to the improvement of predictions, the average training time
of the models was used, as this metric is directly related to the computational cost of the
solution.

6.1 Experimental setup

To choose the best parameters of MTP-NT, the number of neighborhoods used 𝑑

was varied between 1 (considering only the immediate neighbors) and 5 (considering
the neighbors from degree 1 to 5) in order to evaluate predictive performance with the
neighborhood increment. Furthermore, the same executions were replicated with and
without the addition of the transport hubs set 𝑇𝑠𝑒𝑙, to evaluate the efficiency of this
addition.
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Some feature selection functions where tested to select the most important transport
hubs. The considered functions where: F-test, Pearson correlation coefficient and a more
simple test considering just the distance between the transport hubs and the region of
interest, picking the 20 closest regions with transport hubs.

In order to decrease the computational cost, 64 evenly distributed regions were used
for the initial tests, so that central and peripheral regions of the city in a homogeneous
way would be considered. The choice of uniformly distributed points is important to
contemplate city regions with different mobility dynamics and data usage patterns.

Another test done was with central and touristic areas, called “core areas”, as Navigli
(a district with several restaurants and touristic areas), Luigi Bocconi University, Uni-
versity of Milan and Duomo. This test is important to measure the effectiveness of the
framework dealing with irregular and fast paced time series data, caused by the nonuni-
form public flow in such regions.

To confirm the effectiveness of the framework dealing with highly aperiodic data, a test
was done using Giuseppe Meazza/San Siro stadium, that presents a higly aperiodic peak
of network usage. This test was called “event region” and validates the good performance
of MTP-NT performing a good prediction in a highly aperiodic peak of network usage in
the test data, as will be presented later.

The evaluations were done using the Normalized Mean Absolute Error (NMAE), whose
formula can be seen in Equation 12, where 𝑦 is the target value and 𝑦 is the predicted
value. The NMAE was adopted because it is a proportional and self-contained metric,
allowing to easily interpret a result, without needing a base for comparison.

𝑁𝑀𝐴𝐸(𝑦, 𝑦) =
∑︀ |𝑦 − 𝑦|∑︀

𝑦
(12)

The optimizer used was Adamax, which is based on Adam (Kingma; Ba, 2017). The
loss function was the Mean Squared Error (MSE) and 80% of the data was used to train,
with the other 20% used as test.

Finally, the execution time of the models was evaluated and the implementations were
compared to performance evaluation. The scripts were executed in a machine with an
Intel i5-8265U, 8GB DDR4 of RAM and a SSD SATA III with 540MB/s of reading speed.

6.2 Error evaluation

For each of the 64 regions chosen for the first test, models were built initially con-
sidering first, then first and second neighborhoods and so on, until models with all 5
degree neighbors illustrated in Figure 18. As previously mentioned, the variation in the
number of neighborhoods is important to understand the tradeoff between the increment
of information in the model inputs and the performance improvement.
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In addition to varying the number of neighborhoods, the usage of transport hubs was
also varied. Considering all combinations, a total of 640 tests were performed (64 regions
with 5 different neighborhood additions and switching the transport points usage on and
off).

At first, the executions were made without considering the transport hubs and varying
the amount of considered neighborhoods. In Figure 20 there is an average of the results for
the 64 regions. As seen, the NMAE on the executions considering just degree 1 neighbors
presented a median of approximately 17.5%, while the executions considering all the 5
degree neighbors have the best performance.

Figure 20 – Compiled from average results for the 64 regions investigated, with neighbor-
hood data degree ranging from 1 to 5, without using data from the public
transport system.

Source: the author

The results of models with transport hubs were similar to those counterparts without
the transportation data with additional neighbors and, as seen in Figure 21, models with
1-4 and 1-5 moore degree neighbors showing a improvement of near 1% when compared
to their peers who do not have public transport data. For executions considering just 1
degree neighbors, the upgrade tend to be better, with a mean improvement of near 9.71%,
indicating that the use of transport hubs data can be an efficient way to achieve better
results with less data.

In addition to the results, the processing of transport points can be important since,
with the rapid development of urban transport, travel between distant regions can be
done in less than 1 hour using public transport and this shows that even physically distant
regions have a certain correlation in the urban mobility (and, consequently, in network
usage). Besides, the observation of transport points might be important to anticipate a
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Figure 21 – Results for the 64 investigated regions, with neighbor degree varying between
1 and 5, using data from the public transport systems.

Source: the author

high traffic demand from non-seasonal events, as cited before (Wang et al., 2015). The
observation of traffic in large transport hubs can be a good way to detect these unique
events, although, the severe anonymization of the database used in this article prevented
further investigations.

Another behavior observed was that, in peripheral points, the addition of transport
regions did not imply in improvement regarding the results. On the other hand, perfor-
mance tended to improve in more central regions of the city. For example, the results
of the peripheral region 607 (near Vigano) without the transport system data was 11%
and for the executions with the additional data was 12%. In Figure 22 the logarithmic
scale Cumulative Distribution Function (CDF) of real values 𝑦 and predicted values with
transport hubs data 𝑦 can be seen, showing that the predictions tend to be higher than
the real values, reducing the chances of undersizing the network demand.

In Figure 23 the CDFs of real values and prediction of a Milan city centre can be
seen in a logarithmic scale histogram. In the execution without the transport models,
the NMAE was 13%, while in the execution with the transport regions, the value seen
was 11%. This behavior may be explained by the feature selection adopted. As the
most peripheral regions of the metropolis (rural areas, industries far from the center, for
example) have fewer public transport options, the algorithm (which searches for nearby
transport points) does not bring new relevant information to the model.

Region 8169 is a mall called Centro Sarca near Parco Nord Milano and there the pre-
dictions covers high peak network usage samples, while in region 607 some peak usages
are not covered by any prediction. This might be related with the fact that in remote
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Figure 22 – Histogram of tests in region 607, showing the original CDR data and the
predictions in logaritmic scale. In blue the real data and in orange the pre-
dictions with transport information.

Source: the author

Figure 23 – Results for region 8169. In blue, the real network usage CDF and in orange
the model predictions CDF.

Source: the author
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regions the public transport systems are not so important/present in the mobility dy-
namics. Thus, in these regions, the proposed framework can attend these periods with a
fixed addition to the prediction value or even a correction in the resource scheduler side
to prevent demand sub-sizing and consequently drop in QoS/QoE.

Alike performance for regions with similar characteristics can be explained by the pres-
ence of patterns among different regions of the city. As seen in (Xu et al., 2017), similar
regions of a city have similar network traffic patterns, related to the nature of the location
(residential, commercial area, entertainment, transportation centers and comprehensive
areas).

Minor tests, considering all 5 neighborhoods, where performed with 1-hour time win-
dow to validate the capabilities of MTP-NT in a different scenario than the one in which
it was originally designed. As seen in Table 7, the performance in the bigger window is
slightly below to 10-minute tests, even it is in the same order of magnitude.

This difference in performance may come from the reduction in the training base, since,
when adjusting the data window to a range 10 times larger, there was a 10-fold decrease
in the volume of the training base, compromising the model’s ability to understand the
context. The difference in data volume could also be observed in the model training time,
which was approximately 40 seconds, while in traditional tests it was between 175 and
200 seconds (as will be explored later). Anyway, this shows that MTP-NT is sufficiently
good in conditions different from those originally proposed.

Table 7 – NMAE in tests with 10-minute and 1-hour observations, varying the usage of
transport hubs.

Window size NMAE with transport data NMAE without transport data

10 minutes 0.1120 0.1100
1 hour 0.1355 0.1441

Source: the author

6.3 Execution time evaluation

As shown in Table 6, the aggregation of more degrees of neighbors grows in the pro-
portion of 𝑁𝑥 = 𝑁𝑥−1 +8(𝑥+1) where 𝑥 is the degree of neighborhood considered, causing
a large increase in the number of regions considered. The raise in the amount of data
to be processed directly implies in a higher computational cost and, consequently, in the
model execution time.

The models were trained in dedicated executions, without any other process interfering
in the results. The compiled algorithm execution times can be seen in Figure 24 and
indicate an increase in time proportional to the increase in the number of regions used,
as expected.
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Figure 24 – Execution time for each approach.

Source: the author

However, when evaluating the same amount of neighborhoods, the addition of trans-
port hubs did not result in a large raise in training time. This is due to the small number
of series added to the model, when compared to the number of series in the neighborhoods
used.

Considering the entire framework, from the information gathering from the region to
the data predictions on the model itself, the increase of considered regions can imply
mainly in increases on the computational resources, as more information can imply more
memory demand and, in some cases, also a higher demand in processing power to maintain
the same speeds for the predictions.

In general, the predictions don’t demand a high execution time, taking less than
1 minute in dedicated hardware and making it viable to traffic predictions 10 minutes
in advance. As the machine learning models can be accelerated over GPU executions,
they can make even faster predictions in parallel execution, being possible to adapt the
framework to even more complex scenarios.

Also, as MTP-NT works with smaller models making single region predictions, the
predictive models can be accelerated by distributing them in VNFs and edge servers.

6.4 Benchmarking

ARIMA, Holt-Winters (HW) and LSTM are commonly used to forecast periodic time
series, besides being the basis for comparison in many academic productions in the area.
Prophet is also used to compare with our framework, as it is also an open source time
series predictor with the focus to be easy to use (Taylor; Letham, 2018).
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ARIMA is a common time series predictor used as comparison in data science studies.
It is composed from autoregression (search for relationship between an observation and
some lagged ones), integration (differentiation to make time series stationary) and moving
average (relationship between error of previous samples and the actual sample). The
tested model uses the following orders:

1. 𝑝 = 36 using 36 lags in consideration;

2. 𝑑 = 1 meaning one differentiation of the time series as it is stationary;

3. 𝑞 = 0 considering no previous errors in the model.

Other configurations where tested, but these presented the best results among our
tests.

HW uses additive trend and Prophet uses daily and weekly seasonality. LSTM tests
use a standard scaler, that converts the inputs to a [−1, +1] range and the following
layers: LSTM (with 128 cells), Dropout (with 10% of dropping fraction), another LSTM
with 128 cells, another dropout with 10% of fraction and a final dense layer.

Table 8 shows that the proposed model NMAE is much better than ARIMA, LSTM
and Prophet at the distributed test predictions. Furthermore, an improvement is also
observed when compared to HW but in a lower level. These results highlight that MTP-
NT could make better predictions and work better in network traffic forecasting in any
environment when compared to other prediction methods.

Table 8 – NMAE among different benchmarking techniques in Distributed, Core and
Event tests.

Distributed test Core test Event test

ARIMA 51.00 65.03 60.014
HW 11.78 9.34 15.16
LSTM 57.03 54.35 67.06
Prophet 61.00 94.66 178.65
MTP-NT 11.47 8.22 11.62

Source: the author

In (Wang et al., 2017b) the proposed framework presented a drop of 45% in error
when compared to ARIMA and 62% compared to HW. The framework developed here
presented a superior result in comparison with ARIMA and, nevertheless, presented a
similar result seen in HW algorithm.

The main divergences in the comparisons can be attributed to characteristics such as
the periodicity of the data, since HW model can only abstract periodic characteristics from
a time series, not performing well in series with many non-periodic components (Chatfield,
1978). Similarly, ARIMA performs a decomposition of the periodic components of a
series, which is inefficient in predicting non-periodic series (Hillmer; Tiao, 1982). It is
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also important to notice that ARIMA tends to concentrate the predictions arround past
series data points, making it unreliable to fast-changing scenarios (Wang et al., 2017a),
what can be confirmed in the event test results.

Another point to be highlighted is that HW models do not present a forecast that
precedes high frequency changes in consumption, requiring at least 1 additional sample
to adjust for sudden changes, as seen in Figure 25. Here, it is possible to notice that the
predictions from different HW implementations don’t diverges much in a prediction from
the actual values, which means that the model don’t have a practical application in this
scenario.

Since responding to fast changing patterns is very important to be a reliable source
of network traffic predictions in the mobile network infrastructure, MTP-NT shows itself
as a more reliable information platform.

The core and event tests show the same performance superiority over the conventional
techniques, maintaining an NMAE close to 11%, while the other approaches showed a sub-
stantial worsening. The tests, evaluating core, central and regions with high frequency
of events, proved to be important to evaluate the performance of the models at a more
granular level, paying special attention to regions with atypical patterns of network con-
sumption. Unfortunately, the related works did not map this type of events on their bases,
which makes the comparison of such tests with other works harder.

The event test presented a good performance, very similar to the distributed test, as
seen in Table 8. However, as seen in Figure 26, there is a completely aperiodic peak in
the predicted series, demonstrating that MTP-NT would be able to uncover in advance to
the infrastructure an unusual peak in network traffic. This peak, visible in the 10-minute
window, would probably not be predicted in analyzes with longer windows, and could
even go unnoticed and cause occasional outages in the network supply. In future works,
this type of analysis can be carried out.

Similar studies don’t go deeper on the general performance in different scenarios similar
to what is done in the event and core tests. As shown in (Xu et al., 2017; Wang et al.,
2015), however, the network consumption in different regions of the city can be highly
different based on their urban ecology, presenting completely different network usage
characteristics. With this, we conclude that these tests can be of paramount importance
in identifying the qualities and defects of a predictive system of this nature.

The NMAE considering the transport hubs is 11.79% at epoch 50 of training, while
the standard model (without transport data) results in a NMAE of 11.59% at the same
epoch. Thus, this is also possible to say that, in this region, the transport hubs does not
play a key role in improving model predictions.

With all the results, it can be concluded that the inclusion of public transport data,
in general, improves the quality of MTP-NT predictions. When carrying out a more in-
depth analysis, it is possible to conclude that central regions have a greater increase in
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Figure 25 – Results for different HW implementations.

Source: the author

performance with this inclusion when compared to more peripheral regions of the city, as
well as models considering a lower degree of neighborhood tend to have greater increases
in performance.

6.5 Concluding remarks

In the 3 tests carried out (distributed, core and event tests), the results indicate that
the inclusion of transport hubs tend to improve the overall performance, specially in
outliers (regions with a error much above the mean). The bests results, with 5 neighbors
models and transport hubs processing,presents a mean NMAE of 11%. This validates
the initial theory that the inclusion of transport hubs can have a positive impact in the
performance of the model, specially in highly aperiodic scenarios, as seen in the event
tests. In addition to validates this theory raised in the literature, MTP-NT also proves
to be important in bringing an open contribution to the study area, being an unusual
practice in the segment.
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Figure 26 – Plot for San Siro/Giuseppe Meazza region predictions considering transport
hubs. In blue the real network usage, in orange the model predictions with
the aperiodic peak highlighted.

Source: the author

The execution time shows that, even if it comes necessary to retrain any of the models
in a environment production, it can be possible to retrain and validate a model within a
10-minute window (between one prediction and other). Also, it is possible to validate how
light MTP-NT can become to supply a critical, time-limited and/or computational-limited
scenario.

Also, comparing the results with (Wang et al., 2017b) it is possible that MTP-NT
results are at the same levels as the results seen in the literature, with the advantage of
having been validated in different scenarios and with a different load of tests.

The limitations of MTP-NT usage can be found in scenarios where it is highly impor-
tant to monitor all the regions/towers of a city, as tje proposed framework make individual
predictions to regions and can become complex to administrate multiple models in paral-
lel, although this parallelism may have its advantages in a distributed processing scenario
when compared to competitors that make predictions in a centralized model, such as
(Wang et al., 2017b; Wang et al., 2017a).

It is also important to emphasize that all tests carried out were on a sample from a
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region of a single country, restricting urban ecology to a small sample of the wide variety
of scenarios that can occur in different cities and countries. Therefore, it is expected that
validation of the proposed framework can occur in other databases, which is feasible given
that all the work is open source.

As a result, MTP-NT shows as a solid candidate for practical use in the operations
of a telecommunications operator, as it was possible to validate its performance on real
world data (with a very anonymized dataset), making it a viable tool even in countries
with strict privacy policies.
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Chapter 7
Final considerations and future work

Future mobile networking technologies may be more data driven and require robust
models to support such deployments. In this way, the forecast of network demand plays
a central role as it allows smarter planning and operation of the coverage regarding
metropolitan regions (Sun et al., 2019).

Large cities and urban centers, in general, have a very dynamic scenario of network
usage. In addition to having non-homogeneous patterns (with few regions representing
a large peak in consumption), the patterns have a considerable irregular factor. In this
scenario, and relying on the virtualization of resources (such as NFV achitectures) within
new network technologies (such as 5G), intelligent algorithms, which anticipate network
demand, can help in the resource allocation strategies performed by the scheduler. This
way, both agreed QoS/QoE metrics are guaranteed while an economy of infrastructure
costs can be achieved.

It is important, however, to make sure that the proposed algorithm is compatible with
the network architecture proposed by 3GPP and other major network standards. To do
so in 5G networks, MTP-NT was architected from the beginning with a cloud-based, VNF
architecture in mind, and based in the existing architecture of NTMA. Furthermore, all
data collection, storage and distribution are based on native collectors in the network,
scalable databases (to handle a large volume of data) and communication sockets also
native to the 5G infrastructure respectively.

Another major contribution of MTP-NT lies in the fact that all development was made
available with open source licenses, as well as the database used is also publicly available.
In this way, the proposal can be easily reproduced and it is expected that the adoption of
this approach in this type of work will also speed up the adoption of AI in the industry,
providing a standard that has already been experimentally validated.

It is also important to highlight that (Barlacchi et al., 2015) is compliant with GDPR,
and by developing MTP-NT based on this standards it is ensured that privacy restric-
tions will not be a problem to the framework. As the major literacture explored in this
dissertation relies on chinese network operators, it is possible that their implementation
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in countries with rigid privacy policies will not be possible.
The main hypothesis tested in the field of framework predictions is the inclusion of

public transport data, obtained through the crossing of regions and metro/tram/bus stops
in the city of Milan, the focus of the work. Some academic works had already discussed
the aggregation of transport data as a way of bringing a new type of information into
predictive models, focusing on aperiodic events and the general improvement of forecasts,
but MTP-NT is the first proposal until then to have this feature.

In the results, when placed side by side with (Wang et al., 2017a), it is observed that
MTP-NT have a similar performance gain when compared to ARIMA (around 50%).
Although the framework presented processes the entire array of base stations, a large
amount of calculations is performed to build the autoencoders, which can present a higher
computational cost.

In addition to use public transport data network traffic, which can be a promising
approach to anticipate non-recurring events, MTP-NT has an interesting relationship be-
tween performance and accuracy. Thus, it can be concluded that the proposed framework
presented a better performance in predicting network traffic, considering modern concepts
of urban mobility and with enhancements confirmed by performance indicators.

The core and event tests showed that the proposed framework can perform well with
little periodic data and even with aperiodic peaks. The event test, in particular, performed
in the football stadium of Milan, validates the effectiveness of MTP-NT in extreme sce-
narios of network traffic by correctly predicting the large consumption spike resulting from
a large-scale event within the stadium perimeter. This type of validation is particularly
important, as it guarantees that the algorithm will be able to provide the scheduler with
important data at times of high network demand.

Minor tests with 1-hour window shows similar performance results when compared
with the original 10-minute interval. This reinforces the flexible characteristic of MTP-NT,
allowing it to be adapted according to needs.

The evaluation of MTP-NT serves as a robust validation against ML limits outlined
in the introduction. Firstly, in addressing the adequacy of data availability for training
and evaluation purposes, our model demonstrates proficiency in handling large datasets
pertinent to the problem in the same way that, as validated by the 1-hour tests, the
reduction in the volume of the training base did not have major impacts on the model,
making it possible to implement it in scenarios with limited data.

The utilization of pertinent information is a crucial aspect, and our approach en-
sures that all data incorporated into the model holds a direct causality relation to the
problem by the feature selection technique. Furthermore, the response time of the final
architecture has been thoroughly assessed, confirming its real-time applicability. This not
only enhances the practical utility of our solution but also underscores its efficiency in
addressing time-sensitive scenarios.
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The monetary costs associated with GPU usage and processing is a factor that the
framework addresses through its viability with different sizes, since models considering
smaller number of neighborhoods are less computationally expensive (and, consequently,
cheaper) than those with a larger volume. Therefore, the proposed framework is flexible
enough to be implemented in different cost scenarios.

An improvement to be tested there is the increase of model size with the inclusion of
new neighborhoods in the models, as the advancements in GPUs and cloud computing,
which have already been reducing the computational cost to train and run increasingly
large predictive models, can make larger ans faster architectures viable. In (Wang et al.,
2017b), for example, neighborhoods up to 11 degrees were used. Furthermore, testing the
framework on an aggregate basis based on traffic per BS instead of aggregation in fixed
areas could validate the effectiveness of the model in a scenario closer to the real one.

Another proposal for the continuation of the work is the development of a technique
which might forecast traffic in all parts of the city at the same time and with a minimum
computational cost. A architecuture similar to (Wang et al., 2017a), that is also based on
RNN combined with GSAE and LSAE, can be a way to implement this new technique.

Above all, this dissertation has a broad bibliographical review of the field of AI in
mobile networks, bringing both a theoretical conceptualization of both themes as well
as a general overview of the main works, showing, in general, the path that the field of
network traffic forecasting is taking. However, it is important to highlight that 5G, despite
being at a very advanced stage of its lifecycle, is still a field in constant evolution, just as
AI, where there are new models, techniques and architectures being constantly created
and improved, which means that this is a scenario of rapid change and innovation.
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MTP-NT: A Mobile Traffic Predictor Enhanced by
Neighboring and Transportation Data

These code are a technical analisys of A multi-source dataset of urban life in the city of Milan and the
Province of Trentino paper and the development of a predictive model to forecast network traffic. The work
was carried out during the master's program at the Federal University of Uberlândia.
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Introduction

The development of techniques able to forecast the mobile network traffic in a city can feed data driven
applications, as VNF orchestrators, optimizing the resource allocation and increasing the capacity of mobile
networks. Despite the fact that several studies have addressed this problem, many did not consider neither



the traffic relationship among city regions nor information from public transport stations, which may
provide useful information to better anticipate the network traffic.

In this work, we present a new deep learning architecture to forecast the network traffic using
representation learning and recurrent neural networks. The framework, named MTP-NT, has two major
components: the first responsible to learn from the time series of the region to be predicted, and the
second one learning from the time series of both neighboring regions and public transportation stations.
The work also reviews the 5G infrastructure based on open 3GPP specifications to explore ways to
implement the framework in a real architecture. Several experiments were conducted over a dataset from
the city of Milan, as well as comparisons against widely adopted and state-of-the-art techniques. The
results shown in this work demonstrate that the usage of public transport information contribute to
improve the forecasts in central areas of the city, as well as in regions with aperiodic demands, such as
tourist regions.

Thus, this research seeks to evaluate the performance of traffic forecasting models using public data, in
order to validate the performance gain with the aggregation of public transport data. The aggregation of
unconventional data can be a way of adding information to the model through input that has not been
explored in the scope of this research area.

The development of MTP-NT was carried out during the master's program at the Federal University of
Uberlândia. The slides used in the defense, presented on 11/21/2023, can be found in the file
named defesa.pdf.

Getting Started

Before execute any of the files, please install the environment listed
in  requirements.txt  using pip and Anaconda.

Technical Overview

Database preprocessing

Before all model development, some pre work were done in the original database and in the collected data
of public transport hubs.

misc/database_adapt.py: this code is used to take the original dataframe, that is in a format "one file per
day" to a format "one region per day".

transport_modelling: contains the code to map the transport hubs in Milan. The sources used was ATM
website, Wikipedia list of Milan Metro stations and Google Maps Platform. All data was compilled
in transport_modelling/public_transport_locations.csv

transport_modelling/transport_locations.py: takes a list of metro, tram and bus stations and, from the
Google Maps API, saves the coordinates of the stations.
transport_modelling/transport_locations_mapping.py: take the coordinates of every station and find
the equivalent region on Milano Grid.

Libs

Some code were developed to support the models training (both MTP-NT and its competitors) in different
stages. They are:

Code used in model development:



libs/get_milano.py: a library build to get the requested data from the dataset.
libs/functions.py: NMAE (Normalized Mean Absolute Error) and MARE (Mean absolute Relative error)
implementations.

MTP-NT compilling

The MTP-NT is the purposed model, compilled by model_building.py script.

Some variables need to be attended to guarantee the work of the script:

comms_path needs to point to repository of the data after preprocessing by misc/database_adapt.py.
transport_path needs to point to the transport hubs data crrated
by transport_modelling/transport_locations.py and transport_modelling/transport_locations_mapping.py

In lines 142--178 the region ids were the model are going to be evaluated are selected. In the end, the list
of ids is stored in ids_to_use.

A print of the selected ids is saved in check_selected_ids.jpg in line 191.

transport_hubs is a list that can control the activation of transport hubs data as well as neighorrs controls
wich degrees will be compilled.

After model construction and compilling, the results are saved:

models are saved in h5 format from lines 367--371
real values and predictions are saved in csv model from lines 381--384
A plot of  and   is saved in lines 389--400

The error csv is saved in lines 403--415

Competitors compilling

model_building_ARIMA.py: constructs ARIMA models for a selected number of regions.

model_building_HW.py: constructs Holt-Winters models for a selected number of regions.

model_building_LSTM.py: constructs LSTM models for a selected number of regions.

model_building_ARIMA.py: constructs ARIMA models for a selected number of regions.

model_building_SARIMAX.py: constructs SARIMAX models for a selected number of regions.

Hourly compilling

The original database, after compilling as described in Database Preprocessing can be recompilled again in
hourly samples with the script in misc/database_adapt_hourly.py.

After all preprocessing, the resulting data also can be processed by procedures explained in MTP-NT
Compilling and Competidors compilling.

Post-processing of results

Code use to validation and compilling of results:

misc/compile_results.py: compile the results from constructed models.



License

This project is licensed under the Creative Commons 4.0.
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