
Efficient Dynamic Data Structures for

Reachability Queries on Large Temporal Graphs

Luiz Fernando Afra Brito

Universidade Federal de Uberlândia

Faculdade de Computação

Programa de Pós-Graduação em Ciência da Computação

Uberlândia

October 17, 2023

Luiz Fernando Afra Brito

Efficient Dynamic Data Structures for

Reachability Queries on Large Temporal Graphs

Tese de doutorado apresentada ao Programa de Pós-

graduação da Faculdade de Computação da Universidade

Federal de Uberlândia como parte dos requisitos para

a obtenção do título de Doutor em Ciência da Computação.

Área de concentração: Ciência da Computação

Orientador: Prof. Dr. Marcelo Keese Albertini

Coorientador: Prof. Dr. Bruno Augusto Nassif Travençolo

Uberlândia

October 17, 2023

com dados informados pelo(a) próprio(a) autor(a).

Ficha Catalográfica Online do Sistema de Bibliotecas da UFU

Brito, Luiz Fernando Afra, 1991-B862

2023 Efficient dynamic data structures for reachability

queries on large temporal graphs [recurso eletrônico] /

Luiz Fernando Afra Brito. - 2023.

Orientador: Marcelo Keese Albertini.

Coorientador: Bruno Augusto Nassif Travençolo.

Tese (Doutorado) - Universidade Federal de Uberlândia,

Pós-graduação em Ciência da Computação.

Modo de acesso: Internet.

CDU: 681.3

Disponível em: http://doi.org/10.14393/ufu.te.2023.460

Inclui bibliografia.

Inclui ilustrações.

1. Computação. I. Albertini, Marcelo Keese ,1984-,

(Orient.). II. Travençolo, Bruno Augusto Nassif,1981-,

(Coorient.). III. Universidade Federal de Uberlândia.

Pós-graduação em Ciência da Computação. IV. Título.

Bibliotecários responsáveis pela estrutura de acordo com o AACR2:

Gizele Cristine Nunes do Couto - CRB6/2091

Nelson Marcos Ferreira - CRB6/3074

Agradecimentos

Agradeço à minha família e amigos, meus orientadores, prof. Dr. Marcelo Keese

Albertini e prof. Dr. Bruno Augusto Nassif Travençolo, ao meu supervisor de estudos na

França, prof. Dr. Arnaud Casteigts, que me acompanhou durante minha permanência

no Laboratoire Bordelais de Recherche en Informatique (LaBRI), ao prof. Dr. Gonzalo

Navarro, e aos integrantes da minha banca de defesa, prof. Dr. Felipe Alves da Louza,

prof. Dr. Humberto Luiz Razente, prof. Dr. Guilherme Pimentel Telles e prof. Dr. Alan

Demétrius Baria Valejo.

Também agradeço à Fundação de Amparo à Pesquisa do Estado de Minas Gerais

(FAPEMIG) e à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

por fomentarem o Programa de Pós-Graduação em Ciência da Computação da Univer-

sidade Federal de Uberlândia e, consequentemente, possibilitar o meu estudo em tempo

integral.

Resumo

Grafos temporais são ferramentas usadas para representar fenômenos que ocor-

rem ao longo do tempo. Ao incluir o tempo nos estudos sobre grafos, pode-se descrever

sistemas como processos que evoluem continuamente e, assim, descobrir novas soluções

em problemas relacionados. Existem várias consultas de alto nível que podem nos aju-

dar na análise de grafos temporais como a verificação do alcance entre vértices por meio

de caminhos temporais e a reconstrução desses caminhos quando possível. Entretanto,

tarefas como essas são computacionalmente intensivas e, ademais, nota-se atualmente um

aumento substancial do volume de novos dados produzidos. Neste cenário, a hierarquia

de memória, incluindo memórias secundárias e caches, deve ser levada em consideração

durante o desenvolvimento de aplicações para grafos temporais. Neste trabalho, serão

apresentadas estruturas de dados dinâmicas implementadas em memórias primária e se-

cundária que respondem consultas de alcance em grandes grafos temporais. Dentre nossos

resultados, destacamos um novo objeto matemático chamado Fecho Transitivo Temporal,

uma generalização do Fecho Transitivo comumente estudado em grafos não-temporais. U-

sando esse novo conceito, propomos três novas estruturas de dados dinâmicas. A primeira

estrutura mantém um Fecho Transitivo Temporal em memória primária usando espaço

O(n2τ), responde consultas de alcance em tempo O(log τ) e insere novos contatos em

O(n2 log τ), onde τ é a quantidade de etiquetas de tempo e n é o número de vértices em

um grafo temporal. A segunda estrutura usa uma representação compacta, também em

memória primária, que reduz o espaço utilizado pela estrutura em varios cenários e possui

desempenho similar na execução das operações. Finalmente, a terceira estrutura persiste

os dados em memória secundária usando espaço O(n2τ) e usa algoritmos para responder

consultas de alcance e fazer atualizações que acessam, respectivamente, O(1) e O(n2τ/B)

páginas em disco, ond B é o tamanho de uma página em memória secundária.

Palavras-chave: Grafos temporal, estrutura de dados dinâmica, consulta de alcance

entre vértices, fecho transitivo, memória primária, memória secundária.

Abstract

Temporal graphs serve as a modeling tool to represent interactive phenomena that

occur over time. By adding the time dimension to these models, we can better describe

systems, study them as a continuously evolving process, and discover better solutions to

existing problems. There are many high-level queries that aid us in the analysis of tempo-

ral graphs, such as checking whether vertices are reachable through temporal paths and

reconstructing such temporal paths. However, these tasks are computationally demand-

ing and the increasing volume of data produced at high speeds brings us new challenges.

In this scenario, the memory hierarchy, including secondary memory, should be taken

into consideration when designing applications for temporal graphs. In this document,

we present dynamic data structures for primary and second memories that answer reach-

ability queries on large temporal graphs. During our investigation, we seek strategies

that improve the time and space needed to maintain such data structures, and the time

to compute reachability queries. Among our results, we highlight a new mathematical

object called Timed Transitive Closure (TTC), which generalizes the standard Transitive

Closure (TC) concept for temporal graphs. By using this novel object, we propose three

new dynamic data structures. The first data structure maintains the TTC information in

primary memory using O(n2τ) space while answering reachability queries in time O(log τ)

and inserting new contacts in O(n2 log τ), where τ is the number of timestamps and n is

the number of vertices in a temporal graph. The second data structure uses a compact

representation, also in primary memory, that greatly reduces the space usage in several

scenarios while retaining similar performance. Finally, the third data structure persists

the reachability information on disk using O(n2τ) space while accessing O(1) pages for

answering reachability queries and O(n2τ/B) pages for performing updates, where B is the

size of a page in secondary memory.

Keywords: Temporal graph, dynamic data structure, reachability queries, transitive

closure, primary memory, secondary memory.

List of Figures

Figure 1 – Perceived time complexity of the Louvain’s algorithm 21

Figure 2 – Illustration of a temporal graph . 27

Figure 3 – A temporal graph and its transitive closure 28

Figure 4 – Example of vertex reachability in undirected graphs 38

Figure 5 – Example of vertex reachability in directed graphs 39

Figure 6 – Example of vertex reachability in temporal graphs 42

Figure 7 – Two types of timed transitive closures for a temporal graph 52

Figure 8 – Basic steps to update a timed transitive closure 54

Figure 9 – Number of R-tuples stored in our data structure 60

Figure 10 – A dynamic bit-vector that uses a layout similar to B+-trees 64

Figure 11 – Representation of a set of non-nested time interval using two bit-vectors 66

Figure 12 – Sequence of insertions using our data structure based on bit-vectors . . 68

Figure 13 – Comparison of data structures to represent a set of non-nested intervals 74

Figure 14 – Comparison of TTCs using data structures to represent sets of non-

nested intervals for each pair of vertices 75

Figure 15 – Temporal graph and its associated disk-based timed temporal closure . 82

Figure 16 – Maintenance of our disk-based timed transitive closure 85

Figure 17 – Time to maintain our data structures on synthetic data 88

Figure 18 – Illustration of the process performed by our update algorithm 90

Figure 19 – Time-interval Log per Edge representation 111

Figure 20 – Adjacency Log of Events representation 113

Figure 21 – Compact Adjacency Sequence representation 115

Figure 22 – Compressed Events ordered by Time representation 118

Figure 23 – Temporal Graph Compressed Suffix Array representation 120

Figure 24 – kd tree representation, with k = 2 and d = 2, of a temporal graph . . . 123

List of Tables

Table 1 – Examples of queries applied to a temporal graph 29

Table 2 – Space for storing temporal graphs and timed transitive closures 78

Table 3 – Wall-clock time to insert shuffled contacts from real-world datasets . . . 91

Table 4 – Worst-case space cost of temporal graph representations 125

Table 5 – Cost of has edge and neighbors queries for different representations . 126

Table 6 – Cost of neighborsr and aggregate queries for different representations 126

List of Algorithms

1 add contact(u, v, t) . 57

2 reconstruct journey(u, v, t1, t2) . 57

3 find prev((D, A), t) . 67

4 find next((D, A), t) . 67

5 insert((D, A), t1, t2) . 69

6 join(N1, N2) . 71

7 split at jth one(N , j) . 72

8 add contact(u, v, t) . 86

9 reconstruct journey(u, v, t1, t2) . 87

10 join(Tleft, Tright) . 132

11 split(T, L) . 133

Acronyms list

BST Binary Search Tree

BFS Breath-First Search

CAS Compact Adjacency Sequence

CET Compressed Events ordered by Time

CSA Compressed Suffix Array

DAG Directed Acyclic Graph

DFS Depth-First Search

EdgeLog time-interval Log per Edge

EveLog adjacency Log of Events

ETDC End-Tagged Dense Codes

HDD Hard Disk Drive

HAMR Heat-Assisted Magnetic Recording

HDMR Heated-Dot Magnetic Recording

IoT Internet of Things

I/O Input/Output

LCA Least Common Ancestor

LRU Least Recently Used

MAMR Microwave-Assisted Magnetic Recording

MST Minimum Spanning Tree

SA Suffix Array

SCC Strongly Connected Component

SMR Shingled Magnetic Recording

TGCSA Temporal Graph Compressed Suffix Array

TC Transitive Closure

TTC Timed Transitive Closure

Contents

1 INTRODUCTION . 17

1.1 Motivation . 19

1.2 Opportunities and Challenges . 22

1.3 Hypothesis and Goals . 23

1.4 Contributions . 24

1.5 Organization . 25

2 FUNDAMENTALS . 26

2.1 Temporal Graphs . 26

2.2 Queries on Temporal Graphs . 28

2.2.1 Low-level Queries for Temporal Graphs 28

2.2.2 High-level Queries for Temporal Graphs 30

2.3 External Memory and Dynamic Data Structures 31

2.3.1 External Data Structures . 32

2.4 Concluding remarks . 36

3 RELATED WORK . 37

3.1 Reachability Queries . 37

3.1.1 Reachability on Undirected Graphs . 37

3.1.2 Reachability on Directed Graphs . 38

3.1.3 Reachability on Temporal Graphs . 41

3.2 Reachability Queries on Disk . 43

3.2.1 Reachability on Undirected Graphs Stored on Disk 43

3.2.2 Reachability on Directed Graphs Stored on Disk 43

3.2.3 Reachability on Temporal Graphs Stored on Disk 44

3.3 Space-Efficient Data Structures for Querying Temporal

Graphs in Primary Memory . 45

3.4 Concluding remarks . 45

4 A DYNAMIC DATA STRUCTURE FOR TEMPO-

RAL REACHABILITY WITH UNSORTED CONTACT

INSERTIONS . 47

4.1 Reachability Tuples and Timed Transitive Closure 48

4.1.1 Reachability Tuples (R-tuples) . 49

4.1.2 Timed Transitive Closure . 51

4.2 The Four Operations . 55

4.2.1 Reachability and Connectivity Queries 55

4.2.2 Update Operation . 55

4.2.3 Journey Reconstruction . 56

4.2.4 Evolution of the Number of R-tuples over the Insertions 59

4.3 Concluding remarks . 61

5 A COMPACT DATA STRUCTURE FOR TEMPORAL

REACHABILITY . 62

5.1 Dynamic bit-vectors . 63

5.2 Dynamic compact data structure for temporal reachability . . 65

5.2.1 Compact representation of non-nested intervals 66

5.2.2 Query algorithms . 67

5.2.3 New dynamic bit-vector operation to improve interval insertion 69

5.3 Experiments . 73

5.3.1 Comparison of data structures for sets of non-nested intervals 73

5.3.2 Comparison of data structures for Time Transitive Closures 75

5.4 Concluding remarks . 76

6 A DISK-BASED DATA STRUCTURE FOR TEMPORAL

REACHABILITY . 77

6.1 Disk-Based Timed Transitive Closure 80

6.1.1 Expanded Reachability Tuples (Expanded R-tuples) 80

6.1.2 Encoding the TTC on Disk . 81

6.2 The Four Operations . 83

6.2.1 Reachability and Connectivity Queries 83

6.2.2 Update Operation . 83

6.2.3 Journey Reconstruction . 86

6.3 Experiments . 87

6.3.1 Experiments with Synthetic Data . 88

6.3.2 Experiments with Real-World Datasets 89

6.4 Concluding remarks . 91

7 CONCLUSION . 93

7.1 List of publications . 95

BIBLIOGRAPHY . 97

APPENDIX 109

APPENDIX A – SPACE-EFFICIENT DATA STRUCTURES

FOR QUERYING TEMPORAL GRAPHS IN

PRIMARY MEMORY 110

A.1 Time-Interval Log per Edge . 111

A.1.1 Operation has edge . 112

A.1.2 Operation neighbors . 112

A.1.3 Operation neighborsr . 112

A.2 Adjacency Log of Events . 112

A.2.1 Operation has edge . 113

A.2.2 Operation neighbors . 114

A.2.3 Operation neighborsr . 114

A.3 Compact Adjacency Sequence . 114

A.3.1 Operation has edge . 116

A.3.2 Operation neighbors . 117

A.3.3 Operation neighborsr . 117

A.4 Compressed Events Ordered by Time 118

A.4.1 Operation has edge . 118

A.4.2 Operation neighbors . 119

A.4.3 Operation neighborsr . 119

A.5 Temporal Graph Compressed Suffix Array 119

A.5.1 Operation has edge . 121

A.5.2 Operation neighbors . 121

A.5.3 Operation neighborsr . 121

A.6 Compressed kd Tree . 122

A.6.1 Operation has edge . 124

A.6.2 Operation neighbors . 124

A.6.3 Operation neighborsr . 124

A.7 Considerations . 125

APPENDIX B – JOIN AND SPLIT OPERATIONS FOR

B+-TREES . 130

B.1 Join operation for B+-trees . 131

B.2 Split operation for B+-trees . 132

17

Chapter 1

Introduction

Temporal graphs serve as a modeling tool to represent interactive phenomena that

occur over time (MICHAIL, 2016). They describe complex systems as relationships among

entities that often appear as contacts or events defining when relationships begin or end.

Studies have applied temporal graphs to abstract problems such as: the continuous com-

munication among participants of social networks, in order to detect hierarchies (YANG

et al., 2011); the evolution of communities, in order to understand and predict future

events (LIBEN-NOWELL; KLEINBERG, 2007); and the flow in transportation networks,

in order to check the existence of trajectories and reconstruct them (WU et al., 2017;

WILLIAMS; MUSOLESI, 2016; BEDOGNI; FIORE; GLACET, 2018). By adding the

time dimension to these models, we can describe such systems, study them as a continu-

ously evolving process, and discover better solutions to existing problems.

There are many high-level queries that aid us in the analysis of temporal graphs.

A very important one, which we are particularly interested, is to check whether any two

entities can reach each other by traversing contacts through time. These time-respecting

paths are known as journeys, and reconstructing them can be very useful as well. For

instance, during scenarios of epidemics, information containing the interaction details

among infected and non-infected individuals is registered incrementally in a database.

Then, this information is periodically queried in order to better understand the dissem-

ination process and, thus, to support actions that slow it down or completely interrupt

it (XIAO et al., 2018; XIAO; ASLAY; GIONIS, 2018; ENRIGHT et al., 2021; ROZEN-

SHTEIN et al., 2016). However, the collected data can arrive outdated, even though,

sometimes, it is important to include this information for future analysis. Think when an

infected patient goes to a hospital because he is feeling sick and the healthcare professional

discovers that his infection occurred three days ago.

The detection of evolving communities is another important high-level query and

knowing the reachability information in advance is fundamental to implement algorithms

for this purpose. The main idea is to track the evolution of entity clusters, in which

Chapter 1. Introduction 18

members in the same cluster are more likely to relate than members in different clusters.

By grouping related entities together, we can uncover the topological structure of tem-

poral graphs over time and use higher abstractions to better understand the system. For

example, in visualization, one of the most promising areas (SAHU et al., 2017), there are

studies that draw strongly connected entities together in order to minimize clutter and

improve readability of the whole temporal graph (LINHARES et al., 2017).

However, such tasks can be computationally demanding since algorithms need to

process every contact, considering the entire lifetime of the temporal graph. Moreover,

recent technological advances such as the Internet of Things (IoT) and the integration of

social media concepts in diverse applications have also enabled new content to be created

by anyone (ATZORI et al., 2012). This increasing volume of data produced at high speeds

brings us new challenges.

On one hand, we need efficient computational mechanisms to persist data that

evolve continuously in cheap external storage. On the other hand, we need specialized

techniques to load these data in faster (and more expensive) memories using minimal space

and process queries as fast as possible in order to extract valuable knowledge. Therefore,

data structures for this context must consider all the memory hierarchy, including net-

working when necessary, and be dynamic. Here, the adjective dynamic refers to the fact

that the data structure can be updated after the input data is changed.

There are three types of dynamic data structures: incremental, decremental, and

fully-dynamic. Incremental and decremental data structures support only inserting or

deleting elements, respectively, while fully-dynamic data structures support both opera-

tions. For temporal graphs, an important aspect of data structures is whether the order

of updates respects the order of the contacts themselves. Here, data structures can be

chronological, whether they operate on a sorted sequence of contacts, or non-chronological,

whether they operate on an unsorted sequence of contacts. For instance, during scenarios

of epidemics, outdated information containing the interaction details among individuals

is reported in an arbitrary order. Thus, a data structure for this scenario should be, at

least, incremental and non-chronological.

In this thesis, we consider the problem of maintaining reachability information of

a temporal graph G through an incremental and non-chronological data structure in order

to answer reachability queries. In the following, we present the four operations such data

structure must support, where, by convention, u and v are entities in G, and t, t1, and t2

are timestamps:

❏ add contact(u, v, t): Updates information based on a contact from u to v at

time t. This operation may be called every time a new contact is discovered in the

considered scenario.

Chapter 1. Introduction 19

❏ can reach(u, v, t1, t2): Returns true if u can reach v through a journey within

the interval [t1, t2].

❏ is connected(t1, t2): Returns true if G, restricted to the interval [t1, t2], is tem-

porally connected, i.e., all entities can reach each other through a journey within

the interval [t1, t2]. This operation allows one to test, for example, whether all the

nodes of a communication network can reach each other.

❏ reconstruct journey(u, v, t1, t2): Returns a journey (if one exists) from u to

v occurring within the interval [t1, t2]. This operation may be called, for example,

to learn a potential contamination chain from a person to another in a scenario of

epidemics.

1.1 Motivation

A naïve approach for our problem stores and updates the temporal graph itself

as a set of contacts, then it runs standard journey computation algorithms (XUAN;

FERREIRA; JARRY, 2003a) for every new query. However, this approach is adapted

only for scenarios in which the number of insertions is much larger than the number of

queries, since every query may traverse the whole temporal graph. In contrast, dynamic

structures offer a tradeoff between query time, update time, and space usage.

To the best of our knowledge, the only existing work supporting non-chronological

contact insertions and exploiting intermediate representations for speeding up reachability

queries in temporal graphs is (WU et al., 2016). Their solution relies on maintaining a

Directed Acyclic Graph (DAG) in which every original vertex is copied up to τ times

(where τ is the number of timestamps) and a journey exists from u to v in the interval

[t, t′] if and only if vertex ut can reach vertex vt′ in the DAG. However, even though

their experiments show their algorithms are efficient on the average case, the worst-case

complexities of their algorithms do not improve over the naïve approach. The worst-case

query time corresponds to a standard path search (e.g., depth-first search) in the DAG,

which takes Θ(n2τ) time with dense temporal graphs, where n is the number of entities.

The worst-case update time also corresponds to a standard path search in order to update

the affected vertex labels in the DAG. Furthermore, the space complexity (size of the

DAG) corresponds essentially to the number of contacts, thus Θ(n2τ) in the worst case.

Finally, their data structure only works in primary memory, which is not suitable for

working with large temporal graphs. Large in this context means that temporal graphs

do not fit entirely in primary memory and, therefore, we need to store them in slower

storages.

Storing and querying data structures for large temporal graphs may be difficult, es-

pecially when the amount of data grows unbounded (CARO; RODRÍGUEZ; BRISABOA,

Chapter 1. Introduction 20

2015). Consider the scenario in which one million people use bluetooth devices that reg-

ister when and who gets close to each other and send this information to a centralized

server. Consider also that each individual makes in average 30 contacts per day. In this

setting, the server would require at least 100 GB of space in less than a year to store just

the plain contacts. If one needs to support fast reachability queries (e.g., can a piece of

information created by an individual arrive at another individual’s device by replicating

itself to other devices in contact?), it would be necessary even more space to maintain an

additional data structure.

In such scenarios, we need to use specialized data structures and algorithms

to manipulate large temporal graphs efficiently in both primary memory (CARO; RO-

DRÍGUEZ; BRISABOA, 2015; CARO et al., 2016; BRISABOA et al., 2018; HAN et al.,

2014; LABOUSEUR et al., 2015; KHURANA; DESHPANDE, 2013) and secondary mem-

ory (BUCHSBAUM et al., 2000; QIAO, 2013; ZHANG et al., 2012a; HIRVISALO; NUU-

TILA; SOISALON-SOININEN, 1996; CHENG; YU; TANG, 2006; SHIRANI-MEHR;

KASHANI; SHAHABI, 2012; STRZHELETSKA, 2018) due to the high cost of man-

aging data only in primary memory and the high risk of losing information in volatile

storages. Data structures for secondary memory consider high latency of access and low

transfer rate of data (HAN et al., 2014; NEUMANN; WEIKUM, 2010; LABOUSEUR

et al., 2015; KHURANA; DESHPANDE, 2013). A strategy to improve operations in

secondary memory should reduce the number of disk accesses by maintaining coherent

subsets of data near each other (LABOUSEUR et al., 2015). Thus, algorithms can read

entire blocks from secondary memory and take advantage of pre-fetched data, mitigat-

ing the high latency problem. Data structures for primary memory, differently, consider

better latency and transfer rate, whereas they account for less space availability (CARO;

RODRÍGUEZ; BRISABOA, 2015; CARO et al., 2016; BRISABOA et al., 2018). In this

case, strategies can spend more instructions per algorithm, since the cost of accessing data

in primary memory is much lower than accessing data in secondary memory. However,

they do not work with large datasets because of their limited space.

Even when using data structures for both primary and secondary memory, high-

level queries on temporal graphs can still degrade severely if the data structures do not

integrate well. To exemplify this behavior, we conducted a small experiment to compare

the wall clock time of the Louvain’s algorithm (BLONDEL et al., 2008) — an algorithm

for community detection based on modularity optimization. For this experiment, we

implemented a disk-based temporal adjacency list data structure (XUAN; FERREIRA;

JARRY, 2003b) using B+-trees — a dynamic data structure for secondary memory based

on m-ary trees — and a cache data structure in primary memory. Our cache data structure

uses the Least Recently Used (LRU) policy (JOHNSON; SHASHA, 1994) and stores nodes

of B+-trees as blocks. To test these data structures we generated temporal graphs using

the Barabási-Albert model (ALBERT; BARABÁSI, 2002) and executed the Louvain’s

Chapter 1. Introduction 21

●
● ●

●

●

●

●

●

●

●

●

●

●

●

y = 0.4*x + 5.6y = 0.4*x + 5.6y = 0.4*x + 5.6y = 0.4*x + 5.6y = 0.4*x + 5.6y = 0.4*x + 5.6y = 0.4*x + 5.6y = 0.4*x + 5.6y = 0.4*x + 5.6y = 0.4*x + 5.6y = 0.4*x + 5.6y = 0.4*x + 5.6y = 0.4*x + 5.6y = 0.4*x + 5.6

y = 1.7*x + −9.5y = 1.7*x + −9.5y = 1.7*x + −9.5y = 1.7*x + −9.5y = 1.7*x + −9.5y = 1.7*x + −9.5y = 1.7*x + −9.5y = 1.7*x + −9.5y = 1.7*x + −9.5y = 1.7*x + −9.5y = 1.7*x + −9.5y = 1.7*x + −9.5y = 1.7*x + −9.5y = 1.7*x + −9.5

2
10

2
15

2
20

2
10

2
15

V

W
a

ll
 C

lo
c
k

 T
im

e
 (

m
s

)

Figure 1 – Perceived time complexity of the Louvain’s algorithm (BLONDEL et al., 2008).
This figure shows the results in a log-log plot where the x axis is the number
of vertices in the temporal graph and the y axis is the wall clock time to
execute the algorithm. We also drew a red and a blue line representing linear
regressions, along with their equation, representing the growth of wall clock
time in periods where temporal graphs fit entirely in cache and when it does
not. We note that when V ≥ 213 the curve inclination changes considerably. At
this point, the temporal graph does not fit entirely in cache and the algorithm
access the secondary memory more often.

algorithm varying the number of vertices at every timestamp.

Figure 1 shows the results in a log-log plot where the x axis is the number of vertices

in the temporal graph and the y axis is the wall-clock time to compute the algorithm.

The inclination coefficient of fitted straight lines gives us empirically, the overall time

complexity. We see that, when the temporal graph can fit entirely in primary memory,

the wall-clock time is sublinear by looking at the inclination of the first line. However,

as soon as the temporal graph cannot fit entirely in primary memory, and the number

of disk access increases, the wall-clock time grows rapidly, becoming subquadratic. For

each snapshot at timestamp t, the Louvain’s algorithm needs to traverse the temporal

graph many times using a circular access pattern and the LRU cache in memory cannot

improve its computation since most hit attempts fail. Therefore, we need to consider

more suitable data structures in both primary and secondary memory in order to prevent

this degradation.

Chapter 1. Introduction 22

1.2 Opportunities and Challenges

There are many studies on dynamic data structures for reachability queries on

standard (non-temporal) graphs. Usually, they maintain the Transitive Closure (TC) of

an input graph (ITALIANO, 1986; ŁĄCKI, 2013; KING; SAGERT, 2002; RODITTY,

2008), which answer reachability queries as fast as possible, but updates are costly; or a

vertex-labeling schema (SEUFERT et al., 2013; WEI et al., 2018; YILDIRIM; CHAOJI;

ZAKI, 2012; CHEN; GUPTA; KURUL, 2005; VELOSO et al., 2014), which has differ-

ent tradeoffs. Yet, other studies focus primarily on disk-based data structures in or-

der to maintain information related to large temporal graphs (HIRVISALO; NUUTILA;

SOISALON-SOININEN, 1996; AGRAWAL; BORGIDA; JAGADISH, 1989; ZHANG et

al., 2012b; ZHANG et al., 2018).

However, there are only few studies on such data structures for temporal graphs.

In fact, the area of temporal graphs is relatively new compared to standard graphs. Thus,

many problems are still open. For example, does the approaches used to solve reachability

on standard graphs can be applied to temporal graphs or does the temporal nature of the

temporal graphs demand different approaches? Can data structures for temporal graphs

be as fast as the data structures for standard graphs?

In this work, we studied the maintenance of TCs for temporal graphs in order to

answer reachability queries. Briefly, the standard TC of a temporal graph is a matrix such

that if vertex u reaches v through a journey, then TC(u, v) = true. However, this notion

is not sufficient to maintain the TC itself dynamically, in the context of temporal graphs,

because it does not allow one to decide if a new contact can be composed with previously

known journeys. For instance, if we add a contact (u, w, t), then a contact (w, v, t − 1),

we know that we cannot compose a journey from u to v since the first contact happens

after the second one; however, with a standard TC, we cannot know if it is possible or

not to compose such a journey because it does not keep temporal information.

The maintenance of TCs for large temporal graphs can be quite costly in terms

of space usage, especially if we want to include the temporal aspect into standard TCs.

Therefore, we need to consider using efficient data structures in secondary memory, which

try to reduce the number of Input/Output (I/O) accesses, and exploit data locality in

order to keep related data contiguous. Compression techniques can also reduce space and,

as a result, reduce the number of I/O accesses as more data can fit into a single block.

In (ROY; MIHAILOVIC; ZWAENEPOEL, 2013), the authors use some of these ideas to

improve the processing of large graphs. However, their strategy only works for standard

graphs and modifications are not easily implemented. So, we investigated an alternative

approach for temporal graphs.

There is a growing area of study on compact data structures that uses only O(Z)

Chapter 1. Introduction 23

space, where Z is the optimal number of bits needed to store some data, targeting

mainly primary memory (GAGIE; NAVARRO; PUGLISI, 2012; GROSSI; VITTER, 2005;

CHAMBI et al., 2016). There are also two other categories of efficient data structures,

the succinct and the implicit data structures, which use Z + o(Z) and Z + O(1) space, re-

spectively (JACOBSON, 1988). These data structures consider space lower bounds based

on Information Theory concepts (NAVARRO, 2016), and provide useful queries with lit-

tle or no costly preprocessing steps such as decompression (GROSSI; GUPTA; VITTER,

2003). Recently, some authors have used compact data structures to store and query

temporal graphs in primary memory (CARO; RODRÍGUEZ; BRISABOA, 2015; CARO

et al., 2016; BRISABOA et al., 2018). For example, Brisaboa et al. (2018) used a compact

version of the suffix array to store text representations of temporal graphs and offer basic

queries, such as checking if a relation is active at some timestamp, in logarithmic time at

the average cost of 50 to 90 bits per contact (u, v, tbegin, tend), as empirical experiments

suggest, where u and v are entities that relates from time tbegin to time tend.

Compact data structures have great potential to be used as a cache for tempo-

ral graphs stored in secondary memory. However, although compact data structures

can reduce space usage, most of them are static and do not allow modifications. When

compact data structures support update operations, their operations have at least an ad-

ditional O(log n) factor in their costs, and the space usage can be worse than their static

versions (NAVARRO, 2016). These results are under the RUM conjecture (ATHANAS-

SOULIS et al., 2016), which states that a data structure cannot optimize simultaneously

the time to query information, the time to update itself, and the total space used to

organize data.

1.3 Hypothesis and Goals

Our hypothesis for this thesis is:

Hypothesis. Using specialized data structures for both primary and secondary memory

can improve the maintenance of reachability queries on large temporal graphs.

Our primary goal to verify this hypothesis was to propose dynamic data structures

to handle large temporal graphs that can evolve and cannot be entirely in primary memory.

As presented earlier, even though the algorithms for temporal graphs do not change, their

overall time complexity can increase considerably when primary memory is not enough

and algorithms start accessing secondary memory. In this thesis, we developed efficient

data structures to maintain and query temporal graphs in secondary memory. Therefore,

these data structures aim to reduce the amount of I/O accesses in order to mitigate the

degradation due to the low cache hit rate and, as a result, high workload in secondary

memory during the computation of reachability queries.

Chapter 1. Introduction 24

In order to reach our primary goal, we studied the following specific goals. The

first specific goal was to develop a base model and implement a simple data structure

for primary memory capable of answering reachability queries on temporal graphs. As a

first effort, we studied a new mathematical object based on the standard TC, which also

includes the time aspect of journeys, and then studied a preliminary data structure that

maintains this object in primary memory. A data structure for reachability query should

provide better performance than just performing journey computation algorithms on the

temporal graph itself with no special organization, such as those in (XUAN; FERREIRA;

JARRY, 2003a). It should also provide better worst-case costs for adding new contacts

and answer reachability queries than those introduced in (WU et al., 2016).

The second specific goal was to implement a space efficient data structure for

primary memory capable of efficiently answering reachability queries on temporal graphs.

By improving the space efficiency of data structures in primary memory, we increase the

amount of information we can use in faster memories. Consequently, we improve the

overall performance of maintaining reachability information for larger temporal graphs

since accesses to slower storages is reduced. In order to improve space efficiency, we studied

a dynamic compact data structure to incrementally maintain reachability information. We

note that most compact data structures for temporal graphs in the literature are static,

which means that the data structure is fully rebuilt for any data modification.

Finally, the third specific goal was to implement a data structure for secondary

memory capable of efficiently answering reachability queries on large temporal graphs. As

we are dealing with scenarios where the incoming data does not fit entirely in primary

memory, the temporal graph data should be persisted in secondary memory, and the tech-

niques used should be optimized for this type of storage. For example, data structures in

secondary memory must take advantage of data locality and minimize accesses to pages

in order to improve performance. Therefore, we studied a novel disk-based data struc-

ture, considering these characteristics, based on our previous data structure developed for

primary memory.

1.4 Contributions

In this thesis, we contributed with the following. A new mathematical object

called Timed Transitive Closure (TTC), which generalizes the concept of standard

Transitive Closures (TCs) for temporal graphs. A in-memory dynamic data structure

that encodes the reachability information of a temporal graph using O(n2τ) space,

which is essentially the space complexity to store the contacts of a temporal graph;

while answering add contact(u, v, t) in time O(n2 log τ), can reach(u, v, t1, t2) in

O(log τ), is connected(t1, t2) in O(n2 log τ), and reconstruct journey(u, v, t1, t2)

Chapter 1. Introduction 25

in O(k log τ), where n and τ are, respectively, the number entities and the number of

timestamps in the lifespan of a temporal graph, and k is the length of the reconstructed

journey. A compact dynamic data structure, also for primary memory, that retains

the same time complexities for all operations while spending much less space in several

scenarios. Finally, a disk-based dynamic data structure that improves performance on

most datasets considered in our experiments while accessing O(n2τ/B) sequential pages to

perform add contact(u, v, t), O(1) pages for can reach(u, v, t1, t2), O(n2/B) pages

for is connected(t1, t2), and O(n/B) for reconstruct journey(u, v, t1, t2), where B

is the size of a disk page.

1.5 Organization

The rest of this document is organized as follows. In Chapter 2, we introduce

background concepts about temporal graphs, including definition, general strategies for

data maintenance and basic queries; and about secondary memory, including basic data

structures. In Chapter 3, we review specialized data structures (in both primary and

secondary memory) for answering reachability queries on temporal graphs. In Chapter 4,

we present our first contribution that introduces a new concept called Timed Transitive

Closure (TTC) in order to check reachability of entities and reconstruct temporal paths.

In Chapter 5, we present our second contribution that proposes a dynamic compact data

structure that improves space efficiency in primary memory. In Chapter 6, we present

our third contribution that develops an efficient implementation of our TTC in secondary

memory. Finally, in Chapter 7 we draw our conclusions.

26

Chapter 2

Fundamentals

In this chapter, we introduce the background concepts used throughout this docu-

ment. In Section 2.1, we define temporal graphs and general concepts, such as reachability

and Transitive Closure (TC). In Section 2.2, we present basic queries commonly used when

analyzing temporal graphs categorizing them into low-level and high-level queries. Finally,

in Section 2.3, we introduce important concepts related to disk storage and present basic

data structures for working with data in secondary memory.

2.1 Temporal Graphs

Temporal graphs model relationships among entities over time by also describing

the evolution of networks.

Definition 1 (Temporal graph as labeled edges). Following the formalism

in (CASTEIGTS et al., 2011), a temporal graph is a tuple G = (V, E, T , ρ, ζ), where

V is a set of vertices, E ⊆ V × V is a set of edges, T is the time interval over which

the network exists (lifetime), ρ : E × T → {0, 1} is a presence function that expresses

whether an edge is present at a time instant, and ζ : E × T 7→ T is a latency function

that expresses the duration to occur an interaction for an edge at a timestamp, where T

is the time domain (typically R or N).

Temporal graphs can be directed or undirected. Directed edges express uni-

directional edges as in followers-followees networks, such that pairs (u, v) ∈ E are ordered,

meaning that (u, v) 6= (v, u). Differently, undirected edges express bi-directionality as in

collaboration networks in which authors co-write papers, such that the pairs (u, v) ∈ E

are unordered and (u, v) = (v, u). Figure 2 illustrates a directed temporal graph.

In this work, we consider a setting where E is a set of directed edges, T is equal

to N (time is discrete) and T = [1, τ] (the lifetime contains τ timestamps). The latency

function is constant, namely ζ = δ, where δ is any fixed positive integer. We call (u, v, t)

Chapter 2. Fundamentals 27

� #

� /

+

2

/ #

2 /

1 2 3 4 5 6 7

Figure 2 – Temporal graph G = (V, E, T, ρ, ζ) that has the set of vertices V =
{a, b, c, d, e}, the set of edges E = {(a, b), (a, d), (b, c), (b, e), (d, b), (e, d)}, the
lifetime T = [1, τ], where τ = 7, a presence function ρ describing the set of
persistent contacts C = {(a, b, 2, 4), (a, d, 3, 4), (a, d, 5, 7), (b, c, 4, 7), (b, e, 4, 6),
(d, b, 1, 7), (e, d, 4, 6)}, and a latency function ζ = δ, where δ = 0, i.e., interac-
tions between vertices are instantaneous.

a contact in G if ρ((u, v), t) = 1 and (u, v, t1, t2) a persistent contact in G if ρ((u, v), t′) = 1

for t1 ≤ t′ ≤ t2.

We define reachability in temporal graphs in a time-respecting way, by requiring

that a path travels along non-decreasing (δ = 0) or increasing (δ ≥ 1) timestamps. These

paths are called temporal paths or journeys interchangeably.

Definition 2 (Journey). A journey from u to v in G is a sequence of contacts J =

〈c1, c2, . . . , ck〉, whose sequence of underlying edges form a valid time-respecting path from

u to v. For each contact ci = (ui, vi, ti), it holds that ρ((ui, vi), ti) = 1, vi = ui+1, and

ti+1 ≥ ti + δ for i ∈ [1, k − 1]. We say that departure(J) = t1, arrival(J) = tk + δ and

duration(J) = arrival(J)− departure(J). A journey is trivial if it comprises a single

contact.

Definition 3 (Reachability). A vertex u can reach a vertex v iff there is a journey J

from u to v in G.

The standard Transitive Closure (TC) for a temporal graph G is a directed graph

G∗ = (V, E∗) such that (u, v) ∈ E∗ if and only if u can reach v in G. Figure 3 illustrates a

TC. In (BARJON et al., 2014), the authors incrementally maintain G∗ for contacts dis-

covered in a chronological order. However, for contacts discovered in a non-chronological

order, the present information of G∗ is not sufficient to decide whether a new contact

can be composed with previously known journeys, which motivates the definition of more

powerful objects.

Chapter 2. Fundamentals 28

a

b

c

d

2
4

1

4

4
5

a

b

c

d

(a) (b)

Figure 3 – A temporal graph and its transitive closure. (Left) A temporal graph G on
four vertices V = {a, b, c, d}, where the presence times of edges are depicted by
labels. Whether δ = 0 or δ = 1, this graph has only two non-trivial journeys,
namely J1 = 〈(a, b, 2), (b, d, 4)〉 and J2 = 〈(a, c, 4), (c, d, 5)〉. (Right) TC G∗.
Note that J1 and J2 are represented by the same edge in G∗ (the two contacts
from b to d as well).

2.2 Queries on Temporal Graphs

We can perform several queries on temporal graphs in order to analyze their prop-

erties. There are two types of queries, according to Bernardo et al. (2013): high-level

and low-level queries. Low-level queries solve low abstraction tasks, such as checking if

an edge is active at time t or retrieving all neighbors of vertex u at time t. High-level

queries solve high abstraction problems such as finding a journey connecting two vertices

through time or clustering vertices along snapshots to detect community evolution.

2.2.1 Low-level Queries for Temporal Graphs

Bernardo et al. (2013) categorized low-level queries into three types: edge, vertex,

and time-related queries. In all these types, we pass as input time-related arguments.

In the case we want to make a query regarding a specific timestamp, we call it a point-

time query. Instead, if we want to make a query on a range or interval, we call it an

interval query. Interval queries can also have two different semantics, weak or strong. If

an interval query has weak semantics, it is enough that a condition holds for snapshots

of any moment during the interval. Otherwise, if an interval query has strong semantics,

some condition needs to hold for all intervals. In this text, if an interval [t1, t2] has only

one value, when t1 = t2, we consider it a point-time query.

Edge-related queries retrieve edge information at a time t or in an interval [t1, t2].

For example, has edge(u, v, t) checks if there is an edge (u, v) ∈ E active at time t.

In order to answer this query, we simply check if there is a contact (u, v, t). Similarly,

has edge(u, v, t1, t2) also checks the existence of an edge (u, v) ∈ E, however, now we

want to know if this edge is active during an interval. If this query has weak semantics,

it is enough to exist a contact (u, v, t′) that satisfies t1 ≤ t′ ≤ t2. Instead, if this query

has strong semantics, we check if there is a persistent contact (u, v, t′
1, t′

2) such that t′
1 ≤

Chapter 2. Fundamentals 29

Table 1 – Examples of queries applied to the temporal graph shown in Figure 2

Query t1 = 3, t2 = 3 t1 = 3, t2 = 5
point-time query interval query

weak strong

edge
has edge(a, b, t1, t2) true true false
next activation(b, c, t1, t2) 4 - -

vertex
neighbors(d, t1, t2) {b} {b} {b}
neighborsr(d, t1, t2) {a} {a, e} {}

time

aggregate(t1, t2) {(a, b), (a, d), (d, b)} {} {}
activated edges(t1, t2) {(a, d)} {} {}
deactivated edges(t1, t2) {} {} {}
changed edges(t1, t2) {(a, d)} {} {}

t1 ≤ t2 ≤ t′
2. Finally, next activation(u, v, t) finds the next activation time of edge

(u, v) ∈ E from time t. In order to retrieve the next activation, the query must satisfy

t ≤ t′
1 ≤ t′

2. Note that an answer for this query can be t, some t′ > t or empty if this edge

has no further activation.

Vertex-related queries retrieve vertices adjacent to a vertex at a time t or in a

time interval [t1, t2]. The query neighbors(u, t) retrieves the vertices in the outgoing

adjacency list of u at time t by finding all pairs (u, v) ∈ E such that there is a contact

(u, v, t). Similarly, neighbors(u, t1, t2) retrieves the vertices in the outgoing adjacency

list of u satisfying the weak or strong semantics. If it has weak semantics, an algorithm

should retrieve all edges active at some timestamp in interval [t1, t2] by finding all pairs

(u, v) ∈ E such that there is a contact (u, v, t′) where t1 ≤ t′ ≤ t2. Instead, if it has strong

semantics, an algorithm retrieves only vertices adjacent to u active during all interval

[t1, t2] by finding all pairs (u, v) ∈ E such that there is a persistent contact (u, v, t′
1, t′

2)

and t′
1 ≤ t1 ≤ t2 ≤ t′

2. Differently, neighborsr(u, t) and neighborsr(u, t1, t2) retrieve

vertices in the incoming adjacency list of v at time t. In case of a direct graph, they retrieve

vertices in the incoming adjacency list of v by finding all pairs (u, v) ∈ E, respectively, at

time t or during an interval [t1, t2], respecting weak or strong semantics.

Time-related queries retrieve edges, satisfying time constraints. For example, the

query aggregate(t) retrieves the snapshot with time t by finding all edges (u, v) ∈ E such

that there is a contact (u, v, t). The query activated edges(t) retrieves edges (u, v) ∈ E

that became active at time t, i.e., there is a contact (u, v, t) but not a contact (u, v, t−1).

There is also the interval-based query activated edges(t1, t2). It retrieves all edges

(u, v) ∈ E that became active during [t1, t2]. Similarly, the queries deactivated edges(t)

and deactivated edges(t1, t2) retrieve edges that became deactive at a time t or during

an interval [t1, t2]. Finally, changed edges(t) and changed edges(t1, t2) retrieve edges

that became active or deactive at time t or during an interval [t1, t2].

Chapter 2. Fundamentals 30

Table 1 illustrates the low-level queries using the temporal graph presented in

Figure 2. In the first column, we list the queries related to edge, vertex, and time; the

second shows the results for point-time queries considering t = 2 (same as interval queries

considering t1 = 3 and t2 = 3); and the third and fourth columns show the respective

results for interval queries with weak and strong semantics considering the interval [3, 5].

For instance, neighborsr(d, 3, 3) (same as neighborsr(d, 3)) retrieves the set {a} with

a single entry since (a, d) is the only direct edge that has some vertex incident to d and is

activated at time t = 3. Differently, the query neighborsr(d, 3, 5) with weak semantic

retrieves the set {a, e} since edges (a, d) and (e, d) are active during any timestamp in

interval [3, 5]. Finally, the query neighborsr(d, 3, 5) with strong semantic returns an

empty set since there is no edge that has a vertex incident to d active during the whole

interval [3, 5].

2.2.2 High-level Queries for Temporal Graphs

High-level queries serve as the basis for graph analysis. Differently from low-level

queries, these queries focus on extracting valuable knowledge in order to better under-

stand the problem modeled by the graph. Some high-level queries solve the shortest

path and connectivity problems in order to compare and find, for example, solutions for

transportation problems (DING; GÜTING, 2004). Others compute rank measures such

as degree centrality, closeness centrality, betweenness centrality, and PageRank, in order

to discover important nodes in a social network (YANG et al., 2011). These tasks are

computationally more demanding and need specialized strategies to reduce the time com-

plexity. For example, one strategy is to distribute the computation in parallel to several

machines using a vertex-centric approach (MALEWICZ et al., 2010). Another strategy is

to use an edge-centric approach that exploits data locality to improve reading data from

external memories (ROY; MIHAILOVIC; ZWAENEPOEL, 2013). For detailed descrip-

tion on high-level queries and strategies to distribute the processing of these queries, we

suggest the paper by Michail (2016).

Investigations on temporal reachability have been made for characterizing mobile

and social networks (TANG et al., 2010; LINHARES et al., 2019); for validating

protocols and better understanding communication networks (CACCIARI; RAFIQ,

1996; WHITBECK et al., 2012); for checking the existence of trajectories and improving

flow in transportation networks (WU et al., 2017; WILLIAMS; MUSOLESI, 2016;

BEDOGNI; FIORE; GLACET, 2018); for assessing future states of ecological net-

works (MARTENSEN; SAURA; FORTIN, 2017); and for making plans for agents using

automation networks (BRYCE; KAMBHAMPATI, 2007). Beyond the sole reachability,

some applications require the ability to reconstruct a concrete journey if one exists.

For example, journey reconstruction has been used for finding and visualizing detailed

Chapter 2. Fundamentals 31

trajectories in transportation networks (WU et al., 2017; GEORGE; KIM; SHEKHAR,

2007; ZENG et al., 2014; HASAN et al., 2011); for visualizing system (HURTER

et al., 2014) and infection spread dynamics (PONCIANO; VEZONO; LINHARES,

2021); and for matching temporal patterns in temporal graph databases (MOFFITT;

STOYANOVICH, 2016; LATAPY; VIARD; MAGNIEN, 2018).

2.3 External Memory and Dynamic Data Structures

Recent technological advances such as the Internet of Things (IoT) and the inte-

gration of social media concepts in diverse applications have enabled new content to be

created by anyone (ATZORI et al., 2012). Using high-capacity, long-term and cheaper

storages is necessary in this context. We need algorithms and data structures well adapted

to work with data on these storages. An effort towards recognizing the bottlenecks of cur-

rent technologies can help us develop strategies that operate them optimally.

The Hard Disk Drive (HDD) technology is still the main long-term technology

used to store a high amount of data with reasonably fast transfer rates. Storage

technology manufactures have innovative plans for the upcoming years. For example,

the Seagate company will soon produce devices with 120 TB capacity (SEAGATE,

a; SEAGATE, b). Among the techniques to improve the cost benefit of HDDs are:

the Shingled Magnetic Recording (SMR) (AMER et al., 2011), the Heat-Assisted

Magnetic Recording (HAMR) (KRYDER et al., 2008), the Microwave-Assisted

Magnetic Recording (MAMR) (ZHU; ZHU; TANG, 2008) and the Heated-Dot Magnetic

Recording (HDMR) (HONO et al., 2018) in order to improve even more the cost benefit

of HDDs. As long as HDDs maintain their price-capacity advantage relative to other

memory technologies, they will continue to play a central role in computer applications.

HDDs are mechanical devices in which data can be read from or written to platters

through magnetism (DATE, 2003). Several platters are stacked and each of their surfaces

is used to store data. Each platter is divided into tracks, which are subdivided into sectors.

A mechanical activator can move all the arms (one for each surface) holding read-write

heads. To access a particular position, the activator must move the arm vertically, to

get closer to the correct platter surface, then it moves the arm horizontally, to choose

the correct track, finally the head accesses the correct sector when it is properly aligned

during the next platter rotation. All this procedure for accessing the correct location on

a platter is called seek. Data can also be transferred to a disk cache — a fast but small

memory — in between read/write operations, commonly referred as I/O operations, to

improve performance.

To read a file sequentially, a computer program must first open this file by making

an open system call. This call seeks the beginning of the file on disk. Next, the program

Chapter 2. Fundamentals 32

must load the data from disk by making consecutive read system calls asking for the

next chunk of data. During the execution of a read system call, the disk head transfers

the corresponding data first to a local buffer and then to the space allocated in primary

memory for the program. In fact, this operation transfers more data to the local buffer

than it was asked for in order to take advantage of the current disk rotation, this is called

pre-fetch, so during the next read system call the corresponding data will be already

available in the local buffer. That is why it is so important to prioritize sequential I/O

operations. As soon as the entire data of the current track is read, the activator moves

the arm in direction of the next track. This process continues until the end of the file

(eof) is reached.

Differently, to read from or write to a file at random locations (random I/Os),

a computer program must first make explicit seek system calls and then make read or

write system calls. If the seeked locations are very far from each other, the mechanical

aspect of the HDD might severely degrade the program performance. The time to read the

data is called latency, and it can be very high for random I/Os. That is another reason

to prioritize sequential I/O operations. Nevertheless, the HDD tries to identify access

patterns, using general policies, e.g., the LRU policy (JOHNSON; SHASHA, 1994), and

it writes data that is recurring asked for to a local cache. When the data corresponding

to an I/O operation is already present in the cache, it is called a cache hit, otherwise it is

called a cache fault.

Algorithms and data structures that work with large data on secondary memory

must consider these aspects to operate slower storages optimally. As a general guide,

first, they should try to reduce the number of random I/Os. For example, data can be

stored in a compressed format to reduce the space it consumes on disk, and compact data

structures can improve the space usage in primary memory. Second, they should take

advantage of data locality by packing data that are commonly accessed together and then

reading it sequentially. In Section 2.3.1, we present some dynamic data structures, such

as the B-tree (BAYER; MCCREIGHT, 1970), that exploit data locality. Third, they

should adapt the access pattern to the disk cache policies in order to maximize cache

hits. We note it is not always possible since disk cache policies are developed for general

purposes. Therefore, applications that have particular I/O patterns should implement

a cache data structure in primary memory for their specific problem. Fourth, if more

devices are available (because of their low cost), they should parallelize I/Os among all

devices.

2.3.1 External Data Structures

External data structures support queries on large data sets. They can be static,

when all data is processed once and queries are made after that, or dynamic, when queries

Chapter 2. Fundamentals 33

can be intermixed with update operations. In this document, we are more interested in

dynamic data structures. For instance, dynamic data structures that perform lookup(x)

queries while supporting the operations insert(x), remove(x) are very important, where

x is some element. Next, we present two approaches commonly used to design such data

structures: those based on hash tables and those based on trees.

2.3.1.1 Hash-based

Hash-based dynamic data structures usually have an amortized cost of O(1) I/O

operations for insert(x), remove(x) and lookup(x). In (FAGIN et al., 1979), the authors

introduced a directory-based approach. Their data structure maintains a global array D

(the directory) containing 2d pointers, for d ≥ 0, that point to local buckets of size B

that store the current elements. Multiple pointers may point to the same bucket. Then,

they defined the function φ(x), which produces integers within the range [0, . . . , K] for

elements x and K sufficiently large, and φd(x), which returns the d least significant bits

of φ(x). The function φd(x) maps elements x to locations in D, and d is chosen such that

it is the smallest number that guarantees at most B elements per bucket. Additionally,

a value k(B) is associated with every bucket B, representing the number of the least

significant bits shared by all elements in B.

A simple algorithm answers lookup(x) using two I/O operations. First, it accesses

D[φd(x)], then it reads the bucket and checks whether x is present in it. Another algorithm

performs insert(x) using an amortized cost of O(1) I/O operations. First, it inserts x

into the bucket B pointed by D[φd(x)]. Then, in case B becomes full, it splits B while

maintaining the data structure invariants. The split operation creates a new bucket B′,

then it shares the B elements with B′ based on their (k(B) + 1)-th least significant bit,

finally it assigns k(B) + 1 to k(B′) and k(B). Finally, if k(B) > d, the algorithm doubles

the space of D, then it initializes new pointers appropriately, and it increments d. Another

algorithm performs delete(x) also having amortized cost of O(1) I/Os. First, it removes x

from the bucket B pointed by D[φd(x)]. Then, in case B becomes underflowed (less than

60% for example), it merges B with the bucket B′ in which all elements share the same

k(B)− 1 least significant bits. Finally, it maintains the invariants accordingly.

The disadvantage of directory-based approaches is that the lookup(x) operation

takes two I/O operations. In (LITWIN, 1980), the authors introduced a directory-less

approach that answer lookup(x) in a single I/O. Their data structure maintains a global

array L containing the buckets 1, 2, . . . , 2d + p − 1, for p < 2d, of size B. When the

current limit of elements is reached, an algorithm creates a new bucket 2p + p, then it

shares the elements of the bucket p with the bucket 2p + p based on φd+1(x) values, and

p is incremented by 1. If p = 2d, then it resets p to 0 and d is incremented by 1. The

downside of this strategy is that only the current bucket p can share elements, which may

Chapter 2. Fundamentals 34

not be the best option. The algorithm to answer lookup(x) first computes φd(x), then,

if p ≥ φd(x), it simply reads the corresponding bucket and checks whether x is present

in it, otherwise it reads the bucket corresponding to φd+1(x) instead (because the bucket

φd(x) was split).

2.3.1.2 Tree-Based

Tree-based dynamic data structures usually have O(logB N) I/O operations for

lookup(x), insert(x) and remove(x), where B is the size of a disk page. However, differ-

ent from hash-based data structures, they maintain all elements sorted, so they addition-

ally support range searches in an interval [x, y] of ordered elements. Also, they support

iterating orderly from a query result, e.g., call lookup(x) and iterate (orderly) until some

element y.

The most used tree-based external data structure is the B-tree (BAYER; MC-

CREIGHT, 1970). A B-tree is a multi-way tree in which nodes can have up to B child

pointers and B− 1 keys. Nodes must have at least B
2

children (except the root node) and

data is ordered by a key. An algorithm that answers lookup(x) descends the tree, similar

to common Binary Search Trees (BSTs), by reading the next node and searching for x

or the next child possibly containing x. It stops as soon as a node containing x is found,

or it is no longer possible to find x. This time complexity of this algorithm is O(logB N)

because the B-tree height is O(logB N), and it does one I/O operation per level visited.

An algorithm that performs insert(x) similarly descends the tree and inserts x at

the appropriate node N . Then, in case N becomes full, it splits N and maintains the tree

invariants. The split operation creates a new node N ′, then it shares half the elements of

N with N ’ maintaining their order, and inserts a new entry into the parent of N pointing

to N ′. If the parent becomes full, it is split recursively upwards. Finally, if the root node

is split, then it creates a new root node containing two children (the old root and its

sibling) and the tree grows one level. The complexity is similar to the lookup(x) query;

however, its cost can be much higher because of the splits.

An algorithm that performs remove(x) descends the tree and removes x from the

corresponding node N if x is found. Then, in case N becomes underflowed, it tries to

share the elements of the N siblings with N in order to restore the tree invariant. If no

sibling can share, then it merges N with one of its siblings, and removes from the parent

the entry pointing to N . If the parent becomes underflow, the same process is performed

recursively upwards. Finally, if the root node becomes empty, then it removes the current

root node, promotes the only child to be the new root, and the tree shrinks one level.

Similarly, the complexity is similar to insert(x).

Next, we list briefly some contributions that improved the original B-tree.

In (ABEL, 1984), the authors introduced the B+-tree variant in which elements are

Chapter 2. Fundamentals 35

stored only in leaf nodes and each leaf node has a pointer to the next one. By doing

so, elements can be easily iterated, as in a linked list. In (COMER, 1979), the authors

proposed the B∗-tree variant that instead of splitting node immediately, it first tries

to share elements among both siblings. While B+-tree nodes have on average 69% of

node utilization, the B∗-tree nodes have on average 81% of utilization. In (AGARWAL;

ERICKSON et al., 1999), the authors developed a variant that augments each node

with a parent pointer. The naïve solution updates Θ(B) parent pointers during a split

or a merge operation while their technique reduces it to O(1). In (ARGE, 1995), the

authors developed a variant that batches operations in node buffers in order to optimize

I/Os. In (BECKMANN et al., 1990), the authors proposed the R-tree variant that

generalizes the problem to multiple dimensions using a geometrical representation.

Finally, in (CIACCIA; PATELLA; ZEZULA, 1997), the authors introduced the M-tree

variant that generalizes the problem for objects in a metric space.

2.3.1.3 Dynamization of Static Data Structures

There are techniques that construct a collection of static data structures to sim-

ulate a dynamic data structure for specific problems. In (BENTLEY, 1979) the authors

defined decomposable search problems. Formally, an arbitrary query Q(x, S) with input x

over a set of elements S is a decomposable search problem if we can answer it as ◦
s∈S

Q(x, s)

such that ◦ is a composition operator and s are partitions of S; not necessarily unitary

partitions. It means that we can decompose such problems in smaller ones, solve them

individually, and combine their partial results to give a conclusive answer. For example,

if Q(x, S) is the query Member(x, S), which answers whether x ∈ S, then we could par-

tition S in smaller subsets, query each subset separately, and use the logical operator OR

to compose those partial answers.

The authors also introduced a technique called the logarithmic method that solves

dynamic decomposable search problems by maintaining static data structures and com-

bining their answers. Their method maintains O(log N) static data structures of size 2k,

for k ∈ [0, log N − 1], such that there are no two data structures of the same size. Sup-

pose we want to answer lookup(N) queries and perform insert(x) operations intermixed,

however we only know how to construct static data structures for this problem using the

operation construct(x1, x2, . . . , xN). By using the logarithmic method, an algorithm to

perform insert(x) would be as follows. Initially, given the operation insert(x1), it creates

a data structure s1 = construct({x1}) of size 1. Next, given insert(x2), it creates another

data structure s′
1 = construct({x2}) of size 1, however, as s1 and s′

1 have the same size, it

creates a data structure s2 = construct(s1 ∪ s′
1) of size 2, and removes s1 and s′

1. By gen-

eralizing, when a new data structure of size 2k is constructed and there is already another

data structure of the same size, both are combined in order to create a new data structure

of size 2k+1. Then, at any moment, an algorithm that answers the lookup(x) query simply

Chapter 2. Fundamentals 36

queries all current data structures and combines their partial results appropriately.

For the lookup(N) query, as there are up to log N static data structures of size at

most N/2, its worst-case time complexity is log N times the cost of querying a single static

data structure, which results in O(log2 N) time for this case. For the insert(N) operation,

as constructing data structures of size 2k needs recombining N/2k smaller data structures,

its worst-case time complexity is O(2k). Then, summing the construction of all static data

structures, the total cost of maintaining N elements is O(N log N) time in the worst-case,

and it is O(log N) amortized time for a single insertion. In (OVERMARS, 1987), the

authors presented a technique in which single insertions are performed in O(log N) time

in the worst-case.

Later, in (BENTLEY, 1979), the authors proposed other methods that give other

trade-offs between query and update times by varying the number and sizes of the static

data structures. Recently, in (COIMBRA et al., 2020), the authors used this technique to

combine static compact representations for edge sets in order to propose a new dynamic

data structure for graphs. There are also techniques that applied this approach to create

new external dynamic data structures (AGARWAL; ERICKSON et al., 1999; ARGE;

DANNER; TEH, 2004; ARGE; VITTER, 1996; AGARWAL et al., 2001). These tech-

niques maintain only logB N static data structures instead of log N . Last, in (MATHIEU

et al., 2021) the authors studied cases when queries and update operations have different

distributions.

2.4 Concluding remarks

In this chapter we presented the fundamentals we used to study reachability queries

on temporal graphs. First, we introduced concepts regarding temporal graphs, what is

a temporal graph, how temporal reachability works in this type of graph, and some

other queries a data structure for temporal graphs could support. Then, we presented

general concepts about disk and described data structures to maintain data dynamically

in secondary memory. For instance, B+-trees, one of the most used data structures to

maintain sorted data in secondary memory, will be used later in this document to maintain

collections of intervals in order to speed up reachability queries.

37

Chapter 3

Related Work

We present in this chapter the related works we found in literature. In Section 3.1,

we review studies on specialized data structures to answer reachability queries on temporal

graphs. In 3.2, we review studies on disk-resident data structures to answer reachability

queries on large temporal graphs. In Section 3.3, we review studies on compact data

structures to store temporal graphs in primary memory. These data structures use min-

imal space while supporting common queries with (mostly) the same time complexity of

non-compact data structures. Finally, in Section 3.4, we conclude this chapter with some

considerations.

3.1 Reachability Queries

Deciding whether vertices can reach each other as the graph is continually modified

is known as the dynamic reachability problem. The adjective dynamic does not refer to

the temporal nature of networks, it refers to the fact that the computed information is

to be updated after the input graph is changed. This maintenance is performed by a

dynamic data structure, which stores intermediate information to speed up the query

and update operations after a change (SCHAIK; MOOR, 2011; WANG et al., 2006;

COHEN et al., 2003; ZHU et al., 2014; SEUFERT et al., 2013; WEI et al., 2018). Three

types of dynamic data structures are classically considered, depending on the allowed

changes, namely incremental (insertion only), decremental (deletion only), and fully-

dynamic (both). Next, we summarize the techniques developed to solve these problems

on (standard) undirected graphs, (standard) directed graphs, and temporal graphs, both

in primary and secondary memories.

3.1.1 Reachability on Undirected Graphs

For undirected graphs (reachability example in Figure 4), it is enough to develop

dynamic data structures that only consider reachability information in one direction, since

Chapter 3. Related Work 38

u

v

u v

(a) (b)

Figure 4 – Example of vertex reachability in undirected graphs. Figure (a) illustrates
the case when there is a path from the vertex u to the vertex v. Figure (b)
illustrates the case when there is no such path. We can easily check whether
u can or cannot reach v in undirected graphs. We extracted both figures
from (AJTAI; FAGIN, 1990).

the vertex relation is symmetric, i.e., for ∀u, v ∈ V , if u→ v (u reaches v through a path),

then v → u. Data structures can also compose information already computed as the vertex

relation is also transitive, i.e., for ∀u, v, w ∈ V , if u → w and w → v, then u → v. For

example, in (TARJAN, 1979), the authors solved the incremental problem by maintaining

connected components as sets of the union-find data structure (TARJAN, 1975). By doing

so, update and query operations are computed in Θ(α(n)) time, where α is the inverse

Ackermann function (ACKERMANN, 1928). Differently, (SHILOACH; EVEN, 1981)

solved the decremental problem by maintaining Breath-First Searches (BFSs) as a layered

tree structure with information about feasible paths in each of its layers. In their study,

the authors proposed a parallel routine to update this layered structure along with the

connected components associated with vertices in O(n) amortized time, so their structure

could answer reachability queries in constant time. Finally, (HOLM; LICHTENBERG;

THORUP, 2001) solved the fully-dynamic problem by maintaining a spanning forest and

a secondary structure holding the remaining edges that form cycles. The authors proposed

algorithms to update both data structures in O(log2 n) and achieved O
(

log n

log log n

)

time for

reachability queries.

3.1.2 Reachability on Directed Graphs

For directed graphs (reachability example in Figure 5), data structures must con-

sider reachability information in both directions, since the vertex relation is not sym-

metric, i.e., there may exist a pair of vertices (u, v) ∈ V such that u → v and v 6→ u.

Nevertheless, they can still compose reachability information already computed, as this

relation is transitive. Generally, solving many problems in directed graphs seems to be

harder than in undirected graphs, as shown in (AJTAI; FAGIN, 1990). Specifically, the

authors proved that the directed reachability problem is in a different complexity class

from the same problem for the undirected case.

We found many studies on the static version of the directed reachability problem,

in which input graphs are never modified. One common approach computes and com-

Chapter 3. Related Work 39

u

v

u

v

(a) (b)

Figure 5 – Example of vertex reachability in directed graphs. Figure (a) illustrates the
case when there is a path from u to v. Figure (b) illustrates the case when there
is no such path. We cannot check as easily as in undirect graphs whether u can
or cannot reach v. We extracted both figures from (AJTAI; FAGIN, 1990).

presses the Transitive Closure (TC) of the input graph in order to answer reachability

queries as fast as possible (NUUTILA, 1995; SCHAIK; MOOR, 2011; CHEN; CHEN,

2008; CHEN; CHEN, 2011; JAGADISH, 1990; WANG et al., 2006). Techniques in this

category usually store the TC information on disk because of its size (HIRVISALO; NUU-

TILA; SOISALON-SOININEN, 1996; AGRAWAL; BORGIDA; JAGADISH, 1989; YU;

CHENG, 2010). For example, in (SCHAIK; MOOR, 2011), the authors introduced a

space-efficient representation for TCs. First, their algorithm condenses the input graph

by transforming its Strongly Connected Components (SCCs) into vertices and preserving

edges connecting different SCCs. Then, it computes the TC of the condensed graph in

O(nm + n + m) time, where n is the number of vertices and m is the number of edges,

by using a modified version of the Tarjan’s algorithm (TARJAN, 1972). Finally, it com-

presses each vertex’s reachability information into a list of intervals, in which each interval

represents consecutive vertex ids. At query time, it is possible to answer reachability query

in O(log l) ∈ O(log n) time by searching the list of intervals of size l associated with the

source vertex.

A different approach computes a vertex-labeling schema so that it can answer the

queries using a fast-to-compute operator over the vertex labels (COHEN et al., 2003;

WANG et al., 2015; CAI; POON, 2010; CHENG et al., 2008; JIN; WANG, 2013, 2013;

CHENG et al., 2013; YANO et al., 2013). Techniques in this category use less space

than the previous approach; however, the time to compute such schemas usually remains

large. For example, in (COHEN et al., 2003) the authors introduced the 2-hop schema,

in which each vertex u has associated labels Lin(u) and Lout(u) containing, respectively,

some vertices that can reach u and some vertices reachable from u. At query time, to

answer whether u reaches v, their algorithm simply checks whether Lout(u)∩Lin(v) 6= ∅ in

O(|Lout(u)|+ |Lin(v)|) time. The authors showed that their labeling schema uses O(nm
1
2)

space, and that can be built in O(n3) time. Note that the selection of vertices in Lin(u)

and Lout(v) must be careful, otherwise the query algorithm would produce false negatives

(or false positives).

Another approach also computes a vertex-labeling schema to answer queries; how-

Chapter 3. Related Work 40

ever, the fast-to-compute operator can produce false negatives (or false positives) and,

whenever this happens, it must fall back on search algorithms such as the BFS and

the Depth-First Search (DFS) (SEUFERT et al., 2013; WEI et al., 2018; YILDIRIM;

CHAOJI; ZAKI, 2012; CHEN; GUPTA; KURUL, 2005; VELOSO et al., 2014). Tech-

niques in this category compute the additional information faster than other approaches,

however queries can be much slower. For example, the algorithm introduced by Yıldırım,

Chaoji e Zaki (2012) performs d random walk traversals on the input graph to construct

in O(d(n+m)) time a labeling schema of size O(dn) based on lists of intervals. Their tech-

nique can produce false positives due to its randomized aspect, thus it can only compute

queries quickly when the answer is negative. In the other case, it must perform a search

algorithm on the graph. Their technique also uses the vertex labels as well to prune some

unpromising paths. In contrast, the technique introduced in (SEUFERT et al., 2013)

quickly computes queries whenever the answer is positive; the authors also showed that

it outperforms the work by Yıldırım, Chaoji e Zaki (2012) when queries are randomly

produced.

We found some studies on the dynamic version of the directed reachability problem.

However, most of them do not handle large graphs because of the larger cost of maintaining

the additional data structures that are needed. For example, (ITALIANO, 1986) solved

the incremental problem using the TC approach. The authors maintained a collection

of spanning trees, each one having as root node one of the vertices, and a matrix, in

which every cell (i, j) points to the node j of the spanning tree whose root node is i.

Their algorithm for inserting an edge (u, v) merges, whenever necessary, the tree whose

root node is v into the tree whose root node is u in O(n) amortized time. Their query

algorithm has constant time execution by simply checking whether the (u, v) cell is not

null. Finally, their algorithm for reconstructing paths performs a bottom-up traversal

from the node pointed by the (u, v) cell, where k ≤ n is the size of the resulting path.

In (ŁĄCKI, 2013), the authors tackled the decremental problem for directed graphs

using the TC approach. In their paper, they presented first a solution that only works

for DAGs. Instead of maintaining spanning trees, as in (ITALIANO, 1988), the authors

maintained a DAG for each graph vertex. Note that a vertex v will become disconnected

from a source vertex x of some DAG G only when the last edge (u, v) is deleted from G.

By knowing that, the authors described the generic operation find unreachable down(G,

S, w) (also used in the more general solution), where G is a DAG, S is a set containing

source vertices, and w is a distinguished vertex. This operation returns a set U containing

vertices that will be disconnected from w when deleting edges incident to S, and a set

I containing all edges incident to U . The deletion algorithm runs as follows in O(n)

amortized time: given an edge (u, v) to be deleted, for each DAG G with root vertex

x, call find unreachable down(G, {v}, x) to retrieve (U, I), then delete from G every

vertex in U and every edge in I. The authors also introduced a new data structure

Chapter 3. Related Work 41

that maintains SCC information (with the same update cost) to solve the decremental

reachability problem for directed graphs using O(n + m) space while queries are done in

constant time.

In (RODITTY, 2008), the author solved the fully-dynamic problem using also the

TC approach. The technique presented in (RODITTY, 2008) improves the framework first

proposed in (KING; SAGERT, 2002). In this framework, the insertion operation receives

a set of edges incident to a vertex u as input, whereas the deletion operation receives

an arbitrary set of edges. In (KING; SAGERT, 2002), the authors maintained a data

structure that stores the SCC information of the current graph. Their update algorithm

runs a linear time subroutine to detect the current SCCs and, by using this information,

it can update by merging (during insertion) or by splitting (during deletion) the previous

data structure information. However, in (RODITTY, 2008), the authors maintained a set

of what they called dynamic block, which is a relaxation of the SCC definition. During

an insertion operation, their algorithm constructs two trees centralized at u, a tree whose

nodes can reach u and a tree whose nodes are reachable by u. During a deletion operation,

their algorithm must maintain the graph edges and delete the appropriate edges from the

previously built trees. These trees are important to merge and split dynamic blocks,

whenever necessary, in order to provide reachability queries. By doing so, both their

update algorithms have O(n2) amortized time complexity and reachability queries are

done in constant time. Their data structure also supports reconstructing paths from

source to target vertices in time proportional to the size of the resulting path.

Finally, other authors have studied other techniques based on the vertex-labeling

schema approach and the vertex-labeling schema with fallback search approach (LYU

et al., 2021; BRAMANDIA; CHOI; NG, 2008; RODITTY; ZWICK, 2016; ZHU et al.,

2014). We note that usually these techniques prioritize the update time while providing

a moderate query performance on average. Yet, other studies focus primarily on storing

data structures for reachability queries on disk (HIRVISALO; NUUTILA; SOISALON-

SOININEN, 1996; AGRAWAL; BORGIDA; JAGADISH, 1989; ZHANG et al., 2012b;

ZHANG et al., 2018).

3.1.3 Reachability on Temporal Graphs

For temporal graphs (reachability example in Figure 6), data structures must al-

ways consider that vertices do not have a symmetric relation because the time dimension

by itself imposes a direction. Unlike graphs, they cannot, so simply, compose the reach-

ability information already computed as vertices do not have a transitive relation, i.e.,

there may exist vertices (u, v, w) ∈ V such that u v (u reaches v through a journey),

v w, but u 6 v; think when the first journey departs at time 10 and the second at

time 5. Also, we cannot rely on strategies that try to maintain SCCs because, as proved

Chapter 3. Related Work 42

u

v

1

4
5

8

8

1

7

7

9

u

v

1

4
5

8

8

1

7

9

7

(a) (b)

Figure 6 – Example of vertex reachability in temporal graphs. Figure (a) illustrates
the case when there is a journey from u to v. Figure (b) illustrates the case
when there is no such journey. We also cannot check so easily whether u
can or cannot reach v; we think it is more difficult to work with edges with
timestamps because we also need to respect the journeys constraints.

by Casteigts (2018), the number of SCCs in a temporal graph can be exponential, when

considering only non-strict journeys, or a super-polynomial, when considering only strict

journeys.

The dynamic reachability problem can be further categorized based on whether

modifying operations are chronologically ordered or not. This new categorization is being

proposed in this thesis to better understand the scenarios. A solution for the chronolog-

ical problem is useful in applications where contacts are continually inserted or deleted,

but these updates do not follow a chronological order. For instance, during scenarios of

epidemics, information containing the interaction details among infected and non-infected

individuals is registered incrementally in a database. Then, this information is periodi-

cally queried in order to better understand the dissemination process and, thus, to support

actions that slow it down or completely interrupt it (XIAO et al., 2018; XIAO; ASLAY;

GIONIS, 2018). However, the collected data can arrive outdated, even though, sometimes,

it is important to include this information for future analysis. Think when an infected pa-

tient goes to a hospital because he is feeling sick and the healthcare professional discovers

that his infection occurred three days ago.

In the chronologically ordered case, only the latest snapshot of the temporal graph

can be modified. For example, in (BARJON et al., 2014) the authors proposed algorithms

for incrementally updating the reachability information in O(µnτ) time, where µ is the

maximum number of edges present in a snapshot, in order to answer reachability queries

in constant time. The central idea of their approach is to update the TC G∗
t at time t

given the next snapshot Gt+1 at time t + 1. In the non-chronologically ordered case, any

snapshot of the temporal graph can be modified. Here, the solution proposed by Barjon et

al. (2014) would not be suitable because G∗
t has not enough information to compute new

journey possibilities (or impossibilities) after modifying a snapshot Gt2 such that t2 < t.

To the best of our knowledge, (WU et al., 2016) is the only work that supports

unsorted updates and exploits intermediate representations for speeding up reachability

queries in temporal graphs. The authors introduced a solution to the fully-dynamic

Chapter 3. Related Work 43

problem using the vertex-labelling schema with search fallback approach. Their technique

relies on maintaining a DAG in which every original vertex is possibly copied up to τ times

(where τ is the number of timestamps) and a journey exists from u to v in the interval

[t, t′] if and only if vertex ut can reach vertex vt′ in the DAG. However, the worst-case

query time corresponds to a path search (e.g., DFS) in the DAG, which takes Θ(n2τ)

time for dense temporal graphs (whose number of contacts is of the same order). The

space complexity (size of the DAG) also corresponds essentially to the number of contacts,

thus Θ(n2τ) in the worst case. Finally, the update time upon insertion is quite efficient,

because the DAG representation allows its effect to remain local. If one ignores the cost

of paths preprocessing in (WU et al., 2016) (as we focus on worst-case analysis), it only

takes O(1) time to update the DAG if the corresponding vertices are already known, and

up to Θ(τ) otherwise, due to the creation of (up to) τ copies of the new vertices.

3.2 Reachability Queries on Disk

As discussed in Section 2.3.1, an external algorithm or data structure must take

advantage of sequential I/Os while reducing the total number of I/Os. Next, we summa-

rize some techniques developed to solve reachability queries for undirected and directed

graphs and temporal graphs where data maintenance and processing are performed to-

tally, or sometimes partially, on disk.

3.2.1 Reachability on Undirected Graphs Stored on Disk

First in (QIAO et al., 2012) and then in (QIAO, 2013), the authors proposed

a static data structure to answer reachability queries on weighted undirected graphs.

First, they proposed an in-memory solution to answer weight-constrained reachability

queries in O(1) time while consuming O(|Σ||V |) space, where Σ is the weight set domain.

Their technique computes the Minimum Spanning Tree (MST) and organizes its edges

hierarchically so that the Least Common Ancestor (LCA) operation in this tree can be

used to check whether there is a valid weight-constrained path in the input graph. Later,

they introduced an external memory solution that answer reachability queries in O(1)

I/Os while consuming O(|Σ||V | log |V |) space. Their disk-resident technique rebalances

the MST, to maintain a log |V | height, and encodes its nodes so that traversals are

performed linearly on disk.

3.2.2 Reachability on Directed Graphs Stored on Disk

Zhang et al. (2012a) proposed a static data structure to answer reachability queries

on directed graphs based on the vertex-labeling approach with BFS as search fallback

algorithm. Different from (YILDIRIM; CHAOJI; ZAKI, 2012), which used an index that

Chapter 3. Related Work 44

can produce false negatives during the search stage to prune unpromising BFS branches,

their technique computes an additional index that can produce false positives. These two

indexes were combined to improve both the probability of answering queries quickly (O(1)

time) and the effectiveness of pruning unpromising BFS branches. Later, they proposed

a solution to secondary memory using a partition-based heap in order to store and query

both indexes on disk efficiently.

Differently, in (HIRVISALO; NUUTILA; SOISALON-SOININEN, 1996), the au-

thors proposed a static data structure based on the TC approach. Their algorithm is a

combination of three processing steps: the computation of the topological vertex order;

the discovery of the SCCs by performing the Tarjan’s algorithm (TARJAN, 1972); and

the construction of a list of successors for each vertex using the SCC information. In order

to reduce space, they compressed the lists of successors by representing them as intervals,

and, in order to reduce the number of I/Os, they developed a single-pass algorithm that

combines all three processing steps while reading the input graph sequentially. They used

the LRU policy (JOHNSON; SHASHA, 1994) to cache disk pages during the algorithm

computation.

In (CHENG; YU; TANG, 2006), the authors proposed a dynamic data structure

based on the vertex-labeling approach (with no false positives nor negatives). They based

their technique on the 2-hop technique, which answers whether u reaches v by checking

if Lout(u) ∩ Lin(v) 6= ∅. This is the same as saying that an algorithm must find a vertex

w contained by both Lout(u) and Lin(v). Their disk approach follows this later idea, and

thus maintains a B+-Tree (ABEL, 1984) with keys being pairs (w, L), where L are vertex

labels used to filter down valid leaf nodes; and values being tables representing (u, v)

pairs such that Lout(u) ∩ Lin(v) 6= ∅. The authors suggest that their structure is easy to

maintain, but they did not give any update algorithm due to space limit.

3.2.3 Reachability on Temporal Graphs Stored on Disk

In (SHIRANI-MEHR; KASHANI; SHAHABI, 2012), the authors proposed two

static data structures to answer reachability queries on temporal graphs. The first one,

named ReachGrid, groups contacts in a grid format in such a way that a search algorithm

computes reachability queries by pruning unpromising paths related to impossible spatio

and temporal expansions of events. On disk, grid blocks are pages so that related infor-

mation is read sequentially. The second one, named ReachGraph, first transforms the

input graph into a hyper-graph containing augmented nodes that contain vertices that

can reach or are reachable by every other vertex inside other augmented nodes; then it

pre-computes the reachability information between vertices in different hyper-nodes ac-

cording to some pre-defined departures. During a query, the data structure is queried in

order to answer reachability queries in O(1) time; however, if the corresponding reachabil-

Chapter 3. Related Work 45

ity information is not available, a guided search algorithm must be performed. On disk,

vertices that reach each other are placed in the same page. Furthermore, the hierarchy

inside hyper-nodes along with the order of its timestamps is also considered to group

information in disk pages.

In (STRZHELETSKA; TSOTRAS, 2017; STRZHELETSKA, 2018), the authors

proposed static data structures to answer a slightly different reachability problem. Instead

of considering that a contact occurs instantaneously at the specified time, they consider

contacts are meetings and these meetings have durations. Therefore, these meeting du-

rations must take into consideration when answering reachability queries.

3.3 Space-Efficient Data Structures for Querying

Temporal Graphs in Primary Memory

These specialized data structures provide useful queries while spending little space

as possible. Some of them store a compressed version of data. However, they com-

pute queries without decompressing the whole data (BRISABOA et al., 2014; CARO;

RODRÍGUEZ; BRISABOA, 2015; CARO et al., 2016; BRISABOA et al., 2018). The

literature calls these approaches self-indexed space-efficient data structures.

For example, Grossi, Gupta e Vitter (2003) introduced the wavelet tree data struc-

ture that stores a list of contacts as a sequence of n symbols belonging to an alphabet of

size σ = |V |+|T | using only n⌈log σ⌉ bits. The wavelet tree executes fundamental queries,

such as determining the frequency of symbols in a sub-range of the sequence in O(log σ)

time. By using the wavelet tree, some data structures can quickly answer low-level queries

for temporal graphs. See Appendix A for an in-depth description of space-efficient data

structures.

3.4 Concluding remarks

The literature about temporal graphs is growing rapidly, however little effort has

been made to solve the dynamic reachability. If we consider the combination of all distinct

problems in Section 3.1, i.e., the combination of incremental, decremental and fully-

dynamic data structures with chronologically and non-chronologically ordered operations,

there are at least six different scenarios to be explored. There are also different approaches

to solve the reachability problem that consider different trade-offs, e.g., the TC approach,

the vertex-labeling approach, etc. Therefore, we see a great horizon about reachability in

temporal graphs to be yet discovered.

Also, little effort in literature was made to develop external algorithms and data

Chapter 3. Related Work 46

structures with performance comparable in complexity to the ones commonly designed for

primary memory. For example, we did not find any study on dynamic data structures for

answering reachability queries on temporal graphs. In fact, not even for the incremental

or decremental case. Therefore, studies on this direction should be devised. The biggest

challenge is to group data on disk so that algorithms can take advantage of sequential

read.

47

Chapter 4

A Dynamic Data Structure for

Temporal Reachability with Unsorted

Contact Insertions

In this chapter, we investigate the problem of maintaining an incremental data

structure for temporal reachability, where the insertions of contacts are done in an arbi-

trary order. A naïve approach is to maintain the temporal graph as a set of contacts, then

run standard journey computation algorithms like (XUAN; FERREIRA; JARRY, 2003a).

However, the goal of data structures is to reduce the computational cost of the queries by

pre-computing intermediate information. In fact, data structures typically offer a tradeoff

between query time, update time, and space.

Our novel data structure1 supports the four operations described in Chapter 1,

that are, add contact(u, v, t), can reach(u, v, t1, t2), is connected(t1, t2), and

reconstruct journey(u, v, t1, t2). The challenge in performing these operations is

to answer queries as fast as possible, while keeping space consumption and update time

at reasonable levels. The worst-case complexities of our algorithms are: the queries,

can reach(u, v, t1, t2) and is connected(t1, t2), run, respectively, in O(log τ) and

O(n2 log τ) time; the update operation, add contact(u, v, t), runs in O(n2 log τ) time;

and the retrieval operation, reconstruct journey(u, v, t1, t2), runs in O(k log τ) time,

where n is the number of vertices, τ the number of timestamps, and k < n is the length

of the resulting journey. The worst-case space complexity remains within the size of the

temporal graph itself, namely O(n2τ).

The core of our data structure is a component called the Timed Transitive Closure

(TTC), which generalizes the classical notion of a Transitive Closure (TC). Classical TCs

capture reachability information among vertices over the entire lifetime of the network.
1 We have a simple implementation available at <https://github.com/albertiniufu/

dynamictemporalgraph/>

Chapter 4. A Dynamic Data Structure for Temporal Reachability with Unsorted Contact Insertions 48

They are classically encoded as a static directed graph where the existence of an edge

from u to v implies that there is a journey u to v in the temporal graph. If one is

not interested in querying reachability for specific subintervals, and if the contacts are

inserted in chronological order, then TCs suffice for maintaining temporal reachability

information (BARJON et al., 2014). A generalization of TC has also been considered

in (WHITBECK et al., 2012), which allows queries to be parametrised by a maximum

journey duration; however basic journey information, such as departures and arrivals, are

not known, and the computation of the structure requires the information to be processed

at once and chronologically (i.e., subsequent updates are not supported).

In the unsorted (i.e., non-chronological) case, TCs do not provide enough infor-

mation to decide whether a new contact (possibly occurring at any point in history) can

be composed with known journeys. To address this need, we introduce a generalization

of TCs called TTCs, which store information regarding the availability of journeys for a

well-chosen set of time intervals, without storing the journeys themselves. We study the

general properties of TTCs, and we prove, in particular, that one can restrict the number

of intervals considered to O(τ) for any pair of vertices (as opposed to O(τ 2)), with im-

mediate consequences on the space complexity of a data structure based on TTCs. This

information is then exploited by our data structure algorithms.

The content present in this chapter was published on the Social Network Analysis

and Mining journal (BRITO et al., 2022) available at <https://link.springer.com/article/

10.1007/s13278-021-00851-y>.

We organize this chapter as follows. In Section 4.1, we introduce timed transitive

closures, study their basic properties, and provide low-level primitives for manipulating

them. In Section 4.2, we describe the algorithms that perform each operation of our

data structure based on TTCs, together with their running time complexities. Finally,

Section 4.3 concludes with some remarks and open questions.

4.1 Reachability Tuples and Timed Transitive Clo-

sure

In this section, we describe an extension of the concept of transitive closure called

Timed Transitive Closure (TTC). The purpose of TTCs is to encode reachability infor-

mation among the vertices, parametrised by time intervals, so that one can subsequently

decide if a new contact occurring anywhere in history can be composed with existing

journeys. The major components of TTCs are called reachability tuples (R-tuples). We

introduce operators on R-tuples, such as inclusion and concatenation, and describe their

role in the construction and maintenance of a TTC.

Chapter 4. A Dynamic Data Structure for Temporal Reachability with Unsorted Contact Insertions 49

4.1.1 Reachability Tuples (R-tuples)

Just as the number of paths in a static graph, the number of journeys in a temporal

graph could be too large to be stored explicitly (typically, factorial in n). To avoid this

problem, R-tuples capture the fact that a vertex can reach another within a certain time

interval without storing the corresponding journeys. Thus, a single R-tuple may capture

the reachability information corresponding to many journeys. We distinguish between two

versions of R-tuples, namely (existential) R-tuples and constructive R-tuples, the latter

adding information for reconstructing a journey that witnesses reachability.

4.1.1.1 Existential R-tuples

The following definitions are given in the context of a temporal graph G whose

vertex set is V , lifetime is T = [1, τ], and latency is δ.

Definition 4 (R-tuple). An existential R-tuple is a tuple r = (u, v, t−, t+), where u and v

are vertices in G, and t− and t+ are timestamps in T . It encodes the fact that vertex u can

reach vertex v through a journey J such that departure(J) = t− and arrival(J) = t+.

If several such journeys exist, then they are all captured by the same R-tuple.

The set of journeys captured by an R-tuple r is denoted by J (r), and we say that

r represents these journeys. An R-tuple is trivial when it represents a trivial journey

(i.e., a single contact). Trivial R-tuples thus have the form (u, v, t, t + δ) for some t. The

following relations and operations, compatible with any fixed value of parameter δ, are

quite natural to define.

Definition 5 (Precedence ≺). An interval I1 = [t−
1 , t+

1] precedes an interval

I2 = [t−
2 , t+

2], denoted I1 ≺ I2, if t+
1 ≤ t−

2 . Given two R-tuples r1 = (u1, v1, t−
1 , t+

1) and

r2 = (u2, v2, t−
2 , t+

2), r1 precedes r2, denoted r1 ≺ r2 if t+
1 ≤ t−

2 and u2 = v1.

Intuitively, the precedence relation among R-tuples tells us that the journeys they

represent can be composed, leading to another R-tuple.

Definition 6 (Concatenation ·). Given two R-tuples r1 = (u1, v1, t−
1 , t+

1) and

r2 = (u2, v2, t−
2 , t+

2) such that r1 ≺ r2, the concatenation of r1 with r2 is the R-tuple

r1 · r2 = (u1, v2, t−
1 , t+

2).

The natural inclusion among intervals extends to R-tuples as follows:

Definition 7 (Inclusion ⊆). Given two R-tuples r1 = (u1, v1, t−
1 , t+

1) and

r2 = (u2, v2, t−
2 , t+

2), r1 ⊆ r2 if and only if u1 = u2, v1 = v2, and [t−
1 , t+

1] ⊆ [t−
2 , t+

2] (that

is, t−
2 ≤ t−

1 ≤ t+
1 ≤ t+

2).

Chapter 4. A Dynamic Data Structure for Temporal Reachability with Unsorted Contact Insertions 50

If neither r1 ⊆ r2 nor r2 ⊆ r1 (or if the vertices are different), then r1 and r2 are

called incomparable. Intuitively, if r1 ⊆ r2, then any of the journeys represented by r2

could be replaced by a (possibly faster) journey represented by r1. More precisely:

Lemma 1. Let u and v be two vertices in V . Let I1 = [t−
1 , t+

1] and I2 = [t−
2 , t+

2] be two

subintervals of T such that I1 ⊆ I2. If u can reach v within I1, then u can reach v within

I2.

Proof. The proof is straightforward, we give it for completeness. Let r be the R-tuple

(u, v, t−
1 , t+

1) and let J be any of the journeys in J (r). One can reach v from u within

I2 through the three following steps: (1) wait at u from t−
2 to t−

1 , (2) travel from u to v

using J , and finally (3) wait at v from t+
1 to t+

2 .

The consequence of Lemma 1 is that if r1 ⊆ r2, then r2 is redundant for answering

reachability queries from u to v.

Definition 8 (Redundancy). Let S be a set of R-tuples and let r ∈ S, r is called redundant

in S if there is r′ ∈ S such that r′ ⊆ r. A set with no redundant R-tuple is called not-

redundant.

An R-tuple that is non-redundant in a set is also called minimal (in that set). It is

natural to ask what the maximum size of an not-redundant set of R-tuples could be, with

consequences for the space complexity of a reachability data structure based on R-tuples.

It turns out that this number is always significantly smaller than the number of possible

R-tuples.

Lemma 2. The maximum size of a not-redundant set of R-tuples for G is Θ(n2τ).

Proof. First, we prove the maximum number of pair-wise incomparable R-tuples is O(n2τ).

Then, we show this bound is tight, as some graphs induce Θ(n2τ) incomparable R-tuples.

(1) Upper bound: There are Θ(n2) ordered pairs of vertices. Thus, it suffices to show that

for each pair (u, v), the number of incomparable R-tuples whose starting vertex is u and

whose ending vertex is v is Θ(τ). Let S be a not-redundant set of such R-tuples, and let

r1 = (u, v, t−
1 , t+

1) and r2 = (u, v, t−
2 , t+

2) be any two R-tuples in S. If t−
1 = t−

2 , then either

r1 ⊆ r2 or r2 ⊆ r1, thus S is redundant (contradiction). As a result, all departures t−
i

belonging to the R-tuples in S are different, which implies that |S| ≤ τ .

(2) Tightness: Consider the complete temporal graph Kn,τ on n vertices in which every

edge is present in all timestamps in [1, τ]. In such a graph, there are consequently Θ(n2τ)

contacts, each of which is a trivial journey. Now, observe that either these journeys

connect different vertices, or their intervals are incomparable (same duration with different

starting times), thus none of them is redundant with the others.

Chapter 4. A Dynamic Data Structure for Temporal Reachability with Unsorted Contact Insertions 51

Given a graph G and a set S of R-tuples representing all the journeys of G, the

subset S ′ ⊆ S of all minimal R-tuples is called the representative R-tuples of G, denoted by

R(G). We also write R(u, v) for those R-tuples in R(G) whose source is u and destination

is v. From the proof of Lemma 2, we extract:

Observation 1. Every contact of G is present in R(G) as a trivial R-tuple.

Observation 1 implies that R(G) is a non-lossy representation, as G itself is con-

tained in it. The downside is that its space complexity is at least as large as the number

of contacts in G. Observe that, up to a constant factor, it can however not be worse

than the worst number of contacts, since there may exist up to Θ(n2τ) contacts, and

not-redundant sets cannot exceed this size (Lemma 2). In other words, in dense temporal

graphs, the reachability information offered by R-tuples is essentially free in space.

4.1.1.2 Constructive R-tuples

The data structure considered in this work has four operations, namely

add contact(u, v, t), can reach(u, v, t1, t2), is connected(t1, t2), and

reconstruct journey(u, v, t1, t2). The first three operations can be dealt with using

only existential R-tuple. The fourth operation could benefit from storing a small amount

of additional information into the R-tuple.

Definition 9 (Constructive R-tuple). A constructive R-tuple is a tuple r = (u, v, t−, t+, w)

that contains the same information as an existential R-tuple, plus a vertex w such that

at least one journey J ∈ J (r) starts with the contact (u, w, t−). Vertex w is called the

successor of u in r (resp., in J).

Most of the definitions and lemmas from Section 4.1.1 apply unchanged to con-

structive R-tuple. In particular, the definition of redundant R-tuples applies without con-

sidering the successor field. Indeed, if two constructive R-tuples differ only by the successor

vertex, then they are equivalent and any of the two can be discarded. As for the concate-

nation of two constructive R-tuples r1 = (u1, v1, t−
1 , t+

1 , w1) and r2 = (u2, v2, t−
2 , t+

2 , w2),

provided r1 ≺ r2, we additionally require that the resulting R-tuple adopts the successor

of r1 as its own successor; that is, r1 · r2 = (u1, v2, t−
1 , t+

2 , w1). For simplicity, when-

ever constructive R-tuples are not needed, we describe the algorithms using existential

R-tuples.

4.1.2 Timed Transitive Closure

Informally, the timed transitive closure of a temporal graph G is a multigraph

that captures the existence of journeys within all time intervals, based on not-redundant

R-tuples.

Chapter 4. A Dynamic Data Structure for Temporal Reachability with Unsorted Contact Insertions 52

a

b

c

d

2
4

1

4

4
5

a

b

c

d

[2, 3]
[4, 5]

[1, 2]

[4, 5]

[4, 5]

[5, 6]

[2, 5]

[4, 6]

(a)

(b)

a

b

c

d

([2, 3], b)

([4, 5], d)

([1, 2], d)

([4, 5], c)

([4, 5], a)

([5, 6], d)

([2, 5], b)

([4, 6], c)

(c)

Figure 7 – TTC(G) of the temporal graph G on the left (a), considering δ = 1. On the
top right (b), the version with existential R-tuple, whose intervals are depicted
by labels. On the bottom right (c), the version with constructive R-tuples,
depicting also the successor.

Definition 10 (Timed transitive closure). Given a graph G, the timed transitive closure

of G, noted TTC(G), is a (static) directed multigraph on the same set of vertices, whose

edges correspond to the representative R-tuples of G.

Figure 7 shows two examples of TTCs (one for existential R-tuples, the other

for constructive R-tuples). Algorithmically, a TTC provides most of the support needed

to perform the high-level operations of our data structure. For example, the operation

can reach(u, v, t1, t2) can be answered by checking if there is an edge whose associ-

ated R-tuple is (u, v, t−, t+) with [t−, t+] ⊆ [t1, t2]. The operation is connected(t1, t2)

can be answered by performing such a test for every pair of vertices. The operation

add contact(u, v, t) reduces to adding a new edge to TTC(G) if no smaller interval

already captures this information. If the new edge is added, then some other edges

may become redundant and should be removed, some others may also be created by

composition. This operation is therefore the most critical. Finally, if constructive R-

tuples are used, then an actual journey may be reconstructed efficiently from TTC(G)

when reconstruct journey(u, v, t1, t2) is called, by retrieving a constructive R-tuple

(u, v, t−, t+, w) such that [t−, t+] ⊆ [t1, t2] and unfolding the corresponding journey induc-

tively, by replacing u with the successor vertex w and t− with t− + δ in each step.

We describe all algorithms for these operations in Section 4.2. Before doing so,

we present an explicit representation of TTCs based on adjacency matrices and Binary

Chapter 4. A Dynamic Data Structure for Temporal Reachability with Unsorted Contact Insertions 53

Search Tree (BST). In order for the high-level algorithms to remain independent of this

particular choice, we define a set of primitives for manipulating the TTC that are used

by the high-level algorithms of Section 4.2.

4.1.2.1 Representing the TTC

We encode the TTC by an n × n matrix, in which every entry (i, j) points to a

self-balanced BST denoted by T(i,j). The nodes in this tree contain all the time intervals

corresponding to R-tuples in R(i, j). From Lemma 2, we know that a tree T(u,v) contains

up to τ nodes. In addition, all these intervals are incomparable, thus one can use any of

their boundaries (departure or arrival) as the sorting key of the BST. Note that retrieving

T(u,v) within the matrix takes constant time, as the cells of a matrix are directly accessed.

Also recall that finding the largest key below (resp. the smallest key above) a certain

value takes O(log τ) time. Similarly, inserting a new element (in our case, an interval)

takes O(log τ) time. Finally, observe that several types of BST (e.g., red-black trees) can

self-balance without affecting the asymptotic cost of insertions.

We provide the following low-level operations for manipulating TTCs: (1)

find next(T(u,v), t) returns the earliest interval [t−, t+] in T(u,v) such that t− ≥ t,

if any, and nil otherwise; symmetrically, (2) find prev(T(u,v), t) returns the latest

interval [t−, t+] in T(u,v) such that t+ ≤ t, if any, and nil otherwise; finally, (3)

insert(T(u,v), t−, t+) inserts the interval [t−, t+] in T(u,v) and performs some operations

for maintaining the property that all intervals in T(u,v) are minimal.

Let us now describe the algorithms that perform these operations, along with their

time complexities. The algorithm for find next(T(u,v), t) searches T(u,v) recursively, by

comparing t with the departure t− of the current node interval [t−, t+]. If t− is equal to or

greater than t, then the current node is a candidate answer. The algorithm then compares

the current node candidate and the previous one, and keeps the one containing the smallest

(earliest) t−, then it descends to the left child. Otherwise, if t− is smaller than t, it simply

descends to the right child. As soon as a leaf is reached (and visited), the algorithm

returns the current candidate as the answer. The algorithm for find prev(T(u,v), t)

works symmetrically. The time complexities of both algorithms correspond to the depth

of the tree, which is O(log τ).

The algorithm for insert(T(u,v), t−, t+) finds and removes any potential node with

interval Ii such that [t−, t+] ⊆ Ii, then it inserts a new node containing [t−, t+] using a

standard BST insertion. Figure 8 gives a linear representation of the intervals in T(u,v)

while performing this operation. A naïve implementation of this operation would consist

of searching and removing each corresponding node independently. However, this would

lead to a complexity of O(d log τ) time, where d is the number of nodes removed, that

is up to O(τ). We use a non-standard approach that makes it feasible in O(log τ) time

Chapter 4. A Dynamic Data Structure for Temporal Reachability with Unsorted Contact Insertions 54

I

I1
I2

I

I

(a) Find (b) Remove (c) Insert

Figure 8 – Basic steps to perform insert(T(u,v), t−, t+). First, in (a), an algo-
rithm must find the candidate intervals that could become redundant af-
ter inserting [t−, t+]. These intervals are exactly the ones between I1 =
find next(T(u,v), t+) and I2 = find prev(T(u,v), t−). Note that there are
cases in which I1 or I2 do not exist. Next, in (b), all intervals I ′ between (and
including) I1 and I2 such that [t−, t+] ⊆ I ′ must be removed. Finally, in (c),
the algorithm inserts [t+, t−] in the correct place.

only. The strategy is to first identify in T(u,v) the nodes containing the boundary intervals

I1 and I2 that correspond to the first and last nodes to be removed. The boundary

interval I1 is found by calling I1 = find prev(T(u,v), t+), then checking whether I1 itself

must be removed or not. If the arrival of I1 is smaller than t+, then either [t−, t+] is

redundant, and therefore the algorithm stops, or I1 should not be removed, and therefore

I1 is replaced by the next node with greater key in T(u,v). Similarly, I2 is found by first

calling I2 = find next(T(u,v), t−), then, if the departure of I2 is greater than t−, I2

is replaced by the previous node with smaller keys in T(u,v). Note that the parameters

passed to find prev and find next are indeed t+ and t−, not the reverse. Then, every

node containing intervals in this range is removed using the technique outlined in the

proof of Lemma 3.

Lemma 3. In the worst case, the cost of the insert operation is O(log τ).

Proof. The range of intervals to be removed is characterized by two boundary intervals

I1 and I2, which can be found by calling both find next and find prev a single time,

which takes O(log τ) time. The final insertion of the input interval in the BST also

takes O(log τ). The difficult part is thus the removal of redundant intervals prior to this

insertion (illustrated abstractly in Figure 8). Let split(I) be the operation that splits a

balanced BST into two balanced BSTs T<I and T≥I , where the first contains the intervals

earlier than I, and the second the intervals later or equal to I. Let join(T1, T2) be the

operation that receives as input two balanced BSTs and joins them into a single balanced

BST. We proceed as follows. First, we split T(u,v) into two trees T<I1 and T≥I1 . Then,

we split T≥I1 into two trees T≥I1<I2 and T≥I2 , and remove the smallest node of T≥I2 (by

standard operations) to obtain T>I2 . The join of T<I1 and T>I2 is considered to be the

new T(u,v). Indeed, this tree comprises all the original intervals except the ones in the

range to be removed. Both the split and join operations are known to be feasible at

cost O(log τ) on typical self-balanced trees, such as red-black trees (see (BLELLOCH;

FERIZOVIC; SUN, 2016) for details).

Chapter 4. A Dynamic Data Structure for Temporal Reachability with Unsorted Contact Insertions 55

Additionally, we define the following basic operations:

❏ N ∗
out(u): Returns the set of vertices {v1, v2, . . . , vk} such that there is at least one

edge from u to vi in the TTC

❏ N ∗
in(u): Returns the set of vertices {v1, v2, . . . , vl} such that there is at least one

edge from vi to u in the TTC

Both operations can be performed in O(n) time, through traversing the corresponding

row (resp. column) of the matrix and testing if the corresponding tree is empty.

4.2 The Four Operations

In this section, we describe the algorithms that perform the four operations of

our data structure, whose contract was discussed in Chapter 1. These operations are

can reach(u, v, t1, t2), is connected(t1, t2), add contact(u, v, t), and (optionally)

reconstruct journey(u, v, t1, t2). For simplicity, the first three algorithms are pre-

sented using existential R-tuples only (however, they are straightforwardly adaptable to

constructive R-tuples). All the algorithms rely on the primitives defined in Section 4.1.2.1

for manipulating the TTC abstractly. Then, we provide some experimental results re-

garding the average-case behavior of our data structure over contact insertions, and we

formulate some open questions related to it.

4.2.1 Reachability and Connectivity Queries

The algorithm for can reach(u, v, t1, t2) is straightforward. It consists of testing

whether T(u,v) contains at least one interval that is included in [t1, t2]. This can be done by

retrieving [t−, t+] = find next(T(u,v), t1) and checking that t+ ≤ t2. Therefore, the cost

of this algorithm reduces essentially to that of the operation find next(T(u,v), t1), which

takes O(log τ) time. We note that if [t1, t2] = T then it suffices to verify (in constant time)

that T(u,v) is not empty. Regarding the operation is connected(t1, t2), a simple way of

answering it is to call can reach(u, v, t1, t2) for every pair of vertices, with a resulting

time complexity of O(n2 log τ). It seems plausible that this strategy is not optimal and

could be improved.

4.2.2 Update Operation

The algorithm for add contact(u, v, t) manages the insertion of a new contact

(u, v, t) in the data structure, where (u, v) ∈ E and t ∈ T . To start, the interval corre-

sponding to the trivial journey from u to v over [t, t + δ] is inserted in T(u,v) using the

Chapter 4. A Dynamic Data Structure for Temporal Reachability with Unsorted Contact Insertions 56

insert primitive. Recall that this primitive encapsulates the removal of redundant inter-

vals in T(u,v), if any. Then, the core of the algorithm consists of computing the indirect

consequences of this insertion for the other vertices. Namely, if a vertex w− could reach

u before time t with the latest departure t− and v could reach another vertex w+ after

time t + δ with the earliest arrival t+, it follows that w− can now reach w+ over interval

[t−, t+]. Our algorithm consists of enumerating these compositions and inserting them

in the TTC. Interestingly, for each predecessor w− of u, only the latest interval ending

before t in T (w−, u) needs to be considered. The reason is that in order to compose an

earlier journey J with the new contact, we need to wait at u until time t. Thus, even if

some other journey started earlier, it would have to wait at u, and it would thus eventually

arrive at the same time (based on a non-minimal interval). Based on this property, our

algorithm only searches for the latest interval preceding t for each predecessor of u and

the earliest interval exceeding t + δ for each successor of v.

The details are given in Algorithm 1, whose behavior is as follows. At line 1, the

algorithm inserts the interval [t, t + δ] into T(u,v), which corresponds to the trivial journey

induced by the new contact. From lines 2 to 7, for every vertex w− ∈ N ∗
in(u), it finds

the latest interval [t−, _] in T (w−, u) that arrives before time t (inclusive) and inserts

the composition [t−, t + δ] into T (w−, v). For the same reasons as above, the algorithm

only needs to consider inserting [t−, t + δ] because every other composition would contain

it as a subinterval. From lines 8 to 11, for every vertex w+ ∈ N ∗
out(v), the algorithm

finds the earliest interval [_ , t+] in T (v, w+) that leaves v after time t + δ (inclusive),

and inserts the composition [t, t+] into T(u,w+). In the same way, every other composition

would contain [t, t+] as a subinterval. Finally, from lines 12 to 14, for all w− ∈ N ∗
in(u)

and w+ ∈ N ∗
out(v), it inserts the composition [t−, t+] into T (w−, w+). In order to optimize

this last step, the algorithm only considers the subset of N ∗
in whose reachability to v has

been affected by the new contact, thanks to a dedicated storage D computed at line 7.

Theorem 4. The update operation has worst-case time complexity O(n2 log τ).

Proof. An insert operation is performed at line 1. The loop from line 3 to 7 iterates

over O(n) vertices and makes one insertion for each. The loop from line 8 to 14 iterates

over O(n) vertices, and for each one, iterates in a nested way over O(n) vertices. For each

resulting pair, it performs one insert operation. The latter clearly dominates the overall

cost of the algorithm, with a cost of O(n2) times the cost of the insert operation, the

latter being of time O(log τ) (Lemma 3).

4.2.3 Journey Reconstruction

The algorithm for the operation reconstruct journey(u, v, t1, t2) reconstructs

a journey from vertex u to vertex v whose contact timestamps must be contained in [t1, t2].

Chapter 4. A Dynamic Data Structure for Temporal Reachability with Unsorted Contact Insertions 57

Algorithm 1 add contact(u, v, t)

Require: t ∈ T , u, v ∈ V with u 6= v
1: insert(T(u,v), t, t + δ)
2: D ← {}
3: for all w− ∈ N ∗

in(u) do
4: [t−, _]← find prev(T(w−,u), t)
5: if t− 6= nil then
6: insert(T(w−,v, t−, t + δ)
7: D ← D ∪ (w−, t−)

8: for all w+ ∈ N ∗
out(v) do

9: [_ , t+]← find next(T(v,w+), t + δ)
10: if t+ 6= nil then
11: insert(T(u,w+), t, t+)
12: for all (w−, t−) ∈ D do
13: if w− 6= w+ then
14: insert(T(w−,w+), t−, t+)

As explained in Section 4.1.1.2, existential R-tuples can be augmented by a successor field

that indicates which vertex comes next in (at least one of) the journeys represented by

the R-tuple. This information is very useful for reconstruction and has a negligible cost

(asymptotically speaking). Concretely, one can make the nodes of the BST store the

successor field besides the interval. The low-level operations for manipulating the TTC

(see Section 4.1.2.1) are unaffected, nor are the query and update algorithms significantly.

The only subtlety is that when two intervals (nodes) are composed, the successor field of

the resulting node corresponds to the successor field of the first node (this was already

discussed in terms of R-tuples in Section 4.1).

The goal of the algorithm is thus to reconstruct a journey by unfolding the intervals

and successor fields. Details are given in Algorithm 2. The first step (from lines 1 to 3) is to

Algorithm 2 reconstruct journey(u, v, t1, t2)

Require: [t1, t2] ⊆ T , u, v ∈ V, u 6= v
1: ([t−, t+], w)← find next(T(u,v), t1) ⊲ node augmented with successor
2: if the returned value is nil or t+ > t2 then
3: return nil ⊲ no interval contained in [t1, t2] in T (u, v)

4: J ← {(u, w, t−)}
5: while w 6= v do
6: ([t, _], w′)← find next(T(w,v), t− + δ)
7: J ← J · {(w, w′, t)}
8: w ← w′

9: t− ← t
10: return J

retrieve a node in T (u, v) whose interval is contained within [t1, t2] if one exists. If several

choices exist, the earliest is selected (through calling the find next primitive). Then, the

Chapter 4. A Dynamic Data Structure for Temporal Reachability with Unsorted Contact Insertions 58

algorithm iteratively replaces u with the successor and searches for the next interval until

the successor is v itself (from lines 5 to 9), adding gradually the corresponding contacts

to a journey J (line 4 and line 7), which is ultimately returned at line 10.

Theorem 5. Algorithm 2 has time complexity O(k log τ), where k is the length of the

resulting journey.

Proof. The algorithm calls find next at line 1. After that, it is known whether a journey

can be reconstructed. If so, a journey prefix J is initialized with the first contact of the

reconstructed journey (indeed, such a contact must exist because of the minimality of the

interval). Then, in the loop from line 5 to line 9, the algorithm extends J by one contact

for each call to find next until J contains the entire journey. Overall, find next is

thus called as many times as the length of the reconstructed journey, which corresponds

to O(|J | log τ) time. The costs of the other operations are clearly dominated by this

cost.

4.2.3.1 Properties of the Reconstructed Journeys

Several journeys that satisfy the query parameters may exist. We observe that the

specific choices made in Algorithm 2 imply additional properties.

Lemma 6. The journey J which is returned by Algorithm 2 is a foremost journey in

the requested interval (i.e., it arrives at the earliest time at v). Among all the possible

foremost journeys, it is also a fastest journey (i.e., the difference between departure and

arrival is minimized).

Proof. The fact that J is a foremost journey follows from the call to find next at line 1.

Indeed, the interval returned by this call corresponds to the earliest departure from u,

which happens to also correspond to the earliest arrival at v because the stored intervals

are incomparable. J thus achieves the earliest arrival at v in the given interval. And

since all the stored intervals are minimal (i.e., they do not contain smaller reachability

intervals), it also follows that departure(J) is as late as possible among all the journeys

arriving in v at time arrival(J), which means J is as fast as possible among all foremost

journeys.

Let us insist that Lemma 6 does not imply that J is both foremost and fastest

in the requested interval. It only states that J is a foremost journey, and a fastest one

among the possible foremost journeys. Even faster journeys might exist in the requested

interval, arriving later at v. The above property is however already convenient, e.g., in

communication networks, where a message would arrive at the destination as early as

possible, while (secondarily) traveling for as little time as possible.

Chapter 4. A Dynamic Data Structure for Temporal Reachability with Unsorted Contact Insertions 59

4.2.4 Evolution of the Number of R-tuples over the Insertions

As explained in Lemma 2, the worst-case asymptotic number of R-tuples in the

data structure cannot exceed the maximum number of contacts. The data structure is

worst-case optimal in this regard. However, many typical scenarios involve contacts be-

tween only a small fraction of the possible pairs of vertices, and only at some specific

times. In order to understand, more globally, how the data structure behaves at various

densities of contacts, we investigated the evolution of the number of R-tuples, as new

contacts are inserted, using a simple randomized model of contact insertions. Namely,

we start with an empty data structure, then the contacts are drawn uniformly at ran-

dom, without replacement, among a large set of pairs of vertices (n = 100) and of time

steps (τ = 100). The choice for these particular values is somewhat arbitrary, but we

chose sufficiently large values to exhibit general phenomena that are discussed next. The

experiments were performed for two values of latency δ, namely 0 and 1, which account

for the distinction between strict and non-strict journeys. The results, averaged over 100

runs (in both cases), are shown in Figure 9 at different scales: (a) early evolution, (b)

intermediate evolution, and (c) entire evolution.

Looking at the early evolution (Figure 9(a)), one can see that, at least for the first

few insertions, the number of R-tuples seems to grow linearly with the number of contacts.

A simple argument can explain this phenomenon: the first few contacts are independent

of each other, in the sense that they share no vertices. As a result, these contacts do

not combine into non-trivial journeys. This regime will change when the next contacts

interact with the previous ones. Since every contact involves two vertices and every vertex

is picked at random from a set of n vertices, the first non-trivial journey will be formed

as soon as a vertex is picked twice. By the birthday paradox (GRINSTEAD; SNELL,

1997), this is expected to happen when f(n) = 1 +
∑n

k=1
n!

(n−k)!nk vertices are drawn,

which corresponds to f(n)/2 contacts. Then, as further contacts are being inserted, the

contacts combine with each other to form many more non-trivial journeys, as illustrated

in Figure 9(b). When the number of inserted contacts reaches the theoretical maximum

(i.e., the temporal graph becomes saturated), one can see in Figure 9(c) that the number

of R-tuples converges to the number of contacts itself, as predicted (by Lemma 2).

Between the last two regimes, the behavior is different depending on whether δ = 0

or δ = 1. Interestingly, if δ = 1, the number of R-tuples does not increase monotonically

(see again Figure 9(c)). A plausible explanation for this phenomenon is as follows. When

the contacts combine into non-trivial journeys, at first, almost none of these journeys

improve upon existing ones (i.e. the new R-tuples do not replace existing ones, they just

keep adding to the data structure). Then, as the number of existing R-tuples becomes

huge, the insertion of a single new contact may induce a trivial R-tuple that will replace

many redundant R-tuples (which are removed consequently). In the case that δ = 0, the

Chapter 4. A Dynamic Data Structure for Temporal Reachability with Unsorted Contact Insertions 60

0

20

40

60

0 10 20 30 40 50

Number of contacts

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

R
−

tu
p

le
s

0

200

400

600

0 50 100 150 200

Number of contacts

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

R
−

tu
p

le
s

(a) Early evolution (b) Intermediate evolution

0

250 000

500 000

750 000

1 000 000

0 250 000 500 000 750 000 1 000 000

Number of contacts

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

R
−

tu
p

le
s

(c) Entire evolution

Figure 9 – Number of R-tuples stored in our data structure (in dotted red for δ = 0 and
dashed blue for δ = 1), as a function of the number of inserted contacts (linear
plot in plain black).

number of R-tuples reaches the theoretical maximum much faster, which can be explained

by the fact that, as soon as a snapshot Gt becomes connected, then all the pairs of vertices

in the graph now have a minimal R-tuple between them relative to time t. The minimality

of these R-tuples also implies that these R-tuples will not be replaced when direct contacts

appear between these pairs.

In summary, the evolution of the number of R-tuples seems to obey at least the

following regimes, which are (1) linear; (2) superlinear; (3) decreasing (for δ = 1); and

(4) converging to saturation. There seems to be another phenomenon occurring between

regimes (2) and (3) with δ = 1, which would be interesting to investigate. In fact,

we formulate three open questions to guide further investigations of these phenomena,

which we think are of independent interest as they pertain to general aspects of temporal

reachability.

Chapter 4. A Dynamic Data Structure for Temporal Reachability with Unsorted Contact Insertions 61

Open question 1. What is the worst-case theoretical growth of the second regime, de-

picted in Figure 9(b)? In particular, is it polynomial?

Open question 2. Is our explanation for the non-monotonicity of the number of R-tuples

sufficient? Otherwise, what other mechanism explains it?

Open question 3. What phenomenon explains the mild inflexion that occurs with δ = 1

(around 100000 insertions in Figure 9(c))?

4.3 Concluding remarks

We presented in this chapter an incremental data structure to solve the dynamic

connectivity problem in temporal graphs. Our data structure places a top priority on the

query time, by answering reachability questions in time O(log τ). Based on the ability to

retrieve reachability information for particular time intervals, it supports the insertion of

contacts in a non-chronological order in O(n2 log τ) worst-case time and makes it possible

to reconstruct efficiently foremost journeys within a time interval, i.e., in time O(k log τ),

where k is the size of the resulting journey. Our algorithms exploit the special features

of non-redundant (minimal) reachability information, which we represent through the

concept of R-tuples. The core of our data structure, namely the Timed Transitive Closure

(TTC), is itself essentially a collection of not-redundant R-tuples, whose size (and that of

the data structure itself) cannot exceed O(n2τ).

The theory of R-tuples poses several further questions, some of which are of inde-

pendent interest, some leading to improvements in the presented algorithms. For example,

do R-tuples involving different pairs of vertices possess further interdependence that may

reduce the space needed to maintain TTCs? More generally, how restricted are TTCs

intrinsically? On the practical side, can we improve the insertion time for new contacts

by using another low-level structure than a balanced BST? Could the notion of contacts

be generalized to contacts of arbitrary duration? Finally, designing efficient data struc-

tures for the decremental and the fully-dynamic versions of this problem, with unsorted

contact insertion and deletion, seems to represent both a significant challenge and a nat-

ural extension of the present work, one that would certainly develop further our common

understanding of temporal reachability.

62

Chapter 5

A Dynamic Compact Data Structure

for Temporal Reachability

In a computational environment, it is often useful to check whether entities can

reach each other while using low space. As mentioned in Chapter 3, investigations on

temporal reachability have been used, for instance, for characterizing mobile and social

networks (TANG et al., 2010; LINHARES et al., 2019), and for validating protocols and

better understanding communication networks (CACCIARI; RAFIQ, 1996; WHITBECK

et al., 2012). Some other applications require the ability to reconstruct a concrete jour-

ney if one exists such as finding and visualizing detailed trajectories in transportation

networks (WU et al., 2017; GEORGE; KIM; SHEKHAR, 2007; ZENG et al., 2014), and

matching temporal patterns in temporal graph databases (MOFFITT; STOYANOVICH,

2016; LATAPY; VIARD; MAGNIEN, 2018). In all these applications, low space usage

is important because it allows the maintenance of larger temporal graphs in primary

memory.

In Chapter 4, we proposed a data structure data that maintains a Timed Tran-

sitive Closure (TTC), a generalization of a TC that takes time into consideration. It

maintains well-chosen sets of time intervals describing departure and arrival timestamps

of journeys in order to provide time related queries and enable incremental updates on the

data structure. The key idea is that, each set associated with a pair of vertices only con-

tains non-nested time intervals and it is sufficient to implement all the TTC operations.

Our previous data structure maintains only O(n2τ) intervals (as opposed to O(n2τ 2))

using O(n2) dynamic Binary Search Trees (BSTs). Although the reduction of intervals is

interesting, the space to maintain O(n2) BSTs containing O(τ) intervals each can still be

prohibitive for large temporal graphs.

In this chapter, we propose a dynamic compact data structure to represent TTCs

incrementally while answering reachability queries. Our new data structure maintains

each set of non-nested time intervals as two dynamic bit-vectors, one for departure and

Chapter 5. A Compact Data Structure for Temporal Reachability 63

the other for arrival timestamps. Each dynamic bit-vector uses the same data layout

introduced in (PREZZA, 2017), which resembles a B+-tree (ABEL, 1984) with static bit-

vectors as leaf nodes. In this work, we used a raw bit-vector representation on leaves

that stores bits as a sequence of integer words. In our experiments, we show that our new

algorithms follows the same time complexities introduced in the previous section, however,

the space to maintain our data structure is much smaller on temporally dense temporal

graphs. Encoding (ELIAS, 1975) or packing (LEMIRE; BOYTSOV, 2015) the distance

between 1’s on leaves may improve the efficiency on temporally very sparse temporal

graphs.

The content present in this chapter was published on the arXiv repository (BRITO

et al., 2023) available at <https://arxiv.org/abs/2308.11734>.

We organize this chapter as follows. In Section 5.1, we briefly review the dynamic

bit-vector proposed by Prezza (2017). In Section 5.2, we describe our new data structure

along with the algorithms for each operation. In Section 5.3, we conduct some experiments

comparing our new data structure with the data structure introduced in the previous

chapter. Finally, Section 5.4 concludes with some remarks and open questions such as the

usage of an encoding or packing techniques for temporally very sparse temporal graphs.

5.1 Dynamic bit-vectors

A bit-vector B is a data structure that holds a sequence of bits and provides the

following operations: access(B, i), which accesses the bit at position i; rankb(B, i),

which counts the number of b’s until (and including) position i; and selectb(B, j),

which finds the position of the j-th bit with value b. It is a fundamental data structure to

design more complex data structures such as compact sequence of integers, text, trees, and

graphs (NAVARRO, 2016; CARO et al., 2016). Usually, bit-vectors are static, meaning

that we first construct the data structure from an already known sequence of bits in order

to take advantage of its query operations.

Additionally, a dynamic bit-vector allows changes on the underlying bits. Although

many operations to update a dynamic bit-vector has been proposed, the following are the

most commonly used: insertb(B, i), which inserts a bit b at position i; updateb(B, i),

which writes the new bit b to position i; and remove(B, i), which removes the bit at

position i. Apart from these operations, there are others such as insert wordw(B, i),

which inserts a word w at position i, and remove wordn(B, i), which removes a word

of n bits from position i.

In (PREZZA, 2017), the author proposed a dynamic data structure for bit-vectors

with a layout similar to B+-trees (ABEL, 1984). Leaves wrap static bit-vectors of maxi-

mum length l and internal nodes contain at most m pointers to children along with the

Chapter 5. A Compact Data Structure for Temporal Reachability 64

16 12 12
3 2 5

4 4 4
3 1 1

000110001011

4 4 4
0 2 0

000010100000

4 4 4 4
1 1 0 1

0100000000101000

num =
ones =

num =
ones =

num =
ones =

num =
ones =

Figure 10 – A dynamic bit-vector using the data structure introduced in (PREZZA, 2017).
Leaves wrap static bit-vectors and internal nodes contain pointers to children
along with the number of 1’s and the total number of bits in each of them.
The maximum number of pointers in each internal node m and the length of
each static bit-vector n in this example is 4.

number of 1’s and the total number of bits in each subtree. With exception to the root

node, static bit-vectors have a minimum length of ⌈l/2⌉ and internal nodes have at least

⌈m/2⌉ pointers to children. These parameters serve as rules to balance out tree nodes

during insertion and removal of bits. Figure 10 illustrates the overall layout of this data

structure.

Any static bit-vector representation can be used as leaves, the simplest one being

arrays of words representing bits explicitly. In this case, the maximum length could be set

to l = Θ(|w|2), where and |w| is the integer word size. Other possibility is to represent bit-

vectors sparsely by computing the distances between consecutive 1’s and then encoding

them using an integer compressor such as Elias-Delta (ELIAS, 1975) or simply packing

them using binary packing (LEMIRE; BOYTSOV, 2015). In this case, we can instead

use as parameter the maximum number of 1’s encoded by static bit-vectors to balance

out leaves.

Their data structure supports the main dynamic bit-vector operations as follows.

An access(B, i) operation is done by traversing the tree starting from the root node. In

each visited node the algorithm searches from left to right for the branch that has the i-th

bit and subtracts from i the number of bits in previous subtrees. After descending to the

corresponding child node of this branch, the new i is local to that subtree and the search

continues until reaching the leaf containing the i-th bit. At a leaf node, the algorithm

simply accesses and returns the i-th local bit in the corresponding static bit-vector. If

bits in static bit-vectors are encoded, an additional decoding step is necessary.

The rankb(B, i) and selectb(B, j) operations are similar to access(B, i).

For rankb(B, i), the algorithm also sums the number of 1’s in previous subtrees when

descending to child nodes. At a leaf, it finally sums the number of 1’s in the corresponding

static bit-vector up to the i-th local bit using popcount operations, which counts the

number of 1’s in a word, and returns the resulting value. For selectb(B, j), the algorithm

instead uses the number of 1’s in each subtree to guide the search. Thus, when traversing

Chapter 5. A Compact Data Structure for Temporal Reachability 65

down, it subtracts the number of 1’s in previous subtrees from j, and sums the total

number of bits. At a leaf, it searches for the position of the j-th local set bit using clz

or ctz operations, which counts, respectively, the number of leading and trailing zeros in

a word; sums it, and returns the resulting value.

The algorithm for insertb(B, i) first locates the leaf that contains the static bit-

vector with the i-th bit. During this top-down traversal, it increments the total number of

bits, and the number of 1’s whether b = 1, in each internal node key associated with the

child it descends. Then, it reconstructs the leaf while including the new bit b. If the leaf

becomes full, the algorithm splits its content into two bit-vectors and updates its parent

accordingly while adding a new key and a pointer to the new leaf. After this step, the

parent node can also become full and, in this case, it must also be split into two nodes.

Therefore, the algorithm must traverse back, up to the root node, balancing any node

that becomes full. If the root node becomes full, then it creates a new root containing

pointers to the split nodes along with the keys associated with both subtrees.

The algorithm for remove(B, i) also has a top-down traversal to locate and

reconstruct the appropriate leaf, and a bottom-up phase to rebalance tree nodes. However,

internal node keys associated with the child it descends must be updated during the

bottom-up phase since the i-bit is only known after reaching the corresponding leaf.

Moreover, a node can become empty when it has less than half the maximum number of

entries. In this case, first, the algorithm tries to share the content of siblings with the

current node while updating parent keys. If sharing is not possible, it merges a sibling into

the current node and updates its parent while removing the key and pointer previously

related to the merged node. If the root node becomes empty, the algorithm removes the

old root and makes its single child the new root.

The updateb(B, i) operation can be implemented by calling remove(B, i) then

insertb(B, i), or by using a similar strategy with a single traversal.

5.2 Dynamic compact data structure for temporal

reachability

Our new data structure uses roughly the same strategy as in the previous chapter.

The main difference is the usage of a compact dynamic data structure to maintain sets of

non-nested time intervals instead of Binary Search Trees (BSTs). This compact represen-

tation provides all BST primitives in order to incrementally maintain Timed Transitive

Closures (TTCs) and answer reachability queries. In the previous chapter, we defined

them as follows, where T(u,v) represents a BST holding a set of non-nested intervals asso-

ciated with the pair of vertices (u, v). (1) find next(T(u,v), t) returns the earliest interval

[t−, t+] in T(u,v) such that t− ≥ t, if any, and nil otherwise; (2) find prev(T(u,v), t) re-

Chapter 5. A Compact Data Structure for Temporal Reachability 66

turns the latest interval [t−, t+] in T(u,v) such that t+ ≤ t, if any, and nil otherwise; and (3)

insert(T(u,v), t−, t+) inserts the interval [t−, t+] in T(u,v) and performs some operations

for maintaining the property that all intervals in T(u,v) are minimal.

For our new compact data structure, we take advantage that every set of intervals

only contains non-nested intervals, thus we do not need to consider other possible inter-

vals (Lemma 1). For instance, if there is an interval I = [4, 6] in a set, no other interval

starting at timestamp 4 or ending at 6 is possible, otherwise, there would be some interval

I ′ such that I ′ ⊆ I or I ⊆ I ′. Therefore, we can represent each set of intervals as a

pair of dynamic bit-vectors D and A, one for departure and the other for arrival times-

tamps. Both bit-vectors must provide the following low-level operations: access(B, i),

rankb(B, i), selectb(B, j), insertb(B, i), and updateb(B, i).

By using these simple bit-vectors operations, we first introduce algo-

rithms for the primitives find next((D, A)(u,v), t), find prev((D, A)(u,v), t) and

insert((D, A)(u,v), t−, t+) that runs, respectively, in time O(log τ), O(log τ) and

O(d log τ), where d is the number of intervals removed during an interval insertion. Note

that, now, these operations receive as first argument a pair containing two bit-vectors D

and A associated with the pair of vertices (u, v) instead of a BST T(u,v). If the context is

clear, we will simply use the notation (D, A) instead of (D, A)(u,v).

Then, in order to improve the time complexity of insert((D, A)(u,v), t−, t+) to

O(log τ + d), we propose a new bit-vector operation: unset one range(B, j1, j2),

which clears all bits in the range [select1(B, j1), select1(B, j2)].

5.2.1 Compact representation of non-nested intervals

Each set of non-nested intervals is represented as a pair of dynamic bit-vectors D

and A, one storing departure timestamps and the other arrival timestamps. Given a set

of non-nested intervals I1, I2, . . . , Ik, where Ii = [di, ai], D contains 1’s at every position

di, and A contains 1’s at every position ai. Figure 11 depicts this representation.

1

0 0 0 1

0 1

0 1

0 0 0

1 2 3 4 5 6

I1
I2

D

A

Figure 11 – Representation of a set of non-nested time interval using two bit-vectors, one
for departures and the other for arrival timestamps. In this example, a set
containing the intervals [1, 4] and [3, 6] is represented by the first bit-vector
containing 1’s at position 1 and 3, and the second bit-vector containing 1’s at
positions 4 and 6. Note that both bit-vectors must have the same number of
1’s, otherwise, there would be an interval with missing values for departure
or arrival.

Chapter 5. A Compact Data Structure for Temporal Reachability 67

5.2.2 Query algorithms

Algorithms 3 and 4 answers the primitives find prev((D, A), t) and

find next((D, A), t), respectively. In order to find a previous interval, at line 1,

Algorithm 3 first counts in j how many 1’s exist up to position t in A. If j = 0, then

there is no interval I = [t−, t+] such that t+ ≤ t, therefore, it returns nil. Otherwise, at

lines 4 and 5, the algorithm computes the positions of the j-th 1’s in D and A to compose

the resulting intervals. In order to find a next interval, at line 1, Algorithm 4 first counts

in j′ how many 1’s exist up to time t− 1 in D. If j′ = rank1(D, len(D)), then there is

no interval I ′ = [t′−, t′+] such that t′ ≤ t−, therefore, it returns nil. Otherwise, at lines 4

and 5, the algorithm computes the positions of the (j′ + 1)-th 1’s in D and A to compose

the resulting interval.

Algorithm 3 find prev((D, A), t)

1: j ← rank1(A, t)
2: if j = 0 then
3: return nil
4: t− ← select1(D, j)
5: t+ ← select1(A, j)
6: return [t−, t+]

Algorithm 4 find next((D, A), t)

1: j ← rank1(D, t− 1)
2: if j = rank1(D, len(D)) then
3: return nil
4: t− ← select1(D, j + 1)
5: t+ ← select1(A, j + 1)
6: return [t−, t+]

As rank1(B, i) and select1(B, j) on dynamic bit-vectors have time complexity

O(log τ) using the data structure proposed by Prezza (2017), find prev((D, A), t) and

find next((D, A), t) have both time complexity O(log τ).

5.2.2.1 Interval insertion

Due to the property of non-containment of intervals, given a new interval I =

[t1, t2], we must first assure that there is no other interval I ′ in the data structure such

that I ⊆ I ′, otherwise, I cannot be present in the set. Then, we must find and remove

all intervals I ′′ in the data structure such that I ′′ ⊆ I. Finally, we insert I by setting

the t1-th bit of bit-vector D and the t2-th bit of A. Figure 12 illustrates the process of

inserting new intervals.

Algorithm 5 describes a simple process for the primitive insert((A, D), t1, t2)

in order to insert a new interval I = [t1, t2] into a set of non-nested intervals encoded

Chapter 5. A Compact Data Structure for Temporal Reachability 68

0 1

0 0 0 0 0 1

0 0 0 0

1 2 3 4 5 6

I1

D

A

0 1

0 0 0 0 0 1

0 0 0 0

1 2 3 4 5 6

I1

(a) inserting I1 = [2, 6] (b) inserting I2 = [1, 6]

1

0 0 0 0 1

1

1

0 0 0 0

1 2 3 4 5 6

I3
I1

D

A

0 0 1

0 0 0 1

0 0 0

0 0

1 2 3 4 5 6

I4

(c) inserting I3 = [1, 5] (c) inserting I4 = [3, 4]

Figure 12 – Sequence of insertions using our data structure based on bit-vectors D and A.
In (a), our data structure is empty, thus, the insertion of interval I1 = [2, 6]
results in setting the position 2 in D and 6 in A. Then, in (b), the new
interval I2 = [1, 6] encloses I1, therefore, the insertion is skipped. Next,
in (c), no interval encloses or is enclosed by the new interval I3 = [1, 5], thus,
it suffices to set the position 1 in D and 5 in A. Finally, in (d), the new
interval I4 = [3, 4] is enclosed by I1 and I3, thus both of them is removed by
clearing the corresponding bits and then I4 is inserted by setting the position
3 in D and 4 in A.

as two bit-vectors D and A. At line 1, it computes how many 1’s exist in D prior to

position t1 by calling rd = rank1(D, t1 − 1) and access the ti-th bit in D by calling bitd =

access(D, t1). At line 2, it computes the same information with respect to the bit-vector

A and timestamp t2 by calling ra = rank1(A, t2 − 1) and bita = access(A, t2). We

note that the operations rank1(B, i) and access(B, i) can be processed in a single tree

traversal using the dynamic bit-vector described in (PREZZA, 2017). If rd is less than ra+

bita, then there are more intervals closing up to timestamp t2 than intervals opening before

t1, therefore, there is some interval I ′ = [d′, a′] such that t1 ≤ d′ ≤ a′ ≤ t2, i.e., I ⊆ I ′. In

this case, the algorithm stops, otherwise, it proceeds with the insertion. When proceeding,

if rd + bitd is greater than ra, then there are more intervals opening up to t1 than intervals

closing before t2, therefore, there are d = (rd + bitd)− ra intervals I ′′
i = [d′′

i , a′′
i], such that

d′′
i ≤ t1 ≤ t2 ≤ a′′

i , i.e., I ′′
i ⊆ I, that must be removed. From lines 5 to 9, the algorithm

removes the d intervals that contain I by iteratively unsetting their corresponding bits in

D and A. In order to unset the j-th 1 in a bit-vector B, we first search for its position by

calling i = select1(B, j), then update B[i] = 0 by calling update0(B, i). Thus, the

algorithm calls update0(D, select1(D, ra + 1)) and update0(A, select1(A, ra + 1))

d times to remove the d intervals that closes after ra. Finally, at lines 10 and 11, the

algorithm inserts I by calling update1(D, t1) and update1(A, t2). Note that both bit-

vectors can grow with new insertions, thus we need to assure that both bit-vectors are large

enough to accommodate the new 1’s. That is why the algorithm calls ensureCapacity

Chapter 5. A Compact Data Structure for Temporal Reachability 69

before setting the corresponding bits. The ensureCapacity implementation may call

insert0(B, len(B)) or insert word0(B, len(B)) until B has enough space. Moreover,

rank1(B, i) and access(B, i) operations can also receive positions that are larger than

the actual length of B. In such cases, these operations must instead return rank1(B,

len(B)) and 0, respectively.

Algorithm 5 insert((D, A), t1, t2)

1: rd ← rank1(D, t1 − 1); bitd ← access(D, t1)
2: ra ← rank1(A, t2 − 1); bita ← access(A, t2)
3: if rd ≥ ra + bita then
4: if rd + bitd > ra then
5: r+

d ← rd + bitd

6: while r+
d > ra do

7: update0(D, select1(D, ra + 1))
8: update0(A, select1(A, ra + 1))
9: r+

d ← r+
d − 1

10: ensureCapacity(D, t1); update1(D, t1)
11: ensureCapacity(A, t2); update1(A, t2)

Theorem 7. The update operation has worst-case time complexity O(d log τ), where d is

the number of intervals removed.

Proof. All operations on dynamic bit-vectors have time complexity O(log τ) using the

data structure proposed by Prezza (2017). As the maximum length of each bit-vector

is τ , the cost of ensureCapacity is amortized to O(1) during a sequence of insertions.

Therefore, the time complexity of insert((D, A), t1, t2) is O(d log τ) since in the worst

case Algorithm 5 removes d intervals from line 6 to 9 before inserting the new one at

lines 10 and 11.

This simple strategy has a multiplicative factor on the number of removed intervals.

In general, as more intervals in [1, τ] are inserted, the number of intervals d to be removed

decreases, thus, in the long run, the runtime of this naïve solution is acceptable. However,

when static bit-vectors are encoded sparsely as distances between consecutive 1’s, it needs

to decode/encode leaves d times and thus runtime degrades severely. In the next section,

we propose a new operation for dynamic bit-vectors using sparse static bit-vectors as

leaves, unset one range(B, j1, j2), to replace this iterative approach and improve the

time complexity of insert((D, A), t1, t2) to O(log τ).

5.2.3 New dynamic bit-vector operation to improve interval in-

sertion

In this section, we propose a new operation unset one range(B, j1, j2) for

dynamic bit-vector using sparse static bit-vectors as leaves to improve the time com-

Chapter 5. A Compact Data Structure for Temporal Reachability 70

plexity of insert((D, A), t1, t2). This new operation clears all bits starting from the

j1-th 1 up to the j2-th 1 in time O(log τ). Our algorithm for unset one range(B,

j1, j2), based on the split/join strategy commonly used in parallel programs (BLEL-

LOCH; FERIZOVIC; SUN, 2016), uses two internal functions split at jth one(N , j)

and join(N1, N2). The split at jth one(N , j) function takes a root node N repre-

senting a dynamic bit-vector B and splits its bits into two nodes N1 and N2 representing

bit-vectors B1 and B2 containing, respectively, the bits in range [1, select1(B, j) − 1]

and [select1(B, j), len(B)]. The join(N1, N2) function takes two root nodes N1 and

N2, representing two bit-vectors B1 and B2 and constructs a new tree with root node

N representing a bit-vector B containing all bits from B1 followed by all bits from B2.

The resulting trees for both functions must preserve the balancing properties of dynamic

bit-vectors (PREZZA, 2017).

Thus, given a dynamic bit-vector B represented as a tree with root N , our

algorithm for unset one range(B, j1, j2) is described as follows. First, the

algorithm calls split at jth one(N , j1) in order to split the bits in B into two

nodes Nleft and Ntmp representing two bit-vectors containing, respectively, the bits in

range [1, select1(B, j1) − 1] and in range [select1(B, j1), len(B)]. Then, it calls

split at jth one(Ntmp, j2 − j1) to split Ntmp further into two nodes Nones and Nright

containing, respectively the bits in range [select1(B, j1), select1(B, j2) − 1], and

[select1(B, j2), len(B)]. The tree with root node Nones contains all 1’s previously

in the original dynamic bit-vector B that should be cleared. In the next step, the

algorithm creates a new tree with root node Nzeros containing len(Nones) 0’s to replace

Nones. Finally, it calls join(join(Nleft, Nzeros), Nright) to join the trees with root nodes

Nleft, Nzeros, and Nright into a final tree representing the original bit-vector B with the

corresponding 1’s cleared.

Note that the tree with root Nones is still in memory, thus it needs some sort of

cleaning. The cost of immediately cleaning this tree would increase proportionally to

the total number of nodes in Nones tree. Instead, we keep Nones in memory and reuse

its children lazily in other operations that request node allocations so that the cost of

cleaning is amortized. Moreover, even though we need to create a new bit-vector filled

with zeros, this operation is performed in O(1) time with a sparse implementation since

only information about 1’s is encoded. We do not recommend using this strategy for

a dense implementation, i.e, leaves represented as raw sequences of bits, since this last

operation would run in time O(τ).

Next we describe join(N1, N2) and split at jth one(N , j). The idea of

join(N1, N2) is to merge the root of the smallest tree with the correct node of the

highest tree and rebalance the resulting tree recursively.

Algorithm 6 details the join(N1, N2) recursive function. If height(N1) =

Chapter 5. A Compact Data Structure for Temporal Reachability 71

Algorithm 6 join(N1, N2)

1: if height(N1) = height(N2) then
2: return mergeOrGrow(N1, N2)
3: else if height(N1) > height(N2) then
4: R← join(extractRightmostChild(N1), N2)
5: if height(R) = height(N1) then
6: return mergeOrGrow(N1, R)

7: insertRightmostChild(N1, R)
8: return N1

9: else
10: R′ ← join(N1, extractLeftmostChild(N2))
11: if height(R′) = height(N2) then
12: return mergeOrGrow(R′, N2)

13: insertLeftmostChild(N2, R′)
14: return N2

height(N2), at line 2, the algorithm tries to merge keys and pointers present in N1 and

N2 if possible, or distributes their content evenly and grow the resulting tree by one

level. This process is done by calling mergeOrGrow(N1, N2), which returns the root

node of the resulting tree. Instead, if height(N1) > height(N2), at line 4, the algorithm

first extracts the rightmost child from N1, by calling extractRightmostChild(N1), and

then recurses further passing the rightmost child instead. The next recursive call might

perform: a merge operation or grow the resulting subtree one level; therefore, the output

node R may have, respectively, height equals to height(N1) − 1 or height(N1). If the

resulting tree grew, i.e., height(R) = height(N1), then, at line 6, the algorithm returns

the result of mergeOrGrow(N1, R). Otherwise, if a merge operation was performed,

i.e., height(R) = height(N1) − 1, then, at line 7, it inserts R into N1 as its new

rightmost child, and returns N1. Finally, if height(N1) < height(N2), at line 10, the

algorithm extracts the leftmost child from N2 by calling extractLeftmostChild(N2)

and recurses further passing the leftmost child instead. Similarly, the root R′ resulted

from the next recursive call might have height equals to height(N2) − 1 or height(N2).

If height(R′) = height(N2), then, at line 12, the algorithm returns the result of

calling mergeOrGrow(R, N2), otherwise, if height(R′) = height(N2) − 1, then, at

line 13, it inserts R′ into N2 as its new leftmost child, and returns N2. Note that all

subroutines must properly update keys describing the length and number of 1’s of

the bit-vector represented by the corresponding child subtree. For instance, a call to

rightmost = extractRightmostChild(N) must decrement from the key associated with

N the length and number of 1’s in the bit-vector represented by rightmost.

Lemma 8. The operation join(N1, N2) has time complexity O(|height(N1) −

height(N2)|).

Chapter 5. A Compact Data Structure for Temporal Reachability 72

Proof. Algorithm 6 descends at most |height(N1) − height(N2)| levels starting from the

root of the highest tree. At each level, in the worst case, it updates a node doing a

constant amount of work equals to the branching factor of the tree. Therefore, the cost

of join(N1, N2) is O(|height(N1)− height(N2)|).

The idea of split at jth one(N , j) is to traverse N recursively while partition-

ing and joining its content properly until it reaches the node containing the j-th 1 at

position select1(B, j). During the forward traversal, it partitions the current subtree

in two nodes N1 and N2, excluding the entry associated with the child to descend. Then,

during the backward traversal, it joins N1 and N2, respectively, with the left and right

nodes resulting from the recursive call.

Algorithm 7 split at jth one(N , j)

1: if N is leaf then
2: (N1, N2)← partitionLeaf(N, j)
3: return (N1, N2)

4: (N1, child, N2)← partitionNode(N, j)
5: (N ′

1, N ′
2)← split(child, j − ones(N1))

6: return (join(N1, N ′
1), join(N ′

2, N2))

The details of this function is shown in Algorithm 7. From lines 1 to 3, the

algorithm checks whether the root is a leaf. If it is the case, it partitions the current bit-

vector B1 · b ·B2, where b is the j-th 1, and returns two nodes containing, respectively, B1

and b·B2. Otherwise, from lines 4 to 6, the algorithm first finds the i-th child that contains

the j-th 1 using a linear search and partitions the current node into three other nodes: N1,

containing the partition with all keys and children in range [1, i− 1]; child, which is the

child node associated with position i; and N2, containing the partition with all keys and

children in range [i+1, . . .]. Then, at line 5, it recursively calls split at jth one(child,

j − ones(N1)) to retrieve the partial results N ′
1 containing bits from child up to the j-th

1; and N ′
2 containing bits from child starting at the j-th 1 and forward. Note that the

next recursive call expects an input j that is local to the root node child. Finally, at

line 6 it joins N1 with N ′
1 and N ′

2 with N2, and returns the resulting trees.

Lemma 9. The operation split at jth one(N , j) has time complexity O(log τ).

Proof. As join(N1, N2) has cost O(|height(N1) − height(N2)|) and the sum of height

differences for every level cannot be higher than the resulting tree height containing n < τ

nodes, the time complexity of split at jth one(N , j) is O(log τ).

Furthermore, since join(N1, N2) outputs a balanced tree when concatenating two

already balanced trees, both trees resulting from the split at jth one(N , j) calls are

also balanced.

Chapter 5. A Compact Data Structure for Temporal Reachability 73

Lemma 10. The operation unset one range(B, j1, j2) has time complexity O(log τ)

when B encodes leaves sparsely.

Proof. The unset one range(B, j1, j2) operation calls split at jth one and join

twice. It must also create a new tree containing select1(B, j2 − 1) − select1(B, j1)

0’s to replace the subtree containing j2 − j1 1’s. If leaves of B are represented sparsely,

then the creation of a new tree filled with 0’s costs O(1) since the resulting tree only has a

root node, with its only key having the current length (select1(B, j2−1) - select1(B,

j1)), and an empty leaf. Therefore, as the cost of split at jth one(N , j), O(log τ),

dominates the cost of join(N1, N2), the time complexity of unset one range(B, j1,

j2) is O(log τ).

Theorem 11. The primitive insert((D, A), t−, t+) has time complexity O(log τ) when

D and A encode leaves sparsely.

Proof. Following from Theorem 7 and Lemma 10, the loop in Algorithm 5 that iteratively

unset d bit-vector bits can be substituted by a call to unset one range(B, j1, j2).

As the cost of Algorithm 5 is dominated by this loop, its time complexity reduces to

O(log τ).

5.3 Experiments

In this section, we conduct experiments to analyze the wall-clock time performance

and the space efficiency of data structures when adding new information from synthetic

datasets. In Section 5.3.1, we compare our compact data structure that maintain a set of

non-nested intervals directly with an in-memory B+-tree implementation storing intervals

as keys. For our compact data structure, we used dynamic bit-vectors (PREZZA, 2017)

with leaves storing bits explicitly as arrays of integer words with words being 64 bits long.

Internal nodes have a maximum number of pointers to children m = 32 and leaf nodes

have static bit-vectors with maximum length l = 4096. For the B+-tree implementation

we used m = 32 for all nodes. In Section 5.3.2, we compare the overall Timed Transitive

Closures (TTCs) data structure using our new compact data structure with the TTC

using the B+-tree implementation for each pair of vertices. All code is available at <https:

//bitbucket.org/luizufu/zig-ttc/src/master/>.

5.3.1 Comparison of data structures for sets of non-nested in-

tervals

For this experiment, we created datasets containing all O(τ 2) possible intervals

in [1, τ] for τ ∈ [23, 214]. Then, for each dataset, we executed 10 times a program that

Chapter 5. A Compact Data Structure for Temporal Reachability 74

In
s
e
rt

io
n
 t
im

e
 (

m
s
)

0 5000 10000 15000

0

2000

4000

6000

8000

τ

B
+
−tree

Compact

In
s
e
rt

io
n
 t
im

e
 (

m
s
)

S
p
a
c
e
 (

K
B

)

0 25 50 75 100

0 25 50 75 100

0

2000

4000

6000

0

100

200

Percentage of intervals inserted

B
+
−tree

Compact

(a) Overall (b) Execution for τ = 214

Figure 13 – Comparison of incremental data structures to represent a set of non-nested
intervals. In (a), the overall average wall-clock time to insert all possible O(τ)
intervals randomly shuffled into data structures. In (b), the cumulative wall-
clock time and the memory space usage to insert all possible O(τ) intervals
randomly shuffled throughout a single execution. Note that the final wall-
clock time of the execution described in (b) was one of the 10 executions with
τ = 214 used to construct (a).

shuffles all intervals at random, and inserts them into the tested data structure while

gathering the wall-clock time and memory space usage after every insertion.

Figure 13(a) shows the average wall-clock time to insert all intervals into the both

data structures as τ increases. Figure 13(b) shows the cumulative wall-clock time to insert

all intervals and the memory usage throughout the lifetime of a single program execution

with τ = 214. As shown in Figure 13(a), our new data structure slightly underperforms

when compared with the B+-tree implementation. However, as shown in Figure 13(b), the

wall-clock time have a higher overhead at the beginning of the execution (first quartile)

and, after that, the difference between both data structures remains almost constant.

This overhead might be due to insertions of 0’s at the end of the bit-vectors in order to

make enough space to accommodate the rightmost interval inserted so far. We can also

see in Figure 13(b) that the space usage of our new data structure is much smaller than

the B+-tree implementation. It is worth noting that, if the set of intervals is very sparse,

maybe the use of sparse bit-vector as leaves could decrease the space since it does not

need to preallocate most of the tree nodes, however, the wall-clock time could increase

since at every operation leaves need to be decoded/unpacked and encoded/packed.

Chapter 5. A Compact Data Structure for Temporal Reachability 75

In
s
e
rt

io
n
 t
im

e
 (

s
)

0 5000 10000 15000

0

200

400

600

τ

B
+
−tree

Compact

In
s
e
rt

io
n
 t
im

e
 (

s
)

S
p
a
c
e
 (

M
B

)

0 25 50 75 100

0 25 50 75 100

0

200

400

600

0

50

100

150

200

250

Percentage of contacts inserted

Btree

Compact

(a) Overall (b) Execution for n = 32 and τ = 214

Figure 14 – Comparison of Timed Transitive Closures (TTCs) using incremental data
structures to represent sets of non-nested intervals for each pair of vertices.
In (a), the overall average wall-clock time to insert all possible O(n2τ) con-
tacts randomly shuffled into data structures. In (b), the cumulative wall-clock
time and the memory space usage to insert all possible O(n2τ) contacts ran-
domly shuffled throughout a single execution. Note that the final wall-clock
time of the execution described in (b) was one of the 10 executions with
τ = 214 used to construct (a).

5.3.2 Comparison of data structures for Time Transitive Clo-

sures

For this experiment, we created datasets containing all O(n2τ) possible contacts

fixing the number of vertices n = 32 and the latency to traverse an edge δ = 1 while

varying τ = [23, 214]. Then, for each dataset, we executed 10 times a program that

shuffles all contacts at random, and inserts them into the tested TTC data structure

while gathering the wall-clock time and memory space usage after every insertion.

Figure 14(a) shows the average wall-clock time to insert all contacts into the TTCs

using both data structures as τ increases. Figure 14(b) shows the cumulative wall-clock

time to insert all contacts and the memory usage throughout the lifetime of a single

program execution with n = 32 and τ = 214. As shown in Figure 14(a), the TTC version

that uses our compact data structure in fact outperforms when compared with TTC that

uses the B+-tree implementation for large values of τ . In Figure 14(b), we can see that

the time to insert a contact into the TTC using our new data structure is lower during

almost all lifetime, and the space usage followed the previous experiment comparing data

structures in isolation.

Chapter 5. A Compact Data Structure for Temporal Reachability 76

5.4 Concluding remarks

We presented in this chapter an incremental compact data structure to represent a

set of non-nested time intervals. This new data structure is composed by two dynamic bit-

vectors and works well using common operations on dynamic bit-vectors. Among the oper-

ations of our new data structures are: find prev((A, D), t), which retrieves the previous

interval [t1, t2] such that t2 ≤ t in time O(log τ); find next((A, D), t), which retrieves

the next interval [t1, t2] such that t1 ≥ t also in time O(log τ); and insert((A, D), t1, t2),

which inserts a new interval I = [t1, t2] whether no other interval I ′ such that I ⊆ I ′ exists

while removing all intervals I ′′ such that I ⊆ I ′′ in time O(d log τ), where d is the number

of intervals removed. Moreover, we introduced a new operation unset one range(B,

j1, j2) for dynamic bit-vectors that encode leaves sparsely, which we used to improve the

time complexity of our insert algorithm to O(log τ).

Additionally, we used our new data structure to incrementally maintain Timed

Transitive Closures (TTCs) using much less space. We used the same strategy as described

in the previous chapter, however, instead of using BSTs, we used our new compact data

structure. The time complexities of our algorithms for the new data structure are the

same as those for BSTs. However, as we showed in our experiments, using our new data

structure greatly reduced the space usage for TTCs in several cases and, as they suggest,

the wall-clock time to insert new contacts also improves as τ increases.

For future investigations, we conjecture that our compact data structure can be

simplified further so that the content of both its bit-vectors are merged into a single data

structure. Our current insertion algorithm duplicates most operations in order to update

both bit-vectors. Furthermore, each of these operations traverse a tree-like data struc-

ture from top to bottom. With a single tree-like data structure, our insertion algorithm

could halve the number of traversals and, maybe, benefit from a better spatial locality.

In another direction, our algorithm for insert((A, D), t1, t2) only has time complexity

O(log τ) when both A and D encode leaves sparsely. Perhaps, a dynamic bit-vector data

structure that holds a mix of leaves represented densely or sparsely can be employed to

retain the O(log τ) complexity while improving the overall runtime for other operations.

Lastly, we expect soon to evaluate our new compact data structure on larger datasets and

under other scenarios; for instance, in very sparse and real temporal graphs.

77

Chapter 6

A Dynamic Disk-Based Data Structure

for Temporal Reachability with

Unsorted Contact Insertions

In Chapter 4, we introduced a data structure that supports the opera-

tions add contact(u, v, t), can reach(u, v, t1, t2), is connected(t1, t2), and

reconstruct journey(u, v, t1, t2), in worst-case time O (n2 log τ), O (log τ),

O (n2 log τ), and O (k log τ), respectively, where k is the length of the resulting journey,

while using O (n2τ) space. The update algorithm maintains a Timed Transitive

Closure (TTC), a concept that generalizes the transitive closure for temporal graphs

based on reachability tuples (R-tuples), in the form (u, v, t−, t+), representing journeys

from vertex u to v departing at t− and arriving at t+. This approach keeps the data

structure in primary memory and the cost of maintaining large TTCs is prohibitive. In

Chapter 5, we proposed a compact representation to alleviate this problem. However,

even using our compact data structure, primary memory might not be sufficient.

We conducted a simple experiment to show how much space is necessary for main-

taining temporal reachability. First, we generated random temporal graphs using the

Edge-Markovian Evolving Graph (EMEG) model (CLEMENTI et al., 2008). In this

model, if an edge is active (resp. not active) at time t − 1, then it has a probability p

of disappearing (resp. probability q of appearing) at time t. We represented temporal

graphs in memory using adjacency matrices storing, in each cell, timestamps at which

edges are active. Then, we built the corresponding TTCs using the approach described

in Chapter 4. In this experiment, we varied the number of vertices n and the number of

time instances τ while fixing p = 0.1 and q = 0.3.

In Table 2, we see, for example, that a temporal graph with 512 vertices and

τ = 64 produced by the EMEG model has 2.8 million contacts, and we need around 33

MB of space to store it in memory. Besides, we need around 156 MB of space to store

Chapter 6. A Disk-Based Data Structure for Temporal Reachability 78

Table 2 – Space for storing temporal graphs with n vertices, τ time instances and |C|
contacts, and their corresponding TTCs. Columns data(G) and data(TTC)
represent, respectively, the space in megabytes of the generated temporal graphs
and their TTCs.

n τ |C| data(G) data(TTC)

32 8 1268 0.02 0.01
32 16 2670 0.03 0.12
32 32 5249 0.06 0.24
64 8 5539 0.08 0.27
64 16 10908 0.14 0.54
64 32 21421 0.26 1.08
64 64 42671 0.50 2.17

128 8 21203 0.31 1.13
128 16 43011 0.55 2.30
128 32 86746 1.06 4.63
128 64 173479 2.05 9.31
256 8 86574 1.24 4.67
256 16 174970 2.25 9.51
256 32 346994 4.22 19.17
256 64 696436 8.22 38.54
512 8 349114 5.00 19.01
512 16 702294 9.04 38.66
512 32 1396033 16.98 78.00
512 64 2800520 33.05 156.64

the corresponding TTC, which, in this case, it is almost five times the space needed to

store the temporal graph.

Then, we built a linear regression model with the data presented in Table 2 in

order to extrapolate the input parameters. Consider, for example, the scenario in which

one million people use a bluetooth device that registers when and who gets close to each

other and sends this information to a centralized server. Consider also that each individual

makes 30 contacts per day on average. In this setting, by using our model, we could check

that a centralized server would require at least 100 GB of space in less than a year to

store just the plain contacts as a temporal graph. If one needs to support reachability

queries by using a TTC, it would be necessary roughly 600 GB of space.

Motivated by such scenarios, we investigate the problem of maintaining TTCs on

disk. A simple, but not efficient, approach would be to adapt our previous approach.

Briefly, our previous approach maintains self-balanced Binary Search Trees (BSTs) con-

taining time intervals for each pair of vertices in order to retrieve reachability information.

However, this approach does not consider data locality, thus each update operation would

randomly access an excessive amount of pages on disk to retrieve information from each

Chapter 6. A Disk-Based Data Structure for Temporal Reachability 79

BST. For instance, if we use B+-trees (ABEL, 1984) as a replacement for BSTs, the al-

gorithm for add contact(u, v, t) would access O (n2) B+-trees and, in each B+-tree, it

would access O (logB τ) pages, where B is the page size, resulting in O (n2 logB τ) random

accesses on disk.

In this chapter, we propose an incremental disk-based data structure that reduces

the number of disk accesses for both update and query operations while prioritizing se-

quential accesses. The core idea of our novel approach is to explicitly maintain an expanded

set of non-redundant R-tuples containing n2τ elements. Conceptually, we maintain it us-

ing two 3-dimensional arrays, Mout and Min, of size n×τ ×n such that Mout[u, t−, v] = t+

and Min[v, t+, u] = t−. The former supports querying the earliest arrival t+ a journey

departing from vertex u at time t− can arrive at vertex v, and the latter supports querying

the latest departure t− a journey arriving to vertex v at time t+ can depart from vertex

u.

Our algorithm to compute add contact(u, v, t) eagerly updates both arrays ac-

cessing O (n2τ/B) disk pages in the worst case. Despite having a linear factor on τ instead

of logarithmic, the expected cost of our update routine reduces considerably as we in-

sert new contacts. This is because journey schedules become stricter and the probability

of replacing them with faster ones reduces. Since we explicitly maintain reachability

information, our algorithms to answer can reach(u, v, t1, t2), is connected(t1, t2),

and reconstruct journey(u, v, t1, t2) access, respectively, Θ (1), Θ (n2/B) and Θ (n/B)

pages sequentially.

We compare our novel data structure with a naïve adaptation of our previous

approach using B+-trees as replacement for BSTs. Our experiments show that our novel

data structure performs better on the synthetic datasets and on the majority of real-

world datasets we used. Even though the worst-case complexity of our algorithm for the

add contact(u, v, t) operation is linear in τ instead of logarithmic, it runs much faster

on average. We attribute this behavior to the fact that as new contacts are inserted, our

data structure updates on average only a few cells of both arrays Mout and Min.

The content present in this chapter was published on the arXiv repository (BRITO;

ALBERTINI; TRAVENÇOLO, 2023) available at <https://arxiv.org/abs/2306.13937>.

We organized this chapter as follows. In Section 6.1, we define our expanded set

of R-tuples, introduce our new data structure to represent TTCs on disk, and provide

low-level primitives for manipulating them. In Section 6.2, we describe our algorithms for

each operation using our new data structure along with their complexities in terms of the

number of disk accesses. In Section 6.3, we investigate the execution of our algorithms by

comparing them with our implementation using B+-trees. Finally, Section 6.4 concludes

with some remarks and open questions.

Chapter 6. A Disk-Based Data Structure for Temporal Reachability 80

6.1 Disk-Based Timed Transitive Closure

In this section, we describe our novel approach to maintain TTCs in secondary

memory. First, in Section 6.1.1, we define the concept of an expanded set of representative

R-tuples and show that it has size Θ (n2τ). Then, in Section 6.1.2, we introduce our new

data structure that uses this expanded set in order to improve the maintenance of data

in non-uniform access storages and provide direct access to reachability information.

6.1.1 Expanded Reachability Tuples (Expanded R-tuples)

The data structure introduced in Chapter 4 spreads the minimal set of R-tuples

into multiple BSTs, each one concerning a unique pair of vertices. Previously, we stored

these BSTs in separated regions of memory and, therefore, the organization of data is not

optimal when working with storages that have non-uniform access time.

In order to mitigate this problem, we define an expanded set of R-tuples

(u, v, t−, t+) that is easier to maintain sequentially, since we can use continuous arrays

indexed by t− or t+. First, we define the left and right expansion of a single R-tuple.

Definition 11 (Left and right expansion). The left expansion of an R-tuple

r = (u, v, t−, t+) is the set containing all R-tuples (u, v, t, t+) for 1 ≤ t ≤ t−. Similarly,

the right expansion of r is the set containing all R-tuples (u, v, t−, t) for t+ ≤ t ≤ τ + δ.

The R-tuples produced by the left expansion of an R-tuple r are valid because a

source vertex departing earlier can simply wait until the departure of r, and take the

original journey described by r. Similarly, the R-tuples produced by the right expansion

of r are also valid because, after taking the original journey described by r, a destination

vertex can simply wait until the arrival of the new R-tuple.

Applying both expansions to every R-tuple of a minimal set R and taking the

union of the sets produced by the same expansion creates two separated expanded sets,

the left-expanded set Rleft, and the right-expanded set Rright. For each expanded set, we

define an inclusion operator.

Definition 12 (Left and right inclusion). Given any two R-tuples r1 = (u1, v1, t−
1 , t+

1) and

r2 = (u2, v2, t−
2 , t+

2) in Rleft, r1 ⊆left r2 if and only if u1 = u2, v1 = v2, t−
1 = t−

2 , and

t+
1 ≤ t+

2 . Similarly, if r1 and r2 are in Rright, r1 ⊆right r2 if and only if u1 = u2, v1 = v2,

t−
1 ≥ t−

2 , and t+
1 = t+

2 .

However, R-tuples produced by expansion can share redundant information. For

example, consider the R-tuples r1 = (a, b, 2, 7) and r2 = (a, b, 2, 9). Both R-tuples repre-

sent journeys that depart from vertex a at time 2 and arrives at vertex b, one at time

7 and the other at time 9. In this case, r2 can be safely discarded since we can take a

Chapter 6. A Disk-Based Data Structure for Temporal Reachability 81

journey represented by r1 ending at time 7 and wait at vertex v until time 9. Redundancy

of R-tuples in Rleft and Rright is treated differently using their corresponding inclusion

operators.

Definition 13 (Left and right redundancy). Let r ∈ Rleft, r is called left-redundant

in Rleft if there is r′ ∈ Rleft such that r′ ⊆left r. Similarly, if r ∈ Rright, r is called

right-redundant in Rright if there is r′ ∈ Rright such that r′ ⊆right r. A set R∗
left with no

left-redundant R-tuple is called left not-redundant and a set R∗
right with no right-redundant

R-tuple is called right not-redundant.

Lemma 12. The maximum size of a left not-redundant or right not-redundant set of

R-tuples for G is Θ (n2τ).

Proof. We need only to prove the upper bound case since an unexpanded not-redundant

set already has Θ (n2τ) R-tuples, see Chapter 4. There are Θ(n2) ordered pairs of vertices.

Thus, it suffices to show that for each pair (u, v), the number of incomparable R-tuples

whose starting vertex is u and whose ending vertex is v is Θ(τ). Let Sl and Sr be,

respectively, left not-redundant and a right not-redundant sets of such tuples. There can

only exist one R-tuple for a departure t− ∈ [1, τ] in Sl (Definition 12), otherwise Sl would

be redundant, which implies |Sl| ≤ τ . Similarly, There can only exist one R-tuple for an

arrival t+ ∈ [1, τ] in Sr, which also implies |Rl| ≤ τ .

6.1.2 Encoding the TTC on Disk

We encode the TTC using two 3-dimensional arrays, Mout[u, t−, v] = t+ and

Min[v, t+, u] = t−, both with dimensions n × τ × n, representing expanded sets of R-

tuples. Each cell in Mout represents a R-tuple in R∗
left by storing the earliest arrival t+ at

which a vertex u departing at time t− can reach a vertex v through a journey. If there is

a cell Mout[u, t−, v] = t+, then all cells Mout[u, t, v], for t ∈ [1, t−− 1] must have an arrival

t′+ ≤ t+, since a journey from u departing at a time t < t− can simply wait at vertex u

until time t−. Similarly, each cell in Min represents an R-tuple in R∗
right by storing the

latest departure t− at which a vertex v can arrive at time t+ to a vertex u through a

journey. If there is a cell Min[v, t+, u] = t−, then all cells Min[v, t, u], for t ∈ [t+ +1, τ +δ],

must have a departure t′+ ≥ t+, since a journey to v arriving at a time t > t+ can just

wait until time t+ after arriving at v. The creation of a TTC initializes all cells of Mout

to ∞ and all cells of Min to −∞. Figure 15 illustrates both Mout and Min.

Internally, we represent Mout and Min as one-dimensional arrays using,

respectively, the mapping functions Fout : (u, t−, v) 7→ n(uτ + τ − (t− + 1)) + v + 1 and

Fin : (v, t+, u) 7→ n(vτ + t+ − δ) + u + 1. Observing Figure 15, Fout arranges the cells of

Mout by row (left to right) and, for each source vertex, later departures come first. Fin

also arranges Min by row but, in contrast, for each destination vertex, earlier arrivals

Chapter 6. A Disk-Based Data Structure for Temporal Reachability 82

m p

r

1
3 4

2

∞

u

u, 1 4

w

2

v

∞u, 2 4 3

∞u, 3 4 5

∞u, 4 ∞ ∞

∞u, 5 ∞ ∞

∞w, 1 ∞ 5

∞w, 2 ∞ 5

∞w, 3 ∞ 5

∞w, 4 ∞ 5

∞w, 5 ∞ ∞

X

X

X

@∞w, 1 @∞ @∞

@∞w, 2 @∞ @∞

@∞w, 3 @∞ @∞

3w, 4 @∞ @∞

3w, 5 @∞ @∞

@∞v, 1 @∞ @∞

1v, 2 @∞ @∞

2v, 3 @∞ @∞

2v, 4 @∞ @∞

3

u

v, 5 4

w

@∞

v

X

X

X

(a) G (b) Mout (c) Min

Figure 15 – Temporal graph and its associated reachability data structure. In (a),
we show a temporal graph with three vertices. Numbers on edges repre-
sent the time in which edges are active. Edges with the same color form
a journey from vertex u to vertex v. In (b), we show the corresponding
arrays Mout and Min considering δ = 1. Both arrays are depicted as 2-
dimensional arrays by grouping their first two dimensions. For instance,
Mout[u, 2, w] = Mout[(u, 2), w] = 3. Cells have the same color as the con-
tacts, i.e., the edge at a timestamp, that originated the update. Mout stores
the minimum arrivals to destinations and Min stores the maximum depar-
tures from origins.

come first. By subtracting δ from t+ in Fin, we ensure all t+ values fit in Min. Thus,

reading sequentially the range [Fout(u, t−, 1), Fout(u, t−, n)] from Mout gives direct access

to the earliest arrivals to reach all vertices when departing from u at time t−. Similarly,

reading sequentially the range [Fin(v, t+, 1), Fin(v, t+, n)] from Min gives direct access to

the latest departures to leave all vertices when arriving at v at time t+.

Finally, assuming a general function F that maps to Fout, whether accessing Mout,

or Fin, whether accessing Min, we provide the following low-level operations for manipu-

lating our data structures on disk:

1. read cell(M, w1, t, w2), which returns the value of M (Mout or Min) at position

F (w1, t, w2);

2. read adjacency(M, w, t), which returns a list containing the values of M in the

interval [F (w, t, 1), F (w, t, n)], i.e., the minimum timestamps to arrive at any vertex

while departing from w at time t;

3. write adjacency(M, w, t, L), which replaces the values of M values in the inter-

val [F (w, t, 1), F (w, t, n)] with the values of the list L, i.e., the maximum timestamps

to depart from any vertex while arriving at w at time t.

Chapter 6. A Disk-Based Data Structure for Temporal Reachability 83

Operation (1) accesses O (1) pages on disk, while operations (2) and (3) access

O (n/B) pages, where B is the page size.

6.2 The Four Operations

In this section, we describe algorithms for the operations four operations

described in Chapter 1: the update operation add contact(u, v, t); the query

operations can reach(u, v, t1, t2) and is connected(t1, t2); and the reconstruction

operation reconstruct journey(u, v, t1, t2). In Section 6.2.2, we present our

algorithm for add contact(u, v, t) that receives a contact and adds to our data

structure the reachability information related to the new available journeys passing

thought it. In Section 6.2.1, we briefly describe algorithms for can reach(u, v, t1, t2)

and is connected(t1, t2) since, as reachability information can be directly accessed,

they are straightforward. Finally, in Section 6.2.3, we detail our algorithm for

reconstruct journey(u, v, t1, t2) that reconstructs a valid journey by concatenating

one contact at a time.

6.2.1 Reachability and Connectivity Queries

Both algorithms for can reach(u, v, t1, t2) and is connected(t1, t2) are

straightforward. The algorithm to perform can reach(u, v, t1, t2) comprises testing

whether read cell(Mout, u, t1, v) ≤ t2 while accessing only a single page from disk.

The algorithm to perform is connected(t1, t2), for each origin vertex u ∈ V , calls

tmp ← read adjacency(Mout, u, t1) and then for each destination vertex v ∈ V , it

checks whether tmp[v] ≤ t2. As soon as a check is negative, the algorithm returns false;

otherwise, it returns true. Therefore, the algorithm sequentially accesses O (n2/B) pages

on disk.

6.2.2 Update Operation

An algorithm to perform add contact(u, v, t) must first add the reachability

information regarding the new trivial journey Jtriv from vertex u to vertex v departing

at time t and arriving at time t + δ. Next, for all vertices w− that can reach u when

arriving at a timestamp earlier than or exactly t, the algorithm updates the reachability

information from w− to v whether the new available journey passing through Jtriv has

later departure. Then, for all vertices w+ that v can reach when departing at a timestamp

later than or exactly t + δ, the algorithm updates the reachability information from u to

w+ whether the new available journey passing through Jtriv has earlier arrival. Finally,

the algorithm must consider all new available journeys from vertices w− to vertices w+

that pass through Jtriv and update the current reachability information if necessary.

Chapter 6. A Disk-Based Data Structure for Temporal Reachability 84

Algorithm 8 describes the maintenance of both arrays Mout and Min when inserting

a new contact. At line 1, the algorithm checks if the structure already has the information

of the new contact (u, v, t). If it still has not, at line 2, it retrieves the latest departures

of journeys departing from vertices w− and arriving at vertex u at time t as an array T −.

At line 3, the algorithm retrieves the earliest arrivals of journeys departing from vertex

v at time t + δ and arriving at vertices w+ as an array T +. At lines 4 and 5, it sets

the reachability information about the new trivial journey Jtriv = (u, v, t) that departs

at time t and arrives at t + δ. From line 6 to 14, the algorithm eagerly updates all cells

Mout[w−, t′, w+] = t+ for t− ≥ t′ ≥ 1. In this part, the algorithm proceeds by first iterating

through all vertices w−, i.e., those that reached u before than or exactly at time t, and

retrieving their departures t−. Then, it progressively retrieves the current arrivals to reach

vertices w+ when departing at time t′, by reading the range [Fout(w−, t′, 1), Fout(w−, t′, n)],

and updates it whether the new journeys passing through Jtriv have earlier arrivals. Note

that vertices that could not reach u before than or exactly at time t have their arrival

equals to −∞; therefore, they are not considered in the while loop starting at line 8.

This process continues until the current reachability information in the entire range does

not change or t′ < 1. Similarly, from line 15 to 23, the algorithm eagerly updates all

cells Min[w+, t′′, w−] = t− for t+ ≤ t′′ ≤ τ + δ. The algorithm proceeds by first iterating

through all vertices w+, i.e., those that v can reach departing after or exactly at time t+δ,

and retrieving their arrivals t+. Then, it progressively retrieves the current departures

in which vertices w− departs present in range [Fin(w+, t′′, 1), Fin(w+, t′′, n)] and updates

it whether the new available journeys passing through Jtriv have later departures. This

process continues until the current reachability information in the range does not change

or t′′ > τ +δ. Figure 16 illustrates the addition of new contacts to a temporal graph along

with the maintenance of the arrays Mout and Min.

Theorem 13. Algorithm 8 access O (n2τ/B) pages on disk.

Proof. The read cell operation in line 1 access a single page. The two

read adjacency operations in lines 2 and 3 access O (n/B) sequential pages each.

At lines 4 and 5, the algorithm writes the reachability of the new trivial journey

Jtriv = {(u, v, t)} in primary memory. The for loop starting at line 6 iterates over n

vertices w− and, the while loop starting at line 8 iterates through O(τ) timestamps t′.

In each of the O(nτ) iterations, it calls read adjacency in order to read n cells, and

then (possibly) calls write adjacency to write the n cells back while accessing, in

each operation, O (n/B) sequential pages. Due to our mapping function Fout, at every

timestamp t′, the algorithm will read a page that is arranged sequentially on disk. The

loop from line 15 to 23 does a similar computation.

Chapter 6. A Disk-Based Data Structure for Temporal Reachability 85

m p

r

1

∞

u

u, 1 ∞

w

2

v

∞u, 2 ∞ ∞

∞u, 3 ∞ ∞

∞u, 4 ∞ ∞

∞u, 5 ∞ ∞

∞w, 1 ∞ ∞

∞w, 2 ∞ ∞

∞w, 3 ∞ ∞

∞w, 4 ∞ ∞

∞w, 5 ∞ ∞

X

X

X

@∞w, 1 @∞ @∞

@∞w, 2 @∞ @∞

@∞w, 3 @∞ @∞

@∞w, 4 @∞ @∞

@∞w, 5 @∞ @∞

@∞v, 1 @∞ @∞

1v, 2 @∞ @∞

1v, 3 @∞ @∞

1v, 4 @∞ @∞

1

u

v, 5 @∞

w

@∞

v

X

X

X

(a) added contact (u, v, 1)

m p

r

1
3 4

∞

u

u, 1 4

w

2

v

∞u, 2 4 5

∞u, 3 4 5

∞u, 4 ∞ ∞

∞u, 5 ∞ ∞

∞w, 1 ∞ 5

∞w, 2 ∞ 5

∞w, 3 ∞ 5

∞w, 4 ∞ 5

∞w, 5 ∞ ∞

X

X

X

@∞w, 1 @∞ @∞

@∞w, 2 @∞ @∞

@∞w, 3 @∞ @∞

3w, 4 @∞ @∞

3w, 5 @∞ @∞

@∞v, 1 @∞ @∞

1v, 2 @∞ @∞

1v, 3 @∞ @∞

1v, 4 @∞ @∞

3

u

v, 5 4

w

@∞

v

X

X

X

(b) added contacts (u, w, 3) and (w, v, 4)

m p

r

1
3 4

2

∞

u

u, 1 4

w

2

v

∞u, 2 4 3

∞u, 3 4 5

∞u, 4 ∞ ∞

∞u, 5 ∞ ∞

∞w, 1 ∞ 5

∞w, 2 ∞ 5

∞w, 3 ∞ 5

∞w, 4 ∞ 5

∞w, 5 ∞ ∞

X

X

X

@∞w, 1 @∞ @∞

@∞w, 2 @∞ @∞

@∞w, 3 @∞ @∞

3w, 4 @∞ @∞

3w, 5 @∞ @∞

@∞v, 1 @∞ @∞

1v, 2 @∞ @∞

2v, 3 @∞ @∞

2v, 4 @∞ @∞

3

u

v, 5 4

w

@∞

v

X

X

X

(c) added contact (u, v, 2)

Figure 16 – Maintenance of our disk-based TTC, encoded as two arrays, Mout (left table)
and Min (right table), in different scenarios. Both arrays are depicted as 2-
dimensional arrays by grouping their first two dimensions. In (a), the contact
(u, v, 1) is inserted in the temporal graph and thus Mout and Min are updated
using the information present in the left and right expansions of the R-tuple
(u, v, 1, 2). In (b), both contacts (u, w, 3) and (w, v, 4) are inserted and a
non-trivial journey from u to v becomes possible. Finally, in (c), the contact
(u, v, 2) is inserted, allowing a faster journey departing from u at time 2 and
triggering the update of some cells of Mout and Min.

Chapter 6. A Disk-Based Data Structure for Temporal Reachability 86

Algorithm 8 add contact(u, v, t)

Require: u, v ∈ V with u 6= v, n = |V |, t ∈ T , τ , δ, Mout, Min

1: if read cell(Mout, u, t, v) 6= t + δ then ⊲ check whether (u, v, t) was inserted
2: T − ← read adjacency(Min, u, t)
3: T + ← read adjacency(Mout, v, t + δ)
4: T −[u]← t ⊲ add the new trivial journey information
5: T +[v]← t + δ
6: for w− from 1 up to n do ⊲ update Mout with new journeys from w−

7: t′ ← T −[w−]
8: while t′ 6= −∞ and t′ ≥ 1 do ⊲ loop for t− ≥ t′ ≥ 1
9: T +

cur ← read adjacency(Mout, w−, t′)
10: T +

cur[w
+]← min(T +

cur[w
+], T +[w+]) for w+ ∈ [1, n]

11: if T +
cur has not changed then

12: break
13: write adjacency(Mout, w−, t′, T +

cur)
14: t′ ← t′ − 1
15: for w+ from 1 up to n do ⊲ update Min with new journeys to w+

16: t′′ ← T +[w+]
17: while t′′ 6=∞ and t′′ ≤ τ + δ do ⊲ loop for t+ ≤ t′′ ≤ τ + δ
18: T −

cur ← read adjacency(Min, w+, t′′)
19: T −

cur[w
−]← max(T −

cur[w
−], T −[w−]) for w− ∈ [1, n]

20: if T −
cur has not changed then

21: break
22: write adjacency(Min, w+, t′′, T −

cur)
23: t′′ ← t′′ + 1

6.2.3 Journey Reconstruction

For the reconstruct journey(u, v, t1, t2) query, we need to augment each cell

of Min with the first successor vertex of the corresponding journeys. Algorithm 8 can

be trivially modified to include this information. For instance, the successor vertex of

a trivial journey from a contact (u, v, t) is the vertex v since it is the first successor

of u. Furthermore, the algorithm would also need to consider successor vertices when

composing new R-tuples to update Mout and Min.

Algorithm 9 gives the details to process the reconstruct journey(u, v, t1, t2)

query. Its goal is to reconstruct a journey by unfolding the intervals and successor fields.

At line 1, it initializes an empty journey J . At line 2, it retrieves the earliest time t+ a

journey from vertex u departing at time t1 can arrive at vertex v by reading on disk the

entry Mout[u, t1, v]. If t+ ≤ t2, it reconstructs the resulting journey, otherwise; it returns

an empty journey since there is no journey completely in the interval [t1, t2]. From lines 4

to 10, it reconstructs the resulting journey by: first, at lines 4 and 5, initializing the

successor vertex succ to u, and accessing on disk all the entries Min[v, t+, w] for w ∈ V ;

then, from lines 6 to 10, the journey is reconstructed by iteratively accessing the next

earliest departing time t− and the corresponding successor vertex next succ that reaches

Chapter 6. A Disk-Based Data Structure for Temporal Reachability 87

v at time t+ while concatenating the contact (succ, next succ, t−) at the end of J and

updating the current successor vertex.

Algorithm 9 reconstruct journey(u, v, t1, t2)

Require: [t1, t2] ⊂ T , u, v ∈ V with u 6= v
1: J ← {}
2: (t+, _)← read cell(Mout, u, t1, v)
3: if t+ ≤ t2 then
4: succ← u
5: in← read adjacency(Min, v, t+)
6: while succ 6= v do
7: t− ← in[succ].t
8: next succ← in[succ].succ
9: J ← J ∪ (succ, next succ, t−)

10: succ← next succ
11: return J

Theorem 14. Algorithm 9 sequentially accesses O (n/B) pages on disk, where n is the

number of vertices and B is the page size.

Proof. The algorithm accesses one page by calling read cell(Mout, u, t1, v) at line 2.

After that, it is known whether a journey exists. If a journey exists, it sequentially

accesses n/B pages by calling read adjacency(Min, v, t+) at line 5. The result has all

information needed to reconstruct a valid journey. Finally, in the loop from line 6 to

line 8, the algorithm extends the resulting journey by one contact at each iteration using

information already in memory. Thus, the number of pages accessed is dominated by the

call read adjacency(Min, v, t+).

6.3 Experiments

In this section, we present experiments comparing our novel data structure based

on sequential arrays with the approach we adapted from our previous data structure

described in Chapter 4 using B+-trees as a replacement for self-balanced Binary Search

Trees (BSTs). Briefly, our adaptation of our previous data structure stores, in a matrix

n × n, pointers to BSTs containing time intervals. In each BST, only non-redundant

intervals are kept, i.e., those that do not contain another interval in the same tree. We

used join-based operations in order to remove sequences of non-redundant intervals in

log τ time. These operations for B+-trees can be found in Appendix B.

In the following, we present two experiments in Sections 6.3.1 and 6.3.2. In the

first one, we inserted unsorted contacts from complete temporal graphs, incrementally, in

both data structures using the operation add contact(u, v, t). In the second one, we

inserted shuffled contacts from real-world datasets.

Chapter 6. A Disk-Based Data Structure for Temporal Reachability 89

Next, we argue why the running time of our algorithm reduces with the addition

of contacts. Each pair of vertices (u, v) are associated to a set I containing intervals

[t−, t+] ⊆ [1, τ] in which u can reach v departing at t− and arriving at t+. For a particular

pair of vertices, when an algorithm inserts a new interval I, all intervals I ′ such that I ⊆ I ′

can be safely removed since they become redundant. Our data structure organizes these

intervals in the arrays Mout and Min, which fix, respectively, the left and right endpoints,

and our update algorithm discards redundant intervals by updating their cells accordingly

by using Definition 13.

Consider the hierarchy of intervals illustrated in Figure 18(a) for τ = 4. Each

interval with length l is linked to the intervals with length l − 1 that it totally encloses.

For example, interval [0, 5], with length 5, links to intervals [0, 4] and [1, 5], with length

4, because [0, 4] ⊆ [0, 5] and [1, 5] ⊆ [0, 5]. Initially, all intervals are available for insertion

in our data structure. When a new interval [1, 2] is inserted, as shown in Figure 18(b),

all intervals that contain it, including itself, are not available for insertion anymore.

Our update algorithm conceptually removes these intervals by drawing left and

right frontiers separating available and non-available intervals starting from [1, 2]. For

instance, intervals [1, 2] and [0, 2], which belong to the left frontier, are updated in Min

since they share the same right endpoint, and intervals [1, 2], [1, 3], [1, 4] and [1, 5], which

belong to the right frontier, are updated in Mout since they share the same left endpoint.

In this process, up to τ cells are updated in both Min and Mout.

Next, when a new interval [3, 5] is inserted, as shown in Figure 18(c), our algorithm

must, again, draw the left and right frontiers starting from [3, 5]; however, it does not

need to advance previously drawn frontiers. Here, only intervals [3, 5] and [2, 5], which

belong to the left frontier, are updated in Min. In Figure 18(d), interval [2, 3] is inserted

and the same process repeats. We see that as new intervals are inserted, the number

of available intervals rapidly reduces. Thus, even though our algorithm has complexity

O (n2τ/B), it can run much faster when considering a sequence of contact insertions since

the number of cells to be updated reduces.

Moreover, it is guaranteed that, for each new contact (u, v, t), our algorithm will

make unavailable for insertion every interval that is still available inside and at the fron-

tiers starting from [t, t + δ] in the lowest level of the hierarchy associated with (u, v).

6.3.2 Experiments with Real-World Datasets

In this second experiment, we downloaded small and medium real-

world available on <https://networkrepository.com/dynamic.php>, and pre-

processed them using our script available on <https://bitbucket.com/luizufu/

temporalgraph-datasets-preprocessing>. During the preprocessing, we relabeled the

Chapter 6. A Disk-Based Data Structure for Temporal Reachability 90

[0, 1]

[0, 2]

[0, 3]

[0, 4]

[0, 5]

[1, 2]

[1, 3]

[1, 4]

[1, 5]

[2, 3]

[2, 4]

[2, 5]

[3, 4]

[3, 5]

[4, 5] [0, 1]

[0, 2]

[0, 3]

[0, 4]

[0, 5]

[1, 2]

[1, 3]

[1, 4]

[1, 5]

[2, 3]

[2, 4]

[2, 5]

[3, 4]

[3, 5]

[4, 5]

(a) all available intervals (b) insert [1, 2]

[0, 1]

[0, 2]

[0, 3]

[0, 4]

[0, 5]

[1, 2]

[1, 3]

[1, 4]

[1, 5]

[2, 3]

[2, 4]

[2, 5]

[3, 4]

[3, 5]

[4, 5] [0, 1]

[0, 2]

[0, 3]

[0, 4]

[0, 5]

[1, 2]

[1, 3]

[1, 4]

[1, 5]

[2, 3]

[2, 4]

[2, 5]

[3, 4]

[3, 5]

[4, 5]

(c) insert [3, 5] (d) insert [2, 3]

Figure 18 – Illustration of the process performed by our update algorithm considering a
fixed pair of vertices (u, v) from a temporal graph with τ = 4. Available inter-
vals for insertion are colored in black, and invalidated intervals, i.e. intervals
that should not be considered anymore by our update algorithm, are colored
in different colors. Links represent the direct containment relation between
intervals with length l and intervals with length l − 1.

vertices and shifted the timestamps of each dataset so that vertex identifiers were

between [1, n] and timestamp values start from 1. Then, we inserted the shuffled contacts

of each dataset in both data structures using the add contact(u, v, t) operation. We

assumed that all used datasets represent temporal digraphs, and we used δ = 1, i.e.,

traversing any contact takes one time unit.

Table 17 shows the mean wall-clock time, averaged over 10 executions, to insert

all shuffled contacts of each dataset into both data structures. We see that our novel

data structure performs better on most of datasets. However, for the largest datasets,

copresence-LH10 and copresence-LyonSchool, the tree-based data structure performed

better. Both datasets have high values for τ and low density. It means that, as density

is too small, each insertion of a contact (u, v, t) may trigger an initial update over arrays

Mout and Min that will touch many cells on disk. As in Figure 18(b), for most insertions,

our update algorithm will draw left and right frontiers on the almost empty hierarchy

associated with the pair of vertices (u, v) starting from interval [t, t + δ]. Therefore, in

this case, the linear factor on τ from the cost O(n2τ/B) of our update algorithm will have

a bigger impact on the running time since the sequence of insertions is not sufficiently

long for our algorithm to benefit from later insertions.

Chapter 6. A Disk-Based Data Structure for Temporal Reachability 91

Table 3 – Total wall-clock time in seconds to insert all shuffled contacts from real-world
datasets with number of vertices n, number of timestamps τ , number of contacts
into data structures for reachability queries, and the density of the temporal
graph represented by the dataset. Values were rounded to two decimal places.
Array-based refers to our novel data structure and tree-based refers to our
implementation of the approach introduced in (BRITO et al., 2022) using B+-
trees as BSTs replacement. Executions that reached the time limit of 5 hours
are marked with the symbol “-”.

dataset n τ contacts density Array-Based Tree-Based

aves-sparrow 52 2 516 0.1 0.01± 0.00 0.07± 0.00
aves-weaver 445 23 1423 0.003 0.19± 0.00 1.16± 0.01
aves-wildbird 202 6 11900 0.05 0.97± 0.01 9.52± 0.15
ant-colony1 113 41 111578 0.46 25.84± 0.19 161.3± 1.03
ant-colony2 131 41 139925 0.2 43.96± 0.49 261.98± 1.96
ant-colony3 160 41 241280 0.23 89.37± 0.73 524.79± 6.71
ant-colony4 102 41 81599 0.19 16.49± 0.12 104.62± 1.27
ant-colony5 152 41 194317 0.21 166.93± 3.63 526.03± 144.32
ant-colony6 164 39 247214 0.24 88.99± 0.93 608.87± 167.97
copresence-LH10 73 259181 150126 0.0001 - 61.5± 0.53
copresence-LyonSchool 242 117721 6594492 0.001 - 14887.45± 1576.49
kilifi-within-households 54 59 32426 0.19 0.09± 0.00 0.21± 0.00
mammalia-primate 25 19 1340 0.12 0.09± 0.00 0.33± 0.01
mammalia-raccoon 24 52 1997 0.06 0.21± 0.00 0.44± 0.01
mammalia-voles-bhp 1686 63 5324 0.00003 13.76± 0.82 19.22± 0.24
mammalia-voles-kcs 1218 64 4258 0.00004 7.92± 0.27 11.78± 0.09
mammalia-voles-plj 1263 64 3863 0.00003 6.18± 0.23 10.68± 0.04
mammalia-voles-rob 1480 63 4569 0.00003 10.28± 0.41 15.09± 0.12
tortoise-bsv 136 4 554 0.008 0.01± 0.00 0.14± 0.01
tortoise-cs 73 10 258 0.005 0.01± 0.00 0.05± 0.00
tortoise-fi 787 9 1713 0.0003 0.15± 0.00 2.71± 0.01
trophallaxis-colony1 41 8 308 0.02 0.02± 0.00 0.06± 0.00
trophallaxis-colony2 39 8 330 0.03 0.02± 0.00 0.05± 0.00

6.4 Concluding remarks

We presented in this chapter an incremental disk-based data structure to solve the

dynamic connectivity problem in temporal graphs. Our data structure prioritizes query

time, answering reachability queries by accessing only one page. Based on the ability to

retrieve quickly the reachability information among vertices inside time intervals, it can:

insert contacts in a non-chronological order accessing O (n2τ/B) pages, where B is the size

of disk pages; check whether a temporal graph is connected within a time interval ac-

cessing O (n2/B) pages, and reconstruct journeys accessing O (n/B) pages. Our algorithms

exploit the special features of non-redundant (minimal) reachability information, which

we represent explicitly through the concept of expanded R-tuples. As in Chapter 4, the

core of our data structure, is essentially a collection of non-redundant R-tuples, whose

size (and that of the data structure itself) cannot exceed O (n2τ). However, in our ap-

proach, all this space must be pre-allocated on disk. The benefit of our data structure is

that algorithms explicitly manage data sequentially and, therefore, it is more suitable for

Chapter 6. A Disk-Based Data Structure for Temporal Reachability 92

secondary memories in which random accesses are expensive.

Further investigations could be done toward improving the complexity of our up-

date algorithm. Can add contact(u, v, t) access less than O (n2τ/B) pages? Another

direction could be designing efficient disk-based data structures for the decremental and

the fully-dynamic versions of this problem. With unsorted contact insertion and deletion,

it seems to represent both a significant challenge and a natural extension of the present

work, one that would certainly develop further our common understanding of temporal

reachability. Finally, it could be worth to investigate compressing algorithms to reduce the

space of our data structure and the number of pages accessed by our update algorithm.

Specifically, we think that compression algorithms based on differences and run-length

coding (DAMME et al., 2017) could achieve a very high compression rate since the arrays

Mout and Min store repeating ordered values. The compressing schema could also solve

the pre-allocation and initialization problems since, initially, all cells of Mout and Min

have the same value, thus this configuration is very compressible.

93

Chapter 7

Conclusion

The hypothesis of this thesis is: using specialized data structures for both primary

and secondary memory can improve the maintenance of reachability queries on large tem-

poral graphs. Even though the amount of researches on temporal graph is rapidly growing,

only few of these have explored data structures to maintain and query reachability infor-

mation. Therefore, throughout this document, we studied several dynamic data structures

to incrementally maintain the reachability information as new contacts are added to large

temporal graphs. These temporal graphs are large in the sense that they do not fit en-

tirely primary memory, that is why we studied data structures for both primary and

secondary memory. Data structures for secondary memory are used to persist the reacha-

bility information, whereas data structures for primary memory can be used to speed up

the maintenance of part of this information. Each data structure proposed in this thesis

contributed as a specific goal to answer our hypothesis. We highlight that all our data

structures prioritize query over update time, thus they should be considered in scenarios

where the number of queries is much higher than the number of contact insertions.

In Chapter 4, we studied a novel mathematical object called Timed Transitive

Closure (TTC). A standard Transitive Closure (TC) describes whether a vertex can

reach another through a path in a standard graph. Differently, a TTC describes whether

a vertex can reach another through a journey in a temporal graph while tracking departure

and arrival timestamps of a minimal set of journeys as time intervals. Then, we introduced

a simple incremental data structure for primary memory based on our TTC that provides

contact insertion in any arbitrary order and answers reachability queries. This data

structure provides two types of query: the existential query, which checks whether a

vertex can reach another through a journey within a time interval; and the constructive

query, which, additionally, reconstructs an entire journey if such journey exists. This

study concluded our first specific goal: develop a base model and implement a simple

data structure for primary memory capable of answering reachability queries on temporal

graphs.

Chapter 7. Conclusion 94

In Chapter 5, we introduced new compact data structures to reduce the space usage

in primary memory when maintaining reachability information. The main observation is

that we can represent subsets of the time intervals present in a TTC as pairs of bit

sequences, one for departure and the other for arrival timestamps. This arises from the

fact that a TTC holds only information regarding non-nested time intervals for each

of these subsets. Thus, our novel compact data structure uses dynamic bit-vectors to

efficiently maintain pairs of bit sequences. We provided two data structure variants:

one for temporally dense temporal graphs, which uses a raw representation of bits as

base structure for dynamic bit-vectors; and the other for temporally sparse temporal

graphs, which instead stores only distances between consecutive 1’s with the cost of an

additional encoding step. Additionally, we provided new algorithms for dynamic bit-

vectors in order to speed up our compact data structure. Among these algorithms, we

would like to highlight the unset one range(B, j1, j2), which clears the bits in the

range [select1(B, j1), select1(B, j2)−1] of a dynamic bit-vector B using the split-join

strategy. We showed through our experiments that our compact data structures reduce

space considerably in several scenarios while having similar performance compared to our

previous data structure. This study concluded our second specific goal: implement a space

efficient data structure for primary memory capable of efficiently answering reachability

queries on temporal graphs.

Finally, in Chapter 6, we studied a new data structure for secondary memory.

Data structures for secondary memory must prioritize sequential reads and writes when

possible due to the high latency of disk pages retrieval and the non-linear performance of

random accesses. Following this advice, our novel data structure for secondary memory

expands the information present in a TTC and organizes it as two arrays on second mem-

ory. Thanks to this data organization, all our algorithms accesses the TTC information

sequentially. Moreover, as new contacts are inserted into our data structure, the average

time to compute and aggregate new reachability information decreases since the search

space of our algorithms reduces over time. As a result, even though our update algorithm

is linear in τ , instead of logarithmic, we showed through our experiments that, in most

cases, the average wall-clock time of inserting a sequence contacts is much lower than us-

ing a disk-based data structure following the data organization of our previous proposal.

This study concluded our third specific goal: implement a data structure for secondary

memory capable of efficiently answering reachability queries on large temporal graphs.

In addition to our main research, we also included in this document two appen-

dices worth mentioning. Appendix A reviews static compact data structures for temporal

graphs. Learning compact data structures was fundamental to complete this work, espe-

cially those for temporal graphs. Appendix B describes how to use the split-join strategy

to remove a range of keys from B+-trees in time O(logB τ), where τ is the number of ele-

ments. The split-join strategy is commonly used to implement Binary Search Tree (BST)

Chapter 7. Conclusion 95

algorithms in the context of parallel computation. We used this strategy to implement our

baseline data structure described in Chapter 4, and we also used the general concept to

improve one of ours compact data structure in Chapter 5. To the best of our knowledge,

no other research explicitly proposed the split and join algorithms for B+-trees.

Let us return to our hypothesis: using specialized data structures for both primary

and secondary memory can improve the maintenance of reachability queries on large tem-

poral graphs. In Chapter 4, we proposed a baseline dynamic data structure in primary

memory to answer reachability queries in temporal graphs. However, this first data struc-

ture requires a prohibitive amount of space to store reachability information of large

temporal graphs in primary memory. Then, in Chapter 5, we proposed a new compact

data structure that considerably reduces the space usage in primary memory. This is very

important to our scenario, where neither temporal graphs nor their reachability informa-

tion fit entirely in primary memory. By reducing the space usage, we can maintain larger

parts of the reachability information in primary memory and postpone/reduce accesses to

secondary memory; therefore, processing the reachability information of large temporal

graph becomes faster. Finally, in Chapter 6, we proposed a data structure for secondary

memory that prioritizes sequential accesses in order to improve the performance of our

algorithms. This data structure persists, as fast as possible, the reachability information

that was previously computed in batches using our compact data structure for primary

memory. Therefore, using the data structures we proposed in Chapters 5 and 6 effectively

improves the maintenance of reachability queries on large temporal graphs.

7.1 List of publications

Journal publications:

❏ BRITO, L. F. A.; ALBERTINI, M. K.; CASTEIGTS, A.; TRAVENÇOLO, B.

A. N. A dynamic data structure for temporal reachability with unsorted contact

insertions. Social Network Analysis and Mining, v. 12, n. 1, p. 22, 2022.

Non peer-reviewed publications:

❏ BRITO, L. F. A.; ALBERTINI, M. K; TRAVENÇOLO, B. A. N; NAVARRO, G.

A compact dynamic data structure for temporal reachability with unsorted contact

insertions. URL: <https://arxiv.org/abs/2308.11734> (visited on 2023-08-25).

❏ BRITO, L. F. A.; ALBERTINI, M. K; TRAVENÇOLO, B. A. N. A dynamic

data structure for representing timed transitive closures on disk. 2022. URL:

<https://arxiv.org/abs/2306.13937> (visited on 2023-08-22).

Chapter 7. Conclusion 96

❏ BRITO, L. F. A.; ALBERTINI, M. K; TRAVENÇOLO, B. A. N. A Review of

In-Memory Space-Efficient Data Structures for Temporal Graphs. 2022. URL:

<https://arxiv.org/abs/2204.12468> (visited on 2023-06-03).

97

Bibliography

ABEL, D. J. A B+-tree structure for large quadtrees. Computer Vision, Graphics,
and Image Processing, Elsevier, v. 27, n. 1, p. 19–31, 1984. ISSN 0734-189X.

ACKERMANN, W. Zum Hilbertschen aufbau der reellen zahlen. Mathematische
Annalen, Springer-Verlag, v. 99, n. 1, p. 118–133, 1928.

ADLER, M.; MITZENMACHER, M. Towards compressing web graphs. In: Proceedings
of the Data Compression Conference. USA: IEEE Computer Society, 2001. (DCC
’01), p. 203.

AGARWAL, P. K.; ARGE, L.; PROCOPIUC, O.; VITTER, J. S. A framework for
index bulk loading and dynamization. In: SPRINGER. International Colloquium on
Automata, Languages, and Programming. Berlin, 2001. p. 115–127.

AGARWAL, P. K.; ERICKSON, J. et al. Geometric range searching and its relatives.
Contemporary Mathematics, Providence, RI: American Mathematical Society,
v. 223, p. 1–56, 1999.

AGRAWAL, R.; BORGIDA, A.; JAGADISH, H. V. Efficient management of transitive
relationships in large data and knowledge bases. In: Proceedings of the 1989 ACM
SIGMOD International Conference on Management of Data. New York, NY,
USA: Association for Computing Machinery, 1989. (SIGMOD 89), p. 253262.

AJTAI, M.; FAGIN, R. Reachability is harder for directed than for undirected finite
graphs. The Journal of Symbolic Logic, Association for Symbolic Logic, v. 55, n. 1,
p. 113–150, 1990.

ALBERT, R.; BARABÁSI, A.-L. Statistical mechanics of complex networks. Rev.
Mod. Phys., American Physical Society, v. 74, p. 47–97, 1 2002.

AMER, A.; HOLLIDAY, J.; LONG, D. D. E.; MILLER, E. L.; PARIS, J.; SCHWARZ,
T. Data management and layout for shingled magnetic recording. IEEE Transactions
on Magnetics, v. 47, n. 10, p. 3691–3697, 2011.

ANH, V. N.; MOFFAT, A. Inverted index compression using word-aligned binary codes.
Information Retrieval, Springer, v. 8, n. 1, p. 151–166, 2005.

Bibliography 98

ARGE, L. The buffer tree: A new technique for optimal I/O-algorithms. In: AKL,
S. G.; DEHNE, F.; SACK, J.-R.; SANTORO, N. (Ed.). Algorithms and Data
Structures. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. p. 334–345. ISBN
978-35404-4-7-4-7-4.

ARGE, L.; DANNER, A.; TEH, S.-M. I/O-efficient point location using persistent
B-trees. ACM J. Exp. Algorithmics, Association for Computing Machinery, New
York, NY, USA, v. 8, p. 1.2es, dez. 2004. ISSN 1084-6654.

ARGE, L.; VITTER, J. S. Optimal dynamic interval management in external memory.
In: Proceedings of 37th Conference on Foundations of Computer Science. [S.l.:
s.n.], 1996. p. 560–569.

ATHANASSOULIS, M.; KESTER, M. S.; MAAS, L. M.; STOICA, R.; IDREOS, S.;
AILAMAKI, A.; CALLAGHAN, M. Designing access methods: The RUM conjecture.
In: EDBT. [S.l.: s.n.], 2016. v. 2016, p. 461–466.

ATZORI, L.; IERA, A.; MORABITO, G.; NITTI, M. The social internet of things
(SIoT) when social networks meet the internet of things: Concept, architecture and
network characterization. Computer Networks, v. 56, n. 16, p. 3594–3608, 2012.

BARJON, M.; CASTEIGTS, A.; CHAUMETTE, S.; JOHNEN, C.; NEGGAZ, Y. M.
Testing Temporal Connectivity in Sparse Dynamic Graphs. 2014. URL:
<https://arxiv.org/abs/1404.7634> (visited on 2023-06-03).

BAYER, R.; MCCREIGHT, E. Organization and maintenance of large ordered indices.
In: Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD) Workshop
on Data Description, Access and Control. New York, NY, USA: Association for
Computing Machinery, 1970. (SIGFIDET ’70), p. 107141. ISBN 978-145-037-9-4-1-0.
Disponível em: <https://doi.org/10.1145/1734663.1734671>.

BECKMANN, N.; KRIEGEL, H.-P.; SCHNEIDER, R.; SEEGER, B. The R*-tree:
An efficient and robust access method for points and rectangles. SIGMOD Rec.,
Association for Computing Machinery, New York, NY, USA, v. 19, n. 2, p. 322331, maio
1990.

BEDOGNI, L.; FIORE, M.; GLACET, C. Temporal reachability in vehicular networks.
In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.
[S.l.: s.n.], 2018. p. 81–89.

BENTLEY, J. L. Decomposable searching problems. Information Processing Letters,
v. 8, n. 5, p. 244–251, 1979. ISSN 0020-0190.

BERNARDO, G. D. New data structures and algorithms for the efficient
management of large spatial datasets. 2014. Doctoral dissertation at Coruña
University. URL: <http://hdl.handle.net/2183/13769> (visited on 2023-06-03).

BERNARDO, G. D.; BRISABOA, N. R.; CARO, D.; RODRÍGUEZ, M. A. Compact
data structures for temporal graphs. In: IEEE. Data Compression Conference
(DCC), 2013. [S.l.], 2013. p. 477–477.

BESTA, M.; HOEFLER, T. Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph Representations. 2019. URL:
<https://arxiv.org/abs/1806.01799> (visited on 2023-06-03).

Bibliography 99

BLELLOCH, G. E.; FERIZOVIC, D.; SUN, Y. Just join for parallel ordered sets. In:
Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures. New York, NY, USA: Association for Computing Machinery, 2016.
(SPAA ’16), p. 253264. ISBN 978-145-034-2-1-0-0.

BLONDEL, V. D.; GUILLAUME, J.-L.; LAMBIOTTE, R.; LEFEBVRE, E. Fast
unfolding of communities in large networks. Journal of Statistical Mechanics:
Theory and Experiment, IOP Publishing, v. 2008, n. 10, p. P10008, 10 2008.

BRAMANDIA, R.; CHOI, B.; NG, W. K. On incremental maintenance of 2-hop labeling
of graphs. In: Proceedings of the 17th International Conference on World
Wide Web. New York, NY, USA: Association for Computing Machinery, 2008. (WWW
’08), p. 845854.

BRISABOA, N. R.; CARO, D.; FARIÑA, A.; RODRÍGUEZ, M. A. A compressed
suffix-array strategy for temporal-graph indexing. In: SPRINGER. International
Symposium on String Processing and Information Retrieval. [S.l.], 2014. p.
77–88.

. Using compressed suffix-arrays for a compact representation of temporal-graphs.
Information Sciences, Elsevier, v. 465, p. 459–483, 2018.

BRISABOA, N. R.; IGLESIAS, E. L.; NAVARRO, G.; PARAMÁ, J. R. An efficient
compression code for text databases. In: SPRINGER. European Conference on
Information Retrieval. [S.l.], 2003. p. 468–481.

BRITO, L. F. A.; ALBERTINI, M. K.; CASTEIGTS, A.; TRAVENÇOLO, B. A. N.
A dynamic data structure for temporal reachability with unsorted contact insertions.
Social Network Analysis and Mining, v. 12, n. 1, p. 22, 2022.

BRITO, L. F. A.; ALBERTINI, M. K.; TRAVENÇOLO, B. A. N. A dynamic data
structure for representing timed transitive closures on disk. 2023. URL:
<https://arxiv.org/abs/2306.13937> (visited on 2023-08-22).

BRITO, L. F. A.; ALBERTINI, M. K.; TRAVENÇOLO, B. A. N.; NAVARRO, G. A
compact dynamic data structure for temporal reachability with unsorted
contact insertions. 2023. URL: <https://arxiv.org/abs/2308.11734> (visited on
2023-08-25).

BRITO, L. F. A.; TRAVENÇOLO, B. A. N.; ALBERTINI, M. K. A review of
in-memory space-efficient data structures for temporal graphs. 2022. URL:
<https://arxiv.org/abs/2306.13937> (visited on 2023-08-25).

BRYCE, D.; KAMBHAMPATI, S. A tutorial on planning graph based reachability
heuristics. AI Magazine, v. 28, n. 1, p. 47, mar. 2007.

BUCHSBAUM, A. L.; GOLDWASSER, M. H.; VENKATASUBRAMANIAN, S.;
WESTBROOK, J. On external memory graph traversal. In: SODA ’00. [S.l.: s.n.],
2000.

CACCIARI, L.; RAFIQ, O. A temporal reachability analysis. In: . Protocol
Specification, Testing and Verification XV: Proceedings of the Fifteenth
IFIP WG6.1 International Symposium on Protocol Specification, Testing

Bibliography 100

and Verification, Warsaw, Poland, June 1995. Boston, MA: Springer US, 1996. p.
35–49. ISBN 978-038-734-8-9-2-6.

CAI, J.; POON, C. K. Path-hop: Efficiently indexing large graphs for reachability
queries. In: Proceedings of the 19th ACM International Conference on
Information and Knowledge Management. New York, NY, USA: Association for
Computing Machinery, 2010. (CIKM ’10), p. 119128.

CARO, D.; RODRÍGUEZ, M. A.; BRISABOA, N. R. Data structures for temporal
graphs based on compact sequence representations. Information Systems, Elsevier,
v. 51, p. 1–26, 2015.

CARO, D.; RODRIGUEZ, M. A.; BRISABOA, N. R.; FARINA, A. Compressed kd-tree
for temporal graphs. Knowledge and Information Systems, Springer, v. 49, n. 2, p.
553–595, 2016.

CASTEIGTS, A. A Journey through Dynamic Networks (with Excursions).
2018. Report for the authorization to direct research at Bordeaux University. URL:
<https://hal.science/tel-01883384> (visited on 2023-06-03).

CASTEIGTS, A.; FLOCCHINI, P.; QUATTROCIOCCHI, W.; SANTORO, N.
Time-varying graphs and dynamic networks. In: FREY, H.; LI, X.; RUEHRUP, S.
(Ed.). Ad-hoc, Mobile, and Wireless Networks. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011. p. 346–359. ISBN 978-36422-2-4-5-0-8.

CHAMBI, S.; LEMIRE, D.; KASER, O.; GODIN, R. Better bitmap performance with
roaring bitmaps. Software: practice and experience, Wiley Online Library, v. 46,
n. 5, p. 709–719, 2016.

CHEN, L.; GUPTA, A.; KURUL, M. E. Stack-based algorithms for pattern matching
on DAGs. In: Proceedings of the 31st International Conference on Very
Large Data Bases. [S.l.]: VLDB Endowment, 2005. (VLDB ’05), p. 493504. ISBN
1-59593-154-6.

CHEN, Y.; CHEN, Y. An efficient algorithm for answering graph reachability queries.
In: 2008 IEEE 24th International Conference on Data Engineering. [S.l.: s.n.],
2008. p. 893–902.

. Decomposing DAGs into spanning trees: A new way to compress transitive
closures. In: 2011 IEEE 27th International Conference on Data Engineering.
[S.l.: s.n.], 2011. p. 1007–1018.

CHENG, J.; HUANG, S.; WU, H.; FU, A. W.-C. TF-Label: A topological-folding
labeling scheme for reachability querying in a large graph. In: Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data. New
York, NY, USA: Association for Computing Machinery, 2013. (SIGMOD ’13), p. 193204.

CHENG, J.; YU, J. X.; LIN, X.; WANG, H.; YU, P. S. Fast computing reachability
labelings for large graphs with high compression rate. In: Proceedings of the 11th
International Conference on Extending Database Technology: Advances in
Database Technology. New York, NY, USA: Association for Computing Machinery,
2008. (EDBT ’08), p. 193204.

Bibliography 101

CHENG, J.; YU, J. X.; TANG, N. Fast reachability query processing. In: LEE,
M. L.; TAN, K.-L.; WUWONGSE, V. (Ed.). Database Systems for Advanced
Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. p. 674–688. ISBN
978-35403-3-3-3-8-8.

CIACCIA, P.; PATELLA, M.; ZEZULA, P. M-tree: An efficient access method for
similarity search in metric spaces. In: Proceedings of the 23rd International
Conference on Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1997. (VLDB ’97), p. 426435. ISBN 1-55860-470-7.

CLEMENTI, A. E. F.; MACCI, C.; MONTI, A.; PASQUALE, F.; SILVESTRI,
R. Flooding time in edge-markovian dynamic graphs. In: Proceedings of the
Twenty-Seventh ACM Symposium on Principles of Distributed Computing.
New York, NY, USA: Association for Computing Machinery, 2008. (PODC ’08), p.
213222.

COHEN, E.; HALPERIN, E.; KAPLAN, H.; ZWICK, U. Reachability and distance
queries via 2-hop labels. SIAM Journal on Computing, v. 32, n. 5, p. 1338–1355,
2003.

COIMBRA, M. E.; FRANCISCO, A. P.; RUSSO, L. M. S.; BERNARDO, G. D.;
LADRA, S.; NAVARRO, G. On dynamic succinct graph representations. In: 2020 Data
Compression Conference (DCC). [S.l.: s.n.], 2020. p. 213–222.

COMER, D. Ubiquitous B-tree. ACM Comput. Surv., Association for Computing
Machinery, New York, NY, USA, v. 11, n. 2, p. 121137, jun. 1979. ISSN 0360-0300.

DAMME, P.; HABICH, D.; HILDEBRANDT, J.; LEHNER, W. Lightweight data
compression algorithms: An experimental survey (experiments and analyses). In:
EDBT. [S.l.: s.n.], 2017.

DATE, C. J. An Introduction to Database Systems. 8. ed. USA: Addison-Wesley
Longman Publishing Co., Inc., 2003. ISBN 0-321-19784-4.

DING, Z.; GÜTING, R. H. Modeling temporally variable transportation networks. In:
LEE, Y.; LI, J.; WHANG, K.-Y.; LEE, D. (Ed.). Database Systems for Advanced
Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. p. 154–168.

ELIAS, P. Universal codeword sets and representations of the integers. IEEE
Transactions on Information Theory, v. 21, n. 2, p. 194–203, 1975. ISSN 1557-9654.

ENRIGHT, J.; MEEKS, K.; MERTZIOS, G. B.; ZAMARAEV, V. Deleting edges to
restrict the size of an epidemic in temporal networks. Journal of Computer and
System Sciences, v. 119, p. 60–77, 2021. ISSN 0022-0000.

FAGIN, R.; NIEVERGELT, J.; PIPPENGER, N.; STRONG, H. R. Extendible hashing:
a fast access method for dynamic files. ACM Trans. Database Syst., Association for
Computing Machinery, New York, NY, USA, v. 4, n. 3, p. 315344, set. 1979.

GAGIE, T.; NAVARRO, G.; PUGLISI, S. J. New algorithms on wavelet trees and
applications to information retrieval. Theoretical Computer Science, Elsevier, v. 426,
p. 25–41, 2012.

Bibliography 102

GEORGE, B.; KIM, S.; SHEKHAR, S. Spatio-temporal network databases and routing
algorithms: A summary of results. In: PAPADIAS, D.; ZHANG, D.; KOLLIOS, G.
(Ed.). Advances in Spatial and Temporal Databases. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007. p. 460–477. ISBN 978-35407-3-5-4-0-3.

GRINSTEAD, C. M.; SNELL, J. L. Introduction to probability. [S.l.]: American
Mathematical Soc., 1997.

GROSSI, R.; GUPTA, A.; VITTER, J. S. High-order entropy-compressed text indexes.
In: SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS. Proceedings of
the fourteenth annual ACM-SIAM symposium on Discrete algorithms. [S.l.],
2003. p. 841–850.

GROSSI, R.; VITTER, J. S. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing, SIAM, v. 35,
n. 2, p. 378–407, 2005.

HAN, W.; MIAO, Y.; LI, K.; WU, M.; YANG, F.; ZHOU, L.; PRABHAKARAN, V.;
CHEN, W.; CHEN, E. Chronos: A graph engine for temporal graph analysis. In: ACM.
Proceedings of the Ninth European Conference on Computer Systems. [S.l.],
2014. p. 1.

HASAN, K. T.; NOORI, S. R. H.; SALAM, A.; KABIR, M. A. Making sense of
time: timeline visualization for public transport schedule. In: Symposium on
Human-Computer Interaction and Information Retrieval (HCIR 2011),
Washington. [S.l.: s.n.], 2011.

HIRVISALO, V.; NUUTILA, E.; SOISALON-SOININEN, E. Transitive closure
algorithm DISK TC and its performance analysis. 1996. Technical report at
Helsinki University of Technology. URL: <http://www.cs.hut.fi/~enu/tc.html> (visited
on: 2020-04-02).

HOLM, J.; LICHTENBERG, K. D.; THORUP, M. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and
biconnectivity. Journal of the ACM (JACM), ACM New York, NY, USA, v. 48,
n. 4, p. 723–760, 2001.

HONO, K.; TAKAHASHI, Y.; JU, G.; THIELE, J.-U.; AJAN, A.; YANG, X.; RUIZ, R.;
WAN, L. Heat-assisted magnetic recording media materials. MRS Bulletin, Springer,
v. 43, n. 2, p. 93–99, 2018.

HURTER, C.; ERSOY, O.; FABRIKANT, S. I.; KLEIN, T. R.; TELEA, A. C. Bundled
visualization of dynamicgraph and trail data. IEEE Transactions on Visualization
and Computer Graphics, v. 20, n. 8, p. 1141–1157, 2014.

ITALIANO, G. F. Amortized efficiency of a path retrieval data structure. Theoretical
Computer Science, Elsevier, v. 48, p. 273–281, 1986.

. Finding paths and deleting edges in directed acyclic graphs. Information
Processing Letters, v. 28, n. 1, p. 5–11, 1988. ISSN 0020-0190.

JACOBSON, G. J. Succinct static data structures. Pittsburgh, PA, USA: [s.n.],
1988. Doctoral dissertation at Carnegie Mellon University.

Bibliography 103

JAGADISH, H. V. A compression technique to materialize transitive closure. ACM
Trans. Database Syst., Association for Computing Machinery, New York, NY, USA,
v. 15, n. 4, p. 558598, dez. 1990.

JIN, R.; WANG, G. Simple, fast, and scalable reachability oracle. Proc. VLDB
Endow., VLDB Endowment, v. 6, n. 14, p. 19781989, 2013. ISSN 2150-8097.

JOHNSON, T.; SHASHA, D. 2Q: A low overhead high performance buffer management
replacement algorithm. In: Proceedings of the 20th International Conference on
Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1994. (VLDB ’94), p. 439–450.

KHURANA, U.; DESHPANDE, A. Efficient snapshot retrieval over historical graph
data. In: IEEE. 2013 IEEE 29th International Conference on Data Engineering
(ICDE). [S.l.], 2013. p. 997–1008.

KING, V.; SAGERT, G. A fully dynamic algorithm for maintaining the transitive
closure. Journal of Computer and System Sciences, v. 65, n. 1, p. 150–167, 2002.

KNUTH, D. E. Dynamic huffman coding. Journal of Algorithms, v. 6, n. 2, p.
163–180, 1985. ISSN 0196-6774.

KRYDER, M. H.; GAGE, E. C.; MCDANIEL, T. W.; CHALLENER, W. A.;
ROTTMAYER, R. E.; JU, G.; HSIA, Y.; ERDEN, M. F. Heat assisted magnetic
recording. Proceedings of the IEEE, v. 96, n. 11, p. 1810–1835, 2008.

LABOUSEUR, A. G.; BIRNBAUM, J.; OLSEN, P. W.; SPILLANE, S. R.; VIJAYAN,
J.; HWANG, J.-H.; Han , W.-S. The g* graph database: Efficiently managing large
distributed dynamic graphs. Distributed and Parallel Databases, Springer, v. 33,
n. 4, p. 479–514, 2015.

ŁĄCKI, J. Improved deterministic algorithms for decremental reachability and strongly
connected components. ACM Transactions on Algorithms (TALG), ACM New
York, NY, USA, v. 9, n. 3, p. 1–15, 2013.

LATAPY, M.; VIARD, T.; MAGNIEN, C. Stream graphs and link streams for the
modeling of interactions over time. Social Network Analysis and Mining, Springer,
v. 8, n. 1, p. 1–29, 2018.

LEMIRE, D.; BOYTSOV, L. Decoding billions of integers per second through
vectorization. Software: Practice and Experience, John Wiley & Sons, Inc., USA,
v. 45, n. 1, p. 129, 2015. ISSN 0038-0644.

LIBEN-NOWELL, D.; KLEINBERG, J. The link-prediction problem for social networks.
Journal of the American society for information science and technology, Wiley
Online Library, v. 58, n. 7, p. 1019–1031, 2007.

LINHARES, C. D. G.; PONCIANO, J. R.; PAIVA, J. G. S.; TRAVENÇOLO, B. A. N.;
ROCHA, L. E. C. Visualisation of structure and processes on temporal networks. In:
HOLME, P.; SARAMÄKI, J. (Ed.). Computational Social Sciences. Cham: Springer
International Publishing, 2019. p. 83–105. ISBN 978-30302-3-4-9-5-9.

Bibliography 104

LINHARES, C. D. G.; TRAVEçOLO, B. A. N.; PAIVA, J. G. S.; ROCHA, L. E. C.
DyNetVis: a system for visualization of dynamic networks. In: ACM. Proceedings of
the Symposium on Applied Computing. [S.l.], 2017. p. 187–194.

LITWIN, W. Linear hashing: A new tool for file and table addressing. In: Proceedings
of the Sixth International Conference on Very Large Data Bases - Volume 6.
[S.l.]: VLDB Endowment, 1980. (VLDB ’80), p. 212223.

LYU, Q.; LI, Y.; HE, B.; GONG, B. DBL: Efficient reachability queries on dynamic
graphs. In: JENSEN, C. S.; LIM, E.-P.; YANG, D.-N.; LEE, W.-C.; TSENG, V. S.;
KALOGERAKI, V.; HUANG, J.-W.; SHEN, C.-Y. (Ed.). Database Systems for
Advanced Applications. Cham: Springer International Publishing, 2021. p. 761–777.
ISBN 978-30307-3-1-9-7-7.

MALEWICZ, G.; AUSTERN, M. H.; BIK, A. J. C.; DEHNERT, J. C.; HORN, I.;
LEISER, N.; CZAJKOWSKI, G. Pregel: A system for large-scale graph processing.
In: Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data. New York, NY, USA: ACM, 2010. (SIGMOD ’10), p. 135–146.

MANBER, U.; MYERS, G. Suffix arrays: a new method for on-line string searches.
siam Journal on Computing, SIAM, v. 22, n. 5, p. 935–948, 1993.

MARTENSEN, A. C.; SAURA, S.; FORTIN, M.-J. Spatio-temporal connectivity:
assessing the amount of reachable habitat in dynamic landscapes. Methods in Ecology
and Evolution, v. 8, n. 10, p. 1253–1264, 2017.

MATHIEU, C.; RAJARAMAN, R.; YOUNG, N. E.; YOUSEFI, A. Competitive
data-structure dynamization. In: SIAM. Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA). [S.l.], 2021. p. 2269–2287.

MICHAIL, O. An introduction to temporal graphs: An algorithmic perspective.
Internet Mathematics, Taylor & Francis, v. 12, n. 4, p. 239–280, 2016.

MOFFITT, V. Z.; STOYANOVICH, J. Querying Evolving Graphs with Portal.
2016. URL: <https://arxiv.org/abs/1602.00773> (visited on 2023-06-03).

NAVARRO, G. Compact Data Structures: A Practical Approach. 1st. ed. USA:
Cambridge University Press, 2016. ISBN 1-107-15238-0.

NEUMANN, T.; WEIKUM, G. x-RDF-3X: fast querying, high update rates, and
consistency for RDF databases. Proceedings of the VLDB Endowment, VLDB
Endowment, v. 3, n. 1-2, p. 256–263, 2010.

NUUTILA, E. Efficient transitive closure computation in large digraphs. Acta
Polytechnica Scandinavia: Math. Comput. Eng., The Finnish Academy of
Technology, FIN, v. 74, p. 1124, jul. 1995.

OVERMARS, M. H. The design of dynamic data structures. In: Lecture Notes in
Computer Science. [S.l.]: Springer Berlin, Heidelberg, 1987. ISSN 0302-9743.

PONCIANO, J. R.; VEZONO, G. P.; LINHARES, C. D. G. Simulating and visualizing
infection spread dynamics with temporal networks. In: Anais do XXXVI Simpósio
Brasileiro de Banco de Dados (SBBD 2021). [S.l.]: Sociedade Brasileira de
Computação - SBC, 2021.

Bibliography 105

PREZZA, N. A framework of dynamic data structures for string processing. In:
ILIOPOULOS, C. S.; PISSIS, S. P.; PUGLISI, S. J.; RAMAN, R. (Ed.). 16th
International Symposium on Experimental Algorithms (SEA 2017).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. (Leibniz
International Proceedings in Informatics (LIPIcs), v. 75), p. 11:1–11:15. ISBN
978-39597-7-0-3-6-1. ISSN 1868-8969.

QIAO, M. Query processing in large-scale networks. In: . [S.l.: s.n.], 2013.

QIAO, M.; CHENG, H.; QIN, L.; YU, J. X.; YU, P. S.; CHANG, L. Computing weight
constraint reachability in large networks. The VLDB Journal, v. 22, p. 275–294, 2012.

RAMAN, R.; RAMAN, V.; SATTI, S. R. Succinct indexable dictionaries with
applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions
on Algorithms (TALG), ACM New York, NY, USA, v. 3, n. 4, p. 43–es, 2007.

RODITTY, L. A faster and simpler fully dynamic transitive closure. ACM Transactions
on Algorithms (TALG), ACM New York, NY, USA, v. 4, n. 1, p. 1–16, 2008.

RODITTY, L.; ZWICK, U. A fully dynamic reachability algorithm for directed graphs
with an almost linear update time. SIAM Journal on Computing, v. 45, n. 3, p.
712–733, 2016.

ROY, A.; MIHAILOVIC, I.; ZWAENEPOEL, W. X-Stream: Edge-centric graph
processing using streaming partitions. In: Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. New York, NY, USA: ACM, 2013.
(SOSP ’13), p. 472–488.

ROZENSHTEIN, P.; GIONIS, A.; PRAKASH, B. A.; VREEKEN, J. Reconstructing an
epidemic over time. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. New York, NY,
USA: Association for Computing Machinery, 2016. (KDD ’16), p. 18351844. ISBN
978-145-034-2-3-2-2.

SADAKANE, K. New text indexing functionalities of the compressed suffix arrays.
Journal of Algorithms, v. 48, n. 2, p. 294–313, 2003.

SAHU, S.; MHEDHBI, A.; SALIHOGLU, S.; LIN, J.; ÖZSU, M. T. The ubiquity of
large graphs and surprising challenges of graph processing. Proceedings of the VLDB
Endowmet, VLDB Endowment, v. 11, n. 4, p. 420–431, dez. 2017.

SCHAIK, S. J. van; MOOR, O. de. A memory efficient reachability data structure
through bit vector compression. In: Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data. New York, NY, USA:
Association for Computing Machinery, 2011. (SIGMOD ’11), p. 913924.

SEAGATE. HAMR Technology. <https://www.seagate.com/files/www-content/
innovation/hamr/_shared/files/tp707-1-1712us-hamr.pdf>.

. Mach.2 Technology. <https://www.seagate.com/files/www-content/solutions/
mach-2-multi-actuator-hard-drive/files/tp714-dot-2-2006us-mach-2-technology-paper.
pdf>.

Bibliography 106

SEUFERT, S.; ANAND, A.; BEDATHUR, S.; WEIKUM, G. FERRARI: Flexible
and efficient reachability range assignment for graph indexing. In: 2013 IEEE 29th
International Conference on Data Engineering (ICDE). [S.l.: s.n.], 2013. p.
1009–1020.

SHILOACH, Y.; EVEN, S. An on-line edge-deletion problem. Journal of the ACM
(JACM), ACM New York, NY, USA, v. 28, n. 1, p. 1–4, 1981.

SHIRANI-MEHR, H.; KASHANI, F. B.; SHAHABI, C. Efficient reachability query
evaluation in large spatiotemporal contact datasets. Proc. VLDB Endow., v. 5, p.
848–859, 2012.

STRZHELETSKA, E. V. Efficient Processing of Novel Reachability-Based
Queries on Large Spatiotemporal Datasets. 2018. Doctoral dissertation at
University of California Riverside. URL: <https://escholarship.org/uc/item/2j83p0bg>
(visited on 2023-06-03).

STRZHELETSKA, E. V.; TSOTRAS, V. Efficient processing of reachability queries
with meetings. Proceedings of the 25th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2017.

TANG, J.; MUSOLESI, M.; MASCOLO, C.; LATORA, V. Characterising temporal
distance and reachability in mobile and online social networks. SIGCOMM Computer
Communication Review, Association for Computing Machinery, New York, NY,
USA, v. 40, n. 1, p. 118124, 2010. ISSN 0146-4833.

TARJAN, R. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, v. 1, n. 2, p. 146–160, 1972.

TARJAN, R. E. Efficiency of a good but not linear set union algorithm. J. ACM,
Association for Computing Machinery, New York, NY, USA, v. 22, n. 2, p. 215225, abr.
1975.

. A class of algorithms which require nonlinear time to maintain disjoint sets.
Journal of computer and system sciences, Elsevier, v. 18, n. 2, p. 110–127, 1979.

VELOSO, R. R.; CERF, L.; JR, W. M.; ZAKI, M. J. Reachability queries in very large
graphs: A fast refined online search approach. In: International Conference on
Extending Database Technology. [S.l.: s.n.], 2014. p. 511–522.

WANG, H.; HE, H.; YANG, J.; YU, P. S.; YU, J. X. Dual labeling: Answering graph
reachability queries in constant time. In: 22nd International Conference on Data
Engineering (ICDE’06). [S.l.: s.n.], 2006. p. 75–75.

WANG, S.; LIN, W.; YANG, Y.; XIAO, X.; ZHOU, S. Efficient route planning on public
transportation networks: A labelling approach. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. New York, NY,
USA: Association for Computing Machinery, 2015. (SIGMOD ’15), p. 967982.

WEI, H.; YU, J. X.; LU, C.; JIN, R. Reachability querying: an independent permutation
labeling approach. The VLDB Journal, Springer, v. 27, n. 1, p. 1–26, 2018.

Bibliography 107

WHITBECK, J.; AMORIM, M. D. de; CONAN, V.; GUILLAUME, J.-L. Temporal
reachability graphs. In: Proceedings of the 18th Annual International Conference
on Mobile Computing and Networking. New York, NY, USA: Association for
Computing Machinery, 2012. (Mobicom ’12), p. 377388. ISBN 978-145-031-1-5-9-5.

WILLIAMS, M. J.; MUSOLESI, M. Spatio-temporal networks: reachability, centrality
and robustness. Royal Society Open Science, v. 3, n. 6, p. 160196, 2016.

WU, G.; DING, Y.; LI, Y.; BAO, J.; ZHENG, Y.; LUO, J. Mining spatio-temporal
reachable regions over massive trajectory data. In: 2017 IEEE 33rd International
Conference on Data Engineering (ICDE). [S.l.: s.n.], 2017. p. 1283–1294. ISSN
2375-026X.

WU, H.; HUANG, Y.; CHENG, J.; LI, J.; KE, Y. Reachability and time-based path
queries in temporal graphs. In: 2016 IEEE 32nd International Conference on
Data Engineering (ICDE). [S.l.: s.n.], 2016. p. 145–156.

XIAO, H.; ASLAY, C.; GIONIS, A. Robust cascade reconstruction by steiner tree
sampling. In: 2018 IEEE International Conference on Data Mining (ICDM).
[S.l.: s.n.], 2018. p. 637–646.

XIAO, H.; ROZENSHTEIN, P.; TATTI, N.; GIONIS, A. Reconstructing a cascade from
temporal observations. In: . Proceedings of the 2018 SIAM International
Conference on Data Mining (SDM). [S.l.: s.n.], 2018. p. 666–674.

XUAN, B. B.; FERREIRA, A.; JARRY, A. Computing shortest, fastest, and foremost
journeys in dynamic networks. International Journal of Foundations of Computer
Science, World Scientific, v. 14, n. 02, p. 267–285, 2003.

. Computing shortest, fastest, and foremost journeys in dynamic networks.
International Journal of Foundations of Computer Science, v. 14, n. 02, p.
267–285, 2003.

YANG, T.; CHI, Y.; ZHU, S.; GONG, Y.; JIN, R. Detecting communities and their
evolutions in dynamic social networksa bayesian approach. Machine learning, Springer,
v. 82, n. 2, p. 157–189, 2011.

YANO, Y.; AKIBA, T.; IWATA, Y.; YOSHIDA, Y. Fast and scalable reachability
queries on graphs by pruned labeling with landmarks and paths. In: Proceedings of
the 22nd ACM International Conference on Information and Knowledge
Management. New York, NY, USA: Association for Computing Machinery, 2013.
(CIKM ’13), p. 16011606.

YILDIRIM, H.; CHAOJI, V.; ZAKI, M. J. GRAIL: a scalable index for reachability
queries in very large graphs. The VLDB Journal, Springer, v. 21, n. 4, p. 509–534,
2012.

YU, J. X.; CHENG, J. Graph reachability queries: a survey. In: . Managing and
Mining Graph Data. Boston, MA: Springer US, 2010. p. 181–215.

ZENG, W.; FU, C.-W.; ARISONA, S. M.; ERATH, A.; QU, H. Visualizing mobility of
public transportation system. IEEE Transactions on Visualization and Computer
Graphics, v. 20, n. 12, p. 1833–1842, 2014. ISSN 1941-0506.

Bibliography 108

ZHANG, Y.; LIAO, X.; SHI, X.; JIN, H.; HE, B. Efficient disk-based directed graph
processing: A strongly connected component approach. IEEE Transactions on
Parallel and Distributed Systems, v. 29, n. 4, p. 830–842, 2018.

ZHANG, Z.; YU, J. X.; QIN, L.; ZHU, Q.; ZHOU, X. I/O cost minimization: reachability
queries processing over massive graphs. In: EDBT ’12. [S.l.: s.n.], 2012.

. I/O cost minimization: Reachability queries processing over massive graphs. In:
Proceedings of the 15th International Conference on Extending Database
Technology. New York, NY, USA: Association for Computing Machinery, 2012. (EDBT
’12), p. 468479.

ZHU, A. D.; LIN, W.; WANG, S.; XIAO, X. Reachability queries on large dynamic
graphs: A total order approach. In: Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data. New York, NY, USA:
Association for Computing Machinery, 2014. (SIGMOD ’14), p. 13231334.

ZHU, J.; ZHU, X.; TANG, Y. Microwave assisted magnetic recording. IEEE
Transactions on Magnetics, v. 44, n. 1, p. 125–131, 2008.

ZUKOWSKI, M.; HEMAN, S.; NES, N.; BONCZ, P. Super-scalar RAM-CPU cache
compression. In: IEEE. Data Engineering, 2006. ICDE’06. Proceedings of the
22nd International Conference on. [S.l.], 2006. p. 59–59.

109

Appendix

110

APPENDIX A

Space-Efficient Data Structures for

Querying Temporal Graphs in Primary

Memory

In this chapter, we present a review about compact data structures to store and

query large temporal graphs in primary memory, which was originally written in one of our

papers entitled “A Review of In-Memory Space-Efficient Data Structures for Temporal

Graphs” submitted in June 4th, 2020 to the Elsevier journal “Information Systems” and

currently being peer-reviewed. These specialized data structures provide useful queries

while spending little space as possible. Some of them store a compressed version of data.

However, they compute queries without decompressing the data (BRISABOA et al., 2014;

CARO; RODRÍGUEZ; BRISABOA, 2015; CARO et al., 2016; BRISABOA et al., 2018).

The literature calls these approaches self-indexed space-efficient data structures.

For example, Grossi, Gupta e Vitter (2003) introduced the wavelet tree data struc-

ture that stores a list of contacts as a sequence of n symbols belonging to an alphabet of

size σ = |V |+ |T | using only n⌈log σ⌉ bits. The wavelet tree executes fundamental queries

such as determining the frequency of symbols in a sub-range of the sequence in O(log σ)

time. By using the wavelet tree, some data structures can quickly answer low-level queries

for temporal graphs.

In the next sections, we detail the following structures to index temporal graphs us-

ing compression techniques: time-interval Log per Edge (EdgeLog) (XUAN; FERREIRA;

JARRY, 2003a), adjacency Log of Events (EveLog) (CARO; RODRÍGUEZ; BRISABOA,

2015), Compact Adjacency Sequence (CAS) (CARO; RODRÍGUEZ; BRISABOA, 2015),

Compressed Events ordered by Time (CET) (CARO; RODRÍGUEZ; BRISABOA, 2015),

Temporal Graph Compressed Suffix Array (TGCSA) (BRISABOA et al., 2018), and Com-

pressed kd-tree (CARO et al., 2016). For clarity, in the following sections we explain how

some fundamental queries work on these data structures after they are built.

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory111

A

�
#

1 3

/

2 3 4 6

#
+

3 6

2

3 5

+

/
#

0 6

2
/

3 5

Figure 19 – EdgeLog representation of the temporal graph shown in Figure 2. EdgeLog
structure stores an array A containing adjacency lists indexed by source vertex
u. Each adjacency list A[u] has target vertices v. For each vertex v in A[u],
there is a list of intervals during which the edge (u, v) is active. EdgeLog
compresses these lists with DeltaGap and stores them in a contiguous space,
instead of a list structure with pointers.

The content present in this chapter was published on the arXiv repository (BRITO;

TRAVENÇOLO; ALBERTINI, 2022) available at <https://arxiv.org/abs/2204.12468>.

A.1 Time-Interval Log per Edge

Time-interval Log per Edge (EdgeLog) keeps a list of time intervals for each

edge (XUAN; FERREIRA; JARRY, 2003a). As shown in Figure 19, this structure orga-

nizes contacts similarly to an inverted index (ANH; MOFFAT, 2005) with three levels.

In the base level, it has an array A indexed by source vertices u containing pointers to

adjacency lists. In the first level, each adjacency list stores target vertices v and another

list containing, in the second level, the time intervals in which edges (u, v) are active. This

technique compresses both adjacency and interval lists in order to reduce space. First,

each list is kept sorted to speed up queries by using binary search and to represent se-

quences of vertex and timestamps identifiers as DeltaGap encodings (ADLER; MITZEN-

MACHER, 2001). This encoding transforms sequences of numbers L = l1, l2, . . . , ln on

differences of subsequent numbers in the form D = l2 − l1, l3 − l2, . . . , ln − ln−1. Then,

variable bit-wise compression techniques, such as Huffman Code (KNUTH, 1985), or word-

wise compression techniques, such as PForDelta (ZUKOWSKI et al., 2006) are applied

to compress DeltaGap encodings.

This strategy reduces space usage because D has lower entropy than L and repre-

sents resulting values with fewer bits due to the lower range of the numbers. For commonly

used encoding techniques for graphs we suggest the survey by Besta e Hoefler (2019) and

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory112

the textbook by Navarro (2016).

A.1.1 Operation has edge

In EdgeLog, an algorithm to answer has edge(u, v, t1, t2) first decompresses the

adjacency list A[u] into a contiguous space in memory, then it performs a binary search

to find v and the corresponding compressed list of intervals Tv. Next, it decompresses Tv

and checks if the interval [tbegin, tend] overlaps with some interval in Tv by performing a

second binary search. If so, an edge (u, v) exists during [tbegin, tend].

A.1.2 Operation neighbors

Similarly to the has edge operation, an algorithm to answer neighbors(u, t1, t2)

iterates all target vertices v′ in A[u] and checks if the list of intervals Tv′ correspond

to interval [tbegin, tend], according to weak or strong semantics. If the query has weak

semantic, then it checks if [tbegin, tend] overlaps with some [t′
begin, t′

end] ∈ T ′
v. Otherwise, if

it has strong semantic, then the algorithm checks if there is some interval in T ′
v such that

t′
begin ≤ tbegin < tend ≤ t′

end. The result is a list containing all neighbors that satisfy these

conditions.

A.1.3 Operation neighborsr

EdgeLog indexes edges only by source vertices, therefore, there is no efficient way

to compute reverse queries such as neighborsr(u, t1, t2).

A naïve algorithm decompresses every list in first level and test the interval con-

ditions on every (v, Tv) ∈ A[u′] for all u′ ∈ V . Another approach is to keep a second

EdgeLog structure that indexes edges by target vertices instead. Therefore, an algorithm

to answer neighborsr(u, t1, t2) runs neighbors(u, t1, t2) on this second structure.

However, this approach doubles the space required to store temporal graphs.

A.2 Adjacency Log of Events

Adjacency Log of Events (EveLog) data structure stores events about edge activa-

tion and deactivation (CARO; RODRÍGUEZ; BRISABOA, 2015). As shown in Figure 20,

EveLog has an array E indexed by source vertices u containing pointers to lists of events

ordered by time. Each list has events (v, t) ∈ V × T that represent activation or deacti-

vation of edge (u, v) at time t. EveLog does not store explicitly whether events represent

activation or deactivation. Instead, it uses a parity property (CARO; RODRÍGUEZ;

BRISABOA, 2015). As E[u] is time-ordered, we need only to count the number of occur-

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory113

E

� # 1 / 2 # 3 / 3 / 4 / 6

+ 3 2 3 2 5 + 6

+

/ # 0 # 6

2 / 3 / 5

Figure 20 – EveLog representation of the temporal graph shown in Figure 2. This struc-
ture has an array E containing event lists indexed by source vertices u. Each
event list E[u] has pairs (v, t) that represent events of activation or deactiva-
tion of edge (u, v) at time t. At implementation level, EveLog separates E[u]
in two lists, V and T , containing target vertices and timestamps. It com-
presses the ordered T lists using DeltaGap and V lists using ETDC. Then it
stores them in a contiguous space instead of a list structure with pointers.
Note that we can check if (u, v) is active at timestamp t by determining the
frequency of v symbols in E[u] until the last t symbol.

rences of target vertices v until some timestamp t, if it is odd, then edge (u, v) is active

at t, otherwise, it is not.

Each list of events is compressed to reduce space. First, EveLog separates lists E[u]

containing elements (v, t) in two different lists V = v1, v2, . . . , vk and T = t1, t2, . . . , tk. As

T is ordered, EveLog applies DeltaGap compression, the same approach used to compress

EdgeLog lists. However, V is not ordered and EveLog cannot sort separately, otherwise,

EveLog would lose the mapping between pairs on V and T . Therefore, DeltaGap encod-

ings cannot be used to decrease the entropy of V lists. Caro, Rodríguez e Brisaboa (2015)

chose the End-Tagged Dense Codes (ETDC) (BRISABOA et al., 2003) technique, often

used in information retrieval context, to compress V lists since it is faster than Huffman

Code while producing compressed sequences only 2.5% bigger.

A.2.1 Operation has edge

An algorithm to answer has edge(G, u, v, tbegin, tend) first decompresses both lists V

and T associated with E[u]. Then, it performs binary searches in T to find the positions

i and j associated with the last timestamp symbols of tbegin and tend, respectively. Next,

it finds the frequencies fbegin and fend of elements v inside the subsequences V [1, i] =

v1, v2, . . . , vi and V [i, j] = vi, vi+1, . . . , vj. If fbegin is odd, then edge (u, v) is active at

time tbegin, and if fend is greater than zero, then (u, v) is active at some timestamp during

the interval [tbegin, tend], otherwise is not active. Note that, if it is a point-based query,

t = tbegin = tend and f = fbegin = fend, then the algorithm only needs to check if f is odd

or even to answer whether (u, v) is, respectively, active or not at timestamp t.

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory114

A.2.2 Operation neighbors

An algorithm to answer neighbors(G, u, tbegin, tend) performs a similar approach,

however, it counts frequencies for each possible vertex v′. First, it finds the frequencies

fbegin and fend for all vertices v′ in both subsequences V [1, i] and V [i, j], where i and j

are positions in T associated with times tbegin and tend, respectively. Next, depending

on the query, it checks weak or strong semantics. If neighbors(G, u, tbegin, tend) has weak

semantic, then the algorithm retrieves all contacts in which edge (u, v′) is active at any

timestamp during [tbegin, tend]. Therefore, it returns a contact if edge (u, v′) enters active

in [tbegin, tend] — same as fbegin being odd — or if it enters inactive and, later, it activates

at some timestamp during [tbegin, tend] — same as fend being greater than 0. Instead, if the

query has strong semantic, then it only retrieves contacts in which edge (u, v′) is active

during the interval [tbegin, tend]. Therefore, it returns a contact if edge (u, v′) enters active

— same as fbegin being odd — and keeps active until tend — same as fend being equals to

0.

A.2.3 Operation neighborsr

EveLog cannot answer neighborsr(G, v, tbegin, tend) efficiently. An algorithm would

decompress every event list and, for each one, it would count frequencies of edge events

linearly until time t. As in EdgeLog, a workaround is to build a second EveLog structure

and use it to run the direct query instead. However, as EveLog stores every event, the

negative impact of doubling the space is higher than for the EdgeLog structure.

A.3 Compact Adjacency Sequence

Compact Adjacency Sequence (CAS) also stores activation and deactivation events

and uses the parity property to answer queries. It determines the frequency of edge events

in logarithmic time by using a wavelet tree (CARO; RODRÍGUEZ; BRISABOA, 2015).

As illustrated in Figure 21, CAS represents a temporal graph as a sequence S =

s1, s2, . . . , sn of symbols si ∈ T ∪ V and an extra bitmap B of size n + |V | for storage of

information about adjacencies.

CAS partitions the sequence S into blocks representing events (t, v) ∈ T × V

associated with each source vertex u ∈ V . The partitioning of S follows two steps: (1)

sort the events (t, v) by the source vertices and by their timestamps, respectively; and (2)

remove the timestamp repetitions.

The bitmap B marks the starting position ki of the block associated with each

i-th source vertex in S by filling with ki 0’s after every i-th bit set to 1. In other words,

the value of the first position of B is 1 and the values of the k1 subsequent positions,

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory115

R # k / j # / 9 / e / j + 2 8 2 e + y # e # j / 8 /S

y y y y y y y R

c

R

d

y y y y R

e

y y y yR

b

yyyyyyyyyyyR

a

B

Figure 21 – CAS representation of the temporal graph shown in Figure 2. CAS structure
stores a sequence S and a bitmap B. The u-th bit set to 1 in B marks the
beginning of the S block associated with the u-th source vertex. Each block
associated with the u-th source vertex is an event list ordered by time where,
after a timestamp symbol t, there are target vertices symbols v that, together,
represent events of activation or deactivation of edges (u, v) at timestamp t.
The arrows illustrate the beginning of each u-th block in S and the first
corresponding 0 in B. The vertex c is red-crossed because no event leaves it.

associated with the first source vertex, are 0. The value of the next initialized position is

1 and the values of the following k2 positions, associated with the second source vertex,

are 0. This pattern continues for each source vertex. Note that CAS uses a sorted set V .

B is implemented as a special abstract data type named bitvector, which provides two

operations: c = rank(B, s, i) and j = select(B, s, c), enabling us to compute the count

of a given symbol s up to a position i and to get the smallest position j with count c for

symbol s (NAVARRO, 2016). RRR is a well-known example1 of succinct data structure

to implement a bitvector with rank() and select() costing O(1) operation (RAMAN;

RAMAN; SATTI, 2007).

In order to decrease space usage and improve query performance, CAS encodes

the sequence S using the wavelet tree (GROSSI; GUPTA; VITTER, 2003), a succinct

self-indexed structure that stores a sequence of n symbols from an alphabet Σ of size σ

using O(n log σ) bits. The standard version of wavelet trees uses a static Σ that cannot

change after its creation.

This data structure extends bitvector’s rank() and select() to support also queries

such as rankα(S, i), selectα(S, f), range count[α,β](S, i, j), range next valueα(S, i, j), and

range next value posα(S, i, j) with O(log σ) time complexity. Note that are alternative

implementations in which using more space results in reducing time spent in some of these

operations (NAVARRO, 2016).

The operation rankα(S, i) retrieves the frequency of symbol α in the first i el-

ements of the sequence S; selectα(S, f) returns the position i such that the frequency

of symbol α in s1, s2, . . . , si is f ; range count[α,β](S, i, j) computes the number of sym-

bols in S = si, si+1, . . . , sj considering only symbols in the interval [α, β] ⊆ Σ; and

range next valueα(S, i, j) gets the smallest symbol in si, si+1, . . . , sj larger than α. Op-

eration range next value posα(S, i, j) returns the position of the symbol returned by
1 An implementation of RRR is found in <https://github.com/fclaude/libcds/blob/master/src/static/

bitsequence/BitSequenceRRR.cpp>. Accessed in April, 1st 2020.

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory116

range next valueα(S, i, j).

The wavelet tree also has the operation range report[α,β](S, i, j), which retrieves

separately the frequency of each distinct symbol in S = si, si+1, . . . , sj considering only

symbols in [α, β] ⊆ Σ (GAGIE; NAVARRO; PUGLISI, 2012) with time complexity

O(k log σ), where k is the number of symbols in the result.

CAS uses the wavelet tree by translating queries on the temporal graph represented

by sequence S into wavelet tree queries on bitmaps. Rank and select queries on bitmaps

have the same semantics of the equivalent queries on sequences and can be implemented

with time complexity O(1) and o(log n), respectively, where n is the length of B, with

little impact on space (JACOBSON, 1988). There are others ways to implement these

queries where the tradeoff time-space complexity can be changed.

A.3.1 Operation has edge

In CAS, an algorithm to answer has edge(u, v, t1, t2) needs to find the

frequency of v in the block associated with u in S considering events in the interval

[tbegin, tend]. First, this algorithm finds the beginning and ending positions, i and j, of

the block associated with the source vertex u in S.

Given that there is a bit set in B for each vertex in G, running operation

select1(B, u) returns us the starting position of the u-th block in B. Then, when it runs

i = rank0(B, select1(B, u)) the returned value i points to the position of u block in S.

Similarly, to get the ending position j of the list of adjacencies of u in S, the

algorithm first executes operation select1(B, u + 1) to get the position of the next sym-

bol to u in B. The number of symbols 0 up to position select1(B, u + 1) in B is

rank0(B, select1(B, u + 1)), which returns a value pointing one position after the end

of the event list of u in S. Finally, the position j is rank0(B, select1(B, u + 1))− 1.

Next, to know the number of events before tbegin and verify if u is active when

starts the target interval, the algorithm calls kbegin = range next value postbegin
(S, i, j)

to find the first position kbegin that has a timestamp symbol greater than tbegin to restrict

S to the smaller block S[i, kbegin−1], which has only events that occurred until time tbegin.

Also, it calls kend = range next value postend
(S, i, j) to find the first position kend

that has a timestamp symbol greater than tend to restrict S to the block S[kbegin, kend−1],

which allows to count the number of events that occurred during the interval [tbegin, tend].

Finally, the algorithm calls range count[v,v](S, i, kbegin − 1) to count the frequency

fbegin of symbols v in S[i, kbegin − 1] and range count[v,v](S, i, kend − 1) to count the fre-

quency fend of symbols v in S[kbegin, kend− 1]. If fbegin is odd, then edge (u, v) is active at

time tbegin, else if fend is greater than zero, then (u, v) is actived at some timestamp during

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory117

the interval [tbegin, tend], otherwise (u, v) is not active during [tbegin, tend]. Note that, if it

is a point-based query, where t = tbegin = tend and f = fbegin = fend, then the algorithm

only needs to check if f is odd to answer whether (u, v) is active or not at timestamp t.

A.3.2 Operation neighbors

An algorithm to answer neighbors(u, t1, t2) needs to get the frequency of all

possible target vertices v′ in the block associated with u in S considering events from

tbegin to tend. Similar to has edge(u, v, t1, t2), it first finds the beginning and ending

positions, i and j, respectively, of the block associated with u.

Then, it finds the position kbegin of the first symbol tbegin by calling kbegin =

range next value postbegin
(S, i, kend) and the position kend of the first symbol with value

greater tend by calling kend = range next value postend
(S, i, j) to restrict S to the block

S[kbegin, kend − 1].

Next, the algorithm calls range report[α,β]⊆V (S, 1, kbegin) to collect the frequency of

all possible target vertices v′ inside S[1, kbegin] into C1 and range report[α,β]⊆V (S, kbegin +

1, kend−1) to collect the frequency of all possible target vertices inside S[kbegin+1, kend−1]

into C2.

Finally, it checks weak or strong semantics for every vertex collected. If the interval

query has weak semantic, the algorithm only retrieves contacts in which edge (u, v′) enters

active in [tbegin, tend] — same as having odd frequency in C1 — or whether it deactivates

during [tbegin, tend] — same as having frequency greater than 0 in C2.

Instead, if the interval query has strong semantic, a contact is returned if an edge

(u, v′) enters active — same as having odd frequency in C1 — and does not deactivate

until tend — same as having frequency equals to 0 in C2.

A.3.3 Operation neighborsr

As the previous data structures, CAS also does not tackle neighborsr(u, t1, t2)

efficiently. There are two different approaches to answer this query. In the first approach,

an algorithm checks the frequency of symbols v in all blocks of S associated with source

vertices u′. In order to determine these frequencies, first the algorithm restricts the sym-

bols of each block, similarly to the previous algorithms. Next it calls range count[v,v]⊆V

inside each one, and, finally, it collects contacts in which an edge (u′, v) holds weak or

strong semantics during [tbegin, tend]. A second approach, similar to previous structures,

keeps another CAS structure where every edge would have its direction reversed. Then, it

answers neighborsr(u, t1, t2) by calling neighbors(u, t1, t2) in this second structure.

The first approach would access all structure, which would impact severely in time, while

the second approach would double the space required.

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory118

/# �# /# �# �/ /# #+ #2 /# 2/ �/ #+ #2 /# 2/ �/ #+ /#S

y R

4

y y y y y R

5

y y yyyyR

3

yyyR

2

yyR

1

yR

0

B

Figure 22 – CET representation of the temporal graph shown in Figure 2. CET structure
has a sequence S(2) containing 2-dimensional symbols and a bitmap B. The
t-th bit set to 1 in B marks the beginning of the S(2) block associated with the
t-th timestamp. Each block associated with the t-th timestamp has symbols
(u, v) ∈ V × V that represents an event of activation or deactivation of edge
(u, v) at timestamp t. The arrows illustrate the beginning of each t-th block
in S(2) and the first corresponding 0 in B.

A.4 Compressed Events Ordered by Time

Compressed Events ordered by Time (CET) uses a bi-dimensional sequence S(2) =

s
(2)
1 , s

(2)
2 , . . ., where symbols s

(2)
i represent tuples (u, v) ∈ V ×V , and a bitmap B with size

|B| = |S(2)| + |T | to mark timestamps (CARO; RODRÍGUEZ; BRISABOA, 2015). As

illustrated in Figure 22, it groups symbols in S(2) by time instead of grouping by source

vertex. Each symbol s
(2)
i = (u, v) in a block associated with time t represents an event

of activation or deactivation of edge (u, v) at time t. Bitmap B marks the beginning of

events associated with time t.

CET uses the interleaved wavelet tree data structure to store the sequence S(2)

efficiently (CARO; RODRÍGUEZ; BRISABOA, 2015). This structure generalizes the

operations supported by standard wavelet trees to multidimensional sequences S(d) =

s
(d)
1 , s

(d)
2 , . . ., where d is the dimensionality of symbols s(d) = (s1, s2, . . . , sd).

CET uses this structure to store edges (u, v) efficiently as bi-dimensional sequences.

Then, it can be used later to retrieve graph information, such as edges frequency, by using

queries such as rank(u,v)(S(2), i), range countΣ(2)(S(2), i, j), range reportΣ(2)(S(2), i, j),

range next value(u,v)(S(2), i, j), and range next value pos(u,v)(S(2), i, j) in O(log Σ(2))

time complexity, where Σ(2) is the alphabet formed by every pair of vertices V × V .

A.4.1 Operation has edge

An algorithm to answer has edge(u, v, t1, t2) first finds the positions i and j

in S(2) associated with tbegin + 1 and tend + 1, respectively, by using the operation select()

of the bitvector implementing the bitmap B.

Then, it calls rank(u,v)(S(2), i−1) to retrieve the frequency of events regarding edge

(u, v) until timestamp tbegin and rank(u,v)(S(2), j − 1) to retrieve the frequency of events

during the [tbegin, tend]. Next, similar to previous strategies, it uses the parity property to

answer whether edge (u, v) is active or not during the interval [tbegin, tend].

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory119

A.4.2 Operation neighbors

In order to answer neighbors(u, t1, t2), an algorithm finds positions i and j

associated to t and t + 1, then it performs range report(u,v)⊆V (S(2), 1, i − 1). For weak

semantic, if the frequency of symbol (u, v) is odd, it adds edge (u, v) to the result, then,

for the remaining symbols, it calls range report(u,v′)⊆V (S(2), i, j− 1) and, if the frequency

of symbol (u′, v′) is greater than 0, it also adds edge (u′, v′) to the result. For strong

semantic, if the frequency of symbol (u, v) is odd, it discards edge (u, v) from the result,

then, for the remaining symbols, it calls range report(u,v)⊆V (S(2), i, j − 1) and removes

from result the edges in which the corresponding symbols have frequency equal to 0.

A.4.3 Operation neighborsr

Differently from the previous structures, CET has the same time complexity for

retrieving direct and reverse neighbors of a given vertex v. An algorithm to answer

neighborsr(u, t1, t2) is similar to neighbors(u, t1, t2). The only difference is that it

calls range report(u,v)⊆V instead of range report(v,u)⊆V . In other words, we just swap the

dimension values of symbols in S(2).

A.5 Temporal Graph Compressed Suffix Array

Temporal Graph Compressed Suffix Array (TGCSA) is a technique based on

the Compressed Suffix Array (CSA) (SADAKANE, 2003) to store and query temporal

graphs (BRISABOA et al., 2018). It represents a list of contacts using a string with unique

characteristics and transforms the problem of querying temporal graphs in a substring

matching problem. Therefore, TGCSA represents a list of contacts C = c1, c2, . . . , cn,

where ci = {u, v, tbegin, tend} ∈ G, as a sequence S = s1, s2, . . . , sm formed by the concate-

nation of all ci.

Note that, each element in a contact should be represented by a unique symbol. For

this, TGCSA constructs and stores a dictionary Σ to encode S considering the following

rules: u ∈ [1, |V |], v ∈ [|V |+ 1, 2|V |], tbegin ∈ [2|V |+ 1, 2|V |+ |T |] and tend ∈ [2|V |+ |T |+

1, 2|V |+2|T |]. That is, symbols that encode source vertex have lower values than symbols

that encode target vertex, which in turn, have lower values than activation timestamps

and, which in turn, have lower values than deactivation timestamps. By using these

rules, TGCSA can order the symbols in Σ in 4 different groups and take advantage of

this property for speeding-up queries later. For now on, we will assume the string E to

be the sequence of encoded contacts obtained from S by using codes in Σ. Note that, it

is possible to decode symbols in E using Σ.

The standard Suffix Array (SA) strategy(MANBER; MYERS, 1993), depicted in

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory121

Σ, then it calls i = select1(D, e′
1) and j = select1(D, e′

1 + 1) − 1 to find the range of

positions [i, j] containing suffix candidates beginning with the symbol e′
1. Next, for each

suffix candidate Su with starting position at k ∈ [i, j], it tries to retrieve its next symbol

position by calling k = Ψ[k] and, then, its next symbol value by calling rank1(D, k − 1).

Next symbols for a candidate Su are successively retrieved until the algorithm finds a

symbol that does not match the next symbol in the query E ′ or it successfully matches its

first l symbols, i.e. the query size. In the first case, it discards safely the corresponding

suffix candidate and, in the second, it returns the corresponding matching suffix Su.

A.5.1 Operation has edge

An algorithm to answer has edge(u, v, t1, t2) is similar to the string matching

strategy we described. First, it encodes u to its corresponding encoding e′ using the

dictionary Σ. Then, it calls i = select1(D, e′) and j = select1(D, e′ + 1) − 1 to find the

beginning and ending positions of suffixes that start with the encoded symbol e′. Next,

for each suffix candidate Su with stating position at k = [i, j], it tries to construct a

candidate contact c = {u′, v′, t′
begin, t′

end}, where u′ = u, v′ = M(rank1(D, Ψ[k]) − 1),

t′
begin = M(rank1(D, Ψ[Ψ[k]]) − 1) and t′

end = M(rank1(D, Ψ[Ψ[Ψ[k]]]) − 1), where the

function M(.) decodes symbols using Σ. Note that, k = Ψ[k] retrieves the position

of the next encoded symbol, rank1(D, k) − 1 computes the encoded symbol at position

k and M(.) decodes it back to the corresponding contact element. Finally, it collects

all candidate contacts that intervals overlaps with [tbegin, tend]. As the general substring

matching case we presented earlier, the algorithm can also discard candidates that does

not match the query immediately as next symbols are discovered.

A.5.2 Operation neighbors

An algorithm to answer neighbors(u, t1, t2), similarly, encodes u to its corre-

sponding encoding e′ using the dictionary Σ, finds the sufixes that start with the en-

coded symbol e′ and constructs the candidate contacts. However, it collects only the

candidate contacts that satisfy the required interval semantic. If neighbors(u, t1, t2)

has weak semantic, then the algorithm collects the contacts in which t′
begin ≤ tend and

t′
end ≥ tbegin, othewise, if it has strong semantic, then it collects the contacts in which

t′
begin ≤ tbegin ≤ tend ≤ t′

end.

A.5.3 Operation neighborsr

In order to answer neighborsr(u, t1, t2) efficiently, the authors introduced a

modified version of the Ψ array. In the original array Ψ, if a suffix candidate Su with

starting position at k starts with a symbol that corresponds to a deactivation times-

tamp encoding, then, the next suffix symbol at position k = Ψ[k] would correspond

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory122

to the source vertex encoding of the next contact. In Brisaboa et al. (2018), the au-

thors modified Ψ to make it cyclical regarding the same contact, thus, the suffixes in

the last 25% positions of Ψ — those corresponding to deactivation time encodings —

points to the suffixes corresponding to the source vertex encoding of the same contact.

Hence, an algorithm to answer neighborsr(u, t1, t2), first encodes v and, then, it it-

erates the suffixes that starts with the v encoding to construct the candidate contacts

c = {u′, v′, t′
begin, t′

end}, where, in this case, u′ = M(rank1(D, Ψ[Ψ[Ψ[i]]]) − 1), v′ = v,

t′
begin = M(rank1(D, Ψ[i]) − 1) and t′

end = M(rank1(D, Ψ[Ψ[i]]) − 1). The next steps

are the same as in neighbors(G, u, tbegin, tend). Therefore, neighbors(u, t1, t2) and

neighborsr(u, t1, t2) have the same time complexity.

A.6 Compressed k
d Tree

Compressed kd tree (ckd-tree) (CARO et al., 2016) is a compressed version of the

kd-tree that stores d-dimensional bitmaps efficiently (BERNARDO, 2014). As shown in

Figure 24, the ckd-tree represents recursively the decomposition of a d-dimensional bitmap

into equal sized partitions. At each level, it splits the current bitmap partitions of size

(s1, s2, . . . , sd) into kd smaller partitions of size (s1

k
, s2

k
, . . . , sd

k
) and redirects them to the

lower level nodes. Each node stores a 1-dimensional bitmap B of size kd to describe which

partition can be further split. If the current partition only contains bits 0 then there is no

need to split it further and, therefore, the corresponding position at bitmap B is set to 0.

Otherwise, if it contains some bit 1 then the corresponding position at bitmap B is set to

1 and, additionally, the node holds a pointer to the next child that will split it further. To

check the state of some bit b in a d-dimensional bitmap at position p = (p1, p2, . . . , pd), an

algorithm traverses the tree following a top-down approach and, at each level, it search for

the i-th partition that contains p and descend to the corresponding child whether Bi = 1.

If at some point Bi = 0 then b = 0, otherwise, if the algorithm reaches an external node

with Bi = 1 then b = 1.

Caro et al. (2016) stores and query temporal graphs by using ck4-trees with each

dimension representing, respectively, source vertices, target vertices, activation times and

deactivation times of contacts. As temporal graphs are usually sparse, a naïve implemen-

tation of the ck4-tree structure would traverse many nodes with only one child until it

reaches an external node. In order to decrease the number of nodes with only one child

and, consequently, improve space and query efficiency, the ck4-tree uses a second type of

external node to store only the relative coordinates of the cell that has the single value

1 inside the current partition. Therefore, internal nodes also must store an additional

1-dimensional bitmap to differentiate the type of external nodes, with values being 0 if

the corresponding children represent partitions with more than one bit 1 or 1 if children

represent partitions with a single bit set to 1.

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory123

0

0

0 1

1

0

2

1

3

0

4

0

5

0

6

0

7

01 0 1 0 1 0 0 0

02 0 0 0 0 0 0 0

03 1 0 0 0 0 0 0

04 0 0 1 0 0 0 0

05 0 0 0 0 0 0 0

06 0 0 0 0 0 0 0

07 0 0 0 0 0 0 0

yR

yyR

yyRy

y

R

yyyR

yRyy

R

yR

Ryyy

R

yRRy

R

yyRy

(a) (b)

yR

p1 : (3, 4)

R

p0 : (4, 1)

R

yR

p3 : (1, 3)

R

yR

p5 : (2, 1)

R

p4 : (3, 0)

y

R

p2 : (1, 0)

R R R y R R R y y R R yN

y R R R y R R RB

C (0, 1) (3, 0) (1, 0) (1, 1)
p0 p1 p2 p3

(c) (d)

Figure 24 – kd tree representation, with k = 2 and d = 2, of the underlying non-temporal
graph shown in Figure 2 (only edges without timestamps). In (a), we show
the 2-dimensional matrix that stores the binary relations between source and
target vertices, u and v, respectively. In (b), we show the corresponding kd

tree without path compression. Each node has kd children representing kd

different partitions of size m/2l−1 inside the original matrix, where l is the
level of a node in the tree. In (c), we show the corresponding ckd tree, which
compresses whole paths into black nodes. Instead of storing whole paths that
results in single bits set to 1, the ckd tree stores only the global coordinates
regarding these single bits in a different type of node. Finally, in (d), we
show the memory layout of the ckd tree that contains a bitarray N , with
information about bits set, a bitarray B, with information about colors for
bits set to 1 and an array C of relative coordinates from the current partitions.
Note that C does not store global coordinates to save space. Also, it does
not store positions of black nodes in the last level since these positions can
be obtained during searches.

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory124

A.6.1 Operation has edge

An algorithm to answer has edge(u, v, t1, t2) uses the point(T , P) query inter-

nally, passing the ck4-tree T constructed from G and the d-dimensional point of interest

P = 〈u, v, tbegin, tend〉. Starting at the root node, the point(T , P) query algorithm de-

scends the ckd-tree recursively checking at every level if there is a child partition that

may contain P . If the algorithm does not reach an external node then there is no edge

(u, v) active during the interval [tbegin, tend]. Otherwise, depending on the type of the

external node, it verifies whether the cell that contains P in the current partition is set

to 1 to check if an edge (u, v) is active during the interval [tbegin, tend] or not. If the exter-

nal node has an 1-dimensional bitmap B (type 1), the algorithm calculates the relative

position Pr in the current partition using the path it traversed to reach this node and,

then, it checks whether Bi = 1, where i is the position associated with the cell Pr in the

current partition. Otherwise, if the node stores only the relative position Cr of the single

bit 1 inside the corresponding partition (type 2), the algorithm calculates Pr and, then,

it checks whether Pr = Pr.

A.6.2 Operation neighbors

An algorithm to answer neighbors(u, t1, t2) uses the range(T , R) query inter-

nally by passing the ck4-tree T constructed from G and the d-dimensional region of interest

R formed by the lower boundary L = 〈u, min (V), min (T), tbegin+1〉 and the upper bound-

ary U = 〈u, max (V), tbegin, max (T)〉. Starting at the root node, the range(T , U) query

algorithm descends recursively all children whose partitions overlap R until it reaches

all possible external nodes. Then, for each external node, the algorithm computes the

bit 1 coordinates that overlap R depending on its type and adds them to the result set.

If the external node has a 1-dimensional bitmap B (type 1), the algorithm searches for

the positions i where Bi = 1, compute the relative positions associated with positions i

and calculate the global coordinates based on the path it traversed to reach the node.

Otherwise, if the node stores only the relative position of the single bit 1 inside the corre-

sponding partition (type 2), the algorithm simply calculates the global coordinate based

on the path it traversed.

A.6.3 Operation neighborsr

An algorithm to process neighborsr(u, t1, t2) is similar to the direct query.

However, it fixes the second dimension — the dimension associated with target ver-

tices — instead of the first when calling range(T , R), thus, the region R is formed by

L = (min (V), v, min (T), tbegin+1) and U = (max (V), v, tbegin, max (T)). As CET, finding

direct and inverse neighbors using TGCSA have the same time complexity.

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory125

Table 4 – Worst-case space cost of the temporal graph representations using the number
of vertices n, number of edges m, number of contacts c and the lifetime t of G.

Representation Worst-case Space

EveLog O(c log nt
c

+ n log (n + c))
EdgeLog O(m log nc

m
+ c log mt

c
+ n log m)

CAS O(c log (n + t) + n)
CET O(c log m + t)
TGCSA O(c log (n + t))
ckd tree (d = 4) O(c log nt

c
)

- Cost of pointers was considered when necessary

A.7 Considerations

In this section we compare the data structures we review based on their worst-case

space cost and time cost for answering some queries we described in Chapter 2. In order

to get the information of costs, we simplified the expanded formula, when available, in

the original using the big-O notation. The considered variables are: n, for the number of

vertices; m, for the number of edges in the underlying static graph; c, for the number of

contacts; and t, the for lifetime of the temporal graph. For a more detailed description

see the work by (CARO; RODRÍGUEZ; BRISABOA, 2015).

Table 4 shows the space cost of the data structures we reviewed. In this com-

parison, we considered the cost of pointers when necessary. For instance, the structures

EveLog and EdgeLog stores pointers to map source vertices and their corresponding tem-

poral adjacency lists or event lists. The main sources of space consuming for the EveLog

structure are the number of contacts and vertices. This is due to the number of items

in the temporal adjacency lists, c, and the number of pointers mapping vertices to their

corresponding temporal adjacency lists, n.

In the case of EdgeLog, there are three major sources of space usage: number

of edges, number of contacts and number of vertices. This is because EdgeLog extends

adjacency list for temporal graphs, however, additionally, it stores pointers for time in-

tervals for every edge in the underlying edge, it stores pointers for every vertex to their

corresponding temporal adjacency list, and it stores an additional list of time intervals.

For CAS the major sources of space consumption are the amount of contacts and

the amount of vertices. This is due the size of the sequence to store edge activation and

deactivation events that depends c and stores n + t symbols. Additionally, there is also a

bitvector to store positions in which events corresponding to a source vertex begin in the

sequence based on the amount of vertices n.

CET increases space consumption according to the amount of contacts and the

lifetime of the temporal graph. Similarly to CAS, CET stores a sequence with size based

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory126

Table 5 – Time cost of has edge and neighbors queries with a timestamp parameter
using the number of vertices n, number of edges m, number of contacts c and
the lifetime t of G.

Structure has edge neighbors

EveLog O(c
n
) O(c+m

n
)

EdgeLog O(c
m

+ m
n

+ log (c
n
)) O(c

n
+ m

n
log (c

m
))

CAS O(log (n + t)) O(m
n

log (n + t))
CET O(log n) O(m

n
log n)

TGCSA O(c
m

log (c)) O(c
n

log (c))
ckd tree (d = 4) O(c

1
2) O(c

3
4)

- Uniform degree distribution in the aggregate graph was considered when necessary

Table 6 – Time cost of neighborsr and aggregate queries with a timestamp parameter
using the number of vertices n, number of edges m, number of contacts c and
the lifetime t of G.

Structure neighborsr aggregate

EveLog unfeasible O(c + m)
EdgeLog unfeasible O(c + m log (c

m
))

CAS O(c+m
n

log (n + t)) O(m log (n + t))
CET O(m

n
log n) O(m log n)

TGCSA O(c
n

log (c)) O(c log c)
ckd tree (d = 4) O(c

3
4) O(c)

- Uniform degree distribution in the aggregate graph was considered when necessary

on the amount of contacts, however, the number of symbols is based on the number of

the underlying edges and the size of the bitvector is based on the variable t since it marks

the start of each timestamp in the sequence.

The major source of space consumption of TGCSA is linked to the amount of con-

tacts since it compresses the sequence containing the concatenation of all contacts and

the suffix array of the same size containing the surroundings of each symbol in the original

sequence. This is due that TGCSA store a constant amount of data structures with size

depending on the amount of contacts. For example, it needs to store a dictionary that

maps every symbol in contacts to their corresponding code, a bitvector that stores infor-

mation about symbols in the ordered suffix array and a sequence that stores information

about the surroundings of symbols in the original sequence.

In the case of ckd tree, being d = 4 due to the dimension of contacts, the major

source of space consumption is the number of contacts. This is because the ck4 tree

compresses a tensor of degree 4 containing c bits set with dimensions size based on the

number of vertices n and the lifetime of the temporal graph t.

Tables 5 and 6 show the time cost of the data structures to answer some queries

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory127

we described in Chapter 2. In this table, we compare the following operations: has edge,

neighbors, neighborsr and aggregate. We note that there are only queries based on

a single timestamp and for the costs, as the original authors, we considered a graph

generated using uniform degree distribution. As we can see, for EveLog, the cost of the

query has edge depends on the average number of events of activation or deactivation

in the temporal adjacency list associated with vertex u to find the events with vertex v

until time t. Similarly, the cost of neighbors also depends on the average number of

events of the source vertex u but it needs also to consider the average number of edges in

the underlying graph in that u participates. The neighborsr is unfeasible using only the

temporal adjacency lists for the outgoing contacts because it would traverse the entire

structure. One can also store another structure that considers the incoming contacts of

a vertex and get time costs similar with the neighbors query, however, it would double

the space needed. Finally, for aggregate, EveLog needs to compute one neighbors for

all vertices u ∈ V to construct the snapshot Gt.

For EdgeLog, the operation has edge needs to decompress the temporal adjacency

list associated with a source vertex u with average size m
n

and the list of time intervals

associated with a destination vertex v with size c
m

. Also, it needs to run binary searches

to check if this edge is active at timestamp t using a binary search. For the operation

neighbors, EdgeLog need to decompress the temporal adjacency list associated with

vertex u and all lists of time intervals associated with vertex v. Then it needs to binary

search the lists containing intervals to check if edge (u, v) is active at time t. For the same

reasoning of EveLog, the operation neighborsr is unfeasible for EdgeLog and it also can

spend about the double the space to have similar costs of neighbors. Finally, aggregate

uses one neighbors for every vertex u ∈ V and a binary search is performed for every

edge (u, v) in the corresponding list of time intervals associated with vertex v. During

this process, all the temporal graph ends up being decompressed.

Differently, the other data structures do not need a decompressing step. For CAS,

the operation has edge perform operations in the underlying wavelet matrix that stores

a sequence representing temporal adjacency lists in for form of events of activation and

deactivation. As this sequence has n + t symbols, a query to count the amount of (v, t)

occurrences in the block associated with vertex v at time t is O(log(n + t)). For query

neighbors, this same reasoning is made for every edge (u, v). In this case, the average

value per vertex is m
n

and, therefore, the total cost is O(m
m

log (n + t)). The neighborsr

operation becomes feasible with the CAS structure because it does not need to decompress

the whole structure as the other two structures. However, it still needs to call one wavelet

tree operation in every block associated with some other vertex u ∈ V to count the

number of events (u, v) in time t. Finally, for aggregate, CAS calls the query neighbors

for every vertex u ∈ V and, thus, it needs to execute one wavelet matrix operation for

each edge (u, v) for u, v ∈ V × V .

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory128

For CET, the operation has edge also uses the operation to count occurrences

on the underlying wavelet matrix representing the sequence of events of activation or

deactivation. However, different of CAS, it stores on the sequence pair of vertices or

edges (u, v) and uses the additional bitvector to split the sequence in blocks with the

same timestamp. Therefore, in the sequence there are only vertex symbols and, therefore,

the cost to count the number of occurrences of (u, v) in the block associated with t is

O(log n). For the operation neighbors, CET calls m
n

times, the average number of edges

for vertex, the wavelet tree operation, thus the total cost is O(m
n

log n). The algorithm

for neighborsr is similar to neighbors, it only needs to change the symbols (u′, v) being

counted and, thus, CET is the first compact data structure to present the same costs

for the both operations. Finally, for aggregate, similar to the other structures so far, it

needs to call neighbors for all vertices u ∈ V and, therefore, it counts occurrences for all

m edges (u, v) with v ∈ V as well.

For TGCSA, the operation has edge spends O(log c) cost to convert symbols

from the data structures to symbols in the original sequence of concatenated contacts.

Therefore, after each call to the array Ψ, the TGCSA needs to decode the symbol using the

dictionary to reason about the resulting symbol. As the substring uv can discard mostly

candidates in the string matching algorithm, there are the average O(c
m

) timestamps to be

checked for edge u, v. For the neighbors, the algorithm cannot filter contact candidates in

the string matching process as for has edge using symbol v, therefore it calls O(c
n
) times

the access operation in the array Ψ and, thus, the same amount of operations for decoding

the resulting symbol using the dictionary. Similarly to CET, the TGCSA structure also

can answer the operation neighborsr with the same cost of the neighbors query. The

reason is that the subsequence matching can be circular using the array Ψ and, thus, the

process can start at symbol filtering candidates by the coded symbol for symbol t and

then use u to continue the process. Finally, for aggregate TGCSA also needs to call n

times the query neighbors for all vertices u ∈ V and, therefore, all contact symbols must

be accessed and decoded.

For the ckd tree, all the graph queries are translated to a range query in the

4-dimensional tensor using a 4 − dimensional rectangle R = (L, U) consisting of the

lower and upper bound points L and U , respectively. For the operation has edge, as

there are 2 dimensions known, the algorithm constructs an rectangle R = (L, U), where

L = 〈u, v, 0, t〉 and U = 〈u, v, t, max(T)〉. Note that the algorithm needs to search in

the region where tbegin ≤ t and tend ≥ t to find contacts with intervals that contains t.

Therefore, at every level of the tree, the search algorithms can descend to k2 children since

half associated with the two first dimensions do not pass the test. Also, the height of the

three is h = logk4 c = 1
4

logk c and, thus, the algorithm visits at most (k2)h = O(c
2
4) nodes.

For the operation neighbors, there are only one known dimension and the algorithm

constructs the rectangle consisting of L = 〈u, 0, 0, t〉 and U = 〈u, max(V), t, max(T)〉.

APPENDIX A. Space-Efficient Data Structures for Querying Temporal Graphs in Primary Memory129

Therefore, the algorithm descends at most (k3)h = O(c
3
4) nodes since just k1 nodes are

not visited at every level. For the operation neighbors, the ckd tree has the same cost as

there is only one fixed dimension and the constructed rectangle consists of L = 〈0, v, 0, t〉

and U = 〈max(V), v, t, max(T)〉. Finally, for the operation aggregate there is no fixed

dimension. Therefore, it constructs a rectangle consisting of L = 〈0, 0, 0, t〉 and U =

〈max(V), max(V), t, max(T)〉 and descends all k4 children every level and, thus, the cost

is (k4)h = O(c).

130

APPENDIX B

Join and split operations for B+-trees

In this chapter, we will present the preliminaries for comparing our novel data

structure based on sequential arrays on disk with the approach introduced in (BRITO

et al., 2022) using self-balanced Binary Search Trees (BSTs). For the latter, we used

B+-trees (ABEL, 1984) as a replacement for the in-memory BSTs. First, we describe in

Section B.1 an algorithm to perform the join operation on B+-trees. Then, we describe

in Section B.2 an algorithm to perform the split operation on B+-trees. They used both

operations in the original article to remove a range of redundant intervals in O(log (τ))

time.

Briefly, the approach introduced in (BRITO et al., 2022) stores, in a matrix n×n,

pointers to BSTs containing time intervals. In each BST, only non-redundant intervals

are kept, i.e., those that do not contain another interval in the same tree. In order to

insert a new interval I into a tree T , their algorithm has three steps: (1) check whether I

do not contain any other interval in T ; (2) remove any interval that becomes redundant,

i.e., those that contain I; and (3) insert I into T . Many intervals can become redundant

during (2); nevertheless, they appear as an ordered sequence of intervals.

The algorithm introduced in (BRITO et al., 2022) removes such sequence of re-

dundant intervals using a join after splits approach. Let L1 and L2 be the endpoints of

the interval sequence to be removed from a BST T . First, their algorithm splits T in two

trees Tleft and Tmid using split(T, L1). Then, it splits Tmid in two other trees Tredundant

and Tright by calling split(Tmid, L2). Finally, it merges Tleft and Tright with the operation

join(Tleft, Tright).

Let each leaf node of B+-trees contains an array K of keys of size N and a pointer

to its next sibling. Let each non-leaf node contains an array of keys K of size M and an

additional array of pointers C to child nodes of size M + 1. Additionally, assume that

every node contains the height of the sub-tree it belongs, a pointer to its leftmost leaf child

and a pointer to its rightmost leaf child. We note that we use these additional per-node

APPENDIX B. Join and split operations for B+-trees 131

data to simplify our algorithms and discussions. In a real implementation, only the root

node (the tree itself) must maintain them during the insertion and update operations.

Information regarding the rest of the nodes can be computed during the execution of the

next algorithms without increasing complexities.

B.1 Join operation for B+-trees

Algorithm 10 performs the operation join for B+-trees. Given two B+-trees Tleft

and Tright, such that keys present in Tleft are smaller to keys in Tright, it must merge

both trees in order to create a new valid B+-tree T containing all keys present in Tleft

and Tright. As B+-trees place leaf nodes at the same level, it simply inserts or shares

the data present in the root node of the smaller tree into the appropriate node at the

same height in the bigger tree. Then it maintains the B+-tree invariances up to its root

node of the changed bigger tree whenever necessary. First, in line 11, the algorithm sets

the next sibling of the rightmost leaf of Tleft to be the leftmost leaf of Tright. Then,

if height(Tleft) ≥ height(Tright), in lines 13 and 14, it adds Tright to Tleft by calling

joinRight(Tleft, Tright) and returns Tleft; otherwise, in lines 16 and 17, it adds Tleft to

Tright by calling joinLeft(Tleft, Tright) and returns Tright. From lines 1 to 11, we detail

the joinRight routine, the joinLeft routine is implemented symmetrically. In line 1,

the algorithm descends Tleft until reaching the rightmost node nleft at the same height

of the root node of Tright. If a single node of size B can fit the content of both nleft and

the root node of Tright, in line 5, it simply merges both nodes by adding to nleft the data

present in the root node of Tright. Otherwise, in line 7, it equally shares the data of both

nodes, and, in line 8, it inserts into the parent of nlelft a new key together with a pointer

to the root node of Tright. If the parent node has no space left to accommodate the new

data, a node splitting routine must be invoked and this process can continue up to the

root node of Tleft. Finally, if the algorithm needs to split the current root node of Tleft,

then it creates a new root node, and, in this case, In line 10, it increments the height of

Tleft by one.

Theorem 15. Algorithm 10 accesses O(|height(Tleft) − height(Tright)|) pages in the

worst-case.

Proof. In line 11, the algorithm accesses one page to set the next child node of the

rightmost leaf node of Tleft. Then, it calls joinRight or joinLeft depending on the

heights of Tleft and Tright, both accessing the same amount of pages. Without loss of

generality, assume that height(Tleft) ≥ height(Tright) and it calls thus the joinRight

procedure. Then, at line 2, the algorithm accesses height(Tleft) − height(Tright) pages

while descending to the rightmost node of Tleft at height height(Tright). Next, if there

is enough room to fit the data of both nodes being merged in a single node, it accesses

APPENDIX B. Join and split operations for B+-trees 132

Algorithm 10 join(Tleft, Tright)

Require: Two trees of intervals Tleft and Tright

1: procedure joinRight(Tleft, Tright)
2: nleft ← descend right(Tleft, height(Tleft)− height(Tright))
3: nright ← root(Tright)
4: if size(nleft) + size(nright) ≤ B then
5: nleft ← merge(nleft, nright)
6: else
7: share(nleft, nright)
8: insert rec(parent(nleft), min key(nright), nright)
9: if new root node was created then

10: height(Tleft)← height(Tleft) + 1

11: next leaf(rightmost leaf(Tleft))← leftmost leaf(Tright)
12: if height(Tleft) ≥ height(Tright) then
13: joinRight(Tleft, Tright)
14: return Tleft

15: else
16: joinLeft(Tleft, Tright)
17: return Tright

O(1) pages and the algorithm ends. Otherwise, it accesses O(1) pages to share the

content present in the considered nodes. Then, it accesses, again, O(height(Tleft) −

height(Tright)) pages in order to insert new key and pointer pairs up to the root of Tleft

in the worst-case. Finally, if a new node is created, it access one more page to increment

the height of Tleft and the algorithm ends.

B.2 Split operation for B+-trees

Algorithm 11 performs the operation split for B+-trees. Given an interval key L,

it must split a tree T in two trees Tleft and Tright such that all keys in Tleft are smaller than

I and all keys in Tright are greater or equal to I. To accomplish this task, it recursively

descends T from the root node to the leaf node containing the biggest key less than L

while partitioning nodes appropriately and, during the backward phase of the recursion,

progressively building Tleft and Tright. During each recursive step, in line 1, the algorithm

first finds the position k in the current root node such that K[k] ≥ I, where C[k] is the

pointer that branches to the next child node for non-leaf nodes. If the current root node

is a leaf, in line 3, it partitions the current node in two sub-trees: Tleft, containing a node

with K[1 . . . k − 1]; and Tright, containing a node with K[k . . . N]. Then, in line 4, it sets

the next sibling of Tleft’s root to nil; in line 5, it sets the next sibling of Tright to the next

sibling of T ’s root; and, in line 6, it returns (Tleft, Tright). Note that no other leaf node

besides the affected ones must update the pointer to its next siblings since the resulting

trees will reuse the previous linkages. Next, if the current node is a non-leaf, in line 7,

APPENDIX B. Join and split operations for B+-trees 133

the algorithm partitions the current node in three sub-trees: Tleft, containing a root node

with K[1 . . . k−2] and C[1 . . . k−1]; Tchild, containing a root node with K[k−1 . . . k] and

C[k]; and (3) Tright, containing a root node with K[k + 1 . . . M] and C[k + 1 . . . M + 1].

Additionally, whenever a sub-tree have only one pointer in its root node, its respective

root node becomes the child pointed by it in order to maintain the correct B+-tree layout.

Then, in line 8, it calls the split algorithm itself passing Tchild as parameter and obtaining

two sub-trees T ′
left and T ′

right as the intermediate result. Finally, in line 9, it advances the

intermediate result by joining them appropriately with the sub-trees of the current level.

Algorithm 11 split(T, L)

Require: A tree of intervals T and a key interval L
1: k ← find key position(root(T), L)
2: if root(T) is a leaf then
3: (Tleft, Tright)← split leaf(root(T), k)
4: next leaf(root(Tleft))← nil
5: next leaf(root(Tright))← next leaf(root(T))
6: return (Tleft, Tright)

7: (Tleft, Tchild, Tright)← split non leaf(root(T), k)
8: (T ′

left, T ′
right)← split(Tchild, L)

9: return (join(Tleft, T ′
left), join(T ′

right, Tright))

Theorem 16. Algorithm 11 accesses O(logB (τ)) pages in the worst-case where τ is the

maximum number of keys in the tree.

Proof. During each recursive step, Algorithm 11 needs to: (1) partition the current node

being considered in at least two sub-trees; (2) change pointers to next leaf siblings, whether

the current node is a leaf; and (3) join the current sub-trees with the sub-trees resulting

from the next recursive step. For (1), the algorithm accesses O(1) pages. In the worst-

case scenario, if the root node of a sub-tree has only a single child, the algorithm reads

this child in order to make it the new root node. For (2), the algorithm also accesses

O(1) pages since only two leaf nodes are updated. For (3), the algorithm calls the join

algorithm twice. Without loss of generality, consider only calls maintaining Tleft. From

the node above the leaf node containing the split key up to the root of T , the algorithm

joins the current left sub-tree Tleft with the intermediate left sub-tree T ′
left resulting from

the previous iteration. At each iteration there is a join(Tleft, T ′
left) call in which Tleft is

either empty or non-empty. In case Tleft is empty, the algorithm pays nothing and, at the

next iteration, the difference in height between Tleft and T ′
left increases by one. In case

Tleft is non-empty, the algorithm pays the difference in height accumulated so far and, at

the next iteration, the difference in height resets to one. Therefore, as the summation of

all payments is at most the height of the tree, the algorithm accesses O(logB(τ)) pages

while processing all join calls.

