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ABSTRACT

This document presents a system for recognizing Brazilian traffic signs and lights using
artiĄcial intelligence. The main objective of the system is to contribute to road safety
by alerting drivers to potential risks such as speeding, alcohol consumption, and cell
phone use, which could lead to severe accidents and jeopardize lives. The systemŠs core
contribution lies in its ability to accurately detect and classify various traffic signs and
lights, providing crucial warnings to drivers to prevent potential hazards. To achieve this,
the system used the light version of the Single Shot Multibox Detector called SSD-Lite
using Mobilenet version 2 and Mobilenet version 3 as base networks for feature extraction.
The optimal Mobilenet version was selected based on performance evaluations to ensure
a Mean Average Precision (mAP) higher than 80%, which guarantees reliable detection
results. The dataset used for training and evaluation comprises images extracted from
YouTube traffic videos, each meticulously annotated to create the necessary labels for
model training. Through this extensive experimentation, the system demonstrates its
efficacy in achieving accurate and efficient traffic sign and light detection. The results of
the experiments are compared with other existing approaches that focus on detecting only
one type of traffic sign or employ different network types. The proposed system outperforms
these comparative works, showcasing its superiority in handling various traffic sign and
light classes by providing a dedicated dataset for Brazilian traffic sign and light

Keywords: ArtiĄcial Intelligence. MobileNet. SSD. Traffic Signs
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1 INTRODUCTION

Vision is a very important ability for humans, allowing us to interact with and

learn much from our environment, the reason why scientists are trying to replicate it for

computer systems using computer vision. According to (KARN, 2021) computer vision

is about teaching computers to recognize the objects in our lives using a camera as the

input for images that will then be processed.

With the development of society, in the case of road traffic, we have some rules,

and these rules are largely indicated by road signs. Looking at these signs correctly is

very important, because if we do not interpret them correctly, it can lead to some life-

threatening facts in the case of car traffic and thatŠs why there are traffic signs that help

drivers navigate in traffic with other cars and people (WONTORCZYK; GACA, 2021).

In recent years, driver assistance systems with image sensors, such as monocular

and stereo cameras, have gained importance and contributed to pedestrian and driver

safety. In particular, the use of a vehicle-mounted rear-view camera is gradually increasing.

A camera with a wide Ąeld of view that overcomes the driverŠs limited vision can contribute

to this goal, and the use of a Ąsh-eye camera is becoming more common (MIN SU KIM

et al., 2016).

To achieve the goal of establishing an assistance system, object detection is used by

identifying and locating objects in images or videos, and there are a variety of use cases

for object recognition models in different industries and sectors such as medicine, retail,

and agriculture (SINGH, 2021). For example, according to (PA, 2020) , MobileNet, which

is a family of mobile-Ąrst computer vision models, is a simpliĄcation of neural networks

to enable their use in web applications and mobile devices that allow us to quickly build

an image recognition application using very less memory.

With the possibility of mounting a special camera in a car and a classiĄcation

model for image recognition, an algorithm can be developed to recognize traffic signs

whose images are provided by a camera positioned in front of a car, and this work consists

precisely in recognizing vertical traffic signs and traffic lights along with other work to

reduce the number of accidents and help computers interact better with their environment.

Figure 1 and Figure 2 illustrate the Brazilian vertical traffic signs from which we will work

and an example of the three states of the traffic lights found in the images of our dataset.
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Figure 1 Ű Brazilian vertical traffic signs. Extracted from (PALMIERI, 2021).

Figure 2 Ű Brazilian traffic lights. Extracted from (AUTOMOTIVO, 2022).

1.1 MOTIVATION

According to (WHO, 2022), traffic accident results in the death or disability of

approximately 1.3 million people every year in the world. Speeding, driving under inĆuence

of alcohol or any other psychoactive substances, distracted drivers using mobile phones

are some of the main reasons why those accidents occur. As a result, between 20 and

50 million more people are injured, with many of them suffers from injuries that lead to

disabilities.
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In addition to putting the driverŠs life at risk, the recklessness of the driver can

affect other people, inside and outside the vehicle. After all, pedestrians and other vehicles

can be involved in the accident resulting in the death of innocent people (ELAINA, 2021).

Brazil is the third country with the most traffic deaths in the world, according to

data from the Global Status Report on Road Safety, by the World Health Organization.

Deaths resulting from traffic accidents are the one of the leading cause of death in the

country. In 2020, 32,716 people died in traffic accidents in Brazil, which means that, on

average, three people die in traffic every hour (GIOVANNA, 2022).

The most common factors that caused accidents in 2022 are lack of attention, driver

drowsiness, ingestion of alcohol and/or drugs and sudden illness at the wheel, in that order.

The Brazilian Association for Traffic Medecine (ABRAMET) counts for 567 deaths on

federal highways from January to July 2022 related to those causes. In the same period of

2021, there were 544. The increase is just over 4%. Only in the 9th position of the ranking

appears a factor related to the condition of the road, which is the accumulation of water

on the pavement (LAFORE, 2022).

One of the important causes for this high number of accidents could be related

to the increasing dependence of humans to cell phones and their use behind the wheel,

mortality rate from road traffic accidents in Brazil was 19.7 deaths per 100,000 inhabitants

in 2016 (BAZILIO et al., 2022).

According to the mentioned motivations many accidents take place because of the

lack of focus from the drivers. But, is it possible to reduce traffic car accidents by creating

a detection algorithm whose images come from a camera placed inside of a car considering

both vertical traffic signs and traffic lights? To help with answering that question below

is the objective of the present work.

1.2 RESEARCH OBJECTIVES AND CHALLENGES

This section presents the objective of the work separated into general and speciĄc

objectives in the sections below.

1.2.1 General Objective

The objective of this work is to develop an approach for the recognition of vertical

traffic signs and lights, in order to develop a driver assistance system for an autonomous

vehicle, by adapting it to the federal regulation of colors and shapes in Brazil.

1.2.2 SpeciĄc objectives

• Create a dataset of typical Brazilian vertical traffic signs and traffic lights

explained in section 4;
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• Apply an algorithm that can be used on a mobile system using a model that

consumes less resources with a good performance and an acceptable accuracy;

• Achieve high accuracy and low false positive and false negative rates;

• Bring an increased understanding of real-world driving conditions by collecting

and analyzing data from a vehicle driving in various real-world conditions that

will help researchers to better understand the challenges and opportunities

presented by these conditions, and how they may affect the performance of a

detection system.

1.3 HYPOTHESIS

Our hypothesis is that by implementing a combination of image processing tech-

niques and machine learning algorithms with a small convolutional neural network, it is

possible to develop a system for accurately detecting Brazilian vertical traffic signs and

lights in real-time from a camera mounted on a moving vehicle and one could assist in

reducing the number of traffic accidents on Brazilian roads by alerting the driver.

1.4 CONTRIBUTIONS

This section addresses the contributions of this work, which are as follows:

• The assembly of a Brazilian dataset from the vertical traffic signs and traffic

lights with images available on the Internet;

• An increased understanding of real-world driving conditions by collecting and

analyzing data from a vehicle driving in various real-world conditions, which is

how this work could contribute to our understanding of these conditions and

how they may affect the performance of a detection system;

• The present work will help reinforce the computer vision Ąeld by giving the

opportunity to take in consideration new images in the learning detection

process and more speciĄcally in the Brazilian context;

• The development of a light and fast algorithm for embedded systems for the

recognition of traffic signs and lights.

1.5 GENERAL OUTLINE OF THE DOCUMENT

The remainder of this document is organized as follows:

• In chapter 2 we present the concepts of object detection, traffic signs and

lights and artiĄcial intelligence as well as some techniques important to the

understanding of the work;

• In chapter 3 we present some works related to our work;
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• Chapter 4 states the methodology of this project, including the image acquisition

process and the dataset used with the metrics used for model evaluation;

• Chapter 5 describes the experimental results obtained, discussions and compar-

isons between the results obtained;

• Finally, in chapter 6 we present the conclusions, the contributions of the work,

as well as some suggestions for future work.

1.6 PARTIAL CONCLUSION

This chapter serves as an introduction to the research problem addressed in our

study, which primarily stems from driver inattention. It highlights the signiĄcance of

developing an algorithm to address this issue and outlines the key motivations driving

our research. The ultimate goal is to create a driver assistance system for autonomous

vehicles that can effectively recognize vertical traffic signs and traffic lights while adhering

to the color and shape regulations mandated by the Brazilian federal regulations.

In addition to providing an overview of the research problem and objectives, this

chapter also emphasizes the main contributions of our work. Furthermore, it presents

the research hypothesis that guides our investigation. Lastly, the chapter provides a brief

overview of the remaining Ąve chapters that comprise the complete document, outlining

the structure and content of each chapter.
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2 FUNDAMENTALS

In this chapter, we delve into the fundamental concepts necessary for a comprehen-

sive understanding of this work. We begin by providing deĄnitions and explanations of

key concepts related to ArtiĄcial Intelligence (AI). Subsequently, we explore the structure

and functioning of neural networks, which serve as the backbone of many AI applications.

Furthermore, we touch upon the history and technological advancements in the Ąeld of

deep learning, with a speciĄc focus on object detection. By covering these topics, we aim

to lay the groundwork for the subsequent chapters, where we delve deeper into the speciĄc

application of object detection for our research purposes.

2.1 TRAFFIC SIGN

As per the grammar deĄnition provided by (ENGLISH GRAMMAR HERE, 2020),

traffic signs are regulatory guidelines that dictate where, when, and at what speed one

can drive. These signs play a crucial role in ensuring a smooth Ćow of traffic and ensuring

the safety of drivers and their passengers. They provide instructions on various aspects,

such as lane usage, right-of-way, and parking. Traffic signs are categorized into different

types, as outlined below.

2.1.1 Category

According to the Road Traffic Regulations (GOVERNMENT, 2022), traffic signs

can be classiĄed into various categories, each serving a speciĄc purpose. These categories

include regulatory signs, warning signs, guide signs, and information signs. Below is a

brief overview of each category:

• Regulatory signs: Regulatory signs are an essential component of traffic control

systems as they communicate speciĄc traffic laws and regulations to road users.

These signs serve to inform drivers of important instructions and restrictions

that must be followed for safe and orderly traffic Ćow. Common examples of

regulatory signs include speed limit signs, stop signs, yield signs, and various

other signs indicating speciĄc actions or prohibitions.

Regulatory signs are typically designed in a rectangular or square shape, allowing

for clear visibility and easy recognition on the road. The standardized shape and

color schemes of these signs contribute to their effectiveness in conveying the

intended messages to drivers. By displaying concise and universally understood

symbols or text, regulatory signs help ensure compliance with traffic laws and

promote overall road safety.
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Figure 3 Ű Example of a regulatory sign. Extracted from (PALMIERI, 2021).

• Warning signs: Warning signs play a crucial role in ensuring road safety by

notifying drivers of potential hazards or speciĄc conditions that they should be

aware of while traveling. These signs serve as early warnings, allowing road users

to take appropriate precautions and adjust their driving behavior accordingly.

Warning signs cover a wide range of situations and can include signs indicating

construction zones, detours, sharp curves, steep grades, narrow bridges, or any

other factors that may pose a potential risk. To enhance visibility and distinguish

them from other types of signs, warning signs are typically shaped like diamonds.

This distinct shape, combined with bold colors and clear symbols or text, ensures

that these signs stand out and capture the attention of drivers, enabling them

to anticipate and respond to potential dangers effectively. By providing advance

warning and promoting cautious driving, warning signs contribute to minimizing

accidents and enhancing overall road safety.

Figure 4 Ű Example of a warning sign. Extracted from (PALMIERI, 2021).

• Guide signs: Guide signs serve as essential navigational aids, providing road users
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with valuable information to help them navigate the road network effectively.

These signs offer guidance by indicating the names of roads, directions to major

destinations, and the distances to those destinations. By providing clear and

concise information, guide signs assist drivers in making informed decisions

about their route and reaching their desired destinations.

Guide signs come in various shapes, depending on the type of information they

convey. For instance, signs indicating the name of a road or highway typically

have a rectangular shape, while signs providing directional information may

have an arrow-like shape. The use of different shapes helps road users quickly

identify the purpose and relevance of each sign, enhancing their ability to follow

the intended route and make informed decisions while driving.

With their informative nature and distinct shapes, guide signs play a crucial role

in assisting road users with navigation, ensuring smoother and more efficient

travel experiences.

Figure 5 Ű Example of a guide sign. Extracted from (PALMIERI, 2021).

• Information signs: Information signs play a vital role in providing road users with

valuable information about various services and facilities available near the road.

These signs serve as guides, helping drivers locate and access essential amenities

and services during their journey. Examples of information signs include those

indicating rest areas, gas stations, parking areas, food establishments, lodging

facilities, and more.

By displaying clear and recognizable symbols or icons, these signs enable drivers

to quickly identify the availability of speciĄc services or facilities along their

route. This information is particularly helpful during long trips or when drivers

are in unfamiliar areas, as it allows them to plan their stops and make necessary

arrangements conveniently.
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Information signs are designed to be easily noticeable and readable, ensuring

that road users can quickly interpret the displayed information while maintain-

ing their focus on the road. These signs typically feature universally recognized

symbols or concise textual descriptions to convey the type of service or facil-

ity being advertised. This standardized approach enhances the effectiveness of

these signs and promotes safe and efficient travel by providing drivers with the

necessary information to meet their needs during their journey.

Figure 6 Ű Example of a information sign. Extracted from (PALMIERI, 2021).

• Temporary signs: Temporary traffic control signs play a crucial role in informing

road users about construction activities or temporary changes in traffic patterns.

These signs are speciĄcally designed to ensure the safety and efficiency of traffic

Ćow in and around construction zones. They serve as visual cues to alert drivers

of detours, lane closures, or other temporary traffic control measures that may

be in place.

Examples of temporary traffic control signs include detour signs, which guide

drivers along alternative routes when their regular route is temporarily closed or

impassable. Lane closure signs inform drivers of reduced or restricted lanes due

to construction work. Signs indicating Ćagger-controlled traffic notify drivers

that traffic Ćow is being managed by a Ćagger at a speciĄc point, requiring

them to follow their directions.

To enhance their visibility and recognition, temporary traffic control signs often

feature bold and vibrant colors, such as orange or yellow, and are equipped

with reĆective materials to ensure visibility during both daytime and nighttime

conditions. These signs typically have a standardized design, incorporating

clear symbols, arrows, and text to convey the necessary information quickly

and effectively.

By providing clear and concise information about temporary traffic control

or construction activities, these signs contribute to the overall safety of both

drivers and construction workers, minimizing confusion and potential hazards

in the vicinity of work zones.
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Figure 7 Ű Example of a temporary sign. Extracted from (PALMIERI, 2021).

2.2 ARTIFICIAL INTELLIGENCE

ArtiĄcial intelligence (AI) encompasses the ability of computer programs or ma-

chines to demonstrate intelligent behavior, acquire knowledge from data, and carry out

tasks that traditionally necessitate human intelligence. It is an expansive discipline within

computer science dedicated to the advancement and construction of intelligent systems.

According to (AMISHA et al., 2019), AI involves the construction of intelligent

machines capable of thinking and learning. It encompasses a range of techniques and

approaches designed to empower computers to execute intricate tasks and make intelligent

choices.

According to (HAENLEIN et al., 2019), AI is characterized as the capacity of a

system to effectively comprehend external data, acquire knowledge from it, and utilize

that knowledge to accomplish predeĄned objectives and tasks. This deĄnition emphasizes

the signiĄcance of data-driven learning, which serves as a fundamental element in our

project.

In the context of this study, the deĄnition provided by (HAENLEIN et al., 2019)

is particularly relevant due to its emphasis on learning from data, which aligns with the

speciĄc objectives of our project. However, other deĄnitions, such as the one by Science

and Intelligence (2019), also emphasize the goal of making computers intelligent and

highlight the role of computer vision as a subset of AI, which we will explore further in

the following section.

2.3 COMPUTER VISION

Computer vision refers to the capability of computers to recognize patterns in

images, enabling them to perceive and understand visual information similar to humans.

(XU et al., 2021) describe it as the ability of computers to see and detect objects in images.

This Ąeld of study is an integral part of artiĄcial intelligence.

According to (BROWNLEE, 2019), computer vision is a speciĄc area that focuses

on teaching computers to see and learn from digital images. By analyzing and interpreting

visual data, computers can gain insights and extract meaningful information.

Both deĄnitions are relevant to the objectives of this study. Our goal is to utilize

computer vision techniques and algorithms to analyze digital images, speciĄcally traffic
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signs, in order to detect and classify them accurately. The subsequent section will provide

further details about the speciĄc aspects of our research related to traffic sign recognition.

2.3.1 Image recognition

Image recognition, in the context of machine vision, is the ability of software to

identify objects, places, people in images and assign a single, high-level label to that image

by analyzing and interpreting the imageŠs pixel patterns (EWAN, 2019).

2.3.2 Object recognition

According to (TAN; LE, 2019), object recognition is a computer technology related

to computer vision and image processing that deals with detecting instances of semantic

objects of a certain class in digital images and videos. Below weŠll see some different types

of object detection.

2.3.3 Object detection types

CNN-based object detection methods can be grouped into two genres: one-stage

and two-stage. The two-stage methods Ąrst extract region proposals and then classify and

regress each proposal to achieve detection results. The mainstream two-stage methods

include R-CNN, SPPNet, Fast R-CNN, Faster R-CNN, etc. But the two-stage approaches

incur a lot of computational costs. One-stage methods discard the stage of generating

region proposals, in order to accelerate the inference speed and achieve real-time detection.

The representative of one-stage methods includes YOLO, SSD, and RetinaNet. According

to (CHOUDHURY, 2020), below are some object detection used in computer vision.

• Region Based Convolutional Neural Networks (R-CNN): R-CNN was proposed

by (GIRSHICK et al., 2013) and obtained a mean average precision (mAP)

of 53.3 % with more than 30 % improvement over the previous best result on

PASCAL VOC 2012. It improves the quality of candidate bounding boxes and

uses deep architecture to extract high-level features.

Figure 8 Ű R-CNN architecture. Extracted from (DIWAN; ANIRUDH; TEMBHURNE,
2023).
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• Region-based Fully Convolutional Networks (R-FCN): R-FCN is a region-based

detector for object detection. Unlike other region-based detectors that apply

a costly per-region sub-network such as Fast R-CNN or Faster R-CNN, this

region-based detector is fully convolutional with almost all computation shared

on the entire image. R-FCN consists of shared, fully convolutional architectures

as is the case of FCN that is known to yield a better result than the Faster

R-CNN. In this algorithm, all learnable weight layers are convolutional and are

designed to classify the ROIs into object categories and backgrounds.

Figure 9 Ű R-FCN architecture. Extracted from (DAI et al., 2016).

• Spatial Pyramid Pooling in Deep Convolutional Networks (SPP-Net): In R-

CNN, due to the existence of FC layers, CNN requires a Ąxed size input, and

due to this R-CNN crops each region proposal into the same size. It may happen

that objects may partially appear in the wrapped region and also unwanted

geometric distortion may be produced due to wrapping operation. These content

losses or distortions will reduce recognition accuracy, especially when the scales

of objects vary (HE et al., 2014).

Figure 10 Ű SPP-Net architecture. Extracted from (HE et al., 2014).
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• Fast Region-based Convolutional Neural Network (Fast R-CNN): To tackle the

above problems, (GIRSHICK, 2015) introduced a multi-task loss on classiĄca-

tion and bounding box regression by proposing a novel CNN architecture named

Fast R-CNN. In Fast R-CNN, Ąrstly the whole image is processed with stan-

dard convolution architecture like VGG16 to produce a feature map, this step

is similar to SPP-Net and after that, a Ąxed-length feature vector is extracted

from each region proposal with a region of interest (RoI) pooling layer.

Figure 11 Ű Fast R-CNN architecture. Extracted from (DIWAN; ANIRUDH; TEMB-
HURNE, 2023).

• Faster Region-based Convolutional Neural Network (Faster R-CNN): To solve

this problem, (REN et al., 2015) introduced an additional Region Proposal

Network (RPN), which acts in a nearly cost-free way by sharing full-image conv

features with detection networks i.e instead of using a selective search algorithm

on the feature map to identify the region proposals, a separate network is used

to predict the region proposals. RPN is achieved with a fully convolutional

network, which has the ability to predict object bounds and scores at each

position simultaneously. RPN takes an image of arbitrary size to generate a

set of rectangular object proposals. The important point here is to note that

RPN operates on a speciĄc conv layer with the preceding layers shared with

the object detection network. In other words, to generate ŞproposalsŤ for the

region where the object lies, a small network is slid over a convolutional feature

map that is the output by the last convolutional layer.

Figure 12 Ű Faster R-CNN architecture. Extracted from (DIWAN; ANIRUDH; TEMB-
HURNE, 2023).
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• You Only Look Once (YOLO): All of the previous object detection algorithms

use regions to localize the object within the image. The network does not look

at the complete image, instead, it looks at parts of the image which have high

probabilities of containing the object. YOLO or You Only Look Once, proposed

by Redmon et al. is a novel object detection algorithm much different from the

region-based algorithms seen above. In YOLO a single convolutional network

predicts the bounding boxes and the class probabilities for these boxes. YOLO

makes use of the whole topmost feature map to predict both conĄdences for

multiple categories and bounding boxes. YOLO divides the input image into an

S×S grid and each grid cell is responsible for predicting the object centered in

that grid cell. Each grid cell predicts bounding boxes and their corresponding

conĄdence scores.

Figure 13 Ű YOLO architecture. Extracted from (DIWAN; ANIRUDH; TEMBHURNE,
2023).

• Single Shot MultiBox Detector (SSD): To avoid some of the limitations of

YOLO, (LIU et al., 2016) proposed a Single Shot MultiBox Detector (SSD),

which was inspired by the anchors adopted in MultiBox, RPN, and multi-scale

representation. Given a speciĄc feature map, instead of Ąxed grids adopted

in YOLO, the SSD takes advantage of a set of default anchor boxes with

different aspect ratios and scales to discretize the output space of bounding

boxes. To handle objects of various sizes, the network fuses predictions from

multiple feature maps with different resolutions. In the context of our project

that object detection type will be used as it is a lightweight type combined

with the mobilenet architecture. There is also a variant called SSD-Lite, which

is the same as SSD but implemented with depthwise-separable convolutions

rather than regular convolution layers, itŠs much faster than regular SSD and

perfectly suited for use on mobile devices. SSD is the second one-stage method,

and its main contribution is to propose multi-scale features for object detection.

It signiĄcantly improves the accuracy of the one-stage method, especially for

small objects. RetinaNet proposes a new loss function named focal loss to solve



Chapter 2. fundamentals 30

the extreme foreground background class imbalance encountered during the

training of dense detectors.

Figure 14 Ű SSD architecture. Extracted from (JEE et al., 2021).

2.3.4 Machine learning

According to (JO, 2020), machine learning is a Ąeld of inquiry devoted to un-

derstanding and building methods from data that humans can understand. According

to (DULHARE et al., 2020), Machine Learning is a Ąeld in which computers learn by

repeating several tasks which are considered as experiences.

The deĄnition of (DULHARE et al., 2020) is clearer in the context of this study

but both are related to the learning of computers and to do such learning we need some

artiĄcial neural network as we will see in the section below.

2.3.4.1 ArtiĄcial Neural Network

According to (ZHANG, W., 2010), an artiĄcial neural network is a digital repro-

duction of biological neurons, composed of artiĄcial neurons or nodes and able to learn

thanks to what we call weights by adjusting them.

2.3.5 Deep learning

According to (PEDRAM ATAEE, 2021), deep learning is part of a broader family of

machine learning methods based on artiĄcial neural networks with representation learning.

The learning process can be supervised, semi-supervised, unsupervised, or by reinforcement.

In the case of this study we will be using supervised learning in which the desired output

is already known and is represented as labels for the data.

2.3.5.1 Convolutionnal neural network

According to (GOODFELLOW; BENGIO; COURVILLE, 2016), a convolutional

neural network is a type of artiĄcial neural network that is designed to process data with

a grid-like topology, such as images or audio spectrograms. It consists of multiple layers,

including convolutional layers, which extract increasingly complex features from the input

data, and fully connected layers, which use these features to classify or regress the data.
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Figure 15 Ű CNN architecture. Source: (The authors, 2023).

2.3.5.2 Transfer learning

Transfer learning (TL) is a research problem in machine learning (ML) that focuses

on storing knowledge gained while solving one problem and applying it to a different but

related problem. For example, knowledge gained while learning to recognize cars could

apply when trying to recognize trucks (PAN; YANG, 2010).

2.3.5.3 Dropout

Within the realm of machine learning, dropout serves as a valuable method to

combat overĄtting. By selectively and randomly disregarding particular nodes within a

layer during the training process, it fosters a more independent and robust behavior among

the units, thereby enhancing the modelŠs generalization capabilities. (MARIMUTHU,

2022).

2.3.5.4 Learning rate

In machine learning, the learning rate is like a speed dial that controls how quickly

a model learns from data. Choosing the right learning rate is important. If itŠs too low,

learning will be slow and might get stuck. If itŠs too high, learning will be fast but may

become unstable. Finding the sweet spot is essential for effective and stable model training.

(BROWNLEE, 2019).

2.3.5.5 Layers

In a convolutional neural network, a layer consists of a collection of Ąlters, which

are also known as kernels. These Ąlters slide over the input data in a systematic way,

computing the dot product between themselves and the local region of the input that they



Chapter 2. fundamentals 32

are currently covering. The output of this computation is a new feature map that highlights

the presence or absence of certain patterns or features in the input data. These Ąlters

are learnable, meaning that they are adjusted during training to optimize the networkŠs

performance on a speciĄc task (GOODFELLOW; BENGIO; COURVILLE, 2016).

In a convolutional layer, a set of Ąlters are applied to small, overlapping regions of

the input data, which are known as receptive Ąelds. The Ąlters are designed to look for

speciĄc patterns or features in the input data. By applying these Ąlters to the receptive

Ąelds, the layer produces a set of feature maps that encode the presence or absence of

these patterns or features. This allows the network to learn to recognize more complex

patterns and objects as the depth of the layers increases (LECUN et al., 1998).

2.3.5.6 ReLU

ReLu is a non-linear activation function that is used in multi-layer neural networks

or deep neural networks. The output of ReLu is the maximum value between zero and the

input value. An output is equal to zero when the input value is negative and the input

value when the input is positive (NAIR; HINTON, 2010).

2.3.5.7 Pooling

Convolutional layers in a convolutional neural network systematically apply learned

Ąlters to input images in order to create feature maps that summarize the presence of

those features in the input. Pooling layers provide an approach to down sampling feature

maps by summarizing the presence of features in patches of the feature map. Two common

pooling methods are average pooling and max pooling that summarize the average presence

of a feature and the most activated presence of a feature respectively (GOODFELLOW;

BENGIO; COURVILLE, 2016).

2.3.5.8 Residual layer

A residual layer, also called a residual block, is a building block used in deep neural

networks that helps the network learn more efficiently by reusing output from previous

layers. This allows the network to better capture complex relationships between input

features, and improve accuracy. The residual layer consists of one or more convolutional

layers followed by an element-wise addition of the input to the block, which enables

the network to learn residual functions. These residual functions capture the difference

between the input and output of the block, rather than having the network learn the

entire function from scratch. This approach can help address the problem of vanishing

gradients in deep networks, and make the network easier to train (SHAFIQ; GU, 2022).
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2.3.6 Mobilenet

Several CNN architectures are known to be very big. Nevertheless, there are some

architectures that are quite small. According to (HOWARD et al., 2017), MobileNet is a

deep learning architecture that can be used in mobile and embedded vision applications

that uses depth wise separable convolutions to build light depth weight neural networks.

2.3.6.1 Mobilenet Arquitecture

MobileNets are built on depth wise separable convolution layers. Each depth wise

separable convolution layer consists of a depthwise convolution and a pointwise convolution.

Counting depthwise and pointwise convolutions as separate layers, a MobileNet has 28

layers. A standard MobileNet has 4.2 million parameters which can be further reduced by

tuning the width multiplier hyperparameter appropriately. The size of the input image is

224 × 224 × 3.

Figure 16 Ű Mobilenet architecture. Extracted from (PALMIERI, 2021).

2.4 DATASET

A dataset is a collection of data. In the case of tabular data, a data set corresponds

to one or more database tables, where every column of a table represents a particular

variable, and each row corresponds to a given record of the dataset in question. The data

set lists values for each of the variables, such as for example height and weight of an object,

for each member of the dataset. Datasets can also consist of a collection of documents or

Ąles (MARSLAND, 2014).

2.4.1 Data augmentation technique

Data augmentation technique is a process of artiĄcially increasing the amount

of data by generating new data points from existing data. This includes adding minor
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alterations to data or using machine learning models to generate new data points in the

latent space of original data to amplify the dataset (CUNHA, 2022).

2.5 TRAINING

Training is the process of providing a neural network with large amounts of data

in order to enable it to learn from patterns and make accurate predictions or decisions.

During training, the network adjusts its internal parameters to minimize the difference

between its predictions and the actual outputs using an optimization algorithm such as

stochastic gradient descent. The goal of training is to produce a neural network that

can accurately predict or classify new inputs it has not seen before (GOODFELLOW;

BENGIO; COURVILLE, 2016).

• Pytorch: It is an open-source machine learning (ML) framework based on the

Python programming language and the Torch library. Torch is an open-source

ML library used for creating deep neural networks and is written in the Lua

scripting language (PASZKE et al., 2019).

• Over-Ątting: It is an undesirable machine learning behavior that occurs when

the machine learning model gives accurate predictions for training data but not

for new data (GOODFELLOW; BENGIO; COURVILLE, 2016).

• Loss function: In mathematical optimization and decision theory, a loss function

or cost function is a function that maps an event or values of one or more

variables onto a real number intuitively representing some "cost" associated

with the event. An optimization problem seeks to minimize a loss function. An

objective function is either a loss function or its opposite, in which case it is to

be maximized. The loss function could include terms from several levels of the

hierarchy (CUNHA, 2022).

• Optimizer: According to (PERE, 2020), an optimizer is a function or an al-

gorithm that modiĄes the attributes of the neural network, such as weights

and learning rate. Thus, it helps in reducing the overall loss and improving the

accuracy.

• Type of optimizer: Below are the deĄnitions of the four most commonly used

types of optimizers in deep learning.

1. The term stochastic in Stochastic Gradient Descent means randomness

on which the algorithm is based upon. In stochastic gradient descent,

instead of taking the whole dataset for each iteration, we randomly

select the batches of data. That means we only take few samples from

the dataset (GOODFELLOW; BENGIO; COURVILLE, 2016).



Chapter 2. fundamentals 35

2. The adaptive gradient descent algorithm is slightly different from

other gradient descent algorithms. This is because it uses different

learning rates for each iteration. The change in learning rate depends

upon the difference in the parameters during training. The more the

parameters change, the more minor the learning rate changes. This

modiĄcation is highly beneĄcial because real-world datasets contain

sparse as well as dense features. So it is unfair to have the same value

of learning rate for all the features. The Adagrad algorithm uses the

below formula to update the weights. Here the alpha(t) denotes the

different learning rates at each iteration, n is a constant, and E is

a small positive to avoid division by 0 (DUCHI; HAZAN; SINGER,

2011).

3. RMS prop is one of the popular optimizers among deep learning

enthusiasts. This is maybe because it hasnŠt been published but still

very well known in the community. RMS prop is ideally an extension

of the work RPPROP. RPPROP resolves the problem of varying

gradients. The problem with the gradients is that some of them were

small while others may be huge. So, deĄning a single learning rate

might not be the best idea. RPPROP uses the sign of the gradient

adapting the step size individually for each weight. In this algorithm,

the two gradients are Ąrst compared for signs. If they have the same

sign, weŠre going in the right direction and hence increase the step

size by a small fraction. Whereas, if they have opposite signs, we have

to decrease the step size. Then we limit the step size, and now we can

go for the weight update (DURYEA; GANGER; HU, 2016).

4. The name Adam is derived from adaptive moment estimation. This

optimization algorithm is a further extension of stochastic gradient

descent to update network weights during training. Unlike maintain-

ing a single learning rate through training in SGD, Adam optimizer

updates the learning rate for each network weight individually. The

creators of the Adam optimization algorithm know the beneĄts of Ada-

Grad and RMSProp algorithms, which are extensions of the stochastic

gradient descent algorithms. Hence the Adam optimizers inherit the

features of both Adagrad and RMS prop algorithms. In adam, instead

of adapting learning rates based upon the Ąrst moment(mean) as

in RMS Prop, it also uses the second moment of the gradients. We

mean the uncentered variance by the second moment of the gradients

(KINGMA; BA, 2014).

• LabelImg: As described by (ALTIS, 2022), it is a user-friendly tool for image
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annotation. It provides a graphical interface that allows you to manually draw

bounding boxes around objects in images and automatically saves the anno-

tations that contains information about the image in XML or text format for

each labeled image.

2.6 PERFORMANCE INDICATOR

In machine learning, a performance indicator is a metric that quantiĄes the quality

or effectiveness of a model in solving a speciĄc task. It allows for a quantitative assessment

of how well the model is performing in relation to a particular objective or criterion. Perfor-

mance indicators are frequently employed to evaluate model performance on classiĄcation,

regression, and clustering tasks, among others (ALPAYDIN, 2010). In the context of our

proposal the mean Average Precision (mAP), described in chapter 4, is used as metric to

know how well the model learned from the data.

2.6.1 SSD components

The following components work together in the SSD algorithm to efficiently detect

and localize objects in an input image. By leveraging multiple feature maps at different

scales and aspect ratios, SSD achieves accurate and real-time object detection performance.

• Grid cell: Just like the YOLO algorithm, the SSD algorithm divides the bound-

ing box into a 5x5 grid. Each grid cell is responsible to output the shape,

location, color, and label of the object it contains.

• Anchor box: As the CNN divides the image into a grid, each cell in the grid

is assigned more than one anchor box. SSD model uses a template matching

technique during the training period to match the bounding box with each

ground truth object of the image.

• Aspect ratio: Every object has a different shape and conĄguration. Some are

rounder and larger, while others are shrunk and short. The SSD architecture

helps declare aspect ratios beforehand through a ratio parameter.

• Zoom level: The zoom parameter can magnify smaller objects in each grid cell

to identify their presence, category and location. For example, if we need to

identify a building and a park from a helicopter, we need to scale the SSD

algorithm in a way that it detects both the larger and the smaller objects.

• Receptive Ąeld: Receptive Ąeld is deĄned as that moving set of pixels of the

image that the algorithm is currently working on. Different layers of a CNN

model compute different regions of an input image. As it goes deeper, the size

of the object increases. Just like a microscope, a CNN model magniĄes every

pixel of the object to compute which category it belongs to.
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2.7 PARTIAL CONCLUSION

In this chapter, we introduced and explained various terms associated with traffic

sign and object detection. We discussed different types of models that are commonly used

in this Ąeld and provided an understanding of their functioning. Additionally, we presented

technical terminology related to deep learning, artiĄcial intelligence, and other concepts

relevant to the training process. By familiarizing readers with these terms, we aim to

enhance their understanding of the subsequent discussions and analyses presented in the

following chapters.
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3 RELATED WORKS

This section provides a concise overview of the existing literature on traffic signal

detection, focusing on the types of models employed and the datasets utilized to accomplish

their objectives. It encompasses a range of techniques utilized in these studies.

The work of (ALGHMGHAM et al., 2019) presented a study on vertical Arabia

Saudi traffic sign classiĄcation using Deep CNN and the different angles and including

other parameters and conditions. The images for the dataset, which is a total of 2,718, were

collected from three different cities in Arabia Saudi. Theses images were then transformed

into Gray-scale with a dimension of 30x30 pixels as they were from different dimensions

and as they were in RGB format. Figure 17 is an image of the obtained images after pre-

processing. After the training process the authors obtained an accuracy of 100% within 150

epochs in 16 different experiments on different number of epochs and batch size numbers.

Figure 17 Ű Sample of the traffic signs after the pre-processing. Extracted From (ALGH-
MGHAM et al., 2019).

The work of (PON et al., 2018) proposed a hierarchical model built upon the

ResNet-50 version of R-CNN which is part of the two-stage model detection algorithm and

the images of the dataset are exclusively from the United States. After the experiments

54% as accuracy was obtained but this work is more related to our work as it use two

data sets that is part of our work including traffic sign and lights. Figure 18 shows the

results of that model on different traffic scenes.
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Figure 18 Ű Results of the hierarchical model on images from Los Angeles, United States.
Extracted From (PON et al., 2018).

The work of (HOELSCHER, 2017) presented a study on vertical traffic sign detec-

tion and classiĄcation techniques in images of complex traffic scenarios. The author used

two approaches for image segmentation and selection of regions of interest were tested.

The Ąrst one is a color thresholding with Fourier descriptors but was not satisfactory

and the second one is a color Ąltering using Fuzzy Logic together with and algorithm

that select stable regions in different shades of gray. The model was used with a created

Brazilian dataset by the author and along with the German dataset to obtain 93% as

extraction accuracy and 95% as classiĄcation accuracy. Figure 19 illustrates an overview

of the proposed approach of the author:

Figure 19 Ű The system overview of the author. Extracted From (HOELSCHER, 2017).

The work of (SILVA, F. A. d. et al., 2020) proposed a real-time traffic sign detection

and recognition algorithm using neural network. Three different classes of traffic signs

are used as shown in Figure 20. For the network architecture they used a Faster R-CNN



Chapter 3. related works 40

model with VGG-16 and Inception V4 which had the best result as for feature extraction

network and 128x128 pixel as the input of the images. Those images were collected from

videos that they took using a camera in front of a car and the frames of the video were

extracted to later be augmented using different degrees of rotation on those images where

90% were used for training and 10% for validation. 82% is the accuracy obtained by the

best architecture they used.

Figure 20 Ű The classes used by the authors. Extracted From (SILVA, F. A. d. et al.,
2020).

The work of (BHATT; LALDAS; LOBO, 2022) proposed a model for traffic sign

detection and recognition using deep learning with convolutional neural networks and a

hybrid dataset that includes a reference dataset for German traffic sign recognition from

Kaggle and a self-generated Indian traffic sign dataset with an hybrid dataset from the

previous ones. For the experiments, 50 epochs were used to train on the German dataset,

15 for the Indian created dataset as we can see the different signs that it contains in Figure

21 and 25 epochs on the hybrid dataset which results an accuracy of 95.45% for the hybrid

datasets, 91.08% for the Indian dataset, and 99.85% for the German dataset.

Figure 21 Ű Indian traffic sign dataset used by the Authors. Extracted From (BHATT;
LALDAS; LOBO, 2022).
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The work of (YONEDA et al., 2020) proposed an algorithm which is exclusively

about traffic lights and arrow lights where the method achieved 91.8% and 56.7% as

accuracy for the traffic lights and the arrow lights respectively. Different processes on

the region of interest to be able to detect the arrow lights and the architecture used is

YOLOv3 which is one of the one-stage model detection that has an F-value of 91.8% for

the traffic lights which is calculated in the equation (1).

F − value =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP

2 ∗ TP + FP + FN
(1)

The work of (WALI et al., 2019), presented a comprehensive survey that delves

into the domains of traffic sign detection, tracking, and classiĄcation. The authors conduct

a thorough investigation of algorithms, methods, and speciĄcations pertaining to each

aspect, presenting the Ąndings in well-structured tables along with relevant references.

The survey incorporates a comparative analysis that evaluates TSDR data, performance

metrics, and the accessibility of different techniques. Furthermore, the review sheds light

on the prevailing challenges and issues faced by existing technologies, accompanied by

succinct suggestions for potential enhancements. Figure 22 illustrates the block diagram

of the Block diagram of the traffic sign recognition system from the authors.

Figure 22 Ű Block diagram of the traffic sign recognition system. Extracted From (WALI
et al., 2019).

The work of (WILLIAM et al., 2019), proposed an effective solution for real-time

traffic sign detection and recognition, speciĄcally addressing challenges related to weather

conditions, illumination, and visibility. To achieve this, the authors explored advanced

multi-object detection systems, such as Faster R-CNN and SSD, along with various feature

extractors including MobileNet v1, Inception v2, and Tiny-YOLOv2 but the focus was

on evaluating the performance of F-RCNN Inception v2 and Tiny YOLO v2, as they

demonstrated the most promising results. The architecture of the network they used is in

Ągure 23.
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Figure 23 Ű Testing architecture. Extracted From (WILLIAM et al., 2019).

The work of (DALBORGO et al., 2023) focused on Traffic Sign Recognition sys-

tems enabled by embedded systems with internet connections. The implementation of TSR

systems using Convolutional Neural Networks and datasets for AI training was discussed.

The datasets included a new class for TSR called vegetation occlusion. The results demon-

strated that this approach facilitates faster traffic sign maintenance by utilizing vehicles

as moving sensors. The proposed technique enables the identiĄcation of irregularities in

traffic signs, allowing for timely reporting and Ąxing of issues, ultimately enhancing traffic

safety. The paper also evaluated the performance of various YOLO models based on case

studies. Figure 24 illustrates the annotation process used by the authors.

Figure 24 Ű Image annotation. Extracted From (DALBORGO et al., 2023).

The work of (CHEN et al., 2021) focused on the recognition of small-size traffic signs

by proposing an efficient method called "traffic-signs recognition small-aware," inspired by

state-of-the-art object detection frameworks like YOLOv4 and YOLOv5. The authors also

presented four key contributions of their work. Firstly, they enhance the modelŠs backbone

by incorporating high-level features to improve the detector head. Secondly, they utilized

the receptive Ąeld block-cross in the modelŠs neck to capture contextual information from

the feature map. Thirdly, they reĄned the detector head grid to achieve more accurate

detection speciĄcally for small traffic signs. Lastly, they introduced a data augmentation
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method called Random Erasing-Attention for the input, which increases the difficulty of

samples and enhances the modelŠs robustness. The authors conducted real experiments on

the challenging dataset TT100K and demonstrate that their proposed method signiĄcantly

improves performance compared to the state-of-the-art approaches. Additionally, their

method operates in real-time, making it highly promising for applications in advanced

driver assistance systems and autonomous driving systems. Figure 25 illustrates some

detection examples on the TT100K testing set by the authors.

Figure 25 Ű Detection examples on the TT100K testing set by the authors. Extracted
From (CHEN et al., 2021).

The work of (ZHU; YAN, 2022) presented an experiment evaluating the performance

of the latest version of YOLOv5, a deep learning model, for Traffic Sign Recognition (TSR)

using a dataset created by the authors. The objective was to demonstrate the suitability of

deep learning models for TSR by comparing YOLOv5 with Single Shot Multibox Detector,

another popular object detection algorithm. The experiments utilized the authorsŠ custom

dataset. The experimental results showed that YOLOv5 achieved a mean Average Precision

(mAP) of 97.70% for all classes at a threshold of 0.5, whereas SSD achieves a mAP of 90.14%

under the same conditions. Furthermore, YOLOv5 demonstrated superior recognition

speed compared to SSD. Figure 26 illustrates some examples of the classes they used.
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Figure 26 Ű Classes used by the authors. Extracted From (ZHU; YAN, 2022).

The work of (ZHANG, J. et al., 2019) focused on the development of lightweight

neural networks for traffic sign recognition, speciĄcally designed for resource-constrained

environments. The authors proposed two novel lightweight networks that achieve higher

recognition precision while minimizing the number of trainable parameters. They utilized

knowledge distillation to transfer knowledge from a larger trained model called teacher

network to a smaller model called student network. Additionally, the authors pruned

redundant channels from the student network by identifying insigniĄcant channels based

on the values of batch normalization (BN) scaling factors. This resulted in a compact

model with comparable accuracy to more complex models. The teacher network achieved

an accuracy rate of 93.16% on the CIFAR-10 general dataset. Using the knowledge from

the teacher network, the student network was trained on the GTSRB and BTSC traffic

sign datasets, achieving high accuracy rates of 99.61% and 99.13% respectively, with

only 0.8 million parameters. Figure 27 illustrate the confusion matrix (CM) they used as

evaluation metrics for their student network on the GTSRB dataset.
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Figure 27 Ű Confusion matrix on the GTSRB dataset. Extracted From (ZHU; YAN, 2022).

The work of (FREDJ et al., 2023) addressed the importance of road traffic signs for

driver safety and the potential beneĄts of multi-step traffic forecasting on road networks.

The authors focused on traffic sign recognition using Deep Convolutional Neural Networks,

which have shown excellent results in this domain. The authors proposed a Traffic and

Road Sign recognition system based on CNNs and evaluate its performance using a novel

dataset called the Tunisian traffic signs dataset. To enhance efficiency, the authors reduced

the number of layers in the LeNet network, thereby decreasing the networkŠs parameters

and accelerating computation. They experimented with different parameters to optimize

recognition rates in challenging real-world scenarios, including varied weather conditions,

complex backgrounds, variable illumination, and sign color fading. The experimental

results demonstrated that the proposed CNN architecture achieved signiĄcant accuracy,

surpassing the performance of similar previous studies. This highlights the effectiveness

of the CNN-based approach for traffic sign recognition, particularly in challenging and

uncontrolled environments. Figure 28 illustrates the proposed method of the authors.
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Figure 28 Ű Proposed method of the authors. Extracted From (FREDJ et al., 2023).

3.1 FINAL REMARKS

In this chapter, we conducted a comprehensive review of various works pertaining

to our research problem. These studies primarily focused on the detection of traffic signs,

traffic lights, and arrow lights. However, it is worth noting that most of these works were

limited to classiĄcation tasks and did not consider the simultaneous detection of traffic signs

and lights, unlike the works of (BHATT; LALDAS; LOBO, 2022) and (ALGHMGHAM

et al., 2019). Among the related works, (PON et al., 2018) and (HOELSCHER, 2017)

employed object detection techniques similar to ours. However, they utilized traffic signs

from different countries or did not encompass the comprehensive detection of all states

of traffic lights, as demonstrated in (PON et al., 2018). On the other hand, (YONEDA

et al., 2020) utilized a one-stage model detection approach, which aligns with our work.

Nevertheless, this is the only aspect in common with our research purpose.

The work of (WALI et al., 2019) is about a comprehensive survey on traffic sign

detection, tracking, and classiĄcation. Conducts a thorough investigation of algorithms,

methods, and speciĄcations. Provides comparative analysis, performance metrics, and

accessibility of different techniques. Highlights challenges and suggests potential enhance-

ments while the work of (WILLIAM et al., 2019) proposes a real-time traffic sign detection

and recognition solution. Addresses challenges related to weather conditions, illumination,

and visibility. (DALBORGO et al., 2023) discuss Traffic Sign Recognition systems enabled

by embedded systems with internet connections. Utilizes Convolutional Neural Networks

and datasets for AI training. Incorporates a new class for TSR called vegetation occlusion.

Focuses on utilizing vehicles as moving sensors for traffic sign maintenance. The work of

(CHEN et al., 2021) focuses on the recognition of small-sized traffic signs method inspired

by YOLOv4 and YOLOv5 while the work of (ZHU; YAN, 2022) evaluates the perfor-
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mance of YOLOv5 for Traffic Sign Recognition (TSR) using a custom dataset. Compares

YOLOv5 with SSD (Single Shot Multibox Detector). Highlights the superior recognition

speed of YOLOv5.

The work of (ZHANG, J. et al., 2019) develops lightweight neural networks for

traffic sign recognition in resource-constrained environments like in our work and the work

of (FREDJ et al., 2023) emphasizes the importance of road traffic signs and multi-step

traffic forecasting. Proposes a Traffic and Road Sign recognition system based on CNNs.

Evaluates performance using the Tunisian traffic signs dataset. Optimizes recognition

rates in challenging real-world scenarios.

Given the aforementioned gaps in the existing literature, we aim to contribute by

developing a novel system that combines the detection of Brazilian vertical traffic signs and

lights. Additionally, we strive to create a meticulously annotated dataset of these objects.

By leveraging object detection techniques, we aim to address the unique challenges posed

by the simultaneous detection of traffic signs and lights, providing a valuable resource for

researchers and practitioners in the Ąeld.



48

4 METHODOLOGY

This chapter outlines the methodology employed in the document.

With the primary objective of reducing computation resources, we conducted a

thorough literature review on the Single Shot Multibox Detector model and identiĄed a

suitable variant called SSD-Lite that offered a lighter computational footprint.

This model has been chosen due to its ability to strike a balance between accuracy

and efficiency. SSD-Lite, a lightweight variant of the original SSD model, excels in real-

time object detection tasks, making it well-suited for the rapid processing required in

traffic management systems. Its impressive speed and respectable accuracy ensure swift

and reliable identiĄcation of traffic signs and lights, thereby enhancing road safety and

traffic Ćow. Additionally, its efficiency is particularly valuable for resource-constrained

applications, making it an ideal choice for deployment in various hardware conĄgurations,

from edge devices to cloud-based solutions, ultimately contributing to more effective and

scalable traffic management solutions.

We also focused on the creation of our dataset, speciĄcally comprising images of

Brazilian vertical traffic signs and lights. Additionally, we discuss the evaluation metrics

commonly used in related works and our work to assess the performance of object detection

models.

Finally, we present our proposed approach, offering a more detailed view of the

methodology employed in our research. Figure 29 provides a visual representation of our

methodology.
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Figure 29 Ű Methodology used in our work. Source: (The authors, 2023).

4.1 DATA COLLECTION AND ANNOTATION

This section refers to the process of gathering and preparing data for use in our work

and data analysis tasks. It involves two main steps: data collection and data annotation.

But the Ąrst step of the methodology, the literature review, which guides us during our

work, is presented in section 3 where we learn from other works.

4.1.1 Data collection

Based on the various types of traffic signs depicted in Figure 1, our goal was

to gather a collection of images containing these signs for the purpose of training our

model. To achieve this, we acquired videos from a relevant YouTube channel and employed

OpenCV to extract frames from these videos. Subsequently, we meticulously reviewed the

videos, removing redundant frames and those that did not contain objects relevant to our

study. Through this meticulous process, we obtained a dataset consisting of 1,363 images.

It is worth noting that due to the absence of certain traffic signs in the images, we only

utilized 16 speciĄc types, resulting in a total of 16 classes for our model. Figure 30 presents

an overview of these classes used in our project, accompanied by their corresponding

descriptions in both English and Portuguese. Additionally, the Ągure displays the count
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of objects present for each class after the data augmentation process that is detailed in

section 4.1.3.

Figure 30 Ű The classes of the created dataset. Adapted from (ALGHMGHAM et al.,
2019).

4.1.2 Data annotation

In this experiment, the object recognition method employed is a form of supervised

learning and given the nature of our object detection problem, precise annotation of object

locations and corresponding descriptions was crucial, requiring labeled information for

the traffic signs and lights to be detected in the images. This information includes the

category of the traffic signs as well as their precise location within the image. To facilitate

this process, we utilized a Python-based tool called Labelimg for the annotation of the

images, as described in section 2.5, which offers a user-friendly interface with shortcut keys

and follows the labeling format consistent with PASCAL VOC. Figure 31 illustrates the

image annotation process using Labelimg. After labeling the images, the corresponding

information for each image, including the class labels and object locations, was saved in

XML Ąles with matching names. These XML Ąles contain all the necessary information

for training the network. Once the image annotation task was completed, across the

1,363 images, we annotated a total number of 2.107 objects, categorized into 16 classes

representing common objects found in real-life traffic scenes.
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Figure 31 Ű Labelimg tool for image labeling. Source: (The authors, 2023).

4.1.3 Data augmentation

To enhance the modelŠs learning capabilities, data augmentation was performed to

increase the diversity of examples. We employed seven augmentation techniques, including

contrast adjustments, noise addition, linear and sigmoid contrast modiĄcations, channel

shuffling, image solarization, and image inversion demonstrating their impact on the image

appearance.

The careful selection of those augmentation methods is paramount to artiĄcially

expand our dataset and prevent overĄtting, enabling our model to generalize better to

real-world scenarios despite the data scarcity. By searching the internet and introducing

controlled variations through these augmentation techniques, we were able to imbue our

model with the adaptability needed to handle diverse conditions, ultimately enhancing its

performance, even when working with a small and Ąnite dataset.

Through these augmentation methods, we generated a total of 55,276 augmented

images, with a total of 85,253 objects for all the classes although the distribution was

imbalanced because of the difficulty to Ąnd the same number of objects for all the classes in

one image. Thus, that unbalanced dataset has been considered after employing Labelimg

for efficient image annotation and employing various augmentation techniques where

we obtained a comprehensive dataset with labeled traffic sign and light information.

This dataset served as the foundation for training our network, enabling robust object

recognition and detection. Figure 33 serves as an illustration of the seven augmentation

methods applied to a single image of our dataset and Ągure 32 shows the class distribution

after the augmentation. For anyone interested, our Ąnal dataset is available at (PIERRE,
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2023).

Figure 32 Ű Dataset class distribution. Source: (The authors, 2023).
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Figure 33 Ű Example of the augmentation methods on one image. Source: (The authors,
2023).

4.2 MODEL SELECTION

The core architecture employed in our work is the Single Shot Multibox Detector,

whose choice is explained in Section 4, consists of three main components, as depicted

in Figure 15. The Ąrst component is responsible for extracting features from the input

images. That Ąrst part can adopt VGG-16 network like in the original paper without

dropout layer, FC8 and soft-max classiĄcation layers. It replaces the fully connected layers
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FC6 and FC7 in the ordinary VGG network with convolutional layers Conv6 and Conv7.

The second component is the detection heads, which are responsible for generating

bounding boxes and class conĄdence scores. To create a lighter version of SSD, known as

SSD-Lite, certain layers were removed from this component. This optimization allows for

a more efficient and streamlined detection process. In that second part, four convolutional

layers of Conv8, Conv9, Conv10, and Conv11 have been newly added. Each convolutional

layer utilizes a 1 × 1 convolution kernel for dimensionality reduction and then makes use

of a 3 × 3 convolution kernel for feature extraction. The loss function of the SSD model

consists of two parts: The localization loss (Lloc) and the conĄdence loss (Lconf). The

entire loss function is weighted sum of localization loss and the conĄdence loss.

The Ąnal component is crucial for eliminating redundant detections and ensuring

the best predictions for each object. It employs a mechanism to remove duplicate detections

and retain only the most accurate and relevant results. This is achieved by applying a

predeĄned threshold value, typically set at 0.5 or 0.7, depending on the speciĄc dataset

and requirements.

In wholesome, our work utilizes the SSD architecture, featuring feature extraction

using multiple MobileNet models, detection heads for generating bounding boxes and class

conĄdence scores, and a mechanism for removing duplicate detections. The three SSD-Lite

Ąnal models has a total of 97 layers, 99 layers and 114 layers using Mobilenet version 2,

MobileNet version 3 small and MobileNet version 3 large respectively. This architecture

forms the foundation of our system, where its extra layers and its detection heads are

illustrated in Table 2 and Table 1 respectively.

ItŠs to be noted that the Ąrst Conv2d layers from every module are in a group of

ConvBNReLU layers where they are followed by a BatchNom2d and ReLu6 layers, except

for the last Conv2d layer which is apart from any other group.

4.2.1 SSD-Lite Base network

The base network of the SSD-Lite architecture is MobileNet. In our implementation,

we utilized three different models from the MobileNet family: MobileNet v2, MobileNet v3

(small), and MobileNet v3 (large) which are lightweight convolutional neural network archi-

tectures designed for mobile and embedded devices with limited computational resources.

In table 3 is shown the layers taken out from the Ąnal best model which is Mobilenet v2

for feature extractions and it is composed of 19 modules. ItŠs to be noted that, like the

extra layers of the SSD-Lite, the Ąrst Conv2d layers of the mobilenet v2 described in table

2 are in a group but that time itŠs a Conv2dNormActivation layers where every Conv2d

layer is followed by a BatchNom2d and ReLu6 layers, and except for the Ąrst and last

module where we can Ąnd the conv2d layers apart from any other group.
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Layer In Out Kernel Stride

Conv2d 576 576 (3, 3) (1, 1)
BatchNorm2d 576 Ů Ů Ů
RELU6 Ů Ů Ů Ů
Conv2d 576 68 (1, 1) (1, 1)
Conv2d 1280 1280 (3, 3) (1, 1)
BatchNorm2d 576 Ů Ů Ů
RELU6 Ů Ů Ů Ů
Conv2d 1280 102 (1, 1) (1, 1)
Conv2d 512 512 (3, 3) (1, 1)
BatchNorm2d 576 Ů Ů Ů
RELU6 Ů Ů Ů Ů
Conv2d 512 102 (1, 1) (1, 1)
Conv2d 256 256 (3, 3) (1, 1)
BatchNorm2d 576 Ů Ů Ů
RELU6 Ů Ů Ů Ů
Conv2d 256 68 (1, 1) (1, 1)
Conv2d 256 256 (3, 3) (1, 1)
BatchNorm2d 576 Ů Ů Ů
RELU6 Ů Ů Ů Ů
Conv2d 256 68 (1, 1) (1, 1)
Conv2d 128 128 (3, 3) (1, 1)
BatchNorm2d 576 Ů Ů Ů
RELU6 Ů Ů Ů Ů
Conv2d 128 68 (1, 1) (1, 1)

Table 1 Ű SSD-Lite regression/classiĄcation heads.

Layer In Out Kernel Stride

Conv2d 1280 256 (1,1) (1,1)
Conv2d 256 256 (3,3) (2,2)
Conv2d 256 512 (1,1) (1,1)

Conv2d 512 128 (1,1) (1,1)
Conv2d 128 128 (3,3) (1,1)
Conv2d 128 256 (1,1) (1,1)

Conv2d 256 128 (1,1) (1,1)
Conv2d 128 128 (3,3) (2,2)
Conv2d 128 256 (1,1) (1,1)

Conv2d 256 64 (1,1) (1,1)
Conv2d 64 64 (3,3) (2,2)
Conv2d 64 128 (1,1) (1,1)

Table 2 Ű SSD-Lite extra layers.

4.3 TRAINING AND VALIDATION

During the training phase, the prepared dataset was utilized to train the SSD-Lite

model. We employed an optimization algorithm, set appropriate hyper-parameters, and

iteratively trained the model on the training data. Monitoring the training progress, we
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recorded relevant metrics and adjusted parameters as necessary to achieve optimal results.

4.3.1 Hardware and software Setup

To deploy the system, a computer or laptop is necessary. Regarding the hardware

requirements, the system necessitates a processing unit capable of handling the computa-

tional demands of the object detection algorithm in real-time. A reliable power supply is

essential to operate the processing unit continuously. The power supply should provide

sufficient power throughout the duration of data capture. Furthermore, the system requires

a storage device to store the captured images and processed data.

To develop and train the object detection model, the system relies on a deep learning

framework like PyTorch. Such frameworks offer a user-friendly interface for constructing

and training deep neural networks. Additionally, the system necessitates image processing

libraries such as OpenCV for preprocessing the input images prior to their utilization in

the object detection model. These libraries offer a range of functions for tasks such as

image resizing, normalization, and Ąltering. As for the operating system requirements, the

system is compatible with any OS that supports the selected deep learning framework

and image processing libraries. Linux and Windows are commonly used operating systems

for machine learning and computer vision applications, offering extensive support for the

required tools and libraries.

4.3.2 Evaluation metrics

Evaluation metrics play a crucial role in assessing the performance of object detec-

tion models. Among these metrics, Average Precision (AP) and mean Average Precision

(mAP) are widely used to evaluate the effectiveness of various object detection models,

including Faster R-CNN, Mask R-CNN, SSD, YOLO, and others. To understand these

metrics, below are the deĄnitions of some terms:

• True Positive (TP) Ů Correct detection made by the model.

• False Positive (FP) Ů Incorrect detection made by the detector.

• False Negative (FN) Ů A Ground-truth missed (not detected) by the object

detector.

• True Negative (TN) Ů This is the background region correctly not detected by

the model. This metric is not used in object detection because such regions are

not explicitly annotated when preparing the annotations.

After deĄning the aforementioned terms, there are several other metrics used to

assess the performance of a model on data. These metrics provide additional insights into

the modelŠs effectiveness in object detection:

• Precision is a metric that quantiĄes the accuracy or exactness of a model in

correctly identifying relevant objects. It is calculated as the ratio of true positives
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(TP) to the total number of detections made by the model. Precision focuses

on minimizing false positives, meaning it measures how many of the modelŠs

predicted positives are actually true positives.

Precision =
TP

TP + FP
(2)

• Recall measures the modelŠs ability to detect all relevant objects or ground

truths. It is calculated as the ratio of true positives to the total number of

ground truths. Recall aims to minimize false negatives, indicating how well the

model captures all the positives in the dataset.

Recall =
TP

TP + FN
(3)

In summary, precision evaluates the modelŠs precision in making correct positive predic-

tions, while recall assesses the modelŠs ability to capture all positive instances in the

dataset. Both metrics are important for assessing the performance of object detection

models. Equations (2) and (3) illustrate the formula for each one of them. The f-value is

also another metric shown in equation (1).

4.3.3 Intersection over Union

Commonly called (IoU), it is a used metric in object detection to measure the degree

of overlap between a predicted bounding box and the ground-truth bounding box, which

is manually annotated. It helps evaluate the accuracy of object detection by quantifying

the similarity between the predicted and ground-truth bounding boxes. The IoU value

ranges from 0 to 1, where a value of 0 indicates no overlap between the boxes, and a value

of 1 represents a perfect overlap. A higher IoU value indicates a better alignment between

the predicted and ground-truth bounding boxes.

When considering an IoU threshold of α, a True Positive (TP) refers to a detection

where the IoU(ground-truth, predicted) > α. A False Positive (FP) occurs when the

IoU(ground-truth, predicted) ≤ α. A False Negative (FN) is a ground truth that was

missed when the IoU(ground-truth, predicted) ≤ α. The formula for calculating IoU is

shown in Figure 34, which represents the ratio of the intersection area of the predicted

and ground-truth bounding boxes to the union area of the two boxes.

In summary, IoU provides a quantitative measure of the overlap between predicted

and ground-truth bounding boxes, assisting in evaluating the accuracy and correctness of

object detection models.
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Figure 34 Ű Intersection over union formula. Extracted from (PADILLA; NETTO; SILVA,
E. A. B. da, 2020).

4.3.4 Mean Average Precision

AP@α refers to the Area Under the Precision-Recall Curve (AUC-PR) evaluated

at the alpha Intersection over Union (IoU) threshold. It quantiĄes the performance of

object detection models by measuring the precision and recall trade-off at a speciĄc IoU

threshold. A higher value of Area Under the PR Curve indicates higher precision and

recall rates. The PR curve typically exhibits a zig-zag pattern, as it is not necessarily

monotonically decreasing. AP is calculated individually for each class, resulting in as many

AP values as there are classes. These AP values are then averaged to obtain the mean

Average Precision (mAP) metric. The mAP provides an overall assessment of the modelŠs

performance by taking into account the AP values across all classes. Equations (4) and

(5) give the formulas related to the AP and the mAp respectively.

AP =
N−1∑

i=0

[Recalls(i) − Recalls(i+1)] ∗ Precisions(i) (4)

mAp =
1

N

N∑

i=1

APi (5)

4.3.5 Proposed Approach

The system proposed in this study is designed as an object detection system

speciĄcally tailored for detecting traffic signs and lights in images captured by a moving

car. To accomplish this, we employ a lightweight version of the Single Shot Detector

(SSD-Lite) algorithm, utilizing the MobileNet V2 as the base network for efficient feature

extraction.

The SSD algorithm is renowned for its real-time object detection capabilities,

performing detection in a single pass through a deep neural network. By employing the

Lite version of the SSD algorithm, which is optimized for low-power and low-latency

devices, we ensure suitability for real-time applications.
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The proposed system comprises three key components: image acquisition, image

preprocessing, and object detection. Image acquisition involves capturing images from

a moving car, providing the input for subsequent analysis. These images then undergo

preprocessing steps to enhance their quality and optimize them for efficient detection.

Finally, the object detection component utilizes the trained model to identify and localize

traffic signs and lights within the images. Our proposed system aims to accurately detect

and classify traffic signs and lights in real-world scenarios.

Moving on to our proposal, Figure 35 depicts the functioning of our system, show-

casing how it operates in practice and highlighting its key components and processes. This

architecture forms the foundation of our system.

Figure 35 Ű System overview. Adapted from (ALGHMGHAM et al., 2019).

4.3.6 Data Preparation

After augmenting the dataset and organizing the images and corresponding anno-

tations into appropriate formats suitable for training the SSD-Lite model. This involved

splitting the data into training and validation sets, ensuring proper data organization for

efficient model training. To ensure uniformity and facilitate data processing, we normalized

the images by applying a consistent color mode and resizing them to a predetermined size.

Furthermore, we processed each image in binary format, simplifying the manipulation of

the resulting binary matrix. By examining each pixel in the image, we assigned a value of
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0 to represent darkness and a value of 1 to represent brightness. By following these steps,

we established a well-structured and augmented dataset that includes relevant classes

of traffic signs and lights. The normalization and conversion to binary format facilitate

subsequent image processing and analysis in our system.

4.4 PARTIAL CONCLUSION

In this chapter, we provided an in-depth overview of the methodology employed in

our research, as illustrated in Figure 29. We began by explaining the process of creating

the database and annotating the images, highlighting the tools and techniques utilized to

accomplish our objectives. Additionally, we delved into the methods employed to augment

the dataset, enhancing its diversity and enabling robust training of our model.

Furthermore, we introduced the model we have selected and the performance

indicator used to evaluate its effectiveness, along with the relevant terminologies associated

with it. This indicator serves as a benchmark for assessing the accuracy and reliability of

our traffic sign and light recognition system.

Finally, we presented the proposed approach of our work and data preparation,

encompassing the hardware and software requirements necessary for implementing and

deploying our system. These requirements ensure the smooth operation and optimal

performance of our model throughout its development and practical application.
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Layer In Out Kernel Stride

Conv2d 3 32 (3,3) (2,2)

Conv2d 32 32 (3,3) (1,1)
Conv2d 32 16 (1,1) (1,1)

Conv2d 16 96 (1,1) (1,1)
Conv2d 96 96 (3,3) (2,2)
Conv2d 96 24 (1,1) (1,1)

Conv2d 24 144 (1,1) (1,1)
Conv2d 144 144 (3,3) (1,1)
Conv2d 144 24 (1,1) (1,1)

Conv2d 24 144 (1,1) (1,1)
Conv2d 144 144 (3,3) (2,2)
Conv2d 144 32 (1,1) (1,1)

Conv2d 32 192 (1,1) (1,1)
Conv2d 192 192 (3,3) (1,1)
Conv2d 192 32 (1,1) (1,1)

Conv2d 32 192 (1,1) (1,1)
Conv2d 192 192 (3,3) (1,1)
Conv2d 192 64 (1,1) (1,1)

Conv2d 32 192 (1,1) (1,1)
Conv2d 192 192 (3,3) (2,2)
Conv2d 192 64 (1,1) (1,1)

Conv2d 64 384 (1,1) (1,1)
Conv2d 384 384 (3,3) (1,1)
Conv2d 384 64 (1,1) (1,1)

Conv2d 64 384 (1,1) (1,1)
Conv2d 384 384 (3,3) (1,1)
Conv2d 384 64 (1,1) (1,1)

Conv2d 64 384 (1,1) (1,1)
Conv2d 384 384 (3,3) (1,1)
Conv2d 384 64 (1,1) (1,1)

Conv2d 64 384 (1,1) (1,1)
Conv2d 384 384 (3,3) (1,1)
Conv2d 384 96 (1,1) (1,1)

Conv2d 96 576 (1,1) (1,1)
Conv2d 576 576 (3,3) (1,1)
Conv2d 576 96 (1,1) (1,1)

Conv2d 96 576 (1,1) (1,1)
Conv2d 576 576 (3,3) (1,1)
Conv2d 576 96 (1,1) (1,1)

Conv2d 96 576 (1,1) (1,1)
Conv2d 576 576 (3,3) (2,2)
Conv2d 576 160 (1,1) (1,1)

Conv2d 160 960 (1,1) (1,1)
Conv2d 960 960 (3,3) (1,1)
Conv2d 960 160 (1,1) (1,1)

Conv2d 160 960 (1,1) (1,1)
Conv2d 960 960 (3,3) (1,1)
Conv2d 960 160 (1,1) (1,1)

Conv2d 160 960 (1,1) (1,1)
Conv2d 960 960 (3,3) (1,1)
Conv2d 960 320 (1,1) (1,1)

Conv2d 320 1280 (1,1) (1,1)

Table 3 Ű SSD-Lite extraction feature layers from mobilenet v2.
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5 EXPERIMENTS

In this chapter, we provide a detailed overview of the hyper-parameters employed

in our selected model as follows : Ąrstly, we outline the speciĄc hyper-parameters utilized

in our chosen model, which play a crucial role in its performance. We emphasize the

importance of Ąne-tuning these parameters to optimize the modelŠs accuracy and efficiency.

Next, we describe the machines utilized during the training and testing phases. We

provide detailed speciĄcations for each machine, including the processor, RAM, and graph-

ics card. These machines were carefully selected to provide the necessary computational

resources for executing our experiments effectively.

Subsequently, we present the results obtained by applying the best-performing

model to real-life traffic scenario videos and images from the dedicated test set. The

modelŠs performance is evaluated based on its ability to accurately detect and classify

traffic signs and lights in various real-world contexts.

Finally, we engage in a comprehensive discussion of the obtained results, consid-

ering factors such as model accuracy, computational efficiency, and potential areas for

improvement. We analyze the strengths and limitations of our approach, addressing any

discrepancies or unexpected outcomes.

5.1 TRAINING PROCESS

In this section, the architecture of the neural network, the training dataset and

also some conĄgurations are presented. Aiming at improving the precision of the best

results, it was executed with three different image input sizes, where the displayed precision

correspond to the arithmetic mean of the achieved values for every class. For the assembly

of the neural network, we used the following architectures:

• SSD-Lite with mobilenet v2 as base network;

• SSD-Lite with mobilenet v3 small as base network;

• SSD-Lite with mobilenet v3 large as base network.

To achieve our goals, we utilized two different machines running the Windows

11 operating system. The Ąrst machine was equipped with an Intel® Core™ i7-6700K

CPU clocked at 4.00GHz, 8 cores in total, 24.0 GiB of RAM, and an NVIDIA GeForce

GTX 960 with 2.0 GB of RAM. The second machine featured an 11th Gen Intel® Core™

i3-1115G4 CPU operating at 3.00GHz with 4 cores, 12 GB of RAM, and a Mesa Intel®

UHD Graphics (TGL GT2) graphics card. The second machine was primarily used for

conducting tests and implementing data augmentation techniques, while the Ąrst machine

was utilized for the training process.

To identify the most suitable model architecture that would facilitate the training

process and offer the best accuracy, an extensive battery of tests was conducted. These
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tests involved experimenting with various conĄgurations and Ąne-tuning adjustments for

each architecture. Table 4 provides a detailed list of the hyper-parameters used in these

tests and table 5 the number of parameters for each model. The dataset was divided

into three distinct phases: training, validation, and testing. Approximately 70% of the

images, totaling 38,693 images, were utilized for the training phase. The validation phase

consisted of 20% of the images, approximately 11,055 images, while the remaining 10%

(5,527 images) were reserved for the testing phase.

By carefully allocating the dataset and conducting rigorous tests, we aimed to

Ąnd the optimal conĄguration for each architecture, ultimately leading to a model with

simpliĄed architecture for efficient training and another model with the highest achievable

accuracy. These steps ensured a thorough evaluation and selection of the most suitable

models for our objectives.

Hyperparameter Value

Learning rate 0.001
Batch size 32
Optimizer SGD
Number of epochs 25
Weight decay 0.00004
Gamma 0.1

Table 4 Ű Hyperparameter list.

Model Parameters

Mobilenet v2 SSD-Lite 3.286.326
Mobilenet v3 small SSD-Lite 1.304.522
Mobilenet v3 large SSD-Lite 3.881.522

Table 5 Ű Number of parameters for each model.

5.2 RESULTS EVALUATION

Following the experiments involving different input sizes, we proceeded to evaluate

the best-performing method using the dedicated test set. Table 6 provides an overview of

the results obtained during the training phase. Additionally, Table 7 presents the accuracy

achieved for each individual class when utilizing the best model.

It is worth noting that the training process took a longer time when using the

higher input size of 512x512. Surprisingly, the accuracy obtained with this larger input

size did not surpass that of the 320x320 input size. Furthermore, for the Mobilenet v3

small model, the input size of 128x128 actually yielded better accuracy results compared

to the higher input size, but inferior to the best-performing model.

Interestingly, adjusting the batch size did not yield any signiĄcant changes in the

training process. Regardless of the batch size, all models reached a point of convergence



Chapter 5. experiments 64

within less than 20 epochs. Consequently, we decided to conclude the training within 25

epochs, as subsequent changes in model performance were minimal and marginal. ItŠs to

be noted that some other experiments have also been made using different values for the

batch size like 8, 16 and 64 but only with the value 32 we had a best result presented here.

During the experiments, we used an IoU threshold of 0.5 to help on a better object

detection, as we know that, that value is used to compare the probability of the detected

bounding box with the ground-truth box and keep the one with the highest probability.

Overall, these Ąndings highlight the impact of input size on training time and

accuracy. While larger input sizes may require more computational resources and time,

they do not necessarily guarantee improved accuracy. These insights guide our decision-

making process and contribute to the overall understanding of model training dynamics.

VAL DATA

# Input Base network Day mAP@0.5

1 128x128
Mobilenet v2 1.49 0.64
Mobilenet v3 small 1.11 0.11
Mobilenet v3 large 1.38 0.54

2 320x320
Mobilenet v2 3.89 *0.87

Mobilenet v3 small 7.15 0.46
Mobilenet v3 large 5.35 0.84

3 320x320 Mobilenet v2 3.77 0.79
4 320x320 Mobilenet v2 3.30 0.78

5 512x512
Mobilenet v2 8.9 0.77
Mobilenet v3 small 5.7 0.54

Table 6 Ű Training results for every input size where the threshold value for the IoU is 0.5.

Figure 36 Ű Loss for input size 128. Source: (The Authors, 2023).
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Figure 37 Ű Accuracy for input size 128. Source: (The Authors, 2023).

Figure 38 Ű Loss for input size 320. Source: (The authors, 2023).

Figure 39 Ű Accuracy for input size 320. Source: (The authors, 2023).
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Figure 40 Ű Loss for input size 512. Source: (The authors, 2023).

Figure 41 Ű Loss for input size 512. Source: (The authors, 2023).

Figure 42 Ű Second and third experiment loss for input size 320. Source: (The authors,
2023).
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Figure 43 Ű Second and third experiment accuracy for input size 320. Source: (The authors,
2023).

TEST DATA

Class name Label AP@0.5

Stop sign 000 0.80
Give away 001 0.76
No left turn 003 0.78
No right turn 004 0.60
No park 007 0.79
Regular park 008 0.79
No park and stop 009 0.79
Speed limit 023 0.79
Road hump 025 0.80
Sense of the way circulation 028 0.79
Trucks keep right 035 0.79
Bus route 040 0.79
Cycling 042 0.79
Yellow light 051 0.80
Red light 052 0.76
Green light 053 0.79

mAP@0.5 0.78

Table 7 Ű Accuracy of every class using the best model with the test data.

ItŠs to be noted that we do not have an accuracy for the training process here

but, in fact, the model was evaluated after each epoch and only the best model after the

evaluation with its information was kept. For using different the input sizes, it was faster

with 128x128 Mobilenet v3 small and slower with 320x320 Mobilenet v3 large but we kept

the 320x320 Mobilenet v2 as it has a better accuracy and an acceptable speed which 30

FPS (Frame Per Seconds) as we can see in Figure 44.
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5.3 DISCUSSION

During the experiments, we utilized an IoU threshold of 0.5. With this threshold,

our mean Average Precision was 0.87%. The best model, which employed the second

version of Mobilenet as the base network and had an input size of 320x320, outperformed

the other models in terms of accuracy. However, the models with larger input sizes, such

as 512x512 pixels, suffered from increased computational time and slower object detection

in videos or images. Due to these limitations, we only conducted two experiments using

the 512x512 input size.

Alternatively, the 128x128 input size showed faster object detection but resulted

in a decrease in mAP due to the loss of certain features during training. Despite this, our

object detection model achieved a good result compared to existing literature. It differs

from previous works by considering the classiĄcation and localization of Brazilian traffic

signs and lights in images, which is not typically addressed. In Figures 44 we can Ąnd the

results obtained by applying the best model to the test set.

Moreover, after the testing step we noticed a lower accuracy specially for the class

"004" and after investigation it came out that happened because of the presence of more

images with noise in the test data than the training and validation data. In spite of that

low accuracy during the test step, the model was able to detect objects in videos with

better accuracy as we can see in Figure 45 to Figure 48, which are the results obtained

by applying the best model to some videos.
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Figure 44 Ű Example of detection from video. Source: (The authors, 2023).
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Figure 45 Ű Example of detection from video. Source: (The authors, 2023).

Figure 46 Ű Example of detection from video. Source: (The authors, 2023).
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Figure 47 Ű Example of detection from video. Source: (The authors, 2023).

Figure 48 Ű Example of detection from video. Source: (The authors, 2023).
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5.4 PARTIAL CONCLUSION

In this chapter, we provided a comprehensive overview of our experimental process,

highlighting key hyper-parameters, dataset splitting, hardware conĄguration, and the

evaluation of obtained results. As previously mentioned, the architecture utilizing the

Mobilenet v2 base network demonstrated superior performance, exhibiting higher precision

while requiring less computation time compared to its counterpart with an input size of

512x512.

Furthermore, we presented detailed results, including the accuracy of each individ-

ual class, shedding light on the modelŠs performance across different traffic sign and light

categories. Additionally, we showcased the effectiveness of our best-performing model by

applying it to various images and videos, resulting in a commendable 30 frames per second

(FPS) and a mean Average Precision (mAP) of 0.87%.

In summary, this chapter provided a comprehensive understanding of the exper-

imental process, highlighting the superiority of the architecture utilizing the Mobilenet

v2 base network in terms of precision and computational efficiency. The results presented

underscored the modelŠs accuracy in detecting and classifying traffic signs and lights,

reaffirming its effectiveness and potential for real-world applications.
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6 CONCLUSIONS

In this research paper, our primary focus was on developing a robust system

for the recognition of vertical traffic signs and traffic lights. To achieve our goal, we

conducted a series of experiments using three different base networks in combination with

the lightweight version of Single Shot MultiBox Detector.

After rigorous experimentation and analysis, we obtained remarkable results. Our

system achieved an impressive accuracy rate of 87.4% in recognizing vertical traffic signs

and traffic lights. This achievement can be attributed to the meticulous selection of the

second version of Mobilenet as the best-performing base network, combined with an input

image size of 320x320 pixels.

Furthermore, we compared our results with existing literature and observed that

our approach outperformed most previous works in the Ąeld. What sets our research

apart is the comprehensive consideration of both classiĄcation and localization aspects,

speciĄcally tailored to Brazilian traffic signs and lights. This distinction allowed us to

address the unique characteristics and challenges associated with this speciĄc context.

In conclusion, our research presents a highly accurate and efficient system for the

recognition of vertical traffic signs and traffic lights. We believe that our Ąndings contribute

signiĄcantly to the Ąeld of object detection and can pave the way for improved traffic

management systems, ensuring safer and more efficient road transportation.

6.1 CONTRIBUTIONS

By extensively evaluating our model using various videos and images, we suc-

cessfully validated our hypothesis and identiĄed several signiĄcant contributions in our

research. First and foremost, we introduced a comprehensive dataset exclusively focused

on traffic signs and lights in Brazil. This dataset Ąlls a crucial gap in the availability of

resources for object detection in this speciĄc context.

Moreover, our work introduced a lightweight model based on the Single Shot

Multi-box Detector. This model was speciĄcally tailored to the task of traffic sign and

light detection, offering a balance between accuracy and computational efficiency. The

utilization of this one-stage detection model signiĄcantly reduced the computation memory

required while maintaining reliable detection performance.

Additionally, through our experiments, we gained a deeper understanding of the

traffic signs and lights, as well as the detection process employed by our chosen model.

This enhanced understanding can contribute to further advancements in the Ąeld of object

detection, particularly in the domain of traffic sign and light recognition.

In summary, our research has made valuable contributions by providing a dedicated

dataset for traffic sign and light detection in Brazil, introducing a lightweight SSD-based

model, and improving our understanding of the detection process. These contributions
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collectively advance the Ąeld of object detection, particularly in the context of traffic

management and safety.

6.2 FUTURE WORK

In terms of future work, there are several potential implementations that align with

the theme of our research. Firstly, it would be valuable to conduct a comparative analysis

with RetinaNet, another SSD-based model, to assess its performance as a classiĄcation

technique for traffic sign and light recognition. Such a comparison could provide insights

into the strengths and weaknesses of different SSD base models and potentially lead to

improvements in accuracy and efficiency.

Expanding the scope of the dataset to include a broader range of traffic signs and

the new type of traffic lights with four colors like in Ągure 49 and augmenting the number

of objects for certain classes would also be a worthwhile endeavor by taking using less

images with noise. By encompassing a more diverse set of objects, the modelŠs robustness

and generalization capabilities can be further enhanced. We can also consider the use of

another type of optimizer like ADAM and the use of the F-Value as another metric to

better understand how the model learns.

For practical applications, it would be beneĄcial to convert the trained model into

the ONNX format, enabling its integration into mobile applications for real-life testing.

This would facilitate the deployment of the system in a practical setting, allowing for

validation and performance evaluation under real-world conditions.

Lastly, incorporating text-to-speech functionality in the system could enhance

driver safety and attention on the road. By providing auditory descriptions of detected

signs, drivers can focus on the road instead of constantly looking at the screen. This

feature can contribute to a more user-friendly and distraction-free experience.

In wholesome, these potential future implementations aim to further enhance the

accuracy, efficiency, and practical applicability of our traffic sign and light recognition

system. By exploring these avenues, we can continue advancing the Ąeld and contribute

to improved road safety and traffic management.
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Figure 49 Ű Traffic light with a new color in Brazil. Extracted from (RIBAS, 2023).
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