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SANTOS, J. G. de F. Adjoint-based shape optimization applied to multiphase flows.
2023. 132 p. PhD Thesis, Federal University of Uberlândia, Uberlândia.

ABSTRACT

The adjoint method in computational fluid dynamics (CFD) offers a computationally
affordable optimization by efficiently calculating gradients of objective functions with re-
spect to design parameters. It outperforms other methods in terms of computational cost
and is widely used in sensitivity analysis. Traditional methods, such as finite difference,
require a large number of simulations as the number of design parameters increases, lim-
iting the scope of optimization. However, the adjoint method in CFD allows for gradient
calculation of an objective function at the cost of one flow field computation, making it
practically independent of the number of design parameters and providing a more flex-
ible and robust optimization tool. The aim of this thesis is to advance knowledge and
expertise in the utilization of the adjoint method, with a specific focus on flows inside
pipe bends commonly encountered in problems involving multiphase flows with particle
transport. The work encompasses validating implementations, optimizing fluid dynamics
systems, addressing problems related to particles in optimized systems, and proposing a
novel adjoint-based formulation for shape optimization applied to multiphase flows. The
adjoint fluid dynamics equations are derived at the level of partial differential equations
using the continuous adjoint approach. The frozen turbulence assumption is adopted,
neglecting variations of the turbulence field with respect to the design parameters. Fur-
thermore, a technique for mesh adaptation is employed to adjust the shape of the com-
putational domain as it is optimized. Firstly, the adjoint method is applied in a shape
optimization process to minimize the total pressure losses in three different pipe fittings.
Secondly, gas-solid flows are simulated in both the original and optimized pipe fittings
to compare the erosion wear caused by particle impacts on the walls. This investiga-
tion explores how single-phase flow optimization can also affect the particle problem, i.e.,
mitigate erosion. The results demonstrate substantial reductions in peak erosion as a
consequence of minimizing total losses, which can potentially increase the service life of
these systems. Finally, new adjoint equations are derived to account for the dispersed
phase of multiphase flows, and the corresponding sensitivity derivatives are obtained to
maximize the deposition efficiency of particles on bend walls.

Keywords: adjoint methods, shape optimization, sensitivity derivatives, computational
fluid dynamics, multiphase flows.
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SANTOS, J. G. de F.Otimização de forma baseada no método adjunto aplicada a escoa-
mentos multifásicos. 2023. 132 f. Tese de Doutorado, Universidade Federal de Uberlândia,
Uberlândia.

RESUMO

O método adjunto na dinâmica de fluidos computacional (CFD) proporciona uma otimiza-
ção computacionalmente acesśıvel, possibilitando que os gradientes das funções objetivo
em relação aos parâmetros de projeto sejam calculados de forma eficiente. Ele supera out-
ros métodos em termos de custo computacional e é amplamente utilizado em análise de
sensibilidade. Métodos tradicionais, como diferenças finitas, exigem um grande número de
simulações à medida que o número de parâmetros de projeto aumenta, limitando o escopo
da otimização. No entanto, o método adjunto em CFD permite o cálculo do gradiente de
uma função objetivo ao custo de um único cálculo do campo de escoamento, tornando-
o praticamente independente do número de parâmetros de projeto, o que viabiliza uma
ferramenta de otimização mais flex́ıvel e robusta. Sendo assim, o propósito desta tese é
avançar no conhecimento e na experiência acerca da utilização do método adjunto, com
foco espećıfico em escoamentos em curvas de dutos comumente encontradas em problemas
envolvendo escoamentos multifásicos com transporte de part́ıculas. O trabalho inclui a
validação de implementações, otimização de sistemas de dinâmica de fluidos, análise de
problemas relacionados às part́ıculas nos sistemas otimizados e proposição de uma nova
formulação baseada no adjunto para otimização de forma aplicada a escoamentos multi-
fásicos. As equações adjuntas de dinâmica de fluidos são derivadas a ńıvel de equações
diferenciais parciais usando a abordagem adjunta cont́ınua. A hipótese de turbulência
congelada é adotada, negligenciando variações do campo de turbulência em relação aos
parâmetros de projeto. Além disso, uma técnica de adaptação de malha é empregada
para ajustar a forma do domı́nio computacional à medida que é otimizada. Em primeiro
lugar, o método adjunto é aplicado na otimização de forma para minimizar as perdas de
pressão total em três diferentes curvas de dutos. Em segundo lugar, escoamentos gás-
sólido são simulados nas curvas originais e otimizadas para comparar o desgaste erosivo
causado pelo impacto das part́ıculas nas paredes. Nessa investigação, explora-se como a
otimização de um escoamento monofásico também pode afetar o problema relacionado às
part́ıculas, ou seja, mitigar a erosão. A partir dos resultados, reduções na taxa de erosão
máxima como consequência da minimização das perdas totais são obtidas, o que pode au-
mentar potencialmente a vida útil desses sistemas. Por fim, novas equações adjuntas são
desenvolvidas para considerar a fase dispersa dos escoamentos multifásicos, e as derivadas
de sensibilidade correspondentes são deduzidas para maximizar a eficiência de deposição
de part́ıculas nas paredes de curvas.

Palavras-chave: métodos adjuntos, otimização de forma, derivadas de sensibilidade, di-
nâmica de fluidos computacional, escoamentos multifásicos.
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CHAPTER I

INTRODUCTION

Making purchase decisions based on cost, quality, and personal preference; allocat-

ing time for work, leisure, and other activities to maximize productivity and satisfaction;

and budgeting and investing are just a few examples that show how the concept of opti-

mization is present in many aspects of people’s daily lives. This ability to optimize helps

them make decisions that improve their quality of life and overall well-being.

In engineering, as stated by Saramago (2012), optimizing means improving what

already exists or designing something new with more efficiency and lower cost. This

is commonly combined with numerical techniques to find the best design configuration

without testing all possibilities. Hence, the great advantage of optimization is to reduce

the time dedicated to project, allowing the treatment of large systems with restrictions.

With energy costs constantly increasing, optimizing power consumption has been

a persistent concern in many process industries. Specifically in pipelines, fittings may

represent important components in the overall energy budget as they may be responsible

for most pressure losses and, thereby, require most of the pumping power. In this context,

it is highly desirable to devise accessory shapes that minimize losses. This may result in

unconventional shapes, but with modern manufacturing techniques, the manufacturability

of these pipeline components should not be an issue.

Although optimization is a natural human ability, proposing an optimal design
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based on intuitive insight is normally difficult, especially considering the typically wide

range of design variables and potential constraints. Clearly, there is a demand for shape

optimization methods.

One common technique for shape optimization is to obtain the search direction

for design improvement by computing the sensitivity derivatives of an objective function

with respect to the design variables. However, in addition to the optimization process, it

is worth mentioning that the fluid dynamics equations must be solved. Thus, there is a

need for numerical methods that achieve the best possible design while not incurring high

computational costs. The adjoint methods fit into such a category of methods due to an

important advantage over the others: the gradient of the objective function is obtained

with only one single calculation. Consequently, the computational effort of these methods

does not depend on the number of design variables, whereas the naivest methods would

require calculating the derivatives relative to each design variable.

Adjoint methods surely render themselves to the optimization of fluid systems and

have been successfully used over the last decades (REUTHER et al., 1996; KIM et al.,

2001; ZYMARIS et al., 2009; STÜCK, 2011; HINTERBERGER; OLESEN, 2011; OTH-

MER, 2014; KRÖGER; KÜHL; RUNG, 2018). The first appearances of these methods

are found in the works of Pironneau (1974) and Jameson (1988). These authors focused

on minimizing the drag force or maximizing the lift-to-drag ratio of bodies immersed in a

fluid, which are common applications in the area of aerodynamics. In the case of internal

single-phase flows, generally, objective functions focus on minimizing total losses, pressure

drop, or flow inhomogeneity (OTHMER, 2008).

Basically, adjoint methods are divided into continuous and discrete approaches, and

deciding which one is more appropriate for a desired application is a pertinent question.

For computational fluid dynamics (CFD) solvers based on the finite volume method, the

implementation of the continuous adjoint approach can be more straightforward (OTH-

MER, 2008).

Pipeline components are also very prone to erosion problems. Previous works

(DUARTE; SOUZA; SANTOS, 2016; SANTOS; SOUZA; DUARTE, 2016; DUARTE;

SOUZA, 2017) have proposed several possibilities for geometric changes to mitigate ero-
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sion caused by particles carried in a fluid flow, most of which were based on practical

experience and somehow intuitive. Despite their significant gains in terms of reducing

peak erosion, such geometries can be difficult to propose in other situations based only on

physical insights, particularly when a complex geometry is involved and the physics and

erosion mechanisms are not well known. Furthermore, the proposed geometries normally

increase the system pressure drop. In this sense, adjoint methods can be powerful tools

as they will naturally indicate designs, possibly with different degrees of complexity, that

would otherwise be impossible to obtain by pure intuition.

Few developments for multiphase flows have been proposed (KRÖGER; KÜHL;

RUNG, 2018), as there are still fundamental limitations in adjoint methods that might

prevent their commonplace usage. The Euler-Lagrange approach, for example, has been

the workhorse in particle-induced erosion simulations. Unfortunately, the adjoint theory

is not applicable to the Lagrangian formulation. Alternatively, an Euler-Euler approach

could be applied to simulate dispersed multiphase flows.

The main goal of this thesis is to demonstrate how multiphase flow systems can be

improved through a shape optimization process with the application of an adjoint method.

The first objectives are to optimize different accessories commonly used in pipelines in pro-

cess industries while minimizing a single-phase flow problem and to compare the particle-

induced erosion caused in the original and optimized systems. Given the lack of a formal

demonstration of erosion reduction, evidence will be provided to show that this side effect

can be obtained even for high Stokes numbers, in which the correlation between fluid and

particle flows is low. Although minimizing functions related to the continuous phase can

indirectly benefit from information associated with the dispersed phase of a multiphase

flow, there are no well-defined adjoint equations in the literature to specifically control

information related to particles, such as erosion or collection/deposition efficiency. Until

now, adjoint-based shape optimization for multiphase flow systems has not been available

in open-source or commercial software. A few research codes have addressed this issue,

but they still exhibit several limitations. Accordingly, the subsequent objectives are to

propose adjoint equations that consider particle transport in the optimization process and

implement them.
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The research methodology is based on computational simulations, with the finite

volume, unstructured CFD code, UNSCYFL3D, as the primary component. This in-

house code was used to solve both fluid dynamics and optimization problems, requiring

the implementation of the adjoint equations and the optimization algorithm. The adjoint

solver developed in this work is not restricted to the presented cases, so it is also applicable

to other fluid dynamics problems. Nevertheless, minor adaptations may be necessary to

customize the adjoint post-processing to a particular type of control or to account for

different objective functions.

The present thesis is organized into six chapters, each addressing specific aspects of

the research. The current chapter provides a brief introduction to the subject, including

an overview of the research topic and outlining the research objectives. In Chapter 2,

a comprehensive review of the relevant literature is presented, covering topics related

to multiphase flows and shape optimization of fluid dynamics systems based on adjoint

methods. Chapter 3 is focused on the single-phase flow optimization problem, presenting

the shape optimization of different pipeline bends. The erosion problem is investigated in

the original pipeline bends and their optimized shapes and discussed in Chapter 4. The

multiphase flow optimization problem is further explored in Chapter 5, considering the

complexities specific to particle equations and exploring the application of adjoint-based

optimization. Lastly, outlook and final remarks are offered in Chapter 6, summarizing the

key findings, discussing limitations, suggesting future research directions, and concluding

the thesis.



CHAPTER II

LITERATURE REVIEW

A selection of central issues observed in the context of shape optimization applied

to fluid dynamics systems is discussed in the following. The focus is on incompressible

fluid dynamics related to multiphase flows. Even though erosive wear is not the main focus

of this thesis, it is an explored problem and, therefore, addressed here. The chapter ends

with a review of shape optimization, presenting the optimization methods and, finally,

the adjoint methods.

2.1 Simulation of fluid dynamics systems

The fundamental laws of classical mechanics are applicable to fluid flow. These laws

lead to the mass balance equation and the linear momentum equations, also known as the

Navier-Stokes equations, a group of equations composed of partial derivatives that describe

fluid behavior. Within the CFD technique, complex system geometries are replaced by

thousands (even millions) of known elements, and systems of partial differential equations

(PDEs) are represented as a set of approximate algebraic equations. For most software

used in CFD simulations, including ANSYS® Fluent, STAR-CCM+®, and OpenFOAM®,

the finite volume method is employed. Therefore, each element is seen as a small control

volume in which discretized versions of the equations are solved iteratively.

Most flows found in nature and in practical applications are turbulent. Thus, how



6

to model turbulence plays an important role in CFD problems. Three main approaches can

be distinguished to predict the evolution of the turbulent flow. Choosing one of them de-

pends on the specific application, the accuracy required, and the computational resources

available. In general, requiring a higher mesh resolution implies a more computationally

expensive model.

The simulation of turbulent flows by just numerically solving the fluid dynamics

equations requires resolving a wide range of characteristic time and length. Hence, the

mesh spacing must be smaller than the smallest structure of the flow to ensure proper

resolution. This resolution can be achieved with direct numerical simulation (DNS). The

computational cost of this approach, though, turns out to be prohibitive for simulating

practical engineering systems with complex geometry or flow configurations.

Ignoring the smallest structures, the computational cost of simulating the turbulent

flow is reduced. This can be achieved with the large eddy simulation (LES), in which the

filtered Navier-Stokes and mass balance equations are solved. In this sense, only the large

turbulent structures are resolved, which does not mean that the information related to

the small structures is irrelevant. For this reason, the effects and the interaction of the

small structure (smaller than the filter size, which depends on the mesh spacing) with the

resolved structures must be modeled.

The third approach consists of time-averaging the fluid dynamics equations, which

are known as the Reynolds-averaged Navier-Stokes equations (RANS). However, this pro-

cess causes the appearance of a nonlinear term, referred to as the Reynolds stress, that

requires additional modeling to close the RANS equations. A great diversity of turbu-

lence closure models can be found in the literature. They mainly differ between those

that depend on the turbulent viscosity of the flow and those that do not. Clearly, the

RANS-based approach is computationally cheaper than the previous ones.

The turbulent structures resolved in each of the approaches are illustrated in

Fig. 2.1. Observing the figure, there are still the URANS (unsteady Reynolds-averaged

Navier-Stokes) class models, which are different from RANS due to the time term considered

in the average equations, and the hybrid methods, which are the result of a combination

of RANS and LES models. More information about turbulent flow simulation is available
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Table 2.1 – Summary of multiphase flow systems and important industrial and technical
processes.

Continuous-dispersed phase Industrial and technical applications

Gas-solid flows
Pneumatic conveying, particle separation in cyclones

and filters, fluidized beds

Liquid-solid flows Hydraulic conveying, liquid-solid separation

Gas-droplet flows Spray drying, spray cooling, spray painting

Liquid-droplet flows Mixing of immiscible liquids, liquid-liquid extraction

Liquid-gas flows Bubble columns, aeration of sewage water, flotation

Source: Modified from Sommerfeld (2017).

A deep understanding of the flow behavior and properties can be achieved through

flow characterization. This process involves analyzing the relevant physical parameters

of the flow and studying the underlying physical mechanisms, which turn out to be very

relevant for flow modeling. In this sense, multiphase flows can be characterized by the

Stokes number, the flow regime, and the coupling type between phases. More details on

each parameter will be discussed separately below.

2.2.1 Stokes number

The Stokes number St is a dimensionless parameter used to characterize the be-

havior of the particles in the fluid flow. This number is defined as the ratio of the particle

response time τp to the characteristic time τf of the fluid flow (CROWE et al., 2011):

St =
τp
τf
. (2.1)

The particle response time is the time a particle takes to reach a steady-state velocity

when subjected to a constant force, and it depends on the particle density ρp, the particle

diameter dp and the dynamic viscosity of the fluid µ:
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τp =
ρpdp

2

18µ
. (2.2)

On the other hand, the characteristic time of the flow is determined as:

τf =
l

U∞

, (2.3)

where l is the characteristic length of the flow and U∞ is the velocity of the free stream.

When the Stokes number is very small (St ≪ 1), the particle response time is

shorter than the characteristic time of the fluid flow. This means that the particles have

enough time to react to the velocity changes in the flow. Therefore, the particles follow the

turbulent structures closely and do not exhibit any significant inertia. In contrast, when

the Stokes number is large (St≫ 1), the particles cannot respond to the velocity changes

in the flow and end up passing almost in a straight line through the turbulent structures.

Finally, when the Stokes number is moderate (St ≈ 1), the particles have sufficient inertia

to deviate from the turbulent structures, although they are somehow still affected by the

velocity field (CROWE et al., 2011; SOMMERFELD, 2017). The effect of the Stokes

number on particle behavior in turbulent flows is illustrated in Fig. 2.2.

Figure 2.2 – Effect of Stokes number on particle dispersion in turbulent structures.

Source: Crowe, Troutt, and Chung (1995).

2.2.2 Dilute and dense regimes

The terms “dilute” and “dense” are often used to describe two distinct regimes of

multiphase flows. These regimes are differentiated by the forces that control the motion

of particles. The flow is dilute when the fluid-particle interaction forces, such as drag and
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particles, which suggests that this type of coupling is especially observed in dense flows.

2.2.4 Simulation of multiphase flows

The two commonly used approaches to numerically solving multiphase flow prob-

lems are Euler-Euler and Euler-Lagrange. In the Euler-Euler approach, all phases are

formulated based on the Eulerian description of the flow field. In the Euler-Lagrange

approach, the continuous phase is defined in the Eulerian frame of reference, while the

dispersed phase is defined in the Lagrangian frame of reference. Both approaches have

their own advantages and limitations and are more suitable depending on the specific

characteristics of the multiphase flow being modeled.

2.2.4.1 Euler-Euler approach

In the Euler-Euler approach, both phases are assumed to behave as interpenetrat-

ing continuous media, and they can either be modeled as a single fluid or as two fluids.

One-fluid modeling is based on tracking the motion of the interface between separated

phases (RIBERA, 2015; MIRJALILI; JAIN; DODD, 2017; GIBOU; FEDKIW; OSHER,

2018), for example, the VOF (volume of fluid) and LSM (level-set method) methods. In

this method, the problem is solved by a set of PDEs as in single-phase flows, and an

additional scalar field is applied to capture the interface. With the scalar field, which

represents the volume fraction in the VOF method or the distance to the interface in

the LSM method, the physical properties of each phase can be determined. Conversely,

modeling dispersed multiphase flows is more appropriate with the two-fluid models.

In two-fluid models, each phase is assumed to be a continuum with its own set

of transport equations (KUIPERS et al., 1992). In addition, exchange terms that model

momentum, mass, and energy transfer can be implemented to account for interactions,

although not all the details that occur at the particle scale can be described and mod-

eled. For dense flows, the use of this modeling is advantageous when compared with an

Euler-Lagrange approach. Nevertheless, if particles have a size distribution, the trans-

port equations must be solved for each size class, and, therefore, this modeling eventually

becomes computationally expensive (ALLETTO, 2014).
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Van Wachem et al. (2001) carried out a comparative analysis between some existing

two-fluid models in the literature and in commercial CFD software through simulations of

fluidized beds. The author observed that when comparing two different proposals for linear

momentum equations, the results were similar in terms of the macroscopic characteristics

of the flow. Furthermore, the results were not dependent on the different turbulence

closure models for the solid phase. However, the different proposals to calculate the drag

force considerably influenced the behavior of the multiphase flow.

2.2.4.2 Euler-Lagrange approach

In the Euler-Lagrange approach, the continuous phase is treated as a continuum,

and the dispersed phase is treated as a collection of discrete particles with a specific

position, velocity, and mass. This approach allows a very detailed description of the

particle behavior, including all relevant mechanisms involved, such as body forces, fluid-

particle interactions, particle-particle interactions, and particle-wall interactions.

A usual way to model the dispersed phase in the Euler-Lagrange approach is

through the point-particle approximation, which means that particles are assumed to

be material points. For this assumption to be valid, the particle size must be smaller

than the grid size so that the disturbances caused in the continuous phase are contained

within a cell (ALLETTO, 2014). This approximation relies on Newton’s second law,

which implies using a set of ordinary differential equations (ODEs) to track the motion

of particles.

Sommerfeld (2017) suggested a classification for the point-particle approach as pre-

sented in Fig. 2.5. Some distinctions in tracking and modeling particles are observed. In

the discrete particle method (DPM), for example, all real particles are tracked. Never-

theless, in cases where particles are many and tiny, tracking them all becomes computa-

tionally infeasible. Under these conditions, the Lagrangian parcel concept (LPC) is more

advantageous, in which the simulated particles are called parcels and represent a certain

number of real particles. Both in LPC and DPM, the hard sphere model is adopted, which

is more effective in collision-dominated cases since it considers that only instantaneous

collisions between pairs of particles happen. In the discrete element method (DEM), all
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real particles are tracked as in DPM, but instead of the hard sphere model, the soft sphere

model is considered. In the soft sphere model, a particle can have contact with more than

one particle at the same time, and it is assumed to be a deformable body that will return

to its original shape after releasing the contact (NOROUZI et al., 2016). This model is

suitable for contact-dominated cases, allowing simulations of much denser flows than with

DPM.

Figure 2.5 – Classification of Lagrangian particle tracking methods.

Source: Modified from Sommerfeld (2017).

2.2.5 Erosive wear due to particles

Erosive wear is a type of wear that occurs when a solid surface is subjected to the

impact of particles of solid or liquid carried in a fluid flow. According to Bhushan (2013),

the erosion caused by solid particles is a form of abrasion that is generally treated rather

differently because the contact stress arises from the kinetic energy of particles flowing in

a fluid stream as it encounters a surface. The particle velocity and impact angle combined

with the size of the abrasive give a measure of the kinetic energy of the hitting particles,

that is, of the square of the velocity.

Although erosion can be an advantage in certain practical uses, such as erosive

cleaning of surfaces and erosive drilling and cutting, it can be a severe problem in other
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situations. Due to the high velocities required for conveying particulate materials, erosion

of pipeline surfaces caused by solid particles in pneumatic conveying systems is a major

industry concern, especially if abrasive particles have to be handled (DUARTE, 2017).

Erosion can cause significant damage to the surface of equipment, leading to reduced

functionality and a shorter service life. Thus, the search for solutions is something desired

in the industry, and that is why studying this phenomenon is so important.

Understanding the physics involved requires determining the flow conditions, the

number, direction, and velocity of particles striking the surface, as well as the surface

material removed in the process. The erosion phenomenon is clearly defined as a fluid

dynamics problem, with the fluid flow transporting particles that end up colliding with a

surface (PEREIRA; SOUZA; MORO MARTINS, 2014).

The characteristics of the fluid flow have a strong effect on the final erosion rate.

Some influencing factors are fluid properties, such as viscosity and density, and flow turbu-

lence (SANTOS, 2018). In terms of viscosity, wear can be affected as drag forces imposed

by a viscous flow on the erosive particles change the impact angles (HOJO; TSUDA;

YABU, 1986). Furthermore, as can be seen in Fig. 2.6, particle impingement is more

Figure 2.6 – Effect of flow on erosive wear.

Source: Stachowiak and Batchelor (2014).
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likely to occur in turbulent than in laminar flows, i.e., the presence of turbulence tends

to accelerate erosive wear (DOSANJH; HUMPHREY, 1985). However, when a laminar

jet is directed normally to the surface, the particles impinge against the surface. In this

case, wear is concentrated directly beneath the jet, and a relatively unworn annular area

surrounds the wear scar (STACHOWIAK; BATCHELOR, 2014).

The research community has made efforts to explore the topic of the erosion process

in pipeline systems. Experimental investigations, by the way, have supported the develop-

ment of empirical correlations and models capable of predicting erosion behavior (NEIL-

SON; GILCHRIST, 1968; FINNIE, 1972; GRANT; TABAKOFF, 1975; HOJO; TSUDA;

YABU, 1986; AHLERT, 1994; OKA; OKAMURA; YOSHIDA, 2005; ZHANG et al.,

2007; MAZUMDER; SHIRAZI; MCLAURY, 2008; RICARDO; SOMMERFELD, 2020).

Regarding numerical investigations, progress in understanding erosion due to particles

has been achieved by implementing these erosion models in CFD simulations (GRANT;

TABAKOFF, 1975; DOSANJH; HUMPHREY, 1985; PEREIRA; SOUZA; MORO MAR-

TINS, 2014; SOLNORDAL; WONG; BOULANGER, 2015; DUARTE; SOUZA; SAN-

TOS, 2015; DUARTE et al., 2017; YU, W. et al., 2019). A complete review of the erosion

equations developed over the years is found in Duarte (2017).

Neilson and Gilchrist (1968), Finnie (1972), Ahlert (1994), Oka, Okamura, and

Yoshida (2005) and Zhang et al. (2007), for instance, proposed correlations to estimate

the erosion ratio related to the impact of a particle on a surface. The erosion ratio

E corresponds to the mass ratio of eroded material over erodent material. A common

feature of these models is that, for a given pipe material and given particle parameters,

the predicted erosion pattern is continuously dependent on the impact angle and impact

velocity, as well as the amount of particles hitting the wall. Thus, by accumulating the

damage that each particle causes when colliding, it is possible to calculate the mass of

removed material per unit of area and per unit of time. This concept leads to the erosion

rate:

Ef =
1

Af

∑

π(f)

ṁp,πE, (2.6)
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where ṁp,π is the particle mass flow rate represented by each computational particle

colliding with face f , and Af is the face area. Another way to formulate erosion is in

terms of the penetration ratio, which represents the thickness of material removed from

the wall over the mass of particles injected into the system:

Penetration ratio =
Ef

ṁp,inρs
. (2.7)

This parameter is obtained just by dividing the erosion rate by the surface material density

ρs and particle mass flow rate at the inlet ṁp,in.

In pipeline systems, the erosion typically occurs at bended segments, where the

particles do not immediately respond to the sudden change in the carrier flow direction

due to their inertia. This problem is mainly simulated with the Lagrangian approach for

tracking particles, and only a few studies (MESSA; FERRARESE; MALAVASI, 2015;

MESSA; MALAVASI, 2018; YU, W. et al., 2019) considered the Eulerian approach.

The mitigation of erosion by somehow modifying pipes has been studied previously.

Duarte, Souza, and Santos (2016), for example, added a vortex chamber to a standard

elbow and verified, through simulations, an improvement in the efficiency of the cushioning

effect, reducing the peak of penetration ratio up to 93%. Santos, Souza, and Duarte (2016)

numerically investigated the insertion of twisted tape at different positions upstream of a

bend with the intention of reducing elbow erosion. The authors found that the further the

insertion is placed upstream of the elbow, the less erosion there is in the elbow. Similarly,

Zhu and Li (2018) did not change the surface of the pipe but inserted a trapezoidal rib

by installing it at different positions on the extrados of a 90◦ elbow. A reduction of the

erosion peak in the elbow up to 31.4% was achieved by placing the rib at 25◦. In contrast,

Duarte and Souza (2017) proposed a novel design consisting of twisting a pipe wall along

the streamwise direction. This modification caused a reduction of the erosion peak in a

standard elbow of up to 33%. Finally, Li et al. (2022) evaluated different arrangements of

protuberances installed on the extrados of an elbow to improve its erosion resistance. It

was observed that multiple rows of protrusions have a better effect, reducing the maximum

erosion rate by 39.09% at most.
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2.3 Shape optimization of fluid dynamics systems

Optimization is the process of obtaining the most suitable solution to a given

problem. While some types of problems may have a unique solution, others may have

multiple potential solutions. The goal of optimization is to find the “best” solution, where

“best” implies that the solution is not the exact solution but is sufficiently superior.

In this sense, shape optimization is a branch of optimal control theory that consists

of geometrically controlling the shape of a system in order to improve its performance.

The search for an optimal shape β is accomplished by minimizing a certain objective

function J while satisfying the imposed constraints R. From a fluid dynamics point of

view, the evaluation of the objective function is subject to the solution of PDEs defined

in a fluid domain Ω with boundary conditions defined on domain boundaries Γ:

minimize J(β, ϕ)

subject to R(β, ϕ) = 0 in Ω.
(2.8)

Since the fluid flow is denoted as state ϕ, R = 0 corresponds to the equations of state,

i.e., the fluid dynamics equations. Although, in shape optimization problems, the control

is applied to a part of the domain boundary ΓD ⊂ Γ (boundary-based control), called

the design surface, the objective function can be declared either on the objective surface

ΓO ⊂ Γ (boundary-based objective) or in the objective volume ΩO ⊂ Ω (volume-based

objective).

Shape optimization has a long history since Newton was looking several centuries

ago for axisymmetric bodies with minimum drag in a fluid. Not so long ago, Hadamard,

at the end of the 19th century, was able to formulate the differential of functions of

the solution of some partial differential equations with respect to boundary variations

(GLOWINSKI, 1998). In terms of the computational aspects, after the 1970s, the emer-

gence of new approaches and techniques enabled a breakthrough in shape optimization

(LIONS, 1971; PIRONNEAU, 1974; JAMESON, 1988). Early applications are primarily

found in aerodynamic design (GLOWINSKI; PIRONNEAU, 1975, 1976) and structural

optimization (HAFTKA; GRANDHI, 1986).
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In the aeronautical industry, one of the main concerns is drag. This force acts

in the opposite direction to an aircraft’s motion, so the aircraft can fly more efficiently

by reducing it, resulting in lower fuel consumption and lower operating costs. The de-

sire to minimize drag and obtain more aerodynamic aircraft has motivated numerous

research studies on shape optimization, making it well established in aerodynamic design

(SKINNER; ZARE-BEHTASH, 2018). Its use has spread to a wide variety of physi-

cal and engineering disciplines. Regarding fluid dynamics systems, some of the more

recent works include the optimization of cars and automotive components (HINTER-

BERGER; OLESEN, 2011; OTHMER, 2014), ships (STÜCK; KRÖGER; RUNG, 2011;

KRÖGER; KÜHL; RUNG, 2018), cyclones (SAFIKHANI et al., 2011; ELSAYED, 2015),

turbomachinery blades (WANG; HE, 2010; MONTANELLI, 2013), ducts (OTHMER,

2008; AVVARI; JAYANTI, 2013), microchannels in inkjet printers (KUNGURTSEV; JU-

NIPER, 2019), and polymer distributors (HOHMANN; LEITHÄUSER, 2019b). There are

still applications in other fields, such as the optimization of electrical motors (GANGL

et al., 2015), acoustic signal horns (BÄNGTSSON; NORELAND; BERGGREN, 2003;

SCHMIDT; WADBRO; BERGGREN, 2016), and magnetic induction tomography (HIN-

TERMÜLLER; LAURAIN; YOUSEPT, 2015).

Shape optimization problems are usually solved by iterative methods, starting with

an initial estimate of the shape of a geometry, which can be referred to as the baseline

configuration. As the iterations advance, i.e., for each new design cycle, this shape is

gradually modified until a minimum of the objective function is achieved. Clearly, just

applying an optimization method is not enough; the geometry must change in some way

throughout the process. In principle, this can be done with the geometric representation

by means of a parameterized surface (QUAGLIARELLA; CIOPPA, 1995). The param-

eterization can even be performed by coupling computer-aided design software (CAD)

to optimization (YU, G. et al., 2011; AGARWAL et al., 2019). However, when a code

based on a numerical discretization method, such as finite difference, finite element, or

finite volume, is applied to solve the PDEs, the geometry of the problem is defined by a

mesh. Therefore, if the shape of the geometry changes, the mesh must be modified for

the optimization process to continue. One option for this scenario would be to re-mesh
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whenever the geometry is updated, but this is not always a feasible option due to the high

computational cost. Consequently, applying a mesh deformation approach may be more

appropriate.

Considering the problem is numerically solved by using a mesh with N computa-

tional cells, Eq. (2.8) can be rewritten in discrete form as:

minimize J(β, ϕ)

subject to Rj(β, ϕ) = 0, j = 1, ... , N.
(2.9)

As well as the constraints, the state variables and the control are evaluated in the cells of

the domain:

β = (β1, ... , βM),

ϕ = (ϕ1, ... , ϕN).
(2.10)

Thus, based on information of the flow field resolved in a domain bounded by the shape

of its surface, the objective function is evaluated (STÜCK, 2011):

Set β → Solve Rj(β, ϕ) = 0 for ϕ → Evaluate J(β, ϕ) (2.11)

It is important to note that no optimization procedure guarantees the global opti-

mum of the objective function will be found, since the process may not converge or only

converge towards a locally optimal solution. Typically, in this situation, there are three

possibilities: restart the optimization process to investigate if the same solution is found;

approach the optimization with a different algorithm to compare solution quality; or ac-

cept the optimum found, knowing that while it is superior to the baseline configuration, it

may not be the optimal solution (SKINNER; ZARE-BEHTASH, 2018). Further insights

into optimization methods and their limitations are provided in the subsequent sections.

2.3.1 Optimization methods

The field of optimization is expansive, and although computational cost is im-

portant, the choice of a suitable algorithm also depends on the nature of the problem
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at hand, i.e., number and type of design variables, design scope and required fidelity,

how constraints are handled in the optimization process, and how the algorithm should

be embedded and tuned (SKINNER; ZARE-BEHTASH, 2018). Basically, the optimiza-

tion methods are divided into two techniques: deterministic or classical optimization and

heuristic or random optimization (SARAMAGO, 2012; LOBATO, 2008).

The classical optimization relies on the gradient (derivatives) information of the

objective function with respect to a number of independent variables to identify the search

direction of the design. An understanding of the design space is necessary, as a properly

preconceived initial design point must be provided. Gradient-based algorithms are well

suited to finding locally optimal solutions but may struggle to find the global optimal.

On the other hand, heuristic optimization operates from a completely different

paradigm, often mimicking the behavior of natural systems (e.g., population genetics,

biological evolution, particle swarm and simulated annealing) or other analogies. This

technique is based on the calculation of probabilities and does not require the calculation

of derivatives, which allows it to cope with discontinuous and numerically noisy objective

functions. Gradient-free algorithms can prove more complex to implement than gradient-

based ones, but they generally increase the probability of finding the global optimum.

Typically, the computational cost of the entire shape optimization process scales

with the number of design variables and also depends on how the equations of state are

solved. When optimizing fluid dynamics systems, computational cost plays a crucial role

in selecting an appropriate optimization method. Given that CFD simulations are used

to solve the fluid dynamics problem, a significant cost is already involved, especially if it

is a complex three-dimensional problem.

The great disadvantage of heuristic methods for fluid dynamics systems is related

to the high number of evaluations of the objective function, as they operate over a pop-

ulation of individuals. At each evaluation of the objective function, the flow field would

need to be solved once, which results in several CFD simulations within a single iter-

ation of the optimization process. Skinner and Zare-Behtash (2018) provided a critical

review of aerodynamic shape optimization methods. The authors concluded that the

cost of heuristic relative to classical methods increases dramatically, and they normally
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require tighter convergence tolerances. In aerodynamic optimizations with gradient-free

algorithms, overcoming the computational cost was often done by applying a compact

shape parameterization, or, in other words, a parameterization with a compact set of

design variables, in order to reduce the dimensionality of the search space (SKINNER;

ZARE-BEHTASH, 2018).

For classical methods, the computational cost is estimated based on the calculation

of derivatives of the objective function. In shape optimization, obtaining the gradient

consists of finding variations in the objective function δJ for a given perturbation of the

design surface. This process is called sensitivity analysis, in which a perturbation of the

design surface means changes in the design variables δβ and compatible changes in the

flow field δϕ. Accordingly, the gradient is also referred to as sensitivity derivatives, or just

sensitivities.

Together with the CFD simulation, the sensitivity analysis must be embedded in

a single design procedure containing an optimization routine or strategy and tools for

(automatic) geometry update, mesh adaptation, or re-meshing. Sensitivity derivatives

can support both manual and automatic optimization, but manual optimization is not

practical at all as it makes the whole procedure laborious, cumbersome, and very time-

consuming. In this context, two methods stand out for sensitivity analysis: direct methods

and adjoint methods.

The direct methods follow the straightforward chain of influence shown in Eq. (2.11).

Computing the gradient for such methods requires varying each one of the design variables

to obtain the respective objective function. However, a variation in each design variable

requires a new solution for the flow field. Consequently, the number of CFD simulations

in a single design cycle of the optimization process scales linearly with the number of

design variables.

In contrast, the adjoint methods follow the opposite path of Eq. (2.11). They are

focused on determining the required variation of the design variables for a desired variation

in the objective function. Although the computational cost is practically independent of

the number of design variables, a new system of partial equations, the adjoint equations,

needs to be deduced (STÜCK, 2011). Thus, the complete computation of the gradient for



23

a given objective function is accomplished with the effort of two CFD simulations. One

simulation is intended to solve the conventional (primal) flow field and the other to solve

the adjoint field. If the problem had more than one objective function, a different adjoint

field would need to be solved for each function in addition to the primal flow field. A

comparison between adjoint and direct methods considering one objective function can

be seen in Fig. 2.7.

Figure 2.7 – Comparison of direct and adjoint methods considering one objective
function.

Direct methods

Question: How do changes of the
design variables (β1, β2, β3, ..., βM)
influence the system performance?

δβ1 → δJ(1)

δβ2 → δJ(2)

δβ3 → δJ(3)

...

δβM → δJ(M)

M + 1 required simulations

Adjoint methods

Question: What changes to the design
variables are necessary to get

an optimal system performance?

{δβ1, δβ2, δβ3, ..., δβM} → δJ(optimal)

2 required simulations
(1 primal + 1 adjoint)

Source: Modified from Brenner et al. (2015).

For CFD-based optimization, the simplest methods for geometry shape definitions

are the deformative ones (SKINNER; ZARE-BEHTASH, 2018), in which the mesh is

deformed as the boundary is modified. In deformative methods, the mesh nodes on the

boundary of the domain are directly treated as design variables, and their position can

be perturbed by the optimizer in order to generate new shapes. Therefore, a significant

advantage of this method is that the solutions are more flexible, as the optimized shapes

are not limited to parameterized surfaces. Any feasible geometry can be generated; how-

ever, this is likely to require a large number of design variables. As the adjoint methods

are very capable of handling thousands of design variables, they can be more suitable and

promising for optimizing fluid dynamics systems.
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2.3.2 Adjoint methods

The adjoint methods are classified into two different approaches: continuous and

discrete. The continuous approach consists of deducing the adjoint equations from the

primal PDEs of the problem and discretizing them to obtain the discrete adjoint equations.

Conversely, the discrete approach starts with the primal equations already discretized in

order to obtain the discrete adjoint equations. A schematic representation of the steps of

each approach is presented in Fig. 2.8.

Figure 2.8 – Schematic representation of the steps of the adjoint method approaches.

Differential state equations (primal)

Discrete state equations Differential adjoint equations

Discrete adjoint equations

DISCRETE
ADJOINT

CONTINUOUS
ADJOINT

Discretization Adjoint operation

Adjoint operation Discretization

Source: Modified from Thévenin and Janiga (2008).

Both approaches have been successfully applied to the optimization of systems and

equipment involving fluids in the last two decades. The pioneering works are normally

attributed to Pironneau (1973, 1974), who studied drag minimization for two-dimensional

shapes in Stokes and low-Reynolds number flows, and Jameson (1988), who was the first

to apply the continuous adjoint method to transonic inviscid flow. The subsequent body

of work of this last author with his students and colleagues is largely responsible for the

widespread and popular application of these methods (REUTHER et al., 1996; JAME-

SON; MARTINELLI; PIERCE, 1998; NADARAJAH; JAMESON, 2000). Reuther et al.

(1996), for example, used the continuous adjoint method in the shape optimization of an

aircraft and showed that accurate results can be obtained with it. Nadarajah and Jame-
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son (2000) compared the continuous and discrete adjoint-based automatic aerodynamic

optimization, focusing on studying the complexity of discretization, accuracy of results,

and computational cost. The main conclusions of the authors were considered and will

be outlined at the end of this section. Kim et al. (2001), on the other hand, considered

the discrete approach in optimizing the design of an aircraft wing exposed to supersonic

transport, confirming the validity and efficiency of the method. Othmer (2008) derived

an adjoint formulation for the steady-state incompressible Navier-Stokes equations spe-

cialized to ducted flows, emphasizing the versatility of the formulation since the adjoint

equations for ducted flows are objective function independent by nature and the adjoint

boundary conditions have been expressed in a way that can be easily adapted to any

commonly used objective function. Aiming to optimize automotive exhaust systems, Hin-

terberger and Olesen (2011) employed a continuous approach, disregarding density and

viscosity variations of the flow. Although the authors agree that this consideration reduces

the accuracy of the calculated gradients, in their opinion, the adjoint method still pro-

vides valuable information that allows even manual adjustments of the geometry. Stück,

Kröger, and Rung (2011) considered the sensitivity analysis based on the adjoint method

applied to the RANS equations for incompressible flows in order to redesign the hull of

a ship. In this case, the authors were interested in improving the wake quality left by

the ship, and with only two redesign cycles, they were able to obtain an improvement of

approximately 10%. Othmer (2014) addressed the achievements and challenges that have

been encountered by researchers in collaboration with the automotive industry seeking to

develop an industrially viable adjoint solver for car applications. Some of the obtained

results have proven to be promising, leading the author to state that shape optimization

methods will have an impact on the overall performance and consumption of cars in the

future. Finally, Elsayed (2015) used a discrete adjoint solver to guide geometry modifi-

cations based on the Stairmand cyclone, and, after shape optimization, the new cyclone

improved the flow symmetry.

When deriving the adjoint equations for turbulent flows, the turbulence closure

model equations are often disregarded in the mathematical development. As pointed

out by Dwight and Brezillon (2006), one of the most demanding parts of the spatial
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discretization to differentiate by hand is the turbulence closure model, partly due to

the wide variety of blending functions, limiters, etc., but mainly because of the many

coupling points to the fluid dynamics equations and the enormous selection of models

available. Moreover, it is very difficult to treat turbulence closure models in a continuous

adjoint framework. Hence, some simplifying assumptions must be made. A common

approximation is to neglect the variation of the effective viscosity of the flow, which is

known as the “frozen turbulence” hypothesis. Dwight and Brezillon (2006) studied the

feasibility of this hypothesis for aerodynamic design optimization using an adjoint method.

The authors concluded that assuming a constant effective viscosity might be invalid in the

adverse pressure gradient region following the shock on a transonic airfoil. However, Kim,

Kim, and Rho (2003) noticed that even causing inaccurate gradients in the design of the

transonic airfoil with a strong shock wave, this assumption showed a minor difference in

obtaining an optimal value of the objective function compared to the application without

it. Despite a certain increase in complexity, some works have proposed formulations taking

into account the effect of turbulence in the adjoint equations. For instance, Zymaris et

al. (2009) and Gkaragkounis, Papoutsis-Kiachagias, and Giannakoglou (2018) presented

the development of the continuous approach considering the Spalart-Allmaras turbulence

model applied to an aerodynamic and a conjugate heat transfer problem, respectively.

Adjoint methods have already been applied to multiphase flows, but this remains

limited to a few contributions. Extending shape optimization of single-phase to multi-

phase flow systems has generally been difficult due to the inclusion of more equations

that can be time-dependent. A time-dependent adjoint solution points backward in time

and is linearized around the current primal flow solution. Thus, the attractiveness of ad-

joint methods reduces for the optimization of unsteady flows due to memory requirements

to record the complete time history of the primal problem (KRÖGER; KÜHL; RUNG,

2018). Besides that, when addressing multiphase problems within the framework of PDE-

constrained shape optimization, the Lagrangian particle tracking approach is not well

suited. In the Lagrangian approach, the individual trajectories of a number of represen-

tative particles are described by a set of ODEs. Instead, the Eulerian approach provides

information about the spatial distribution of the flow variables on the entire domain and
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not on a discrete number of particle trajectories only. Although Eulerian models are less

prevalent in this context, they are a better option for shape optimization.

Helgason and Krajnović (2014) presented a sensitivity analysis aiming to maximize

particle uniformity at the outlet of a two-dimensional channel. The particle distribution

in a flow was represented by a passive scalar transport equation, and simulations were

performed in an open-source finite volume solver. The authors compared the sensitivity

derivatives calculated using the continuous adjoint method with the numerical differen-

tiation, and the same trend was obtained. In Boger and Paterson (2014), a continuous

adjoint formulation for multiphase flow was developed based on a barotropic homogeneous

mixture model and discretized with standard explicit Runge-Kutta methods. Results were

presented for vapor minimization objective functions for a two-dimensional cavitating hy-

drofoil in which the geometry was parameterized using B-splines. It is worth mentioning

that in both the works of Helgason and Krajnović (2014) and Boger and Paterson (2014),

no shape optimization was performed. Kröger, Kühl, and Rung (2018) studied the hydro-

dynamic optimization of ships for drag reduction. The authors extended the idea of the

adjoint method to the application of the VOF method using a finite volume solver. They

obtained an optimized ship design, keeping the main dimensions, with a reduction of more

than 5% of the total drag. In Hohmann and Leithäuser (2019a), the shape optimization

of a bended tube minimizing particle erosion was investigated. The non-dimensionalized,

stationary, incompressible, isothermal Navier-Stokes equations were considered for lami-

nar fluid flow, and the one-way coupled Eulerian model based on the volume averaging

procedure was considered for particle transport. The shape derivative was formulated us-

ing the continuous adjoint approach, and the problem was solved in a code based on the

finite element method. In order to optimize, a volume mesh deformation and a gradient

descent method were applied. Regarding the results, the erosion rate on the optimized

bend was less spatially concentrated than on the initial geometry, and its maximal value

was reduced by 79%. Bonnet et al. (2023) presented an adjoint-based optimization ap-

proach for finding the optimal shapes of peristaltic pumps transporting a rigid particle in

Stokes flow. The authors applied boundary integral equation techniques to solve the PDE

equations. The contribution of this work was an adjoint formulation that, in conjunction
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with a boundary integral formulation, significantly reduced the computational effort of

evaluating shape derivatives for the case studied.

Concerning the aforementioned works, most used the continuous adjoint approach

applied to a multiphase flow. None of them resorted to a Lagrangian approach to treat par-

ticle transport. In fact, in the work of Kröger, Kühl, and Rung (2018), the flow consisted

of two immiscible, incompressible phases. Furthermore, only two works (HELGASON;

KRAJNOVIĆ, 2014; KRÖGER; KÜHL; RUNG, 2018) discretized the adjoint equations

with the finite volume method. Ultimately, the particle transport equations have not yet

been addressed in shape optimization using adjoint formulations implemented in a finite

volume CFD code.

The PDE-constrained problem for shape optimization can be solved by converting

it to an unconstrained problem. In adjoint methods, this issue is tackled by reformulating

the objective function J with the introduction of the Lagrange function L. Then, this

new function is defined as the objective function extended by the domain integral of

primal equations, which are the constraints R, weighted by the Lagrange multipliers.

The Lagrange multipliers are also called the adjoint variables ϕ̂. To better understand

the specifics of each adjoint approach, the mathematical formulations of the continuous

and discrete approaches are exposed separately below.

2.3.2.1 Continuous approach

According to the continuous approach, the Lagrange function is given by:

L = J +

∫

Ω

ϕ̂R dΩ, (2.12)

with the objective function defined in a general form as:

J(β, ϕ) =

∫

ΓO

JΓ dΓ +

∫

ΩO

JΩ dΩ. (2.13)

A variation of L comprises three different contributions. Firstly, there are local

variations δφL of the flow properties at the old (original) position. Secondly, convective

variations δβL arise from the position change within the old flow field. Lastly, geometric
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variations occur due to the change of geometric properties. Validation studies conducted

by Stück (2011) showed that the geometric variation is of minor importance for the pre-

dictive accuracy of the sensitivities and can be neglected, so:

δL = δβL+ δφL. (2.14)

Along the design boundaries ΓD, all contributions have to be considered. Along the re-

maining boundaries and in the interior domain, the state is only exposed to local variations

(KRÖGER; KÜHL; RUNG, 2018). Therefore:

δL =

∫

ΓO∩ΓD

δβJΓ dΓ +

∫

ΓO

δφJΓ dΓ +

∫

ΩO

δφJΩ dΩ +

∫

Ω

ϕ̂δR dΩ. (2.15)

After obtaining the variation of the primal equations δR, the variational form is

subjected to the integration by parts that shifts derivatives from the variation of state

variables to the adjoint variables. Consequently, the volume integrals immediately yield

to the adjoint equations. Part of the surface integrals yields the boundary conditions, and

the other part related to the design surface remains to determine the gradient equation.

Based on the information of the resolved primal field ϕ and adjoint field ϕ̂, the gradient

G required in the optimization can be estimated from:

δL = Gδβ. (2.16)

2.3.2.2 Discrete approach

In the discrete approach, the Lagrange function is constructed as:

L = J(β, ϕ) +
N∑

j=1

ϕ̂jRj(β, ϕ). (2.17)

The problem formulated in Eq. (2.9) implies that:

∂L

∂ϕ̂j

= 0, j = 1, ... , N. (2.18)
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Accordingly, the linear variation of the discrete Lagrange function is obtained from the

expansion of the truncated Taylor series around (β, ϕ):

δL ≈
[

M∑

k=1

δβk
∂L

∂βk
+O

(
M∑

k=1

δβk
2

)]

+

[
N∑

i=1

δϕi
∂L

∂ϕi

+O
(

N∑

i=1

δϕi
2

)]

(2.19a)

=
M∑

k=1

δβk

(

∂J

∂βk
+

N∑

j=1

ϕ̂j
∂Rj

∂βk

)

+
N∑

i=1

δϕi

(

∂J

∂ϕi

+
N∑

j=1

ϕ̂j
∂Rj

∂ϕi

)

. (2.19b)

If ϕ̂ is chosen to satisfy the adjoint equations obtained by:

N∑

j=1

ϕ̂j
∂Rj

∂ϕi

= − ∂J

∂ϕi

, i = 1, ... , N, (2.20)

the second term of Eq. (2.19) is eliminated, and then δL can be calculated for arbitrary

admissible δϕ:

δL =
M∑

k=1

δβk

(

∂J

∂βk
+

N∑

j=1

ϕ̂j
∂Rj

∂βk

)

. (2.21)

Equation (2.20) contains the transpose of the Jacobian matrix of the system, ∂Ri/∂ϕj.

With the solution of ϕ̂ from Eq. (2.20), the gradient or the sensitivity derivatives can be

determined by:

G =
∂J

∂βk
+

N∑

j=1

ϕ̂j
∂Rj

∂βk
, k = 1, ... ,M. (2.22)

2.3.2.3 Particularities

The two approaches of the adjoint method have advantages and disadvantages.

Choosing the continuous or discrete approach usually depends on priorities for some spe-

cific reason or limitations due to practical reasons. Based on some works present in the

literature (REUTHER et al., 1996; NADARAJAH; JAMESON, 2000; MAVRIPLIS, 2007;

AUVINEN, 2014), the characteristics of both approaches are listed below.

For the discrete adjoint method, the highlights are:

• The obtained sensitivity derivatives present better agreement with those obtained
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through the direct methods, independently of the mesh refinement;

• Due to the above-mentioned fact, the discrete approach maintains algebraic consis-

tency;

• The boundary conditions already appear as source terms in the adjoint equations;

• The implementation of the discrete adjoint equations is relatively simple when au-

tomatic differentiation tools are employed;

• It is more computationally intensive.

Automatic differentiation (AD) is a set of techniques for evaluating the derivatives

of numerical functions expressed as computer programs. Knowing that every computer

program executes a sequence of elementary arithmetic operations (e.g., addition, subtrac-

tion, multiplication, and division) and elementary functions (e.g., exp, log, sin, and cos),

derivatives of arbitrary order can be computed automatically by repeatedly applying the

chain rule to these operations. This tool has been widely used in the discrete adjoint

method to calculate the terms ∂Rj/∂ϕi and ∂Rj/∂βk that appear in Eq. (2.20) and

Eq. (2.22), respectively (LE MOIGNE, 2002). However, not all source code can be differ-

entiated with the help of an AD tool, and without it, the implementation process tends to

be expensive, since performing the differentiation manually is difficult, time-consuming,

and tends to generate complicated code to maintain and debug (AUVINEN, 2014).

As for the continuous adjoint method:

• The obtained sensitivity derivatives tend to show better agreement with those ob-

tained by direct methods for increasingly refined meshes;

• The adjoint boundary conditions appear as updates of the adjoint field after the

adjoint equations are resolved;

• A certain effort is required in the mathematical development, so for problems in-

volving more complex equations, it becomes more difficult to make the necessary

deduction;
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• With the continuous formulation, it is possible to extract the adjoint analytical

solution of the problem, which allows to study the characteristics of the equations

and even use them to validate the computational results;

• There is greater flexibility in the discretization stage;

• The continuous adjoint solver can leverage features of the primal solver code more

freely.



CHAPTER III

SINGLE-PHASE FLOW OPTIMIZATION PROBLEM

This chapter provides a comprehensive overview of the use of shape optimization

in the context of single-phase flow. Shape optimization can be applied to control the

shape design of fluid dynamics systems to improve their performance or achieve specific

flow characteristics.

The challenge in this context is to compute the gradient of fluid dynamics objectives

in the adjoint way, ensuring that the computational effort is independent of the number of

parameters involved. Therefore, an adjoint method is used to optimize the shape of three

pipe fittings commonly found in pipelines of process industries with the goal of minimizing

the total pressure losses of the flow.

Considering that the shape optimization will be applied to an existing and vali-

dated CFD code and taking into account the advantages and disadvantages of different

adjoint approaches, the continuous adjoint method was chosen. The continuous approach

results in adjoint equations that resemble the primal equations of fluid flow. Consequently,

the primal solver can be easily used to create the adjoint solver with only minor adjust-

ments. Although developing the adjoint equations may require more effort, the continuous

approach offers a more intuitive understanding.
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3.1 Mathematical modeling

The mathematical modeling for the fluid flow problem is described below. The

respective adjoint equations for the constrained optimization problem are then deduced, in

addition to the adjoint boundary conditions. This leads to the calculation of the gradient

of the objective function, which plays a crucial role in determining the direction of design

improvement in the optimization process. Before considering the objective function of the

loss in total pressure, the adjoint formulation is developed in a general form.

3.1.1 Fluid phase equations

The Navier-Stokes (linear momentum) equations with the continuity equation are

sufficient to model an isothermal fluid flow in both laminar and turbulent regimes. How-

ever, direct numerical simulation of a turbulent flow requires the use of very fine meshes to

resolve all turbulent structures. As a consequence, a high computational cost is imposed,

limiting the application of DNS to simulate flows with a high Reynolds number.

The continuity and the Navier-Stokes equations in indicial notation for incompress-

ible flows are, respectively, given by:

∂(ρui)

∂xi
= 0, (3.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

[

µ

(
∂ui
∂xj

+
∂uj
∂xi

)]

, (3.2)

where i and j = 1, 2, 3 correspond to the components of the three coordinate directions

(x, y, z) and u is the instantaneous fluid velocity.

Even with the evolution of hardware, the values of the Reynolds number, for which

the practice of DNS is feasible, are still modest relative to the values that characterize

flows in industrial applications. For this purpose, other methodologies for simulating

turbulent flows may be a better choice. Employing the concept of filtering, the spectrum

of turbulent structures of the flow can be decomposed into two bands. Reynolds and

Boussinesq proposed to apply the time average operator (¯) to the Eqs. (3.1) and (3.2).
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Since the time average operator and the partial derivative operators are linear, it can be

deduced that (SILVEIRA NETO, 2020):

∂(ρūi)

∂xi
= 0, (3.3)

∂(ρuiuj)

∂xj
= − ∂p̄

∂xi
+

∂

∂xj

[

µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)]

. (3.4)

The above equations still cannot be solved directly because of the nonlinear term uiuj that

appears in Eq. (3.4). The decomposition of the total velocity field proposed by Reynolds

and Boussinesq is then considered:

ui = ūi + u′i, (3.5)

with ūi being the mean and u′i the fluctuation of the velocity field. Upon substitution of

Eq. (3.5) into Eq. (3.4) and performing the appropriate mathematical manipulations, it

can be obtained that:

∂(ρūiūj)

∂xj
= − ∂p̄

∂xi
+

∂

∂xj

[

µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)

− ρu′iu
′

j

]

, (3.6)

where u′iu
′

j are the components of the Reynolds stress tensor.

Equations (3.6) are the RANS equations, which with Eq. (3.3) constitute the model

of the mean behavior of an isothermal turbulent flow. Nevertheless, besides the average

velocities and the average pressure, there are six other unknowns associated with the

Reynolds stress tensor. Thus, there is a need for additional models to solve the turbulent

closure problem.

3.1.2 Turbulence closure model

Boussinesq proposed by analogy with Stokes model for viscous molecular stresses

that (SILVEIRA NETO, 2020):
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−ρu′iu′j = µt

(
∂ūi
∂xj

+
∂ūj
∂xi

)

− 2

3
ρkδij, (3.7)

where µt is the turbulent dynamic viscosity of the flow, δij is the Kronecker delta, and k

is the turbulent kinetic energy defined by:

k ≡ 1

2
u′iu

′

i =
1

2

(
u′u′ + v′v′ + w′w′

)
. (3.8)

Substituting Eq. (3.7) in Eqs. (3.6), the following equations are obtained:

∂(ρūiūj)

∂xj
= − ∂p̄

∂xi
+

∂

∂xj

[

µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)

+ µt

(
∂ūi
∂xj

+
∂ūj
∂xi

)

− 2

3
ρkδij

]

. (3.9)

The divergent term involving the turbulent kinetic energy (2/3)ρkδij results in its gradient:

∂

∂xj

(
2

3
ρkδij

)

=
2

3

∂(ρk)

∂xi
, (3.10)

which allows to incorporate it into the pressure gradient term of Eq. (3.9) generating a

modified pressure p̄∗:

p̄∗ = p̄+
2

3
ρk. (3.11)

Finally, the modeled equations are given by:

∂(ρūiūj)

∂xj
= −∂p̄

∗

∂xi
+

∂

∂xj

[

(µ+ µt)

(
∂ūi
∂xj

+
∂ūj
∂xi

)]

. (3.12)

Equations (3.12) are not yet closed due to the unknown turbulent viscosity. Cal-

culating this flow property is the main problem in the closure modeling of the RANS

equations. There are several turbulence closure models that rely on the concept of turbu-

lent viscosity. In general, they are classified into models with zero, one, and two transport

equations. However, there are also models for alternative closure, such as the algebraic

models and the Reynolds stress model (SILVEIRA NETO, 2020).

For the present thesis simulations, the k-ε turbulence closure model is considered.

This model, originally proposed by Chou (1945), requires solving two extra transport
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equations: one for the turbulent kinetic energy k and another for the turbulent kinetic

energy dissipation ε. Subsequent to Chou (1945), advancements were made to the k-

ε model, as seen in Harlow and Nakayama (1968). Nonetheless, the most established

version of this model in literature was introduced by Jones and Launder (1972), which is

commonly referred to as the standard k-ε model.

In the standard k-ε model, the turbulent viscosity is calculated by:

µt = ρ
Cµk

2

ε
, (3.13)

which depends on the following transport equations:

∂(ρūjk)

∂xj
=

∂

∂xj

[(

µ+
µt

σk

)
∂k

∂xj

]

+ µtS
2 − ρε, (3.14)

∂(ρūjε)

∂xj
=

∂

∂xj

[(

µ+
µt

σε

)
∂ε

∂xj

]

+ Cε1

ε

k
µtS

2 − ρCε2

ε2

k
, (3.15)

where S =
√
2SijSij, and Sij is the rate of strain tensor defined as:

Sij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)

. (3.16)

Over time, there have been proposals for modifications to the standard k-ε model.

However, as these proposals generally did not suggest significant changes in the deduction

processes of the transport equations, they retained the same nomenclature. Its variants are

normally characterized by different values of constants. Here, the constants of Eqs. (3.13)

to (3.15) are used according to Launder and Sharma (1974): σk = 1.0, σε = 1.3, Cε1 =

1.44, Cε2 = 1.92, and Cµ = 0.09.

The standard k-ε model is quite popular for simulating industrial problems due to

its low computational cost and relatively simple implementation. Furthermore, it offers

reasonable predictions for several turbulent flows, particularly developed and free shear

flows. However, this model alone is not well-suited for flows near walls and therefore

requires specific modeling to treat wall regions.
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3.1.2.1 Wall treatment

The two-layer model (CHEN; PATEL, 1988) is employed to handle both the core

flow and the near-wall region. Essentially, it combines the standard k-ε model for solving

the turbulent flow region and one transport equation model for solving the region affected

by the viscosity. In this last model, k is computed from Eq. (3.14), while ε is determined

by:

ε =
k3/2

lε
, (3.17)

where the characteristic length lε is given by:

lε = yCl [1− exp (−Rey/Aε)] , (3.18)

and Rey is the turbulent Reynolds number:

Rey =
ρy

√
k

µ
, (3.19)

which depends on the distance from the wall to the cell centers y. This Reynolds number

is the demarcation of the two regions: fully turbulent if Rey > Re∗y, and viscosity-affected

if Rey < Re∗y, with Re
∗

y = 200.

Still considering the one transport equation model, the turbulent viscosity is cal-

culated from:

µt,2layer = ρCµ lµ
√
k, (3.20)

where the characteristic length lµ is estimated by:

lµ = yCl [1− exp (−Rey/Aµ)] . (3.21)

In both characteristic length formulas, Eqs. (3.18) and (3.21), the constants are taken as:

Cl = 0.4187C
−3/4
µ , Aµ = 70, and Aε = 2Cl.
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The combination of the standard and the one-equation models is accomplished by

summing the turbulent viscosities:

µt = λεµt,standard + (1− λε) µt,2layer, (3.22)

which is smoothed by a blending function λε:

λε =
1

2

[

1 + tanh

(
Rey −Re∗y

A

)]

, (3.23)

where A determines the width of the blending function:

A =
0.2Re∗y

arctanh (0.98)
. (3.24)

The purpose of λε is to prevent the divergence of results when the solutions of both models

do not match. Thus, the blending function is defined in such a way that it tends to zero

as approaching the wall and tends to unity as moving away from the wall.

The refinement of the computational mesh near the wall is fundamental to guar-

anteeing accurate predictions for the fluid flow using the two-layer k-ε model. Since no

wall functions are used, the centroid of the cells adjacent to the wall must lie within the

viscous sublayer. In other words, the dimensionless distance from the centroid to the wall

must be y+ ≈ 1:

y+ =
ρyuτ
µ

with uτ =

√
τw
ρ
, (3.25)

where the velocity uτ is obtained as a function of the shear stress on the wall τw.

3.1.3 Continuous adjoint for fluid flows

The shape optimization problem restricted by a fluid flow can be stated as in

Eq. (2.8):

minimize J(β, ūi, p̄)

subject to R(β, ūi, p̄) = 0,
(3.26)
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where the state variables are the flow field information ϕ = (ūi, p̄) and the state equations

R = (Ri, Q)
⊺ are the Navier-Stokes and continuity equations for incompressible, isother-

mal, steady-state fluid flows, Eqs. (3.12) and (3.3). For the mathematical development of

the adjoint method, these primal equations were adopted in the non-divergence form, as

shown below:

Ri = ρūj
∂ūi
∂xj

+
∂p̄

∂xi
− ∂

∂xj

[

µeff

(
∂ūi
∂xj

+
∂ūj
∂xi

)]

= 0, (3.27)

Q = −∂ūi
∂xi

= 0, (3.28)

with µeff = (µ+ µt) representing the effective viscosity of the flow.

As covered in Section 2.3.2, the adjoint equations can be derived from the variation

of the Lagrange function L:

L = J +

∫

Ω

(ûi, p̂)R dΩ = J +

∫

Ω

(ûiRi + p̂Q) dΩ, (3.29)

which leads to Eq. (2.15):

δL =

∫

ΓO∩ΓD

δβJΓ dΓ +

∫

ΓO

(δūi
JΓ + δp̄JΓ) dΓ +

∫

ΩO

(δūi
JΩ + δp̄JΩ) dΩ

+

∫

Ω

(ûi δRi + p̂δQ) dΩ,

(3.30)

where the adjoint variables ϕ̂ = (ûi, p̂) are the adjoint velocity and the adjoint pressure.

The variations of the primal equations (δRi, δQ) with respect to (ūi, p̄) can be

obtained straightforwardly as:

δRi = ρ(δūj)
∂ūi
∂xj

+ ρūj
∂(δūi)

∂xj
+
∂(δp̄)

∂xi
− ∂

∂xj

[

µeff

(
∂(δūi)

∂xj
+
∂(δūj)

∂xi

)]

, (3.31)

δQ = −∂(δūi)
∂xi

. (3.32)

Here, the variation of the effective viscosity µeff was neglected. For turbulent flows, neglect-
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ing this variation constitutes the common approximation known as “frozen turbulence”.

Thereby, Eq. (3.30) can be rewritten as:

δL =

∫

ΓO∩ΓD

δβJΓ dΓ +

∫

ΓO

(δūi
JΓ + δp̄JΓ) dΓ +

∫

ΩO

(δūi
JΩ + δp̄JΩ) dΩ

+

∫

Ω

ûiρ(δūj)
∂ūi
∂xj

dΩ +

∫

Ω

ûiρūj
∂(δūi)

∂xj
dΩ

︸ ︷︷ ︸

(t.1)

+

∫

Ω

ûi
∂(δp̄)

∂xi
dΩ

︸ ︷︷ ︸

(t.2)

−
∫

Ω

ûi
∂

∂xj

[

µeff

(
∂(δūi)

∂xj
+
∂(δūj)

∂xi

)]

dΩ

︸ ︷︷ ︸

(t.3)

−
∫

Ω

p̂
∂(δūi)

∂xi
dΩ

︸ ︷︷ ︸

(t.4)

.

(3.33)

Before proceeding with the deductions, it is important to introduce the local coor-

dinate system of the domain boundary Γ, in which the flow velocity can be decomposed

as:

ūi = ūnni + ūt ti + ūs si, (3.34)

and the differential operator as:

∂

∂xi
=

∂

∂n
ni +

∂

∂t
ti +

∂

∂s
si. (3.35)

Thus, the vector ni consists of the unit vector normal to the boundary, which points

outside the fluid domain Ω, while ti and si are the unit vectors that lie in the plane of the

boundary.

The next step is to apply integration by parts, using Gauss’s theorem, in the terms

(t.1) to (t.4) of Eq. (3.33). In the term (t.3), the integration by parts has to be applied

twice. Hence, it follows that:

(t.1) :

∫

Ω

ûiρūj
∂(δūi)

∂xj
dΩ =

∫

Γ

ρūjnj ûiδūi dΓ−
∫

Ω

δūi
∂(ρūjûi)

∂xj
dΩ (3.36)

(t.2) :

∫

Ω

ûi
∂(δp̄)

∂xi
dΩ =

∫

Γ

δp̄ (ûini) dΓ−
∫

Ω

δp̄

(
∂ûi
∂xi

)

dΩ (3.37)
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(t.3) : −
∫

Ω

ûi
∂

∂xj

[

µeff

(
∂(δūi)

∂xj
+
∂(δūj)

∂xi

)]

dΩ

= −
∫

Ω

ûi
∂

∂xj

[

µeff
∂(δūi)

∂xj

]

dΩ

︸ ︷︷ ︸

(t.5)

−
∫

Ω

ûi
∂

∂xj

[

µeff
∂(δūj)

∂xi

]

dΩ

︸ ︷︷ ︸

(t.6)

(3.38a)

(t.5) : −
∫

Ω

ûi
∂

∂xj

[

µeff
∂(δūi)

∂xj

]

dΩ

= −
∫

Γ

ûi

[

µeff
∂(δūi)

∂xj

]

nj dΓ +

∫

Ω

[

µeff
∂(δūi)

∂xj

]
∂ûi
∂xj

dΩ

= −
∫

Γ

ûi

[

µeff
∂(δūi)

∂xj

]

nj dΓ +

∫

Γ

δūi

[

µeff
∂ûi
∂xj

]

nj dΓ−
∫

Ω

δūi
∂

∂xj

[

µeff
∂ûi
∂xj

]

dΩ

(3.38b)

(t.6) : −
∫

Ω

ûi
∂

∂xj

[

µeff
∂(δūj)

∂xi

]

dΩ

= −
∫

Γ

ûi

[

µeff
∂(δūj)

∂xi

]

nj dΓ +

∫

Ω

[

µeff
∂(δūj)

∂xi

]
∂ûi
∂xj

dΩ

= −
∫

Γ

ûi

[

µeff
∂(δūj)

∂xi

]

nj dΓ +

∫

Γ

δūj

[

µeff
∂ûi
∂xj

]

ni dΓ−
∫

Ω

δūj
∂

∂xi

[

µeff
∂ûi
∂xj

]

dΩ

= −
∫

Γ

ûi

[

µeff
∂(δūj)

∂xi

]

nj dΓ +

∫

Γ

δūi

[

µeff
∂ûj
∂xi

]

nj dΓ−
∫

Ω

δūi
∂

∂xj

[

µeff
∂ûj
∂xi

]

dΩ

(3.38c)

∴ (t.3) : −
∫

Ω

ûi
∂

∂xj

[

µeff

(
∂(δūi)

∂xj
+
∂(δūj)

∂xi

)]

dΩ

=−
∫

Γ

ûi

[

µeff
∂(δūi)

∂xj

]

nj dΓ +

∫

Γ

δūi

[

µeff
∂ûi
∂xj

]

nj dΓ−
∫

Ω

δūi
∂

∂xj

[

µeff
∂ûi
∂xj

]

dΩ

−
∫

Γ

ûi

[

µeff
∂(δūj)

∂xi

]

nj dΓ +

∫

Γ

δūi

[

µeff
∂ûj
∂xi

]

nj dΓ−
∫

Ω

δūi
∂

∂xi

[

µeff
∂ûj
∂xj

]

dΩ

=−
∫

Γ

ûi

[

µeff

(
∂(δūi)

∂xj
+
∂(δūj)

∂xi

)]

nj dΓ +

∫

Γ

δūi

[

µeff

(
∂ûi
∂xj

+
∂ûj
∂xi

)]

nj dΓ

−
∫

Ω

δūi
∂

∂xj

[

µeff

(
∂ûi
∂xj

+
∂ûj
∂xi

)]

dΩ (3.38d)

(t.4) : −
∫

Ω

p̂
∂(δūi)

∂xi
dΩ = −

∫

Γ

p̂ (δūini) dΓ +

∫

Ω

δūi
∂p̂

∂xi
dΩ (3.39)
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Then, replacing Eqs. (3.36) to (3.39) in Eq. (3.33), it can be found that:

δL =

∫

ΓO∩ΓD

δβJΓ dΓ +

∫

ΓO

(δūi
JΓ + δp̄JΓ) dΓ +

∫

ΩO

(δūi
JΩ + δp̄JΩ) dΩ

+

∫

Ω

ûiρ(δūj)
∂ūi
∂xj

dΩ +

∫

Γ

ρūjnj ûi (δūi) dΓ−
∫

Ω

∂(ρūj ûi)

∂xj
(δūi) dΩ

+

∫

Γ

δp̄ (ûini) dΓ−
∫

Ω

δp̄

(
∂ûi
∂xi

)

dΩ−
∫

Γ

p̂ (δūini) dΓ +

∫

Ω

δūi
∂p̂

∂xi
dΩ

+

∫

Γ

δūi

[

µeff

(
∂ûi
∂xj

+
∂ûj
∂xi

)]

nj dΓ−
∫

Γ

ûi

[

µeff

(
∂(δūi)

∂xj
+
∂(δūj)

∂xi

)]

nj dΓ

−
∫

Ω

δūi
∂

∂xj

[

µeff

(
∂ûi
∂xj

+
∂ûj
∂xi

)]

dΩ.

(3.40)

The variation of the objective function in relation to the state variables can be expressed

by:

δūi
J = δūi

∂J

∂ūi
, (3.41)

and

δp̄J = δp̄
∂J

∂p̄
. (3.42)

Equations (3.41) and (3.42) are only valid for algebraic terms and require a reformulation

if the objective function contains differential expressions (STÜCK, 2011).

Equation (3.40) can be rearranged as:

δL =

∫

ΓO∩ΓD

δβJΓ dΓ−
∫

Γ

ûi

[

µeff

(
∂(δūi)

∂n
+
∂(δūn)

∂xi

)]

dΓ

+

∫

Γ

δūi

[

ρūn ûi + µeff

(
∂ûi
∂n

+
∂ûn
∂xi

)

− p̂ni

]

dΓ +

∫

ΓO

δūi

(
∂JΓ
∂ūi

)

dΓ

+

∫

Γ

δp̄ (ûn) dΓ +

∫

ΓO

δp̄

(
∂JΓ
∂p̄

)

dΓ

+

∫

Ω

δūi

{

−∂(ρūj ûi)
∂xj

+
∂p̂

∂xi
− ∂

∂xj

[

µeff

(
∂ûi
∂xj

+
∂ûj
∂xi

)]

+ ρûj
∂ūj
∂xi

}

dΩ

+

∫

ΩO

δūi

(
∂JΩ
∂ūi

)

dΩ−
∫

Ω

δp̄

(
∂ûi
∂xi

)

dΩ +

∫

ΩO

δp̄

(
∂JΩ
∂p̄

)

dΩ.

(3.43)

Equation (3.43) has to be fulfilled for any (δūi, δp̄) that satisfy the primal fluid

dynamics equations, which can in general be accomplished if the integrals vanish indi-
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vidually. For the integrals over the domain, this requirement gives rise to the adjoint

equations (OTHMER, 2008). Accordingly, the adjoint equations for steady-state, incom-

pressible fluid flows with frozen turbulence are derived as follows:







∂ûi
∂xi

=
∂JΩ
∂p̄

in ΩO,

∂ûi
∂xi

= 0 in Ω \ ΩO,

(3.44)







−∂ (ρūjûi)
∂xj

= − ∂p̂

∂xi
+

∂

∂xj

[

µeff

(
∂ûi
∂xj

+
∂ûj
∂xi

)]

− ρûj
∂ūj
∂xi

− ∂JΩ
∂ūi

in ΩO,

−∂ (ρūjûi)
∂xj

= − ∂p̂

∂xi
+

∂

∂xj

[

µeff

(
∂ûi
∂xj

+
∂ûj
∂xi

)]

− ρûj
∂ūj
∂xi

in Ω \ ΩO.

(3.45)

Although the signs of the advective term are different, the structure of the adjoint equa-

tions is very similar to that of the primal equations, Eqs. (3.27) and (3.28). This difference

means that the information from the adjoint field is transported in the opposite direction

to that of the primal field.

The variation of the Lagrange function is reformulated as:

δL =

∫

ΓO∩ΓD

δβJΓ dΓ−
∫

Γ

ûi

[

µeff

(
∂(δūi)

∂n
+
∂(δūn)

∂xi

)]

dΓ

+

∫

Γ

{

δūi

[

ρūn ûi + µeff

(
∂ûi
∂n

+
∂ûn
∂xi

)

− p̂ni

]}

dΓ +

∫

ΓO

δūi

(
∂JΓ
∂ūi

)

dΓ

+

∫

Γ

δp̄ (ûn) dΓ +

∫

ΓO

δp̄

(
∂JΓ
∂p̄

)

dΓ.

(3.46)

3.1.3.1 Boundary conditions

Only three types of boundaries are involved in the problems addressed in this thesis:

inlet, wall and outlet (Γ = Γin ∪ Γwall ∪ Γout). To derive the boundary conditions for the

adjoint variables, the surface integrals of Eq. (3.46) are analyzed under consideration of

the primal boundary conditions. Boundaries that coincide with parts of the design surface

require special attention. For now, the focus is only on boundaries that do not coincide
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with the design surface (Γ \ ΓD).

The boundary conditions for the adjoint pressure and the adjoint velocity can be

obtained from:

∫

Γ

δp̄ (ûn) dΓ +

∫

ΓO

δp̄

(
∂JΓ
∂p̄

)

dΓ = 0, (3.47)

∫

Γ

δūi

{

ρūn ûi +

[

µeff

(
∂ûi
∂n

+
∂ûn
∂xi

)]

− p̂ni

}

dΓ +

∫

ΓO

δūi

(
∂JΓ
∂ūi

)

dΓ

−
∫

Γ

ûi

[

µeff

(
∂(δūi)

∂n
+
∂(δūn)

∂xi

)]

dΓ = 0.

(3.48)

At the fluid inlet boundaries Γin and no-slip wall boundaries Γwall, a Dirichlet

condition for the velocity components and a Neumann condition for the pressure are

considered:

ūn =







Uin on Γin,

0 on Γwall,

(3.49)

ūt = ūs = 0 on Γin and Γwall, (3.50)

∂p̄

∂n
= 0 on Γin and Γwall, (3.51)

where Uin is the inlet velocity of the fluid in the domain. By definition, the local variation

of velocity on these boundaries is zero, δūi = 0. Therefore, Eqs. (3.47) and (3.48) on the

inlet results in:

∫

Γ

δp̄ (ûn) dΓ = −
∫

ΓO

δp̄

(
∂JΓ
∂p̄

)

dΓ, (3.52)

ûi

[

µeff

(
∂(δūi)

∂n
+
∂(δūn)

∂xi

)]

= 0. (3.53)
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For an arbitrary value of δp̄, it is found from Eq. (3.52) that:

ûn =







−∂JΓ
∂p̄

on Γin ∩ ΓO and Γwall ∩ ΓO,

0 on Γin \ ΓO and Γwall \ ΓO.

(3.54)

Considering Eq. (3.3) for a negligible curvature, it is inferred that:

∂ūi
∂xi

=
∂ūn
∂n

+
∂ūt
∂t

+
∂ūs
∂s

= 0. (3.55)

Given the constant velocity for the in-plane components on inlet and wall boundaries, it

is implied that:

∂ūt
∂t

=
∂ūs
∂s

= 0, (3.56)

which implicates from Eq. (3.55) that:

∂ūn
∂n

= 0 ⇒ ∂(δūn)

∂n
= 0, (3.57)

and, then:

∂(δūi)

∂n
=
∂(δūt)

∂n
ti +

∂(δūs)

∂n
si. (3.58)

Substituting in Eq. (3.53):

ût

[

µeff

(
∂(δūt)

∂n
+
∂(δūn)

∂t

)]

+ ûs

[

µeff

(
∂(δūs)

∂n
+
∂(δūn)

∂s

)]

= 0, (3.59)

it can be defined that:

ût = ûs = 0 on Γin and Γwall. (3.60)

As for the primal pressure field, a Neumann condition for the adjoint pressure is considered:
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∂p̂

∂n
= 0 on Γin and Γwall. (3.61)

In the case of outlet boundaries Γout with imposed pressure, a Dirichlet condition

is applied for pressure, while a Neumann condition is applied for velocity:

p̄ = 0 on Γout, (3.62)

∂ūi
∂n

= 0 on Γout. (3.63)

By definition, both conditions remain unchanged, which means δp̄ = 0 and ∂(δūi)/∂n = 0.

In this way, the adjoint boundary conditions on the outlet can be obtained by:

δūi

{

ρūn ûi +

[

µeff

(
∂ûi
∂n

+
∂ûn
∂xi

)]

− p̂ni +
∂JΓ
∂ūi

}

− ûi

(

µeff
∂(δūn)

∂xi

)

= 0, (3.64a)

⇒ δūi

{

ρūn ûi + µeff

(
∂ûi
∂n

)

− p̂ni +
∂JΓ
∂ūi

}

= µeff

(

ûi
∂(δūn)

∂xi
− δūi

∂ûn
∂xi

)

. (3.64b)

According to Othmer (2008), the term on the right-hand side of Eq. (3.64) can be

neglected, which leads to:

δūi

{

ρūn ûi + µeff

(
∂ûi
∂n

)

− p̂ni +
∂JΓ
∂ūi

}

= 0. (3.65)

For an arbitrary value of δūi on the outlet boundaries, it can imply that:

p̂ni = ρūn ûi + µeff

(
∂ûi
∂n

)

+
∂JΓ
∂ūi

. (3.66)

Decomposing the above equation for the local coordinate system, the adjoint boundary

conditions are obtained by:

p̂ =







ρūn ûn + µeff

(
∂ûn
∂n

)

+
∂JΓ
∂ūn

on Γout ∩ ΓO,

ρūn ûn + µeff

(
∂ûn
∂n

)

on Γout \ ΓO,

(3.67)
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





ρūn ût + µeff

(
∂ût
∂n

)

= −∂JΓ
∂ūt

on Γout ∩ ΓO,

ρūn ût + µeff

(
∂ût
∂n

)

= 0 on Γout \ ΓO,

(3.68)







ρūn ûs + µeff

(
∂ûs
∂n

)

= −∂JΓ
∂ūs

on Γout ∩ ΓO,

ρūn ûs + µeff

(
∂ûs
∂n

)

= 0 on Γout \ ΓO.

(3.69)

3.1.3.2 Gradient equation

Finding the gradient of the optimization problem requires the remaining terms of

Eq. (3.46) after resolving the adjoint boundary conditions, which are the boundary terms

applied to the design surface:

δL =

∫

ΓO∩ΓD

δβJΓ dΓ−
∫

ΓD

ûi

[

µeff

(
∂(δūi)

∂n
+
∂(δūn)

∂xi

)]

dΓ

+

∫

ΓD

{

δūi

[

ρūn ûi + µeff

(
∂ûi
∂n

+
∂ûn
∂xi

)

− p̂ni

]}

dΓ +

∫

ΓO∩ΓD

δūi

(
∂JΓ
∂ūi

)

dΓ

+

∫

ΓD

δp̄ (ûn) dΓ +

∫

ΓO∩ΓD

δp̄

(
∂JΓ
∂p̄

)

dΓ.

(3.70)

For the present thesis, two considerations must be highlighted. Firstly, the shape

optimization has fixed inlet and outlet boundaries, which means they are not affected by

the shape control. Hence, the only portion of Γ that is subject to shape variations is

obviously the no-slip wall boundaries (ΓD ⊂ Γwall). Secondly, the spacial perturbations on

the design surface are represented by displacements in the normal direction of the surface:

δβ = δn = ni δxi. (3.71)

Thus, the convective variation δβJΓ with respect to a surface normal perturbation δn

reads:

δβJΓ = δn
∂JΓ
∂n

. (3.72)
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In the primal system, ūi = 0 on Γwall, so Eq. (3.70) yields:

δL =

∫

ΓO∩ΓD

δn

(
∂JΓ
∂n

)

dΓ +

∫

ΓO∩ΓD

δūi

(
∂JΓ
∂ūi

)

dΓ

+

∫

ΓD

δūi

[

µeff

(
∂ûi
∂n

+
∂ûn
∂xi

)

− p̂ni

]

dΓ

+

∫

ΓD

δp̄ (ûn) dΓ +

∫

ΓO∩ΓD

δp̄

(
∂JΓ
∂p̄

)

dΓ−
∫

ΓD

ûi

[

µeff

(
∂(δūi)

∂n
+
∂(δūn)

∂xi

)]

dΓ.

(3.73)

Evaluating the adjoint boundary conditions on Γwall, in the specific case of ∂JΓ/∂p̄ = 0,

the boundary condition is ûi = 0 for the adjoint velocity. This implies that:

δL =

∫

ΓO∩ΓD

δn

(
∂JΓ
∂n

)

dΓ +

∫

ΓO∩ΓD

δūi

(
∂JΓ
∂ūi

)

dΓ

+

∫

ΓD

δūi

[

µeff

(
∂ûi
∂n

+
∂ûn
∂xi

)

− p̂ni

]

dΓ.

(3.74)

As a result of the shape perturbations, the boundary conditions of the design sur-

face undergo variations, δūi ̸= 0. Both the local variation and the convective variation due

to surface normal perturbation have to be considered. The Dirichlet boundary condition

postulated for the old flow at the old boundary position also needs to be satisfied by the

new flow on the new geometry:

ūoldi = ūnewi on ΓD. (3.75)

Developing the boundary condition for the new flow to second-order accuracy about the

old position (STÜCK, 2011):

ūnewi ≈ ūoldi + δūi + δn
∂ūoldi

∂n
on ΓD, (3.76)

the local variation of velocity is approximated by:

δūi ≈ −δn∂ūi
∂n

on ΓD. (3.77)



50

Thereafter, Eq. (3.74) looks like:

δL =

∫

ΓO∩ΓD

δn

(
∂JΓ
∂n

− ∂ūi
∂n

∂JΓ
∂ūi

)

dΓ−
∫

ΓD

δn
∂ūi
∂n

[

µeff

(
∂ûi
∂n

+
∂ûn
∂xi

)

− p̂ni

]

dΓ,

=

∫

ΓO∩ΓD

δn

(
∂JΓ
∂n

− ∂ūi
∂n

∂JΓ
∂ūi

)

dΓ−
∫

ΓD

δn

[

µeff

(
∂ûi
∂n

+
∂ûn
∂xi

)
∂ūi
∂n

− p̂
∂ūn
∂n

]

dΓ,

=

∫

ΓO∩ΓD

δn

(
∂JΓ
∂n

− ∂ūi
∂n

∂JΓ
∂ūi

)

dΓ−
∫

ΓD

δn

[

µeff

(
∂ûi
∂n

+
∂ûn
∂xi

)
∂ūi
∂n

]

dΓ. (3.78)

In light of all the simplifications, the gradient is finally calculated based on Eqs. (2.16)

and (3.78) as:

δL = Gδn with G =

∫

ΓD

[

−µeff

(
∂ûi
∂n

+
∂ûn
∂xi

)
∂ūi
∂n

+Gvar

]

dΓ, (3.79)

and

Gvar =







∂JΓ
∂n

− ∂JΓ
∂ūi

∂ūi
∂n

on ΓD ∩ ΓO,

0 on ΓD \ ΓO.

(3.80)

In this sense, the gradient of the objective function can be interpreted as sensitivity

derivatives evaluated on each mesh element of the design surface. Computing it for the

entire design surface creates a sensitivity surface map (OTHMER, 2008). Accordingly,

sensitivity derivatives with negative values indicate that an outward movement (δn > 0) of

the surface minimizes the objective function. On the other hand, positive values indicate

that the surface has to move inward (δn < 0) to get an improvement.

3.1.3.3 Minimizing total pressure losses

The loss in total pressure of a fluid dynamics device can be computed in terms of

the net energy flux through the inlet Γin and outlet Γout boundaries:

J = −
∫

Γin

[

p̄+
ρ

2
(ūj)

2
]

ūini dΓ−
∫

Γout

[

p̄+
ρ

2
(ūj)

2
]

ūini dΓ. (3.81)
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For this objective function, it is given that:

JΩ = 0 on Ω, (3.82)

and

JΓ =







−
[

p̄+
ρ

2
(ūj)

2
]

ūini on Γin and Γout,

0 on Γ \ (Γin ∪ Γout) .

(3.83)

So, the derivatives needed to compute the boundary conditions are:

∂JΓ
∂ūi

= −
[

p̄+
ρ

2
(ūj)

2
]

ni − ρūjūini on Γin and Γout, (3.84)

and

∂JΓ
∂p̄

= −ūini on Γin and Γout. (3.85)

From Eqs. (3.54) and (3.60), the adjoint velocity on the inlet and wall boundaries

is obtained by:

ûi =







ūi on Γin,

0 on Γwall,

(3.86)

whereas according to Eqs. (3.67) to (3.69), the adjoint conditions on the outlet are:

p̂ = ρūn(ûn − ūn) + µeff
∂ûn
∂n

− ρ

2
(ūj)

2 on Γout, (3.87)

ρūn(ût − ūt) + µeff
∂ût
∂n

= 0 on Γout, (3.88)

ρūn(ûs − ūs) + µeff
∂ûs
∂n

= 0 on Γout. (3.89)
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As ΓO = Γin ∪ Γout in Eq. (3.81), ΓD ∩ ΓO = ∅, so the sensitivity derivatives for

minimizing the total pressure losses of a fluid dynamics system can be estimated from

Eqs. (3.79) and (3.80) as:

G = −
∫

ΓD

µeff

(
∂ûi
∂n

+
∂ûn
∂xi

)
∂ūi
∂n

dΓ. (3.90)

3.2 Numerical-computational modeling

This section presents an overview of the numerical methods and algorithms em-

ployed to solve the main problem of the chapter. The work developed in the thesis is

supported by the UNSCYFL3D code. This in-house code was developed in the Labora-

tory of Fluid Mechanics (MFlab) at the Federal University of Uberlândia. Laminar and

turbulent flows with particles in both permanent and transient regimes can be simulated

with UNSCYFL3D. Amongst many other CFD packages, UNSCYFL3D is based on a

finite volume method in order to resolve a flow field depending on its geometrical bound-

aries and their respective boundary conditions. For this method, the equations presented

in the previous section have to be discretized in space.

Until the current research, it was still not possible to optimize the shape of fluid

dynamics systems using UNSCYFL3D. However, a module for solving the adjoint equa-

tions and performing the sensitivity analysis was implemented and integrated with a mesh

adaptation approach.

3.2.1 Finite volume solver

The finite volume method is a method for representing and evaluating PDEs in the

form of algebraic equations (LEVEQUE, 2002). Similar to the finite difference method

or finite element method, the solution domain is discretized into a finite number of cells.

In the finite volume method, the cells of a meshed geometry are control volumes, over

which the PDEs are integrated. Volume integrals in PDE that contain divergence terms

are converted to surface integrals using the divergence theorem. These terms are then

evaluated as fluxes at the faces of each finite volume. Because the flux entering a given

volume is equivalent to that leaving the adjacent volume, the finite volume method is
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conservative, which makes it preferred for simulations involving fluid flows. Furthermore,

it is a versatile method that can handle complex geometries and unstructured meshes

(VERSTEEG; MALALASEKERA, 2007). In UNSCYFL3D, the Navier-Stokes equations

in the incompressible formulation are solved numerically using the finite volume method

of Ferziger and Perić (2002) in 3D unstructured meshes of different shaped cells, such as

hexahedra, tetrahedra, prisms, and pyramids. The discretization of the advective terms

of the linear momentum equations and turbulence closure model equations is done by

using the second-order and first-order upwind schemes, respectively, whereas the centered

differencing scheme is used for the diffusive terms.

Note that the set of Eqs. (3.3) and (3.12) forms a system of four equations (conti-

nuity, linear momentum for ū, v̄ and w̄) and four unknowns (ū, v̄, w̄ and p̄). Therefore, the

velocity components must be determined by the respective linear momentum equations

but restricted by the imposed continuity. There is no explicit equation for the pressure,

so a numerical procedure must be applied to compute the pressure field and couple it to

the velocity field, ensuring that the continuity equation is also satisfied. In UNSCYFL3D,

the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm is used for

the pressure-velocity coupling (PATANKAR, 1980; FERZIGER; PERIĆ, 2002). In this

case, the procedure solution of the equations for ū, v̄, w̄ and p̄ is said to be segregated.

Thus, a system of linear equations for each of these variables is resolved sequentially and

independently by linear system solution methods, e.g., the biconjugate gradient and the al-

gebraic multigrid methods are employed for the linear momentum and pressure correction

equations, respectively, in UNSCYFL3D. The process is repeated until all the standard

equation residues are reduced to the specified tolerance. Several global iterations, with

the solution of linear systems for ū, v̄, w̄ and p̄, may be necessary due to the nonlinear

nature of the Navier-Stokes equations and the coupling between the variables. Since the

variables converge at different speeds, it is necessary to under-relax the system solutions.

The flowchart of the SIMPLE algorithm implemented in UNSCYFL3D is shown Fig. 3.1.
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to solve the corresponding adjoint problem. Based on the primal SIMPLE algorithm, a

corresponding adjoint pressure-correction procedure is implemented. The adjoint solver

developed is general-purpose and also applicable in other fields beyond shape design, like

topology optimization.

As the adjoint problem is specific to each objective considered, minor adaptations

(hard-coding) are necessary to account for different objective functions. The objective

functions for the study cases of this thesis are mainly surface integrals over the domain

boundary, so they do not contain a contribution from the interior of the domain, i.e.,

JΩ = 0. Consequently, the adjoint equations end up being the same in these cases.

The shape optimization process in UNSCYFL3D is represented by the flowchart

shown in Fig. 3.2. The iterative process starts with the baseline mesh corresponding

to the original geometry. The primal equations for the flow field are solved within the

geometry until convergence, following the procedure of Fig. 3.1. After that, the objective

function is evaluated, and the adjoint equations, Eqs. (3.44) and (3.45), are solved until

convergence. The sensitivity derivatives are then estimated for the design surface, which

Figure 3.2 – Shape optimization flowchart.

Solution of primal equations

Objective function evaluation

Solution of adjoint equations

Sensitivity analysis

Mesh adaptation

Converged?

O
p
ti
m
iz
at
io
n
lo
op

/
D
es
ig
n
cy
cl
e

Baseline geometry/mesh

Optimized geometry/mesh
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is selected in the code as the zone to be modified. Given the sensitivity derivatives, the

mesh is adapted according to a morphing technique, which is detailed in the next section.

Lastly, the same steps are repeated until the expected change in the objective function is

achieved.

3.2.3 Mesh adaptation

Once the sensitivity map has been computed, the next step is to evaluate whether

a specific point on the geometry surface should be shifted inward or outward. This is an

important step towards minimizing the objective function.

When solving a CFD problem with an unstructured mesh, one possible and feasible

approach for modifying the geometry is to deform the mesh. Therefore, the free-form

deformation (FFD) technique (SEDERBERG; PARRY, 1986) is applied in the current

work. Basically, this is a technique used to deform 3D objects or surfaces in a smooth and

controlled manner. FFD works by defining control points and then deforming the object

by manipulating the positions of these control points. The deformation of the object is

done in such a way that the shape of the object changes smoothly and naturally, which

is the main reason why FFD was chosen. The possibility of modifying the mesh to avoid

distortions of the cells is a great advantage.

Thus, considering the FFD technique, a control volume is determined with l×m×o

control points that surround the region to be modified. Each mesh node q within this

control volume is defined by a local coordinate (x̃q, ỹq, z̃q). The deformed position of

these nodes in the standard coordinates x⃗q can be calculated as a function of Bernstein

polynomials:

x⃗q =

l,m,o
∑

i,j,k=0

ψ⃗ijkBi,l(x̃q)Bj,m(ỹq)Bk,o(z̃q), (3.91)

in which ψ⃗ijk denotes the coordinate of the ijkth control point, and Bi,l(x) is the ith

Bernstein polynomial of degree l:

Bi,l(x) =

(
l

i

)

xi(1− x)l−i, i = 0, 1, ... , l. (3.92)
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The adjustment of the control point position is estimated by using a simple gradient-based

algorithm for solving minimization problems. Then, the steepest descent method is used,

assuming that:

δψ⃗ijk = −λΨ⃗ijk. (3.93)

A smooth deformation of the boundary mesh, in order to improve the design, is guaranteed

for a sufficiently small λ step and for the control point sensitivity field Ψ⃗ijk given by

(ELSAYED, 2015):

Ψ⃗ijk =
∑

q

G⃗qBi,l(x̃q)Bj,m(ỹq)Bk,o(z̃q), (3.94)

where G⃗q is the gradient interpolated for x⃗q, since G is originally calculated at the center

of the faces of the finite volumes.

3.3 Validation and verification studies

The adjoint equations of fluid dynamics have a mathematical and not physical

origin, which makes it difficult to compare the results with experimental data. Therefore,

assessing the accuracy of adjoint results requires alternative validation and verification

strategies. This section explores two concepts for assessing adjoint results, which involve

an analytically derived adjoint field solution and sensitivity distributions obtained numer-

ically from other works.

3.3.1 Analytic solution for axis-symmetric Couette flow

The analytic adjoint solution presented by Stück (2011) is considered to validate

the adjoint equations. The problem consists of an axis-symmetric Couette flow. This is

a classical fluid dynamics problem where laminar fluid flows between two infinitely long

coaxial cylinders with a relative angular velocity. In this validation case, the inner cylinder

is fixed with a radius of ri, while the outer one has a radius of ro and an angular velocity

of ωo, as represented in Fig. 3.3.
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Figure 3.3 – Sketch of the Couette flow in cylinder coordinates (r, φ).

The analytical solution for the primal flow field, in cylinder coordinates (r, φ), is

given by:

ur(r) = 0, (3.95)

uϕ(r) = a

(

r − r2i
r

)

, (3.96)

p(r) = p(ri) + ρa2
[
r2

2
+ 2r2i ln

(ri
r

)

− r4i
2r2

]

with a =
ωo

1− (ri/ro)2
. (3.97)

Meanwhile, the analytical solution for the adjoint flow field is written as follows:

ûϕ(r) = â

(
r

r2o
− 1

r

)

, (3.98)

p̂(r) = p̂(ri) + ρaâ

[
r2i − r2

r2o
+ 2 ln

(
r

ri

)]

with â =
ri

(ri/ro)2 − 1
. (3.99)

Since variations in the flow field occur only in the radial direction, the Couette

flow problem can be considered one-dimensional. However, for simulation purposes, it was

solved numerically in a 2D mesh of 100× 50 cells in circumferential and radial directions,

respectively, which is displayed in Fig. 3.4. The Reynolds number based on the width
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∆ = ro− ri and the circumferential velocity component of the outer cylinder uϕ(ro) = uϕo

was Re = 100. This is not an optimization problem, so the primal and adjoint equations

were solved just once. Furthermore, the sensitivity derivatives were not calculated as they

were not the focus of the validation, and an objective function was not considered.

Figure 3.4 – Mesh of 100× 50 cells for the Couette flow simulation.

The primal solutions obtained from computational simulation for the circumfer-

ential velocity component uϕ(r) and pressure p(r) are plotted over the radius in a non-

dimensional form in Fig. 3.5 along with the analytic solutions. Both distributions are in

Figure 3.5 – Non-dimensional primal flow field distributions obtained from
computational simulation compared against analytic solution.

(a) Circumferential velocity component. (b) Pressure.
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agreement with the analytical results.

The non-dimensional distributions of the adjoint circumferential velocity compo-

nent ûϕ(r) and adjoint pressure p̂(r) are shown in Fig. 3.6. The adjoint results obtained

from computational simulation meet the corresponding analytic solution, even in the

adjoint pressure distribution, where a slight deviation between the compared results is

noticed.

Figure 3.6 – Non-dimensional adjoint flow field distributions obtained from
computational simulation compared against analytic solution.

(a) Circumferential adjoint velocity component. (b) Adjoint pressure.

3.3.2 Sensitivity analysis on S-shaped duct

The purpose of this investigation is to analyze the sensitivity derivatives calculated

from UNSCYFL3D concerning the minimization of total pressure losses, Eq. (3.81), of a

turbulent flow in an S-shaped duct. The same configuration investigated by Stück (2011)

is adopted, which consists of the 2D problem sketched in Fig. 3.7 with a Reynolds number

based on the inlet height equal to Re = 20000.

The simulation was run on a computational mesh with 50 × 240 cells depicted in

Fig. 3.8. The mesh was adequately stretched close to the walls to guarantee that the

non-dimensional distance of the first nodes off the wall y+ was below unit. A uniform

velocity was prescribed at the inlet, and the pressure was set to zero at the outlet. For

the lower and upper walls, the no-slip condition was applied.
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UNSCYFL3D code. Therefore, in this study only, the shear-stress transport (SST) model

was used to reduce possible differences in the comparison of results due to turbulence

closure modeling. The SST turbulence model is a hybrid model that combines the Wilcox

k-ω and the k-ε models (MENTER, 1994).

The distribution of the primal and adjoint velocity fields resolved in UNSCYFL3D

is plotted in Fig. 3.9. The flow field features a recirculation zone on the lower wall. The

rapid expansion of the duct (divergent part) in the S-bend section causes the boundary

layer separation. For internal flows, flow separation produces an increase in flow losses.

Given the objective of minimizing total pressure losses, it is expected that the sensitivity

derivatives exhibit greater magnitudes in this specific region.

Figure 3.9 – Turbulent flow through the S-shaped duct.

(a) Primal velocity field.

(b) Adjoint velocity field.

In Figure 3.10, the sensitivity distribution is plotted over the duct walls, and its

correlation with the flow separation ranging from xS to xR is shown in Fig. 3.11. The
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lower wall surface. These deviations can be explained by the different turbulence closure

models, as different models predict different flow fields, which, in turn, reveal different

sensitivity derivatives. Furthermore, the sensitivity derivatives in the direct differentia-

tion method were obtained by integration over ΓO, which led to smoother distributions.

Hence, more pronounced oscillations can be observed in the adjoint case. Finally, the flow

separation occurred from xS = 1.31d to xR = 1.89d for the direct-differentiation method

and from xS = 1.28d to xR = 2.06d for the adjoint method. This results in a relative

difference of 2.29% and 8.99%, respectively.

Figure 3.12 – Non-dimensional sensitivity G∗ according to adjoint (present work) and
direct-differentiation (STÜCK, 2011) methods.

3.4 Results and discussion

The shape optimization carried out in this chapter is related to CFD simulations

of three distinct pipeline components found mainly in the transport systems of the oil

and gas industry. They all correspond to pipe bends with a diameter of 2.54 cm and a

curvature radius of 3.81 cm, but with different curvature angles. The first one is a 45◦

bend, the second one is a 90◦ bend, and the last one is a 180◦ bend, shown in Fig. 3.13,

respectively.
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Figure 3.13 – Baseline geometries.

(a) 45◦ bend. (b) 90◦ bend. (c) 180◦ bend.

In all three cases, fluid enters a 12.70 cm long vertical pipe and then passes through

the bend. In the 45◦ bend case, fluid comes out of a 10.16 cm long diagonal pipe, whereas

in the 90◦ bend case, fluid comes out of a horizontal pipe of the same length. However,

in the 180◦ bend case, fluid comes out of another 12.70 cm long vertical pipe. A static

pressure condition is prescribed at the pipe outlet, and the fluid flow properties, which

remain the same across all scenarios, are listed in Tab. 3.1.

Table 3.1 – Fluid flow simulation conditions.

Fluid properties

Fluid Air

Specific mass (kg/m3) 1.225

Dynamic viscosity (Pa·s) 1.79× 10−5

Inlet velocity (m/s) 34.1

Turbulence parameters

Turbulence closure model two-layer k-ε

Turbulence intensity 5%
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3.4.1 Mesh independence study

Before delving into the shape optimization process, it is crucial to address the issue

of mesh independence to determine the appropriate mesh resolution and ensure that the

subsequent analyses are based on reliable and consistent numerical simulations. For the

sake of brevity, the mesh independence study is presented only for the 90◦ bend baseline

mesh, considering five grid levels.

Unstructured 3D hexahedral meshes were generated with 214890, 332640, 476035,

651780, and 862875 cells. Moreover, the pressure drop of the fluid flow was selected as

the parameter to assess the mesh independence. After simulating the flow for all meshes,

the outcomes were plotted in Fig. 3.14.

Figure 3.14 – Pressure drop for five levels of grid.

In order to safely evaluate these results, the concept of grid convergence index

(GCI) was adopted (ROACHE, 1994). The GCI measures the distance between the

simulation results and the asymptotic numerical value. In other words, it indicates how

much the solution changes as the mesh is refined. Thus, the GCI method was applied to

compare the three finer grids. Following Roache (1994, 1997, 1998), the grid convergence

was calculated, and the results are displayed in Tab. 3.2.
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Table 3.2 – Details of the mesh independence study based on GCI method.

i Ni ∆pi (Pa) GCIfinei,i+1 (%) Rm ar

1 862875 290.7696

0.3454

2 651780 290.9348 0.7083 0.9676

0.4303

3 476035 291.1682

In Table 3.2, i = 1, 2, and 3 denote the calculations at the fine, medium, and

coarse mesh, N is the number of hexahedral cells, ∆p is the computed pressure drop, ar

is a parameter that shows if the solution is in the asymptotic range when close to unity,

and Rm is a ratio that can represent a monotonic convergence if less than unity. From

the GCI analysis, the results are in the asymptotic range, and a monotonic convergence is

observed. Besides that, a reduction in the GCI value for the successive mesh refinements

(GCIfine1,2 < GCIfine2,3 ) is identified, meaning the dependence of the numerical results on the

cell size has been reduced. Consequently, the third refinement level already guarantees a

mesh-independent solution.

Therefore, a mesh with 476035 cells was adopted in the further simulations on the

90◦ bend. An adequate near-wall refinement was guaranteed with y+ = 1.10. For the 45◦

and 180◦ bends, the meshes were generated based on the mesh of the 90◦ bend, resulting

in 319725 cells and 781550 cells, respectively, as illustrated in Fig. 3.15.

3.4.2 Shape optimization

The shape optimization process depicted in Fig. 3.2 was executed for all three

pipeline components separately. The process starts with the baseline meshes shown in

Fig. 3.15, representing the baseline geometries of Fig. 3.13. The purpose of the optimiza-

tion is to find new shapes for these geometries with the intention of minimizing the total

pressure losses of the fluid flow using the continuous adjoint approach.
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Figure 3.15 – Baseline hexahedral meshes.

(a) Perpendicular face.

(b) 45◦ bend - 319725 cells. (c) 90◦ bend - 476035 cells. (d) 180◦ bend - 781550 cells.

The steepest descent algorithm was run for λ = 2.40 × 10−5 and the shape modi-

fication throughout the process was achieved with the FFD technique. Then, in all three

cases, a box around the design surface was defined as the control volume with a minimum

limit at (−3.17, 7.49, −1.61) cm and a maximum limit at (10.79, 20.99, 1.61) cm, and

also with 9× 9× 9 control points, as illustrated in Fig. 3.16. The coordinate system was

positioned at the center of the inlet face. Defining the control volume precisely at the

limits of the design surface can lead to abrupt deformations at those points. To ensure a

smooth deformation, the control volume was extended slightly beyond the design surface.
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only for the baseline geometry of the 90◦ to clarify what will happen to the bend. The

sensitivities are represented by arrows in the normal direction of the surface scaled with

their magnitude. The regions with cool colors correspond to negative values, so the arrows

are facing outward, indicating that the mesh deformation should happen in the respective

direction. Conversely, regions with warm colors correspond to positive values, and the

arrows are facing inward. Hence, a widening of the pipe in the bend region is expected,

especially on the intrados, which is the most sensitive part.

3.4.2.2 Objective function evolution

The evolution of the objective function value is plotted in Fig. 3.18. The objective

function mostly exhibits a monotonic decrease over the design cycles, except for the 90◦

Figure 3.18 – Objective function evolution of all bend cases.

(a) 45◦ bend. (b) 90◦ bend.

(c) 180◦ bend.
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bend case, for which oscillations are observed around 90 design cycles. These oscillations

are believed to arise from the assumption of frozen turbulence, in which the approximate

adjoint field is obtained by neglecting the variation of the effective viscosity.

Regarding the optimization convergence criterion, the objective function was mon-

itored until the relative difference between the values of two consecutive design cycles

was less than 10−6. Approximately 32, 225, and 140 design cycles were necessary for the

convergence criterion to be reached in the 45◦, 90◦, and 180◦ bend cases, respectively.

The convergence of the objective function may be an indication that a local optimum has

been found. Nevertheless, the resulting shapes are considered improved designs rather

than strict local optima. At the end of the optimization process, the objective function

was reduced by 14.51%, 22.30%, and 36.50%, following the previously mentioned order.

The final shapes for minimizing total pressure losses are shown in Fig. 3.19. Evi-

dently, they are non-standard shapes. However, thanks to existing modern and efficient

manufacturing techniques, such as additive manufacturing, concerns about their manu-

facturability are no longer a major problem.

Figure 3.19 – Optimized geometries.

(a) 45◦ bend. (b) 90◦ bend. (c) 180◦ bend.

Furthermore, it is worth noting that the optimization process was not hindered by

operational or space limitations, allowing for a more flexible exploration of design possi-

bilities. In case limitations arise during the practical implementation of these geometries,
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one potential solution would involve enforcing restrictions on the nodes of the meshes to

prevent deformations beyond the desired bounds and ensure adherence to the required

specifications.

Since the mesh cells are deformed, the corresponding values of y+ change. For

this reason, the y+ of the optimized meshes were checked. The lowest value found was

y+ = 0.56 for all bends. The highest value found was y+ = 0.82 for the 45◦ bend and

y+ = 1.00 for both 90◦ and 180◦ bends. Therefore, all these values are sufficient to

reproduce the near-wall conditions.

3.4.2.3 Comparison between baseline and optimized systems

Overlaying the optimized geometry on the baseline, it can be seen in Fig. 3.20

that the pipe widens in the bend region, but towards the sides, while the most sensitive

region (intrados of the bend) does not exhibit major changes. This can be explained by

the gradient filtering that occurs when applying the FFD technique. In this way, very

sensitive, small regions do not suffer great expansion or contraction. This issue might

Figure 3.20 – Overlapping geometries of the 90◦ bend case.

(a) Top view.

(b) Rear view. (c) Side view. (d) Perspective view.
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3.5 Conclusions

While the continuous adjoint approach to sensitivity analysis is straightforward

to understand, its mathematical development is undeniably complex and demanding.

Essentially, as shown in this chapter, the deduction of the continuous adjoint boils down

to four tasks:

(i) Formulating the Lagrange function, which comprises the objective function aug-

mented by the constraints weighted by the Lagrange multipliers. This involves

integrating the primal equations multiplied by the adjoint variables over the volume

of the domain.

(ii) Determining the total variation of the Lagrange function.

(iii) Employing integration by parts to transfer derivatives from local variations to ad-

joint variables within volume integrals and assuming hypotheses to simplify some

terms. This leads to the adjoint equations and boundary conditions reducing the

variation of the Lagrange function to integrals applied to the design surface.

(iv) Computing the surface sensitivities using the final expression for the variation of

the Lagrange function.

Nevertheless, the implementation of the continuous adjoint solver brings significant

advantages, as it allows for leveraging the existing primal solver to effectively implement

the adjoint solver. In UNSCYFL3D, the adjoint equations were implemented, tested, and

validated, and the gradient for minimizing total pressure losses was verified. This paved

the way for investigating shape optimization problems.

To explore the potential of the adjoint method, three types of pipe fittings with

different curvature angles (45◦, 90◦, and 180◦) were subjected to shape optimization. The

goal was to minimize the total pressure losses of an internal single-phase fluid flow. After

successfully reducing the objective function by at least 14%, the optimization process

resulted in unconventional shapes that will be studied from another perspective in the

next chapter.



CHAPTER IV

EROSION MITIGATION PROBLEM

The application of adjoint methods to multiphase flows is not yet well established

in the literature. There are fundamental limitations to the use of such methods within a

Lagrangian framework.

Despite these circumstances, it is intuitively plausible to think that optimizing the

carrier flow should also “optimize” the particle flow. By reducing the total pressure losses

in a pipe fitting, as seen previously, a more streamlined design is achieved. This, in turn,

helps avoid sudden changes in fluid motion and, consequently, in particle path.

As pipeline components are very prone to erosion problems, which can significantly

affect the service life of equipment, it is desirable to minimize erosive wear. In this sense,

an investigation is performed in this chapter to verify if the shape optimization applied to

the fluid flow (as discussed in Chapter 4) favors the mitigation of erosion caused by the

impact of particles on pipe walls. The correlation with Stokes number, which characterizes

the relationship between fluid and particle flows, is explored as well.

4.1 Mathematical modeling

In erosion problems, the accurate prediction of erosion rates relies on resolving

the movement and behavior of particles within a fluid flow. This requires appropriate

modeling to capture the interaction between the continuous and dispersed phases. In
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UNSCYFL3D code, multiphase flows are modeled using the Euler-Lagrange approach,

treating the dispersed phase as Lagrangian particles.

In the previous chapter, the mathematical modeling for the continuous phase was

already discussed. Now, attention is turned to dispersed phase modeling and, subse-

quently, erosion prediction modeling.

4.1.1 Lagrangian particle equations

Since the Lagrangian approach is adopted to track the particles through the do-

main, the motion of each particle is computed based on Newton’s second law. The ad-

dressed problems are carried out at low mass loadings, so the coupling between continuous

and discrete phases is assumed to be one-way. Thus, the trajectory, linear momentum, and

angular momentum equations for a rigid, spherical particle can be written, respectively,

as:

dxpi
dt

= upi , (4.1)

mp
dupi
dt

= mpgi

(

1− ρ

ρp

)

+mpfd (ui − upi)
︸ ︷︷ ︸

Fdi

+ Flsi + Flri , (4.2)

Ip
dωpi

dt
= Ti, (4.3)

in which xpi are the coordinates of the particle position, upi , and ωpi are its linear and

angular velocity components, mp and Ip = 0.1mpd
2
p are the mass and the moment of

inertia for a sphere, while ui = ūi + u′i are the components of the instantaneous fluid

velocity. The average fluid velocity ūi is interpolated from the resolved flow field, whereas

the fluctuating component u′i is calculated according to the Langevin dispersion model

proposed by Sommerfeld (2001).

The right-hand side of Eq. (4.2) corresponds to the sum of the forces acting on

the particle. Its first term represents the weight and buoyancy forces, with gi being the

gravitational acceleration, Fdi being the drag force, Flsi being the shear-induced lift force,
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and Flri being the rotation-induced lift force. In the case of gas-solid flows, the density of

particles is about 1000 times the gas density. Hence, other forces, such as virtual mass

and the Basset force, are neglected since they are unimportant for high ratios of particle to

gas densities (LAÍN; SOMMERFELD; KUSSIN, 2002). In Equation (4.3), Ti corresponds

to the torque acting on the particle.

The drag arises due to the interaction between the particle and the fluid, resulting

in a retarding force that acts opposite to the particle velocity:

F⃗d =
π

8
ρd2

p Cd ∥u⃗− u⃗p∥ (u⃗− u⃗p) , (4.4)

this means that in Eq. (4.2):

fd =
3

4

ρ

ρpdp
Cd ∥u⃗− u⃗p∥ . (4.5)

The drag coefficient Cd is defined as a function of the particle Reynolds number:

Rep =
ρdp ∥u⃗− u⃗p∥

µ
, (4.6)

using the empirical correlation proposed by Schiller and Naumann (1935):

Cd =







24

Rep

(
1 + 0.15Re0.687p

)
if Rep ≤ 1000,

0.44 if Rep > 1000.

(4.7)

When a particle is suspended in a fluid and subjected to shear flow, the difference

in fluid velocity between the particle surface and the surrounding fluid leads to a variation

in shear stress. This variation produces a lift force that acts perpendicular to the flow

direction. The shear-induced lift force is calculated based on the analytical result of

Saffman (1965):

F⃗s =
π

8
ρd3

p Cls [(u⃗− u⃗p)× ω⃗] , (4.8)
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and extended for higher particle Reynolds numbers by considering the following coefficient

(MEI, 1992):

Cls =







4.1126√
Res

[(

1− 0.3314
√
b
)

exp (−0.1Rep) + 0.3314
√
b
]

if Rep ≤ 40,

4.1126√
Res

(
0.0524

√
bRep

)
if Rep > 40,

(4.9)

where b = 0.5Res/Rep is valid for 0.005 < b < 0.4, and the particle Reynolds number of

the shear flow is determined as a function of the fluid vorticity ω⃗ = ∇× u⃗:

Res =
ρd2

p ∥ω⃗∥
µ

. (4.10)

When a particle rotates while moving through a fluid, the velocity of the fluid

relative to the particle surface differs between the sides that are moving with the fluid

and the sides that are moving against the fluid. As a result, a difference in the pressure

distribution around the particle arises, generating a lift force. This phenomenon is also

known as the Magnus effect, and the rotation-induced lift force is computed by the relation

of Rubinow and Keller (1961):

F⃗lr =
π

8
ρd3

p

Rep
Rer

Clr

[

Ω⃗× (u⃗− u⃗p)
]

, (4.11)

where the lift coefficient is estimated from the correlation proposed by Lun and Liu (1997):

Clr =







Rer
Rep

if Rep ≤ 1,

Rer
Rep

(
0.178 + 0.822Re−0.522

p

)
if Rep > 1,

(4.12)

with Ω⃗ = 0.5∇× u⃗− ω⃗p, and the Reynolds number of particle rotation is given by:

Rer =
ρd2

p∥Ω⃗∥
µ

. (4.13)

Moreover, the rotating particle experiences torque from the fluid flow, which is evaluated
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using the extended version of the equation presented by Rubinow and Keller (1961) to

account for the relative motion between fluid and particle at a higher Reynolds number:

T⃗ =
1

64
ρd5

p Cr ∥Ω⃗∥Ω⃗. (4.14)

The coefficient of rotation Cr is then obtained from Rubinow and Keller (1961) and the

direct numerical simulations of Dennis, Singh, and Ingham (1980):

Cr =







64π

Rer
if Rer ≤ 32,

12.9√
Rer

+ 128.4/Rer if 32 < Rer ≤ 1000.

(4.15)

4.1.2 Particle-wall collision

In flows involving wall boundaries, particles may end up colliding with these walls

depending on their trajectory. Therefore, modeling the particle-wall interaction is im-

portant to properly simulate the particle path. The forces acting on particles during the

particle-wall collision include the wall repulsion force, which prevents the particles from

penetrating the wall, and the restitution force, which accounts for the energy transfer

between the particle and the wall during the collision.

Upon a particle colliding with a wall, its trajectory is affected by the energy lost.

Thus, the inelastic hard-sphere collision model is adopted, in which the particle is assumed

to be a homogeneous and non-deformable sphere, and the wall is also considered non-

deformable. The particle linear and angular velocities after rebound are then updated

(BREUER; ALLETTO; LANGFELDT, 2012). In case of a no-sliding collision, ∥u⃗−

pr∥ ≤
7

2
(1 + e)

(
u⃗−

p · n⃗
)
µs, it is given that:

u⃗+
p = u⃗−

p − 2

7
u⃗−

pr − (1 + e)
(
u⃗−

p · n⃗
)
n⃗, (4.16)

ω⃗+
p = ω⃗−

p − 10

7

1

dp
n⃗× u⃗−

pr , (4.17)
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and in case of sliding collision:

u⃗+
p = u⃗−

p − (1 + e)
(
u⃗−

p · n⃗
)
[

µd

u⃗−

pr

∥u⃗−

pr∥
+ n⃗

]

, (4.18)

ω⃗+
p = ω⃗−

p − 5

dp
(1 + e)

(
u⃗−

p · n⃗
) µd

∥u⃗−

pr∥
n⃗× u⃗−

pr . (4.19)

In the above equations, the superscripts − and + denote values prior to and after the

collision, respectively. The restitution coefficient e as well as the static µs and dynamic µd

friction coefficients are associated with the material properties of the particle-wall pair,

and the relative velocity u⃗pr at the contact point between the particle and the wall is

defined as:

u⃗pr = u⃗p −
(
u⃗−

p · n⃗
)
n⃗+

dp
2
ω⃗p × n⃗, (4.20)

with n⃗ being the normal unit vector pointing outwards of the element face being impacted.

The configuration considering a smooth specular wall is sketched in Fig. 4.1.

The energy lost is evaluated using the rebound model of Grant and Tabakoff (1975):

e = 0.993− 1.76α− 1.56α2 − 0.49α3, (4.21)

where α is the impact angle between the particle trajectory and the wall. However,

wall roughness is known to have a significant influence on particle-laden wall-bounded

flows directly affecting the particulate phase (LAÍN; SOMMERFELD; KUSSIN, 2002;

BREUER; ALLETTO; LANGFELDT, 2012). For simulating the wall roughness effect, a

stochastic approach is adopted (SOMMERFELD; HUBER, 1999) by assuming that the

effective impact angle αeff is composed of the particle trajectory angle and a stochastic

contribution due to wall roughness:

αeff = α + ξ ∆γ. (4.22)

This stochastic contribution may be approximated by a normal distribution function with
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a standard deviation of ∆γ. Hence, ξ represents a Gaussian random variable with zero

mean and a standard deviation of one. The value of ∆γ depends on the structure of the

wall roughness and additionally on the particle size.

Figure 4.1 – Sketch of the particle colliding with a wall and the definitions used.

4.1.3 Erosion equations

As particle-wall collisions occur, the erosion damage can be estimated. Therefore,

the penetration ratio is computed with Eqs. (2.6) and (2.7), which depends on the erosion

ratio E. The erosion ratio, in turn, denotes a unit of eroded material per mass of particles,

and it is calculated according to the predictive equation proposed by Oka, Okamura, and

Yoshida (2005):

E(α) = g(α)E90, (4.23)

where g(α) represents the impact angle dependence and E90 is the erosion damage at the

normal impact angle. The first parameter is expressed by two trigonometric functions

and by the initial eroded material Vickers hardness number Hv in GPa:

g(α) = (sinα)n1 [1 + Hv(1− sinα)]n2 . (4.24)

The second parameter is related to the impact velocity, particle diameter, and eroded

material hardness, and it is formulated as follows:

E90 = K (aHv)k1 b
(
up
uref

)k2 ( dp
dref

)k3

. (4.25)
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The exponents n1 and n2 in Eq. (4.24) show the effects of repeated plastic defor-

mation and cutting action, and they are determined by the eroded material hardness and

other impact conditions, such as particle properties and shape. Meanwhile, uref and dref

in Eq. (4.25) are the reference impact velocity and particle diameter used in the experi-

ments from Oka, Okamura, and Yoshida (2005). The exponents k2 and k3 are obtained

by particle properties, but k2 is also determined by the Vickers hardness of the eroded

material. Lastly, the term K (aHv)k1 b is highly dependent on the type of particle and

eroded material Vickers hardness, which are not correlated with the impact conditions

and other factors. Since the SiO2-aluminum pair is considered in the current work, the

following expressions are used (DUARTE, 2017):

n1 = 0.71 (Hv)0.14 , n2 = 2.4 (Hv)−0.94 ,

k2 = 2.3 (Hv)0.038 , k3 = 0.19,

K (aHv)k1 b ≈ 81.714(Hv)−0.79.

(4.26)

4.2 Numerical-computational modeling

A brief description of dispersed phase numerical methods is presented in this sec-

tion. It is worth mentioning that any information provided here is in accordance with the

UNSCYFL3D code. For more details, the interested reader can refer to Salvo (2013).

In the Lagrangian framework, the parcel concept is employed. Therefore, each

computational particle represents a number of real particles with the same properties,

such as size and velocity. The linear and angular velocities of each computational particle

are given by the analytical integration of the ordinary differential equations, Eqs. (4.2) and

(4.3). These equations depend on information related to the continuous phase. Hence, an

accurate interpolation scheme is required to determine the fluid properties at the particle

position. In this case, Sheppard’s scheme is considered, which consists of calculating

the velocity and vorticity components by weighing the neighboring cell values with their

inverse distances from their centers to the particle position (SALVO, 2013). In order to

interpolate the fluid properties, it is important to know the location of each computational

particle within the Eulerian mesh. When a structured grid is used, determining the cell
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hosting the particle is simple, as there is a straightforward relationship between the cell

index and its physical location. However, the in-house code is based on unstructured grids,

so it requires a specific algorithm to track the computational particles. For this purpose,

the particle tracking algorithm proposed by Haselbacher, Najjar, and Ferry (2007) is used.

Within this algorithm, if it is detected that the particle trajectory intersects any of the

domain boundaries, the application of the corresponding boundary condition, such as

reflect (particle-wall collision model) or escape, is triggered.

Given the assumption of one-way coupling, the fluid flow does not “feel” the pres-

ence of the particles, so there is no need for a coupled solution of the continuous and

dispersed phases. First, the steady-state solution for the fluid phase without particles is

computed. Afterwards, the computational particles are injected into this flow field with

a certain frequency within a time loop, and their motion is then simulated according to

the flowchart shown in Fig. 4.2.

Figure 4.2 – Lagrangian particle flowchart.
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4.3 Results and discussion

In Section 3.4.2, optimized geometries were obtained while minimizing total pres-

sure losses. The objective now is to assess whether these geometries can offer improve-

ments in terms of erosion mitigation compared to their respective baseline geometries.

Regarding the models involved in the simulation of erosive wear, the results pro-

vided by the UNSCYFL3D code have already been validated in previous works (DUARTE;

SOUZA; SANTOS, 2015, 2016; DUARTE; SOUZA, 2017; DUARTE et al., 2017) against

experimental data (MAZUMDER; SHIRAZI; MCLAURY, 2008; SOLNORDAL; WONG;

BOULANGER, 2015). Accordingly, a particle-laden flow is simulated in the baseline and

optimized geometries to analyze the erosion effects due to solid particle impacts on the

pipe bend walls. Three Stokes numbers are investigated to evaluate different correlations

between fluid and particle flows.

Sand particles are fed into the vertical pipe through the inlet face. The pipe

walls are considered perfectly smooth, and the static and dynamic friction coefficients for

the particle-wall collision model are assumed to be equal to 0.25. Such assumptions are

justified by their good agreement with experimental results (MAZUMDER; SHIRAZI;

MCLAURY, 2008), as presented by Duarte, Souza, and Santos (2016). Similar conditions

to those of the above-mentioned experiment were considered in this investigation. Table

4.1 summarizes only the particle and the pipe properties, since the fluid properties were

previously shown in Tab. 3.1.

Particle flow simulations are unsteady and executed for one million time steps of

2 × 10−5 s. A total of 300 computational particles are injected through the inlet every

10 time steps. Thus, about 30 million computational particles are simulated to obtain

statistically converging results.

For all bend configurations (45◦, 90◦ and 180◦), the baseline design is first simulated

three times, each one for a different Stokes number. Then, the geometry is switched to the

optimized design, and the same procedures are repeated. After investigating the erosion

behavior for each configuration, the optimization gains are analyzed. In this context, the

decrease in penetration ratio from baseline to optimized geometry is calculated, as is the

reduction in mass loss of aluminum caused by erosion.
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Table 4.1 – Particle and pipe properties for erosion investigation.

Particle properties

Material Sand

Density (kg/m3) 2600

Mass flow rate (kg/s) 2.75× 10−4

Diameter (µm) 30, 96, 182

Stokes number 9.75, 99.84, 358.85

Pipe properties

Material Aluminum

Density (kg/m3) 2700

Vickers hardness (GPa) 1.049

4.3.1 Designs’ effects on erosion

For a better comprehension of the erosion patterns, the analysis of this part of the

results is limited to the penetration ratio profile and other erosion-related parameters.

The optimization improvements are discussed in more detail in Section 4.3.2.

The results of penetration ratio for both baseline and optimized designs are shown

in Fig. 4.3 for the simulations of the 45◦ bend, in Fig. 4.4 for the simulations of the 90◦

bend, and in Fig. 4.5 for the simulations of the 180◦ bend. In order to easily compare, the

Figure 4.3 – Contours of penetration ratio for the baseline geometry (left) and optimized
geometry (right) of the 45◦ bend.

(a) St = 9.75.
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(b) St = 99.84.

(c) St = 358.85.

results are presented on the same scale for the same Stokes number. Evidently, the contour

patterns are quite different between the two designs. Observing the baseline design in all

cases, the penetration ratio has a contour with a well-defined maximum erosion spot.

Meanwhile, for the optimized design, the contours can hardly be seen, demonstrating

that the penetration ratio values are lower than those of the baseline designs.

Figure 4.4 – Contours of penetration ratio for the baseline geometry (left) and optimized
geometry (right) of the 90◦ bend.

(a) St = 9.75.

(b) St = 99.84.



87

(c) St = 358.85.

Figure 4.5 – Contours of penetration ratio for the baseline (left) and optimized (right)
geometries of the 180◦ bend.

(a) St = 9.75.

(b) St = 99.84.

(c) St = 358.85.

Additional statistics for explaining the erosive wear due to particle-wall collisions

are essential to evaluating the occurrence and behavior of the erosion. Hence, the particle

impact angle, particle impact velocity, and particle impact frequency are averaged over

time and used as parameters. The erosion profile is measured along the outer curvature

surface as indicated in Fig. 4.6. The origin, or 0◦, of the local coordinate system is placed
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at the bend inlet for the three considered cases, while 45◦ (Fig. 4.6a), 90◦ (Fig. 4.6b) and

180◦ (Fig. 4.6c) correspond, respectively, to the bend outlet of each pipeline component

type.

Figure 4.6 – Schematic representation of the measurement region.

(a) 45◦ bend. (b) 90◦ bend. (c) 180◦ bend.

A quantitative comparison of the results for each erosion-related parameter is pre-

sented in Fig. 4.7. Since similar behavior can be observed in all bend cases, only the

results for the 90◦ bends are displayed. The erosion-related parameters were extracted

from the plane of symmetry of the baseline and optimized curvatures.

Considering the baseline geometry results, there is a clear penetration peak having

a maximum value at a curvature angle close to 50◦ for all Stokes numbers (Figs. 4.7a–c).

By contrast, the optimized geometry does not exhibit the same behavior. Comparing the

values of penetration ratio at the curvature angles between 40◦ and 60◦, the optimized

geometry values are smaller than baseline values. This can be clarified by looking at

the impact frequency profiles (Figs. 4.7j–l). For the same range of curvature angles, the

values of impact frequency are also smaller for the optimized geometry. Consequently, the

reduction in impact frequency certainly influenced the reduction in penetration values.

Another distinctive feature of the impact frequency for the optimized geometry

is that it increases steadily from nearly 67.5◦ to 90◦, reaching a peak at the latter. In

particular, for the two larger Stokes numbers, their value is actually higher than that for
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Figure 4.7 – Erosion-related parameters extracted from the plane of symmetry of the
baseline and optimized 90◦ bends. From left to right: St = 9.75, St = 99.84, and

St = 358.85.

the baseline geometry. This behavior can be explained as follows: with the optimization,

the flow in the region between 0◦ and 90◦ was smoothed according to its sensitivity

gradient, such that the whole region is expanded, as visible from Fig. 3.20. This is

somehow analogous to an increase in the curvature radius, which can be observed, for

example, in the case of larger pipes. Thus, incoming particles from the straight pipe

upstream of the bend now must travel a longer distance to hit the bend wall. Conversely,

instead of colliding with the bend directly as in the baseline geometry, particles tend to

move more tangentially in the optimized case. However, this effect is interrupted as the
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particles approach the end of the curve, since the geometry downstream is the same as

in the baseline geometry. This in turn causes the peak of maximum impact frequency to

be spatially delayed to 90◦, resulting in a higher erosion rate at this angle. The increase

in the impact frequency at that position is proportional to the Stokes number since more

inertial particles will tend to move closer to the bend wall and will strike the downstream

straight pipe at 90◦ more intensively than in the non-optimized geometry.

Nevertheless, one can also observe that the penetration value of the optimized

geometry at 90◦ does not exceed the maximum penetration found in the baseline geometry.

In this case, it is important to note the role that velocity plays in penetration ratio and

how the optimized geometry took advantage of it (Figs. 4.7g–i). The impact velocity at

90◦ is smaller when compared to the impact velocity values at 40◦–60◦ for any geometry

and Stokes number. For a high impact frequency, as the corresponding impact velocity is

low, the penetration ratio did not result in such a high value. Therefore, a low value of

the impact frequency as well as a low value of the impact velocity contribute to reducing

the penetration ratio.

The impact angle profiles are presented in Figs. 4.7d–f. In the profiles of the

baseline geometry, two characteristic peaks are noticed. As already shown by Duarte

et al. (2020), the particles tend to return to the core region of the elbow after their first

impact. Then, the flow pushes them back against the wall, resulting in two regions with

higher impact angles. In the case of the optimized geometry, just one peak is observed.

Even though the impact angle for the optimized case is higher, the impact frequency

remains low in this region, resulting in a low penetration ratio.

4.3.2 Stokes number effects on erosion reduction

The maximum penetration ratio and the total mass loss considering each Stokes

number and shape design are provided in Tabs. 4.2 to 4.4, for the 45◦, 90◦, and 180◦ bends,

respectively. The erosion reduction is evaluated by calculating the relative difference

between the maximum penetration of the optimized design and the maximum penetration

of the baseline design. Furthermore, the total mass loss is obtained by summing the entire

aluminum mass lost from the pipe at all locations.
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Regarding the 45◦ bend configuration (see Tab. 4.2), the erosion parameter reduced

62.46%, 68.52%, and 68.63% for the Stokes numbers 9.75, 99.84, and 358.85, respectively.

The amount of aluminum mass loss also decreased, and, following the same order, mass

loss reductions of 44.82%, 44.33%, and 52.83% were found.

Table 4.2 – Maximum penetration ratio and total mass loss caused by erosion for
different Stokes numbers for the 45◦ bend.

Parameter
St=9.75 St=99.84 St=358.85

Baseline Optimized Baseline Optimized Baseline Optimized

Max. p. ratio
1.5258 0.5728 3.8308 1.2058 4.7446 1.4882

(×10−5 m/kg)

Total mass loss
1.2488 0.6891 2.7998 1.5585 3.9703 1.8728

(×10−7 kg)

In the 90◦ bend case (see Tab. 4.3), the erosion reduction was 84.96%, 61.94%,

and 45.09%, from the smallest to the largest Stokes number. Additionally, the total mass

loss was reduced by 52.53%, 33.48%, and 31.16%, respectively.

Table 4.3 – Maximum penetration ratio and total mass loss caused by erosion for
different Stokes numbers for the 90◦ bend.

Parameter
St=9.75 St=99.84 St=358.85

Baseline Optimized Baseline Optimized Baseline Optimized

Max. p. ratio
3.0904 0.4648 5.1377 1.9552 6.2570 3.4357

(×10−5 m/kg)

Total mass loss
1.5264 0.7246 2.7059 1.8000 3.3379 2.2977

(×10−7 kg)

Lastly, in the 180◦ bend case (see Tab. 4.4), the maximum values of penetration

ratio were reduced by 84.08%, 44.11%, and 32.10%, following the ascending order of

Stokes numbers. Moreover, the reductions in total mass loss were obtained approximately
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equal to the 90◦ bend case, being 52.97%, 34.40%, and 31.56%, respectively.

Table 4.4 – Maximum penetration ratio and total mass loss caused by erosion for
different Stokes numbers for the 180◦ bend.

Parameter
St=9.75 St=99.84 St=358.85

Baseline Optimized Baseline Optimized Baseline Optimized

Max. p. ratio
3.0803 0.4903 5.1400 2.8729 6.2601 4.2505

(×10−5 m/kg)

Total mass loss
1.9892 0.9355 4.1010 2.6903 5.3320 3.6493

(×10−7 kg)

Consequently, in all cases, even considering flows with high-inertia particles, the

erosive effect was reduced. It is noteworthy that for the 45◦ bend case, the reductions

obtained were similar for all Stokes numbers, while in the 90◦, and 180◦ bend cases, for

the smallest Stokes number, the gains with the optimized geometry were more significant.

As a final remark, the flow dynamics provided by the optimized geometry are very

promising in terms of mitigating the erosive process in pipeline components, regardless of

particle size. Even reducing the total pressure losses by 14.51%, 22.30%, and 36.50%, it

was possible to reduce the erosion peak by up to 68.63%, 84.96%, and 84.08%, respec-

tively.

4.4 Conclusions

A comprehensive investigation of gas-particle flow was conducted, covering both

the original designs and the optimized designs obtained in the previous chapter. The

optimized geometries were evaluated and compared to their respective baseline geometries,

with a specific focus on erosion wear. The erosive effect was then analyzed for three

different Stokes numbers. Remarkably, the optimization process successfully contributed

to a reduction in erosion despite the objective function being applied to a single-phase

flow.

Significant improvements were observed for all pipe bend cases and Stokes numbers.
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The maximum value of the penetration ratio, as well as the amount of material mass loss,

decreased by over 30%. These results can be better explained by the reduction in both

the impact velocity and frequency of the particles against the bend walls.

The gains achieved through optimization exceeded expectations, especially when

considering the percentage reduction in the objective function. The benefits derived from

shape optimization are twofold: not only can total pressure losses be minimized, but the

service life of equipment can also be maximized. As a result, the optimization process

leads to shapes that can embody innovative designs.

It is important to point out that, until now, the shape optimization has not actually

been carried out for the multiphase flow system. The reduction in erosion is merely a

consequence of the reduction in total pressure losses in the fluid flow. In the forthcoming

chapter, shape optimization involving aspects of the dispersed phase of multiphase flow

will be addressed.



CHAPTER V

MULTIPHASE FLOW OPTIMIZATION PROBLEM

This chapter introduces a new proposal to tackle shape optimization problems in

the context of multiphase flow systems. In order to overcome the associated challenges,

the traditional choice of the Euler-Lagrange approach for modeling multiphase flows is no

longer suitable, necessitating a shift towards the Euler-Euler approach.

A two-fluid model is adopted to capture the dynamics of the multiphase flow. In

this approach, dispersed particles are treated as a continuous medium, and their behavior

is described by partial differential equations. In line with the Euler-Euler approach,

the shape optimization problem is formulated, and the corresponding continuous adjoint

equations are derived.

The chosen case study to be investigated here corresponds to the deposition of

dispersed particles in pipe bends. Understanding and predicting the transport and de-

position of these particles is crucial in developing and optimizing various medical and

industrial applications, such as drug delivery, blood flow, clean-coal gas turbines, and

food processing. Notably, the ability to control the deposition efficiency is often desired

in these scenarios.
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5.1 Mathematical modeling

In the two-fluid Eulerian model, the particle-phase continuity and linear momen-

tum equations are solved independently of the fluid phase equations, which are the same

ones presented in Section 3.1.1. From the Eulerian particle equations and the respective

boundary conditions, it is possible to estimate the efficiency of particle deposition on wall

boundaries. Based on the Euler-Euler system of equations, new adjoint equations are

developed for shape optimization and applied to the problem of particle deposition.

5.1.1 Eulerian particle equations

The Eulerian particle equations solved for the two-fluid model were obtained based

on the assumptions of a laminar flow, a dilute phase (one-way coupling), a very high

particle-to-fluid density ratio, and only weight and drag forces acting on individual par-

ticles (VASQUEZ; WALTERS; WALTERS, 2015). The resulting simplified equations in

their steady-state form are:

∂(ρpΦpupj)

∂xj
= 0, (5.1)

∂(ρpΦpupjupi)

∂xj
= ρpΦpgi

(

1− ρ

ρp

)

+ ρpΦpfd(ui − upi), (5.2)

where fd is the same term as in Eq. (4.5), and the particle-phase volume fraction is within

the range 0 < Φp < 1.

At the inlet boundaries Γin, a uniform particle concentration is set. Therefore,

a Dirichlet condition is considered for the particle-phase volume fraction and velocity

components:

Φp = Φp,in on Γin, (5.3)

upn = Up,in on Γin, (5.4)
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upt = ups = 0 on Γin, (5.5)

in which Φp,in is the volume fraction of particles at the inlet, and Up,in is the inlet velocity

of particles in the domain.

Simple convection condition is applied at the outlet boundaries Γout. In this case,

a Neumann condition is considered for the particle-phase volume fraction and velocity

components:

∂Φp

∂n
= 0 on Γout, (5.6)

∂upi
∂n

= 0 on Γout. (5.7)

The treatment of the wall boundaries Γwall for particles is a critical component of

the two-fluid model. The particle-wall interaction can be represented as a particle-phase

convective flux out of the domain. In the current study, a simple approach is employed,

assuming a zero Neumann boundary condition for the particle velocity components. In

practice, this assumes that the velocity at the wall is equivalent to the velocity in the first

near-wall computational cell:

∂upi
∂n

= 0 on Γwall. (5.8)

For volume fraction estimation, it is necessary to know the direction of particle-phase

impact velocity at the wall. Defining that:

Γ−

wall = {xi ∈ Γwall | upn(xi) ≤ 0} , (5.9)

and

Γ+
wall = Γwall \ Γ−

wall, (5.10)

the boundary condition is:
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





Φp = 0 on Γ−

wall,

∂Φp

∂n
= 0 on Γ+

wall.

(5.11)

When the particle-phase velocity points outside the domain, the zero Neumann boundary

condition is used, and the volume fraction at the wall is equal to the volume fraction in

the first near-wall cell. However, when the particle-phase velocity does not point outside

the domain, the volume fraction at the wall is assumed to be zero, which prevents the

appearance of unphysical inflow. Vasquez, Walters, and Walters (2015) tested more ad-

vanced and complex wall boundary condition methods and found that, for the considered

problem, they did not imply a significant change in the results. Since the studied cases

involve flows with a dominant convective transport direction, the simplest model is useful,

although it has limitations.

5.1.2 Deposition efficiency

Deposition efficiency is a measure of the fraction of particles that are deposited or

collected onto a specific surface. This surface could be a filter, a collector, or a target

area. In numerical terms, it typically corresponds to a wall boundary. The calculation of

deposition efficiency involves dividing the mass of particles deposited in the wall by the

total mass of particles that entered the region of interest:

ηdep =
ṁp,dep

ṁp,in

with ṁp,dep =

∫

Γwall

ρpΦpupi ni dΓ. (5.12)

5.1.3 Continuous adjoint for multiphase flows

The shape optimization problem restricted by a laminar multiphase flow can be

stated as:

minimize J(β, ui, p, upi ,Φp)

subject to R(β, ui, p, upi ,Φp) = 0,
(5.13)
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where the state equations R = (Ri, Q,Rpi , Qp)
⊺ are the Navier-Stokes and continuity

equations, Eqs. (3.12) and (3.3), in addition to the linear momentum equations of particles

and the transport equation of volume fraction, Eqs. (5.2) and (5.1). For the mathematical

development of the adjoint method, these equations were adopted in the non-divergence

form. Once again, the fluid dynamics equations, Eqs. (3.27) and (3.28), are shown, but

this time for a laminar regime, in which the primal equations also involve the particle

equations:

Ri = ρuj
∂ui
∂xj

+
∂p

∂xi
− ∂

∂xj

[

µ

(
∂ui
∂xj

+
∂uj
∂xi

)]

= 0, (5.14)

Q = −∂ui
∂xi

= 0, (5.15)

Rpi = ρpupj
∂upi
∂xj

+ ρpfdupi − ρpgi

(

1− ρ

ρp

)

− ρpfdui = 0, (5.16)

Qp = −∂(Φpupj)

∂xj
= 0. (5.17)

Thus, the Lagrange function is formulated as:

L = J +

∫

Ω

(

ûiRi + p̂Q+ ûpiRpi + Φ̂pQp

)

dΩ, (5.18)

and its variation according to Eq. (2.15) is:

δL =

∫

ΓO∩ΓD

δβJΓ dΓ +

∫

ΓO

(
δui
JΓ + δpJΓ + δupi

JΓ + δΦp
JΓ
)
dΓ

+

∫

ΩO

(
δui
JΩ + δpJΩ + δupi

JΩ + δΦp
JΩ
)
dΩ

+

∫

Ω

(

ûi δRi + p̂δQ+ ûpi δRpi + Φ̂p δQp

)

dΩ,

(5.19)

in which the adjoint variables are the adjoint velocity ûi and the adjoint pressure p̂ of the

fluid, and the adjoint velocity ûpi and the adjoint volume fraction Φ̂p of particles.

The variations of the primal equations with respect to the state variables can be
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obtained as:

δRi = ρ(δuj)
∂ui
∂xj

+ ρuj
∂(δui)

∂xj
+
∂(δp)

∂xi
− ∂

∂xj

[

µ

(
∂(δui)

∂xj
+
∂(δuj)

∂xi

)]

, (5.20)

δQ = −∂(δui)
∂xi

, (5.21)

δRpi = ρp(δupj)
∂upi
∂xj

+ ρpupj
∂(δupi)

∂xj
+ ρpfd(δupi)− ρpfd(δui), (5.22)

δQp = −Φp

∂(δupj)

∂xj
− δupj

∂Φp

∂xj
− δΦp

∂upj
∂xj

− upj
∂(δΦp)

∂xj
. (5.23)

Thereby, Eq. (5.19) is rewritten as:

δL =

∫

ΓO∩ΓD

δβJΓ dΓ +

∫

ΓO

(
δui
JΓ + δpJΓ + δupi

JΓ + δΦp
JΓ
)
dΓ

+

∫

ΩO

(
δui
JΩ + δpJΩ + δupi

JΩ + δΦp
JΩ
)
dΩ

+

∫

Ω

ûiρ(δuj)
∂ui
∂xj

dΩ +

∫

Ω

ûiρuj
∂(δui)

∂xj
dΩ

︸ ︷︷ ︸

(t.1)

+

∫

Ω

ûi
∂(δp)

∂xi
dΩ

︸ ︷︷ ︸

(t.2)

−
∫

Ω

ûi
∂

∂xj

[

µ

(
∂(δui)

∂xj
+
∂(δuj)

∂xi

)]

dΩ

︸ ︷︷ ︸

(t.3)

−
∫

Ω

p̂
∂(δui)

∂xi
dΩ

︸ ︷︷ ︸

(t.4)

+

∫

Ω

ûpi

[

ρp(δupj)
∂upi
∂xj

+ ρpfd(δupi)− ρpfd(δui)

]

dΩ

+

∫

Ω

ûpiρpupj
∂(δupi)

∂xj
dΩ

︸ ︷︷ ︸

(t.7)

−
∫

Ω

Φ̂p

[

δupj
∂Φp

∂xj
+ δΦp

∂upj
∂xj

]

dΩ

−
∫

Ω

Φ̂pΦp

∂(δupj)

∂xj
dΩ

︸ ︷︷ ︸

(t.8)

−
∫

Ω

Φ̂pupj
∂(δΦp)

∂xj
dΩ

︸ ︷︷ ︸

(t.9)

(5.24)

The terms (t.1) to (t.4) of the above equation have already been derived by applying the

integration by parts in Section 3.1.3. Similarly, the terms (t.7) to (t.9) are determined:
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(t.7) :

∫

Ω

ûpiρpupj
∂(δupi)

∂xj
dΩ

=

∫

Γ

ûpiρpupjnj(δupi) dΓ−
∫

Ω

∂(ρpupj ûpi)

∂xj
(δupi) dΩ (5.25)

(t.8) : −
∫

Ω

Φ̂pΦp

∂(δupj)

∂xj
dΩ = −

∫

Γ

Φ̂pΦpni(δupi) dΓ +

∫

Ω

∂(Φ̂pΦp)

∂xi
(δupi) dΩ

= −
∫

Γ

Φ̂pΦpni(δupi) dΓ +

∫

Ω

Φ̂p
∂Φp

∂xi
(δupi) dΩ +

∫

Ω

Φp
∂Φ̂p

∂xi
(δupi) dΩ (5.26)

(t.9) : −
∫

Ω

Φ̂pupj
∂(δΦp)

∂xj
dΩ = −

∫

Γ

Φ̂pupini(δΦp) dΓ +

∫

Ω

∂(Φ̂pupi)

∂xi
(δΦp) dΩ

= −
∫

Γ

Φ̂pupini(δΦp) dΓ +

∫

Ω

Φ̂p
∂upi
∂xi

(δΦp) dΩ +

∫

Ω

upi
∂Φ̂p

∂xi
(δΦp) dΩ (5.27)

Replacing all the terms in Eq. (5.24) and rearranging them, it can be found that:

δL =

∫

ΓO∩ΓD

δβJΓ dΓ +

∫

ΓO

(
δui
JΓ + δpJΓ + δupi

JΓ + δΦp
JΓ
)
dΓ

+

∫

ΩO

(
δui
JΩ + δpJΩ + δupi

JΩ + δΦp
JΩ
)
dΩ

+

∫

Ω

ûiρ(δuj)
∂ui
∂xj

dΩ +

∫

Γ

ρujnj ûi (δui) dΓ−
∫

Ω

∂(ρuj ûi)

∂xj
(δui) dΩ

+

∫

Γ

δp (ûini) dΓ−
∫

Ω

δp

(
∂ûi
∂xi

)

dΩ−
∫

Γ

p̂ (δuini) dΓ +

∫

Ω

δui
∂p̂

∂xi
dΩ

−
∫

Γ

ûi

[

µ

(
∂(δui)

∂xj
+
∂(δuj)

∂xi

)]

nj dΓ

+

∫

Γ

δui

[

µ

(
∂ûi
∂xj

+
∂ûj
∂xi

)]

nj dΓ−
∫

Ω

δui
∂

∂xj

[

µ

(
∂ûi
∂xj

+
∂ûj
∂xi

)]

dΩ

+

∫

Ω

ûpi

[

ρp(δupj)
∂upi
∂xj

+ ρpfd(δupi)− ρpfd(δui)

]

dΩ

∫

Γ

ûpiρpupjnj(δupi) dΓ−
∫

Ω

∂(ρpupj ûpi)

∂xj
(δupi) dΩ−

∫

Γ

Φ̂pΦpni(δupi) dΓ

+

∫

Ω

Φp
∂Φ̂p

∂xi
(δupi) dΩ−

∫

Γ

Φ̂pupini(δΦp) dΓ +

∫

Ω

upi
∂Φ̂p

∂xi
(δΦp) dΩ

(5.28)

Then, applying the variation of the objective function in relation to the state variables,

as shown in Eqs. (3.41) and (3.42), the above equation becomes:
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δL =

∫

ΓO∩ΓD

δβJΓ dΓ−
∫

Γ

ûi

[

µ

(
∂(δui)

∂n
+
∂(δun)

∂xi

)]

dΓ

+

∫

Γ

δui

[

ρun ûi + µ

(
∂ûi
∂n

+
∂ûn
∂xi

)

− p̂ni

]

dΓ +

∫

ΓO

δui

(
∂JΓ
∂ui

)

dΓ

+

∫

Γ

δp (ûn) dΓ +

∫

ΓO

δp

(
∂JΓ
∂p

)

dΓ +

∫

Γ

δupi

(

ρp ûpi upn − Φ̂pΦpni

)

dΓ

+

∫

ΓO

δupi

(
∂JΓ
∂upi

)

dΓ−
∫

Γ

δΦp

(

Φ̂pupn

)

dΓ +

∫

ΓO

δΦp

(
∂JΓ
∂Φp

)

dΓ

+

∫

Ω

δui

{

−∂(ρuj ûi)
∂xj

+
∂p̂

∂xi
− ∂

∂xj

[

µ

(
∂ûi
∂xj

+
∂ûj
∂xi

)]

+ ρûj
∂uj
∂xi

}

dΩ

−
∫

Ω

δui (ρpfd ûpi) dΩ +

∫

ΩO

δui

(
∂JΩ
∂ui

)

dΩ

−
∫

Ω

δp

(
∂ûi
∂xi

)

dΩ +

∫

ΩO

δp

(
∂JΩ
∂p

)

dΩ

+

∫

Ω

δupi

[

−∂(ρpupj ûpi)
∂xj

+ ρpûpi
∂upj
∂xi

+ ρpfd ûpi + Φp
∂Φ̂p

∂xi

]

dΩ

+

∫

ΩO

δupi

(
∂JΩ
∂upi

)

dΩ +

∫

Ω

δΦp

(

upi
∂Φ̂p

∂xi

)

dΩ +

∫

ΩO

δΦp

(
∂JΩ
∂Φp

)

dΩ.

(5.29)

As already mentioned, vanishing the integrals over the domain of Eq. (5.29) indi-

vidually yields the adjoint equations. Therefore, the adjoint equations for steady-state,

incompressible fluid flows carrying particles are:







∂ûi
∂xi

=
∂JΩ
∂p

in ΩO,

∂ûi
∂xi

= 0 in Ω \ ΩO,

(5.30)







−∂ (ρujûi)
∂xj

=− ∂p̂

∂xi
+

∂

∂xj

[

µ

(
∂ûi
∂xj

+
∂ûj
∂xi

)]

− ρûj
∂uj
∂xi

+ ρpfd ûpi −
∂JΩ
∂ui

in ΩO,

−∂ (ρujûi)
∂xj

=− ∂p̂

∂xi
+

∂

∂xj

[

µ

(
∂ûi
∂xj

+
∂ûj
∂xi

)]

− ρûj
∂uj
∂xi

+ ρpfd ûpi

in Ω \ ΩO,

(5.31)
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





−upj
∂Φ̂p

∂xj
=
∂JΩ
∂Φp

in ΩO,

−upj
∂Φ̂p

∂xj
= −∂(ρpΦpupj Φ̂p)

∂xj
= 0 in Ω \ ΩO,

(5.32)







−∂(ρpupj ûpi)
∂xj

= −ρpfdûpi − ρpûpj
∂upj
∂xi

− Φp
∂Φ̂p

∂xi
− ∂JΩ
∂upi

in ΩO,

−∂(ρpupj ûpi)
∂xj

= −ρpfdûpi − ρpûpj
∂upj
∂xi

− Φp
∂Φ̂p

∂xi
in Ω \ ΩO.

(5.33)

For the one-way coupling problem, it is clear in the primal field that the particle transport

is influenced by the fluid motion, but the opposite does not happen. Nevertheless, in

the corresponding adjoint field, particles have an influence on the fluid motion. The

adjoint momentum equations of the fluid, Eq. (5.31), depend on the adjoint velocity of

the particles.

For any (ûi, p̂, ûpi , Φ̂p) that satisfies the adjoint equations, the variation of the

Lagrange function can be simplified to:

δL =

∫

ΓO∩ΓD

δβJΓ dΓ−
∫

Γ

ûi

[

µ

(
∂(δui)

∂n
+
∂(δun)

∂xi

)]

dΓ

+

∫

Γ

δui

[

ρun ûi + µ

(
∂ûi
∂n

+
∂ûn
∂xi

)

− p̂ni

]

dΓ +

∫

ΓO

δui

(
∂JΓ
∂ui

)

dΓ

+

∫

Γ

δp (ûn) dΓ +

∫

ΓO

δp

(
∂JΓ
∂p

)

dΓ +

∫

Γ

δupi

(

ρp ûpi upn − Φ̂pΦpni

)

dΓ

+

∫

ΓO

δupi

(
∂JΓ
∂upi

)

dΓ−
∫

Γ

δΦp

(

Φ̂pupn

)

dΓ +

∫

ΓO

δΦp

(
∂JΓ
∂Φp

)

dΓ.

(5.34)

5.1.3.1 Boundary conditions

Boundaries that coincide with the design surface are disregarded here and will be

addressed later. The adjoint boundary conditions are obtained by vanishing the surface

integrals of Eq. (5.34):

∫

Γ

δui

{

ρunûi +

[

µ

(
∂ûi
∂n

+
∂ûn
∂xi

)]

− p̂ni

}

dΓ +

∫

ΓO

δui

(
∂JΓ
∂ui

)

dΓ

−
∫

Γ

ûi

[

µ

(
∂(δui)

∂n
+
∂(δun)

∂xi

)]

dΓ = 0,

(5.35)
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∫

Γ

δp (ûn) dΓ +

∫

ΓO

δp

(
∂JΓ
∂p

)

dΓ = 0, (5.36)

−
∫

Γ

δΦp

(

upnΦ̂p

)

dΓ +

∫

ΓO

δΦp

(
∂JΓ
∂Φp

)

dΓ = 0, (5.37)

∫

Γ

δupi

(

ρpupn ûpi − ΦpΦ̂pni

)

dΓ +

∫

ΓO

δupi

(
∂JΓ
∂upi

)

dΓ = 0. (5.38)

Equations (5.35) and (5.36) leads to the same boundary conditions for the adjoint veloc-

ity and adjoint pressure of the fluid determined in Section 3.1.3.1. Hence, this section

focuses solely on presenting the boundary conditions related to the adjoint variables of

the particles.

By definition, the local variation of particle velocity and volume fraction on inlet

boundaries is zero, δupi = 0, and δΦp = 0. As nothing can be concluded from Eqs. (5.37)

and (5.38), it is assumed that:

∂Φ̂p

∂n
= 0 on Γin, (5.39)

∂ûpi
∂n

= 0 on Γin. (5.40)

At the outlet boundaries, it can be inferred from the primal boundary conditions

that δΦp ̸= 0 and δupi ̸= 0. Therefore, for an arbitrary value of δΦp, it is found from

Eq. (5.37) that:

−upnΦ̂p +
∂JΓ
∂Φp

= 0, (5.41)

which means:

Φ̂p =







1

upn

∂JΓ
∂Φp

on Γout ∩ ΓO,

0 on Γout \ ΓO.

(5.42)
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For an arbitrary value of δupi , it is implied based on Eq. (5.38) that:

ρpupn ûpi − ΦpΦ̂pni +
∂JΓ
∂upi

= 0, (5.43)

consequently:

ûpi =







1

ρpupn

(

ΦpΦ̂pni −
∂JΓ
∂upi

)

on Γout ∩ ΓO,

ΦpΦ̂pni

ρpupn
= 0 on Γout \ ΓO.

(5.44)

In the case of wall boundaries, two situations have to be analyzed, as there are two

different boundary conditions for the volume fraction. When upn ≤ 0, the variation of the

volume fraction is zero, δΦp = 0. However, when upn > 0, this is not true, so δΦp ̸= 0. In

both situations, δupi ̸= 0. Finally, it is deduced for the adjoint volume fraction that:







∂Φ̂p

∂n
= 0 on Γ−

wall,

Φ̂p =
1

upn

∂JΓ
∂Φp

on Γ+
wall ∩ ΓO,

Φ̂p = 0 on Γ+
wall \ ΓO,

(5.45)

and for the adjoint velocity of particles that:

ûpi =







1

ρpupn

(

ΦpΦ̂pni −
∂JΓ
∂upi

)

on Γwall ∩ ΓO,

ΦpΦ̂pni

ρpupn
on Γwall \ ΓO.

(5.46)

5.1.3.2 Gradient equation

Considering the adjoint boundary conditions on Γ \ ΓD, Eq. (5.34) reduces to:

δL =

∫

ΓO∩ΓD

δβJΓ dΓ−
∫

ΓD

ûi

[

µ

(
∂(δui)

∂n
+
∂(δun)

∂xi

)]

dΓ (5.47a)

+

∫

ΓD

δui

[

ρun ûi + µ

(
∂ûi
∂n

+
∂ûn
∂xi

)

− p̂ni

]

dΓ +

∫

ΓO∩ΓD

δui

(
∂JΓ
∂ui

)

dΓ (5.47b)
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+

∫

ΓD

δp (ûn) dΓ +

∫

ΓO∩ΓD

δp

(
∂JΓ
∂p

)

dΓ +

∫

ΓD

δupi

(

ρp ûpi upn − Φ̂pΦpni

)

dΓ (5.47c)

+

∫

ΓO∩ΓD

δupi

(
∂JΓ
∂upi

)

dΓ−
∫

ΓD

δΦp

(

Φ̂pupn

)

dΓ +

∫

ΓO∩ΓD

δΦp

(
∂JΓ
∂Φp

)

dΓ. (5.47d)

Based on this updated equation of the variation of the Lagrange function, the gradient

of the shape optimization problem can be found.

Furthermore, it is known that spatial disturbances on the design surface are repre-

sented by displacements in the normal direction, Eq. (3.71), and ΓD ⊂ Γwall, which leads

to:

δL =

∫

ΓO∩ΓD

δn

(
∂JΓ
∂n

)

dΓ +

∫

ΓO∩ΓD

δui

(
∂JΓ
∂ui

)

dΓ

+

∫

ΓD

δui

[

µ

(
∂ûi
∂n

+
∂ûn
∂xi

)

− p̂ni

]

dΓ−
∫

ΓD

ûi

[

µ

(
∂(δui)

∂n
+
∂(δun)

∂xi

)]

dΓ

+

∫

ΓD

δp (ûn) dΓ +

∫

ΓO∩ΓD

δp

(
∂JΓ
∂p

)

dΓ

+

∫

ΓD

δupi

(

ρp ûpi upn − Φ̂pΦpni

)

dΓ +

∫

ΓO∩ΓD

δupi

(
∂JΓ
∂upi

)

dΓ

−
∫

ΓD

δΦp

(

Φ̂pupn

)

dΓ +

∫

ΓO∩ΓD

δΦp

(
∂JΓ
∂Φp

)

dΓ.

(5.48)

Evaluating the adjoint boundary conditions on Γwall, Eqs. (5.45) and (5.46) imply that:

δL =

∫

ΓO∩ΓD

δn

(
∂JΓ
∂n

)

dΓ +

∫

ΓO∩ΓD

δui

(
∂JΓ
∂ui

)

dΓ

+

∫

ΓD

δui

[

µ

(
∂ûi
∂n

+
∂ûn
∂xi

)

− p̂ni

]

dΓ−
∫

ΓD

ûi

[

µ

(
∂(δui)

∂n
+
∂(δun)

∂xi

)]

dΓ

+

∫

ΓD

δp (ûn) dΓ +

∫

ΓO∩ΓD

δp

(
∂JΓ
∂p

)

dΓ

−
∫

Γ−

D

δΦp

(

Φ̂pupn

)

dΓ +

∫

ΓO∩Γ−

D

δΦp

(
∂JΓ
∂Φp

)

dΓ.

(5.49)

In the specific case of ∂JΓ/∂p = 0, the boundary condition for the adjoint velocity is

ûi = 0, and so:

δL =

∫

ΓO∩ΓD

δn

(
∂JΓ
∂n

)

dΓ +

∫

ΓO∩ΓD

δui

(
∂JΓ
∂ui

)

dΓ +

∫

ΓO∩Γ−

D

δΦp

(
∂JΓ
∂Φp

)

dΓ

+

∫

ΓD

δui

[

µ

(
∂ûi
∂n

+
∂ûn
∂xi

)

− p̂ni

]

dΓ−
∫

Γ−

D

δΦp

(

Φ̂pupn

)

dΓ.

(5.50)
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As a result of the shape disturbances, the boundary conditions of the design surface

undergo variations, i.e., δui ̸= 0 and δΦp ̸= 0. Then, the local variation of velocity is

approximated by Eq. (3.77), which can be extended for the local variation of volume

fraction:

δΦp ≈ −δn∂Φp

∂n
on Γ−

D. (5.51)

Thereafter, Eq. (5.50) looks like:

δL =

∫

ΓO∩ΓD

δn

(
∂ui
∂n

∂JΓ
∂n

)

dΓ−
∫

ΓO∩ΓD

δn

(
∂JΓ
∂ui

)

dΓ−
∫

ΓO∩Γ−

D

δn

(
∂Φp

∂n

∂JΓ
∂Φp

)

dΓ

−
∫

ΓD

δn

[

µ

(
∂ûi
∂n

+
∂ûn
∂xi

)
∂ui
∂n

]

dΓ +

∫

Γ−

D

δn

(

Φ̂pupn
∂Φp

∂n

)

dΓ.

(5.52)

Finally, the gradient can be calculated by:

δL = Gδn with G =

∫

ΓD

[

−µ
(
∂ûi
∂n

+
∂ûn
∂xi

)
∂ui
∂n

+Gvar

]

dΓ, (5.53)

and

Gvar =







∂JΓ
∂n

− ∂JΓ
∂ui

∂ui
∂n

+

(

Φ̂pupn − ∂JΓ
∂Φp

)
∂Φp

∂n
on Γ−

D ∩ ΓO,

Φ̂pupn
∂Φp

∂n
on Γ−

D \ ΓO,

∂JΓ
∂n

− ∂JΓ
∂ui

∂ui
∂n

on Γ+
D ∩ ΓO,

0 on Γ+
D \ ΓO,

(5.54)

5.1.3.3 Maximizing deposition efficiency

Maximizing the particle efficiency of deposition on wall surfaces, Eq. (5.12), leads

to the respective objective function:

J = − 1

ṁp,in

∫

Γwall

ρpΦpupi ni dΓ. (5.55)
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For this objective function, it is given that:

JΩ = 0 on Ω, (5.56)

JΓ =







−ρpΦpupi ni

ṁp,in

on Γwall,

0 on Γ \ Γwall.

(5.57)

Then, the derivatives related to the state variables and control are:

∂JΓ
∂ui

=
∂JΓ
∂p

= 0 on Γwall, (5.58)

∂JΓ
∂upi

= −ρpΦpni

ṁp,in

on Γwall, (5.59)

∂JΓ
∂Φp

= −ρpupn
ṁp,in

on Γwall, (5.60)

∂JΓ
∂n

= − ρp
ṁp,in

(

Φp
∂upn
∂n

+ upn
∂Φp

∂n

)

on Γwall. (5.61)

It can be inferred by substituting the derivatives and the primal boundary condi-

tions into the adjoint boundary conditions that:

ûi = 0 on Γin and Γwall, (5.62)

p̂ = ρun ûn + µ
∂ûn
∂n

on Γout, (5.63)

ρun ût + µ
∂ût
∂n

= 0 on Γout, (5.64)

ρun ûs + µ
∂ûs
∂n

= 0 on Γout, (5.65)
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ûpi = 0 on Γout and Γwall, (5.66)

Φ̂p = 0 on Γout, (5.67)







∂Φ̂p

∂n
= 0 on Γ−

wall,

Φ̂p = − ρp
ṁp,in

on Γ+
wall.

(5.68)

For those that are not shown, the zero Neumann condition is applied.

The sensitivity derivatives for maximizing the deposition efficiency of particles can

be estimated from Eqs. (5.53) and (5.54) as:

G = −
∫

ΓD

[

µ

(
∂ûi
∂n

+
∂ûn
∂xi

)
∂ui
∂n

]

dΓ +

∫

Γ−

D

(

Φ̂pupn
∂Φp

∂n

)

dΓ. (5.69)

5.2 Numerical-computational modeling

The same numerical-computational modeling presented in Section 3.2 is applicable

in this chapter. However, specific aspects concerning the employment of the Euler-Euler

approach within the UNSCYFL3D code must be discussed. It is worth noting that the

procedure used to solve the primal system of particles is reused for the adjoint system.

The discretization of the advective terms of the linear momentum equations of

particles is done by using the second-order upwind scheme. For the transport equations

of volume fraction, the advective term is discretized with the first-order upwind scheme.

Regarding the advective terms of the adjoint equations, the downwind scheme was used.

The system of linear equations for each variable is resolved sequentially (first, the volume

fraction and, then, the particle velocity components) and independently by the biconjugate

gradient method. Due to the coupling between the variables, the process is repeated until

all the equation residues are reduced to the specified tolerance.

The shape optimization process incorporating the transport of particles in a fluid

flow in UNSCYFL3D is now represented by the flowchart in Fig. 5.1. Basically, it follows



109

the same logic explained for Fig. 3.2. One difference is that, within the optimization loop,

the particle primal equations are solved after the primal equations of fluid dynamics.

Furthermore, as the solution of the fluid adjoint field relies on the particle adjoint field,

the particle adjoint equations are solved before the fluid adjoint equations.

Figure 5.1 – Shape optimization flowchart for multiphase flow systems.
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5.3 Validation of Eulerian particle equations

The experimental study presented by Pui, Romay-Novas, and Liu (1987) is considered

to validate the Eulerian equations of particle transport. The problem in question focuses

on the mechanism of inertial deposition of aerosol particles in bends. Starting with a less

complex problem, the validation is assumed for a laminar flow and low Stokes numbers.

A schematic diagram of the used system is shown in Fig. 5.2. The 90◦ bend was

built with a curvature radius of Rb, a pipe diameter of d = 3.95 mm, and a curvature
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Figure 5.4 – Comparison of deposition efficiency for the Euler-Euler simulation and
experimental data (PUI; ROMAY-NOVAS; LIU, 1987).

5.4 Results and discussion

The shape optimization process depicted in Fig. 5.1 was executed for the same

system above in the case of St = 0.28. The process starts with the baseline mesh shown in

Fig. 5.3. The purpose of the optimization is to find an improved bend shape for maximizing

the deposition efficiency of particles based on the continuous adjoint approach.

As in Section 3.4.2, the steepest descent algorithm was run and the shape mod-

ification was achieved with the FFD technique. Then, a box around the design surface

was defined as the control volume, with a minimum limit at (1.50, 0.40, −0.25) cm and

a maximum limit at (3.60, −1.70, 0.25) cm, and also with 9 × 9 × 9 control points, as

illustrated in Fig. 5.5. The coordinate system was positioned at the center of the inlet

face.

The evolution of the objective function value is plotted in Fig. 5.6. Two steps were

applied for the steepest descent algorithm. It was run initially for λ = 10−6, as can be

seen in Fig. 5.6, the deposition efficiency increases monotonically in the first 15 design

cycles. However, the optimization process diverges after that, and the objective function

starts to decrease. Accordingly, a new run was set up with a smaller step, λ = 10−7.
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Likewise, the deposition efficiency increases from 0.2418 to a maximum value of 0.2845

around 60 design cycles, and then decreases.

Figure 5.5 – Control volume of the FFD technique around the (red) design surface.

Figure 5.6 – Evolution of the particle deposition case.

Even though the optimization process diverged, it was possible to find an improved

design for which the objective function increased by approximately 18%. This optimized

shape for maximizing the deposition efficiency is illustrated in comparison with the base-

line shape in Fig. 5.7. In order to visualize the particle deposition profile on the bend

wall, Fig. 5.8 is presented. Such information is shown in terms of the mass flow rate of
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be proposed to overcome the issues pertinent to this chapter.

5.4.1 Challenges

Several challenges were faced during the present optimization problem that may

have affected the obtained results. Solving the adjoint equations for particle transport

proved to be particularly problematic due to their numerical stiffness. This inherent stiff-

ness posed a significant obstacle to achieving convergence, as the residuals associated with

the adjoint volume fraction stopped decaying over the iterations, leading to convergence

stagnation. Some steps were taken to address this issue: the numerical methods available

in UNSCYFL3D were verified, and it was considered using a more robust discretization

scheme for the advection terms (first order downwind); different initial conditions were

tested; and the solver settings were adjusted. The adjoint equations, being of mathemat-

ical origin, lack a physical interpretation, which makes it difficult to estimate the initial

field. Starting the adjoint volumetric fraction field at the same order of magnitude as

the boundary condition on the wall helped. Conversely, it was necessary to change the

under-relaxation factor of the solver a few times during the simulation, which made the

process inefficient. Consequently, the use of other methods is certainly required to solve

these adjoint equations. As this is beyond the scope of the thesis, the exploration of

numerical methods better suited to address the problem at hand is intended for future

work.

Selecting the control volume and determining the number of control points for the

FFD technique posed significant challenges. It was noticed that modifying these param-

eters had a substantial impact on the behavior of the objective function throughout the

optimization process. Notably, defining a control volume at the boundaries of the design

surface resulted in sudden deformations in those particular regions. On the other hand,

defining a control volume encompassing areas that extend far beyond the design surface

led to deformations that ended up hindering the convergence of the optimization process.

Therefore, further analysis may be necessary to better understand these implications.

The robustness of the optimization process still needs to be improved. This can be

done by choosing a more suitable algorithm for optimizing problems with adjoint equations
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for multiphase flows. For instance, considering the use of quasi-Newton methods could be

beneficial and worth exploring in future tests (BOGER, 2013).

5.5 Conclusions

While adjoint-based shape optimization techniques have proven effective in vari-

ous engineering areas, in the context of multiphase flows, their application presents its

own set of challenges and limitations. In this study, significant efforts were dedicated to

deriving the adjoint equations, boundary conditions, and gradient calculations using an

Euler-Euler approach. The challenges started with the development of the adjoint equa-

tions themselves, which demand a strong mathematical foundation. Finding appropriate

hypotheses and assumptions to simplify the problems becomes crucial, but it requires

rigorous mathematical analysis.

Based on the knowledge and formulation of shape optimization for single-phase

flows established in Chapter 3, this thesis extended its focus to explore the specificities

of multiphase flow systems. The complexity of the problem increased as four additional

equations needed to be defined and solved within the adjoint method.

Before determining the adjoint particle equations, the primal particle equations

were implemented within the UNSCYFL3D code using a two-fluid model. These equa-

tions were validated with experimental data on particle deposition on a pipe bend wall

under laminar flow conditions and low Stokes numbers. In pursuit of maximizing particle

deposition efficiency for the aforementioned case, other challenges arose in terms of the

convergence of the optimization process.

Although there are still some technical issues to be resolved, this research has its

importance. It presents the complete step-by-step mathematical development for adjoint

particle equations, boundary conditions, and sensitivity derivatives. It also highlights the

inherent challenges and limitations associated with adjoint-based shape optimization in

the realm of multiphase flows. These difficulties emphasize the need for further exploration

and advancements in both theoretical formulations and numerical methods to overcome

the convergence issues and, thus, fully exploit the potential of this optimization technique.



CHAPTER VI

OUTLOOK AND FINAL REMARKS

The concepts of adjoint applied to CFD were derived and implemented in this work,

allowing efficient shape optimization with respect to a large number of shape parameters.

The adjoint methods offer an inexpensive calculation of the gradient by formulating an

additional set of equations known as adjoint equations, which must be solved after the

primal flow field.

While adjoint methods for single-phase flows have been the subject of exhaustive

research since the pioneering works of Pironneau (1974) and Jameson (1988), adjoint

methods tailored for multiphase flows are less represented and described in the literature.

The complex nature of such flows poses significant challenges for modeling. Therefore,

the objective of this thesis was to address the knowledge gap by focusing on adjoint-based

shape optimization involving the simulation of multiphase flow systems in a finite volume

CFD code.

The development of the present work was divided into three main parts. The first

part was intended to acquire more experience and knowledge in the use of the adjoint

method through mathematical deductions, numerical implementations, and shape opti-

mization applied to single-phase flows. Implementing PDEs in a finite volume CFD solver

requires them to be in discretized form. There are two conceivable options for deriving the

discretized adjoint equations: following the discrete adjoint approach or the continuous

adjoint approach. In the case of the UNSCYFL3D code, the continuous adjoint approach



118

was chosen for implementation. This choice was motivated by its ease of application to

simulation procedures that use segregated solvers and also by the fact that the continuous

adjoint inherits the computational efficiency of the primal solver due to extensive reuse of

software modules. The shape optimization process was performed using a steepest descent

algorithm on a CAD-free framework as the FFD, a mesh deformation technique, was em-

ployed. Classical CAD-based strategies considerably reduce the dimension of the design

space, which restricts optimal shape detection and reduces the attainable improvements.

The FFD technique, on the other hand, provides a more flexible shape modification.

To add confidence to the simulations, the implemented adjoint equations were first val-

idated by comparing the numerical predictions against analytical solution results for an

axis-symmetric Couette flow. Furthermore, the direct-differentiation method was used to

verify the adjoint solver, simulating an internal flow in an S-shaped duct. A good agree-

ment in the sensitivity derivatives was achieved between both methods. Finally, the shape

of three pipe fittings was optimized to minimize the total pressure losses of a turbulent gas

flow. Even though the turbulence field was frozen in the adjoint analysis, the objective

function was reduced by approximately 15%, 22%, and 37% for the 45◦, 90◦, and 180◦

pipe bends, respectively. Unusual shapes were obtained, but with modern manufacturing

techniques, these new designs should have no major problems being manufactured.

In the second part of the thesis, a particle-related problem was approached to

evaluate the effects of the optimization done previously. Consequently, a gas-solid flow

was investigated in all three bend cases, considering both the original and the optimized

ones. The optimized geometries were compared with the original geometries regarding

erosion wear. The erosive effect was then analyzed for three different Stokes numbers.

It was concluded that the optimization favored erosion reduction, although the objective

function was applied to a single-phase flow. The gains from optimization were remarkable,

independently of the Stokes number. In the case of the 45◦ pipe bend, the maximum value

of the penetration ratio decreased by about 60% to 70%. In the case of the 90◦ pipe bend,

the maximum value of the penetration ratio decreased by approximately 45% up to 85%,

for highly inertial particles and low-inertia particles, respectively. These results were

similar to those of the 180◦ pipe bend, in which the reduction ranged from 32% to 84%.
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The explanation for such secondary gains consists of the reduction of the impact velocity

and frequency of the particles against the bend walls.

Shape optimization problems involving a dispersed phase require the extension of

the adjoint system by additional PDE constraints. Different approaches are available to

model multiphase flows, each more appropriate according to a specific scenario, as pre-

sented in Section 2.2. For fluid flows carrying particles, the Euler-Lagrange approach is

commonly used, in which a Lagrangian particle tracking method is employed. Another

approach is rarely explored, for example, in studies on erosion simulation, as in the ero-

sion problem presented above. Nevertheless, modeling the dispersed phase as Lagrangian

particles has certain fundamental limitations that make it difficult to use with adjoint

concepts. To overcome this, in the third part of the thesis, adjoint equations were ob-

tained regarding the Euler-Euler approach. Therefore, a new approach was introduced

to optimize the shape of multiphase flow systems. Up to this point, an 18% increase in

the efficiency of particle deposition in bends for St = 0.28 has been achieved through this

approach. It is believed that further improvements can be obtained by dealing with the

technical issues faced during the optimization process.

Throughout the course of this thesis, some limitations and challenges were encoun-

tered, underscoring the complexities inherent in the adjoint-based shape optimization ap-

plied to CFD. These limitations include the consideration of only steady-state flows, the

assumption of frozen turbulence, and the adoption of a simplified model for the transport

of particles in an Eulerian description. In addition, the research faced various challenges,

such as ensuring the convergence of the Eulerian particle equations and the convergence

of the optimization process applied to the fluid-particle flow. However, these limitations

and challenges also present opportunities for future research.

Addressing unsteady simulations requires solving the corresponding adjoint prob-

lem backward in time. Thus, the implemented approach should be complemented by

an adjoint time-stepping scheme (GRIEWANK; WALTHER, 2000; NADARAJAH; MC-

MULLEN; JAMESON, 2006; STÜCK; CAMELLI; LOHNER, 2010). Disregarding the

frozen turbulence hypothesis results in complete differentiation, including the turbulence

variables and the associated PDEs. This, in turn, introduces several terms that lead to
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a strong interdependence between the adjoint equations of linear momentum and turbu-

lence. In order to achieve an efficient and robust adjoint method capable of calculating

the full derivatives for turbulent flow problems and complex geometries, it may be nec-

essary to develop coupled solution algorithms. Moreover, the computation of the adjoint

equations and sensitivity derivatives should be extended to more advanced multiphase

flow models for fluid-particle transport. The Eulerian particle equations described in this

thesis do not model turbulent particle dispersion or dense flow regimes, for example.

When trying to solve the adjoint equations of the particle transport in the Euler-

Euler approach, a certain numerical stiffness became evident. The solution of these equa-

tions reached convergence stagnation. It was necessary to adjust the solver parameters and

settings a few times during simulations, which made the optimization process inefficient.

Consequently, investing in more efficient and robust methods can be very advantageous

for optimizing multiphase systems.

Concerning the difficulties of convergence in the optimization process, it was no-

ticed that the parameters used in the FFD technique, such as the control volume and

the number of control points, can interfere in finding the minimum or maximum value

of the objective function. Defining a control volume at the boundaries of the design

surface leads to sudden deformations in these regions. However, if the control volume

encompasses parts of the domain far beyond the design surface, it may end up gener-

ating deformations that hinder the convergence process. As an in-depth analysis of the

implications of FFD parameter settings has not been performed, it is recommended for

future work. Another perspective is related to the optimization algorithm used, since the

steepest descent method may not have been suitable for the optimization problem pre-

sented involving multiphase flow. This then requires the use of more advanced methods,

for example, quasi-Newton methods.

Despite this list of technical hurdles, the present work demonstrates how to for-

mulate and use a continuous adjoint method to calculate objective function gradients in

fluid-particle flow, thus serving as the basis for a new shape optimization method for mul-

tiphase flow systems. The implemented adjoint method can also be used for optimizing

other flow systems, requiring specific adjustments according to the type of problem.
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BODNÁR, T.; GALDI, G. P.; NEČASOVÁ, Š. (eds.). Particles in Flows. Advances in
Mathematical Fluid Mechanics. Cham: Birkhäuser, 2017. p. 327–396. ISBN
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