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Abstract

Neste trabalho, utilizamos a Teoria do Funcional de Densidade (DFT) na investigação de

sistemas bidimensionais a base dos elementos boro e carbono. Investigamos as estruturas

eletrônica e estrutural (via XANES) das fases pristinas do borofeno S0, S1 e S2 e de

superredes de borofeno, formadas por diferentes concentrações das fases pristina por

heterojunções laterais. Nossos resultados mostraram que o caráter metálico foi mantido

e foi possível relacionar as propriedades eletrônicas com as características estruturais

do borofeno, assim como o conĄnamento eletrônico nas superredes, regido pelas devida

proporções das fases. Investigamos também o processo de desmontagem de Ąbrilas de

celulose oxidada. Mostramos aqui que a quebra pode ser atribuída à formação dos grupos

carboxilato, que enfraquece a interação, fazendo que o processo ocorra predominantemente

nas interações intercadeias, levando ao surgimento de cadeias celulósicas. Investigamos

também a interação celulose-grafeno, as propriedades energéticas, estruturais e eletrônicas

das interfaces de nanocelulose/grafeno, com especial atenção às interfaces hidrofóbicas

(nCLphob/G - [100]) e hidrofílicas (nCLphil/G - [110]). O Ąngerprint das interfaces nCLphob/G

e nCLphil/G foi identiĄcado através de um estudo detalhado de espectro de XANES da

borda K dos átomos de carbono.

Palavras-chave: Teoria do Funcional de Densidade, Materiais 2D, Borofeno, Boro,

Carbono, Celulose, Grafeno
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Abstract

In this work, we used the Density Functional Theory (DFT) to investigate boron and carbon-

based two-dimensional systems. We investigated the electronic and structural features

(via simulated XANES) of borophene pristine phases S0, S1 and S2, and borophene

superlattices, formed by tuning different concentrations of pristine borophene lateral

heterostructures. Here the study reveals that metallic character remained and revealed the

link between electronic properties and structural properties of borophene, as electronic

conĄnement in borophene superlattices tuned by phase proportion. In carbon-based

systems, we investigate the disassembling process of oxidized cellulose, We have performed

a theoretical investigation of cellulose disassembly mediated oxidation processes. Here, we

showed this disruption could be attributed to the formation of carboxylate groups, which

weakens the interactions, and the disassembling process occurs predominantly in interchain

interactions, giving rise to cellulosic chains. Next, we studied cellulose-graphene interaction,

we performed an investigation of the energetic, structural, and electronic properties of

the nanocellulose/graphene interface, with a special look for hydrophobic (nCLphob/G)

and hydrophilic (nCLphil/G) interfaces. The structural Ąngerprints of nCLphob/G and

nCLphil/G interfaces were identiĄed through a detailed study of the Carbon K-edge

absorption (XANES) spectra.

Key-words: DFT, 2D Materials, Borophene, Boron, Carbon, Cellulose, Graphene.
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1 Introduction

2D systems have attracted the focus of several studies aimed at both technological

applications and the understanding of new physical phenomena. An entirely new class of

materials known as Ş2D materialsŤ has been created as a consequence of the discovery of

graphene (1, 2, 3) and its remarkable properties. Motivated by the success of graphene,

alternative layered and non-layered 2D materials have become the focus of intense research

due to their unique physical and chemical properties. The 2D family of materials has also

recently included other new monatomic materials from the 13-, 14- and 15-family of the

periodic table, such as Borophene (4, 5, 6, 7, 8) and Gallenene (9) (13-family), Silicene

(10, 11) and Germanene (12) (14-family) and Phosphorene (13) (15-family). Some of these

materials are listed in Fig. 1. Beyond these aforementioned, other materials (now not only

exclusively monoatomic systems) like boron nitrides (14), lateral heterojunctions (15, 16),

doping (17), and vdW stacking (18, 19) have shown promising properties. Fig. [2(a)] shows

the increasing (quantitative) evolution of publications on 2D materials from 1992 to 2019.

Figure 1 Ű 13-, 14-, 15- and 16-families 2D materials successfully synthesized, adapted
from(20).

2D materials are an ideal candidate for engineering new classes of materials, and
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usually coexists with the S1 phase in the temperature range from 650 to 800 K. At higher

temperatures, most areas of the surface will be transformed into the S2 phase.

The S2 phase can also be obtained by directly growing boron on Ag(111) with a

substrate temperature next to 680 K. The electronic structure of pristine phases indicates

a loss in anisotropy when compared with the S0 phase but still retains metallic features.

It is worth mentioning two points: (i) the formation of a B-Ag surface alloy or boride is

highly improbable (43), and (ii) the metastable homogeneous phase indicated in Ref. (6),

in the synthesis of the S0 phase corresponds to the S2 phase. In this work, we will consider

only the borophene freestanding sheet, i.e., without considering the substrate interaction.

In some borophene systems, more speciĄcally in borophene heterostructures, the

formation of metallic channels occurs (44, 45), which, in addition to the anisotropy

regarding electronic transport, can lead to the formation of preferential sites for the

adsorption of atoms and molecules. In a previous study, (44), was inferred that the S0

phase laterally attached in the S1 phase induces a preferential direction to form metallic

channels, ruled by the phase proportion and the direction of the attachment. In Ref. (45),

this behaviour remains but is more intense due to the common features of this phase (42).

1.2 Carbon

Carbon nanostructures are a leading material in the nanotechnology Ąeld. The discovery

and research of carbon materials have considerably contributed to the advancement of

modern-day science and technology. Due to its exceptional qualities, such as excellent

thermal conductivity, extreme mechanical properties, and ultra-high electron mobilities,

graphene has received the most attention among 2D materials since its discovery. Re-

searchers are interested in graphene oxide (GO), which has oxygen-containing groups

attached to the graphene sheets. To interact with a variety of metal oxides and create func-

tional hybrids and composites with unique properties, GO must have oxygen-containing

functional groups in the basal plane (epoxy and hydroxyl) and the sheet edges (carbonyl

and carboxyl). A material similar to graphene with comparable property values can be

produced by encouraging the total or partial reduction of GO; this reduction product is

known as reduced graphene oxide (rGO). A wide range of chemical and physical prop-

erties may also be obtained by using the functional groups in GO as sites for chemical

modiĄcation or functionalization. About carbon-based 2D materials, the three mentioned

above are the best known, but there are several other materials. One of these materials

that have been widely studied is cellulose.

Cellulose is composed of carbon, oxygen and hydrogen atoms ([C6H10O5]n), forming

crystalline Ąbers on a nanoscale (46, 47), and is better known as one of the most ubiquitous

polymers in Earth. Also, is responsible for a lot of high-importance products for modern

society, including papers, tissue, adhesives even automotive and construction compounds.
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To impart electrical conductivity to cellulose, metallic particles (62), conductive poly-

mers (63), carbon-based particles (64), and 2D materials (65) are usually integrated into

nanocellulose through different techniques (coating, dipping, printing, blending, etc.).

The combination of nanocellulose and 2D nanomaterials such as graphene, MoS2, and

MXenes has recently triggered great interest in the scientiĄc community as a new class of

multifunctional hybrid compounds. For electronic applications, 2D/nanocellulose hybrid

materials should be able to tolerate mechanical stress and deformations while maintaining

the satisfactory electrical conductivity of 2D materials. Therefore, a fundamental under-

standing of how the insertion of cellulose, a dielectric compound, inĆuences the electrical

properties of 2D materials is essential to guide the development of (nano) devices.

Figure 7 Ű Structural model of cellulose in a perspective view.

We present in Chapter 2 the details about the methodology and formalism used in the

simulations. Then, in chapter 3, we will discuss boron-based 2D materials, i.e. (i) borophene

and (ii) BSLs: in (i) we analyze the electronic properties of the pristine phases of borophene

and connect them with the structural properties obtained by the XANES simulations,

and in (ii) we investigate the electronic, structural properties and the conĄnement effects

of electronic conĄnement of BSLs; in chapter 4, we present perspectives for borophene

studies. Chapters 5 and 6 are the results of carbon-based materials. The chapter 5 we

present the results of our theoretical studies combined with an experimental collaboration

(LNNano/CNPEM). Here we unveil the dominance of vdW interaction over the hydrogen
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bonds in pristine cellulose nanoĄbers and that the disruption of CNFs occurs due to the

formation of carboxylate groups, that weaken the hydrogen bonds. In chapter 6, where we

investigate two different nanocellulose - graphene interfaces, it was found that the binding

energy of nCL/G is comparable with BN/Graphene, these systems Ąngerprints through

XANES simulations and we unveil a net charge accumulation in the nCL/G interface and

its increases with an external electric Ąeld and pressure. Then the Appendix has some

important information used in this work.
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2 Methodology

One of the greatest challenges of our days is the uninterrupted search for new materials,

that somehow give useful properties to the community. And technology advances thru

the years showed us new Ąndings and materials, and those Ąndings and materials lead

to the need for new techniques and the enhancement of known techniques, just to this -

understand and improve these new materials.

In the early’s 2000, Novoselov and Geim(1) wins the Nobel prize due to graphene

synthesis. And then, a new era in materials science has begun. Materials like own graphene,

borophene (6), silicene (10), germanene (12), and others are successfully synthesized. And

we can say that the Density Functional Theory (DFT) is a powerful tool to study these

materials. In this chapter, we will show a brief description of this method, which helped in

this work.

2.1 Density Functional Theory (DFT)

In a many-body system, a way to solve the problem is using the total electronic charge

density ρ(r). To this, Scrödinger’s equation for N electrons and the wavefunction with

N variables (in this case without taking into consideration the spin), can be written just

with three variables. Thomas, Fermi and Dirac’s ideas (66, 67, 68) led to DFT as we know

it today. In 1964, Walter Kohn and Pierre Hohemberg published the article that mark the

beginning of DFT. Then, the next year, Walter Kohn and Lu Jeu Sham published another

article on the development of self-consistent equations and exchange-correlation effects.

So there was a notable growth of DFT’s application in atoms, molecules and solids,

and it’s one of the most popular methods to calculate electronic, structural, and other

properties of a system. The main idea of DFT is that any property of a many-body system

can be described by a single electronic density functional ρ(r), carried by Kohn-Sham

theorems, shown next.

2.1.1 The Schrödinger Equation

Any dynamic system’s state can be described through the Schrödinger equation, as

any problem in which electronic structure is involved. Here we will start our point of

time-independent Schrödinger equation. For an isolated system containing N electrons and

taking into consideration the Born-Oppenheimer approximation (appendix), then we have:

ĤΨ = EΨ, (2.1)
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where E is the electronic energy of system, Ψ = Ψ(r1, r2, ... , rN) is the wavefunction,

and Ĥ is the Hamiltonian operator given by:

Ĥ =
N
∑

i=1

(

−1

2
∇2

i

)

+
N
∑

i=1

υ(ri) +
N
∑

i<j

1

rij

= T̂ + V̂ne + V̂ee, (2.2)

Ĥ = T̂ + V̂ne + V̂ee. (2.3)

The term

υ(ri) = −
∑

α

Zα

riα

, (2.4)

represents the external electric potential in each electron i . The electronic coordinates xi

are related with spatial coordinates ri.

2.1.2 Thomas-Fermi-Dirac Approximation

L. Thomas (66) and E. Fermi (67) pioneered the development of DFT calculations.

Both works didn’t present an accurate precision as a Şmodern DFTŤ, but showed the way

to how calculations should proceed. In this method, the kinetic energy of the system is

approximately an explicit functional of electronic density, like a non-interacting electrons

system in a homogeneous gas, with a density equal to a local density at any point of

the system. In this approach, P. Dirac (68) corrected a detail that passed by. It was the

exchange and correlation effects, formulated in 1930, taking into consideration the local

approximation, and is still used nowadays (69, 70).

Here, the energy is given by:

ET F [ρ] = C1

∫

d3r n(r)( 5

3
) +

∫

d3(r Vext(r)n(r) + C2

∫

d3r n(r)( 4

3
)

+
1

2

∫

d3r d3r′n(r)n(r′)

♣r − r′♣ . (2.5)

The Ąrst term is the local approximation for kinetic energy, with C1 = 2, 871 (u. a.),

and the third term is the local exchange, with C2 = −3
4
( 3

π
)1/3, and the last term is the

classical electrostatic Hartree energy. Energy and density of ground state can be found

minimizing functional E[ρ] in (2.1.2) to all possible density subjected to restrictions on

the total amount of electrons
∫

ρ(r)d3r = N. (2.6)

Using the Lagrange multiplier, the solution can be found through a functional mini-

mization, such that:

ΩT F [ρ] = ET F [ρ] − µ

∫

ρ(r)d3r −N


, (2.7)

where Lagrange multiplier µ is the Fermi energy.
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2.1.3 Hohemberg and Kohn Theorems

Hohemberg and Kohn published an article in 1964 - the article that was the Şbeginning

of modern DFTŤ (71). This paper contains the two main pillars of DFT calculations, which

can be proved simply. This is the heart of DFT. The theorem shows that from the system’s

electronic density ground-state, it is possible to get exactly the ground-state energy.

For this, we consider a system with N electrons, being ri = (xi,yi, zi) the position

vector of i-th electron. The Ąrst theorem says:

ŞFor any system of interacting particles in an external potential Vee, the potential Vee,

is determined uniquely, except for a constant, by the ground state particle density ρ0(r).Ť

In other words, the ground-state energy from Schrödinger’s equation is a unique

functional of electron density (72). To the proof, we will consider the Ψ state as the ground-

state, characterized by a Hamiltonian Ĥ. This Hamiltonian in question is represented by

equation (2.3). In this equation, the Ąrst term represents the electron’s kinetic energy, and

the terms V̂ne and V̂ee the nuclei-electron and electron-electron potential energy. Assuming

that there is a second external potential υ′(r) that leads to Ĥ ′ and a second ground-state

namely Ψ′. Here will be considered the hypothesis that both states lead to the same

electronic density ρ(r), and all states aren’t degenerated1.

By Variational Principle 2, we have:

E = ⟨Ψ♣Ĥ♣Ψ⟩ < ⟨Ψ′♣Ĥ♣Ψ′⟩, (2.8)

E ′ = ⟨Ψ′♣Ĥ♣Ψ′⟩ < ⟨Ψ♣Ĥ♣Ψ⟩. (2.9)

E = ⟨Ψ♣T̂ + V̂ee + V̂ne♣Ψ⟩ < ⟨Ψ′♣T̂ + V̂ee + V̂ne♣Ψ′⟩, (2.10)

E ′ = ⟨Ψ′♣T̂ + V̂ee + V̂ ′
ne♣Ψ′⟩ < ⟨Ψ♣T̂ + V̂ee + V̂ ′

ne♣Ψ⟩, (2.11)

or

E = ⟨Ψ♣Ĥ♣Ψ⟩ < ⟨Ψ′♣Ĥ♣Ψ′⟩ = ⟨Ψ′♣Ĥ♣Ψ′⟩ < ⟨Ψ♣V̂ne − V̂ ′
ne♣Ψ⟩. (2.12)

Knowing that:

ρ(r) = ⟨Ψ♣
N
∑

i=1

δ(r − ri)♣Ψ⟩, (2.13)

V̂ne =
N
∑

i=1

υ(ri), (2.14)

we have

⟨Ψ♣V̂ne♣Ψ⟩ =
N
∑

i=1

∫

d3r1...
∫

d3rNΨ∗(r1, ..., rN)υ(ri)Ψ(r1rN), (2.15)

or

⟨Ψ♣V̂ne♣Ψ⟩ =
N
∑

i=1

∫

d3r

∫

d3r1 ... d
3riυ(r)δ(r − ri)

∫

d3ri+1...
∫

d3rnΨΨ∗, (2.16)

1 This proof can be extended for degenerated systems too.
2 Appendix C.
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⟨Ψ♣V̂ne♣Ψ⟩ =
∫

ρ(r)υ(r)d3r. (2.17)

Using equation (2.17) result in equation (2.12), we will obtain the following result:

E < E ′ +
∫

[υ(r) − υ′(r)]ρ(r)d3r. (2.18)

Doing the same operation for E ′ = ⟨Ψ′♣Ĥ♣Ψ′⟩,

E ′ < E +
∫

[υ′(r) − υ(r)]ρ(r)d3r. (2.19)

So we have:

E + E ′ < E ′ + E. (2.20)

To begin the proof, we have assumed the same density ρ for υ ̸= υ′, and now, we faced

a contradiction due Ψ ̸= Ψ′. So we conclude the unicity demands consider Ψ = Ψ′. The

Ąrst theorem says that ground-state density should contain the same information as the

state in question. This makes it a unique density functional, proving it by reductio ad

absurdum.

This theorem leads to a corollary, that implies ŞSince the Hamiltonian is thus fully

determined except for a constant shift of the energy, it follows that the many-body

wavefunctions for all states (ground and excited) are determined. Therefore, all properties

of the system are completely determined given only the ground state density ρ0(r)Ť. Then,

in principle, the wavefunction of any state is determined by solving the Schrödinger

equation with this Hamiltonian. Among all solutions consistent with the given density,

the unique ground state wavefunction is the one that has the lowest energy.

The second theorem says ŞA universal functional for the energy E[ρ] in terms of the

density ρ(r) can be deĄned, valid for any external potential υ(ri). For any particular υ(ri),

the exact ground state energy of the system E0[ρ] is the global minimum value for this

functional, and the density ρ(r) that minimizes the functional is the exact ground state

density ρ0(r).Ť, or:

E[ρ] = ⟨Ψ♣Ĥ♣Ψ⟩. (2.21)

Here we will treat ρ(r) as the density of some determined state Ψ, unnecessarily coming

from Ĥ, that in this case is ρ0. This takes us to two scenarios:

• ρ ̸= ρ0 → Ψ ̸= Ψ0 =⇒ E > E0;

• ρ = ρ0 → Ψ = Ψ0 =⇒ E = E0.
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The second theorem conĄrms that E[ρ] is a ρ(r) functional, and its value is the

minimum obtained through ground-state density. Rewriting (2.21) and combining with

(2.3), we have now:

E[ρ] = ⟨Ψ♣T̂ + V̂ee♣Ψ⟩ + ⟨Ψ♣V̂ne♣Ψ⟩. (2.22)

The term ⟨Ψ♣T̂ + V̂ee♣Ψ⟩ is a well-known universal functional, valid for any coulombian

system, that can be written as F [ρ]. The term ⟨Ψ♣V̂ne♣Ψ⟩ depends on each system. So we

have:

E[ρ] = F [ρ] + ⟨Ψ♣V̂ne♣Ψ⟩. (2.23)

Similarly to ground-state:

E[ρ0] = F [ρ0] + ⟨Ψ0♣V̂ne♣Ψ0⟩, (2.24)

where Ψ0 is the ground-state wavefunction. As ρ0 determines Ψ0, and ρ determines Ψ, and

assuming that either ρ0 or another ρ are determined for some external potential, we can

apply the variational principle, and then obtain:

E[Ψ0] < E[Ψ], (2.25)

F [ρ0] + ⟨Ψ0♣V̂ne♣Ψ0⟩ < F [ρ] + ⟨Ψ♣V̂ne♣Ψ⟩, (2.26)

E[ρ0] < E[ρ]. (2.27)

So we prove the second theorem. This theorem leads to another corollary, The functional

E[ρ] alone is sufficient to determine the exact ground state energy and density. In general,

the excited states of the electrons must be determined by other means.

2.1.4 Kohn-Sham Equations

Both theorems proposed by Hohemberg and Kohn couldn’t establish a way to Ąnd

some functional related to ground-state energy. In 1965, Kohn and Sham formulated a

new procedure that will give a self-consistent equations system (73). The solution will

return the density that minimizes the ground state energy functional, and this is one of the

reasons that DFT is one of the most popular methods for electronic structure calculations

- due to this approximation. The idea of replacing the initial many-body problem with an

auxiliary problem of independent particles was an accurate shot that leads to the exact

result of properties of a many-body system, even when using a single particle system - an

ansatz (69).

The ansatz has two main ideas: the exact many-body ground-state energy system can

be represented by an auxiliary single-particle ground-state density, and the single-particle’s

Hamiltonian is chosen having a kinetic energy operator and an effective potential VKS.
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These ideas will lead to an approximation that makes a 3N variables problem to other

single-particle problem but with N equations.

Using the energy eigenvalue given by equation (2.3), it is possible to write the electron’s

kinetic energy as

T = T [ρ] = Ts[ρ] + TC [ρ], (2.28)

where Ts[ρ] is the kinetic energy of non-interacting electrons, TC [ρ] is the amount of kinetic

energy due electronic correlation. Proceeding, we have:

Vee = Vee[ρ] = VeeH
[ρ] + VeeX

[ρ] + VeeC
[ρ], (2.29)

where VeeH
is the electron-electron interaction potential energy, also known as Hartree

energy, that can be described by the following equation:

VeeH
=
e2

2

∫

d3r

∫

d3r′ρ(r)ρ(r′)

♣r − r′♣ . (2.30)

The exchange term VeeX
[ρ] is represented by:

VeeX
[ρ] = −e2

2

∑

jk

∫

d3r

∫

d3r′ϕ
∗
j(r)ϕ∗

k(r′)ϕj(r
′)ϕk(r)

♣r − r′♣ , (2.31)

ϕ(r) represents the particle eigenvalues. In equation (2.29), still there is an unknown

correlation term, VeeC
[ρ]. With all terms, it is possible to rewrite the total energy of the

system as:

E[ρ] = Ts[ρ] + TC [ρ] + VeeH
[ρ] + VeeX

[ρ] + VeeC
[ρ] + Vne[ρ]. (2.32)

The term Vne[ρ] is equivalent to
∫

ρ(r)υ(r)d3r. The next step is to try an equation

simpliĄcation, grouping all of them in a new term, which will be called EXC [ρ], the

exchange-correlation energies, such as:

TC [ρ] + VeeX
[ρ] + VeeC

[ρ] = EXC [ρ]. (2.33)

Now, the total energy will assume the following form:

E[ρ] = Ts[ρ] + VeeH
[ρ] + Vne[ρ] + EXC [ρ]. (2.34)

This simpliĄcation allows us to group all terms we didn’t know, like (2.32), in only one

term EXC [ρ]. The kinetic energy term of a non-interacting electrons system has only one

known scheme (74) given by:

Ts[ρ] = − ℏ
2

2m

N
∑

i

∫

d3rϕ∗
i (r)∇2ϕi(r). (2.35)

All terms in which exchange and correlation effects are involved will be in EXC [ρ]. There’s

no one exact expression for this term.
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We could Ąnd the total energy and electronic ground-state density if we know the

exchange-correlation energy term (2.33). To solve this so, the Hohemberg-Kohn theorems

will help: the ground-state energy will be obtained through (2.33) minimization with

relation to electronic density, taking into consideration the orthogonality of non-interacting

system:
∫

ϕ∗
i (r)ϕj(r)d3r = δij. (2.36)

By Lagrangian multipliers, we can minimize the equation above, so that:

L = E[ρ] −
∑

i

εi

∫

ϕ∗
i (r)ϕj(r)d3r, (2.37)

where εi are the Lagrangian multipliers. Minimize L means

δL
δϕi(r)

= 0, (2.38)

and then:
δE[ρ]

δϕ∗
i (r)

=
δTs[ρ]

δϕ∗
i (r)

+



δVeeH

δρ(r)
+

δVne

δρ(r)
+
δExc

δρ(r)

]

+
ρ(r)

δϕ∗
i (r)

, (2.39)

where the electronic density of a single-particle system will be:

ρs(r) =
∑

j

δϕ∗
j(r)δϕj(r). (2.40)

At the same time, to kinetic energy term ((2.35) equation) we will have:

δρ(r)

δϕ∗
j(r)

, (2.41)

δTs[ρ]

δϕ∗
i (r)

= − ℏ
2

2m
∇2ϕi(r), (2.42)

where the index i refers to some speciĄc state of the single-particle system. to get these

expressions, we need to apply the deĄnition of a functional derivative3.

Following the term where are the Lagrangian multipliers, we have:

δ

δϕ∗
j(r)



∑

i

εi

∫

δϕ∗
j(r)δϕj(r)d3r



= εiϕr(r). (2.43)

From equation (2.37):

− ℏ
2

2m
∇2ϕi(r) +



δVeeH

δρ(r)
+

δVne

δρ(r)
+
δExc

δρ(r)

]

ϕi(r) − εiϕr(r) = 0, (2.44)



− ℏ
2

2m
∇2 + vH(r) + v(r) + vXC(r)

]

ϕi(r) = εiϕr(r), (2.45)

where vH(r) ≡ δVeeH

δρ(r)
, v(r) ≡ δVne

δρ(r)
e vXC(r) ≡ δExc

δρ(r)
. Now we can calculate the electronic

density of an interacting system in a v(r) potential described by the Schrödinger Equation
3 see Appendix B.
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and by the solution of a non-interacting system in a vS(r) = vH(r) + v(r) + vXC potential.

For the non-interacting system, we have:


− ℏ
2

2m
∇2 + vS(r)

]

ϕi(r) = εiϕi(r) (2.46)

ρ(r) ≡ ρS(r) =
occu
∑

i

♣ϕi(r)♣2. (2.47)

Equations (2.46) and (2.47) are the Kohn-Sham equations. Through them, is possible

to obtain the electronic density of the ground-state electronic density of interacting electrons

by the electron density of a system of non-interacting electrons that are submitted to an

effective potential ρs = VKS solving the equations of Kohn-Sham.

Getting ρ0, the total energy will be given by:

E[ρ0] = TS[ρ0] + VneH
[ρ0] + Vee[ρ0] + EXC [ρ0] (2.48)

with

Vee[ρ0] =
∫

d3rv(r)ρ0(r) (2.49)

=
∫

d3r[vS(r) − vH(r) − vXC(r)]ρ0(r) = VS[ρ0] −
∫

d3r[vH(r) − vXC(r)]ρ0(r). (2.50)

So, the total energy will be:

E0 =
occu
∑

i

εi − e2

2

∫

d3r

∫

d3r′ρ(r)ρ(r′)

♣r − r′♣ −
∫

d3r[vH(r) − vXC(r)]ρ0(r) + EXC [ρ0], (2.51)

where the non-interacting system energy is:

ES =
occu
∑

i

εi = TS[ρ0] + VS[ρ0]. (2.52)

Kohn-Sham equations are solved by a self-consistent Ąeld procedure, where initially

we propose an electronic density, that through it, will be possible to solve vS potential

and solve (2.46). The next step is to calculate the electronic density by (2.47). Using

convergence criteria, expanded in the next subsection (2.1.5), this will lead to a new Ąnal

density to the system, and then, getting all observables.

2.1.5 The Self-Consistent Field (SCF)

How the Kohn-Sham potential VKS depends on electronic density, and this density is

calculated by Kohn-Sham potential, the solution to this equation is known as self-consistent,

which is based on the use of an initial density ρ0, built by a sum of atomic densities, such

we have:

ρ0(r) =
∑

α

ρα(rα − Rα), (2.53)

where ρα represents the atomic density of atom α and R the position of this atom.
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2.2.1 LDA Approximation

Given the need for an approximation to the exchange-correlation term, Kohn and Sham

(73) proposed this approximation. It’s quite simple and there is a physical motivation.

Anchored in previous work from Thomas and Fermi (75), the Local Density Approximation

(LDA) considers that each region of the space of the system has an inĄnitesimal volume

that can be treated as a homogeneous electron gas. The exchange and correlation energy

is given by:

ELDA
XC [ρ] =

∫

ρ(r)εXC(ρ(r))d3r, (2.54)

where εXC(ρ) is the exchange-correlation/particle of a homogeneous electron gas with

density ρ. The exchange-correlation potential vXC(r) now will be written as:

vLDA
XC (r) =

δEXC

δρ(r)
= εXC(ρ(r)) + ρ(r)

∂εXC(ρ)

∂ρ
, (2.55)

as the equation (2.47) will be rewritten as:


− ℏ
2

2m
∇2 + v(r) +

ρ(r′)

♣r − r′♣d
3(r′) + εLDA

XC (r)

]

ϕi(r) = εiϕi(r). (2.56)

The self-consistent solution of equation (2.56) deĄnes the Kohn-Sham local density

approximation, which is commonly known as LDA. The LDA depreciates the correlation

energy, otherwise, overestimates the exchange factor. In inhomogeneous systems, i.e., ρ(r)

isn’t completely uniform, and LDA shows weak results. To balance this problem, the

functional EXC [ρ] should be expressed in terms of the total charge density gradient.

2.2.2 GGA Approximation

If the electronic density is non-uniform, we will use a trick that consists in express the

exchange-correlation functional EXC [ρ] in terms of the electronic density gradient, such

this functional carries information of electronic density inhomogeneity. This method is

better known as Generalized Gradient Approximation. The exchange-correlation term is

written as:

EGGA
XC [ρ] =

∫

fGGA(ρ(r),∇ρ(r))d3r. (2.57)

The term fGGA(ρ(r),∇(r)) is numerically calculated by parametrizations. One of the

most used parametrizations is the PBE functional, proposed by John Perdew, Kieron

Burke e Matthias Ernzerhof (76).

2.2.3 PBE Functional

A functional is deĄned by a rule or application that takes a function to a number (74).

The PBE functional is the most simple GGA (69) (77). The way this functional satisĄes

the conditions in reference (76) is:

EGGA−P BE
C [ρ(r),∇(r)] =

∫

ρ(r)[εC(rs, ζ) +H(rs, ζ, t)d
3r, (2.58)



Chapter 2. Methodology 36

where ζ = ρ↑−ρ↓

ρ(r)
is the spin polarization, rs is the local value of the density parameter and

t is the dimensionless gradient given by:

♣∇ρ(r)♣
2ϕkT Fρ(r)

. (2.59)

Here, ϕ = ((1 + ζ)2/3 + (1 + ζ)2/3)/2. The Ąnal form of H is:

H =
e2

a0

γϕ3 ln



1 +
β

γ
t2

1 + At2

1 + At2 + A2t4



, (2.60)

where the factor e2/a0 is the default unit in atomic units (a0 is the Bohr radius), β and

γ are numbers that their values is respectively≃ 0, 066725 and (1 − ln 2)/π2 ≃ 0, 031091,

and A is:

A =
β

γ



exp
−εhom

C

γβ3 e2

a0

− 1





−1

. (2.61)

2.2.4 van der Waals Density Functionals

Usually, in non-homogeneous systems, semi-local approximations are the most appropri-

ate. In some molecules and materials, local and semilocal density functionals can describe

very well the interaction effects, such as cohesion, bond lengths, and other properties.

Nonetheless, for more dispersed systems, such as molecular crystals and layered materials,

nonlocal and long-range interactions such as van der Waals forces are critical. The Ąrst

decade of the 21st century saw the development of two vdW functionals. The objective

of the vdW-DF is to provide, within the DFT, an efficient method for calculating the

non-local effects of vdW for all systems electronics. The interactions of vdW in vdW-DF

are approximated non-empirically, based on the many-body physics and general physical

laws. Here we will present a brief discussion of the vdW corrections that we used in this

work.

2.2.4.1 vdW-D2

In the DFT-D2 method, the total energy is given by:

EDF T −D = EKS−DF T + Edisp (2.62)

where EKS−DF T is the usual self-consistent KohnŰSham energy, and Edisp is an empirical

dispersion correction is given by:

Edisp = −s6

Nat−1
∑

i=1

Nat
∑

j=i+1

Cij
6

Rij
6

fdmp(Rij), (2.63)

where Nat is the number of atoms in the system, C6 denotes the dispersion coefficient for

atom pair ij,s6 is a global scaling factor that only depends on the DF used, Rij is an

interatomic distance, and fdmp is a Fermi-type damping function that must be used to

avoid near-singularities for small R (78).
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2.2.4.2 vdW-DF

The vdW-DF consists of different contributions to the exchange and correlation

functional, where

EXC [ρ] = ErevP BE
X [ρ] + EC [ρ], (2.64)

where the correlation energy EC can be split into two pieces:

ELDA
C [ρ] + Enl

C [ρ]. (2.65)

The terms ErevP BE
X [ρ] and ELDA

C [ρ] respectively represent the functional of revPBE

exchange and the LDA correlation energy. The interaction of vdW is given by the non-local

correction Enl
C [ρ] for the correlation only electronics, since for two spatially separated

systems it is possible to distinguish the electrons as belonging to one or another system. The

simplest way to write the nonlocal correlation energy is given by the adiabatic connection,

being

Enl
C [ρ] =

1

2

∫

drdr′ρ(r)ϕ(r, r′)ρ(r′), (2.66)

where ϕ(r, r′) is a function that depends on (r − r′) and the density ρ in the close to r

and r′.

The term Enl
C is treated in the full potential approximation, which is exact at long

distances between separated fragments, and then it can be written as:

Enl
C =

∫ ∞

0

du

4π
tr[ln(1 − V χ̃) − ln ϵ], (2.67)

where χ̃ is the density response to a fully self-consistent potential with long-range, V is the

interelectronic Coulomb interaction, ϵ is an appropriately approximated dielectric function,

and u is the imaginary frequency (79, 80).

2.2.4.3 vdW-DF2

For arbitrary geometries, vdW-DF reveals a good response when compared especially

with other non-empirical methods. Although, it overestimates equilibrium separations and

underestimates hydrogen-bond strength. The idea behind the vdW-DF2 is to employ a

more accurate semilocal exchange functional and the use of a large-N asymptote gradient

correction in determining the vdW kernel, such this correction improves equilibrium

separations, hydrogen-bonds strength and vdW attractions at intermediate separations

longer than the equilibrium ones.

The Ąrst change is to replace the exchange term coming from Perdew-Burke-Ernzerhof

(revPBE) with PW86 because revPBE is generally too repulsive near the equilibrium

separation, and can bind spuriously by exchange alone, although less so than most other

local or semilocal functionals. For the Enl
C term, now we have the inclusion of a long-range

piece of the correlation energy Enl
C [ρ], a fully nonlocal functional of the density [ρ] (81).



Chapter 2. Methodology 38

The nonlocal piece of the correlation energy in vdW-DF2 is of the form:

Enl
C [ρ] =

∫

d3r
∫

d3r′ρ(r)ϕ(r, r′)ρ(r′). (2.68)

2.2.4.4 optB86b-vdW

Original vdW-DF similarly overestimates lattice constants to how it overestimates

binding distances for gas-phase dimers. However, some of the modiĄed vdW functionals

lead to average errors which are similar to those of PBE or better.

Factors such as the equilibrium separation overestimated and hydrogen-bond underesti-

mated in vdW-DF led this method to several modiĄcations focused on both the exchange

and correlation parts. This functional gives a special look to solid-state properties of

materials and gives an accuracy similar to other functional (optB88-vdW) which is good

for weakly bonded gas phase dimers and has improved asymptotic behaviour. From de-

tailed studies of the exchange functionals and binding curves, it became apparent that the

behaviour of the exchange enhancement factor (Fx) for small reduced density gradients (s)

affects the position of the repulsive Pauli wall (82).

The form of the optB86b functional is given by:

F optB86b
x = 1 +

µs2

(1 + µs2)4/5
, µ = 0.1234 (2.69)

2.2.5 Pseudopotentials

Despite numerous facilities for performing the calculations, DFT faces a slight compli-

cation: the high computational cost for calculations in systems with a large number of

atoms, especially for atoms with many electrons. As there are also numerous systems with

many atoms, there was a need to develop a method to circumvent this problem. Then,

there was the development of pseudopotentials. Pseudopotentials take into account that

only valence electrons participate in bonds, thus reducing the number of electrons that

will participate in the calculation.

The electrons are classiĄed in the pseudopotentials as core electrons, inert, composed

of the electrons of the inner layers and the nucleus, and valence electrons, being those who

participate mainly in the properties of solids and molecules, and the DFT calculations,

as previously mentioned. Like electrons, pseudopotentials are also classiĄed according to

their obtainment. The Ąrst group of pseudopotentials are the empirical potentials, which

were obtained through experimental parameters, and the second group of pseudopotentials

is composed of those that were obtained by ab-initio calculations by the solution of the

self-consistent equation of the Schrödinger equation.

Covering the discussion for Ąrst principles pseudopotentials, we can include a few

subcategories, such as the conserved norm pseudopotentials (83), the soft pseudopotentials

(84) and the ultra-soft pseudopotentials (85). We can also include a subcategory known
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as Projector Augmented-Wave (PAW) (86, 87). We do not exactly consider the PAW

method as a pseudopotential, as it retains the information of the correct behaviour of the

wavefunction ψ(r) that describes the core electrons and generates the pseudopotentials.

The projector augmented wave method is a general approximation that introduces a linear

transformation between the pseudo wave functions and the real wave functions, where this

is the KS wavefunction without approximations. Its origin comes from the ideas of Slater

(88), where space is divided into two regions with different behaviours.

2.2.6 The PAW Method

We will then consider a region of the boundary, in which the wavefunction ψ(r) presents

a smooth behaviour and another region closer to the nucleus of atoms, where the function

ψ(r) presents a disturbing behaviour due to the strong attractive nuclear potential. What

the PAW method does in practice is transform the function ψ(r) into a smooth function

close to the regions where it is disturbed, introducing an auxiliary wave function ψ̃(r) in

that region, to get the wave function ψ(r) through it. We need to correctly describe the

wave function that will help us so that we can get the functions compatible with reality.

We will use the T operator, so that:

♣ψi(r)⟩ = T ♣ψ̃i(r)⟩, (2.70)

where ψi is the real wavefunction and ψ̃i is the smooth wavefunction. The operator T will

be given by:

T = 1 +
∑

R

ŜR, (2.71)

where SR is a locality term applied to the atomic enclosure region of radius R. The operator

T is composed of a part perfectly described by plane waves, in addition to a local term.

We now need to determine the form of the SR operator to continue the problem. We know

that T when applied to smooth functions that seek to describe orbitals of the core ♣Φi⟩,
returns the orbitals of the core ♣Φ̃i⟩, where i represents the set of quantum numbers. So:

♣Φi⟩ = T ♣Ψ̃i⟩, (2.72)

♣Φi⟩ = (1 + SR)♣Ψ̃i⟩, (2.73)

SR♣Ψ̃i⟩ = ♣Φi⟩ − ♣Ψ̃i⟩. (2.74)

Since the transformation T must be linear, the coefficients must be linear functions

of the wave function ♣Φ̃i⟩ and another Ąxed function called the projector operator (⟨P̃i♣),
which is null in the region outside the core, where:

⟨P̃i♣ψ̃j⟩ = δij. (2.75)
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The equation (2.74) can be rewritten as:

SR♣Ψ̃i⟩ =
∑

j

(♣Φj⟩ − ♣Φ̃j⟩)⟨P̃i♣Φ̃j⟩, (2.76)

and applying in the total wavefunction, we’ll have:

♣ψi⟩ = ♣ψ̃i⟩ +
∑

j

(♣Φj⟩ − ♣Φ̃j⟩)⟨P̃i♣ψ̃j⟩. (2.77)

The projector operator is responsible for correctly writing the local character of the wave

function. Having the projectors, we can Ąnd a way to describe the operators, so that

they can correctly represent the eigenvalues acting on smooth plane waves instead of the

core potentials. We have to calculate the expected value of an operator Ô, analogously

to the change between the Schrödinger and Heisenberg representations, by the linear

transformation T :

⟨ψi♣Ô♣ψi⟩ = ⟨Ψ̃i♣T †Ô T ♣Ψ̃i⟩. (2.78)

To facilitate the calculations, we use some approximations for the regime close to the

core potential. We will consider that:

∑

♣Φ̃j⟩⟨P̃j♣ = 1, (2.79)

and then:

T = 1 +
∑

j

(♣Φj⟩ − ♣Φ̃j⟩)⟨P̃i♣, (2.80)

T = 1 +
∑

j

♣Φj⟩⟨P̃j♣ −
∑

j

♣Φ̃j⟩⟨P̃j♣, (2.81)

T = 1 +
∑

j

♣Φj⟩⟨P̃j♣ − 1, (2.82)

T =
∑

j

♣Φj⟩⟨P̃j♣. (2.83)

The core orbitals must equal the smooth function outside the argument region, causing

♣Φj⟩ = ♣Φ̃j⟩, and so T = 1. Therefore, these conditions lead us to a conĄguration for the

average value of a given operator, which will be given by:

⟨ψ̃i♣Ô♣ψ̃i⟩ = ⟨ψ̃i♣T †Ô T ♣ψ̃i♣⟩ = ⟨ψ̃i♣Ô♣ψ̃i♣⟩ +
∑

j,k

⟨ψ̃i♣P̃k⟩(⟨Φk♣ÔΦj⟩ − ⟨Φ̃k♣Ô♣Φ̃j)⟨P̂j♣ψ̃i⟩,

(2.84)

such:
˜̂
O = Ô +

∑

j,k

♣P̃k⟩(⟨Φk♣ÔΦj⟩ − ⟨Φ̃k♣Ô♣Φ̃j)⟨P̂j♣. (2.85)

We can include one more term due to the presence of the core region (ψc), causing the

expected value of the operator to be given by:

⟨ψ̃i♣T †Ô T ♣ψ̃i♣⟩ = ⟨ψ̃i♣Ô♣ψ̃i♣⟩+
∑

j,k

⟨ψ̃i♣P̃k⟩(⟨Φk♣ÔΦj⟩−⟨Φ̃k♣Ô♣Φ̃j)⟨P̂j♣ψ̃i⟩+⟨ψc♣Ô♣ψc⟩. (2.86)
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2.2.7 Basis - Periodic Systems, Plane Waves and Cutoff Energy

The crystalline state is characterized by a spatial repetition of a basic structure that

may contain one or more atoms bonded together (89, 90). This repetition can occur in

any direction, allowing the inĄnite system to be reproduced in the desired direction(s).

We call this ŞunitŤ of repetition as unit cell (91). The main advantage of using the unit

cell in calculations is that we can consider the external potential as:

V (r) = V (r + R), (2.87)

where R is a lattice translation vector.

According to Bloch’s theorem, the wave function of an electron in a periodic potential

deĄned by (2.87) can be written as the product of a function of the same periodicity as

the potential (92), as:

ψk(r) = eik.ruk. (2.88)

By the theorem (2.88), we naturally introduce the idea of plane waves. The KS orbitals

ψr must be written as an expansion of a set of PW, so that they form a complete basis

and reproduce the periodicity of the lattice, according to the equation (2.88), where the

term uk is responsible for describing the periodicity of the lattice, and k represents the

wave number. Then, the expansion of uk,j in plane waves takes the following form:

uk,j(r) =
∑

G

Ck,j(G)eik.ruG,r, (2.89)

where Ck,j(G) are the Fourier coefficients and the index j indicates the different eigenstates,

and so:

ψk(r) =
∑

G

Ck,j(G)ei(G+k).r. (2.90)

The vectors of the reciprocal lattice are represented by G, and now the sum of the KS

orbitals is done in the moments’ space.

Bloch’s theorem implies that the wave function can be expanded on a plane wave

basis, as mentioned earlier. So the G allowed vectors lead to a reciprocal lattice with

inĄnite vectors that represent the wave function with inĄnite accuracy, which would lead

to extremely long and unpracticable calculations. So we need to impose cutoff energy to

constrain the sum. In practice, Fourier coefficients decrease as the term ♣k + G♣ increases,

which allows the expansion to be truncated to a Ąnite number of terms. That is, the

maximum value of the kinetic energy for an electron in the system will be the cutoff energy

which is given by:

Ecut >
ℏ

2

2m
♣G + k♣2. (2.91)

For historical reasons, it is common to express the cutoff energy, not in atomic units (a.u.),

but in Rydberg (Ry), where 1 Ry = 13.6 eV = 0.5 a.u. = 0.5 Hartree.
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When expanding the KS equations into plane waves, we Ąnd a term for kinetic energy

and a second term for potential energy, which leads us to Ąnd the energy eigenvalues. We

provide the cutoff energy in the calculation to obtain the expansion coefficients of the KS

orbitals, and thus the electron density ρ(r).



Part I

Boron Based 2D Materials
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3 Borophene: Pristine Phases and Superlat-

tices

3.1 Electronic and Structural Properties in Pristine Borophene

In part I, our analysis is over borophene structures in two different cases: in the Ąrst

moment, only pristine sheets, viz. S0, S1 e S2, where we investigate the electronic and

structural properties combining DFT1 and XANES2. Afterwards, we looked for borophene

heterostructures combining pristine phases with different periodicities (44, 45), where we

studied electronic properties, the rising of electronic stripes and transport properties in

this borophene superlattices (BSLs). These BSLs were designed through lateral attaching

of borophene pristine phases, changing the density of hollow hexagons, η, consequently

modifying electronic and structural structures. Due to the higher stability of pristine S1

and S2 over S0, S1/S2 BSLs showed higher stability compared to those that contain S0 in

their composition (29). In S1/S2, we Ąnd a highly anisotropic electronic structure that

leads the lattices presents an electronic conĄnement ruled by pristine phase concentration

(45).

Now looking for the adsorption of organic molecules over borophene sheets, our goal is

to investigate the formation of self-organized molecular arrays, like of organic molecules

such as tetracyanoquinodimethane (TCNQ) and tetraĆuoro-tetracyanoquinodimethane

(F4-TCNQ). Guided by the structure of the substrate, in this case, both pristine phases

and borophene heterostructures will allow the formation of different molecular channels.

If a stable molecular self-array is found, it will be possible to investigate the electronic

properties as a function of an external Ąeld.

3.1.1 Electronic Properties

The Fig. [9(a1, b1 and c1)] presents our calculated electronic bands and structural

models (a2, b2 and c2) of pristine borophene in S0 [Figs. 9(a1) and (a2)], S1 [Figs. 9(b1)

and (b2)], and S2 [Figs. 9(c1) and (c2)] phases. In the S0 phase, the boron atoms are

six-fold coordinated and present a buckled geometry. This buckling leads to two sublayers

with a vertical distance (in our case, z direction) of 0.87 Å, in good agreement with the

literature. As we brieĆy mentioned in section 1.1, the electronic band structure of S0

is highly anisotropic. This means that the band structure presents different features for

different wave vectors, i.e., in the ŷ direction (ΓY and SX K-paths), the S0 borophene

looks like an insulator meanwhile in the x̂ direction presents a metalic character - the
1 See Chapter 2
2 See Appendix D
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of S1 and S2, compared with S0 is in agreement with the previous Ąrst-principles results

(27, 6, 7).

The metallic character of borophene in the S1 and S2 phases has been kept, as shown

in band structures in Figs. [9(b1) and (c1)], indicated by the semi-Ąlled bands that cross

the Fermi level. However, compared with the S0, the electronic anisotropy (where metallic

bands only exist in YS and XΓ K-paths), is somewhat dimmed, as in all K-paths have

semi-Ąlled energy bands. We Ąnd that the metallic bands of S1 are mostly composed of

the B-2pz and B-2px orbitals localized on the four-fold and Ąve-fold coordinated B atoms.

In S2 the formation of the metallic bands along the Γ-Y and S-X directions is dictated by

a combination of σ- (B-2py) and π-orbitals (B-2pz).

3.1.2 Structural Properties

To get some insight into the structural and electronic features of the borophene sheets,

we simulate the boron K-edge XANES. We investigated the main features associated with

the B-1s → π∗ transitions by considering the polarization vector perpendicular to the

borophene sheet (ε̂⊥). Structurally, there is a considerable difference between the three

phases described. Boron atoms in S0, S1 and S2 are characterized by different geometries

and coordination. In S0 we have only six-fold coordinated boron atoms. In S1, we have

three types of coordination: (i) four-fold, (ii) Ąve-fold and (iii) six-fold coordination; and

in S2 only two types of coordination: (i) four-fold and (iii) Ąve-fold coordination. The

Ąrst one presents a buckled geometry, giving rise to boron lines along the x-direction

[Fig. 9(a2)], while S1 and S2, due to the presence of vacancies, show a planar geometry,

where the six-fold boron atoms are separated by boron vacancy lines, in S1 (Fig. [9(b2)])

and S2 these vacancies are formed by dimer stripes, also separated by boron vacancies.

Those structural differences can be identiĄed at the near-edge absorption interval, as

shown in Fig. [10(a1) and (a2)], where the comparison heads only with S0 and S1, then,

between the six-fold coordinated B; namely, the B-1s, → π∗ absorption peak in S0 presents

a larger energy dispersion (wider ∆ in Fig. [10(a1)]) in comparison with its counterpart

in S1 (Fig. [10(a2)]). This indicates that the presence of vacancy lines and the

planar geometry of S1 results in more localized π∗ states compared to the

buckled S0 phase. At the atomic scale, we have a nice manifestation of the role played

by the local geometry on the absorption spectra. In S0 the BŰB bond length (d) between

B atoms lying on the same layer (d = 1.61 Å) is shorter than the ones of the six-fold

coordinated boron atoms in S1 (d = 1.71 Å), and thus increasing the π∗ hybridizations in

S0 in comparison with S1.

Now showing S1 and S2, both are planar structures, with vacancies, and Ąve-fold and

four-fold coordinated boron atoms. S1 is characterized by hexagonal boron structures

separated by vacancy lines, while in S2 we have zigzag rows of boron-dimers (d = 1.67 Å)

separated by vacancy lines. As presented in Figs. [9(b2) and (c2)], the electronic density
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Table 1 Ű Cohesive energies (Ec) of the BSLs (eV/atom) with different m/n periodicities,
namely S0m/S1n, S0m/S2n, and S1m/S2n.

S0m/S1n

m/n 1/7 2/6 3/5 4/4
Ec -6.26 -6.25 -6.25 -6.23

S0m/S2n

m/n 2/4 2/2 4/1 8/1
Ec -6.27 -6.27 -6.23 -6.23

S1m/S2m

m/n 4/1 2/1 2/2 1/4
Ec -6.26 -6.27 -6.27 -6.27
m/n 6/1 1/1 1/2 1/6
Ec -6.26 -6.27 -6.27 -6.27

The equilibrium conĄguration of all BSLs was calculated taking into account the fully

relaxed atomic positions and lattice vectors3.

We will start our investigation looking for S0m/S1n and S0m/S2n BSLs, but taking

a closer look at S01/S17 and S02/S24. After the relaxation, the bond lengths change

drastically. For such a lower proportion of S0 in these BSL mentioned, the vertical buckling

in S0 has been suppressed. In S01/S17 the BŰB bond length between the B atoms lying on

the same sublayer (taking pristine S0 as reference) increases from 1.61 Å to 1.83 Å at the

inner sites of the S0 region, meanwhile for different sublayers, it reduces from 1.87 Å to

1.73 Å. Similarly in S01/S24 (Fig. [11(b1)]), where the vertical buckling at the inner sites

of S0 reduces to 0.03 Å, with the bond length between the B atoms lying on the same

sublayers reducting of 1.72 Å and 1.70 Å for different sublayers. The energetic stability of

those BSLs was inferred by the calculation of the cohesive energies (Ec), where we found

Ec of -6.26 eV/atom. Our results of Ec, summarized in Table 1, show that the cohesive

energies of the other BSLs are practically the same when compared with the ones of the

pristine phases, thus, supporting the energetic stability of those boron superlattices.

Examining the electronic properties of the aforementioned BSLs, we infer that in

S01/S17 the electronic states near the Fermi level (in an energy range of EF ± 0.1 eV)

are mainly localized on S1, giving rise to Şelectronic stripesŤ composed by graphene-like

π-hybridizations along the four-fold and Ąve-fold coordinated boron atoms, of the inner

sites of S17, separated by S01 rows. The [Fig. 11(a1)] helps to clarify this inference - in

the S1 region is possible to see the charge density overlap along the four- and Ąve-fold

coordinated from the inner sites of S1 fading into outer sites/S0 region. The localization of

the electronic states can be also identiĄed through the projection of the energy bands on S0

and S1, Fig. [11(a2) and (a3)], respectively; where it is noticeable that most of the metallic

bands lying on S1. Such localization of the electronic states near the Fermi level and the

electronic separation of the metallic bands have been also observed in S02/S24, Figs. [11(b)].
3 A detailed description of computational details are presented in section F.1.
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Here, the electronic states are predominantly localized along the S2 region. However, as

shown in Fig. [11(b3)], in addition to the π-orbitals, we Ąnd that the σ-hybridizations also

contribute to the formation of the metallic bands. The localization of the electronic states

in the other S0m/S1n and S0m/S2n combinations, are presented in Figs. [13 and 14].

Figure 12 Ű Structural models (top-view and side-view) and the electronic density of
states within EF ± 0.1 eV, of S14/S21 (a1), S12/S21 (b1), S12/S22 (c1), and
S11/S24 (d1) BSLs. Electronic structure and the projection of the energy
bands on S14 (a2) and S21 (a3); S12 (b2) and S21 (b3); S12 (c2) and S22 (c3);
S11 (c2) and S24 (c3). Isosurfaces of 3 me/Å3 in (a) and (d); and 1.5 me/Å3 in
(b) and (c).

A large number of possible structural combinations to build up heterostructures, based

on borophene, is an interesting degree of freedom to control/design the electronic properties

in 2D systems. Here we will examine the S1m/S2n BSLs, with m/n of 4/1, 2/1, 2/2, and

1/4, depicted in Fig. 12.

At the equilibrium geometry, (i) the planar structure has been preserved, and (ii) the

S1/S2 zigzag interface boron atoms are neatly arranged, where the BŰB bond lengths and

angles are practically the same compared with the ones the pristine structures. At the

equilibrium geometry, the bond lengths and angles at the interface region change by less

than 0.8% and 1.5%, respectively, compared with the ones of the pristine S1 and S2 phases.

So, this indicates that S1/S2 interfaces present lower strain than S0/S1 and S0/S2.

In S14/S21, the electronic states within EF ± 0.1 eV are mostly conĄned in S1 ruled

by S2, Fig. [12(a1)]. There is a charge density overlap along S1, giving rise to metallic

bands for wave vectors parallel to the ΓY and SX directions, Fig. 12(a2) and (a3). Those
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metallic bands are predominantly composed of B-2pz orbitals lying on the four-fold and

Ąve-fold coordinated boron atoms of S1. Meanwhile, the projection of the energy bands

on S2 reveals contributions from B-2pz and -2py orbitals to the formation of the metallic

bands. On the other hand, the electronic states with wave vector perpendicular to the

S1/S2 interface, namely ΓX and YS directions, are characterized by dispersionless energy

bands localized mainly on S1. Localization of the electronic states on the other S1m/S2n

BSLs, m/n = 6/1, 1/1, 1/2, and 1/6 are presented in Fig 15, where is possible conĄrm the

formation of tuneable electronic stripes in S1/S2 BSLs.

Reducing the width of S1, S14/S21 → S12/S21, the distribution of the electronic density

of states near the Fermi level, on S1 and S2, becomes almost equivalent. However, they

present different features (Fig. [12(b1)]). The metallic bands are characterized by π-

hybridization through S1, while in S2 we have both, i.e. π- and σ-hybridizations (B-2py),

with a major contribution from the latter along the zigzag B-dimers lines. Keeping the

width of S1, and increasing S2, S12/S21 → S12/S22, we Ąnd that the electronic states near

the Fermi level become more localized on S2, mostly on the four-fold coordinated boron

atoms, as shown in Fig. [12(c1)]. Indeed, the π-and σ-hybridizations along the S2 rows

have been strengthened, giving rise to metallic bands along the ΓY and SX directions,

concomitantly there is a reduction of the electronic contribution from S1. Finally, upon

further reduction of S1 and increase of S2, S12/S22 → S11/S24 (Fig. [12(d)]), there is a

noticeable change on the electronic distribution along S2, where the wave function overlap

between the B-2py orbitals becomes more intense, strengthening the σ-hybridizations and

the orbital localization along S2, characterized by zigzag rows of B-dimers. A notable fact

is that the B-dimer bond length in S24 (d = 1.67 Å) is the same compared with that of S2

pristine.

In Figs. [13(a1)-(c1)] we present the localization of the electronic states near the Fermi

level, EF ± 0.1 eV, of S0m/S1m for m/n = 2/6, 3/5, and 4/4. There is an increase in the

vertical buckling along the BSL proportional to the area of the S0 region. However, the

localization of the metallic bands along the S1 region (mostly due to the B-2pz orbitals) has

been kept [Figs. 13(a2)-(b2) and 13(a3)-(b3)], although somewhat dimmed by increasing

the proportion of S0. Similarly, features have been found in S02/S22, where the surface

area of S22 is larger in comparison with that of S02. On the other hand, the localization

of the electronic states on S0 increases by increasing its area, (see Fig. 14). In Fig. 15 we

present the electronic band structure, and the projection of the electronic states near

the Fermi level for the S1m/S2m BSLs, with m/n = 6/1, 1/1, 1/2, and 1/6, where it is

noticeable the change on the localization of the electronic states near the Fermi level,

namely from S1 in S16/S21 (Fig. [15(a)]) to S2 in S11/S26 (Fig. [15(d)]).
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3.3 Conclusions

• We conĄrmed the metallic character of the pristine systems, through simulations of

X-ray Absorption Near-Edge Structure (XANES) we unveil the connection between

the electronic properties and the atomic arrangement of borophene S0, S1, and S2

phases;

• We report that each structural phase presents a particular K-edge X-ray absorption

spectrum, and thus, well-deĄned XAS Ąngerprints;

• Electronic structure calculations reveal conĄnement effects, which lead to metal-

lic electronic stripes embedded in BSLs and a strong directional dependence in

transmission probability, giving rise to transport channels tuned by m/n proportion.
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Figure 13 Ű Structural models (top-view and side-view) and the projected electronic
density of states near the Fermi level, EF ± 0.1 eV, of S02/S16 (a1), S03/S15

(b1), and S04/S14 (c1) BSLs. Electronic band structure projected on the S0
[S1] regions (a2), (b2), and (c2) [(a3), (b3), and (c3)]. Isosurfaces of 3 me/Å3

in (a); and 5 me/Å3 in (b) and (c).
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Figure 14 Ű Structural models (top-view and side-view) and the projected electronic
density of states near the Fermi level, EF ± 0.1 eV, of S02/S22 (a1), S04/S21

(b1), and S08/S21 (c1) BSLs. Electronic band structure projected on the S0
[S2] regions (a2), (b2), and (c2) [(a3), (b3), and (c3)]. Isosurfaces of 3 me/Å3

in (a) and (b); and 0.3 me/Å3 in (c).
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Figure 15 Ű Structural models (top-view and side-view) and the projected electronic
density of states near the Fermi level, EF ± 0.1 eV, of S1m/S2n for m/n = 6/1
(a1), 1/1 (b1), 1/2 (c1), and 1/6 (d1). Electronic band structure projected
on the S1 [S2] regions (a2), (b2), (c2), and (d2) [(a3), (b3), (c3), and (d3)].
Isosurfaces of 1.5 me/Å3 in (a) and (b); and 3 me/Å3 in (c) and (d).
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5 Pristine and Oxidized Cellulose

In this chapter, we investigate cellulose disassembly after the TEMPO-oxidation process

and how carboxylate groups inĆuence the intersheet (IS) and interchain (IC) interactions

along the inner sites of cellulose nanoĄbers (CNF). First, we present the total energy of

the IS and IC interactions along the (i) pristine, detailed in subsection 5.2 and (ii) oxidized

cellulose nanoĄbers (subsection 5.3). In (i), the main goal is to compare the IS and IC

binding energies by using different approaches to describe the long-range van der Waals

(vdW) interactions, herein vdW-DF (100, 101, 102, 103), vdW-DF2 (78) and optB86b,

and in (ii) we once again investigate IS and IC interactions, but this time, focused on

its strength as a function of the degree of oxidation of the carboxylate groups. Through

TEMPO-mediated oxidation, was experimentally observed that the formation of nanoĄbers

occurs with widths corresponding to the ones of single and double cellulose polymer chains.

5.1 Experimental Overview of the Cellulose NanoĄbers

The reports in this section are here to explain how was obtained the CNFs. Experimental

results were obtained and explained in the Brazilian Nanotechnology National Laboratory

of the Brazilian Center for Research in Energy and Materials (LNNano/CNPEM) by Dr

Juliana S. Bernardes’ group.

The oxidized CNFs were isolated from sugarcane bagasse pulp through TEMPO-

mediated oxidation using high oxidant content, 25 and 50 mmol/g. This reaction converts

C6 primary hydroxyls groups from cellulose to carboxylates (COO−) Na+, yielding gravi-

metrically normalized values of 1.10 and 1.40 mmol of COO− per gram of cellulose,

respectively, which correspond to ca 25% of oxidation. Electrostatic repulsion between

highly charged cellulose microĄbrils SC-25 and SC-50ζ-potentials ca −65 mV in water)

together with osmotic effects promoted the disassembling of completely individualized

CNF dispersed in water without the need for high-energy mechanical treatments. On the

other hand, cellulose Ąbres with low carboxylate content (SC-5, 0.4 mmol per gram of

cellulose) presented aggregated Ąbril bundles, as already observed for different types of

biomass. The SC-25 and SC-50 nanoĄbers present average lengths in the range of 243-370

nm and an average width of 4 nm, which may correspond to elementary Ąbrils diameter,

according to Ding and Himmel’s model for maize biomass (104). The full details of this

experimental section1 is available in (105).
1 All experimental investigation that support the theoretical results here presented (and vice versa)

was performed in Brazilian Nanotechnology National Laboratory of Brazilian Center for Research in
Energy and Materials (LNNANO/CNPEM), Campinas, São Paulo, by Dr J. S. Bernardes’ group. Once
again, we register our thanks.
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Figure 18 Ű Structural model of monoclinic cellulose Iβ. Solid lines indicate a perspective
view of the periodic unit cell.

5.2 Pristine Cellulose NanoĄbers

The experimental results in (105) suggest that the formation of cellulose polymer chains

is a consequence of the weakening of intersheet and interchain interactions within the

elementary oxidized Ąbrils. To provide support to these results, DFT simulations are capable

to unveil the noncovalent IS and IC interactions. The Ąrst step is to analyze hydrogen

bonds and vdW forces and their behaviour in intersheet and interchain interactions

In Fig. 18 we present the structural model of the monoclinic Iβ phase, where the

periodic structure can be described by two misaligned molecular chains per unit cell. These

sheets are composed of linear chains (a direction), where the lateral interchain interaction

(b direction) is mostly ruled by OŰH· · · O hydrogen bonds (HBs), and them stacking (vdW

interactions - direction c ) is the responsible of the structural stability of this crystal. The

strength of the intersheet (IS) and interchain (IC) interactions were quantiĄed by the

calculation of the IS and IC binding energies (Eb
IS and Eb

IC, respectively), given by:

Eb
IS = Ebulk − Esheet, (5.1)

Eb
IC = Esheet − Echain. (5.2)

Ebulk, Esheet, and Echain corresponds to the total energies of crystalline cellulose nanoĄbers,

free-standing cellulosic sheet, and free-standing single molecular chain. The binding energy
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Table 3 Ű Interchain (IC) and Intersheet (IS) binding energies for different vdW.

vdW Eb
IS Eb

IC Eb
CNF Eb

IS/E
b
IC

DF −1.351 −0.676 −2.027 2.0
D2 −1.080 −0.833 −1.913 1.3

no vdW −0.127 −0.569 −0.697 0.2

Table 4 Ű Equilibrium geometry of Iβ cellulose.

vdW DF D2 Exp. (46)
a (Å) 7.872 7.413 7.784
b (Å) 8.391 8.159 8.201
c (Å) 10.576 10.416 10.380
α (◦) 90.0 89.8 Ű
β (◦) 89.8 89.9 Ű
γ (◦) 93.5 95.5 96.5

of the cellulose nanoĄbers (Eb
CNF) can be written as the sum of interchain and intersheet

binding energies:

Eb
CNF = Eb

IC + Eb
IS. (5.3)

By using the vdW-DF approach, we have Eb
CNF = −2.027 eV/unit-chain, where a unit-chain

corresponds to two glucose rings. In order to investigate the role of energy cutoff, we in-

creased it to 60 Ry, and we obtained Eb
IS = −1.321 eV/unit-chain and Eb

IC = −0.665 eV/unit-

chain, resulting in binding energy of −1.986 eV/unit-chain. As the energy differences are

from a small order, our calculations were with 48 Ry. The total energy results are sum-

marized in Table 3, where we have also considered the semi-empirical vdW-D2 approach,

to describe the long-range dispersive interactions. In Table 4, we present some important

information about the equilibrium geometry of the Iβ crystalline cellulose. The results

were in good agreement with the experimental measurements (46).

Despite several results in the literature, there is no consensus on which interaction

would be more inĆuential, i.e., with greater intensity in binding energy. Comparing our

results, we Ąnd different results obtained through different calculation approaches. In the

literature, Qian et al. (106) found IC interaction stronger than the IS interaction; while

Parthasarathi et al. (107) obtained nearly the same contribution for both interactions.

Meanwhile, even upon the inclusion of vdW correction (78), Li et al. (108) obtained 0.8 and

1.1 eV/unit-chain, for IS and IC interactions, respectively. In contrast, based on molecular

dynamic (MD) simulations, Gross and Chu (109, 110) pointed out that the IS iteration is

larger than the IC interaction. In our calculations, the total energy results are in agreement

with these latter results. We found that the IS interaction is stronger than the IC one by

almost twice, Eb
IS/E

b
IC ≈ 2, using vdW-DF. By using the vdW-D2 approach, the strength

of the IS interaction reduces, meanwhile in IC it increases, keeping Eb
IS larger than Eb

IC

with a rate Eb
IS/E

b
IC in ≈ 1.3. To check the accuracy of our results, we have calculated the
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binding energies using other nonlocal self-consistent vdW approaches. Technically they

are the same approaches, but implemented in a different code - VASP in this case (see

App. F). These results are summarized in Table 5.

Table 5 Ű Intersheet (IS), interchain (IC), and CNF binding energies using the vdW-DF,
vdW-DF2, and vdW-optB86b approaches implemented in the VASP code. The
binding energies are in eV/unit chain.

vdW Eb
IS Eb

IC Eb
CNF Eb

IS/E
b
IC

DF −1.288 −0.663 −1.951 1.9
DF2 −1.232 −0.716 −1.948 1.7

optB86b −1.441 −0.818 −2.259 1.8

In Refs. (109) and (110), the authors pointed out that vdW interaction rules the IS

interaction, while it presents a minor contribution to the IC one. To provide a quantitative

picture of the role played by the dispersive forces to the structural stability of the Iβ

CNFs, we calculate Eb
IS and Eb

IC by turning off the vdW contribution, but ŞfreezingŤ the

equilibrium geometry obtained by the vdW-DF calculation. Here, we found a reduction

of the IS from −1.351 to −0.127 eV/unit-chain, while for the IC interactions change by

less than 0.1 eV, Eb
IC = −0.676 → −0.569 eV/unit-chain. The Eb ratio vdW/no-vdW in

the Ąrst is ≈ 10.6 meanwhile in the latter is ≈ 1.2. This evidences that vdW forces

present (i) a dominant role in the energetic stability between the cellulosic

sheets (about 90 % of the IS interactions), and (ii) a minor contribution to

the IC interactions (∼16 %). We will use this information [(i) and (ii)] to guide and

provide an energetic picture of the disintegration of oxidized CNFs (section 5.3).

Here in this chapter, we didn’t take into account any presence of solvents (explicit or

implicit) or reorganization process in the calculations of the binding energies (111, 112,

113, 114). The Eb
IC and Eb

IS were obtained comparing the total energies, at T=0, of the

initial (chain/sheet) and Ąnal (sheet/bulk) ground state conĄgurations. We are assuming

the approximation that (i) the solvent contribution to the total energies of the initial and

Ąnal systems are nearly the same, as well as (ii) the temperature dependence carried out

by the entropic term in the free energy. Therefore, within such an approximation, these

contributions [(i) and (ii) separately] are cancelled out when we compare the initial and

Ąnal free energies (115, 116).

5.3 Oxidized Cellulose NanoĄbers

Now we will examine the changes of these IS and IC interactions upon the presence

of charged carboxylate groups due oxidation process embedded within elementary Ąbrils.

Here, we will show an atomistic picture of how these charged carboxylate groups rule the

repulsive electrostatic forces within the nanoĄbrils, which in its turn weakens IS and IC

interactions between the polymeric cellulose chains.
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Figure 19 Ű AFM experimental images (a)/(c). In (b), elementary Ąbril diameter distri-
bution in the oxidation process. IC and IS disruption, represented by red and
blue dashed lines, respectively (d).

The energy cost to disintegrate the cellulose Ąbers reduces upon the formation of

charged carboxylate groups (COO−) (117). Indeed, previous experimental works have

shown the disintegration of cellulose into nanoĄbers with diameters of 3-5 nm mediated by

(TEMPO) oxidation processes (118, 119). Also, MD simulations have been done addressing

the effect of the presence of carboxylate groups, bonded to the CNF surfaces, on the

inter-Ąbril interaction (120). An important point here is that Pinto et al. (59) have used a

recently proposed low-energy cost pathway to produce cellulose nanoĄbers with widths of

single and double cellulose polymer chains (AFM images in Figs. [19(a) and (c)]).

Following this report, we expected that the formation of carboxylate groups should

occur not only on the surface of the elementary Ąbrils but also at the inner sites of the

CNFs (Fig. [19(b)] - indicated by the count of elementary Ąbrils with diameter < 3 nm)
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Figure 20 Ű Schematic representation of the IS (a) and IC (b) binding energy calculations.
(a1)-(b1)/(a2)-(b2) Final/Initial conĄguration of two free standing cellulosic
sheets (a) and chains (b). (c) Structural models of pristine (non-oxidized) NC
chain (c1), and oxidized chains with linear concentration of carboxylate groups
of [COO−] = 25% (c2), 50% (c3), and 100% (c4). The carboxylate groups are
within red rectangles.

indicated by dashed lines in Fig. [19(d)], such there is a weakening of IS and IC interactions.

Figs. [20(a) and (b)] indicate how the calculation procedure of IS and IC (respectively)

binding energy was conducted, as a function of the charging state of the carboxylate group.

Here, the binding energy (Eb) corresponding to the IS [IC] interaction was obtained by

comparing the total energies of two free-standing cellulosic sheets [chains] interacting with

each other (their Ąnal conĄguration), as shown in Ągures 20(a1) [20(b1)], and the ones far

from each other (their initial conĄguration), Ągures 20(a2) [20(b2)], for a given charging

state (q),

Eb
IS/IC(q) = EĄnal(q) − Einitial(q). (5.4)

For each conĄguration (initial/Ąnal), we obtained fully relaxed atomic positions and

the total energies including the vdW interactions within the vdW-DF approach. Within

our supercell approach, we have considered the presence of carboxylate groups with

different concentrations ([COO−]), i.e., 0% (pristine case), 25%, 50% and 100%, shown

in Ągures 20(c1)-(c4). The localization of the net charge (q) was determined by using the

Löwdin orbital population (121), where we found that most of the charging lies on the

carboxylate groups. In Figs. [21(a) and (b)], we present how the net charge density along
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binding energy. On occasion, for q = 0.5 e, Eb
IS(q) reduces from −0.511 to −0.016 eV/unit-

chain, while the intensity of the IC interaction reduces by about 0.08 eV/unit-chain,

Eb
IC(q) = −0.230 → −0.151 eV/unit-chain, i.e., the higher reduction of Eb

IS compared with

that of Eb
IC is a consequence of the predominance of vdW forces in the IS interactions.
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5.4 Conclusions

• A disruption of CNFs was attributed to the formation of carboxylate groups embedded

within oxidized Ąbrils, weakening the noncovalent interchain (IC) and intersheet (IS)

interactions;

• The disassembling process depends on the concentration of the carboxylate groups;

• IC and IS binding energies [Eb
IC/IS(q)] reduce in the oxidized CNFs;

• A reduction of Eb
IC/IS(q) is proportional to the charging state (q), and the concentra-

tion of the oxidized carboxylate groups indicating an electrostatic repulsion between

the (charged) cellulose Ąbrils;

• The disassembly processes of the oxidized CNFs should take place primarily through a

disruption of the interchain interactions, giving rise to (predominantly) Ąbers and cel-

lulose chains, instead of sheets, as a Ąnal structure, and thus in accordance/supporting

with the present experimental AFM observations.
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6 Cellulose-Graphene Interaction

Figure 23 Ű Structural models of graphene interacting with the hydrophobic (a1)-(a2), and
hydrophilic (b1)-(b2) nanocellulose sheet described by a single layer (a1)-(b1),
and bilayer (a2)-(b2) of cellulose nanoĄbrils.

6.1 Nanocellulose - Graphene Binding Energy and Geometry

The Ąrst step in this chapter is to examine the energetic stability and equilibrium

geometry of the nCL/G interface, and the role played by the long-range vdW forces on

the nanocellulose - graphene binding strength. The structural models of nCL/G interface

investigated in this work are shown in Fig. 23. The graphene layer interacts with two

different cellulose interfaces: (i) hydrophobic (Figs. [23 (a1) and (a2)]) and (ii) hydrophilic

(Figs. [23 (b1) and (b2)]) nanocellulose sheets described by a single layer of cellulose Ąbrils,

labelled as nCLphob/G and nCLphil/G in Ągure 23(a1) and (b1), and bilayer of cellulose

Ąbrils, nCLphob
2 /G and nCLphil

2 /G in Ągure 23(a2) and (b2).

The hydrophobic interface is characterized by the predominance of CH-π bonds1, while

in nCLphil/G the interface interaction is mainly dictated by the OH-π bonds2. The nCL/G
1 CH-π bonds are those bonds which a CH- radical (from cellulose) is bonded in a C from graphene
2 OH-π bonds are those bonds which an OH-radical (from cellulose) is bonded in a C from graphene
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Table 6 Ű Binding energies (Eb in meV/Å2) and nclŰG interface distance (h in Å) of the
nCLphob/G and nCLphil/G interfaces.

nCLphob/G nCLphil/G
vdW Eb h Eb h
DF 12.92 2.71 ± 0.09 11.63 2.59 ± 0.12

optB86b 15.10 2.53 ± 0.08 13.87 2.13 ± 0.12
no vdW 0.51 3.04 ± 0.08 0.81 2.90 ± 0.23

DF-solvent 11.80 2.71 ± 0.09 9.51 2.70 ± 0.06
nCLphob

2 /G nCLphil
2 /G

vdW Eb h Eb h
DF 13.22 2.75 ± 0.07 12.34 2.51 ± 0.13

optB86b 16.07 2.46 ± 0.07 13.91 2.32 ± 0.13
DF-solvent 12.92 2.74 ± 0.07 9.69 2.69 ± 0.10

interface binding energy (Eb) was calculated by:

Eb = E[nCL/G] − E[nCL] − E[G], (6.1)

i.e., comparing the total energy of the Ąnal system (E[nCL/G]) and the sum to the total

energies of the isolated components; for example, in Figs. 23 (a1) and (b1) a single sheet

of cellulose nanoĄbrils (E[nCL]) and single layer graphene (E[G]). For each interface,

nCLphob/G and nCLphil/G, we have considered three different stacking geometries, varying

cellulose sheet position through graphene sites. Then was found that Eb and the average

equilibrium vertical distance between the nCL and graphene sheet (h) changes by less

than 0.06 meV/Å2 and 0.01 Å.

The results of Eb and h, in Table 6, reveal an energetic preference for the nCLphob/G

interface. By using the vdW-DF approach to describe the long-range vdW interactions we

found binding energies of 12.92 and 11.63 meV/Å2 for nCLphob/G and nCLphil/G, respec-

tively. To compare it with other layered 2D counterpart systems, we Ąnd that the nCLphob/G

binding energy is comparable with that of boron-nitride/G bilayer [∼12 meV/Å2(122)],

∼ 40% smaller for that graphene bilayer, about 13% smaller compared with the inter-

sheet binding energy of nCL (105), and between 16% and 40% higher when compared

to graphene oxide (GO) and nCLphob interface, depending on the oxygen concentration

(123). We have also calculated the binding energies by using the vdW-optB86b functional

(the results are summarized in Table 6). Adding a second layer of cellulose nanoĄbrils,

nCLphob
2 /G and nCLphil

2 /G, as depicted in Figs. 23(a2) and (b2), respectively, conĄrms

the energetic preference for the nCLphob/G interface, which is in good agreement with

recent theoretical Ąndings based on molecular dynamic simulations (124, 125). These

previous studies indicate that the presence of trapped water molecules at the nCL/G

interface reduces the binding energy; further, was veriĄed the exclusion of the water

molecules from the nCLphob/G interface (124). To conĄrm this, we checked through the
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implicit solvation model3 (126, 127) a reduction of the interface binding energy, leading

to Eb = 12.92 → 11.80 meV/Å2 in nCLphob/G, and 11.63 → 9.51 meV/Å2 in the nCLphil/G

interface. The equilibrium geometries of the nCL/G interfaces showed tiny variation,

almost remaining the same as those obtained previously with no solvent effects. These

calculations took into account only electronic effects, ignoring any geometry effect (it is

a direct consequence of the implicit solvation model). It is worth noting that the larger

binding energy reduction in the latter is due to the hydrophilic nature of the interface,

which is in agreement with the results of solvation energies Es (also showed in Table 6),

with Es = 2.87 and 10.77 meV/Å2 in nCLphob/G and nCLphil/G, respectively, and 4.21

and 11.19 in the nanocellulose bilayer systems, nCLphob
2 /G and nCLphil

2 /G.

As discussed in the previous chapter, long-range vdW dispersion interaction plays an

important role in the interchain and intersheet binding energy between the cellulose Ąbrils

and nCL sheets, respectively. Here, once again, to measure the role played by the vdW

interaction on the nCL - G binding energy, we have calculated Eb by turning off the vdW

contribution. In this case, the binding energy of the nCLphob/G (nCLphil/G) interface

reduces to 0.51 (0.81) meV/Å2, and the vertical distance h increase to 3.04 (2.90) Å; so,

as occurred in intersheet binding energy in pristine nCL (105), we can deduce that the

non-covalent (vdW) interactions once again rules the formation of nCL/G interfaces.

Comparing the vdW role in the nCL/G interface with the one in graphene bilayer (GBL),

where the interlayer interaction is mainly ruled by πŰπ bondings, within the vdW-DF

approach, we found that the binding energy reduces from 21.16 to 0.51 meV/Å2, and the

interlayer distance increases from 3.47 to 3.70 Å.

6.2 Structural Characterization

Core-level spectroscopy is a powerful tool to provide the structural characterization of

materials on an atomic scale based on the local electronic properties of the probed element.

The combination of experimental XANES data and Ąrst-principles simulations has proven

to be a highly successful strategy to understand the atomic structure of novel materials

(128, 129, 130, 131). In this section, we will show XANES simulation results of the Carbon

K-edge absorption spectra of nCL/G interfaces to Ąnd spectroscopic Ąngerprints of the

atomic structures of the nCLphob/G and nCLphil/G interfaces.

Our investigation starts with the XANES of the pristine isolated systems, graphene,

and single layer nCL. In Fig. 24(a), we have the absorption spectra of graphene as a

function of the orientation (θ) of the radiation polarization vector (ϵ̂), where we can

identify the C-1s→π∗ [→σ∗] transition for ϵ̂ = ϵ̂⊥ (θ= 90◦) [ϵ̂ = ϵ̂∥ (θ= 0◦)]. The energy

positions of these absorption peaks, around 285 and 292 eV, respectively, indicated as

g1 and g2 in Ągure 24(a), and the dependence of their intensities with the orientation
3 see Appendix E.
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Figure 25 Ű XANES spectra of nCLphob/G (a) and nCLphil/G (b) interfaces. XANES
spectra of hypothetical graphene [(a1)-(b1)] and single layer nCL sheet [(a2)-
(b2)] constrained to the equilibrium geometry of the respective Ąnal system,
nCLphob/G and nCLphil/G, as indicated in the insets. XANES spectra of
nCLphob

3 /G (c) and nCLphil
3 /G (d).
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As the formation of the nCL/G heterostructure occurs mainly due vdW interactions,

without covalent bonds between the nCL sheet and the graphene layer, the absorption

spectra of the nCL/G interfaces are mainly determined by their superposition of isolated

components. Indeed, the absorption spectra can be better understood by XANES compu-

tations of hypothetical structures, namely, isolated single-layer graphene, and nCL sheet

(both) constrained to the respective nCL/G interface equilibrium geometry. The XANES

simulations of these constrained structures reveal that the features 1a and 2a in nCLphob/G

emerge from the superposition of the edge transitions in graphene with the absorption

peaks c1a and c2a of the nCL, Figs. [25(a1) and (a2)]. Similarly, the absorption peak 1b

in nCLphil/G results from the superposition of graphene edge absorption structure with

the c1b peak of the tilted layer of cellulose Ąbrils, Figs. [25(b1) and (b2)], and (ii) for

θ = 90◦ the absorption feature 2b is composed by the superposition of graphene near-edge

structure with the absorption peak c2b of the tilted nCL.

The absorption spectra of the nCL/G systems, Figs. 25(a) and (b), were calculated by

considering graphene on a single layer of cellulose sheet. However, when the number of

nCL sheets increases, it is worthwhile to examine the changes on the XANES spectra. Our

results reveal that as the number of nCL layers increases, the absorption characteristics

from the C - H and C - OH bonds present a sharpest increase between 285 and 292 eV. In

Fig. [25(c) and (d)], we have the absorption spectra for three layers of cellulose Ąbrils,

namely nCLphob
3 /G and nCLphil

3 /G. In the former interface the absorption peaks 1a and 2a

become more apparent [labelled as 1c and 2c in Fig. 25(c)], similarly the features 1b and

2b of nCLphil/G become more intense in nCLphil
3 /G, indicated as 1d and 2d in Fig. 25(d),

reinforcing the differences in the XANES signatures of the hydrophobic and hydrophilic

nCL/G interfaces.

6.3 Electronic Properties

The electronic properties of nCL/G present an insulator/semi-metal interface with the

linear energy bands of graphene lying within the bandgap of nCL. In Figs. [26(a) and (b)],

we present the orbital projected electronic band structures of nCLphob/G and nCLphil/G.

Here, we can infer two points: we Ąnd (i) the graphene’s Dirac-point (DP) at about 2

eV above the valence band maximum (VBM) of the nCL layer; and (ii) the emergence

of an energy gap of ∼0.04 eV at the DP. Based on the Bader analysis (137), we found

∆ρ of 0.23 (0.28) × 1013 e/cm2 from graphene to the nCLphob/G, (nCLphil/G) interface.

This charge keeps accumulated at the nCL/G interface; followed by a reduction of the a

graphene work-function (Φ), given by:

Φ = Evac − EF , (6.2)
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Figure 27 Ű Net charge transfers (∆ρ) in nCLphob/G (a1), nCLphil/G (b1), nCLphob
2 /G

(a2), and nCLphil
2 /G (b2). Isosurfaces of 0.4 me/Å3.

0.55 e/cm2 [0.62 e/cm2] for ∆ρ in nCLphob/G [nCLphil/G]. Assuming that such a linear

relationship is preserved for larger values of EEF, we can infer that in nCLphil/G the DP

becomes resonant with the nCL valence band for EEF> 0.6 V/Å, and thus suppressing

the G → nCL charge transfer.

Further control of the electronic properties of 2D systems can be achieved through

mechanical strain (138, 139). Indeed, such an approach has been used to control the elec-

tronic doping level in bilayer graphene and boron-nitride/graphene vdW heterostructures

(140, 141). Here, we investigate the net charge transfer, ∆ρ, and the work function (Φ) in

nCL/G, as a function of compressive strain. The strain in the nCLphob/G and nCLphil/G

interfaces was applied by considering bilayers of nCL and graphene, namely nCLphob
2 /GBL

[Fig. 29(a)] and nCLphil
2 /GBL [Fig. 29(b)]. In Figs. 29(a1) and (a2) we present the spatial

distribution of ∆ρ of pristine nCLphob
2 /GBL and compressed by 9 %, respectively; likewise

in Figs. 29(b1) and (b2), we show ∆ρ for the hydrophilic interface, nCLphil
2 /GBL. These

maps of ∆ρ reveal that the charge transfers are localized at the nCL2/GBL interface
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6.4 Conclusions

• The binding energy of nCL/G is primarily ruled by the vdW interactions, being

comparable with that of boron-nitride/graphene;

• Through XANES simulations, Ąngerprints of nCL/G interfaces were identiĄed, being

tuned according to the amount of nCL/G sheets in the system;

• The electronic structure of nCL/G is characterized by linear energy bands of graphene

lying within the bandgap of nCL, with the Dirac point at about 2 eV above the valence

band maximum of the nCL sheet, ∆EDP ≈ 0.2eV, and a net charge accumulation,

∆ρ of ∼ 0.2 × 1013e/cm2, localized at the nCL/G interface;

• ∆EDP varies from 1.6 (1.1) to 2.3 (2.6) eV in nCLphob/G (nCLphil/G), for EEF

of −0.25 and +0.25 V/Å, respectively; whereas there is an increase of ∆ρ up to

1 × 1013e/cm2 upon an external pressure of 3.73 GPa.
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A The Born-Oppenheimer Approximation

The main idea behind the Born-Oppenheimer approximation (142, 143, 144) is to

consider the ratio between the electron and nucleus masses to be sufficiently small, such

that the nuclei cannot keep up with the fast change of electrons, and thus are considered

Ąxed. Within the approximation, the nuclear kinetic energy term,

T̂n =
m
∑

A=1

−
(

1

2

1

mA

∇2
A

)

(A.1)

is much smaller than the other terms. So for mA → ∞ we have:

Ĥ = T̂n + T̂ + V̂ne + V̂ee + V̂n =⇒ T̂ + V̂ne + V̂ee + V̂n = ĤT (A.2)

where ĤT is the total Hamiltonian of the system. The Hamiltonian ĤT will then be given

by:

ĤT = Ĥe + V̂n, (A.3)

where the electronic hamiltonian is given by:

Ĥe = Ĥ = T̂ + V̂ne + V̂ee, (A.4)

which is the same Hamiltonian as the equation (2.3).

There are some cases where the approximation is not valid, as in crossing potential

curves, as it leads to strong coupling. However, the vast majority of theoretical studies use

the approximation of Born-Oppenheimer.
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B Funcionals Derivative

A functional can be deĄned as an application that assigns to f(x) the number F , and

f(x) is said to be the function argument of the functional (145). For any f(x) function

that leads to some dx variation in its domain, we have:

f(x+ dx) = f(x) +
df

dx
dx+

d2f

dx2
dx2 + . . . . (B.1)

For a functional, we proceed in the same way, such that:

F [f(x) + δf(x)] = F [f(x)] +
∫

s(x)δf(x)dx+ . . . , (B.2)

where s(x) ≡ δF [f(x)]
δf(x)

is the derivative of the functional F [f ]. The derivative of a functional

is essential in the study of functional analysis and methods/theories involving functional

in calculations, such as the DFT.

We can indicate a general expression for obtaining the derivative of a functional

F [n] =
∫

f(n, n′, n′′, . . . ;x)dx, where n = n(x) and ni the i-th derivative with respect to

x, which will be given by:

δF [n]

δn(x)
=
∂f

∂n
− d

dx

∂f

∂dn′
− d2

dx2

∂f

∂dn′′
+ . . . . (B.3)

An example of a classical functional in physics is an action functional analyzed in classical

mechanics:

S =
∫

L(q, q′, q′′, . . . , t)dt, (B.4)

where the Lagrangian of a dynamical system is represented by L(q, q′, q′′, . . . , t). The

Lagrangian of this system is a function of the generalized coordinates, velocities, and time,

while s is an integer, which makes the Lagrangian functional.

Using the equation (B.3) for the Lagrangian, the equation that describes the evolution

of the dynamical system will be given when maximizing the action, so:

δS[q]

δq(t)
=
∂L

∂q
− d

dt

∂L

∂q′
= 0. (B.5)

Therefore, the equation (B.5) is the Lagrange equation which will be the equation of

motion when the Lagrangian of the system is determined.
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C The Variational Principle

Through the variational principle, we can obtain an upper boundary very close to the

exact value of the ground state energy E0 (146). By choosing a trial wave function Ψt

such that

⟨Ψt♣Ψt⟩ = 1, (C.1)

The variational principle assures us that we will always have to:

E0 ≤ ⟨Ψt♣Ĥ♣Ψt⟩ ≡ ⟨Ĥ⟩. (C.2)

In the equation (C.2), ⟨Ĥ⟩ represents the expected value of the Hamiltonian in some

excited state. If Ψt is a solution of some state excited n, we will have to

En = ⟨Ψt♣Ĥ♣Ψt⟩ ≥ E0. (C.3)

Since we know that the eigenfunctions Ψn that are the solutions of the Hamiltonian Ĥ

form a complete set of solutions, we can write any function Ψt as a linear combination of

the eigenfunctions, that is,

Ψt =
∑

n

CnΨn, (C.4)

where ĤΨn = EnΨn. If the trial wavefunction Ψt is normalized, we can rewrite the equation

(C.1) as follows:

⟨Ψt♣Ψt⟩ = 1

⟨
∑

m

CmΨm♣
∑

n

CnΨn⟩ = 1

∑

m

∑

n

C∗
mCn⟨Ψm♣Ψn⟩ = 1

∑

m

∑

n

C∗
mCnδmn = 1

∑

n

♣Cn♣2 = 1. (C.5)

The expected value for the Hamiltonian in another excited state is given by

⟨Ĥ⟩ = ⟨Ψt♣Ĥ♣Ψt⟩

= ⟨
∑

m

CmΨm♣Ĥ♣
∑

n

CnΨn⟩ =
∑

m

∑

n

C∗
mCn⟨Ψm♣ĤΨn⟩

=
∑

m

∑

n

C∗
mCn⟨Ψm♣EnΨn⟩ =

∑

m

∑

n

C∗
mCnEn⟨Ψm♣Ψn⟩

=
∑

m

∑

n

C∗
mCnEnδmn

⟨H⟩ =
∑

n

♣Cn♣2En. (C.6)
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We know that the energy of any excited state will always be greater than the energy

of the ground-state. Mathematically speaking, we know that En ≥ E0. This allows us to

write the equation (C.5) as follows:

⟨Ĥ⟩ =
∑

n

♣Cn♣2En ≥
∑

n

♣Cn♣2E0. (C.7)

As we saw from the equation (C.5), the equation (C.7) can be rewritten as

⟨Ĥ⟩ = En ≥ E0. (C.8)

Therefore, we were able to demonstrate that the expected value of the Hamiltonian in any

state is always greater than or equal to the energy of the ground state, that is:

⟨Ĥ⟩ ≥ E0. (C.9)
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coefficient (µ) as a function of energy. We can observe three characteristics:

(i) a general decrease in X-ray absorption with increasing energy,

(ii) the presence of an abrupt increase in absorption at a given energy, called absorption

edge,

(iii) above the edge, an oscillatory structure that modulates absorption.

The second feature illustrates the phenomenon of X-ray absorption, described by Fermi’s

golden rule (148).

The edge energy position is unique for a given absorbing atom and reĆects the excitation

energy of the electrons in the innermost layers, making the technique sensitive to the

element studied. The third feature is precisely what is of interest to the EXAFS technique.

When interpreted correctly, it is possible to obtain detailed information on the crystal

structure of the material studied.

The absorption spectrum (Figure 31) is divided into three regions:

• Pre-edge region: refers to electronic transitions with absorption energy lower than

the binding energy, occurs when the absorbing atom has unoccupied or partially

unoccupied states below the Fermi energy. Such transitions are unlikely to occur and

therefore produce only small oscillations in the absorption spectrum (Region (i) in

Ągure 31);

• Absorption edge: is the region characterized by the discontinuity of the absorption

spectrum. It happens when the energy absorbed is enough to knock electrons from

the absorbing atom. The exact position of the peak depends on the details of the

oxidation state, symmetry of the site of the absorbing atom (octahedral, tetrahedral,

etc.) and the nature of the chemical bonds;

• Transitions to the continuum states: corresponds to the absorption of photons with

energies greater than the binding energy of the electron, so that transitions to

continuous states, not located in the absorbing atom, occur, and the excess energy

is carried by the photoelectron (the electron that was ripped from the atom after

absorbing the X-ray photon) in the form of kinetic energy. This part of the spectrum

is divided into:

⋆ XANES (X-ray Absorption Near Edge Structure) region: range of the absorption

spectrum that goes up to 50 eV above the absorption edge, where intense

variations in absorption occur. In this interval, the photoelectron’s wavelength

is of the order of atomic distances and, therefore, its mean free path is small;

multiple scatterings occur before returning to the absorbing atom (Region (ii)

in Ągure 31);
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⋆ EXAFS (Extended X-ray Absorption Fine Structure) region: range that goes

from 50 to 1000 eV above the absorption edge and presents smoother oscillations

(Ąne structure). These oscillations have information about the atomic structure

around the absorbing atom. In this region, the mean free path of the photoelec-

tron is large and simple scatterings (where the photoelectron encounters only

one scatterer and returns to the absorbing atom) are more likely (Region (iii)

in Ągure 31).

Here, we will be focused only on XANES. XANES can provide physical and chemical

information about the surroundings of a given element through direct comparison with the

spectra of standard samples. In this sense, the XANES spectrum is considered a Ąngerprint

of the local three-dimensional electronic structure. In the region of the spectrum close to

the absorption edge, the photoelectron has a shorter mean free path, which provides a

stronger interaction between the photoelectron and the potential of the scattering atoms.

Thus, it is possible to obtain information about the geometric distribution of atoms (such as

bond angles and atomic positions) through a complete analysis of the multiple scatterings

that contribute to the absorption signal in the XANES region. To try to explain and

predict the phenomena present in the XANES region, it is necessary to use, and sometimes

implement, particular ad-hoc methodologies appropriate for each situation. In the analysis

of the spectroscopic results of bound electronic states, it is necessary to describe the initial

state, the Ąnal state and the absorption cross-section as a function of the interaction

Hamiltonian. This involves proposing models that consider different effects of the processes

involved to investigate the atomic structure (149).

In every ionization process, holes are produced in the electronic layer, and this has at

least three relevant effects that must be considered in the proposed models:

• the atom has one less electron in its innermost levels, which can be considered as an

increase in its atomic number (Z + 1);

• innermost bound states with non-zero angular momentum result in spin-orbit coupling

splits;

• unfolding of the coupling between internal states and valence states with non-zero

angular momentum

The simulation of absorption spectra and electronic structure using basic principles has

been shown to be a very efficient tool in understanding structures in the XANES region.

In general, the objective of these simulations is to obtain the absorption spectra using

calculations based on information about the structure (atomic, electronic and magnetic)

of the material.
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E Implicit Solvent Model

When ab initio of the solute/solvent system treatment becomes necessary, there are two

ways to proceed with the treatment. The Ąrst consists of all solvent molecules that must

be considered explicitly. The equilibrium Ąnal state is reached after the full relaxation of

the system, which is quite expensive as the number of solvent molecules in the system

required to capture the essential equilibrium properties is huge and because of the statistical

averaging required for the solvent molecules. The second one is to treat the solute quantum-

mechanically and to treat the solvent as a continuum, which means that the solute is

immersed in a bath of solvent and the average over the solvent degrees of freedom becomes

implicit in the properties of the solvent bath. The implicit solvent model offers a much

more computationally tractable way to change the solute’s electronic and geometric degrees

of freedom so that its ground state complies with the solvent bath’s equilibrium properties.

This method provided all interactions between the solute and the solvent are properly

taken into account and can be quite accurate because the solute electron structure is still

being treated in a quantum-mechanical way (126, 127).

The free energy A of the combined solute/solvent system can be written as a sum

of two terms: (i) a universal functional F of the total electron density, and (ii) the

thermodynamically averaged atomic densities of the solvent species, and a term describing

the electrostatic energy contribution, given by:

A = F [ρtot, ¶Ni(r)♢] +
∫

d3r Vee(r)



∑

i

ZiNi(r) −Ntot(r)



, (E.1)

where ρtot(r) = ρsol(r) + ρsolv(r) is the total electron density (the sum of the electron

density of the solute and the solvent), Ni(r) are the thermodynamically averaged atomic

densities associated with the chemical species i in the solvent, Vee(r) s the external potential

due to the solute nuclei, and F is a universal functional. Minimizing Eq. (E.1) with respect

to the solvent electron density ρsolv, we obtain:

Ã = G[ρsol(r), ¶Ni(r)♢, Vee(r)] −
∫

d3r Vee(r)ρsol(r), (E.2)

where

G[ρsol(r), ¶Ni(r)♢, Vee(r)] = min
ρsolv

{

F [ρtot, ¶Ni(r)♢] −
∫

d3r Vee(r)



∑

i

ZiNi(r) − Ntot(r)

}

(E.3)

The term G is a universal functional of the electron density of the solute ρsol, the

average atomic densities of the various species in the solvent ¶Ni(r)♢, and the external

potential of the solute nuclei Vee(r). The functional G can also be separated as:

G[ρsol(r), ¶Ni(r)♢, Vee(r)] = AKS[ρsol(r), Vee(r)] + Adiel[ρsol(r), ¶Ni(r)♢, Vee(r)], (E.4)
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where AKS is the usual Kohn-Sham density functional for the solute and Adiel is the term

that encapsulates all the interactions of the solute with the solvent and the internal energy

of the solvent. To further simplify the expression, the functional Adiel is minimized with

respect to the average atomic densities of the solvent ¶Ni(r)♢, given by:

Ãdiel[ρsol(r), Vee(r)] = min
¶Ni(r)♢

Adiel[ρsol(r), ¶Ni(r)♢, Vee(r)]. (E.5)

An electrostatic-only approach is insufficient to describe the solvation of molecules

and nanoparticles, where cavitation and dispersion may play a signiĄcant role. Including

in Ãdiel an additional term to describe the free energy contributions of cavitation and

dispersion, we have so:

Acav = τ
∫

d3r♣∇S♣, (E.6)

where τ is the effective surface tension parameter, which describes the cavitation, dispersion,

and repulsion interaction between the solute and the solvent that are not captured by the

electrostatic terms alone and S(r) is the cavity shape function described by:

S(ρsol(r)) =
1

2
erfc

{

log(ρsol − ρc)

σ
√

2

}

, (E.7)

with the parameters ρc and σ, that determine respectively at what value of the electron

density the dielectric cavity forms, and the width of the diffuse cavity. Decoupling the elec-

trostatic term from the Kohn-Sham functional AKS and combining it with the interaction

term and the cavitation term, we obtain:

A[ρsol(r), ϕ(r)] = ATXC[ρsol(r)] +
∫

d3rϕ(r)(Nsol(r) − nsol(r)) −
∫

d3rϵ(r)
♣∇ϕ♣2

8π
+ Acav,

(E.8)

where ATXC is the free energy density functional describing the kinetic and exchange-

correlation energy of the solute and Nsol(r is the solute nuclear charge density. The term

ϕ(r) is the combined electrostatic potential due to the electronic nsol(r) and nuclear

(Nsol(r)) charges of the solute system in a polarizable medium, which is different from Vee,

this being the potential due to the nuclei in the solute. Outside a speciĄed cutoff radius,

it has the form Zeff

r
, where Zeff is the effective charge of the respective atom. Since the

solvent described by ϵ(r) does not penetrate the core region of the pseudopotentials, we

can approximate the contribution of the nuclear charges to the combined electrostatic

potential ϕ(r) of the solute by a sum over terms of the form Zeff

r
. Minimization of Eq. E.8

with respect to electronic charge density nsol(r), leads to a typical Kohn-Sham Hamiltonian

with the following additional terms in the local part of the potential:

Vsolv =
dϵ(ρsol(r))

dρsol(r)

♣∇ϕ♣2
8π

+ τ
d♣∇S♣
dρsol(r)

. (E.9)
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F Computational Details

F.1 Chapters 3 and 4

All calculations were performed within the density functional theory (DFT), where the

exchange-correlation term was described by the generalized gradient approximation (GGA-

PBE) (76) proposed by Perdew, Burke and Ernzerhof. The periodic image interaction was

avoided by using at least 15 Å vacuum. The Kohn-Sham orbitals were expanded in a

plane wave basis set with an energy cutoff of 400 eV and the electron-ion interaction have

been evaluated using the PAW (projected augmented wave) method (150). The Brillouin

Zone (BZ) sampling was performed according to the Monkhorst-Pack scheme (151), using

a 12×12×1 mesh. Binding energies, equilibrium geometry and electronic properties were

performed using Vienna Ab-initio Simulation Package (VASP) (152). The equilibrium

conĄguration was calculated taking into account fully relaxed atomic positions, considering

convergence criteria of 25 meV/Å for the atomic forces.

The boron K-edge X-ray absorption near-edge structure (XANES) spectra were simu-

lated using the theoretical approach implemented in the XSpectra code,(153, 129, 154)

supplied with QUANTUM ESPRESSO(155). We have used ultrasoft pseudopotentials,

where in order to describe the K-edge spectra, we built a pseudopotential with a core

hole in the 1s orbital, and the all-electron wave function was recovered by using the

GIPAW(156) approach. We have considered a set of 12×12×1 k-points to the BZ sampling

(relax) and 200 k-points along Γ-X-S-Y-Γ direction (band), energy cutoffs of 40 Ry for the

plane wave basis set (to expand the KS orbitals) and 400 Ry for the self-consistent total

charge density.

F.2 Chapter 5

All calculations were performed within the density functional theory (DFT), where the

exchange-correlation term was described by the generalized gradient approximation (GGA-

PBE) (76) proposed by Perdew, Burke and Ernzerhof. The periodic image interaction

was avoided by using at least 12 Å vacuum perpendicular to the graphene sheet. The

Kohn-Sham orbitals were expanded in a plane wave basis set with an energy cutoff of

48 Ry (we have veriĄed the convergence by increasing the cutoff energy up to 60 Ry),

and the electron-ion interaction has been evaluated using the PAW (projected augmented

wave) method (150). The Brillouin Zone (BZ) sampling was performed according to the

Monkhorst-Pack scheme (151), using a 3×3×1 mesh for cellulosic chains and 3×3×3 for

cellulose crystal phase. The equilibrium conĄguration was calculated taking into account
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fully relaxed atomic positions and the lattice vectors, considering convergence criteria of

25 meV/Å for the atomic forces on each atom.

In order to perform a thorough study of the role played by the van der Waals (vdW)

forces in the structural stability of the cellulose nanoĄbers, we have taken into account

different approaches for the vdW interactions, viz.: (i) vdW density functional (vdW-

DF) (101, 100, 102, 103) implemented in the QE and VASP codes, (ii) parameterized vdW-

D2 (78) implemented in the QE code, (iii) vdW-DF2 (157), and (iv) vdW-optB86b (158, 82)

both implemented in the VASP code(152).

F.3 Chapter 6

All calculations were performed within the density functional theory (DFT), where the

exchange-correlation term was described by the generalized gradient approximation (GGA-

PBE) (76) proposed by Perdew, Burke and Ernzerhof. The periodic image interaction

was avoided by using at least 25 Å vacuum perpendicular to the graphene sheet. The

Kohn-Sham orbitals were expanded in a plane wave basis set with an energy cutoff of 400 eV

and the electron-ion interaction has been evaluated using the PAW (projected augmented

wave) method (150). The Brillouin Zone (BZ) sampling was performed according to

the Monkhorst-Pack scheme (151), using a 6×6×1 mesh(relax) and 20 k-points along

Γ-X-S-Y-Γ direction (band). The search for binding energies, equilibrium geometry and

electronic properties was performed using Vienna Ab-initio Simulation Package (VASP)

(152), and the inĆuence of an aqueous environment was simulated based on the implicit

solvation model implemented in DFT code VASP (VASPsol (126, 127)). The equilibrium

conĄguration was calculated taking into account fully relaxed atomic positions, considering

convergence criteria of 25 meV/Å for the atomic forces. To provide a more complete picture

of the energetic features of the nCL/G interfaces, we have examined the role played by

the vdW dispersion interaction on the nCL/G binding energies. We have considered two

different non-local vdW approaches, viz.: vdW-DF (101, 100, 103), and vdW-optB86b

(158, 82).

The Carbon K-edge X-ray absorption near edge structure (XANES) spectra were

simulated using XSpectra package (153, 129, 154), implemented in Quantum ESPRESSO

(155, 102). To describe the K-edge spectra, we used a reconstructed ultrasoft pseudopoten-

tial with a core-hole in C-1s orbital and the electron wave functions were recovered using

GIPAW (156) reconstruction. Here, the BZ sampling was the same as previously described

and the energy cutoffs for the plane wave basis set and self-consistent total charge density

were respectively 48 and 192 Ry.
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