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Resumo

Nesta dissertacao, apresentaremos um estudo dos sistemas eletronicos, magnéticos,
de transporte e propriedades termoelétricas de heteroestruturas unidimensionais recente-
mente sintetizadas que sdo construidas sobre um ’backbone’ constituido por uma nanofita
de grafeno de base (AGNR). Tais heteroestruturas foram sintetizadas com sucesso, em
superficies de ouro, através processos quimicos. O interesse por essas heteroestruturas
aumentou depois que foi previsto que eles deveriam ter bandas topologicamente nao triv-
iais perto da energia de Fermi. Esta previsao tedrica foi confirmada experimentalmente
nos tltimos dois anos. Suas propriedades topolégicas derivam de estados localizados (eles
proprios de natureza topoldgica) que podem aparecer nas diferentes jungdes que formam
a heteroestrutura. A hibridizagdo desses estados simula, préximo a energia de Fermi, um
modelo Su-Schrieffer-Heeger (ou seja, uma cadeia dimerizada), dotando a fisica de baixa
energia do sistema com propriedades topologicas. Aqui, ndao estudamos suas propriedades
topoldgicas. Em vez disso, usando o formalismo de Landauer, primeiro analisamos suas
propriedades termoelétricas, por exemplo, condutancias eletronicas e térmicas, bem como
o coeficiente de Seebeck, denotados como G, K, e S, respectivamente. Isso nos per-
mite calcular a termocorrente de resposta linear I;,;, AT = GS, bem como a figura de
mérito ZT = GS*TK, (T significa temperatura), que estima a eficiéncia de um mate-
rial na transformagao de energia térmica em energia elétrica. Nossos resultados indicam
que algumas das heteroestruturas (semicondutoras) analisadas tém uma figura de mérito
consideravelmente maior do que a do backbone AGNR sobre os quais sdao construidas.
Em seguida, usando o formalismo tight-binding, mostramos que essas heteroestruturas
apresentam uma infinidade de bandas planas, reminiscentes da banda plana [single] ja
estudada em AGNRs originais. Essas bandas planas ocorrem devido a formacao dos
chamados ’estados orbitais Wannier’, através de um processo de interferéncia. Depois de
analisar cuidadosamente suas propriedades eletronicas usando um modelo tight-binding,
pudemos mostrar, pela primeira vez, através de uma colaboracdo com um grupo interno
da DFT, que dopa essas heteroestruturas leva a um estado fundamental ferromagnético.
Uma futura direcao de pesquisa neste assunto poderia ser o estudo da interacao entre
ferromagnetismo e topologia em alguns desses sistemas interessantes.

Palavras-chave: Nanofitas de grafeno, Isolantes topolégicos, Magnetismo, Estrutura

Eletronica, Propriedades de transporte e termoelétricas.



Abstract

In this dissertation, we will present a study of the electronic, magnetic, transport and
thermoelectric properties of recently synthesized one-dimensional heterostructures that
are built upon a ‘backbone’ constituted by an armchair graphene nanoribbon (AGNR).
Such heterostructures have been successfully synthesized, in gold surfaces, through chem-
ical processes. The interest in these heterostructures has greatly increased after it was
predicted that they should have topologically non-trivial bands near the Fermi energy.
This theoretical prediction has been experimentally confirmed in the last couple of years.
Their topological properties stem from localized states (themselves topological in nature)
that may appear at the different junctions forming the heterostructure. The hybridization
of those states simulates, close to the Fermi energy, a Su-Schrieffer-Heeger model (i.e., a
dimerized chain), endowing the low-energy physics of the system with topological prop-
erties. Here, we do not study their topological properties. Rather, using the Landauer
formalism, we first analyze their thermoelectric properties, viz., charge and electronic
thermal conductances, as well as the Seebeck coefficient, denoted as G, K., and S, re-
spectively. This allows us to calculate the linear-response thermocurrent I, AT = G S, as
well as the figure of merit ZT = GS*TK, (T stands for temperature), which estimates
the efficiency of a material in transforming thermal into electrical energy. Our results
indicate that some of the (semiconducting) heterostructures analyzed have a considerably
larger figure of merit than that of the AGNR backbone upon which they are built. Next,
using the tight-binding formalism, we show that these heterostructures present a multi-
tude of flat-bands, reminiscent of the single flat-band already studied in pristine AGNRs.
These flat-bands occur due to the formation of so-called ‘Wannier orbital states’, through
a quantum interference process. After carefully analyzing their electronic properties using
a tight-binding model, we were able to show, for the first time, through a collaboration
with a DFT in-house group, that hole-doping these heterostructures leads to a ferromag-
netic ground state. A future research direction in this subject could be the study of the

interplay between ferromagnetism and topology in some of these interesting systems.
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CHAPTER

Introduction

Since its discovery almost two decades ago [6], graphene has emerged as a realis-
tic possibility for addressing the scalability challenges of the nanoelectronics industry
workhorse, the complementary metal-oxide-semiconductor (CMOS) field-effect transistor
(FET). Indeed, since the early 2000s, as the gate length for the Silicon FET crossed into
the sub-100 nm range and the traditional gate insulator approached 10-nm thicknesses,
we witnessed the end of Dennard Scaling [7},1 and the slowing of Moore’s law. Thus, re-
search in new materials has been increasingly necessary to pickup the pace of performance
improvement that consumers have been used to in the previous half century. As men-
tioned above, among the many different new materials, graphene has emerged as a very

[6}, as well as

promising alternative. Be it because of its very unique properties in bulk
the recently acquired capacity for precisely synthesizing quasi-one-dimensional (quasi-1D)
nanostructures based on graphene.

Graphene nanoribbons are quasi-1D systems that hold the promise of being important
elements in the future of nanoelectronics and spintronics. It has been long recognized that
the band structure engineering that one can accomplish, by designing relatively complex
heterostructures, may greatly improve device performance by enhancing desirable prop-
erties (like electron mobility) and mitigating undesirable ones (like electronic thermal
conductance). Besides, some of these heterostructures may also present emergent behav-
ior, like ferromagnetism, through an increase in the importance, for the ground state, of
electronic correlations.

In this dissertation, two main aspects will be analyzed in recently synthesized het-

erostructures 2, 8]

that are based on armchair graphene nanoribbons (AGNRs). First,
using a Landauer formalism, combined with Green’s functions calculations, we numeri-
cally obtain the thermoelectric properties of these heterostructures. We observe a marked
increase in the figure of merit in relation to the AGNR backbone from which the het-

erostructure originates. Secondly, by using the tight-binding and the Density Functional

1 Which posits that as transistors get smaller, and thus their density increases, power consumption

stays constant and clock operating frequencies can increase.
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Theory (DFT) methods, we obtain that, when doping these heterostructures, they develop

a ferromagnetic ground state.

Our results in these two fronts serve as examples of the current trend of using graphene
heterostructures to produce devices with improved thermoelectric properties, as well as
obtaining rare ground states (1D ferromagnetism) that may be used in information pro-

cessing devices.

This dissertation is divided into six chapters. In chap. (2), we briefly describe the
electronic properties of graphene and graphehe nanoribbons. Two important types of
graphene nanoribbons are the so-called zigzag and armchair graphene nanoribbons (ZGNR
and AGNR, respectively). AGNRs, and related heterostructures, are the primary focus of
this dissertation. Thus, in chap. (2) we will present mostly the details of the tight-binding
approximation for AGNRs, postponing details of the ZGNRs properties to Appendix (D).

In chap. (3), we introduce the AGNR heterostructures denoted N-AGNR-I(n,m) and
N-AGNR-S(n,m) 2 8], where N indicates the width of the AGNR backbone upon which
the heterostructure is constructed, while n and m basically define the size of the het-
erostructure unit cell. The letters I and S mean ‘Inline’ and ‘Staggered’, where an Inline
heterostructure is more symmetric than a Staggered one (thus, it has a smaller unit cell).
In this chapter, we present the band structure and density of states, of both heterostruc-
tures, analyzing how they depend on the parameters N, n, and m. At the end of the
chapter, we briefly outline their synthesis process. The tight-binding method, used for
the majority of the results presented here, is described in Appendix (A).

In chap. (4), we describe the Landauer formalism and present a brief introduction to
thermoelectric properties, viz., charge and electronic thermal conductances, as well as the
Seebeck coefficient, denoted as G, K., and S, respectively. This allows us to calculate the
linear-response thermocurrent I,,AT = G.S, as well as the figure of merit ZT = GS*TK,
(T stands for temperature), which estimates the efficiency of a material in transforming
thermal into electrical energy. We also present results for these quantities for AGNRs of
varying widths. We finish chap. (4) with a detailed analysis, for the Inline and Staggered
heterostructures, of the thermoelectric properties introduced at the beginning of chap. (4).
We carefully analyze their dependence on the parameters N, n, and m, showing that, for
some cases, the figure of merit greatly increases in relation to what was obtained, earlier
in chap. (4), for the pristine AGNRs.

In chap. (5), we present a detailed tight binding and DFT analysis of the Inline het-
erostructures. Our tight-binding results indicate the presence of a multitude of perfectly
flat-bands. One of the flat-bands is reminiscent of the one that appears in pristine arm-
chair nanoribbons and has its origin in a quantum mechanical destructive interference
effect, dubbed ‘Wannier orbital states’ by Lin et al. !, The additional flat-bands found
in these heterostructures, some reasonably closer to the Fermi level, seem to be gener-

ated by a similar interference process. After doing a thorough tight-binding analysis of
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the band structures of the different kinds of heterostructures, focusing in the properties
of the flat-bands, we use DFT to study the possibility of magnetic ground states when
placing, through doping, the Fermi energy close to the different flat-bands. Our DFT
results confirmed the expectation that these heterostructures, after being appropriately
hole-doped, develop a ferromagnetic ground state that seems to require, as in the case of
pristine armchair nanoribbons, the presence of a dispersive band crossing the flat-band.
In addition, we found a remarkable agreement between the tight-binding and DFT results
for the charge density distribution of the so-called Wannier orbital states.

In chap. (6), we present a brief summary of the analyzes carried out, and the conclu-
sions obtained, in this dissertation.

In the Appendices, we briefly present (in this order) the tight-binding method, the Su-
Schrieffer-Heeger (SSH) model, details of an analytic solution to the tight-binding method
for AGNRs, the same for ZGNRs, the tight-binding Hamiltonian for an N-AGNR(1,3) het-
erostructure, in real and reciprocal spaces, the addition of next-nearest-neighbor hoppings
to the Inline heterostructures, DFT results for Staggered heterostructures, and, finally,

the numerical codes (in Fortran) used in this dissertation.
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Chapter 1.

Introduction
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CHAPTER

Two-dimensional graphene and

graphene nanoribbons

2.1 Graphene

Carbon atoms that arrange themselves in a honeycomb-like crystal lattice are respon-
sible for giving rise to graphene. This material is famous for being the first planar (2D)
system, which implies that the graphene sheet is a single atom thick, and this was ac-
complished in the laboratory in 2004 M. Carbon atoms, in turn, are one of the most
abundant chemical elements in nature, being of great importance since it has a great ca-
pacity to form chemical bonds with atoms of the same species and with others. Returning
to graphene, it can be seen as the basic unit that is responsible for giving rise to several
structures, as depicted in Fig. 1, such as graphite, fullerenes,carbon-nanotubes, graphene,

etc.

2.1.1 Energy dispersion of Monolayer Graphene

In the following, by using a nearest-neighbor tight-binding (TB) model, model, we will
determine the energy eigenvalues of the graphene sheet. 10l As previously mentioned,
carbon atoms arrange themselves in a honeycomb lattice to create graphene sheets. These
atoms, in turn, have atomic number Z = 6, which means that the distribution of electrons
in its ground state is 1s2,2s% 2p?. Each one of these atoms presents itself in an sp?
hybridization state. In sp? hybridization, carbon atoms hold three ¢ bonds and one 7
bond. Thus, in graphene, the orbitals 2, 2p,, and 2p, combine to form o orbitals, while p,
orbitals do not hybridize and are free to produce 7 orbitals. While o bonds are responsible
for graphene’s mechanical properties, p, orbitals, which point out of the plane, are relevant
for its electronic properties M 1Tt is worth pointing out that bands described by these

orbitals are impressive, as they present valleys, with linear dispersion, located at the six
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Figure 1 — Carbon allotropes. we know that a carbon atom has in its second shell four
electrons, this feature can give rise to many types of different chemical bonds, such as sp,
sp2, and sp3. Graphite is a laminar material in which carbon atoms form covalent bonds

with orbitals in an sp? hybridization, and the layers are weakly bonded by van der Waals

bonds. From 1,

extremities of the first Brillouin zone (BZ) !> 3]

. As we can see in Fig. 2 b), two of these
valleys are non-equivalent. The valleys represent an extra degree of freedom, called valley
degree of freedom, similar to spin for the charge carriers. The dispersion at the valleys is
linear, and, because of that, the bands at those points are known as Dirac cones. Thus,

electrons at low energy behave like massless Dirac fermions [14],

The graphene lattice,
by itself, is not a Bravais lattice. However, we can create a honeycomb lattice by using
two distinct (non-equivalent) triangular Bravais lattices, called A and B sublattices. So,
the honeycomb lattice is wholly defined if we construct a basis formed by two carbon
atoms, one for each sublattice. By convention the two atoms in the graphene unit cell
are denoted by A and B and are spatially separated by aq distance, as shown in Fig. 2.
Furthermore, due to this spatial configuration, its honeycomb lattice produces a bipartite

structure which implies a symmetrical energy spectrum about the I' point (center of the



2.1. Graphene 23

@ (b)
-
4 -

Figure 2 — (a) The honeycomb lattice in real space. The unit cell is displayed as a yellow
parallelogram. (b) First BZ of graphene, along with high-symmetry points. Dirac cones,
which approximate the dispersion close to the Fermi energy, are also indicated.

BZ). The graphene crystalline structure, in real space, is described as a function of two

[5]

primitive lattice vectors '”!. According to Fig. 2, they are given by

a; = 5(37 \/g)v az = 5(37 _\/g) (1>

where ¢ is the band length of the real-space unit cell vector and each site has three
nearest-neighbors (NN). The 3 vectors connecting an A site to its neighbors are given by
a

5(L=V3) 75 =—a(1,0) 2)

a
Y1 = 5(1; V3) y2 =

From Eq. (1), it is possible to determine the reciprocal vectors b; by using the relation

b, - a; = 27md;; [15], thus we obtain

b, = ?;(1, V3), by = ?))7;(1, —V3). (3)

Below, we define the high-symmetry points in the graphene lattice (Eq. 4), commonly
used to describe the energy dispersion in k-space. In the center of the BZ, we have the I
point. Next, we have the M point, located at the center of the honeycomb edge. Finally,
there are the two special points K and K’, located at the corners of the first BZ. Their

components are given by

Wave vector T° M K K’
ke 0 (27/v/3a) (27/v/3a) (27//3a) (4)
k, 0 0 (27/3a) (—27/3a)

The graphene TB Hamiltonian, in real space, is written as

H= —tZajbj + h.c. (5)
(i5)
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In Eq. (5), a; and a] (b; and b}) are the annihilation and creation operators for electrons on
a site i located in the A (B) sublattice, respectively, and (ij) means that we are performing
a sum only for nearest neighbors. The hopping energy is defined as ¢t = 1 (unit of energy).
The Hamiltonian diagonalization in momentum space is straightforward. Thus, to find
the energy dispersion, we will expand the creation/annihilation operators in momentum

space by using Fourier Transform Equations

N
1 0
b, — eik’-rjﬂk/
’ N
1 iy
bT - elk Yy /1y
J \/N %: 6k

where (i, oy are operators that create electrons with momentum k. By replacing Eqs. (6)

into Eq. (5), we get

7‘[(/{3) _ " Z Z [ ik- Tig —ik/(r;+;) (k)ﬁT (k/) + efik-rieik’-(riJr'yj)aT(k>ﬁ (k/)}

i, k,k’
= SIS [ R a1 (k) 4 e ORI al ()5 ()

,J kK (7)
:=—f§2§ikkwe %a(>5WkU+w&wé“WaWkMMki

Jj kK

= —tzz e ua(k) 81 (k) + e*al(k)B(K)| |
from where we define
Uk = Z e kv = prikm 4 k2 ik (8)
J
which, using Egs. (2), can be rewritten as
U = XM 4 elk72 4 ol
— (ikds {1 + (=) eik'(‘m*Ws)]
— o ikea '1 + eiSkza/Zei\/gkya/Z + eiSkIa/2efi\/§kya/2]
_ e—ikzma 1 + eiSk‘Ia/Z (ei\/gkya/2 + 6—1\/51@(1/2)}

. , 3
= e e |1 4 2eBhra/2 cog (é_kyaﬂ .

Replacing Eq. (9) into Eq. (8), we obtain

Hk) = =3 ((ol(k) 6*(k>)( g “Sk) <a<k>>, (10)

k tuy
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From Eq. (10), we get the graphene dispersion relation

Ei(k) = £6/3 + f(k), (11)

where
f(k) = 2cos (\/§k:ya) + 4 cos (;kxa) cos (?kw) : (12)

In Fig. 3(a), we depict the graphene energy dispersion along high symmetry lines. As we
can see, the graphene spectrum consists of two dispersive bands that meet at the K and
K’ points. Thus, graphene is a gapless semiconductor (a semi-metal). In Fig. 2(b) the
3D graphene band strucuture is shown as a function of k =(k,, k,). Note that, at the six
borders of the first BZ the energy dispersion is linear and resembles a cone (see Fig. 2).
To see this explicitly, we can expand Eq. (12) near to a K-point, for small ¢ = k — K
values, i.e.

k=K+q, (13)

Now, by expanding Eq. (12) in a Taylor series about K, we get

V3 (K, +q,) a)]
(14)

O ra) = fiq) = € Hote 90 [1 + 2¢830/2Kata2) g <

2
. . , 3
= ¢ HatpTiga [1 — 2¢31042/2 (g (g + \/Q_GQy>1 :
thus
3ia . _iKoa 3ia .
Okiq = - (qn +igy) e =~ -5 (¢ + iqy) (15)
So, close to a K-point [low energy regime], it is possible to express the graphene Hamil-
tonian as
0 © 0 4z +1q
H = = Y 16
(K+a) (@* 0) F(qz—z‘qy 0 ) (16)
where Sat

is the Fermi velocity. We can express Eq.(16) by using Pauli matrices
01 0 — 1 0
Op = Oy = . ' 0, = ) (18>
10 0 0 -1

HEK +q) = vp (¢,0, — qy0y) = Vrq - O (19)

resulting in

where
q-= (qym _Qy) (20)
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(a)

E/t
DOS (a. u)

RRD
LR
T

Figure 3 — (a) 2D dispersion relation for graphene along a high symmetry line passing by
the K, I', and M points in the first BZ, (b) Graphene density of states, (¢c) 3D graphene
band strucuture (d) Dispersion relation at the corners of the first BZ.

From Eq. (20), we can see that when we take a low energy limit, the electrons in graphene
actually behave like massless particles [Dirac fermions|. Hence, electrons in graphene ef-
fectively behave like “relativistic particles” without mass and are described by a renormal-
ized Dirac equation. That exotic behavior is meaningful, since it allows us to investigate

high-energy systems in a condensed matter model.
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Figure 4 — Variation of the band-gap width of an AGNR as a function of its width N.
Notice that the N = 3p and 3p + 1 are semiconducting (for integer p) while AGNRs with
N = 3p + 2 are metallic (vanishing band-gap) in the tight-binding approximation.

2.2 Graphene nanoribbons

Graphene nanoribbons (GNRs) are nanomaterials created by cutting graphene sheets.
These cuts can be performed by choosing different directions, which will give rise to
ribbons with different edges. Edge-type is a fundamental feature for these systems, since
it will determine, in combination with quantum effects, coming from the system low-
dimensionality, how the wave functions will be confined in this quasi-1D systems. As
previously mentioned, despite the excellent electronic properties of graphene, it is a gapless
semiconductor, what causes problems in your use in electronic devices. The gap issue (In
the TB approach) has been overcome in recent years by using graphene nanostructures, in
particular, the so-called GNRs. Given the quantum confinement of electronic states (wave
functions) in the ribbon, it may provoke the emergence of a gap in the graphene strip
[[16]]. Whether or not this forbidden region occurs, and what is its magnitude, will be for
the most part determined by the ribbon width. There are the two special crystallographic
directions types of GNRs, known as zig-zag, and armchair nanoribbons. These names are
related to the type of edges of each ribbon. Here we will focus only on armchair ribbons
la derivation of the tight-binding model for a ZGNR ribbon is presented in Appendix C.

GNRs with armchair edges, by convention, are classified according to the number of

dimers N, across its width W,. Following this nomenclature, we will refer to an armchair
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nanoribbon as N,-AGNR, where N, is the number of dimers in the system and ‘A’ comes

from “armchair”. The width of an armchair nanoribbon (See Fig. 5) is defined as

3
Wy = (Na—1) \g_a, with a =142 A (21)
Unlike what happens for zig-zag nanoribbons, armchair nanoribbons may present dif-
ferent electronic behavior, since they can have either metallic or semiconducting electronic
structures. Thus, AGNRs are classified into three distinct families, according to their re-

spective bandgap Egayp,, as

P
Egap:tlélcos (3p+1> —21 (N, = 3p)
(p+1m 22
Egap:t[Z—llcos <3p—|—2 (Na:3p+1) ( )
Egap =0 (Na =3p+ 2)

An N,-AGNR is metallic for N, = 3p+2 and semiconducting if N, = 3p or N, = 3p+1,
where p is positive and integer 2l We can also notice that the gap of an N,-~AGNR is
inversely proportional to its width, as can be seen in Fig. 4. Thus, they can be grouped

according to gap size

ESP 2 B3V, > ESY, (=0) for all values of p. (23)

It is possible to notice a significant reduction in the gap when we increase the width
of the ribbon, which allows us to conclude that from a certain very large width, all the
AGNRs will show a metallic behavior. However, it is important to point out that this
treatment for armchair ribbons is only in agreement with the literature when compared
with results obtained from the tight-binding method. First-principles calculations show,
however, that there are no metallic AGNRs. In what follows, to simplify the notation, we
will refer to N, = N.

2.2.1 Tight-binding model for Armchair nanoribbons

Fig. 5 shows the lattice structure of an armchair graphene nanoribbon. The yellow
rectangle displays the system unit cell. The width of an AGNR is given by a/2v/3N,
where a is the lattice constant, and 2N gives us the total amount of atoms in the unit
cell, as illustrated in Fig. 5. In addition ar specifies the ribbon length.

In appendix C, we present a complete derivation of the eigen-energies and wave functions
of armchair nanoribbons. Here, in a nutshell, we have that the senergy eigenvalues are

given by

k
E = s\/l + 2¢, cos 5 + €2, (24)
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Figure 5 — Real space structure of an N = 12 AGNR. The dashed lines indicate its unit
cell.

and their respective wave functions

( Zm’A ) = N, ( _37%6/2 ) sin(mp). (25)
'm,B €p 1 €

In Fig. 6, we show the band structures for AGNRs with different widths. What we
can notice is that the AGNRs present different electronic behaviors [both metallic and
semiconductor families|. In addition, we also observe a tendency of decreasing gap with

increasing N as shown in Fig. 4

2.2.1.1 AGNR Density of states

In panels (a) to (d) of Fig 7, we present the density of states (DOS) for AGNRs with
different widths (N =4, N =5, N = 12, and N = 30). From the DOS, it is possible
to verify the electronic behavior presented by these materials (semiconductor or metallic
behavior), as well as it is easy to verify a dimensionality signature of those systems. This
signature is apparent in the singularities, named Van Hove singularities, present in the
DOS results shown in all for panels, which are characteristic of one-dimensional (1D),
or quasi-1D, materials. Furthermore, it is verified that when the number of sites within
the unit cell of the armchair ribbon increases, the DOS begins to approach the graphene
DOS, presented above, as can be seen in Fig. 7, for an AGNR with N = 30 (60 sites).
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CHAPTER

Topological graphene heterostructures

Among the numerous advances in the study of graphene-based nanostructures, we
may state that perhaps one of the most important /exciting was the discovery of the topo-
logical properties of AGNRs. The topology of AGNRs was theoretically predicted in 2017
by Steven Louie’s group 17 Soon after, the experimental confirmation took place (7,
Briefly, each topological system has associated with it a topological invariant (which, in
short, serves to designate what topological class the structure belongs to, trivial or non-
trivial). In the case of AGNRs, the associated invariant is called Z5. On one hand, if a
given AGNR has a Z, = 0, it will be called trivial (like the vacuum). On the other hand, if
Z5 =1, the AGNR will be in its topologically non-trivial phase. As will be shown below,
these AGNR properties can be used to simulate a Su-Schrieffer-Heeger (SSH) 18] dimer-
ized chain. An effective SSH model can be simulated by intercalating AGNR segments
with alternating Z, values. The resulting system could be seen as analogous to a 1D
topological insulator, a 1D topological insulator, something still negligibly investigated.
Similar to both 3D (with their well-known 2D edge states) and 2D (with 1D edge states)
counterparts, these heterostructures will be able to support edge states, presenting all
the peculiarities associated with a 0D metallic state. To simulate a low energy model (an
effective model) equivalent to the SSH model, based on AGNRs, we must ‘construct’ the
fundamental component of the SSH chain, namely, a dimerized chain. For this, we must
create the dimers, composed of two localized states, with energy equal to zero, and that
also overlap (hybridize). This can be achieved as long as these localized states are close
to each other. To obtain the localized states, it is necessary to connect different AGNR
segments with different Z, values. By doing this, an edge state is expected to occur on

the boundary between the two strands.

As an illustration of what was discussed above, consider Fig. 8. It shows a periodic
heterostructure formed by intercalating short strands of AGNRs with N = 5 between
longer strands of AGNRS with N = 9. Since both ribbons have different Z, values,
localized edge states (at zero energy) should appear at the region between both strands. In

Fig. 8, such edge states are indicated by the larger red circles. If the distance between these
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Figure 8 — Representation of an ‘SSH chain’ built from graphene nanoribbons (‘Staggered’
case). The parameter t,, represents a hopping (overlap integral) between different unit

cells, and ¢, represents hopping inside a unit cell. [2

localized states is not too large, they will hybridize. This hybridization is indicated by
the overlap integrals ¢,, (horizontal oval, with solid contour) and t,, (diagonal oval, dashed
contour). Thus, the resulting low energy effective model is that of the SSH model (18],
If one engineers correctly the heterostructure, the values of ¢, and t,, obtained are such
that one may end up in the non-trivial side of the SSH phase diagram 4. Tt should be
noted that a comprehensive theory describing the formation of the edge states between
the different AGNR strands has only recently been developed. For details, please see
Ref. [19}, and references therein.

In terms of the overlap integrals t,, and ¢,,, the band structure close to the Fermi level
can be described using the SSH model, where the system obeys the following dispersion

relation (see Appendix B)

E(k) = /2 + 2, + bty cos(k). (26)

In the rest of this chapter, we will deal with the two types of heterostructures first

introduced in Refs. (281,

3.1 Inline heterostructure

To explore the AGNR heterostructure features, we need first to set the nomenclature
defined in Ref. 2. Let us first describe the so-called Inline type (see Fig. 9). We denote
it as N-AGNR-I(n,m), where N specifies the backbone width and I refers to the ‘Inline’
type, while n is the number of adjacent extended segments (N +4), and, finally, m specifies
the distance between two n-segments (see Fig. 9). It is worth saying as well that the [m)]
and [n] quantities are measured in a.. (carbon distance in hexagonal lattice) units.

Bellow, we will present the results for DOS and energy dispersion for the heterostruc-
tures above defined. A full description of the Hamiltonino TB used here can be found in

Appendix E.
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Figure 9 — Schematic representation of a 5-AGNR-I(3,3) heterostructure. Where N =5
(i.e., a 5~ AGNR backbone, in cyan), n = 3, and m = 3.

3.1.1 Band structure as a function of the parameter N

Now, we show the results for the energy dispersion and density of states for the Inline
heterostructures. For each of the results shown in Fig. 10, we fix (n,m) = (1, 3) and vary
the parameter N = 3,5,7,9 (width of the back-bone, see Fig. 10). An important point
to be highlighted is that our results agree semi-quantitatively with the results found from
ab-initio calculations. It is possible to note that when we increase N value there is a

tendency towards SSH behavior for the dispersion close to the Fermi level.

3.1.2 Band structure as a function of the parameter n

Figure 11 shows the same results as in Fig. 10, but now we fix N =5 and m = 3, and
vary n = 2,3,4,5. What can be immediately noticed, by comparing the four panels, is
that the increase in n is responsible for a a significant reduction in the system‘s bandgap.
This behavior can be observed if we consider, for example, that for n = 2 the band gap is
E, =0.958 eV and for n = 5 the band gap is £, = 0.292 eV. It is important to point out
that this behavior is in contrast to what happens with the Staggered heterostructures,
analyzed in the next section, in which it is verified that an increase of n implies a notable

enlargement in the band gap.

3.1.3 Band structure as a function of the parameter m

The Fig. 12 shows the results for a heterostructure with N =5, but now we fix N =5
and n = 1, and vary m = 2,3,4,5. For m = 2, the dispersion near to the Fermi level
resembles what is expected for the SSH model. However, it is noticed that for m > 2, the

system starts to have its topological properties suppressed.

3.2 Staggered heterostructure

A Staggered heterostructure, denoted N-AGNR-S(n,m), is the asymmetric counterpart
of the Inline heterostructure. The ‘staggered’ system is made of n > 1 segments, where

n measures the number of (N +2)-AGNR ‘extensions’, as can be seen in Fig. 13 (in red).
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Figure 10 — Energy spectrum and density of states (DOS) for n =1, m = 3, and N varying
from 3 to 9. (a) 3-AGNR-I(1,3), (b) 5-AGNR-I(1,3), (c) 7-AGNR-I(1,3), (d) 9-AGNR-

I(1,3). On top of each panel, we show a sketch of the corresponding heterostructure.

As shown there, the difference with the Inline hetrostructure is that the (/N +2) pieces are
distributed in an ‘staggered’ way on opposite sides of the bare nanoribbon backbone, in
order to create a more asymmetric system. This configuration is then repeated regularly
to create a periodic system, which will then have unit cell sizes that are considerably
larger than an Inline heterostructure with the same n and m parameters. The separation
between the segments is given by m, which serves to measure the distance between the
n parts on opposite sides of the backbone (see Fig. 13). In the same way as for the
case shown in the earlier section, N is the number of dimers in the unit cell of an AGNR
without any extensions (the so-called backbone) and S comes from ‘Staggered’. Note that
m > 1, thus m can also be equal to 1, which is not possible for Inline heterostructures,
since this would result just in an (N +4) — AGNR.
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Figure 11 — Energy spectrum and density of states (DOS) for N =5, m = 3, and n varying
from 2 to 5. (a) 5-AGNR-1(2,3), (b) 5-AGNR-I(3,3), (¢) 5-AGNR-1(4,3), (d) 5-AGNR-
1(5,3). On top of each panel, we show a sketch of the corresponding heterostructure.

3.2.1 Band structure as a function of the parameter N

In Fig. 14, we present several results for energy spectrum and DOS for N-AGNR-
S(1,3), where we have set m = 3 and n = 1, and we vary N. We should should note that,
contrary to what happens for Inline heterostructures, which will exhibit boundary states
for any value of IV, for the Staggered case this will be valid only for N = 3p + 1, with
p =2 Pl The most interesting result is the 7-AGNR-S(1,3) heterostructure, which was
recently synthesized, and shows a low energy dispersion for the SSH model in a trivial

phase [20],

3.2.2 Band structure as a function of the parameter n

In Fig. 15, we present several results for energy spectrum and DOS for 5-AGNR-S(n,3),

where we have set N = 5 and m = 3, and we vary n. The general effect caused by the
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Figure 12 — Energy spectrum and density of states (DOS) for N = 5, n = 1, and m varying
from 2 to 5.(a) 5-AGNR-I(1,2), (b) 5-AGNR-I(1,3), (c¢) 5-AGNR-I(1,4), (d) 5-AGNR-
I(1,5). On top of each panel, we show a sketch of the corresponding heterostructure.
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Figure 13 — Schematic representation of a 5-AGNR-S(2,2) heterostructure. Where N =5
(5-AGNR, backbone in cyan), n = 2, and m = 2.
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Figure 14 — Energy spectrum and density of states (DOS) for N =5, m = 3, and n varying
from 2 to 5.(a) 3-AGNR-S(1,3), (b) (1,3), (¢) 7-AGNR-S(1,3), (d) 9-AGNR-S(1,3). On
top of each panel, we show a sketch of the corresponding heterostructure.

increase of n, for fixed m and N, is to cause a separation of the bands near to the Fermi

level. This effect is more pronounced for N>5 (not shown).

3.2.3 Band structure tion of the parameter m

In Fig. 16, we present several results for energy spectrum and DOS for 5-AGNR-

S(1,m), where we have set N = 5 and n = 1, and we vary m. The variation of the

band structure with m is dramatic. We even see a flat-band at the Fermi energy for the

5-AGNR-S(1,4) heterostructure.

3.3 Bottom-up graphene nanoribbon synthesis

The first step in creating AGNRs, with atomically precise edges in a laboratory, is the

choice of the type of monomer to be used, which consists of each one of the molecules

that, following some conditions, join together (polymerization), building large chains of

molecules (polymers) 3],

After the monomers are selected, they are synthesized and

purified [see first panel in Fig. 17(a)]. Afterwards, the precursor monomer is deposited
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Figure 15 — Energy spectrum and density of states (DOS) for N =5, m = 3, and n varying
from 2 to 5. (a) >-AGNR-S(1,3), (b) 5-AGNR-S(2,3), (¢) 5-AGNR-5(3,3), (d) 5-AGNR-
S(4,3). On top of each panel, we show a sketch of the corresponding heterostructure.

on a metallic surface, usually Au(111), in an ultra-high-vaccum chamber (UHV) [second
panel in Fig. 17(a)]. Then, there is the evaporation and annealing processes, which gives
rise to a dehalogenation process, which consists in replacing halogen atoms (Group 17
of the periodic table) in a molecule [third panel in Fig. 17(a)]. At this moment, the
monomers diffuse across the metal surface and form the polymers. The polymer still
needs to go through the processes of annealing and cyclodehydration, Fig. 17(b). Then,
the polymer takes its planar form with the new benzene rings. Fig. 17(c). See Ref. B3] for
details.

3.3.1 Bottom-up AGNR-heterostructure synthesis

The synthesis of heterostructures from AGNRs, through a bottom-up approach, is
achieved via a procedure in which it is necessary to make use of more than one precursor
monomer, through the fusion of different monomers (which, in isolation, would give rise to

different segments of the pristine AGNR). In Figs. 18 and 19, we can see a representation
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Figure 16 — Energy spectrum and density of states (DOS) with N = 5, n = 1, and
m varying from 2 to 5. (a) 5-AGNR-S(1,1), (b) 5-AGNR-S(1,2), (¢) 5-AGNR-S(1,3), (d)
5-AGNR-S(1,4). On top of each panel, we show a sketch of the corresponding heterostruc-
ture.

of what was said above, we have two individual monomers that when merging will be
responsible for creating a new system (heterojunction) 21,

To obtain a 7-AGNR-S(1,3) (Fig. 18), first, the samples were synthesized via a step-
wise annealing process. After, the BADMT molecular precursor (monomer 1, 6,11-bis(10-
bromoanthracene-9-yl)-1,4-dimethyltetracene) was placed on Au(111) at room tempera-
ture. In sequence, the sample was annealed at 200° C, and 400° C. This process leads
to a monomer activation, polymerization, and finally, the cylcodehydrogenation process
originates the 7-AGNR-S(1,3) heterostructure. For the synthesis of a 7-AGNR-I(1,3) the
same procedure was used, with the only difference being the substitution of the of the

precursor monomers as can be seen in Fig. 19.
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Figure 17 — Schematic representation of the synthesis of an AGNR. From Ref. 131,

Figure 18 — Schematic representation of the fabrication of a 7-AGNR-S(1,3) heterostruc-
ture and an AFM image of the synthesized material. From Ref. 2,
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Figure 19 — Schematic representation of the fabrication of a 7-AGNR-S(1,3) heterostruc-
ture and an AFM image of the synthesized material. From Ref. 2,
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CHAPTER

Thermoelectric properties of AGNR

heterostructures

4.1 Landauer formalism

A powerful approach when there is coherent transport through a mesoscopic conduc-
tor is the Landauer-Buttiker Theory. Created by Landauer and further generalized by
Buttiker, this approach relates the current through a conductor to the electron transmis-

sion probability [21],

In Fig. 20, we show the system to be analyzed, a quasi-one-dimensional conductor. Here,
we assume that transport is ballistic and, besides that, the conductor is sandwiched by two
reservoirs (considered semi-infinite), at chemical potentials p; and usy (see Fig. 47). The
source and drain have many allowed states, a much larger number than the system between
them. The electron distribution in each reservoir is given by the Fermi distribution f(FE),
which is a step-like function at 7' = 0 K and varies smoothly at temperatures 7' > 0 K.
This is equivalent to saying that, at zero temperature, the electronic levels in the reservoirs
are filled until an energy E equal to the chemical potential . The Fermi distribution is

given by

1
~ L+exp((E — ) [kpT]

f(E) (27)

where a represent the Fermi distribution indexes 4. 7" and Kp are the temperature and

the Boltzmann constant.

An important assumption which will be relaxed later for the future development of
our theoretical model is that contacts are reflectionless. It means that an electron that
propagates through the system will be completely transmitted when it finds the interface

between the contacts.
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Figure 20 — Schematics of a device setup for transport within the Landauer approach.

4.1.1 Landauer Formula

Now, we will derive a general expression for the electronic conductance that an arbi-
trary conductor carries. To do this, we first need to define some really important concepts.
First of all, any state in the conductor have different transverse modes [subbands| asso-
ciated with them. Next, each mode follows a dispersion relation F(N,k) and it has a

cut-off energy given by

ey = E(N,k = 0) (28)

The number of transverse modes M (FE) with energy F is found by counting states with

cut-off energies ey < E, where N is any mode. For a complete description, we recommend
the Ref. [21], as

M(E)E%:l(}(E—&‘N) (29)

where 1 is a Heaviside function. From Eq. (29), it is possible to find the current related
to each one of the transversal modes [M(E)]. Then, to find the complete current, we only
need to sum over all of them.

To obtain a general expression for current, we will start by considering a transverse
mode +k,, coming from left and with chemical potential equal to p, that obeys f*(E).
From elementary Physics courses, we learned that for an electron gas, composed of n

electrons [per unit of length], moving with a velocity v, the current can be expressed by
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I = env. Hence, we are able to say that the current flowing through a single mode, due
to +k, can be written as
e e 10F
It =— TE)==) ——f"(F 30
Xt = L ) (30)

the sum in Eq. (30) can be converted into an integral by using the following relation

L

2(for spin) x o~ [ dk 1

%% ( for sp1n)><27T (31)
we come at

b 2e [y

It = ﬁ/ FH(E)AE (32)

where € is the threshold energy. And so forth, the current carried by all states +k (M (E)
modes) are

L 2Ze oy
I™ = " fT(E)M(E)E (33)

By comparison, the current carried by electrons —k, moving in the opposite direction

(—x direction) with a chemical potential ps is given by

_ 2e [F _
1m=" | M(E) (B)JE. (34)
thus, the net current is
[=I1t—1 = 2; joo M(E) (f+(E) - f~(E)) dE. (35)

if we impose that the number of modes M (FE) does not change in the interval [y > E >

p2) and T'= 0 K, we arrive at

[ =M +oo( “(E) - [(B)) dE.
hoTe (36)
2eM
= h (p1 — pa2) .
but py=exV
1= M(B)% (Vi — 1) (37)

where the conductance can be written as

2e?
G == -M(E) (38)

The expression in Eq. (38) is the expected result for a ballistic conductor. Hereafter,
we will derive a more general result that takes electronic transmission into account, that

is, for which the transmission probability is not always 100 %. In short, we know that for
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an ordinary conductor [that obeys Ohm’s law well] the electrical conductance must obey

the following expression

W [width]

G L [length]

(39)

however, when we decrease the conductor dimensions, the Eq. (39) is no longer valid.

An important assumption that we must make is that there will be a resistance in the

system with such characteristics [reduced dimensions] and that it is independent of the

device length L. Another significant point that we must pay attention to is the number

of transversal modes will be quantized. Systems for which the two previous statements

are valid are well described within the Landauer formalism, which we will show below
2¢?

G="-MT (40)

to find the Landauer formula for conductance, we will start from Fig. 20. We assume that
the Leads are ballistic conductors, each containing M traverse modes and 7T represents
the transmission function [which is the probability of transmission of electrons through
the conductor|. At lead 1, the +k, states will be occupied by electrons coming from the
left up to a chemical potential u;. In contact 2, the —k, states in lead 2 originate from
the right contact and have a chemical potential py. At T = 0 K, the electron flow from

lead 1 is written as

I = (2¢/h)M [11 — po] (41)
The current from lead 2 is the current I3 times the transmission probability T

I = (2e/h)MT [p1 — pio (42)

the reflected flow in contact 1 is given by

Iy = (2¢/W)M (1 = T) [ — pue] (43)

so the net current I on the device is given by

[=If —If = If = 2e/W)MT [ — ] (44)
finally, electronic conductance can be expressed

I e
(b1 —p2) [le[ A

where 7T is transmission function and 2¢?/h is a Quantum of Conductance.

G = MT (45)
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4.1.2 Green’s function and transmission coefficient

In the Landauer approach, the system under study is connected to contacts and all
the electronic transport information can be obtained from the transmission coefficient.
Given a Hamiltonian (in the tight-binding method), we can obtain, in a simple way, its
coefficients through the Green’s function method. In the single-particle approximation

the Green’s function G(E) of a system with Hamiltonian H is given by

G(E)=(E—H)" (46)

as we can see in Eq. (46), the Green’s function has poles at the eigenvalues of the Hamil-
tonian. We commonly sum or subtract an infinitesimal imaginary part to the energy and

express the Green’s functions as

GH(E) = lim G(E £ 1n), (47)

n—0t
where the symbols Gtand G~ refer to the retarded and advanced Green’s function, re-

spectively. Thus, Eq. (46) can be rewritten as

GXH(E) = lim (E+in— H)™". (48)

n—0+t
Now, consider a system whose transport properties we want to investigate and that
is sandwiched between two contacts at left and right, denoted p and ¢. The transmission

(22]

1,4 between them, known as Fisher-Lee relation “*, will be given by

Tpg = Tr Fpgpqrqg;q} , (49)

where G, is the submatrix of the G matrix with the rows coming from contact p and
the columns from contact ¢, while the I',/, function carries all contact information that

matter for the Transmittance and is related to the self-energy ¥, by

r,=i(%, - ) (50)

The Self-energy is actually a way of taking into account the influence of contacts and, can

be obtained from the contact’s Green’s function g, through

2= VgV, (51)

where V' is the coupling (with hopping matrix elements, in the tight-binding approxi-
mation) between the leads and central part and the contact. Although g, is an infinite-
dimensional matrix, when we use the tight-binding approach, the matrix V' has only
non-zero matrix elements between sites located at the contact-conductor junction. Thus,

we only need to use what is called the surface Green’s function [23],
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Figure 21 — Right side: Transmission curves for AGNRs with N =3, N =4, N
=6, N=7 N =28, and N = 15. Left side: Density of states for AGNRs with N
=4, N=5 N=6,N=7 N=28 and N = 15.
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In Fig. 21, we show some results for transmission function and DOS, obtained from

Green’s function formalism.

4.2 Thermoelectric effects

By applying a small voltage AV = V;, — Vi and a not very large temperature gradient
to our system, we can calculate the thermoelectric transport through a nanodevice [quasi-
equilibrium regime]. Left and right contacts are then at different chemical potentials pi,

and pg, and temperatures 77, and Ty [24], with
AV = M, (52)
e

and

AT =Ty — Tg. (53)

The thermoelectric properties are obtained from the L,, coefficients, obtained from the

following equation [25)

L, = /_ : (E— )" T(E) (—W) dE (54)

in Eq. (54), T(FE) is the transmission probability of electrons of energy E being trans-
mitted through the device, and f(F,T) is the Fermi distribution, as defined above. The

derivative of the Fermi distribution is given by
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< _Bou E_&)Q)Q (55)
¢ 2Ks,T 4 @2RT
B —1
AK 5T cosh? (ZET;%)
From eq. (55), we notice that, for T = 0K, the derivative f'(E,T) is a Dirac delta

function

N\ 2
af(E’T) — 1 (3%_,_7g (14—@%)

_8f(§E_ U) _ 5(#)’ (56)

In n Fig. 22, we show the behavior of the derivative of the Fermi function for 7" = 600K,
150K, and 20K . When the temperature decreases we observe also a decrease in width of
the f'(E,T) curves, which shows the tendency to a Dirac delta behavior, which will be
confirmed at T = 0 K.

When there is no temperature gradient in the system, that is AT = 0, the electrical

conductance is given by

I
¢=(a7): (57)
or
2

Similarly, if the electric current I in the system vanishes, the so-called Seebeck coeffi-

S=— (2—91_0’ (59)

cient S is defined as
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or
-1 Ly

S=——. 60

|€|T L(] ( )

The Seebeck coefficient, or thermopower, is the capacity of the material to convert the

gradient temperature AT to voltage difference AV, when no current flows through the

device. Other important thermoelectric properties are the Peltier coefficient (II), and the

electronic thermal conductance K,
-1

el Lo

2 (Ly)*
Re =— ﬁ <L2 — LO

Finally, it is possible to derive a relation that tells us the thermal efficiency of a mate-

(61)

rial. This efficiency is expressed through the so-called ZT figure of merit (a dimensionless
quantity). The ZT can be obtained from the Seebeck coefficient, electrical conductance,
and thermal conductance, as

GS? PF
= T =
K. K.

where PF = GS? is so-called power factor.

4T

T (62)

_ Wy
LoLy — (Ly)*

all thermal proprieties that we have defined above can also described in function of the

(63)

L,, in the following way

2¢?

G:TLO
_kBLl
K_Q(kB)QT L1 (64)
° h > Lo
2] [L, IL?
ZT. = | =/ |= - =1
e lL%]/ [fo L%]

These equations show that the typical units of thermal properties are

2 2
% = T7uS (65)

k
?B = 86V /K (66)

2(kg)* T
<IZ) —173pW/K at T = 300K (67)
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Figure 23 — (a) Thermal coefficient relevant for electrical conductance. Contribution to
conduction comes from only near the Fermi-level p.(b) Thermal coefficient relevant for
the Seebeck coefficient. Contribution comes from only near p. (c¢) Thermal coefficient
relevant for the electronic thermal conductance. Contribution comes from both above
and below p, with the same sign, and vanishes at pu.

Below, we will look at the physics of thermoelectric properties. It is important to point
out that they are expressed in terms of the product of physical constants(e, h, kg, etc)

and the convolution of two functions [26], expressed as

I, = (E—p)" (—%) (n=0,1,2) (69)

thus, the L, in Eq. (54), at T'= 0K (where Er = p), may be expressed in terms of the
Z,.

The three thermal integrals as a function of chemical potential y are shown in Fig. 23.
These functions are important since they are responsible for determining the sign the
thermoelectric properties may have, since, as can be seen from Eq. (54), the other relevant
quantity in the L,, integrals is the transmittance, which is always a positive quantity. For
the electrical conductance, Ly [Fig. 23(a)] selects charge carriers that live at the Fermi
level. (u = FE). L; and Ly tell about the transport of Entropy. L; [seebeck coeficient]
selects particle that has an energy (F > p) or (E < u). The same is true for Ly [Thermal

conductance].
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4.2.1 Thermoelectric properties of graphene AGNRs

In Fig. 23 we present the properties of a pristine semiconducting armchair nanoribbon
(N = 13), as a function of chemical potential p, at T = 300K. Panel (a) shows a
schematic description of the system being studied. In Fig. 24(b), we notice a large Seebeck
coefficient, which is mainly due to the system’s large band-gap [which may be inferred
from panels (c) and (d)]. The Seebeck coefficient is a central quantity in the description
of the thermoelectric properties. In short, the Seebeck coefficient is an odd function that
is positive for p > 0 and negative for negative p < 0 [see Fig. 23(b)]. As can be seen
in Fig. 24, it is easy to note that both the electrical and the thermal conductances have
the same profile of the transmission coefficients [used in the thermal integrals|. The finite
temperature is responsible to cause the degradation of well-defined plateaus. Fig. 23(d)
shows the thermocurrent GS, defined as a product of the Seebeck coefficient and the
electronic conductance for a 13-AGNR. This is a property of great importance, as together

with ZT, it will define the efficiency ranges of the material.

4.3 Thermoelectric transport properties of armchair

graphene nanoribbon heterostructures

4.4 Introduction

The discovery of the Seebeck and Peltier effects, in 1821 and 1834, respectively, marked
the beginning of thermoelectricity research, i.e., the study of phenomena related to the
direct conversion of heat into electrical energy (Seebeck effect), or the reverse, the conver-
sion of electrical current into a cooling heat flow (Peltier effect). Briefly, in the first, heat
drives an electrical current, which can be used to perform work (see Fig. B1 in Ref. [27}),
while, in the second, an electrical current drives a heat flow that can refrigerate some-
thing >8] In contrast to a traditional mechanical thermal engine, a thermoelectric (TE)
device has no macroscopic moving parts. Quantitatively, the electric potential difference
created by a temperature gradient is measured by the Seebeck coefficient S (also called
thermopower), while the amount of heat carried by an electrical current is measured by the
Peltier coefficient II. Both, together with the thermal conductance K = K, + K, (where
K. and K, are the thermal conductance due to electrons and phonons, respectively), are
material specific TE properties [29].

More than a century ago, in 1914, Edmund Altenkirch obtained a patent for a TE

30, 31]

cooling and heating device , i.e., a ‘solid-state heat engine’. Further commercial

progress was hindered by the lack of efficiency—measured by the (dimensionless) TE
GS*T

figure of merit ZT = in the TE energy conversion effects (G is the electrical con-

ductance, T the absolute temperature, and G'S? is called power factor). Indeed, a ZT > 3
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Figure 24 — Top: Schematic representation of a 13-AGNR transport device. The two
contacts are attached to the finite central part and have the same geometry as the central
region, being however considered infinite sources of electrons. (a) Seebeck coefficient, (b)
Electrical conductance, (¢) Thermal conductance, (d) Thermocurrent. All results for a
pristine 13-AGNR, at T" = 300K.
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is required for a commercially competitive refrigerator, while a ZT > 2 is necessary for a
power generator to replace conventional technologies [32, 33], However, it was only in 1950
that A. F. loffé discovered that doped semiconductors could have ZT values close to 1
(corresponding to about a sixth of Carnot efficiency [34]). New developments only occurred
in the 1990s, after the U. S. Department of Defense stimulated, through funding, the sci-
entific community involved in TE research to look for new ways to improve ZT" values [35],
As a consequence, two new lines of research followed: (i) the search for the next genera-
tion of advanced bulk TE materials [36}; (ii) the exploration of low dimensional systems.
Successes of the first line of research may be exemplified by the discovery that skutteru-
dites [37}, like Cerium- and Lanthanum-filled Fe3C'0Sbyo, could reach ZT ~ 1.4 [36}, and,

39, 40]

more recently, that doped CusSe may reach Z7T =~ 2.5 [38] (see also Refs. [ , and

references therein). The second line of research was inaugurated by a seminal paper by
Hicks and Dresselhaus [*! proposing the use of quantum-well superlattices to increase ZT

(see Refs. (12 43, 3% 44,45, 46] 1. qetails) L.

More recently, along the lines of the second proposal mentioned above, much TE
research has centered directly in studying the TE properties of so-called hierarchically

[48, 49] [50, 51]

nanostructured materials , in addition to nanostructures like quantum dots ,

[52], and nanoribbons, especially graphene nanoribbons (GNR) [53, 54],

quantum wires
Regarding the latter, important aspects that have been studied are: (i) mixed edge
GNRs, where electron resonant tunneling, originating from the multibarrier structure
created by the alternation of zigzag and armchair edges, is exploited to increase the ther-
mopower S and decrease phonon thermal conductance K, [55}, leading to a maximum
ZT =0.79 [56}; (ii) drilling nanopore arrays in chiral and zigzag GNRs, where the pres-
ence of the nanopores decreases K, without impacting G, which is determined by edge
currents, leading to an increase in efficiency to Z7T =~ 2.0 at room temperature [57]; (iii)
synthesizing nanoribbons with a supercell structure composed of a hybrid of hexagonal
boron nitride and graphene resulted in an increase in ZT of the order of 10 to 20 times [58};
(iv) the synthesis of graphene nanoribbons modulated with ‘stub’ structures (forming het-
erojunctions), in both zigzag GNRs (ZGNRs) and armchair GNRs (AGNRs) lead to a
strong increase in Z7T', by boosting S and suppressing K, [59]; (v) finally, a series of
strategies have been used to introduce defects in both AGNRs and ZGNRs, leading to
disorder, which results in the increase of ZT by enhancing S and decreasing K, (see
Ref. %3] for details). A comprehensive review of these aspects can be found in Ref. [60]

and in the special issue prefaced by the editorial in Ref. (61,
Motivated by those five GNR-related research lines just described, we will study the
TE properties of a recently developed AGNR heterostructure that has recently been

characterized In Ref. [2], two types of AGNR heterostructures were introduced, the so-

1 Tt should be also noted that TE properties of Topological Insulators have attracted much interest

recently (see Refs. [4727] for details).
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Figure 25 — (Color online) (a) Description of an N-AGNR-I(n,m) (Inline) heterostructure
with N = 5 and n = m = 3. (b) Same as in panel (a), but for an N-AGNR-S(n,m)
(Staggered) heterostructure, with N = 5 and n = m = 2. The resulting unit cells are
indicated by horizontal solid lines and the unit cells of the AGNR backbone are indicated
by vertical dashed lines in panel (a).

called ‘Inline’ and ‘Staggered’ heterostructures, denoted N-AGNR-I(n,m) and N-AGNR-
S(n,m), respectively. In Fig. 47(a), we schematically show how the unit cell of an N-
AGNR-I(n=3,m=3) heterostructure is built. On the top panel, the parameter n indicates
how many adjacent unit cells (separated by vertical dashed lines) of the so-called backbone
(colored in cyan), containing N = 5 dimers in each unit cell, as indicated in the right,
will be extended into unit cells containing N + 4 dimers. As indicated in Fig. 47(a), this
is done, for the first of the n unit cells, by adding six carbons to the top and bottom
of the unit cell. This adds three extra benzene rings (colored in light-green) to the top
and bottom of the unit cell. To extend the next unit cell (adjacent to the right), just
four extra carbon atoms are needed to add two more benzene rings (colored in red). This
second step is repeated until all n adjacent unit cells are extended. Fig. 47(a) shows the
result for n = 3. Finally, m indicates at how many unit cells away from the last extended
unit cell we will repeat the process of extending n unit cells. There is an important detail
here: we are counting m from the center of the last extended unit cell to the center of the
first extended unit cell of the next n-group to the right (see Fig. S2 in Ref. [2]). Therefore,
the unit cell of an N-AGNR-I(n,m) heterostructure will contain n + m — 1 unit cells of
the original backbone. It is clear that m > 2, since m = 1 produces an uniform AGNR
with a width equal to N 44. In Fig. 47(b), we show the same process, but for a Staggered
N-AGNR-S(n=2,m=2) heterostructure. The process for generating the heterostructure,
and the definitions of n and m, is similar to the one in Fig. 47(a), with the exception that

the n-long extensions alternate, separated by m, between opposite edges (notice that now
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m > 1).

We will analyze the TE properties G, S, and K., of these AGNR heterostructures,
study how the parameters N, n, and m influence their figure of merit Z7T, and find if
there is a range of chemical potential values that maximizes ZT" and also has a sizable

62, 63] (thermally induced electric current).

linear-response thermocurrent % = GS |
Although our calculations are done at room temperature 7" = 300 K, we will disregard
heat transport through phonons, that is, we will take K = K.. In Sec. 4.9 we present
a justification for that. The rest of the paper is organized as follows: In Sec. 5.2, we
introduce the tight-binding Hamiltonian that describes the heterostructures and provide
the equations that define the TE coefficients to be calculated. In Sec. 4.6, we present
numerical results for the TE properties of pristine (no extensions) N-AGNRs. These
results will serve as a benchmark to gauge the improvement (or not) of ZT values for the
two heterostructures studied here. In Sec. 4.7, we present results for G, S, K., GS, and
ZT for Inline N-AGNR-I(n,m) heterostructures, showing how they depend on N, n and
m, and, most importantly, how their TE properties compare with those of pristine N-
AGNRs (with no extensions), and if there is any improvement in Z7. We do the same in
Sec. 4.8, but now for Staggered N-AGNR-S(n,m) heterostructures. In Sec. 4.9 we discuss
the results obtained and we end with Sec. 4.10, where we present a summary and our
conclusions. Note that despite the interest that the non-trivial topological properties of
these heterostructures have generated 2, 8}, we do not explore this aspect in particular in

this paper.

4.5 Model and thermoelectric coefficients

The electronic structure of these N-AGNR(n,m) heterostructures will be simulated

using a tight-binding Hamiltonian

Hy = —t > cl o, (69)

(i.4)o

where ¢l (¢;,) creates (annihilates) an electron in site i with spin o and (i, ) runs
over nearest-neighbor sites. This Hamiltonian describes nearest-neighbor hoppings with
transfer integral ¢, where a typical value found in the literature for this parameter is
[64] b

, DY

the current authors, presents an explicit expression for the tight-binding Hamiltonian in

t ~ 3.0 eV Pl This will be the value used for all our calculations. Reference

reciprocal space for an N-AGNR(1,3) heterostructure.
The temperature dependent electrical and thermal conductances, G and K, (electronic

part only), respectively, as well as the thermopower S (Seebeck coefficient) are given
by [42, 65, 66]
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Figure 26 — (Color online) Thermoelectric properties for semiconducting (left panels,
N =3, 7, and 9) and metallic (right panels, N = 5 and 11) N-AGNRs. Panels (a) to
(e) [(f) to (j)] are for electrical conductance G, thermopower S, thermal conductance K.,
thermocurrent GS, and figure of merit ZT, respectively. All TE properties are presented
as a function of chemical potential p.

) 2¢2
G(T) = — Al‘l/go (JE/AV)|AT:0 = TIO (70)
. 2k, Iy
Ke=- AIYI“IEO (JQ/AT)lJe=0 - TT <]2 I ()
o ksl
S =— AI%IEO (AV/AT>|J6=0 = —?I—O (72)

where the so-called TE transport coefficients 1, (for a = 0,1, 2) are given by

lo= [18(e = W B (= T = f(= T)IT(e)de (73)

where T (¢, T) is the transmittance for electrons with energy € and temperature 7', while

f(g,T) is the Fermi-Dirac distribution function. The transmittance 7 (¢, T") was calculated
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using the Landauer and Green’s function formalism, as described elsewhere 21,671 The
calculations for 7 were done following a standard Landauer setup, viz., three distinct
regions that comprise a central (finite) region, coupled to two semi-infinite reservoirs that
serve as source and drain. All three regions are formed by the heterostructure (or the

pristine N-AGNR) being analyzed.

As the TE transport coefficients are dimensionless, and since (in SI units) we have
that 222 = 7748 x 1070AV 1 %;]fT = 0.5753 x 107?WK™! (for T = 1K), and k: =
86.16 x 1079V K1, we will present the results for G, K., and S in units of 10% x pAV 1,
nWK™, and mVK~! respectively. We will present numerical results for these (and
derived properties) as a function of chemical potential .

Before presenting the results, we wish to make an important remark. One TE property
that is usually measured is the so-called linear-response thermocurrent o @GS, Thus,
we will present results for this quantity too (in units of nAK™'). We thus consider
an improvement in the TE properties of a material if a so-called nanostructure ‘band
engineering’ produces an increase in both ZT and GS for the same value of chemical

potential .

4.6 Thermoelectric properties for pristine N-AGNR

AGNRSs’ electronic properties depend on their width N, since they can present either
a metallic (N = 3p 4 2) or a semiconducting (N = 3p,3p + 1, with p an integer) ground
state. In Fig. 34, we show a comparison of TE properties (electrical conductance G,
Seebeck coefficient S, thermal conductance K., thermocurrent GS, and figure of merit
ZT) between semiconducting (panels (a) to (e), left column) and metallic (panels (f) to
(j), right column) AGNRs for 5 different widths N. In the first row, in Figs. 34(a) and
34(f), we plot the electrical conductance G for semiconducting (N = 3, 7, and 9) and
metallic (N =5 and 11) AGNRs, respectively. In the second row [panels (b) and (g)], we
present the thermopower S, while the third row [panels (c¢) and (h)] shows the thermal
conductance K,. In the fourth row [panels (d) and (i)], we show the thermocurrent GS.
Finally, we show the figure of merit Z7 in the last row [panels (e) and (j)]. From these
results, we see that the metallic systems (right panels) have ZT values that are more
than three orders of magnitude lower than the semiconducting systems [compare panels
(e) and (j)]. This is easy to understand, since, in a metal, any charge buildup caused
by a temperature gradient will be quickly screened by the conduction electrons, resulting
in a low Seebeck coefficient S [compare panels (b) and (g)], which, in turn, causes a

low thermocurrent GS, a low power factor PF = GS? (not shown), and thus a low

2
T
ZT:GS

, unless K, is also small, which is not the case [compare panels (c¢) and (h)].

In the next Secs., we will present similar results, but for the Inline (Sec. 4.7) and Stag-
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Figure 27 — (Color online) Variation of TE properties of N-AGNR-I(1,3) for different
values of N: N =3, 5, 7, and 9, from the first to the fourth column, respectively. All
TE properties are presented as a function of chemical potential y. From top to bottom,
in each column: electrical conductance G, thermopower S, thermal conductance K.,
thermocurrent G5, and figure of merit ZT', respectively. The shaded regions in the G'S
and ZT panels indicate chemical potential ranges where both ZT and G'S may take sizable
values for the same chemical potential value.

gered (Sec. 4.8) AGNR heterostructures, showing how they vary with geometry (Staggered
vs. Inline), and with N, n and m.

Before moving to the next sections, it is important to focus on the following point.
Despite the very high ZT values (at room temperature) shown in Fig. 34(e), for the
semiconducting AGNRS, some warning comments are necessary. First, obviously, these
results do not take thermal conductivity K, into account. Second, at the chemical po-
tential value where a peak in ZT occurs, we have a vanishing themocurrent GGS, meaning
that themoelectric efficiency is not accompanied by enough thermocurrent to power up a
device. As mentioned in the Introduction, the ideal situation is that where we get sizable
values for both quantities, Z7T and GS 2. As will be shown in the next few sections,
in general, the AGNR ZT maximum values seen in Fig. 34 are much surpassed by those
obtained for the heterostructures. However, they suffer from the same problem, viz., they
are not accompanied by sizable GS values. Thus, our analysis will focus on searching
for smaller peaks in ZT', created by the band engineering afforded by the unit cell exten-

sions that generate the heterostructures. We will see that those ‘secondary’ peaks appear

2 Notice that, a careful analysis indicates the existence of a small chemical potential interval, close to the

right-side tail of the ZT peaks in fig. 34(e), where ZT has not vanished yet and G S has already started
to rise. However, exploiting that in a device would require fine-tuning of the chemical potential.
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around the (much enlarged) ‘original’ AGNR peaks and that they are associated to larger

thermocurrent (G'S) values than the ‘original’ peaks.

4.7 Thermoelectric properties for N-AGNR-I(n,m)

heterostructures

4.7.1 Dependence of thermoelectric properties with N

In Fig. 35, in each of the four columns, we show results for all five TE properties
we are interested in, i.e., electrical conductance G, thermopower S, thermal conductance
K., thermocurrent GGS, and figure of merit ZT', in this order, from top to bottom. Each
column contains results for N-AGNR-I(1,3), for N = 3, 5, 7, and 9, from left to right,
respectively. Notice that, since the largest ZT values, ZT,,.., obtained for most of the
heterostructures analyzed (both Inline and Staggered) are substantially higher than those
obtained for semiconducting AGNRs, and since we are interested in finding ZT peaks
that are accompanied by sizable values of themocurrent GS (which is not the case for the
higher ZT peaks), we present the ZT results in a range 0 < ZT < ZT; < ZT 4z, With
the objective of finding smaller ZT peaks that are accompanied by sizable GS values.
Note that ZT;, where i = 1, ..., 4, will have a different value for each of the panels in the
bottom row of the four columns in Figs. 35 to 40.

By analyzing the first row in Fig. 35 and comparing it with the results in the first row of
Fig. 34, we observe the following: (i) 5-AGNR, which is metallic, has turned into semicon-
ducting when transformed into 5-AGNR-I(1,3) [compare Fig. 34(f) with Fig. 35(b)], which
then results in a much improved ZT' (ZT 4. = 230), as expected [compare Fig. 35(r) with
Fig. 34(j)]; (ii) 7- and 9-AGNR (red and green curves in Fig. 34(a), respectively) had their
gaps slightly decreased [compare Figs. 35(c) and (d) with Fig. 34(a)], accompanied by a
one order of magnitude decrease in their ZT,,,,; (iii) a zoom-in in the ZT panels shows
that all N-~AGNR-I(1,3) display the presence of secondary smaller peaks (located around
the original N-AGNR peaks) with accompanying structures in G.S that make it easier
to spot regions of chemical potential where both ZT and GS are sizable. These regions
are indicated by shaded rectangles in both ZT and GS panels in all four columns. For
completeness, we list here the Z,,,, values obtained in Fig. 35: ZT .. ~ 4 x 103, 2 x 102,
25, and 25, for N =3, 5, 7, and 9, respectively.

4.7.2 Dependence of thermoelectric properties with n

In Fig. 36, we show similar results as in Fig. 35, but now for 3-AGNR-I(n,3), for
n =1, 2, 3, and 4. The first column of Fig. 36 reproduces the 3-AGNR-I(1,3) result

already shown in Fig. 35 to facilitate the evaluation of any trends with the variation
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Figure 28 — (Color online) Variation of TE properties of 3-AGNR-I(n,3) for different
values of n: n =1, 2, 3, and 4, from the first to the fourth column, respectively. From top
to bottom, in each column: electrical conductance G, thermopower S, thermal conduc-
tance K., thermocurrent G5, and figure of merit ZT, respectively. All TE properties are
presented as a function of chemical potential p. Shaded regions have the same meaning
as in Fig. 35.

of n. ZT values for n > 1 [panels (r) to (t)] show a steep increase in ZT. Indeed,
ZT e ~ 4 x 103, 2 x 105, 6 x 10°, and 2.5 x 108, for n = 1, 2, 3, and 4, respectively.
However, as happened for N-AGNR-I(1,3) in Fig. 35, these large peaks in ZT have very
small values of GS associated with them, thus, we searched for smaller peaks that have
sizable G'S values in their range of variation. We were able to find at least one peak for
cach heterostructure investigated (see shaded regions in the bottom two rows of panels).
In particular, 3-AGNR-1(2,3) has a secondary peak with maximum Z7 = 110, which
occurs for a range of chemical potential with sizable GS [see Figs. 36(r) and 36(n)].

4.7.3 Dependence of thermoelectric properties with m
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