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Resumo
Nesta dissertação, apresentaremos um estudo dos sistemas eletrônicos, magnéticos,

de transporte e propriedades termoelétricas de heteroestruturas unidimensionais recente-

mente sintetizadas que são construídas sobre um ŠbackboneŠ constituído por uma nanoĄta

de grafeno de base (AGNR). Tais heteroestruturas foram sintetizadas com sucesso, em

superfícies de ouro, através processos químicos. O interesse por essas heteroestruturas

aumentou depois que foi previsto que eles deveriam ter bandas topologicamente não triv-

iais perto da energia de Fermi. Esta previsão teórica foi conĄrmada experimentalmente

nos últimos dois anos. Suas propriedades topológicas derivam de estados localizados (eles

próprios de natureza topológica) que podem aparecer nas diferentes junções que formam

a heteroestrutura. A hibridização desses estados simula, próximo à energia de Fermi, um

modelo Su-Schrieffer-Heeger (ou seja, uma cadeia dimerizada), dotando a física de baixa

energia do sistema com propriedades topológicas. Aqui, não estudamos suas propriedades

topológicas. Em vez disso, usando o formalismo de Landauer, primeiro analisamos suas

propriedades termoelétricas, por exemplo, condutâncias eletrônicas e térmicas, bem como

o coeĄciente de Seebeck, denotados como 𝐺, 𝐾𝑒 e 𝑆, respectivamente. Isso nos per-

mite calcular a termocorrente de resposta linear 𝐼𝑡ℎΔ𝑇 = 𝐺𝑆, bem como a Ągura de

mérito 𝑍𝑇 = 𝐺𝑆2𝑇𝐾𝑒 (𝑇 signiĄca temperatura), que estima a eĄciência de um mate-

rial na transformação de energia térmica em energia elétrica. Nossos resultados indicam

que algumas das heteroestruturas (semicondutoras) analisadas têm uma Ągura de mérito

consideravelmente maior do que a do backbone AGNR sobre os quais são construídas.

Em seguida, usando o formalismo tight-binding, mostramos que essas heteroestruturas

apresentam uma inĄnidade de bandas planas, reminiscentes da banda plana [single] já

estudada em AGNRs originais. Essas bandas planas ocorrem devido à formação dos

chamados Šestados orbitais WannierŠ, através de um processo de interferência. Depois de

analisar cuidadosamente suas propriedades eletrônicas usando um modelo tight-binding,

pudemos mostrar, pela primeira vez, através de uma colaboração com um grupo interno

da DFT, que dopa essas heteroestruturas leva a um estado fundamental ferromagnético.

Uma futura direção de pesquisa neste assunto poderia ser o estudo da interação entre

ferromagnetismo e topologia em alguns desses sistemas interessantes.

Palavras-chave: NanoĄtas de grafeno, Isolantes topológicos, Magnetismo, Estrutura

Eletrônica, Propriedades de transporte e termoelétricas.



Abstract

In this dissertation, we will present a study of the electronic, magnetic, transport and

thermoelectric properties of recently synthesized one-dimensional heterostructures that

are built upon a ŚbackboneŠ constituted by an armchair graphene nanoribbon (AGNR).

Such heterostructures have been successfully synthesized, in gold surfaces, through chem-

ical processes. The interest in these heterostructures has greatly increased after it was

predicted that they should have topologically non-trivial bands near the Fermi energy.

This theoretical prediction has been experimentally conĄrmed in the last couple of years.

Their topological properties stem from localized states (themselves topological in nature)

that may appear at the different junctions forming the heterostructure. The hybridization

of those states simulates, close to the Fermi energy, a Su-Schrieffer-Heeger model (i.e., a

dimerized chain), endowing the low-energy physics of the system with topological prop-

erties. Here, we do not study their topological properties. Rather, using the Landauer

formalism, we Ąrst analyze their thermoelectric properties, viz., charge and electronic

thermal conductances, as well as the Seebeck coefficient, denoted as 𝐺, 𝐾𝑒, and 𝑆, re-

spectively. This allows us to calculate the linear-response thermocurrent 𝐼𝑡ℎΔ𝑇 = 𝐺𝑆, as

well as the Ągure of merit 𝑍𝑇 = 𝐺𝑆2𝑇𝐾𝑒 (𝑇 stands for temperature), which estimates

the efficiency of a material in transforming thermal into electrical energy. Our results

indicate that some of the (semiconducting) heterostructures analyzed have a considerably

larger Ągure of merit than that of the AGNR backbone upon which they are built. Next,

using the tight-binding formalism, we show that these heterostructures present a multi-

tude of flat-bands, reminiscent of the single flat-band already studied in pristine AGNRs.

These flat-bands occur due to the formation of so-called ŚWannier orbital statesŠ, through

a quantum interference process. After carefully analyzing their electronic properties using

a tight-binding model, we were able to show, for the Ąrst time, through a collaboration

with a DFT in-house group, that hole-doping these heterostructures leads to a ferromag-

netic ground state. A future research direction in this subject could be the study of the

interplay between ferromagnetism and topology in some of these interesting systems.



Keywords: Graphene Nanoribbons, Topological Insulators, Magnetism, Electronic

Structure, Transport and Thermoelectric properties.
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Chapter 1

Introduction

Since its discovery almost two decades ago [6], graphene has emerged as a realis-

tic possibility for addressing the scalability challenges of the nanoelectronics industry

workhorse, the complementary metal-oxide-semiconductor (CMOS) Ąeld-effect transistor

(FET). Indeed, since the early 2000s, as the gate length for the Silicon FET crossed into

the sub-100 nm range and the traditional gate insulator approached 10-nm thicknesses,

we witnessed the end of Dennard Scaling [7],1 and the slowing of MooreŠs law. Thus, re-

search in new materials has been increasingly necessary to pickup the pace of performance

improvement that consumers have been used to in the previous half century. As men-

tioned above, among the many different new materials, graphene has emerged as a very

promising alternative. Be it because of its very unique properties in bulk [6], as well as

the recently acquired capacity for precisely synthesizing quasi-one-dimensional (quasi-1D)

nanostructures based on graphene.

Graphene nanoribbons are quasi-1D systems that hold the promise of being important

elements in the future of nanoelectronics and spintronics. It has been long recognized that

the band structure engineering that one can accomplish, by designing relatively complex

heterostructures, may greatly improve device performance by enhancing desirable prop-

erties (like electron mobility) and mitigating undesirable ones (like electronic thermal

conductance). Besides, some of these heterostructures may also present emergent behav-

ior, like ferromagnetism, through an increase in the importance, for the ground state, of

electronic correlations.

In this dissertation, two main aspects will be analyzed in recently synthesized het-

erostructures [2, 8] that are based on armchair graphene nanoribbons (AGNRs). First,

using a Landauer formalism, combined with GreenŠs functions calculations, we numeri-

cally obtain the thermoelectric properties of these heterostructures. We observe a marked

increase in the Ągure of merit in relation to the AGNR backbone from which the het-

erostructure originates. Secondly, by using the tight-binding and the Density Functional

1 Which posits that as transistors get smaller, and thus their density increases, power consumption
stays constant and clock operating frequencies can increase.
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Theory (DFT) methods, we obtain that, when doping these heterostructures, they develop

a ferromagnetic ground state.

Our results in these two fronts serve as examples of the current trend of using graphene

heterostructures to produce devices with improved thermoelectric properties, as well as

obtaining rare ground states (1D ferromagnetism) that may be used in information pro-

cessing devices.

This dissertation is divided into six chapters. In chap. (2), we briefly describe the

electronic properties of graphene and graphehe nanoribbons. Two important types of

graphene nanoribbons are the so-called zigzag and armchair graphene nanoribbons (ZGNR

and AGNR, respectively). AGNRs, and related heterostructures, are the primary focus of

this dissertation. Thus, in chap. (2) we will present mostly the details of the tight-binding

approximation for AGNRs, postponing details of the ZGNRs properties to Appendix (D).

In chap. (3), we introduce the AGNR heterostructures denoted N-AGNR-I(n,m) and

N-AGNR-S(n,m) [2, 8], where 𝑁 indicates the width of the AGNR backbone upon which

the heterostructure is constructed, while 𝑛 and 𝑚 basically deĄne the size of the het-

erostructure unit cell. The letters I and S mean ŚInlineŠ and ŚStaggeredŠ, where an Inline

heterostructure is more symmetric than a Staggered one (thus, it has a smaller unit cell).

In this chapter, we present the band structure and density of states, of both heterostruc-

tures, analyzing how they depend on the parameters 𝑁 , 𝑛, and 𝑚. At the end of the

chapter, we briefly outline their synthesis process. The tight-binding method, used for

the majority of the results presented here, is described in Appendix (A).

In chap. (4), we describe the Landauer formalism and present a brief introduction to

thermoelectric properties, viz., charge and electronic thermal conductances, as well as the

Seebeck coefficient, denoted as 𝐺, 𝐾𝑒, and 𝑆, respectively. This allows us to calculate the

linear-response thermocurrent 𝐼𝑡ℎΔ𝑇 = 𝐺𝑆, as well as the Ągure of merit 𝑍𝑇 = 𝐺𝑆2𝑇𝐾𝑒

(𝑇 stands for temperature), which estimates the efficiency of a material in transforming

thermal into electrical energy. We also present results for these quantities for AGNRs of

varying widths. We Ąnish chap. (4) with a detailed analysis, for the Inline and Staggered

heterostructures, of the thermoelectric properties introduced at the beginning of chap. (4).

We carefully analyze their dependence on the parameters 𝑁 , 𝑛, and 𝑚, showing that, for

some cases, the Ągure of merit greatly increases in relation to what was obtained, earlier

in chap. (4), for the pristine AGNRs.

In chap. (5), we present a detailed tight binding and DFT analysis of the Inline het-

erostructures. Our tight-binding results indicate the presence of a multitude of perfectly

flat-bands. One of the flat-bands is reminiscent of the one that appears in pristine arm-

chair nanoribbons and has its origin in a quantum mechanical destructive interference

effect, dubbed ŚWannier orbital statesŠ by Lin et al. [9]. The additional flat-bands found

in these heterostructures, some reasonably closer to the Fermi level, seem to be gener-

ated by a similar interference process. After doing a thorough tight-binding analysis of
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the band structures of the different kinds of heterostructures, focusing in the properties

of the flat-bands, we use DFT to study the possibility of magnetic ground states when

placing, through doping, the Fermi energy close to the different flat-bands. Our DFT

results conĄrmed the expectation that these heterostructures, after being appropriately

hole-doped, develop a ferromagnetic ground state that seems to require, as in the case of

pristine armchair nanoribbons, the presence of a dispersive band crossing the flat-band.

In addition, we found a remarkable agreement between the tight-binding and DFT results

for the charge density distribution of the so-called Wannier orbital states.

In chap. (6), we present a brief summary of the analyzes carried out, and the conclu-

sions obtained, in this dissertation.

In the Appendices, we briefly present (in this order) the tight-binding method, the Su-

Schrieffer-Heeger (SSH) model, details of an analytic solution to the tight-binding method

for AGNRs, the same for ZGNRs, the tight-binding Hamiltonian for an N-AGNR(1,3) het-

erostructure, in real and reciprocal spaces, the addition of next-nearest-neighbor hoppings

to the Inline heterostructures, DFT results for Staggered heterostructures, and, Ąnally,

the numerical codes (in Fortran) used in this dissertation.
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Chapter 2

Two-dimensional graphene and

graphene nanoribbons

2.1 Graphene

Carbon atoms that arrange themselves in a honeycomb-like crystal lattice are respon-

sible for giving rise to graphene. This material is famous for being the Ąrst planar (2D)

system, which implies that the graphene sheet is a single atom thick, and this was ac-

complished in the laboratory in 2004 [1]. Carbon atoms, in turn, are one of the most

abundant chemical elements in nature, being of great importance since it has a great ca-

pacity to form chemical bonds with atoms of the same species and with others. Returning

to graphene, it can be seen as the basic unit that is responsible for giving rise to several

structures, as depicted in Fig. 1, such as graphite, fullerenes,carbon-nanotubes, graphene,

etc.

2.1.1 Energy dispersion of Monolayer Graphene

In the following, by using a nearest-neighbor tight-binding (TB) model, model, we will

determine the energy eigenvalues of the graphene sheet. [10]. As previously mentioned,

carbon atoms arrange themselves in a honeycomb lattice to create graphene sheets. These

atoms, in turn, have atomic number Z = 6, which means that the distribution of electrons

in its ground state is 1𝑠2, 2𝑠2, 2𝑝2. Each one of these atoms presents itself in an 𝑠𝑝2

hybridization state. In 𝑠𝑝2 hybridization, carbon atoms hold three à bonds and one Þ

bond. Thus, in graphene, the orbitals 2𝑠, 2𝑝𝑥, and 2𝑝𝑦 combine to form à orbitals, while 𝑝𝑧

orbitals do not hybridize and are free to produce Þ orbitals. While à bonds are responsible

for grapheneŠs mechanical properties, 𝑝𝑧 orbitals, which point out of the plane, are relevant

for its electronic properties [11]. It is worth pointing out that bands described by these

orbitals are impressive, as they present valleys, with linear dispersion, located at the six
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Figure 1 Ű Carbon allotropes. we know that a carbon atom has in its second shell four
electrons, this feature can give rise to many types of different chemical bonds, such as sp,
sp2, and sp3. Graphite is a laminar material in which carbon atoms form covalent bonds
with orbitals in an 𝑠𝑝2 hybridization, and the layers are weakly bonded by van der Waals
bonds. From [1].

extremities of the Ąrst Brillouin zone (BZ) [12, 13]. As we can see in Fig. 2 b), two of these

valleys are non-equivalent. The valleys represent an extra degree of freedom, called valley

degree of freedom, similar to spin for the charge carriers. The dispersion at the valleys is

linear, and, because of that, the bands at those points are known as Dirac cones. Thus,

electrons at low energy behave like massless Dirac fermions [14]. The graphene lattice,

by itself, is not a Bravais lattice. However, we can create a honeycomb lattice by using

two distinct (non-equivalent) triangular Bravais lattices, called 𝐴 and 𝐵 sublattices. So,

the honeycomb lattice is wholly deĄned if we construct a basis formed by two carbon

atoms, one for each sublattice. By convention the two atoms in the graphene unit cell

are denoted by 𝐴 and 𝐵 and are spatially separated by 𝑎0 distance, as shown in Fig. 2.

Furthermore, due to this spatial conĄguration, its honeycomb lattice produces a bipartite

structure which implies a symmetrical energy spectrum about the Γ point (center of the
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Unit cell

Figure 2 Ű (a) The honeycomb lattice in real space. The unit cell is displayed as a yellow
parallelogram. (b) First BZ of graphene, along with high-symmetry points. Dirac cones,
which approximate the dispersion close to the Fermi energy, are also indicated.

BZ). The graphene crystalline structure, in real space, is described as a function of two

primitive lattice vectors [5]. According to Fig. 2, they are given by

𝑎1 =
𝑎

2
(3,

√
3), 𝑎2 =

𝑎

2
(3,⊗

√
3) (1)

where a is the band length of the real-space unit cell vector and each site has three

nearest-neighbors (NN). The 3 vectors connecting an 𝐴 site to its neighbors are given by

Ò1 =
𝑎

2
(1,

√
3) Ò2 =

𝑎

2
(1,⊗

√
3) Ò3 = ⊗𝑎(1, 0) (2)

From Eq. (1), it is possible to determine the reciprocal vectors b𝑖 by using the relation

b𝑖 ≤ a𝑗 = 2ÞÓ𝑖𝑗
[15], thus we obtain

𝑏1 =
2Þ
3𝑎

(1,
√

3), 𝑏2 =
2Þ
3𝑎

(1,⊗
√

3). (3)

Below, we deĄne the high-symmetry points in the graphene lattice (Eq. 4), commonly

used to describe the energy dispersion in k-space. In the center of the BZ, we have the Γ

point. Next, we have the M point, located at the center of the honeycomb edge. Finally,

there are the two special points 𝐾 and 𝐾 ′, located at the corners of the Ąrst BZ. Their

components are given by

Wave vector Γ M K K′

𝑘𝑥 0 (2Þ/
√

3𝑎) (2Þ/
√

3𝑎) (2Þ/
√

3𝑎)

𝑘𝑦 0 0 (2Þ/3𝑎) (⊗2Þ/3𝑎)

(4)

The graphene TB Hamiltonian, in real space, is written as

ℋ = ⊗𝑡
∑︁

⟨𝑖𝑗⟩
𝑎†

𝑖𝑏𝑗 + h.c.. (5)
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In Eq. (5), 𝑎𝑖 and 𝑎†
𝑖 (𝑏𝑖 and 𝑏†

𝑖 ) are the annihilation and creation operators for electrons on

a site 𝑖 located in the 𝐴 (𝐵) sublattice, respectively, and ⟨𝑖𝑗⟩ means that we are performing

a sum only for nearest neighbors. The hopping energy is deĄned as 𝑡 = 1 (unit of energy).

The Hamiltonian diagonalization in momentum space is straightforward. Thus, to Ąnd

the energy dispersion, we will expand the creation/annihilation operators in momentum

space by using Fourier Transform Equations

𝑎𝑖 =
1√
𝑁

∑︁

k

𝑒ik≤riÐ𝑘

𝑎†
𝑖 =

1√
𝑁

∑︁

k

𝑒⊗ik≤riÐ†
𝑘

𝑏𝑗 =
1√
𝑁

∑︁

k′

𝑒ik′≤rjÑ𝑘′

𝑏†
𝑗 =

1√
𝑁

∑︁

k′

𝑒ik′≤rjÑ†
𝑘′ ,

(6)

where Ñ𝑘, Ð𝑘 are operators that create electrons with momentum k. By replacing Eqs. (6)

into Eq. (5), we get

ℋ(𝑘) =
⊗𝑡
𝑁

∑︁

𝑖,𝑗

∑︁

k,k′

[︁

𝑒ik≤r𝑖𝑒⊗ik′≤(r𝑖+Ò𝑗)Ð(k)Ñ† (k′) + 𝑒⊗ik≤r𝑖𝑒ik′≤(r𝑖+Ò𝑗)Ð†(k)Ñ (k′)
]︁

=
⊗𝑡
𝑁

∑︁

𝑖,𝑗

∑︁

k,k′

[︁

𝑒i(k⊗k′)≤ri𝑒⊗ik′≤ÒjÐ(k)Ñ† (k′) + 𝑒⊗i(k⊗k′)≤r𝑖𝑒ik′≤Ò𝑗Ð†(k)Ñ (k′)
]︁

=
⊗𝑡
𝑁

∑︁

𝑗

∑︁

k,k′

[︁

Ókk′𝑒⊗ik′≤Ò𝑗Ð(k)Ñ† (k′) + Ókk′𝑒ik′≤Ò𝑗Ð†(k)Ñ (k′)
]︁

= ⊗𝑡
∑︁

𝑗

∑︁

k

[︁

𝑒⊗ik≤Ò𝑗Ð(k)Ñ†(k) + 𝑒ik≤Ò𝑗Ð†(k)Ñ(k)
]︁

,

(7)

from where we deĄne

âk =
∑︁

𝑗

𝑒⊗ik≤Ò𝑗 = 𝑒⊗ik≤Ò1 + 𝑒⊗ik≤Ò2 + 𝑒⊗ik≤Ò3 , (8)

which, using Eqs. (2), can be rewritten as

âk = 𝑒ik≤Ò1 + 𝑒ik≤Ò2 + 𝑒ik≤Ò3

= 𝑒ik≤Ó3

[︁

1 + 𝑒ik≤(Ò1⊗Ò3) + 𝑒ik≤(Ò2⊗Ò3)
]︁

= 𝑒⊗i𝑘𝑥𝑎
[︁

1 + 𝑒i3𝑘𝑥𝑎/2𝑒i
√

3𝑘𝑦𝑎/2 + 𝑒i3𝑘𝑥𝑎/2𝑒⊗i
√

3𝑘𝑦𝑎/2
]︁

= 𝑒⊗i𝑘𝑥𝑎
[︁

1 + 𝑒i3𝑘𝑥𝑎/2
(︁

𝑒i
√

3𝑘𝑦𝑎/2 + 𝑒⊗i
√

3𝑘𝑦𝑎/2
)︁]︁

= 𝑒⊗i𝑘𝑥𝑎

[︃

1 + 2𝑒i3𝑘𝑥𝑎/2 cos

(︃√
3

2
𝑘𝑦𝑎

)︃⟨

.

(9)

Replacing Eq. (9) into Eq. (8), we obtain

ℋ(𝑘) = ⊗
∑︁

k

(︁

Ð†(k) Ñ†(k)
)︁

∏︀

∐︁
0 𝑡âk

𝑡â*
k 0

∫︀

̂︀

∏︀

∐︁
Ð(k)

Ñ(k)

∫︀

̂︀ . (10)
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From Eq. (10), we get the graphene dispersion relation

𝐸∘(k) = ∘𝑡
√︁

3 + 𝑓(k), (11)

where

𝑓(k) = 2 cos
(︁√

3𝑘𝑦𝑎
)︁

+ 4 cos
(︂3

2
𝑘𝑥𝑎

)︂

cos

(︃√
3

2
𝑘𝑦𝑎

)︃

. (12)

In Fig. 3(a), we depict the graphene energy dispersion along high symmetry lines. As we

can see, the graphene spectrum consists of two dispersive bands that meet at the 𝐾 and

𝐾 ′ points. Thus, graphene is a gapless semiconductor (a semi-metal). In Fig. 2(b) the

3D graphene band strucuture is shown as a function of k =(𝑘𝑥, 𝑘𝑦). Note that, at the six

borders of the Ąrst BZ the energy dispersion is linear and resembles a cone (see Fig. 2).

To see this explicitly, we can expand Eq. (12) near to a K-point, for small q = k ⊗ K

values, i.e.

k = K + q, (13)

Now, by expanding Eq. (12) in a Taylor series about K, we get

𝜃(K+q) = 𝑓(K+q) = 𝑒⊗i𝐾𝑥𝑎𝑒⊗i𝑞𝑥𝑎

[︃

1 + 2𝑒i3𝑎/2(𝐾𝑥+𝑞𝑥) cos

(︃√
3 (𝐾𝑦 + 𝑞𝑦) 𝑎

2

)︃⟨

= 𝑒⊗i𝐾𝑥𝑎𝑒⊗i𝑞𝑥𝑎

[︃

1 ⊗ 2𝑒3i𝑎𝑞𝑥/2 cos

(︃

Þ

3
+

√
3𝑎
2
𝑞𝑦

)︃⟨

.

(14)

thus

𝜃K+q = ⊗3i𝑎

2
(𝑞𝑥 + i𝑞𝑦) 𝑒⊗i𝐾𝑥𝑎 ≡ ⊗3i𝑎

2
(𝑞𝑥 + i𝑞𝑦) (15)

So, close to a K-point [low energy regime], it is possible to express the graphene Hamil-

tonian as

𝐻(K+q) =

∏︀

∐︁
0 Θ

Θ* 0

∫︀

̂︀ = 𝑣𝐹

∏︀

∐︁
0 𝑞𝑥 + 𝑖𝑞𝑦

𝑞𝑥 ⊗ 𝑖𝑞𝑦 0

∫︀

̂︀ (16)

where

𝑣𝐹 =
3𝑎𝑡
2

(17)

is the Fermi velocity. We can express Eq.(16) by using Pauli matrices

à𝑥 =

∏︀

∐︁
0 1

1 0

∫︀

̂︀ à𝑦 =

∏︀

∐︁
0 ⊗𝑖
𝑖 0

∫︀

̂︀ à𝑧 =

∏︀

∐︁
1 0

0 ⊗1

∫︀

̂︀ , (18)

resulting in

ℋ(K + q) = 𝑣𝐹 (𝑞𝑥à𝑥 ⊗ 𝑞𝑦à𝑦) = 𝑣𝐹 q ≤ à (19)

where

q = (𝑞𝑥,⊗𝑞𝑦) (20)
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Figure 4 Ű Variation of the band-gap width of an AGNR as a function of its width 𝑁 .
Notice that the 𝑁 = 3𝑝 and 3𝑝+ 1 are semiconducting (for integer 𝑝) while AGNRs with
N = 3𝑝+ 2 are metallic (vanishing band-gap) in the tight-binding approximation.

2.2 Graphene nanoribbons

Graphene nanoribbons (GNRs) are nanomaterials created by cutting graphene sheets.

These cuts can be performed by choosing different directions, which will give rise to

ribbons with different edges. Edge-type is a fundamental feature for these systems, since

it will determine, in combination with quantum effects, coming from the system low-

dimensionality, how the wave functions will be conĄned in this quasi-1D systems. As

previously mentioned, despite the excellent electronic properties of graphene, it is a gapless

semiconductor, what causes problems in your use in electronic devices. The gap issue (In

the TB approach) has been overcome in recent years by using graphene nanostructures, in

particular, the so-called GNRs. Given the quantum conĄnement of electronic states (wave

functions) in the ribbon, it may provoke the emergence of a gap in the graphene strip

[[16]]. Whether or not this forbidden region occurs, and what is its magnitude, will be for

the most part determined by the ribbon width. There are the two special crystallographic

directions types of GNRs, known as zig-zag, and armchair nanoribbons. These names are

related to the type of edges of each ribbon. Here we will focus only on armchair ribbons

[a derivation of the tight-binding model for a ZGNR ribbon is presented in Appendix C.

GNRs with armchair edges, by convention, are classiĄed according to the number of

dimers 𝑁a across its width 𝑊a. Following this nomenclature, we will refer to an armchair
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nanoribbon as 𝑁a-AGNR, where 𝑁a is the number of dimers in the system and ŚAŠ comes

from ŞarmchairŤ. The width of an armchair nanoribbon (See Fig. 5) is deĄned as

𝑊a = (𝑁a ⊗ 1)

√
3

2
𝑎, with 𝑎 = 1.42 Å (21)

Unlike what happens for zig-zag nanoribbons, armchair nanoribbons may present dif-

ferent electronic behavior, since they can have either metallic or semiconducting electronic

structures. Thus, AGNRs are classiĄed into three distinct families, according to their re-

spective bandgap 𝐸gap, as

𝐸gap = 𝑡

[︃

4 cos

(︃

𝑝Þ

3𝑝+ 1

)︃

⊗ 2

⟨

(𝑁a = 3𝑝)

𝐸gap = 𝑡

[︃

2 ⊗ 4 cos

(︃

(𝑝+ 1)Þ
3𝑝+ 2

)︃⟨

(𝑁a = 3𝑝+ 1)

𝐸gap = 0 (𝑁a = 3𝑝+ 2)

(22)

An 𝑁𝑎-AGNR is metallic for 𝑁𝑎 = 3𝑝+2 and semiconducting if 𝑁𝑎 = 3𝑝 or 𝑁𝑎 = 3𝑝+1,

where 𝑝 is positive and integer [2]. We can also notice that the gap of an 𝑁𝑎-AGNR is

inversely proportional to its width, as can be seen in Fig. 4. Thus, they can be grouped

according to gap size

𝐸𝑔𝑎𝑝
3𝑝 ≳ 𝐸𝑔𝑎𝑝

3𝑝+1 > 𝐸𝑔𝑎𝑝
3𝑝+2 (= 0) for all values of 𝑝. (23)

It is possible to notice a signiĄcant reduction in the gap when we increase the width

of the ribbon, which allows us to conclude that from a certain very large width, all the

AGNRs will show a metallic behavior. However, it is important to point out that this

treatment for armchair ribbons is only in agreement with the literature when compared

with results obtained from the tight-binding method. First-principles calculations show,

however, that there are no metallic AGNRs. In what follows, to simplify the notation, we

will refer to 𝑁𝑎 = 𝑁 .

2.2.1 Tight-binding model for Armchair nanoribbons

Fig. 5 shows the lattice structure of an armchair graphene nanoribbon. The yellow

rectangle displays the system unit cell. The width of an AGNR is given by 𝑎/2
√

3N,

where a is the lattice constant, and 2𝑁 gives us the total amount of atoms in the unit

cell, as illustrated in Fig. 5. In addition 𝑎𝑇 speciĄes the ribbon length.

In appendix C, we present a complete derivation of the eigen-energies and wave functions

of armchair nanoribbons. Here, in a nutshell, we have that the senergy eigenvalues are

given by

𝐸 = 𝑠

√︃

1 + 2𝜖𝑝 cos
𝑘

2
+ 𝜖2

𝑝, (24)
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Figure 5 Ű Real space structure of an 𝑁 = 12 AGNR. The dashed lines indicate its unit
cell.

and their respective wave functions
∏︀

∐︁
å𝑚,𝐴

å𝑚,𝐵

∫︀

̂︀ = 𝑁c

∏︀

∐︁
⊗𝑠

√︁

𝜖𝑝 + e⊗i𝑘/2
√︁

𝜖𝑝 + ei𝑘/2

∫︀

̂︀ sin(𝑚𝑝). (25)

In Fig. 6, we show the band structures for AGNRs with different widths. What we

can notice is that the AGNRs present different electronic behaviors [both metallic and

semiconductor families]. In addition, we also observe a tendency of decreasing gap with

increasing 𝑁 as shown in Fig. 4

2.2.1.1 AGNR Density of states

In panels (a) to (d) of Fig 7, we present the density of states (DOS) for AGNRs with

different widths (𝑁 = 4, 𝑁 = 5, 𝑁 = 12, and 𝑁 = 30). From the DOS, it is possible

to verify the electronic behavior presented by these materials (semiconductor or metallic

behavior), as well as it is easy to verify a dimensionality signature of those systems. This

signature is apparent in the singularities, named Van Hove singularities, present in the

DOS results shown in all for panels, which are characteristic of one-dimensional (1D),

or quasi-1D, materials. Furthermore, it is veriĄed that when the number of sites within

the unit cell of the armchair ribbon increases, the DOS begins to approach the graphene

DOS, presented above, as can be seen in Fig. 7, for an AGNR with 𝑁 = 30 (60 sites).
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Chapter 3

Topological graphene heterostructures

Among the numerous advances in the study of graphene-based nanostructures, we

may state that perhaps one of the most important/exciting was the discovery of the topo-

logical properties of AGNRs. The topology of AGNRs was theoretically predicted in 2017

by Steven LouieŠs group [17]. Soon after, the experimental conĄrmation took place [17].

Briefly, each topological system has associated with it a topological invariant (which, in

short, serves to designate what topological class the structure belongs to, trivial or non-

trivial). In the case of AGNRs, the associated invariant is called 𝑍2. On one hand, if a

given AGNR has a 𝑍2 = 0, it will be called trivial (like the vacuum). On the other hand, if

𝑍2 = 1, the AGNR will be in its topologically non-trivial phase. As will be shown below,

these AGNR properties can be used to simulate a Su-Schrieffer-Heeger (SSH) [18] dimer-

ized chain. An effective SSH model can be simulated by intercalating AGNR segments

with alternating 𝑍2 values. The resulting system could be seen as analogous to a 1D

topological insulator, a 1D topological insulator, something still negligibly investigated.

Similar to both 3D (with their well-known 2D edge states) and 2D (with 1D edge states)

counterparts, these heterostructures will be able to support edge states, presenting all

the peculiarities associated with a 0D metallic state. To simulate a low energy model (an

effective model) equivalent to the SSH model, based on AGNRs, we must ŚconstructŠ the

fundamental component of the SSH chain, namely, a dimerized chain. For this, we must

create the dimers, composed of two localized states, with energy equal to zero, and that

also overlap (hybridize). This can be achieved as long as these localized states are close

to each other. To obtain the localized states, it is necessary to connect different AGNR

segments with different 𝑍2 values. By doing this, an edge state is expected to occur on

the boundary between the two strands.

As an illustration of what was discussed above, consider Fig. 8. It shows a periodic

heterostructure formed by intercalating short strands of AGNRs with 𝑁 = 5 between

longer strands of AGNRS with 𝑁 = 9. Since both ribbons have different 𝑍2 values,

localized edge states (at zero energy) should appear at the region between both strands. In

Fig. 8, such edge states are indicated by the larger red circles. If the distance between these
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Figure 8 Ű Representation of an ŚSSH chainŠ built from graphene nanoribbons (ŚStaggeredŠ
case). The parameter 𝑡𝑚 represents a hopping (overlap integral) between different unit
cells, and 𝑡𝑛 represents hopping inside a unit cell. [2]

localized states is not too large, they will hybridize. This hybridization is indicated by

the overlap integrals 𝑡𝑛 (horizontal oval, with solid contour) and 𝑡𝑚 (diagonal oval, dashed

contour). Thus, the resulting low energy effective model is that of the SSH model [18].

If one engineers correctly the heterostructure, the values of 𝑡𝑛 and 𝑡𝑚 obtained are such

that one may end up in the non-trivial side of the SSH phase diagram [4]. It should be

noted that a comprehensive theory describing the formation of the edge states between

the different AGNR strands has only recently been developed. For details, please see

Ref. [19], and references therein.

In terms of the overlap integrals 𝑡𝑛 and 𝑡𝑚, the band structure close to the Fermi level

can be described using the SSH model, where the system obeys the following dispersion

relation (see Appendix B)

𝐸(𝑘) = ∘
√︁

𝑡2𝑛 + 𝑡2𝑚 + 2𝑡𝑛𝑡𝑚 cos(𝑘). (26)

In the rest of this chapter, we will deal with the two types of heterostructures Ąrst

introduced in Refs. [2, 8].

3.1 Inline heterostructure

To explore the AGNR heterostructure features, we need Ąrst to set the nomenclature

deĄned in Ref. [2]. Let us Ąrst describe the so-called Inline type (see Fig. 9). We denote

it as N-AGNR-I(n,m), where 𝑁 speciĄes the backbone width and 𝐼 refers to the ŚInlineŠ

type, while 𝑛 is the number of adjacent extended segments (𝑁+4), and, Ąnally, 𝑚 speciĄes

the distance between two 𝑛-segments (see Fig. 9). It is worth saying as well that the [𝑚]

and [𝑛] quantities are measured in 𝑎𝑐𝑐 (carbon distance in hexagonal lattice) units.

Bellow, we will present the results for DOS and energy dispersion for the heterostruc-

tures above deĄned. A full description of the Hamiltonino TB used here can be found in

Appendix E.
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Figure 17 Ű Schematic representation of the synthesis of an AGNR. From Ref. [3].

Figure 18 Ű Schematic representation of the fabrication of a 7-AGNR-S(1,3) heterostruc-
ture and an AFM image of the synthesized material. From Ref. [2].
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Figure 19 Ű Schematic representation of the fabrication of a 7-AGNR-S(1,3) heterostruc-
ture and an AFM image of the synthesized material. From Ref. [2].
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Chapter 4

Thermoelectric properties of AGNR

heterostructures

4.1 Landauer formalism

A powerful approach when there is coherent transport through a mesoscopic conduc-

tor is the Landauer-Buttiker Theory. Created by Landauer and further generalized by

Buttiker, this approach relates the current through a conductor to the electron transmis-

sion probability [21].

In Fig. 20, we show the system to be analyzed, a quasi-one-dimensional conductor. Here,

we assume that transport is ballistic and, besides that, the conductor is sandwiched by two

reservoirs (considered semi-inĄnite), at chemical potentials Û1 and Û2 (see Fig. 47). The

source and drain have many allowed states, a much larger number than the system between

them. The electron distribution in each reservoir is given by the Fermi distribution 𝑓(𝐸),

which is a step-like function at 𝑇 = 0 K and varies smoothly at temperatures 𝑇 > 0 K.

This is equivalent to saying that, at zero temperature, the electronic levels in the reservoirs

are Ąlled until an energy 𝐸 equal to the chemical potential Û. The Fermi distribution is

given by

𝑓Ð(𝐸) =
1

1 + exp [(𝐸 ⊗ Û1,2) /𝑘𝐵𝑇 ]
, (27)

where Ð represent the Fermi distribution indexes ∘. 𝑇 and 𝐾𝐵 are the temperature and

the Boltzmann constant.

An important assumption which will be relaxed later for the future development of

our theoretical model is that contacts are reflectionless. It means that an electron that

propagates through the system will be completely transmitted when it Ąnds the interface

between the contacts.
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Figure 20 Ű Schematics of a device setup for transport within the Landauer approach.

4.1.1 Landauer Formula

Now, we will derive a general expression for the electronic conductance that an arbi-

trary conductor carries. To do this, we Ąrst need to deĄne some really important concepts.

First of all, any state in the conductor have different transverse modes [subbands] asso-

ciated with them. Next, each mode follows a dispersion relation 𝐸(𝑁, 𝑘) and it has a

cut-off energy given by

𝜀𝑁 = 𝐸(𝑁, 𝑘 = 0) (28)

The number of transverse modes 𝑀(𝐸) with energy 𝐸 is found by counting states with

cut-off energies 𝜖𝑁 < 𝐸, where 𝑁 is any mode. For a complete description, we recommend

the Ref. [21], as

𝑀(𝐸) ⊕
∑︁

𝑁

𝜗 (𝐸 ⊗ 𝜀𝑁) (29)

where 𝜗 is a Heaviside function. From Eq. (29), it is possible to Ąnd the current related

to each one of the transversal modes [𝑀(𝐸)]. Then, to Ąnd the complete current, we only

need to sum over all of them.

To obtain a general expression for current, we will start by considering a transverse

mode +𝑘𝑥, coming from left and with chemical potential equal to Û1, that obeys 𝑓+(𝐸).

From elementary Physics courses, we learned that for an electron gas, composed of 𝑛

electrons [per unit of length], moving with a velocity 𝑣, the current can be expressed by
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𝐼 = 𝑒𝑛𝑣. Hence, we are able to say that the current flowing through a single mode, due

to +𝑘, can be written as

𝐼+ =
𝑒

𝐿

∑︁

𝑘,à

𝑣𝑓+(𝐸) =
𝑒

𝐿

∑︁

𝑘,à

1
ℏ

𝜕𝐸

𝜕𝑘
𝑓+(𝐸) (30)

the sum in Eq. (30) can be converted into an integral by using the following relation

∑︁

𝑘,à

⊃ 2( for spin) × 𝐿

2Þ

∫︁

d𝑘 (31)

we come at

𝐼+ =
2𝑒
ℎ

∫︁ ∞

𝜖
𝑓+(𝐸)d𝐸 (32)

where 𝜖 is the threshold energy. And so forth, the current carried by all states +𝑘 (𝑀(𝐸)

modes) are

𝐼+ =
2𝑒
ℎ

∫︁ +∞

⊗∞
𝑓+(𝐸)𝑀(𝐸)d𝐸 (33)

By comparison, the current carried by electrons ⊗𝑘𝑥 moving in the opposite direction

(⊗𝑥 direction) with a chemical potential Û2 is given by

𝐼⊗ =
2𝑒
ℎ

∫︁ +∞

⊗∞
𝑀(𝐸)𝑓⊗(𝐸)𝑑𝐸. (34)

thus, the net current is

𝐼 = 𝐼+ ⊗ 𝐼⊗ =
2𝑒
ℎ

∫︁ +∞

⊗∞
𝑀(𝐸)

(︁

𝑓+(𝐸) ⊗ 𝑓⊗(𝐸)
)︁

𝑑𝐸. (35)

if we impose that the number of modes 𝑀(𝐸) does not change in the interval [Û1 > 𝐸 >

Û2] and 𝑇 = 0 K, we arrive at

𝐼 = 𝐼+ ⊗ 𝐼⊗ =
2𝑒𝑀
ℎ

∫︁ +∞

⊗∞

(︁

𝑓+(𝐸) ⊗ 𝑓⊗(𝐸)
)︁

𝑑𝐸.

=
2𝑒𝑀
ℎ

(Û1 ⊗ Û2) .
(36)

but Û = 𝑒× 𝑉

𝐼 = 𝑀(𝐸)
2𝑒2

ℎ
(𝑉1 ⊗ 𝑉2) (37)

where the conductance can be written as

𝐺 =
2𝑒2

ℎ
𝑀(𝐸) (38)

The expression in Eq. (38) is the expected result for a ballistic conductor. Hereafter,

we will derive a more general result that takes electronic transmission into account, that

is, for which the transmission probability is not always 100 %. In short, we know that for
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an ordinary conductor [that obeys OhmŠs law well] the electrical conductance must obey

the following expression

𝐺 ∝ 𝑊 [width]
𝐿 [length]

(39)

however, when we decrease the conductor dimensions, the Eq. (39) is no longer valid.

An important assumption that we must make is that there will be a resistance in the

system with such characteristics [reduced dimensions] and that it is independent of the

device length 𝐿. Another signiĄcant point that we must pay attention to is the number

of transversal modes will be quantized. Systems for which the two previous statements

are valid are well described within the Landauer formalism, which we will show below

𝐺 =
2𝑒2

ℎ
𝑀𝑇 (40)

to Ąnd the Landauer formula for conductance, we will start from Fig. 20. We assume that

the Leads are ballistic conductors, each containing 𝑀 traverse modes and 𝒯 represents

the transmission function [which is the probability of transmission of electrons through

the conductor]. At 𝑙𝑒𝑎𝑑 1, the +𝑘𝑥 states will be occupied by electrons coming from the

left up to a chemical potential Û1. In contact 2, the ⊗𝑘𝑥 states in lead 2 originate from

the right contact and have a chemical potential Û2. At T = 0 K, the electron flow from

lead 1 is written as

𝐼+
1 = (2𝑒/ℎ)𝑀 [Û1 ⊗ Û2] (41)

The current from lead 2 is the current 𝐼+
1 times the transmission probability 𝒯

𝐼+
2 = (2𝑒/ℎ)𝑀𝒯 [Û1 ⊗ Û2] (42)

the reflected flow in contact 1 is given by

𝐼⊗
1 = (2𝑒/ℎ)𝑀(1 ⊗ 𝒯 ) [Û1 ⊗ Û2] (43)

so the net current I on the device is given by

𝐼 = 𝐼+
1 ⊗ 𝐼⊗

1 = 𝐼+
2 = (2𝑒/ℎ)𝑀𝒯 [Û1 ⊗ Û2] (44)

Ąnally, electronic conductance can be expressed

𝐺 =
𝐼

(Û1 ⊗ Û2) /♣𝑒♣
=

2𝑒2

ℎ
𝑀𝒯 (45)

where 𝒯 is transmission function and 2𝑒2/ℎ is a Quantum of Conductance.
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4.1.2 GreenŠs function and transmission coefficient

In the Landauer approach, the system under study is connected to contacts and all

the electronic transport information can be obtained from the transmission coefficient.

Given a Hamiltonian (in the tight-binding method), we can obtain, in a simple way, its

coefficients through the GreenŠs function method. In the single-particle approximation

the GreenŠs function 𝒢(𝐸) of a system with Hamiltonian 𝐻 is given by

𝒢(𝐸) = (𝐸 ⊗𝐻)⊗1 (46)

as we can see in Eq. (46), the GreenŠs function has poles at the eigenvalues of the Hamil-

tonian. We commonly sum or subtract an inĄnitesimal imaginary part to the energy and

express the GreenŠs functions as

𝒢∘(𝐸) = lim
Ö⊃0+

𝒢(𝐸 ∘ 𝑖Ö), (47)

where the symbols 𝒢+and 𝒢⊗ refer to the retarded and advanced GreenŠs function, re-

spectively. Thus, Eq. (46) can be rewritten as

𝒢∘(𝐸) = lim
Ö⊃0+

(𝐸 ∘ 𝑖Ö ⊗𝐻)⊗1. (48)

Now, consider a system whose transport properties we want to investigate and that

is sandwiched between two contacts at left and right, denoted 𝑝 and 𝑞. The transmission

𝑇𝑝𝑞 between them, known as Fisher-Lee relation [22], will be given by

𝑇𝑝𝑞 = Tr
[︁

Γ𝑝𝒢𝑝𝑞Γ𝑞𝒢†
𝑝𝑞

]︁

, (49)

where 𝒢𝑝𝑞 is the submatrix of the 𝒢 matrix with the rows coming from contact 𝑝 and

the columns from contact 𝑞, while the Γ𝑝/𝑞 function carries all contact information that

matter for the Transmittance and is related to the self-energy Σ𝑝 by

Γ𝑝 = 𝑖
(︁

Σ𝑝 ⊗ Σ†
𝑝

)︁

(50)

The Self-energy is actually a way of taking into account the influence of contacts and, can

be obtained from the contactŠs GreenŠs function 𝑔𝑝 through

Σ𝑝 = 𝑉 𝑔𝑝𝑉
†, (51)

where 𝑉 is the coupling (with hopping matrix elements, in the tight-binding approxi-

mation) between the leads and central part and the contact. Although 𝑔𝑝 is an inĄnite-

dimensional matrix, when we use the tight-binding approach, the matrix 𝑉 has only

non-zero matrix elements between sites located at the contact-conductor junction. Thus,

we only need to use what is called the surface GreenŠs function [23].
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Figure 21 Ű Right side: Transmission curves for AGNRs with N = 3, N = 4, N = 5, N
= 6, N = 7, N = 8, and N = 15. Left side: Density of states for AGNRs with N = 3, N
= 4, N = 5, N = 6, N = 7, N = 8, and N = 15.

In Fig. 21, we show some results for transmission function and DOS, obtained from

GreenŠs function formalism.

4.2 Thermoelectric effects

By applying a small voltage Δ𝑉 = 𝑉𝐿 ⊗𝑉𝑅 and a not very large temperature gradient

to our system, we can calculate the thermoelectric transport through a nanodevice [quasi-

equilibrium regime]. Left and right contacts are then at different chemical potentials Û𝐿

and Û𝑅, and temperatures 𝑇𝐿 and 𝑇𝑅
[24], with

Δ𝑉 =
Û𝐿 ⊗ Û𝑅

𝑒
, (52)

and

Δ𝑇 = 𝑇𝐿 ⊗ 𝑇𝑅. (53)

The thermoelectric properties are obtained from the 𝐿𝑛 coefficients, obtained from the

following equation [25]

𝐿𝑛 =
∫︁ ∞

⊗∞
(𝐸 ⊗ Û)𝑛 𝒯 (𝐸)

(︃

⊗𝜕𝑓(𝐸, 𝑇 )
𝜕𝐸

)︃

d𝐸 (54)

in Eq. (54), 𝒯 (𝐸) is the transmission probability of electrons of energy 𝐸 being trans-

mitted through the device, and 𝑓(𝐸, 𝑇 ) is the Fermi distribution, as deĄned above. The

derivative of the Fermi distribution is given by
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or

𝑆 =
⊗1
♣𝑒♣𝑇

𝐿1

𝐿0

. (60)

The Seebeck coefficient, or thermopower, is the capacity of the material to convert the

gradient temperature Δ𝑇 to voltage difference Δ𝑉 , when no current flows through the

device. Other important thermoelectric properties are the Peltier coefficient (Π), and the

electronic thermal conductance 𝐾𝑒

Π =
⊗1
♣𝑒♣

𝐿1

𝐿0

Ùe =
2
ℎ𝑇

(︃

𝐿2 ⊗ (𝐿1)
2

𝐿0

)︃ (61)

Finally, it is possible to derive a relation that tells us the thermal efficiency of a mate-

rial. This efficiency is expressed through the so-called 𝑍𝑇 Ągure of merit (a dimensionless

quantity). The 𝑍𝑇 can be obtained from the Seebeck coefficient, electrical conductance,

and thermal conductance, as

𝑍𝑇 =
𝐺𝑆2

𝐾𝑒

𝑇 =
𝑃𝐹

𝐾𝑒

𝑇 (62)

where 𝑃𝐹 = 𝐺𝑆2 is so-called power factor.

𝑍𝑇 =
(𝐿1)

2

𝐿0𝐿2 ⊗ (𝐿1)
2 . (63)

all thermal proprieties that we have deĄned above can also described in function of the

𝐿𝑛 in the following way

𝐺 =
2𝑒2

ℎ
𝐿0

𝑆 =
𝑘B

𝑒

𝐿1

𝐿0

𝐾e =
2 (𝑘B)2 T

ℎ

(︃

𝐿2 ⊗ 𝐿2
1

𝐿0

)︃

𝑍𝑇e =

[︃

𝐿2
1

𝐿2
0

⟨

/

[︃

𝐿2

𝐼0

⊗ 𝐿2
1

𝐿2
0

⟨

.

(64)

These equations show that the typical units of thermal properties are

2𝑒2

ℎ
= 77ÛS (65)

𝑘B

𝑒
= 86ÛV/K (66)

2 (𝑘B)2 𝑇

ℎ
= 173pW/K at 𝑇 = 300𝐾 (67)
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4.2.1 Thermoelectric properties of graphene AGNRs

In Fig. 23 we present the properties of a pristine semiconducting armchair nanoribbon

(𝑁 = 13), as a function of chemical potential Û, at 𝑇 = 300𝐾. Panel (a) shows a

schematic description of the system being studied. In Fig. 24(b), we notice a large Seebeck

coefficient, which is mainly due to the systemŠs large band-gap [which may be inferred

from panels (c) and (d)]. The Seebeck coefficient is a central quantity in the description

of the thermoelectric properties. In short, the Seebeck coefficient is an odd function that

is positive for Û > 0 and negative for negative Û < 0 [see Fig. 23(b)]. As can be seen

in Fig. 24, it is easy to note that both the electrical and the thermal conductances have

the same proĄle of the transmission coefficients [used in the thermal integrals]. The Ąnite

temperature is responsible to cause the degradation of well-deĄned plateaus. Fig. 23(d)

shows the thermocurrent GS, deĄned as a product of the Seebeck coefficient and the

electronic conductance for a 13-AGNR. This is a property of great importance, as together

with ZT, it will deĄne the efficiency ranges of the material.

4.3 Thermoelectric transport properties of armchair

graphene nanoribbon heterostructures

4.4 Introduction

The discovery of the Seebeck and Peltier effects, in 1821 and 1834, respectively, marked

the beginning of thermoelectricity research, i.e., the study of phenomena related to the

direct conversion of heat into electrical energy (Seebeck effect), or the reverse, the conver-

sion of electrical current into a cooling heat flow (Peltier effect). Briefly, in the Ąrst, heat

drives an electrical current, which can be used to perform work (see Fig. B1 in Ref. [27]),

while, in the second, an electrical current drives a heat flow that can refrigerate some-

thing [28]. In contrast to a traditional mechanical thermal engine, a thermoelectric (TE)

device has no macroscopic moving parts. Quantitatively, the electric potential difference

created by a temperature gradient is measured by the Seebeck coefficient 𝑆 (also called

thermopower), while the amount of heat carried by an electrical current is measured by the

Peltier coefficient Π. Both, together with the thermal conductance 𝐾 = 𝐾𝑒 +𝐾𝑝ℎ (where

𝐾𝑒 and 𝐾𝑝ℎ are the thermal conductance due to electrons and phonons, respectively), are

material speciĄc TE properties [29].

More than a century ago, in 1914, Edmund Altenkirch obtained a patent for a TE

cooling and heating device [30, 31], i.e., a Śsolid-state heat engineŠ. Further commercial

progress was hindered by the lack of efficiencyŮmeasured by the (dimensionless) TE

Ągure of merit 𝑍𝑇 =
𝐺𝑆2𝑇

𝐾
in the TE energy conversion effects (𝐺 is the electrical con-

ductance, T the absolute temperature, and 𝐺𝑆2 is called power factor). Indeed, a 𝑍𝑇 > 3
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is required for a commercially competitive refrigerator, while a 𝑍𝑇 > 2 is necessary for a

power generator to replace conventional technologies [32, 33]. However, it was only in 1950

that A. F. Ioffé discovered that doped semiconductors could have 𝑍𝑇 values close to 1

(corresponding to about a sixth of Carnot efficiency [34]). New developments only occurred

in the 1990s, after the U. S. Department of Defense stimulated, through funding, the sci-

entiĄc community involved in TE research to look for new ways to improve 𝑍𝑇 values [35].

As a consequence, two new lines of research followed: (i) the search for the next genera-

tion of advanced bulk TE materials [36]; (ii) the exploration of low dimensional systems.

Successes of the Ąrst line of research may be exempliĄed by the discovery that skutteru-

dites [37], like Cerium- and Lanthanum-Ąlled 𝐹𝑒3𝐶𝑜𝑆𝑏12, could reach 𝑍𝑇 ♠ 1.4 [36], and,

more recently, that doped 𝐶𝑢2𝑆𝑒 may reach 𝑍𝑇 ♠ 2.5 [38] (see also Refs. [39, 40], and

references therein). The second line of research was inaugurated by a seminal paper by

Hicks and Dresselhaus [41] proposing the use of quantum-well superlattices to increase 𝑍𝑇

(see Refs. [42, 43, 35, 44, 45, 46] for details) 1.

More recently, along the lines of the second proposal mentioned above, much TE

research has centered directly in studying the TE properties of so-called hierarchically

nanostructured materials [48, 49], in addition to nanostructures like quantum dots [50, 51],

quantum wires [52], and nanoribbons, especially graphene nanoribbons (GNR) [53, 54].

Regarding the latter, important aspects that have been studied are: (i) mixed edge

GNRs, where electron resonant tunneling, originating from the multibarrier structure

created by the alternation of zigzag and armchair edges, is exploited to increase the ther-

mopower 𝑆 and decrease phonon thermal conductance 𝐾𝑝ℎ
[55], leading to a maximum

𝑍𝑇 = 0.79 [56]; (ii) drilling nanopore arrays in chiral and zigzag GNRs, where the pres-

ence of the nanopores decreases 𝐾𝑝ℎ, without impacting 𝐺, which is determined by edge

currents, leading to an increase in efficiency to 𝑍𝑇 ♠ 2.0 at room temperature [57]; (iii)

synthesizing nanoribbons with a supercell structure composed of a hybrid of hexagonal

boron nitride and graphene resulted in an increase in 𝑍𝑇 of the order of 10 to 20 times [58];

(iv) the synthesis of graphene nanoribbons modulated with ŚstubŠ structures (forming het-

erojunctions), in both zigzag GNRs (ZGNRs) and armchair GNRs (AGNRs) lead to a

strong increase in 𝑍𝑇 , by boosting 𝑆 and suppressing 𝐾𝑝ℎ
[59]; (v) Ąnally, a series of

strategies have been used to introduce defects in both AGNRs and ZGNRs, leading to

disorder, which results in the increase of ZT by enhancing 𝑆 and decreasing 𝐾𝑝ℎ (see

Ref. [53] for details). A comprehensive review of these aspects can be found in Ref. [60]

and in the special issue prefaced by the editorial in Ref. [61].

Motivated by those Ąve GNR-related research lines just described, we will study the

TE properties of a recently developed AGNR heterostructure that has recently been

characterized In Ref. [2], two types of AGNR heterostructures were introduced, the so-

1 It should be also noted that TE properties of Topological Insulators have attracted much interest

recently (see Refs. [47??] for details).
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𝑚 ⊙ 1).

We will analyze the TE properties 𝐺, 𝑆, and 𝐾𝑒, of these AGNR heterostructures,

study how the parameters 𝑁 , 𝑛, and 𝑚 influence their Ągure of merit 𝑍𝑇 , and Ąnd if

there is a range of chemical potential values that maximizes 𝑍𝑇 and also has a sizable

linear-response thermocurrent
𝐼𝑡ℎ

Δ𝑇
= 𝐺𝑆 [62, 63] (thermally induced electric current).

Although our calculations are done at room temperature 𝑇 = 300 K, we will disregard

heat transport through phonons, that is, we will take 𝐾 = 𝐾𝑒. In Sec. 4.9 we present

a justiĄcation for that. The rest of the paper is organized as follows: In Sec. 5.2, we

introduce the tight-binding Hamiltonian that describes the heterostructures and provide

the equations that deĄne the TE coefficients to be calculated. In Sec. 4.6, we present

numerical results for the TE properties of pristine (no extensions) N-AGNRs. These

results will serve as a benchmark to gauge the improvement (or not) of 𝑍𝑇 values for the

two heterostructures studied here. In Sec. 4.7, we present results for 𝐺, 𝑆, 𝐾𝑒, 𝐺𝑆, and

𝑍𝑇 for Inline N-AGNR-I(n,m) heterostructures, showing how they depend on 𝑁 , 𝑛 and

𝑚, and, most importantly, how their TE properties compare with those of pristine N-

AGNRs (with no extensions), and if there is any improvement in 𝑍𝑇 . We do the same in

Sec. 4.8, but now for Staggered N-AGNR-S(n,m) heterostructures. In Sec. 4.9 we discuss

the results obtained and we end with Sec. 4.10, where we present a summary and our

conclusions. Note that despite the interest that the non-trivial topological properties of

these heterostructures have generated [2, 8], we do not explore this aspect in particular in

this paper.

4.5 Model and thermoelectric coefficients

The electronic structure of these N-AGNR(n,m) heterostructures will be simulated

using a tight-binding Hamiltonian

𝐻tb = ⊗𝑡
∑︁

⟨𝑖,𝑗⟩à
𝑐†

𝑖à𝑐𝑗à, (69)

where 𝑐†
𝑖à (𝑐𝑖à) creates (annihilates) an electron in site 𝑖 with spin à and ⟨𝑖, 𝑗⟩ runs

over nearest-neighbor sites. This Hamiltonian describes nearest-neighbor hoppings with

transfer integral 𝑡, where a typical value found in the literature for this parameter is

𝑡 ≍ 3.0 eV [5]. This will be the value used for all our calculations. Reference [64], by

the current authors, presents an explicit expression for the tight-binding Hamiltonian in

reciprocal space for an N-AGNR(1,3) heterostructure.

The temperature dependent electrical and thermal conductances, 𝐺 and 𝐾𝑒 (electronic

part only), respectively, as well as the thermopower 𝑆 (Seebeck coefficient) are given

by [42, 65, 66]
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using the Landauer and GreenŠs function formalism, as described elsewhere [21, 67]. The

calculations for 𝒯 were done following a standard Landauer setup, viz., three distinct

regions that comprise a central (Ąnite) region, coupled to two semi-inĄnite reservoirs that

serve as source and drain. All three regions are formed by the heterostructure (or the

pristine N-AGNR) being analyzed.

As the TE transport coefficients are dimensionless, and since (in SI units) we have

that
2𝑒2

ℎ
= 77.48 × 10⊗6𝐴𝑉 ⊗1,

2𝑘2
𝐵𝑇

ℎ
= 0.5753 × 10⊗12𝑊𝐾⊗1 (for 𝑇 = 1𝐾), and

𝑘𝐵

𝑒
=

86.16 × 10⊗6𝑉 𝐾⊗1, we will present the results for 𝐺, 𝐾𝑒, and 𝑆 in units of 102 × Û𝐴𝑉 ⊗1,

𝑛𝑊𝐾⊗1, and 𝑚𝑉𝐾⊗1, respectively. We will present numerical results for these (and

derived properties) as a function of chemical potential Û.

Before presenting the results, we wish to make an important remark. One TE property

that is usually measured is the so-called linear-response thermocurrent
𝐼𝑡ℎ

Δ𝑇
= 𝐺𝑆. Thus,

we will present results for this quantity too (in units of 𝑛𝐴𝐾⊗1). We thus consider

an improvement in the TE properties of a material if a so-called nanostructure Śband

engineeringŠ produces an increase in both 𝑍𝑇 and 𝐺𝑆 for the same value of chemical

potential Û.

4.6 Thermoelectric properties for pristine N-AGNR

AGNRsŠ electronic properties depend on their width 𝑁 , since they can present either

a metallic (𝑁 = 3𝑝 + 2) or a semiconducting (𝑁 = 3𝑝, 3𝑝 + 1, with 𝑝 an integer) ground

state. In Fig. 34, we show a comparison of TE properties (electrical conductance 𝐺,

Seebeck coefficient 𝑆, thermal conductance 𝐾𝑒, thermocurrent 𝐺𝑆, and Ągure of merit

𝑍𝑇 ) between semiconducting (panels (a) to (e), left column) and metallic (panels (f) to

(j), right column) AGNRs for 5 different widths 𝑁 . In the Ąrst row, in Figs. 34(a) and

34(f), we plot the electrical conductance 𝐺 for semiconducting (𝑁 = 3, 7, and 9) and

metallic (𝑁 = 5 and 11) AGNRs, respectively. In the second row [panels (b) and (g)], we

present the thermopower 𝑆, while the third row [panels (c) and (h)] shows the thermal

conductance 𝐾𝑒. In the fourth row [panels (d) and (i)], we show the thermocurrent 𝐺𝑆.

Finally, we show the Ągure of merit 𝑍𝑇 in the last row [panels (e) and (j)]. From these

results, we see that the metallic systems (right panels) have 𝑍𝑇 values that are more

than three orders of magnitude lower than the semiconducting systems [compare panels

(e) and (j)]. This is easy to understand, since, in a metal, any charge buildup caused

by a temperature gradient will be quickly screened by the conduction electrons, resulting

in a low Seebeck coefficient 𝑆 [compare panels (b) and (g)], which, in turn, causes a

low thermocurrent 𝐺𝑆, a low power factor 𝑃𝐹 = 𝐺𝑆2 (not shown), and thus a low

𝑍𝑇 =
𝐺𝑆2𝑇

𝐾𝑒

, unless 𝐾𝑒 is also small, which is not the case [compare panels (c) and (h)].

In the next Secs., we will present similar results, but for the Inline (Sec. 4.7) and Stag-
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around the (much enlarged) ŚoriginalŠ AGNR peaks and that they are associated to larger

thermocurrent (𝐺𝑆) values than the ŚoriginalŠ peaks.

4.7 Thermoelectric properties for N-AGNR-I(n,m)

heterostructures

4.7.1 Dependence of thermoelectric properties with 𝑁

In Fig. 35, in each of the four columns, we show results for all Ąve TE properties

we are interested in, i.e., electrical conductance 𝐺, thermopower 𝑆, thermal conductance

𝐾𝑒, thermocurrent 𝐺𝑆, and Ągure of merit 𝑍𝑇 , in this order, from top to bottom. Each

column contains results for N-AGNR-I(1,3), for 𝑁 = 3, 5, 7, and 9, from left to right,

respectively. Notice that, since the largest 𝑍𝑇 values, 𝑍𝑇𝑚𝑎𝑥, obtained for most of the

heterostructures analyzed (both Inline and Staggered) are substantially higher than those

obtained for semiconducting AGNRs, and since we are interested in Ąnding 𝑍𝑇 peaks

that are accompanied by sizable values of themocurrent 𝐺𝑆 (which is not the case for the

higher 𝑍𝑇 peaks), we present the 𝑍𝑇 results in a range 0 ⩽ 𝑍𝑇 ⩽ 𝑍𝑇𝑖 ⪯ 𝑍𝑇𝑚𝑎𝑥, with

the objective of Ąnding smaller 𝑍𝑇 peaks that are accompanied by sizable 𝐺𝑆 values.

Note that 𝑍𝑇𝑖, where 𝑖 = 1, . . . , 4, will have a different value for each of the panels in the

bottom row of the four columns in Figs. 35 to 40.

By analyzing the Ąrst row in Fig. 35 and comparing it with the results in the Ąrst row of

Fig. 34, we observe the following: (i) 5-AGNR, which is metallic, has turned into semicon-

ducting when transformed into 5-AGNR-I(1,3) [compare Fig. 34(f) with Fig. 35(b)], which

then results in a much improved 𝑍𝑇 (𝑍𝑇𝑚𝑎𝑥 ≡ 230), as expected [compare Fig. 35(r) with

Fig. 34(j)]; (ii) 7- and 9-AGNR (red and green curves in Fig. 34(a), respectively) had their

gaps slightly decreased [compare Figs. 35(c) and (d) with Fig. 34(a)], accompanied by a

one order of magnitude decrease in their 𝑍𝑇𝑚𝑎𝑥; (iii) a zoom-in in the 𝑍𝑇 panels shows

that all N-AGNR-I(1,3) display the presence of secondary smaller peaks (located around

the original N-AGNR peaks) with accompanying structures in 𝐺𝑆 that make it easier

to spot regions of chemical potential where both 𝑍𝑇 and 𝐺𝑆 are sizable. These regions

are indicated by shaded rectangles in both 𝑍𝑇 and 𝐺𝑆 panels in all four columns. For

completeness, we list here the 𝑍𝑚𝑎𝑥 values obtained in Fig. 35: 𝑍𝑇𝑚𝑎𝑥 ≡ 4 × 103, 2 × 102,

25, and 25, for 𝑁 = 3, 5, 7, and 9, respectively.

4.7.2 Dependence of thermoelectric properties with 𝑛

In Fig. 36, we show similar results as in Fig. 35, but now for 3-AGNR-I(n,3), for

𝑛 = 1, 2, 3, and 4. The Ąrst column of Fig. 36 reproduces the 3-AGNR-I(1,3) result

already shown in Fig. 35 to facilitate the evaluation of any trends with the variation
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Although, in principle, we do not expect the same degradation level of 𝐾𝑝ℎ to occur

in our heterostructures, as the one predicted for the chevron-type heterostructures (since

our heterostructures are more symmetric), it is certain that some degradation in 𝐾𝑝ℎ will

occur, when compared to N-AGNRs. Given the very high values of 𝑍𝑇 we have shown in

the previous sections, when compared to N-AGNRs, it would not be far-fetched to assume

that the heterostructures studied here could turn out to have competitive TE properties.

4.10 Summary and Conclusions

In summary, we have (to the best of our knowledge, for the Ąrst time) investigated

the TE properties of two recently synthesized heterostructures, dubbed Inline and Stag-

gered, denoted N-AGNR-I(n,m) and N-AGNR-S(n,m), respectively, which are obtained

via chemical processes, and that can be described as unit cell extensions applied on top

of an N-AGNR backbone. We calculated, for both types of heterostructures, using the

Landauer formalism, the electrical conductance 𝐺, thermopower 𝑆, thermal conductance

𝐾𝑒, thermocurrent 𝐺𝑆, and Ągure of merit 𝑍𝑇 , at room temperature, and did a careful

comparison with the results obtained for the corresponding N-AGNR backbones. Our

results allowed us to conclude that (i) all metallic N-AGNR backbones become semicon-

duncting when transformed in either heterostructure, resulting in the expected increase

in 𝑍𝑇 ; (ii) very large increases in 𝑍𝑇 are obtained for some combinations of parameters;

(iii) ŚsecondaryŠ (smaller) 𝑍𝑇 peaks are obtained that still present large values of 𝑍𝑇 , but

that, in addition, are associated to ranges of chemical potential where there is a sizable

linear-response thermocurrent
𝐼𝑡ℎ

Δ𝑇
= 𝐺𝑆. Despite the fact that our results ignore the

degrading effect of phonon thermal conductance 𝐾𝑝ℎ over 𝑍𝑇 , we argue that a decrease

of 𝐾𝑝ℎ, when compared to N-AGNRŠs, should be expected, in view of recent research in

quasi-1D supperlattices like the chevron nanoribbons. We hope that our results may spur

further research by theory and experimental groups alike.
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Chapter 5

Ferromagnetism in armchair graphene

nanoribbon heterostructures

5.1 Introduction

Strong correlations in magic-angle twisted bilayer graphene (TBG), discovered in

2018 [87] (see Ref. [88] for a review), were associated to the presence of strongly correlated

states in flat mini-bands of the hexagonal Moiré superlattice, as previously predicted by

band structure calculations [89, 90, 91]. Recently, ARPES measurements [92] have provided

direct evidence for the existence of flat-bands in magic-angle TBG. These developments

have greatly increased the interest in the study of low-dimensional systems presenting

bands with zero (or quasi-zero) dispersion.

Indeed, in the last one year alone, there has been new flat-band research in many differ-

ent areas, like their experimental observation in atomically precise one-dimensional (1D)

chains [93], as well as the study of flat-bands in strongly correlated systems [94, 95, 96, 97]

[98, 99, 100, 101, 102], search for flat-bands in kagome-type lattices [103, 104], study of symme-

try aspects of flat-band systems [105, 106, 107], holographic construction of flat-bands [108],

flat-bands in pyrochlore lattices [109, 110], analysis of randomness in flat-band Hamiltoni-

ans [111], topological aspects of flat-band systems [112, 113, 114, 115, 116, 117], construction of

flat-band tight-binding models starting from compact localized states [118], and study of

flat-bands in graphene and graphene-like lattices [119, 120, 121, 122].

For a brief review of the research in flat-bands, describing initial theoretical proposals

in the late 1980s [123, 124], their association to topological phases [125, 126], and their possible

realization in superconducting wire networks, cold atoms in optical lattices, and photonic

systems, see Ref. [127]. For a description of strongly correlated ground states associated

to dispersionless bands, see Ref. [128].

Following the development of a bottom-up procedure for atomically precise synthe-

sis of semiconducting graphene nanoribbons (GNRs) with different width, edge, and end

termination [75], a seminal paper by Steven LouieŠs group in 2017 [17] showed that these
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synthesized armchair GNRs (AGNRs) strands belonged to different topological phases,

protected by spatial symmetries and with a 𝑍2 topological invariant whose value was dic-

tated by their width and terminating unit cell. Thus, the bulk-boundary correspondence

principle [129, 130, 131, 132, 133, 134] imposes that at the interface between two Ąnite AGNRs,

with different 𝑍2 values, a topologically protected localized state should exist, with its

energy located inside the AGNR gap. This expectation was conĄrmed by Density Func-

tional Theory (DFT) calculations [17]. The following year, two experimental groups, one

in Europe [8] and the other in the USA [2], published side-by-side Nature papers presenting

DFT and tight-binding simulations of Scanning Tunneling Spectroscopy (STS) measure-

ments in superlattices of short AGNR strands, alternating between Ąnite and vanishing

𝑍2 values, that indicated the presence, inside the (overall) AGNR gap, of a dimerized

chain band structure. A Su-Schrieffer-Heeger (SSH) effective model (initially proposed

to describe polyacetylene [18], and recently revived as a prototypical model for a one-

dimensional topological insulator [4]), was shown to qualitatively describe the experimen-

tal results. Thus, in what was described as a hierarchically engineered one-dimensional

topological system [8], the AGNR heterostructure, with topologically non-trivial properties

(i.e., a topologically protected end state), is itself composed of alternating topologically-

trivial and non-trivial building blocks. Besides the ability of considerably decreasing the

AGNRŠs spectral gap (with the recent observation of metallicity in an AGNR heterostruc-

ture [135]Űnotice that all AGNRs are actually semiconducting [16]), the properties of these

heterostructures, as implied by the results presented in Refs. [2, 8], have generated much

attention, as they represent one of the Ąrst stable materials (besides polyacetylene) that

simulates the SSH model, which up to now had been simulated mainly in cold-atom [136],

engineered atomic lattices [137, 138], photonic [139], acoustic [140], and mechanical [141, 142]

experimental conĄgurations. Very recent work, extending the results in Refs. [2, 8], may

be found in Refs. [143, 144].

A much less studied aspect of these AGNR heterostructures is the presence of disper-

sionless bands in their band structure. In this work, using the tight-binding method and

DFT, we systematically analyze how the presence or not of flat-bands, their proximity to

the Fermi energy, their interplay with nearby dispersive bands, as well as if they give origin

or not to a ferromagnetic ground state, depends on the parameters that deĄne the AGNR

heterostructure. Our results show that, indeed, the majority of the heterostructures stud-

ied through tight-binding present several flat-bands that can be associated to ŚWannier

orbitalŠ states, as formerly seen in pristine AGNRs [9]. By appropriately hole-doping

these heterostructures, i.e., bringing the Fermi energy close to a flat-band, a ferromag-

netic ground-state is observed through DFT simulations. The ferromagnetic exchange

coupling at the flat-band appears to be mediated by a dispersive band that crosses it [9].
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Figure 33 Ű Schematic representation of the meaning of the parameters 𝑁 , 𝑛, and 𝑚 in
an N-AGNR(n,m) heterostructure. See text for details.
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Figure 34 Ű Tight-binding band structure of a 3-AGNR(1,3) heterostructure. The flat-
bands are indicated by labels 1, 2, 3𝑎, 3𝑏, and 4, starting from the Fermi energy at
half-Ąlling (𝐸 = 0). Note that band 3 is double-degenerate.
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present two perfectly flat-bands at ∘𝑡, and Fig. 34 shows that this also happens for the

3-AGNR(1,3) heterostructure (energy 𝐸3𝑎 = 𝐸3𝑏 = ⊗𝑡). As a matter of fact, this is true

for all odd-N N-AGNR(1,3) heterostructures we have investigated, with the difference

that for 𝑁 = 3, 5 and 7 there are additional flat-bands at higher and lower energies, as

shown in Fig. 34. For 𝑁 ⊙ 9, these additional flat-bands acquire dispersion (see Sec. 5.4).

One interesting point is that, in the N-AGNR(1,3) heterostructures, the ∘𝑡 bands are

double-degenerate for 𝑁 = 3 and 5, however, this degeneracy is lifted for 𝑁 ⊙ 7 (see

Sec. 5.4).

5.3.1 The Wannier-like states

In Ref. [9], a very interesting analysis is done of the magnetism of these ∘𝑡 flat-bands

that are present in the odd-N AGNR (without extensions, i.e., pristine AGNR). Indeed,

the origin of the zero-dispersion is that the Bloch states associated to the ∘𝑡 bands are

formed by ŚisolatedŠ clusters of charge inside each unit cell (the so-called ŚWannier orbitalŠ

states, or Wannier-like states), which have zero overlap with the clusters in adjacent unit

cells. This happens because of destructive quantum interference [9]. This phenomenon is

shown in Fig. 35, which shows the integrated charge density (over all 𝑘-values) for 𝐸 = ⊗𝑡
in each site of an 𝑁 = 3 pristine AGNR. Figure 35 simulates the local density of states

(LDOS) an Scanning Tunneling Microscope tip would observe in case its parameters were

set to capture just the 𝐸 = ⊗𝑡 states of a 3-AGNR. It is remarkable that each and

every one of the different Bloch states (for different 𝑘-values in the Brillouin zone) at

𝐸 = ⊗𝑡 has the same LDOS proĄle as the one shown in Fig. 35 (see Ref. [9] for details).

It is worth mentioning that these so-called Wannier-like states are also called Ścompact

localized statesŠ [105], which, as shown in Fig. 35, are localized on a subset of lattice sites,

with zero amplitude in the rest of the lattice. As shown in the Introduction, they have

recently attracted a great deal of attention. A discussion of their properties and the

relevant literature may be found in Ref. [105].

Our tight-binding results for the 3-AGNR(1,3) heterostructure (Fig. 36) show that

these Wannier-like ⊗𝑡 states, which exist in the odd-N pristine AGNRs, survive (basically

unaffected) the (𝑛,𝑚) extensions that give origin to the heterostructure. This can be

seen in the LDOS (charge density) proĄle shown in Fig. 36(c) for state 𝐸3𝑎, which shows

exactly the same structure as the one in Fig. 35, with the difference that now the extended

unit cell is wider, thus it accommodates four occupied dimers along the vertical direction,

in contrast to the pristine 3-AGNR, where the Wannier-like state is composed of just

two dimers (see Fig. 35). On the other hand, Fig. 36(d) shows the other Wannier-like

state, 𝐸3𝑏, that is degenerate at 𝐸 = ⊗𝑡. Interestingly, its charge proĄle near the edge of

the extended unit cell is clearly reminiscent of the pristine 3-AGNR, while, at the center

of the unit cell it is a mixture of the 𝐸3𝑎 state and some charge density occupying the

maximally-separated sites that are left empty by the 𝐸3𝑎 state.
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: (i) flat-band 1, seen in Fig. 34, remains perfectly flat for 𝑁 = 5 and 7, although at

a different energy position, while flat-band 2 has acquired a tiny dispersion; (ii) for all

three values of 𝑁 the ⊗𝑡 flat-band is present. In reality, as far as we can tell, the ∘𝑡
flat-bands occur for any odd value of 𝑁 ; (iii) for 𝑁 = 5 and 7, flat-band 4 has already

acquired some dispersion; (iv) likewise, for 𝑁 ⊙ 9, except for ⊗𝑡 flat-band, the other three

flat-bands (1, 2 and 4) have acquired dispersion; (v) Ąnally, the ⊗𝑡 flat-band for 𝑁 = 5

is still double-degenerate, while it is not anymore for 𝑁 = 7. It is possible that farther

from the Fermi level (𝐸 = 0, at half-Ąlling) there are additional flat-bands (besides the

∘𝑡 ones) for 𝑁 ⊙ 9, but we have not investigated this possibility.

In Figs. 38 and 39, we show the flat-band Wannier-like states corresponding to bands

1, 2 and 3 presented in Figs. 37(a) and 37(b), for a 5-AGNR(1,3) and a 7-AGNR(1,3)

heterostructure, respectively. A careful comparison of Figs. 36, 38, and 39 shows that

the Wannier-like states for the same band at different values of 𝑁 are semi-quantitatively

the same, indicating that the maximum 𝑁 for which we can look for these interesting

states is 𝑁 = 7, which is an N-AGNR(n,m) heterostructure size that can be faithfully

obtained in the laboratory [8, 75, 145], suggesting that the results obtained here can be

tested experimentally.

As mentioned above, there is an interesting point regarding the ⊗𝑡 flat-band Wannier-

like states 𝐸3𝑎 and 𝐸3𝑏 as we vary 𝑁 in an N-AGNR(1,3) heterostructure: they are still

degenerate for 𝑁 = 5, as can be seen in Fig. 38(c), where we show the combined charge

density for both bands 𝐸3𝑎 and 𝐸3𝑏, however, for 𝑁 = 7, it is not degenerate anymore.

Notice that in Fig. 39 we show, in panel (c), the charge density just for the 𝐸3𝑎 band,

since band 𝐸3𝑏 does not exist anymore. We speculate that, as may be inferred from the

charge density distribution in Fig. 38(c), the Wannier-like state 𝐸3𝑏 for 𝑁 = 5 seems

on the verge of losing its Wannier-like character. This occurs because there are only 4

sites (indicated by numbers 1 to 4, and showing perfect destructive quantum interference)

preventing the existence of a continuous nearest-neighbor path that connects all unit cells

with each other, which would result in a dispersive state.

5.5 Dependence on parameters 𝑛 and 𝑚.

5.5.1 Band structure dependence with 𝑛

In Fig. 40, we see tight-binding band-structure results for 3-AGNR(n,3), for 𝑛 = 1

to 4, in panels (a) to (d), respectively. In panel (a), we repeat the results shown in

Fig. 34 [for 3-AGNR(1,3)] to facilitate comparison. A trend with increasing 𝑛 (size of

the extended region of the heterostructure) can be clearly discerned. Indeed, we see that

the ∘𝑡 flat-bands survive the increase in the unit cell, and a cluster of flat-bands (and

changed their positions (except for band 3) in relation to Fig. 34.
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Figure 41 Ű Band structures for 3-AGNR(1,m) heterostructures for 𝑚 = 2 to 5, in panels
(a) to (d), respectively.

some bands with very little dispersion) develops in the energy range ⊗2.0 ≲ 𝐸 ≲ ⊗1.0.

It is also interesting to remark that flat-band 𝐸1 (the one closest to the Fermi energy)

tends to approach the Fermi energy as 𝑛 increases. We also did an analysis for larger

values of 𝑛. For example, for 𝑛 = 10 (not shown), bands at higher energies seem to

become less dispersive. In addition, the flat-band closest to the Fermi energy remains flat

and approaches the Fermi energy even more, sitting basically at the Fermi energy for a

3-AGNR(10,3) heterostructure. Finally, for 𝑛 = 10, the cluster of flat-bands mentioned

above becomes more dense and somewhat closer to the Fermi energy.

We also investigated the band structure dependence with 𝑛 for 5-AGNR(n,3) het-

erostructures (not shown) and obtained qualitatively the same results as the ones shown

in Fig. 40 for 𝑁 = 3, which may be considered reasonable, since we can intuitively expect

a lesser dependence of the electronic structure on 𝑁 than on 𝑛 and 𝑚.

5.5.2 Band structure dependence with 𝑚

In Fig. 41, we see the band structures for 3-AGNR(1,m) heterostructures for 𝑚 = 2

to 5 in panels (a) to (d), respectively. Here, we also reproduced Fig. 34, in panel (b), to

facilitate comparison. As seen with the variation of 𝑛 (but to a lesser degree), we see in

Fig. 41, for 3-AGNR(1,m), that increasing 𝑚 from 2 to 5 results in an accumulation of flat-

bands close to the Fermi energy. In addition, as observed for the 𝑛-variation, the results

for the 𝑚-variation of the 5-AGNR(1,m) heterostructures (not shown) are qualitatively

similar to the trend seen in Fig. 41 for 3-AGNR(1,m).

We wish to call attention to the band structure in Fig. 41(a), for 3-AGNR(1,2). In

it, we see that the flat-band closest to the Fermi energy is crossed by a dispersive band

that may be topologically non-trivial [2, 8]. In case this dispersive band is indeed topo-

logically non-trivial, it would be very interesting to study the interplay of topology and

ferromagnetism once this system is doped.

Before presenting the DFT results, we compile below the results presented in Figs. 36

to 41. This may serve as a guide to the reader to relate the presence (or absence) and
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behavior of flat-bands with the variation of parameters 𝑁 , 𝑛 and 𝑚:

1. The ∘𝑡 flat-bands, present in the pristine AGNRs, are also present for all values of

𝑁 , 𝑛, and 𝑚 investigated here, and they are associated to the same Wannier-like

states identiĄed in the pristine AGNRs [9].

2. For N-AGNR(1,3) (𝑁 = 3 and 5), the ∘𝑡 bands are double degenerate (in contrast

to the pristine AGNRs) and the partner state is also a Wannier-like state, similar

to the one mentioned in the item above. This degeneracy is lifted for 𝑁 > 5.

3. Additional flat-bands appear around the ∘𝑡 flat-bands for all heterostructures an-

alyzed, and to each different flat-band it was possible to associate a Wannier-like

state that seems like a variant of the ∘𝑡 Wannier-like state.

4. Regarding the variation of these additional flat-bands with 𝑁 , we see that they

survive (i.e., have zero-dispersion) up to 𝑁 = 7 for all heterostructures studied

here.

5. With increasing 𝑛, we see that the overall number of flat-bands increases, with

a cluster of them forming gradually closer to the Fermi-energy, with one of them

seating almost at the Fermi energy already for the 3-AGNR(10,3) heterostructure.

This description of the 𝑛 dependence applies to all prime values 3 ⩽ 𝑁 ⩽ 7.

6. Similar to the 𝑛-dependence, there is an increase in the number of flat-bands with

𝑚, with a similar accumulation close to the Fermi energy. As well, this description

qualitatively applies to all prime values 3 ⩽ 𝑁 ⩽ 7.

We should also mention that a brief study of the so-called ŚStaggeredŠ heterostruc-

tures, which are less symmetric than the ones analyzed here (see Refs. [2, 8]), has shown

a tendency to form considerably less flat-bands, indicating that the hetrostructures dis-

cussed here are the ones that should receive more attention in the quest for quasi-1D

ferromagnetism.

5.6 Ferromagnetic phase obtained with DFT

To address the possible existence of any magnetic phase under hole-doping, we will

use DFT, which is a more realistic calculation than tight-binding and that can treat

correlations at the mean-Ąeld level. We will search for indications of a ferromagnetic

ground-state on two heterostructures, viz., 3-AGNR(1,3) and 5-AGNR(1,3). According

to Ref. [9], the presence of itinerant carriers is important to mediate ferromagnetism

between the isolated magnetic moments in each unit cell of the Wannier-like states. The

3-AGNR(1,3) and 5-AGNR(1,3) heterostructures present dispersive bands intercepting
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Figure 42 Ű DFT and tight-binding band structures for a 3-AGNR(1,3) heterostructure,
at half-Ąlling, in panels (a) and (b), respectively. As expected, the DFT bands are not
particle-hole symmetric, but, other than that, there is a good qualitative agreement be-
tween DFT and tight-binding. The numbered bands are discussed in the text.

the flat-bands, as can be seen in Figs. 34 and 37(a), respectively. We will postpone a

careful DFT analysis of the ferromagnetic ground-state dependence on the parameters 𝑛

and 𝑚 to a future publication.

5.6.1 Details of the DFT calculations

We do a DFT calculation within the projector augmented wave scheme [146] for the

pseudopotentials. The total energies and electronic structures are self-consistently com-

puted within a plane-wave basis-set with a kinetic energy cut-off of 350 eV. We used the

Vienna Ab initio Simulation Package (VASP) [147, 148]. For a better description of the

exchange-correlation term of the DFT, we use a hybrid functional to improve the descrip-

tion of the many-electron interactions and charge localization [149]. The HSE06 hybrid

functional has been used [150], where the screened functional contains part of the exact

Hartree-Fock exchange that has been shown to give accurate results for the exchange

splitting, which is crucial to understand the magnetic properties in our system. Interest-

ingly, our results show that the inclusion of the hybrid functional puts the 𝐸3𝑎 flat-band

around 3 eV from the Fermi energy, matching the tight-binding results (see Fig. 42). By

suppressing the hybrid functional, using just the generalized gradient approximation [151],

the 𝐸3𝑎 band stays around 2.5 eV from the Fermi level. As we are using the periodic super-

cell approach within the Ąrst principles calculations, the exchange interactions between

adjacent unit cells are also included.
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5.6.2 Band structure for 3-AGNR(1,3): comparison DFT/tight-

binding

Panels (a) and (b) in Fig. 42 show a comparison of the DFT and tight-binding band

structures for a 3-AGNR(1,3) heterostructure, respectively. Contrary to the tight-binding

bands, the DFT bands are not mirror symmetric around 𝐸 = 0. Note that the tight-

binding bands would also lack mirror symmetry if a next-nearest-neighbor hopping had

been introduced (breaking chiral symmetry). Some details of the negative energy DFT

bands are worthy of mention. First, we see that the DFT band closest to the Fermi

energy (numbered 1 in Fig. 42), which is flat in the tight-binding results, has acquired

dispersion. Fig. 36(a) shows the tight-binding Wannier-like state for this band. Since

its charge density is mostly accumulated at the edges of the unit cell (and it does not

completely vanish at its center either), one may argue that small perturbations introduced

by the DFT calculations to the tight-binding results may create an overlap between the

Wannier-like states in adjacent unit cells and result in dispersion (as discussed above in

relation to the 𝐸3𝑏 tight-binding band for a 5-AGNR(1,3) heterostructure). On the other

hand, the Wannier-like states [see panels (b) and (c) in Fig. 36] for the bands denoted 2

and 3𝑎 in Fig. 42 are much more concentrated at the center of the unit cell [especially for

band 3𝑎, see Fig. 36(c)] and thus they should be more robust against perturbations that

could create an overlap between adjacent unit cells. Thus, as expected, DFT bands 2 and

3𝑎 are perfectly flat. Finally, the same reasoning leads us to expect that the DFT bands

3𝑏 and 4 should acquire dispersion, as they do indeed, the latter less so than the former.

A Ąnal point can be made, along the lines of the qualitative discussion above, if we

compare our DFT results with the DFT results in Ref. [9]. There, it was obtained, for a

pristine (no extensions) 5-AGNR, that the ∘𝑡 DFT flat-bands, at zero doping, acquire a

dispersion of ≡ 0.4 eV (see Fig. 4(a) in Ref. [9]). On the other hand, the DFT ∘𝑡 bands

for N-AGNR(1,3), for 𝑁 = 3 [band 3𝑎 in Fig. 42(a)] and 𝑁 = 5 (not shown), are perfectly

flat. This seems to indicate that in an N-AGNR(n,m) heterostructure, which has a wider

unit cell than a pristine AGNR, the charge density of the ∘𝑡 Wannier-like states in each

unit cell [like the ones shown in Figs. 36(c), 38(c), and 39(c)] is even more insulated from

the charge density in adjacent unit cells, and thus can result in a more robust (more

massive) DFT flat-band.

5.6.3 DFT bands at Ąnite doping and ferromagnetic ground-

state

To bring the Fermi energy close to the flat-bands, and thus investigate their properties,

we start hole-doping the 3-AGNR(1,3) heterostructure. We measure the hole-doping 𝑥ℎ

from the half-Ąlling point, thus 𝑥ℎ = 1 ⊗ ⟨𝑛⟩ (therefore, 𝑥ℎ = 0 at half-Ąlling), where ⟨𝑛⟩
is the electron average site-occupancy.
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Figure 43 Ű DFT band structures for a 3-AGNR(1,3) heterostructure at different hole-
dopings: (a) 𝑥ℎ = 0.10, (b) 𝑥ℎ = 0.0 (half-Ąlling), and (c) 𝑥ℎ = 0.23. In panels (a) and
(c), majority-spin bands are in blue and minority-spin bands are in red.

In Fig. 43, we show the DFT bands for 𝑥ℎ = 0.10, 0.0 (half-Ąlling), and 0.23, in

panels (a) to (c), respectively. The Fermi energy is at 𝐸 = 0.0 in each panel. In panel

(b), we repeat the results shown in Fig. 42(a) to better illustrate the hole-doping effects.

In Figs. 43(a) and 43(c), at Ąnite doping, we show the spin-decomposed band structure

obtained through a hybrid DFT calculation, where the majority-spin bands are denoted in

blue and the minority-spin bands are in red. The cyan arrows connecting the center panel

to each one of the adjacent panels indicate the extent of the exchange splitting of each

flat-band. The arrows connecting band 2 [in panel (b)] to the corresponding exchange-

split bands in panel (a) indicate the extent of the exchange splitting energy acting over

band 2 for 𝑥ℎ = 0.1, given by 𝐸2,0.1 ≡ 1.0 eV. Likewise, the arrows connecting panels (b)

and (c) indicate the exchange splitting energy of band 3𝑎 for 𝑥ℎ = 0.23, corresponding to

𝐸3𝑎,0.23 ≡ 2.0 eV.

In Fig. 44, we show the energy difference between the ferromagnetic and paramagnetic

states, Δ𝐸 = 𝐸𝐹 𝑀 ⊗ 𝐸𝑃 𝑀 , for both a 3-AGNR(1,3) (blue circles) and a 5-AGNR(1,3)

(purple left-triangles), where Δ𝐸 < 0 indicates a ferromagnetic ground-state. The most

stable ferromagnetic conĄguration occurs when the hole-doping reaches the 3𝑎 flat-band,

for both 3- and 5-AGNR(1,3). The inverse dependence of the ferromagnetic stability with

𝑁 can be attributed to the reduction of the overall band flatness as 𝑁 increases (see

Figs. 34 and 37).

From Ref. [9], we obtain that the gain in energy due to ferromagnetic ordering of a

pristine 5-AGNR is Δ𝐸𝑝 ≡ ⊗37.5 meV (per unit cell). Since the number of occupied Car-

bon atoms in the ferromagnetic state in each unit cell is 𝑁𝑜𝑐𝑐 = 6 (see Fig. 5(b) in Ref. [9]),

we obtain
Δ𝐸𝑝

𝑁𝑜𝑐𝑐

= ⊗6.25 meV. The corresponding results for the two heterostructures we

analyzed through DFT, i.e., 3-AGNR(1,3) and 5-AGNR(1,3), were Δ𝐸3 = ⊗150 meV,

𝑁𝑜𝑐𝑐 = 8, and Δ𝐸5 = ⊗105 meV, 𝑁𝑜𝑐𝑐 = 10. This results in
Δ𝐸𝑁

𝑁𝑜𝑐𝑐

= ⊗18.8 meV

and ⊗10.5 meV, respectively. This shows that, if we compare the ferromagnetic energy

gain for the pristine 5-AGNR and the 5-AGNR(1,3), the heterostructure had almost 70%



5.7. Wannier-like states: comparison between DFT and tight-binding 81

more energy gain than that of the pristine AGNR. We believe that to be the case for

two main reasons. First, the N-AGNR(n,m) heterostructures studied here through DFT

present true flat-bands, contrary to what was seen in the pristine N-AGNRs studied in

Ref. [9]. Second, the pristine N-AGNRs show a single low-dispersion band, while our

N-AGNR(n,m) heterostructures show multiple perfectly flat-bands [two in the case of 3-

AGNR(1,3), bands labeled 2 and 3𝑎 in Fig. 42(a)] and multiple almost flat-bands [two in

the case of 3-AGNR(1,3), bands 3𝑏 and 4 in Fig. 42(a)], which should clearly result in a

more robust ferromagnetic ground state.
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Figure 44 Ű Δ𝐸 = 𝐸𝐹 𝑀 ⊗ 𝐸𝑃 𝑀 as a function of hole-doping 𝑥ℎ for 3-AGNR(1,3) (blue
circles) and 5-AGNR(1,3) (purple left-triangles).

5.7 Wannier-like states: comparison between DFT

and tight-binding

In this section, we want to highlight the fact that it is not only the DFT and tight-

binding band structures that are qualitatively similar (as shown in Fig. 42), but also the

Wannier-like states associated with the flat-bands obtained by either method that are

qualitatively similar too.

In the top panel of Fig. 45 we reproduce Fig. 36(a), with the tight-binding result

for the flat-band 𝐸1 Wannier-like state for a 3-AGNR(1,3) at half-Ąlling. In the bottom

panel, we show the corresponding DFT result. Close inspection indicates that there is a

semi-quantitative agreement between tight-binding and DFT. Figure 46 makes the same

comparison for flat-bands 2, 3𝑎, 3𝑏, and 4, and close inspection of the plots shows that

the tight-binding results are surprisingly close to the DFT results in all cases.
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5.8 Summary and conclusions

We have used the tight-binding and DFT- methods to study the electronic properties

of recently synthesized N-AGNR(n,m) graphene heterostructures [2, 8], which have been

shown to present, for speciĄc values of 𝑁 , 𝑛, and 𝑚, topological properties at low energy

that can be simulated by the SSH model. We found out that the heterostructures show

a multiplicity of flat-bands, whose properties can be reasonably well controlled by the

parameters 𝑁 , 𝑛, and 𝑚. We see flat-bands in our heterostructures up to 𝑁 = 7. We

have strong indications that the quantum interference mechanism that gives origin to the

∘𝑡 single flat-band in pristine AGNRs [9] is at play in all the flat-bands analyzed in our

heterostructures. The pristine AGNR ∘𝑡 bands are still present in the heterostructures,

but with the interesting presence of a degenerate partner (for 𝑁 = 3 and 5) in the tight-

binding simulations. This degeneracy is slightly lifted in the DFT results for all values

of 𝑁 . Importantly, our DFT results show that a few of the flat-bands observed in the

tight-binding simulations remain perfectly flat in the DFT simulations as well. Thus, the

ferromagnetism observed in our DFT results is considerably stronger than that observed

in pristine AGNRs [9]. As a bonus, we found that the charge density associated with

the flat-bands obtained via tight-binding agree surprisingly well with the corresponding

results obtained through DFT.

Given the experimental availability of these heterostructures, our results suggest that

it would be interesting to experimentally explore the possibility of ferromagnetism in these

systems, which, given the variety of parameters that can be manipulated, opens up the

possibility of looking for non-trivial topology in a ferromagnetic quasi-1D system.
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Chapter 6

Conclusion

In this dissertation, our principal objective was to investigate the thermoelectric prop-

erties and the possibility of ferromagnetism in heterostructures based on AGNRs. As

an extra motivation, to be exploited in future research, these heterostructures display

non-trivial topology. We used as basic techniques the tight-binding approach, the Lan-

dauer formalism, and the GreenŠs functions method. The former has served as a basis for

the band structure analysis and the occurrence of ferromagnetism (obtained through a

DFT analysis). The thermoelectric properties were studied by using the Landauer theory,

along with GreenŠs functions. The results were substantial, since, concerning the mag-

netism analysis, we found that the band engineering, obtained by modifying the AGNRs

into heterostructures, was responsible for a substantial enhancement of ferromagnetism

when compared to the pristine AGNRs, with the exciting beneĄt that ferromagnetism

in a one-dimensional system is still barely explored, even more so in a system with non-

trivial topology. We have, also, investigated the thermoelectric properties of two types of

heterostructures, Inline and Staggered. We have analyzed, for both types, the electrical

conductance 𝐺, thermopower 𝑆, thermal conductance 𝐾𝑒, thermocurrent 𝐺𝑆, and Ągure

of merit 𝑍𝑇 , at 𝑇 = 300 K for different conĄgurations, and did a detailed comparison

with the results obtained for the corresponding N-AGNRs. Our results show that the

design of heterojunctions from a metallic AGNR is responsible for a signiĄcant increase in

thermoelectric properties. In addition, some of the heterostructures studied have shown

promise, by displaying notable thermoelectric efficiency.
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APPENDIX A

The tight-binding method

For the model description, we will start by deĄning an atomic orbital ã whose energy

is 𝐸. Our purpose is to determine the interaction effects of atoms in the crystal. For this,

we need to deĄne a proper Bloch wave function. A good guess is the following equation

åk(r) =
1√
𝑁

𝑁∑︁

𝑗=1

𝑒ik≤rjã (r ⊗ rj) (75)

where the summation is performed on all atoms in the lattice. The vector 𝑟𝑗 shows the

position of the 𝑗𝑡ℎ atom. The function ã (r ⊗ rj) indicates an atomic orbital around 𝑗𝑡ℎ.

A fundamental property of Eq. (75), which guarantees that it satisĄes BlochŠs theorem,

is (k + G) = k, where G is the lattice vector. Starting from Eq. (75), we have

𝑒ik≤rj ⊃ 𝑒i(k+G)≤rj = 𝑒ik≤rj𝑒iG≤rj (76)

from deĄnition of the reciprocal lattice , we now that G = 2Þn (n being an integer).

𝑒iG≤rj = 1 (77)

thus

𝑒i(k+G)≤rj = 𝑒ik≤rj (78)

the above result implies that the signiĄcant interval of the wave vector k is inside the

First Brillouin Zone.

One point we should keep in mind is that the method we are dealing with gives us

only an approximate result. So the amount we are interested in is the expected value

of energy. Remember, the mean value for a generic operator A in a very large set of

identically prepared states å is

⟨A⟩ = ⟨å♣A♣å⟩ =
∫︁

å*Aåd3r (79)

where ⟨A⟩ represents the average of many measurements in the å states. The eigen

energies will be obtained from the system Hamiltonian operator
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H =
ℏ

2

2𝑚
∇2 + 𝑉 (r) (80)

for solve the problem, what we should do is change å ⊃ å𝑘(r) and A ⊃ H into Eq. (80)

⟨H⟩ = ⟨𝐸⟩ =
1
𝑁

∫︁ ′∑︁

𝑗

𝑒⊗ik≤rjã*(r ⊗ rj)H
∑︁

𝑗′

𝑒k≤r′

jã(r ⊗ r′
j)d

3r (81)

or

⟨𝐸⟩ =
1
𝑁

∑︁

𝑗,𝑗′

∫︁

𝑒⊗ik≤rjã* (r ⊗ rj) H𝑒ik≤r′

jã (r ⊗ rj)

∫︀

̂︀ d3r (82)

For each term
∑︀

𝑗′ we will add over all the points
∑︀

𝑗. Since the points are identical,

we can change
∑︀

𝑗′ ⊃ 𝑁 . Furthermore, we have arbitrarily decided that 𝑟′
𝑗 = 0. Thus

⟨𝐸⟩ =
∑︁

𝑗

∫︁

𝑒⊗ik≤rjã*(r ⊗ rj)Hã(r)d3r (83)

We can simplify our calculations a little more by using the Hückel approximation, in

which only the interactions between neighboring sites are considered

⟨𝐸⟩Hückel =
∫︁

ã*(r)Hã(r)d3r +
∑︁

𝑎𝑙𝑙

𝑒ik≤rj

∫︁

all

ã*(r ⊗ rj)Hã(r)d3r (84)

⟨𝐸⟩Hückel =
∫︁

ã*(r)Hã(𝑟⃗)𝑑3𝑟
⏟  ⏞  

⊕ Ð

+
∑︁

𝑛,𝑛

𝑒⊗ik≤rj

∫︁

ã*(r ⊗ rj)Hã(r)d3r
⏟  ⏞  

⊕ Ñ

(85)

The Ąrst term Ð represents the site energy, that is, the mean value to energy for the

state å(𝑟). The second term is known as the integral, a term that takes into account

the interaction between neighboring sites. As an example, we will show how to calculate

the auto-energies for "s bands" states from 𝑠 atomic atoms. As the problem has spherical

symmetry, Ñ will be the same for everyone. For a simple cubic lattice with side length 𝑎.

We get

⟨𝐸⟩Hückel = Ð+ Ñ
∑︁

𝑛,𝑛

𝑒⊗ik≤rj (86)

and the respective 𝑟𝑗 can be written as is

rj = ∘x̂𝑎,∘ŷ𝑎∘ ẑ𝑎 (87)

Furthermore, the wave vector will be given by

k = x̂𝑘𝑥 + ŷ𝑘𝑦 + ẑ𝑘𝑧 (88)

and by replacing the Eqs. (88) into Eq. (89), we arrive at
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APPENDIX B

The SSH model

The Su-Schrieffer-Heeger (SSH) model originally was developed to treat the electrical

conductivity in polyacetylene solitons [152]. Nowadays, though, it has drawn attention as

a simple prototype to investigate topological insulators. This model is described through

a one-dimensional chain, Fig 48, of carbon atoms, identiĄed here as 𝐴 and 𝐵 sites, in

which the atoms periodically organize themselves in a 1D planar system. In Fig. 48, v

parameter indicates the hopping strength for electrons inside the unit cell, black dotted

rectangle, and w refers to electron hopping between adjacent unit cells. Thus, we can say

that the SSH model forms a dimerized chain, where we need to use two different hopping

parameters to describe all the relevant physics of the chain.

v w

v
w

Figure 48 Ű Schematic representation of an SSH chain. The model is created using two
different lattices, which we will denote as A and B sub-lattices. Because it is a dimerized
system, we need to use two hopping parameters, w, and v, to fully describe the system,
where the Ąrst refers to the electron hop between neighboring unit cells and the second
relates to the electron hop inside of each unit cell. The unit cell is shown in a dotted
region (rectangle).

B.1 Tight-binding model for SSH chain

We will determine the SSH Hamiltonian by using the nearest neighbor TB approach.

In second quantization formalism, it can be written as

𝐻 = 𝑣
𝑁∑︁

𝑚=1

(𝑏†
𝑚𝑎𝑚 + H.C.) + 𝑤

𝑁⊗1∑︁

𝑚=1

(𝑎†
𝑚+1𝑏𝑚 + H.C.), (90)
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where 𝑏†
𝑚 is an operator that creates an electron in the mth atom of B sublattice and 𝑏𝑚

is the operator that annihilates an electron in the mth atom of B sublattice, the same is

true for A sublattice. The H.C term indicates a hermitian conjugate.

The energy spectrum of the SSH model is obtained by the H diagonalization. For

simpliĄcation, we can use the system periodicity to make the diagonalization simpler. We

can set periodic boundary conditions (PBC) along one direction, to simulate an inĄnite

lattice. As a result, it is conceivable to admit a basis change, from real space to recipro-

cal. In this way, by using Fourier transform, we can transform the creation/annihilation

operators. For this, we use the following set of equations

𝑎𝑚 =
1√
𝑁

∑︁

𝑘

𝑎𝑘𝑒
i𝑘𝑥𝑚 ,

𝑏𝑚 =
1√
𝑁

∑︁

𝑘

𝑏𝑘𝑒
i𝑘𝑥𝑚 ,

𝑎†
𝑚 =

1√
𝑁

∑︁

𝑘

𝑎†
𝑘𝑒

⊗𝑖𝑘𝑥𝑚 ,

𝑏†
𝑚 =

1√
𝑁

∑︁

𝑘

𝑏†
𝑘𝑒

⊗𝑖𝑘𝑥𝑚 .

(91)

by applying Fourier transform on Ąrst term of H, we Ąnd

𝑁∑︁

𝑚=1

𝑏†
𝑚𝑎𝑚 =

𝑁∑︁

𝑚=1

1√
𝑁

∑︁

𝑘

𝑏†
𝑘𝑒

⊗𝑖𝑘𝑥𝑚
1√
𝑁

∑︁

𝑘′

𝑎𝑘′𝑒i𝑘′𝑥𝑚

=
∑︁

𝑘𝑘′

(︃
𝑁∑︁

𝑚=1

1
𝑁
𝑒⊗𝑖(𝑘⊗𝑘′)𝑥𝑚

)︃

𝑏†
𝑘𝑎𝑘′ ,

(92)

where the above term in parentheses is the Kronecker delta symbol

Ó𝑘𝑘′ =
𝑁∑︁

𝑚=1

1
𝑁
𝑒⊗𝑖(𝑘⊗𝑘′)𝑥𝑚 , (93)

therefore
𝑁∑︁

𝑚=1

𝑏†
𝑚𝑎𝑚 =

∑︁

𝑘𝑘′

Ó𝑘𝑘′𝑏†
𝑘𝑎𝑘′ .

=
∑︁

𝑘

𝑏†
𝑘𝑎𝑘.

(94)

Repeating the procedure for the second term, we get

𝑁⊗1∑︁

𝑚=1

𝑎†
𝑚+1𝑏𝑚 =

𝑁⊗1∑︁

𝑚=1

1√
𝑁

∑︁

𝑘

𝑎𝑘𝑒
⊗𝑖𝑘𝑥(𝑚+1)

1√
𝑁

∑︁

𝑘′

𝑏𝑘′𝑒i𝑘′𝑥𝑚 ,

=
∑︁

𝑘𝑘′

(︃
𝑁⊗1∑︁

𝑚=1

1
𝑁
𝑒⊗𝑖𝑘𝑥(𝑚+1)𝑒i𝑘′𝑥𝑚

)︃

𝑎†
𝑘𝑏𝑘′ ,

(95)
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❏ In 𝑣 = 𝑤, the circle described by 𝑑(𝑘), touches the origin and Ü = 0 is undeĄned.

❏ The paths described by 𝑑(𝑘) for 𝑣 < 𝑤 and 𝑣 = 0 involve the origin, thus Ü = 1,

which indicates a topologically non-trivial phase.

To summarize, the system just before and after 𝑣 = 𝑤 differs in a topological char-

acteristic, which in this example is a topological invariant. As illustrated in Fig. 50, the

system exhibits a phase transition from the trivial phase, characterized by Ü = 0, to the

topological phase, indicated by Ü = 1. Therefore, the Ü (0 or 1) value deĄnes two topo-

logical classes of H (k). Considering that we can not transform one class into another

without going through a topological phase transition in 𝑣 = 𝑤, that is, without going

through a metallic phase (closing the 𝑔𝑎𝑝).

B.1.1 Edge states for open chain

Until now, we have focused on an inĄnite model (system without borders). let us now

concentrate on a Ąnite part of the system. To illustrate this, consider the slices depicted

in Fig. 51 (a) (c) as an example, which consists of four periodic cells. In this situation,

there are two extreme limits: 𝑤 = 0 and 𝑣 = 0. Furthermore, as the system no longer has

a periodicity, we have not to worry about the k wave vector.

Figure 51 Ű w = 0 and v = 1, with Ü = 0, (b) w = 0.6 and v = 1, with Ü = 0, (c) w = 1
and v = 1, with Ü undeĄned, (d) v = 0.6 and w = 1, with Ü = 1 and (e) v = 0 and w =
1, with Ü = 1.

(a)

1. For 𝑤 = 0 and 𝑣 ̸= 0, see Fig. 51 (a), the result suggests that system is formed

by decoupled dimers (trivial case). Here, the energy spectrum will be extremely

degenerate, as shown in Fig. 51 (b).

2. For 𝑤 ̸= 0 and 𝑣 = 0, see Fig 51 (c), the case is somewhat different, since, in

addition to the dimers that cannot see each other, there are two isolated sites at

the boundaries of the chain . This condition gives rise to zero energy states that
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APPENDIX C

Tight-binding for Armchair

In this section, we will show how to calculate the energy spectrum of an AGNR,

considering only 𝑝𝑧 orbitals and employing the TB method. The TB Hamiltonian for an

AGNR ribbon, as sketched in Fig. 5, in real space, has the following form

𝐻 = ⊗ 𝑡
∑︁

𝑙

⋃︀

⨄︀
∑︁

𝑚∈odd

𝑎†
𝑙 (𝑚)𝑏𝑙⊗1(𝑚) +

∑︁

𝑚∈ even

𝑎†
𝑙 (𝑚)𝑏𝑙(𝑚)

⋂︀

⋀︀ + H.C.

⊗ 𝑡
∑︁

𝑙

𝑁⊗1∑︁

𝑚=1

[︁

𝑏†
𝑙 (𝑚+ 1)𝑎𝑙(𝑚) + 𝑎†

𝑙 (𝑚+ 1)𝑏𝑙(𝑚)
]︁

+ H.C.,

(104)

where Û†
𝑙 (𝑚) and Û𝑙(𝑚) (Û = 𝑎, 𝑏) are creation and annihilation operators for an electron

in sub-lattices 𝐴 and 𝐵, in the 𝑚-th dimer (where 𝑚 = 1, 2, . . . , 𝑁) of the 𝑙-th unit cell,

and t is the NN hopping parameter. The system is formed by 𝐿𝑦 unit cells and has

periodic boundary conditions along the y-axis

𝑎𝑙+𝐿𝑦
(𝑚) = 𝑎𝑙(𝑚), 𝑏𝑙+𝐿𝑦

(𝑚) = 𝑏𝑙(𝑚). (105)

Since the ribbon has translational invariance in the y-direction, we can apply a Fourier

Transform to Eq. (104). The Fourier relations are given by

𝑎𝑙(𝑚) =
1

√︁

𝐿𝑦

∑︁

𝑘

ei𝑘𝑦𝑙,𝑚𝐴Ð𝑘(𝑚),

𝑏𝑙(𝑚) =
1

√︁

𝐿𝑦

∑︁

𝑘

ei𝑘𝑦𝑙,𝑚𝐵Ñ𝑘(𝑚),

(106)

where 𝑦𝑙,𝑚𝐴 (𝑦𝑙,𝑚𝐵) is the coordinate of the mA (mB) site and k is the wave-number.

These coordinates are obtained according to

𝑦𝑙,1𝐴 = 𝑦𝑙,3𝐴 = 𝑦𝑙,5𝐴 . . . ⊕ 𝑦𝑙, (107)

𝑦𝑙,2𝐵 = 𝑦𝑙,4𝐵 = 𝑦𝑙,6𝐵 . . . ⊕ 𝑦𝑙 + 𝑎𝑇/6, (108)
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𝑦𝑙,2𝐴 = 𝑦𝑙,4𝐴 = 𝑦𝑙,6𝐴 . . . ⊕ 𝑦𝑙 + 𝑎𝑇/2, (109)

𝑦𝑙,1𝐵 = 𝑦𝑙,3𝐵 = 𝑦𝑙,5𝐵 . . . ⊕ 𝑦𝑙 + 2𝑎𝑇/3. (110)

By setting 𝑎𝑇 = 1 and replacing Eqs. (107) to (110) into Eq. (104), we Ąnally obtain

the Hamiltonian in k-space as

ℋ𝑘 = ⊗ 𝑡
∑︁

𝑘

∑︁

𝑚

𝑒⊗i𝑘/3Ð†
𝑘(𝑚)Ñ𝑘(𝑚)

⊗ 𝑡
∑︁

𝑘

𝑁⊗1∑︁

𝑚=1

[︁

𝑒⊗i𝑘/6Ñ†
𝑘(𝑚+ 1)Ð𝑘(𝑚) + 𝑒i𝑘/6Ð†

𝑘(𝑚+ 1)Ñ𝑘(𝑚)
]︁

+ H.C.,

(111)

or, in matrix form, as

ℋ𝑘 =

∏︀

̂︁
̂︁
̂︁
̂︁
̂︁
̂︁
̂︁
̂︁
̂︁
̂︁
̂︁
̂︁
∐︁

0 ⊗𝑡𝑒⊗i𝑘/3 0 0 ⊗𝑡𝑒i𝑘/6 0 . . .

⊗𝑡𝑒i𝑘/3 0 ⊗𝑡𝑒i𝑘/6 0 0 0 . . .

0 ⊗𝑡𝑒⊗i𝑘/6 0 ⊗𝑡𝑒⊗i𝑘/3 0 ⊗𝑡𝑒i𝑘/6 . . .

0 0 ⊗𝑡𝑒i𝑘/3 0 ⊗𝑡𝑒i𝑘/6 0 . . .

⊗𝑡𝑒⊗i𝑘/6 0 0 ⊗𝑡𝑒⊗i𝑘/6 0 0 . . .
...

...
...

...
...

...
. . .

∫︀

̂︂
̂︂
̂︂
̂︂
̂︂
̂︂
̂︂
̂︂
̂︂
̂︂
̂︂
̂︂
̂︀

. (112)

To Ąnd the eigenvalues and eigenfunctions of the Hamiltonian for any k value, we have

to numerically diagonalize ℋ𝑘. Below, we analytically derive the eigenvalues. To simplify

the equations, we deĄne two new operators, 𝑎𝑘 and 𝑏𝑘 through the relations

𝑏𝑘 =Ñ𝑘,

𝑏†
𝑘 =Ñ†

𝑘,

𝑎†
𝑘 =Ð†

𝑘𝑒
i𝑘/6 =⇒ Ð†

𝑘 = 𝑎†
𝑘𝑒

⊗i𝑘/6,

𝑎𝑘 =Ð𝑘𝑒
⊗i𝑘/6 =⇒ Ð𝑘 = 𝑎𝑘𝑒

i𝑘/6.

(113)

By replacing Eqs. (113) into Eq. (111), we get

𝐻 = ⊗ 𝑡
∑︁

𝑘

∑︁

𝑚

𝑒⊗i𝑘/2𝑎†
𝑘(𝑚)𝑏𝑘(𝑚)

⊗ 𝑡
∑︁

𝑘

𝑁⊗1∑︁

𝑚=1

[︁

𝑏†
𝑘(𝑚+ 1)𝑎𝑘(𝑚) + 𝑎†

𝑘(𝑚+ 1)𝑏𝑘(𝑚)
]︁

+ H.C..

(114)

In order to solve Eq. (114), we assume the following ansatz for a state in this system
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♣Ψ(𝑘)⟩ =
∑︁

𝑚

(︁

å𝑚,𝐴Ð
†
𝑘(𝑚) + å𝑚,𝐵Ñ

†
𝑘(𝑚)

)︁

♣0⟩, (115)

where Ñ𝑘(𝑚)♣0⟩ = 0 and Ð𝑘(𝑚)♣0⟩ = 0. By replacing (115) into SchrödingerŠs equation

𝐻♣Ψ(𝑘)⟩ = 𝐸♣Ψ(𝑘)⟩, (116)

𝐸å𝑚,𝐴 = ⊗e⊗i𝑘/2å𝑚,𝐵 ⊗ å𝑚⊗1,𝐵 ⊗ å𝑚+1,𝐵,

𝐸å𝑚,𝐵 = ⊗e+i𝑘/2å𝑚,𝐴 ⊗ å𝑚⊗1,𝐴 ⊗ å𝑚+1,𝐴.

(117)

The periodic boundary conditions are given by

å0,𝐴 = å0,𝐵 = å𝑁+1,𝐴 = å𝑁+1,𝐵 = 0. (118)

To solve the equations of motion, we assume a tentative set of solutions as

å𝑚,𝐴 = 𝐴ei𝑝𝑚 +𝐵e⊗i𝑝𝑚,

å𝑚,𝐵 = 𝐶ei𝑝𝑚 +𝐷e⊗i𝑝𝑚,

(119)

where A, B, C, and D are coefficients that we will Ąnd from the boundary conditions,

and p is the wave vector in the transversal direction. If we substitute Eqs. (118) into

Eq. (119), we arrive at the following equations

I å0,𝐴 = 0 = 𝐴+𝐵 =⇒ 𝐴 = ⊗𝐵,

II å0,𝐵 = 0 = 𝐶 +𝐷 =⇒ 𝐶 = ⊗𝐷,

III å𝑁+1,𝐴 = 0 =
(︁

𝐴𝑒i𝑝(𝑁+1) +𝐵𝑒⊗i𝑝(𝑁+1)
)︁

,

IV å𝑁+1,𝐵 = 0 =
(︁

𝐶𝑒i𝑝(𝑁+1) +𝐷𝑒⊗i𝑝(𝑁+1)
)︁

.

(120)

From I, II, III, and IV, we Ąnd

𝐴
(︁

𝑒i𝑝(𝑁+1) ⊗ 𝑒⊗i𝑝(𝑁+1)
)︁

= 𝐴2𝑖 sin(𝑝(𝑁 + 1)) = 0,

𝐶
(︁

𝑒i𝑝(𝑁+1) ⊗ 𝑒⊗i𝑝(𝑁+1)
)︁

= 𝐶2𝑖 sin(𝑝(𝑁 + 1)) = 0.
(121)

From Eq. (121), we determine the allowed values of 𝑝, since

sin[𝑝(𝑁 + 1)] = 0 (122)

implies

𝑝(𝑁 + 1) = 𝑟Þ, (123)
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therefore, 𝑝 takes values

𝑝 =
𝑟

𝑁 + 1
Þ, 𝑟 = 1, 2, 3, . . . , 𝑁. (124)

Now, by using the boundary conditions and Eq. (121), we Ąnd that

å𝑚,𝐴 = 𝐴
(︁

ei𝑝𝑚 ⊗ e⊗i𝑝𝑚
)︁

, (125)

and

å𝑚,𝐵 = 𝐶
(︁

ei𝑝𝑚 ⊗ e⊗i𝑝𝑚
)︁

. (126)

Then, plugging Eq. (125) into the Ąrst equation of motion (Eq. (117)), we get

𝐸𝐴
(︁

ei𝑝𝑚 ⊗ e⊗i𝑝𝑚
)︁

= ⊗𝑡e⊗i𝑘/2𝐶
(︁

ei𝑝𝑚 ⊗ e⊗i𝑝𝑚
)︁

⊗ 𝑡𝐶
(︁

ei𝑝(𝑚⊗1) ⊗ e⊗i𝑝(𝑚⊗1)
)︁

⊗ 𝑡𝐶
(︁

ei𝑝(𝑚+1) ⊗ e⊗i𝑝(𝑚+1)
)︁

,
(127)

which, after an algebraic manipulation, results in

𝐸𝐴 = ⊗𝑡𝐶 (2 cos 𝑝+ exp [⊗𝑖𝑘/2]) , (128)

hence

𝐴 = ⊗𝑡𝐶 (2 cos 𝑝+ exp [⊗𝑖𝑘/2])
𝐸

. (129)

Likewise, when we solve for the second equation of motion, we obtain

𝐶 = ⊗𝑡𝐴(2 cos 𝑝+ exp [𝑖𝑘/2])
𝐸

. (130)

Solving Eqs. (129) and (130), we determine the AGNRŠs eigenvalues

𝐸2 = 4 cos2 𝑝+ 1 + 2 cos 𝑝
(︁

𝑒i 𝑘
2 + 𝑒⊗i 𝑘

2

)︁

,

𝐸2 = 4 cos2 𝑝+ 1 + 4 cos 𝑝 cos
𝑘

2
,

𝐸 = 𝑠

√︃

1 + 2𝜖𝑝 cos
𝑘

2
+ 𝜖2

𝑝,

(131)

where 𝑠 = ∘1, being 𝑠 = +1 for the conduction band and 𝑠 = ⊗1 for the valence band,

with 𝜖𝑝 = 2 cos(𝑝).

Now, we will obtain an analytical expression for the eigenstates. For that, we substitute

the simpliĄed form of our ansatz (Eqs. (125) and (126))

å𝑚,𝐴 = 𝐴
(︁

𝑒i𝑝𝑚 ⊗ 𝑒⊗i𝑝𝑚
)︁

= 2i𝐴 sin(𝑝𝑚),

å𝑚,𝐵 = 𝐶
(︁

𝑒i𝑝𝑚 ⊗ 𝑒⊗i𝑝𝑚
)︁

= 2i𝐶 sin(𝑝𝑚),
(132)
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into the equations of motion, we obtain that the coefficients 𝐴 and 𝐶 must satisfy the

following matrix equation

∏︀

∐︁
𝐸 𝜖𝑝 + 𝑒i𝑘/2

𝜖𝑝 + 𝑒⊗i𝑘/2 𝐸

∫︀

̂︀

∏︀

∐︁
𝐴

𝐶

∫︀

̂︀ =

∏︀

∐︁
0

0

∫︀

̂︀ , (133)

or

∏︁

⨄︁

⋃︁

𝐸𝐴+
(︁

𝜖𝑝 + 𝑒i𝑘/2
)︁

𝐶 = 0

𝐸𝐶 +
(︁

𝜖𝑝 + 𝑒⊗i𝑘/2
)︁

𝐴 = 0,
(134)

thus

𝐶 =
⊗𝜖𝑝 + 𝑒⊗i𝑘/2

𝐸
𝐴 = ⊗

(︁

𝜖𝑝 + 𝑒⊗i𝑘/2
)︁

𝐴

𝑠
√︁

(𝜖𝑝 + 𝑒i𝑘/2) (𝜖𝑝 + 𝑒⊗i𝑘/2)

= ⊗
√︁

𝜖𝑝 + 𝑒⊗i𝑘/2

𝑠
√︁

𝜖𝑝 + 𝑒i𝑘/2
𝐴.

(135)

Then, substituting Eq. (135) into Eqs. 132, we have

∏︀

∐︁
å𝑚,𝐴

å𝑚,𝐵

∫︀

̂︀ = 2i

∏︀

∐︁
𝐴

𝐶

∫︀

̂︀ sin(𝑚𝑝) = 2i

∏︀

∐︁⊗
√︁

𝜖𝑝 + 𝑒⊗i𝑘/2

𝑠
√︁

𝜖𝑝 + 𝑒i𝑘/2

∫︀

̂︀𝐴 sin(𝑚𝑝)

= ⊗ 2i𝐴

𝑁
√︁

𝜖𝑝 + 𝑒i𝑘/2

⏟  ⏞  

𝑁𝑐

∏︀

∐︁
⊗𝑠

√︁

𝜖𝑝 + 𝑒i𝑘/2

√︁

𝜖𝑝 + 𝑒⊗i𝑘/2

∫︀

̂︀ sin(𝑚𝑝),
(136)

which implies

∏︀

∐︁
å𝑚,𝐴

å𝑚,𝐵

∫︀

̂︀ = 𝑁𝑐

∏︀

∐︁
⊗𝑠

√︁

𝜖𝑝 + 𝑒i𝑘/2
√︁

𝜖𝑝 + 𝑒⊗i𝑘/2

∫︀

̂︀ sin(𝑚𝑝). (137)

To Ąnd N𝑐, we need the normalization condition

𝑁∑︁

𝑚=1

(︁

♣å𝑚,𝐴♣2 + ♣å𝑚,𝐵♣2
)︁

= 1, (138)

where the terms in Eq. (138) are given by

♣å𝑚,𝐴♣2 = 𝑁2
𝑐

√︁

𝜖𝑝 + 𝑒i𝑘/2.
√︁

𝜖𝑝 + 𝑒⊗i𝑘/2 sin2(𝑚𝑝),

♣å𝑚,𝐵♣2 = 𝑁2
𝑐

√︁

𝜖𝑝 + 𝑒⊗i𝑘/2.
√︁

𝜖𝑝 + 𝑒i𝑘/2 sin2(𝑚𝑝),
(139)

which may be written more succinctly as

♣å𝑚,𝐴♣2 = 𝑁2
𝑐 ♣𝐸♣ sin2(𝑚𝑝),

♣å𝑚,𝐵♣2 = 𝑁2
𝑐 ♣𝐸♣ sin2(𝑚𝑝).

(140)

Now, substituting Eq. (140) into Eq. (138), we arrive at the following expression for 𝑁𝑐
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𝑁2
𝑐 =

1
♣𝐸♣

(︃

2
𝑁∑︁

𝑚=1

sin2(𝑚𝑝)

)︃⊗1

, (141)

which may be simpliĄed by using

2
𝑁∑︁

𝑚=1

sin2(𝑝𝑚) =
𝑁∑︁

𝑚=1

(1 ⊗ cos(2𝑝𝑚)) = 𝑁 ⊗
𝑁∑︁

𝑚=1

cos(2𝑝𝑚), (142)

followed by the application of the Lagrange identity:

𝑁∑︁

𝑚=1

cos(2𝑝𝑚) = ⊗1
2

+
sin(2𝑁𝑝+ 𝑝)

2 sin(𝑝)

= ⊗1
2

+
2 sin(𝑁𝑝) cos(𝑁𝑝) cos(𝑝) + sin(𝑝) cos(2𝑁𝑝)

2 sin(𝑝)
.

(143)

Now, by using the trigonometric identities

cos (𝑁𝑝+ 𝑝) = cos(𝑁𝑝) cos(𝑝) ⊗ sin(𝑁𝑝) sin(𝑝),

cos(𝑁𝑝) cos(𝑝) = cos (𝑁𝑝+ 𝑝) + sin(𝑁𝑝) sin(𝑝),
(144)

Eq. (143) becomes

𝑁∑︁

𝑚=1

cos(2𝑝𝑚) = ⊗1
2

+
2 sin(𝑁𝑝)[cos(𝑁𝑝+ 𝑝) + sin(𝑁𝑝) sin(𝑝)] + cos(2𝑁𝑝) sin(𝑝)

2 sin(𝑝)

= ⊗1
2

+
2 sin(𝑁𝑝) cos(𝑁𝑝+ 𝑝) + 2 sin2(𝑁𝑝) sin(𝑝) + [cos2(𝑁𝑝) ⊗ sin2(𝑁𝑝)] sin(𝑝)

2 sin(𝑝)

= ⊗1
2

+
2 sin(𝑁𝑝) cos(𝑁𝑝+ 𝑝) + sin(𝑝) [cos2(𝑁𝑝) + sin2(𝑁𝑝)]

2 sin(𝑝)

=
sin(𝑁𝑝) cos(𝑁𝑝+ 𝑝)

sin(𝑝)
.

(145)

Replacing Eq. (145) into Eq. (142), we have, after some algebra,

𝑁∑︁

𝑚=1

𝑁∑︁

𝑚=1

sin2 𝑝𝑚 =
𝑁

2
⊗ 1

4

[︃

sin(𝑁𝑝) cos(𝑁𝑝+ 𝑝)
sin 𝑝

⟨

, (146)

which, when replaced in Eq. 141, results in

𝑁𝑐 =
1

√︁

♣𝐸♣

(︃

𝑁 ⊗ sin𝑁𝑝× cos(𝑁𝑝+ 𝑝)
sin 𝑝

)︃⊗1/2

, (147)

thus, the eigenstate may be Ąnally written as
∏︀

∐︁
å𝑚,𝐴

å𝑚,𝐵

∫︀

̂︀ = 𝑁c

∏︀

∐︁
⊗𝑠

√︁

𝜖𝑝 + e⊗i𝑘/2
√︁

𝜖𝑝 + ei𝑘/2

∫︀

̂︀ sin(𝑚𝑝). (148)
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where 𝑎†
ℓ(𝑚)/𝑎ℓ(𝑚) are the creation/annihilation operators as deĄned when dealing with

the AGNRs, which obey the following anticommutation relations
{︁

𝑎ℓ(𝑚), 𝑎†
ℓ′ (𝑚′)

}︁

= Óℓ,ℓ′Ó𝑚,𝑚′

{︁

𝑏ℓ(𝑚), 𝑏†
ℓ′ (𝑚′)

}︁

= Óℓ,ℓ′Ó𝑚,𝑚′ .

(150)

Furthermore, just as was done for the AGNRs, we will assume that the system has 𝐿𝑥

unit cells, and that it also periodic along the x-axis. Thus, we can employ the following

set of Fourier transforms to Ąnd the equations of motion

𝑎𝑙(𝑚) =
1√
𝐿𝑥

∑︁

𝑘

ei𝑘𝑥𝑙,𝑚𝐴Ð𝑘(𝑚)

𝑏𝑙(𝑚) =
1√
𝐿𝑥

∑︁

𝑘

ei𝑘𝑥𝑙,𝑚𝐵Ñ𝑘(𝑚),

(151)

where 𝑥𝑙,𝑚𝐴 (𝑥𝑙,𝑚𝐵) is the 𝑥-coordinate of the 𝑚𝐴 (𝑚𝐵) site in the 𝑙-th unit cell, and

the periodic boundary conditions are expressed as

𝑎𝑙+𝐿𝑥
(𝑚) = 𝑎𝑙(𝑚)

𝑏𝑙+𝐿𝑥
(𝑚) = 𝑏𝑙(𝑚).

(152)

The previous equations imply that the wave-number 𝑘 satisĄes

𝑘 =
2Þ
𝐿𝑥

𝑚, 𝑚 = 0,∘1,∘2, . . . ,∘𝐿𝑥

2
⊗ 1,

𝐿𝑥

2
. (153)

If we solve Eq. (149) using Eq. (151), we arrive at a matrix Hamiltonian given by

𝐻(𝑘) =

∏︀

̂︁
̂︁
̂︁
̂︁
̂︁
̂︁
̂︁
̂︁
̂︁
̂︁
̂︁
̂︁
̂︁
∐︁

⊗𝑡⊗ 𝑡𝑒i𝑘 0 0 . . . . . . 0

⊗𝑡 ⊗𝑡⊗ 𝑡𝑒i𝑘 0 0 . . . 0

0 ⊗𝑡 ⊗𝑡⊗ 𝑡𝑒i𝑘 0 . . . 0
...

. . . . . . . . .
...

... 0 ⊗𝑡 ⊗𝑡⊗ 𝑡𝑒i𝑘 0

0 . . . . . . 0 ⊗𝑡 ⊗𝑡⊗ 𝑡𝑒i𝑘

∫︀

̂︂
̂︂
̂︂
̂︂
̂︂
̂︂
̂︂
̂︂
̂︂
̂︂
̂︂
̂︂
̂︂
̂︀

. (154)

diagonalizing the matrix shown in Eq. 154, we obtain the energy spectrum for any N.

As we have seen before, the one-particle state is given as

♣Ψ(𝑘)⟩ =
∑︁

𝑚

(︁

å𝑚,𝐴Ð
†
𝑘(𝑚) + å𝑚,𝐵Ñ

†
𝑘(𝑚)

)︁

♣0⟩, (155)

thus, by replacing Eq. (155) into SchrödingerŠs equation

𝐻♣Ψ(𝑘)⟩ = 𝐸♣Ψ(𝑘)⟩, (156)
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we obtain the following equations of motion

𝐸å𝑚,𝐴 = ⊗å𝑚⊗1,𝐵 ⊗ 𝑔𝑘å𝑚,𝐵,

𝐸å𝑚,𝐵 = ⊗å𝑚+1,𝐴 ⊗ 𝑔𝑘å𝑚,𝐴,

(157)

where

𝑔𝑘 = 2 cos

(︃

𝑘

2

)︃

, 𝑚 = 0, 1, 2, . . . , 𝑁 + 1. (158)

In addition, we must also impose that 0 B and (N + 1) 𝐴 are not present, as can be seen

in Fig. 54. Thus, we have that Eqs. (157), the Ąrst for 𝑚 = 1, and the second for 𝑚 = 𝑁 ,

become

𝐸å1,𝐴 = ⊗𝑔𝑘å1,𝐵,

𝐸å𝑁,𝐵 = ⊗𝑔𝑘å𝑁,𝐴.

(159)

thereby, the open boundary conditions along the transversal direction (y-axis) impose

that

å0,𝐵 = å𝑁+1,𝐴 = 0. (160)

As done for the AGNRs, we use the following ansatz

å𝑚,𝐴 = 𝐴𝑒i𝑝𝑚 +𝐵𝑒⊗i𝑝𝑚,

å𝑚,𝐵 = 𝐶𝑒i𝑝𝑚 +𝐷𝑒⊗i𝑝𝑚,

(161)

where 𝐴, 𝐵, 𝐶, and 𝐷 are arbitrary coefficients. Furthermore, 𝑝 is the wavenumber in

the transversal direction. Applying the boundary conditions (Eq. 160), we found that

å0,𝐵 = 𝐶 +𝐷 = 0,

å𝑁+1,𝐴 = 𝐴𝑧 +𝐵𝑧⊗1 = 0,
(162)

where

𝑧 = ei𝑝(𝑁+1). (163)

Thus, solving for 𝐵 and 𝐷 and substituting in Eqs. (161), we get

å𝑚,𝐴 = 𝐴
(︁

ei𝑝𝑚 ⊗ 𝑧2e⊗i𝑝𝑚
)︁

å𝑚,𝐵 = 𝐶
(︁

ei𝑝𝑚 ⊗ e⊗i𝑝𝑚
)︁

.

(164)

Substituting Eqs. (164) into the equations of motion (Eqs. (157)), we obtain the relation
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M

∏︀

∐︁
𝐴

𝐶

∫︀

̂︀ = 0, (165)

where the 2 × 2 matrix M is given by

𝑀 =

∏︀

∐︁
𝐸

(︁

𝑒i𝑝𝑚 ⊗ 𝑧2𝑒⊗i𝑝𝑚
)︁

(𝑔𝑘 + 𝑒⊗i𝑝) 𝑒i𝑝𝑚 ⊗ (𝑔𝑘 + 𝑒⊗i𝑝) 𝑒i𝑝𝑚

(𝑔𝑘 + 𝑒i𝑝) 𝑒i𝑝𝑚 ⊗ (𝑔𝑘 + 𝑒⊗i𝑝) 𝑒⊗i𝑝𝑚𝑧2 𝐸 (𝑒i𝑝𝑚 ⊗ 𝑒⊗i𝑝𝑚)

∫︀

̂︀ .

(166)

It should be noted that 𝑝 equals to ⊗Þ, 0, or Þ represents a trivial solution (that is,

å𝑚,𝐴 = å𝑚,𝐵 = 0 for any 𝑚 value), making 𝑀 a vanishing matrix. We obtain non-trivial

solutions by Ąnding what values of 𝑝 and E that satisfy

det 𝑀 = 0. (167)

It is not so complicated to show that det 𝑀 = 0 results in

𝑣ei2𝑝𝑚 + 𝑤e⊗i2𝑝𝑚 + 𝑥 = 0 (168)

where 𝑣, 𝑤 and 𝑥 are functions of 𝐸, 𝑔𝑘 and 𝑧. By making 𝑣 = 𝑤 = 0, we obtain

𝐸2 =
(︁

𝑔𝑘 + ei𝑝
)︁ (︁

𝑔𝑘 + e⊗i𝑝
)︁

= 1 + 𝑔2
𝑘 + 2𝑔𝑘 cos(𝑝), (169)

which yields the dispersion relation

𝐸𝑠 = 𝑠
√︁

1 + 𝑔2
𝑘 + 2𝑔𝑘 cos(𝑝). (170)

Making 𝑥 = 0 results in the following condition for the transverse wavenumber 𝑝 =

𝑝(𝑘,𝑁)

𝐹 (𝑝,𝑁) ⊕ sin[𝑝𝑁 ] + 𝑔𝑘 sin[𝑝(𝑁 + 1)] = 0, (171)

which can only be solved numerically.

Finally, through algebraic manipulations similar to the ones done for the AGNRs, the

wavefunction can be written as

∏︀

∐︁
å𝑚,𝐴

å𝑚,𝐵

∫︀

̂︀ = 𝑁 ′
c

∏︀

∐︁
e⊗i𝑝𝑚𝑧 ⊗ ei𝑝𝑚𝑧⊗1

e⊗i𝑝𝑚 ⊗ ei𝑝𝑚

∫︀

̂︀

= 𝑁c

∏︀

∐︁
sin(𝑝(𝑁 + 1 ⊗𝑚))

sin(𝑝𝑚)

∫︀

̂︀ ,

(172)

with 𝑁c a normalization constant .

In Figs. 55 and 56, we present the band structure and density of states for zigzag

ribbons, for several 𝑁 . The results presented prove the expected behavior for ZGNRs [in

a tight-binding approximation], that is, a metallic behavior. In addition, they also have

well-placed edge states.
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APPENDIX E

Tight-binding Hamiltonian for an

N-AGNR(1,3) heterostructure

In this Appendix, we present explicit expressions for the Hamiltonian of an N-AGNR(1,3)

heterostructure, in the real and reciprocal spaces. The modiĄcations necessary to obtain

the Hamiltonian for a general N-AGNR(n,m) heterostructure are straightforward. In

Fig. 57, we show the 𝑙-th unit cell of an N-AGNR(1,3) heterostructure, where the A sub-

lattice is represented by blue solid dots and the B sublattice by red solid dots. The sites

are labeled 𝑝Ð𝑞, where Ð = 𝐴/𝐵, with 1 ⊘ 𝑝 ⊘ 𝑁 + 4 and 1 ⊘ 𝑞 ⊘ 3, where 𝑝 runs

along the 𝑦-direction, as indicated in the right-hand side, and 𝑞 runs along the 𝑥-direction

(starting at the center of the unit cell and moving to its borders).

Using the labeling deĄned above, we can write the N-AGNR(1,3) Hamiltonian in real

space as

𝐻 = ⊗ 𝑡
∑︁

𝑙

⋃︀

⋁︀
⨄︀

𝑁∑︁

𝑝∈odd

𝑏†
𝑙,1(𝑝)𝑎𝑙,1(𝑝) +

𝑁⊗1∑︁

𝑝=2

𝑏†
𝑙,1(𝑝+ 1)𝑎𝑙,1(𝑝) +

𝑁⊗1∑︁

𝑝=2

𝑎†
𝑙,1(𝑝+ 1)𝑏𝑙,1(𝑝) + H.C.

⋂︀

⎥
⋀︀

⊗ 𝑡
∑︁

𝑙

⋃︀

⋁︀
⨄︀

𝑁⊗2∑︁

𝑝=2

𝑏†
𝑙,2(𝑝+ 1)𝑎𝑙,2(𝑝) +

𝑁⊗2∑︁

𝑝=2

𝑎†
𝑙,2(𝑝+ 1)𝑏𝑙,2(𝑝) + H.C.

⋂︀

⎥
⋀︀

⊗ 𝑡
∑︁

𝑙

⋃︀

⋁︀
⨄︀

𝑁⊗1∑︁

𝑝=2
𝑚∈even

𝑏†
𝑙,1(𝑝)𝑎𝑙,2(𝑝) +

𝑁⊗1∑︁

𝑝=2
𝑚∈even

𝑏†
𝑙,2(𝑝)𝑎𝑙,1(𝑝) + H.C.

⋂︀

⎥
⋀︀

⊗ 𝑡
∑︁

𝑙

⋃︀

⋁︀
⨄︀

𝑁⊗3∑︁

𝑝=3

𝑏†
𝑙,3(𝑝+ 1)𝑎𝑙,3(𝑝) +

𝑁⊗3∑︁

𝑝=3

𝑎†
𝑙,3(𝑝+ 1)𝑏𝑙,3(𝑝) + H.C.

⋂︀

⎥
⋀︀

⊗ 𝑡
∑︁

𝑙

⋃︀

⋁︀
⨄︀

𝑁⊗2∑︁

𝑝=3
𝑚∈odd

𝑏†
𝑙,2(𝑝)𝑎𝑙,3(𝑝+ 1) +

𝑁⊗2∑︁

𝑝=3
𝑚∈odd

𝑏†
𝑙,3(𝑝+ 1)𝑎𝑙,3(𝑝) +

𝑁⊗3∑︁

𝑝=4
𝑚∈even

𝑏†
𝑙⊗1,3(𝑝)𝑎𝑙,3(𝑝) + H.C.

⋂︀

⎥
⋀︀ ,

(173)

where 𝑎𝑙,𝑞(𝑝) [𝑏𝑙,𝑞(𝑝)] annihilates an electron on site 𝑝𝐴𝑞 (𝑝𝐵𝑞) on the 𝑙-th unit cell. As-

suming periodic boundary conditions along the 𝑥-direction, we take a Fourier transform
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along that direction and obtain the reciprocal space Hamiltonian

𝐻 = ⊗ 𝑡
∑︁

𝑘

⋃︀

⋁︀
⨄︀

𝑁∑︁

𝑚∈odd

𝑣1Ñ
†
𝑘,1(𝑝)Ð𝑘,1(𝑝) +

𝑁⊗1∑︁

𝑝=2

𝑣2Ñ
†
𝑘,1(𝑝+ 1)Ð𝑘,1(𝑝) +

𝑁⊗1∑︁

𝑝=2

𝑣3Ð
†
𝑘,1(𝑝+ 1)Ñ𝑘,1(𝑝) + H.C.

⋂︀

⎥
⋀︀

⊗ 𝑡
∑︁

𝑘

⋃︀

⋁︀
⨄︀

𝑁⊗2∑︁

𝑝=2

𝑣2Ñ
†
𝑘,2(𝑝+ 1)Ð𝑘,2(𝑝) +

𝑁⊗2∑︁

𝑝=2

𝑣3Ð
†
𝑘,2(𝑝+ 1)Ñ,2(𝑝) + H.C.

⋂︀

⎥
⋀︀

⊗ 𝑡
∑︁

𝑘

⋃︀

⋁︀
⨄︀

𝑁⊗1∑︁

𝑝=2
𝑚∈even

𝑣1Ñ
†
𝑘,1(𝑝)Ð𝑘,2(𝑝) +

𝑁⊗1∑︁

𝑝=2
𝑚∈even

𝑣1Ñ
†
𝑘,2(𝑝)Ð𝑘,1(𝑝) + H.C.

⋂︀

⎥
⋀︀

⊗ 𝑡
∑︁

𝑘

⋃︀

⋁︀
⨄︀

𝑁⊗3∑︁

𝑝=3

𝑣1Ñ
†
𝑘,3(𝑝+ 1)Ð𝑘,3(𝑝) +

𝑁⊗3∑︁

𝑝=3

𝑣1Ð
†
𝑘,3(𝑝+ 1)Ñ𝑘,3(𝑝) + H.C.

⋂︀

⎥
⋀︀

⊗ 𝑡
∑︁

𝑘

⋃︀

⋁︀
⨄︀

𝑁⊗2∑︁

𝑝=3
𝑚∈odd

𝑣2Ñ
†
𝑘,2(𝑝)Ð𝑘,3(𝑝+ 1) +

𝑁⊗2∑︁

𝑝=3
𝑚∈odd

𝑣3Ñ
†
𝑘,3(𝑝+ 1)Ð𝑘,3(𝑝) +

𝑁⊗3∑︁

𝑝=4
𝑚∈even

𝑣1Ñ
†
𝑘,3(𝑝)Ð𝑘,3(𝑝) + H.C.

⋂︀

⎥
⋀︀ ,

(174)

where Ð𝑘,𝑞(𝑝) and Ñ𝑘,𝑞(𝑝) are the Fourier transformed operators, and 𝑣1 = 𝑒⊗𝑖𝑘𝑎𝑇 /9,

𝑣2 = 𝑒𝑖𝑘𝑎𝑇 /18, and 𝑣3 = 𝑒⊗𝑖𝑘𝑎𝑇 /18, with 𝑎𝑇 = 1 the unit cell size.

1

2

3

1A1

2A2

3A3

pA1 p = N + 4

1B1

2B2

3B3

pB1

y

x

2A1 2B1

3A2 3A13B1 3B2

Figure 57 Ű Site labelling of a unit cell for an N-AGNR(1,3) heterostructure. The sites
are labeled 𝑝Ð𝑞, where Ð = A/B, 1 ⊘ 𝑝 ⊘ 𝑁 + 4 and 1 ⊘ 𝑞 ⊘ 3, see text for details.
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APPENDIX F

Tight-binding with

next-nearest-neighbor hopping

In Fig. 58 we present tight-binding and DFT results to asses the stability of the

tight-binding flat-bands to the addition of a NNN hopping 𝑡𝑁𝑁𝑁 to the calculations.

In Fig. 58(a) we reproduce the tight-binding bands shown previously in Fig. 42(b) for

3-AGNR(1,3), which included just nearest-neighbor (NN) hoppings. In Fig. 58(b) we

add NNN hoppings 𝑡𝑁𝑁𝑁 = 0.1 eV [5] to the calculations. As expected, the results

are not particle-hole symmetric anymore. However, all the flat-bands (in the interval of

energy shown) remain flat. Thus, since the DFT results [in panel (c), reproduced from

Fig. 42(a)] show that flat-band 1 (the closest to the Fermi energy) has acquired dispersion,

we conclude that longer hoppings than NNN are necessary in the tight-binding calculations

to produce dispersion in flat-band 1. This can be understood by looking at the Wannier-

like state for this band, shown in Fig. 36(a). There, we clearly see that, to connect two

unit cells, it is necessary at least a 3𝑟𝑑 NN hopping. This may explain too, why flat-band

3𝑏 has acquired a small dispersion, while flat-band 4 has acquired just a slight dispersion.
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Figure 58 Ű (a) Tight-binding band structure for 3-AGNR(1,3) with NN hoppings only
[reproduced from Fig. 42(b)]. (b) Same as in panel (a), but adding a NNN hopping 𝑡𝑁𝑁𝑁

to the calculations, with 𝑡𝑁𝑁𝑁 = 0.1 eV. [5] (c) DFT results for 3-AGNR(1,3) [reproduced
from Fig. 42(a)].
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in the Staggered heterostructure. We have checked that what appears to be two flat-

bands (touched by a dispersive band, located, respectively, between energies ⊗1 eV and

⊗2 eV, and below energy ⊗3 eV) are in reality two slightly dispersive bands, and not

perfectly flat, like the ∘𝑡 flat-bands. Our conclusion also rests in the fact that we could

not discern a clear Wannier-like state associated to them. Thus, in the 5-AGNR-S(1,3)

heterostructure there are just
1
4

of the flat-bands present in the (Inline) 5-AGNR(1,3)

heterostructure, shown in panel (b).

Finally, for completeness sake, in Fig. 60 we show a comparison of the DFT band

structure for 3-AGNR-S(1,3), with the tight-binding band structure, in panels (a) and

(b), respectively. Aside from the expected broken particle-hole symmetry in the DFT

bands, it is easy to see the very good agreement between the two results. A careful

analysis of the DFT results shows that the only flat-band that is perfectly non-dispersive

is the ∘𝑡 flat-band (located just below ⊗3 eV), reinforcing our claim that the Inline

heterostructures have more robust flat-bands.
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Figure 60 Ű (a) DFT band structure for 3-AGNR-S(1,3). (b) Tight-binding band struc-
ture for 3-AGNR-S(1,3).
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