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Abstract

Queiroz, C. M. M. Single channel approach for filtering electroencephalographic signals
strongly contaminated with facial electromyography. Master’s thesis - Federal Univer-
sity of Uberlandia, November 2022.

Eliminating facial electromyographic (EMG) signal from the electroencephalogram
(EEG) is crucial for the accuracy of applications such as brain computer interfaces
(BCls) and brain functionality measurement. Facial electromyography typically cor-
rupts the electroencephalogram. Although it is possible to find in the literature a num-
ber of multi-channel approaches for filtering corrupted EEG, studies employing single
channel approaches are scarce. In this context, this study proposed a single channel
method for attenuating facial EMG noise from contaminated EEG. The architecture of
the method allows for the evaluation and incorporation of multiple decomposition and
adaptive filtering techniques. The decomposition method was responsible for gener-
ating EEG or EMG reference signals for the adaptive filtering stage. In this study, the
decomposition techniques CiSSA, EMD, EEMD, EMD-PCA, SSA, and Wavelet were
evaluated. The adaptive filtering methods RLS, Wiener, LMS, and NLMS were investi-
gated. A time and frequency domain set of features were estimated from experimental
signals to evaluate the performance of the single channel method. This set of charac-
teristics permitted the characterization of the contamination of distinct facial muscles,
namely Masseter, Frontalis, Zygomatic, Orbicularis Oris, and Orbicularis Oculi. Data
were collected from ten healthy subjects executing an experimental protocol that intro-
duced the necessary variability to evaluate the filtering performance. The largest level
of contamination was produced by the Masseter muscle, as determined by statistical
analysis of the set of features and visualization of topological maps. Regarding the

decomposition method, the SSA method allowed for the generation of more suitable

Vi
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reference signals, whereas the RLS and NLMS methods were more suitable when
the reference signal was derived from the EEG. In addition, the LMS and RLS meth-
ods were more appropriate when the reference signal was the EMG. This study has
a number of practical implications, including the use of filtering techniques to reduce
EEG contamination caused by the activation of facial muscles required by distinct types
of studies. All the developed code, including examples, is available to facilitate a more
accurate reproduction and improvement of the results of this study.

Keywords: EMG; EEG; signal processing; signal decomposition; facial electromyog-

raphy;
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Chapter 1

Introduction

1.1 Problem formulation

This thesis focuses on developing a single channel filtering method to reduce facial

electromyography in heavily contaminated electroencephalography signals.

1.2 The relevance of the thesis

Electroencephalographic (EEG) signals are widely used in a variety of clinical and
commercial applications, including cognitive neuroscience, brain skill quantification,
pathological diagnosis, pre-surgical assessment, biometrics, and brain-computer inter-
faces (BCls) [1-4].

Unfortunately, noninvasively collected EEG signals have low amplitudes and are
often contaminated by artifacts of external and/or physiological origin [5—7]. For intrin-
sic reasons in the data collection process, in several situations, these contaminating
noises can have amplitudes greater than the EEG signal itself [8, 9]. Thus, it is impera-
tive to employ artifact mitigation techniques to enable electroencephalography in these
situations.

In this regard, this study aims to create a single channel filtering method capable of
accommodating the multiple decomposition and adaptive filtering techniques available

in the current literature [10-15].
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1.3 The objective of research

The objective of this study was to derive a single channel filtering method for reduc-
ing facial electromyography from EEG signals, which must be sufficiently generic and
capable of accommodating multiple decomposition and adaptive filtering techniques in

a single architecture.

1.4 The aim of the thesis

This thesis aims to create a procedure that allows the evaluation of filtering meth-
ods for heavily contaminated EEG signals by employing a protocol that emulates facial
muscle artifacts typical in the operation of a human-computer interface. The evalua-
tion encompasses features in the time and frequency domains and can characterize
EMG contamination on EEG, compare different decomposition and adaptive filtering
approaches, and estimate contamination reduction and EEG signal preservation. Fig-

ure 1.1 shows an overview of this study.

1.5 The objectives of the thesis

To achieve the desired results of the thesis, the following objectives were formu-
lated:

» Define an experimental protocol that allows the evaluation of filtering methods
for EEG signals heavily contaminated by facial EMG, containing the typical facial

artifacts of the operation of a human-computer interface.

 To define the features to be estimated in the time and frequency domains that

allow the characterization of EMG contamination on EEG.

+ To propose a method for comparing different decomposition and adaptive filtering
approaches, evaluating the reduction in the EMG amplitude contamination and

EEG signal preservation.

» To compare the execution times of the decomposition and adaptive filtering tech-

niques used in the current study.
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Figure 1.1: An infographic that depicts the concept of the thesis proposal. A dataset

was made up of EEG and EMG signals from five different facial muscles of 10 volun-

teers collected during the execution of a specific protocol. A method was devised using

features proposed and estimated from the collected data to determine the level of EMG

contamination on the EEG and to evaluate the methods of decomposition and adaptive

filtering currently indicated in the literature.
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1.6 Research methodology

The research conducted in this thesis was divided into five stages. The first stage
refers to the literature survey on the characterization of electromyography, electroen-
cephalography and artifacts. Next, efforts were devoted to studying the main EEG
filtering methods available in the current literature.

The second stage involved choosing, assembling, and testing the data-acquisition
system. Additions to the customizable graphical interface of the chosen acquisition
system were created to facilitate the data collection process. The developed experi-
mental protocol was tested to ensure that defined facial muscle activation generated
the desired contamination levels.

In the third stage, two actions were implemented simultaneously. The first action
involves the selection of the volunteers, followed by data collection, which consists of
the execution of the experimental protocol that comprises the individual activation of
the five facial muscles. The second step corresponds to the development and im-
plementation of the decomposition and adaptive filtering code in the Matlab language
(MathWorks, USA).

The fourth step involves offline processing of the collected data. The first action in
this step consists of viewing all the files recorded during the data collection step, and
aims to confirm the levels of the captured signals and the occurrence of the event mark-
ers. These actions prevented the occurrence of numerous processing errors. Another
important action to speed up the batch processing of the data is to check and correct
the names of the collected files according to predefined nomenclature. After the above
checks, signal processing must be performed, and the results must be carefully stored
to avoid reprocessing and ensure that they are in a format suitable for processing in
the next step, that is, statistical analysis.

The final step was statistical analysis of the processed data. The focus of this
analysis was the characterization of the contamination of the electroencephalogram
by distinct facial muscles, comparison of the performance of different decomposition
methods and adaptive filtering under the experimental conditions, and comparison of

the execution time required by the evaluated methods.
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1.7 Scientific novelty of the thesis

Given that this thesis seeks to introduce a single channel filtering method to reduce
contamination of facial EMG on EEG signals, taking into consideration the EMD, EEMD,
CiSSA, wavelet, SSA, and EMD-PCA decomposition methods and the RLS, Wiener,
LMS, and NLMS adaptive filtering methods, and considering the use of one of the EMG

or EEG references, this study postulates the following scientific innovations.

1. The time and frequency domain features proposed in this work allow the charac-

terization of EEG contamination by the facial EMG.

2. The introduction of the normalized Euclidean distance, as a measure of similar-
ity between the proposed GL and GH metrics, allowing visual, qualitative, and
quantitative comparisons in the estimated topological maps by volunteers and

activated muscles.

3. Among the muscles studied, the masseter had the highest degree of contami-
nation, followed by the frontal and zygomatic muscles, and variability between
individuals was identified, indicating that the role of distinct muscles in the con-

tamination of EEG signals varies with regard to the individual.

4. The SSA decomposition method is superior because it successfully preserves
the EEG in the uncontaminated regions, while significantly reducing the signal

amplitude in the EMG-contaminated regions.

5. The reference based on the EEG signal is preferable because of the lower vari-

ability exhibited compared with the EMG reference.

6. The RLS adaptive filtering method is preferred because it produces satisfactory

results regardless of the type of the reference signal.

7. The evaluated decomposition and adaptive filtering algorithms have linear com-

putational complexity.

8. Two organized and commented databases were available for employment. One
method is suitable for evaluating filtering methods to mitigate facial EMG con-

tamination on EEG. The other is suitable for evaluating motor learning collected
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during interaction with a human-computer interface controlled by facial muscles

in 11 healthy subjects.

1.8 Practical value of the research results

The results of this research refer to the design of a generic architecture that allows
the estimation and evaluation of single channel filtering methods aimed at reducing
facial EMG on EEG signals. The use of such an architecture can be of great use in im-
proving the accuracy of processes that employ electroencephalography. The proposed
and implemented features in the time and frequency domains allow us to evaluate
the reduction of the contamination amplitude and the preservation of the EEG signal,
enabling the comparison of the decomposition and adaptive filtering methods, which
are essential parts of hybrid filters. Furthermore, using similarity measures between
some proposed metrics allows the characterization of contamination through visual,
qualitative, and quantitative comparisons of topological maps that can be estimated
by volunteers and active muscles. Thus, all Matlab and R scripts are available at
https://doi.org/10.5281/zenodo.6591866, and duly commented on making this ar-
chitecture more widespread. In addition, sample data and demonstration scripts were
provided to facilitate the understanding and replication of the filtering approach pre-

sented and evaluated in this study.

1.9 Approval of research results

In addition to participation in a CNPq Universal Call research project, the results of
the research were published in 12 scientific publications, including one peer-reviewed

journal article and eleven conference proceedings.

1.9.1 Article in scientific Journal

* QUEIROZ, C. M. M. ; da Silva, G. M. ; Walter, S. ; Peres, L. B. ; Luiz, L. M. D. ;
Costa, S. C. ; de Faria, K. C. ; Pereira, A. A. ; Vieira, M. F. ; Cabral, A. M. ; AN-
DRADE, A. O. . “Single channel approach for filtering electroencephalographic
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signals strongly contaminated with facial electromyography”. Frontiers in Compu-
tational Neuroscience, https://doi.org/10.3389/fncom.2022.822987. v. 16, p
1-23, 2022.

1.9.2 Full papers published in proceedings of conferences

« QUEIROZ, C. M. M. ; Luiz, L. M. D. ; Silva, G. M. ; NASUTO, S. J. ; Andrade,
A. O. . “Remocéao de tendéncias nao lineares da eletromiografia em tempo
real utilizando filtro de média mével”. In: XXV Congresso Brasileiro de Engen-
haria Biomeédica, CBEB 2016, Anais do XXV Congresso Brasileiro de Engenharia
Biomédica. 2016, Foz do Iguacu.

* QUEIROZ, C. M. M. ; Nasuto, S. J ; Andrade, A. O. . “Development and evaluation
of human-computer interface based on facial motor unit activity”. In: 7th Interna-
tional Joint Conference on Biomedical Engineering Systems and Technologies,
2014, Angers, Franca. 7th International Joint Conference on Biomedical Engi-
neering Systems and Technologies, https://turing.pro.br/anais/ICAART-2014/
BIOSTEC/DCBIOSTEC/DCBIOSTEC_2014_13_CR.pdf. 2014. p. 47-53. This paper

was presented in the conference area mainly dedicated to doctorate students.

* QUEIROZ, C. M. M. ; Silva, B. V. C. ; Nasuto, S. J ; Andrade, A. O. . “Avaliacao
de diferentes configuracées de matrizes de sensores para deteccédo da atividade
muscular facial”. In: XXIV Congresso Brasileiro de Engenharia Biomédica, 2014,
Uberlandia. Anais do XXIV Congresso Brasileiro de Engenharia Biomédica.
https://www.canal6.com.br/cbeb/2014/artigos/cbeb2014_submission_701.pdf.
Bauru: Canal 6, 2014. v. 1. p. 2401-2404.

1.9.3 Participation in research project
1. Project: Universal call 14/2013 - Faixa B - CNPq - Processo 477623

Name: Development and Evaluation of Human-Computer Interface Based on

Facial Motor Unit Activity

Execution period: 2013 a 2016
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Sponsor(es): National Council for Scientific and Technological Development

(CNPq) - Financial assistance.
2. Project: CNPq - Process: 305223/2014-3

Name: Characterization and filtering of electroencephalogram contaminated by

electromyogram of facial muscles
Execution period: 2014 a 2019

Sponsor(es): National Council for Scientific and Technological Development
(CNPq) - Scholarship.

1.9.4 Collaboration work

« Silva, G. M. ; Peres, L. B. ; QUEIROZ, C. M. M. ; Luiz, L. M. D. ; Vieira, M.
F. ; Andrade, A. O. . “Spatial Quantification of Facial Electromyography Arti-
facts in the Electroencephalogram”. In: XXVI Brazilian Congress on Biomedical
Engineering, 2019, Buzios. IFMBE Proceedings. https://doi.org/10.1007/
978-981-13-2517-5_68. Singapore: Springer, 2019. v. 70. p. 447-454.

« Silva, G. M. ; Oliveira, F. H. M. ; Peres, L. B. ; QUEIROZ, C. M. M. ; Luiz, L. M. D. ;
Costa, S. C. ; VIEIRA, M. F. ; Andrade, Adriano O. . “Methodology for Quantifica-
tion of Frontal Muscle Electromyography Contamination in the Electroencephalo-
gram”. In: World Congress on Medical Physics and Biomedical Engineering,
2018, Praga. doi: 10.1007/978-981-10-9038-7_98. IFMBE Proceedings. Singa-
pore: Springer, 2018. v. 68. p. 535-539.

* Oliveira, M. ; Peres, L. B. ; QUEIROZ, C. M. M. ; Silva, J. ; Andrade, A. O. ;
Goulart, I. . “Avaliacao eletromiogréafica da musculatura suprahiéidea durante
a degluticdo de pacientes com hanseniase Virchowiana”. In: XXV Congresso
Brasileiro de Engenharia Biomédica, 2016, Foz do Iguacu. Anais do XXV Con-

gresso Brasileiro de Engenharia Biomédica, 2016.

« Silva, G. M. ; QUEIROZ, C. M. M. ; Rabelo, A. G. ; Andrade, A. O. . “Proposta de

filtragem do eletroencefalograma da regido occipital contaminado por atividade
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muscular facial utilizando decomposicdo de modos empiricos”. In: XXV Con-
gresso Brasileiro de Engenharia Biomédica, 2016, Foz do Iguacu. Anais do XXV

Congresso Brasileiro de Engenharia Biomédica, 2016.

« Silva, G. M. ; Peres, L. B. ; QUEIROZ, C. M. M. ; Luiz, L. M. D. ; Oliveira, .
M. de ; Andrade, A. O. . “Estudo do indice de correlacédo cruzada entre a ativi-
dade eletromiografica do musculo frontal e o eletroencefalograma”. In: XXV Con-
gresso Brasileiro de Engenharia Biomédica, 2016, Foz do Iguacgu. Anais do XXV

Congresso Brasileiro de Engenharia Biomédica, 2016.

« Peres, L. B. ; Oliveira, M. F. ; QUEIROZ, C. M. M. ; Goulart, I. M. B. ; Andrade, A.
O. . “Proposta de um protocolo experimental para deteccéo de atividade eletro-
miogréafica de musculos faciais em individuos com hanseniase”. In: VIII Simpésio
em Engenharia Biomédica Uberlandia, 2015, Uberlandia. Anais do VIII Simpésio
em Engenharia Biomédica. https://doi.org/10.5281/zenodo.6465503. Bauru:
Canal 6, 2015. v. 1. p. 80-84.

» Arantes, A. P. B. B. ; Rabelo, A. G. ; QUEIROZ, C. M. M. ; Andrade, A. O. . “Pro-
posta de classificacdo de padrdes inerciais e eletromiograficos para aplicacao
em estratégica de controle de membro superior”. In: Anais do VIII Simpésio
em Engenharia Biomédica Uberlandia, 2015, Uberlandia. Anais do VIII Simp6-
sio em Engenharia Biomédica Uberlandia. https://doi.org/10.5281/zenodo.
6465503. Bauru: Canal 6, 2015. v. 1. p. 282-286.

« Silva, G. M. ; QUEIROZ, C. M. M. ; Lima, G. F. M. ; Barbosa Junior, J. A. F. ;
Andrade, A. O. . “Caracterizacado do EEG contaminado por EMG por meio da de-
composi¢cao de modos empiricos”. In: VIII Simpdsio em Engenharia Biomédica
Uberlandia, 2015, Uberlandia. Anais do VIl Simpédsio em Engenharia Biomédica
Uberlandia. https://doi.org/10.5281/zenodo .6465503. Bauru: Canal 6, 2015.
v. 1. p. 389-396.

» Arantes, A. P. B. B. ; QUEIROZ, C. M. M. ; QOliveira, E. A. ; Andrade, A. O. . “Avali-
acao Da Co-Contragdo Muscular De Um Individuo Com Amputacdo De Mem-
bro Superior Durante Contracdo Isométrica”. In: XXIV Congresso Brasileiro de

Engenharia Biomédica, 2014, Uberlandia. Anais do XXIV Congresso Brasileiro
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de Engenharia Biomédica. https://www.canal6.com.br/cbeb/2014/artigos/
cbeb2014_submission_649.pdf. Bauru: Canal 6, 2014. v. 1. p. 2216-2219.

1.10 Thesis structure

The thesis begins with Chapter 1 which provides a brief overview of the work’s
motivation, objectives, and structure.

Chapter 2 provides a review of the literature on electroencephalography, artifacts,
and current filtering methods, as well as a brief discussion of the filtering proposal in
this thesis.

The third Chapter discusses the materials and methods used in this study. It be-
gins by describing the experimental protocol and data acquisition system used. It also
describes the signal processing steps, including the implementation of a single chan-
nel approach to EEG filtering as well as the resources used in the time and frequency
domains to evaluate and compare the performance of different filtering methods, sta-
tistical analysis, and the time required for these methods to run.

The findings of this study are detailed in Chapter 4. Typical signals collected are
depicted as topological maps that show how the studied muscles contaminate different
brain regions. The evaluation results of the decomposition and adaptive filtering meth-
ods are presented based on the time and frequency domain characteristics, as well as
a comparison of the execution times of the implemented methods.

Finally, Chapters 5 and 6 describe the doctoral work’s discussion and conclusions,
respectively.

Appendix A presents the behaviour of the GL and GH feature vectors for subjects
2-10. The following appendices describe two databases to facilitate their use. Ap-
pendix B presents the database containing EMG and EEG signals collected studying
contamination by facial EMG on EEG. Appendix C presents a database created for
motor learning studies. This database contains EEG and EMG signals collected from
11 participants who interacted with a human-computer interface. However, before per-
forming the analyses of these data, there was a need to filter the EEG signals that were
heavily contaminated due to the use of the electromyographic interface controlled by

Frontalis. The search for the most appropriate method resulted in the current thesis.
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Therefore, this motor learning database has not yet been analyzed. The analysis of
these data should be encouraged in order to verify whether changes in brain activity,
detected by changes in rhythmic or macropotential brain waves related to movement,
can be used to develop an index capable of estimating motor learning. In this sense,
this Appendix C has been added to this thesis precisely to present and disclose the

existence of such database for future analysis.



Chapter 2

Background research

2.1 Electroencephalography and artifacts

Electroencephalography is a technique used to record the activity on the scalp of
measured cerebral cortex neuronal populations. It is derived from a high temporal res-
olution, non-invasive macroscopic process and is a low-cost method compared to a
functional neuroimaging test [16—18]. The electroencephalogram (EEG) is widely used
in a variety of clinical and commercial applications, including cognitive neuroscience,
brain-skill quantification, pathological diagnosis, biometrics, and Brain-Computer Inter-
faces (BCls) [1-4].

The system for measuring EEG amplifies the tiny disturbances of the electrical po-
tentials of the electrodes positioned on the scalp, which is anatomically separated from
the signal-generating sources by the meninges, skull bones, and scalp. Thus, the
synaptic potentials which usually have low amplitudes, in the order of millivolts, are
strongly attenuated by these anatomical structures, reducing the amplitude of the sig-
nals recorded at the scalp [5]. Due to this low amplitude, which typically does not
exceed 100 nV, the EEG signal is highly susceptible to artifacts. These artifacts are
usually caused by electromagnetic fields generated by nearby electronic devices and
the power grid. In addition, artifacts can be produced by other sources of electro-
physiological signals, e.g., muscular and heart activity or eye movement [6, 7]. This
contamination decreases the performance of applications such as BCI and diagnosis
of pathological disfunctions, since the amplitude of the artifact will typically be several

orders of magnitude greater than the EEG amplitude [8, 9].
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In this context, the characterization and elimination of artifacts is relevant for the
correct interpretation and use of EEG. Facial electromyographic (EMG) signals are a
primary source of EEG contamination. The main challenge with respect to the elimi-
nation of noise generated by the EMG signal lies in the fact that EMG emerges from
the anatomically positioned muscles along the skull. Even weak muscular contractions
can be detected throughout the scalp due to the phenomenon of conductive volume.
In addition, the EMG signal overlaps the spectrum of the EEG signal in virtually all
frequency bands [19].

To solve this problem, several EEG filtering methods are described in the litera-
ture. However, these methods have some limitations, mainly related to the inability to
completely remove noise from the corrupted signal without the introduction of unde-
sired distortions, and the need for a priori noise information for signal filtering. These
limitations, associated with several features estimated from the EEG signal to suit the
diversity of applications, motivate the search for multiple gold standards for removing
EEG artifacts [7, 10—15].

Frequency selector filters, such as a linear Butterworth filter, are one of the main
techniques described in the literature for the removal of physiological artifacts from
EEG. However, the use of such filter class is only effective when the frequency range

of the signal and noise are not overlapped [6].

2.2 Filtering methods

The literature suggests the use of single channel techniques for muscular artifact
removal from EEG instead of multichannel techniques, e.g., Independent Component
Analysis (ICA) and Canonical Correlation Analysis (CCA). The following methods are
commonly employed for this purpose: adaptive filtering [20—22]; Wiener filtering [23,
24], Bayesian filtering [25], Blind Source Separation (BSS) [26, 27], wavelet transform
(WT) [28, 29], Empirical Mode Decomposition (EMD) [30, 31], and the combination of
these techniques, i.e., hybrid methods [12, 32—-35].

An adaptive filter is required when fixed specifications are unknown. The literature
describes that the most prevalent family of algorithms for removing EEG artifacts is

based on the method of least squares [20, 36]. Adaptive filters vary in time because
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their parameters are continuously changing to meet a performance requirement [37].

Wiener filtering is appropriate in situations in which the signal and noise spectrum
are overlapping, although it requires an estimated, measured, or reliable reference to
operate. Sengupta and Kay (1995) [38] showed that the performance of the multi-
channel Wiener filter (MWF) outperformed that of BSS for removal of EEG artifacts
of various types, i.e., those that were annotated as unwanted by the user. In addi-
tion, Ferdous and Ali (2017) [24] compared Wiener and Kalman filters, and again the
Wiener filter was more effective for removing EEG artifacts. However, the Wiener filter
was mainly applied to remove ocular artifacts, not including muscular artifacts with low
SNR, i.e., lower than -10 dB.

Gao [39] employed an adaptive algorithm to remove ECG from EEG during sleep
apnea records by means of Discrete Wavelet Transform (DWT). lyer [40] compared
DWT with an ICA filter for subsequent detection of single-trial evoked potential. Krish-
naveni et al. [41] compared the Joint Approximation Diagonalization of Eigen-matrices
(JADE) algorithm [42] with DWT for the removal of EOG from EEG.

Empirical Mode Decomposition (EMD) was successfully used for the removal of
EEG artifacts in [10, 43] and also in conjunction with BSS methods [43, 44]. A broad
review of the application of EMD and its variations on EEG signal processing is given
in Sweeney-Reed et al. (2018) [45].

Recent efforts have been focused on the combination of these algorithms for re-
moving artifacts from the EEG. Hybrid methods are, therefore, considered the state of
the art in EEG filtering because they use the advantages of different methods in two
or more stages and have presented the best results in their applications [6, 7, 12, 14,
35, 44, 46, 47]. The main combinations of algorithms in different filtering stages are: (i)
adaptive filtering with BSS-ICA; (ii) EMD with BSS; (iii) wavelet with BSS; (iv) adaptive
filtering with EMD [47].

2.3 Proposed approach

Currently, single channel techniques have been shown to be the most effective
approach for the removal of facial muscular artifacts from EEG, especially when a

reference signal is known [48]. However, the main limitation of this class of noise
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removal technique is that its performance is low for signal-to-noise ratios below -10
dB [15, 35, 48], which is typical in EEG contaminated by facial electromyography. To
the best of our knowledge, there is lack of studies addressing the removal of facial
muscular artifacts from EEG. This is important when there is a need to monitor brain
activity during human computer interaction [49].

Recently, in our research group, the thesis Silva (2020) [50] dealt with the develop-
ment of a new method for removing EMG artifacts in the EEG signal, called EMDRLS.
The focus of this work was to evaluate whether such a proposed method was able
to mitigate the contamination present in the EEG signal in the context of using a my-
oelectric interface. This study considered artifacts from the following facial muscles,
Masseter and Frontalis.

To contribute to the research on facial EMG removal from EEG, this study presents,
a methodology to evaluate EEG filtering for facial EMG removal that is independent
of external reference noise and suited for low SNR signals. The evaluation strategy
involves determining a single channel reference signal, generated by various decom-
position techniques, which are used by adaptive filters to attenuate the facial EMG.
Table 2.1 presents a parallel between the Silva (2020) [50] thesis and the current the-
sis, highlighting the main points addressed and the extent of the study carried out. The
reported results of the current research consider the evaluation of various decomposi-
tion and adaptive filtering methods, as well as the evaluation of filtering performance in
the time and frequency domains. The experimental protocol used in this study is also
based on the practical need to assess brain activity for quantification of motor learning

during interaction with a myoelectric interface [49].
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Table 2.1: Comparison between the analyzes carried out by Silva (2020) [50] and

current thesis.

Thesis Silva, G.M. 2020 [50]

Current thesis

It proposes a method
Introduces and evaluates a new method for removing EMG
artifacts on the EEG signal, called EMDRLS.

It proposes a methodology

Single channel filtering evaluation system for reducing facial
electromyography on EEG signals, capable of
accommodating multiple decomposition and adaptive
filtering techniques in a single architecture.

Comparisons

The performance of the EMDRLS filter is compared with
other single channel approaches: wRLS, EMD, Wavelet, and
Wiener.

Comparisons

- Evaluation of the performance of the following
decomposition methods: CiSSA, EMD, EEMD, EMD-PCA,
SSA, and Wavelet.

- Evaluation of the performance of the following adaptive
filters: LMS, NLMS, RLS, and Wiener.

Experimental protocol
- 10 healthy subjects, EEG, and EMG (successive and single
muscle contractions).

- Muscles activated: Masseter and Frontalis.

Experimental protocol

- 10 healthy subjects, EEG, and EMG (successive and single
muscle contractions).

- Muscles activated: Masseter, Frontalis, Zygomatic,
Orbicularis Oculi, and Orbicularis Oris.

Quantitative metrics

- Signal-to-noise ratio (SNR).

- Root mean square error (RMSE).

- Mean Power Spectral Density (MPSD).

Quantitative metrics

- Features in the time domain: GL, GH, GXin, and GXout,
calculated based on the median of RMS values estimated in
parts of the signal.

- Features in the frequency domain: pr, pf, frmed, and ffmed,
calculated based on the median frequency of the power

spectral density estimates.

Characterization of the contamination

The relationship between the normalized average power
gain of the contraction and non-contraction windows of the
muscles was employed to generate the topographic map.
Note: The Zygomatic, Orbicularis Oculi, and Orbicularis Oris

muscles were added for contamination characterization.

Characterization of the contamination

For each pair of feature vectors (GL and GH) a similarity
measure was calculated, based on the normalized Euclidean
distance, which is used to generate a topological map.

Comparisons made

1. Visual.

2. Analysis of filtered signals: metrics, signal-to-noise ratio
(SNR).

3. Power spectrum between epochs with uncontaminated
and filtered EEG signal: metric, root mean square error of
the spectra (RMSE).

4. Spectral preservation of classical EEG rhythms: metrics,
mean power spectral density (MPSD).

Comparisons made

1. Performance comparison of different decomposition
methods: metric, GL and GH.

2. Performance comparison of different adaptive filtering
methods: metric, time domain, GL, GH, GXin, and
GXout.

3. Spectral preservation of classical EEG rhythms: metrics,
in the frequency domain, p”, pf, freq»and f;;ed, according
to their fundamental oscillations (Delta, Theta, Alpha, Beta
and Gamma).

4. Comparison of runtime of the decomposition and adaptive

filtering methods.
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Materials and methods

3.1 Experimental protocol

Data were collected from ten healthy individuals during the execution of successive
facial muscular contractions to characterize the EEG signal contamination by facial
muscular activity. This experimental protocol was based on previous published work
[49] reporting the implementation of a facial EMG interface and motor learning assess-
ment.

This study followed the Resolution 466/2012 of the National Health Council. The
study was conducted at the Centre for Innovation and Technology Assessment in
Health of the Federal University of Uberlandia (UFU), Brazil. The experimental protocol
was approved by the Human Research Ethics Committee (CEP-UFU), CAAE Number:
43670815.4.0000.5152.

The protocol consisted of two sets of facial muscle contractions, one with the eyes
open and one with the eyes closed. The open and closed eyes conditions allowed for
the evaluation of the filtering methods considering changes in the EEG amplitude. The
10 participants, 4 women and 5 men (18 - 32 years, mean 26.0, standard deviation 2.5)
were instructed to perform a series of facial expressions (Figure 3.1) by contracting five
distinct muscles: Frontalis, Masseter, Orbicularis Oculi, Orbicularis Oris and Zygomatic
(Figure 3.2).

Each muscle was contracted 15 times following a random timing protocol (Figure
3.3) of three distinct patterns: long (3 seconds), medium (1 second) and short (0.5

second). The onset and duration of the contractions were controlled by an auditory
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Open eyes

Tightly.closed
eyelids

Tightly closed
eyelids Puckered lips

Figure 3.1: Participants were instructed to make a variety of facial expressions by
activating muscles whose electrical activity corrupts the electroencephalogram. The
facial expressions were performed with both open and closed eyes. In the neutral
condition (A) there was no muscular contraction, whereas in the other conditions the
following muscles were activated: Frontalis (B), Masseter (C), Orbicularis Oculi (D),

Zygomatic (E) and Orbicularis Oris (F).
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Figure 3.2: The five different muscles involved in the protocol: Frontalis (1), Orbicularis
Oculi (1), Zygomatic (lll), Orbicularis Oris (IV) and Masseter (V).

stimulus (beep). The volunteer was asked to maintain the contraction while listening to
the beep, and to finish the contraction immediately after the auditory stimulus consider-
ing these timing patterns. There were five repetitions of each contraction pattern. Each
contraction was followed by a 2-second neutral period. Each participant performed 150
muscle contractions.

Thus, for ten participants, the data set consisted of 500 contractions lasting 3 sec-
onds, 500 contractions lasting 1 second, and 500 contractions lasting 0.5 second, for
a total of 2,250 seconds of EEG signals corrupted by facial EMG.

In this study the bipolar, i.e., differential, EEG montage was used to deliberately
differentiating potentials between spatially adjacent locations as this may lead to im-
proved signal-to-noise ratio of the collected signal. This type of configuration is also
known as longitudinal configuration and widely employed in clinical practice [51]. Al-
though the employed montage was bipolar, the electrodes were positioned by using an
EEG cap following the 10-20 International system of EEG electrode placement. EMG

signals were detected by using disposable sensors (Meditrace, USA).
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Figure 3.3: Each muscle was contracted 15 times in one of three timing patterns: long
(3 seconds), medium (1 second), and short (0.5 second). Each pattern of contraction
was repeated five times randomly. A two-second neutral period followed each contrac-

tion. This protocol was executed with open and closed eyes.
3.2 Data acquisition

This study compares methods for filtering EMG contamination on EEG signals, so it
involves two types of signals with different frequency ranges and amplitudes, and both
signals must be collected concurrently. Because the highest frequency of these signals
comes from the EMG and considering that the highest frequency of this signal is equal
to 1 KHz, one can adopt a sampling frequency of 5 kH =z (more than 2 kHz [52]) and a
bandpass filter cutoff frequency of 0.1 Hz -1 kHz.

Among the various commercially available acquisition systems, the acquisition sys-
tem based on the RHD2000 series of amplifiers from Intan Technologies (Intan, USA)
was found to meet the requirements imposed by the experiment [53]. The main fea-
tures of this acquisition system are biopotential conditioning cards with 16, 32, and 64

bipolar channels, sampling frequencies from 1 kHz to 30 kH=z, 16 digital input chan-
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nels, and 16 digital output channels synchronized with the biopotential channels and
customizable C++/Qt-based multiplatform graphical user interface. Figures 3.4 A and
B show the front and back views of the box designed and built to house the USB inter-
face board responsible for forwarding the data, referring to the biopotentials scanned

by the two conditioning cards with 16 bipolar channels each (see Figure 3.4 C).

Figure 3.4: (A) Front view of the box housing the acquisition system’s RHD2000 USB
interface card (Intan, USA); (B) Rear view of the box, showing the input and output

signal connectors (analog and digital); (C) Biopotential conditioning card.

The data acquisition management program, provided for the RHD2000 series from
Intan Technologies (Intan, USA), was customized to conduct data collection sessions.
A menu item created and named “Collect” allows you to speed up the data entry to

specify a given collection. The information “Research”, “Researcher”, “Group”, “Sub-
ject, “Session”, “Protocol”, “Repetition”, “Directory”, “Electrode”, “Cap”, “Cards”, and
“Acquisition system” were predefined and easily selected to avoid errors in collection

characterization, as illustrated in Figure 3.5.

3.2.1 EEG cap fitting

Electroencephalogram capture follows the international 10/20 positioning standard,
employing the transverse bipolar distribution with 16 channels [51, 54]. A commercial
EEG cap, model EC20 from EASYCAP, Germany, adapted with the connector (Omnet-
ics, USA) of the 16-channel RHD2216 conditioning card from Intan Technologies (Intan,

USA), is used to facilitate the positioning of the electrodes, as illustrated in Figure 3.6.
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Figure 3.5: “Collect” window created for the data acquisition program, Intan Technolo-
gies (Intan, USA), containing items to facilitate the specification of volunteer data col-

lection.
3.3 Signal processing stages for the implementation of

a single channel approach to EEG filtering

Figure 3.7 depicts the sequence of steps required to implement a single approach
for filtering EEG signals corrupted by facial EMG. The first step is to eliminate any linear
and non-linear trends from the collected signals. These tendencies are typically due in
part to drift caused by changes in the impedance between the skin and the electrode,
as well as cable and skin motion. By fitting a linear model to the time series and then
subtracting the resulting straight line from the data, the linear trend is eliminated.

The non-linear trend is estimated by applying a sliding, non-overlapping, rectan-
gular window of 20 milliseconds (100 samples) to the data and then estimating the
median of each window. The resultant time-series is interpolated using a Piecewise
Cubic Hermite Interpolating Polynomial (pchip) so that it can be re-sampled with the

same number of samples as the input time-series. The resultant signal is the non-linear
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Figure 3.6: A commercial EEG cap (model EC20 from EASYCAP, Germany) fitted with
a connector (Omnetics, USA), containing a 16-channel RHD2216 conditioning card

from Intan Technologies (Intan, USA), was already positioned in one subject.

trend that should be subtracted from the signal (i.e., the electroencephalogram or elec-
tromyogram). Figure 3.8 illustrates an example of the result of this signal processing
stage applied to an acquired EMG signal.

Outliers can result from any sudden abnormal changes in data amplitude that ex-
ceed or fall below predetermined thresholds. In this study, the upper/lower threshold
was established as the mean plus/minus ten times the standard deviation of the data in
the EMG-contaminated regions. The outliers were replaced by random scalars drawn
from the standard normal distribution.

The pre-processed signal is then decomposed by one of the following decom-

position methods: Empirical Mode Decomposition (EMD) [55], Extended Empirical
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Figure 3.7: Filtering EEG signals corrupted by EMG via a series of steps. Linear and
non-linear trends are eliminated, as well as outliers. The signal is then decomposed
using one of the methods outlined, and the resulting components are thresholded. The
thresholding process requires the identification of noise periods in the signal, which are
provided by a binary signal generated by an EMG burst detector (Figure 3.9). Once
the components have been thresholded, the filtered signal is reconstructed, producing
a reference signal, i.e., EEG or EMG reference signal, which can be used as a refer-
ence for one of the indicated adaptive filters. Various characteristics are estimated to
evaluate the filtering process at distinct stages. Note that when the method EMD-PCA

is used it is not necessary to execute the soft-thresholding stage.
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Figure 3.8: The raw EMG signal is corrupted by linear and non-linear trends. The

estimated non-linear trend and non-trending signals are shown.

Mode Decomposition (EEMD) [56], Circulant Singular Spectrum Analysis (CiSSA) [57],
Wavelet Decomposition [29] or Singular Spectrum Analysis (SSA) [57]. For the meth-
ods EMD, EEMD, CiSSA, and Wavelet, the maximum number of components was set
to ten. For EMD and EEMD, the pchip interpolation method was utilised. For the EEMD

approach, there were 5 ensembles. For Wavelet Decomposition, the mother wavelet
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was coif5. For the method SSA, the window length was 100 and the proportion of
explained variance was 80%.

The obtained components are then soft-thresholded to eliminate noise as explained
in a previous work [58]. For each signal component C' = {c, ¢, -+ ,cur}, @ threshold,
tm|m = {1,---, M}, is estimated, and soft-thresholding is applied to individual com-

ponents as shown in Equation 3.1,

tem = sign(cm)(|em] — tm)+ (3.1)

where tc,, is the de-noised (or thresholded) version of the mth signal component and

the function (x), is defined as

()4 = (3.2)
x, x>=0.

The threshold ¢,, is estimated by using the following strategy: a window of noise is
selected from the original signal and then the boundaries of this window are used to
extract regions of noise from the signal components. For noise information selection, a
binary signal is used. Low-level periods in this binary signal correspond to noise, while
high-level periods correspond to EMG regions. Figure 3.9 provides an overview of
the required steps for automatic EMG burst detection [58]. Although the EMG signal is
the input signal illustrated in Figure 3.9, EMG bursts can be detected directly from EEG
that has been corrupted by EMG. Because EMG signals were collected simultaneously
with EEG, we decided not to use the EMG-corrupted EEG in this study for EMG burst
detection.

The standard deviation of each of those regions is then estimated, multiplied by a
constant k, to obtain the required thresholds (¢4, ..., t57). A typical value of k is 1.5 [58].
It is possible to vary £ to control the signal filtering.

The EMG reference signal is obtained during the signal reconstruction stage. The
adaptive filter may use this signal as a reference. Optionally, an EEG signal may be
used as a reference. In this case, the noise-corrupted EEG is subtracted from the EMG
reference signal to produce the EEG reference signal. Note that the reference signal
is a filtered signal, resulting from the reconstruction of soft-thresholded signal compo-

nents. In the case of the EMD-PCA method, the signal is reconstructed by selecting
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Figure 3.9: Sequence of required steps for detecting EMG bursts. First, the input signal
is preprocessed by removing linear and nonlinear trends, and then the resulting signal
is decomposed using EMD. The estimated components are soft-thresholded using a
priori knowledge of the signal’s noise level. Signal filtration is achieved by summing the
thresholded components. The EMG envelope is determined by estimating the signal’'s
energy, and bursts are detected using a threshold. As a result of this step, a binary
signal is generated in which low levels indicate noise and high levels indicate EMG

activity.

the principal components that account for at least 80% of the data variability. For the
other methods, the signal is reconstructed based solely in the estimated components.

The reference signal is sent through an adaptive filter, which removes EMG noise
from the electroencephalogram. One of the following adaptive filters can be chosen:
Recursive Least Squares (RLS), Wiener filter, Least Mean Square (LMS) and Normal-
ized Least Mean Square (NLMS) [59]. Except for the method NLMS, which had an
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order of 4, the step-size utilised for all filters was 10~ and the order was 10. Matlab
R2022a was used to implement all of the code required for signal processing (Math-
Works, USA).

3.4 Estimate of features for filtering assessment

Several features were estimated to enable for the characterisation of EMG contam-
ination on EEG and to compare different approaches used in the investigation. The

stages in which the set of features is estimated are depicted in Figure 3.7.

3.4.1 Time domain features

The feature GL assesses the effect of filtering in regions with no EMG activity, i.e.,
regions with a low binary signal (Figure 3.10). Any filtering method is expected to
preserve the amplitude and shape of the signals in this region as much as possible.
Equation 3.3 defines GL. The general idea is to apply a sliding, non-overlapping one-
second window with 5,000 samples to the data, compute the root-mean-square (RMS)
value for each window, and then estimate the median of the RMS values. As the length
of the window is one second, the number of samples in each window is equal to the

sampling frequency f,, whichis 5 kH z.

GL = 20log(Xouty/ X ing) (8.3)

) } »

corresponds to the median of the RMS values estimated from the signal Xin,, i.e., the

) } 39

corresponds to the median of the RMS values estimated from the signal Xout,, i.e.,

where

Xing = median {RMS (Xmo

non-filtered signal, and

Xouty = median {RM S (X outy

the filtered signal, being n = {1,2, cee L%J} € N a set in which each of its values

corresponds to a window, {fﬂj the total number of windows,
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Figure 3.10: Set of time (GL, GH, GXin and GXout) and frequency (p", p’, f’_, and
fj;ed) domain features used to evaluate the performance of distinct methods for adap-
tive filtering EEG corrupted by facial EMG. The features compare the signals before
and after adaptive filtering and consider the regions in which there is the presence and

absence of muscle activity.

i = {1,fs Y1,2f 41, (bﬂj for 1) _ fs} € N the discrete time in which the win-
dow starts, and i, = {fs +1,2fs+1,---, {fﬂJ fs+ 1} € N the discrete time in which
the window ends. N is the number of samples of the signal.

GH (Figure 3.10) is the feature that estimates the ratio between noise-corrupted
and filtered signals in an EMG-contaminated region. It is defined in Equation 3.6. It is
calculated in a manner similar to that of GL; hence, equivalent definitions will not be

supplied to prevent duplication.
GH = 20log(Xout}/Xin)) (3.6)

While the GL and GH features evaluate the ratio of signal amplitudes considering
different parts of the binary signal, the GXin and GXout features measure the ratio of
signal amplitudes comparing regions with and without noise (Figure 3.10), as given in
Equations 3.7 and 3.8. The estimates are similar to that of GL and GH, thus they are
not provided.

GXin = 20log(Xin!/Xing) (8.7)
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GXout = 201og(Xout] / X outy) (3.8)

3.4.2 Frequency domain features

For the estimate of the frequency domain features (p", p/, f7., and f/ ), first the
power spectral density estimate, pzz, of the discrete-time signal was estimated by
using the Yule-Walker method. The signal energy was estimated for the frequency f =
{0,0.01,0.02,--- , fs/2} in Hz, considering a model of order 10. The median frequency
and its corresponding energy were estimated from pxz for the non-filtered (f;,., and p")

and filtered (f/_, and p/) signals.

3.5 Statistical analysis

Statistical analysis was performed using R, which is a language and environment
for statistical computing [60]. Considering the studied methods and experimental con-
ditions, the analyses were designed to answer the following research questions: (i)
Which facial muscle contributes the most to EEG contamination? (ii) Which decompo-
sition methods are preferable for generating reference signals for adaptive filtering? (iii)
Considering its effect on the EEG signal and its components, which adaptive filtering

methods are the most desirable?

3.5.1 Characterization of the contamination of the electroencephalo-

gram by distinct facial muscles

Figure 3.11 depicts the main steps employed to characterize the contamination
of EEG by facial muscles. The GL and GH features were used to investigate how
distinct facial muscles contaminate EEG signals. By varying the parameter £ of the
soft-thresholding procedure, from 0.1 to 2.0 with a resolution of 0.1, it is possible to ob-
tain, for each decomposition method, a distinct feature vector for GL and GH. Figure
3.12 shows typical vectors for the collected signals. The estimated features, GL and
G H, were grouped by subjects, muscles, EEG sensors and filtering methods. For each
pair of feature vectors a similarity measure based on the normalized Euclidian distance

was computed [61]. These values of the similarity measures were used to generate a
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Figure 3.11: Overview of the analysis required for characterisation of contamination
caused by different facial muscles, as well as a comparison of the performance of
decomposition methods based on the features GH and GL. The analysis takes into
account data grouping by participants, muscles, EEG sensors, and filtering methods.
For each group, a similarity measure based on the normalised Euclidian distance can
be estimated between a pair of vectors representing G H and GG L estimates for varying
a parameter used in the soft-thresholding of the signal components. The similarity
metrics are used to create spatial brain maps that depict the contamination of EMG
levels at various areas. Statistical analyses are carried out for GH, GGL, and similarity

measures.
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topological map in which the light colours are associated to the contamination of facial
EMG on EEG. A customized function was developed in R to generate the topologi-
cal maps according to the Montreal Neurological Institute (MNI) coordinates mapped
to the International 10-20 System [62]. In addition to the visualization of topological
maps, the normalized Euclidean distance between GL and GH were used to quantify
the electromyographic contamination produced by distinct muscles. The box plot of the
normalized Euclidean distance were computed and the mean of the variables were sta-
tistically compared. The statistical analysis was performed considering the scenarios
of independence and dependence to the subjects.

To compare the variables, one-way analysis of variance (ANOVA) was used. After
fitting the ANOVA model to the data, the model’s assumptions were verified, i.e., the
evaluation of the homogeneity of variances (Levene’s test) and normality of the resid-
uals’ distribution (Kolmogorov-Smirnov test). The p-value for all analyses was 0.05.
Tukey’s honestly significant difference test (Tukey’s HSD) was used to examine the
significance of differences between sample means. If the variables did not meet the
assumptions of ANOVA, the Kruskal-Wallis rank sum test and Dunn’s test for multiple

comparisons were employed to compare them.

3.5.2 Comparison of the performance of distinct decomposition

methods

As seen in Figure 3.7, the decomposition methods in conjunction with the soft-
thresholding procedure act as a filtering method that enables the generation of a suit-
able reference signal for adaptive filtering. In this regard, it is necessary to preserve
EMG regions as much as possible so that adaptive filters can attenuate them appropri-
ately.

The GL and GH measures were used to compare the performance of different
decomposition approaches. Based on the definitions of GL (Equation 3.3) and GH
(Equation 3.6), the most appropriate filtering method is the one that produces the low-
est GL and the largest GH, i.e., the method that reduces the signal amplitude in the
regions without EMG while preserving the amplitude in the regions of EEG contami-

nated by EMG as much as possible. For the generation of an appropriate reference
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Figure 3.12: Examples of typical GL and G H feature vectors obtained for high (Fp2-

F8) and low (O1-02) levels of EMG contamination on EEG signals. By decomposing

the raw EEG signals with EMD, the reference signals were obtained. The contami-

nation level of the EEG signal can be captured by the distance between the feature

vectors, in the sense that an increased distance is related to a lower signal to noise

ratio. The examples demonstrate typical collected signals for the open and closed eyes

scenarios.
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signal, a substantially greater reduction of G L relative to GH is expected.

The box plots of GL and GH were generated, and their respective means were
compared statistically. For this purpose, the statistical analysis followed the procedure
stated previously, which comprised fitting an ANOVA model to the data, validating the
method’s assumptions, and employing an alternative non-parametric method if ANOVA

was not appropriate.

3.5.3 Comparison of the performance of distinct adaptive filtering

methods and experimental conditions
3.5.3.1 Evaluation based in time-domain features

The GL, GH, GXin and G X out features were evaluated for both the EMG (EMGr)
and EEG (EEGr) reference signals. GL and GH were used to evaluate the perfor-
mance of adaptive filtering for each type of reference signal. In contrast to decom-
position methods, the appropriate adaptive filtering method should reduce the signal
amplitude in regions contaminated by EMG while preserving signal amplitude in re-
gions of EEG without EMG contamination. Therefore, the appropriate adaptive filtering
strategy for reducing the influence of EMG on EEG is the one that produces a G L close
to zero (to preserve the EEG signal) and GH less than zero (indicating the reduction
of EMG contamination).

The feature GXin and GXout were employed to evaluate and compare the be-
haviour of the adaptive filtering in the regions of EEG with and without EMG. The lower
the GXout compared to GXin, the greater the attenuation of the EEG regions contam-
inated by EMG. In addition, the closer to zero is GXout (GXout — 0), the greater the
capacity of the adaptive filtering method to preserve the amplitude of the EEG signal
in EMG-contaminated regions.

Box plots were used to visually investigate the values of central trend, dispersion
and symmetry of the characteristics for each of the scenarios investigated. To verify
the differences between the characteristics estimated from different adaptive filtering
methods, the means of the variables were compared by ANOVA. If the premises of
such a model were not verified, a non-parametric approach was then employed, as

previously explained.
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3.5.3.2 Evaluation based in frequency-domain features

The non-filtered and filtered EEG signals were decomposed into their fundamental
oscillations (Delta, Theta, Alpha, Beta, and Gamma) and box plots for the median
frequency and its associated power were calculated. The study took into account the
signal regions of the open and closed eye experimental conditions, as well as the
overall signal that combines these two regions.

The normality of the variables were verified by the Kolmogorov—Smirnov test (p >
0.05), and then if the variables had a normal distribution the non-paired t-student test
(p < 0.05) was applied to verify whether the mean of the variable related to the filtered
signal reduced in relation to the non-filtered signal, i.e., the raw signal. If the distribution
of the variables were not normal then the non-parametric Mann-Whitney U test was
used (p < 0.05). Outliers were removed by eliminating observations that were outside
of the following interval [Q1 — 1.5IQR, Q3 + 1.5IQR], in which Q1 is the first quartile,
()3 the third quartile and IQR the interquartile range.

3.5.4 Comparison of execution time of decomposition and adap-

tive filtering methods

The execution time of the adaptive decomposition and filtering methods were eval-
uated by the means of the Matlab timeit function. This function performs multiple calls
from the routine under analysis and returns the median value of the time measure-
ments. The process for estimating the execution time employed actual and equal data
for all methods. The evaluation considers samples with sizes from 25,000 to 1,000,000,
with increments of 25,000, i.e. 40 different intervals. For each sample size, eight exe-
cution times were estimated to obtain a more representative estimate of the execution
time.

The machine that processed the data had the following features: Ryzen 9 5900X 12-
core/24-threads @3.7GH z; RAM 2x16G B DDR4 @ 3200MHz; video card Asus RTX
3070 8GB. The Matlab Parallel Computing Toolbox was used to run the applications
in parallel, utilising all of the computer’s processors and available memory.

The comparison of execution time was performed by the non-parametric Kruskal-

Wallis test (p < 0.05) as the Shapiro-Wilk test confirmed the distribution of the vari-
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ables were not normal (p < 0.05). The pairwise comparison between variables was

performed by the Nemenyi test (p < 0.05).
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Results

4.1 Typical collected signals

Figure 4.1 shows typical EMG and EEG signals simultaneously collected during the
experimental trials. The EMG bursts were detected by using the procedure described
in Figure 3.9. The number of EMG bursts and their duration are in accordance to the
protocol illustrated in Figure 3.3. The binary signals resulting from the EMG burst de-
tection are plotted together with two typical EEG signals, one for the Fp2-F8 region,
which is more contaminated, and the other for the O1-O2 region, which is less contam-
inated. Note that in the region when the eyes are closed (see the raw EEG: O1-02) it

is possible to see an increase in the amplitude of the EEG signal.

4.2 Characterization of the contamination of the EEG

by EMG signals

Figures 4.2 and 4.3 depict topological maps for each subject and activated muscle.
The visual inspection of the maps allow us to conclude that the Masseter is the mus-
cle which produced the largest level of contamination, followed by the Frontalis and
Zygomatic. These maps suggest also that the contamination and its spread over the
brain map is dependent on the subject, which may be related to specific anatomical
characteristics of the individual.

Figure 4.4 shows typical GL and GH feature vectors estimated for Subject 1. In



Chapter 4. Results 38

Filtered EMG: Frontalis (Ieft)
| ‘ I

200 f ﬂl

0 50 100 150 200 250

Raw EEG: Fp2-F8

100 k.1y. Openeyes
s OMUIMthlWhuhlu

3
-100

-200 ! !
0 50 100 150 200 250
Raw EEG: 01-02
50 L 'Open eyes ' gwxi 1 ) ]
o o Mkl gl MU “ I
3
-50 .
0 50 100 150 200 250
time (s)

Figure 4.1: Typical EMG and EEG signals collected during the experimental trials.
The EMG signals from the left and right Frontalis are shown. These signals were
filtered to remove linear and non-linear trends. The EMG bursts were detected and
then the binary signals oscillating from two levels were generated. Simultaneously
collected EEG signals are shown for Fp2-F8 (high contamination) and O1-O2 (low
contamination) locations. The binary signals are placed over the EEG signals for the

indication of the periods in which there was EMG contamination.
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Subject 1
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Figure 4.2: Using the international 10-20 system, the topological maps illustrate how
the studied muscles contaminate distinct brain regions. Lighter colours represent the
most contaminated locations, whereas darker colours denote the least contaminated
areas. The presented results are for subjects from 1 to 5. The colours represent the

similarity measure between the GL and G H features.
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Figure 4.3: Topological maps for subjects from 6 to 10.

each graphic six pairs of feature vectors are presented. Each pair of feature vectors
was estimated from a specific decomposition method. The behaviour of the feature
vectors are similar for all subjects. The interpretation of the results is straightforward in
the sense that the more similar the GL and G H feature vectors, the less contaminated
the EEG signal is. For instance, for the occipital region (O1-O2) there is a high similarity

(i.e., low distance) between the feature vectors for nearly all muscles, while for the
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frontal region (e.g., Fp1-Fp2) the produced contamination is higher for the Frontalis
and Masseter. The estimates of feature vectors for the other subjects are available in
Appendix A (Figures A1 to A9).

Subject 1
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Figure 4.4: Typical GL and G H feature vectors estimated using different decomposition
techniques for Subject 1. Each plot consists of six vector pairs, one pair for each

method. The outcomes are presented for individual EEG sensors and muscles.

Box plots of the mean of the normalised Euclidean distance between GL and GH
vectors for each muscle are shown in Figures 4.5 C and 4.6. Figure 4.5 C shows
results that are independent of subjects and decomposition methods, whereas Figure
4.6 shows results that are dependent on subjects but independent of decomposition
methods.

The results shown in Figures 4.5 C and 4.6 are consistent with those observed in
Figures 4.2 and 4.3 (topological maps). In general, the Masseter was the muscle re-
sponsible for the highest EEG signal contamination, followed by the Frontalis and Zy-
gomatic. The Frontalis exhibited the highest level of contamination variability, whereas
the Orbicularis Oris produced the least. There was no significant difference between
the mean normalised distances estimated from the Orbicularis Oculi and Orbicularis
Oris muscles (Figure 4.5 C). Figure 4.6 shows that a similar result was found for all

subjects.
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ANOVA could not be employed for the statistical analysis since its assumptions
were violated. To compare the variables, the Kruskal-Wallis rank sum test and Dunn’s

test for multiple comparisons were used in all analyses.

4.3 Evaluation of decomposition methods to generate

reference signals for adaptive filtering

In Figures 4.5 A and B, the box plots of GL and GH are presented for each decom-
position method, independently of subject and brain area. From the box plots, it is pos-
sible to compare and contrast the distributions of feature vectors for each investigated
method. For GL the dashed lines indicate the median of the method which produces
the largest amplitude reduction in the regions in which there is no EMG contamination.
SSA was the most appropriate method among those considered.

For GH, the dashed lines represent the median of the approach that yields the
lowest amplitude reduction in EMG-contaminated locations. Wavelet was the most ap-
propriate method among those studied. In general, when both metrics, GL and GH,
are considered, SSA is the most appropriate because it reduces the signal amplitude
in regions without EMG contamination the most, while preserving the regions contam-
inated by EMG in a satisfactory manner, allowing the generation of an appropriate
reference signal for adaptive filters. There was no statistically significant difference be-
tween the EEMD and Wavelet methods for G L (Figure 4.5 A). There were no significant
differences between CiSSA and EMD, and EEMD and EMD-PCA for GH (Figure 4.5
B).

4.4 Evaluation of the filtering based on the time-domain

features

Figure 4.7 depicts the overall behaviour of distinct adaptive filtering methods ac-
cording to the time-domain features and type of reference signals (EEG or EMG). In
general, all adaptive filtering methods were capable of filtering EMG contamination

from EEG. As can be seen in Figures 4.7 B and D, the medians of GH are less than
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Figure 4.5: (A) Box plot of GGL for distinct decomposition algorithms, regardless of
subject and sensor location. The smaller the value of GL, the more appropriate the
filtering method. The dashed lines represent the best result obtained with the SSA
approach. Statistically significant differences between methods are represented by la-
bels. All possible combinations of two were evaluated. For example, the EEMD method
is represented by label “b” and was statistically different from CiSSA (label “a”), EMD
(label “c”), EMD-PCA (label “d”) and SSA (label “e”). (B) Box plot of GH for distinct
decomposition algorithms, regardless of subject and sensor location. The larger the
value of GH the more suitable is the method for filtering. (C) Box plot of the mean
normalized Euclidean distance between GL and GGH for each muscle, independent of
subjects and EEG sensors. The larger the value of this metric, the more contamination

is caused by the muscle.
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Figure 4.6: Box plot of the mean normalized Euclidean distance between GL and GH

for each muscle and subject, independent of the EEG sensor.

zero, confirming, thus, that the EMG contamination was attenuated. On the other hand,
when evaluating the preservation of regions of EEG without EMG, the results vary, de-
pending on the type of reference. Ideally the median of G L should be as close to zero
as possible. When the reference signal is the EEG, the most appropriate method is
the RLS as it causes the lowest changes in the regions of EEG without EMG contam-
ination. When the reference is the EMG signal, the most appropriate methods were
the NLMS and Wiener. Figures 4.7 E and F show the behaviour of the variables G Xin
and G Xout for adaptive filtering. For the EEG reference, the obtained results con-
firm the attenuation of the EMG signal, as all the medians of Xout are lower than the
median of GXin. On the other hand, for the EMG reference, the results yielded by

the Wiener filter were not satisfactory. Considering the time-domain features, the EEG
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Figure 4.7: Evaluation of distinct adaptive filtering methods based on the time-domain
features. The assessment is independent of the decomposition method and specific to
the type of reference signal. (A), (B), (C) and (D) show results referentto GH and G L.
(E) and (F) present the results related to G Xin and G X out.

reference signal was more appropriate for the adaptive filtering, as it allowed for the
preservation of EEG regions not contaminated by EMG. Furthermore, when evaluating
the variables GXin and G Xout it is clear that when using the EEG as a reference, the
filtered EMG-contaminated region will preserve the EEG activity. Figure 4.8 shows an
example of EMG-corrupted EEG and its filtered version. The figure insets show the

effect of the adaptive filtering, in which the EMG amplitude is attenuated and the EEG
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Figure 4.8: A typical EEG signal corrupted by facial EMG. The EEG signal is from
the Fp2-F8 region because it is most affected by facial electromyography. EMG bursts
can be seen on the detrended EEG signal. The EEG signal was used as a reference
signal, estimated from EMD, and then filtered using the RLS filter. The residue, which
is the difference between the detrended and filtered EEG data, clearly shows the EMG
activity that was eliminated from the signal. The inset plots at the top indicate the
selection of two EEG regions contaminated by EMG. The filtered signal is shown over
the contaminated signal in red. For each region, the detrended EEG, reference signal,

filtered EEG, and residue are shown.

activity in the EMG-contaminated region follows the EEG dynamics of the EEG signal

in the neighbour regions in which there are no EMG contamination.
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4.5 Evaluation of the filtering based on the frequency

domain features

The box plots in Figure 4.9 show the behaviour of the median frequency and its
power for the EEG signal together with its components, i.e., Delta (0.5-4 Hz), Theta (4-
7 Hz), Alpha (7-13 Hz), Beta (13-30 Hz) and Gamma (30-70 Hz). The results contrast
the raw non-filtered signal with the filtered signal. The non-parametric Mann-Whitney U
test was used as the distributions of the variables were not normal (p < 0.05). Thereis a
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Figure 4.9: Median frequency and its power of the electroencephalogram (EEG) to-
gether with its components for the whole signal (ENTIRE) and the two experimental
conditions (OPEN EYES and CLOSED EYES). A contrast between the raw non-filtered
signal with the filtered signal is presented. The asterisks show the pair of variables in
which the variable associated to the filtered signal was significantly reduced in com-

parison to the non-filtered signal, i.e., raw signal.

clear drop in the frequency and power of the EEG signal resulting from the filtering. As
expected, the power of the signal is reduced for all components although their median

frequencies are kept in the expected frequency band. The same behaviour is noted for
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the experimental conditions of open and closed eyes, and for the whole signal, which

considers the joint analysis of the open and closed eye regions.

4.6 Execution time of decomposition and adaptive fil-

tering methods

Figure 4.10 depicts the typical execution times for all methods investigated. The
estimates in A and B are based on the mean of the eight execution times for each
sample size. The linear relationship between sample size and execution time may in-
dicate that the methods have linear computational complexity, O(n). According to the
results in Figure 4.10 C, the execution times for EEMD and SSA are statistically equiv-
alent (Nemenyi Test, p > 0.05), just as they are for EMD and CiSSA. Wavelet obtained
the shortest execution time. According to the results in 4.10 D, the execution times
for LMS and NLMS are statistically equivalent. Furthermore, RLS has a significantly

longer execution time than the others.
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Figure 4.10: Execution time of distinct decomposition (A) and adaptive filtering (B)

methods as function of the number of samples. The box plots show the central trend

and dispersion of execution times (C and D).
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Discussion

The filtering approach depicted in Figure 3.7 has been proposed for the removal
of facial muscular artefacts from EEG signals, which is an important requirement for
distinct applications. It is a single channel approach for filtering low SNR EEG signals.
In general, the proposed method is based on a hybrid filtering approach, combining
adaptive filters with decomposition techniques. Thus, in this research, the performance
of several decomposition (EMD, EEMD, CiSSA, Wavelet, SSA and EMD-PCA) and
optimal filtering (RLS, Wiener, LMS and NLMS) methods were evaluated.

Although it is possible to find some databases containing EEG signals corrupted
by EMG, we could not find any open data set similar to the one that was collected
in this research. The relevance of the collected data set is that it considers the in-
fluence of the activity of several facial muscles to the contamination of EEG signals.
The experimental protocol was carefully designed to take into consideration data col-
lection in practical scenarios, such as the execution of facial expressions commonly
used for some human-computer interfaces based on facial EMG [49]. In addition, all
EEG signals were collected simultaneously with EMG signals guaranteeing the neces-
sary synchronization between signals and the possibility of annotating the regions in
which EEG signals were actually contaminated by EMG. The dataset included a total of
2,250 seconds of EEG signals corrupted by EMG, with the participation of 10 subjects
and distinct experimental conditions (e.g., open and closed eyes, EMG bursts of vary-
ing durations, and the activation of different facial muscles), allowing for the required
variability to test the performance of filtering methods.

Other decomposition and adaptive filtering methods can be added to the filter ar-
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chitecture of the EEG single channel filtering approach depicted in Figure 3.7 without
altering the entire filtering strategy. This is an interesting feature for the development of
computational libraries that can benefit from the use of encapsulated code implement-
ing decomposition and adaptive filtering methods that can be directly plugged into the
general steps, i.e., the processing pipe depicted in Figure 3.7. To aid in the diffusion of
this architecture, all Matlab and R scripts are available at https://doi.org/10.5281/
zenodo.6591866. In addition, sample data and demonstration scripts are provided to
facilitate comprehension and replication of the filtering approach presented and evalu-
ated in this study.

In this study, the detection of EMG bursts is relevant because these bursts mark the
regions contaminated and non-contaminated by electromyography automatically. The
identification of these regions are used in the stage of soft-thresholding signal com-
ponents and for computing the proposed set of features to measure the performance
of filtering methods. We decided not to detect the bursts directly from the EEG con-
taminated signal to guarantee that the noise present in the EEG signal was really from
the EMG activity. However, the use of the proposed filtering approach (Figure 3.7) can
be applied without the simultaneously collection of EMG signals. If this is the case, it
would be necessary to detect EMG bursts directly from the EMG-corrupted EEG.

The time and frequency domain features proposed in this work (Figure 3.10) were
advantageous for the characterization of facial EMG contamination on the EEG. Fig-
ures 4.2 and 4.3 depict an approach for energy visualisation of topological maps dis-
playing the degree of contamination created by distinct muscles based on this set of
characteristics. Ultilizing the normalised Euclidean distance as a measure of similar-
ity allowed for the visual, qualitative, and quantitative comparison of topological maps
estimated for various subjects and active muscles.

As indicated in Figure 3.7 an important step for adaptive filtering is the generation of
reliable reference signals. In the proposed approach the reference signal is generated
from the application of soft-thresholding to the signal components. To evaluate the per-
formance of distinct decomposition methods the GL and GH metrics were proposed.
These metrics were also employed to characterize the EMG contamination in distinct
regions of the scalp (Figures 4.2 and 4.3). An interesting aspect of the contamination

is that although there is a general pattern, e.g., muscles such as the Frontalis and Mas-
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seter contributed more to the EEG contamination, the way this contamination spread
over the scalp is specific to the individual. This fact can be verified by the relatively
large variability of the variables presented in Figures 4.5 C and 4.6. These results re-
garding the higher contamination caused by the Frontalis and Masseter muscles are
similar to the results obtained in [50] which estimated contamination by the normalized
mean power metric.

According to the findings (Figures 4.2, 4.3, 4.5 and 4.6), the Masseter muscle pro-
vided the highest degree of contamination, followed by the Frontalis and Zygomatic.
Variability between individuals was an important component of this study; for exam-
ple, the Orbicularis Oris of subject 8 produced a substantial contamination of the EEG
obtained in the frontal region. This may involve anatomical and behavioural charac-
teristics of the individual. This requires that EEG filtering methods be devised to ac-
commodate data variations introduced by anatomical, physiological, and experimental
settings. This also justifies the more sophisticated experimental methodology utilised
in this study.

In general, all decomposition methods investigated in this study were suitable for
generating adequate adaptive filtering reference signals. Nonetheless, we believe that
the SSA method is superior because it successfully preserved EEG in non-contaminated
regions while lowering the signal amplitude in EMG-contaminated regions significantly
(Figures 4.5 A and B). Considering the type of signal reference (EMG or EEG) the
results reported in Figure 4.7 suggest that the reference based on the EEG signal is
preferable because of the lower variability exhibited (Figure 4.7 E and F) when com-
pared to the EMG reference.

This study also investigated various adaptive filtering algorithms (LMS, NLMS, RLS,
and Wiener) to reduce electromyographic activity as much as possible in EEG data
heavily contaminated by EMG. When using the EEG as a reference signal, RLS and
NLMS were the best methods among those tested. In general, these methods best
ensured: (i) attenuation of electromyographic activity in regions of EMG-contaminated
EEG (Figure 4.7 B), (ii) preservation of electroencephalographic activity in regions of
EEG without EMG (Figure 4.7 A), and (iii) the dynamics of the resulting signal, not
mischaracterizing the EEG signal over time (Figure 4.7 and Figure 4.8). However, when

the reference signal was the EMG, the LMS and RLS algorithms performed best. Thus,
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the RLS method is the most preferred, as it produced satisfactory results regardless of
the type of reference signal. The preference for the RLS filtering method is consistent
with the result obtained in [50] that points out the EMDRLS method with advantages in
both attenuation of EMG noise in the EEG signal and preservation of the EEG signal.

The results shown in Figure 4.9 confirm that the single channel approach proposed
in this research was capable of reducing EMG contamination on the EEG signals,
while preserving relevant information of the electroencephalogram. For instance, typ-
ical values of frequency were found for each EEG component. In addition, there was
reduction in the power of the non-filtered EEG signal compared to its filtered version,
and this could also be observed for each EEG component.

The results presented in Figure 4.10 reveal that there is a linear relationship be-
tween the number of samples, i.e., signal length, and the execution time required to
process the data. This suggests that the decomposition and filtering algorithms have
a linear computational complexity. In total, ninety hours were spent processing the
entire data set of this investigation, taking into account the processing time for ten sub-
jects and all experimental conditions. Methods that need less time to process data are
desirable in this regard, even if they do not produce optimal results.

In future research, the proposed method could be utilised to reduce interference
produced by electromyography in applications controlled by electroencephalographic
activity (such as brain-computer interfaces). Furthermore, while this study only involves
healthy people, we encourage the examination and confirmation of the technique cre-
ated for people with disorders like amyotrophic lateral sclerosis. This would allow for
the creation of more robust assistive technology as well as a better understanding of

the electroencephalographic activity associated with this type of clinical condition.
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Conclusion

This study introduced a single channel filtering method for reducing facial elec-
tromyography from EEG signals. The proposed method is sufficiently general to ac-
commodate multiple decomposition and adaptive filtering techniques within a single
architecture.

Using a data set that enabled the generation of EMG-corrupted EEG in experiments
involving facial muscular activation, the filtering method was evaluated. The set of time
and frequency domain characteristics enabled the visualisation and quantification of
facial EMG contamination of the EEG. This set of features allowed for comparative
analysis of filtering methods.

The results indicated that the Masseter was the muscle that contaminated the EEG
the most; however, individual variation should not be disregarded, as the contraction of
other facial muscles in some people may generate significant contamination on EEG
signals.

In general, all investigated decomposition and adaptive filtering methods effectively
filtered facial EMG-corrupted EEG; however, the decomposition method SSA reduced
EMG contamination while preserving the EEG signal more. This method’s relative
slowness in comparison to other studies is its most significant drawback. In terms of
the adaptive filtering method, it was observed that the reference signal (EMG or EEG)

affects the method’s performance, despite the methods’ similarities.
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Appendix A

The GL and GH feature vectors

The behaviour of the GL and GH feature vectors was estimated for Subjects 2 to
10 as show at Figures A.1 to A.9 (for Subject 1, see Figure 4.4). In each graphic six
pairs of feature vectors are presented. Each pair of feature vectors was estimated from
a specific decomposition method. The interpretation of the results is straightforward in
the sense that the more similar the GL and GH feature vectors, the less contaminated
the EEG signal is.

Subject 2
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Figure A.1: Typical GL and G H feature vectors estimated using different decomposition
techniques for Subject 2. Each plot consists of six vector pairs, one pair for each

method. The outcomes are presented for individual EEG sensors and muscles.
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Figure A.2: Typical GL and G H feature vectors estimated using different decomposition
techniques for Subject 3. Each plot consists of six vector pairs, one pair for each

method. The outcomes are presented for individual EEG sensors and muscles.
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Figure A.3: Typical GL and G H feature vectors estimated using different decomposition
techniques for Subject 4. Each plot consists of six vector pairs, one pair for each

method. The outcomes are presented for individual EEG sensors and muscles.
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Subject 5
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Figure A.4: Typical GL and G H feature vectors estimated using different decomposition
techniques for Subject 5. Each plot consists of six vector pairs, one pair for each

method. The outcomes are presented for individual EEG sensors and muscles.
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Figure A.5: Typical GL and G H feature vectors estimated using different decomposition
techniques for Subject 6. Each plot consists of six vector pairs, one pair for each

method. The outcomes are presented for individual EEG sensors and muscles.
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Figure A.6: Typical GL and G H feature vectors estimated using different decomposition
techniques for Subject 7. Each plot consists of six vector pairs, one pair for each

method. The outcomes are presented for individual EEG sensors and muscles.
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Figure A.7: Typical GL and G H feature vectors estimated using different decomposition
techniques for Subject 8. Each plot consists of six vector pairs, one pair for each

method. The outcomes are presented for individual EEG sensors and muscles.
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Subject 9
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Figure A.8: Typical GL and GG H feature vectors estimated using different decomposition
techniques for Subject 9. Each plot consists of six vector pairs, one pair for each

method. The outcomes are presented for individual EEG sensors and muscles.
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Figure A.9: Typical GL and G H feature vectors estimated using different decomposition
techniques for Subject 10. Each plot consists of six vector pairs, one pair for each

method. The outcomes are presented for individual EEG sensors and muscles.



Appendix B

Data: contamination of EEG by facial

muscles

This appendix aims to present the dataset that contains the EMG and EEG signals
collected for the study of contamination by facial EMG on EEG, i.e., the data used in this
thesis. This database were collected under the responsibility of the doctoral student of

Electrical Engineering, UFU, Gustavo Moreira Silva, linked to the NIATS laboratory.

B.1 Database

The RHD2000 series acquisition system was used to collect data from Intan Tech-
nologies (Intan, USA). The RHD2000 data acquisition system generates a file with the
extension “.rhd”. Therefore, every file generated during a data collection will have the
extension “.rhd”. The data contained in this extension (“.rhd”) cannot be manipulated
directly.

The Matlab function <read_Intan_RHD2000_file.m>, provided by Intan, must be
used to read the file generated by the RHD2000 acquisition system.

The <read_Intan_RHD2000_file.m> function opens a window that allows you to
choose the desired “.rhd” file. After selecting the desired file, Matlab will read the
data, generating several variables containing the data collected. Table B.1 presents
all variables in alphabetical order generated by the <read_Intan_RHD2000 file.m>
function, the variables in blue contain the data collected by the acquisition system.

The data contained in the database of this thesis are formed by the set of variables
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Tabela B.1: Variables in alphabetical order generated by the Matlab function, <read-
_Intan_RHD2000_file.m>, provided by Intan.

Variable

Description

amplifier_channels

Structure with information about the amplifier_data vari-

able.

amplifier_data

Data digitized by acquisition cards. The matrix contains
all the biological data collected by EMG (card A) and
EEG (card B).

aux_input_channels Not used.
aux_input_data Not used.
aux_input_dataCopy Not used.

board_dig_in_channels

Structure with information about the digital input signals

refers to the board_dig_in_data variable.

board_dig_in_data

Digital data. The vector contains the marker of changes
moment of eyes state. A marker can be added by using
the buttons on the front panel of the Intam data acquisi-

tion system.

frequency_parameters

Structure containing information about the filters and

sampling frequency used.

notes

Not used.

spike_triggers

Not used.

supply_voltage channels

Structure with information about the acquisition

cards monitoring channels, referring to the sup-

ply_voltage_data variable.

supply_voltage data

Two vectors. They have the values of the voltages mon-

itored in both acquisition cards used in the collection.

t_amplifier Time vector, referring to the amplifier_data variable.
t_aux_input Not used.
t dig Time vector, referring to the board_dig_in_data vari-

able.

t_supply_voltage

Time vector, referring to the supply_voltage_ data vari-

able.
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listed in Table B.1, grouped by Matlab in the “.mat” format. Therefore, when using
data from this database, the <read_Intan_RHD2000 _file.m> function is unnecessary.
Thus, for each volunteer who participated in the research (S1 to S10), there are five
“mat” files, referring to the five muscles activated to generate contamination of facial
EMG on EEG.

B.2 Data summary

Summary of the data generated by the Matlab function <read_Intan_RHD2000_file.m>
presented in Table B.1:

1. amplifier_data:

It is a matrix with the EMG (card A) and EEG (card B) signals collected. The
amplifier_channels structure and the t_amplifier vector refere to amplifier_data

matrix.
2. board_dig_in_data:

As expected in the experimental protocol, the collection is performed with the
eyes in two states: only open and only closed. The board_dig_in_data vari-
able contains digital values (0 or 1). The first moment containing 1s marks the
beginning of the eye-open-only state and the second moment indicates the eye-
closed-only state. The board_dig_in_channels structure and the t_dig vector ref-

ere to board_dig_in_data variable.
3. supply_voltage data:

Data collection is performed by two acquisition cards, A(EMG) and B(EEG). The
supply voltage of each card is monitored, and the measured values are stored in
this variable. The supply_voltage channels structure and the t_supply_voltage

vector refere to supply_voltage_data variable.
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B.3 EMG and EEG data

The data of interest for the collection are in the amplifier_data variable, a matrix
with n rows and m columns, where n is the number of channels (EMG and EEG) and m
is the number of data acquired at the sampling frequency for the entire collection time
interval. EMG channels are collected by “Port A”, and EEG channels are collected by
“Port B”, but all EMG and EEG data are in the same amplifier_data variable. The name
“Port A” or “Port B” comes from the choice of cable used to connect the acquisition
cards to the RHD2000 USB interface system. Thus, based on the choice adopted in
connecting the EMG and EEG cards in this research, the amplifier_data variable has
the first lines belonging to “Port A” (EMG) and the other lines of the matrix being from
“Port B” (EEG). The amplifier_channels structure indicates which card was used with

the name “Port A” and “Port B” in the port_name field.

B.3.1 EMG data

The muscle signal data does not have a specific and fixed channel between collec-
tions. Thus, the channel number for a muscle must be verified at each data collection.
The information for each channel must be consulted in the amplifier_channels structure

at the custom_channel _name field.

Tabela B.2: EEG sensors channel list.

channel x EEG sensor
Ch00: F3-Fz Ch01: F4-F8 Ch02: F7-F3 Ch03: Fp1-Fp2

Ch04: T3-C3 Ch05: C4-T4 Cho6: T5-P3 Ch07: P4-T6
Ch08: Fp2-F8 Ch09: F7-Fp1 Ch10: Fz-F Ch11: Cz-C4

Ch12: 01-02 Ch13: P3-Pz Ch14: Pz-P4 Ch15: C3-CZ

B.3.2 EEG data

A bipolar 16-channel acquisition card acquires EEG signals. The channels of each

EEG sensor are the same for all collections, thanks to the use of the adapted EEG cap,
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and the connection of the EEG signals card is always carried out on the same cable
B. Table B.2 shows the relationship of the channels with the EEG sensors on card B.

Figure B.1 illustrates the bipolar transverse mounting configuration of the fitted EEG

>c_hanne|

cap.

Figure B.1: Configuration of EEG electrodes in the EEG cap, bipolar transverse mon-
tage. lllustration of the connections of sensors Fp2 and F8, channel 08, according to
Table B.2.

B.4 Example of a database “.mat” file

The file of volunteer 01 and masseter muscle is shown to illustrate the use of the
database. Figure B.2 illustrates the Matlab workspace when loading the VO1_Masseter-
_160129_111428.mat file. Figure B.2 shows the amplifier_channels and amplifier_data
variables, where we can highlight that the amplifier_data variable has data from 24
channels with 1,139,400 points (double).

Figure B.3 illustrates part of the amplifier_channels variable fields. In the field called
custom_channel_name, it is possible to visualize the 24 channels, the first eight being
EMG channels, “Port a” in the port_name field, and the remaining 16 channels, “Port
B” in the port_name field, indicating that they belong to the set of EEG cap channels

and that follow the distribution shown in Table B.2.
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Workspace (&)
Name Value
\_t/ amplifier_channels 1x24 struct
L[_) amplifier_data 24x1139400 double
[Laux_input_channels 1x6 struct
laux_input_data 6x284850 double
ljl board_dig_in_channels 1x17 struct
Hdboard_dig_in_data 1x1139400 double
@frequencyﬁparameters Ix1 struct
@ list_file_rhd 1x5 struct
&1 notes I1x1 struct
£l spike_triggers 1x24 struct
\_t/ supply_voltage_channels 7x2 struct
| supply_voltage_data 2x18990 double
Lj_;t_amplifier 1x71139400 double
LIJ t_aux_input 1x284850 double
Ht_dig 1x7739400 double
H t_supply_voltage 1x18990 double
< >

Figure B.2: Matlab workspace window displaying variables from a database file on
volunteer 1’s masseter muscle data.

amplifier_channels

[£] 1x24 struct with 11 fields

Fields [} native_channel_name |-|| custom_channel_name [chip_chann [-] native_order [{]custom_order {7 board_stream |-/"|port_name |-|"|port_prefix

1 'A-000' 'P01_Mas_Dir' 0 0 0 0'Port A' ‘A
2 'A-001' 'P02_Mas_Esq' 1 1 1 0'Port A' ‘A
3 'A-002' 'P03_Olho_Dir' 2 2 2 0'Port A' ‘A
4 'A-003' 'P04_Olho_Esq' 3 3 3 0'Port A' ‘A
5 'A-004' 'A04_Temp_Esq' 4 4 4 0'Port A' ‘A
6 'A-005' 'A03_Temp_Dir' 5 5 5 0'Port A' ‘A
7 'A-006' 'A02_Fron_Esq' 6 6 6 0'Port A' ‘A
8 'A-007" 'A01_Fron_Dir' 7 7 7 0'Port A' ‘A
9 'B-000" 'B-000' 0 0 0 1'Port B' ‘B’
10 'B-001" 'B-001" 1 1 1 1'Port B' ‘B’
" 'B-002' 'B-002' 2 2 2 1'Port B' ‘B’
12 'B-003" 'B-003 3 3 3 1'Port B' ‘B’
13 'B-004' 'B-004' 4 4 4 1'Port B' ‘B
14 'B-005' 'B-005' 5 5 5 1'Port B' ‘B’
15 'B-006' 'B-006' 6 6 6 1'Port B' ‘B
16 'B-007' 'B-007' 7 7 7 1'Port B' ‘B’
17 'B-008' 'B-008' 8 8 8 1'Port B' ‘B’
18 'B-009' 'B-009' 9 9 9 1'Port B' ‘B’
19 'B-010" 'B-010" 10 10 10 1'Port B' ‘B’
20 'B-011" 'B-011" 1 " " 1'Port B' ‘B’
21 'B-012' 'B-012' 12 12 12 1'Port B' ‘B’
22 'B-013 'B-013' 13 13 13 1'Port B' ‘B
23 'B-014' 'B-014' 14 14 14 1'Port B' ‘B’
24 'B-015" 'B-015' 15 15 15 1'Port B' ‘B’
<

Figure B.3: Part of the amplifier_channels structure fields on the Matlab screen.
B.5 Access to Database

The database, contamination of EEG by facial muscles, can be accessed via:

Andrade, Adriano de Oliveira, & Queiroz, Carlos Magno. (2022). Single channel
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approach for filtering electroencephalographic signals strongly contaminated with
facial electromyography [Data set]. Zenodo. https://doi.org/10.5281/zenodo.
7133259.



Appendix C

Data: Motor Learning Protocol

The motor learning protocol was created to propose an index capable of estimating
motor learning in healthy people, acquired during interaction with a human-computer
interface, controlled by facial muscles based on the correlation between motor facial
and brain activities. This database were collected under the responsibility of the doc-
toral student of Electrical Engineering, UFU, Carlos Magno Medeiros Queiroz, linked
to the NIATS laboratory.

C.1 Motor learning

Motor learning can be conceived as establishing an internal model representing the
accurate correspondence between sensory and perceived motor information [63]. Dur-
ing the initial phase of motor learning, the movements are low-skilled, highly dependent
on feedback, and require high demands on attention [64]. With practice, the precision
and speed of actions increase, and thus, as motor learning progresses, sensory feed-
back processing becomes less critical [65]. Generally, two forms of motor learning
can be recognized, explicit and implicit learning. Explicit learning involves the con-
scious recall of past experiences. Implicit learning is an unintentional, non-conscious
form of learning characterized by improving the motor act. Motor skill progresses from
explicit control, in the early stages of learning, to more implicit or automatic control
when already well assimilated. Results from studies suggest that motor learning con-
sists of three distinct phases [66]: Early stage - slow motor action under great sensory

attention, irregular pattern of movements, significant variation in performance time; In-
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termediate stage - gradual learning of the sensory-motor map, increased performance;
Advanced stage - automated speed and movement, skillful performance, isochronous
movements, and complete sensory field control. For each of these stages, changes
in brain activity can be detected through changes in rhythmic waves [67, 68] or brain
macro potentials related to movement. Such changes can be analyzed and correlated

in order to estimate the learning stage.

2 im ] 1 im o O.Sicm :
15cm :T:]___l O ZZTID o e o
0 o a
615 cm ’
Protocol 1 Protocol 2 Protocol 3

Figure C.1: lllustration of the position and size of the four buttons according to protocols

1, 2, and 3 (the illustration is not in scale).

C.2 Graphical learning interface

The graphical learning interface (GLI) employed is an environment created to offer:
specific and controlled tasks, with measurable execution times and virtual, possible to
be performed using a computer cursor. The graphical environment of this interface was
developed to maximize the user’s focus on the task to be performed, which implies a
totally black graphical interface capable of presenting objects with configurable graphi-
cal characteristics. The conceived task consists of clicking on four buttons with variable
sizes, according to the difficulty level, which are presented on the screen consecutively;
the next one only appears after the previous one has been clicked and in predefined
positions. Figure C.1 presents three screen options, each containing four buttons, of-
fering three difficulty levels. The distance between the horizontal and vertical buttons
is always the same and equal to 15 cm. The size of the buttons is variable 2 cm, 1 cm,
and 0.5 cm for protocols 1, 2, and 3, respectively, which implies increasing difficulty

according to Fitts’ law [69, 70]. The GLI was developed in C# language employing
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Microsoft’s Visual Studio development environment.

The essential aspects of this GLI are described, addressing the timing of events,

the log file of the actions performed, and the configurable characteristics.

| | | | >
1 | I I I ! I
| fading set random | planing running | fading time
| time time time | time time | time line
| 1 |
click target click
appears

Figure C.2: Timeline of events in the graphical learning interface.

C.2.1 Timing of events

Considering that the objective of this interface is to create an environment to evalu-
ate motor learning through the correlation of biopotentials related to muscle and brain
activities, each graphic element has an essential role in constructing this evaluation en-
vironment. The timing of the graphical elements, buttons (targets), is important in this
context because it allows for creating situations with appropriate and typical conditions
when assessing motor learning. In this sense, the timing of events related to buttons
(task targets) was conceived, as shown in Figure C.2.

In the timeline, a target, when clicked, starts fading until it disappears, then there is a
minimum waiting time of fixed duration, followed by a random waiting time. During the
total timeout (set time + random time), the screen remains completely dark (nothing
projected). After the waiting time, the next target appears on the screen, and the
time elapsed between its appearance and the moment it is clicked consists of the
planning time and the running time. The planning time comprises the interval from
which the target appears until the moment when the user initiates an action with the
cursor. The execution time is considered from the end of the planning interval until the
moment when the target is actually clicked correctly. All the events: the instant of target
appearance, actions, and cursor position, are registered in a file, enabling later data

analysis.
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TIME ACTION X_POS Y_POS WIDTH HEIGHT
08/09/2016 10:54:01.280  TARGET_1 24 641 84 84 ——— FIRST TARGET
08/09/2016 10:54:01.311  MOVE 286 209 0 0 —

08/09/2016 10:54:02.608 ~ MOVE 309 209 0 0

08/09/2016 10:54:02.718  MOVE 411 238 0 0

08/09/2016 10:54:02.827  MOVE 498 242 0 0

08/09/2016 10:54:02.936  MOVE 529 239 0 0

08/09/2016 10:54:03.165  MOVE 533 236 0 0 MOVING

08/09/2016 10:54:03.265  MOVE 690 101 0 0

08/09/2016 10:54:03.374  MOVE 17 74 0 0

08/09/2016 10:54:03.483  MOVE 718 74 0 0

08/09/2016 10:54:03.702  MOVE 709 73 0 0

08/09/2016 10:54:03.811  MOVE 676 77 0 0

08/09/2016 10:54:03.921  MOVE 675 77 0 0

08/09/2016 10:54:04.296  CLICK_IN 675 77 0 0 CLICK IN THE TARGET
08/09/2016 10:54:09.395  TARGET_3 660 641 84 84 NEXT TARGET
08/09/2016 10:54:10.380  MOVE 659 660 0 0

—! MOVING

Figure C.3: Only the initial part of the cursor log file is shown. It displays the cursor

movement to click on TARGET_1 and records the moment when TARGET_3 appears.

C.2.2 Log file

The developed GLI registers all the events related to the cursor and the instant when
each button appears on the screen in a text file. Each record corresponds to a line
containing the following fields: TIME, ACTION, X_POS, Y_POS, WIDTH, and HEIGHT.
The cursor’s position is registered every 100 ms if the current position differs from the
previous one. For instance, for a new cursor position, a new line is generated in which
the fields: TIME contains the date and time, ACTION contains the word MOVE, the
X_POS and Y_POS fields contain the cursor position on the screen, and the WIDTH
and HEIGHT fields, which are not used in this case, both contain the value zero. For
an interface click event, the record line will contain: the TIME field with date and time;
the ACTION field will be equal to CLICK_IN or CLICK_OUT, depending on whether the
click was inside the target (button) or not; the X_POS and Y_POS fields contain the
position of the click, and the WIDTH and HEIGHT fields are also not used in this case,
both contain the value zero. The appearance of a target on the screen is recorded in a
new line: the TIME field contains date and time; the ACTION field contains the name
of the target (TARGET_1, TARGET_2, TARGET_3, and TARGET_4); the X_POS and
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Y_POS fields contain the position of the upper left corner of the target and the WIDTH
and HEIGHT fields contain the width and height of the target displayed. The log file was
designed to contain all the necessary information to enable synchronism with the EMG
and EEG data and to allow reconstitution of the entire cursor movement and actions in
the GLI environment. Figure C.3 shows, as an example, the initial part of any log file.
The record contains the cursor movement required to click on TARGET_1 and then

records the appearance of the next target, TARGET_3.

C.2.3 Configurable features

To make the GLI more flexible and to adapt to the variations needed for a given
experiment, several customizable features have been implemented. Table C.1 shows
all the configurable features, with their respective acceptable value ranges and the

value adopted in the experiment.

C.3 Mouse emulator system

The developed human-computer interface promotes the user’s iteration with the
computer through the facial muscles. The biopotentials emanating from muscle ac-
tivation, detected by electrodes, are converted into commands capable of controlling
the computer cursor. The program capable of performing such conversion, EMG sig-
nals into commands for the computer cursor, was developed and integrated with the
program of the graphical interface of the acquisition system. Considering that the con-
version program must be multiplatform and aiming to avoid problems in controlling the
mouse in different operating systems, it was decided to build a micro-processed device
capable of receiving digital commands from the acquisition system and emulating a
mouse to control the computer’s cursor. This option, a mouse emulator device, was
conceived and implemented to avoid future problems of incompatibility and competi-
tion with other programs when it is desired to control the cursor in different operating
systems.

Figure C.4 illustrates the developed mouse emulator system that employs an Ar-
duino Due board, based on the Atmel SAM3X8E arm Cortex-M3 microcontroller, and

its main features are 54 digital inputs/outputs, 4 UARTSs, 84 M H =z operating frequency.
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Tabela C.1: Configuration characteristics of the graphical learning interface.

Feature Acceptable range Adopted value
General

To emit one beep when the target is reached False, True False
Display markup to calibrate scale’ False, True False

Value in mm refers to the value in pixels (Scale) Integer > 0 1502
Distance in pixels from the center of the screento 1 to 400 2832

the center of the target

To show messages on the screen False, True False
Number of repetitions for the same protocol Integer: 0 to 60 4

Name of the file of action register Name of file .txt Supplied
Target Frame

Target Frame Color (RGB) 0-255;0-255;0-255  255;255;255
Target Frame Thickness in Pixels 1-100 1

Frame blink frequency in ms 1-1000 0

The color of the blink on the frames 0-255;0-255;0-255  255;255;255
Target area

Color of the target area) 0-255;0-255;0-255 0;0;0

Blink frequency on the target area in ms 0- 1000 0

Blink color of the target area 0-255;0-255;0-255 255;255;255
Target

Time in s to fade target after hit 1-100 2

Minimum time in s for the appearance of the next 1-100 1

target

Maximum time in s for the appearance of the next 1-100 3

target

Size in mm of target - Large protocol 1-4000 20

Size in mm of target - Medium protocol 1-4000 10

Size in mm of target - Small protocol 1 - 4000 5

! It was used only to adjust the scale for the monitor in use. It opens a scaling window.

2 These values could vary from monitor to monitor.
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Figure C.4: Mouse emulator that acts as a mouse in manual mode, via keyboard at the
top of the console, or in automatic mode, receiving external commands. System based

on the Arduino Due board.

The Arduino Due board has two micro USB connectors, one for programming the Ar-
duino itself and another for a native USB port usually recognized as a mouse or key-
board by a computer. The mouse emulator system allows the user to control the com-
puter cursor utilizing a set of buttons on its console, manual mode, or through external
digital signals, automatic mode. The system has also a display by which the user can
view the actions performed in manual or automatic mode. The manual mode was cre-
ated only to enable tests of the emulator itself. The automatic mode was created to
operate through the acquisition system, receiving commands generated from muscle
activity. For this, a communication protocol was created that includes the four move-

ment commands (up, down, right, and left), right-click, left-click and step size configu-
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ration (resolution). But by myoelectric activity, in automatic mode, only the movement
and right-click commands are recognized. The command word consists of 6 bits, and
there is only one control signal called “enable”. Commands are sent via a DB25 con-
nector present on the side of the mouse emulator. Table C.2 shows the commands that
make up the protocol created for communication between the mouse emulator and the

human-computer interface.

Tabela C.2: Command list supported by the Mouse Emulator control protocol.

Binary Decimal Function Description

D6-DO

0000000 0 Unused For future use.

0000001 1to0120 Resolution The value present in this range is understood as
to the new resolution value of the mouse movement.
1111000

1111001 121 Move up Moves the cursor up, only once.

1111010 122 Move down Moves the cursor down, only once.

1111011 123 Move left Moves the cursor to the left, only once

1111100 124 Move right Moves the cursor to the right, only once.

1111101 125 Left click Enables and disables left click, only once.
1111110 126 Right click Enables and disables right click, only once.
1111111 127 Menu mode Changes the Mouse Emulator’s operation mode

to the Start Menu.

To send a command according to the protocol created, the command word must be
activated and then keep the “enable” command line active for a minimum of 3 ms, as

illustrated in Figure C.5.

C.4 Mouse cursor control

Since this is a myoelectric interface, the computer cursor will be controlled by mus-
cle activation, Frontalis. To control the mouse with only one muscle, the finite state
machine, presented in Figure C.6, was implemented considering only three distinct

types of contraction. As mentioned, the mouse emulator is designed to execute four
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Figure C.5: Temporal diagram of sending a command from an external device to the

Mouse Emulator.

move commands (up, down, right, and left) and right click. The cursor has an arrow
shape and always starts pointing to the right. It starts on “StandBy” state and remains
stationary, pointing to the right, as long as there is no contraction. If a contraction oc-
curs, the mouse state will be changed depending on the duration of this contraction
(C1, C2, or C3, see Figure C.6). If there is a contraction that lasts less than 0.4 s, con-
traction of type C1, the cursor arrow will be rotated 90 degrees clockwise and then the
mouse returns to the “StandBy” state. Thus, to point the cursor in the desired direction,
it is enough to perform other contractions of type C1. However, if the contraction is of
type C2, that is, with a duration equal to or greater than 0.4 s and less than 1 s, the
mouse cursor starts moving in the current direction of the arrow and remains in motion
until any contraction occurs; if it does, the cursor stops and the mouse returns to the
“StandBy” state. The click command is activated for a contraction lasting 1 s or more,

and then the mouse returns to the “StandBy” state.

C.5 EMG Signals

The right and left Frontalis muscles were used to control the myoelectric interface.
The EMG signals were acquired by the RHD2000 biological data acquisition system
from Intan, USA, and the RHD2216 acquisition card was employed. The RHD2216
card contains 16 differential channels with automatic gain, a 16-bit digital converter,
and sampling rate from 1 kHz to 30 kHz. The EMG signals were acquired by two
differential channels and sampling rate equal to 1 kHz. The EMG sensors used are

based on the integrated circuit PS25255 from Plessey Semiconductors, USA, and have
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Figure C.6: Finite state machine implemented to control the mouse cursor through the
contraction of a single muscle. The cursor control is performed entirely by distinguish-

ing only three types of duration of Frontalis contractions.

high input impedance (typical value of G?), dry contact capacitive coupling (does not
require the use of gel), bandwidth from 200 mH 2 to 20 kH z, supply voltage from +2.4
Vdeto £5.5 Vde and voltage gain of 10 times. Figures C.7 A and B show the RHD2216
acquisition card and EMG sensors, set up with two pairs of PS25255 sensors, respec-

tively.

C.6 EEG signals

The EEG signals were also acquired by a 16-channel bipolar RHD2216 acquisition
card. The channels of each EEG sensor are the same for all collections, thanks to
the adapted EEG cap (Figure 3.6). Table C.3 presents the relationship of the channels

with the EEG sensors. Figure C.8 illustrates the configuration of the transverse bipolar
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Figure C.7: (A) Conditioning card and acquisition of biological signals RHD22186, Intan,
USA, with 16 differential channels. (B) EMG sensors, assembled set with two pairs
of PS25255 sensors with high input impedance (typical value of 20 G(2), dry contact
capacitive coupling and bandwidth from 200 mHz to 20 kH z.

montage used in the adapted EEG cap.

Tabela C.3: EEG sensors channel list.

channel x EEG sensor
Ch00: F3-Fz ChO1: F4-F8 Cho02: F7-F3 Ch03: Fp1-Fp2

Ch04: T3-C3 Ch05: C4-T4 Cho6: T5-P3 Ch07: P4-T6
Ch08: Fp2-F8 Ch09: F7-Fp1 Ch10: Fz-F Ch11: Cz-C4

Chi12: O1-02 Ch13: P3-Pz Ch14: Pz-P4 Ch15: C3-CZ

C.7 Collection structure

The collection was designed in order to evoke in the volunteers participating in the
study the three phases of learning; that is, the volunteers must experience during the
collection a change from a motor control, initially from the explicit, poorly qualified,
to a more precise motor control, and agile, passing through an intermediate stage

with a clear increase in task performance [64, 65]. Thus, with this objective in mind,
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>1annel

Inion

Figure C.8: Configuration of the EEG electrodes in the cap, transverse bipolar mon-
tage. lllustration of the connections of sensors Fp2 and F8, channel 08 according to
Table C.3.

the collection contains five sessions that must be carried out on different days and,
preferably, consecutive ones. The volunteer works with the three protocols in each
session, which present different difficulty levels, as illustrated in Figure C.1. For each
protocol, the volunteer performs five repetitions of the set of tasks consisting of moving
the cursor and clicking on four targets (buttons) that appear in predefined positions but
randomly. Figure C.9 illustrates the structure of the complete collection for a single
session. Therefore, considering that for a single session, there are 60 targets, which
implies 300 targets per volunteer, and considering 11 volunteers, we have a total of

3,300 targets to be analyzed.

C.8 EMG and EEG data

The data of interest in was stored in the variables emgR and eegR, which are or-
ganized structures containing several variables related to the collected data, estimated

vectors, and characteristics of interest to the learning evaluation process.



Appendix C. Data: Motor Learning Protocol 88

Session Protocol Repetition
O 1
2
O O 3
4
O 5

0
(m)
ubrhwWNRE

[ -]
-]
ubrrWNRER

Figure C.9: Collection structure for a single session totals 60 targets, given that the

task is to click on four targets for each repetition.

C.8.1 Structure EMG

Figure C.10 shows the structure created to store the data referring to electromyo-
graphy and control data of the operation of the electromyographic interface used to
evaluate motor learning. From this data structure created, it is possible to locate a
given collection simply by indicating the volunteer number (1 to 11), the session num-
ber (1 to 5), the protocol number (1 to 3), and the repetition number (1 to 5). Figure
C.10 shows only part of the data; among them, we can mention: the raw EMG (sgn),
filtered EMG (FiltEmg), EMG Hilbert transform (hilbert), and the mouse cursor control
signals (smouse_cmd). Figure C.11 shows the raw EMG signals employed to control
the mouse cursor during the tasks of clicking on the targets presented by the graphi-
cal learning interface. The envelope of the EMG signal was obtained by applying the

Hilbert transform to the filtered EMG signal, and through this envelope signal, it is pos-
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Figure C.10: EmgR data structure was created to store the data related to the EMG
signal and other signals employed in the control of the myoelectric interface. The data
presented are related to volunteer 10, session 5, and protocol 2 and illustrate the data
of the five repetitions. The figure shows raw EMG, filtered EMG, Hilbert transform EMG

signals, and mouse control signals.

sible to visualize, more easily, the duration of the contractions (C1, C2, and C3) and

understand the application of the finite state machine illustrated in Figure C.6.

C.8.2 Structure EEG

The eegR structure contains EEG signals from the EEG cap and other motor learn-
ing data. The eegR data structure is also organized in the same way as the emgR
structure. For example, Figure C.12 illustrates the data regarding the events of the
tasks performed by volunteer 10, session 4, protocol 1 (2 cm target), and repetition 1.
The illustrated data show that target 4 (“TARGET_4"), in field 10 of the table, emerged
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Figure C.11: It presents some signals of the emgR structure used in the mouse control
by the myoelectric interface. The signals illustrated are: the raw EMG (sgn), filtered
EMG (FiltEmg), EMG Hilbert transform (hilbert), and the mouse cursor control signals
(smouse_cmd). The zoom given in the mouse command signal displays the levels of

the mouse control signals in detalil.

at time 4.396 s, positioned at x_pos=342 and y_pos=323, with equal width and height
84, and was clicked at time 15.615 s as indicated in field 9 (Figure C.12).
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eegR.v(10).s(4).prot(1).rpt(1).L_events
Fields  [lpos_time 5|7 type [f1 x_pos [1] ypos [i] width [i] height
N

1 / 97155'CLICK_IN' 386 375 0 0
2 82124 'TARGET_4' 342 323 84 84
3 79035'CLICK_IN' 683 47 0 0
4 65118 TARGET_1" 24 641 84 84
5 60016"CLICK_IN' 693 694 0 0
6 () 44403 'TARGET_3' 660 641 84 84
7 5 39315"CLICK_IN' 981 375 0 0
8 19710'TARGET_2" 342 959 84 84
9 GE) 15615'CLICK_IN' 406 407 0 0
10 |: 4396 'TARGET_4' 342 323 84 84

Figure C.12: Data of learning events related to the activity performed by the volunteer
10, session 4, protocol 1, and repetition 1. The “type” column contains the targets
(TARGET_ 1,2,3, and 4) and the “CLICK_IN” commands. Considering the indicated
timeline, the “pos_time” column indicates when the target appears, for the targets, and
when they are clicked, for “CLICK_IN". The other columns refer to the characteristics

of the items indicated in the “type” column.
C.9 Access to Database

The database, motor learning protocol, can be accessed via:

Andrade, Adriano de Oliveira, & Queiroz, Carlos Magno. (2022). Single channel
approach for filtering electroencephalographic signals strongly contaminated with
facial electromyography [Data set]. Zenodo. https://doi.org/10.5281/zenodo.
7133259.
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