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Resumo

Jogos digitais, além de serem um setor da indústria de entretenimento extremamente

relevante, são muito utilizados como objetos de estudo na inteligência artiĄcial, uma vez

que representam um cenário de alta complexidade. Nesses estudos, destaca-se a inves-

tigação de abordagens para capacitar agentes jogadores com a habilidade de recuperar

informações relevantes, já que isso é muito útil para maximizar a capacidade de apren-

dizagem desses agentes. Esse trabalho é dividido em duas partes, a primeira propõe e

analiza novos modelos profundos de aprendizagem para identiĄcar eventos em vídeos do

jogo Super Mario Bros. Esses modelos são compostos por uma rede neural convolucional

(CNN), responsável pela extração de características, e uma rede neural artiĄcial (NN) para

a classiĄcação. O objetivo da CNN é produzir uma nova representação para as cenas de

jogo que maximize a performance da rede classiĄcadora na tarefa de identiĄcar eventos de

jogo. A principal contribuiçaõ dessa primeira parte é a demonstração de uma performance

superior obtida por modelos que utilizam de uma representação dos dados por chunks com-

binados com os recursos de uma rede neural recorrente (RNN) para a classiĄcação. A

segunda parte apresenta dois modelos de aprendizagem profunda (DL) desenvolvidos para

tratar com a classiĄcação de eventos multi-instâncias multi-rótulos (MIML) em vídeos de

jogo. A arquitetura desses modelos é baseada em um script para a geração de dados, em

uma rede neural convolucional (CNN), em um extrator de características e em uma rede

classiĄcadora. As principais contribuições dessa segunda parte são: 1) a implemetação

de um gerador de dados automático para produzir e rotular frames a partir de videos de

jogos; 2) A construção de um de datasets balanceados para o treinamento dos modelos;

3) a implementação de uma MobileNetV2 reĄnada para tratar especiĄcamente de vídeos

de jogos; 4) a implementação de modelos de aprendizagem profunda para a realização de

classiĄcação de eventos em cenários MIML.

Palavras-chave: Vídeo de gameplay, eventos de jogo, extração de características, classi-

Ącação, Super Mario Bros, CNN, RNN, quadros, chunks, MIML. classiĄcação de eventos,



multi-rótulo, Deep MIML, classiĄcação multi-rótulo, classiĄcação multi-instância, classi-

Ącação em vídeo.
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Abstract

Video games, in addition to representing an extremely relevant Ąeld of entertainment

and market, have been widely used as a case study in artiĄcial intelligence for repre-

senting a problem with a high degree of complexity. In such studies, the investigation

of approaches that endow player agents with the ability to retrieve relevant information

from game scenes stands out, since such information can be very useful to improve their

learning ability. This work is divided into two parts, the Ąrst proposes and analyses

new deep learning-based models to identify game events occurring in Super Mario Bros

gameplay footage. These models are composed of a feature extractor convolutional neu-

ral network (CNN) and a classiĄer neural network (NN). The extracting CNN aims to

produce a feature-based representation for game scenes and submit it to the classiĄer so

that the latter can identify the game event present in each scene. The main contribution

of this Ąrst part is to demonstrate the greater performance reached by the models that

associate chunk representation of the data with the resources of the classiĄer recurrent

neural networks (RNN). The second part of the study presents two deep learning (DL)

models designed to deal with multi-instance multi-labels (MIML) event classiĄcation in

gameplay footage. The architecture of these models is based on a data generator script,

a convolutional neural network (CNN) feature extractor, and a deep classiĄer neural net-

work. The main contributions of this second part are: 1) implementation of an automatic

data generator script to produce the frames from the game footage; 2) construction of

a frame-based and a chunk-based pre-processed/balanced datasets to train the models;

3) generating a Ąne-tuned MobileNetV2, from the standard MobileNetV2, specialized in

dealing with gameplay footage; 4) implementation of the DL models to perform MIML

event classiĄcation in gameplay footage.

Keywords: Gameplay footage, game events, feature extraction, classiĄcation, Super

Mario Bros, CNN, RNN, frames, chunks, MIML, event classiĄcation, multi-label, Deep

MIML Network, multi-label classiĄcation, multi-instance classiĄcation, video classiĄca-



tion.
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Chapter 1

Introduction

Since their inception, over 40 years ago, video games have been constantly evolving

and gaining in popularity. In the last 10 years, they have been one of the fastest growing

economic sectors and, according to Global Data, the video games industry is expected to

reach an overall value of 300 billion dollars by 2025 (Global Data, 2021). One of the main

reasons for this growth is the huge amount of people that enjoy playing for entertainment.

The last report from Entertainment Software Association indicates that over 214 million

people, in the United States alone, play at least one hour a week (Entertainment Software

Association, 2020).

One of the more common research goals in games is the development of intelligent

agents with a high level of play, that are able to defeat even the best human players,

like the AlphaZero system created to master the games of chess, shogi and go (SILVER

et al., 2018). However, video games have also been used as case studies for machine

learning (ML) research for a long time, since their high degree of complexity and vari-

ability makes them great benchmarks for the state of the art of artiĄcial intelligence (AI)

algorithms. A lot of games can be used to emulate practical real world situations, but

in a controlled, easily scalable and adjustable way (LEE; KIM; SUH, 2017). Games are

also great case studies in areas such as education, health and psychology, a fact that has

motivated the development of various kinds of research in AI whose objectives are focused

on such domains (KOZLOV; JOHANSEN, 2010; BOYLE; CONNOLLY; HAINEY, 2011;

Janarthanan, 2012; ANNETTA, 2008).

Despite all of these applications, there is still a great lack of research that focus on the

retrieval of relevant information from video game environments (LUO et al., 2018). This

presents a problem since the ability of autonomous agents to obtain relevant information

about the environment they operate in, and use this information to improve their deci-

sion making is one of the main requisites for good performance in any machine learning

application.

One of the main reasons for this lack of focus on retrieving information from game

scenarios is that, traditionally, video game research assumes access to the Game Engine,
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which is essentially the gameŠs source code. The game engine allows for access to certain

system Ćags, called game logs, which register what the players are doing, as well as what

is happening in the environment. However, retrieving this information is not a trivial

task, for the following reasons: Ąrstly, game engines are usually inaccessible due to the

companiesŠ privacy concerns (LUO; GUZDIAL; RIEDL, 2019); secondly, even considering

game platforms that make the game logs available, it is not possible to count on them

in situations where information must be retrieved from gameplay footage. This second

reason is particularly interesting because, nowadays, with the growth in popularity of

video and streaming platforms for video games (VG) like Youtube Gaming, Twitch and

Facebook Gaming. In this scenario, thousands of gameplay videos are posted every single

day. This corresponds to a giant pool of data that can be explored only through analyzing

gameplay footage.

In order to work on information retrieval from games, it is Ąrst necessary to understand

that VG are essentially interactive videos that run in real-time, where the player has the

ability to make decisions that trigger the next game scenario. Considering this, the three

main components that describe a game scene are: the Environment Objects, the Game

Actions, and the Game Events.

The Environment Objects are all the visible items and characters present in a game

scene. Identifying these is important because it allows for an understanding of all the

different elements with which the player can interact. Considering that object detection

in videos and images is one of the main research subjects in CV, there is an abundance

of techniques that can be used to address it (MURTHY et al., 2020), (Zhao et al., 2019).

The Game Actions consists of all the different actions that are available for the player

to take in a certain game scene. These actions are the tools that a player has to interact

with the environment.

Although the deĄnition of events in AI is very broad, as shown in (Ravanbakhsh et al.,

2017), (ATEFEH; KHREICH, 2015) and (YU et al., 2020), in the context of this thesis, the

Game Events represent the effects that Game Actions have on the Environment Objects.

In a broader sense, when considering dynamic environments, such as video games, the

events represent the dynamic changes and interactions that happen in the environment.

So considering the fact that: 1) there are a lot of existing techniques that can be used

to detect Environment Objects and; 2) since Game Actions trigger the Game Events, the

events that occur can be used to infer the actions; this project proposes different deep

learning (DL) techniques to automatically retrieve Game Events from gameplay footage.

As a case study, the game Super Mario Bros was used, since it is a classic and very famous

game that has been widely used in scientiĄc research.
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1.1 Goals and Challenges

The goal of this work is to compare DL and computer vision (CV) techniques, more

speciĄcally recurrent neural network (RNN),convolutional neural network (CNN), and

Deep Multi-Instance Multi-Label Networks, to create an effective framework for extracting

events from gameplay videos of Super Mario Bros. Considering this, the main challenges

investigated in this work were:

a) Generating reliable datasets that could be used to train the DL models;

b) Pre-processing the data in a way that would maximize the effectiveness of the

models;

c) Working in a scenario where multiple events could happen simultaneously (Multi-

Label);

d) Having to adapt ML techniques that were designed for real-world images and

videos to the graphical representation of Super Mario Bros, due to the lack of

works designed to classify events in video games;

e) Having to work in an online context, where the frames have to be processed in

real-time.

1.2 Hypothesis

The research question this work seeks to answer is: is it possible, through DL and CV

techniques, to generate a viable framework for extracting relevant information from video

games that can replace the need to access the Game Engine? The secondary questions

that are also tackled are: i) can methods designed for real-world scenarios be adapted to

work in-game scenes? ii) if so, among a large number of different methods in the literature,

which ones are more suited for identifying events in-game scenes? iii) what is the best

strategy to deal with multi-labeled frames? Considering these questions, this work was

developed assuming that it is possible to generate an effective event classiĄcation system

by adapting already existing, state of the art, DL and CV techniques to work on video

games.

1.3 Contributions

The contributions made in this thesis are:

a) A new approach to generate labeled data from gameplay automatically based on

the Mario AI Framework (KARAKOVSKIY; TOGELIUS, 2012);

b) A balanced Super Mario Bros dataset speciĄcally designed to contain multi-label

and single-label examples;
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c) A proposed representation for clustering frames that boosts classiĄcation perfor-

mance in gameplay footage;

d) An evaluation among four state-of-the-art convolutional neural networks (CNN)

(ResNet50V2, MobileNetV2, VGG16 and AlexNet) for feature-extraction in Super

Mario video frames;

e) An investigation among three state-of-the-art neural networks (Long Short Term

Memory Network, Gated Recurrent Unit and Deep Multi-Instance Multi-Label

Network) for classifying events from Super Mario Frames;

f) A Ąne-tuning strategy to signiĄcantly boost the performance of CNNs pre-trained

on real-world data when applied to video games;

g) A strategy to Ąt games video footage into the Multi-Instance Multi-Label frame-

work (ZHOU et al., 2012), in order to deal with the multi-label problem.

All the code developed for the experiments conducted in this thesis are posted in the

following repositories:

❏ https://github.com/Intn21/DL-Models-for-Performing-Multi-Instance-Multi-Label-

Event-ClassiĄcation-in-Gameplay-footage

❏ https://github.com/matheusprandini/Mario-AI-Framework-Generate-Dataset

❏ https://github.com/matheusprandini/Data-Wrangling-Mario-Dataset

❏ https://github.com/matheusprandini/dnns-game-events

1.4 Contextualization of the proposal

Finally, this work was developed within the scope of a broader project whose main

objective is to produce an automatic player agent endowed with the ability to map cog-

nitive and/or motor weaknesses of patients with some types of syndrome (such as Down

syndrome) and, in possession of this information, adapt its decision-making engine in

order to lead the game to situations that stimulate the cognitive development of its users.

In this way, the objectives achieved through the models developed here meet part of the

requirements required to execute the Ąrst part of this project, that is, to use the events

identiĄed in game footage as an instrument to perceive the actions performed by the game

users and map their possible cognitive weaknesses.

1.5 Thesis Organization

This chapter presented the goals, challenges, contributions, proposed methodology and

motivation for this work. The next chapters will be organized in the following manner:
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❏ Chapter 2 - Theoretical Foundation: Presents the fundamental theoretical

concepts that relate to this work, more speciĄcally: Neural Networks, CNN, recur-

rent neural network (RNN), Deep MIML Network, MIML, CV, Video Games, Video

Games as Learning Platforms and Evaluation Metrics for Multi-Label ClassiĄcation;

❏ Chapter 3 - Related Works: Presents an overview of the literature related to

this work, especially in the context of: machine learning in video games and event

and action classiĄcation in videos;

❏ Chapter 4 - Investigating the Performance of Various Deep Neural Networks-

based Approaches Designed to Identify Game Events in Gameplay Footage:

This chapter presents both the methodology and the experiments regarding the Ąrst

part of this work;

❏ Chapter 5 - Investigating the Performance of Deep Neural Network-based

Approaches Designed to Identify Game Events in Gameplay Footage:

This chapter presents both the methodology and the experiments regarding the

second part of this work. This is a followup to the work presented in Chapter 4.

❏ Chapter 6 - Conclusion: Presents the conclusions that were reached through this

work, its contributions, limitations and future works.
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Chapter 2

Theoretical Foundation

This section will introduce the main theoretical concepts that were necessary during

the development of this work.

2.1 Deep Learning

Deep learning (DL) is a Ąeld of machine learning that consists on the usage of compu-

tational models with multiple internal processing layers to detect patterns and complex

relations within data. DL algorithms Ąnd these patterns in large datasets by gradually

adjusting their internal parameters. These parameters determine how each internal layer

interprets the received data (LECUN BENGIO, 2015).

The most common learning framework for DL is supervised learning (LECUN BEN-

GIO, 2015). Supervised learning is characterized by the usage of pre-labeled data during

the training process. This implies that, in a supervised framework, the data has to con-

tain two components: the Features, which correspond to the descriptive parameters of

the data, and the labels, that indicate the correct class of the data. In this way, the

general training dynamic in a DL process is: i) the model has all itŠs internal parameters

set randomly; ii) the training data is delivered to the model; iii) the model processes the

data according to itŠs own internal parameters and returns an array where each position

corresponds to the probability of that instance of data belonging to one of the possible

classes; iv) the model compares the position with the highest probability with the correct

label; v) in case of a correct prediction, the model maintains the values of itŠs internal

parameters, if not, the model adjusts these parameters based a learning function (LF).

Learning functions measure the distance between a prediction and the correct label

according to an error function. From that, the LF indicates how the internal parameters

have to be readjusted in order to minimize the error. The internal parameters of networks

are numerical values called weights, which determine the output of the network for each

data input. A traditional DL model can contain up to hundreds of millions of parameters

and, because of that, the learning process through weight readjustment corresponds to
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the highest computational cost in all the applications of DL algorithms. The way these

learning rules and weight readjustments work on different DL models is presented in

sections 2.1.1, 2.1.2 and 2.1.3.

DL models Ąrst appeared as an alternative for linear classiĄers because of the ladderŠs

inability to classify data that wasnŠt linearly separable (LECUN BENGIO, 2015) (see

Ągure 1). Because of this limitation, linear classiĄers are dependent on a feature extractor

to make sure the data is structured in a linear way. This problem does not affect DL

models, because they are more effective in dealing with complex multi-dimensional data

(see Figure 2).

Nowadays, DL has considerably improved the performance of the state of the art mod-

els in the Ąelds of: voice recognition, computer vision and genomics (LECUN BENGIO,

2015).

Figure 1 Ű Representation of a linear problem versus a non-linear problem.
From <https://github.com/jtsulliv/ML-from-scratch/blob/master/
Neural-Networks/perceptron.ipynb>

Some of the main DL models in the literature are: neural networks (NN), more specif-

ically, multilayer perceptrons, convolutional neural networks (CNN) and recurrent

neural networks (RNN). Even though neural networks are some of the most studied archi-

tectures in the Ąeld of AI, they still present certain limitations, as presented in (MARCUS,

2018). Some of these limitations are:

❏ The high amount of data required for an adequate training process. Since the

weight readjustment in DL is done by progressively observing new data, the higher

the number of internal layers in a model, the higher the demand for large quantities

of data in order for the network to converge to a good solution.

❏ The difficulty in identifying errors in the models, especially in complex systems.

Due to the huge amount of parameters in DL models, often reaching millions, it is

almost impossible to have a solid idea of what each layer of the network is doing

to solve the problem. For this reason, NNs are often used as a sort of "black box",
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where there is a lack of understanding of the process that is being used to solve a

problem (SAMEK; WIEGAND; MüLLER, 2017).

Figure 2 Ű Representation of a linear classiĄer (left) versus deep classiĄer (right). From
<https://www.securityinfowatch.com/video-surveillance/video-analytics/
article/21069937/deep-learning-to-the-rescue>

2.1.1 Neural Networks

Neural Network (NN) is an artiĄcial intelligence model inspired by the biological struc-

ture of the human brain. They consist of a set of elements, called neurons, that are

connected to one another, storing and transmitting the information. The two essential

components of a NN are neurons and connectors. Figure 3 shows the structure of a NN,

with an input layer, hidden layers (internal layers), and output layers. The neuron is

the fundamental processing structure in a NN, they have the function of processing and

sending a signal to other neurons through the connections. The connectors connect two

different neurons and have a weight value attributed to them. This value multiplies the

exit signal from a neuron before it reaches the next neuron. Next, the layout of a NN is

explained:

❏ Input layer : As the Ąrst neuron layer, the input layer is responsible for receiving the

input data. This layer will have a number of neurons corresponding to the size of

the data representation that is being used. For example, considering the challenge

of recognizing handwritten digits presented in the MNIST dataset (Lecun et al.,

1998), where each image is represented by 784X784 pixels in greyscale, a NN will

need to have 614,656 total neurons in order to receive each input (one neuron per

pixel);

❏ Hidden layer : Neuron layers that are in between the input, and output layers. These

are responsible for processing information and for the general learning process of

the NNs;
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❏ Output layer : In addition to being the last neuron layer, it is also responsible for

outputting prediction values. In a classiĄcation problem, for example, the output

layer returns, for each input, percentage values for each possible label.

The learning process in NNs consists of adjusting the weight values in the connectors

to gradually improve performance. This process is called backpropagation and can be

done with multiple learning rules. Some of the main ones are: the Delta Rule, the

Generalized Delta Rule, and the Hebb Rule. These rules are iterative learning processes

based on mathematical functions that determine how much each weight readjustment

will impact the Ąnal result of the network. Due to the large number of parameters

traditionally associated with NNs, and the fact that NNs take multiple iterations to

converge, backpropagation has a very high computational cost.

Some of the applications for NNs are: function estimation, process management, pat-

tern classiĄcation, data clustering, system change predictions, function optimization and

object detection in images and videos (WIDROW; RUMELHART; LEHR, 1994), (DIL-

LON; NIEBUR, 1996), (UDO, 1992). This work will focus primarily on DL models

specialized in CV, which are presented in section 2.1.2.

Figure 3 Ű Representation of a NN, from (BRE; GIMENEZ; FACHINOTTI, 2017)

2.1.2 Convolutional Neural Networks

Like NNs, CNNs also attempt to imitate the learning process of the human brain

(RAWAT; WANG, 2017). However, they are specialized in CV problems, like image

classiĄcation and object trajectory analysis in videos. A CNN is composed of a series

of image kernels (or Ąlters) designed to perform an automatic selection of features that

allow for a concise and clear representation of images presented at the input of the network

(Aloysius; Geetha, 2017). This model is made of sequences of pairs composed of pooling

and convolution layers (Ągure 5).
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The convolution layers apply multiple kernels to an image, where each kernel aims to

retrieve a set of relevant features to represent it. On the other hand, the pooling layers

consist of a function that shrinks the dimensions of the image. This pooling process lowers

the total number of parameters in the network, consequently decreasing the computational

complexity of the network and controlling overĄtting (Aloysius; Geetha, 2017). Figure 4

shows an example of a pooling operation called max pooling with stride 2. In this case, the

input is divided into 2x2 quadrants, where the distance from the Ąrst pixel of a quadrant,

position [1, 1], to the next quadrant will be equal to the stride. From this, each region is

converted to a single position, whose value corresponds to the higher value pixel of the

quadrant. The combination of multiple of these layers generates a smaller representation

of the input that contains only the features that better represent it.

Figure 4 Ű Example of a max pooling operation in a 4x4 input.

After going through multiple convolutions and poolings, the input image becomes a

more abstract representation of itself. This representation is then passed on to the Ąnal

part of the network, the fully connected layer, which basically has the structure of a

traditional NN. Considering a classiĄcation problem, this layer will then output the class

probability for each label. Some examples of recent CNN models are: LeNet (EL-SAWY;

EL-BAKRY; LOEY, 2017), AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012)

and ResNet (HE et al., 2016).

Despite the fact that CNNs suffer from a lot of the same problems as traditional NNs

(section 2.1.1), especially regarding the high volume of data necessary for training, they

have had a lot of success in solving CV problems, as stated in (Aloysius; Geetha, 2017).

2.1.3 Recurrent Neural Networks

Even though the traditional NN structure is an extremely important model with ap-

plications across various Ąelds, it has difficulty classifying instances that are related to

previous events. For example, in an object trajectory identiĄcation problem, traditional

NNs will receive various images of an object in different positions and try to infer itŠs the
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Figure 5 Ű Representation of a CNN, from (Aloysius; Geetha, 2017)

corresponding trajectory from each of these images. However, this becomes a very difficult

task when considering only one position of the object at a time, since different trajecto-

ries may overlap at certain points. In this example, being able to take into consideration

positions that were previously processed by the network is a very helpful feature.

Both previously presented NN models have a feedfoward Ćow of information, which

implies that the network connections all follow the same direction, Ćowing sequentially

from the input layer, towards the output layer (Ągure 6). RNNs are models that embody

temporal, and sequentially notions in the learning process. They have speciĄc connections

between neurons, called feedback connections, that allow for the persistence of important

information in the network thought the processing of multiple instances, by feeding back

certain outputs as new inputs (see Ągure 7). This makes RNNs extremely effective in

scenarios where temporal dependencies between the data are relevant.

The Ąrst proposed RNN models, (JORDAN, 1986) and (HOPFIELD, 1982), had good

initial results, but presented a problem called gradient loss in situations where the tempo-

ral dependencies were stretched among too many instances (HOCHREITER, 1998). This

essentially meant that towards the later layers in backpropagation, the gradient of the loss

function would approach zero, and the network would only be trained effectively up to

a certain layer. As a solution for this problem, Hochreiter and Schmidhuber proposed,

in 1997, the long short term memory (LSTM) (HOCHREITER; SCHMIDHUBER, 1997)

model, where each neuron in a hidden layer was replaced by a memory cell. Each one

of these cells had a connection that allowed for a direct transfer of the local gradient to

future processes, contrary to the previous RNNs that would lose this information. This

solution allowed for relevant information to persist in the network for more iterations.

Even though the LSTM is a model designed over 20 years ago, it is still, to this day, one

of the most used RNNs in the literature (LIPTON, 2015).

Another, more recent, proposal that also handles the gradient loss problem is the gated

recurrent unit (GRU) model, which was developed by Kyunghyun Cho in 2014 (CHO et
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However, for problems involving complicated examples with multiple semantic meanings,

using more than one instance to represent them can allow for additional inherent patterns

in the data to become more clear. Then, in these situations, the MIML framework can

be a more natural and appropriate way to represent the data.

Figure 8 Ű Four different learning frameworks, image from (ZHOU et al., 2012)

An important idea in multi-instance learning is the sub-concept. When considering

broad concepts like "Africa", it can hardly be described by only one aspect. Usually, a

group of cultural and environmental identiĄers is required. So the concept "Africa" could

be identiĄed from, for example, an image of a grassland environment, coupled with lions

and trees. These low-level concepts that arenŠt necessarily enough on their own, but when

combined are capable of describing complex and broad concepts, are the sub-concepts.

2.2.1 Deep MIML Network

As previously mentioned in section 2.2, a lot of real-world applications greatly beneĄt

from being represented in a multi-instance multi-label context. The Deep MIML Network

(FENG; ZHOU, 2017) is a model that adds an automatic instance generator and a sub-

concept learning structure to the traditional neural network formation. The structure

of the Deep MIML Network (Figure 9) is an instance generator module (usually a CNN

network), followed by a sub-concept layer, which is essentially a classiĄer that matches

the scores between instances and sub-concepts for every label. This approach allows for

an instance-label relation discovery that works very well in a MIML framework.
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Figure 9 Ű Representation of a Deep MIML Network, image from (FENG; ZHOU, 2017)

2.2.2 Multi-Label Evaluation Metrics

In traditional supervised learning, as mentioned in the previous subsection, a single

instance is associated with a single label. This allows for an accuracy metric, the percent-

age of examples correctly classiĄed, to often be a good enough indicator of performance

(ZHOU et al., 2012). However, in multi-label situations, the goal is not to identify a single

label, but rather to correctly classify the highest amount possible from a group of labels.

For example, it is better for the model to guess 4 out of 5 labels correctly than to get 2

out of the same 5 labels. This has to be taken into account by a multi-label evaluation

metric for it to be an effective performance indicator.

The evaluation metrics relevant to this work are explained below:

❏ Hamming loss: a loss metric that represents the fraction of labels that are in-

correctly predicted, be it a correct label that is missed, or a wrong label that is

predicted. Considering the function ℎ𝑎𝑚𝑚𝑖𝑛𝑔𝑙𝑜𝑠𝑠(ℎ) = 0, the lower the value of

ℎ𝑎𝑚𝑚𝑖𝑛𝑔𝑙𝑜𝑠𝑠(ℎ) the better the performance of ℎ.

❏ Mean average precision: the average precision (𝐴𝑃 ) is a relation between the class

precision and class recall. Precision (𝑃 ) indicates how many predictions were

correct and recall (𝑅) indicates how many of all instances of the class were pre-

dicted by a model. The average precision corresponds to the area under the graph

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑋𝑟𝑒𝑐𝑎𝑙𝑙. Since the average precision corresponds to a single class, the

mean average precision (𝑚𝐴𝑃 ) corresponds to the average 𝐴𝑃𝑠 over all classes.

❏ F1 score: the F1 score, also is a relation between class precision and class recall.

However, it corresponds to the harmonic mean between the two, so: 𝐹1 = 2 ∗
𝑃 ∗𝑅
𝑃 +𝑅

.

Like 𝑚𝐴𝑃 , the F1 score also references a single class, so in a multi-label context,

this metric corresponds to the average F1 score of all classes.



28 Chapter 2. Theoretical Foundation

2.3 Computer Vision

Computer vision (CV), is an interdisciplinary Ąeld whose primary objective is to repli-

cate the abilities of human vision to interpret and recognize images and videos. More

speciĄcally, CV essentially works with image analysis (SZELISKI, 2010b). The Ąeld Ąrst

appeared in the 70Šs, and itŠs proposal, compared to the already existing Ąeld of digital

image processing, was to interpret tri-dimensional structures from real-world images, in

such a way as to allow for a better understanding of full scenarios. In the last 10 years,

advances in deep learning (section 2.1) have contributed to CV, in image recognition, as

well as Ąltering, noise removal, etc (SZELISKI, 2010b). The main steps of image analysis

in CV are: image formation, object segmentation, feature extraction, and lastly, image

recognition.

Image Synthesis is the process of producing an image from geometrical shapes, light,

and textures. These shapes consist of dots, lines, and planes, which are the basic com-

ponents in the description of tri-dimensional spaces. The light includes all the lighting

aspects in a scenario, the reĆections, and shadows. Finally, the textures correspond to

spatial variations in pixel intensity, that determine the different regions of an image. In

another stage, object segmentation aims to detect the pixel groupings that correspond to

each of the objects in an image. Considering, for example, an image of a busy street, a

segmentation process can be used to identify the different vehicles, pedestrians, obstacles,

etc. Feature extraction is the process of highlighting the relevant features of an image.

These may correspond to speciĄc geometrical structures, movement-related aspects, and

objects. Finally, image recognition aims to classify objects, people, animals, and pretty

much any component that can be found in an image. This is the hardest among all

aforementioned visual tasks, as stated in (SZELISKI, 2010a).

Despite many advances in CV and digital image processing, the accuracy of state-

of-the-art techniques in object classiĄcation is still far inferior to the average human.

The main difficulty in this task is the fact that the same objects can present themselves

in many different ways in a scenario. A person can make different poses, use different

clothes and change their facial expression. For a human, identifying all these differences

is a completely effortless process, but for a machine, Ąguring out which one of these

variations is relevant, or not, during a classiĄcation process is an extremely difficult task.

In addition to digital images, another kind of input that is studied in CV is digital

videos. Even though they can be interpreted as sequences of images, they can represent

a much more detailed description of actions and human movement (AGGARWAL; CAI,

1999). Because of this, videos are extremely valuable for research that involves the detec-

tion of actions and trajectories. In the context of DL, a lot of techniques were adapted

to work better in this context. One of them is the usage of the optical Ćow (OF) as an

additional dimension to the data (BEAUCHEMIN; BARRON, 1995).

The OF is a representation of object movement across multiple frames from a video
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that allows for a combined spatial-temporal analysis of videos. This can improve object

tracking in video models for action detection (see Figure 10).

Figure 10 Ű Representation of a DL model processing the optical Ćow, from (SZELISKI,
2010a)

Among the many current applications of CV, some of the most relevant are:

❏ Action and activity detection; is the process of automatically detecting human ac-

tions, usually in videos. It is a very relevant problem since it allows for a better

understanding of the physical aspect of how humans traverse different situations

(XU et al., 2018);

❏ Interpretation and highlighting of medical images; since many medical procedures,

like ultrasound and magnetic resonance imaging, return their results in images, the

application of CV methods allow for improved image quality, which positively helps

the specialist analysis (BISWAS et al., 2019);

❏ Autonomous vehicle guidance; autonomous driving in ground vehicles is a feature

that has become progressively more popular with advances in camera, sensor, and

processor technologies (JANAI et al., 2020). Even though most recent applica-

tions donŠt rely on DL, advances in the Ąeld have shown the potential for certain

applications (LEE; KIM; SUH, 2017).

2.4 Video Games

Since their appearance over 40 years ago, video games (VG) have been constantly

evolving and becoming more popular. In the context of academic research, in addition to

being rich and diverse simulation scenarios (TOGELIUS, 2017), they allow for use of the

own player as a study object. VGs are deĄned as an entertainment medium that promotes

constant interaction with the user, which allows for a different gameplay experience for

each player, both in a mechanical aspect, as well as in an emotional one.
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As a research subject, games can be divided into recreational and serious games. The

main aspects of recreational ones are: the story, the art, and the software (ZYDA, 2005).

The story of a game consists of its different plots and NPCs (Non-Playable Characters.

The art involves all the visual and sound expressions in a game, the character models, the

scenarios, the color pallet, the sound effects, the soundtrack, etc. The software refers to

the game engine, which is essentially the source code used in the development of the game.

In general terms, the game engine is responsible for functionalities related to graphics ren-

dering, physics simulation, sound triggers, animations, memory management and general

processing. Besides the previously presented characteristics, the main difference between

VG and other entertainment mediums, like television or movies, is the game mechanics.

These are deĄned by all the possible interactions the player can have with the game. In

the game Super Mario bros, for example, the game mechanics are: jumping, swimming,

running. collecting items, etc.

In the case of serious games, need to have all of the previously mentioned charac-

teristics, but also need to have a pedagogical agenda included, in order to allow for the

completion of learning goals inside the game (ZYDA, 2005). The differences between

entertainment and serious games are shown in Figure 11.

Figure 11 Ű Serious Game versus Entertainment Game, from (ZYDA, 2005)

Another fundamental component of VGs is the game genre. It deĄnes the kind of

experience each game is expected to provide, and each genre stimulates the players differ-

ently. A general division of game genres, proposed in (APPERLEY, 2006), can be seen

below:

❏ Simulation: consists of all games that represent activities such as sports, driving,

Ćying, etc. The proposal of these games is to try to simulate certain real-world
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experiences inside of a virtual environment. An example of this genre is the franchise

Truck Simulator, which simulates the player driving a truck and making deliveries

in different parts of the world.

❏ Strategy: these are games that prioritize strategies and game tactics. Some of

the different sub-genre of games that Ąt in this category are: real-time strategy

(RTS) and multiplayer online battle arena (MOBA), both types of games involve

the control of multiple units and structures in order to complete various objectives.

In the research literature, a game that is widely studied is Starcraft 2 (VINYALS

et al., 2017a), a multi-player RTS game where the player controls different alien

civilizations in order to manage their units and resources to destroy the enemy

civilizations as fast as possible.

❏ Action: this genre can be separated into two main sub-genres: Ąrst person shoot-

ers (FPS), and third person games (TPG). The difference between the two is the

perspective provided for the player, in FPS the camera simulates the vision of an

in-game character, while in TPG, the player observes the in-game character from

a top view. Action games are usually fast paced and present complex actions that

can be executed. The franchise Call of Duty, is a good example of the action genre,

it puts the player in a simulated warfare situation, where he needs to move quickly

in order to kill enemies and fulĄll game objectives.

❏ Role-Playing Games (RPGs): RPGs are adventure games traditionally associated

with the fantasy genre. Their goal is to provide the player with a role-playing

experience as if he was an in-game character. These games usually involve decision-

making, a lot of NPC dialog and a great focus on story-telling.

❏ Platform Games: This genre is extremely well known, and represents some of the

Ąrst digital games ever created. These games usually have a 2D (two-dimensional)

perspective and are separated into multiple levels. In order to beat each level, the

player has to control a character to cross multiple obstacles through a sequence

of precisely timed actions. One classic example of the genre, which is also widely

researched in the literature, is Super Mario Bros.

VGs have a great stylistic variety, which is why they appeal to many different au-

diences. Because of this, they can be rich and customizable testing scenarios for many

research Ąelds, such as AI and medicine.

2.4.1 Video Games as Learning Platforms

AI investigates complex interactions between agents and environments in various dif-

ferent contexts. VGs can be seen as ideal platforms for studies in this Ąeld since they are



32 Chapter 2. Theoretical Foundation

a controlled, safe, fast, and easily adjustable environment for a lot of different types of

experiments. In this context, as presented in Figure 12, game scenarios work as environ-

ments that agents navigate through with different game actions and, based on the success

or failure of these actions, the agent is either rewarded or punished.

Figure 12 Ű Representation of the decision-making process of an agent inside a video game,
from (SHAO et al., 2019)

These game scenarios, according to (SHAO et al., 2019), can be divided into two

types of platforms: general, or speciĄc. General platforms consist of groups of tasks

and challenges from different games, speciĄcally designed for scientiĄc research. The

Arcade Learning Environment (ALE) (BELLEMARE et al., 2012), and Open AI Gym

(BROCKMAN et al., 2016), are both examples of general platforms. On the other hand,

speciĄc platforms are based on a single game or game adaptation. Some examples present

in the literature are: TorchCraft (SYNNAEVE et al., 2016), based on the game Starcraft,

and the Starcraft II learning environment (VINYALS et al., 2017b), which is based on

the game Starcraft II.

Even though video games still have a lot of unexplored possible applications within

AI, a lot of interesting work already exists in the literature, like the creation of automatic

player agents and the generation of testing scenarios for experiments. The creation of

automatic agents involves the use of AI and DL techniques in order to train these agents

to be able to overcome game challenges (see Figure 12), compete against other player

agents, or even against humans. A current example of this type of work is the AlphaZero

system (SILVER et al., 2018), an automatic player developed by the company DeepMind

to master the games of chess, shogi and go. The generation of testing scenarios is a Ąeld

that focuses on the use of video games to simulate real-world scenarios that are hard to

replicate in real life (LEE; KIM; SUH, 2017). This is particularly valuable for DL since

the algorithms in this Ąeld require a large amount of training data, and the collection

of this data can be a very challenging task. So being able to rapidly simulate various
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different scenarios in a game can allow for an effective way to generate data.

The application of DL in video games is a recent research Ąeld that has been showing

great potential to improve AI as a whole. Even though a lot of interesting work has

already been conducted in the Ąeld, there is still a lack of new frameworks that help with

the process of working with complex scenarios inside of video games, in a way to facilitate

and incentive new research to be developed in the Ąeld (SHAO et al., 2019).

2.4.2 Super Mario Bros

Super Mario Bros is a platform game (Ąrst released in 1985) in which the player

has a side view of the character he is controlling (Mario) and his goal is to traverse a

series of game levels, each with a different set of obstacles, be it enemies, projectiles,

or even difficult terrain that requires a set of precise actions to be traversed. In order

to overcome these obstacles, the player relies on a Ąxed set of actions that Mario can

execute, which are: walking, running, jumping, and throwing Ąre. All these actions

trigger speciĄc Game Events, which can be interpreted as the impact that MarioŠs actions

have on the environment. A few examples of these events include killing an enemy with

Ąre, breaking a block by jumping underneath it, and getting damaged by an enemy. A

more comprehensive view of these game events will be presented in section 4.1.3. From

a programming standpoint, the game is executed from what is called a Game Engine.

Every action and event that occur is stored as a Game Log in a table of the game engine.

In Super Mario Bros, the graphics are very simple, being composed of a few pixelated

sprites that represent different character models, objects, or background scenery. In

addition to that, the game has a 2D (two-dimensional) perspective, which, contrary to a

3D one, does not give depth to the objects (ROETTL; TERLUTTER, 2018), as shown

in Figure 13. Visually, the game consists of sequences of frames refreshing very fast on

a screen (usually 30 to 60 frames per second (FPS)), which can generate a very large

amount of data in a short span of time. In this way, lowering the frame rate at which

the frames are being captured, or clustering sequential frames into groups called chunks,

both allow for a more condensed representation of the game scenarios.
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Chapter 3

Related Works

This chapter will present the main works in the literature that relate to scope of this

thesis.

3.1 Action Detection in Videos

A lot of works have been done around the task of action detection, especially since

itŠs one of the main research topics of CV (Section 2.3). Most of these works can be

separated into two approaches: offline action detection and online action detection. The

main difference between both is that the offline methods observe the entire video before

returning predictions, while the online ones have to make their predictions in real-time,

as soon as the action happens. Since this work involves online detection, this section will

present the relevant works around this topic in the current literature.

In (GEEST et al., 2016), Roeland de Geest and Tinne Tuytelaars tackled the problem

of online action detection in videos. Their goal was to Ąnd a way to detect the action

as fast as possible, even before it Ąnished happening. This was very challenging because

a lot of predictions had to be done after observing a very small fraction of an action.

In order to solve this, the authors proposed three different approaches: i) one based on

the combination of improved trajectories (WANG; SCHMID, 2013) with Support Vector

Machines that had inputs obtained through Fisher Vectors; ii) one based on the VGG-

16 (SIMONYAN; ZISSERMAN, 2014) convolutional network; and iii) one based on the

LSTM (HOCHREITER; SCHMIDHUBER, 1997), which is the most popular RNN in the

literature. In order to conduct the experiments, the authors generated a dataset from

16 hours of footage from famous television shows, containing a total of 30 class labels.

It is important to point out that, since the authors wanted to detect the actions as fast

as possible, each model received only a fraction of each action during the tests. In their

experiments, they observed that among the proposed approaches, none had obtained a

satisfactory result, and concluded that early action detection in an online setting was still

an open problem to be addressed.



36 Chapter 3. Related Works

In a continuation of this work, the same authors proposed a new architecture speciĄ-

cally designed for the problem of online action detection (GEEST; TUYTELAARS, 2018).

In this new approach, the authors assumed that, in an online action detection problem,

there were two main tasks to be taken into account: the interpretation of the input frames,

and the co-occurrence relation between certain actions (some actions have a tendency to

occur new one another, or even in a speciĄc sequence, for example, in a soccer game, the

actions "ball pass" and "ball received" almost always happen in a sequence). From this, the

authors proposed the usage of an LSTM network, since it is a model specialized in keeping

temporal dependencies across multiple instances. However, since they had already shown

in their previous work (GEEST et al., 2016), a traditional LSTM model did not provide

good enough results. Because of this, in this work, they proposed a new two-stream net-

work, where an LSTM was used to classify input frames, and another LSTM was used

solely to keep track of co-occurrence relations between multiple actions. The Ąnal output

of the networks was a combination of the prediction of both these models. After testing

their architecture on two well-known datasets, TVSeries and Breakfast, the authors con-

cluded that their two-stream LSTM provided noticeable improvements in comparison to

a traditional LSTM.

Still, in the context of RNNs, Migze Xu and Mingfei Gao proposed a new framework for

online action detection called temporal recurrent network (TRN) (XU et al., 2018). The

model relied on a future event prediction module, combined with a traditional prediction

approach to make action predictions. This model took into account not only current and

past information but also predicted future information. TRNs can be seen as an extension

of RNNs since they also rely on the persistence of important information in order to make

predictions. The proposed architecture is composed of two parts, Ąrst, a feature-extraction

module, that processes a sequence of frames to generate a new feature representation, and

an optical Ćow (Section 2.3). Following this, the second part of the model, called TRN cell,

consists of a recursive processing unit that receives the output from the feature-extraction

module and returns a probability array corresponding to all the possible labels. This cell

is the main processing structure in the TRN, and is responsible, among other things, for

controlling the internal Ćow of information. The TRN cell is composed of three separate

structures: a temporal decoder, a future gate, and a spatiotemporal accumulator (STA).

The temporal decoder is the unit responsible for representing the future action predictions

sequentially, the future gate takes this representation and restructures it to represent the

future context in a more optimized way. Following this, the STA takes into account both

the feature-representation of the input, as well as the future gate future action prediction,

and returns the probabilities for all possible labels. The authors validated this framework

in three different datasets: the HDD (Honda Driving Dataset), TVSeries, and Thumos14.

Through their experiments, they showed that the TRN obtained results superior to the

previous state of the art methods, both in early action detection, as well as in future
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action prediction.

3.2 Video Games in ArtiĄcial Intelligence

Video Gamess are excellent testing scenarios for AI. An interesting application of this

was presented by Kangwook Lee, Hoon Kim and Changho Suh in (LEE; KIM; SUH,

2017). This work investigated the game Grand Theft Auto V (GTA V) as a platform for

training DL models designed to predict vehicle collisions. The primary motivation for this

work was that, due to the lack of real-world data on vehicle collision, DL models could not

be trained effectively to deal with the problem. So the authors used the game GTA V to

generate a vehicle collision dataset and used it to train three CNN models, an AlexNet,

a VGG16, and a ResNet50. All these models had the primary goals of: i) detecting

collisions before they happened; and ii) identifying sources of danger for collision. In

the end, the authors concluded that video games have big potential as a data source for

scientiĄc research. In addition to that, they showed that their proposed approach can

be very useful to increase data quantity and allow DL models to be used in real-world

problems where the amount of real-world data available for training is limited since itŠs

possible to use transfer learning techniques to pre-train a network and lower the overall

data required for the model to converge.

The work proposed by (LUO et al., 2018) presents three approaches to classify game

events in video game footage of Gwario, which is a Super Mario Bros clone. Its main goal

is to provide an easy way for researchers to utilize video games as testing and learning

platforms. The Ąrst proposed approach consists of training an AlexNet (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012) model from scratch with a manually labeled Gwario game

dataset. Their second approach utilizes a student-teacher technique (WONG; GALES,

2016) to lower the amount of necessary training data and time processing. In the third

approach, the work applied the student-teacher method combined with a pre-trained

network to the UCF 101 dataset (SOOMRO; ZAMIR; SHAH, 2012) related to the game

Skyrim. In such an approach, the game events come from the UCF 101 dataset. Even

though the Ąrst two approaches did not perform very well, the third showed very promising

results. From this, the authors concluded that a transfer learning process from a real-

world dataset can allow for good results in an action classiĄcation task, in addition to

lowering the data amount required and speeding up the training process.

3.3 Final Considerations

Even though online action detection in videos is a well-researched topic in the litera-

ture, there are still a lot of challenges regarding applying these techniques in the context

of video games. A common trend that has wielded excellent results in real-world online
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action detection problems is the use of CNNs for feature extraction combined with RNNs

for classiĄcation and label co-relation analysis. However, in the context of video game

research, most works still use simple CNN models, that donŠt take into account data label

co-relations, which, as shown in real-world video classiĄcation research, is a very impor-

tant thing to consider. Because of this, there are still a lot of research opportunities on

the problem of online action and event detection for video games.
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Chapter 4

Investigating the Performance of Deep

Neural Networks-based Approaches

Designed to Identify Game Events in

Gameplay Footage

4.1 Proposed Approach

This section presents the architecture of the models investigated herein to identify

game events in Super Mario Bros gameplay footage. Such architecture is composed of the

following modules: a feature extractor and a classiĄer, as shown in Figure 14.

The models differ from each other by the following factors: types of CNNs that perform

the feature extraction and the game event classiĄcation; and the feature extractor input

type (chunk or frame). The CNN extractor aims to automatically deĄne a set of features

that allows for producing a compact and adequate representation of the game scenes. Such

feature-based representation is then presented at the classiĄer input so that it identiĄes

the game event occurring in the analyzed scenes.

4.1.1 Capturing Frames and Chunks from the Gameplay Footage

The required training data samples for this work (frames and chunks) are extracted

from 135 Super Mario gameplay videos with the Mario AI Framework (KARAKOVSKIY;

TOGELIUS, 2012) (as shown in subsections 4.1.1.1 and 4.1.1.2). These data are then pre-

processed (subsection 4.1.2) in order to generate the datasets necessary for the execution

of the experiments.
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Figure 14 Ű General architecture of the chunk-based and frame-based models

4.1.1.1 Frame capture

The samples that make up the frame-based dataset consists of individual frames con-

taining a single active game event (that is, frames devoid of events or otherwise containing

multiple events are discarded).

4.1.1.2 Chunk capture

Inspired by work proposed by Xu et al. (XU et al., 2018), the chunks are made up of six

frames and are generated from the following three-step algorithm that runs sequentially

through all frames of the videos:

1. If the current frame has more than one event or no event, go to the next frame;

2. Else, produce a cluster composed of the current frame, the two frames that precede

it, and the three frames that follow it;

3. Label the whole chunk (cluster) with the middle frameŠs label (that is, the current

frameŠs label).

This way, a chunk is always labeled with the game event occurring at its middle frame,

regardless of other events that might occur on its remaining frames. Because of this, for

all chunk-based models, each chunk corresponds to a single event.

4.1.2 Frame and Chunk Pre-Processing

In order to improve the feature extraction process, before being inserted into the

training datasets, both the individual frames and the frames that make up the chunks
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are submitted to a pre-processing that consists of the following two phases: Ąrstly, with

the purpose of reducing the feature extraction runtime, every frame is resized from its

original size to 224×224 pixels, maintaining the RGB color channels; secondly, in order

to allow that the CNN retrieves the most relevant features to represent the game scene,

every resized frame is submitted to a pixel-wise normalization, where the values range in

the interval [0,1].

4.1.3 Game Events

The Super Mario game events investigated in this work are deĄned by the Mario Al

Framework itself as being fundamental to modeling the dynamics of a match. The game

situations corresponding to these 12 game events are brieĆy described next:

❏ EventBump: Mario jumps having a block above its head;

❏ EventCollect: Mario collects a coin at the current level;

❏ EventFallKill: An enemy dies by falling out of the scene;

❏ EventFireKill: Mario kills an enemy by shooting Ąre at it;

❏ EventHurt: Mario takes damage by hitting an enemy;

❏ EventJump: Mario performs the jump action;

❏ EventKick: Mario kicks a Koopa shell;

❏ EventLand: Mario lands on the ground after having jumped;

❏ EventLose: Mario loses the game level (which happens either when this character

dies or when the time to complete the current level is over);

❏ EventShellKill: Mario kills an enemy by throwing a Koopa shell at it;

❏ EventStompKill: Mario kills an enemy by jumping over it;

❏ EventWin: Mario wins the game (that is, the character successfully completed the

current level).

4.1.4 The CNN Models

In order to pursue its objectives, this work Ąrstly implements 25 distinct models to

perform game event detection in Super Mario game footage. Among these models, 24

correspond to novel approaches proposed in this work and only one counts on an archi-

tecture that has already been used with the purpose of performing game event detection
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in-game footage of Gwario, which is a clone of Super Mario Bros. More speciĄcally, such

architecture was proposed in (LUO et al., 2018) (section 3.2).

These models are summarized in Table 1 and brieĆy introduced below (more details

will be discussed in the following sections), where: FE represents the feature extractor

(MobileNetV2, ResNet50V2, VGG16 or AlexNet); C represents the classiĄer (LSTM,

GRU or FCL); and IR represents the game scene representation input type (frame or

chunk).

Table 1 Ű Summary of the proposed CNN models to evaluate in this work

Model FE C IR Input and Hidden Size Output Size
Number of
Parameters

1 MobileNetV2 LSTM Chunk 1280 12 13.127.692
2 MobileNetV2 LSTM Frame 1280 12 13.127.692
3 MobileNetV2 GRU Chunk 1280 12 9.849.612
4 MobileNetV2 GRU Frame 1280 12 9.849.612
5 MobileNetV2 FCL Chunk 1280 12 52.388.468
6 MobileNetV2 FCL Frame 1280 12 26.174.068
7 ResNet50V2 LSTM Chunk 2048 12 33.587.212
8 ResNet50V2 LSTM Frame 2048 12 33.587.212
9 ResNet50V2 GRU Chunk 2048 12 25.196.556

10 ResNet50V2 GRU Frame 2048 12 25.196.556
11 ResNet50V2 FCL Chunk 2048 12 71.262.836
12 ResNet50V2 FCL Frame 2048 12 29.319.796
13 VGG16 LSTM Chunk 4096 12 134.283.276
14 VGG16 LSTM Frame 4096 12 134.283.276
15 VGG16 GRU Chunk 4096 12 100.724.748
16 VGG16 GRU Frame 4096 12 100.724.748
17 VGG16 FCL Chunk 4096 12 121.594.484
18 VGG16 FCL Frame 4096 12 37.708.404
19 E-AlexNet LSTM Chunk 4096 12 134.283.276
20 E-AlexNet LSTM Frame 4096 12 134.283.276
21 E-AlexNet GRU Chunk 4096 12 100.724.748
22 E-AlexNet GRU Frame 4096 12 100.724.748
23 E-AlexNet FCL Chunk 4096 12 121.594.484
24 E-AlexNet FCL Frame 4096 12 37.708.404
25 EC-AlexNet Frame - 12 60.689.804

The research focused on exploring the following approaches:

❏ New proposed models: in these unpublished models, the feature extraction and the

classiĄcation are performed by distinct NNs (corresponding to the Ąrst 24 models

of Table 1). More speciĄcally, the feature extraction is carried out by a pre-trained

CNN and the classiĄcation is executed by an RNN (LSTM or GRU) or an FCL,

which must be trained from scratch. These models will be referred to here as

FE+C+IR. In all these models in which the pre-trained feature extractor FE cor-

responds to the AlexNet, such CNN will be referred to as E-AlexNet (where E

indicates that, in these models, the pre-trained AlexNet only copes with feature
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extraction). The design of these models were inspired by (XU et al., 2018) and by

empirical tests.

❏ State of Art-based Model: in this model inspired by (LUO et al., 2018), the feature

extractor and the classiĄer modules are combined into a single CNN that must be

trained from scratch (corresponding to the last model of Table 1). Such an approach

only uses individual frames as game scenery representation type. This model will

be referred to here as EC-AlexNet+frame, where EC-AlexNet corresponds to an

AlexNet that must be trained from scratch (in this case, EC indicates that, in such

model, the training from scratch AlexNet copes with both feature extraction and

classiĄcation).

4.1.5 Training Datasets

This subsection presents the datasets built to train the NNs of the models, that is, the

Frame Dataset, the Chunk Dataset, the Frame-Feature Dataset, and the Chunk-Feature

Dataset.

All of them are made up of 11,000 examples (obtained from 135 videos, as commented

in section 4.1.1) involving the set of 12 game events presented at subsection 4.1.3. In

order to optimize the NNsŠ training, the frames and chunks that make up such datasets

undergo the pre-processing described in subsection 4.1.2.

❏ Frame Dataset: The data is composed of pairs (𝑓𝑟𝑎𝑚𝑒𝑖, 𝑒𝑣𝑒𝑛𝑡𝑗), where 𝑒𝑣𝑒𝑛𝑡𝑗 is the

only game event occurring at the single frame 𝑓𝑟𝑎𝑚𝑒𝑖. It is used to train from the

scratch the AlexNet that makes up the model EC-AlexNet+frame and to generate

the Frame-Feature Dataset used to train the classiĄer C of all models FE+C+frame.

❏ Chunk Dataset: Is made up of pairs (𝑐ℎ𝑢𝑛𝑘𝑖,𝑒𝑣𝑒𝑛𝑡𝑗), where 𝑒𝑣𝑒𝑛𝑡𝑗 is the main game

event (or midle frameŠs event) occurring in the six frames that compose the chunk

𝑐ℎ𝑢𝑛𝑘𝑖 (as shown in subsection 4.1.1.2). This dataset is used to generate the Chunk-

Feature Dataset to be used to train the classiĄer C of all models FE+C+chunk.

❏ Frame-Feature Dataset and Chunk-Feature Dataset: The Frame-Feature and Chunk-

Feature datasets are built as follows: Ąrstly, all training examples of both the Frame

Dataset and the Chunk Dataset are presented one time to each pre-trained extrac-

tor CNN used herein (MobileNetV2, ResNet50V2, VGG16 and AlexNet). Next, the

feature-based representations produced by all these CNNs from the Frame Dataset

are stored in the Frame-Feature Database. In the same way, the feature-based rep-

resentations produced by all these CNNs from the Chunk Dataset are stored in the

Chunk-Feature Database. It is interesting to note that this fully processing strategy

in which a set of frames that compose a chunk is presented at the feature extractorsŠ

inputs (particularly here, a set of 6 frames) is adequate in problems in which the
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images that represent the scenes are not complex (XU et al., 2018), as in Super

Mario Bros (as presented in section 2.4.2). In fact, the simplicity of the images

of Super Mario allows for obtaining very satisfactory run-times in the chunk-based

models, even keeping all the frames that make up a chunk at the feature extractor

input. The Frame-Feature Dataset and the Chunk-Feature Dataset are used to train

the classiĄer C of all models FE+C+frame and FE+C+chunk, respectively. Both

datasets will allow for signiĄcantly reducing the global training time of the classiĄer

NNs in the experiments since the feature-based representation of every example (be

it frame or chunk) to be presented at the classiĄer input can be directly retrieved

from them (instead of being obtained by repeatedly submitting the example to the

CNN extractor).

4.1.6 Feature Extractors

As aforementioned, this study investigates the use of Ąve distinct CNN Feature Ex-

tractors: the pre-trained MobileNetV2, ResNet50V2, VGG16, and AlexNet, as well as the

trained from scratch AlexNet (trained from the Frame-Dataset in the frame-based mod-

els). Each one of these CNN extractors has the same number of parameters and the same

output size in both the frame-based and chunk-based models in which it is used. Table 2

resumes the conĄgurations of these CNNs. In this table and from this point in this work,

the pre-trained AlexNet that operates on the models only as a feature extractor and the

one trained from scratch that operates on them as a feature extractor and a classiĄer will

be referenced as E-AlexNet and EC-AlexNet, respectively.

Noteworthy here is that MobileNetV2 is a consolidated state-of-the-art CNN alterna-

tive to operate in resource-constrained environments (SANDLER et al., 2018). Further,

the four remaining feature extractors used here proved to be effective in selecting features

from real-world video for classiĄcation purposes (XU et al., 2018). In short (more details

are shown in Table 2):

❏ MobileNetV2: this CNN presents a very compact architecture compared to other

existing feature extractors, both in terms of the number of layers and the dimension

of the weight vector. This allows for faster processing of the input data (SANDLER

et al., 2018).

❏ ResNet50V2: it is one of the main CNN extractors used in modern computer vision

methods (HE et al., 2016) due to the following fact: it includes residual blocks (com-

posed by skip connections) that improve its performance and training convergence

by mitigating the vanishing gradient problem.

❏ VGG16: this model is also a largely used feature extractor in modern research.

Its primary characteristic is the use of very small convolutional kernels in a deep
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structure with a lot of layers (SIMONYAN; ZISSERMAN, 2014). As shown in

Table 2, VGG16 presents the largest architecture among the feature extractors used

herein.

❏ AlexNet: it is one of the main architectures responsible for popularizing CNNs

in computer vision research (Aloysius; Geetha, 2017), having improved the CNN

learning ability through strategies to optimize parameters and training. Table 2

resumes the conĄgurations of the feature extractor layers of AlexNet (E-AlexNet)

used in this work.

Table 2 Ű Summary of CNN Models

Pre-Trained Weights Number of Parameters
Number of Features

(Output Size)
MobileNetV2 ImageNet 2.257.984 1280
ResNet50V2 ImageNet 23.564.800 2048

VGG16 ImageNet 134.260.544 4096
E-AlexNet ImageNet 43.859.328 4096

EC-AlexNet None 60.689.804 -

It is important to point out that the four pre-trained CNNs used to perform feature

extraction in the 24 Ąrst models presented in Table 2 were trained from the ImageNet

dataset (the pre-trained weights of these CNNs are all available in PyTorch1). Each one

uses the number of features presented at the fourth column of the table to produce the

feature-based game scene representations stored in the Frame-Feature and in the Chunk-

Feature datasets, as explained in subsection 4.1.5.

On the other hand, the CNN EC-AlexNet used in the last model of Table 2 is trained

from scratch from Frame Dataset (section 4.1.5). As both the feature extraction and

the classiĄcation modules of such CNN are trained together, they will be more detailed

in section 5.1.5. Further, the data presented in Table 2 refer exclusively to the feature

extractor layers of such CNN after being trained (the data related to the classiĄer layers

are presented in Table 1).

4.1.7 ClassiĄers

This stage of research investigates the performance of RNNs, FCL and AlexNet in the

classiĄcation process. The RNNs used herein are LSTM (HOCHREITER; SCHMIDHU-

BER, 1997) and GRU (CHO et al., 2014), being both composed of two fully-connected

layers. The activation function of the input and output layers of both RNNs are ReLU

and Softmax, respectively.

The FCL-based classiĄer used in the experiments is composed of four layers (being then

similar to the classiĄer layers used in AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON,
1 <https://pytorch.org/vision/stable/models.html>
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2012)). The activation function used in the hidden (three) and output layers are ReLU

and Softmax, respectively. The activation signals to be presented at the classiĄer input

corresponds to the output signals produced by the feature extractor CNN (that is, the

game scene representation produced by such CNN). Then, the number of neurons of the

input and hidden layers of the classiĄers is equal to the number of features produced by

the feature extractor (as shown in Tables 2 and 1). Still, the number of neurons of the

classiĄer output layer corresponds to the quantity of game events taken into consideration,

which here is equal to 12 (as presented in Table 1).

It is interesting to point out that, as EC-AlexNet used in the 25th model (inspired

by (LUO et al., 2018)) has to perform both feature extraction and classiĄcation, it must

be trained from scratch so as to be able to perform both processes. The training of the

model (EC-AlexNet) + Frame is performed from examples provided by Frame Dataset

(section 4.1.5). On the other hand, in the unpublished models FE+C+IR proposed here

(subsection 4.1.4), in which the feature extraction is performed by pre-trained CNNs,

only the classiĄer NNs must be trained. More speciĄcally, the training of the models

FE+C+frame and FE+C+Chunk are performed from examples retrieved, respectively,

from Frame-Feature Dataset and from Chunk-Feature Dataset (section 4.1.5).

The optimizer and loss parameters used in all training sessions performed in this work

were Adam (KINGMA; BA, 2015) with learning rate equal to 0.0005 (the same proposed

in (XU et al., 2018)) and Categorical Cross Entropy, respectively. The training of all NNs

was limited to a maximum number of 100 epochs (the Ąnal parameters correspond to

those produced in the epoch that generated the weights which presented the best results

in terms of test loss). However, it is important to note that each training session was

interrupted whenever the test loss did not improve for Ąve consecutive epochs.

4.2 Experiments and Results

The purpose of the experiments is to evaluate the performance of the models to identify

game events in gameplay footages depicting Super Mario Bros runs (through Mario AI

Framework (KARAKOVSKIY; TOGELIUS, 2012)).

For this, the experiments are carried out in 3 distinct test scenarios: 1) The Ąrst one

evaluates the individual performance of all 24 FE+C+IR models and uses the obtained

results to perform a statistical comparison among them (for this, the models are grouped

according to the speciĄcs of their individual architectures); 2) The second test scenario

has as its purpose to compare the performance of the following two trained from scratch

CNN+frame-based models: the AlexNet+frame inspired by (LUO et al., 2018) (25-th

model) and the Winner_CNN+frame (26-th model), where Winner_CNN corresponds

to the feature extractor FE that composes the best FE+C+IR model found in the Ąrst test

scenario; 3) Finally, the third test scenario aims to compare the performance between the



4.2. Experiments and Results 47

best FE+C+IR and CNN+frame models obtained in the Ąrst and second test scenarios,

respectively.

In order to maintain fairness in the comparison among the 26 models, they were all

trained and tested from the same datasets and conĄgurations. Such comparison is carried

out through the following statistical results: accuracy mean standard deviation (à) and

loss values calculated from the 5-Fold Cross-Validation method, in which the data set is

divided into Ąve folds (each one composed of 2200 random examples). In each iteration,

four folds (approximately 8800 examples) are used to train the models and one fold (about

2200 examples) to test them. The parameters used to evaluate the performance of each

model are: the training runtime and the classiĄcation success rate (accuracy). In order to

carry out the comparative analysis among the models, they are divided into groups based

on the type of classiĄer, the game scene representation (chunks or frames) and weather

they are based on pre-trained CNNs or not.

All experiments were executed on the graphics processing units provided by Google

Colab platform2 (Tesla K80 with 12GB RAM) and the source code related to this work

is available in Github3.

4.2.1 Test Scenario 1

In order to evaluate the FE+C+IR models, in this Ąrst test scenario they are divided

into the following groups (according to the speciĄcs of their respective architectures):

❏ Group 1: CNN + RNN + Chunk (models 1, 3, 7, 9, 13, 15, 19 and 21 );

❏ Group 2: CNN + FCL + Chunk (models 5, 11, 17 and 23 );

❏ Group 3: CNN + RNN + Frame (models 2, 4, 8, 10, 14, 16, 20 and 22 );

❏ Group 4: CNN + FCL + Frame (models 6, 12, 18 and 24 ).

The results of this Ąrst test scenario are presented in Table 3.

As demonstrated in such table, the eight models of Group 1 (FE+RNN+chunk) pre-

sented the best accuracy results. It can be explained by the combination of the following

factors: Ąrstly, in Super Mario, the game events are often spread throughout multiple

frames; secondly, the RNNs have the ability to keep temporal and spatial information

about the environment on the network throughout the processing of successive instances

(section 2.4.2); Ąnally, in the chunk-based models, the classiĄer input corresponds to a

combination of multiple frames which represents recent game scenes.

Consequently, the aforementioned ability of an RNN to interrelate information received

over time makes it very suitable to identify the main game event occurring in the multiple
2 <https://colab.research.google.com/>
3 <https://github.com/matheusprandini/dnns-game-events>
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Table 3 Ű First Scenario Results

Group Model Mean Accuracy
Std. Dev.
Accuracy

Mean Loss
Std. Dev.

Loss
Training Time

(per epoch)
6*1 1 93.10% 0.5% 0.2367 0.239 6s

3 92.13% 0.5% 0.2516 0.252 6s
7 91.49% 0.4% 0.2959 0.296 10s
9 90.67% 0.7% 0.3151 0.315 6s
13 74.65% 7.0% 0.8313 0.198 34s
15 70.25% 4.0% 0.8641 0.093 28s
19 48.56% 0.6% 1.2754 0.260 42s
21 43.10% 0.4% 1.5088 0.228 37s

3*2 5 86.1% 0.2% 0.4765 0.477 7s
11 87.73% 1.0% 0.4141 0.029 8s
17 36.96% 0.3% 1.5359 0.009 11s
23 42.09% 0.9% 1.4852 0.015 10s

6*3 2 73.87% 0.7% 0.7147 0.019 5s
4 73.67% 0.6% 0.7287 0.010 5s
8 71.59% 0.7% 0.7997 0.800 6s
10 70.70% 0.6% 0.8115 0.811 6s
14 63.39% 0.8% 1.0363 0.018 34s
16 63.67% 0.9% 1.0343 0.012 17s
20 39.87% 0.8% 1.4823 0.005 35s
22 39.40% 0.6% 1.4908 0.010 19s

3*4 6 68.47% 0.2% 0.9100 0.021 5s
12 69.92% 1.0% 0.8398 0.022 6s
18 43.12% 3.0% 1.5085 0.012 6s
24 39.30% 0.2% 1.5028 0.011 7s

frames represented at its input. Further, the best results in terms of accuracy obtained

by Group 1 compared to those of Group 2 prove the superiority of RNNs over FCLs as

classiĄer tools in the problem addressed (since the models of both groups differ from each

other only for the type of the classiĄer used).

Comparing now the accuracy results between Groups 1 and 3, and between Groups 2

and 4, it is possible to conclude that the chunk-based models present the best performance

to identify game events in Super Mario scenes than the frame-based ones (since the models

of Groups 1 and 3, as well as those of Groups 2 and 4, differ from each other only in terms

of the game scene representation).

With respect to the training run-time, Table 3 corroborates the following theoretical

expectation: the simplicity of the GRU architecture in relation to the LSTM results in a

shorter training time and a slight lower accuracy of the GRU-based models compared to

the LSTM-based models. In fact, as GRU has a more concise architecture than LSTM,

it tends to be less accurate than this later. However, its structural simplicity is very

adequate to deal with problems involving images with a moderate level of complexity

(such as the sprite-based images of Super Mario), since it produces classiĄcation results

with very satisfactory accuracy in a much shorter execution time.

Concerning the feature extractors, VGG16 and E-AlexNet presented the worst perfor-
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mance results both in terms of training time and accuracy. This is due to the fact that

these CNNs produce a set of features larger than those produced by the other ones, which

substantially increases the size of the model, causing overĄtting (since there is a greater

number of parameters to be adjusted in the training process).

Finally, the global analysis of the results presented here conĄrms that the Ąrst model

of Group 1, that is, MobileNetV2+LSTM+Chunk, presents the best performance among

the 24 new FE+C+IR models proposed in this work, achieving, approximately, a mean

accuracy of 93.1% and a mean loss of 0.2367. This model will then be used in the

comparative analysis to be carried out in Test Scenario 3.

4.2.2 Test Scenario 2

As provided in the beginning of section 4.2, considering that the Ąrst test scenario

proved the performance superiority of model MobileNetV2+LSTM+Chunk among the 24

FE+C+IR models investigated, the Winner-CNN is MobileNetV2. Then, in this second

test scenario, the model EC-MobileNetV2+frame (26-th one) is implemented and trained

from scratch from the same Frame Dataset. The trained model is then confronted with

the trained from scratch EC-AlexNet+frame state-of-art model (LUO et al., 2018) (25-th

model). In function of their architectures, both models deĄne then the following Ąfth and

last group to be investigated in this work:

❏ Group 5: composed by the trained from scratch EC-CNN+frame models (models

25 and 26).

Table 4 shows the results of these models. They indicate a slight performance superior-

ity of the EC-AlexNet+frame model over the EC-MobileNetV2+frame model. Although

EC-MobileNet proved to be about twice faster than EC-AlexNet in terms of training

time, the latter stands out for achieving an accuracy rate approximately 4% superior to

the former. These results are theoretically coherent, since the number of parameters of

EC-AlexNet and EC-MobileNet are 60.689.804 and 2.273.356, respectively.

Finally, comparing the accuracy results between the models of Group 1 that uses

MobileNet as FE and EC-MobileNetV2+frame investigated in this second test scenario,

it is possible to conclude that GRU and LSTM (which, together with MobileNet, make up

the models of Group 1) enormously contribute to increase the ability of the MobileNet-

based models to identify game events in Super Mario Broth gameplay footage.

Table 4 Ű Second Scenario Results

Group Model Mean Accuracy
Std. Dev
Accuracy

Mean Loss
Std. Dev

Loss
Training Time

(per epoch)
2*5 25 84.2% 1.0% 0.5405 0.540 390s

26 80.4% 0.2% 1.0454 0.108 169s
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4.2.3 Test Scenario 3

The purpose of the third test scenario is to compare the best FE+C+IR model pro-

posed in this work (MobileNetV2+LSTM+Chunk, or model 1, evaluated in Test Scenario

1 ), with the best EC-CNN+frame model (EC-AlexNet+frame, or model 25, evaluated in

Test Scenario 2 ).

Table 5 shows the performance results - in terms of accuracy and training runtime -

obtained by each model, as well as the statistical results (mean and standard deviation)

that allow for making a comparison between them.

Table 5 Ű Third Scenario Results

Group Model Mean Accuracy
Std. Dev
Accuracy

Training Time
(per epoch)

Total
Training Time

Inference Time

1*1 1 93.1% 0.5% 6s 240s 2s
1*5 25 84.2% 1.0% 390s 3900s 17s

The results prove the signiĄcant superiority of the performance both in terms of train-

ing time and accuracy of the best model proposed in this work (model 1) compared to that

conceived in the state-of-the-art (model 25). In fact, in addition to the accuracy of this

best new model being 10% greater than that of the model proposed in (LUO et al., 2018),

its training time (per epoch), total training time, and total inference time (corresponding

to the mean inference time of the folds used for testing) were, respectively, 6500%, 1625%

and 850% faster than that observed in such related work.

These results can be explained by the fact that this latter has to train both the

feature extraction and the classiĄcation layers of the EC-AlexNet, whereas in the Mo-

bileNetV2+LSTM+Chunk model, only the LSTM has to be trained (since MobileNetV2

is a pre-trained CNN). It is interesting to note that each epoch of the EC-AlexNet training

requires about 390 seconds (or 6 minutes and 30 seconds) to be executed, whereas each

epoch of the LSTM training spends only six seconds to be concluded. Besides this, the

inference time proves that the best model of this work is more suitable considering an

online setting.

To compare the models MobileNetV2+LSTM+Chunk and EC-AlexNet+frame, Test

Scenario 3 also evaluates their performance in detecting each event individually, as well as

in the detection of events that belong to a certain class. Table 6 presents the classiĄcation

accuracy of both models to identify each one of the 12 game events considered herein

individually.

In Table 6 is shows that the accuracy of MobileNetV2+LSTM+Chunk surpasses, ties

and falls short the accuracy of EC-AlexNet+frame for 7, 4 and 1 of the events, respectively.

Further, considering that these events, in function of their peculiarities, can be divided

into classes, it is possible to calculate - from the accuracy results presented in Table 6 - the

following success rates of the model MobileNetV2+LSTM+Chunk compared to the model

EC-AlexNet+frame (the success rate related to a given class indicates the percentage of
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events of that class for which model 1 presented accuracy at least equal to that of model

2):

❏ Class of the more frequent events: Bump, Jump, Land, StompKill: 75%

❏ Class of the less frequent events: Collect, Fallkill, Firekill, Hurt, kick, Lose, Shellkill,

Win: 100%

❏ Class of events independent of Mario: Fallkill: 100%

❏ Class of events that can be originated from more than one sequence of actions:

Collect, Fallkill, Firekill, Hurt, kick, Lose, Shellkill, Win, Fallkill: 100%

Table 6 Ű Acuracies of models 1 and 25 for each game event

Model 1 Model 25
Bump 95.24% 68.78%
Collect 86.01% 72.72%
FallKill 51.72% 13.80%
FireKill 88.24% 61.54%

Hurt 89.13% 31.91%
Jump 96.64% 83.11%
Kick 50.00% 50.00%
Land 96.21% 94.01%
Lose 33.33% 33.33%

ShellKill 42.86% 42.86%
StompKill 89.82% 91.67%

Win 100% 100%

Both analysis performed in Test Scenario 3 conĄrms the superiority of the best model

MobileNetV2+LSTM+Chunk produced in Test Scenario 1 compared to the best model

EC-AlexNet+frame produced in Test Scenario 2. Then, MobileNetV2+LSTM+Chunk

proved to be the best model investigated herein to identify game events occurring in

Super Mario Bros gameplay footage.

Finally, it should be noted that in the state-of-the-art work (LUO et al., 2018) that

inspired the implementation of the EC-AlexNet+frame model in this work, the authors

report having obtained an accuracy of approximately 94% (different then from the mean

accuracy of 84% shown in Table 4 for the model EC-AlexNet+frame). It can be explained

by the fact that, here, the model was trained to play a different game (Mario, instead of

Gwario), from datasets that, distinctly from (LUO et al., 2018), do not include frames

devoid from events.
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4.3 Final Chapter Considerations

This part of the work investigated 26 DL-based models to identify game events oc-

curring in Super Mario Bros gameplay footage. Among them, 24 correspond to novel ap-

proaches in which: a pre-trained CNN (MobileNetV2, ResNet50V2, VGG16, or AlexNet)

performs feature extraction; an FCL or an RNN (LSTM or GRU) executes the game event

classiĄcation; and the game scenes are represented either by frames or by chunks. In the

other 2 models, a trained from scratch CNN (AlexNet or MobileNetV2) deals with both

feature extraction and classiĄcation, and the game scenes are represented by frames. In

these last two models, such CNNs were selected due to the following facts: AlexNet had

already been tested in (LUO et al., 2018) to detect events in gameplay footage of Gwario,

and MobileNetV2 makes up the model which obtained better performance among the

Ąrst 24 FE+CNN+IR models initially evaluated. At the end of all test scenarios, the new

model MobileNetV2+LSTM+chunk proposed herein proved to be the best among all the

26 models investigated.
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DL Models for Performing

Multi-Instance Multi-Label Event

ClassiĄcation in Game Footage

5.1 Proposed Approach

This chapter details the models investigated in this study to tackle multi-label game

event classiĄcation in game-play footage of Super Mario Bros. These models are composed

of a CNN and a deep classiĄer NN, the Ąrst of which aims to automatically extract the

most relevant features to be used to represent the game scenes, while the last is used to

identify the events happening in such scenes.

The architecture of these models was created taking into consideration the following

results obtained in preliminary studies: 1) In the state-of-art work (Chapter 4), where

various models were investigated to perform single event detection in game-play footage of

Super Mario Bros, and the winner model was made of a feature extractor MobileNetV2

associated with a classiĄer LSTM (FARIA et al., 2022); 2) In DeepMIML the authors

proposed the DeepMIML 2D Sub-concept Layer to perform multi-label classiĄcation in

images. Then, the architecture of the models proposed herein is composed of the following

modules:

❏ An automatic data generator: the data generated represent the game scenes and

were retrieved from the Mario AI Framework; (KARAKOVSKIY; TOGELIUS,

2012);

❏ A feature extractor module: the CNN used to automatically performs feature ex-

traction is a Ąne-tuned MobileNetV2 produced in this work, which corresponds to

the original pre-trained version of MobileNetV2 (SANDLER et al., 2018) retrained

from a dataset composed of frames produced from the samples produced by the

automatic data generator.
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❏ A multi-label classiĄcation module: two distinct deep classiĄer NNs were investi-

gated: 1) LSTM (HOCHREITER; SCHMIDHUBER, 1997); 2) the classiĄer sub-

concept Layer of the DeepMIML NN (FENG; ZHOU, 2017).

BrieĆy, the multi-label game event classiĄcation process carried out in this study can

be resumed as follows: Ąrstly, the Mario AI Framework is used to capture gameplay

footage from games involving human and automatic player agents. The structure of such

footage consists of frames containing at least one event retrieved from the videos which

compose the footage, and a set of CSV Ąles storing the labels corresponding to these

frames.

After that, all frames are submitted to a pre-processing and added to a dataset, which

is then balanced for the purpose of treating the class imbalance problem. The frames

of such dataset are used as follows: those containing just one event are grouped into

a dataset named Frame Dataset, which will be used to train and produce a Ąne-tuned

version of the original feature extractor MobileNetV2; each frame containing at least one

event is clustered with their surrounding frames into structures named chunks, which are

stored in a dataset referred here as Chunk Dataset. In this way, each chunk represents,

in fact, a set of game scenes.

In order to train the multi-label game event classiĄer deep NN, each training chunk

selected in the Chunk Dataset is Ąrst submitted to the Ąne-tuned extractor MobileNetV2,

and the feature-based representation produced by this extractor for that chunk is then

presented at the input of the classiĄer deep NN to be trained. It is interesting to point out

that this chunk-based representation for the game scenes was also inspired by the state-

of-art work (FARIA et al., 2022), in which such representation produced much better

results than the frame-based one. All the steps of these processes are explained in detail

in the following sub-sections.

5.1.1 Data Generation

In order to cope with the objectives of this work, the authors in (KARAKOVSKIY;

TOGELIUS, 2012) had to implement a script, based on the Mario AI Framework, to

automatically and easily generate, from gameplay footage, adequate data to train the

proposed models. This need arose from the following facts: Ąrstly, as such objectives

involve working with a multi-label classiĄcation problem, it was necessary to count on

a signiĄcant number of data instances (frames representing game scenes) containing, at

least, two or more game events (or labels). Secondly, as Mario AI Framework generates

about 270 variables (such as game events, coordinates, and others) to describe each frame,

the script has to be able to select, among them, those which are relevant to label the

frames.
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In this way, the implemented script allows for control over both the framerate of the

footage, which represents how many times the game scene refreshes in the game in a

second, and which events end up being represented in the data. Further, the footage from

which the script produced the data to be pre-processed and used as training instances is

composed of 75 videos, which record the set of the same 15 levels of Super Mario bros

played by 5 distinct players, among which 4 are humans and one is the automatic A*

algorithm - based agent available in the Mario AI Framework.

Moreover, the footage from which the script produced the data to be pre-processed

and used as training instances is composed of 75 videos, which record the set of the same

15 levels of Super Mario bros played by 5 distinct players, among which 4 are humans and

one is the automatic A* algorithm - based agent available in the Mario AI Framework.

The footage is captured at 30 frames per second, and the following events were included

in the data:

❏ EventBump: Mario bumps his head on a block after jumping;

❏ EventCollect: Mario collects a coin;

❏ EventFallKill: an enemy dies by falling out of the scene;

❏ EventFireKill: Mario kills an enemy by shooting Ąre at it;

❏ EventHurt: Mario takes damage after being hit by an enemy;

❏ EventJump: Mario performs a jump;

❏ EventKick: Mario kicks a Koopa shell;

❏ EventLand: Mario lands on the ground after having jumped;

❏ EventLose: Mario loses the game level, can be caused by the player dying or the

time running out;

❏ EventShellKill: Mario kills an enemy by kicking a Koopa shell at it;

❏ EventStompKill: Mario kills an enemy by jumping on top of it;

❏ EventWin: The player Completes the current level.

5.1.2 Data Pre-processing

The pre-processing process has as its purpose to reĄne the row data with at least one

event produced by the generator script in such a way as to make them more suitable

to improve the training quality of the proposed models. In short, the following three

pre-processing proceedings were implemented in this stage:
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❏ Retrieval of the relevant variables: as the Mario AI Framework uses about 270

variables to describe each frame, the Ąrst proceeding has to select from them only

the 12 that correspond to the events used to label the training data;

❏ DeĄnition of a correct capture window: Super Mario AI Framework annotates

each event occurrence in the frame associated with the exact moment it starts. How-

ever, for some kinds of events, such frames are not adequate, since, visually, the effect

of triggering that event will only be noticed in a later frame. Due to this, the sec-

ond implemented proceeding has to deĄne a new adequate custom capture window

for each kind of event label. For example, speciĄcally for the event EventBump,

even though the system annotates its occurrence in a given frame 𝑓 , the second

proceeding will annotate it in the frame that succeeds 𝑓 .

❏ Frame resizing: Then, in order to make the dimension of the frames suitable to the

deep NNs that were used, the third proceeding resized each frame from its original

size to 224x224 pixels, and a pixel-wise normalization was applied. All three RGB

color channels were kept.

5.1.3 Training Datasets

After being generated by the generator script (Sub-section 5.1.1) all labeled row frames

with at least one event were pre-processed (Section 5.1.2 and stored in a dataset. Next,

as the dataset was originally very unbalanced due to the fact that some events naturally

occur much more than others in the footage from which the data were retrieved, it had to

be submitted to an adequate balancing strategy. As, due to intrinsic characteristics of the

Super Mario bros game, about 98% of the frames with at least one event are single labeled

instances (that is, present just one event), it was possible to use a simple oversampling

balancing in which the frames belonging to the under represented classes were randomly

duplicated, until a more even distribution was reached. In the end, this pre-processed

and balanced dataset was composed of 10, 000 examples, among which only 218 were

multi-labeled frames (that is, presented more than one event).

It means that the multi-label challenge faced by this work arises from the fact that the

data that will be processed consist of frame groupings (due to the chunk-based game scene

representation that is used), which, indeed, are multi-labeled instances. The construction

of both training datasets (Frame Dataset and Chunk Dataset is presented in the following

.

5.1.3.1 Frame Dataset

In order to cope with the objective of improving the feature extraction process, here

the original MobileNetV2 pre-trained from ImageNet (SANDLER et al., 2018), had to be
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retrained, in such a way as to produce a CNN Ąne-tuned extractor. To speed up such

retraining, it was performed through the Frame Dataset, which is composed exclusively

of the 9, 782 frames with a single label present in the pre-processed and balanced dataset.

5.1.3.2 Chunk Dataset

This is the main dataset used for training and testing the models proposed in this

work. It differs from the pre-processed and balanced dataset for having as instances,

instead of single frames, groups of sequential frames, called chunks. Each chunk 𝐶_𝑓 of

the Chunk Dataset is generated through the following algorithm that is applied to every

frame 𝑓 of the pre-processed and balanced dataset:

1. Take a frame 𝑓 from the dataset;

2. Find 𝑓 in the sequence of row frames produced by the generator script; in the same

sequence, take the 3 frames that precede 𝑓 and the 3 frames that follow it (it is

interesting to note that such frames can be devoid of the event);

3. Apply the same pre-processing described in 5.1.2 to all the frames taken in the

previous step that presents no event (which had not yet been pre-processed, since

they do not belong to the pre-processed and balanced dataset). Note that all the

remaining row frames taken in the previous step (that is, those with at least one

event) have already been pre-processed since they appear in the pre-processed and

balanced dataset;

4. Build the chunk 𝐶_𝑓 (containing 7 frames) by grouping, in the same order they

appear in the sequence produced by the generator script, the 3 frames that precede

𝑓 , 𝑓 itself, and the 3 frames that follow 𝑓 (all of them in their pre-processed format);

5. Label the chunk 𝐶_𝑓 with the set of labels of its frames.

Then, a chunk is a group of sequential pre-processed frames labeled with the set of

labels corresponding to these frames. As previously mentioned, such a structure was used

because it produced better accuracy in performing label classiĄcation in footage of Super

Mario bros than the frame-based one (FARIA et al., 2022).

In addition to that, since the chunks receive the labels of their multiple frames, among

the 10, 000 chunks that make up the Chunk Dataset, 3, 791 correspond to multi-labeled

examples (with two or more labels), which represents a signiĄcant increase in the number

of multi-labeled instances available to train the models proposed in this work (compared

to the few quantities of multi-labeled instances present in the pre-processed frame-based

dataset (which is equal to 217).
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5.1.4 Feature Extraction

Concerning the feature extraction process, as aforementioned, the main objective here

is to produce a Ąne-tuned version of the original MobileNetV2 pre-trained on the ImageNet

dataset (SANDLER et al., 2018). The following reasons motivated to select MobileNetV2

as the basis of the feature extraction process: Ąrstly, it presents a very compact architec-

ture compared to other existing feature extractors, both in terms of the number of layers

and dimension of the weight vector, which allows for faster processing of the input data;

secondly, MobileNetV2 has proven its ability to perform feature extraction in the winning

model obtained in the preliminary studies carried out in (FARIA et al., 2022)), which

performs single event classiĄcation in Super Mario bros game-play footage.

In this way, here this original pre-trained MobileNetV2 was retrained from the Frame

Dataset presented in Subsection 5.1.3. Such a strategy is based on the following fact:

the ImageNet dataset, from which the original MobileNetV2 was trained, is composed of

real-world images that differ a lot from the visual aspects of Super MarioŠs game scenes.

Then, the retraining of MobileNetV2 from the Frame Dataset, whose instances correspond

to frames reporting the real visual aspects of the game scenes, will allow for producing a

Ąne-tuned feature extractor able to improve the performance of the proposed models.

For the sake of clarity, as explained in the introduction of Section 5.1, still inspired by

the best model obtained in (FARIA et al., 2022), in this study the training of the feature

extractor and the classiĄer deep NNs was performed separately, as follows: initially, it is

performed the training that produces the Ąne-tuned MobileNetV2; next, in order to train

the multi-label game event classiĄer deep NN, each chunk selected in the Chunk Dataset is

submitted to the Ąne-tuned extractor MobileNetV2, and the feature-based representation

produced by this extractor, for that chunk, is then presented at the input of the deep

classiĄer NN.

For this, in order to be used to train the deep NN classiĄer, the architecture of the

trained Ąne-tuned MobileNetV2 was shortened as follows: its fully connected layer, re-

sponsible for classiĄcation, was removed (in such a way as to keep only the extractor

layers intact in the architecture). This way, such shortened architecture will be able to

produce, at its extractor output layer, the feature-based representation of each chunk that

must be presented at the input layer of the deep classiĄer NN that must be trained.

5.1.5 ClassiĄers

In order to Ąnd an adequate NN to perform MIML classiĄcation in game-play footage,

this study investigates two distinct deep classiĄers NN: the sub-Concept layer of the Deep-

MIML NN (FENG; ZHOU, 2017) and the LSTM (HOCHREITER; SCHMIDHUBER,

1997).

The reasons for the such choice are the following: concerning the Sub-Concept layer
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of the DeepMIML network, as resumed in Subsection 2.2.1, it corresponds to the classiĄer

portion of the DeepMIML NN architecture, which was conceived to operate with MIML

problems. The ability of such a classiĄer layer to automatically generate the sub-concepts

that will help to identify each label makes it quite suitable for dealing with MIML prob-

lems. Therefore, taking into consideration that the chunks - used here as the basis for

representing the game scenes - are composed of multiple frames with multiple labels, it al-

lows for including the challenge faced in this work in the class of problems MIML (ZHOU

et al., 2012).

With respect to the LSTM, it was selected for the following main reasons: Ąrstly,

because it proved to be very effective as a classiĄer NN in the winner model obtained in

the preliminary studies related to single event classiĄcation in Super Mario bros game-

play footage carried out in (FARIA et al., 2022). Such a good result is due to the fact

that, in LSTM, the intermediary neurons are replaced with memory cells that allow for

keeping the persistence of relevant information in the NN across the processing of different

instances. Secondly, in the work that proposed the Deep MIML (FENG; ZHOU, 2017),

by way of evaluating it, the authors compared its performance with that of LSTM, using

as a case study a multi-label image classiĄcation problem. By a small margin, the LSTM

performed better than the Deep-MIML. Finally, the LSTM is one of the most successful

RNNs used in the literature until today.

5.2 Experiments and Results

The purpose of this section is to present the experiments carried out to build and eval-

uate the performance of the models proposed in this paper with the purpose of performing

MIML classiĄcation in-game footage, as well as the obtained results.

For this, the following subsections present the experiments and results related to the

construction of the Ąne-tuned feature extractor and of the classiĄer modules, respectively.

5.2.1 Evaluations with the Feature-Extractors

This subsection has as its purpose to present the creation of the shortened Ąne-tuned

MobileNetV2 conceived with the purpose of operating as a feature extractor in the models

proposed in this paper (Section 5.1.4), as well as to perform a performance comparison

between the such Ąne-tuned extractor and the original pre-trained MobileNetV2 from

which the former was built up.

Such shortened Ąne-tuned extractor NN was created and evaluated according to the

following steps: 1) Firstly, a complete architecture (feature extractor layers + classiĄer

layers) of this Ąne-tune extractor NN was built from the re-training, on the Frame Dataset

presented in Section 5.1.3.1, of the complete architecture (feature extractor layers + classi-

Ąer layers) of the original MobileNetV2 pre-trained on the ImageNet dataset; 2) In order
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to perform a performance evaluation between the Ąne-tuned MobileNetV2 obtained in

the step 1 and the original MobileNetV2, both were submitted to a validation test from

Frame DataSet; 3) Finally, the classiĄer layers of the Ąne-tuned MobileNetV2 obtained

in the step 1 were removed, in such a way as to keep only the extractor layers, which

correspond to the shortened Ąne-tuned MobileNetV2 to be used as feature extractor in

the models proposed herein. It is interesting to point out that this shortened Ąne-tuned

MobileNetV2 has the same number of features (at the output extract layer) and param-

eters as the extractor part of the original pre-trained MobileNetV2 (SANDLER et al.,

2018), that is: 1.280 features and 2,257,984 parameters, as shown in Table 7.

It is also interesting to note that, in steps 1 and 2, both NNs were implemented on

Keras, and the Ąne-tuning training, as well as the validation, were performed with a 5-fold

cross-validation method for up to 100 epochs, or until there was no improvement on the

loss for Ąve consecutive epochs. The optimizer used was Adam (KINGMA; BA, 2015), the

loss parameter was categorical cross-entropy and the learning rate was equal to 0.0005,

following what was used in (FARIA et al., 2022).

Table 7 Ű Feature-Extractor Models Overview

Pre-Trained Weights Training Dataset Output Size
MobileNetV2 ImageNet - 1280
MobileNetV2-

FineTuned
ImageNet Frame Dataset 1280

Table 8 shows the results obtained in step 2, which prove that, in fact, the Ąne-tuned

MobileNetV2 proposed in this work (accuracy 90.81% and Mean Loss 0, 2831%) performs

much better than the original MobileNetV2 (accuracy 74.69% and Mean Loss 0, 7021%).

This makes sense, considering that ImageNet, from which the original MobileNetV2 was

trained, is a dataset comprised of real-world images, whereas the Frame Dataset used

to train the Ąne-tuned MobileNetV2 is composed of images related to the problem faced

here. Then, the Ąne-tuning deĄnitely proved to be a good approach to provide a feature

representation more suited to the desired game aesthetic.

Table 8 Ű Mean Accuracy and Loss Results

Mean Accuracy Mean Loss
MobileNetV2 74.69% 0.7021
MobileNetV2-

FineTuned
90.81% 0.2831

Taking into consideration these favorable results, the shortened and Ąne-tuned Mo-

bileNetV2 - from this point on, referred to just as Fine-tunned MobileNetV2 - was deĄned

as a feature extractor NN of the proposed models.
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5.2.2 Investigation with ClassiĄers

As explained before, this work proposes two distinct models to perform MIML event

classiĄcation in-game footage: 1) a Ąrst one, combining the Ąne-tunned MobileNetV2 as a

feature extractor and the Sub-concept layer of the DeepMIML as a classiĄer, named Ąne-

tunned-MobileNetV2 + DeepMIML-SubConcept-Layer ; 2) and a second model combining

the Fine-tunned MobileNetV2 as a feature extractor and LSTM as a classiĄer, named

Fine-tunned-MobileNetV2 + LSTM.

Then, concerning the Ąrst model, it is interesting to point out that the Ąne-tunned

MobileNetV2 plays the role of the feature-based-instance generator module mentioned

in Section 2.2.1. This way, in both models, the Fine-tunned MobileNetV2 provides the

feature-based representation for every chunk from the Chunk Dataset that will be used

to train the classiĄers, as mentioned in Section 5.1.4.

Table 9 resumes the information related to both classiĄers. Obviously, the 12 labels

mentioned in the such table refer to the 12 events described in Section 5.1.1. Again,

both networks were implemented on Keras, and a 5-Fold Cross-Validation method, with

a 0.0005 learning rate, was used for training and testing. The chosen optimizer was

dadelta (ZEILER, 2012). As this works copes with MIML setting, the metrics used in the

experiments for evaluating the performance of both models were: Mean Average Precision

(mAP), F1-Score (F1) and Hamming Loss. The results obtained in the experiments are

presented in Table 10.

Table 9 Ű ClassiĄers Models Overview

Pre-Trained Weights Training Dataset Labels
DeepMIML

Sub-Concept
Layer

- Chunk Dataset 12

LSTM - Chunk Dataset 12

Table 10 Ű Evaluation of the Investigated ClassiĄers

mAP Hamming Loss F1
DeepMIML

Sub-Concept
Layer

87.92% 0.014 0.91

LSTM 89.33% 0.011 0.93

The results show that LSTM (Table 10) performs a little better than MIML in all

evaluated metrics. In fact, the Mean Average Precision, the Hamming Loss and the F1-

Score produced by the former and the latter were, respectively: 89.33%, 0.011%, 0.93,

and 87.92%, 0.014%, 0.91.

It is interesting to note that the same slight performance superiority of the LSTM-

based model over the MIML-based model observed here, dealing with MIML classiĄcation
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in game footage, was also observed in (FENG; ZHOU, 2017), where the authors investi-

gated both LSTM and MIML-based models dealing with image object detection in the

Common Objects in Context (COCO) dataset.

5.3 Chapter Considerations

In order to extend the current state of art in the domain of performing MIML event

detection in gameplay footage, this stage of this study proposed two distinct DL models,

in which the instances are represented by chunks and the feature extraction is done by a

Ąne-tuned MobileNetV2. With respect to the deep classiĄer NN, the Ąrst model uses the

sub-concept layer of the DeepMIML, whereas the second one uses the LSTM. The Super

Mario Bros game was used as a case study. The results proved that both models succeeded

in the task they dealt with, even though the Fine-tunned-MobileNetV2 + LSTM model

performed a little better than the Fine-tunned-MobileNetV2 + DeepMIML-SubConcept-

Layer model.
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Chapter 6

Conclusion

As stated in section 1.2, this work sought to answer the following questions: i) is it

possible, through DL and CV techniques, to generate a viable framework for extracting

relevant information from video games that can replace the need to access the Game

Engine? ii) can methods designed for real-world scenarios be adapted to work in-game

scenes?; iii) if so, among a large number of different methods in the literature, which ones

are more suited for identifying events in-game scenes? iv) what is the best strategy to

deal with multi-labeled frames?

This work proposed two main contributions related to the problem of classifying game

events from gameplay footage. The Ąrst one was an investigation of 26 different DL-based

models to identify game events in the game Super Mario Bros, structured in such a way

as to separate a DL model into two networks, a CNN for feature-extraction, and an RNN

for classiĄcation, in addition to applying a frame clustering approach in the dataset to

improve overall performance.

The second one focused on structuring the game-event classiĄcation problem into a

MIML framework, using a new proposed Ąne-tuning strategy to train a CNN to perform

feature-extraction, and then using both a LSTM and a Deep MIML network to perform

multi-label classiĄcation.

These contributions mentioned above showed positive answers to both questions i and

ii, that were presented in the beginning of this section. In regards to questions iii and

iv, it is not possible to determine a overall best method for identifying game events, and

deal with multi-labeled frames, since different video games present very distinct charac-

teristics, both in terms of graphics, as well as gameplay. However, this work proposed

solid alternatives based on the state of the art in real-world video classiĄcation that are

believed to be a good baseline and starting point to any future research that requires

action or event classiĄcation in games.
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6.1 Main Contributions

a) A new approach to generate labeled data from gameplay automatically based on

the Mario AI Framework (KARAKOVSKIY; TOGELIUS, 2012);

b) A balanced Super Mario Bros dataset speciĄcally designed to contain multi-label

and single-label examples;

c) A proposed representation for clustering frames that boosts classiĄcation perfor-

mance in gameplay footage;

d) An evaluation among four state-of-the-art convolutional neural networks (CNN)

(ResNet50V2, MobileNetV2, VGG16 and AlexNet) for feature-extraction in Super

Mario video frames;

e) An investigation among three state-of-the-art neural networks (Long Short Term

Memory Network, Gated Recurrent Unit and Deep Multi-Instance Multi-Label

Network) for classifying events from Super Mario Frames;

f) A Ąne-tuning strategy to signiĄcantly boost the performance of CNNs pre-trained

on real-world data when applied to video games;

g) A strategy to Ąt games video footage into the Multi-Instance Multi-Label frame-

work (ZHOU et al., 2012), in order to deal with the multi-label problem.

6.2 Future Works

In the context of event classiĄcation from gameplay footage, the future works that

extend the contributions presented in this thesis are as follows:

a) Investigate how the proposed approaches perform in 3D games with various graphic

styles;

b) Include the process classifying frames containing no events or actions;

c) Generate a diverse dataset focused on feature-extraction for all kinds of video

games, in a was as to allow for a more speciĄc pre-training process for DL models;

d) Investigate automatic labeling techniques for video footage, in order to simplify

the data generation process;

e) Apply this classiĄcation framework in a task of analyzing the psychological proĄle

of different players. The hypothesis is that gameplay analysis can be an effective

tool to gather important information regarding behavior and cognitive abilities.
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❏ Matheus Prado Prandini Faria, Etienne Silva Julia, Marcelo Zanchetta do Nasci-

mento, and Rita Maria Silva Julia. 2022. Investigating the Performance of Vari-

ous Deep Neural Networks-based Approaches Designed to Identify Game Events in

Gameplay Footage. ACM SIGGRAPH Symposium on Interactive 3D Graphics and

Games (May 2022), 17 pages. https://doi.org/10.1145/3522624

❏ Etienne Silva Julia, Marcelo Zanchetta do Nascimento, Rita Maria Silva Julia,

Matheus Prado Prandini Faria, and Rodrigo Zamboni. Deep Learning-based Mod-
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