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Resumo

Algoritmos de sistemas distribuídos são peças essenciais para criação de aplicações tol­
erante a faltas. A corretude desses algoritmos é crucial. Nesse sentido, o presente trabalho 
formaliza e especifica três algoritmos para multi-difusão generalizada utilizando TLA+ , 
corrigindo os problemas encontrados durante o processo. Em um lado mais prático, im­
plementamos um protótipo de um dos algoritmos corrigidos. O presente trabalho detalha 
os algoritmos, os problemas encontrados e as respectivas soluções, e finalmente, o processo 
de especificação e implementação.

Palavras-chave: Consenso; Tolerância a faltas; Difusão Genérica; Difusão Atômica.





Abstract

Distributed systems algorithms are an essential building block to creating fault-tolerant 
applications. The correctness of such algorithms is crucial. The current work formalizes 
and specifies three generic multicast algorithms using TLA+ . We detail the formalization 
process, describing the problems and their corrections. On a more practical side, we im- 
plement a prototype of one of the specified algorithms. The current work aims to describe 
the process of (i) formalization and correction of three generic multicast algorithms and 
(ii) implementation of an algorithm directly from the specification.

Keywords: Consensus; Fault-Tolerance; Generic Multicast; Atomic Multicast.
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Chapter

Introduction

Computer systems are ubiquitous in day-to-day life, with different kinds of appli- 
cations, where the critical ones must have high availability and correctly behave when 
requested. Distributed applications can offer high availability and fault tolerance by us- 
ing group communication primitives that offers varying properties, selecting the most 
adequate depending on the application's requirements.

There are different flavors of group communication primitives, each with its own guar- 
antees and requirements. For example, Reliable Broadcast can reliably deliver messages to 
all participating processes; other primitives enforce an order to the message delivery, such 
as FIFO, causal, and total (DÉFAGO; SCHIPER; URBÁN, 2000). Variants abound, with 

a corresponding variety of algorithms implementing them (PEDONE; SCHIPER, 1999; 
LAMPORT et al., 2001; ONGARO; OUSTERHOUT, 2014).

The multicast family offers more flexible primitives when compared to the broadcast 
family. The primitive known as Atomic Multicast can reliably deliver a message in the 
same order to a subset of processes in the system. The ordering and reliable delivery 
guarantees make the Atomic Multicast primitive interesting for implementing the state 
machine replication technique, commonly used to implement fault-tolerant services in 
distributed systems (SCHNEIDER, 1990). Informally explaining, by creating a set of 
replicas of a deterministic process, starting all of them in the same state, applying the 
same sequence of commands, everyone proceeds the same (LAMPORT, 1994b). Even if 
some of the replicas fail, there are others to provide the service.

A more generalized approach could order messages only when required since not every 
pair of operations needs total order; partial ordering commands may be enough. A Generic 
Multicast algorithm can create a partial order of messages, having a generalized behavior. 
If message ordering adds a cost to the algorithm, a less expensive algorithm avoids it 
(PEDONE; SCHIPER, 1999).

ANTUNES proposed three new algorithms that solve the Generic Multicast problem 
in an unpublished work. The proposed algorithms extend previous work in the literature, 
adding the aforementioned generalized behavior. First, changing the Atomic Multicast al- 
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gorithm proposed by Skeen that works in a failure-free environment (BIRMAN; JOSEPH, 
1987), the proposed algorithm is just an introduction, and it is called Generic Multicast 0. 
Then, extending FRITZKE et al.'s algorithm with improvements proposed by SCHIPER; 
PEDONE, called Generic Multicast 1. The final algorithm is called Generic Multicast 2, 
created from the previous proposals by replacing the Atomic Broadcast with a Generic 
Broadcast primitive.

Like many other algorithms proposed before, ANTUNES presents its algorithms in 
pseudo-code, but those are not formally verified. While this has been a long-standing prac- 
tice, formal methods are considered very expensive. Recent developments have pushed for 
better specification and verification of algorithms, for example, applying formal methods 
to check the correctness of developed artifacts (BORNHOLT et al., 2021) and embedding 
specification of the problem and solution during the development process (SYSTEMS, 
2020). Such a formalization gives higher confidence in the algorithm's correctness.

1.1 Contributions

In this work, we have formally specified the algorithms proposed by ANTUNES using 
TLA+ and checked the specifications using TLC. In this effort, we have identified several 
problems which we have rectified. During the process, we came up with a version that 
uses fewer communication primitives and removes one intra-group message exchange. 
We implemented a prototype for the newly proposed algorithm using the Go language 
(GOLANG, 2021b). Both the prototype1 and the TLA+ specifications2 are available for 
public scrutiny.

1 <https://github.com/jabolina/go-mcast>
2 <https://github.com/jabolina/mcast-tlaplus>

1.2 Organization

The current work starts by laying a theoretical foundation in Chapter 2. First, we 
will introduce the system model, communication primitives, and notation used throughout 
this work. The chapter explains what TLA is and how a system is formally specified using 
TLA+. The chapter finishes with a quick overview of Go, the programming language used 
to develop the Generic Multicast 1 prototype.

Chapter 3 is a discussion of related works. We discuss the genealogy of the algorithms 
developed by ANTUNES, which forms the basis of our algorithms. We also briefly discuss 
other works focused on formally specifying algorithms and others related to consensus 
algorithms implementation.

Chapters 4 and Chapter 5 are the meat of the current work. Initially, the correctness 
verification from the previously proposed algorithms, a story told in detail, describing the 

https://github.com/jabolina/go-mcast
https://github.com/jabolina/mcast-tlaplus
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complete process of writing the specification, the problems found, and a final corrected 
proposition. We extend the discussion with additional properties of the algorithms and 
establish behavior propositions with proofs left for future work. The other chapter is the 
prototyping process, describing the modeling of data structures from the specification into 
a programming language, the tests, and the required communication primitives. Although 
the chapters are separated, we did some work in parallel.

Chapter 6 concludes the current work. This chapter contains a summary and lists 
potential future work.
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Chapter 2
Fundamentals

This chapter reviews the concepts used throughout this work. Section 2.1 defines the 
processes and the primary piece of communication; Section 2.2 presents the Consensus 
problem. Having processes and communication channels, we may want to create fault- 
tolerant applications to keep working even if some parts of the system have failed, so 
in Section 2.3.1, we discuss the state machine replication technique. With the introduc- 
tion of groups for replication, Section 2.3.2 will discuss its definitions, properties, and 
communication primitives.

The remaining sections in this chapter present the tools we use to specify and imple- 
ment the algorithms. Section 2.4 discusses what we use for specification and formalization, 
TLA, TLA+, and TLC. And Section 2.5, for implementation, the programming language 
Golang.

2.1 Processes and Channels

The algorithms work in an environment, making assumptions and defining require- 
ments. Each of our proposed algorithms works in its specific environment. Here we 
establish definitions for all of our algorithms and increment them step-by-step in the 
following sections.

2.1.1 The Universe and Everything Else

The systems are composed of processes and communication channels. The set of all 
processes is n = {p1, p2, ..., pn}, where they share neither memory nor a global clock 
and communicate only by message-passing through the communication channels. The 
communication channels connect every pair of processes and provide two basic primitives 
to send and receive messages. A message is a tuple of values. For a process pi E n to 
send a tuple t to a process pj E n, pi invokes Send t to pj , and when the target receives 

the tuple, Received t from pi is invoked at pj.
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Usually, tuples are constructed in place when sending and are pattern-matched when 
received. For example, to send a message m and a timestamp ts to a process pj , pi 

would invoke Send (m, ts) to pj and the reception as Received (m, ts) from pi . Pat- 
tern matching requires the tuples to match in size and uses _ to mean that any value 
matches the corresponding element in the position, which, in turn, is discarded. These 
primitives implement a quasi-reliable communication with the following properties (PE- 
DONE; SCHIPER, 2002):

□ No creation: for pi, pj E n, if Received t from pi is invoked in pj, then pi must 
have invoked Send t to pj ;

□ No duplication: for pi, pj E n, for every Send t to pj invoked by pi, a corre- 

sponding Received t from pi is invoked in pj at most once;

□ No loss: for pi, pj E n, if process pi invokes Send t to pj , and if neither pi nor pj 

fails, then eventually Received t from pi is invoked in pj.

2.1.2 Failing

The last property states that if the sender or receiver fails, the message might be lost, 
but what does failing means? We define that if a process behaves exclusively according 
to its specification, it is correct. If it ceases working or deviates from the specification, it 
is incorrect; it fails. We do not consider malicious processes.

Our algorithms adopt a different failure model, so we make it explicit when presenting 
the algorithms. Common to all algorithms is that the system is asynchronous, without 
assumptions about process speed or message delivery time (ANTUNES, 2019).

2.2 The Consensus Problem

Informally, we can define the consensus problem as a collection of servers proposing 
values and eventually agreeing upon one of such proposals (DÉFAGO; SCHIPER; UR- 
BÁN, 2004). More formally, an algorithm that solves the consensus problem fulfills the 
following properties (CHANDRA; TOUEG, 1996):

□ Agreement: no two correct processes p1, p2 E n can agree on different values;

□ Integrity: every correct process in n agrees at most once;

□ Validity: if a correct process pi E n agrees on a value v, then v was previously 
proposed by a correct process pj E n;

□ Termination: every correct process in n eventually agrees on some value;
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This consensus specification allows different agreed values if one of the processes is 
incorrect (CHARRON-BOST; SCHIPER, 2004). The uniform consensus variant derives 

the consensus properties, dealing with incorrect processes. Correctness properties, like 
Agreement, Integrity, and Validity, must hold irrespective of whether the process is correct 
or incorrect. Liveness properties, like Termination, are harder to enforce in a misbehaving 
process, so the uniform variant of consensus only requires Termination to correct ones 
(FRITZKE et al., 1998; DÉFAGO; SCHIPER; URBÁN, 2004). The properties are then 
(CHARRON-BOST; SCHIPER, 2004; CHANDRA; TOUEG, 1996):

□ Uniform Agreement: no two processes p1, p2 G n can agree on different values;

□ Uniform Integrity: every process in n agrees at most once;

□ Uniform Validity: if a process p in n agrees on a value v, then v was previously 
proposed by a process q in n;

□ Termination: every correct process in n eventually agrees on some value;

This consensus definition is impossible to solve in an asynchronous system if even a 
single process is incorrect, a result known as the FLP impossibility (FISCHER; LYNCH; 
PATERSON, 1985). The impossibility arises from the fact that it is not possible to 
guarantee Termination (FISCHER; LYNCH; PATERSON, 1985); a slow process is indis- 

tinguishable from an incorrect one on an asynchronous system. One solution to allow 
solving the consensus in asynchronous systems with failures is augmenting the system 
with a mechanism known as a failure detector (CHANDRA; TOUEG, 1996).

We define the set of all failure detectors as P = {d1, d2, ..., dn} (CHANDRA; TOUEG, 
1996). Each process pi G n has an attached local failure detector module di. When pi G n 
queries its local failure detector di, the response can be incorrect by incorrectly suspecting 
a process; and can be inconsistent when at time t , detector dj suspects a process pn and 
detector di does not (DÉFAGO; SCHIPER; URBÁN, 2000). These are the properties of 
completeness and accuracy (DÉFAGO; SCHIPER; URBÁN, 2000), respectively.

The work of CHANDRA; TOUEG shows that the weakest failure detector needed to 
solve the consensus problem in an asynchronous system is the O, equivalent to 05 
(CHANDRA; HADZILACOS; TOUEG, 1996; CHANDRA; TOUEG, 1996; DÉFAGO; 
SCHIPER; URBÁN, 2004). This failure detector has the following properties:

□ Strong completeness: eventually, every correct process permanently suspects a 
process that failed;

□ Eventual weak accuracy: eventually, a correct process is not suspected by any 
correct process.

But how can we glue this together to create a fault-tolerant application?
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2.3 Fault Tolerance and Groups

Some applications are critical, and therefore, such applications must be able to tolerate 
system faults. We can replicate an application amongst the available multiple machines, 
thus providing redundancy, high availability, and fault tolerance, where if one fails, others 
can continue working (KLEPPMANN, 2017; CHARRON-BOST; PEDONE; SCHIPER, 

2010). The hardship of replication is dealing with stateful applications where the data 
changes (KLEPPMANN, 2017). Here we will discuss the state-machine replication tech- 
nique.

2.3.1 State Machine Replication

State Machine Replication is a technique to create fault-tolerant applications in dis- 
tributed systems (SCHNEIDER, 1990). In this approach, a server is designed as a de- 
terministic state machine and replicated on a collection of servers; by starting all servers 
with the same state, applying the same sequence of commands to the server replicas in 
the same order, the output is the same (SCHNEIDER, 1990). Even when some servers 
are unavailable, the system can still operate, thus being fault-tolerant. Sometimes state 

machine, server, and replicas are used interchangeably, but in this work, we only refer to 
them as servers.

Using a consensus algorithm, a collection of servers agree on a single value and can 
work as a consistent group (LAMPORT et al., 2001). If multiple consensus instances 
execute in sequence, such that the i th consensus instance agrees on the i th command, 
then all deterministic server proceed through the same states (LAMPORT et al., 2001).

2.3.2 Communication Primitives for Groups

With a replicated application, we are not dealing with a single process; we are dealing 
with a group of processes. In these scenarios, primitives for group communication are 
more desirable. These primitives are designed to handle groups and provide varying 
guarantees, working similarly to the primitives for process communication, transporting 
an abstract structure, which we say is a message for simplicity.

The group operation has groups as the destination, which are subsets of n. In the 
context of this work, the set of groups is defined a priori as r = {g1, g2, ..., gn}, and 
gi Ç n. In fact, we consider that groups neither are empty (Vg G r, g = 0) nor overlap 
(Vgi, gj G r, j = i : gj A gi = 0) and that all processes must belong to one group (Vp G n : 
3g G r : p G g). We use groups and partitions as synonyms.

Groups are either static, if they cannot change throughout the algorithm's execution, 
or dynamic, otherwise. In this work, for simplicity, we consider static groups, although 
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using group membership protocols and adaptations to the algorithms, it would be possible 
to use dynamic groups instead (SCHIPER, 2006).

Groups can also be open or closed. In a system with closed groups, a message sent to a 
group g G r requires the sender to also be in g, meaning that the sender process must be 
in the destination group (DÉFAGO; SCHIPER; URBÁN, 2000). However, an open group 

can receive messages from any process in n, being more general and providing better 
support for distributed systems (DÉFAGO; SCHIPER; URBÁN, 2000). The algorithms 

presented here use open groups (ANTUNES, 2019).
With all the formalisms out of the way, we can start looking at the group primitives. 

Our algorithms build on top of these primitives.

2.3.2.1 Reliable Broadcast

An algorithm that solves the reliable broadcast problem provides a group communi- 
cation to broadcast messages to one group with delivery guarantees. Guarantee that, 
for a correct sender, all correct processes in the addressed group eventually deliver the 
message. For an incorrect sender, or either every correct process or none delivers the 
message. (DÉFAGO; SCHIPER; URBÁN, 2004).

Formally, we define reliable broadcast through the primitives rb-Send m to P , used 
by a process p G n to broadcast a message m to all processes in P, where either P = n 
or G r; and rb-Delivered m , in which a process p G P delivers a message m. These 
primitives satisfy the following properties:

□ Validity: if a correct process in n rb-Send m to P , then all correct processes in
P eventually rb-Delivered m ;

□ Agreement: if a process in P 

eventually rb-Delivered m ;
rb-Delivered m , then all correct processes in P

□ Integrity: for any message m, every process in P 

and only if m was previously rb-Send m to P by a process in n.
rb-Delivered m at most once,

2.3.2.2 Atomic Broadcast

In the atomic broadcast problem, also known as total order broadcast, a process can 
reliably send messages to all processes in the system, as in the reliable broadcast problem, 
while guaranteeing that all messages are delivered in the same order by all recipients 
(DÉFAGO; SCHIPER; URBÁN, 2000). The problem is defined in terms of primitives 

ab-Send m to P , used by a process in n to broadcast a message m to all processes in 
P, where either P = n or G r; and ab-Delivered m , in which a process p G P delivers 
a message m. Formally, an atomic broadcast primitive satisfies the following properties 
(DÉFAGO; SCHIPER; URBÁN, 2000):
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□ Validity: if a correct process in n ab-Send m to P , then all correct processes in
P eventually ab-Delivered m ;

□ Agreement: if a process in P 

eventually ab-Delivered m ;
ab-Delivered m •) then all correct processes in

□ Integrity: for any message m, every process in P 

and only if m was previously ab-Send m to P by a process in n;
ab-Delivered m at most once,

□ Total Order: if processes p1, p2 G P both delivers messages m1 and m2, 

p1

before ab-Delivered m2 .

then
ab-Delivered m1 before ab-Delivered m2 if, and only if, p2 ab-Delivered m1

The atomic broadcast primitive satisfies all the requirements for a reliable broadcast 
primitive, adding a more strict property for totally ordering all messages. Atomic broad- 
cast is equivalent to the consensus problem described previously in Section 2.2 (DÉFAGO; 
SCHIPER; URBÁN, 2004). In fact, an infinite sequence of consensus instances can im- 
plement the atomic broadcast. The converse side of the equivalence is straightforward: 
to propose values for the consensus, just broadcast them; the value decided is the first 
delivered by the atomic broadcast protocol. One important implication of this equiva- 
lence is that the same failure detector needed to solve consensus is needed to solve atomic
broadcast.

Any process in n can use the primitive ab-Send m to , but P must be a single
group. In some situations, it may be necessary to have multiple groups in destination for 
the same messages with reliability and total order guarantees. In this case, the atomic 
multicast primitives are better adequate.

2.3.2.3 Atomic Multicast

am-Send m to Q , used by a process in n
and the primitive am-Delivered m , which

The atomic multicast problem, also known as total order multicast, is defined in terms 
of a destination set Q Ç r, and the primitives 
to multicast a message m to processes in Uq ; 
processes in Uq deliver a message m.

The properties that must be satisfied by an atomic multicast algorithm are similar to 
those of atomic broadcast algorithms, although not equal:

□ Validity: if a correct process p G n am-Send m to Q , Q Ç r, then all correct 
processes in Uq eventually am-Delivered m ;

□ Agreement: if a process in Uq, Q Ç r, am-Delivered m , then all correct processes 
in Uq eventually am-Delivered m ;
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□ Integrity: for any message m and every process p G IJç that am-Delivered m 
where Q Ç r, p am-Delivered m at most once and only if m was previously 
am-Send m to Q by some process in n;

1

□ Total Order: given two messages m1 and m2 and two processes pi, pj G n, if both
p1 and p2 am-Delivered m1 and am-Delivered m2 , then pi am-Delivered m1 be-
fore am-Delivered m2 if, and only if p2 am-Delivered m1 before am-Delivered m2

An asynchronous system must have the 05 failure detector to solve the atomic 
multicast (and broadcast) problems (DÉFAGO; SCHIPER; URBÁN, 2000; DÉFAGO; 

SCHIPER; URBÁN, 2004). The atomic multicast primitive provides the same guaran- 

tees as the atomic broadcast, whereas, in fact, one may see the atomic broadcast problem 
as a specific case of atomic multicast with a single group in Q (a single partition of n). 
Atomic Multicast can solve Atomic Broadcast by sending messages to all participants 
(GUERRAOUI; SCHIPER, 1997; DÉFAGO; SCHIPER; URBÁN, 2004). The Atomic 

Broadcast can solve Atomic Multicast by broadcasting the tuple (message, destination), 
and the processes discard messages when it is not present in the destination. The second 
approach creates a feigned Atomic Multicast algorithm because it involves more mem- 
bers than necessary, creating an algorithm as costly as the broadcast (GUERRAOUI; 
SCHIPER, 1997). The following minimality property asserts that an algorithm is not 
feigned (GUERRAOUI; SCHIPER, 1997):

□ Minimality: An algorithm that implements the Atomic Multicast of a message m 
to a destination Q involves only the sender process and the processes in Q.

An algorithm that solves Atomic Multicast using Atomic Broadcast is not genuine 
(GUERRAOUI; SCHIPER, 1997). This property ensures that only necessary processes 
participate in message delivery.

2.3.2.4 Generic Broadcast

The atomic broadcast problem delivers messages in total order. The ordering guaran- 
tee, however, may be too strong for the application that is using it. A simple and concrete 
example is that of a distributed counter, where this counter receives operations for adding 
and multiplying its current value. Addition operations do not need to have a total or- 
der with other addition operations, and the same applies to multiplication. Although, 
when we mix these operations , we must have an ordering guarantee between addition and 
multiplication.

In such scenarios, a primitive with a generalized behavior fits better. The generic 
broadcast is one of these primitives, where it uses the messages' semantic information to 
determine whether messages need order and effectively deliver them in a partial order, 
different from the total order of atomic broadcast (PEDONE; SCHIPER, 1999; PEDONE; 
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SCHIPER, 2002; CAMARGOS, 2008). In the generic broadcast, a conflict relation cap­
tures the semantic information, specifying which pair of messages commute. We say that
conflicting messages do not commute; if they do not conflict, they commute.

We define generic broadcast by the primitives gb-Send m to P , used by a process
in n to broadcast a message m to all processes in P, where either P = n or P G r; 
gb-Delivered m , in which a process in P delivers a message m; and the conflict relation, 

defined as C, symmetric, non-reflexive over M x M, where M is the set of all messages 
that may be generic broadcast, thus C Ç M x M (PEDONE; SCHIPER, 2002). Hence, 
if (m1, m2) G C, then message m1 conflicts with message m2, and if (m1, m2) G C, then 
message m1 does not conflict (it commutes) with the message m2 (PEDONE; SCHIPER, 
2002). To simplify notation, throughout this work we write m1 ~ m2 to indicate that 
(m1, m2) G C and m1 m2 otherwise. These primitives provide the following properties 
(PEDONE; SCHIPER, 1999; PEDONE; SCHIPER, 2002):

□ Validity: if a correct process in n gb-Send m to P , then all correct processes in
P eventually gb-Delivered m ;;

□ Agreement: if a process in P 

eventually gb-Delivered m
gb-Delivered m •) then all correct processes in

□ Integrity: for any message m, every process in P 

and only if m was previously gb-Send m to P by a process in n;
gb-Delivered m at most once,

□ Partial Order: if processes p1, p2 in P both gb-Delivered m1 and 
gb-Delivered m2 , and m1 ~ m2, then p1 and p2 gb-Delivered m1 and 
gb-Delivered m2 in the same order.

The generic broadcast problem is generalization of atomic and reliable broadcast: when 
C = M x M, that is, all messages conflict, the problem reduces atomic broadcast; when 
C = 0, that is, no messages conflict, it reduces to reliable broadcast. Another problem, 
the Generalized Consensus (LAMPORT, 2005), goes even further and allows, for example, 
generalizing lease allocation (REZENDE, 2017). Here, however, we are more interested 
in a different generalization, allowing multicast to benefit from partial ordering.

2.3.2.5 Generic Multicast, Or The Goal

In this work, we focus on the generic multicast problem. A primitive for generic 
multicast combines the partial ordering of generic broadcast with the destination flexibility 
of multicast.

We define the generic multicast problem in terms of primitives gm-Send m to Q , 
through which a process in n can multicast a message m to every process in Uq , Q Ç r;

, in which a process Uq delivers a message m; and the conflict relationgm-Delivered m
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C,, symmetric, non-reflexive over M x M, thus C Ç M x M. An algorithm that solves 
the generic multicast must fulfill the following properties (ANTUNES, 2019; COELHO; 
SCHIPER; PEDONE, 2017):

□ Validity: if a correct process 
that p is correct, eventually p

, G Ç r, then Vp G Uç suchin n gm-Send m to G

gm-Delivered m ■)

□ Agreement: if Ep G IJç, G Ç r, p gm-Delivered m , then every correct process in
Uç eventually gm-Delivered m ;

Integrity: Vm G M, VpUq , G Ç□ r p gm-Delivered m at most once, and only if
m was previously gm-Send m to Q by some process in n;

□ Partial Order: if processes p1, p2 G n both gm-Delivered m1 and gm-Delivered m2

and m1 ~ m2, then p1 gm-Delivered m1 before gm-Deliverec m2 , if, and only if,
•)

p2 gm-Delivered m1 before gm-Delivered m2 ;

□ Acyclic Order: the relation < is acyclic, where for m1, m2 G M and m1 ~ m2 

then m1< m2, if, and only if, there exists a process that gm-Delivered m1 before
gm-Delivered m2 .

As atomic multicast can solve atomic broadcast, generic multicast can solve generic 
broadcast, too. Also, generic multicast is a generalization of atomic and reliable multicast, 
only varying the conflict relation to achieve the desired behavior.

2.4 Temporal Logic of Actions

This section describes the temporal logic of actions, known as TLA. TLA provides 
mathematical foundations to specify and reason about concurrent systems (LAMPORT, 
1994b; LAMPORT, 2002). Verifying the algorithm's correctness by writing the algorithm 
with a pseudo-code or a programming language is a task more difficult than reason- 
ing about a one-page abstract algorithm written in mathematical notation (LAMPORT, 
1994b). Programming languages have a difficult job to execute and can have details that 
are not explicit, while it could be easier with simple mathematical concepts (LAMPORT, 
1994b).

Writing a system's formal specification takes effort, but some benefits include under- 
standing the system better and having greater confidence in its operation (LAMPORT, 
2002). There exists a gap between writing a specification and implementing an algorithm, 
where filling this gap by supposing how the system should behave can lead to implementing 
something other than the correct algorithm (CHANDRA; GRIESEMER; REDSTONE, 

2007). The specification is not the final step; it is a tool to apply when appropriate. For 
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example, during system design, use it to verify the interaction between the system's com- 
ponents (LAMPORT, 2002). With the ability to write a formal specification, developers 
have a new canvas to test ideas (NEWCOMBE et al., 2015).

The correctness of the system means that its properties are satisfied (LAMPORT, 
1994b). We can represent a system with abstract objects to verify its correctness and 
use a model checker for invariant properties (YU; MANOLIOS; LAMPORT, 1999). To 

completely specify a system is also an activity of abstraction (LAMPORT, 1994a). For 
example, create an abstraction to separate the network layer from an algorithm specifi- 
cation. Learning how to abstract accurately, leaving only the essence of the algorithm, is 
a skill gained only through experience (LAMPORT, 2002).

This section describes the tools we use to formalize our algorithms. The algorithm's 
correctness does not depend on the formalism used to prove its correctness; it should be 
correct regardless (LAMPORT, 1994b). Remember that: prose is not a formal way to 
specify a system (LAMPORT, 2022), wherein the tool for such a task is formal methods, 
and we opt to use TLA.

2.4.1 Let There be Time

The system specification is a set of possible behaviors; a single behavior is a sequence 
of states; a state is an assignment of values to variables (LAMPORT, 2002). A single 
temporal formula F is an assertion of a system's behavior, evaluated as true or false; it 
is composed of elementary formulas using boolean operators and the unary □ operator 
(LAMPORT, 1994b; LAMPORT, 2002).

The boolean value a formula F assigns to behavior a is denoted as a[[F]] (LAMPORT, 
1994b). We say that cr satisfies F, if, and only if, a[[F]] equals true (LAMPORT, 2002). 
We can express the universe evolution as a0 a1 ..., where an represents the state at
instant n during behavior a (LAMPORT, 1994b; LAMPORT, 2002). Different operators 
exist to validate the system during execution.

Machinery operators

To assert if any arbitrary temporal formula F is always valid. We start defining 
a[pF]], to be true if, and only if, an an ++1. Defining a+n = an an+1 ..., as the

suffix of a removing the first n states, so a[pF]] is true if, and only if, a+n [[F]] is true for 
all n. Thus a satisfies □F if, and only if, every suffix a+n of a satisfies F (LAMPORT, 
2002).

+ n Aa = (7n &n+1 &n+2 ...

a[pF]] = V n G Nat : a+n[[F]] (1)
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Equation (1) defines the temporal operator □. The formula DF asserts that F is true 
at all times, reading as always, henceforth, or from then on (LAMPORT, 2002). There 
are other temporal formula classes, each class described in terms of boolean operators 
and the temporal operator □ (LAMPORT, 1994b). Another temporal operator is the O, 
read as eventually, and the formula OF, defined by —□—F (LAMPORT, 1994b).

a[[OF]] = 3 n G Nat : a+n[[F]] (2)

The O operator asserts that F is not always false or that F is true at some time 
(LAMPORT, 1994b; LAMPORT, 2002). Equation (2) specifies the O operator. A behav- 
ior satisfies OF if, and only if, F is valid at some time during the behavior (LAMPORT, 
1994b).

Combining O and □, we have two new operators. The first is the DO, which read as 
infinitely often (LAMPORT, 1994b). The formula DOF asserts that at all times, either 
F is valid then or at some time later (LAMPORT, 2002), formally written in Equation (3) 
(LAMPORT, 1994b). The other operator is the OD, which reads and asserts that OD F 
is eventually always valid. A behavior satisfies ODF if, and only if, after some time, it is 
always true from that time on (LAMPORT, 1994b). Formally written in Equation (4).

íj+(n+m)
— &n+m &n+m+1 &n+m+2 •••

a[[DOF]] — V n G Nat : 3 m G Nat : a+(n+m)[[F]] (3)

a[[ODF]] — 3 n G Nat : V m G Nat : a+(n+m)[[F]] (4)

The last temporal operator is For any two temporal formulas, F and G, it is
written as F G, or, in other words, D(F - OG), asserting that any time that F is
true, then eventually, G is also true (LAMPORT, 1994b). This operator is also transitive, 
meaning that if F G and G H are both satisfied, then F H is also satisfied 
(LAMPORT, 1994b). More formally, for any temporal formulas F and G (LAMPORT, 
2002):

a[[F G]] — V n G Nat : (a+n[[F]]) > (3 m G Nat : a+(n+m)[[G]])

We have a complete framework to assert a system's behavior during execution. We can 
represent time passing when specifying our algorithms, but some systems may perceive 
the passage of time differently. For example, a specification for a clock that displays 
hours, minutes, and seconds implements one that shows hours and minutes only, but the 
former sees time differently from the latter. For this specification to be valid, the systems 
must be able to do nothing; if the minute changes in every step, then no clock displaying 
seconds exists (LAMPORT, 2002).
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Falters' act

The TLA specification represents the complete universe, whereas, in this universe, the 
system exists with all other systems. For example, in mathematical terms, the formula 
f (x ) = x 2 + x + 1 does not represent the universe strictly for x; it is the whole universe, 
but with a focus on the x variable (LAMPORT, 1994a). Since there is a complete universe 
on the specification, some parts can evolve while others remain unchanged.

In TLA, a stuttering step describes a step in which the system remains the same 
(LAMPORT, 1994a). That is, the system must be capable of not changing while the 
universe is still going. An action represents the relation between old and new variable 
values (LAMPORT, 1994b). A state function is an ordinary nonboolean expression that 
can contain variables and constants (LAMPORT, 1994b; LAMPORT, 2002). For any 

action A, every state function f, to denote that a system complies with changing and not 
changing as well, is written as (LAMPORT, 1994a):

[A]f = A v (f' = f)

A step satisfies [A]f (read as square A sub f) if, and only if, the action A is valid 
or the state f does not change (LAMPORT, 1994a), where, in such cases, it stuttered, 
the universe changed while the specified system did not. To assert that in every step, 
A is either satisfied or f is unchanged, represented by the formula D[A|f (LAMPORT, 
1994a). Through these steps, a system can, every time, execute only f' = f, meaning the 
system never changes, never making any progress. Fairness can ensure progress in the 
specification (LAMPORT, 1994a).

The fairness

A specification can use strong (SF) and weak (WF) fairness (LAMPORT, 1994b; 
LAMPORT, 1994a). Informally, WF asserts that action A is either eventually executed 
or impossible, even if impossible only briefly. SF asserts that the action is either even- 
tually executed or eventually becomes always impossible. Writing both of these informal 
descriptions as (LAMPORT, 1994b):

WF : (O executed) V (O impossible)

SF : (O executed) V (OD impossible)

The “executed' means that action A is enabled, where it is enabled iff there is a 
state t satisfying A, expressed as O(A)f. Dissecting the expression, (A)f is an A step 
that changes the values in f (LAMPORT, 1994b); with the O operator, we have that: 
eventually, every step changes the state. The “impossible” means we can not take step 
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A with state f. That is, action A is not enabled, written as — Enabled(A)/ (LAMPORT, 
1994b). Therefore, expressed by the formulas (LAMPORT, 1994b):

WF/(A) = (DO(^)f) V (DO— Enabled(A)/) 

SF/ (4) = (DO (A)/) V (OD— Enabled {A}/)

Since ODF DOF, thus SF/(A) WF/(A) (LAMPORT, 1994b). Whenever
written SF/(A) or WF/(A) implies that f' = f, at any action that A is enabled, then the 
state f changed (LAMPORT, 1994a). All in all, for any step, it either stutters or changes.

Liveness and safety

Programs can show undesirable behavior. The specification is a description of what 
the system is supposed to do (LAMPORT, 2002), whereas, for the algorithm to be correct, 
it must satisfy the desired properties (LAMPORT, 1994b). The system's safety properties 
assert that bad things never happen (ALPERN; SCHNEIDER, 1987), meaning the system 
never enters an unacceptable state (OWICKI; LAMPORT, 1982). Some safety examples 
are that a program never enters a situation where progress is impossible; two different 
processes can not access a critical section simultaneously (OWICKI; LAMPORT, 1982). 
Safety properties do not require fairness (OWICKI; LAMPORT, 1982).

Safety by itself does not require the system to do something (LAMPORT, 2002), 
meaning that, by doing nothing, we do not do anything wrong. Employing liveness prop- 
erties, we can assert that something good eventually does happen (OWICKI; LAMPORT, 
1982; ALPERN; SCHNEIDER, 1987). Liveness properties that should eventually occur 

are, for example, answering each request or a message reaching the destination (OW- 
ICKI; LAMPORT, 1982). Many systems only guarantee liveness with fairness (OWICKI; 
LAMPORT, 1982).

$1 = Init A D[Next]vars (5)

$2 = Init A D[Next]vars A Liveness (6)

A TLA specification has the format of the formula in Equation (5), which is a safety 
property (LAMPORT, 1994b). It asserts that system starts satisfying Init and only 
takes steps [Next]vars (LAMPORT, 1994a). Equation (6) strengthens Equation (5) adding 
liveness property. Liveness is a conjunction of formulas using fairness, with action A, 
WFvars (^) and SFvars (^) (LAMPORT, 2002). Decomposing Equation (6), Init constrains 
the system's initial state, [Next]vars constrains the steps it may take, and Liveness what 
must eventually happen (LAMPORT, 2002)

All properties are equal, but some properties are more equal than others. Liveness 
property is philosophically important, but, in practice, safety property is paramount 
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(LAMPORT, 2002). The goal when writing a specification is to avoid errors, so in com- 
parison with liveness, safety properties bring more benefits to the table (LAMPORT, 
2002). But, since the liveness properties are easy enough to write and constitute a small 
part of the specification, we might as well write them down (LAMPORT, 2002).

What a wonderful system

We can express the system's properties using temporal logic. A program has prop- 
erty F, expressable as -■ F, asserting that every behavior that satisfies will
satisfy property F (LAMPORT, 1994b). We use these properties to explain two popular 
classes of properties, invariance and eventuality (LAMPORT, 1994b). The properties' 
proofs use axioms and proof rules. A proof rule asserts that F F and F G imply F H 
(LAMPORT, 1994b).

The formula □P, where P is a predicate, expresses an invariance property (LAM- 
PORT, 1994b). For example, P can assert that at most one process is in the critical 
section simultaneously; or that the program never enters a state in which progress is 
impossible. Rule INV1 in Equation (7b) proves that a program satisfies an invariance 
property □P (LAMPORT, 1994b).

LATTICE. a a well-founded partial order on a set S
F A (c G S) =^ (Hc (G A 3d G S : (c A d) A Hd)

F =^ ((3c G S : Hc) G)

I'
INV1.

I A [X]z
I A □[M]f □I

(7b)

Eventuality properties assert that something eventually happens (LAMPORT, 1994b). 
For example, a program terminates at some point (LAMPORT, 1994b). There are dif- 
ferent ways to express these properties, which are reducible to formulas of form P Q. 
The reduction is proven using the rule LATTICE and temporal reasoning (LAMPORT, 
1994b).

The invariance and eventuality are essential to check the system's properties. Using 
these properties to verify if an algorithm holds all the guarantees; if a system is designed 
correctly and fulfilling all requirements.

2.4.2 A Useful Model

We can specify systems in TLA using the TLA+ language. TLA+ is a language 
where TLA meets first-order logic and Zermelo-Fraenkel set theory (YU; MANOLIOS; 
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LAMPORT, 1999). TLA+ can describe high-level correctness properties to the low-level 
design of a system (YU; MANOLIOS; LAMPORT, 1999). It is available with some 
tools, which include a model checker (LAMPORT, 2002; LAMPORT, 2021b). The model 

checker, known as TLC, is used for finding errors in TLA+ specifications (LAMPORT, 
2002).

The TLC model checker handles a subclass of TLA+ specifications, where it might not 
operate a large model of a specification, but it should deal with most real-world system 
specifications (YU; MANOLIOS; LAMPORT, 1999). TLC's input is a TLA+ module, 

assuming a formula in form $ = Init A D[Next]vars A Liveness, the same as Equation (6) 
on page 35, and a configuration file describing the specification formula and properties 
to check (LAMPORT, 2002). The most effective way to find errors is by verifying the 
system's invariant properties (YU; MANOLIOS; LAMPORT, 1999; LAMPORT, 2002).

Internally, TLC maintains an explicit state representation, not using a symbolic ap- 
proach (YU; MANOLIOS; LAMPORT, 1999). TLC has two data structures: a set seen 

of known reachable states and a FIFO queue containing elements of seen with the suc- 
cessor states not checked (YU; MANOLIOS; LAMPORT, 1999). The values in seen are 

the state's 64-bit fingerprint, and in the queue are the actual states (YU; MANOLIOS; 
LAMPORT, 1999).

When verifying a model, TLC generates and checks all possible states that satisfy 
the Init predicate, populating the queue and seen with these states (YU; MANOLIOS; 
LAMPORT, 1999). Then, TLC rewrites the next-state relation Next as a disjunction of 
every smallest subaction possible (YU; MANOLIOS; LAMPORT, 1999). A set of workers 

is then launched and repeatedly do:

□ Remove a state s from the front of the queue;

□ For each subaction A, generate every next state t where the pair s and t satisfy A.

TLC reports a deadlock when no next state t exists and reports an error if t does not 
satisfy an invariant or when s does not have the next state (YU; MANOLIOS; LAMPORT, 
1999). For every next state t, the workers do (YU; MANOLIOS; LAMPORT, 1999):

□ If t is not in seen, check if t satisfies the invariant;

□ If t in seen, add t to seen pointing to s;

□ If t satisfies the constraint, add t at the end of the queue.

TLC evaluates expressions to check the specification (LAMPORT, 2002). TLC evalu- 
ates the expressions left-to-right, similar to how a person would mentally evaluate (LAM- 
PORT, 2002). We must pay attention to the evaluation process. For example, in the 
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logically equivalent formulas, (x = ()) A (x[1] = 0) and (x[1] = 0) A (x = ()), TLC eval- 
uates the former correctly, whereas the latter raises an error (LAMPORT, 2002). TLC's 
evaluation process is (LAMPORT, 2002):

□ For a formula p A q, evaluates p and, if it equals TRUE, then evaluates q;

□ For a formula p V q, evaluates p and, if it equals FALSE, then evaluates q;

□ For a formula p =^ q, evaluates as —p V q;

□ For IF p THEN e1 ELSE e2, evaluates p, then evaluates either e1 or e2.

For a set S , TLC enumerates all elements of S in some order and evaluates the 
expression substituting with one value at a time (LAMPORT, 2002). When handling 
sets, TLC declares an error if it is not obviously finite. TLC similarly evaluates the 
following expressions:

3x G S : p Vx G S : p CHOOSE x G S : p 
{x G S : p} {e : x G S} [x G S e]
SUBSET S UNION S

TLC can evaluate a temporal formula F if, and only if, F is nice and can evaluate 
the formulas that compose F (LAMPORT, 2002). The temporal formula F is nice if, 
and only if, it is a conjunction of formulas belonging to the classes of state predicates, an 
ordinary boolean-valued expression, with no prime nor D operator; invariance formulas, 
such as DP, where P is a state predicate; box-action formulas, such as D[A]v, where A 

is an action and v is a state function; and simple temporal formulas (LAMPORT, 2002). 
A simple temporal formula is composed of temporal state formulas and simple action 
formulas by applying simple Boolean operators (LAMPORT, 2002):

□ Simple Boolean operators: consist of A, V, —, , = , TRUE and FALSE with
quantification over finite, constant sets;

□ Temporal state formula: composed from state predicates by applying simple 

Boolean operators and temporal operators D, O, and

□ Simple action formula: with the action A and state function v, is one of WFv (X),
SFv(^), , and OD[4]„.

LAMPORT gives some hints on effectively using TLC. Start with a reduced specifi- 
cation, find errors early, and then run TLC on larger models. A successful verification 
should raise suspicion; the finite model can hide liveness problems, as doing nothing can 
satisfy safety properties. Check properties that should find a violation, and verify as many 
invariance properties that make sense.
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There exists much more for TLA, TLA+, and TLC. The proof system, known as 
TLAPS, which we did not explore in this work. Advanced topics, such as composing 
specifications and specifications for real-time systems (LAMPORT, 2002).

2.5 Golang

This section discusses the Golang programming language, henceforth Go, used to 
implement Generic Multicast 1 algorithm. The Go language is a general-purpose, garbage- 
collected, compiled system programming language, which provides built-in features for 
concurrent programming (GOLANG, 2021b). Go follows a design for multi-threading 
applications, providing lightweight threads and explicit message passing (TU et al., 2019). 
The language is not overly complex and contains multiple features for implementing and 
testing the system. In this section, we discuss the concurrency features available.

Go's concurrency model originated from the Communicating Sequential Processes con- 
currency model, created by Tony Hoare (BUTCHER; FARINA, 2016; GOLANG, 2022a). 

Concurrency in Go is cheap, with two principal components that make this model work, 
the goroutine and channels, with a motto, “do not communicate by sharing memory; in- 
stead, share memory by communicating” (GOLANG, 2022a). The language encourages 
sharing values using channels instead of sharing memory between threads, believing that 
explicit message-passing is less error-prone (TU et al., 2019).

Goroutine is a cheap, lightweight user-level thread that executes concurrently along 
other goroutines in the same address space (GOLANG, 2022a). The Go runtime manages 
and maps the routines to OS threads in an M:N model, multiplexed to keep running, where 
one can wait for a resource and others continue working without blocking (BUTCHER; 
FARINA, 2016; GOLANG, 2022a; TU et al., 2019). Each routine costs a little more than 

stack space allocation and growing as needed (GOLANG, 2022a).
A channel is a concurrency primitive to send and receives data, passing values between 

routines (GOLANG, 2022a). Channels primitives, when used with good judgment, can 
help to write concise, correct programs (GOLANG, 2022a). Sharing by communicating is 
encouraged, but not enforced, being possible to synchronize goroutines in a conventional 
way using locks, conditions, and atomic operations (TU et al., 2019).

In summary, Go provides tools to ease the development of concurrent programs, mak- 
ing it a good fit for the current prototype implementation work. There is more that the 
language can offer, which is not detailed here. A quick list of features includes a low- 
latency garbage collector, compilation to native code, recently added support to generic 
types, and an ecosystem with multiple tools and libraries.
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Chapter 3
Related Work

Our work has both theoretical and practical contributions, and in this chapter, we 
present and discuss works related to ours in these aspects. We start with Section 3.1, 
revisiting some multicast algorithms and the family lineage up to the algorithms we de- 
veloped here. Section 3.2 discusses the formal verification of group communication and 
agreement algorithms. We conclude with Section 3.3, with a discussion of the implemen- 
tations of these algorithms.

3.1 Multicast History

Skeen's algorithm is an Atomic Multicast algorithm for failure-free environments and 
has inspired many other works since. First referenced in (BIRMAN; JOSEPH, 1987) as 
an unpublished work, wherein the algorithms of our work descend from the same lineage.

In the protocol, each message has an assigned timestamp. The timestamp determines 
the delivery order between messages (SCHIPER; PEDONE, 2007) with an initial value 
as an assignment of the participating processes ' local clocks. The initiator, that is, the 
process that first sends the message, acts as a coordinator in the procedure to decide 
the message's final timestamp. During the algorithm, participating processes maintain 
two sets, Undeliverable and Deliverable, to control the messages' state in the agreement 
of the timestamp value. The algorithm follows these five steps (FRITZKE et al., 1998; 
ANTUNES, 2019):

1.

2.

On the invocation of am-Send m to Q , the initiator process p G n will Send m to q 
Vq gQ;

•)

, increase its clock, assigns a times-Each process q G Q that Received m from p 

tamp ts to be the current clock's value, adds (m, ts) to Undeliverable, and Send (m, ts) to p ;

After the coordinator p Received (m, ts] from q , Vq G Q, it defines the maximum 

timestamp received as the definitive timestamp tsf for m and Send (m, tsf) to q •)

3.
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Vq eQ;

4. For every q E Q, on Received (m, tsf) from p , remove m from Undeliverable, insert
(m, tsf) into Deliverable;

5. Each process q E Q will am-Delivered m for every (m, tsf) E Deliverable, where
the tuple (m, tsf) is the smallest of all other tuples in Deliverable and Undeliverable 
and removing (m, tsf) from Deliverable.

Figure 1 shows a successful execution of the protocol. We have processes p1, p2, p3, 
and p4 handling messages m1 and m2. Message m1 's destination is Qmi = {p1, p2, p3} 

and m2's Qm2 = {p2, p3, p4}. This example has the multicast aspect in evidence, where 
processes p2 and p3 deliver messages in the same order, while p1 and p4 deliver when 
ready.

Figure 1 - Happy path execution.

In some executions, the timestamp is enough to order message delivery, but, in some 
cases, timestamps tie. Figure 2 depicts a timestamp tie. For Q = {p1, p2} and messages 
m1 and m2, p1 is the m1 coordinator, and p2 is m2's. The proposals from p1 and p2 

are ((m1, 1), (m2, 2)) and ((m2,1), (m1,2)), respectively. The decided timestamp is 2 for 
both messages because the coordinator selects the highest value. For processes to deliver 
messages in the same order, they must be able to sort messages deterministically to break 
timestamp ties.

In future works, FRITZKE et al. extended Skeen's algorithm to make it fault-tolerant. 
Fritzke's algorithm uses a replication approach, dealing with groups of processes instead
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Figure 2 - Timestamp tie (ANTUNES, 2019).

of processes. The algorithm works in a different environment, where processes may crash. 
Every group has a majority of correct members and has a failure detector of class 05 

attached (FRITZKE et al., 1998). When groups have a single process, the algorithm 
reduces to Skeen's algorithm (FRITZKE et al., 1998).

Fritzke's algorithm works like Skeen's, using timestamps to order message delivery. 
The algorithm requires a uniform Reliable Multicast primitive at the start. Since it 
handles groups, each timestamp proposal comes from a group. For each message, it is 
necessary two consensus rounds; the first to agree on the group's proposal and the second 
to the final timestamp. All consensus rounds are local to a single group, not involving 
processes in distinct groups, a property known as locality (FRITZKE et al., 1998).

SCHIPER; PEDONE further extend Fritzke's algorithm. The need for a uniform 
version of Reliable Multicast primitive is no more, while still guaranteeing properties as 
strong as Fritzke's version (SCHIPER; PEDONE, 2007). When am-Send m to Q and
£| = 1, messages can receive the final timestamp and are ready for delivery, removing 

the need for a second consensus round.
In a later work, AHMED-NACER; SUTRA; CONAN studied the convoy effect in 

Atomic Multicast primitives. The convoy effect is a phenomenon in which the delivery 
of one or more messages delays other ones (BLASGEN et al., 1979; AHMED-NACER; 

SUTRA; CONAN, 2016). To circumvent the performance degradation that the convoy 
effect causes, the authors propose to use the messages' semantics (AHMED-NACER; 
SUTRA; CONAN, 2016). One of the results is a Generic Multicast algorithm built on 

top of Skeen's algorithm.
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The work of ANTUNES applies AHMED-NACER; SUTRA; CONAN's proposal of 
using the messages' semantics to the Atomic Multicast algorithms, resulting in three 
Generic Multicast algorithms, Generic Multicast 0, Generic Multicast 1, and Generic 

Multicast 2. All ANTUNES' algorithms have a generalized approach that creates a partial 
order for message delivery. Generic Multicast 0 extends Skeen's algorithm from AHMED- 
NACER; SUTRA; CONAN's work, working in a failure-free environment (ANTUNES, 
2019). Generic Multicast 1 builds upon SCHIPER; PEDONE's extension of FRITZKE et 

al.'s algorithm, using the same environment where processes may crash. Lastly, Generic 
Multicast 2 uses the lessons from Generic Multicast 0 and Generic Multicast 1, resulting 
in an algorithm where all group communication primitives are generalized (ANTUNES, 
2019).

Our work continues ANTUNES' work. Generic Multicast 0, Generic Multicast 1, and 
Generic Multicast 2 all lack formal verification. For the current work, we write TLA+ 

specifications for all of ANTUNES' algorithms, and we propose our improvements. The 
original algorithms had subtle problems that went unnoticed without validation. We will 
discuss our findings and solutions in the next chapter. Figure 3 displays the multicast 
algorithms' family tree.

The work of PEDONE; SCHIPER is also a cornerstone and inspiration for our work. 
We use a preliminary version of (PEDONE; SCHIPER, 2002). PEDONE; SCHIPER 

presents the notion of strictness and delivery latency, which we apply to our work, too.

3.2 Algorithms in Theory

Academia and industry have been using TLA+ in a plethora of projects (LAM- 
PORT, 2021a). We will start with TLA+ use in academia and then its use in indus- 
try. REZENDE has a work focused on the Generalized Consensus problem (LAMPORT, 
2005). REZENDE specifies the Generalized Paxos in TLA+ and implements an instance 
that solves a variation of the distributed lease coordination.

The work of CAMARGOS contributes new consensus algorithms and an abstraction 
called Log Service, among other contributions. The Log Service abstracts the atomic- 
ity and durability problems in transaction termination (CAMARGOS, 2008). Both the 
algorithm and Log Service have a TLA+ specification.

ONGARO's work introduces Raft, an algorithm to solve the Atomic Broadcast prob- 
lem. Multiple production systems rely on the Raft algorithm; correctness is a crucial 
requirement for such an algorithm. ONGARO wrote a TLA+ specification and proof for 
the algorithm. The manual proof relies on the TLA+ specification, where there exist lem- 
mas that follow directly from it. ONGARO's work is also interesting because it references 
the hardships of verifying larger models in TLA+. Model checking larger models is a 
difficult task in means of time and storage necessary.
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Figure 3 - Extensions of multicast algorithms (ANTUNES, 2019).

The industrial use of TLA+ varies from verifying algorithms to verifying running sys- 
tem designs. In AWS, engineers use TLA+ to specify algorithms and design of large 
distributed systems. NEWCOMBE et al. published a report describing the AWS use and 
adoption process. The authors report that TLA+ helps avoid problems reaching produc- 
tion, finding subtle bugs in algorithms, bugs that escape reviews and would be difficult 
to find otherwise. The authors find that thinking in safety and liveness terms is less 
error-prone than the usual development approach of imagining what could go wrong and 
starting to patch possible scenarios. Writing a TLA+ specification gives more confidence 
in the system's design correctness, giving space to engineers to propose improvements and 
check what-if scenarios. Applying such methods pays in the system's lifetime, providing 
a faster time-to-market for products without giving-up quality and correctness.

TLA+'s first use was to verify hardware model (LAMPORT, 2021a). BEERS' work 

describes how Intel applied formal verification in early cycles before the target RTL to ver- 
ify a coherence protocol and its implementation. In their experience, the author concludes 
that the early iterations kept problems out of the RTL, giving engineers a solid microarchi- 
tecture and making verification after the RTL phase more efficient. In unpublished papers 
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but open-source contributions, Open Networking Foundation and Atomix applied TLA+ 

to multiple and varying types of problems1, naming a few, a distributed lock, adding 
custom functionalities to Raft, verifying systems design, and experiments to verify the 
implementations adhere to a specification. Microsoft applied TLA+ to write specifications 
for the different consistency operations provided by their distributed databases2.

1 ONF/Atomix usage.
2 Microsoft CosmosDB presentation.

Our work uses TLA+ to verify problems in ANTUNES' algorithms. Similar to the 
examples in this section, we apply TLA+, meaning that we are not proposing something 
novel to TLA+. In this aspect, our goal is only to verify problems and apply fixes.

3.3 Algorithms in Practice

Leaning toward implementation, we have some work focusing on applying formal meth- 
ods to the development process. A proposition from SYSTEMS is called Verification- 

Driven Development, primarily focusing on distributed and concurrent systems. Re- 
searchers and engineers collaborate in a refinement cycle with multiple steps to solve 
a programming problem.

The development starts with a high-level description of the problem, not involving 
proofs, only prose to introduce the problem. With the high-level description of the prob- 
lem, it's time for the system definitions, failures, communication, processes, synchrony, 
and safety and liveness properties. Having all these definitions is possible to formulate 
an algorithm. The focus is on developing a complete TLA+ specification with all the 
properties and invariants. Using the algorithm TLA+ specification, engineers can write 
an implementation specification. The implementation specification details the process 
behavior and includes how the algorithm specification reduces to the implementation 
specification. The last step is coding!

There exists a gap between specification and implementing an algorithm, and even 
though the specification is correct, the translation to a programming language can have 
bugs. In the work of BORNHOLT et al., the authors report the use of “lightweight formal 
methods” to validate a storage implementation, meaning the use of the appropriate tool 
for each problem, easy to apply by engineers, and the possibility to evolve the models and 
specifications. The authors took this approach because they needed more flexibility to 
verify different properties, like API calls and crash consistency, and were willing to give 
up some guarantees that a formal specification offer.

The approach has three main elements. An executable for a basic model conforming 
to the specification, the model is used as a reference. Use the reference model to check 
the actual implementation, applying tools that best fit the case for functional correctness, 
concurrency, and crash consistency. The reference model evolves as the project evolves, 

https://github.com/tlaplus/awesome-tlaplus/pull/7
https://www.microsoft.com/en-us/research/video/tla-specifications-of-the-consistency-guarantees-provided-by-cosmos-db/
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educating engineers to use and extend the methods during development. Unfortunately, 
such an approach does not guarantee that problems do not exist, but it has effectively 
avoided problems of reaching production, and engineers can integrate the formal methods 
during development.

Our work does not focus on how to apply formal methods during implementation. 
We do not make any proposal of this kind whatsoever. We follow an approach similar 
to the verification-driven development to implement a prototype for the Generic Multi- 
cast 1 algorithm. We implemented the algorithm and the specification simultaneously, 
one helping the other.
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Chapter

Correctness Development

This chapter contains our contributions to the formalization and verification of the 
algorithms proposed by ANTUNES. These include identifying problems through model 
checking, corrections, and the experimental validation of the corrected algorithms. To 
simplify the presentation, we only display excerpts of the specifications in this chapter, 
where the complete TLA+ specifications are available in Appendix A.

Common to all Generic Multicast algorithms discussed is that all messages sent through 
the algorithm are associated with a timestamp and that the algorithm uses the timestamp 
to deliver messages in a partial order. Timestamps are defined based on a conflict relation 
(PEDONE; SCHIPER, 1999): conflicting messages either have different timestamps and 
are delivered in timestamp order, or the timestamps are equal and are delivered based on 
some deterministic ordering with respect to each other (ANTUNES, 2019). All messages 
in the algorithm belong to a set M, which has a strict total order.

This chapter includes a description of all algorithms and how they work. Each algo- 
rithm is a step towards a complete generalized form. We conclude the chapter with our 
experience using TLA+, create a link between the TLA concepts presented in Section 2.4, 
and include additional properties these algorithms provide. We only define propositions 
for these properties, leaving the proofs for future work.

4.1 Generic Multicast 0

The first algorithm verified with TLA+ was Generic Multicast 0 (ANTUNES, 2019), 

based on Skeen's algorithm for failure-free systems (BIRMAN; JOSEPH, 1987). Since the 
algorithm works on failure-free systems, it serves as a gentle first contact with Generic 
Multicast (ANTUNES, 2019).

The algorithm associates the multicast messages with tentative timestamps derived 
from logical clocks. The algorithm uses a conflict relation when assigning a timestamp, 
increasing the processes' clock only when necessary, trying to keep the timestamp value 
as low as possible (ANTUNES, 2019). The multicast initiator coordinates the process to
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determine a final timestamp; we also refer to the initiator as the message coordinator. 
Algorithm 4.1 presents the pseudo-code, where all procedures have an atomic execution.

Algorithm 4.1 Generic Multicast 0
1: Variables:
2: K — 0
3: Pending — 0
4: Delivering — 0
5: Delivered — 0
6: PreviousMsgs — 0

7: procedure GM-SEND(m, Ç) > Process p
8: let m.d = Q
9: for all q E m.d do

10: Send (S 0, m) to q

11: procedure assiGNTiMEstaMp
when: Received (S 0, m) from p

> Process q

12: if 3 mi E PreviousMsgs : m ~ mi then
13: K — K + 1
14: PreviousMsgs — 0
15: PreviousMsgs — PreviousMsgs U {m}
16: Pending — Pending U {(m, K)}
17: Send (S1, m, K) to p

18: procedure coMputESEqNuMbEr
when: Vq E m.d : Received (S1, m, ts) from q

> Process p

19: tsf — max({ts : Received (S1, m, ts)})
20: for all q E m.d do
21: Send (S2, m, tsf) to q

22: procedure assiGNSEqNuMbEr
when: Received (S2, m, tsf) from p A(m,-) E Pending

> Process q

23: if tsf > K then
24: if 3 mi E PreviousMsgs : m ~ mi then
25: K —— tsf + 1
26: PreviousMsgs — 0
27: else
28: K — tsf
29: Pending — Pending \ {(m,-)}
30: Delivering — Delivering U {(m, tsf)}

31: procedure DoDElivEr 
when: 3 (mi , tsi) E Delivering :

> Process q

V (mj , tsj ) E (Pending U Delivering) :
V mi mj

V tsi < tsj V (tsi = tsj A mi < mj)
let:

32: G — {(mj, tsj) E Delivering : V(mk, tsk) E Delivering U Pending : mj mk}
33: D — {(mi, tsi)} U G
34: Delivering — Delivering \ D
35: Delivered — Delivered U D
36: for all (m, _) E D do
37: gm-Delivered m
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Each process that participates in the algorithm is aware of the same conflict relation- 
ship, which changes with the application but is opaque to the algorithm. Participants 
maintain the following state:

□ K is the process' logical clock used to assign a timestamp to each message;

□ PreviousMsgs is a set used together with the conflict relation to identify conflicting 
messages;

□ Pending is a set that holds messages that have been assigned a tentative timestamp;

□ Delivering is the set of messages with a final timestamp assigned and, therefore, 
ready to be delivered;

□ Delivered is the set of delivered messages.

During message exchanges, we use symbols in the tuple to identify which procedure 
to execute, which closely relates to the processing stage of the message. These symbols 
are:

□ SO: no timestamp associated yet;

□ Sl: has a tentative timestamp;

□ S2: has a final timestamp.

The algorithm starts on the invocation of gm-Send m to Q , where the initiator pro­

cess p G n will Send (S0, m) , V q G Q. To simplify the presentation, we let m.d = Q 

stand for the destination of message m throughout the algorithm. We have two point-of- 
views, process p is the message m coordinator, and process q is a process in m.d.

Each process q G Q that Received (S0, m) from p verifies if there exists a message 
in the PreviousMsgs that conflicts with m using the process conflict relation; if a conflict 
exists, the process clock will increase by 1 and clear the PreviousMsgs . Then, process q 
associates the current clock value to be the timestamp ts, insert m to the PreviousMsgs 
set and (m, ts) to the Pending set, and Send (S1, m, ts) to p .

The coordinator of m, p, executes the next step, responsible for defining the message's 
final timestamp when it Received (S1, m, ts) from q , V q G Q, that is, when p receives 
a timestamp proposal from all participants in Q. The definitive timestamp tsf is the 
maximum ts received from all q G Q. Then, process p Send (S2, m, tsf) to q , V q G Q.

The next step happens when process q G Q Received (S2, m, tsf) from p and (m, _) 
G Pending. Process q clock needs to leap if it is smaller than tsf. If there exists a message 

in PreviousMsgs that conflicts with m, q's clock is updated to tsf +1 and PreviousMsgs 
set is cleared; otherwise, when no conflict exists, q's clock leaps to tsf. The next step is 
to remove (m, _) from the Pending and add (m, tsf) to the Delivering set.
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The final step is where processes deliver messages. A process can execute the procedure 
when there exists a message m in the Delivering set that, compared with all other messages 
in Delivering and Pending, m is either strictly smaller or does not conflict. A single 
execution does not deliver only message m; it collects all non-conflicting messages in the 
Delivering set into batch D. Then, for all m G D, the process gm-Delivered m , removes 
(m, -) from the Delivering set, and adds m to the Delivered. Observe that no order need 
to be enforced by this loop and that the algorithm could deliver the batch D all at once 
and let the application decide the order of processing.

4.1.1 A Little TLC

Algorithm 4.1 is a modified version of ANTUNES' algorithm, resulting from correct- 
ing the problems we found after specifying it in TLA+ and verifying it using TLC. We 
show a condensed version of the specification in Section 4.1.2 and the complete one in 
Appendix A.3. Although we use formal specifications to find the problems, we found it 
is easier to describe them and corresponding fixes in the pseudo-code.

How to count

We found problems in procedure assignSeqNumber of the original algorithm that 
violates the Partial Order property. This violation is reproducible in an environment with 
at least two processes and a pair of conflicting messages. Table 1 shows the algorithm 
timeline. The tuple (id, ts) represents a message, the id guarantees the strict total order, 
the first line is process p1 and the second p2, and m1 = (1,_) and m2 = (2,_).

In this counter-example, process p1 receives both messages, while p2 only m2. The 
algorithm proceeds, and eventually, p2 delivers message m2. The delayed message m1 

finally arrives at p2, which does not have conflicting messages, so it proposes a timestamp 
of 1. Process p1 has both m1 and m2 with the same timestamp, then it uses the messages' 
strict ordering to sort them, but since p2 delivery of m1 was delayed, it can not do the 
same. This sum of events leads to the Partial Order violation, where process p1 delivers 
messages in order m1 and m2, and p2, m2 and m1. Algorithm 4.2 is the original version, 
and Algorithm 4.3 has the fixes applied.
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Table 1 - Timeline of Partial Order property violation.

K Pending Delivering Delivered PrevMsgs Network
P1 0 {} {} {} {} {(S0, (1, 0)), (S0, (2, 0))}
P2 0 {} {} {} {} {(S0, (1, 0)), (S0, (2, 0))}
P1 0 «1, 0)} {} {} {(1,0)} {(S1, (1, 0)), (S0, (2, 0))}
P2 0 {} {} {} {} {(S0, (1, 0)), (S0, (2, 0))}
P1 1 «1,0), (2,1)} {} {} {(2,0)} {(S1, (1, 0)), (S1, (2,1))}
P2 0 {} {} {} {} {(S0, (1, 0)), (S0, (2, 0))}
P1 1 {(1, 0) (2,1)} {} {} {(2,0)} {(S1, (2,1))}
P2 0 {} {} {} {} {(S0, (1, 0)), (S0, (2, 0))}
P1 1 {(1, 0), (2,1)} {} {} {(2,0)} {}
P2 0 {} {} {} {} {(S0, (1, 0)), (S0, (2, 0))}
P1 1 {(1, 0), (2,1)} {} {} {(2,0)} {(S1, (2, 0))}
P2 0 {(2, 0)} {} {} {(2,0)} {(S0, (1, 0))}
P1 1 {(1, 0), (2,1)} {} {} {(2,0)} {(S2, (2,1))}
P2 0 {(2, 0)} {} {} {(2,0)} {(S0, (1, 0)), (S2, (2,1))}
P1 1 {(1, 0)} {(2,1)} {} {(2,0)} {}
P2 0 {(2, 0)} {} {} {(2,0)} {(S0, (1, 0)), (S2, (2,1))}
P1 1 {(1, 0)} {(2,1)} {} {(2,0)} {}
P2 1 {} {(2,1)} {} {} {(S0, (1, 0))}
P1 1 {(1, 0)} {(2,1)} {} {(2,0)} {}
P2 1 {} {} {(2,1)} {} {(S 0, (1,0))}
P1 1 {(1, 0)} {(2,1)} {} {(2,0)} {(S1, (1,1))}
P2 1 {(1,1)} {} {(2,1)} {(1,0)} {}
P1 1 {(1, 0)} {(2,1)} {} {(2,0)} {(S2, (1,1)}
P2 1 {(1,1)} {} {(2,1)} {(1,0)} {(S2, (1,1)}
P1 1 {} {(2,1), (1,1)} {} {(2,0)} {}
P2 1 {(1,1)} {} {(2,1)} {(1,0)} {(S2, (1,1)}
P1 1 {} {(2,1)} {(1,1)} {(2,0)} {}
P2 1 {(1,1)} {} {(2,1)} {(1,0)} {(S2, (1,1)}
P1 1 {} {} {(1,1), (2,1)} {(2,0)} {}
P2 1 {(1,1)} {} {(2,1)} {(1,0)} {(S2, (1,1)}
P1 1 {} {} {(1,1), (2,1)} {(2,0)} {}
P2 1 {} {(1,1)} {(2,1)} {(1,0)} {}
P1 1 {} {} {(1,1), (2,1)} {(2,0)} {}
P2 1 {} {} {(2,1), (1,1)} {(1,0)} {}

Algorithm 4.3 Changed version for step
Algorithm 4.2 ANTUNES's proposal for assignSeqNumber.
the assignSeqNumber step. 1: procedure assignSeqNumber
1: procedure assignSeqNumber when: Received (S2, m, tsf) from p

when: Received (S2, m, tsf ) from p A (m,-) e Pending
A (m,-) e Pending 2: if tsf > K then

2: if tsf > K then 3: if 3mi e PreviousMsgs : m ~ mi then
3: K — tsf 4: K — tsf + 1
4: PreviousMsgs — 0 5: PreviousMsgs — 0
5: Pending — Pending \ {(m,-)} 6: else
6: Delivering — Delivering U {(m, tsf)} 7: K —— tsf

8: Pending — Pending \ {(m,-)}
9: Delivering — Delivering U {(m, tsf)}

We change procedure assignSeqNumber to verify if a conflict exists instead of only 
leaping the clock. This approach creates a bond between the process clock, PreviousMsgs 
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set, and the conflict relation. Every time we clear the PreviousMsgs set, we also increase 
the clock. We could solve this problem by increasing the clock at every received message, 
following Lamport's work (LAMPORT, 2019), but this is not the behavior we want. We 
want to keep the timestamps as low as possible, increasing the local clock only when 
messages conflict (ANTUNES, 2019).

We change the procedure doDeliver. The original proposition relied on the Delivering 
set being synchronized and ordered during the procedure execution, using the function 
NCSF (Non-conflicting set function), which is not present in the algorithm, to return 
the messages ready to deliver, in the correct order, without violating the properties. We 
use a predicate that verifies that there exists a message that commutes with all others 
or is strictly smaller than all others, a more direct verification without violating the 
properties . Lamport clock uses a similar predicate to create a total order of the system's 
events (LAMPORT, 2019). Algorithm 4.4 is the original algorithm, and Algorithm 4.5 is 
our proposal.

Algorithm 4.4 Original doDeliver by Algorithm 4.5 Changed doDeliver.
ANTUNES. 1: procedure doDeliver
1: procedure doDeliver when: 3 (mi, tsi) G Delivering :

let: CandidateSet = {(mi, tsi) : V (mj, tsj) G (Pending U Delivering) :
(m^, tsi) G Delivering : V mi mj

V (mj, tsj) G (Pending U Delivering) : V tsi < tsj V (tsi = tsj A mi < mj)
tsi < tSj } let:

2: G {(mj, tsj) G Delivering :
when: CandidateSet = 0 V (mk, tsk) G Delivering U Pending :

2: D = NCSF ( CandidateSet) mj mk }
3: Delivering Delivering \ D 3: D {(mi, tsi)} U G
4: Delivered Delivered U D 4: Delivering Delivering \ D
5: for all (mi,-) G D do 5: Delivered Delivered U D
6: gm-Delivered (m) 6: for all (m, _) G D do

7: gm-Delivered (m)

Learning to count again

Our algorithm in Algorithm 4.1 solves the Generic Multicast problem without violating 
the properties. To check that the properties written in TLA+ are correct, we manually 
introduce bugs to cause a violation, and the model checker must report the error. We did 
this on all the properties, and during the Partial Order property, we noticed something 
strange. Remembering that, the Partial Order property guarantees that processes that 
deliver a pair of conflicting messages do so in the same order.

In TLA+, to capture the order a process delivers a message m, we use the Delivered 
set, where we insert the tuple (\Delivered|, m). This avoids an additional variable in the 
algorithm, and it is easier to do operations over a set in TLA+. The bug we introduced 
was to use the tuple (0, m), pretending that processes delivered all the messages in a 
single batch. To our surprise, this does not violate that Partial Order property.

The property on page 31 has that process p1 delivers the conflicting messages m1
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before m2 if, and only if, process p2 does the same. Augmenting each process p in n with
a sequence Ip, that once a message m is gm-Delivered m by p, it adds m to the end
of Ip. For a message m and process p in n, Idx(m, p) returns the position of m on p's
sequence. We define L to be true when processes p1 and p2 in n both delivered m1 and
m2, and m 1 ~ m2. First, to ease the formulae writing, we define:

p = Idx(m1, p1) < Idx(m2, p1) q = Idx(m1, p2) < Idx(m2, p2)

We have that Partial Order (PO):

R=p q

PO = L R

(8a)
(8b)

We can rewrite Equation (8a) as:

R = (p q) A (q p)

= (—p V q) A (—q V p) (8c)

In our example, we delivered all messages in the same position, that is, Vpi G n and 
Vmi, mj G M, we have that Idx(mi, pi) = Idx(mj, pi). We have that both p and q are 
false. Substituting the values in Equation (8c), we have that:

R = (—false V false) A (—false V false)

= (true V false) A (true V false)

= true true

In this case, we have that Equation (8a) is always true. Substituting in Equation (8b), 
L implies in something true, evaluating everything to true. That is, if processes (somehow) 
deliver multiple conflicting messages in a single operation, it does not violate the Partial 
Order property.

To strengthen the Partial Order property, we introduce an additional property named 
Collision. Informally, this property requires that, given a pair of conflicting messages, a 
process must deliver them in some order. We define the Collision property as:

mj, 
fore

□ Collision: If a process p G n,

then p gm-Delivered mi

gm-Delivered mi

■i ~

be-

gm-Delivered mi and gm-Delivered mj , and m

before gm-Delivered mj or p gm-Delivered mj
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An algorithm with Collision and Partial Order properties guarantees that messages 
have a correct order based on the conflict relation. The Collision property is more of a 
theoretical reinforcement. On an actual execution, messages are delivered one at a time; 
messages will have an order, there is no way to violate the property.

Observe that we achieve the desired effect of delivering the conflicting messages in 
order with the “happened before” relation (LAMPORT, 2019). That is, following the 
definition of (LAMPORT, 2019), then we can write the Partial Order property as:

□ Partial Order: if processes p1, p2 E n both gm-Delivered m1 and gm-Delivered m2 

and m1 ~ m2, then p1 gm-Delivered m1 gm-Delivered m2 , if, and only if, p2

•)

gm-Delivered m1 gm-Delivered m2 .

The final form

The Generic Multicast 0 specification is now complete. We fixed a problem that vio- 
lates the Partial Order property on procedure assignSeqNumber and changed procedure 
doDeliver with a simpler predicate. There exists room for improvement. Currently, 
messages have a static destination, whereas it would be more interesting if we checked 
every destination possible.

We also had a theoretical discussion about delivering messages in a single batch, where 
we came up with an additional property. The Collision property requires that a process 
order conflicting messages, albeit the property might be unnecessary in a real case. We 
added a check for the Collision in our specifications.

From our first experience with TLA+, we found an intricate problem that needed a 
specific combination of events to trigger a violation. Such a problem is hard to find by 
only reasoning over the algorithm, which would be much harder to find without TLA+ 

and TLC.

4.1.2 Generic Multicast 0 in TLA+

The Generic Multicast 0 specification was the first developed in the present work. We 
refined the specification in multiple steps until its final form, around 300 lines, including 
comments and helper procedures. Next, we review portions of the specification that 
roughly correspond to Algorithm 4.1 on page 50.

In the beginning

During the specification's model checking, we vary the number of messages, processes, 
and conflict relation to check different scenarios. To simplify this arrangement, we exter- 
nalized these settings as constants: NPROCESSES, denoting the number of processes the 
model will simulate; INITIAL_MESSAGES, a finite set with the messages to initialize the al- 
gorithm; and CONFLICTR, the conflict relation the algorithm requires. These constants do 
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not appear in the TLA+ specification we display here. Algorithm 4.6 and Algorithm 4.7 
have the TLA+ representations.

Algorithm 4.6 Generic Multicast 0 in TLA+- Part 1. 
AssignTimestamp (self) =

A QuasiReliable!Receive(self, 1, 
lambda t :

A t[1] = “S0”

A AssignTimestampHandler(self, t[2]))

local AssignTimestampHandler(self, msg) =
A V A HasConflict(self, msg)

A K' = [K except ! [self ] = K[self ] + 1]
A PreviousMsgs' = [PreviousMsgs except ! [self ] = {msg}]

V A —HasConflict(self, msg)
A K' = [K except ![self] = K[self]]
A PreviousMsgs' =

[PreviousMsgs except ! [self ] = PreviousMsgs[self ] U {msg}] 
A Pending' = [Pending except ![self] = Pending[self] U {(K'[self], msg)}] 
A QuasiReliable ! SendMap(lambda dest, S :

SendOriginatorAndRemoveLocal ( self , dest, 
(“S1”, K'[self], msg, self), (“S0”, msg), S)) 

A unchanged (Delivering, Delivered, Votes)

ComputeSeqNumber (self) =
A QuasiReliable!Receive(self, 1, 

lambda t :
A t[1] = “S1” 
A t[3]. o = self
A ComputeSeqNumberHandler(self, t[2], t[3], t[4]))

local ComputeSeqNumberHandler(self, ts, msg, origin) =
A let

vote = (msg.id, origin, ts} 
election = {v G (Votes[self] U {vote}) : v[1] = msg.id} 

elected = Max({x[3] : x G election})
in

A V A Cardinality (election) = Cardinality(msg.d) 
A Votes' = [Votes except ! [self] = {x G Votes[self] : x[1] = msg.id}] 
A QuasiReliable!SendMap(lambda dest, S :

(S \{(“S1”, ts, msg)}) U {(“S2”, elected, msg)})
V A Cardinality (election) < Cardinality(msg.d) 

AVotes' = [Votes except ![self] = Votes[self] U {vote}] 
A QuasiReliable! Consume(1, self, (“S1”, ts, msg, origin))

A unchanged (K, PreviousMsgs, Pending, Delivering, Delivered)
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Algorithm 4.7 Generic Multicast 0 in TLA+- Part 2. 
AssignSeqNumber (self) =

A QuasiReliable!ReceiveAndConsume(self, 1, 
LAMBDA t-1 :

A t_ 1[1] = “S2”
A 3 t_2 G Pending[self] : t_ 1[3].id = t_2[2].id

A AssignSeqNumberHandler(self, t_ 1[2], t-1[3])
A Pending' = [Pending except ! [self ] = @ \{t_2}])

LOCAL AssignSeqNumberHandler(self, ts, msg) =
A V A ts > K [self]

A V A HasCo nfl ic t ( s elf , msg)
A K' = [K EXCEPT ! [self ] = ts + 1]
A PreviousMsgs' = [PreviousMsgs except ! [self ] = {}]

V A—HasConflict(self, msg)
A K' = [K EXCEPT ! [self ] = ts]
A unchAngED PreviousMsgs

V A ts < K[self]
A UNCHANGED (K, PreviousMsgs)

A Delivering' = [Delivering except ! [self ] = Delivering[self ] U {(ts, msg)}]
A UNCHANGED (Votes, Delivered)

DoDeliver (self) =
3 (ts_ 1, m_ 1) G Delivering [self ] :

AV (ts-2, m_2) G (Delivering[self] U Pending[self]) \{(t^ 1, m_ 1)} :
V-CONFLICTRfm-1, m_2)
V ts_ 1 < ts_2 V (m_ 1.id < m,_2.id A ts_ 1 = ts_2)

A LET
T = Delivering [self ] U Pending [self ]
G = {t-i G Delivering [self ] : V t-j G T \{t-i} :

— CONFLICTR (t_i [2], t_j [2])}
D = {m_ 1} U {t[2] : t G G} 

iN

A Delivering' = [Delivering except ! [self ] = @ \ (G U {(ts-1, m_ 1)})]
A Delivered' = [Delivered except ! [self ] = 

Delivered[self] U Enumerate(Cardinality(Delivered[self]), D)]
A UNcHANGED (QuasiReliableChannel, Votes, Pending, PreviousMsgs , K)

Thou shalt gm-Send

We use a record (LAMPORT, 2002) to represent the messages, written as [key 
value], each with a unique identifier that guarantees the strict total order, the destination, 
and the originator process.

To simulate multiple processes, we use a record, mapping the process identifier to 
the variables. For example, the Pending set starts as Pending = [i G Processes {}]. 
Each procedure has the process identifier as an argument, which we use to access the 
corresponding variables.
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We abstract the channels that connect processes using a set, guaranteeing the chan- 
nel's quasi-reliable properties. The participants send and receive messages by adding or 
removing elements, with no delivery order, message loss, duplication, or spontaneous cre- 
ation. We use the contents of the INITIALMESSAGES constant to initialize the network, 
meaning that the procedure in line 7 of Algorithm 4.1 does not exist in the specification. 
Following this approach was an easier way to introduce a finite number of messages in 
the algorithm. A drawback is that the model checker does not try all possibilities for the 
destination and initiator process, varying the multicast behavior.

4.2 Generic Multicast 1

The second algorithm we verify with TLA+ is Generic Multicast 1, an algorithm 
based on FRITZKE et al.'s algorithm with improvements from SCHIPER; PEDONE. 

Although this model does not fit a real-world production environment (ANTUNES, 2019), 
it is interesting to introduce the algorithm in an environment where failures exist. The 
algorithm uses a replication approach, dealing with a group of processes instead of a single 
process, where groups are reliable (ANTUNES, 2019). A group can represent one site, 
wherein members rely on the local site link for communication (ANTUNES, 2019).

It works similarly to Generic Multicast 0, ordering messages by the timestamp and, in 
the process, using the conflict relation, but Generic Multicast 1 does not use a coordinator 
to decide a final timestamp. This algorithm assumes an asynchronous system, with crash- 
stop failures but fault-tolerant partitions, and that an Atomic Broadcast primitive is 
available. Algorithm 4.8 presents the algorithm pseudo-code, where all procedures have 
an atomic execution.

As Generic Multicast 0, processes participating in the algorithm are aware of the same 
conflict relation. Besides all the symbols S0, S1, and S2, this algorithm uses an additional 
one, S3, meaning that a message has a final timestamp, is ready to be delivered, and the 
local group is synchronized (ANTUNES, 2019). Each process has the following state:

□ K is the process' logical clock;

□ PreviousMsgs is the set used together with the conflict relation to identify conflicting 
messages;

□ Mem is a memory structure that holds the messages we are processing without ever 
creating duplicated entries for a message.

We follow the execution from process p's point-of-view, where p is a correct process.
The algorithm starts on the invocation of gm-Send m to Q , and we define m.d = Q to 

simplify the algorithm presentation. The initiator process will ab-Send (m, S0, 0) to g •)

Vg E Q, where each primitive use is independent.
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Algorithm 4.8 Generic Multicast 1.
1: Variables:
2: K 0, Mem 0, PreviousMsgs 0

3: procedure GM-SEND(m, G)
4: let m.d = G
5: for all g G G do
6: ab-Send (m, S0, 0) to g > Atomic Broadcast

7: procedure coMputEGroupSEqNuMbEr 
when: ab-Delivered (m, S0, ts) > Atomic Broadcast Deliver

8: if 3 mi G PreviousMsgs : m ~ mi then
9: K K + 1

10: PreviousMsgs 0
11: PreviousMsgs PreviousMsgs U {m}
12: if |m.d| > 1 then
13: Mem (m, S1, K)
14: for all g G m.d do
15: for all p G g do
16: Send (m, S1, K) to p
17: else
18: Mem (m, S3, K)

19: procedure GathErGroupsTiMEstaMps
when: 3 m : (m, S1, ts) G Mem

A V g G m.d :
3 p G g : Received (m, S1, v)

20: tsf max({v : Received (m, S1, v)})
21: if ts < tsf then
22: ab-Send (m, S2, tsf) to Glocal > Local Atomic Broadcast
23: Mem (m, S3, tsf)

24: procedure syNchroNizEGroup
when: ab-Delivered (m, S2, tsf) > Atomic Broadcast Deliver

25: if tsf > K then
26: K tsf
27: PreviousMsgs 0
28: if 3 (m, S 1,_) G Mem then
29: Mem (m, S3, tsf)

30: procedure DoDElivEr 
when: 3 (mi,S3,tsi) G Mem :

A V (mj,-, tsj) G Mem :
V mi mj

V tsi < tsj
V A tsi = tsj

Ami < mj
let:

NC {(mj, S3, _) G Mem : V (mk, -, -) G Mem : mj mk}
D {(mi, si, tsi)} U NC

31: Mem Mem \ D
32: for all (m, -, -) G D do
33: gm-Delivered m
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Procedure computeGroupSeqNumber executes when p receives the tuple (m, S0, ts) 

through the Atomic Broadcast primitive. On receiving (m, S0, ts), it is the first time p 
deals with m , so p verifies if m conflicts with any message in the PreviousMsgs set. If a 
conflict exists, p increases its local clock by 1 and clears the PreviousMsgs set. Lastly, p 
inserts m into the PreviousMsgs set for later conflict verifications. Here, the algorithm 
branches based on the destination, an optimization proposed by SCHIPER; PEDONE.

When a message has a single group in the destination, the process can store the tuple 
(m, S3, K ) in the Mem structure. Because m's destination is a single group, and p 
received it through the Atomic Broadcast, the message is at the desired destination in the 
correct order. The tuple (m, S3, K ) associates m with a final timestamp and the symbol 
S3 to identify it as ready to be delivered.

When a message has multiple groups in the destination, the participants must collab- 
orate to agree on the final timestamp. So p proposes a timestamp with its current clock 
value to every participant in every group using Send (m, S1, K) to _ and store the tuple 
(m, S1, K) in Mem.

Processes execute the next procedure, gatherGroupsTimestamps, to decide a mes- 
sage's final timestamp, a necessary step when multiple groups are in the message's 
destination. After receiving a vote v with Received (m, S1, v) from each group and 
p has the tuple (m, S1, ts) in 
received. If p's vote in Mem, 
exists a group with a higher 
ab-Send (m, S2, tsf) to Glocal .

Mem, the selected timestamp tsf is the maximum vote 
ts, is smaller than the final timestamp tsf means there 
clock, and the local group needs to synchronize, so p 
Finally, since the message has a final timestamp tsf, p

inserts the tuple (m, S3, ts) to Mem.
When deciding the final timestamp, if the local group needs synchronization, p broad- 

casts the decided timestamp to the local group. Procedure synchronizeGroup executes 
when receiving a message with symbol S2 through the Atomic Broadcast. Upon receiving 
the tuple (m, S2, tsf), if the current clock has a value smaller than the tsf, p leaps the 
clock to tsf and clears the PreviousMsgs set. If p has m in Mem associated with the 
symbol S1 means that the synchronization message arrived before all necessary votes, so 
p can associate m with the symbol S3, avoiding the need for gathering all proposals.

The last step is where processes deliver the messages, procedure doDeliver. For a 
tuple (m, s, ts), the message m is ready to be delivered when s = S3, and, comparing 
m with all other tuples in Mem, either m does not conflict with any other message or 
the pair (m, ts) is the smallest. The process then collects and removes all non-conflicting 
messages with the symbol S3 in Mem and gm-Delivered _ one at a time.

4.2.1 Handyman's Mode

The original algorithm had problems. Before starting, this algorithm inherits the 
changes to the procedure doDeliver and the Collision property from Generic Multi- 
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cast 0. We do not describe these inherited fixes, only focusing on the Generic Multicast 1 
problems.

The first problem could lead to an infinite loop broadcasting the message to the local 
group. Algorithm 4.9 is the original proposition. Procedure groupABroadcast does a 
local broadcast for messages with symbols S0 or S2. This procedure can execute multiple 
times because the symbol does not update after the broadcast. We solve this problem by 
removing groupABroadcast procedure and using the Atomic Broadcast directly where 
needed. Also, observe that, in this approach, each process within a group is doing an
Atomic Broadcast, and since no filtering exists, it is possible to gm-Delivered _ a message 
more than once, violating the Integrity property. An approach where we include a filter 
would be more complicated, distinguish between new messages and ones we delivered 
before is difficult without keeping a record of all deliveries. To solve this issue, we remove 
the Reliable Multicast and use the Atomic Broadcast for each group, alleviating the need 
for an additional primitive for group communication.

Algorithm 4.9 Original Generic Multicast 1 beginning.
1: procedure GM-SEND(m, Ç)
2: let: m.d = Q
3: rm-Send (m) to Ç

4: procedure ENquEuEMEssaGE 
when: rm-Delivered (m)

5: Mem (m, S0, 0)

6: procedure GroupABroaDcast
when: 3 (m, s, ts) E Mem : s E {S0, S2}

7: ab-Send (m, s, ts) to Glocal

The other fix applies to procedure computeGroupSeqNumber when processes exchange 
their proposals. On the original algorithm, a process sends its proposal to processes 
in (m.d \ Giocai), that is, everyone but the ones in the local group. At the same time, 
procedure gatherGroupsTimestamps expects a message from all groups, including the 
local one, leading to the algorithm never delivering messages. We solve this problem by 
sending the proposal to every process of every group, where if a process wants to skip 
sending a message to itself and only invoke a method, we leave it as an implementation 
detail.

We also did a complete overhaul on procedure gatherGroupsTimestamps. The original 
version is in Algorithm 4.10, and Algorithm 4.11 has our version with specific changes 
highlighted.
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Algorithm 4.10 ANTUNES' proposal 
for the gatherGroupsTimestamps step.
1: procedure gatherGroupsTimestamps 

when: V g G m .d :
3 p G g : Received(m, S1, v)

2: tsf max({v : Received(m, S1, v)})
3: if ts > tsf then
4: Mem (m, S3, tsf}
5: else
6: Mem (m, S2, tsf)
7: ab-Send (m, S2, tsf) to Glocal

Algorithm 4.11 Our version for proce- 
dure gatherGroupsTimestamps.
1: procedure gatherGroupsTimestamps

when: 3 m : (m, S1, ts) G Mem
AV g G m.d :

3 p G g : Received(m, S1, v)
2: tsf max({v : Received(m, S1, v)})
3: if ts < tsf then
4: ab-Send (m, S2, tsf) to Glocal

5: Mem (m, S3, tsf) 2

1

Starting with (1) on Algorithm 4.11, a subtle problem. This procedure executes af- 
ter receiving a timestamp proposal from at least one process of all groups in the mes- 
sage's destination. Without assumptions about process speed and message delay, a pro- 
cess could receive all the proposals necessary to proceed before receiving the message 
through the Atomic Broadcast. This behavior could lead to a message locking itself 
off deliver by “going back in time” or the associated symbol, first executing procedure 
gatherGroupsTimestamps and then executing procedure computeGroupSeqNumber. To 
solve this, we strengthen the gatherGroupsTimestamps predicate by requiring the mes- 
sage to be in Mem with the symbol Sl. Note that this is a requirement for execution, 
where the process must collect the message's votes received in the meantime.

With (2), we solve the possibility of delivering messages multiple times. When the 
group has a clock with a smaller value than the message's decided timestamp, it must 
synchronize by doing an Atomic Broadcast and leaping the clock to the timestamp value. 
Originally, the algorithm inserted and then broadcasted the tuple (m, S2, tsf), and when 
received, the process would associate m with S3 without verifying if m exists, which could 
lead to multiple deliveries. To handle this problem, once m has the decided timestamp, 
we can insert the message in Mem associated with the symbol S3, marking it as deliv- 
erable. To synchronize the group, we extracted the method that handles the symbol S2 

into its own procedure, synchronizeGroup, making it easier to read and, most impor- 
tantly, idempotent; it can receive the same message multiple times without causing the 
message to be delivered multiple times. We also insert a shortcut: if the process receives 
the synchronization message m before receiving all necessary proposals and has sent its 
timestamp proposal for m to the others, it can mark m as ready for delivery. The shortcut 
is a way to avoid more participants executing an unnecessary local Atomic Broadcast.

4.2.2 Handling Incorrectness

Generic Multicast 1 algorithm works in an environment with incorrect processes, hav- 
ing a crash-stop model. With an incorrect initiator, the message may or may not be 
delivered. The deliver is atomic, that is, either everyone in the destination delivers, or 
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none does. When a participant fails, it will never deliver any message afterwards. There 
are two points of attention in the algorithm, (i) at the beginning when executing multiple 
Atomic Broadcast and (ii) when using the Atomic Broadcast to synchronize the group.

At (i), if the initiator is incorrect, the broadcasted message may or may never be 
delivered. In cases where a message is delivered only partially to a subset of the total 
destination, it is not possible to decide on the message's final timestamp, and therefore it 
is impossible to deliver the message. Observe that in such a scenario, the failed message 
lingers in the processes' Mem structure forever, without ever making progress. There is 
room for improvement, a way that groups could aid each other when failures occur or add 
a mechanism to clear the messages that do not make progress.

And for (ii), where one could think of optimizing to only one process to do an Atomic 
Broadcast for synchronization. We did not try this because the process could be incorrect, 
so all participants can execute the steps for deciding the timestamp. The procedure that 
handles the synchronization message is idempotent to tolerate duplicated messages, where 
the clock synchronizes only once and can leap to ready for delivery only once. After one 
process within the group succeeds in broadcasting the synchronization, it may not be 
necessary for the others participants to do it too. Since the group is reliable, there will 
be a successful broadcast.

Processes that fail in other points of the algorithm cause no harm. Crashing before 
sending a proposal is not a problem because the group is reliable, so at least one participant 
sends the proposal on the group's behalf. Failing at other points only leads to that 
participant not delivering the message because it stops forever.

4.2.3 Fault-Tolerant Specification

The TLA+ specification for this algorithm was more complex to develop, even though 
the resulting TLA+ specification is slightly smaller when compared to Generic Multicast 0. 
The reason for the specification to be smaller is the modularization employed. That is, 
specification splits into modules, where the network primitives for process communication, 
the Atomic Broadcast, and the Mem structure are separate modules. This modularization 
helps the abstraction, keeping the core algorithm and increasing reusability.

The specification for the algorithm itself is in Appendix A.4. The specification also 
contains some required constants provided to the model checker. The INITIALMESSAGES 

and CONFLICTR are from the previous specification. A new variable introduced is the 
NGROUPS, which specifies the number of groups the model will simulate, and NPROCESSES 

specifies the number of processes each group has. The abstraction for communication 
between processes and Mem uses a set, and the Atomic Broadcast uses a sequence. These 
TLA+ modules are available in Appendix A.1.

In this specification, we model more communication primitives, groups of processes, 
and data structures. This combination leads to too many states for the model checker to 
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verify. We could not run the model checker for larger models because of the completion 
time and disk usage. Even during development, smaller models could take minutes to 
complete. Appendix A.6.2 includes the runs and configurations we checked.

The current specification has room for improvement. This specification has the same 
problem with the static messages' initialization as Generic Multicast 0. The specification 
does not model process failure, as that would increase the number of states even more, 
but since groups are reliable, this should not be a problem and would be an improvement 
for completeness' sake.

4.3 Generic Multicast 2

The third and last algorithm we specified is Generic Multicast 2 (ANTUNES, 2019). 

This algorithm is a direct extension of Generic Multicast 1, which replaces the Atomic 
Broadcast primitive with Generic Broadcast; we call this form truly-generic (ANTUNES, 
2019). This replacement is in line with our goal of only ordering messages that require 
ordering (ANTUNES, 2019); if ordering adds a cost to an algorithm, we should try to keep 
this cost as low as possible (PEDONE; SCHIPER, 1999). Note that the synchronization 
messages, that is, the ones that are Generic Broadcast with symbol S2, these messages 
must conflict with each order (ANTUNES, 2019). A truly-generic nature also minimizes 
the convoy effect compared to the Atomic Broadcast version (ANTUNES, 2019). Al- 
gorithm 4.12 shows the Generic Multicast 2 pseudo-code. This algorithm works as the 
Generic Multicast 1, so we do not repeat ourselves in the explanation.

This extension also means that this algorithm inherits all the fixes. The fixes include 
the loop broadcasting the message to the local group, the proposals exchanges not includ- 
ing the local group, and a message locked out of delivery or delivering multiple times. We 
remove the Reliable Multicast use and add procedure synchronizeGroup.

During the Generic Multicast 1 specification, we invest some effort into modulariza- 
tion, decoupling the group communication abstraction. This investment pays here. We 
only needed to abstract the Generic Broadcast in its module and use it in the specifi- 
cation. We use a sequence of sets to abstract the Generic Broadcast and use the same 
conflict relation that the Generic Multicast uses. Appendix A.6.3 contains the TLA+ 

specification.

This specification is as cumbersome as Generic Multicast 1. We did not run the model 
checker for larger models, which could take too much time and storage space. The Generic 
Broadcast abstraction increases the number of states. Appendix A.6.3 has the configu- 
rations and checks we did. And as this specification inherits everything from Generic 
Multicast 1, it also inherits all the issues, which are the static messages' initialization, the 
number of states during model checking, and not model incorrect processes.
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Algorithm 4.12 Generic Multicast 2.
1: Variables:
2: K 0, Mem 0, PreviousMsgs 0

3: procedure GM-SEND(m, G)
4: let m.d = G
5: for all g E G do
6: gb-Send (m, S0, 0) to g > Generic Broadcast

7: procedure coMputEGroupSEqNuMbEr 
when: gb-Delivered (m, S0, ts) > Generic Broadcast Deliver

8: if 3 mi E PreviousMsgs : m ~ mi then
9: K K + 1

10: PreviousMsgs 0
11: PreviousMsgs PreviousMsgs U {m}
12: if |m.d| > 1 then
13: Mem (m, S1, K)
14: for all g E m.d do
15: for all p E g do
16: Send (m, S1, K) to p
17: else
18: Mem (m, S3, K)

19: procedure GathErGroupsTiMEstaMps
when: 3 m : (m, S1, ts) E Mem

A V g E m.d :
3 p E g : Received (m, S1, v)

20: tsf max({v : Received (m, S1, v)})
21: if ts < tsf then
22: gb-Send (m, S2, tsf) to Glocal > Local Generic Broadcast
23: Mem (m, S3, tsf)

24: procedure syNchroNizEGroup
when: gb-Delivered (m, S2, tsf) > Generic Broadcast Deliver

25: if tsf > K then
26: K tsf
27: PreviousMsgs 0
28: if 3 (m, S 1,_) E Mem then
29: Mem (m, S3, tsf)

30: procedure DoDElivEr 
when: 3 (mi, S3, tsi) E Mem :

A V (mj,-, tsj) E Mem :
V mi mj

V tsi < tsj
V A tsi = tsj

Ami < mj

let:
NC {(mj, S3, _) E Mem : V (mk, -, -) E Mem : mj mk}
D {(mi, si, tsi)} U NC

31: Mem Mem \ D
32: for all (m, -, -) E D do
33: gm-Delivered m
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4.4 Specifying with TLA+

We formalized and verified all of ANTUNES' algorithms in TLA+ and checked with 
TLC. We developed our specifications in a refinement process, building a single block of 
the algorithm at a time and adding an invariant to verify if everything continues to work 
as expected. After creating all the protocol blocks through this refinement process, we 
add the actual algorithm's properties. When the model checker finishes successfully, we 
begin to insert bugs and verify that the model checker catches the violation. Through this 
process we verified that all of ANTUNES' algorithms had problems, some of which were 
subtle, and only displayed under certain circumstances. Next, we discuss some important 
points in the process.

Taming the beast

The specification process helps to understand the problem in-depth, helps build small 
models, and is easier to write and debug than a distributed system. Such a tool provides 
us with a playground to test and iterate ideas more quickly, where we have a complete 
description of why each failure happens. Testing ideas through implementation might 
be neither fast nor concise on failure details. Summing up all these possibilities gives 
confidence in the algorithm's (and design) correctness.

Space and Time

Although these tools really help, they are limited when executing larger models (ON- 
GARO, 2014). A specification can be too difficult to verify because of the number of 
states it generates and the amount of storage necessary, making larger models impractical 
to check without dedicated infrastructure. But such limitations are not an excuse for 
not using them at all. Some problems we found in ANTUNES' algorithms were subtle, 
whereas finding them without these tools would be an immense effort. In this regard, 
APALACHE, a TLC alternative, might be a solution to tackle this limitation. Apalache 
applies a symbolic evaluation, not explicitly enumerating all states like TLC (KONNOV; 
KUKOVEC; TRAN, 2019).

Types

Type errors are complex to handle during development. The structures can be sets, 
sequences, numbers, and others, but there is no type assertion built-in, so a variable that 
starts as a set could then change to an integer. The model checking will eventually fail 
because of an invalid transformation, but the error message may not be so explicit about 
the problem. We found that it is common to add a type-check invariant to circumvent this 
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problem. APALACHE uses type annotations to infer the types (KONNOV; KUKOVEC; 
TRAN, 2019).

Tooling

We set up code editors to help during specification writing. These editors embed TLC 
and can run the model checker directly for the editor, quickly checking a specification, 
and providing code completion and syntax highlighting. Besides, one of the best features 
is that these editors handle TLC's output for violated invariants, showing the complete 
steps more understandably. The violation timeline helps to see the state changing and 
what is failing.

The resulting TLA+ specifications are available in Appendix A and, while they did 
serve their purpose, they can definitely be improved, for example to model incorrect 
processes.

4.4.1 Time Flies

We had a lengthy and convoluted discussion about TLA and the temporal operators 
in Chapter 2.4. Now that we have the corrected algorithms, we know how they work and 
their properties , then we can start connecting with what we saw earlier. Then we will 
further the discussion on the properties of the algorithms.

Here we can discuss how the algorithm's properties relate to the TLA properties. 
We may include some TLA+ snippets to ease the discussion with a visual aid, where 
the complete specifications are available in Appendix A. We start with the algorithm 
properties , connecting them to the operators and the system's properties. Then we discuss 
the fairness in our specification and why it is needed.

Liveness

The Generic Multicast algorithm has the liveness properties , namely Validity and 
Agreement, presented in Chapter 2 on page 30. These properties assert that the algorithm 
progress and that something good eventually happens (LAMPORT, 1994b). Without 
these properties, the system could hang forever, doing nothing, so these properties ensure 
that the algorithm delivers messages at some point. Now we write the properties in plain 
English and our TLA+ specification of each one, showing the temporal operators in use. 
For simplicity, we display only the properties for the Generic Multicast 0 here, whereas 
the properties for the other algorithms are available in the appendixes.

The TLA+ snippets use variables holding global information derived from the initial 
constants. The set AllMessages contains all messages in the system, whether sent or un- 
sent; the SentMessages set has all messages sent in the algorithm, where SentMessages Q 
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AllMessages; and the set CorrectProcesses with all processes that are correct in the sys- 
tem. The WasDelivered is a boolean-valued expression that checks if the given process 
delivered the message. We do this by checking the process' Delivered set.

Algorithm 4.13 shows the TLA+ for the Validity property. We use the operator, 
asserting that, for all messages sent, if the originator is a correct process, eventually, there 
is a process in the message's destination that delivers the message. We can rewrite this 
formula using the □ and O operator as □ (F =^ OG) (LAMPORT, 1994b).

Algorithm 4.13 Validity property in TLA+.

Validity =
V m G AllMessages:

m.o G CorrectProcesses 3 q G m.d : WasDelivered(q, m)

Algorithm 4.14 shows the TLA+ for the Agreement property. We also use the 
operator. We assert that, for any arbitrary message, once a process delivers it, all the 
correct processes in the destination must eventually do, too.

Algorithm 4.14 Agreement property in TLA+.

Agreement =
Vm G AllMessages:

Vp G Processes:
WasDelivered(p, m) V q G {x G m.d:x G Processes} :

WasDelivered(q, m)

We finish our summary of the algorithm's liveness properties. We tested each prop- 
erty isolated from one another, selecting a single one to execute at a time by TLC as 
a system property. Some sets are static throughout the complete test, for example, the 
set CorrectProcesses . Dynamic sets, when fit, could be a better approach, for example, 
processes crashing, but this could create an enormous state space.

Safety

The Partial Order, Collision, and Integrity properties are safety properties. These 
properties are valid without any fairness assumptions (OWICKI; LAMPORT, 1982).

Algorithm 4.15 is the TLA+ implementation for the Integrity property. We assert 
that, for all system messages and processes, once the process delivers a message, it did it 
only once and was in the destination of a sent message. The predicate DeliveredOnlyOnce 
filter the process' Delivered set, which holds tuples in the form of (Index, Message), and 
only a single message exists.

Since the Partial Order and Collision properties need to know the message's delivery 
instant, we created a predicate called DeliveredInstant, which has the process and message 
as arguments. Algorithm 4.16 is the TLA+ representation of the Partial Order property.
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Algorithm 4.15 Integrity property in TLA+.

Integrity =
□V m e AllMessages:

V p e Processes:
WasDelivered(p, m) = (DeliveredOnlyOnce (p, m) 

Ap e m.d 
Am e SentMessages)

Instead of writing a single big formula, we split the expression between the left-hand and 
right-hand sides, referenced as LHS and RHS, where LHS implies RHS. LHS verifies 
that the processes are in the messages' destinations, the message pair do not commute, 
and the processes deliver both messages. RHS checks that the message delivery order 
for both processes is the same. We assert that this is always valid for all processes and 
messages.

Algorithm 4.16 Partial Order property in TLA+. 

local BothDelivered(p, q, m, n) =
A WasDelivered(p, m) A WasDelivered(p, n)
A WasDelivered(q, m) A WasDelivered(q, n)

LOCAL LHS(p, q, m, n) =
A {p, q} Ç (m.d A n.d)
A CONFL ICTR ( m , n)
A BothDelivered(p, q, m, n)

LOCAL RHS(p, q, m, n) =
A Let 

pm = DeliveredInstant (p, m) 
pn = DeliveredInstant (p, n) 
qm = DeliveredInstant(q, m) 
qn = DeliveredInstant(q, n)

in

A (pm < pn) = (qm < qn)

PartialOrder =
□V p, q e Processes:

Vm, n e AllMessages:
LHS (p, q, m, n) =^ RHS (p, q, m, n)

Algorithm 4.17 is the TLA+ representation of the newly added Collision property. 
We check that, for all processes, if it is in the destination of a pair of already delivered 
non-commuting messages, then the instant of each delivery is different.

All these properties use the □ operator because they must always be valid. The 
algorithm violates the property if the formula evaluates to false for any reason whatsoever.
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Algorithm 4.17 Collision property in TLA+.

Collision =
□V p G CorrectProcesses:

Vm, n G AllMessages : A m.id = n.id
A p G (m.d A n.d)
A WasDelivered(p, m)
A WasDelivered(p, n)
A CONFLICTR(m, n) =^ DeliveredInstant(p, m) = DeliveredInstant(p, n)

In our tests, the sets were static at all times. These properties could take advantage of 
simulating incorrect processes, asserting the algorithm's fault tolerance.

Fairness

We presented fairness in Chapter 2 in Section 2.4.1 on page 34. Informally, for any of 
the specification's steps, it either stutters or the state changes. In our work, all specifica- 
tions rely on the system's weak fairness and may not work without it.

Algorithm 4.18 shows all our specifications entry point in TLA+. This predicate has 
the Init to initialize the structures and an action that accepts stuttering steps on the vars 
state. Line 2 extends the predicate by adding the liveness requirements. Without the 
weak fairness, our algorithm could stutter forever and never deliver a message, a violation 
of our liveness properties , Validity, and Integrity.

Algorithm 4.18 Specification Spec definition.

Spec = Init A □[Next]vars
A WFvars (3 self G Processes : Step(self))

4.4.2 Withal Thine Basic Properties

The work of PEDONE; SCHIPER presents an algorithm to solve the Generic Broad- 
cast problem and discusses two properties , deliver latency and strictness. We now bring 
these two properties to our proposals. Here we introduce the propositions leaving the 
proofs for future works.

4.4.2.1 Delivery Latency

Introduced to measure the efficiency of algorithms solving a Broadcast problem (PE- 
DONE; SCHIPER, 1999), we will use it in our algorithms. Informally, delivery latency is 
the number of events a message m goes through from sending to delivery in a run R of 
an algorithm A solving the Multicast problem, written as dlR(m) (PEDONE; SCHIPER, 
1999). The delivery latency bases itself on a modified Lamport's clock (LAMPORT, 
1994b), where we have (PEDONE; SCHIPER, 1999):
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□ A send and a local event on process p do not modify p's clock.

□ ts(send(m)) is the timestamp of a send(m) event, and ts(m) the timestamp carried 
by message m, such as ts(m) = ts(send(m)) + 1.

□ The timestamp of receive(m) on process p is the maximum between ts(m) and p's 
clock value.

Let £r(m) be the set of all processes that, for message m, gm-Delivered m in run R 
of algorithm A, and Dp(m) the gm-Delivered m event at process p. The definition of 
delivery latency of m in run R is in Equation 9a.

dlR(m) = max({ts(Pp(m)) — ts(gm-Send(m)) : p G £r(m)}) (9a)

We now define the propositions for our algorithms. We follow the same approach 
as PEDONE; SCHIPER for simplicity, using runs of a single message. We assume that 
there is an implementation for the Atomic/Generic Broadcast and process communication 
available and that the delivery latency of these algorithms is 1. Proposition 1 defines a 
lower bound for the delivery latency of our algorithms. Proposition 2 proposes that groups 
with a synchronized clock reach this lower bound.

Proposition 1. Atomic/Generic Broadcast is a primitive available for the algorithm. If 

RA is a set of runs generated by an algorithm A that solves the Generic Multicast problem 

such that only a single message m G M is gm-Send m to Q and gm-Delivered _ and 
|Ç| > 1, then there is no run R in RA where dlR(m) < 2.

Proposition 2. Atomic/Generic Broadcast is a primitive available for the algorithm. If 
RA is a set of runs generated by an algorithm A that solves the Generic Multicast problem 

such that only a single message m G M is gm-Send m to Q and gm-Delivered - , |Ç| > 
1, and groups in m's destination have the same ts(ab-Delivered (m)), then there is a run 
R in RA where dlR(m) = 2.

Our intuition for Proposition 1 is that, when sending a message to more than one 
group, there is the initial Atomic/Generic Broadcast and then the proposals exchange, 
meaning it is impossible to have a delivery latency of less than two. And for Propo- 
sition 2, if the addressed groups are tightly synchronized, then only needed the first 
Atomic/Generic Broadcast and the proposals exchange, avoiding the broadcast for syn- 
chronization. Observe that none of this does apply when addressing only a single group 
because it skips the proposals exchange and the synchronization broadcast.

Currently, our algorithm delivers all messages with the same delivery latency. The 
initial goal was to keep the processes' clock as low as possible (ANTUNES, 2019), whereas 
ours was to formalize and correct the algorithm. Future work could focus on introducing 
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optimizations. For example, could we avoid the second Atomic/Generic Broadcast to 
synchronize the local group for non-conflicting messages?

4.4.2.2 Strictness

The Generic Multicast problem can be solved using an Atomic Multicast implemen- 
tation, but with unnecessary ordering in messages. If the message ordering adds a cost, 
we should work to keep the cost as low as possible (PEDONE; SCHIPER, 1999). An 
algorithm that solves Atomic Multicast can have a Strictness property, identifying that 
it avoids unnecessary message ordering. We do not enforce this property because sponta- 
neous orders might happen. We define Strictness as (PEDONE; SCHIPER, 1999):

□ Strictness: Algorithm Ac is an algorithm that solves Generic Multicast problem 
with the conflict relation C C M x M, and RA is the set of runs of Ac. There 
exists a run R in RA where messages m1, m2 E M and m1 m2, and processes in
n gm-Delivered m1 and m2 in a different order.

We use TLA+ to verify this property, using proof by contradiction. We write a property 
to check that, using a conflict relation C C M x M, all processes deliver the message in 
the same order. TLC provides a counter-example of a violation, that is, there exists a 
run Ac where our algorithm delivers messages in a different order.

4.4.2.3 Genuineness

The minimality property defined in Section 2 ensures that only necessary processes 
participate in the message delivery, that is, the sender and destination. Although the 
property is for an algorithm that solves the Atomic Multicast problem, we can also extend 
this to the algorithms that solve the Generic Multicast problem. All the algorithms 
we presented here are genuine, meaning all algorithms provide the minimality property. 
Proposition 3 states this for our algorithms, where we left the proof for future works.

Proposition 3. Generic Multicast 0, 1, and 2 are genuine algorithms that solve the 
Generic Multicast problem.

4.4.2.4 Quiescence

Another property is for an algorithm to be quiescent. A quiescent algorithm is an 
algorithm that eventually stops sending messages (AGUILERA; CHEN; TOUEG, 2000). 

Using failure detectors, algorithms that only tolerate process crashes can become quiescent 
and tolerate both process crashes and message losses (AGUILERA; CHEN; TOUEG, 
2000), so the algorithms we present here can be made quiescent.

We define Proposition 4, Proposition 5, and Proposition 6 state that if the communica- 
tion primitives our algorithms are using are quiescent, then our algorithms are quiescent.
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Proposition 4. Generic Multicast 0 is a quiescent algorithm that solves the Generic 
Multicast problem if the process communication is quiescent.

Proposition 5. Generic Multicast 1 is a quiescent algorithm that solves the Generic 
Multicast problem if the process communication and Atomic Broadcast are quiescent.

Proposition 6. Generic Multicast 2 is a quiescent algorithm that solves the Generic 
Multicast problem if the process communication and Generic Broadcast are quiescent.

Our intuition for all these propositions comes from the fact that our algorithm does 
not have any mechanism that infinitely sends messages. We use the Atomic/Generic
Broadcast for group communication and the channel that connects the processes, so once 
no more execution of gm-Send m to Q happens, the algorithm stops sending messages.
Therefore, if the underlying primitives are quiescent, our algorithms are too.
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Chapter

Generic Multicast Implementation

This chapter discusses the prototype implementation of the Generic Multicast 1 using 
Golang. We chose this algorithm because it is a better study case since Generic Multicast 0 
only introduces the generalized concepts and Generic Multicast 2 would require more work 
implementing the Generic Broadcast.

Even though the current implementation is not production-ready, the design and im- 
plementation of a consensus algorithm can be a non-trivial yet engaging task. Gaps can 
exist between the protocol definition to what it would be in a real-world production envi- 
ronment. These gaps could lead to engineers implementing a protocol that differs from the 
specification, leading to an implementation that is not verified to be correct (CHANDRA; 
GRIESEMER; REDSTONE, 2007).

We start this chapter with a high-level overview of the architecture, how components 
interact, and the requirements beyond the ones needed by the algorithm. Section 5.2 
describes the base communication primitives and the message's format. Section 5.3 de- 
scribes the algorithm core implementation and the converted data structures from the 
specification to code. Section 5.4 discusses the tests and how we verify the prototype. 
Then Section 5.5 concludes the chapter with a summary and future improvements.

5.1 The Bricks in the Foundation

This section discusses the architecture at a high-level. The complete architecture is 
in Figure 4, serving as a reference throughout the architecture explanation, organized 
in a layered architecture. We describe the components, their interactions, and which 
ones are required. The most north is the actual application that wants to replicate any 
information. The middle is the Client Level layer, exposing an API for the application to 
interact with the algorithm. The bottom layer is the Protocol Level, the actual protocol 
implementation, along with other components necessary to work. We added reference 
points to show the components' interactions. The interactions include method invocation, 
communication through Golang's channels, and network interactions.
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Figure 4 - Implementation architecture.

Client

Protocol Client Protocol API

1?

Starting at the Client Level, there are two components, the Protocol Client and the 
Protocol API. The Protocol Client through the Rc1 reference point is the only way the 
application can interact with the protocol. The application can subscribe to a channel to 
receive notifications about data replication, issue requests to the protocol, and terminate 
the client. All of these interactions are through the Rc1 reference point. The Protocol 
API is the one that interacts directly with the Protocol Layer. Reference point Ri1 sends 
an asynchronous message to the protocol, and reference point Rc2 send notifications to a 
subscribed application.

The Protocol Client, Protocol API, and references compose the Client Level. In- 
teractions between the application and the protocol will always pass through this level. 
This layer is a user-facing interface, not an algorithm requirement, but this helps when 
developing integration tests.

5.2 Do They Talk?

The current algorithm requires two primitives, communication between processes and 
Atomic Broadcast. In this section, we describe how we implemented these primitives. 
The primitives an algorithm requires are a crucial component and must provide all the 
guarantees.

In Figure 4, the Network Manager encapsulates the primitives. It receives and sends 
messages from both primitives. The manager creates a socket and starts a goroutine 
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to consume incoming messages. Messages are processed asynchronously, except when 
received through Atomic Broadcast.

5.2.1 The Process Talk

We start with communication between processes. The primitive is in a dedicated 
open-source project1. We implemented a TCP server to send and receive messages using 
the Go networking package (GOLANG, 2021a). The server is a concrete implementation 
of an interface from the Go package.

1 https://github.com/digital-comrades/proletariat
2 https://github.com/jabolina/relt
3 https://github.com/etcd-io/etcd

The implementation itself does not try to provide anything too complicated. We im- 
plement what is needed, avoiding details like retries, buffering to reduce syscalls, and fancy 
serialization. The implementation contains basic configuration properties, like server port 
and address, asynchronous actions' timeout, and pool size.

For a process to send a message using the primitive, it must know the destination's 
address. Sending a message can be complicated since a message can have any destination, 
so each process must know all other processes' addresses. To solve this problem, we use the 
Oracle component, which converts a group alias and returns a collection of all addresses 
within that group. The application provides a concrete Oracle instance. The messages 
we exchange in the protocol reference only groups and use the Oracle to translate to 
addresses.

5.2.2 In Totally Ordering

We built the Atomic Broadcast primitive as a separate open-source project2 on top 
of etcd3. The primitive implementation is also very straightforward but has some points 
of attention that could harm the correct behavior. First, we describe etcd and then our 
implementation.

The etcd is a strongly consistent, distributed key-value store (ETCD, 2021) that uses 
Atomic Broadcast, implementing the Raft protocol (ONGARO; OUSTERHOUT, 2014) 

that provides strong consistency. This implementation is well established and used in 
multiple production environments and open-source projects (ETCD, 2021). A client in- 
teracts with etcd by connecting to a server and issuing remote procedure calls (ETCD, 
2021). Multiple APIs are available, but we use only the KV and Watch. The Jepsen test 
verified that the APIs we use holds the algorithm guarantees (KINGSBURY, 2020). Such 
a test, however, checks the presence of bugs but does not ensure their absence and the 
algorithm's correctness.

Through KV API is possible to manipulate key-value pairs stored in etcd (ETCD, 
2021). Specifically, we use the Put procedure to write values associated with a key, 

https://github.com/digital-comrades/proletariat
https://github.com/jabolina/relt
https://github.com/etcd-io/etcd
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causing the key's revision to increment and generating one event in the event history 
(ETCD, 2021). Revision is a 64-bit, cluster-wide counter that serves as a global logical 
clock, sequentially ordering all updates to the store and incrementing each time a key is 
modified (ETCD, 2021). Write operations issued to the etcd server are strict-serializable, 
even during pauses, crashes, clock skew, network partitions, and membership changes 
(KINGSBURY, 2020).

The other API used in our implementation is the Watch API, which receives notifi- 
cations about changes to a single key (ETCD, 2021). Using this API, starting from a 
given revision number, all clients receive the same sequence of updates in the same order 
(KINGSBURY, 2020).

Our Atomic Broadcast implementation is an etcd client. The client configuration 
includes information about the etcd server to connect to and the group to which it belongs. 
So, how is all this put together? Communication happens by listening to a key for changes 
and writing values associated with a key. Broadcasting a message to a group means writing 
the message object using the group's name as a key. To receive messages, the processes 
within the group use the Watch API to listen to the key with the group name. The 
notifications are consistent and have a total order (KINGSBURY, 2020).

One of the configurable values is the timeout for some operations. The client has a 
maximum time frame to consume messages. The consumption time-bound and the fact 
that we do not implement retries could lead to message loss when a timeout happens. 
This problem can have a complex fix, but since our implementation is only a prototype 
to run in a controlled environment, timeouts did not actually occur. We did not verify 
what happens when a timeout occurs, but the most likely outcome is a violation of the 
algorithm properties.

The development experience was not overly-complicated, the etcd documentation is 
complete (ETCD, 2021), and examples are easy to find. The implementation to interact 
with the etcd server was only a few lines. Most of the development effort was to build 
the structure around the etcd client, managing goroutines, configurations, and a simple 
user API. The only more complicated problems were due to the gRPC (GOOGLE, 2021) 
dependency conflicting with the one used by etcd.

5.2.3 Messages

Beyond the transport definition, there are also the requirements for the message itself. 
Since transport is agnostic to what it is transporting, the message format can be arbitrary 
but must meet the protocol's needs. The protocol requires that the messages have a strict 
total order, which the protocol uses to break ties between timestamps.

We embed a 128 bits random identifier into messages. We allocate 128 bits and 
convert them into a string. We rely on the probability of selecting duplicated 128 bits 
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being negligible to avoid collision between identifiers. Using a tool dedicated to generating 
identifiers would be a better approach.

Listing 5.1 displays the complete message object. We can see that we transport redun- 
dant information. Future work could create a proper format carrying minimal information 
while keeping semantics. There is also room to improve the serialization, where we cur- 
rently use the default available in Golang.

Listing 5.1 - Message format definition.

Message {
i de n t i fi er : String
header {

version : Int
t y p e : ABSend | Send

}

content {
meta {

timestamp : UInt64
i d en t i fi e r : String

}

operation : command | query
content : Array[Byte] 
extensions : Array[Byte]

}
state : 0 | 1 | 2 | 3

timestamp : UInt64 
destination : Array[ String ] 
from : String

}

5.3 At the Core

Now we discuss the implementation, where we implement the version that does not 
use the Reliable Multicast primitive. We rely on the components introduced in the pre- 
vious sections. The complete algorithm implementation includes the Protocol container 
in Figure 4 on page 76.

The Network Manager receives a message, passes it through Ri2 to be processed, and 
executes the procedure's callback. The message's header identifies from which primitive 
it arrived, so the algorithm knows the corresponding step. The return of each procedure 
is an enumeration that points to the next step, for example, sending the updated message 
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using the Atomic Broadcast primitive to the current group. We use this approach to 
detach the networking use from the core algorithm. The insertion in the Mem structure 
also executes after the message processing.

One last detail is the implicit data structure that holds the timestamp proposals for 
each message. This structure is seen in Algorithm Algorithm 4.8 on line 20 on page 60 
when choosing the maximum value. We call the structure Ballot Box, as seen in Figure 4 
on page 76. The Ballot Box keeps the proposals until it has a vote from each group 
in the message's destination, and once the final timestamp is selected, it discards the 
proposals. Notice that our implementation does not discard delayed votes. It is possible 
to receive timestamp proposals even after delivering the message since the channels have 
an arbitrary delay.

5.3.1 In Mem Store

We describe our Mem structure implementation in this section. During the algorithm 
execution, the Mem structure stores the messages currently being processed and par- 
ticipates in all procedures, where its performance is crucial to how well the algorithm 
operates. Before starting development, we defined some requirements for the implemen- 
tation:

□ No duplicated entries, where duplications could lead to liveness problems or deliv- 
ering messages more than once;

□ Thread-safe, it should handle concurrent requests;

□ Low time complexity, the operations should not take too much time.

Our implementation is modular, breaking the problems into smaller ones to solve in 
each module. Figure 5 shows the structure modules and the organization. All the inter- 
actions with the Mem structure are through an interface with the same name. We store 
messages currently processing in the Processing region, and the finished on Processed. 
The components work together to achieve the goals above.

The memory paradise

The first component is the Processing region for messages currently being processed. 
The underlying store structure is a priority queue, holding the smallest element in the 
head, sorting by the timestamp and the unique identifier when needed.

We implement the priority queue using a Fibonacci Heap. The most common in- 
structions, findMin, insert, and decreaseKey, have a time complexity of O(1), and 
for delete, it is O(log n). There is an additional instruction for scanning the struc- 
ture for non-conflicting messages on state S3 to be delivered, which has the complexity



5.4. Thy Elden Tests 81

Figure 5 - Implementation architecture of the Mem structure.

O (n2), where each message checks for conflict against all others. We execute the scan 
asynchronously when updating a message with state S3 or during the delivery execution, 
although the operation must acquire a read lock. Note that besides the structure being a 
queue, it is possible to remove elements from any arbitrary position.

The queue works reactively, taking the initiative to notify about messages ready for 
delivery, avoiding the need for constant verification. Since the structure is a priority 
queue, we only check the head element, and we do so after every change in it. We ensure 
thread safety by using a read-write lock.

The purged ones

The other region, called Processed , serves a simple but necessary purpose, to avoid 
duplicating notifications about messages ready for delivery. Instead of Processing to keep 
track of notified elements, the Processed handles this. After issuing a notification, we 
insert the message's unique identifier into the cache with a time-to-live of 10 minutes. 
The time of 10 minutes is an arbitrary value, and possibly, we could reduce this value to 
only a few seconds without affecting the algorithm. Another solution is to remove the 
element after removing the message from the queue.

With all these modules behind the Mem structure, we met all requirements. But still, 
there is room for improvement. Reduce the memory footprint on the stored elements. 
Future work could reduce the object, keeping only necessary information instead of the 
complete message. Try to apply a lock-stripping on the Processing region to reduce lock 
contention, but this could easily lead to a complex implementation.

5.4 Thy Elden Tests

To verify the algorithm implementation, we developed multiple tests. We use unit 
tests to check components in isolation, but our focus here is on the integration tests. The 
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Go runtime provides a package for developing automated tests and a data-race detector. 
Although the language's concurrency primitives aid in writing concurrent code, sometimes 
they are not enough (GOLANG, 2022b). The data-race detector identifies such conditions 
only if they trigger during execution, so load and integration tests are a valuable place to 
enable it (GOLANG, 2022b). Observe that these tests guarantee neither the algorithm's 
correctness nor the absence of bugs.

The tests execute in isolation but share the same host and resources. We create a 
testing harness, which we refer to as Unity, which has three groups of three processes 
each. Each action the test executes selects one of the groups available, then one of the 
processes in the group, and then effectively applies the action. The Unity chooses groups 
and processes in a round-robin approach.

The Unity sends a message by selecting an initiator and issuing an asynchronous 
request. To verify the delivery order, Unity pins one process, retrieving its messages, and 
compares the sequence against the other groups' sequences. We compare only against a 
single participant in each group.

We execute the tests for every new code added. The environment is based on Linux, 
requiring a Go installation and an etcd server running. Network usage relies on the 
loopback network, never executing requests outside the machine that runs the tests. Tests 
use an in-memory store only.

5.4.1 The Elder Logs

To help during tests, we implement a write-ahead log (WAL) structure to hold the 
delivered messages. A WAL is an ordered sequence of commands, adding new received 
commands to the end. This implementation leads to additional components, all displayed 
in Figure 4 on page 76 as the components right of the Protocol container, including State 
Machine, Log, and Storage. We query the Log structure during the tests to verify the 
ordering between groups.

Take Figure 4 on page 76 as a reference guide. After the algorithm delivers a message, 
it will synchronously invoke the State Machine to commit a new entry through Rif1. 
The State Machine calls the Log through Rif2 to add the message to the WAL, and 
once complete, the State Machine notifies the user through Ric1. The State Machine is 
responsible for handling the Log and notifying about committed entries.

5.4.2 Taking the Test

We develop the integration tests to verify if the algorithm's properties also hold for 
the implementation. All tests follow a similar approach, sending contrived messages and 
then using the Log structure to check the delivery order. The check varies with which of 
the algorithm's properties we are testing.
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The Agreement and Integrity properties share the same test. The test broadcasts a 
single message, and after confirming the delivery, verifies that all members' WAL con- 
tains the same single message. The test for the Validity property issues a single request 
and waits for the commit notification from the State Machine, whereas not necessary to 
compare the delivered value among members.

The Partial Order property has a more elaborate test. The test suite continues using 
three groups, now referenced as A, B, and C. The test sends a collection of messages 
varying the destination, AB, BC, AC, and ABC. Then we need to verify the delivery order. 
For example, groups A and B must have the same order for messages sent to AB and ABC, 
validating all intersecting groups. We do not test the Collision property since the WAL 
already makes messages to have an order.

The remaining tests check variations in the message's destinations and conflicts. That 
is, we test the broadcast, multicast, and generic behavior. These tests are pretty straight- 
forward and hold some similarities with the property ones. Broadcast check order on all 
groups, multicast in intersecting groups, and the generalized on conflicting messages.

The current integration test suite covers the properties and some of the behaviors. 
Future work could focus on creating Jepsen tests. Such tests would increase confidence 
in the algorithm implementation when encountering different hazards.

5.5 Journey So Far

We covered all details about the prototype implementation. We can now conclude by 
discussing the experience of implementing an algorithm directly from a specification and 
summarizing improvements for future works.

We started the implementation directly from ANTUNES' proposal without verifying 
it in TLA+. Our goal was to implement something that did not violate the Generic 
Multicast properties instead of blindly following the algorithm. Not before long, our 
prototype was different from the original proposition.

The implementation without a proper specification was complex, even if for just a 
prototype. Some requirements were already defined beforehand, for example, the com- 
munication primitives, so we had plenty of solid ground to begin before even starting with 
the algorithm. After we started with the algorithm, we entered into a process of executing 
the tests, debugging, and guessing what may be causing the failures. Iterate this process 
without a clue as to why some changes were necessary, and soon we start to patch holes 
instead of fixing the root cause.

Once we finished the first version of the prototype, we had some leads on problems with 
the original algorithm, so then we turned our attention to writing a TLA+ specification. 
For example, we were aware that messages could go back in time when we started with 
TLA+, but we did not know the cause yet. With just a few experiments, we identified that 
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we could solve the problem by verifying if the message exists in Mem before executing 
the method to select a message's final timestamp.

With the problems uncovered in TLA+, we went back to fixing the prototype. Follow- 
ing the specification was a much better experience in the implementation. There are still 
some difficulties in implementing something directly from the specification, for example, 
correctly implementing some abstract data structures or handling concurrency properly. 
Details like these are for implementors to decide, but just detailing how a data structure 
should behave would greatly help the implementor's decisions.

Implementing an algorithm and writing a TLA+ specification, simultaneously or not, 
help understand the underlying problem, identify core properties, design proper data 
structures, and decision making. We had a good experience using the Go language. 
Features for concurrency and testing shipped with the language and a large ecosystem 
with libraries for distributed systems helped us get started quickly. The only problem, if 
we can say so, was regarding the transitive dependency when using etcd, but other than 
that, we did not have any issue around the tools and could focus only on developing the 
prototype.

All That Glitters

Besides the enjoyable development experience, there are improvements left for future 
work. We use this section to summarize everything. These improvements focus on making 
the implementation more production-like, and some could be complex to implement.

We begin with the communication between processes. The improvements include 
adding retries when failing to send messages with a configurable retry policy. Apply some 
techniques to reduce system call. Lastly, improve the serialization of the message.

Now for the Atomic Broadcast primitive. The client consuming a message being 
a time-bound operation can lead to message loss, which affects the correctness of the 
primitive. We could try to use etcd's transactions to tackle this, keeping track of the 
revision number of the last item consumed by the client.

The remaining improvements now apply to the algorithm implementation. Most of 
these refer to the message object, reducing the size to transfer over the network and 
stored in the Mem structure; better generation for the unique identifier; and improved 
serialization. For the core algorithm implementation, fix the procedures' atomicity. Im- 
provements for the Mem structure include reducing lock contention and re-arranging the 
design to remove the need for a Processed region. The tests also can take advantage of 
some improvements, expanding the suite with more scenarios and failures simulation.
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Conclusion

Distributed systems algorithms' correctness is crucial. The current work verifies three 
algorithms proposed by ANTUNES using TLA+. We found subtle problems in each 
one, which makes it clear that only reasoning may not be enough for some algorithms, 
that apart from closely resembling the source algorithms, issues can still exist. A more 
robust verification may be necessary, which only helps in increasing the confidence in the 
algorithm's correctness.

We take a step in describing how we applied TLA+ in the verification, where all speci- 
fications are openly available1 . We verified all of ANTUNES' algorithms and corrected all 
problems encountered, and at this stage, we did not try to introduce optimizations. The 
most noteworthy change was the removal of the Reliable Multicast primitive for Generic 
Multicast 1 and Generic Multicast 2. We also explore additional properties the algorithms 
have, which are: Strictness, Minimality, and Quiescence.

1 <https://github.com/jabolina/mcast-tlaplus>
2 <https://github.com/jabolina/go-mcast>

Lastly, we implemented a prototype of Generic Multicast 12. Even for a prototype 
with a study purpose, it was a challenge. Implementing and specifying the algorithms 
was an enlightening process that helped us to deeply understand how the algorithms work 
and how the properties fit together. Starting from a specified algorithm could reduce the 
development time since the developer can focus on the programming problems without 
worrying about the algorithm's correctness.

The current work has limitations on the specifications and the implemented prototype. 
Our specification generates too many states for larger models, making some scenarios 
impractical for verification. We could devote some effort to using another type of model 
checker so that verifying larger models is possible. We defined propositions for some 
additional properties, whereas writing proof for these is left for future work.

The algorithms can serve as a base to create algorithms that fit a real-world produc- 
tion environment. Such a change would start with adapting the algorithm to work with 
dynamic groups. This change would allow for processes to join and leave as they please.

https://github.com/jabolina/mcast-tlaplus
https://github.com/jabolina/go-mcast
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Introducing and formalizing optimizations is a welcome contribution to the algorithms. 
The prototype also has room for improvement, strengthening the implementation so other 
applications can use it as a foundation to create more robust algorithms.
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APPENDIX

On the Specifications

This chapter contains all the TLA+ specifications. The actual TLA files are available 
online for public scrutiny, and the specifications here come directly from these online files. 
We use the TLATEX program for typesetting the TLA+ modules (LAMPORT, 2002), 

writing the contents in this chapter as is. We will provide little to no comments about 
the contents since the modules are self-explanatory. We start with the communication 
primitives and helpers and then with the specifications. The algorithms have a slightly 
smaller font size to fit better on the page.

A.1 Communication Primitives

We wrote the primitives for a quasi-reliable channel for process communication, Atomic 
Broadcast and Generic Broadcast for group communication. To write the process com- 
munication a single time and use it in all specifications, it uses the structures as a group 
exists all times. The Generic Multicast 0 uses this primitive with groups with one process.

The quasi-reliable abstraction is in A.1. The Atomic Broadcast abstraction is in A.1. 
The Generic Broadcast abstraction is in A.1.
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I----------------------------------- moduie QuasiReliable------------------------------------- 1
This module is the abstraction for a quasi-reliable channel, the primary form of 
communication. Communication channels connect every pair of processes and pro- 
vide two basic primitives to send and receive messages. The primitives Send and 
Receive have the following properties:

* No creation: for p i , p j , if p j invokes Received m from p i , then p i must have 
invoked Send m to pj ;

* No duplication: for p i , p j , for all Send m to p j invoked by p i , p j invokes a 
corresponding Received from pi is at most once;

* No loss: for pi , pj , if process pi invokes Send m to pj , and if neither pi nor pj 

fails, then eventually Received m from pi is invoked in pj .

local instance Naturals
local instance Sequences

Number of groups.
constant NGROUPS

Number of processes.
constant NPROCESSES

The set of initial messages.
constant INITIAL MESSAGES

Represents the underlying network channel.
variable QuasiReliableChannel

A wrapper around the Send primitive. This procedure sends a message m to all 
processes in all groups. We do this instead of a single process to process to clear 
things up on the client side since all usages are to send messages to all participants. 
Send (m) =

A QuasiReliableChannel' = [
g E domain QuasiReliableChannel [

p E domain QuasiReliableChannel[g] M- 
QuasiReliableChannel[g][p] U {m}]]
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The receive primitive, using only this procedure, does not consume the message. 
We execute the callback passing the message existent in the specific process of the 
given group.
Receive (g, p, Fn(_)) = 

A 3 m G QuasiReliableChannel[g][p] : Fn(m)

Bellow are some helper procedures built upon the Send and Receive primitives.

A wrapper to send the messages while applying a map function to the process' 
network buffer. We need this because we can not execute multiple operations to 
a variable in a single step. For example, removing and adding a message must be 
a single operation. In cases where we must consume and send a message in the 
network, we use this wrapper.
SendMap(Fn(_, _)) =

A QuasiReliableChannel' = [
g G domain QuasiReliableChannel [ 

p G domain QuasiReliableChannel[g] 
Fn(p, QuasiReliableChannel[g][p])]]

This procedure causes the process in the given to consume the specific message.
Consume (g, p, m) =

A QuasiReliableChannel' = [ 
QuasiReliableChannel except ![g][p] = @ \ {m}]

This procedure put both the Receive primitive with the consume procedure to- 
gether. For a received message, execute the callback and removes it from the 
buffer.
ReceiveAndConsume(g, p, Fn(_)) =

A Receive(g, p, lambda m : Fn(m) A Consume(g, p, m))

Initialize the algorithm with all processes in all groups with the same set of messages.
Init =

A QuasiReliableChannel = [ 
g G 1 .. NGROUPS [

p G 1 .. NPROCESSES INITIAL-MESSAGES]]
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I---------------------------------moduie AtomicBroadcast---------------------------------- 1
This module is the abstraction for the Atomic Broadcast, a primitive for group 
communication. A process can broadcast a message to its local group, where all 
members will deliver in the same order.

We use a sequence to maintain the same order on all processes. New messages are 
added to the back and removed from the front. A group has its own order within, 
whereas there are no ordering requirements across groups.

local instance Naturals
local instance Sequences

Number of groups.
constant NGROUPS

Number of processes.
constant NPROCESSES

The sequences of initial messages.
constant INITIAL-MESSAGES

variables
The underlying buffer that holds all the messages.

AtomicBroadcastBuffer

Broadcast the message to the given group. We add the message at the back of 
every process' sequence within this group.
ABroadcast (g, m) =

A AtomicBroadcastBuffer1 = [ 
AtomicBroadcastBuffer except ![g] = [ 

p E domain AtomicBroadcastBuffer[g] 
Append(AtomicBroadcastBuffer[g] [p] , m)]]
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Deliver the message to the process in the specific group. If there is a message in 
the buffer, we pass it to the callback and consume it.
ABDeliver(g, p, Fn(_)) =

A Len(AtomicBroadcastBuffer[g][p]) > 0
A Fn(Head(AtomicBroadcastBuffer[g][p]))
A AtomicBroadcastBuffer' = [

AtomicBroadcastBuffer except ![g][p] = 
Tail(AtomicBroadcastBuffer[g] [p])]

Initialize the algorithm with the configuration values. The processes within a group 
will have the same sequence of messages in the same order.
Init =

A AtomicBroadcastBuffer = [
g E 1 .. NGROUPS [

p E 1 .. NPROCESSES INITIAL.MESSAGES[g]]]
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I-------------------------------- moduie GenericBroadcast---------------------------------- 1
This module is the abstraction for the Generic Broadcast, a primitive for group 
communication. A process can broadcast a message to a single group, and using 
conflict relation processes may order the delivery order.

We use a combination of sequences; each position contains a set; each set contains 
commuting messages. The former has an order, whereas the latter is unordered. 
With this approach, we have a generic delivery.

local instance Naturals
local instance Sequences
local instance FiniteSets
local instance Commons

constant NGROUPS 
constant NPROCESSES
constant INITIAL-MESSAGES

The conflict relation to identify commuting messages.
constant CONFLICTR(_, _)

The underlying buffer that holds all the messages.
variable GenericBroadcastBuffer

We consume the message in the given group. If the set in the head is empty, we 
remove it; we remove only m otherwise.
locai Consume(S, m) ==

if Cardinality(Head(S)) > 1 then ReplaceAt(S, 1, Head(S) \ {m}) 
eise SubSeq(S, 2, Len(S))

Verify if exists conflict in the process for the message.
locai ConflictIn(V, m) = 3(n, x, y) E V : CONFLICTR(m, n) 
locai HasConflict(S, m) =

Len(SelectSeq(S, lambda V : ConflictIn(V, m[1]))) = 0
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We insert a message to the specific process' buffer. If the buffer is empty or there 
is a conflict, we add the message to the back of the sequence; otherwise, we add 
the message in the head.
locai Insert(S, m) =

if Len(S) = 0 V HasConflict(S, m) then Append(S, {m}) 
eise ReplaceAt(S, Len(S), S[Len(S)] U {m})

Broadcast a message to the given group. We insert the message in the buffer of all 
processes within this group.
GBroadcast(g, m) =

A GenericBroadcastBuffer' = [
GenericBroadcastBuffer except ![g] = [

i E 1 .. Len(GenericBroadcastBuffer[g]) 
Insert( GenericBroadcastBuffer[g] [i] , m)]]

Generic deliver primitive to the process in the specific group. If the buffer is not 
empty, we invoke the call with the appropriate message and then consume it. 
GBDeliver(g, p, Fn(_)) =

A Len( GenericBroadcastBuffer[g] [p] ) > 0
A Cardinality (Head ( GenericBroadcastBuffer [g] [p] ) ) > 0
A iet

Since messages in the same set commute, we can choose any.
m = Choose v E Head(GenericBroadcastBuffer[g][p]) : true 

in
A Fn(m)
A GenericBroadcastBuffer' = [

GenericBroadcastBuffer except ![g][p] = 
Consume( GenericBroadcastBuffer[g] [p] , m)]

Initialize the algorithm with the configuration values. The processes within a group 
will have the same sequence of messages.
Init =

A GenericBroadcastBuffer = [
g E 1 .. NGROUPS [

p E 1 .. NPROCESSES INITIAL-MESSAGES[g]]]
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These are all the communication primitives. These modules are instantiated in the 
algorithm's modules and used as primitive.

A.2 Helper Procedures

This chapter contains the module with helper procedures and the Memory structure. 
The helper methods revolve around methods to help build the message structures. The 
Memory module is the Mem structure used in Generic Multicast 1 and 2.
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I--------------------------------moduie Commons--------------------------------- 1

local instance Naturals
local instance FiniteSets
local instance Sequences 

locai Identity(x) = x
locai Choose(S) = choose x e S : true
locai IsEven(x) = x%2 = 0
Max(S) = choose x e S : V y e S : x > y

Three different conflict relations. We identify the relation to use through the con- 
figuration files. We verify each property with all three.

Use the message's identifier, where the evens conflict with evens and odds with 
odds. This relationship has a partial ordering.
IdConflict(m, n) = IsEven(m.id) = IsEven(n.id)

All messages conflict in this relationship. The executions with this conflict relation 
are equivalent to the Atomic Multicast.
AlwaysConflict(m, n) = true

There is no conflict in this relationship. The executions with this conflict relation 
are equivalent to the Reliable Multicast.
NeverConflict(m, n) = FAiSE

We use multiple procedures provided by the TLA+ community.
Most of the procedures are used locally to create the messages.

From Community Modules
locai IsInjective(f) =

A function is injective iff it maps each element in its domain to a distinct 
element.

This definition is overridden by TLC in the Java class SequencesExt . The 
operator is overridden by the Java method with the same name.
V a, b e domain f : f [a] = f [b] a = b
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From Community Modules
locai SetToSeq(S) =

Convert a set to some sequence that contains all the elements of the set exactly 
once, and contains no other elements.
choose f e [1 .. Cardinality(S) S] : IsInjective(f)

From Community Modules
locai SetToSeqs(S) =

Convert the set S to a set containing all sequences containing the elements of S 
exactly once and no other elements. Example:

SetToSeqs({}), {()}
SetToSeqs({“t”, “l”}) = {(“t”, “Z”), (“l”, “t”)}

iet D = 1 .. Cardinality (S)
in {f E [D S] : V i, j E D : i = j f [i] = f [j]}

From Community Modules
locai SetToAllKPermutations (S) =

Convert the set S to a set containing all k-permutations of elements of S for 
k E 0 . . Cardinality(S). Example:

SetToAllKPermutations ({}) = {()} 
SetToAllKPermutations({“a”}) = {(), (“a”)} 
SetToAllKPermutations({“a”, “b”}) =

{(), (“a”), (“b”), (“a”, “b”), (“b”, “a”)}

union {SetToSeqs(s) : s E subset S }

From Community Modules
locai MapThenFoldSet(op(_, _), base, f (_), choose(_), S) =
Starting from base, apply op to f (x), for all x E S, by choosing the set elements 
with choose . If there are multiple ways for choosing an element, op should be 
associative and commutative. Otherwise, the result may depend on the concrete 
implementation of choose .

FoldSet, a simpler version for sets is contained in FiniteSetsEx . FoldFunction, a 
simpler version for functions is contained in Functions. FoldSequence , a simpler 
version for sequences is contained in SequencesExt.

Example:

MapThenFoldSet(lambda x, y : x U y,
{}, 
lambda x : {{x}}, 
lambda set: cHoose x E set: true, 
{1, 2})
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= {{1}, {2}} 

let iter[s E subset S] = 
if s = {} then base 
eise let x = choose(s) 

in op(f(x), iter[s\{x}])
in iter[S]

From Community Modules
locai ToSet(s) =

The image of the given sequence s. Cardinality(ToSet(s)) < Len(s) see
https:// en. wikipedia. org /wiki/Image- (mathematics)
{s[i] : i E domain s}

From Community Modules
ReplaceAt(s, i, e) =

Replaces the element at position i with the element e.

[s except ![i] = e]

locai Originator(G, P) = (Choose(G), Choose(P))

Initialize the message structure we use to check the algorithm.
CreateMessages (nmessage, G, P) =

{[id m, d G, o Originator(G, P)] : m E 1 .. nmessage}

Create all possible different possibilities in the initial ordering. Since we replaced 
the combination of Reliable Multicast + Atomic Broadcast with multiple uses of 
Atomic Broadcast, messages can have distinct orders across groups. We force this 
distinction.
CreatePossibleMessages (S) =

let M = SetToAllKPermutations (S)
in Map ThenFoldSet (

lambda x, y : (x) o y,
(),
Identity,
Choose ,
{m E M : Len(m) = Cardinality(S)})

We create the tuple with the message, state, and timestamp.
lOCAl InitialMessage(m) = (m, “S0”, 0)
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A totally ordered message buffer.
TotallyOrdered (F) =

[x E domain F InitialMessage(F[x])]

Creates a partially ordered buffer from the sequence using the given predicate to 
identify conflicts between messages.
locai ExistsConflict(x, S, Op(_, _)) =

3 d E ToSet(S) :
3 (n, s, ts) E d : Op(x, n) 

PartiallyOrdered(F, Op(-, -)) = 
Map ThenFoldSet ( 

lambda x, y :
if Len(y) = 0 V ExistsConflict(x, y, Op) 

then ({InitialMessage(x)}) ◦ y 
eise (y[1] U {InitialMessage(x)}),

0,
Identity, 
Choose, 
ToSet(F))

We enumerate the entries in the given set. 
Enumerate(base, E) = 

let f = SetToSeq(E)in {(base + i, f [i]) : i E domain f}
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I--------------------------------------- moduie Memory----------------------------------------- 1
This module is the abstraction for the Memory structure used by Generic Multicast 
1 and 2. Inserting a new message will either create a new entry or update an 
existing one. The requirement here is that, at any time, we must always have 
only one entry for a message, never duplicating. Besides the insert, we have some 
additional procedures wrapping the buffer for verifying entries and removing them. 
Each process owns a buffer and accesses only its own buffer, never the others'.

local instance FiniteSets 
local instance Naturals

Number of groups.
constant NGROUPS

Number of processes.
constant NPROCESSES

The underlying buffer, each process owns one.
We use a set, and the entries are the message tuples.

variable MemoryBuffer

Insert the new entry into the process buffer in the specific group. We remove the 
previous entry and put the new one in its place.
Insert(g, p, t) =

A MemoryBuffer' = [
MemoryBuffer except ![g][p] = {

(msg, state, ts) E MemoryBuffer [g][p] :
msg.id = t[1].id} U {t}]

Verify if an entry exists in the process buffer in the specific group using the callback.

Contains (g, p, Fn(_)) =
3 t E MemoryBuffer[g][p] : Fn(t)

We filter the entries in the process buffer in the specific group using the callback. 
An entry must be valid when compared with all others except itself. 
ForAllFilter(g, p, Fn(_, _)) =

{t_ 1 E MemoryBuffer [g][p] :
V t_2 E (MemoryBuffer[g][p] \{t_ 1}) : Fn(t_ 1, tJ2)}
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Remove the entries in the process buffer in the specific group.
Remove (g, p, S) =

A MemoryBuffer' = [MemoryBuffer except ! [g][p] = @ \ S]

Initialize the structure for all processes with an empty buffer.
Init =

A MemoryBuffer = [ 
g G 1 .. NGROUPS [

p G 1 .. NPROCESSES {}]]
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A.3 Generic Multicast 0
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I-------------------- module GenericMulticastO--------------------- 1
local instance Commons 
local instance Naturals 
local instance FiniteSets

Number of processes in the algorithm.
constant NPROCESSES

Set with initial messages the algorithm starts with.
constant INITIALMESSAGES

The conflict relation.
constant CONFLICTRÇ-, _)

assume
Verify that NPROCESSES is a natural number greater than 0. 

A NPROCESSES e (Nat \{0})

The messages in the protocol must be finite.
A IsFiniteSet(INITIALMESSAGES)

local Processes = {i : i e 1 .. NPROCESSES}

The instance of the quasi-reliable channel for process communication primitive. We use groups 
with single processes, having NPROCESSES groups.
variable QuasiReliableChannel
QuasiReliable == instance QuasiReliable wiTh 

NGROUPS NPROCESSES,
NPROCESSES 1

variables
Structure that holds the clocks for all processes.

K,

Structure that holds all messages that were received but are still pending a 
final timestamp.

Pending,

Structure that holds all messages that contains a final timestamp but were 
not delivered yet.

Delivering,

Structure that holds all messages that contains a final timestamp and were 
already delivered.
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Delivered,

Used to verify if previous messages conflict with the message beign 
processed. Using this approach is possible to deliver messages with a 
partially ordered delivery.

PreviousMsgs,

Set used to holds the votes that were cast for a message. Since the 
coordinator needs that all processes cast a vote for the final timestamp, 
this structure will hold the votes each process cast for each message on the 
system.

Votes

vars = (QuasiReliableChannel, Votes, K, Pending,
Delivering, Delivered, PreviousMsgs)

Helper to send messages. In a single operation we consume the message from our local network 
and send a request to the algorithm initiator. Is not possible to execute multiple operations in a 
single step on the same set. That is, we can not consume and send in different operations. 
local SendOriginatorAndRemoveLocal(self, dest, curr, prev, S) =

if self = dest A prev[2].o = self then (S \ {prev}) U {curr}
eise if prev[2].o = dest then S U {curr}
else if self = dest then S \ {prev}
else S

Check if the given message conflict with any other in the PreviousMsgs. 
local HasConflict(self, m1) =

3 m2 e PreviousMsgs[self ] : CONFLICTR(m 1, m2)

We have the handlers representing each step of the algorithm. The handlers are the actual 
algorithm, and the caller is the step guard predicate.

locai AssignTimestampHandler(self, msg) =
A V A HasConflict(self, msg)

A K' = [K except ! [self ] = K [self ] + 1]
A PreviousMsgs' = [PreviousMsgs except ! [self ] = {msg}]

V A —HasConflict(self, msg)
A K' = [K except ! [self] = K[self]]
A PreviousMsgs' = [PreviousMsgs except ! [self] = 

PreviousMsgs [self] U {msg}]
A Pending' = [Pending except ! [self ] = Pending[self ] U {(K'[self], msg)}] 
A QuasiReliable ! SendMap ( lambda dest, S :

SendOriginatorAndRemoveLocal ( self , dest, 
(“SI”, K'[self], msg, self), (“S0”, msg), S))

A unchanged (Delivering, Delivered, Votes)
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local ComputeSeqNumberHandler(self, ts, msg, origin) =
A let

vote = (msg.id, origin, ts) 
election = {v 6 (Votes[self] U {vote}) : v[1] = msg.id} 
elected = Max({x[3] : x 6 election})

in
A V A Cardinality(election) = Cardinality(msg.d) 

A Votes' = [ Votes except ! [self ] =
{x 6 Votes[self] : x[1] = msg.id}] 

A QuasiReliable ! SendMap ( lambda dest, S :
(S \{(“S1”, ts, msg)}) U{(“S2”, elected, msg)})

V A Cardinality ( election) < Cardinality ( msg . d) 
A Votes' = [Votes except ! [self ] = Votes[self ] U {vote}] 
A QuasiReliable! Consume(1, self, (“S1”, ts, msg, origin))

A unchanged (K, PreviousMsgs, Pending, Delivering, Delivered) 

local AssignSeqNumberHandler(self, ts, msg) =
A V A ts > K[self]

A V A HasConflict(self, msg)
A K' = [K except ! [self ] = ts + 1]
A PreviousMsgs' = [PreviousMsgs except ! [self ] = {}] 

V A —HasConflict(self, msg)
A K' = [K except ! [self ] = ts]
A unchanged PreviousMsgs

VA ts < K [self ]
A unchanged (K, PreviousMsgs)

A Delivering' = [Delivering except ! [self ] = Delivering[self ] U {(ts, msg)}] 
A unchanged (Votes, Delivered)

This procedure executes after an initiator GM-Cast a message m to m .d . All processes in m .d do 
the same thing after receiving m , assing the local clock to the message timestamp, inserting the 
message with the timestamp to the process Pending set, and sending it to the initiator to choose 
the timestamp.
AssignTimestamp(self) =

We delegate to the lambda to handle the message while filtering for
the correct state.

A QuasiReliable ! Receive(self, 1, 
lambda t :

A t[1] = “S0”
A AssignTimestampHandler(self, t[2]))
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This method is executed only by the initiator. This method processes messages on state S 1 
and can proceed in two ways. If the initiator has votes from all other processes, the message's 
final timestamp is the maximum received vote, and the initiator sends the message back to all 
participants in state S 2 . Otherwise, the initiator only store the received message in the Votes 
structure.
ComputeSeqNumber (self) =

We delegate to the lambda handler to effectively execute the procedure.
Here we verify that the message is on state S1 and the current process
is the initiator.

A QuasiReliable! Receive(self, 1,
lambda t :

A t[1] = “S1”
A t[3].o = self
A ComputeSeqNumberHand ler( self , t[2], t[3], t[4]) )

After the coordinator computes the final timestamp for the message m, all processes in m.d will 
receive the chosen timestamp. Each participant checks the message's timestamp against its local 
clock. If the value is greater than the process clock, we need to update the process clock with the 
message's timestamp. If m conflicts with a message in the PreviousMsgs, the clock updates to 
m's timestamp plus one and clears the PreviousMsgs set. Without any conflict with m, the clock 
updates to m's timestamp. The message is removed from Pending and added to Delivering set. 
AssignSeqNumber (self) =

We delegate the procedure execution the the handler, and the message
is automatically consumed after the lambda execution. In this one we
only filter the messages.

A QuasiReliable ! ReceiveAnd Consume ( self , 1,
lambda t_ 1 :

A t- 1[1] = “S2”
A 3 t_2 6 Pending[self ] : t_ 1[3].id = t_2[2].id

A AssignSeqNumberHandler(self, t_ 1[2], t-1[3])
We remove the message here to avoid too many arguments
in the procedure invocation.

A Pending' = [Pending except ! [self ] = @ \{t_2}])
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Responsible for delivery of messages. The messages in the Delivering set with the smallest times- 
tamp among others in the Pending joined with Delivering set. We can also deliver messages that 
commute with all others, the generalized behavior in action.

Delivered messages will be added to the Delivered set and removed from the others. To store the 
instant of delivery, we insert delivered messages with the following format:

<<Nat, Message>>

Using this model, we know the message delivery order for all processes.

DoDeliver (self) =
3(ts_ 1, m_ 1) 6 Delivering [self ] :

AV(ts_2, m_2) 6 (Delivering[self] U Pending[self ]) \{(t^ 1, m_1)} :
V -CONFLICTR(m. 1, m2)
V ts-1 < ts_2 V (m- 1.id < m-2.id A ts-1 = ts_2)

A let
T = Delivering[self] U Pending [self]
G = {Di 6 Delivering[self] :

V t-j 6 T \{t-i} : —CONFLICTR(t-i [2], t-j [2])}
F = {m. 1}U{t[2] : t 6 G}

in
A Delivering' = [Delivering except ! [self ] = @ \ (G U {(t^ 1, m_ 1)})]
A Delivered' = [Delivered except ! [self ] =

Delivered[self] U Enumerate ( Cardinality (Delivered[self] ), F)]
A unchanged (QuasiReliableChannel, Votes, Pending , PreviousMsgs, K )

Responsible for initializing global variables used on the system. All variables necessary by the 
protocol are a mapping from the node id to the corresponding process set.

The “message” is also a structure, with the following format:

[ id |-> Nat, d |-> Nodes, o |-> Node ]

We have the properties: id is the messages' unique id, we use a natural number to represent; d 
is the destination, it may be a subset of the Nodes set; and o is the originator, the process that 
started the execution of the algorithm. These properties are all static and never change.

The mutable values we transport outside the message structure. We do this using the process 
communication channel, using a tuple to send the message along with the mutable values. 
local InitProtocol =

A K = [i 6 Processes 0]
A Pending = [i 6 Processes {}]
A Delivering = [i 6 Processes {}]
A Delivered = [i 6 Processes {}]
A PreviousMsgs = [i 6 Processes {}]
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locai InitHelpers ==
Initialize the protocol network.

A QuasiReliable ! Init

This structure is holding the votes the processes cast for each 
message on the system. Since any process can be the “coordinator”, 
this is a mapping for processes to a set. The set will contain the 
vote a process has cast for a message.

A Votes = [i e Processes {}]

Init = InitProtocol A InitHelpers

Step (self) =
V AssignTimestamp(self)
V ComputeSeqNumber(self)
V AssignSeqNumber(self)
V DoDeliver(self)

Next =
V 3 self e Processes : Step(self)
V unchanged vars

Spec = Init A d[Next]vars

SpecFair == Spec A WFvars(3 self e Processes : Step(self))

Helper functions to aid when checking the algorithm properties.

WasDelivered (p, m) =
Verifies if the given process p delivered message m.

A 3 (idx, n) e Delivered[p] : n.id = m.id 

DeliveredInstant (p, m) =
Retrieve the instant the given process p delivered message m.

(choose (index, n) e Delivered[p] : m.id = n.id)[1] 

FilterDeliveredMessages(p, m) =
Retrieve the set of messages with the same id as message m delivered by the given process p. 

{(id,x, n) e Delivered[p] : n.id = m.id}
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A.4 Generic Multicast 1
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i-------------------- module GenericMulticast 1 -------------------- ,
local instance Commons 
local instance Naturals 
local instance FiniteSets 
local instance TLC

Number of groups in the algorithm.
constant NGROUPS

Number of processes in the algorithm.
constant NPROCESSES

Set with initial messages the algorithm starts with. 
constant INITIAL-MESSAGES

The conflict relation.
constant CONFLICTR(_, _) 

assume
Verify that NGROUPS is a natural number greater than 0.

A NGROUPS e (Nat \{0})
Verify that NPROCESSES is a natural number greater than 0.

A NPROCESSES e (Nat\{0})

local Processes = {p : p e 1 .. NPROCESSES} 
local Groups = {g : g e 1 .. NGROUPS}

The module containing the Atomic Broadcast primitive. 
variable AtomicBroadcastBuffer 
AtomicBroadcast = instance AtomicBroadcast

The module containing the quasi reliable channel. 
variable QuasiReliableChannel
QuasiReliable = instance QuasiReliable with

INITIAL-MESSAGES {}

The algorithm's Mem structure. We use a separate module. 
variable MemoryBuffer
Memory = instance Memory

variables
The process local clock.

1
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K,

The set contains previous messages. We use this with the CONFLICTR to verify conflicting 
messages.
PreviousMsgs,

The set of delivered messages. This set is not an algorithm requirement. We use this to help 
check the algorithm's properties.
Delivered,

A set contains the processes' votes for the message's timestamp. This structure is implicit in 
the algorithm.
Votes

vars = (
K,
MemoryBuffer, 
PreviousMsgs,
Delivered,
Votes,
AtomicBroadcastBuffer, 
QuasiReliableChannel

>

Check if the given message conflict with any other in the PreviousMsgs. 
local HasConflict (g, p, m1) =

3 m2 e PreviousMsgs[g][p] : CONFLICTR(m 1, m2)

These are the handlers. The actual algorithm resides here, the lambdas only assert the guarding 
predicates before calling the handler.

locai ComputeGroupSeqNumberHandler(g, p, msg, ts) =
A V A HasConflict(g, p, msg) 

A K' = [K except ! [g][p] = K [g][p] + 1]
A PreviousMsgs' = [PreviousMsgs except ! [g][p] = {msg}]

V A —HasConflict(g, p, msg)
A PreviousMsgs' = [PreviousMsgs except ! [g][p] = 

PreviousMsgs[g][p] U {msg}]
A unchanged K

A V A Cardinality ( msg.d) > 1
A Memory!Insert(g, p, (msg, “S1”, K'[g][p])) 
A QuasiReliable!Send((msg, g, K'[g][p]))

V A Cardinality ( msg.d) = 1
A Memory! Insert (g, p, (msg, “S3”, K'[g][p])) 
A unchanged QuasiReliableChannel

A unchanged (Delivered, Votes(

2
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local SynchronizeGroupClockHandler(g, p, m, tsf) =
A V A tsf > K [g][p]

A K' = [K except ! [g][p] = tsf ]
A PreviousMsgs' = [PreviousMsgs except ! [g][p] = {}]

V A tsf < K [g][p]
A unchanged {K, PreviousMsgs)

A V A 3 {n, s, ts) 6 MemoryBuffer[g][p] : s = “S1” A m = n
A Memory!Insert(g, p, {m, “S3”, tsf))

V unchanged MemoryBuffer
A unchanged {QuasiReliableChannel, Delivered, Votes) 

locai GatherGroupsTimestampHandler(g, p, msg, ts, tsf) =
A V A ts < tsf

A AtomicBroadcast! ABroadcast(g, {msg, “S2”, tsf))
V unchanged AtomicBroadcastBuffer

A Memory !Insert(g, p, {msg, “S3”, tsf))
A unchanged {K, PreviousMsgs, Delivered)

Executes when process P receives a message M from the Atomic Broadcast primitive and M is 
in P 's memory. This procedure is extensive, with multiple branches based on the message's state 
and destination. Let's split the explanation.

When M 's state is S 0, we first verify if M conflicts with messages in the PreviousMsgs set. If a 
conflict exists, we increase P 's local clock by one and clear the PreviousMsgs set.

When message M has a single group as the destination, it is already in its desired destination and 
is synchronized because we received M from Atomic Broadcast primitive. P stores M in memory 
with state S 3 and timestamp with the current clock value.

When M includes multiple groups in the destination, the participants must agree on the final 
timestamp. When M 's state is S 0, P will send its timestamp proposition to all other participants, 
which is the current clock value, and update M 's state to S 1 and timestamp. If M 's state is S 2, 
we are synchronizing the local group, meaning we may need to leap the clock to the M 's received 
timestamp and then set M to state S 3.
ComputeGroupSeqNumber(g, p) =

A AtomicBroadcast ! ABDeliver(g, p,
lambda t : t[2] = “S0” A ComputeGroupSeqNumberHandler(g, p, t[1], t[3]))

After exchanging the votes between groups, processes must select the final timestamp. When we 
have one proposal from each group in message M 's destination, the highest vote is the decided 
timestamp. If P 's local clock is smaller than the value, we broadcast the message to the local 
group with state S 2 and save it in memory. Otherwise, we update the in-memory to state S 3.

We only execute the procedure once we have proposals from all participating groups. Since we 
receive messages from the quasi-reliable channel, we keep the votes in the Votes structure. This 
structure is implicit in the algorithm.
locai HasNecessaryVotes(g, p, msg, ballot) =

A Cardinality ( ballot) = Cardinality(msg.d)
A Memory ! Contains ( g , p, lambda n : msg = n[1] A n[2] = “S1”)

3
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GatherGroupsTimestamp(g, p) =
A QuasiReliable! ReceiveAndConsume(g, p,

lambda t : 
A let

msg = t[1]
origin = t[2]
vote = (msg.id, origin, t[3])
ballot = {v 6 (Votes[g][p] U {vote}) : v[1] = msg.id} 
elected = Max({x[3] : x 6 ballot})

in
We only execute the procedure when we have proposals from all groups.

A V A HasNecessaryVotes(g, p, msg, ballot)
A 3 (m, s, ts) 6 MemoryBuffer[g][p] : m = msg

A GatherGroupsTimestampHandler(g, p, msg, ts, elected) 
A Votes' = [Votes except ! [g][p] = {

x 6 Votes[g][p] : x[1] = msg.id}]
V A ­ HasNecessary Votes (g , p, msg, ballot)

A Votes' = [Votes except ! [g][p] = Votes[g][p] U {vote}]
A unchanged (MemoryBuffer, K, 

PreviousMsgs, AtomicBroadcastBuffer)
A unchanged (Delivered))

SynchronizeGroupClock(g, p) ==
A AtomicBroadcast ! ABDeliver(g, p,

lambda t : t[2] = “S2” A SynchronizeGroupClockHandler(g, p, t[1], t[3]))

When messages are to deliver, we select them and call the delivery primitive. Ready means they 
are in state S3, and the message either does not conflict with any other in the memory structure 
or is smaller than all others. Once a message is ready, we also collect the messages that do not 
conflict with any other for delivery in a single batch.
DoDeliver(g, p) =

We are accessing the buffer directly, and not through the Memory instance.
We do this because is easier and because we are only reading the values here.
Any changes we do through the instance.

3 (m_ 1, state, ts-1) 6 MemoryBuffer [g][p] :
A state = “S3”
AV (m-2, ignore, ts-2) 6 (MemoryBuffer[g][p] \{(m_ 1, state, ts-1)}) : 

A V -CONFLICTR(m 1, m_2)
V ts- 1 < ts-2 V (m_ 1.id < m-2.id A ts-1 = ts_2) 

A let
G = Memory! ForAllFilter (g, p, 

lambda ti, t j : t-i [2] = “S3” A —CONFLICTR(t-i [1], t-j [1]))
D = G U {(m_ 1, “S3”, ts_ 1)}
F = {t[1] : t 6 D}

in
A Memory!Remove(g, p, D)

4
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A Delivered' = [Delivered except ! [g][p] =
Delivered[g][p] U Enumerate(Cardinality(Delivered[g][p]), F)]

A unchanged (QuasiReliableChannel, AtomicBroadcastBuffer, 
Votes, PreviousMsgs, K)

local InitProtocol =
A K = [i 6 Groups [p 6 Processes i]]
A Memory ! Init
A PreviousMsgs = [i 6 Groups [p 6 Processes {}]]
A Delivered = [i 6 Groups [p 6 Processes {}]]
A Votes = [i 6 Groups [p 6 Processes {}]]

local InitCommunication =
A AtomicBroadcast ! Init
A QuasiReliable ! Init

Init = InitProtocol /\ InitCommunication

Step(g, p) =
V ComputeGroupSeqNumber(g, p)
V GatherGroupsTimestamp(g, p)
V SynchronizeGroupClock (g, p)
V DoDeliver(g, p)

GroupStep (g) =
3 p 6 Processes : Step(g, p)

Next =
V 3 g 6 Groups : GroupStep(g)
V unchanged vars

Spec = Init A d[Next]vars

SpecFair = Spec A WFvars (3 g 6 Groups : GroupStep(g))

Helper functions to aid when checking the algorithm properties.

WasDelivered(g, p, m) =
Verifies if the given process p in group g delivered message m .

A 3 (idx, n) 6 Delivered[g][p] : n.id = m.id

FilterDeliveredMessages(g, p, m) =
Retrieve the set of messages with the same id as message m delivered by the given process p 
in group g .

5
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{(idx, n) e Delivered[g][p] : n.id = m.id} 

DeliveredInstant(g, p, m) =
Retrieve the instant the process p in group g delivered message m .

(choose (t, n) e Delivered[g][p] : n.id = m.id)[1]

6
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A.5 Generic Multicast 2
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I------------------------------------------- module GenericMulticast2--------------------------------------------- 1

local instance Commons
local instance Naturals
local instance FiniteSets

Number of groups in the algorithm.
constant NGROUPS

Number of processes in the algorithm.
constant NPROCESSES

Set with initial messages the algorithm starts with.
constant INITIAL-MESSAGES

The conflict relation.
constant CONFLICTR(-, _) 

assume
Verify that NGROUPS is a natural number greater than 0.

A NGROUPS e (Nat \{0})
Verify that NPROCESSES is a natural number greater than 0.

A NPROCESSES e (Nat\{0})

local Processes = {p : p e 1 .. NPROCESSES} 
local Groups = {g : g e 1 .. NGROUPS}

The module containing the Generic Broadcast primitive. 
variable GenericBroadcastBuffer 
GenericBroadcast = instance GenericBroadcast

The module containing the quasi reliable channel. 
variable QuasiReliableChannel 
QuasiReliable = instance QuasiReliable with

INITIAL.MESSAGES {}

The algorithm's Mem structure. We use a separate module. 
variable MemoryBuffer
Memory = instance Memory

variables
The process local clock.

K,

1
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The set contains previous messages. We use this with the CONFLICTR to verify conflicting 
messages.
PreviousMsgs,

The set of delivered messages. This set is not an algorithm requirement. We use this to help 
check the algorithm's properties.
Delivered,

A set contains the processes' votes for the message's timestamp. This structure is implicit in 
the algorithm.
Votes

A í vars = (
K,
MemoryBuffer, 
PreviousMsgs,
Delivered,
Votes,
GenericBroadcastBuffer, 
QuasiReliableChannel

>

These are the handlers. The actual algorithm resides here, the lambdas only assert the guarding 
predicates before calling the handler.

Check if the given message conflict with any other in the PreviousMsgs. 
local HasConflict (g, p, m1) =

3 m2 6 PreviousMsgs[g][p] : CONFLICTR(m 1, m2) 

local ComputeGroupSeqNumberHandler(g, p, msg, ts) =
A V A HasConflict(g, p, msg)

A K' = [K except ! [g][p] = K [g][p] + 1]
A PreviousMsgs' = [PreviousMsgs except ! [g][p] = {msg}]

V A —HasConflict(g, p, msg)
A PreviousMsgs' = [PreviousMsgs except ! [g][p] = 

PreviousMsgs[g][p] U {msg}]
A unchanged K

A V A Cardinality (msg.d) > 1
A Memory!Insert(g, p, (msg, “S1”, K'[g][p])) 
A QuasiReliable!Send((msg, g, K'[g][p]))

V A Cardinality(msg.d) = 1
A Memory! Insert (g, p, (msg, “S3”, K'[g][p])) 
A unchanged QuasiReliableChannel

A unchanged (Delivered, Votes(

locai SynchronizeGroupClockHandler(g, p, m, tsf) =

2
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A V A tsf > K [g][p]
A K' = [K except ! [g][p] = tsf ]
A PreviousMsgs' = [PreviousMsgs except ! [g][p] = {}]

V A tsf < K [g][p]
A unchanged {K, PreviousMsgs)

A V A 3 {n, s, ts) 6 MemoryBuffer[g][p] :
As = “S1”
Am=n
A Memory!Insert(g, p, {m, “S3”, K'[g][p]))

V A unchanged MemoryBuffer
A unchanged {QuasiReliableChannel, Delivered, Votes) 

local GatherGroupsTimestampHandler(g, p, msg, ts, tsf) =
A V A ts < tsf

A GenericBroadcast! GBroadcast(g, {msg, “S2”, tsf))
V unchanged GenericBroadcastBuffer

A Memory !Insert(g, p, {msg, “S3”, tsf))
A unchanged {K, PreviousMsgs, Delivered)

Executes when process P receives a message M from the Atomic Broadcast primitive and M is 
in P 's memory. This procedure is extensive, with multiple branches based on the message's state 
and destination. Let's split the explanation.

When M 's state is S 0, we first verify if M conflicts with messages in the PreviousMsgs set. If a 
conflict exists, we increase P 's local clock by one and clear the PreviousMsgs set.

When message M has a single group as the destination, it is already in its desired destination and 
is synchronized because we received M from Atomic Broadcast primitive. P stores M in memory 
with state S 3 and timestamp with the current clock value.

When M includes multiple groups in the destination, the participants must agree on the final 
timestamp. When M 's state is S 0, P will send its timestamp proposition to all other participants, 
which is the current clock value, and update M 's state to S 1 and timestamp. If M 's state is S 2, 
we are synchronizing the local group, meaning we may need to leap the clock to the M 's received 
timestamp and then set M to state S 3.
ComputeGroupSeqNumber(g, p) =

A GenericBroadcast ! GBDeliver (g , p,
lambda t : t[2] = “S0” A ComputeGroupSeqNumberHandler(g, p, t[1], t[3]))

After exchanging the votes between groups, processes must select the final timestamp. When we 
have one proposal from each group in message M 's destination, the highest vote is the decided 
timestamp. If P 's local clock is smaller than the value, we broadcast the message to the local 
group with state S 2 and save it in memory. Otherwise, we update the in-memory to state S 3.

We only execute the procedure once we have proposals from all participating groups. Since we 
receive messages from the quasi-reliable channel, we keep the votes in the Votes structure. This 
structure is implicit in the algorithm.
local HasNecessaryVotes(g, p, msg, ballot) =

A Cardinality(ballot) = Cardinality(msg.d)

3



A.5. Generic Multicast 2 125

A Memory! Contains(g, p, lambda n : msg.id = n[1].id A n[2] = “S1”) 
GatherGroupsTimestamp(g, p) =

A QuasiReliable !ReceiveAndConsume(g, p,
lambda t :

A let
msg = t[1] 
origin = t[2] 
vote = (msg.id, origin, t[3]) 
ballot = {v 6 (Votes[g][p] U {vote}) : v[1] = msg.id} 
elected = Max({x[3] : x 6 ballot})

in
We only execute the procedure when we have proposals from all groups.

A V A HasNecessaryVotes(g, p, msg, ballot)
A 3 (m, s, ts) 6 MemoryBuffer[g][p] : m = msg

A GatherGroupsTimestampHandler(g, p, msg, ts, elected ) 
A Votes' = [Votes except ! [g][p] = {

x 6 Votes[g][p] : x[1] = msg.id}]
V A ­ HasNecessary Votes (g , p, msg, ballot) 

A Votes' = [Votes except ! [g][p] = Votes[g][p] U {vote}] 
A unchanged (MemoryBuffer, K,

PreviousMsgs, GenericBroadcastBuffer)
A unchanged (Delivered))

SynchronizeGroupClock(g, p) ==
A GenericBroadcast ! GBDeliver(g, p, 

lambda t : t[2] = “S2” A SynchronizeGroupClockHandler(g, p, t[1], t[3]))

When messages are to deliver, we select them and call the delivery primitive. Ready means they 
are in state S3, and the message either does not conflict with any other in the memory structure 
or is smaller than all others. Once a message is ready, we also collect the messages that do not 
conflict with any other for delivery in a single batch.
DoDeliver(g, p) =

We are accessing the buffer directly, and not through the Memory instance.
We do this because is easier and because we are only reading the values here.
Any changes we do through the instance.

3 (m_ 1, state, ts_ 1) 6 MemoryBuffer [g][p] :
A state = “S3”
AV(m_2, ignore, ts_2) 6 (MemoryBuffer[g][p] \{(m_ 1, state, ts_ 1)}) :

A V -CONFLICTR(m 1, m_2) 
V ts_ 1 < ts_2 V (m_ 1.id < m 2.id A ts_ 1 = ts_2)

A let
G = Memory ! ForAllFilter(g, p, 

lambda t i, t_j : Mi[2] = “S3” A —CONFLICTR(Mi[1], t_j[1]))
D = G U {(m_ 1, “S3”, ts_ 1)}
F = {t[1] : t 6 D}

in

4
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A Memory !Remove(g, p, D)
A Delivered' = [Delivered except ! [g][p] =

Delivered[g][p] U Enumerate(Cardinality(Delivered[g][p]), F)]
A unchanged (QuasiReliableChannel, 

GenericBroadcastBuffer, Votes, PreviousMsgs, K)

local InitProtocol =
A K = [i e Groups [p e Processes 0]]
A Memory ! Init
A PreviousMsgs = [i e Groups [p e Processes {}]]
A Delivered = [i e Groups [p e Processes {}]]
A Votes = [i e Groups [p e Processes {}]]

local InitCommunication =
A GenericBroadcast ! Init
A QuasiReliable ! Init

Init = InitProtocol /\ InitCommunication

Step(g, p) =
V ComputeGroupSeqNumber(g, p)
V GatherGroupsTimestamp(g, p)
V DoDeliver(g, p)

GroupStep (g) =
3 p e Processes : Step(g, p)

Next =
V 3 g e Groups : GroupStep(g)
V unchanged vars

Spec = Init A d[Next]vars

SpecFair = Spec A WFvars (3 g e Groups : GroupStep(g))

Helper functions to aid when checking the algorithm properties. 

WasDelivered(g, p, m) =
Verifies if the given process p in group g delivered message m .

A 3 (idx, n) e Delivered[g][p] : n.id = m.id 

FilterDeliveredMessages(g, p, m) =
Retrieve the set of messages with the same id as message m delivered by the given process p 
in group g .

5
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{(idx, n( 6 Delivered[g][p] : n.id = m.id} 

DeliveredInstant(g, p, m) =
Retrieve the instant the process p in group g delivered message m . 

(choose (t, n) 6 Delivered[g][p] : n.id = m.id)[1]

6
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A.6 TLC Executions

This section contains information about the models we checked using TLC. First, we 
show the TLA+ specification we created for each algorithm's property. Then, we display 
all the information regarding the executions. Some checkings never finished executing. 
The conflict relations we used were NeverConflict, AlwaysConflict , and IdConflict .

A.6.1 Generic Multicast 0

Combinations with NPROCESSES and NMESSAGES were simultaneously greater than 3 
take too much time to complete.

Table 2 - Generic Multicast 0 Agreement configurations.

NPROCESSES NMESSAGES CONFLICTR
2 2 All
2 3 All
3 2 All

Table 3 - Generic Multicast 0 configurations for remaining properties.

NPROCESSES NMESSAGES CONFLICTR
2 2 All
2 3 All
3 2 All
4 2 All
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I------------------------------------------------  module Agreement ------------------------------------------------ 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES 
constant NMESSAGES
constant CONFLICTR(_, _)

Since this algorithm is for failure-free environments, the set of all processes is the same as the 
correct ones.

local Processes = {i : i G 1 .. NPROCESSES}
local ChooseProcess = Choose x G Processes : true
local Create(id) = [id id, d Processes, o ChooseProcess]
local AllMessages = {Create(id) : id G 1 .. NMESSAGES} 

variables
K,
Pending,
Delivering,
Delivered,
PreviousMsgs ,
Votes ,
QuasiReliableChannel

Initialize the instance for the Generic Multicast 0. The INITIALMESSAGES is a set with
NMESSA GES, unordered, a tuple with the starting state S0 and the message.

Algorithm = instance GenericMulticastO WITH
INITIALMESSAGES {(“S0", m) : m G AllMessages}

Weak fairness is necessary.
Spec = Algorithm ! SpecFair

If a correct process deliver a message m , then all correct processes in m.d eventually delivers m . 

We verify that all messages in AllMessages, for all the processes that delivered a message, even- 
tually, all the correct members in the destination will deliver.

Agreement =
V m G AllMessages :

Vp G Processes :
Algorithm !WasDelivered (p , m)

V q G {x G m.d : x G Processes} :
Algorithm!WasDelivered(q, m)

1
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I-------------------------------------------moduie Collision-------------------------------------------- 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES 
constant NMESSAGES 
constant CONFLICTR(_, _)

Since this algorithm is for failure-free environments, the set of all processes is the same as the 
correct ones.
locai Processes = {i : i 6 1 .. NPROCESSES}
locai ChooseProcess = choose x 6 Processes : true
locai Create(id) = [id id, d Processes, o ChooseProcess]
locai AllMessages = {Create(id) : id 6 1 .. NMESSAGES}

variables
K,
Pending,
Delivering,
Delivered,
PreviousMsgs ,
Votes,
QuasiReliableChannel

Initialize the instance for the Generic Multicast 0. The INITIAL-MESSAGES is a set with 
NMESSA GES, unordered, a tuple with the starting state S0 and the message.
Algorithm = instance GenericMulticastO with 

INITIAL-MESSAGES {(“S0", m) : m 6 AllMessages}

Spec = Algorithm! Spec

If a correct process p delivers messages m and n, p is in the destination of both messages, m and 
n do not commute. Then, p delivers either m and then n or n and then m.
Collision =

□V p 6 Processes :
V m, n 6 AllMessages : A m.id = n.id

A Algorithm! WasDelivered(p, m)
A Algorithm! WasDelivered(p, n)
A CONFLICTR(m, n)

Algorithm! DeliveredInstant(p, m) =
Algorithm ! DeliveredInstant(p, n)
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I--------------------------------------------  module Integrity ------------------------------------------ 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES 
constant NMESSAGES
constant CONFLICTR(_, _)

Since this algorithm is for failure-free environments, the set of all processes is the same as the 
correct ones.

local Processes = {i : i G 1 .. NPROCESSES}
local ChooseProcess = Choose x G Processes : true

This property verifies that we only deliver sent messages. To assert this, we create NMESSAGES + 
1 and do not include the additional one in the algorithm execution, then check that the delivered 
ones are only the sent ones.

local AcceptableMessageIds = {id : id G 1 . . NMESSAGES}
local Create(id) = [id id, d Processes, o ChooseProcess]
local AllMessages = {Create(id) : id G 1 .. (NMESSAGES + 1)}
local SentMessage = {m G AllMessages : m.id G AcceptableMessageIds} 

variables
K,
Pending,
Delivering, 
Delivered, 
PreviousMsgs ,
Votes ,
QuasiReliableChannel

Initialize the instance for the Generic Multicast 0. The INITIALMESSAGES is a set with 
NMESSA GES, unordered, a tuple with the starting state S0 and the message.

Algorithm = instance GenericMulticastO WITH
INITIALMESSAGES {(“S0", m) : m G SentMessage}

Spec = Algorithm! Spec

local DeliveredOnlyOnce (p, m) =
Cardinality ( Algorithm ! FilterDeliveredMessages (p , m)) = 1

For every message, all the correct processes in the destination deliver it only once, and a process 
previously sent it.

Integrity =
□V m G AllMessages : 

Vp G Processes :
Algorithm! WasDelivered(p, m)

(DeliveredOnlyOnce(p, m) A p G m.d A m G SentMessage)

1
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I----------------------------------------module PartialOrder----------------------------------------- 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES 
constant NMESSAGES 
constant CONFLICTR(_, _)

Since this algorithm is for failure-free environments, the set of all processes is the same as the 
correct ones.
local Processes = {i : i 6 1 .. NPROCESSES}
locai ChooseProcess = choose x 6 Processes : true
locai Create(id) = [id id, d Processes, o ChooseProcess]
local AllMessages = {Create(id) : id 6 1 .. NMESSAGES}

variables K , Pending, Delivering, Delivered, 
PreviousMsgs , Votes, QuasiReliableChannel

Initialize the instance for the Generic Multicast 0. The INITIAL-MESSAGES is a set with
NMESSA GES, unordered, a tuple with the starting state S0 and the message.
Algorithm = instance GenericMulticastO with 

INITIAL-MESSAGES {(“S0", m) : m 6 AllMessages}

Spec = Algorithm! Spec

local BothDelivered (p, q, m, n) =

A Algorithm! WasDelivered(p, m) A Algorithm! WasDelivered(p, n)
A Algorithm! WasDelivered(q, m) A Algorithm! WasDelivered(q, n) 

local LHS (p, q, m, n) =
{p, q} Ç (m.d n n.d) A BothDelivered(p, q, m, n) A CONFLICTR(m, n) 

local RHS (p, q, m, n) =
(Algorithm ! DeliveredInstant(p, m) < Algorithm! DeliveredInstant(p, n))

= (Algorithm! DeliveredInstant(q, m) < Algorithm! DeliveredInstant(q, n))

For every two messages, if they conflict, given a pair of processes, they are in the messages' 
destination, then both must deliver in the same order.
PartialOrder =

□V p, q 6 Processes :
V m, n 6 AllMessages :

LHS(p, q, m, n) RHS(p, q, m, n)
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I----------------------------------------------------module Validity ----------------------------------------------------- 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES 
constant NMESSAGES 
constant CONFLICTR(_, _)

Since this algorithm is for failure-free environments, the set of all processes is the same as the 
correct ones.
local Processes = {i : i 6 1 .. NPROCESSES}
locai ChooseProcess = choose x 6 Processes : true
locai Create(id) = [id id, d Processes, o ChooseProcess]
local AllMessages = {Create(id) : id 6 1 .. NMESSAGES}

variables
K,
Pending,
Delivering,
Delivered,
PreviousMsgs ,
Votes,
QuasiReliableChannel

Initialize the instance for the Generic Multicast 0. The INITIALMESSAGES is a set with 
NMESSA GES, unordered, a tuple with the starting state S0 and the message.
Algorithm = instance GenericMulticastO with

INITIALMESSAGES {(“S0", m) : m 6 AllMessages}

Weak fairness is necessary.
Spec = Algorithm! SpecFair

If a correct process GM-Cast a message m to m.d , then some process in m.d eventually GM-
Deliver m .

We verify that all messages on the messages that will be sent, then we verify that exists a process
on the existent processes that did sent the message and eventually exists a process on m.d that
delivers the message .
Validity ==

V m 6 AllMessages :
m.o 6 Processes 3 q 6 m.d : Algorithm! WasDelivered(q, m)
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A.6.2 Generic Multicast 1

Table 4 - Generic Multicast 1 Integrity configurations.

NGROUPS NPROCESSES NMESSAGES CONFLICTR
1 2 2 All
1 3 2 All
1 2 3 All
2 2 1 All

Table 5 - Generic Multicast 1 configurations for Agreement and Validity.

NGROUPS NPROCESSES NMESSAGES CONFLICTR
1 2 2 All
1 3 2 All
1 2 3 All
1 2 4 All
2 2 1 All

Table 6 - Generic Multicast 1 configurations for Partial Order and Collision.

NGROUPS NPROCESSES NMESSAGES CONFLICTR
1 2 2 All
1 3 2 All
1 2 3 All
1 2 4 All
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I------------------------------------------------- module Agreement--------------------------------------------------- 1
extends Naturals , FiniteSets , Commons, TLC

constant NPROCESSES
constant NGROUPS
constant NMESSAGES
constant CONFLICTR^, _

This algorithm works in an environment with crash-stop failures, but we do not model processes 
failing. The set of all processes contains all correct ones.
local Processes = {i : i € 1 .. NPROCESSES}
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]
local AllMessages = CreateMessages(NMESSAGES, Groups, Processes) 
local MessagesCombinations = CreatePossibleMessages (AllMessages)

variables
K,
PreviousMsgs, 
Delivered,
Votes,
MemoryBuffer,
QuasiReliableChannel, 
AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 1. The INITIAL-MESSAGES is a sequence, 
totally ordered within a group, wherein the elements are tuples with the message, state, and 
timestamp.
Algorithm = instance GenericMulticast 1 with

INITIAL-MESSAGES [
g € Groups TotallyOrdered(MessagesCombinations[1])]

Spec = Algorithm! SpecFair |Weak fairness is necessary.

If a correct process deliver a message m , then all correct processes in m.d eventually delivers m . 

We verify that all messages in AllMessages , for all the processes that delivered a message, even- 
tually, all the correct members in the destination will deliver.
local OnlyCorrects(g) == {x € ProcessesInGroup[g] : x € Processes} 
Agreement =

V m € AllMessages :
V g_í € Groups :

3 p_í € ProcessesInGroup [g_í] :
Algorithm! WasDelivered(g_i, p_í, m)

V g_j € m.d : 3 p_j € OnlyCorrects(g_j) : 
Algorithm! WasDelivered(g_j, p_j, m)

1
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I-------------------------------------------moduie Collision-------------------------------------------- 1
extends Naturals, FiniteSets, Commons

constant NGROUPS 
constant NPROCESSES 
constant NMESSAGES 
constant CONFLICTR(_, _)

locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]

locai AllMessages = CreateMessages(NMESSAGES, Groups, Processes) 
local MessagesCombinations = CreatePossibleMessages(AllMessages)

variabies K, PreviousMsgs, Delivered, Votes, MemoryBuffer, 
QuasiReliableChannel, AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 1. The INITIAL-MESSAGES is a sequence, 
totally ordered within a group, wherein the elements are tuples with the message, state, and 
timestamp.
Algorithm = instance GenericMulticast 1 with 

INITIAL-MESSAGES [
g € Groups

TotallyOrdered (MessagesCombinations [(g%NMESSAGES) + 1])]

Spec = Algorithm! Spec

If a correct process p delivers messages m and n, p is in the destination of both messages, m and 
n do not commute. Then, p delivers either m and then n or n and then m.
Collision =

□V g € Groups :
V p € ProcessesInGroup[g] :

V m 1, m2 € AllMessages : m 1.id = m2.id
A Algorithm! WasDelivered(g, p, m 1)
A Algorithm! WasDelivered(g, p, m2)
A CONFLICTR(m1, m2)

Algorithm! DeliveredInstant(g, p, m 1) =
Algorithm ! DeliveredInstant(g, p, m2)
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I-------------------------------------------module Integrity -------------------------------------------- 1
extends Naturals , FiniteSets , Commons, Sequences

constant NPROCESSES 
constant NGROUPS 
constant NMESSAGES 
constant CONFLICTR^, _)

This algorithm works in an environment with crash-stop failures, but we do not model processes 
failing. The set of all processes contains all correct ones.
locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS 
locai ProcessesInGroup = [g € Groups Processes]

This property verifies that we only deliver sent messages. To assert this, we create NMESSAGES + 
1 and do not include the additional one in the algorithm execution, then check that the delivered 
ones are only the sent ones.
local AcceptableMessageIds = {id : id € 1 .. NMESSAGES}
local AllMessages = CreateMessages(NMESSAGES + 1, Groups, Processes) 
local SentMessage = {m € AllMessages : m.id € AcceptableMessageIds }

local MessagesCombinations == CreatePossibleMessages(AllMessages) 
local CombinationsToSend = [

i € domain MessagesCombinations
SelectSeq(MessagesCombinations[i], lambda m : m € SentMessage ) ]

variables
K,
PreviousMsgs , 
Delivered,
Votes,
MemoryBuffer,
QuasiReliableChannel, 
AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 1. The INITIAL-MESSAGES is a sequence, 
totally ordered within a group, wherein the elements are tuples with the message, state, and 
timestamp.
Algorithm = instance GenericMulticast 1 with 

INITIAL-MESSAGES [g € Groups h-
TotallyOrdered(CombinationsToSend[1])]

Spec = Algorithm! Spec 

1
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local DeliveredOnlyOnce(g, p, m) ==
Cardinality(Algorithm!FilterDeliveredMessages(g, p, m)) = 1

For every message, all the correct processes in the destination deliver it only once, and a process 
previously sent it.
Integrity ==

□V m € AllMessages :
V g € Groups :

V p € ProcessesInGroup[g] : 
Algorithm! WasDelivered(g, p, m) 

(DeliveredOnlyOnce(g, p, m) A g € m.d A m € SentMessage)

2
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I------------------------------------------------module PartialOrder------------------------------------------------- 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES, NGROUPS, NMESSAGES, CONFLICTRÇ.)
I-------------------------------------------------------------------------------------------------------------------------------------- 1
locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]

locai AllMessages = CreateMessages(NMESSAGES, Groups, Processes)
local MessagesCombinations = CreatePossibleMessages(AllMessages)

variables K, PreviousMsgs, Delivered, Votes, MemoryBuffer, 
QuasiReliableChannel, AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 1. The INITIAL-MESSAGES is a sequence, 
totally ordered within a group, wherein the elements are tuples with the message, state, and 
timestamp.
Algorithm = instance GenericMulticast 1 with 

INITIAL-MESSAGES [g € Groups h-
TotallyOrdered(MessagesCombinations [(g%NMESSA GES) + 1])]

Spec = Algorithm! Spec

local BothDelivered(g, p 1, p2, m 1, m2) =
A Algorithm! WasDelivered(g, p1, m 1) A Algorithm! WasDelivered(g, p 1, m2)
A Algorithm! WasDelivered(g, p2, m 1) A Algorithm! WasDelivered(g, p2, m2)

local LHS(g, p 1, p2, m 1, m2) =

A {p1, p2} C (m 1.d n m2.d) 
A CONFLICTR(m1, m2)
A BothDelivered(g, p1, p2, m1, m2)

local RHS(g, p 1, p2, m 1, m2) = 

(Algorithm ! DeliveredInstant(g, p1, m1) <
Algorithm ! DeliveredInstant(g, p1, m2))

= (Algorithm! DeliveredInstant(g, p2, m 1) < 
Algorithm! DeliveredInstant(g, p2, m2))

For every two messages, if they conflict, given a pair of processes, they are in the messages' 
destination, then both must deliver in the same order.
PartialOrder =

□V g € Groups :
Vp 1, p2 € ProcessesInGroup[g] :

V m1, m2 € AllMessages :
LHS(g, p1, p2, m 1, m2) RHS(g, p1, p2, m 1, m2)
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I----------------------------------------------------moduie Validity----------------------------------------------------- 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES 
constant NGROUPS 
constant NMESSAGES 
constant CONFLICTR(_, _)

locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]

locai AllMessages = CreateMessages(NMESSAGES, Groups, Processes) 
local MessagesCombinations = CreatePossibleMessages(AllMessages)

variabies K, PreviousMsgs, Delivered, Votes, MemoryBuffer, 
QuasiReliableChannel, AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 1. The INITIAL-MESSAGES is a sequence, 
totally ordered within a group, wherein the elements are tuples with the message, state, and 
timestamp.
Algorithm = instance GenericMulticast 1 with 

INITIAL-MESSAGES [
g € Groups

TotallyOrdered(MessagesCombinations [(g%NMESSAGES) + 1])]

Weak fairness is necessary.
Spec = Algorithm ! SpecFair

If a correct process GM-Cast a message m to m.d , then some process in m.d eventually GM- 
Deliver m .

We verify that all messages on the messages that will be sent, then we verify that exists a process 
on the existent processes that did sent the message and eventually exists a process on m.d that 
delivers the message .
Validity =

V m € AllMessages :
m.o[1] € Groups A m.o[2] € Processes

3 g € m.d :
3 p € ProcessesInGroup[g] : Algorithm! WasDelivered(g, p, m)
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A.6.3 Generic Multicast 2

Table 7 - Generic Multicast 1 Integrity configurations.

NGROUPS NPROCESSES NMESSAGES CONFLICTR
1 2 2 All
1 3 2 All
1 2 3 All
2 2 1 All

Table 8 - Generic Multicast 1 configurations for Agreement and Validity.

NGROUPS NPROCESSES NMESSAGES CONFLICTR
1 2 2 All
1 3 2 All
1 2 3 All
1 2 4 All
2 2 1 All

Table 9 - Generic Multicast 1 configurations for Partial Order and Collision.

NGROUPS NPROCESSES NMESSAGES CONFLICTR
1 2 2 All
1 3 2 All
1 2 3 All
1 2 4 All
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I------------------------------------------------- module Agreement--------------------------------------------------- 1
extends Naturals , FiniteSets , Commons

constant NPROCESSES 
constant NGROUPS 
constant NMESSAGES 
constant CONFLICTR(_, _)

This algorithm works in an environment with crash-stop failures, but we do not model processes 
failing. The set of all processes contains all correct ones.
local Processes = {i : i € 1 .. NPROCESSES}
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]

local AllMessages = CreateMessages(NMESSAGES, Groups, Processes) 
local MessagesCombinations = CreatePossibleMessages(AllMessages)

variables
K,
PreviousMsgs, 
Delivered,
Votes,
MemoryBuffer,
QuasiReliableChannel, 
GenericBroadcastBuffer

Initialize the instance for the Generic Multicast 2. The INITIALMESSAGES is a sequence, 
partially ordered. The sequence elements are sets of messages, messages that commute can share 
a set.
Algorithm = instance GenericMulticast2 with 

INITIALMESSAGES [g € Groups h-
PartiallyOrdered (

MessagesCombinations [(g%NMESSAGES) + 1], CONFLICTR)]

Weak fairness is necessary.
Spec = Algorithm ! SpecFair

If a correct process deliver a message m , then all correct processes in m.d eventually delivers m . 

We verify that all messages in AllMessages , for all the processes that delivered a message, even- 
tually, all the correct members in the destination will deliver.
local OnlyCorrects(g) = {x € ProcessesInGroup[g] : x € Processes} 
Agreement =

V m € AllMessages :

1
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V g-i € Groups :
3 ^i € ProcessesInGroup [g_i] : 

Algorithm! WasDelivered(g-i, p-i, m)
V g_j € m.d :
3 p-j € OnlyCorrects(g-j) :

Algorithm! WasDelivered(g_j, p_j, m)

2
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I-------------------------------------------moduie Collision-------------------------------------------- 1
extends Naturals, FiniteSets, Commons

constant NGROUPS 
constant NPROCESSES 
constant NMESSAGES 
constant CONFLICTR^, _)

This algorithm works in an environment with crash-stop failures, but we do not model processes 
failing. The set of all processes contains all correct ones.
locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]

locai AllMessages = CreateMessages(NMESSAGES, Groups, Processes) 
local MessagesCombinations = CreatePossibleMessages(AllMessages)

variabies K, PreviousMsgs, Delivered, Votes, MemoryBuffer, 
QuasiReliableChannel, AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 2. The INITIALMESSAGES is a sequence, 
partially ordered. The sequence elements are sets of messages, messages that commute can share 
a set.
Algorithm = instance GenericMulticast2 with 

INITIALMESSAGES [g € Groups
PartiallyOrdered ( 

MessagesCombinations[(g%NMESSAGES) + 1], CONFLICTR)]

Spec = Algorithm! Spec

If a correct process p delivers messages m and n, p is in the destination of both messages, m and 
n do not commute. Then, p delivers either m and then n or n and then m.
Collision =

□V g € Groups :
V p € ProcessesInGroup[g] :

V m 1, m2 € AllMessages : m 1.id = m2.id
A Algorithm! WasDelivered(g, p, m 1)
A Algorithm! WasDelivered(g, p, m2)
A CONFLICTR(m1, m2)

Algorithm! DeliveredInstant(g, p, m 1) =
Algorithm! DeliveredInstant(g, p, m2)
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I-------------------------------------------module Integrity -------------------------------------------- 1
extends Naturals , FiniteSets , Sequences, Commons

constant NPROCESSES 
constant NGROUPS 
constant NMESSAGES 
constant CONFLICTR^, _)

This algorithm works in an environment with crash-stop failures, but we do not model processes 
failing. The set of all processes contains all correct ones.
locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS 
locai ProcessesInGroup = [g € Groups Processes]

This property verifies that we only deliver sent messages. To assert this, we create NMESSAGES + 
1 and do not include the additional one in the algorithm execution, then check that the delivered 
ones are only the sent ones.
local AcceptableMessageIds = {id : id € 1 .. NMESSAGES}
local AllMessages = CreateMessages(NMESSAGES + 1, Groups, Processes) 
local SentMessage = {m € AllMessages : m.id € AcceptableMessageIds }

local MessagesCombinations == CreatePossibleMessages(AllMessages) 
local CombinationsToSend = [i € domain MessagesCombinations

SelectSeq (MessagesCombinations [i] , lambda m : m € SentMessage)]

variables
K,
PreviousMsgs , 
Delivered,
Votes,
MemoryBuffer,
QuasiReliableChannel, 
GenericBroadcastBuffer

Initialize the instance for the Generic Multicast 2. The INITIALMESSAGES is a sequence, 
partially ordered. The sequence elements are sets of messages, messages that commute can share 
a set.
Algorithm = instance GenericMulticast2 with 

INITIALMESSAGES [g € Groups
Partially Ordered (

CombinationsToSend[(g%NMESSAGES) + 1], CONFLICTR)]

Spec = Algorithm! Spec 

1
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For every message, all the correct processes in the destination deliver it only once, and a process 
previously sent it.
local DeliveredOnlyOnce(g, p, m) == 

Cardinality(Algorithm!FilterDeliveredMessages(g, p, m)) = 1
Integrity =

□V m 6 AllMessages : 
V g 6 Groups :

V p 6 ProcessesIn Group[g] : 
Algorithm! WasDelivered(g, p, m)

(DeliveredOnlyOnce(g, p, m) A g 6 m.d A m 6 SentMessage)

2
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I------------------------------------------------module PartialOrder------------------------------------------------- 1
extends Naturals, FiniteSets, Commons

constant NGROUPS, NPROCESSES, NMESSAGES, CONFLICTRÇ.)
I-------------------------------------------------------------------------------------------------------------------------------------- 1

This algorithm works in an environment with crash-stop failures, but we do not model processes 
failing. The set of all processes contains all correct ones.
locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]
locai AllMessages = CreateMessages(NMESSAGES, Groups, Processes)
local MessagesCombinations = CreatePossibleMessages(AllMessages)

variables K, PreviousMsgs, Delivered, Votes, MemoryBuffer, 
QuasiReliableChannel, AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 2. The INITIALMESSAGES is a sequence, 
partially ordered. The sequence elements are sets of messages, messages that commute can share 
a set.
Algorithm = instance GenericMulticast2 with 

INITIAL-MESSAGES [g € Groups h-
PartiallyOrdered(

MessagesCombinations [(g%NMESSAGES) + 1], CONFLICTR)]

Spec = Algorithm! Spec

local BothDelivered(g, p 1, p2, m 1, m2) =
A Algorithm! WasDelivered(g, p1, m 1) A Algorithm! WasDelivered(g, p 1, m2) 
A Algorithm! WasDelivered(g, p2, m 1) A Algorithm! WasDelivered(g, p2, m2) 

local LHS(g, p 1, p2, m 1, m2) =

A {p1, p2} C (m 1.d n m2.d)
A CONFLICTR(m1, m2)
A BothDelivered(g, p1, p2, m1, m2) 

local RHS(g, p 1, p2, m 1, m2) =

(Algorithm!DeliveredInstant(g, p1, m1) <
Algorithm ! DeliveredInstant(g, p1, m2))

= (Algorithm! DeliveredInstant(g, p2, m 1) < 
Algorithm! DeliveredInstant(g, p2, m2))

For every two messages, if they conflict, given a pair of processes, they are in the messages' 
destination, then both must deliver in the same order.
PartialOrder =

□V g € Groups :
Vp 1, p2 € ProcessesInGroup[g] :

V m1, m2 € AllMessages :
LHS(g, p1, p2, m 1, m2) RHS(g, p1, p2, m 1, m2)
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I------------------------------------------- module Validity --------------------------------------------- 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES 
constant NGROUPS 
constant NMESSAGES 
constant CONFLICTR(_, _)

This algorithm works in an environment with crash-stop failures, but we do not model processes 
failing. The set of all processes contains all correct ones.
locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]

locai AllMessages = CreateMessages(NMESSAGES, Groups, Processes) 
local MessagesCombinations = CreatePossibleMessages(AllMessages)

variables K, PreviousMsgs, Delivered, Votes, MemoryBuffer, 
QuasiReliableChannel, AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 2. The INITIALMESSAGES is a sequence, 
partially ordered. The sequence elements are sets of messages, messages that commute can share 
a set.
Algorithm = instance GenericMulticast2 with 

INITIALMESSAGES [g € Groups
PartiallyOrdered (

MessagesCombinations [(g%NMESSAGES) + 1], CONFLICTR)]

Weak fairness is necessary.
Spec = Algorithm ! SpecFair

If a correct process GM-Cast a message m to m.d , then some process in m.d eventually GM- 
Deliver m .

We verify that all messages on the messages that will be sent, then we verify that exists a process 
on the existent processes that did sent the message and eventually exists a process on m.d that 
delivers the message .
Validity =

V m € AllMessages :
m.o[1] € Groups A m.o[2] € Processes

3 g € m.d :
3 p € ProcessesInGroup[g] : Algorithm! WasDelivered(g, p, m)


