
Algoritmo Multicast Generalizado:

Formalização e Validação

José Augusto Bolina

UFU
Universidade Federal de Uberlândia

Faculdade de Computação

Programa de Pós-Graduação em Ciência da Computação

Uberlândia
2022

José Augusto Bolina

Algoritmo Multicast Generalizado:

Formalização e Validação

Dissertação de mestrado apresentada ao
Programa de Pós-graduação da Faculdade
de Computação da Universidade Federal de
Uberlândia como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Área de concentração: Ciência da Computação

Supervisor: Lásaro Camargos
Co-supervisor: Rafael Pasquini

Uberlândia
2022

Ficha Catalográfica Online do Sistema de Bibliotecas da UFU
______________com dados informados pelo(a) próprio(a) autor(a).____________
L933 Lucas, José Augusto Bolina, 1997­
2022 Algoritmo Multicast Generalizado [recurso eletrônico]

: Formalização e Validação / José Augusto Bolina Lucas.
- 2022.

Orientador: Lásaro Jonas Camargos.
Coorientador: Rafael Pasquini.
Dissertação (Mestrado) - Universidade Federal de

Uberlândia, Pós-graduação em Ciência da Computação.
Modo de acesso: Internet.
Disponível em: http://doi.org/10.14393/ufu.di.2022.596
Inclui bibliografia.

1. Computação. I. Camargos, Lásaro Jonas,1978-,
(Orient.). II. Pasquini, Rafael,1981-, (Coorient.).
III. Universidade Federal de Uberlândia. Pós-graduação
em Ciência da Computação. IV. Título.

CDU: 681.3

Bibliotecários responsáveis pela estrutura de acordo com o AACR2:
Gizele Cristine Nunes do Couto - CRB6/2091

Nelson Marcos Ferreira - CRB6/3074

http://doi.org/10.14393/ufu.di.2022.596

UNIVERSIDADE FEDERAL DE UBERLÂNDIA
Coordenação do Programa de Pós-Graduação em Ciência da Computação

Av. João Naves de Ávila, 2121, Bloco 1A, Sala 243 - Bairro Santa Mônica, Uberlândia-MG, CEP 38400-902
Telefone: (34) 3239-4470 - www.ppgco.facom.ufu.br - cpgfacom@ufu.br (D

ATA DE DEFESA - PÓS-GRADUAÇÃO

Programa de Pós-
Graduação em: Ciência da Computação

Defesa de: Dissertação de Mestrado 15/2022, PPGCO

Data: 29 de setembro de 2022 Hora de início: 08:30 Hora de 10:15encerramento:
Matrícula do
Discente: 12022CCP004

Nome do
Discente: José Augusto Bolina Lucas

Título do Trabalho: Algoritmo Multicast Generalizado: Formalização e Validação
Área de
concentração: Ciência da Computação

Linha de pesquisa: Sistemas de Computação
Projeto de
Pesquisa de
vinculação:

-

Reuniu-se, por videoconferência, a Banca Examinadora, designada pelo Colegiado do Programa de Pós-graduação em
Ciência da Computação, assim composta: Professores Doutores: Paulo Rodolfo da Silva Leite Coelho -
FACOM/UFU; Fernando Lopes Pedone - USI; Rafael Pasquini - FACOM/UFU (coorientador) e Lásaro Jonas
Camargos, orientador do candidato.

Os examinadores participaram desde as seguintes localidades: Fernando Pedone - Lugano/Suiça; Paulo Rodolfo da
Silva Leite Coelho, Rafael Pasquini e Lásaro Jonas Camargos - Uberlândia/MG. O discente participou da cidade
de Uberlândia/MG.

Iniciando os trabalhos o presidente da mesa, Prof. Dr. Lásaro Jonas Camargos, apresentou a Comissão Examinadora e
o candidato, agradeceu a presença do público, e concedeu ao Discente a palavra para a exposição do seu trabalho. A
duração da apresentação do Discente e o tempo de arguição e resposta foram conforme as normas do Programa.

A seguir o senhor presidente concedeu a palavra, pela ordem sucessivamente, aos examinadores, que passaram a
arguir o candidato. Ultimada a arguição, que se desenvolveu dentro dos termos regimentais, a Banca, em sessão
secreta, atribuiu o resultado final, considerando o candidato:

Aprovado

Esta defesa faz parte dos requisitos necessários à obtenção do titulo de Mestre.

O competente diploma será expedido após cumprimento dos demais requisitos, conforme as normas do Programa, a
legislação pertinente e a regulamentação interna da UFU.

Nada mais havendo a tratar foram encerrados os trabalhos. Foi lavrada a presente ata que após lida e achada
conforme foi assinada pela Banca Examinadora.

Documento assinado eletronicamente por Lasaro Jonas Camargos, Usuário Externo, em 24/10/2022, às 10:25,
conforme horário oficial de Brasília, com fundamento no art. 6°, § 1°, do Decreto n° 8.539, de 8 de outubro de
2015.

Documento assinado eletronicamente por Fernando Pedone, Usuário Externo, em 24/10/2022, às 15:08,
conforme horário oficial de Brasília, com fundamento no art. 6°, § 1°, do Decreto n° 8.539, de 8 de outubro de
2015.

http://www.ppgco.facom.ufu.br
mailto:cpgfacom@ufu.br
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm

Documento assinado eletronicamente por Rafael Pasquini, Professor(a) do Magistério Superior, em 24/10/2022,
às 15:27, conforme horário oficial de Brasília, com fundamento no art. 6°, § 1°, do Decreto n° 8.539, de 8 de
outubro de 2015.

Documento assinado eletronicamente por Paulo Rodolfo da Silva Leite Coelho, Professor(a) do Magistério
Superior, em 24/10/2022, às 15:27, conforme horário oficial de Brasília, com fundamento no art. 6°, § 1°, do
Decreto n° 8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site https://www.sei.ufu.br/sei/controlador externo.php?
acao=documento conferir&id orgao acesso externo=0, informando o código verificador 3957177 e o código CRC
A565AE0D.

Referência: Processo n° 23117.073266/2022-83 SEI n° 3957177

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
https://www.sei.ufu.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

Acknowledgements

Gostaria de agradecer toda a minha família, amigos e meus orientadores Lásaro Ca-
margos e Rafael Pasquini pela ajuda, dedicação e oportunidade.

Um grande agradecimento aos meus amigos pela ajuda nos estudos e pelas noites de
descontração. Um agradecimento especial para minha companheira Laura Ribeiro por
toda paciência, compreensão, e ajuda nesse período.

“É verdade

sem mentira

certo muito
verdadeiro”

(Jorge Ben)

Resumo

Algoritmos de sistemas distribuídos são peças essenciais para criação de aplicações tol­
erante a faltas. A corretude desses algoritmos é crucial. Nesse sentido, o presente trabalho
formaliza e especifica três algoritmos para multi-difusão generalizada utilizando TLA+ ,
corrigindo os problemas encontrados durante o processo. Em um lado mais prático, im­
plementamos um protótipo de um dos algoritmos corrigidos. O presente trabalho detalha
os algoritmos, os problemas encontrados e as respectivas soluções, e finalmente, o processo
de especificação e implementação.

Palavras-chave: Consenso; Tolerância a faltas; Difusão Genérica; Difusão Atômica.

Abstract

Distributed systems algorithms are an essential building block to creating fault-tolerant
applications. The correctness of such algorithms is crucial. The current work formalizes
and specifies three generic multicast algorithms using TLA+ . We detail the formalization
process, describing the problems and their corrections. On a more practical side, we im-
plement a prototype of one of the specified algorithms. The current work aims to describe
the process of (i) formalization and correction of three generic multicast algorithms and
(ii) implementation of an algorithm directly from the specification.

Keywords: Consensus; Fault-Tolerance; Generic Multicast; Atomic Multicast.

List of Figures

Figure 1 - Happy path execution.. 42
Figure 2 - Timestamp tie (ANTUNES, 2019)... 43
Figure 3 - Extensions of multicast algorithms (ANTUNES, 2019)................................ 45
Figure 4 - Implementation architecture... 76
Figure 5 - Implementation architecture of the Mem structure....................................... 81

List of Tables

Table 1 - Partial Order property violation... 53
Table 2 - Generic Multicast 0 Agreement configurations..128
Table 3 - Generic Multicast 0 configurations for remaining properties....................... 128
Table 4 - Generic Multicast 1 Integrity configurations.. 134

Table 5 - Generic Multicast 1 configurations for Agreement and Validity. 134
Table 6 - Generic Multicast 1 configurations for Partial Order and Collision. . . . 134
Table 7 - Generic Multicast 1 Integrity configurations... 141

Table 8 - Generic Multicast 1 configurations for Agreement and Validity. 141
Table 9 - Generic Multicast 1 configurations for Partial Order and Collision. . . . 141

List of Algorithms

4.1 Generic Multicast 0 .. 50
4.2 ANTUNES's proposal for the assignSeqNumber step... 53
4.3 Changed version for step assignSeqNumber... 53
4.4 Original doDeliver by ANTUNES... 54
4.5 Changed doDeliver... 54

4.6 Generic Multicast 0 in TLA+- Part 1... 57
4.7 Generic Multicast 0 in TLA+- Part 2... 58
4.8 Generic Multicast 1... 60

4.9 Original Generic Multicast 1 beginning.. 62
4.10 ANTUNES' proposal for the gatherGroupsTimestamps step.......................... 63

4.11 Our version for procedure gatherGroupsTimestamps. 63
4.12 Generic Multicast 2... 66
4.13 Validity property in TLA+... 69

4.14 Agreement property in TLA+.. 69
4.15 Integrity property in TLA+.. 70
4.16 Partial Order property in TLA+... 70
4.17 Collision property in TLA+.. 71

4.18 Specification Spec definition.. 71

Contents

1 INTRODUCTION .. 19

1.1 Contributions .. 20

1.2 Organization .. 20

2 FUNDAMENTALS ... 23

2.1 Processes and Channels .. 23

2.1.1 The Universe and Everything Else ... 23
2.1.2 Failing ... 24
2.2 The Consensus Problem .. 24

2.3 Fault Tolerance and Groups .. 26

2.3.1 State Machine Replication .. 26
2.3.2 Communication Primitives for Groups .. 26
2.4 Temporal Logic of Actions ... 31

2.4.1 Let There be Time ... 32
2.4.2 A Useful Model .. 36
2.5 Golang ... 39

3 RELATED WORK .. 41

3.1 Multicast History ... 41

3.2 Algorithms in Theory ... 44

3.3 Algorithms in Practice .. 46

4 CORRECTNESS DEVELOPMENT ... 49

4.1 Generic Multicast 0 ... 49

4.1.1 A Little TLC ... 52
4.1.2 Generic Multicast 0 in TLA+ ... 56
4.2 Generic Multicast 1 ... 59

4.2.1 Handyman's Mode ... 61

4.2.2 Handling Incorrectness .. 63
4.2.3 Fault-Tolerant Specification .. 64
4.3 Generic Multicast 2 .. 65
4.4 Specifying with TLA+ ... 67
4.4.1 Time Flies .. 68
4.4.2 Withal Thine Basic Properties ... 71

5 IMPLEMENTATION .. 75

5.1 The Bricks in the Foundation .. 75
5.2 Do They Talk? .. 76
5.2.1 The Process Talk .. 77
5.2.2 In Totally Ordering ... 77
5.2.3 Messages ... 78
5.3 At the Core ... 79
5.3.1 In Mem Store ... 80
5.4 Thy Elden Tests .. 81
5.4.1 The Elder Logs .. 82
5.4.2 Taking the Test .. 82
5.5 Journey So Far .. 83

6 CONCLUSION ... 85

BIBLIOGRAPHY

APPENDIX

APPENDIX A - TLA+ SPECIFICATIONS
A.1 Communication Primitives
A.2 Helper Procedures
A.3 Generic Multicast 0
A.4 Generic Multicast 1
A.5 Generic Multicast 2

87

91

93
93

100
107
114
121

A.6 TLC Executions .. 128
A.6.1 Generic Multicast 0 .. 128
A.6.2 Generic Multicast 1 .. 134
A.6.3 Generic Multicast 2 .. 141

19

Chapter

Introduction

Computer systems are ubiquitous in day-to-day life, with different kinds of appli-
cations, where the critical ones must have high availability and correctly behave when
requested. Distributed applications can offer high availability and fault tolerance by us-
ing group communication primitives that offers varying properties, selecting the most
adequate depending on the application's requirements.

There are different flavors of group communication primitives, each with its own guar-
antees and requirements. For example, Reliable Broadcast can reliably deliver messages to
all participating processes; other primitives enforce an order to the message delivery, such
as FIFO, causal, and total (DÉFAGO; SCHIPER; URBÁN, 2000). Variants abound, with

a corresponding variety of algorithms implementing them (PEDONE; SCHIPER, 1999;
LAMPORT et al., 2001; ONGARO; OUSTERHOUT, 2014).

The multicast family offers more flexible primitives when compared to the broadcast
family. The primitive known as Atomic Multicast can reliably deliver a message in the
same order to a subset of processes in the system. The ordering and reliable delivery
guarantees make the Atomic Multicast primitive interesting for implementing the state
machine replication technique, commonly used to implement fault-tolerant services in
distributed systems (SCHNEIDER, 1990). Informally explaining, by creating a set of
replicas of a deterministic process, starting all of them in the same state, applying the
same sequence of commands, everyone proceeds the same (LAMPORT, 1994b). Even if
some of the replicas fail, there are others to provide the service.

A more generalized approach could order messages only when required since not every
pair of operations needs total order; partial ordering commands may be enough. A Generic
Multicast algorithm can create a partial order of messages, having a generalized behavior.
If message ordering adds a cost to the algorithm, a less expensive algorithm avoids it
(PEDONE; SCHIPER, 1999).

ANTUNES proposed three new algorithms that solve the Generic Multicast problem
in an unpublished work. The proposed algorithms extend previous work in the literature,
adding the aforementioned generalized behavior. First, changing the Atomic Multicast al-

20 Chapter 1. Introduction

gorithm proposed by Skeen that works in a failure-free environment (BIRMAN; JOSEPH,
1987), the proposed algorithm is just an introduction, and it is called Generic Multicast 0.
Then, extending FRITZKE et al.'s algorithm with improvements proposed by SCHIPER;
PEDONE, called Generic Multicast 1. The final algorithm is called Generic Multicast 2,
created from the previous proposals by replacing the Atomic Broadcast with a Generic
Broadcast primitive.

Like many other algorithms proposed before, ANTUNES presents its algorithms in
pseudo-code, but those are not formally verified. While this has been a long-standing prac-
tice, formal methods are considered very expensive. Recent developments have pushed for
better specification and verification of algorithms, for example, applying formal methods
to check the correctness of developed artifacts (BORNHOLT et al., 2021) and embedding
specification of the problem and solution during the development process (SYSTEMS,
2020). Such a formalization gives higher confidence in the algorithm's correctness.

1.1 Contributions

In this work, we have formally specified the algorithms proposed by ANTUNES using
TLA+ and checked the specifications using TLC. In this effort, we have identified several
problems which we have rectified. During the process, we came up with a version that
uses fewer communication primitives and removes one intra-group message exchange.
We implemented a prototype for the newly proposed algorithm using the Go language
(GOLANG, 2021b). Both the prototype1 and the TLA+ specifications2 are available for
public scrutiny.

1 <https://github.com/jabolina/go-mcast>
2 <https://github.com/jabolina/mcast-tlaplus>

1.2 Organization

The current work starts by laying a theoretical foundation in Chapter 2. First, we
will introduce the system model, communication primitives, and notation used throughout
this work. The chapter explains what TLA is and how a system is formally specified using
TLA+. The chapter finishes with a quick overview of Go, the programming language used
to develop the Generic Multicast 1 prototype.

Chapter 3 is a discussion of related works. We discuss the genealogy of the algorithms
developed by ANTUNES, which forms the basis of our algorithms. We also briefly discuss
other works focused on formally specifying algorithms and others related to consensus
algorithms implementation.

Chapters 4 and Chapter 5 are the meat of the current work. Initially, the correctness
verification from the previously proposed algorithms, a story told in detail, describing the

https://github.com/jabolina/go-mcast
https://github.com/jabolina/mcast-tlaplus

1.2. Organization 21

complete process of writing the specification, the problems found, and a final corrected
proposition. We extend the discussion with additional properties of the algorithms and
establish behavior propositions with proofs left for future work. The other chapter is the
prototyping process, describing the modeling of data structures from the specification into
a programming language, the tests, and the required communication primitives. Although
the chapters are separated, we did some work in parallel.

Chapter 6 concludes the current work. This chapter contains a summary and lists
potential future work.

22 Chapter 1. Introduction

23

Chapter 2
Fundamentals

This chapter reviews the concepts used throughout this work. Section 2.1 defines the
processes and the primary piece of communication; Section 2.2 presents the Consensus
problem. Having processes and communication channels, we may want to create fault-
tolerant applications to keep working even if some parts of the system have failed, so
in Section 2.3.1, we discuss the state machine replication technique. With the introduc-
tion of groups for replication, Section 2.3.2 will discuss its definitions, properties, and
communication primitives.

The remaining sections in this chapter present the tools we use to specify and imple-
ment the algorithms. Section 2.4 discusses what we use for specification and formalization,
TLA, TLA+, and TLC. And Section 2.5, for implementation, the programming language
Golang.

2.1 Processes and Channels

The algorithms work in an environment, making assumptions and defining require-
ments. Each of our proposed algorithms works in its specific environment. Here we
establish definitions for all of our algorithms and increment them step-by-step in the
following sections.

2.1.1 The Universe and Everything Else

The systems are composed of processes and communication channels. The set of all
processes is n = {p1, p2, ..., pn}, where they share neither memory nor a global clock
and communicate only by message-passing through the communication channels. The
communication channels connect every pair of processes and provide two basic primitives
to send and receive messages. A message is a tuple of values. For a process pi E n to
send a tuple t to a process pj E n, pi invokes Send t to pj , and when the target receives

the tuple, Received t from pi is invoked at pj.

24 Chapter 2. Fundamentals

Usually, tuples are constructed in place when sending and are pattern-matched when
received. For example, to send a message m and a timestamp ts to a process pj , pi

would invoke Send (m, ts) to pj and the reception as Received (m, ts) from pi . Pat-
tern matching requires the tuples to match in size and uses _ to mean that any value
matches the corresponding element in the position, which, in turn, is discarded. These
primitives implement a quasi-reliable communication with the following properties (PE-
DONE; SCHIPER, 2002):

□ No creation: for pi, pj E n, if Received t from pi is invoked in pj, then pi must
have invoked Send t to pj ;

□ No duplication: for pi, pj E n, for every Send t to pj invoked by pi, a corre-

sponding Received t from pi is invoked in pj at most once;

□ No loss: for pi, pj E n, if process pi invokes Send t to pj , and if neither pi nor pj

fails, then eventually Received t from pi is invoked in pj.

2.1.2 Failing

The last property states that if the sender or receiver fails, the message might be lost,
but what does failing means? We define that if a process behaves exclusively according
to its specification, it is correct. If it ceases working or deviates from the specification, it
is incorrect; it fails. We do not consider malicious processes.

Our algorithms adopt a different failure model, so we make it explicit when presenting
the algorithms. Common to all algorithms is that the system is asynchronous, without
assumptions about process speed or message delivery time (ANTUNES, 2019).

2.2 The Consensus Problem

Informally, we can define the consensus problem as a collection of servers proposing
values and eventually agreeing upon one of such proposals (DÉFAGO; SCHIPER; UR-
BÁN, 2004). More formally, an algorithm that solves the consensus problem fulfills the
following properties (CHANDRA; TOUEG, 1996):

□ Agreement: no two correct processes p1, p2 E n can agree on different values;

□ Integrity: every correct process in n agrees at most once;

□ Validity: if a correct process pi E n agrees on a value v, then v was previously
proposed by a correct process pj E n;

□ Termination: every correct process in n eventually agrees on some value;

2.2. The Consensus Problem 25

This consensus specification allows different agreed values if one of the processes is
incorrect (CHARRON-BOST; SCHIPER, 2004). The uniform consensus variant derives

the consensus properties, dealing with incorrect processes. Correctness properties, like
Agreement, Integrity, and Validity, must hold irrespective of whether the process is correct
or incorrect. Liveness properties, like Termination, are harder to enforce in a misbehaving
process, so the uniform variant of consensus only requires Termination to correct ones
(FRITZKE et al., 1998; DÉFAGO; SCHIPER; URBÁN, 2004). The properties are then
(CHARRON-BOST; SCHIPER, 2004; CHANDRA; TOUEG, 1996):

□ Uniform Agreement: no two processes p1, p2 G n can agree on different values;

□ Uniform Integrity: every process in n agrees at most once;

□ Uniform Validity: if a process p in n agrees on a value v, then v was previously
proposed by a process q in n;

□ Termination: every correct process in n eventually agrees on some value;

This consensus definition is impossible to solve in an asynchronous system if even a
single process is incorrect, a result known as the FLP impossibility (FISCHER; LYNCH;
PATERSON, 1985). The impossibility arises from the fact that it is not possible to
guarantee Termination (FISCHER; LYNCH; PATERSON, 1985); a slow process is indis-

tinguishable from an incorrect one on an asynchronous system. One solution to allow
solving the consensus in asynchronous systems with failures is augmenting the system
with a mechanism known as a failure detector (CHANDRA; TOUEG, 1996).

We define the set of all failure detectors as P = {d1, d2, ..., dn} (CHANDRA; TOUEG,
1996). Each process pi G n has an attached local failure detector module di. When pi G n
queries its local failure detector di, the response can be incorrect by incorrectly suspecting
a process; and can be inconsistent when at time t , detector dj suspects a process pn and
detector di does not (DÉFAGO; SCHIPER; URBÁN, 2000). These are the properties of
completeness and accuracy (DÉFAGO; SCHIPER; URBÁN, 2000), respectively.

The work of CHANDRA; TOUEG shows that the weakest failure detector needed to
solve the consensus problem in an asynchronous system is the O, equivalent to 05
(CHANDRA; HADZILACOS; TOUEG, 1996; CHANDRA; TOUEG, 1996; DÉFAGO;
SCHIPER; URBÁN, 2004). This failure detector has the following properties:

□ Strong completeness: eventually, every correct process permanently suspects a
process that failed;

□ Eventual weak accuracy: eventually, a correct process is not suspected by any
correct process.

But how can we glue this together to create a fault-tolerant application?

26 Chapter 2. Fundamentals

2.3 Fault Tolerance and Groups

Some applications are critical, and therefore, such applications must be able to tolerate
system faults. We can replicate an application amongst the available multiple machines,
thus providing redundancy, high availability, and fault tolerance, where if one fails, others
can continue working (KLEPPMANN, 2017; CHARRON-BOST; PEDONE; SCHIPER,

2010). The hardship of replication is dealing with stateful applications where the data
changes (KLEPPMANN, 2017). Here we will discuss the state-machine replication tech-
nique.

2.3.1 State Machine Replication

State Machine Replication is a technique to create fault-tolerant applications in dis-
tributed systems (SCHNEIDER, 1990). In this approach, a server is designed as a de-
terministic state machine and replicated on a collection of servers; by starting all servers
with the same state, applying the same sequence of commands to the server replicas in
the same order, the output is the same (SCHNEIDER, 1990). Even when some servers
are unavailable, the system can still operate, thus being fault-tolerant. Sometimes state

machine, server, and replicas are used interchangeably, but in this work, we only refer to
them as servers.

Using a consensus algorithm, a collection of servers agree on a single value and can
work as a consistent group (LAMPORT et al., 2001). If multiple consensus instances
execute in sequence, such that the i th consensus instance agrees on the i th command,
then all deterministic server proceed through the same states (LAMPORT et al., 2001).

2.3.2 Communication Primitives for Groups

With a replicated application, we are not dealing with a single process; we are dealing
with a group of processes. In these scenarios, primitives for group communication are
more desirable. These primitives are designed to handle groups and provide varying
guarantees, working similarly to the primitives for process communication, transporting
an abstract structure, which we say is a message for simplicity.

The group operation has groups as the destination, which are subsets of n. In the
context of this work, the set of groups is defined a priori as r = {g1, g2, ..., gn}, and
gi Ç n. In fact, we consider that groups neither are empty (Vg G r, g = 0) nor overlap
(Vgi, gj G r, j = i : gj A gi = 0) and that all processes must belong to one group (Vp G n :
3g G r : p G g). We use groups and partitions as synonyms.

Groups are either static, if they cannot change throughout the algorithm's execution,
or dynamic, otherwise. In this work, for simplicity, we consider static groups, although

2.3. Fault Tolerance and Groups 27

using group membership protocols and adaptations to the algorithms, it would be possible
to use dynamic groups instead (SCHIPER, 2006).

Groups can also be open or closed. In a system with closed groups, a message sent to a
group g G r requires the sender to also be in g, meaning that the sender process must be
in the destination group (DÉFAGO; SCHIPER; URBÁN, 2000). However, an open group

can receive messages from any process in n, being more general and providing better
support for distributed systems (DÉFAGO; SCHIPER; URBÁN, 2000). The algorithms

presented here use open groups (ANTUNES, 2019).
With all the formalisms out of the way, we can start looking at the group primitives.

Our algorithms build on top of these primitives.

2.3.2.1 Reliable Broadcast

An algorithm that solves the reliable broadcast problem provides a group communi-
cation to broadcast messages to one group with delivery guarantees. Guarantee that,
for a correct sender, all correct processes in the addressed group eventually deliver the
message. For an incorrect sender, or either every correct process or none delivers the
message. (DÉFAGO; SCHIPER; URBÁN, 2004).

Formally, we define reliable broadcast through the primitives rb-Send m to P , used
by a process p G n to broadcast a message m to all processes in P, where either P = n
or G r; and rb-Delivered m , in which a process p G P delivers a message m. These
primitives satisfy the following properties:

□ Validity: if a correct process in n rb-Send m to P , then all correct processes in
P eventually rb-Delivered m ;

□ Agreement: if a process in P

eventually rb-Delivered m ;
rb-Delivered m , then all correct processes in P

□ Integrity: for any message m, every process in P

and only if m was previously rb-Send m to P by a process in n.
rb-Delivered m at most once,

2.3.2.2 Atomic Broadcast

In the atomic broadcast problem, also known as total order broadcast, a process can
reliably send messages to all processes in the system, as in the reliable broadcast problem,
while guaranteeing that all messages are delivered in the same order by all recipients
(DÉFAGO; SCHIPER; URBÁN, 2000). The problem is defined in terms of primitives

ab-Send m to P , used by a process in n to broadcast a message m to all processes in
P, where either P = n or G r; and ab-Delivered m , in which a process p G P delivers
a message m. Formally, an atomic broadcast primitive satisfies the following properties
(DÉFAGO; SCHIPER; URBÁN, 2000):

28 Chapter 2. Fundamentals

□ Validity: if a correct process in n ab-Send m to P , then all correct processes in
P eventually ab-Delivered m ;

□ Agreement: if a process in P

eventually ab-Delivered m ;
ab-Delivered m •) then all correct processes in

□ Integrity: for any message m, every process in P

and only if m was previously ab-Send m to P by a process in n;
ab-Delivered m at most once,

□ Total Order: if processes p1, p2 G P both delivers messages m1 and m2,

p1

before ab-Delivered m2 .

then
ab-Delivered m1 before ab-Delivered m2 if, and only if, p2 ab-Delivered m1

The atomic broadcast primitive satisfies all the requirements for a reliable broadcast
primitive, adding a more strict property for totally ordering all messages. Atomic broad-
cast is equivalent to the consensus problem described previously in Section 2.2 (DÉFAGO;
SCHIPER; URBÁN, 2004). In fact, an infinite sequence of consensus instances can im-
plement the atomic broadcast. The converse side of the equivalence is straightforward:
to propose values for the consensus, just broadcast them; the value decided is the first
delivered by the atomic broadcast protocol. One important implication of this equiva-
lence is that the same failure detector needed to solve consensus is needed to solve atomic
broadcast.

Any process in n can use the primitive ab-Send m to , but P must be a single
group. In some situations, it may be necessary to have multiple groups in destination for
the same messages with reliability and total order guarantees. In this case, the atomic
multicast primitives are better adequate.

2.3.2.3 Atomic Multicast

am-Send m to Q , used by a process in n
and the primitive am-Delivered m , which

The atomic multicast problem, also known as total order multicast, is defined in terms
of a destination set Q Ç r, and the primitives
to multicast a message m to processes in Uq ;
processes in Uq deliver a message m.

The properties that must be satisfied by an atomic multicast algorithm are similar to
those of atomic broadcast algorithms, although not equal:

□ Validity: if a correct process p G n am-Send m to Q , Q Ç r, then all correct
processes in Uq eventually am-Delivered m ;

□ Agreement: if a process in Uq, Q Ç r, am-Delivered m , then all correct processes
in Uq eventually am-Delivered m ;

2.3. Fault Tolerance and Groups 29

□ Integrity: for any message m and every process p G IJç that am-Delivered m
where Q Ç r, p am-Delivered m at most once and only if m was previously
am-Send m to Q by some process in n;

1

□ Total Order: given two messages m1 and m2 and two processes pi, pj G n, if both
p1 and p2 am-Delivered m1 and am-Delivered m2 , then pi am-Delivered m1 be-
fore am-Delivered m2 if, and only if p2 am-Delivered m1 before am-Delivered m2

An asynchronous system must have the 05 failure detector to solve the atomic
multicast (and broadcast) problems (DÉFAGO; SCHIPER; URBÁN, 2000; DÉFAGO;

SCHIPER; URBÁN, 2004). The atomic multicast primitive provides the same guaran-

tees as the atomic broadcast, whereas, in fact, one may see the atomic broadcast problem
as a specific case of atomic multicast with a single group in Q (a single partition of n).
Atomic Multicast can solve Atomic Broadcast by sending messages to all participants
(GUERRAOUI; SCHIPER, 1997; DÉFAGO; SCHIPER; URBÁN, 2004). The Atomic

Broadcast can solve Atomic Multicast by broadcasting the tuple (message, destination),
and the processes discard messages when it is not present in the destination. The second
approach creates a feigned Atomic Multicast algorithm because it involves more mem-
bers than necessary, creating an algorithm as costly as the broadcast (GUERRAOUI;
SCHIPER, 1997). The following minimality property asserts that an algorithm is not
feigned (GUERRAOUI; SCHIPER, 1997):

□ Minimality: An algorithm that implements the Atomic Multicast of a message m
to a destination Q involves only the sender process and the processes in Q.

An algorithm that solves Atomic Multicast using Atomic Broadcast is not genuine
(GUERRAOUI; SCHIPER, 1997). This property ensures that only necessary processes
participate in message delivery.

2.3.2.4 Generic Broadcast

The atomic broadcast problem delivers messages in total order. The ordering guaran-
tee, however, may be too strong for the application that is using it. A simple and concrete
example is that of a distributed counter, where this counter receives operations for adding
and multiplying its current value. Addition operations do not need to have a total or-
der with other addition operations, and the same applies to multiplication. Although,
when we mix these operations , we must have an ordering guarantee between addition and
multiplication.

In such scenarios, a primitive with a generalized behavior fits better. The generic
broadcast is one of these primitives, where it uses the messages' semantic information to
determine whether messages need order and effectively deliver them in a partial order,
different from the total order of atomic broadcast (PEDONE; SCHIPER, 1999; PEDONE;

30 Chapter 2. Fundamentals

SCHIPER, 2002; CAMARGOS, 2008). In the generic broadcast, a conflict relation cap­
tures the semantic information, specifying which pair of messages commute. We say that
conflicting messages do not commute; if they do not conflict, they commute.

We define generic broadcast by the primitives gb-Send m to P , used by a process
in n to broadcast a message m to all processes in P, where either P = n or P G r;
gb-Delivered m , in which a process in P delivers a message m; and the conflict relation,

defined as C, symmetric, non-reflexive over M x M, where M is the set of all messages
that may be generic broadcast, thus C Ç M x M (PEDONE; SCHIPER, 2002). Hence,
if (m1, m2) G C, then message m1 conflicts with message m2, and if (m1, m2) G C, then
message m1 does not conflict (it commutes) with the message m2 (PEDONE; SCHIPER,
2002). To simplify notation, throughout this work we write m1 ~ m2 to indicate that
(m1, m2) G C and m1 m2 otherwise. These primitives provide the following properties
(PEDONE; SCHIPER, 1999; PEDONE; SCHIPER, 2002):

□ Validity: if a correct process in n gb-Send m to P , then all correct processes in
P eventually gb-Delivered m ;;

□ Agreement: if a process in P

eventually gb-Delivered m
gb-Delivered m •) then all correct processes in

□ Integrity: for any message m, every process in P

and only if m was previously gb-Send m to P by a process in n;
gb-Delivered m at most once,

□ Partial Order: if processes p1, p2 in P both gb-Delivered m1 and
gb-Delivered m2 , and m1 ~ m2, then p1 and p2 gb-Delivered m1 and
gb-Delivered m2 in the same order.

The generic broadcast problem is generalization of atomic and reliable broadcast: when
C = M x M, that is, all messages conflict, the problem reduces atomic broadcast; when
C = 0, that is, no messages conflict, it reduces to reliable broadcast. Another problem,
the Generalized Consensus (LAMPORT, 2005), goes even further and allows, for example,
generalizing lease allocation (REZENDE, 2017). Here, however, we are more interested
in a different generalization, allowing multicast to benefit from partial ordering.

2.3.2.5 Generic Multicast, Or The Goal

In this work, we focus on the generic multicast problem. A primitive for generic
multicast combines the partial ordering of generic broadcast with the destination flexibility
of multicast.

We define the generic multicast problem in terms of primitives gm-Send m to Q ,
through which a process in n can multicast a message m to every process in Uq , Q Ç r;

, in which a process Uq delivers a message m; and the conflict relationgm-Delivered m

2.4. Temporal Logic of Actions 31

C,, symmetric, non-reflexive over M x M, thus C Ç M x M. An algorithm that solves
the generic multicast must fulfill the following properties (ANTUNES, 2019; COELHO;
SCHIPER; PEDONE, 2017):

□ Validity: if a correct process
that p is correct, eventually p

, G Ç r, then Vp G Uç suchin n gm-Send m to G

gm-Delivered m ■)

□ Agreement: if Ep G IJç, G Ç r, p gm-Delivered m , then every correct process in
Uç eventually gm-Delivered m ;

Integrity: Vm G M, VpUq , G Ç□ r p gm-Delivered m at most once, and only if
m was previously gm-Send m to Q by some process in n;

□ Partial Order: if processes p1, p2 G n both gm-Delivered m1 and gm-Delivered m2

and m1 ~ m2, then p1 gm-Delivered m1 before gm-Deliverec m2 , if, and only if,
•)

p2 gm-Delivered m1 before gm-Delivered m2 ;

□ Acyclic Order: the relation < is acyclic, where for m1, m2 G M and m1 ~ m2

then m1< m2, if, and only if, there exists a process that gm-Delivered m1 before
gm-Delivered m2 .

As atomic multicast can solve atomic broadcast, generic multicast can solve generic
broadcast, too. Also, generic multicast is a generalization of atomic and reliable multicast,
only varying the conflict relation to achieve the desired behavior.

2.4 Temporal Logic of Actions

This section describes the temporal logic of actions, known as TLA. TLA provides
mathematical foundations to specify and reason about concurrent systems (LAMPORT,
1994b; LAMPORT, 2002). Verifying the algorithm's correctness by writing the algorithm
with a pseudo-code or a programming language is a task more difficult than reason-
ing about a one-page abstract algorithm written in mathematical notation (LAMPORT,
1994b). Programming languages have a difficult job to execute and can have details that
are not explicit, while it could be easier with simple mathematical concepts (LAMPORT,
1994b).

Writing a system's formal specification takes effort, but some benefits include under-
standing the system better and having greater confidence in its operation (LAMPORT,
2002). There exists a gap between writing a specification and implementing an algorithm,
where filling this gap by supposing how the system should behave can lead to implementing
something other than the correct algorithm (CHANDRA; GRIESEMER; REDSTONE,

2007). The specification is not the final step; it is a tool to apply when appropriate. For

32 Chapter 2. Fundamentals

example, during system design, use it to verify the interaction between the system's com-
ponents (LAMPORT, 2002). With the ability to write a formal specification, developers
have a new canvas to test ideas (NEWCOMBE et al., 2015).

The correctness of the system means that its properties are satisfied (LAMPORT,
1994b). We can represent a system with abstract objects to verify its correctness and
use a model checker for invariant properties (YU; MANOLIOS; LAMPORT, 1999). To

completely specify a system is also an activity of abstraction (LAMPORT, 1994a). For
example, create an abstraction to separate the network layer from an algorithm specifi-
cation. Learning how to abstract accurately, leaving only the essence of the algorithm, is
a skill gained only through experience (LAMPORT, 2002).

This section describes the tools we use to formalize our algorithms. The algorithm's
correctness does not depend on the formalism used to prove its correctness; it should be
correct regardless (LAMPORT, 1994b). Remember that: prose is not a formal way to
specify a system (LAMPORT, 2022), wherein the tool for such a task is formal methods,
and we opt to use TLA.

2.4.1 Let There be Time

The system specification is a set of possible behaviors; a single behavior is a sequence
of states; a state is an assignment of values to variables (LAMPORT, 2002). A single
temporal formula F is an assertion of a system's behavior, evaluated as true or false; it
is composed of elementary formulas using boolean operators and the unary □ operator
(LAMPORT, 1994b; LAMPORT, 2002).

The boolean value a formula F assigns to behavior a is denoted as a[[F]] (LAMPORT,
1994b). We say that cr satisfies F, if, and only if, a[[F]] equals true (LAMPORT, 2002).
We can express the universe evolution as a0 a1 ..., where an represents the state at
instant n during behavior a (LAMPORT, 1994b; LAMPORT, 2002). Different operators
exist to validate the system during execution.

Machinery operators

To assert if any arbitrary temporal formula F is always valid. We start defining
a[pF]], to be true if, and only if, an an ++1. Defining a+n = an an+1 ..., as the

suffix of a removing the first n states, so a[pF]] is true if, and only if, a+n [[F]] is true for
all n. Thus a satisfies □F if, and only if, every suffix a+n of a satisfies F (LAMPORT,
2002).

+ n Aa = (7n &n+1 &n+2 ...

a[pF]] = V n G Nat : a+n[[F]] (1)

2.4. Temporal Logic of Actions 33

Equation (1) defines the temporal operator □. The formula DF asserts that F is true
at all times, reading as always, henceforth, or from then on (LAMPORT, 2002). There
are other temporal formula classes, each class described in terms of boolean operators
and the temporal operator □ (LAMPORT, 1994b). Another temporal operator is the O,
read as eventually, and the formula OF, defined by —□—F (LAMPORT, 1994b).

a[[OF]] = 3 n G Nat : a+n[[F]] (2)

The O operator asserts that F is not always false or that F is true at some time
(LAMPORT, 1994b; LAMPORT, 2002). Equation (2) specifies the O operator. A behav-
ior satisfies OF if, and only if, F is valid at some time during the behavior (LAMPORT,
1994b).

Combining O and □, we have two new operators. The first is the DO, which read as
infinitely often (LAMPORT, 1994b). The formula DOF asserts that at all times, either
F is valid then or at some time later (LAMPORT, 2002), formally written in Equation (3)
(LAMPORT, 1994b). The other operator is the OD, which reads and asserts that OD F
is eventually always valid. A behavior satisfies ODF if, and only if, after some time, it is
always true from that time on (LAMPORT, 1994b). Formally written in Equation (4).

íj+(n+m)
— &n+m &n+m+1 &n+m+2 •••

a[[DOF]] — V n G Nat : 3 m G Nat : a+(n+m)[[F]] (3)

a[[ODF]] — 3 n G Nat : V m G Nat : a+(n+m)[[F]] (4)

The last temporal operator is For any two temporal formulas, F and G, it is
written as F G, or, in other words, D(F - OG), asserting that any time that F is
true, then eventually, G is also true (LAMPORT, 1994b). This operator is also transitive,
meaning that if F G and G H are both satisfied, then F H is also satisfied
(LAMPORT, 1994b). More formally, for any temporal formulas F and G (LAMPORT,
2002):

a[[F G]] — V n G Nat : (a+n[[F]]) > (3 m G Nat : a+(n+m)[[G]])

We have a complete framework to assert a system's behavior during execution. We can
represent time passing when specifying our algorithms, but some systems may perceive
the passage of time differently. For example, a specification for a clock that displays
hours, minutes, and seconds implements one that shows hours and minutes only, but the
former sees time differently from the latter. For this specification to be valid, the systems
must be able to do nothing; if the minute changes in every step, then no clock displaying
seconds exists (LAMPORT, 2002).

34 Chapter 2. Fundamentals

Falters' act

The TLA specification represents the complete universe, whereas, in this universe, the
system exists with all other systems. For example, in mathematical terms, the formula
f (x) = x 2 + x + 1 does not represent the universe strictly for x; it is the whole universe,
but with a focus on the x variable (LAMPORT, 1994a). Since there is a complete universe
on the specification, some parts can evolve while others remain unchanged.

In TLA, a stuttering step describes a step in which the system remains the same
(LAMPORT, 1994a). That is, the system must be capable of not changing while the
universe is still going. An action represents the relation between old and new variable
values (LAMPORT, 1994b). A state function is an ordinary nonboolean expression that
can contain variables and constants (LAMPORT, 1994b; LAMPORT, 2002). For any

action A, every state function f, to denote that a system complies with changing and not
changing as well, is written as (LAMPORT, 1994a):

[A]f = A v (f' = f)

A step satisfies [A]f (read as square A sub f) if, and only if, the action A is valid
or the state f does not change (LAMPORT, 1994a), where, in such cases, it stuttered,
the universe changed while the specified system did not. To assert that in every step,
A is either satisfied or f is unchanged, represented by the formula D[A|f (LAMPORT,
1994a). Through these steps, a system can, every time, execute only f' = f, meaning the
system never changes, never making any progress. Fairness can ensure progress in the
specification (LAMPORT, 1994a).

The fairness

A specification can use strong (SF) and weak (WF) fairness (LAMPORT, 1994b;
LAMPORT, 1994a). Informally, WF asserts that action A is either eventually executed
or impossible, even if impossible only briefly. SF asserts that the action is either even-
tually executed or eventually becomes always impossible. Writing both of these informal
descriptions as (LAMPORT, 1994b):

WF : (O executed) V (O impossible)

SF : (O executed) V (OD impossible)

The “executed' means that action A is enabled, where it is enabled iff there is a
state t satisfying A, expressed as O(A)f. Dissecting the expression, (A)f is an A step
that changes the values in f (LAMPORT, 1994b); with the O operator, we have that:
eventually, every step changes the state. The “impossible” means we can not take step

2.4. Temporal Logic of Actions 35

A with state f. That is, action A is not enabled, written as — Enabled(A)/ (LAMPORT,
1994b). Therefore, expressed by the formulas (LAMPORT, 1994b):

WF/(A) = (DO(^)f) V (DO— Enabled(A)/)

SF/ (4) = (DO (A)/) V (OD— Enabled {A}/)

Since ODF DOF, thus SF/(A) WF/(A) (LAMPORT, 1994b). Whenever
written SF/(A) or WF/(A) implies that f' = f, at any action that A is enabled, then the
state f changed (LAMPORT, 1994a). All in all, for any step, it either stutters or changes.

Liveness and safety

Programs can show undesirable behavior. The specification is a description of what
the system is supposed to do (LAMPORT, 2002), whereas, for the algorithm to be correct,
it must satisfy the desired properties (LAMPORT, 1994b). The system's safety properties
assert that bad things never happen (ALPERN; SCHNEIDER, 1987), meaning the system
never enters an unacceptable state (OWICKI; LAMPORT, 1982). Some safety examples
are that a program never enters a situation where progress is impossible; two different
processes can not access a critical section simultaneously (OWICKI; LAMPORT, 1982).
Safety properties do not require fairness (OWICKI; LAMPORT, 1982).

Safety by itself does not require the system to do something (LAMPORT, 2002),
meaning that, by doing nothing, we do not do anything wrong. Employing liveness prop-
erties, we can assert that something good eventually does happen (OWICKI; LAMPORT,
1982; ALPERN; SCHNEIDER, 1987). Liveness properties that should eventually occur

are, for example, answering each request or a message reaching the destination (OW-
ICKI; LAMPORT, 1982). Many systems only guarantee liveness with fairness (OWICKI;
LAMPORT, 1982).

$1 = Init A D[Next]vars (5)

$2 = Init A D[Next]vars A Liveness (6)

A TLA specification has the format of the formula in Equation (5), which is a safety
property (LAMPORT, 1994b). It asserts that system starts satisfying Init and only
takes steps [Next]vars (LAMPORT, 1994a). Equation (6) strengthens Equation (5) adding
liveness property. Liveness is a conjunction of formulas using fairness, with action A,
WFvars (^) and SFvars (^) (LAMPORT, 2002). Decomposing Equation (6), Init constrains
the system's initial state, [Next]vars constrains the steps it may take, and Liveness what
must eventually happen (LAMPORT, 2002)

All properties are equal, but some properties are more equal than others. Liveness
property is philosophically important, but, in practice, safety property is paramount

36 Chapter 2. Fundamentals

(LAMPORT, 2002). The goal when writing a specification is to avoid errors, so in com-
parison with liveness, safety properties bring more benefits to the table (LAMPORT,
2002). But, since the liveness properties are easy enough to write and constitute a small
part of the specification, we might as well write them down (LAMPORT, 2002).

What a wonderful system

We can express the system's properties using temporal logic. A program has prop-
erty F, expressable as -■ F, asserting that every behavior that satisfies will
satisfy property F (LAMPORT, 1994b). We use these properties to explain two popular
classes of properties, invariance and eventuality (LAMPORT, 1994b). The properties'
proofs use axioms and proof rules. A proof rule asserts that F F and F G imply F H
(LAMPORT, 1994b).

The formula □P, where P is a predicate, expresses an invariance property (LAM-
PORT, 1994b). For example, P can assert that at most one process is in the critical
section simultaneously; or that the program never enters a state in which progress is
impossible. Rule INV1 in Equation (7b) proves that a program satisfies an invariance
property □P (LAMPORT, 1994b).

LATTICE. a a well-founded partial order on a set S
F A (c G S) =^ (Hc (G A 3d G S : (c A d) A Hd)

F =^ ((3c G S : Hc) G)

I'
INV1.

I A [X]z
I A □[M]f □I

(7b)

Eventuality properties assert that something eventually happens (LAMPORT, 1994b).
For example, a program terminates at some point (LAMPORT, 1994b). There are dif-
ferent ways to express these properties, which are reducible to formulas of form P Q.
The reduction is proven using the rule LATTICE and temporal reasoning (LAMPORT,
1994b).

The invariance and eventuality are essential to check the system's properties. Using
these properties to verify if an algorithm holds all the guarantees; if a system is designed
correctly and fulfilling all requirements.

2.4.2 A Useful Model

We can specify systems in TLA using the TLA+ language. TLA+ is a language
where TLA meets first-order logic and Zermelo-Fraenkel set theory (YU; MANOLIOS;

2.4. Temporal Logic of Actions 37

LAMPORT, 1999). TLA+ can describe high-level correctness properties to the low-level
design of a system (YU; MANOLIOS; LAMPORT, 1999). It is available with some
tools, which include a model checker (LAMPORT, 2002; LAMPORT, 2021b). The model

checker, known as TLC, is used for finding errors in TLA+ specifications (LAMPORT,
2002).

The TLC model checker handles a subclass of TLA+ specifications, where it might not
operate a large model of a specification, but it should deal with most real-world system
specifications (YU; MANOLIOS; LAMPORT, 1999). TLC's input is a TLA+ module,

assuming a formula in form $ = Init A D[Next]vars A Liveness, the same as Equation (6)
on page 35, and a configuration file describing the specification formula and properties
to check (LAMPORT, 2002). The most effective way to find errors is by verifying the
system's invariant properties (YU; MANOLIOS; LAMPORT, 1999; LAMPORT, 2002).

Internally, TLC maintains an explicit state representation, not using a symbolic ap-
proach (YU; MANOLIOS; LAMPORT, 1999). TLC has two data structures: a set seen

of known reachable states and a FIFO queue containing elements of seen with the suc-
cessor states not checked (YU; MANOLIOS; LAMPORT, 1999). The values in seen are

the state's 64-bit fingerprint, and in the queue are the actual states (YU; MANOLIOS;
LAMPORT, 1999).

When verifying a model, TLC generates and checks all possible states that satisfy
the Init predicate, populating the queue and seen with these states (YU; MANOLIOS;
LAMPORT, 1999). Then, TLC rewrites the next-state relation Next as a disjunction of
every smallest subaction possible (YU; MANOLIOS; LAMPORT, 1999). A set of workers

is then launched and repeatedly do:

□ Remove a state s from the front of the queue;

□ For each subaction A, generate every next state t where the pair s and t satisfy A.

TLC reports a deadlock when no next state t exists and reports an error if t does not
satisfy an invariant or when s does not have the next state (YU; MANOLIOS; LAMPORT,
1999). For every next state t, the workers do (YU; MANOLIOS; LAMPORT, 1999):

□ If t is not in seen, check if t satisfies the invariant;

□ If t in seen, add t to seen pointing to s;

□ If t satisfies the constraint, add t at the end of the queue.

TLC evaluates expressions to check the specification (LAMPORT, 2002). TLC evalu-
ates the expressions left-to-right, similar to how a person would mentally evaluate (LAM-
PORT, 2002). We must pay attention to the evaluation process. For example, in the

38 Chapter 2. Fundamentals

logically equivalent formulas, (x = ()) A (x[1] = 0) and (x[1] = 0) A (x = ()), TLC eval-
uates the former correctly, whereas the latter raises an error (LAMPORT, 2002). TLC's
evaluation process is (LAMPORT, 2002):

□ For a formula p A q, evaluates p and, if it equals TRUE, then evaluates q;

□ For a formula p V q, evaluates p and, if it equals FALSE, then evaluates q;

□ For a formula p =^ q, evaluates as —p V q;

□ For IF p THEN e1 ELSE e2, evaluates p, then evaluates either e1 or e2.

For a set S , TLC enumerates all elements of S in some order and evaluates the
expression substituting with one value at a time (LAMPORT, 2002). When handling
sets, TLC declares an error if it is not obviously finite. TLC similarly evaluates the
following expressions:

3x G S : p Vx G S : p CHOOSE x G S : p
{x G S : p} {e : x G S} [x G S e]
SUBSET S UNION S

TLC can evaluate a temporal formula F if, and only if, F is nice and can evaluate
the formulas that compose F (LAMPORT, 2002). The temporal formula F is nice if,
and only if, it is a conjunction of formulas belonging to the classes of state predicates, an
ordinary boolean-valued expression, with no prime nor D operator; invariance formulas,
such as DP, where P is a state predicate; box-action formulas, such as D[A]v, where A

is an action and v is a state function; and simple temporal formulas (LAMPORT, 2002).
A simple temporal formula is composed of temporal state formulas and simple action
formulas by applying simple Boolean operators (LAMPORT, 2002):

□ Simple Boolean operators: consist of A, V, —, , = , TRUE and FALSE with
quantification over finite, constant sets;

□ Temporal state formula: composed from state predicates by applying simple

Boolean operators and temporal operators D, O, and

□ Simple action formula: with the action A and state function v, is one of WFv (X),
SFv(^), , and OD[4]„.

LAMPORT gives some hints on effectively using TLC. Start with a reduced specifi-
cation, find errors early, and then run TLC on larger models. A successful verification
should raise suspicion; the finite model can hide liveness problems, as doing nothing can
satisfy safety properties. Check properties that should find a violation, and verify as many
invariance properties that make sense.

2.5. Golang 39

There exists much more for TLA, TLA+, and TLC. The proof system, known as
TLAPS, which we did not explore in this work. Advanced topics, such as composing
specifications and specifications for real-time systems (LAMPORT, 2002).

2.5 Golang

This section discusses the Golang programming language, henceforth Go, used to
implement Generic Multicast 1 algorithm. The Go language is a general-purpose, garbage-
collected, compiled system programming language, which provides built-in features for
concurrent programming (GOLANG, 2021b). Go follows a design for multi-threading
applications, providing lightweight threads and explicit message passing (TU et al., 2019).
The language is not overly complex and contains multiple features for implementing and
testing the system. In this section, we discuss the concurrency features available.

Go's concurrency model originated from the Communicating Sequential Processes con-
currency model, created by Tony Hoare (BUTCHER; FARINA, 2016; GOLANG, 2022a).

Concurrency in Go is cheap, with two principal components that make this model work,
the goroutine and channels, with a motto, “do not communicate by sharing memory; in-
stead, share memory by communicating” (GOLANG, 2022a). The language encourages
sharing values using channels instead of sharing memory between threads, believing that
explicit message-passing is less error-prone (TU et al., 2019).

Goroutine is a cheap, lightweight user-level thread that executes concurrently along
other goroutines in the same address space (GOLANG, 2022a). The Go runtime manages
and maps the routines to OS threads in an M:N model, multiplexed to keep running, where
one can wait for a resource and others continue working without blocking (BUTCHER;
FARINA, 2016; GOLANG, 2022a; TU et al., 2019). Each routine costs a little more than

stack space allocation and growing as needed (GOLANG, 2022a).
A channel is a concurrency primitive to send and receives data, passing values between

routines (GOLANG, 2022a). Channels primitives, when used with good judgment, can
help to write concise, correct programs (GOLANG, 2022a). Sharing by communicating is
encouraged, but not enforced, being possible to synchronize goroutines in a conventional
way using locks, conditions, and atomic operations (TU et al., 2019).

In summary, Go provides tools to ease the development of concurrent programs, mak-
ing it a good fit for the current prototype implementation work. There is more that the
language can offer, which is not detailed here. A quick list of features includes a low-
latency garbage collector, compilation to native code, recently added support to generic
types, and an ecosystem with multiple tools and libraries.

40 Chapter 2. Fundamentals

41

Chapter 3
Related Work

Our work has both theoretical and practical contributions, and in this chapter, we
present and discuss works related to ours in these aspects. We start with Section 3.1,
revisiting some multicast algorithms and the family lineage up to the algorithms we de-
veloped here. Section 3.2 discusses the formal verification of group communication and
agreement algorithms. We conclude with Section 3.3, with a discussion of the implemen-
tations of these algorithms.

3.1 Multicast History

Skeen's algorithm is an Atomic Multicast algorithm for failure-free environments and
has inspired many other works since. First referenced in (BIRMAN; JOSEPH, 1987) as
an unpublished work, wherein the algorithms of our work descend from the same lineage.

In the protocol, each message has an assigned timestamp. The timestamp determines
the delivery order between messages (SCHIPER; PEDONE, 2007) with an initial value
as an assignment of the participating processes ' local clocks. The initiator, that is, the
process that first sends the message, acts as a coordinator in the procedure to decide
the message's final timestamp. During the algorithm, participating processes maintain
two sets, Undeliverable and Deliverable, to control the messages' state in the agreement
of the timestamp value. The algorithm follows these five steps (FRITZKE et al., 1998;
ANTUNES, 2019):

1.

2.

On the invocation of am-Send m to Q , the initiator process p G n will Send m to q
Vq gQ;

•)

, increase its clock, assigns a times-Each process q G Q that Received m from p

tamp ts to be the current clock's value, adds (m, ts) to Undeliverable, and Send (m, ts) to p ;

After the coordinator p Received (m, ts] from q , Vq G Q, it defines the maximum

timestamp received as the definitive timestamp tsf for m and Send (m, tsf) to q •)

3.

42 Chapter 3. Related Work

Vq eQ;

4. For every q E Q, on Received (m, tsf) from p , remove m from Undeliverable, insert
(m, tsf) into Deliverable;

5. Each process q E Q will am-Delivered m for every (m, tsf) E Deliverable, where
the tuple (m, tsf) is the smallest of all other tuples in Deliverable and Undeliverable
and removing (m, tsf) from Deliverable.

Figure 1 shows a successful execution of the protocol. We have processes p1, p2, p3,
and p4 handling messages m1 and m2. Message m1 's destination is Qmi = {p1, p2, p3}

and m2's Qm2 = {p2, p3, p4}. This example has the multicast aspect in evidence, where
processes p2 and p3 deliver messages in the same order, while p1 and p4 deliver when
ready.

Figure 1 - Happy path execution.

In some executions, the timestamp is enough to order message delivery, but, in some
cases, timestamps tie. Figure 2 depicts a timestamp tie. For Q = {p1, p2} and messages
m1 and m2, p1 is the m1 coordinator, and p2 is m2's. The proposals from p1 and p2

are ((m1, 1), (m2, 2)) and ((m2,1), (m1,2)), respectively. The decided timestamp is 2 for
both messages because the coordinator selects the highest value. For processes to deliver
messages in the same order, they must be able to sort messages deterministically to break
timestamp ties.

In future works, FRITZKE et al. extended Skeen's algorithm to make it fault-tolerant.
Fritzke's algorithm uses a replication approach, dealing with groups of processes instead

3.1. Multicast History 43

Figure 2 - Timestamp tie (ANTUNES, 2019).

of processes. The algorithm works in a different environment, where processes may crash.
Every group has a majority of correct members and has a failure detector of class 05

attached (FRITZKE et al., 1998). When groups have a single process, the algorithm
reduces to Skeen's algorithm (FRITZKE et al., 1998).

Fritzke's algorithm works like Skeen's, using timestamps to order message delivery.
The algorithm requires a uniform Reliable Multicast primitive at the start. Since it
handles groups, each timestamp proposal comes from a group. For each message, it is
necessary two consensus rounds; the first to agree on the group's proposal and the second
to the final timestamp. All consensus rounds are local to a single group, not involving
processes in distinct groups, a property known as locality (FRITZKE et al., 1998).

SCHIPER; PEDONE further extend Fritzke's algorithm. The need for a uniform
version of Reliable Multicast primitive is no more, while still guaranteeing properties as
strong as Fritzke's version (SCHIPER; PEDONE, 2007). When am-Send m to Q and
£| = 1, messages can receive the final timestamp and are ready for delivery, removing

the need for a second consensus round.
In a later work, AHMED-NACER; SUTRA; CONAN studied the convoy effect in

Atomic Multicast primitives. The convoy effect is a phenomenon in which the delivery
of one or more messages delays other ones (BLASGEN et al., 1979; AHMED-NACER;

SUTRA; CONAN, 2016). To circumvent the performance degradation that the convoy
effect causes, the authors propose to use the messages' semantics (AHMED-NACER;
SUTRA; CONAN, 2016). One of the results is a Generic Multicast algorithm built on

top of Skeen's algorithm.

44 Chapter 3. Related Work

The work of ANTUNES applies AHMED-NACER; SUTRA; CONAN's proposal of
using the messages' semantics to the Atomic Multicast algorithms, resulting in three
Generic Multicast algorithms, Generic Multicast 0, Generic Multicast 1, and Generic

Multicast 2. All ANTUNES' algorithms have a generalized approach that creates a partial
order for message delivery. Generic Multicast 0 extends Skeen's algorithm from AHMED-
NACER; SUTRA; CONAN's work, working in a failure-free environment (ANTUNES,
2019). Generic Multicast 1 builds upon SCHIPER; PEDONE's extension of FRITZKE et

al.'s algorithm, using the same environment where processes may crash. Lastly, Generic
Multicast 2 uses the lessons from Generic Multicast 0 and Generic Multicast 1, resulting
in an algorithm where all group communication primitives are generalized (ANTUNES,
2019).

Our work continues ANTUNES' work. Generic Multicast 0, Generic Multicast 1, and
Generic Multicast 2 all lack formal verification. For the current work, we write TLA+

specifications for all of ANTUNES' algorithms, and we propose our improvements. The
original algorithms had subtle problems that went unnoticed without validation. We will
discuss our findings and solutions in the next chapter. Figure 3 displays the multicast
algorithms' family tree.

The work of PEDONE; SCHIPER is also a cornerstone and inspiration for our work.
We use a preliminary version of (PEDONE; SCHIPER, 2002). PEDONE; SCHIPER

presents the notion of strictness and delivery latency, which we apply to our work, too.

3.2 Algorithms in Theory

Academia and industry have been using TLA+ in a plethora of projects (LAM-
PORT, 2021a). We will start with TLA+ use in academia and then its use in indus-
try. REZENDE has a work focused on the Generalized Consensus problem (LAMPORT,
2005). REZENDE specifies the Generalized Paxos in TLA+ and implements an instance
that solves a variation of the distributed lease coordination.

The work of CAMARGOS contributes new consensus algorithms and an abstraction
called Log Service, among other contributions. The Log Service abstracts the atomic-
ity and durability problems in transaction termination (CAMARGOS, 2008). Both the
algorithm and Log Service have a TLA+ specification.

ONGARO's work introduces Raft, an algorithm to solve the Atomic Broadcast prob-
lem. Multiple production systems rely on the Raft algorithm; correctness is a crucial
requirement for such an algorithm. ONGARO wrote a TLA+ specification and proof for
the algorithm. The manual proof relies on the TLA+ specification, where there exist lem-
mas that follow directly from it. ONGARO's work is also interesting because it references
the hardships of verifying larger models in TLA+. Model checking larger models is a
difficult task in means of time and storage necessary.

3.2. Algorithms in Theory 45

i
i

Generic
Multicast

Algorithms

Atomic
Multicast

Algorithms

i ii

Ahmed/Sutra
Algorithm

Generic Multicast 0 -
Skeen Based

Fritzke's
Algorithm

1

Schiper/Pedone
Algorithm

Failure-Free
Scenarios

Fault-Tolerant

Generic Multicast 1
!

Generic Multicast 2 -
Truly Generic

Figure 3 - Extensions of multicast algorithms (ANTUNES, 2019).

The industrial use of TLA+ varies from verifying algorithms to verifying running sys-
tem designs. In AWS, engineers use TLA+ to specify algorithms and design of large
distributed systems. NEWCOMBE et al. published a report describing the AWS use and
adoption process. The authors report that TLA+ helps avoid problems reaching produc-
tion, finding subtle bugs in algorithms, bugs that escape reviews and would be difficult
to find otherwise. The authors find that thinking in safety and liveness terms is less
error-prone than the usual development approach of imagining what could go wrong and
starting to patch possible scenarios. Writing a TLA+ specification gives more confidence
in the system's design correctness, giving space to engineers to propose improvements and
check what-if scenarios. Applying such methods pays in the system's lifetime, providing
a faster time-to-market for products without giving-up quality and correctness.

TLA+'s first use was to verify hardware model (LAMPORT, 2021a). BEERS' work

describes how Intel applied formal verification in early cycles before the target RTL to ver-
ify a coherence protocol and its implementation. In their experience, the author concludes
that the early iterations kept problems out of the RTL, giving engineers a solid microarchi-
tecture and making verification after the RTL phase more efficient. In unpublished papers

46 Chapter 3. Related Work

but open-source contributions, Open Networking Foundation and Atomix applied TLA+

to multiple and varying types of problems1, naming a few, a distributed lock, adding
custom functionalities to Raft, verifying systems design, and experiments to verify the
implementations adhere to a specification. Microsoft applied TLA+ to write specifications
for the different consistency operations provided by their distributed databases2.

1 ONF/Atomix usage.
2 Microsoft CosmosDB presentation.

Our work uses TLA+ to verify problems in ANTUNES' algorithms. Similar to the
examples in this section, we apply TLA+, meaning that we are not proposing something
novel to TLA+. In this aspect, our goal is only to verify problems and apply fixes.

3.3 Algorithms in Practice

Leaning toward implementation, we have some work focusing on applying formal meth-
ods to the development process. A proposition from SYSTEMS is called Verification-

Driven Development, primarily focusing on distributed and concurrent systems. Re-
searchers and engineers collaborate in a refinement cycle with multiple steps to solve
a programming problem.

The development starts with a high-level description of the problem, not involving
proofs, only prose to introduce the problem. With the high-level description of the prob-
lem, it's time for the system definitions, failures, communication, processes, synchrony,
and safety and liveness properties. Having all these definitions is possible to formulate
an algorithm. The focus is on developing a complete TLA+ specification with all the
properties and invariants. Using the algorithm TLA+ specification, engineers can write
an implementation specification. The implementation specification details the process
behavior and includes how the algorithm specification reduces to the implementation
specification. The last step is coding!

There exists a gap between specification and implementing an algorithm, and even
though the specification is correct, the translation to a programming language can have
bugs. In the work of BORNHOLT et al., the authors report the use of “lightweight formal
methods” to validate a storage implementation, meaning the use of the appropriate tool
for each problem, easy to apply by engineers, and the possibility to evolve the models and
specifications. The authors took this approach because they needed more flexibility to
verify different properties, like API calls and crash consistency, and were willing to give
up some guarantees that a formal specification offer.

The approach has three main elements. An executable for a basic model conforming
to the specification, the model is used as a reference. Use the reference model to check
the actual implementation, applying tools that best fit the case for functional correctness,
concurrency, and crash consistency. The reference model evolves as the project evolves,

https://github.com/tlaplus/awesome-tlaplus/pull/7
https://www.microsoft.com/en-us/research/video/tla-specifications-of-the-consistency-guarantees-provided-by-cosmos-db/

3.3. Algorithms in Practice 47

educating engineers to use and extend the methods during development. Unfortunately,
such an approach does not guarantee that problems do not exist, but it has effectively
avoided problems of reaching production, and engineers can integrate the formal methods
during development.

Our work does not focus on how to apply formal methods during implementation.
We do not make any proposal of this kind whatsoever. We follow an approach similar
to the verification-driven development to implement a prototype for the Generic Multi-
cast 1 algorithm. We implemented the algorithm and the specification simultaneously,
one helping the other.

48 Chapter 3. Related Work

49

Chapter

Correctness Development

This chapter contains our contributions to the formalization and verification of the
algorithms proposed by ANTUNES. These include identifying problems through model
checking, corrections, and the experimental validation of the corrected algorithms. To
simplify the presentation, we only display excerpts of the specifications in this chapter,
where the complete TLA+ specifications are available in Appendix A.

Common to all Generic Multicast algorithms discussed is that all messages sent through
the algorithm are associated with a timestamp and that the algorithm uses the timestamp
to deliver messages in a partial order. Timestamps are defined based on a conflict relation
(PEDONE; SCHIPER, 1999): conflicting messages either have different timestamps and
are delivered in timestamp order, or the timestamps are equal and are delivered based on
some deterministic ordering with respect to each other (ANTUNES, 2019). All messages
in the algorithm belong to a set M, which has a strict total order.

This chapter includes a description of all algorithms and how they work. Each algo-
rithm is a step towards a complete generalized form. We conclude the chapter with our
experience using TLA+, create a link between the TLA concepts presented in Section 2.4,
and include additional properties these algorithms provide. We only define propositions
for these properties, leaving the proofs for future work.

4.1 Generic Multicast 0

The first algorithm verified with TLA+ was Generic Multicast 0 (ANTUNES, 2019),

based on Skeen's algorithm for failure-free systems (BIRMAN; JOSEPH, 1987). Since the
algorithm works on failure-free systems, it serves as a gentle first contact with Generic
Multicast (ANTUNES, 2019).

The algorithm associates the multicast messages with tentative timestamps derived
from logical clocks. The algorithm uses a conflict relation when assigning a timestamp,
increasing the processes' clock only when necessary, trying to keep the timestamp value
as low as possible (ANTUNES, 2019). The multicast initiator coordinates the process to

50 Chapter 4. Correctness Development

determine a final timestamp; we also refer to the initiator as the message coordinator.
Algorithm 4.1 presents the pseudo-code, where all procedures have an atomic execution.

Algorithm 4.1 Generic Multicast 0
1: Variables:
2: K — 0
3: Pending — 0
4: Delivering — 0
5: Delivered — 0
6: PreviousMsgs — 0

7: procedure GM-SEND(m, Ç) > Process p
8: let m.d = Q
9: for all q E m.d do

10: Send (S 0, m) to q

11: procedure assiGNTiMEstaMp
when: Received (S 0, m) from p

> Process q

12: if 3 mi E PreviousMsgs : m ~ mi then
13: K — K + 1
14: PreviousMsgs — 0
15: PreviousMsgs — PreviousMsgs U {m}
16: Pending — Pending U {(m, K)}
17: Send (S1, m, K) to p

18: procedure coMputESEqNuMbEr
when: Vq E m.d : Received (S1, m, ts) from q

> Process p

19: tsf — max({ts : Received (S1, m, ts)})
20: for all q E m.d do
21: Send (S2, m, tsf) to q

22: procedure assiGNSEqNuMbEr
when: Received (S2, m, tsf) from p A(m,-) E Pending

> Process q

23: if tsf > K then
24: if 3 mi E PreviousMsgs : m ~ mi then
25: K —— tsf + 1
26: PreviousMsgs — 0
27: else
28: K — tsf
29: Pending — Pending \ {(m,-)}
30: Delivering — Delivering U {(m, tsf)}

31: procedure DoDElivEr
when: 3 (mi , tsi) E Delivering :

> Process q

V (mj , tsj) E (Pending U Delivering) :
V mi mj

V tsi < tsj V (tsi = tsj A mi < mj)
let:

32: G — {(mj, tsj) E Delivering : V(mk, tsk) E Delivering U Pending : mj mk}
33: D — {(mi, tsi)} U G
34: Delivering — Delivering \ D
35: Delivered — Delivered U D
36: for all (m, _) E D do
37: gm-Delivered m

4.1. Generic Multicast 0 51

Each process that participates in the algorithm is aware of the same conflict relation-
ship, which changes with the application but is opaque to the algorithm. Participants
maintain the following state:

□ K is the process' logical clock used to assign a timestamp to each message;

□ PreviousMsgs is a set used together with the conflict relation to identify conflicting
messages;

□ Pending is a set that holds messages that have been assigned a tentative timestamp;

□ Delivering is the set of messages with a final timestamp assigned and, therefore,
ready to be delivered;

□ Delivered is the set of delivered messages.

During message exchanges, we use symbols in the tuple to identify which procedure
to execute, which closely relates to the processing stage of the message. These symbols
are:

□ SO: no timestamp associated yet;

□ Sl: has a tentative timestamp;

□ S2: has a final timestamp.

The algorithm starts on the invocation of gm-Send m to Q , where the initiator pro­

cess p G n will Send (S0, m) , V q G Q. To simplify the presentation, we let m.d = Q

stand for the destination of message m throughout the algorithm. We have two point-of-
views, process p is the message m coordinator, and process q is a process in m.d.

Each process q G Q that Received (S0, m) from p verifies if there exists a message
in the PreviousMsgs that conflicts with m using the process conflict relation; if a conflict
exists, the process clock will increase by 1 and clear the PreviousMsgs . Then, process q
associates the current clock value to be the timestamp ts, insert m to the PreviousMsgs
set and (m, ts) to the Pending set, and Send (S1, m, ts) to p .

The coordinator of m, p, executes the next step, responsible for defining the message's
final timestamp when it Received (S1, m, ts) from q , V q G Q, that is, when p receives
a timestamp proposal from all participants in Q. The definitive timestamp tsf is the
maximum ts received from all q G Q. Then, process p Send (S2, m, tsf) to q , V q G Q.

The next step happens when process q G Q Received (S2, m, tsf) from p and (m, _)
G Pending. Process q clock needs to leap if it is smaller than tsf. If there exists a message

in PreviousMsgs that conflicts with m, q's clock is updated to tsf +1 and PreviousMsgs
set is cleared; otherwise, when no conflict exists, q's clock leaps to tsf. The next step is
to remove (m, _) from the Pending and add (m, tsf) to the Delivering set.

52 Chapter 4. Correctness Development

The final step is where processes deliver messages. A process can execute the procedure
when there exists a message m in the Delivering set that, compared with all other messages
in Delivering and Pending, m is either strictly smaller or does not conflict. A single
execution does not deliver only message m; it collects all non-conflicting messages in the
Delivering set into batch D. Then, for all m G D, the process gm-Delivered m , removes
(m, -) from the Delivering set, and adds m to the Delivered. Observe that no order need
to be enforced by this loop and that the algorithm could deliver the batch D all at once
and let the application decide the order of processing.

4.1.1 A Little TLC

Algorithm 4.1 is a modified version of ANTUNES' algorithm, resulting from correct-
ing the problems we found after specifying it in TLA+ and verifying it using TLC. We
show a condensed version of the specification in Section 4.1.2 and the complete one in
Appendix A.3. Although we use formal specifications to find the problems, we found it
is easier to describe them and corresponding fixes in the pseudo-code.

How to count

We found problems in procedure assignSeqNumber of the original algorithm that
violates the Partial Order property. This violation is reproducible in an environment with
at least two processes and a pair of conflicting messages. Table 1 shows the algorithm
timeline. The tuple (id, ts) represents a message, the id guarantees the strict total order,
the first line is process p1 and the second p2, and m1 = (1,_) and m2 = (2,_).

In this counter-example, process p1 receives both messages, while p2 only m2. The
algorithm proceeds, and eventually, p2 delivers message m2. The delayed message m1

finally arrives at p2, which does not have conflicting messages, so it proposes a timestamp
of 1. Process p1 has both m1 and m2 with the same timestamp, then it uses the messages'
strict ordering to sort them, but since p2 delivery of m1 was delayed, it can not do the
same. This sum of events leads to the Partial Order violation, where process p1 delivers
messages in order m1 and m2, and p2, m2 and m1. Algorithm 4.2 is the original version,
and Algorithm 4.3 has the fixes applied.

4.1. Generic Multicast 0 53

Table 1 - Timeline of Partial Order property violation.

K Pending Delivering Delivered PrevMsgs Network
P1 0 {} {} {} {} {(S0, (1, 0)), (S0, (2, 0))}
P2 0 {} {} {} {} {(S0, (1, 0)), (S0, (2, 0))}
P1 0 «1, 0)} {} {} {(1,0)} {(S1, (1, 0)), (S0, (2, 0))}
P2 0 {} {} {} {} {(S0, (1, 0)), (S0, (2, 0))}
P1 1 «1,0), (2,1)} {} {} {(2,0)} {(S1, (1, 0)), (S1, (2,1))}
P2 0 {} {} {} {} {(S0, (1, 0)), (S0, (2, 0))}
P1 1 {(1, 0) (2,1)} {} {} {(2,0)} {(S1, (2,1))}
P2 0 {} {} {} {} {(S0, (1, 0)), (S0, (2, 0))}
P1 1 {(1, 0), (2,1)} {} {} {(2,0)} {}
P2 0 {} {} {} {} {(S0, (1, 0)), (S0, (2, 0))}
P1 1 {(1, 0), (2,1)} {} {} {(2,0)} {(S1, (2, 0))}
P2 0 {(2, 0)} {} {} {(2,0)} {(S0, (1, 0))}
P1 1 {(1, 0), (2,1)} {} {} {(2,0)} {(S2, (2,1))}
P2 0 {(2, 0)} {} {} {(2,0)} {(S0, (1, 0)), (S2, (2,1))}
P1 1 {(1, 0)} {(2,1)} {} {(2,0)} {}
P2 0 {(2, 0)} {} {} {(2,0)} {(S0, (1, 0)), (S2, (2,1))}
P1 1 {(1, 0)} {(2,1)} {} {(2,0)} {}
P2 1 {} {(2,1)} {} {} {(S0, (1, 0))}
P1 1 {(1, 0)} {(2,1)} {} {(2,0)} {}
P2 1 {} {} {(2,1)} {} {(S 0, (1,0))}
P1 1 {(1, 0)} {(2,1)} {} {(2,0)} {(S1, (1,1))}
P2 1 {(1,1)} {} {(2,1)} {(1,0)} {}
P1 1 {(1, 0)} {(2,1)} {} {(2,0)} {(S2, (1,1)}
P2 1 {(1,1)} {} {(2,1)} {(1,0)} {(S2, (1,1)}
P1 1 {} {(2,1), (1,1)} {} {(2,0)} {}
P2 1 {(1,1)} {} {(2,1)} {(1,0)} {(S2, (1,1)}
P1 1 {} {(2,1)} {(1,1)} {(2,0)} {}
P2 1 {(1,1)} {} {(2,1)} {(1,0)} {(S2, (1,1)}
P1 1 {} {} {(1,1), (2,1)} {(2,0)} {}
P2 1 {(1,1)} {} {(2,1)} {(1,0)} {(S2, (1,1)}
P1 1 {} {} {(1,1), (2,1)} {(2,0)} {}
P2 1 {} {(1,1)} {(2,1)} {(1,0)} {}
P1 1 {} {} {(1,1), (2,1)} {(2,0)} {}
P2 1 {} {} {(2,1), (1,1)} {(1,0)} {}

Algorithm 4.3 Changed version for step
Algorithm 4.2 ANTUNES's proposal for assignSeqNumber.
the assignSeqNumber step. 1: procedure assignSeqNumber
1: procedure assignSeqNumber when: Received (S2, m, tsf) from p

when: Received (S2, m, tsf) from p A (m,-) e Pending
A (m,-) e Pending 2: if tsf > K then

2: if tsf > K then 3: if 3mi e PreviousMsgs : m ~ mi then
3: K — tsf 4: K — tsf + 1
4: PreviousMsgs — 0 5: PreviousMsgs — 0
5: Pending — Pending \ {(m,-)} 6: else
6: Delivering — Delivering U {(m, tsf)} 7: K —— tsf

8: Pending — Pending \ {(m,-)}
9: Delivering — Delivering U {(m, tsf)}

We change procedure assignSeqNumber to verify if a conflict exists instead of only
leaping the clock. This approach creates a bond between the process clock, PreviousMsgs

54 Chapter 4. Correctness Development

set, and the conflict relation. Every time we clear the PreviousMsgs set, we also increase
the clock. We could solve this problem by increasing the clock at every received message,
following Lamport's work (LAMPORT, 2019), but this is not the behavior we want. We
want to keep the timestamps as low as possible, increasing the local clock only when
messages conflict (ANTUNES, 2019).

We change the procedure doDeliver. The original proposition relied on the Delivering
set being synchronized and ordered during the procedure execution, using the function
NCSF (Non-conflicting set function), which is not present in the algorithm, to return
the messages ready to deliver, in the correct order, without violating the properties. We
use a predicate that verifies that there exists a message that commutes with all others
or is strictly smaller than all others, a more direct verification without violating the
properties . Lamport clock uses a similar predicate to create a total order of the system's
events (LAMPORT, 2019). Algorithm 4.4 is the original algorithm, and Algorithm 4.5 is
our proposal.

Algorithm 4.4 Original doDeliver by Algorithm 4.5 Changed doDeliver.
ANTUNES. 1: procedure doDeliver
1: procedure doDeliver when: 3 (mi, tsi) G Delivering :

let: CandidateSet = {(mi, tsi) : V (mj, tsj) G (Pending U Delivering) :
(m^, tsi) G Delivering : V mi mj

V (mj, tsj) G (Pending U Delivering) : V tsi < tsj V (tsi = tsj A mi < mj)
tsi < tSj } let:

2: G {(mj, tsj) G Delivering :
when: CandidateSet = 0 V (mk, tsk) G Delivering U Pending :

2: D = NCSF (CandidateSet) mj mk }
3: Delivering Delivering \ D 3: D {(mi, tsi)} U G
4: Delivered Delivered U D 4: Delivering Delivering \ D
5: for all (mi,-) G D do 5: Delivered Delivered U D
6: gm-Delivered (m) 6: for all (m, _) G D do

7: gm-Delivered (m)

Learning to count again

Our algorithm in Algorithm 4.1 solves the Generic Multicast problem without violating
the properties. To check that the properties written in TLA+ are correct, we manually
introduce bugs to cause a violation, and the model checker must report the error. We did
this on all the properties, and during the Partial Order property, we noticed something
strange. Remembering that, the Partial Order property guarantees that processes that
deliver a pair of conflicting messages do so in the same order.

In TLA+, to capture the order a process delivers a message m, we use the Delivered
set, where we insert the tuple (\Delivered|, m). This avoids an additional variable in the
algorithm, and it is easier to do operations over a set in TLA+. The bug we introduced
was to use the tuple (0, m), pretending that processes delivered all the messages in a
single batch. To our surprise, this does not violate that Partial Order property.

The property on page 31 has that process p1 delivers the conflicting messages m1

4.1. Generic Multicast 0 55

before m2 if, and only if, process p2 does the same. Augmenting each process p in n with
a sequence Ip, that once a message m is gm-Delivered m by p, it adds m to the end
of Ip. For a message m and process p in n, Idx(m, p) returns the position of m on p's
sequence. We define L to be true when processes p1 and p2 in n both delivered m1 and
m2, and m 1 ~ m2. First, to ease the formulae writing, we define:

p = Idx(m1, p1) < Idx(m2, p1) q = Idx(m1, p2) < Idx(m2, p2)

We have that Partial Order (PO):

R=p q

PO = L R

(8a)
(8b)

We can rewrite Equation (8a) as:

R = (p q) A (q p)

= (—p V q) A (—q V p) (8c)

In our example, we delivered all messages in the same position, that is, Vpi G n and
Vmi, mj G M, we have that Idx(mi, pi) = Idx(mj, pi). We have that both p and q are
false. Substituting the values in Equation (8c), we have that:

R = (—false V false) A (—false V false)

= (true V false) A (true V false)

= true true

In this case, we have that Equation (8a) is always true. Substituting in Equation (8b),
L implies in something true, evaluating everything to true. That is, if processes (somehow)
deliver multiple conflicting messages in a single operation, it does not violate the Partial
Order property.

To strengthen the Partial Order property, we introduce an additional property named
Collision. Informally, this property requires that, given a pair of conflicting messages, a
process must deliver them in some order. We define the Collision property as:

mj,
fore

□ Collision: If a process p G n,

then p gm-Delivered mi

gm-Delivered mi

■i ~

be-

gm-Delivered mi and gm-Delivered mj , and m

before gm-Delivered mj or p gm-Delivered mj

56 Chapter 4. Correctness Development

An algorithm with Collision and Partial Order properties guarantees that messages
have a correct order based on the conflict relation. The Collision property is more of a
theoretical reinforcement. On an actual execution, messages are delivered one at a time;
messages will have an order, there is no way to violate the property.

Observe that we achieve the desired effect of delivering the conflicting messages in
order with the “happened before” relation (LAMPORT, 2019). That is, following the
definition of (LAMPORT, 2019), then we can write the Partial Order property as:

□ Partial Order: if processes p1, p2 E n both gm-Delivered m1 and gm-Delivered m2

and m1 ~ m2, then p1 gm-Delivered m1 gm-Delivered m2 , if, and only if, p2

•)

gm-Delivered m1 gm-Delivered m2 .

The final form

The Generic Multicast 0 specification is now complete. We fixed a problem that vio-
lates the Partial Order property on procedure assignSeqNumber and changed procedure
doDeliver with a simpler predicate. There exists room for improvement. Currently,
messages have a static destination, whereas it would be more interesting if we checked
every destination possible.

We also had a theoretical discussion about delivering messages in a single batch, where
we came up with an additional property. The Collision property requires that a process
order conflicting messages, albeit the property might be unnecessary in a real case. We
added a check for the Collision in our specifications.

From our first experience with TLA+, we found an intricate problem that needed a
specific combination of events to trigger a violation. Such a problem is hard to find by
only reasoning over the algorithm, which would be much harder to find without TLA+

and TLC.

4.1.2 Generic Multicast 0 in TLA+

The Generic Multicast 0 specification was the first developed in the present work. We
refined the specification in multiple steps until its final form, around 300 lines, including
comments and helper procedures. Next, we review portions of the specification that
roughly correspond to Algorithm 4.1 on page 50.

In the beginning

During the specification's model checking, we vary the number of messages, processes,
and conflict relation to check different scenarios. To simplify this arrangement, we exter-
nalized these settings as constants: NPROCESSES, denoting the number of processes the
model will simulate; INITIAL_MESSAGES, a finite set with the messages to initialize the al-
gorithm; and CONFLICTR, the conflict relation the algorithm requires. These constants do

4.1. Generic Multicast 0 57

not appear in the TLA+ specification we display here. Algorithm 4.6 and Algorithm 4.7
have the TLA+ representations.

Algorithm 4.6 Generic Multicast 0 in TLA+- Part 1.
AssignTimestamp (self) =

A QuasiReliable!Receive(self, 1,
lambda t :

A t[1] = “S0”

A AssignTimestampHandler(self, t[2]))

local AssignTimestampHandler(self, msg) =
A V A HasConflict(self, msg)

A K' = [K except ! [self] = K[self] + 1]
A PreviousMsgs' = [PreviousMsgs except ! [self] = {msg}]

V A —HasConflict(self, msg)
A K' = [K except ![self] = K[self]]
A PreviousMsgs' =

[PreviousMsgs except ! [self] = PreviousMsgs[self] U {msg}]
A Pending' = [Pending except ![self] = Pending[self] U {(K'[self], msg)}]
A QuasiReliable ! SendMap(lambda dest, S :

SendOriginatorAndRemoveLocal (self , dest,
(“S1”, K'[self], msg, self), (“S0”, msg), S))

A unchanged (Delivering, Delivered, Votes)

ComputeSeqNumber (self) =
A QuasiReliable!Receive(self, 1,

lambda t :
A t[1] = “S1”
A t[3]. o = self
A ComputeSeqNumberHandler(self, t[2], t[3], t[4]))

local ComputeSeqNumberHandler(self, ts, msg, origin) =
A let

vote = (msg.id, origin, ts}
election = {v G (Votes[self] U {vote}) : v[1] = msg.id}

elected = Max({x[3] : x G election})
in

A V A Cardinality (election) = Cardinality(msg.d)
A Votes' = [Votes except ! [self] = {x G Votes[self] : x[1] = msg.id}]
A QuasiReliable!SendMap(lambda dest, S :

(S \{(“S1”, ts, msg)}) U {(“S2”, elected, msg)})
V A Cardinality (election) < Cardinality(msg.d)

AVotes' = [Votes except ![self] = Votes[self] U {vote}]
A QuasiReliable! Consume(1, self, (“S1”, ts, msg, origin))

A unchanged (K, PreviousMsgs, Pending, Delivering, Delivered)

58 Chapter 4. Correctness Development

Algorithm 4.7 Generic Multicast 0 in TLA+- Part 2.
AssignSeqNumber (self) =

A QuasiReliable!ReceiveAndConsume(self, 1,
LAMBDA t-1 :

A t_ 1[1] = “S2”
A 3 t_2 G Pending[self] : t_ 1[3].id = t_2[2].id

A AssignSeqNumberHandler(self, t_ 1[2], t-1[3])
A Pending' = [Pending except ! [self] = @ \{t_2}])

LOCAL AssignSeqNumberHandler(self, ts, msg) =
A V A ts > K [self]

A V A HasCo nfl ic t (s elf , msg)
A K' = [K EXCEPT ! [self] = ts + 1]
A PreviousMsgs' = [PreviousMsgs except ! [self] = {}]

V A—HasConflict(self, msg)
A K' = [K EXCEPT ! [self] = ts]
A unchAngED PreviousMsgs

V A ts < K[self]
A UNCHANGED (K, PreviousMsgs)

A Delivering' = [Delivering except ! [self] = Delivering[self] U {(ts, msg)}]
A UNCHANGED (Votes, Delivered)

DoDeliver (self) =
3 (ts_ 1, m_ 1) G Delivering [self] :

AV (ts-2, m_2) G (Delivering[self] U Pending[self]) \{(t^ 1, m_ 1)} :
V-CONFLICTRfm-1, m_2)
V ts_ 1 < ts_2 V (m_ 1.id < m,_2.id A ts_ 1 = ts_2)

A LET
T = Delivering [self] U Pending [self]
G = {t-i G Delivering [self] : V t-j G T \{t-i} :

— CONFLICTR (t_i [2], t_j [2])}
D = {m_ 1} U {t[2] : t G G}

iN

A Delivering' = [Delivering except ! [self] = @ \ (G U {(ts-1, m_ 1)})]
A Delivered' = [Delivered except ! [self] =

Delivered[self] U Enumerate(Cardinality(Delivered[self]), D)]
A UNcHANGED (QuasiReliableChannel, Votes, Pending, PreviousMsgs , K)

Thou shalt gm-Send

We use a record (LAMPORT, 2002) to represent the messages, written as [key
value], each with a unique identifier that guarantees the strict total order, the destination,
and the originator process.

To simulate multiple processes, we use a record, mapping the process identifier to
the variables. For example, the Pending set starts as Pending = [i G Processes {}].
Each procedure has the process identifier as an argument, which we use to access the
corresponding variables.

4.2. Generic Multicast 1 59

We abstract the channels that connect processes using a set, guaranteeing the chan-
nel's quasi-reliable properties. The participants send and receive messages by adding or
removing elements, with no delivery order, message loss, duplication, or spontaneous cre-
ation. We use the contents of the INITIALMESSAGES constant to initialize the network,
meaning that the procedure in line 7 of Algorithm 4.1 does not exist in the specification.
Following this approach was an easier way to introduce a finite number of messages in
the algorithm. A drawback is that the model checker does not try all possibilities for the
destination and initiator process, varying the multicast behavior.

4.2 Generic Multicast 1

The second algorithm we verify with TLA+ is Generic Multicast 1, an algorithm
based on FRITZKE et al.'s algorithm with improvements from SCHIPER; PEDONE.

Although this model does not fit a real-world production environment (ANTUNES, 2019),
it is interesting to introduce the algorithm in an environment where failures exist. The
algorithm uses a replication approach, dealing with a group of processes instead of a single
process, where groups are reliable (ANTUNES, 2019). A group can represent one site,
wherein members rely on the local site link for communication (ANTUNES, 2019).

It works similarly to Generic Multicast 0, ordering messages by the timestamp and, in
the process, using the conflict relation, but Generic Multicast 1 does not use a coordinator
to decide a final timestamp. This algorithm assumes an asynchronous system, with crash-
stop failures but fault-tolerant partitions, and that an Atomic Broadcast primitive is
available. Algorithm 4.8 presents the algorithm pseudo-code, where all procedures have
an atomic execution.

As Generic Multicast 0, processes participating in the algorithm are aware of the same
conflict relation. Besides all the symbols S0, S1, and S2, this algorithm uses an additional
one, S3, meaning that a message has a final timestamp, is ready to be delivered, and the
local group is synchronized (ANTUNES, 2019). Each process has the following state:

□ K is the process' logical clock;

□ PreviousMsgs is the set used together with the conflict relation to identify conflicting
messages;

□ Mem is a memory structure that holds the messages we are processing without ever
creating duplicated entries for a message.

We follow the execution from process p's point-of-view, where p is a correct process.
The algorithm starts on the invocation of gm-Send m to Q , and we define m.d = Q to

simplify the algorithm presentation. The initiator process will ab-Send (m, S0, 0) to g •)

Vg E Q, where each primitive use is independent.

60 Chapter 4. Correctness Development

Algorithm 4.8 Generic Multicast 1.
1: Variables:
2: K 0, Mem 0, PreviousMsgs 0

3: procedure GM-SEND(m, G)
4: let m.d = G
5: for all g G G do
6: ab-Send (m, S0, 0) to g > Atomic Broadcast

7: procedure coMputEGroupSEqNuMbEr
when: ab-Delivered (m, S0, ts) > Atomic Broadcast Deliver

8: if 3 mi G PreviousMsgs : m ~ mi then
9: K K + 1

10: PreviousMsgs 0
11: PreviousMsgs PreviousMsgs U {m}
12: if |m.d| > 1 then
13: Mem (m, S1, K)
14: for all g G m.d do
15: for all p G g do
16: Send (m, S1, K) to p
17: else
18: Mem (m, S3, K)

19: procedure GathErGroupsTiMEstaMps
when: 3 m : (m, S1, ts) G Mem

A V g G m.d :
3 p G g : Received (m, S1, v)

20: tsf max({v : Received (m, S1, v)})
21: if ts < tsf then
22: ab-Send (m, S2, tsf) to Glocal > Local Atomic Broadcast
23: Mem (m, S3, tsf)

24: procedure syNchroNizEGroup
when: ab-Delivered (m, S2, tsf) > Atomic Broadcast Deliver

25: if tsf > K then
26: K tsf
27: PreviousMsgs 0
28: if 3 (m, S 1,_) G Mem then
29: Mem (m, S3, tsf)

30: procedure DoDElivEr
when: 3 (mi,S3,tsi) G Mem :

A V (mj,-, tsj) G Mem :
V mi mj

V tsi < tsj
V A tsi = tsj

Ami < mj
let:

NC {(mj, S3, _) G Mem : V (mk, -, -) G Mem : mj mk}
D {(mi, si, tsi)} U NC

31: Mem Mem \ D
32: for all (m, -, -) G D do
33: gm-Delivered m

4.2. Generic Multicast 1 61

Procedure computeGroupSeqNumber executes when p receives the tuple (m, S0, ts)

through the Atomic Broadcast primitive. On receiving (m, S0, ts), it is the first time p
deals with m , so p verifies if m conflicts with any message in the PreviousMsgs set. If a
conflict exists, p increases its local clock by 1 and clears the PreviousMsgs set. Lastly, p
inserts m into the PreviousMsgs set for later conflict verifications. Here, the algorithm
branches based on the destination, an optimization proposed by SCHIPER; PEDONE.

When a message has a single group in the destination, the process can store the tuple
(m, S3, K) in the Mem structure. Because m's destination is a single group, and p
received it through the Atomic Broadcast, the message is at the desired destination in the
correct order. The tuple (m, S3, K) associates m with a final timestamp and the symbol
S3 to identify it as ready to be delivered.

When a message has multiple groups in the destination, the participants must collab-
orate to agree on the final timestamp. So p proposes a timestamp with its current clock
value to every participant in every group using Send (m, S1, K) to _ and store the tuple
(m, S1, K) in Mem.

Processes execute the next procedure, gatherGroupsTimestamps, to decide a mes-
sage's final timestamp, a necessary step when multiple groups are in the message's
destination. After receiving a vote v with Received (m, S1, v) from each group and
p has the tuple (m, S1, ts) in
received. If p's vote in Mem,
exists a group with a higher
ab-Send (m, S2, tsf) to Glocal .

Mem, the selected timestamp tsf is the maximum vote
ts, is smaller than the final timestamp tsf means there
clock, and the local group needs to synchronize, so p
Finally, since the message has a final timestamp tsf, p

inserts the tuple (m, S3, ts) to Mem.
When deciding the final timestamp, if the local group needs synchronization, p broad-

casts the decided timestamp to the local group. Procedure synchronizeGroup executes
when receiving a message with symbol S2 through the Atomic Broadcast. Upon receiving
the tuple (m, S2, tsf), if the current clock has a value smaller than the tsf, p leaps the
clock to tsf and clears the PreviousMsgs set. If p has m in Mem associated with the
symbol S1 means that the synchronization message arrived before all necessary votes, so
p can associate m with the symbol S3, avoiding the need for gathering all proposals.

The last step is where processes deliver the messages, procedure doDeliver. For a
tuple (m, s, ts), the message m is ready to be delivered when s = S3, and, comparing
m with all other tuples in Mem, either m does not conflict with any other message or
the pair (m, ts) is the smallest. The process then collects and removes all non-conflicting
messages with the symbol S3 in Mem and gm-Delivered _ one at a time.

4.2.1 Handyman's Mode

The original algorithm had problems. Before starting, this algorithm inherits the
changes to the procedure doDeliver and the Collision property from Generic Multi-

62 Chapter 4. Correctness Development

cast 0. We do not describe these inherited fixes, only focusing on the Generic Multicast 1
problems.

The first problem could lead to an infinite loop broadcasting the message to the local
group. Algorithm 4.9 is the original proposition. Procedure groupABroadcast does a
local broadcast for messages with symbols S0 or S2. This procedure can execute multiple
times because the symbol does not update after the broadcast. We solve this problem by
removing groupABroadcast procedure and using the Atomic Broadcast directly where
needed. Also, observe that, in this approach, each process within a group is doing an
Atomic Broadcast, and since no filtering exists, it is possible to gm-Delivered _ a message
more than once, violating the Integrity property. An approach where we include a filter
would be more complicated, distinguish between new messages and ones we delivered
before is difficult without keeping a record of all deliveries. To solve this issue, we remove
the Reliable Multicast and use the Atomic Broadcast for each group, alleviating the need
for an additional primitive for group communication.

Algorithm 4.9 Original Generic Multicast 1 beginning.
1: procedure GM-SEND(m, Ç)
2: let: m.d = Q
3: rm-Send (m) to Ç

4: procedure ENquEuEMEssaGE
when: rm-Delivered (m)

5: Mem (m, S0, 0)

6: procedure GroupABroaDcast
when: 3 (m, s, ts) E Mem : s E {S0, S2}

7: ab-Send (m, s, ts) to Glocal

The other fix applies to procedure computeGroupSeqNumber when processes exchange
their proposals. On the original algorithm, a process sends its proposal to processes
in (m.d \ Giocai), that is, everyone but the ones in the local group. At the same time,
procedure gatherGroupsTimestamps expects a message from all groups, including the
local one, leading to the algorithm never delivering messages. We solve this problem by
sending the proposal to every process of every group, where if a process wants to skip
sending a message to itself and only invoke a method, we leave it as an implementation
detail.

We also did a complete overhaul on procedure gatherGroupsTimestamps. The original
version is in Algorithm 4.10, and Algorithm 4.11 has our version with specific changes
highlighted.

4.2. Generic Multicast 1 63

Algorithm 4.10 ANTUNES' proposal
for the gatherGroupsTimestamps step.
1: procedure gatherGroupsTimestamps

when: V g G m .d :
3 p G g : Received(m, S1, v)

2: tsf max({v : Received(m, S1, v)})
3: if ts > tsf then
4: Mem (m, S3, tsf}
5: else
6: Mem (m, S2, tsf)
7: ab-Send (m, S2, tsf) to Glocal

Algorithm 4.11 Our version for proce-
dure gatherGroupsTimestamps.
1: procedure gatherGroupsTimestamps

when: 3 m : (m, S1, ts) G Mem
AV g G m.d :

3 p G g : Received(m, S1, v)
2: tsf max({v : Received(m, S1, v)})
3: if ts < tsf then
4: ab-Send (m, S2, tsf) to Glocal

5: Mem (m, S3, tsf) 2

1

Starting with (1) on Algorithm 4.11, a subtle problem. This procedure executes af-
ter receiving a timestamp proposal from at least one process of all groups in the mes-
sage's destination. Without assumptions about process speed and message delay, a pro-
cess could receive all the proposals necessary to proceed before receiving the message
through the Atomic Broadcast. This behavior could lead to a message locking itself
off deliver by “going back in time” or the associated symbol, first executing procedure
gatherGroupsTimestamps and then executing procedure computeGroupSeqNumber. To
solve this, we strengthen the gatherGroupsTimestamps predicate by requiring the mes-
sage to be in Mem with the symbol Sl. Note that this is a requirement for execution,
where the process must collect the message's votes received in the meantime.

With (2), we solve the possibility of delivering messages multiple times. When the
group has a clock with a smaller value than the message's decided timestamp, it must
synchronize by doing an Atomic Broadcast and leaping the clock to the timestamp value.
Originally, the algorithm inserted and then broadcasted the tuple (m, S2, tsf), and when
received, the process would associate m with S3 without verifying if m exists, which could
lead to multiple deliveries. To handle this problem, once m has the decided timestamp,
we can insert the message in Mem associated with the symbol S3, marking it as deliv-
erable. To synchronize the group, we extracted the method that handles the symbol S2

into its own procedure, synchronizeGroup, making it easier to read and, most impor-
tantly, idempotent; it can receive the same message multiple times without causing the
message to be delivered multiple times. We also insert a shortcut: if the process receives
the synchronization message m before receiving all necessary proposals and has sent its
timestamp proposal for m to the others, it can mark m as ready for delivery. The shortcut
is a way to avoid more participants executing an unnecessary local Atomic Broadcast.

4.2.2 Handling Incorrectness

Generic Multicast 1 algorithm works in an environment with incorrect processes, hav-
ing a crash-stop model. With an incorrect initiator, the message may or may not be
delivered. The deliver is atomic, that is, either everyone in the destination delivers, or

64 Chapter 4. Correctness Development

none does. When a participant fails, it will never deliver any message afterwards. There
are two points of attention in the algorithm, (i) at the beginning when executing multiple
Atomic Broadcast and (ii) when using the Atomic Broadcast to synchronize the group.

At (i), if the initiator is incorrect, the broadcasted message may or may never be
delivered. In cases where a message is delivered only partially to a subset of the total
destination, it is not possible to decide on the message's final timestamp, and therefore it
is impossible to deliver the message. Observe that in such a scenario, the failed message
lingers in the processes' Mem structure forever, without ever making progress. There is
room for improvement, a way that groups could aid each other when failures occur or add
a mechanism to clear the messages that do not make progress.

And for (ii), where one could think of optimizing to only one process to do an Atomic
Broadcast for synchronization. We did not try this because the process could be incorrect,
so all participants can execute the steps for deciding the timestamp. The procedure that
handles the synchronization message is idempotent to tolerate duplicated messages, where
the clock synchronizes only once and can leap to ready for delivery only once. After one
process within the group succeeds in broadcasting the synchronization, it may not be
necessary for the others participants to do it too. Since the group is reliable, there will
be a successful broadcast.

Processes that fail in other points of the algorithm cause no harm. Crashing before
sending a proposal is not a problem because the group is reliable, so at least one participant
sends the proposal on the group's behalf. Failing at other points only leads to that
participant not delivering the message because it stops forever.

4.2.3 Fault-Tolerant Specification

The TLA+ specification for this algorithm was more complex to develop, even though
the resulting TLA+ specification is slightly smaller when compared to Generic Multicast 0.
The reason for the specification to be smaller is the modularization employed. That is,
specification splits into modules, where the network primitives for process communication,
the Atomic Broadcast, and the Mem structure are separate modules. This modularization
helps the abstraction, keeping the core algorithm and increasing reusability.

The specification for the algorithm itself is in Appendix A.4. The specification also
contains some required constants provided to the model checker. The INITIALMESSAGES

and CONFLICTR are from the previous specification. A new variable introduced is the
NGROUPS, which specifies the number of groups the model will simulate, and NPROCESSES

specifies the number of processes each group has. The abstraction for communication
between processes and Mem uses a set, and the Atomic Broadcast uses a sequence. These
TLA+ modules are available in Appendix A.1.

In this specification, we model more communication primitives, groups of processes,
and data structures. This combination leads to too many states for the model checker to

4.3. Generic Multicast 2 65

verify. We could not run the model checker for larger models because of the completion
time and disk usage. Even during development, smaller models could take minutes to
complete. Appendix A.6.2 includes the runs and configurations we checked.

The current specification has room for improvement. This specification has the same
problem with the static messages' initialization as Generic Multicast 0. The specification
does not model process failure, as that would increase the number of states even more,
but since groups are reliable, this should not be a problem and would be an improvement
for completeness' sake.

4.3 Generic Multicast 2

The third and last algorithm we specified is Generic Multicast 2 (ANTUNES, 2019).

This algorithm is a direct extension of Generic Multicast 1, which replaces the Atomic
Broadcast primitive with Generic Broadcast; we call this form truly-generic (ANTUNES,
2019). This replacement is in line with our goal of only ordering messages that require
ordering (ANTUNES, 2019); if ordering adds a cost to an algorithm, we should try to keep
this cost as low as possible (PEDONE; SCHIPER, 1999). Note that the synchronization
messages, that is, the ones that are Generic Broadcast with symbol S2, these messages
must conflict with each order (ANTUNES, 2019). A truly-generic nature also minimizes
the convoy effect compared to the Atomic Broadcast version (ANTUNES, 2019). Al-
gorithm 4.12 shows the Generic Multicast 2 pseudo-code. This algorithm works as the
Generic Multicast 1, so we do not repeat ourselves in the explanation.

This extension also means that this algorithm inherits all the fixes. The fixes include
the loop broadcasting the message to the local group, the proposals exchanges not includ-
ing the local group, and a message locked out of delivery or delivering multiple times. We
remove the Reliable Multicast use and add procedure synchronizeGroup.

During the Generic Multicast 1 specification, we invest some effort into modulariza-
tion, decoupling the group communication abstraction. This investment pays here. We
only needed to abstract the Generic Broadcast in its module and use it in the specifi-
cation. We use a sequence of sets to abstract the Generic Broadcast and use the same
conflict relation that the Generic Multicast uses. Appendix A.6.3 contains the TLA+

specification.

This specification is as cumbersome as Generic Multicast 1. We did not run the model
checker for larger models, which could take too much time and storage space. The Generic
Broadcast abstraction increases the number of states. Appendix A.6.3 has the configu-
rations and checks we did. And as this specification inherits everything from Generic
Multicast 1, it also inherits all the issues, which are the static messages' initialization, the
number of states during model checking, and not model incorrect processes.

66 Chapter 4. Correctness Development

Algorithm 4.12 Generic Multicast 2.
1: Variables:
2: K 0, Mem 0, PreviousMsgs 0

3: procedure GM-SEND(m, G)
4: let m.d = G
5: for all g E G do
6: gb-Send (m, S0, 0) to g > Generic Broadcast

7: procedure coMputEGroupSEqNuMbEr
when: gb-Delivered (m, S0, ts) > Generic Broadcast Deliver

8: if 3 mi E PreviousMsgs : m ~ mi then
9: K K + 1

10: PreviousMsgs 0
11: PreviousMsgs PreviousMsgs U {m}
12: if |m.d| > 1 then
13: Mem (m, S1, K)
14: for all g E m.d do
15: for all p E g do
16: Send (m, S1, K) to p
17: else
18: Mem (m, S3, K)

19: procedure GathErGroupsTiMEstaMps
when: 3 m : (m, S1, ts) E Mem

A V g E m.d :
3 p E g : Received (m, S1, v)

20: tsf max({v : Received (m, S1, v)})
21: if ts < tsf then
22: gb-Send (m, S2, tsf) to Glocal > Local Generic Broadcast
23: Mem (m, S3, tsf)

24: procedure syNchroNizEGroup
when: gb-Delivered (m, S2, tsf) > Generic Broadcast Deliver

25: if tsf > K then
26: K tsf
27: PreviousMsgs 0
28: if 3 (m, S 1,_) E Mem then
29: Mem (m, S3, tsf)

30: procedure DoDElivEr
when: 3 (mi, S3, tsi) E Mem :

A V (mj,-, tsj) E Mem :
V mi mj

V tsi < tsj
V A tsi = tsj

Ami < mj

let:
NC {(mj, S3, _) E Mem : V (mk, -, -) E Mem : mj mk}
D {(mi, si, tsi)} U NC

31: Mem Mem \ D
32: for all (m, -, -) E D do
33: gm-Delivered m

4.4. Specifying with TLA+ 67

4.4 Specifying with TLA+

We formalized and verified all of ANTUNES' algorithms in TLA+ and checked with
TLC. We developed our specifications in a refinement process, building a single block of
the algorithm at a time and adding an invariant to verify if everything continues to work
as expected. After creating all the protocol blocks through this refinement process, we
add the actual algorithm's properties. When the model checker finishes successfully, we
begin to insert bugs and verify that the model checker catches the violation. Through this
process we verified that all of ANTUNES' algorithms had problems, some of which were
subtle, and only displayed under certain circumstances. Next, we discuss some important
points in the process.

Taming the beast

The specification process helps to understand the problem in-depth, helps build small
models, and is easier to write and debug than a distributed system. Such a tool provides
us with a playground to test and iterate ideas more quickly, where we have a complete
description of why each failure happens. Testing ideas through implementation might
be neither fast nor concise on failure details. Summing up all these possibilities gives
confidence in the algorithm's (and design) correctness.

Space and Time

Although these tools really help, they are limited when executing larger models (ON-
GARO, 2014). A specification can be too difficult to verify because of the number of
states it generates and the amount of storage necessary, making larger models impractical
to check without dedicated infrastructure. But such limitations are not an excuse for
not using them at all. Some problems we found in ANTUNES' algorithms were subtle,
whereas finding them without these tools would be an immense effort. In this regard,
APALACHE, a TLC alternative, might be a solution to tackle this limitation. Apalache
applies a symbolic evaluation, not explicitly enumerating all states like TLC (KONNOV;
KUKOVEC; TRAN, 2019).

Types

Type errors are complex to handle during development. The structures can be sets,
sequences, numbers, and others, but there is no type assertion built-in, so a variable that
starts as a set could then change to an integer. The model checking will eventually fail
because of an invalid transformation, but the error message may not be so explicit about
the problem. We found that it is common to add a type-check invariant to circumvent this

68 Chapter 4. Correctness Development

problem. APALACHE uses type annotations to infer the types (KONNOV; KUKOVEC;
TRAN, 2019).

Tooling

We set up code editors to help during specification writing. These editors embed TLC
and can run the model checker directly for the editor, quickly checking a specification,
and providing code completion and syntax highlighting. Besides, one of the best features
is that these editors handle TLC's output for violated invariants, showing the complete
steps more understandably. The violation timeline helps to see the state changing and
what is failing.

The resulting TLA+ specifications are available in Appendix A and, while they did
serve their purpose, they can definitely be improved, for example to model incorrect
processes.

4.4.1 Time Flies

We had a lengthy and convoluted discussion about TLA and the temporal operators
in Chapter 2.4. Now that we have the corrected algorithms, we know how they work and
their properties , then we can start connecting with what we saw earlier. Then we will
further the discussion on the properties of the algorithms.

Here we can discuss how the algorithm's properties relate to the TLA properties.
We may include some TLA+ snippets to ease the discussion with a visual aid, where
the complete specifications are available in Appendix A. We start with the algorithm
properties , connecting them to the operators and the system's properties. Then we discuss
the fairness in our specification and why it is needed.

Liveness

The Generic Multicast algorithm has the liveness properties , namely Validity and
Agreement, presented in Chapter 2 on page 30. These properties assert that the algorithm
progress and that something good eventually happens (LAMPORT, 1994b). Without
these properties, the system could hang forever, doing nothing, so these properties ensure
that the algorithm delivers messages at some point. Now we write the properties in plain
English and our TLA+ specification of each one, showing the temporal operators in use.
For simplicity, we display only the properties for the Generic Multicast 0 here, whereas
the properties for the other algorithms are available in the appendixes.

The TLA+ snippets use variables holding global information derived from the initial
constants. The set AllMessages contains all messages in the system, whether sent or un-
sent; the SentMessages set has all messages sent in the algorithm, where SentMessages Q

4.4. Specifying with TLA+ 69

AllMessages; and the set CorrectProcesses with all processes that are correct in the sys-
tem. The WasDelivered is a boolean-valued expression that checks if the given process
delivered the message. We do this by checking the process' Delivered set.

Algorithm 4.13 shows the TLA+ for the Validity property. We use the operator,
asserting that, for all messages sent, if the originator is a correct process, eventually, there
is a process in the message's destination that delivers the message. We can rewrite this
formula using the □ and O operator as □ (F =^ OG) (LAMPORT, 1994b).

Algorithm 4.13 Validity property in TLA+.

Validity =
V m G AllMessages:

m.o G CorrectProcesses 3 q G m.d : WasDelivered(q, m)

Algorithm 4.14 shows the TLA+ for the Agreement property. We also use the
operator. We assert that, for any arbitrary message, once a process delivers it, all the
correct processes in the destination must eventually do, too.

Algorithm 4.14 Agreement property in TLA+.

Agreement =
Vm G AllMessages:

Vp G Processes:
WasDelivered(p, m) V q G {x G m.d:x G Processes} :

WasDelivered(q, m)

We finish our summary of the algorithm's liveness properties. We tested each prop-
erty isolated from one another, selecting a single one to execute at a time by TLC as
a system property. Some sets are static throughout the complete test, for example, the
set CorrectProcesses . Dynamic sets, when fit, could be a better approach, for example,
processes crashing, but this could create an enormous state space.

Safety

The Partial Order, Collision, and Integrity properties are safety properties. These
properties are valid without any fairness assumptions (OWICKI; LAMPORT, 1982).

Algorithm 4.15 is the TLA+ implementation for the Integrity property. We assert
that, for all system messages and processes, once the process delivers a message, it did it
only once and was in the destination of a sent message. The predicate DeliveredOnlyOnce
filter the process' Delivered set, which holds tuples in the form of (Index, Message), and
only a single message exists.

Since the Partial Order and Collision properties need to know the message's delivery
instant, we created a predicate called DeliveredInstant, which has the process and message
as arguments. Algorithm 4.16 is the TLA+ representation of the Partial Order property.

70 Chapter 4. Correctness Development

Algorithm 4.15 Integrity property in TLA+.

Integrity =
□V m e AllMessages:

V p e Processes:
WasDelivered(p, m) = (DeliveredOnlyOnce (p, m)

Ap e m.d
Am e SentMessages)

Instead of writing a single big formula, we split the expression between the left-hand and
right-hand sides, referenced as LHS and RHS, where LHS implies RHS. LHS verifies
that the processes are in the messages' destinations, the message pair do not commute,
and the processes deliver both messages. RHS checks that the message delivery order
for both processes is the same. We assert that this is always valid for all processes and
messages.

Algorithm 4.16 Partial Order property in TLA+.

local BothDelivered(p, q, m, n) =
A WasDelivered(p, m) A WasDelivered(p, n)
A WasDelivered(q, m) A WasDelivered(q, n)

LOCAL LHS(p, q, m, n) =
A {p, q} Ç (m.d A n.d)
A CONFL ICTR (m , n)
A BothDelivered(p, q, m, n)

LOCAL RHS(p, q, m, n) =
A Let

pm = DeliveredInstant (p, m)
pn = DeliveredInstant (p, n)
qm = DeliveredInstant(q, m)
qn = DeliveredInstant(q, n)

in

A (pm < pn) = (qm < qn)

PartialOrder =
□V p, q e Processes:

Vm, n e AllMessages:
LHS (p, q, m, n) =^ RHS (p, q, m, n)

Algorithm 4.17 is the TLA+ representation of the newly added Collision property.
We check that, for all processes, if it is in the destination of a pair of already delivered
non-commuting messages, then the instant of each delivery is different.

All these properties use the □ operator because they must always be valid. The
algorithm violates the property if the formula evaluates to false for any reason whatsoever.

4.4. Specifying with TLA+ 71

Algorithm 4.17 Collision property in TLA+.

Collision =
□V p G CorrectProcesses:

Vm, n G AllMessages : A m.id = n.id
A p G (m.d A n.d)
A WasDelivered(p, m)
A WasDelivered(p, n)
A CONFLICTR(m, n) =^ DeliveredInstant(p, m) = DeliveredInstant(p, n)

In our tests, the sets were static at all times. These properties could take advantage of
simulating incorrect processes, asserting the algorithm's fault tolerance.

Fairness

We presented fairness in Chapter 2 in Section 2.4.1 on page 34. Informally, for any of
the specification's steps, it either stutters or the state changes. In our work, all specifica-
tions rely on the system's weak fairness and may not work without it.

Algorithm 4.18 shows all our specifications entry point in TLA+. This predicate has
the Init to initialize the structures and an action that accepts stuttering steps on the vars
state. Line 2 extends the predicate by adding the liveness requirements. Without the
weak fairness, our algorithm could stutter forever and never deliver a message, a violation
of our liveness properties , Validity, and Integrity.

Algorithm 4.18 Specification Spec definition.

Spec = Init A □[Next]vars
A WFvars (3 self G Processes : Step(self))

4.4.2 Withal Thine Basic Properties

The work of PEDONE; SCHIPER presents an algorithm to solve the Generic Broad-
cast problem and discusses two properties , deliver latency and strictness. We now bring
these two properties to our proposals. Here we introduce the propositions leaving the
proofs for future works.

4.4.2.1 Delivery Latency

Introduced to measure the efficiency of algorithms solving a Broadcast problem (PE-
DONE; SCHIPER, 1999), we will use it in our algorithms. Informally, delivery latency is
the number of events a message m goes through from sending to delivery in a run R of
an algorithm A solving the Multicast problem, written as dlR(m) (PEDONE; SCHIPER,
1999). The delivery latency bases itself on a modified Lamport's clock (LAMPORT,
1994b), where we have (PEDONE; SCHIPER, 1999):

72 Chapter 4. Correctness Development

□ A send and a local event on process p do not modify p's clock.

□ ts(send(m)) is the timestamp of a send(m) event, and ts(m) the timestamp carried
by message m, such as ts(m) = ts(send(m)) + 1.

□ The timestamp of receive(m) on process p is the maximum between ts(m) and p's
clock value.

Let £r(m) be the set of all processes that, for message m, gm-Delivered m in run R
of algorithm A, and Dp(m) the gm-Delivered m event at process p. The definition of
delivery latency of m in run R is in Equation 9a.

dlR(m) = max({ts(Pp(m)) — ts(gm-Send(m)) : p G £r(m)}) (9a)

We now define the propositions for our algorithms. We follow the same approach
as PEDONE; SCHIPER for simplicity, using runs of a single message. We assume that
there is an implementation for the Atomic/Generic Broadcast and process communication
available and that the delivery latency of these algorithms is 1. Proposition 1 defines a
lower bound for the delivery latency of our algorithms. Proposition 2 proposes that groups
with a synchronized clock reach this lower bound.

Proposition 1. Atomic/Generic Broadcast is a primitive available for the algorithm. If

RA is a set of runs generated by an algorithm A that solves the Generic Multicast problem

such that only a single message m G M is gm-Send m to Q and gm-Delivered _ and
|Ç| > 1, then there is no run R in RA where dlR(m) < 2.

Proposition 2. Atomic/Generic Broadcast is a primitive available for the algorithm. If
RA is a set of runs generated by an algorithm A that solves the Generic Multicast problem

such that only a single message m G M is gm-Send m to Q and gm-Delivered - , |Ç| >
1, and groups in m's destination have the same ts(ab-Delivered (m)), then there is a run
R in RA where dlR(m) = 2.

Our intuition for Proposition 1 is that, when sending a message to more than one
group, there is the initial Atomic/Generic Broadcast and then the proposals exchange,
meaning it is impossible to have a delivery latency of less than two. And for Propo-
sition 2, if the addressed groups are tightly synchronized, then only needed the first
Atomic/Generic Broadcast and the proposals exchange, avoiding the broadcast for syn-
chronization. Observe that none of this does apply when addressing only a single group
because it skips the proposals exchange and the synchronization broadcast.

Currently, our algorithm delivers all messages with the same delivery latency. The
initial goal was to keep the processes' clock as low as possible (ANTUNES, 2019), whereas
ours was to formalize and correct the algorithm. Future work could focus on introducing

4.4. Specifying with TLA+ 73

optimizations. For example, could we avoid the second Atomic/Generic Broadcast to
synchronize the local group for non-conflicting messages?

4.4.2.2 Strictness

The Generic Multicast problem can be solved using an Atomic Multicast implemen-
tation, but with unnecessary ordering in messages. If the message ordering adds a cost,
we should work to keep the cost as low as possible (PEDONE; SCHIPER, 1999). An
algorithm that solves Atomic Multicast can have a Strictness property, identifying that
it avoids unnecessary message ordering. We do not enforce this property because sponta-
neous orders might happen. We define Strictness as (PEDONE; SCHIPER, 1999):

□ Strictness: Algorithm Ac is an algorithm that solves Generic Multicast problem
with the conflict relation C C M x M, and RA is the set of runs of Ac. There
exists a run R in RA where messages m1, m2 E M and m1 m2, and processes in
n gm-Delivered m1 and m2 in a different order.

We use TLA+ to verify this property, using proof by contradiction. We write a property
to check that, using a conflict relation C C M x M, all processes deliver the message in
the same order. TLC provides a counter-example of a violation, that is, there exists a
run Ac where our algorithm delivers messages in a different order.

4.4.2.3 Genuineness

The minimality property defined in Section 2 ensures that only necessary processes
participate in the message delivery, that is, the sender and destination. Although the
property is for an algorithm that solves the Atomic Multicast problem, we can also extend
this to the algorithms that solve the Generic Multicast problem. All the algorithms
we presented here are genuine, meaning all algorithms provide the minimality property.
Proposition 3 states this for our algorithms, where we left the proof for future works.

Proposition 3. Generic Multicast 0, 1, and 2 are genuine algorithms that solve the
Generic Multicast problem.

4.4.2.4 Quiescence

Another property is for an algorithm to be quiescent. A quiescent algorithm is an
algorithm that eventually stops sending messages (AGUILERA; CHEN; TOUEG, 2000).

Using failure detectors, algorithms that only tolerate process crashes can become quiescent
and tolerate both process crashes and message losses (AGUILERA; CHEN; TOUEG,
2000), so the algorithms we present here can be made quiescent.

We define Proposition 4, Proposition 5, and Proposition 6 state that if the communica-
tion primitives our algorithms are using are quiescent, then our algorithms are quiescent.

74 Chapter 4. Correctness Development

Proposition 4. Generic Multicast 0 is a quiescent algorithm that solves the Generic
Multicast problem if the process communication is quiescent.

Proposition 5. Generic Multicast 1 is a quiescent algorithm that solves the Generic
Multicast problem if the process communication and Atomic Broadcast are quiescent.

Proposition 6. Generic Multicast 2 is a quiescent algorithm that solves the Generic
Multicast problem if the process communication and Generic Broadcast are quiescent.

Our intuition for all these propositions comes from the fact that our algorithm does
not have any mechanism that infinitely sends messages. We use the Atomic/Generic
Broadcast for group communication and the channel that connects the processes, so once
no more execution of gm-Send m to Q happens, the algorithm stops sending messages.
Therefore, if the underlying primitives are quiescent, our algorithms are too.

75

Chapter

Generic Multicast Implementation

This chapter discusses the prototype implementation of the Generic Multicast 1 using
Golang. We chose this algorithm because it is a better study case since Generic Multicast 0
only introduces the generalized concepts and Generic Multicast 2 would require more work
implementing the Generic Broadcast.

Even though the current implementation is not production-ready, the design and im-
plementation of a consensus algorithm can be a non-trivial yet engaging task. Gaps can
exist between the protocol definition to what it would be in a real-world production envi-
ronment. These gaps could lead to engineers implementing a protocol that differs from the
specification, leading to an implementation that is not verified to be correct (CHANDRA;
GRIESEMER; REDSTONE, 2007).

We start this chapter with a high-level overview of the architecture, how components
interact, and the requirements beyond the ones needed by the algorithm. Section 5.2
describes the base communication primitives and the message's format. Section 5.3 de-
scribes the algorithm core implementation and the converted data structures from the
specification to code. Section 5.4 discusses the tests and how we verify the prototype.
Then Section 5.5 concludes the chapter with a summary and future improvements.

5.1 The Bricks in the Foundation

This section discusses the architecture at a high-level. The complete architecture is
in Figure 4, serving as a reference throughout the architecture explanation, organized
in a layered architecture. We describe the components, their interactions, and which
ones are required. The most north is the actual application that wants to replicate any
information. The middle is the Client Level layer, exposing an API for the application to
interact with the algorithm. The bottom layer is the Protocol Level, the actual protocol
implementation, along with other components necessary to work. We added reference
points to show the components' interactions. The interactions include method invocation,
communication through Golang's channels, and network interactions.

76 Chapter 5. Implementation

Handler

Other
Listeners

Network
Manager

TRi2
JL

Figure 4 - Implementation architecture.

Client

Protocol Client Protocol API

1?

Starting at the Client Level, there are two components, the Protocol Client and the
Protocol API. The Protocol Client through the Rc1 reference point is the only way the
application can interact with the protocol. The application can subscribe to a channel to
receive notifications about data replication, issue requests to the protocol, and terminate
the client. All of these interactions are through the Rc1 reference point. The Protocol
API is the one that interacts directly with the Protocol Layer. Reference point Ri1 sends
an asynchronous message to the protocol, and reference point Rc2 send notifications to a
subscribed application.

The Protocol Client, Protocol API, and references compose the Client Level. In-
teractions between the application and the protocol will always pass through this level.
This layer is a user-facing interface, not an algorithm requirement, but this helps when
developing integration tests.

5.2 Do They Talk?

The current algorithm requires two primitives, communication between processes and
Atomic Broadcast. In this section, we describe how we implemented these primitives.
The primitives an algorithm requires are a crucial component and must provide all the
guarantees.

In Figure 4, the Network Manager encapsulates the primitives. It receives and sends
messages from both primitives. The manager creates a socket and starts a goroutine

5.2. Do They Talk? 77

to consume incoming messages. Messages are processed asynchronously, except when
received through Atomic Broadcast.

5.2.1 The Process Talk

We start with communication between processes. The primitive is in a dedicated
open-source project1. We implemented a TCP server to send and receive messages using
the Go networking package (GOLANG, 2021a). The server is a concrete implementation
of an interface from the Go package.

1 https://github.com/digital-comrades/proletariat
2 https://github.com/jabolina/relt
3 https://github.com/etcd-io/etcd

The implementation itself does not try to provide anything too complicated. We im-
plement what is needed, avoiding details like retries, buffering to reduce syscalls, and fancy
serialization. The implementation contains basic configuration properties, like server port
and address, asynchronous actions' timeout, and pool size.

For a process to send a message using the primitive, it must know the destination's
address. Sending a message can be complicated since a message can have any destination,
so each process must know all other processes' addresses. To solve this problem, we use the
Oracle component, which converts a group alias and returns a collection of all addresses
within that group. The application provides a concrete Oracle instance. The messages
we exchange in the protocol reference only groups and use the Oracle to translate to
addresses.

5.2.2 In Totally Ordering

We built the Atomic Broadcast primitive as a separate open-source project2 on top
of etcd3. The primitive implementation is also very straightforward but has some points
of attention that could harm the correct behavior. First, we describe etcd and then our
implementation.

The etcd is a strongly consistent, distributed key-value store (ETCD, 2021) that uses
Atomic Broadcast, implementing the Raft protocol (ONGARO; OUSTERHOUT, 2014)

that provides strong consistency. This implementation is well established and used in
multiple production environments and open-source projects (ETCD, 2021). A client in-
teracts with etcd by connecting to a server and issuing remote procedure calls (ETCD,
2021). Multiple APIs are available, but we use only the KV and Watch. The Jepsen test
verified that the APIs we use holds the algorithm guarantees (KINGSBURY, 2020). Such
a test, however, checks the presence of bugs but does not ensure their absence and the
algorithm's correctness.

Through KV API is possible to manipulate key-value pairs stored in etcd (ETCD,
2021). Specifically, we use the Put procedure to write values associated with a key,

https://github.com/digital-comrades/proletariat
https://github.com/jabolina/relt
https://github.com/etcd-io/etcd

78 Chapter 5. Implementation

causing the key's revision to increment and generating one event in the event history
(ETCD, 2021). Revision is a 64-bit, cluster-wide counter that serves as a global logical
clock, sequentially ordering all updates to the store and incrementing each time a key is
modified (ETCD, 2021). Write operations issued to the etcd server are strict-serializable,
even during pauses, crashes, clock skew, network partitions, and membership changes
(KINGSBURY, 2020).

The other API used in our implementation is the Watch API, which receives notifi-
cations about changes to a single key (ETCD, 2021). Using this API, starting from a
given revision number, all clients receive the same sequence of updates in the same order
(KINGSBURY, 2020).

Our Atomic Broadcast implementation is an etcd client. The client configuration
includes information about the etcd server to connect to and the group to which it belongs.
So, how is all this put together? Communication happens by listening to a key for changes
and writing values associated with a key. Broadcasting a message to a group means writing
the message object using the group's name as a key. To receive messages, the processes
within the group use the Watch API to listen to the key with the group name. The
notifications are consistent and have a total order (KINGSBURY, 2020).

One of the configurable values is the timeout for some operations. The client has a
maximum time frame to consume messages. The consumption time-bound and the fact
that we do not implement retries could lead to message loss when a timeout happens.
This problem can have a complex fix, but since our implementation is only a prototype
to run in a controlled environment, timeouts did not actually occur. We did not verify
what happens when a timeout occurs, but the most likely outcome is a violation of the
algorithm properties.

The development experience was not overly-complicated, the etcd documentation is
complete (ETCD, 2021), and examples are easy to find. The implementation to interact
with the etcd server was only a few lines. Most of the development effort was to build
the structure around the etcd client, managing goroutines, configurations, and a simple
user API. The only more complicated problems were due to the gRPC (GOOGLE, 2021)
dependency conflicting with the one used by etcd.

5.2.3 Messages

Beyond the transport definition, there are also the requirements for the message itself.
Since transport is agnostic to what it is transporting, the message format can be arbitrary
but must meet the protocol's needs. The protocol requires that the messages have a strict
total order, which the protocol uses to break ties between timestamps.

We embed a 128 bits random identifier into messages. We allocate 128 bits and
convert them into a string. We rely on the probability of selecting duplicated 128 bits

5.3. At the Core 79

being negligible to avoid collision between identifiers. Using a tool dedicated to generating
identifiers would be a better approach.

Listing 5.1 displays the complete message object. We can see that we transport redun-
dant information. Future work could create a proper format carrying minimal information
while keeping semantics. There is also room to improve the serialization, where we cur-
rently use the default available in Golang.

Listing 5.1 - Message format definition.

Message {
i de n t i fi er : String
header {

version : Int
t y p e : ABSend | Send

}

content {
meta {

timestamp : UInt64
i d en t i fi e r : String

}

operation : command | query
content : Array[Byte]
extensions : Array[Byte]

}
state : 0 | 1 | 2 | 3

timestamp : UInt64
destination : Array[String]
from : String

}

5.3 At the Core

Now we discuss the implementation, where we implement the version that does not
use the Reliable Multicast primitive. We rely on the components introduced in the pre-
vious sections. The complete algorithm implementation includes the Protocol container
in Figure 4 on page 76.

The Network Manager receives a message, passes it through Ri2 to be processed, and
executes the procedure's callback. The message's header identifies from which primitive
it arrived, so the algorithm knows the corresponding step. The return of each procedure
is an enumeration that points to the next step, for example, sending the updated message

80 Chapter 5. Implementation

using the Atomic Broadcast primitive to the current group. We use this approach to
detach the networking use from the core algorithm. The insertion in the Mem structure
also executes after the message processing.

One last detail is the implicit data structure that holds the timestamp proposals for
each message. This structure is seen in Algorithm Algorithm 4.8 on line 20 on page 60
when choosing the maximum value. We call the structure Ballot Box, as seen in Figure 4
on page 76. The Ballot Box keeps the proposals until it has a vote from each group
in the message's destination, and once the final timestamp is selected, it discards the
proposals. Notice that our implementation does not discard delayed votes. It is possible
to receive timestamp proposals even after delivering the message since the channels have
an arbitrary delay.

5.3.1 In Mem Store

We describe our Mem structure implementation in this section. During the algorithm
execution, the Mem structure stores the messages currently being processed and par-
ticipates in all procedures, where its performance is crucial to how well the algorithm
operates. Before starting development, we defined some requirements for the implemen-
tation:

□ No duplicated entries, where duplications could lead to liveness problems or deliv-
ering messages more than once;

□ Thread-safe, it should handle concurrent requests;

□ Low time complexity, the operations should not take too much time.

Our implementation is modular, breaking the problems into smaller ones to solve in
each module. Figure 5 shows the structure modules and the organization. All the inter-
actions with the Mem structure are through an interface with the same name. We store
messages currently processing in the Processing region, and the finished on Processed.
The components work together to achieve the goals above.

The memory paradise

The first component is the Processing region for messages currently being processed.
The underlying store structure is a priority queue, holding the smallest element in the
head, sorting by the timestamp and the unique identifier when needed.

We implement the priority queue using a Fibonacci Heap. The most common in-
structions, findMin, insert, and decreaseKey, have a time complexity of O(1), and
for delete, it is O(log n). There is an additional instruction for scanning the struc-
ture for non-conflicting messages on state S3 to be delivered, which has the complexity

5.4. Thy Elden Tests 81

Figure 5 - Implementation architecture of the Mem structure.

O (n2), where each message checks for conflict against all others. We execute the scan
asynchronously when updating a message with state S3 or during the delivery execution,
although the operation must acquire a read lock. Note that besides the structure being a
queue, it is possible to remove elements from any arbitrary position.

The queue works reactively, taking the initiative to notify about messages ready for
delivery, avoiding the need for constant verification. Since the structure is a priority
queue, we only check the head element, and we do so after every change in it. We ensure
thread safety by using a read-write lock.

The purged ones

The other region, called Processed , serves a simple but necessary purpose, to avoid
duplicating notifications about messages ready for delivery. Instead of Processing to keep
track of notified elements, the Processed handles this. After issuing a notification, we
insert the message's unique identifier into the cache with a time-to-live of 10 minutes.
The time of 10 minutes is an arbitrary value, and possibly, we could reduce this value to
only a few seconds without affecting the algorithm. Another solution is to remove the
element after removing the message from the queue.

With all these modules behind the Mem structure, we met all requirements. But still,
there is room for improvement. Reduce the memory footprint on the stored elements.
Future work could reduce the object, keeping only necessary information instead of the
complete message. Try to apply a lock-stripping on the Processing region to reduce lock
contention, but this could easily lead to a complex implementation.

5.4 Thy Elden Tests

To verify the algorithm implementation, we developed multiple tests. We use unit
tests to check components in isolation, but our focus here is on the integration tests. The

82 Chapter 5. Implementation

Go runtime provides a package for developing automated tests and a data-race detector.
Although the language's concurrency primitives aid in writing concurrent code, sometimes
they are not enough (GOLANG, 2022b). The data-race detector identifies such conditions
only if they trigger during execution, so load and integration tests are a valuable place to
enable it (GOLANG, 2022b). Observe that these tests guarantee neither the algorithm's
correctness nor the absence of bugs.

The tests execute in isolation but share the same host and resources. We create a
testing harness, which we refer to as Unity, which has three groups of three processes
each. Each action the test executes selects one of the groups available, then one of the
processes in the group, and then effectively applies the action. The Unity chooses groups
and processes in a round-robin approach.

The Unity sends a message by selecting an initiator and issuing an asynchronous
request. To verify the delivery order, Unity pins one process, retrieving its messages, and
compares the sequence against the other groups' sequences. We compare only against a
single participant in each group.

We execute the tests for every new code added. The environment is based on Linux,
requiring a Go installation and an etcd server running. Network usage relies on the
loopback network, never executing requests outside the machine that runs the tests. Tests
use an in-memory store only.

5.4.1 The Elder Logs

To help during tests, we implement a write-ahead log (WAL) structure to hold the
delivered messages. A WAL is an ordered sequence of commands, adding new received
commands to the end. This implementation leads to additional components, all displayed
in Figure 4 on page 76 as the components right of the Protocol container, including State
Machine, Log, and Storage. We query the Log structure during the tests to verify the
ordering between groups.

Take Figure 4 on page 76 as a reference guide. After the algorithm delivers a message,
it will synchronously invoke the State Machine to commit a new entry through Rif1.
The State Machine calls the Log through Rif2 to add the message to the WAL, and
once complete, the State Machine notifies the user through Ric1. The State Machine is
responsible for handling the Log and notifying about committed entries.

5.4.2 Taking the Test

We develop the integration tests to verify if the algorithm's properties also hold for
the implementation. All tests follow a similar approach, sending contrived messages and
then using the Log structure to check the delivery order. The check varies with which of
the algorithm's properties we are testing.

5.5. Journey So Far 83

The Agreement and Integrity properties share the same test. The test broadcasts a
single message, and after confirming the delivery, verifies that all members' WAL con-
tains the same single message. The test for the Validity property issues a single request
and waits for the commit notification from the State Machine, whereas not necessary to
compare the delivered value among members.

The Partial Order property has a more elaborate test. The test suite continues using
three groups, now referenced as A, B, and C. The test sends a collection of messages
varying the destination, AB, BC, AC, and ABC. Then we need to verify the delivery order.
For example, groups A and B must have the same order for messages sent to AB and ABC,
validating all intersecting groups. We do not test the Collision property since the WAL
already makes messages to have an order.

The remaining tests check variations in the message's destinations and conflicts. That
is, we test the broadcast, multicast, and generic behavior. These tests are pretty straight-
forward and hold some similarities with the property ones. Broadcast check order on all
groups, multicast in intersecting groups, and the generalized on conflicting messages.

The current integration test suite covers the properties and some of the behaviors.
Future work could focus on creating Jepsen tests. Such tests would increase confidence
in the algorithm implementation when encountering different hazards.

5.5 Journey So Far

We covered all details about the prototype implementation. We can now conclude by
discussing the experience of implementing an algorithm directly from a specification and
summarizing improvements for future works.

We started the implementation directly from ANTUNES' proposal without verifying
it in TLA+. Our goal was to implement something that did not violate the Generic
Multicast properties instead of blindly following the algorithm. Not before long, our
prototype was different from the original proposition.

The implementation without a proper specification was complex, even if for just a
prototype. Some requirements were already defined beforehand, for example, the com-
munication primitives, so we had plenty of solid ground to begin before even starting with
the algorithm. After we started with the algorithm, we entered into a process of executing
the tests, debugging, and guessing what may be causing the failures. Iterate this process
without a clue as to why some changes were necessary, and soon we start to patch holes
instead of fixing the root cause.

Once we finished the first version of the prototype, we had some leads on problems with
the original algorithm, so then we turned our attention to writing a TLA+ specification.
For example, we were aware that messages could go back in time when we started with
TLA+, but we did not know the cause yet. With just a few experiments, we identified that

84 Chapter 5. Implementation

we could solve the problem by verifying if the message exists in Mem before executing
the method to select a message's final timestamp.

With the problems uncovered in TLA+, we went back to fixing the prototype. Follow-
ing the specification was a much better experience in the implementation. There are still
some difficulties in implementing something directly from the specification, for example,
correctly implementing some abstract data structures or handling concurrency properly.
Details like these are for implementors to decide, but just detailing how a data structure
should behave would greatly help the implementor's decisions.

Implementing an algorithm and writing a TLA+ specification, simultaneously or not,
help understand the underlying problem, identify core properties, design proper data
structures, and decision making. We had a good experience using the Go language.
Features for concurrency and testing shipped with the language and a large ecosystem
with libraries for distributed systems helped us get started quickly. The only problem, if
we can say so, was regarding the transitive dependency when using etcd, but other than
that, we did not have any issue around the tools and could focus only on developing the
prototype.

All That Glitters

Besides the enjoyable development experience, there are improvements left for future
work. We use this section to summarize everything. These improvements focus on making
the implementation more production-like, and some could be complex to implement.

We begin with the communication between processes. The improvements include
adding retries when failing to send messages with a configurable retry policy. Apply some
techniques to reduce system call. Lastly, improve the serialization of the message.

Now for the Atomic Broadcast primitive. The client consuming a message being
a time-bound operation can lead to message loss, which affects the correctness of the
primitive. We could try to use etcd's transactions to tackle this, keeping track of the
revision number of the last item consumed by the client.

The remaining improvements now apply to the algorithm implementation. Most of
these refer to the message object, reducing the size to transfer over the network and
stored in the Mem structure; better generation for the unique identifier; and improved
serialization. For the core algorithm implementation, fix the procedures' atomicity. Im-
provements for the Mem structure include reducing lock contention and re-arranging the
design to remove the need for a Processed region. The tests also can take advantage of
some improvements, expanding the suite with more scenarios and failures simulation.

85

ChaptEr

Conclusion

Distributed systems algorithms' correctness is crucial. The current work verifies three
algorithms proposed by ANTUNES using TLA+. We found subtle problems in each
one, which makes it clear that only reasoning may not be enough for some algorithms,
that apart from closely resembling the source algorithms, issues can still exist. A more
robust verification may be necessary, which only helps in increasing the confidence in the
algorithm's correctness.

We take a step in describing how we applied TLA+ in the verification, where all speci-
fications are openly available1 . We verified all of ANTUNES' algorithms and corrected all
problems encountered, and at this stage, we did not try to introduce optimizations. The
most noteworthy change was the removal of the Reliable Multicast primitive for Generic
Multicast 1 and Generic Multicast 2. We also explore additional properties the algorithms
have, which are: Strictness, Minimality, and Quiescence.

1 <https://github.com/jabolina/mcast-tlaplus>
2 <https://github.com/jabolina/go-mcast>

Lastly, we implemented a prototype of Generic Multicast 12. Even for a prototype
with a study purpose, it was a challenge. Implementing and specifying the algorithms
was an enlightening process that helped us to deeply understand how the algorithms work
and how the properties fit together. Starting from a specified algorithm could reduce the
development time since the developer can focus on the programming problems without
worrying about the algorithm's correctness.

The current work has limitations on the specifications and the implemented prototype.
Our specification generates too many states for larger models, making some scenarios
impractical for verification. We could devote some effort to using another type of model
checker so that verifying larger models is possible. We defined propositions for some
additional properties, whereas writing proof for these is left for future work.

The algorithms can serve as a base to create algorithms that fit a real-world produc-
tion environment. Such a change would start with adapting the algorithm to work with
dynamic groups. This change would allow for processes to join and leave as they please.

https://github.com/jabolina/mcast-tlaplus
https://github.com/jabolina/go-mcast

86 Chapter 6. Conclusion

Introducing and formalizing optimizations is a welcome contribution to the algorithms.
The prototype also has room for improvement, strengthening the implementation so other
applications can use it as a foundation to create more robust algorithms.

87

Bibliography

AGUILERA, M. K.; CHEN, W.; TOUEG, S. On quiescent reliable communication.
SIAM Journal on Computing, SIAM, v. 29, n. 6, p. 2040-2073, 2000.
<https://doi.org/10.1137/S0097539798341296>.

AHMED-NACER, T.; SUTRA, P.; CONAN, D. The convoy effect in atomic multicast. In:
IEEE. 2016 IEEE 35th Symposium on Reliable Distributed Systems Workshops
(SRDSW). [S.l.], 2016. p. 67-72. <https://doi.org/10.1109/SRDSW.2016.22>.

ALPERN, B.; SCHNEIDER, F. B. Recognizing safety and liveness. Distributed
computing, Springer, v. 2, n. 3, p. 117-126, 1987. <https://doi.org/10.1007/
BF01782772>.

ANTUNES, D. Fault-Tolerant Generic Multicast Algorithms for Wide Area
Networks. Dissertação (Mestrado) — Universidade Federal de Uberlândia, 2019.
Internal Communication.

BEERS, R. Pre-rtl formal verification: an intel experience. In: Proceedings of
the 45th annual Design Automation Conference. [S.l.: s.n.], 2008. p. 806-811.
<https://doi.org/10.1145/1391469.1391675> .

BIRMAN, K. P.; JOSEPH, T. A. Reliable communication in the presence of failures.
ACM Transactions on Computer Systems (TOCS), ACM New York, NY, USA,
v. 5, n. 1, p. 47-76, 1987. <https://doi.org/10.1145/7351.7478> .

BLASGEN, M. et al. The convoy phenomenon. ACM SIGOPS Operating
Systems Review, ACM New York, NY, USA, v. 13, n. 2, p. 20-25, 1979.
<https://doi.org/10.1145/850657.850659>.

BORNHOLT, J. et al. Using lightweight formal methods to validate a key-value
storage node in amazon s3. In: Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles. [S.l.: s.n.], 2021. p. 836-850.
<https://doi.org/10.1145/3477132.3483540> .

BUTCHER, M.; FARINA, M. Go in Practice. [S.l.]: Manning Publications Company,
2016. ISBN 9781633430075.

CAMARGOS, L. Multicoordinated agreement protocols and the log
service. Tese (Doutorado) — Università della Svizzera italiana, 04 2008. <https:
//doi.org/10.1109/NCA.2008.28>.

https://doi.org/10.1137/S0097539798341296
https://doi.org/10.1109/SRDSW.2016.22
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
https://doi.org/10.1145/1391469.1391675
https://doi.org/10.1145/7351.7478
https://doi.org/10.1145/850657.850659
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1109/NCA.2008.28
https://doi.org/10.1109/NCA.2008.28

88 Bibliography

CHANDRA, T. D.; GRIESEMER, R.; REDSTONE, J. Paxos made live: an
engineering perspective. In: Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing. [S.l.: s.n.], 2007. p. 398-407.
<https://doi.org/10.1145/1281100.1281103>.

CHANDRA, T. D.; HADZILACOS, V.; TOUEG, S. The weakest failure detector for
solving consensus. Journal of the ACM (JACM), ACM New York, NY, USA, v. 43,
n. 4, p. 685-722, 1996. <https://doi.org/10. 1 145/234533.234549>.

CHANDRA, T. D.; TOUEG, S. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM (JACM), ACM New York, NY, USA, v. 43, n. 2, p.
225-267, 1996. <https://doi.org/10. 1 145/226643.226647>.

CHARRON-BOST, B.; PEDONE, F.; SCHIPER, A. Replication. LNCS, Springer,
v. 5959, p. 19-40, 2010. <https://doi.org/10. 1007/978-3-642-1 1294-2>.

CHARRON-BOST, B.; SCHIPER, A. Uniform consensus is harder than consensus.
Journal of Algorithms, Elsevier, v. 51, n. 1, p. 15-37, 2004. <https://doi.org/10.
1016/j.jalgor.2003.11.001>.

COELHO, P. R.; SCHIPER, N.; PEDONE, F. Fast atomic multicast. In: 2017 47th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). [S.l.: s.n.], 2017. p. 37-48. <https://doi.org/10.1109/DSN.2017.15> .

DÉFAGO, X.; SCHIPER, A.; URBÁN, P. Totally ordered broadcast and multicast
algorithms: A comprehensive survey. 2000. Disponível em: <http://infoscience.epfl.ch/
record/49982>.

______ . Total order broadcast and multicast algorithms: Taxonomy and survey. ACM
Computing Surveys (CSUR), ACM New York, NY, USA, v. 36, n. 4, p. 372-421,
2004. <https://doi.org/10. 1 145/1041680. 1041682>.

ETCD. etcd. [S.l.], 2021. Disponível em: <https://etcd.io/>. Acesso em: 13.07.2021.

FISCHER, M. J.; LYNCH, N. A.; PATERSON, M. S. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), ACM New York,
NY, USA, v. 32, n. 2, p. 374-382, 1985. <https://doi.org/10.1145/3149.214121>.

FRITZKE, U. et al. Fault-tolerant total order multicast to asynchronous groups.
In: IEEE. Proceedings Seventeenth IEEE Symposium on Reliable
Distributed Systems (Cat. No. 98CB36281). [S.l.], 1998. p. 228-234.
<https://doi.org/10.1109/RELDIS.1998.740503> .

GOLANG. Go Net. [S.l.], 2021. Disponível em: <https://pkg.go.dev/net>. Acesso em:
13.07.2021.

______ . The Go Programming Language Specification. [S.l.], 2021. Disponível em:
<https://golang.org/ref/spec>. Acesso em: 22.07.2021.

______ . Effective Go. [S.l.], 2022. Disponível em: <https://go.dev/doc/effective_go>.
Acesso em: 12.03.2022.

______ . Introducing the Go Race Detector. [S.l.], 2022. Disponível em:
<https://go.dev/blog/race-detector>. Acesso em: 12.03.2022.

https://doi.org/10.1145/1281100.1281103
https://doi.org/10.1145/234533.234549
https://doi.org/10.1145/226643.226647
https://doi.org/10.1007/978-3-642-11294-2
https://doi.org/10.1016/j.jalgor.2003.11.001
https://doi.org/10.1016/j.jalgor.2003.11.001
https://doi.org/10.1109/DSN.2017.15
http://infoscience.epfl.ch/record/49982
http://infoscience.epfl.ch/record/49982
https://doi.org/10.1145/1041680.1041682
https://etcd.io/
https://doi.org/10.1145/3149.214121
https://doi.org/10.1109/RELDIS.1998.740503
https://pkg.go.dev/net
https://golang.org/ref/spec
https://go.dev/doc/effective_go
https://go.dev/blog/race-detector

Bibliography 89

GOOGLE. gRPC. [S.l.], 2021. Disponível em: <https://grpc.io/>. Acesso em:
14.07.2021.

GUERRAOUI, R.; SCHIPER, A. Total order multicast to multiple groups. In: IEEE.
Proceedings of 17th International Conference on Distributed Computing
Systems. [S.l.], 1997. p. 578-585. <https://doi.org/10.1109/ICDCS.1997.603426> .

KINGSBURY, K. etcd 3.4.3. [S.l.], 2020. Disponível em: <https://jepsen.io/analyses/
etcd-3.4.3.pdf>. Acesso em: 14.07.2021.

KLEPPMANN, M. Designing data-intensive applications: The big ideas behind
reliable, scalable, and maintainable systems. [S.l.]: " O'Reilly Media, Inc.", 2017.
ISBN 1449373321.

KONNOV, I.; KUKOVEC, J.; TRAN, T.-H. Tla+ model checking made symbolic.
Proceedings of the ACM on Programming Languages, ACM New York, NY,
USA, v. 3, n. OOPSLA, p. 1-30, 2019. <https://doi.org/10.1145/3360549>.

LAMPORT, L. Introduction to TLA. [S.l.]: Digital Equipment Corporation Systems
Research Center [SRC], 1994.

______ . The temporal logic of actions. ACM Transactions on Programming
Languages and Systems (TOPLAS), ACM New York, NY, USA, v. 16, n. 3, p.
872-923, 1994. <https://doi.org/10.1145/177492.177726>.

______ . Specifying systems. [S.l.]: Addison-Wesley Boston, 2002. v. 388. ISBN
9780321143068.

______ . Generalized consensus and paxos. Citeseer, 2005. Disponível em: <https:
//www.microsoft.com/en-us/research/publication/generalized-consensus-and-paxos/>.

______ . Time, clocks, and the ordering of events in a distributed system. In:
Concurrency: the Works of Leslie Lamport. [S.l.: s.n.], 2019. p. 179-196.
<https://doi.org/10.1145/3335772.3335934>.

______ . Industrial Use of TLA+. [S.l.], 2021. Disponível em: <https://lamport.
azurewebsites.net/tla/industrial-use.html>. Acesso em: 20.05.2022.

______ . The TLA+ Toolbox. [S.l.], 2021. Disponível em: <https://lamport.
azurewebsites.net/tla/toolbox.html>. Acesso em: 14.07.2021.

______ . The Writings of Leslie Lamport. [S.l.], 2022. Disponível em: <https:
//lamport.azurewebsites.net/pubs/pubs.html>. Acesso em: 29.08.2022.

LAMPORT, L. et al. Paxos made simple. ACM Sigact News, v. 32, n. 4, p.
18-25, 2001. Disponível em: <https://www.microsoft.com/en-us/research/publication/
paxos-made-simple/>.

NEWCOMBE, C. et al. How amazon web services uses formal methods. Commu-
nications of the ACM, ACM New York, NY, USA, v. 58, n. 4, p. 66-73, 2015.
<https://doi.org/10.1145/2699417>.

ONGARO, D. Consensus: Bridging theory and practice. Stanford University,
2014. Disponível em: <http://purl.stanford.edu/qr033xr6097>.

https://grpc.io/
https://doi.org/10.1109/ICDCS.1997.603426
https://jepsen.io/analyses/etcd-3.4.3.pdf
https://jepsen.io/analyses/etcd-3.4.3.pdf
https://doi.org/10.1145/3360549
https://doi.org/10.1145/177492.177726
https://www.microsoft.com/en-us/research/publication/generalized-consensus-and-paxos/
https://www.microsoft.com/en-us/research/publication/generalized-consensus-and-paxos/
https://doi.org/10.1145/3335772.3335934
https://lamport.azurewebsites.net/tla/industrial-use.html
https://lamport.azurewebsites.net/tla/industrial-use.html
https://lamport.azurewebsites.net/tla/toolbox.html
https://lamport.azurewebsites.net/tla/toolbox.html
https://lamport.azurewebsites.net/pubs/pubs.html
https://lamport.azurewebsites.net/pubs/pubs.html
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1145/2699417
http://purl.stanford.edu/qr033xr6097

90 Bibliography

ONGARO, D.; OUSTERHOUT, J. In search of an understandable consensus algorithm.
In: 2014 USENIX Annual Technical Conference (USENIX ATC 14).
Philadelphia, PA: USENIX Association, 2014. p. 305-319. ISBN 978-1-931971-10-2.
Disponível em: <https://www.usenix.org/conference/atc14/technical-sessions/
presentation/ongaro>.

OWICKI, S.; LAMPORT, L. Proving liveness properties of concurrent programs. ACM
Transactions on Programming Languages and Systems (TOPLAS), ACM New
York, NY, USA, v. 4, n. 3, p. 455-495, 1982. <https://doi.org/10.1145/357172.357178>.

PEDONE, F.; SCHIPER, A. Generic broadcast. In: SPRINGER. International
symposium on distributed computing. [S.l.], 1999. p. 94-106. <https:
//doi.org/10. 1007/3-540-48169-9_7> .

______ . Handling message semantics with generic broadcast protocols. Distributed
Computing, Springer, v. 15, n. 2, p. 97-107, 2002. <https://doi.org/10.1007/
s004460100061>.

REZENDE, T. F. Uma Implementação Fiel do Algoritmo Generalized
Paxos e uma CStruct para o Problema de Coordenação de Lease
Distribuído. Dissertação (Mestrado) — Universidade Federal de Uberlândia, 01 2017.
<http://dx.doi.org/10.14393/ufu.di.2018.141>.

SCHIPER, A. Dynamic group communication. Distributed Computing, Springer,
v. 18, n. 5, p. 359-374, 2006. <https://doi.org/10.1007/s00446-005-0129-4>.

SCHIPER, N.; PEDONE, F. Optimal atomic broadcast and multicast algorithms
for wide area networks. In: Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing. [S.l.: s.n.], 2007. p. 384-385.
<https://doi.org/10.1145/1281100.1281185>.

SCHNEIDER, F. B. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys (CSUR), ACM New York, NY,
USA, v. 22, n. 4, p. 299-319, 1990. <https://doi.org/10.1145/98163.98167>.

SYSTEMS, I. Industrial Use of TLA+. [S.l.], 2020. Disponível em: <https:
//github.com/informalsystems/vdd/blob/410e427533fcbc42426124effc305d02fa9786ba/
guide/guide.md>. Acesso em: 24.05.2022.

TU, T. et al. Understanding real-world concurrency bugs in go. In: Proceedings of
the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. [S.l.: s.n.], 2019. p. 865-878.
<https://doi.org/10.1145/3297858.3304069>.

YU, Y.; MANOLIOS, P.; LAMPORT, L. Model checking tla+ specifications.
In: SPRINGER. Advanced Research Working Conference on Correct
Hardware Design and Verification Methods. [S.l.], 1999. p. 54-66. <https:
//doi.org/10.1007/3-540-48153-2_6>.

https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1145/357172.357178
https://doi.org/10.1007/3-540-48169-9_7
https://doi.org/10.1007/3-540-48169-9_7
https://doi.org/10.1007/s004460100061
https://doi.org/10.1007/s004460100061
http://dx.doi.org/10.14393/ufu.di.2018.141
https://doi.org/10.1007/s00446-005-0129-4
https://doi.org/10.1145/1281100.1281185
https://doi.org/10.1145/98163.98167
https://github.com/informalsystems/vdd/blob/410e427533fcbc42426124effc305d02fa9786ba/guide/guide.md
https://github.com/informalsystems/vdd/blob/410e427533fcbc42426124effc305d02fa9786ba/guide/guide.md
https://github.com/informalsystems/vdd/blob/410e427533fcbc42426124effc305d02fa9786ba/guide/guide.md
https://doi.org/10.1145/3297858.3304069
https://doi.org/10.1007/3-540-48153-2_6
https://doi.org/10.1007/3-540-48153-2_6

91

Appendix

92

93

APPENDIX

On the Specifications

This chapter contains all the TLA+ specifications. The actual TLA files are available
online for public scrutiny, and the specifications here come directly from these online files.
We use the TLATEX program for typesetting the TLA+ modules (LAMPORT, 2002),

writing the contents in this chapter as is. We will provide little to no comments about
the contents since the modules are self-explanatory. We start with the communication
primitives and helpers and then with the specifications. The algorithms have a slightly
smaller font size to fit better on the page.

A.1 Communication Primitives

We wrote the primitives for a quasi-reliable channel for process communication, Atomic
Broadcast and Generic Broadcast for group communication. To write the process com-
munication a single time and use it in all specifications, it uses the structures as a group
exists all times. The Generic Multicast 0 uses this primitive with groups with one process.

The quasi-reliable abstraction is in A.1. The Atomic Broadcast abstraction is in A.1.
The Generic Broadcast abstraction is in A.1.

94 APPENDIX A. TLA+ Specifications

I----------------------------------- moduie QuasiReliable------------------------------------- 1
This module is the abstraction for a quasi-reliable channel, the primary form of
communication. Communication channels connect every pair of processes and pro-
vide two basic primitives to send and receive messages. The primitives Send and
Receive have the following properties:

* No creation: for p i , p j , if p j invokes Received m from p i , then p i must have
invoked Send m to pj ;

* No duplication: for p i , p j , for all Send m to p j invoked by p i , p j invokes a
corresponding Received from pi is at most once;

* No loss: for pi , pj , if process pi invokes Send m to pj , and if neither pi nor pj

fails, then eventually Received m from pi is invoked in pj .

local instance Naturals
local instance Sequences

Number of groups.
constant NGROUPS

Number of processes.
constant NPROCESSES

The set of initial messages.
constant INITIAL MESSAGES

Represents the underlying network channel.
variable QuasiReliableChannel

A wrapper around the Send primitive. This procedure sends a message m to all
processes in all groups. We do this instead of a single process to process to clear
things up on the client side since all usages are to send messages to all participants.
Send (m) =

A QuasiReliableChannel' = [
g E domain QuasiReliableChannel [

p E domain QuasiReliableChannel[g] M-
QuasiReliableChannel[g][p] U {m}]]

A.1. Communication Primitives 95

The receive primitive, using only this procedure, does not consume the message.
We execute the callback passing the message existent in the specific process of the
given group.
Receive (g, p, Fn(_)) =

A 3 m G QuasiReliableChannel[g][p] : Fn(m)

Bellow are some helper procedures built upon the Send and Receive primitives.

A wrapper to send the messages while applying a map function to the process'
network buffer. We need this because we can not execute multiple operations to
a variable in a single step. For example, removing and adding a message must be
a single operation. In cases where we must consume and send a message in the
network, we use this wrapper.
SendMap(Fn(_, _)) =

A QuasiReliableChannel' = [
g G domain QuasiReliableChannel [

p G domain QuasiReliableChannel[g]
Fn(p, QuasiReliableChannel[g][p])]]

This procedure causes the process in the given to consume the specific message.
Consume (g, p, m) =

A QuasiReliableChannel' = [
QuasiReliableChannel except ![g][p] = @ \ {m}]

This procedure put both the Receive primitive with the consume procedure to-
gether. For a received message, execute the callback and removes it from the
buffer.
ReceiveAndConsume(g, p, Fn(_)) =

A Receive(g, p, lambda m : Fn(m) A Consume(g, p, m))

Initialize the algorithm with all processes in all groups with the same set of messages.
Init =

A QuasiReliableChannel = [
g G 1 .. NGROUPS [

p G 1 .. NPROCESSES INITIAL-MESSAGES]]

96 APPENDIX A. TLA+ Specifications

I---------------------------------moduie AtomicBroadcast---------------------------------- 1
This module is the abstraction for the Atomic Broadcast, a primitive for group
communication. A process can broadcast a message to its local group, where all
members will deliver in the same order.

We use a sequence to maintain the same order on all processes. New messages are
added to the back and removed from the front. A group has its own order within,
whereas there are no ordering requirements across groups.

local instance Naturals
local instance Sequences

Number of groups.
constant NGROUPS

Number of processes.
constant NPROCESSES

The sequences of initial messages.
constant INITIAL-MESSAGES

variables
The underlying buffer that holds all the messages.

AtomicBroadcastBuffer

Broadcast the message to the given group. We add the message at the back of
every process' sequence within this group.
ABroadcast (g, m) =

A AtomicBroadcastBuffer1 = [
AtomicBroadcastBuffer except ![g] = [

p E domain AtomicBroadcastBuffer[g]
Append(AtomicBroadcastBuffer[g] [p] , m)]]

A.1. Communication Primitives 97

Deliver the message to the process in the specific group. If there is a message in
the buffer, we pass it to the callback and consume it.
ABDeliver(g, p, Fn(_)) =

A Len(AtomicBroadcastBuffer[g][p]) > 0
A Fn(Head(AtomicBroadcastBuffer[g][p]))
A AtomicBroadcastBuffer' = [

AtomicBroadcastBuffer except ![g][p] =
Tail(AtomicBroadcastBuffer[g] [p])]

Initialize the algorithm with the configuration values. The processes within a group
will have the same sequence of messages in the same order.
Init =

A AtomicBroadcastBuffer = [
g E 1 .. NGROUPS [

p E 1 .. NPROCESSES INITIAL.MESSAGES[g]]]

98 APPENDIX A. TLA+ Specifications

I-------------------------------- moduie GenericBroadcast---------------------------------- 1
This module is the abstraction for the Generic Broadcast, a primitive for group
communication. A process can broadcast a message to a single group, and using
conflict relation processes may order the delivery order.

We use a combination of sequences; each position contains a set; each set contains
commuting messages. The former has an order, whereas the latter is unordered.
With this approach, we have a generic delivery.

local instance Naturals
local instance Sequences
local instance FiniteSets
local instance Commons

constant NGROUPS
constant NPROCESSES
constant INITIAL-MESSAGES

The conflict relation to identify commuting messages.
constant CONFLICTR(_, _)

The underlying buffer that holds all the messages.
variable GenericBroadcastBuffer

We consume the message in the given group. If the set in the head is empty, we
remove it; we remove only m otherwise.
locai Consume(S, m) ==

if Cardinality(Head(S)) > 1 then ReplaceAt(S, 1, Head(S) \ {m})
eise SubSeq(S, 2, Len(S))

Verify if exists conflict in the process for the message.
locai ConflictIn(V, m) = 3(n, x, y) E V : CONFLICTR(m, n)
locai HasConflict(S, m) =

Len(SelectSeq(S, lambda V : ConflictIn(V, m[1]))) = 0

A.1. Communication Primitives 99

We insert a message to the specific process' buffer. If the buffer is empty or there
is a conflict, we add the message to the back of the sequence; otherwise, we add
the message in the head.
locai Insert(S, m) =

if Len(S) = 0 V HasConflict(S, m) then Append(S, {m})
eise ReplaceAt(S, Len(S), S[Len(S)] U {m})

Broadcast a message to the given group. We insert the message in the buffer of all
processes within this group.
GBroadcast(g, m) =

A GenericBroadcastBuffer' = [
GenericBroadcastBuffer except ![g] = [

i E 1 .. Len(GenericBroadcastBuffer[g])
Insert(GenericBroadcastBuffer[g] [i] , m)]]

Generic deliver primitive to the process in the specific group. If the buffer is not
empty, we invoke the call with the appropriate message and then consume it.
GBDeliver(g, p, Fn(_)) =

A Len(GenericBroadcastBuffer[g] [p]) > 0
A Cardinality (Head (GenericBroadcastBuffer [g] [p])) > 0
A iet

Since messages in the same set commute, we can choose any.
m = Choose v E Head(GenericBroadcastBuffer[g][p]) : true

in
A Fn(m)
A GenericBroadcastBuffer' = [

GenericBroadcastBuffer except ![g][p] =
Consume(GenericBroadcastBuffer[g] [p] , m)]

Initialize the algorithm with the configuration values. The processes within a group
will have the same sequence of messages.
Init =

A GenericBroadcastBuffer = [
g E 1 .. NGROUPS [

p E 1 .. NPROCESSES INITIAL-MESSAGES[g]]]

100 APPENDIX A. TLA+ Specifications

These are all the communication primitives. These modules are instantiated in the
algorithm's modules and used as primitive.

A.2 Helper Procedures

This chapter contains the module with helper procedures and the Memory structure.
The helper methods revolve around methods to help build the message structures. The
Memory module is the Mem structure used in Generic Multicast 1 and 2.

A.2. Helper Procedures 101

I--------------------------------moduie Commons--------------------------------- 1

local instance Naturals
local instance FiniteSets
local instance Sequences

locai Identity(x) = x
locai Choose(S) = choose x e S : true
locai IsEven(x) = x%2 = 0
Max(S) = choose x e S : V y e S : x > y

Three different conflict relations. We identify the relation to use through the con-
figuration files. We verify each property with all three.

Use the message's identifier, where the evens conflict with evens and odds with
odds. This relationship has a partial ordering.
IdConflict(m, n) = IsEven(m.id) = IsEven(n.id)

All messages conflict in this relationship. The executions with this conflict relation
are equivalent to the Atomic Multicast.
AlwaysConflict(m, n) = true

There is no conflict in this relationship. The executions with this conflict relation
are equivalent to the Reliable Multicast.
NeverConflict(m, n) = FAiSE

We use multiple procedures provided by the TLA+ community.
Most of the procedures are used locally to create the messages.

From Community Modules
locai IsInjective(f) =

A function is injective iff it maps each element in its domain to a distinct
element.

This definition is overridden by TLC in the Java class SequencesExt . The
operator is overridden by the Java method with the same name.
V a, b e domain f : f [a] = f [b] a = b

102 APPENDIX A. TLA+ Specifications

From Community Modules
locai SetToSeq(S) =

Convert a set to some sequence that contains all the elements of the set exactly
once, and contains no other elements.
choose f e [1 .. Cardinality(S) S] : IsInjective(f)

From Community Modules
locai SetToSeqs(S) =

Convert the set S to a set containing all sequences containing the elements of S
exactly once and no other elements. Example:

SetToSeqs({}), {()}
SetToSeqs({“t”, “l”}) = {(“t”, “Z”), (“l”, “t”)}

iet D = 1 .. Cardinality (S)
in {f E [D S] : V i, j E D : i = j f [i] = f [j]}

From Community Modules
locai SetToAllKPermutations (S) =

Convert the set S to a set containing all k-permutations of elements of S for
k E 0 . . Cardinality(S). Example:

SetToAllKPermutations ({}) = {()}
SetToAllKPermutations({“a”}) = {(), (“a”)}
SetToAllKPermutations({“a”, “b”}) =

{(), (“a”), (“b”), (“a”, “b”), (“b”, “a”)}

union {SetToSeqs(s) : s E subset S }

From Community Modules
locai MapThenFoldSet(op(_, _), base, f (_), choose(_), S) =
Starting from base, apply op to f (x), for all x E S, by choosing the set elements
with choose . If there are multiple ways for choosing an element, op should be
associative and commutative. Otherwise, the result may depend on the concrete
implementation of choose .

FoldSet, a simpler version for sets is contained in FiniteSetsEx . FoldFunction, a
simpler version for functions is contained in Functions. FoldSequence , a simpler
version for sequences is contained in SequencesExt.

Example:

MapThenFoldSet(lambda x, y : x U y,
{},
lambda x : {{x}},
lambda set: cHoose x E set: true,
{1, 2})

A.2. Helper Procedures 103

= {{1}, {2}}

let iter[s E subset S] =
if s = {} then base
eise let x = choose(s)

in op(f(x), iter[s\{x}])
in iter[S]

From Community Modules
locai ToSet(s) =

The image of the given sequence s. Cardinality(ToSet(s)) < Len(s) see
https:// en. wikipedia. org /wiki/Image- (mathematics)
{s[i] : i E domain s}

From Community Modules
ReplaceAt(s, i, e) =

Replaces the element at position i with the element e.

[s except ![i] = e]

locai Originator(G, P) = (Choose(G), Choose(P))

Initialize the message structure we use to check the algorithm.
CreateMessages (nmessage, G, P) =

{[id m, d G, o Originator(G, P)] : m E 1 .. nmessage}

Create all possible different possibilities in the initial ordering. Since we replaced
the combination of Reliable Multicast + Atomic Broadcast with multiple uses of
Atomic Broadcast, messages can have distinct orders across groups. We force this
distinction.
CreatePossibleMessages (S) =

let M = SetToAllKPermutations (S)
in Map ThenFoldSet (

lambda x, y : (x) o y,
(),
Identity,
Choose ,
{m E M : Len(m) = Cardinality(S)})

We create the tuple with the message, state, and timestamp.
lOCAl InitialMessage(m) = (m, “S0”, 0)

104 APPENDIX A. TLA+ Specifications

A totally ordered message buffer.
TotallyOrdered (F) =

[x E domain F InitialMessage(F[x])]

Creates a partially ordered buffer from the sequence using the given predicate to
identify conflicts between messages.
locai ExistsConflict(x, S, Op(_, _)) =

3 d E ToSet(S) :
3 (n, s, ts) E d : Op(x, n)

PartiallyOrdered(F, Op(-, -)) =
Map ThenFoldSet (

lambda x, y :
if Len(y) = 0 V ExistsConflict(x, y, Op)

then ({InitialMessage(x)}) ◦ y
eise (y[1] U {InitialMessage(x)}),

0,
Identity,
Choose,
ToSet(F))

We enumerate the entries in the given set.
Enumerate(base, E) =

let f = SetToSeq(E)in {(base + i, f [i]) : i E domain f}

A.2. Helper Procedures 105

I--------------------------------------- moduie Memory--- 1
This module is the abstraction for the Memory structure used by Generic Multicast
1 and 2. Inserting a new message will either create a new entry or update an
existing one. The requirement here is that, at any time, we must always have
only one entry for a message, never duplicating. Besides the insert, we have some
additional procedures wrapping the buffer for verifying entries and removing them.
Each process owns a buffer and accesses only its own buffer, never the others'.

local instance FiniteSets
local instance Naturals

Number of groups.
constant NGROUPS

Number of processes.
constant NPROCESSES

The underlying buffer, each process owns one.
We use a set, and the entries are the message tuples.

variable MemoryBuffer

Insert the new entry into the process buffer in the specific group. We remove the
previous entry and put the new one in its place.
Insert(g, p, t) =

A MemoryBuffer' = [
MemoryBuffer except ![g][p] = {

(msg, state, ts) E MemoryBuffer [g][p] :
msg.id = t[1].id} U {t}]

Verify if an entry exists in the process buffer in the specific group using the callback.

Contains (g, p, Fn(_)) =
3 t E MemoryBuffer[g][p] : Fn(t)

We filter the entries in the process buffer in the specific group using the callback.
An entry must be valid when compared with all others except itself.
ForAllFilter(g, p, Fn(_, _)) =

{t_ 1 E MemoryBuffer [g][p] :
V t_2 E (MemoryBuffer[g][p] \{t_ 1}) : Fn(t_ 1, tJ2)}

106 APPENDIX A. TLA+ Specifications

Remove the entries in the process buffer in the specific group.
Remove (g, p, S) =

A MemoryBuffer' = [MemoryBuffer except ! [g][p] = @ \ S]

Initialize the structure for all processes with an empty buffer.
Init =

A MemoryBuffer = [
g G 1 .. NGROUPS [

p G 1 .. NPROCESSES {}]]

A.3. Generic Multicast 0 107

A.3 Generic Multicast 0

108 APPENDIX A. TLA+ Specifications

I-------------------- module GenericMulticastO--------------------- 1
local instance Commons
local instance Naturals
local instance FiniteSets

Number of processes in the algorithm.
constant NPROCESSES

Set with initial messages the algorithm starts with.
constant INITIALMESSAGES

The conflict relation.
constant CONFLICTRÇ-, _)

assume
Verify that NPROCESSES is a natural number greater than 0.

A NPROCESSES e (Nat \{0})

The messages in the protocol must be finite.
A IsFiniteSet(INITIALMESSAGES)

local Processes = {i : i e 1 .. NPROCESSES}

The instance of the quasi-reliable channel for process communication primitive. We use groups
with single processes, having NPROCESSES groups.
variable QuasiReliableChannel
QuasiReliable == instance QuasiReliable wiTh

NGROUPS NPROCESSES,
NPROCESSES 1

variables
Structure that holds the clocks for all processes.

K,

Structure that holds all messages that were received but are still pending a
final timestamp.

Pending,

Structure that holds all messages that contains a final timestamp but were
not delivered yet.

Delivering,

Structure that holds all messages that contains a final timestamp and were
already delivered.

A.3. Generic Multicast 0 109

Delivered,

Used to verify if previous messages conflict with the message beign
processed. Using this approach is possible to deliver messages with a
partially ordered delivery.

PreviousMsgs,

Set used to holds the votes that were cast for a message. Since the
coordinator needs that all processes cast a vote for the final timestamp,
this structure will hold the votes each process cast for each message on the
system.

Votes

vars = (QuasiReliableChannel, Votes, K, Pending,
Delivering, Delivered, PreviousMsgs)

Helper to send messages. In a single operation we consume the message from our local network
and send a request to the algorithm initiator. Is not possible to execute multiple operations in a
single step on the same set. That is, we can not consume and send in different operations.
local SendOriginatorAndRemoveLocal(self, dest, curr, prev, S) =

if self = dest A prev[2].o = self then (S \ {prev}) U {curr}
eise if prev[2].o = dest then S U {curr}
else if self = dest then S \ {prev}
else S

Check if the given message conflict with any other in the PreviousMsgs.
local HasConflict(self, m1) =

3 m2 e PreviousMsgs[self] : CONFLICTR(m 1, m2)

We have the handlers representing each step of the algorithm. The handlers are the actual
algorithm, and the caller is the step guard predicate.

locai AssignTimestampHandler(self, msg) =
A V A HasConflict(self, msg)

A K' = [K except ! [self] = K [self] + 1]
A PreviousMsgs' = [PreviousMsgs except ! [self] = {msg}]

V A —HasConflict(self, msg)
A K' = [K except ! [self] = K[self]]
A PreviousMsgs' = [PreviousMsgs except ! [self] =

PreviousMsgs [self] U {msg}]
A Pending' = [Pending except ! [self] = Pending[self] U {(K'[self], msg)}]
A QuasiReliable ! SendMap (lambda dest, S :

SendOriginatorAndRemoveLocal (self , dest,
(“SI”, K'[self], msg, self), (“S0”, msg), S))

A unchanged (Delivering, Delivered, Votes)

110 APPENDIX A. TLA+ Specifications

local ComputeSeqNumberHandler(self, ts, msg, origin) =
A let

vote = (msg.id, origin, ts)
election = {v 6 (Votes[self] U {vote}) : v[1] = msg.id}
elected = Max({x[3] : x 6 election})

in
A V A Cardinality(election) = Cardinality(msg.d)

A Votes' = [Votes except ! [self] =
{x 6 Votes[self] : x[1] = msg.id}]

A QuasiReliable ! SendMap (lambda dest, S :
(S \{(“S1”, ts, msg)}) U{(“S2”, elected, msg)})

V A Cardinality (election) < Cardinality (msg . d)
A Votes' = [Votes except ! [self] = Votes[self] U {vote}]
A QuasiReliable! Consume(1, self, (“S1”, ts, msg, origin))

A unchanged (K, PreviousMsgs, Pending, Delivering, Delivered)

local AssignSeqNumberHandler(self, ts, msg) =
A V A ts > K[self]

A V A HasConflict(self, msg)
A K' = [K except ! [self] = ts + 1]
A PreviousMsgs' = [PreviousMsgs except ! [self] = {}]

V A —HasConflict(self, msg)
A K' = [K except ! [self] = ts]
A unchanged PreviousMsgs

VA ts < K [self]
A unchanged (K, PreviousMsgs)

A Delivering' = [Delivering except ! [self] = Delivering[self] U {(ts, msg)}]
A unchanged (Votes, Delivered)

This procedure executes after an initiator GM-Cast a message m to m .d . All processes in m .d do
the same thing after receiving m , assing the local clock to the message timestamp, inserting the
message with the timestamp to the process Pending set, and sending it to the initiator to choose
the timestamp.
AssignTimestamp(self) =

We delegate to the lambda to handle the message while filtering for
the correct state.

A QuasiReliable ! Receive(self, 1,
lambda t :

A t[1] = “S0”
A AssignTimestampHandler(self, t[2]))

A.3. Generic Multicast 0 111

This method is executed only by the initiator. This method processes messages on state S 1
and can proceed in two ways. If the initiator has votes from all other processes, the message's
final timestamp is the maximum received vote, and the initiator sends the message back to all
participants in state S 2 . Otherwise, the initiator only store the received message in the Votes
structure.
ComputeSeqNumber (self) =

We delegate to the lambda handler to effectively execute the procedure.
Here we verify that the message is on state S1 and the current process
is the initiator.

A QuasiReliable! Receive(self, 1,
lambda t :

A t[1] = “S1”
A t[3].o = self
A ComputeSeqNumberHand ler(self , t[2], t[3], t[4]))

After the coordinator computes the final timestamp for the message m, all processes in m.d will
receive the chosen timestamp. Each participant checks the message's timestamp against its local
clock. If the value is greater than the process clock, we need to update the process clock with the
message's timestamp. If m conflicts with a message in the PreviousMsgs, the clock updates to
m's timestamp plus one and clears the PreviousMsgs set. Without any conflict with m, the clock
updates to m's timestamp. The message is removed from Pending and added to Delivering set.
AssignSeqNumber (self) =

We delegate the procedure execution the the handler, and the message
is automatically consumed after the lambda execution. In this one we
only filter the messages.

A QuasiReliable ! ReceiveAnd Consume (self , 1,
lambda t_ 1 :

A t- 1[1] = “S2”
A 3 t_2 6 Pending[self] : t_ 1[3].id = t_2[2].id

A AssignSeqNumberHandler(self, t_ 1[2], t-1[3])
We remove the message here to avoid too many arguments
in the procedure invocation.

A Pending' = [Pending except ! [self] = @ \{t_2}])

112 APPENDIX A. TLA+ Specifications

Responsible for delivery of messages. The messages in the Delivering set with the smallest times-
tamp among others in the Pending joined with Delivering set. We can also deliver messages that
commute with all others, the generalized behavior in action.

Delivered messages will be added to the Delivered set and removed from the others. To store the
instant of delivery, we insert delivered messages with the following format:

<<Nat, Message>>

Using this model, we know the message delivery order for all processes.

DoDeliver (self) =
3(ts_ 1, m_ 1) 6 Delivering [self] :

AV(ts_2, m_2) 6 (Delivering[self] U Pending[self]) \{(t^ 1, m_1)} :
V -CONFLICTR(m. 1, m2)
V ts-1 < ts_2 V (m- 1.id < m-2.id A ts-1 = ts_2)

A let
T = Delivering[self] U Pending [self]
G = {Di 6 Delivering[self] :

V t-j 6 T \{t-i} : —CONFLICTR(t-i [2], t-j [2])}
F = {m. 1}U{t[2] : t 6 G}

in
A Delivering' = [Delivering except ! [self] = @ \ (G U {(t^ 1, m_ 1)})]
A Delivered' = [Delivered except ! [self] =

Delivered[self] U Enumerate (Cardinality (Delivered[self]), F)]
A unchanged (QuasiReliableChannel, Votes, Pending , PreviousMsgs, K)

Responsible for initializing global variables used on the system. All variables necessary by the
protocol are a mapping from the node id to the corresponding process set.

The “message” is also a structure, with the following format:

[id |-> Nat, d |-> Nodes, o |-> Node]

We have the properties: id is the messages' unique id, we use a natural number to represent; d
is the destination, it may be a subset of the Nodes set; and o is the originator, the process that
started the execution of the algorithm. These properties are all static and never change.

The mutable values we transport outside the message structure. We do this using the process
communication channel, using a tuple to send the message along with the mutable values.
local InitProtocol =

A K = [i 6 Processes 0]
A Pending = [i 6 Processes {}]
A Delivering = [i 6 Processes {}]
A Delivered = [i 6 Processes {}]
A PreviousMsgs = [i 6 Processes {}]

A.3. Generic Multicast 0 113

locai InitHelpers ==
Initialize the protocol network.

A QuasiReliable ! Init

This structure is holding the votes the processes cast for each
message on the system. Since any process can be the “coordinator”,
this is a mapping for processes to a set. The set will contain the
vote a process has cast for a message.

A Votes = [i e Processes {}]

Init = InitProtocol A InitHelpers

Step (self) =
V AssignTimestamp(self)
V ComputeSeqNumber(self)
V AssignSeqNumber(self)
V DoDeliver(self)

Next =
V 3 self e Processes : Step(self)
V unchanged vars

Spec = Init A d[Next]vars

SpecFair == Spec A WFvars(3 self e Processes : Step(self))

Helper functions to aid when checking the algorithm properties.

WasDelivered (p, m) =
Verifies if the given process p delivered message m.

A 3 (idx, n) e Delivered[p] : n.id = m.id

DeliveredInstant (p, m) =
Retrieve the instant the given process p delivered message m.

(choose (index, n) e Delivered[p] : m.id = n.id)[1]

FilterDeliveredMessages(p, m) =
Retrieve the set of messages with the same id as message m delivered by the given process p.

{(id,x, n) e Delivered[p] : n.id = m.id}

114 APPENDIX A. TLA+ Specifications

A.4 Generic Multicast 1

A.4. Generic Multicast 1 115

i-------------------- module GenericMulticast 1 -------------------- ,
local instance Commons
local instance Naturals
local instance FiniteSets
local instance TLC

Number of groups in the algorithm.
constant NGROUPS

Number of processes in the algorithm.
constant NPROCESSES

Set with initial messages the algorithm starts with.
constant INITIAL-MESSAGES

The conflict relation.
constant CONFLICTR(_, _)

assume
Verify that NGROUPS is a natural number greater than 0.

A NGROUPS e (Nat \{0})
Verify that NPROCESSES is a natural number greater than 0.

A NPROCESSES e (Nat\{0})

local Processes = {p : p e 1 .. NPROCESSES}
local Groups = {g : g e 1 .. NGROUPS}

The module containing the Atomic Broadcast primitive.
variable AtomicBroadcastBuffer
AtomicBroadcast = instance AtomicBroadcast

The module containing the quasi reliable channel.
variable QuasiReliableChannel
QuasiReliable = instance QuasiReliable with

INITIAL-MESSAGES {}

The algorithm's Mem structure. We use a separate module.
variable MemoryBuffer
Memory = instance Memory

variables
The process local clock.

1

116 APPENDIX A. TLA+ Specifications

K,

The set contains previous messages. We use this with the CONFLICTR to verify conflicting
messages.
PreviousMsgs,

The set of delivered messages. This set is not an algorithm requirement. We use this to help
check the algorithm's properties.
Delivered,

A set contains the processes' votes for the message's timestamp. This structure is implicit in
the algorithm.
Votes

vars = (
K,
MemoryBuffer,
PreviousMsgs,
Delivered,
Votes,
AtomicBroadcastBuffer,
QuasiReliableChannel

>

Check if the given message conflict with any other in the PreviousMsgs.
local HasConflict (g, p, m1) =

3 m2 e PreviousMsgs[g][p] : CONFLICTR(m 1, m2)

These are the handlers. The actual algorithm resides here, the lambdas only assert the guarding
predicates before calling the handler.

locai ComputeGroupSeqNumberHandler(g, p, msg, ts) =
A V A HasConflict(g, p, msg)

A K' = [K except ! [g][p] = K [g][p] + 1]
A PreviousMsgs' = [PreviousMsgs except ! [g][p] = {msg}]

V A —HasConflict(g, p, msg)
A PreviousMsgs' = [PreviousMsgs except ! [g][p] =

PreviousMsgs[g][p] U {msg}]
A unchanged K

A V A Cardinality (msg.d) > 1
A Memory!Insert(g, p, (msg, “S1”, K'[g][p]))
A QuasiReliable!Send((msg, g, K'[g][p]))

V A Cardinality (msg.d) = 1
A Memory! Insert (g, p, (msg, “S3”, K'[g][p]))
A unchanged QuasiReliableChannel

A unchanged (Delivered, Votes(

2

A.4. Generic Multicast 1 117

local SynchronizeGroupClockHandler(g, p, m, tsf) =
A V A tsf > K [g][p]

A K' = [K except ! [g][p] = tsf]
A PreviousMsgs' = [PreviousMsgs except ! [g][p] = {}]

V A tsf < K [g][p]
A unchanged {K, PreviousMsgs)

A V A 3 {n, s, ts) 6 MemoryBuffer[g][p] : s = “S1” A m = n
A Memory!Insert(g, p, {m, “S3”, tsf))

V unchanged MemoryBuffer
A unchanged {QuasiReliableChannel, Delivered, Votes)

locai GatherGroupsTimestampHandler(g, p, msg, ts, tsf) =
A V A ts < tsf

A AtomicBroadcast! ABroadcast(g, {msg, “S2”, tsf))
V unchanged AtomicBroadcastBuffer

A Memory !Insert(g, p, {msg, “S3”, tsf))
A unchanged {K, PreviousMsgs, Delivered)

Executes when process P receives a message M from the Atomic Broadcast primitive and M is
in P 's memory. This procedure is extensive, with multiple branches based on the message's state
and destination. Let's split the explanation.

When M 's state is S 0, we first verify if M conflicts with messages in the PreviousMsgs set. If a
conflict exists, we increase P 's local clock by one and clear the PreviousMsgs set.

When message M has a single group as the destination, it is already in its desired destination and
is synchronized because we received M from Atomic Broadcast primitive. P stores M in memory
with state S 3 and timestamp with the current clock value.

When M includes multiple groups in the destination, the participants must agree on the final
timestamp. When M 's state is S 0, P will send its timestamp proposition to all other participants,
which is the current clock value, and update M 's state to S 1 and timestamp. If M 's state is S 2,
we are synchronizing the local group, meaning we may need to leap the clock to the M 's received
timestamp and then set M to state S 3.
ComputeGroupSeqNumber(g, p) =

A AtomicBroadcast ! ABDeliver(g, p,
lambda t : t[2] = “S0” A ComputeGroupSeqNumberHandler(g, p, t[1], t[3]))

After exchanging the votes between groups, processes must select the final timestamp. When we
have one proposal from each group in message M 's destination, the highest vote is the decided
timestamp. If P 's local clock is smaller than the value, we broadcast the message to the local
group with state S 2 and save it in memory. Otherwise, we update the in-memory to state S 3.

We only execute the procedure once we have proposals from all participating groups. Since we
receive messages from the quasi-reliable channel, we keep the votes in the Votes structure. This
structure is implicit in the algorithm.
locai HasNecessaryVotes(g, p, msg, ballot) =

A Cardinality (ballot) = Cardinality(msg.d)
A Memory ! Contains (g , p, lambda n : msg = n[1] A n[2] = “S1”)

3

118 APPENDIX A. TLA+ Specifications

GatherGroupsTimestamp(g, p) =
A QuasiReliable! ReceiveAndConsume(g, p,

lambda t :
A let

msg = t[1]
origin = t[2]
vote = (msg.id, origin, t[3])
ballot = {v 6 (Votes[g][p] U {vote}) : v[1] = msg.id}
elected = Max({x[3] : x 6 ballot})

in
We only execute the procedure when we have proposals from all groups.

A V A HasNecessaryVotes(g, p, msg, ballot)
A 3 (m, s, ts) 6 MemoryBuffer[g][p] : m = msg

A GatherGroupsTimestampHandler(g, p, msg, ts, elected)
A Votes' = [Votes except ! [g][p] = {

x 6 Votes[g][p] : x[1] = msg.id}]
V A ­ HasNecessary Votes (g , p, msg, ballot)

A Votes' = [Votes except ! [g][p] = Votes[g][p] U {vote}]
A unchanged (MemoryBuffer, K,

PreviousMsgs, AtomicBroadcastBuffer)
A unchanged (Delivered))

SynchronizeGroupClock(g, p) ==
A AtomicBroadcast ! ABDeliver(g, p,

lambda t : t[2] = “S2” A SynchronizeGroupClockHandler(g, p, t[1], t[3]))

When messages are to deliver, we select them and call the delivery primitive. Ready means they
are in state S3, and the message either does not conflict with any other in the memory structure
or is smaller than all others. Once a message is ready, we also collect the messages that do not
conflict with any other for delivery in a single batch.
DoDeliver(g, p) =

We are accessing the buffer directly, and not through the Memory instance.
We do this because is easier and because we are only reading the values here.
Any changes we do through the instance.

3 (m_ 1, state, ts-1) 6 MemoryBuffer [g][p] :
A state = “S3”
AV (m-2, ignore, ts-2) 6 (MemoryBuffer[g][p] \{(m_ 1, state, ts-1)}) :

A V -CONFLICTR(m 1, m_2)
V ts- 1 < ts-2 V (m_ 1.id < m-2.id A ts-1 = ts_2)

A let
G = Memory! ForAllFilter (g, p,

lambda ti, t j : t-i [2] = “S3” A —CONFLICTR(t-i [1], t-j [1]))
D = G U {(m_ 1, “S3”, ts_ 1)}
F = {t[1] : t 6 D}

in
A Memory!Remove(g, p, D)

4

A.4. Generic Multicast 1 119

A Delivered' = [Delivered except ! [g][p] =
Delivered[g][p] U Enumerate(Cardinality(Delivered[g][p]), F)]

A unchanged (QuasiReliableChannel, AtomicBroadcastBuffer,
Votes, PreviousMsgs, K)

local InitProtocol =
A K = [i 6 Groups [p 6 Processes i]]
A Memory ! Init
A PreviousMsgs = [i 6 Groups [p 6 Processes {}]]
A Delivered = [i 6 Groups [p 6 Processes {}]]
A Votes = [i 6 Groups [p 6 Processes {}]]

local InitCommunication =
A AtomicBroadcast ! Init
A QuasiReliable ! Init

Init = InitProtocol /\ InitCommunication

Step(g, p) =
V ComputeGroupSeqNumber(g, p)
V GatherGroupsTimestamp(g, p)
V SynchronizeGroupClock (g, p)
V DoDeliver(g, p)

GroupStep (g) =
3 p 6 Processes : Step(g, p)

Next =
V 3 g 6 Groups : GroupStep(g)
V unchanged vars

Spec = Init A d[Next]vars

SpecFair = Spec A WFvars (3 g 6 Groups : GroupStep(g))

Helper functions to aid when checking the algorithm properties.

WasDelivered(g, p, m) =
Verifies if the given process p in group g delivered message m .

A 3 (idx, n) 6 Delivered[g][p] : n.id = m.id

FilterDeliveredMessages(g, p, m) =
Retrieve the set of messages with the same id as message m delivered by the given process p
in group g .

5

120 APPENDIX A. TLA+ Specifications

{(idx, n) e Delivered[g][p] : n.id = m.id}

DeliveredInstant(g, p, m) =
Retrieve the instant the process p in group g delivered message m .

(choose (t, n) e Delivered[g][p] : n.id = m.id)[1]

6

A.5. Generic Multicast 2 121

A.5 Generic Multicast 2

122 APPENDIX A. TLA+ Specifications

I--- module GenericMulticast2--- 1

local instance Commons
local instance Naturals
local instance FiniteSets

Number of groups in the algorithm.
constant NGROUPS

Number of processes in the algorithm.
constant NPROCESSES

Set with initial messages the algorithm starts with.
constant INITIAL-MESSAGES

The conflict relation.
constant CONFLICTR(-, _)

assume
Verify that NGROUPS is a natural number greater than 0.

A NGROUPS e (Nat \{0})
Verify that NPROCESSES is a natural number greater than 0.

A NPROCESSES e (Nat\{0})

local Processes = {p : p e 1 .. NPROCESSES}
local Groups = {g : g e 1 .. NGROUPS}

The module containing the Generic Broadcast primitive.
variable GenericBroadcastBuffer
GenericBroadcast = instance GenericBroadcast

The module containing the quasi reliable channel.
variable QuasiReliableChannel
QuasiReliable = instance QuasiReliable with

INITIAL.MESSAGES {}

The algorithm's Mem structure. We use a separate module.
variable MemoryBuffer
Memory = instance Memory

variables
The process local clock.

K,

1

A.5. Generic Multicast 2 123

The set contains previous messages. We use this with the CONFLICTR to verify conflicting
messages.
PreviousMsgs,

The set of delivered messages. This set is not an algorithm requirement. We use this to help
check the algorithm's properties.
Delivered,

A set contains the processes' votes for the message's timestamp. This structure is implicit in
the algorithm.
Votes

A í vars = (
K,
MemoryBuffer,
PreviousMsgs,
Delivered,
Votes,
GenericBroadcastBuffer,
QuasiReliableChannel

>

These are the handlers. The actual algorithm resides here, the lambdas only assert the guarding
predicates before calling the handler.

Check if the given message conflict with any other in the PreviousMsgs.
local HasConflict (g, p, m1) =

3 m2 6 PreviousMsgs[g][p] : CONFLICTR(m 1, m2)

local ComputeGroupSeqNumberHandler(g, p, msg, ts) =
A V A HasConflict(g, p, msg)

A K' = [K except ! [g][p] = K [g][p] + 1]
A PreviousMsgs' = [PreviousMsgs except ! [g][p] = {msg}]

V A —HasConflict(g, p, msg)
A PreviousMsgs' = [PreviousMsgs except ! [g][p] =

PreviousMsgs[g][p] U {msg}]
A unchanged K

A V A Cardinality (msg.d) > 1
A Memory!Insert(g, p, (msg, “S1”, K'[g][p]))
A QuasiReliable!Send((msg, g, K'[g][p]))

V A Cardinality(msg.d) = 1
A Memory! Insert (g, p, (msg, “S3”, K'[g][p]))
A unchanged QuasiReliableChannel

A unchanged (Delivered, Votes(

locai SynchronizeGroupClockHandler(g, p, m, tsf) =

2

124 APPENDIX A. TLA+ Specifications

A V A tsf > K [g][p]
A K' = [K except ! [g][p] = tsf]
A PreviousMsgs' = [PreviousMsgs except ! [g][p] = {}]

V A tsf < K [g][p]
A unchanged {K, PreviousMsgs)

A V A 3 {n, s, ts) 6 MemoryBuffer[g][p] :
As = “S1”
Am=n
A Memory!Insert(g, p, {m, “S3”, K'[g][p]))

V A unchanged MemoryBuffer
A unchanged {QuasiReliableChannel, Delivered, Votes)

local GatherGroupsTimestampHandler(g, p, msg, ts, tsf) =
A V A ts < tsf

A GenericBroadcast! GBroadcast(g, {msg, “S2”, tsf))
V unchanged GenericBroadcastBuffer

A Memory !Insert(g, p, {msg, “S3”, tsf))
A unchanged {K, PreviousMsgs, Delivered)

Executes when process P receives a message M from the Atomic Broadcast primitive and M is
in P 's memory. This procedure is extensive, with multiple branches based on the message's state
and destination. Let's split the explanation.

When M 's state is S 0, we first verify if M conflicts with messages in the PreviousMsgs set. If a
conflict exists, we increase P 's local clock by one and clear the PreviousMsgs set.

When message M has a single group as the destination, it is already in its desired destination and
is synchronized because we received M from Atomic Broadcast primitive. P stores M in memory
with state S 3 and timestamp with the current clock value.

When M includes multiple groups in the destination, the participants must agree on the final
timestamp. When M 's state is S 0, P will send its timestamp proposition to all other participants,
which is the current clock value, and update M 's state to S 1 and timestamp. If M 's state is S 2,
we are synchronizing the local group, meaning we may need to leap the clock to the M 's received
timestamp and then set M to state S 3.
ComputeGroupSeqNumber(g, p) =

A GenericBroadcast ! GBDeliver (g , p,
lambda t : t[2] = “S0” A ComputeGroupSeqNumberHandler(g, p, t[1], t[3]))

After exchanging the votes between groups, processes must select the final timestamp. When we
have one proposal from each group in message M 's destination, the highest vote is the decided
timestamp. If P 's local clock is smaller than the value, we broadcast the message to the local
group with state S 2 and save it in memory. Otherwise, we update the in-memory to state S 3.

We only execute the procedure once we have proposals from all participating groups. Since we
receive messages from the quasi-reliable channel, we keep the votes in the Votes structure. This
structure is implicit in the algorithm.
local HasNecessaryVotes(g, p, msg, ballot) =

A Cardinality(ballot) = Cardinality(msg.d)

3

A.5. Generic Multicast 2 125

A Memory! Contains(g, p, lambda n : msg.id = n[1].id A n[2] = “S1”)
GatherGroupsTimestamp(g, p) =

A QuasiReliable !ReceiveAndConsume(g, p,
lambda t :

A let
msg = t[1]
origin = t[2]
vote = (msg.id, origin, t[3])
ballot = {v 6 (Votes[g][p] U {vote}) : v[1] = msg.id}
elected = Max({x[3] : x 6 ballot})

in
We only execute the procedure when we have proposals from all groups.

A V A HasNecessaryVotes(g, p, msg, ballot)
A 3 (m, s, ts) 6 MemoryBuffer[g][p] : m = msg

A GatherGroupsTimestampHandler(g, p, msg, ts, elected)
A Votes' = [Votes except ! [g][p] = {

x 6 Votes[g][p] : x[1] = msg.id}]
V A ­ HasNecessary Votes (g , p, msg, ballot)

A Votes' = [Votes except ! [g][p] = Votes[g][p] U {vote}]
A unchanged (MemoryBuffer, K,

PreviousMsgs, GenericBroadcastBuffer)
A unchanged (Delivered))

SynchronizeGroupClock(g, p) ==
A GenericBroadcast ! GBDeliver(g, p,

lambda t : t[2] = “S2” A SynchronizeGroupClockHandler(g, p, t[1], t[3]))

When messages are to deliver, we select them and call the delivery primitive. Ready means they
are in state S3, and the message either does not conflict with any other in the memory structure
or is smaller than all others. Once a message is ready, we also collect the messages that do not
conflict with any other for delivery in a single batch.
DoDeliver(g, p) =

We are accessing the buffer directly, and not through the Memory instance.
We do this because is easier and because we are only reading the values here.
Any changes we do through the instance.

3 (m_ 1, state, ts_ 1) 6 MemoryBuffer [g][p] :
A state = “S3”
AV(m_2, ignore, ts_2) 6 (MemoryBuffer[g][p] \{(m_ 1, state, ts_ 1)}) :

A V -CONFLICTR(m 1, m_2)
V ts_ 1 < ts_2 V (m_ 1.id < m 2.id A ts_ 1 = ts_2)

A let
G = Memory ! ForAllFilter(g, p,

lambda t i, t_j : Mi[2] = “S3” A —CONFLICTR(Mi[1], t_j[1]))
D = G U {(m_ 1, “S3”, ts_ 1)}
F = {t[1] : t 6 D}

in

4

126 APPENDIX A. TLA+ Specifications

A Memory !Remove(g, p, D)
A Delivered' = [Delivered except ! [g][p] =

Delivered[g][p] U Enumerate(Cardinality(Delivered[g][p]), F)]
A unchanged (QuasiReliableChannel,

GenericBroadcastBuffer, Votes, PreviousMsgs, K)

local InitProtocol =
A K = [i e Groups [p e Processes 0]]
A Memory ! Init
A PreviousMsgs = [i e Groups [p e Processes {}]]
A Delivered = [i e Groups [p e Processes {}]]
A Votes = [i e Groups [p e Processes {}]]

local InitCommunication =
A GenericBroadcast ! Init
A QuasiReliable ! Init

Init = InitProtocol /\ InitCommunication

Step(g, p) =
V ComputeGroupSeqNumber(g, p)
V GatherGroupsTimestamp(g, p)
V DoDeliver(g, p)

GroupStep (g) =
3 p e Processes : Step(g, p)

Next =
V 3 g e Groups : GroupStep(g)
V unchanged vars

Spec = Init A d[Next]vars

SpecFair = Spec A WFvars (3 g e Groups : GroupStep(g))

Helper functions to aid when checking the algorithm properties.

WasDelivered(g, p, m) =
Verifies if the given process p in group g delivered message m .

A 3 (idx, n) e Delivered[g][p] : n.id = m.id

FilterDeliveredMessages(g, p, m) =
Retrieve the set of messages with the same id as message m delivered by the given process p
in group g .

5

A.5. Generic Multicast 2 127

{(idx, n(6 Delivered[g][p] : n.id = m.id}

DeliveredInstant(g, p, m) =
Retrieve the instant the process p in group g delivered message m .

(choose (t, n) 6 Delivered[g][p] : n.id = m.id)[1]

6

128 APPENDIX A. TLA+ Specifications

A.6 TLC Executions

This section contains information about the models we checked using TLC. First, we
show the TLA+ specification we created for each algorithm's property. Then, we display
all the information regarding the executions. Some checkings never finished executing.
The conflict relations we used were NeverConflict, AlwaysConflict , and IdConflict .

A.6.1 Generic Multicast 0

Combinations with NPROCESSES and NMESSAGES were simultaneously greater than 3
take too much time to complete.

Table 2 - Generic Multicast 0 Agreement configurations.

NPROCESSES NMESSAGES CONFLICTR
2 2 All
2 3 All
3 2 All

Table 3 - Generic Multicast 0 configurations for remaining properties.

NPROCESSES NMESSAGES CONFLICTR
2 2 All
2 3 All
3 2 All
4 2 All

A.6. TLC Executions 129

I-- module Agreement -- 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES
constant NMESSAGES
constant CONFLICTR(_, _)

Since this algorithm is for failure-free environments, the set of all processes is the same as the
correct ones.

local Processes = {i : i G 1 .. NPROCESSES}
local ChooseProcess = Choose x G Processes : true
local Create(id) = [id id, d Processes, o ChooseProcess]
local AllMessages = {Create(id) : id G 1 .. NMESSAGES}

variables
K,
Pending,
Delivering,
Delivered,
PreviousMsgs ,
Votes ,
QuasiReliableChannel

Initialize the instance for the Generic Multicast 0. The INITIALMESSAGES is a set with
NMESSA GES, unordered, a tuple with the starting state S0 and the message.

Algorithm = instance GenericMulticastO WITH
INITIALMESSAGES {(“S0", m) : m G AllMessages}

Weak fairness is necessary.
Spec = Algorithm ! SpecFair

If a correct process deliver a message m , then all correct processes in m.d eventually delivers m .

We verify that all messages in AllMessages, for all the processes that delivered a message, even-
tually, all the correct members in the destination will deliver.

Agreement =
V m G AllMessages :

Vp G Processes :
Algorithm !WasDelivered (p , m)

V q G {x G m.d : x G Processes} :
Algorithm!WasDelivered(q, m)

1

130 APPENDIX A. TLA+ Specifications

I---moduie Collision-- 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES
constant NMESSAGES
constant CONFLICTR(_, _)

Since this algorithm is for failure-free environments, the set of all processes is the same as the
correct ones.
locai Processes = {i : i 6 1 .. NPROCESSES}
locai ChooseProcess = choose x 6 Processes : true
locai Create(id) = [id id, d Processes, o ChooseProcess]
locai AllMessages = {Create(id) : id 6 1 .. NMESSAGES}

variables
K,
Pending,
Delivering,
Delivered,
PreviousMsgs ,
Votes,
QuasiReliableChannel

Initialize the instance for the Generic Multicast 0. The INITIAL-MESSAGES is a set with
NMESSA GES, unordered, a tuple with the starting state S0 and the message.
Algorithm = instance GenericMulticastO with

INITIAL-MESSAGES {(“S0", m) : m 6 AllMessages}

Spec = Algorithm! Spec

If a correct process p delivers messages m and n, p is in the destination of both messages, m and
n do not commute. Then, p delivers either m and then n or n and then m.
Collision =

□V p 6 Processes :
V m, n 6 AllMessages : A m.id = n.id

A Algorithm! WasDelivered(p, m)
A Algorithm! WasDelivered(p, n)
A CONFLICTR(m, n)

Algorithm! DeliveredInstant(p, m) =
Algorithm ! DeliveredInstant(p, n)

A.6. TLC Executions 131

I-- module Integrity -- 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES
constant NMESSAGES
constant CONFLICTR(_, _)

Since this algorithm is for failure-free environments, the set of all processes is the same as the
correct ones.

local Processes = {i : i G 1 .. NPROCESSES}
local ChooseProcess = Choose x G Processes : true

This property verifies that we only deliver sent messages. To assert this, we create NMESSAGES +
1 and do not include the additional one in the algorithm execution, then check that the delivered
ones are only the sent ones.

local AcceptableMessageIds = {id : id G 1 . . NMESSAGES}
local Create(id) = [id id, d Processes, o ChooseProcess]
local AllMessages = {Create(id) : id G 1 .. (NMESSAGES + 1)}
local SentMessage = {m G AllMessages : m.id G AcceptableMessageIds}

variables
K,
Pending,
Delivering,
Delivered,
PreviousMsgs ,
Votes ,
QuasiReliableChannel

Initialize the instance for the Generic Multicast 0. The INITIALMESSAGES is a set with
NMESSA GES, unordered, a tuple with the starting state S0 and the message.

Algorithm = instance GenericMulticastO WITH
INITIALMESSAGES {(“S0", m) : m G SentMessage}

Spec = Algorithm! Spec

local DeliveredOnlyOnce (p, m) =
Cardinality (Algorithm ! FilterDeliveredMessages (p , m)) = 1

For every message, all the correct processes in the destination deliver it only once, and a process
previously sent it.

Integrity =
□V m G AllMessages :

Vp G Processes :
Algorithm! WasDelivered(p, m)

(DeliveredOnlyOnce(p, m) A p G m.d A m G SentMessage)

1

132 APPENDIX A. TLA+ Specifications

I--module PartialOrder--- 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES
constant NMESSAGES
constant CONFLICTR(_, _)

Since this algorithm is for failure-free environments, the set of all processes is the same as the
correct ones.
local Processes = {i : i 6 1 .. NPROCESSES}
locai ChooseProcess = choose x 6 Processes : true
locai Create(id) = [id id, d Processes, o ChooseProcess]
local AllMessages = {Create(id) : id 6 1 .. NMESSAGES}

variables K , Pending, Delivering, Delivered,
PreviousMsgs , Votes, QuasiReliableChannel

Initialize the instance for the Generic Multicast 0. The INITIAL-MESSAGES is a set with
NMESSA GES, unordered, a tuple with the starting state S0 and the message.
Algorithm = instance GenericMulticastO with

INITIAL-MESSAGES {(“S0", m) : m 6 AllMessages}

Spec = Algorithm! Spec

local BothDelivered (p, q, m, n) =

A Algorithm! WasDelivered(p, m) A Algorithm! WasDelivered(p, n)
A Algorithm! WasDelivered(q, m) A Algorithm! WasDelivered(q, n)

local LHS (p, q, m, n) =
{p, q} Ç (m.d n n.d) A BothDelivered(p, q, m, n) A CONFLICTR(m, n)

local RHS (p, q, m, n) =
(Algorithm ! DeliveredInstant(p, m) < Algorithm! DeliveredInstant(p, n))

= (Algorithm! DeliveredInstant(q, m) < Algorithm! DeliveredInstant(q, n))

For every two messages, if they conflict, given a pair of processes, they are in the messages'
destination, then both must deliver in the same order.
PartialOrder =

□V p, q 6 Processes :
V m, n 6 AllMessages :

LHS(p, q, m, n) RHS(p, q, m, n)

A.6. TLC Executions 133

I--module Validity --- 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES
constant NMESSAGES
constant CONFLICTR(_, _)

Since this algorithm is for failure-free environments, the set of all processes is the same as the
correct ones.
local Processes = {i : i 6 1 .. NPROCESSES}
locai ChooseProcess = choose x 6 Processes : true
locai Create(id) = [id id, d Processes, o ChooseProcess]
local AllMessages = {Create(id) : id 6 1 .. NMESSAGES}

variables
K,
Pending,
Delivering,
Delivered,
PreviousMsgs ,
Votes,
QuasiReliableChannel

Initialize the instance for the Generic Multicast 0. The INITIALMESSAGES is a set with
NMESSA GES, unordered, a tuple with the starting state S0 and the message.
Algorithm = instance GenericMulticastO with

INITIALMESSAGES {(“S0", m) : m 6 AllMessages}

Weak fairness is necessary.
Spec = Algorithm! SpecFair

If a correct process GM-Cast a message m to m.d , then some process in m.d eventually GM-
Deliver m .

We verify that all messages on the messages that will be sent, then we verify that exists a process
on the existent processes that did sent the message and eventually exists a process on m.d that
delivers the message .
Validity ==

V m 6 AllMessages :
m.o 6 Processes 3 q 6 m.d : Algorithm! WasDelivered(q, m)

134 APPENDIX A. TLA+ Specifications

A.6.2 Generic Multicast 1

Table 4 - Generic Multicast 1 Integrity configurations.

NGROUPS NPROCESSES NMESSAGES CONFLICTR
1 2 2 All
1 3 2 All
1 2 3 All
2 2 1 All

Table 5 - Generic Multicast 1 configurations for Agreement and Validity.

NGROUPS NPROCESSES NMESSAGES CONFLICTR
1 2 2 All
1 3 2 All
1 2 3 All
1 2 4 All
2 2 1 All

Table 6 - Generic Multicast 1 configurations for Partial Order and Collision.

NGROUPS NPROCESSES NMESSAGES CONFLICTR
1 2 2 All
1 3 2 All
1 2 3 All
1 2 4 All

A.6. TLC Executions 135

I--- module Agreement--- 1
extends Naturals , FiniteSets , Commons, TLC

constant NPROCESSES
constant NGROUPS
constant NMESSAGES
constant CONFLICTR^, _

This algorithm works in an environment with crash-stop failures, but we do not model processes
failing. The set of all processes contains all correct ones.
local Processes = {i : i € 1 .. NPROCESSES}
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]
local AllMessages = CreateMessages(NMESSAGES, Groups, Processes)
local MessagesCombinations = CreatePossibleMessages (AllMessages)

variables
K,
PreviousMsgs,
Delivered,
Votes,
MemoryBuffer,
QuasiReliableChannel,
AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 1. The INITIAL-MESSAGES is a sequence,
totally ordered within a group, wherein the elements are tuples with the message, state, and
timestamp.
Algorithm = instance GenericMulticast 1 with

INITIAL-MESSAGES [
g € Groups TotallyOrdered(MessagesCombinations[1])]

Spec = Algorithm! SpecFair |Weak fairness is necessary.

If a correct process deliver a message m , then all correct processes in m.d eventually delivers m .

We verify that all messages in AllMessages , for all the processes that delivered a message, even-
tually, all the correct members in the destination will deliver.
local OnlyCorrects(g) == {x € ProcessesInGroup[g] : x € Processes}
Agreement =

V m € AllMessages :
V g_í € Groups :

3 p_í € ProcessesInGroup [g_í] :
Algorithm! WasDelivered(g_i, p_í, m)

V g_j € m.d : 3 p_j € OnlyCorrects(g_j) :
Algorithm! WasDelivered(g_j, p_j, m)

1

136 APPENDIX A. TLA+ Specifications

I---moduie Collision-- 1
extends Naturals, FiniteSets, Commons

constant NGROUPS
constant NPROCESSES
constant NMESSAGES
constant CONFLICTR(_, _)

locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]

locai AllMessages = CreateMessages(NMESSAGES, Groups, Processes)
local MessagesCombinations = CreatePossibleMessages(AllMessages)

variabies K, PreviousMsgs, Delivered, Votes, MemoryBuffer,
QuasiReliableChannel, AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 1. The INITIAL-MESSAGES is a sequence,
totally ordered within a group, wherein the elements are tuples with the message, state, and
timestamp.
Algorithm = instance GenericMulticast 1 with

INITIAL-MESSAGES [
g € Groups

TotallyOrdered (MessagesCombinations [(g%NMESSAGES) + 1])]

Spec = Algorithm! Spec

If a correct process p delivers messages m and n, p is in the destination of both messages, m and
n do not commute. Then, p delivers either m and then n or n and then m.
Collision =

□V g € Groups :
V p € ProcessesInGroup[g] :

V m 1, m2 € AllMessages : m 1.id = m2.id
A Algorithm! WasDelivered(g, p, m 1)
A Algorithm! WasDelivered(g, p, m2)
A CONFLICTR(m1, m2)

Algorithm! DeliveredInstant(g, p, m 1) =
Algorithm ! DeliveredInstant(g, p, m2)

A.6. TLC Executions 137

I---module Integrity -- 1
extends Naturals , FiniteSets , Commons, Sequences

constant NPROCESSES
constant NGROUPS
constant NMESSAGES
constant CONFLICTR^, _)

This algorithm works in an environment with crash-stop failures, but we do not model processes
failing. The set of all processes contains all correct ones.
locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]

This property verifies that we only deliver sent messages. To assert this, we create NMESSAGES +
1 and do not include the additional one in the algorithm execution, then check that the delivered
ones are only the sent ones.
local AcceptableMessageIds = {id : id € 1 .. NMESSAGES}
local AllMessages = CreateMessages(NMESSAGES + 1, Groups, Processes)
local SentMessage = {m € AllMessages : m.id € AcceptableMessageIds }

local MessagesCombinations == CreatePossibleMessages(AllMessages)
local CombinationsToSend = [

i € domain MessagesCombinations
SelectSeq(MessagesCombinations[i], lambda m : m € SentMessage)]

variables
K,
PreviousMsgs ,
Delivered,
Votes,
MemoryBuffer,
QuasiReliableChannel,
AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 1. The INITIAL-MESSAGES is a sequence,
totally ordered within a group, wherein the elements are tuples with the message, state, and
timestamp.
Algorithm = instance GenericMulticast 1 with

INITIAL-MESSAGES [g € Groups h-
TotallyOrdered(CombinationsToSend[1])]

Spec = Algorithm! Spec

1

138 APPENDIX A. TLA+ Specifications

local DeliveredOnlyOnce(g, p, m) ==
Cardinality(Algorithm!FilterDeliveredMessages(g, p, m)) = 1

For every message, all the correct processes in the destination deliver it only once, and a process
previously sent it.
Integrity ==

□V m € AllMessages :
V g € Groups :

V p € ProcessesInGroup[g] :
Algorithm! WasDelivered(g, p, m)

(DeliveredOnlyOnce(g, p, m) A g € m.d A m € SentMessage)

2

A.6. TLC Executions 139

I--module PartialOrder--- 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES, NGROUPS, NMESSAGES, CONFLICTRÇ.)
I-- 1
locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]

locai AllMessages = CreateMessages(NMESSAGES, Groups, Processes)
local MessagesCombinations = CreatePossibleMessages(AllMessages)

variables K, PreviousMsgs, Delivered, Votes, MemoryBuffer,
QuasiReliableChannel, AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 1. The INITIAL-MESSAGES is a sequence,
totally ordered within a group, wherein the elements are tuples with the message, state, and
timestamp.
Algorithm = instance GenericMulticast 1 with

INITIAL-MESSAGES [g € Groups h-
TotallyOrdered(MessagesCombinations [(g%NMESSA GES) + 1])]

Spec = Algorithm! Spec

local BothDelivered(g, p 1, p2, m 1, m2) =
A Algorithm! WasDelivered(g, p1, m 1) A Algorithm! WasDelivered(g, p 1, m2)
A Algorithm! WasDelivered(g, p2, m 1) A Algorithm! WasDelivered(g, p2, m2)

local LHS(g, p 1, p2, m 1, m2) =

A {p1, p2} C (m 1.d n m2.d)
A CONFLICTR(m1, m2)
A BothDelivered(g, p1, p2, m1, m2)

local RHS(g, p 1, p2, m 1, m2) =

(Algorithm ! DeliveredInstant(g, p1, m1) <
Algorithm ! DeliveredInstant(g, p1, m2))

= (Algorithm! DeliveredInstant(g, p2, m 1) <
Algorithm! DeliveredInstant(g, p2, m2))

For every two messages, if they conflict, given a pair of processes, they are in the messages'
destination, then both must deliver in the same order.
PartialOrder =

□V g € Groups :
Vp 1, p2 € ProcessesInGroup[g] :

V m1, m2 € AllMessages :
LHS(g, p1, p2, m 1, m2) RHS(g, p1, p2, m 1, m2)

140 APPENDIX A. TLA+ Specifications

I--moduie Validity--- 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES
constant NGROUPS
constant NMESSAGES
constant CONFLICTR(_, _)

locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]

locai AllMessages = CreateMessages(NMESSAGES, Groups, Processes)
local MessagesCombinations = CreatePossibleMessages(AllMessages)

variabies K, PreviousMsgs, Delivered, Votes, MemoryBuffer,
QuasiReliableChannel, AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 1. The INITIAL-MESSAGES is a sequence,
totally ordered within a group, wherein the elements are tuples with the message, state, and
timestamp.
Algorithm = instance GenericMulticast 1 with

INITIAL-MESSAGES [
g € Groups

TotallyOrdered(MessagesCombinations [(g%NMESSAGES) + 1])]

Weak fairness is necessary.
Spec = Algorithm ! SpecFair

If a correct process GM-Cast a message m to m.d , then some process in m.d eventually GM-
Deliver m .

We verify that all messages on the messages that will be sent, then we verify that exists a process
on the existent processes that did sent the message and eventually exists a process on m.d that
delivers the message .
Validity =

V m € AllMessages :
m.o[1] € Groups A m.o[2] € Processes

3 g € m.d :
3 p € ProcessesInGroup[g] : Algorithm! WasDelivered(g, p, m)

A.6. TLC Executions 141

A.6.3 Generic Multicast 2

Table 7 - Generic Multicast 1 Integrity configurations.

NGROUPS NPROCESSES NMESSAGES CONFLICTR
1 2 2 All
1 3 2 All
1 2 3 All
2 2 1 All

Table 8 - Generic Multicast 1 configurations for Agreement and Validity.

NGROUPS NPROCESSES NMESSAGES CONFLICTR
1 2 2 All
1 3 2 All
1 2 3 All
1 2 4 All
2 2 1 All

Table 9 - Generic Multicast 1 configurations for Partial Order and Collision.

NGROUPS NPROCESSES NMESSAGES CONFLICTR
1 2 2 All
1 3 2 All
1 2 3 All
1 2 4 All

142 APPENDIX A. TLA+ Specifications

I--- module Agreement--- 1
extends Naturals , FiniteSets , Commons

constant NPROCESSES
constant NGROUPS
constant NMESSAGES
constant CONFLICTR(_, _)

This algorithm works in an environment with crash-stop failures, but we do not model processes
failing. The set of all processes contains all correct ones.
local Processes = {i : i € 1 .. NPROCESSES}
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]

local AllMessages = CreateMessages(NMESSAGES, Groups, Processes)
local MessagesCombinations = CreatePossibleMessages(AllMessages)

variables
K,
PreviousMsgs,
Delivered,
Votes,
MemoryBuffer,
QuasiReliableChannel,
GenericBroadcastBuffer

Initialize the instance for the Generic Multicast 2. The INITIALMESSAGES is a sequence,
partially ordered. The sequence elements are sets of messages, messages that commute can share
a set.
Algorithm = instance GenericMulticast2 with

INITIALMESSAGES [g € Groups h-
PartiallyOrdered (

MessagesCombinations [(g%NMESSAGES) + 1], CONFLICTR)]

Weak fairness is necessary.
Spec = Algorithm ! SpecFair

If a correct process deliver a message m , then all correct processes in m.d eventually delivers m .

We verify that all messages in AllMessages , for all the processes that delivered a message, even-
tually, all the correct members in the destination will deliver.
local OnlyCorrects(g) = {x € ProcessesInGroup[g] : x € Processes}
Agreement =

V m € AllMessages :

1

A.6. TLC Executions 143

V g-i € Groups :
3 ^i € ProcessesInGroup [g_i] :

Algorithm! WasDelivered(g-i, p-i, m)
V g_j € m.d :
3 p-j € OnlyCorrects(g-j) :

Algorithm! WasDelivered(g_j, p_j, m)

2

144 APPENDIX A. TLA+ Specifications

I---moduie Collision-- 1
extends Naturals, FiniteSets, Commons

constant NGROUPS
constant NPROCESSES
constant NMESSAGES
constant CONFLICTR^, _)

This algorithm works in an environment with crash-stop failures, but we do not model processes
failing. The set of all processes contains all correct ones.
locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]

locai AllMessages = CreateMessages(NMESSAGES, Groups, Processes)
local MessagesCombinations = CreatePossibleMessages(AllMessages)

variabies K, PreviousMsgs, Delivered, Votes, MemoryBuffer,
QuasiReliableChannel, AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 2. The INITIALMESSAGES is a sequence,
partially ordered. The sequence elements are sets of messages, messages that commute can share
a set.
Algorithm = instance GenericMulticast2 with

INITIALMESSAGES [g € Groups
PartiallyOrdered (

MessagesCombinations[(g%NMESSAGES) + 1], CONFLICTR)]

Spec = Algorithm! Spec

If a correct process p delivers messages m and n, p is in the destination of both messages, m and
n do not commute. Then, p delivers either m and then n or n and then m.
Collision =

□V g € Groups :
V p € ProcessesInGroup[g] :

V m 1, m2 € AllMessages : m 1.id = m2.id
A Algorithm! WasDelivered(g, p, m 1)
A Algorithm! WasDelivered(g, p, m2)
A CONFLICTR(m1, m2)

Algorithm! DeliveredInstant(g, p, m 1) =
Algorithm! DeliveredInstant(g, p, m2)

A.6. TLC Executions 145

I---module Integrity -- 1
extends Naturals , FiniteSets , Sequences, Commons

constant NPROCESSES
constant NGROUPS
constant NMESSAGES
constant CONFLICTR^, _)

This algorithm works in an environment with crash-stop failures, but we do not model processes
failing. The set of all processes contains all correct ones.
locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]

This property verifies that we only deliver sent messages. To assert this, we create NMESSAGES +
1 and do not include the additional one in the algorithm execution, then check that the delivered
ones are only the sent ones.
local AcceptableMessageIds = {id : id € 1 .. NMESSAGES}
local AllMessages = CreateMessages(NMESSAGES + 1, Groups, Processes)
local SentMessage = {m € AllMessages : m.id € AcceptableMessageIds }

local MessagesCombinations == CreatePossibleMessages(AllMessages)
local CombinationsToSend = [i € domain MessagesCombinations

SelectSeq (MessagesCombinations [i] , lambda m : m € SentMessage)]

variables
K,
PreviousMsgs ,
Delivered,
Votes,
MemoryBuffer,
QuasiReliableChannel,
GenericBroadcastBuffer

Initialize the instance for the Generic Multicast 2. The INITIALMESSAGES is a sequence,
partially ordered. The sequence elements are sets of messages, messages that commute can share
a set.
Algorithm = instance GenericMulticast2 with

INITIALMESSAGES [g € Groups
Partially Ordered (

CombinationsToSend[(g%NMESSAGES) + 1], CONFLICTR)]

Spec = Algorithm! Spec

1

146 APPENDIX A. TLA+ Specifications

For every message, all the correct processes in the destination deliver it only once, and a process
previously sent it.
local DeliveredOnlyOnce(g, p, m) ==

Cardinality(Algorithm!FilterDeliveredMessages(g, p, m)) = 1
Integrity =

□V m 6 AllMessages :
V g 6 Groups :

V p 6 ProcessesIn Group[g] :
Algorithm! WasDelivered(g, p, m)

(DeliveredOnlyOnce(g, p, m) A g 6 m.d A m 6 SentMessage)

2

A.6. TLC Executions 147

I--module PartialOrder--- 1
extends Naturals, FiniteSets, Commons

constant NGROUPS, NPROCESSES, NMESSAGES, CONFLICTRÇ.)
I-- 1

This algorithm works in an environment with crash-stop failures, but we do not model processes
failing. The set of all processes contains all correct ones.
locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]
locai AllMessages = CreateMessages(NMESSAGES, Groups, Processes)
local MessagesCombinations = CreatePossibleMessages(AllMessages)

variables K, PreviousMsgs, Delivered, Votes, MemoryBuffer,
QuasiReliableChannel, AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 2. The INITIALMESSAGES is a sequence,
partially ordered. The sequence elements are sets of messages, messages that commute can share
a set.
Algorithm = instance GenericMulticast2 with

INITIAL-MESSAGES [g € Groups h-
PartiallyOrdered(

MessagesCombinations [(g%NMESSAGES) + 1], CONFLICTR)]

Spec = Algorithm! Spec

local BothDelivered(g, p 1, p2, m 1, m2) =
A Algorithm! WasDelivered(g, p1, m 1) A Algorithm! WasDelivered(g, p 1, m2)
A Algorithm! WasDelivered(g, p2, m 1) A Algorithm! WasDelivered(g, p2, m2)

local LHS(g, p 1, p2, m 1, m2) =

A {p1, p2} C (m 1.d n m2.d)
A CONFLICTR(m1, m2)
A BothDelivered(g, p1, p2, m1, m2)

local RHS(g, p 1, p2, m 1, m2) =

(Algorithm!DeliveredInstant(g, p1, m1) <
Algorithm ! DeliveredInstant(g, p1, m2))

= (Algorithm! DeliveredInstant(g, p2, m 1) <
Algorithm! DeliveredInstant(g, p2, m2))

For every two messages, if they conflict, given a pair of processes, they are in the messages'
destination, then both must deliver in the same order.
PartialOrder =

□V g € Groups :
Vp 1, p2 € ProcessesInGroup[g] :

V m1, m2 € AllMessages :
LHS(g, p1, p2, m 1, m2) RHS(g, p1, p2, m 1, m2)

148 APPENDIX A. TLA+ Specifications

I--- module Validity --- 1
extends Naturals, FiniteSets, Commons

constant NPROCESSES
constant NGROUPS
constant NMESSAGES
constant CONFLICTR(_, _)

This algorithm works in an environment with crash-stop failures, but we do not model processes
failing. The set of all processes contains all correct ones.
locai Processes = 1 .. NPROCESSES
locai Groups = 1 .. NGROUPS
locai ProcessesInGroup = [g € Groups Processes]

locai AllMessages = CreateMessages(NMESSAGES, Groups, Processes)
local MessagesCombinations = CreatePossibleMessages(AllMessages)

variables K, PreviousMsgs, Delivered, Votes, MemoryBuffer,
QuasiReliableChannel, AtomicBroadcastBuffer

Initialize the instance for the Generic Multicast 2. The INITIALMESSAGES is a sequence,
partially ordered. The sequence elements are sets of messages, messages that commute can share
a set.
Algorithm = instance GenericMulticast2 with

INITIALMESSAGES [g € Groups
PartiallyOrdered (

MessagesCombinations [(g%NMESSAGES) + 1], CONFLICTR)]

Weak fairness is necessary.
Spec = Algorithm ! SpecFair

If a correct process GM-Cast a message m to m.d , then some process in m.d eventually GM-
Deliver m .

We verify that all messages on the messages that will be sent, then we verify that exists a process
on the existent processes that did sent the message and eventually exists a process on m.d that
delivers the message .
Validity =

V m € AllMessages :
m.o[1] € Groups A m.o[2] € Processes

3 g € m.d :
3 p € ProcessesInGroup[g] : Algorithm! WasDelivered(g, p, m)

