
Mineração de Soluções Relevantes para Tarefas

de Programação a partir de Resultados de

Mecanismos de Busca

Adriano Mendonça Rocha

Universidade Federal de Uberlândia

Faculdade de Computação

Programa de Pós-Graduação em Ciência da Computação

Uberlândia

2022

Adriano Mendonça Rocha

Mineração de Soluções Relevantes para Tarefas

de Programação a partir de Resultados de

Mecanismos de Busca

Tese de doutorado apresentada ao Programa de

Pós-graduação da Faculdade de Computação

da Universidade Federal de Uberlândia como

parte dos requisitos para a obtenção do título

de Doutor em Ciência da Computação.

Área de concentração: Ciência da Computação

Orientador: Marcelo de Almeida Maia

Uberlândia

2022

com dados informados pelo(a) próprio(a) autor(a).

Ficha Catalográfica Online do Sistema de Bibliotecas da UFU

Rocha, Adriano Mendonça, 1986-R672

2022 Mineração de soluções relevantes para tarefas de

programação a partir de resultados de mecanismos de

busca [recurso eletrônico] / Adriano Mendonça Rocha. -

2022.

Orientador: Marcelo de Almeida Maia.

Tese (Doutorado) - Universidade Federal de Uberlândia,

Pós-graduação em Ciência da Computação.

Modo de acesso: Internet.

CDU: 681.3

Disponível em: http://doi.org/10.14393/ufu.te.2022.565

Inclui bibliografia.

Inclui ilustrações.

1. Computação. I. Maia, Marcelo de Almeida ,1969-,

(Orient.). II. Universidade Federal de Uberlândia. Pós-

graduação em Ciência da Computação. III. Título.

Bibliotecários responsáveis pela estrutura de acordo com o AACR2:

Gizele Cristine Nunes do Couto - CRB6/2091

Nelson Marcos Ferreira - CRB6/3074

Documento assinado eletronicamente por Fabiano Azevedo Dorça, Professor(a) do Magistério Superior, em
03/10/2022, às 16:52, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539,
de 8 de outubro de 2015.

Documento assinado eletronicamente por Eduardo Magno Lages Figueiredo, Usuário Externo, em 03/10/2022, às
18:42, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro
de 2015.

Documento assinado eletronicamente por Flávio de Oliveira Silva, Professor(a) do Magistério Superior, em
04/10/2022, às 08:33, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539,
de 8 de outubro de 2015.

A auten�cidade deste documento pode ser conferida no site h�ps://www.sei.ufu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 3970275 e o código CRC
1EA304E8.

Referência: Processo nº 23117.073309/2022-21 SEI nº 3970275

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
https://www.sei.ufu.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

Este trabalho é dedicado à todos os

que me ajudaram ao longo desta caminhada.

Agradecimentos

Primeiramente agradeço ao meu orientador, Professor Doutor Marcelo de Almeida

Maia, por ter sempre me orientado de forma a me despertar interesse pela área pesquisada.

Além de me transmitir o conhecimento necessário para a realização do presente estudo,

sempre disposto a tirar as dúvidas relacionadas à pesquisa.

À minha família pela força, apoio e compreensão que depositou em mim durante esta

jornada.

À todas pessoas que de alguma forma contribuíram com o presente estudo.

ŞDuas coisas instruem o homem, qualquer que seja a sua natureza:

o instinto e a experiência.Ť

(Blaise Pascal)

Resumo

O desenvolvimento de software é uma atividade intensiva em conhecimento. Doc-

umentações oĄciais para desenvolvedores podem não ser suĄcientes para todas as suas

necessidades. A busca de informações na Web é uma prática usual, mas encontrar in-

formações realmente úteis pode ser um desaĄo, pois nem sempre as melhores soluções

estão entre as primeiras páginas ranqueadas. Assim, os desenvolvedores têm que ler e

descartar páginas irrelevantes, ou seja, páginas que não possuem exemplos de código ou

que possuem conteúdo não focado na solução desejada. Este trabalho tem como objetivo

entender como a qualidade do ranking retornado por mecanismos de busca pode inĆuen-

ciar o desempenho de desenvolvedores durante a resolução de tarefas de programação, e

propor uma abordagem para minerar soluções relevantes para tarefas de programação a

partir de resultados de buscas. Em uma análise preliminar, avaliamos as 20 principais

páginas retornadas pelo mecanismo de pesquisa do Google, para 10 consultas diferentes,

e observamos que apenas 31% das páginas avaliadas são relevantes para desenvolvedores.

Diante disso, realizamos um primeiro estudo com desenvolvedores que mostrou que estes

gastaram menos tempo durante a resolução de tarefas de programação, ao utilizarem um

ranking de qualidade superior (em média, os desenvolvedores gastaram por volta de 4

minutos a mais, durante a resolução das tarefas, ao utilizarem um ranking de qualidade

inferior). Em um segundo estudo, propusemos e avaliamos três abordagens diferentes para

minerar páginas relevantes retornadas pelo mecanismo de busca. Os Ąltros propostos se

mostraram eĄcazes na remoção de páginas irrelevantes, e desta forma, melhoraram a qual-

idade do ranking. Concluímos que desenvolvedores podem se beneĄciar desses Ąltros, de

maneira a aumentar sua produtividade durante realizações de tarefas de programação.

Palavras-chave: Tarefas de Programação. Mineração de Soluções Relevantes. Motores

de Busca.

Mining Relevant Solutions for Programming

Tasks from Search Engine Results

Adriano Mendonça Rocha

Universidade Federal de Uberlândia

Faculdade de Computação

Programa de Pós-Graduação em Ciência da Computação

Uberlândia

2022

UNIVERSIDADE FEDERAL DE UBERLÂNDIA – UFU

FACULDADE DE COMPUTAÇÃO – FACOM

PROGRAMA DE PÃS-GRADUAÇÃO EM CIÊNCIA DA

COMPUTAÇÃO – PPGCO

The undersigned hereby certify they have read and recommend to the

PPGCO for acceptance the thesis entitled “Mining Relevant Solutions

for Programming Tasks from Search Engine Results” submitted by

“Adriano Mendonça Rocha” as part of the requirements for obtaining

the Doctoral degree in Computer Science.

Uberlândia, de de

Supervisor:

Prof. Dr. Marcelo de Almeida Maia

Universidade Federal de Uberlândia

Examining Committee Members:

Prof. Dr. Eduardo Figueiredo

Universidade Federal de Minas Gerais

Prof. Dr. Uirá Kulesza

Universidade Federal do Rio Grande do Norte

Prof. Dr. Fabiano Azevedo Dorça

Universidade Federal de Uberlândia

Prof. Dr. Flávio de Oliveira Silva

Universidade Federal de Uberlândia

Abstract

Software development is a knowledge-intensive activity. Official documentation for

developers may not be sufficient for all developer needs. Searching for information on the

web is a usual practice, but Ąnding really useful information may be challenging, because

the best solutions are not always among the Ąrst ranked pages. So, developers have to

read and discard irrelevant pages, that is, pages that do not have code examples or that

have content not focused on the desired solution. This work aims to understand how the

ranking quality returned by search engines can inĆuence the performance of developers

when solving programming tasks, and to propose an approach to mine relevant solutions

for programming tasks from search engines results. In a preliminary analysis, we evaluated

the top 20 pages returned by GoogleŠs search engine, for 10 different queries, and observed

that only 31% of the pages evaluated are relevant to developers. Therefore, we carried out

a Ąrst study with developers that showed that they spent less time solving programming

tasks, when using a higher quality ranking (on average, developers spent around 4 minutes

more during solving tasks, when using a lower quality ranking). In a second study, we

proposed and evaluated three different approaches to mine relevant pages returned by the

search engine. The Google search engine that was used as a baseline returns a fair number

of pages that are irrelevant to developers. The Ąlters we propose are effective in removing

irrelevant pages, in this way, a better quality ranking is generated. Developers can beneĄt

from these Ąlters in order to increase their productivity while performing programming

tasks.

Keywords: Programming Tasks. Mining Relevant Solutions. Search Engines.

List of Figures

Figure 1 Ű Main steps of the proposed approach. 19

Figure 2 Ű Example of the application of the Ąrst and second steps of the k-means

algorithm. 30

Figure 3 Ű Example of the application of the third and fourth steps of the k-means

algorithm. 30

Figure 4 Ű Example of the end of the application of the k-means algorithm. 30

Figure 5 Ű Example of application of the k-means algorithm. 31

Figure 6 Ű Results of the evaluation of the pages returned by the search engine for

the degree of focus criterion. 67

Figure 7 Ű Results of the evaluation of the pages returned by the search engine for

the solution size criterion. 68

Figure 8 Ű Results of the evaluation of the pages returned by the search engine for

the code example criterion. 69

Figure 9 Ű Precision of the baseline and the three approaches increasing the num-

ber of pages given as input. 70

Figure 10 Ű Recall of the baseline and the three approaches increasing the number

of pages given as input. 70

Figure 11 Ű F-Measure of the baseline and the three approaches increasing the num-

ber of pages given as input. 71

List of Tables

Table 1 Ű Comparison of the technical elements handled during the resolutions of

the Ąrst and second tasks. 35

Table 2 Ű Comparison of the technical elements handled during the resolutions of

the third and fourth tasks. 36

Table 3 Ű Positions where the relevant pages occur. 38

Table 4 Ű Results of the navigability by ranking, for the four proposed program-

ming tasks. 43

Table 5 Ű Findings related to RQ1, found in the results of the analysis of the

participantsŠ videos. 45

Table 6 Ű Results of the addition of the list of methods in the summary below the

links of the pages, for the four proposed programming tasks. 46

Table 7 Ű Findings related to RQ2, found in the results of the analysis of the

participantsŠ videos. 47

Table 8 Ű Findings related to RQ3, found in the results of the analysis of the

participantsŠ videos. 48

Table 9 Ű Example of application of the clustering algorithm on the pages returned

by the search engine. 60

Table 10 Ű Clusters with their respective method calls that occur on at least two

pages and the sum of those occurrences. 61

Table 11 Ű Main Ąltering features of baseline and approaches 61

Table 12 Ű Selected APIs, application domains and queries. 62

Table 13 Ű Comparison of Hit, Recall@K, MRR, MAP and NDCG metrics results,

for K=5, considering the 20 pages returned by the search engine as

input, for the 10 queries evaluated. 72

Acronyms list

Contents

1 INTRODUCTION . 15

1.1 Motivation . 17

1.2 Goals . 18

1.3 Research Questions . 21

1.4 Thesis Organization . 22

2 BACKGROUND . 25

2.1 Search Engines . 25

2.2 Grounded Theory . 27

2.3 Clustering Algorithms . 28

3 THE INFLUENCE OF SEARCH ENGINE RANKING QUAL-

ITY ON THE PERFORMANCE OF DEVELOPERS 33

3.1 Study Setting . 33

3.1.1 DeĄnition of Programming Tasks for the Qualitative Study 34

3.1.2 Building Higher Quality Ranking and Lower Quality Ranking 36

3.1.3 Recruitment for the Qualitative Study 38

3.1.4 Ranking Evaluation . 39

3.1.5 Qualitative Study Steps . 40

3.1.6 Methodology for Evaluating the Results 41

3.2 Results . 43

3.2.1 On the InĆuence of Ranking Quality 43

3.2.2 On the InĆuence of the List of Methods 46

3.2.3 On the InĆuence of Irrelevant Pages on Developers 47

3.3 Discussion . 49

3.4 Threats to Validity . 52

3.5 Conclusion . 53

4 MINING RELEVANT SOLUTIONS FROM SEARCH EN-

GINE RESULTS . 55

4.1 The Mining Approach . 55

4.1.1 Mining Steps . 55

4.1.2 Parameter calibration . 56

4.1.3 Lower and Upper Limits for Outlier Pages 56

4.1.4 Page Ąltering mechanism . 57

4.2 Study Setting . 59

4.2.1 DeĄnition of baselines . 59

4.2.2 DeĄnition of queries for assessment . 61

4.2.3 Ground-truth . 63

4.3 Results . 66

4.3.1 Study on the pages returned by the Google search engines 66

4.3.2 Effectiveness of Page Filtering . 68

4.3.3 Ranking Quality . 72

4.4 Discussion . 73

4.5 Threats to Validity . 75

4.6 Conclusion . 76

5 RELATED WORK . 77

5.1 On the InĆuence of the Ranking Quality for Developers 77

5.2 On Mining Relevant Solutions from Search Engine Results . . . 79

6 CONCLUSION . 83

6.1 Bibliographic Production . 85

BIBLIOGRAPHY . 87

I hereby certify that I have obtained all legal permissions from the owner(s) of each

third-party copyrighted matter included in my thesis, and that their permissions allow

availability such as being deposited in public digital libraries.

student name and signature

14 LIST OF TABLES

15

Chapter 1

Introduction

Software development is a knowledge-intensive task (MURPHY et al., 2019), where

the search for information is a constant challenge. A survey conducted by Stack OverĆow

in 2022, which asked how much time developers typically spend looking for answers or

solutions to problems encountered at work, reveals that 62% of developers spend more

than 30 minutes a day searching for answers or solutions to problems, and 25% spending

more than an hour each day. For a team of 50 developers, the amount of time spent

searching for answers/solutions adds up to between 333-651 hours of time lost per week

across the entire team. A total of 36,198 developers participated in the survey1. Program-

mers search for code very frequently, conducting an average of Ąve search sessions with 12

total queries each workday (SADOWSKI; STOLEE; ELBAUM, 2015). These data show

the importance of efficient means for developers to obtain information to perform their

functions.

The Web is a medium used by software developers to obtain relevant information re-

lated to software development, which offers a vast variety of information sources, such

as, tutorials, blogs, question and answer (Q&A) services. A challenge in searching for

information on the Web is the large amount of publicly available information (BA-

JRACHARYA; OSSHER; LOPES, 2014). Paradoxically, the overload of available content

burdens developers, who must search, screen and analyze content from several web pages

until they Ąnd those that are really relevant for the particular task (Sharma et al., 2010;

Kataria; Sapra, 2016).

Among the various sources of technical content, Stack OverĆow is a Q&A service

speciĄc for software developers, with a large volume of content, that also challenges the

search for relevant content (SILVA et al., 2019; SILVA et al., 2020). Moreover, Stack

OverĆow does not cover all the API functions of a chosen programming technology, and

the best solutions for a programming task may also not be always available on Stack

OverĆow (DELFIM et al., 2016).

Search engines are one the most-used services on the Web (AGRAHRI; MANICKAM;

1 https://survey.stackoverĆow.co/2022/

16 Chapter 1. Introduction

RIEDL, 2008). Developers also use general purpose search engines, such as Google or

Bing, to Ąnd technical information for their task in hand (HORA, 2021b; NIU; KEIVAN-

LOO; ZOU, 2017; SIM et al., 2011; RAHMAN et al., 2018). The use of search engines

to Ąnd solutions related to software development has the inherent problem that the best

solutions are not necessarily always among the best ranked pages (CHATTERJEE; JU-

VEKAR; SEN, 2009; HORA, 2021a). The top ranked results for such queries may not

contain relevant documents to the userŠs search intent (ZHUANG; CUCERZAN, 2006).

Problems that typically appear among the Ąrst returned pages from a search query are

lack of code examples or little relevance for the task in hand, for example, pages with

content that is not very focused on the query performed by the developer. Generally,

people are biased in clicking on those items that are presented at the top of the result

list, returned by the search engine (KEANE; OŠBRIEN; SMYTH, 2008). When it comes

to software development, when clicking on the Ąrst pages and these are not relevant to

developers, they possibly can waste time looking for an inadequate solution for a task,

hindering their performance.

Another problem is that search engines, in some cases, may have a negative behaviour

of avoiding fresh web pages. This behaviour may be explained because one of the weight-

ing factors used by these mechanisms is the popularity of the pages, that is, popular pages

tend to stay at the top of the ranking. Completing the cycle, users click more frequently

on these pages, further increasing their popularity. Fresh pages tends to be not popular

because they are new, and thus may be returned in lower positions of the ranking. The

negative cycle tends to persist because few users click on and/or create links to them,

keeping them in lower ranking positions, even if such pages have high quality content

(CHO; ROY, 2004; ZHUANG; CUCERZAN, 2006). In software development, developers

would need to screen lower quality content in best ranked pages until Ąnding relevant so-

lutions, which is a task that requires time and effort (XIA et al., 2017). This phenomenon

justiĄes the importance of approaches that search pages for the relevant content and not

just for their popularity.

The aim to improve search engine results has been a very active research area along

the past decades. Many approaches focus on speciĄc solutions to mine speciĄc content

from the general query results. For instance, Saraswathi e Vijaya (2013), Kim, Collins-

Thompson e Teevan (2016) propose to detect link spam in the results. Zahera, El-Hady

e El-Wahed (2011) use crowd information to improve the search experience. Zhuang e

Cucerzan (2006) propose clustering query results to facilitate classifying the pages. Amin

e Emrouznejad (2011) propose a meta search engine approach combining the results of

different search engines. Caramia, Felici e Pezzoli (2004) proposes a mining approach

query results based on a thematic databases of web pages. Zhao et al. (2017) proposes

the identiĄcation of major contents using topic modeling on query results to facilitate

screening the returned pages. Hong, Vaidya e Lu (2011), Lau e Horvitz (1999), Rahman,

1.1. Motivation 17

Roy e Lo (2019) propose approaches to help query recommendation or reformulation to

help users Ąnding more easily the desired content. In this thesis, as in those previous

work, we follow the approach of using search engine results as initial input, and mine

the results to improve the developer experience when querying for their problem in hand.

Below we show the main contributions of this thesis in relation to related work:

❏ Development of a Ąlter that removes outliers pages returned by search engines.

Outlier pages are those that have a very high or very low number of method calls,

in relation to the average number of method calls in the Ąrst N pages returned by

the search engine.

❏ Development of a Ąlter that uses a clustering algorithm, having as attribute the

occurrences of methods present in the pages returned by the search engine, in order

to remove irrelevant pages for software developers.

❏ Development of an approach that combines the two Ąlters mentioned above, in order

to improve the ranking quality of pages returned by search engines.

The two Ąlters and the approach that we are proposing are a novelty in the area of

Software Engineering, since in related work no such Ąlters and approach are available to

Ąlter relevant documentation for developers in generic web pages. As the results of this

thesis show, the two proposed Ąlters are effective in removing irrelevant pages for software

developers and the approach improves the ranking quality of pages returned by search

engines.

1.1 Motivation

We present a motivating example to illustrate the problem of how low quality content

in search hinders developers when looking for development solutions.

Consider a scenario where a developer wants to learn how to save data from an Android

application to a web server, using the JAVA programming language and the Android

API. The developer would use, for instance, the following search query, which seems to be

simple and with sufficient details: Şhow to save data from application to web server Java

Android". Inspecting the results, we observed that the top-1 page has no source code,

but only a question posted by a user on how to save data from an Android application

to a remote server. So after reading this page, the developer would need to check the

next ones. In the top-2, there is also no source code, but only a text with an overview

of the data and Ąle storage on Android. The top-3 presents an explanation and source

code of how to save data locally in an Android application. However, the solution on

the page addresses a different function than the one desired by the developer, and the

developer would still need to continue reading the next pages. The top-4 page provides

18 Chapter 1. Introduction

content related to how to store data in Google Drive. Note that the content on this page

also addresses a different solution than the developer researched. The top-5 page provides

explanation and source code on how to download Ąles in Android. Again, the content in

this page does not address the solution desired by the developer. In the top-6 page, there

is no source code, just an overview of the FCM (Firebase Cloud Messaging) architecture,

which is a technology that offers messaging capabilities for different platforms. The top-7

page is a website of a software development company, where there is no content related

to the search query, only the companyŠs portfolio. The top-8 page provides a solution

on how to save data on the remote server, but the solution lacks focus because it also

explores how to receive notiĄcations when the stored data is changed, which was not the

original goal in the query. The top-9 presents a solution on how to store data in a SD

card, which is again a different solution than what the developer looks for through the

searched query. The top-10 provides a solution explaining how to save data to a Ąle on

Android, therefore, the solution addresses a function different from the one desired by

the user. Finally, only in the top-11, the developer Ąnds a relevant solution with a high

degree of focus. The adequate page found only in the 11th position illustrates a scenario

where the developer may need to read and analyze the content of several pages that are

not related to the performed query, thus wasting time and effort.

Regarding this motivating example, one would question if the ranked results are not

satisfactory because of an ill-formulated query. Although, we agree that a different query

would produce a different ranking, the query proposed in the example seems to be a pos-

sible one that developers would launch. Moreover, small changes in the query formulated

by the developer do not affect much the results returned by the search engine (HORA,

2021b). Alternative approaches for automatic reformulating queries may produce a list of

pages with more adequate semantic matching with the query, but still does not address

some issues such as lack of focus in returned pages. So, we envision that approaches that

mine for relevant content in whatever list of returned pages, independently of the query

quality, may play an important role for improving the developer performance.

1.2 Goals

In order to better understand the aforementioned problems, and Ąnd a solution for

them, we propose two studies in this thesis.

The Ąrst study aims to understand how the quality of the ranking returned by these

engines can inĆuence developers, positively or negatively, during the development of pro-

gramming tasks. To achieve this goal, we recruited undergraduate and graduate students

to participate in a qualitative study, where they developed programming tasks. The tasks

were organized in pairs with similar degree of difficulty. We aim at evaluating the per-

formance of the participants by keeping the level of difficulty constant and setting the

20 Chapter 1. Introduction

❏ Understand how irrelevant pages present in lower quality ranking can undermine

the goal of developers to Ąnd solutions to problems related to software develop-

ment. Irrelevant pages are those that do not contribute to the solution sought by

the developer. Pages with no focus on the query searched by the user in search en-

gines are examples of irrelevant pages. Irrelevant pages can harm developers while

performing programming tasks, since these developers can spend considerable time

analyzing and studying the content of these pages, or even coding, to end up not

having the intended solution.

The speciĄc objectives of the study on the relevance of pages returned by the GoogleŠs

search engine and the proposed approaches to remove irrelevant pages returned by search

engines are presented below:

❏ Propose a ground-truth and analyze the relevance of pages returned by the Google

search engine to software developers, given as input queries related to programming

tasks. As explained above, search engines are not designed exclusively to search

for content related to software development, when these engines are used for this

purpose, they usually return pages without source code examples or pages with

content not focused on the search performed by the developer. Considering this

issue, we propose to carry out a study on the pages returned by the Google search

engine, in order to analyze the relevance of the pages returned to software developers.

❏ Develop and evaluate a Ąlter that removes outliers pages returned by search engines.

Outlier pages are those that have a very high or very low number of method calls,

in relation to the average number of method calls in the Ąrst N pages returned by

the search engine. Generally, pages with few method calls in their solutions tend

to not have code examples that solve the problem queried by the developer, and

pages with a large number of method calls tend have complex and extensive code

examples.

❏ Develop and evaluate a Ąlter that uses a clustering algorithm, having as an attribute

the total occurrences of methods present in the pages returned by the search engine,

in order to remove irrelevant pages for software developers. To obtain pages that

possibly have solutions focused on the user query, we propose to apply a cluster-

ing algorithm using a proxy metric based on the sharing of common method calls

between the pages.

❏ Develop and evaluate a Ąlter that uses a clustering algorithm, having as an attribute

the unique occurrences of methods present in the pages returned by the search

engine, in order to remove irrelevant pages for software developers.

1.3. Research Questions 21

❏ Analyze whether the application of the proposed Ąlters can improve the ranking

quality returned by the search engines. We hope that once irrelevant pages are

removed from the ranking returned by the Google search engine, a better quality

ranking is generated. As Ąlters can also remove relevant pages, this analysis is

important to verify if, in the end, it is worth applying them to the results returned

by the search engine.

1.3 Research Questions

We formulated the following research questions related to the study on the inĆuence

that the ranking quality exerts on the performance of developers when solving program-

ming tasks:

RQ1: Does the ranking quality of query results have any inĆuence on the performance

of developers in the development of programming tasks? This research question aims

to show the inĆuence that the ranking quality exerts on the performance of developers

during the development of programming tasks. Our hypothesis is that lower quality

rankings make developers spending more time trying to solve the proposed programming

task, since there are more pages (irrelevant pages) in top positions of the rank that do

not contribute to solving the proposed programming task.

RQ2: Is there any inĆuence by adding a list of frequent methods in the description

of the pages in the result returned by the search engine for developers? This research

question aims to show the inĆuence that the addition of information about the most

frequent methods occurred in the returned pages exerts on the developers, during the

analysis of the page descriptions. Our hypothesis is that the list helps developers, since

developers can use the names of the methods present in the list to implement the desired

solution or use the information from the list of methods to decide whether or not to enter

the page. For example, in cases where the method list is empty, there is no source code

related to methods, so the developer looking such code may decide not to enter the page.

RQ3: How do irrelevant pages present in lower quality rankings hinder developersŠ

goal of Ąnding relevant solutions? This research question aims to show how irrelevant

pages present in lower quality rankings hinder developers to Ąnd solutions to problems

related to proposed programming tasks. Our hypothesis is that when developers Ąnd bad

code on a irrelevant page, they spend a lot of time trying to reuse such code. They may

try to Ąx the bad code by searching for content on other pages, spending even more time.

In the worst case, when the code cannot be Ąxed, all the effort is wasted, and developers

must start searching for the solution on another page.

We formulated the following research questions related to the study on the relevance

of pages returned by the GoogleŠs search engine and the proposed approaches to remove

irrelevant pages returned by search engines:

22 Chapter 1. Introduction

RQ4: To what extent does GoogleŠs search engine return relevant pages to software

developers? This research question is intended to show the relevance of the pages returned

by the search engine to software developers. Since this mechanism is general-purpose, it

is not focused on software development. Our hypothesis is that many pages that are

irrelevant to software developers are returned by the Google search engine.

RQ5: To what extent applying outlier pages removal Ąlter w.r.t. the page size help to

remove irrelevant pages returned by search engines? This research question aims to inves-

tigate if the proposed Ąlter removes irrelevant outlier pages returned by search engines.

Pages with few method calls compared to the average of method calls of the Ąrst N pages

returned by the search engine, generally, seems not to implement something functional

for developers. Pages with many method calls in relation to the average usually seems to

implement functionality beyond those related to the query performed by the developer in

the search engine, losing focus on the main solution. Our hypothesis is that the proposed

Ąlter would help to remove these pages, improving the ranking quality.

RQ6: To what extent applying clustering algorithms w.r.t. the total method calls in

returned pages help to remove irrelevant pages returned by search engines? This research

question aims to show that the proposed Ąlter that uses the clustering algorithm, having

as attribute the total occurrences of each method call, removes irrelevant pages returned

by search engines. The idea of such clustering is to aggregate pages that share the same

method calls in the same cluster. Our hypothesis is that pages that share common method

calls and that have a small variety of other different method calls (which do not appear

on other pages) would have solutions that are more focused on the developerŠs query.

RQ7: To what extent applying clustering algorithms w.r.t. unique occurrences of

method calls help to remove irrelevant pages returned by search engines? This research

question aims to show that the proposed Ąlter that uses the clustering algorithm, having

as attributes unique occurrences of method calls, removes irrelevant pages returned by

search engines. The idea for applying clustering is similar to the previous one, however,

now the hypothesis is that the number of occurrences of the method calls would make no

difference, but only if the method occurs or not.

RQ8: To what extent applying the Ąlters proposed in this work improve the ranking

quality of pages returned by search engines? This research question aims to show that the

application of the Ąlters proposed in this work improves the ranking quality returned by

search engines. Our hypothesis is that the pages removed by the proposed Ąlters improve

the ranking quality.

1.4 Thesis Organization

This thesis is organized as follows. This chapter has presented the introduction, show-

ing a motivating example to illustrate how the problem of low quality of web pages

1.4. Thesis Organization 23

returned by search engines harms the performance of developers. This chapter also intro-

duced the two main studies developed in this thesis. The Ąrst study aims to investigate

the inĆuence that ranking of query results has on the performance of developers when

performing programming tasks, to demonstrate the importance of the proposed Ąlters for

the generation of a better quality ranking for software developers. The second study is

about the mining of pages in the results returned by search engines, which aims to eval-

uate the proposed approaches to Ąlter pages relevant to software developers. The goals

and research questions of this thesis have also been shown.

Chapter 2 presents the main concepts related to this thesis, such as search engines,

grounded theory and clustering algorithm. Search engines are important in this work, as

the proposed approach aims to improve the results returned by these mechanisms. We

used grounded theory as inspiration to extract the Ąndings from the study in Chapter

3, where the main goal is to understand the inĆuence that a higher quality ranking

and a lower quality ranking have on the performance of developers when performing

programming tasks. Clustering algorithm is used by the proposed approach to group web

pages that have a set of method calls in common in their solutions, in clusters.

Chapter 3 presents the study on the inĆuence that the ranking quality of query results

exerts on the performance of software developers during the resolution of programming

tasks. The main objective of this study is to understand how the ranking quality inĆu-

ences the performance of developers when solving programming tasks. We also veriĄed

whether the addition of information about the methods that occur most frequently on

the pages present in the ranking can inĆuence the developers, when they are performing

programming tasks. We also aim to understand how irrelevant pages present in lower

quality ranking can hinder developersŠ goal of Ąnding solutions to problems related to

software development.

Chapter 4 presents the study on mining the results returned by the search engine.

The main objective of this study is to develop a Ąltering approach capable of removing

irrelevant pages for software developers present in the results returned by search engines.

We evaluate the proposed variations of the Ąltering approach to assess their effectiveness

for improving the ranking quality returned by these search engines.

Chapter 5 presents previous works related to the two main studies developed in this

thesis. Finally, Chapter 6 presents the conclusion and future work.

24 Chapter 1. Introduction

25

Chapter 2

Background

This chapter aims to present the main concepts related to the thesis, such as search

engines, grounded theory and clustering algorithm. Search engines are central components

of this work because we claim that their results have irrelevant pages that possibly hinder

developer performance, and thus a solution to improve the results returned by these

mechanisms are needed. We used grounded theory as inspiration to extract the Ąndings

from the study in Chapter 3, where the main goal is to understand the inĆuence that a

higher quality ranking and a lower quality ranking have on the performance of developers

when performing programming tasks. A clustering algorithm is used by the proposed

approach to group web pages that have in common a set of method calls in their solutions.

2.1 Search Engines

A search engine is software created to make it easier to Ąnd pages on the web. Users

enter textual information in search engines, and these search for Web pages, in a system-

atic way, and return ranked pages, as results. These results are known as: search engine

results pages (SERPs). Various types of information can be returned by search engines,

such as: links to web pages, videos, images, articles, among others.

Web Queries are formed by words or a set of words that users enter in the search

bar of search engines. The search bar is well located on all major search engines such

as: Google, Yahoo, Bing, etc. Users indicate the pages they want to obtain based on the

keywords entered in the search box of search engines.

Search Engine Results Pages (SERP) are the pages returned and displayed by search

engines in response to a query from a user. We have two types of results: results retrieved

by the search engine algorithm (organic search) and sponsored results (advertisements).

Results are ranked by relevance. Typically, each result consists of a title, a link to the

actual web page, and a brief description of the page. For sponsored results, advertisers

choose what they want to show as a result.

26 Chapter 2. Background

Ranking is a document classiĄcation problem. Where given a query Q and a collection

D of documents related to that query, after sorting through criteria, the best results should

appear at the top of the results list (top of the rank).

Search engines are used by software developers for different purposes, such as: search-

ing for reusable code examples, learning new concepts related to programming, searching

for information about APIs, searching for information related to bugs in the source code,

among others (SADOWSKI; STOLEE; ELBAUM, 2015; XIA et al., 2017). There are

several general purpose search engines, the most used by software developers is Google

(SIM et al., 2011).

These search engines are optimized for textual content search and treat source codes as

plain text, that is, these engines tend to ignore the semantics of source codes (RAHMAN

et al., 2018). Because the criteria used by these mechanisms were not implemented

exclusively for content related to software development. For example, the Google search

engine, when it was created, prioritized the pages that were popular, that is, pages that

were highly referenced by other pages, were considered as relevant, so they were placed

at the top of the ranking. A problem with this approach is that it does not take into

account the content of the page, that is, pages with relevant solutions can be poorly

ranked, since the approach prioritizes the frequency of references to the page. Another

issue is that pages related to official API documentation are heavily referenced by other

pages, so these pages are prioritized by GoogleŠs search engine, even if they only contain a

brief description of technical elements (classes, methods, etc.) API, without examples of

their use. While relevant pages with an example of the use of technical elements are not

prioritized, staying in lower positions in the ranking. Another problem is that popular

pages tend to stay at the top of the ranking and users click more frequently on these pages,

further increasing their popularity. Fresh pages tend to be not popular because they are

new, and thus may be returned in lower positions of the ranking. The negative cycle

tends to persist because few users click on and/or create links to them, keeping them in

lower ranking positions, even if such pages have high quality content (CHO; ROY, 2004;

ZHUANG; CUCERZAN, 2006).

GoogleŠs algorithm is always undergoing updates to improve the quality of page rank-

ing, but even so, this engine is still not optimized for content related to software devel-

opment. For example, the search algorithm currently examines several factors, such as

the query words, the relevance and usability of the pages, the specialty of the fonts, and

the userŠs location and settings1. We can observe that these criteria are not strongly

related to content related to software development. In this way, when a developer looks

for solutions in these mechanisms, irrelevant pages are usually returned, such as: pages

without code examples and pages with content not focused on the query.

In view of the limitation of search engines mentioned above, in this work we propose

1 https://www.google.com/search/howsearchworks/how-search-works/ranking-results/

2.2. Grounded Theory 27

Ąlters to improve the ranking quality returned by the Google search engine for content

related to software development.

2.2 Grounded Theory

Grounded theory is a systematic methodology that has been used by many social

scientists in qualitative research, by collecting, analyzing data, and applying inductive

reasoning to create hypotheses and theories.

Studies that apply grounded theory usually begin with the collection of qualitative

data. Through the collected data, scientists create concepts that can be revised as new

data are collected. The created concepts are named through codes. As data are collected

and revised, new code can be created and grouped into higher-level concepts. Subse-

quently, these concepts are grouped into categories. From these categories, a hypothesis

or a new theory is created.

The main stages of the grounded theory are presented below:

1. Open Code are sentence (phrase) encodings from collected data.

2. Concepts are groupings of codes generated in the previous step, with the objective

of producing a higher level of abstraction compared to the codes.

3. Categories are groupings of concepts generated in the previous step, in order to

create a higher level of abstraction compared to the concepts.

4. Core category is considered the main theme or problem for the participants. It

should be central and related to several other categories.

5. Selective Coding. Once the core category is established, the researcher stops open

coding and moves on to selective coding, which is a process that involves coding

focused on that core category, delimiting the coding only to those codes that relate

to the core category, in order to produce a hypothesis or a theory.

6. Memoing is the ongoing process of writing theoretical memos throughout the

Grounded Theory process. The memos are theoretical notes on the data and the

conceptual connections between the categories. They must be written as new ideas

about codes and their relationships emerge.

7. Sorting is the process of classifying the memos to form a theoretical outline. At this

stage, the researcher must classify the ideas and not the data. A recommendation is

to avoid sorting memos in chronological order, but to sort memos by topic so that

related topics can be sorted one after the other. A theory outline can be generated

using the topic names in the same order. This sketch can form the theory sketch.

28 Chapter 2. Background

8. Theoretical Coding is the process that involves conceptualizing how categories

relate to one another.

9. Write-up is the Ąnal stage of Grounded Theory, which consists of writing the

theory, which follows the theoretical schema generated as a result of sorting and

theoretical coding.

One such problem is the question of how deeply and broadly the researcher should

familiarize himself with the research topic before empirical study. Problems also include

the need to focus on the research problem and choose the sampling method. Data analysis

is a multi-step process that requires the researcherŠs sensitivity and time to elaborate the

Ąndings that emerge from the data (BACKMAN; KYNGAS, 1999). Another problem is

the large amount of data generated by the Grounded Theory methodology, which makes

it difficult for the researcher to manage.

An advantage of the Grounded Theory methodology is that the researcher does not

need to predetermine a priori what would be found, and how the phenomena should be

viewed. So, the value of Grounded Theory is that it avoids making assumptions, and

instead takes a more neutral view of observed phenomena (SIMMONS, 2006). Another

advantage of Grounded Theory is that as the method is exploratory, this makes this

methodology suitable for investigating social processes that were not very attractive in

previous research. A disadvantage of Grounded Theory is the large amount of data

produced during the application of the approach, generally managing this large amount

of data is a difficult task. Another disadvantage of Grounded Theory is the difficulty in

presenting research Ąndings.

In this work, we partially use Grounded Theory as inspiration to extract and cate-

gorize the Ąndings from recorded videos of developers, during the resolution of proposed

programming tasks, as shown in Chapter 3. We encoded the trajectory that the sub-

jects followed to solve the tasks, through analysis of the recorded videos. To overcome

the disadvantage related to the large amount of data generated by the Grounded Theory

methodology, we will organize the generated data into Ąles. Each participant will have a

folder and the data obtained through the analysis of the videos of the tasks will be stored

in Ąles. In this way, information management will be made more effective. Regarding the

disadvantage related to the difficulty of presenting the Ąndings in the research, we will

organize the Ąndings and present them using tables.

2.3 Clustering Algorithms

Clustering algorithms are applied to sets of objects, in order to separate them into

clusters. Where objects with similar characteristics are allocated in the same cluster.

Clustering techniques can be applied in different areas, as shown below:

2.3. Clustering Algorithms 29

❏ In Biology, there is a need to classify different species of plants and animals, so

clustering can be applied to facilitate this task.

❏ In Document Analysis, a major difficulty is labeling a large amount of data. One

solution is to apply the clustering technique with the objective of grouping similar

documents into clusters, in order to later perform analyzes more easily on these

documents.

❏ In Libraries, the clustering technique can be used to group different books based on

topics and information.

❏ In Marketing, the clustering technique can be used to segment consumers, in order

to group people with similar characteristics, so that companies can better target

messages and advertisements.

Clustering is generally used when no classes have been deĄned in advance for the

data set. In this work, as we do not know the number of different solutions contained

in the N pages returned by the search engine, clustering is suitable for separating and

grouping pages that have similar solutions in the same cluster. The k-means algorithm is

an example of a clustering algorithm and works as follows:

1. Set a cluster number.

2. Randomize the centroids of clusters.

3. For each object, calculate its distance between the centroids of clusters.

4. Allocate the object in the cluster with the smallest distance.

5. Update the centroids of clusters. For each cluster, calculate the average of all vectors

of attributes corresponding to the objects present in the cluster.

6. Repeat steps 3, 4 and 5 for a set number of times or until the centroids of the cluster

do not change much during the iterations.

Let us illustrate an example of application of the K-means algorithm. In the Ąrst

step we will set the cluster number equal to two. In the second step, we will randomize

the centroids of the two clusters. Figure 2 shows an illustration after the application of

the Ąrst and second steps of the algorithm, where the data are illustrated by means of

blue points and the positioned centroids are represented by the character C in green and

purple colors.

In the third step, the distance between an object (point) and the centroids of the two

clusters is calculated for each object. In the fourth step, the objects are allocated to the

closest one, that is, the object is allocated to the cluster that has the smallest distance

32 Chapter 2. Background

33

Chapter 3

The InĆuence of Search Engine

Ranking Quality on the Performance of

Developers

Software development is an activity that requires a constant search for information by

software developers. One problem faced by developers is the lack of code examples in the

official documentation of software development technologies (KIM et al., 2010). Code ex-

amples help developers better understand the technology (NYKAZA et al., 2002; ROBIL-

LARD, 2009), as well as providing software reuse (BUSE; WEIMER, 2012; JOHNSON,

1992). An alternative widely used by developers is to resort to the Web for solutions that

have code examples to solve problems related to their daily software activities (STOLEE;

ELBAUM; DOBOS, 2014; SIM et al., 2011; GALLARDO-VALENCIA; SIM, 2009; KIM

et al., 2010). Search engines, such as Google, Bing and Yahoo, help developers to Ąnd

pages with solutions to their problems (HORA, 2021b; NIU; KEIVANLOO; ZOU, 2017;

FISCHER; STACHELSCHEID; GROSSKLAGS, 2021). However, the best solutions are

not always among the Ąrst ones returned by these search engines (CHATTERJEE; JU-

VEKAR; SEN, 2009; HORA, 2021a). Due to the lack of quality of top-ranked pages,

users may spend a considerable time to Ąnd the desired solution (XIA et al., 2017).

In view of the problems previously reported, this study aims to understand the inĆu-

ence that the order of the pages returned by the ranking of search services exerts on the

performance of developers when performing programming tasks.

3.1 Study Setting

The aim of the current study is to answer the following research questions:

RQ1: Does the ranking quality of query results have any inĆuence on the performance

of developers in the development of programming tasks?

34 Chapter 3. The InĆuence of Search Engine Ranking Quality on the Performance of Developers

RQ2: Is there any inĆuence by adding a list of frequent methods in the description of

the pages in the result returned by the search engine for developers?

RQ3: How do irrelevant pages present in lower quality rankings hinder developersŠ

goal of Ąnding relevant solutions?

To answer the research questions, we designed an qualitative study with software

developers to compare their performance when solving programming tasks, when using

ranking of pages returned by the search engine with two different quality levels (Higher

Quality Ranking and Lower Quality Ranking). The general idea of the qualitative study

is to get developers to execute pairs of programming tasks, varying the ranking quality

between the pairs of tasks and trying to keep the other variables constant. Therefore, the

Ąrst and second tasks proposed in the qualitative study have similar levels of difficulty, the

same applies to the third and fourth tasks. In this way we can compare the performance

of the developers when changing the quality level of the ranking.

Videos from participantsŠ computers were recorded using software. Subsequently, we

performed an analysis on the recorded videos in order to verify the performance of devel-

opers when using rankings with different levels of quality. To deĄne the time limit that

the developers could perform each task, we solved the tasks and count the time, we found

an average solution time around 30 minutes, so the time limit was deĄned as twice the

average time taken to solve the programming tasks, that is, the time limit for participants

to solve each task was one hour. For each programming task, the developers answered

a form containing questions related to the pages available for solving the programming

task.

3.1.1 DeĄnition of Programming Tasks for the Qualitative Study

For the qualitative study, we selected four programming tasks in the JAVA language

that use native APIs. We chose four programming tasks in order to make pairwise com-

parisons between pairs of tasks with similar difficulty levels. In this way, for each pair of

tasks, we try to change only the ranking quality, in order to measure the performance of

the developers and, later, verify if the ranking quality inĆuences the developerŠs perfor-

mance during the resolution of programming tasks. We avoided choosing non-native APIs

due to the difficulty that participants would have when conĄguring such APIs during the

training phase for participating in the study. Therefore, for the Ąrst and second tasks, we

chose the Swing API. For the third and fourth tasks, we chose the JDBC API.

To choose pairs of similar tasks, that is, similar Ąrst and second tasks, and similar

third and fourth tasks, we searched the web for tutorials containing programming tasks

for the Swing and JDBC APIs. After we found two pairs of programming tasks, we

made adaptations to these programming tasks in order to make the task pairs as similar

as possible. In order to carry out these adaptations, we tried to make the number of

modiĄcations performed by the developer while solving the pairs of programming tasks

3.1. Study Setting 35

as similar as possible. For that, we built tables to compare the technical elements (classes,

methods and control structures) manipulated by the developers during the resolution of

the proposed programming tasks. Table 1 shows the comparison of the technical elements

that will have to be handled by developers during the resolutions of the Ąrst and second

tasks, after the adaptations we made in these tasks to make them as similar as possible.

Table 1 Ű Comparison of the technical elements handled during the resolutions of the Ąrst
and second tasks.

Technical Elements 1st Task 2nd Task

Methods Inserted 10 14
Methods Changed 4 3
Methods Removed 3 3
Classes Inserted 3 3
Changed Classes 3 3
Classes Removed 3 3
IFs 3 3
Variables Inserted 4 0

Totals of Changes in Source Code 33 32

As we can observe in Table 1, the Technical Elements column shows the technical

elements that must be handled by developers to perform the proposed programming task.

The 1st Task and 2nd Task columns show the amount of inclusion, changes and removal

of methods and classes, and the amount of inclusion of IF structures and variables that

developers must perform to solve the respective tasks of schedules. As we can observe,

the amount of changes that the developer must make is similar, that is, 33 changes in the

source code of the Ąrst task and 32 changes in the source code in the second task. We

consider that the difficulty of including methods and variables are similar.

Table 2 shows the comparison of the technical elements that will have to be handled by

developers during the resolutions of the third and fourth tasks. As we can see, the amount

of changes that the developer must make is similar, that is, 10 changes in the source code

for both programming tasks. Next, we describe the programming tasks proposed in the

qualitative study.

The Ąrst task is to make changes to a partially implemented JAVA project. The

project consists of a simple user registration system, containing Ąelds Name, Cell Phone

Number and three radio-type options for the user to choose the type of preferred game.

There are two buttons below the Ąelds, the Submit button and Reset button. When the

user presses the Submit button, the information in the Name and Cell Phone Ąeld is

printed in a print area present next to the Ąelds. When the user presses the Reset button,

the information entered in the Ąelds is erased. The proposed task is to change the options

from the radio type to the checkbox type and print the options chosen in the print area.

The second task is to make changes to a partially implemented JAVA project. The

project consists of a simple chat application conĄguration system, containing three con-

36 Chapter 3. The InĆuence of Search Engine Ranking Quality on the Performance of Developers

Table 2 Ű Comparison of the technical elements handled during the resolutions of the
third and fourth tasks.

Technical Elements 3rd Task 4th Task

Methods Inserted 7 9
Methods Changed 0 0
Methods Removed 0 0
Classes Inserted 2 1
Changed Classes 0 0
Classes Removed 0 0
IFs 1 0
Variables Inserted 0 0

Totals of Changes in Source Code 10 10

Ąguration options: audio, automatic download and storing conversation history. In front

of each option is a button with the text ŞEnableŤ. When the user presses the button,

nothing happens. The proposed task is to change the JButton type buttons to the toggle

button type and change the text in the toggleButton to ŞDisableŤ when pressed by the

user.

The third task is to make changes to a partially implemented JAVA project. The

project consists of a login system, containing Username and Password Ąelds. Other than

a login button, when the user presses this button, nothing happens. The proposed task

consists of implementing codes responsible for verifying in the database if the information

entered in the Username and Password Ąelds is present in the database. In addition to

implementing two messages. If the information entered in the login form is correct in

the database, the message ŞCorrect login.Ť should appear on the screen, otherwise the

message ŞIncorrect username or password.Ť should appear on the screen.

The fourth task is to make changes to a partially implemented JAVA project. The

project consists of a contact registration system, containing the Ąelds: Name, Telephone

Number, E-mail, Address, City and State. The system also has a button called ŞRegis-

terŤ, when the user presses this button, nothing happens. The proposed task consists

of implementing codes responsible for inserting the information typed by the user in the

form Ąelds into the database, and if the insertion of data in the database is performed

successfully, the message ŞContact registered successfullyŤ should appear on the screen.

3.1.2 Building Higher Quality Ranking and Lower Quality Rank-

ing

We use the following structure in the construction of queries: Şhow toŤ + programming

task + programming language + API(s).

We use the sentence Şhow toŤ in order to Ąlter only the pages related to how to

implement some functionality in the program. This Ąlter prevents pages with content

related to the debug-corrective type from being returned by the search engine. Since

3.1. Study Setting 37

the objective of this work is to obtain content that helps the developer to implement

functionalities to solve programming tasks, content related to error/bug correction is not

applied in this work. To obtain the content needed to solve the programming task, we

include the sentence related to the proposed task in the construction of the query. This

causes content related to the problem to be solved by the developer to be returned by

the search engine. To obtain the content related to the programming language and API

used in the proposed task, we include the name of both the programming language and

the API name in the query construction. Regarding the order of sentences in the query

and the addition or removal of some terms, these issues do not largely affect the results

returned by the search engine, as shown in the work of Hora (2021b).

Following the aforementioned method, we build the following queries and obtained the

list of the top-20 pages returned from Google, for each of the four proposed programming

tasks.

1. how to insert multiple checkboxes in form java swing.

2. how to create switch button java swing.

3. how to create login with database java swing jdbc.

4. how to insert data in database java swing jdbc.

To build the Higher Quality Ranking, for each of the proposed programming tasks,

we analyzed the Ąrst 20 pages returned by Google, and evaluated the solutions present

on the pages, considering the criteria Degree of Focus, Solution Size and Code Examples

proposed in the study of Chapter 4. Pages evaluated using the Degree of Focus criterion

can contain one of the following values. (1) Very low, solutions that are not related to the

search performed by the user. (2) Low, solutions that have some connection with the search

performed by the user. (3) Neutral, when it is not possible to evaluate the page for this

criterion. (4) High, solutions that are related to the search, however, it has minor focus

deviation. (5) Very high, solutions completely related to the search performed by the user.

Pages evaluated considering the Solution Size criterion can contain one of the following

values, considering the number of lines of source code observed in the solutions. (1)

Very small, far below the observed average size. (2) Small, marginally below observed the

average size. (3) Neutral, when it is not possible to evaluate the page for this criterion. (4)

Large, marginally above the observed average size. (5) Very large, far above the observed

average size. Pages evaluated against the Code Example criteria can have a binary value

of ŞyesŤ or ŞnoŤ, depending on containing or not code examples in their solutions. After

evaluating the solutions on the pages, we sort (rank) the pages, where the pages with a

very high degree of focus, with code examples and solution size approaching the average

size of the solutions found in the 20 pages (evaluated with small or large values for the

Solution Size criterion), are placed at the top of the ranking.

38 Chapter 3. The InĆuence of Search Engine Ranking Quality on the Performance of Developers

To build the Lower Quality Ranking, we Ąrst carried out a study with 14 different

queries, given as input in the Google search engine, in order to know in which position

of ranking the relevant page occurs. That is, a relevant page with a very high degree of

focus, with code examples and size of the solution that approximates the average size of

the solutions found in the 20 pages. Among the 14 queries analyzed, we considered the

10 queries selected in the study of the Chapter 4 and the four queries selected in this

study, as discussed earlier. Table 3 shows the 14 queries with their respective positions

where the relevant pages occur. To deĄne where the relevant page will occur in Lower

Quality Ranking, we calculate the median of the positions that the relevant pages occur,

excluding queries where the relevant page occurs in the Ąrst position, as such queries are

considered as Higher Quality Ranking, we Ąnd the median equals to Ąve. So, we build

the Lower Quality Ranking as follows. In the Ąrst four positions, we have pages with

low-focus solutions (solutions that are not focused on the query performed by the user).

In the Ąfth position, we place the relevant page. In the sixth and seventh position we

place pages with low focus. In the eighth position we place a page with high focus. In

the ninth and tenth positions we place pages with low focus and so on.

Table 3 Ű Positions where the relevant pages occur.

Queries Position

Query 1 10th

Query 2 4th

Query 3 4th

Query 4 4th

Query 5 15th

Query 6 1st

Query 7 4th

Query 8 1st

Query 9 5th

Query 10 5th

Query 11 15th

Query 12 7th

Query 13 3rd

Query 14 1st

Median 5th

3.1.3 Recruitment for the Qualitative Study

The target audience to participate in the present study were undergraduate students

who are currently enrolled in the Object-Oriented Programming course and graduate

students in Software Engineering, both at the Federal University of Uberlândia. We con-

tacted these students as they were the closest contacts we had. We sent an email with an

invitation to participate in the study to these students. The group of graduate students in

Software Engineering has 19 members and the group of undergraduate students who take

3.1. Study Setting 39

the Object-Oriented Programming course has 80 members. In total, four participants

agreed to participate in the study, three of them belonging to the group of graduate stu-

dents and one participant belonging to the group of undergraduate students. Considering

that the number of participants was limited, we limited the scope of the research, and

we chose to conduct a qualitative study, since we would not able to obtain statistically

signiĄcant results. In this way, the number of participants is sufficient to answer the

formulated research questions.

3.1.4 Ranking Evaluation

In order to evaluate the rankings related to the programming tasks proposed in the

qualitative study, we created a form containing the following multiple-choice and open-

ended questions. In multiple choice questions, the participant chooses one of Ąve Likert-

scale options. In open questions, participants are free to write their answer. For each

proposed programming task, a form was answered by the participants after the task was

completed or the time limit established. The proposed form has the following questions:

1. Regarding navigability by ranking, how agile/productive was it to Ąnd the solution

for the programming task?

a) Very agile/productive. The solution was easily found among the Ąrst pages

of the ranking. That is, you browsed one to two pages of the ranking to Ąnd

the solution.

b) Agile/productive. The solution was found among the Ąrst pages of the

ranking, but it was necessary to visit some pages to Ąnd it. That is, you

browsed three to Ąve pages to Ąnd the solution.

c) Neutral. When it was not possible to evaluate this item.

d) Not agile/productive. The solution was found among the ranking pages,

but it was necessary to visit several ranking pages to Ąnd it. That is, you

browsed from six to ten pages to Ąnd the solution.

e) Very little agile/productive. The solution was found after a lot of effort,

browsing through most of the ranking pages or the solution was not found

among the ranking pages. That is, you browsed eleven or more pages to Ąnd

the solution, or the solution was not found after browsing through the pages.

2. Was the summary below the link, which shows the Ąve methods that occurred most

on the pages, relevant to your decision to click on the page?

a) Very relevant. Only the method list itself was used in the decision to click

on the page or not. That is, you only used the contents of the list of methods

40 Chapter 3. The InĆuence of Search Engine Ranking Quality on the Performance of Developers

in the decision to click or not to click on the page. Another possibility is that

other content in the link and page description was irrelevant to the decision of

whether or not to click the page.

b) Relevant. The content of the method list contributed to the decision whether

or not to click on the page link. That is, you used both the content of the

method list and the content of the link and page description in the decision to

click on the page or not.

c) Neutral. When it was not possible to evaluate this item.

d) Irrelevant. The contents of the method list did not contribute to the decision

whether or not to click on the page link. That is, you read the contents of the

list of methods, but this was not used in the decision to click or not to click on

the page.

e) Very irrelevant. The contents of the method list were not used in the decision

to click or not on the page. That is, you did not read the list of methods, so

it was not used in the decision to click on the page or not.

3. Regarding the pages you used to solve the programming task, what were your pos-

itive points? What did they have that helped you solve the task?

The purpose of this question is to collect data on the characteristics of relevant pages

(pages that were used to solve the proposed task). Considering our objectives, this

information is important for the improvement of the Ąlters proposed and evaluated

in this work. Once the relevant pages are Ąltered out of search engine results, a

higher quality ranking can be generated.

4. Regarding the pages that you did NOT use to solve the programming task, what

were your negative points? What did they NOT have that did NOT help you solve

the task?

The purpose of this question is to collect data on the characteristics of irrelevant

pages (pages that did not contribute to solve the proposed task). This information is

also important for the improvement of proposed Ąlters, once the bad characteristics

of the pages are identiĄed, more efficient Ąlters can be developed.

3.1.5 Qualitative Study Steps

As we mentioned earlier, we sent an e-mail with an invitation to participate in the

study to students. In this email, we put information about the study and ask those

interested in contributing to the study to respond to the email.

We send a second email to people who replied to the Ąrst email agreeing to contribute

to the study. This second email, we put a link to an explanatory video, to explain how the

3.1. Study Setting 41

study would be conducted, along with training videos on how to install and use a program

to record the participantŠs computer screen, and how to share the recorded video using a

cloud storage service. At the end of the e-mail, there was a link to an online form, where

the participant answers some basic questions, such as: degree of comfort in reading web

pages with content in English, years of experience with the JAVA programming language

and a question asking if the participant has watched all the training videos sent in the

email.

We sent a third e-mail to the participants who answered the questionnaire present

in the second e-mail. This third e-mail contained the instructions of what should be

done by the participants. We recorded explanatory videos on how to import the projects

of the proposed programming tasks into the IDE and explanations of the statements of

the proposed programming tasks. For each programming task, the participant watches

the video about the statement, then they start recording computer screen, after that

they solve the tasks using the pages of the ranking available, and then they answer the

form containing questions about the pages available for solving the proposed task. After

carrying out all the steps, the participant sends the videos to the researchers.

3.1.6 Methodology for Evaluating the Results

In order to analyze and evaluate the results obtained through the participantsŠ videos,

we used Grounded Theory as inspiration to extract and categorize the Ąndings, presented

in Chapter 2.

The Ąrst step was to analyze the resolution of task 01 of participant 01, in order to

encode their actions. We did the same procedure for participants 02, 03 and 04. From

the analysis of participant 03, no new code was created. The following codes were created

after analyzing the resolution of task 01 of the four participants, in front of each code

there is a description of how we identiĄed it in the video:

1. Analysis of the solution source code in the IDE. The participant stopped at

the source code in the IDE.

2. Change the solution source code in the IDE. The participant typed or removed

characters in the source code in the IDE.

3. Quick analysis of the textual content on the page. The participant scrolled

slowly through the textual content of the page, with few short stops.

4. Quick analysis of the source code on the page. The participant scrolled slowly

through the source code present on the page, with short stops.

5. Analysis of textual content on the page. The participant stopped at the

textual content of the page (long stops).

42 Chapter 3. The InĆuence of Search Engine Ranking Quality on the Performance of Developers

6. Analysis of the source code present on the page. The participant stopped at

the source code present on the page (long stops).

7. Skipped textual content on the page. The participant quickly scrolled through

the textual content of the page (non-stop), or the participant used the browserŠs

search bar with a technical element name as input (class, method, etc.).

8. Skipped the source code present on the page. The participant quickly scrolled

through the source code present on the page (without stops).

9. Copy of source of source code present on the page. The participant copied

a snippet of source code present on the page and pasted it into the source code in

the IDE.

10. Copy of some part of the ranked content. The participant copied page link

content (description or list of most frequent methods on the page) of ranking and

pasted it into the source code in the IDE.

11. Analysis of ranked list of pages. The participant rolled slowly through the list

of ranked pages with long stops.

After we deĄned the above codes, we analyzed the videos with the resolutions of the

four proposed tasks, for the four participants, totaling 16 analyses. In each analysis, we

measured the time the participant spent to perform each action coded above, on each

page of the ranking used in solving the given task.

We grouped the previous code into the following categories:

1. Ranked list of pages. This category groups the following codes related to ranking:

10. Copy of some part of the ranked content and 11. Analysis of ranked list of pages.

2. Page searching. This category groups the following codes related to pages: 3.

Quick analysis of the textual content on the page, 4. Quick analysis of the source

code on the page, 5. Analysis of the textual content on the page, 6. Analysis of

the source code present on the page, 7. Skipped textual content on the page, 8.

Skipped the source code present on the page and 9. Copy of source code present on

the page.

3. Editing in the IDE. This category groups the following codes related to the IDE:

1. Analysis of the solution source code in the IDE and 2. Change the solution

source code in the IDE.

We analyzed the time duration that participants spent in each of the categories. We

also calculated the total time spent solving each task by adding the total time spent

3.2. Results 43

searching the ranked list of pages, plus the total time spent searching the pages, plus the

total time spent editing in the IDE.

We also analyzed the use of each page visited by the participants. Here are the types

of pages we deĄne:

1. Useful. Page content was used to completely solve the desired solution.

2. Partially useful. The page content partially contributed to the desired solution.

3. Useless. The page content did not contribute to the desired solution.

For each task, we calculated the time participants spent on useful, partially useful,

and useless pages.

3.2 Results

This section presents the results obtained through the analysis of the participantsŠ

videos. Four participants participated in the qualitative study, as each participant solved

four tasks, we obtained a total of 16 tasks (samples). Eight tasks were performed using the

Higher Quality Ranking and the other eight tasks were performed using the Lower Quality

Ranking. In the Higher Quality Ranking, in one of the tasks, one of the participants did

not record the computer screen, so in the paired analysis of tasks, we do not consider the

pair of tasks corresponding to this task. Another participant solved the task using only

the content of the descriptions of the pages in the rank, in this case the participant did

not enter the pages returned by the search engine.

3.2.1 On the InĆuence of Ranking Quality

Table 4 shows the results of the questionnaire for the question ŞRegarding navigability

by ranking, how agile/productive was it to Ąnd the solution for the programming task?Ť.

Where ++, +, ⊗ and ⊗⊗, represent the options of the form very agile/productive, ag-

ile/productive, not agile/productive and very little agile/productive, respectively.

Table 4 Ű Results of the navigability by ranking, for the four proposed programming tasks.

Navigability ++ + ⊗ ⊗⊗

Task 1 (higher quality ranking) ∙ ∙ ∙
Task 2 (lower quality ranking) ∙ ∙

Task 3 (higher quality ranking) ∙ ∙ ∙
Task 4 (lower quality ranking) ∙ ∙ ∙ ∙

As we can observe in the Table 4, for the tasks related to the higher quality ranking

(Tasks 1 and 3), the participants found it more agile and productive, in relation to the

tasks related to the lower quality ranking (Tasks 2 and 4). When we make a pairwise

44 Chapter 3. The InĆuence of Search Engine Ranking Quality on the Performance of Developers

comparison between Tasks 1 and 2, we observe in Table 4 that we have more positive

evaluations for Task 1, which uses the higher quality ranking, than Task 2, which uses the

lower quality ranking. This observation is also valid for the pairwise comparison between

Tasks 3 and 4, where the evaluation of Task 3, which uses higher quality ranking, is more

positive than Task 4.

Tables 5, 7 and 8 show the Ąndings we found in the results of the analysis of the par-

ticipantsŠ videos. The Table 5 shows the Ąndings related to RQ1 (Does the ranking quality

of query results have any inĆuence on the performance of developers in the development

of programming tasks?), where the Ąrst one shows that the resolution time of tasks that

use the Higher Quality Ranking is smaller than the resolution time of the tasks that use

the Lower Quality Ranking. This Ąnding was obtained through an analysis of the six

pairs of task resolutions, where Ąve samples had the resolution time of tasks that use the

Higher Quality Ranking smaller than the resolution time of the tasks that use the Lower

Quality Ranking.

The second Ąnding shows that in tasks related to Higher Quality Ranking, participants

only use the pages at the top of the rankings. This Ąnding was obtained through an

analysis of the eight tasks related to the Higher Quality Ranking, in three tasks the

participants used only the Ąrst page of the ranking to solve the task, in another three

tasks the participants used the Ąrst and second pages of the ranking. In another task,

one of the participants did not use any pages, only the content of the description of the

pages in the ranking. One of the participants did not record the resolution of the task.

The third Ąnding shows that participants visited more pages related to Lower Quality

Ranking than those related to Higher Quality Ranking. On average, participants visited

4.6 pages related to Lower Quality Ranking and 1.1 pages related to Higher Quality

Ranking.

The fourth Ąnding shows that participants visited more useless pages related to Lower

Quality Ranking than those related to Higher Quality Ranking. A total of 23 useless

pages, related to Lower Quality Ranking, were visited by the participants. Only one

useless page, related to Higher Quality Ranking, was visited by one of the participants.

The Ąfth Ąnding shows that two tasks related to Lower Quality Ranking were not

completely solved by two participants, out of a total of 16 tasks solved by the participants.

On the other hand, in the Higher Quality Ranking, all tasks were completely resolved by

the participants.

The sixth Ąnding shows that in partially completed tasks, participants visited pages

in the lowest positions of Lower Quality Ranking. Participant 02 visited the 14th page

and participant 03 visited the 11th page.

3.2. Results 45

Table 5 Ű Findings related to RQ1, found in the results of the analysis of the participantsŠ
videos.

Findings Sources for the Findings

1 The resolution time of tasks
that use the Higher Quality
Ranking is smaller than the
resolution time of tasks that
use the Lower Quality Rank-
ing, for most samples.

Of the eight pairs of tasks resolutions, we removed
two pairs of tasks, as the participants did not com-
plete the tasks completely. Of the six task resolution
pairs, Ąve had a shorter resolution time for tasks re-
lated to the higher quality ranking than the resolution
time for tasks related to the lower quality ranking.
Having an average of the time difference between the
task pairs of 242 seconds (4 minutes and 2 seconds).

2 In tasks related to Higher
Quality Ranking, participants
only use the pages at the top
of the rankings.

In three tasks the participants used only the Ąrst page
of the ranking to solve the task, in another three tasks
the participants used the Ąrst and second pages of the
ranking. In another task, one of the participants did
not use any pages, only the content of the description
of the pages in the ranking. One of the participants
did not record the resolution of the task.

3 Participants visited more
pages related to Lower Quality
Ranking than those related to
Higher Quality Ranking.

On average, participants visited 4.6 pages related
to Lower Quality Ranking and 1.1 pages related to
Higher Quality Ranking.

4 Participants visited more use-
less pages related to Lower
Quality Ranking than those re-
lated to Higher Quality Rank-
ing.

A total of 23 useless pages, related to Lower Quality
Ranking, were visited by the participants. Only one
useless page, related to Higher Quality Ranking, was
visited by one of the participants.

5 Two tasks related to Lower
Quality Ranking were not com-
pletely resolved by the partici-
pants.

Of the total of 16 programming tasks, two tasks re-
lated to Lower Quality Ranking were not completely
solved by two participants. On the other hand, in the
Higher Quality Ranking, all tasks were completely re-
solved by the participants.

6 In the partially completed
tasks, the participants visited
pages in the lowest positions of
the Lower Quality Ranking.

Participant 02 visited the 14th page and participant
03 visited the 11th page.

Answer to RQ1: Does the ranking quality of query results have any inĆuence on the

performance of developers in the development of programming tasks? As shown in the

results of Table 5, in the Higher Quality Ranking, developers spend less time solving the

programming task, as the best pages are at the top of the ranking. This way, developers

donŠt spend time on irrelevant pages. Considering the participants of this study, on

average, around 4 minutes more were spent during the resolution of tasks related to the

Lower Quality Ranking. Regarding Higher Quality Ranking, other inĆuencing factors

were: participants did not use irrelevant pages and visit fewer pages. Regarding the

Lower Quality Ranking, the inĆuencing factors were: participants visit more irrelevant

pages, did not complete two tasks. In these two tasks, participants visited the lowest

ranking positions.

46 Chapter 3. The InĆuence of Search Engine Ranking Quality on the Performance of Developers

3.2.2 On the InĆuence of the List of Methods

Table 6 shows the results of the questionnaire for the question ŞDid the summary

below the link, where it shows the Ąve methods that occurred most on the pages, have any

relevance in your decision to click on the page?Ť. Where ++, +, ⊗ and ⊗⊗, represent

the options of the form very relevant, relevant, irrelevant and very irrelevant, respectively.

Table 6 Ű Results of the addition of the list of methods in the summary below the links
of the pages, for the four proposed programming tasks.

Added Methods List ++ + ⊗ ⊗⊗

Task 1 (higher quality ranking) ∙ ∙ ∙ ∙
Task 2 (lower quality ranking) ∙ ∙

Task 3 (higher quality ranking) ∙ ∙
Task 4 (lower quality ranking) ∙ ∙ ∙

As we can observe in Table 6, for the pair of Tasks 1 and 2, the list of methods added in

the summary below the links of the pages, was irrelevant for four task resolutions, for two

task resolutions, the list of methods was relevant. As for the pair of Tasks 3 and 4, the list

of methods added was relevant, for most participants, only one participant said that the

list is irrelevant for these tasks. In order to verify the consistency between the responses

of this form, we analyzed the participantsŠ video. There was a case of inconsistency,

where one of the participants used the methods present in the list of methods (copied it

and pasted it in the source code present in the IDE), but in the form where an answer

was requested about the relevance of the list of methods, the participant marked it as

irrelevant. In this case, we changed that participantŠs answer to relevant, because the

participant may have marked the wrong option on the form, since their actions observed

in the video recording do not match the option marked on the form.

The Table 7 shows the Ąndings related to RQ2 (Is there any inĆuence by adding a

list of frequent methods in the description of the pages in the result returned by the search

engine for developers?), where the seventh Ąnding shows that one of the participants used

the methods in the list of methods to solve two programming tasks. we observed that

this participant analyzed the list of methods from one of the pages, copied the name of

the method, pasted it into the source code in the IDE and performed the task, without

having to enter any ranking page. The same participant copied a method name from the

method list to another proposed task.

3.2. Results 47

Table 7 Ű Findings related to RQ2, found in the results of the analysis of the participantsŠ
videos.

Findings Sources for the Findings

7 One of the participants
used the methods in the
list of methods to solve two
programming tasks.

One of the participants analyzed the list of methods from
one of the pages, copied the name of the method, pasted it
into the source code in the IDE and performed the task,
without having to enter any ranking page. The same
participant copied a method name from the method list
to another proposed task.

8 All but one participant
skipped irrelevant pages.

We analyzed the tasks where the participants skipped ir-
relevant pages in the ranking, we observed that two par-
ticipants pass the mouse cursor over the names of the
methods present in the list of methods, which indicates
that the participants analyzed the list, which may have
an inĆuence on the decision of the develop on whether
or not to enter the page. The rest of the participants
were stuck at the description of the pages where the list
of methods is located, but it is not clear whether or not
they were analyzing the list of methods.

Answer to RQ2: Is there any inĆuence by adding a list of frequent methods in the

description of the pages in the result returned by the search engine for developers? As

shown in the results of Table 7, there seems to be an inĆuence, since three participants

skipped irrelevant pages present in the ranking, however one participant did not skip

irrelevant pages. In addition to one of the participants having used the content of the

lists of methods in two proposed tasks, in one of these tasks, the participant only used

the content of the list, without having entered the ranking pages.

3.2.3 On the InĆuence of Irrelevant Pages on Developers

The Table 8 shows the Ąndings related to RQ3 (How do irrelevant pages present in

lower quality rankings hinder developersŠ goal of Ąnding relevant solutions?), where the

ninth Ąnding shows that the time spent analyzing the Lower Quality Ranking pages is

greater than the time spent analyzing the Higher Quality Ranking pages. Of the six pairs

of task solving, we observed that four samples have more time spent on the analysis of the

Lower Quality Ranking pages, compared to the analysis of the Higher Quality Ranking

pages. Having an average of the time difference between the task pairs of 139 seconds (2

minutes and 19 seconds). On the other hand, the other two samples where the time spent

analyzing the Higher Quality Ranking pages was longer than the Lower Quality Ranking

pages had an average time difference between the tasks of 24 seconds.

The tenth Ąnding shows that in solving the tasks related to Lower Quality Ranking,

the participants partially use the solutions present in the pages to solve the tasks. In

the Lower Quality Ranking, of the eight tasks, Ąve tasks the participants combined the

48 Chapter 3. The InĆuence of Search Engine Ranking Quality on the Performance of Developers

Table 8 Ű Findings related to RQ3, found in the results of the analysis of the participantsŠ
videos.

Findings Sources for the Findings

9 The time spent analyzing the Lower
Quality Ranking pages is longer
than the time spent analyzing the
Higher Quality Ranking pages, for
most samples.

Of the six pairs of task solving, we observed
that four samples have more time spent on the
analysis of the Lower Quality Ranking pages,
compared to the analysis of the Higher Quality
Ranking pages. Having an average of the time
difference between the task pairs of 139 seconds
(2 minutes and 19 seconds). On the other hand,
the other two samples where the time spent an-
alyzing the Higher Quality Ranking pages was
longer than the Lower Quality Ranking pages
had an average time difference between the tasks
of 24 seconds.

10 In solving the tasks related to Lower
Quality Ranking, most of the par-
ticipants partially use the solutions
present in the pages to solve the
tasks.

In the Lower Quality Ranking, of the eight tasks,
Ąve tasks the participants combined the solu-
tions of two or more pages to solve the proposed
task. Already in the Higher Quality Ranking,
only in one task the participant 04 combine the
two-page solutions to solve the proposed task.

11 For all pairs of fully resolved tasks,
the time spent on useless pages was
higher for the Lower Quality Rank-
ing.

Of the six task resolution pairs, we observed
that all of them have more time spent on useless
pages in the Lower Quality Ranking, compared
to the Higher Quality Ranking. Having an aver-
age of the time difference between the task pairs
of 105 seconds (1 minutes and 45 seconds).

solutions of two or more pages to solve the proposed task. Already in the Higher Quality

Ranking, only in one task did participant 04 combine the two-page solutions to solve the

proposed task.

The eleventh Ąnding shows that for all pairs of tasks analyzed, the time spent on

useless pages was higher for the Lower Quality Ranking. Of the six task resolution

pairs, we observed that all of them have more time spent on useless pages in the Lower

Quality Ranking, compared to the Higher Quality Ranking. Having an average of the

time difference between the task pairs of 105 seconds (1 minutes and 45 seconds).

3.3. Discussion 49

Answer to RQ3: How do irrelevant pages present in lower quality rankings hinder

developersŠ goal of Ąnding relevant solutions? As shown in the results of Table 8, on

average, the time spent on irrelevant pages is greater than the time spent on relevant

pages (developers spend 1 minute and 45 seconds more on irrelevant pages), because

when developers encounter a bad code on a irrelevant page, they spend a lot of time

trying to reuse the bad code. We observed that developers try to Ąx the bad code by

searching for content on other pages, spending even more time. In case the developer

cannot Ąx the bad code, all the effort in Ąnding the solution is wasted, so the developer

must start the search for the solution on another page.

3.3 Discussion

This section aims to discuss the Ąndings shown in Tables 5, 7 and 8. First we will show

the Ąndings related to RQ1. The Ąrst Ąnding was that the resolution time of the tasks

that used the Higher Quality Ranking is less than the resolution time of the tasks that

use the Lower Quality Ranking. We attribute this to the time spent on useless pages at

Lower Quality Ranking, both reading the content of the pages and analyzing and coding

codes do not contribute to the resolution of the task. When developers come across bad

code, not knowing if it is bad, they try to use that code. The moment they realize that

the code does not contribute to the solution, either the developers delete the bad code,

or they try to Ąx the code by looking for information on other pages. The worst case is

when developers cannot Ąx the code, wasting all the time invested in irrelevant pages.

The second Ąnding was that in tasks related to Higher Quality Ranking, participants

do not use irrelevant pages. This is because relevant pages are at the top of the Higher

Quality Ranking. When the ranking has high quality, the participants already Ąnd the

solution for the task on the Ąrst pages. In the analysis of the results of the qualitative

study, we found that out of the six tasks related to the Higher Quality Ranking, in three

tasks the participants used only the Ąrst page of the ranking to solve the task, in another

three tasks the participants used the Ąrst and second pages of the ranking.

The third Ąnding was that participants visited more pages related to Lower Quality

Ranking than those related to Higher Quality Ranking. We observed that, on average,

participants visited 4.6 pages related to Lower Quality Ranking and 1.1 pages related to

Higher Quality Ranking. This is due to relevant pages are spread out in the rankings,

so participants must visit more pages in the Lower Quality Ranking in search of those

relevant pages. This is consistent with what we expected, putting a relevant page on the

5th position in a Lower Quality Ranking.

The fourth Ąnding was that participants visited more useless pages related to Lower

Quality Ranking than those related to Higher Quality Ranking. A total of 23 useless

pages, related to Lower Quality Ranking, were visited by the participants. Only one

50 Chapter 3. The InĆuence of Search Engine Ranking Quality on the Performance of Developers

useless page, related to Higher Quality Ranking, was visited by one of the participants.

This is due to the best pages are at the top of the Higher Quality Ranking, so participants

do not need to visit the useless pages that are at the bottom of the rank. This is consistent

with our hypothesis that developers generally need to browse and read the pages until

they Ąnd out that they are irrelevant for them.

The Ąfth Ąnding was that two tasks related to Lower Quality Ranking were not com-

pletely resolved. Of the 16 tasks solved by the participants, two tasks related to Lower

Quality Ranking were not completely resolved. This is due to bad pages are in the top

positions of the rank, they hinder the participants to Ąnd the solution. Participants tried

to solve the task with bad code from these pages. One of the participants did not complete

the task, as this participant wasted a lot of time on irrelevant pages (visited six irrelevant

pages), using around 53 minutes on the task. The other participant partially solved the

task in less than 11 minutes, but this participant also visited irrelevant pages, which may

have discouraged him from seeking the complete solution. This Ąnding reinforces the

hypothesis that inadequate pages may cause developers wasting a lot of time trying a

solution that does not work properly.

The sixth found was that in the partially completed tasks, the participants visited

pages in the lowest positions of the Lower Quality Ranking. Participant 02 visited the

14th page and participant 03 visited the 11th page. This is due to the good solutions

are spread out in the rank. Bad solutions in the top positions make it difficult for the

participants to Ąnd the good solution, so the participants try to look for good solutions

on the pages in the lower positions of the rank.

As we can observe through the Ąndings related to RQ1, the quality of the ranking has a

strong inĆuence on the performance of developers, since the resolution time of tasks related

to the Higher Quality Ranking is shorter than the resolution time of tasks related to the

Lower Quality Ranking. In the case of the Higher Quality Ranking, the relevant pages

are at the top of the ranking, so the developer does not waste time analyzing irrelevant

pages. In the Lower Quality Ranking, developers have to visit several useless pages that

hindering their performance, until Ąnding a relevant page that solves the desired problem.

Now we discuss the Ąndings related to RQ2. The seventh Ąnding was that one of

the participants used the methods in the list of methods to solve two programming tasks

This is due to the list of methods that we included in the description of the ranked pages.

We observed that participant 02 performed the task only with the ranking content. This

participant veriĄed and copied the contents of the list of method calls placed in the

description of the pages in the ranked list. This behaviour may be explained in cases

where developers already expect some functions and theses list of methods work as a hint

for them.

The eighth Ąnding was that all participants skipped the irrelevant pages except one

participant. Of the four participants, three skipped the irrelevant pages. This may be due

3.3. Discussion 51

to the list of frequent methods in the page descriptions in the rank. This list probably

helps in the decision to enter the page or not, when faced with a list of methods that are

not related to the desired solution, the participant decides to skip the page. For pages

that do not have methods, the list of methods is empty, so the participant may infer that

there is no source code on the page, consequently the participant would skip the page.

Finally, we will discuss the Ąndings related to RQ3. The ninth Ąnding was that the

time spent analyzing the Lower Quality Ranking pages is longer than the time spent

analyzing the Higher Quality Ranking pages. This is due to the fact that adequate

solutions are spread out in the Lower Quality Ranking, so participants need to browse

the rank to access other pages.

The tenth Ąnding was that when solving the tasks using the Lower Quality Ranking,

most of the participants partially use the solutions present in the pages to solve the

tasks. In the Lower Quality Ranking, out of the eight tasks, in Ąve tasks the participants

combined the solutions of two or more pages to solve the proposed task. This is due

to the bad solutions are among the Ąrst in the rank, the participants use the codes of

these solutions. As the solution is not good, participants try to Ąx the bad solution with

content from other pages.

The eleventh Ąnding was that for all pairs of analyzed tasks, the time spent on useless

pages was higher for the Lower Quality Ranking. Of the six task resolution pairs, we

observed that all of them have more time spent on useless pages in the Lower Quality

Ranking, compared to the Higher Quality Ranking. This is due to the fact that relevant

solutions are spread out in the rank, so the participants need to analyze the useless pages,

until they Ąnd a relevant solution.

As we can observe in the Ąndings related to RQ3, irrelevant pages hinder the per-

formance of developers. We show some characteristics of these pages reported by the

participants and comment on them. First comment: ŞThe irrelevant pages had only for-

mal deĄnitions, with little applicability. One page did not even show the solution in Java.Ť

As we can observe in this comment, irrelevant pages do not have examples with applicabil-

ity. In this case, the developer wastes time looking for a practical example that the page

does not offer. In the approach proposed in this thesis, we developed a Ąlter to remove

pages that do not have practical examples. Second comment: ŞThe irrelevant pages did

not have examples that matched or related to what the task asked for.Ť As we can observe

in this comment, irrelevant pages do not focus on the solution desired by the developer.

In the approach proposed in this thesis, we developed a Ąlter to remove pages with little

focus. Third comment: ŞThe irrelevant pages had extensive content and sometimes did

not have the necessary content to perform the task.Ť As we can observe in this comment,

irrelevant pages that have extensive content and no focus on the proposed task, hinder

the developer, because they need to analyze all the content, even if it does not contribute

to the resolution of the task. Fourth comment: ŞThey were not speciĄcally for the task I

52 Chapter 3. The InĆuence of Search Engine Ranking Quality on the Performance of Developers

was looking to solve. I wanted snippet to save in the database, not to connect or consult

in the database.Ť As we can observe in this comment, once again, irrelevant pages do not

focus on the solution desired by the developer. In this way, the developer wastes time

analyzing content that does not solve the problem. Fifth comment: ŞThey did not have

the insertion, only codes for other operations, even when dealing with the same API.Ť In

this comment, we once again realize that irrelevant pages do not focus on the solution

desired by the developer. All previous comments reinforce the need for custom Ąlters to

Ąlter search engine results for content related to software development.

3.4 Threats to Validity

In this section, we show some threats to the validity of this study.

Internal validity. This kind of threat is about how sure we can be that the treatment

actually caused the outcome. In this study, a threat to internal validity was the degree of

difficulty of the programming tasks considered in the study. Tasks with different degrees of

difficulty between the lower quality ranking and the higher quality ranking can inĆuence

the results. To minimize this threat, we performed a paired analysis between pairs of

tasks, with a similar degree of difficulty. We made studies and adaptations in these pairs

of tasks to make them as similar in difficulty as possible.

External validity. This kind of threat is related to whether we can generalize the

results outside the scope of our study. In this study, a threat to external validity was the

number of study participants. A larger number of participants in the study could provide

strong results. To overcome this limitation, we opted for an exploratory qualitative study,

where we used Grounded Theory as inspiration to extract and categorize the Ąndings. As

this methodology is very rich in data analysis, the data obtained was detailed enough

to answer the proposed research questions. Based on the results of this study, we can

design quantitative studies in the future to reinforce these results. Another threat to

external validity was the results were limited to the JAVA programming language, which

is a popular language and has a lot of content on the Web. For other programming

languages, the results may be different, especially for less popular languages, where there

may be lack of content, even considering the whole Web.

Construct validity. This kind of threat is about the relation between the theory behind

the study and the observation. In this study, a threat to construct validity was the

interpretation of the videos of the resolutions of the tasks, carried out by the participants,

since an action performed by the participant may not be the same as interpreted by the

video analysis. For example, regarding the list of methods inserted in the description of

the pages, when the participant stops at the description of the page, it is not possible

to know exactly if he/she is reading or not the text of the description or the list of

methods inserted, which could impact the results. To mitigate this threat, we focused on

3.5. Conclusion 53

collecting more direct relationships, for example, in the case of the list of methods, we

observed actions performed by the participants, such as: copying methods from the list

of methods and pasting them into the source code present in the IDE and hovering the

mouse cursor above the names of the methods present in the list of methods, followed

by clicking on the link on the page. Another threat to the validity of the construction

was the questionnaires designed to obtain information for the research. They may not

capture the intention of the questions, as participants may answer the questions wrongly,

because of subjective interpretations. To mitigate this threat, we have aimed to frame the

questions as clearly as possible. We also analyzed the participantsŠ video to verify that

the answers to the questionnaires are consistent. For example, in the questionnaire where

the participant is asked to rate the degree of relevance of the list of methods that we

have inserted in the description of the page, we analyze the participantŠs video to verify

if he/she made use of the methods present in the list or not, then we check the option

that the participant marked in the questionnaire.

Conclusion validity. This kind of threat is about how sure we can be that the treatment

is really (statistically) related to the actual outcome. This threat is not discussed in this

work, since the objectives of the work are not related to statistics.

3.5 Conclusion

As we can observe in the results of this study, the ranking quality inĆuences the

performance of developers during the development of programming tasks. The time spent

solving tasks that use a Higher Quality Ranking is less than the time spent solving tasks

that use a Lower Quality Ranking. This is because relevant pages are at the top of the

Higher Quality Ranking, so the developer does not waste time on irrelevant pages.

We can also observe that the list of frequent methods added below the descriptions

of the ranking pages had an inĆuence on the participantsŠ decisions. One of the partic-

ipants solved the task with only the content of the descriptions of the pages, including

the methods indicated by the list. Other participants skipped irrelevant pages, possibly

inĆuenced by that information.

Another observation was that irrelevant pages negatively inĆuence the development of

programming tasks. In the Lower Quality Ranking, irrelevant pages are in the top posi-

tions of the rank and they hinder the participants to Ąnd the solution. When developers

come across bad code on irrelevant pages, not knowing if the code is bad, they try to use

it. The moment they realize that the code does not contribute to the solution, either the

developers delete the bad code, or they try to Ąx the code by looking for information on

other pages. The worst case is when developers cannot Ąx the code, wasting all the time

invested in irrelevant pages.

The results of this study show the importance of developing approaches capable of

54 Chapter 3. The InĆuence of Search Engine Ranking Quality on the Performance of Developers

improving the quality of the ranking returned by the search engine. As we noted, the

Lower Quality Ranking hinder the performance of the developers who participated in the

study. In the next chapter, we propose approaches to improve the quality of ranking

returned by search engines.

55

Chapter 4

Mining Relevant Solutions from Search

Engine Results

In this chapter, we propose an approach to mining relevant pages from search engine

results for programming tasks by identifying and Ąltering out irrelevant pages from the

ranked list. To evaluate the proposed approach, we performed comparisons with the

results obtained through variations of the approach. All approaches evaluated using

query results from the Google search engine.

4.1 The Mining Approach

We propose an approach to tackle the challenges related to Ąltering relevant content

obtained by querying search engines, more speciĄcally, removing top-ranked pages with

undesirable features for developers, such as, lack of code examples and low focus.

The input for the mining approach is a query denoting a programming-related task.

This query is executed on a search engine (in our case, Google), and the top-𝑛 pages are

selected for an automatic Ąltering process to obtain pages with relevant solutions.

In this section, we present the steps of the proposed approach and discuss the compo-

nents implemented in each one.

4.1.1 Mining Steps

The main steps of the approach are:

1. Preparation of a query related to the programming task, for example, Şhow to make

login with php mysqlŤ. The queries are systematically created as: Şhow toŤ +

programming task + programming language + API.

2. Querying the Google search engine taking the above query as input.

56 Chapter 4. Mining Relevant Solutions from Search Engine Results

3. Selection of top-𝑛 pages returned by the search engine that have the following char-

acteristics: textual content must be in English and must not contain only PDF,

PowerPoint, Excel and Word Ąles. To Ąlter the content in English, the approach

uses the search engine in the English version and the proposed query was formu-

lated in English. The links returned by the search engine ending with the above Ąle

extensions are removed.

4. Two-phase automatic Ąltering of the 𝑛 pages selected in the previous step. The

Ąrst phase aims to remove outlier pages, that is, those that have few occurrences

of method calls or a large number of occurrences of them in relation to the upper

and lower limits based on the average occurrence of method calls in all the 𝑛 pages.

The second phase uses a clustering algorithm is also applied in order to obtain pages

with solutions more focused on the userŠs query. The Ąltering mechanism is detailed

in the next subsection.

4.1.2 Parameter calibration

In order to deĄne the Ąltering mechanisms for the mining approach, we need also to

deĄne some parameters related to criteria to evaluate the pages returned by the search

engine. We will rely on a bootstrap approach to deĄne such parameters, i.e., we test

the approach with an arbitrary parameter, and then evaluate the pages to deĄne if those

pages adhere to the criteria, and then if the pages should or not be Ąltered out from the

search engine results. We run this process iteratively changing the respective parameter

until we Ąnd a sub-optimal value. For this calibration, we collect the search results of

three queries using the chosen parameters (01 - how to create table java swing, 02 - how

to create simple calculator in android and 03 - how to implement login php). The top-

20 ranked pages were selected for each query. Then, we manually evaluate such pages

and calculate the F-measure to Ąnd which parameter should be chosen according the

respective best F-measure. The manual evaluation criteria are deĄned in Section 4.2.3,

which are the same used to deĄne the ground-truth for evaluating the proposed approach.

4.1.3 Lower and Upper Limits for Outlier Pages

We hypothesize that the number of occurrences of method calls in a page should not

be too small because of the possible lack of examples to explain a programming solution.

Moreover that number of occurrences of method calls should also not be too large because

of the possible complexity and lack of focus of the solution that would hinder the developer

comprehension. In order to deĄne such lower and upper limits for this number in a page,

we have used the calibration bootstrap method deĄned in the previous subsection. These

limits will be used in the outlier Ąlter to be presented in Subsection 4.1.4.

The lower limit is calculated using the expression:

4.1. The Mining Approach 57

𝑙𝑜𝑤𝑒𝑟𝐿𝑖𝑚 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑀𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑙𝑙𝑠

𝐷𝐼𝑉 𝐼𝑆𝑂𝑅
(1)

The upper limit is calculated using the expression:

𝑢𝑝𝑝𝑒𝑟𝐿𝑖𝑚 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑀𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑙𝑙𝑠 × 𝐹𝐴𝐶𝑇𝑂𝑅 (2)

Following, we show how the constants DIVISOR and FACTOR were deĄned. For each

query, we analyzed the 20 pages using the Degree of Focus criterion deĄned in Subsection

4.2.3.2. The pages evaluated with the values ŞHighŤ or ŞVery HighŤ were classiĄed as

ŞSelectedŤ and the pages evaluated with the values ŞLowŤ, ŞVery LowŤ and ŞNeutralŤ

were classiĄed as ŞNot SelectedŤ. For each query, considering the average total occurrence

of the method calls present in the 20 pages, the DIVISOR values of the expression lower

limit varied from 2 to 10, by 0.5, and the multiplication FACTOR of the upper limit also

was varied from 1.5 to 4, by 0.5 in 0.5. Then, for each query, the respective results were

manually assessed, and the metrics precision, recall and F-Measure were calculated. We

selected the respective DIVISOR equals 8 and the multiplication FACTOR equals 2 that

resulted in the highest F-Measure.

4.1.4 Page Ąltering mechanism

Given a set of 𝑛 web pages as input, Ąltering is performed through the pre-processing

steps, removing outlier pages and selecting pages with common method calls, which are

explained below.

Pre-processing. The Ąrst pass in this step is to obtain the method calls present in

the source code of each of the 𝑛 web pages given as input, using a simple Java regular ex-

pression: .*\(.*\). For example, the following Java Swing API methods are recognized

by the regular expression: getFirstRow(), getColumnName(column), getValueAt(row, col-

umn) and setPreferredWidth(100). A Ąlter was implemented to remove the method calls

found within page scripts and style tags. We implemented 15 rules, considering the open-

ing and closing of script and style tags. For example, when processing the pageŠs source

code, if a script opening tag is found, then the code following that tag is disregarded until

the corresponding closing tag is found. For the sake of conciseness, we omit the complete

rules in this thesis. Nonetheless, the details of the created rules are publicly available1.

After preliminary tests, some extracted method calls still had attached unwanted charac-

ters or words. To address this problem a Ąlter was created to remove method calls that

contain any of the following words or characters: function, -webkit, jQuery, gt;alert, {,

}, (,), Ś, ˆ, Š, / and \. Method calls containing only one character from the alphabet

have also been removed, because generally such method calls are user-deĄned. For exam-

ple, the 𝑥() method, when obtaining the method name, results in 𝑥, then this method is

removed.
1 https://doi.org/10.5281/zenodo.6467629

58 Chapter 4. Mining Relevant Solutions from Search Engine Results

We performed tests to check the effectiveness of regular expression to Ąnd method

calls. We took the Ąrst 5 programming tasks shown in Table 12 and then used them as

input to the Google search engine. For each programming task, we obtained the method

calls from the Ąrst 3 pages returned from the search engine, manually. Then we calculate

the metrics Precision, Recall and F-measure of the algorithm. The results show that the

15 pages analyzed have a median of method calls of 45, an average of 52.9, a maximum

of 104, a minimum of 0 and a standard deviation value of 29.8. Of the 15 pages, 12

had precision and recall equals 1, the other pages had precision and recall, varying from

0.933 to 0.981, and from 0.959 to 0.971, respectively, demonstrating the effectiveness of

the algorithm to Ąnd method calls.

Removing outlier pages regarding number of method calls. This step has as

input the number of method calls returned in the previous pre-processing step. Given the

number of occurrences of method calls for each page, the average number of occurrences

for 𝑛 pages is calculated. Pages that have few method calls or a large number of method

calls in relation to the average number of occurrences of method calls are removed. The

lower and upper limits were deĄned in Subsection 4.1.3. Pages that have the number of

occurrence of method calls greater than the lower limit and less than the upper limit are

selected in this step. Generally, pages with few method calls in their solutions tend to

not have code examples that solve the problem queried by the developer, and pages with

a large number of method calls tend have complex and large code examples.

Selection of pages sharing common method calls. To obtain pages that possibly

have solutions focused on the user query, we propose to apply a clustering algorithm using

a proxy metric based on the sharing of common method calls between the pages. The

purpose of this algorithm is to aggregate pages that share the same method calls in the

same cluster. Our hypothesis is that clusters that have pages with similar solutions are

more focused on user query. The instances given as input for this algorithm are the pages,

the attributes are the method calls, and the attribute values are the number of occurrences

of the respective method calls in the instance (page). The number of clusters 𝑘 generated

by the algorithm needs to be deĄned as input. We deĄne as k = numberOfInstances /

d. We calibrate the approach calculating a sub-optimal value for 𝑑, varying its value

from 1.5 to 4 (0.5 in 0.5). We use the same queries deĄned in Section 4.1.2 and collected

the respective result pages, and apply the clustering algorithm with the above different

number of clusters 𝑘. For each of them, we bootstrap the Ąltering of clusters with solutions

more focused on userŠs query, and calculate the metrics Precision, Recall and F-Measure.

The best F-Measure was obtained for 𝑑 = 2.

During the calibration tests of the approach parameters shown in Section 4.1.2, we

observed that pages containing a wide variety of method calls, result in a large vector

of attributes, which can impair the quality of the generated clusters. To work around

this problem, before executing the clustering algorithm, an attribute selection algorithm

4.2. Study Setting 59

is Ąrst applied to obtain only relevant attributes. After the attribute selection, the vector

of attributes is reduced and clusters of better quality can be generated.

To select the cluster that contains more pages with common method calls, we calcu-

lated for each cluster the number of unique occurrences of method calls existent in the

different pages of the cluster. The cluster with the highest value is selected.

Next, we show an example of the the clustering selection procedure. Assume the user

enters the query Şhow to create table java swingŤ as input to the approach. To make the

example simpler let us consider only the Ąrst 7 pages returned by the search engine. Table

9 shows the pages and method calls within them. Method calls that are present on at

least two pages in the same cluster are highlighted in bold. We can observe that Cluster

2 has pages with solutions more focused on the userŠs query, since the pages have basic

method calls for creating a table using JAVA and the Swing API. Cluster 1, on the other

hand, has pages with solutions that have lost their focus a little, as there are methods

that could be omitted when creating a table. For example, the BorderLayout() method

is related to table layout. Cluster 1 also has other API (AWT) method calls that could

be replaced by Swing API methods, for example, the GridLayout(), WindowAdapter()

and FlowLayout() methods. The pages present in Cluster 3 also have low focus. For

example, Page 2 has methods related to database manipulation, which indicates that the

solution, in addition to creating a table, it also addresses database-related issues that are

not related to the user query. Page 6, on the other hand, is related to the creation of

a table that can be edited by the user, in addition to having other components such as

JComboBox that is not related to the user query. Table 10 shows the clusters with their

respective method calls that occur on at least two pages and the sum of those occurrences,

showing that Cluster 2 is selected as it has the largest sum of occurrences. Because pages

with solutions possibly more focused on the userŠs query are obtained by selecting the

cluster containing more pages with common method calls in their solutions.

4.2 Study Setting

This subsection aims to show: 1) the deĄnition of the baselines used to compare the

results obtained; 2) the deĄnition of queries used in the evaluation of approaches will also

be shown; 3) the process used to build the ground-truth to evaluate the pages returned

by the Google search engine.

4.2.1 DeĄnition of baselines

The evaluation of the previous mining mechanisms will be conducted through a com-

parison with the baseline (Google) and variations of the approach. The purpose of com-

paring different variations of the approach is to show the effectiveness of the different

60 Chapter 4. Mining Relevant Solutions from Search Engine Results

Table 9 Ű Example of application of the clustering algorithm on the pages returned by
the search engine.

Pages Method Calls on the Page Cluster

Page 1 JFrame(), setSize(), setLayout(), GridLayout(), addWindowLis-
tener(), WindowAdapter(), windowClosing(), JLabel(), JPanel(),
FlowLayout(), add(), setVisible(), setText(), JTable(), JScroll-
Pane()

Cluster 1

Page 2 super(), forName(), getConnection(), createStatement(), execute-
Query(), next(), getString(), println(), JTable(), setSize(), setVis-
ible()

Cluster 3

Page 3 JFrame(), JTable(), setBounds(), JScrollPane(), add(), setSize(),
setVisible()

Cluster 2

Page 4 JTable(), setFillsViewportHeight(), JScrollPane(), setPreferred-
Size(), Dimension(), setLayout(), BorderLayout(), add(), JPanel(),
setOpaque(), JFrame(), setDefaultCloseOperation(), setContent-
Pane(), setVisible()

Cluster 1

Page 5 JFrame(), setTitle(), JTable(), JScrollPane(), add(), setSize(),
setVisible()

Cluster 2

Page 6 JFrame(), Integer(), Boolean(), EditableTableModel(), JTable(), creat-
eDefaultColumnsFromModel(), JComboBox(), getColumnModel(), get-
Column(), setCellEditor(), DefaultCellEditor(), add(), JScrollPane(),
setSize(), setVisible(), getRowCount(), getColumnCount(), getVal-
ueAt(), getColumnName(), getColumnClass(), getClass(), isCellEd-
itable(), setValueAt()

Cluster 3

Page 7 JTable(), add(), JScrollPane(), setTitle(), setDefaultCloseOpera-
tion(), pack(), setVisible(), invokeLater(), Runnable(), run()

Cluster 2

Ąlters added in each of the approaches. The main characteristics of the baseline and the

proposed approaches are shown in Table 11.

The JG (Just Google) baseline is just a raw Google search, getting the Ąrst returned

pages. The GOR (Google + Outlier Removal) approach consists of applying the JG

approach and then executing the Ąlter for removing outliers pages explained in Subsection

4.1.4. The GORCTO (Google + Outlier Removal + Clustering + Total Occurrence of

Method Calls) approach consists of applying the GOR approach and then executing the

clustering algorithm, where the attribute values are formed by the total sum of occurrences

of each method call on the processed page (instance), for example, if the PHP method

𝑖𝑠𝑠𝑒𝑡 occurs 4 times on page X, then the value of the attribute 𝑖𝑠𝑠𝑒𝑡 for page X will be 4.

The GORCUO (Google + Outlier Removal + Clustering + Unique Occurrence of Method

Calls) approach consists of applying the GOR approach and then executing the clustering

algorithm, where the values of the attributes are formed by the presence of occurrence of

method calls on the page, that is, if a given method call occurs at least once on the page,

the value of its attribute will be 1, otherwise 0.

To evaluate the baseline and the three variations of the approach, we collect their

results on the 𝑛 pages returned from the queries deĄned in the next subsection. For each

approach, precision, recall and F-Measure are calculated and compared.

4.2. Study Setting 61

Table 10 Ű Clusters with their respective method calls that occur on at least two pages
and the sum of those occurrences.

Cluster Method Calls Occ. > 1 Sum of Occ.

JFrame() 2
setLayout() 2

JPanel() 2
Cluster 1 add() 2 14

setVisible() 2
JTable() 2

JScrollPane() 2

JTable() 3
JScrollPane() 3

add() 3
Cluster 2 setVisible() 3 19

setSize() 3
JFrame() 2
setTitle() 2

JTable() 2
Cluster 3 setSize() 2 6

setVisible() 2

Table 11 Ű Main Ąltering features of baseline and approaches

Acronym Features

JG Just Google (Baseline)

GOR
Google +
Outliers Removal

GORCTO

Google +
Outliers Removal +
Clustering +
Total Occurrences of Method Calls

GORCUO

Google +
Outliers Removal +
Clustering +
Unique Occurrences of Method Calls

4.2.2 DeĄnition of queries for assessment

To compare the baseline and the approaches, the Ąrst step is to deĄne queries related

to the programming task as follows:

1. We analyzed a Stack OverĆow survey2 to choose a popular programming language,

and JAVA was the choice.

2. In order to choose the APIs that are used in the programming tasks, we adopted

the criterion of choosing the most popular APIs (number of questions) of the JAVA

language in Stack OverĆow3. We checked the JAVA language API tags on Stack

2 https://insights.stackoverĆow.com/survey/2020#most-popular-technologies
3 https://stackoverĆow.com/tags

62 Chapter 4. Mining Relevant Solutions from Search Engine Results

OverĆow and ranked them by popularity. The APIs were categorized by application

domain and one API was selected from each domain. When there were several APIs

in each domain, we chose the most modern ones.

3. To select the programming tasks, we adopt the following criteria. For each selected

API selected in the previous step, in the Coursera4, a query was made with the

name of the language (JAVA) + the name of the API. For each query, we analyzed

the course summaries and selected the Ąrst programming task found that manages

a product or a semi-product. Coursera was chosen because it is the largest online

course platform on the Web, with respect to the number of users [17].

4. The queries to be executed in the search engine were built as follows: Şhow toŤ +

programming task + programming language + API. We add the preĄx "how to"

before the programming task in order to Ąnd the pages that are related to how

to implement the programming task consulted, unlike pages of the type of debug-

corrective. Regarding the number of tokens present in the programming task that

we deĄned, there is an average of 3.3 tokens per query. We tried to choose a small

number of tokens per task, but expressing the intention of the task and with a

number of words commonly used by developers (three words on the median), as

shown in the work of Hora (2021b). The Table 12 shows the deĄned queries.

Table 12 Ű Selected APIs, application domains and queries.

APIs Domains Queries

Spring Web Development how to upload image java spring
JPA Persistence how to implement crud operations java jpa
Selenium Web Testing how to search a product item on an e-commerce

web application java selenium
JavaFX Desktop UI how to implement menu java javafx
TensorĆow Machine Learning how to build a neural network java tensorĆow
OpenCV Computer Vision how to classify image java opencv
JUnit Unit Testing how to implement matchers test java junit
Jackson Structured Data Proc. how to process JSON data java jackson
libGDX Game Engine how to implement animation java libgdx
OpenGL Computer Graphics how to draw 2D objects java opengl

The queries are executed on the Google search engine and the Ąrst 20 pages are

obtained for each query. We process the content of these 20 pages (for each query)

according each baseline procedure, and then evaluate them using a ground-truth deĄned

below. We carried out a preliminary study to choose the number of pages that would

be given as input for the approaches. We varied the number of pages (from 3 to 20

pages) and found that from 15 pages the results begin to converge. So, we decided to

add a safety margin and evaluate the Ąrst 20 pages. As Google considers the history of

previous searches performed by the user as a criterion for selecting the pages returned5,

we executed the queries using the browser in private mode without a logged account.
4 https://www.coursera.org
5 https://www.google.com/search/howsearchworks/how-search-works/ranking-results/

4.2. Study Setting 63

4.2.3 Ground-truth

This subsection shows the steps to build the ground-truth. To evaluate the pages

returned by search engines, we deĄned the criteria presented in Subsection 4.2.3.2, which

were based on the quality indicators and dimensions discussed in the next subsection.

4.2.3.1 Evaluation of the Pages Returned by the Search Engine

Arthur and Stevens [18] deĄned four quality indicators (accuracy, completeness, us-

ability and expandability) for evaluating software documentation. Accuracy is deĄned

as the consistency between the code and all code documentation, for all requirements.

A documentation is complete if all the required information is present. Usability is de-

Ąned as the suitability of the documentation regarding to the ease with which one can

extract needed information. Expandability is the capability of the documentation to be

modiĄed in reaction to changes in the system. Although, these quality indicators are not

completely suitable for evaluating the pages related to software development returned by

search engines, as they were created for evaluating software documentation, they may

serve as starting point to compose evaluation criteria related to the quality of the pages

returned by search engines.

Smart [19] proposed three dimensions (easy to use, easy to understand and easy to Ąnd)

to assess the quality of the documentation. Easy-to-use dimension is related to the ease

of users to complete tasks related to their work through documentation, which must be

accurate and include all and only the essential parts. The easy-to-understand dimension

is related to the documentationŠs ability to be unambiguous, but to have appropriate

writing styles, using examples and metaphors. The easy-to-Ąnd dimension is related to

the ability to organize the documentation, where it must be coherent and make sense to

the user, the information must be retrieved quickly and must be visually effective.

In order to evaluate the quality of the pages returned by search engines, in the next

subsection, we deĄned three criteria (degree of focus, code examples and solution size)

based on the quality indicators of the work of Arthur and Stevens [18] and the dimensions

for the evaluation of documentations of the work of Smart [19], discussed previously. We

consider relevant pages those with solutions that have a high or very high degree of focus,

code examples and solution size not far from the average size of the solutions present in

the Ąrst 20 pages returned by the search engine. In the next subsections, we present how

we deĄned such thresholds.

4.2.3.2 Criteria for Ground-truth Construction

To assess the pages returned by the search engine, we use the following criteria.

Degree of focus. It consists of assessing how the solutions are related to the pro-

gramming task searched by the user:

64 Chapter 4. Mining Relevant Solutions from Search Engine Results

1. Very low. The solution is not related to the search, i.e., it contains implementations

of other features that are not semantically related to the search.

2. Low. The solution has some connection with the search performed by the user, i.e.,

it contains implementations of several features that are not related to the search.

3. Neutral. When it is not possible to evaluate the page for this criterion.

4. High. The solution is related to the search, however, it has minor focus deviation,

presenting implementations of few other features that are weakly related to the

search.

5. Very high. The solution is completely related to the search carried out by the user,

i.e., the present features in the solution teach what the user wants to learn.

This criterion is based on the completeness quality indicator of the work of Arthur and

Stevens [18], since for having a high degree of focus, a page must have all the information

required for the solution of the programming task expressed by the user query. This

criterion is also based on the easy-to-use dimension of the work of Smart [19], since for

having a high degree of focus, a page must have a precise solution, that is, all and only

the essential parts.

Code examples. The pages have a binary value ŞyesŤ or ŞnoŤ for this criterion,

depending on containing or not code examples in their solutions. In this work we are

focusing on solutions where the developer can reuse source code, since most developers

look for code reuse when searching in search engines. So for the purpose of this work,

pages that do not have code examples are not interesting for developers who are looking

for a solution to a programming task searched on search engines [9].

Solution size. To evaluate this criterion, we visually analyzed the size of the solutions

of the 20 pages returned by the search engine, considering the number of source code lines.

After that, according to that general visualization, we evaluated the solution of each page

using the possible values for the criterion:

1. Very small. Far below the observed average size.

2. Small. Marginally below the observed average size.

3. Neutral. When it is not possible to evaluate the page for this criterion.

4. Large. Marginally above the observed average size.

5. Very large. Far above the observed average size.

4.2. Study Setting 65

4.2.3.3 Ground-truth construction

The pages in the ground-truth are classiĄed as ŞSelectedŤ or ŞNot-selectedŤ, consid-

ering the criteria previously deĄned and the Equation 3, where ce, ss and dof represent

the code examples, solution size and degree of focus criteria, respectively.

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑔𝑒𝑠 ⊕ (𝑐𝑒 == “𝑦𝑒𝑠” ∧ (𝑠𝑠 == 2 ∨ 𝑠𝑠 == 4) ∧ 𝑑𝑜𝑓 ⊙ 4) (3)

Pages belonging to the ŞSelectedŤ class are considered adequate solutions for the pro-

gramming task. The pages classiĄed as ŞSelectedŤ must have code examples of how to

implement the programming task surveyed in the search engine, so they must have the

value ŞyesŤ for the Code Examples criterion. For the Degree of Focus criterion, the pages

must have a value greater than or equal to 4, indicating that features in the solution

provide what the user wants to learn. Pages with values less than or equal to 2 for this

criterion should not be selected, because they contain code or content that is not related

to the query. Regarding to the Solution Size criterion, pages with a value of 2 or 4 are

selected, as they present solutions that are close to the average number of method calls

found on the 𝑛 pages obtained by the search engine. The pages that have the values 1 or

5 for this criterion are far from the average, so they are not selected. Pages rated with

value three should not be selected because they could not be evaluated. For example, for

the Solution Size criterion, pages that do not have source code are rated with three.

In the the construction of the ground truth, we evaluated the Ąrst 20 pages returned

by Google, for the 10 queries shown in Table 12, totaling 200 evaluated pages. Regarding

the chosen number of evaluated pages, we proceeded with a sequential evaluation of the

best ranked pages returned by Google, and observed that typically adequate solutions

were found up to the 15th position, so we decided to add a safety margin and evaluate

up to the 20th position. In addition to our evaluation, another researcher evaluated 40 of

the 200 pages. The evaluation of 16 pages was identical. The evaluation of 18 pages had

small divergences, but they did not change the actual binary classiĄcation of the page.

The evaluation of 6 pages had divergences in the values of the evaluated criteria, which

were discussed to reach consensus and helped to improve and assess the conĄdence on the

Ąnal rating of the 200 pages, which mostly mitigates a threat to construction validity.

About the number of pages evaluated, we must argue that although we provide quan-

titative data analysis, the ground-truth construction is a qualitative work, so a larger

scale manual construction is typically prohibitive. In total, we evaluated 200 pages (20

pages per query), as this evaluation was thorough and careful, it took months to perform

and curate. The 200 assessed pages number can be considered sufficient to support our

conclusions.

The data obtained in this study is available at a Zenodo repository6.

The following research questions are answered at the end of this study:
6 https://doi.org/10.5281/zenodo.6467629

66 Chapter 4. Mining Relevant Solutions from Search Engine Results

RQ4: To what extent does GoogleŠs search engine return relevant pages to software

developers?

RQ5: To what extent applying outlier pages removal Ąlter w.r.t. the page size help to

remove irrelevant pages returned by search engines?

RQ6: To what extent applying clustering algorithms w.r.t. the total method calls in

returned pages help to remove irrelevant pages returned by search engines?

RQ7: To what extent applying clustering algorithms w.r.t. unique occurrences of

method calls help to remove irrelevant pages returned by search engines?

RQ8: To what extent applying the Ąlters proposed in this work improve the ranking

quality of pages returned by search engines?

4.3 Results

This section shows the results for the approach assessment using the methodology

shown in Section 4.2. The baseline and the three approaches are compared for each query

to the ground-truth.

Figures 6, 7 and 8 show the evaluation of the 20 pages returned by the Google search

engine, for each of the ten queries. The x-axis represents the possible values for the given

criterion. The y-axis represents the number of pages. The red, orange and yellow bars

of the boxplots represent the undesirable values for the evaluated pages, since the pages

evaluated with these values have undesirable characteristics for software developers. The

green and blue bars of the boxplots represent the desirable values for the pages, that is,

those that have relevant characteristics for the developers.

4.3.1 Study on the pages returned by the Google search engines

In this section, we will answer the fourth research question (RQ4). We observe in

Figure 6 that several pages returned by GoogleŠs search engine have no focus, that is, the

solutions in theses pages are not related to the query (as shown in the red bar) or have

low focus, that is, those solutions are little related to the query carried out by the user

(as shown in the orange bar). Moreover, these pages contain implementations of features

that are not related to the programming task. The yellow bar shows the pages (25 % of

the total pages evaluated) that could not be evaluated for the Degree of Focus criterion

due to the absence of source code.

Figure 7 shows that for all evaluated queries, some pages have solutions that are much

larger than the average in relation to the other pages (red bar). These pages add up to

12% (24 pages) of the total evaluated pages. Pages with large solutions usually have no

focus. Moreover, 91.7% of the pages with very large solutions have low or very low degree

of focus. The approach proposed in this work aims at removing pages with solutions far

4.3. Results 67

1 - Very low 2 - Low 3 - Neutral 4 - High 5 - Very high

0
2

4
6

8
10

12
14

Degree of focus

#p
ag

es

Figure 6 Ű Results of the evaluation of the pages returned by the search engine for the
degree of focus criterion.

above the average, which would improve the result. The orange bar shows that a small

portion of the evaluated pages (4% of the total pages evaluated), have the value "Very

small". Pages that have very small solutions in relation to the average also tend to lose

focus. We observed that 87.5% of the pages that have very small solutions have a low

and very low degree of focus. The proposed approach also Ąlter these pages. The yellow

bar shows the pages (25 % of the total pages evaluated) without source code.

Figure 8 shows that for all evaluated queries, there are pages returned by the search

engine that do not have code examples (25% of the total pages evaluated). This result

also shows a variation from 0 to 11 pages without source code depending on the evaluated

query, revealing that depending on the query, around half of the pages do not have source

code among the Ąrst 20 pages returned.

When applying the Equation 3 of Subsection 4.2.3 to the values of the criteria shown

in Figures 6, 7 and 8, only 31% of the pages returned by the search engine were selected,

that is, pages that tend to be considered good solutions for developers. The rest of the

solutions (69%) are not interesting for the developer who is learning a programming task,

as they have undesirable characteristics, such as: no code examples, low degree of focus

or/and pages with solution sizes that are far from average. This shows the importance of

developing Ąlters to remove pages with such characteristics.

68 Chapter 4. Mining Relevant Solutions from Search Engine Results

1 - Very small 2 - Small 3 - Neutral 4 - Large 5 - Very large

0
2

4
6

8
10

12
14

Solution size

#p
ag

es

Figure 7 Ű Results of the evaluation of the pages returned by the search engine for the
solution size criterion.

Answer to RQ4: To what extent does GoogleŠs search engine return relevant pages to

software developers? Only 31% of the total pages returned by GoogleŠs search engine

have relevant solutions for software developers. The rest of the solutions have undesirable

characteristics, such as: no code examples, low degree of focus or/and pages with solution

size that are far from average (outlier pages). 25% of the total evaluated pages, do not

have code examples. Only 33% of the analyzed pages have high or very high degree of

focus on the solutions sought by the user. 16% of the total evaluated pages, are outlier

pages.

4.3.2 Effectiveness of Page Filtering

In this section, we answer the Ąfth, sixth and seventh research questions (RQ5, RQ6

and RQ7). This subsection shows the results of the comparison of the baseline and the

three approaches (JG, GOR, GORCTO and GORCUO) deĄned in Section 4.2. Having

the result of the selection of pages obtained in the previous subsection, for each of the

approaches, the metrics were calculated incrementally in the number of pages: Precision,

Recall, F-Measure. The incremental evaluation of the metrics was carried out as follows:

starting with 3 pages, the metrics were calculated, then it was increased to 4 pages and

the metrics were calculated again, and so on, up to 20 pages.

Figure 9 shows the graph comparing the precision of the baseline and the three eval-

uated approaches. The yellow, orange, green and blue bars represent the JG, GOR,

GORCTO and GORCUO approaches, respectively. On the X axis of the graph are the

4.3. Results 69

No Yes

0
5

10
15

20

Code example

#p
ag

es

Figure 8 Ű Results of the evaluation of the pages returned by the search engine for the
code example criterion.

number of pages given as inputs for the approaches, which varies from 3 to 20 pages,

increasing by one. On the Y axis are the values of the metric precision, obtained by the

given approach when being executed having as input the ten queries evaluated in this

work. The graph shows that the JG (Just Google) baseline has low precision, where the

medians of the yellow bars are below 40%, for most pages given as input. This rein-

forces the need for Ąlters to remove irrelevant pages returned by the search engine. The

GOR approach, which implements the Ąlter for removing outliers pages, which manages

to remove irrelevant pages, increases the precision for all page numbers given as inputs,

compared to JG. The graph shows that the GORCTO approach is very unstable, with

a very large variation in precision, for all page numbers given as inputs. The GORCUO

approach, on the other hand, has bars with higher medians compared to the other three

approaches, with the best results for the precision metric, being very effective for remov-

ing irrelevant pages. The GORCUO approach shows best results in the intervals 15 to 19

of page numbers given as input, with the best result with 16 pages given as input.

Figure 10 shows the results of the recall metric for the four approaches. For the JG

approach, the recall will always be 100%, as this approach is used to obtain the 20 pages

used in the evaluation. The graph reveals that even after applying the Ąlter for removing

outlier pages, the GOR approach has 100% recall for most of the page numbers given as

input (except for numbers 4, 5, 19 and 20). This indicates that the outlier page removal

Ąlter is effective in removing only irrelevant pages. The graph shows that the GORCTO

approach has the worst results for this metric, with great variability in its values and

low median for most of the page numbers given as input. The GORCUO approach has

4.3. Results 71

Figure 11 Ű F-Measure of the baseline and the three approaches increasing the number of
pages given as input.

Answer to RQ5: To what extent applying outlier pages removal Ąlter w.r.t. the page

size help to remove irrelevant pages returned by search engines? The results shown in

the F-Measure reveal that the GOR Ąlter, which removes outlier pages, helps remove

irrelevant pages for software developers. For all page numbers given as input, the Ąlter

has F-Measure higher than Google Search Engines (JG), except for page number equal

to 5, where the median of the JG is slightly above the median of the GOR Ąlter.

Answer to RQ6: To what extent applying clustering algorithms w.r.t. the total method

calls in returned pages help to remove irrelevant pages returned by search engines? The

results of the Precision, Recall and F-measure reveal that the approach (GORCTO) that

uses the clustering algorithm having as input the total occurrence of method calls on

the pages returned by the Google search engine, has very large variability in results,

for most page numbers given as input to the approach. In addition, the GORCTO

approach removes many pages relevant to software developers. So, this approach is not

recommended for removing irrelevant pages.

Answer to RQ7: To what extent does applying clustering algorithms w.r.t. unique

occurrences of method calls help to remove irrelevant pages returned by search engines?

The F-Measure shown in Figure 11 reveal that the GORCUO Ąlter is effective to remove

irrelevant pages for software developers. For all page numbers given as input, the Ąlter

has higher F-Measure than Google search engines (JG). For example, for the number of

pages equal to 17, the median of the GORCUO Ąlter is around 0.8, while the Google

search engine has a median around 0.5, for the same number of pages given as input.

72 Chapter 4. Mining Relevant Solutions from Search Engine Results

4.3.3 Ranking Quality

In this section, we will answer the eighth research question (RQ8). Table 13 shows

the results of metrics Hit@K, Recall@K, MRR@K, MAP@K and NDCG@K, for K=5,

considering the 20 pages returned by the search engine as input. As the GOR, GORCOT

and GORCOU approaches select pages applying their Ąlters, the Ąnal number of pages

is less or equal 20. If the respective number of pages selected by these approaches is less

than 5, the number of pages is completed up to Ąve with the Ąrst non-selected pages of

the JG approach, so we can calculate the metrics for K=5.

Regarding the results of the Hit metric, shown in Table 13, we can observe that, for

the 10 evaluated queries, the approaches JG, GOR and GORCOU manage to Ąnd at least

one relevant page among the Ąrst 5 pages returned. The GORCOT approach, for two

queries, could not Ąnd any relevant page among the Ąrst Ąve returned pages.

The Recall@K metric shown in Table 13 was calculated considering the total number

of relevant pages found in the Ąrst 20 pages returned by the JG approach. The table

shows the results of this metric for K=5, that is, for the Ąrst 5 pages returned by the

approaches. Of the baseline and the three evaluated approaches, GORCUO obtained

the best results. So, after applying the Ąlters, more relevant pages are brought to the

top-5 ranking using this approach. The GOR approach had the second highest value

for this metric, which indicates that after applying the Ąlter that removes outlier pages,

the top-5 ranking has more relevant pages than the JG approach, which uses only the

ranking returned by Google. The GORCOT approach, which uses outlier removal as

the GOR approach, had results very close to the JG approach, this indicates that after

the application of the clustering from the GORCOT approach, the top-5 of the ranking

worsens in relation to the top-5 of the GOR approach. This is due to Ąlter instability of

the GORCOT clustering.

Table 13 shows the results of the MRR, MAP and NDCG metrics, for K=5. As we

can observe, the GORCUO approach presents better results for all metrics (MRR, MAP

and NDCG). These results show that, after applying the Ąlters proposed in this approach,

we obtain a top-5 ranking of better quality.

Table 13 Ű Comparison of Hit, Recall@K, MRR, MAP and NDCG metrics results, for
K=5, considering the 20 pages returned by the search engine as input, for the
10 queries evaluated.

Hit@K Recall@K MRR@K MAP@K NDCG@K

JG 1 0.347 0.595 0.558 0.663
GOR 1 0.472 0.658 0.624 0.739
GORCOT 0.8 0.378 0.72 0.657 0.655
GORCUO 1 0.624 0.867 0.839 0.897

4.4. Discussion 73

Answer to RQ8: To what extent does applying the Ąlters proposed in this work improve

the ranking quality of pages returned by search engines?

As we can observe in Table 13, the Ąlters of the GOR and GORCUO approaches improve

the top-5 ranking quality, for the 3 analyzed metrics (MRR, MAP and NDCG). The

GORCUO approach performed better than GOR. The GORCOT approach, on the other

hand, improves the ranking quality for the MRR and MAP metrics, compared to the

JG approach. For the NDCG metric, the GORCOT approach has a slightly lower value

than the JG approach. So, the Ąnal recommendation is that the GORCUO approach is

the best one to improve ranking of programming solutions from search engines.

4.4 Discussion

The results of the evaluation carried out on the Ąrst 20 pages returned by the Google

search engine, for the 10 analyzed queries, reveal that only 31% of the evaluated pages

have relevant solutions for software developers. The rest of the solutions have undesirable

characteristics, such as: no code examples, low degree of focus or/and pages with solution

size that is far from average. These results show the importance of developing Ąlters to

remove irrelevant pages for developers.

Getting relevant pages in search engine results is a difficult task for developers, as

they may have to inspect those pages manually, which obviously takes more effort to get

the desired result. We observed that pages with high or very high degree of focus are

scattered in the ranking returned by search engines. This may be due to the fact that

search engines consider generic features that are not customized for solutions related to

software development [20]. For example, pages may contain high quality text content,

but may lack source code examples. Moreover, pages may have source code, may contain

high quality textual content, but the solution may not be focused on the query searched

by the developer, that is, the solution may not solve directly the userŠs problem. Some

implications and possible consequences of using the ranked list of pages as-it-is are: 1)

the user stops browsing at a solution ranked in the Ąrst positions, but with low degree

of focus. A consequence is that the user may spend more time abstracting the desired

solution from low-focus content, rather than looking for more focused solutions in the

lower ranking positions. 2) the user continues to look for solutions with better focus on

lower ranking positions. A consequence is that the developer has to read several pages

until Ąnding one with content focused on the desired solution, demanding more effort.

As we can observe in this study, there are pages with content with a high degree of focus

only in the 15𝑡ℎ position of the ranking, many developers may not examine the content

of the pages in deep positions of the ranking. Therefore, these developers may not Ąnd a

good solution that is at the bottom of the ranking.

74 Chapter 4. Mining Relevant Solutions from Search Engine Results

Another feature that makes pages returned by search engines irrelevant to software

developers is the absence of source code. The results show that some of the pages returned

by search engines do not have source code. Probably, source code is not a major priority

for search engines when ranking pages. A developer looking for code examples would

spend considerable time visiting pages without source code.

The results showed that the GOR Ąlter, which removes outlier pages, is effective in

removing irrelevant pages returned by search engines. This is due to the Ąlter removing

pages that do not have source code or with small source code in relation to the average

size of the solutions present in the pages returned by the search engine. The Ąlter also

removes those pages with large solution size relative to an average size. As shown in the

results of this work, pages with solutions that are too small or too large compared to the

average size of the solutions returned by the search engine have low or very low degree

of focus, which makes the solution irrelevant for developers. For example, for the query

Şhow to implement menu java javafxŤ, evaluated in this study, one of the pages returned

by the engine just deĄnes the SeparatorMenuItem class, without a practical example of

use. Since the page has only three method calls that are related to the classŠs constructor

method, that page is removed by the GOR Ąlter, as the number of occurrences of methods

is lower than the average occurrence of method calls for this programming task, having

an average of 66.8 calls. For the same query, another page returned by the search engine

has an extensive solution, with 147 method calls, which addresses features such as radio

button and checkbox in the solution. These features make the solution on that page lose

focus. The GOR Ąlter also removed this page.

The results showed that the GORCTO Ąlter has a large variability in the results for the

different queries given as input. This Ąlter uses a clustering algorithm where the attribute

is the total method calls found in the page solutions, which makes it very unstable. So,

pages that have been clustered in the same cluster may have solutions that lose focus.

For example, for the query Şhow to implement crud operations java jpaŤ evaluated in this

study, two pages (A and B) were clustered in the same cluster, even though one of the

pages contained a solution that lost focus. These pages were inadequately clustered in

the same cluster due to the characteristic of the GORCTO approach of using the total

hits of method calls as the attribute value for the clustering algorithm. For this case,

pages A and B have some methods in common with occurrence value equal or very close,

these methods help these pages to be in the same cluster. For example, the begin method

occurs 4 times on page A and 4 times on page B. The getTransaction method occurs 10

times on page A and 9 times on page B. The Ąnd method occurs 4 times on page A and

4 times on page B. The commit method occurs 4 times on page A and 5 times on page B.

However, on page B there are several methods that do not occur on page A. For example,

the getText, parseInt, removeById and showInputDialog methods. These methods are

related to the graphical user interface part of the solution. In other words, page B also

4.5. Threats to Validity 75

addresses issues related to the graphical interface, losing the main focus of the user query,

which is to implement CRUD operations. As cluster selection considers the sum total of

occurrences of method calls that occur on at least two pages in the clusters, pages with

low focus are placed in the same cluster as pages with high focus, as a portion of the

method calls on those pages occur multiple times.

The results showed that the GORCUO Ąlter is effective in removing irrelevant pages,

since the Ąlter uses a clustering algorithm where the attribute is a single occurrence of

each method call. This feature prevents interference from method calls that often occur

in solutions from different pages, which reduces the quality of the generated clusters. For

example, if the GORCOU approach was applied in the example of the previous paragraph,

probably pages A and B would not be clustered in the same cluster, since the occurrences

of the method calls would be counted only once. For example, the getTransaction method

would have an attribute value equal to 1 for pages A and B, instead of 10 for page A and 9

for page B. In this way, this method would have no weight at the time of the agglomeration

of the pages, that is, pages A and B would not be so close together because of this method

call and other method calls with high occurrence numbers as attribute value.

The results showed that the GORCOU Ąlter improves the quality of the top-5 ranking,

as shown in the results of the MRR, MAP and NDCG metrics (Table 13). Even removing

some relevant pages as shown in the Recall metric results (Figure 10), this Ąlter is effective

in removing irrelevant pages as shown in the Precision (Figure 9) and MAP metric results.

This improvement in ranking quality is due to the use of a Ąlter that uses a clustering

algorithm, where the attribute is a unique occurrence of each method call. This algorithm

manages to mine the relevant pages spread out in the ranking, bringing them to the top

of the ranking, consequently, improving the ranking quality.

4.5 Threats to Validity

In this section, we show some threats to the validity of this study.

Internal validity. This kind of threat is about how sure we can be that the treatment

actually caused the outcome. In this study, a threat to internal validity was the number

of pages returned by the search engine considered in the study of mining approaches. A

possible larger number of pages could inĆuence the results. To minimize this threat, we

conducted a preliminary study varying the number of pages (from 3 to 20 pages) and

found that from 15 pages the results begin to converge.

External validity. This kind of threat is related to whether we can generalize the

results outside the scope of our study. In this study, to threaten external validity, the

results of the proposed approaches are limited to the JAVA programming language. The

approaches may have different results with other programming languages.

Conclusion validity. This kind of threat is about how sure we can be that the treatment

76 Chapter 4. Mining Relevant Solutions from Search Engine Results

is really (statistically) related to the actual outcome. In this study, we constructed a

ground-truth with 10 queries, analyzing 20 pages per query (200 pages in total). So,

enlarging the number of queries would possibly impact the results. To mitigate this

threat, we have carefully chosen queries in distinct API domains to cover a broad range

of content.

4.6 Conclusion

In this chapter, we have shown that the Google search engine may return a non-

negligible number of pages with low focus on the solution sought by the developer. The

results also show that there are several pages returned with no code samples. Pages with

these characteristics are not interesting for developers looking for a solution for their

problem in hand, motivating our proposed approach to Ąlter only relevant solutions for

developers.

Our study compared the Google baseline and three different approaches for Ąltering

relevant solutions. The proposed approach that removes outlier pages and applies a

clustering algorithm with unique occurrences of method calls as attribute value obtained

higher precision and F-Measure than the other three evaluated approaches. These results

demonstrated the effectiveness of creating Ąlters to improve the results returned by search

engines.

77

Chapter 5

Related Work

This chapter aims to present the research related to the two main studies carried

out in this thesis: 1) the study on the inĆuence that the ranking quality exerts on the

performance of developers when performing programming tasks, and 2) the study on the

mining of relevant solutions for developers from search engine results.

5.1 On the InĆuence of the Ranking Quality for De-

velopers

Rahman et al. (2018) investigated if general-purpose search engines like Google are an

optimal choice for source code-related searches. They aimed at understanding whether

the performance of searching with Google varies for code vs. non-code related searches.

To carry out these investigations, the authors collected search logs from 310 developers

that contain nearly 150,000 search queries from Google and the associated result clicks.

To differentiate between code-related searches and non-code related searches, they built

a model which identiĄes the code intent of queries. Leveraging this model, they built

an automatic classiĄer for code and non-code related query. The authors noted that

code related searching often requires more effort (e.g., time, result clicks, and query

modiĄcations) than general non-code search, which indicates code search performance

with a general search engine is less effective. The results of this work show the importance

of general purpose search engines for source code search, which motivated us to carry out

a study on the inĆuence of the ranked list of result pages on the performance of developers

during programming tasks and the development of Ąlters to improve the ranking quality

returned by search engines.

Sadowski, Stolee e Elbaum (2015) conducted a case study related to how developers

search for code using the Google search engine. The results of the study show that pro-

grammers search for code very frequently, conducting an average of Ąve search sessions

with 12 total queries each workday. The authors also show that programmers are generally

78 Chapter 5. Related Work

seeking answers to questions about how to use an API, what code does, why something

is failing, or where code is located. Based on the free text answers, the most common

questions were about Ąnding code samples, meaning the developers who participated in

this study look for examples more than anything else. The results of this study also mo-

tivated us to carry out a study on the inĆuence of the ranking quality on the performance

of developers, since developers perform several queries on search engines during the day

in search of code examples for solving day-to-day problems and these search engines can

return irrelevant pages to developers, hindering their performance during the resolution

of programming.

Keane, OŠBrien e Smyth (2008) evaluated whether people are biased in their use of

a search-engine, speciĄcally, whether they are biased in clicking on those items that are

presented at the top of the result list, returned by the search engine. To test this bias

hypothesis, they simulated the Google environment systematically reversing GoogleŠs nor-

mal relevance-ordering of the items presented to users. The results showed that people

do manifest some bias, favoring items at the top of result lists, although they also some-

times seek out high-relevance items listed further down the list. These results motivated

us to better understand how developers behave when faced with a lower quality ranking

returned in top-ranked positions of a search engine result.

Several other works have studied the impacts that search engines exert during activities

related to software development. In the work of Fischer, Stachelscheid e Grossklags (2021),

the authors showed the effects that Google search engines have on software security. They

showed that the probability of an insecure result appearing in the top three is 22.78%,

while only 9.19% secure ones. In the work of Hora (2021b), the authors conducted an

empirical study to understand what developers search in the web and what they Ąnd. They

found that queries performed by developers typically start with keywords, e.g. Python,

Android, etc., they have three words on the median, tend to omit function words, and

are similar among each other. Another observation was that minor changes to queries

do not broadly affect Google search results, however some cosmetic changes can have a

non-negligible impact. This study motivated us to investigate the impact that the ranking

quality of the pages returned by the search engine has on the developer. Since the results

show how developers make use of the Google search engine to search for content related

to software development on the Web.

Cho e Roy (2004) studied the impact that search engines have on the evolution of

the popularity of web pages. They analytically estimated how long it takes for a new

page to attract a large number of web users, while searches return only popular pages at

the top of search results. The results of this work show that search engines can have an

immensely worrying impact on the discovery of new web pages. These results show that

there may be new pages at the bottom of the rankings that have content that is relevant

to the user. In the context of our work, there may be relevant solutions in lower positions

5.2. On Mining Relevant Solutions from Search Engine Results 79

on new pages. These results also motivated us to carry out a study on the inĆuence that

the ranking exerts on the performance of developers while performing programming tasks.

5.2 On Mining Relevant Solutions from Search En-

gine Results

Research in the Ąeld of mining search engine results is a practice that has given good

results in different contexts. For example, in the work of Saraswathi e Vijaya (2013),

they improve the quality of search engine results by identifying and removing spam links.

In the work of Suneetha, Sameen Fatima e Shaik Mohd. Zaheer Pervez (2011), the

authors aim at organizing web search results into clusters facilitating quick browsing

options to the browser providing interface to results precisely. On the other hand, in

the work of Suo, Zhang e Zhang (2009), the authors analyze the results of the search

engines using a new summary approach which calculates the sentence weight utilizing the

information of the distance between words. In this thesis, we propose an approach to

improve the ranking quality of pages returned by the Google search engine through Ąlters

and clustering algorithm.

Several other researchers (LAU; HORVITZ, 1999; KIM; COLLINS-THOMPSON;

TEEVAN, 2016; ZAHERA; EL-HADY; EL-WAHED, 2011; HONG; VAIDYA; LU, 2011;

ZHUANG; CUCERZAN, 2006; AMIN; EMROUZNEJAD, 2011; CARAMIA; FELICI;

PEZZOLI, 2004) have been working to improve search engine ranking results, as these

search engines return many pages irrelevant to users, whatever area of expertise. This

shows the importance of research related to this topic. Regarding the area of software

development, appropriate solutions for developers are not always among the Ąrst pages

ranked by search engines. They can be mixed with other pages with inadequate charac-

teristics, such as: without code examples and little focus on the desired solution. It is a

challenge to remove pages with these inappropriate characteristics. Xia et al. (2017) eval-

uate the quality of software development-related pages returned by search engines. They

argue that several reviewers questioned that the quality of the content of the pages re-

turned by search engines is low, which requires more time to Ąnd the desired content. The

approach that we are proposing removes pages with inappropriate content for developers,

selecting only the relevant pages.

Zhuang e Cucerzan (2006) address two common problems in search, frequently occur-

ring with underspeciĄed user queries: the top ranked results for such queries may not

contain relevant documents to the userŠs search intent, and fresh pages may not get high

rank scores for an underspeciĄed query due to their freshness and to the large number of

pages that match the query, despite the fact that a large number of users have searched

for parts of their content recently. The authors argue that such problems can be solved

if usersŠ search goals are well understood, and propose a method called Q-Rank to effec-

80 Chapter 5. Related Work

tively reĄne the ranking of search results for any given query by constructing the query

context from the query logs. The results of the work evaluation show that Q-Rank gains

a signiĄcant advantage over the current ranking system of a large-scale commercial Web

search engine, being able to improve the search resultsŠ relevance for 82% of the queries,

as reĆected in the discounted cumulative gain numbers obtained. Furthermore, because

Q-Rank is independent of the underlying ranking scheme, it is highly portable and can

be easily integrated with any existing search engine system. Our work also addresses the

problems mentioned above, but in the context of software development: results returned

by search engines do not contain documents relevant to the userŠs intention and fresh

pages may not be at the top of the ranking. Our approach differs from the approach of

this work, because we apply Ąlters to the pages returned by the search engine, while in

this work, the authors propose a method for building a query from a query log.

Zahera, El-Hady e El-Wahed (2011) propose a method for query recommendation,

which given a query submitted to a search engine, suggests a list of queries that are

related to the user input query. The purpose of the approach is to improve the results

returned by search engines. The method proposed by the authors is based on clustering

processes in which groups of semantically similar queries are detected. The clustering

process uses the content of historical preferences of users registered in the query log of

the search engine. This facility provides queries that are related to the ones submitted

by users in order to direct them toward their required information. The Ąlters that we

propose in this thesis also aim to improve the results returned by search engines, but

our approach works with the contents present in the returned pages, unlike the above

work, which decides for an approach of query recommendation that could be seen as

complementary to ours.

Kim, Collins-Thompson e Teevan (2016) explore how crowd sourcing can be used at

query time to augment key stages of the search pipeline. First, they investigate the use

of crowdsourcing to improve search result ranking. When the crowd is used to replace or

increase traditional retrieval components, such as, query expansion and relevance scoring,

they observed that they could increase robustness against failure for query expansion and

improve overall precision for results Ąltering. However, there is a limitation on these

gains, due to the extra cost and time that the crowd requires. They Ąnd that using crowd

workers to support rich query understanding and result processing appears to be a more

worthwhile way to make use of the crowd during search. The current work proposed

in this thesis also seeks to improve the results returned by search engines through the

proposed Ąlter.

Hong, Vaidya e Lu (2011) present a clustering approach based on a key insight, where

search engine results can be used to identify query similarity. They propose a similarity

metric for diverse queries based on the ranked URL results returned by a search engine.

This is used to develop an algorithm for clustering queries. The approaches proposed in

5.2. On Mining Relevant Solutions from Search Engine Results 81

this thesis also use the clustering approach, but with different objectives. The clustering

algorithm is applied to the pages returned by the search engine to group pages that have

method calls in common in the same clusters, in order to obtain pages with solutions

more focused on the userŠs query. Whereas in the above work, the clustering approach is

applied to queries with the aim of grouping similar queries into clusters.

Zhao et al. (2017) address the problem of identifying irrelevant items from a small

set of similar documents using Web search engine suggestions. They collected Web pages

through Web search engines and inspected the page contents using topic models. Among

each cluster of pages sharing the same topic the proposed technique discovers potential

content organization in the current page cluster and identiĄes pages that are out of focus

from that topic. The metrics of the approach mainly consist of search engine suggest

frequency (search suggestions provided by search engines) and inter-document similarity

measures. The intuition is that Web pages collected via the same search queries are

more likely to share similar contents. The authors verify this intuition by implementing a

subtopic based document selection framework and making quantitative evaluation against

human made labeled data sets. The results show that suggest frequency analysis along

with inter-document similarity measure is effective at Ąltering off-topic documents in small

data sets with satisfactory performance. In this thesis, we use a clustering algorithm to

group pages that have method calls in common, in order to obtain relevant pages with

content focused on the userŠs query. In the work cited above, the authors use topic models

to identify irrelevant pages based on the textual content of the pages that does not take

into account the source code of the solutions present on the pages.

Agichtein, Brill e Dumais (2006) show that incorporating user behavior data can sig-

niĄcantly improve ordering of top results in real web search setting. They examine alter-

natives for incorporating feedback into the ranking process and explore the contributions

of user feedback compared to other common web search features. The authors report

results of a large scale evaluation over 3,000 queries and 12 million user interactions with

a popular web search engine. They show that improving implicit feedback can increase

other features, the accuracy of a competitive web search ranking algorithms by as much

as 31% relative to the original performance. The approach proposed in this thesis also

aims to improve the ranking quality of pages returned by search engines, but for content

related to software development.

The identiĄcation of method calls in the source code of web pages returned by search

engines is challenging because in the source code of the page, they are mixed with method

calls that are part of the construction of the web page. For example, method calls within

the 𝑠𝑐𝑟𝑖𝑝𝑡 and 𝑠𝑡𝑦𝑙𝑒 tags present on the web page are not part of the solution sought by

the developer, as they are related to the construction of the web page itself. Stylos e My-

ers (2006) obtain the method calls present in the source code of the web pages by means

of a list of method calls extracted from the official documentation of the JAVA language,

82 Chapter 5. Related Work

with the limitation of collecting method calls only from this programming language. The

approach proposed in this thesis effectively recognizes method calls of different computer

programming technologies, through regular expressions, obtaining these method calls au-

tomatically.

Stylos e Myers (2006) and Diamantopoulos, Karagiannopoulos e Symeonidis (2018)

propose approaches for obtaining pages and method calls, but those works are limited

only to the JAVA programming language. The approach that we are proposing can obtain

pages with method calls from several different computer programming technologies.

Mandelin et al. (2005) created a tool called Prospector, that given a class or an object

previously known by the programmer, the tool helps to search for code examples. A disad-

vantage of that approach is the requirement of prior knowledge of the class or the object,

greatly limiting its use by programmers who do not know the underlying programming

technology. Our approach does not have this limitation, that is, the developer does not

need to have prior knowledge of the method calls to use the proposed approach.

Chatterjee, Juvekar e Sen (2009) have proposed a new code search technique called

Sniff, which retains the Ćexibility to perform a search in English, while obtaining small

pieces of relevant code needed to perform the desired task. In Sniff, a programmer deĄnes

a query expressing the programming task in English and the tool returns a small set of

relevant code snippets. Regarding the above work of Mandelin et al. (2005), Sniff has the

advantage of eliminating the need for prior knowledge about the API to be reused.

Zheng, Zhang e Lyu (2011) mine the results of search engines to collect relevant

information from a given API from an old library and then recommend candidates for

the API from the new library that appear frequently in web search results returned by

search engine. Our work also uses the results returned by search engines, but our goal is

to improve the quality of ranking pages through Ąlters and clustering algorithms, while

the work cited above aims to recommend new libraries.

83

Chapter 6

Conclusion

In this thesis, we have shown that the Google search engine may return a non-negligible

number of pages with low focus on the solution sought by the developer. The results also

show that there are several pages returned with no code samples. Pages with these

characteristics are not interesting for developers looking for a solution for their problem

in hand, motivating our proposed approach to Ąlter only relevant solutions for developers.

In order to reinforce the importance of the proposed Ąlters, we carried out a study

with human subjects. The results showed that ranking quality inĆuences the perfor-

mance of developers when performing programming tasks. The Ąndings of this study are

summarized below.

The time spent solving programming tasks using a Lower Quality Ranking is generally

greater than the time spent on a Higher Quality Ranking. In tasks related to Higher

Quality Ranking, participants do not use irrelevant pages, because relevant pages are

at the top of the ranking and the participants already Ąnd the solution for the task on

the Ąrst pages. Participants visited more pages related to Lower Quality Ranking than

those related to Higher Quality Ranking, because relevant pages are spread out in Lower

Quality Ranking, so participants must visit more pages to Ąnd them. Our results showed

that two tasks related to Lower Quality Ranking were not completely resolved. In those

tasks, the participants visited pages in the lowest positions of the ranking. This is due

to irrelevant pages in the top positions of the ranking hinder the participants to Ąnd the

solution. One of the participants used the methods in the list of methods that we include

in the description of the ranked pages to solve two programming tasks. All participants

skipped the irrelevant pages except one participant, possibly be due to the list of frequent

methods in the page descriptions in the rank. The time spent analyzing the Lower Quality

Ranking pages is longer than the time spent analyzing the Higher Quality Ranking pages,

because adequate solutions are spread out in the ranking, so participants need to browse

the ranking to access theses solutions. For all pairs of analyzed tasks, the time spent

on useless pages was higher for the Lower Quality Ranking, because when developers

encounter a bad code on an useless page, they spend a lot of time trying to reuse the bad

84 Chapter 6. Conclusion

code. We observed that developers try to Ąx the bad code by searching for content on

other pages, spending even more time. In cases where the developer cannot Ąx the bad

code, all the effort is wasted, so the developer moves on to another page.

The above results motivated the proposal of an approach to Ąlter relevant pages in

the ranked list returned by search engines. Our study to evaluate the effectiveness of

the proposal compared Google as baseline and three different approaches. The results

showed that the outlier page removal Ąlter used by the proposed approaches helps to

remove irrelevant pages for software developers. For all page numbers given as input, the

Ąlter has F-Measure higher than Google Search Engines, except for page number equals

to 5, where the median of the Google Search Engines is slightly above the median of the

Ąlter. Regarding the approach that uses the clustering algorithm having as input the

total occurrence of method calls on the pages returned by the Google search engine, has

very large variability in results, for most page numbers given as input to the approach. In

addition, this approach removes many relevant pages for software developers. Therefore,

we do not recommend it for removing irrelevant pages. The approach that applies a

clustering algorithm with unique occurrences of method calls as attribute value obtained

higher precision and F-Measure compared to baseline and the other evaluated approaches.

In addition to improving the top-5 ranking quality, according to the results of the MRR,

MAP and NDCG metrics. These results demonstrated the effectiveness of creating Ąlters

to improve the results returned by search engines.

As future work, the achieved approach can be used to create documentation focused

on the programming task queried by a developer on a search engine. That documentation

could contain containing descriptive explanations, code examples and frequently asked

questions about method calls found in the solutions of the pages would be returned on-

the-Ćy. Other future work would be empirically evaluating the actual beneĄts of Ąltering

web search results during a development activity with a larger and representative sample

in order to provide a more general and robust result.

The thesis statement is shown below:

Thesis Statement

Poor quality ranking returned by search engines may hinder developersŠ perfor-

mance when solving programming tasks. Filters capable of eliminating irrelevant

pages for software developers, present in the results returned by search engines

could be developed and proved to be effective.

6.1. Bibliographic Production 85

6.1 Bibliographic Production

The following article related to this thesis was submitted, and it is currently under

review:

1. Mining Relevant Solutions for Programming Tasks from Search Engine Results. It

was submitted to the journal IET Software. This article comprises the Chapter 4

of this thesis, where we carried out a study of the pages returned by Google and

found that it returns many pages that are irrelevant to developers. So we propose

an approach to mining relevant pages from search engine results for programming

tasks by identifying and Ąltering out irrelevant pages from the ranked list.

The following articles related to the general theme of the thesis were already published

during this research period:

1. Bootstrapping cookbooks for APIs from crowd knowledge on Stack OverĆow. This

paper was published in the journal Information and Software Technology, and it

carried out with the collaboration of the research laboratory group. This article

addresses the problem of the poor quality documentation for APIs by providing an

alternative artifact to document them based on the crowd knowledge available on

Stack OverĆow, called crowd cookbook. A cookbook is a recipe-oriented book, and

we refer to our cookbook as crowd cookbook since it contains content generated by

a crowd (SOUZA et al., 2019).

2. Improving the ClassiĄcation of Q&A Content for Android Fragmentation using

Named Entity Recognition. It was accepted at the EPIA conference (Conference

on ArtiĄcial Intelligence) and published as a book chapter by Springer. This article

addresses the problem of low performance of classiĄers when target classes have sim-

ilar content. The objective of this study was to develop a Named Entity Recognizer

(NER) model to recognize entities related to technical elements, and to improve

textual classiĄers for Android fragmentation posts from Stack OverĆow using the

obtained NER Model (ROCHA; MAIA, 2019).

86 Chapter 6. Conclusion

87

Bibliography

AGICHTEIN, E.; BRILL, E.; DUMAIS, S. Improving web search ranking by
incorporating user behavior information. In: Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval. New York, NY, USA: Association for Computing
Machinery, 2006. (SIGIR Š06), p. 19Ű26. ISBN 1595933697. Disponível em:
<https://doi.org/10.1145/1148170.1148177>.

AGRAHRI, A. K.; MANICKAM, D. A. T.; RIEDL, J. Can people collaborate to
improve the relevance of search results? In: Proceedings of the 2008 ACM
Conference on Recommender Systems. New York, NY, USA: Association for
Computing Machinery, 2008. (RecSys Š08), p. 283Ű286. ISBN 9781605580937. Disponível
em: <https://doi.org/10.1145/1454008.1454052>.

AMIN, G. R.; EMROUZNEJAD, A. Optimizing search engines results using linear
programming. Expert Syst. Appl., Pergamon Press, Inc., USA, v. 38, n. 9, p.
11534Ű11537, set. 2011. ISSN 0957-4174. Disponível em: <https://doi.org/10.1016/j.
eswa.2011.03.030>.

BACKMAN, K.; KYNGAS, H. A. Challenges of the grounded theory approach to a
novice researcher. Nursing & Health Sciences, v. 1, n. 3, p. 147Ű153, 1999. Disponível
em: <https://doi.org/10.1046/j.1442-2018.1999.00019.x>.

BAJRACHARYA, S.; OSSHER, J.; LOPES, C. Sourcerer: An infrastructure for
large-scale collection and analysis of open-source code. Sci. Comput. Program.,
Elsevier North-Holland, Inc., USA, v. 79, p. 241Ű259, jan. 2014. ISSN 0167-6423.
Disponível em: <https://doi.org/10.1016/j.scico.2012.04.008>.

BUSE, R. P. L.; WEIMER, W. Synthesizing API usage examples. In: Proceedings
of the 34th International Conference on Software Engineering. IEEE
Press, 2012. (ICSE Š12), p. 782Ű792. ISBN 9781467310673. Disponível em:
<https://doi.org/10.1109/ICSE.2012.6227140>.

CARAMIA, M.; FELICI, G.; PEZZOLI, A. Improving search results with data
mining in a thematic search engine. Computers & Operations Research,
v. 31, n. 14, p. 2387Ű2404, 2004. ISSN 0305-0548. Disponível em: <https:
//doi.org/10.1016/S0305-0548(03)00194-1>.

88 Bibliography

CHATTERJEE, S.; JUVEKAR, S.; SEN, K. Sniff: A search engine for java
using free-form queries. In: CHECHIK, M.; WIRSING, M. (Ed.). Fundamental
Approaches to Software Engineering. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009. p. 385Ű400. ISBN 978-3-642-00593-0. Disponível em: <https:
//doi.org/10.1007/978-3-642-00593-0_26>.

CHO, J.; ROY, S. Impact of search engines on page popularity. In: Proceedings of
the 13th International Conference on World Wide Web. New York, NY, USA:
Association for Computing Machinery, 2004. (WWW Š04), p. 20Ű29. ISBN 158113844X.
Disponível em: <https://doi.org/10.1145/988672.988676>.

DELFIM, F. M. et al. Redocumenting APIs with crowd knowledge: a coverage analysis
based on question types. Journal of the Brazilian Computer Society, v. 22, n. 1,
p. 9, dez. 2016. Disponível em: <https://doi.org/10.1186/s13173-016-0049-0>.

Diamantopoulos, T.; Karagiannopoulos, G.; Symeonidis, A. Codecatch: Extracting
source code snippets from online sources. In: 2018 IEEE/ACM 6th International
Workshop on Realizing ArtiĄcial Intelligence Synergies in Software
Engineering (RAISE). [S.l.: s.n.], 2018. p. 21Ű27.

FISCHER, F.; STACHELSCHEID, Y.; GROSSKLAGS, J. The effect of Google search
on software security: Unobtrusive security interventions via content re-ranking. In:
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. New York, NY, USA: Association for Computing
Machinery, 2021. (CCS Š21), p. 3070Ű3084. ISBN 9781450384544. Disponível em:
<https://doi.org/10.1145/3460120.3484763>.

GALLARDO-VALENCIA, R. E.; SIM, S. E. Internet-scale code search. In:
Proceedings of the 2009 ICSE Workshop on Search-Driven Development-
Users, Infrastructure, Tools and Evaluation. USA: IEEE Computer Society,
2009. (SUITE Š09), p. 49Ű52. ISBN 9781424437405. Disponível em: <https:
//doi.org/10.1109/SUITE.2009.5070022>.

HONG, Y.; VAIDYA, J.; LU, H. Search engine query clustering using top-k search results.
In: Proceedings of the 2011 IEEE/WIC/ACM International Conferences on
Web Intelligence and Intelligent Agent Technology - Volume 01. USA: IEEE
Computer Society, 2011. (WI-IAT Š11), p. 112Ű119. ISBN 9780769545134. Disponível
em: <https://doi.org/10.1109/WI-IAT.2011.224>.

HORA, A. Characterizing top ranked code examples in Google). Journal of Systems
and Software, 2021. Disponível em: <https://doi.org/10.1016/j.jss.2021.110971>.

. Googling for software development: What developers search for and what they
Ąnd. In: International Conference on Mining Software Repositories. [s.n.], 2021.
p. 1Ű12. Disponível em: <https://doi.org/10.1109/MSR52588.2021.00044>.

JOHNSON, R. E. Documenting frameworks using patterns. In: Conference
Proceedings on Object-Oriented Programming Systems, Languages,
and Applications. New York, NY, USA: Association for Computing Machinery,
1992. (OOPSLA Š92), p. 63Ű76. ISBN 0201533723. Disponível em: <https:
//doi.org/10.1145/141936.141943>.

Bibliography 89

Kataria, S.; Sapra, P. A novel approach for rank optimization using search engine
transaction logs. In: 2016 3rd International Conference on Computing for
Sustainable Global Development (INDIACom). [S.l.: s.n.], 2016. p. 3387Ű3393.

KEANE, M. T.; OŠBRIEN, M.; SMYTH, B. Are people biased in their use of
search engines? Commun. ACM, Association for Computing Machinery, New
York, NY, USA, v. 51, n. 2, p. 49Ű52, feb 2008. ISSN 0001-0782. Disponível em:
<https://doi.org/10.1145/1314215.1314224>.

KIM, J. et al. Towards an intelligent code search engine. In: Proceedings of the
Twenty-Fourth AAAI Conference on ArtiĄcial Intelligence. AAAI Press, 2010.
(AAAIŠ10), p. 1358Ű1363. Disponível em: <https://doi.org/10.1609/aaai.v24i1.7503>.

KIM, Y.; COLLINS-THOMPSON, K.; TEEVAN, J. Using the crowd to improve search
result ranking and the search experience. ACM Trans. Intell. Syst. Technol.,
Association for Computing Machinery, New York, NY, USA, v. 7, n. 4, jul. 2016. ISSN
2157-6904. Disponível em: <https://doi.org/10.1145/2897368>.

LAU, T.; HORVITZ, E. Patterns of search: Analyzing and modeling web query
reĄnement. In: Proceedings of the Seventh International Conference on User
Modeling. Berlin, Heidelberg: Springer-Verlag, 1999. (UM Š99), p. 119Ű128. ISBN
3211831517. Disponível em: <https://doi.org/10.1007/978-3-7091-2490-1_12>.

MANDELIN, D. et al. Jungloid mining: Helping to navigate the API jungle. In:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation. New York, NY, USA: Association for
Computing Machinery, 2005. (PLDI Š05), p. 48Ű61. ISBN 1595930566. Disponível em:
<https://doi.org/10.1145/1065010.1065018>.

MURPHY, G. et al. Enabling Productive Software Development by Improving Informa-
tion Flow. In: . Rethinking Productivity in Software Engineering. Berkeley,
CA: Apress, 2019. Disponível em: <https://doi.org/10.1007/978-1-4842-4221-6_24>.

NIU, H.; KEIVANLOO, I.; ZOU, Y. Learning to rank code examples for code
search engines. Empirical Softw. Engg., Kluwer Academic Publishers, USA,
v. 22, n. 1, p. 259Ű291, fev. 2017. ISSN 1382-3256. Disponível em: <https:
//doi.org/10.1007/s10664-015-9421-5>.

NYKAZA, J. et al. What programmers really want: Results of a needs assessment
for SDK documentation. In: Proceedings of the 20th Annual International
Conference on Computer Documentation. New York, NY, USA: Association for
Computing Machinery, 2002. (SIGDOC Š02), p. 133Ű141. ISBN 1581135432. Disponível
em: <https://doi.org/10.1145/584955.584976>.

RAHMAN, M. M. et al. Evaluating how developers use general-purpose web-search
for code retrieval. In: Proceedings of the 15th International Conference on
Mining Software Repositories. New York, NY, USA: Association for Computing
Machinery, 2018. (MSR Š18), p. 465Ű475. ISBN 9781450357166. Disponível em:
<https://doi.org/10.1145/3196398.3196425>.

RAHMAN, M. M.; ROY, C. K.; LO, D. Automatic query reformulation for code search
using crowdsourced knowledge. Empir. Softw. Eng., v. 24, n. 4, p. 1869Ű1924, 2019.
Disponível em: <https://doi.org/10.1007/s10664-018-9671-0>.

90 Bibliography

ROBILLARD, M. P. What makes APIs hard to learn? answers from developers. IEEE
Softw., IEEE Computer Society Press, Washington, DC, USA, v. 26, n. 6, p. 27Ű34, nov
2009. ISSN 0740-7459. Disponível em: <https://doi.org/10.1109/MS.2009.193>.

ROCHA, A. M.; MAIA, M. A. Improving the ClassiĄcation of Q&A Content for
Android Fragmentation Using Named Entity Recognition. In: . Progress in
ArtiĄcial Intelligence. Switzerland: Springer, Cham, 2019. p. 731Ű743. Disponível em:
<https://doi.org/10.1007/978-3-030-30244-3_60>.

SADOWSKI, C.; STOLEE, K. T.; ELBAUM, S. How developers search for code: A
case study. In: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. New York, NY, USA: Association for Computing
Machinery, 2015. (ESEC/FSE 2015), p. 191Ű201. ISBN 9781450336758. Disponível em:
<https://doi.org/10.1145/2786805.2786855>.

Saraswathi, D.; Vijaya, A. A generic tool for link spam detection in search engine results
using graph mining. In: 2013 International Conference on Pattern Recognition,
Informatics and Mobile Engineering. [S.l.: s.n.], 2013. p. 282Ű286.

Sharma, A. K. et al. Web search result optimization by mining the search engine
query logs. In: 2010 International Conference on Methods and Models
in Computer Science (ICM2CS-2010). [s.n.], 2010. p. 39Ű45. Disponível em:
<https://doi.org/10.1109/ICM2CS.2010.5706716>.

SILVA, R. F. G. et al. Recommending comprehensive solutions for programming
tasks by mining crowd knowledge. In: Proc. of the 27th Intl.Conf. on Program
Comprehension (ICPCŠ2019). IEEE Press, 2019. p. 358Ű368. Disponível em:
<https://doi.org/10.1109/ICPC.2019.00054>.

. CROKAGE: Effective solution recommendations for programming tasks by
leveraging crowd knowledge. Empirical Software Engineering, 2020. Disponível em:
<https://doi.org/10.5753/cbsoft_estendido.2021.17295>.

SIM, S. E. et al. How well do search engines support code retrieval on the web?
ACM Trans. Softw. Eng. Methodol., Association for Computing Machinery,
New York, NY, USA, v. 21, n. 1, dez. 2011. ISSN 1049-331X. Disponível em:
<https://doi.org/10.1145/2063239.2063243>.

SIMMONS, O. E. Some professional and personal notes on research methods, systems
theory, and grounded action. World Futures, Routledge, v. 62, n. 7, p. 481Ű490, 2006.
Disponível em: <https://doi.org/10.1080/02604020600912772>.

SOUZA, L. B. et al. Bootstrapping cookbooks for APIs from crowd knowledge on stack
overĆow. Inf. Softw. Technol., Butterworth-Heinemann, USA, v. 111, n. C, p. 37Ű49, jul
2019. ISSN 0950-5849. Disponível em: <https://doi.org/10.1016/j.infsof.2019.03.009>.

STOLEE, K. T.; ELBAUM, S.; DOBOS, D. Solving the search for source code.
ACM Trans. Softw. Eng. Methodol., Association for Computing Machinery,
New York, NY, USA, v. 23, n. 3, jun 2014. ISSN 1049-331X. Disponível em:
<https://doi.org/10.1145/2581377>.

Bibliography 91

Stylos, J.; Myers, B. A. Mica: A web-search tool for Ąnding API components and
examples. In: Visual Languages and Human-Centric Computing (VL/HCCŠ06).
[s.n.], 2006. p. 195Ű202. Disponível em: <https://doi.org/10.1109/VLHCC.2006.32>.

Suneetha, M.; Sameen Fatima, S.; Shaik Mohd. Zaheer Pervez. Clustering of web search
results using suffix tree algorithm and avoidance of repetition of same images in search
results using l-point comparison algorithm. In: 2011 International Conference on
Emerging Trends in Electrical and Computer Technology. [S.l.: s.n.], 2011. p.
1041Ű1046.

Suo, H.; Zhang, W.; Zhang, Y. Research on automatic summarization based on search
engine result. In: 2009 International Conference on Web Information Systems
and Mining. [s.n.], 2009. p. 74Ű77. Disponível em: <https://doi.org/10.1109/WISM.
2009.23>.

XIA, X. et al. What do developers search for on the web? Empirical Softw. Engg.,
Kluwer Academic Publishers, USA, v. 22, n. 6, p. 3149Ű3185, dez. 2017. ISSN 1382-3256.
Disponível em: <https://doi.org/10.1007/s10664-017-9514-4>.

ZAHERA, H. M.; EL-HADY, G. F.; EL-WAHED, W. F. A. Query recommendation
for improving search engine results. Int. J. Inf. Retr. Res., IGI Global,
USA, v. 1, n. 1, p. 45Ű52, jan. 2011. ISSN 2155-6377. Disponível em: <https:
//doi.org/10.4018/ijirr.2011010104>.

ZHAO, C. et al. Identifying major contents among web pages with search engine suggests
by modeling topics. In: Proceedings of the 11th International Conference on
Ubiquitous Information Management and Communication. New York, NY,
USA: Association for Computing Machinery, 2017. (IMCOM Š17). ISBN 9781450348881.
Disponível em: <https://doi.org/10.1145/3022227.3022251>.

ZHENG, W.; ZHANG, Q.; LYU, M. Cross-library API recommendation using web search
engines. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering. New York, NY,
USA: Association for Computing Machinery, 2011. (ESEC/FSE Š11), p. 480Ű483. ISBN
9781450304436. Disponível em: <https://doi.org/10.1145/2025113.2025197>.

ZHUANG, Z.; CUCERZAN, S. Re-ranking search results using query logs. In:
Proceedings of the 15th ACM International Conference on Information
and Knowledge Management. New York, NY, USA: Association for Computing
Machinery, 2006. (CIKM Š06), p. 860Ű861. ISBN 1595934332. Disponível em:
<https://doi.org/10.1145/1183614.1183767>.

	Dedication
	Agradecimentos
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	Acronyms list
	Contents
	Introduction
	Motivation
	Goals
	Research Questions
	Thesis Organization

	Background
	Search Engines
	Grounded Theory
	Clustering Algorithms

	The Influence of Search Engine Ranking Quality on the Performance of Developers
	Study Setting
	Definition of Programming Tasks for the Qualitative Study
	Building Higher Quality Ranking and Lower Quality Ranking
	Recruitment for the Qualitative Study
	Ranking Evaluation
	Qualitative Study Steps
	Methodology for Evaluating the Results

	Results
	On the Influence of Ranking Quality
	On the Influence of the List of Methods
	On the Influence of Irrelevant Pages on Developers

	Discussion
	Threats to Validity
	Conclusion

	Mining Relevant Solutions from Search Engine Results
	The Mining Approach
	Mining Steps
	Parameter calibration
	Lower and Upper Limits for Outlier Pages
	Page filtering mechanism

	Study Setting
	Definition of baselines
	Definition of queries for assessment
	Ground-truth
	Evaluation of the Pages Returned by the Search Engine
	Criteria for Ground-truth Construction
	Ground-truth construction

	Results
	Study on the pages returned by the Google search engines
	Effectiveness of Page Filtering
	Ranking Quality

	Discussion
	Threats to Validity
	Conclusion

	Related Work
	On the Influence of the Ranking Quality for Developers
	On Mining Relevant Solutions from Search Engine Results

	Conclusion
	Bibliographic Production

	Bibliography

