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Resumo

Encontrar e corrigir a causa de falhas em software continua sendo um grande desafio. 
Tais tarefas exigem dos desenvolvedores esforço e experiência equivalentes as necessárias 
para o desenvolvimento de novas funcionalidades. Nas últimas décadas, a comunidade 
de pesquisa esteve ativa na produção de abordagens para apoiar a depuração de soft
ware. A tarefa de Localização de Faltas (LF) é um passo essencial, independente da 
abordagem utilizada para reparo de programas (automática ou manual). Entretanto, as 
abordagens automatizadas de localização são críticas para tornar o processo mais eficaz 
e eficiente. Existem muitas abordagens para a LF automática e todas têm um alvo 
comum: melhorar a precisão do ranqueamento de componentes de software suspeitos de 
conter uma falta. Uma questão recorrente é a indefinição sobre as razões do sucesso ou 
fracasso das abordagens sobre o conjunto de dados de faltas avaliado, uma vez que a 
maioria dos métodos não considera a natureza e as características intrínsecas das fal
tas. A discussão ainda é muito focada em ganhos de desempenho nos comparativos 
com o estado da arte. Este trabalho visa apoiar as tarefas de reparo de software, com 
foco primário no suporte automatizado à LF. Primeiro, investigamos as características 
associadas as faltas comumente utilizadas na avaliação de estratégias de LF (o que se 
estende também ao reparo automático de programas). Então, analisamos as relações 
entre essas características e como influenciam a performance da LF. Partimos de uma 
abordagem estática de LF, baseada em algoritmos de aprendizado de rankings, Learning 
to Rank (LtR), e tendo relatórios de bugs como entrada do processo. Inicialmente, ana
lisamos um conhecido conjunto de dados de faltas, Defects4J, de onde extraímos várias 
características das faltas. Posteriormente, analisamos tais características em um con
junto de dados maior, o qual referenciamos como LR-dataset. Então, levantamos várias 
estratégias e alternativas para a melhoria dos rankings de arquivos suspeitos de falta 



e gerados por abordagens de LF. Por exemplo, o uso de novas características (como a 
Entropia do Código), o ajuste de hiper-parâmetros e o balanceamento de dados para 
treinamento em abordagens de aprendizado de máquina e, finalmente, a amostragem 
de falhas guiada pela análise de códigos de reparo. Para isso, testamos as alternativas 
para melhoria dos rankings de componentes suspeitos por meio de um ambiente cons
truído para experimentação e reprodução de estratégias para a LF. Mostramos que as 
estratégias de pré-processamento de relatórios de bugs e dos conjuntos de dados, além 
do ajuste de diferentes algoritmos de LtR, podem produzir resultados diferentes para os 
rankings mesmo usando abordagens prévias de LF. Além disso, as características das 
falhas amostradas para a avaliação podem influenciar significativamente o ranqueamento 
dos arquivos suspeitos, por exemplo, dependendo do tipo de padrões e ações de reparo 
necessários para a correção das falhas envolvidas. Este é o caso do padrão de reparo 
Missing Not-Null Check cuja presença em uma das amostras experimentais gerou um 
ranking de arquivos suspeitos marcando 27.22 pontos percentuais acima da linha base, 
ou seja, quando nós não consideramos a presença (ou ausência) do padrão. Esses re
sultados apontam para oportunidades de revisão das abordagens prévias de LF sob as 
lentes da dissecção dos conjuntos de dados utilizados na avaliação, com potencial de 
novos entendimentos, interpretações e composições de estratégias para LF.

Palavras-chave: Localização de Bug, Reparo Automático de Software, Análise de 
Reparos, Dissecção de Conjuntos de Dados de Bugs, Depuração de Software, Apren
dizado de Rankings.



Abstract

Finding and fixing software bugs still is a big challenge. These tasks demand de- 
velopers as much effort and experience as required to develop new functionality. Last 
decades, the research community actively produced approaches to support the debugging 
process. The Bug Localization (BL) task is an essential step, wherever is the applied 
software repair approach (automated or manual). However, automated techniques for 
BL are critical in turning the process more effective and efficient. There are many ap- 
proaches to automated BL, and all of them have one frequent goal: to improve accuracy 
performance in classifying software components suspected of containing bugs. One re- 
current issue is the lack of clarity about the reasons for the success or failure of the 
approaches on the assessed bug dataset since most methods do not consider the nature 
and intrinsic characteristics of the bugs. The discussion is still too focused on perfor
mance gains compared to the previous state-of-the-art. This work aims to contribute 
to software repair tasks, primarily focusing on supporting the automated BL. First, 
we explored characteristics of bugs usually applied in the assessment of the localization 
strategies (also extended to automated program repair). Then, we analyze the rela- 
tionships between these bug characteristics and their influence on the performance of 
localization strategies. We start from a static information-based BL approach, based 
in LtR algorithms, having bug reports as input to the localization process. Initially, 
we analyze a well-known bug dataset, Defects4J, from where we extract various bugs’ 
characteristics. Next, we analyzed these characteristics in a larger dataset referred to as 
LR-dataset. Then, we raise various strategies and alternatives to improve the ranking 
of suspect buggy files and generated by BL approaches. Some examples are the use of 
new features (e.g., Code Entropy), the tuning of hyperparameters and the data balance 
for training in Machine Learning (ML) based approaches, and, finally, bugs’ sampling 



guided by patch analysis. For that, we tested the alternatives to improve the ranking 
of suspected components with an environment built for experimenting with and repro- 
ducing the BL strategies. We show that pre-processing strategies on bug reports and 
also on the dataset, besides the tuning of different LtR algorithms, can produce different 
ranking results even with past BL approaches. Still, characteristics of the bugs sampled 
for assessment can influence ranking scores of buggy suspected files, e.g., depending on 
the type of associated repair patterns and repair actions required to fix the bugs. For 
example, this is the case for the Missing Not-Null Check repair pattern whose presence 
in an experimental sample produces a suspicious score ranking 27.22 percentual points 
above the baseline when we do not consider the presence (or absence) of the pattern. 
These results point to opportunities to review the BL past approaches under the lens 
of dataset dissection applied in the assessment and with a potential to new insights, 
interpretations, and compositions of strategies for BL.

Keywords: Bug Localization, Automatic Program Repair, Patch Analysis, Bugs’ Dataset 
Dissection, Debugging, Learn-to-Rank.
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Chapter

Introduction

Even after notable and world-class faults like the Millennium Bug (Y2K), the Soft
ware Engineering area still steps slowly and spends many resources trying to fix software. 
Studies referenced by MITCHELL (2009) have shown the spences of companies to deal 
with the Y2K reached around U$ 308 billion, perhaps, one of the most representative 
registered cases of huge budgets spent on repairing software. The lack of support to dates 
in four digits format is the bugs' root cause. Therefore, people reviewed adapted and 
fixed software applications worldwide to avoid unexpected consequences and disasters.

Y2K is a typical case of a known bug where the problem is well defined; however, the 
actual demand is on selecting the best strategy to localize the bug and apply a patch 
to the source code. Therefore, the localization strategy was crucial in Y2K since the 
chosen approach would directly impact the effort demanded to find the right point to 
fix the bug.

1.1 Motivation

Bug Localization (BL) is a typical Software Engineering maintenance activity. It 
consists of finding where to fix the source code, starting from a bug report describing 
the observed misbehavior in the software functionality. Then, the developer can proceed 
with the localization process with or without some automation support. This work 
concentrates on the automated strategies for BL that tries to rank the most suspicious 
piece of code, where the developer should point out to fix the bug.

BL precedes a buggy source code's effective patching (a.k.a. fixing or repair). Ini- 
tially, strategies to localize a bug mainly were ad hoc. Even today, we can find developers 
that do not know anything about a specific or well-known method to proceed with the
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BL. In these scenarios, developers rely on the most basic strategies like searching and 
reviewing the code repository, consulting and keeping in touch with the code “owners”, 
or looking for similar bugs or situations to get some insight. However, many prototype 
tools and approaches are in development to facilitate and help automate this essen- 
tial step in software maintenance and debugging tasks. Unfortunately, these solutions' 
popularity and extensive use are still far from most developers' reality. Nevertheless, 
the Automated Program Repair (APR) area (MOTWANI et al., 2018; MONPERRUS, 
2018; GAZZOLA; MICUCCI; MARIANI, 2019) has shown some evolution and brings 
hope for a stage where fixing a software bug is behind a simple click in the development 
environment.

A good BL approach is critical to guide the developer towards the right point to 
fix a bug, reducing the time and effort to debug, whether manually or with automatic 
program repair approaches (LIU et al., 2019). Nevertheless, developers can quickly reject 
the strategy if it is inaccurate and unreliable. Kochhar et al. (2016) reports a minimum 
success rate (or trustfulness) around 75% for a BL approach satisfy the needs of most of 
the professional developers participating in the study (KOCHHAR et al., 2016). This 
minimum threshold is still far to be reached by most of the approaches for BL still 
reporting the best results on the range of 20% to 70% success rate (PEARSON et al., 
2017; SHI et al., 2018; KHATIWADA; TUSHEV; MAHMOUD, 2020; HUO et al., 2019). 
To increase the challenge and even with the evolution of the debugging research and 
practices, many developers still do not receive formal education in debugging area and 
have to learn by doing, with pairs, or by self-teaching (SIEGMUND et al., 2014). On the 
tools' side, we are currently far from the “killer” tool to support developers in debugging 
activities, which is even more severe to BL approaches and tools (PARNIN; ORSO, 
2011). Asking for a good IDE for development would end with default answers like 
Eclipse, IntelliJ, Netbeans, VS Code, and many already popular and widely used tools. 
However, asking for an excellent tool for BL, it is no surprise that many developers do 
not even know about this kind of tool. Most of what we find in this area is still a work in 
progress and is not mature enough to become a universal and broadly applicable solution. 
So, a long journey of maturity remains to satisfy the high demands of a professional 
environment, considering not only improvements in suspicious ranking precision but also 
requirements related to scalability, efficiency, IDE integration, and others (KOCHHAR 
et al., 2016).

The studies on BL started some decades ago (COUSOT; COUSOT, 1977) and employ 
a diverse set of techniques such as the classical Information Retrieval models as LSI and 
LDA (POSHYVANYK et al., 2007; NICHOLS, 2010; ZHOU et al., 2012). Later, and 
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some years from now, researchers began to explore Machine Learning (ML) techniques to 
improve the performance of BL approaches (BRIAND; LABICHE; LIU, 2007; JEFFREY 
et al., 2009; NAMIN, 2015; HUO; LI; ZHOU, 2016; LAM et al., 2017) and also in 
more recent works (BARBOSA et al., 2019; LI; WANG; NGUYEN, 2021; LOU et al., 
2021; HUO et al., 2019). However, state-of-the-art performance is far from a sound 
performance, e.g., Ye, Bunescu e Liu (2016) reaches around 0.5 with MAP measure, 
while more recent work is still far from a perfect score, e.g., Huo et al. (2019) reach 
0.64 with the same MAP measure and using recent Deep Learning strategies. Moreover, 
even considering that BL approaches are “potentially” promising to support developers 
in the search for buggy source code files from a bug description (i.e., usually through bug 
reports), the possible false negatives would derail the widespread use of such approaches. 
Thus, the understanding of many factors related to the BL approaches' performance 
assessment would help to explain the actual results.

1.2 Objectives

1.2.1 General Objectives

The main objective of this work is to contribute to software repair activities with a 
focus on automated approaches for Bug Localization (BL)1 through the analysis of bugs 
characteristics in assessment datasets, primarily those related to bug's patches.

a.k.a. Fault Localization (FL) or Fault Location

1.2.2 Specific Objectives

1. Explore alternatives for the improvement on the accuracy of rankings of suspicious 
software components produced by automated BL approaches (Chapters 4 and 5);

2. Show how different BL approaches based on Machine Learning techniques behave 
with diverse parameter tuning configurations (Chapter 5);

3. Show how the patch analysis can help in the characterization of a bug dataset, 
exposing characteristics that would help to guide experimentation to evaluate BL 
approaches (Chapter 6);

4. Define taxonomy and criteria for characterization of bug dataset through its patches 
(Chapter 6 with the extension of (SOBREIRA et al., 2018));
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5. Show the dissection of a large bug dataset and compare with the original results 
from a smaller one, used as the base for our initial findings (Chapter 6);

6. Show correlation between the characteristics of bugs in a dataset and the observed 
performance of the BL approaches (and also on the features scores they are based 
on) (Chapter 7);

7. Reproduce previous BL approaches and guide the experiment sampling with spe- 
cific bug patch characteristics, for example, repair actions and repair patterns 
(Chapter 7).

1.3 Thesis Declaration Proposal

The characteristics of bugs in specific datasets influence the accuracy of Bug Lo- 
calization (BL) techniques, so dataset dissection supported by patch analysis and 
a well-defined taxonomy help to: 1) guide the technique configuration, 2) interpret 
the results, and 3) shed light on future research.

1.4 Research Summary, Assumptions, and Questions

The performance analysis of a BL approach would require the execution of experi- 
ments to produce data either with the use of a reproduction package (when available 
and up to date) or with the implementation of a new experimental package (especially 
when we plan for new settings, alternatives, and other customizations). Since our work 
involves many customizations and the test of many alternative settings, we opted to de- 
velop our experimental package. Still, we choose the work of Ye, Bunescu e Liu (2016) 
for our experiments baseline and also as a starting point for the experimental package 
implementation. Some reasons for the choice were the combination of ideas from other 
approaches, including the work of Saha et al. (2013), a reasonable number of extracted 
features, and the use of a composition mechanism based on LtR algorithms that gives 
some flexibility to introduce new features. So, we assume this context provides a good 
test-bed for experimenting with BL strategies involving many information sources.

We first enumerated factors of influence on a BL approach. As a proof of concept, 
we can 1) apply different LtR algorithms to observe the impact of parameter tuning 
on the ranking scores, 2) include new features (e.g., Code Entropy) for comparisons,
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3) compare the impact and the role of individual and groups of features on the final 
ranking. Therefore, we conduct some preliminary experiments while developing first 
version of our experimental package to answer the following Research Questions (RQs):

RQ1 What is the performance of the entropy feature compared to other features?

RQ2 The use of entropy feature can improve the results obtained by past learning 
approaches to BL?

RQ3 What is the impact of data balance strategies in the learning process?

RQ4 How does the tuning of LtR algorithms impacts the BL performance?

RQ5 How long does it take to conclude each step in the process (feature extraction, 
ranking generation, training, validation, and testing)?

After observing the potential influence of the bugs' characteristics composing the 
assessment datasets of BL approaches, we conduct some studies to analyze, define, and 
propose a taxonomy for these characteristics. We refer to these kinds of studies as a 
dataset dissection, first made with Defects4J (JUST; JALALI; ERNST, 2014), and the 
subsequent study with LR-dataset (YE; BUNESCU; LIU, 2014), detailed in this thesis. 
From these studies, we observed that many types of bugs with different characteristics 
are present in a dataset used for the assessment of BL approaches. These characteristics 
are common, frequent, recurrent, and prevalent even between different projects. There- 
fore, knowing the dataset composition can support more informed decisions regarding 
many aspects of dataset usage. Between the possible applications for research of our 
dissection analysis framework, we can mention 1) BL, 2) APR, 3) dataset comparisons 
and benchmarking, 4) Source Code, Bug, and Patch Analysis, 5) Software Testing, 6) 
Debugging, and 7) Program Synthesis. Aligned with the thesis declaration proposal (our 
main hypothesis), we would assume the composition of a sample from a bug dataset can 
influence the assessment measures of the target task (e.g., BL approaches) depending on 
the selected bugs' nature and characteristics. Additionally, this influence would impact 
1) the selection of techniques to improve BL scores accuracy, 2) on the understanding 
of the performance variations, 3) on the obtaining of more practical insights to improve 
the past approaches, and 4) on the proposition of new BL approaches with more in- 
formed decisions. So, the combination of the study dissection study with extensions 
to the experimental package after the preliminary experiments helped to answer addi- 
tional research questions related to the effective influence of the sampled bugs on the 
BL strategies, and that helped to confirm some of these assumptions:
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RQ6 When we compare a sample of bugs where the respective patches match a given 
repair pattern against another sample of bugs where this pattern is not present, is 
there any difference in the measured metrics targeting the ranking of bug suspects? 
Are these differences statistically significant?

RQ7 What type of impact is associated with the evaluated metric's score rankings by 
the presence of a repair pattern in the patches of a bug sample? Moreover, when 
the repair pattern is absent?

RQ8 What is the degree of the impact correlated to the repair pattern's presence or 
absence on the metrics measured?

1.5 Contributions

1. A proof of concept showing the application of a new feature based on Code Entropy 
and LtR to produce BL scores;

2. A proof of concept showing the application of different data balance strategies on 
the training with LtR algorithms to produce BL scores;

3. A proof of concept showing the influence of parameters tuning on LtR-based BL 
scores;

4. A new approach to deal with the assessment of BL methods using bug datasets 
and benchmarks guided by bug characteristics;

5. A taxonomy to characterize bug datasets in terms of their patches composition (in 
collaboration);

6. A tool to extract patch characteristics from a bug dataset, e.g., repair action, 
repair patterns, and size dimensions (in collaboration);

7. A proof of concept showing the influence of the bugs types from a dataset for the 
assessment of research approaches on typical software development tasks like BL;

8. An experimentation package prototype for BL approaches that would progress in 
future works for an experimentation framework to support assessment of past and 
new approaches.
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1.6 Thesis Organization

This chapter briefly described the motivation, objectives, hypothesis, and expected 
contributions. Chapter 2, Background, presents the essential concepts related to the BL 
research, including bug and faults, bug reports, bug datasets, evaluation metrics, and 
some ML techniques applied in experiments with BL approaches. Chapter 3, Related 
Work, presents some of the published works in BL, split into Static, Dynamic, and Hy- 
brid approaches. From Chapter 4 to Chapter 7, we mainly detail the developed work to 
answer the proposed hypothesis in this thesis. Chapter 4, On the Influential Factors for 
Bug Localization Exploratory Assessment, raises many ideas to apply in the construction 
of an environment to experiment with BL approaches, started in this work as an exper
imental package, briefly described, that support all the experimentation in this thesis. 
Chapter 5, Strategies for Learn-to-Rank Bug Localization Improvement, presents some 
proof of concept to assess alternatives in BL with the preliminary results obtained, ex- 
perimenting ideas related to the application of Code Entropy feature, optimum selection 
of features, tuning of ML hyper-parameters in LtR algorithms and the use of data bal- 
ancing strategies. Chapter 6, Analysis of Repair Actions and Patterns, takes a step back 
in the dataset issues and presents an analysis on a regularly applied bug dataset extend- 
ing previous work on Defects4J, smaller popular bug dataset, and benchmark, to analyze 
LR-dataset, a larger dataset applied in BL context. We searched for understanding how 
the patches associated with bugs in a dataset are classified, their characteristics, the 
existence of patterns, and how prevalent these characteristics are. Chapter 7, Influence 
of Repair Patterns on Bug Localization approaches, continues the exploratory analysis 
and presents additional experiments considering the selection of sampling data based 
on the bug characteristics presented in Chapter 6, and showing how this would impact 
the BL assessment, guided by bug patches characteristics, especially, repair actions and 
repair patterns. Chapter 8, Conclusion, summarizes and highlights the main points in 
this work, reinforcing the thesis declaration proposal.

Figure 1 show a brief thesis roadmap. After the discussion in Chapter 4 about the 
influential factors, we present two alternative tracks to explore the BL problem. The 
first in Chapter 5 show some experiments related to LtR BL considering the datasets of 
bugs as usually done in previous approaches. The next track starts in Chapter 6 where 
we present an extension of a dataset dissection analysis, first defined for Defects4J, and 
then applied to LR-dataset. Following in Chapter 7, we present results of experiments 
with BL applying the dissection analysis ideas. We consider this last track one of our 
main innovative contributions to the research community since it opens a new lens to
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Figure 1 - Chapters Roadmap.

review and improve the previous approaches for BL, and potentially other related areas 
such as APR.
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Background

Terms as bugs have different meanings depending on the context. Furthermore, even 
considering a specific knowledge area as Software Engineering, sometimes these terms 
are abstract and confusing. Therefore, before discussing how to find bugs?, we need 
first to define 1) what we consider a bug?, 2) how to measure how successful we would 
be with a given strategy to find a bug?, 3) what are our ground truths to assess a BL 
strategy? (i.e., what database we would apply?). This chapter discusses these and other 
essential concepts. Additionally, we briefly present some concepts and ML techniques 
applied to BL and, more specifically, applied in some of the experiments described in 
further chapters.

2.1 Essential concepts about Bug Localization
This section introduces basic concepts and definitions related to the BL context for 

the subsequent chapters.

2.1.1 What is a bug?

Thomas Edison helped to coin the term bug, referring to a technical problem in 
hardware engineering, while dealing with real (or imaginary) bugs that disturbed him 
during the working on his inventions in the 19th-century (MAGOUN; ISRAEL, 2013). 
The term gained the computer world in 1946, after the discovery of a “real” bug in the 
circuits of the electromechanical computer, Mark II, built and programmed by Howard 
Aiken and Grace Hopper (KIDWELL, 1998). Operators found the bug and the cause of 
Mark II's errors, a moth, removed from the circuits and now taped in the logbook for 
the History. The event was referenced as the “First actual case of bug being found”. The 
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term debug has a similar etymology, first used in 1945 in the context of aircraft engines, 
according to with Oxford English Dictionary. The software development world has the 
debugging process well established, widely used, and associated with tasks of removing 
bugs or faults from a software system.

ISO/IEC/IEEE 24765 standard defines the term fault as “1. a manifestation of an 
error in software. 2. an incorrect step, process, or data definition in a computer program. 
3. a defect in a hardware device or component.” (ISO/IEC/IEEE, 2010). The term fault 
is also a synonym to the term bug. Thus it is usual to find works using both terms to 
express the same meaning. In this work, the choice for the bug term reflects the more 
widely and popularized use against fault, which also has a diverse meaning in other 
contexts and areas.

2.1.2 Bug Reports

A Bug Report is a formal registration of an issue found in software. Many bug- 
tracking platforms help users and developers to create and manage these reports. Some 
popular platforms in use today are: Bugzilla1, JIRA2, GitHub Issues3, and FogBugz4. 
Beyond the differences, these platforms share common and essential resources to store 
critical information about the found issue, allowing the developer to understand and, 
preferably, reproduce a bug, then proceed to localization and fixing tasks.

1 Bugzilla: <www.bugzilla.org>
2 JIRA: <br.atlassian.com/software/jira>
3 GitHub Issues: <guides.github.com/features/issues>
4 FogBugz: <www.fogcreek.com/fogbugz>
5 The patch for LANG-552 is available in Defects4J Dissection website: <http://program-repair.org/ 

defects4j-dissection/#!/bug/Lang/39> 

Figure 2 shows an example of a bug report for the bug LANG-552 from the project 
Apache Commons Lang. The report describes the observable bug behavior according to 
the user (or developer) perspective, aiming tohelpthe maintainer search and understand 
the problem and consequently proceed to the code fixing. Furthermore, this type of bug 
report facilitates finding the fixing location since the reporter points to the method 
triggering the error. However, few bug reports suggest the bug localization with good 
precision and providing precise and complete information in practice.

The code listing in Figure 3 shows the patch applied to fix the LANG-552 bug5. The 
fixing consists of adding three lines of code (highlighted in green) with a missing null 
check in the buggy code. The patch makes the program continue to the next loop step 
if the conditional testing expression is satisfied.

http://www.bugzilla.org
br.atlassian.com/software/jira
guides.github.com/features/issues
http://www.fogcreek.com/fogbugz
http://program-repair.org/defects4j-dissection/%2523!/bug/Lang/39
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Bug-ID: LANG-552
Title: StringUtils replaceEach - Bug or Missing Documentation
Description: The following Test Case for replaceEach fails with a null pointer 
exception. I have expected that all StringUtils methods are “null-friendly”. The 
use case is that i will stuff Values into the replacementList of which I do not want 
to check whether they are null. I admit the use case is not perfect, because it is 

unclear what happens on the replace. I outlined three expectations in the test case, 
of course only one should be met. If it is decided that none of them should be 
possible, I propose to update the documentation with what happens when null is 
passed as replacement string

import static org.junit.Assert.assertEquals ; 
import org.apache.commons.lang.StringUtils; 
import org.junit.Test;

public class StringUtilsTest {
@Test
public void replaceEach (){

String original = "Hello World!";
String[] searchList = {"Hello", "World"}; 
String[] replacementList = {"Greetings", null}; 
String result = StringUtils.replaceEach(original, searchList, 

replacementList);
assertEquals("Greetings !", result);
//perhaps this is ok as well
//assertEquals("Greetings World!", result);
//or even
//assertEquals("Greetings null!", result);

}
}

Figure 2 - Bug Report for the bug LANG-552 from Apache Commons Lang project.

Some studies aim to define the essential information for a report that directly impacts 
its usefulness to solve a problem. For example, according to (SASSO; MOCCI; LANZA, 
2016), the elapsed time between the bug report creation and the bug fixing is directly 
related to the fulfilling quality of the following fields: summary, description (including 
stack traces and screenshots), due date, and people involved (report creator, allocated 
developer to fix, who found the issue). The same study considers a bug report change 
between the states: new/open, not confirmed, in progress/assigned, patch available, ver- 
ified, resolved, reopened, and closed. To the authors, customization resources, project, 
and platforms specificities do not contribute too much in practice to the usefulness of a 
bug report and are also poorly used.

Bettenburg et al. (2008) have found mismatches between what users fulfill in a bug
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Figure 3 - Patch for the bug LANG-552 from Apache Commons Lang project.

report and what developers consider as helpful. To developers, the essential items are 
steps to reproduce, stack traces, test cases, and observed behavior. Information such 
as hardware, bug severity, component, and the operating system is rarely used, even 
as mandatory fields in many tracking platforms. Errors in reproduction steps and in- 
complete information are critical problems for developers. Usually, developers and users 
agree on the top-3 most useful and fulfilled fields in the reports (steps to reproduce, 
observed and expected behavior). The disagreement starts from the fourth item (stack 
trace versus product, test cases versus version, and others). Except for the reproduction 
steps, there is a significant mismatch between what developers consider most important 
and what users provide in practice through the report. When there is an agreement 
between developers' and users' usefulness notion, the lack of some fields in a bug report 
is more related to the difficulty of obtaining these kinds of information (e.g., stack trace 
and test cases) than user carelessness. Therefore, developers highlight the importance 
of clear, correct, and complete information in bug reports. Following factors are used to 
measure the quality of a bug report: the use of itemization, keywords related to impor- 
tant categories (action items, observed/expected behavior, steps to reproduction, build, 
and user interface elements), code samples, stack trace, patches, screen captures, and 
readability (based on standard measures such as SMOG Grade). Finally, the readability, 
stack traces, and code samples correlate to less time to close a bug report (after fixing 
the reported bug).

The bug report is one of the possible starting points to proceed with bug localization, 
whether done manually or automated through a tool (especially in static approaches 
based on Information Retrieval (IR) and ML). Thus, it is essential to carefully consider 
the information present in a bug report, including its content quality, because it can be 
determinant in the success of the bug localization.
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2.1.3 Where is a bug located? What is it found?

Lucia et al. (2012) preliminary study presents a notion of locality for a bug related 
to the spreading level of the buggy components in the codebase. The authors define 
four locality levels: Lm, the number of faulty lines; Lm, the number of faulty methods; 
LD3, the number of faulty files; LD4, a score based on the sum of lines between the 
first and the last faulty line found for each buggy file. The analysis is done over 374 
manually selected bugs from three Java systems (AspectJ, Rhino, and Lucene). Most of 
the analyzed bugs are localizable in the sense the most of them is concentrated in few 
lines (Lm <= 10 lines in more than 80% of the bugs, and Lm = 1 lines in 33% of the 
bugs), few methods (Lm <= 6 method in more than 83% of the bugs, and Lm = 1 
lines in 44% of the bugs), and few files (LD3 <= 2 lines in more than 88% of the bugs, 
and LD3 =1 lines in 73% of the bugs). The fourth dimension shows a good spreading 
of the buggy lines since the score L^4 < 1000 for around 90% of the bugs.

We can analyze the composition of a bug from the perspective of repair actions re- 
quired to fix the bug. Liu et al. (2018) define a repair action as a combination of code 
entities and change operators. The code entities are the nodes found in an Abstract 
Syntax Tree (AST) as parsed by Eclipse JDT AST Parser6. Three main categories are 
highlighted in the paper: statements (22 types, e.g., ReturnStatement), declarations 
(total not informed in the paper, e.g., TypeDeclaration) , and expressions (35 types, e.g. 
InfixExpression). The change operators follows the GumTree tool definition (FALL- 
ERI et al., 2014), applied to produce the AST diff between the buggy and fixed source 
code versions. GumTree change operators considered were: update, insert, delete and 
move. The Figure 4 illustrate the AST for the patch fixing the LANG-552 bug (shown 
in Figure 3) and generated by GumTree. This patch represents the insertion of a Block- 
IfStatement including a series of child insertion actions for the following code elements: 
IfStatement (e.g., if), InfixExpression (e.g., searchList[i] == null), ArrayAccess (e.g., 
searchList[i]), SimpleName (e.g., seachList), InfixExpressionOperator (e.g., ==, Null- 
Literal (e.g., null), Block (e.g., {continue; }), and ContinueStatement (e.g., continue;).

6 Eclipse JDT AST Parser: <https://help.eclipse.org/kepler/ntopic/org.eclipse.jdt.doc.isv/reference/ 
api/org/eclipse/jdt/core/dom/ASTParser.html>

7 Defects4J Dissection website: <http://program-repair.org/defects4j-dissection/>

The addition of code as illustrated for the bug LANG-552 is one of the possible 
scenarios for patches applied to fix bugs. The Defects4J Dissection website7 gives us 
easy access to view the patches like LANG-552 (or Lang-39 in Defects4J), so we refer 
to Defects4J bug identifiers for illustrations. The other common scenarios are: patches 
removing some buggy code as in Figure 5 (Math-58), patches modifying buggy code

https://help.eclipse.org/kepler/ntopic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTParser.html
http://program-repair.org/defects4j-dissection/


34 Chapter 2. Background

IfStatement [149033,149131]
InfixExpression [149037,149088]

InfixExpression [149037,149058]
ArrayAccess [149037,149050]

SimpleName: searchList [149037,149047]
SimpleName: i [149048,149049]

INFIX_EXPRESSION_OPERATOR: == [149051,149053] 
NullLiteral [149054,149058]

INFIX_EXPRESSION_OPERATOR: || [149059,149061]
InfixExpression [149062,149088]

ArrayAccess [149062,149080]
SimpleName: replacementList [149062,149077]
SimpleName: i [149078,149079]

INFIX_EXPRESSION_OPERATOR: == [149081,149083] 
NullLiteral [149084,149088]

Block [149090,149131]
ContinueStatement [149108,149117]

Figure 4 - GumTree generated AST representing the patch for the bug LANG-552 
shown in Figure 3.

as in Figure 6 (Math-41), patches moving some code to other positions as in Figure 7 
(Closure-13), and patches mixing all these scenarios as in Figure 8 (Lang-17). These 
selected scenarios (and bugs) have illustrative purposes. Still, the bug universe goes far 
beyond these examples, and we can think of them as building blocks for bugs requiring 
more complex patches and with even more repair actions than those shown.

<a@ -118,7 +118,7 @<a public double value(double x, double[] p) {

g| src/main/java/org/apache/commons/math/optimization/fitting/GaussianFitter.java

118 118 */
119 119 public doublef] fit() {
120 120 final doublef] guess = (new ParameterGuesser(getObservations())).guess();
121 - return fit(new Gaussian .Parametric(), guess);

121 + return fit(guess);
122 122 }
123 123
124 124 /**

Figure 5 - Patch for the bug Math-58 from Apache Commons Math project .

2.1.4 How to find bugs?

The Bug Localization (BL) is one of the fundamental steps in the software fixing 
process (PARNIN; ORSO, 2011). BL contributes to the considerable time, and effort 
demanded in this process (HAMILL; GOSEVA-POPSTOJANOVA, 2017), and also to 
the challenge to conduct and to complete this process with success, especially for the 
novices (MCCAULEY et al., 2008). The BL consists in the identification of places of
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g src/main/java/org/apache/commons/math/stat/descriptive/moment/Variance.java

@@ -517,7 +517,7 @@ public double evaluateífinal double[] values, final doublel] weights,
517 517 }
518 518
519 519 double surnWts = G;
520 - for (int i = 0; i < weights.length; i++!1 {

520 + for (int i = begln; i < begin + length; i++) {
521 521 sumWts += welghts[i];
522 522 }
523 523

Figure 6 - Patch for the bug Math-41 from Apache Commons Math project.

@<a -123,8 +123,8 @@ private void traverse(Node node) {

g] src/com/google/javascript/jscomp/PeepholeOptimizationsPass.java

123 123 do {
124 124 Node c = node.getFirstChild();
125 125 while(c != null) {
126 - traverse(c) ;
127 126 Node next = c.getNext();

+ traverse(c);
128 128 c = next;
129 129 }

Figure 7 - Patch for the bug Closure-13 from Closure Compiler project.

bugs (faults or errors) in the source code and causing the system to fail. The failure 
usually manifests as a wrong behavior that differs from the expected behavior by the 
users and developers, implying the system breakdown and significant losses.

There is still no standard way widely used to deal with BL, although there are lots 
of approaches and different proposals (WONG et al., 2016). Ultimately, it is up to the 
developer to locate and fix identified faults. In many environments, this is done essen- 
tially manual way with only general-purpose tool support provided by an Integrated 
Development Environment (IDE). However, with the increase in the size and complex- 
ity of software, it is not enough to rely only on the developers' experience, judgment, 
intuition, and familiarity to locate the bugs. Although it is a good resource (i.e., when 
an expert is always available to help), relying solely on the human ability to perform 
this task is not always feasible. There is then a strong demand for the production of 
new techniques and tools that support and even automate BL.

Since 1970's, research community has been studying and developing techniques to 
support BL(COUSOT;COUSOT,1977). Traditional approaches involves: logging (ED- 
WARDS, 2003), assertions (ROSENBLUM; ROSENBLUM, 1995), breakpoints (COUTANT 
et al., 1988) and profiling (BALL; LARUS, 1994). Due to the amount of analysis and
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Si src/main/java/org/apache/commons/lang3/text/translate/CharSequenceTranslator.java | ■

-80, 26 +80,20 tg(3 public final vold transiste(CharSequence input, Writer out) throws IOException {
80 80 return;
SI 81 }
82 82 int pos = 0;
83 int len = Character.codePointCount(input, 6, input.length());

83 + int len = input.length();
84 84 while (pos < len) {
85 85 int consumed » translate(input, pos, out);
86 86 if (consumed = 0) {
87 87 char[] c « Character.toChars(Character.codePolntAt(input, pos));
88 88 out.write(c);

891 + pos+= c.length;
901 + continue;

89 91 }
90 else {
91 92 n // contract with translators is that they have to understand codepoints
92 93 n // and they just took care of a surrogate pair
93 94 for (int pt = 0; pt < consumed; pt++) {
94 if (pos < len - 2) {
95 95 pos += Character.charCount(Character.codePointAt(input, pos));
96 } else {
97 pos++;
98 }
99 }

100 pos- -;
101 96 }
102 pos++;
103 97 }
104 98 }
105 99

Figure 8 - Patch for the bug Lang-17 from Apache Commons Lang project.

manual work, such techniques become ineffective given the increase in software complex- 
ity and size (WONG et al., 2016). This requires the production of more advanced tech- 
niques, able to deal better with these issues. These techniques can be based on: program 
slicing (WANG et al., 2014), spectrum (WONG et al., 2014b), statistics (CHILIMBI et 
al., 2008), program states (SUMNER; ZHANG, 2013), machine learning (BRIAND; 
LABICHE; LIU, 2007), data mining (CELLIER et al., 2011), program models (BAAH; 
PODGURSKI; HARROLD, 2011), and other models (SAHA et al., 2013). The next 
chapter details some of the most recent and remarkable approaches to BL.

2.2 Bug datasets

The BL literature references many bug datasets. Some of these datasets are collec- 
tions of projects and software repositories, initially selected to serve evaluation purposes 
of specific works but recurrent applied a posteriori to make possible comparisons. Other 
datasets are conceived and designed for reuse, becoming base references or benchmarks 
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to facilitate comparisons between the approaches. LR-dataset is an example of the 
first case, while Defects4J is the second case. The following subsections present a brief 
description of these datasets.

2.2.1 Defects4J

Defects4J (JUST; JALALI; ERNST, 2014) is a benchmark of bugs developed to 
support research, especially in the areas of software testing, automated software repair, 
and bug localization. The benchmark comprises a dataset of bugs and a command-line 
interface to facilitate the exploration of this dataset (e.g., query information about the 
bugs such as: affected classes/tests cases, buggy/fixed source code versions, and checkout 
ofthe associated projects). The 395 real bugs (version 1.1) initially extracted from 6 Java 
open-source projects are Apache Commons Lang (65 bugs), Apache Commons Math (106 
bugs), Closure Compiler (133 bugs), JFreeChart (26 bugs), Joda Time (27 bugs), and 
Mockito Testing Framework (38 bugs). Moreover, Defects4J bugs are 1) related to source 
code (i.e., excluding fixes within the build system, configuration files, documentation , or 
tests), 2) reproducible (each bug contains at least one test that exposes the bug), and
3) isolated (patches do not include unrelated changes to the bugs such as features or 
refactorings). Many works on BL employed Defect4J to evaluate their approaches (LE 
et al., 2016; PEARSON et al., 2017; PEREZ et al., 2017; LI; ZHANG, 2017; JUST et 
al., 2018; CHAKRABORTY et al., 2018).

2.2.2 LR-dataset

Ye et al. (YE; BUNESCU; LIU, 2014; YE; BUNESCU; LIU, 2016) propose a new 
approach for BL based on LtR and a companion new benchmark dataset to evaluate the 
approach. The dataset maps a total of 22747 bug reports (that implies the same amount 
of bugs) based on 6 Java open-source projects: AspectJ (593 bugs), BIRT (4178 bugs), 
Eclipse Platform UI (6495 bugs), JDT (6274 bugs), and SWT (4151 bugs) and Tomcat 
(1056 bugs). The amount of bugs in this dataset is far more than the amount found in 
Defects4J, turning LR-dataset a better target to ML approaches. The criteria to collect 
bug reports and to consider the respective bugs in the dataset were: 1) bug reports have 
the status resolved fixed, verified fixed, or closed fixed; 2) there are explicit mentions to 
terms like bug <bug-id> or fix for <bug-id> in the project changelogs; 3) the bug reports 
are associated to a single fixing Git or revision commit, not shared with other bug reports;
4) the inclusion of only functional bug fixings (i.e., at least one fixed file should exist).
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The selected bug reports from each project are available in XML files containing the 
fields: bug id, summary, description, report date/time (and timestamp), status, commit 
(and timestamp), files (fixed), and ranking position obtained in the approach. All the 
projects repositories are in GitHub, allowing to obtain the associated versions/revisions 
through the commit information. Many authors in BL field applied LR-dataset in their 
approaches' evaluation (LAM et al., 2015; UNENO; MIZUNO; CHOI, 2016; LAM et al., 
2017; YE; BUNESCU; LIU, 2016; ZHAO et al., 2015; ALMHANA et al., 2016).

2.3 Performance metrics in Bug Localization
Many metrics apply to the performance assessment in BL approaches. Some of the 

more often found are Precision@k, the percentual of success on finding relevant items 
in the top positions of a ranking limited to N items (Top-N), Mean Average Preci- 
sion (MAP), Mean Reciprocal Rank (MRR), and Normalized Discounted Cumulated 
Gain (NDCG) that are someway complementary measures. Other metrics appear less 
frequently, but it is important to be clarified. Many of these metrics are classical IR 
evaluation measures and are associated to the notion of relevance of a document picked 
from a larger collection given an input query with the desired information needs (MAN- 
NING; RAGHAVAN; SCHÜTZE, 2008). In the BL context of this work, a relevant 
document given a query is equivalent to a buggy file given a bug report, while an irrel- 
evant document is a non-buggy file for the same bug report. The document collection 
is equivalent to the source code files considered for the given bug report and extracted 
from a specific project version or revision.

2.3.1 Precision, Recall and F-measure

Although precision, recall and F-measure are very common IR measures, these are 
set-based measures and are computed using an unordered set of documents (MANNING; 
RAGHAVAN; SCHÜTZE, 2008). Then, it is not so common to find these measures 
in the evaluation for ranking problems. Besides this, some of the ranking measures, 
such as MAP, extend set-based measures to support the evaluation of ranking-based IR 
techniques.

Precision metric, defined in Equation 1, is the fraction of relevant documents in a 
retrieved set r, given a query q. Precision increases if the number of relevant documents 
increases and also if the number of retrieved documents decreases. For example, con- 
sidering a retrieval set of just a single document, the Precision is maximal (1) if the 
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document is relevant and minimal (0) if the document is not relevant. Otherside, for a 
larger retrieval set, if there is only one relevant document retrieved, but a huge num- 
ber of not relevant documents retrieved, the Precision can approximate to zero, even 
considering that the ideal target for the query is in the retrieved set of documents. So, 
Precision receives a strong influence from the number of retrieved docs.

#relevant retrieved doesPrecision(q,r) =--------------------—---------- (1)
#retvieved does

Recal l metric, defined in Equation 2, is a complementary measure to Precision, with 
more emphasys in the number of relevant documents retrieved when considered all the 
existent relevant documents.

Recall(q, r) =
#relevant retrieved does

#relevant does
(2)

Taken isolated, precision and recall can be misleading since it is possible to have a 
high performance of one, while the other shows poor performance, and vice versa. A 
metric that trades off between these measures is the F-measure, defined in Equation 3. 
F-measure represents the weighted harmonic mean between precision and recall. The a 
parameter weights how much the final value tends to the precision or the recall.

F-measure(q,r) =
1

ap + (1 _ a)
(3)

where, P = Precision(q, r), and R = Recall(q, r).

2.3.2 Precision@k

The precision metric defined in Equation 1 is not used directly in ranking problems, 
especially in the BL problem, since the number of considered files depends on the size 
of the project and the user is not interested in analyzing all the files or a big list of files. 
The precision metric is often limited to a small number of the top K retrieved files. The 
frequently found values for K are 1, 5, 10, or 20. Equation 4 is an adapted version of 
Equation 1, considering the BL context, a single bug report br, and a given ranking of 
files r.

P@k(br, r) = #retrzeved bu99y Wes (4)
K

In practice, P@k is computed for all the bug reports of interest and averaged to 
provide the final evaluation measure. Given a set of bug reports B, from where we can 
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extract tuples containing bug reports br and their respective rankings r limited to K 
files, Equation 5 defines Precision@k.

Precision@k = r— P@k(br, r)
I br&B

(5)

2.3.3 Top-N

a.k.a.: Accuracy@k, Recall at Top-N
Considered as in Equations 4 and 5, the Precision@k measure could worsen, merely 

increasing the k value (remembering that most of the bugs restrict to a few files, typically 
less than 5). Therefore, a common assumption adopted by most of the approaches is to 
consider an alternative definition, shown in Equation 6. Thus, the bug is found for a 
given bug report br if at least one buggy file is between the N files in the retrieved rank 
r.

Í1, if found buggy file is in the top n files
(6) 

0, otherwise

As in Precision@k, the percentual of success on finding relevant items in the top 
positions of a ranking limited to N items (Top-N) is computed for all the bug reports 
and averaged. The final Top-N measure, given a set of bug reports B, is shown in 
Equation 7.

Top-N = -1- top(br,r) (7)
’’ breB

The idea behind Top-N for BL is to measure how accurate a tool is in presenting at 
least one buggy file using a Top-N ranking of files.

2.3.4 MAP

Mean Average Precision (MAP) is a commonly found measure for ranking approaches. 
The ranking positions of all the buggy files are accounted for and expressed as the Average 
Precision (AP) for each bug report. Then, we compute the mean based on the AP for 
all the bug reports. Given a bug report br and a ranking of files r, Equation 8 defines 
the associated AP.

Ek=i P@k(br,r) * is_buggy(k,br,r)
AP--------- #bu99y files--------- (8)
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The parameter L indicates the last position of a buggy file that should be found 
for the bug report br. P@k(br, r) is the precision at feth position, given br and r. The 
function is_buggy(k, br, r) is defined in Equation 9.

Í1, if the doc position k in r is a buggy file (relevant)
(9) 

0, otherwise (not relevant)

Given a set of bug reports B, from where we can extract tuples containing bug reports 
br and their respective rankings r, Equation 10 defines MAP.

MAP = y AP (br, r) 
1^1 breB

(10)

The idea in the context of BL is to give a notion of effort a developer would have 
to examine all the buggy files, given their positions in the retrieved ranking of files. If 
the files near the top of the ranking are buggy, the effort is lower, and the MAP score is 
high. Otherwise, the more the buggy files are distant from the top positions, the more 
effort the developer has, and the lower is the MAP score.

2.3.5 MRR

While similar to MAP, Mean Reciprocal Rank (MRR) have some particularities: in 
the retrieved ranking, MRR considers only the first best-positioned buggy file; and as 
in Precision@k, MRR uses just one buggy file in the computing, but there is no K-limit 
for the rank of retrieved files. Given a set of bug reports B, from where we can extract 
tuples containing bug reports br and their respective rankings r, Equation 11 define 
MRR.

MRR = -^ V ------------ -
\B\ b^B rank(br,r)

(11)

Where rank(br, r) returns the position of the first buggy file for the bug report br 
and ranking r.

As occurs in MAP, MRR also gives a notion of effort to examine buggy files. The 
main difference is that MRR only accounts for the first buggy file found in the ranking.

2.3.6 NDCG

a.k.a.: NDCG@k
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Normalized Discounted Cumulated Gain (NDCG) is a measure defined especially 
for multi-graded ranking problems (JÀRVELIN; KEKÀLÀINEN, 2002), i.e., problems 
where the relevance of the documents can receive more levels than merely relevant or 
irrelevant. The first component in NDCG, the Cumulative Gain (CG), represents the 
sum of the grades, G, attributed to each file in a ranking. For binary grades, as in BL, 
it is equivalent to the number of retrieved buggy files in the ranking (where G =1 for 
buggy files and G = 0 for non-buggy files). The Equation 12 shows a recursive function 
to compute the CG, for a given position i in the ranking.

CG(i) = |G(1)’
- 1) + G(i),

if i =1 

otherwise.
(12)

The Discounted Cumulative Gain (DCG) represents a penalized version of CG with 
a log component to decrease the score of G(i) as the position of relevant files increase 
in the ranking. The farthest the buggy files are from the top positions of the rank, the 
higher is the discount. The Equation 13 show the recursive function for DCG.

í CG(i),
DCG(i) = V J

— 1) + G(i)/logb i,

if i < b 

otherwise.
(13)

Finally, the Normalized Discounted Cumulative Gain (NDCG) applies a normaliza- 
tion to DCG, considering the DCG of an ideal ranking as reference (IDCG). The ideal 
ranking places the most relevant files in the top positions and gives the best possible 
performance for this set of files. The NDCG is given by the Equation 14. The truncated 
version of NDCG is frequently found and is indicated by NDCG@k, where k represents 
the maximum number of files considered in the rankings.

NDCG(i) =
DCG(i)
IDCG(i)

(14)

For the BL problem, the binary labeling used in the previous measures is enough 
since a file can merely be considered buggy or non-buggy. On the other hand, NDCG 
is a good measure since it leverages two ideas: give a higher score to rankings whose 
buggy files near the top positions and also to discount rankings farthest from the ideal 
(when all buggy files are in the top positions).
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2.3.7 Other metrics

Many other metrics apply in the context of BL, such as EXAM, Expense, AUC, 
AUCEC, Effort@k, MAE, and MFE. For this work, the more popular metrics described 
in previous sections are enough, and we can find more details about the other met- 
rics elsewhere (ZHAO et al., 2015; RAY et al., 2016; CHAKRABORTY et al., 2018; 
RAHMAN et al., 2014; DIGIUSEPPE; JONES, 2015).

2.4 Machine Learning Approaches
Since this work proposes the use of Machine Learning in the BL problem, this section 

gives a very brief overview of ML techniques applied and discussed in the following 
chapters.

2.4.1 Learning to Rank

Methods using ML to solve ranking problems are generally called “learning-to-rank” 
methods or LtR (LIU, 2009). There are many algorithms to LtR usually classified as 
Pointwise, Pairwise and Listwise.

2.4.1.1 Pointwise

In Pointwise algorithms, the idea is to transform the ranking problem in a regression 
problem of each item (or document) in the rank. For example, in BL context, an item 
would be a source code file suspected to be buggy. We compute an individual score 
for each item to produce the ranking based on its features. We briefly describe some 
traditional Pointwise LtR algorithms next:

Random Forest (BREIMAN, 2001) is a bagging and inherently parallel algorithm 
based on CART (Classification and Regression Trees) to build decision trees.

MART (FRIEDMAN, 2001), Multiple Additive Regression Trees, is an ensemble model 
of boosted regression trees, producing a linear combination of the outputs of a set 
of regression trees.

2.4.1.2 Pairwise

In Pairwise algorithms, we reduce the problem to the classification of pairs of docu- 
ments, and the algorithm should decide which document from the pair should be on the 
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top. While Pointwise algorithms are concerned with finding the degree of relevance of a 
document, Pairwise is more concerned about finding the proper relative order between 
the documents in a pair. Examples of Pairwise algorithms are:

RankNet (BURGES et al., 2005) is a probabilistic algorithm based on neural networks 
and applying cross-entropy, back-propagation, and gradient descent in training.

RankBoost (FREUND et al., 2003) is a boosting algorithm, training weak rankers in 
rounds and generating as output a linear combination of these weak rankers.

RankSVM (JOACHIMS, 2006) is a variant of an SVM (Support Vector Machine), 
adapted to the LtR problem, and targeting to optimize the number of correct 
classified pairs of documents.

2.4.1.3 Listwise

In Listwise algorithms, the learning process considers the whole list of documents as 
an instance for training (CAO et al., 2007). An instance is composed of 1) aquery(abug 
report, for BL problem), 2) a list of documents (the source code files to consider for that 
bug report) , 3) a list of feature vectors associated to each document based on the query, 
and 3) a ground truth with the relevance of these documents to the queries (a mapping 
telling which file is buggy and which has not the bug described in the associated bug 
report). Examples of Listwise are:

AdaRank (XU; LI, 2007) is a boosting algorithm, inspired in AdaBoosting, adapted 
to the LtR ranking problem. AdaRank constructs weak learners as a boosting 
algorithm by re-weighting training data and forming an ensemble to boost the 
final performance.

Coordinate Ascent (METZLER; CROFT, 2006) is a multivariate objective optimiza- 
tion technique that optimizes each dimension (or feature) sequentially.

LambdaMART (WU et al., 2010) is the boosted tree version of LambdaRank (or a 
combination of MART and LambdaRank) .

LambdaRank (BURGES; RAGNO; LE, 2006) is a gradient-based on NDCG as cost 
function and is smoothed by the RankNet loss.

ListNet (CAO et al., 2007) was the first Listwise proposed approach. Based on Neural 
Networks and Probability Models, that accounts for the possible permutations 



2.5. Final Considerations 45

between the documents in the rank and uses Gradient Descent as an optimization 
algorithm.

2.4.2 Language Models

Language Models are statistical models assigning the probability of occurrence to 
a sequence of words (or tokens) (TU; SU; DEVANBU, 2014). For example, given a 
sequence of tokens S = ti t2 ... ín, a language model allows computing the probability 
of occurrence of this sequence as a product of conditional probabilities for each token 
composing the sequence, as shown in Equation 15.

N

p (s) = p (ti) *n p (tt\t1,...,tl-1) (15)
i=2

It is not practical to compute the probability considering all the tokens in the se- 
quence. Thus a Markov assumption is applied, and the calculus considers only the n — 1 
more recent tokens. This computing approach is the n-gram model, where n defines the 
number of tokens considered to form the sentence.

Since software programs have highly repetitive and predictable structures and con- 
tents, language models can detect unnatural code. We can use the cross-entropy metric 
to measure the level of naturalness of a piece of code. For example, the cross-entropy of 
a sequence S with probability Pm (S) estimated by the language model M, is computed 
according to the Equation 16.

1 1 N
Hm(S) = — n1°9z Pm(S) = — (h\h) (16)

With these ideas in mind, Ray (RAY et al., 2016) has shown that the pieces of code 
with high entropy relate to buggy code. When comparing a buggy piece of code with 
the associated fixed piece of code, the entropy tends to decrease.

2.5 Final Considerations
We provide in this chapter a very brief introduction to essential concepts related to 

the BL task, i.e., bug, bug reports, patches, and bug localization. We also introduce some 
of the common performance measures applied in BL evaluations (MAP, MRR, NDCG, 
and Top-N) and also in our experimentation. Between the many datasets applied in 
research, we focus our work on two of them: Defects4J and LR-dataset. Our experimen- 
tation is conducted and detailed in: Chapter 5 exploring some of the LtR algorithms 
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from Section 2.4.1, the introduction of new features based on language models briefly 
introduced in Section 2.4.2 (with some additional implementations details discussed in 
4.7.1), and other strategies trying to improve the BL rankings (presented further in 
Chapter 4); and Chapter 7 experiment with a new approach to evaluate BL based on 
the characterization of bug datasets, especially through the analysis of its patches (also 
detailed in Chapter 6).
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Chapter 3
Strategies for Bug Localization

Since the first efforts to automate the BL task, the research community has produced 
many approaches. While there are many perspectives to analyze these approaches, one 
accepted alternative usually found in the literature is to divide BL strategies according 
to the type of information they process, naming them static information-based, dynamic 
information-based, and hybrid or multi-modal approaches. Static information sources 
are available before the localization process starts and do not require re-execution. Ex- 
amples of static information are source code, bug reports, official documentation, change 
history (commits), static metrics, and other kinds of related documentation (discussion 
forums, questions and answers sites, complementary documentation, and more). Usu- 
ally, dynamic information requires the system re-execution to produce the input data. 
Examples of this kind of data are execution traces, stack traces, dynamic metrics, spec- 
trum, coverage, and any information extracted from test case running. Finally, hybrid 
approaches combine these two kinds of information to point out the ranking of suspects. 
This chapter presents state of art with some proposals from the many available in these 
three lines.

3.1 Static Information-Based Approaches

This section presents some of the static-based approaches to BL, the main focus of 
this work, and the source for some experimental baselines. We started the construction 
of an experimental package to evaluate BL approaches with the reproduction of the 
LR approach (YE; BUNESCU; LIU, 2014; YE; BUNESCU; LIU, 2016), presented first 
in this chapter. We detail the experiments with the initial reproduction in Chapter 5. 
Another approach, BLUiR (SAHA; SAHA; PERRY, 2013), was also applied in some 
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experiments, especially in Chapter 7. The other works in this chapter illustrate different 
alternatives to deal with the problem of BL.

3.1.1 LR

A learning model for locating bugs is proposed in (YE; BUNESCU; LIU, 2016), 
combining a total of 19 features including previously applied features (SAHA et al., 
2013; YE; BUNESCU; LIU, 2014), and also some new features (such as measures of 
code complexity, PageRank, and Hyperlink-Induced Topic Search (HITS)). Since the 
approach applies LtR algorithms, we call Ye, Bunescu e Liu (2016) approach as LR 
to avoid confusion to the broader LtR acronym. The sources of information used are 
source code, bug reports, Application Programming Interface (API) documentation, 
change history, and dependency graph between files. The applied models were:

VSM The vector representation model applies for the generation of ^1 (Superficial 
Lexical Similarity) and (API Enriched Lexical Similarity). While <^1 represents 
a classic similarity comparison between terms in the bug report and the source 
code, aggregates terms found in the API documentation of methods and classes 
used in the source code file. The feature score returns the maximum similarity to 
the bug report between the whole file and its methods.

Collaborative Filter The feature refers to the similarity between the content of the 
target bug report and the summary of previous reports associated with each source 
file, based on the usual idea of Collaborative Filters in Recommender Systems.

Class Name Similarity feature matches class names found in the summary of the 
target bug report and the source code files. Thus, the calculus considers the length 
of the matched class names.

File Review History The revision history (or changes) of files provide two features: 
^5, the recency of the change, proportional to the difference of months between the 
creation of the target report and the last change made to each file evaluated; ^6, 
the frequency of changes, counting the number of changes the file had undergone 
before the report creation.

Structured Information Retrieval Eight features are derived based on the retrieval 
of structured information originally proposed in (SAHA et al., 2013). The essential 
idea is to extract class names, methods, variables, and comments from the source 
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code and compare them to the terms in the summary and description fields of the 
bug report. Each combination represents one of eight features to ^14.

Dependency Graph between Files Based on the extraction of the dependency graph 
between source code files, the last five features are defined, being: ^15 the number 
of dependencies of a file s to other files; ^16 the number of files that depend on s; 
^17 the PageRank of each file; ^18 the Hub degree and ^19 the Authority degree of 
the file, according to the algorithm HITS.

The feature normalization process put values between 0 and 1, limiting their original 
values to the maximum and minimum found in the training data. One of the main 
objectives of the training is to learn the weights to perform the linear combination of 
features to define the ranking of the files for each bug report. Ye, Bunescu e Liu (2016) 
also conducted a study on the relevance of the features, and the main conclusions were: 
1. through an automatic selection algorithm, it is possible to use a subset of features 
whose result only with the six most important characteristics represents more than 90% 
of that obtained with all the characteristics; 2. There are no irrelevant features, each 
variable's importance, depending on the target system; 3. In general, the features of 
greatest impact on the ranking were ^1, ^3 and ^4, while the least important were fa, 
$10, ^15 and ^19-

The authors created a dataset for evaluating the proposal with more than 22,000 
bug reports in their previous work (YE; BUNESCU; LIU, 2014). The idea was to solve 
a series of reported problems, especially the bias caused by using single versions of a 
codebase and ignoring the timestamps from the bug reports creation. This situation 
can cause potential bias in the ranking results because of bug fixes (or patches) in the 
code from the report creation. The systems used to create this dataset were: AspectJ, 
BIRT, Eclipse Platform UI, JDT, SWT, and Tomcat. The main results obtained were 
Accuracy@k: for k = 1 from 13% to 42%, for k = 5 from 29% to 71%, for k = 10 
from 39% to 80%; MAP from 0.16 to 0.49; MRR from 0.21 to 0.55. Tomcat gave the 
best results in all metrics, while the worst results came from BIRT. Additionally, a 
replication of the fixed-version dataset containing AspectJ, Eclipse, and SWT allowed 
comparing other works.

3.1.2 AmaLgam+

AmaLgam+ (WANG; LO, 2016) leverages five sources of information (version history, 
similar bug reports, structure, stack trace, and reporter information) to improve the 
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performance of the authors' previous work (former AmaLgam approach applies only 
three of these sources).

The authors applied the dataset in the assessment of BugLocator, and BLUiR ap- 
proaches. The obtained results were: MAP from 0.36 to 0.62; MRR from 0.47 to 0.71; 
Hit@1 from 0.36 to 0.63; Hit@5 from 0.60 to 0.82; Hit@10 from 0.69 to 0.90.

3.1.3 DNNLoc

DNNLoc (LAM et al., 2017) combines the rVSM information retrieval model pro- 
posed in (YE; BUNESCU; LIU, 2014) with Deep Learning to solve the lexical mismatch 
problem between terms in the source code and terms in the bug report. The lexical 
mismatch is related to the lack of direct correspondence between the terms in the bug 
report and the terms in the source code and negatively impacts the BL strategies. To 
avoid the mismatch, strategies based on vector representations of terms apply since they 
go beyond textual similarity and consider, for example, common contexts of use of these 
terms. With the use of DL, DNNLoc is able to map a term such as context present 
in a bug report to related terms in the source code such as authorization, ctx, envCtx 
textitasyncContext.

DNNLoc separates the features used for the calculation of suspicious files in different 
vector spaces, being: 1) relevance of terms between the bug report and source code; 2) 
textual similarity between report and code; 3) collaborative filtering based on similar 
reports changing common source files; 4) nominal similarity between entities in the 
report and classes in the code; 5) recency of fixing; 6) fixing frequency. Despite the 
similarity with some features used in (YE; BUNESCU; LIU, 2014), the combination for 
calculating the ranking of suspicious files is done non-linearly through a DL network. 
Another DL model (Auto-Encoders) is used to reduce dimensionality, given the large 
number of features extracted from bug reports and source code.

The basis for extracting the characteristics comes from pairs containing a bug report 
and a source code file. For the training of the networks, positive examples (files that have 
received corrections pointed out by the report) and negative examples (sample of files 
textually similar to the first but not associated with the report of bug and correction) 
are selected. The processing of the bug reports terms is the usual (space separation, 
removal of stop words, division of compound words in the style CamelCase with the 
maintenance of the original terms as well, extraction of radicals Porter Stemming, rele- 
vance calculation based on tf-idf ). Four features are extracted from the source code: 1. 
identifier names in the source code; 2. API elements used in the code (names of classes, 
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interfaces, and external methods); 3. comments in the source code; 4. comments/de- 
scriptions associated with API elements. Comments on the source code are handled 
similarly to the terms in the bug report.

The systems used in the experiments are the same as in (YE; BUNESCU; LIU, 
2014), available online 1: AspectJ, BIRT, Eclipse UI, JDT, SWT, and Tomcat. Even 
after contact, the authors did not provide experimental data or scripts for reproduction. 
Based on the article alone, it would be difficult to obtain a precise reproduction since 
much important information about the architecture used for implementation is implied 
or omitted (mainly related to DL models) and would have to be discovered by trial and 
error (e.g., number of nodes used, cell types, number of layers, number of entries, and 
others). The main results obtained with DNNLoc were: Top-1 from 25.2 to 53.9%, Top-5 
from 42.2 to 72.9%, Top-10 from 50.9 to 85.0%, MAP from 0.2 to 0.52, MRR from 0.28 
to 0.60.

1 DNNLoc Datasets: <http://dx.doi.org/10.6084/m9.figshare.951967>
2 Apache Lucene: <https://lucene.apache.org/core/>

3.1.4 ConCodeSe

The main focus of ConCodeSe (Contextual Code Search) (DILSHENER, 2016) is 
the search for suspect source file names at specific points in a bug report. Unlike other 
proposals, ConCodeSe does not use historical information and search for similarities 
between bug reports. The information is extracted only from the buggy version of the 
source code and the bug report in question. In addition, the treatment is different from 
each field in the report, considering the distinct nature of its content (more technical, 
containing information such as execution stack/calls and code elements, or less technical, 
containing the vocabulary of the application domain itself). Suspicious files are ranked 
based on two scoring models: 1. Probabilistic; 2. Lexical Similarity.

Lucene resources 2 and the vector model (VSM) applies in the probabilistic model. 
The base queries for generating probabilistic scores use different combinations of terms 
(complete and stemmed) extracted from three sources: bug report, comments in the 
code, and the source code file itself.

The semantic similarity model applies three criteria to rank a file: 1. the key position 
of the file name in the bug report (KP score); 2. position of the file name in the stack 
trace (ST score); 3. Matching terms in the report with terms in the file (TT score). The 
rankings definitions are:

http://dx.doi.org/10.6084/m9.figshare.951967
https://lucene.apache.org/core/
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KP score scores files whose name occurs on the first (10 pts), second (8 pts), penulti- 
mate (6 pts), or last position of the bug summary (4 pts).

ST score scores files whose name occurs on the first (9 pts), second (7 pts), third (5 
pts), and fourth (3 pts) stack trace position.

TT score applies punctuation algorithm for a) exact match (+2 pts) or b) partial match 
(+0.025 pts) between terms in the report and file name; c) exact match between 
terms in the report and terms in the file (+0.0125 pts).

Unlike other approaches that combine the scores obtained in each model/calcula- 
tion with weight adjustment, ConCodeSe assumes only the best result for ranking the 
suspicious file.

The study was done on open systems: ArgoUML, AspectJ, Eclipse, SWT, Tomcat 
and ZXing. The executable of ConCodeSe 3 and references to datasets 4 are available 
online, although the authors have not made available a set of pre-processed data. The 
main results were: MAP from 0.30 to 0.68, MRR from 0.55 to 0.94, Top-1 from 31.9% 
to 72.4%, Top-5 from 61.2% to 89.8 %, Top-10 from 65.9% to 92.9%.

3 ConCodeSe Tool: < http://www.concodese.com/?cat=7>
4 Experimental data ConCodeSe: <http://www.concodese.com/?cat=9>

3.1.5 NSGA-II

Almhana et al. (2016) proposes the first approach to locating bugs based on a genetic 
algorithm of multi-objective optimization. This work aims to transform the problem of 
locating bugs into a search problem, with the following objectives: 1. Maximize the 
lexical similarity of bug reports with the source code and its method APIs; 2. Maximize 
the historical similarity between bug reports and classes in the source code, based on 
the number of bug fixes received by the class, recency of fixes/changes, and consistency 
in which classes are changed together in previous patches; 3. Minimize the number of 
suspicious recommended classes, aiming to reduce the developer's effort while proceeding 
with the final localization and repair.

The evaluation of the proposal is made on the systems: AspectJ, BIRT, Eclipse UI, 
JDT, SWT and Tomcat. There is no mention in the work on making the implementation 
available online. The dataset is based on (YE; BUNESCU; LIU, 2014). The main 
results were (means of the experiments): Precision@k of 89% (k = 5) and 82% (k = 10); 
Recall@k of 72% (k = 5) and 81% (k = 10); Accuracy@K of 68% (k = 5) and 86% (k = 
10).

_http://www.concodese.com/?cat=7
http://www.concodese.com/?cat=9
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3.1.6 Locus

Locus (LOcates bugs from software Change hUnkS) is proposed in (WEN; WU; CHE- 
UNG, 2016) aiming to rank two levels of suspicious components, i.e., files and changes, 
using the hunks (or continuous sequence of lines changed) found in the project commits 
from change histories. Beyond the reduced granularity compared to files, the idea be- 
hind the ranking of changes is to provide a better context to facilitate the developer's 
work while dealing with bug localization and fixing tasks. Three models are used to 
produce the rankings: 1. based on a Natural Language (NT) corpus, that computes the 
similarity between terms in hunks with terms in bug reports; 2. based on Code Entity 
(CE) corpus, that computes the similarity between code entity names in the hunks and 
those found in bug reports; 3. The Boosting model measures elapsed time between the 
bug report creation and the commits time. The information is extracted from change 
histories (commits) and bug reports to build these ranking models. The final score 
comes from a weighted sum from the scores of each model. These weights are defined 
experimentally.

The evaluation is proposed on: AspectJ, JDT, SWT, PDE, Tomcat and ZXing. 
Locus source code repository5 and dataset6 are available online. Obtained results are 
Top-1 from 25% to 64%, Top-5 from 56.6% to 84.7%, Top-10 from 63.9% to 91.8%, MAP 
from 0.32 to 0.64, and MRR from 0.381 to 0.725.

5 Locus repository: <https://github.com/justinwm/Locus/>
6 Locus dataset: <http://home.cse.ust.hk/~mwenaa/Locus.html>

3.1.7 BLIA

BLIA, Bug Location with Integrated Analysis (YOUM et al., 2015), combines four 
score models in a weighted/parametrized way to produce a final suspect score for the 
target source code files. The information comes from source code files, bug reports, and 
change history.

The first score model, SimiBugScore, is based on the similarity of the queried bug 
report to previous fixed bug reports in the project and relies on the BugLocator approach 
in (ZHOU et al., 2012) with classical Vector Space Model (VSM) similarity. The second 
score model, StructVSMScore, is based on the VSM similarity between the bug report 
fields (summary and description) to the source code structured information (identifiers 
for classes, methods, and variables, plus source code comments), and also relies on 
BugLocator extended with the BLUiR approach in (SAHA et al., 2013). The third 
score model, STraceScore, is based on the scoring of files appearing in the stack trace

https://github.com/justinwm/Locus/
http://home.cse.ust.hk/%7Emwenaa/Locus.html
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informed in the queried bug report, including files with names explicit in the stack trace 
and the imported files by the formerly found files. STraceScore relies on the BRTracer 
approach in (WONG et al., 2014a) for the processing and scoring of the stack trace 
information. The last base score model, CommScore, is based on the extraction of 
the last commits related to bug fixing and previous to the queried bug report. The 
computed score correlates to the recency of the fixing pointed by the selected commits. 
CommScore relies on the AmaLgam approach in (WANG; LO, 2014). The final BLIA 
score integrates all these scores in a formula parametrized by a and /3, balancing the 
influence of each base score, and k, which defines the recency range in days to consider 
in CommScore.

The evaluation was done over AspectJ, SWT, and ZXing from (ZHOU et al., 2012) 
and (WONG et al., 2014a). The results were: Top-1 from 37.7 to 68.4, Top-5 from 60 
to 82.7, Top-10 from 73.2 to 89.8, MAP from 0.323 to 0.506, and MRR from 0.491 to 
0.746.

3.1.8 BLUiR

BLUiR is proposed in (SAHA et al., 2013), based on Indri IR open-source toolkit 
and in a structured information retrieval approach. The main idea behind BLUiR is 
to leverage a classical TF-IDF model by distinguishing the bug report fields (query) 
and the source code fields (document and collection corpus) to proceed with the bug 
localization (information retrieval task). The fields summary and description from the 
bug report fields are the query side information targets. BLUiR extracts the fields 
(classes, methods, variables, and comments) to compose the documents corpus from the 
source code. Each query versus document field generates a document score, and adding 
the individual scores produces a final score.

The approach is evaluated with the same dataset from the BugLocator approach 
(ZHOU et al., 2012), described in the following subsection. The obtained results were: 
MAP from 0.17 to 0.56; MRR 0.33 to 0.65. The authors also present results for Top-1, 
Top-5, and Top-10 metrics, but as the absolute number of localized bugs. We do not 
present the results for these Top-N metrics to avoid confusion. Finally, the BLUiR au- 
thors claim to outperform BugLocator, and BugScout (NGUYEN et al., 2011), while the 
last comparison is indirect and based on the relative results obtained by each approach 
on different evaluation datasets.
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3.1.9 BugLocator

Proposed in (ZHOU et al., 2012), BugLocator was the first to use similar bug reports 
and source code file size in the suspicious score computing, beyond the classical similarity 
comparison of the queried bug report to the target source code files. The information 
sources are the bug reports and the source code file.

Two score models are applied. The rVSM score model is an adaptation ofthe classical 
VSM model, with a weight component defined by a formula based on the source code 
file size (#terms) because the authors assume the big files as more buggy-prone. The 
SimiRank score model has two steps: first, to find the previous bug reports similar to 
the queried bug report and compute the similarity of the queried bug report to the fixed 
files associated with similar bug reports. A weight factor a defines the balance between 
the contributions of each score in the final weight sum of rVSM and SimRank scores.

The evaluation is done over ZXing, SWT, AspectJ and Eclipse. BugLocator is 
compared to other BL approaches based on: 1. the classical VSM model; 2. Latent 
Dirichlet Allocation (LDA); 3. Smoothed Unigram Model (SUM); 4. Latent Semantic 
Index (LSI). The obtained results were: Top-1 from 22.3 to 40.0; Top-5 from 40.91 to 
65.31; Top-10 from 55.59 to 77.55, MRR from 0.33 to 0.48; MAP from 0.17 to 0.41.

3.2 Dynamic Information-Based Approaches

Dynamic approaches to BL represent another path to solve the localization problem. 
However, unlike static approaches, the input data requires the execution of the target 
system with some instrumentation to collect execution traces. This section illustrates a 
few works in this line.

3.2.1 Tarantula

Tarantula (JONES; HARROLD, 2005) is one of the frequently cited Spectrum-Based 
Fault Localization (SBFL) approaches. The suspiciousness level for a component c 
computes as in Formula 17. Tarantula overcomes other approaches such as Set-Union, 
Set-Intersection, Cause-Transition, and Nearest-Neighborhood techniques. Tarantula's 
authors use the Siemens package (consisting of C programs with few lines of code) and 
analyze 122 bugs. They report that in 55.7% of bugs, less than 10% of the code requires 
examination to localize bugs, while others require 10% to 90% code analysis. They 
also point out other experiments performed with a larger program (Space, 6,218 lines), 
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indicating that in 40% ofthe bugs, it would be necessary to examine less than 1% ofthe 
code for LB. Even with better results indicative, remember that the increase in program
size implies examining more lines of code when considering percentage data. Therefore, 
even if the values seem better in percentage terms, the effort can be greater. Finally, 
the approach is also limited to programs containing a single fault in each version (one 
bug at a time).

nf

Susp(c)rrarantuia + llf-
ntf + ntf

(17)

where,
nf = number of failed test cases covering c;
ntf = total number of failed test cases;
ns = number of successful test cases covering c; 
nts = total number of successful test cases.

3.2.2 D*

D* overcomes other SBFL approaches in an analysis involving 24 programs and 38 
techniques for locating bugs (WONG et al., 2014b). Formula 18 shows the metric pro- 
posed in D*, which is a variation of Kulczynski's formula (CHOI; CHA, 2010). The 
coefficient * allows for varying the weight of the coverage of components by failed test 
cases. When we have * = 1, the formula reduces to Kulczynski. The performance of 
D* improves with greater values for *, reaching a threshold. D* uses only coverage 
information, not depending on prior information on the program's structure and seman- 
tics. While testing more extensive programs like Ant (75 KLOC), the question remains 
whether the technique can apply to even larger programs.

Susp(c)d* = (nf)* 
"^uf + ns

(18)

where,
n.f = number of failed test cases covering c; 
nuf = number of failed test cases uncovering c; 
ns = number of successful test cases covering c;
* = D* coeficient, greater than or equal 1.

3.3 Hybrid approaches
Hybrid approaches combine the static and dynamic approaches illustrated in the last 

sections. Hybrid approaches are recent since most previous alternatives avoid mixing 
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static and dynamic strategies. One reason is the difficulty obtaining both kinds of data 
input, generating an extra overhead. Another reason is the difficulty validating the 
approach since it is not usual to have bug datasets that contemplate static and dynamic 
info needs with shelf ground truths. This section illustrates some of the few works 
published using this strategy.

3.3.1 EnSpec

EnSpec (CHAKRABORTY et al., 2018) combine static Language Models (LM) with 
SBFL dynamic approaches to produce the ranking of suspicious lines of code. Two 
models apply: the LM model from (TU; SU; DEVANBU, 2014) is used to compute 
the entropy of lines in source code ($gram model with syntax-sensitive normalization 
(RAY et al., 2016)), considering the likelihood of tokens sequences forward, backward, 
and the average; 25 metrics from previous SBFL models (e.g., Tarantula, Ochiai, and 
others) applies to compute suspiciousness of executed lines for test cases. The entropy 
measures apply to learn weights that relate buggy/non-buggy lines in the source code 
to failed/passed test cases. An Ensemble Learning technique applies to compute the 
final suspiciousness. RankBoost and Random Forest are the learning-to-rank algorithms 
used.

The evaluation occurs with the projects of the Defects4J and ManyBugs benchmarks. 
There is no mention on the paper to make the system and post-processed dataset avail- 
able online since it is an ongoing work pre-printed in Arxiv. The obtained values for 
AUCECi00 metric goes from 0.864 to 0.961 and represents gains of 0.708% to 19.13% 
compared to SBFL approaches alone. The experiments show that the average entropy 
feature has a major role in the improvement of the bug localization, especially to dif- 
ferentiate buggy lines from non-buggy lines executed by fail test cases and also in a 
cross-project setting (where the learning derived from a project is used to locate bugs in 
a different one).

3.3.2 AML

AML (LE; OENTARYO; LO, 2015) proposes the combination of IR with SBFL. 
The main idea of the proposal (classified as multimodal by the authors) is to combine 
information extracted from the bug reports (used in IR) and coverage of test cases 
(used in the SBFL). According to the authors, AML was one of the first multimodal 
proposals for BL in the literature. Previously there were only a few proposals for the 
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different domains of feature localization. In addition, it is the first approach to use 
suspicious words associated with bugs and able to adapt individually to each type of bug 
(achieved through ML and a probabilistic-based optimization process). The experiments 
considered 157 real bugs from AspectJ, Ant, Lucene, and Rhino applications. The 
runtime for the bug localization was between 20 and 80 seconds approximately, which 
makes it possible to apply the technique interleaved with the developer activities (the 
experiments run on an Intel (R) Xeon Linux Server E5-2667 2.9GHz). The results 
showed that the proposal surpasses the other approaches considered in state of the art 
(based on IR, SBFL and multimodal adapted from feature localization context to BL), 
reaching 92 of the 156 bugs (improvement of 27.78% and 47.62% for Top-N metric) and 
MAP of 23.7% (surpasses in 28.8% the other approaches). However, even with the good 
results compared to the other techniques, it is notable that there is still a considerable 
margin for improvements in the accuracy.

3.4 Reference and chronology of BL approaches

Figure 9 presents a chronology with some of the more recent static approaches, 
including those summarized in previous sections. The arrows show the major refer- 
ences between approaches and illustrate their comparisons and inter-connections over 
the years. Since we choose BLUiR (SAHA et al., 2013) and LR (YE; BUNESCU; LIU, 
2014; YE; BUNESCU; LIU, 2016) approaches as our baselines for the experimental 
package and experiments, we highlighted it with a white background. Figure 10 and 
Figure 11 show the equivalent information for dynamic and hybrid-based approaches, 
respectively. Table 1 to 3 indexes the references for the presented approaches in the 
figures. Even considering we present a reasonable number of approaches, we did not 
proceed with a systematic review, and, certainly, some works were left out. For a more 
in-depth and complete survey in BL, the work of (WONG et al., 2016) is an excellent 
reference to papers until 2016.

3.5 Final considerations

This chapter presented some of the published approaches for BL. We can observe that 
this is an active research area, and most of the works concentrate on static and dynamic 
data-source approaches. Static approaches start from previously available data to pro- 
vide rankings of suspecting buggy components, mainly targeting the mapping of bug re-
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Year Approach / Reference

.. 2012 BugLocator (ZHOU et al., 2012), BugScout (NGUYEN et al., 
2011), Sinha et al. (SINHA; MANI; MUKHERJEE, 2012), 
Sisman et al (SISMAN; KAK, 2012)

2013 BLUiR (SAHA et al., 2013), NB-TwoPhase (KIMet al., 2013)
2014 AmaLgam (WANG; LO, 2014), BRTracer (WONG et 

al., 2014a), LR(1) (YE; BUNESCU; LIU, 2014), Lob- 
ster (MORENO et al., 2014)

2015 BLIA (YOUM et al., 2015), BugWalker (WANG; PARNIN; 
ORSO, 2015), HyLoc (LAM et al., 2015), PartOf- 
Speech (TIAN; LO, 2015)

2016 ConCodeSe (DILSHENER; WERMELINGER; YU, 2016), 
DrewBL (UNENO; MIZUNO; CHOI, 2016), Locus (WEN; 
WU; CHEUNG, 2016), LR(2) (YE; BUNESCU; LIU, 2016), 
LR-WE (YE et al., 2016), NP-CNN (HUO; LI;ZHOU, 2016), 
NSGA-II (ALMHANA et al., 2016)

2017 AmaLgam+(WANG et al., 2016), DeepLocator (XIAO et al.,
2017) , DNNLoc (LAMet al., 2017), LS-CNN (HUO;LI, 2017)

2018 Bench4BL (LEE et al., 2018), Blizzard (RAHMAN; ROY,
2018) , CNN_Forest (XIAO et al., 2018), EBRo (ARCEGA; 
FONT; CETINA, 2018), Loyola et al. (LOYOLA; GA- 
JANANAN; SATOH, 2018), Orca (BHAGWAN et al., 2018), 
Rath&Mader (RATH; MÀDER, 2018), TraceScore (RATH; 
LO; MÀDER, 2018)

2019 BLiM2 (ARCEGA et al., 2019), CAST (LIANG et al., 2019), 
Chaparro et al. (CHAPARRO; FLOREZ; MARCUS, 2019), 
DeepLoc (XIAO et al., 2019), D&C (KOYUNCU et al., 2019), 
Kim & Lee (KIM; LEE, 2019), Polisetty et al. (POLISETTY; 
MIRANSKYY; BA\CSAR, 2019), Zhang et al. (ZHANG et 
al., 2019a)

2020 Ackbar & Kak (AKBAR; KAK, 2020), BugPecker (CAO et 
al., 2020), DependLoc (YUAN et al., 2020), Khatiwada et 
al. (KHATIWADA; TUSHEV; MAHMOUD, 2020), KGBu- 
gLocator (ZHANG et al., 2020), Scaffle (PRADEL et al., 
2020), Yang et al. (YANG; MIN; LEE, 2020)

2021 Arcega et al. (ARCEGA et al., 2021), DreamLoc (QI et al., 
2022), IncBL (YANG et al., 2021) TRANP-CNN (HUO et al.,
2019)

Table 1 - Summary of Static approaches for BL.
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Year Approach / Reference

.. 2012 Ample (DALLMEIER; LINDIG; ZELLER, 2005),
Barinel (JANSSEM; ABREU; GEMUND, 2009), Car- 
rot (PYTLIK et al., 2003), GZoltar (CAMPOS et al., 
2012), Jaccard (ARTZI et al., 2012), Kulczynski (ABREU; 
ZOETEWEIJ; GEMUND, 2007), Ochiai (ABREU et al., 
2009), Op2 (NAISH; LEE; RAMAMOHANARAO, 2011), 
SBI (ASKARUNISA; MANJU; BABU, 2011), Taran- 
tula (JONES; HARROLD, 2005),

2013 Xie et al. (SHI et al., 2013)
2014 Dstar (WONG et al., 2014b), MULTRIC (XUAN; MONPER-

RUS, 2014), MUSE (MOON et al., 2014)
2015 Metallaxis (PAPADAKIS; TRAON, 2015)
2016 Savant (LE et al., 2016), Zheng et al. (ZHENG et al., 2016)
2017 FLUCCS (SOHN; YOO, 2017), Pearson et al. (PEARSON et 

al., 2017), PRFL (ZHANG et al., 2017), TraPT (LI; ZHANG, 
2017)

2018 Delta Debug (CHRISTI et al., 2018), Wang et al. (WANG et 
al., 2018)

2019 CNN-FL (ZHANG et al., 2019b), DeepFL (LI et al., 2019), 
Raselimo & Fischer (RASELIMO; FISCHER, 2019)

2020 Deuslirio et al. (SILVA-JUNIOR et al., 2020), Kuma et 
al. (KUMA et al., 2020), ProFL(a) (LOU et al., 2020), 
ProFL(b) (THOMPSON; SULLIVAN, 2020)

2021 Alloy (KHAN; SULLIVAN; WANG, 2021), DeepRL4FL (LI; 
WANG; NGUYEN, 2021), GRACE (LOU et al., 2021), Sohn 
et al. (SOHN et al., 2021)

Table 2 - Summary of Dynamic approaches for BL.

Table 3 - Summary of Hybrid approaches for BL.

Year Approach / Reference

2015
2017
2018..2021

AML (LE; OENTARYO; LO, 2015)
Dao et al. (DAO; ZHANG; MENG, 2017)
EnSpec (CHAKRABORTY et al., 2018), NetML (HOANG et 
al., 2018)
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ports (typically, describing the faulty software behavior) to source code files that are more 
likely to contain the bug (or receive the fixing patch). In this context, the works usually 
employ different IR and ML techniques, like VSM (e.g., BugLocator and BLUiR) and 
LtR-based algorithms (e.g., LR), but with a growing interest in the application of Deep 
Neural Networks (DNN) models in recent works (e.g., NP-CNN, DeepLocator, DNNLoc, 
LS-CNN, CNN_Forest, DeepLoc, TRANP-CNN). Dynamic approaches require a system 
re-execution, generally guided by test-cases reproducing scenarios exhibiting the faulty 
behavior and producing trace data (or spectrum) containing information about all the 
source code components participating in the execution. Researchers propose formulas 
(e.g., Tarantula and D*) for ranking the components according to buggy likelihood. 
Since we have an instrumented execution, a more fine granularity (method or line level) 
to point out buggy components is commonly possible with SBFL approaches. Even with 
the common target of producing a good ranking of buggy suspects, the way the data 
is acquired and processed differs between static and dynamic approaches, making the 
merging a challenge. The merging difficulty and the mismatch of the approaches are 
possible reasons for the few available Hybrid approaches that combine both strategies 
and data sources. We can also observe that the precision and reliability of the produced 
rankings are still far from the ideal, and the research should advance so that automatic 
BL would become commonplace in a professional environment.
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Figure 9 - Static approaches for BL until 2021.

Figure 10 - Dynamic approaches for BL until 2021
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Figure 11 - Hybrid approaches for BL until 2021.
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Chapter

On the Influential Factors for Bug 
Localization Exploratory Assessment

This chapter raises several of the many influential factors on the assessment of BL 
approaches, including the impact on performance measures. First, we enumerate and 
describe the factors. Then, we briefly present the experimentation package developed 
and applied in subsequent chapters while exploring and comparing different approaches 
for BL.

4.1 Bug Reports' Pre-processing

Studies on bug reports show the importance of adequate pre-processing before their 
use as input in BL techniques. Thus, the report quality measure should consider the 
existence (or absence) of critical information, relevance, and content correctness. For 
example, some bug reports may not refer to a bug but to users' questions or claims 
for requirements (BETTENBURG et al., 2008). These cases clearly would imply noise, 
especially in a ML approach. Therefore, a filter or weighting module for the bug reports 
is essential to compute how confident we should be about results based on a given 
report. Another study (MILLS et al., 2018) presents evidence that the bug report 
content has enough to improve the text retrieval based BL approaches, even without 
localization hints (i.e., specific information about code elements that would leverage 
the performance and that is not present in all bug reports). Finally, Chaparro, Florez 
e Marcus (2019) work points to query rewriting techniques as the next agenda for BL 
research. It provided a public curated dataset containing near-optimal queries generated 
from the bug report title and description fields through a Genetic Algorithmic approach 
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and applied in their experiments.
The LR study (YE; BUNESCU; LIU, 2016) that we based on has two types of 

features: 1. query dependent, i.e., features using the information of the bug reports to 
compute the ranking (e.g., all features based on similarity to the bug report summary or 
description); 2. query independent, i.e., features relying on other sources, without using 
information from the bug report as an input query (e.g., features based on PageRank 
or HITS algorithms, extracting information only from source code). Thus, these pre- 
processing approaches should only impact rankings generated from query-dependent 
features.

Next, we enumerate some strategies to deal with bug report pre-processing:

1. Discard bug reports that do not contribute to similarity-based features or has a 
null score in respective rankings, especially in rankings interfering directly in the 
generation of inputs to the ML process;

2. Assign a weight to each bug report according to their quality assessment, so the 
ranking generation focuses on bug reports with relevant information and reduces 
the impact of bug reports contributing little or nothing.

3. Discard bug reports related to patches over source code containing test suites or 
test cases exclusively. Since test suites are artifacts used to maintain code quality 
and have no direct influence on functionalities, there is no reason to treat a test 
case as a bug source like a source code containing functionalities.

4.2 Dataset Quality Assessment and Source Code 
Filtering

When running BL experiments, the applied dataset can influence the obtained results 
because of many variables like dataset size, type, and corpus characteristics, including 
the bugs collected, bug reports, target projects or systems, source code base, development 
period, and many others.

Focusing on just one aspect, as the mixing of functional and testing code, we can 
observe situations requiring attention and care. In LR-dataset (YE; BUNESCU; LIU, 
2014), specifically in AspectJ project input data, test suites are indistinctly enumer- 
ated together with functional source code as part of the fixing patches for many bug 
reports. For example, the file Ajc150Tests.java (in folder /tests/src/org/aspectj/sys- 
temtest/ajc150) has 153 references in the XML input file containing all the AspectJ bug 
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reports data. These references are in the fixed file list, the ranking results enumeration, 
and the bug reports content fields (Summary or Description). For many bug reports, 
the rank of the non-functional file is above the position of the functional source code files 
(usually and ideally, the real target to fix the reported functional bug). More specifically:

1. Bug report 321 (BugId: 115235): Ajc150Tests.java is the first fixed file found 
ranked in the fourth position by LR approach; the other two fixed files are func- 
tional files ranked in fifth and ninth position, respectively;

2. Bug report 323 (BugId: 112756): only Ajc150Tests.java is enumerated as the fixing 
target and is in the ranking first position;

3. Bug report 325 (BugId: 114005): Ajc150Tests.java is the first fixed file, ranked in 
2nd position; the other is a functional file ranked in 60th position;

4. Bug report 326 (BugId: 90143): Ajc150Tests.java is the first fixed file and is in the 
first ranking position; the other patch is on a functional file in the 124th ranking 
position.

With just these examples, it is clear that the results obtained for the performance of 
a tool based on the raw LR-dataset are not very trustful (without filtering testing files) 
or at least require additional considerations. Test suites like Ajc150Test.java contain 
calls for test cases, and even considering their change as a side effect of a patch, rarely 
test cases may be directly related to the cause of a bug. The most surprising is that this 
kind of file can be ranked in top positions while the actual functional source code files 
patched are poorly ranked (as in bug report 326). This situation is entirely misleading 
and invalidates someway the obtained results of LR experiments, and it is worthy to 
note that Kim e Lee (2018) already reported about this issue.

An experimentation package would require filtering options to exclude folders con- 
taining test cases or test suites and exclude bug reports patched exclusively by testing 
files to avoid the previous situation. These also can be considered a kind of ground truth 
quality assessment for the target dataset.

4.3 Bug Classification Schemes
The classification of bug datasets according to the bug characteristics is not so usual, 

and it is not explicitly available in bug datasets or benchmarks. Moreover, few studies 
proposed the classification of bugs or patches as a complement to improve the analysis 
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while using these datasets as proposed by Sobreira et al. (2018), Nayrolles e Hamou-lhadj 
(2018). Consequently, most studies and approaches consider the dataset like a black box, 
and a more in-depth performance analysis becomes extremely difficult, mainly because 
the nature and characteristics of each bug in the dataset can variate a lot. Another con- 
sequence is that these studies concentrate on showing numerical improvements obtained 
over past approaches but not explaining why and where these improvements happen and 
when the approach fails, according to the bugs' nature.

We start to fill the gap regarding the need to classify and discriminate the bugs' 
nature in a dataset with the first dissection study (SOBREIRA et al., 2018). After a 
broad review of the patches (or bug fixes) in the Defects4J dataset, it was possible to 
determine a series of characteristics previously not explicitly available about their bugs. 
We have concentrated on four main dimensions of the bug patches: the size of a patch 
(in lines of code); the spreading of the patches (again in lines of code and measuring 
the quantity and distance between chunks of code in each patch); the repair actions 
(the type of changes applied in a patch, in terms of syntactic constructions such as if 
conditionals, assignments, and loops); and finally, the repair patterns (more abstract 
structures or shared constructions repeatedly found in various patches). This first work 
was essential to provide insights into the bug patches' nature and how to automate 
the extraction of these characteristics. So, we have continued the work and proposed 
Automatic Diff Dissection (ADD)1, a tool to support the automated extraction of bug 
patches' features defined in our Defects4J dissection study. Madeiral et al. (2018) details 
the Patch Pattern Detector (PPD), a module of ADD for detection of repair patterns in 
patches.

1 ADD repository: <https://github.com/lascam-UFU/automatic-diff-dissection>

Figure 12 shows the distribution of the number of lines composing each patch (or 
code fixings) in Defects4J projects. According to the silhouette of the distribution, there 
are no considerable differences in the patches size between the projects. Only the Joda 
Time project diverges a little bit more in the size distribution, but they all have a high 
concentration of patches involving up to 9 lines, and 95% of the bugs have patches 
involving no more than 22 lines (SOBREIRA et al., 2018). This data would suggest 
a careful approach while training for BL, since most lines of a file are not affected in 
practice by a patch, and many approaches take the whole file given equal importance 
for all its lines and possibly feeding noisy data to the learning algorithm.

Figure 13 shows the distribution of chunks (or sequential block of code lines) that 
compose the patches in Defects4J. Again, the distribution is similar between the projects

https://github.com/lascam-UFU/automatic-diff-dissection
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Figure 12 - Distribution of the number of lines in each patch of Defects4J projects.

(the Joda Time project is the one that diverges a little more still). The chunks' number 
is the first measure of patch spreading in the source code file (or between files). 25% of 
patches have only one chunk (i.e., no spreading). The majority (75%) have at most three 
chunks. Almost all the patches (95%) have no more than eight chunks. Complementing 
the analysis of spreading, Figure 14 shows the spreading distribution of patches. This 
spreading measure represents the number of lines between the chunks composing a patch. 
Many patches have no spreading at all (at least 25%), half have no more than just one 
line separating the chunks, while almost all (95%) have no more than 19 lines. These 
data suggest that even considering some separation between the code lines of a patch, 
these lines are close to each other, on average. Finally, considering the distribution of 
patches between Files (or Classes that have similar results) and Methods, most patches 
from Defects4J projects are restricted to a few Files/Classes (90% just one, and 95% 
at most 2), and Methods (90% at most two methods and 95% at most three methods). 
These highlights suggest that if we get Defects4J as a benchmark for BL, approaches and 
tools may be successful if they can handle bugs that require small patches and with a 
low spreading on the source code. By the way, it is essential to define how representative 
is Defects4J when compared to other projects of interest so that this kind of analysis 
and insights would also be applicable for other projects.

Beyond the basic dimensions of a patch, the insights related to repair actions (basic 
operations with syntactic constructs like conditionals, assignments, and others) and 
repair patterns (more abstract and repetitive constructs, like the adding of conditional 
blocks, missing of a null check, and others) can also be interesting for BL. Figure 15 
shows the incidence of repair actions on the patches of Defects4J. In green are shown the 
actions involving adding code, in yellow are the actions that modify an existing code, 
and in red are the actions that remove existing code. While expecting that most of the
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Figure 13 - Distribution of the chunks composing each patch of Defects4J projects.

Figure 14 - Spreading distribution on each patch of Defects4J projects.

approaches for BL should be more successful in the handling of buggy code that should 
be modified or removed, it is not clear how these approaches would behave trying to find 
a bug that requires the adding of new code to fix it. It is evident in the chart that most 
of the actions in patches involve the adding of new code, e.g., the top-3 repair actions 
found in patches are adding of method calls (mcA), adding of conditionals (cndA), and 
adding of assignments (asgnA). Thus, the capacity to find bugs because of the lack of 
code is an authentic concern.

Figure 16 was extracted from our website “Defects4J Dissection”2 and shows how 
many repair patterns are generally found in the patches of Defects4J. Most patches have 
between one and four repair patterns. A segmentation of the evaluated dataset according 
to the repair patterns found in the patches would best explain why the approach/tool 
succeeds in some bugs classes and fails in others.

2 Defects4J Dissection: companion website of the published work (SOBREIRA et al., 2018) <http: 
//program-repair.org/defects4j-dissection/>

The insights from the dissection study (SOBREIRA et al., 2018) supported by

http://program-repair.org/defects4j-dissection/
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Figure 15 - Repair actions incidence in patches from Defects4J projects.

1 2 3 4 5 6 3 9

# Repair Patterns

Figure 16 - Distribution of the number of repair patterns by patch of Defects4J 
projects.

ADD/PPD tool (MADEIRAL et al., 2018) can be applied to enrich the performance 
analysis of BL approaches. Knowledge on tools behavior against the bug nature would 
benefit and make analysis go beyond simple performance measure comparisons. Also, 
the why, how, and when an approach has better performance than the others would be 
more clearly justified.
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The information about bug nature would also be helpful to leverage ML strategies 
for bug localization, for example, grouping or clustering bug reports to tune BL tools 
towards a specific type of bug or even to obtain better results in the learning process.

The ADD tool applied to the LR-dataset for comparison purposes and to contrast 
how the results obtained from Defects4J would prevail in other datasets and contexts is 
a natural unfolding and continuation of the first two papers to define the generalizability 
of ADD.

4.4 Handling imbalanced data
One of the main difficulties in tuning a ML model is the problem with the imbalanced 

dataset. Studies as in (GONG et al., 2012) have shown the negative impact caused by 
imbalanced test cases used in Spectrum-Based Fault Localization (SBFL) approaches. 
For the static BL approaches, this issue is also present since there is a big difference 
between the small number of source code files affected by a bug (positive examples) 
compared to the high number of non-buggy source code files (negative examples) in the 
search space for a given project snapshot. Table 4 shows this relation for the projects in 
LR-dataset.

Many strategies apply to deal with the imbalance of the datasets in ML classification 
tasks (HE; GARCIA, 2009), such as Undersampling, Oversampling, Smote, CBO, and 
Boosting.

The LR approach (YE; BUNESCU; LIU, 2016) has adopted the strategy of limit- 
ing the number of source code files input for model training (a kind of undersampling). 
Only the top k (k = 200 for optimal results) negative examples (non-buggy files) ranked 
according to the surface lexical similarity feature (F1) are inputted to the training. The

# bug reports # fixed files # total of files
per bug report per bug report

Table 4 - Imbalanced data in LR-dataset.

max median min max median min

Eclipse 6495 587 2 1 6243 3454 382
JDT 6274 118 2 1 10544 8184 2294
BIRT 4178 230 1 1 9697 6841 1700
SWT 4151 430 3 1 2795 2056 1037
Tomcat 1056 94 1 1 2042 1552 924
AspectJ 593 87 2 1 6879 4439 2076
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positive examples (buggy files) also compose the dataset training set. In our experimen
tal package, we maintain the same strategy. Since the imbalanced problem compromised 
the learning process of the experiments in Chapter 5, the inclusion of the other data 
balancing strategies is also a desirable complement for future works. We also apply dif- 
ferent algorithms beyond SVMRank to handle the imbalance of data intrinsically, e.g., 
LambdaRank and Selective Gradient Boosting (LUCCHESE et al., 2018).

4.5 Data Splitting Strategies

In general, the dataset divides into training, validation, and testing sets during a 
machine learning process. There is a kind of confusion and mixing in the literature, 
especially between the validation and testing set concepts. Sometimes, it is unclear when 
to use one or another term since many papers swap their meaning. Here, we assume the 
validation set applies for tuning and model selection during the learning process. We 
consider the evaluation measures using training or validation data as training measures. 
In its turn, the testing split applies for the final performance measures of the tuned or 
selected model. Testing data do not apply in the training or validation process. These 
assumptions are consistent with the following definitions adapted from Ripley's book 
(RIPLEY; HJORT, 1995):

Training set the sample of data used to fit the model.

Validation set the sample of data used to provide an unbiased evaluation of a model 
fit on the training dataset while tuning model hyper-parameters.

Testing set the sample of data used to provide an unbiased evaluation of a final model 
fully specified through the training and validation data set.

A usual strategy for training and validation of ML models is cross-validation, es- 
pecially the k-fold cross-validation. However, the BL problem has a particular time 
restriction: given a bug report and the associated patch time-stamp, no data from the 
bug fixing commit and beyond should be considered for training and testing purposes 
to avoid biases and overfitting caused by data leakage, i.e. when the training data have 
the information trying to be predicted (KAUFMAN et al., 2012). Many studies already 
published can have questionable results because of this issue, especially in the software 
development area, as pointed out by Tu et al. (2018). An alternative is to apply back- 
testing, where the dataset is split based on the chronological order of the samples for 
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training, validation, and testing. For example, the Time Series Forecasting area ap- 
plies strategies of back-testing to deal with data leakage, and one of the well-known is 
out-of-sample tests (TASHMAN, 2000). Some of these strategies are:

Walk Forward (LADYZYNSKI; ZBIKOWSKI; GRZEGORZEWSKI, 2013) 
a.k.a.: Sliding Window, Roll Forward Cross Validation, Forward Chaining
This strategy sample the dataset in subsets (or windows) offixed size: oWL (out-of- 
sample data), a training subset; tWL, a testing subset. Initially, oWL is positioned 
at the start of the dataset, while the tWL is positioned just after oWL. At each 
training/testing iteration, oWL and tWL slid by the size of tWL, this way covering 
all the remaining datasets. The total size of the testing window (TW) is given 
by the sum of all the iterated tWL blocks, while the first oWL training block 
represents the data feed length (DFL). When the testing window has a unitary 
size, this approach is equivalent to the Rolling Window in (TASHMAN, 2000).

Expanding Window
a.k.a.: Rolling Origin, Recursive Forecasting
This strategy is similar to the previous one, except that there is no sliding on the 
training data (oWL), but a continuous expansion with the inclusion of the testing 
data used in the last iteration.

Ye, Bunescu e Liu (2016) proposal applies the Walk Forward strategy with many 
training and testing subsets containing 500 bug reports each (window size), except for 
AspectJ that employs just a single training and testing subsets with sizes of 500 and 
93 bug reports, respectively. We experiment with both strategies using different train- 
ing and testing sizes, but the whole support still needs improvements to scale better, 
especially with large training/testing samples.

4.6 Source Code Representation

IR approaches usually process the textual input as word tokens, i.e., in a generic 
way without assumptions about the nature of the specific domain or context. However, 
programming languages have intrinsic semantic that can influence the interpretation of 
the processed input. For example, the order of the tokens handling, the hierarchical 
structure between tokens, and the scope can be meaningful and change how some bug 
reports should be associated with a target source code file.
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In that sense, future works would research and apply strategies prepared to consider 
the intrinsic nature of source code, for example, leveraging representations like AST, 
recognizing the repetitive condition of textual input in the source code file, and con- 
sidering the language mismatch between the query (bug report) and the corpus (source 
code files search space).

4.7 New Features for Bug Localization

This section discusses some features that potentially would improve BL. We tested 
the entropy feature, and some results are shown in Chapter 5. The obtained insights 
from (SOBREIRA et al., 2018) can be a start point to propose new features based on 
commits and patches. Word embedding is another technique to explore in the extraction 
of new features and can alleviate the semantic gap between words between the bug report 
and source code artifacts. Finally, the last part mentions other potential features that 
need additional research.

4.7.1 Entropy

We first attempted to improve the BL performance by implementing an entropy fea- 
ture. The entropy expresses the inverse code “popularity” measure because recurrent 
code in a target code base receives a lower score than unfamiliar code. The imple- 
mentation apply the SPL-Core3 library (HELLENDOORN, 2017) available in GitHub. 
SPL-Core can extract a LM from a set of Java source code files. The learned LM allows 
measuring how natural is a token occurrence given a sequence of the predecessor or suc- 
cessor tokens in the code, expressed as a probability score. The aggregated entropy score 
represents the naturalness of a line computed by averaging the scores of tokens found in 
that line. The same rationale applies to computing the entropy score for methods and 
files by aggregating the associated lines. SPL-Core allows to parametrize the computed 
LM using the following configurations:

3 SPL-Core:<https://github.com/SLP-team/SLP-Core>

n-grams: the number of tokens considered after or before the target token (i.e., the 
sentence length).

Sentence direction: the entropy can be computed considering the forward direction of 
the sentence, the backward direction or both (bidirectional).

https://github.com/SLP-team/SLP-Core
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Cache: the use of a cache model allows to emphasize a local context (i.e., a target file) 
beyond the whole LM. So for the experiments, it is considered the entropy score 
with and without cache.

Smoothing: the smoothing techniques allow for a trade-off between the use of long, 
more specific, but less frequent sentences against short, more general but flooded 
sentences in the coding corpus. The available smoothing alternatives are Jelinek- 
Mercer (JM), Witten-Bell (WB), Absolute Discounting (AD), and Kneser-Ney 
(KN). For the experiments in Chapter 5, we use only JM smoothing. However, 
we should conduct more tests to measure the impact of these different smoothing 
models.

SPL-Core does not provide a normalized score that considers the type of the tokens 
found in lines (e.g.,assignment and if-statement). Thus, Eclipse JDT Parser 4 parsedthe 
files, the types of each token were identified and then considered to define the normalized 
score of each line, using the methodology to compute Z-score of Ray et al. (2016). The 
following configurations reflect these two entropy alternatives:

4 Eclipse JDT Parser: <https://goo.gl/YgHSiv>

Enr: Raw entropy computed from the LM created with SPL-Core. Computed as the 
average of entropies associated with 1) tokens in a coding line, 2) lines in a method, 
3) lines in a file.

Enz: Entropy sensitive to type computed after parsing Java files and identifying the 
root node in Java AST related to each line. Then, the raw entropy associated with 
a line normalizations applies according to the AST root node type of this line.

4.7.2 Word2Vec, Glove and ConceptNet

Most of the features applied in the LR approach rely on the textual similarity between 
the bug report fields (summary and description) and the associated corpus to the target 
file (i.e., any source code content or API documentation). The features ^2, ^7..14

are the more impacted by this issue, since their similarity calculation is based on the 
classical VSM model for IR. A known problem of this approach is the gap of lexical 
similarity (a.k.a. lexical mismatch) between the comparison targets, especially in the 
context that source code and bug reports are produced (generally by different people and 
also in different languages). To illustrate, if a bug report refers to a term like “home” 

https://goo.gl/YgHSiv
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to describe a bug and in the source code the same entity is referred to as “house”, 
the classical VSM model would be of no help for a match in this context, and would 
contribute to lower the feature score.

Word embedding models fill this gap since it goes beyond lexical similarities compar- 
isons and can approximate even semantic similarities. Word2Vec and Glove are among 
the most popular current applications. Another recent proposal is ConceptNet Number- 
batch (SPEER; CHIN; HAVASI, 2017), derived from Word2Vec and Glove and promising 
to be a better option. The extraction of features replacing those based on the classical 
VSM by word embedding and related approaches versions would be a good target for 
future works.

4.7.3 Commits and Patches

Few approaches apply information based on commits and patches to produce features 
for BL (WEN; WU; CHEUNG, 2016; LE et al., 2016; ALMHANA et al., 2016; YE; 
BUNESCU; LIU, 2016; YOUM et al., 2015; WANG; LO, 2014). The work in (WEN; 
WU; CHEUNG, 2016) proposes the use of commits (i.e., bug-inducing changes) as a finer- 
grained alternative to the usual file granularity from static information BL approaches. 
Wen, Wu e Cheung (2016) advocate the use of commits for a better contextualization and 
to reduce the effort in the developer maintenance task. They also report the improvement 
in the performance of BL with their approach. BLIA (YOUM et al., 2015) use commit log 
messages to select commits associated with bugs and uses the recency of these commits 
as one of the components to compute the suspicious score of a file for a given bug report. 
The LR approach (YE; BUNESCU; LIU, 2016) applies some features based on the meta- 
information derived from the bug fixing commits, such as bug fixing recency (^5) and 
bug fixing frequency (^6).

A possible extension would be to introduce Wen's approach (WEN; WU; CHEUNG, 
2016) in the LtR process and to explore other related features to the commits and 
patches contents. The insights from (SOBREIRA et al., 2018) would be integrated 
into the learning process using, for instance, some patch (or commits) characteristics 
as input features. We should explore the applied repair actions and patterns, size, and 
spreading of patches to produce new rankings. Other ideas include learning with patches 
and identifying more frequent bugs fixing contexts, such as reinforcing similar contexts 
with higher scores and penalizing not similar contexts with lower scores; based on patch 
patterns, weight information from patches according to these patterns.
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4.7.4 Other features

The enumerated features in the last subsections are only a fraction of what remains 
to explore. For example, the BM25 and BM25F scores apply in the context of Feature 
Location, and better results are obtained with MRR metric when compared to classical 
VSM, Unigram Model and LDA (SHI; KEUNG; SONG, 2014). Since BL can be con- 
sidered a specialization of Feature Location, the application of the BM25 as a feature in 
the context of BL is a natural unfolding. Other works that would inspire the adaptation 
of BM25 in the context of BL comes from Shi, Keung e Song (2014), Saha et al. (2013), 
Liu (2009), Keyhanipour e Moeini (2016). Another potential feature is the use of stack 
trace information present in bug reports in a structured way, already explored in BL 
by Wong et al. (2014a). The primary difference is that Wong et al. (2014a) does not 
explore stack traces with learning algorithms.

4.8 LtR Tools and Models for BL
The LtR area has been in continuous development in the last years, and many al- 

gorithms and tools exist. The LR approach (YE; BUNESCU; LIU, 2016) applies only 
an SVM based algorithm implemented in the SVMrank tool5. In Chapter 5, we show 
some results with alternative LtR algorithms and compare the performance against the 
baseline, including parameters and hyper-parameter tuning. Some of the tested tools 
was:

5 SV M rank:<https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html>
6 QuickRank: <http://quickrank.isti.cnr.it/>
7 RankLib:<https://sourceforge.net/p/lemur/wiki/RankLib/>
8 XGBoost:<https://github.com/dmlc/xgboost>

1. SVMrank: tool to produce baseline results according to (YE; BUNESCU; LIU, 
2016);

2. QuickRank6: includes implementations for GBRT, LambdaMART, Oblivious GBRT, 
Oblivious LambdaMART, CoordinateAscent, LineSearch, RankBoost, DART and 
Selective Gradient Boosting;

3. RankLib7: includes implementations for MART, RankNet, RankBoost, AdaRank, 
Coordinate Ascent, LambdaMART, ListNet, Random Forests;

4. XGBoost8: for LtR task with the implementation based on LambdaRank.

https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
http://quickrank.isti.cnr.it/
https://sourceforge.net/p/lemur/wiki/RankLib/
https://github.com/dmlc/xgboost
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4.9 Experimental Package for Bug Localization As- 
sessment

As shown in the previous section, many factors influence results of a BL approach. 
Therefore, an experimental package for dealing with some of the enumerated factors is 
a significant design challenge. Since the work of Ye, Bunescu e Liu (2016) applies a 
reasonable number of features inspired and based on other related works, we applied it 
as our baseline work, implemented in an experimental package prototype. Initially, the 
package targets BL approaches using static information and has bug reports as the base 
for the fault localization query.

4.9.1 Experimental Package Overview

The experimental package is a prototype developed to support the experimentation, 
extraction of the features, producing performance measures, and generating input data 
for LtR algorithms. Figure 17 gives an overview of the experimental package's general 
workflow. The BL process depends on data from 1) the source code repository and 2) the 
bug reports registry system. The source code repository requires information related to 
the project history, including source code files and API documentation typically stored 
in a version control system (e.g., Git). The bug reports repository requires information 
describing the observed issue (title and description) and information to support the 
ground truth building for performance evaluation and ML-based training. Typically, bug 
report information comes from Bugzilla, Jira, or Git Issues systems, but the experimental 
package assumes a simple XML file exported from the mentioned systems. The initial 
processing steps involve the bug report targets selection, which would imply filtering and 
quality assessment. Then, the system needs to recover the project version associated with 
the buggy files existing before the bug patch application. Next, the source code elements 
need prepossessing to separate the buggy suspects from other code elements non-related 
to the bugs or external to the project (e.g., libraries or non-functional/testing files). The 
code is parsed and indexed for a database with the potential buggy suspects targets, and 
then the feature extraction starts to allow the ranking building. Features such as the 19 
from Ye, Bunescu e Liu (2016) work are the base for score generation associated with 
each code element (i.e., source code files) suspected to contain a bug. The computed 
scores support the ranking generation produced by both strategies for BL: LtR-based 
algorithms (e.g., our LR-based approach and other third parties LtR-based libraries and 
tools) or Non-ML-based algorithms (e.g., BLUiR approach). Finally, we can sample bug 
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reports targeting the performance assessment with the generation of specific measures 
(e.g., MAP and MRR).

Figure 17 - BL process overview and associated modules of the experimental package.

There is no intention to describe the implementation details since it should change a 
lot with refactorings and re-design required to improve modularity, maintainability, and 
performance bottlenecks observed during the development of the experimental package. 
Furthermore, we do not consider it a reference architecture in the current state.

The main technologies and libraries applied were:

Programming Languages: Python, Java, Shell Script;
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Python Libraries: Pony Object Relational Mapping/Mapper (ORM), Natural Lan- 
guage Toolkit (NLTK), Scikit-learn, Py4J, JavaScript Object Notation (JSON), 
Pandas, Jupyter Notebook, Anaconda;

Java Libraries: Eclipse JDT parser, Java Universal Network/Graph Framework (JUNG), 
SPL-Core;

Databases: SQLite and Postgres were initially applied and for comparisons purposes, 
but most parts of the final results were using MySQL/MariaDB in the last imple- 
mentation;

Repository: GitHub.

Python is the primary language targeting the future application of Tensor Flow 
library (for Deep Learning (DL) models) and considering the extensive support for data 
science projects of the Python libraries (e.g., Scikit-learn, Jupyter Notebook, Pandas, 
Anaconda). Since the projects in the LR-dataset are in Java, Py4J is in charge of 
allowing access to Eclipse JDT parser, JUNG library for Graph algorithms, and SPL-core 
library for entropy calculations. In addition, Python and Shell's scripts were employed 
for experiments, interface with Git repository, and version control. The data model 
extracted from source code persists with Pony ORM in a MySQL database server. The 
following subsections briefly describe some interfacing parts related to the input and 
output.

4.9.2 Input

The input for the framework is composed of:

1. bug reports: bug id, description, summary, open timestamp;

2. bug fixing: timestamp, associated commit, associated fixed files;

3. source code: all source code file versions associated with the fixed version and the 
buggy version just before the fixing for a given bug report;

4. API documentation (embedded in source code): especially, documentation for 
classes and methods;

Bug reports and bug fixing information comes from XML files associated with each 
LR-dataset project. In addition, source code and API documentation come from the 
GitHub repository of each project.
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Bug reports (preprocessed according to the criteria defined in Section 4.1) and the 
list of selected datasets are forwarded to feature extraction.

4.9.3 Feature Extraction

We compute ranking scores from a set of features for the selected bug reports and 
related file versions. The replication ofthe original 19 features in (YE; BUNESCU; LIU, 
2016) was as close as possible to the methodology adopted in that paper. Additionally, 
the Entropy feature as discussed in Section 4.7.1 is also implemented. After each feature 
extraction, the associated ranking are built and stored in the database.

All feature scores were normalized values according to Equation 19.

score — p,SCOT€^orm
a

(19)

H is the average value for all the file versions used in the feature extraction, and a is 
the associated standard deviation.

4.9.4 LtR Input

Once the scripts generate the individual rankings, it is possible to feed them in LtR 
algorithms. Using all the file versions scores would compromise and make it unfeasible 
by memory, time, or processing constraints. Thus, the feeding occurs by sampling file 
versions associated with each bug report and using the normalized scores obtained for 
each feature. There are two types of samples: the positive examples, representing the 
fixed or buggy files; negative examples represent the non-fixed or buggy-free files to the 
associated bug report. All the positive examples are considered for the learning process, 
while some heuristics apply to select negative ones. The original approach in (YE; 
BUNESCU; LIU, 2016) selects the Top-200 negative examples based on the ranking of 
the feature <^1 (Surface Lexical Similarity).

Ye, Bunescu e Liu (2016) approach limits the number of bug reports for training 
and testing in the baseline approach. First, the bug reports are sorted chronologically 
by their timestamp. Then, the most recent reports have priority in the selection. The 
optimalnumberofbug reports used for training is 500bugreports, while 100 bug reports 
for testing, in most of the dataset projects, according to experiments in (YE; BUNESCU; 
LIU, 2016). Beyond the approach to choosing a fixed number of bug reports for training 
and testing, the strategies enumerated in Section 4.5 are also employed.
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The SVM-Light plain text format is the usual choice to prepare the input for the 
LtR algorithms. Figure 18 shows the rules to define a line input in SVM-light. Each 
line represents a one-sampled file. The target field represents the condition of the file 
for a given bug report: value 0 if the file is a negative example (non-buggy); value one if 
the file is a positive example (buggy). The special feature qid identifies the bug report, 
the respective samples, and the bug-id info. Following qid are the features identified by 
positive integers indexes and valued with the normalized score of the respective feature. 
The info field receives the file identifier to facilitate later analysis, and the LtR algorithms 
do not apply it for learning purposes.

<line> .=. <target> <feature>:<value> ... <feature>:<value> # <info> 
<target> .=. +1 | -1 | 0 | <float>
<feature> .=. <integer> | "qid"
<value> .=. <float> 
<info> .=. <string>

Figure 18 - SVM-light format.

To generate the training SVM-light files9, the strategies enumerated in Section 4.4 
are employed, beyond the (YE; BUNESCU; LIU, 2016) baseline strategy discussed pre- 
viously.

9 SVM-light format: <http://svmlight.joachims.org/>

While the training files receive samples of the file versions scores, the testing files 
receive all the file versions scores for each bug report. Thus, the final ranking generated 
for performance evaluation using the chosen metrics for LtR is more representative of 
the actual situation while searching for the buggy files and ranking all available and 
relevant source code files in a project.

Beyond the data in SVM-light format, we should inform many parameters and hyper- 
parameters before starting the learning process. Some parameters are general, e.g., the 
metric to be used, and other parameters are specific to an algorithm or a class of them, 
e.g., the number of leaves for tree-based algorithms and type of kernel function for 
SVM-based.

4.9.5 LtR Output

The output of the learning process depends on the tool applied (as discussed in 
Section 4.8). Generally, the LtR tools produce a model for testing, production, and 
predictions on training or testing data. Unfortunately, there is no standard format for 
the outputs.

http://svmlight.joachims.org/
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The QuickRank tool has two basic outputs:

1. Model: a XML file with the learned model, composed of two main sections.

□ The first section is the info section that contains all the parameters to run 
the LtR algorithm. Tree-based models have general parameters, e.g., the 
maximum number of trees, leaves, and shrinkage. Some algorithms have spe- 
cific parameters, such as DART (e.g., sample type, adaptive type, rate drop), 
Oblivious MART and Oblivious LambdaMART (e.g., depth), Coordinate As- 
cent and Line Search (e.g., number of samples, window size), and Lamb- 
daMART Selective (e.g., sampling iterations, rank sampling factor, adaptive 
strategy negative strategy);

□ The second section is the model section with the generated LtR model writ- 
ten, most parts as an ensemble of binary trees (e.g., DART, MART, and 
LambdaMART), where each tree has a weight, and the nodes represent the 
threshold for the model selected features. The exception in the model format 
is for Coordinate Ascent, which only enumerates a weight for the features, and 
Line Search, which contains ensembles of single node trees, each representing 
a feature with the related weight.

2. Predictions: a plain text with the predictions for training and testing and extra 
configuration information.

□ Some sections fixed in this file containing general information about the tool, 
parameter configurations (replicated from the XML model file), paths for 
the dataset involved (training and validation), runtime info (such as training 
time and reading time), dataset size (instance x features) and the number of 
queries, chosen training metric (NDCG@k, MAP, ...).

□ Most interesting part is the performance measures for training and validation. 
Most of the algorithms present the results in three columns, in the format 
< iteration > < training_score > < validation_score >, each line contains 
the value obtained in the associated iteration. In addition, some algorithms 
present extra information, such as DART (dropped trees, ensemble size, and 
dropout info) and Line Search (e.g., gain, window, and red factor).

The SVMrank tool also produces one output for the learning process and one for the 
classification (prediction).
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1. Model: a plain text file with the learned model, composed of:

□ kernel and other configuration parameters used in the SVM algorithm (one 
per line);

□ feature weights in the last line in the format <feature-index>:<weight>.

2. Predictions: a plain text file with the scores predicted (numeric float values) associ- 
ated with each line in the input testing dataset file (in SVM-light format discussed 
in Section 4.9.4). We can use the scores values as the ordering key to recovering the 
final ranking for each bug report (the higher the score, the higher is the relevance 
of the file). However, we do not have automatic performance measuring metrics 
like QuickRank.

The RankLib tool produces an output similar to QuickRank:

1. Model: a plain text file composed of two main sections.

□ The first section contains all the parameters according to the chosen algo- 
rithm, one per line, started with “##” and followed by the parameter and 
value in the format < parameter > = < value >.

□ The second section contains the model written in plain text in a format depen- 
dent on the selected algorithm. Tree-based algorithms (e.g., MART, Lamb- 
daMART, and RandomForests) are written in an XML-like markup and rep- 
resent the ensemble of trees as in QuickRank. Coordinate Ascent enumerates 
feature weights in the format < feature >:< weight > in the file last line. 
RankNet lists all the Neural Net architecture information, including layers 
and weights.

2. Predictions: screen output with the predictions for training, validation and testing, 
extra information of configuration, and runtime.

□ As before information, there is a section about loaded files, algorithm param- 
eters, dataset files (training, validation, and testing), and status about the 
processing.

□ The performance measures section is also similar to QuickRank. Most of the 
algorithms present the results in three columns in the format < iteration > | < 
training_score > | < validation_score > |, and each line contains the 
value obtained in the associated iteration. In addition, some algorithms
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present extra information, such as RankNet (% mis-ordered), RankBoost 
(selected feature, threshold, and error), ListNet (c.e. loss), and AdaRank 
(selected feature). Other algorithms show another kind of output format, 
such as Coordinate Ascent, presenting blocks of information in the format 
< feature > | < weight > | < score > |.

□ Final section shows the final computed performance metrics for training, test- 
ing, and validation and confirms the file to output the model.

4.10 Final Considerations
We developed an experimentation package to explore factors that can impact the 

performance of a BL approach. Through the experimental package implementation pro- 
cess, we perceived a need for an environment to experiment with, reproduce, assess and 
compare BL approaches aiming to propose improvements to the state-of-the-art. The 
ideal environment would be able to 1) facilitate the experimentation process, 2) intro- 
duce new features and composition strategies to generate and improve ranking scores 
for software components from a project suspected to be buggy, 3) allow comparisons 
between the approaches, experiment ideas and highlight strengths and weakness of the 
assessed approaches, 4) allow to sample bugs for experimentation based on bugs intrinsic 
characteristics, e.g., typeofpatch required and other associated dimensions, 5) deal with 
many challenges on the construction, e.g., reproduce past experiments, extract and pro- 
cess the massive amount of data, 6) optimize the use of resources (e.g., computational, 
memory, and storage), 7) integrate everything, from feature extraction to testing and 
comparisons of approaches. Many of the enumerated influential factors in this chapter 
would compose this ideal environment. While our experimental package made the gen- 
eration of data and analysis possible for the experiments in this thesis, we just started to 
cover some of the factors described in this chapter. Additional work remains to achieve 
a complete and practical environment usable by the research community.
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Chapter

Strategies for learning-to-rank bug 
localization improvement

This chapter presents the exploratory results obtained with the implemented models 
and the experimental package. The first section, Evaluation Method, details research 
questions proposed, bug dataset applied, data preparation and cleaning procedures, con- 
figurations and parameters for the experiments, metrics, and the run-time environment. 
The final section, Results, details the obtained results and analyzes each research ques- 
tion.

5.1 Evaluation Method

The initial experimentation target to answer the following research questions:

RQ1 What is the performance of the entropy feature compared to other features?

RQ2 The use of entropy feature can improve the results obtained by past learning 
approaches to BL?

RQ3 What is the impact of data balance strategies in the learning process?

RQ4 How does the tuning of LtR algorithms impacts the BL performance?

RQ5 How long does it take to conclude each step in the process (feature extraction, 
ranking generation, training, validation, and testing)?
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5.1.1 Dataset

The target dataset used in the exploratory studies is the LR-dataset (YE; BUNESCU; 
LIU, 2014), briefly described in Section 2.2.2. However, we did not cover all projects 
and data in LR-dataset in these exploratory experiments to reduce computing time and 
because the current state of the experimental package did not scale to complete the 
processing in a reasonable time. Thus, we choose to sample only part of the data from 
Tomcat, SWT, and AspectJ from the six available projects in LR-dataset.

5.1.2 Data Preparation and Cleaning

The pre-processing of data follows the procedures of Ye, Bunescu e Liu (2016) work, 
as close as possible. Textual data extracted from bug reports and source code, especially 
those used in similarity comparisons (most of the features ^1 to ^14), include the steps: 

Word tokenization input document split into words using white spaces.

Stop Word Filtering numbers, punctuation, and stop words are filtered using NLTK 
English stop words list.

Compound Words common in code entity names are split based on Camel Case (Cap
ital letters) and added to document corpus.

Porter stemming is applied to all words also using NLTK package.

While analyzing the bug reports set in LR-dataset, we observed the presence of 
bug reports where no fixed file is informed. These types of bug reports, even considering 
their relation with an actual bug, are of no help as ground truth since we cannot directly 
recover the fixed code. Thus, we opt to exclude bug reports in this condition for this 
work. Similarly, we exclude bug reports containing only test files since they do not 
represent fixing patches for functional program behavior. As some studies have pointed 
out the disadvantages of using a dataset containing test files as fixing targets, we also 
opted to exclude from the search space the source code files containing only test cases 
or test suites. A manual analysis allowed the selection of folders for exclusion, and, 
fortunately, most projects use standard folders, easy to recognize as testing folders, and 
separate them from functional code. External files (usually libraries) were not considered 
candidates for fixing.

Many instances have missing values for some features, e.g., there is no reason to ex- 
tract the method similarity from classes or interfaces without the implemented methods, 
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as could occur in computing of and ^12 (Summary-method and Description-method 
names similarity). For these and other cases of missing values for features, we opted 
to replace the missing value with zero, considering that the range of normalized values 
goes from 0 to 1. We do not proceed with duplicated instances analysis (e.g., considering 
duplicated bug report). We would need additional experiments to assess the impact of 
replacing missing values with other alternatives (e.g., the average) and removing dupli- 
cated instances.

5.1.3 Experiment Configurations

This subsection presents all the configurations of parameters used in the experiments, 
including baseline adapted from (YE; BUNESCU; LIU, 2016) and additional configura- 
tions related to features, data balance strategies, and LtR algorithms. The last sections 
present evaluation metrics and the run-time environment.

5.1.3.1 Baseline

The implementation in this work is an adaptation from the paper (YE; BUNESCU; 
LIU, 2016), discussed in details in Section 3.1.1. The following configurations build the 
baseline:

LR-All: all 19 features presented by Ye, Bunescu e Liu (2016) and enumerated in 
Table 5;

LR-6Best: the six features with the best-combined performance for each project accord- 
ing to Ye, Bunescu e Liu (2016) (see Figure 20 in that paper for details). Table 6 
summarize the features;

LR-6Exp: the six features with the best performance in individual rankings in this 
implementation (variate with the experiment).

5.1.3.2 Entropy Feature

Experiments with Entropy Feature applied following configurations (described in 
Section 4.7.1):

n-grams: values in range 3, 6, 10.

Sentence direction: set to f orward, backward and bidirectional
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Table 5 - Original features in (YE; BUNESCU; LIU, 2016).

Feature Short Description Query
Dependent?

01 Surface lexical similarity yes
02 API-enriched lexical similarity yes
03 Collaborative filtering score yes
04 Class name similarity yes
05 Bug-fixing recency yes
06 Bug-fixing frequency yes
07 Summary-class name similarity yes
08 Summary-method name similarity yes
09 Summary-variable name similarity yes
01O Summary-comments similarity yes
011 Description-class name similarity yes
012 Description-method name similarity yes
013 Description-variable name similarity yes
014 Description-comments similarity yes
015 In-links = # file dependencies of s no
016 Out-links = # files that depend on s no
017 PageRank score no
018 Authority score no
019 Hub score no

Cache: set to “with Cache” (default).

Smothing: set to “Jelinek-Mercer - JM” (default).

Entropy type: set to “type sensitive - Enz ”,

We pin the last three configurations in the experiments, so the reference key to iden- 
tifying the Entropy configuration points only to the n-grams and the sentence direction

Table 6 - Best features per project according with (YE; BUNESCU; LIU, 2016)

Project Features
Eclipse Platform UI 01> 07, 04> 03> 015 • 011
JDT 01> 03> 07, 04> 02, 012
BIRT 03> 04> 011 , 0U , 02, 08

SWT 04> 06> 01> 03, 011, 05
Tomcat 01> 03> 06> 01O , 02, 014
AspectJ 01> 012 , 04 , 06 , 03, 010
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Table 7 - Entropy features computed in exploratory experiments.

Feature Short Description Query
Dependent?

$20-1 File Entropy, Forward Sentence, 3-ngrams no
^20-2 File Entropy, Backward Sentence, 3-ngrams no
^20-3 File Entropy, Bidirectional Sentence, 3-ngrams no
$21-1 Method Entropy, Forward Sentence, 3-ngrams no
$21-2 Method Entropy, Backward Sentence, 3-ngrams no
$21-3 Method Entropy, Bidirectional Sentence, 3-ngrams no
$22-1 Max Entropy between ^20-1 and ^21-1 no
^22-2 Max Entropy between ^20-2 and ^21-2 no
^22-3 Max Entropy between ^20-3 and ^21-3 no

values, i.e., En10f, for entropy with ten n-grams and forward sentence direction, and 
En3i for entropy with three n-grams and bidirectional sentence direction. Table 7 shows 
the combination of configurations of the Entropy feature used in this work.

5.1.3.3 Data Balance Strategies

WE apply under-sampling strategies over the negative examples in the following 
configurations:

Single Feature Top-K: this is the strategy used by the LR approach in baseline ex- 
periments, with k = 200 and ^1 is the feature for ordering and getting the top files. 
Example: SFk200 indicates we picked the 200 top negative files from the selected 
feature ranking.

Multi-Features Top-K: a variation in the previous strategy is using more features 
rankings to pick the negative examples. Example: MF^fe indicates the top 33 
negative examples from the selected features rankings are picked, and the 6 most 
impacting features overall projects is took, i.e., {^1, ^3, ^4, fa, ^7, ^12}, according 
with Table 6.

Multi-Features Var-K: in this case, we use many feature rankings, each with a spe- 
cific number of negative examples picked. A heuristic was applied to rank, select, 
and weight the features according to their appearance in the first six positions for 
each project, shown in Table 6. One appearance in the first position scores 10, the 
second position scores 8, and so on, until the sixth position scores 1 point for each 
appearance. Example: MFk200w and a mapping with the number of files selected



92 Chapter 5. Strategies for learning-to-rank bug localization improvement

Table 8 - Selection and weighting of features from Table 6.

Feature 1st
Appearence Count
2nd 3rd 4th 5th 6th Weight Samples Ranking

^1 4 0 1 0 0 0 46 59 1°
^2 0 0 0 0 3 0 6
^3 1 2 0 2 1 0 36 46 2°
^4 1 1 2 1 0 0 34 43 3°
^5 0 0 0 0 0 1 1
^6 0 1 1 1 0 0 18 23 4°
^7 0 1 1 0 0 0 14 18 5°
^8 0 0 0 0 0 1 1
^9 0 0 0 0 0 0 0
^10 0 0 0 2 0 1 9
^11 0 0 1 0 1 1 9
^12 0 1 0 0 0 1 9 11 6°
^13 0 0 0 0 0 0 0
^14 0 0 0 0 0 1 1
^15 0 0 0 0 1 0 2
^16 0 0 0 0 0 0 0
^17 0 0 0 0 0 0 0
^18 0 0 0 0 0 0 0
^19 0 0 0 0 0 0 0

Total 157 200

for each feature is provided, e.g., {^1: 59, ^3: 46, ^4: 43, ^6: 23, '.<: 18, ^12: 11}, 
limited to 200 files and detailed in Table 8.

For these configurations, the undersampling applies only to negative examples (non- 
buggy files), all the positive examples are included (buggy files). To be fair in the 
comparisons, the total number of negatives files sampled in each configuration for each 
bug report will be as close as possible each other.

5.1.3.4 LtR Algorithms applied

The experiments involved a total of 14 LtR different algorithms, all them from third- 
party libraries and first listed in Section 4.8. Some have more than one implementation 
(one from QuickRank and one from RankLib). Next, the algorithms are enumerated:

SVM™”fc: Rank SVM, algorithm also applied in baseline reference work (YE; BUNESCU; 
LIU, 2016);
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QuickRank: DART, LambdaMART, MART, Oblivious LambdaMART, Oblivious MART, 
Random Forest, Stochastict;

RankLib: AdaRank, Coordinate Ascent, LambdaMART , Linear Regression, ListNet, 
MART, RankNet, RankBoost, Random Forest;

5.1.4 Metrics Extracted

The performance measures were based mainly on the metrics described in Section 2.3: 
MAP, MRR, Top-N, NDCG@10. For example, the range of values for Top-N is in the 
set {1, 5, 10}.

5.1.5 Runtime Environment

The experiments ran in a Lenovo ThinkServer TD340 with following specifications:

CPU: 12-core Intel Xeon E5-2430 v2 @ 2.50GHz.

GPU: GM206GL [Quadro M2000] NVIDIA.

RAM: 32 GB RAM (2 x 8 GiB DIMM DDR3 1600 MHz 0.6 ns, 1x16 GiB DIMM DDR3 
1600 MHz 0.6 ns).

Hard Disk: 600 GB Seagate Savvio 10K.6 SAS 6 GBS (ST600MM0006).

OS: Experiments started in Open Suse 42.3, and after a system crash, the host Op- 
erational System was replaced by Ubuntu 18.04 LTS and Open Suse 42.3 run in 
VirtualBox to maintain database compatibility.

5.2 Results
This section shows the results obtained in the experiments and answers the research 

questions proposed before. The analysis and discussions go along with data presentation.

5.2.1 RQ1: What is the performance of the entropy features 
compared to other features?

The experiments use data from AspectJ and SWT projects to measure the perfor
mance of each feature. First, the initial 200 bug reports from AspectJ were selected
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(chronologically ordered according to the bug fixing timestamp). Then, we selected 300 
bug reports from SWT: 200 bug reports from positions 200 to 400 and 100 bug reports 
from positions 700 to 800. The original idea was to cover more bug reports, but en- 
tropy computation consumes many resources (memory and processor). SWT entropy 
extraction was spent from 4.2 to 17.0 minutes by bug report on average, which gives 
from 21 to 85 hours to complete Entropy extraction for these exploratory studies. Since 
to compute all the 19 features, the time spent by bug report was between 3.1 to 5.4 
minutes on average, we did not spend too much time with entropy computation in the 
exploratory studies. We should proceed with the optimization and refactoring of the 
experimental package code to make the coverage of all the dataset viable.

Figures 19 and 20 show the results obtained considering MAP, MRR, Top-N and 
NDCG@10. The general results obtained for the different metrics are consistent, and 
the best performance features are almost the same, no matter the metric. For AspectJ, 
the best feature by far is ^1, while for SWT, the best feature is ^4. It is interesting to 
note that this simple divergence can have an impact on the learning process since the 
feature <^1 is not the best for SWT, and in the baseline experiments in (YE; BUNESCU; 
LIU, 2016), it applies in the sampling of the top negative examples for learning.

The results obtained for the entropy individually show poor performance in these 
exploratory experiments. AspectJ has the worst performance compared to SWT, and 
the baseline features show far superior performance (it is important to note that the 
charts have different vertical scale range). For SWT it is possible to see that ^21-1 and 
^22-1 has better results than features ^9, ^13, and ^16. These results can be a sign that 
entropy would have a role in the performance improvement for some bugs.

In the baseline, previous work (YE; BUNESCU; LIU, 2016), query-independent fea- 
tures (^15 to ^19) were between the worst individual features in terms of MAP results. 
However, entropy is also a query-independent feature, and it is not a big surprise that 
its performance would not be so different from the baseline query-independent features. 
Thus, according to these results, we confirm this behavior since query-independent fea- 
tures do not significantly impact the ranking as the query-dependent features in general.

As the results involve a small number of bug reports, we should consider these results 
with care compared to the previous study by Ye, Bunescu e Liu (2016) with around 
500 bug reports for training and testing. For further studies, the expectancy is on 
the complementary role of entropy when combined with other features. We need more 
experiments to confirm this hypothesis and cover more projects and bug reports.



5.2. Results 95

SWT-MAPAspectJ-MAP

/eatures features

SWT - MRRAspeciJ-MRR

features features

AspectJ - NDCG@10 SWT - NDCG@10

Figure 19 - MAP, MRR, NDCG@10 of AspectJ and SWT features.

5.2.2 RQ2: The use of entropy feature can improve the results 

obtained by past learning approaches to BL?

A similar setting to RQ1 was employed to evaluate the impact of entropy in the 
learning process, and only SWT was evaluated. Figure 21 shows the results obtained 
applying SVMRank tool to learn from 200 bug reports of SWT and test on 100 bug
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Figure 20 - Top-N of AspectJ and SWT features

reports. The baseline is represented by LR-A11 setting, including features 0i to 0i9. 
Another baseline is represented in LR-6Best, including the 6 most impacting features 
overall according to Table 6 and discussed in section 5.1.3.3, i.e., {(f>í: 59, (f>3: 46, 43,
<f>Q. 23, <f>7'. 18, (fiz- 11}- The additional settings include the entropy features individually 
to each baseline: 02o-i , 021-1? 022-1- The capacity parameter of SVMRank was set to 
values in the set {0.01, 0.1, 1, 10, 100, 200}. The evaluation metrics were MAP, MRR, 
Top-N and NDCG@K, with N and K values in the set {1, 5, 10}.

The general observed behavior was consistent between all metrics. The best per
formance was with capacity set to 0.1 for most metrics settings with some oscillations 
towards a capacity value of 0.01. The original LR experiment (YE; BUNESCU; LIU, 
2016) has found the optimal performance with capacity in the interval [10, 100]. Inter- 
esting to note that settings with the six best features have shown better performance 
than settings with all features, while in the original experiment, this does not occur for 
the SWT project. Our best performance results are also slightly better than the results 
found in the original LR work. For example, the best MAP and MRR values reported 
in the original LR experiment were 40.0 and 46.0, while we have found a MAP value of 
42.75 and an MRR value of 51.36, both with the setting LR-6Best+f20.1 and capacity 
= 0.1. Nevertheless, we need additional experiments, including more bug reports in the 
training set (the original LR approach had a training size of 500 bug reports, while only 
200 bug reports were applied) and involving the other projects to confirm these Hndings.

Although the best absolute results were with the use of entropy feature 02o.i, the 
improvement over the baseline in these experiments is marginal: for MRR metric, an 
improvement of 2.21% over LR-6Best, and 4,90% over LR-A11; for MAP metric, an 
improvement of 0.25% over LR-6Best, and 3.69% over LR-A11; for Top-1 metric, an
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improvement of 2.56% over LR-6Best, and 8.11% over LR-All; the improvement found 
for NDCG@1 is the same than Top-1. Considering LR-All only, the best corresponding 
entropy setting LR-All+21.1 performed worst than the LR-All baseline setting: -0.82% 
for MRR, and -0.49% for MAP. We need more experiments to confirm the role of 
entropy in the learning process, but based on these results, the expectancy is to obtain 
low improvements if the same settings are applied.

5.2.3 RQ3: What is the impact of data balance strategies in 
the learning process?

To evaluate the influence of the balancing strategies enumerated in Section 5.1.3.3, 
many experiments were conducted using different LtR algorithms available in RankLib 
and QuickLearn tools. Figures 22 and 23 present the results for experiments over Tomcat 
using 100, 250 and 500 bug reports for training and 100 bug reports for testing. Baseline 
stragegy SFk200f 1 is shown in green, MFk33f 6 is shown in yellow and MFk200w is shown 
in blue. The metric aplied in the comparisons was NDCG@10. Only features ^1 to ^19 

were considered.
By training with 100 bug reports, the differences are not meant for most of the 

algorithms, while training with 250 and 500 bug reports, it is notable the positive con- 
tribution of the data balancing strategies in the performance of the learning algorithms. 
Although the performance gain variates a lot between the algorithms, there is some con- 
sistency between the tools. For example, LambdaMART has a maximum performance 
gain of 52.3% and 70.86% over baseline SFk200f 1 strategy, respectively, in QuickRank and 
RankLib implementations. Similar comparisons also confirm these performance gains, 
e.g., with MART, Random Forest. However, it is fair to state that this high gain in the 
performance would be more related to the overfitting with SFk200f 1 strategy, causing 
poor performance in training with 250 and 500 bug reports, so the merit of the data 
balancing strategies is mainly related to the avoidance of overfitting in the algorithms.

The best performance obtained in each tool were:

QuickLearn: LambdaMART and Stochastic with NDCG@10 = 59.64%, using MFk200w, 
overcomming SFk200f 1 in 52.30% and MFk33f6 in 3.97%, considering the same 
algorithm.

RankLib: LambdaMART with NDCG@10 = 57.92%, using MFk33f6, overcoming SFk200f 1 

in 70.86% and MFk200w in 2.87%, considering the same algorithm.
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Figure 21 - MAP, MRR, Top-{1,5,10} results on 300 bug reports of SWT (200 for 
training and 100 for testing)
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The balancing strategies did not positively impact RankNet, RankBoost, and AdaRank. 
For these algorithms, SF'k200f 1 overcame MFki200w and MFk33f6. Even considering the 
best-obtained result of these algorithms (Rankboost with NDCG@10 = 55.72%), Lamb- 
daMART with MFk33f6 is still better 3.95%.

5.2.4 RQ4: How does the tuning of LtR algorithms impact the 
BL performance?

The influence of the tuning in LtR for BL was first shown in RQ2 while evaluating 
the SVMRank tool with different values for the capacity parameter. The performance 
range changes a lot depending on the capacity value applied. To illustrate, the Table 9 
shows the performance range variation for LR-All setting. The high decay observed 
between the best and the worst settings reinforces the need to tune the algorithms 
before analyzing and insights. Since it is usual to find works relying only upon the 
default parameters, this is another issue because they can obfuscate the optimum results 
and even lead to a premature discarding of a tool or algorithm.

Table 9 - Performance variation of SVMRank on SWT by tuning the algorithm with 
capacity parameter in LR-All setting.

Metric Best Worst Decay (%)
MRR 48.96 27.31 42.22
MAP 41.23 23.81 42.81
Top-1 37.00 6.00 83.78
Top-5 69.00 48.00 30.43
Top-10 79.00 63.00 20.25
NDCG@1 37.00 6.00 83.78
NDCG@5 43.88 24.24 44.76
NDCG@10 47.85 30.66 35.92

To extend this analysis, we proceed with experiments using the LambdaMART algo- 
rithm in RankLib tool over the 300 bug reports of SWT and comparing baseline setting 
(LR-All) with baseline + entropy (LR-All+020.1). The metrics extracted were MAP and 
NDCG@10. The parameters to tune were Number of Trees {32, 64, 128, 256, 512}, 
Number of Leaves {1, 2, 5, 10} and Shrinkage {0.05, 0.5, 0.8}. We defined the last 
parameter's value sets after some experiments and also based on the optimum values 
found in the previous work of Ye, Bunescu e Liu (2016). We opted to restrict the values
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LambdaMART applied toTomcat w/ RankLib

MART applied to Tomcat w/ RankLib

# bug reports

■ sfk20041 mfk33 fl43-4-f6-f7-fl2
■ mfk* fl:5943:46.14:43. f6:23.f7:18.fl2:11

Random Forest applied to Tomcat w/ RankLib

Figure 22 - NDCG@10 for MART (Lambda and Obliviuos) and Random Forest al- 
gorithms from QuickRank and RankLib tools.

■ sf k20041 mfk 33 f 1-f 3-44647412
■ mfk* fl:59.f3:46,f4:43.f6:23.f7:18,fl2:ll
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ListNet applied to Tomcat w/ RankLib

# bug reports

■ sfk20041 I mfk33 f143-44647412
■ mfk* fl:59,f3:46,f4:43,f6:23,f7:lB,fl2:ll

DART applied to Tomcat w/ QuickRank

#bug reports

■ sfk20041 I mfk 33 f143-44647412
■ mfk* fl:59,f3:46.f4:43,f6:23,f7:18,fl2:ll

Coordinate Ascent applied to Tomcat w/ RankLib RankNet applied to Tomcat w/ RankLib

#bug reports # bug reports

■ sfk200-fl mfk33 «.43-44647412
■ mfk* fl:59,f3:46,f4:43,f6:23,f7:18,fl2:ll

■ sfk200-fl mfk33 f143-44647412
■ mfk* fl: 5943:4644:4346:2347:184 12:11

Figure 23 - NDCG@10 for Stochastic, ListNet, DART, Linear Regression, Coordinate 
Ascent, RankNet, RankBoost, AdaRank from QuickRank and RankLib tools).

AdaRank applied to Tomcat w/ RankLib

# bug reports

■ sfk20041 i mfk33fl43-4-f6-f7412
■ mfk* fl: 5943:4644:4346:2347:18412:11
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to avoid extending the experiments. We proceed with a grid search-based approach to 
produce results and find the best combinations.

Table 10 summarizes some performance values and statistics from the experiment 
with LambdaMART. The section Best Performance in that table shows the best val- 
ues obtained for the settings with baseline (LR-All) and entropy (LR-ALL+^20j), for 
both metrics MAP and NDCG@10. The following two sections present the Average Per
formance and Standard Deviation considering: 1. only the five settings with the best 
performance (5-Best); 2. the ten settings with the best performance (10-Best); 3. all 
the settings. Finally, the last sections show the direct comparison between performance 
obtained for baseline and entropy settings, considering the best setting and the averages 
shown above in the table. For MAP, baseline overcomes entropy by 2.7% in the best 
setting, while for NDCG@10, there is a draw since the performances are equal. However, 
the differences are minimal and below 1% for the 5-Best settings. In the 10-Best set- 
tings, the performance is almost the same for MAP, while the entropy setting overcomes 
baseline in 2.21%. In the All Settings comparison, entropy presents better performance 
overall than baseline (14.95% better with MAP, and 42.47% better with NDCG@10). 
The standard deviation perspective also confirms these results. The low values for the 
5-Best and 10-Best indicate that top settings have similar performance. However, All 
Settings has a far higher standard deviation, confirming a big difference between best 
and worst settings. In almost all the cases, the standard deviation in entropy settings 
is below the baseline. Since the average performance results of entropy settings are al- 
most the same or better than baseline, the tendency is that settings with entropy deliver 
better results overall than baseline.

Table 11 shows the best parameters found in the experiments and also the statistical 
Mode for the five best and the ten best performance settings. There is no unanimity with 
MAP measure for the Shrinkage parameter since all the parameter values appear in the 
top settings. Considering the best setting and the 10-Best-Mode with LR-All settings, 
0.05 would be the choice. Considering LR-All+^20.1 again, it is not easy to point the 
winner. With NDCG@10 measures, there is no doubt about the choice for the Shrinkage 
of 0.05, either for LR-All or LR-All+^20.1. For the Number of Trees parameter and with 
MAP measure, most of the settings have 32 trees, except in the best setting of LR-All 
with 64 trees. For NDCG@10 measures, most settings have 64 trees, including the 
best settings, but 32 and 128 values also appear in the 5-Best-Mode and 10-Best-Mode. 
Finally, the Number of leaves has the value 1 present in most settings, either for MAP 
or for NDCG@10. Some exceptions occur for the best setting of baseline LR-ALL with 
MAP, while some mode settings where the value 2 also appears. The following charts



5.2. Results 103

Table 10 - Performance statistics from the tuning of LambdaMART on SWT using 
baseline and ^20.1 entropy settings.

Best Performance
MAP NDCG@10

LR-All 42.29 47.66
LR-All+^20.1 41.18 47.66

Average Performance
MAP NDCG@10

5-Best 10-Best All Set. 5-Best 10-Best All Set.
LR-All 41.33 40.77 19.55 47.33 45.42 15.47
LR-All+^20.1 41.04 40.76 22.99 47.56 46.44 26.90

Standard Deviation
MAP NDCG@10

5-Best 10-Best All Set. 5-Best 10-Best All Set.
LR-All 0.54 0.87 17.68 0.51 2.92 15.80
LR-All+^20.1 0.15 0.35 15.22 0.11 1.36 18.85

How much entropy setting is better than baseline?

Best Set. 5-Best (Avg) 10-Best (Avg) All Set. (Avg)
MAP -2.7 % -0.72 % -0.04 % 14.95 %
NDCG@10 0.00 % 0.5 % 2.21 % 42.47 %

show values 1 and 2 for leaves have almost the same performance overall, making the 
value of 1 the best choice for the Number of Leaves.

To finalize the tuning analysis, the charts in Figures 24 and 25 show how the perfor
mance variate with the parameters. We restrict the number of charts to facilitate the 
analysis and insights since many charts were generated considering all the metrics and 
parameters used in the experiments and would bloat the text unnecessarily. The bars 
in blue represent performance data for baseline testing data, while the light blue bars 
represent the baseline testing data. Similarly, the bars in red represent the performance 
of entropy testing data, while the light red bars represent the entropy testing data. The 
parameters shown in the legend define the ordering of the data associated with each 
main group of bars, where nt is the number of trees, and sh is the Shrinkage. To illus- 
trate, in the Figure 24-a, there are three groups of bars, one for each shrinkage value in 
the horizontal axis (0.05, 0.5, and 0.8). In the first group (sh=0.05), there are 20 bars. 
The first four bars are associated with the settings with 32 trees: 1st bar is the training 
performance of the baseline setting (light blue), 2nd bar is the testing performance of 
the baseline setting (blue), 3rd bar is the training performance of the entropy setting 
(light red), 4th bar is the testing performance of the entropy setting (red). The next 
four bars are associated with the settings with 64 trees and follow the same previously
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Table 11 - Parameters found in the best performance settings while tuning Lamb- 
daMART on SWT bug reports.

Parameter Best 5-Best-Mode 10-Best-Mode

MAP

LR-All Shrinkage 0.05 {0.5, 0.8} 0.05
Number of Trees 64 32 32
Number of Leaves 5 {1, 2} 1

LR-All+^2o.i Shrinkage 0.8 {0.5, 0.8} 0.05
Number of Trees 32 32 32
Number of Leaves 1 1 {1, 2}

NDCG@10

LR-All Shrinkage 0.05 0.05 0.05
Number of Trees 64 {64, 128} {32, 64}
Number of Leaves 1 1 {1, 2}

LR-All+^20.1 Shrinkage 0.05 0.05 0.05
Number of Trees 64 64 {32, 64}
Number of Leaves 1 {1, 2} 1

described sequence. This logic repeats for the settings with 128, 256, and 512 trees, 
completing the first group of bars. This sequence repeats for Shrinkage of 0.50 and 0.80. 
The Figure 24-b is derived from the Figure 24-a, by removing all the bars of training 
performance, remaining only test data for baseline (blue) and entropy (red) settings. 
The vertical axis was also limited to 50. This chart facilitates the direct comparison of 
the baseline with the entropy testing performance settings.

In Figure 24 it is possible to perceive the higher values for both baseline (blue) and 
entropy (red) settings, when the Shrinkage value is 0.05, and also for 0.80, although 
the former has a little bit higher values overall. It is also visible that the performance 
falls with increasing the number of trees. The performance falls are even more severe 
for the Shrinkage of 0.50, especially from 128 trees and above. The bars in light blue 
(baseline training settings) and light red (entropy training settings) represent the training 
performance and highlight when the over-fitting occurs. For example, the differences 
between training and testing data for the baseline are the largest (the number of trees 
greater or equal to 128). We can confirm some over-fitting in settings with more trees, 
mainly with a Shrinkage of 0.50 value. Figure 24-c and 24-d are similar to the previous, 
but considering the NDCG@10 measure. The differences between baseline and entropy 
settings are more accentuated, favoring testing settings with entropy. In this case, 
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especially in Figure 24-c the over-fitting on baseline settings is clearly more accentuated 
with shrinkage of 0.50 and 0.80. Nevertheless, this occurs only for baseline settings since 
it seems the over-fitting is not severe for entropy settings. Best values are clearly in the 
first bar group, where Shrinkage is 0.05.

Figure 24-e and Figure 24-f show the performance for the nl = 5 and nl = 10. The 
performance for nl = 2, has no meaningful difference from nl = 1, and was ignored. 
The over-fitting with the increase in the number of leaves is clear, even for the settings 
with previous good performance such as sh = 0.05, and mainly win baseline setting with 
nt above 64. The higher over-fitting in the settings occurs with nl = 10. Figure 25 
show same but now with the bar groups organized according to the Number of Trees 
parameter. The ordering inside each group follows the shrinkage parameters (0.05, 0.5, 
0.8). These charts reinforce the insight that the overfitting increases with the number 
of leaves and with the number of trees.

Even considering the Entropy feature does not improve the performance of the top 
settings in general meaningfully compared to baseline settings, after the exposed results, 
it is more or less clear that this feature seems to play some role in reducing over-fitting for 
the settings overall. The algorithm tuning is also evident, and it is crucial to obtain the 
best from the applied algorithm. To reinforce this need, after running LambdaMART 
using the default parameters (#trees = 1000, #leaves = 10, shrinkage = 0.1), we just 
get over-fitted and poor results: for LR-All, training data gives 71.09%, and testing 
gives %5.76 for MAP, while with NDCG@10, training gives 88.02% and testing gives 
2.54%; for LR-All+^20.1, training gives 72.97%, and testings give 3.9% for MAP, while 
with NDCG@10, training gives 87.28% and testing gives 2.02%.

5.2.5 RQ5: How long does it take to conclude each step in the 
process (feature extraction, ranking generation, training, 
validation, and testing)?

Figure 26 show the average computing time distribution to generate the rankings 
and to extract the performance metrics for the individual features. These rankings are 
the primary input data to produce the input SVM-Light files for the training and testing 
through the LtR approaches. The process steps groups in:

Pre-processing: related to loading bug report information from the text files, source 
code file parsing, index generation, and persistence on the database (e.g., class,
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Figure 24 - Tuning LambdaMART (RankLib) on 300 bug reports of SWT: MAP and 
NDCG@10 performance changing Shrinkage {0.05, 0.5, 0.8} and Number of Leaves 
(NL) {1, 5, 10}.

method, and many other entities found in source code files). Some of these steps 
are pre-requisites shared by some features.
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Figure 25 - Tuning LambdaMART on SWT (RankLib): MAP performance changing 
Number of Trees (NT) from 32 doubling until 512 and Number of Leaves (NL) = {1, 
10}.
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F1..F19: this includes the time spent on the feature extraction and on the computing 
of the individual rankings for each feature found in the baseline work of (YE; 
BUNESCU; LIU, 2016).

F20.1..F22.1: this is the time spent in entropy feature extraction, including language 
model generation and the ranking generation for the features <^>20.1 , <^21.1, and 022.1-

Normalization: includes the time spent to access all the individual rankings and produce 
the corresponding normalized ranking.

Metrics: includes the time spent to produce the performance results for all the individ
ual rankings, based on the metrics MAP, MRR, Top-N

From the Figure 26b and 26c, it is clear the main bottleneck is in the entropy ex
traction that consumes 56% to 62% of the time in each bug report processing. The 
computing time is worrying, especially because it relates to only three entropy features. 
In Figure 26c, without the entropy feature computing, the total time to complete the 
process is much lower, 4.13 minutes, while the previous with entropy requires 9.99 and 
11.11 minutes. Considering the 300 bug reports used in the experiments with SWT, 
the average estimated total time to produce the necessary input data for the LtR ap
proaches is around 55.5 hours. A total of 768.63 hours (or around 32 days) is estimated 
to cover all the bug reports only for the SWT project (4151 bug reports), including 
entropy extraction (only three of them). Thus, it is essential to optimize the current 
implementation so the experimentation and covering of all the 22,747 bugs in the LR- 
dataset become viable. Even discarding the entropy feature and taking the reduced time
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Figure 26 - Average computing time distribution per bug report for AspectJ, SWT, 
and Tomcat.

of 4.13 minutes per bug report in Tomcat would require 65 days to cover all the bug 
reports in this dataset (and we still need to consider time for SVM-light files generation, 
training, validation, and testing).

For these exploratory experiments, we do not measure the time spent on the gen- 
eration of SVM-Light files and the training and testing with LtR algorithms. We do 
not compute the time spent in the checkout of each source code repository since it only 
depends on other factors not directly related to the framework implementation (e.g., 
network speed and project size). Since the SVMRank, RankLib, and QuickRank were 
employed in the experiments, running many instances, each with a different setting, and 
in parallel to complete the experiments faster, we opted not to include the measures 
information about training and testing resources consumption in this phase. From our 
informal perception from the experiments, the time spent in training and testing is by 
far lower than the time to produce the input data and lower than the time spent in the 
generation of SVM-Light files necessary to the learning process. Thus, the critical point 
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to reduce the time spent on the process overall is refactoring and optimizing the feature 
extraction process, followed by the index generation. This way, the BL solution would 
be more scalable.

5.3 Final Considerations
In these exploratory studies, we tested our experimental package against many possi- 

ble settings and influential factors for LtR-based BL strategies applied to some samples 
of the LR-dataset. As in Ye, Bunescu e Liu (2014) original work, we confirm ^1 as the 
most influential individual feature and also the more substantial influence of the query- 
dependent features. On the other hand, our tested non-query-dependent Entropy feature 
does not produce such impactful results. It also imposes high demands on computational 
resources, requiring additional optimizations for a viable and scalable application, even 
to proceed with new tests on more samples from the LR-dataset. These results also ex- 
tend with the application of the Entropy feature to compose the ML training sets, and 
again, we did not get such promising results. The experimentation with two alternative 
data balancing strategies, (MFk33f6 and MFk200w), combined with various ML-based 
algorithms from QuickLearn and RankLib tools, show more noticeable results over the 
baseline (using MFk2Oof 1 data balancing with SVMRank LtR algorithm). The best per
formance increase was 55.72% in Rankboost with NDCG@10. Additionally, these data 
balancing strategies show some role in overfitting avoidance. While experimenting with 
tuning parameters for each LtR algorithm, we observe the importance of good tuning 
so we can obtain the best performance results. From the worst to the best performance 
settings, we observed significant differences, reaching a standard deviation around 15 
and 18 points in MAP and NDCG@10 measures, respectively. There is no evidence 
that the Entropy feature contributes substantially to improving performance between 
the best-tunned settings. Finally, we have shown the long time demanded to conclude 
the experiments and process each bug report (from 4 to 11 minutes on average). The 
demand is aggravated with the Entropy feature introduction and asks for the implemen- 
tation optimization to make the experimentation package scalable and able to process 
larger samples and cover all data in LR-dataset.
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Chapter 6
Analysis of repair actions and patterns

In Chapter 4, many influential factors for BL were raised. An experimental package 
designed to test many of these ideas was also briefly introduced, and Chapter 5 shows 
preliminary experiments. Since one of our more interesting and relevant work was about 
the study of the bug characteristics in a dataset (SOBREIRA et al., 2018; MADEIRAL 
et al., 2018), the natural sequence is to apply the experience gained in this area to the BL 
problem and to include support in the experimental package for evaluations and com- 
parisons. Nonetheless, before proceeding with the experimental tasks, we discuss bug 
patches characteristics in this chapter, extending our initial work with Defects4J Dis- 
section to another bug dataset. Here we confirm that some of our findings in Defects4J 
are still valid for a larger bug dataset, the LR-dataset (YE; BUNESCU; LIU, 2014), 
usually applied to evaluate BL approaches, as occurs in our baseline implementation for 
the experimental package.

6.1 The role of patches on Bug Localization

A software bug can cause a software fail or misbehavior. To solve this situation, 
debugging is necessary, and the bug removal process requires the application of a bug 
patch to the software codebase. The bug patch comprises all the required changes, so 
the expected system behavior is reestablished. These changes can involve the addition, 
removal, or modifications of single or many lines of source code.

Since version control systems (like Git) are already part of the software best practices, 
it is possible to access the buggy easily and fixed versions of a codebase. A usual way to 
extract a patch is through the difference between two versions of a system, and a common 
approach is to access the version before the patch application (the buggy version) and 
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the patched version of the system (the fixed version). Of course, many types of bugs can 
exist, included bugs non-related to source code, but for this work, we are interested in 
bugs related to and fixed by source code changes. In this context, we can think of bug 
patches to validate and identify the bug location for the already fixed bugs.

6.2 Understanding the nature of the bugs through 
their patches

While we can easily perceive the existence of a bug in a system through problems, 
fails, or software misbehavior caused by the bug, usually, the bug's delimitation and 
characterization are not clearly defined. Many types of bugs exist, but what exactly are 
these bugs? Since the bug is unknown until we find the root cause of the problem and a 
way to fix it, a possible alternative to characterize bugs is to look for and study the many 
ways to fix them. So the study of the nature of the bug patches would indirectly inform 
us about the nature of their associated bugs. Many patches can apply for the fixing of 
a given bug. However, the multiplicity of solutions for the same bug is not our study 
target. Instead, we intend to study the regularity and the reuse of particular solutions to 
fix the bugs, observing patterns or other recurrent structures and situations. We observe 
that many of these recurrences in patches are common even between different projects 
and with similar frequency distribution.

6.3 Analysis dimensions of a bug patch for Bug Lo- 
calization

In our previous work (SOBREIRA et al., 2018) we show many types of bugs present 
in Defects4J, now a frequently applied bug dataset. We analyzed many dimensions of 
Defects4J, involving the patch size, the patch spreading, and composition, expressed in 
terms of repair actions and repair patterns. We also defined a taxonomy to refer to 
these repair actions and patterns. While the work on Defects4J was valid to identify 
the presence of many patterns and the reuse of similar solutions, even between differ- 
ent projects, the dataset size (only 395 bugs) limits its applicability, especially while 
evaluating approaches that depend on a more significant number of samples, such as 
those employing machine learning techniques. To overcome this problem, we decided 
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to evaluate the LR-dataset applied by Ye, Bunescu e Liu (2014) using the dimensions 
defined in the Defects4J dissection analysis.

6.3.1 Size dimensions

From the original 22,747 bug reports in projects of LR-dataset, ADD tool (MADEIRAL 
et al., 2018) can extract information from 21,177 bug patches. Some of the excluded 
patches would present problems during the processing, e.g., not generating an AST. Still, 
there are many outliers between these 21,177 bug patches and, without a restriction to 
filter out these outliers, it is difficult to show the overall size distribution of the patches. 
Limiting the number of lines to 200 (Figure 27), we exclude 113 outliers, but we still 
have many of them (represented by circles beyond the whiskers limit in the boxplot). 
With 60 lines limit, we exclude 1039 outliers (4.91% reduction), and we have a patch 
size very close to the maximum patch size found in Defects4J (54 lines). In this new 
setting, we can see that most patches range between 1 and around 35 lines for all the 
projects. In addition, the median size ranges from 5 to 7 lines. Except for the outliers, 
these results are very close to what we have found in Defects4J since the size ranges 
from 1 to 54 code lines (max), and the median patch size was 4 lines.

Figure 28 shows the added lines, removed lines, and modified lines of the patches from 
all the projects in LR-dataset, maintaining the same limit of 60 code lines for the patch 
size. Since the distribution of added lines is closer to the total patch size distribution, 
this confirms the same tendency found in Defects4J, where patches composition contains 
more lines added than lines modified and removed.

Patches can combine any code lines type: added, modified, and removed. Figure 29 
shows a) the number of patches for each combination overall; b) the same info but only 
for patches with a maximum of 60 lines. Comparing the diagrams, we can observe that 
most of the excluded outliers were in the set with patches containing all the types of 
line changes, and the reduction was 781 patches (75.17% of the 1039 removed outliers). 
It is reasonable since we can expect that huge patches can include more types of line 
changes than small ones.

Next diagrams show the previous information split between each project (Figure 30). 
The proportion of patches in each set seems to be very similar to the overall distribution. 
When compared to Defects4J, these proportions are also very close.
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b) maximum patch size of 60 lines (20,138 patches).

Figure 27 - Distribution of the number of lines of the patches limited to a maximum 
size.

6.3.2 Spreading

We can define the patch spreading from many perspectives. First, patch spreading 
allows understanding how much the bug fixing is concentrated or spread through the 
codebase. Furthermore, the patch spreading can significantly impact the bug localization 
since a strategy that performs well for a small and single block of code patch would have 
an inferior performance trying to localize a bug with the patch spread on many files (or
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Figure 28 - Distribution of the number of code lines by type in 20,138 patches of 
LR-dataset.
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Figure 29 - Overall patches distribution according to the type of code lines affected.

d) JDT e) SWT f) Tomcat

Figure 30 - Patches according to the type of code lines affected in each project.

even a single file patch but sparse in many lines). We show in this section the spreading 
profile for the (YE; BUNESCU; LIU, 2014) dataset, based on the spreading measures 
appliedin(SOBREIRAet al., 2018): number of chunks, spreading of the chunks, number 
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of modified classes, number of modified methods, and number of modified files.

As occurs for the patch size, outliers also impact and contribute to extending the 
range for the number of chunks beyond 200. After the application of the same patch size 
limited to 60 lines (so we can maintain the same bug set analyzed before), we obtain 
the distribution shown in the first chart of Figure 31, and for these patches, the number 
of chunks reduces somehow (now the maximum is 94). From this distribution, we see 
that most of the patches have less than ten chunks, and the instances beyond that 
would be considered outliers. The second chart in Figure 31 is an alternative to show 
the patches distribution removing patches where the number of chunks is beyond the 
limit for outliers. The limit applies to the number of chunks of the patches, excluding 
patches with more than 20 chunks (applying this filtering criterion, we still maintain 
20,688 patches). The median number of chunks is close between the projects (around 
2), except for the JDT (around 3). For all the cases, 75% or more patches in each 
project have a maximum of five chunks. Compared to Defects4J, LR-dataset has a 
slightly higher number of chunks per patch (90% have eight or fewer chunks), but it is 
still very close since 90% of the patches in Defects4J have at most five chunks.

The spreading of the patches measures the accumulated number of code lines between 
their chunks and is in the first chart of Figure 32. The spreading of the patches gives 
a clue about the patch dispersion in the codebase. Again, there are many outliers, 
even considering the patch size reduction, limited to 60 lines. To get a better perception 
about the distribution, in the second chart of Figure 32 the spreading (and not the patch 
size) is limited to 350 lines. In this new chart, the distribution is more evident, and, in 
most projects, the first half of the patches have no spreading at all, or the spreading is 
below 25 lines. While patch size has a more uniform distribution between the projects, 
the spreading variability is higher. For example, while in SWT, the patches seem to be 
more concentrated (half has no spreading, and 75% have a spreading below 25 lines, the 
threshold for outliers is around 60 lines), in JDT, 75% have a spreading that can achieve 
100 lines, and their threshold for outliers is the highest (more than 200 lines).

Like Defects4J, most parts of the LR-dataset bug patches concentrate in a few 
chunks. There is both type of patches: those concentrated in single lines (or even 
single blocks) of code, significantly below the first half in the distribution; and those 
patches dispersed in more blocks of code that can be very close to each other (just a few 
lines distance) or with distances of hundreds of lines, especially in the upper half of the 
distribution.
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Figure 31 - Distribution of the number of chunks of the patches.

6.3.3 Size and Spreading Dimensions' Statistics

Table 12 summarizes the patch size and spread information. These statistics consider 
the 21,177 patches, without restrictions to patch size. Table 13 shows the same informa- 
tion but only for the patches with a maximum size of 60 lines. The tables also summarize 
modified files, classes, and methods associated to the patches. One more time, the dis- 
tribution is close to Defects4J, and most of the patches are associated with a few files, 
classes, and methods. Additionally, we can see that even with filtering some of the out- 
liers using the 60 lines size restriction, this condition is not enough to remove them. One 
example is the patch that affects 328 files (the maximum value observed in Table 13).
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Figure 32 - Distribution of chunks spreading of the patches.

Even considering that it is possible to have patches associated with that amount of files 
since the 60 lines size restriction does not account for lines related to comments and 
blank lines (e.g., white spaces), it is clear that additional filtering would be necessary 
to avoid noise and these type of outliers, especially in experimental settings. Therefore, 
the application of maximum number for chunks, spreading, files, classes, and methods 
would be required to remove other outliers and maintain a representative dataset. For 
example, 99% of the patches affect a maximum of 21 files (20.54), and considering the 
60 lines restriction, the number of affected files drops down to 19 files (far below the 328 
files previously cited). Considering the exposed rationale, a threshold of 20 files would
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Table 12 - Descriptive statistics for 21,177 bug patches.

Min 25% 50% 75% 90% 95% Max

# Added lines 0 0 3 9 22 36 1,088
# Removed lines 0 0 0 1 8 16 1,298
# Modified lines 0 0 1 3 8 14 4,647
Patch size 1 2 6 16 37 60 4,652

# Chunks 1 1 2 5 9 14 215
Spreading 0 0 21 157.0 457.4 747.2 6,407.0
# Files 1 1 1 1 2 7 383
# Classes 1 1 1 1 1 2 14
# Methods 0 1 1 2 4 5 76

Table 13 - Descriptive statistics for 20,138 bug patches, without outlier patches (more 
than 60 lines).

Min 25% 50% 75% 90% 95% Max

# Added lines 0 0 3 8 17 25 60
# Removed lines 0 0 0 1 5 10 59
# Modified lines 0 0 1 3 7 10 58
Patch size 1 2 6 14 27 38 60

# Chunks 1 1 2 4 8 10 94
Spreading 0 0 16 137 413 674 6,407
# Files 1 1 1 1 2 7 328
# Classes 1 1 1 1 1 2 14
# Methods 0 1 1 2 3 4 49

be a good complement to the outlier filtering schema.

6.3.4 Repair actions

A repair action is a basic syntactic building block composing the patch for a bug. We 
have defined a taxonomy to refer to the repair actions found in Defects4J (SOBREIRA 
et al., 2018). Here we apply the same taxonomy, and we conduct the detection of these 
repair actions with our tool, ADD, partially presented by Madeiral et al. (2018). To 
facilitate the understanding of the acronyms, Table 14 shows its correspondence (more 
details in (SOBREIRA et al., 2018). The first chart of Figure 33 shows the incidence 
of all repair actions from LR-dataset (YE; BUNESCU; LIU, 2014), while the second 
chart shows the same info without some of the outliers (patches with a size beyond 60 
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lines). As shown in these charts, removing the outliers is not so impacting, and most 
repair actions positions are maintained. The dominance of repair actions involving code 
addition is clear, especially in the top positions. The higher presence of repair actions 
more associated with code addition helps explain why there is more code added than 
modified and removed in the patches (shown in the previous sections). As occurs in 
Defects4J, the top actions are related to Method Call Addition, Assignment Addition,

To facilitate the comparison with Defects4J, Figure 34 shows the repair actions 
grouped according to Table 15, and in the same format of the charts in (SOBREIRA 
et al., 2018). In the middle column we have: A = Addition action; R = Removal ac-
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Table 14 - Repair actions acronyms and full names.

Acronym Repair Action
assignAdd Assignment addition
assignExpChange ” expression modification
assignRem ” removal
condBranCaseAdd Conditional (case in switch) branch addition
condBranElseAdd ” (else) branch addition
condBranIfAdd ” (if) branch addition
condBranIfElseAdd ” (if-else) branches addition
condBranRem ” (if or else) branch removal
condExpExpand ” expression expansion
condExpMod ” ” modification
condExpRed ” ” reduction
exThrowsAdd throw addition
exThrowsRem ” removal
exTryCatchAdd try-catch addition
exTryCatchRem ” removal
loopAdd Loop addition
loopCondChange ” conditional expression modification
loopInitChange ” initialization field modification
loopRem ” removal
mcAdd Method call addition
mcMove ” ” moving
mcParAdd ” ” parameter addition
mcParRem ” ” ” removal
mcParSwap ” ” ” value swapping
mcParValChange ” ” ” value modification
mcRem ” ” removal
mcRepl ” ” replacement
mdAdd Method definition addition
mdModChange ” ” modifier change
mdOverride ” ” overriding (addition or removal)
mdParAdd ” ” parameter addition
mdParRem ” ” ” removal
mdParTyChange ” ” ” type modification
mdRem ” ” removal
mdRen ” ” renaming
mdRetTyChange ” ” return type modification
objInstAdd Object instantiation addition
objInstMod ” ” modification
objInstRem ” ” removal
retBranchAdd Return statement addition
retExpChange ” expression modification
retRem ” statement removal
tyAdd Type addition
tyImpInterf Type implemented interface modification
varAdd Variable addition
varModChange ” modifier change
varRem ” removal
varReplMc ” replacement by method call
varReplVar ” replacement by another variable
varTyChange ” type change
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tion; M = Modification action. The distribution shape of the repair actions from the 
LR-dataset is very similar to the Defects4J distribution. The top repair action, Method 
Call Addition, is the same in both datasets. Eight actions from the top-10 in Defects4J 
distributions appear between top-10 positions in the LR-dataset. Conditional Modifi- 
cation and Return Modification actions in Defects4J top-10 are out of the LR-dataset 
top-10. Method Definition Addition and Variable Modification in LR-dataset top-10 are 
out of the top-10 in Defects4J. While both datasets are intrinsically composed of bugs 
from different Java projects, it is notable how close are the distributions of the repair 
actions of the patches. With the repair actions explicit, we understand the nature of the 
bugs and their associated patches. This kind of information would help to guide and 
allow more informed decisions while testing or evaluating certain approaches on these 
bug datasets. For example, we could expect an approach for bug localization (or even 
automatic program repair) would not perform well if it can not handle bugs requiring 
the addition of code, especially method calls, since this kind of action would be present 
in 12,885 from the 20,138 patches (64%). Another expected behavior is a poor perfor
mance (but not insignificant) of approaches guided by removal of code to fix a bug (the 
strategy of Kali approach (QI et al., 2015)) since patches containing removal actions are 
less prevalent.

Table 15 - Repair actions acronyms and grouping names.

Acronym Action Group

asgn A/R/M Assignment
cnd A/R/M Conditional
ex A/R Exception
lp A/R/M Loop
mc A/R/M Method Call
md A/R/M Method Definition
obj A/R/M Object Instantiation
ret A/R/M Return
ty A/M Type
var A/R/M Variable

The distribution of repair actions present in each project is in Figure 35 (all limited 
to patches with no more than 60 lines). Generally, the distributions between projects 
are close, even considering the significant differences in the number of patches in each 
project (from the 509 patches of AspectJ to the 5645 of JDT).
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Figure 34 - Grouped repair actions found in LR-dataset.

6.3.5 Repair patterns

While the Repair Actions are basic building blocks found in patches composition, 
the Repair Patterns are more abstract structures found recurrently in the patches of 
Defects4J (SOBREIRA et al., 2018). In Defects4J Dissection, we have found 9 more 
general patterns (Figure 36), and some of them with variations, totaling 25 specific 
repair patterns (Figure 37). Table 16 summarizes the patterns acronyms and full names.

We apply the same taxonomy and descriptions of the patterns defined in our De- 
fects4J Dissection study to analyze LR-dataset. Figure 38 shows a) the overall distri- 
bution of these patterns in LR-dataset and b) the distribution with a patch size limit 
of 60 lines.

Figure 39 shows a more compact view of these patterns, grouped according to Ta-
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ble 16 and allowing straight comparison to similar charts in (SOBREIRA et al., 2018). 
As in Defects4J, Conditional Block pattern continue as the top pattern found in the 
patches and also have a percentage of occurrences very close (around 42%). In the 
bottom, Code Moving and Constant Change continues as the less frequent patterns in
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Figure 36 - Repair patterns found in Defects4j Dissection.

Figure 37 - Repair patterns with variations found in Defects4j Dissection.

patches, but with higher percentages (around 7%, and 10% in LR.-dataset, while De- 
fects4J have 1.77%, and 4.81%, respectively). In the middle, we have some position 
changes and changes in the percentage prevalence. Wraps With did not change its third 
position and had an incidence of 22.83% in LR.-dataset (-4.51% compared to Defects4J). 
Single Line also has a similar reduction (-5.06%) and appears in 19.75% of the patches in 
LR.-dataset. Expression Fix have the higher percentage decreases (-13.15%) and appears 
in 19.75% of LR.-dataset patches. Null Check appears in LR.-dataset practically with 
the same percentage of Defects4J (around 12%). Two patterns increase its incidence: 
Copy Paste appears in 19.15% of the patches (+7%), and Wrong Reference appears in 
26.74% of the patches (+9.02%) of LR.-dataset. These Hndings reinforce the value and 
broader applicability of the patterns found in Defects4J since, in LR.-dataset, we have a



6.3. Analysis dimensions of a bug patch for Bug Localization 127

Table 16 - Repair patterns, acronyms and groups.

Group Acronym Pattern

codeMove codeMove Code Moving

condBlock condBlockExcAdd 
condBlockOthersAdd 
condBlockRem 
condBlockRetAdd

Conditional block addition with exception throwing
” ” addition
” ” removal
” ” addition with return statement

constChange constChange Constant Change

copyPaste copyPaste Copy/Paste

expFix expArithMod 
expLogicExpand 
expLogicMod 
expLogicReduce

Arithmetic expression modification
Logic expression expansion

” ” modification
” ” reduction

nullCheck missNullCheckN 
missNullCheckP

Missing not-null check addition 
” null check addition

singleLine singleLine Single Line

wrapsWith unwrapIfElse 
unwrapMethod 
unwrapTryCatch 
wrapsElse 
wrapsIf 
wrapsIfElse 
wrapsLoop 
wrapsMethod 
wrapsTryCatch

Unwraps-from if-else statement 
” ” method call
” ” try-catch block

Wraps-with else statement 
” ” if statement
” ” if-else statement
” ” loop
” ” method call
” ” try-catch block

wrongRef wrongMethodRef
wrongVarRef

Wrong Method Reference
” Variable Reference

much higher number of bug patches and six different projects from those in Defects4J. 
Considering these differences, we have a very close distribution of the repair patterns.

The Figure 40 show the repair patterns distribution for each project in LR-dataset, 
limited to patch size of until 60 lines. Conditional Block continues as the top pattern 
for all the projects, while Code Move, and Constant Change remains in the opposite 
extreme, except in SWT, where Nul l Check swap in the lowest positions. Anyway, Null 
Check is another pattern in lowest positions for almost all the projects, with incidences 
from 9.10% to 17.68%. BIRT, Eclipse, JDT, and Tomcat shows distributions that 
resembles the overall distributions shown first, and with a laddered shape. AspectJ 
and SWT are the projects with a more visible difference when compared to the others. 
Both projects show the higher incidences of Conditional Block (AspectJ with 49.51%, 
and SWT with 46.63%). AspectJ has the lowest incidence of Code Move (2.76%), and
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condBlockOthersAdd |_ | 6027 (28,46%)

copyPaste 1 4434 (20,94%)

singleLine 1 I 3979 (18,79%)

wrongMethodRef 1 __ | 3542 (16,73%)

wrongVarRef 1 | 3360(15,87%)

condBlockRetAdd 1 ___| 3226 (15,23%)

expLogicMod | 2542 (12,00%)

condBlockRem 1 | 2245 (10,60%)

constChange 1 | 2187 (10,33%)

wrapslf 1 || 1999(9,44%)

missNullCheckN 1 | 1766 (8,34%)

expLogicExpand | 1599(7,55%)

codeMove | 1593 (7,52%)

wrapsIfElse ___| 1366(6,45%)

missNullCheckP 1 | 1229 (5,80%)

unwrapIfElse 2| 1105(5,22%)

wrapsMethod 1 1 871 (4,11%)

unwrapMethod 1__ 1 768 (3,63%)

expArithMod | 622 (2,94%)

expLogicReduce | 437 (2,06%)

wrapsTryCatch | 430 (2,03%)

wrapsLoop Q 309 (1,46%)

wrapsElse [] 240 (1,13%)

co ndBlockExcAdd Q 188 (0,89%)

unwrapTryCatch U 110(0,52%)

I------------

0

--------------- 1---------------------------- 1---------------------------- 1

2000 4000 6000

condBlockOthersAdd | 5335 (26,49%)

singleLine ___ | 3977 (19,75%)

copyPaste | 3857(19,15%)

wrongMethodRef | 3115 (15,47%)

wrongVarRef ___| 2657 (14,19%)

condBlockRetAdd ___ | 2800 (13,90%)

exp LogicMod | 2141 (10,63%)

constChange | 1857 (9,22%)

condBlockRem | 1803(8,95%)

wrapslf | 1742 (8,65%)

missNullCheckN | 1574 (7,82%)

expLogicExpand | 1487 (7,38%)

codeMove ___ | 1394(6,92%)

wrapsIfElse ___| 1153 (5,73%)

missNullCheckP ___| 1092 (5,42%)

unwrapIfElse | 857 (4,26%)

wrapsMethod | 700 (3,48%)

unwrapMethod | 611 (3,03%)

expArithMod | 510 (2,53%)

expLogicReduce | 370(1,84%)

wrapsTryCatch | | 327 (1,62%)

wrapsLoop [] 203 (1,01%)

wrapsElse Q 191 (0,95%)

co ndBlockExcAdd |2 155 (0,77%)

unwrapTryCatch [1 81 (0,40%)

a) overall (21,177 patches).

I--------------- 1--------------- 1----------------1----------------1--------------- 1----------------1
O 1000 2000 3000 4000 5000 6000

b) limited to 60 lines (20,138 patches).

Figure 38 - Repair patterns found in LR-dataset.

a) overall (21,177 patches). b) limited to 60 lines (20,138 patches).

Figure 39 - Grouped repair patterns found in LR-dataset.

Constant Change (4.72%). Copy Paste (14.54%), Null Check (17.68%), Single Line 
(17.68%), and Expression Fix (18.47%) have an incidence slightly lower than Wrong 
Reference (23.18%), and Wraps With (26.72%). In SWT, Constant Change (7.03%), 
Null Check (9.10%), and Code Move (9.44%) are all bellow the 10% incidence, while 
Single Line (23.18%), Copy Paste (23.69%), Expression Fix (23.71%), Wrong Reference 
(23.98%), and Wraps With (24.91%) are all around 25% of incidence.
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e) SWT (3,770 patches) f) Tomcat (923 patches)

Figure 40 - Grouped Repair Patterns incidence on LR-dataset projects.

6.4 Patterns composition

The basic idea behind the repair patterns found in Defects4J Dissection is finding 
implicit and more abstract structures that appear recurrently in many patches to fix the 
bugs in a benchmark dataset. We have found many of these structures and summarized 
them in 9 groups of repair patterns (Figure 36), totaling 25 specific repair patterns 
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when variations are considered (Figure 37), as discussed before and detailed in Table 16. 
We tried to name it meaningfully to facilitate its recognition and understanding. Some 
patterns, as Single Line, reflect the idea behind the most simple patches we can apply 
to fix a bug, while other patterns like Copy Paste may involve an arbitrary number of 
repair actions (possibly unrelated between different patches). The last sections show 
that around 19% of the patches in LR-dataset presents the Single Line pattern. While 
this observation gives an idea about the pattern representativeness in a bug dataset, 
even for such simpler patches, more questions may arise. Since having a single line is 
a very generic characteristic, the next natural question would be “what are the repair 
actions associated with this kind of pattern?”, “is there any other type of characteristic 
associated with single line patches?”. This section details some additional characteristics 
found for these and other patterns in LR-dataset, looking to clarify these and other 
questions.

6.4.1 Repair Actions

Each patch can contain one or more Repair Actions, and many of these actions can 
co-occur recurrently in many patches. The reasoning behind identifying many Repair 
Patterns comes from the perception of these repair actions recurrences. For example, 
the pattern Wraps with Method requires the addition of a method call around an existent 
piece of code, leading to the potential presence of the repair action Method Call Addition. 
A similar pattern, Wraps with If, will lead to the potential presence of other repair actions 
like Conditional branch If addition and other related actions that would depend on the 
logic of the added code structure. Since there is no guarantee of purity between the 
patterns or the actions found in a patch, analysis or assessment that does not consider 
these variabilities would be uncertain or imprecise conclusions. Next, we show some 
relations between repair patterns and the most common actions that appear when these 
patterns occur in the patches for the LR-dataset.

Many combinations are possible since we have identified 50 repair actions and 25 
repair patterns. Taking just one pattern exclusively detected in a patch, the number of 
possible repair actions combinations is 2,369,936. It is just an estimation considering 
that the patches would have from 0 to 5 from the 50 recognized repair actions and 
based on the statistics for Defect4J, 75% of the patches have at most five repair actions 
detected. Of course, not all the combinations will occur in practice, and we next show 
the most common combinations found for each repair pattern in patches of LR-dataset.

First, to extract the most common combinations, we analyze the intersection be- 
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tween the repair patterns and the co-occurring repair actions. The Figure 41 shows 
the intersection for the pattern Wrong Method Reference and the top-10 most common 
combinations in a) AspectJ and b) BIRT. The same is show in Figures 42 for projects 
Eclipse and JDT, and in Figure 43 for SWT and Tomcat. These figures are typical 
Upset charts (LEX et al., 2014). The horizontal bar chart shows the total number of 
patches containing each repair action enumerated in its vertical axis on the bottom left 
area. The vertical bar chart shows the number of intersections between the repair actions 
marked in the matrix just below each vertical bar on the top central area. A black circle 
appears when the repair action is in the intersection. When more than one repair action 
is in the intersection (co-occurs in a patch), its correspondent circles are connected by a 
line. In the AspectJ chart, we can see: 1. the most common repair action is Method Call 
Replace (mcRepl), with 10 occurrences (last bar on the bottom left area); 2. each repair 
action combination from the top-10 occurs in just one patch (vertical bars on the top 
area); 3. the first repair actions combination is composed by Object Instantiation Mod- 
ification (objInstMod), Method Definition Parameter Addition (mdParAdd), and Method 
Call Parameter Addition (mcParAdd), shown by the three connected circles just below 
the first vertical bar; Method Call Replace co-occurs in at least seven different repair ac- 
tions combinations (black circles in the last line of the matrix on the central area). For 
the BIRT chart, we have some considerations about Method Call Replace actions: 1. it 
is still the most common action, occurring in more than 60 patches; 2. this action occurs 
at least in 12 patches without intersection with the other shown actions; 3. the last line 
in the matrix shows that this action co-occurs in at least seven other combinations; 4. 
the second most common combination is composed of Method Call Replace and Method 
Call Parameter Addition, occurring in 8 patches.

Since Repair Patterns are recurrent code structures found in the bug patches, some 
Repair Actions are expected in some of these patterns, while others would be associ- 
ated with extra code and specificity of each patch. Again, considering the presence of 
the Wrong Method Reference pattern in a patch, we also would expect the presence of 
different groups of actions in some of the following situations:

□ Wrong method called: a call to an alternative method to fix the bug, possibly with 
a different name. Some of the expected detected actions: Method Call Remove, 
Method Call Addition, Method Call Replace.

□ Wrong parameter passed: to bug fix replaces a parameter, and this would imply 
in the call for an alternative method version (especially if the old and the new 
parameter types are different). Additionally to the previous case, the expected
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(a) AspectJ

(b) BIRT

Figure 41 - Most common Repair Actions co-occurrences for Wrong Method Refer- 
ence repair pattern in a) AspectJ and in b) BIRT.

detected actions would be: Method Call Parameter Value Change, Method Call 
Parameter Swap;

□ Wrong number of parameters passed: to fix the bug, again, the parameters’ ad- 
dition (or removal) would imply in the call for an alternative method version.



6-4- Patterns composition 133

>5

(a) Eclipse

(b) JDT

Figure 42 - Most common Repair Actions co-occurrences for Wrong Method Refer- 
ence repair pattern in a) Eclipse and b) JDT.

Expected detected actions: Method Call Parameter Addition, Method Call Pa-
rameter Removal;

□ Change in the returned value or the expression evaluation: the fixes in the above 
cases imply an expression change caused by methods with returned values assigned 
to a variable or methods composing a larger expression. Expected values: Assign-
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(a) SWT

(b) Tomcat

Figure 43 - Most common Repair Actions co-occurrences for Wrong Method Refer- 
ence repair pattern in a) SWT and b) Tomcat.

ment Expression Change, Assignment Addition, Assignment Removal.

□ Wrong object instantiating: when one more of the above situations involves a 
change in the call for the object constructor to fix the bug. Expected detected 
actions: Object Instantiation Modificai ion.
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With “pure” repair patterns, the expected repair actions would ideally be the unique 
repair actions found in a patch. However, in practice, a patch is composed of different 
repair actions, repair patterns, and other required actions (some of these would not be 
detected by ADD or even categorized by the Defects4J Dissection). Therefore, when 
a given repair pattern is detected, it is not reasonable to consider that the patches 
will contain only the expected repair actions, as enumerated before with Wrong Method 
Reference pattern. Instead, the expected repair actions would be a starting point (or 
filter) to select these related patches, while the observed repair actions would still differ 
(a little or a lot, depending on the patch).

After the intersection analysis and the previous considerations about the expected 
and observed repair actions, we selected the most common groups of repair actions 
associated with each repair pattern for the projects in LR-Dataset. Next, from Figure 44 
to 49, we show the selected groups of repair actions representing the found variations 
for each pattern. The simply detection of a repair pattern is also a considered variation, 
and it is marked as <No Action>, meaning that there are patches where ADD do not 
recognize any repair action for the repair pattern (i.e., no co-occurring repair action with 
the detected repair pattern).

6.4.2 Patterns Co-occurrences

Some repair patterns are detected isolated in its patches as occurs with the bug 
7861 from Eclipse, whose patch matches with three occurrences of the Wrong Variable 
Reference (Figure 50 show the first occurrence patched in DecoratorManager.java file). 
Patches with more than one pattern are also common, as shown in Figure 51 with the 
patch for the bug 187445 from BIRT. The bug patch has two occurrences of Logic 
Expression Expansion and one occurrence of Copy Paste repair patterns. While we can 
expect a variability between patches composition in a bug dataset, it is essential to know 
when these patterns would co-occur. An analysis involving these patches would consider 
possible confounding factors associated with each pattern on the evaluation results.

From the 593 bugs found in LR-dataset for the AspectJ project, 521 were loaded 
and classified by ADD tool (72 is out). Applying an additional outlier filter (1 to 60 
lines total, 1 to 20 chunks, 0 to 350 lines between chunks, 1 to 20 files changed), a 
total of 134 bugs were removed (outliers + not processed by ADD). The remaining 
459 bugs were used in the next analysis and charts. Figure 52-a shows an UpSet Chart 
(LEX et al., 2014) with the top-20 more frequent sets of bugs included sets with co- 
occurrences of repair patterns and sets without co-occurrences (exclusively detected).
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Figure 44 - Repair Patterns variations: a) Conditional Block Return Add (1..5); b) 
Conditional Block Return Add (6.. 10); c) Conditional Block Exception Add; d) Con
ditional Block Removal.

Conditional Block Others Addition (137 bugs, with 61 exclusive), Single Line (89 bugs, 
with 29 exclusive), Conditional Block Return Addition (80 bugs, 27 exclusive) are the 
top-3 sets of bugs. Wrong Method Reference (66 bugs, with 20 exclusive) is the fourth, 
but deserves a mention, because of the co-occurrences discussed next. The first more 
frequent co-occurrence occurs between Wrong Method Reference + Single Line in 15 bug 
patches, followed by Expression Logic Expand + Single Line, and also Conditional Block 
Others Addition + Conditional Block Return Addition, both with 12 co-occurrences. As 
show in the chart, except by Expression Logic Expand + Missing Null Check (Negative) 
+ Single Line (7 co-occurrences in bug patches) there is no co-occurrence with more
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Figure 45 - Repair Patterns variations: a) Conditional Block Others Add (1..4); b) 
Conditional Block Others Add (5..8).
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Figure 46 - Repair Patterns variations: a) Missing Null-Check; b) Constant Change; 
c) Code Moving.

than two patterns detected between the top-20 sets of bugs in Aspect J.
From the 4,178 bugs found in LR-dataset for the BIRT project, 4,167 were loaded 

and classihed by ADD tool (11 is out). The outlier filter removes 984 bugs, while 3,230 
bugs remain for analysis. Figure 52-b shows the UpSet Chart. Single Line (744 bugs, 
with 383 exclusive), Conditional Block Others Addition (688 bugs, with 274 exclusive), 
and Wrong Method Reference (467 bugs, with 153 exclusive) are int the top-3 set of bugs.
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Figure 47 - Repair Patterns variations: Single Line a) 1 to 11; b) 12 to 22; c) Ex- 
pression Fix.

The first more frequent co-occurrence occurs between Wrong Method Reference + Single 
Line in 92 bug patches, followed by Wraps with If + Missing Null Check (Negative), 
both with 59 co-occurrences. As shown in the chart, there is no co-occurrence with more 
than two patterns detected in the top-20 set of bugs in BIRT.

From the 6,495 bugs found in LR.-dataset for the Eclipse Platform UI project, 5,839 
were loaded and classihed by ADD (656 is out). The outlier filter removes 1,508 bugs, 
while 4987 bugs remain. Figure 53-a shows the LTpSet Chart. Conditional Block Others 
Addition (1,154 bugs, with 582 exclusive), Single Line (1,050 bugs, with 405 exclusive), 
Wrong Method Reference (718 bugs, with 225 exclusive) are in the top-3 set of bugs. 
The first more frequent co-occurrence occurs between Wrong Method Reference + Single 
Line in 113 bug patches, followed by Wraps with If + Missing Null Check (Negative) 
occurring in 93 bug patches. As shown in the chart, there is no co-occurrence with more
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Figure 48 - Repair Patterns variations: a) Wraps-with; b) Unwraps-with.

than two patterns detected in the top-20 set of bugs in Eclipse.
From the 6,274 bugs found in LR.-dataset for JDT project, 6,172 were loaded and 

classihed by ADD (102 is out). Applying the outlier filter, a total of 1,342 bugs were 
removed, and 4,932 bugs remains. Figure 53-b shows the UpSet Chart. Conditional 
Block Others Addition (1,125 bugs, with 340 exclusive), Single Line (966 bugs, with 441 
exclusive), Wrong Method Reference (841 bugs, with 256 exclusive) are in the top-3 set 
of bugs. For the co-occurrences, first Conditional Block Others Addition + Conditional 
Block Return Addition appears in 118 bug patches, followed by Single Line + Wrong 
Method Reference in 110 bugs, and then Single Line + Expression Logic Expand in 105 
bug patches. As before, there is no co-occurrence with more than two patterns detected 
in the top-20 set.

From the 4,151 bugs found in LR.-dataset for SWT project, 4,114 were loaded and 
classihed by ADD (37 is out). Applying the outlier filter, a total of 981 bugs were 
removed, and 3,213 bugs remains. Figure 54-a shows the LTpSet Chart. Conditional 
Block Others Addition (981 bugs, with 393 exclusive), Single Line (871 bugs, with 410 
exclusive), Wrong Variable Reference (329 bugs, with 84 exclusive) are in the top-3 set 
of bugs. For the co-occurrences, first Conditional Block Others Addition + Conditional 
Block Return Addition appears in 83 bug patches, followed by Single Line + Expression 
Logic Expand in 82 bug patches and Single Line + Wrong Method Reference in 71 bugs. 
One more time, there is no co-occurrence with more than two patterns detected in the
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Figure 49 - Repair Patterns variations: Wrong Method Reference a) 1 to 5; b) 6 to 
10; c) Wrong Variable Reference.

top-20.

From the 1,056 bugs found in LR.-dataset for Tomcat project, 956 were loaded and 
classihed by ADD (100 is out). Applying the outlier filter, a total of 234 bugs were 
removed, and 822 bugs remains. Figure 54-b shows the LTpSet Chart. Single Line 
(208 bugs, with 101 exclusive), Conditional Block Others Addition (187 bugs, with 84 
exclusive), Wrong Method Reference (123 bugs, with 44 exclusive) are in the top-3 set 
of bugs. For the co-occurrences, first Wrong Method Reference + Single Line appears 
in 29 bug patches, followed by Expression Logic Expand + Single Line and Missing
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Bug-ID: Eclipse-7861
Title: Bug 7861 Multiple enabled decorators doesn't work
Description: If you have two decorators enabled at the same time only one of 
them wins and gets to decorate. If you load the org.eclipse.team.* projects from 
dev.eclipse.org and enable both the CVS and Team Examples decorators then create 
a CVS project and an Example (file system provider) both decorations are never 
shown although both decorators are enabled.

/bundles/org.eclipse.ui/Eclipse UI/org/eclipse/ui/internal/DecoratorManager.java

@@ -91 ,7 +91 ,7 @@ public class DecoratorManager
DecoratorDefinition [] decorators = getDecoratorsFor(element);
String result = text ;
for (int i = 0; i < decorators.length ; i++) {

- result = decorators[i].getDecorator().decorateText(text , element);
+ result = decorators[i].getDecorator().decorateText(result, element);

}
}

Figure 50 - Bug Report for the bug 7861 from Eclipse, with a snippet of the patch 
matching the Wrong Variable Reference repair pattern.

Null Check (Negative) + Conditional Block Others Addition, both occurring in 22 bug 
patches. Again, as show in the chart, there is no co-occurrence with more than two 
patterns detected in the top-20 set of bugs in Tomcat.

6.5 Actual applications for the Defects4J Dissection 
study

Considering the exposed in previous sections, we would imagine and raise potential 
applications for the dissection study, initially applied to Defects4J, and then extended 
in this chapter with LR-dataset. However, since the dissection study with Defects4J 
(SOBREIRA et al., 2018), we observed many citations confirming a consistent interest 
from the research community to the dissection study and giving a more realistic idea 
about the actual applications. Until November 2021, we account for 82 citations of the 
Defects4J Dissection study from the Arxiv pre-print in 2017 to the final paper version 
in SANER'18 conference. The number of citations have been increasing each year. The 
Dissection study's works concentrate especially on Automatic Program Repair (APR) 
and Bug Localization (BL) as shown in Figure 55. Still, other areas are also accessing 
it as those studying API Misuse (API), Bug and Patch Analysis (BPA), Bug Datasets

dev.eclipse.org
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Bug-ID: Birt-187445
Title: Bug 187445 The joint result of script computed column is incorrect[07] 
Description: 1, Each dataset including a computed column: name: index; 
type:integer; expression:0 2, Specify the script of datasets to: beforeOpen: index=0; 
onFetch: row["index"] = index; index++; 3, Join the two datasets Build number: 
2.2.0.v20070516-0630 Steps to reproduce: 1, open the attached report design 2, open 
the joint dataset and preview Actual result: The result of column Data "Set1::index" 
is all 0 but no value 1.

/data/org.eclipse.birt.data/src / . ../engine/impl/ComputedColumnHelper.java

@@ -194,7 +194,8 @@ public class ComputedColumnHelper implements 
IResultObjectEvent

continue ;
}

- if ( ExpressionCompilerUtil.hasAggregationInExpr(column.getExpression()) )
+ if ( ExpressionCompilerUtil.hasAggregationInExpr(column.getExpression()) ||
+ column.getAggregateFunction() != null )

{
continue ;

}
@@ -254,7 +255,8 @@ public class ComputedColumnHelper implements 

IResultObjectEvent
}
if ( column != null )
{

- if ( ExpressionCompilerUtil.hasAggregationInExpr(column.getExpression()) )
+ if ( ExpressionCompilerUtil.hasAggregationInExpr(column.getExpression ()) ||

column.getAggregateFunction() != null )
{

return true;
}

Figure 51 - Bug Report for the bug 187445 from BIRT, with a snippet of the patch 
matching the Logic Expression Expansion and Copy Paste repair patterns.

(BD), Debugging (DBG), Program Synthesis (PS), Source Code Analysis (SCA), and 
Software Testing (TS). Most of the publications are in Conference Papers, followed by 
Journals, but we can find citations in Pre-prints (most in Arxiv), Ph.D. Thesis, MSc. 
Dissertations, a book chapter, and a public presentation.

6.6 Related Work

Our dissection study (SOBREIRA et al., 2018) on the 395 bugs of Defects4J bug 
dataset (JUST; JALALI; ERNST, 2014) produced similar results to the presented in 
this chapter, especially those related to size and spreading dimensions. We found that
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codeMove

condBlockExcAdd

(a)

expArithMod

(b)

Figure 52 - Patterns co-occurrence without outliers in: a) AspectJ and b) BIRT.

95% of Defects4J bugs have patches with at most 22 changed lines, in blocks of 236 
lines (including buggy and non-buggy lines in the gap between first and last buggy line,
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582

■ condBlockExcAdd
■ wrapsElse
■ expArithMod

(a)

Figure 53 - Patterns co-occurrence without outliers in a) Eclipse Platform UI and b) 
JDT.

1.

excluded empty or comment lines), and spans at most three methods, and two files (1 
file in 92.41% of patches). The dissection on Defects4J (SOBREIRA et ah, 2018) has 
a good intersection with Liu et al. (2018), since we also consider similar repair actions 
in an initial manual analysis, culminated in the recognition of many repair patterns. In
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Figure 54 - Patterns co-occurrence without outliers in a) SWT and b) Tomcat.

(b)

our subsequent work (MADEIRAL et al., 2018) we also applied GumTree and Spoon 
(PAWLAK et al., 2015) to recognize 9 kind of repair patterns automatically (or a total 
of 25 repair patterns, if variations are considered individually).

Several bug datasets exist to support empirical studies on techniques and tools related 
to software bugs. Usually, these datasets do not include detailed information on the bugs
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Figure 55 - Applications of Defects4J Dissection study by research area until Novem- 
ber of 2021.

and their patches if any (e.g., Siemens suite (HUTCHINS et al., 1994) and SIR (DO; 
ELBAUM; ROTHERMEL, 2005)), or they include simple information on the bugs (e.g., 
BugBench (LU et al., 2005)), like bug type. Next, we present notable and recent bug 
datasets where information about the patches are delivered, which is close to our work 
on Defects4J.

iBugs (DALLMEIER; ZIMMERMANN, 2007) (390 Java bugs) contains bugs anno- 
tated with size and syntactic properties on their patches. iBugs’ size properties include 
similar patch size and spreading metrics. iBugs’ syntactic properties consist of Hnger- 
prints describing which syntactic tokens the patch changed, such as keywords, method 
calls, and expressions, augmented with information on variable usage, operators, and lit
erais. These Hngerprints are similar to the repair actions, but we organize the taxonomy 
in this work differently. For instance, the groups of token “keyword” and “expression” in 
iBugs represent different changes on if; we used the repair action group “Conditional” 
specihc to changes on conditionals. Distinctly, our analysis includes repair patterns that 
they have not investigated.

ManyBugs (GOUES et al., 2015) (185 C bugs), besides information on the bugs, 
delivers manually evaluated information about patches. Each patch annotates whenever 
some changes happen, for instance, in functions, loops, conditional and function calls, 
and arguments to a function or function signature. The process is similar but more 
Hne-grained with repair actions. They also calculated the number of changed lines (size) 
and changed files (spreading), but differently, ManyBugs does not provide the number 
of chunks and repair patterns.

Codeflaws (TAN et al., 2017) (3902 C bugs) delivers bugs annotated with syntactic 
differences between buggy and patch code at AST levei. Like in iBugs, Codeflaws’
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syntactic differences are similar to repair actions, but we use a more comprehensive 
taxonomy; for example, in Codeflaws, conditionals and loops are considered together in 
one group, “control flow”. Moreover, Codeflaws delivers no information on patch size, 
spreading, or repair patterns.

Motwani et al. (MOTWANI et al., 2018) have annotated each bug in Defects4J with 
abstract parameters regarding five characteristics: importance, complexity, indepen- 
dence, test effectiveness, and characteristics of the human-written patch. One example 
of an abstract parameter is the number of lines edited in a patch, which applies to 
compute the defect complexity. Similar to this work, they annotated Defects4J bugs 
with patch size and the number of modified files. On the characteristics of the patches, 
they annotated the bugs with nine code modification types, such as whether the patch 
contains the addition of method calls, which are similar to our repair actions. However, 
the used taxonomy of repair actions in this work is more comprehensive and fine-grained 
since the actions were arranged in groups considering more detailed changes. For in- 
stance, instead of only showing a generic change in patch arguments of a method call, 
we detail with information about an argument's addition (or removal), a change on the 
argument value, or the argument swap in a method call. Moreover, Motwani et al. con- 
sidered other information, such as the number of relevant test cases, which makes both 
works complementary for the Defects4J part. Our work extends it with a much larger 
scale dataset.

Pan et al. (PAN; FELLOW, 2009) and Soto et al. (SOTO et al., 2016) identified 
patterns in human patches. Pan et al. (PAN; FELLOW, 2009) manually analyzed seven 
open-source projects and found 27 bug fix patterns covering from 46 to 64% bug fixes. 
Furthermore, they observed that the most common bug fix patterns are related to the 
method call and if condition (both are around 20% bug fixes), which is consistent with 
our findings, since Method Cal l Addition and Conditional Branch Addition are the most 
prevalent repair actions in patches. Nonetheless, the proportions have some differences 
indicating that different choices in bug selection may induce different performance rates 
on approaches assessed with such datasets.

Tomassi et al. (2019) proposes a dataset of reproducible bugs for Java and Python. 
Their main goal is to provide a dataset with failing and passing pairs to help drive 
research on bug localization and automatic repair approaches. They characterize bugs 
with failing-pass-oriented characteristics and do not focus on the characteristics of bugs 
similar to the taxonomy proposed in this work.
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6.7 Final Considerations
In this chapter, we analyzed LR-dataset according to the patch dimensions defined 

in the Defects4J Dissection study (SOBREIRA et al., 2018). While Defects4J would be 
considered a relatively small size bug dataset with only 395 bug patches extracted from 
six Java projects, LR-dataset pushes this scale to a different level. LR-dataset contains 
more than 20 thousand bug patches, also extracted from six Java projects but different 
from the projects found in Defects4J.

After extracting the repair patterns (and the other analysis dimensions) from De- 
fects4J, the first question is how these patterns would appear in other projects and how 
they would not be a singularity from the Defects4J dataset. We have shown that, in 
fact, and based on the Defects4J Dissection dimensions, there are far more similarities 
between the bug patches in these datasets than differences, despite the very high scale 
distance between the number of patches in each dataset. Furthermore, all the patterns 
found in Defects4J were also in LR-dataset and some of them appear in even higher 
proportions.

The repair actions and patterns provide another layer to understand the bug nature 
inside a dataset. Beyond the type of lines edited to apply a patch, we can know the 
meaning and the representative level of each type in a bug dataset. “Do this dataset 
covers programmers' errors related to the absence of some verification coding?” The 
presence of a Null Check pattern would help to address it. “Usually, do bugs in a 
dataset require simpler or more complex patches?” Single Line incidences would help to 
quantify part of the simpler fixings, while patch size and spreading distributions would 
show the level of code demanded and help to answer about the complexity involved in 
the other extreme. “How many bugs are related to errors in testing conditions?” A 
study on the Expression Fix patterns would help with this type of issue. A dissection 
study on the patches composing the target dataset as we have presented for LR-dataset 
and our first study on Defects4J would address the last questions and many others. 
The dissection study would help guide research path decisions and the analysis for the 
evaluation of the proposed approaches. Next chapter, we conduct an experiment to show 
how much these pattern dimensions would influence the evaluation of the approaches to 
the BL problem.
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Chapter

Influence of repair patterns on BL 
approaches

Previous chapters have shown some of the characteristics of bug datasets that the 
research approaches do not usually consider in their evaluations, as occurs in tasks like 
Bug Localization and Automatic Program Repair. We have analyzed patch character- 
istics, initially found in the Defects4J dataset and then found in LR-dataset. To show 
how these characteristics would influence the evaluations based on the bug datasets, 
we present the results of the conducted experiments considering some of the described 
patch characteristics. Previous approaches to automatic BL are our baseline since it 
does not differentiate the bugs' nature. Then, the patch characteristics related to each 
bug report, especially the repair patterns, are applied to guide the dataset sampling of 
bug reports. The repair patterns' presence and absence on the samples can produce 
features and BL scores with statistically significant differences compared to approaches 
that do not consider the bug patches characteristics. Next, we detail our study.

7.1 Research Questions

In Chapter 6 we described factors involved in the characterization of a large bug 
dataset, following our initial work with the dissection of Defects4J. Most research ap- 
proaches do not proceed with a broad characterization of their bug datasets, considering 
the presented dimensions. Likewise, the review of past research with dataset character- 
ization and under new perspectives or frameworks as we show in Chapter 4 is also a 
significant challenge. Obliviously we do not intend to cover all the issues and possible 
unfoldings since it is a work for some years ahead of research. Here we focus on how the
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repair patterns would affect the Bug Localization task, trying to characterize the exten- 
sion of this impact (or given some clues). First, then, we define the research questions 
that we will try to focus on and answer objectively in this chapter:

RQ6 When we compare a sample of bugs where the respective patches match a given 
repair pattern against another sample of bugs where this pattern is not present, is 
there any difference in the measured metrics targeting the ranking of bug suspects? 
Are these differences statistically significant?

RQ7 What type of impact is associated with the evaluated metric's score rankings by 
the presence of a repair pattern in the patches of a bug sample? Moreover, when 
the repair pattern is absent?

RQ8 What is the degree of the impact correlated to the repair pattern's presence or 
absence on the metrics measured?

7.2 Evaluation Method

Since we applied the dissection analysis to LR-dataset and considering its application 
on studies for Bug Localization tasks like (YE; BUNESCU; LIU, 2014), this dataset is 
our natural choice. The section presents some of the preparation steps to conduct 
the experiments. Subsection 7.2.1 presents the filtering criteria for the bug reports 
considered for the experiments, including the outlier considerations. Subsection 7.2.2 
presents the selected settings for the set of samplings considered for the experiments. 
Subsection 7.2.3 summarizes the metrics, hypothesis tests and formulations. Finally, 
Subsection 7.2.4 briefly shows the experimental runtime environment.

7.2.1 Dataset preparation and cleaning

Not all bug reports and files in the LR-dataset (YE; BUNESCU; LIU, 2014) were 
chosen for the experiments. Some of the reasons are 1) patches with testing code: some 
bug reports are associated with the fixing of testing code (exclusively or not); 2) files 
out of the project and analysis scope: some files do not seem to be related to the main 
functional features of its projects, some files are not in the project development scope, 
and some files are not Java source code files; 3) no baseline results: some bug reports 
do not present the ranking results of the fixed files obtained with the LR approach (YE; 
BUNESCU; LIU, 2016); 4) bug patches not processed by ADD: some bugs do not have 
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any repair pattern to detect, neither other supported bug patches properties to analyze 
and as a consequence, ADD do not have any result to produce for these patches; 5) 
outliers: some bug patches have properties that exceeds a lot the properties found on 
most patches in the dataset and are outliers instances.

The fixing of testing code is not the primary target of a bug localization approach 
since the adoption of unit testing practices is not yet a universal reality in software 
development, and the production of functional software is possible without testing code. 
While desired and recommended, the testing practices are strategies to improve the 
software quality. Usually, the testing code is not a directly influential factor on a faulty 
functional behavior caused by a bug in a software. Additionally, some studies have 
already pointed out disadvantages in maintaining testing code in the datasets to evaluate 
bug localization approaches and how it negatively impacts the results (KIM; LEE, 2018). 
Thus, we discard all bug reports when only testing code is the fixing target. We consider 
bug reports fixed by testing code only if they involve fixing at least one functional 
source code. However, the testing code is wholly ignored in the source code search space 
to generate the rankings of potential fixing targets even in these cases. Like testing 
code, other types of files found in the dataset do not seem related to the main project 
functionally or the project development scope. Therefore, we excluded these out-of- 
scope files from the source code search space, e.g., folders containing documentation, 
configuration files, setup files, external libraries, or non-Java source code files.

We defined three categories to differentiate these possible types of bug reports based 
on the objectives for the code: functional code only, non-functional code only, and 
mixed code (functional + non-functional). To achieve this first level of filtering, we 
manually looked at project repository folders and identified folder names associated 
with non-functional source code. Some examples of these folders are: unit tests (“test”, 
“test suite”), documentation (e.g., “docs”), and external libraries (e.g. “libs”). We 
excluded the folders (or Java packages) from the source code search space containing 
the name patterns enumerated next. These are our assumptions about the location of 
non-functional codes in each project.

1. AspectJ: “*.tests*”, “*.tests.*”, “testsrc”, “testdata”, “testing”, “tests”, “test”, 
“docs”, “lib”.

2. BIRT: “*.tests*”, “*.tests.*”, “testsuites”, “tests”, “testhelper”, “test”, “com- 
mon”, “docs”, “features”, “nl”.

3. Eclipse: “*.tests*”, “*.tests.*”, “tests”.



152 Chapter 7. Influence of repair patterns on BL approaches

4. JDT: “*.tests*”, “*.tests.*”, “tests”, “junit”.

5. SWT: “*.tests*” , “*.tests.*”, “tests”.

6. Tomcat: “bin”, “conf”, “res” , “test”, “webapps”.

We also have found bug reports without information about the ranking with the 
LR approach from Ye et al. (YE; BUNESCU; LIU, 2016), i.e., the result section in the 
provided XML file was empty. This situation does not directly compare with the original 
LR approach, so we also ignore these bug reports. Below are the Bug-ID's of some bug 
reports without results for the original LR approach:

1. AspectJ: 259528, 249710, 84260.

2. BIRT: 211884, 375600, 362714.

3. Eclipse: 413943, 411967, 209190.

4. JDT: 277299, 262389, 158292.

5. SWT: 409353, 312371, 308445.

6. Tomcat: 55245, 55217, 55046.

Figure 56 shows the distributions of the bug reports according to the previous def- 
initions. The most significant difference occurs for AspectJ, where there are more bug 
reports involving mixed code (192+123=315) than functional code (170+47=217). The 
number of absent results for the LR approach is proportionally higher (47+123+28=198), 
remaining 362 bug reports to be considered from the original 593 bug reports in the 
dataset file (170 functional, and 192 non-functional, both with results informed, and 
corresponding to 61.05% of the total available in AspectJ). For the other projects, the 
number of bug reports with bug fixes only in functional code is higher than non-functional 
code fixes, and most parts have informed results for LR. The number of reports selected 
for each project considering the total available in the dataset are: 362 (61.05%) for 
AspectJ, 3,674 (87.94%) for BIRT, 5,609 (86.36%) for Eclipse, 5,365 (85.51%) for JDT, 
3,754 (90.44%) for SWT, and 934 (88.45%) for Tomcat. Overall, the total number of bug 
reports to be considered (informed results, functional + mixed code) is 19,698 (86.60% 
from the original 22,747 bug reports).

ADD cannot process some patches. ADD tries to detect patterns in patches extract- 
ing the Abstract Syntax Tree resulting from the difference between the buggy and the
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a) AspectJ (593 bug reports). b) BIRT (4,178 bug reports).

■ Informed Results (5796) BAbsent Results (699)

c) Eclipse (6,495 bug reports).

■ Informed Results (5831) BAbsent Results (443)

d) JDT (6,274 bug reports).

e) SWT (4,151 bug reports).

Figure 56 - Bug reports categories: 1) Functional vs Non-Functional; 2) With or 
Without LR-Results.

■ Informed Results (974) BAbsent Results (82)

f) Tomcat (1,056 bug reports).

fixed source code files. However, for some bugs, the AST extraction is impossible, even 
considering the patching over valid functional source code. This situation happens in 
bug 117526 from Eclipse Platform UI. Figure 57 shows the bug report for this bug.

The patch for the bug 117526 in Eclipse Platform UI is composed by changes in the 
next .java files:

□ In folder: bundles/org.eclipse.core.commands/src/

— 4: org/eclipse/core/commands/Command.java

— 5: org/eclipse/core/commands/INamedHandleStateIds.java

□ In folder: bundles/org.eclipse.ui.workbench/Eclipse UI/
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Project: Eclipse Platform UI
Bug-ID: 117526
Title: Bug 117526 [Contributions] [Commands] Javadoc warnings in N20051122-0010 
Description:
/builds/N/src/plugins/org.eclipse.platform.doc.isv/
../org.eclipse.core.commands/ 
src/org/eclipse/core/commands/INamedHandleStatelds.java : 
30: warning - Tag @link: Class or Package not found: NamedHandleObjectWithState

/builds/N/src/plugins/org.eclipse.platform.doc.isv/
../org.eclipse.core.commands/ 
src/org/eclipse/core/commands/Command.java:
581: warning - @param argument "state" is not a parameter name .

/builds/N/src/plugins/org.eclipse.platform.doc.isv/
../org.eclipse.jface/src/org/eclipse/jface/commands/RadioState.java :
46: warning - Tag @link: Class or Package not found: Boolean.TRUE

/builds/N/src/plugins/org.eclipse.platform.doc.isv/
../org.eclipse.jface/ 
src/org/eclipse/jface/commands/RadioState.java : 
46: warning - Tag @link: Class or Package not found: Boolean.FALSE

/builds/N/src/plugins/org.eclipse.platform.doc.isv/
../org.eclipse.ui.workbench/Eclipse 

UI/org/eclipse/ui/handlers/RegistryRadioState . java :
51: warning - Tag @link: Class or Package not found: Boolean.FALSE

Figure 57 - Bug Report for the bug 117526 from Eclipse Platform UI.

— 13: org/eclipse/ui/handlers/RegistryRadioState.java

□ In folder: bundles/org.eclipse.jface/src/

— 14: org/eclipse/jface/commands/RadioState.java

The patched files are also ranked in Ye et al. work (YE; BUNESCU; LIU, 2014), and 
we have shown the ranking positions above before the file paths. Without interpreting 
the bug report description and examining the patches, it is hard to detect we are dealing 
with a non-functional bug patch. Nevertheless, after comparing the buggy and the fixed 
files, it is clear that the patch applies only to the Javadoc lines, and functional code is 
not affected. Also, the automatic processing of this kind of bug is a challenge since it 
requires the system to deal with these particular cases. Figure 58 illustrates the changes 
in the files. Many other patches present the same or similar situations. Therefore, there 
is no AST generation for these patches, explaining the processing failure by ADD for 
these patches (or the absence of results).

In Chapter 6 we show that many patches in LR-dataset have exceptional properties, 
too far from most of the other dataset patches. For example, bug 60783 in the Eclipse
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88 -575,8 +575,9 88
* IObjectWithState}.

* </P>
*

* @paran state
* The state to renove; nust not be <code>null</code>.
* @paran stateld
* The identifier of the state to renove; nust not be
* <code>null</code>.
*/

public void renoveState(final String stateld) {
tf (handler tnstanceof IObjectWithState) {

a) Command.java

@@ -13,7 +13,8 @@
y**
* <p>

- * State identifiers that are understood by {@link NanedHandleObjectWithState}. 
+ * State identifiers that are understood by naned handle objects that inplenent 
+ * (@link IObjectWithState}.

* </P>
* <p>
* Cltents nay inplenent or extend thts class.

b) InamedHandleStatelds.java

@@ -22,7 +22,7 @@
* A radio state that can be read fron the regtstry. This stores a ptece of
* boolean state infornation that is grouped with other boolean state to forn a
* radio group. In a single radio group, there can be at nost one state who

- * value is {@link BooleanffTRUE} all the others nust be {@link Boolean.FALSE}.
+ * value is {glink BooleantfTRUE} all the others nust be {glink BooleanSFALSE}.

* </P>
* <p>
* When parsing fron the regtstry, this state understands three paraneters:

c) RegistryRadioState.java

88 -23,8 +23,8 88 y**
+ <P>
A ptece of boolean state grouped with other boolean states. Of 
only one nay have 
The values of all 
only one nay have 
The values of all
</P>
<P*
If this state is registered using {@link IMenuStateIds#STYLE},

a value of {@ltnk 
other states nust 
a value of {@link 
other states nust

Boolean.TRUE} at any given 
be {@link Boolean.FALSE}. 
BooleanffTRUE} at any given 
be {@ltnk BooleantfFALSE}.

these 
point

potnt

states, 
in tine.

in tine.

then it will*

d) RadioState.java

Figure 58 - Patch for the bug 117526 in files from Eclipse project.

Platform UI project patches 16 files and involves 457 functional coding lines (168 added, 
160 removed, 129 modified) distributed in 25 chunks. Another bug, 159857 in BIRT, 
exceeds other dimensions since it spreads in 66 chunks, with an accumulated distance 
between chunks of 882 lines (or 478 if we consider only non-empty code lines) and the
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Table 17 - LR-dataset with and without outliers.

#bugs reports Outliers No-Outliers

AspectJ 593 134 (22.6%) 459 (77.4%)
BIRT 4,178 948 (22.7%) 3,230 (77.3%)
Eclipse 6,495 1508 (23.2%) 4,987 (76.8%)
JDT 6,274 1342 (21.4%) 4,932 (78.6%)
SWT 4,151 938 (22.6%) 3,213 (77.4%)
Tomcat 1,056 234 (22.2%) 822 (77.8%)

Total 22,747 5,104 (22.4%) 17,643 (77.6%)

fixing of 46 files, 1 class, and 57 methods. We can find many other examples, including 1) 
bug 41254 in AspectJ (patches 75 files on 62 coding lines), 2) bug 47509 in JDT (patches 
45 files on 261 coding lines), 3) bug 54426 in SWT (patches 8 files on 221 coding lines, 
spread in 30 chunks), 4) bug 49683 in Tomcat (patches 3 files on 159 coding-only lines, 
spread in 27 chunks). These exceptional patches would produce an artificial bias while 
evaluating some strategy over the dataset. To reduce the impact caused by these types 
of patches, we remove the outliers through the application of the discussed thresholds 
presented in Chapter 6 and enumerated next:

1. Patch size: from 1 to 60 lines

2. Chunks: from 1 to 20 chunks

3. Accumulated spreading between chunks: from 0 to 350 lines

4. Patched files: from 1 to 20 files

Table 17 shows the summary of patches for each project and the impact of the 
outlier removal. Even with the 22.4% overall reduction, many bugs (17,643) remain for 
the experiments and analysis.

Finally, considering all the five filtering criteria exposed in this subsection, Table 18 
shows the relation between the bug reports in the original LR-dataset and two samplings 
set candidates for the experiment considering: 1. functional code only (FC); 2. mixed 
code (FC+NFC). For both sampling sets, we remove bugs and source code files in the 
following conditions: 1) fixed by testing files only; 2) files out of the project scope; 3) 
without baseline ranking results from Ye et al. study (YE; BUNESCU; LIU, 2014); 4) 
without results from ADD; 5) outliers. Considering FC and FC+NFC categories, the
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Table 18 - LR-dataset sampling candidates.

#bugs reports Sampling candidates
1. FC 2. FC+NFC

AspectJ 593 135 (22.8%) 307 (51.8%)
BIRT 4,178 2,689 (64.4%) 2,919 (69.9%)
Eclipse 6,495 3,991 (61.5%) 4,459 (68.7%)
JDT 6,274 3,733 (59.5%) 4,400 (70.13%)
SWT 4,151 2,918 (70.3%) 2,922 (70.4%)
Tomcat 1,056 654 (61.9.2%) 761 (72.1%)
Total 22,747 14160 (62.25%) 15,768 (69.3%)

main difference is that FC+NFC can include patches fixed by testing code if at least 
one fixed file targets functional code.

7.2.2 Selected Settings

While our experimental package allows us to define many settings based on patch 
dimensions, the combinatorial explosion makes a comprehensive and complete analysis 
almost impractical. Therefore, we focused on some common repair patterns and their 
more common compositions of repair actions found in LR-dataset. The Chapter 6 de- 
tails these common repair patterns composition. Additionally, the current state of the 
experimental package does not allow the processing of all the bug reports in LR-dataset, 
since some refactoring towards optimization is still required, and the time required for 
deep and complete processing is prohibitive. AspectJ and Tomcat have the smallest 
number of bugs in the LR-dataset. Therefore, we naturally choose these projects for 
the screening experiments and guide the selection and sampling over the other projects 
for comparison.

The detection of a repair pattern in a patch does not guarantee exclusivity for this 
pattern. So, different repair patterns in the same patch can imply a confounding factor 
and can produce some bias in the results and the analysis. Therefore, we should give 
special attention to the intersection between the samples and the co-occurrences of 
patterns to reduce these biases. As a mitigating strategy for this situation, we also 
tried to favor the selection (and the sampling) of bug patches where the repair pattern 
occurs exclusively or with a lower level of co-occurrences.
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Table 19 - LR-dataset samples representativeness for AspectJ and Tomcat.

Repair Pattern

AspectJ
#bugs

1,056

Tomcat
Sample matches#bugs

593

Sample matches
1. FC

164 (27.7%)
2. FC+NFC
353 (59.5%)

1. FC
752 (71.2%)

2. FC+NFC
890 (84.3%)

codeMove 9 40 32 (80.0%) 36 (90.0%)
condBlockOthersAdd 137 28 (20.4%) 50 (36.5%) 187 50 (26.7%) 50 (26.7%)
condBlockRem 24 54 36 (66.7%) 46 (85.2%)
condBlockRetAdd 80 21 (26.3%) 50 (62.5%) 50 36 (72.0%) 48 (96.0%)
constChange 21 57 45 (78.9%) 50 (87.7%)
expLogicExpand 45 34 (75.6%) 61 46 (75.4%) 50 (82.0%)
expLogicMod 37 24 (64.9%) 52 40 (76.9%) 46 (88.5%)
missNullCheckN 53 24 (45.3%) 39 (73.6%) 53 45 (84.9%) 50 (94.3%)
missNullCheckP 33 27 (81.8%)) 49 41 (83.7%) 46 (93.9%)
singleLine 89 26 (29.2%) 50 (56.2%) 208 50 (24.0%) 50 (24.0%)
wrapsIf 41 24 (58.5%) 31 (75.6%) 47 37 (78.7%) 44 (93.6%)
wrongMethodRef 66 40 (60.6%) 123 50 (40.7%) 50 (40.7%)
wrongVarRef 41 26 (63.4%) 90 50 (55.6%) 50 (55.6%)

Total sampled 459 (77.4%) 227 (38.3%) 294 (49.6%) 822 (77.8%) 557 (52.7%) 591 (56.0%)
Matched 395 (66.6%) 91 (15.3%) 230 (38.8%) 674 (63.8%) 367 (34.8%) 401 (38.0%)

Not Matched 64 (10.8%) 136 (22.9%) 64 (10.8%) 148 (14.0%) 190 (18.0%) 190 (18%)

Outliers 134 (22.6%) 35 (5.9%) 55 (9.3%) 234 (22.2%) 142 (13.5%) 173 (16.4%)
Not loaded by ADD 72 (12.1%) 6 (1.01%) 9 (1.52%) 100 (9.5%) 34 (3.2%) 44 (4.2%)
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We covered most of the bugs found in AspectJ and Tomcat for the screening exper- 
iments. We focused the analysis on samples showing at least 20 to 30 bugs matched for 
each repair pattern. As an upper bound, we limited each sample to 50 bugs, hoping not 
to produce an unbalanced comparison between the bugs whose patches matched and 
those that did not match the repair patterns.

Table 19 show the representativeness of these sample sizes on the universe of bugs for 
each project segmented by repair pattern. Unfortunately, the FC category restricts the 
number of repair patterns alternatives because it does not provide enough bugs for some 
associated samples, especially for AspectJ. Therefore, we choose to run the screening 
experiments using the FC+NFC category.

7.2.3 Metrics Extracted and Hypothesis Tests

For each sample we extracted the metrics described in Section 2.3: MAP, MRR, 
Top-N for N in set {1, 5, 10}, and NDCG@k with k in the set {1, 5, 10}. We applied 
Statistical Non-Paired and Non-Parametric tests Mann-Whitney U to confirm if the 
found results have statistical significance (p-value = 0.05) and considering:

□ H0 (=): The score ranking results ARE NOT SIGNIFICANTLY DIFFERENT 
when comparing samples of bugs with a matched repair pattern (or detected in 
the bug patches) and without this pattern.

□ H1 (=): The score ranking results ARE SIGNIFICANTLY DIFFERENT when 
comparing samples of bugs with a matched repair pattern (or detected in the bug 
patches) and without this pattern.

To define the impact caused by the repair patterns, we compute the difference be- 
tween the metrics measures considering the samples where the repair pattern is present 
on the sample patches, mp, against the correspondent measure of the baseline, mb, i.e., 
when we do not differentiate when the pattern is present or absent, as defined in Equa- 
tion 20.

d(p, b) = (mp — mb) * 100 (%) (20)

We do the same with the measures for the samples where the repair pattern is absent 
in the patches, ma, as defined in Equation 21.

d(a, b) = (ma — mb) * 100 (%) (21)
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7.2.4 Runtime Environment

We run the experiments on two servers with replicated Anaconda environment on 
Ubuntu 21.04 Operational System with the following essential software packages:

□ Experimental package (Python and Java based software).

□ Python 3.7.11

□ Java 11 (OpenJDK 11.0.11)

□ Maria DB 10.5.12

□ Pony ORM 0.7.14

□ ADD v1.0

The hardware settings were:

□ Server 1, Lenovo ThinkServer TD340:

CPU: 12-core Intel Xeon E5-2430 v2 @ 2.50 GHz

GPU: GM206GL [Quadro M2000] NVIDIA

RAM: 32 GB RAM (2x8GiBDIMMDDR3 1600 MHz 0.6ns, 1x16GiBDIMM 
DDR3 1600 MHz 0.6 ns)

Hard Disk: 600 GB Seagate Savvio 10K.6 SAS 6GBS (ST600MM0006)

□ Server 2, Cluster instance:

CPU: 40 nodes of Intel Xeon E5620 @ 2.4GHz

RAM: 20 GB RAM

Hard Disk: 86 GB (Ext4 virtual partition)

7.3 Results

Here we present the obtained results that will support our analysis and answers to 
the research questions.
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7.3.1 Screening of Repair Patterns

Considering FC+NFC bug patches for the AspectJ project, the comparisons between 
samples with matched versus not-matched repair patterns show some differences with 
statistical significance on the ranking score results for:

□ $5: wrongVarRef, expLogicExpand, wrongMethodRef

□ ^7: wrapsIf, expLogicExpand, condBlockOthersAdd, wrongMethodRef, wrong- 
VarRef

□ ^s: condBlockOthersAdd, wrapsIf, condBlockRetAdd, expLogicExpand, wrong- 
MethodRef, wrongVarRef

□ ^11: singleLine, expLogicMod, condBlockOthersAdd, missNullCheckN

□ 015: wrapsIf, wrongMethodRef

□ $19: wrongMethodRef, singleLine, wrapsIf

□ BLUiR: wrapsIf, singleLine, condBlockReturnAdd

□ LR: condblockOthersAdd, wrongMethodRef

Considering FC+NFC bug patches for the Tomcat project, the comparisons between 
samples with matched versus not-matched repair patterns show some differences with 
statistical significance on the ranking score results for:

□ ^1: missNullCheckN, condBlockRem

□ ^4: missNullCheckN, expLogicExpand

□ ^5: wrongVarRef, codeMove, wrapsIf, expLogicMod, wrongMethodRef

□ ^6: wrongVarRef, missNullCheckP, wrongMethodRef

□ ^7: missNullCheckN, wrapsIf

□ ^8: missNullCheckN, wrapsIf, codeMove, expLogicMod

□ ^11: wrapsIf, expLogicMod, wrongMethodRef, codeMove, condBlockOthersAdd, 
expLogicExpand

□ ^12: wrapsIf, expLogicMod, wrongVarRef
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□ ^15: missNullCheckP, constChange, missNullCheckN, wrongMethodRef, wrong-
VarRef

□ ^16: missNullCheckN, wrapsIf, wrongVarRef, expLogicMod

□ ^17: expLogicExpand, constChange, wrongMethodRef

□ ^18: wrongVarRef

□ ^19: missNullCheckN, singleLine, condBlockRem, wrongMethodRef

□ BLUiR: missNullCheckN, wrapsIf, missNullCheckP, condBlockRetAdd

□ LR: missNullCheckN

Next, we show the samples where we have some differences with statistical signifi- 
cance on the ranking score results for both AspectJ and Tomcat:

□ ^5: wrongVarRef, wrongMethodRef

□ ^7: wrapsIf

□ ^8: wrapsIf

□ ^11: expLogicMod, condBlockOthersAdd

□ ^15: wrongMethodRef

□ ^19: wrongMethodRef, singleLine

□ BLUiR: wrapsIf, condBlockRetAdd

Some samples are bold considering their span across more score rankings: miss- 
NullCheckN and wrongVarRef for Tomcat; wrapsIf and wrongMethodRef for both As- 
pectJ and Tomcat.

Based on the results with AspectJ and Tomcat, we decided to extend the analysis 
for Eclipse Platform UI and BIRT projects. However, to be viable, since the number 
of bugs for these projects is much higher and the processing time for all their bugs is 
prohibitive (with the actual implementation of the experimental package), we focus on 
the previously highlighted repair patterns. We will publish the complete analysis for 
Eclipse and BIRT in future studies and extend the studies for other repair patterns. 
Here we detail our results, especially for AspectJ and Tomcat.
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7.3.2 Differences on ranking scores correlated to the repair 
pattern presence (or absence) and with statistical sig- 
nificance

We consider the hypothesis tests mentioned in Subsection 7.2.3 to verify the sta- 
tistical significance of the score differences between samples with matched versus not- 
matched repair patterns. Table 20-a show the result of statistical test Mann-Whitney 
for each metric extracted from samples related to AspectJ. Each line contains the null 
hypothesis test result for a specific metric, considering the 19 features, BLUiR, and LR 
scores. The null hypothesis, H0, acceptance is represented by the = symbol, while the 
= symbol indicates the rejection. The results confirm the differences on some metrics 
for ^4, ^7, ^8, ^15, ^18, ^ig, and BLUiR score rankings. Table 20-b shows the statistical 
tests for the wrapsIf in Tomcat. Similarly, the next tables present other results:

□ Table 21: wrongMethodRef in Aspectj, Tomcat and BIRT;

□ Table 22: wrongVariableRef in Aspectj, Tomcat and BIRT;

□ Table 23: missNullCheckN in Aspectj, Tomcat and BIRT;

7.3.3 Impact of the differences correlated to the repair patterns

To give an idea about the level of impact caused by the repair pattern presence or 
absence, we compute the difference of the score results with the baseline, as defined 
in Equations 20 and 21. Table 24 shows the results for MAP measure. The samples 
associated with the repair patterns are in each column, starting with the results for the 
sample where the pattern is present (or matched in the sample patches), immediately 
followed by the results for the sample where the pattern is absent (or not matched in the 
sample patches). For example, the first column is related to the Missing Not-Null Check 
(MNC_N) repair pattern and next to the sample without this pattern represented with 
-MNC_N. Next columns are related to the repair patterns Wraps with If (W_If), Wrong 
Method Reference (WMR), Wrong Variable Reference (WVR). Only for sanity checking 
purposes, the last two columns represent the union of samples with the matched repair 
patterns followed by the union of the remaining patches without repair pattern matches. 
The color scale helps to highlight when the difference is positive (green tones, meaning 
the score is higher than the scores for the baseline), negative (red tones, meaning the 
score is below the baseline), or neutral (yellow tones, meaning the score is near the
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Table 20 - Wraps with If in AspectJ and Tomcat, H0 result for Mann-Whitney (MW) 
test.

$1 $2 $3 $4 $5 $6 $7 $8 $9 | $10 | $11 | $12 | $13 | $14 | $15 | $16 | $17 | $18 | $19 | BLUiR | LR
a) AspectJ

MAP = = = = = = = = == = 1 1 1 1 1 1 + \
MRR | = | == 1 1 1 1 1 1 \ +
NDCG@1 |=|== 1 1 1 \ \ * = 1 1 \ - \ - + \ + \ =

NDCG@5 |=|== 1 1 + \ 1 * 1 1 1 \ - \ - =

NDCG@10 = == 1 1 + \ 1 * = 1 1 - \ -
Top-1 = 1 1 1 1 * = 1 1 - \ - \ \ + \ =

Top-5 = 1 1 + \ 1 * 1 1 1 - \ - =

Top-10 = 1 1 + \ 1 * 1 1 \ \ \ \ \
b) Tomcat

$1 $2 $3 $4 $5 $6 $7 $8 $9 | $10 \ $11 \ $12 \ $13 \ $14 \ $15 \ $16 \ $17 \ $18 \ $19 \ BLUiR | LR

MAP | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

MRR | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =
NDCG@1 | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

NDCG@5 | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

NDCG@101 = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

Top-1 | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

Top-5 = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = = I =

Top-10 I = I = I = I = I = I = I = I = I = I = I = I = I = I = I = I = I = I = I = I = I =

baseline). We saturated the colors with the minimum (solid red), 0% (solid yellow), and 
maximum (solid green) shown in each table. The values are in the bold black font when 
there is statistical significance in the difference between the sample with the matched 
repair pattern and the sample not matched with the repair pattern, confirmed by null 
hypothesis rejection in at least one statistical test presented in Subsection 7.2.3. For the 
other metrics, we have:

□ MRR score differences for AspectJ in Table 25-a and for Tomcat in Table 25-b;

□ NDCG@1 score ranking differences for AspectJ in Table 26-a and for Tomcat in 
Table 26-b;

□ NDCG@5 score ranking differences for AspectJ in Table 27-a and for Tomcat in 
Table 27-b;
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a) AspectJ

Table 21 - Wrong Method Reference in AspectJ, Tomcat and BIRT: H0 result for 
Mann-Whitney (MW) test.

$1 $2 $3 $4 $5 $6 $7 $8 $9 $10 \ $11 $12 $13 $14 $15 $16 $17 $18 $19 \ BLUiR LR

MAP \ 1 1 1 1 = 1 = 1 = 1 1 =- \ - - - - - - - - -
MRR 1 1 1 1 = 1 1 1 1 1 ==

NDCG@1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 == | - - - A - - - - -
NDCG@5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 / 1 /
NDCG@10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 / 1 /
Top-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 == 1 - - - A - - - - -
Top-5 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 == 1 = = = = = = = =

Top-10 -1 -1 -1 -1 -1 -1 -1 -1 -1 == 1 - - - - \ A - - -

b) Tomcat
$1 $2 $3 $4 $5 $6 $7 $8 $9 \ $'. 10 $11 $12 $13 $14 $15 $16 $17 $18

\ $19 BLUiR LR

MAP

mrr l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = I =
NDCG@1 |=|=|=|=|=|/|=|=|=|/|/|=|=|=|=|=|=|=|=| = | =

NDCG@5 |=|=|=|=|=|=|=|=|=|=|/|=|=|=|/|=|=|=|=| = | =

NDCG@10|=|=|=|=|/|=|=|=|/|=|/|=|=|=|=|=|/|=|=| = | =

Top-1 | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

Top-10 I = I = I = I = I = I = I = I = I = I = I = I = I = I = I = I = I = I = I = I = I =

_____________________________________________c) BIRT___________________________________________
$1 \$2 $3 $4 $5 $6 $7 $8 $9 | $10 | $11 | $12 | $13 | $14 | $15 | $16 | $17 | $18 | $19 | BLUiR | LR

MAP l=l=l=|/|=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l = I =

MRR | = | = H/ | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = I =
NDCG@1 |=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=| = | =

NDCG@5 |=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=| = | =

NDCG@10|=|=|=|=|=|=|=|=|=|=|=|/|=|=|=|=|=|=|=| = | =

Top-10 l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = I =
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Table 22 - Wrong Variable Reference in AspectJ, H0 result for Mann-Whitney (MW) 
test.

a) AspectJ

$1 \$2 $3 $4 \$5 $6 $7 $8 $9 | $1Ü | $11 | $12 | $13 | $14 | $15 | $16 | $17 | $18 | $19 | BLUiR | LR

MRR | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

NDCG@1 | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

NDCG@5 | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

NDCG@101 = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

Top-5 | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = I =

Top-10 | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = I =

b) Tomcat

$1 $2 $3 $4 \$5 $6 $7 $8 $9 | $1Ü | $11 | $12 \ $13 \ $14 \ $15 \ $16 \ $17 \ $18 \ $19 \ BLUiR | LR
MAP l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = I =

MRR l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = I =
NDCG@1 | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

NDCG@5 | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

NDCG@101 = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

Top-5 | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

Top-10 | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = I =

_____________________________________________c) BIRT___________________________________________

$1 | $2 | $3 | $4 | $5 | $6 | $7 | $8 $9 | $1ü | $11 | $12 | $13 | $14 | $15 | $16 | $17 | $18 | $19 | BLUiR | LR
MAP l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = I =

MRR l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = I =
NDCG@1 | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

NDCG@5 | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

NDCG@101 = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | =

Top-5 l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = l = I =

Top-10 | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = I =
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Table 23 - Missing Not-Null Check in AspectJ, H0 result for Mann-Whitney (MW) 
test.

a) AspectJ
$1 \$2 $3 $4 \$5 $6 $7 $8 $9 | $1Ü | $11 | $12 | $13 | $14 | $15 | $16 | $17 | $18 | $19 | BLUiR | LR

MAP =|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|= = | =

MRR =|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|= = | =

NDCG@1 =|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|= = | =

NDCG@5 =|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|= = | =

NDCG@10=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|= = | =

Top-5 |=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=| = | =

Top-10 |=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=| = I =

b) Tomcat
$1 $2 | 03 | $4 \$5 $6 $7 $8 $9 | $1Ü | $11 | $12 \ $13 \ $14 \ $15 \ $16 \ $17 \ $18 \ $19 \ BLUiR | LR

MAP = 1 = 1 = = 1 = 1 = 1 = = = =
MRR = 1 + \ 1 = = 1 = 1 = 1 = = = =
NDCG@1 = | = \ 1 = 1 = = 1 = 1 = 1 = 1 1 = =
NDCG@5 = | = 1 = 1 = = 1 = 1 = 1 = = 1 = 1 = 1 = 1 = = =
NDCG@10 = 1 = 1 = = 1 = 1 = 1 = = 1 = 1 = 1 = 1 = = =
Top-1 = | = 1 = 1 = = 1 = 1 = 1 = 1 1 = =
Top-5 = | = 1 = 1 = = 1 = 1 = 1 = 1 = =
Top-10 = 1 = 1 = 1 1 =

c) BIRT

$1 $2 $3 $4 $5 $6 $7 $8 $9 $1ü $11 $12 $13 $14 $15 $16 $17 $18 $19 BLUiR LR

MAP 1 1 1 1 1 = 1 1 1 1 1 1 1 | v 1 1 1 1 1 11 / 1^1 1
MRR 1 1 1 1 1 1 1 1
NDCG@1 |=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=| = I =

NDCG@5 =|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|= = I =

NDCG@10=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|= = | =

Top-10 |=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=| = I =
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□ NDCG@10 score ranking differences for AspectJ in Table 28-a and for Tomcat in 
Table 28-b.

□ Top-1 score ranking differences for AspectJ in Table 29-a and for Tomcat in Ta- 
ble 29-b;

□ Top-5 score ranking differences for AspectJ in Table 30-a and for Tomcat in Ta- 
ble 30-b;

□ Top -10 score ranking differences for AspectJ in Table 31-a and for Tomcat in 
Table 31-b.

7.3.4 Variation of the differences correlated to the repair pat- 
terns

Figure 59 shows the score rankings and highlights the range of the differences for the 
samples related to the wrapsIf pattern in AspectJ. The chart shows all 19 features from 
the LR approach, besides BLUiR and LR BL approaches. We consider three samples: 
1) the sample where the repair pattern matches in patches (blue circle); 2) the sample 
where the repair pattern does not match in patches (red circle); 3) and the sample 
representing the baseline and containing the previous two samples, and samples with 
other repair patterns included in the experiment (black tick). In the baseline sample 
and similar to most of the previous BL approaches, the evaluations on the bug dataset 
do not differentiate matching or not-matching of repair patterns (or any other bug 
characteristic, discussed in Chapter 6). Figure 60 shows the score rankings for Tomcat 
analogous to what was shown for AspectJ. For the other repair patterns and projects, 
we have:

□ Wrong Method Reference score ranking differences range for AspectJ in Figure 61 
and for Tomcat in Figure 62;

□ Wrong Variable Reference score ranking differences range for AspectJ in Figure 63 
and for Tomcat in Figure 64;

□ Missing Not-Nul l Check score ranking differences range for AspectJ in Figure 65 
and for Tomcat in Figure 66.
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Table 24 - Impact of the presence and absence of the repair patterns in AspectJ and 
Tomcat based on the MAP scores.

a) MAP score differences from baseline in AspectJ
MNC.N -MNC.N WJf -WJf WMR -WMR WVR -WVR ALL.M -ALL.M

fl
f2 -0.01% -0.07% 0.51% -0.15% 0.31% -0.25%

f3 0.32% -1.45%

f4 7.94% 2.85%

f5 -0.36% -1.62% 3.40% 0.86%

f6 -0.28%

f7 -1.91% -5.19% 0.19% 4.51%

f8 7.99% 1.97% 14.92% -0.37% -1.99% -5.78% 6.99% 3.94%

f9 -0.31% -0.41% 0.13% -0.64% 0.18%

flO -0.11% -0.42% -0.01%

fll
fl2
fl3 -0.99% -1.70%

fl4 -0.13%

fl5 2.29% -0.86% -0.37% -0.40%

fl6 -0.26% -0.19% -0.18% -0.14%

fl7 -0.28% 0.18% 0.16% -0.26% 0.15%

fl8 -0.51% 1.51% -0.46% -0.26% -0.18% 0.18%

fl9 -0.13% | 5.93%

BLUiR 8.76% -0.81% | -0.36% 0.14% |

LR — 3 52% 0.24% |

b) MAP score differences from baseline in Tomcat
MNC.N -MNC.N WJf -WJf WMR -WMR WVR -WVR ALL.M -ALL.M

7.4 Analysis

Next, we analyze and discnss the resnlts presented in the previons section. We 
analyzed the resnlts for the patterns Wraps with If, Wrong Method Reference, Wrong 
Variable Reference, and Missing Not-Null Check. Overall we can íiiid HO rejection for 
metrics in all of them. Next, we present the analysis for each one.
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Table 25 - Impact of the presence and absence of the repair patterns in AspectJ and 
Tomcat based on the MRR scores.

a) MRR score differences from baseline in AspectJ
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl
f2 -0.13% -0.61% 0.18% -0.17%

f3 -0.31% 0.19%

f4 0.10%

f5 0.85% -2.43% 3.43% 0.22% -0.38%

fó 0.18%

f7
f8
f9
flO 0.04% -0.19% -0.37%

fll -0.17%

fl2 -0.29%

fl3 -0.13% -0.11% -1.52% -2.30%

fl4 -0.48% -0.38%

fl5 -0.38%

fló 0.24% -0.34% 0.40% -0.17% -0.18%

fl7 -0.28% 0.45% -0.34% -0.29% -0.13%

fl8 1.1336 -0.36% -0.23% 0.11%

fl9 -0.37%

BLUiR
LR 0.12% 4.47% - 6.9656

b) MRR score differences from baseline in Tomcat
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl 2.66% -7.89%

f2 -0.30%

f3 -4.54% -0.02%

f4 23.23% -8.75%

f5 -0.03% -0.77% -0.14% -2.14% 2.63%

fó
f7 22.99% -7.72% 3.65% 13.00%

f8 -0.92% 10.96% 0.01% 0.18%

f9 0.61% -0.48% -1.42%

flO -2.77% 3.26%

fll -2.12% 10.35%

fl2 -5.60% 4.07%

fl3 -3.56% -2.46%

fl4 -3.71% 1.46%

fl5
fló -0.54% 0.21% -0.28% 0.38% -0.16% -0.18%

fl7 —0.53%

fl8 -0.64% 0.43% —0.35% -0.14% -0.31% -0.33%

fl9 -0.25% —0.35%

BLUiR 21.52% -7.23% -0.67% 12.92%

LR 9.69% -4.16%

7.4.1 Wraps with If Repair Pattern

In AspectJ, Wraps with If samples present many differences in the scores for both 
cases (with and withont the repair pattern), that is evidenced in Figure 59, bnt also 
in Table 24-a to Table 31-a. For most features and also for the BLUiR, when Wraps 
with If is present, we have higher scores than in the baseline. On the other hand, the 
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Table 26 - Impact of the presence and absence of the repair patterns in Aspect J and 
Tomcat based on the NDCG@1 scores.

a) NDCG@1 score differences from baseline in AspectJ
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl -0.48% -0.17%

f2
f3
f4 7.55% 2.83% 12.18% -0.40% -0.52% —0.35% |

f5 -0.44%

fó -0.21% -0.21% -0.21% -0.21% -0.21%

f7 13.87% -2.71% -0.15% |

f8 15.54% -1.04%

f9
flO
fll -0.34%

fl2 -0.15%

fl3
fl4 4.78% -1.75% 0.18%

fl5 -0.32% -0.32% -0.32%

fló
fl7
fl8 -0.34% -0.34% -0.34% -0.34% -0.34% -0.34%

fl9 3.79% -1.42%

BLUiR -0.43% 15.38% -0.43% —0.55% -0.38% |

LR 4.89%

b) NDCG@1 score differences from baseline in Tomcat
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl -5.01% 10.30%

f2 —0.55% —0.55% —0.55% -0.10%

f3 0.10%

f4 25.36% -7.70%

f5
fó 3.43% -2.57% -0.42%

f7 23.21% -6.37% -0.21%

f8 11.85% -2.15% -0.15% 0.48%

f9 0.16%

flO 5.76% -4.24% -0.24% -0.24%

fll 0.59% -5.41% -0.39%

fl2 -0.22% | -0.61%

fl3
fl4 -0.40%

fl5 -3.06% 2.16%

fló 0.00% 0.00%

fl7 -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17%

fl8
fl9 -0.30%

BLUiR 27.22% -9.35%| 0.16%

LR 14.57% -5.60%

sample withont Wraps with If show scores below or near to the baseline. Considering 
higher scores, most visible and consistent variations between metrics against baseline 
occnr with <+ (+13.16% in NDCG@5 when the pattern is present, and —2.93% in Top- 
5 and Top-10 when the pattern is absent), <f>y (+13.87% in NDCG@1 when present, 
—3.86% in Top-1 when absent), (+15.54% in NDCG@1 when present, —1.82% in
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Table 27 - Impact of the presence and absence of the repair patterns in Aspect J and 
Tomcat based on the NDCG@1 scores.

a) NDCG@5 score differences from baseline in AspectJ
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl
f2 -0.38% -0.38% -0.38% -0.38% -0.18%

f3
f4 13.16% -1.04%

f5 0.10% 0.12% 3.61% 0.10% -0.47%

fó
f7 14.68% -1.42% 0.11% |

f8 13.52% -0.20%

f9 -0.12% 0.12% 0.31%

flO 0.15%

fll 5.52% -2.76% 0.21%

fl2 -0.17% -0.20%

fl3
fl4 -0.16%

fl5 2.18% -1.45% 2.47% -1.45%

fló -0.37% -0.30% -0.37%

fl7 -0.42%

fl8 0.18%

fl9 7.26% -0.58%

BLUiR 16.92% -1.69% -0.19%

LR

b) NDCG@5 score differences from baseline in Tomcat
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl 3.79% 1

f2 —0.65% -0.47%

f3
f4 23.56% -7.14%

f5 -0.16% -1.95% 3.35% 0.01%

fó 5.09% -2.18%

f7 24.12% -6.25%

f8 9.90% -3.02% -0.39% -0.11% |

f9 -0.33% 1.40% -2.60% 0.34%

flO
fll -1.96% 10.00% 2.80% -6.22% -0.20%

fl2 -0.45% -5.23% 6.67%

fl3
fl4 -0.04% -0.15%

fl5 4.24% -2.28% -0.14% -0.45%

fló
fl7 -0.24% -0.38%

fl8 -0.11% -0.11% -0.11% -0.11% -0.11% -0.11% -0.11% -0.11%

fl9 -4.28% 1.37% 0.10% -0.42% -0.30%

BLUiR 21.91% -9.21% 0.12%

LR 12.32% -5.51%

Top-1 when absent), and BLUiR (+18.98% in Top-5 when present, —3.73% in Top-5 
when absent). Other features like fli, (f>6, <f>u, (f)i2, <^15, <%9 are generally consistent with 
higher results than baseline in the presence of the pattern, bnt in a smaller range. The 
remaining features and the LR approach have minimal or inconsistent differences from 
the baseline. According to Table 20, not all the results confirm statistical difference, bnt 
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Table 28 - Impact of the presence and absence of the repair patterns in Aspectj and 
Tomcat based on the NDCG@10 scores.

a) NDCG@10 score differences from baseline in Aspectj
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl
f2 0.47% -0.18%

f3
f4 13.16% -1.04% -0.62%

f5 -0.61% -0.32% -0.30% —0.35%

fó -0.17%

f7 14.63% -1.46%

f8 14.55% -0.32%

f9 -0.24% 0.51%

flO 0.15%

fll 0.11%

fl2
fl3 -0.11%

fl4 -0.29% -0.10%

fl5 -0.33% 4.01% -1.26% 3.28% -1.25%

fló -0.44% -0.16% —0.36% -0.44% 0.11%

fl7 -0.48%

fl8 -0.01% -0.04% 0.17% 0.18%

fl9 7.89% -0.19%

BLUiR 9.03% -1.24% | -0.17% -0.81% -0.26% |

LR -2.59% 4.55% 5.04% | 0.76%

b) NDCG@10 score differences from baseline in Tomcat
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl 4.71% -10.02% 0.31%

f2 -0.44% -0.26% 0.18%

f3 | 5.38% 3.27% 0.43%

f4 23.15% -6.78%

f5 0.10% -0.28% 0.45% -2.18% -2.18% 3.12%

fó 4.54% -1.82% 0.04%

f7 24.04% -6.33%

f8 9.19% -4.18% -1.09% 12.56% -0.46% 0.18%

f9 -0.46% -0.29% 1.80% -1.96% 0.48%

flO 0.04%

fll 0.54% -2.40% 11.85% 3.56% -6.82% -0.32%

fl2 -6.05% 5.38% -0.50%

fl3 —0.58% 0.40%

fl4 —0.66%

fl5 -0.39%

fló -0.16% -0.16% -0.16% 0.01% -0.16% -0.16% -0.16% -0.13%

fl7 -0.91% 2.84% -1.45% -0.32%

fl8 -0.24% 0.43% -0.24% -0.24% 0.13% -0.24% -0.24% -0.21%

fl9 -3.49% 2.10% -0.42%

BLUiR 20.60% -6.80% 0.04%

LR

we have the HO rejection for some metrics in the scores for 04. 07. 015, 019, BLUiR,
many of them between those we jnst highlighted.

From the obtained results, we have some evidence that bngs that reqnire the Wraps 
with If repair pattern wonld be easier to find than bngs that wonld not reqnire this type 
of patch on the samples for the Aspectj dataset nsing the BLLTiR approach. However, 
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Table 29 - Impact of the presence and absence of the repair patterns in AspectJ and 
Tomcat based on the Top-1 scores.

a) Top-1 score differences from baseline in AspectJ
MNC.N -MNC.N WJf -WJf WMR -WMR WVR -WVR ALL.M -ALL.M

fl 0.04%

f2
f3 0.15%

f4 2.10% 10.68% -1.90% 0.60% | -0.37%

f5 -0.04% -0.04% -0.30%

f6 -0.34% -0.34% -0.34% -0.34% -0.34%

f7 12.72% -3.86%

f8 14.76% -1.82%

f9
flO
fll 0.24% -0.41%

fl2 -0.22% -0.11%

fl3
fl4 -0.16% 4.78% -2.72% -0.11%

fl5 0.19%

fl6
fl7
fl8 -0.34% -0.34% -0.34% -0.34% -0.34% -0.34%

fl9 4.41% -2.04% -0.04%

BLUiR 13.56% -2.24% -0.71%

LR

b) Top-1 score differences from baseline in Tomcat
MNC.N -MNC.N WJf -WJf WMR -WMR WVR -WVR ALL.M -ALL.M

fl -6.52% 9.30% -0.70% -0.70%

f2
f3
f4 24.76% -8.80%

f5
f6 0.45% | 2.45% -3.55%

f7 22.45% -8.00%

f8 11.20% -2.80% 0.43%

f9 -1.02%

flO -0.57% | 5.43% -4.57% -0.57% -0.57%

fll 0.74% 0.08% -5.92% -0.44%

fl2 -0.23% -0.23%

fl3 -0.20% | -0.20%

fl4
fl5 -4.23% 1.77%

fl6
fl7 -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17%

fl8
fl9

BLUiR 26.09% -9.24% 0.19%

LR 0.10%

the LR BL approach does not extend these resnlts since the extracted metrics have no 
consistent or signihcant difference. The more positive impacted featnres were <^4, <^7, 
and BLLTiR. In addition, the observed change in the score for BLLTiR approximate or 
even overcomes the scores with LR (initially higher), as occurs with metric NDCG01, 
where the new score is 15.38 percentual points beyond the baseline.

approach.es
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Table 30 - Impact of the presence and absence of the repair patterns in AspectJ and 
Tomcat based on the Top-1 scores.

a) Top-5 score differences from baseline in AspectJ
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl
f2
f3
f4 12.88% -2.93%

f5 8.48% -1.06%

fó
f7 13.56% -2.24%

f8
f9
flO
fll 8.97% - 4.67%

fl2
fl3
fl4
fl5 6.28% -3.40% 6.60% -3.40%

fló
fl7
fl8
fl9 12.18% -1.82%

BLUiR 18.98% -3.73%

LR

b) Top-5 score differences from baseline in Tomcat
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl 1.97% | 7.53% 11.53% 3.53% |

f2 0.45%

f3 -0.37% -0.37%

f4 20.38% -9.39% 3.51% 14.61%

f5 -2.88% 5.12% 0.12%

fó 14.19% -3.81% 0.41%

f7 24.11% -5.67% 2.69% 14.33%

f8
f9 -1.08% 0.92% -5.08% 0.41%

flO
fll 7.53% -6.47% -0.27%

fl2 12.16% -1.84%

fl3 -0.09%

fl4
fl5 2.23% 6.86% 4.86% -5.14% -0.16%

fló -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17%

fl7 3.06% -4.94%

fl8 -0.51% -0.51% -0.51% -0.51% -0.51% -0.51%

fl9 -8.12% 3.88% 1.88% -6.12% -0.12% -0.14%

BLUiR 14.84% -9.38% -1.92% 12.62%

LR

In Tomcat, we have more samples with statistically signihcant scores’ differences. 
Still, the impact correlated to Wraps with If is almost opposite to what we have found 
in AspectJ. Overall, samples with the pattern show scores near the baseline (or slightly 
below), and samples withont the pattern have higher scores than the baseline. Most 
impacted are for features <f>i (—6.52% in Top-1 when present, +10.30% in NDCG@1 
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Table 31 - Impact of the presence and absence of the repair patterns in AspectJ and 
Tomcat based on the Top-10 scores.

a) Top-10 score differences from baseline in AspectJ
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl 1,49% -4,15% -0,15%

f2 -0,64%

f3 -0,49%

f4 7,59% 3,07% -0,43%

f5 7,46% 3,92% -0,17%

fó 1,44% -1,95%

f7 5,70% 3,76% 13,56% —2,24% -0,71%

f8 —0,59% 13,22% -0,59%

f9 0,16% 0,42%

flO
fll 7,59% 4,11%

fl2 3,72% -1,18% -0,49%

fl3
fl4 -0,24% -0,51%

fl5 10,51% 11,16% -2,84%

fló 0,04%

fl7
fl8 -0,84% -0,18% 0,44% —0,36%

fl9 7,59% -0,93% 14,57% -0,93%

BLUiR -0,24%

LR 10,73% -7,77%

b) Top-10 score differences from baseline in Tomcat
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl 5.18% -16.82%

f2 -1.08% —0.53%

f3 -0.23% -5.78% 6.22% 10.22%

f4 18.52% -7.26%

f5 0.11% 4.11% -3.89% -3.89% 4.11%

fó -1.39% 13.28% -2.72%

f7 23.43% -6.35% —0.35%

f8 -4.08% 15.47% -0.84%

f9 2.55% -5.45%

flO 0.31%

fll -6.45% 17.10% 9.10% -8.90% -2.90% 3.10%

fl2 -1.20% -0.75% -9.93% 9.25% -0.54%

fl3
fl4
fl5 -0.32% -0.10%

fló —0.85% —0.85% -0.60%

fl7 4.86% -5.14% -0.91%

fl8 -1.18% -0.94%

fl9 -6.22% 7.34% -0.68%

BLUiR -0.96% 0.16%

LR -1.66% -0.39%

when absent), (—4.08% in Top-10 when present, +15.47% in Top-10 when absent), 
(fn (—6.45% in Top-10 when present, +17.10% in MAP when absent), <%2 (—5.60% 
in MAP when present, +6.67% in NDCG@5 when absent) and for BLUiR (—1.92% in 
Top-5 when present, +14.74% in MAP when absent. <+ is more impacted (with some 
inconsistency): both scores are above the baseline with the highest difference of +15.63%

approach.es
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Figure 59 - Score rankings differences for Wraps with If repair pattern in AspectJ
(FC+NFC).
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Figure 61 - Score rankings differences for Wrong Method Reference repair pattern in
AspectJ (FC+NFC).
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Figure 62 - Score rankings differences for Wrong Method Reference repair pattern in
Tomcat (FC+NFC).
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Figure 66 - Score rankings differences for Missing Not-Null Check Reference repair
pattern in Tomcat (FC+NFC).
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in NDCG@1 when the pattern is absent, and the lowest difference of +2.69% in Top-5 
when the pattern is present. Other affected scores but in a lower degree are ^3, ^4, fa, 
^lü, ^14, ^19-

As with AspectJ, the samples in Tomcat show score differences with statistical signif- 
icance. The pattern presence/absence is correlated to score changes for features and the 
BLUiR strategy. Nevertheless, this time, bugs whose patches do not contain the pattern 
would be associated with the easiest bug localization, and bugs requiring patches with 
the pattern would be near the baseline score.

7.4.2 Wrong Method Reference Repair Pattern

In AspectJ and for Wrong Method Reference, we have scores differences statistically 
significant, but the range of variation is smaller than those observed in the Wraps with 
If. Considering statistically significant differences, we highlight scores for features ^14 

(+4.78% in NDCG@1 when the repair pattern is present, —1.75% in NDCG@1 when 
absent), ^19 (+7.89% in NDCG@10 when present and —0.58% in NDCG@5 when absent) 
and also for LR (+10.73% in Top-10 when present, —7.77% in Top-10 when absent). 
Other features as ^5 and ^15 have scored with statistically significant differences but 
with more minor variations. Overall, the scores are higher than the baseline score when 
the pattern is present. When the pattern is absent, the scores are near or lower than 
the baseline score. Again, as with Wraps with If, the results for AspectJ suggest that 
patches requiring this pattern would be easier to localize than when the pattern is absent 
compared to the baseline.

In Tomcat, we also have score differences for Wrong Method Reference. We can high- 
light the differences for (+3.46% in NDCG@1 when present, —2.57% in NDCG@1 
when absent), ^10 (+5.76% in NDCG@1 when present, —4.57% in Top-1 when ab
sent), ^11 (+7.53% in Top-5 when present, —6.82% in NDCG@10 when absent), and ^15 

(+4.86% in Top-5 when present, —5.14% in Top-5 when absent). This time results from 
Tomcat suggest that the presence of the pattern in the patches would indicate an easier 
bug localization than for the bugs where patches do not contain the pattern.

7.4.3 Wrong Variable Reference Repair Pattern

In AspectJ, we can perceive from Figure 63 that many scores have apparent dif- 
ferences when compared to the baseline and also between scores of matched versus 
not-matched samples. Some examples with the more significant differences are ^>3, ^11, 
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and BLUiR. Other features as ^4, ^5, ^7, ^9, ^12 also present some differences. Despite 
that, few of these features have scores rejecting H0 for some metrics. Examples are ^5 

(+8.48% in Top-5 when present, —1.06% in Top-5 when absent), (+0.19% in MAP 
when present, +4.51% in MAP when absent), and (+6.99% in MAP when present, 
+3.94% in MAP when absent). The inconsistency between the score differences and the 
failure to reject the null hypothesis in statistical tests does not give enough confidence 
for insights about this pattern in AspectJ. Another factor contributing to the inconsis- 
tent results may be the number of instances for the matched sample, 26, a small number 
and almost half of the cases on the not matched side.

In Tomcat, we can see some score differences for Wrong Variable Reference, but most 
are small ones, and few features show consistent and statistical significance: ^5 (—3.89% 
in Top-10 when present, +5.12% in Top-5 when absent), ^6 (+14.19% in Top-5 when 
present, —3.81% in Top-5 when absent), and ^9 (+1.4% in NDCG@5 when present, 
—5.08% in Top-5 when absent). LR score also show clear visual difference in Figure 64, 
but this results is not confirmed with hypothesis tests. ^5 has a small contribution 
since the score range is below .10 values for almost all the metrics and is a feature with 
statistically different scores. The sample where the pattern is present has a lower score 
than the baseline. When the pattern is absent, the score is higher. We would infer from 
this that BL strategies based on this feature would produce betters scores on samples 
where the bug patches do not require fixings like the Wrong Variable Reference repair 
pattern. Nonetheless, it is still possible to have higher scores for features like ^6 and ^9 

when this repair pattern is present.

7.4.4 Missing Not-Null Check Repair Pattern

In AspectJ, many scores show sharp differences, according to Figure 65. For example, 
^4, ^7, ^8, BLUiR, and LR. But curiously, Table 23-a shows scores rejection of H0 
hypothesis for some metrics only in ^11 (+8.97% in Top-5 when present, —4.87% in 
NDCG@5 when absent) and ^15 (+2.29% in MAP when present, —0.86% in MAP when 
absent). Overall, according to Tables 24-a to Tables 31-a, most of the scores are higher 
than baseline for bugs whose patches contain the pattern and lower than baseline scores 
when the pattern is absent.

In Tomcat and compared to the other analyzed samples and patterns, Missing Not- 
Null Check is possibly the repair pattern with more shreds of evidence of score differ- 
ences spanning for more features and impacting both BL strategies. We can confirm 
the evidence by analyzing Figure 66, Tables 24-b to 31-b, and also Table 23-b. The 
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more significant differences with statistical significance occur in features ^1 (+5.18% 
in Top-10 when present, —16.82% in Top-10 when absent), ^4 (+25.36% in NDCG@1 
when present, —9.39% in Top-5 when absent), (+24.12% in NDCG@5 when present, 
—8.00% in Top-1 when absent), (+11.85% in NDCG@1 when present, —4.18% in 
NDCG@10 when absent), and in both BL strategies, BLUiR (+27.22% in NDCG@1 
when present, —9.38% in Top-5 when absent) and LR (+14.57% in NDCG@1 when 
present, —5.60% in NDCG@1 when absent). Other features as ^15 and ^19 also present 
statistically significant differences but with a smaller range. Overall, scores with sub- 
stantial differences are higher than baseline when the Missing Not-Null Check is present 
in patches. In comparison, patches without the pattern show lower scores compared 
to baseline. The situation is not so different with Tomcat. Nevertheless, the impact 
observed on the scores is variate: positive for some features as ^6 and ^9, and negative 
for ^5.

7.5 Answers for the Research Questions
Here we synthesize the results and analysis previously presented to answer the ini- 

tially proposed research questions.

7.5.1 RQ6: on the existence of differences correlated to the 
presence versus absence of repair patterns in patches

When we compare a sample of bugs where the respective patches match a given repair 
pattern against another sample of bugs where this pattern is not present, is there any 
difference in the measured metrics targeting the ranking of bug suspects? Are these 
differences statistical ly significant?

Based on the results in Section 7.3 and the analysis of Section 7.4 we found many cases 
where the score of features and the BL strategies differ. We compare scores extracted 
from a sample with bug reports whose patches contain one of the repair patterns to 
scores from a sample where this pattern is not present on the respective patches. We 
found different situations for the differences: 1) sometimes the scores for the sample 
matched with the pattern is higher than the baseline (suggesting an easier BL for these 
cases), and the scores for samples without the pattern is near to the baseline, usually 
bellow; 2) sometimes the first situation is inverted; 3) sometimes we have the baseline 
scores in the middle, while matched versus not-matched samples scores are far in one of 
the extremes. We have found differences with statistical significance (H0 rejected), but 



188 Chapter 7. Influence of repair patterns on BL approaches

not all the differences show the significance for most metrics. The results for Missing 
Not-Null Check repair pattern in Tomcat have the most substantial shreds of evidence 
for the differences, especially for the features ^4, and the BL strategy, BLUiR.

7.5.2 RQ7: on the type of impact correlated to the presence 
versus absence of repair patterns in patches

What type of impact is associated with the evaluated metric's score rankings by the 
presence of a repair pattern in the patches of a bug sample? Moreover, when the repair 
pattern is absent?

Again, and somehow aligned to RQ6, we have found different types of impact. We 
find a positive impact on the score rankings when it is higher than the baseline score 
on the presence of the repair pattern and is lower or near to baseline, on the absence 
of the repair pattern. This occurs for Wrong Method Reference and Missing Not-Nul l 
Check in AspectJ and Tomcat. For Wraps with If the positive impact is viewed for 
AspectJ. On the other hand, the same pattern in Tomcat shows the opposite effect: the 
absence of the repair pattern presents a higher score than the baseline. For this case, 
while there are significant differences, we cannot associate the same tendency (or type 
of impact) to the repair pattern presence/absence on different projects. The lack of H0 
rejection in statistical tests for Wrong Variable Reference samples makes it harder to 
state with sure the type of impact observed in AspectJ. However, Tomcat's situation is 
not different since few features present statistical significance in score differences, which 
are small overall.

7.5.3 RQ8: on the degree of the impact correlated to the pres- 
ence versus absence of repair patterns in patches

What is the degree of the impact correlated to the repair pattern's presence or absence 
on the metrics measured?

The degree of impact observed for features and BL strategies variate a lot. For 
example, for Missing Not-Null Check and considering results with statistical significance, 
the score increase can reach 27.22 percentual points above the baseline (e.g., in BLUiR 
with NDCG@1 when the pattern is present in Tomcat). At the same time, the score 
decrease can reach 16.82% percentual points below the baseline (e.g., in ^1 with Top-10 
when the repair pattern is absent in Tomcat). For Wraps with If the increase reaches 
18.98 percentual points above the baseline (e.g., in BLUiR with Top-5 when the repair 
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pattern is present in AspectJ), while the decrease goes 9.93 percentual points below the 
baseline (e.g., in ^>12 with Top-10 in Tomcat when the repair pattern is present in Tomcat. 
Interesting to note that there is no transfer of influence between projects. The last 
example illustrates this, observing that for AspectJ, we can observe a correlation between 
the repair pattern presence and the increase in the BL score and, consequently, the ease 
of localizing the bugs compared to the baseline scores. On the other hand, in Tomcat, 
the increase in the BL score is correlated to the repair pattern absence (especially for 
BLUiR, since for LR, the score is almost the same between metrics). Wrong Method 
Reference and Wrong Variable Refence seems to be the less impacted repair patterns. 
The smaller number of H0 rejections on the score differences reinforces this observation. 
However, even considering the reduced impact, we can point the differences. The score 
increase in Wrong Method Reference reaches 14.57 percentual points above the baseline 
(e.g., in ^19 with Top-10 when the repair patterns are present in AspectJ). In contrast, 
the decrease reaches 7.77 below the baseline (e.g., in LR with Top-10 when the repair 
pattern is absent in AspectJ). In Wrong Variable Reference, the score increase reaches 
14.19 percentual points (e.g., for ^6 with Top-5 when the repair pattern is present in 
Tomcat). In comparison, the decrease gets 6.08 percentual points (e.g., for ^9 with Top- 
5 when the repair pattern is absent in Tomcat). The lack of H0 rejections makes the 
findings for these two last repair patterns not sound like the first two.

Finally, we can observe there is no impact on some features by a repair pattern's 
presence or absence, especially when the baseline score is already low. One of the most 
notable examples is the ^2 that presents small variations from the baseline for almost 
all the repair patterns and metrics in both projects. ^2 is a special case, already with a 
low score in the baseline. Consequently, the feature does not contribute too much to the 
localization in both BL strategies. Since the feature depends on the presence of Javadoc 
API in code, and it is not unusual to have code without this type of documentation, it is 
reasonable that the scores will not be so high, regardless. A similar situation also occurs 
for features ^15 to ^19. The reasons are slightly different but proceed from the already 
lower baseline scores. These are query-independent features, and the produced scores do 
not depend on the bug report content but only from the graph/structural characteristics 
of the affected source code file (i.e., the number of in/out dependencies for other source 
codes, PageRank and HITS scores).
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7.6 Threats to Validity
The co-occurrences impose a challenge to analyze and extract conclusions about 

the influence of individual repair patterns. It is hard to design and set up the ideal 
experimental conditions since isolating these patterns and getting significant and repre- 
sentative samples may be impossible for some cases. Even considering that we can select 
bugs whose patches match single repair patterns, this can be a false positive. The patch 
would still contain repair patterns not formally defined, not identified, or undetected 
by the ADD tool. We would also consider ADD tool's repair pattern detection preci- 
sion and recall since false positives and false negatives would impact our results. While 
the manual inspection was applied to define the ADD tool precision and recall against 
Defects4J bugs, a large dataset as LR-dataset makes an inspection too time-consuming 
and feasible only to punctual cases. Finally, we should extend the study to analyze more 
bugs and more projects since we concentrate on only two projects from the six present in 
the LR-dataset. Therefore, the extension also applies to the analysis of more datasets.

7.7 Limitations and Future Work
A coverage measure exposing the patch parts related to each pattern would help 

regulate and filter patches more representative of each repair pattern. For example, a 
patch containing a repair pattern associated with 100% of the patch code lines is a more 
authentic representative of this pattern than a patch with only 10% of its extension 
associated with the same repair pattern. This extension would help to increase the 
accuracy of the results correlating repair patterns with changes in the scores.

The idea about an environment capable of experimenting and comparing different 
BL approaches was started here with the developed experimental package. This package 
contains some of the conceptual ideas and guidelines exposed in Chapter 4. However, 
much work still needs to be done for a more complete and practical framework that would 
potentially emerge with the development of the package. The most critical improvement 
is to increase the scalability of the experimental package. The current implementation 
does not allow optimum computational power and resources usage (memory and disk 
included). We based our current model on relational databases and an ORM technology 
that does not allow parallelization in a viable way. Furthermore, the volume of data 
on tables is enormous (some of them with a dozen GB). Therefore, applying some 
optimization strategies (e.g., better indexing, data compression, query optimization) 
was not enough to improve the processing time and memory usage. Therefore, the 
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refactoring towards a better architecture based on distributed processing and storage 
(e.g., Spark) would be our next step in this direction.

7.8 Related Work

Liu et al. (2018) point out that “the prerequisite for further advancing state-of- 
the-art APR techniques is to acquire all-round and detailed understanding about real- 
world patches”. Therefore, the study tried to expose intrinsic characteristics on human- 
written patches that would help to tune APR strategies and help to synthesize better 
machine-generated patches. The study goes beyond the statement level and proposes an 
even finer-grained knowledge about the code elements involved in a patch, making the 
automatically generated patches more realistic and applicable. Here we also show that 
the type of patches required to fix a reported bug can influence the results obtained by a 
given evaluated BL strategy because a bug dataset contains a heterogeneous set of bugs, 
and many works do not consider or differentiate it while testing the BL approaches on 
these datasets. Furthermore, since the localization is a required step in APR, it also 
would help to explain some vies caused by a non-characterized dataset applied in the 
evaluation of the APR strategies.

The reproducibility study conducted by Lee et al. (2018) reviews past approaches for 
Information Retrieval-based Bug Localization (IRBL) under new conditions and settings, 
proposing Bench4BL as a new benchmark for strategies evaluation. In our experimental 
preparation, we consider some issues tested by Lee et al. (2018) study as influential 
factors for BL, e.g., testing of BL approaches with larger datasets, maintenance of con- 
sistency between project version and the bug report, and exclusion of testing files. Lee 
et al. (2018) also shows there is room to improve the performance of BL strategies, even 
considering past approaches, also confirmed with our results.

DeMarco et al. (2014) proposes Nopol, an APR tool focused on automatically repair 
buggy IF conditions and missing preconditions. In our contexts, we can relate it with 
the repair patterns Missing Nul l Check and Conditional Expression variations. Nopol 
is a direct example of how the characteristics of the patches can impact the design and 
evaluation of debugging tools since it is a real representation of a tool focused on specific 
classes of bugs. Still, Nopol reinforces the importance of characterizing a bug dataset 
to accurately define the performance results derived from an evaluation because there is 
no sense to test a tool like Nopol with bugs of different classes it can handle.

Liu et al. (2019) investigated the influence of bug localization “tweaking” on APR 
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approaches, confirming the presence of bias while conducting evaluations and compar- 
isons in strategies targeting the automation of debugging tasks. Furthermore, the work 
shows that research should attempt to clarify and qualify the applied benchmarks (and 
settings) to avoid misleading conclusions about the tested approaches, typically relying 
only upon direct comparisons of obtained performance results. Similarly, we propose 
the evaluation of BL approaches accounting for the dataset/benchmark characterization 
and differentiating experimental samples by their bugs' nature (e.g., bug patches char- 
acteristics in our case) so the analysis, comparisons and conclusions about the tested 
approaches would be more informed and accurate.

Bohme et al. (2017) propose DBGBench, as the “the first human-generated bench- 
mark for the qualitative evaluation of automated fault localization, bug diagnosis, and 
repair techniques", considering the gap between the research proposals to support debug- 
ging and the industrial practice needs. In the study, the conduction of debugging tasks 
by professional developers contrasts with the research proposals to support these tasks. 
The DBGBench is one of the contributions derived by Bohme et al. (2017) study and 
serves as a ground-truth for evaluation of typical debugging tasks, as occurs with BL. 
Similar to our considerations about the bugs' nature, DBGBench reflects the importance 
of the knowledge about the benchmarks/dataset contents and how it can help clarify 
and separate what is acceptable from what does not reflect the reality or the practical 
concerns for the debugging task automation (or the automated support for debugging 
tasks).

7.9 Final Considerations

The obtained results are promising since different evaluation results would be pro- 
duced, even for the already known approaches like BLUiR and LR. The same occurs 
for some features that show other scores depending on the sample. A comprehensive 
revision of the already published works and approaches under the perspective of the 
bugs' nature and characteristics would unveil how and what strategies would better fit 
(or not) to localize each type of bug. Additionally, we should consider conducting re- 
search to characterize bug datasets better, quantifying and defining what kind of bugs 
are present, in what proportion, and how representative these bugs are. Furthermore, 
since the approaches usually apply different base features, we should study the impact 
on the features and how it influences the BL approaches considering the bug nature. 
Finally, APR approaches would be better targeted at specific types of bugs, considering 
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datasets bug characteristics for sampling and possibly leading to more informed, fair 
and accurate evaluations.
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Conclusion

Despite the active research and perceived advances in the area of BL (or even APR), 
much still needs to be done to make approaches more accurate, reliable, and apt to be 
widely used in software production. The BL using the bug reports as initial query, and 
using essentially static information to the ranking of suspicious software components, 
is one of the branches of this research area. This work proposes the development and 
application of strategies to contribute to BL, leveraging the advances in ML and IR 
approaches, and providing ideas to experiment with past approaches, under the lens of 
dataset analysis and with the characterization of its bugs.

We have experimented with LtR techniques (e.g., LambdaMART, SVMRank, and 
other algorithms), focusing on the tuning and pre-processing of data to improve the 
results in the state-of-the-art. Many of the previously proposed approaches in the liter- 
ature do not indicate clearly and punctually why they fail or succeed in the BL process, 
focusing on highlighting only the overall gains in evaluation performance metrics. Our 
experiments and results suggest that the analysis of the bugs in the dataset would con- 
tribute to 1) the tuning of the algorithms, 2) the approaches implementation guidance, 
and 3) the understanding of the approaches' capacity. Hence, it would be easier to 
identify the proposed strategies' competence, weaknesses, and ideal context.

We also defined a new taxonomy to refer to bugs characteristics, especially those 
related to its patches. Initially, the taxonomy was presented in the Defects4J Dissection 
study, extended through a tool (ADD) to automate the information extraction and sup- 
port the characterization, and applied here to characterize LR-dataset, a larger dataset 
used on the work of Ye et al. (YE; BUNESCU; LIU, 2014), and also object of our 
study. Finally, we show how and what influence we would observe when we sample a 
bug dataset according to the bugs' characteristics, focusing on the performance results.
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We find significant differences in features scores and also on BL scores, depending on 
the bug characteristics used as selection criteria for sampling (e.g., the repair patterns 
we concentrated our effort).

8.1 Final considerations on the research

We developed an experimental package based on Ye, Bunescu e Liu (2016) approach 
for experimentation with BL alternative strategies, integrating multiple information 
sources. The Ye, Bunescu e Liu (2016) approaches originally combine a total of 19 
distinct features, many of them based on previous work, as occurs with BLUiR (SAHA 
et al., 2013). As a proof of concept, we conducted a partial replication of Ye et al.'s 
work and implemented some additional strategies, looking for BL scores improvements. 
Chapter 4 presented some of the experimented ideas. Preliminary experiments show 
that, although each feature can contribute to the overall performance of the algorithms, 
the ability to design and select good features, besides combining and to weight than prop- 
erly, is essential. Moreover, not all features are crucial to obtain top performance, e.g., 
introducing the Entropy feature in the preliminarily tested configurations is marginal: 
2.21% to 4.9% with MAP; and 0.25% to 3.69% with MRR. By the way, while analyzing 
overall performance, we observed a role of Entropy in the reduction of overfitting.

Our preliminary results with LtR algorithms reinforce the need to proceed with 
careful tuning of the approaches, and we also perceive the influence of the dataset used 
in the process. When compared with our baseline configurations, we have obtained 
better results in RQ2 from Chapter 5. Our best-tuned setting had a MAP value of 
42.75% and an MRR value of 51.36%, while baseline configuration was 40.0% for MAP 
and 46% for MRR.

We also experimented with pre-processing of bug reports. Results discussed in RQ3 
from Chapter 5 present some potential improvement while testing data balance strategies 
for generating input data to the learning process. We have consistent gains applying 
different methods of data balance with LambdaMART, obtained increases of 52.3% 
(QuickRank) and 70.86% (RankLib) over the baseline configuration (poor performing 
because of the overfitting). Finally, we confirm the previous knowledge about the bugs 
characteristics and the informed selection of bugs before proceeding with an assessment 
can contribute to BL, especially on the understanding about over what type of bugs the 
approach would perform better or worst.

We first studied Defects4J (SOBREIRA et al., 2018), a relatively small dataset (and 
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benchmark) usually applied in research for BL and APR. We found many recurrences in 
patches for bugs in Defects4J that culminated in taxonomy for what we refer to as repair 
actions and repair patterns. Beyond the patterns we have studied, other dimensions 
associated with patch size in coding lines and spreading give a dimension of the patch's 
shape, complexity, and span in the source codebase. The Defects4J study served as the 
basis for ADD tool development (MADEIRAL et al., 2018), targeting the automatic 
extraction of the patches characterization information, applied in other studies as done 
by Durieux et al. (2019). In this thesis, we proceed with analyzing and characterizing 
the LR-dataset, a large dataset of bugs proposed by Ye, Bunescu e Liu (2014). We 
applied the dimensions defined in our first study with Defects4J with the help of ADD 
tool to extract the information about repair actions, repair patterns, and other size 
dimensions associated with the bug patches. Our results confirm the presence of many 
of the actions and patterns already found in Defects4J. Chapter 6 details this analysis. 
We also extend the work with the Defects4J dissection, exploring additional information 
related to the co-occurrences of repair actions and repair patterns that would influence 
the analysis. Section 6.5 enumerates some of the references to the Defects4J Dissection 
study, confirming its applicability in different areas, reinforcing our initial hypothesis, 
and validating the potential application of our findings.

As an unfould of the dataset dissection studies, we argue that bug datasets should 
not be considered like a black-box while evaluating BL approaches, as occurs in most of 
the previous approaches before our dissection studies. Therefore, we propose the study 
of the bugs' nature and characteristics. This knowledge would help to optimize the 
selection of the techniques for BL, to understand the performance variations, to obtain 
more practical insights to improve the approaches, and to propose new methods for BL 
based on more informed decisions. Our work in (SOBREIRA et al., 2018) started to fill 
the gap in this direction, providing a kind of framework for bugs characterization through 
its patches. The exposing of the bug characteristics in a bug dataset is the first step 
towards the enlightenment for a better understanding of how different BL approaches 
work against bugs of diverse nature. We show that the bugs have distinct characteristics, 
and this is a relevant issue while reporting results of BL approaches. In Chapter 7 we 
have confirmed the influence of the sampling selection based on the characteristics of the 
bug. We focus mainly on repair patterns' presence, based on the most common repair 
actions associated with these patterns. When contrasting samples with and without 
a given repair pattern, we found significant statistical differences on scores produced 
for individual features, and for specific BL approaches, as BLUiR (SAHA et al., 2013), 
and the LtR-based approach from Ye et al. (YE; BUNESCU; LIU, 2016), considering 
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the projects AspectJ and Tomcat from LR-dataset (YE; BUNESCU; LIU, 2014). For 
example, assuming a sample of bugs from Tomcat with Missing Not-Null Check repair 
pattern and applying the BLUiR approach, we found a score increase of 27.22 percentual 
points in the NDCG@1 metric. Otherside, in a sample without the last pattern, we can 
perceive a decrease of 16.82 in another measure, Top-10 metric, for the feature ^1. Other 
analogous findings were detailed in Chapter 7, confirming more differences.

Based on the experience with all the experimental processes, we confirm the impor- 
tance and the need for an integrated environment for experimenting with BL strategies. 
Chapter 4 raises many of the factors that would influence the success of a BL strategy, 
and some ideas partially implemented in our experimental package were applied and 
discussed in Chapters 5 and 7. Even considering previous approaches implement some 
of these ideas (most isolated), an integrated environment for experimentation contin
ues as an open problem. While we start some development in this direction with our 
experimental package and with ideas on Chapter 4 and all the experiments, we have 
considerable work to do and many challenges to overcome: facilitate the reproduction 
and comparisons between approaches, to handle the massive amount of data to process 
and stay scalable, to integrate feature extraction process with ML-based methods, and 
many others.

8.2 Main Contributions
The main contributions of this work are in:

□ Chapter 5, where we discuss most of the proof of concept contributions, especially 
in sections with answers for the research questions:

1. RQ2 shows the application of a new feature based on Code Entropy and LtR 
to produce BL scores;

2. RQ3 shows the application of different data balance strategies on the training 
with LtR algorithms to produce BL scores;

3. RQ4 shows the influence of parameters tuning on LtR-based BL scores;

4. With the preliminary experiments of Chapter 5 we observe some gains in the 
performance of LtR algorithms for BL, applying some of the strategies raised 
in Chapter 4.

□ Chapter 4 and Chapter 7, where we present:
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1. A new approach to deal with the assessment of BL methods using bug datasets 
and benchmarks, guided by bug characteristics;

2. A proof of concept showing the influence of the bug types composing a dataset 
in the assessment of research approaches on typical software development 
tasks like BL;

3. The experimental package (in development) briefly summarized in Chapter 4: 
this implementation was essential to test ideas and obtain results for analysis 
and comparisons of BL approaches;

4. A proof of concept on the integration of diverse sources of information for 
BL based on (YE; BUNESCU; LIU, 2016) work and proposing the leverage 
of the knowledge about the bugs' nature composing the target dataset.

□ Chapter 6, where we present:

1. A new approach to deal with assessment in datasets and benchmarks for 
BL: in the dissection of Defects4J, we observed there are commonalities and 
variabilities in the bug datasets that we should explore to improve BL and 
other research areas (e.g., APR).

2. We expanded the work with Defects4J Dissection, applying some of those 
ideas on a larger dataset, confirming the findings in Defects4J, and comple- 
menting with new co-occurrences analysis involving repair actions and repair 
patterns.

□ The papers (SOBREIRA et al., 2018) and (MADEIRAL et al., 2018) that qual- 
ifies as collaboration work was fundamental for many achievements and previous 
contributions, especially:

1. A taxonomy to characterize bug datasets in terms of their patches composi- 
tion;

2. A tool to extract patch characteristics from a bug dataset, e.g., repair action, 
repair patterns, and size dimensions;

8.3 Future Work
We can conduct additional experiments considering: 1) the same approach from 

Chapter 7, but with the characteristics of the bugs to explore more repair patterns, repair 
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actions, and the other dimensions from the dissection analysis of a dataset; 2) exploring 
different datasets to show if our findings would sustain more contexts; 3) extending 
the experiments from Chapter 5 for better coverage of LR-dataset; 4) increment the 
previous extension with the procedures from Chapter 7, so we can test the influence of 
bugs' characteristics on LtR strategies; 5) incorporating many of the ideas raised ideas 
in Chapter 4 in the experimental package, e.g., developing a module for classifying and 
pre-processing bug reports through the analysis of the bug report content and with query 
rewriting techniques.

More development, refactoring, and architecting are needed so the experimental pack- 
age would become a practical framework for BL, using most of the raised ideas in Chap- 
ter 4 and allowing support assessment of past and new approaches. The scalability, 
primarily to improve processing time, memory usage, and storage requirements, is the 
main issue in the experimental package's new architecture. After, we should make it 
available for further development by the research community.

Some extensions to this work are in progress or planned as 1) a paper to publish the 
analysis in Chapter 6, showing the extension of Defects4J dissection to LR-dataset, 2) 
another paper with extensions and additional data from Chapter 7 after the completion 
of additional experiments to confirm the influence of Repair Patterns and Repair Actions 
on BL, covering a more significant part of LR-dataset, 3) the additional refactoring 
and optimization of the experimental package would make it viable to complement 
and extend the experiments in Chapter 5, especially with considerations about the bug 
characteristics, similar to the experiments from Chapter 7. We plan another extension 
4) to publish a paper exposing the experimental package in detail, complementing what 
we briefly summarize in Chapter 4, but only after some refactoring and re-architecting 
to scale better with large datasets and to polish the codebase.

8.4 Bibliographical Production

Our work in (SOBREIRA et al., 2018) exposes many intrinsic properties of bug 
patches in the Defects4J dataset. Therefore, we can use the insights from that study to 
clarify how approaches to BL behave depending on the bugs' nature. Until the end of 
2021, this paper accounts for more than 80 citations.

Our subsequent work in (MADEIRAL et al., 2018) makes it possible to extend part 
of the analysis done in (SOBREIRA et al., 2018) to other datasets of bugs beyond 
Defects4J through the automatic detection of repair patterns. This work was named the 
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best paper in the 6th Workshop on Software Visualization, Evolution and Maintenance 
(VEM 2018), co-located with the 9th Brazilian Conference on Software: Theory and 
Practice (CBSoft'18).
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