
Análise de Performance na Localização de Bugs
apoiada pela Dissecção de Conjuntos de Dados

Victor Sobreira

UFU
Universidade Federal de Uberlândia

Faculdade de Computação
Programa de Pós-Graduação em Ciência da Computação

Uberlândia
2022

Victor Sobreira

Análise de Performance na Localização de Bugs
apoiada pela Dissecção de Conjuntos de Dados

Tese de doutorado apresentada ao Programa de
Pós-graduação da Faculdade de Computação
da Universidade Federal de Uberlândia como
parte dos requisitos para a obtenção do título
de Doutor em Ciência da Computação.

Área de concentração: Ciência da Computação

Orientador: Marcelo de Almeida Maia

Uberlândia
2022

Ficha Catalográfica Online do Sistema de Bibliotecas da UFU
_____________ com dados informados pelo(a) próprio(a) autor(a).______________
S677 Sobreira, Victor, 1981-
2022 Analysis of Bug Localization Performance Supported by

Dataset Dissection [recurso eletrônico] / Victor
Sobreira. - 2022.

Orientador: Marcelo de Almeida Maia.
Tese (Doutorado) - Universidade Federal de Uberlândia,

Pós-graduação em Ciência da Computação.
Modo de acesso: Internet.
Disponível em: http://doi.org/10.14393/ufu.te.2022.60
Inclui bibliografia.
Inclui ilustrações.

1. Computação. I. Maia, Marcelo de Almeida,1969-,
(Orient.). II. Universidade Federal de Uberlândia. Pós-
graduação em Ciência da Computação. III. Título.

CDU: 681.3

Bibliotecários responsáveis pela estrutura de acordo com o AACR2:

Gizele Cristine Nunes do Couto - CRB6/2091

http://doi.org/10.14393/ufu.te.2022.60

UNIVERSIDADE FEDERAL DE UBERLÂNDIA - UFU
FACULDADE DE COMPUTACAO - FACOM

PROGRAMA DE POS-GRADUACAO EM CiEnCIA DA
COMPUTACAO - PPGCO

The undersigned hereby certify they have read and recommend to the
PPGCO for acceptance the dissertation entitled “Analysis of Bug Local-
ization Performance Supported by Dataset Dissection” submitted
by “Victor Sobreira” as part of the requirements for obtaining the PhD's
degree in Computer Science.

Uberlandia, January 24, 2022.

Supervisor: _______________________
Prof. Marcelo de Almeida Maia, Ph.D.

Universidade Federal de Uberlândia

Examining Committee Members:

Prof. Eduardo Figueiredo, Ph.D.
Universidade Federal de Minas Gerais

Prof. Fabiano Azevedo Dorça, Ph.D.
Universidade Federal de Uberlâandia

Prof. Flávio de Oliveira Silva, Ph.D.
Universidade Federal de Uberlâandia

Prof. Uiráa Kulesza, Ph.D.
Universidade Federal do Rio Grande do Norte

UNIVERSIDADE FEDERAL DE UBERLÂNDIA
Coordenação do Programa de Pós-Graduação em Ciência da Computação

Av. João Naves de Ávila, n° 2121, Bloco 1A, Sala 243 - Bairro Santa Mônica, Uberlândia-MG, CEP 3840O-902
Telefone: (34) 3239-4470 - www.ppgco.facom.ufu.br - cpgfacom@ufu.br (D

ATA DE DEFESA - PÓS-GRADUAÇÃO

Programa de Pós-
Graduação em: Ciência da Computação

Defesa de: Tese, 1/2022, PPGCO

Data: 24 de janeiro de 2022 Hora de início: 08:30 Hora de 12:50encerramento:
Matrícula do
Discente: 11423CCP007

Nome do
Discente: Victor Sobreira

Título do Trabalho: Análise de Performance na Localização de Bugs apoiada pela Dissecção de Conjuntos de Dados
Área de
concentração: Ciência da Computação

Linha de pesquisa: Engenharia de Software
Projeto de
Pesquisa de
vinculação:

-

Reuniu-se, por videoconferência, a Banca Examinadora, designada pelo Colegiado do Programa de Pós-graduação em
Ciência da Computação, assim composta: Professores Doutores: Fabiano Azevedo Dorça - FACOM/UFU, Flávio de
Oliveira Silva - FACOM/UFU, Eduardo Magno Lages Figueiredo - DCC/UFMG, Uirá Kulesza - DIMAp/UFRN e Marcelo de
Almeida Maia - FACOM/UFU orientador do candidato.

Os examinadores participaram desde as seguintes localidades: Eduardo Magno Lages Figueiredo - Belo
Horizonte/MG; Uirá Kulesza - Natal/RN; Fabiano Azevedo Dorça, Flávio de Oliveira Silva e Marcelo de Almeida Maia -
Uberlândia/MG. O discente participou da cidade de Uberlândia/MG.

Iniciando os trabalhos o presidente da mesa, Prof. Dr. Marcelo de Almeida Maia, apresentou a Comissão Examinadora
e o candidato, agradeceu a presença do público, e concedeu ao Discente a palavra para a exposição do seu trabalho.
A duração da apresentação do Discente e o tempo de arguição e resposta foram conforme as normas do Programa.

A seguir o senhor presidente concedeu a palavra, pela ordem sucessivamente, aos examinadores, que passaram a
arguir o candidato. Ultimada a arguição, que se desenvolveu dentro dos termos regimentais, a Banca, em sessão
secreta, atribuiu o resultado final, considerando o candidato:

Aprovado.

Esta defesa faz parte dos requisitos necessários à obtenção do titulo de Doutor.

O competente diploma será expedido após cumprimento dos demais requisitos, conforme as normas do Programa, a
legislação pertinente e a regulamentação interna da UFU.

Nada mais havendo a tratar foram encerrados os trabalhos. Foi lavrada a presente ata que após lida e achada
conforme foi assinada pela Banca Examinadora.

Documento assinado eletronicamente por Marcelo de Almeida Maia, Professor(a) do Magistério Superior, em
24/01/2022, às 17:08, conforme horário oficial de Brasília, com fundamento no art. 6°, § 1°, do Decreto n° 8.539,
de 8 de outubro de 2015.

Documento assinado eletronicamente por Flávio de Oliveira Silva, Professor(a) do Magistério Superior, em
25/01/2022, às 07:13, conforme horário oficial de Brasília, com fundamento no art. 6°, § 1°, do Decreto n° 8.539,
de 8 de outubro de 2015.

http://www.ppgco.facom.ufu.br
mailto:cpgfacom@ufu.br
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm

assinatura
eletrônica

Documento assinado eletronicamente por Uirá Kulesza, Usuário Externo, em 25/01/2022, às 10:11, conforme
horário oficial de Brasília, com fundamento no art. 6°, § 1°, do Decreto n° 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Eduardo Magno Lages Figueiredo, Usuário Externo, em 25/01/2022, às
10:21, conforme horário oficial de Brasília, com fundamento no art. 6°, § 1°, do Decreto n° 8.539, de 8 de outubro
de 2015.

Documento assinado eletronicamente por Fabiano Azevedo Dorça, Professor(a) do Magistério Superior, em
03/02/2022, às 09:57, conforme horário oficial de Brasília, com fundamento no art. 6°, § 1°, do Decreto n° 8.539,
de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site https://www.sei.ufu.br/sei/controlador externo.php?
acao=documento conferir&id orgao acesso externo=0, informando o código verificador 3322808 e o código CRC
77301D0B.

Referência: Processo n° 23117.004012/2022-15 SEI n° 3322808

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
https://www.sei.ufu.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

À minha querida e amada Alice.

Agradecimentos

Agradeço a Deus e a todos que direta ou indiretamente contribuíram para o desen
volvimento e conclusão deste trabalho.

Agradeço ao meu orientador Marcelo de Almeida Maia pela oportunidade, solicitude e
por acreditar, em alguns momentos até mais que eu, que esta “parte” da pesquisa pudesse
ser finalizada. Agradeço aos membros da banca de qualificação, Celso Gonçalves Camilo
Júnior e Marcelo Keese Albertini, pelas sugestões e contribuições para a sequência do
trabalho naquele momento. Neste sentido, também agradeço aos membros da banca
de defesa, Eduardo Figueiredo, Fabiano Azevedo Dorça, Flávio de Oliveira Silva e Uirá
Kulesza, pela atenção, dedicação e cuidado que culminaram em contribuições bem vindas
para a lapidação do texto final da tese.

Agradeço ao PPGCO, aos membros do colegiado, à coordenação antiga e atual por
toda a compreensão e por ter permitido que pudesse me manter vinculado ao programa
até a conclusão do trabalho. Agradeço especialmente ao técnico Erisvaldo Fialho por
sempre ser solicito e prestativo em todas as minhas requisições e pedidos e também ao
técnico Alessandro Gonçalves da Silva que salvou minha pele várias vezes em questões
técnicas com os servidores onde rodei meus experimentos . Agradeço também à FACOM e
à UFU que permitiram a licença para a qualificação, fundamental para o desenvolvimento
de grande parte do trabalho e, sem a qual, teria sido quase impossível uma conciliação
com as atividades docentes regulares.

Agradeço aos colegas, especialmente do LASCAM, que em muitos momentos servi
ram de incentivo, fizeram boas colaborações ou simplesmente propiciaram boas conver
sas, reflexões e discussões. Que esses momentos possam se repetir mais. Parabenizo
aqueles que, nessa janela comum de passagem pelo programa, já haviam concluído seus
trabalhos (Eduardo, Klérisson, Allyson, Fernanda e Rodrigo) e desejo boa sorte e boa

conclusão aqueles que no momento dessa escrita ainda estavam desenvolvendo ou fina
lizando (Adriano e Carlos Eduardo).

Agradeço especialmente aos meus colaboradores no trabalho com o “dissection” do
Defects4J cujo tema, naquele momento da colaboração, ainda parecia um pouco distante
do tema principal de meu projeto de tese, mas que acabou sendo fundamental para a
conclusão, inclusive pelos desdobramentos do segundo artigo encabeçado pela Fernanda
e com as importantes contribuições de Thomas. Nesses momentos, vemos o quanto a
colaboração deveria ser mais valorizada, incentivada e estimulada para trabalhos que
busquem fazer a diferença em suas áreas. Muito obrigado Fernanda Madeiral, Thomas
Durieux e Martin Monperrus.

Agradeço a meus pais, Izilda e Tadeu, por terem sempre me incentivado e apoiado
nos estudos. As sementes plantadas muito cedo foram o que permitiram enraizar va
lores como a responsabilidade, o compromisso, a dedicação, a disciplina e a persistência.
Agradeço a minha irmã Vickele, que pôde estar presente junto a meus pais, nos muitos
momentos que estive distante e que, em sua maioria, estava focado no trabalho. Neste
ínterim, o nascimento e presença da Helena, ajudou a alegrar, preencher lacunas e trans
por os vários percalços que a vida trouxe a todos.

Agradeço à minha esposa, Mirella, que esteve ao meu lado todo esse tempo. Vivemos
momentos de todo tipo, dificuldade e intensidade. Vivemos e superamos desafios e situ
ações que nem imaginávamos. Agradeço também por ter sido forte, resistido e acreditado
que toda dor é passageira e que com fé, esperança e amor verdadeiro podemos transpor
os maiores obstáculos. Agradeço especialmente por ter me dado o meu maior presente,
minha filha Alice, que é minha fonte de inspiração, força e alegrias. À Alice agradeço
por todos os momentos que vivemos, pelos aprendizados, pela nova perspectiva de vida
e pelos vários sopros de esperança, persistência e fé que me inspirou. Contem sempre
comigo em suas caminhadas e que sejam repletas de momentos felizes e memoráveis.

Agradeço aos amigos verdadeiros, aos irmãos e todos que, com uma palavra sábia, um
incentivo ou com um simples gesto, colaboraram e continuam colaborando na caminhada
e na superação do desafio diário de sempre seguir em frente, aparar nossas asperezas, de
senvolver nossas virtudes e, com isso, persistir no ideal de busca da felicidade humana.

“Tudo passa, tudo passará [...]
Temos muito ainda por fazer

Não olhe pra trás
Apenas começamos

O mundo começa agora
Apenas começamos”

(Metal contra as nuvens - Russo, R.; Bonfá, M.; Vil la-Lobos, D.; Neto, E. S.)

Resumo

Encontrar e corrigir a causa de falhas em software continua sendo um grande desafio.
Tais tarefas exigem dos desenvolvedores esforço e experiência equivalentes as necessárias
para o desenvolvimento de novas funcionalidades. Nas últimas décadas, a comunidade
de pesquisa esteve ativa na produção de abordagens para apoiar a depuração de soft
ware. A tarefa de Localização de Faltas (LF) é um passo essencial, independente da
abordagem utilizada para reparo de programas (automática ou manual). Entretanto, as
abordagens automatizadas de localização são críticas para tornar o processo mais eficaz
e eficiente. Existem muitas abordagens para a LF automática e todas têm um alvo
comum: melhorar a precisão do ranqueamento de componentes de software suspeitos de
conter uma falta. Uma questão recorrente é a indefinição sobre as razões do sucesso ou
fracasso das abordagens sobre o conjunto de dados de faltas avaliado, uma vez que a
maioria dos métodos não considera a natureza e as características intrínsecas das fal
tas. A discussão ainda é muito focada em ganhos de desempenho nos comparativos
com o estado da arte. Este trabalho visa apoiar as tarefas de reparo de software, com
foco primário no suporte automatizado à LF. Primeiro, investigamos as características
associadas as faltas comumente utilizadas na avaliação de estratégias de LF (o que se
estende também ao reparo automático de programas). Então, analisamos as relações
entre essas características e como influenciam a performance da LF. Partimos de uma
abordagem estática de LF, baseada em algoritmos de aprendizado de rankings, Learning
to Rank (LtR), e tendo relatórios de bugs como entrada do processo. Inicialmente, ana
lisamos um conhecido conjunto de dados de faltas, Defects4J, de onde extraímos várias
características das faltas. Posteriormente, analisamos tais características em um con
junto de dados maior, o qual referenciamos como LR-dataset. Então, levantamos várias
estratégias e alternativas para a melhoria dos rankings de arquivos suspeitos de falta

e gerados por abordagens de LF. Por exemplo, o uso de novas características (como a
Entropia do Código), o ajuste de hiper-parâmetros e o balanceamento de dados para
treinamento em abordagens de aprendizado de máquina e, finalmente, a amostragem
de falhas guiada pela análise de códigos de reparo. Para isso, testamos as alternativas
para melhoria dos rankings de componentes suspeitos por meio de um ambiente cons
truído para experimentação e reprodução de estratégias para a LF. Mostramos que as
estratégias de pré-processamento de relatórios de bugs e dos conjuntos de dados, além
do ajuste de diferentes algoritmos de LtR, podem produzir resultados diferentes para os
rankings mesmo usando abordagens prévias de LF. Além disso, as características das
falhas amostradas para a avaliação podem influenciar significativamente o ranqueamento
dos arquivos suspeitos, por exemplo, dependendo do tipo de padrões e ações de reparo
necessários para a correção das falhas envolvidas. Este é o caso do padrão de reparo
Missing Not-Null Check cuja presença em uma das amostras experimentais gerou um
ranking de arquivos suspeitos marcando 27.22 pontos percentuais acima da linha base,
ou seja, quando nós não consideramos a presença (ou ausência) do padrão. Esses re
sultados apontam para oportunidades de revisão das abordagens prévias de LF sob as
lentes da dissecção dos conjuntos de dados utilizados na avaliação, com potencial de
novos entendimentos, interpretações e composições de estratégias para LF.

Palavras-chave: Localização de Bug, Reparo Automático de Software, Análise de
Reparos, Dissecção de Conjuntos de Dados de Bugs, Depuração de Software, Apren
dizado de Rankings.

Abstract

Finding and fixing software bugs still is a big challenge. These tasks demand de-
velopers as much effort and experience as required to develop new functionality. Last
decades, the research community actively produced approaches to support the debugging
process. The Bug Localization (BL) task is an essential step, wherever is the applied
software repair approach (automated or manual). However, automated techniques for
BL are critical in turning the process more effective and efficient. There are many ap-
proaches to automated BL, and all of them have one frequent goal: to improve accuracy
performance in classifying software components suspected of containing bugs. One re-
current issue is the lack of clarity about the reasons for the success or failure of the
approaches on the assessed bug dataset since most methods do not consider the nature
and intrinsic characteristics of the bugs. The discussion is still too focused on perfor
mance gains compared to the previous state-of-the-art. This work aims to contribute
to software repair tasks, primarily focusing on supporting the automated BL. First,
we explored characteristics of bugs usually applied in the assessment of the localization
strategies (also extended to automated program repair). Then, we analyze the rela-
tionships between these bug characteristics and their influence on the performance of
localization strategies. We start from a static information-based BL approach, based
in LtR algorithms, having bug reports as input to the localization process. Initially,
we analyze a well-known bug dataset, Defects4J, from where we extract various bugs’
characteristics. Next, we analyzed these characteristics in a larger dataset referred to as
LR-dataset. Then, we raise various strategies and alternatives to improve the ranking
of suspect buggy files and generated by BL approaches. Some examples are the use of
new features (e.g., Code Entropy), the tuning of hyperparameters and the data balance
for training in Machine Learning (ML) based approaches, and, finally, bugs’ sampling

guided by patch analysis. For that, we tested the alternatives to improve the ranking
of suspected components with an environment built for experimenting with and repro-
ducing the BL strategies. We show that pre-processing strategies on bug reports and
also on the dataset, besides the tuning of different LtR algorithms, can produce different
ranking results even with past BL approaches. Still, characteristics of the bugs sampled
for assessment can influence ranking scores of buggy suspected files, e.g., depending on
the type of associated repair patterns and repair actions required to fix the bugs. For
example, this is the case for the Missing Not-Null Check repair pattern whose presence
in an experimental sample produces a suspicious score ranking 27.22 percentual points
above the baseline when we do not consider the presence (or absence) of the pattern.
These results point to opportunities to review the BL past approaches under the lens
of dataset dissection applied in the assessment and with a potential to new insights,
interpretations, and compositions of strategies for BL.

Keywords: Bug Localization, Automatic Program Repair, Patch Analysis, Bugs’ Dataset
Dissection, Debugging, Learn-to-Rank.

List of Figures

Figure 1 - Chapters Roadmap... 28
Figure 2 - Bug Report for the bug LANG-552 from Apache Commons Lang project. 31
Figure 3 - Patch for the bug LANG-552 from Apache Commons Lang project. . 32
Figure 4 - GumTree generated AST representing the patch for the bug LANG-

552 shown in Figure 3.. 34
Figure 5 - Patch for the bug Math-58 from Apache Commons Math project. . . 34
Figure 6 - Patch for the bug Math-41 from Apache Commons Math project. . . 35
Figure 7 - Patch for the bug Closure-13 from Closure Compiler project............ 35
Figure 8 - Patch for the bug Lang-17 from Apache Commons Lang project. . . . 36
Figure 9 - Static approaches for BL until 2021. .. 62
Figure 10 - Dynamic approaches for BL until 2021.. 62
Figure 11 - Hybrid approaches for BL until 2021... 63
Figure 12 - Distribution of the number of lines in each patch of Defects4J projects. 69
Figure 13 - Distribution of the chunks composing each patch of Defects4J projects. 70
Figure 14 - Spreading distribution on each patch of Defects4J projects.................. 70
Figure 15 - Repair actions incidence in patches from Defects4J projects................ 71
Figure 16 - Distribution of the number of repair patterns by patch of Defects4J

projects... 71
Figure 17 - BL process overview and associated modules of the experimental pack-

age. .. 80
Figure 18 - SVM-light format. ... 83
Figure 19 - Mean Average Precision (MAP), Mean Reciprocal Rank (MRR), Normalized

Discounted Cumulated Gain (NDCG)@10 of AspectJ and Eclipse
Standard Widget Toolkit (SWT) features... 95

Figure 20 - the percentual of success on finding relevant items in the top positions
of a ranking limited to N items (Top-N) of AspectJ and SWT features 96

Figure 21 - MAP, MRR, Top-{1,5,10} results on 300 bug reports of SWT (200
for training and 100 for testing) .. 98

Figure 22 - NDCG@10 for MART (Lambda and Obliviuos) and Random Forest
algorithms from QuickRank and RankLib tools...................................... 100

Figure 23 - NDCG@10 for Stochastic, ListNet, DART, Linear Regression, Coor-
dinate Ascent, RankNet, RankBoost, AdaRank from QuickRank and
RankLib tools)... 101

Figure 24 - Tuning LambdaMART (RankLib) on 300 bug reports of SWT: MAP
and NDCG@10 performance changing Shrinkage {0.05, 0.5, 0.8} and
Number of Leaves (NL) {1, 5, 10}. .. 106

Figure 25 - Tuning LambdaMART on SWT (RankLib): MAP performance chang-
ing Number of Trees (NT) from 32 doubling until 512 and Number of
Leaves (NL) = {1, 10}.. 107

Figure 26 - Average computing time distribution per bug report for AspectJ,
SWT, and Tomcat... 108

Figure 27 - Distribution of the number of lines of the patches limited to a maxi-
mum size... 114

Figure 28 - Distribution of the number of code lines by type in 20,138 patches
of Learning to Rank approach from Ye, Bunescu e Liu (2016) (LR)-
dataset. .. 115

Figure 29 - Overall patches distribution according to the type of code lines affected.116
Figure 30 - Patches according to the type of code lines affected in each project. . 116
Figure 31 - Distribution of the number of chunks of the patches. 118
Figure 32 - Distribution of chunks spreading of the patches...................................... 119
Figure 33 - Repair actions found in the LR-dataset. ... 121
Figure 34 - Grouped repair actions found in LR-dataset... 124
Figure 35 - Grouped repair actions incidence on each project................................... 125
Figure 36 - Repair patterns found in Defects4j Dissection... 126
Figure 37 - Repair patterns with variations found in Defects4j Dissection. 126
Figure 38 - Repair patterns found in LR-dataset.. 128
Figure 39 - Grouped repair patterns found in LR-dataset... 128
Figure 40 - Grouped Repair Patterns incidence on LR-dataset projects. 129

Figure 41 - Most common Repair Actions co-occurrences for Wrong Method Ref-
erence repair pattern in a) AspectJ and in b) Eclipse Business Intel-
ligence and Reporting Tools (BIRT)... 132

Figure 42 - Most common Repair Actions co-occurrences for Wrong Method Ref-
erence repair pattern in a) Eclipse and b) Eclipse Java Development
Tools (JDT). ... 133

Figure 43 - Most common Repair Actions co-occurrences for Wrong Method Ref-
erence repair pattern in a) SWT and b) Tomcat..................................... 134

Figure 44 - Repair Patterns variations: a) Conditional Block Return Add (1..5);
b) Conditional Block Return Add (6..10); c) Conditional Block Ex-
ception Add; d) Conditional Block Removal.. 136

Figure 45 - Repair Patterns variations: a) Conditional Block Others Add (1..4);
b) Conditional Block Others Add (5..8). ... 137

Figure 46 - Repair Patterns variations: a) Missing Null-Check; b) Constant Change;
c) Code Moving. ... 137

Figure 47 - Repair Patterns variations: Single Line a) 1 to 11; b) 12 to 22; c)
Expression Fix... 138

Figure 48 - Repair Patterns variations: a) Wraps-with; b) Unwraps-with............... 139
Figure 49 - Repair Patterns variations: Wrong Method Reference a) 1 to 5; b) 6

to 10; c) Wrong Variable Reference... 140
Figure 50 - Bug Report for the bug 7861 from Eclipse, with a snippet of the patch

matching the Wrong Variable Reference repair pattern.......................... 141
Figure 51 - Bug Report for the bug 187445 from BIRT, with a snippet of the

patch matching the Logic Expression Expansion and Copy Paste re-
pair patterns... 142

Figure 52 - Patterns co-occurrence without outliers in: a) AspectJ and b) BIRT. 143
Figure 53 - Patterns co-occurrence without outliers in a) Eclipse Platform UI and

b) JDT.. 144
Figure 54 - Patterns co-occurrence without outliers in a) SWT and b) Tomcat. . 145
Figure 55 - Applications of Defects4J Dissection study by research area until

November of 2021. .. 146
Figure 56 - Bug reports categories: 1) Functional vs Non-Functional; 2) With or

Without LR-Results.. 153
Figure 57 - Bug Report for the bug 117526 from Eclipse Platform UI...................... 154
Figure 58 - Patch for the bug 117526 in files from Eclipse project............................ 155

Figure 59 - Score rankings differences for Wraps with If repair pattern in AspectJ
(Functional Code (FC)+Non-Functional Code (NFC)).......................... 177

Figure 60 - Score rankings differences for Wraps with If repair pattern in Tomcat
(FC+NFC)... 178

Figure 61 - Score rankings differences for Wrong Method Reference repair pattern
in AspectJ (FC+NFC).. 179

Figure 62 - Score rankings differences for Wrong Method Reference repair pattern
in Tomcat (FC+NFC)... 180

Figure 63 - Score rankings differences for Wrong Var Reference repair pattern in
AspectJ (FC+NFC).. 181

Figure 64 - Score rankings differences for Wrong Var Reference repair pattern in
Tomcat (FC+NFC). ... 182

Figure 65 - Score rankings differences for Missing No t-Nul l Check Reference repair
pattern in AspectJ (FC+NFC).. 183

Figure 66 - Score rankings differences for Missing No t-Nul l Check Reference repair
pattern in Tomcat (FC+NFC). .. 184

List of Tables

Table 1 - Summary of Static approaches for BL.. 59
Table 2 - Summary of Dynamic approaches for BL... 60
Table 3 - Summary of Hybrid approaches for BL... 60
Table 4 - Imbalanced data in LR-dataset. ... 72
Table 5 - Original features in (YE; BUNESCU; LIU, 2016). 90
Table 6 - Best features per project according with (YE; BUNESCU; LIU, 2016) 90
Table 7 - Entropy features computed in exploratory experiments. 91
Table 8 - Selection and weighting of features from Table 6.................................... 92
Table 9 - Performance variation of SVMRank on SWT by tuning the algorithm

with capacity parameter in LR-All setting. .. 99
Table 10 - Performance statistics from the tuning of LambdaMART on SWT us-

ing baseline and ^2o.i entropy settings.. 103
Table 11 - Parameters found in the best performance settings while tuning Lamb-

daMART on SWT bug reports.. 104
Table 12 - Descriptive statistics for 21,177 bug patches. ... 120
Table 13 - Descriptive statistics for 20,138 bug patches, without outlier patches

(more than 60 lines). ... 120
Table 14 - Repair actions acronyms and full names.. 122
Table 15 - Repair actions acronyms and grouping names. 123
Table 16 - Repair patterns, acronyms and groups. .. 127
Table 17 - LR-dataset with and without outliers.. 156
Table 18 - LR-dataset sampling candidates... 157
Table 19 - LR-dataset samples representativeness for AspectJ and Tomcat. . . . 158

Table 20 - Wraps with If in AspectJ and Tomcat, H0 result for Mann-Whitney
(MW) test.. 164

Table 21 - Wrong Method Reference in AspectJ, Tomcat and BIRT: H0 result for
Mann-Whitney (MW) test... 165

Table 22 - Wrong Variable Reference in AspectJ, H0 result for Mann-Whitney
(MW) test.. 166

Table 23 - Missing Not-Null Check in AspectJ, H0 result for Mann-Whitney (MW)
test.. 167

Table 24 - Impact of the presence and absence of the repair patterns in AspectJ
and Tomcat based on the MAP scores... 169

Table 25 - Impact of the presence and absence of the repair patterns in AspectJ
and Tomcat based on the MRR scores. .. 170

Table 26 - Impact of the presence and absence of the repair patterns in AspectJ
and Tomcat based on the NDCG@1 scores.. 171

Table 27 - Impact of the presence and absence of the repair patterns in AspectJ
and Tomcat based on the NDCG@1 scores.. 172

Table 28 - Impact of the presence and absence of the repair patterns in AspectJ
and Tomcat based on the NDCG@10 scores. ... 173

Table 29 - Impact of the presence and absence of the repair patterns in AspectJ
and Tomcat based on the Top-1 scores. .. 174

Table 30 - Impact of the presence and absence of the repair patterns in AspectJ
and Tomcat based on the Top-1 scores. .. 175

Table 31 - Impact of the presence and absence of the repair patterns in AspectJ
and Tomcat based on the Top-10 scores.. 176

Acronyms list

ADD Automatic Diff Dissection

API Application Programming Interface

APR Automated Program Repair

AST Abstract Syntax Tree

BIRT Eclipse Business Intelligence and Reporting Tools

BL Bug Localization

BLUiR Bug Localization Using information Retrieval

DL Deep Learning

DNN Deep Neural Networks

FL Fault Localization

FC Functional Code

NFC Non-Functional Code

GB Giga Bytes

HITS Hyperlink -Induced Topic Search

IDE Integrated Development Environment

IR Information Retrieval

IRBL Information Retrieval-based Bug Localization

JDT Eclipse Java Development Tools

JSON JavaScript Object Notation

JUNG Java Universal Network/Graph Framework

LDA Latent Dirichlet Allocation

LF Localização de Faltas

LM Language Models

LR Learning to Rank approach from Ye, Bunescu e Liu (2016)

LSI Latent Semantic Index

LtR Learning to Rank

MAP Mean Average Precision

ML Machine Learning

MRR Mean Reciprocal Rank

NDCG Normalized Discounted Cumulated Gain

NLTK Natural Language Toolkit

ORM Object Relational Mapping/Mapper

PPD Patch Pattern Detector

RQ Research Question

SBFL Spectrum-Based Fault Localization

SUM Smoothed Unigram Model

SWT Eclipse Standard Widget Toolkit

Top-N the percentual of success on finding relevant items in the top positions of a
ranking limited to N items

VSM Vector Space Model

Contents

1 INTRODUCTION ... 21
1.1 Motivation ... 21
1.2 Objectives ... 23
1.2.1 General Objectives .. 23
1.2.2 Specific Objectives .. 23
1.3 Thesis Declaration Proposal ... 24
1.4 Research Summary, Assumptions, and Questions 24
1.5 Contributions ... 26
1.6 Thesis Organization ... 27

2 BACKGROUND .. 29
2.1 Essential concepts about Bug Localization 29
2.1.1 What is a bug? ... 29
2.1.2 Bug Reports ... 30
2.1.3 Where is a bug located? What is it found? ... 33
2.1.4 How to find bugs? .. 34
2.2 Bug datasets .. 36
2.2.1 Defects4J ... 37
2.2.2 LR-dataset .. 37
2.3 Performance metrics in Bug Localization 38
2.3.1 Precision, Recall and F-measure ... 38
2.3.2 Precision@k ... 39
2.3.3 Top-N .. 40
2.3.4 MAP .. 40

2.3.5 MRR .. 41
2.3.6 NDCG ... 41
2.3.7 Other metrics ... 43
2.4 Machine Learning Approaches .. 43
2.4.1 Learning to Rank ... 43
2.4.2 Language Models ... 45
2.5 Final Considerations .. 45

3 STRATEGIES FOR BUG LOCALIZATION 47
3.1 Static Information-Based Approaches .. 47
3.1.1 LR ... 48
3.1.2 AmaLgam+ .. 49
3.1.3 DNNLoc .. 50
3.1.4 ConCodeSe ... 51
3.1.5 NSGA-II .. 52
3.1.6 Locus .. 53
3.1.7 BLIA .. 53
3.1.8 Bug Localization Using information Retrieval (BLUiR) 54
3.1.9 BugLocator ... 55
3.2 Dynamic Information-Based Approaches 55
3.2.1 Tarantula .. 55
3.2.2 D* ... 56
3.3 Hybrid approaches ... 56
3.3.1 EnSpec ... 57
3.3.2 AML .. 57
3.4 Reference and chronology of BL approaches 58
3.5 Final considerations .. 58

4 ON THE INFLUENTIAL FACTORS FOR BUG LOCAL-
IZATION EXPLORATORY ASSESSMENT 65

4.1 Bug Reports' Pre-processing ... 65
4.2 Dataset Quality Assessment and Source Code Filtering 66
4.3 Bug Classification Schemes .. 67
4.4 Handling imbalanced data .. 72
4.5 Data Splitting Strategies ... 73
4.6 Source Code Representation ... 74

4.7 New Features for Bug Localization ... 75
4.7.1 Entropy ... 75
4.7.2 Word2Vec, Glove and ConceptNet ... 76
4.7.3 Commits and Patches ... 77
4.7.4 Other features ... 78
4.8 LtR Tools and Models for BL ... 78
4.9 Experimental Package for Bug Localization Assessment 79
4.9.1 Experimental Package Overview .. 79
4.9.2 Input .. 81
4.9.3 Feature Extraction ... 82
4.9.4 LtR Input ... 82
4.9.5 LtR Output .. 83
4.10 Final Considerations ... 86

5 STRATEGIES FOR LEARNING-TO-RANK BUG LOCAL-
IZATION IMPROVEMENT .. 87

5.1 Evaluation Method .. 87
5.1.1 Dataset ... 88
5.1.2 Data Preparation and Cleaning ... 88
5.1.3 Experiment Configurations .. 89
5.1.4 Metrics Extracted ... 93
5.1.5 Runtime Environment ... 93
5.2 Results ... 93
5.2.1 RQ1: What is the performance of the entropy features compared to

other features? ... 93
5.2.2 RQ2: The use of entropy feature can improve the results obtained by

past learning approaches to BL? ... 95
5.2.3 RQ3: What is the impact of data balance strategies in the learning

process? .. 97
5.2.4 RQ4: How does the tuning of LtR algorithms impact the BL perfor

mance? 99
5.2.5 RQ5: How long does it take to conclude each step in the process (fea-

ture extraction, ranking generation, training, validation, and testing)? 105
5.3 Final Considerations .. 109

6 ANALYSIS OF REPAIR ACTIONS AND PATTERNS 111
6.1 The role of patches on Bug Localization ... 111
6.2 Understanding the nature of the bugs through their patches . 112
6.3 Analysis dimensions of a bug patch for Bug Localization . . . 112
6.3.1 Size dimensions ... 113
6.3.2 Spreading .. 114
6.3.3 Size and Spreading Dimensions' Statistics .. 118
6.3.4 Repair actions .. 120
6.3.5 Repair patterns ... 124
6.4 Patterns composition ... 129
6.4.1 Repair Actions .. 130
6.4.2 Patterns Co-occurrences ... 135
6.5 Actual applications for the Defects4J Dissection study 141
6.6 Related Work .. 142
6.7 Final Considerations .. 148

7 INFLUENCE OF REPAIR PATTERNS ON BL APPROACHES149
7.1 Research Questions ... 149
7.2 Evaluation Method ... 150
7.2.1 Dataset preparation and cleaning .. 150
7.2.2 Selected Settings ... 157
7.2.3 Metrics Extracted and Hypothesis Tests ... 159
7.2.4 Runtime Environment .. 160
7.3 Results ... 160
7.3.1 Screening of Repair Patterns .. 161
7.3.2 Differences on ranking scores correlated to the repair pattern presence

(or absence) and with statistical significance ... 163
7.3.3 Impact of the differences correlated to the repair patterns 163
7.3.4 Variation of the differences correlated to the repair patterns 168
7.4 Analysis .. 169
7.4.1 Wraps with If Repair Pattern .. 170
7.4.2 Wrong Method Reference Repair Pattern ... 185
7.4.3 Wrong Variable Reference Repair Pattern ... 185
7.4.4 Missing Not-Null Check Repair Pattern .. 186
7.5 Answers for the Research Questions .. 187

7.5.1 RQ6: on the existence of differences correlated to the presence versus
absence of repair patterns in patches .. 187

7.5.2 RQ7: on the type of impact correlated to the presence versus absence
of repair patterns in patches .. 188

7.5.3 RQ8: on the degree of the impact correlated to the presence versus
absence of repair patterns in patches .. 188

7.6 Threats to Validity ... 190
7.7 Limitations and Future Work ... 190
7.8 Related Work ... 191
7.9 Final Considerations .. 192

8 CONCLUSION ... 195
8.1 Final considerations on the research .. 196
8.2 Main Contributions .. 198
8.3 Future Work .. 199
8.4 Bibliographical Production .. 200

BIBLIOGRAPHY ... 203

I hereby certify that I have obtained all legal permissions from the owner(s) of each
third-party copyrighted matter included in my thesis, and that their permissions allow
availability such as being deposited in public digital libraries.

student name and signature

20 List of Tables

21

Chapter

Introduction

Even after notable and world-class faults like the Millennium Bug (Y2K), the Soft
ware Engineering area still steps slowly and spends many resources trying to fix software.
Studies referenced by MITCHELL (2009) have shown the spences of companies to deal
with the Y2K reached around U$ 308 billion, perhaps, one of the most representative
registered cases of huge budgets spent on repairing software. The lack of support to dates
in four digits format is the bugs' root cause. Therefore, people reviewed adapted and
fixed software applications worldwide to avoid unexpected consequences and disasters.

Y2K is a typical case of a known bug where the problem is well defined; however, the
actual demand is on selecting the best strategy to localize the bug and apply a patch
to the source code. Therefore, the localization strategy was crucial in Y2K since the
chosen approach would directly impact the effort demanded to find the right point to
fix the bug.

1.1 Motivation

Bug Localization (BL) is a typical Software Engineering maintenance activity. It
consists of finding where to fix the source code, starting from a bug report describing
the observed misbehavior in the software functionality. Then, the developer can proceed
with the localization process with or without some automation support. This work
concentrates on the automated strategies for BL that tries to rank the most suspicious
piece of code, where the developer should point out to fix the bug.

BL precedes a buggy source code's effective patching (a.k.a. fixing or repair). Ini-
tially, strategies to localize a bug mainly were ad hoc. Even today, we can find developers
that do not know anything about a specific or well-known method to proceed with the

22 Chapter 1. Introduction

BL. In these scenarios, developers rely on the most basic strategies like searching and
reviewing the code repository, consulting and keeping in touch with the code “owners”,
or looking for similar bugs or situations to get some insight. However, many prototype
tools and approaches are in development to facilitate and help automate this essen-
tial step in software maintenance and debugging tasks. Unfortunately, these solutions'
popularity and extensive use are still far from most developers' reality. Nevertheless,
the Automated Program Repair (APR) area (MOTWANI et al., 2018; MONPERRUS,
2018; GAZZOLA; MICUCCI; MARIANI, 2019) has shown some evolution and brings
hope for a stage where fixing a software bug is behind a simple click in the development
environment.

A good BL approach is critical to guide the developer towards the right point to
fix a bug, reducing the time and effort to debug, whether manually or with automatic
program repair approaches (LIU et al., 2019). Nevertheless, developers can quickly reject
the strategy if it is inaccurate and unreliable. Kochhar et al. (2016) reports a minimum
success rate (or trustfulness) around 75% for a BL approach satisfy the needs of most of
the professional developers participating in the study (KOCHHAR et al., 2016). This
minimum threshold is still far to be reached by most of the approaches for BL still
reporting the best results on the range of 20% to 70% success rate (PEARSON et al.,
2017; SHI et al., 2018; KHATIWADA; TUSHEV; MAHMOUD, 2020; HUO et al., 2019).
To increase the challenge and even with the evolution of the debugging research and
practices, many developers still do not receive formal education in debugging area and
have to learn by doing, with pairs, or by self-teaching (SIEGMUND et al., 2014). On the
tools' side, we are currently far from the “killer” tool to support developers in debugging
activities, which is even more severe to BL approaches and tools (PARNIN; ORSO,
2011). Asking for a good IDE for development would end with default answers like
Eclipse, IntelliJ, Netbeans, VS Code, and many already popular and widely used tools.
However, asking for an excellent tool for BL, it is no surprise that many developers do
not even know about this kind of tool. Most of what we find in this area is still a work in
progress and is not mature enough to become a universal and broadly applicable solution.
So, a long journey of maturity remains to satisfy the high demands of a professional
environment, considering not only improvements in suspicious ranking precision but also
requirements related to scalability, efficiency, IDE integration, and others (KOCHHAR
et al., 2016).

The studies on BL started some decades ago (COUSOT; COUSOT, 1977) and employ
a diverse set of techniques such as the classical Information Retrieval models as LSI and
LDA (POSHYVANYK et al., 2007; NICHOLS, 2010; ZHOU et al., 2012). Later, and

1.2. Objectives 23

some years from now, researchers began to explore Machine Learning (ML) techniques to
improve the performance of BL approaches (BRIAND; LABICHE; LIU, 2007; JEFFREY
et al., 2009; NAMIN, 2015; HUO; LI; ZHOU, 2016; LAM et al., 2017) and also in
more recent works (BARBOSA et al., 2019; LI; WANG; NGUYEN, 2021; LOU et al.,
2021; HUO et al., 2019). However, state-of-the-art performance is far from a sound
performance, e.g., Ye, Bunescu e Liu (2016) reaches around 0.5 with MAP measure,
while more recent work is still far from a perfect score, e.g., Huo et al. (2019) reach
0.64 with the same MAP measure and using recent Deep Learning strategies. Moreover,
even considering that BL approaches are “potentially” promising to support developers
in the search for buggy source code files from a bug description (i.e., usually through bug
reports), the possible false negatives would derail the widespread use of such approaches.
Thus, the understanding of many factors related to the BL approaches' performance
assessment would help to explain the actual results.

1.2 Objectives

1.2.1 General Objectives

The main objective of this work is to contribute to software repair activities with a
focus on automated approaches for Bug Localization (BL)1 through the analysis of bugs
characteristics in assessment datasets, primarily those related to bug's patches.

a.k.a. Fault Localization (FL) or Fault Location

1.2.2 Specific Objectives

1. Explore alternatives for the improvement on the accuracy of rankings of suspicious
software components produced by automated BL approaches (Chapters 4 and 5);

2. Show how different BL approaches based on Machine Learning techniques behave
with diverse parameter tuning configurations (Chapter 5);

3. Show how the patch analysis can help in the characterization of a bug dataset,
exposing characteristics that would help to guide experimentation to evaluate BL
approaches (Chapter 6);

4. Define taxonomy and criteria for characterization of bug dataset through its patches
(Chapter 6 with the extension of (SOBREIRA et al., 2018));

24 Chapter 1. Introduction

5. Show the dissection of a large bug dataset and compare with the original results
from a smaller one, used as the base for our initial findings (Chapter 6);

6. Show correlation between the characteristics of bugs in a dataset and the observed
performance of the BL approaches (and also on the features scores they are based
on) (Chapter 7);

7. Reproduce previous BL approaches and guide the experiment sampling with spe-
cific bug patch characteristics, for example, repair actions and repair patterns
(Chapter 7).

1.3 Thesis Declaration Proposal

The characteristics of bugs in specific datasets influence the accuracy of Bug Lo-
calization (BL) techniques, so dataset dissection supported by patch analysis and
a well-defined taxonomy help to: 1) guide the technique configuration, 2) interpret
the results, and 3) shed light on future research.

1.4 Research Summary, Assumptions, and Questions

The performance analysis of a BL approach would require the execution of experi-
ments to produce data either with the use of a reproduction package (when available
and up to date) or with the implementation of a new experimental package (especially
when we plan for new settings, alternatives, and other customizations). Since our work
involves many customizations and the test of many alternative settings, we opted to de-
velop our experimental package. Still, we choose the work of Ye, Bunescu e Liu (2016)
for our experiments baseline and also as a starting point for the experimental package
implementation. Some reasons for the choice were the combination of ideas from other
approaches, including the work of Saha et al. (2013), a reasonable number of extracted
features, and the use of a composition mechanism based on LtR algorithms that gives
some flexibility to introduce new features. So, we assume this context provides a good
test-bed for experimenting with BL strategies involving many information sources.

We first enumerated factors of influence on a BL approach. As a proof of concept,
we can 1) apply different LtR algorithms to observe the impact of parameter tuning
on the ranking scores, 2) include new features (e.g., Code Entropy) for comparisons,

1.4. Research Summary, Assumptions, and Questions 25

3) compare the impact and the role of individual and groups of features on the final
ranking. Therefore, we conduct some preliminary experiments while developing first
version of our experimental package to answer the following Research Questions (RQs):

RQ1 What is the performance of the entropy feature compared to other features?

RQ2 The use of entropy feature can improve the results obtained by past learning
approaches to BL?

RQ3 What is the impact of data balance strategies in the learning process?

RQ4 How does the tuning of LtR algorithms impacts the BL performance?

RQ5 How long does it take to conclude each step in the process (feature extraction,
ranking generation, training, validation, and testing)?

After observing the potential influence of the bugs' characteristics composing the
assessment datasets of BL approaches, we conduct some studies to analyze, define, and
propose a taxonomy for these characteristics. We refer to these kinds of studies as a
dataset dissection, first made with Defects4J (JUST; JALALI; ERNST, 2014), and the
subsequent study with LR-dataset (YE; BUNESCU; LIU, 2014), detailed in this thesis.
From these studies, we observed that many types of bugs with different characteristics
are present in a dataset used for the assessment of BL approaches. These characteristics
are common, frequent, recurrent, and prevalent even between different projects. There-
fore, knowing the dataset composition can support more informed decisions regarding
many aspects of dataset usage. Between the possible applications for research of our
dissection analysis framework, we can mention 1) BL, 2) APR, 3) dataset comparisons
and benchmarking, 4) Source Code, Bug, and Patch Analysis, 5) Software Testing, 6)
Debugging, and 7) Program Synthesis. Aligned with the thesis declaration proposal (our
main hypothesis), we would assume the composition of a sample from a bug dataset can
influence the assessment measures of the target task (e.g., BL approaches) depending on
the selected bugs' nature and characteristics. Additionally, this influence would impact
1) the selection of techniques to improve BL scores accuracy, 2) on the understanding
of the performance variations, 3) on the obtaining of more practical insights to improve
the past approaches, and 4) on the proposition of new BL approaches with more in-
formed decisions. So, the combination of the study dissection study with extensions
to the experimental package after the preliminary experiments helped to answer addi-
tional research questions related to the effective influence of the sampled bugs on the
BL strategies, and that helped to confirm some of these assumptions:

26 Chapter 1. Introduction

RQ6 When we compare a sample of bugs where the respective patches match a given
repair pattern against another sample of bugs where this pattern is not present, is
there any difference in the measured metrics targeting the ranking of bug suspects?
Are these differences statistically significant?

RQ7 What type of impact is associated with the evaluated metric's score rankings by
the presence of a repair pattern in the patches of a bug sample? Moreover, when
the repair pattern is absent?

RQ8 What is the degree of the impact correlated to the repair pattern's presence or
absence on the metrics measured?

1.5 Contributions

1. A proof of concept showing the application of a new feature based on Code Entropy
and LtR to produce BL scores;

2. A proof of concept showing the application of different data balance strategies on
the training with LtR algorithms to produce BL scores;

3. A proof of concept showing the influence of parameters tuning on LtR-based BL
scores;

4. A new approach to deal with the assessment of BL methods using bug datasets
and benchmarks guided by bug characteristics;

5. A taxonomy to characterize bug datasets in terms of their patches composition (in
collaboration);

6. A tool to extract patch characteristics from a bug dataset, e.g., repair action,
repair patterns, and size dimensions (in collaboration);

7. A proof of concept showing the influence of the bugs types from a dataset for the
assessment of research approaches on typical software development tasks like BL;

8. An experimentation package prototype for BL approaches that would progress in
future works for an experimentation framework to support assessment of past and
new approaches.

1.6. Thesis Organization 27

1.6 Thesis Organization

This chapter briefly described the motivation, objectives, hypothesis, and expected
contributions. Chapter 2, Background, presents the essential concepts related to the BL
research, including bug and faults, bug reports, bug datasets, evaluation metrics, and
some ML techniques applied in experiments with BL approaches. Chapter 3, Related
Work, presents some of the published works in BL, split into Static, Dynamic, and Hy-
brid approaches. From Chapter 4 to Chapter 7, we mainly detail the developed work to
answer the proposed hypothesis in this thesis. Chapter 4, On the Influential Factors for
Bug Localization Exploratory Assessment, raises many ideas to apply in the construction
of an environment to experiment with BL approaches, started in this work as an exper
imental package, briefly described, that support all the experimentation in this thesis.
Chapter 5, Strategies for Learn-to-Rank Bug Localization Improvement, presents some
proof of concept to assess alternatives in BL with the preliminary results obtained, ex-
perimenting ideas related to the application of Code Entropy feature, optimum selection
of features, tuning of ML hyper-parameters in LtR algorithms and the use of data bal-
ancing strategies. Chapter 6, Analysis of Repair Actions and Patterns, takes a step back
in the dataset issues and presents an analysis on a regularly applied bug dataset extend-
ing previous work on Defects4J, smaller popular bug dataset, and benchmark, to analyze
LR-dataset, a larger dataset applied in BL context. We searched for understanding how
the patches associated with bugs in a dataset are classified, their characteristics, the
existence of patterns, and how prevalent these characteristics are. Chapter 7, Influence
of Repair Patterns on Bug Localization approaches, continues the exploratory analysis
and presents additional experiments considering the selection of sampling data based
on the bug characteristics presented in Chapter 6, and showing how this would impact
the BL assessment, guided by bug patches characteristics, especially, repair actions and
repair patterns. Chapter 8, Conclusion, summarizes and highlights the main points in
this work, reinforcing the thesis declaration proposal.

Figure 1 show a brief thesis roadmap. After the discussion in Chapter 4 about the
influential factors, we present two alternative tracks to explore the BL problem. The
first in Chapter 5 show some experiments related to LtR BL considering the datasets of
bugs as usually done in previous approaches. The next track starts in Chapter 6 where
we present an extension of a dataset dissection analysis, first defined for Defects4J, and
then applied to LR-dataset. Following in Chapter 7, we present results of experiments
with BL applying the dissection analysis ideas. We consider this last track one of our
main innovative contributions to the research community since it opens a new lens to

28 Chapter 1. Introduction

Figure 1 - Chapters Roadmap.

review and improve the previous approaches for BL, and potentially other related areas
such as APR.

29

Chapter

Background

Terms as bugs have different meanings depending on the context. Furthermore, even
considering a specific knowledge area as Software Engineering, sometimes these terms
are abstract and confusing. Therefore, before discussing how to find bugs?, we need
first to define 1) what we consider a bug?, 2) how to measure how successful we would
be with a given strategy to find a bug?, 3) what are our ground truths to assess a BL
strategy? (i.e., what database we would apply?). This chapter discusses these and other
essential concepts. Additionally, we briefly present some concepts and ML techniques
applied to BL and, more specifically, applied in some of the experiments described in
further chapters.

2.1 Essential concepts about Bug Localization
This section introduces basic concepts and definitions related to the BL context for

the subsequent chapters.

2.1.1 What is a bug?

Thomas Edison helped to coin the term bug, referring to a technical problem in
hardware engineering, while dealing with real (or imaginary) bugs that disturbed him
during the working on his inventions in the 19th-century (MAGOUN; ISRAEL, 2013).
The term gained the computer world in 1946, after the discovery of a “real” bug in the
circuits of the electromechanical computer, Mark II, built and programmed by Howard
Aiken and Grace Hopper (KIDWELL, 1998). Operators found the bug and the cause of
Mark II's errors, a moth, removed from the circuits and now taped in the logbook for
the History. The event was referenced as the “First actual case of bug being found”. The

30 Chapter 2. Background

term debug has a similar etymology, first used in 1945 in the context of aircraft engines,
according to with Oxford English Dictionary. The software development world has the
debugging process well established, widely used, and associated with tasks of removing
bugs or faults from a software system.

ISO/IEC/IEEE 24765 standard defines the term fault as “1. a manifestation of an
error in software. 2. an incorrect step, process, or data definition in a computer program.
3. a defect in a hardware device or component.” (ISO/IEC/IEEE, 2010). The term fault
is also a synonym to the term bug. Thus it is usual to find works using both terms to
express the same meaning. In this work, the choice for the bug term reflects the more
widely and popularized use against fault, which also has a diverse meaning in other
contexts and areas.

2.1.2 Bug Reports

A Bug Report is a formal registration of an issue found in software. Many bug-
tracking platforms help users and developers to create and manage these reports. Some
popular platforms in use today are: Bugzilla1, JIRA2, GitHub Issues3, and FogBugz4.
Beyond the differences, these platforms share common and essential resources to store
critical information about the found issue, allowing the developer to understand and,
preferably, reproduce a bug, then proceed to localization and fixing tasks.

1 Bugzilla: <www.bugzilla.org>
2 JIRA: <br.atlassian.com/software/jira>
3 GitHub Issues: <guides.github.com/features/issues>
4 FogBugz: <www.fogcreek.com/fogbugz>
5 The patch for LANG-552 is available in Defects4J Dissection website: <http://program-repair.org/

defects4j-dissection/#!/bug/Lang/39>

Figure 2 shows an example of a bug report for the bug LANG-552 from the project
Apache Commons Lang. The report describes the observable bug behavior according to
the user (or developer) perspective, aiming tohelpthe maintainer search and understand
the problem and consequently proceed to the code fixing. Furthermore, this type of bug
report facilitates finding the fixing location since the reporter points to the method
triggering the error. However, few bug reports suggest the bug localization with good
precision and providing precise and complete information in practice.

The code listing in Figure 3 shows the patch applied to fix the LANG-552 bug5. The
fixing consists of adding three lines of code (highlighted in green) with a missing null
check in the buggy code. The patch makes the program continue to the next loop step
if the conditional testing expression is satisfied.

http://www.bugzilla.org
br.atlassian.com/software/jira
guides.github.com/features/issues
http://www.fogcreek.com/fogbugz
http://program-repair.org/defects4j-dissection/%2523!/bug/Lang/39

2.1. Essential concepts about Bug Localization 31

Bug-ID: LANG-552
Title: StringUtils replaceEach - Bug or Missing Documentation
Description: The following Test Case for replaceEach fails with a null pointer
exception. I have expected that all StringUtils methods are “null-friendly”. The
use case is that i will stuff Values into the replacementList of which I do not want
to check whether they are null. I admit the use case is not perfect, because it is

unclear what happens on the replace. I outlined three expectations in the test case,
of course only one should be met. If it is decided that none of them should be
possible, I propose to update the documentation with what happens when null is
passed as replacement string

import static org.junit.Assert.assertEquals ;
import org.apache.commons.lang.StringUtils;
import org.junit.Test;

public class StringUtilsTest {
@Test
public void replaceEach (){

String original = "Hello World!";
String[] searchList = {"Hello", "World"};
String[] replacementList = {"Greetings", null};
String result = StringUtils.replaceEach(original, searchList,

replacementList);
assertEquals("Greetings !", result);
//perhaps this is ok as well
//assertEquals("Greetings World!", result);
//or even
//assertEquals("Greetings null!", result);

}
}

Figure 2 - Bug Report for the bug LANG-552 from Apache Commons Lang project.

Some studies aim to define the essential information for a report that directly impacts
its usefulness to solve a problem. For example, according to (SASSO; MOCCI; LANZA,
2016), the elapsed time between the bug report creation and the bug fixing is directly
related to the fulfilling quality of the following fields: summary, description (including
stack traces and screenshots), due date, and people involved (report creator, allocated
developer to fix, who found the issue). The same study considers a bug report change
between the states: new/open, not confirmed, in progress/assigned, patch available, ver-
ified, resolved, reopened, and closed. To the authors, customization resources, project,
and platforms specificities do not contribute too much in practice to the usefulness of a
bug report and are also poorly used.

Bettenburg et al. (2008) have found mismatches between what users fulfill in a bug

32 Chapter 2. Background

Figure 3 - Patch for the bug LANG-552 from Apache Commons Lang project.

report and what developers consider as helpful. To developers, the essential items are
steps to reproduce, stack traces, test cases, and observed behavior. Information such
as hardware, bug severity, component, and the operating system is rarely used, even
as mandatory fields in many tracking platforms. Errors in reproduction steps and in-
complete information are critical problems for developers. Usually, developers and users
agree on the top-3 most useful and fulfilled fields in the reports (steps to reproduce,
observed and expected behavior). The disagreement starts from the fourth item (stack
trace versus product, test cases versus version, and others). Except for the reproduction
steps, there is a significant mismatch between what developers consider most important
and what users provide in practice through the report. When there is an agreement
between developers' and users' usefulness notion, the lack of some fields in a bug report
is more related to the difficulty of obtaining these kinds of information (e.g., stack trace
and test cases) than user carelessness. Therefore, developers highlight the importance
of clear, correct, and complete information in bug reports. Following factors are used to
measure the quality of a bug report: the use of itemization, keywords related to impor-
tant categories (action items, observed/expected behavior, steps to reproduction, build,
and user interface elements), code samples, stack trace, patches, screen captures, and
readability (based on standard measures such as SMOG Grade). Finally, the readability,
stack traces, and code samples correlate to less time to close a bug report (after fixing
the reported bug).

The bug report is one of the possible starting points to proceed with bug localization,
whether done manually or automated through a tool (especially in static approaches
based on Information Retrieval (IR) and ML). Thus, it is essential to carefully consider
the information present in a bug report, including its content quality, because it can be
determinant in the success of the bug localization.

2.1. Essential concepts about Bug Localization 33

2.1.3 Where is a bug located? What is it found?

Lucia et al. (2012) preliminary study presents a notion of locality for a bug related
to the spreading level of the buggy components in the codebase. The authors define
four locality levels: Lm, the number of faulty lines; Lm, the number of faulty methods;
LD3, the number of faulty files; LD4, a score based on the sum of lines between the
first and the last faulty line found for each buggy file. The analysis is done over 374
manually selected bugs from three Java systems (AspectJ, Rhino, and Lucene). Most of
the analyzed bugs are localizable in the sense the most of them is concentrated in few
lines (Lm <= 10 lines in more than 80% of the bugs, and Lm = 1 lines in 33% of the
bugs), few methods (Lm <= 6 method in more than 83% of the bugs, and Lm = 1
lines in 44% of the bugs), and few files (LD3 <= 2 lines in more than 88% of the bugs,
and LD3 =1 lines in 73% of the bugs). The fourth dimension shows a good spreading
of the buggy lines since the score L^4 < 1000 for around 90% of the bugs.

We can analyze the composition of a bug from the perspective of repair actions re-
quired to fix the bug. Liu et al. (2018) define a repair action as a combination of code
entities and change operators. The code entities are the nodes found in an Abstract
Syntax Tree (AST) as parsed by Eclipse JDT AST Parser6. Three main categories are
highlighted in the paper: statements (22 types, e.g., ReturnStatement), declarations
(total not informed in the paper, e.g., TypeDeclaration) , and expressions (35 types, e.g.
InfixExpression). The change operators follows the GumTree tool definition (FALL-
ERI et al., 2014), applied to produce the AST diff between the buggy and fixed source
code versions. GumTree change operators considered were: update, insert, delete and
move. The Figure 4 illustrate the AST for the patch fixing the LANG-552 bug (shown
in Figure 3) and generated by GumTree. This patch represents the insertion of a Block-
IfStatement including a series of child insertion actions for the following code elements:
IfStatement (e.g., if), InfixExpression (e.g., searchList[i] == null), ArrayAccess (e.g.,
searchList[i]), SimpleName (e.g., seachList), InfixExpressionOperator (e.g., ==, Null-
Literal (e.g., null), Block (e.g., {continue; }), and ContinueStatement (e.g., continue;).

6 Eclipse JDT AST Parser: <https://help.eclipse.org/kepler/ntopic/org.eclipse.jdt.doc.isv/reference/
api/org/eclipse/jdt/core/dom/ASTParser.html>

7 Defects4J Dissection website: <http://program-repair.org/defects4j-dissection/>

The addition of code as illustrated for the bug LANG-552 is one of the possible
scenarios for patches applied to fix bugs. The Defects4J Dissection website7 gives us
easy access to view the patches like LANG-552 (or Lang-39 in Defects4J), so we refer
to Defects4J bug identifiers for illustrations. The other common scenarios are: patches
removing some buggy code as in Figure 5 (Math-58), patches modifying buggy code

https://help.eclipse.org/kepler/ntopic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTParser.html
http://program-repair.org/defects4j-dissection/

34 Chapter 2. Background

IfStatement [149033,149131]
InfixExpression [149037,149088]

InfixExpression [149037,149058]
ArrayAccess [149037,149050]

SimpleName: searchList [149037,149047]
SimpleName: i [149048,149049]

INFIX_EXPRESSION_OPERATOR: == [149051,149053]
NullLiteral [149054,149058]

INFIX_EXPRESSION_OPERATOR: || [149059,149061]
InfixExpression [149062,149088]

ArrayAccess [149062,149080]
SimpleName: replacementList [149062,149077]
SimpleName: i [149078,149079]

INFIX_EXPRESSION_OPERATOR: == [149081,149083]
NullLiteral [149084,149088]

Block [149090,149131]
ContinueStatement [149108,149117]

Figure 4 - GumTree generated AST representing the patch for the bug LANG-552
shown in Figure 3.

as in Figure 6 (Math-41), patches moving some code to other positions as in Figure 7
(Closure-13), and patches mixing all these scenarios as in Figure 8 (Lang-17). These
selected scenarios (and bugs) have illustrative purposes. Still, the bug universe goes far
beyond these examples, and we can think of them as building blocks for bugs requiring
more complex patches and with even more repair actions than those shown.

<a@ -118,7 +118,7 @<a public double value(double x, double[] p) {

g| src/main/java/org/apache/commons/math/optimization/fitting/GaussianFitter.java

118 118 */
119 119 public doublef] fit() {
120 120 final doublef] guess = (new ParameterGuesser(getObservations())).guess();
121 - return fit(new Gaussian .Parametric(), guess);

121 + return fit(guess);
122 122 }
123 123
124 124 /**

Figure 5 - Patch for the bug Math-58 from Apache Commons Math project .

2.1.4 How to find bugs?

The Bug Localization (BL) is one of the fundamental steps in the software fixing
process (PARNIN; ORSO, 2011). BL contributes to the considerable time, and effort
demanded in this process (HAMILL; GOSEVA-POPSTOJANOVA, 2017), and also to
the challenge to conduct and to complete this process with success, especially for the
novices (MCCAULEY et al., 2008). The BL consists in the identification of places of

2.1. Essential concepts about Bug Localization 35

g src/main/java/org/apache/commons/math/stat/descriptive/moment/Variance.java

@@ -517,7 +517,7 @@ public double evaluateífinal double[] values, final doublel] weights,
517 517 }
518 518
519 519 double surnWts = G;
520 - for (int i = 0; i < weights.length; i++!1 {

520 + for (int i = begln; i < begin + length; i++) {
521 521 sumWts += welghts[i];
522 522 }
523 523

Figure 6 - Patch for the bug Math-41 from Apache Commons Math project.

@<a -123,8 +123,8 @@ private void traverse(Node node) {

g] src/com/google/javascript/jscomp/PeepholeOptimizationsPass.java

123 123 do {
124 124 Node c = node.getFirstChild();
125 125 while(c != null) {
126 - traverse(c) ;
127 126 Node next = c.getNext();

+ traverse(c);
128 128 c = next;
129 129 }

Figure 7 - Patch for the bug Closure-13 from Closure Compiler project.

bugs (faults or errors) in the source code and causing the system to fail. The failure
usually manifests as a wrong behavior that differs from the expected behavior by the
users and developers, implying the system breakdown and significant losses.

There is still no standard way widely used to deal with BL, although there are lots
of approaches and different proposals (WONG et al., 2016). Ultimately, it is up to the
developer to locate and fix identified faults. In many environments, this is done essen-
tially manual way with only general-purpose tool support provided by an Integrated
Development Environment (IDE). However, with the increase in the size and complex-
ity of software, it is not enough to rely only on the developers' experience, judgment,
intuition, and familiarity to locate the bugs. Although it is a good resource (i.e., when
an expert is always available to help), relying solely on the human ability to perform
this task is not always feasible. There is then a strong demand for the production of
new techniques and tools that support and even automate BL.

Since 1970's, research community has been studying and developing techniques to
support BL(COUSOT;COUSOT,1977). Traditional approaches involves: logging (ED-
WARDS, 2003), assertions (ROSENBLUM; ROSENBLUM, 1995), breakpoints (COUTANT
et al., 1988) and profiling (BALL; LARUS, 1994). Due to the amount of analysis and

36 Chapter 2. Background

Si src/main/java/org/apache/commons/lang3/text/translate/CharSequenceTranslator.java | ■

-80, 26 +80,20 tg(3 public final vold transiste(CharSequence input, Writer out) throws IOException {
80 80 return;
SI 81 }
82 82 int pos = 0;
83 int len = Character.codePointCount(input, 6, input.length());

83 + int len = input.length();
84 84 while (pos < len) {
85 85 int consumed » translate(input, pos, out);
86 86 if (consumed = 0) {
87 87 char[] c « Character.toChars(Character.codePolntAt(input, pos));
88 88 out.write(c);

891 + pos+= c.length;
901 + continue;

89 91 }
90 else {
91 92 n // contract with translators is that they have to understand codepoints
92 93 n // and they just took care of a surrogate pair
93 94 for (int pt = 0; pt < consumed; pt++) {
94 if (pos < len - 2) {
95 95 pos += Character.charCount(Character.codePointAt(input, pos));
96 } else {
97 pos++;
98 }
99 }

100 pos- -;
101 96 }
102 pos++;
103 97 }
104 98 }
105 99

Figure 8 - Patch for the bug Lang-17 from Apache Commons Lang project.

manual work, such techniques become ineffective given the increase in software complex-
ity and size (WONG et al., 2016). This requires the production of more advanced tech-
niques, able to deal better with these issues. These techniques can be based on: program
slicing (WANG et al., 2014), spectrum (WONG et al., 2014b), statistics (CHILIMBI et
al., 2008), program states (SUMNER; ZHANG, 2013), machine learning (BRIAND;
LABICHE; LIU, 2007), data mining (CELLIER et al., 2011), program models (BAAH;
PODGURSKI; HARROLD, 2011), and other models (SAHA et al., 2013). The next
chapter details some of the most recent and remarkable approaches to BL.

2.2 Bug datasets

The BL literature references many bug datasets. Some of these datasets are collec-
tions of projects and software repositories, initially selected to serve evaluation purposes
of specific works but recurrent applied a posteriori to make possible comparisons. Other
datasets are conceived and designed for reuse, becoming base references or benchmarks

2.2. Bug datasets 37

to facilitate comparisons between the approaches. LR-dataset is an example of the
first case, while Defects4J is the second case. The following subsections present a brief
description of these datasets.

2.2.1 Defects4J

Defects4J (JUST; JALALI; ERNST, 2014) is a benchmark of bugs developed to
support research, especially in the areas of software testing, automated software repair,
and bug localization. The benchmark comprises a dataset of bugs and a command-line
interface to facilitate the exploration of this dataset (e.g., query information about the
bugs such as: affected classes/tests cases, buggy/fixed source code versions, and checkout
ofthe associated projects). The 395 real bugs (version 1.1) initially extracted from 6 Java
open-source projects are Apache Commons Lang (65 bugs), Apache Commons Math (106
bugs), Closure Compiler (133 bugs), JFreeChart (26 bugs), Joda Time (27 bugs), and
Mockito Testing Framework (38 bugs). Moreover, Defects4J bugs are 1) related to source
code (i.e., excluding fixes within the build system, configuration files, documentation , or
tests), 2) reproducible (each bug contains at least one test that exposes the bug), and
3) isolated (patches do not include unrelated changes to the bugs such as features or
refactorings). Many works on BL employed Defect4J to evaluate their approaches (LE
et al., 2016; PEARSON et al., 2017; PEREZ et al., 2017; LI; ZHANG, 2017; JUST et
al., 2018; CHAKRABORTY et al., 2018).

2.2.2 LR-dataset

Ye et al. (YE; BUNESCU; LIU, 2014; YE; BUNESCU; LIU, 2016) propose a new
approach for BL based on LtR and a companion new benchmark dataset to evaluate the
approach. The dataset maps a total of 22747 bug reports (that implies the same amount
of bugs) based on 6 Java open-source projects: AspectJ (593 bugs), BIRT (4178 bugs),
Eclipse Platform UI (6495 bugs), JDT (6274 bugs), and SWT (4151 bugs) and Tomcat
(1056 bugs). The amount of bugs in this dataset is far more than the amount found in
Defects4J, turning LR-dataset a better target to ML approaches. The criteria to collect
bug reports and to consider the respective bugs in the dataset were: 1) bug reports have
the status resolved fixed, verified fixed, or closed fixed; 2) there are explicit mentions to
terms like bug <bug-id> or fix for <bug-id> in the project changelogs; 3) the bug reports
are associated to a single fixing Git or revision commit, not shared with other bug reports;
4) the inclusion of only functional bug fixings (i.e., at least one fixed file should exist).

38 Chapter 2. Background

The selected bug reports from each project are available in XML files containing the
fields: bug id, summary, description, report date/time (and timestamp), status, commit
(and timestamp), files (fixed), and ranking position obtained in the approach. All the
projects repositories are in GitHub, allowing to obtain the associated versions/revisions
through the commit information. Many authors in BL field applied LR-dataset in their
approaches' evaluation (LAM et al., 2015; UNENO; MIZUNO; CHOI, 2016; LAM et al.,
2017; YE; BUNESCU; LIU, 2016; ZHAO et al., 2015; ALMHANA et al., 2016).

2.3 Performance metrics in Bug Localization
Many metrics apply to the performance assessment in BL approaches. Some of the

more often found are Precision@k, the percentual of success on finding relevant items
in the top positions of a ranking limited to N items (Top-N), Mean Average Preci-
sion (MAP), Mean Reciprocal Rank (MRR), and Normalized Discounted Cumulated
Gain (NDCG) that are someway complementary measures. Other metrics appear less
frequently, but it is important to be clarified. Many of these metrics are classical IR
evaluation measures and are associated to the notion of relevance of a document picked
from a larger collection given an input query with the desired information needs (MAN-
NING; RAGHAVAN; SCHÜTZE, 2008). In the BL context of this work, a relevant
document given a query is equivalent to a buggy file given a bug report, while an irrel-
evant document is a non-buggy file for the same bug report. The document collection
is equivalent to the source code files considered for the given bug report and extracted
from a specific project version or revision.

2.3.1 Precision, Recall and F-measure

Although precision, recall and F-measure are very common IR measures, these are
set-based measures and are computed using an unordered set of documents (MANNING;
RAGHAVAN; SCHÜTZE, 2008). Then, it is not so common to find these measures
in the evaluation for ranking problems. Besides this, some of the ranking measures,
such as MAP, extend set-based measures to support the evaluation of ranking-based IR
techniques.

Precision metric, defined in Equation 1, is the fraction of relevant documents in a
retrieved set r, given a query q. Precision increases if the number of relevant documents
increases and also if the number of retrieved documents decreases. For example, con-
sidering a retrieval set of just a single document, the Precision is maximal (1) if the

2.3. Performance metrics in Bug Localization 39

document is relevant and minimal (0) if the document is not relevant. Otherside, for a
larger retrieval set, if there is only one relevant document retrieved, but a huge num-
ber of not relevant documents retrieved, the Precision can approximate to zero, even
considering that the ideal target for the query is in the retrieved set of documents. So,
Precision receives a strong influence from the number of retrieved docs.

#relevant retrieved doesPrecision(q,r) =--------------------—---------- (1)
#retvieved does

Recal l metric, defined in Equation 2, is a complementary measure to Precision, with
more emphasys in the number of relevant documents retrieved when considered all the
existent relevant documents.

Recall(q, r) =
#relevant retrieved does

#relevant does
(2)

Taken isolated, precision and recall can be misleading since it is possible to have a
high performance of one, while the other shows poor performance, and vice versa. A
metric that trades off between these measures is the F-measure, defined in Equation 3.
F-measure represents the weighted harmonic mean between precision and recall. The a
parameter weights how much the final value tends to the precision or the recall.

F-measure(q,r) =
1

ap + (1 _ a)
(3)

where, P = Precision(q, r), and R = Recall(q, r).

2.3.2 Precision@k

The precision metric defined in Equation 1 is not used directly in ranking problems,
especially in the BL problem, since the number of considered files depends on the size
of the project and the user is not interested in analyzing all the files or a big list of files.
The precision metric is often limited to a small number of the top K retrieved files. The
frequently found values for K are 1, 5, 10, or 20. Equation 4 is an adapted version of
Equation 1, considering the BL context, a single bug report br, and a given ranking of
files r.

P@k(br, r) = #retrzeved bu99y Wes (4)
K

In practice, P@k is computed for all the bug reports of interest and averaged to
provide the final evaluation measure. Given a set of bug reports B, from where we can

40 Chapter 2. Background

extract tuples containing bug reports br and their respective rankings r limited to K
files, Equation 5 defines Precision@k.

Precision@k = r— P@k(br, r)
I br&B

(5)

2.3.3 Top-N

a.k.a.: Accuracy@k, Recall at Top-N
Considered as in Equations 4 and 5, the Precision@k measure could worsen, merely

increasing the k value (remembering that most of the bugs restrict to a few files, typically
less than 5). Therefore, a common assumption adopted by most of the approaches is to
consider an alternative definition, shown in Equation 6. Thus, the bug is found for a
given bug report br if at least one buggy file is between the N files in the retrieved rank
r.

Í1, if found buggy file is in the top n files
(6)

0, otherwise

As in Precision@k, the percentual of success on finding relevant items in the top
positions of a ranking limited to N items (Top-N) is computed for all the bug reports
and averaged. The final Top-N measure, given a set of bug reports B, is shown in
Equation 7.

Top-N = -1- top(br,r) (7)
’’ breB

The idea behind Top-N for BL is to measure how accurate a tool is in presenting at
least one buggy file using a Top-N ranking of files.

2.3.4 MAP

Mean Average Precision (MAP) is a commonly found measure for ranking approaches.
The ranking positions of all the buggy files are accounted for and expressed as the Average
Precision (AP) for each bug report. Then, we compute the mean based on the AP for
all the bug reports. Given a bug report br and a ranking of files r, Equation 8 defines
the associated AP.

Ek=i P@k(br,r) * is_buggy(k,br,r)
AP--------- #bu99y files--------- (8)

2.3. Performance metrics in Bug Localization 41

The parameter L indicates the last position of a buggy file that should be found
for the bug report br. P@k(br, r) is the precision at feth position, given br and r. The
function is_buggy(k, br, r) is defined in Equation 9.

Í1, if the doc position k in r is a buggy file (relevant)
(9)

0, otherwise (not relevant)

Given a set of bug reports B, from where we can extract tuples containing bug reports
br and their respective rankings r, Equation 10 defines MAP.

MAP = y AP (br, r)
1^1 breB

(10)

The idea in the context of BL is to give a notion of effort a developer would have
to examine all the buggy files, given their positions in the retrieved ranking of files. If
the files near the top of the ranking are buggy, the effort is lower, and the MAP score is
high. Otherwise, the more the buggy files are distant from the top positions, the more
effort the developer has, and the lower is the MAP score.

2.3.5 MRR

While similar to MAP, Mean Reciprocal Rank (MRR) have some particularities: in
the retrieved ranking, MRR considers only the first best-positioned buggy file; and as
in Precision@k, MRR uses just one buggy file in the computing, but there is no K-limit
for the rank of retrieved files. Given a set of bug reports B, from where we can extract
tuples containing bug reports br and their respective rankings r, Equation 11 define
MRR.

MRR = -^ V ------------ -
\B\ b^B rank(br,r)

(11)

Where rank(br, r) returns the position of the first buggy file for the bug report br
and ranking r.

As occurs in MAP, MRR also gives a notion of effort to examine buggy files. The
main difference is that MRR only accounts for the first buggy file found in the ranking.

2.3.6 NDCG

a.k.a.: NDCG@k

42 Chapter 2. Background

Normalized Discounted Cumulated Gain (NDCG) is a measure defined especially
for multi-graded ranking problems (JÀRVELIN; KEKÀLÀINEN, 2002), i.e., problems
where the relevance of the documents can receive more levels than merely relevant or
irrelevant. The first component in NDCG, the Cumulative Gain (CG), represents the
sum of the grades, G, attributed to each file in a ranking. For binary grades, as in BL,
it is equivalent to the number of retrieved buggy files in the ranking (where G =1 for
buggy files and G = 0 for non-buggy files). The Equation 12 shows a recursive function
to compute the CG, for a given position i in the ranking.

CG(i) = |G(1)’
- 1) + G(i),

if i =1

otherwise.
(12)

The Discounted Cumulative Gain (DCG) represents a penalized version of CG with
a log component to decrease the score of G(i) as the position of relevant files increase
in the ranking. The farthest the buggy files are from the top positions of the rank, the
higher is the discount. The Equation 13 show the recursive function for DCG.

í CG(i),
DCG(i) = V J

— 1) + G(i)/logb i,

if i < b

otherwise.
(13)

Finally, the Normalized Discounted Cumulative Gain (NDCG) applies a normaliza-
tion to DCG, considering the DCG of an ideal ranking as reference (IDCG). The ideal
ranking places the most relevant files in the top positions and gives the best possible
performance for this set of files. The NDCG is given by the Equation 14. The truncated
version of NDCG is frequently found and is indicated by NDCG@k, where k represents
the maximum number of files considered in the rankings.

NDCG(i) =
DCG(i)
IDCG(i)

(14)

For the BL problem, the binary labeling used in the previous measures is enough
since a file can merely be considered buggy or non-buggy. On the other hand, NDCG
is a good measure since it leverages two ideas: give a higher score to rankings whose
buggy files near the top positions and also to discount rankings farthest from the ideal
(when all buggy files are in the top positions).

2.4. Machine Learning Approaches 43

2.3.7 Other metrics

Many other metrics apply in the context of BL, such as EXAM, Expense, AUC,
AUCEC, Effort@k, MAE, and MFE. For this work, the more popular metrics described
in previous sections are enough, and we can find more details about the other met-
rics elsewhere (ZHAO et al., 2015; RAY et al., 2016; CHAKRABORTY et al., 2018;
RAHMAN et al., 2014; DIGIUSEPPE; JONES, 2015).

2.4 Machine Learning Approaches
Since this work proposes the use of Machine Learning in the BL problem, this section

gives a very brief overview of ML techniques applied and discussed in the following
chapters.

2.4.1 Learning to Rank

Methods using ML to solve ranking problems are generally called “learning-to-rank”
methods or LtR (LIU, 2009). There are many algorithms to LtR usually classified as
Pointwise, Pairwise and Listwise.

2.4.1.1 Pointwise

In Pointwise algorithms, the idea is to transform the ranking problem in a regression
problem of each item (or document) in the rank. For example, in BL context, an item
would be a source code file suspected to be buggy. We compute an individual score
for each item to produce the ranking based on its features. We briefly describe some
traditional Pointwise LtR algorithms next:

Random Forest (BREIMAN, 2001) is a bagging and inherently parallel algorithm
based on CART (Classification and Regression Trees) to build decision trees.

MART (FRIEDMAN, 2001), Multiple Additive Regression Trees, is an ensemble model
of boosted regression trees, producing a linear combination of the outputs of a set
of regression trees.

2.4.1.2 Pairwise

In Pairwise algorithms, we reduce the problem to the classification of pairs of docu-
ments, and the algorithm should decide which document from the pair should be on the

44 Chapter 2. Background

top. While Pointwise algorithms are concerned with finding the degree of relevance of a
document, Pairwise is more concerned about finding the proper relative order between
the documents in a pair. Examples of Pairwise algorithms are:

RankNet (BURGES et al., 2005) is a probabilistic algorithm based on neural networks
and applying cross-entropy, back-propagation, and gradient descent in training.

RankBoost (FREUND et al., 2003) is a boosting algorithm, training weak rankers in
rounds and generating as output a linear combination of these weak rankers.

RankSVM (JOACHIMS, 2006) is a variant of an SVM (Support Vector Machine),
adapted to the LtR problem, and targeting to optimize the number of correct
classified pairs of documents.

2.4.1.3 Listwise

In Listwise algorithms, the learning process considers the whole list of documents as
an instance for training (CAO et al., 2007). An instance is composed of 1) aquery(abug
report, for BL problem), 2) a list of documents (the source code files to consider for that
bug report) , 3) a list of feature vectors associated to each document based on the query,
and 3) a ground truth with the relevance of these documents to the queries (a mapping
telling which file is buggy and which has not the bug described in the associated bug
report). Examples of Listwise are:

AdaRank (XU; LI, 2007) is a boosting algorithm, inspired in AdaBoosting, adapted
to the LtR ranking problem. AdaRank constructs weak learners as a boosting
algorithm by re-weighting training data and forming an ensemble to boost the
final performance.

Coordinate Ascent (METZLER; CROFT, 2006) is a multivariate objective optimiza-
tion technique that optimizes each dimension (or feature) sequentially.

LambdaMART (WU et al., 2010) is the boosted tree version of LambdaRank (or a
combination of MART and LambdaRank) .

LambdaRank (BURGES; RAGNO; LE, 2006) is a gradient-based on NDCG as cost
function and is smoothed by the RankNet loss.

ListNet (CAO et al., 2007) was the first Listwise proposed approach. Based on Neural
Networks and Probability Models, that accounts for the possible permutations

2.5. Final Considerations 45

between the documents in the rank and uses Gradient Descent as an optimization
algorithm.

2.4.2 Language Models

Language Models are statistical models assigning the probability of occurrence to
a sequence of words (or tokens) (TU; SU; DEVANBU, 2014). For example, given a
sequence of tokens S = ti t2 ... ín, a language model allows computing the probability
of occurrence of this sequence as a product of conditional probabilities for each token
composing the sequence, as shown in Equation 15.

N

p (s) = p (ti) *n p (tt\t1,...,tl-1) (15)
i=2

It is not practical to compute the probability considering all the tokens in the se-
quence. Thus a Markov assumption is applied, and the calculus considers only the n — 1
more recent tokens. This computing approach is the n-gram model, where n defines the
number of tokens considered to form the sentence.

Since software programs have highly repetitive and predictable structures and con-
tents, language models can detect unnatural code. We can use the cross-entropy metric
to measure the level of naturalness of a piece of code. For example, the cross-entropy of
a sequence S with probability Pm (S) estimated by the language model M, is computed
according to the Equation 16.

1 1 N
Hm(S) = — n1°9z Pm(S) = — (h\h) (16)

With these ideas in mind, Ray (RAY et al., 2016) has shown that the pieces of code
with high entropy relate to buggy code. When comparing a buggy piece of code with
the associated fixed piece of code, the entropy tends to decrease.

2.5 Final Considerations
We provide in this chapter a very brief introduction to essential concepts related to

the BL task, i.e., bug, bug reports, patches, and bug localization. We also introduce some
of the common performance measures applied in BL evaluations (MAP, MRR, NDCG,
and Top-N) and also in our experimentation. Between the many datasets applied in
research, we focus our work on two of them: Defects4J and LR-dataset. Our experimen-
tation is conducted and detailed in: Chapter 5 exploring some of the LtR algorithms

46 Chapter 2. Background

from Section 2.4.1, the introduction of new features based on language models briefly
introduced in Section 2.4.2 (with some additional implementations details discussed in
4.7.1), and other strategies trying to improve the BL rankings (presented further in
Chapter 4); and Chapter 7 experiment with a new approach to evaluate BL based on
the characterization of bug datasets, especially through the analysis of its patches (also
detailed in Chapter 6).

47

Chapter 3
Strategies for Bug Localization

Since the first efforts to automate the BL task, the research community has produced
many approaches. While there are many perspectives to analyze these approaches, one
accepted alternative usually found in the literature is to divide BL strategies according
to the type of information they process, naming them static information-based, dynamic
information-based, and hybrid or multi-modal approaches. Static information sources
are available before the localization process starts and do not require re-execution. Ex-
amples of static information are source code, bug reports, official documentation, change
history (commits), static metrics, and other kinds of related documentation (discussion
forums, questions and answers sites, complementary documentation, and more). Usu-
ally, dynamic information requires the system re-execution to produce the input data.
Examples of this kind of data are execution traces, stack traces, dynamic metrics, spec-
trum, coverage, and any information extracted from test case running. Finally, hybrid
approaches combine these two kinds of information to point out the ranking of suspects.
This chapter presents state of art with some proposals from the many available in these
three lines.

3.1 Static Information-Based Approaches

This section presents some of the static-based approaches to BL, the main focus of
this work, and the source for some experimental baselines. We started the construction
of an experimental package to evaluate BL approaches with the reproduction of the
LR approach (YE; BUNESCU; LIU, 2014; YE; BUNESCU; LIU, 2016), presented first
in this chapter. We detail the experiments with the initial reproduction in Chapter 5.
Another approach, BLUiR (SAHA; SAHA; PERRY, 2013), was also applied in some

48 Chapter 3. Strategies for Bug Localization

experiments, especially in Chapter 7. The other works in this chapter illustrate different
alternatives to deal with the problem of BL.

3.1.1 LR

A learning model for locating bugs is proposed in (YE; BUNESCU; LIU, 2016),
combining a total of 19 features including previously applied features (SAHA et al.,
2013; YE; BUNESCU; LIU, 2014), and also some new features (such as measures of
code complexity, PageRank, and Hyperlink-Induced Topic Search (HITS)). Since the
approach applies LtR algorithms, we call Ye, Bunescu e Liu (2016) approach as LR
to avoid confusion to the broader LtR acronym. The sources of information used are
source code, bug reports, Application Programming Interface (API) documentation,
change history, and dependency graph between files. The applied models were:

VSM The vector representation model applies for the generation of ^1 (Superficial
Lexical Similarity) and (API Enriched Lexical Similarity). While <^1 represents
a classic similarity comparison between terms in the bug report and the source
code, aggregates terms found in the API documentation of methods and classes
used in the source code file. The feature score returns the maximum similarity to
the bug report between the whole file and its methods.

Collaborative Filter The feature refers to the similarity between the content of the
target bug report and the summary of previous reports associated with each source
file, based on the usual idea of Collaborative Filters in Recommender Systems.

Class Name Similarity feature matches class names found in the summary of the
target bug report and the source code files. Thus, the calculus considers the length
of the matched class names.

File Review History The revision history (or changes) of files provide two features:
^5, the recency of the change, proportional to the difference of months between the
creation of the target report and the last change made to each file evaluated; ^6,
the frequency of changes, counting the number of changes the file had undergone
before the report creation.

Structured Information Retrieval Eight features are derived based on the retrieval
of structured information originally proposed in (SAHA et al., 2013). The essential
idea is to extract class names, methods, variables, and comments from the source

3.1. Static Information-Based Approaches 49

code and compare them to the terms in the summary and description fields of the
bug report. Each combination represents one of eight features to ^14.

Dependency Graph between Files Based on the extraction of the dependency graph
between source code files, the last five features are defined, being: ^15 the number
of dependencies of a file s to other files; ^16 the number of files that depend on s;
^17 the PageRank of each file; ^18 the Hub degree and ^19 the Authority degree of
the file, according to the algorithm HITS.

The feature normalization process put values between 0 and 1, limiting their original
values to the maximum and minimum found in the training data. One of the main
objectives of the training is to learn the weights to perform the linear combination of
features to define the ranking of the files for each bug report. Ye, Bunescu e Liu (2016)
also conducted a study on the relevance of the features, and the main conclusions were:
1. through an automatic selection algorithm, it is possible to use a subset of features
whose result only with the six most important characteristics represents more than 90%
of that obtained with all the characteristics; 2. There are no irrelevant features, each
variable's importance, depending on the target system; 3. In general, the features of
greatest impact on the ranking were ^1, ^3 and ^4, while the least important were fa,
$10, ^15 and ^19-

The authors created a dataset for evaluating the proposal with more than 22,000
bug reports in their previous work (YE; BUNESCU; LIU, 2014). The idea was to solve
a series of reported problems, especially the bias caused by using single versions of a
codebase and ignoring the timestamps from the bug reports creation. This situation
can cause potential bias in the ranking results because of bug fixes (or patches) in the
code from the report creation. The systems used to create this dataset were: AspectJ,
BIRT, Eclipse Platform UI, JDT, SWT, and Tomcat. The main results obtained were
Accuracy@k: for k = 1 from 13% to 42%, for k = 5 from 29% to 71%, for k = 10
from 39% to 80%; MAP from 0.16 to 0.49; MRR from 0.21 to 0.55. Tomcat gave the
best results in all metrics, while the worst results came from BIRT. Additionally, a
replication of the fixed-version dataset containing AspectJ, Eclipse, and SWT allowed
comparing other works.

3.1.2 AmaLgam+

AmaLgam+ (WANG; LO, 2016) leverages five sources of information (version history,
similar bug reports, structure, stack trace, and reporter information) to improve the

50 Chapter 3. Strategies for Bug Localization

performance of the authors' previous work (former AmaLgam approach applies only
three of these sources).

The authors applied the dataset in the assessment of BugLocator, and BLUiR ap-
proaches. The obtained results were: MAP from 0.36 to 0.62; MRR from 0.47 to 0.71;
Hit@1 from 0.36 to 0.63; Hit@5 from 0.60 to 0.82; Hit@10 from 0.69 to 0.90.

3.1.3 DNNLoc

DNNLoc (LAM et al., 2017) combines the rVSM information retrieval model pro-
posed in (YE; BUNESCU; LIU, 2014) with Deep Learning to solve the lexical mismatch
problem between terms in the source code and terms in the bug report. The lexical
mismatch is related to the lack of direct correspondence between the terms in the bug
report and the terms in the source code and negatively impacts the BL strategies. To
avoid the mismatch, strategies based on vector representations of terms apply since they
go beyond textual similarity and consider, for example, common contexts of use of these
terms. With the use of DL, DNNLoc is able to map a term such as context present
in a bug report to related terms in the source code such as authorization, ctx, envCtx
textitasyncContext.

DNNLoc separates the features used for the calculation of suspicious files in different
vector spaces, being: 1) relevance of terms between the bug report and source code; 2)
textual similarity between report and code; 3) collaborative filtering based on similar
reports changing common source files; 4) nominal similarity between entities in the
report and classes in the code; 5) recency of fixing; 6) fixing frequency. Despite the
similarity with some features used in (YE; BUNESCU; LIU, 2014), the combination for
calculating the ranking of suspicious files is done non-linearly through a DL network.
Another DL model (Auto-Encoders) is used to reduce dimensionality, given the large
number of features extracted from bug reports and source code.

The basis for extracting the characteristics comes from pairs containing a bug report
and a source code file. For the training of the networks, positive examples (files that have
received corrections pointed out by the report) and negative examples (sample of files
textually similar to the first but not associated with the report of bug and correction)
are selected. The processing of the bug reports terms is the usual (space separation,
removal of stop words, division of compound words in the style CamelCase with the
maintenance of the original terms as well, extraction of radicals Porter Stemming, rele-
vance calculation based on tf-idf). Four features are extracted from the source code: 1.
identifier names in the source code; 2. API elements used in the code (names of classes,

3.1. Static Information-Based Approaches 51

interfaces, and external methods); 3. comments in the source code; 4. comments/de-
scriptions associated with API elements. Comments on the source code are handled
similarly to the terms in the bug report.

The systems used in the experiments are the same as in (YE; BUNESCU; LIU,
2014), available online 1: AspectJ, BIRT, Eclipse UI, JDT, SWT, and Tomcat. Even
after contact, the authors did not provide experimental data or scripts for reproduction.
Based on the article alone, it would be difficult to obtain a precise reproduction since
much important information about the architecture used for implementation is implied
or omitted (mainly related to DL models) and would have to be discovered by trial and
error (e.g., number of nodes used, cell types, number of layers, number of entries, and
others). The main results obtained with DNNLoc were: Top-1 from 25.2 to 53.9%, Top-5
from 42.2 to 72.9%, Top-10 from 50.9 to 85.0%, MAP from 0.2 to 0.52, MRR from 0.28
to 0.60.

1 DNNLoc Datasets: <http://dx.doi.org/10.6084/m9.figshare.951967>
2 Apache Lucene: <https://lucene.apache.org/core/>

3.1.4 ConCodeSe

The main focus of ConCodeSe (Contextual Code Search) (DILSHENER, 2016) is
the search for suspect source file names at specific points in a bug report. Unlike other
proposals, ConCodeSe does not use historical information and search for similarities
between bug reports. The information is extracted only from the buggy version of the
source code and the bug report in question. In addition, the treatment is different from
each field in the report, considering the distinct nature of its content (more technical,
containing information such as execution stack/calls and code elements, or less technical,
containing the vocabulary of the application domain itself). Suspicious files are ranked
based on two scoring models: 1. Probabilistic; 2. Lexical Similarity.

Lucene resources 2 and the vector model (VSM) applies in the probabilistic model.
The base queries for generating probabilistic scores use different combinations of terms
(complete and stemmed) extracted from three sources: bug report, comments in the
code, and the source code file itself.

The semantic similarity model applies three criteria to rank a file: 1. the key position
of the file name in the bug report (KP score); 2. position of the file name in the stack
trace (ST score); 3. Matching terms in the report with terms in the file (TT score). The
rankings definitions are:

http://dx.doi.org/10.6084/m9.figshare.951967
https://lucene.apache.org/core/

52 Chapter 3. Strategies for Bug Localization

KP score scores files whose name occurs on the first (10 pts), second (8 pts), penulti-
mate (6 pts), or last position of the bug summary (4 pts).

ST score scores files whose name occurs on the first (9 pts), second (7 pts), third (5
pts), and fourth (3 pts) stack trace position.

TT score applies punctuation algorithm for a) exact match (+2 pts) or b) partial match
(+0.025 pts) between terms in the report and file name; c) exact match between
terms in the report and terms in the file (+0.0125 pts).

Unlike other approaches that combine the scores obtained in each model/calcula-
tion with weight adjustment, ConCodeSe assumes only the best result for ranking the
suspicious file.

The study was done on open systems: ArgoUML, AspectJ, Eclipse, SWT, Tomcat
and ZXing. The executable of ConCodeSe 3 and references to datasets 4 are available
online, although the authors have not made available a set of pre-processed data. The
main results were: MAP from 0.30 to 0.68, MRR from 0.55 to 0.94, Top-1 from 31.9%
to 72.4%, Top-5 from 61.2% to 89.8 %, Top-10 from 65.9% to 92.9%.

3 ConCodeSe Tool: < http://www.concodese.com/?cat=7>
4 Experimental data ConCodeSe: <http://www.concodese.com/?cat=9>

3.1.5 NSGA-II

Almhana et al. (2016) proposes the first approach to locating bugs based on a genetic
algorithm of multi-objective optimization. This work aims to transform the problem of
locating bugs into a search problem, with the following objectives: 1. Maximize the
lexical similarity of bug reports with the source code and its method APIs; 2. Maximize
the historical similarity between bug reports and classes in the source code, based on
the number of bug fixes received by the class, recency of fixes/changes, and consistency
in which classes are changed together in previous patches; 3. Minimize the number of
suspicious recommended classes, aiming to reduce the developer's effort while proceeding
with the final localization and repair.

The evaluation of the proposal is made on the systems: AspectJ, BIRT, Eclipse UI,
JDT, SWT and Tomcat. There is no mention in the work on making the implementation
available online. The dataset is based on (YE; BUNESCU; LIU, 2014). The main
results were (means of the experiments): Precision@k of 89% (k = 5) and 82% (k = 10);
Recall@k of 72% (k = 5) and 81% (k = 10); Accuracy@K of 68% (k = 5) and 86% (k =
10).

_http://www.concodese.com/?cat=7
http://www.concodese.com/?cat=9

3.1. Static Information-Based Approaches 53

3.1.6 Locus

Locus (LOcates bugs from software Change hUnkS) is proposed in (WEN; WU; CHE-
UNG, 2016) aiming to rank two levels of suspicious components, i.e., files and changes,
using the hunks (or continuous sequence of lines changed) found in the project commits
from change histories. Beyond the reduced granularity compared to files, the idea be-
hind the ranking of changes is to provide a better context to facilitate the developer's
work while dealing with bug localization and fixing tasks. Three models are used to
produce the rankings: 1. based on a Natural Language (NT) corpus, that computes the
similarity between terms in hunks with terms in bug reports; 2. based on Code Entity
(CE) corpus, that computes the similarity between code entity names in the hunks and
those found in bug reports; 3. The Boosting model measures elapsed time between the
bug report creation and the commits time. The information is extracted from change
histories (commits) and bug reports to build these ranking models. The final score
comes from a weighted sum from the scores of each model. These weights are defined
experimentally.

The evaluation is proposed on: AspectJ, JDT, SWT, PDE, Tomcat and ZXing.
Locus source code repository5 and dataset6 are available online. Obtained results are
Top-1 from 25% to 64%, Top-5 from 56.6% to 84.7%, Top-10 from 63.9% to 91.8%, MAP
from 0.32 to 0.64, and MRR from 0.381 to 0.725.

5 Locus repository: <https://github.com/justinwm/Locus/>
6 Locus dataset: <http://home.cse.ust.hk/~mwenaa/Locus.html>

3.1.7 BLIA

BLIA, Bug Location with Integrated Analysis (YOUM et al., 2015), combines four
score models in a weighted/parametrized way to produce a final suspect score for the
target source code files. The information comes from source code files, bug reports, and
change history.

The first score model, SimiBugScore, is based on the similarity of the queried bug
report to previous fixed bug reports in the project and relies on the BugLocator approach
in (ZHOU et al., 2012) with classical Vector Space Model (VSM) similarity. The second
score model, StructVSMScore, is based on the VSM similarity between the bug report
fields (summary and description) to the source code structured information (identifiers
for classes, methods, and variables, plus source code comments), and also relies on
BugLocator extended with the BLUiR approach in (SAHA et al., 2013). The third
score model, STraceScore, is based on the scoring of files appearing in the stack trace

https://github.com/justinwm/Locus/
http://home.cse.ust.hk/%7Emwenaa/Locus.html

54 Chapter 3. Strategies for Bug Localization

informed in the queried bug report, including files with names explicit in the stack trace
and the imported files by the formerly found files. STraceScore relies on the BRTracer
approach in (WONG et al., 2014a) for the processing and scoring of the stack trace
information. The last base score model, CommScore, is based on the extraction of
the last commits related to bug fixing and previous to the queried bug report. The
computed score correlates to the recency of the fixing pointed by the selected commits.
CommScore relies on the AmaLgam approach in (WANG; LO, 2014). The final BLIA
score integrates all these scores in a formula parametrized by a and /3, balancing the
influence of each base score, and k, which defines the recency range in days to consider
in CommScore.

The evaluation was done over AspectJ, SWT, and ZXing from (ZHOU et al., 2012)
and (WONG et al., 2014a). The results were: Top-1 from 37.7 to 68.4, Top-5 from 60
to 82.7, Top-10 from 73.2 to 89.8, MAP from 0.323 to 0.506, and MRR from 0.491 to
0.746.

3.1.8 BLUiR

BLUiR is proposed in (SAHA et al., 2013), based on Indri IR open-source toolkit
and in a structured information retrieval approach. The main idea behind BLUiR is
to leverage a classical TF-IDF model by distinguishing the bug report fields (query)
and the source code fields (document and collection corpus) to proceed with the bug
localization (information retrieval task). The fields summary and description from the
bug report fields are the query side information targets. BLUiR extracts the fields
(classes, methods, variables, and comments) to compose the documents corpus from the
source code. Each query versus document field generates a document score, and adding
the individual scores produces a final score.

The approach is evaluated with the same dataset from the BugLocator approach
(ZHOU et al., 2012), described in the following subsection. The obtained results were:
MAP from 0.17 to 0.56; MRR 0.33 to 0.65. The authors also present results for Top-1,
Top-5, and Top-10 metrics, but as the absolute number of localized bugs. We do not
present the results for these Top-N metrics to avoid confusion. Finally, the BLUiR au-
thors claim to outperform BugLocator, and BugScout (NGUYEN et al., 2011), while the
last comparison is indirect and based on the relative results obtained by each approach
on different evaluation datasets.

3.2. Dynamic Information-Based Approaches 55

3.1.9 BugLocator

Proposed in (ZHOU et al., 2012), BugLocator was the first to use similar bug reports
and source code file size in the suspicious score computing, beyond the classical similarity
comparison of the queried bug report to the target source code files. The information
sources are the bug reports and the source code file.

Two score models are applied. The rVSM score model is an adaptation ofthe classical
VSM model, with a weight component defined by a formula based on the source code
file size (#terms) because the authors assume the big files as more buggy-prone. The
SimiRank score model has two steps: first, to find the previous bug reports similar to
the queried bug report and compute the similarity of the queried bug report to the fixed
files associated with similar bug reports. A weight factor a defines the balance between
the contributions of each score in the final weight sum of rVSM and SimRank scores.

The evaluation is done over ZXing, SWT, AspectJ and Eclipse. BugLocator is
compared to other BL approaches based on: 1. the classical VSM model; 2. Latent
Dirichlet Allocation (LDA); 3. Smoothed Unigram Model (SUM); 4. Latent Semantic
Index (LSI). The obtained results were: Top-1 from 22.3 to 40.0; Top-5 from 40.91 to
65.31; Top-10 from 55.59 to 77.55, MRR from 0.33 to 0.48; MAP from 0.17 to 0.41.

3.2 Dynamic Information-Based Approaches

Dynamic approaches to BL represent another path to solve the localization problem.
However, unlike static approaches, the input data requires the execution of the target
system with some instrumentation to collect execution traces. This section illustrates a
few works in this line.

3.2.1 Tarantula

Tarantula (JONES; HARROLD, 2005) is one of the frequently cited Spectrum-Based
Fault Localization (SBFL) approaches. The suspiciousness level for a component c
computes as in Formula 17. Tarantula overcomes other approaches such as Set-Union,
Set-Intersection, Cause-Transition, and Nearest-Neighborhood techniques. Tarantula's
authors use the Siemens package (consisting of C programs with few lines of code) and
analyze 122 bugs. They report that in 55.7% of bugs, less than 10% of the code requires
examination to localize bugs, while others require 10% to 90% code analysis. They
also point out other experiments performed with a larger program (Space, 6,218 lines),

56 Chapter 3. Strategies for Bug Localization

indicating that in 40% ofthe bugs, it would be necessary to examine less than 1% ofthe
code for LB. Even with better results indicative, remember that the increase in program
size implies examining more lines of code when considering percentage data. Therefore,
even if the values seem better in percentage terms, the effort can be greater. Finally,
the approach is also limited to programs containing a single fault in each version (one
bug at a time).

nf

Susp(c)rrarantuia + llf-
ntf + ntf

(17)

where,
nf = number of failed test cases covering c;
ntf = total number of failed test cases;
ns = number of successful test cases covering c;
nts = total number of successful test cases.

3.2.2 D*

D* overcomes other SBFL approaches in an analysis involving 24 programs and 38
techniques for locating bugs (WONG et al., 2014b). Formula 18 shows the metric pro-
posed in D*, which is a variation of Kulczynski's formula (CHOI; CHA, 2010). The
coefficient * allows for varying the weight of the coverage of components by failed test
cases. When we have * = 1, the formula reduces to Kulczynski. The performance of
D* improves with greater values for *, reaching a threshold. D* uses only coverage
information, not depending on prior information on the program's structure and seman-
tics. While testing more extensive programs like Ant (75 KLOC), the question remains
whether the technique can apply to even larger programs.

Susp(c)d* = (nf)*
"^uf + ns

(18)

where,
n.f = number of failed test cases covering c;
nuf = number of failed test cases uncovering c;
ns = number of successful test cases covering c;
* = D* coeficient, greater than or equal 1.

3.3 Hybrid approaches
Hybrid approaches combine the static and dynamic approaches illustrated in the last

sections. Hybrid approaches are recent since most previous alternatives avoid mixing

3.3. Hybrid approaches 57

static and dynamic strategies. One reason is the difficulty obtaining both kinds of data
input, generating an extra overhead. Another reason is the difficulty validating the
approach since it is not usual to have bug datasets that contemplate static and dynamic
info needs with shelf ground truths. This section illustrates some of the few works
published using this strategy.

3.3.1 EnSpec

EnSpec (CHAKRABORTY et al., 2018) combine static Language Models (LM) with
SBFL dynamic approaches to produce the ranking of suspicious lines of code. Two
models apply: the LM model from (TU; SU; DEVANBU, 2014) is used to compute
the entropy of lines in source code ($gram model with syntax-sensitive normalization
(RAY et al., 2016)), considering the likelihood of tokens sequences forward, backward,
and the average; 25 metrics from previous SBFL models (e.g., Tarantula, Ochiai, and
others) applies to compute suspiciousness of executed lines for test cases. The entropy
measures apply to learn weights that relate buggy/non-buggy lines in the source code
to failed/passed test cases. An Ensemble Learning technique applies to compute the
final suspiciousness. RankBoost and Random Forest are the learning-to-rank algorithms
used.

The evaluation occurs with the projects of the Defects4J and ManyBugs benchmarks.
There is no mention on the paper to make the system and post-processed dataset avail-
able online since it is an ongoing work pre-printed in Arxiv. The obtained values for
AUCECi00 metric goes from 0.864 to 0.961 and represents gains of 0.708% to 19.13%
compared to SBFL approaches alone. The experiments show that the average entropy
feature has a major role in the improvement of the bug localization, especially to dif-
ferentiate buggy lines from non-buggy lines executed by fail test cases and also in a
cross-project setting (where the learning derived from a project is used to locate bugs in
a different one).

3.3.2 AML

AML (LE; OENTARYO; LO, 2015) proposes the combination of IR with SBFL.
The main idea of the proposal (classified as multimodal by the authors) is to combine
information extracted from the bug reports (used in IR) and coverage of test cases
(used in the SBFL). According to the authors, AML was one of the first multimodal
proposals for BL in the literature. Previously there were only a few proposals for the

58 Chapter 3. Strategies for Bug Localization

different domains of feature localization. In addition, it is the first approach to use
suspicious words associated with bugs and able to adapt individually to each type of bug
(achieved through ML and a probabilistic-based optimization process). The experiments
considered 157 real bugs from AspectJ, Ant, Lucene, and Rhino applications. The
runtime for the bug localization was between 20 and 80 seconds approximately, which
makes it possible to apply the technique interleaved with the developer activities (the
experiments run on an Intel (R) Xeon Linux Server E5-2667 2.9GHz). The results
showed that the proposal surpasses the other approaches considered in state of the art
(based on IR, SBFL and multimodal adapted from feature localization context to BL),
reaching 92 of the 156 bugs (improvement of 27.78% and 47.62% for Top-N metric) and
MAP of 23.7% (surpasses in 28.8% the other approaches). However, even with the good
results compared to the other techniques, it is notable that there is still a considerable
margin for improvements in the accuracy.

3.4 Reference and chronology of BL approaches

Figure 9 presents a chronology with some of the more recent static approaches,
including those summarized in previous sections. The arrows show the major refer-
ences between approaches and illustrate their comparisons and inter-connections over
the years. Since we choose BLUiR (SAHA et al., 2013) and LR (YE; BUNESCU; LIU,
2014; YE; BUNESCU; LIU, 2016) approaches as our baselines for the experimental
package and experiments, we highlighted it with a white background. Figure 10 and
Figure 11 show the equivalent information for dynamic and hybrid-based approaches,
respectively. Table 1 to 3 indexes the references for the presented approaches in the
figures. Even considering we present a reasonable number of approaches, we did not
proceed with a systematic review, and, certainly, some works were left out. For a more
in-depth and complete survey in BL, the work of (WONG et al., 2016) is an excellent
reference to papers until 2016.

3.5 Final considerations

This chapter presented some of the published approaches for BL. We can observe that
this is an active research area, and most of the works concentrate on static and dynamic
data-source approaches. Static approaches start from previously available data to pro-
vide rankings of suspecting buggy components, mainly targeting the mapping of bug re-

3.5. Final considerations 59

Year Approach / Reference

.. 2012 BugLocator (ZHOU et al., 2012), BugScout (NGUYEN et al.,
2011), Sinha et al. (SINHA; MANI; MUKHERJEE, 2012),
Sisman et al (SISMAN; KAK, 2012)

2013 BLUiR (SAHA et al., 2013), NB-TwoPhase (KIMet al., 2013)
2014 AmaLgam (WANG; LO, 2014), BRTracer (WONG et

al., 2014a), LR(1) (YE; BUNESCU; LIU, 2014), Lob-
ster (MORENO et al., 2014)

2015 BLIA (YOUM et al., 2015), BugWalker (WANG; PARNIN;
ORSO, 2015), HyLoc (LAM et al., 2015), PartOf-
Speech (TIAN; LO, 2015)

2016 ConCodeSe (DILSHENER; WERMELINGER; YU, 2016),
DrewBL (UNENO; MIZUNO; CHOI, 2016), Locus (WEN;
WU; CHEUNG, 2016), LR(2) (YE; BUNESCU; LIU, 2016),
LR-WE (YE et al., 2016), NP-CNN (HUO; LI;ZHOU, 2016),
NSGA-II (ALMHANA et al., 2016)

2017 AmaLgam+(WANG et al., 2016), DeepLocator (XIAO et al.,
2017) , DNNLoc (LAMet al., 2017), LS-CNN (HUO;LI, 2017)

2018 Bench4BL (LEE et al., 2018), Blizzard (RAHMAN; ROY,
2018) , CNN_Forest (XIAO et al., 2018), EBRo (ARCEGA;
FONT; CETINA, 2018), Loyola et al. (LOYOLA; GA-
JANANAN; SATOH, 2018), Orca (BHAGWAN et al., 2018),
Rath&Mader (RATH; MÀDER, 2018), TraceScore (RATH;
LO; MÀDER, 2018)

2019 BLiM2 (ARCEGA et al., 2019), CAST (LIANG et al., 2019),
Chaparro et al. (CHAPARRO; FLOREZ; MARCUS, 2019),
DeepLoc (XIAO et al., 2019), D&C (KOYUNCU et al., 2019),
Kim & Lee (KIM; LEE, 2019), Polisetty et al. (POLISETTY;
MIRANSKYY; BA\CSAR, 2019), Zhang et al. (ZHANG et
al., 2019a)

2020 Ackbar & Kak (AKBAR; KAK, 2020), BugPecker (CAO et
al., 2020), DependLoc (YUAN et al., 2020), Khatiwada et
al. (KHATIWADA; TUSHEV; MAHMOUD, 2020), KGBu-
gLocator (ZHANG et al., 2020), Scaffle (PRADEL et al.,
2020), Yang et al. (YANG; MIN; LEE, 2020)

2021 Arcega et al. (ARCEGA et al., 2021), DreamLoc (QI et al.,
2022), IncBL (YANG et al., 2021) TRANP-CNN (HUO et al.,
2019)

Table 1 - Summary of Static approaches for BL.

60 Chapter 3. Strategies for Bug Localization

Year Approach / Reference

.. 2012 Ample (DALLMEIER; LINDIG; ZELLER, 2005),
Barinel (JANSSEM; ABREU; GEMUND, 2009), Car-
rot (PYTLIK et al., 2003), GZoltar (CAMPOS et al.,
2012), Jaccard (ARTZI et al., 2012), Kulczynski (ABREU;
ZOETEWEIJ; GEMUND, 2007), Ochiai (ABREU et al.,
2009), Op2 (NAISH; LEE; RAMAMOHANARAO, 2011),
SBI (ASKARUNISA; MANJU; BABU, 2011), Taran-
tula (JONES; HARROLD, 2005),

2013 Xie et al. (SHI et al., 2013)
2014 Dstar (WONG et al., 2014b), MULTRIC (XUAN; MONPER-

RUS, 2014), MUSE (MOON et al., 2014)
2015 Metallaxis (PAPADAKIS; TRAON, 2015)
2016 Savant (LE et al., 2016), Zheng et al. (ZHENG et al., 2016)
2017 FLUCCS (SOHN; YOO, 2017), Pearson et al. (PEARSON et

al., 2017), PRFL (ZHANG et al., 2017), TraPT (LI; ZHANG,
2017)

2018 Delta Debug (CHRISTI et al., 2018), Wang et al. (WANG et
al., 2018)

2019 CNN-FL (ZHANG et al., 2019b), DeepFL (LI et al., 2019),
Raselimo & Fischer (RASELIMO; FISCHER, 2019)

2020 Deuslirio et al. (SILVA-JUNIOR et al., 2020), Kuma et
al. (KUMA et al., 2020), ProFL(a) (LOU et al., 2020),
ProFL(b) (THOMPSON; SULLIVAN, 2020)

2021 Alloy (KHAN; SULLIVAN; WANG, 2021), DeepRL4FL (LI;
WANG; NGUYEN, 2021), GRACE (LOU et al., 2021), Sohn
et al. (SOHN et al., 2021)

Table 2 - Summary of Dynamic approaches for BL.

Table 3 - Summary of Hybrid approaches for BL.

Year Approach / Reference

2015
2017
2018..2021

AML (LE; OENTARYO; LO, 2015)
Dao et al. (DAO; ZHANG; MENG, 2017)
EnSpec (CHAKRABORTY et al., 2018), NetML (HOANG et
al., 2018)

3.5. Final considerations 61

ports (typically, describing the faulty software behavior) to source code files that are more
likely to contain the bug (or receive the fixing patch). In this context, the works usually
employ different IR and ML techniques, like VSM (e.g., BugLocator and BLUiR) and
LtR-based algorithms (e.g., LR), but with a growing interest in the application of Deep
Neural Networks (DNN) models in recent works (e.g., NP-CNN, DeepLocator, DNNLoc,
LS-CNN, CNN_Forest, DeepLoc, TRANP-CNN). Dynamic approaches require a system
re-execution, generally guided by test-cases reproducing scenarios exhibiting the faulty
behavior and producing trace data (or spectrum) containing information about all the
source code components participating in the execution. Researchers propose formulas
(e.g., Tarantula and D*) for ranking the components according to buggy likelihood.
Since we have an instrumented execution, a more fine granularity (method or line level)
to point out buggy components is commonly possible with SBFL approaches. Even with
the common target of producing a good ranking of buggy suspects, the way the data
is acquired and processed differs between static and dynamic approaches, making the
merging a challenge. The merging difficulty and the mismatch of the approaches are
possible reasons for the few available Hybrid approaches that combine both strategies
and data sources. We can also observe that the precision and reliability of the produced
rankings are still far from the ideal, and the research should advance so that automatic
BL would become commonplace in a professional environment.

62 Chapter 3. Strategies for Bug Localization

Figure 9 - Static approaches for BL until 2021.

Figure 10 - Dynamic approaches for BL until 2021

3.5. Final considerations 63

Figure 11 - Hybrid approaches for BL until 2021.

64 Chapter 3. Strategies for Bug Localization

65

Chapter

On the Influential Factors for Bug
Localization Exploratory Assessment

This chapter raises several of the many influential factors on the assessment of BL
approaches, including the impact on performance measures. First, we enumerate and
describe the factors. Then, we briefly present the experimentation package developed
and applied in subsequent chapters while exploring and comparing different approaches
for BL.

4.1 Bug Reports' Pre-processing

Studies on bug reports show the importance of adequate pre-processing before their
use as input in BL techniques. Thus, the report quality measure should consider the
existence (or absence) of critical information, relevance, and content correctness. For
example, some bug reports may not refer to a bug but to users' questions or claims
for requirements (BETTENBURG et al., 2008). These cases clearly would imply noise,
especially in a ML approach. Therefore, a filter or weighting module for the bug reports
is essential to compute how confident we should be about results based on a given
report. Another study (MILLS et al., 2018) presents evidence that the bug report
content has enough to improve the text retrieval based BL approaches, even without
localization hints (i.e., specific information about code elements that would leverage
the performance and that is not present in all bug reports). Finally, Chaparro, Florez
e Marcus (2019) work points to query rewriting techniques as the next agenda for BL
research. It provided a public curated dataset containing near-optimal queries generated
from the bug report title and description fields through a Genetic Algorithmic approach

66 Chapter 4. On the Influential Factors for Bug Localization Exploratory Assessment

and applied in their experiments.
The LR study (YE; BUNESCU; LIU, 2016) that we based on has two types of

features: 1. query dependent, i.e., features using the information of the bug reports to
compute the ranking (e.g., all features based on similarity to the bug report summary or
description); 2. query independent, i.e., features relying on other sources, without using
information from the bug report as an input query (e.g., features based on PageRank
or HITS algorithms, extracting information only from source code). Thus, these pre-
processing approaches should only impact rankings generated from query-dependent
features.

Next, we enumerate some strategies to deal with bug report pre-processing:

1. Discard bug reports that do not contribute to similarity-based features or has a
null score in respective rankings, especially in rankings interfering directly in the
generation of inputs to the ML process;

2. Assign a weight to each bug report according to their quality assessment, so the
ranking generation focuses on bug reports with relevant information and reduces
the impact of bug reports contributing little or nothing.

3. Discard bug reports related to patches over source code containing test suites or
test cases exclusively. Since test suites are artifacts used to maintain code quality
and have no direct influence on functionalities, there is no reason to treat a test
case as a bug source like a source code containing functionalities.

4.2 Dataset Quality Assessment and Source Code
Filtering

When running BL experiments, the applied dataset can influence the obtained results
because of many variables like dataset size, type, and corpus characteristics, including
the bugs collected, bug reports, target projects or systems, source code base, development
period, and many others.

Focusing on just one aspect, as the mixing of functional and testing code, we can
observe situations requiring attention and care. In LR-dataset (YE; BUNESCU; LIU,
2014), specifically in AspectJ project input data, test suites are indistinctly enumer-
ated together with functional source code as part of the fixing patches for many bug
reports. For example, the file Ajc150Tests.java (in folder /tests/src/org/aspectj/sys-
temtest/ajc150) has 153 references in the XML input file containing all the AspectJ bug

4.3. Bug Classification Schemes 67

reports data. These references are in the fixed file list, the ranking results enumeration,
and the bug reports content fields (Summary or Description). For many bug reports,
the rank of the non-functional file is above the position of the functional source code files
(usually and ideally, the real target to fix the reported functional bug). More specifically:

1. Bug report 321 (BugId: 115235): Ajc150Tests.java is the first fixed file found
ranked in the fourth position by LR approach; the other two fixed files are func-
tional files ranked in fifth and ninth position, respectively;

2. Bug report 323 (BugId: 112756): only Ajc150Tests.java is enumerated as the fixing
target and is in the ranking first position;

3. Bug report 325 (BugId: 114005): Ajc150Tests.java is the first fixed file, ranked in
2nd position; the other is a functional file ranked in 60th position;

4. Bug report 326 (BugId: 90143): Ajc150Tests.java is the first fixed file and is in the
first ranking position; the other patch is on a functional file in the 124th ranking
position.

With just these examples, it is clear that the results obtained for the performance of
a tool based on the raw LR-dataset are not very trustful (without filtering testing files)
or at least require additional considerations. Test suites like Ajc150Test.java contain
calls for test cases, and even considering their change as a side effect of a patch, rarely
test cases may be directly related to the cause of a bug. The most surprising is that this
kind of file can be ranked in top positions while the actual functional source code files
patched are poorly ranked (as in bug report 326). This situation is entirely misleading
and invalidates someway the obtained results of LR experiments, and it is worthy to
note that Kim e Lee (2018) already reported about this issue.

An experimentation package would require filtering options to exclude folders con-
taining test cases or test suites and exclude bug reports patched exclusively by testing
files to avoid the previous situation. These also can be considered a kind of ground truth
quality assessment for the target dataset.

4.3 Bug Classification Schemes
The classification of bug datasets according to the bug characteristics is not so usual,

and it is not explicitly available in bug datasets or benchmarks. Moreover, few studies
proposed the classification of bugs or patches as a complement to improve the analysis

68 Chapter 4. On the Influential Factors for Bug Localization Exploratory Assessment

while using these datasets as proposed by Sobreira et al. (2018), Nayrolles e Hamou-lhadj
(2018). Consequently, most studies and approaches consider the dataset like a black box,
and a more in-depth performance analysis becomes extremely difficult, mainly because
the nature and characteristics of each bug in the dataset can variate a lot. Another con-
sequence is that these studies concentrate on showing numerical improvements obtained
over past approaches but not explaining why and where these improvements happen and
when the approach fails, according to the bugs' nature.

We start to fill the gap regarding the need to classify and discriminate the bugs'
nature in a dataset with the first dissection study (SOBREIRA et al., 2018). After a
broad review of the patches (or bug fixes) in the Defects4J dataset, it was possible to
determine a series of characteristics previously not explicitly available about their bugs.
We have concentrated on four main dimensions of the bug patches: the size of a patch
(in lines of code); the spreading of the patches (again in lines of code and measuring
the quantity and distance between chunks of code in each patch); the repair actions
(the type of changes applied in a patch, in terms of syntactic constructions such as if
conditionals, assignments, and loops); and finally, the repair patterns (more abstract
structures or shared constructions repeatedly found in various patches). This first work
was essential to provide insights into the bug patches' nature and how to automate
the extraction of these characteristics. So, we have continued the work and proposed
Automatic Diff Dissection (ADD)1, a tool to support the automated extraction of bug
patches' features defined in our Defects4J dissection study. Madeiral et al. (2018) details
the Patch Pattern Detector (PPD), a module of ADD for detection of repair patterns in
patches.

1 ADD repository: <https://github.com/lascam-UFU/automatic-diff-dissection>

Figure 12 shows the distribution of the number of lines composing each patch (or
code fixings) in Defects4J projects. According to the silhouette of the distribution, there
are no considerable differences in the patches size between the projects. Only the Joda
Time project diverges a little bit more in the size distribution, but they all have a high
concentration of patches involving up to 9 lines, and 95% of the bugs have patches
involving no more than 22 lines (SOBREIRA et al., 2018). This data would suggest
a careful approach while training for BL, since most lines of a file are not affected in
practice by a patch, and many approaches take the whole file given equal importance
for all its lines and possibly feeding noisy data to the learning algorithm.

Figure 13 shows the distribution of chunks (or sequential block of code lines) that
compose the patches in Defects4J. Again, the distribution is similar between the projects

https://github.com/lascam-UFU/automatic-diff-dissection

4.3. Bug Classification Schemes 69

Figure 12 - Distribution of the number of lines in each patch of Defects4J projects.

(the Joda Time project is the one that diverges a little more still). The chunks' number
is the first measure of patch spreading in the source code file (or between files). 25% of
patches have only one chunk (i.e., no spreading). The majority (75%) have at most three
chunks. Almost all the patches (95%) have no more than eight chunks. Complementing
the analysis of spreading, Figure 14 shows the spreading distribution of patches. This
spreading measure represents the number of lines between the chunks composing a patch.
Many patches have no spreading at all (at least 25%), half have no more than just one
line separating the chunks, while almost all (95%) have no more than 19 lines. These
data suggest that even considering some separation between the code lines of a patch,
these lines are close to each other, on average. Finally, considering the distribution of
patches between Files (or Classes that have similar results) and Methods, most patches
from Defects4J projects are restricted to a few Files/Classes (90% just one, and 95%
at most 2), and Methods (90% at most two methods and 95% at most three methods).
These highlights suggest that if we get Defects4J as a benchmark for BL, approaches and
tools may be successful if they can handle bugs that require small patches and with a
low spreading on the source code. By the way, it is essential to define how representative
is Defects4J when compared to other projects of interest so that this kind of analysis
and insights would also be applicable for other projects.

Beyond the basic dimensions of a patch, the insights related to repair actions (basic
operations with syntactic constructs like conditionals, assignments, and others) and
repair patterns (more abstract and repetitive constructs, like the adding of conditional
blocks, missing of a null check, and others) can also be interesting for BL. Figure 15
shows the incidence of repair actions on the patches of Defects4J. In green are shown the
actions involving adding code, in yellow are the actions that modify an existing code,
and in red are the actions that remove existing code. While expecting that most of the

70 Chapter 4. On the Influential Factors for Bug Localization Exploratory Assessment

Figure 13 - Distribution of the chunks composing each patch of Defects4J projects.

Figure 14 - Spreading distribution on each patch of Defects4J projects.

approaches for BL should be more successful in the handling of buggy code that should
be modified or removed, it is not clear how these approaches would behave trying to find
a bug that requires the adding of new code to fix it. It is evident in the chart that most
of the actions in patches involve the adding of new code, e.g., the top-3 repair actions
found in patches are adding of method calls (mcA), adding of conditionals (cndA), and
adding of assignments (asgnA). Thus, the capacity to find bugs because of the lack of
code is an authentic concern.

Figure 16 was extracted from our website “Defects4J Dissection”2 and shows how
many repair patterns are generally found in the patches of Defects4J. Most patches have
between one and four repair patterns. A segmentation of the evaluated dataset according
to the repair patterns found in the patches would best explain why the approach/tool
succeeds in some bugs classes and fails in others.

2 Defects4J Dissection: companion website of the published work (SOBREIRA et al., 2018) <http:
//program-repair.org/defects4j-dissection/>

The insights from the dissection study (SOBREIRA et al., 2018) supported by

http://program-repair.org/defects4j-dissection/

4-3. Bug Classification Schemes 71

Figure 15 - Repair actions incidence in patches from Defects4J projects.

1 2 3 4 5 6 3 9

Repair Patterns

Figure 16 - Distribution of the number of repair patterns by patch of Defects4J
projects.

ADD/PPD tool (MADEIRAL et al., 2018) can be applied to enrich the performance
analysis of BL approaches. Knowledge on tools behavior against the bug nature would
benefit and make analysis go beyond simple performance measure comparisons. Also,
the why, how, and when an approach has better performance than the others would be
more clearly justified.

72 Chapter 4. On the Influential Factors for Bug Localization Exploratory Assessment

The information about bug nature would also be helpful to leverage ML strategies
for bug localization, for example, grouping or clustering bug reports to tune BL tools
towards a specific type of bug or even to obtain better results in the learning process.

The ADD tool applied to the LR-dataset for comparison purposes and to contrast
how the results obtained from Defects4J would prevail in other datasets and contexts is
a natural unfolding and continuation of the first two papers to define the generalizability
of ADD.

4.4 Handling imbalanced data
One of the main difficulties in tuning a ML model is the problem with the imbalanced

dataset. Studies as in (GONG et al., 2012) have shown the negative impact caused by
imbalanced test cases used in Spectrum-Based Fault Localization (SBFL) approaches.
For the static BL approaches, this issue is also present since there is a big difference
between the small number of source code files affected by a bug (positive examples)
compared to the high number of non-buggy source code files (negative examples) in the
search space for a given project snapshot. Table 4 shows this relation for the projects in
LR-dataset.

Many strategies apply to deal with the imbalance of the datasets in ML classification
tasks (HE; GARCIA, 2009), such as Undersampling, Oversampling, Smote, CBO, and
Boosting.

The LR approach (YE; BUNESCU; LIU, 2016) has adopted the strategy of limit-
ing the number of source code files input for model training (a kind of undersampling).
Only the top k (k = 200 for optimal results) negative examples (non-buggy files) ranked
according to the surface lexical similarity feature (F1) are inputted to the training. The

bug reports # fixed files # total of files
per bug report per bug report

Table 4 - Imbalanced data in LR-dataset.

max median min max median min

Eclipse 6495 587 2 1 6243 3454 382
JDT 6274 118 2 1 10544 8184 2294
BIRT 4178 230 1 1 9697 6841 1700
SWT 4151 430 3 1 2795 2056 1037
Tomcat 1056 94 1 1 2042 1552 924
AspectJ 593 87 2 1 6879 4439 2076

4.5. Data Splitting Strategies 73

positive examples (buggy files) also compose the dataset training set. In our experimen
tal package, we maintain the same strategy. Since the imbalanced problem compromised
the learning process of the experiments in Chapter 5, the inclusion of the other data
balancing strategies is also a desirable complement for future works. We also apply dif-
ferent algorithms beyond SVMRank to handle the imbalance of data intrinsically, e.g.,
LambdaRank and Selective Gradient Boosting (LUCCHESE et al., 2018).

4.5 Data Splitting Strategies

In general, the dataset divides into training, validation, and testing sets during a
machine learning process. There is a kind of confusion and mixing in the literature,
especially between the validation and testing set concepts. Sometimes, it is unclear when
to use one or another term since many papers swap their meaning. Here, we assume the
validation set applies for tuning and model selection during the learning process. We
consider the evaluation measures using training or validation data as training measures.
In its turn, the testing split applies for the final performance measures of the tuned or
selected model. Testing data do not apply in the training or validation process. These
assumptions are consistent with the following definitions adapted from Ripley's book
(RIPLEY; HJORT, 1995):

Training set the sample of data used to fit the model.

Validation set the sample of data used to provide an unbiased evaluation of a model
fit on the training dataset while tuning model hyper-parameters.

Testing set the sample of data used to provide an unbiased evaluation of a final model
fully specified through the training and validation data set.

A usual strategy for training and validation of ML models is cross-validation, es-
pecially the k-fold cross-validation. However, the BL problem has a particular time
restriction: given a bug report and the associated patch time-stamp, no data from the
bug fixing commit and beyond should be considered for training and testing purposes
to avoid biases and overfitting caused by data leakage, i.e. when the training data have
the information trying to be predicted (KAUFMAN et al., 2012). Many studies already
published can have questionable results because of this issue, especially in the software
development area, as pointed out by Tu et al. (2018). An alternative is to apply back-
testing, where the dataset is split based on the chronological order of the samples for

74 Chapter 4. On the Influential Factors for Bug Localization Exploratory Assessment

training, validation, and testing. For example, the Time Series Forecasting area ap-
plies strategies of back-testing to deal with data leakage, and one of the well-known is
out-of-sample tests (TASHMAN, 2000). Some of these strategies are:

Walk Forward (LADYZYNSKI; ZBIKOWSKI; GRZEGORZEWSKI, 2013)
a.k.a.: Sliding Window, Roll Forward Cross Validation, Forward Chaining
This strategy sample the dataset in subsets (or windows) offixed size: oWL (out-of-
sample data), a training subset; tWL, a testing subset. Initially, oWL is positioned
at the start of the dataset, while the tWL is positioned just after oWL. At each
training/testing iteration, oWL and tWL slid by the size of tWL, this way covering
all the remaining datasets. The total size of the testing window (TW) is given
by the sum of all the iterated tWL blocks, while the first oWL training block
represents the data feed length (DFL). When the testing window has a unitary
size, this approach is equivalent to the Rolling Window in (TASHMAN, 2000).

Expanding Window
a.k.a.: Rolling Origin, Recursive Forecasting
This strategy is similar to the previous one, except that there is no sliding on the
training data (oWL), but a continuous expansion with the inclusion of the testing
data used in the last iteration.

Ye, Bunescu e Liu (2016) proposal applies the Walk Forward strategy with many
training and testing subsets containing 500 bug reports each (window size), except for
AspectJ that employs just a single training and testing subsets with sizes of 500 and
93 bug reports, respectively. We experiment with both strategies using different train-
ing and testing sizes, but the whole support still needs improvements to scale better,
especially with large training/testing samples.

4.6 Source Code Representation

IR approaches usually process the textual input as word tokens, i.e., in a generic
way without assumptions about the nature of the specific domain or context. However,
programming languages have intrinsic semantic that can influence the interpretation of
the processed input. For example, the order of the tokens handling, the hierarchical
structure between tokens, and the scope can be meaningful and change how some bug
reports should be associated with a target source code file.

4.7. New Features for Bug Localization 75

In that sense, future works would research and apply strategies prepared to consider
the intrinsic nature of source code, for example, leveraging representations like AST,
recognizing the repetitive condition of textual input in the source code file, and con-
sidering the language mismatch between the query (bug report) and the corpus (source
code files search space).

4.7 New Features for Bug Localization

This section discusses some features that potentially would improve BL. We tested
the entropy feature, and some results are shown in Chapter 5. The obtained insights
from (SOBREIRA et al., 2018) can be a start point to propose new features based on
commits and patches. Word embedding is another technique to explore in the extraction
of new features and can alleviate the semantic gap between words between the bug report
and source code artifacts. Finally, the last part mentions other potential features that
need additional research.

4.7.1 Entropy

We first attempted to improve the BL performance by implementing an entropy fea-
ture. The entropy expresses the inverse code “popularity” measure because recurrent
code in a target code base receives a lower score than unfamiliar code. The imple-
mentation apply the SPL-Core3 library (HELLENDOORN, 2017) available in GitHub.
SPL-Core can extract a LM from a set of Java source code files. The learned LM allows
measuring how natural is a token occurrence given a sequence of the predecessor or suc-
cessor tokens in the code, expressed as a probability score. The aggregated entropy score
represents the naturalness of a line computed by averaging the scores of tokens found in
that line. The same rationale applies to computing the entropy score for methods and
files by aggregating the associated lines. SPL-Core allows to parametrize the computed
LM using the following configurations:

3 SPL-Core:<https://github.com/SLP-team/SLP-Core>

n-grams: the number of tokens considered after or before the target token (i.e., the
sentence length).

Sentence direction: the entropy can be computed considering the forward direction of
the sentence, the backward direction or both (bidirectional).

https://github.com/SLP-team/SLP-Core

76 Chapter 4. On the Influential Factors for Bug Localization Exploratory Assessment

Cache: the use of a cache model allows to emphasize a local context (i.e., a target file)
beyond the whole LM. So for the experiments, it is considered the entropy score
with and without cache.

Smoothing: the smoothing techniques allow for a trade-off between the use of long,
more specific, but less frequent sentences against short, more general but flooded
sentences in the coding corpus. The available smoothing alternatives are Jelinek-
Mercer (JM), Witten-Bell (WB), Absolute Discounting (AD), and Kneser-Ney
(KN). For the experiments in Chapter 5, we use only JM smoothing. However,
we should conduct more tests to measure the impact of these different smoothing
models.

SPL-Core does not provide a normalized score that considers the type of the tokens
found in lines (e.g.,assignment and if-statement). Thus, Eclipse JDT Parser 4 parsedthe
files, the types of each token were identified and then considered to define the normalized
score of each line, using the methodology to compute Z-score of Ray et al. (2016). The
following configurations reflect these two entropy alternatives:

4 Eclipse JDT Parser: <https://goo.gl/YgHSiv>

Enr: Raw entropy computed from the LM created with SPL-Core. Computed as the
average of entropies associated with 1) tokens in a coding line, 2) lines in a method,
3) lines in a file.

Enz: Entropy sensitive to type computed after parsing Java files and identifying the
root node in Java AST related to each line. Then, the raw entropy associated with
a line normalizations applies according to the AST root node type of this line.

4.7.2 Word2Vec, Glove and ConceptNet

Most of the features applied in the LR approach rely on the textual similarity between
the bug report fields (summary and description) and the associated corpus to the target
file (i.e., any source code content or API documentation). The features ^2, ^7..14

are the more impacted by this issue, since their similarity calculation is based on the
classical VSM model for IR. A known problem of this approach is the gap of lexical
similarity (a.k.a. lexical mismatch) between the comparison targets, especially in the
context that source code and bug reports are produced (generally by different people and
also in different languages). To illustrate, if a bug report refers to a term like “home”

https://goo.gl/YgHSiv

4.7. New Features for Bug Localization 77

to describe a bug and in the source code the same entity is referred to as “house”,
the classical VSM model would be of no help for a match in this context, and would
contribute to lower the feature score.

Word embedding models fill this gap since it goes beyond lexical similarities compar-
isons and can approximate even semantic similarities. Word2Vec and Glove are among
the most popular current applications. Another recent proposal is ConceptNet Number-
batch (SPEER; CHIN; HAVASI, 2017), derived from Word2Vec and Glove and promising
to be a better option. The extraction of features replacing those based on the classical
VSM by word embedding and related approaches versions would be a good target for
future works.

4.7.3 Commits and Patches

Few approaches apply information based on commits and patches to produce features
for BL (WEN; WU; CHEUNG, 2016; LE et al., 2016; ALMHANA et al., 2016; YE;
BUNESCU; LIU, 2016; YOUM et al., 2015; WANG; LO, 2014). The work in (WEN;
WU; CHEUNG, 2016) proposes the use of commits (i.e., bug-inducing changes) as a finer-
grained alternative to the usual file granularity from static information BL approaches.
Wen, Wu e Cheung (2016) advocate the use of commits for a better contextualization and
to reduce the effort in the developer maintenance task. They also report the improvement
in the performance of BL with their approach. BLIA (YOUM et al., 2015) use commit log
messages to select commits associated with bugs and uses the recency of these commits
as one of the components to compute the suspicious score of a file for a given bug report.
The LR approach (YE; BUNESCU; LIU, 2016) applies some features based on the meta-
information derived from the bug fixing commits, such as bug fixing recency (^5) and
bug fixing frequency (^6).

A possible extension would be to introduce Wen's approach (WEN; WU; CHEUNG,
2016) in the LtR process and to explore other related features to the commits and
patches contents. The insights from (SOBREIRA et al., 2018) would be integrated
into the learning process using, for instance, some patch (or commits) characteristics
as input features. We should explore the applied repair actions and patterns, size, and
spreading of patches to produce new rankings. Other ideas include learning with patches
and identifying more frequent bugs fixing contexts, such as reinforcing similar contexts
with higher scores and penalizing not similar contexts with lower scores; based on patch
patterns, weight information from patches according to these patterns.

78 Chapter 4. On the Influential Factors for Bug Localization Exploratory Assessment

4.7.4 Other features

The enumerated features in the last subsections are only a fraction of what remains
to explore. For example, the BM25 and BM25F scores apply in the context of Feature
Location, and better results are obtained with MRR metric when compared to classical
VSM, Unigram Model and LDA (SHI; KEUNG; SONG, 2014). Since BL can be con-
sidered a specialization of Feature Location, the application of the BM25 as a feature in
the context of BL is a natural unfolding. Other works that would inspire the adaptation
of BM25 in the context of BL comes from Shi, Keung e Song (2014), Saha et al. (2013),
Liu (2009), Keyhanipour e Moeini (2016). Another potential feature is the use of stack
trace information present in bug reports in a structured way, already explored in BL
by Wong et al. (2014a). The primary difference is that Wong et al. (2014a) does not
explore stack traces with learning algorithms.

4.8 LtR Tools and Models for BL
The LtR area has been in continuous development in the last years, and many al-

gorithms and tools exist. The LR approach (YE; BUNESCU; LIU, 2016) applies only
an SVM based algorithm implemented in the SVMrank tool5. In Chapter 5, we show
some results with alternative LtR algorithms and compare the performance against the
baseline, including parameters and hyper-parameter tuning. Some of the tested tools
was:

5 SV M rank:<https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html>
6 QuickRank: <http://quickrank.isti.cnr.it/>
7 RankLib:<https://sourceforge.net/p/lemur/wiki/RankLib/>
8 XGBoost:<https://github.com/dmlc/xgboost>

1. SVMrank: tool to produce baseline results according to (YE; BUNESCU; LIU,
2016);

2. QuickRank6: includes implementations for GBRT, LambdaMART, Oblivious GBRT,
Oblivious LambdaMART, CoordinateAscent, LineSearch, RankBoost, DART and
Selective Gradient Boosting;

3. RankLib7: includes implementations for MART, RankNet, RankBoost, AdaRank,
Coordinate Ascent, LambdaMART, ListNet, Random Forests;

4. XGBoost8: for LtR task with the implementation based on LambdaRank.

https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
http://quickrank.isti.cnr.it/
https://sourceforge.net/p/lemur/wiki/RankLib/
https://github.com/dmlc/xgboost

4.9. Experimental Package for Bug Localization Assessment 79

4.9 Experimental Package for Bug Localization As-
sessment

As shown in the previous section, many factors influence results of a BL approach.
Therefore, an experimental package for dealing with some of the enumerated factors is
a significant design challenge. Since the work of Ye, Bunescu e Liu (2016) applies a
reasonable number of features inspired and based on other related works, we applied it
as our baseline work, implemented in an experimental package prototype. Initially, the
package targets BL approaches using static information and has bug reports as the base
for the fault localization query.

4.9.1 Experimental Package Overview

The experimental package is a prototype developed to support the experimentation,
extraction of the features, producing performance measures, and generating input data
for LtR algorithms. Figure 17 gives an overview of the experimental package's general
workflow. The BL process depends on data from 1) the source code repository and 2) the
bug reports registry system. The source code repository requires information related to
the project history, including source code files and API documentation typically stored
in a version control system (e.g., Git). The bug reports repository requires information
describing the observed issue (title and description) and information to support the
ground truth building for performance evaluation and ML-based training. Typically, bug
report information comes from Bugzilla, Jira, or Git Issues systems, but the experimental
package assumes a simple XML file exported from the mentioned systems. The initial
processing steps involve the bug report targets selection, which would imply filtering and
quality assessment. Then, the system needs to recover the project version associated with
the buggy files existing before the bug patch application. Next, the source code elements
need prepossessing to separate the buggy suspects from other code elements non-related
to the bugs or external to the project (e.g., libraries or non-functional/testing files). The
code is parsed and indexed for a database with the potential buggy suspects targets, and
then the feature extraction starts to allow the ranking building. Features such as the 19
from Ye, Bunescu e Liu (2016) work are the base for score generation associated with
each code element (i.e., source code files) suspected to contain a bug. The computed
scores support the ranking generation produced by both strategies for BL: LtR-based
algorithms (e.g., our LR-based approach and other third parties LtR-based libraries and
tools) or Non-ML-based algorithms (e.g., BLUiR approach). Finally, we can sample bug

80 Chapter 4. On the Influential Factors for Bug Localization Exploratory Assessment

reports targeting the performance assessment with the generation of specific measures
(e.g., MAP and MRR).

Figure 17 - BL process overview and associated modules of the experimental package.

There is no intention to describe the implementation details since it should change a
lot with refactorings and re-design required to improve modularity, maintainability, and
performance bottlenecks observed during the development of the experimental package.
Furthermore, we do not consider it a reference architecture in the current state.

The main technologies and libraries applied were:

Programming Languages: Python, Java, Shell Script;

4.9. Experimental Package for Bug Localization Assessment 81

Python Libraries: Pony Object Relational Mapping/Mapper (ORM), Natural Lan-
guage Toolkit (NLTK), Scikit-learn, Py4J, JavaScript Object Notation (JSON),
Pandas, Jupyter Notebook, Anaconda;

Java Libraries: Eclipse JDT parser, Java Universal Network/Graph Framework (JUNG),
SPL-Core;

Databases: SQLite and Postgres were initially applied and for comparisons purposes,
but most parts of the final results were using MySQL/MariaDB in the last imple-
mentation;

Repository: GitHub.

Python is the primary language targeting the future application of Tensor Flow
library (for Deep Learning (DL) models) and considering the extensive support for data
science projects of the Python libraries (e.g., Scikit-learn, Jupyter Notebook, Pandas,
Anaconda). Since the projects in the LR-dataset are in Java, Py4J is in charge of
allowing access to Eclipse JDT parser, JUNG library for Graph algorithms, and SPL-core
library for entropy calculations. In addition, Python and Shell's scripts were employed
for experiments, interface with Git repository, and version control. The data model
extracted from source code persists with Pony ORM in a MySQL database server. The
following subsections briefly describe some interfacing parts related to the input and
output.

4.9.2 Input

The input for the framework is composed of:

1. bug reports: bug id, description, summary, open timestamp;

2. bug fixing: timestamp, associated commit, associated fixed files;

3. source code: all source code file versions associated with the fixed version and the
buggy version just before the fixing for a given bug report;

4. API documentation (embedded in source code): especially, documentation for
classes and methods;

Bug reports and bug fixing information comes from XML files associated with each
LR-dataset project. In addition, source code and API documentation come from the
GitHub repository of each project.

82 Chapter 4. On the Influential Factors for Bug Localization Exploratory Assessment

Bug reports (preprocessed according to the criteria defined in Section 4.1) and the
list of selected datasets are forwarded to feature extraction.

4.9.3 Feature Extraction

We compute ranking scores from a set of features for the selected bug reports and
related file versions. The replication ofthe original 19 features in (YE; BUNESCU; LIU,
2016) was as close as possible to the methodology adopted in that paper. Additionally,
the Entropy feature as discussed in Section 4.7.1 is also implemented. After each feature
extraction, the associated ranking are built and stored in the database.

All feature scores were normalized values according to Equation 19.

score — p,SCOT€^orm
a

(19)

H is the average value for all the file versions used in the feature extraction, and a is
the associated standard deviation.

4.9.4 LtR Input

Once the scripts generate the individual rankings, it is possible to feed them in LtR
algorithms. Using all the file versions scores would compromise and make it unfeasible
by memory, time, or processing constraints. Thus, the feeding occurs by sampling file
versions associated with each bug report and using the normalized scores obtained for
each feature. There are two types of samples: the positive examples, representing the
fixed or buggy files; negative examples represent the non-fixed or buggy-free files to the
associated bug report. All the positive examples are considered for the learning process,
while some heuristics apply to select negative ones. The original approach in (YE;
BUNESCU; LIU, 2016) selects the Top-200 negative examples based on the ranking of
the feature <^1 (Surface Lexical Similarity).

Ye, Bunescu e Liu (2016) approach limits the number of bug reports for training
and testing in the baseline approach. First, the bug reports are sorted chronologically
by their timestamp. Then, the most recent reports have priority in the selection. The
optimalnumberofbug reports used for training is 500bugreports, while 100 bug reports
for testing, in most of the dataset projects, according to experiments in (YE; BUNESCU;
LIU, 2016). Beyond the approach to choosing a fixed number of bug reports for training
and testing, the strategies enumerated in Section 4.5 are also employed.

4.9. Experimental Package for Bug Localization Assessment 83

The SVM-Light plain text format is the usual choice to prepare the input for the
LtR algorithms. Figure 18 shows the rules to define a line input in SVM-light. Each
line represents a one-sampled file. The target field represents the condition of the file
for a given bug report: value 0 if the file is a negative example (non-buggy); value one if
the file is a positive example (buggy). The special feature qid identifies the bug report,
the respective samples, and the bug-id info. Following qid are the features identified by
positive integers indexes and valued with the normalized score of the respective feature.
The info field receives the file identifier to facilitate later analysis, and the LtR algorithms
do not apply it for learning purposes.

<line> .=. <target> <feature>:<value> ... <feature>:<value> # <info>
<target> .=. +1 | -1 | 0 | <float>
<feature> .=. <integer> | "qid"
<value> .=. <float>
<info> .=. <string>

Figure 18 - SVM-light format.

To generate the training SVM-light files9, the strategies enumerated in Section 4.4
are employed, beyond the (YE; BUNESCU; LIU, 2016) baseline strategy discussed pre-
viously.

9 SVM-light format: <http://svmlight.joachims.org/>

While the training files receive samples of the file versions scores, the testing files
receive all the file versions scores for each bug report. Thus, the final ranking generated
for performance evaluation using the chosen metrics for LtR is more representative of
the actual situation while searching for the buggy files and ranking all available and
relevant source code files in a project.

Beyond the data in SVM-light format, we should inform many parameters and hyper-
parameters before starting the learning process. Some parameters are general, e.g., the
metric to be used, and other parameters are specific to an algorithm or a class of them,
e.g., the number of leaves for tree-based algorithms and type of kernel function for
SVM-based.

4.9.5 LtR Output

The output of the learning process depends on the tool applied (as discussed in
Section 4.8). Generally, the LtR tools produce a model for testing, production, and
predictions on training or testing data. Unfortunately, there is no standard format for
the outputs.

http://svmlight.joachims.org/

84 Chapter 4. On the Influential Factors for Bug Localization Exploratory Assessment

The QuickRank tool has two basic outputs:

1. Model: a XML file with the learned model, composed of two main sections.

□ The first section is the info section that contains all the parameters to run
the LtR algorithm. Tree-based models have general parameters, e.g., the
maximum number of trees, leaves, and shrinkage. Some algorithms have spe-
cific parameters, such as DART (e.g., sample type, adaptive type, rate drop),
Oblivious MART and Oblivious LambdaMART (e.g., depth), Coordinate As-
cent and Line Search (e.g., number of samples, window size), and Lamb-
daMART Selective (e.g., sampling iterations, rank sampling factor, adaptive
strategy negative strategy);

□ The second section is the model section with the generated LtR model writ-
ten, most parts as an ensemble of binary trees (e.g., DART, MART, and
LambdaMART), where each tree has a weight, and the nodes represent the
threshold for the model selected features. The exception in the model format
is for Coordinate Ascent, which only enumerates a weight for the features, and
Line Search, which contains ensembles of single node trees, each representing
a feature with the related weight.

2. Predictions: a plain text with the predictions for training and testing and extra
configuration information.

□ Some sections fixed in this file containing general information about the tool,
parameter configurations (replicated from the XML model file), paths for
the dataset involved (training and validation), runtime info (such as training
time and reading time), dataset size (instance x features) and the number of
queries, chosen training metric (NDCG@k, MAP, ...).

□ Most interesting part is the performance measures for training and validation.
Most of the algorithms present the results in three columns, in the format
< iteration > < training_score > < validation_score >, each line contains
the value obtained in the associated iteration. In addition, some algorithms
present extra information, such as DART (dropped trees, ensemble size, and
dropout info) and Line Search (e.g., gain, window, and red factor).

The SVMrank tool also produces one output for the learning process and one for the
classification (prediction).

4.9. Experimental Package for Bug Localization Assessment 85

1. Model: a plain text file with the learned model, composed of:

□ kernel and other configuration parameters used in the SVM algorithm (one
per line);

□ feature weights in the last line in the format <feature-index>:<weight>.

2. Predictions: a plain text file with the scores predicted (numeric float values) associ-
ated with each line in the input testing dataset file (in SVM-light format discussed
in Section 4.9.4). We can use the scores values as the ordering key to recovering the
final ranking for each bug report (the higher the score, the higher is the relevance
of the file). However, we do not have automatic performance measuring metrics
like QuickRank.

The RankLib tool produces an output similar to QuickRank:

1. Model: a plain text file composed of two main sections.

□ The first section contains all the parameters according to the chosen algo-
rithm, one per line, started with “##” and followed by the parameter and
value in the format < parameter > = < value >.

□ The second section contains the model written in plain text in a format depen-
dent on the selected algorithm. Tree-based algorithms (e.g., MART, Lamb-
daMART, and RandomForests) are written in an XML-like markup and rep-
resent the ensemble of trees as in QuickRank. Coordinate Ascent enumerates
feature weights in the format < feature >:< weight > in the file last line.
RankNet lists all the Neural Net architecture information, including layers
and weights.

2. Predictions: screen output with the predictions for training, validation and testing,
extra information of configuration, and runtime.

□ As before information, there is a section about loaded files, algorithm param-
eters, dataset files (training, validation, and testing), and status about the
processing.

□ The performance measures section is also similar to QuickRank. Most of the
algorithms present the results in three columns in the format < iteration > | <
training_score > | < validation_score > |, and each line contains the
value obtained in the associated iteration. In addition, some algorithms

86 Chapter 4. On the Influential Factors for Bug Localization Exploratory Assessment

present extra information, such as RankNet (% mis-ordered), RankBoost
(selected feature, threshold, and error), ListNet (c.e. loss), and AdaRank
(selected feature). Other algorithms show another kind of output format,
such as Coordinate Ascent, presenting blocks of information in the format
< feature > | < weight > | < score > |.

□ Final section shows the final computed performance metrics for training, test-
ing, and validation and confirms the file to output the model.

4.10 Final Considerations
We developed an experimentation package to explore factors that can impact the

performance of a BL approach. Through the experimental package implementation pro-
cess, we perceived a need for an environment to experiment with, reproduce, assess and
compare BL approaches aiming to propose improvements to the state-of-the-art. The
ideal environment would be able to 1) facilitate the experimentation process, 2) intro-
duce new features and composition strategies to generate and improve ranking scores
for software components from a project suspected to be buggy, 3) allow comparisons
between the approaches, experiment ideas and highlight strengths and weakness of the
assessed approaches, 4) allow to sample bugs for experimentation based on bugs intrinsic
characteristics, e.g., typeofpatch required and other associated dimensions, 5) deal with
many challenges on the construction, e.g., reproduce past experiments, extract and pro-
cess the massive amount of data, 6) optimize the use of resources (e.g., computational,
memory, and storage), 7) integrate everything, from feature extraction to testing and
comparisons of approaches. Many of the enumerated influential factors in this chapter
would compose this ideal environment. While our experimental package made the gen-
eration of data and analysis possible for the experiments in this thesis, we just started to
cover some of the factors described in this chapter. Additional work remains to achieve
a complete and practical environment usable by the research community.

87

Chapter

Strategies for learning-to-rank bug
localization improvement

This chapter presents the exploratory results obtained with the implemented models
and the experimental package. The first section, Evaluation Method, details research
questions proposed, bug dataset applied, data preparation and cleaning procedures, con-
figurations and parameters for the experiments, metrics, and the run-time environment.
The final section, Results, details the obtained results and analyzes each research ques-
tion.

5.1 Evaluation Method

The initial experimentation target to answer the following research questions:

RQ1 What is the performance of the entropy feature compared to other features?

RQ2 The use of entropy feature can improve the results obtained by past learning
approaches to BL?

RQ3 What is the impact of data balance strategies in the learning process?

RQ4 How does the tuning of LtR algorithms impacts the BL performance?

RQ5 How long does it take to conclude each step in the process (feature extraction,
ranking generation, training, validation, and testing)?

88 Chapter 5. Strategies for learning-to-rank bug localization improvement

5.1.1 Dataset

The target dataset used in the exploratory studies is the LR-dataset (YE; BUNESCU;
LIU, 2014), briefly described in Section 2.2.2. However, we did not cover all projects
and data in LR-dataset in these exploratory experiments to reduce computing time and
because the current state of the experimental package did not scale to complete the
processing in a reasonable time. Thus, we choose to sample only part of the data from
Tomcat, SWT, and AspectJ from the six available projects in LR-dataset.

5.1.2 Data Preparation and Cleaning

The pre-processing of data follows the procedures of Ye, Bunescu e Liu (2016) work,
as close as possible. Textual data extracted from bug reports and source code, especially
those used in similarity comparisons (most of the features ^1 to ^14), include the steps:

Word tokenization input document split into words using white spaces.

Stop Word Filtering numbers, punctuation, and stop words are filtered using NLTK
English stop words list.

Compound Words common in code entity names are split based on Camel Case (Cap
ital letters) and added to document corpus.

Porter stemming is applied to all words also using NLTK package.

While analyzing the bug reports set in LR-dataset, we observed the presence of
bug reports where no fixed file is informed. These types of bug reports, even considering
their relation with an actual bug, are of no help as ground truth since we cannot directly
recover the fixed code. Thus, we opt to exclude bug reports in this condition for this
work. Similarly, we exclude bug reports containing only test files since they do not
represent fixing patches for functional program behavior. As some studies have pointed
out the disadvantages of using a dataset containing test files as fixing targets, we also
opted to exclude from the search space the source code files containing only test cases
or test suites. A manual analysis allowed the selection of folders for exclusion, and,
fortunately, most projects use standard folders, easy to recognize as testing folders, and
separate them from functional code. External files (usually libraries) were not considered
candidates for fixing.

Many instances have missing values for some features, e.g., there is no reason to ex-
tract the method similarity from classes or interfaces without the implemented methods,

5.1. Evaluation Method 89

as could occur in computing of and ^12 (Summary-method and Description-method
names similarity). For these and other cases of missing values for features, we opted
to replace the missing value with zero, considering that the range of normalized values
goes from 0 to 1. We do not proceed with duplicated instances analysis (e.g., considering
duplicated bug report). We would need additional experiments to assess the impact of
replacing missing values with other alternatives (e.g., the average) and removing dupli-
cated instances.

5.1.3 Experiment Configurations

This subsection presents all the configurations of parameters used in the experiments,
including baseline adapted from (YE; BUNESCU; LIU, 2016) and additional configura-
tions related to features, data balance strategies, and LtR algorithms. The last sections
present evaluation metrics and the run-time environment.

5.1.3.1 Baseline

The implementation in this work is an adaptation from the paper (YE; BUNESCU;
LIU, 2016), discussed in details in Section 3.1.1. The following configurations build the
baseline:

LR-All: all 19 features presented by Ye, Bunescu e Liu (2016) and enumerated in
Table 5;

LR-6Best: the six features with the best-combined performance for each project accord-
ing to Ye, Bunescu e Liu (2016) (see Figure 20 in that paper for details). Table 6
summarize the features;

LR-6Exp: the six features with the best performance in individual rankings in this
implementation (variate with the experiment).

5.1.3.2 Entropy Feature

Experiments with Entropy Feature applied following configurations (described in
Section 4.7.1):

n-grams: values in range 3, 6, 10.

Sentence direction: set to f orward, backward and bidirectional

90 Chapter 5. Strategies for learning-to-rank bug localization improvement

Table 5 - Original features in (YE; BUNESCU; LIU, 2016).

Feature Short Description Query
Dependent?

01 Surface lexical similarity yes
02 API-enriched lexical similarity yes
03 Collaborative filtering score yes
04 Class name similarity yes
05 Bug-fixing recency yes
06 Bug-fixing frequency yes
07 Summary-class name similarity yes
08 Summary-method name similarity yes
09 Summary-variable name similarity yes
01O Summary-comments similarity yes
011 Description-class name similarity yes
012 Description-method name similarity yes
013 Description-variable name similarity yes
014 Description-comments similarity yes
015 In-links = # file dependencies of s no
016 Out-links = # files that depend on s no
017 PageRank score no
018 Authority score no
019 Hub score no

Cache: set to “with Cache” (default).

Smothing: set to “Jelinek-Mercer - JM” (default).

Entropy type: set to “type sensitive - Enz ”,

We pin the last three configurations in the experiments, so the reference key to iden-
tifying the Entropy configuration points only to the n-grams and the sentence direction

Table 6 - Best features per project according with (YE; BUNESCU; LIU, 2016)

Project Features
Eclipse Platform UI 01> 07, 04> 03> 015 • 011
JDT 01> 03> 07, 04> 02, 012
BIRT 03> 04> 011 , 0U , 02, 08

SWT 04> 06> 01> 03, 011, 05
Tomcat 01> 03> 06> 01O , 02, 014
AspectJ 01> 012 , 04 , 06 , 03, 010

5.1. Evaluation Method 91

Table 7 - Entropy features computed in exploratory experiments.

Feature Short Description Query
Dependent?

$20-1 File Entropy, Forward Sentence, 3-ngrams no
^20-2 File Entropy, Backward Sentence, 3-ngrams no
^20-3 File Entropy, Bidirectional Sentence, 3-ngrams no
$21-1 Method Entropy, Forward Sentence, 3-ngrams no
$21-2 Method Entropy, Backward Sentence, 3-ngrams no
$21-3 Method Entropy, Bidirectional Sentence, 3-ngrams no
$22-1 Max Entropy between ^20-1 and ^21-1 no
^22-2 Max Entropy between ^20-2 and ^21-2 no
^22-3 Max Entropy between ^20-3 and ^21-3 no

values, i.e., En10f, for entropy with ten n-grams and forward sentence direction, and
En3i for entropy with three n-grams and bidirectional sentence direction. Table 7 shows
the combination of configurations of the Entropy feature used in this work.

5.1.3.3 Data Balance Strategies

WE apply under-sampling strategies over the negative examples in the following
configurations:

Single Feature Top-K: this is the strategy used by the LR approach in baseline ex-
periments, with k = 200 and ^1 is the feature for ordering and getting the top files.
Example: SFk200 indicates we picked the 200 top negative files from the selected
feature ranking.

Multi-Features Top-K: a variation in the previous strategy is using more features
rankings to pick the negative examples. Example: MF^fe indicates the top 33
negative examples from the selected features rankings are picked, and the 6 most
impacting features overall projects is took, i.e., {^1, ^3, ^4, fa, ^7, ^12}, according
with Table 6.

Multi-Features Var-K: in this case, we use many feature rankings, each with a spe-
cific number of negative examples picked. A heuristic was applied to rank, select,
and weight the features according to their appearance in the first six positions for
each project, shown in Table 6. One appearance in the first position scores 10, the
second position scores 8, and so on, until the sixth position scores 1 point for each
appearance. Example: MFk200w and a mapping with the number of files selected

92 Chapter 5. Strategies for learning-to-rank bug localization improvement

Table 8 - Selection and weighting of features from Table 6.

Feature 1st
Appearence Count
2nd 3rd 4th 5th 6th Weight Samples Ranking

^1 4 0 1 0 0 0 46 59 1°
^2 0 0 0 0 3 0 6
^3 1 2 0 2 1 0 36 46 2°
^4 1 1 2 1 0 0 34 43 3°
^5 0 0 0 0 0 1 1
^6 0 1 1 1 0 0 18 23 4°
^7 0 1 1 0 0 0 14 18 5°
^8 0 0 0 0 0 1 1
^9 0 0 0 0 0 0 0
^10 0 0 0 2 0 1 9
^11 0 0 1 0 1 1 9
^12 0 1 0 0 0 1 9 11 6°
^13 0 0 0 0 0 0 0
^14 0 0 0 0 0 1 1
^15 0 0 0 0 1 0 2
^16 0 0 0 0 0 0 0
^17 0 0 0 0 0 0 0
^18 0 0 0 0 0 0 0
^19 0 0 0 0 0 0 0

Total 157 200

for each feature is provided, e.g., {^1: 59, ^3: 46, ^4: 43, ^6: 23, '.<: 18, ^12: 11},
limited to 200 files and detailed in Table 8.

For these configurations, the undersampling applies only to negative examples (non-
buggy files), all the positive examples are included (buggy files). To be fair in the
comparisons, the total number of negatives files sampled in each configuration for each
bug report will be as close as possible each other.

5.1.3.4 LtR Algorithms applied

The experiments involved a total of 14 LtR different algorithms, all them from third-
party libraries and first listed in Section 4.8. Some have more than one implementation
(one from QuickRank and one from RankLib). Next, the algorithms are enumerated:

SVM™”fc: Rank SVM, algorithm also applied in baseline reference work (YE; BUNESCU;
LIU, 2016);

5.2. Results 93

QuickRank: DART, LambdaMART, MART, Oblivious LambdaMART, Oblivious MART,
Random Forest, Stochastict;

RankLib: AdaRank, Coordinate Ascent, LambdaMART , Linear Regression, ListNet,
MART, RankNet, RankBoost, Random Forest;

5.1.4 Metrics Extracted

The performance measures were based mainly on the metrics described in Section 2.3:
MAP, MRR, Top-N, NDCG@10. For example, the range of values for Top-N is in the
set {1, 5, 10}.

5.1.5 Runtime Environment

The experiments ran in a Lenovo ThinkServer TD340 with following specifications:

CPU: 12-core Intel Xeon E5-2430 v2 @ 2.50GHz.

GPU: GM206GL [Quadro M2000] NVIDIA.

RAM: 32 GB RAM (2 x 8 GiB DIMM DDR3 1600 MHz 0.6 ns, 1x16 GiB DIMM DDR3
1600 MHz 0.6 ns).

Hard Disk: 600 GB Seagate Savvio 10K.6 SAS 6 GBS (ST600MM0006).

OS: Experiments started in Open Suse 42.3, and after a system crash, the host Op-
erational System was replaced by Ubuntu 18.04 LTS and Open Suse 42.3 run in
VirtualBox to maintain database compatibility.

5.2 Results
This section shows the results obtained in the experiments and answers the research

questions proposed before. The analysis and discussions go along with data presentation.

5.2.1 RQ1: What is the performance of the entropy features
compared to other features?

The experiments use data from AspectJ and SWT projects to measure the perfor
mance of each feature. First, the initial 200 bug reports from AspectJ were selected

94 Chapter 5. Strategies for learning-to-rank bug localization improvement

(chronologically ordered according to the bug fixing timestamp). Then, we selected 300
bug reports from SWT: 200 bug reports from positions 200 to 400 and 100 bug reports
from positions 700 to 800. The original idea was to cover more bug reports, but en-
tropy computation consumes many resources (memory and processor). SWT entropy
extraction was spent from 4.2 to 17.0 minutes by bug report on average, which gives
from 21 to 85 hours to complete Entropy extraction for these exploratory studies. Since
to compute all the 19 features, the time spent by bug report was between 3.1 to 5.4
minutes on average, we did not spend too much time with entropy computation in the
exploratory studies. We should proceed with the optimization and refactoring of the
experimental package code to make the coverage of all the dataset viable.

Figures 19 and 20 show the results obtained considering MAP, MRR, Top-N and
NDCG@10. The general results obtained for the different metrics are consistent, and
the best performance features are almost the same, no matter the metric. For AspectJ,
the best feature by far is ^1, while for SWT, the best feature is ^4. It is interesting to
note that this simple divergence can have an impact on the learning process since the
feature <^1 is not the best for SWT, and in the baseline experiments in (YE; BUNESCU;
LIU, 2016), it applies in the sampling of the top negative examples for learning.

The results obtained for the entropy individually show poor performance in these
exploratory experiments. AspectJ has the worst performance compared to SWT, and
the baseline features show far superior performance (it is important to note that the
charts have different vertical scale range). For SWT it is possible to see that ^21-1 and
^22-1 has better results than features ^9, ^13, and ^16. These results can be a sign that
entropy would have a role in the performance improvement for some bugs.

In the baseline, previous work (YE; BUNESCU; LIU, 2016), query-independent fea-
tures (^15 to ^19) were between the worst individual features in terms of MAP results.
However, entropy is also a query-independent feature, and it is not a big surprise that
its performance would not be so different from the baseline query-independent features.
Thus, according to these results, we confirm this behavior since query-independent fea-
tures do not significantly impact the ranking as the query-dependent features in general.

As the results involve a small number of bug reports, we should consider these results
with care compared to the previous study by Ye, Bunescu e Liu (2016) with around
500 bug reports for training and testing. For further studies, the expectancy is on
the complementary role of entropy when combined with other features. We need more
experiments to confirm this hypothesis and cover more projects and bug reports.

5.2. Results 95

SWT-MAPAspectJ-MAP

/eatures features

SWT - MRRAspeciJ-MRR

features features

AspectJ - NDCG@10 SWT - NDCG@10

Figure 19 - MAP, MRR, NDCG@10 of AspectJ and SWT features.

5.2.2 RQ2: The use of entropy feature can improve the results

obtained by past learning approaches to BL?

A similar setting to RQ1 was employed to evaluate the impact of entropy in the
learning process, and only SWT was evaluated. Figure 21 shows the results obtained
applying SVMRank tool to learn from 200 bug reports of SWT and test on 100 bug

96 Chapter 5. Strategies for learning-to-rank bug localization improvement

Figure 20 - Top-N of AspectJ and SWT features

reports. The baseline is represented by LR-A11 setting, including features 0i to 0i9.
Another baseline is represented in LR-6Best, including the 6 most impacting features
overall according to Table 6 and discussed in section 5.1.3.3, i.e., {(f>í: 59, (f>3: 46, 43,
<f>Q. 23, <f>7'. 18, (fiz- 11}- The additional settings include the entropy features individually
to each baseline: 02o-i , 021-1? 022-1- The capacity parameter of SVMRank was set to
values in the set {0.01, 0.1, 1, 10, 100, 200}. The evaluation metrics were MAP, MRR,
Top-N and NDCG@K, with N and K values in the set {1, 5, 10}.

The general observed behavior was consistent between all metrics. The best per
formance was with capacity set to 0.1 for most metrics settings with some oscillations
towards a capacity value of 0.01. The original LR experiment (YE; BUNESCU; LIU,
2016) has found the optimal performance with capacity in the interval [10, 100]. Inter-
esting to note that settings with the six best features have shown better performance
than settings with all features, while in the original experiment, this does not occur for
the SWT project. Our best performance results are also slightly better than the results
found in the original LR work. For example, the best MAP and MRR values reported
in the original LR experiment were 40.0 and 46.0, while we have found a MAP value of
42.75 and an MRR value of 51.36, both with the setting LR-6Best+f20.1 and capacity
= 0.1. Nevertheless, we need additional experiments, including more bug reports in the
training set (the original LR approach had a training size of 500 bug reports, while only
200 bug reports were applied) and involving the other projects to confirm these Hndings.

Although the best absolute results were with the use of entropy feature 02o.i, the
improvement over the baseline in these experiments is marginal: for MRR metric, an
improvement of 2.21% over LR-6Best, and 4,90% over LR-A11; for MAP metric, an
improvement of 0.25% over LR-6Best, and 3.69% over LR-A11; for Top-1 metric, an

5.2. Results 97

improvement of 2.56% over LR-6Best, and 8.11% over LR-All; the improvement found
for NDCG@1 is the same than Top-1. Considering LR-All only, the best corresponding
entropy setting LR-All+21.1 performed worst than the LR-All baseline setting: -0.82%
for MRR, and -0.49% for MAP. We need more experiments to confirm the role of
entropy in the learning process, but based on these results, the expectancy is to obtain
low improvements if the same settings are applied.

5.2.3 RQ3: What is the impact of data balance strategies in
the learning process?

To evaluate the influence of the balancing strategies enumerated in Section 5.1.3.3,
many experiments were conducted using different LtR algorithms available in RankLib
and QuickLearn tools. Figures 22 and 23 present the results for experiments over Tomcat
using 100, 250 and 500 bug reports for training and 100 bug reports for testing. Baseline
stragegy SFk200f 1 is shown in green, MFk33f 6 is shown in yellow and MFk200w is shown
in blue. The metric aplied in the comparisons was NDCG@10. Only features ^1 to ^19

were considered.
By training with 100 bug reports, the differences are not meant for most of the

algorithms, while training with 250 and 500 bug reports, it is notable the positive con-
tribution of the data balancing strategies in the performance of the learning algorithms.
Although the performance gain variates a lot between the algorithms, there is some con-
sistency between the tools. For example, LambdaMART has a maximum performance
gain of 52.3% and 70.86% over baseline SFk200f 1 strategy, respectively, in QuickRank and
RankLib implementations. Similar comparisons also confirm these performance gains,
e.g., with MART, Random Forest. However, it is fair to state that this high gain in the
performance would be more related to the overfitting with SFk200f 1 strategy, causing
poor performance in training with 250 and 500 bug reports, so the merit of the data
balancing strategies is mainly related to the avoidance of overfitting in the algorithms.

The best performance obtained in each tool were:

QuickLearn: LambdaMART and Stochastic with NDCG@10 = 59.64%, using MFk200w,
overcomming SFk200f 1 in 52.30% and MFk33f6 in 3.97%, considering the same
algorithm.

RankLib: LambdaMART with NDCG@10 = 57.92%, using MFk33f6, overcoming SFk200f 1

in 70.86% and MFk200w in 2.87%, considering the same algorithm.

98 Chapter 5. Strategies for learning-to-rank bug localization improvement

To
p-

10
(%

)
.

To
p-

5(
%

)
To

p-
1(

%
)

M
R

R
(%

)

Capacity

LR-AII ------- LR-AII+Í20.1 -------- LR-AII+Í21.1
LR-6Best ------- LR-6Best+f20.1 -------- LR-6Best+f21.1

LR-AII+Í22.1
LR-6Best+f22.1

-------LR-AII --------LR-AII+Í20.1 -------LR-AII+Í21.1 LR-AII+Í22.1

Capacity

-------LR-AII --------LR-AII+Í20.1 -------LR-AII+Í21.1 LR-AII+Í22.1
LR-6Best ------- LR-6Best+f20.1 -------LR-6Best+f21.1 LR-6Best+f22.1

------ LR-AII --------LR-AII+Í20.1 --------LR-AII+Í21.1
LR-6Best -------LR-6Best+f20.1 --------LR-6Best+f21.1

LR-AII+Í22.1
LR-6Best+f22.1

LR-6Best ------- LR-6Best+f20.1 -------LR-6Best+f21.1 LR-6Best+f22.1

Figure 21 - MAP, MRR, Top-{1,5,10} results on 300 bug reports of SWT (200 for
training and 100 for testing)

5.2. Results 99

The balancing strategies did not positively impact RankNet, RankBoost, and AdaRank.
For these algorithms, SF'k200f 1 overcame MFki200w and MFk33f6. Even considering the
best-obtained result of these algorithms (Rankboost with NDCG@10 = 55.72%), Lamb-
daMART with MFk33f6 is still better 3.95%.

5.2.4 RQ4: How does the tuning of LtR algorithms impact the
BL performance?

The influence of the tuning in LtR for BL was first shown in RQ2 while evaluating
the SVMRank tool with different values for the capacity parameter. The performance
range changes a lot depending on the capacity value applied. To illustrate, the Table 9
shows the performance range variation for LR-All setting. The high decay observed
between the best and the worst settings reinforces the need to tune the algorithms
before analyzing and insights. Since it is usual to find works relying only upon the
default parameters, this is another issue because they can obfuscate the optimum results
and even lead to a premature discarding of a tool or algorithm.

Table 9 - Performance variation of SVMRank on SWT by tuning the algorithm with
capacity parameter in LR-All setting.

Metric Best Worst Decay (%)
MRR 48.96 27.31 42.22
MAP 41.23 23.81 42.81
Top-1 37.00 6.00 83.78
Top-5 69.00 48.00 30.43
Top-10 79.00 63.00 20.25
NDCG@1 37.00 6.00 83.78
NDCG@5 43.88 24.24 44.76
NDCG@10 47.85 30.66 35.92

To extend this analysis, we proceed with experiments using the LambdaMART algo-
rithm in RankLib tool over the 300 bug reports of SWT and comparing baseline setting
(LR-All) with baseline + entropy (LR-All+020.1). The metrics extracted were MAP and
NDCG@10. The parameters to tune were Number of Trees {32, 64, 128, 256, 512},
Number of Leaves {1, 2, 5, 10} and Shrinkage {0.05, 0.5, 0.8}. We defined the last
parameter's value sets after some experiments and also based on the optimum values
found in the previous work of Ye, Bunescu e Liu (2016). We opted to restrict the values

100 Chapter 5. Strategies for learning-to-rank bug localization improvement

LambdaMART applied toTomcat w/ RankLib

MART applied to Tomcat w/ RankLib

bug reports

■ sfk20041 mfk33 fl43-4-f6-f7-fl2
■ mfk* fl:5943:46.14:43. f6:23.f7:18.fl2:11

Random Forest applied to Tomcat w/ RankLib

Figure 22 - NDCG@10 for MART (Lambda and Obliviuos) and Random Forest al-
gorithms from QuickRank and RankLib tools.

■ sf k20041 mfk 33 f 1-f 3-44647412
■ mfk* fl:59.f3:46,f4:43.f6:23.f7:18,fl2:ll

5.2. Results 101

ListNet applied to Tomcat w/ RankLib

bug reports

■ sfk20041 I mfk33 f143-44647412
■ mfk* fl:59,f3:46,f4:43,f6:23,f7:lB,fl2:ll

DART applied to Tomcat w/ QuickRank

#bug reports

■ sfk20041 I mfk 33 f143-44647412
■ mfk* fl:59,f3:46.f4:43,f6:23,f7:18,fl2:ll

Coordinate Ascent applied to Tomcat w/ RankLib RankNet applied to Tomcat w/ RankLib

#bug reports # bug reports

■ sfk200-fl mfk33 «.43-44647412
■ mfk* fl:59,f3:46,f4:43,f6:23,f7:18,fl2:ll

■ sfk200-fl mfk33 f143-44647412
■ mfk* fl: 5943:4644:4346:2347:184 12:11

Figure 23 - NDCG@10 for Stochastic, ListNet, DART, Linear Regression, Coordinate
Ascent, RankNet, RankBoost, AdaRank from QuickRank and RankLib tools).

AdaRank applied to Tomcat w/ RankLib

bug reports

■ sfk20041 i mfk33fl43-4-f6-f7412
■ mfk* fl: 5943:4644:4346:2347:18412:11

102 Chapter 5. Strategies for learning-to-rank bug localization improvement

to avoid extending the experiments. We proceed with a grid search-based approach to
produce results and find the best combinations.

Table 10 summarizes some performance values and statistics from the experiment
with LambdaMART. The section Best Performance in that table shows the best val-
ues obtained for the settings with baseline (LR-All) and entropy (LR-ALL+^20j), for
both metrics MAP and NDCG@10. The following two sections present the Average Per
formance and Standard Deviation considering: 1. only the five settings with the best
performance (5-Best); 2. the ten settings with the best performance (10-Best); 3. all
the settings. Finally, the last sections show the direct comparison between performance
obtained for baseline and entropy settings, considering the best setting and the averages
shown above in the table. For MAP, baseline overcomes entropy by 2.7% in the best
setting, while for NDCG@10, there is a draw since the performances are equal. However,
the differences are minimal and below 1% for the 5-Best settings. In the 10-Best set-
tings, the performance is almost the same for MAP, while the entropy setting overcomes
baseline in 2.21%. In the All Settings comparison, entropy presents better performance
overall than baseline (14.95% better with MAP, and 42.47% better with NDCG@10).
The standard deviation perspective also confirms these results. The low values for the
5-Best and 10-Best indicate that top settings have similar performance. However, All
Settings has a far higher standard deviation, confirming a big difference between best
and worst settings. In almost all the cases, the standard deviation in entropy settings
is below the baseline. Since the average performance results of entropy settings are al-
most the same or better than baseline, the tendency is that settings with entropy deliver
better results overall than baseline.

Table 11 shows the best parameters found in the experiments and also the statistical
Mode for the five best and the ten best performance settings. There is no unanimity with
MAP measure for the Shrinkage parameter since all the parameter values appear in the
top settings. Considering the best setting and the 10-Best-Mode with LR-All settings,
0.05 would be the choice. Considering LR-All+^20.1 again, it is not easy to point the
winner. With NDCG@10 measures, there is no doubt about the choice for the Shrinkage
of 0.05, either for LR-All or LR-All+^20.1. For the Number of Trees parameter and with
MAP measure, most of the settings have 32 trees, except in the best setting of LR-All
with 64 trees. For NDCG@10 measures, most settings have 64 trees, including the
best settings, but 32 and 128 values also appear in the 5-Best-Mode and 10-Best-Mode.
Finally, the Number of leaves has the value 1 present in most settings, either for MAP
or for NDCG@10. Some exceptions occur for the best setting of baseline LR-ALL with
MAP, while some mode settings where the value 2 also appears. The following charts

5.2. Results 103

Table 10 - Performance statistics from the tuning of LambdaMART on SWT using
baseline and ^20.1 entropy settings.

Best Performance
MAP NDCG@10

LR-All 42.29 47.66
LR-All+^20.1 41.18 47.66

Average Performance
MAP NDCG@10

5-Best 10-Best All Set. 5-Best 10-Best All Set.
LR-All 41.33 40.77 19.55 47.33 45.42 15.47
LR-All+^20.1 41.04 40.76 22.99 47.56 46.44 26.90

Standard Deviation
MAP NDCG@10

5-Best 10-Best All Set. 5-Best 10-Best All Set.
LR-All 0.54 0.87 17.68 0.51 2.92 15.80
LR-All+^20.1 0.15 0.35 15.22 0.11 1.36 18.85

How much entropy setting is better than baseline?

Best Set. 5-Best (Avg) 10-Best (Avg) All Set. (Avg)
MAP -2.7 % -0.72 % -0.04 % 14.95 %
NDCG@10 0.00 % 0.5 % 2.21 % 42.47 %

show values 1 and 2 for leaves have almost the same performance overall, making the
value of 1 the best choice for the Number of Leaves.

To finalize the tuning analysis, the charts in Figures 24 and 25 show how the perfor
mance variate with the parameters. We restrict the number of charts to facilitate the
analysis and insights since many charts were generated considering all the metrics and
parameters used in the experiments and would bloat the text unnecessarily. The bars
in blue represent performance data for baseline testing data, while the light blue bars
represent the baseline testing data. Similarly, the bars in red represent the performance
of entropy testing data, while the light red bars represent the entropy testing data. The
parameters shown in the legend define the ordering of the data associated with each
main group of bars, where nt is the number of trees, and sh is the Shrinkage. To illus-
trate, in the Figure 24-a, there are three groups of bars, one for each shrinkage value in
the horizontal axis (0.05, 0.5, and 0.8). In the first group (sh=0.05), there are 20 bars.
The first four bars are associated with the settings with 32 trees: 1st bar is the training
performance of the baseline setting (light blue), 2nd bar is the testing performance of
the baseline setting (blue), 3rd bar is the training performance of the entropy setting
(light red), 4th bar is the testing performance of the entropy setting (red). The next
four bars are associated with the settings with 64 trees and follow the same previously

104 Chapter 5. Strategies for learning-to-rank bug localization improvement

Table 11 - Parameters found in the best performance settings while tuning Lamb-
daMART on SWT bug reports.

Parameter Best 5-Best-Mode 10-Best-Mode

MAP

LR-All Shrinkage 0.05 {0.5, 0.8} 0.05
Number of Trees 64 32 32
Number of Leaves 5 {1, 2} 1

LR-All+^2o.i Shrinkage 0.8 {0.5, 0.8} 0.05
Number of Trees 32 32 32
Number of Leaves 1 1 {1, 2}

NDCG@10

LR-All Shrinkage 0.05 0.05 0.05
Number of Trees 64 {64, 128} {32, 64}
Number of Leaves 1 1 {1, 2}

LR-All+^20.1 Shrinkage 0.05 0.05 0.05
Number of Trees 64 64 {32, 64}
Number of Leaves 1 {1, 2} 1

described sequence. This logic repeats for the settings with 128, 256, and 512 trees,
completing the first group of bars. This sequence repeats for Shrinkage of 0.50 and 0.80.
The Figure 24-b is derived from the Figure 24-a, by removing all the bars of training
performance, remaining only test data for baseline (blue) and entropy (red) settings.
The vertical axis was also limited to 50. This chart facilitates the direct comparison of
the baseline with the entropy testing performance settings.

In Figure 24 it is possible to perceive the higher values for both baseline (blue) and
entropy (red) settings, when the Shrinkage value is 0.05, and also for 0.80, although
the former has a little bit higher values overall. It is also visible that the performance
falls with increasing the number of trees. The performance falls are even more severe
for the Shrinkage of 0.50, especially from 128 trees and above. The bars in light blue
(baseline training settings) and light red (entropy training settings) represent the training
performance and highlight when the over-fitting occurs. For example, the differences
between training and testing data for the baseline are the largest (the number of trees
greater or equal to 128). We can confirm some over-fitting in settings with more trees,
mainly with a Shrinkage of 0.50 value. Figure 24-c and 24-d are similar to the previous,
but considering the NDCG@10 measure. The differences between baseline and entropy
settings are more accentuated, favoring testing settings with entropy. In this case,

5.2. Results 105

especially in Figure 24-c the over-fitting on baseline settings is clearly more accentuated
with shrinkage of 0.50 and 0.80. Nevertheless, this occurs only for baseline settings since
it seems the over-fitting is not severe for entropy settings. Best values are clearly in the
first bar group, where Shrinkage is 0.05.

Figure 24-e and Figure 24-f show the performance for the nl = 5 and nl = 10. The
performance for nl = 2, has no meaningful difference from nl = 1, and was ignored.
The over-fitting with the increase in the number of leaves is clear, even for the settings
with previous good performance such as sh = 0.05, and mainly win baseline setting with
nt above 64. The higher over-fitting in the settings occurs with nl = 10. Figure 25
show same but now with the bar groups organized according to the Number of Trees
parameter. The ordering inside each group follows the shrinkage parameters (0.05, 0.5,
0.8). These charts reinforce the insight that the overfitting increases with the number
of leaves and with the number of trees.

Even considering the Entropy feature does not improve the performance of the top
settings in general meaningfully compared to baseline settings, after the exposed results,
it is more or less clear that this feature seems to play some role in reducing over-fitting for
the settings overall. The algorithm tuning is also evident, and it is crucial to obtain the
best from the applied algorithm. To reinforce this need, after running LambdaMART
using the default parameters (#trees = 1000, #leaves = 10, shrinkage = 0.1), we just
get over-fitted and poor results: for LR-All, training data gives 71.09%, and testing
gives %5.76 for MAP, while with NDCG@10, training gives 88.02% and testing gives
2.54%; for LR-All+^20.1, training gives 72.97%, and testings give 3.9% for MAP, while
with NDCG@10, training gives 87.28% and testing gives 2.02%.

5.2.5 RQ5: How long does it take to conclude each step in the
process (feature extraction, ranking generation, training,
validation, and testing)?

Figure 26 show the average computing time distribution to generate the rankings
and to extract the performance metrics for the individual features. These rankings are
the primary input data to produce the input SVM-Light files for the training and testing
through the LtR approaches. The process steps groups in:

Pre-processing: related to loading bug report information from the text files, source
code file parsing, index generation, and persistence on the database (e.g., class,

106 Chapter 5. Strategies for learning-to-rank bug localization improvement

Shrinkage
Shrinkage

50,00

45,00

40,00

35,00

30,00

25,00

20,00

15,00

10,00

5,00

0,00

□ btr_nt32 □ bts_nt32 □ etr_t32 □ ets_nt32 □ btr_nt64 □ bts_nt64 □ etr_nt64
0ets_nt64 □btr_ntl28 Bbts_ntl28 □ etr_ntl28 Hets_ntl28 □btr_nt256 Bbts_nt256
□ etr_nt256 Bets_nt256 □ btr_nt512 Bbts_nt512 □ etr_nt512 Dets_nt512

Bbts_nt32 nets_nt32 Bbts_nt64 Bets_nt64 nbts_ntl28
Bets_ntl28 Bbts_nt256 Bets_nt256 Bbts_nt512 Bets_nt512

a) MAP, NL = 1 b) MAP, NL = 1, only test data

50,00

45,00

40,00

35,00

30,00

25,00

20,00

15,00

10,00

5,00

0,00

50,00

45,00

40,00

35,00

30,00

25,00

20,00

15,00

10,00

5,00

0,00
0,05 0,50 0,80Shrinkage

□ btr_nt32 Bbts_nt32 netr_nt32 0ets_nt32 □btr_nt64
■ bts_nt64 □ etr_nt64 □ets_nt64 Dbtr_ntl28 ■bts_ntl28
□ etr_ntl28 Eets_ntl28 □btr_nt256 Bbts_nt256 Detr_nt256
■ ets nt256 übtr nt512 Bbts nt512 Detr nt512 Hets nt512

c) NDCG®10, NL = 1

Shrinkage

B bts_nll_nt32 0ets_nll_nt32 ■ bts_nll_nt64 Bets_nll_nt64 ■ bts_nll_ntl28
□ ets_nll_ntl28 Bbts_nll_nt256 Bets_nll_nt256 Bbts_nll_nt512 Bets_nll_nt512

d) NDCG®10, NL = 1, only test data

□ btr_nt32 Bbts_nt32 □ etr_nt32 Dets_nt32 Dbtr_nt64 Bbts_nt64 □etr_nt64
□ ets_nt64 □btr_ntl28 Bbts_ntl28 Oetr_ntl28 □ets_ntl28 □btr_nt256 Bbts_nt256
□ etr_nt256 B ets_nt256 □btr_nt512 Bbts_nt512 □etr_nt512 □ets_nt512

e) MAP, NL = 5

Shrinkage

□ btr_nt32 Bbts_nt32 aetr_nt32 Bets_nt32 abtr_nt64 Bbts_nt64 □etr_nt64
Bets_nt64 nbtr_ntl28 Bbts_ntl28 netr_ntl28 Bets_ntl28 nbtr_nt256 Bbts_nt256
□ etr_nt256 Bets_nt256 □btr_nt512 Bbts_nt512 □etr_nt512 Bets_nt512

f) MAP, NL = 10

Figure 24 - Tuning LambdaMART (RankLib) on 300 bug reports of SWT: MAP and
NDCG@10 performance changing Shrinkage {0.05, 0.5, 0.8} and Number of Leaves
(NL) {1, 5, 10}.

method, and many other entities found in source code files). Some of these steps
are pre-requisites shared by some features.

5.2. Results 107

□ btr_sh005 Bbts_sh005 Detr shOOõ 0ets_shOO5 □btr_sh05 ■bts_sh05
□ etr sh05 Bets sh05 Obtr sh08 Bbts sh08 Oetr sh08 Bets sh08

a) MAP, NL = 1

Figure 25 - Tuning LambdaMART on SWT (RankLib): MAP performance changing
Number of Trees (NT) from 32 doubling until 512 and Number of Leaves (NL) = {1,
10}.

□ btr_sh005 Bbts_sh005 Detr_sh005 0ets_shOO5 □ btr_sh05 0bts_shO5
□ etr sh05 Bets sh05 Obtr sh08 Bbts sh08 Detr sh08 Bets sh08

b) MAP, NL = 10

F1..F19: this includes the time spent on the feature extraction and on the computing
of the individual rankings for each feature found in the baseline work of (YE;
BUNESCU; LIU, 2016).

F20.1..F22.1: this is the time spent in entropy feature extraction, including language
model generation and the ranking generation for the features <^>20.1 , <^21.1, and 022.1-

Normalization: includes the time spent to access all the individual rankings and produce
the corresponding normalized ranking.

Metrics: includes the time spent to produce the performance results for all the individ
ual rankings, based on the metrics MAP, MRR, Top-N

From the Figure 26b and 26c, it is clear the main bottleneck is in the entropy ex
traction that consumes 56% to 62% of the time in each bug report processing. The
computing time is worrying, especially because it relates to only three entropy features.
In Figure 26c, without the entropy feature computing, the total time to complete the
process is much lower, 4.13 minutes, while the previous with entropy requires 9.99 and
11.11 minutes. Considering the 300 bug reports used in the experiments with SWT,
the average estimated total time to produce the necessary input data for the LtR ap
proaches is around 55.5 hours. A total of 768.63 hours (or around 32 days) is estimated
to cover all the bug reports only for the SWT project (4151 bug reports), including
entropy extraction (only three of them). Thus, it is essential to optimize the current
implementation so the experimentation and covering of all the 22,747 bugs in the LR-
dataset become viable. Even discarding the entropy feature and taking the reduced time

108 Chapter 5. Strategies for learning-to-rank bug localization improvement

AspectJ: Average Computing Time per Bug Report

■ Pre-Processing
■ F1..F19
□ F20.1..F22.1
■ Normal ization
■ M et ri cs

(a)

SWT: Average Computing Time per Bug Report

■ Pre-Processing
■ F1..F19
□ F20.1..F22.1
■ Normalization
■ Metrics

(b)

Figure 26 - Average computing time distribution per bug report for AspectJ, SWT,
and Tomcat.

of 4.13 minutes per bug report in Tomcat would require 65 days to cover all the bug
reports in this dataset (and we still need to consider time for SVM-light files generation,
training, validation, and testing).

For these exploratory experiments, we do not measure the time spent on the gen-
eration of SVM-Light files and the training and testing with LtR algorithms. We do
not compute the time spent in the checkout of each source code repository since it only
depends on other factors not directly related to the framework implementation (e.g.,
network speed and project size). Since the SVMRank, RankLib, and QuickRank were
employed in the experiments, running many instances, each with a different setting, and
in parallel to complete the experiments faster, we opted not to include the measures
information about training and testing resources consumption in this phase. From our
informal perception from the experiments, the time spent in training and testing is by
far lower than the time to produce the input data and lower than the time spent in the
generation of SVM-Light files necessary to the learning process. Thus, the critical point

5.3. Final Considerations 109

to reduce the time spent on the process overall is refactoring and optimizing the feature
extraction process, followed by the index generation. This way, the BL solution would
be more scalable.

5.3 Final Considerations
In these exploratory studies, we tested our experimental package against many possi-

ble settings and influential factors for LtR-based BL strategies applied to some samples
of the LR-dataset. As in Ye, Bunescu e Liu (2014) original work, we confirm ^1 as the
most influential individual feature and also the more substantial influence of the query-
dependent features. On the other hand, our tested non-query-dependent Entropy feature
does not produce such impactful results. It also imposes high demands on computational
resources, requiring additional optimizations for a viable and scalable application, even
to proceed with new tests on more samples from the LR-dataset. These results also ex-
tend with the application of the Entropy feature to compose the ML training sets, and
again, we did not get such promising results. The experimentation with two alternative
data balancing strategies, (MFk33f6 and MFk200w), combined with various ML-based
algorithms from QuickLearn and RankLib tools, show more noticeable results over the
baseline (using MFk2Oof 1 data balancing with SVMRank LtR algorithm). The best per
formance increase was 55.72% in Rankboost with NDCG@10. Additionally, these data
balancing strategies show some role in overfitting avoidance. While experimenting with
tuning parameters for each LtR algorithm, we observe the importance of good tuning
so we can obtain the best performance results. From the worst to the best performance
settings, we observed significant differences, reaching a standard deviation around 15
and 18 points in MAP and NDCG@10 measures, respectively. There is no evidence
that the Entropy feature contributes substantially to improving performance between
the best-tunned settings. Finally, we have shown the long time demanded to conclude
the experiments and process each bug report (from 4 to 11 minutes on average). The
demand is aggravated with the Entropy feature introduction and asks for the implemen-
tation optimization to make the experimentation package scalable and able to process
larger samples and cover all data in LR-dataset.

110 Chapter 5. Strategies for learning-to-rank bug localization improvement

111

Chapter 6
Analysis of repair actions and patterns

In Chapter 4, many influential factors for BL were raised. An experimental package
designed to test many of these ideas was also briefly introduced, and Chapter 5 shows
preliminary experiments. Since one of our more interesting and relevant work was about
the study of the bug characteristics in a dataset (SOBREIRA et al., 2018; MADEIRAL
et al., 2018), the natural sequence is to apply the experience gained in this area to the BL
problem and to include support in the experimental package for evaluations and com-
parisons. Nonetheless, before proceeding with the experimental tasks, we discuss bug
patches characteristics in this chapter, extending our initial work with Defects4J Dis-
section to another bug dataset. Here we confirm that some of our findings in Defects4J
are still valid for a larger bug dataset, the LR-dataset (YE; BUNESCU; LIU, 2014),
usually applied to evaluate BL approaches, as occurs in our baseline implementation for
the experimental package.

6.1 The role of patches on Bug Localization

A software bug can cause a software fail or misbehavior. To solve this situation,
debugging is necessary, and the bug removal process requires the application of a bug
patch to the software codebase. The bug patch comprises all the required changes, so
the expected system behavior is reestablished. These changes can involve the addition,
removal, or modifications of single or many lines of source code.

Since version control systems (like Git) are already part of the software best practices,
it is possible to access the buggy easily and fixed versions of a codebase. A usual way to
extract a patch is through the difference between two versions of a system, and a common
approach is to access the version before the patch application (the buggy version) and

112 Chapter 6. Analysis of repair actions and patterns

the patched version of the system (the fixed version). Of course, many types of bugs can
exist, included bugs non-related to source code, but for this work, we are interested in
bugs related to and fixed by source code changes. In this context, we can think of bug
patches to validate and identify the bug location for the already fixed bugs.

6.2 Understanding the nature of the bugs through
their patches

While we can easily perceive the existence of a bug in a system through problems,
fails, or software misbehavior caused by the bug, usually, the bug's delimitation and
characterization are not clearly defined. Many types of bugs exist, but what exactly are
these bugs? Since the bug is unknown until we find the root cause of the problem and a
way to fix it, a possible alternative to characterize bugs is to look for and study the many
ways to fix them. So the study of the nature of the bug patches would indirectly inform
us about the nature of their associated bugs. Many patches can apply for the fixing of
a given bug. However, the multiplicity of solutions for the same bug is not our study
target. Instead, we intend to study the regularity and the reuse of particular solutions to
fix the bugs, observing patterns or other recurrent structures and situations. We observe
that many of these recurrences in patches are common even between different projects
and with similar frequency distribution.

6.3 Analysis dimensions of a bug patch for Bug Lo-
calization

In our previous work (SOBREIRA et al., 2018) we show many types of bugs present
in Defects4J, now a frequently applied bug dataset. We analyzed many dimensions of
Defects4J, involving the patch size, the patch spreading, and composition, expressed in
terms of repair actions and repair patterns. We also defined a taxonomy to refer to
these repair actions and patterns. While the work on Defects4J was valid to identify
the presence of many patterns and the reuse of similar solutions, even between differ-
ent projects, the dataset size (only 395 bugs) limits its applicability, especially while
evaluating approaches that depend on a more significant number of samples, such as
those employing machine learning techniques. To overcome this problem, we decided

6.3. Analysis dimensions of a bug patch for Bug Localization 113

to evaluate the LR-dataset applied by Ye, Bunescu e Liu (2014) using the dimensions
defined in the Defects4J dissection analysis.

6.3.1 Size dimensions

From the original 22,747 bug reports in projects of LR-dataset, ADD tool (MADEIRAL
et al., 2018) can extract information from 21,177 bug patches. Some of the excluded
patches would present problems during the processing, e.g., not generating an AST. Still,
there are many outliers between these 21,177 bug patches and, without a restriction to
filter out these outliers, it is difficult to show the overall size distribution of the patches.
Limiting the number of lines to 200 (Figure 27), we exclude 113 outliers, but we still
have many of them (represented by circles beyond the whiskers limit in the boxplot).
With 60 lines limit, we exclude 1039 outliers (4.91% reduction), and we have a patch
size very close to the maximum patch size found in Defects4J (54 lines). In this new
setting, we can see that most patches range between 1 and around 35 lines for all the
projects. In addition, the median size ranges from 5 to 7 lines. Except for the outliers,
these results are very close to what we have found in Defects4J since the size ranges
from 1 to 54 code lines (max), and the median patch size was 4 lines.

Figure 28 shows the added lines, removed lines, and modified lines of the patches from
all the projects in LR-dataset, maintaining the same limit of 60 code lines for the patch
size. Since the distribution of added lines is closer to the total patch size distribution,
this confirms the same tendency found in Defects4J, where patches composition contains
more lines added than lines modified and removed.

Patches can combine any code lines type: added, modified, and removed. Figure 29
shows a) the number of patches for each combination overall; b) the same info but only
for patches with a maximum of 60 lines. Comparing the diagrams, we can observe that
most of the excluded outliers were in the set with patches containing all the types of
line changes, and the reduction was 781 patches (75.17% of the 1039 removed outliers).
It is reasonable since we can expect that huge patches can include more types of line
changes than small ones.

Next diagrams show the previous information split between each project (Figure 30).
The proportion of patches in each set seems to be very similar to the overall distribution.
When compared to Defects4J, these proportions are also very close.

114 Chapter 6. Analysis of repair actions and patterns

b) maximum patch size of 60 lines (20,138 patches).

Figure 27 - Distribution of the number of lines of the patches limited to a maximum
size.

6.3.2 Spreading

We can define the patch spreading from many perspectives. First, patch spreading
allows understanding how much the bug fixing is concentrated or spread through the
codebase. Furthermore, the patch spreading can significantly impact the bug localization
since a strategy that performs well for a small and single block of code patch would have
an inferior performance trying to localize a bug with the patch spread on many files (or

6.3. Analysis dimensions of a bug patch for Bug Localization 115

Figure 28 - Distribution of the number of code lines by type in 20,138 patches of
LR-dataset.

116 Chapter 6. Analysis of repair actions and patterns

Figure 29 - Overall patches distribution according to the type of code lines affected.

d) JDT e) SWT f) Tomcat

Figure 30 - Patches according to the type of code lines affected in each project.

even a single file patch but sparse in many lines). We show in this section the spreading
profile for the (YE; BUNESCU; LIU, 2014) dataset, based on the spreading measures
appliedin(SOBREIRAet al., 2018): number of chunks, spreading of the chunks, number

6.3. Analysis dimensions of a bug patch for Bug Localization 117

of modified classes, number of modified methods, and number of modified files.

As occurs for the patch size, outliers also impact and contribute to extending the
range for the number of chunks beyond 200. After the application of the same patch size
limited to 60 lines (so we can maintain the same bug set analyzed before), we obtain
the distribution shown in the first chart of Figure 31, and for these patches, the number
of chunks reduces somehow (now the maximum is 94). From this distribution, we see
that most of the patches have less than ten chunks, and the instances beyond that
would be considered outliers. The second chart in Figure 31 is an alternative to show
the patches distribution removing patches where the number of chunks is beyond the
limit for outliers. The limit applies to the number of chunks of the patches, excluding
patches with more than 20 chunks (applying this filtering criterion, we still maintain
20,688 patches). The median number of chunks is close between the projects (around
2), except for the JDT (around 3). For all the cases, 75% or more patches in each
project have a maximum of five chunks. Compared to Defects4J, LR-dataset has a
slightly higher number of chunks per patch (90% have eight or fewer chunks), but it is
still very close since 90% of the patches in Defects4J have at most five chunks.

The spreading of the patches measures the accumulated number of code lines between
their chunks and is in the first chart of Figure 32. The spreading of the patches gives
a clue about the patch dispersion in the codebase. Again, there are many outliers,
even considering the patch size reduction, limited to 60 lines. To get a better perception
about the distribution, in the second chart of Figure 32 the spreading (and not the patch
size) is limited to 350 lines. In this new chart, the distribution is more evident, and, in
most projects, the first half of the patches have no spreading at all, or the spreading is
below 25 lines. While patch size has a more uniform distribution between the projects,
the spreading variability is higher. For example, while in SWT, the patches seem to be
more concentrated (half has no spreading, and 75% have a spreading below 25 lines, the
threshold for outliers is around 60 lines), in JDT, 75% have a spreading that can achieve
100 lines, and their threshold for outliers is the highest (more than 200 lines).

Like Defects4J, most parts of the LR-dataset bug patches concentrate in a few
chunks. There is both type of patches: those concentrated in single lines (or even
single blocks) of code, significantly below the first half in the distribution; and those
patches dispersed in more blocks of code that can be very close to each other (just a few
lines distance) or with distances of hundreds of lines, especially in the upper half of the
distribution.

118 Chapter 6. Analysis of repair actions and patterns

Figure 31 - Distribution of the number of chunks of the patches.

6.3.3 Size and Spreading Dimensions' Statistics

Table 12 summarizes the patch size and spread information. These statistics consider
the 21,177 patches, without restrictions to patch size. Table 13 shows the same informa-
tion but only for the patches with a maximum size of 60 lines. The tables also summarize
modified files, classes, and methods associated to the patches. One more time, the dis-
tribution is close to Defects4J, and most of the patches are associated with a few files,
classes, and methods. Additionally, we can see that even with filtering some of the out-
liers using the 60 lines size restriction, this condition is not enough to remove them. One
example is the patch that affects 328 files (the maximum value observed in Table 13).

6.3. Analysis dimensions of a bug patch for Bug Localization 119

Figure 32 - Distribution of chunks spreading of the patches.

Even considering that it is possible to have patches associated with that amount of files
since the 60 lines size restriction does not account for lines related to comments and
blank lines (e.g., white spaces), it is clear that additional filtering would be necessary
to avoid noise and these type of outliers, especially in experimental settings. Therefore,
the application of maximum number for chunks, spreading, files, classes, and methods
would be required to remove other outliers and maintain a representative dataset. For
example, 99% of the patches affect a maximum of 21 files (20.54), and considering the
60 lines restriction, the number of affected files drops down to 19 files (far below the 328
files previously cited). Considering the exposed rationale, a threshold of 20 files would

120 Chapter 6. Analysis of repair actions and patterns

Table 12 - Descriptive statistics for 21,177 bug patches.

Min 25% 50% 75% 90% 95% Max

Added lines 0 0 3 9 22 36 1,088
Removed lines 0 0 0 1 8 16 1,298
Modified lines 0 0 1 3 8 14 4,647
Patch size 1 2 6 16 37 60 4,652

Chunks 1 1 2 5 9 14 215
Spreading 0 0 21 157.0 457.4 747.2 6,407.0
Files 1 1 1 1 2 7 383
Classes 1 1 1 1 1 2 14
Methods 0 1 1 2 4 5 76

Table 13 - Descriptive statistics for 20,138 bug patches, without outlier patches (more
than 60 lines).

Min 25% 50% 75% 90% 95% Max

Added lines 0 0 3 8 17 25 60
Removed lines 0 0 0 1 5 10 59
Modified lines 0 0 1 3 7 10 58
Patch size 1 2 6 14 27 38 60

Chunks 1 1 2 4 8 10 94
Spreading 0 0 16 137 413 674 6,407
Files 1 1 1 1 2 7 328
Classes 1 1 1 1 1 2 14
Methods 0 1 1 2 3 4 49

be a good complement to the outlier filtering schema.

6.3.4 Repair actions

A repair action is a basic syntactic building block composing the patch for a bug. We
have defined a taxonomy to refer to the repair actions found in Defects4J (SOBREIRA
et al., 2018). Here we apply the same taxonomy, and we conduct the detection of these
repair actions with our tool, ADD, partially presented by Madeiral et al. (2018). To
facilitate the understanding of the acronyms, Table 14 shows its correspondence (more
details in (SOBREIRA et al., 2018). The first chart of Figure 33 shows the incidence
of all repair actions from LR-dataset (YE; BUNESCU; LIU, 2014), while the second
chart shows the same info without some of the outliers (patches with a size beyond 60

6.3. Analysis dimensions of a bug patch for Bug Localization 121

lines). As shown in these charts, removing the outliers is not so impacting, and most
repair actions positions are maintained. The dominance of repair actions involving code
addition is clear, especially in the top positions. The higher presence of repair actions
more associated with code addition helps explain why there is more code added than
modified and removed in the patches (shown in the previous sections). As occurs in
Defects4J, the top actions are related to Method Call Addition, Assignment Addition,

To facilitate the comparison with Defects4J, Figure 34 shows the repair actions
grouped according to Table 15, and in the same format of the charts in (SOBREIRA
et al., 2018). In the middle column we have: A = Addition action; R = Removal ac-

122 Chapter 6. Analysis of repair actions and patterns

Table 14 - Repair actions acronyms and full names.

Acronym Repair Action
assignAdd Assignment addition
assignExpChange ” expression modification
assignRem ” removal
condBranCaseAdd Conditional (case in switch) branch addition
condBranElseAdd ” (else) branch addition
condBranIfAdd ” (if) branch addition
condBranIfElseAdd ” (if-else) branches addition
condBranRem ” (if or else) branch removal
condExpExpand ” expression expansion
condExpMod ” ” modification
condExpRed ” ” reduction
exThrowsAdd throw addition
exThrowsRem ” removal
exTryCatchAdd try-catch addition
exTryCatchRem ” removal
loopAdd Loop addition
loopCondChange ” conditional expression modification
loopInitChange ” initialization field modification
loopRem ” removal
mcAdd Method call addition
mcMove ” ” moving
mcParAdd ” ” parameter addition
mcParRem ” ” ” removal
mcParSwap ” ” ” value swapping
mcParValChange ” ” ” value modification
mcRem ” ” removal
mcRepl ” ” replacement
mdAdd Method definition addition
mdModChange ” ” modifier change
mdOverride ” ” overriding (addition or removal)
mdParAdd ” ” parameter addition
mdParRem ” ” ” removal
mdParTyChange ” ” ” type modification
mdRem ” ” removal
mdRen ” ” renaming
mdRetTyChange ” ” return type modification
objInstAdd Object instantiation addition
objInstMod ” ” modification
objInstRem ” ” removal
retBranchAdd Return statement addition
retExpChange ” expression modification
retRem ” statement removal
tyAdd Type addition
tyImpInterf Type implemented interface modification
varAdd Variable addition
varModChange ” modifier change
varRem ” removal
varReplMc ” replacement by method call
varReplVar ” replacement by another variable
varTyChange ” type change

6.3. Analysis dimensions of a bug patch for Bug Localization 123

tion; M = Modification action. The distribution shape of the repair actions from the
LR-dataset is very similar to the Defects4J distribution. The top repair action, Method
Call Addition, is the same in both datasets. Eight actions from the top-10 in Defects4J
distributions appear between top-10 positions in the LR-dataset. Conditional Modifi-
cation and Return Modification actions in Defects4J top-10 are out of the LR-dataset
top-10. Method Definition Addition and Variable Modification in LR-dataset top-10 are
out of the top-10 in Defects4J. While both datasets are intrinsically composed of bugs
from different Java projects, it is notable how close are the distributions of the repair
actions of the patches. With the repair actions explicit, we understand the nature of the
bugs and their associated patches. This kind of information would help to guide and
allow more informed decisions while testing or evaluating certain approaches on these
bug datasets. For example, we could expect an approach for bug localization (or even
automatic program repair) would not perform well if it can not handle bugs requiring
the addition of code, especially method calls, since this kind of action would be present
in 12,885 from the 20,138 patches (64%). Another expected behavior is a poor perfor
mance (but not insignificant) of approaches guided by removal of code to fix a bug (the
strategy of Kali approach (QI et al., 2015)) since patches containing removal actions are
less prevalent.

Table 15 - Repair actions acronyms and grouping names.

Acronym Action Group

asgn A/R/M Assignment
cnd A/R/M Conditional
ex A/R Exception
lp A/R/M Loop
mc A/R/M Method Call
md A/R/M Method Definition
obj A/R/M Object Instantiation
ret A/R/M Return
ty A/M Type
var A/R/M Variable

The distribution of repair actions present in each project is in Figure 35 (all limited
to patches with no more than 60 lines). Generally, the distributions between projects
are close, even considering the significant differences in the number of patches in each
project (from the 509 patches of AspectJ to the 5645 of JDT).

124 Chapter 6. Analysis of repair actions and patterns

Figure 34 - Grouped repair actions found in LR-dataset.

6.3.5 Repair patterns

While the Repair Actions are basic building blocks found in patches composition,
the Repair Patterns are more abstract structures found recurrently in the patches of
Defects4J (SOBREIRA et al., 2018). In Defects4J Dissection, we have found 9 more
general patterns (Figure 36), and some of them with variations, totaling 25 specific
repair patterns (Figure 37). Table 16 summarizes the patterns acronyms and full names.

We apply the same taxonomy and descriptions of the patterns defined in our De-
fects4J Dissection study to analyze LR-dataset. Figure 38 shows a) the overall distri-
bution of these patterns in LR-dataset and b) the distribution with a patch size limit
of 60 lines.

Figure 39 shows a more compact view of these patterns, grouped according to Ta-

6.3. Analysis dimensions of a bug patch for Bug Localization 125

ble 16 and allowing straight comparison to similar charts in (SOBREIRA et al., 2018).
As in Defects4J, Conditional Block pattern continue as the top pattern found in the
patches and also have a percentage of occurrences very close (around 42%). In the
bottom, Code Moving and Constant Change continues as the less frequent patterns in

126 Chapter 6. Analysis of repair actions and patterns

Figure 36 - Repair patterns found in Defects4j Dissection.

Figure 37 - Repair patterns with variations found in Defects4j Dissection.

patches, but with higher percentages (around 7%, and 10% in LR.-dataset, while De-
fects4J have 1.77%, and 4.81%, respectively). In the middle, we have some position
changes and changes in the percentage prevalence. Wraps With did not change its third
position and had an incidence of 22.83% in LR.-dataset (-4.51% compared to Defects4J).
Single Line also has a similar reduction (-5.06%) and appears in 19.75% of the patches in
LR.-dataset. Expression Fix have the higher percentage decreases (-13.15%) and appears
in 19.75% of LR.-dataset patches. Null Check appears in LR.-dataset practically with
the same percentage of Defects4J (around 12%). Two patterns increase its incidence:
Copy Paste appears in 19.15% of the patches (+7%), and Wrong Reference appears in
26.74% of the patches (+9.02%) of LR.-dataset. These Hndings reinforce the value and
broader applicability of the patterns found in Defects4J since, in LR.-dataset, we have a

6.3. Analysis dimensions of a bug patch for Bug Localization 127

Table 16 - Repair patterns, acronyms and groups.

Group Acronym Pattern

codeMove codeMove Code Moving

condBlock condBlockExcAdd
condBlockOthersAdd
condBlockRem
condBlockRetAdd

Conditional block addition with exception throwing
” ” addition
” ” removal
” ” addition with return statement

constChange constChange Constant Change

copyPaste copyPaste Copy/Paste

expFix expArithMod
expLogicExpand
expLogicMod
expLogicReduce

Arithmetic expression modification
Logic expression expansion

” ” modification
” ” reduction

nullCheck missNullCheckN
missNullCheckP

Missing not-null check addition
” null check addition

singleLine singleLine Single Line

wrapsWith unwrapIfElse
unwrapMethod
unwrapTryCatch
wrapsElse
wrapsIf
wrapsIfElse
wrapsLoop
wrapsMethod
wrapsTryCatch

Unwraps-from if-else statement
” ” method call
” ” try-catch block

Wraps-with else statement
” ” if statement
” ” if-else statement
” ” loop
” ” method call
” ” try-catch block

wrongRef wrongMethodRef
wrongVarRef

Wrong Method Reference
” Variable Reference

much higher number of bug patches and six different projects from those in Defects4J.
Considering these differences, we have a very close distribution of the repair patterns.

The Figure 40 show the repair patterns distribution for each project in LR-dataset,
limited to patch size of until 60 lines. Conditional Block continues as the top pattern
for all the projects, while Code Move, and Constant Change remains in the opposite
extreme, except in SWT, where Nul l Check swap in the lowest positions. Anyway, Null
Check is another pattern in lowest positions for almost all the projects, with incidences
from 9.10% to 17.68%. BIRT, Eclipse, JDT, and Tomcat shows distributions that
resembles the overall distributions shown first, and with a laddered shape. AspectJ
and SWT are the projects with a more visible difference when compared to the others.
Both projects show the higher incidences of Conditional Block (AspectJ with 49.51%,
and SWT with 46.63%). AspectJ has the lowest incidence of Code Move (2.76%), and

128 Chapter 6. Analysis of repair actions and patterns

condBlockOthersAdd |_ | 6027 (28,46%)

copyPaste 1 4434 (20,94%)

singleLine 1 I 3979 (18,79%)

wrongMethodRef 1 __ | 3542 (16,73%)

wrongVarRef 1 | 3360(15,87%)

condBlockRetAdd 1 ___| 3226 (15,23%)

expLogicMod | 2542 (12,00%)

condBlockRem 1 | 2245 (10,60%)

constChange 1 | 2187 (10,33%)

wrapslf 1 || 1999(9,44%)

missNullCheckN 1 | 1766 (8,34%)

expLogicExpand | 1599(7,55%)

codeMove | 1593 (7,52%)

wrapsIfElse ___| 1366(6,45%)

missNullCheckP 1 | 1229 (5,80%)

unwrapIfElse 2| 1105(5,22%)

wrapsMethod 1 1 871 (4,11%)

unwrapMethod 1__ 1 768 (3,63%)

expArithMod | 622 (2,94%)

expLogicReduce | 437 (2,06%)

wrapsTryCatch | 430 (2,03%)

wrapsLoop Q 309 (1,46%)

wrapsElse [] 240 (1,13%)

co ndBlockExcAdd Q 188 (0,89%)

unwrapTryCatch U 110(0,52%)

I------------

0

--------------- 1---------------------------- 1---------------------------- 1

2000 4000 6000

condBlockOthersAdd | 5335 (26,49%)

singleLine ___ | 3977 (19,75%)

copyPaste | 3857(19,15%)

wrongMethodRef | 3115 (15,47%)

wrongVarRef ___| 2657 (14,19%)

condBlockRetAdd ___ | 2800 (13,90%)

exp LogicMod | 2141 (10,63%)

constChange | 1857 (9,22%)

condBlockRem | 1803(8,95%)

wrapslf | 1742 (8,65%)

missNullCheckN | 1574 (7,82%)

expLogicExpand | 1487 (7,38%)

codeMove ___ | 1394(6,92%)

wrapsIfElse ___| 1153 (5,73%)

missNullCheckP ___| 1092 (5,42%)

unwrapIfElse | 857 (4,26%)

wrapsMethod | 700 (3,48%)

unwrapMethod | 611 (3,03%)

expArithMod | 510 (2,53%)

expLogicReduce | 370(1,84%)

wrapsTryCatch | | 327 (1,62%)

wrapsLoop [] 203 (1,01%)

wrapsElse Q 191 (0,95%)

co ndBlockExcAdd |2 155 (0,77%)

unwrapTryCatch [1 81 (0,40%)

a) overall (21,177 patches).

I--------------- 1--------------- 1----------------1----------------1--------------- 1----------------1
O 1000 2000 3000 4000 5000 6000

b) limited to 60 lines (20,138 patches).

Figure 38 - Repair patterns found in LR-dataset.

a) overall (21,177 patches). b) limited to 60 lines (20,138 patches).

Figure 39 - Grouped repair patterns found in LR-dataset.

Constant Change (4.72%). Copy Paste (14.54%), Null Check (17.68%), Single Line
(17.68%), and Expression Fix (18.47%) have an incidence slightly lower than Wrong
Reference (23.18%), and Wraps With (26.72%). In SWT, Constant Change (7.03%),
Null Check (9.10%), and Code Move (9.44%) are all bellow the 10% incidence, while
Single Line (23.18%), Copy Paste (23.69%), Expression Fix (23.71%), Wrong Reference
(23.98%), and Wraps With (24.91%) are all around 25% of incidence.

6.4. Patterns composition 129

e) SWT (3,770 patches) f) Tomcat (923 patches)

Figure 40 - Grouped Repair Patterns incidence on LR-dataset projects.

6.4 Patterns composition

The basic idea behind the repair patterns found in Defects4J Dissection is finding
implicit and more abstract structures that appear recurrently in many patches to fix the
bugs in a benchmark dataset. We have found many of these structures and summarized
them in 9 groups of repair patterns (Figure 36), totaling 25 specific repair patterns

130 Chapter 6. Analysis of repair actions and patterns

when variations are considered (Figure 37), as discussed before and detailed in Table 16.
We tried to name it meaningfully to facilitate its recognition and understanding. Some
patterns, as Single Line, reflect the idea behind the most simple patches we can apply
to fix a bug, while other patterns like Copy Paste may involve an arbitrary number of
repair actions (possibly unrelated between different patches). The last sections show
that around 19% of the patches in LR-dataset presents the Single Line pattern. While
this observation gives an idea about the pattern representativeness in a bug dataset,
even for such simpler patches, more questions may arise. Since having a single line is
a very generic characteristic, the next natural question would be “what are the repair
actions associated with this kind of pattern?”, “is there any other type of characteristic
associated with single line patches?”. This section details some additional characteristics
found for these and other patterns in LR-dataset, looking to clarify these and other
questions.

6.4.1 Repair Actions

Each patch can contain one or more Repair Actions, and many of these actions can
co-occur recurrently in many patches. The reasoning behind identifying many Repair
Patterns comes from the perception of these repair actions recurrences. For example,
the pattern Wraps with Method requires the addition of a method call around an existent
piece of code, leading to the potential presence of the repair action Method Call Addition.
A similar pattern, Wraps with If, will lead to the potential presence of other repair actions
like Conditional branch If addition and other related actions that would depend on the
logic of the added code structure. Since there is no guarantee of purity between the
patterns or the actions found in a patch, analysis or assessment that does not consider
these variabilities would be uncertain or imprecise conclusions. Next, we show some
relations between repair patterns and the most common actions that appear when these
patterns occur in the patches for the LR-dataset.

Many combinations are possible since we have identified 50 repair actions and 25
repair patterns. Taking just one pattern exclusively detected in a patch, the number of
possible repair actions combinations is 2,369,936. It is just an estimation considering
that the patches would have from 0 to 5 from the 50 recognized repair actions and
based on the statistics for Defect4J, 75% of the patches have at most five repair actions
detected. Of course, not all the combinations will occur in practice, and we next show
the most common combinations found for each repair pattern in patches of LR-dataset.

First, to extract the most common combinations, we analyze the intersection be-

6.4. Patterns composition 131

tween the repair patterns and the co-occurring repair actions. The Figure 41 shows
the intersection for the pattern Wrong Method Reference and the top-10 most common
combinations in a) AspectJ and b) BIRT. The same is show in Figures 42 for projects
Eclipse and JDT, and in Figure 43 for SWT and Tomcat. These figures are typical
Upset charts (LEX et al., 2014). The horizontal bar chart shows the total number of
patches containing each repair action enumerated in its vertical axis on the bottom left
area. The vertical bar chart shows the number of intersections between the repair actions
marked in the matrix just below each vertical bar on the top central area. A black circle
appears when the repair action is in the intersection. When more than one repair action
is in the intersection (co-occurs in a patch), its correspondent circles are connected by a
line. In the AspectJ chart, we can see: 1. the most common repair action is Method Call
Replace (mcRepl), with 10 occurrences (last bar on the bottom left area); 2. each repair
action combination from the top-10 occurs in just one patch (vertical bars on the top
area); 3. the first repair actions combination is composed by Object Instantiation Mod-
ification (objInstMod), Method Definition Parameter Addition (mdParAdd), and Method
Call Parameter Addition (mcParAdd), shown by the three connected circles just below
the first vertical bar; Method Call Replace co-occurs in at least seven different repair ac-
tions combinations (black circles in the last line of the matrix on the central area). For
the BIRT chart, we have some considerations about Method Call Replace actions: 1. it
is still the most common action, occurring in more than 60 patches; 2. this action occurs
at least in 12 patches without intersection with the other shown actions; 3. the last line
in the matrix shows that this action co-occurs in at least seven other combinations; 4.
the second most common combination is composed of Method Call Replace and Method
Call Parameter Addition, occurring in 8 patches.

Since Repair Patterns are recurrent code structures found in the bug patches, some
Repair Actions are expected in some of these patterns, while others would be associ-
ated with extra code and specificity of each patch. Again, considering the presence of
the Wrong Method Reference pattern in a patch, we also would expect the presence of
different groups of actions in some of the following situations:

□ Wrong method called: a call to an alternative method to fix the bug, possibly with
a different name. Some of the expected detected actions: Method Call Remove,
Method Call Addition, Method Call Replace.

□ Wrong parameter passed: to bug fix replaces a parameter, and this would imply
in the call for an alternative method version (especially if the old and the new
parameter types are different). Additionally to the previous case, the expected

132 Chapter 6. Analysis of repair actions and patterns

(a) AspectJ

(b) BIRT

Figure 41 - Most common Repair Actions co-occurrences for Wrong Method Refer-
ence repair pattern in a) AspectJ and in b) BIRT.

detected actions would be: Method Call Parameter Value Change, Method Call
Parameter Swap;

□ Wrong number of parameters passed: to fix the bug, again, the parameters’ ad-
dition (or removal) would imply in the call for an alternative method version.

6-4- Patterns composition 133

>5

(a) Eclipse

(b) JDT

Figure 42 - Most common Repair Actions co-occurrences for Wrong Method Refer-
ence repair pattern in a) Eclipse and b) JDT.

Expected detected actions: Method Call Parameter Addition, Method Call Pa-
rameter Removal;

□ Change in the returned value or the expression evaluation: the fixes in the above
cases imply an expression change caused by methods with returned values assigned
to a variable or methods composing a larger expression. Expected values: Assign-

134 Chapter 6. Analysis of repair actions and patterns

(a) SWT

(b) Tomcat

Figure 43 - Most common Repair Actions co-occurrences for Wrong Method Refer-
ence repair pattern in a) SWT and b) Tomcat.

ment Expression Change, Assignment Addition, Assignment Removal.

□ Wrong object instantiating: when one more of the above situations involves a
change in the call for the object constructor to fix the bug. Expected detected
actions: Object Instantiation Modificai ion.

6.4. Patterns composition 135

With “pure” repair patterns, the expected repair actions would ideally be the unique
repair actions found in a patch. However, in practice, a patch is composed of different
repair actions, repair patterns, and other required actions (some of these would not be
detected by ADD or even categorized by the Defects4J Dissection). Therefore, when
a given repair pattern is detected, it is not reasonable to consider that the patches
will contain only the expected repair actions, as enumerated before with Wrong Method
Reference pattern. Instead, the expected repair actions would be a starting point (or
filter) to select these related patches, while the observed repair actions would still differ
(a little or a lot, depending on the patch).

After the intersection analysis and the previous considerations about the expected
and observed repair actions, we selected the most common groups of repair actions
associated with each repair pattern for the projects in LR-Dataset. Next, from Figure 44
to 49, we show the selected groups of repair actions representing the found variations
for each pattern. The simply detection of a repair pattern is also a considered variation,
and it is marked as <No Action>, meaning that there are patches where ADD do not
recognize any repair action for the repair pattern (i.e., no co-occurring repair action with
the detected repair pattern).

6.4.2 Patterns Co-occurrences

Some repair patterns are detected isolated in its patches as occurs with the bug
7861 from Eclipse, whose patch matches with three occurrences of the Wrong Variable
Reference (Figure 50 show the first occurrence patched in DecoratorManager.java file).
Patches with more than one pattern are also common, as shown in Figure 51 with the
patch for the bug 187445 from BIRT. The bug patch has two occurrences of Logic
Expression Expansion and one occurrence of Copy Paste repair patterns. While we can
expect a variability between patches composition in a bug dataset, it is essential to know
when these patterns would co-occur. An analysis involving these patches would consider
possible confounding factors associated with each pattern on the evaluation results.

From the 593 bugs found in LR-dataset for the AspectJ project, 521 were loaded
and classified by ADD tool (72 is out). Applying an additional outlier filter (1 to 60
lines total, 1 to 20 chunks, 0 to 350 lines between chunks, 1 to 20 files changed), a
total of 134 bugs were removed (outliers + not processed by ADD). The remaining
459 bugs were used in the next analysis and charts. Figure 52-a shows an UpSet Chart
(LEX et al., 2014) with the top-20 more frequent sets of bugs included sets with co-
occurrences of repair patterns and sets without co-occurrences (exclusively detected).

136 Chapter 6. Analysis of repair actions and patterns

Conditional Block Return Add [1..5]

1- 2. 3. 4. 5.

<No Action>

Return
Add

Return
Add

Return
Add

Return
Add

Conditional
Branch If Add

Conditional
Branch If Add

Conditional

Conditional
Branch IfAdd

Branch If Add
Method Call
Add

Method Call
Add

Method Call
Add Method Definition

Add
Method Call
Parameter Value Change

Conditional Block Return Add [6..10]

6. 7. 8. 9. 10.

Return
Add

Return
Add

Return
Add

Return
Add Returri

Add
Conditional
Branch IfAddConditional

Branch If AddConditional
Branch IfAdd

Conditional Branch
IfAdd

Method Call
Add

Method Call
AddMethod Call

Add
Method Call Assignment

Method Call
Add

Add
Assignment

' Add

Add

Conditional
Branch If-Else Add

Method Definition
AddAssignment

Add Method Definition
Add Variable

Add
Conditional
Branch Else Add

Conditional
Branch Case AddVariable

Add
Variable
Add

Loop
Add

Conditional Block Exception Add

1. 2.

Exception
Throws Add

Object Instantiation
Add

Conditional
Branch IfAdd

Method Call
Add

Conditional Block Removal

1. 2.

<No Action>

Conditional
Branch Removal

Method Call
Removal

(d)

(b)

Figure 44 - Repair Patterns variations: a) Conditional Block Return Add (1..5); b)
Conditional Block Return Add (6.. 10); c) Conditional Block Exception Add; d) Con
ditional Block Removal.

Conditional Block Others Addition (137 bugs, with 61 exclusive), Single Line (89 bugs,
with 29 exclusive), Conditional Block Return Addition (80 bugs, 27 exclusive) are the
top-3 sets of bugs. Wrong Method Reference (66 bugs, with 20 exclusive) is the fourth,
but deserves a mention, because of the co-occurrences discussed next. The first more
frequent co-occurrence occurs between Wrong Method Reference + Single Line in 15 bug
patches, followed by Expression Logic Expand + Single Line, and also Conditional Block
Others Addition + Conditional Block Return Addition, both with 12 co-occurrences. As
show in the chart, except by Expression Logic Expand + Missing Null Check (Negative)
+ Single Line (7 co-occurrences in bug patches) there is no co-occurrence with more

6-4- Patterns composition 137

Conditional Block Others Add [1..4]

1. 2. 3. 4.

<No Action>

Conditional
Branch If Add

Conditional
Branch If Add

Conditional
Branch If Add

Method Call
Add

Method Call
Add

Method Call
Add

Assigment
Add

Assigment
Add Variable

Add

(a) (b)

Figure 45 - Repair Patterns variations: a) Conditional Block Others Add (1..4); b)
Conditional Block Others Add (5..8).

Missing
Null Check

Null Check Add Not Null Check Add

<No Action*
<No Actior»

1 ----------------------------------

Conditional
Branch If Add

Conditional
Branch If Add

2l Method Call Move

21 RetumAdd
Conditional
Branch If Add

3‘ ~Method Call Add

Conditional
Expression Expand

Conditional
Branch If Add

4. ------------------------------------

Conditional
Branch tf Add

/ Retum Add

Conditional
Branch If Add

5 —(Conditional
V Expression Expand

4 (

V Method Call Add
Conditional
Expression Expand

Constant
Change

i. 2. 3. 4.

«No Action> Method Call

Method Call
Parameter Value Change

Method Call
Parameter Value Change

Parameter Value Change
Assignment
Expression Change

Variable
Replace Variable

(b)

Code Moving

'■ 2.

<No Action> Method Call
Move

Figure 46 - Repair Patterns variations: a) Missing Null-Check; b) Constant Change;
c) Code Moving.

than two patterns detected between the top-20 sets of bugs in Aspect J.
From the 4,178 bugs found in LR-dataset for the BIRT project, 4,167 were loaded

and classihed by ADD tool (11 is out). The outlier filter removes 984 bugs, while 3,230
bugs remain for analysis. Figure 52-b shows the UpSet Chart. Single Line (744 bugs,
with 383 exclusive), Conditional Block Others Addition (688 bugs, with 274 exclusive),
and Wrong Method Reference (467 bugs, with 153 exclusive) are int the top-3 set of bugs.

138 Chapter 6. Analysis of repair actions and patterns

Figure 47 - Repair Patterns variations: Single Line a) 1 to 11; b) 12 to 22; c) Ex-
pression Fix.

The first more frequent co-occurrence occurs between Wrong Method Reference + Single
Line in 92 bug patches, followed by Wraps with If + Missing Null Check (Negative),
both with 59 co-occurrences. As shown in the chart, there is no co-occurrence with more
than two patterns detected in the top-20 set of bugs in BIRT.

From the 6,495 bugs found in LR.-dataset for the Eclipse Platform UI project, 5,839
were loaded and classihed by ADD (656 is out). The outlier filter removes 1,508 bugs,
while 4987 bugs remain. Figure 53-a shows the LTpSet Chart. Conditional Block Others
Addition (1,154 bugs, with 582 exclusive), Single Line (1,050 bugs, with 405 exclusive),
Wrong Method Reference (718 bugs, with 225 exclusive) are in the top-3 set of bugs.
The first more frequent co-occurrence occurs between Wrong Method Reference + Single
Line in 113 bug patches, followed by Wraps with If + Missing Null Check (Negative)
occurring in 93 bug patches. As shown in the chart, there is no co-occurrence with more

6-4- Patterns composition 139

Wraps with

Else If If-Else Loop Method Try-Catch

<No Action>
1. -------------------------------------

<No Action>
1. -------------------------------------

Conditional
Branch If Add

2. ---------------------------------------

X X

<No Action?
1. -------------------------------------

X

Conditional
Branch If Else Add

f Method Call1 Add
2 r

\ Method Call
\ Move

Conditional
Branch If Add

3. —(Method Call
\ Add

Conditional
Branch If Add

4 Method Call
\ Move

Conditional
Branch If Add

Method
Call Add

/ Method Call

1 Move
S-

\ Method Call
\ Add

(b)

Un wraps

If-Else Method Try-Catch

X X X

Figure 48 - Repair Patterns variations: a) Wraps-with; b) Unwraps-with.

than two patterns detected in the top-20 set of bugs in Eclipse.
From the 6,274 bugs found in LR.-dataset for JDT project, 6,172 were loaded and

classihed by ADD (102 is out). Applying the outlier filter, a total of 1,342 bugs were
removed, and 4,932 bugs remains. Figure 53-b shows the UpSet Chart. Conditional
Block Others Addition (1,125 bugs, with 340 exclusive), Single Line (966 bugs, with 441
exclusive), Wrong Method Reference (841 bugs, with 256 exclusive) are in the top-3 set
of bugs. For the co-occurrences, first Conditional Block Others Addition + Conditional
Block Return Addition appears in 118 bug patches, followed by Single Line + Wrong
Method Reference in 110 bugs, and then Single Line + Expression Logic Expand in 105
bug patches. As before, there is no co-occurrence with more than two patterns detected
in the top-20 set.

From the 4,151 bugs found in LR.-dataset for SWT project, 4,114 were loaded and
classihed by ADD (37 is out). Applying the outlier filter, a total of 981 bugs were
removed, and 3,213 bugs remains. Figure 54-a shows the LTpSet Chart. Conditional
Block Others Addition (981 bugs, with 393 exclusive), Single Line (871 bugs, with 410
exclusive), Wrong Variable Reference (329 bugs, with 84 exclusive) are in the top-3 set
of bugs. For the co-occurrences, first Conditional Block Others Addition + Conditional
Block Return Addition appears in 83 bug patches, followed by Single Line + Expression
Logic Expand in 82 bug patches and Single Line + Wrong Method Reference in 71 bugs.
One more time, there is no co-occurrence with more than two patterns detected in the

140 Chapter 6. Analysis of repair actions and patterns

Wrong Method [1 ..5]

1. 2. 3. 4. 5.

<No Action> Method Call
Replace

Method Call
Replace

Method Call
Replace Method Call

Replace

Assignment

Assignment
Expression Change

Expression Change

Method Call
Parameter AddMethod Call

Parameter Add

Wrong Method [6.. 10]

6. 7. 8. 9. 10.

Method Call
Replace Method Call

Replace
Method Call
Replace

Method Call
Parameter Add

Method Call
Parameter Add

Method Call Method Call
Parameter Add Parameter Value Change

Method Call
Parameter Value Change

Method Call
Parameter Value Change

Variable
Removal

Object Instantiation
Modification Method Call

Parameter Removal

(b)

Wrong Variable

1. 2. 3. 4. 5.

Method Call
Parameter Value Change

Method Call
Parameter Value Change

<No Action> Method Call Method Call Variable
Parameter Value Change Parameter Add Replace Variable

Variable
Replace Variable Method Call

Parameter Removal

Figure 49 - Repair Patterns variations: Wrong Method Reference a) 1 to 5; b) 6 to
10; c) Wrong Variable Reference.

top-20.

From the 1,056 bugs found in LR.-dataset for Tomcat project, 956 were loaded and
classihed by ADD (100 is out). Applying the outlier filter, a total of 234 bugs were
removed, and 822 bugs remains. Figure 54-b shows the LTpSet Chart. Single Line
(208 bugs, with 101 exclusive), Conditional Block Others Addition (187 bugs, with 84
exclusive), Wrong Method Reference (123 bugs, with 44 exclusive) are in the top-3 set
of bugs. For the co-occurrences, first Wrong Method Reference + Single Line appears
in 29 bug patches, followed by Expression Logic Expand + Single Line and Missing

6.5. Actual applications for the Defects4J Dissection study 141

Bug-ID: Eclipse-7861
Title: Bug 7861 Multiple enabled decorators doesn't work
Description: If you have two decorators enabled at the same time only one of
them wins and gets to decorate. If you load the org.eclipse.team.* projects from
dev.eclipse.org and enable both the CVS and Team Examples decorators then create
a CVS project and an Example (file system provider) both decorations are never
shown although both decorators are enabled.

/bundles/org.eclipse.ui/Eclipse UI/org/eclipse/ui/internal/DecoratorManager.java

@@ -91 ,7 +91 ,7 @@ public class DecoratorManager
DecoratorDefinition [] decorators = getDecoratorsFor(element);
String result = text ;
for (int i = 0; i < decorators.length ; i++) {

- result = decorators[i].getDecorator().decorateText(text , element);
+ result = decorators[i].getDecorator().decorateText(result, element);

}
}

Figure 50 - Bug Report for the bug 7861 from Eclipse, with a snippet of the patch
matching the Wrong Variable Reference repair pattern.

Null Check (Negative) + Conditional Block Others Addition, both occurring in 22 bug
patches. Again, as show in the chart, there is no co-occurrence with more than two
patterns detected in the top-20 set of bugs in Tomcat.

6.5 Actual applications for the Defects4J Dissection
study

Considering the exposed in previous sections, we would imagine and raise potential
applications for the dissection study, initially applied to Defects4J, and then extended
in this chapter with LR-dataset. However, since the dissection study with Defects4J
(SOBREIRA et al., 2018), we observed many citations confirming a consistent interest
from the research community to the dissection study and giving a more realistic idea
about the actual applications. Until November 2021, we account for 82 citations of the
Defects4J Dissection study from the Arxiv pre-print in 2017 to the final paper version
in SANER'18 conference. The number of citations have been increasing each year. The
Dissection study's works concentrate especially on Automatic Program Repair (APR)
and Bug Localization (BL) as shown in Figure 55. Still, other areas are also accessing
it as those studying API Misuse (API), Bug and Patch Analysis (BPA), Bug Datasets

dev.eclipse.org

142 Chapter 6. Analysis of repair actions and patterns

Bug-ID: Birt-187445
Title: Bug 187445 The joint result of script computed column is incorrect[07]
Description: 1, Each dataset including a computed column: name: index;
type:integer; expression:0 2, Specify the script of datasets to: beforeOpen: index=0;
onFetch: row["index"] = index; index++; 3, Join the two datasets Build number:
2.2.0.v20070516-0630 Steps to reproduce: 1, open the attached report design 2, open
the joint dataset and preview Actual result: The result of column Data "Set1::index"
is all 0 but no value 1.

/data/org.eclipse.birt.data/src / . ../engine/impl/ComputedColumnHelper.java

@@ -194,7 +194,8 @@ public class ComputedColumnHelper implements
IResultObjectEvent

continue ;
}

- if (ExpressionCompilerUtil.hasAggregationInExpr(column.getExpression()))
+ if (ExpressionCompilerUtil.hasAggregationInExpr(column.getExpression()) ||
+ column.getAggregateFunction() != null)

{
continue ;

}
@@ -254,7 +255,8 @@ public class ComputedColumnHelper implements

IResultObjectEvent
}
if (column != null)
{

- if (ExpressionCompilerUtil.hasAggregationInExpr(column.getExpression()))
+ if (ExpressionCompilerUtil.hasAggregationInExpr(column.getExpression ()) ||

column.getAggregateFunction() != null)
{

return true;
}

Figure 51 - Bug Report for the bug 187445 from BIRT, with a snippet of the patch
matching the Logic Expression Expansion and Copy Paste repair patterns.

(BD), Debugging (DBG), Program Synthesis (PS), Source Code Analysis (SCA), and
Software Testing (TS). Most of the publications are in Conference Papers, followed by
Journals, but we can find citations in Pre-prints (most in Arxiv), Ph.D. Thesis, MSc.
Dissertations, a book chapter, and a public presentation.

6.6 Related Work

Our dissection study (SOBREIRA et al., 2018) on the 395 bugs of Defects4J bug
dataset (JUST; JALALI; ERNST, 2014) produced similar results to the presented in
this chapter, especially those related to size and spreading dimensions. We found that

6.6. Related Work 143

codeMove

condBlockExcAdd

(a)

expArithMod

(b)

Figure 52 - Patterns co-occurrence without outliers in: a) AspectJ and b) BIRT.

95% of Defects4J bugs have patches with at most 22 changed lines, in blocks of 236
lines (including buggy and non-buggy lines in the gap between first and last buggy line,

144 Chapter 6. Analysis of repair actions and patterns

582

■ condBlockExcAdd
■ wrapsElse
■ expArithMod

(a)

Figure 53 - Patterns co-occurrence without outliers in a) Eclipse Platform UI and b)
JDT.

1.

excluded empty or comment lines), and spans at most three methods, and two files (1
file in 92.41% of patches). The dissection on Defects4J (SOBREIRA et ah, 2018) has
a good intersection with Liu et al. (2018), since we also consider similar repair actions
in an initial manual analysis, culminated in the recognition of many repair patterns. In

6.6. Related Work 145

missNullCheckN

expLogicExpand

condBlockRem

codeMove

wrapslf

wrongMethodRef

expLogicMod

condBlockRetAdd

wrongVarRef

singleLine

condBlockOthersAdd

Set Size

(a)

sMethoc

Figure 54 - Patterns co-occurrence without outliers in a) SWT and b) Tomcat.

(b)

our subsequent work (MADEIRAL et al., 2018) we also applied GumTree and Spoon
(PAWLAK et al., 2015) to recognize 9 kind of repair patterns automatically (or a total
of 25 repair patterns, if variations are considered individually).

Several bug datasets exist to support empirical studies on techniques and tools related
to software bugs. Usually, these datasets do not include detailed information on the bugs

146 Chapter 6. Analysis of repair actions and patterns

Figure 55 - Applications of Defects4J Dissection study by research area until Novem-
ber of 2021.

and their patches if any (e.g., Siemens suite (HUTCHINS et al., 1994) and SIR (DO;
ELBAUM; ROTHERMEL, 2005)), or they include simple information on the bugs (e.g.,
BugBench (LU et al., 2005)), like bug type. Next, we present notable and recent bug
datasets where information about the patches are delivered, which is close to our work
on Defects4J.

iBugs (DALLMEIER; ZIMMERMANN, 2007) (390 Java bugs) contains bugs anno-
tated with size and syntactic properties on their patches. iBugs’ size properties include
similar patch size and spreading metrics. iBugs’ syntactic properties consist of Hnger-
prints describing which syntactic tokens the patch changed, such as keywords, method
calls, and expressions, augmented with information on variable usage, operators, and lit
erais. These Hngerprints are similar to the repair actions, but we organize the taxonomy
in this work differently. For instance, the groups of token “keyword” and “expression” in
iBugs represent different changes on if; we used the repair action group “Conditional”
specihc to changes on conditionals. Distinctly, our analysis includes repair patterns that
they have not investigated.

ManyBugs (GOUES et al., 2015) (185 C bugs), besides information on the bugs,
delivers manually evaluated information about patches. Each patch annotates whenever
some changes happen, for instance, in functions, loops, conditional and function calls,
and arguments to a function or function signature. The process is similar but more
Hne-grained with repair actions. They also calculated the number of changed lines (size)
and changed files (spreading), but differently, ManyBugs does not provide the number
of chunks and repair patterns.

Codeflaws (TAN et al., 2017) (3902 C bugs) delivers bugs annotated with syntactic
differences between buggy and patch code at AST levei. Like in iBugs, Codeflaws’

6.6. Related Work 147

syntactic differences are similar to repair actions, but we use a more comprehensive
taxonomy; for example, in Codeflaws, conditionals and loops are considered together in
one group, “control flow”. Moreover, Codeflaws delivers no information on patch size,
spreading, or repair patterns.

Motwani et al. (MOTWANI et al., 2018) have annotated each bug in Defects4J with
abstract parameters regarding five characteristics: importance, complexity, indepen-
dence, test effectiveness, and characteristics of the human-written patch. One example
of an abstract parameter is the number of lines edited in a patch, which applies to
compute the defect complexity. Similar to this work, they annotated Defects4J bugs
with patch size and the number of modified files. On the characteristics of the patches,
they annotated the bugs with nine code modification types, such as whether the patch
contains the addition of method calls, which are similar to our repair actions. However,
the used taxonomy of repair actions in this work is more comprehensive and fine-grained
since the actions were arranged in groups considering more detailed changes. For in-
stance, instead of only showing a generic change in patch arguments of a method call,
we detail with information about an argument's addition (or removal), a change on the
argument value, or the argument swap in a method call. Moreover, Motwani et al. con-
sidered other information, such as the number of relevant test cases, which makes both
works complementary for the Defects4J part. Our work extends it with a much larger
scale dataset.

Pan et al. (PAN; FELLOW, 2009) and Soto et al. (SOTO et al., 2016) identified
patterns in human patches. Pan et al. (PAN; FELLOW, 2009) manually analyzed seven
open-source projects and found 27 bug fix patterns covering from 46 to 64% bug fixes.
Furthermore, they observed that the most common bug fix patterns are related to the
method call and if condition (both are around 20% bug fixes), which is consistent with
our findings, since Method Cal l Addition and Conditional Branch Addition are the most
prevalent repair actions in patches. Nonetheless, the proportions have some differences
indicating that different choices in bug selection may induce different performance rates
on approaches assessed with such datasets.

Tomassi et al. (2019) proposes a dataset of reproducible bugs for Java and Python.
Their main goal is to provide a dataset with failing and passing pairs to help drive
research on bug localization and automatic repair approaches. They characterize bugs
with failing-pass-oriented characteristics and do not focus on the characteristics of bugs
similar to the taxonomy proposed in this work.

148 Chapter 6. Analysis of repair actions and patterns

6.7 Final Considerations
In this chapter, we analyzed LR-dataset according to the patch dimensions defined

in the Defects4J Dissection study (SOBREIRA et al., 2018). While Defects4J would be
considered a relatively small size bug dataset with only 395 bug patches extracted from
six Java projects, LR-dataset pushes this scale to a different level. LR-dataset contains
more than 20 thousand bug patches, also extracted from six Java projects but different
from the projects found in Defects4J.

After extracting the repair patterns (and the other analysis dimensions) from De-
fects4J, the first question is how these patterns would appear in other projects and how
they would not be a singularity from the Defects4J dataset. We have shown that, in
fact, and based on the Defects4J Dissection dimensions, there are far more similarities
between the bug patches in these datasets than differences, despite the very high scale
distance between the number of patches in each dataset. Furthermore, all the patterns
found in Defects4J were also in LR-dataset and some of them appear in even higher
proportions.

The repair actions and patterns provide another layer to understand the bug nature
inside a dataset. Beyond the type of lines edited to apply a patch, we can know the
meaning and the representative level of each type in a bug dataset. “Do this dataset
covers programmers' errors related to the absence of some verification coding?” The
presence of a Null Check pattern would help to address it. “Usually, do bugs in a
dataset require simpler or more complex patches?” Single Line incidences would help to
quantify part of the simpler fixings, while patch size and spreading distributions would
show the level of code demanded and help to answer about the complexity involved in
the other extreme. “How many bugs are related to errors in testing conditions?” A
study on the Expression Fix patterns would help with this type of issue. A dissection
study on the patches composing the target dataset as we have presented for LR-dataset
and our first study on Defects4J would address the last questions and many others.
The dissection study would help guide research path decisions and the analysis for the
evaluation of the proposed approaches. Next chapter, we conduct an experiment to show
how much these pattern dimensions would influence the evaluation of the approaches to
the BL problem.

149

Chapter

Influence of repair patterns on BL
approaches

Previous chapters have shown some of the characteristics of bug datasets that the
research approaches do not usually consider in their evaluations, as occurs in tasks like
Bug Localization and Automatic Program Repair. We have analyzed patch character-
istics, initially found in the Defects4J dataset and then found in LR-dataset. To show
how these characteristics would influence the evaluations based on the bug datasets,
we present the results of the conducted experiments considering some of the described
patch characteristics. Previous approaches to automatic BL are our baseline since it
does not differentiate the bugs' nature. Then, the patch characteristics related to each
bug report, especially the repair patterns, are applied to guide the dataset sampling of
bug reports. The repair patterns' presence and absence on the samples can produce
features and BL scores with statistically significant differences compared to approaches
that do not consider the bug patches characteristics. Next, we detail our study.

7.1 Research Questions

In Chapter 6 we described factors involved in the characterization of a large bug
dataset, following our initial work with the dissection of Defects4J. Most research ap-
proaches do not proceed with a broad characterization of their bug datasets, considering
the presented dimensions. Likewise, the review of past research with dataset character-
ization and under new perspectives or frameworks as we show in Chapter 4 is also a
significant challenge. Obliviously we do not intend to cover all the issues and possible
unfoldings since it is a work for some years ahead of research. Here we focus on how the

150 Chapter 7. Influence of repair patterns on BL approaches

repair patterns would affect the Bug Localization task, trying to characterize the exten-
sion of this impact (or given some clues). First, then, we define the research questions
that we will try to focus on and answer objectively in this chapter:

RQ6 When we compare a sample of bugs where the respective patches match a given
repair pattern against another sample of bugs where this pattern is not present, is
there any difference in the measured metrics targeting the ranking of bug suspects?
Are these differences statistically significant?

RQ7 What type of impact is associated with the evaluated metric's score rankings by
the presence of a repair pattern in the patches of a bug sample? Moreover, when
the repair pattern is absent?

RQ8 What is the degree of the impact correlated to the repair pattern's presence or
absence on the metrics measured?

7.2 Evaluation Method

Since we applied the dissection analysis to LR-dataset and considering its application
on studies for Bug Localization tasks like (YE; BUNESCU; LIU, 2014), this dataset is
our natural choice. The section presents some of the preparation steps to conduct
the experiments. Subsection 7.2.1 presents the filtering criteria for the bug reports
considered for the experiments, including the outlier considerations. Subsection 7.2.2
presents the selected settings for the set of samplings considered for the experiments.
Subsection 7.2.3 summarizes the metrics, hypothesis tests and formulations. Finally,
Subsection 7.2.4 briefly shows the experimental runtime environment.

7.2.1 Dataset preparation and cleaning

Not all bug reports and files in the LR-dataset (YE; BUNESCU; LIU, 2014) were
chosen for the experiments. Some of the reasons are 1) patches with testing code: some
bug reports are associated with the fixing of testing code (exclusively or not); 2) files
out of the project and analysis scope: some files do not seem to be related to the main
functional features of its projects, some files are not in the project development scope,
and some files are not Java source code files; 3) no baseline results: some bug reports
do not present the ranking results of the fixed files obtained with the LR approach (YE;
BUNESCU; LIU, 2016); 4) bug patches not processed by ADD: some bugs do not have

7.2. Evaluation Method 151

any repair pattern to detect, neither other supported bug patches properties to analyze
and as a consequence, ADD do not have any result to produce for these patches; 5)
outliers: some bug patches have properties that exceeds a lot the properties found on
most patches in the dataset and are outliers instances.

The fixing of testing code is not the primary target of a bug localization approach
since the adoption of unit testing practices is not yet a universal reality in software
development, and the production of functional software is possible without testing code.
While desired and recommended, the testing practices are strategies to improve the
software quality. Usually, the testing code is not a directly influential factor on a faulty
functional behavior caused by a bug in a software. Additionally, some studies have
already pointed out disadvantages in maintaining testing code in the datasets to evaluate
bug localization approaches and how it negatively impacts the results (KIM; LEE, 2018).
Thus, we discard all bug reports when only testing code is the fixing target. We consider
bug reports fixed by testing code only if they involve fixing at least one functional
source code. However, the testing code is wholly ignored in the source code search space
to generate the rankings of potential fixing targets even in these cases. Like testing
code, other types of files found in the dataset do not seem related to the main project
functionally or the project development scope. Therefore, we excluded these out-of-
scope files from the source code search space, e.g., folders containing documentation,
configuration files, setup files, external libraries, or non-Java source code files.

We defined three categories to differentiate these possible types of bug reports based
on the objectives for the code: functional code only, non-functional code only, and
mixed code (functional + non-functional). To achieve this first level of filtering, we
manually looked at project repository folders and identified folder names associated
with non-functional source code. Some examples of these folders are: unit tests (“test”,
“test suite”), documentation (e.g., “docs”), and external libraries (e.g. “libs”). We
excluded the folders (or Java packages) from the source code search space containing
the name patterns enumerated next. These are our assumptions about the location of
non-functional codes in each project.

1. AspectJ: “*.tests*”, “*.tests.*”, “testsrc”, “testdata”, “testing”, “tests”, “test”,
“docs”, “lib”.

2. BIRT: “*.tests*”, “*.tests.*”, “testsuites”, “tests”, “testhelper”, “test”, “com-
mon”, “docs”, “features”, “nl”.

3. Eclipse: “*.tests*”, “*.tests.*”, “tests”.

152 Chapter 7. Influence of repair patterns on BL approaches

4. JDT: “*.tests*”, “*.tests.*”, “tests”, “junit”.

5. SWT: “*.tests*” , “*.tests.*”, “tests”.

6. Tomcat: “bin”, “conf”, “res” , “test”, “webapps”.

We also have found bug reports without information about the ranking with the
LR approach from Ye et al. (YE; BUNESCU; LIU, 2016), i.e., the result section in the
provided XML file was empty. This situation does not directly compare with the original
LR approach, so we also ignore these bug reports. Below are the Bug-ID's of some bug
reports without results for the original LR approach:

1. AspectJ: 259528, 249710, 84260.

2. BIRT: 211884, 375600, 362714.

3. Eclipse: 413943, 411967, 209190.

4. JDT: 277299, 262389, 158292.

5. SWT: 409353, 312371, 308445.

6. Tomcat: 55245, 55217, 55046.

Figure 56 shows the distributions of the bug reports according to the previous def-
initions. The most significant difference occurs for AspectJ, where there are more bug
reports involving mixed code (192+123=315) than functional code (170+47=217). The
number of absent results for the LR approach is proportionally higher (47+123+28=198),
remaining 362 bug reports to be considered from the original 593 bug reports in the
dataset file (170 functional, and 192 non-functional, both with results informed, and
corresponding to 61.05% of the total available in AspectJ). For the other projects, the
number of bug reports with bug fixes only in functional code is higher than non-functional
code fixes, and most parts have informed results for LR. The number of reports selected
for each project considering the total available in the dataset are: 362 (61.05%) for
AspectJ, 3,674 (87.94%) for BIRT, 5,609 (86.36%) for Eclipse, 5,365 (85.51%) for JDT,
3,754 (90.44%) for SWT, and 934 (88.45%) for Tomcat. Overall, the total number of bug
reports to be considered (informed results, functional + mixed code) is 19,698 (86.60%
from the original 22,747 bug reports).

ADD cannot process some patches. ADD tries to detect patterns in patches extract-
ing the Abstract Syntax Tree resulting from the difference between the buggy and the

7.2. Evaluation Method 153

a) AspectJ (593 bug reports). b) BIRT (4,178 bug reports).

■ Informed Results (5796) BAbsent Results (699)

c) Eclipse (6,495 bug reports).

■ Informed Results (5831) BAbsent Results (443)

d) JDT (6,274 bug reports).

e) SWT (4,151 bug reports).

Figure 56 - Bug reports categories: 1) Functional vs Non-Functional; 2) With or
Without LR-Results.

■ Informed Results (974) BAbsent Results (82)

f) Tomcat (1,056 bug reports).

fixed source code files. However, for some bugs, the AST extraction is impossible, even
considering the patching over valid functional source code. This situation happens in
bug 117526 from Eclipse Platform UI. Figure 57 shows the bug report for this bug.

The patch for the bug 117526 in Eclipse Platform UI is composed by changes in the
next .java files:

□ In folder: bundles/org.eclipse.core.commands/src/

— 4: org/eclipse/core/commands/Command.java

— 5: org/eclipse/core/commands/INamedHandleStateIds.java

□ In folder: bundles/org.eclipse.ui.workbench/Eclipse UI/

154 Chapter 7. Influence of repair patterns on BL approaches

Project: Eclipse Platform UI
Bug-ID: 117526
Title: Bug 117526 [Contributions] [Commands] Javadoc warnings in N20051122-0010
Description:
/builds/N/src/plugins/org.eclipse.platform.doc.isv/
../org.eclipse.core.commands/
src/org/eclipse/core/commands/INamedHandleStatelds.java :
30: warning - Tag @link: Class or Package not found: NamedHandleObjectWithState

/builds/N/src/plugins/org.eclipse.platform.doc.isv/
../org.eclipse.core.commands/
src/org/eclipse/core/commands/Command.java:
581: warning - @param argument "state" is not a parameter name .

/builds/N/src/plugins/org.eclipse.platform.doc.isv/
../org.eclipse.jface/src/org/eclipse/jface/commands/RadioState.java :
46: warning - Tag @link: Class or Package not found: Boolean.TRUE

/builds/N/src/plugins/org.eclipse.platform.doc.isv/
../org.eclipse.jface/
src/org/eclipse/jface/commands/RadioState.java :
46: warning - Tag @link: Class or Package not found: Boolean.FALSE

/builds/N/src/plugins/org.eclipse.platform.doc.isv/
../org.eclipse.ui.workbench/Eclipse

UI/org/eclipse/ui/handlers/RegistryRadioState . java :
51: warning - Tag @link: Class or Package not found: Boolean.FALSE

Figure 57 - Bug Report for the bug 117526 from Eclipse Platform UI.

— 13: org/eclipse/ui/handlers/RegistryRadioState.java

□ In folder: bundles/org.eclipse.jface/src/

— 14: org/eclipse/jface/commands/RadioState.java

The patched files are also ranked in Ye et al. work (YE; BUNESCU; LIU, 2014), and
we have shown the ranking positions above before the file paths. Without interpreting
the bug report description and examining the patches, it is hard to detect we are dealing
with a non-functional bug patch. Nevertheless, after comparing the buggy and the fixed
files, it is clear that the patch applies only to the Javadoc lines, and functional code is
not affected. Also, the automatic processing of this kind of bug is a challenge since it
requires the system to deal with these particular cases. Figure 58 illustrates the changes
in the files. Many other patches present the same or similar situations. Therefore, there
is no AST generation for these patches, explaining the processing failure by ADD for
these patches (or the absence of results).

In Chapter 6 we show that many patches in LR-dataset have exceptional properties,
too far from most of the other dataset patches. For example, bug 60783 in the Eclipse

1.2. Evaluation Method 155

88 -575,8 +575,9 88
* IObjectWithState}.

* </P>
*

* @paran state
* The state to renove; nust not be <code>null</code>.
* @paran stateld
* The identifier of the state to renove; nust not be
* <code>null</code>.
*/

public void renoveState(final String stateld) {
tf (handler tnstanceof IObjectWithState) {

a) Command.java

@@ -13,7 +13,8 @@
y**
* <p>

- * State identifiers that are understood by {@link NanedHandleObjectWithState}.
+ * State identifiers that are understood by naned handle objects that inplenent
+ * (@link IObjectWithState}.

* </P>
* <p>
* Cltents nay inplenent or extend thts class.

b) InamedHandleStatelds.java

@@ -22,7 +22,7 @@
* A radio state that can be read fron the regtstry. This stores a ptece of
* boolean state infornation that is grouped with other boolean state to forn a
* radio group. In a single radio group, there can be at nost one state who

- * value is {@link BooleanffTRUE} all the others nust be {@link Boolean.FALSE}.
+ * value is {glink BooleantfTRUE} all the others nust be {glink BooleanSFALSE}.

* </P>
* <p>
* When parsing fron the regtstry, this state understands three paraneters:

c) RegistryRadioState.java

88 -23,8 +23,8 88 y**
+ <P>
A ptece of boolean state grouped with other boolean states. Of
only one nay have
The values of all
only one nay have
The values of all
</P>
<P*
If this state is registered using {@link IMenuStateIds#STYLE},

a value of {@ltnk
other states nust
a value of {@link
other states nust

Boolean.TRUE} at any given
be {@link Boolean.FALSE}.
BooleanffTRUE} at any given
be {@ltnk BooleantfFALSE}.

these
point

potnt

states,
in tine.

in tine.

then it will*

d) RadioState.java

Figure 58 - Patch for the bug 117526 in files from Eclipse project.

Platform UI project patches 16 files and involves 457 functional coding lines (168 added,
160 removed, 129 modified) distributed in 25 chunks. Another bug, 159857 in BIRT,
exceeds other dimensions since it spreads in 66 chunks, with an accumulated distance
between chunks of 882 lines (or 478 if we consider only non-empty code lines) and the

156 Chapter 7. Influence of repair patterns on BL approaches

Table 17 - LR-dataset with and without outliers.

#bugs reports Outliers No-Outliers

AspectJ 593 134 (22.6%) 459 (77.4%)
BIRT 4,178 948 (22.7%) 3,230 (77.3%)
Eclipse 6,495 1508 (23.2%) 4,987 (76.8%)
JDT 6,274 1342 (21.4%) 4,932 (78.6%)
SWT 4,151 938 (22.6%) 3,213 (77.4%)
Tomcat 1,056 234 (22.2%) 822 (77.8%)

Total 22,747 5,104 (22.4%) 17,643 (77.6%)

fixing of 46 files, 1 class, and 57 methods. We can find many other examples, including 1)
bug 41254 in AspectJ (patches 75 files on 62 coding lines), 2) bug 47509 in JDT (patches
45 files on 261 coding lines), 3) bug 54426 in SWT (patches 8 files on 221 coding lines,
spread in 30 chunks), 4) bug 49683 in Tomcat (patches 3 files on 159 coding-only lines,
spread in 27 chunks). These exceptional patches would produce an artificial bias while
evaluating some strategy over the dataset. To reduce the impact caused by these types
of patches, we remove the outliers through the application of the discussed thresholds
presented in Chapter 6 and enumerated next:

1. Patch size: from 1 to 60 lines

2. Chunks: from 1 to 20 chunks

3. Accumulated spreading between chunks: from 0 to 350 lines

4. Patched files: from 1 to 20 files

Table 17 shows the summary of patches for each project and the impact of the
outlier removal. Even with the 22.4% overall reduction, many bugs (17,643) remain for
the experiments and analysis.

Finally, considering all the five filtering criteria exposed in this subsection, Table 18
shows the relation between the bug reports in the original LR-dataset and two samplings
set candidates for the experiment considering: 1. functional code only (FC); 2. mixed
code (FC+NFC). For both sampling sets, we remove bugs and source code files in the
following conditions: 1) fixed by testing files only; 2) files out of the project scope; 3)
without baseline ranking results from Ye et al. study (YE; BUNESCU; LIU, 2014); 4)
without results from ADD; 5) outliers. Considering FC and FC+NFC categories, the

7.2. Evaluation Method 157

Table 18 - LR-dataset sampling candidates.

#bugs reports Sampling candidates
1. FC 2. FC+NFC

AspectJ 593 135 (22.8%) 307 (51.8%)
BIRT 4,178 2,689 (64.4%) 2,919 (69.9%)
Eclipse 6,495 3,991 (61.5%) 4,459 (68.7%)
JDT 6,274 3,733 (59.5%) 4,400 (70.13%)
SWT 4,151 2,918 (70.3%) 2,922 (70.4%)
Tomcat 1,056 654 (61.9.2%) 761 (72.1%)
Total 22,747 14160 (62.25%) 15,768 (69.3%)

main difference is that FC+NFC can include patches fixed by testing code if at least
one fixed file targets functional code.

7.2.2 Selected Settings

While our experimental package allows us to define many settings based on patch
dimensions, the combinatorial explosion makes a comprehensive and complete analysis
almost impractical. Therefore, we focused on some common repair patterns and their
more common compositions of repair actions found in LR-dataset. The Chapter 6 de-
tails these common repair patterns composition. Additionally, the current state of the
experimental package does not allow the processing of all the bug reports in LR-dataset,
since some refactoring towards optimization is still required, and the time required for
deep and complete processing is prohibitive. AspectJ and Tomcat have the smallest
number of bugs in the LR-dataset. Therefore, we naturally choose these projects for
the screening experiments and guide the selection and sampling over the other projects
for comparison.

The detection of a repair pattern in a patch does not guarantee exclusivity for this
pattern. So, different repair patterns in the same patch can imply a confounding factor
and can produce some bias in the results and the analysis. Therefore, we should give
special attention to the intersection between the samples and the co-occurrences of
patterns to reduce these biases. As a mitigating strategy for this situation, we also
tried to favor the selection (and the sampling) of bug patches where the repair pattern
occurs exclusively or with a lower level of co-occurrences.

158 Chapter 7. Influence of repair patterns on BL approaches

Table 19 - LR-dataset samples representativeness for AspectJ and Tomcat.

Repair Pattern

AspectJ
#bugs

1,056

Tomcat
Sample matches#bugs

593

Sample matches
1. FC

164 (27.7%)
2. FC+NFC
353 (59.5%)

1. FC
752 (71.2%)

2. FC+NFC
890 (84.3%)

codeMove 9 40 32 (80.0%) 36 (90.0%)
condBlockOthersAdd 137 28 (20.4%) 50 (36.5%) 187 50 (26.7%) 50 (26.7%)
condBlockRem 24 54 36 (66.7%) 46 (85.2%)
condBlockRetAdd 80 21 (26.3%) 50 (62.5%) 50 36 (72.0%) 48 (96.0%)
constChange 21 57 45 (78.9%) 50 (87.7%)
expLogicExpand 45 34 (75.6%) 61 46 (75.4%) 50 (82.0%)
expLogicMod 37 24 (64.9%) 52 40 (76.9%) 46 (88.5%)
missNullCheckN 53 24 (45.3%) 39 (73.6%) 53 45 (84.9%) 50 (94.3%)
missNullCheckP 33 27 (81.8%)) 49 41 (83.7%) 46 (93.9%)
singleLine 89 26 (29.2%) 50 (56.2%) 208 50 (24.0%) 50 (24.0%)
wrapsIf 41 24 (58.5%) 31 (75.6%) 47 37 (78.7%) 44 (93.6%)
wrongMethodRef 66 40 (60.6%) 123 50 (40.7%) 50 (40.7%)
wrongVarRef 41 26 (63.4%) 90 50 (55.6%) 50 (55.6%)

Total sampled 459 (77.4%) 227 (38.3%) 294 (49.6%) 822 (77.8%) 557 (52.7%) 591 (56.0%)
Matched 395 (66.6%) 91 (15.3%) 230 (38.8%) 674 (63.8%) 367 (34.8%) 401 (38.0%)

Not Matched 64 (10.8%) 136 (22.9%) 64 (10.8%) 148 (14.0%) 190 (18.0%) 190 (18%)

Outliers 134 (22.6%) 35 (5.9%) 55 (9.3%) 234 (22.2%) 142 (13.5%) 173 (16.4%)
Not loaded by ADD 72 (12.1%) 6 (1.01%) 9 (1.52%) 100 (9.5%) 34 (3.2%) 44 (4.2%)

7.2. Evaluation Method 159

We covered most of the bugs found in AspectJ and Tomcat for the screening exper-
iments. We focused the analysis on samples showing at least 20 to 30 bugs matched for
each repair pattern. As an upper bound, we limited each sample to 50 bugs, hoping not
to produce an unbalanced comparison between the bugs whose patches matched and
those that did not match the repair patterns.

Table 19 show the representativeness of these sample sizes on the universe of bugs for
each project segmented by repair pattern. Unfortunately, the FC category restricts the
number of repair patterns alternatives because it does not provide enough bugs for some
associated samples, especially for AspectJ. Therefore, we choose to run the screening
experiments using the FC+NFC category.

7.2.3 Metrics Extracted and Hypothesis Tests

For each sample we extracted the metrics described in Section 2.3: MAP, MRR,
Top-N for N in set {1, 5, 10}, and NDCG@k with k in the set {1, 5, 10}. We applied
Statistical Non-Paired and Non-Parametric tests Mann-Whitney U to confirm if the
found results have statistical significance (p-value = 0.05) and considering:

□ H0 (=): The score ranking results ARE NOT SIGNIFICANTLY DIFFERENT
when comparing samples of bugs with a matched repair pattern (or detected in
the bug patches) and without this pattern.

□ H1 (=): The score ranking results ARE SIGNIFICANTLY DIFFERENT when
comparing samples of bugs with a matched repair pattern (or detected in the bug
patches) and without this pattern.

To define the impact caused by the repair patterns, we compute the difference be-
tween the metrics measures considering the samples where the repair pattern is present
on the sample patches, mp, against the correspondent measure of the baseline, mb, i.e.,
when we do not differentiate when the pattern is present or absent, as defined in Equa-
tion 20.

d(p, b) = (mp — mb) * 100 (%) (20)

We do the same with the measures for the samples where the repair pattern is absent
in the patches, ma, as defined in Equation 21.

d(a, b) = (ma — mb) * 100 (%) (21)

160 Chapter 7. Influence of repair patterns on BL approaches

7.2.4 Runtime Environment

We run the experiments on two servers with replicated Anaconda environment on
Ubuntu 21.04 Operational System with the following essential software packages:

□ Experimental package (Python and Java based software).

□ Python 3.7.11

□ Java 11 (OpenJDK 11.0.11)

□ Maria DB 10.5.12

□ Pony ORM 0.7.14

□ ADD v1.0

The hardware settings were:

□ Server 1, Lenovo ThinkServer TD340:

CPU: 12-core Intel Xeon E5-2430 v2 @ 2.50 GHz

GPU: GM206GL [Quadro M2000] NVIDIA

RAM: 32 GB RAM (2x8GiBDIMMDDR3 1600 MHz 0.6ns, 1x16GiBDIMM
DDR3 1600 MHz 0.6 ns)

Hard Disk: 600 GB Seagate Savvio 10K.6 SAS 6GBS (ST600MM0006)

□ Server 2, Cluster instance:

CPU: 40 nodes of Intel Xeon E5620 @ 2.4GHz

RAM: 20 GB RAM

Hard Disk: 86 GB (Ext4 virtual partition)

7.3 Results

Here we present the obtained results that will support our analysis and answers to
the research questions.

7.3. Results 161

7.3.1 Screening of Repair Patterns

Considering FC+NFC bug patches for the AspectJ project, the comparisons between
samples with matched versus not-matched repair patterns show some differences with
statistical significance on the ranking score results for:

□ $5: wrongVarRef, expLogicExpand, wrongMethodRef

□ ^7: wrapsIf, expLogicExpand, condBlockOthersAdd, wrongMethodRef, wrong-
VarRef

□ ^s: condBlockOthersAdd, wrapsIf, condBlockRetAdd, expLogicExpand, wrong-
MethodRef, wrongVarRef

□ ^11: singleLine, expLogicMod, condBlockOthersAdd, missNullCheckN

□ 015: wrapsIf, wrongMethodRef

□ $19: wrongMethodRef, singleLine, wrapsIf

□ BLUiR: wrapsIf, singleLine, condBlockReturnAdd

□ LR: condblockOthersAdd, wrongMethodRef

Considering FC+NFC bug patches for the Tomcat project, the comparisons between
samples with matched versus not-matched repair patterns show some differences with
statistical significance on the ranking score results for:

□ ^1: missNullCheckN, condBlockRem

□ ^4: missNullCheckN, expLogicExpand

□ ^5: wrongVarRef, codeMove, wrapsIf, expLogicMod, wrongMethodRef

□ ^6: wrongVarRef, missNullCheckP, wrongMethodRef

□ ^7: missNullCheckN, wrapsIf

□ ^8: missNullCheckN, wrapsIf, codeMove, expLogicMod

□ ^11: wrapsIf, expLogicMod, wrongMethodRef, codeMove, condBlockOthersAdd,
expLogicExpand

□ ^12: wrapsIf, expLogicMod, wrongVarRef

162 Chapter 7. Influence of repair patterns on BL approaches

□ ^15: missNullCheckP, constChange, missNullCheckN, wrongMethodRef, wrong-
VarRef

□ ^16: missNullCheckN, wrapsIf, wrongVarRef, expLogicMod

□ ^17: expLogicExpand, constChange, wrongMethodRef

□ ^18: wrongVarRef

□ ^19: missNullCheckN, singleLine, condBlockRem, wrongMethodRef

□ BLUiR: missNullCheckN, wrapsIf, missNullCheckP, condBlockRetAdd

□ LR: missNullCheckN

Next, we show the samples where we have some differences with statistical signifi-
cance on the ranking score results for both AspectJ and Tomcat:

□ ^5: wrongVarRef, wrongMethodRef

□ ^7: wrapsIf

□ ^8: wrapsIf

□ ^11: expLogicMod, condBlockOthersAdd

□ ^15: wrongMethodRef

□ ^19: wrongMethodRef, singleLine

□ BLUiR: wrapsIf, condBlockRetAdd

Some samples are bold considering their span across more score rankings: miss-
NullCheckN and wrongVarRef for Tomcat; wrapsIf and wrongMethodRef for both As-
pectJ and Tomcat.

Based on the results with AspectJ and Tomcat, we decided to extend the analysis
for Eclipse Platform UI and BIRT projects. However, to be viable, since the number
of bugs for these projects is much higher and the processing time for all their bugs is
prohibitive (with the actual implementation of the experimental package), we focus on
the previously highlighted repair patterns. We will publish the complete analysis for
Eclipse and BIRT in future studies and extend the studies for other repair patterns.
Here we detail our results, especially for AspectJ and Tomcat.

7.3. Results 163

7.3.2 Differences on ranking scores correlated to the repair
pattern presence (or absence) and with statistical sig-
nificance

We consider the hypothesis tests mentioned in Subsection 7.2.3 to verify the sta-
tistical significance of the score differences between samples with matched versus not-
matched repair patterns. Table 20-a show the result of statistical test Mann-Whitney
for each metric extracted from samples related to AspectJ. Each line contains the null
hypothesis test result for a specific metric, considering the 19 features, BLUiR, and LR
scores. The null hypothesis, H0, acceptance is represented by the = symbol, while the
= symbol indicates the rejection. The results confirm the differences on some metrics
for ^4, ^7, ^8, ^15, ^18, ^ig, and BLUiR score rankings. Table 20-b shows the statistical
tests for the wrapsIf in Tomcat. Similarly, the next tables present other results:

□ Table 21: wrongMethodRef in Aspectj, Tomcat and BIRT;

□ Table 22: wrongVariableRef in Aspectj, Tomcat and BIRT;

□ Table 23: missNullCheckN in Aspectj, Tomcat and BIRT;

7.3.3 Impact of the differences correlated to the repair patterns

To give an idea about the level of impact caused by the repair pattern presence or
absence, we compute the difference of the score results with the baseline, as defined
in Equations 20 and 21. Table 24 shows the results for MAP measure. The samples
associated with the repair patterns are in each column, starting with the results for the
sample where the pattern is present (or matched in the sample patches), immediately
followed by the results for the sample where the pattern is absent (or not matched in the
sample patches). For example, the first column is related to the Missing Not-Null Check
(MNC_N) repair pattern and next to the sample without this pattern represented with
-MNC_N. Next columns are related to the repair patterns Wraps with If (W_If), Wrong
Method Reference (WMR), Wrong Variable Reference (WVR). Only for sanity checking
purposes, the last two columns represent the union of samples with the matched repair
patterns followed by the union of the remaining patches without repair pattern matches.
The color scale helps to highlight when the difference is positive (green tones, meaning
the score is higher than the scores for the baseline), negative (red tones, meaning the
score is below the baseline), or neutral (yellow tones, meaning the score is near the

164 Chapter 7. Influence of repair patterns on BL approaches

Table 20 - Wraps with If in AspectJ and Tomcat, H0 result for Mann-Whitney (MW)
test.

$1 $2 $3 $4 $5 $6 $7 $8 $9 | $10 | $11 | $12 | $13 | $14 | $15 | $16 | $17 | $18 | $19 | BLUiR | LR
a) AspectJ

MAP = = = = = = = = == = 1 1 1 1 1 1 + \
MRR | = | == 1 1 1 1 1 1 \ +
NDCG@1 |=|== 1 1 1 \ \ * = 1 1 \ - \ - + \ + \ =

NDCG@5 |=|== 1 1 + \ 1 * 1 1 1 \ - \ - =

NDCG@10 = == 1 1 + \ 1 * = 1 1 - \ -
Top-1 = 1 1 1 1 * = 1 1 - \ - \ \ + \ =

Top-5 = 1 1 + \ 1 * 1 1 1 - \ - =

Top-10 = 1 1 + \ 1 * 1 1 \ \ \ \ \
b) Tomcat

$1 $2 $3 $4 $5 $6 $7 $8 $9 | $10 \ $11 \ $12 \ $13 \ $14 \ $15 \ $16 \ $17 \ $18 \ $19 \ BLUiR | LR

MAP | =

MRR | =
NDCG@1 | =

NDCG@5 | =

NDCG@101 = | =

Top-1 | =

Top-5 = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = = I =

Top-10 I =

baseline). We saturated the colors with the minimum (solid red), 0% (solid yellow), and
maximum (solid green) shown in each table. The values are in the bold black font when
there is statistical significance in the difference between the sample with the matched
repair pattern and the sample not matched with the repair pattern, confirmed by null
hypothesis rejection in at least one statistical test presented in Subsection 7.2.3. For the
other metrics, we have:

□ MRR score differences for AspectJ in Table 25-a and for Tomcat in Table 25-b;

□ NDCG@1 score ranking differences for AspectJ in Table 26-a and for Tomcat in
Table 26-b;

□ NDCG@5 score ranking differences for AspectJ in Table 27-a and for Tomcat in
Table 27-b;

7.3. Results 165

a) AspectJ

Table 21 - Wrong Method Reference in AspectJ, Tomcat and BIRT: H0 result for
Mann-Whitney (MW) test.

$1 $2 $3 $4 $5 $6 $7 $8 $9 $10 \ $11 $12 $13 $14 $15 $16 $17 $18 $19 \ BLUiR LR

MAP \ 1 1 1 1 = 1 = 1 = 1 1 =- \ - - - - - - - - -
MRR 1 1 1 1 = 1 1 1 1 1 ==

NDCG@1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 == | - - - A - - - - -
NDCG@5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 / 1 /
NDCG@10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 / 1 /
Top-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 == 1 - - - A - - - - -
Top-5 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 == 1 = = = = = = = =

Top-10 -1 -1 -1 -1 -1 -1 -1 -1 -1 == 1 - - - - \ A - - -

b) Tomcat
$1 $2 $3 $4 $5 $6 $7 $8 $9 \ $'. 10 $11 $12 $13 $14 $15 $16 $17 $18

\ $19 BLUiR LR

MAP

mrr l = I =
NDCG@1 |=|=|=|=|=|/|=|=|=|/|/|=|=|=|=|=|=|=|=| = | =

NDCG@5 |=|=|=|=|=|=|=|=|=|=|/|=|=|=|/|=|=|=|=| = | =

NDCG@10|=|=|=|=|/|=|=|=|/|=|/|=|=|=|=|=|/|=|=| = | =

Top-1 | =

Top-10 I =

___c) BIRT___
$1 \$2 $3 $4 $5 $6 $7 $8 $9 | $10 | $11 | $12 | $13 | $14 | $15 | $16 | $17 | $18 | $19 | BLUiR | LR

MAP l=l=l=|/|=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l = I =

MRR | = | = H/ | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = | = I =
NDCG@1 |=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=| = | =

NDCG@5 |=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=| = | =

NDCG@10|=|=|=|=|=|=|=|=|=|=|=|/|=|=|=|=|=|=|=| = | =

Top-10 l = I =

166 Chapter 7. Influence of repair patterns on BL approaches

Table 22 - Wrong Variable Reference in AspectJ, H0 result for Mann-Whitney (MW)
test.

a) AspectJ

$1 \$2 $3 $4 \$5 $6 $7 $8 $9 | $1Ü | $11 | $12 | $13 | $14 | $15 | $16 | $17 | $18 | $19 | BLUiR | LR

MRR | =

NDCG@1 | =

NDCG@5 | =

NDCG@101 = | =

Top-5 | = I =

Top-10 | = I =

b) Tomcat

$1 $2 $3 $4 \$5 $6 $7 $8 $9 | $1Ü | $11 | $12 \ $13 \ $14 \ $15 \ $16 \ $17 \ $18 \ $19 \ BLUiR | LR
MAP l = I =

MRR l = I =
NDCG@1 | =

NDCG@5 | =

NDCG@101 = | =

Top-5 | =

Top-10 | = I =

___c) BIRT___

$1 | $2 | $3 | $4 | $5 | $6 | $7 | $8 $9 | $1ü | $11 | $12 | $13 | $14 | $15 | $16 | $17 | $18 | $19 | BLUiR | LR
MAP l = I =

MRR l = I =
NDCG@1 | =

NDCG@5 | =

NDCG@101 = | =

Top-5 l = I =

Top-10 | = I =

7.3. Results 167

Table 23 - Missing Not-Null Check in AspectJ, H0 result for Mann-Whitney (MW)
test.

a) AspectJ
$1 \$2 $3 $4 \$5 $6 $7 $8 $9 | $1Ü | $11 | $12 | $13 | $14 | $15 | $16 | $17 | $18 | $19 | BLUiR | LR

MAP =|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|= = | =

MRR =|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|= = | =

NDCG@1 =|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|= = | =

NDCG@5 =|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|= = | =

NDCG@10=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|= = | =

Top-5 |=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=| = | =

Top-10 |=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=| = I =

b) Tomcat
$1 $2 | 03 | $4 \$5 $6 $7 $8 $9 | $1Ü | $11 | $12 \ $13 \ $14 \ $15 \ $16 \ $17 \ $18 \ $19 \ BLUiR | LR

MAP = 1 = 1 = = 1 = 1 = 1 = = = =
MRR = 1 + \ 1 = = 1 = 1 = 1 = = = =
NDCG@1 = | = \ 1 = 1 = = 1 = 1 = 1 = 1 1 = =
NDCG@5 = | = 1 = 1 = = 1 = 1 = 1 = = 1 = 1 = 1 = 1 = = =
NDCG@10 = 1 = 1 = = 1 = 1 = 1 = = 1 = 1 = 1 = 1 = = =
Top-1 = | = 1 = 1 = = 1 = 1 = 1 = 1 1 = =
Top-5 = | = 1 = 1 = = 1 = 1 = 1 = 1 = =
Top-10 = 1 = 1 = 1 1 =

c) BIRT

$1 $2 $3 $4 $5 $6 $7 $8 $9 $1ü $11 $12 $13 $14 $15 $16 $17 $18 $19 BLUiR LR

MAP 1 1 1 1 1 = 1 1 1 1 1 1 1 | v 1 1 1 1 1 11 / 1^1 1
MRR 1 1 1 1 1 1 1 1
NDCG@1 |=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=| = I =

NDCG@5 =|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|= = I =

NDCG@10=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|= = | =

Top-10 |=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=|=| = I =

168 Chapter 7. Influence of repair patterns on BL approaches

□ NDCG@10 score ranking differences for AspectJ in Table 28-a and for Tomcat in
Table 28-b.

□ Top-1 score ranking differences for AspectJ in Table 29-a and for Tomcat in Ta-
ble 29-b;

□ Top-5 score ranking differences for AspectJ in Table 30-a and for Tomcat in Ta-
ble 30-b;

□ Top -10 score ranking differences for AspectJ in Table 31-a and for Tomcat in
Table 31-b.

7.3.4 Variation of the differences correlated to the repair pat-
terns

Figure 59 shows the score rankings and highlights the range of the differences for the
samples related to the wrapsIf pattern in AspectJ. The chart shows all 19 features from
the LR approach, besides BLUiR and LR BL approaches. We consider three samples:
1) the sample where the repair pattern matches in patches (blue circle); 2) the sample
where the repair pattern does not match in patches (red circle); 3) and the sample
representing the baseline and containing the previous two samples, and samples with
other repair patterns included in the experiment (black tick). In the baseline sample
and similar to most of the previous BL approaches, the evaluations on the bug dataset
do not differentiate matching or not-matching of repair patterns (or any other bug
characteristic, discussed in Chapter 6). Figure 60 shows the score rankings for Tomcat
analogous to what was shown for AspectJ. For the other repair patterns and projects,
we have:

□ Wrong Method Reference score ranking differences range for AspectJ in Figure 61
and for Tomcat in Figure 62;

□ Wrong Variable Reference score ranking differences range for AspectJ in Figure 63
and for Tomcat in Figure 64;

□ Missing Not-Nul l Check score ranking differences range for AspectJ in Figure 65
and for Tomcat in Figure 66.

Analysis 169

Table 24 - Impact of the presence and absence of the repair patterns in AspectJ and
Tomcat based on the MAP scores.

a) MAP score differences from baseline in AspectJ
MNC.N -MNC.N WJf -WJf WMR -WMR WVR -WVR ALL.M -ALL.M

fl
f2 -0.01% -0.07% 0.51% -0.15% 0.31% -0.25%

f3 0.32% -1.45%

f4 7.94% 2.85%

f5 -0.36% -1.62% 3.40% 0.86%

f6 -0.28%

f7 -1.91% -5.19% 0.19% 4.51%

f8 7.99% 1.97% 14.92% -0.37% -1.99% -5.78% 6.99% 3.94%

f9 -0.31% -0.41% 0.13% -0.64% 0.18%

flO -0.11% -0.42% -0.01%

fll
fl2
fl3 -0.99% -1.70%

fl4 -0.13%

fl5 2.29% -0.86% -0.37% -0.40%

fl6 -0.26% -0.19% -0.18% -0.14%

fl7 -0.28% 0.18% 0.16% -0.26% 0.15%

fl8 -0.51% 1.51% -0.46% -0.26% -0.18% 0.18%

fl9 -0.13% | 5.93%

BLUiR 8.76% -0.81% | -0.36% 0.14% |

LR — 3 52% 0.24% |

b) MAP score differences from baseline in Tomcat
MNC.N -MNC.N WJf -WJf WMR -WMR WVR -WVR ALL.M -ALL.M

7.4 Analysis

Next, we analyze and discnss the resnlts presented in the previons section. We
analyzed the resnlts for the patterns Wraps with If, Wrong Method Reference, Wrong
Variable Reference, and Missing Not-Null Check. Overall we can íiiid HO rejection for
metrics in all of them. Next, we present the analysis for each one.

170 Chapter 7. Influen.ee of repair patterns on BL approaches

Table 25 - Impact of the presence and absence of the repair patterns in AspectJ and
Tomcat based on the MRR scores.

a) MRR score differences from baseline in AspectJ
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl
f2 -0.13% -0.61% 0.18% -0.17%

f3 -0.31% 0.19%

f4 0.10%

f5 0.85% -2.43% 3.43% 0.22% -0.38%

fó 0.18%

f7
f8
f9
flO 0.04% -0.19% -0.37%

fll -0.17%

fl2 -0.29%

fl3 -0.13% -0.11% -1.52% -2.30%

fl4 -0.48% -0.38%

fl5 -0.38%

fló 0.24% -0.34% 0.40% -0.17% -0.18%

fl7 -0.28% 0.45% -0.34% -0.29% -0.13%

fl8 1.1336 -0.36% -0.23% 0.11%

fl9 -0.37%

BLUiR
LR 0.12% 4.47% - 6.9656

b) MRR score differences from baseline in Tomcat
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl 2.66% -7.89%

f2 -0.30%

f3 -4.54% -0.02%

f4 23.23% -8.75%

f5 -0.03% -0.77% -0.14% -2.14% 2.63%

fó
f7 22.99% -7.72% 3.65% 13.00%

f8 -0.92% 10.96% 0.01% 0.18%

f9 0.61% -0.48% -1.42%

flO -2.77% 3.26%

fll -2.12% 10.35%

fl2 -5.60% 4.07%

fl3 -3.56% -2.46%

fl4 -3.71% 1.46%

fl5
fló -0.54% 0.21% -0.28% 0.38% -0.16% -0.18%

fl7 —0.53%

fl8 -0.64% 0.43% —0.35% -0.14% -0.31% -0.33%

fl9 -0.25% —0.35%

BLUiR 21.52% -7.23% -0.67% 12.92%

LR 9.69% -4.16%

7.4.1 Wraps with If Repair Pattern

In AspectJ, Wraps with If samples present many differences in the scores for both
cases (with and withont the repair pattern), that is evidenced in Figure 59, bnt also
in Table 24-a to Table 31-a. For most features and also for the BLUiR, when Wraps
with If is present, we have higher scores than in the baseline. On the other hand, the

Influen.ee

Analysis 171

Table 26 - Impact of the presence and absence of the repair patterns in Aspect J and
Tomcat based on the NDCG@1 scores.

a) NDCG@1 score differences from baseline in AspectJ
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl -0.48% -0.17%

f2
f3
f4 7.55% 2.83% 12.18% -0.40% -0.52% —0.35% |

f5 -0.44%

fó -0.21% -0.21% -0.21% -0.21% -0.21%

f7 13.87% -2.71% -0.15% |

f8 15.54% -1.04%

f9
flO
fll -0.34%

fl2 -0.15%

fl3
fl4 4.78% -1.75% 0.18%

fl5 -0.32% -0.32% -0.32%

fló
fl7
fl8 -0.34% -0.34% -0.34% -0.34% -0.34% -0.34%

fl9 3.79% -1.42%

BLUiR -0.43% 15.38% -0.43% —0.55% -0.38% |

LR 4.89%

b) NDCG@1 score differences from baseline in Tomcat
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl -5.01% 10.30%

f2 —0.55% —0.55% —0.55% -0.10%

f3 0.10%

f4 25.36% -7.70%

f5
fó 3.43% -2.57% -0.42%

f7 23.21% -6.37% -0.21%

f8 11.85% -2.15% -0.15% 0.48%

f9 0.16%

flO 5.76% -4.24% -0.24% -0.24%

fll 0.59% -5.41% -0.39%

fl2 -0.22% | -0.61%

fl3
fl4 -0.40%

fl5 -3.06% 2.16%

fló 0.00% 0.00%

fl7 -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17%

fl8
fl9 -0.30%

BLUiR 27.22% -9.35%| 0.16%

LR 14.57% -5.60%

sample withont Wraps with If show scores below or near to the baseline. Considering
higher scores, most visible and consistent variations between metrics against baseline
occnr with <+ (+13.16% in NDCG@5 when the pattern is present, and —2.93% in Top-
5 and Top-10 when the pattern is absent), <f>y (+13.87% in NDCG@1 when present,
—3.86% in Top-1 when absent), (+15.54% in NDCG@1 when present, —1.82% in

172 Chapter 7. Influen.ee of repair patterns on BL approaches

Table 27 - Impact of the presence and absence of the repair patterns in Aspect J and
Tomcat based on the NDCG@1 scores.

a) NDCG@5 score differences from baseline in AspectJ
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl
f2 -0.38% -0.38% -0.38% -0.38% -0.18%

f3
f4 13.16% -1.04%

f5 0.10% 0.12% 3.61% 0.10% -0.47%

fó
f7 14.68% -1.42% 0.11% |

f8 13.52% -0.20%

f9 -0.12% 0.12% 0.31%

flO 0.15%

fll 5.52% -2.76% 0.21%

fl2 -0.17% -0.20%

fl3
fl4 -0.16%

fl5 2.18% -1.45% 2.47% -1.45%

fló -0.37% -0.30% -0.37%

fl7 -0.42%

fl8 0.18%

fl9 7.26% -0.58%

BLUiR 16.92% -1.69% -0.19%

LR

b) NDCG@5 score differences from baseline in Tomcat
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl 3.79% 1

f2 —0.65% -0.47%

f3
f4 23.56% -7.14%

f5 -0.16% -1.95% 3.35% 0.01%

fó 5.09% -2.18%

f7 24.12% -6.25%

f8 9.90% -3.02% -0.39% -0.11% |

f9 -0.33% 1.40% -2.60% 0.34%

flO
fll -1.96% 10.00% 2.80% -6.22% -0.20%

fl2 -0.45% -5.23% 6.67%

fl3
fl4 -0.04% -0.15%

fl5 4.24% -2.28% -0.14% -0.45%

fló
fl7 -0.24% -0.38%

fl8 -0.11% -0.11% -0.11% -0.11% -0.11% -0.11% -0.11% -0.11%

fl9 -4.28% 1.37% 0.10% -0.42% -0.30%

BLUiR 21.91% -9.21% 0.12%

LR 12.32% -5.51%

Top-1 when absent), and BLUiR (+18.98% in Top-5 when present, —3.73% in Top-5
when absent). Other features like fli, (f>6, <f>u, (f)i2, <^15, <%9 are generally consistent with
higher results than baseline in the presence of the pattern, bnt in a smaller range. The
remaining features and the LR approach have minimal or inconsistent differences from
the baseline. According to Table 20, not all the results confirm statistical difference, bnt

Influen.ee

Analysis 173

Table 28 - Impact of the presence and absence of the repair patterns in Aspectj and
Tomcat based on the NDCG@10 scores.

a) NDCG@10 score differences from baseline in Aspectj
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl
f2 0.47% -0.18%

f3
f4 13.16% -1.04% -0.62%

f5 -0.61% -0.32% -0.30% —0.35%

fó -0.17%

f7 14.63% -1.46%

f8 14.55% -0.32%

f9 -0.24% 0.51%

flO 0.15%

fll 0.11%

fl2
fl3 -0.11%

fl4 -0.29% -0.10%

fl5 -0.33% 4.01% -1.26% 3.28% -1.25%

fló -0.44% -0.16% —0.36% -0.44% 0.11%

fl7 -0.48%

fl8 -0.01% -0.04% 0.17% 0.18%

fl9 7.89% -0.19%

BLUiR 9.03% -1.24% | -0.17% -0.81% -0.26% |

LR -2.59% 4.55% 5.04% | 0.76%

b) NDCG@10 score differences from baseline in Tomcat
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl 4.71% -10.02% 0.31%

f2 -0.44% -0.26% 0.18%

f3 | 5.38% 3.27% 0.43%

f4 23.15% -6.78%

f5 0.10% -0.28% 0.45% -2.18% -2.18% 3.12%

fó 4.54% -1.82% 0.04%

f7 24.04% -6.33%

f8 9.19% -4.18% -1.09% 12.56% -0.46% 0.18%

f9 -0.46% -0.29% 1.80% -1.96% 0.48%

flO 0.04%

fll 0.54% -2.40% 11.85% 3.56% -6.82% -0.32%

fl2 -6.05% 5.38% -0.50%

fl3 —0.58% 0.40%

fl4 —0.66%

fl5 -0.39%

fló -0.16% -0.16% -0.16% 0.01% -0.16% -0.16% -0.16% -0.13%

fl7 -0.91% 2.84% -1.45% -0.32%

fl8 -0.24% 0.43% -0.24% -0.24% 0.13% -0.24% -0.24% -0.21%

fl9 -3.49% 2.10% -0.42%

BLUiR 20.60% -6.80% 0.04%

LR

we have the HO rejection for some metrics in the scores for 04. 07. 015, 019, BLUiR,
many of them between those we jnst highlighted.

From the obtained results, we have some evidence that bngs that reqnire the Wraps
with If repair pattern wonld be easier to find than bngs that wonld not reqnire this type
of patch on the samples for the Aspectj dataset nsing the BLLTiR approach. However,

174 Chapter 7. Influence of repair patterns on BL approach.es

Table 29 - Impact of the presence and absence of the repair patterns in AspectJ and
Tomcat based on the Top-1 scores.

a) Top-1 score differences from baseline in AspectJ
MNC.N -MNC.N WJf -WJf WMR -WMR WVR -WVR ALL.M -ALL.M

fl 0.04%

f2
f3 0.15%

f4 2.10% 10.68% -1.90% 0.60% | -0.37%

f5 -0.04% -0.04% -0.30%

f6 -0.34% -0.34% -0.34% -0.34% -0.34%

f7 12.72% -3.86%

f8 14.76% -1.82%

f9
flO
fll 0.24% -0.41%

fl2 -0.22% -0.11%

fl3
fl4 -0.16% 4.78% -2.72% -0.11%

fl5 0.19%

fl6
fl7
fl8 -0.34% -0.34% -0.34% -0.34% -0.34% -0.34%

fl9 4.41% -2.04% -0.04%

BLUiR 13.56% -2.24% -0.71%

LR

b) Top-1 score differences from baseline in Tomcat
MNC.N -MNC.N WJf -WJf WMR -WMR WVR -WVR ALL.M -ALL.M

fl -6.52% 9.30% -0.70% -0.70%

f2
f3
f4 24.76% -8.80%

f5
f6 0.45% | 2.45% -3.55%

f7 22.45% -8.00%

f8 11.20% -2.80% 0.43%

f9 -1.02%

flO -0.57% | 5.43% -4.57% -0.57% -0.57%

fll 0.74% 0.08% -5.92% -0.44%

fl2 -0.23% -0.23%

fl3 -0.20% | -0.20%

fl4
fl5 -4.23% 1.77%

fl6
fl7 -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17%

fl8
fl9

BLUiR 26.09% -9.24% 0.19%

LR 0.10%

the LR BL approach does not extend these resnlts since the extracted metrics have no
consistent or signihcant difference. The more positive impacted featnres were <^4, <^7,
and BLLTiR. In addition, the observed change in the score for BLLTiR approximate or
even overcomes the scores with LR (initially higher), as occurs with metric NDCG01,
where the new score is 15.38 percentual points beyond the baseline.

approach.es

Analysis 175

Table 30 - Impact of the presence and absence of the repair patterns in AspectJ and
Tomcat based on the Top-1 scores.

a) Top-5 score differences from baseline in AspectJ
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl
f2
f3
f4 12.88% -2.93%

f5 8.48% -1.06%

fó
f7 13.56% -2.24%

f8
f9
flO
fll 8.97% - 4.67%

fl2
fl3
fl4
fl5 6.28% -3.40% 6.60% -3.40%

fló
fl7
fl8
fl9 12.18% -1.82%

BLUiR 18.98% -3.73%

LR

b) Top-5 score differences from baseline in Tomcat
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl 1.97% | 7.53% 11.53% 3.53% |

f2 0.45%

f3 -0.37% -0.37%

f4 20.38% -9.39% 3.51% 14.61%

f5 -2.88% 5.12% 0.12%

fó 14.19% -3.81% 0.41%

f7 24.11% -5.67% 2.69% 14.33%

f8
f9 -1.08% 0.92% -5.08% 0.41%

flO
fll 7.53% -6.47% -0.27%

fl2 12.16% -1.84%

fl3 -0.09%

fl4
fl5 2.23% 6.86% 4.86% -5.14% -0.16%

fló -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17% -0.17%

fl7 3.06% -4.94%

fl8 -0.51% -0.51% -0.51% -0.51% -0.51% -0.51%

fl9 -8.12% 3.88% 1.88% -6.12% -0.12% -0.14%

BLUiR 14.84% -9.38% -1.92% 12.62%

LR

In Tomcat, we have more samples with statistically signihcant scores’ differences.
Still, the impact correlated to Wraps with If is almost opposite to what we have found
in AspectJ. Overall, samples with the pattern show scores near the baseline (or slightly
below), and samples withont the pattern have higher scores than the baseline. Most
impacted are for features <f>i (—6.52% in Top-1 when present, +10.30% in NDCG@1

176 Chapter 7. Influence of repair patterns on BL approach.es

Table 31 - Impact of the presence and absence of the repair patterns in AspectJ and
Tomcat based on the Top-10 scores.

a) Top-10 score differences from baseline in AspectJ
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl 1,49% -4,15% -0,15%

f2 -0,64%

f3 -0,49%

f4 7,59% 3,07% -0,43%

f5 7,46% 3,92% -0,17%

fó 1,44% -1,95%

f7 5,70% 3,76% 13,56% —2,24% -0,71%

f8 —0,59% 13,22% -0,59%

f9 0,16% 0,42%

flO
fll 7,59% 4,11%

fl2 3,72% -1,18% -0,49%

fl3
fl4 -0,24% -0,51%

fl5 10,51% 11,16% -2,84%

fló 0,04%

fl7
fl8 -0,84% -0,18% 0,44% —0,36%

fl9 7,59% -0,93% 14,57% -0,93%

BLUiR -0,24%

LR 10,73% -7,77%

b) Top-10 score differences from baseline in Tomcat
MNC.N -MNC.N W.lf -W.lf WMR -WMR WVR -WVR ALL.M -ALL.M

fl 5.18% -16.82%

f2 -1.08% —0.53%

f3 -0.23% -5.78% 6.22% 10.22%

f4 18.52% -7.26%

f5 0.11% 4.11% -3.89% -3.89% 4.11%

fó -1.39% 13.28% -2.72%

f7 23.43% -6.35% —0.35%

f8 -4.08% 15.47% -0.84%

f9 2.55% -5.45%

flO 0.31%

fll -6.45% 17.10% 9.10% -8.90% -2.90% 3.10%

fl2 -1.20% -0.75% -9.93% 9.25% -0.54%

fl3
fl4
fl5 -0.32% -0.10%

fló —0.85% —0.85% -0.60%

fl7 4.86% -5.14% -0.91%

fl8 -1.18% -0.94%

fl9 -6.22% 7.34% -0.68%

BLUiR -0.96% 0.16%

LR -1.66% -0.39%

when absent), (—4.08% in Top-10 when present, +15.47% in Top-10 when absent),
(fn (—6.45% in Top-10 when present, +17.10% in MAP when absent), <%2 (—5.60%
in MAP when present, +6.67% in NDCG@5 when absent) and for BLUiR (—1.92% in
Top-5 when present, +14.74% in MAP when absent. <+ is more impacted (with some
inconsistency): both scores are above the baseline with the highest difference of +15.63%

approach.es

Analysis 177

Wraps with If (Wl) - AspectJ Wraps with If (Wl) - AspectJ

• Wl [MatchedJ (31)
• Wl [Not MatchedJ (50)

ALL (294)

• Wl [MatchedJ (31)
• Wl [Not MatchedJ (50)

ALL(294)

LR
BLUiR

fl9
flB
fl7
fl8
fl5
fl4
fll
fl2
fll
flO

19
fB
f7
f6
f5
f4
f3
12
fl

Wraps with If (Wl) - AspectJ
•—i—•

—•

• Wl [MatchedJ (31)
• Wl [Not MatchedJ (50)

ALL (294)

NDCG@1

Wraps with If (Wl) - AspectJ

• Wl [MatchedJ (31)
• Wl [Not MatchedJ (50)

ALL(294)

NDCG@5

Wraps with If (Wl) - AspectJ

BLUiR
fl9
fl8
fl7
fl6
fl5
fl4
f!3
fl2
fll

LR
BLUiR

fl9
flB
fl7
fl6
fll
fl4
fll
fl2
fll
flO

19
fB
f7
f6
f5
f4
f3
12
fl

LR
BLUiR

fl9
flB
fl7
fl6
fl5
fl4
fl3
fl2
fll
flO

19
fB
f7
fE
f5
f4
f3
12
fl

LR
BLUiR

fl9
flS
fl7
fl6
fl5
fl4
fl3
fl2
r.i
flO

19
fB
f7
f6
f5
f4
f3
12
fl

• •

• 1 •
• •

■B
•:»
• 1 •

• •
■ ♦ *
• •

«
■BB

• 1 (•
O ♦

• 1 * • Wl [MatchedJ (31)
Wl [Not MatchedJ (50)
ALL (294)

•
«t

•— 1—
•

=• 1

0.0 0.1 0.2
MRR

0.3 0.4

Wraps with If (Wl) - AspectJ
• i •

J «gi ”
•
•
•
•1
•

• • • Wl [MatchedJ (31)
Wl [Not MatchedJ (50)
ALL (294)•

■ ♦ •

*

• 1 •
• •
• 1

*
• •

•
*

000 005 010 015 020 025 0 30
■fcp-1

Wraps with If (Wl) - AspectJ

—•

••

• Wl [MatchedJ (31)
• Wl [Not MatchedJ (50)
i ALL (294)

0.0 0.1 0.3 0.4
■fop-5

0.6

0.0

Wraps with If (Wl) - AspectJ

I •

• Wl [MatchedJ (31)
• Wl [Not MatchedJ (50)
i ALL (294)

0.6 0.7

• I •

NDCG@10

Figure 59 - Score rankings differences for Wraps with If repair pattern in AspectJ
(FC+NFC).

178 Chapter Influence of repair patterns on BL approaches

Wraps with If (Wl) - Tomcat Wraps with If (Wl) - Tomcat
♦♦

•--------------------•
• •

4»
•

•
■ ♦♦
•

* 1 , t • Wl [Matched] (44)

• 1 • • Wl [Not Matched] (50)
„ • 1 • l ALL(591)

1 •
1 •------------ •

1 ••
*

• •
• •

•1
• —1----------- •

Wraps with If (Wl) - Tomcat

BLUiR

Wraps with If (Wl) - Tomcat

Wraps with If (Wl) - Tomcat

• Wl [Matched] (44)
• Wl [Not Matched] <50)
■ ALL(591)

Wraps with If (Wl) - Tomcat

• Wl [Matched] (44) fl3
fl2

• i
•— ■ • • Wl [Matched] (44)

• Wl [Not Matched] (50) fll -----• • Wl [Not Matched] (50)
■ ALL (591) flO

19
• I ♦ ■ ALL (591)

NDCG@1

Wraps with If (Wl) - Tomcat

NDCG@5

• •
■ •*

• •
-----•

<•
••• i • Wl [Matched] (44)• 1 (*

• Wl [Not Matched] (50)
I ALL(591)■ • ■ •

• *

■:»
•

Wraps with If (Wl) - Tomcat

NDCG@10

• •

■» ♦
•

i«
•

■ •
• i •

•» i
•—i---- • • Wl [Matched] (44)

Wl [Not Matched] (50)
ALL (591)• i •

M 1
« —•

I • •
•

• !•

• *

• Wl [Matched] (44)
• Wl [Not Matched] (50)

ALLÍ591)

• •
• • •

I--------------•

et»

•0
•

■ ♦ ♦
•—■1-------«

i • Wl [Matched] (44)
Wl [Not Matched] (50)

• 1
•— --------•

• i 1 ALL (591)
•- •

■ •------ •

M
l •*

• •

•
•

i •

0.0 0.2 0.4
TÕp-10

0.6 0.8

Figure 60 - Score rankings differences for Wraps with If repair pattern in Tomcat
(FC+NFC).

Analysis 179

Wrong Method Reference (WMR) - AspectJ Wrong Method Reference (WMR) - AspectJ
LR

BLUiR LR
BLUiR

Wrong Method Reference (WMR) - AspectJ

Wrong Method Reference (WMR) - Aspect]

•----1-

• WMR [Matched] (40)
• WMR [Not Matched] (50)

ALL (294)

• WMR [Matched] (40)
• WMR [Not Matched] (50)

ALL (294)

0.4

Wrong Method Reference (WMR) - Aspect]

NDCG@1

•---1 • =•

4--------------14
41

<1 ----- 4
4
4
? 4

1 ©
441

4
• 14

4—-•
« 4
• 4

• i 4 WMR [Matched] (40)
4=9 l • WMR [Not Matched] (50)

•-----------4 1 i ALL (294)

Wrong Method Reference (WMR) - Aspect]

• WMR [Matched] (40)
• WMR [Not Matched] (50)

ALL (294)

NDCG@5

Wrong Method Reference (WMR) - AspectJ

WMR [Matched] (40)
WMR [Not Matched] (50)
ALL (294)

o.

4— 4
4------- 1---- 4

414
4 1

4—1------ •
•l------ •

41 4
l

4--------1 —4
•
41 4

4 4
44 ■

4 1 4
4 4 4 WMR [Matched] (40)

44 4 WMR [Not Matched] (50)
• I ALL (294)

0.0 0.1 0.2 03 04 0.5 0.6

Wrong Method Reference (WMR) - AspectJ

BLUiR
fl9
flB
fl.7
fL6
fl5
fl4
fl3
fL2
fll
flO

• WMR [Matched] (40)
• WMR [Not Matched] (50)

ALL (294)

• WMR [Matched] (40)
• WMR [Not Matched] (50)

ALL(294)

025 ã

NDCG@10

Figure 61 - Score rankings differences for Wrong Method Reference repair pattern in
AspectJ (FC+NFC).

180 Chapter Influence of repair patterns on BL approaches

Wrong Method Reference (WMR) - Tomcat Wrong Method Reference (WMR) - Tomcat
LR • 4 LR ■ 4 4

BLUiR 44 BLUiR i 4
fl9 44 fl9 44
flB • fl8 •
fl7 «• fl7 414
fl6 * fl6 «
flS • 1= • fl5 •—I--•
fl4 l« 4 fl4 4B
fl3
fl2

• i»
44 • WMR [Matched] (50) fl3 ■

fl2 ■
• 4

44« • WMR [Matched] (50)
fll • • • WMR [Not Matched] (50) fll • ie • WMR [Not Matched] (50)

19 •i • ALL (591) 19 • I 4 i ALL (591)
fB 44 13 4 *
f7 •1 f7 ■ 4 IO
f6 • •—•- • f6 • •----- 1 •
f5 44 f5 44
f4 41 -• f4 • • 1 •
f3 4-—• 1 f3 • 4 1
12 « 12 M

1 •
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 04 0.5 0.6

MAP MRR

Wrong Method Reference (WMR) - Tomcat

• WMR [Matched] (50)
• WMR [Not Matched] (50)
■ ALL (591)

Wrong Method Reference (WMR) - Tomcat

Wrong Method Reference (WMR) - Tomcat

• WMR [Matched] (50)
• WMR [Not Matched] (50)

ALL (591)

NDCG@1

Wrong Method Reference (WMR) - Tomcat
LR • • LR ■ 4----- 4

BLUiR BLUiR B —4
fl9 • 1» fl9 •—14
fia « flB 4
fl7 • i • fl7 •—!“•
fl6 « fl6 4
flS ■ -1—• fl5 •—1—•
fl4 4 • fl4 • 1 4
fl3
fl2
fll ■

• •
Wl • WMR [Matched] (50)

WMR [Not Matched] (50)

fl3
fl2 ■
fll

4 41 " WMR [Matched] (50)

flO
19 *■

4 -•
* ALL(591) flO

19
* *4 14 ALL (591)

fB 44 fB 41 4
f7 f7 •1 4
16 •- I 4 16 •—1 •
f5 44 f5 4 14
f4 • i -• f4 4 1 4
f3 •=• f3 4 4
12 J 12 4 4
fl 1 4- 4 fl ■ 1 4 ----- 4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
NDCG@5 T>p-5

Wrong Method Reference (WMR) - Tomcat Wrong Method Reference (WMR) - Tomcat
LR • • LR 1 4— 4

BLUiR 4—4 BLUiR • ■ 4
f!9 • * fl9 4 14
fia « fl8 44
fl7 •i • fl7 4 1 •
fl6 « fl6 4B
fis ■ -i—• fl5 —•
fl4 € • fl4 • 4
fl3
fl2
fll
flO

19

• •
Wl

l 4
•
4

WMR [Matched] (50)
WMR [Not Matched] (50)

fl3
fl2
fll
flO

19

4 14
4 4

4------- 1------- 4 4
WMR [Matched] (50)

4i
• 4

• 1 ALL (591) 4 14 ALL (591)
fB • 14 13 4 1 4
f7 414 f7 41 4
f6 •= 16 4 4 l
f5 44 15 4 1 4
f4 * ■ -• f4 4 ■ 4
f3 • 4 f3 4 4
12 LI 12 4 4
fl 1 4=—4 fl 4 4

0.0 0.1 0.2 0.3 04 0.5 06 0.0 0.2 04 06 0 8
NDCG@5

Figure 62 - Score rankings differences for Wrong Method Reference repair pattern in
Tomcat (FC+NFC).

Analysis 181

000 005 010 015 020 025 030 035 040

Wrong Variable Reference (WVR) - AspectJ
LR

BLUiR
• *

fl9 i
flB • *
fl7 *
flÊ M
fl5 Cl o
f!4 « •
fl3
fl2
fll

■ 1 • WVR [Matched] (26)
• WVR [Not Matched] (50)

flO
f9

• •
•i—• i ALL (294)

18 1 • •
-------•

■1
f5 ■ • •
14 • •

12 ••
fl 1 • •

MAP

Wrong Variable Reference (WVR) - AspectJ

MRR

LR
BLUiR • i —• •

fl9 i:
fia «•
fl7 •
fl6
fl5 i •
f 4 ci o
fll <• i
fl2
fll

•

no • •
19 •
18 • •
f7 !• —•
fia • 1
f5
f4

• • * •■ ♦
1 •-------

•
• ♦

_ 112
fl

mu [nol waicneaj (duj
All í?94)■ • •

0.0 0.1 0.2 0.3 0.4

Wrong Variable Reference (WVR) - AspectJ Wrong Variable Reference (WVR) - AspectJ

NDCG@1

•------ 1--------- • LR • •

H9 ■
na •
n7 «
n6 «
n& •
H4 1 •

• WVR [Matched] (26) m
n2

•
•— •1 • WVR [Matched] (26)

• WVR [Not Matched] (50) ni. • 1 =• • WVR [Not Matched] (50)
1 ALL (294) no

19
■I?
• i • 1 ALL (294)

•-----
-----•

-• 18
17

•
•0

-----•

f6 «
f5 • •

•— -• *
13 •= _______ — •
12 «

• • n 1 • -•

.10 0.15 020 0 25 0.00 0.05 o.ío 0.15 0 20 0 25 0.30

LR
BLUiR

Wrong Variable Reference (WVR) - AspectJ
*

Wrong Variable Reference (WVR) - AspectJ Wrong Variable Reference (WVR) - AspectJ

LR
BLUiR

• WVR [Matched] {26)
• WVR [Not Matched) (50)

ALL (294)

• WVR [Matched] (26)
• WVR [Not Matched] (50)

ALL (294)

NDCG@5

Wrong Variable Reference (WVR) - AspectJ
■ • •

• WVR [Matched] (26)
• WVR [Not Matched] (50)

ALL (294)

BLUiR
fl9
fl8
fl7
fl6
fl5
fl4
fl3
fl2
fll
flO

• WVR [Matched] (26)
• WVR [Not Matched) (50)

ALL (294)

NDCG@1Q

Figure 63 - Score rankings differences for Wronq Var Reference repair pattern in As
pectJ (FC+NFC).

182 Chapter 7. Influen.ee of repair patterns on BL approaches

Wrong Variable Reference (WVR) - Tomcat Wrong Variable Reference (WVR) - Tomcat
LR •--- 1------• LR •—i—•

fl9 *i fl9 ■
flB J flB i
fl7 «• fl7 ••
fl6 *1 fl6 a
fl5 115
fl4 • • fl4 !• •
fl3
fl2 WVR [Matched] (50) fl3

fl2
■ ••—• • WVR [Matched] (50)

fll •t • • WVR [Not Matched] (50) fll • • • WVR [Not Matched] (50)
flO

f9 • 1 • ALL (591) flO
19 • i ALL (591)

f8 l« • 13 • •
f7 1 • • f7 M
f6 • 1 • fô C 1 =•
15 • 1 ♦ 15 • i ♦
f4 1 • • f4 ■ ••
f3 1 ♦ • f3 ■ ♦ •
12 * 12
fl • • fl

Wrong Variable Reference (WVR) - Tomcat Wrong Variable Reference (WVR) - Tomcat
LR

BLUiR• • ■ ♦ =•
fl9 •
flB «
fl7 ■:»
fl6 «
flS •
fl4 I* ♦

• WVR [Matched] (50) fl3
fl2

1 •♦ ♦ • WVR [Matched] (50)
• WVR [Not Matched] (50) fll 1 • • WVR [Not Matched] (50)
1 ALL (591) flO

19
u i ALL (591)

ÍB Cl •—• f7 • -•
ft • •
f5

• • f4 •
f3 1 • •
Í2
fl 1

0 3 04 0.5 0.0 0.1 0.2 0.3 0.4 0.5
NDCG@1

Wrong Variable Reference (WVR) - Tomcat Wrong Variable Reference (WVR) - Tomcat
« i• LR ■ •

fl9
flB O
fl7 ♦ ••
fl6 *
fl5 Cl *
fl4 • 1 ♦

• WVR [Matched] (50) fl3
fl2

• O• 1 ♦ • WVR [Matched] (50)
• WVR [Not Matched] (50) fll • • WVR [Not Matched] (50)
i ALL (591) flO

19 • d* i ALL (591)
18 1 •---—•« f7 • ♦1 •
15 •- 1 •!•—-• f4
f3 ••
12 ■ •1 • fl • ■ •

NDCG@5

Wrong Variable Reference (WVR) - Tomcat Wrong Variable Reference (WVR) - Tomcat
LR •—i----- • LR 1 ♦»

BLUiR I •—• BLUiR I • •
fl9 • fl9
flB flB ■
fl7 • • fl7 • ■ •
fl6 « fl6
fl5 fl5 «l ♦
fl4 • • fl4 I M
fl3
fl2

1 • —• • WVR [Matched] (50) fl3
fl2

•* • WVR [Matched] (50)
fll ♦ • WVR [Not Matched] (50) fll ♦ ■ • • WVR [Not Matched] (50)
flO

19 • I •
•• i ALL (591) flO

19 • • •I ♦ I ALL (591)
18 18 • 1--- •
f7 I ♦♦ f7 • •

15 • i • 15 • l -•
f4 ■ • ♦ f4 I • *
f3 1 •• f3
12 i« 12 i •
fl ♦ » fl • a

NDCG@1Q

Figure 64 - Score rankings differences for Wrong Var Reference repair pattern in Tom
cat (FC+NFC).

Influen.ee

Analysis 183

Missing Not Null Check (MNCN) - Aspectj Missing Not Null Check (MNCN) - Aspectj
LR

BLUiR
fl9

fl—1---«• —•fl

flB
fl7 :)•
fl6 1
flS *1 •
f_4 • Ifl
fl3
fl2 1
fll • 1 •
no •

19 W ■ •----- •
f7 1 • •

•*
< • MNCN [Matched] (39) f5

14 1 fl—• • MNCN [Matched] (39)
• MNCN [Not Matched] (50) f3 «4 • MNCN (Not Matched] (50)
i ALL(294) fl

** • 1* i ALL (294)

Missing Not Null Check (MNCN) - Aspectj

BLUiR

Missing Not Null Check (MNCN) - Aspectj

0.40.3
NDCG@10

Missing Not Null Check (MNCN) - Aspectj
■ •

Missing Not Null Check (MNCN) - Aspectj
I

• MNCN [Matched] (39)
• MNCN [Not Matched] (50)
i ALL (294)

• MNCN [Matched] (39)
• MNCN [Not Matched] (50)

ALL (294)

NDCG@1

Missing Not Null Check (MNCN) - Aspectj Missing Not Null Check (MNCN) - Aspectj

i

• MNCN [Matched] (39)
• MNCN [Not Matched] (50)

ALL (294)

• MNCN (Matched] (39)
• MNCN [Not Matched] (50)

ALL (294)

NDCG@5

BLUiR
fl9
as
fl7
fl6
a 5
fl4
f!3
fL2
fll
flO

LR
BLUiR

MNCN [Matched] (39)
• MNCN (Not Matched] (50)

ALL (294)

MNCN [Matched] (39)
MNCN [Not Matched] (50)
ALL(294)

Figure 65 - Score rankings differences for Missing Not-Null Check Reference repair
pattern in Aspectj (FC+NFC).

184 Chapter Influence of repair patterns on BL approaches

Missing Not Null Check (MNCN) - Tomcat ______ Missing Not Null Check (MNCN) - Tomcat
LR

BLUiR
fl9 •

•--- 1---------- 4--- • LR
BLUiR

fl9
•--------1— • § * *

• O • 14
fl8 i flB
fl7 ■ fl7 ■
f!6 ■» fl6 i
flS • l ♦ fl5 •----- 1-4
fl4 O 4 fl4 4»
fl3
fl2

4 4 •1 • MNCN [Matched] (50) fl3
fl2
fll

<4
40 • MNCN [Matched] (50)

fll ■4 • • MNCN [Not Matched] (50) • • • MNCN [Not Matched] (50)
flO

19
44

4J 1 ALL(591) flO
19 4» l ALL (591)

18
f7
f6

• ■ —•
•------ 1----- ----- 4

18
f7
f6

4—1— —4

OI 441
• 8 *

f5
f4
f3

I 44 f5
14
f3

1 ••
•i 4* * 1 *

12
fl

4»
•------- •—•

12
fl

■
1 *

0.0 o.i 0.2 0.3 0.4 0 5 06 0.0 0.1 02 0.3 0.4 0.5 0.6
MAP MRR

Missing Not Null Check (MNCN) - Tomcat Missing Not Null Check (MNCN) • Tomcat
LR

BLUiR

• MNCN [Matched] (50)
• MNCN [Not Matched] (50)

ALL(591)

NDCG@1

Missing Not Null Check (MNCN) - Tomcat

• MNCN [Matched] (50)
• MNCN [Not Matched] (50)

ALL(591)

NDCG@5

Missing Not Null Check (MNCN) - Tomcat

NDCG@10

4—I------------- 4
4— 1 —4

4 I *
•
44

4
•

• 4
44

41 4 MNCN (Matched] (50)
I» 4 4 MNCN [Not Matched] (50)

«4 1
■ i ALL (591)

4 i 4
4------ 1------ ----- 4

«■
1 44

4-------1- ----- 4
4 1 4

44
4------ -1—4

00 0.1 0.2 0.3 04 0.5 06

*----- 1---------4---- *

441
4
4
4
4 1 4

4 14
4
4 ■ 4 4 MNCN [Matched] (50)

14 4 4 MNCN [Not Matched] (50)
4 4

414 i ALL (591)
4—1---- ----- 4

4-----------1— ----- 4
4
41 4

4
*

41
4----- 4

■fop-1

Missing Not Null Check (MNCN) - Tomcat
4 14

4---------- 1-----------4
4-------- 1—4
4

4 4
4

4 14
44

„ • MNCN [Matched] (50)
l • • • MNCN [Not Matched] (50)

, • • 1 i ALL (591)
4-----•------- 4

4----- 1----------------------------- 4
44 1

■ 44
4---------- 1-------------------------4

4 4
414

4-------------- 1-4

0.0 0.1 0.2 0.3 0 4 0.5 06 0.7
■fop-5

Missing Not Null Check (MNCN) - Tomcat

4-----1----4

41 4
4 4

40
4 4 l

4
4 4

4 1
MNCN [Matched] (50)

44—4 4 MNCN (Not Matched] (50)
4 4 ALL (591)

4------- 1—4
4----- 1--- ----- 4

4 41
1 4 4

4------ 1--- ----- 4
4 ■ 4

44
4------ ----- 1----4

0 0 0.1 0.2 0.3 04 0.5 0 6 0 7 0 8
■fop-10

Figure 66 - Score rankings differences for Missing Not-Null Check Reference repair
pattern in Tomcat (FC+NFC).

7.4. Analysis 185

in NDCG@1 when the pattern is absent, and the lowest difference of +2.69% in Top-5
when the pattern is present. Other affected scores but in a lower degree are ^3, ^4, fa,
^lü, ^14, ^19-

As with AspectJ, the samples in Tomcat show score differences with statistical signif-
icance. The pattern presence/absence is correlated to score changes for features and the
BLUiR strategy. Nevertheless, this time, bugs whose patches do not contain the pattern
would be associated with the easiest bug localization, and bugs requiring patches with
the pattern would be near the baseline score.

7.4.2 Wrong Method Reference Repair Pattern

In AspectJ and for Wrong Method Reference, we have scores differences statistically
significant, but the range of variation is smaller than those observed in the Wraps with
If. Considering statistically significant differences, we highlight scores for features ^14

(+4.78% in NDCG@1 when the repair pattern is present, —1.75% in NDCG@1 when
absent), ^19 (+7.89% in NDCG@10 when present and —0.58% in NDCG@5 when absent)
and also for LR (+10.73% in Top-10 when present, —7.77% in Top-10 when absent).
Other features as ^5 and ^15 have scored with statistically significant differences but
with more minor variations. Overall, the scores are higher than the baseline score when
the pattern is present. When the pattern is absent, the scores are near or lower than
the baseline score. Again, as with Wraps with If, the results for AspectJ suggest that
patches requiring this pattern would be easier to localize than when the pattern is absent
compared to the baseline.

In Tomcat, we also have score differences for Wrong Method Reference. We can high-
light the differences for (+3.46% in NDCG@1 when present, —2.57% in NDCG@1
when absent), ^10 (+5.76% in NDCG@1 when present, —4.57% in Top-1 when ab
sent), ^11 (+7.53% in Top-5 when present, —6.82% in NDCG@10 when absent), and ^15

(+4.86% in Top-5 when present, —5.14% in Top-5 when absent). This time results from
Tomcat suggest that the presence of the pattern in the patches would indicate an easier
bug localization than for the bugs where patches do not contain the pattern.

7.4.3 Wrong Variable Reference Repair Pattern

In AspectJ, we can perceive from Figure 63 that many scores have apparent dif-
ferences when compared to the baseline and also between scores of matched versus
not-matched samples. Some examples with the more significant differences are ^>3, ^11,

186 Chapter 7. Influence of repair patterns on BL approaches

and BLUiR. Other features as ^4, ^5, ^7, ^9, ^12 also present some differences. Despite
that, few of these features have scores rejecting H0 for some metrics. Examples are ^5

(+8.48% in Top-5 when present, —1.06% in Top-5 when absent), (+0.19% in MAP
when present, +4.51% in MAP when absent), and (+6.99% in MAP when present,
+3.94% in MAP when absent). The inconsistency between the score differences and the
failure to reject the null hypothesis in statistical tests does not give enough confidence
for insights about this pattern in AspectJ. Another factor contributing to the inconsis-
tent results may be the number of instances for the matched sample, 26, a small number
and almost half of the cases on the not matched side.

In Tomcat, we can see some score differences for Wrong Variable Reference, but most
are small ones, and few features show consistent and statistical significance: ^5 (—3.89%
in Top-10 when present, +5.12% in Top-5 when absent), ^6 (+14.19% in Top-5 when
present, —3.81% in Top-5 when absent), and ^9 (+1.4% in NDCG@5 when present,
—5.08% in Top-5 when absent). LR score also show clear visual difference in Figure 64,
but this results is not confirmed with hypothesis tests. ^5 has a small contribution
since the score range is below .10 values for almost all the metrics and is a feature with
statistically different scores. The sample where the pattern is present has a lower score
than the baseline. When the pattern is absent, the score is higher. We would infer from
this that BL strategies based on this feature would produce betters scores on samples
where the bug patches do not require fixings like the Wrong Variable Reference repair
pattern. Nonetheless, it is still possible to have higher scores for features like ^6 and ^9

when this repair pattern is present.

7.4.4 Missing Not-Null Check Repair Pattern

In AspectJ, many scores show sharp differences, according to Figure 65. For example,
^4, ^7, ^8, BLUiR, and LR. But curiously, Table 23-a shows scores rejection of H0
hypothesis for some metrics only in ^11 (+8.97% in Top-5 when present, —4.87% in
NDCG@5 when absent) and ^15 (+2.29% in MAP when present, —0.86% in MAP when
absent). Overall, according to Tables 24-a to Tables 31-a, most of the scores are higher
than baseline for bugs whose patches contain the pattern and lower than baseline scores
when the pattern is absent.

In Tomcat and compared to the other analyzed samples and patterns, Missing Not-
Null Check is possibly the repair pattern with more shreds of evidence of score differ-
ences spanning for more features and impacting both BL strategies. We can confirm
the evidence by analyzing Figure 66, Tables 24-b to 31-b, and also Table 23-b. The

7.5. Answers for the Research Questions 187

more significant differences with statistical significance occur in features ^1 (+5.18%
in Top-10 when present, —16.82% in Top-10 when absent), ^4 (+25.36% in NDCG@1
when present, —9.39% in Top-5 when absent), (+24.12% in NDCG@5 when present,
—8.00% in Top-1 when absent), (+11.85% in NDCG@1 when present, —4.18% in
NDCG@10 when absent), and in both BL strategies, BLUiR (+27.22% in NDCG@1
when present, —9.38% in Top-5 when absent) and LR (+14.57% in NDCG@1 when
present, —5.60% in NDCG@1 when absent). Other features as ^15 and ^19 also present
statistically significant differences but with a smaller range. Overall, scores with sub-
stantial differences are higher than baseline when the Missing Not-Null Check is present
in patches. In comparison, patches without the pattern show lower scores compared
to baseline. The situation is not so different with Tomcat. Nevertheless, the impact
observed on the scores is variate: positive for some features as ^6 and ^9, and negative
for ^5.

7.5 Answers for the Research Questions
Here we synthesize the results and analysis previously presented to answer the ini-

tially proposed research questions.

7.5.1 RQ6: on the existence of differences correlated to the
presence versus absence of repair patterns in patches

When we compare a sample of bugs where the respective patches match a given repair
pattern against another sample of bugs where this pattern is not present, is there any
difference in the measured metrics targeting the ranking of bug suspects? Are these
differences statistical ly significant?

Based on the results in Section 7.3 and the analysis of Section 7.4 we found many cases
where the score of features and the BL strategies differ. We compare scores extracted
from a sample with bug reports whose patches contain one of the repair patterns to
scores from a sample where this pattern is not present on the respective patches. We
found different situations for the differences: 1) sometimes the scores for the sample
matched with the pattern is higher than the baseline (suggesting an easier BL for these
cases), and the scores for samples without the pattern is near to the baseline, usually
bellow; 2) sometimes the first situation is inverted; 3) sometimes we have the baseline
scores in the middle, while matched versus not-matched samples scores are far in one of
the extremes. We have found differences with statistical significance (H0 rejected), but

188 Chapter 7. Influence of repair patterns on BL approaches

not all the differences show the significance for most metrics. The results for Missing
Not-Null Check repair pattern in Tomcat have the most substantial shreds of evidence
for the differences, especially for the features ^4, and the BL strategy, BLUiR.

7.5.2 RQ7: on the type of impact correlated to the presence
versus absence of repair patterns in patches

What type of impact is associated with the evaluated metric's score rankings by the
presence of a repair pattern in the patches of a bug sample? Moreover, when the repair
pattern is absent?

Again, and somehow aligned to RQ6, we have found different types of impact. We
find a positive impact on the score rankings when it is higher than the baseline score
on the presence of the repair pattern and is lower or near to baseline, on the absence
of the repair pattern. This occurs for Wrong Method Reference and Missing Not-Nul l
Check in AspectJ and Tomcat. For Wraps with If the positive impact is viewed for
AspectJ. On the other hand, the same pattern in Tomcat shows the opposite effect: the
absence of the repair pattern presents a higher score than the baseline. For this case,
while there are significant differences, we cannot associate the same tendency (or type
of impact) to the repair pattern presence/absence on different projects. The lack of H0
rejection in statistical tests for Wrong Variable Reference samples makes it harder to
state with sure the type of impact observed in AspectJ. However, Tomcat's situation is
not different since few features present statistical significance in score differences, which
are small overall.

7.5.3 RQ8: on the degree of the impact correlated to the pres-
ence versus absence of repair patterns in patches

What is the degree of the impact correlated to the repair pattern's presence or absence
on the metrics measured?

The degree of impact observed for features and BL strategies variate a lot. For
example, for Missing Not-Null Check and considering results with statistical significance,
the score increase can reach 27.22 percentual points above the baseline (e.g., in BLUiR
with NDCG@1 when the pattern is present in Tomcat). At the same time, the score
decrease can reach 16.82% percentual points below the baseline (e.g., in ^1 with Top-10
when the repair pattern is absent in Tomcat). For Wraps with If the increase reaches
18.98 percentual points above the baseline (e.g., in BLUiR with Top-5 when the repair

7.5. Answers for the Research Questions 189

pattern is present in AspectJ), while the decrease goes 9.93 percentual points below the
baseline (e.g., in ^>12 with Top-10 in Tomcat when the repair pattern is present in Tomcat.
Interesting to note that there is no transfer of influence between projects. The last
example illustrates this, observing that for AspectJ, we can observe a correlation between
the repair pattern presence and the increase in the BL score and, consequently, the ease
of localizing the bugs compared to the baseline scores. On the other hand, in Tomcat,
the increase in the BL score is correlated to the repair pattern absence (especially for
BLUiR, since for LR, the score is almost the same between metrics). Wrong Method
Reference and Wrong Variable Refence seems to be the less impacted repair patterns.
The smaller number of H0 rejections on the score differences reinforces this observation.
However, even considering the reduced impact, we can point the differences. The score
increase in Wrong Method Reference reaches 14.57 percentual points above the baseline
(e.g., in ^19 with Top-10 when the repair patterns are present in AspectJ). In contrast,
the decrease reaches 7.77 below the baseline (e.g., in LR with Top-10 when the repair
pattern is absent in AspectJ). In Wrong Variable Reference, the score increase reaches
14.19 percentual points (e.g., for ^6 with Top-5 when the repair pattern is present in
Tomcat). In comparison, the decrease gets 6.08 percentual points (e.g., for ^9 with Top-
5 when the repair pattern is absent in Tomcat). The lack of H0 rejections makes the
findings for these two last repair patterns not sound like the first two.

Finally, we can observe there is no impact on some features by a repair pattern's
presence or absence, especially when the baseline score is already low. One of the most
notable examples is the ^2 that presents small variations from the baseline for almost
all the repair patterns and metrics in both projects. ^2 is a special case, already with a
low score in the baseline. Consequently, the feature does not contribute too much to the
localization in both BL strategies. Since the feature depends on the presence of Javadoc
API in code, and it is not unusual to have code without this type of documentation, it is
reasonable that the scores will not be so high, regardless. A similar situation also occurs
for features ^15 to ^19. The reasons are slightly different but proceed from the already
lower baseline scores. These are query-independent features, and the produced scores do
not depend on the bug report content but only from the graph/structural characteristics
of the affected source code file (i.e., the number of in/out dependencies for other source
codes, PageRank and HITS scores).

190 Chapter 7. Influence of repair patterns on BL approaches

7.6 Threats to Validity
The co-occurrences impose a challenge to analyze and extract conclusions about

the influence of individual repair patterns. It is hard to design and set up the ideal
experimental conditions since isolating these patterns and getting significant and repre-
sentative samples may be impossible for some cases. Even considering that we can select
bugs whose patches match single repair patterns, this can be a false positive. The patch
would still contain repair patterns not formally defined, not identified, or undetected
by the ADD tool. We would also consider ADD tool's repair pattern detection preci-
sion and recall since false positives and false negatives would impact our results. While
the manual inspection was applied to define the ADD tool precision and recall against
Defects4J bugs, a large dataset as LR-dataset makes an inspection too time-consuming
and feasible only to punctual cases. Finally, we should extend the study to analyze more
bugs and more projects since we concentrate on only two projects from the six present in
the LR-dataset. Therefore, the extension also applies to the analysis of more datasets.

7.7 Limitations and Future Work
A coverage measure exposing the patch parts related to each pattern would help

regulate and filter patches more representative of each repair pattern. For example, a
patch containing a repair pattern associated with 100% of the patch code lines is a more
authentic representative of this pattern than a patch with only 10% of its extension
associated with the same repair pattern. This extension would help to increase the
accuracy of the results correlating repair patterns with changes in the scores.

The idea about an environment capable of experimenting and comparing different
BL approaches was started here with the developed experimental package. This package
contains some of the conceptual ideas and guidelines exposed in Chapter 4. However,
much work still needs to be done for a more complete and practical framework that would
potentially emerge with the development of the package. The most critical improvement
is to increase the scalability of the experimental package. The current implementation
does not allow optimum computational power and resources usage (memory and disk
included). We based our current model on relational databases and an ORM technology
that does not allow parallelization in a viable way. Furthermore, the volume of data
on tables is enormous (some of them with a dozen GB). Therefore, applying some
optimization strategies (e.g., better indexing, data compression, query optimization)
was not enough to improve the processing time and memory usage. Therefore, the

7.8. Related Work 191

refactoring towards a better architecture based on distributed processing and storage
(e.g., Spark) would be our next step in this direction.

7.8 Related Work

Liu et al. (2018) point out that “the prerequisite for further advancing state-of-
the-art APR techniques is to acquire all-round and detailed understanding about real-
world patches”. Therefore, the study tried to expose intrinsic characteristics on human-
written patches that would help to tune APR strategies and help to synthesize better
machine-generated patches. The study goes beyond the statement level and proposes an
even finer-grained knowledge about the code elements involved in a patch, making the
automatically generated patches more realistic and applicable. Here we also show that
the type of patches required to fix a reported bug can influence the results obtained by a
given evaluated BL strategy because a bug dataset contains a heterogeneous set of bugs,
and many works do not consider or differentiate it while testing the BL approaches on
these datasets. Furthermore, since the localization is a required step in APR, it also
would help to explain some vies caused by a non-characterized dataset applied in the
evaluation of the APR strategies.

The reproducibility study conducted by Lee et al. (2018) reviews past approaches for
Information Retrieval-based Bug Localization (IRBL) under new conditions and settings,
proposing Bench4BL as a new benchmark for strategies evaluation. In our experimental
preparation, we consider some issues tested by Lee et al. (2018) study as influential
factors for BL, e.g., testing of BL approaches with larger datasets, maintenance of con-
sistency between project version and the bug report, and exclusion of testing files. Lee
et al. (2018) also shows there is room to improve the performance of BL strategies, even
considering past approaches, also confirmed with our results.

DeMarco et al. (2014) proposes Nopol, an APR tool focused on automatically repair
buggy IF conditions and missing preconditions. In our contexts, we can relate it with
the repair patterns Missing Nul l Check and Conditional Expression variations. Nopol
is a direct example of how the characteristics of the patches can impact the design and
evaluation of debugging tools since it is a real representation of a tool focused on specific
classes of bugs. Still, Nopol reinforces the importance of characterizing a bug dataset
to accurately define the performance results derived from an evaluation because there is
no sense to test a tool like Nopol with bugs of different classes it can handle.

Liu et al. (2019) investigated the influence of bug localization “tweaking” on APR

192 Chapter 7. Influence of repair patterns on BL approaches

approaches, confirming the presence of bias while conducting evaluations and compar-
isons in strategies targeting the automation of debugging tasks. Furthermore, the work
shows that research should attempt to clarify and qualify the applied benchmarks (and
settings) to avoid misleading conclusions about the tested approaches, typically relying
only upon direct comparisons of obtained performance results. Similarly, we propose
the evaluation of BL approaches accounting for the dataset/benchmark characterization
and differentiating experimental samples by their bugs' nature (e.g., bug patches char-
acteristics in our case) so the analysis, comparisons and conclusions about the tested
approaches would be more informed and accurate.

Bohme et al. (2017) propose DBGBench, as the “the first human-generated bench-
mark for the qualitative evaluation of automated fault localization, bug diagnosis, and
repair techniques", considering the gap between the research proposals to support debug-
ging and the industrial practice needs. In the study, the conduction of debugging tasks
by professional developers contrasts with the research proposals to support these tasks.
The DBGBench is one of the contributions derived by Bohme et al. (2017) study and
serves as a ground-truth for evaluation of typical debugging tasks, as occurs with BL.
Similar to our considerations about the bugs' nature, DBGBench reflects the importance
of the knowledge about the benchmarks/dataset contents and how it can help clarify
and separate what is acceptable from what does not reflect the reality or the practical
concerns for the debugging task automation (or the automated support for debugging
tasks).

7.9 Final Considerations

The obtained results are promising since different evaluation results would be pro-
duced, even for the already known approaches like BLUiR and LR. The same occurs
for some features that show other scores depending on the sample. A comprehensive
revision of the already published works and approaches under the perspective of the
bugs' nature and characteristics would unveil how and what strategies would better fit
(or not) to localize each type of bug. Additionally, we should consider conducting re-
search to characterize bug datasets better, quantifying and defining what kind of bugs
are present, in what proportion, and how representative these bugs are. Furthermore,
since the approaches usually apply different base features, we should study the impact
on the features and how it influences the BL approaches considering the bug nature.
Finally, APR approaches would be better targeted at specific types of bugs, considering

7.9. Final Considerations 193

datasets bug characteristics for sampling and possibly leading to more informed, fair
and accurate evaluations.

194 Chapter 7. Influence of repair patterns on BL approaches

195

Chapter

Conclusion

Despite the active research and perceived advances in the area of BL (or even APR),
much still needs to be done to make approaches more accurate, reliable, and apt to be
widely used in software production. The BL using the bug reports as initial query, and
using essentially static information to the ranking of suspicious software components,
is one of the branches of this research area. This work proposes the development and
application of strategies to contribute to BL, leveraging the advances in ML and IR
approaches, and providing ideas to experiment with past approaches, under the lens of
dataset analysis and with the characterization of its bugs.

We have experimented with LtR techniques (e.g., LambdaMART, SVMRank, and
other algorithms), focusing on the tuning and pre-processing of data to improve the
results in the state-of-the-art. Many of the previously proposed approaches in the liter-
ature do not indicate clearly and punctually why they fail or succeed in the BL process,
focusing on highlighting only the overall gains in evaluation performance metrics. Our
experiments and results suggest that the analysis of the bugs in the dataset would con-
tribute to 1) the tuning of the algorithms, 2) the approaches implementation guidance,
and 3) the understanding of the approaches' capacity. Hence, it would be easier to
identify the proposed strategies' competence, weaknesses, and ideal context.

We also defined a new taxonomy to refer to bugs characteristics, especially those
related to its patches. Initially, the taxonomy was presented in the Defects4J Dissection
study, extended through a tool (ADD) to automate the information extraction and sup-
port the characterization, and applied here to characterize LR-dataset, a larger dataset
used on the work of Ye et al. (YE; BUNESCU; LIU, 2014), and also object of our
study. Finally, we show how and what influence we would observe when we sample a
bug dataset according to the bugs' characteristics, focusing on the performance results.

196 Chapter 8. Conclusion

We find significant differences in features scores and also on BL scores, depending on
the bug characteristics used as selection criteria for sampling (e.g., the repair patterns
we concentrated our effort).

8.1 Final considerations on the research

We developed an experimental package based on Ye, Bunescu e Liu (2016) approach
for experimentation with BL alternative strategies, integrating multiple information
sources. The Ye, Bunescu e Liu (2016) approaches originally combine a total of 19
distinct features, many of them based on previous work, as occurs with BLUiR (SAHA
et al., 2013). As a proof of concept, we conducted a partial replication of Ye et al.'s
work and implemented some additional strategies, looking for BL scores improvements.
Chapter 4 presented some of the experimented ideas. Preliminary experiments show
that, although each feature can contribute to the overall performance of the algorithms,
the ability to design and select good features, besides combining and to weight than prop-
erly, is essential. Moreover, not all features are crucial to obtain top performance, e.g.,
introducing the Entropy feature in the preliminarily tested configurations is marginal:
2.21% to 4.9% with MAP; and 0.25% to 3.69% with MRR. By the way, while analyzing
overall performance, we observed a role of Entropy in the reduction of overfitting.

Our preliminary results with LtR algorithms reinforce the need to proceed with
careful tuning of the approaches, and we also perceive the influence of the dataset used
in the process. When compared with our baseline configurations, we have obtained
better results in RQ2 from Chapter 5. Our best-tuned setting had a MAP value of
42.75% and an MRR value of 51.36%, while baseline configuration was 40.0% for MAP
and 46% for MRR.

We also experimented with pre-processing of bug reports. Results discussed in RQ3
from Chapter 5 present some potential improvement while testing data balance strategies
for generating input data to the learning process. We have consistent gains applying
different methods of data balance with LambdaMART, obtained increases of 52.3%
(QuickRank) and 70.86% (RankLib) over the baseline configuration (poor performing
because of the overfitting). Finally, we confirm the previous knowledge about the bugs
characteristics and the informed selection of bugs before proceeding with an assessment
can contribute to BL, especially on the understanding about over what type of bugs the
approach would perform better or worst.

We first studied Defects4J (SOBREIRA et al., 2018), a relatively small dataset (and

8.1. Final considerations on the research 197

benchmark) usually applied in research for BL and APR. We found many recurrences in
patches for bugs in Defects4J that culminated in taxonomy for what we refer to as repair
actions and repair patterns. Beyond the patterns we have studied, other dimensions
associated with patch size in coding lines and spreading give a dimension of the patch's
shape, complexity, and span in the source codebase. The Defects4J study served as the
basis for ADD tool development (MADEIRAL et al., 2018), targeting the automatic
extraction of the patches characterization information, applied in other studies as done
by Durieux et al. (2019). In this thesis, we proceed with analyzing and characterizing
the LR-dataset, a large dataset of bugs proposed by Ye, Bunescu e Liu (2014). We
applied the dimensions defined in our first study with Defects4J with the help of ADD
tool to extract the information about repair actions, repair patterns, and other size
dimensions associated with the bug patches. Our results confirm the presence of many
of the actions and patterns already found in Defects4J. Chapter 6 details this analysis.
We also extend the work with the Defects4J dissection, exploring additional information
related to the co-occurrences of repair actions and repair patterns that would influence
the analysis. Section 6.5 enumerates some of the references to the Defects4J Dissection
study, confirming its applicability in different areas, reinforcing our initial hypothesis,
and validating the potential application of our findings.

As an unfould of the dataset dissection studies, we argue that bug datasets should
not be considered like a black-box while evaluating BL approaches, as occurs in most of
the previous approaches before our dissection studies. Therefore, we propose the study
of the bugs' nature and characteristics. This knowledge would help to optimize the
selection of the techniques for BL, to understand the performance variations, to obtain
more practical insights to improve the approaches, and to propose new methods for BL
based on more informed decisions. Our work in (SOBREIRA et al., 2018) started to fill
the gap in this direction, providing a kind of framework for bugs characterization through
its patches. The exposing of the bug characteristics in a bug dataset is the first step
towards the enlightenment for a better understanding of how different BL approaches
work against bugs of diverse nature. We show that the bugs have distinct characteristics,
and this is a relevant issue while reporting results of BL approaches. In Chapter 7 we
have confirmed the influence of the sampling selection based on the characteristics of the
bug. We focus mainly on repair patterns' presence, based on the most common repair
actions associated with these patterns. When contrasting samples with and without
a given repair pattern, we found significant statistical differences on scores produced
for individual features, and for specific BL approaches, as BLUiR (SAHA et al., 2013),
and the LtR-based approach from Ye et al. (YE; BUNESCU; LIU, 2016), considering

198 Chapter 8. Conclusion

the projects AspectJ and Tomcat from LR-dataset (YE; BUNESCU; LIU, 2014). For
example, assuming a sample of bugs from Tomcat with Missing Not-Null Check repair
pattern and applying the BLUiR approach, we found a score increase of 27.22 percentual
points in the NDCG@1 metric. Otherside, in a sample without the last pattern, we can
perceive a decrease of 16.82 in another measure, Top-10 metric, for the feature ^1. Other
analogous findings were detailed in Chapter 7, confirming more differences.

Based on the experience with all the experimental processes, we confirm the impor-
tance and the need for an integrated environment for experimenting with BL strategies.
Chapter 4 raises many of the factors that would influence the success of a BL strategy,
and some ideas partially implemented in our experimental package were applied and
discussed in Chapters 5 and 7. Even considering previous approaches implement some
of these ideas (most isolated), an integrated environment for experimentation contin
ues as an open problem. While we start some development in this direction with our
experimental package and with ideas on Chapter 4 and all the experiments, we have
considerable work to do and many challenges to overcome: facilitate the reproduction
and comparisons between approaches, to handle the massive amount of data to process
and stay scalable, to integrate feature extraction process with ML-based methods, and
many others.

8.2 Main Contributions
The main contributions of this work are in:

□ Chapter 5, where we discuss most of the proof of concept contributions, especially
in sections with answers for the research questions:

1. RQ2 shows the application of a new feature based on Code Entropy and LtR
to produce BL scores;

2. RQ3 shows the application of different data balance strategies on the training
with LtR algorithms to produce BL scores;

3. RQ4 shows the influence of parameters tuning on LtR-based BL scores;

4. With the preliminary experiments of Chapter 5 we observe some gains in the
performance of LtR algorithms for BL, applying some of the strategies raised
in Chapter 4.

□ Chapter 4 and Chapter 7, where we present:

8.3. Future Work 199

1. A new approach to deal with the assessment of BL methods using bug datasets
and benchmarks, guided by bug characteristics;

2. A proof of concept showing the influence of the bug types composing a dataset
in the assessment of research approaches on typical software development
tasks like BL;

3. The experimental package (in development) briefly summarized in Chapter 4:
this implementation was essential to test ideas and obtain results for analysis
and comparisons of BL approaches;

4. A proof of concept on the integration of diverse sources of information for
BL based on (YE; BUNESCU; LIU, 2016) work and proposing the leverage
of the knowledge about the bugs' nature composing the target dataset.

□ Chapter 6, where we present:

1. A new approach to deal with assessment in datasets and benchmarks for
BL: in the dissection of Defects4J, we observed there are commonalities and
variabilities in the bug datasets that we should explore to improve BL and
other research areas (e.g., APR).

2. We expanded the work with Defects4J Dissection, applying some of those
ideas on a larger dataset, confirming the findings in Defects4J, and comple-
menting with new co-occurrences analysis involving repair actions and repair
patterns.

□ The papers (SOBREIRA et al., 2018) and (MADEIRAL et al., 2018) that qual-
ifies as collaboration work was fundamental for many achievements and previous
contributions, especially:

1. A taxonomy to characterize bug datasets in terms of their patches composi-
tion;

2. A tool to extract patch characteristics from a bug dataset, e.g., repair action,
repair patterns, and size dimensions;

8.3 Future Work
We can conduct additional experiments considering: 1) the same approach from

Chapter 7, but with the characteristics of the bugs to explore more repair patterns, repair

200 Chapter 8. Conclusion

actions, and the other dimensions from the dissection analysis of a dataset; 2) exploring
different datasets to show if our findings would sustain more contexts; 3) extending
the experiments from Chapter 5 for better coverage of LR-dataset; 4) increment the
previous extension with the procedures from Chapter 7, so we can test the influence of
bugs' characteristics on LtR strategies; 5) incorporating many of the ideas raised ideas
in Chapter 4 in the experimental package, e.g., developing a module for classifying and
pre-processing bug reports through the analysis of the bug report content and with query
rewriting techniques.

More development, refactoring, and architecting are needed so the experimental pack-
age would become a practical framework for BL, using most of the raised ideas in Chap-
ter 4 and allowing support assessment of past and new approaches. The scalability,
primarily to improve processing time, memory usage, and storage requirements, is the
main issue in the experimental package's new architecture. After, we should make it
available for further development by the research community.

Some extensions to this work are in progress or planned as 1) a paper to publish the
analysis in Chapter 6, showing the extension of Defects4J dissection to LR-dataset, 2)
another paper with extensions and additional data from Chapter 7 after the completion
of additional experiments to confirm the influence of Repair Patterns and Repair Actions
on BL, covering a more significant part of LR-dataset, 3) the additional refactoring
and optimization of the experimental package would make it viable to complement
and extend the experiments in Chapter 5, especially with considerations about the bug
characteristics, similar to the experiments from Chapter 7. We plan another extension
4) to publish a paper exposing the experimental package in detail, complementing what
we briefly summarize in Chapter 4, but only after some refactoring and re-architecting
to scale better with large datasets and to polish the codebase.

8.4 Bibliographical Production

Our work in (SOBREIRA et al., 2018) exposes many intrinsic properties of bug
patches in the Defects4J dataset. Therefore, we can use the insights from that study to
clarify how approaches to BL behave depending on the bugs' nature. Until the end of
2021, this paper accounts for more than 80 citations.

Our subsequent work in (MADEIRAL et al., 2018) makes it possible to extend part
of the analysis done in (SOBREIRA et al., 2018) to other datasets of bugs beyond
Defects4J through the automatic detection of repair patterns. This work was named the

8.4. Bibliographical Production 201

best paper in the 6th Workshop on Software Visualization, Evolution and Maintenance
(VEM 2018), co-located with the 9th Brazilian Conference on Software: Theory and
Practice (CBSoft'18).

202 Chapter 8. Conclusion

203

Bibliography

ABREU, R. et al. Refining spectrum-based fault localization rankings. Proceedings
of the 2009 ACM symposium on Applied Computing - SAC '09, p. 409, 2009.
Disponível em: <https://doi.org/10.1145/1529282.1529374>.

ABREU, R.; ZOETEWEIJ, P.; GEMUND, A. J. C. V. On the accuracy of spectrum-
based fault localization. In: Testing: Academic and Industrial Conference
Practice and Research Techniques (TAIC PART-Mutation 2007). Windsor,
UK: IEEE, 2007. p. 89-98. ISBN 0769529844. ISSN 0014-0139. Disponível em:
<https://doi.org/10. 1 109/TAIC.PART.2007. 13>.

AKBAR, S. A.; KAK, A. C. A Large-Scale Comparative Evaluation of IR-Based Tools
for Bug Localization. In: 17th International Conference on Mining Software
Repositories. Seoul, Republic of Korea: ACM, 2020. p. 21-31. ISBN 9781450375177.
Disponível em: <https://doi.org/10.1145/3379597.3387474>.

ALMHANA, R. et al. Recommending Relevant Classes for Bug Reports Using Multi-
objective Search. In: 31st IEEE/ACM International Conference on Automated
Software Engineering. Singapore: ACM, 2016. (ASE 2016), p. 286-295. ISBN
978-1-4503-3845-5. Disponível em: <http://doi.acm.org/10.1145/2970276.2970344>.

ARCEGA, L.; FONT, J.; CETINA, C. Evolutionary algorithm for bug localization
in the reconfigurations of models at runtime. In: 21st ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems,
MODELS 2018. Copenhagen, Denmark: ACM, 2018. (MODELS '18), p. 90-100.
ISBN 9781450349499. Disponível em: <https://doi.org/10.1145/3239372.3239392>.

ARCEGA, L. et al. Bug Localization in Model-Based Systems in the Wild. ACM
Trans. Softw. Eng. Methodol., ACM, New York, NY, USA, v. 31, n. 1, 2021. ISSN
1049-331X. Disponível em: <https://doi.org/10.1145/3472616>.

_____ . An approach for bug localization in models using two levels: model and
metamodel. Software and Systems Modeling, v. 18, n. 6, p. 3551-3576, 2019.
Disponível em: <https://doi.org/10.1007/s10270-019-00727-y>.

https://doi.org/10.1145/1529282.1529374
https://doi.org/10._1_109/TAIC.PART.2007._13
https://doi.org/10.1145/3379597.3387474
http://doi.acm.org/10.1145/2970276.2970344
https://doi.org/10.1145/3239372.3239392
https://doi.org/10.1145/3472616
https://doi.org/10.1007/s10270-019-00727-y

204 Bibliography

ARTZI, S. et al. Fault localization for dynamic web applications. IEEE Transactions
on Software Engineering, v. 38, n. 2, p. 314-335, 2012. ISSN 00985589. Disponível
em: <https://doi.org/10.1109/TSE.2011.76>.

ASKARUNISA, A.; MANJU, T.; BABU, B. G. Fault Localization for Java
Programs Using Probabilistic Program Dependence Graph. International Journal
of Computer Science Issues, v. 8, n. 6, p. 224-232, 2011. Disponível em:
<https://doi.org/10.48550/arXiv. 1201 .3985>.

BAAH, G.; PODGURSKI, A.; HARROLD, M. Mitigating the confounding effects
of program dependences for effective fault localization. In: Joint Meeting
of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering.
Szeged, Hungary: ACM, 2011. p. 146-156. ISBN 9781450304436. Disponível em:
<https://doi.org/10.1145/2025113.2025136>.

BALL, T.; LARUS, J. R. Optimally profiling and tracing programs. ACM
Transactions on Programming Languages and Systems, v. 16, n. 4, p. 1319-1360,
1994. ISSN 0164-0925. Disponível em: <https://doi.org/10. 1 145/183432. 183527>.

BARBOSA, J. R. et al. BULNER: BUg Localization with word embeddings and
NEtwork Regularization. In: VII Workshop on Software Visualization, Evolution
and Maintenance (VEM '19). Porto Alegre, RS, Brasil: [s.n.], 2019. p. 9-16.
Disponível em: <https://doi.org/10.48550/arXiv. 1908.09876>.

BETTENBURG, N. et al. What Makes a Good Bug Report? In: 16th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. Atlanta, Georgia: ACM, 2008. (SIGSOFT '08/FSE-16), p. 308-318. ISBN
978-1-59593-995-1. Disponível em: <http://doi.acm.org/10.1145/1453101.1453146>.

BHAGWAN, R. et al. Orca: Differential Bug Localization in Large-Scale Services. In:
13th USENIX Conference on Operating Systems Design and Implementation.
USA: USENIX Association, 2018. (OSDI'18), p. 493-509. ISBN 9781931971478.
Disponível em: <https://www.usenix.org/conference/osdi 18/presentation/bhagwan>.

BOHME, M. et al. Where is the bug and how is it fixed? an experiment
with practitioners. 11th Joint Meeting on Foundations of Software
Engineering - ESEC/FSE 2017, p. 117-128, 2017. Disponível em: <https:
//doi.org/10.1145/3106237.3106255>.

BREIMAN, L. E. O. Random Forests. Machine Learning, v. 45, n. 1, p. 5-32, 2001.
ISSN 08856125. Disponível em: <https://doi.org/10.1023/A:1010933404324>.

BRIAND, L. C.; LABICHE, Y.; LIU, X. Using Machine Learning to Support
Debugging with Tarantula. In: 18th IEEE International Symposium on
Software Reliability (ISSRE '07). Trollhattan, Sweden: IEEE, 2007. (ISSRE'07,
January), p. 137-146. ISBN 978-0-7695-3024-6. ISSN 1071-9458. Disponível em:
<https://doi.org/10.1109/ISSRE.2007.36>.

https://doi.org/10.1109/TSE.2011.76
https://doi.org/10.48550/arXiv._1201_.3985
https://doi.org/10.1145/2025113.2025136
https://doi.org/10._1_145/183432._183527
https://doi.org/10.48550/arXiv._1908.09876
http://doi.acm.org/10.1145/1453101.1453146
https://www.usenix.org/conference/osdi_18/presentation/bhagwan
https://doi.org/10.1145/3106237.3106255
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/ISSRE.2007.36

Bibliography 205

BURGES, C. et al. Learning to rank using gradient descent. In: 22nd international
conference on Machine learning (ICML'05). Bonn, Germany: [s.n.],
2005. p. 89-96. ISBN 1595931805. ISSN 00243205. Disponível em: <https:
//doi.org/10.1145/1102351.1102363>.

BURGES, C. J. C.; RAGNO, R.; LE, Q. V. Learning to Rank with Nonsmooth
Cost Functions. In: 19th International Conference on Neural Information
Processing Systems. MIT Press Cambridge, 2006. v. 19, p. 193-200. ISBN
0262195682. ISSN 10495258. Disponível em: <https://proceedings.neurips.cc/paper/
2006/file/af44c4c56f385c43f2529f9b1b018f6a-Paper.pdf>.

CAMPOS, J. et al. GZoltar: an eclipse plug-in for testing and debugging. In: 27th
IEEE/ACM International Conference on Automated Software Engineering -
ASE 2012. Essen, Germany: Association for Computing Machinery, 2012. p. 378-381.
ISBN 9781450312042. Disponível em: <https://doi.org/10.1145/2351676.2351752>.

CAO, J. et al. BugPecker: Locating Faulty Methods with Deep Learning on
Revision Graphs. In: 35th IEEE/ACM International Conference on
Automated Software Engineering. Virtual Event, Australia: Association for
Computing Machinery, 2020. p. 1214-1218. ISBN 9781450367684. Disponível em:
<https://doi.org/10.1145/3324884.3418934>.

CAO, Z. et al. Learning to rank: from pairwise approach to listwise approach. In:
24th International Conference on Machine Learning. Corvalis, Oregon, USA:
ACM, 2007. p. 129-136. ISBN 9781595937933. ISSN 1595937935. Disponível em:
<https://doi.org/10.1145/1273496.1273513>.

CELLIER, P. et al. Multiple Fault Localization with Data Mining. In: 23rd
International Conference on Software Engineering & Knowledge
Engineering (SEKE'2011). Miami, USA: HAL, 2011. p. 238-243. ISBN 1891706292.
Disponível em: <https://hal.archives-ouvertes.fr/hal-01119562>.

CHAKRABORTY, S. et al. Entropy Guided Spectrum Based Bug Localization Using
Statistical Language Model. 2018. Disponível em: <https://doi.org/10.48550/arXiv.
1802.06947>.

CHAPARRO, O.; FLOREZ, J. M.; MARCUS, A. Using bug descriptions to
reformulate queries during text-retrieval-based bug localization. Empirical
Software Engineering, v. 24, p. 2947-3007, 2019. ISSN 15737616. Disponível em:
<https://doi.org/10.1007/s10664-018-9672-z>.

CHILIMBI, T. M. et al. HOLMES : Effective Statistical Debugging via Efficient
Path Profiling. In: 31st International Conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2008. (ICSE'09), p. 34-44. ISBN
978-1-4244-3453-4. Disponível em: <https://doi.org/10. 1 109/ICSE.2009.5070506>.

https://doi.org/10.1145/1102351.1102363
https://proceedings.neurips.cc/paper/2006/file/af44c4c56f385c43f2529f9b1b018f6a-Paper.pdf
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1145/3324884.3418934
https://doi.org/10.1145/1273496.1273513
https://hal.archives-ouvertes.fr/hal-01119562
https://doi.org/10.48550/arXiv.1802.06947
https://doi.org/10.1007/s10664-018-9672-z
https://doi.org/10._1_109/ICSE.2009.5070506

206 Bibliography

CHOI, S.-s.; CHA, S.-h. A survey of Binary similarity and distance measures. Journal
of Systemics, Cybernetics and Informatics, p. 43-48, 2010. Disponível em:
<http://www.iiisci.org/journal/sci/Abstract.asp?var=&id=GS315JG>.

CHRISTI, A. et al. Reduce Before You Localize: Delta-Debugging and Spectrum-Based
Fault Localization. In: 2018 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW). Memphis, TN, USA: IEEE, 2018.
p. 184-191. Disponível em: <https://doi.org/10.1109/ISSREW.2018.00005>.

COUSOT, P.; COUSOT, R. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In:
4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. Los Angeles, California: ACM, 1977. (POPL '77), p. 238-252. ISSN
00900036. Disponível em: <http://doi.acm.org/10.1145/512950.512973>.

COUTANT, D. S. D. et al. DOC: A practical approach to source-level debugging of
globally optimized code. ACM SIGPLAN Notices, v. 23, n. 7, p. 125-134, 1988.
ISSN 15581160. Disponível em: <https://doi.org/10.1145/960116.54003>.

DALLMEIER, V.; LINDIG, C.; ZELLER, A. Lightweight Bug Localization with
AMPLE. In: 6th International Symposium on Automated Analysis-driven
Debugging. Monterey, California, USA: ACM, 2005. (AADEBUG'05), p. 99-104.
ISBN 1-59593-050-7. Disponível em: <https://doi.org/10.1145/1085130.1085143>.

DALLMEIER, V.; ZIMMERMANN, T. Extraction of bug localization benchmarks
from history. In: 22nd IEEE/ACM International Conference on Automated
Software Engineering. New York, NY, USA: ACM, 2007. (ASE '07), p. 433-436.
ISBN 978-1-59593-882-4. Disponível em: <https://doi.org/10.1145/1321631.1321702>.

DAO, T.; ZHANG, L.; MENG, N. How Does Execution Information Help with
Information Retrieval Based Bug Localization? An Extensive Study. In: 2017
IEEE/ACM 25th International Conference on Program Comprehension
(ICPC). Buenos Aires, Argentina: IEEE, 2017. p. 241-250. ISBN 1234567245.
Disponível em: <https://doi.org/10.1109/ICPC.2017.29%0A>.

DEMARCO, F. et al. Automatic repair of buggy if conditions and missing
preconditions with SMT. In: Proceedings of the 6th International Workshop
on Constraints in Software Testing, Verification, and Analysis - CSTVA
2014. Hyderabad, India: ACM, 2014. p. 30-39. ISBN 9781450328470. Disponível em:
<https://doi.org/10.1145/2593735.2593740>.

DIGIUSEPPE, N.; JONES, J. A. Fault density, fault types, and spectra-based fault
localization. Empirical Software Engineering, v. 20, n. 4, p. 928-967, 2015. ISSN
1382-3256. Disponível em: <https://doi.org/10.1007/s10664-014-9304-1>.

DILSHENER, T. Improving Information Retrieval Based Bug Localisation
Using Contextual Heuristics. Tese (Doutorado) — The Open University, 2016.
Disponível em: <https://doi.org/10.21954/ou.ro.0000c41c>.

http://www.iiisci.org/journal/sci/Abstract.asp?var=&id=GS315JG
https://doi.org/10.1109/ISSREW.2018.00005
http://doi.acm.org/10.1145/512950.512973
https://doi.org/10.1145/960116.54003
https://doi.org/10.1145/1085130.1085143
https://doi.org/10.1145/1321631.1321702
https://doi.org/10.1109/ICPC.2017.29%250A
https://doi.org/10.1145/2593735.2593740
https://doi.org/10.1007/s10664-014-9304-1
https://doi.org/10.21954/ou.ro.0000c41c

Bibliography 207

DILSHENER, T.; WERMELINGER, M.; YU, Y. Locating Bugs Without Looking
Back. In: 13th International Conference on Mining Software Repositories.
Austin, Texas: ACM, 2016. (MSR '16), p. 286-290. ISBN 978-1-4503-4186-8. Disponível
em: <https://doi.org/10.1145/2901739.2901775>.

DO, H.; ELBAUM, S.; ROTHERMEL, G. Supporting controlled experimentation
with testing techniques: An infrastructure and its potential impact. Empirical
Software Engineering, v. 10, n. 4, p. 405-435, 2005. ISSN 13823256. Disponível em:
<https://doi.org/10.1007/s10664-005-3861-2>.

DURIEUX, T. et al. Empirical review of Java program repair tools: A large-scale
experiment on 2,141 bugs and 23,551 repair attempts. In: 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. Tallinn, Estonia: ACM, 2019. p. 302-313.
ISBN 9781450355728. Disponível em: <https://doi.org/10.1145/3338906.3338911>.

EDWARDS, J. C. Method, system, and program for logging statements to
monitor execution of a program. 2003. Disponível em: <https://patents.google.
com/patent/US6539501B1/en>.

FALLERI, J.-R. et al. Fine-grained and accurate source code differencing. In:
ACM/IEEE International Conference on Automated Software Engineering,
ASE'14. Vasteras, Sweden: ACM/IEEE, 2014. p. 313-324. ISBN 9781450330138.
Disponível em: <http://doi.acm.org/10. 1 145/2642937.2642982>.

FREUND, Y. et al. An Efficient Boosting Algorithm for Combining Preferences. The
Journal of Machine Learning Research, v. 4, p. 933-969, 2003. ISSN 0003-6951.
Disponível em: <https://dl.acm.org/doi/10.5555/945365.964285>.

FRIEDMAN, J. H. . Greedy Function Approximation: A Gradient Boosting Machine.
The Annals of Statistics, v. 29, n. 5, p. 1189-1232, 2001. Disponível em:
<https://doi.org/10.1214/aos/1013203451>.

GAZZOLA, L.; MICUCCI, D.; MARIANI, L. Automatic Software Repair: A Survey.
IEEE Transactions on Software Engineering, IEEE, v. 45, n. 1, p. 34-67, 2019.
ISSN 19393520. Disponível em: <https://doi.org/10.1109/TSE.2017.2755013>.

GONG, C. et al. Effects of Class Imbalance in Test Suites: An Empirical Study of
Spectrum-Based Fault Localization. In: 36th Annual Computer Software and
Applications Conference Workshops. Izmir, Turkey: IEEE, 2012. p. 470-475. ISBN
978-1-4673-2714-5. Disponível em: <https://doi.org/10. 1 109/COMPSACW.2012.89>.

GOUES, C. L. et al. The ManyBugs and IntroClass Benchmarks for Automated
Repair of C Programs. IEEE Transactions on Software Engineering,
v. 41, n. 12, p. 1236-1256, 2015. ISSN 00985589. Disponível em: <https:
//doi.org/10.1109/TSE.2015.2454513>.

https://doi.org/10.1145/2901739.2901775
https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1145/3338906.3338911
https://patents.google.com/patent/US6539501B1/en
http://doi.acm.org/10._1_145/2642937.2642982
https://dl.acm.org/doi/10.5555/945365.964285
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10._1_109/COMPSACW.2012.89
https://doi.org/10.1109/TSE.2015.2454513

208 Bibliography

HAMILL, M.; GOSEVA-POPSTOJANOVA, K. Analyzing and predicting
effort associated with finding and fixing software faults. Information and
Software Technology, v. 87, p. 1-18, 2017. ISSN 09505849. Disponível em:
<https://doi.org/10.1016/j.infsof.2017.01.002>.

HE, H.; GARCIA, E. A. Learning from imbalanced data. IEEE Transactions on
Knowledge and Data Engineering, v. 21, n. 9, p. 1263-1284, 2009. ISSN 10414347.
Disponível em: <https://doi.org/10.1109/TKDE.2008.239>.

HELLENDOORN, V. J. Are Deep Neural Networks the Best Choice for Modeling
Source Code? In: 11th Joint Meeting on Foundations of Software Engineering.
Paderborn, Germany: ACM, 2017. p. 763-773. ISBN 9781450351058. Disponível em:
<https://doi.org/10.1145/3106237.3106290>.

HOANG, T. V. D. et al. Network-Clustered Multi-Modal Bug Localization. IEEE
Transactions on Software Engineering, v. 45, p. 1002-1023, 2018. ISSN 00985589.
Disponível em: <https://doi.org/10.1109/TSE.2018.2810892>.

HUO, X.; LI, M. Enhancing the unified features to locate buggy files by
exploiting the sequential nature of source code. In: 26th International
Joint Conference on Artificial Intelligence. Melbourne, Australia: IJCAI,
2017. p. 1909-1915. ISBN 9780999241103. ISSN 10450823. Disponível em:
<https://doi.org/10.24963/ijcai.2017/265>.

HUO, X.; LI, M.; ZHOU, Z. H. Learning unified features from natural and
programming languages for locating buggy source code. In: 25h International
Joint Conference on Artificial Intelligence. New York, New York, USA: AAAI
Press, 2016. p. 1606-1612. ISBN 978-1-57735-770-4. ISSN 10450823. Disponível em:
<https://dl.acm.org/doi/10.5555/3060832.3060845>.

HUO, X. et al. Deep Transfer Bug Localization. IEEE Transactions on Software
Engineering, IEEE, v. 47, n. 7, p. 1368 - 1380, 2019. ISSN 0098-5589. Disponível em:
<https://doi.org/10.1109/TSE.2019.2920771>.

HUTCHINS, M. et al. Experiments on the effectiveness of dataflow- and control-
flow-based test adequacy criteria. In: 16th International Conference on
Software Engineering. Sorrento, Italy: IEEE, 1994. p. 191-200. Disponível em:
<https://doi.org/10.1109/ICSE.1994.296778>.

ISO/IEC/IEEE. Systems and software engineering — Vocabulary. 2010. 410 p.
Disponível em: <https://www.iso.org/standard/71952.htmlhttp://www.iso.org/iso/
catalogue_detail.htm?csnumber=50518>.

JANSSEM, T.; ABREU, R.; GEMUND, A. J. C. V. Zoltar: A toolset for
automatic fault localization. In: 24th IEEE/ACM International Conference
on Automated Software Engineering. Auckland, New Zealand: IEEE, 2009.
p. 662-664. ISBN 9780769538914. ISSN 1938-4300. Disponível em: <https:
//doi.org/10.1109/ASE.2009.27>.

https://doi.org/10.1016/j.infsof.2017.01.002
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1109/TSE.2018.2810892
https://doi.org/10.24963/ijcai.2017/265
https://dl.acm.org/doi/10.5555/3060832.3060845
https://doi.org/10.1109/TSE.2019.2920771
https://doi.org/10.1109/ICSE.1994.296778
https://www.iso.org/standard/71952.htmlhttp://www.iso.org/iso/catalogue_detail.htm?csnumber=50518
https://doi.org/10.1109/ASE.2009.27

Bibliography 209

JÀRVELIN, K.; KEKÀLÀINEN, J. Cumulated Gain-Based Evaluation of IR
Techniques. ACM Transactions on Information Systems, v. 20, n. 4, p. 422-446,
2002. Disponível em: <https://doi.org/10.1145/582415.582418>.

JEFFREY, D. et al. BugFix: A learning-based tool to assist developers in fixing bugs.
In: 17th International Conference on Program Comprehension. Vancouver,
BC, Canada: IEEE, 2009. p. 70-79. ISBN 9781424439973. ISSN 1063-6897. Disponível
em: <https://doi.org/10.1109/ICPC.2009.5090029>.

JOACHIMS, T. Training Linear SVMs in Linear Time. In: 12th ACM SIGKDD
international conference on Knowledge discovery and data mining.
Philadelphia, Pennsylvania, USA: ACM, 2006. p. 217-226. ISBN 1595933395.
Disponível em: <https://doi.org/10.1145/1150402.1150429>.

JONES, J. A. J. J. a.; HARROLD, M. J. M. Empirical evaluation of the tarantula
automatic fault-localization technique. In: 20th IEEE/ACM International
Conference on Automated Software Engineering. Long Beach, CA, USA: ACM,
2005. (ASE '05), p. 282-292. ISBN 1581139934. Disponível em: <http://doi.acm.org/
10.1145/1101908.1101949http://portal.acm.org/citation.cfm?id=1101949>.

JUST, R.; JALALI, D.; ERNST, M. D. Defects4J: A Database of Existing Faults
to Enable Controlled Testing Studies for Java Programs. In: 2014 International
Symposium on Software Testing and Analysis. San Jose, CA, USA:
ACM, 2014. (ISSTA 2014), p. 437-440. ISBN 978-1-4503-2645-2. Disponível em:
<https://doi.org/10.1145/2610384.2628055>.

JUST, R. et al. Comparing developer-provided to user-provided tests for fault
localization and automated program repair. In: 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis - ISSTA 2018.
Amsterdam, Netherlands: ACM, 2018. p. 287-297. ISBN 9781450356992. Disponível
em: <https://doi.org/10.1145/3213846.3213870>.

KAUFMAN, S. et al. Leakage in data mining: Formulation, detection, and avoidance.
ACM Transactions on Knowledge Discovery from Data, v. 6, n. 4, p. 1-21,
2012. ISSN 15564681. Disponível em: <https://doi.org/10.1145/2382577.2382579>.

KEYHANIPOUR, A. H.; MOEINI, A. Learning to rank with click-through
features in a reinforcement learning framework. International Journal of
Web Information Systems, v. 12, n. 4, p. 448-476, 2016. Disponível em:
<https://doi.org/10.1108/IJWIS-12-2015-0046>.

KHAN, T. A.; SULLIVAN, A.; WANG, K. AlloyFL: A Fault Localization Framework
for Alloy. In: 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.
Athens, Greece: ACM, 2021. (ESEC/FSE 2021), p. 1535-1539. ISBN 9781450385626.
Disponível em: <https://dl.acm.org/doi/10.1145/3468264.3473116>.

https://doi.org/10.1145/582415.582418
https://doi.org/10.1109/ICPC.2009.5090029
https://doi.org/10.1145/1150402.1150429
http://doi.acm.org/10.1145/1101908.1101949http://portal.acm.org/citation.cfm?id=1101949
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/3213846.3213870
https://doi.org/10.1145/2382577.2382579
https://doi.org/10.1108/IJWIS-12-2015-0046
https://dl.acm.org/doi/10.1145/3468264.3473116

210 Bibliography

KHATIWADA, S.; TUSHEV, M.; MAHMOUD, A. On Combining IR Methods to
Improve Bug Localization. In: 28th International Conference on Program
Comprehension. Seoul, Korea: ACM, 2020. p. 252-262. ISBN 9781450379588.
Disponível em: <https://doi.org/10.1145/3387904.3389280>.

KIDWELL, P. A. Stalking the Elusive Computer Bug. IEEE Ann. Hist. Comput.,
IEEE Educational Activities Department, USA, v. 20, n. 4, p. 5-9, 1998. ISSN
1058-6180. Disponível em: <https://doi.org/10.1109/85.728224>.

KIM, D. et al. Where should we fix this bug? A two-phase recommendation model.
IEEE Transactions on Software Engineering, v. 39, n. 11, p. 1597-1610, 2013.
ISSN 00985589. Disponível em: <https://doi.org/10.1109/TSE.2013.24>.

KIM, M.; LEE, E. Poster: Are information retrieval-based bug localization
techniques trustworthy? In: 40th International Conference on Software
Engineering: Companion Proceeedings. Gothenburg, Sweden: ACM, 2018.
p. 248-249. ISBN 9781450356633. ISSN 02705257. Disponível em: <https:
//doi.org/10.1145/3183440.3194954>.

_____ . A novel approach to automatic query reformulation for IR-based bug
localization. In: 34th ACM/SIGAPP ACM Symposium on Applied
Computing. Limassol, Cyprus: ACM, 2019. p. 1752-1759. ISBN 9781450359337.
Disponível em: <https://doi.org/10.1145/3297280.3297451>.

KOCHHAR, P. S. et al. Practitioners' expectations on automated fault localization. In:
25th International Symposium on Software Testing and Analysis - ISSTA
2016. Saarbrücken, German: ACM, 2016. p. 165-176. ISBN 9781450343909. Disponível
em: <https://doi.org/10.1145/2931037.2931051>.

KOYUNCU, A. et al. D&C: A Divide-and-Conquer Approach to IR-based Bug
Localization. 2019. Disponível em: <https://doi.org/10.48550/arXiv.1902.02703>.

KUMA, T. et al. Improving the Accuracy of Spectrum-Based Fault Localization
for Automated Program Repair. In: Proceedings of the 28th International
Conference on Program Comprehension. Seoul, Korea: ACM, 2020. p. 376-380.
ISBN 9781450379588. Disponível em: <https://doi.org/10.1145/3387904.3389290>.

LADYZYNSKI, P.; ZBIKOWSKI, K.; GRZEGORZEWSKI, P. Stock trading with
random forests, trend detection tests and force index volume indicators. Artificial
Intelligence and Soft Computing, Berlin, Heidelberg, v. 7895, p. 441-452, 2013.
ISSN 03029743. Disponível em: <https://doi.org/10.1007/978-3-642-38610-7_41>.

LAM, A. N. et al. Combining Deep Learning with Information Retrieval to Localize
Buggy Files for Bug Reports. In: 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). Lincoln, NE, USA: IEEE, 2015. p. 476
481. ISBN 9781509000258. Disponível em: <https://doi.org/10.1109/ASE.2015.73>.

https://doi.org/10.1145/3387904.3389280
https://doi.org/10.1109/85.728224
https://doi.org/10.1109/TSE.2013.24
https://doi.org/10.1145/3183440.3194954
https://doi.org/10.1145/3297280.3297451
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.48550/arXiv.1902.02703
https://doi.org/10.1145/3387904.3389290
https://doi.org/10.1007/978-3-642-38610-7_41
https://doi.org/10.1109/ASE.2015.73

Bibliography 211

_____ . Bug Localization with Combination of Deep Learning and Information
Retrieval. In: 25th International Conference on Program Comprehension
(ICPC). Buenos Aires, Argentina: IEEE, 2017. p. 218-229. ISBN 9781538605356.
ISSN 1524-4563. Disponível em: <https://doi.org/10.1109/ICPC.2017.24>.

LE, T.-D. B. et al. A learning-to-rank based fault localization approach using likely
invariants. In: 25th International Symposium on Software Testing and
Analysis. Saarbrücken Germany: ACM, 2016. p. 177-188. ISBN 9781450343909.
Disponível em: <https://doi.org/10.1145/2931037.2931049>.

LE, T.-D. B.; OENTARYO, R. J.; LO, D. Information Retrieval and Spectrum Based
Bug Localization: Better Together. In: 10th Joint Meeting on Foundations
of Software Engineering. Bergamo, Italy: ACM, 2015. (ESEC/FSE 2015, 65),
p. 579-590. ISBN 978-1-4503-3675-8. Disponível em: <http://doi.acm.org/10. 1 145/
2786805.2786880>.

LEE, J. et al. Bench4BL: Reproducibility Study on the Performance of IR-Based
Bug Localization. In: 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis. Amsterdam, Netherlands: ACM, 2018.
(ISSTA 2018, 2), p. 61-72. ISBN 9781450356992. Disponível em: <https:
//doi.org/10.1145/3213846.3213856>.

LEX, A. et al. UpSet: Visualization of intersecting sets. IEEE Transactions on
Visualization and Computer Graphics, IEEE, v. 20, n. 12, p. 1983-1992, 2014.
ISSN 10772626. Disponível em: <https://doi.org/10. 1 109/TVCG.2014.2346248>.

LI, X. et al. DeepFL: Integrating multiple fault diagnosis dimensions for deep fault
localization. In: 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis. Beijing, China: ACM, 2019. p. 284-295. ISBN 9781450362245.
Disponível em: <https://doi.org/10. 1 145/3339068>.

LI, X.; ZHANG, L. Transforming Programs and Tests in Tandem for Fault Localization.
Proceedings of the ACM on Programming Languages, v. 1, n. OOPSLA, p.
92:1-92:30, 2017. Disponível em: <https://doi.org/10.1145/3133916>.

LI, Y.; WANG, S.; NGUYEN, T. N. Fault Localization with Code Coverage
Representation Learning. In: IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). Madrid, ES: IEEE Press, 2021. p. 661-673. ISBN
9781450390859. Disponível em: <https://doi.org/10.1109/ICSE43902.2021.00067>.

LIANG, H. et al. Deep Learning With Customized Abstract Syntax Tree for Bug
Localization. IEEE Access, IEEE, v. 7, p. 116309-116320, 2019. Disponível em:
<https://doi.org/10.1109/ACCESS.2019.2936948>.

LIU, K. et al. A Closer Look at Real-World Patches. In: 34th IEEE International
Conference on Software Maintenance and Evolution (ICSME). Madrid, Spain:
IEEE, 2018. p. 275-286. Disponível em: <https://doi.org/10.1109/ICSME.2018.
00037>.

https://doi.org/10.1109/ICPC.2017.24
https://doi.org/10.1145/2931037.2931049
http://doi.acm.org/10._1_145/2786805.2786880
https://doi.org/10.1145/3213846.3213856
https://doi.org/10._1_109/TVCG.2014.2346248
https://doi.org/10._1_145/3339068
https://doi.org/10.1145/3133916
https://doi.org/10.1109/ICSE43902.2021.00067
https://doi.org/10.1109/ACCESS.2019.2936948
https://doi.org/10.1109/ICSME.2018.00037

212 Bibliography

_____ . You Cannot Fix What You Cannot Find! An Investigation of Fault
Localization Bias in Benchmarking Automated Program Repair Systems. 12th
IEEE Conference on Software Testing, Validation and Verification
(ICST), IEEE, Xi'an, China, n. January 2019, p. 102-113, 2019. Disponível em:
<https://doi.org/10.1109/ICST.2019.00020>.

LIU, T.-Y. Learning to Rank for Information Retrieval. Foundations and Trends in
Information Retrieval, v. 3, n. 3, p. 225-331, 2009. ISSN 1554-0669. Disponível em:
<https://doi.org/10.1561/1500000016>.

LOU, Y. et al. Can Automated Program Repair Refine Fault Localization?
A Unified Debugging Approach. In: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. Virtual Event, USA:
ACM, 2020. (ISSTA 2020), p. 75-87. ISBN 9781450380089. Disponível em:
<https://doi.org/10.1145/3395363.3397351>.

_____ . Boosting Coverage-Based Fault Localization via Graph-Based Representation
Learning. In: 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.
Athens, Greece: ACM, 2021. (ESEC/FSE 2021), p. 664-676. ISBN 9781450385626.
Disponível em: <https://doi.org/10. 1 145/3468264.3468580>.

LOYOLA, P.; GAJANANAN, K.; SATOH, F. Bug localization by learning to rank
and represent bug inducing changes. 27th ACM International Conference on
Information and Knowledge Management, ACM, Torino, Italy, p. 657-665, 2018.
Disponível em: <https://doi.org/10.1145/3269206.3271811>.

LU, S. et al. BugBench: Benchmarks for Evaluating Bug Detection Tools. Proc of
the Workshop on the Evaluation of Software Defect Detection Tools, n. 3,
p. 1-5, 2005. Disponível em: <https://researchr.org/publication/Lu05bugbench%
3Abenchmarks>.

LUCCHESE, C. et al. Selective Gradient Boosting for Effective Learning to Rank. In:
41st International ACM SIGIR Conference on Research & Development
in Information Retrieval. Ann Arbor, MI, USA: ACM, 2018. p. 155-164. ISBN
9781450356572. Disponível em: <https://doi.org/10.1145/3209978.3210048>.

LUCIA, L. et al. Are Faults Localizable? In: 9th IEEE Working Conference
on Mining Software Repositories. Zurich, Switzerland: IEEE Press, 2012.
(MSR '12), p. 74-77. ISBN 978-1-4673-1761-0. ISSN 21601852. Disponível em:
<https://dl.acm.org/doi/10.5555/2664446.2664457>.

MADEIRAL, F. et al. Towards an automated approach for bug fix pattern
detection. In: VI Workshop on Software Visualization, Evolution and
Maintenance (VEM '18). São Carlos, SP, Brazil: SBC, 2018. Disponível em:
<https://vem2018.github.io/proceedings/VEM2018-Proceedings.pdf>.

https://doi.org/10.1109/ICST.2019.00020
https://doi.org/10.1561/1500000016
https://doi.org/10.1145/3395363.3397351
https://doi.org/10._1_145/3468264.3468580
https://doi.org/10.1145/3269206.3271811
https://researchr.org/publication/Lu05bugbench%253Abenchmarks
https://doi.org/10.1145/3209978.3210048
https://dl.acm.org/doi/10.5555/2664446.2664457
https://vem2018.github.io/proceedings/VEM2018-Proceedings.pdf

Bibliography 213

MAGOUN, A. B.; ISRAEL, P. Did You Know? Edison Coined the Term
“Bug”. The Institute, The latest news about IEEE, its members, tech
history, and new offerings, 8 2013. Disponível em: <https://spectrum.ieee.org/
did-you-know-edison-coined-the-term-bug>.

MANNING, C. D.; RAGHAVAN, P.; SCHÜTZE, H. An Introduction to
Information Retrieval. 1st. ed. Cambridge, England: Cambridge University Press,
2008. 482 p. ISBN 978-0521865715.

MCCAULEY, R. et al. Debugging: a review of the literature from an educational
perspective. Computer Science Education, v. 18, n. 2, p. 67-92, 2008. ISSN
0899-3408. Disponível em: <https://doi.org/10.1080/08993400802114581>.

METZLER, D.; CROFT, W. B. Linear Feature-Based Models for Information Retrieval.
Information Retrieval, Kluwer Academic Publishers, v. 10, n. 3, p. 257-274, 2006.
Disponível em: <https://doi.org/10.1007/s10791-006-9019-z>.

MILLS, C. et al. Are Bug Reports Enough for Text Retrieval-Based Bug Localization?
In: 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME). Madrid, Spain: IEEE, 2018. p. 381-392. ISBN
978-1-5386-7870-1. Disponível em: <https://doi.org/10.1109/ICSME.2018.00046>.

MITCHELL, R. L. Y2K: The good, the bad and the crazy. Computer World, 2009.
Disponível em: <http://www.computerworld.com/article/2522197/it-management/
y2k--the-good--the-bad-and-the-crazy.html>.

MONPERRUS, M. Automatic Software Repair: A Bibliography. ACM Computing
Surveys, ACM, v. 51, n. 1, p. 24, 2018. ISSN 10488251. Disponível em:
<https://doi.org/10.1145/3105906>.

MOON, S. et al. Ask the Mutants: Mutating faulty programs for fault localization. 7th
International Conference on Software Testing, Verification and Validation
(ICST 2014), IEEE, Cleveland, OH, USA, p. 153-162, 2014. ISSN 2159-4848.
Disponível em: <https://doi.org/10.1109/ICST.2014.28>.

MORENO, L. et al. On the use of stack traces to improve text retrieval-
based bug localization. In: 30th International Conference on Software
Maintenance and Evolution, ICSME 2014. Victoria, BC, Canada: IEEE,
2014. p. 151-160. ISBN 9780769553030. ISSN 1063-6773. Disponível em: <https:
//doi.org/10.1109/ICSME.2014.37>.

MOTWANI, M. et al. Do automated program repair techniques repair hard and
important bugs? Empirical Software Engineering, v. 23, n. 5, p. 2901-2947, 2018.
ISSN 15737616. Disponível em: <https://doi.org/10.1007/s10664-017-9550-0>.

NAISH, L.; LEE, H. J.; RAMAMOHANARAO, K. A model for spectra-based
software diagnosis. ACM Transactions on Software Engineering and

https://spectrum.ieee.org/did-you-know-edison-coined-the-term-bug
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1007/s10791-006-9019-z
https://doi.org/10.1109/ICSME.2018.00046
http://www.computerworld.com/article/2522197/it-management/y2k--the-good--the-bad-and-the-crazy.html
https://doi.org/10.1145/3105906
https://doi.org/10.1109/ICST.2014.28
https://doi.org/10.1109/ICSME.2014.37
https://doi.org/10.1007/s10664-017-9550-0

214 Bibliography

Methodology, ACM, v. 20, n. 3, p. 1-32, 2011. ISSN 1049331X. Disponível em:
<https://doi.org/10.1145/2000791.2000795>.

NAMIN, A. S. Statistical Fault Localization Based on Importance Sampling. In: 14th
International Conference on Machine Learning and Applications (ICMLA).
Miami, FL, USA: [s.n.], 2015. p. 58-63. ISBN 978-1-5090-0287-0. Disponível em:
<https://doi.org/10.1109/ICMLA.2015.91>.

NAYROLLES, M.; HAMOU-LHADJ, A. Towards a Classification of Bugs to Facilitate
Software Maintainability Tasks. In: 1st International Workshop on Software
Qualities and Their Dependencies. Gothenburg, Sweden: ACM, 2018. p. 25-32.
ISBN 9781450357418. Disponível em: <https://doi.org/10.1145/3194095.3194101>.

NGUYEN, A. T. et al. A Topic-based Approach for Narrowing the Search Space of
Buggy Files from a Bug Report. In: 26th IEEE/ACM International Conference
on Automated Software Engineering. Washington, DC, USA: IEEE Computer
Society, 2011. (ASE '11), p. 263-272. ISBN 978-1-4577-1638-6. Disponível em:
<https://doi.org/10.1109/ASE.2011.6100062>.

NICHOLS, B. D. Augmented Bug Localization Using Past Bug Information. In:
48th Annual Southeast Regional Conference. Oxford, Mississippi: ACM,
2010. (ACM SE '10), p. 61:1-61:6. ISBN 978-1-4503-0064-3. Disponível em:
<https://doi.org/10.1145/1900008.1900090>.

PAN, S. J.; FELLOW, Q. Y. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering, IEEE, v. 22, n. 10, p. 1-15, 2009. Disponível
em: <https://doi.org/10.1109/TKDE.2009.191>.

PAPADAKIS, M.; TRAON, Y. L. Metallaxis-FL: mutation-based fault localization
Mike. Software Testing Verification and Reliability, v. 25, n. JUN., p. 605-628,
2015. ISSN 0008350X. Disponível em: <https://doi.org/10.1002/stvr.1509>.

PARNIN, C.; ORSO, A. Are Automated Debugging Techniques Actually Helping
Programmers? In: 2011 International Symposium on Software Testing and
Analysis. Toronto, Ontario, Canada: ACM, 2011. (ISSTA'11), p. 199-209. ISBN
978-1-4503-0562-4. Disponível em: <https://doi.org/10.1145/2001420.2001445>.

PAWLAK, R. et al. SPOON: A library for implementing analyses and transformations
of Java source code. Software: Practice and Experience, v. 46, n. 9, p. 1155-1179,
2015. Disponível em: <https://doi.org/10.1002/spe.2346>.

PEARSON, S. et al. Evaluating & improving fault localization techniques. In:
IEEE/ACM 39th International Conference on Software Engineering (ICSE
2017). Buenos Aires, Argentina: IEEE, 2017. ISBN 9781538638682. Disponível em:
<https://doi.org/10.1109/ICSE.2017.62>.

PEREZ, A. et al. A Test-Suite Diagnosability Metric for Spectrum-Based Fault
Localization Approaches. In: IEEE/ACM 39th International Conference

https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1109/ICMLA.2015.91
https://doi.org/10.1145/3194095.3194101
https://doi.org/10.1109/ASE.2011.6100062
https://doi.org/10.1145/1900008.1900090
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1002/stvr.1509
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1002/spe.2346
https://doi.org/10.1109/ICSE.2017.62

Bibliography 215

on Software Engineering, ICSE 2017. Buenos Aires, Argentina: IEEE,
2017. p. 1558-1225. ISBN 9781538638682. ISSN 1872-5392. Disponível em:
<https://doi.org/10.1109/ICSE.2017.66%0A>.

POLISETTY, S.; MIRANSKYY, A.; BA\CSAR, A. On Usefulness of the Deep-
Learning-Based Bug Localization Models to Practitioners. In: 15th International
Conference on Predictive Models and Data Analytics in Software
Engineering. Recife, Brazil: ACM, 2019. (PROMISE'19), p. 16-25. ISBN
9781450372336. Disponível em: <https://doi.org/10.1145/3345629.3345632>.

POSHYVANYK, D. et al. Feature Location Using Probabilistic Ranking of Methods
Based on Execution Scenarios and Information Retrieval. IEEE Transactions
on Software Engineering, v. 33, n. 6, p. 420-432, 2007. Disponível em:
<https://doi.org/10.1109/TSE.2007.1016>.

PRADEL, M. et al. Scaffle: Bug Localization on Millions of Files. In: 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
Virtual Event, USA: ACM, 2020. (ISSTA 2020), p. 225-236. ISBN 9781450380089.
Disponível em: <https://doi.org/10.1145/3395363.3397356>.

PYTLIK, B. et al. Automated Fault Localization Using Potential Invariants.
In: Fifth Int. Workshop on Automated and Algorithmic Debugging.
Ghent, Belgium: Arxiv, 2003. p. 273-276. ISBN 158113472X. Disponível em:
<http://arxiv.org/abs/cs/0310040>.

QI, B. et al. DreamLoc: A Deep Relevance Matching-Based Framework for bug
Localization. IEEE Transactions on Reliability, v. 71, n. 1, p. 235 - 249, 2022.
Disponível em: <https://doi.org/10.1109/TR.2021.3104728>.

QI, Z. et al. An analysis of patch plausibility and correctness for generate-and-validate
patch generation systems. In: 2015 International Symposium on Software
Testing and Analysis (ISSTA 2015). Baltimore, MD, USA: ACM, 2015. p. 24-36.
ISBN 9781450336208. Disponível em: <https://doi.org/10.1145/2771783.2771791>.

RAHMAN, F. et al. Comparing Static Bug Finders and Statistical Prediction.
In: 36th International Conference on Software Engineering. Hyderabad,
India: ACM, 2014. (ICSE 2014), p. 424-434. ISBN 9781450327565. Disponível em:
<https://doi.org/10.1145/2568225.2568269>.

RAHMAN, M. M.; ROY, C. K. Improving IR-Based Bug Localization with Context-
Aware Query Reformulation. In: 40th International Conference on Software
Engineering: Companion Proceeedings. Gothenburg, Sweden: ACM, 2018. p.
348-349. ISBN 9781450355735. Disponível em: <https://doi.org/10.1145/3183440.
3195003>.

RASELIMO, M.; FISCHER, B. Spectrum-Based Fault Localization for Context-Free
Grammars. In: 12th ACM SIGPLAN International Conference on Software

https://doi.org/10.1109/ICSE.2017.66%250A
https://doi.org/10.1145/3345629.3345632
https://doi.org/10.1109/TSE.2007.1016
https://doi.org/10.1145/3395363.3397356
http://arxiv.org/abs/cs/0310040
https://doi.org/10.1109/TR.2021.3104728
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1145/2568225.2568269
https://doi.org/10.1145/3183440.3195003

216 Bibliography

Language Engineering. Athens, Greece: ACM, 2019. (SLE 2019), p. 15-28. ISBN
9781450369817. Disponível em: <https://doi.org/10.1145/3357766.3359538>.

RATH, M.; LO, D.; MÀDER, P. Analyzing requirements and traceability information
to improve bug localization. In: 15th International Conference on Mining
Software Repositories (MSR '18). Gothenburg, Sweden: ACM, 2018. p. 442-453.
ISBN 9781450357166. Disponível em: <https://doi.org/10.1145/3196398.3196415>.

RATH, M.; MÀDER, P. Influence of structured information in bug report
descriptions on ir-based bug localization. In: 44th Euromicro Conference on
Software Engineering and Advanced Applications, SEAA 2018. Prague,
Czech Republic: IEEE, 2018. p. 26-32. ISBN 9781538673829. Disponível em:
<https://doi.org/10.1109/SEAA.2018.00014>.

RAY, B. et al. On the "Naturalness" of Buggy Code. In: 38th International
Conference on Software Engineering. Austin, Texas: ACM, 2016. ISBN
9781450339001. ISSN 02705257. Disponível em: <https://doi.org/10.1145/2884781.
2884848>.

RIPLEY, B. D.; HJORT, N. L. Pattern Recognition and Neural Networks. 1st.
ed. New York, NY, USA: Cambridge University Press, 1995. ISBN 0521460867.

ROSENBLUM, S.; ROSENBLUM, D. S. A Practical Approach to Programming With
Assertions. IEEE Transactions on Software Engineering, v. 21, n. 1, p. 19-31,
1995. ISSN 0098-5589. Disponível em: <https://doi.org/10.1109/32.341844>.

SAHA, R. K. et al. Improving bug localization using structured information retrieval.
In: 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2013). Silicon Valley, CA, USA: IEEE, 2013. p. 345-355. ISBN
9781479902156. Disponível em: <https://doi.org/10.1109/ASE.2013.6693093>.

SAHA, R. K.; SAHA, A. K.; PERRY, D. E. Toward understanding the causes of
unanswered questions in software information sites: a case study of stack overflow.
In: 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2013). Saint Petersburg, Russia: ACM, 2013. p. 663. ISBN 9781450322379. Disponível
em: <https://doi.org/10.1145/2491411.2494585>.

SASSO, T. D.; MOCCI, A.; LANZA, M. What Makes a Satisficing Bug Report? In:
2016 IEEE International Conference on Software Quality, Reliability and
Security (QRS). Vienna, Austria: IEEE, 2016. p. 164-174. ISBN 9781509041275.
Disponível em: <https://doi.org/10.1109/QRS.2016.28>.

SHI, P. et al. A Theoretical Analysis of the Risk Evaluation Formulas for
Spectrum-Based Fault Localization XIAOYUAN. ACM Transactions on Software
Engineering and Methodology, v. 22, n. 4, p. 1-31, 2013. ISSN 10069313.
Disponível em: <https://doi.org/10.1145/2522920.2522924>.

https://doi.org/10.1145/3357766.3359538
https://doi.org/10.1145/3196398.3196415
https://doi.org/10.1109/SEAA.2018.00014
https://doi.org/10.1145/2884781.2884848
https://doi.org/10.1109/32.341844
https://doi.org/10.1109/ASE.2013.6693093
https://doi.org/10.1145/2491411.2494585
https://doi.org/10.1109/QRS.2016.28
https://doi.org/10.1145/2522920.2522924

Bibliography 217

SHI, Z. et al. Comparing learning to rank techniques in hybrid bug localization.
Applied Soft Computing Journal, Elsevier B.V., v. 62, p. 636-648, 2018. ISSN
15684946. Disponível em: <https://doi.org/10.1016/j.asoc.2017.10.048%0A>.

SHI, Z.; KEUNG, J.; SONG, Q. An Empirical Study of BM25 and BM25F Based
Feature Location Techniques. In: International Workshop on Innovative
Software Development Methodologies and Practices. Hong Kong, China:
ACM, 2014. (InnoSWDev 2014), p. 106-114. ISBN 978-1-4503-3226-2. Disponível em:
<https://doi.org/10.1145/2666581.2666594>.

SIEGMUND, B. et al. Studying the advancement in debugging practice of professional
software developers. Software Quality Journal, Springer US, v. 25, p. 83-110, 2014.
ISSN 15731367. Disponível em: <http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6983851> .

SILVA-JUNIOR, D. et al. Data-Flow-Based Evolutionary Fault Localization. In:
35th Annual ACM Symposium on Applied Computing. Brno Czech Republic:
Association for Computing Machinery, 2020. p. 1963-1970. ISBN 9781450368667.
Disponível em: <https://doi.org/10.1145/3341105.3373946>.

SINHA, V. S.; MANI, S.; MUKHERJEE, D. Is text search an effective approach for
fault localization: A practitioners perspective. In: ACM Conference on Systems,
Programming, and Applications: Software for Humanity (SPLASH'12).
Tucson, Arizona, USA: ACM, 2012. p. 159-170. ISBN 9781450315630. Disponível em:
<https://doi.org/10. 1 145/2384716.2384770>.

SISMAN, B.; KAK, A. C. Incorporating version histories in Information Retrieval
based bug localization. In: 9th IEEE Working Conference on Mining Software
Repositories. Zurich, Switzerland: IEEE, 2012. (MSR '12), p. 50-59. ISBN
9781467317610. ISSN 21601852. Disponível em: <https://doi.org/10.1109/MSR.2012.
6224299>.

SOBREIRA, V. et al. Dissection of a Bug Dataset: Anatomy of 395 Patches from
Defects4J. In: 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER). Campobasso, Italy: IEEE, 2018. p. 130-140. ISBN
9781538649695. Disponível em: <https://doi.org/10. 1 109/SANER.2018.8330203>.

SOHN, J. et al. Assisting Bug Report Assignment Using Automated Fault Localisation:
An Industrial Case Study. In: 2021 14th IEEE Conference on Software Testing,
Verification and Validation (ICST). Porto de Galinhas, Brazil: IEEE, 2021. p.
284-294. Disponível em: <https://doi.org/10.1109/ICST49551.2021.00041>.

SOHN, J.; YOO, S. FLUCCS: Using Code and Change Metrics to Improve Fault
Localization. In: 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis. Santa Barbara, CA, USA: Association for Computing
Machinery, 2017. (ISSTA 2017), p. 273-283. ISBN 9781450350761. Disponível em:
<https://doi.org/10.1145/3092703.3092717>.

https://doi.org/10.1016/j.asoc.2017.10.048%250A
https://doi.org/10.1145/2666581.2666594
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6983851
https://doi.org/10.1145/3341105.3373946
https://doi.org/10._1_145/2384716.2384770
https://doi.org/10.1109/MSR.2012.6224299
https://doi.org/10._1_109/SANER.2018.8330203
https://doi.org/10.1109/ICST49551.2021.00041
https://doi.org/10.1145/3092703.3092717

218 Bibliography

SOTO, M. et al. A Deeper Look into Bug Fixes: Patterns, Replacements, Deletions, and
Additions. In: 13th International Conference on Mining Software Repositories.
Austin, Texas: ACM, 2016. (MSR '16), p. 512-515. ISBN 978-1-4503-4186-8. Disponível
em: <http://doi.acm.org/10.1145/2901739.2903495>.

SPEER, R.; CHIN, J.; HAVASI, C. ConceptNet 5.5: An Open Multilingual Graph of
General Knowledge. In: 31th AAAI Conference on Artificial Intelligence (AAAI-
17). San Francisco, California, USA: AAAI, 2017. p. 4444-4451. ISBN 0142-9612 (Print).
ISSN 0378-7753. Disponível em: <https://dl.acm.org/doi/10.5555/3298023.3298212>.

SUMNER, W. N.; ZHANG, X. Comparative Causality: Explaining the Differences
between Executions. In: 2013 International Conference on Software
Engineering. San Francisco, CA, USA: IEEE, 2013. (ICSE'13), p. 272-281. ISBN
9781467330749. Disponível em: <https://doi.org/10.1109/ICSE.2013.6606573>.

TAN, S. H. et al. Codeflaws: a programming competition benchmark for evaluating
automated program repair tools. In: IEEE/ACM 39th International Conference
on Software Engineering Companion (ICSE-C). Buenos Aires, Argentina: IEEE,
2017. p. 180-182. Disponível em: <https://doi.org/10.1109/ICSE-C.2017.76>.

TASHMAN, L. J. Out-of-sample tests of forecasting accuracy: An analysis and review.
International Journal of Forecasting, v. 16, n. 4, p. 437-450, 2000. ISSN 01692070.
Disponível em: <https://doi.org/10.1016/S0169-2070(00)00065-0>.

THOMPSON, G.; SULLIVAN, A. K. ProFL: A Fault Localization Framework for
Prolog. In: Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis. Virtual Event, USA: Association for Computing
Machinery, 2020. (ISSTA 2020), p. 561-564. ISBN 9781450380089. Disponível em:
<https://doi.org/10.1145/3395363.3404367>.

TIAN, Y.; LO, D. A Comparative Study on the Effectiveness of Part-of-Speech
Tagging Techniques on Bug Report. In: 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). Montreal,
QC, Canada: IEEE, 2015. p. 570-574. ISBN 9781479984695. Disponível em:
<https://doi.org/10.1109/SANER.2015.7081879>.

TOMASSI, D. A. et al. BugSwarm: Mining and Continuously Growing a Dataset
of Reproducible Failures and Fixes. In: 41st International Conference
on Software Engineering (ICSE). Montreal, QC, Canada: IEEE, 2019.
v. 2019-May. ISBN 9781728108698. ISSN 02705257. Disponível em: <https:
//doi.org/10.1109/ICSE.2019.00048>.

TU, F. et al. Be Careful of When: An Empirical Study on Time-Related
Misuse of Issue Tracking Data. In: ESEC/FSE 2018. Lake Buena Vista, FL,
USA: ACM, 2018. p. 307-318. ISBN 9781450355735. Disponível em: <https:
//doi.org/10.1145/3236024.3236054>.

http://doi.acm.org/10.1145/2901739.2903495
https://dl.acm.org/doi/10.5555/3298023.3298212
https://doi.org/10.1109/ICSE.2013.6606573
https://doi.org/10.1109/ICSE-C.2017.76
https://doi.org/10.1016/S0169-2070(00)00065-0
https://doi.org/10.1145/3395363.3404367
https://doi.org/10.1109/SANER.2015.7081879
https://doi.org/10.1109/ICSE.2019.00048
https://doi.org/10.1145/3236024.3236054

Bibliography 219

TU, Z.; SU, Z.; DEVANBU, P. On the localness of software. In: 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering
- FSE 2014. Hong Kong, China: ACM, 2014. p. 269-280. ISBN 9781450330565.
Disponível em: <https://doi.org/10.1145/2635868.2635875>.

UNENO, Y.; MIZUNO, O.; CHOI, E.-h. Using aDistributedRepresentationofWords in
Localizing Relevant Files for Bug Reports. In: 2016 IEEE International Conference
on Software Quality, Reliability and Security (QRS). Vienna, Austria: IEEE,
2016. ISBN 9781509041275. Disponível em: <https://doi.org/10.1109/QRS.2016.30>.

WANG, Q.; PARNIN, C.; ORSO, A. Evaluating the Usefulness of IR-based Fault
Localization Techniques. In: 2015 International Symposium on Software Testing
and Analysis. Baltimore, MD, USA: ACM, 2015. (ISSTA 2015), p. 1-11. ISBN
978-1-4503-3620-8. Disponível em: <https://doi.org/10.1145/2771783.2771797>.

WANG, S. et al. Bugram: Bug Detection with N-gram Language Models. In: 31st
IEEE/ACM International Conference on Automated Software Engineering.
Singapore: ACM, 2016. (ASE 2016), p. 708-719. ISBN 978-1-4503-3845-5. Disponível
em: <http://doi.acm.org/10.1145/2970276.2970341>.

WANG, S.; LO, D. Version History, Similar Report, and Structure: Putting Them
Together for Improved Bug Localization. In: 22nd International Conference on
Program Comprehension. Hyderabad, India: ACM, 2014. (ICPC 2014), p. 53-63.
ISBN 9781450328791. Disponível em: <http://doi.acm.org/10.1145/2597008.2597148>.

_____ . AmaLgam+: Composing Rich Information Sources for Accurate Bug
Localization. Journal of Software: Evolution and Process, v. 28, n. 10, 2016.
ISSN 20477481. Disponível em: <https://doi.org/10.1002/smr.1801>.

WANG, Y. et al. Bug Patterns Localization Based on Topic Model for Bugs in Program
Loop. In: 18th International Conference on Software Quality, Reliability,
and Security Companion, QRS-C 2018. Lisbon, Portugal: IEEE, 2018. ISBN
9781538678398. Disponível em: <https://doi.org/10.1109/QRS-C.2018.00070>.

_____ . DrDebug: Deterministic Replay based Cyclic Debugging with Dynamic
Slicing Categories and Subject Descriptors. In: IEEE/ACM International
Symposium on Code Generation and Optimization. Orlando, FL, USA:
ACM, 2014. (CGO'14), p. 98:98-98:108. ISBN 9781450326704. Disponível em:
<http://doi.acm.org/10.1145/2544137.2544152>.

WEN, M.; WU, R.; CHEUNG, S.-C. Locus: Locating Bugs from Software Changes.
In: 31st IEEE/ACM International Conference on Automated Software
Engineering. Singapore: ACM, 2016. (ASE 2016), p. 262-273. ISBN 978-1-4503-3845
5. ISSN 1090-3801. Disponível em: <https://doi.org/10.1145/2970276.2970359>.

WONG, C.-P. et al. Boosting Bug-Report-Oriented Fault Localization with
Segmentation and Stack-Trace Analysis. In: International Conference on

https://doi.org/10.1145/2635868.2635875
https://doi.org/10.1109/QRS.2016.30
https://doi.org/10.1145/2771783.2771797
http://doi.acm.org/10.1145/2970276.2970341
http://doi.acm.org/10.1145/2597008.2597148
https://doi.org/10.1002/smr.1801
https://doi.org/10.1109/QRS-C.2018.00070
http://doi.acm.org/10.1145/2544137.2544152
https://doi.org/10.1145/2970276.2970359

220 Bibliography

Software Maintenance and Evolution (ICSME). Victoria, BC, Canada:
IEEE, 2014. p. 181-190. ISBN 978-1-4799-6146-7. ISSN 1063-6773. Disponível em:
<https://doi.org/10.1109/ICSME.2014.40>.

WONG, W. E. et al. The DStar Method for Effective Software Fault Localization.
IEEE Transactions on Reliability, v. 63, n. 1, p. 290-308, 2014. ISSN 0018-9529.
Disponível em: <https://doi.org/10.1109/TR.2013.2285319>.

_____ . A Survey on Software Fault Localization. IEEE Transactions on
Software Engineering, PP, n. 99, p. 1, 2016. ISSN 0098-5589. Disponível em:
<https://doi.org/10.1109/TSE.2016.2521368>.

WU, Q. et al. Adapting boosting for information retrieval measures. Information
Retrieval, v. 13, n. 3, p. 254-270, 2010. ISSN 13864564.

XIAO, Y. et al. Improving bug localization with word embedding and enhanced
convolutional neural networks. Information and Software Technology,
Elsevier, v. 105, n. July 2018, p. 17-29, 2019. ISSN 09505849. Disponível em:
<https://doi.org/10.1016/j.infsof.2018.08.002>.

_____ . Improving Bug Localization with an Enhanced Convolutional Neural Network.
In: 24th Asia-Pacific Software Engineering Conference (APSEC). Nanjing,
China: IEEE, 2017. p. 338-347. ISBN 9781538636817. ISSN 15301362. Disponível em:
<https://doi.org/10.1109/APSEC.2017.40>.

_____ . Bug Localization with Semantic and Structural Features using Convolutional
Neural Network and Cascade Forest. In: 22nd International Conference on
Evaluation and Assessment in Software Engineering 2018. Christchurch, New
Zealand: ACM, 2018. (EASE'18), p. 101-111. ISBN 9781450364034. Disponível em:
<https://doi.org/10.1145/3210459.3210469>.

XU, J.; LI, H. AdaRank: A Boosting Algorithm for Information Retrieval. In: 30th
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval - SIGIR '07. Amsterdam, The Netherlands: ACM,
2007. p. 391. ISBN 9781595935977. ISSN 1595935975 (ISBN); 9781595935977 (ISBN).
Disponível em: <https://doi.org/10. 1 145/1277741 . 1277809>.

XUAN, J.; MONPERRUS, M. Learning to combine multiple ranking metrics
for fault localization. In: 30th International Conference on Software
Maintenance and Evolution (ICSME 2014). Victoria, BC, Canada: [s.n.],
2014. p. 191-200. ISBN 9780769553030. ISSN 1063-6773. Disponível em: <https:
//doi.org/10.1109/ICSME.2014.41>.

YANG, G.; MIN, K.; LEE, B. Applying Deep Learning Algorithm to Automatic
Bug Localization and Repair. In: 35th Annual ACM Symposium on Applied
Computing. Brno Czech Republic: ACM, 2020. p. 1634-1641. ISBN 9781450368667.
Disponível em: <https://doi.org/10.1145/3341105.3374005>.

https://doi.org/10.1109/ICSME.2014.40
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1016/j.infsof.2018.08.002
https://doi.org/10.1109/APSEC.2017.40
https://doi.org/10.1145/3210459.3210469
https://doi.org/10._1_145/1277741_._1277809
https://doi.org/10.1109/ICSME.2014.41
https://doi.org/10.1145/3341105.3374005

Bibliography 221

YANG, Z. et al. IncBL: Incremental Bug Localization. In: 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
Melbourne, Australia: IEEE, 2021. p. 1223-1226. Disponível em: <https:
//doi.org/10. 1 109/ASE51524.2021 .9678546>.

YE, X.; BUNESCU, R.; LIU, C. Learning to Rank Relevant Files for Bug Reports
Using Domain Knowledge. In: 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. Hong Kong, China: ACM, 2014. (FSE
2014, April), p. 689-699. ISBN 978-1-4503-3056-5. ISSN 9781450330565. Disponível
em: <http://doi.acm.org/10. 1 145/2635868.2635874>.

_____ . Mapping Bug Reports to Relevant Files: A Ranking Model, a Fine-
Grained Benchmark, and Feature Evaluation. IEEE Transactions on Software
Engineering, v. 42, n. 4, p. 379 - 402, 2016. ISSN 00985589. Disponível em:
<https://doi.org/10.1109/TSE.2015.2479232>.

YE, X. et al. From Word Embeddings to Document Similarities for Improved Information
Retrieval in Software Engineering. In: 38th International Conference on Software
Engineering (ICSE). Austin, TX, USA: ACM, 2016. (ICSE '16), p. 404-415. ISBN
978-1-4503-3900-1. Disponível em: <https://doi.org/10.1145/2884781.2884862>.

YOUM, K. C. et al. Bug Localization Based on Code Change Histories and Bug
Reports. 2015 Asia-Pacific Software Engineering Conference (APSEC), p.
190-197, 2015. Disponível em: <https://doi.org/10.1109/APSEC.2015.23>.

YUAN, W. et al. DependLoc: A Dependency-based Framework For Bug
Localization. In: 27th Asia-Pacific Software Engineering Conference
(APSEC). Singapore, Singapore: IEEE, 2020. p. 61-70. Disponível em: <https:
//doi.org/10.1109/APSEC51365.2020.00014>.

ZHANG, J. et al. Exploiting Code Knowledge Graph for Bug Localization via
Bi-Directional Attention. In: 28th International Conference on Program
Comprehension. Seoul, Republic of Korea: ACM, 2020. p. 219-229. ISBN
9781450379588. Disponível em: <https://doi.org/10.1145/3387904.3389281>.

ZHANG, M. et al. Boosting spectrum-based fault localization using PageRank. In:
26th ACM SIGSOFT International Symposium on Software Testing and
Analysis - ISSTA 2017. Santa Barbara, CA, USA: ACM, 2017. p. 261-272. ISBN
9781450350761. Disponível em: <https://doi.org/10.1145/3092703.3092731>.

ZHANG, T. et al. A Commit Messages-Based Bug Localization for Android
Applications. International Journal of Software Engineering and Knowledge
Engineering, v. 29, n. 4, p. 457-487, 2019. ISSN 02181940. Disponível em:
<https://doi.org/10.1142/S0218194019500207>.

ZHANG, Z. et al. CNN-FL: An Effective Approach for Localizing Faults using
Convolutional Neural Networks. In: 2019 IEEE 26th International Conference

https://doi.org/10._1_109/ASE51524.2021_.9678546
http://doi.acm.org/10._1_145/2635868.2635874
https://doi.org/10.1109/TSE.2015.2479232
https://doi.org/10.1145/2884781.2884862
https://doi.org/10.1109/APSEC.2015.23
https://doi.org/10.1109/APSEC51365.2020.00014
https://doi.org/10.1145/3387904.3389281
https://doi.org/10.1145/3092703.3092731
https://doi.org/10.1142/S0218194019500207

222 Bibliography

on Software Analysis, Evolution and Reengineering (SANER). Hangzhou,
China: IEEE, 2019. p. 445-455. Disponível em: <https://doi.org/10. 1 109/SANER.
2019.8668002>.

ZHAO, F. et al. Is learning-to-rank cost-effective in recommending relevant files for
bug localization? In: International Conference on Software Quality, Reliability
and Security (QRS). Vancouver, BC, Canada: IEEE, 2015. p. 298-303. ISBN
9781467379892. Disponível em: <https://doi.org/10.1109/QRS.2015.49>.

ZHENG, W. et al. Fault Localization Analysis Based on Deep Neural Network.
Mathematical Problems in Engineering, v. 2016, p. 11, 2016. Disponível em:
<https://doi.org/10.1155/2016/1820454>.

ZHOU, J. et al. Where Should the Bugs Be Fixed? More Accurate Information
Retrieval-based Bug Localization Based on Bug Reports. In: 34th International
Conference on Software Engineering. Zurich, Switzerland: IEEE, 2012.
(ICSE '12, 11), p. 14-24. ISBN 9781467310673. ISSN 02705257. Disponível em:
<https://doi.org/10.1109/ICSE.2012.6227210>.

https://doi.org/10._1_109/SANER.2019.8668002
https://doi.org/10.1109/QRS.2015.49
https://doi.org/10.1155/2016/1820454
https://doi.org/10.1109/ICSE.2012.6227210

