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“The higher we soar,

the smaller we appear to those who cannot fly.”

— Theodore von Karman





RESUMO

SILVA, H. L. Projeto e otimização estrutural e aeroelástica de asas treliçadas formadas
por estruturas modulares. 2022. 179 p. Tese (Doutorado em Engenharia Mecânica) – Facul-
dade de Engenharia Mecânica, Universidade Federal de Uberlândia, Uberlândia – MG, 2022.

Este trabalho estuda uma nova abordagem de projeto e otimização estrutural e aeroelástica
de asas utilizando estruturas modulares do tipo treliça. Em virtude das metas de redução de
emissão de poluentes e da alta demanda por aeronaves cada mais mais leves e eficientes, este
tema de pesquisa tem se tornado muito relevante atualmente, se tornando uma contribuição
relevante nas novas abordagens de projeto aeronáutico. Neste contexto, a ideia de utilização
de estruturas modulares vem com a promessa de fabricação eficiente e custos de manutenção
reduzidos. Assim, o trabalho propõe uma nova abordagem de topologia estrutural, eliminando os
elementos tradicionais, como longarinas e nervuras, e substituindo por estruturas modulares do
tipo treliça, que são conectadas por juntas esféricas em suas extremidades. A malha topológica
das estruturas são criadas a partir da triangulação e tesselagem de Delaunay. O modelo estrutural
é baseado em dois tipos de elementos finitos: elementos de viga e quadriláteros. Os elementos
de viga são definidos a partir dos elementos consistentes de Timoshenko e os quadriláteros são
baseados na cinemática Mindlin-Reissner usando interpolação bilinear e integração reduzida para
evitar shear locking. O Método Doublet-Lattice é usado para calcular a aerodinâmica subsônica
não estacionária, e o método P-K é usado para calcular a solução do sistema aeroelástico. Para
exemplos e estudos de caso, é utilizada a geometria da asa do FLEXOP como referência para as
dimensões. São propostas três otimizações, onde em todas as funções objetivos são minimizar
o peso estrutural da asa e maximizar a velocidade de flutter. A primeira otimização tem como
variáveis de projeto o número de pontos de controles, ou nós, em cada aerofólio e o número
de seções ao longo da envergadura. Na segunda otimização, são otimizados individualmente
os diâmetros externos e espessuras de cada uma das estruturas modulares, podendo, inclusive,
eliminar aquelas desnessárias. Os resultados mostram que é possível obter asas relativamente
leves e que atendam aos requisitos estruturais e aeroelásticos; todavia, a definição dos parâmetros
de otimização influenciam diretamente na geração da malha e custo computacional da otimização.
Sobretudo, as estruturas modulares têm se mostrado uma boa estratégia no projeto estruturas de
novos conceitos de asa.

Palavras-chave: Projeto de asa, Estruturas modulares, Triangulação de Delaunay, Método
doublet lattice, Otimização.





ABSTRACT

SILVA, H. L. Structural and Aeroelastic Design and Optimization of Truss-based Modu-
lar Wing Structures. 2022. 179 p. Tese (Doutorado em Engenharia Mecânica) – Facul-
dade de Engenharia Mecânica, Universidade Federal de Uberlândia, Uberlândia – MG, 2022.

This work studies a new design approach and structural and aeroelastic optimization of wings
using truss-based modular structures. Due to pollutant emission reduction targets and the high
demand for increasingly lighter and more efficient aircraft, this research topic has become very
relevant today, becoming a relevant contribution to new approaches to aeronautical design. In this
context, the idea of using modular structures comes with the promise of efficient manufacturing
and reduced maintenance costs. Thus, the work proposes a new approach to structural topology,
eliminating traditional elements, such as spars and ribs, and replacing them with modular truss-
based structures, which are connected by spherical joints at their ends. The topological mesh of
the structures are created from the Delaunay triangulation and tessellation. The structural model
is based on two types of finite elements: beam and quadrilateral elements. The beam elements
are defined from consistent Timoshenko elements and the quadrilaterals are based on Mindlin-
Reissner kinematics using bi-linear interpolation and reduced integration to prevent shear locking.
The Doublet-Lattice Method is used to predict the unsteady subsonic aerodynamics, and the P-K
method is used to compute the aeroelastic system solution. For the examples and case studies, a
reference wing geometry from the FLEXOP project is used as a baseline. Two optimizations are
proposed, where in all the objective functions are to minimize the structural weight of the wing
and to maximize the flutter speed. The first optimization has as design variables the number
of control points, or nodes, in each airfoil and the number of sections along the span. In the
second optimization, the external diameters and thicknesses of each of the modular structures
are individually optimized, even eliminating unnecessary ones. The results show that it is
possible to obtain relatively light wings that meet the structural and aeroelastic requirements;
however, the definition of the optimization parameters directly influence the mesh generation
and computational cost of the optimization. Above all, modular structures have proved to be a
good strategy in the design of structures for new wing concepts.

Keywords: Wing design, Modular structures, Delaunay Triangulation, Doublet lattice method,
Optimization.
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ψ — approximation function

Ω — domain of triangulation

ω — oscillation frequency



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.1 Research Objective and Approach . . . . . . . . . . . . . . . . . . . . 31
1.2 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 LITERATURE SURVEY AND THEORY . . . . . . . . . . . . . . . 35
2.1 Structural Wing Design . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.1 Impact of the wing airfoil on the structural design . . . . . . . . . . 38
2.1.2 Impact of the wing planform on the structural design . . . . . . . . 38
2.1.3 Structural Weight Reduction Alternatives . . . . . . . . . . . . . . . . 40
2.2 Topology Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4 Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 AERODYNAMIC MODELING . . . . . . . . . . . . . . . . . . . . . 51
3.1 Fundamentals of Unsteady Aerodynamics . . . . . . . . . . . . . . . . 51
3.1.1 Fundamental Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.2 Linearization of the Full Potential Equation . . . . . . . . . . . . . . 56
3.1.3 Linearized Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 57
3.1.4 Elementary Solutions of the Linearized Aerodynamic Potential Equa-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.5 Equation for Pressure Doublet Sheet and its Kernel Function . . . . 61
3.1.6 DLM Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.6.1 Parabolic Approximation of the Integrand . . . . . . . . . . . . . . . . . . 67
3.1.6.2 Quartic Approximation of the Kernel Function . . . . . . . . . . . . . . . . 69
3.1.7 Aerodynamic Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 DLM Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.1 Verification of the Kernel Function . . . . . . . . . . . . . . . . . . . . 71
3.2.2 Planar Wings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 STRUCTURAL MODELING . . . . . . . . . . . . . . . . . . . . . . 77
4.1 Homogeneous Euler-Lagrangian equations governing 3D Timoshenko

beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 3D Truss Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Interpolation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



4.2.2 Stiffness and Mass Matrices . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Plate Formulation using the First-Order Shear Deformation Theory

(FSDT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.1 Interpolation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.2 Consistent Mass Matrices for Plates . . . . . . . . . . . . . . . . . . . 98
4.3.3 Lumped Mass Matrices for 2D Plates . . . . . . . . . . . . . . . . . . 99
4.3.4 Shear Locking and Drilling . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.5 Consistent Mass Matrix for 3D Plates . . . . . . . . . . . . . . . . . . 102
4.3.6 Lumped Mass Matrix for 3D Plates . . . . . . . . . . . . . . . . . . . 103
4.4 Structural Implementation and Verification . . . . . . . . . . . . . . . 104

5 AEROELASTIC MODELING . . . . . . . . . . . . . . . . . . . . . . 109
5.1 Fundamentals of Structural Dynamics . . . . . . . . . . . . . . . . . . 110
5.2 Coupling of Structural and Aerodynamic Models . . . . . . . . . . . 113
5.3 Interpolation by Surface Spline . . . . . . . . . . . . . . . . . . . . . . 115
5.4 Generalized Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5 Flutter Prediction Methods . . . . . . . . . . . . . . . . . . . . . . . . 119
5.5.1 p-k Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5.2 Interpolation of Generalized Aerodynamic Matrices . . . . . . . . . . 123
5.6 Aeroelastic Integration and Code Implementation . . . . . . . . . . . 125
5.7 Aeroelastic Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 WING DESIGN AND OPTIMIZATION . . . . . . . . . . . . . . . . 133
6.1 Modular Truss-Based Wing Design . . . . . . . . . . . . . . . . . . . . 133
6.1.1 Delaunay Tessellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.1.1.1 Principles of Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.1.1.2 Delaunay triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.1.1.3 Conversion from 2D to 3D Delaunay Meshes . . . . . . . . . . . . . . . . . 137
6.1.1.4 Delaunay Triangulation and Tetrahedrization . . . . . . . . . . . . . . . . . 138
6.1.1.5 Wing Structural Mesh with Delaunay Tessellation . . . . . . . . . . . . . . 139
6.1.2 Joint Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.1.2.1 Models of Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.1.3 Joint Mass Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.2 FLEXOP’s Wing Model . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3 Method of Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.4 Optimization #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.5 Optimization #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7 CONCLUSIONS AND PERSPECTIVES . . . . . . . . . . . . . . . . 163
7.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



7.2 Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167





29

CHAPTER

1
INTRODUCTION

“Scientists study the world as it is; engineers create

the word that has never been.”
— Theodore von Karman

IN the last years, the aerospace industry has faced many challenges in the development of new

projects and technological innovations (WHEELER; BOZHKO, 2014). With a global debate

increasingly focused on environmental impacts and other climate changes, aviation as a whole

could not be absent from the discussions, since it is one of the biggest contributors to the emission

of greenhouse gases (BECKEN; MACKEY, 2017). In this context, engineers and researchers

have been dedicating efforts to develop increasingly efficient aircraft, i.e., aircraft that are

increasingly lighter and that consume less fossil fuels (NAAYAGI, 2013; BOWMAN et al., 2007;

VELICKI; JEGLEY, 2011; KANG; YE; GO, 2016); however, to achieve very aggressive goals

(BONET et al., 2011; ACARE, Advisory Council for Aviation Research Innovation in Europe,

2012), it is necessary to move forward and create new disruptive technologies (GRÖNSTEDT et

al., 2016; GHADGE et al., 2018; MOORE, 2010).

Regarding fossil fuel consumption, in recent years many conceptual projects and experi-

mental models have been presented to the market (BRELJE; MARTINS, 2019; LAPEÑA-REY

et al., 2010; NANDA, 2011; JUVE et al., 2016; SIEMENS, 2016; BORER et al., 2016; BAR-

TELS et al., 2015). Hybrid-electric and fully-electric aircraft designs seek to combine innovative

propulsion systems, including electric motors and batteries, in order to reduce energy consump-

tion during a certain mission, which can make somehow some operations more profitable, such
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as the thin-haul operations (SILVA; GUIMARÃES, 2020). However, most operations are not

yet benefited, since long-range missions require a lot of stored energy, which would imply tons

of batteries (SILVA et al., 2021). Thus, the technological advancement of specific energy of

batteries is still crucial (TARIQ et al., 2016). In this context, other alternatives have been recently

presented, such as the new Airbus hydrogen-powered airplanes (AIRBUS. . . , 2020). These new

concepts rely on hydrogen as a primary source, granting zero chemical emissions in all phases of

flight (TRAINELLI et al., 2019), which enables advances towards decarbonization of the entire

aviation industry, likely being a solution for aerospace and many other industries to meet their

climate-neutral targets.

On the other hand, when it comes to more efficient aircraft, the idea of better aerodynamic

efficiencies and lighter structures easily comes to mind. For better aerodynamic efficiency of

next-generation aircraft concepts, many studies propose wings with higher aspect ratios and

different design shapes, examples being the D8.x jet transport configuration (DRELA, 2011) or

the Truss-Braced Wing concept (BRADLEY; DRONEY, 2011). Moreover, Martins, Kennedy and

Kenway (2014) evaluate the impact of new structural material technologies on the aerostructural

trade-offs in the design of conventional and high aspect ratio wing design. Zhang, Li and Kou

(2005) design and compare sandwich multi-spar structures and innovative mixed structure basing

on the structural characteristics of high aspect ratio wings. Furthermore, Afonso et al. (2017)

present a review on the state-of-the-art on nonlinear aeroelasticity of high aspect-ratio wing. At

the same time, when designing aircraft wings with bigger spans and with lighter structures, these

wings tend to become less stiff and consequently more prone to aeroelastic instabilities such as

flutter, which can render much of the operation envelope unfeasible. In this sense, aeroelastic

constraints become important issues to take care of and account for during the design process,

mainly in early design stages (ÖSTERHELD; HEINZE; HORST, 2000), preventing costly design

changes in later design phases or worse during flight testing.

Some works have been studying new models of structure for the wing, presenting novel

manufacturing techniques and enabling unconventional internal wing layouts. Saleem, Yuqing

and Yunqiao (2008) apply nonparametric topology optimization and manufacturing simulation

on a commercial aircraft vertical stabilizer component. Sleesongsom, Bureerat and Tai (2013)
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propose a novel design approach for synthesizing the internal structural layout of a morphing

wing. Nevertheless, when the topic is manufacturing, assembling, and optimization with design

constraints, it is important to ensure that the structures can be easily handled and used for large

scale. Thus, a good strategy is to divide the structure into a set of similar parts so that the process

becomes less costly and easier to be reused, which in turn represents the concept of modularity.

Therefore, modular structures have also been studied in aerospace applications because they

present benefits analogous to truss topology. Following that, Montemurro, Vincenti and Vannucci

(2012) present a two-level procedure for the global optimum design of composite modular

structures, applying to the design of an aircraft wing. Moses, Fuchs and Ryvkin (2002) suggest a

numerical method for the topological design of modular structures under general and arbitrary

loading.

1.1 Research Objective and Approach

The need to develop lighter aircraft with easy-to-manufacture structures has become a

focus in aircraft design recently. Thus, this work deals with structural wing design studies and

optimizations using modular structures, especially applying truss-based concept. Along those

lines, the main objectives of this work include:

(i) To make a literature review of the most recent works performed on structural wing design

and modular structures including topology optimization;

(ii) To present an aerodynamic and structural modeling, along with aeroelastic coupling, which

are able to evaluate the dynamic behaviour of the truss-based wing;

(iii) To propose an optimized spatial structural arrangement, i.e., a topology optimization for

the truss-based wing that accounts for structural and aeroelastic constraints;

(iv) To present an aeroelastic modeling, i.e., to couple the aerodynamic and structural tools

developed in order to obtain the aeroelastic response of any wing model, and, consequently,

the flutter solution;
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(v) To discuss how the design parameters affect the trade-off between the weight of the wing

structure and the flutter velocities. Overall, to discuss how the modular structures impacts

the wing design.

In summary, the main contributions of this work are the use of modular structures in

aircraft wings, which is not found in the literature. In addition, to make a study of topological

optimization of the structural mesh considering structural and aeroelastic constraints.

1.2 Document Structure

This document is structured as follows:

• Chapter 2: a literature review is carried out on the use of modular structures in engineering,

especially in aerospace applications. In addition, the main studies and contributions

presented in the literature on the subject are listed;

• Chapter 3: the aerodynamic modeling and its formulation are presented, which is based on

the Doublet-Lattice Method (DLM) for unsteady flow. A verification is presented at the

end of the chapter in order to verify the accuracy of the code implementation compared to

literature references;

• Chapter 4: the structural modeling is presented basing on two types of finite elements: beam

and quadrilateral elements. The beam elements are defined from consistent Timoshenk

elements and the quadrilaterals are based on Mindlin-Reissner kinematics using bi-linear

interpolation and reduced integration to prevent shear locking. A verification is presented at

the end of the chapter in order to verify the accuracy of the code implementation compared

to Nastran;

• Chapter 5: the aeroelastic modeling is presented, i.e., how the aerostructural coupling is

addressed. Also, the P-K method is used to compute the aeroelastic system solution. At

the end of the chapter, a verification is presented in order to ensure the agreement of the

results when compared to Nastran;
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• Chapter 6: A truss-based wing design accounting for structural and aeroelastic constraints

is presented. It is proposed a new approach to structural topology, eliminating traditional

elements, such as spars and ribs, and replacing them with modular truss-based structures,

which are connected by spherical joints at their ends. The topological mesh of the structures

are created from the Delaunay triangulation and tessellation. For the examples and case

studies, a reference wing geometry from the FLEXOP project is used as a baseline. Two

optimizations are proposed, where in all the objective functions are to minimize the

structural weight of the wing and to maximize the flutter speed. The first optimization

has as design variables the number of control points, or nodes, in each airfoil and the

number of sections along the span. In the second optimization, the external diameters and

thicknesses of each of the modular structures are individually optimized, even eliminating

unnecessary ones;

• Chapter 7: this chapter summarizes the main aspects covered by this work and discuss the

main conclusions regarding the methods and approaches presented, and what are the next

proposals for future works.
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CHAPTER

2
LITERATURE SURVEY AND THEORY

“To most people, the sky is the limit. To those who

love aviation, the sky is home.”
— Jerry Crawford

THIS chapter presents some concepts and a literature survey and theory about the research

that contributed to the development of this doctoral thesis. The first section addresses the

structural wing design and how the wing airfoil and wing planform affects the structural design.

Next, some alternatives in terms of structural weight reduction are presented, along with some

concepts that improve flutter speed. Last but not least, it is presented the concepts and studies

related to topology optimization for structural wing design.

2.1 Structural Wing Design

Flying has always been one of humanity’s greatest desires and, since the beginning of the

last century, several aircraft models and prototypes have been developed throughout history. In

the beginning, in the days of the Wright Brothers and Santos Dumont, the role of the aircraft was

simply to be able to stay in the air; then, during World War II, the role was already to produce

faster and more maneuverable aircraft that performed better in aerial combat. In the post-war

scenario, including the cold war, aviation as a mode of transport had an exponential growth,

after all, globalization brought the need for people to move to different countries in the world

(SVIK, 2020). At that time, the role of the aircraft was to transport more people at the lowest

possible cost, which is directly related to lower fuel consumption. Therefore, in recent decades
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the need to develop aircraft that consume less fuel has been the focus of engineers (GAO et al.,

2022); furthermore, in recent years, a special reason has driven the development of more efficient

aircraft: the climate change (RYLEY; BAUMEISTER; COULTER, 2020).

Climate change, which has been debated for many years, is now a reality, that is, the

planet is already showing symptoms of the effects of unsustainable human exploitation. Aviation,

as one of the main contributors to the emission of greenhouse gases (HASAN et al., 2021), has

been working in recent years to be able to design more efficient aircraft, that is, that consume

less fossil fuels or even do not use such energy sources, as is the case of fully-electric aircraft

(BRELJE; MARTINS, 2019).

In this context, to make such projects viable, it is necessary to establish a very important

trade-off between aerodynamics and weight. Aerodynamics need to be optimized in all respects

to generate less drag and the structural weight of the entire aircraft needs to decrease in order

to carry more payload for the same takeoff weight or in order to reduce the energy required to

complete the mission, which directly impacts the sizing of the rest of the aircraft.

Thus, the design of a wing must follow the same reasoning, that is, be efficient and

light at the same time. Consequently, when thinking about the design of an aircraft wing, it

is necessary to associate it with the aerodynamic and structural aspects, generating a range of

possibilities (see Fig. 1).

The aerodynamic aspect is due to the fact that this component is responsible for generating

the lift force capable of keeping the aircraft in flight during the mission. The structural aspect

is due to the fact that the wing needs to be resistant to forces and concentrated loads from

components that are attached to it (control surfaces, hyper-lift devices and engine pylon-nacelle

assembly), but mainly from aerodynamic loads of different magnitudes and conditions, such as

gust winds, for example. Therefore, it is possible to observe that there is a notorious relationship

between aerodynamics and structures in the design of a wing and, if there is a relationship, there

are trade-offs.

A didactic way of coming up with the trade-offs present in the design of a wing is to

separate its 3-D shape into two parts, where one of them involves the wing’s planform (top view
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Figure 1 – Wheel of non-planar wing configurations.

Source: Jansen and Perez (2010).

of a wing, that is, span and chord), as illustrated in Fig. 2a, and the other involving the shape of

its thickness, that is, the aerodynamic profile, as depicted in Fig. 2b. Both parts are extremely

important in aerodynamic design and each has different implications for the structural design

of the wing. However, although these implications are different, they have the same design

components in common and impact on the same design parameters.

Figure 2 – Wing 3-D shape into two parts.

(a) Wing planform. (b) Aerodynamic profile.

Source: Elijah et al. (2021).
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2.1.1 Impact of the wing airfoil on the structural design

It is easy to see that the main function of the aerodynamic profile in the design of a

wing is to contribute to the generation of lift for the aircraft. Therefore, parameters such as lift

coefficient, drag and moment are considered essential when choosing a profile. Considering

the profile geometry, parameters such as the profile’s leading edge radius and curvature are

immediately remembered, as they are associated with the mentioned parameters. However, at this

stage of the project, it is always very important to remember which proposal the aircraft project

is intended to fulfill and which should be the product’s main key point, as this reduces the chance

of leaving any parameter or consideration goes unnoticed. In many cases, it is common for

structural weight reduction to be an important bias in the design of an aircraft and the selection

of the appropriate profile contributes greatly to this. This happens through the relative thickness

of the airfoil.

An aerodynamic profile (also known as a rib) with greater relative height (thickness

divided by the chord) allows a higher spar to be used in the wing design, which implies greater

moments of inertia without increasing spar width. In other words, spars with higher cross sections

are more resistant to bending moments and have less structural weight. Thus, aerodynamics,

through the selection of aerodynamic profiles (or ribs), impacts the structural design, having

consequences on the empty-weight of the aircraft.

2.1.2 Impact of the wing planform on the structural design

The definition of the wing’s plan shape is extremely important in the aerodynamic design

of an aircraft, as it has an important contribution to the product’s in-flight performance. The

correct dimensioning of design parameters such as aspect ratio, tapering, among others, is crucial

for different phases of flight, such as take-off, landing and cruise flights. In addition, they directly

affect the structural design of a wing.

Wings generate lift as is well known. Each airfoil (or rib) contributes to a certain amount

of lift force and this depends on two factors: its shape and its chord (obviously associated with

factors of the environment in which it is interacting such as the speed and viscosity of the air).

Therefore, it is possible to notice that changing the shape of the wing in plan by changing the
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measurement of some profile also changes the aerodynamic loading of the wing. The change

usually made in wing designs is the application of taper, that is, the reduction of the chord size

of the profiles starting from the root to the tip of the wing, as can be seen in several aircraft

such as the Embraer E-Jets E2, Gulfstream G650 and several other aircraft. The rationale for

designing a tapered wing is mainly aerodynamic, as this type of adjustment is intended to reduce

the induced drag of the design and consequently improve the performance of the aircraft. Fig. 3

shows different types of wing planforms.

Figure 3 – Different types of wing planforms.

Source: Flight Literacy (2022).

On the other hand, observing the structural aspect, the more tapered the wing (smaller

taper values), the greater the aerodynamic loading (lift force) in the wing tip regions. This

leads to two problems: the first is that in the event of a stall, the loss of lift will occur first

at the wingtip, the region where the ailerons are located, implying a loss of control of these
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commands in an emergency situation. The second (this one associated with the structural design),

implies an inefficient structural design since high aerodynamic loads in a given region of the

wing unnecessarily lead to oversized structures, with high structural weight. Thus, there is the

following trade-off: opt for a less accentuated taper and be penalized by the greater induced drag

or keep this design solution being penalized by weight. Either of the two options can be used,

but not only them. The truth is that there are other parameters that can help in this trade-off, in

order to reduce the loss of efficiency, either in the drag or in the structural weight, such as the

geometric and aerodynamic twists.

2.1.3 Structural Weight Reduction Alternatives

From Sections 2.1.1 and 2.1.2, a strong relationship between aerodynamic design and

structural design can be seen. However, it is often not possible to modify the aerodynamic design

to generate a lighter structure, then many studies and concepts have been developed over the

years to modify at least the structural aspect.

First, the materials can be pointed out. Since the last century, most aircraft have been

made of traditional metallic materials, such as aluminum, titanium, and steel (KENNEDY;

MARTINS, 2012). In 2004, Boeing announced the 787 series, which use approximately 50% of

composite materials, considerably reducing the structural weight of the aircraft (MRAZOVA,

2013). On the other hand, Airbus introduced the A350 to the market, which also follows the

same trend of using composite materials (MARSH, 2007). However, although the modeling of

these materials is currently well understood, manufacturing with these materials is still a great

challenge, as it requires great quality control and the inclusion of uncertainties in the design of

the project (??).

Moreover, other unconventional structural approaches have been presented in the litera-

ture, such as laminates of variable stiffness. The advent of machines that perform fiber deposition

automatically made it possible to manufacture laminates with curved fibers (tow steering) easier,

more controlled and more efficient. These laminates can be used in a variety of design applica-

tions, as fiber path optimization can, for example, increase the critical buckling load, decrease

stress concentrations, change dynamic characteristics and also improve aeroelastic behavior
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(GUIMARÃES et al., 2016). Figure 4 shows examples of conventional and tow-steered layups

of composite structures.

Figure 4 – Conventional and tow-steered layups.

(a) Illustration of layups. (b) NASA’s tow-steered carbon wing.

Source: Brooks and Martins (2018).

In addition to the use of composite materials in the aeroelastic tailoring technique, recent

advances in manufacturing methods, such as EBM (electron beam freeform fabrication), and

additive manufacturing (AM), have led to the use of disruptive materials, including FGM (func-

tionally graded materials). FGMs are materials that have a continuous variation of mechanical

properties, spatially varying the distribution of two or more materials (see Fig. 5). According to

Dunning et al. (2014), FGMs offer two major advantages in aircraft designs: first, they enable

continuous changes in the mechanical properties of the structure (Young’s modulus, density,

fatigue resistance, etc), enabling local properties to be adjusted; second, they allow changes in

structural stiffness without necessarily altering the shape and geometry of the structure, such as

increasing thickness.

2.2 Topology Optimization

The internal structures of a conventional wing are generally composed of spars and

stringers in the span-wise direction and ribs in the stream-wise direction. This has been traditional

over the years because these structures are efficient and strong (i.e., able to withstand the load

that are applied to them) and, at the same time, are easy to manufacture by conventional
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Figure 5 – Cross sections of two stiffeners made from a 50/50 SS-Cu blend. Left: grading along the
stiffener (axis coming out of the page): cut taken mid-length of the stiffener. Right: grading
through the depth (axis is vertical).

Source: Dunning et al. (2014).

methods. However, the advancement of technology and manufacturing techniques has allowed

the reinvention and design of new structures and internal struts in order to obtain lighter wings

that have good dynamic and aeroelastic behavior.

Topology optimization has been used as tool for so many years to explore and to improve

new wing structural configurations. The idea was first applied by Bendsøe and Kikuchi (1988)

by optimizing the topology of a domain based on a material distribution method. A foam-like

composite material was used to approximate the local properties for different void sizes using

the homogenization method. The method provided optimal shape and topology even though the

problem was formulated as an intuitive and simple sizing problem (see Fig. 6).

Figure 6 – Topology optimization for minimum compliance with volume constraint of 36%.

Source: Bendsøe and Kikuchi (1988).

Later on, Balabanov and Haftka (1996) modeled the internal structure of a wing as a

truss and the cross-sectional areas of the truss were optimized. Also, the wing’s compliance
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was reduced under loads equivalent to a symmetric pullup maneuver. By minimizing mean

compliance, the bubble method was employed by Eschenauer and Olhoff (2001) to optimize the

topology of wing ribs for pullup and tank pressure loads. Krog et al. (2004) developed the solid

isotropic material penalization (SIMP) method (BENDSØE; SIGMUND, 1999) to optimize the

topology of aircraft wing ribs, which involved minimizing a weighted sum of total internal energy

due to various load scenarios (see Fig. 7). Wang, Lu and Zhou (2011) optimized leading-edge

ribs by minimizing compliance using the subset simulation-based topology optimization method.

Choi et al. (2011) designed a flapping wing using a dynamic topology optimization method to

improve the thrust and propulsive efficiencies of the wing.

Figure 7 – Topology optimization of rib profiles.

(a) Topology, sizing and shape optimized designs
for A380 leading edge ribs.

(b) Topology optimized rib designs, obtained using
a local analysis approach.

Source: Krog et al. (2004).

The aerostructural coupling (the connection between the aerodynamic and structural

evaluations) is critical in determining the best wing topology (MAUTE; ALLEN, 2004). By

adding aerostructural coupling, Maute and Allen (2004) used the SIMP approach to optimize the

stiffness distribution of a platelike wing. Stanford and Beran (2011) provided a Pareto trade-off

research between the aeroelastic instability speed and the wing weight. They discretized the plate

into finite elements and the thickness of each element was defined as a design variable. They also

concluded that placing a higher premium on light weight results in an array of batten and riblike

members, which stiffened the structure. Stanford and Ifju (2009) employed topology optimization

to plan the arrangement of a two-material membranelike skeletal structure, maximizing lift-to-
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drag while also taking into account aerostructural coupling. Kolonay and Kobayashi (2015) used

the cellular division approach to optimize the topology, size, and shape of an aircraft’s lifting

surfaces. The findings revealed that the best spars and ribs are curvilinear. Locatelli, Mulani and

Kapania (2011) presented their research on the topology and sizing optimization of wing-box

structures using curvilinear spars and ribs, which revealed that the optimized structure with

curvilinear spars and ribs of a supersonic fighter aircraft is 19% lighter than the structure with

straight spars and ribs.

The structural configurations of three-dimensional wings, such as NASA the Common

Research Model (CRM) wing (VASSBERG et al., 2008), have been addressed for coupled

aerostructural interactions. Kenway, Kennedy and Martins (2014) optimized the planform ge-

ometry variables as well as the skin and spar panel dimensions. Despite the fact that the results

are not topological optimization, they show that the fuel burn can be reduced by up to 8.8%.

Stanford and Dunning (2015) performed a topology optimization using the SIMP approach and

applied to the ribs and wing box of the NASA CRM. Wing compliance was minimized under

trim loads, taxi loads, and crushing loads (see Fig. 8). The work of James, Kennedy and Martins

(2014) showed concurrent aerodynamic and structural optimization of the NASA CRM wing box

using SIMP, and they reported that the best designs had significant load-carrying intermediate

density material, which is not viable. They also concluded that the intermediate density material

serves as a secondary structure, transferring load to the primary structure.

Figure 8 – Compliance-optimal topology for aeroelastic trim loads (left), for taxi bump loads (right), and
a compromise between the two (center).

Source: Stanford and Dunning (2015).
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The level set method (LSM) is a topology optimization method that does not employ

intermediate density material, i.e., the method does not use a grid of the geometry to assess

the material property distribution, instead it adopts an implicit description of boundaries to

parametrize the geometry. Dunning, Stanford and Kim (2015) used LSM to optimize the internal

structure of the NASA CRM wing box. The ideal structure that resulted was hollow and lacked

rib–spar combinations. Due of the coarseness of the mesh, the authors employed a fictitious

material with 10% of the elastic modulus and density of aluminum to produce appropriate

topologies. Dijk et al. (2013) writes an overview of different level set methods for structural

topology optimization.

Other works have been developed regarding topology optimization over the last decade.

Oktay, Akay and Merttopcuoglu (2011) presented a set of structural optimization tools for topol-

ogy optimization of aircraft wing structures coupled with Computational Fluid Dynamics (CFD)

analyses. Dunning, Stanford and Kim (2015) develops a level set topology optimization method

for an unstructured three-dimensional mesh and apply it to NASA CRM wing box design for

coupled aerostructural considerations. Chedrik and Tuktarov (2015) combine the structural opti-

mization based on the global-local approach with topology optimization to perform a complete

design procedure of aircraft structures (see Fig. 9). Rinku and Ananthasuresh (2015) propose a

modular design of wing-ribs with fewer components than conventional semi-monocoque design

(web reinforced with stiffeners), which is likely to lower the cost of manufacturing and assembly.

Figure 9 – Initial solid FE model (left), topology result (right).

Source: Chedrik and Tuktarov (2015).
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More recently, Aage et al. (2017) used a high-resolution mesh of the NASA CRM wing

box for optimization with the SIMP method. The large-scale study addressed in this work used a

1.1-billion-element mesh, and the optimized design presented interesting similarity to naturally

occurring bone structures such as bird beaks. However, the loads applied were not realistic

because the aerostructural coupling was ignored. Large-scale topology optimization studies that

take into account aerostructural coupling are much more challenging, since the complex nature

of the problem and the loads depend on the design. Also, for these cases, the computational cost

of simulating is much higher, but taking into accounts the aerostructural coupling properties yield

more efficient designs. Later on, Kambampati, Townsend and Kim (2020) present a coupled

aerostructural topology optimization study for a three-dimensional (3-D) aircraft wing box

considering aerostructural coupling. A new level set method is developed, where two separate

meshes are used: 1) a level set grid for design, and 2) a finite element (FE) mesh for analysis.

Opgenoord and Willcox (2019) develop a methodology to design aeroelastically tailored wings

using additively manufactured lattice structures (see Fig. 10). Adaptive meshing techniques

are used to design the topology of the lattice to align with the load direction, and the lattice is

optimized to minimize the structural weight and to improve the flutter margin.

Figure 10 – Original lattice that is optimized without considering aeroelastic instabilities.

Source: Opgenoord and Willcox (2019).
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2.3 Modularity

Most of the topology optimization and designs developed and studied by the works

presented in Section 2.2 generate as a result a monolithic structure, that is, the structure is

constructed all together (all in one piece). From a manufacturing point of view, this represents

major challenges, as it would require high investment in tooling as well as very high quality

control. In other words, producing a single structure represents high cost involved and low

production volume. On the other hand, when talking about series production line for aircraft,

or other products, it is important to guarantee scalability, that is, ease of production in large

quantities and low costs.

Along those lines, it comes up with the idea of modularity. Definitions and concepts of

modularity generally include many aspects. Among the most commonly referenced definitions of

a module is Baldwin et al. (2000) definition: “A module is a unit whose structural elements are

powerfully connected among themselves and relatively weakly connected to elements in other

units” (ARNHEITER; HARREN, 2005; LAU; YAM; TANG, 2007; ERNST, 2005; SCHILLING;

STEENSMA, 2001; FREDRIKSSON, 2006). Another definition by Baldwin and Clark (1997)

of modularity is also used frequently: “Building a complex product or process from smaller

subsystems that can be designed independtly yet function together as a whole” (ASAN; POLAT;

SERDAR, 2004; JOSE; TOLLENAERE, 2005; DORAN, 2003; DORAN, 2004; DORAN, 2005;

FREDRIKSSON, 2006). Other often referenced definitions are the ones by Ulrich (1994):

Modularity is the relationship between a product’s functional and physi-
cal structures such that there is a one-to-one or many-to-one correspon-
dence between the functional and physical structures and unintended
interactions between modules are minimized (LAU; YAM; TANG, 2007;
JIAO; TSENG, 2000; JOSE; TOLLENAERE, 2005; FREDRIKSSON,
2006).

Several concepts have been associated with modularity. They include architectures and

platforms, interchangeability or loose coupling of components, standardization of interfaces,

and one-to-one matching of module and function (JACOBS; VICKERY; DROGE, 2007; ARN-

HEITER; HARREN, 2005; JOSE; TOLLENAERE, 2005). Commonly mentioned benefits of

modularization include larger product variety, improved flexibility, simplification of complex
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systems, cost savings, etc (JOSE; TOLLENAERE, 2005; VAN et al., 2004; PEKKARINEN;

ULKUNIEMI, 2008).

Therefore, regarding wing design, it would be very convenient to have a wing made of

modular structures, which would simplify the construction of the wing along with it would make

the maintenance, repair and replacement of some parts much easier and much cheaper. Thus, the

basic modular structure that comes to mind for such application is truss-based structures, since

they are easy to manufacture and assemble, which is the proposal of this thesis.

Searching for application of modular structures in aircraft wings, only a few works were

developed. Montemurro, Vincenti and Vannucci (2012) address a two-level procedure for the

global optimum design of composite modular structures. The case-study considered is the least

weight design of a stiffened wing-box for an aircraft structure. The method is based on the

use of the polar formalism and on a genetic algorithm. In the first level of the procedure, the

optimal structure is designed as composed by a single equivalent layer, while a laminate realizing

the optimal structure is found in the second level. Finistauri, Xi and Walsh (2012) present a

discretization method for the development of a modular morphing wing. The proposed method

determines the number of morphing wing modules and the respective spacing required to emulate

a known wing shape and satisfy a corresponding flight requirement (see Fig. 11).

Figure 11 – Wing discretization.

Source: Finistauri, Xi and Walsh (2012).

2.4 Final Considerations

From the concepts and works presented throughout this chapter, it is clear that studies

involving the structural design of aircraft wing have always been in vogue. In addition, the need
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to develop more efficient aircraft makes engineering seek alternative forms of increasingly light

and unconventional structural designs. At the same time, the structural studies developed by

the authors were often limited to topological optimization considering monolithic structures,

which are difficult to manufacture. Therefore, this thesis seeks to fill this space, contributing

with a wing design proposal considering truss-based modular structures. These structures will be

optimized and the wing will be evaluated with aeroelastic (flutter and divergence) and buckling

constraints.
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CHAPTER

3
AERODYNAMIC MODELING

“If you examine a butterfly according to the laws of

aerodynamics, it shouldn’t be able to fly. But the

butterfly doesn’t know that, so it flies”
— Howard Schultz

THIS chapter comes up with the aerodynamic modeling used in the aeroelastic coupling

for the wing design. Thus, it presents fundamentals of unsteady aerodynamics and the

Doublet-Lattice Method, which is used in this work to generate the loads that will be used in

the aeroelastic analysis. At the end of the chapter, a verification of the code implementation is

presented.

3.1 Fundamentals of Unsteady Aerodynamics

Since the 1920s, unsteady aerodynamics has been studied in order to mathematically

determine the pressure distribution on wings that oscillate due to elastic deformations. In this

context, the forces necessary in the investigation of dynamic aeroelastic instability phenomena,

also known as flutter, which occur above a certain critical speed, can be calculated. Over the

decades, flutter considerations have always exerted considerable influence on wing design, as

flight speeds increase and the stiffness of increasingly lighter structures decreases (GÜLÇAT,

2010).

Flutter is a destructive phenomenon that deserves special attention in aircraft design. The

elements of this phenomenon are structural dynamics and unsteady aerodynamics, of which the
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latter is undoubtedly the most complicated and least reliable to model (BLAIR, 1994).

In subsonic or supersonic flows, linearized theories of unsteady aerodynamics generally

provide proper results, as long as the modeled aerodynamic surfaces are relatively thin. However,

even with the use of these linearized theories, the calculation of forces on three-dimensional

wings, considering the different modal shapes, is too time-consuming. This means that, in the

initial phases of the aircraft design, the flutter calculations take place through the classical strip

theory, in which the aerodynamic derivatives come from two-dimensional theories (GÜLÇAT,

2010).

However, in transonic flows, the physical nonlinearities that characterize aerodynamics

lead to major inaccuracies in linearized theories. Another non-linear phenomenon that restricts

the use of these theories is the occurrence of flow separation (GÜLÇAT, 2010). None of the

cases is considered in this work.

The calculation of structural loads due to atmospheric disturbances is another field in

which unsteady aerodynamics finds application (GREENWELL, 2004).

3.1.1 Fundamental Equations

The fundamental equations of fluid dynamics are the Navier-Stokes equations (TEMAM,

2001). It is a set of five equations: the continuity equation, three momentum equations (one in

each direction of space) and the energy equation. These equations are developed, for example,

by Anderson (2011), and are shown below, in their differential form, i.e., as derived for a fluid

element of volume dx ·dy ·dz:

• Continuity Equation:
∂ρ

∂ t
+∇ · (ρV) = 0 (3.1)

• X-Momentum Equation:

ρDu
Dt

=−∂ p
∂x

+
∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂ z
+ρ fx (3.2)

• Y-Momentum Equation:

ρDv
Dt

=−∂ p
∂y

+
∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂ z
+ρ fy (3.3)
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• Z-Momentum Equation:

ρDw
Dt

=−∂ p
∂ z

+
∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂ z
+ρ fz (3.4)

• Energy Equation:

ρ
D
(
e+V 2/2

)
Dt

= ρ q̇+
∂

∂x

(
k

∂T
∂x

)
+

∂

∂y

(
k

∂T
∂y

)
+

∂

∂ z

(
k

∂T
∂ z

)
−∇ · (pV)+

∂ (uτxx)

∂x
+

∂ (uτyx)

∂y
+

∂ (uτzx)

∂ z
+

∂ (vτxy)

∂x
+

∂ (vτyy)

∂y
+

∂ (vτzy)

∂ z
+

+
∂ (wτxz)

∂x
+

∂ (wτyz)

∂y
+

∂ (wτzz)

∂ z
+ρf ·V

(3.5)

In Equations (3.1) to (3.5), V is the velocity vector, and its components are u, v and w; f

is the vector of body forces (forces that act remotely on the volumetric mass of the fluid element,

such as gravitational forces or electromagnetic forces) per unit mass, and its components are fx,

fy and fz; ρ is the local density of the fluid; p is the pressure; τi j represents a normal stress (in

which case i = j) or shear stress (i 6= j) in j direction acting on the perpendicular plane to axis i;

the variable e corresponds to the internal energy of the fluid per unit of mass; q is the volumetric

heating rate per unit mass; k is the thermal conductivity of the fluid; and finally T is the local

temperature.

The substantial derivative is an operator defined by Anderson (2011) as:

D
Dt

(·)≡ ∂

∂ t
(·)+V ·∇(·) (3.6)

In so-called Newtonian fluids, the normal and shear stresses are proportional to the

velocity gradients in the fluid. In most studies of aerodynamics, the fluid can be considered

Newtonian. The proportionality constants are directly related to the fluid viscosity.

According to the aforementioned assumptions, the fluid dynamics equations can belong

to different levels. Usually, body forces are neglected. The so-called Euler equations are obtained

from the general Navier-Stokes equations, disregarding the terms associated with viscosity and

also with heat transfer in the fluid. Thus, Euler’s equations are given by:

• Continuity Equation:
∂ρ

∂ t
+∇ · (ρV) = 0 (3.7)
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• Momentum Equation:
ρDV

Dt
=− 1

ρ
∇p (3.8)

• Energy Equation:

ρ
D
(
e+V 2/2

)
Dt

=−∇ · (pV) (3.9)

Considering the case of determining the values of p, ρ , u, v and w in the flow, one can

see that there are only four equations involving these quantities (the continuity equation and the

momentum equations). A fifth equation is needed, which is achieved by adopting an equation

of state for the fluid. For example, the following isentropic relationship can be adopted as an

equation of state (BLAIR, 1994):
p

ργ
=

p0

ρ
γ

0
(3.10)

The constant γ is the ratio of specific heats at constant pressure and volume: γ = cp/cv. The

variables p0 and ρ0 are constant reference values of pressure and density, respectively. The ratio

defined in Equation (3.10) is constant for any fluid element.

The speed of sound in the fluid can also be calculated by the expression (ANDERSON,

2011; BLAIR, 1994):

a2 =
dp
dρ

(3.11)

At a lower level, the flow is irrotational, such that the fluid velocity meets the following relations

(BLAIR, 1994):

∇×V = 0⇐⇒ V = ∇Φ (Irrotational flow) (3.12)

The function Φ = Φ(x,y,z, t), which corresponds to a new state variable, is a scalar function that

denotes the velocity potential.

Combining Equations (3.8), (3.12), (3.11) and (3.12), the following equation is obtained:

∇

(
∂Φ

∂ t
+

V 2

2
+
∫ dp

dρ

)
= 0 (3.13)

Thus, the constant of integration of equation (3.13) should only be a function of time:

∂Φ

∂ t
+

V 2

2
+
∫ dp

dρ
= F(t) (3.14)
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Equation (3.14) is called Kelvin’s equation and corresponds to a unsteady version of Bernoulli’s

equation (BLAIR, 1994).

The function F(t) has no physical meaning, i.e., it is only a mathematical solution so far.

A physical meaning for it can be obtained with the condition that the flow, remotely, in a region

free of disturbances, is stationary and has parallel and straight streamlines (BISPLINGHOFF;

ASHLEY; HALFMAN, 1996). Therefore, in this region, the velocity potential Φ is independent

of time, the pressure is constant, and the velocity is a constant V∞. Mathematically,
∂Φ

∂ t
= 0,

V 2 =V 2
∞ and dp = 0, so that it becomes:

F(t) =
V 2

∞

2
(3.15)

The velocity potential can be redefined so that:

φ = Φ−
∫ t

0
F(τ)dτ = Φ− V 2

∞t
2

(3.16)

Thus, the final momentum equation becomes:

∂φ

∂ t
+

V 2

2
+
∫ dp

dρ
= 0 (3.17)

The continuity equation in (3.7) can also be manipulated using Equations (3.10), (3.11),

(3.12), (3.16) and (3.17) in order to obtain the following equation, the so-called full potential

equation (BLAIR, 1994):

∇
2
φ − 1

a2

[
∂ 2φ

∂ t2 +
∂

∂ t
V 2 +∇φ ·∇

(
V 2

2

)]
= 0 (3.18)

Since the speed of sound a can also be expressed as a function of the velocity potential (φ ),

Equation (3.18) has only this velocity potential as unknown (BISPLINGHOFF; ASHLEY;

HALFMAN, 1996). Thus, the system that initially had five unknown variables and five equations

was reduced based on the previously mentioned simplifications to a system with only one

equation and one unknown.
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3.1.2 Linearization of the Full Potential Equation

The doublet-lattice method is a linear method. The full potential equation, in the form

presented in Equation (3.18), is clearly non-linear. Thus, in order to proceed to the formulation of

the doublet-lattice method, it is necessary to linearize it. The linearization can be done considering

that the unknown φ = φ(x,y,z, t) splits into two components: a stationary component, φ̄(x,y,z),

and a component of small perturbations and time-dependent, φ̃(x,y,z, t); consequently, the same

assumption is applied to the pressure and density in the fluid. The speed of sound, on the contrary,

can be admitted as invariant in time, since a contrary hypothesis does not influence the result of

linearization (BLAIR, 1994).

Linearization also assumes that a steady-state solution to the full potential equation

exists, and, furthermore, assumes that the steady-state flow is simply a flow with velocity V∞

in the x-direction and with a constant speed of sound equals to a0. The hypotheses adopted are

summarized below:

φ(x,y,z, t) = φ̄(x,y,z)+ φ̃(x,y,z, t)

a(x,y,z, t) = ā(x,y,z) = a∞

φ̄(x,y,z) =V∞x

(3.19)

Having the Mach number defined as M∞ =V∞/a∞, the linearized equation becomes:

(
1−M2

∞

)
φ̃xx + φ̃yy + φ̃zz−

(
2V∞

a2
∞

)
φ̃xt−

(
1

a2
∞

)
φ̃tt = 0 (3.20)

The linear partial differential equation given by (3.20) is the fundamental equation in the

description of aerodynamic behavior, which is used in the linear methods such as the Doublet-

Lattice Method (DLM).

However, since the aerodynamic behavior is much better analyzed through the knowledge

of the pressure distributions, and not the velocity potential, it is necessary to develop an expression

that relates the pressure with the velocity potential obtained as a solution to Equation (3.20).

According to Blair (1994), such expression is given by:

p− p0 =−ρ0
(
φ̃t +V∞φ̃x

)
(3.21)



3.1. Fundamentals of Unsteady Aerodynamics 57

3.1.3 Linearized Boundary Conditions

The boundary conditions of the problem given by the linear partial differential equation

(3.20) must specify the value of the velocity potential or a directional derivative of such potential

(which is equivalent to a component of the velocity vector) on all surfaces that define the problem

domain. Regarding the flow around a body, the domain is defined internally by its surface and by

the wake generated by itself and, externally, by the conditions of the undisturbed remote flow.

It is usual to define the reference fixed to the body. Its surface can be expressed by the

equation:

S(x,y,z, t) = 0 (3.22)

If the body is an aircraft, it is evidently difficult to determine an analytic expression for S(x,y,z, t)

valid for the entire aircraft, but it is always possible to determine valid expressions in smaller

domains.

The boundary condition in the body is that the flow is tangent to its surface, that is, at

any point on the body-fluid interface, at any instant, the relative velocity component normal to

the surface must be zero (BECKER, 1967), i.e:

DS
Dt

=
∂S
∂ t

+V ·∇S = 0, em S(x,y,z, t) = 0 (3.23)

Regarding the DLM, it is appropriate to have Equation (3.23) linearized, considering

if for the case of a thin wing (or any lifting surface). Any wing can be well characterized by

its mean surface hm(x,y, t) and by its envelope of thickness ht(x,y,z), so that Equation (3.22)

becomes:

Swing(x,y,z, t) = z− [hm(x,y, t)±ht(x,y, t)] = 0 (3.24)

For linearized flow around a free flow condition with velocity U i , adopting the perturbation

velocities ui , vj and wk, the velocity vector is given by:

V = (U +u)i+(v)j+(w)k (3.25)

Substituting Equations (3.24) and (3.25) into (3.23), considering h = hm±ht , it follows:

−∂h
∂ t
− (U +u)

∂h
∂x
− (v)

∂h
∂y

+w = 0 (3.26)
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What is desired is a linear relationship between the velocity components on the surface of the

wing and the function h(x,y, t). Ignoring the nonlinear terms in Equation (3.26),

w =
∂h
∂ t

+U
∂h
∂x

(3.27)

Thus, it is clear that the components of h = hm±ht can be treated independently in the

boundary condition (3.27). Normally, it is assumed that only the mean surface is a function of

time, not the thickness envelope. So the dynamic response due to hm(x,y, t) can be superimposed

on a time-independent solution that contemplates ht(x,y)(BLAIR, 1994).

The boundary condition of the remote flow, that it is undisturbed, in turn, can be auto-

matically satisfied with the choice of a superposition of sources or dipoles to solve the flow over

the body, since their influence decays to zero at infinite distances (BLAIR, 1994).

Finally, there is also the boundary condition in the wake of the flow downstream the

body. The typical boundary condition for ideal flow (incompressible and inviscid) around an

airfoil is the Kutta condition, according to which the flow at the trailing edge of the airfoil must

be smooth and with finite velocity (BECKER, 1967). For stationary and linearized compressible

flow, the Prandtl-Glauert transformation can be used so that the Kutta condition is applicable as

it would be in incompressible flow (BLAIR, 1994). The problem is really the unsteady flow.

Some experiments have show that the trailing edge flow may not be tangent in unsteady

flows, as presented by Blair (1994). For linearized unsteady flow, the only boundary condition

associated with the wake is the property that no pressure difference across the wake exists.

3.1.4 Elementary Solutions of the Linearized Aerodynamic Potential
Equation

The starting point for the elaboration of the DLM is based on the partial differential

equation (PDE) in Equation (3.20) for the behavior of small perturbations of the velocity potential

φ in inviscid, irrotational and compressible flow, linearized around a uniform, parallel flow with

the parallel and uniform flow, with velocity V∞ along from the x-axis.

The DLM employs the linearity of Equation (3.20) to solve complex problems by

superposition of elementary aerodynamic solutions (source, sink and vortex flows). For small
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perturbations around the uniform mean flow V∞ along the x-direction, the Prandtl’s acceleration

potential (Ψ) only differs from the pressure by a constant:

Ψ =
p− p∞

ρ∞

(3.28)

It is related to the velocity potential by the material derivative:

Ψ(x,y,z, t) =
[

∂

∂ t
+V∞

∂

∂x

]
φ(x,y,z, t) (3.29)

which gives the inverse relation:

φ(x,y,z, t) =
1

V∞

∫ x

−∞

Ψ

(
λ ,y,z, t− x−λ

V∞

)
dλ (3.30)

where λ is the integration variable. The acceleration potential satisfies the solution for Equation

(3.20). Thus, the acceleration potential induced at a receiving point (x,y,z) by a source in

(ξ ,η ,ζ ) can be defined as:

Ψsource (x,y,z,ξ ,η ,ζ , t) =
1
R

fΨ(t− τ) (3.31)

where fΨ is the perceived strength of the source, a function of time and the delay required for a

disturbance to travel from the emitting source point to the receiving point:

τ =
−M∞(x−ξ )+R

a∞β 2
∞

(3.32)

where R is the hyperbolic radius, given by:

R≡
[
(x−ξ )2 +β

2
∞(y−η)2 +β

2
∞(z−ζ )2]1/2

(3.33)

and the Prandtl-Glauert factor is given by:

β
2
∞ ≡ 1−M2

∞ (3.34)

The analysis is restricted to sinusoidal harmonic solutions in the form Ψsource = AΨe(iωt),

where AΨ is the amplitude, ω the oscillation frequency and i≡
√
−1 the imaginary unit. The

acceleration potential acceleration source function can be written as:

Ψsource =
AΨ

R
e[iω(t−τ)] =

AΨ

R
e(−iωτ)e(iωt) = Ψ̄source e(iωt) (3.35)
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where Ψ̄source (x,y,z,ξ ,η ,ζ ) is the modulus. Therefore, using Equation (3.32), the following

relation is obtained:

Ψ̄source =
AΨ

R
exp
[

iω
a∞β 2

∞

[M∞(x−ξ )−R]
]

(3.36)

Equation (3.36) is the solution for an oscillating source in harmonic motion in terms

of pressure. Following the development, it is necessary to formulate an elementary solution to

Equation (3.20) that can generate a pressure differential. To do so, the concept of elementary aero-

dynamic flow of doublet is introduced, constructed by a superimposition of two infinitesimally

adjacent source flows of equal but opposite strengths (see Fig. 12).

Figure 12 – Construction of a doublet from two infinitesimally adjacent source flows of equal but opposite
strengths.

Source: Giesing (1985).

Mathematically, this is equivalent to taking the directional derivative of the expression

for the source solution Ψsource along the vector ~Ns separating the source and the sink; in practice,

~Ns is the normal vector of the lifting surface at (ξ ,η ,ζ ). Thus,

Ψdoublet ≡ Ψ̄doublet exp(iωt) =
∂Ψsource

∂Ns
(3.37)

with modulus

Ψ̄doublet =
∂

∂Ns

{
AΨ

R
exp
[

iω
a∞β 2

∞

[M∞(x−ξ )−R]
]}

(3.38)
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3.1.5 Equation for Pressure Doublet Sheet and its Kernel Function

The desired elementary solution is represented by Equation (3.38). Thus, to model the

pressure difference generated by a thin wing, it is necessary to formulate an integral formula for

the downwash (or normalwash) induced by a continuous sheet of acceleration potential doublets.

Additional information is presented by Vivian and Andrew (1965).

When substituting Equation (3.30) into (3.38), the magnitude of the velocity potential

induced by an acceleration potential doublet can be expressed by:

φ̄(x,y,z,ξ ,η ,ζ ) =

− AΨ

V∞

∂

∂Ns
exp
[

iω
V∞

(x−ξ )

]∫ x−ξ

−∞

1
R′

exp
{

iω
[

λ

V∞

+
M∞λ

a∞β 2
∞

− R′

a∞β 2
∞

]}
dλ

(3.39)

where the radial measure R′ in the integrand is a function of the integration variable λ ,

R′ ≡
[
λ

2 +β
2
∞(y−η)2 +β

2
∞(z−ζ )2]1/2

(3.40)

The normal velocity component w̄N induced at some receiving point (x,y,z) is obtained

from the velocity potential by differentiation along the local surface normal ~Nr:

w̄N(x,y,z,ξ ,η ,ζ ) =

− AΨ

V∞

∂

∂Nr

∂

∂Ns
exp
[

iω
V∞

(x−ξ )

]∫ x−ξ

−∞

1
R′

exp
{

iω
[

λ

V∞

+
M∞λ

a∞β 2
∞

− R′

a∞β 2
∞

]}
dλ

(3.41)

The directional derivatives can be decomposed as:

∂

∂Ns
= cosΓs

∂

∂ z
− senΓs

∂

∂y
∂

∂Nr
= cosΓr

∂

∂ z
− senΓr

∂

∂y

(3.42)

where Γs and Γr denotes, respectively, the angle between the surface and the xy-plane at the

sending point s and receiving point r. Notice that exp [iω(x−ξ )/V∞] has been taken out of the

integral, as it is independent of the normal direction ~Ns and ~Nr.

The pressure differential induced by an infinitesimal element of the acceleration potential

doublets sheet is related to its strength AΨ as

∆p̄ = 4πρ∞AΨdξ dσ (3.43)

with ξ and σ the tangential coordinates. Substituting Equation (3.43) into the expression for the

normal velocity magnitude (3.41), integrating over a sheet S of pressure doublets and dividing
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by V∞, the following integral equation in non-dimensional form is obtained:

w̄N

V∞

=
−1

4πρ∞V 2
∞

∫∫
S

∆ p̄(ξ ,η ,ζ )K(x−ξ ,y−η ,z−ζ )dξ dσ (3.44)

Simplifying Equation (3.44), the so-called Kernel function K is obtained:

K (x0,y0,z0)≡ exp
[

iωx0

V∞

]
∂

∂Nr

∂

∂Ns

∫ x0

−∞

1
R′

exp
[

iω
λ −M∞R′

V∞β 2
∞

]
dλ (3.45)

where the relative coordinate system (x0,y0,z0) is defined as:

x0 ≡ x−ξ

y0 ≡ y−η

z0 ≡ z−ζ

(3.46)

The integral equation (3.44) relates the unknown pressure differential ∆p̄ generated by a

thin lifting surface, modeled as a sheet of acceleration potential doublets, to the velocity normal

to the surface w̄N (known as downwash or normalwash) in a receiving point.

Evaluating the Kernel function (3.45) is not trivial, since it shows a singular behavior

when the receiving point approaches the doublet sheet. Vivian and Andrew (1965) show that the

Kernel function may be rewritten as:

K (x0,y0,z0) = exp
[
−iωx0

U∞

]
K1T1 +K2T2

r2 (3.47)

where r ≡
(
y2

0 + z2
0
)1/2 and

T1 = cos(Γr−Γs) (3.48)

T2 =
[z0

r
cosΓr−

y0

r
sinΓr

][z0

r
cosΓs−

y0

r
sinΓs

]
(3.49)

Landahl (1967) proposes a simplified expression for the terms K1 and K2, given by:

K1 = I1 +
M∞r

R
exp(−ik1u1)(

1+u2
1
)1/2 (3.50)

K2 =−3I2−
ik1M2

∞r2

R2
exp(−ik1u1)(

1+u2
1
)1/2 −

M∞r
R

[(
1+u2

1
) β 2

∞r2

R2 +
M∞ru1

R
+2
]

exp(−ik1u1)(
1+u2

1
)3/2

(3.51)
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with

k1 ≡
ωr
U∞

(3.52)

u1 ≡
M∞R− x0

β 2
∞r

(3.53)

and the integrals

I1 (u1,k1)≡
∫

∞

u1

exp(−ik1u1)

(1+u2)
3/2 du (3.54)

I2 (u1,k1)≡
∫

∞

u1

exp(−ik1u1)

(1+u2)
5/2 du (3.55)

The hyperbolic radius is redefined in terms of the new coordinates:

R =
(
x2

0 +β
2
∞r2)1/2

(3.56)

The integral I1 and I2 are to be evaluated numerically. Integration by parts yields:

I1 (u1,k1) = exp(−ik1u1)

{
1− u1(

1+u2
1
)1/2 − ik1I0 (u1,k1)

}
(3.57)

3I2 (u1,k1) = exp(−ik1u1)

{
(2+ ik1u1)

[
1− u1(

1+u2
1
)1/2

]

− u1(
1+u2

1
)3/2 − ik1I0 (u1,k1)+ k2

1J0 (u1,k1)

} (3.58)

with I0 and J0 the integrals:

I0 (u1,k1)≡ exp(ik1u1)
∫

∞

u1

[
1− u

(1+u2)
1/2

]
exp(−ik1u)du (3.59)

J0 (u1,k1)≡ exp(ik1u1)
∫

∞

u1

[
1− u

(1+u2)
1/2

]
uexp(−ik1u)du (3.60)

Laschka (1963) proposes an accurate approximation of I0 and J0 for u1 ≥ 0:

I0 (u1,k1)≈
11

∑
n=1

an exp(−ncu1)

n2c2 + k2
1

(nc− ik1) (3.61)

J0 (u1,k1)≈
11

∑
n=1

an exp(−ncu1)(
n2c2 + k2

1
)2

{
n2c2− k2

1 +ncu1
(
n2c2 + k2

1
)

−ik1
[
2nc+u1

(
n2c2 + k2

1
)]} (3.62)
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Table 1 – Coefficients for Laschka’s L11 approximation.

n coefficients an(L11)

1 0.24186198
2 -2.7918027
3 24.991079
4 -111.59196
5 271.43549
6 -305.75288
7 -41.183630
8 545.98537
9 -644.78155
10 328.72755
11 -64.279511

Source: Laschka (1963).

with the constant c = 0.372 and the coefficients an as given in Table 1. The error induced by this

approximation has been shown not to exceed 0.135%.

In order to evaluate I1 and I2 for U1 < 0, symmetry of the formulation is applied, where

the overbar denotes the complex conjugate:

I1 (u1,k1) = 2Re I1 (0,k1)− Ī1 (−u1,k1) (3.63)

I2 (u1,k1) = 2Re I2 (0,k1)− Ī2 (−u1,k1) (3.64)

3.1.6 DLM Implementation

In general, the DLM consists of a numerical-computational procedure for solving the

integral equation (3.44). The normal component of the velocity (normalwash) is a known

parameter from the boundary conditions discussed in Section 3.1.3. The unknown parameter is

the pressure difference δ p over the lifting surface. The pressure function is inside the integrand,

which is not trivial to solve it. Therefore, the DLM formulation is extended to the discretization of

the surface in trapezoidal elements, called boxes or panels. In each panel, the unknown pressure

function is idealized by an approximation, initially proposed as parabolic (ALBANO; RODDEN,

1969) and later refined to quartic (RODDEN; TAYLOR; JR, 1998) using doublets line with

unknown coefficients to be determined.
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Albano and Rodden (1969) proposed an extension to the VLM, subdividing the wing

area into panels aligned in the chord direction with respect to the relative wind (see Fig. 13),

where the resulting total pressure on each panel is considered constant.

Figure 13 – Discretization of the lifting surface geometry.

z, ζ
y, η

x, ξ

s

r
e

ᴧs

Δξ

doublet segment (1/4-chord line)

collocation point (mid-span, 3/4-chord)

Source: Elaborated by the author.

Along those lines, Equation (3.44) for the induced normalwash at a receiving panel r

becomes a sum of the contributions from each emitting panel s:

w̄N,r

V∞

= ∑
s

−∆p̄s∆xs

4πρ∞V 2
∞

∫∫
s
K(x−ξ ,y−η ,z−ζ )dξ dσ

= ∑
s
−∆c̄p,s

∆xs

8π

∫∫
s
K(x−ξ ,y−η ,z−ζ )dξ dσ

(3.65)

where δxs is the chord of the emitting panel and ∆c̄p,s is the non-dimensional pressure coefficient

given by:

∆c̄p,s =
∆p̄s

1
2ρ∞V 2

∞

(3.66)

The normalwash is evaluated at the control point or collocation point, which are place at

three-quarters of the panel chord (3/4−chord line) and at half span. The choice for the placement

is based on empirical analysis and is sometimes defined as a rule (1/4− 3/4 rule) that leads

to optimal results and satisfies the Kutta condition on the trailing edge, as demonstrated by

Pistolesi’s theorem.

Equation (3.65) for DLM can be defined as a linear system, with the number of equations

equal to the number of panels used in the discretization:

{w̄N}= [D]
{

∆c̄p
}

(3.67)
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where ntot ×ntot matrix [D] is the complex square matrix relating the pressure difference, or lift

pressure, due to normalwash influence from one panel to another. In addition, Eq. (3.67) can be

rewritten accounting for the influence of the receiving panel (r) and emitting panel (s) as:

w̄N,r =
ntot

∑
s=1

Drs∆c̄p,s (3.68)

where Drs is the so-called matrix of total downwash factors and is a square matrix of size

ntot ×ntot equal to the total number of panels:

Drs ≡
∆xs

8π

∫
s
K
(
x−ξ1/4,y−η ,z−ζ

)
dσ (3.69)

and its inverse matrix is used to determine the distribution of oscillatory pressure over the surface:

[AIC] = [Drs]
−1 (3.70)

where [AIC] is known as the aerodynamics influence coefficients matrix.

The steady component of the downwash factors can be computed by the derived kernel

function. Once Eq. (3.65) is dependent on the reduced frequency k and the Mach number, it can

be shown that for steady flows, that is, with zero reduced frequency, the DLM converges to the

VLM (HEDMAN, 1966).

Albano and Rodden (1969) and Rodden, Taylor and Jr (1998) state that the steady

component of the downwash factor Drs may be computed exactly, whereas then integral in Eq.

(3.69) is only approximated. Thus, the results may be improved by restricting the approximation

to the incremental downwash factor D′rs, obtained by subtracting the limiting value K(0) ≡

limω→0 K from the integrand. The steady contribution D(0)
rs of a horseshow vortex is determined

exactly and added a posteriori:

Drs = D(0)
rs +D′rs (3.71)

The low-frequency limit K(0) of the Kernel function K is given by (VIVIAN; ANDREW,

1965; ALBANO; RODDEN, 1969):

K(0)
1 ≡ lim

ω→0
K1 = 1+

x0

R
(3.72)

K(0)
2 ≡ lim

ω→0
K2 =−2− x0

R

(
2+

β 2
∞r2

R2

)
(3.73)
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At this point, the original version of the method proposed by Albano and Rodden (1969)

admits that the shape of the pressure distributed along the doublets line assumes a parabolic

distribution to fit the numerator of the integrand in the Kernel function of Eq. (3.47). Later on,

Rodden, Taylor and Jr (1998) developed an improved version that allows a quartic approximation

of the doublet line, which guarantees greater stability and improvements for the method, mainly

in specific configurations of swept wing geometries with high aspect ratio (A) and conditions of

high reduced frequencies.

In this work, both methods were implemented and the differences in the results are briefly

pointed out. Although there is a computational gain through the use of the quartic approximation

method in some cases (where greater refinement is needed if a parabolic approximation is used),

the use of a parabolic approximation does not compromise the effectiveness of the DLM for

simpler geometries, with lowA, and lower values of reduced frequency.

3.1.6.1 Parabolic Approximation of the Integrand

In the parabolic approximation the fit is performed along the doublet line in each element

coordinate η̄ over the spanwise element (e). Thus, the oscillatory incremental os defined as:

D′rs =
∆xs

8π

∫ +e

−e

P(η̄)

r2 dη̄ (3.74)

where P(η̄) is defined as the parabolic approximation:

P(η̄) = Aη̄
2+Bη̄ +C≈ (K1T1 +K2T2)exp

[
−iω
V∞

(x̄− η̄ tanΛs)

]
−
(

K(0)
1 T1 +K(0)

2 T2

)
(3.75)

where the overbar denotes that the coordinates are defined in the plane of the sending element,

relative to the center (ξc,ηc,ζc) of the doublet segment:

x̄≡ x−ξc

ȳ≡ (y−ηc)cosΓs +(z−ζc)sinΓs

z̄≡ (z−ζc)cosΓs− (y−ηc)sinΓs

ξ̄ ≡ ξ −ξc

η̄ ≡ (η−ηc)cosΓs +(ζ −ζc)sinΓs

ζ̄ ≡ (ζ −ζc)cosΓs− (η−ηc)sinΓs

where Γs and Λs are the dihedral and sweep angles of the emitting panel.

Rodden, Giesing and Kalman (1972) improved this approximation distinguishing the

planar and non-planar terms in the expression for the incremental downwash factor D′rs:

Drs = D(0)
rs +D(1)

rs +D(2)
rs (3.76)
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where the superscripts (0), (1) and (2) denote, respectively, the steady, planar unsteady and non-

planar unsteady contributions. Skipping the derivation process here, those terms are given by:

D(1)
rs =

∆xs

8π

∫ +e

−e

P1(η̄)

r2 dη̄ (3.77)

D(2)
rs =

∆xs

8π

∫ +e

−e

P2(η̄)

r4 dη̄ (3.78)

with

P1(η̄)≡ A1η̄
2 +B1η̄ +C1 ≈

{
K1 exp

[
−iω (x̄− η̄ tanΛs)

U∞

]
−K(0)

1

}
T1 (3.79)

P2(η̄)≡ A2η̄
2 +B2η̄ +C2 ≈

{
K2 exp

[
−iω (x̄− η̄ tanΛs)

U∞

]
−K(0)

2

}
T ∗2 (3.80)

where T ∗2 ≡ r2T2.

The coefficients A1, B1, C1 and A2, B2, C2 of the parabolic approximation are obtained

from the value of the Kernel numerator at three points along the doublet line: η̄ =−e (inboard),

η̄ = 0 (midspan) and η̄ =+e (outboard). Thus, those coefficients are given by:

A1 = [P1(+e)−2P1(0)+P1(−e)]/2e2

B1 = [P1(+e)−P1(−e)]/2e

C1 = P1(0)

A2 = [P2(+e)−2P2(0)+P2(−e)]/2e2

B2 = [P2(+e)−P2(−e)]/2e

C2 = P2(0)

Substituting those coefficients in Eqs. (3.77) and (3.78), and integrating by parts, the

following parabolic approximations are obtained:

D(1)
rs =

∆xs

8π

{[(
ȳ2− z̄2)A1 + ȳB1 +C1

]
H +

(
1
2

B1 + ȳA1

)
log
[
(ȳ− e)2 + z̄2

(ȳ+ e)2 + z̄2

]
+2eA1

}
(3.81)

D(2)
rs =

∆xs

16π z̄2

{[(
ȳ2− z̄2)A2 + ȳB2 +C2

]
H

+
1

(ȳ+ e)2 + z̄2

[[(
ȳ2 + z̄2) ȳ+

(
ȳ2− z̄2)e

]
A2 +

(
ȳ2 + z̄2 + ȳe

)
B2 +(ȳ+ e)C2

]
− 1
(ȳ− e)2 + z̄2

[[(
ȳ2 + z̄2) ȳ−

(
ȳ2− z̄2)e

]
A2 +

(
ȳ2 + z̄2− ȳe

)
B2 +(ȳ− e)C2

]} (3.82)
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in which it remains to evaluate the integral:

H ≡
∫ +e

−e

dη̄

(ȳ− η̄)2 + z̄2 =
1
|z̄|

tan−1
[

2e|z̄|
ȳ2 + z̄2− e2

]
(3.83)

where the arctangent is taken in the intervale [0,π].

3.1.6.2 Quartic Approximation of the Kernel Function

In the quartic approximation proposed by Rodden, Taylor and Jr (1998), a fourth degree

polynomial is used for the interpolation of the doublets line at a quarter of the chord of each

panel, changing the form of the integrands P1 and P2 of Eqs. (3.77) and (3.78).

This type of interpolation allows greater flexibility in the analysis for specific surfaces

such as wings with high aspect ratio and swept wings, since the configuration of the mesh in this

type of geometry tends to increase the aspect ratio of the panels, especially those located at the

ends of the lifting surfaces. Rodden et al. (1999) report that in this situation the loss of accuracy

of the method can be overcome by keeping theA of the panels around three, which leads to a

greater refinement in the aerodynamic mesh, making the method computationally expensive. It is

also reported that the analysis for high values of reduced frequency requires that more divisions

along the chord are needed in the discretization, also affecting theA of the panels.

Along those lines, the mathematics involved in the derivation of the quartic approximation

of the Kernel function is beyond the scope developed in this work. However, the reader can

check more details in the work of Rodden, Taylor and Jr (1998). Nevertheless, in brief, the new

integrands P1 and P2 in Eqs. (3.77) and (3.78) becomes:

P1(η̄)≡ A1η̄
2+B1η̄ +C1+D1η̄

3+E1η̄
4≈
{

K1 exp
[
−iω (x̄− η̄ tanΛs)

U∞

]
−K(0)

1

}
T1 (3.84)

P2(η̄)≡A2η̄
2+B2η̄+C2+D2η̄

3+E2η̄
4≈
{

K2 exp
[
−iω (x̄− η̄ tanΛs)

U∞

]
−K(0)

2

}
T ∗2 (3.85)
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with

A1 =−[P1(−e)−16P1(−e/2)+30P1(0) −16P1(+e/2)+P1(+e)]/6e2

B1 = [P1(−e)−8P1(−e/2) +8P1(+e/2)−P1(+e)]/6e

C1 = P1(0)

D1 =−[P1(−e)−2P1(−e/2) +2P1(+e/2)−P1(+e)]/
(
3e3/2

)
E1 = [P1(−e)−4P1(−e/2)+6P1(0) −4P1(+e/2)+P1(+e)]/

(
3e4/2

)
A2 =−[P2(−e)−16P2(−e/2)+30P2(0) −16P2(+e/2)+P2(+e)]/6e2

B2 = P2(−e)−8P2(−e/2) +8P2(+e/2)−P2(+e)]/6e

C2 = P2(0)

D2 =−[P2(−e)−2P2(−e/2) +2P2(+e/2)−P2(+e)]/
(
3e3/2

)
E2 = P2(−e)−4P2(−e/2)+6P2(0)−4P2(+e/2)+P2(+e)]/

(
3e4/2

)

Substituting the refined approximation into for D(1)
rs and D(2)

rs and integrating by parts:

D(1)
rs =

∆ξs

8π

{[(
ȳ2− z̄2)A1 + ȳB1 +C1 + ȳ

(
ȳ2−3z̄2)D1 +

(
ȳ4−6ȳ2z̄2 + z̄4)E1

]
H

+

[
ȳA1 +

1
2

B1 +
1
2
(
3ȳ2− z̄2)D1 +2ȳ

(
ȳ2− z̄2)E1

]
log
[
(ȳ− e)2 + z̄2

(ȳ+ e)2 + z̄2

]
+2e

[
A1 +2ȳD1 +

(
3ȳ2− z̄2 +

1
3

e2
)

E1

]} (3.86)

D(2)
rs =

∆ξs

16π z̄2

{[(
ȳ2 + z̄2)A2 + ȳB2 +C2 + ȳ

(
ȳ2−3z̄2)D2 +

(
ȳ4 +6ȳ2z̄2−3z̄4)E2

]
H

+
1

(ȳ+ e)2 + z̄2

[[(
ȳ2 + z̄2) ȳ+

(
ȳ2− z̄2)e

]
A2 +

(
ȳ2 + z̄2 + ȳe

)
B2 +(ȳ+ e)C2

+
[
ȳ4− z̄4 +

(
ȳ2−3z̄2) ȳe

]
D2 +

[(
ȳ4−2ȳ2z̄2−3z̄4) ȳ+

(
ȳ4−6ȳ2z̄2 + z̄4)e

]
E2
]

− 1
(ȳ− e)2 + z̄2

[[(
ȳ2 + z̄2) ȳ−

(
ȳ2− z̄2)e

]
A2 +

(
ȳ2 + z̄2− ȳe

)
B2 +(ȳ− e)C2

+
[
ȳ4− z̄4−

(
ȳ2−3z̄2) ȳe

]
D2 +

[(
ȳ4−2ȳ2z̄2−3z̄4) ȳ−

(
ȳ4−6ȳ2z̄2 + z̄4)e

]
E2
]

+z̄2 log
[
(ȳ− e)2 + z̄2

(ȳ+ e)2 + z̄2

]
D2 +4z̄2

[
e+ ȳ log

[
(ȳ− e)2 + z̄2

(ȳ+ e)2 + z̄2

]]
E2

}
(3.87)
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3.1.7 Aerodynamic Coefficients

The non-dimensional lift coefficient may be calculated for an individual strip of panel

using the following:

cL(y) =

∫ xTE(y)
xLE(y)

∆c̄p dx

πc(y)
≈

∑ j ∆c̄p, j∆x j

πc(y)
(3.88)

where ∆c̄p, j the pressure coefficient at panel j,∆x j is the mid-span chord of panel j, and

c(y) = xTE(y)− xLE(y) is the mid-span chord of the strip. Here, xLE(y) and xTE(y) are the

x-coordinates of the leading and trailing edges at mid-span of the strip, respectively.

By extending the integration to the entire wing, the expression for the lit coefficient of

the wing is given by:

CL =

∫∫
A ∆c̄p dA
πAref

≈
∑ j ∆c̄p, jA j

πAref
(3.89)

where A j is the panel surface area, and Aref is the reference area, typically the surface area of the

wing.

In addition, Eq. (3.67) can be rewritten in terms of ∆c̄p:

{
∆c̄p
}
= [Drs

−1]︸ ︷︷ ︸
[AIC]

{w̄} (3.90)

Thus, the vector containing the lift forces over each panel can be calculated as:

{L̄}= qd[SL]
{

∆c̄p
}
= qd[SL][AIC]{w̄} (3.91)

where [SL] is a diagonal matrix with the areas of each panel in which the surfaces were discretized.

3.2 DLM Verification

The Doublet-Lattice Method (DLM) has been applied by academic researchers and in-

dustry to certificate aircraft (VALENTE et al., 2017). Therefore, to make sure the implementation

in this work is working properly, some verification cases have been addressed.

3.2.1 Verification of the Kernel Function

Before performing any other complete wing configuration, it is important to certify that

the computation of the Kernel function is right. Thus, it is convenient to evaluate the function
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along only one panel, i.e., considering receiving panel r and emitting panel s as one and the

same panel. Rodden, Taylor and McIntosh (1996) have calculated the variation of the planar

component of the Kernel numerator along the quarter-chord line of the emitting panel, for

multiple values of the panel aspect ratio (A), in order to determine its influence on the accuracy

of the method. It has been shown that a quartic approximation allows the relaxation of the aspect

ratio of the panels, without increasing the number of panels needed in the discretization.

In this verification, the panel chord is fixed at c = 1.0 units, and the panel span is

increased to vary the panel aspect ratio fromA= 1 to 5. The problem is made non-dimensional

using the panel half-chord as reference length, Lref = 0.5 units. Operating conditions used for

this test case are summarized in Table 2.

Table 2 – Operating conditions for the test case.

Property Value

Mach number, M∞ 0.8
Reduced frequency, k 1.0
Reference length, Lref 0.5 units

Source: Rodden, Taylor and McIntosh (1996).

The results obtained forA = 1, 2 and 5 are depicted in Fig. 14. When compared to

the values reported in the original paper, an exact correspondence is observed. Even though

the imaginary component is not presented in the work of Rodden, Taylor and McIntosh (1996),

this work brings it up in order to illustrate the differences between the parabolic and quartic

approximation.

3.2.2 Planar Wings

The comparisons will be made with results from different methods presented by Blair

(1994), for two different wing geometries: rectangular and swept.

In the first case, i.e., for the rectangular wing, the basic geometry has a aspect ratio

of 2 and a wingspan of 24 units of length. Different discretizations will be evaluated. The

discretization of 50 panel, 5 in chord-direction and 10 along the wingspan, is depicted in Fig. 15.

The Mach number is 0.5 and the reference length b for the dimensionless frequency is the
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Figure 14 – Variation of the incremental planar kernel numerator along the doublet line of the panel. The
results in (a), (d) and (g) are from Rodden, Taylor and McIntosh (1996).

(a) Real part forA= 1.

0 0.2 0.4 0.6 0.8 1

y/ y

-1.4

-1.3

-1.2

-1.1

-1

-0.9

R
e(

K
er

n
el

)

Quartic

Parabolic

Exact

(b) Real part forA= 1.

0 0.2 0.4 0.6 0.8 1

y/ y

-1.7

-1.65

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

Im
ag

(K
er

n
el

)

Quartic

Parabolic

Exact

(c) Imaginary part forA= 1.

(d) Real part forA= 2.

0 0.2 0.4 0.6 0.8 1

y/ y

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

R
e(

K
er

n
el

)

Quartic

Parabolic

Exact

(e) Real part forA= 2.

0 0.2 0.4 0.6 0.8 1

y/ y

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

Im
ag

(K
er

n
el

)

Quartic

Parabolic

Exact

(f) Imaginary part forA= 2.

(g) Real part forA= 5.

0 0.2 0.4 0.6 0.8 1

y/ y

-3

-2.5

-2

-1.5

-1

-0.5

0

R
e(

K
er

n
el

)

Quartic

Parabolic

Exact

(h) Real part forA= 5.

0 0.2 0.4 0.6 0.8 1

y/ y

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Im
ag

(K
er

n
el

)

Quartic

Parabolic

Exact

(i) Imaginary part forA= 5.

Source: Elaborated by the author.

semi-chord. Two cases of reduced frequency are evaluated: 0 and 1.4. The boundary condition is

given by:

ˆ̄w j = ik
ĥ j

b
+

∂ ĥ j

∂x
(3.92)
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Figure 15 – Wing discretization with 50 panels.
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Source: Elaborated by the author.

with h = h(x,y, t) given by the following harmonic motion in time:

h = (−x)eiωt

ĥ =−x
(3.93)

In the steady case (k = 0), the boundary condition corresponds to the calculation of the

slope of the lift coefficient curve per radian of angle of attack. In the unsteady case, the wing will

be pitching around the leading edge (x = 0) at a frequency k = 1.4. The lift coefficient results

obtained by the this work are compared with those provided by Blair (1994) in Table 3.

The results in Table 3 show coherence when compared to the other results presented by

Blair (1994). In addition, they match the scripts H7WC (mainly for reduced frequency of 1.4)

and LATIS (mainly for zero frequency), which have steady-state correction, likewise this work,

a correction that the others do not use.

The second case of verification is applied for a swept wing. The implementation of this

work will also be compared to the same previous scripts, but with a different plan shape wing,

with sweep and taper ratio. The wing selected here is the AGARD wing model. The discretization

have 50 panels, 5 along the chord and 10 along the wingspan, as illustrated in Fig. 16. The
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Table 3 – Results for rectangular wing obtained in this work compared to other results presented by Blair
(1994).

Discretization Script
k=0 k = 1.4

CL (real) CL: Magnitude Phase angle (o)

5×5

WL-TR-95-3022 2.8322 10.337 93.5661
WL-TR-92-3028 2.8322 10.337 93.5661
H7WC 2.803 9.96 93.83
LATIS 2.8040 9.956 93.8338
This work 2.804 9.953 93.87

10×10

WL-TR-95-3022 2.7147 10.654 91.0658
WL-TR-92-3028 2.7147 10.654 91.0658
H7WC 2.698 10.39 91.27
LATIS 2.6994 10.258 91.4137
This work 2.699 10.38 91.26

15×15

WL-TR-95-3022 2.6475 10.753 90.4543
WL-TR-92-3028 2.6475 10.753 90.4543
H7WC - 10.55 90.57
LATIS 2.6637 10.307 91.9003
This work 2.664 10.55 90.59

20×20

WL-TR-95-3022 2.6542 10.795 90.2333
WL-TR-92-3028 - - -
H7WC 2.642 10.62 90.27
LATIS - - -
This work 2.646 10.63 90.33

positions of the control points are also shown.

A Mach number of 0.8 is considered. Also, the boundary conditions applied are the same

ones to the previous case, i.e., they are presented in Eqs. (3.92) and (3.93). The results obtained

for zero reduced frequency are displayed in Table 4.

The results obtained by the presented implementation of the DLM code are in very good

agreement with those reported by Blair (1994).
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Figure 16 – AGARD wing discretization with 50 panels.
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Source: Elaborated by the author.

Table 4 – Results for AGARD wing obtained in this work compared to other results presented by Blair
(1994).

Discretization Script
k=0

CL (real)

5×5

WL-TR-95-3022 2.3192
WL-TR-92-3028 2.3149

H7WC 2.32
LATIS 2.3259

This work 2.326

10×10

WL-TR-95-3022 2.2296
WL-TR-92-3028 2.2277

H7WC 2.23
LATIS 2.2330

This work 2.233

15×15

WL-TR-95-3022 2.1995
WL-TR-92-3028 2.1982

H7WC 2.20
LATIS 2.2017

This work 2.202

20×20

WL-TR-95-3022 2.1843
WL-TR-92-3028 -

H7WC 2.18
LATIS -

This work 2.187
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CHAPTER

4
STRUCTURAL MODELING

IN the following chapter, it is presented the structural modeling used to describe the wing

structure under analysis in this work. Next, a verification of the implementation is performed,

comparing the results with Nastran analysis.

The formulation presented in this chapter is already implemented in Python and available

as a library named pyfe3d, which has been developed by Castro (2022a). Therefore, the mass

and stiffness matrix of the wing structure under analysis are obtained by using that library

package.

The wing design proposed in Chapter 6 shows that the structure is basically made of

truss-based elements and plate elements, and they are connected by ball joints at nodes. Therefore,

the structural model is based on two finite element types to correctly represent the different wing

structural designs: quadrilateral and beam elements, whose formulations are presented in the

following sections.

4.1 Homogeneous Euler-Lagrangian equations governing
3D Timoshenko beam

The truss-based elements are represented using an efficient three-dimensional (3D)

Timoshenko beam element, with the formulation proposed by Luo (LUO, 2008) and adapted by

Castro (2022b).
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Consider a three-dimensional 2-node beam element as illustrated in Fig. 17. The element

has two nodes, and each node has six degrees of freedom (DOF): three translation and three

rotations. In this case, there is no external force acting on the beam in between the two nodes.

Figure 17 – A 3D 2-node beam element with local coordinate system centered on the neutral line.

Source: Castro (2022b).

The motion of a typical particle p in the beam ban be split into two parts as depicted in Fig. 18.

The translation of point c at the beam axis and the rotation of vector ttt defined by p and c. Vectors

ttt and rrrccc are orthogonal to each other in the underformed configuration. The motion of point c is

described by three translations uc, vc, and wc along the three axis, respectively.

Figure 18 – Kinematics of a typical particle in a 3D beam.

Source: Luo (2008).

According to Euler-Chasles’ theorem, the rotation of vector t can be realized by a

rotational operator RRR (NOUR-OMID; RANKIN, 1991; PACOSTE; ERIKSSON, 1997):

ttt ′ = RRRttt (4.1)
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where

RRR = exp
(
Ψ̃ΨΨ
)
= III3 + Ψ̃ΨΨ+

1
2

Ψ̃ΨΨ
2
+ · · · (4.2)

Ψ̃ΨΨ =

 0 −rzc ryc

rzc 0 −rxc

−ryc rxc 0

 (4.3)

and rxc , ryc and rzc are the rotational angles of vector ttt around the three axes x, y and z, respec-

tively.

The position vectors of particle p before and after deformation are, respectively,

rrr = rrrc + ttt

rrr′ = rrr′c + ttt ′ = rrr′c +RRRttt
(4.4)

So the displacement vector of p is

uuu = rrr′− rrr = uuuc +(RRR− III3) ttt (4.5)

where III3 is a 3×3 unit matrix; uuu =
[

ue ve we

]T
and uuuc =

[
uc vc wc

]T

Considering that the rotation angles rxc , ryc and rzc are small and only the first two terms

are retained in Taylor series in Eq. (4.2), the displacements of particle p in Eq. (4.5) can be

written as: 
ue = uc− rzcy+ rycz

ve = vc− rxcz

we = wc + rxcy

(4.6)

Furthermore, assuming that the strains are smalls so that a linear strain-displacement

relation can be adopted, the three strains for a 3D beam may be expressed as:

εxx =
∂ue

∂x
= u′c− r′zc

y+ r′yc
z

γxy =
∂ve

∂x
+

∂ue

∂y
= v′c− r′xc

z− rzc

γxz =
∂we

∂x
+

∂ue

∂ z
= w′c + r′xc

y+ ryc

(4.7)

where ( )′ =
d
dx

.
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4.2 3D Truss Element

Having Eqs. (4.6) and (4.7), they can be rewritten considering only the the displacements

and rotations along the x-direction, which is what matters the most for truss elements:
ue(x,y,z) = uc(x)

ve(x,y,z) =−rxc(x)z

we(x,y,z) = +rxc(x)y

(4.8)



εxx =
∂ue

∂x
=

∂uc

∂x

γxy =
∂ve

∂x
+

∂ue

∂y
=−z

∂ rxc

∂x

γxz =
∂we

∂x
+

∂ue

∂ z
= y

∂ rxc

∂x

(4.9)

The normal stress and shear stress are then described as:
σxx = Eεxx

τxy = kGγxy

τxz = kGγxz

(4.10)

where E is the Young’s modulus, G is the shear modulus, and k is the shear correction factor.

4.2.1 Interpolation Function

Of all the quadrature formulae, the Gauss-Legendre one is the most commonly used. The

details of the method is shortly discussed here. The formula requires the integral to be cast as

one to be evaluated over the interval [−1,1]. This requires the transformation of the problem

coordinate x to a natural coordinate ξ , as depicted in Fig. 19).

Figure 19 – Global coordinate x, local coordinate x̄, and normalized coordinate ξ .

x

x = 0
x = xa

ξ = -1

x = he

x = xb

ξ = +1

he

x ξ

Source: Elaborated by the author.

Thus,

when x = xa, ξ =−1; when x = xb, ξ = 1
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The transformation between x and ξ can be represented by the linear transformation:

x(ξ ) = xa +
1
2

he(1+ξ ) (4.11)

where xa denotes the global coordinate of the left-end node of the element Ωe and he is the

element length (see Fig.19).

The local coordinate ξ is called the normal coordinate or natural coordinate, and its

values always lie between −1 and 1 , with its origin at the center of the element. The local

coordinate ξ is useful in two ways: it is (a) convenient in constructing the interpolation functions

and (b) required in numerical integration using Gauss-Legendre quadrature.

The derivation of the Lagrange family of interpolation functions in terms of the natural

coordinate ξ is made easy by the following interpolation property of the approximation functions:

ψi
(
ξ j
)
=

1 if i = j

0 if i 6= j
(4.12)

where ξ j is the ξ coordinate of the j-th node in the element. For an element with n nodes,

ψi(i = 1,2, . . . ,n) are polynomials of degree n− 1. To construct ψi satisfying Eq. (4.12), the

procedure is as follows: for each ψi, we form the product of n−1 linear functions ξ −ξ j( j =

1,2, . . . , i−1, i+1, . . . ,n; j 6= i) :

ψi = ci (ξ −ξ1)(ξ −ξ2) · · ·(ξ −ξi−1)(ξ −ξi+1) · · ·(ξ −ξn) (4.13)

Note that ψi is zero at all nodes except the i-th. Next, we determine the constant ci such that

ψi = 1 at ξ = ξi :

ci = [(ξi−ξ1)(ξi−ξ2) · · ·(ξi−ξi−1)(ξi−ξi+1) · · ·(ξi−ξn)]
−1 (4.14)

Thus, the interpolation function associated with node i is

ψi(ξ ) =
(ξ −ξ1)(ξ −ξ2) · · ·(ξ −ξi−1)(ξ −ξi+1) · · ·(ξ −ξn)

(ξi−ξ1)(ξi−ξ2) · · ·(ξi−ξi−1)(ξi−ξi+1) · · ·(ξi−ξn)
(4.15)

The linear, quadratic, and cubic Lagrange interpolation functions in terms of the natural coordi-

nate (for equally spaced nodes) are defined as:
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• Linear:
ξ1 2

ξ = -1 ξ = +1

ψ1(ξ ) =
1
2
(1−ξ ), ψ2(ξ ) =

1
2
(1+ξ )

• Quadratic:
ξ1 2

ξ = -1 ξ = +1ξ = 0

ψ1(ξ ) =−
1
2

ξ (1−ξ ), ψ2(ξ ) =
(
1−ξ

2)
ψ3(ξ ) =

1
2

ξ (1+ξ )

• Cubic:
ξ1 2

ξ = -1 ξ = +1ξ = -1/3 ξ = +1/3

ψ1(ξ ) =−
9

16
(1−ξ )

(
1
9
−ξ

2
)
,ψ2(ξ ) =

27
16
(
1−ξ

2)(1
3
−ξ

)
ψ3(ξ ) =

27
16
(
1−ξ

2)(1
3
+ξ

)
,ψ4(ξ ) =−

9
16

(1+ξ )

(
1
9
−ξ

2
)

For this work, it is assumed a linear interpolation function. From now on, for convenience, the

shape function symbol ψ is replaced by N:
N1 =

(1−ξ )

2

N2 =
(1+ξ )

2

(4.16)

Having those interpolation function, the displacements and rotations can be rewritten as: uc(ξ ) = N1ue1 +N2ue2

rxc(ξ ) = N1rxe1
+N2rxe2

(4.17)

Consequently, the strains εxx, γxy and γxz can also be rewritten in terms of the interpolation

functions:

εxx =
∂uc

∂x
=

∂N1

∂x
ue1 +

∂N2

∂x
ue2 = N1,xue1 +N2,xue2

γxy =−z
∂ rxc

∂x
=−z

(
∂N1

∂x
rxe1

+
∂N2

∂x
rxe2

)
=−z

(
N1,xrxe1

+N2,xrxe2

)
γxz = y

∂ rxC

∂x
= y
(

∂N1

∂x
rx1 +

∂N2

∂x
rxe2

)
= y
(

N1,xrxe1
+N2,xrxe2

) (4.18)
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Applying the chain rule, the derivation in x can be replaced by:

∂

∂x
=

∂

∂ξ

∂ξ

∂x
=

2
`e

∂

∂ξ

Therefore, strains εxx, γxy and γxz become:

εxx =
2
`e

∂N1

∂ξ
ue1 +

2
`e

∂N2

∂ξ
ue2

γxy =−z
(

2
`e

∂N1

∂ξ
rxe1

+
2
`e

∂N2

∂ξ
rx2

)
γxz = y

(
2
`e

∂N1

∂ξ
rxe1

+
2
`e

∂N2

∂ξ
rxe2

) (4.19)

The displacements of the nodes may be expressed in the matrix form:

ue(x,y,z) = uc(x) = N1ue1 +N2ue2 (4.20)



ue

ve

we

rxe

rye

rze


=



N1 0 0 0 0 0 N2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0





ue1

ve1

we1

rxe1

rye1

rze1

ue2

ve2

we2

rxe2

rye2

rze



(4.21)

uuueee = NNNūuueee (4.22)

The strains can also be put together in the matrix form, which is convenient to separate in axial

and rotational terms, such as:
εxx

γxy

γxz

=

 N1,x 0 0 0 0 0 N2,x 0 0 0 0 0
0 0 0 −zN1,x 0 0 0 0 0 −zN2,x 0 0
0 0 0 yN1,x 0 0 0 0 0 yN2,x 0 0

uuue (4.23)

εεε = BBBuuueee (4.24)
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Evaluating the strains in x, y and z directions, the following relations are obtained:
εxx

γxy

γxz

=


εxx0

γxy0

γxz0

+ y


εxxy

γxyy

γxzy

+ z


εxxz

γxyz

γxzz

 (4.25)

εεε = εεε000 + yεεεyyy + zεεεzzz (4.26)


εxx0

γxy0

γxz0

=

 N1,x 0 0 0 0 0 N2,x 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

uuueee (4.27)

εεε000 = BBB000ūuueee (4.28)


εxxy

γxyy

γxzy

=

 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 N1,x 0 0 0 0 0 N2,x 0 0

uuueee (4.29)

εεεyyy = BBByyyūuueee (4.30)


εxxZ

γxyz

γxzz

=

 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −N1,x 0 0 0 0 0 −N2,x 0 0
0 0 0 0 0 0 0 0 0 0 0 0

uuueee (4.31)

εεεzzz = BBBzzzūuueee (4.32)

Following, in general form, it becomes:

BBB = BBB0 + yBBByyy + zBBBz (4.33)

The normal and shear stress can also be rewritten in the matrix form, such as:

σσσ =


σxx

τxy

τxz

=

 E 0 0
0 kG 0
0 0 kG




εxx

γxy

γxz

 (4.34)

σσσ =CCCεεε (4.35)
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4.2.2 Stiffness and Mass Matrices

The virtual strain energy for a body is calculated by

δV =
∫

Ω

σσσ
TTT

δεεεdΩ︸ ︷︷ ︸
strain energy

−
∫

Ω

(
bbbTTT

δuuu
)

dΩ−
∫

δΩ

(
σσσ

TTT
δuuu
)

d(δΩ)︸ ︷︷ ︸
work by external forces

= 0 (4.36)

The strain energy component for the truss element becomes:

δU =
∫

Ω

σσσ
TTT

δεεεdΩ = δ ∑
e

Ue =
∫

Ωe

σσσ
TTT

δεεεdΩe (4.37)

Applying Eqs. (4.35), (4.24) and (4.33), Eq. (4.37) turns into:

δUe = uuu>eee

∫
Ωe

(BBB0 + yBBByyy + zBBBz)
>CCC (BBB0 + yBBByyy + zBBBz)dΩeδuuueee (4.38)

Therefore, the constitutive stiffness matrix can be calculated and expressed by:

KKKeee =
∫

Ω

(BBB0 + yBBByyy + zBBBz)
>CCC (BBB0 + yBBByyy + zBBBz)dΩ (4.39)

KKKeee =
∫∫∫

x,y,z
(BBB0 + yBBByyy + zBBBz)

>CCC (BBB0 + yBBByyy + zBBBz)dxdydz (4.40)

KKKeee =
∫∫∫

x,y,z

(
BBB>0 CCCBBB0 + yBBB>0 CCCBBByyy + zBBB>0 CCCBBBz

yBBB>y CCCBBB0 + y2BBB>y CCCBBByyy + yzBBB>y CCCBBBz

zBBB>z CCCBBB0 + yzBBB>z CCCBBByyy + z2BBB>z CCCBBBz

)
dxdydz

(4.41)

Integrating first on y and z:

KKKeee =
∫

x

(
BBB>0 CCCBBB0

∫∫
y,z

dydz+BBB>0 CCCBBByyy

∫∫
y,z

ydydz+BBB>0 CCCBBBz

∫∫
y,z

zdydz

BBB>y CCCBBB0

∫∫
y,z

ydydz+BBB>y CCCBBBy

∫∫
y,z

y2dydz+BBB>y CCCBBBz

∫∫
y,z

yzdydz

BBB>z CCCBBB0

∫∫
y,z

zdydz+BBB>z CCCBBByyy

∫∫
y,z

yzdydz+BBB>z CCCBBBz

∫∫
y,z

z2dydz
)

dxdydz

(4.42)

Therefore, it is possible to integrate directly using matrix BBB:

KKKeee =
∫

Ω

BBB>CCCBBBdΩ =
∫∫∫

x,y,z
BBB>CCCBBBdxdydz (4.43)

This matrix is taken from the element’s local coordinate system (x,y,z). Thus, to visualize the

matrix in the global coordinate system (X ,Y,Z), it is necessary to identify the degrees of freedom

in both coordinate systems (see Fig. 20):
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Figure 20 – Local and global coordinate systems.

Source: Castro (2022b).

• Degrees of freedom of nodes 1 and 2 in the element’s local system:

ue1 ,ve1 ,we1 ,rxe1
,rye1

,rze1
,ue2 ,ve2 ,we2 ,rxe2

,rye2
,rze2

• Degrees of freedom of nodes 1 and 2 in the element’s global system:

u1,v1,w1,rx1 ,ry1 ,rz1 ,u2,v2,w2,rx2 ,ry2 ,rz2

where xxx is defined by the spatial position of nodes 1 and 2:

xxx = rrr222− rrr111 (4.44)

zzz requires definition of a vector vxy the xy-plane (local coordinate):

zzz = xxx× vvvxxxyyy (4.45)

and y is defined from x and z:

yyy = zzz× xxx (4.46)

Assuming that both coordinate systems have the same origin, the transformation between them

can be written in matrix form:
xi

x j

xk

= [R]


X

0
0

= [R]


1
0
0

 (4.47)


yi

y j

yk

= [R]


0
Y

0

= [R]


0
1
0

 (4.48)
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
Zi

Z j

Zk

= [R]


0
0
Z

= [R]


0
0
1

 (4.49)

where matrix [R] is defined as:

[R] =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 (4.50)

xi = r11 yi = r12 zi = r13

x j = r21 y j = r22 z j = r23

xk = r31 yk = r32 zk = r33

For the degrees of freedom of displacements and rotations, the transformation for nodes 1 and 2

of the truss becomes: 

ue1

ve1

we1

rxe1

rye1

rze1


= [R1]



u1

v1

w1

rx1

ry1

rz1


(4.51)



ue2

ve2

we2

rxe

rye

rze2


= [R2]



u2

v2

w2

rx2

ry2

rz2


(4.52)

where

[R1] = [R2] =



r11 r12 r13 0 0 0
r21 r22 r23 0 0 0
r31 r32 r33 0 0 0
0 0 0 r11 r12 r13

0 0 0 r21 r22 r23

0 0 0 r31 r32 r33


(4.53)
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or reorganizing together: 

ue1

ve1

we1

rxe1

rye1

rze1

ue2

ve2

we2

rx2

rye2

rz2



= [R]



u1

v1

w1

rx1

ry1

rz1

u2

v2

w2

rx2

ry2

rz2



(4.54)

where

[R] =



r11 r12 r13 0 0 0

0

r21 r22 r23 0 0 0
r31 r32 r33 0 0 0
0 0 0 r11 r12 r13

0 0 0 r21 r22 r23

0 0 0 r31 r32 r33

0

r11 r12 r13 0 0 0
r21 r22 r23 0 0 0
r31 r32 r33 0 0 0
0 0 0 r11 r12 r13

0 0 0 r21 r22 r23

0 0 0 r31 r32 r33



(4.55)

Finally,
{ūe}= [R]{ū}

uuueee = RRRuuu
(4.56)

Back to constitutive stiffness matrix, from Eqs. (4.38) and (4.43), it follows:

δUe = uuu>eee KKKeeeδuuueee (4.57)

In terms of global displacements:

uuue = RRRuuu (4.58)

uuu>eee = uuu>RRR> (4.59)
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δUe = uuu>RRR>KKKeeeRRRδuuu (4.60)

Therefore, the stiffness matrix in the global coordinate systems becomes:

KKK = RRR>KKKeeeRRR (4.61)

Analogously, the consistent mass matrix in the global coordinate system can be obtained:

MMM = RRR>MMMeRRR (4.62)

where

MMMeee =
∫

xe

∫∫
ye,ze

ρ

[(
NNNuuu>−NNNrrrzzz>ye +NNNrrryyy>ze

)
(NNNuuu−NNNrrrzzzye +NNNrrryyyze)

+
(

NNNvvv>−NNNrrrxxx>ze

)
(NNNvvv−NNNrrrxxxze)

+
(

NNNwww>+NNNrrrxxx>ye

)
(NNNwww +NNNrrrxxxye)

]
dyedzedxe

(4.63)

4.3 Plate Formulation using the First-Order Shear Defor-
mation Theory (FSDT)

Plates are two-dimensional structures with one dimension that is at least one order of

magnitude smaller than the in-plane dimensions a and b, in general the thickness h (see Fig. 21).

This fact allows the 3D problem to be reduced to a 2D problem. The problem defined at each

point QV (x,y,z) of the 3D continuum plate is transformed into a problem defined at each point

QΩ(x,y) of the plate surface Ω.

Figure 21 – Plate geometry and reference system.

Source: Elaborated by the author.



90 Chapter 4. Structural Modeling

Plate modeling in two dimensions is a classic problem in structural theory. The z-

coordinate can be eliminated using a variety of methodologies, resulting in a large number of

approaches and procedures. For example, the unknown variables can be assumed axiomatically

along z. This means that a polynomial expansion in z will give the distribution of the unknowns

along the thickness at a given point QΩ(x,y) in the plane. For this work, it is applied the

Reissner-Mindlin theory, also called First-order Shear Deformation Theory (FSDT).

Reissner-Mindlin theory modifies Kirchhoff’s hypothesis regarding the orthogonality

of the transverse lines in relation to the plate plane. In this case, the lines normal to the plane

of the plate do not remain orthogonal after its deformation, as the influence of transverse shear

deformations is now considered. According to Oñate (2013), the Reissner-Mindlin theory has

advantages over the Kirchhoff theory in the application of the finite element method. While

according to Kirchhoff’s theory there is great difficulty in finding functions that satisfy the

continuity conditions required by the strains and rotations of the elements; by Reissner-Mindlin

theory, constraints are reduced, allowing the use of shape functions of class C0, which eliminates

the effects of non-conformity.

However, according to Filho (1997), the Reissner-Mindlin theory can cause numerical

difficulties in the analysis of very thin plates, generating very rigid solutions due to the excessive

influence of the shear force terms. In the literature, this effect is known as shear locking. To solve

this problem, reduced integration techniques are applied or interpolation functions of orders

greater than three are used.

Figure 22 depicts the distribution of displacements in FSDT for the plate.

Figure 22 – Distribution of displacements in FSDT.

Source: Castro (2022b).
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The displacement field in the case of FSDT is given by:

u(x,y,z) = u0(x,y)+ zφx(x,y)

v(x,y,z) = v0(x,y)+ zφy(x,y)

w(x,y,z) = w0(x,y)

(4.64)

The strain components are obtained by substituting the displacement field from Eqs.

(4.64) in the geometrical relations. Only strain εzz is zero, so the not-null strains are given by:

εεε =



εxx

εyy

2εxy

2εyz

2εxz


=



∂u
∂x
∂v
∂y

∂u
∂y

+
∂v
∂x

∂w
∂y

+φy

∂w
∂x

+φx


(4.65)

εεε =



εxx

εyy

2εxy

2εyz

2εxz


=



u0,x

v0,y

u0,y + v0,x

w,y +φy

w,x +φx


+ z



φx,x

φy,y

φx,y +φy,x

0
0


(4.66)

εεε = εεε000 + zεεε111 (4.67)

Usually, the subscript “0” is omitted in the formulation:

εεε0 =



εxx

εyy

γxy

γyz

γxz


εεε1 =



κxx

κyy

κxy

0
0


(4.68)

The variation of strain energy of the plate can be written as:

δU =
∫

Ω

σσσ
T

δεdΩ =
∫

Ω

σσσ
T (δε0 + zδεεε1)dΩ (4.69)

where σσσ is the vector of in-plane stresses and the shear stresses, given by:

σσσ =



σxx

σyy

τxy

τyz

τxz


(4.70)
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Separating integration of Eq. (4.69) through the thickness, it follows:

δU =
∫∫

xy

(∫ + h
2

z=− h
2

σσσ
T

δεεε0dz+
∫ + h

2

z=− h
2

zσσσ
T

δεεε1dz

)
dxdy (4.71)

δU =
∫∫

xy

[(∫ + h
2

z=− h
2

σσσ
T dz

)
δεεε0 +

(∫ + h
2

z=− h
2

zσσσ
T dz

)
δεεε1

]
dxdy (4.72)

δU =
∫∫

xy




∫ + h

2

z=− h
2



σxx

σyy

τxy

τyz

τxz



T

dz


δεεε0 +


∫ + h

2

z=− h
2

z



σxx

σyy

τxy

τyz

τxz



T

dz


δεεε1


dxdy (4.73)

The membrane stresses, transverse stresses and bending stresses (see Fig. 23) can be

obtained integrating the stresses along the thickness of the FSDT plate:

Figure 23 – Direction of forces and moments of the FSDT plate.

Source: Castro (2022b).



Nxx

Nyy

Nxy

Qy

Qx


= NNN =

∫ + h
2

z=− h
2



σxx

σyy

τxy

τyz

τxz


dz (4.74)
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

Mxx

Myy

Mxy

0
0


= MMM =

∫ + h
2

z=− h
2

z



σxx

σyy

τxy

τyz

τxz


dz (4.75)

Applying Eqs. (4.74) and (4.75) into Eq. (4.72), it follows:

δU =
∫∫

xy





Nxx

Nyy

Nxy

Qy

Qx



T

δεεε0 +



Mxx

Myy

Mxy

0
0



T

δεεε1


dxdy (4.76)

δU =
∫∫

xy




Nxx

Nyy

Nxy


T 

δεxx

δεyy

δγxy

+

{
Qy

Qx

}T {
δτyz

δτxz

}
+


Mxx

Myy

Mxy


T 

δκxx

δκyy

δκxy


dxdy

(4.77)

δU =
∫∫

xy

NNNT


δεxx

δεyy

δγxy

+QQQT

{
δτyz

δτxz

}
+MMMT


δκxx

δκyy

δκxy


dxdy (4.78)

The constitutive relations are used to obtain the in-plane stresses and the shear stress

components: 
σxx

σyy

τxy

=
E

1− v2


1 v 0
−v 1 0

0 0
1− v

2




εxx

εyy

γxy

 (4.79)

{
τyz

τxz

}
=

E
1− v2

 1− v
2

0

0
1− v

2

{ γyz

γxz

}
(4.80)

The shear stresses can still be written as:

τxz = κGγxz (4.81)

τyz = κGγyz (4.82)
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where κ is the shear correction factor. Similarly to the Timoshenko beam theory (TBT), the

shear predicted by FSDT should be corrected since the model yields a constant value along the

thickness, whereas it is at least parabolic in order to satisfy the stress free boundary conditions on

the unloaded top and bottom faces of the plate. In literature, there are many methods to compute

κ for the FSDT; for instance, Babuska, d’Harcourt and Schwab (1991) and Rössle (1999) present

some of them.

Calculating the membrane stresses (NNN), it follows:

NNN =


Nxx

Nyy

Nxy

 (4.83)

NNN =
∫ + h

2

− h
2


σxx

σyy

τxy

dz =
∫ + h

2

− h
2

CCC




εxx

εyy

γxy

+ z


κxx

κyy

κxy


dz = hCCC


εxx

εyy

γxy

 (4.84)

where CCC is given by:

CCC =
E

1− v2


1 v 0
−v 1 0

0 0
1− v

2

 (4.85)

Analogously with composites, with an offset d, it follows:

NNN =
∫ + h

2+d

− h
2+d


σxx

σyy

τxy

dz = hCCC


εxx

εyy

γxy

+dhCCC


κxx

κyy

κxy

 (4.86)

Calculating the bending stresses (MMM), it follows:

MMM =


Mxx

Myy

Mxy

 (4.87)

MMM =
∫ + h

2

− h
2

z


σxx

σyy

τxy

dz =
∫ + h

2

− h
2

CCC

z


εxx

εyy

γxy

+ z2


κxx

κyy

κxy


dz =

h3

12
CCC


κxx

κyy

κxy

 (4.88)

Analogously with composites, with an offset d, it follows:

MMM =
∫ + h

2+d

− h
2+d

z


σxx

σyy

τxy

dz = dhCCC


εxx

εyy

γxy

+h
(

d2 +
h2

12

)
CCC


κxx

κyy

κxy

 (4.89)
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Calculating the transverse stresses (QQQ), it follows:

QQQ =

{
Qy

Qx

}
(4.90)

QQQ =
∫ + h

2

− h
2

{
τyz

τxz

}
dz =

∫ + h
2

− h
2

SSS

{
γyz

γxz

}
dz = hSSS

{
γyz

γxz

}
(4.91)

where SSS is given by:

SSS =
E

1− v2

 1− v
2

0

0
1− v

2

 (4.92)

and with an offset, it becomes:

QQQ = hSSS

{
γyz

γxz

}
(4.93)

4.3.1 Interpolation Function

Likewise in the truss element formulation, here it is used the natural coordinates to

calculate the stresses and strains for any element, since this approaches makes it easier to

interpolate and easier to apply numerical integration.

Similar to one-dimensional elements, a natural coordinate system can be introduced

for a two-dimensional element by normalizing the dimensional lengths along x and y, re-

spectively. Fig. 24 shows the normalization: the length along x- and y-axes is set as 2 units,

and the origin of the natural coordinate system is set at the geometric center of the rectan-

gle element. As the result, the coordinates of four nodes in a natural coordinate system are

(−1,−1),(+1,−1),(+1,+1),(−1,+1) for nodes 1, 2, 3, and 4, respectively.

The interpolations equations in natural coordinate system are then defined:

N1(ξ ,η) =
1
4
(ξ η−ξ −η +1)

N2(ξ ,η) =−1
4
(ξ η−ξ +η−1)

N3(ξ ,η) =
1
4
(ξ η +ξ +η +1)

N4(ξ ,η) =−1
4
(ξ η +ξ −η−1)

(4.94)
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Figure 24 – Natural coordinate system in two-dimensional rectangle element.

Source: Castro (2022b).

and the displacement and rotational field are expressed as:

u(ξ ,η) =
4

∑
i=1

Ni(ξ ,η)ui

v(ξ ,η) =
4

∑
i=1

Ni(ξ ,η)vi

w(ξ ,η) =
4

∑
i=1

Ni(ξ ,η)wi

φx(ξ ,η) =
4

∑
i=1

Ni(ξ ,η)φxi

φy(ξ ,η) =
4

∑
i=1

Ni(ξ ,η)φyi

(4.95)

Figure 25 shows the relation between cartesian and natural coordinate system. Note that

rrr is a vector in the x and y space defined as a function of ξ and η; thus providing x(ξ ,η) and

y(ξ ,η):

Figure 25 – Natural coordinate system in two-dimensional rectangle element.

Source: Castro (2022b).
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rrrbbb(ξ ) = rrr1 +(rrr2− rrr1)
(ξ +1)

2
(4.96)

rrrttt(ξ ) = rrr4 +(rrr3− rrr4)
(ξ +1)

2
(4.97)

rrr(ξ ,η) = rrrbbb(ξ )+(rrrttt(ξ )− rrrbbb(ξ ))
(η +1)

2
(4.98)

A more general procedure for finding x(ξ ,η) and y(ξ ,η) usually involves Lagrange polynomials.

Due to the use of natural coordinates, it is necessary to express the kinematic equations

(strain-displacements) in terms of natural coordinates. Therefore, if x(ξ ,η) and y(ξ ,η), it comes

that ξ (x,y) and η(x,y), such that:

∂ f
∂x

=
∂ f
∂ξ

∂ξ

∂x
+

∂ f
∂η

∂η

∂x
(4.99)

∂ f
∂y

=
∂ f
∂ξ

∂ξ

∂y
+

∂ f
∂η

∂η

∂y
(4.100)

It is worthy mentioning that ξ (x,y) and η(x,y) usually do not have analytical expressions.

Therefore, the values for
∂ξ

∂x
,

∂ξ

∂y
,

∂η

∂x
,

∂η

∂y
are calculated numerically.

Furthermore, having those relations stated, it is possible to rewrite the strains in natural

coordinates:

εxx =
∂u
∂x

=
∂u
∂ξ

∂ξ

∂x
+

∂u
∂η

∂η

∂x

εyy =
∂v
∂y

=
∂v
∂ξ

∂ξ

∂y
+

∂v
∂η

∂η

∂y

γxy =
∂u
∂y

+
∂v
∂x

=
∂u
∂ξ

∂ξ

∂y
+

∂u
∂η

∂η

∂y
+

∂v
∂ξ

∂ξ

∂x
+

∂v
∂η

∂η

∂x

(4.101)

The corresponding derivatives in terms of natural coordinate system are calculated applying the

chain rule:
∂ f
∂ξ

=
∂ f
∂x

∂x
∂ξ

+
∂ f
∂y

∂y
∂ξ

∂ f
∂η

=
∂ f
∂x

∂x
∂η

+
∂ f
∂y

∂y
∂η

and

∂ f
∂x

=
∂ f
∂ξ

∂ξ

∂x
+

∂ f
∂η

∂η

∂x
∂ f
∂y

=
∂ f
∂ξ

∂ξ

∂x
+

∂ f
∂η

∂η

∂x

(4.102)

or in matrix form:
∂

∂ξ

∂

∂η

= JJJ


∂

∂x
∂

∂y

 and


∂

∂x
∂

∂y

= JJJ−1


∂

∂ξ

∂

∂η

 (4.103)
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where matrix JJJ is the Jacobian, which is expressed by:

JJJ =


∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

 and JJJ−1 =

 ∂ξ

∂x
∂η

∂x
∂ξ

∂y
∂η

∂y

 (4.104)

Equation (4.78) was written in terms of cartesian coordinates. Thus, it is necessary to

transform it to natural coordinate system. To do so, the derivatives dx and dy can be expressed in

terms of the natural coordinates as:

dddxxx =
∂x
∂ξ

dddξ +
∂x
∂η

dddηηη

dddyyy =
∂y
∂ξ

dddξ +
∂y
∂η

dddηηη

(4.105)

dxdy =

∣∣∣∣∣∣∣∣∣∣
ξξξ ηηη 1
∂x
∂ξ

∂x
∂η

0

∂y
∂ξ

∂y
∂η

0

∣∣∣∣∣∣∣∣∣∣
=

(
∂x
∂ξ

∂y
∂η
− ∂x

∂η

∂y
∂ξ

)
dξ dη = detJJJdξ dη (4.106)

4.3.2 Consistent Mass Matrices for Plates

To get started, consider the inertial term:∫
Ω

ρ

(
üuuTTT

δuuu
)

dΩ (4.107)

If:

uuu =


u

v

w

 (4.108)

uuu =UUU(x,y,z) f (t) (4.109)

üuu =UUU(x,y,z) f̈ (t) (4.110)

Thus:

f̈ (t)
∫∫∫

x,y,z
ρ
(
UUUT

δUUU
)

dxdydz f (t) (4.111)

For the FSDT:
u(x,y,z) = u0(x,y)+ zφx(x,y)

v(x,y,z) = v0(x,y)+ zφy(x,y)

w(x,y,z) = w0(x,y)

(4.112)
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f̈ (t)
∫∫

x,y
ρ

∫ + h
2

z=− h
2

(
UUUTTT

δUUU
)

dzdxdy f (t) (4.113)

where UUU is given by:

UUU(x,y) = NNN(x,y)UUUnnn (4.114)

Applying Eq. (4.95) into Eq. (4.114), and applying the result into Eq. (4.113), it follows:

f̈ (t)∑
e

MMMe f (t) (4.115)

Therefore, the consistent mass matrix for plates are given by:

MMMeee =
∫∫

ξ ,η
ρ

(
h [Nu]T [Nu]+h [Nv]T [Nv]+h [Nw]T [Nw]

+
h3

12

[
Nφx
]T [

Nφx
]
+

h3

12

[
Nφy
]T [

Nφy
])

detJdξ dη

(4.116)

which is obtained without offset and assuming ρ constant.

4.3.3 Lumped Mass Matrices for 2D Plates

The lumped mass matrix for plates can be expressed as:

[M]e =

u v w φx φy



m1 0
m1

m1

Iyy1 · · ·
Ixx1

0
...

(4.117)

where m1, Iyy1 and Ixx1 are given by:

m1 =
∫

η=0

η=−1

∫
ξ=0

ξ=−1
ρhdetJJJdξ dη (4.118)

Iyy1 =
∫

η=0

η=−1

∫
ξ=0

ξ=−1
(x− x1)

2
ρhdetJdξ dη (4.119)

Ixx1 =
∫

η=0

η=−1

∫
ξ=0

ξ=−1
(y− y1)

2
ρhdetJdξ dη (4.120)
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Furthermore, for the other nodes, i.e., nodes 2, 3 and 4, the terms become:

m2 =
∫

η=0

η=−1

∫
ξ=+1

ξ=0
ρhdetJJJdξ dη (4.121)

Iyy2 =
∫

η=0

η=−1

∫
ξ=+1

ξ=0
(x− x2)

2
ρhdetJJJdξ dη (4.122)

Ixx2 =
∫

η=0

η=−1

∫
ξ=+1

ξ=0
(y− y2)

2
ρhdetJJJdξ dη (4.123)

m3 =
∫

η=+1

η=0

∫
ξ=+1

ξ=0
ρhdetJJJdξ dη (4.124)

Iyy3 =
∫

η=+1

η=0

∫
ξ=+1

ξ=0
(x− x3)

2
ρhdetJJJdξ dη (4.125)

Ixx3 =
∫

η=+1

η=0

∫
ξ=+1

ξ=0
(y− y3)

2
ρhdetJJJdξ dη (4.126)

m4 =
∫

η=+1

η=0

∫
ξ=0

ξ=−1
ρhdetJJJdξ dη (4.127)

Iyy4 =
∫

η=+1

η=0

∫
ξ=0

ξ=−1
(x− x4)

2
ρhdetJJJdξ dη (4.128)

Ixx4 =
∫

η=+1

η=0

∫
ξ=0

ξ=−1
(y− y4)

2
ρhdetJJJdξ dη (4.129)

4.3.4 Shear Locking and Drilling

The hourglass control is implemented according to Brockman (1987), where the second

derivatives of the bi-linear interpolation functions are used to define generalized hourglass strain

components that apply to each translational degree-of-freedom: εu
h , εv

h and εw
h ; and generalized

hourglass strains that apply to two rotational degrees-of-freedom: ε
rx
h , ε

ry
h ; noting that no hourglass

strain or stiffness is added to the drilling degree-of-freedom rz.
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A generalized hourglass stiffness is defined for each generalized hourglass strain. Because

Brockman’s work is based on metallic structures, the originally proposed generalized hourglass

stiffnesses need to be modified to account for laminated composite plates as follows:

Eu
h =

0.1E1eqh
1.0+1.0/Ae

(4.130)

Ev
h =

0.1E2eqh
1.0+1.0/Ae

Erx
h =

0.1E2eqh3

1.0+1.0/Ae

Ery
h =

0.1E1eqh3

1.0+1.0/Ae

Ew
h =

1
2
(Erx

h +Ery
h )

where Ae is the area of the quadrilateral element; h is the total thickness of the element; E1eq =

1/(ha11) and E2eq = 1/(ha22) with a11 and a22 components of the flexibility matrix of the

laminated composite plate. The variation of the hourglass strain energy δUh is therefore given by

the integral:

δUh = ūeūeūe
>
∫∫

x,y

(
NNNu

h
>Eu

hNNNu
h +NNNv

h
>Ev

hNNNv
h +NNNw

h
>Ew

h NNNw
h +NNNrx

h
>Erx

h NNNrx
h +NNNry

h
>

Ery
h NNNry

h

)
dxdy δ ūeūeūe

(4.131)

which is then added to the strain energy ultimately contributing to the constitutive stiffness matrix

of the system.

The drilling degree-of-freedom is calculated simply penalizing the in-plane rotational

shear, as for instance discussed by Adam, Mohamed and Hassaballa (2013). Here, the drilling

stiffness Edrilling is calculated based on the laminated composite plate stiffness component A66,

such that:

Edrilling =
A66

h
(4.132)
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4.3.5 Consistent Mass Matrix for 3D Plates

In order to calculate the consistent mass matrix for 3D plates considering the drilling

contribution, Guo (2012) presents further details. Mathematically, for a case of ρ constant and

without offset, it follows:

MMMeee =
∫∫

ξ ,η
ρ

(
hNNNuuuT

NNNuuu +hNNNvvvT
NNNv +hNNNwwwNNNwww

+
h3

12
NNNrrrT

x NNNrrrx +
h3

12
NNNrrrT

NNNry +hNNNrrrz
T
NNNrz

)
detJJJdξ dη

(4.133)

or for a more general case considering an offset of d and a ρ variable through the thickness:

MMMeee =
∫∫

ξ ,η

(∫ + h
2+d

− h
2+d

ρNNNuuuT
NNNudz+

∫ + h
2+d

− h
2+d

ρNNNvT
NNNvdz+

∫ + h
2+d

− h
2+d

ρNNNwT
NNNwdz

∫ + h
2+d

− h
2+d

ρz
(

NNNuuuT
NNNry +NNNrT

NNNuuu
)

dz−
∫ + h

2+d

− h
2+d

ρz
(

NNNvT
NNNrx +NNNrrrT

NNNv
)

dz

+
∫ + h

2+d

− h
2+d

ρz2NNNrT
x NNNrxdz+

∫ + h
2+d

− h
2+d

ρz2NNNrT
y NNNrydz+

∫ + h
2+d

− h
2+d

ρNNNrT
z NNNrzdz

)
detJJJdξ dη

(4.134)

As explained by Brockman (1987):

• For dynamic analyses, “low- energy deformation patterns consisting mainly of hourglassing

motions represent likely modes of low-frequency oscillations”; resulting in non-physical

solutions that may contaminate that portion of the vibration spectrum which frequently is

of greatest interest.

• The artificial stiffness associated with the hourglass modes are made small deliberately to

avoid locking problems, being these modes orthogonal to the rigid-body and constant-strain

states of interest.

• However, the kinetic energy of the hourglass modes is comparable to the rigid-body and

uniform-strain motions.

• Consequently, artificial vibration modes whose frequency is governed exclusively by the

generalized hourglass stiffness appear low in the element spectrum, intermixed with the

lower-frequency vibration modes which are commonly of interest.
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• This difficulty can be corrected by reducing or eliminating the kinetic energy associated

with hourglass modes, while leaving the energy associated with rigid-body motions and

uniform-strain states unchanged.

• The goal is to minimize the projection of the mass matrix on the hourglass modes of

the element, so that they occur only at high frequencies, beyond the frequency range of

interest.

4.3.6 Lumped Mass Matrix for 3D Plates

The lumped mass matrix for plates can be expressed as:

[M]e =

u v w rx ry rz



m1 0
m1

m1

Iyy1 · · ·
Ixx1

0
... Izz1

(4.135)

where mi, Ixxi and Izzi for i = 1,2,3,4 are the same ones defined for 2D model. The extra terms

here are the Izz1 , Izz2 , Izz3 and Izz4 , which are given by:

Izz1 =
∫

η=0

η=−1

∫
ξ=0

ξ=−1
r2

1ρhdetJJJdξ dη (4.136)

Izz2 =
∫

η=0

η=−1

∫
ξ=+1

ξ=0
r2

2ρhdetJJJdξ dη (4.137)

Izz3 =
∫

η=+1

η=0

∫
ξ=+1

ξ=0
r2

3ρhdetJJJdξ dη (4.138)

Izz4 =
∫

η=+1

η=0

∫
ξ=0

ξ=−1
r2

4ρhdetJJJdξ dη (4.139)
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where r2
1, r2

2, r2
3 and r2

4 are given by:

r2
1 = (x− x1)

2 +(y− y1)
2

r2
2 = (x− x2)

2 +(y− y2)
2

r2
3 = (x− x3)

2 +(y− y3)
2

r2
4 = (x− x4)

2 +(y− y4)
2

(4.140)

4.4 Structural Implementation and Verification

Having all the theory presented in this chapter, it is possible to implement a structural

module in Python to perform the structural analyses, that is, to obtain the mass and stiffness

matrices, calculate the natural frequencies, obtain the vibration modes and perform the stress

and strain analysis for the elements.

It is important to highlight that to use the structural module is necessary to verify it with

another well-established reference. For this work, the verification was performed comparing the

results to the ones obtained from Nastran, which in this case is executed on Femap with NX

Nastran.

To make the verification, it is necessary to have a structure. At this moment, the structure

chosen is the wing based on the FLEXOP project, which is presented in more details, including

its dimensions, in Chapter 6 and Section 6.2.

To get started, it is presented a static analysis for two FLEXOP-wing-based models with

10 cross sections linearly spaced along the wingspan. The first and second model have an airfoil

discretization of 8 and 20 points (nodes), respectively. This discretization defines the number of

control points at each cross section and, consequently, the number of elements created by the

Delaunay tessellation. More details regarding this design approach is presented in in Chapter 6

and Section 6.2. Fig. 26 depicts the truss-based structural mesh of the first and second models.

For the verification, the elements for both models are considered in Aluminum 7075 with

Young’s modulus of 71.7 GPa, Poisson ratio of 0.33, and density of 2795.7 kg/m3. The truss

elements have a diameter of 5 mm, and the plate elements of the skin have a thickness of 1 mm.

For the static analysis, the loads are obtained applying the DLM (see Chapter 3) and
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Figure 26 – Truss-based structural meshes for 8 and 20 control points in each cross section, respectively.

(a) 8 points spline. (b) 20 points spline.

Source: Elaborated by the author.

considering the same FLEXOP conventional cruise condition, i.e., a Mach number of 0.133 at

altitude of 800 m. The aerodynamics loads are computed and applied to the first and second

structural models. The deformed meshes are depicted in Fig. 27. In order to verify the results,

the same analysis is performed in Nastran, and the comparison is available in Tab. 5.

Figure 27 – Static analysis for the first and second models, considering the FLEXOP cruise condition.

(a) First model - 8 nodes at each cross section. (b) Second model - 20 nodes at each cross section.

Source: Elaborated by the author.

Table 5 – Static analysis results and verification with Nastran.

First model (8 points discretization) Second model (20 points discretization)

Structural solver Nastran RE Structural solver Nastran RE

umin [m] -0.00106 -0.00107 -1.12% -0.0007633 -0.0007691 -0.76%
umax [m] 0.002341 0.00237 -1.22% 0.001069 0.001073 -0.34%
vmin [m] -0.00151 -0.00152 -0.61% -0.0004409 -0.0004435 -0.59%
vmax [m] 0.001102 0.001124 -1.98% 0.0002640 0.0002662 -0.82%
wmin [m] 0 0 0.00% 0 0 0.00%
wmax [m] 0.2797 0.2849 -1.84% 0.09734 0.09793 -0.61%
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The structural solver also computes the modal analysis for both wing structures. The first

four modes for each model are depicted in Fig. 28. The natural frequencies obtained here are

compared to the ones obtained from Nastran and displayed in Tab. 6. The first and second wing

model has a total weight of 100.71 kg and 318.62 kg, respectively. It is worth mentioning that

the first model has 345 truss elements and the second model has 937 elements.

Figure 28 – Modal analysis for first and second wing structural models.

(a) First model - mode #1: 2.23 Hz. (b) Second model - mode #1: 2.07 Hz.

(c) First model - mode #2: 11.97 Hz. (d) Second model - mode #2: 11.29 Hz.

(e) First model - mode #3: 19.84 Hz. (f) Second model - mode #3: 19.54 Hz.

(g) First model - mode #4: 28.28 Hz. (h) Second model - mode #4: 28.15 Hz.

Source: Elaborated by the author.
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Table 6 – Natural frequencies verification with Nastran.

First model (8 points discretization) Second model (20 points discretization)

Structural solver Nastran RE Structural solver Nastran RE

mode #1 2.23 Hz 2.27 Hz -1.93% 2.07 2.09 -1.21%
mode #2 11.97 Hz 12.16 Hz -1.63% 11.29 11.44 -1.43%
mode #3 19.84 Hz 20.40 Hz -2.83% 19.54 20.03 -1.82%
mode #4 28.28 Hz 28.43 Hz -0.29% 28.15 28.29.48 -0.12%

The results obtained by the presented implementation of the structural module in Python

are in very good agreement with those obtained from Nastran. It is worth mentioning that the

module pyfe3d has its own verification, which is available in Castro (2022a).
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CHAPTER

5
AEROELASTIC MODELING

“Some fear flutter because they do not understand it.

And some fear it because they do”
— Theodore von Karman

AEROELASTICITY is the subject that studies the phenomena that result from the interac-

tions between non-stationary aerodynamic flows and flexible structural systems. At the

beginning of the last century, Lanchester began his studies in this area by analyzing the flutter

phenomenon that occurred in a Handley-Page bomber biplane, mathematically equating it with

the objective of minimizing the aeroelastic effects found in the structure. The multidisciplinarity

of the subject can be visualized through the Collar’s diagram (Fig. 29), also known as the diagram

of the three rings.

Figure 29 – Collar’s triangle.

Source: Collar (1946).
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Over the last decades, it has become common to further generalize the Collar’s diagram,

as supersonic aircraft designs still need to take into account the effects of thermal coupling. In

addition, advanced control techniques are increasingly present to optimize the dynamic behavior

of aerospace structures. These new problems are distributed in the areas of aeroservoelasticity

and aerothermoelasticity (see Fig. 30).

Figure 30 – Friedmann’s Hexahedron.

Source: Friedmann (1999).

This chapter is dedicated to the aeroelastic modeling of dynamic phenomena, in particular

flutter. An attention to unsteady aerodynamic modeling discussed in Chapter 3 was especially

helpful in designing a program for aeroelastic analysis. In this way, it is possible to establish total

control over all aspects of the problem, from the aerodynamic basis and approximations made

to the modeling of structural dynamics via finite elements and their coupling. In this chapter,

aspects related to the construction of the aeroelastic problem for generalized structures, structural

and aerodynamic coupling, and construction of generalized forces will be discussed.

5.1 Fundamentals of Structural Dynamics

The equations of motion of a linear structure discretized in N degrees of freedom can be

represented, in matrix form, by Eq. (5.1), where the structural damping was neglected (CLOUGH;

PENZIEN, 1975; MEIROVITCH, 1986)

[M]{ẍ(t)}+[K]{x(t)}= {L(x, ẋ, t)} (5.1)

The matrices [M] and [K] are squares of order N and represent the matrices of mass and stiffness

of the structure, respectively. The vectors {x(t)} and {ẍ(t)} have dimension N×1 and represent
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the displacements and accelerations suffered by the structure due to the application of external

forces {L(x, ẋ, t)}. In the particular case of an aircraft wing, which is the structure to be analyzed,

{L(x, ẋ, t)} is the vector that represents the aerodynamic forces on the wing. An important

characteristic of the aerodynamic force vector is that it not only depends on time, but also on the

position of the wing in relation to the airflow and on the speed with which structural deformations

occur.

The modes of vibration and the natural frequencies of the structure are obtained from the

solution of the free vibration problem:

[M]{ẍ(t)}+[K]{x(t)}= {0} (5.2)

Assuming as a solution to Eq. (5.2) a simple harmonic motion in the form:

{x(t)}= {φ}eiωt (5.3)

where ω is the frequency of the movement and {φ} is a vector representing the shape of the

movement, it follows: (
[K]−ω

2[M]
)
{φ}= {0} (5.4)

which is an eigenvalue problem (MEIROVITCH, 1986), and its non-trivial solution is obtained

for

det
(
[K]−ω

2[M]
)
= 0 (5.5)

Expansion of the determinant of Eq. (5.5) results in a polynomial equation of order N in ω2 ,

also known as a characteristic polynomial. The roots of this equation correspond to the squares

of the N natural frequencies of the structure.

The natural frequencies obtained then correspond to the eigenvalues of Eq. (5.4) and an

eigenvector is associated with each one, which represents the vibration mode of the structure.

Thus, substituting each value of ω in Eq. (5.4), the corresponding mode {φ} is obtained. However,

Eq. (5.4) is homogeneous and has infinite solutions for {φ}. Thus, the amplitudes of the vibration

modes are indeterminate, but the shapes of these modes are unique, since N− 1 components

of the vector{φ} can be written as a function of another component, in a process known as

normalization (MEIROVITCH, 1986). A very common type of normalization is to make the

largest element of the vector {φ} equal to 1.
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Having the modes of vibration determined, they can be grouped in the so-called modal

matrix, given by the following:

[Φ] =
[
{φ}1 {φ}2 {φ}3 · · · {φ}N

]
(5.6)

The modal matrix will be used as a coordinate transformation matrix in the relation:

{x(t)}= [Φ]{η(t)}=
N

∑
r=1
{φ}rηr(t) (5.7)

where the vector {η(t)} represents the displacements of the structure in a modal domain and

can be understood as a vector of coefficients that determine the contribution of each mode of

vibration in the physical response of the structure (CLOUGH; PENZIEN, 1975).

Since the modal matrix [Φ] is constant, the following relations are written:

{ẋ(t)}= [Φ]{η̇(t)} (5.8)

{ẍ(t)}= [Φ]{η̈(t)} (5.9)

Substituting Eqs. (5.7) and (5.9) in the equation of motion given by Eq. (5.1) and pre-multiplying

all the terms obtained by [Φ]T , it follows:

[Φ]T [M][Φ]{η̈(t)}+[Φ]T [K][Φ]{η(t)}= [Φ]T{L(x, ẋ, t)} (5.10)

which can be rewritten in the form:

[M̄]{η̈(t)}+[K̄]{η(t)}= [Φ]T{L(x, ẋ, t)} (5.11)

where [M̄] = [Φ]T [M][Φ] and [K̄] = [Φ]T [K][Φ] are called modal mass and stiffness matrices,

respectively.

An important property of vibrating modes is orthogonality. For two distinct modes

of vibration {φ}r and {φ}s, it is verified that the following Eqs. (5.12) and (5.13) are valid

(MEIROVITCH, 1986). The proof of these equations is based on the fact that the mass and

stiffness matrices are symmetrical, which is a characteristic of linear structures.

{φ}T
r [M]{φ}s = 0 (5.12)
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{φ}T
r [K]{φ}s = 0 (5.13)

Based on the orthogonality properties, it can be concluded that the matrices [M̄] and

[K̄] are diagonal and therefore the system of N simultaneous equations represented in Eq. (5.1)

reduces to N independent equations of motion, each one representing the equation of movement

of a structure with a single degree of freedom, whose solution can be obtained much more

easily. Considering a certain mode r, then ω2
r =

K̄r

M̄r
. This technique of decoupling the equations

of motion is known as modal superposition (CLOUGH; PENZIEN, 1975), since the physical

response of the structure is obtained by a superposition of modal solutions (according to Eq.

(5.7)).

Using a special type of normalization in the process of obtaining the eigenvectors, defined

in Eq. (5.14), the modal mass matrix [M̄] is equal to the identity matrix and the modal stiffness

matrix is reduced to a diagonal matrix containing the natural frequencies squared. Eq. (5.11) can

then be written in the form of Eq. (5.15).

[Φ] = [Φ̄][M̄]−1/2 (5.14)

{η̈(t)}+
[
ω

2]{η(t)}= [Φ]T {L(x, ẋ, t)} (5.15)

Observing Eq. (5.15), it can be concluded that to represent the dynamics of a structure

it may only be necessary to know its natural frequencies and its modes of vibrating. However,

these characteristics depend on the mass and stiffness matrices, which in turn are dependent on

the discretization process adopted for the structure. For complex structures, such as an airplane

wing, the most used tool in the discretization process is the finite element method, which is the

approach of this work and presented in Chapter 4.

5.2 Coupling of Structural and Aerodynamic Models

The first difficulty that arises in the assembly of the equation of motion of the aeroelastic

system is due to the fact that the modes of vibration and the aerodynamic forces are calculated
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using different discretization methods. To solve this problem, it is necessary that the aerodynamic

forces applied to points of the aerodynamic mesh are converted to points of the structural

mesh and that the displacements suffered by points of the structural mesh are transferred to the

aerodynamic mesh. This exchange of information between the meshes can be represented by

a coordinate transformation matrix, as shown in Eq. (5.16), where the subscript a refers to the

aerodynamic mesh, the subscript e refers to the structural mesh and the matrix [G] represents the

transformation matrix.

{x}a = [G]{x}e (5.16)

The same transformation matrix can be used to convert the vibration modes obtained in the

structural coordinates to the aerodynamic coordinates, such as:

[Φ]a = [G][Φ]e (5.17)

Since the forces represented in the structural coordinate system must be structurally equivalent

to the forces represented in the aerodynamic coordinate system, the virtual work done by these

forces must be equal:

{δx}T
a {L}a = {δx}T

e [G]T{L}a = {δx}T
e {L}e (5.18)

As the virtual displacements are arbitrary, it follows:

{L}e = [G]T{L}a (5.19)

which represents the transformation between the involved forces represented in the two systems.

The equation of motion (5.15) can then be rewritten in the form:

{η̈(t)}+
[
ω

2]{η(t)}= [Φ]Te [G]T{L(η , η̇ , t)}a (5.20)

Substituting Eq. (5.17) into (5.20), it follows:

{η̈(t)}+
⌊
ω

2}{η(t)}= [Φ]Ta {L(η , η̇ , t)}a (5.21)

which represents the equation of motion of the aeroelastic system with the external forces

obtained in the aerodynamic mesh and converted to the structural mesh.



5.3. Interpolation by Surface Spline 115

It is observed that this conversion between the meshes was done by pre-multiplying the

vector of aerodynamic forces by the transpose of the matrix of modes of vibration written in the

aerodynamic coordinates. The most popular method to obtain this matrix is the interpolation by

surface splines, developed by Harder and Desmarais (1972) and described in the next section.

An important point to note is that the matrix of modes of vibration written in aerodynamic

coordinates depends on the set of points chosen to represent the aerodynamic mesh. When the

objective is to transfer the forces obtained in the aerodynamic mesh to the structural mesh, this

set of points must be formed by the points where the aerodynamic forces are defined. These

points are the control points, located in the center of each vortex ring and are represented by the

vector {x}a. The transformation of the coordinates between this set of points and the structural

mesh is given by the matrix [G] used above.

5.3 Interpolation by Surface Spline

The surface spline interpolation procedure is one of the methods used to determine the

structural deformations at aerodynamic points, that is, points on which the aerodynamic loading

is calculated. This method is based on the solution of the equation for small deformations of an

infinite flat plate, given by

D∇
4{w}= D

1
r

d
dr

{
r

d
dr

[
1
r

d
dr

(
r

d{w}
dr

)]}
= {P} (5.22)

where D is the stiffness of the plate, {w} is the displacement vector and {P} is the vector of

forces applied to the plate.

The application of this method in aeroelastic analyzes aims to make the solution of Eq.

(5.22) reproduce the displacements from a structural mesh in an aerodynamic mesh. Considering

a structural mesh with n points (xi,yi) and known displacements wi, it is necessary to find the

forces that must be applied in these n points to reproduce the structural displacements.

The solution of Eq. (5.22) for a force applied at the origin of the plate is given by Eq.

(5.23), written in terms of the polar coordinate r, where A and B are coefficients that need to be

determined and P is the applied force (HARDER; DESMARAIS, 1972).

w(r) = A+Br2 +
P

16πD
r2 lnr2 (5.23)
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An arbitrary deformation of the plate can be achieved by summing the solutions given by

Eq. (5.23) at the n points of the structural mesh. This sum is given by:

w(x,y) =
n

∑
i=1

[
Ai +Bir2

i +
Pi

16πD
r2

i lnr2
i

]
(5.24)

where

r2
i = (x− xi)

2 +(y− yi)
2 (5.25)

A more usual way to represent Eq. (5.24) is given by:

w(x,y) = a0 +a1x+a2y+
n

∑
i=1

Fir2
i lnr2

i (5.26)

where

Fi =
Pi

16πD
(5.27)

The derivative of Eq. (5.26) gives the local slope, given by:

∂w
∂x

= a1 +2
n

∑
i=1

(x− xi)
[
1+ ln

(
r2

i
)]

Fi (5.28)

The solution of Eq. (5.26) involves the determination of n+3 coefficients a0,a1,a2,Fi, which

are obtained from the following equations:

n

∑
i=1

Fi = 0 (5.29)

n

∑
i=1

Fixi = 0 (5.30)

n

∑
i=1

Fiyi = 0 (5.31)

w j = a0 +a1x j +a2y j +
n

∑
i=1

κi jFi, j = 1,2, . . . ,n (5.32)

where

κκκ i j = r2
i j ln

(
r2

i j
)

(5.33)

r2
i j =

(
x j− xi

)2
+
(
y j− yi

)2 (5.34)
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Equations (5.29) to (5.34) constitute a linear system and can be written in matrix form as

expressed in Eq. (5.35), described in the work of Silva (1994) and in Aeroelastic Analysis User’s

Guide of MSC Nastran (2021).

0
0
0

w1

w2
...

w j
...

wn



=



0 0 0 1 1 · · · 1 · · · 1
0 0 0 x1 x2 · · · x j · · · xn

0 0 0 y1 y2 · · · y j · · · yn

1 x1 y1 κ11 κ12 · · · κ1 j · · · κ1n

1 x2 y2 κ21 κ22 · · · κ2 j · · · κ2n
...

...
...

...
... . . . ... . . . ...

1 x j y j κ j1 κ j2 · · · κ j j · · · κ jn
...

...
...

...
... . . . ... . . . ...

1 xn yn κn1 κn2 · · · κn j · · · κnn





a0

a1

a2

F1

F2
...

Fj
...

Fn



(5.35)

The steps to obtain the displacements in the system of interest, from this formulation, are

as follows. Initially, the displacements of the structural modes given by wi are known, which are

the components in the zi direction of cartesian system, used in the definition of the structural

coordinate system. Other known values are the coordinates of the points on which the structural

displacements are defined, given by xi and yi. The κi j values are obtained by applying the known

xi and yi coordinates, according to Eq. (5.35). The algebraic solution of this system will provide

as an answer the values of the coefficients a0, a1, and a2 as well as F1 to Fn. With these values, it

is possible to write the function given by Eq. (5.26) for displacements, and (5.28) for slopes, and

thus represent the displacements and structural slopes at points of the aerodynamic mesh.

5.4 Generalized Matrices

From Chapter 3, the aerodynamic loading can be expressed as:

{La(ik)}= q∞[S]
{

∆Cp(ik)
}

(5.36)

where q∞ is the dynamic pressure, [S] is a matrix that represents the areas of the panels of

the aerodynamic mesh, and
{

∆Cp(ik)
}

is the vector of pressure coefficients obtained from the

Doublet-Lattice Method (DLM). Furthermore, Eq. (5.36) can also be written as:

{La(ik)}= q∞[S][AIC(ik)]{w(ik)} (5.37)
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where [AIC(ik)] is the matrix of aerodynamic influence coefficients and {w(ik)} is the vector of

downwash, which can be expressed in frequency domain as:

{w(x,y,0, ik)}= ∂h(x,y,0)
∂x

+ ikh(x,y,0) = [F(ik)]{h(x,y,0)} (5.38)

where {h} is the vector of displacements of the aerodynamic panels, and [F(ik)] is an operator

that represents the substantial derivative of the mode of motion, given by:

[F(ik)](·) =
[

∂ (·)
∂x

+ ik(·)
]

(5.39)

Therefore, the aerodynamic loading can be written in terms of the displacements of the aerody-

namic panels, such as:

{La(ik)}= q∞[S][AIC(ik)][F(ik)]{h} (5.40)

Furthermore, the aerodynamic loading that, a priori, was calculated at points defined by

an aerodynamic mesh can be represented at the points that define the structural mesh by:

{
Lstr

a (xs,ys,zs, ik)
}
= q∞[G]T [S][AIC(ik)][F(ik)][G]{u(xs,ys,zs)} (5.41)

where the subscript s refers to structural mesh and [G] represents the transformation of the dis-

placements defined at the model nodes in finite elements for the control points of the aerodynamic

panels, and it is calculated from the surface spline.

Similarly, the generalized aerodynamic loading [Q], that is, the loading on the j-th modal

basis, is given by:

[Q(ik)] = [Φa]
T [G]T [S][AIC(ik)][F(ik)][G] [Φa] (5.42)

where [Φa] corresponds to the j-th mode of vibration of the structure, obtained through the

solution of eigenvalue and eigenvector of the FEM code. Eq. (5.42) represents the calculation of

the so-called generalized aerodynamic matrix (GAM).

The generalized equation of motion is expressed in terms of the modal coordinates q,

since δ = Φq, where Φ is the modal matrix. Then, Eq. (5.1) can be expressed as:

[
Mq
]
{q̈}+

[
Kq
]
{q}= ρV 2

2
[Q]{q} (5.43)

where {q}= {hmodal }.
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The generalized aerodynamic forces matrix (GAM) is a complex matrix as a function of

Mach and reduced frequency, derived from the matrix [AIC], and reduced on the modal basis.

Aeroelastic analysis assumes that complex loading can be separated into real and imaginary

terms, denoting, respectively, the aerodynamic influence on damping and stiffness of the system.

In this way, Eq. (5.43) can be rewritten in terms of the real and imaginary part of the matrix, [Q],

such as: [
Mq
]
{q̈}+

[
Kq
]
{q}= ρV

2
[QI]{q̇}+

ρV 2

2
[QR]{q} (5.44)

Equation (5.44) is the aeroelastic equation of the system described in modal coordinates.

It can be represented in the classic aeroelastic form described by Wright and Cooper (2014) as:

AAAq̈+ρV BBBq̇+
(
ρV 2CCC+EEE

)
q = 0 (5.45)

where AAA is the modal mass matrix, BBB the aerodynamic damping matrix due to flow, CCC the

aerodynamic stiffness matrix and EEE the structural stiffness matrix, with the aerodynamic terms

being reduced frequency dependent.

5.5 Flutter Prediction Methods

The aeroelastic analysis has as main objective to establish the velocity range in which the

aircraft, or any other system under analysis, is free from aeroelastic phenomena. To determine

this so-called flight envelope, it is necessary to establish a mathematical procedure by which the

critical flutter velocity is calculated.

As discussed in the preceding chapters, aerodynamic forces are usually presented by

functions dependent on the dimensionless parameter reduced frequency (k). In this way, it

becomes appropriate to present the equations of motion associated with the model as a typical

problem of eigenvalues and eigenvectors. With this frequency domain approach, relationships

are defined between the eigenvalues of the dynamic matrix and the reduced frequency carried by

the aerodynamic parts.

In order to establish this relationship and provide an approximation of the flutter velocity,

two classic methods of aeroelastic stability analysis are highlighted: k and p-k method (WRIGHT;
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COOPER, 2014). The last method is the most used and also presents several derivations in the lit-

erature, where methodologies mainly of numerical nature were implemented in order to improve

the accuracy of the estimation of the flutter velocity or of the prediction of relative damping, in

addition to including methodologies for achieve convergence of values more efficiently.

In both of the aforementioned methods, it is desired to draw the classical stability

analysis diagrams, known as v-g-f diagrams (velocity, damping, frequency). In these diagrams,

it is possible to observe the evolution of frequencies and damping factors of each mode of the

structure as a function of velocity. The critical velocity is that which is associated with a change

in the sign of the damping factor. In these regions, it is usual to observe the coalescence of the

frequencies of two of the most aeroelastic modes of the structure, characterizing the occurrence

of the flutter phenomenon.

5.5.1 p-k Method

The p-k method consists of an iterative process that allows obtaining the velocity, fre-

quency and damping values of the model. It is noteworthy that, since there is no substitution or

introduction of a parameter, as in the k method, the damping curve has a physical value, which

makes this approach more suitable to base, for example, stability analyzes that will serve as a

basis for experimental compositions.

The starting point is to treat the aeroelastic Eq. (5.43) as a nonlinear eigenvalue problem,

assuming that p≡ d/dt. Thus, q̈ = p2q:(
p2 [Mq

]
+
[
Kq
]
− ρV 2

2
[Q(k)]

)
{q}= 0 (5.46)

For a non-trivial solution, the so-called flutter determinant is evaluated in the form:∣∣∣∣p2[I]+
[
Mq
]−1
([

Kq
]
− ρV 2

2
[Q(k)]

)∣∣∣∣= 0 (5.47)

Equation. (5.47) presents two unknowns to be solved, p and k, requiring another equation for its

solution. In such a way, p2 is an eigenvalue of the matrix given by:

[
Mq
]−1
([

Kq
]
− ρV 2

2
[Q(k)]

)
(5.48)
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where k =
ωb
V

. Taking that the imaginary part of the eigenvalue is the frequency, the second

necessary equation is:

Im(p) = k
V
b

(5.49)

The problem is to determine an eigenvalue and a frequency that satisfies both Eqs. (5.47)

and (5.49). The solution to these equations is obtained iteratively, where initially a value for

the frequency k is estimated, usually based on the natural frequencies of the structure, and

then calculating p from the eigenvalue problem of Eq. (5.47). The values of p and k must then

satisfy Eqs. (5.47) and (5.49), otherwise, the value of k is changed until the convergence of the

calculation occurs.

Usually, to facilitate the solution of the flutter determinant, Eq. (5.47) is rewritten in state

space form, making the order of the system to double. Thus, Eq. (5.47) becomes:

[A] =

 [0] [I]

−
[
Mq
]−1
([

Kq
]
− ρV 2

2
[Re(Q)]

)
−
[
Mq
]−1
(
−1

4
ρcV

Im(Q)

k

)  (5.50)

The solution to the problem given by Eq. (5.50) generates eigenvalues in the form:

p = ω

(g
2
± i
)

(5.51)

where

ω = Im(p) (5.52)

g =
2Re(p)
Im(p)

(5.53)

In this case, the damping g obtained is considered a more real solution, since the damping

is considered small and is obtained from the equality of the imaginary parts, taking into account

the modified equation of the p-k method. The convergence for the k values obtained must meet a

stopping criterion evaluated by the absolute error between the frequencies, so that:∣∣∣k( j)
s − k( j−1)

s

∣∣∣< ε → k( j−1)
s < 1∣∣∣k( j)

s − k( j−1)
s

∣∣∣< εk( j−1)
s → k( j−1)

s ≥ 1
(5.54)

where the superscript j represents the j-th iteration, and the subscript s is the reduced fre-

quency evaluated by each mode, and ε is the tolerance value, usually used as 0.001 (RODDEN;

JOHNSON, 1994).



122 Chapter 5. Aeroelastic Modeling

The complete procedure of the p-k method is graphically illustrated by the flowchart in

Fig. 31 and summarized in the following steps:

Figure 31 – Flow diagram of p-k method.
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Source: Elaborated by the author.

i Select the range of velocities of interest.

ii For each V value analysis, follow the steps listed below for each mode:
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a) Evaluate [Q(k j
n)]. As a first estimate for k j

n, it is used the natural frequencies of the

structures, and then the converged reduced frequency values from previous steps are

used. The superscript j and subscript n correspond to the aeroelastic mode and the

iteration step, respectively.

b) Solve the eigenvalue problem defined in Eq. (5.50) and determine the new p j
n+1 =

ω
j

n+1

(
γ

j
n+1 + i

)
and k j

n+1 =
ω

j
n+1b
V .

c) Check the convergence criterion, i.e.,
∣∣∣k j

n+1− k j
n

∣∣∣< ε .

d) If the convergence criterion is satisfied, terminate the iterations. Otherwise, repeat

steps (a) to (c) using the new value of the reduced frequency, i.e., k j
n+1.

iii Plot ω vs V curves for each aeroelastic mode.

iv Using g vs V and ω vs V curves, estimate the flutter speed Vflutter for which g = 0 at one

of the modes, and the corresponding flutter frequency ω f .

5.5.2 Interpolation of Generalized Aerodynamic Matrices

In a typical flutter analysis, the calculation of generalized aerodynamic matrices repre-

sents a large part of the computational cost required for the solution. As discussed throughout this

work, these matrices are dependent on the reduced frequency and Mach number, being calculated

for discrete values of these parameters. In methods of aeroelastic analysis in the frequency do-

main, such as the p-k method, other velocities are evaluated; therefore, other reduced frequencies

are required, which are different from those previously calculated for the aerodynamic matrices.

These intermediate values are usually obtained through an interpolation of the calculated

available values. This approach has been implemented in several commercial codes for aeroelastic

solutions, such as ZAERO and Nastran. Among the most used methods for interpolation of

aerodynamic matrices are linear spline, surface spline, and special linear interpolation. The last

one is the approach adopted in this work and presented below.

For the p-k method, the generalized aerodynamic matrix can be interpolated using the

form:

QQQhh (kest) =
nhd pts

∑
j=1

C j

[
QQQR

hh
(
k j
)
+

i
k j

QQQI
hh
(
k j
)]

(5.55)
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where
QQQI

hh
k j

is fit rather than QQQI
hh directly since the former quantity is a much smoother value of k

and because it is needed in the formulation of Eq. (5.50). Further, this makes the response data

symmetric with respect to a reduced frequency of zero and this “boundary condition” can be

applied in the interpolation.

The vector C of Eq. (5.55) is calculated as:

{C}= [A]−1{B} (5.56)

with

Ai j =


∣∣ki− k j

∣∣3 + ∣∣ki + k j
∣∣3 for i and j ≤ nhd pts

0 for i = j = nhd pts+1
1 for i = nhd pts+1 or j = nhd pts+1

(5.57)

Bi =

{
|kest− ki|3 + |kest + ki|3 for i≤ nhd pts

1 for i = nhd pts+1
(5.58)

where nhd pts is the number of hard points (i.e., points at which QQQhh has been calculated), ki are

the reduced frequency values for these points, and kest is the reduced frequency value to which

the aerodynamics are to be interpolated.

In contrast, the local curve fit approach solves for the coefficients C of the following

equations: 
1 k1 k2

1 · · · kN−1
1

1 k2 k2
2 · · · kN−1

2

· · · ·
· · · ·
1 kN k2

N · · · kN−1
N





CR
i j1

CR
i j2

·
·

CR
i jN


=



QR
i j1

QR
i j2

·
·

QR
i jN


(5.59)

and 
1 k1 k2

1 · · · kN−1
1

1 k2 k2
2 · · · kN−1

2

· · · ·
· · · ·
1 kN k2

N · · · kN−1
N




CI

i j1

CI
i j2

·
CI

i jN

=



1
k1

QI
i j1

1
k2

QI
i j2

...
·

1
kN

QI
i jN


(5.60)

where the real and imaginary parts of QQQhh are independently by Nth order polynomials. Therefore,

the terms of the generalized aerodynamic matrix are then obtained as:

Qi j (kest) =
N

∑
l=1

CR
i jlk

l−1
est + i

N

∑
l=1

Ci jlkl−1
est (5.61)
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5.6 Aeroelastic Integration and Code Implementation

At this point, all the necessary tools for the wing design have already been developed,

i.e., there is a aerodynamic module (see Chapter 3) based on the Doublet-Lattice Method, which

provides the unsteady subsonic loads, also there is a FEM module (see Chapter 4), which models

the wing’s structures (truss and skin), and finally there is a aeroelastic module, which makes the

coupling between the structural and aerodynamic modules. Since the structural module have

already been implemented in Python by Castro (2022a), so the other modules were entirely

coded in Python as well. Therefore, the structure of coding is organized as depicted in Fig. 32.

The structural module groups all the subroutines related to the structural dynamics

analysis of the problem. In this module, the finite element code (FEM) is implemented for the

truss-based wing modeling, providing all the structural response of the system. The information

generated by the code is archived to be used together with the aerodynamic outputs in the

aeroelastic solution. Data referring to the finite element mesh, modal displacements and natural

frequencies of the structure from the modal analysis are archived for each evaluated mode. The

implemented finite element code was verified by comparing the results obtained by Nastran (see

Chapter 4, Section 4.4).

The aerodynamic module comprises the entire aerodynamic modeling formulation dis-

cussed in Chapter 3. This module comprises a large part of the effort employed in this work

to solve aeroelastic problems, and is composed of subroutines dedicated to performing the

calculation of various aspects of the problem. These modules were implemented in order to be

executed separately from the aeroelastic problem, thus facilitating the calculation and verification

of the implemented DLM, providing only steady or unsteady aerodynamic loading.

Initially, the aerodynamic parameters of operation are defined by the input routine. In this

routine, the reduced frequencies to be evaluated, the Mach, the aerodynamic mesh discretization

mode and the definition of the surface geometry are defined. Once the input parameters are

defined, the aerodynamic influence matrices are computed for each specified reduced frequency,

by defining the points of interest (doublet line for the DLM) in the AIC matrix calculation routine.

The unsteady load generation code was verified as presented in Chapter 3, Section 3.2.
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Figure 32 – Flow diagram of modules integration.
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Finally, in order to proceed to the aeroelastic analysis, generalized aerodynamic matrices

are computed. The generalized matrix calculation routine uses the interpolation of the modal

displacements obtained in the structural module of the wing to perform the reduction to modal

basis and consequent formulation of the generalized equations of motion. The aeroelastic

analyzes are performed from the interpolations and the solution of the p-k method presented

earlier in the previous sections of this chapter (see Fig. 31). The output files, containing the

velocities, frequencies, and damping are generated and used to plot the v-g-f diagrams. The

aeroelastic verification is presented in the next section.

5.7 Aeroelastic Verification

This section brings the aeroelastic verification of the approach presented along the last

sections and presented in Figs. 31 and 32. To do so, it is necessary to have a wing model. For

this case, the objective was to highlight the bending and torsion modes, in order to allow a

better aeroelastic coupling between them, thus obtaining a lower flutter velocity, which would

allow a better visualization of the flutter velocity in the v-g-f diagram, enabling the aeroelastic

verification.

Thus, it is assumed a wing model with the following dimensions listed in Tab. 7. Further-

more, the truss-based wing is meshed with 16 control points (nodes) in each cross sections and

10 cross sections linearly spaced along the wingspan. The mesh is created based on Delaunay

tessellation, which is presented in more details in Section 6.1.1. The aerodynamic mesh, in turn,

is discretized assuming 10 panels in x-direction and 30 panels in y-direction. Thus, the following

structural and aerodynamic meshes are obtained, which are depicted in Figs. 33 and 34.

Table 7 – Geometric parameters for the FLEXOP reference wing.

Parameter Value

Aerodynamic profile NACA 2412
Inboard leading edge, (x,y,z) [m] (0,0,0)
Inboard trailing edge, (x,y,z) [m] (1.0,0,0)
Outboard trailing edge, (x,y,z) [m] (1.3,3.5,0)
Outboard leading edge, (x,y,z) [m] (0.5,3.5,0)

Source: Elaborated by the author.
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Figure 33 – Structural mesh of truss-based wing model for the aeroelastic verification.

Source: Elaborated by the author.

Figure 34 – Aerodynamic mesh for the aeroelastic verification.
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For the aeroelastic verification, the truss elements are considered in Aluminum 7075

with Young’s modulus of 71.7 GPa, Poisson ratio of 0.33, and density of 2795.7 kg/m3. The

truss elements have a solid diameter of 5 mm, and the plate elements of the skin have a thickness

of 1 mm.

Therefore, the first analysis is the modal analysis, which is performed by the structural

module. The values obtained are compared with the same analysis performed in Nastran and



5.7. Aeroelastic Verification 129

listed in Tab. 8. For convenience, only the first five modes are listed here. There is a good

correlation between the results obtained by the present code and those from Nastran. Also, for

better visualization, the first five modes are illustrated in Fig. 35.

Table 8 – Results from modal analysis.

Structural Module Nastran RE

mode #1 4.19 Hz 4.27 Hz -1.93%
mode #2 17.22 Hz 17.49 Hz -1.63%
mode #3 23.18 Hz 23.84 Hz -2.83%
mode #4 39.91 Hz 40.02 Hz -0.29%
mode #5 47.57 Hz 49.39 Hz -3.83%

Figure 35 – First five modes for the wing model.

(a) Mode #1: 4.19 Hz. (b) Mode #2: 17.22 Hz.

(c) Mode #3: 23.18 Hz. (d) Mode #4: 39.91 Hz.

(e) Mode #5: 47.57 Hz.

Source: Elaborated by the author.

Furthermore, in the aerodynamic module, the aerodynamic influence coefficients ([AIC])

are obtained from the DLM and considering a Mach number of 0.25 at sea-level (ρair = 1.225

kg/m3). To calculate the unsteady aerodynamic loads, first the downwash is computed apply-

ing the boundary conditions, i.e., the eigenvectors obtained from the modal analysis and the
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corresponding aerodynamic control points. Next, having the [AIC] and the normalwash, then

generalized aerodynamic loads are computed applying Eq. (5.42).

Finally, the flutter solution is calculated applying the p-k method, evaluating a range of

velocities from 0 to 200 m/s. The interpolation of the aerodynamic matrices for different reduced

frequency are done based on the methodology presented in Section 5.5.2.

Therefore, Fig. 36 shows the v-g-f diagram for the proposed wing, considering a velocity

envelope from 0 to 200 m/s. For convenience, only the first five modes are plotted. Moreover, the

solution obtained through SOL 145 of Nastran is also plotted in order to compare and verify the

aeroelastic solution.

Figure 36 – V-g-f diagram of the flutter solution using p-k method.
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Fig. 36 graphically illustrates the evolution of frequencies referring to the modes of

bending (mode 1), torsion (mode 2) and other modes of the wing under analysis. Furthermore,

the figure shows the critical point for the flutter velocity, which happens when the damping

becomes positive, according to the solution developed in the p-k method. In this case, damping

becomes positive for mode 2 (in red). This happens because the second mode (torsion) starts to
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couple with the first mode (bending), leading to a dynamic instability. Thus, the flutter velocity

value and its respective frequency are listed in Table 9.

Table 9 – Results from v-g-f diagram.

Parameter Aeroelastic Module Nastran RE

Vf lutter 54 m/s 53 m/s 1.89%
ω f lutter 14.95 Hz 13.70 Hz 9.12%

The results presented are in good agreement with those obtained in Nastran. There are

some small differences in the evolution of natural frequencies and damping, which causes a

difference in the critical flutter frequency. This possibly happens due to the interpolation of

generalized aerodynamic loads or even the numerical error due to the high order of the matrices

in the p-k solution. The flutter velocities presented in Tab. 9, obtained in the null damping

condition, are in agreement, as expected in the good representation of the damping evolution for

the second mode (torsion), which is the unstable mode.

In general, the verification addressed here is as expected for the critical flutter condition.

The differences obtained are justified by the methods and interpolations used in the aeroelastic

solution. Although other differences may be present in the implementation of the p-k method,

the convergence to the result of critical speeds is evident.
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CHAPTER

6
WING DESIGN AND OPTIMIZATION

IN this chapter, the proposed structural design of the wing is presented, as well as its optimiza-

tion. The topological mesh of the structures are created from the Delaunay triangulation and

tessellation. For the optimizations, a reference wing geometry from the FLEXOP project is used

as a baseline. The optimizations are performed using NSGA-II algorithm.

6.1 Modular Truss-Based Wing Design

The work of Opgenoord and Willcox (2019) investigated what the authors called lattice

structures, as illustrated in Fig. 10, in the design of wing structures. The authors focused on

additive-manufactured elements, therefore not constrained by modularity requirements.

The wing designed in this work is based on the premise that modular structures will be

used in its formation, that is, instead of traditional and conventional structures such as spars

and ribs, truss-based modular structures will be used here. In other words, all internal wing-box

components, except for the upper and lower skins, are replaced by truss-based structural elements.

Thus, to do so, the trusses forming the lattice structure are defined from a catalogue of possible

cross sections, and the number of possibilities in this catalogue defines the level of modularity of

the design.

In this sense, to make the necessary connections between the modular structures, this

work discretizes the wing as follows. First, as there are no ribs that form the airfoil, control

points are used at each cross section. These control points are defined by means of a spline in
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order to guarantee the selected aerodynamic profile. In the implementation, the definition of the

points starts from the choice of the NACA profile of 4 or 5 digits and the number of points to

form the spline. Furthermore, it is possible to determine if the trailing edge will be formed by

only one point and if the spacing between the points will follow a half cosine based spacing. As

an example, Fig. 37 depicts the spline and the corresponding control points for a profile NACA

2412 with 8 and 20 points, respectively. It is worth mentioning that those control points are going

to be the nodes of the FEM model and the connection nodes of all elements.

Figure 37 – Cross section discretizations for NACA 2412.
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Furthermore, instead of the conventional spars, the proposal here is to use the truss-based

modular structures. However, to define the spatial arrangement of such structures is the big deal.

Therefore, to create the structural mesh, this works makes use of the Delaunay Tessellation,

i.e., the Delaunay Triangulation and Tetrahedrization to connect the cross section nodes and so

create the maximum truss elements without without physically crossing them. This approach is

presented in Section 6.1.1.

6.1.1 Delaunay Tessellation

Delaunay’s algorithm is a finite element meshing process that has the ability to consis-

tently subdivide the geometric domain into simplexes. Simplexes are extensions of triangles in

other dimensions, i.e., line segments in one dimension, tetrahedrons in three-dimensional space,

etc.

A simplex K is an ordered list of vertices {Pi} with 1 ≤ i ≤ d + 1, where d is the

dimension of the corresponding Euclidean space E. Det(K) is called the determinant of order
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d +1 given by:

det(K) =



1 · · · · · · · · · 1
P1

1 · · · · · · · · · P1
d+1

P2
1 · · · · · · · · · P2

d+1
...

...
Pd

1 · · · · · · · · · Pd
d+1


(6.1)

where P j
i is the coordinate j of the point Pi for 1≤ i≤ d +1 and 1≤ j ≤ d.

By definition, if det(K) > 0, K is said to be positively oriented and if det(K) = 0, K

is said to be degenerate, that is, all its vertices belong to the same hyperplane (GEORGE;

HERMELINE, 1992).

6.1.1.1 Principles of Triangulation

Triangulation of a domain Ω, which is supposed to be limited and polyhedral, is a set ζ

of simplexes. For this set, the following conditions are valid (MARRETTO, 1999; SAKAMOTO,

2001):

• The intersection of two elements of ζ is empty or reduces to a vertex, an edge (in the

two-dimensional case) or a face (in the three-dimensional case).

• The union of the elements of ζ is equal to Ω.

• The elements of ζ must be topologically regular: in the two-dimensional case, for example,

these elements must be as close to equilaterality as possible, which does not oblige them

to be equal.

• The circumcircle (two-dimensional) or circumsphere (three-dimensional) of an element

is empty, in other words, no circumscribed (two-dimensional) circle or circumscribed

(three-dimensional) sphere contains another node.

The domain Ω, in turn, can be decomposed into Voronoi Vi polyhedra associated with

the Pi set of Ω, such that:

Vi =
{

P ∈Ω,∀1≤ j ≤ n,d (P,Pi)≤ d
(
P,Pj

)}
(6.2)

where d
(
P,Pj

)
is the Euclidean distance between P and Pj, and n is the number of points.
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From the polyhedra, the following results are demonstrable (MARRETTO, 1999):

• Polyhedra are convex, with a non-empty interior and form a cover such that two distinct

elements have an empty intersection or reduced to a vertex, edge or face (Fig. 38a);

• For each vertex v (central vertex of a Voronoi polyhedron), it is associated a set that is

called the convex envelope Cv.

A convex envelope Cv is a set of polyhedra that have v as one of its vertices. The set of

convex envelopes Cv of a Voronoi polyhedron defines a Delaunay triangulation, in other words,

the Delaunay mesh can be obtained by connecting two by two the central vertices (vi, vi+1) of the

neighboring Voronoi polyhedra. neighbors (LEBENSZTAJN; FALCONE, 1989). The resulting

mesh can be seen in Fig. 38b.

Figure 38 – Definitions of Delaunay triangulation.

(a) Voronoi polyhedra. (b) Convex wrapping mesh.

Source: Marretto (1999).

6.1.1.2 Delaunay triangulation

A Delaunay triangulation (DT) for a set P of vertices must satisfy the Delaunay condition,

which is: DT (P) is a Delaunay triangulation such that no vertex of P lies within the circumcircle

of any triangle in DT (P). In Fig. 39, there is an example for a Delaunay triangulation for a set of
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nine vertices. Given a set of vertices, which can be seen in Fig. 39a, it is possible to obtain the

Delaunay triangulation in Fig. 39b for this set of points. Fig. 39c shows the triangles with their

corresponding circumcircles.

Figure 39 – Definitions of Delaunay triangulation.

(a) Set of vertices. (b) Delaunay triangulation. (c) Circumcircles and triangles.

Source: Nogueira and Oliveira (2011).

The Delaunay triangulation maximizes the minimum angle of every triangle in the tri-

angulation. This property is known as MaxMin. According to Shewchuk (1997), the MaxMin

property was initially noticed by Lawson (1977) and this property contributed to the populariza-

tion of the Delaunay triangulation for the generation of meshes.

6.1.1.3 Conversion from 2D to 3D Delaunay Meshes

As mentioned in the previous sections, a 2D Voronoi polygon is defined by lines that

bisect connection lines between neighbouring points. In 3D, the central point is surrounded by a

convex polyhedron defined by planes which are limited by a surrounding polygon. These planes

correspond to the line segments of a Voronoi polygon. Each plane bisects the line between two

neighbouring points. In the same way, as the Voronoi diagram covers the complete area in 2D, a

diagram of Voronoi polyhedra will fill the 3D space. The Delaunay diagram is defined by the

connection lines between neighbouring points in the Voronoi diagram.

When Delaunay triangulation is extended to one more dimension, this results in Delaunay

tetrahedrization. As three points are necessary to describe a plane in space, at least 4 points

describe a volume element in space. The most elementary volume element is a tetrahedron,

which is given by 4 points. In 2 dimensions there are no vertices from the network situated inside
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the circumscribing circle of any triangle. The corresponding situation in 3 dimensions is called

the sphere criterion: a Delaunay mesh in three dimensions consists of non-overlapping tetrahedra

where no points in the network are enclosed by the circumscribing spheres of the tetrahedra.

Figure 40 lists the most important geometrical conditions of 2D triangulation together

with their 3D versions.

Figure 40 – Geometrical conditions for Voronoi/Delaunay diagrams in 2 and 3 dimensions.

Source: Midtbo (1993).

6.1.1.4 Delaunay Triangulation and Tetrahedrization

The steps for the construction of the Delaunay triangulation in two-dimensional space

and tetrahedrization in the three-dimensional space are very similar, the few differences concern

the dimension of the coordinates, geometric shapes produced (edges and triangles; faces and

tetrahedrons respectively) and the inclusion test of the new point that is performed by calculating

the circumcircle in two dimensions and the circumsphere in three dimensions. Machado and

Cardoso (1993) describes the steps for a Delaunay tetrahedrization and following the same

procedures adopted, these steps are extended to two and three dimensions.
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• Build a list with the coordinates of the n points that describe the domain. These coordinates

are x, y for two-dimensional space and x, y, z for three-dimensional space.

• Determining an encompassing quadrilateral from the “extent” (extent of the domain). The

“extent” is the calculation of the maximum and minimum coordinates of the n points. In

the three-dimensional case, an encompassing hexahedron is determined.

• Decompose the quadrilateral into two triangles with the n points spread over them. For the

hexahedron this division is done with six tetrahedra.

• The list of points is inserted into the “extent”. By calculating the circumcircle (or circum-

sphere) of the initial mesh, the triangle (or tetrahedron) elements that include the new point

are eliminated. Thus new elements are generated from the new point and the remaining

elements. The process is repeated for the remaining points until all are included.

• After all points are included, elements (triangles/tetrahedrons) with vertices that coincide

with the vertices of the “extent” are eliminated.

6.1.1.5 Wing Structural Mesh with Delaunay Tessellation

Having the Delaunay Triangulation and Tetrahedrization stated in the previous sections,

the wing structural mesh is designed from the control points defined in each cross section.

Therefore, as an example, the structural meshes for a wing of 10 cross section and considering 8

(as in Fig. 37a) and 20 (as in Fig. 37b) control points in each cross section are shown in Fig. 41a

and 41b, respectively.

Figure 41 – Truss-based structural meshes for 8 and 20 control points in each cross section, respectively.

(a) 8 points spline. (b) 20 points spline.

Source: Elaborated by the author.
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6.1.2 Joint Design

Metallic and lattice structures are quite common in civil engineering. The structure node

is the intersection point of the bars. Connections are normally considered to be kneecap nodes

with centered axial loads. However, the execution of nodes that guarantee a perfect kneecap

condition is very difficult and expensive. In this way, what is sought is to design a connection

with loads without eccentricities.

Since the structural wing design here is based on truss-elements, it is important to ensure

the perfect union of the elements and the transfer of loads between them. Therefore, the choice

and/or design of the connection joint of the modular elements is a very important issue that

would demand a dedicated study.

According to Worku (2007), the type of jointing depends primarily on:

• The connecting technique, whether it is bolting, welding, or applying special mechanical

connectors.

• The shape of the members, This usually involves a different connecting technique de-

pending on whether the members are circular or square hollow sections or rolled steel

sections.

In designing the jointing system, the following requirements should be considered:

• The joints must be strong and stiff;

• Simplicity in terms of structurally and mechanically ;

• Easy to fabricate without recourse to more advanced technology;

• The eccentricity at a joint should be kept to a minimum, yet the joints detailing should

provide for the necessary tolerances that may be required during the construction;

• The joints of space frames must be designed to allow for easy and effective maintenance.

The cost of the production of joints is one of the most important factors affecting the final

economy of the finished structure. Usually the steel consumption of the connectors will constitute
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15 to 30% of the total. Therefore, a successful prefabricated system requires joints that must be

repetitive, mass produced, simple to fabricate, and able to transmit all the forces in the members

interconnected at the node.

6.1.2.1 Models of Joints

Over the last few decades, various models of joints have been developed for different

applications, mainly in civil construction. Many joints weld the dams using a flat tip, while

others allow the screwing of tubular elements. Fig. 42 shows some examples of joints. The

subfigs depicts the following: (a) typical connection used in the United States in 1960; (b)

connection with flattened steel tube at the ends and bols tin thin-walled plate used in 1968; (c)

typical connection with flattened steel tube at the ends and connect with a bolt used in 1968; (d)

connection proposed by Du Château in 1970; (e) Vestrut system patented connection space in

1980.

Figure 42 – Typical connection models for space trusses.

Source: Silva et al. (2020).
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The Mero connector, introduced in 1940 by Dr. Mengeringhanusen, proved to be ex-

tremely popular and has been used for numerous temporary and permanent buildings. Its joint

consists of a node that is spherical hot-pressed steel forging with flat facets and tapped holes.

Members are circular hollow sections with cone-shaped steel forgings welded at the ends, which

accommodate connecting bolts. Bolts are tightened by means of a hexagonal sleeve and dowel

pin arrangement, resulting in a completed joint such as that shown in Fig. 43. Up to 18 members

can be connected at a joint with no eccentricity (CHEN; LUI, 1999; DAVIES, 1967).

Figure 43 – Typical connection models for space trusses.

Source: Lan (1999).

The Mero connection has the advantage that the axes of all members pass through the

center of the node, eliminating eccentricity loading at the joint; therefore the joint is only under

axial forces. Tensile forces are then carried along the longitudinal axis of the bolts and resisted

by the tube members through the end cones (LAN, 1999; MAKOWSKI, 2002). The size of the

connecting bolt of compression members, based on the diameter estimated from internal forces,

may be reduced by 6 to 9 mm. The diameter of a steel node may be determined by the following

equation (LAN, 1999; CHEN; LUI, 1999):

D≥

√(
d2

sinθ
+(d1 cotθ +2ξ d1)

)2

+η2d2
1 (6.3)

To satisfy the requirements of the connecting face of the sleeve, the diameter should be checked
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using the following equation (LAN, 1999; CHEN; LUI, 1999):

D≥

√(
ηd2

sinθ
+(ηd1 cotθ)

)2

+η2d2
1 (6.4)

where D is the diameter of steel ball, θ the smaller intersecting angle between two bolts, d1 and

d2 are the diameter of bolts, ξ the ration between the inserted length of the bolt into the steel ball

and the diameter of the bolt, η the ration between the diameter of the circumscribed circle of the

sleeve and the diameter of the bolt.

After the invention of the Mero connection, several other systems were patented with

the same principle: steel ball, hexagonal screw, connection sleeve, and hollow section bar.

The connection system with spherical nodes showed satisfactory results in experimental tests,

mainly because bending moments were not mobilized in the connection. The assembly system

is theoretically simple, using only a torque wrench to tighten the bolt (AYDINCILAR, 2010;

CAGLAYAN; YUKSEL, 2008; EBADI; DAVOODI, 2012; PIROGLU; OZAKGUL, 2016). On

the other hand, this technology has a high manufacturing cost as a disadvantage. In this way,

researchers and designers sought to develop a connection system with a lower cost that could be

manufactured in small metallurgical companies (SOUZA, 2003), and then the typical connection

system was developed. Other patented joints that allow greater adjustment, or even rotation of

the elements, are the Vestrut and the SR (spherical rolling) joints, shown in Figs. 44a and 44b,

respectively.

Figure 44 – Joints with more angle configurations.

(a) Vestrut joint. (b) Spherical rolling joint.

Source: Hephaist (2022).
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6.1.3 Joint Mass Estimate

It was not the objective of this thesis to go into the detailed design of the joints. However,

in the aeroelastic system it is important to consider the weight of the joints at the nodes, since it

affects the total weight of the structure and even the dynamic behavior of the structure. Therefore,

for this work, it was assumed a reasonable mass of 150 g for each joint in the structure. It is

worth mentioning that in the sequence of this work it is intended to consider the joint design

together with the wing design, as well as to take geometric connections as a constraint in the

optimization of the truss elements, i.e., the angles between the elements in the joints will be

considered as a design constraint.

6.2 FLEXOP’s Wing Model

From the thematic exposition developed in the other chapters and sections, the objective

of this work is to apply modular structures as alternatives in the projects of wings. Thus, it was

necessary to choose a reference wing model to create a model and perform the analyses. Overall,

there are several models and sizes of wings that could be used, given the wide range of aircraft

categories available; however, the author chose to select a wing of a smaller aircraft whose

model has been the object of study in publications in recent years both from a structural and

aeroelastic point of view, such as the ones published by Roessler et al. (2020), Roessler et al.

(2019), Takarics et al. (2020), Meddaikar et al. (2018).

Thus, the reference wing geometry selected for this work comes from the flying demon-

strator of the FLEXOP (Flutter Free FLight Envelope eXpansion for ecOnomical Performance

improvement) (SODJA; WERTER; De Breuker, 2018; SÜELÖZGEN; WÜSTENHAGEN, 2019),

which is a project within the European Union’s Horizon 2020 framework. The aircraft is depicted

in Fig. 45. Its main goal is to raise efficiency of a currently existing wing by derivative solution

with higher aspect ratio at no excess structural weight. Moreover, the project was launched in

2015, and a consortium of aerospace companies, universities and research institutions set the goal

to develop methods and tools suitable for aircraft design with highly flexible wings and active

flutter suppression, developing and demonstrating passive load alleviation using aeroelastic

tailoring and active flutter control methodologies.
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Figure 45 – FLEXOP flight demonstrator.

Source: Süelözgen and Wüstenhagen (2019).

Therefore, along those lines, such a model is convenient for the study and analysis of

the proposal of this work. The work of Sodja, Werter and De Breuker (2018) shows information

and some details about the geometry, dimensions and internal structures of the FLEXOP wing.

Figure 46 illustrates the structural layout of the wing and Table 10 lists the main geometric

parameters.

Figure 46 – Wing structural layout.

Source: Sodja, Werter and De Breuker (2018).

The high aspect ratio of 20 and thin airfoil profile makes the lightweight structural design

especially challenging, given the low second area moment of inertial of the wingbox and the

large bending loads at the wing root.

At this point, it is worth summarizing the wing design approach of this work. First, it

uses the dimensions and geometry of the FLEXOP wing planform. Second, the number of cross
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Table 10 – Geometric parameters for the FLEXOP reference wing.

Parameter Value

Semi-span 3.536 m
Aspect ratio 20
Airfoil try6
Chord, root 0.471 m
Chord, tip 0.236 m
Thickness, root 10% chord
Thickness, tip 8% chord
Sweep, leading edge 20 deg

Source: Sodja, Werter and De Breuker (2018).

sections along the wingspan is chosen. Next, the number of control points (nodes) in each of the

cross sections is defined. Finally, a spatial mesh/arrangement of modular structures is created

using the Delaunay tessellation method.

Thus, the structural model is then created and, using the tools developed in Chapters 3,

4 and 5, it is possible to obtain the unsteady aerodynamic loads, extract the mass and stiffness

matrices and vibration modes from the modal analysis, and perform the aerostructural coupling,

obtain the flutter solution and verify the aeroelastic stability condition. The flowcharts in Figs.

31 and 32 depict the integration of those tools.

The reader may have noticed that the definition of the number of cross sections and the

number of control points (nodes) in each cross section directly affects the number of modular

structures created by Delaunay’s spatial tessellation. Furthermore, the wing design proposal in

this work is to generate the lightest possible wing using modular structures, but accounting for

structural and aeroelastic constrains. Therefore, it is necessary to think from an optimization point

of view, that is, what is the best combination of design variables that generate such results and,

finally, to study the trade-off of benefits through the Pareto curves obtained by the optimizations.

The optimization method applied is presented in the next chapter.

6.3 Method of Optimization

For the optimizations developed in this work, it is necessary to choose some optimization

method and algorithm. As the wing design goals are to minimize its weight and maximize the
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flutter speed, the case here indicates a multi-objective optimization problem. Thus, the pymoo

package in Python was used, which has already implemented several optimization algorithms.

Furthermore, for this work, the NSGA-II was the algorithm chosen.

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) was proposed by Deb et al.

(2002). It is a widely used algorithm for solving multi-objective problems, having its application

in several works in the literature. NSGA-II is a genetic algorithm as proposed by Holland (1992);

thus, it is a bio-inspired metaheuristic that follows the principle of natural selection described by

Darwin, in which the fittest individual has a greater probability of survival.

For multi-objective problem solving, the NSGA-II treats the possible solutions of the

problem as individuals belonging to a population. This, in turn, goes through the process of

evolution through iterations, known as generations.

NSGA-II has a new population selection scheme based on two main operators: Pareto

Ranking and a parameter-free population diversity promotion metric called Crowding Distance

(CD).

The Non-dominated Sorting (or Pareto Sorting) proposed by Goldberg (1989) consists

of classifying a population P into d subsets such that F1 = {non-dominated individuals of P

that are not dominated by any other of P} (rank 1), F2 = {non-dominated individuals of P\F1

and who are not dominated by any other of P\F1} (rank 2), F3 = {non-dominated individuals

of P\{F1∪F2} and that are not dominated by any other of P\{F1∪F2} } (rank 3), . . . , Fd =

{non-dominated individuals of P\{F1∪F2∪·· ·∪Fd−1} and that are not dominated by any other

of P \ {F1∪F2∪·· ·∪Fd−1} } (rank d), where P = F1∪F2∪·· ·∪Fd . The survival selection is

depicted in Fig. 47.

The crowding distance (CD) metric value of each solution is based on the distance its

image is from the closest neighboring images for each objective function within the same rank.

The higher the value of CD, the farther the solution is from its neighbors in the objective space,

making it more preferred in selection for the next generation of the population. In order to keep

the candidate solutions that have an image at the ends of a station, an infinite value is assigned to

their CDs. In a problem with two objective functions, CD is the semiperimeter of a rectangle
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Figure 47 – NSGA-II survival selection.

Source: Deb et al. (2002).

whose vertices are the closest neighboring images. The CD calculation is depicted in Fig. 48,

where the points marked in filled circles are solutions of the same nondominated front.

Figure 48 – Crowding-distance calculation.

Source: Lobato (2008).

The procedure for selecting the new generation of the NSGA-II population is carried out

as follows: the current population is joined with the generated children and this set is classified

by the Pareto Sort procedure. Individuals with lower ranks will have preference for entry into the

next generation of the population. When it is necessary to select an individual among 2 or more

within the same rank, the individual with the highest CD value will be preferred.



6.4. Optimization #1 149

6.4 Optimization #1

Once again, the proposal of this work is to design a structural model using modular

truss-based elements, having the FLEXOP wing as geometry reference. To do so, the design will

seek for minimizing the structural weight of the wing (Wwing) and maximizing the flutter speed

(Vf lutter), taking into consideration structural and aeroelastic constraints.

Along those lines, for the first optimization case, the following parameters are stated

as design variables: the number of control points (nodes) in each cross section of the wing

(ncontrol points), the number of cross sections distributed along the wingspan (ncross sections), and

the diameter of all elements of modular structures (Dbar), which are considered here as solid

truss bars.

To get started, the search range of the design variables, i.e., the intervals of values for

optimization for ncontrol points, ncross sections, and Dbar go from 8 to 32, 6 to 14, and 3 to 10 mm,

respectively. Thus, the multi-objective optimization problem #1 is summarized as follows:

Multi-objective

optimization problem

#1

:



min(Wwing) and max
(
Vf lutter

)
x : [ncontrol points, ncross sections, Dbar]

8≤ ncontrol points ≤ 32

6≤ ncross sections ≤ 14

3≤ Dbar ≤ 10 [mm]

Using the NSGA-II algorithm, the optimization was executed with a number of population

of 100 and generations equal to 1000. The NSGA-II works with the selection scheme presented

in section 6.3 and it generates the population of children from the population of parents using

the SBX (Simulated Binary Crossover) operator. For this approach, the crossover index (ηc) and

the mutation index (ηm) are defined as 3.0 and 3.0, respectively.

Furthermore, the aeroelastic constraint is accounting for the flutter speed and divergence

speed. The p-k method (see Chapter 5 and Section 5.5.1) is evaluated from 0 to 200 m/s with a

increment in speed (∆V ) of 0.1 m/s. The skin applied to the structure has a thickness (tskin) of

1 mm. Regarding the structural constraints, it is evaluated for the truss bars the Yield strength
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and Euler’s critical load with a safety factor (FS) of 1.5. It is worth mentioning that the skin

buckling is not evaluated in this work. Moreover, both the element types, i.e., truss bars and skin

are assumed as made of Aluminum 7075 Heat Treated (T6), whose main properties include a

modulus of elasticity (E) of 71.7 GPa, Poisson ratio of 0.33, and density of 2795.7 kg/m3.

The optimization algorithm was run using Spyder, an IDE for Python, and on a computer

with a processor 11th Gen Intel Core i7-1165G7 @ 2.80GHz, 16 GB of RAM, 512 GB of SSD,

and the solution took around 156 hours to complete. Thus, the solution for the optimization

problem #1 is given by the Pareto-optimal front depicted in blue circles in Fig. 49.

Figure 49 – Pareto front for Optimization #1.

110 120 130 140 150 160 170 180 190 200

V
flutter

 [m/s]

50

60

70

80

90

100

110

W
in

g
 m

as
s 

[k
g

]

P
4

P
1

P
2

P
3

Source: Elaborated by the author.

As one can see, the result in Fig. 49 shows that to maximize the flutter speed, targeting

a better aeroelastic behavior, there is a impact of the structural weight of the wing. Also, the

feeling is mutual, i.e., it is possible to have a lighter wing, but the flutter speed is compromised.

This trade-off is important in aircraft design, after all, the choice of design variables define the

structural behavior and affects the overall aircraft weight. Regarding the design variables, the

NSGA-II found different combinations that delivered that result. The ncontrol points varied from 8

to 26, ncross sections from 6 to 14, and Dbar varied from 3 to 9 mm.

Also in Fig. 49, four points were selected: P1, P2, P3, and P4. These points represent four
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different options for the wing design. P1 is the case where the wing has the lowest weight and

worst flutter speed in that range. At the other end, P4 is the case where the aircraft has the highest

weight and best flutter speed in that range. The other points between P1 and P4 have different

combinations of the design variables. The details of the wing design optimization for the four

points selected are displayed in Table 11 and the corresponding structures are depicted in Fig. 50.

Table 11 – Results of the design variables in optimization #1 for points P1, P2, P3 and P4 from Fig 49.

Parameter P1 P2 P3 P4

ncontrol points 8 8 16 24
ncross sections 6 11 14 9
Dbar [mm] 3 5 4 7
Vf lutter [m/s] 114.3 150.6 184.2 199.9
Wing mass [kg] 57.23 61.18 64.21 109.74

Figure 50 – Structural mesh of the truss-based wings obtained in P1, P2, P3 and P4.

(a) Structural mesh for P1. (b) Structural mesh for P2.

(c) Structural mesh for P3. (d) Structural mesh for P4.

Source: Elaborated by the author.

Moreover, the flutter solutions for all four points are shown in Fig. 51 in terms of v-g-f

diagrams. As one may notice, each structural mesh results in different modes, since there are

different number of elements and also the diameter of the elements change over the optimization.

Also, the mode of flutter onset changes among the four points; for example, for P1, the v-f graphic

shows a coupling of modes 1 an 2 (bending and torsion, respectively), while v-g graphic shows

the mode 2 becomes unstable at 114.3 m/s. On the other hand, for P2, the v-f graphic shows a

coupling of modes 4 and 5, resulting in a flutter speed of 150.6 m/s.
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Figure 51 – Flutter solutions for points P1, P2, P3 and P4.
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(a) V-g-f diagram for P1.
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(b) V-g-f diagram for P2.
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(c) V-g-f diagram for P3.
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(d) V-g-f diagram for P4.

Source: Elaborated by the author.

At this point, it is possible to imagine and intuitive to say that considering all the modular

structures in the mesh/tessellation created by the Delaunay method does not represent the

most efficient wing in terms of weight; after all, the more control points and/or number of

cross sections, more structures are inserted into the model, but many of these structures are

unnecessary, that is, their removal would not affect the aeroelastic response, but would reduce the

weight of the structure. Furthermore, the truss-based elements do not have to be solid bars, but

tubular structures, which represents a considerable weight reduction. So, individually evaluating

the inclusion or not of each element is a condition for a new optimization, which is presented in

the next section.
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6.5 Optimization #2

In last section, i.e., in Optimization #1, the wing design was performed considering an

optimization in terms of ncontrol points, ncross sections, and Dbar. However, it is not very efficient

to considered all the modular structures as solid bars. Therefore, at this point, the objective is

to optimize all the modular elements individually; in other words, the optimization will try to

eliminate some elements and will check how the resultant weight and aeroelastic behavior are.

At first sight, it is important to consider another constraint. The optimizer can not

eliminate any element randomly. It is important to ensure at least the elements that form the

airfoil shape and the wing planform; otherwise, the optimizer would try to eliminate any structural

element that does not encounter any load path, and it could result in inconsistent and unfeasible

structural wing model. Therefore, such constraint is required to establish the minimum wing

profile is ensured.

The optimizer will design the wing eliminating or not the lattice elements. In addition,

the outer diameter and tubular thickness of each individual element will be optimized. As one

can imagine, to do so, it is necessary to know the number of lattice elements in the structure

in order to optimize them, and, to know this number, it is necessary to previously define the

number of control points (nodes) in each cross section and the number of cross sections along the

wingspan. Only then is it possible to obtain the number of optimization variables. For example,

ncontrol points = 8 and ncross sections = 10, the lattice created by Delaunay approach results in 690

truss elements. If only the ncross sections were increased to 11, the lattice results in 766 truss

elements. Therefore, if the optimizer were also to optimize the both parameters, i.e., ncontrol points

and ncross sections, it would result in an optimizer inside of another optimizer, which would result

in an unreasonable computing cost.

Having that said, it is important to first define the values of ncontrol points and ncross sections.

Since both parameters can vary in a range of possibilities, the approach here is to select some pairs

of those values in order to investigate how the optimization evolves with changing parameters.

Thus, the multi-objective optimization problem #2 is summarized as follows:
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Multi-objective

optimization problem

#2

:



Define: ncontrol points, ncross sections

min(Wwing) and max
(
Vf lutter

)
x : [Diext,tube , titube ] for i = 1,2, . . . ,Ntruss elements

Diext,tube = 10, 15 or 20 [mm]

titube = 2, 4 or 6 [mm]

For this work, three pairs of values of ncontrol points and ncross sections were chosen. First,

the optimization will run assuming a ncontrol points equals to 8 and ncross sections equals to 10. These

values were chosen to ensure at least the minimum shape of the wing. Next, in the second

optimization, the ncontrol points is increased from 8 to 14, and ncross sections is kept as 10. Then, in

the third optimization, the ncontrol points is kept as 14, and ncross sections is increased from 10 to 20.

All three pairs of configurations generate different numbers of elements and design variables,

which are summarized in the Tab. 12.

Table 12 – Values for ncontrol points and ncross sections and the corresponding number of elements.

ncontrol points = 8 ncontrol points = 14 ncontrol points = 14
ncross sections = 10 ncross sections = 10 ncross sections = 20

Number of truss elements 345 630 1309
Number of design variables 690 1260 2618

Once again, the NSGA-II algorithm was chosen for the optimization, which was executed

with a number of population of 100 and generations equal to 1000. The crossover index (ηc) and

the mutation index (ηm) were defined as 3.0 and 3.0, respectively.

Similarly to what was done in Optimization #1, the aeroelastic constraint is accounting

for the flutter speed and divergence speed. In contrast, the P-K method here is also evaluated

from 0 to 200 m/s, but with a increment in speed (∆V ) of 1 m/s. The increment was increased

from 0.1 to 1 m/s, when compared to Optimization #1, due to the computational cost to get the

optimization done. The skin applied to the structure has a thickness (tskin) of 1 mm. Regarding

the structural constraints, it is evaluated for the truss bars the Yield strength and Euler’s critical

load with a safety factor (FS) of 1.5. It is worth mentioning that the skin buckling is not evaluated

in this work. Moreover, both the element types, i.e., truss bars and skin are assumed as made of
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Aluminum 7075 Heat Treated (T6), whose main properties include a modulus of elasticity (E) of

71.7 GPa, Poisson ratio of 0.33, and density of 2795.7 kg/m3.

The optimization algorithm was run using Spyder, an IDE for Python, and on a computer

with a processor 11th Gen Intel Core i7-1165G7 @ 2.80GHz, 16 GB of RAM, 512 GB of SSD,

and each solution took around 84 hours to complete. Thus, the solutions for the optimization

problem #2 is given by three Pareto-optimal fronts depicted in Fig. 52.

Figure 52 – Pareto fronts for Optimization #2.
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From Fig. 52, the three Paretos show different wing designs for the problem previously

defined. It is worth mentioning that there are few points in the Paretos. This happens because the

flutter solution (p-k method) used in the optimization considered a speed increase of 1 m/s. So,

the flutter speeds were always approximated by integer values, which made the Pareto ranking

criterion eliminate the individuals that had the highest wing mass for each speed. Therefore, if a

speed increment of 0.1 m/s were used, for example, there would probably be more points along

each Pareto, but the computational cost would increase exponentially. Anyway, such solutions

are sufficient for the purpose of this work, which is to verify the structural and aeroelastic design

of the wing through optimization.
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Furthermore, in Fig. 52 it is possible to see that the range of flutter velocities decreases

as the discretization increases, i.e., the number of elements on the wing. This happens because

the greater number of elements stiffens the wing and increases its weight, thus increasing the

flutter speed. Speaking of weight, as the amount of elements increases, the weight increases

considerably. It is worth remembering that the optimizer tried in its 1000 generations to eliminate

as many unnecessary elements as possible, but even so the increase in weight is quite considerable,

since for the same flutter speeds, a lighter wing is achieved (Pareto in blue). What influences in

this case is how the optimizer defined the internal arrangement of each structure.

In this sense, selecting only the Pareto in blue from Fig. 52, since it brings the greatest

cost-benefit in terms of structural weight and aeroelastic behavior, the vertically expanded Pareto

is obtained in Fig. 53.

Figure 53 – Pareto front for ncontrol points = 8 and ncross sections = 10 from Fig. 52.
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From Fig. 53, it is possible to verify only a small change in weight along the y-axis,

while there is a considerable gain in flutter speed along the x-axis. Each point of that Pareto

represents a different combination of design variables, which in this case it means different

combination of outer diameter and tubular thickness. Also, even if the number of nodes in the
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wing structure is the same for all Pareto points, since the number of nodes is defined by the value

of ncontrol points = 8 and ncross sections = 10, each resulting wing at each point will have different

numbers of elements, as the optimizer seeks to eliminate structural elements that it identifies as

not necessary, that is, their absence does not violate any structural or aeroelastic condition.

Moreover, in Fig. 53, two points are chosen to exemplify in this analysis: P5 and P6.

Comparing the cost-benefit in terms of structure mass and flutter velocity, one may notice that

point P6 offers a more interesting trade-off; in other words, it can be said that the most convenient

design point in this case is the point P6. After all, compared to the lower left point (P5), the flutter

speed has increased by almost 50 m/s (≈+33%), while the weight has increased by only almost

2 kg (≈+6%).

Since for this case the number of design variables is too large, i.e., a number of 690

(see Tab. 12), a table with the resulting optimized design variables at point P will be dismissed.

However, the structural mesh obtained and the corresponding distribution of diameters and

thicknesses are shown below.

First, the original meshes created by Delaunay tesselation for boths points P5 and P6 are

depicted in Fig. 54a and Fig. 55a, respectively. Then, the optimizer defines for each individual

element values for the outer diameter and the tubular thickness. The possible values (search

range) for these parameters were defined in the optimization problem. Furthermore, the optimizer

tries to delete elements that are not needed, but ensuring the wing profile and shape. The elements

excluded for this wing at point P5 and P6 are shown in red in Figs 54b and 55b, respectively.

Consequently, the remaining resulting structural mesh for both points are arranged in Figs. 54c

and 55c.

As one may notice, the number of original mesh elements on both wings (points P5 and

P6) were equal; however, during the optimization, the algorithm defined different thicknesses

and diameters for the elements, in addition to eliminating different elements that were identified

as unnecessary. Thus, Tab. 13 lists the number of elements in the original and resulting mesh for

the wing models at points P5 and P6.

Furthermore, it is possible to illustrate the distribution of outer diameter and thickness
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Figure 54 – Original and remaining meshes for point P5 from Fig. 53.

(a) Original mesh. (b) Elements to be deletes in red.

(c) Remaining mesh.

Source: Elaborated by the author.

Figure 55 – Original and remaining meshes for point P6 from Fig. 53.

(a) Original mesh. (b) Elements to be deletes in red.

(c) Remaining mesh.

Source: Elaborated by the author.
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Table 13 – Number of elements remaining in the meshes for points P5 and P6.

Point P5 Point P6

Number of elements in original mesh 345 345
Number of elements deleted in optimization 97 102
Number of elements in remaining mesh 243 248

per element for both points P5 and P6. Fig. 56 shows the distribution of outside diameters, where

the elements in blue, red, and orange correspond to diameters of 10, 15, and 20 mm, respectively.

Also, Fig. 57 shows the distribution of thicknesses, where the elements in blue, red, and orange

correspond to thicknesses of 2, 4, and 6 mm, respectively.

Figure 56 – Distribution of outer diameter each element for points P5 and P6 from Fig. 53.

(a) Distribution for P5. (b) Distribution for P6.

Source: Elaborated by the author.

Figure 57 – Distribution of thickness of each element for points P5 and P6 from Fig. 53.

(a) Distribution for P5. (b) Distribution for P6.

Source: Elaborated by the author.

The choice of diameter and thickness for each element follows the heuristic optimization

defined by the NSGA-II. Therefore, the resultant distributions may not represent an intuitive con-
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figuration; however, at least it meets the structural and aeroelastic requirements and constraints.

Comparing the diameter and thickness distributions in Figs. 56 and 57, respectively, it

is possible to notice that the wings obtained from points P5 and P6 change very little among

themselves, so that the wing at P6 has only 5 elements more than the wing at P5, and the weights

are very close (see Fig. 53). In addition, the distributions of diameters and thicknesses between

both wings are very close, which shows that the flutter speed gain on the P6 wing is due to

specific dimension choices in some elements.

Regarding the aeroelastic solution, Fig. 58 shows the v-g-f diagrams for both points P5

and P6. For both points, the flutter onset happens for mode 4 due to its coupling with mode 3.

Also, it can be seen that the small increase in the number of elements and the small change in the

distribution of diameters and thicknesses hardly changed the initial natural frequencies; however,

changes in eigenvectors generated different aeroelastic responses, which resulted in different

flutter velocities.

Figure 58 – Flutter solutions for points P5 and P6.
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Once again, due to the similar meshes and weights of the wings generated in Pareto in

Fig. 53, the natural frequencies also change little along the results. Fig. 59 illustrates this small

variation of natural frequencies for all Pareto points. Therefore, the aeroelastic response is not

only determined by the frequencies, but by the eigenvectors obtained in the modal analysis.

Therefore, the optimizations presented here show different alternatives for the structural

design of a wing. Modular structures, somehow, make possible new topological studies of
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Figure 59 – Natural frequencies for each point in Pareto from Fig. 59.
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structural meshes. However, defining the ideal topology and material properties and geometric

features is still a challenge. This work, in turn, contributes to the proposed mesh generation

using Delaunay and the optimization of structures. However, it is worth mentioning that the

optimizations performed in this work took a long time, that is, a high computational cost; thus,

better optimization time is a new challenge that will motivate future work.

Moreover, modular structures bring a range of possibilities in the structural design of

wings. Among its advantages, it can be highlighted the ease of manufacture. For example,

from the definition of some diameters of structures that will be used, it is possible to optimize

the arrangement and the structural assembly in order to obtain the lowest weight and the best

aeroelastic response. In addition, in small aircraft, such as radio-controlled aircraft or UAVs, it is

possible to consider the use of modular structures manufactured in 3D printing. Such a strategy

would make it possible to further increase the range of topological definition.
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CHAPTER

7
CONCLUSIONS AND PERSPECTIVES

“Aviation is proof that given, the will, we have the

capacity to achieve the impossible.”
— Eddie Rickenbacker

THIS chapter provides the final conclusions, discussions and general remarks about the

presented study. It also gives a perspective of future improvements and research branches

which can be derived from the proposed methodology.

7.1 General Remarks

This work presented a new approach in structural design of wings, considering a new

philosophy of design and definition of structures, that is, using modular structures in place of the

traditional spars and ribs present in current models. In the design, structural and aeroelastic con-

straints were considered. Furthermore, the way these structures are spatially arranged generates

a huge range of possibilities, a challenge that optimization tries to suppress.

Initially, the factors that motivated the choice of this theme and influenced the develop-

ment of this research were presented. After all, the need to develop lighter and more efficient

aircraft has triggered the industry to create disruptive design technologies and methodologies,

which also includes wing designs. In addition, due to the new hybrid and electric aircraft that

are appearing on the market, the wings have become increasingly elongated, more flexible and

with a thinner profile, since there is no longer the need to carry fuel tanks inside. Therefore,

new definitions of structures that were previously inconceivable, today become feasible under
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current conditions. Modular structures, in turn, bring ease of fabrication, maintenance and weight

reduction, as it is possible to design optimal structural and aeroelastic responses with the right

mesh.

In this context, a review of the literature and theory was carried out, seeking contributions

from studies carried out in recent years, or even in recent decades. In this way, it was possible

to identify the niche of performance of this work and its contribution in the literature. After all,

many works were developed in relation to topological study and structural optimization, but no

work was found related to the optimization of modular structures in wings, which makes this

work a pioneer in this line of research.

As this work deals with the design of a wing, it is necessary to identify the aerodynamic

loads involved, mainly the unsteady ones. Thus, the Doublet-Lattice Method was used in the

aerodynamic modeling, since it is a well-established method in the literature and used in aircraft

certification, in addition to being implemented in commercial software. The entire formulation

related to the method was presented and implemented using the Python programming language.

The code was verified using reference values available in the literature. It is worth mentioning

that the implementation of the DLM consumed much of the effort of this work.

Furthermore, the structural modeling of the wing was performed using two types of finite

elements: beam and quadrilateral elements. The beam elements were defined from consistent

Timoshenk elements and the quadrilaterals were based on Mindlin-Reissner kinematics using bi-

linear interpolation and reduced integration to prevent shear locking. All the equations, theory and

assumptions related to structural modeling were presented and currently it is also implemented in

Python and available in the pyfe3d package. The code used was verified with a model in Nastran,

mainly with regard to natural frequencies and modes of vibration, which directly influence the

aeroelastic responses.

Later on, the aeroelastic modeling was presented. At that moment, the aerodynamic

and structural modeling presented above was used. The challenge now was to make the correct

coupling of the tools, that is, to generate the unsteady aerodynamic loads and make the aerostruc-

tural coupling, in order to obtain an aeroelastic response for the system. The surface spline

interpolation procedure is one of the methods used to determine the structural deformations
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at aerodynamic points and a linear interpolation was used to estimate the generalized aerody-

namic matrices. Finally, the aeroelastic problem was solved using the p-k method, generating

the v-g-f graphs, where it is possible to identify the instability and flutter conditions. All code

implementation was performed in Python and verified with Nastran.

Finally, having all the tools working, that is, the aerodynamic, structural and aeroelastic

modules, it was possible to design the wing proposed in this work. First, the methodology used

to generate the structure mesh was presented. From an airfoil, a set of interpolation points is

defined, called control points, which will be the connection nodes of the truss elements. Then,

Delaunay’s triangulation theory is used to generate a spatial mesh arrangement with as many

elements as possible, without them intersecting. Furthermore, the choice of joint that connects

these elements is essential, as it introduces mass into the system and is responsible for design

constraints.

Moreover, for this study, the reference wing geometry from the FLEXOP project is used

as a baseline, that is, a wing design study was carried out using the main dimensions of the

wing available in FLEXOP. Thus, to improve the definition of the mesh and the dimensions

of the lattice elements, two optimizations were proposed, where the objective functions were

to minimize the weight of the wing and maximize the flutter speed. In the first optimization,

the design variables included the number of control points in each section of the airfoil and

the number of sections distributed along the wingspan. In this case, solid bar elements were

considered, which resulted in very heavy designs. In the second optimization, in turn, the

objective was to use tubular elements and optimize them individually, choosing for each element

values of outer diameter and tubular thickness. In addition, the optimizer tried to eliminate

elements that were unnecessary, in order to further reduce the weight of the structure. As the

number of elements varies according to the number of nodes in each section and the section

number, this work selected three pairs of parameters to generate the Paretos. It was noticed that

a lower value of nodes and cross sections is able to generate a better cost-benefit in terms of

weight and aeroelastic response to the structure, as long as the diameters and thicknesses are

optimally combined.

Finally, this work showed how modular structures can become a great strategy in the
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design of aeronautical structures, specifically wings. The new wing models that are currently

being presented in the literature, mainly on electric aircraft, have increasingly thin aerodynamic

profiles, since there is no longer the need to house fuel tanks. In this sense, modular structures

would be interesting to lighten the structural weight of the wing and at the same time meet the

structural and aeroelastic requirements. Furthermore, modular structures bring ease of fabrication

as it is possible to choose some specific tube diameters and just cut the required tube sizes.

Furthermore, in smaller aircraft, such as radio-controlled and UAVs, 3D printing can become an

interesting alternative in the manufacture of such structures.

7.2 Future Perspectives

This work opens a range of opportunities for future work, since the use of modular

structures in wing designs is a new strand in the literature and there is still much to be explored.

Therefore, the following suggestions are proposed as future work:

• Improve the optimization method and make it faster and more efficient, since much of the

time spent is still in the optimization;

• Better study the definitions of parameters and optimization variables, that is, number of

control points, numbers of sections, diameters, thicknesses, and materials;

• Study in more detail the dimensioning and sizing of the joint and how it would generate

constraints for the structural design and for the optimization;

• Make an experimental model, either in metallic structures or in 3D printing, in order to

validate the study;

• Integrate this wing design methodology into other applications and into complete aircraft

designs, as in an MDO (multidisciplinary design optimization), where the structural design

of the wing would be directly related to aerodynamic, stability and cost requirements.

• Further explore the idea of modularity and its benefits in terms of manufacturing and

maintenance.
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