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Abstract

The Internet of Things (IoT) application can offer tremendous opportunities for orga-
nizations and institutions to grow and explore innovative ideas. However, several IoT use
cases rely on Edge Computing capabilities and the virtualization capacity on edge. The
use of virtualization on edge is a crucial requirement in realizing the efficient implemen-
tation of IoT. Furthermore, the management and orchestration of computing, storage,
and networking resources in the Edge Cloud pose several challenges. Network Function
Virtualization (NFV) envisages several Virtual Network Functions (VNF) deployed across
the infrastructure. In this scenario, there are issues related to Single Board Computers
(SBC) capacity to support compute virtualization based on Virtual Machines (VM). In
this work, we evaluate and analyze computing virtualization on Raspberry Pi versions
3 and 4 using VM. Based on the experimental, we show the feasibility of using low-cost
devices such as RPi as the edge computing hardware.

Keywords: Cloud Computing, Edge Computing,NFV, Virtualization, IoT..
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Chapter 1
Introduction

The Internet of Things (IoT) is a key enabler for a generation of services and applica-
tions. IoT’s growth and popularity along with its related areas such as cloud computing,
machine learning, and big data will transform information society. However, the advent
of big data, despite its benefits, presents a long-term challenge of how to load the vast
amount of data generated. The long-term accumulation of streaming data or video data
(such as Augmented Reality (AR), Virtual Reality (VR), and Mixed Reality (MR)) with
IoT hardware devices (KRISTIANI et al., 2019) could be addressed by the sharing of a
larger platform with IoT platform as one form of solution.

Cloud Computing is of vital importance to businesses and individuals and is serving
its purpose well (ZHANG; RAVISHANKAR, 2019). However, the cloud data centers
are far away, and the distance that data need to traverse the Internet to end-users is
also relatively long. Here arises the problem of latency (Zhang et al., 2018). Therefore
numerous proposals have been established, such as (Gouareb; Friderikos; Aghvami, 2018),
that aim to mitigate the effect of structural latency through optimization techniques that
the conventional service implementation model imposes.

Latency can be acceptable for some applications that can tolerate delays; however
applications such as Virtual Reality, Real-time Processing, and Augmented Reality will
function poorly or even fail when faced with latency issues (Shi et al., 2016).

Furthermore, the Fifth Generation Mobile Networks (5G) presents another pressing
need to address the latency challenges that Cloud Computing faces. Therefore Edge
Computing is presented as a solution to resolving the latency challenges. Edge computing
can achieve this by bringing processing closer to end-users at the Edge of the network,
and if the internet connection fails, the processing continues (HU et al., 2015).

IoT scenarios rely on sensors, computing devices, and gateways deployed on the edge,
near the user. The next generation of services and applications will use the concept of
Networking Function Virtualization (NFV) (LI; CHEN, 2015) where different components
will be deployed across the infrastructure on the cloud and also on the edge (Parvez et
al., 2018).
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1.1 Motivation

The use of virtual machine virtualization on the edge can be considered a relevant
step to address some issues that container virtualization may not be able to guarantee.

Therefore a first case in point is the NFV European Telecommunications Standards
Institute (ETSI) Architecture that uses a single entity, called Management and Orches-
tration (MANO). MANO must be able to communicate with the VIM and be able to
deploy VNFs across the whole infrastructure.

Furthermore considering that Virtual Network Function (VNF) can also run on Virtual
Machines. One requirement of NFV is the capacity to deploy Virtual Machine (VM) not
only on the core of the network but everywhere and also in the edge.

Therefore considering that on the edge can have single board computers with low
computing capacity, such as Raspberry Pi, the main motivation of the work is to verify
the ability of this type of hardware to allow VMs running of them.

Despite that virtual machines are consider as heavy and resource consuming compare
to containers but there is still a need for them base on this reference (TAO QI XIA; LI,
2019). Here the author noted that the use of VMs are considered better than container
in some situations such as when the user can not afford to have a compromised host
and any event that can result in the host crashing. As anyone of these situations can
result in a high cost for the user. Consequently, with such a possibility existing a VM is
considered the best option because when a container crashes or has been compromised,
the containers in problem may affect the entire host machine.

Therefore this and other issues serve as an important motivation to conduct an inves-
tigation of the capacity of the Raspberry pi to handle computer virtualization based on
VMs. Despite that current works exclusively focus on the use of containers on SBC edge
devices such as the Raspberry Pi (RPi), it is necessary to provide and option to container
virtualization on SBC devices on the edge. This is so especially for high cost operations
that can not risk host compromise in the event of container failure and its ripple effect
on the entire system.

1.2 Objectives and Research Challenges

The main goal of this study is to investigate the capacity of the SBC namely Raspberry
Pi Version 3 (RPi3) and Raspberry Pi version 4 (RPi4) to handle computing virtualization
based on Virtual Machine using an experimental approach. A few secondary objectives
are also set:

o To investigate the state-of-art regarding computing virtualization based on virtual
using SBCs.
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o To research and verify the operating system and software components to enable
Virtual Machine on Raspberry Pi versions 3 and 4.

o To use real SBC to perform several tests using well-known metrics such as boot
time, CPU, memory and swap disk usage to verify hardware capacity and compare
the results.

1.3 Hypothesis

The infrastructure on edge based on SBCs such as RPi3, and RPi4 can support com-
pute virtualization based on VMs and can enable the deployment of VNFs in this type of
hardware in a seamless way that it is done in bare metal servers.

1.4 Contributions

I will be seeking to provide an implementation approach of MEC that uses low cost
raspberry pi as compute node on the edge. Moreover my contribution to the process of
enabling virtualization at the edge of the network for future service provision includes the
following: Enabling multiple virtual machines to be launch and subsequently be used at
the edge of the network. Provide an alternative to the available options currently being
used at the edge of the network on resource constraint devices such as the raspberry
pi. Demonstrate the feasibility and possibility of utilizing RPi at the edge as a low-cost
and low energy consumption device. Therefore contributing to the rapid development of
Mobile Edge Computing (MEC) and implementation of 5G network. Our work, along
with related research, could serve as a motivation for other researchers and investors to
get involved in the development process of Edge Computing, which is a facilitator for the
implementation of MEC and 5G computing.
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1.5 Research Method

Creation of Reference Base - The research will be carried out on the main topics,
with focus on the implementation of edge computing using raspberry pi 3 and to a lesser
extent raspberry pi 4. Virtualization will be configured on the Rpis for the implementation
of openstack compute to be used with virtual machines.

To find out the capability of the RPi3 to support traditional VMs, our experiments
look at standard system resources usage parameters such as CPU, RAM, and disk swap
usage. Also, we investigate the processor temperature.

The percentage of CPU performance is one such metric that was collected for analysis.
Memory response was also necessary as it provides relevant information regarding the
amount and types of programs that the system will be able to accommodate. The use of
swap was also necessary to buffer RAM after all the system memory has been allocated.

The temperature, which is also related and relevant to the CPU performance, was also
recorded for analysis. Finally, the virtual machines boot times were collected to compare
the boot time when only one virtual machine is running as opposed to progressively
running multiple virtual machines simultaneously.

During the experiments, we used the psutil tool (RODOLA, 2016) to collect the data
about resource usage on the RPis. We executed each test 15 times to avoid statistical
bias and calculated average values.

1.6 General Scheme of Dissertation

The remaining of this works is organized as follows: Chapter 2 presents an overview
of different concepts and technologies in the context of this research and also presents the
state-of-the-art in this area. Chapter 3 presents the rationale, the choices and solutions
regarding this work. Chapter 4 shows the experimental evaluation and describes the
testbed, the evaluation approach used and a discussion about the results. Finally, in
Chapter 5, details the main contributions of this work and in addition points out some
suggestions for the evolution of the work in future investigations.
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Chapter 2
Background and Literature Review

This chapter presents fundamental concepts that are in the context of the work, such
as SBCs, compute virtualization techniques, and NFV main concepts. Furthermore, the
chapter presents a related work section where the literature about this area is described
and analyzed.

2.1 Openstack

OpenStack is defined a set of software tools for building and managing cloud com-
puting platforms for public and private clouds as well as it is a collection of open source
software projects which provides an Infrastructure-as-a-Service (IaaS) solution through a
set of interrelated services. It provides series of interrelated projects delivering various
components for a cloud infrastructure solution as well as controls large pools of storage,
compute and networking resources throughout a datacenter that are all managed through
a dashboard known as Horizon. It gives administrators control while empowering their
users to provision resources through a web interface. Openstack was founded by NASA
and Rackspace Hosting and have rapidly grown to be a global software community of de-
velopers collaborating on a standard and massively scalable open-source cloud operating
system. It was launched in July 2010 by NASA and Rackspace (KUMAR et al., 2014).

2.2 Single Board Computers

According to (JOHNSTON MIHAELA APETROAIE-CRISTEA; COX, 2016), SBC
is considered as a small, complete computer consisting of sockets for external display,
network and expansion capabilities via USB and PCB headers for external circuit boards
or sensors.

In our research the main focus will be on the ARM architecture which according
to Virtualization on Internet of Things Edge Devices With Container Technologies: A
Performance Evaluation is becoming increasingly widespread due primarily to its low-
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Table 1 – Comparing SBCs CPU, RAM and Cost

SBCs CPU Memory Cost(US|$)
Raspberry Pi2 B Quad Core @900MHz ARMv7 1GB 35
Raspberry Pi3 B Quad Core @1.2GHz ARMv8 1GB 35
Odroid C1+ Quad Core @1.5GHz ARMv7 1 GB 37
Odroid C2 Quad Core @2GHz ARMv8 2GB 40
Odroid XU4 Quad Core @2/1.4GHz ARMv7 2GB 74
BeagleBone ARM Cortex A8 512MB 45
Alix 3D2 AMD LX800 256MB 103

Table 2 – SBCs Storage Type and Cost

SBCs Storage Cost(US$)
ODROID-
C1+(S805)

MicroSD Card Slot/eMMC
module socket

35

Raspberry Pi3 B+ MicroSD Card Slot
4GB/eMMC on-board flash
storage

35

Beaglebone Black SPI Flash onboard, MicroSD,
8-bit SDIO interface

50

Udoo Neo Quad Core @2/1.4GHz
ARMv7

50-65

Odroid XU4 MicroSD, eMMC 74

power characteristics, low cost, and its use in smartphones, tablets, and other devices. It
was further noted that however despite these great feature along with the modern ARM
multi-core processors they are able to compete with general purpose CPUs. Furthermore
some versions of the ARM processors are 32-bit with the use of more powerful 64-bit
devices now growing. Although the focus will be on ARM SBC devices, we will briefly
look on AMD based SBC.

The Table 1 was created from two tables from both article (MORABITO, 2017) and
article (KAUP1 STEFAN HACKER2, 2018) as they both compare SBCs. It shows the
comparison of popular SBCs features that can guide in the an SBCs selection process.
The cost of the devices use to create the needed test-bed or infrastructure is one of the
challenges affecting cloud and edge computing deployment. Also very crucial is the type of
CPU the device uses. Another very important feature is the available memory, which will
directly affect virtualization and the type and amount of application that can be deployed
on these systems. In order to select the best hardware for usage in implementing the test-
bed Table 2 is added to present more devices options to consider along with the features
each device offers.
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Table 3 – Raspberry-Pi4 vs Pi3

Features Raspberry Pi 4 Raspberry Pi 3 B+
SoC Cortex-A72 (ARM v8) 64-bit

SoC @ 1.5GHz
Cortex-A53 (ARMv8) 64-bi @
1.4GHz

GPU Broadcom VideoCore VI Broadcom Videocore-IV
RAM 1 GB, 2 GB, or 4 GB LPDDR4

SDRAM
1 GB LPDDR2 SDRAM

Display and au-
dio port

2 micro-HDMI 2.0, 3.5mm ana-
logue audio video jack

Full size HDMI 3.5 mm ana-
logue audio video jack

USB 2x USB 3.0 + 2x USB 2.0 4x USB 2.0
Ethernet Native Gigabit Ethernet 300 Mbps Giga Ethernet
Video Decoder H.265 4Kp60, H.264 1080p60 H.264 and MPEG-4 1080p30
Power Supply 5V via USB type-C up to 3A

and GPIO header up to 3A
5V via micro USB up to2.5A
and GPIO header up to 3A

Expansion 40-pin GPIO header 40-pin GPIO header
Wifi 2,4 GHz and 5 GHz 802,11b g n

ac wireless LAN
2,4 GHz and 5 GHz 802,11b g n
ac wireless LAN

Storage microSD card microSD card
Bluetooth Bluetooth 5,0 BLE Bluetooth 4,2 BLE

For raspberry Pi4 vs Pi3 there are architectural differences between Rpi3 and Rpi4 as
shown in the table above; where Rpi3 is generally build with 1 GB ram for all its models
whereas the Rpi4 have a 1 GB ram model, a 2 GB ram model and a 4 GB ram model.
The raspberry pi 4 with 4 GB ram will be used in the experiment to complete tests and
their results will be used to do a comparison between the Rpi 4 and Rpi 3.
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Power Source Options for the Raspberry Pi

The need for a source of energy is paramount for electronic devices to function therefore
we will explore the possible options that are available to power the raspberry pi for our
research.

There are four categories of power sources that can be applicable to IoT devices though
not all maybe efficient or feasible for use with the raspberry pi. The four categories of
power sources are as follows:

Wall Power

The wall power is great for stationary applications. It has good stability and the cost
for small scale applications is generally affordable. It is also relatively easy to maintain
once installed however it has poor mobility.

Batteries

Batteries are the main source of power for applications that need to be mobile. There-
fore it is most suitable for mobility, but maintenance can be costly. However an alternative
to regular batteries is the use of rechargeable batteries and solar panels.

Energy Harvesting

Another source of powering the raspberry pi that can be consider is Energy harvesting.
There are various forms of Energy harvesting, however we can focus on solar energy
harvesting. It is not consider to be very stable because it works only when there is light.
And even if there is light, the output power varies a lot depending on the light intensity
and depending on how you consume the power. So it’s not very stable. And solar cells and
solar panels are bulky. It is untethered, but mobility is limited by the availability of light.
They don’t really need any maintenance except for removing accumulated dust(KIM,
2020).

No-power Devices

Finally the other source of power we will analyze is called the No-power devices. The
No-power devices will be examined in the use of the of RFID tags, they are extremely
unstable because they work only when there’s an RFID reader nearby but they are ex-
tremely small, cheap, and easy to maintain. Therefore based on the four possible options
the most applicable ones for the raspberry pi are wall power, batteries and energy harvest
such as solar. According to (KIM, 2020) none of the four sources of energy is best in
every aspect. However for our research we will be using wall power or electrical outlet.
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In order to give a clear view of the relevance of single board computers its use will be
assess from the perspective of cloud computing to edge computing and IoT. An advan-
tage of cloud services is that it assists companies and individuals to reduce the costs of
investing in data centers or servers, and its users can flexibly control the use of computing
resources (PARK SEULGI KIM, 2018). However as explain by (CAPROLU ROBERTO
DI PIETRO, 2019) that cloud computing should not be considered as a one-size-fits-all
solution because it tend to central resources. However its centralized approach normally
results in an increased separation between user devices and their clouds this in turn will
result in significant network latency and jitter. The resulted latency and jitter will affect
delay sensitive applications, such as gaming, augmented reality and e-health require low
latency and low or no jitter. Here is where edge computing is introduced to address these
issues by moving computing and storage away from centralized points. According to (TAO
QI XIA; LI, 2019) edge computing is proposed as an extension of cloud computing where
it provides hardware sources at the edge of the Internet, it serves client devices with much
lower network latency than cloud computing, therefore greatly improving the user expe-
rience for delay-sensitive client-remote applications. Furthermore it is now considered as
an enabling technology of IoT.

Therefore the next step is to determine how best to implement edge computing in-
frastructure since the cost for the devices can be very discouraging. In (MATTHEWS,
2018) research they found that the normally cloud systems are implemented with de-
vices such as laptops, portable desktop computers or by means of satellite communication
with remote high performance computing (HPC) clusters. They refer to its usage in a
battlefield environment and highlight the challenges that were face such as the power
consumption and cooling requirements of larger systems can be troublesome, especially
in harsh climates. The analysis further mentions other environmental challenges such as
dust, high temperatures, and fluctuations in power. In their continued assessment they
noted that latency and security requirements can result in delay in the analysis of the
information needed for effective command, control and intelligence. The need for single
board computers can now be effectively assess. The use of single board computer offer
several advantages. Firstly it is a fact that their small size and the fact that they are
extremely inexpensiveness compares to laptops or servers and enable high versatility. Sec-
ondly, their use of flash storage enables fast access to data without the latency or power
consumption of spinning disk storage (MATTHEWS, 2018). Finally it is noted that their
System-on-a-Chip (SoC) processors enable data storage capacities and processing capa-
bilities that far surpass microcontrollers and Field Programmable Gate Arrays (FPGAs).
Also their ease of reprogramming, and their use of a wide array of ports enable them to be
used as standalone computers or mounted on other devices for a variety of applications.
Therefore it is more cost effective to implement on the edge and offer a wide array of
benefits in terms of mitigating the challenges of using normal computers and servers.
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2.3 Compute Virtualization

Virtualization is the process of abstracting the operating system, application, storage
and network away from the original hardware or software.

This section describe different compute virtualization techniques.

2.3.1 VM Based Virtualization

A Virtual Machine (VM) is an emulation of a computer system. Virtual machines are
based on computer architectures and provide functionality of a physical computer. Their
implementations may involve specialized hardware, software, or a combination.

Full virtualization is where Virtual machine are created to simulate hardware and
allow an unmodified guest OS to be run in isolation. It has two type of Full virtualization
namely Software assisted full virtualization and Hardware-assisted full virtualization.

The Software Assisted Full Virtualization is also considered as Binary Translation
(BT). It uses binary translation to trap and virtualize the execution of sensitive, non-
virtualizable instructions sets. It also allows the emulation of the hardware using the
software instruction sets. Types of software assisted (BT) are:

o VMware workstation (32Bit guests);

o Virtual PC;

o VirtualBox (32-bit guests);

o VMware Server

The Hardware-Assisted Full Virtualization (VT) The use of the hardware-assisted full
virtualization eliminates the binary translation and it directly interrupts with hardware
using the virtualization technology which has been integrated on X86 processors.

The Hardware-assisted – Full virtualization hypervisor type 1 (Bare metal ) are as
follow:

o VMware ESXi /ESX;

o KVM;

o Hyper-V;

o Xen;

The other category of virtualization is Paravirtualization which works differently from
the full virtualization. This type of virtualization It does not need to simulate the hard-
ware for the virtual machines. The Virtual guests are aware that they has been virtualized,
unlike the full virtualization (where the guest doesn’t know that it has been virtualized)
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Table 4 – Full Virtualization, Para-Virtualization, and Hardware-Assisted Virtualization

Parameter Full Virtualization Para Virtualization Hardware As-
sisted Virtual-
ization

Generation 1st 2nd 3rd
Performance Good Better in certain cases Fair
Used By VMware, Microsoft,

KVM
VMware, Xen VMware, Xen,

Microsoft, Par-
allels

Guest OS modi-
fication

Unmodified Codified to issue hy-
percalls

Unmodified

Guest OS
hypervisor
independent?

Yes XenLinux runs only
on Hypervisor

Yes

Technique Direct execution Hypercalls Exit to root
mode on privi-
leged instruction

Compatibility Excellent Poor Excellent

to take advantage of the functions. A major difference between full virtualization and
paravirtualization is that in the full virtualization, guests will issue hardware calls but in
the paravirtualization, guests will directly communicate with the host (hypervisor) using
the drivers.

The types of paravirtualizations are Xen, IBM LPAR, Oracle VM for SPARC(LDOM)
and Oracle VM for X86 (OVM).

The other type of virtualization to be considered is Hybrid Virtualization which is the
Hardware Virtualized with PV Drivers Here the guest operating systems are unmodified
and utilized many VM traps and high CPU overheads which limit the scalability. The
hybrid paravirtualizationcan be considered as the combination of Full and Paravirtual-
ization. If there is a bottleneck with full virtualization, especially with I/O and memory
intense workloads the virtual machine will use paravirtualization for specific hardware
drivers. The types are 1.Oracle VM for x86 2.Xen 3.VMware ESXi. Finally the OS level
Virtualization is also known as “containerization”. containerization is where the Host
Operating system kernel allows multiple user spaces known as instances. Its usage allow
very little or no overhead as its uses the host operating system kernel for execution. Type
of os level virtualization are 1. Oracle Solaris zone 2.Linux Lxc 3.Docker 4.AIX WPAR.

The Table 4 shows the difference between Full Virtualization, Para-Virtualization and
Hardware-Assisted Virtualization and allow for an informed decision on which is best to
use for the application of virtualization method.
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Virtualization with KVM and Qemu

Virtualization solutions using hypervisors has been the most widely used for imple-
menting virtualization and achieving isolation. The hypervisors operate at the hardware
level, therefore supporting standalone virtual machines that are independent and isolated
of the host system. As a result of this isolation of the VM from the underlying host
system, it is possible to run a totally different operating system on top of another such as
Linux-based vms on Windows and Windows-based VMs on top of Linux (MORABITO;
KOMU, 2015). The type of hypervisors are: Type-1: native or bare-metal hypervisors
which operate on top of the host’s hardware Type-2: hosted hypervisors which operate
on top of the host’s operating system.

Linux’s Kernel-based Virtual Machine (KVM) has characteristics of both type 1 and
type 2 hypervisor. It is a virtualization solution for the Linux Kernel. It is used in
conjunction with a hardware emulator and virtualizer such as QEMU (MORABITO;
KOMU, 2015).

2.3.2 Container Based Virtualization

Linux Containers (CANONICAL, 2020) are based on Kernel Virtualization It has
been noted (Full Virtualization vs Para Virtualization vs Hardware-assisted Virtualiza-
tion) that Several container-based solutions exist such as LinuxVServer, OpenVZ, LXC,
Docker,and Rocket. However only lxc, lxd and docker will be assess. LXC is an OS-level
virtualization technique. It does not require full isolation of different OSs. Instead, it
allows all containers to share an OS kernel. Each container has a virtualized kernel for
itself, while the underlying system has only one copy of the kernel (TAO QI XIA; LI,
2019). A newer for is LXD which is a daemon that facilitates a REST API that is used
for the management of containers. It runs on top of the LXC and provides a simple com-
mand line user experience for easy management of containers that allow it to reduce the
complexity (AULIYA; WULANDARI, 2019). However docker is a higher-level platform
that combines Linux containers with an overlay filesystem and provides tools for building
and packaging applications into portable environments (MORABITO; KOMU, 2015).

Exploring the use of virtual machines on the edge is an interesting option that we have
choose despite the argument against its overhead as compare to the use of containers.
Their use on the edge can be justify base on the fact that because VMs achieve hardware-
level isolation while containers only achieve operating system (OS)-level isolation a grave
problem can arise as a result of this. Base on (TAO QI XIA; LI, 2019) research a container
can crash or be compromised and as a result the containers in problem may affect the
entire host machine containers.
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2.4 Networking Function Virtualization (NFV)

2.4.1 Main Concepts

The virtualization solution used is layered and maintains features close to the Eu-
ropean Telecommunications Standards Institute (ETSI) NFV framework. Considering
a bottom-up approach, we describe the Network Functions Virtualization Infrastruc-
ture (NFVI), the hardware management entity, as a biform infrastructure layer, so the
virtualization engine is alike for low-cost, high-performance servers. Thus, it becomes
possible to offer Infrastructure as a Service (IaaS) in which the service is uniformly de-
ployed over both hardware using the same manifest file (descriptor). Thereby, we make
the ability to deploy services across multiple domains hybrid.

2.4.2 Management and Orchestration

Also, next to the NFVI layer comprises the Virtual Infrastructure Manager (VIM),
the layer that controls and manages the infrastructure entities.

On top of the bottom layer, we propose an intermediate tier that comprises the service
deployment domains. It contains the Core and Edge blocks, which are respectively in-
frastructures that host services traditionally on high-performance hardware and low-cost
infrastructures that can be deployed and enabling verticals of services such as IoT, Smart
farms, and others. MANO compliant solutions could be placed here to handle the service
management and orchestration of the middle tier. State-of-the-art solutions deal with
these deployment domains separately.

The topmost layer that makes up the framework of the proposed solution comprises
the multi-form applications that we refer to as Virtualized Everything Functions (VxFs),
according to (SILVA et al., 2019). Our proposal as a uniform virtualization layer for both
bare-metal and low-cost devices democratizes the deployment domain, so the plethora
of applications are broader than state-of-the-art solutions. Also, testbeds of applications
like (SILVA et al., 2019), (SALLENT et al., 2012), and (Silva et al., 2018) can add to
their facilities our infrastructure model that can add functionality as service descriptor
manifest files.

Virtualization is essential for Edge computing provisioning and enables in most use-
cases for new kinds of applications (PAOLINO et al., 2015). Therefore, any device that
will be used on the Edge must be able to accommodate virtualization even if it is operating
system level, such as Linux Containers (LXC) or any other container technology.

However, the use of a virtual machine is needed for some applications in cases where
better security, isolation, and network performance (Marques et al., 2018) are preferred,
but on most small, low-cost devices enabling or using virtualization is more difficult,
especially if one wants to use virtual machines (Barik et al., 2016). The use of virtual
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machines on the RPi is relatively new and is only enabled through the use of particular
operating systems such as OpenSuse, Ubuntu, and Gentoo.

In order to build an Edge-Core virtualization platform to host VxFs spanning in dif-
ferent use-case domains, we have separated the architecture into two verticals to make
it loosely coupled. The state-of-the-art solutions deal with VxF deployment specifically
for each domain, and each virtualization technology: low-cost and high-performance vir-
tualization requires specific managers (Li et al., 2017). For instance, OpenNebula (Edge
release) (Milojičić; Llorente; Montero, 2011) deploy services on low-cost hardware; how-
ever, uniformity on it does not prevail. That is, services as conceived as LXC on low-cost
device services, and for bare-metal follows standard virtualization.

Unlike other Edge virtualization proposals, our solution enables VNF life-cycle man-
agement smoothly. VIM does not need to handle low-cost compute infrastructure or
bare-metal separately. Somewhat we adapted a uniform virtualization layer for both
types of hardware. Thus, the service deployment on top of the low-cost computing does
not necessarily have to be container-based once those solutions have network connectivity
drawbacks.

2.5 Related Work

Edge computing research and development have reached a high point of interest. It will
be the facilitator of 5G and MEC as it seeks to bring processing closer to the user at
the Edge of the network and, in so doing, help to resolve the latency problem. However,
there still exist hurdles to get over, and the literature describes several works related to
this aim.

The authors of MEC-ConPaaS (van Kempen et al., 2017) project stated that deploying
a realistic mobile Edge cloud remains a challenge because mobile operators have not yet
implemented MEC technologies in production, and this makes it impossible for researchers
to use their techniques in actual mobile phone networks.

They also noted that there exist very few open-source platforms that may support
experimentation that emulate a mobile Edge cloud, and they recognize the most mature
one to be OpenStack++ (van Kempen et al., 2017).

However, MEC-ConPaas researchers claimed that the general OpenStack implemen-
tation relies on classical server machines for its deployment. Their proposal is to deploy
a experimental MEC testbed that relies on single-board computers such as Raspberry
Pis (RPis) and similar devices. Their work relies on ConPaaS (Pierre; Stratan, 2012),
which is an open-source run-time management system for elastic applications in public
and private cloud environments. They utilized RPi with Linux Containers (LXC) enabled
and OpenStack orchestrating the containers.

Therefore they proposed a more natural way of deploying an experimental MEC
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testbed that relies on single-board computers such as Raspberry Pis (RPis) and similar
devices. Their work relies on ConPaaS (Pierre; Stratan, 2012), which is an open-source
run-time management system for elastic applications in public and private cloud environ-
ments.

MEC-ConPaaS presented an interesting foundation and proof of the concept of using
the raspberry pi at the edge, which was further highlighted by (Pahl et al., 2016) who did
similar research with ConPaas and the implementation of LXC with three hundred RPis
in a cluster.

Also, they explored the various forms of a Platform-as-a-Service (PaaS) for edge com-
puting. However, these relevant foundation researches may be impacted because of the
shift from the use of LXC to newer technologies such as Kubernetes and LXD, along with
security concerns that it presents. Therefore a newer container technology called LXD
based on LXC was presented by (Ahmad; Alowibdi; Ilyas, 2017) who proposed the use of
RPi2 Model B and LXD Linux containers.

(KRISTIANI et al., 2019) implements Edge Computing using OpenStack and Kuber-
netes. Their implementation uses three layers, such as the Cloud side, Edge side, and
Device side. The cloud side mainly deals with more complicated operations and data
backup. Its main function is to deploy the Kubernetes cluster on an OpenStack platform.
Also, the cloud side contains the Virtual Machine (VM) and Kubernetes master side,
and it also deals with data backup, complex operations, data visualization, and other
applications that do not need quick responses.

A more sophisticated form of edge implementation from the previously mention con-
tainers was introduced by (Chang et al., 2014), which applied a computational model
called the Edge Cloud. The application here brings the cloud to the edge and uses it as
a means of enabling a new type of hybrid application called Edge Apps, which runs over
Openstack (Chang et al., 2014).

Another edge app implementation was presented by (SCHILLER et al., 2018), who
creates mobile edge apps that are managed as virtual network functions. Their platform
also includes an SDN controller to manage traffic by using the control plane to derive
states for traffic management. They research Vehicular Fog Computing for Video Crowd
Sourcing, where they analyze the availability of vehicular fog nodes based on a real-world
traffic dataset. Then explore the serviceability of vehicular fog nodes by evaluating the
networking performance of fog-enabled video crowdsourcing over two mainstream access
technologies, DSRC and LTE (ZHU et al., 2018).

(BELLAVISTA et al., 2018) implement a solution that uses powerful and low-cost
middleboxes deployed at the edges of the network. It serves as enablers for their Human-
driven Edge Computing (HEC) as a new model to ease the provisioning and to extend
the coverage of traditional MEC solutions. Their approach uses different devices from the
RPi but is also relevant as middleboxes allow specialized services to be used at the edge
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of the network. However, some of these services can be enabled on the RPi to reduce cost
of implementation.

(TONG; LI; GAO, 2016) apply hierarchical architecture for the edge cloud to enable
aggregation of the peak loads across different tiers of cloud servers. They use this as a
means of maximizing the number of mobile workloads being served. The need for load
balancing is essential and can also be implemented on the RPi which have multipurpose
capabilities which are similar in some aspect to the PC.

Another load balancing technique is proposed by (PUTHAL et al., 2018) whose tech-
nique is used to authenticate the EDCs and to discover less loaded Edge Data Centers
(EDC) for task allocation. They state that it is more efficient than other existing ap-
proaches in finding less loaded EDC for task allocation and that it strengthens security
by authenticating the destination EDCs.

In the work (LEI et al., 2018), the authors’ solution allows mobile Edge applications
to be provided by chaining the service functions with the assistance of Edge computing
techniques and virtualized resources. They also build a testbed to evaluate their Edge
caching architecture for proof of concept and tested it with typical caching scenarios. The
research is not base on the RPi; however, the chaining of function can be tested on the
RPi.

In conclusion of the review of related work, the use of the RPi with other devices is
assessed in (AKRIVOPOULOS et al., 2018) who uses RPIs and Zotac and also an off-the-
shelf Intel-based edge-based server box. The software that they deployed on the devices
is bundled using a collection of Docker containers. They use these to create an IoT-based
platform for real-time monitoring and management of educational buildings on a national
scale. They design the system to process sensor data on the Edge devices of the network.

Unlike the presented related works there are some noted differences with the virtual-
ization that we used on the edge and the one of the devices we used on the edge. Our
use of a RPi4 on the edge for comparison with the use of a RPi3 on the edge. The use of
virtual machines on the raspberry pi on the edge was not reflected in any of the related
works that were published. However in our research we explore the prospect of using
virtual machines on sbcs on the edge on the RPi 3 and RPi4 to assess the performance
of the virtual machines on each devices.
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Table 5 – Comparison of Related Works

The Previous So-
lutions

Type of Vir-
tualization

Edge device Metrics

(van Kempen et al.,
2017)

Lxc Rpi3 storage, CPU, mem-
ory, network, power
consumption

(Ahmad; Alowibdi;
Ilyas, 2017)

Lxd RPi2 Launch time

(KRISTIANI et al.,
2019)

Kubernetes,
dockers

Rpi3 Boot time

(Chang et al., 2014) Lxc sensors, laptops,
computers

Edge App

(SCHILLER et al.,
2018)

Lxc,kvm cloud server latency,SDN,VNF

(BELLAVISTA et
al., 2018)

VM, dockers middleboxes Connectivity, Stabil-
ity, Load Balancing

(PUTHAL et al.,
2018)

Edge dat-
acenters
(EDCs)

wireless sensor
nodes and smart
devices

algorithm

(LEI et al., 2018) VMs Intel-
computer,radio

SFC in edge caching

(AKRIVOPOULOS
et al., 2018)

Docker con-
tainers

RPIs, Zotac, VPS Network-bandwidth,
Average-processing,
CPU

(ILYAS
MUNEEB AH-
MAD, 2020)

lxd RPi3 CPU,RAM,I/O,launch
time, Zram

(HAJJI, 2016) Docker Rpi2 CPU,RAM,Network,
Energy

(SHARMA LU-
CAS CHAU-
FOURNIER, 2016)

Docker,Kvm
vms

Intel,Dell comput-
ers

CPU, memory, disk,
network

(ZHANG
LING LIU; ZHOU,
2018)

Docker, kvm Intel computers Ram,Cpu,Boot-time,
Scalability
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Chapter 3
Virtual Machine on the Edge

To enable the use of NFV it is mandatory to have the capacity of management and
orchestration of Virtual Network Functions (VNFs) across the infrastructure.

The new type of services, such as the ones envisaged by 5G that requires Ultra-
Reliable and Low-Latency Communications (URLLC) capacity from the network usually
also requires computing hardware available on the core and also on the edge of the network.
In these usage scenarios where you have different types of computing hardware such as
bare metal servers on the core and low cost single board devices on the edge.

In this type of service, the VNFs can be distributed in the these types of computing
hardware and it is necessary that the MANO entity can communicate with the VIM and
manage the resources in a seamless way in all this hardware.

This chapter presents the rationale necessary to have VNFs distributed on bare metal
servers and Raspberry Pi devices. This chapter also describes a solution to enable the
creation of Virtual Machines (VMs) in low cost devices, in this case, Raspberry Pi devices.

3.1 Virtual Functions on the Edge

The goal of creating a solution that uses virtual machines on raspberry pi is to add
to the options of virtualization on the edge devices as currently most research and test
beds use mostly lxc , lxd or Kubernetes on the edge devices. However a traditional cloud
environment mostly uses virtual machines on their platforms and some researchers and
developers may rather use what they are familiar with in some instance such as virtual
machines.

This solution will serve as another option to the available edge virtualization ap-
proaches and could possible inspire a combination of other approaches with virtual ma-
chine usage on the edge. It is also an inspiration for further research in the uses of tradi-
tional virtual machines on the edge or a combination of virtual machines and containers.
Furthermore it will be an additional enabler for the implementation of 5G technology
with will use edge computing also.
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3.2 Architectural Design

To handle these drawbacks we bring a uniform solution as described in Figure 1. Our
proposal enables 𝑥86_64 virtualization compatibility on top of low-cost compute resources
as it is straightforward on bare-metal compute resources. The boot process, which starts
on Nova-API (release 13.1.4), receives the requests to a new VxF creation. Afterward,
the messages go through the RabbitMQ mechanism to the Nova-Scheduler, which decides
which compute-node contained in the cluster (Cellv2) will handle the request. Ultimately,
the remaining build-block components are Keystone 9.3.0, Glance 12.0.0, and Neutron
8.4.0.

The filter (ComputeCapabilitiesFilter) in Nova-Scheduler checks if the deployment
request fits adequately on the low-cost compute-node, according to VxF flavor, being
possible the nova-boot process will create and instantiate the VxF. If a low-cost compute-
node is unable to handle the deployment request, the VxF will be launched on top of
bare-metal compute resources.

Figure 1 – Proposed Solution Build-Blocks.

Commonly RPi has only one physical network interface, and the basic OpenStack
deployment requires two interfaces, we proposed an approach based on Open vSwitch
(OvS). Therefore, we created two virtual interfaces vnet0 and vnet1, which we assign
different addressing plane. Both interfaces were associated with a OvS, which had as trunk
port the only physical interface of RPi. The RPi physical interface connects directly to
a physical switch where the controller-node and the network gateway are also connected.
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Thus, one virtual interface served as a provider interface for the Neutron plugin, working
as L2 Agent, and the other allowed the compute-node to exchange messages with the
controller-node services such as AMQP and databases.

Our solution for enabling Edge computing involves the use of the small and low-cost
RPi running Ubuntu 16 armhf -capable. However, its limited memory, in comparison to
the bare-metal poses restrictions on the programs that can be installed and executed on
it. Therefore, since we are installing OpenStack on the RPi, only the Nova-Compute can
be installed on it and not the Nova-API or Nova-Cert as these freezes the RPi as soon
as they start running. However, we build it with Nova-Compute and Neutron for the
network. Therefore, the RPi memory capacity was able to allow these to run smoothly.

As long as OpenStack requires virtualization, we enable such technology for the Edge
with this approach. To this end, we implement OpenStack Nova-Compute to utilize
virtual machine by connecting a localized OpenStack controller to our RPi OpenStack
compute-node. The RPi configuration enables the booting, stopping, accessing, and delet-
ing virtual machines from the RPi.

Therefore our solution can place all these added functionalities at the Edge of the
network closer to the user. The use of low-cost devices will also benefit the users and
businesses, along with the benefit of low latency will be achieved when the services and
functionality are placed at the Edge of the network closer to the user.

Our proposal investigates use of standard virtual machines on low-cost hardware. The
goal is to use the same virtual machine that usually runs on high-performance hardware
in order to verify the suitability and compatibility of the use of a single MANO entity,
in our case OSM. Container-based solutions are known (LEON. et al., 2018) on these
scenarios; however, the suitability of a uniform proposal for deploying VxFs according to
the ETSI framework was not discussed in previous studies.

3.3 Virtual Machines on Raspberry Pi

The use of virtual machines on the raspberry pi have presented a range of challenges
and issues that needed to be resolved to enable the smooth execution of virtual machines.
Firstly the configuration and enabling of virtualization capabilities on SBCs especially arm
based SBCs is very challenging since it require a different approach than the traditional
computers approach. In the case of traditional computers they normally depend on the use
of Intel VT and AMD-V that more specifically the raspberry pi which does not use Intel
VT and AMD-V for hardware virtualization enabling. Therefore the first major challenge
will be the need to obtain or compile a kernel with KVM userspace enabled along with
the required packages and needed configurations that will allow virtual machines to be
created and executed without errors or premature failures. Therefore to solve this problem
raspberry pi operating systems that have the potential to allow the enabling of KVM will
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be obtained and configured to enable KVM and the kernel recompiled if necessary. Next
the relevant packages needed to prepare the operating system to run virtual machines were
prepared, installed, configured and tested for functionality and efficiency. This procedure
was done for a number of operating systems and packages to see which allow the optimal
performance of the virtual machines.

The following figure illustrates the overview of the underlining virtualization config-
uration that is needed for the raspberry pi to be capable of using KVM virtualization.
The Kernel-based Virtual Machine (KVM) component is an open source Linux kernel
module. It has a loadable kernel module namely kvm.ko, that provides the core virtual-
ization infrastructure. It also consisit of a processor specific module such as kvm-intel.ko
or kvm-amd.ko. The KVM module at first was only functioning on the x86 hardware
platforms that contains the virtualization extensions Intel VT and AMD-V.
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Figure 2 – Enabled KVM Virtualization

Virtualization it is now reconfigured to function on the raspberry pi without the need
for the virtualization extensions that Intel and AMD computers provide to enable virtu-
alization. The KVM enabled in the kernel is the first and very important stage to install
it for usage however because it is a kernel module and resides in the Linux kernel space
it can not be used alone to create the virtual machines. It will need the help of another
component to make this possible. A program must be present in the Linux user space
to interact with KVM in order to provision and manage virtual machines. The main
program used here is Quick EMUlator (QEMU). It is a generic, open-source, standalone,
software-based, full system emulator and virtualizer that is needed by KVM but it do
not need KVM to function on its own however it would perform poorly and slowly if it is
not integrated with KVM. Finally, the next important component for the virtualization
functionality on the raspberry pi is libvirt. According to (BHOSALE, 2016) it is an ab-
straction layer library for various hypervisor management APIs written in C. Also it is
able to manage a set of virtual machines across different hypervisors.

In addition the operating systems build for raspberry pi generally do not enable virtu-
alization in the operating system kernel for KVM to be used immediately after installing
KVM and other virtualization packages. The user or someone other than the original
provider of the operating system would normally have to be the one to reconfigure the
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kernel of the operating system, to enable the virtualization features and then recompile
the operating system in order to enable kvm functionality. However customization of the
operating system is required now mostly for RPi 3 as some RPi 4 operating system are
now being prebuild with KVM virtualization features enabled. Furthermore, even with
this feature enable the user will still need to install and configure other relevant packages
in order to use KVM with either QEMU or libvirt for creating and executing virtual
machines. A final note on the requirements of the operating systems to use KVM. It
is adviced that KVM only works on a 64-bit operating system and the 32 bit versions
of the operating systems for the Raspberry Pi can not be configured to use KVM. The
operating systems that can be use with KVM enabled are ubuntu 18.04, ubuntu 19.04,
ubuntu 20.04, Opensuse leap 42,43 and 15, Gentoo and Fedora 33 is the latest to be KVM
enabled operating systems. However Ubuntu 16.04 armhf was also used to experiment
with nova-compute.

The experiment process involved a lot of trial and error to arrive at the best operating
systems and combination of software that would allow efficient and consist creation of
virtual machines that are reliable and will function predictable. In the first instance the
gentoo kvm configured operating system with qemu installed was tested. Here a gentoo
RPi 64 bit image ship with kvm enabled in the kernel was used, other necessary software
for creating the virtual machine were a BIOS tianocore aarch64 EFI specific called QEMU-
EFI.fd, an iso9660 image that was created with the cloud-init files such as meta-data and
user-data. Then these files are included in an instruction to boot the vm with qemu-
system-aarch64 to boot a bionic-server-cloudimg-arm64.img virtual machine. However
using this method on gentoo works but prove to be less stable for consistent booting of
a series of virtual machine on the same host as there was a point that it fail to start the
virtual machine that was running perfectly after it was first created. Furthermore more
than one virtual machine did not seem possible or trivial to run on the same host.

The next operating system used was ubuntu 18.04 with kvm enabled in the kernel.
The supporting software that were installed were qemu-kvm, libvirt-bin, virtinst, virt-
manager, bridge-utils, qemu-system-arm and qemu-efi with qemu.conf edited to make
nvram equal to AAVMF-VARS.fd. The graphical virtual machine manager was use to
create virtual machines which were created efficiently however as the virtual machines
creation increase on RPi 4 it was observed that they were unstable. Therefore the next
operating system that was tested was openSUSE Leap 42.2 for Rpi3 but was unable to
function on RPi4 therefore an equivalent openSUSE leap 15 was used for RPi4.

In order to setup and boot guest vms on openSUSE leap 42.2 the agraf qemu-patched
will be needed but may not be needed for openSUSE leap 15 which is an updated versions
for RPi4. Also packages such as git, gcc, gcc-c++, zlib-devel, gtk2-devel, libfdt1-devel and
make will be needed to make qemu-systemu-aarch64, that will be needed to create virtual
machines. Then configurations were done with modprobe and qemu-nbd on the arm64
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image. The image will be used to create the virtual machine. The command qemu-nbd
will be required to access the arm64 disk image contents in order to copy two files that
are necessary for booting Ubuntu Virtual machine. The files are kernel vmlinuz-4.4.0-
66-generic-lpae and initrd.img-4.4.0-66-generic-lpae whose series number will be base on
the arm image used. The image used to create the virtual machine was xenial-server-
cloudimg-arm64-disk1.img. The use of these files and the xenial-server-cloudimg-arm64
was able to create multiple stable virtual machines on both RPi3 and RPi4 which can be
used with the same image or multiple copies of the images in different folders but with
the required files. It is observed that stable virtual machines could be created until the
limit of resources were achieved consistently. Therefore this was selected as the preferred
method to use to create stable, efficient and maximum number of virtual machines on
RPi3 and RPi4 in order to compare virtual machines function and use of resources on
RPi3 and RPi4.

In a different test case with openstack nova a research was carried out with ubuntu
16.04 armhf operating system on the RPi host. A compute node with nova-compute was
created where a connection was made and the raspberry pi was able to share the functions
of issuing commands to create virtual machines however the scheduler was selecting the
amd64 host to run the virtual machines. Here the RPi could start, stop and access the
virtual machines but the desired results were to get the scheduler and openstack place
the vms on arm therefore that area will be considered for future work.

Finally the use of virt-install could enable the ubuntu arm64 versions especially ubuntu
18.04 and above to create similar amount of virtual machines as using qemu-system-
aarch64 on opensuse leap where qemu-system-aarch64 usage make it possible to create
vms consistently while the host and the vms remain stable up to the maximum use of
resources. However it can also allow more control over virtual machines than the use of
qemu-system-aarch64.
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Chapter 4
Experimental Evaluation

To evaluate our solution, we propose an experimental scenario in a real testbed en-
vironment. This section presents the testbed that realizes the proposed solution, the
experiment and the method used for its evaluation.

4.1 Testbed Description

This section presents the tesbed description related to the RPi3 and RPi4.

4.1.1 RPi3 Testbed

The architecture of our experiment includes a RPi3 (Nova-Computea) and a bare-
metal desktop computer (Nova-Computeb) which are together in the network edge. The
bare-metal desktop can run services deployed in edge cloud while the RPi3 is the edge
computing near the user. Besides that, there is an OpenStack Controller, as presented in
Figure 1.

The RPi3 is a Model B+ with a Broadcom BCM2837B0 system on a chip (SoC) with a
Cortex-A53 (ARMv8) 64-bit 1.4 GHz processor and 1 gigabyte of LPDDR2 SDRAM. The
bare-metal computer and Controller are Core I7 (i7-8550U) processors with 8 gigabytes
of RAM. The RPi3 has Ubuntu 16.04 armhf server, customized for ARM processors,
and publicly available. The software that was installed and configured on the RPi include
neutron and nova-compute. However for the final tests and comparison of virtual machines
on RPi3 and RPi4, opensuse leap 42.2 was installed on the RFPi3 host.

The bare-metal desktop computer uses a Ubuntu 16.04 64-bit (ARM64) server image.
It also has the neutron and nova-compute OpenStack components (Mitaka release).

The controller computer uses a Ubuntu 14.04 64-bit (AMD64) server image and several
OpenStack components such as Keystone, Glance, Nova, Placement, Neutron network,
and Manila.
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All the hardware was interconnected using a local physical network. A bridge network
configuration supported the connection of the virtual machines created inside the RPi3,
the local network.

4.1.2 RPi4 Testbed

A next testbed was created to test the performance of the raspberry pi 4 performance
in similar areas as we did with the raspberry pi 3. Therefore a basic testbed was done
just to mainly compare the performance of the raspberry pi 4 and raspberry pi 3 base on
our research goals.

Here the raspberry pi 4 was configured with opensuse leap 15 operating system which
has virtualization enable in the kernel. It is also a customized operating system for ARM
processors, and is also publicly available. Then after kvm is enabled qemu was Download
and build with a patched that makes it possible to run virtual machines with kvm.

The RPi4 is a Model B computer with a Broadcom BCM2711 system on a chip (SoC)
with a Quad core Cortex-A72 (ARM v8) 64-bit 1.5 GHz processor and 4 gigabytes 0f
LPDDR4-3200 SDRAM.

Figure 3 – Experimental Scenario Sequence Diagram.

The overall setup of the experiment is presented in Figure 3. A user starts a script to
do the performance measurement. This script creates the VMs on the RPi version 3 and
version located in the Edge, indicate as computer servers. All the statistics of the whole
process are collected and stores for further analysis.
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4.2 Evaluation Methodology

To find out the capability of low cost commodity devices to see how they will behave.
In order to do that we choose common low costs devices such as the RPi3 and RPi4.
Our experiments will evaluate their capabilities to support traditional VMs and further
analyze standard system resources usage parameters such as CPU, RAM, and disk swap
usage. Also, we investigate the processor temperature.

The percentage of CPU performance is one such metric that was collected for analysis.
Memory response was also necessary as it provides relevant information regarding the
amount and types of programs that the system will be able to accommodate as some
programs and task require a lot of memory to function efficiently. The use of swap was
also necessary to buffer RAM after all the system memory has been allocated.

The temperature, which is also related and relevant to the CPU performance, was also
recorded for analyzed. Finally, the virtual machines boot times were collected to compare
the boot time when only one virtual machine is running as opposed to progressively
running multiple virtual machines simultaneously.

During the experiments, we used the psutil tool (RODOLA, 2016) to collect the data
about resource usage on the RPis. We executed each test 15 times to avoid statistical
bias and calculated average values.

4.3 Discussion

Using the experimental setup and following the evaluation methodology presented in
Section 4.2 the solution presented in this work was evaluated.

Here we will present the results and a discussion about the RPi3 and also for the
RPi4. Then there will be a comparative analysis about their performance in regards to
the time it takes to boot virtual machines and the amount of virtual machines that can run
simultaneous on the RPi3 as oppose to the RPi4. Furthermore there will the performance
comparison will continue on cpu, disk and ram usage and finally temperature measure.
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4.3.1 Discussion about RPi3

The following charts present the results of our experiments. We repeated the experi-
ments to collect the boot times, fifteen rounds.

Figure 4 – RPi3 Instances Total Boot Times.

Figure 4 displays the boot times in minutes. The time present is the average time. In
each round, we created three VMs since the RPi3 did not support more than this number
of instances.
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Also, we depict in Figure 5 the temperature rise per experiment round. As we can
see, it is possible to notice the increase as the instances are launched. The average
temperature, considering the 95% confidence interval, is ≈ 55.29∘C.

Figure 5 – Rpi3 Temperature Measurement.

Furthermore, the analysis of the temperature provided by Figure 5 shows that it rises
during the process of booting each new virtual machine. However, after the booting
process of each virtual machine, it falls significantly but not very low. Then risings
steadily but sharply.

Figure 6 below presents the % of the usage of CPU, disk swap, and RAM combined in
one chart to give an overall view of the system performance. This view makes it possible
to compare and assess these related system performance metrics quickly. The graph shows
the evolution of each of the above parameters during the experiment. The system resource
usage starts the measurement at the beginning of the experiment. It continues getting
this information while the three different VM instances are created. The values presented
in the charts is the average of the fifteen rounds of the experiment.

The analysis of the CPU performance during the virtual machines booting process per
rounds shows that at the start of the booting process of a virtual machine, the base value
of the CPU is low then rises sharply and remains high while fluctuating. Then again
at the start of the second virtual machine on the RPi, the CPU value falls sharply first
then rises again sharply however the base of the low CPU value now shows an increase.
This falling and rising behavior during the virtual machine booting process continues
with the booting of the third virtual machine along with the low base value rising again
significantly.
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Figure 6 – RPi3 Resource Allocation over Time.

After the creation of a new virtual machine, the RAM allocation, and consumption
increases. The memory capacity is the major restricting element in the number of virtual
machines that the RPi3 can support. The RPi3 used in the experiment has one gigabyte
of RAM. Considering that Ubuntu 16.04 armhf image requires 256 RAM per virtual
machine, the current limit is three virtual machines.

However, when RAM consumption is near its limit, the swap memory is used as a
buffer for processing to prevent the system from crashing. In Figure 6 swap can be
observed to be steady before and after one virtual machine is created. Then starts to
increase with the creation of the second virtual machine until it peaks with the creation
of the third virtual machine.

It can be be seen that the CPU, RAM, swap, and temperature are connected to an
extent, and all are influenced by the creating of the virtual machines, especially the last
two. All the parameters show an increase during the last two boots, especially with the
booting of the third virtual machine.

The MEC-ConPaaS project (van Kempen et al., 2017) states that they use LXC on
the nova-compute, which is an RPi also, they state that their first LXC launch image
test took 10 minutes to launch them with many configurations they were able to get it
to 90 seconds. The boot time of an instance on our Edge infrastructure average less than
2 minutes, which is relatively close to the 90 seconds booting of instances in LXC, which
are not as secure as virtual machines.
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Finally, we were able to launch images from a MANO miles away. Here we connect
the controller to OSM, and this allows us to also start virtual machines on the Edge
with virtual network functions as needed or requested. Using this approach then makes it
possible to monitor and manage virtual machines on the Edge much more straightforward,
using standard platforms common used.

4.3.2 Discussion about RPi4

The Rpi4 CPU performance was similar in some aspect the Rpi3 as the base value of
the CPU was low then rises sharply and remains high while fluctuating however the CPU
usage peak at 55.6 percent which can be considered as a relatively low usage.

A more detail analysis of the performance of the virtual machines on the raspberry pi
4 will be assess below with related charts.

Figure 7 – Rpi4 Instances Boot Times.

Figure 7 displays the boot times of the virtual machines on the raspberry pi 4 in
minutes. The times are presented on the chart as the average values of the boot time
of each virtual machine over the boot rounds. In each round, fourteen virtual machines
were create and boot in a consecutive manner on the raspberry pi 4. The decision to stop
create virtual machines at the fourteen virtual machine was taken because it was the only
inconsistent virtual machine. Inconsistent meaning its boot time can increase significantly
sometimes; at times the cloud-init login and other components are failing during the boot
process. However these problems as observed are base on internet load and ssh issues.
These challenges lead to the decision to stop at the fourteen virtual machine creation.
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Figure 8 – Rpi4 Temperature Measurement

The temperature on raspberry pi 4 behaves almost similar to raspberry pi 3, the
temperature behavior as shown in Figure 8 shows its continuous rising during the virtual
machines booting tests on the RPI 4 as each virtual machine is created. It can be observed
that after a sharp rise of about a quarter of the virtual machines the temperature falls
significantly but not very low for an additional set of virtual machine creation. Then
it risings sharply and fall sharply and finally rises again for the last additional created
virtual machines.
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Figure 9 – Rpi4 Resources usage

The Figure 9 illustrates the usage and allocation of system resources progressively as
virtual machines are created cumulatively.

After the creation of three virtual machines the raspberry pi 3 consumes 100 percent
of ram then at this point the swap memory is used as a buffer for processing to prevent
the system from crashing.

The disk usage remains the same from the beginning of the research through to the
conclusion of the research. It is so because each virtual machine has its internal storage
whose changes can only be assess from within the virtual machine. The next fairly
reasonable used resources is the CPU whose usage increases during each boot process
significantly and sharply as compare to non boot periods but not and seems not more than
ten percent of non-boot periods shows small sharp rise occasionally. The ram memory
which is arguable the most important resource in the determination of the number of
virtual machine that can be created on the raspberry pi 4 reflect a constant demand and
high usage increase as each virtual machine is created. It shows a gradually progressive
increase going close to one hundred percent where it peaks at the creation of the 12 virtual
machine. Then at one hundred percent with the booting of the fourteen virtual machine
it take a sharp decrease but in the high usage area then increase again to one hundred
percent usage of memory. The swap memory which complements the ram memory started
with no allocation to a very small gradual allocation up to the creation of the 11 virtual
machine. Then a noticeable sharp increase starts from the booting of the 12 virtual
machine. After which it jump to a one hundred percent usage at the booting of the
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thirteenth virtual machine and stay steady at one hundred percent usage at the booting
of the fourteenth virtual machine.

Here also the maximum usage of ram resources and swap helps to determine the
maximum amount of virtual machines that can be created base on available resources
especially the amount of ram that is available.

Additionally base on observation while conducting the experiments on the raspberry
pi 3 and the raspberry pi 4 an observation is that most of the operating systems used on
the raspberry pi 3 can not be installed on the raspberry pi 4. Therefore the significant
changes to the Rpi4 result in the redundant of Ubuntu 16 as it along with most operating
system built for raspberry pi 3 and 2 either fail to boot or hang during the booting process.
However newer versions of Ubuntu function on the Rpi4 as the Ubuntu 18.04 and Ubuntu
19 were able to boot.

The experiments on raspberry pi 4 were done with Ubuntu-18.04.3 preinstalled server
arm64 image was customized to meet the requirements of Rpi4 new firmware and in-
cluded kvm virtualization enabled and opensuse leap 15 which runs ubuntu 16 more
efficient. Finally, the virtual machines that were executed on the raspberry pi 4 were cre-
ate with a bionic-server-cloudimg arm64 image and cirros-0.4.0-aarch64-disk images on
Rpi 4 ubuntu-18.04.3. However after recognizing that opensuse leap 15 was more efficient
and allow more virtual machines to be created the final tests were done by creating virtual
machines with ubuntu 16.04 on opensuse leap 15 on raspberry pi 4.

4.3.3 Discussion about RPi3 x RPi4

Here an analysis and comparison of virtual machines running on Rpi3 and Rpi4 will
be conducted on boot time, number of virtual machines, ram and cpu metrics and other
significant system metrics.

One of the most significant factors in the number of virtual machines that can run on
the raspberry pi is the amount of ram that it is designed with as mention before that the
memory capacity is the major restricting element in the number of virtual machines that
the RPi3 can support. The RPi3 used in the experiment has 1 gigabyte of RAM. On the
Rpi3 only 3 virtual machines were able to be created and executed. However on the Rpi4
with 4 GB ram 14 virtual machines with ubuntu 16 operating system were created and
executed.
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Comparison of RPi 3 and RPi 4 Boot times
The comparisons will be done base on Figure 3 which will be represented by figure

9(a) x Figure 6 which will be represented by figure 9(b).

((a)) RPi3 Instances Total Boot Times.

((b)) Rpi4 Instances Boot Times

Figure 10 – Comparison of Instances Boot Times

After analyzing the virtual machines booting times, it can be seen from Figure 10(a)
that the booting times of each new virtual machine continue to increase for each new
virtual machine that is booted. Therefore after the first virtual machine is booted on the
RPi3, the boot time for each subsequent virtual machine will increase; however, it will
only increase by less than one minute.
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As illustrated on 10(b) the raspberry pi 4 virtual machines average boot times for
the first 6 virtual machines are significantly lower than the boot times on raspberry
pi 3. However similar to the raspberry pi 3, the average boot times on RPi 4 virtual
machines increases gradually as another virtual machine is created. The average time for
the fourteen and final virtual machine is drastically higher than all the previous virtual
machines. However despite the final virtual machine high boot time average, the RPi 4
performance here is by far more superior in the amount of virtual machines that it allows
to be created. Furthermore, another advantage with the RPi 4 is the increase in the
average time it takes to create most of the 14 virtual machines.

Figure 4 x Figure 7
Comparison of RPi3 and RPi4 temperature Performance The comparisons will be

done base on Figure 4 which will be represented by figure 10(a) x Figure 7 which will be
represented by figure 10(b).

((a)) Rpi3 Temperature Measurement

((b)) Rpi4 Temperature Measurement

Figure 11 – Comparison of Temperature Usage
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The analysis for the raspberry pi 3 temperature behavior provided by 11(a) display a
rise in temperature on the device during the process of booting each new virtual machine.
Then after each virtual machine finish booting the temperature tends to fall significantly
though not very low. Then risings steadily but sharply. It was observed that the tempera-
ture on raspberry pi 4 behaves almost similar to raspberry pi 3, the temperature behavior
as shown in 11(b) shows its continuous rising during the virtual machines booting tests
on the RPI 4 as each virtual machine is created. It can be observed that after a sharp
rise of about a quarter of the virtual machines the temperature falls significantly but not
very low for an additional set of virtual machine creation. Then it risings sharply and fall
sharply and finally rises again for the last additional created virtual machines.

Comparison of RPi3 and RPi4 CPU Usage and Performance
Figure 12 puts together the resource allocation over time for the RPi3 (see figure

12(a)) and for the RPi4 (see figure 12(b)).
In the comparison of 12(a)) and 12(b) the focus will be on the system resources usage

and allocation of system resources. They will be assessed progressively as virtual machines
are created cumulatively.

The 12(a)) shows the analysis of the CPU performance during the virtual machines
booting process per rounds for the RPi 4. It shows that at the start of the booting process
of a virtual machine, the base value of the CPU is low then rises sharply and remains high
while fluctuating. Then again at the start of the second virtual machine on the RPi, the
CPU value falls sharply first then rises again sharply however the base of the low CPU
value now shows an increase. This falling and rising behavior during the virtual machine
booting process continues with the booting of the third virtual machine along with the low
base value rising again significantly. However for RPi 4, 12(b) shows the CPU utilization.
The CPUs usage increases significantly during each boot process. Furthermore when a
new virtual machine is created the CPU usage increases sharply as compare to non boot
periods but with small sharp rise occasionally.

Comparison of RPi3 and RPi4 RAM Usage and Performance
RPi 3 12(a)) also present the findings on the use of the RAM. It can be seen that after

booting each virtual machine, the RAM allocation, and consumption increases. The RAM
memory will determine the total virtual machines that can be run simultaneously on the
raspberry pi. On the RPi3 the minimal practical amount of memory to allocate to the
virtual machines for efficient execution of each virtual machine was 256 RAM per virtual
machines. On the RPi 3, 3 virtual machines with 256 RAM were executed gradually which
result in the total memory usage of 768 of total memory of 1024 RAM. A fourth virtual
machine creation at this time would result in the freezing of the system as the 1 GB ram
is fully allocated. However on the RPI 4 with 4 GB ram more than triple the amount of
virtual machines was created and function efficiently simultaneously. The test uses the
same 256 RAM for each virtual machines. As each virtual machine is created with 256
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((a)) RPi3 Resource Allocation over Time.

((b)) RPi4 Resource Allocation over Time.

Figure 12 – Comparison of Resources Usage
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RAM, fourteen virtual machines were able to be created for a total of 3584 megabytes of
RAM. At 14 virtual machines the boot time increases and some features of the virtual
machine takes longer to stabilize therefore from these issues it can be concluded that
14 virtual machine is the maximum virtual machines that can be created on the RPi 4
efficiently. However 14 virtual machines is a lot more than the 3 that RPi 3 RAM allows.

Comparison of RPi3 and RPi4 Swap Memory Usage and Performance
Base on the analysis of the system resource usage for the raspberry pi 3, after the

creation of three virtual machines the raspberry pi 3 consumes 100 percent of ram then
at this point the swap memory is used as a buffer for processing to prevent the system
from crashing. However for the raspberry pi 4 the swap memory steadily increases from
the first virtual machine creation to the 11 virtual machine. After which it falls slightly
then rises to 100 percentage usage.
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Chapter 5
Conclusions

Within this work, we showcased a unique approach to managing and orchestrating
resources on servers on the core and low-cost hardware on edge using the same MANO
entity, in this case, represented by OSM. We also could explore the constraints associated
with using the RPi on edge regarding standard parameters associated execution of virtual
machines on these devices.

Previous approaches to deal with state-of-the-art OpenStack implementation on the
edge such as OpenStack++ (HA; SATYANARAYANAN, 2015), and MEC-ConPaaS (van
Kempen et al., 2017) were initiated to encourage faster Edge computing development with
cloudlets. However, OpenStack++ was meant for powerful servers and was not made with
consideration of low-cost devices that are prerequisites for widespread adaptation of edge
computing.

The reason for this is that the RPi is a low-cost and low-power consumption device
(Bekaroo; Santokhee, 2016). Therefore this article shows that the RPi can be used for
virtualization on the Edge. More importantly, it demonstrates that virtualization can be
enabled with OpenStack using traditional instances on RPi. Furthermore, it has another
advantage: the controller resources can be shared with the RPi when a virtual machine
is booting from the RPi. This allows the launching of more significant instances and
more memory-hungry virtual machines to meet the needs of applications that need more
memory than the RPi’s limited memory will allow.

According to performance tests, memory is the most degraded resource as low-cost
hardware serves virtual machines. This paves the way for new memory allocation formats
on low-cost devices.

Our infrastructure proposal based on the ETSI framework enabled us to launch virtual
machines uniformly. Namely, MANO does not need to deal with different virtualization
technologies for each hardware (high-performance and low-cost). Also, the limitations
verified in this work open the way for advances in the virtualization spectrum on single-
board computers.
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5.1 Main Contributions

Our contribution to the process of enabling virtualization at the edge of the network
for future service provision includes the following:

1. Provide an alternative to the available options currently being used at the network’s
edge on resource constraint devices such as the raspberry pi.

2. Demonstrate the feasibility and possibility of utilizing RPi at the edge as a low-
cost and low-energy consumption device. Therefore, it hastened the development
of MEC and implemented the 5G network. Our work and related research could
motivate other researchers and investors to get involved in the development process
of Edge Computing, which is a facilitator for the implementation of MEC and 5G
computing.

3. Introduced an ETSI-compliant infrastructure for service deployment at the edge.

5.2 Technical Contributions

The contributions of this work are as follows:

1. We designed and developed the RPi3 and RPi4 testbeds demonstrating the potential
usage of Virtual Machine Edge IaaS architecture using open source components.

2. Virtual machines were created until each device’s maximum capabilities were achieved.
During the creation of each machine, various performance tests were performed on
the host devices, such as memory tests, CPU metrics, swap usage, virtual machine
boot time, and temperature for the RPi3 and RPi4.

5.3 Publications

During this work, we prepared some research papers. One was submitted and pub-
lished.

The work called Enabling the Management and Orchestration of Virtual Networking
Functions on the Edge, published and presented in the 10th International Conference
on Cloud Computing and Services Science (CLOSER 2020). (RICHARDS; MOREIRA;
SILVA, 2020).



5.4. Future Work 63

5.4 Future Work

For future work, we plan the following activities:

o Implement a solution that integrates the MANO, the VIM and the infrastructure
based on RPi with the MANO will have full control of the creation, deployment,
and the entire life cycle of the virtual machines;

o Deploy various applications on the RPi based infrastructure, and we will conduct
various investigations and measurements of their performance.

This future work will better understand the supported use cases and provide informa-
tion about the limitations associated with such scenarios, thus bringing knowledge about
the weaknesses and strengths of using low-cost hardware on edge.
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