

FEDERAL UNIVERSITY OF UBERLÂNDIA

FACULTY OF ELECTRICAL ENGINEERING

GABRIEL AUGUSTO ROSA

Understanding and Predicting Interruptions Index of Medium Voltage Customers Using

Fully Connected Networks

Uberlandia, Brazil

2022

ii

GABRIEL AUGUSTO ROSA

Understanding and Predicting Interruptions Index of Medium Voltage Customers Using Fully

Connected Networks

Dissertation presented to the Faculty of

Electrical Engineering at the Federal

University of Uberlandia as a partial

requirement for obtaining the degree

Master of Science

Concentration area: Neural Networks

Advisor: Prof. Dr. Keiji Yamanaka

Uberlandia

2022

com dados informados pelo(a) próprio(a) autor(a).

Ficha Catalográfica Online do Sistema de Bibliotecas da UFU

Rosa, Gabriel Augusto, 1993-R788

2022 Understanding and predicting interruptions index of

medium voltage customers using fully connected networks.

[recurso eletrônico] / Gabriel Augusto Rosa. - 2022.

Orientador: Keiji Yamanaka.

Dissertação (Mestrado) - Universidade Federal de

Uberlândia, Pós-graduação em Engenharia Elétrica.

Modo de acesso: Internet.

CDU: 621.3

Disponível em: http://doi.org/10.14393/ufu.di.2022.239

Inclui bibliografia.

Inclui ilustrações.

1. Engenharia elétrica. I. Yamanaka, Keiji,1956-,

(Orient.). II. Universidade Federal de Uberlândia. Pós-

graduação em Engenharia Elétrica. III. Título.

Bibliotecários responsáveis pela estrutura de acordo com o AACR2:

Gizele Cristine Nunes do Couto - CRB6/2091

Nelson Marcos Ferreira - CRB6/3074

iv

GABRIEL AUGUSTO ROSA

Understanding and Predicting Interruptions Index of Medium Voltage Customers Using Fully

Connected Networks

Dissertation presented to the Faculty of

Electrical Engineering at the Federal

University of Uberlandia as a partial

requirement for obtaining the degree

Master of Science

Concentration area: Neural Networks

Uberlandia, Brazil, 2022

Examination Board:

Prof. Dr. Keiji Yamanaka – Advisor – (UFU)

Prof. Dr. Alexandre Cardoso – (UFU)

Prof. Dr. Alan Petrônio Pinheiro – (UFU)

Prof. Dr. Elder Vicente de Paulo Sobrinho – (UFTM)

10/05/2022 16:11 SEI/UFU - 3557220 - Ata de Defesa - Pós-Graduação

https://www.sei.ufu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=3994606&infra_siste… 1/2

UNIVERSIDADE FEDERAL DE UBERLÂNDIA
Coordenação do Programa de Pós-Graduação em Engenharia Elétrica

Av. João Naves de Ávila, 2121, Bloco 3N - Bairro Santa Mônica, Uberlândia-MG, CEP 38400-902
Telefone: (34) 3239-4707 - www.posgrad.feelt.ufu.br - copel@ufu.br

ATA DE DEFESA - PÓS-GRADUAÇÃO

Programa de
Pós-Graduação
em:

Engenharia Elétrica

Defesa de: Dissertação de Mestrado Acadêmico, 772, PPGEELT

Data: Cinco de maio de dois mil e
vinte e dois Hora de início: 09:30 Hora de

encerramento: 11:30

Matrícula do
Discente: 11922EEL018

Nome do
Discente: Gabriel Augusto Rosa

Título do
Trabalho:

Understanding and predic�ng interrup�ons index of medium voltage customers using fully
connected networks.

Área de
concentração: Processamento da informação

Linha de
pesquisa: Inteligência Ar�ficial

Projeto de
Pesquisa de
vinculação:

Coordenador do projeto: Keiji Yamanaka. Título do projeto: Estudo e Aplicações de Técnicas de
Inteligência Computacional. Agência financiadora:__ Número do processo na agência
financiadora: ___Vigência do projeto: 2010 - atual.

Reuniu-se por meio de videoconferência, a Banca Examinadora, designada pelo Colegiado do Programa
de Pós-graduação em Engenharia Elétrica, assim composta: Professores Doutores: Alexandre Cardoso -
FEELT/UFU; Alan Petrônio Pinheiro - FEELT/UFU; Elder Vicente de Paulo Sobrinho - UFTM; Keiji Yamanaka -
FEELT/UFU, orientador(a) do(a) candidato(a).

Iniciando os trabalhos o(a) presidente da mesa, Dr(a). Keiji Yamanaka, apresentou a Comissão
Examinadora e o candidato(a), agradeceu a presença do público, e concedeu ao Discente a palavra para a
exposição do seu trabalho. A duração da apresentação do Discente e o tempo de arguição e resposta
foram conforme as normas do Programa.

A seguir o senhor(a) presidente concedeu a palavra, pela ordem sucessivamente, aos(às)
examinadores(as), que passaram a arguir o(a) candidato(a). Ul�mada a arguição, que se desenvolveu
dentro dos termos regimentais, a Banca, em sessão secreta, atribuiu o resultado final, considerando o(a)
candidato(a):

Aprovado(a).

Esta defesa faz parte dos requisitos necessários à obtenção do �tulo de Mestre.

O competente diploma será expedido após cumprimento dos demais requisitos, conforme as normas do
Programa, a legislação per�nente e a regulamentação interna da UFU.

Nada mais havendo a tratar foram encerrados os trabalhos. Foi lavrada a presente ata que após lida e
achada conforme foi assinada pela Banca Examinadora.

10/05/2022 16:11 SEI/UFU - 3557220 - Ata de Defesa - Pós-Graduação

https://www.sei.ufu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=3994606&infra_siste… 2/2

Documento assinado eletronicamente por Elder Vicente de Paulo Sobrinho, Usuário Externo, em
05/05/2022, às 12:03, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do
Decreto nº 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Keiji Yamanaka, Professor(a) do Magistério Superior, em
05/05/2022, às 14:32, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do
Decreto nº 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Alan Petronio Pinheiro, Professor(a) do Magistério
Superior, em 07/05/2022, às 20:53, conforme horário oficial de Brasília, com fundamento no art. 6º,
§ 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Alexandre Cardoso, Professor(a) do Magistério Superior,
em 10/05/2022, às 14:45, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do
Decreto nº 8.539, de 8 de outubro de 2015.

A auten�cidade deste documento pode ser conferida no site
h�ps://www.sei.ufu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 3557220 e
o código CRC D88A5C73.

Referência: Processo nº 23117.029794/2022-03 SEI nº 3557220

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
https://www.sei.ufu.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

vii

This work is dedicated to my family and all electrical engineering department at Uberlandia

Federal University.

viii

viii

ACKNOWLEDGEMENTS

To my wife Luiza, for her love, companionship, and encouragement.

To my parents, João and Terezinha, and my brother Matheus, for the love, advice, and

encouragement they always offered me.

To my advisor Prof. Dr. Keiji Yamanaka, for his help, attention, and trust.

To my colleague Daniel Oliveira, for his support and companionship throughout the course.

To all the teachers and those who one day teach me and contributed to my development.

To the Postgraduate Program in Electrical Engineering, for making the work possible.

Professor Alan and my colleague Daniel will allow me to use the database and compare myself

in this research.

To all my friends, always with me.

Research financed by the ANEEL R&D project Nº 05160-1805 / 2018, between CEB and UFU,

and with partial support from CNPQ, process number 135168/2019-8.

ix

“Sometimes it is the people no one imagines anything of who do the things that no one can

imagine.” (Alan Turing)

x

ABSTRACT

The losses caused by the lack of electricity typically exceed the cost of the electricity itself.

Improving power quality is a way to reduce or avoid loss of production in the industry, prevent

fires or explosions, and minimize damages to industrial equipment. Therefore, finding

customers that probably will have interruptions in advance will generate value for both the

company and customers. The purpose of this study is to analyze data from units that consume

electricity using neural networks and decision trees, such as self-organizing maps, CHAID and

CART, and using fully connected neural networks to predict the interruption index for the next

year. The results reveal an important space for improvements such as the connection between

non-compliance of established indicators over time and specific points of electrical network

with problems. That way supports the concessionaries to manage their infrastructure to get a

better quality of the electric power network.

Keywords: Fully Connected Networks, Power Quality, Interruptions on Medium Voltages.

xi

LIST OF FIGURES

Figure 1 – Electric power system. ... 7

Figure 2 – Dimensional grid representation. ... 11

Figure 3 – Representation of CHAID and its multiply nodes. ... 13

Figure 4 – Representation of CART and its binary nodes. .. 13

Figure 5 – Representation of fully connected neural network. .. 15

Figure 6 – Architecture of Concept Proof. .. 20

Figure 7 – Representation of confusion matrix. .. 21

Figure 8 – Synthetic data. .. 23

Figure 9 – Average distance map for different numbers of epochs. .. 24

Figure 10 – Average distance map for different neighborhood sizes. 24

Figure 11 – Average distance map for different SOM dimensions. .. 25

Figure 12 – (a) Average distance map. (b) The variance between samples classified in each

neuron. .. 25

Figure 13 – (a) ENE_M and (b) DIC components map. .. 26

Figure 14 – Difference matrix among the delimited clusters. ... 27

Figure 15 – Types of customers, urban UB and non-urban NU, with higher frequencies in the

whole database and clusters 2 and 3. .. 27

Figure 16 – Most frequent activities in the whole database and superclusters 2 and 3. 28

Figure 17 – Masked municipalities with higher frequencies in the database and clusters 2 and

3. ... 29

Figure 18 – Relationship between DIC e ENE_M. ... 30

Figure 19 – Types of customers, urban UB and non-urban NU, with higher frequencies in

superclusters 1, 4, 5, and 6. .. 30

Figure 20 – Masked municipalities with higher frequencies in superclusters 1, 4, 5, and 6. .. 31

Figure 21 – Most frequent activities in superclusters 1, 4, 5, and 6. 31

Figure 22 – Rules of Classification - Decision Tree CHAID. ... 33

Figure 23 – Rules of Classification - Decision Tree CART. ... 34

Figure 24 – Correlation Matrix of numeric features. ... 35

Figure 25 – Baseline algorithm parameterization. ... 36

Figure 26 – Fully connected neural network algorithm parameterization. 37

xii

Figure 27 – Confusion matrix and plots of precision, loss, recall, and AUC on the training and

validation of baseline algorithm. .. 38

Figure 28 – Confusion matrix and plots of precision, loss, recall, and AUC on the training and

validation of fully connected neural network algorithm. ... 38

xiii

LIST OF TABLES

Table 1 – Results of baseline algorithm using different trainings (imbalanced, balanced per

weight class, and oversampling training) …………………………………………………… 39

Table 2 – Results of fully connected neural network algorithm using different trainings

(imbalanced, balanced per weight class and oversampling training) ………………………… 39

xiv

LIST OF ABBREVIATIONS AND ACRONYMS

1. ABBREVIATIONS:

AUC – Area Under the Curve

CAPEX - Capital Expenditure

CART - Classification and Regression

CHAID - Chi-square automatic interaction detection

CNNs - Convolutional Neural Networks

CO1 - Commercial

CO2 - Transport Services, Except Electric Traction

CO3 - Communications and Telecommunications Services

CO9 - Other Services and Other Activities

CP - Public consultation

DT – Decision Trees

FFNNs - Feedforward Perceptron Multi-Layer Neural Networks

FN – False Negative

FNNs - Fully Connected Neural networks

FP – False Positive

IN - Industrial

NU – Non-Urban

OPEX - Operational Expenditure

PP1 - Federal Public Power

PP2 - State or District Government

RE1 - Residential

RL – Reinforming Learning

RNNs - Recurrent Neural Networks

xv

RU1 - Rural Agriculture

RU1B - Rural Agriculture (water pumping service intended for irrigation activity)

RU5 - Agro-Industrial

RU6 - Public Service of Rural Irrigation

SOMs – Self Organizing Maps

SP1 - Electric Traction

SP2 - Water, Sewage and Sanitation

TN – True Negative

TP – True Positive

UB - Urban

2. ACRONYMS

ANEEL - Agência Nacional de Energia Elétrica

ABRADEE - Associação Brasileira de Distribuidores de Energia Elétrica

CNAE - National Classification of Economic Activities

CNPQ - Conselho Nacional de Desenvolvimento Científico e Tecnológico

BDGD - Base de Dados Geográfica da Distribuidora

IBGE - Instituto Brasileiro de Geografia e Estatística

SRD - Superintendência de Regulação dos Serviços de Distribuição

xvi

CONTENT

Chapter 1 – INTRODUCTION ... 1

1.1 Context .. 1

1.2 Justification ... 1

1.3 Objective ... 2

1.3.1 General Objective ... 2

1.3.2 Specific Objectives ... 2

1.4 Limitations, Conventions, and Scope ... 3

1.5 Chapter Organization .. 4

Chapter 2 – THEORETICAL FOUNDATION ... 6

2.1 Introduction ... 6

2.2 Importance of Power Quality for Medium Voltage Customers .. 6

2.3 How Artificial Intelligence models can help energy utilities in energy quality 8

2.4 Final Considerations ... 9

Chapter 3 – LITERATURA REVIEW ... 10

3.1 Kohonen's Self-Organizing Map .. 10

3.2 Decision Trees .. 11

3.2.1 CART ... 12

3.2.2 CHAID ... 12

3.3 Fully Connected Neural Networks.. 14

3.4 Tools Utilized ... 15

3.4.1 Python... 15

3.4.2 Pandas... 15

3.4.3 Pyspark ... 16

3.4.4 IBM SPSS .. 16

3.4.4 Tensor Flow/Keras ... 16

3.5 Final Considerations ... 16

Chapter 4 – MATERIALS AND METHODS .. 18

4.1 Data, Architecture of Concept Proof, and Implementation Strategies 19

4.5 Final Considerations ... 21

Chapter 5 – RESULTS ... 23

5.1 Clusters Formed by Self Organizing Maps ... 23

5.2 Clusters based on energy consumption, installed load, and duration of the individual

interruption .. 25

5.3 Feature extraction and selection – CART and CHAID .. 32

xvii

5.4 The baseline neural network implementation ... 36

5.5 The fully connected neural network implementation ... 36

5.6 Imbalanced, balanced per weight class, and oversampling training 37

Chapter 6 - CONCLUSION .. 40

6.1 Introduce ... 40

6.2 Main contributions .. 40

6.3 Future Work .. 40

PUBLICATIONS RELATED ... 42

BIBLIOGRAPHIC REFERENCES ... 43

APPENDICES A – Source Codes.. 49

1

Chapter 1

INTRODUCTION

1.1 Context

Power quality is a topic of high importance due to the high demand for electricity in

modern society and the impact it has on the production chain. Providing reliable electricity at

reasonable costs avoids economic losses, increases productivity, and enables industries and

agriculture to become competitive (Oseni & Pollitt, 2013; Horváth, 2014). Since power quality

is an indispensable requirement for the proper functioning of high-tech equipment in industries,

mitigating interruptions can prevent large economic losses to industrial consumers and improve

the functioning of electronic devices, since modern equipment are much more sensitive to

energy variations (Muhamad et al., 2017; Khalid & Dwivedi, 2011).

The term “power quality” has different concepts in electrical engineering. Some

references prefer to use terms like “power supply quality”, others like “voltage quality”. But,

despite the different concepts generated about the term, the fact is that electric power systems

must generate energy and deliver it continuously with an acceptable voltage to the final

consumer (Bollen, 2000; Bollen 2003).

Thus, conducting research related to the generation, transmission, and distribution of

electricity, as well as implementing innovations in the electricity sector, are important actions

to face challenges. These challenges include maintaining quality indexes, guaranteeing the

energy supply to essential activities, and maintaining industrial productivity.

1.2 Justification

This work is justifiable by its contribution for the literature related to the use of

government data of Brazilian electricity consumption with focus on predicting electricity

interruptions, especially for consumer units of medium voltage. We can also consider the

research relevant due to the proof of concept that previously identifies the consumer units that

will have interruptions, making it possible to create action plans that can help to avoid losses,

reduce the severity of damages caused by the lack of energy, improve the planning of

maintenance routines, improve the production chain as a whole, avoid fines for concessionaires,

2

increase circuit safety, increase the value perceived by the customer, in addition to providing

data to support the reduction of customer dissatisfaction.

We can also find justifications in document CP 038/19 by Technical Note No. 046/2019-

SRD in which according to ABRADEE (Brazilian Association of Electric Energy Distributors),

in its contribution to the regulation of energy supply, it clarifies that the quality indices of

Brazilian energy have been improving every year. However, non-compliance directly affects

the concessionaire, as it is necessary to compensate customers for the transgression of

individual continuity indicators, as well as directly affecting billing, as in some cases the

interruption can mean energy not supplied and leads to lawsuits by the harmed consumers.

More work that justifies the research was developed by Barros (2020), who obtained

access to a database available by ANEEL to create a project for a tool for managing OPEX and

CAPEX actions with an impact on the reduction of continuity and compensation indicators

(ANEEL Research and Development Project no ¯ 116/2018) interruptions caused by broken

networks or in poor conditions represented a considerable portion (56%) of the DIC indicator

(Individual Interruption Duration per Consumer Unit) in area networks, in consumers medium

voltage according to the same article. This reveals that investments in infrastructure are

necessary and identifying consumer units can support the prioritization of investment in the

replacement of assets. Since investments are necessary, finding these customers in advance also

helps to promote tariff balance as it will provide more data to work out the cost-benefit of these

investments.

1.3 Objective

1.3.1 General Objective

The general objective of this research is to analyze data from Brazilian electricity

distribution companies, to find patterns in customer consumption profiles, using Kohonen's

self-organizing map algorithm (SOM), to extract features using decision trees and to predict

interruptions of medium voltage using fully connected neural networks.

1.3.2 Specific Objectives

To achieve the objective established, some specific objectives were defined:

• Achieving the best topologies and efficient training for selected models;

• ensure precision for predictions;

3

• create a concept proof so that it can be developed by energy utilities;

• expand the academic view of the challenges of the power quality sector;

• reveal data related to problems of electric utilities/government concerning the profile of

consumer units.

1.4 Limitations, Conventions, and Scope

In order to achieve the objectives proposed in this research, it was necessary to limit its

scope and establish conventions. The main limitations are mentioned below:

• The classification of municipalities was performed based on the size of consumer units

of the municipalities and the sectors present in the economy.

• Other types of training could have been used, compared and brought more gains, for

example separating cases into old and new consumer units.

• It was not tested whether there is a deterministic component in the data.

Regarding the conventions adopted, it can be mentioned that:

• Assuming the 9.5 interruption index for FIC is reasonable for the Brazilian electricity

sector.

• The technique/method used did not matter once the resolution of the objectives provides

a contribution to the electricity sector. In this way, was agreed that SOM, Decision Trees

and Fully Connected Neural Networks techniques are the most suitable for solving the

problem.

• It is agreed that in this work the DEC/FEC indicators are associated with energy quality,

and that they are the most relevant from the utility's point of view.

• It is agreed that the initial parameters used for the construction of neural networks are

adequate for the first version of the algorithms, which would later be revealed by

applying the tunning on the algorithm of fully connected neural networks.

• It is agreed that the CNAE is suitable for analyzing the descriptions of economic

activities.

• The training methods imbalanced, balanced by weight class and oversampling are the

most appropriate techniques to deal with the evaluation of metrics in unbalanced sets.

• Convention that 80/20 is an adequate distribution ratio for training.

4

• It is agreed that the tuning performed by Keras Tunner provides adequate results for

neural network optimization.

• Precision, recall, and Area Under the Curve (AUC) are the best metrics for analyzing

training with unbalanced data.

1.5 Chapter Organization

This dissertation is divided into 6 chapters, as follows:

Chapter 1 establishes the subject of the research, presents the objectives intended to be

achieved with the work, which involves predicting continuity indices of electrical power

interruptions of medium voltage consumers through fully connected neural networks. It also

presents the challenges, which include ensuring the accuracy of predictions and how to make

the evaluation of results useful to the management of electric companies and the regulation of

the sector. Therefore, it guides on how this written work was structured to facilitate the whole

understanding.

Chapter 2 explains the importance of power quality for medium voltage consumers, in

addition to describing how Artificial Intelligence models can help power utilities in energy

quality, the works present in the literature related to the research topic, emphasize the difference

with the work developed. There is also a discussion of the results obtained by the main

references that guided the development of this study.

Chapter 3 specifies the algorithms used: SOM, CHAID, CART, and FNNs. It addresses

its mathematical formulations, describing the functioning, advantages, and particular aspects of

each machine learning model. Furthermore, the chapter lists the software tools that allowed the

development of artificial intelligence models.

Chapter 4 presents the methodology used to develop the algorithms for predicting

continuity indices, describing the pre-processing steps, training and testing sampling

techniques, and the extraction of attributes. In addition, the statistical parameters that will be

used to evaluate the results described in chapter 5 are described.

Chapter 5 explains in detail all the results achieved, dealing with the efficiency of each

proposed prediction model. The data are presented in a structured way in tables and graphs,

allowing the comparison from different perspectives of the particularities of each algorithm.

5

Chapter 6 presents the conclusion, the contributions made by this research, and

proposals for possible future related works.

The appendices contain the codes of collection, treatment, and the algorithms developed

for each model implemented in Python.

6

Chapter 2

THEORETICAL FOUNDATION

2.1 Introduction

 The energy supply process is a complex process, which involves different elements from

delivery to the final consumer. Considering that this work is limited to solving the power quality

problems of power interruptions of medium voltage customers, this chapter intends to deal with

the importance of power quality for these customers, and how Artificial Intelligence models

can help utility companies electrical energy in the delivery of the quality of the electrical energy

supplied.

2.2 Importance of Power Quality for Medium Voltage Customers

The quality of electrical energy is directly associated with the daily life of medium

voltage consumers. Several factors can impair the quality of medium voltage energy supply.

Since consumer units have different needs, existing problems in distribution can cause different

types of impacts on these consumers (Das et al., 2018). Thus, this section will be started by

defining what a medium voltage customer of an electrical company is, and in addition, will be

defined what an electrical system is and its responsibilities.

An electrical power system is formed by different elements, capable of bringing energy

to the final consumer. These elements are plants and stations, capable of generating electric

energy, high voltage lines, capable of transmitting electric energy, substations, capable of

distributing electric energy, and distribution networks, responsible for delivering electric

energy to the final consumer, which is technically called a consumer unit. In turn, distribution

networks can be distinguished by their consumption capacity, which is measured in volts, so

they are separated by voltages: medium voltage networks. This generally provides energy to

industrial and commercial consumers, and low voltage networks, which provide energy mostly

to residential consumers. Figure 01 below illustrates the electrical power system and its

elements:

7

Figure 1 – Electric power system.

Source: Blume, 2002.

While in industrial and commercial consumers, problems in distribution can affect

productivity, burn equipment and even cause explosions. In residential consumers, the lack of

energy can cause problems in domestic activities and cause damage to domestic equipment.

Thus, for both consumers, power quality is extremely important. This consumer requirement

reveals a primary responsibility of transmission networks: to deliver electrical energy through

the transmission network in a continuous manner, and with an acceptable voltage to the final

consumer. This responsibility is directly linked to two other factors: modernization and better

administration of distribution networks. These factors ensure the high quality of energy for end

consumers (Dashtdar et al., 2018).

Sannino, Svensson, and Larsson (2003) divide power quality disturbances into two

classes: the first, interruptions and voltage changes are caused by faults mainly in the power

system. In these cases, the system causes total or partial interruption of energy delivery. In the

second class, the phenomena are caused by the low quality of the current. In these cases, the

current often arrives unbalanced at the end consumer, but without interruptions, thus fluctuating

the quality delivered (Khalid et al., 2011). In both cases, despite the difference in the location

of the failure and the severity of the damage, both can cause harm to consumers.

For Petleshkov and Lozanov (2019), the main causes of interruption in energy supply

are successful auto-reclosing, weather conditions (falling logs and trees, storms, strong winds,

snow), and defects in electricity cables (Soares et al., 2014). Inherent in power distribution,

causes of reduced power quality are commonly recorded in the exact detection of the problem

through sophisticated testing equipment. Khalid and Dwivedi (2011), report some events that

can be indicators of power quality problems: pieces of equipment that deregulate at the same

8

time of day; short circuits that occur without overloading; equipment failures during storms;

stoppages in automated systems for no apparent reason; electronic systems failures or frequent

operations failures; systems that work in some places and not in others (Levi, 2005).

Since different approaches have been proposed to define, classify and demonstrate the

importance of the quality of energy supply, the next section aims to show how artificial

intelligence models can help utilities to improve the quality of energy supplied.

2.3 How Artificial Intelligence models can help energy utilities in energy

quality

Artificial Intelligence (AI) is a branch of computer science that proposes to develop

devices that simulate the human ability to reason, perceive, make decisions and solve problems.

AI has drawn a lot of attention due to the effective approximation it has had with human learning

and reasoning. Within this field, machine learning has gained the attention of the scientific

community, because of the possibility of combining with other science areas, through the

characterization of databases that have been used mainly for statistical purposes, especially in

the field of electrical engineering (Saninno et al., 2003).

To achieve the goal of electrical modernization, the electrical network must be also

worked intelligently, especially using AI. One way to work intelligently is to use statistical

models that provide behavior analysis, including predicting future behaviors. In this way

electric companies can benefit from these systems by making predictions of future events, to

avoid interruption problems in their supply and guarantee high-quality energy. These tools are

key elements, constantly analyzing the need for component updates and ensuring the integrity

of the electrical matrix (Hammond, 1997; Bravo-Rodriguez, 2020).

From proactive maintenance plans, electric companies took advantage of advantages

over reactive plans such as: avoiding fire situations, cascading failures, and emergency costs.

However, it is not straightforward to determine where limitations are located to ensure more

effective repair of vulnerable components. In this sense, several studies on the implementation

of smart grids have been developed and specialized. They act, for example, in the classification

of electrical distribution failures. However, the advances have been particular, although

characteristics between cities and electric companies are common, there are geographic

particularities such as climate, network topologies, and even standards and maintenance

policies regulated differently (Rudin et al., 2012). However, the location of failure points is

difficult to identify. Recently, neural networks have gained attention in several energy

9

applications and fault analysis is one of the most important. There are reports in the literature

of the use of artificial neural networks, to identify fault locations using different

implementations of neural networks.

Thus, the use of artificial intelligence combined with data-based strategies can prevent

unnecessary investments from being made and direct investments in the right way, which can

significantly improve the assertiveness of established indices. Furthermore, improving power

quality can increase customer satisfaction with the service, as not all customers have been

rewarded for the interruption of electricity supply (Ferreira et al., 2020; Ramos & Melo, 2010).

Regarding the literature related to this section, many works make use of neural networks

to apply artificial intelligence to face the challenges of electric companies. The neural networks

have been successfully applied to predict interruptions. Examples are the use of neural networks

to identify network fault section, fault location, and reliability worth analysis of distribution

systems (Dashtdar et al., 2018; Heidari et al., 2017). Both papers do not present a categorical

data analysis, only numeric variables are used for prediction, which is important data for

strategic planning and better translating operational problems. The papers of Farhoumandi et

al. (2021), Kumbhar et al. (2021), and Volosciuc & Dragosin (2015) discuss how neural

networks can be used to evaluate interruptions. In this paper, an analysis of the interruptions

presented about the network infrastructure is shown through Kohonen's self-organizing map

algorithm (SOM), CHAID, and CART. Furthermore, the fully connected networks are used to

exploit attributes commonly present in energy utility databases to predict interruptions indexes.

2.4 Final Considerations

In this chapter, the main reasons for using artificial intelligence methods to support

power quality problems in medium voltage consumers were discussed. In section 2.2, the

importance of electricity quality for medium voltage consumers was discussed, focusing on the

differentiation of these consumers by voltage, their respective problems and impacts. On the

other hand, section 2.3 presented the main artificial intelligence techniques and algorithms

currently used to help electric utilities face the challenges. This highlights the neural network

techniques that are the focus of this work.

In the next chapter, the theoretical aspects of each algorithm used in the research will

be addressed, including their mathematical and statistical formulations and the explanation of

the software and computational language used.

10

Chapter 3

LITERATURE REVIEW

3.1 Kohonen's Self-Organizing Map

There are several techniques for grouping data, such as K-Means, DBSCAN,

Hierarchical Cluster, and Grid-based grouping. For such an application, neural networks also

prove to be powerful for recognizing patterns and relationships between variables (Mingoti &

ima, 2006).

Kohonen's self-organizing maps are basically formed by two layers of neurons: an input

layer and a unit layer, called U. The neurons of the U layer are arranged in an architecture that

offers a notion of the neighborhood between the neurons (Ultsch, 1993). Considering

architecture of two dimensions, the neurons are distributed in a two-dimensional grid where all

input neurons are connected to all U layer neurons (Kohonen, 1990).

In this way, if an n-dimensional input of a vector of real numbers is presented to the

network, all neurons in the U layer compare their weight vectors and the neuron with greater

similarity receives the correspondence (Ghaseminezhad & Karami, 2011). In this way, all

neurons in a given neighborhood learn about the input vector and update their weights to

become more similar to the given input vector (Strecker & Uden, 2002). This process is

compared to a competition among the neurons, in which the most similar neuron, the winner,

and its neighborhood are adjusted to become closer to the input pattern.

The inputs are presented in a random sequence and through the repetition of this process

over several periods, the range of the neighborhood is changed so that a neuron initially has

many other neurons in its neighborhood, but at the end of this stage it has few or no neighbors

(Kohonen, 1990). After some training periods, the neurons can represent relations in the input

samples in one or two-dimensional space. Therefore, the SOM can reduce dimensionality,

allowing an easier way to analyze data. It is also possible to delimitate clusters observing the

distance between the neurons in the SOM, or data attributes depending on the application.

Figure 2 represents the feature map in a two-dimensional grid.

11

Figure 2 – Dimensional grid representation.

Source: Blume (2002).

 3.2 Decision Trees

Decision Trees is another special method for recognizing patterns and relationships

between variables. Decision trees are supervised learning methods, used for classification and

regression (Somvanshi et al. 2016). Based on divide-and-conquer strategies, decision trees

mimic the functioning of the human brain and are capable of solving complex problems. Given

a target variable, decision trees can infer rules from features. Its implementations exist in the

most different forms, differentiating them by the way of applying classification rules,

architecture, and complexity (Gregoriades et al., 2021). Strongly used for recommendation

algorithms, decision trees are one of the most used classification techniques for their

advantages, which are: could be an easier interpretation, which means that it is an explanatory

model and in computational terms a very efficient one. However, from different perspectives,

decision trees have some disadvantages such as compromised processing time when there are

many variables and the fact of working with preferences of hypotheses over others because the

bias is inductive (Rakhra, 2021).

For understanding the operation of decision trees, DTs divide the data sets into subsets

where at each node they are established by the rules defined in the branches, these divisions use

different metrics such as information gain or Gini impurity indices (Podgorelec et al., 2013).

Unlike black-box methods, DTs provide visibility into the rules and thus explains the rules used

12

for prediction. Through representation and rules, it is possible to identify which predictor

variables have more strength to better explain the model. In this way, supporting not only data

scientists but also decision-makers (Breiman, 2017).

Other concepts involved are: Impurity functions, which are the criteria by which the

model will split the data and merge potential tree nodes. The importance of variables is that the

scale of the explanatory power of predictor variables. Decision trees use the importance of

variables to reduce the relative error and include the variables that will best explain the model.

That way all variables with zero importance are excluded. Stopping criteria are defined for

when none of the nodes can be subdivided, or when a certain depth is reached. The predictive

strength, which is used to avoid overfitting, which is the excessive fit of the data, is calculated

by the contribution of variance for each leaf node (Rokach, & Maimon, 2005).

As mentioned in the first paragraph, there are different implementations of decision

trees, which can be cited mainly such as ID3, C4.5, J4.8, C5.0, CART, Random Forest. Sections

3.2.1 and 3.2.2 dealt specifically with the CHAID and CART algorithms, which were used by

this work to understand the problem.

3.2.1 CART

Classification and Regression Trees or CART is a type of Decision Tree algorithm used

to solve predictive classification problems. This is one of the most classic DT algorithms, it is

based on the GINI impurity measure as a separation criterion and creates a binary representation

of the created rules. We can define GINI in a simplified way as a measure by which the

probability of misclassification of a new instance of a random variable is calculated (Singh &

Gupta, 2014).

The CART algorithm works as follows: First, the best division is found for each

variable, for each division the criterion is to maximize the separation measure. The result is a

set that contains the best divisions. Once the best node split has been found. It is necessary to

find between the divisions of the first step, the one that maximizes the separation criterion.

Finally, the nodes are split using the best split made in the previous step, so the steps are

repeated iteratively until the stopping criterion is satisfied (Rutkowski et al., 2014).

3.2.2 CHAID

CHAID, or Chi-squared Automatic Interaction Detection, is another decision tree

variation that uses chi-squared statistics to define branch breaks at nodes. One of the first steps

13

of this algorithm is to verify if the relationships between the variables are statistically significant

through the chi-square test of independence. Subsequently, if an entry has more than two

categories, they will be compared and if they do not show significant differences they will be

grouped in the same node. This is done recursively, and the process ends when all categories

have been tested. For nominal variables, any category can be joined into a single node. For

ordinal variables, only continuous categories can be grouped into a single node. The model has

the disadvantage of fully examining all clustering possibilities which is costly in terms of

processing time. However, it is a very efficient model and because it uses the chi-square

method, it provides a good extraction of variables (Milanović & Stamenković, 2016;

Baizyldayeva et al., 2013; Hammann & Drewe, 2012; Safara et al., 2020). Figures 3 and 4

following show the difference between the architecture types and their branch types in the

illustrations.

Figure 3 – Representation of CHAID and its multiply nodes.

Source: The author.

Figure 4 – Representation of CART and its binary nodes.

Source: The author.

14

3.3 Fully Connected Neural Networks

Within the universe of artificial intelligence, neural networks research, along with its

advances, has gained prominence in several fields and has brought significant contributions.

Neural Networks can be understood as a method of optimizing processing time in several

computational processes, as well as improving results. It is a hierarchical method and abstract

analysis of layers, but even so, it can be applied in several situations of real-life as image

processing, medicine, biometrics, among others (Vargas et al., 2017).

Artificial neural networks stand out for their ability to address complex nonlinear

relationships and working with multiple layers. These characteristics allow not needing any

additional training data in some cases, being able to be applied in different types of forecasts

and achieving good accuracy. Although there are disadvantages in using them, such as being a

black-box method, and being difficult to interpret the results, they are quite useful in electrical

engineering. Its application can range from a complete power supply process, from the detection

of network failures to the analysis of the operations of power systems (Kumbhar et al., 2021).

A relevant work and correlated with this work in the literature, with the use of artificial neural

networks to identify fault sites, is that we can mention the work of Adewole, Tzoneva, and

Behardien (2016), who proposed a hybrid method that uses indices in pre-processing stages.

The results showed an excellent performance in detecting different types of faults and origins

(Adewole et al., 2016).

Analogously other methods, have a wide variety of types of neural networks, such as

Recurrent Neural Networks (RNNs), applied in speech recognition and natural language

translation; Convolutional Neural Networks (CNNs), used for image recognition; Feedforward

Perceptron Multi-Layer Neural Networks (FFNNs) used for classification, and the Fully

Connected Neural networks (FNNs), used for detection and prediction, which this work seeks

to deepen and implement. The main difference between Fully Connected layers and other neural

networks are those layers where all the inputs from one layer are connected to every activation

unit of the next layer. An example of Fully Connected Neural Network can be visualized in

Figure 5 (White, 1989; Bhamare & Suryawanshi, 2018; Faris et al., 2016).

15

Figure 5 – Representation of fully connected neural network.

Source: The author.

Fully connected neural networks were chosen because they are a model capable of

reaching high precisions and dealing better with unbalanced data than other techniques such as

logistic regression, random forest, ag bosting, etc., and also better than other neural networks.

A deeper analysis of the fully connected neural networks parameters is presented in the results

section, which will illustrate how to use fully connected neural networks to predict

interruptions.

 3.4 Tools Utilized

3.4.1 Python

The algorithm was implemented in the Python language. Among the benefits that justify

choosing such a language, there is the availability of a wide range of libraries, ease of testing,

and the parallel processing that some of its libraries offer. Python was created to organize

programming patterns, to be able to manipulate objects, and can be very useful for working

with data because it has standard and comprehensive libraries (Yarlagadda, 2018).

3.4.2 Pandas

The Python Pandas library was necessary to perform the data crossing and

manipulations of the time series of the data of the concessionaires used in the research.

Integrated per Python, this library allows an excellent integration of data preparation

16

functionalities for artificial intelligence, mainly due to the simple syntax that converts

operations on dataframes into SQL queries. Despite being a less robust tool, the ease of

implementation can be very useful at times (Hagedorn et al., 2021).

3.4.3 Pyspark

To support the step of data processing, considering that the database has a high number

of records, parallel processing techniques were used, and proper data structure to reach the best

precision when modeling the problem using neural networks to specify the libraries for parallel

processing, the library used was Pyspark. The major benefit of this library is working with large

volumes of data by native libraries with large community support and also providing great

availability of data handling features (Stančin & Jović, 2019).

3.4.4 IBM SPSS

For initial analysis and feature extraction, was applied IBM SPSS. It was chosen because

it is statistical software, that allows performing descriptive analysis of variables through a visual

interface, using advanced statistical procedures it is possible to have high precision to make

quality decisions. Therefore, the use of this statistical software is useful to interpret the outputs,

facilitating the appropriate formulations and interesting research questions (Fávero & Belfiore,

2017).

3.4.4 Tensor Flow/Keras

For training and evaluating the results, the libraries Tensor Flow and Keras were chosen.

They are a high-level neural networks API, integrated by the Python language, which allows

very fluid experimentation. Supported by strong documentation, it is possible to assemble quite

functional neural network algorithms, whether from small or large datasets (Arnold, 2017).

3.5 Final Considerations

This chapter was intended to address the theoretical and mathematical aspects of the

algorithms used in this research. In addition, it was about the usage of computational tools for

the elaboration of the proposed models.

In section 3.1, the theoretical aspects of the self-organizing maps algorithm were

discussed, detailing its mathematical aspects and how it works.

17

Section 3.2 was intended to detail the operation of decision tree algorithms, especially

introducing the concepts of CHAID and CART decision tree derivations used in the work.

In section 3.3, the theoretical concepts of fully connected neural networks were

discussed, informing their mathematical aspects, advantages, and disadvantages.

Section 3.4 addressed the computational tools used in this work, discussing the python

language and the libraries used to implement the algorithms mentioned in the chapter.

In the next chapter, the methodology used in the research will be discussed, presenting

the database used, processing steps, and methods for evaluating the algorithms.

18

Chapter 4

MATERIALS AND METHODS

From initial descriptive analyses, a hypothesis was formulated regarding possible

problems related to energy quality faced by customers. To confirm this hypothesis, a cluster

analysis was carried out, to understand the profile of these customers and the main existing

challenges. The confirmation of the hypothesis by the analysis enabled the development of an

artificial intelligence model that could find in advance the customers who will present

continuity indices above those stipulated by Aneel.

The other steps in the implementation of the solution were: previous data analysis with

descriptive statistics, data normalization or standardization, removal of outliers, application and

adaptation of the SOM algorithm from Vettigli (2021), delimitation of clusters to analyze, and

evaluation of the centroids and the data samples into the clusters. The steps followed for the

creation of the solution were: data preparation, extract features using decision trees (CHAID,

based on Chi-Square, and CART, based on feature importance), exploratory data analysis, data

normalization or standardization, application, and adaptation of the neural network algorithm

(fully connected with oversampling and balanced per class).

Additionally, to enable the objectives to be achieved satisfactorily, adjustments and

analysis of the parameters were made, allowing the refinement of the results. Data processing

was a challenging step because the database has a high number of records, which required the

use of parallel processing techniques, as well as an adequate matrix data structure to compute

centroids efficiently. To support the step of data processing, considering that the database has

a high number of records, parallel processing techniques were used, and proper data structure

to reach the best precision when modeling the problem using neural networks. For initial

analysis and feature extraction was applied IBM SPSS. To build the implementation the Python

language was chosen. This decision was made because such language offers a wide range of

libraries, ease of testing, and can process data in parallel.

19

4.1 Data, Architecture of Concept Proof, and Implementation Strategies

During the implementation of the algorithm, one of the main challenges faced was the

selection of variables and the proper processing of information. A prototype was created using

database tables of medium voltage units to achieve the objectives. The data did not exist ready

to be consumed, the data was scattered in different tables and some essential information was

not available, requiring a web scraping on the ANEEL website to obtain the information. In

this way, information query scripts, cleaning, treatment, data crossing, standardization of

variable names, construction of variables, data standardization, and exploratory analysis were

necessary to create the prototype that could provide sufficient data for the research objectives.

The architecture of the concept proof is shown on Figure 6. The data sent by

concessionaries for ANEEL are stored on the database, named BDGD, which is a data

representation of the Brazilian electrical system. Despite having some registration problems, it

is the source used by ANEEL for the application of fines and price stipulation (ANEEL, 2021).

Despite its vulnerabilities, BDGD is one of the main sources of energy supply analysis, even

though it does not have all the relevant information involved in energy supply (Tronchoni et

al., 2010). Due to regulatory resolutions, Brazilian concessionaires are required to submit their

information for audit (ANEEL, 2021). Access to the database was provided by the Research

and Development consortium, however it can be requested by anyone for analysis by requesting

the regulatory agency.

These data were available in different tables separated by Medium Voltage (UCMT)

and Low Voltage (UCBT) and on tables that describes the description of circuits (CTMT),

substations (SUN), substation transformer unit (UNTRS), conjunto (CONJ), that could be

interpreted as a set of consumer units, and other common elements of network distribution. The

data was enriched with CNAE-Subclasses (National Classification of Economic Activities,

version 2.3) and join through by python pipelines, the series of data available is of the years of

2017, 2018 and 2019. The data provided by BDGD, have all existing distributors in Brazil.

Thus, to create the concept proof, two extractions were used, the first covering a complete state

of the Brazilian Southeast region, having 14000 customers and 42 variables. Used to understand

the context through the Self Organizing Maps algorithm, and a second clipping that also

involves a complete state of the western region with 910 medium voltage customers and 130

variables.

20

Figure 6 – Architecture of Concept Proof.

Source: The author.

The variable target was created based on the interruption indicators, DIC and FIC, above

the established by the National Electric Energy Agency of Brazil (ANEEL) for the next year.

The problem may be classified as mild imbalanced, whose proportion of minority class cases

positives (interruption indexes over than limits) is 23.41%.

Many implementations of neural networks were tested, as well as own authorship as

adapted from available implementations. Fully connected neural networks were chosen because

they are a model capable of reaching high precisions and dealing better with unbalanced data.

The first implementation was built as a baseline, just using a single layer and the final

implementation has two layers fully connected. To understand the best distribution for the

dataset sample, both implementations were trained with imbalanced class, oversampling, and

class weights. The ratio split of training and testing sets was 80/20.

Moreover, parameters such as number of neurons, number of epochs, and learning rate,

were carefully adjusted based on the results of baseline implementation. The optimal

parameters to tune the neural network was found using Keras Tuner Library.

21

To evaluate the results, a confusion matrix was obtained considering the number of

correct and incorrect predictions, according to the following definitions: False Positive (FP) as

the prediction of an interruption above the index when actually there was not an interruption

above the reference; False Negative (FN), prediction of no interruption above the index when

actually there was an interruption above the reference; True Positive (TP), prediction of an

interruption above the index when actually there was an interruption above the reference; True

Negative (TN), prediction of no interruption above the index when actually, in fact, there was

not an interruption above the reference. The confusion matrix used in this section of results is

represented by Figure 7:

Figure 7 – Representation of confusion matrix.

Source: The author.

Considering that the target variable is an imbalanced class, the metrics used should be

focused on reducing the false positives and false negatives, therefore, precision, recall, and Area

Under the Curve (AUC) were obtained from the confusion matrix.

For understanding, if the training was working, the plots of the model's precision, loss,

recall, and AUC on the training and validation set were analyzed to verify if the results were

stabilizing and the model learning correctly.

 4.5 Final Considerations

This chapter describes the methods adopted for analyzing data from medium voltage

consumers and for formulating the artificial intelligence model, capable of predicting the

interruption rates for each consumer unit.

True Negative

Predicted:
no interruption above index

Actual:
no interruption above index

False Positive

Predicted:
interruption above index

Actual:
no interruption above index

False Negative

Predicted:
no interruption above index

Actual:
Interruption above index

True Positive

Predicted:
interruption above index

Actual:
Interruption above index

22

In section 4.1, were presented the database, the techniques used to generate the classes,

the form of splitting the sets of training and test, extraction of attributes, which will be used as

inputs for the artificial intelligence models and the explanation of the methods used for

evaluating realized forecasts.

In the next chapter, the results obtained and the comparison of the efficiency of the

proposed algorithms will be shown.

23

Chapter 5

RESULTS

5.1 Clusters Formed by Self Organizing Maps

Among the possible analyzes considering the available databases, which have tables of

various elements of the electrical network, the SOM was used to group data from medium

voltage consumer units. As presented on the section 4.1, scenario 1 was used to evaluate the

clusters. With 14000 samples, the variables utilized were the average consumption in one year

(ENE_M), installed load (CAR_INST), and duration of individual interruption per consumer

unit (DIC). These variables were chosen because the algorithm works only with numerical

variables, which are the variables that generated the best results interpretations.

To understand the effect of each SOM parameter, synthetic data with two numerical

attributes were used in such a way that they could be visually observed, as shown in Figure 8.

Figure 8 – Synthetic data.

Source: The author.

It is expected that a tuned SOM will be able to separate such data since the sets can be

visually separated. Among the parameters analyzed, the following stand out: the number of

training seasons, the size of the neighborhood, and the dimensions of SOM.

As shown in Figure 9, where blue indicates clusters with a smaller average distance to

their neighbors, and red indicates distant clusters, the number of epochs should not be too small,

24

as the data is condensed only in a part of SOM. On the other hand, it cannot be too big, as the

data spread in such a way that the clusters mix visually, in addition to increasing the

computational cost.

Figure 9 – Average distance map for different numbers of epochs.

Source: The author.

Considering a Gaussian neighborhood function, the effect of a neuron on the

neighborhood can be adjusted with the standard deviation parameter σ. As shown in Figure 10,

σ must not be too small, since this way the data is condensed only in one part of the SOM. On

the other hand, it cannot be too big, as the data spread in such a way that the clusters are visually

confused with a single large cluster.

Similarly, regarding the number of neurons, there is also an ideal range, as shown in

Figure 11. Also, the increase in SOM means an increase in computational cost and execution

time.

Figure 10 – Average distance map for different neighborhood sizes.

Source: The author.

(a) 10 epochs (b) 150 epochs (c) 10000 epochs

(a) 𝜎 = 1 (b) 𝜎 = 3 (c) 𝜎 = 5

25

Figure 11 – Average distance map for different SOM dimensions.

Source: The author.

5.2 Clusters based on energy consumption, installed load, and duration of

the individual interruption

With around 14000 samples, and with the attributes of average consumption (ENE_M),

installed load (CAR_INST) and DIC, the clusters that are shown in Figure 12 were obtained.

Superclusters are seen in blue on the map of average distances, indicating neurons close

together.

Figure 12 – (a) Average distance map. (b) The variance between samples classified in each neuron.

Source: The author.

(a) 5x5 (b) 15x15 (c) 50x50

(a) (b)

26

For a choice of superclusters, that is, groups of neurons for analysis, it is interesting to

use maps of the components used by SOM to group the data, aiming to understand what led to

the formation of each cluster and its characteristics. Figure 13 shows the maps of the average

monthly consumption components ENE_M and DIC, which reveal another aspect: the

formation of smaller clusters with common component values within the larger clusters.

Figure 13 – (a) ENE_M and (b) DIC components map.

Source: The author.

To verify the difference between the chosen superclusters, a matrix, shown in Figure

14, was used, each coordinate shows how different the two groups are. Group 1 is the most

different, as the first row and the first column of the matrix have more red tones, indicating a

greater difference for the other superclusters. Cluster 4 is less distant from cluster 1, as it has a

lighter shade of red. This confirms what is seen in SOM's topology.

Comparing clusters 2 and 3, we can see from the map of the DIC component, Figure 13,

that despite being close in the SOM topology, these two groups have different DICs: Group 2

has a good index, while group 3 has a higher index, that is worse, with more power outages.

(a) (b)

27

Figure 14 – Difference matrix among the delimited clusters.

Source: The author.

Regarding the classes of consumers present in each supercluster, group 2 presents a

predominance of industrial and commercial units, while group 3 presents a predominance of

rural and industrial units installed in non-urban areas, as shown in Figure 15. This figure also

shows the most frequent categories in the entire database, to enable the understanding of the

patterns of the groups analyzed in relation to the whole.

Figure 15 – Types of customers, urban UB and non-urban NU, with higher frequencies in the whole database

and clusters 2 and 3.

Source: The author

28

Figure 16 shows the most frequent activities performed by these groups obtained using CNAE

data from IBGE - Instituto Brasileiro de Geografia e Estatística.

Figure 16 – Most frequent activities in the whole database and superclusters 2 and 3.

Source: The author.

To analyze the clusters considering the cities with the largest number of consumer units

in each cluster, a description of each municipality is useful. Such descriptions are presented

below

• Municipality A is an extremely urbanized municipality with a mild climate, economic

and political center.

• Municipality B is an extremely urbanized municipality.

• Municipality C is an urbanized municipality.

• Municipality D is a medium-sized and hot climate municipality with an economy based

on mining and agriculture.

• Municipality E is a small rural municipality, with great economic importance.

• Municipality F is an urbanized municipality.

• Municipality G is a medium-sized municipality with a mild climate and an economy

based on agriculture.

• Municipality H is an urbanized municipality.

• Municipality I is a small rural municipality.

• Municipality J is a medium-sized municipality with an economy based on mining,

industry, and agriculture.

• Municipality K is a medium-sized municipality with a hot climate and an economy

based on agriculture.

• Municipality L is a small rural municipality.

29

• Municipality M is a small rural municipality.

• Municipality N is a small rural municipality.

• Municipality O is a medium-sized municipality with a hot climate and an economy

based on agriculture and mining.

As shown in Figure 17, cluster 2 follows the trend of the base with large urban

municipalities, A, B, and C, being more frequent. Cluster 3, on the other hand, presents small

towns more frequently, D and E, whose economy is based on agriculture or mining. The

municipality E, the second most frequent in group 3, is a big exporter of citrus products. This

leads us to a situation in need of improvement since agricultural activities need good

infrastructure regarding electricity. For example, to avoid losses in production due to lack of

refrigeration or irrigation.

Figure 17 – Masked municipalities with higher frequencies in the database and clusters 2 and 3.

Source: The author.

To analyze subgroups 1, 4, 5, and 6, it is interesting to check the relationship between

DIC and the average consumption (ENE_M) variables in these clusters. A high DIC means

more time without power, which is a situation of operational difficulty for the concessionaire

and poor service for the consumer unit. If the DIC indicator is below the levels established by

law, the concessionaires pay fines. Higher consumption is related to the greater economic

importance of the consumer unit for the concessionaire. These relationships are illustrated in

Figure 18.

30

Figure 18 – Relationship between DIC e ENE_M.

Source: The author.

Thus, groups 4 and 6 have a worse DIC indicator, which shows scope for improvement.

On the other hand, 1 and 4 represent economically important consumers.

Figure 19 shows the most frequent groups of consumer units in each cluster. Again, the

clusters with the worst indicators have a rural predominance, shown in the graphs on the right.

Group 5 has a commercial predominance and presents the best DIC indicators.

Figure 19 – Types of customers, urban UB and non-urban NU, with higher frequencies in superclusters 1, 4, 5,

and 6.

Source: The author.

Regarding the municipalities present in each group, smaller municipalities are presented

in the two clusters with the worst DIC indicators, clusters 4 and 6, as shown in Figure 18.

However, there are also large municipalities with consumer units with bad DIC, such as the

case of municipalities B and H, the most frequent municipalities in cluster 4, the second cluster

in Figure 20.

Unsatisfied
customer

ENE_M

DIC

4

1

5

6
Economically

Important
Economically

less significant

Satisfied
customer

Fines...

31

Figure 20 – Masked municipalities with higher frequencies in superclusters 1, 4, 5, and 6.

Source: The author.

As regards the activities carried out by the clusters' units, agriculture activities

predominate in cluster 6, as shown in Figure 21. Also, there are water treatment companies in

clusters 1, 4, and 5. It is interesting to highlight that this type of service is essential and that

these units are in urban areas, indicating another scope for improvement.

Figure 21 – Most frequent activities in superclusters 1, 4, 5, and 6.

Source: The author.

32

The presented SOM was shown to be capable of grouping the electrical consumers,

reflecting the relations between the variables, such as DIC and consumption category (rural,

industrial, commercial). Patterns were found according to the objectives of the work, such as,

the understanding of the energy consumption throughout the year of some clusters.

In addition, the hypothesis raised in the methodology that there were power interruption

problems was confirmed in the initial analysis. Figures 19, 20, and 21 shows the formation of

clusters of BDGD customers with low and very low DIC (Electricity Continuity Index –

Duration of interruptions). Through these results obtained by the cluster analysis of the SOM

neural network, it is possible to see that the power quality indicators. More precisely related to

interruptions, had a marked impact on cluster formation and revealed an existing problem in

the power supply process. As mentioned in section 4.1, about data sources considerations, the

interruption indexes in over than limits is 23.41%. This data combined with the results of

clusters formed by SOM, supports the creation of the target variable described in the

implementation strategies section, validate the reason why it is possible to understand the

patterns of this problem, and allows us to conclude that the main objective of this research is

feasible to be solved through artificial intelligence models. Therefore, in the following sections,

these models will be presented and discussed.

5.3 Feature extraction and selection – CART and CHAID

The feature extraction and selection were implemented by the analysis of scenario 2, as

presented on section 4.1, whose initial analysis starts with 130 brute variables and 852

transformed. Using variables selection of two models of decisions tree (CHAID and CART),

their numbers were reduced to 8 brute variables and 236 transformed. The results of the models

are shown in Figure 22 and Figure 23.

33

Figure 22 – Rules of Classification - Decision Tree CHAID.

Source: The author.

A decision tree CHAID based on chi-square, reveals the five best nodes that visually

explain the relationship between the variables and the interruptions. To understand this, the tree

shows that the greater the frequency of interruptions, the greater the chance of interruptions

above the limit stipulated by the regulatory agency in the next year, especially in specific

neighborhoods. In contrast, for certain customers, the lower the number of interruptions in the

current period and the higher the energy consumption in the fifth month, the lower the chance

of interruptions outside the norm in the subsequent year.

34

Figure 23 – Rules of Classification - Decision Tree CART.

Source: The author.

A decision tree CART builds its rules based on feature importance, generating binary

nodes which have shown that rural networks have more chance of interruptions than urban

networks, especially in specific circuits. However, when urban networks have more than 9.5

interruptions, they probably will have in the next year interruption indexes outside the norm in

the subsequent year.

35

The features selected for the training and validation of neural networks were:

• ENE_02: measured active energy of the 2nd period (kWh)

• ENE_05: measured active energy of the 5th period (kWh)

• DIC: the annual duration values (in hours) of the unit's individual interruptions in the

year prior to the target

• FIC: the annual frequency values of the unit's individual interruptions in the year prior

to the target

• POT_F02: apparent rated power with forced ventilation 02 (MVA)

• NOM: substation name

• CLAS_SUB: description of class and subclass (Commercial, Rural, Public Service,

Commerce)

• CTMT: Medium Voltage Circuit Description

• UNI_TR_S: Substation Transformer Unit Description

The matrix of correlations of the variables is shown in Figure 24:

Figure 24 – Correlation Matrix of numeric features.

Source: The author.

Analyzing the matrix of correlations, it is possible to deduce that the frequency and

duration are much correlated. A strong correlation between ENE_02 and ENE_05 was expected

because of the consumption that doesn’t have significant variance over the months in the same

year. None of the variables have a direct correlation with the target variable.

36

5.4 The baseline neural network implementation

The simple implementation, called baseline, was constructed with one input layer that

had 16 neurons and activation ReLU activation. A dropout layer has a rate of 0.5., an output

layer with 1 neuron and sigmoid activation. The optimizer was implemented with Adam

algorithm, using a learning rate of 0.001 and the loss function used was binary crossentropy, as

shown in Figure 25.

Figure 25 – Baseline algorithm parameterization.

Source: The author.

5.5 The fully connected neural network implementation

The implementation developed from the baseline was created with two layers fully

connected. The first input layer had 256 neurons and ReLU activation. A dropout layer with a

rate of 0.5 was applied, and a second input layer was parameterized with 75 neurons and ReLU

activation, suggested by the process of tuning. After this was configured an output layer with 1

neuron and sigmoid activation. The optimizer was implemented with Adam algorithm with a

learning rate of 0.001 and the loss function used was binary crossentropy, as shown in Figure

26.

37

Figure 26 – Fully connected neural network algorithm parameterization.

Source: The author.

5.6 Imbalanced, balanced per weight class, and oversampling training

The baseline implementation was trained with different samples (imbalanced, balanced

per weight class, and oversampling) after 100 epochs, the best results were generated by the

samples of oversampling with 0.62 of precision, 0.86 of recall, 0.72 of f1-score, and 0.91 of

AUC. These results revealed that the problem of interruptions can be predicted, and precision

metrics improved. To understand if it was possible to achieve better precision and recall, more

layers and neurons were added. Although, after 1000 epochs the precision increased to 0.76

with the fully connected neural network, the recall decreased to 0.76, the f1-score increased to

0.76 and the AUC got very close at 0.90 with a sample generated by oversampling. The result

with the fully connected neural network can be considered better due to the f1 score, which is

a harmonic mean of precision and recall, that had better results compared to the baseline with

the same type of sample. The plots and metrics of training can be visualized in Figures 27, 28,

and Tables 1, 2.

38

Figure 27 – Confusion matrix and plots of precision, loss, recall, and AUC on the training and validation of

baseline algorithm.

Source: The author.

Figure 28 – Confusion matrix and plots of precision, loss, recall, and AUC on the training and validation of fully

connected neural network algorithm.

Source: The author.

39

Table Table 1: Results of baseline algorithm using different trainings (imbalanced, balanced per weight class, and

oversampling training).

Imbalanced Balanced per Weight Class Oversampling

precision: 0.45 precision: 0.45 precision: 0.62

recall: 0.75 recall: 0.75 recall: 0.86

f1 score: 0.56 f1 score: 0.56 f1 score: 0.72

auc: 0.85 auc: 0.91 auc: 0.90

 Source: The author.

Table 2: Results of fully connected neural network algorithm using different trainings

(imbalanced, balanced per weight class and oversampling training)

Imbalanced Balanced per Weight Class Oversampling

precision: 0.83 precision: 0.79 precision: 0.76

recall: 0.56 recall: 0.73 recall: 0.76

f1 score: 0.66 f1 score: 0.75 f1 score: 0,76

auc: 0.89 auc: 0.89 auc: 0.90

Source: The author.

40

Chapter 6

CONCLUSION

6.1 Introduce

Techniques of data analyzing were used in a real database. The detailed examples with

synthetic data contribute to a better understanding of the SOM parameters tuning. The presented

neural network was shown to be capable of predicting exceeded interruption indexes of medium

voltage electrical consumers. Based on the available variables, the result of the proof of concept

is interesting. Even with the uncertainties that are inherent to the problem of power outages, the

model manages to explain the interruptions, that is, the continuity indices, for the following

year. In addition to showing the factors that best explain the target variable studied, it provides

a better prediction than basic (random) algorithms.

6.2 Main contributions

The main contributions of this work are related to the success in demonstrating how to

create a proof of concept capable of profiling interruptions and explaining interruptions simply.

The data and facts obtained, support the achievement of the main purpose objective of this

paper, such as accuracy of up to 76% to predict the interruptions, which can be considered a

good result for the metric.

In addition, the data allowed mining the Geographic Databases of Distributors and

creating a proof of concept capable of profiling outages and explaining outages, even with the

uncertainties that are inherent to the problem of power outages, the model manages to explain

the interruptions. That is, the continuity indices, for the following year. As well as subsidizing

academics for future work and correlated research, reveals existing problems in consumer units

so that concessionaires and regulatory bodies to better fulfill their responsibilities.

 6.3 Future Work

As for future work, it can be mentioned the implementation of improved SOMs with the

treatment of categorical variables. It is possible to estimate loads installed in residential

consumer units, using a Brazilian possession and consumption habits research base, based on

41

electrical equipment data from consumer units. Lastly is possible to extend the implementation

to low voltage consumers, since the same variables exist for this type of consumer unit, it is

only necessary to replicate the model and analyze the results.

42

PUBLICATIONS RELATED

The publications related to this dissertation were:

Rosa, G. A., Oliveira Ferreira, D. D., Pinheiro, A. P., & Yamanaka, K. (2021,

September). Analysis of Electricity Customer Clusters Using Self-organizing Maps. In:

Proceedings of SAI Intelligent Systems Conference (pp. 312-325). Springer, Cham.

Rosa, G. A., Oliveira Ferreira, D. D., Pinheiro, A. P., & Yamanaka, K. (2022,

September). Predicting Interruptions of Medium Voltage Customers Using Fully Connected

Networks. In: Proceedings of SAI Intelligent Systems Conference (In process of publication).

Springer, Cham.

43

BIBLIOGRAPHIC REFERENCES

ABELLÁN, J.; LÓPEZ, G.; DE OÑA, J. Analysis of traffic accident severity using

decision rules via decision trees. Expert Systems with Applications, v. 40, n. 15, p. 6047-

6054, 2013. https://doi.org/10.1016/j.eswa.2013.05.027

ABRADEE - ASSOCIAÇÃO BRASILEIRA DE DISTRIBUIDORES DE ENERGIA

ELÉTRICA. CP 038/19 by Technical Note No. 046/2019-SRD. Available

at: https://www.aneel.gov.br/consultas-publicas-abradee. Accessed in: out. 2021.

ADEWOLE, A. C.; TZONEVA, R.; BEHARDIEN, S. Distribution network fault

section identification and fault location using wavelet entropy and neural networks. Applied

soft computing, v. 46, p. 296-306, 2016. https://doi.org/10.1016/j.asoc.2016.05.013

ANEEL. Agência Nacional de Energia Elétrica. Resolução Normativa nº 937, de 15

de junho de 2021. Aprova a Revisão 15 do Módulo 6 e 3 do Módulo 10, ambos dos

Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional - Prodist.

Diário Oficial da União, Brasília, 15 de junho de 2021. Available at:

https://www.in.gov.br/en/web/dou/-/resolucao-normativa-aneel-n-937-de-15-de-junho-de-

2021-327362547. Last access: out 2021.

ARNOLD, T. B. kerasR: R Interface to the Keras Deep Learning Library. J. Open

Source Softw., v. 2, n. 14, p. 296, 2017. https://doi.org/10.21105/joss.00296

BAIZYLDAYEVA, U. B.; USKENBAYEVA, R. K.; AMANZHOLOVA, S. T.

Decision making procedure: applications of IBM SPSS cluster analysis and decision tree.

World Applied Sciences Journal, v. 21, n. 8, p. 1207-1212, 2013.

BHAMARE, D.; SURYAWANSHI, P. Review on reliable pattern recognition with

machine learning techniques. Fuzzy Information and Engineering, v. 10, n. 3, p. 362-377,

2018. https://doi.org/10.1080/16168658.2019.1611030

BLUME, Steven W. Electric power system basics for the nonelectrical professional.

2nd ed., John Wiley & Sons, 2016. https://doi.org/10.1002/9781119180227

BOLLEN, Math H. Understanding power quality problems. In Voltage sags and

Interruptions. Piscataway, New Jersey: Wiley-IEEE press, 2000.

BOLLEN, Math H. What is power quality? Electric Power Systems Research, v. 66,

p. 5-14, 2003. https://doi.org/10.1016/S0378-7796(03)00067-1

https://www.aneel.gov.br/consultas-publicas?p_p_id=participacaopublica_WAR_participacaopublicaportlet&p_p_lifecycle=2&p_p_state=normal&p_p_mode=view&p_p_cacheability=cacheLevelPage&p_p_col_id=column-2&p_p_col_pos=1&p_p_col_count=2&_participacaopublica_WAR_participacaopublicaportlet_ideDocumento=39551&_participacaopublica_WAR_participacaopublicaportlet_tipoFaseReuniao=fase&_participacaopublica_WAR_participacaopublicaportlet_jspPage=%2Fhtml%2Fpp%2Fvisualizar.jsp

44

BRAVO-RODRÍGUEZ, J. C.; TORRES, F. J.; BORRÁS, M. D. Hybrid machine

learning models for classifying power quality disturbances: A comparative study. Energies, v.

13, n. 11, p. 2761, 2020. https://doi.org/10.3390/en13112761

BREIMAN, Leo. Classification And Regression Trees (The Wadsworth statistics /

problability series). Chapman & Hall, 1984.

DAS, C. K.; BASS, O.; KOTHAPALLI, G., MAHMOUD, T. S., & HABIBI, D.

Overview of energy storage systems in distribution networks: Placement, sizing, operation, and

power quality. Renewable and Sustainable Energy Reviews, v. 91, p. 1205-1230, 2018.

https://doi.org/10.1016/j.rser.2018.03.068

DASHTDAR, M., DASHTI, R., & SHAKER, H. R. Distribution network fault section

identification and fault location using artificial neural network. In: International Conference

on Electrical and Electronic Engineering (ICEEE), 5, 2018. p. 273-278.

https://doi.org/10.1109/ICEEE2.2018.8391345

DE BARROS, André Felipe Antunes. Análise das principais causas de

descontinuidade no fornecimento de energia elétrica e de seus impactos nos indicadores

de qualidade. 2020. 51p. Projeto de Graduação (Graduação em Engenharia Elétrica). Escola

Politécnica, Universidade Federal do Rio de Janeiro, 2020.

FARHOUMANDI, M.; ZHOU, Q.; SHAHIDEHPOUR, M. A review of machine

learning applications in IoT-integrated modern power systems. The Electricity Journal, v. 34,

n. 1, p. 106879, 2021. https://doi.org/10.1016/j.tej.2020.106879

FARIS, H.; ALJARAH, I.; MIRJALILI, S. Training feedforward neural networks using

multi-verse optimizer for binary classification problems. Applied Intelligence, v. 45, n. 2, p.

322-332, 2016. https://doi.org/10.1007/s10489-016-0767-1

FÁVERO, Luiz Paulo; BELFIORE, Patrícia. Manual de análise de dados: estatística

e modelagem multivariada com Excel®, SPSS® e Stata®. 1st ed., GEN LTC, 2017.

FERREIRA, V. H.; OLIVEIRA, L. B.; PINHO, A. C.; HENRIQUES, H. O.; FORTES,

M. Z.; NUNES, F. A.; POSE, A. C. A.; DE OLIVEIRA, R. B. Análise do Impacto das Ações

de Manutenção nos Indicadores de Continuidade em Redes de Distribuição utilizando Machine

Learning e Regressão com Dados em Painel. Anais do Simpósio Brasileiro de Sistemas

Elétricos. Santo André, v. 1, n. 1, p. 1-6, 13 ago. 2020. https://doi.org/10.48011/sbse.v1i1.2160

GHASEMINEZHAD, M. H., & KARAMI, A. A novel self-organizing map (SOM)

neural network for discrete groups of data clustering. Applied Soft Computing, v. 11, n. 4, p.

3771-3778, 2011. https://doi.org/10.1016/j.asoc.2011.02.009

45

GREGORIADES, A.; PAMPAKA, M.; HERODOTOU, H.; CHRISTODOULOU, E.

Supporting digital content marketing and messaging through topic modelling and decision

trees. Expert systems with applications, v. 184, p. 115546, 2021.

https://doi.org/10.1016/j.eswa.2021.115546

HAGEDORN, S.; KLÄBE, S.; SATTLER, K. U. Putting Pandas in a Box. In CIDR,

Chaminade CA, 10-13 jan. 2021. p.1-6.

HAMMANN, F.; DREWE, J. Decision tree models for data mining in hit discovery.

Expert Opinion on Drug Discovery, v. 7, n. 4, p. 341-352, 2012.

https://doi.org/10.1517/17460441.2012.668182

HAMMOND, P. W. A new approach to enhance power quality for medium voltage AC

drives. IEEE transactions on industry applications, v. 33, n. 1, p. 202-208, 1997.

https://doi.org/10.1109/28.567113

HEIDARI, A.; AGELIDIS, V. G.; POU, J.; AGHAEI, J.; GHIAS, A. M. Reliability

worth analysis of distribution systems using cascade correlation neural networks. IEEE

transactions on power systems, v. 33, n. 1, p. 412-420, 2017.

https://doi.org/10.1109/TPWRS.2017.2705185

KÁDÁR-HORVÁTH, A. The Effect of Energy Prices on Competitiveness of Energy-

Intensive Industries in the EU. In: International Entrepreneurship and Corporate Growth

in Visegrad Countries, p. 129-146, 2014.

KERAS. Keras Tuner. Available at: https://keras.io/keras_tuner/. Last access: 2022, jan

15.

KHALID, S.; DWIVEDI, B. Power quality issues, problems, standards & their effects

in industry with corrective means. International Journal of Advances in Engineering &

Technology, v. 1, n. 2, p. 1, 2011.

KOHONEN, T. The self-organizing map. Proceedings of the IEEE, v. 78, v. 9, p.

1464-1480, 1990. https://doi.org/10.1109/5.58325

KUMBHAR, A.; DHAWALE, P. G.; KUMBHAR, S.; PATIL, U.; MAGDUM, P. A

Comprehensive review: Machine learning and its application in integrated power system.

Energy Reports, v. 7, p. 5467-5474, 2021. https://doi.org/10.1016/j.egyr.2021.08.133

LEVI, V.; STRBAC, G.; ALLAN, R. Assessment of performance-driven investment

strategies of distribution systems using reference networks. IEEE Proceedings-Generation,

Transmission and Distribution, v. 152, n. 1, p. 1-10, 2015. https://doi.org/10.1049/ip-

gtd:20041109

46

MILANOVIĆ, M.; STAMENKOVIĆ, M. CHAID decision tree: Methodological frame

and application. Economic Themes, v. 54, n. 4, p. 563-586, 2016.

https://doi.org/10.1515/ethemes-2016-0029

MINGOTI, S. A.; LIMA, J. O. Comparing SOM neural network with Fuzzy c-means,

K-means and traditional hierarchical clustering algorithms. European journal of operational

research, v. 174, n. 3, p. 1742-1759, 2006. https://doi.org/10.1016/j.ejor.2005.03.039

MUHAMAD, M. I.; MARIUN, N.; RADZI, M. A. M. The effects of power quality to

the industries. In: Student Conference on Research and Development, 5, 2007, pp. 1-4.

https://doi.org/10.1109/SCORED.2007.4451410

KHALID, S., & DWIVEDI, B. Power quality issues, problems, standards & their effects

in industry with corrective means. International Journal of Advances in Engineering &

Technology, v. 1, n. 2, p. 1, 2011.

OSENI, M. O.; POLLITT, M. G. The economic costs of unsupplied electricity:

Evidence from backup generation among African firms. 2013. 43p. Working Paper - Faculty of

Economics, University of Cambridge, 2013.

PETLESHKOV, A.; PETLESHKOV, A.; LOZANOV, Y. (2019, June). Analysis of the

interruptions in a section of power distribution network medium voltage 20 kV. In: Conference

on Electrical Machines, Drives and Power Systems (ELMA), 16, 2019, p. 1-5.

https://doi.org/10.1109/ELMA.2019.8771522

PODGORELEC, V.; ŠPROGAR, M.; POHOREC, S. Evolutionary design of decision

trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, v. 3, n. 2,

p. 63-82, 2013. https://doi.org/10.1002/widm.1079

RAKHRA, M.; SONIYA, P.; TANWAR, D.; SINGH, P.; BORDOLOI, D.;

AGARWAL, P.; TAKKAR, S.; JAIRATH, K.; VERMA, N. (2021). Crop Price Prediction

Using Random Forest and Decision Tree Regression: A Review. Materials Today:

Proceedings, 2021. In press. https://doi.org/10.1016/j.matpr.2021.03.261

RAMOS, M. O. D. S.; MELLO, S. S. M. M. D. Reflections of ANEEL criteria for

quality in the supply of electrical energy, 2010.

ROKACH, L.; MAIMON, O. Decision trees. In: Data mining and knowledge

discovery handbook Boston: Springer, 2005. p. 165-192. https://doi.org/10.1007/0-387-

25465-X_9

RUDIN, C.; WALTZ, D.; ANDERSON, R. N.; BOULANGER, A.; SALLEB-

AOUISSI, A.; CHOW, M., DUTTA, H.; GROSS, P. N.; HUANG, B. IEROME, S. ISAAC, F.;

KRESSNER, A. PASSONNEAU, R. J. RADEVA, A. WU, L. Machine learning for the New

47

York City power grid. IEEE transactions on pattern analysis and machine intelligence, V.

34, n. 2, p. 328-345, 2012. https://doi.org/10.1109/TPAMI.2011.108

RUTKOWSKI, L.; JAWORSKI, M.; PIETRUCZUK, L.; DUDA, P. The CART

decision tree for mining data streams. Information Sciences, v. 266, p. 1-15, 2014.

https://doi.org/10.1016/j.ins.2013.12.060

SAFARA, F.; SOURI, A.; SERRIZADEH, M. Improved intrusion detection method for

communication networks using association rule mining and artificial neural networks. IET

Communications, v. 14, n. 7, p. 1192-1197, 2020. https://doi.org/10.1049/iet-com.2019.0502

SANNINO, A.; SVENSSON, J.; LARSSON, T. Power-electronic solutions to power

quality problems. Electric Power Systems Research, v. 66, n. 1, p. 71-82, 2013.

https://doi.org/10.1016/S0378-7796(03)00073-7

SINGH, S.; GUPTA, P. Comparative study ID3, cart and C4. 5 decision tree algorithm:

a survey. International Journal of Advanced Information Science and Technology

(IJAIST), v. 27, n. 27, p. 97-103, 2014.

SOARES, B. N.; DA ROSA ABAIDE, A.; BERNARDON, D. Methodology for

prioritizing investments in distribution networks electricity focusing on operational efficiency

and regulatory aspects. In: 2014 49th International Universities Power Engineering

Conference (UPEC), 49, 2014, p. 1-6. https://doi.org/10.1109/UPEC.2014.6934727

SOMVANSHI, M.; CHAVAN, P; TAMBADE, S.; SHINDE, S. V. A review of

machine learning techniques using decision tree and support vector machine. In: 2016

International Conference on Computing Communication Control and Automation

(ICCUBEA). IEEE, 2016. p. 1-7. https://doi.org/10.1109/ICCUBEA.2016.7860040

STANČIN, I.; JOVIĆ, A. An overview and comparison of free Python libraries for data

mining and big data analysis. In: International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO), v. 42, 2019, pp.

977-982. https://doi.org/10.23919/MIPRO.2019.8757088

STRECKER, U.; UDEN, R. Data mining of 3D poststack seismic attribute volumes

using Kohonen self-organizing maps. The Leading Edge, v. 21, n. 10, p. 1032-1037, 2002.

https://doi.org/10.1190/1.1518442

TRONCHONI, A. B.; PRETTO, C. O.; DA ROSA, M. A.; LEMOS, F. A. B. Descoberta

de Conhecimento em Base de Dados de Eventos de Desligamentos de Empresas de

Distribuição. Revista de Controle & Automação. v. 21, n. 2, p. 185-200, 2010.

https://doi.org/10.1590/S0103-17592010000200007

48

ULTSCH, A. Self-organizing neural networks for visualisation and classification. In:

OPITZ, O.; LAUSEN, B.; KLAR, R. Information and classification. Studies in

Classification, Data Analysis and Knowledge Organization. Berlin, Heidelberg: Springer,

1993. p. 307-313. ISBN: 978-3-642-50974-2. https://doi.org/10.1007/978-3-642-50974-2_31

VARGAS, R.; MOSAVI, A.; RUIZ, R. Deep learning: a review. Advances in

Intelligent Systems and Computing, v. 5, n. 2, 2017.

https://doi.org/10.20944/preprints201810.0218.v1

VETTIGLI, G. MiniSom: minimalistic and NumPy-based implementation of the

Self Organizing Map, GitHub, 2021. Available at: https://github.com/JustGlowing/minisom

VOLOSCIUC, S. D.; DRAGOSIN, M. Neural Networks Used in the Evaluation of

Power Quality. Acta Universitatis Cibiniensis, v. 66, p. 202-207, 2015.

https://doi.org/10.1515/aucts-2015-0054

WHITE, H. Learning in artificial neural networks: A statistical perspective. Neural

computation, v. 1, n. 4, p. 425-464, 1989. https://doi.org/10.1162/neco.1989.1.4.425

YARLAGADDA, R. T. Python Engineering Automation to Advance Artificial

Intelligence and Machine Learning Systems. International Journal of Innovations in

Engineering Research and Technology [Ijiert], v. 5, n. 6, p. 87-97, 2018.

49

APPENDICES A – Source Codes 1

A.1 Collection and Treatment of Data

##Defining Session Spark 2

import pyspark 3

from pyspark import SparkContext 4

from pyspark.sql import SparkSession 5

spark = SparkSession \ 6

 .builder \ 7

 .appName("eletricity_app") \ 8

 .config("spark.executor.memory", "3g") \ 9

 .getOrCreate() 10

from pyspark.sql import SQLContext 11

from pyspark.sql.functions import concat,col 12

from pyspark.sql.functions import lit 13

import pandas as pd 14

sqlContext = SQLContext(spark) 15

sqlContext = SparkSession.builder.getOrCreate() 16

##Defining the parameters 17

ANO = '2018' 18

##Read the variables of consuming and loads 19

dados = sqlContext.read.format("csv").option("header", "true").option("delimiter", 20

";").load(path") 21

dados = dados.withColumn('CHAVE', concat(lit(ANO), col('BRR'), col('ARE_LOC'))) 22

dados = dados.withColumnRenamed("COD_ID","COD_ID_PRINCIPAL") 23

dados.show(n=5, truncate=False) 24

##Read the variable CONJ 25

conj = pd.read_excel(r"path", sheet_name='CONJ-2018', engine='openpyxl') 26

conj=spark.createDataFrame(conj) 27

conj=conj.drop('Shape_Area', 'Shape_Leng', 'DESCR', 'OBJECTID') 28

50

conj.printSchema() 29

conj.show() 30

##Read the variable CTMT 31

import pandas as pd 32

ctmt = pd.read_excel(r"path", engine='openpyxl') 33

ctmt=sqlContext.createDataFrame(ctmt) 34

ctmt.printSchema() 35

ctmt.show() 36

ctmt = 37

ctmt.drop('ENE_01','ENE_02','ENE_03','ENE_04','ENE_05','ENE_06','ENE_07','ENE_08','E38

NE_09','ENE_10','ENE_11','ENE_12','PERD_A3a','PERD_A4','PERD_B','PERD_MED','PE39

RD_A3a_B','PERD_A4_B','PERD_B_A3a','PERD_B_A4','PNTMT_01','PNTMT_02','PNTM40

T_03','PNTMT_04','PNTMT_05','PNTMT_06','PNTMT_07','PNTMT_08','PNTMT_09','PNT41

MT_10','PNTMT_11','PNTMT_12','PNTBT_01','PNTBT_02','PNTBT_03','PNTBT_04','PNT42

BT_05','PNTBT_06','PNTBT_07','PNTBT_08','PNTBT_09','PNTBT_10','PNTBT_11','PNTB43

T_12','DESCR','PERD_A3aA4','PERD_A4A3a', 'UNI_TR_S', 'PAC', 'SUB', 'NOM', 44

'OBJECTID') 45

ctmt.show() 46

##Read the variable SUN 47

sun = pd.read_excel(r"path") 48

sun=sqlContext.createDataFrame(sun) 49

sun=sun.drop('POS', 'Shape_Area', 'DESCR', 'Shape_Length', 'OBJECTID') 50

sun=sun.withColumnRenamed('NOM', 'NOM_SUB') 51

sun.printSchema() 52

sun.show() 53

##Read the variable UNTRS 54

untrs = pd.read_excel(r"path") 55

untrs[['BARR_3', 'PAC_3']] = untrs[['BARR_3', 'PAC_3']].astype(str) 56

untrs=sqlContext.createDataFrame(untrs) 57

untrs = untrs.drop('ARE_LOC', 'SIT_ATIV', 'CONJ', 'DAT_CON', 'MUN', 'SUB', 'DESCR', 58

'OBJECTID') 59

51

untrs.printSchema() 60

untrs.show() 61

##Read the variable TEN_FORN 62

ten_forn = pd.read_excel(r"path", sheet_name='TEN_FORN') 63

ten_forn[['LIMITE_DIC']] = ten_forn[['LIMITE_DIC']].astype(str) 64

ten_forn=sqlContext.createDataFrame(ten_forn) 65

ten_forn.printSchema() 66

ten_forn.show() 67

##Read the variable TARE 68

tare = pd.read_excel(r"path") 69

tare[['COD_ID']] = tare[['COD_ID']].astype(str) 70

tare=sqlContext.createDataFrame(tare) 71

tare= tare.withColumnRenamed("DESCR", "DESCR_TARE") 72

tare.printSchema() 73

tare.show() 74

##Read the variable TARIFF GROUP 75

grupo_tarifario = pd.read_excel(r"path", sheet_name='GRUPO_TARIFARIO') 76

grupo_tarifario=sqlContext.createDataFrame(grupo_tarifario) 77

grupo_tarifario= 78

grupo_tarifario.withColumnRenamed("DESCR","DESCR_GRUPO_TARIFARIO") 79

grupo_tarifario.printSchema() 80

grupo_tarifario.show() 81

##Read the variable PHASES 82

fases = pd.read_excel(r"path", sheet_name='FASES') 83

fases[['COD_ID']] = fases[['COD_ID']].astype(str) 84

fases=sqlContext.createDataFrame(fases) 85

fases= fases.withColumnRenamed("DESCR","DESCR_FASES") 86

fases.printSchema() 87

fases.show() 88

52

##Read the variable CLASS 89

classes = pd.read_excel(r"path", sheet_name='CLASSE') 90

classes[['COD_ID']] = classes[['COD_ID']].astype(str) 91

classes=sqlContext.createDataFrame(classes) 92

classes= classes.withColumnRenamed("DESCR","DESCR_CLASSE") 93

classes.printSchema() 94

classes.show() 95

##Read the index DIC/FIC yearly 96

limite_dic_fic_anual = pd.read_excel(r"path") 97

limite_dic_fic_anual=sqlContext.createDataFrame(limite_dic_fic_anual) 98

limite_dic_fic_anual.printSchema() 99

limite_dic_fic_anual.show() 100

##Read the index DIC/FIC following year 101

dic_fic_ano_anterior = sqlContext.read.format("csv").option("header", 102

"true").option("delimiter", ";").load(r"path") 103

dic_fic_ano_anterior = dic_fic_ano_anterior.withColumn('CHAVE', concat(lit(ANO), 104

col('BRR'), col('ARE_LOC'))) 105

dic_fic_ano_anterior = dic_fic_ano_anterior.select("COD_ID", "DIC", 106

"FIC").withColumnRenamed("DIC","DIC_SEG").withColumnRenamed("FIC","FIC_SEG") 107

##Join all variaveis 108

dataset_final = dados.join(conj, 109

on=(dados.CONJ==conj.COD_ID)&(dados.DIST==conj.DIST), 110

how='left').drop(conj.COD_ID).drop(conj.DIST)\ 111

 .join(ctmt, on=(dados.CTMT==ctmt.COD_ID)&(dados.DIST==ctmt.DIST), 112

how='left').drop(ctmt.COD_ID).drop(ctmt.DIST)\ 113

 .join(sun, on=(dados.SUB==sun.COD_ID)&(dados.DIST==sun.DIST), 114

how='left').drop(sun.COD_ID).drop(sun.DIST)\ 115

 .join(untrs, on=(dados.UNI_TR_S==untrs.COD_ID)&(dados.DIST==untrs.DIST), 116

how='left').drop(untrs.COD_ID).drop(untrs.DIST)\ 117

 .join(ten_forn, on='TEN_FORN', how='left')\ 118

 .join(tare, on=dados.ARE_LOC==tare.COD_ID, how='left').drop(tare.COD_ID,)\ 119

53

 .join(grupo_tarifario, on=dados.GRU_TAR==grupo_tarifario.COD_ID, 120

how='left').drop(grupo_tarifario.COD_ID)\ 121

 .join(fases, on=dados.FAS_CON==fases.COD_ID, how='left').drop(fases.COD_ID)\ 122

 .join(classes, on=dados.CLAS_SUB==classes.COD_ID, how='left').drop(fases.COD_ID)\ 123

 .join(limite_dic_fic_anual, on=dados.CHAVE==limite_dic_fic_anual.CHAVE, 124

how='left').drop(limite_dic_fic_anual.CHAVE)\ 125

 .join(dic_fic_ano_anterior, 126

on=dados.COD_ID_PRINCIPAL==dic_fic_ano_anterior.COD_ID, how='left') 127

dataset_final.show() 128

dataset_final.count() 129

dataset_final = dataset_final.filter(col('MAX_DIC').isNotNull()) 130

dataset_final.count() 131

dataset_final = dataset_final.filter(col('MAX_FIC').isNotNull()) 132

dataset_final.count() 133

dataset_final = dataset_final.filter(col('DIC_SEG').isNotNull()) 134

dataset_final.count() 135

dataset_final = dataset_final.filter(col('FIC_SEG').isNotNull()) 136

dataset_final.count() 137

dataset_final.printSchema() 138

pandasDF2=dataset_final.toPandas() 139

pandasDF2.to_csv('ETL_VARIAVEIS_ELETRICITY_11-12.csv', sep='|', header=True, 140

index = False) 141

A.2 Training The Baseline Neural Network Algorithm

Importing the libraries

from tensorflow.keras.models import Sequential 1

from tensorflow.keras.layers import Dense, Dropout, Activation 2

from tensorflow.keras import optimizers, regularizers 3

from tensorflow.keras.optimizers import Adam 4

from pyspark import SparkContext, SparkConf 5

from pyspark.sql import SQLContext 6

from pyspark.ml.feature import OneHotEncoder, StringIndexer, StandardScaler, 7

VectorAssembler 8

54

from pyspark.ml import Pipeline 9

from pyspark.sql.functions import rand 10

from pyspark.mllib.evaluation import MulticlassMetrics 11

from pyspark.sql.functions import col 12

from pyspark.sql.types import StringType,BooleanType,DateType, IntegerType 13

import numpy as np 14

from pyspark.sql.functions import desc, row_number, monotonically_increasing_id 15

from pyspark.sql.window import Window 16

from pyspark.sql.functions import rand 17

import pyspark.sql.functions as func 18

import matplotlib as mpl 19

import matplotlib.pyplot as plt 20

import numpy as np 21

import pandas as pd 22

import seaborn as sns 23

import sklearn 24

from sklearn.metrics import confusion_matrix 25

from sklearn.model_selection import train_test_split 26

from sklearn.preprocessing import StandardScaler 27

Load the data

df = pd.read_csv('ETL_VARIAVEIS_ELETRICITY_11-12.csv', delimiter ='|') 28

df.loc[((df['DIC_SEG'] > df.MAX_DIC) 29

 |(df['FIC_SEG'] > df.MAX_FIC)), 'NORMALIDADE_ANO_SEGUINTE'] = 1 30

df['NORMALIDADE_ANO_SEGUINTE'] = 31

df['NORMALIDADE_ANO_SEGUINTE'].fillna(0) 32

df = df[['OBJECTID', 'ENE_02','ENE_05','DIC', 'FIC', 'POT_F02', 'NOM', 'CLAS_SUB', 33

'CTMT', 'UNI_TR_S', 'NORMALIDADE_ANO_SEGUINTE']] 34

from sklearn.model_selection import train_test_split 35

train, test = train_test_split(df, test_size=0.2) 36

print("Training Data") 37

print(train.shape) 38

print(train.head()) 39

55

print("Test Data") 40

print(test.shape) 41

print(test.head()) 42

EDA

mpl.rcParams['figure.figsize'] = (12, 10) 43

colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] 44

train.NORMALIDADE_ANO_SEGUINTE.value_counts() 45

#check if it is a imbalance dataset 46

no, yes = np.bincount(train['NORMALIDADE_ANO_SEGUINTE']) 47

total = no + yes 48

print('Exemplos:\n Total: {}\n Positivos: {} ({:.2f}% of total)\n'.format(49

 total, yes, 100 * yes / total)) 50

train_t = train.copy() 51

target = train_t.pop('NORMALIDADE_ANO_SEGUINTE') 52

ax = sns.countplot(x = target ,palette="Set1") 53

sns.set(font_scale=1.5) 54

ax.set_xlabel(' ') 55

ax.set_ylabel(' ') 56

fig = plt.gcf() 57

fig.set_size_inches(10,5) 58

ax.set_ylim(top=800) 59

for p in ax.patches: 60

 ax.annotate('{:.2f}%'.format(100*p.get_height()/len(target)), (p.get_x()+ 0.3, 61

p.get_height()+800)) 62

plt.title('Distribution of Target') 63

plt.show() 64

#Check for null values 65

print('Missing data in Train') 66

print(train.isna().any()) 67

print('Missing data in Test') 68

print(test.isna().any()) 69

#check for data types 70

56

train.dtypes 71

#Find the category and numeric - Convert the numeric to category variables. 72

cat=[] 73

for c in train.columns: 74

 if train[c].dtypes == 'object': 75

 cat.append(c) 76

print(cat) 77

num=[] 78

for c in train.columns: 79

 if c not in cat: 80

 num.append(c) 81

print(num) 82

#Change the type from numeric 83

cat_features = ['NOM', 'CLAS_SUB', 'CTMT', 'UNI_TR_S'] 84

for col in cat_features: 85

 train[col]=train[col].astype('object') 86

train.dtypes 87

Feature Engineering

#Change the type from numeric 88

for col in cat_features: 89

 test[col]=test[col].astype('object') 90

test.dtypes 91

train = pd.get_dummies(train,drop_first=True) 92

test = pd.get_dummies(test,drop_first=True) 93

train.dtypes 94

col=[] 95

for c in train.columns: 96

 col.append(c) 97

print(col) 98

tcol=[] 99

for c in test.columns: 100

 tcol.append(c) 101

57

print(col) 102

list(set(col) - set(tcol)) 103

Create train, validation, and test sets

train_copy = train.copy() 104

test_copy = test.copy() 105

train.shape , test.shape 106

train.head(5) 107

test.head(5) 108

train_df, test_df = train_test_split(train, test_size = 0.2) 109

train_df, val_df = train_test_split(train_df, test_size=0.2) 110

train_labels = np.array(train_df.pop('NORMALIDADE_ANO_SEGUINTE')) 111

bool_train_labels = train_labels != 0 112

val_labels = np.array(val_df.pop('NORMALIDADE_ANO_SEGUINTE')) 113

test_labels = np.array(test_df.pop('NORMALIDADE_ANO_SEGUINTE')) 114

#test_labels = data 115

train_features = np.array(train_df) 116

val_features = np.array(val_df) 117

test_features = np.array(test_df) 118

scaler = StandardScaler() 119

train_features = scaler.fit_transform(train_features) 120

val_features = scaler.transform(val_features) 121

test_features = scaler.transform(test_features) 122

train_features = np.clip(train_features, -5, 5) 123

val_features = np.clip(val_features, -5, 5) 124

test_features = np.clip(test_features, -5, 5) 125

print('Training labels shape:', train_labels.shape) 126

print('Validation labels shape:', val_labels.shape) 127

print('Test labels shape:', test_labels.shape) 128

print('Training features shape:', train_features.shape) 129

print('Validation features shape:', val_features.shape) 130

print('Test features shape:', test_features.shape) 131

pos_df = pd.DataFrame(train_features[bool_train_labels], columns=train_df.columns) 132

neg_df = pd.DataFrame(train_features[~bool_train_labels], columns=train_df.columns) 133

58

import tensorflow as tf 134

from tensorflow import keras 135

Baseline

METRICS = [136

 keras.metrics.TruePositives(name='tp'), 137

 keras.metrics.FalsePositives(name='fp'), 138

 keras.metrics.TrueNegatives(name='tn'), 139

 keras.metrics.FalseNegatives(name='fn'), 140

 keras.metrics.BinaryAccuracy(name='accuracy'), 141

 keras.metrics.Precision(name='precision'), 142

 keras.metrics.Recall(name='recall'), 143

 keras.metrics.AUC(name='auc'), 144

] 145

def make_model(metrics=METRICS, output_bias=None): 146

 if output_bias is not None: 147

 output_bias = tf.keras.initializers.Constant(output_bias) 148

 model = keras.Sequential([149

 keras.layers.Dense(150

 16, activation='relu', 151

 input_shape=(train_features.shape[-1],)), 152

 keras.layers.Dropout(0.5), 153

 keras.layers.Dense(1, activation='sigmoid', 154

 bias_initializer=output_bias), 155

]) 156

 model.compile(157

 optimizer=keras.optimizers.Adam(lr=1e-3), 158

 loss=keras.losses.BinaryCrossentropy(), 159

 metrics=metrics) 160

 return model 161

EPOCHS = 100 162

BATCH_SIZE = 2048 163

early_stopping = tf.keras.callbacks.EarlyStopping(164

 monitor='val_auc', 165

59

 verbose=1, 166

 patience=10, 167

 mode='max', 168

 restore_best_weights=True) 169

model = make_model() 170

model.summary() 171

model.predict(train_features[:10]) 172

results = model.evaluate(train_features, train_labels, batch_size=BATCH_SIZE, verbose=0) 173

print("Loss: {:0.4f}".format(results[0])) 174

initial_bias = np.log([yes/no]) 175

initial_bias 176

model = make_model(output_bias=initial_bias) 177

model.predict(train_features[:10]) 178

results = model.evaluate(train_features, train_labels, batch_size=BATCH_SIZE, verbose=0) 179

print("Loss: {:0.4f}".format(results[0])) 180

import os 181

import tempfile 182

initial_weights = os.path.join(tempfile.mkdtemp(), 'initial_weights') 183

model.save_weights(initial_weights) 184

model = make_model() 185

model.load_weights(initial_weights) 186

model.layers[-1].bias.assign([0.0]) 187

zero_bias_history = model.fit(188

 train_features, 189

 train_labels, 190

 batch_size=BATCH_SIZE, 191

 epochs=20, 192

 validation_data=(val_features, val_labels), 193

 verbose=0) 194

model = make_model() 195

model.load_weights(initial_weights) 196

careful_bias_history = model.fit(197

 train_features, 198

 train_labels, 199

60

 batch_size=BATCH_SIZE, 200

 epochs=20, 201

 validation_data=(val_features, val_labels), 202

 verbose=0) 203

def plot_loss(history, label, n): 204

 plt.semilogy(history.epoch, history.history['loss'], 205

 color=colors[n], label='Train ' + label) 206

 plt.semilogy(history.epoch, history.history['val_loss'], 207

 color=colors[n], label='Val ' + label, 208

 linestyle="--") 209

 plt.xlabel('Epoch') 210

 plt.ylabel('Loss') 211

A.3 Training The Fully Connected Neural Network Algorithm

Importing the libraries

from tensorflow.keras.models import Sequential 1

from tensorflow.keras.layers import Dense, Dropout, Activation 2

from tensorflow.keras import optimizers, regularizers 3

from tensorflow.keras.optimizers import Adam 4

from pyspark import SparkContext, SparkConf 5

from pyspark.sql import SQLContext 6

from pyspark.ml.feature import OneHotEncoder, StringIndexer, StandardScaler, 7

VectorAssembler 8

from pyspark.ml import Pipeline 9

from pyspark.sql.functions import rand 10

from pyspark.mllib.evaluation import MulticlassMetrics 11

from pyspark.sql.functions import col 12

from pyspark.sql.types import StringType,BooleanType,DateType, IntegerType 13

import numpy as np 14

from pyspark.sql.functions import desc, row_number, monotonically_increasing_id 15

from pyspark.sql.window import Window 16

from pyspark.sql.functions import rand 17

import pyspark.sql.functions as func 18

61

import matplotlib as mpl 19

import matplotlib.pyplot as plt 20

import numpy as np 21

import pandas as pd 22

import seaborn as sns 23

import sklearn 24

from sklearn.metrics import confusion_matrix 25

from sklearn.model_selection import train_test_split 26

from sklearn.preprocessing import StandardScaler 27

Load the data

from tensorflow.keras.models import Sequential 28

from tensorflow.keras.layers import Dense, Dropout, Activation 29

from tensorflow.keras import optimizers, regularizers 30

from tensorflow.keras.optimizers import Adam 31

from pyspark import SparkContext, SparkConf 32

from pyspark.sql import SQLContext 33

from pyspark.ml.feature import OneHotEncoder, StringIndexer, StandardScaler, 34

VectorAssembler 35

from pyspark.ml import Pipeline 36

from pyspark.sql.functions import rand 37

from pyspark.mllib.evaluation import MulticlassMetrics 38

from pyspark.sql.functions import col 39

from pyspark.sql.types import StringType,BooleanType,DateType, IntegerType 40

import numpy as np 41

from pyspark.sql.functions import desc, row_number, monotonically_increasing_id 42

from pyspark.sql.window import Window 43

from pyspark.sql.functions import rand 44

import pyspark.sql.functions as func 45

import matplotlib as mpl 46

import matplotlib.pyplot as plt 47

import numpy as np 48

import pandas as pd 49

import seaborn as sns 50

62

import sklearn 51

from sklearn.metrics import confusion_matrix 52

from sklearn.model_selection import train_test_split 53

from sklearn.preprocessing import StandardScaler 54

 55

df = pd.read_csv('ETL_VARIAVEIS_ELETRICITY_11-12.csv', delimiter ='|') 56

df.loc[((df['DIC_SEG'] > df.MAX_DIC) 57

 |(df['FIC_SEG'] > df.MAX_FIC)), 'NORMALIDADE_ANO_SEGUINTE'] = 1 58

df['NORMALIDADE_ANO_SEGUINTE'] = 59

df['NORMALIDADE_ANO_SEGUINTE'].fillna(0) 60

df = df[['OBJECTID', 'ENE_02','ENE_05','DIC', 'FIC', 'POT_F02', 'NOM', 'CLAS_SUB', 61

'CTMT', 'UNI_TR_S', 'NORMALIDADE_ANO_SEGUINTE']] 62

from sklearn.model_selection import train_test_split 63

train, test = train_test_split(df, test_size=0.2) 64

print("Training Data") 65

print(train.shape) 66

print(train.head()) 67

print("Test Data") 68

print(test.shape) 69

print(test.head()) 70

EDA

mpl.rcParams['figure.figsize'] = (12, 10) 71

colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] 72

train.NORMALIDADE_ANO_SEGUINTE.value_counts() 73

#check if it is a imbalance dataset 74

no, yes = np.bincount(train['NORMALIDADE_ANO_SEGUINTE']) 75

total = no + yes 76

print('Exemplos:\n Total: {}\n Positivos: {} ({:.2f}% of total)\n'.format(77

 total, yes, 100 * yes / total)) 78

 train_t = train.copy() 79

target = train_t.pop('NORMALIDADE_ANO_SEGUINTE') 80

ax = sns.countplot(x = target ,palette="Set1") 81

63

sns.set(font_scale=1.5) 82

ax.set_xlabel(' ') 83

ax.set_ylabel(' ') 84

fig = plt.gcf() 85

fig.set_size_inches(10,5) 86

ax.set_ylim(top=800) 87

for p in ax.patches: 88

 ax.annotate('{:.2f}%'.format(100*p.get_height()/len(target)), (p.get_x()+ 0.3, 89

p.get_height()+800)) 90

plt.title('Distribution of Target') 91

plt.show() 92

plt.figure(figsize=(15, 12)) 93

sns.heatmap(pd.concat([train_t, target], axis=1).corr(),annot=True , cmap='YlGnBu') 94

#Visualization 95

sns.pairplot(train,hue='NORMALIDADE_ANO_SEGUINTE') 96

#Check for null values 97

print('Missing data in Train') 98

print(train.isna().any()) 99

print('Missing data in Test') 100

print(test.isna().any()) 101

#check for data types 102

train.dtypes 103

#Find the category and numeric - Convert the numeric to category variables. 104

cat=[] 105

for c in train.columns: 106

 if train[c].dtypes == 'object': 107

 cat.append(c) 108

print(cat) 109

num=[] 110

for c in train.columns: 111

 if c not in cat: 112

 num.append(c) 113

print(num) 114

#Change the type from numeric 115

64

cat_features = ['NOM', 'CLAS_SUB', 'CTMT', 'UNI_TR_S'] 116

for col in cat_features: 117

 train[col]=train[col].astype('object') 118

train.dtypes 119

Feature Engineering

#Change the type from numeric 120

for col in cat_features: 121

 test[col]=test[col].astype('object') 122

test.dtypes 123

train = pd.get_dummies(train,drop_first=True) 124

test = pd.get_dummies(test,drop_first=True) 125

train.dtypes 126

col=[] 127

for c in train.columns: 128

 col.append(c) 129

print(col) 130

tcol=[] 131

for c in test.columns: 132

 tcol.append(c) 133

print(col) 134

list(set(col) - set(tcol)) 135

Create train, validation, and test sets

train_copy = train.copy() 136

test_copy = test.copy() 137

train.shape , test.shape 138

train.head(5) 139

test.head(5) 140

train_df, test_df = train_test_split(train, test_size = 0.2) 141

train_df, val_df = train_test_split(train_df, test_size=0.2) 142

train_labels = np.array(train_df.pop('NORMALIDADE_ANO_SEGUINTE')) 143

65

bool_train_labels = train_labels != 0 144

val_labels = np.array(val_df.pop('NORMALIDADE_ANO_SEGUINTE')) 145

test_labels = np.array(test_df.pop('NORMALIDADE_ANO_SEGUINTE')) 146

#test_labels = data 147

train_features = np.array(train_df) 148

val_features = np.array(val_df) 149

test_features = np.array(test_df) 150

scaler = StandardScaler() 151

train_features = scaler.fit_transform(train_features) 152

val_features = scaler.transform(val_features) 153

test_features = scaler.transform(test_features) 154

train_features = np.clip(train_features, -5, 5) 155

val_features = np.clip(val_features, -5, 5) 156

test_features = np.clip(test_features, -5, 5) 157

print('Training labels shape:', train_labels.shape) 158

print('Validation labels shape:', val_labels.shape) 159

print('Test labels shape:', test_labels.shape) 160

print('Training features shape:', train_features.shape) 161

print('Validation features shape:', val_features.shape) 162

print('Test features shape:', test_features.shape) 163

pos_df = pd.DataFrame(train_features[bool_train_labels], columns=train_df.columns) 164

neg_df = pd.DataFrame(train_features[~bool_train_labels], columns=train_df.columns) 165

Two layer fully connected

import tensorflow as tf 166

from tensorflow import keras 167

METRICS = [168

 keras.metrics.TruePositives(name='tp'), 169

 keras.metrics.FalsePositives(name='fp'), 170

 keras.metrics.TrueNegatives(name='tn'), 171

 keras.metrics.FalseNegatives(name='fn'), 172

 keras.metrics.BinaryAccuracy(name='accuracy'), 173

 keras.metrics.Precision(name='precision'), 174

66

 keras.metrics.Recall(name='recall'), 175

 keras.metrics.AUC(name='auc'), 176

] 177

def make_model(metrics=METRICS, output_bias=None): 178

 if output_bias is not None: 179

 output_bias = tf.keras.initializers.Constant(output_bias) 180

 model = keras.Sequential([181

 keras.layers.Dense(182

 256, activation='relu', 183

 input_shape=(train_features.shape[-1],)), 184

 keras.layers.Dropout(0.5), 185

 keras.layers.Dense(186

 75, activation='relu', 187

 input_shape=(train_features.shape[-1],)), 188

 keras.layers.Dense(1, activation='sigmoid', 189

 bias_initializer=output_bias), 190

]) 191

 model.compile(192

 optimizer=keras.optimizers.Adam(lr=1e-3), 193

 loss=keras.losses.BinaryCrossentropy(), 194

 metrics=metrics) 195

 return model 196

 EPOCHS = 1000 197

BATCH_SIZE = 2048 198

early_stopping = tf.keras.callbacks.EarlyStopping(199

 monitor='val_auc', 200

 verbose=1, 201

 patience=500, 202

 mode='max', 203

 restore_best_weights=True) 204

model = make_model() 205

model.summary() 206

model.predict(train_features[:10]) 207

67

results = model.evaluate(train_features, train_labels, batch_size=BATCH_SIZE, verbose=0) 208

print("Loss: {:0.4f}".format(results[0])) 209

initial_bias = np.log([yes/no]) 210

initial_bias 211

model = make_model(output_bias=initial_bias) 212

model.predict(train_features[:10]) 213

results = model.evaluate(train_features, train_labels, batch_size=BATCH_SIZE, verbose=0) 214

print("Loss: {:0.4f}".format(results[0])) 215

import os 216

import tempfile 217

initial_weights = os.path.join(tempfile.mkdtemp(), 'initial_weights') 218

model.save_weights(initial_weights) 219

model = make_model() 220

model.load_weights(initial_weights) 221

model.layers[-1].bias.assign([0.0]) 222

zero_bias_history = model.fit(223

 train_features, 224

 train_labels, 225

 batch_size=BATCH_SIZE, 226

 epochs=20, 227

 validation_data=(val_features, val_labels), 228

 verbose=0) 229

model = make_model() 230

model.load_weights(initial_weights) 231

careful_bias_history = model.fit(232

 train_features, 233

 train_labels, 234

 batch_size=BATCH_SIZE, 235

 epochs=20, 236

 validation_data=(val_features, val_labels), 237

 verbose=0) 238

def plot_loss(history, label, n): 239

 plt.semilogy(history.epoch, history.history['loss'], 240

 color=colors[n], label='Train ' + label) 241

68

 plt.semilogy(history.epoch, history.history['val_loss'], 242

 color=colors[n], label='Val ' + label, 243

 linestyle="--") 244

 plt.xlabel('Epoch') 245

 plt.ylabel('Loss') 246

plot_loss(zero_bias_history, "Zero Bias", 0) 247

plot_loss(careful_bias_history, "Careful Bias", 1) 248

model = make_model() 249

#model.load_weights(initial_weights) 250

two_layer_history = model.fit(251

 train_features, 252

 train_labels, 253

 batch_size=BATCH_SIZE, 254

 epochs=EPOCHS, 255

 callbacks=[early_stopping], 256

 validation_data=(val_features, val_labels)) 257

def plot_metrics(history): 258

 metrics = ['loss', 'auc', 'precision', 'recall'] 259

 for n, metric in enumerate(metrics): 260

 name = metric.replace(""," ").capitalize() 261

 plt.subplot(2,2,n+1) 262

 plt.plot(history.epoch, history.history[metric], color=colors[0], label='Train') 263

 plt.plot(history.epoch, history.history['val'+metric], 264

 color=colors[0], linestyle="--", label='Val') 265

 plt.xlabel('Epoch') 266

 plt.ylabel(name) 267

 if metric == 'loss': 268

 plt.ylim([0, plt.ylim()[1]]) 269

 elif metric == 'auc': 270

 plt.ylim([0.8,1]) 271

 else: 272

 plt.ylim([0,1]) 273

plt.legend() 274

69

plot_metrics(two_layer_history) 275

train_predictions_two_layer = model.predict(train_features, batch_size=BATCH_SIZE) 276

test_predictions_two_layer = model.predict(test_features, batch_size=BATCH_SIZE) 277

def plot_cm(labels, predictions, p=0.5): 278

 cm = confusion_matrix(labels, predictions > p) 279

 plt.figure(figsize=(5,5)) 280

 sns.heatmap(cm, annot=True, fmt="d") 281

 plt.title('Confusion matrix @{:.2f}'.format(p)) 282

 plt.ylabel('Actual label') 283

 plt.xlabel('Predicted label') 284

 Two layers (Imbalanced)

two_layer_results = model.evaluate(test_features, test_labels, 285

 batch_size=BATCH_SIZE, verbose=0) 286

for name, value in zip(model.metrics_names, two_layer_results): 287

 print(name, ': ', value) 288

print() 289

plot_cm(test_labels, test_predictions_two_layer) 290

def plot_roc(name, labels, predictions, **kwargs): 291

 fp, tp, _ = sklearn.metrics.roc_curve(labels, predictions) 292

 plt.plot(100fp, 100tp, label=name, linewidth=2, **kwargs) 293

 plt.xlabel('False positives [%]') 294

 plt.ylabel('True positives [%]') 295

 plt.xlim([-0.5,20]) 296

 plt.ylim([80,100.5]) 297

 plt.grid(True) 298

 ax = plt.gca() 299

 ax.set_aspect('equal') 300

plot_roc("Train two_layer", train_labels, train_predictions_two_layer, color=colors[0]) 301

plot_roc("Test two_layer", test_labels, test_predictions_two_layer, color=colors[0], 302

linestyle='--') 303

plt.legend(loc='lower right') 304

70

Model with Class Weights

weight_for_0 = (1 / no)(total)/2.0 305

weight_for_1 = (1 / yes)(total)/2.0 306

class_weight = {0: weight_for_0, 1: weight_for_1} 307

print('Weight for class 0: {:.2f}'.format(weight_for_0)) 308

print('Weight for class 1: {:.2f}'.format(weight_for_1)) 309

weighted_model = make_model() 310

weighted_model.load_weights(initial_weights) 311

weighted_history = weighted_model.fit(312

 train_features, 313

 train_labels, 314

 batch_size=BATCH_SIZE, 315

 epochs=EPOCHS, 316

 callbacks=[early_stopping], 317

 validation_data=(val_features, val_labels), 318

 # The class weights go here 319

 class_weight=class_weight) 320

plot_metrics(weighted_history) 321

train_predictions_weighted = weighted_model.predict(train_features, 322

batch_size=BATCH_SIZE) 323

test_predictions_weighted = weighted_model.predict(test_features, 324

batch_size=BATCH_SIZE) 325

weighted_results = weighted_model.evaluate(test_features, test_labels, 326

 batch_size=BATCH_SIZE, verbose=0) 327

for name, value in zip(weighted_model.metrics_names, weighted_results): 328

 print(name, ': ', value) 329

print() 330

plot_cm(test_labels, test_predictions_weighted) 331

plot_roc("Train two_layer", train_labels, train_predictions_two_layer, color=colors[0]) 332

plot_roc("Test two_layer", test_labels, test_predictions_two_layer, color=colors[0], 333

linestyle='--') 334

plot_roc("Train Weighted", train_labels, train_predictions_weighted, color=colors[1]) 335

plot_roc("Test Weighted", test_labels, test_predictions_weighted, color=colors[1], linestyle='-336

71

-') 337

plt.legend(loc='lower right') 338

Oversampling: Oversample The Minority class

pos_features = train_features[bool_train_labels] 339

neg_features = train_features[~bool_train_labels] 340

pos_labels = train_labels[bool_train_labels] 341

neg_labels = train_labels[~bool_train_labels] 342

BUFFER_SIZE = 100000 343

def make_ds(features, labels): 344

 ds = tf.data.Dataset.from_tensor_slices((features, labels))#.cache() 345

 ds = ds.shuffle(BUFFER_SIZE).repeat() 346

 return ds 347

pos_ds = make_ds(pos_features, pos_labels) 348

neg_ds = make_ds(neg_features, neg_labels) 349

for features, label in pos_ds.take(1): 350

 print("Features:\n", features.numpy()) 351

 print() 352

 print("Label: ", label.numpy()) 353

resampled_ds = tf.data.experimental.sample_from_datasets([pos_ds, neg_ds], weights=[0.5, 354

0.5]) 355

resampled_ds = resampled_ds.batch(BATCH_SIZE).prefetch(2) 356

for features, label in resampled_ds.take(1): 357

 print(label.numpy().mean()) 358

resampled_steps_per_epoch = np.ceil(2.0*no/BATCH_SIZE) 359

resampled_steps_per_epoch 360

resampled_model = make_model() 361

resampled_model.load_weights(initial_weights) 362

output_layer = resampled_model.layers[-1] 363

output_layer.bias.assign([0]) 364

val_ds = tf.data.Dataset.from_tensor_slices((val_features, val_labels)).cache() 365

val_ds = val_ds.batch(BATCH_SIZE).prefetch(2) 366

resampled_history = resampled_model.fit(367

72

 resampled_ds, 368

 epochs=EPOCHS, 369

 steps_per_epoch=resampled_steps_per_epoch, 370

 callbacks=[early_stopping], 371

 validation_data=val_ds) 372

plot_metrics(resampled_history) 373

train_predictions_resampled = resampled_model.predict(train_features, 374

batch_size=BATCH_SIZE) 375

test_predictions_resampled = resampled_model.predict(test_features, 376

batch_size=BATCH_SIZE) 377

resampled_results = resampled_model.evaluate(test_features, test_labels, 378

 batch_size=BATCH_SIZE, verbose=0) 379

for name, value in zip(resampled_model.metrics_names, resampled_results): 380

 print(name, ': ', value) 381

print() 382

plot_cm(test_labels, test_predictions_resampled) 383

plot_roc("Train two_layer", train_labels, train_predictions_two_layer, color=colors[0]) 384

plot_roc("Test two_layer", test_labels, test_predictions_two_layer, color=colors[0], 385

linestyle='--') 386

plot_roc("Train Weighted", train_labels, train_predictions_weighted, color=colors[1]) 387

plot_roc("Test Weighted", test_labels, test_predictions_weighted, color=colors[1], linestyle='-388

-') 389

plot_roc("Train Resampled", train_labels, train_predictions_resampled, color=colors[2]) 390

plot_roc("Test Resampled", test_labels, test_predictions_resampled, color=colors[2], 391

linestyle='--') 392

plt.legend(loc='lower right') 393

73

