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ABSTRACT 

 

The losses caused by the lack of electricity typically exceed the cost of the electricity itself. 

Improving power quality is a way to reduce or avoid loss of production in the industry, prevent 

fires or explosions, and minimize damages to industrial equipment. Therefore, finding 

customers that probably will have interruptions in advance will generate value for both the 

company and customers. The purpose of this study is to analyze data from units that consume 

electricity using neural networks and decision trees, such as self-organizing maps, CHAID and 

CART, and using fully connected neural networks to predict the interruption index for the next 

year. The results reveal an important space for improvements such as the connection between 

non-compliance of established indicators over time and specific points of electrical network 

with problems. That way supports the concessionaries to manage their infrastructure to get a 

better quality of the electric power network. 

 

Keywords: Fully Connected Networks, Power Quality, Interruptions on Medium Voltages. 
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Chapter 1 

INTRODUCTION 

 

1.1 Context 

Power quality is a topic of high importance due to the high demand for electricity in 

modern society and the impact it has on the production chain. Providing reliable electricity at 

reasonable costs avoids economic losses, increases productivity, and enables industries and 

agriculture to become competitive (Oseni & Pollitt, 2013; Horváth, 2014). Since power quality 

is an indispensable requirement for the proper functioning of high-tech equipment in industries, 

mitigating interruptions can prevent large economic losses to industrial consumers and improve 

the functioning of electronic devices, since modern equipment are much more sensitive to 

energy variations (Muhamad et al., 2017; Khalid & Dwivedi, 2011). 

The term “power quality” has different concepts in electrical engineering. Some 

references prefer to use terms like “power supply quality”, others like “voltage quality”. But, 

despite the different concepts generated about the term, the fact is that electric power systems 

must generate energy and deliver it continuously with an acceptable voltage to the final 

consumer (Bollen, 2000; Bollen 2003). 

Thus, conducting research related to the generation, transmission, and distribution of 

electricity, as well as implementing innovations in the electricity sector, are important actions 

to face challenges. These challenges include maintaining quality indexes, guaranteeing the 

energy supply to essential activities, and maintaining industrial productivity. 

 

1.2 Justification 

This work is justifiable by its contribution for the literature related to the use of 

government data of Brazilian electricity consumption with focus on predicting electricity 

interruptions, especially for consumer units of medium voltage. We can also consider the 

research relevant due to the proof of concept that previously identifies the consumer units that 

will have interruptions, making it possible to create action plans that can help to avoid losses, 

reduce the severity of damages caused by the lack of energy, improve the planning of 

maintenance routines, improve the production chain as a whole, avoid fines for concessionaires, 
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increase circuit safety, increase the value perceived by the customer, in addition to providing 

data to support the reduction of customer dissatisfaction. 

We can also find justifications in document CP 038/19 by Technical Note No. 046/2019-

SRD in which according to ABRADEE (Brazilian Association of Electric Energy Distributors), 

in its contribution to the regulation of energy supply, it clarifies that the quality indices of 

Brazilian energy have been improving every year. However, non-compliance directly affects 

the concessionaire, as it is necessary to compensate customers for the transgression of 

individual continuity indicators, as well as directly affecting billing, as in some cases the 

interruption can mean energy not supplied and leads to lawsuits by the harmed consumers. 

More work that justifies the research was developed by Barros (2020), who obtained 

access to a database available by ANEEL to create a project for a tool for managing OPEX and 

CAPEX actions with an impact on the reduction of continuity and compensation indicators 

(ANEEL Research and Development Project no ¯ 116/2018) interruptions caused by broken 

networks or in poor conditions represented a considerable portion (56%) of the DIC indicator 

(Individual Interruption Duration per Consumer Unit) in area networks, in consumers medium 

voltage according to the same article. This reveals that investments in infrastructure are 

necessary and identifying consumer units can support the prioritization of investment in the 

replacement of assets. Since investments are necessary, finding these customers in advance also 

helps to promote tariff balance as it will provide more data to work out the cost-benefit of these 

investments. 

 

1.3 Objective 

1.3.1 General Objective 

The general objective of this research is to analyze data from Brazilian electricity 

distribution companies, to find patterns in customer consumption profiles, using Kohonen's 

self-organizing map algorithm (SOM), to extract features using decision trees and to predict 

interruptions of medium voltage using fully connected neural networks.  

 

1.3.2 Specific Objectives 

To achieve the objective established, some specific objectives were defined: 

• Achieving the best topologies and efficient training for selected models;  

• ensure precision for predictions; 
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• create a concept proof so that it can be developed by energy utilities; 

• expand the academic view of the challenges of the power quality sector; 

• reveal data related to problems of electric utilities/government concerning the profile of 

consumer units. 

1.4 Limitations, Conventions, and Scope 

In order to achieve the objectives proposed in this research, it was necessary to limit its 

scope and establish conventions. The main limitations are mentioned below: 

• The classification of municipalities was performed based on the size of consumer units 

of the municipalities and the sectors present in the economy. 

• Other types of training could have been used, compared and brought more gains, for 

example separating cases into old and new consumer units. 

• It was not tested whether there is a deterministic component in the data. 

 

Regarding the conventions adopted, it can be mentioned that: 

• Assuming the 9.5 interruption index for FIC is reasonable for the Brazilian electricity 

sector. 

• The technique/method used did not matter once the resolution of the objectives provides 

a contribution to the electricity sector. In this way, was agreed that SOM, Decision Trees 

and Fully Connected Neural Networks techniques are the most suitable for solving the 

problem. 

• It is agreed that in this work the DEC/FEC indicators are associated with energy quality, 

and that they are the most relevant from the utility's point of view. 

• It is agreed that the initial parameters used for the construction of neural networks are 

adequate for the first version of the algorithms, which would later be revealed by 

applying the tunning on the algorithm of fully connected neural networks. 

• It is agreed that the CNAE is suitable for analyzing the descriptions of economic 

activities. 

• The training methods imbalanced, balanced by weight class and oversampling are the 

most appropriate techniques to deal with the evaluation of metrics in unbalanced sets. 

• Convention that 80/20 is an adequate distribution ratio for training. 
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• It is agreed that the tuning performed by Keras Tunner provides adequate results for 

neural network optimization. 

• Precision, recall, and Area Under the Curve (AUC) are the best metrics for analyzing 

training with unbalanced data. 

 

1.5 Chapter Organization 

This dissertation is divided into 6 chapters, as follows: 

Chapter 1 establishes the subject of the research, presents the objectives intended to be 

achieved with the work, which involves predicting continuity indices of electrical power 

interruptions of medium voltage consumers through fully connected neural networks. It also 

presents the challenges, which include ensuring the accuracy of predictions and how to make 

the evaluation of results useful to the management of electric companies and the regulation of 

the sector. Therefore, it guides on how this written work was structured to facilitate the whole 

understanding. 

Chapter 2 explains the importance of power quality for medium voltage consumers, in 

addition to describing how Artificial Intelligence models can help power utilities in energy 

quality, the works present in the literature related to the research topic, emphasize the difference 

with the work developed. There is also a discussion of the results obtained by the main 

references that guided the development of this study. 

Chapter 3 specifies the algorithms used: SOM, CHAID, CART, and FNNs. It addresses 

its mathematical formulations, describing the functioning, advantages, and particular aspects of 

each machine learning model. Furthermore, the chapter lists the software tools that allowed the 

development of artificial intelligence models. 

Chapter 4 presents the methodology used to develop the algorithms for predicting 

continuity indices, describing the pre-processing steps, training and testing sampling 

techniques, and the extraction of attributes. In addition, the statistical parameters that will be 

used to evaluate the results described in chapter 5 are described. 

Chapter 5 explains in detail all the results achieved, dealing with the efficiency of each 

proposed prediction model. The data are presented in a structured way in tables and graphs, 

allowing the comparison from different perspectives of the particularities of each algorithm. 
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Chapter 6 presents the conclusion, the contributions made by this research, and 

proposals for possible future related works. 

The appendices contain the codes of collection, treatment, and the algorithms developed 

for each model implemented in Python. 
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Chapter 2 

THEORETICAL FOUNDATION 

 

2.1 Introduction 

 The energy supply process is a complex process, which involves different elements from 

delivery to the final consumer. Considering that this work is limited to solving the power quality 

problems of power interruptions of medium voltage customers, this chapter intends to deal with 

the importance of power quality for these customers, and how Artificial Intelligence models 

can help utility companies electrical energy in the delivery of the quality of the electrical energy 

supplied. 

 

2.2 Importance of Power Quality for Medium Voltage Customers 

The quality of electrical energy is directly associated with the daily life of medium 

voltage consumers. Several factors can impair the quality of medium voltage energy supply. 

Since consumer units have different needs, existing problems in distribution can cause different 

types of impacts on these consumers (Das et al., 2018). Thus, this section will be started by 

defining what a medium voltage customer of an electrical company is, and in addition, will be 

defined what an electrical system is and its responsibilities.  

An electrical power system is formed by different elements, capable of bringing energy 

to the final consumer. These elements are plants and stations, capable of generating electric 

energy, high voltage lines, capable of transmitting electric energy, substations, capable of 

distributing electric energy, and distribution networks, responsible for delivering electric 

energy to the final consumer, which is technically called a consumer unit. In turn, distribution 

networks can be distinguished by their consumption capacity, which is measured in volts, so 

they are separated by voltages: medium voltage networks. This generally provides energy to 

industrial and commercial consumers, and low voltage networks, which provide energy mostly 

to residential consumers. Figure 01 below illustrates the electrical power system and its 

elements: 
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Figure 1 – Electric power system. 

 

Source: Blume, 2002. 

While in industrial and commercial consumers, problems in distribution can affect 

productivity, burn equipment and even cause explosions. In residential consumers, the lack of 

energy can cause problems in domestic activities and cause damage to domestic equipment. 

Thus, for both consumers, power quality is extremely important. This consumer requirement 

reveals a primary responsibility of transmission networks: to deliver electrical energy through 

the transmission network in a continuous manner, and with an acceptable voltage to the final 

consumer. This responsibility is directly linked to two other factors: modernization and better 

administration of distribution networks. These factors ensure the high quality of energy for end 

consumers (Dashtdar et al., 2018). 

Sannino, Svensson, and Larsson (2003) divide power quality disturbances into two 

classes: the first, interruptions and voltage changes are caused by faults mainly in the power 

system. In these cases, the system causes total or partial interruption of energy delivery. In the 

second class, the phenomena are caused by the low quality of the current. In these cases, the 

current often arrives unbalanced at the end consumer, but without interruptions, thus fluctuating 

the quality delivered (Khalid et al., 2011). In both cases, despite the difference in the location 

of the failure and the severity of the damage, both can cause harm to consumers. 

For Petleshkov and Lozanov (2019), the main causes of interruption in energy supply 

are successful auto-reclosing, weather conditions (falling logs and trees, storms, strong winds, 

snow), and defects in electricity cables (Soares et al., 2014). Inherent in power distribution, 

causes of reduced power quality are commonly recorded in the exact detection of the problem 

through sophisticated testing equipment. Khalid and Dwivedi (2011), report some events that 

can be indicators of power quality problems: pieces of equipment that deregulate at the same 
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time of day; short circuits that occur without overloading; equipment failures during storms; 

stoppages in automated systems for no apparent reason; electronic systems failures or frequent 

operations failures; systems that work in some places and not in others (Levi, 2005). 

Since different approaches have been proposed to define, classify and demonstrate the 

importance of the quality of energy supply, the next section aims to show how artificial 

intelligence models can help utilities to improve the quality of energy supplied. 

 

2.3 How Artificial Intelligence models can help energy utilities in energy 

quality 

Artificial Intelligence (AI) is a branch of computer science that proposes to develop 

devices that simulate the human ability to reason, perceive, make decisions and solve problems. 

AI has drawn a lot of attention due to the effective approximation it has had with human learning 

and reasoning. Within this field, machine learning has gained the attention of the scientific 

community, because of the possibility of combining with other science areas, through the 

characterization of databases that have been used mainly for statistical purposes, especially in 

the field of electrical engineering (Saninno et al., 2003).  

To achieve the goal of electrical modernization, the electrical network must be also 

worked intelligently, especially using AI. One way to work intelligently is to use statistical 

models that provide behavior analysis, including predicting future behaviors. In this way 

electric companies can benefit from these systems by making predictions of future events, to 

avoid interruption problems in their supply and guarantee high-quality energy. These tools are 

key elements, constantly analyzing the need for component updates and ensuring the integrity 

of the electrical matrix (Hammond, 1997; Bravo-Rodriguez, 2020). 

From proactive maintenance plans, electric companies took advantage of advantages 

over reactive plans such as: avoiding fire situations, cascading failures, and emergency costs. 

However, it is not straightforward to determine where limitations are located to ensure more 

effective repair of vulnerable components. In this sense, several studies on the implementation 

of smart grids have been developed and specialized. They act, for example, in the classification 

of electrical distribution failures. However, the advances have been particular, although 

characteristics between cities and electric companies are common, there are geographic 

particularities such as climate, network topologies, and even standards and maintenance 

policies regulated differently (Rudin et al., 2012). However, the location of failure points is 

difficult to identify. Recently, neural networks have gained attention in several energy 
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applications and fault analysis is one of the most important. There are reports in the literature 

of the use of artificial neural networks, to identify fault locations using different 

implementations of neural networks. 

Thus, the use of artificial intelligence combined with data-based strategies can prevent 

unnecessary investments from being made and direct investments in the right way, which can 

significantly improve the assertiveness of established indices. Furthermore, improving power 

quality can increase customer satisfaction with the service, as not all customers have been 

rewarded for the interruption of electricity supply (Ferreira et al., 2020; Ramos & Melo, 2010). 

Regarding the literature related to this section, many works make use of neural networks 

to apply artificial intelligence to face the challenges of electric companies. The neural networks 

have been successfully applied to predict interruptions. Examples are the use of neural networks 

to identify network fault section, fault location, and reliability worth analysis of distribution 

systems (Dashtdar et al., 2018; Heidari et al., 2017). Both papers do not present a categorical 

data analysis, only numeric variables are used for prediction, which is important data for 

strategic planning and better translating operational problems. The papers of Farhoumandi et 

al. (2021), Kumbhar et al. (2021), and Volosciuc & Dragosin (2015) discuss how neural 

networks can be used to evaluate interruptions. In this paper, an analysis of the interruptions 

presented about the network infrastructure is shown through Kohonen's self-organizing map 

algorithm (SOM), CHAID, and CART. Furthermore, the fully connected networks are used to 

exploit attributes commonly present in energy utility databases to predict interruptions indexes.  

 

2.4 Final Considerations 

In this chapter, the main reasons for using artificial intelligence methods to support 

power quality problems in medium voltage consumers were discussed. In section 2.2, the 

importance of electricity quality for medium voltage consumers was discussed, focusing on the 

differentiation of these consumers by voltage, their respective problems and impacts. On the 

other hand, section 2.3 presented the main artificial intelligence techniques and algorithms 

currently used to help electric utilities face the challenges. This highlights the neural network 

techniques that are the focus of this work. 

In the next chapter, the theoretical aspects of each algorithm used in the research will 

be addressed, including their mathematical and statistical formulations and the explanation of 

the software and computational language used.  
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Chapter 3 

LITERATURE REVIEW 

 

3.1 Kohonen's Self-Organizing Map 

There are several techniques for grouping data, such as K-Means, DBSCAN, 

Hierarchical Cluster, and Grid-based grouping. For such an application, neural networks also 

prove to be powerful for recognizing patterns and relationships between variables (Mingoti & 

ima, 2006). 

Kohonen's self-organizing maps are basically formed by two layers of neurons: an input 

layer and a unit layer, called U. The neurons of the U layer are arranged in an architecture that 

offers a notion of the neighborhood between the neurons (Ultsch, 1993). Considering 

architecture of two dimensions, the neurons are distributed in a two-dimensional grid where all 

input neurons are connected to all U layer neurons (Kohonen, 1990). 

In this way, if an n-dimensional input of a vector of real numbers is presented to the 

network, all neurons in the U layer compare their weight vectors and the neuron with greater 

similarity receives the correspondence (Ghaseminezhad & Karami, 2011). In this way, all 

neurons in a given neighborhood learn about the input vector and update their weights to 

become more similar to the given input vector (Strecker & Uden, 2002). This process is 

compared to a competition among the neurons, in which the most similar neuron, the winner, 

and its neighborhood are adjusted to become closer to the input pattern. 

The inputs are presented in a random sequence and through the repetition of this process 

over several periods, the range of the neighborhood is changed so that a neuron initially has 

many other neurons in its neighborhood, but at the end of this stage it has few or no neighbors 

(Kohonen, 1990). After some training periods, the neurons can represent relations in the input 

samples in one or two-dimensional space. Therefore, the SOM can reduce dimensionality, 

allowing an easier way to analyze data. It is also possible to delimitate clusters observing the 

distance between the neurons in the SOM, or data attributes depending on the application. 

Figure 2 represents the feature map in a two-dimensional grid. 
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Figure 2 – Dimensional grid representation. 

 

Source: Blume (2002). 

 

 3.2 Decision Trees 

Decision Trees is another special method for recognizing patterns and relationships 

between variables. Decision trees are supervised learning methods, used for classification and 

regression (Somvanshi et al. 2016). Based on divide-and-conquer strategies, decision trees 

mimic the functioning of the human brain and are capable of solving complex problems. Given 

a target variable, decision trees can infer rules from features. Its implementations exist in the 

most different forms, differentiating them by the way of applying classification rules, 

architecture, and complexity (Gregoriades et al., 2021). Strongly used for recommendation 

algorithms, decision trees are one of the most used classification techniques for their 

advantages, which are: could be an easier interpretation, which means that it is an explanatory 

model and in computational terms a very efficient one. However, from different perspectives, 

decision trees have some disadvantages such as compromised processing time when there are 

many variables and the fact of working with preferences of hypotheses over others because the 

bias is inductive (Rakhra, 2021). 

For understanding the operation of decision trees, DTs divide the data sets into subsets 

where at each node they are established by the rules defined in the branches, these divisions use 

different metrics such as information gain or Gini impurity indices (Podgorelec et al., 2013). 

Unlike black-box methods, DTs provide visibility into the rules and thus explains the rules used 



12 

 

 

for prediction. Through representation and rules, it is possible to identify which predictor 

variables have more strength to better explain the model. In this way, supporting not only data 

scientists but also decision-makers (Breiman, 2017). 

Other concepts involved are: Impurity functions, which are the criteria by which the 

model will split the data and merge potential tree nodes. The importance of variables is that the 

scale of the explanatory power of predictor variables. Decision trees use the importance of 

variables to reduce the relative error and include the variables that will best explain the model. 

That way all variables with zero importance are excluded. Stopping criteria are defined for 

when none of the nodes can be subdivided, or when a certain depth is reached. The predictive 

strength, which is used to avoid overfitting, which is the excessive fit of the data, is calculated 

by the contribution of variance for each leaf node (Rokach, & Maimon, 2005). 

As mentioned in the first paragraph, there are different implementations of decision 

trees, which can be cited mainly such as ID3, C4.5, J4.8, C5.0, CART, Random Forest. Sections 

3.2.1 and 3.2.2 dealt specifically with the CHAID and CART algorithms, which were used by 

this work to understand the problem. 

 

3.2.1 CART 

Classification and Regression Trees or CART is a type of Decision Tree algorithm used 

to solve predictive classification problems. This is one of the most classic DT algorithms, it is 

based on the GINI impurity measure as a separation criterion and creates a binary representation 

of the created rules. We can define GINI in a simplified way as a measure by which the 

probability of misclassification of a new instance of a random variable is calculated (Singh & 

Gupta, 2014). 

The CART algorithm works as follows: First, the best division is found for each 

variable, for each division the criterion is to maximize the separation measure. The result is a 

set that contains the best divisions. Once the best node split has been found. It is necessary to 

find between the divisions of the first step, the one that maximizes the separation criterion. 

Finally, the nodes are split using the best split made in the previous step, so the steps are 

repeated iteratively until the stopping criterion is satisfied (Rutkowski et al., 2014). 

 

3.2.2 CHAID 

CHAID, or Chi-squared Automatic Interaction Detection, is another decision tree 

variation that uses chi-squared statistics to define branch breaks at nodes. One of the first steps 
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of this algorithm is to verify if the relationships between the variables are statistically significant 

through the chi-square test of independence. Subsequently, if an entry has more than two 

categories, they will be compared and if they do not show significant differences they will be 

grouped in the same node. This is done recursively, and the process ends when all categories 

have been tested. For nominal variables, any category can be joined into a single node. For 

ordinal variables, only continuous categories can be grouped into a single node. The model has 

the disadvantage of fully examining all clustering possibilities which is costly in terms of 

processing time. However, it is a very efficient model and because it uses the chi-square 

method, it provides a good extraction of variables (Milanović & Stamenković, 2016; 

Baizyldayeva et al., 2013; Hammann & Drewe, 2012; Safara et al., 2020). Figures 3 and 4 

following show the difference between the architecture types and their branch types in the 

illustrations. 

Figure 3 – Representation of CHAID and its multiply nodes. 

 

Source: The author. 

Figure 4 – Representation of CART and its binary nodes. 

 

Source: The author. 
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3.3 Fully Connected Neural Networks 

Within the universe of artificial intelligence, neural networks research, along with its 

advances, has gained prominence in several fields and has brought significant contributions. 

Neural Networks can be understood as a method of optimizing processing time in several 

computational processes, as well as improving results. It is a hierarchical method and abstract 

analysis of layers, but even so, it can be applied in several situations of real-life as image 

processing, medicine, biometrics, among others (Vargas et al., 2017).  

Artificial neural networks stand out for their ability to address complex nonlinear 

relationships and working with multiple layers. These characteristics allow not needing any 

additional training data in some cases, being able to be applied in different types of forecasts 

and achieving good accuracy. Although there are disadvantages in using them, such as being a 

black-box method, and being difficult to interpret the results, they are quite useful in electrical 

engineering. Its application can range from a complete power supply process, from the detection 

of network failures to the analysis of the operations of power systems (Kumbhar et al., 2021). 

A relevant work and correlated with this work in the literature, with the use of artificial neural 

networks to identify fault sites, is that we can mention the work of Adewole, Tzoneva, and 

Behardien (2016), who proposed a hybrid method that uses indices in pre-processing stages. 

The results showed an excellent performance in detecting different types of faults and origins 

(Adewole et al., 2016). 

Analogously other methods, have a wide variety of types of neural networks, such as 

Recurrent Neural Networks (RNNs), applied in speech recognition and natural language 

translation; Convolutional Neural Networks (CNNs), used for image recognition; Feedforward 

Perceptron Multi-Layer Neural Networks (FFNNs) used for classification, and the Fully 

Connected Neural networks (FNNs), used for detection and prediction, which this work seeks 

to deepen and implement. The main difference between Fully Connected layers and other neural 

networks are those layers where all the inputs from one layer are connected to every activation 

unit of the next layer. An example of Fully Connected Neural Network can be visualized in 

Figure 5 (White, 1989; Bhamare & Suryawanshi, 2018; Faris et al., 2016).  
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Figure 5 – Representation of fully connected neural network. 

 

Source: The author. 

Fully connected neural networks were chosen because they are a model capable of 

reaching high precisions and dealing better with unbalanced data than other techniques such as 

logistic regression, random forest, ag bosting, etc., and also better than other neural networks. 

A deeper analysis of the fully connected neural networks parameters is presented in the results 

section, which will illustrate how to use fully connected neural networks to predict 

interruptions. 

 

 3.4 Tools Utilized 

3.4.1 Python 

The algorithm was implemented in the Python language. Among the benefits that justify 

choosing such a language, there is the availability of a wide range of libraries, ease of testing, 

and the parallel processing that some of its libraries offer. Python was created to organize 

programming patterns, to be able to manipulate objects, and can be very useful for working 

with data because it has standard and comprehensive libraries (Yarlagadda, 2018). 

 

3.4.2 Pandas 

The Python Pandas library was necessary to perform the data crossing and 

manipulations of the time series of the data of the concessionaires used in the research. 

Integrated per Python, this library allows an excellent integration of data preparation 
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functionalities for artificial intelligence, mainly due to the simple syntax that converts 

operations on dataframes into SQL queries. Despite being a less robust tool, the ease of 

implementation can be very useful at times (Hagedorn et al., 2021). 

 

3.4.3 Pyspark 

To support the step of data processing, considering that the database has a high number 

of records, parallel processing techniques were used, and proper data structure to reach the best 

precision when modeling the problem using neural networks to specify the libraries for parallel 

processing, the library used was Pyspark. The major benefit of this library is working with large 

volumes of data by native libraries with large community support and also providing great 

availability of data handling features (Stančin & Jović, 2019). 

 

3.4.4 IBM SPSS 

For initial analysis and feature extraction, was applied IBM SPSS. It was chosen because 

it is statistical software, that allows performing descriptive analysis of variables through a visual 

interface, using advanced statistical procedures it is possible to have high precision to make 

quality decisions. Therefore, the use of this statistical software is useful to interpret the outputs, 

facilitating the appropriate formulations and interesting research questions (Fávero & Belfiore, 

2017). 

 

3.4.4 Tensor Flow/Keras 

For training and evaluating the results, the libraries Tensor Flow and Keras were chosen. 

They are a high-level neural networks API, integrated by the Python language, which allows 

very fluid experimentation. Supported by strong documentation, it is possible to assemble quite 

functional neural network algorithms, whether from small or large datasets (Arnold, 2017). 

  

3.5 Final Considerations 

This chapter was intended to address the theoretical and mathematical aspects of the 

algorithms used in this research. In addition, it was about the usage of computational tools for 

the elaboration of the proposed models. 

In section 3.1, the theoretical aspects of the self-organizing maps algorithm were 

discussed, detailing its mathematical aspects and how it works. 
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Section 3.2 was intended to detail the operation of decision tree algorithms, especially 

introducing the concepts of CHAID and CART decision tree derivations used in the work. 

In section 3.3, the theoretical concepts of fully connected neural networks were 

discussed, informing their mathematical aspects, advantages, and disadvantages. 

Section 3.4 addressed the computational tools used in this work, discussing the python 

language and the libraries used to implement the algorithms mentioned in the chapter. 

In the next chapter, the methodology used in the research will be discussed, presenting 

the database used, processing steps, and methods for evaluating the algorithms. 
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Chapter 4 

MATERIALS AND METHODS 

 

From initial descriptive analyses, a hypothesis was formulated regarding possible 

problems related to energy quality faced by customers. To confirm this hypothesis, a cluster 

analysis was carried out, to understand the profile of these customers and the main existing 

challenges. The confirmation of the hypothesis by the analysis enabled the development of an 

artificial intelligence model that could find in advance the customers who will present 

continuity indices above those stipulated by Aneel. 

The other steps in the implementation of the solution were: previous data analysis with 

descriptive statistics, data normalization or standardization, removal of outliers, application and 

adaptation of the SOM algorithm from Vettigli (2021), delimitation of clusters to analyze, and 

evaluation of the centroids and the data samples into the clusters. The steps followed for the 

creation of the solution were: data preparation, extract features using decision trees (CHAID, 

based on Chi-Square, and CART, based on feature importance), exploratory data analysis, data 

normalization or standardization, application, and adaptation of the neural network algorithm 

(fully connected with oversampling and balanced per class).   

Additionally, to enable the objectives to be achieved satisfactorily, adjustments and 

analysis of the parameters were made, allowing the refinement of the results. Data processing 

was a challenging step because the database has a high number of records, which required the 

use of parallel processing techniques, as well as an adequate matrix data structure to compute 

centroids efficiently. To support the step of data processing, considering that the database has 

a high number of records, parallel processing techniques were used, and proper data structure 

to reach the best precision when modeling the problem using neural networks.  For initial 

analysis and feature extraction was applied IBM SPSS. To build the implementation the Python 

language was chosen. This decision was made because such language offers a wide range of 

libraries, ease of testing, and can process data in parallel. 
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4.1 Data, Architecture of Concept Proof, and Implementation Strategies 

During the implementation of the algorithm, one of the main challenges faced was the 

selection of variables and the proper processing of information. A prototype was created using 

database tables of medium voltage units to achieve the objectives. The data did not exist ready 

to be consumed, the data was scattered in different tables and some essential information was 

not available, requiring a web scraping on the ANEEL website to obtain the information. In 

this way, information query scripts, cleaning, treatment, data crossing, standardization of 

variable names, construction of variables, data standardization, and exploratory analysis were 

necessary to create the prototype that could provide sufficient data for the research objectives. 

The architecture of the concept proof is shown on Figure 6. The data sent by 

concessionaries for ANEEL are stored on the database, named BDGD, which is a data 

representation of the Brazilian electrical system. Despite having some registration problems, it 

is the source used by ANEEL for the application of fines and price stipulation (ANEEL, 2021). 

Despite its vulnerabilities, BDGD is one of the main sources of energy supply analysis, even 

though it does not have all the relevant information involved in energy supply (Tronchoni et 

al., 2010). Due to regulatory resolutions, Brazilian concessionaires are required to submit their 

information for audit (ANEEL, 2021). Access to the database was provided by the Research 

and Development consortium, however it can be requested by anyone for analysis by requesting 

the regulatory agency. 

These data were available in different tables separated by Medium Voltage (UCMT) 

and Low Voltage (UCBT) and on tables that describes the description of circuits (CTMT), 

substations (SUN), substation transformer unit (UNTRS), conjunto (CONJ), that could be 

interpreted as a set of consumer units, and other common elements of network distribution. The 

data was enriched with CNAE-Subclasses (National Classification of Economic Activities, 

version 2.3) and join through by python pipelines, the series of data available is of the years of 

2017, 2018 and 2019. The data provided by BDGD, have all existing distributors in Brazil. 

Thus, to create the concept proof, two extractions were used, the first covering a complete state 

of the Brazilian Southeast region, having 14000 customers and 42 variables. Used to understand 

the context through the Self Organizing Maps algorithm, and a second clipping that also 

involves a complete state of the western region with 910 medium voltage customers and 130 

variables. 
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Figure 6 – Architecture of Concept Proof. 

 

Source: The author. 

The variable target was created based on the interruption indicators, DIC and FIC, above 

the established by the National Electric Energy Agency of Brazil (ANEEL) for the next year. 

The problem may be classified as mild imbalanced, whose proportion of minority class cases 

positives (interruption indexes over than limits) is 23.41%.  

Many implementations of neural networks were tested, as well as own authorship as 

adapted from available implementations. Fully connected neural networks were chosen because 

they are a model capable of reaching high precisions and dealing better with unbalanced data. 

The first implementation was built as a baseline, just using a single layer and the final 

implementation has two layers fully connected. To understand the best distribution for the 

dataset sample, both implementations were trained with imbalanced class, oversampling, and 

class weights. The ratio split of training and testing sets was 80/20. 

Moreover, parameters such as number of neurons, number of epochs, and learning rate, 

were carefully adjusted based on the results of baseline implementation. The optimal 

parameters to tune the neural network was found using Keras Tuner Library. 
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To evaluate the results, a confusion matrix was obtained considering the number of 

correct and incorrect predictions, according to the following definitions: False Positive (FP) as 

the prediction of an interruption above the index when actually there was not an interruption 

above the reference; False Negative (FN), prediction of no interruption above the index when 

actually there was an interruption above the reference; True Positive (TP), prediction of an 

interruption above the index when actually there was an interruption above the reference; True 

Negative (TN), prediction of no interruption above the index when actually, in fact, there was 

not an interruption above the reference. The confusion matrix used in this section of results is 

represented by Figure 7:  

Figure 7 – Representation of confusion matrix. 

 
Source: The author. 

Considering that the target variable is an imbalanced class, the metrics used should be 

focused on reducing the false positives and false negatives, therefore, precision, recall, and Area 

Under the Curve (AUC) were obtained from the confusion matrix.  

For understanding, if the training was working, the plots of the model's precision, loss, 

recall, and AUC on the training and validation set were analyzed to verify if the results were 

stabilizing and the model learning correctly. 

 

 4.5 Final Considerations 

This chapter describes the methods adopted for analyzing data from medium voltage 

consumers and for formulating the artificial intelligence model, capable of predicting the 

interruption rates for each consumer unit.  

True Negative

Predicted:
no interruption above index

Actual: 
no interruption above index

False Positive

Predicted: 
interruption above index

Actual:
no interruption above index

False Negative

Predicted:
no interruption above index

Actual:
Interruption above index

True Positive

Predicted:
interruption above index

Actual:
Interruption above index
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In section 4.1, were presented the database, the techniques used to generate the classes, 

the form of splitting the sets of training and test, extraction of attributes, which will be used as 

inputs for the artificial intelligence models and the explanation of the methods used for 

evaluating realized forecasts. 

In the next chapter, the results obtained and the comparison of the efficiency of the 

proposed algorithms will be shown. 
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Chapter 5 

RESULTS 

 

5.1 Clusters Formed by Self Organizing Maps 

Among the possible analyzes considering the available databases, which have tables of 

various elements of the electrical network, the SOM was used to group data from medium 

voltage consumer units. As presented on the section 4.1, scenario 1 was used to evaluate the 

clusters. With 14000 samples, the variables utilized were the average consumption in one year 

(ENE_M), installed load (CAR_INST), and duration of individual interruption per consumer 

unit (DIC). These variables were chosen because the algorithm works only with numerical 

variables, which are the variables that generated the best results interpretations.  

To understand the effect of each SOM parameter, synthetic data with two numerical 

attributes were used in such a way that they could be visually observed, as shown in Figure 8. 

Figure 8 – Synthetic data. 

 

Source: The author. 

It is expected that a tuned SOM will be able to separate such data since the sets can be 

visually separated. Among the parameters analyzed, the following stand out: the number of 

training seasons, the size of the neighborhood, and the dimensions of SOM. 

As shown in Figure 9, where blue indicates clusters with a smaller average distance to 

their neighbors, and red indicates distant clusters, the number of epochs should not be too small, 
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as the data is condensed only in a part of SOM. On the other hand, it cannot be too big, as the 

data spread in such a way that the clusters mix visually, in addition to increasing the 

computational cost. 

Figure 9 – Average distance map for different numbers of epochs. 

 

Source: The author. 

Considering a Gaussian neighborhood function, the effect of a neuron on the 

neighborhood can be adjusted with the standard deviation parameter σ. As shown in Figure 10, 

σ must not be too small, since this way the data is condensed only in one part of the SOM. On 

the other hand, it cannot be too big, as the data spread in such a way that the clusters are visually 

confused with a single large cluster. 

Similarly, regarding the number of neurons, there is also an ideal range, as shown in 

Figure 11. Also, the increase in SOM means an increase in computational cost and execution 

time.  

Figure 10 – Average distance map for different neighborhood sizes. 

   

Source: The author. 

(a) 10 epochs (b) 150 epochs (c) 10000 epochs 

(a) 𝜎 = 1 (b) 𝜎 = 3 (c) 𝜎 = 5 
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Figure 11 – Average distance map for different SOM dimensions. 

     

Source: The author. 

 

5.2 Clusters based on energy consumption, installed load, and duration of 

the individual interruption 

With around 14000 samples, and with the attributes of average consumption (ENE_M), 

installed load (CAR_INST) and DIC, the clusters that are shown in Figure 12 were obtained. 

Superclusters are seen in blue on the map of average distances, indicating neurons close 

together. 

Figure 12 – (a) Average distance map. (b) The variance between samples classified in each neuron. 

      

Source: The author. 

(a) 5x5 (b) 15x15 (c) 50x50 

(a)  (b) 
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For a choice of superclusters, that is, groups of neurons for analysis, it is interesting to 

use maps of the components used by SOM to group the data, aiming to understand what led to 

the formation of each cluster and its characteristics. Figure 13 shows the maps of the average 

monthly consumption components ENE_M and DIC, which reveal another aspect: the 

formation of smaller clusters with common component values within the larger clusters. 

Figure 13 – (a) ENE_M and (b) DIC components map. 

      

Source: The author. 

To verify the difference between the chosen superclusters, a matrix, shown in Figure 

14, was used, each coordinate shows how different the two groups are. Group 1 is the most 

different, as the first row and the first column of the matrix have more red tones, indicating a 

greater difference for the other superclusters. Cluster 4 is less distant from cluster 1, as it has a 

lighter shade of red. This confirms what is seen in SOM's topology. 

Comparing clusters 2 and 3, we can see from the map of the DIC component, Figure 13, 

that despite being close in the SOM topology, these two groups have different DICs: Group 2 

has a good index, while group 3 has a higher index, that is worse, with more power outages. 

  

(a)  (b) 
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Figure 14 – Difference matrix among the delimited clusters. 

      

Source: The author. 

Regarding the classes of consumers present in each supercluster, group 2 presents a 

predominance of industrial and commercial units, while group 3 presents a predominance of 

rural and industrial units installed in non-urban areas, as shown in Figure 15. This figure also 

shows the most frequent categories in the entire database, to enable the understanding of the 

patterns of the groups analyzed in relation to the whole. 

Figure 15 – Types of customers, urban UB and non-urban NU, with higher frequencies in the whole database 

and clusters 2 and 3. 

    

Source: The author 
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Figure 16 shows the most frequent activities performed by these groups obtained using CNAE 

data from IBGE - Instituto Brasileiro de Geografia e Estatística. 

Figure 16 – Most frequent activities in the whole database and superclusters 2 and 3. 

      

Source: The author. 

To analyze the clusters considering the cities with the largest number of consumer units 

in each cluster, a description of each municipality is useful. Such descriptions are presented 

below 

• Municipality A is an extremely urbanized municipality with a mild climate, economic 

and political center. 

• Municipality B is an extremely urbanized municipality. 

• Municipality C is an urbanized municipality. 

• Municipality D is a medium-sized and hot climate municipality with an economy based 

on mining and agriculture. 

• Municipality E is a small rural municipality, with great economic importance. 

• Municipality F is an urbanized municipality. 

• Municipality G is a medium-sized municipality with a mild climate and an economy 

based on agriculture. 

• Municipality H is an urbanized municipality. 

• Municipality I is a small rural municipality. 

• Municipality J is a medium-sized municipality with an economy based on mining, 

industry, and agriculture. 

• Municipality K is a medium-sized municipality with a hot climate and an economy 

based on agriculture. 

• Municipality L is a small rural municipality. 
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• Municipality M is a small rural municipality. 

• Municipality N is a small rural municipality. 

• Municipality O is a medium-sized municipality with a hot climate and an economy 

based on agriculture and mining. 

As shown in Figure 17, cluster 2 follows the trend of the base with large urban 

municipalities, A, B, and C, being more frequent. Cluster 3, on the other hand, presents small 

towns more frequently, D and E, whose economy is based on agriculture or mining. The 

municipality E, the second most frequent in group 3, is a big exporter of citrus products. This 

leads us to a situation in need of improvement since agricultural activities need good 

infrastructure regarding electricity. For example, to avoid losses in production due to lack of 

refrigeration or irrigation. 

Figure 17 – Masked municipalities with higher frequencies in the database and clusters 2 and 3. 

      

Source: The author. 

To analyze subgroups 1, 4, 5, and 6, it is interesting to check the relationship between 

DIC and the average consumption (ENE_M) variables in these clusters. A high DIC means 

more time without power, which is a situation of operational difficulty for the concessionaire 

and poor service for the consumer unit. If the DIC indicator is below the levels established by 

law, the concessionaires pay fines. Higher consumption is related to the greater economic 

importance of the consumer unit for the concessionaire. These relationships are illustrated in 

Figure 18. 
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Figure 18 – Relationship between DIC e ENE_M. 

      

Source: The author. 

Thus, groups 4 and 6 have a worse DIC indicator, which shows scope for improvement. 

On the other hand, 1 and 4 represent economically important consumers. 

Figure 19 shows the most frequent groups of consumer units in each cluster. Again, the 

clusters with the worst indicators have a rural predominance, shown in the graphs on the right. 

Group 5 has a commercial predominance and presents the best DIC indicators. 

Figure 19 – Types of customers, urban UB and non-urban NU, with higher frequencies in superclusters 1, 4, 5, 

and 6. 

      

Source: The author. 

Regarding the municipalities present in each group, smaller municipalities are presented 

in the two clusters with the worst DIC indicators, clusters 4 and 6, as shown in Figure 18. 

However, there are also large municipalities with consumer units with bad DIC, such as the 

case of municipalities B and H, the most frequent municipalities in cluster 4, the second cluster 

in Figure 20. 
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Figure 20 – Masked municipalities with higher frequencies in superclusters 1, 4, 5, and 6. 

      

Source: The author. 

As regards the activities carried out by the clusters' units, agriculture activities 

predominate in cluster 6, as shown in Figure 21. Also, there are water treatment companies in 

clusters 1, 4, and 5. It is interesting to highlight that this type of service is essential and that 

these units are in urban areas, indicating another scope for improvement. 

Figure 21 – Most frequent activities in superclusters 1, 4, 5, and 6. 

      

Source: The author. 
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The presented SOM was shown to be capable of grouping the electrical consumers, 

reflecting the relations between the variables, such as DIC and consumption category (rural, 

industrial, commercial). Patterns were found according to the objectives of the work, such as, 

the understanding of the energy consumption throughout the year of some clusters. 

 

In addition, the hypothesis raised in the methodology that there were power interruption 

problems was confirmed in the initial analysis. Figures 19, 20, and 21 shows the formation of 

clusters of BDGD customers with low and very low DIC (Electricity Continuity Index – 

Duration of interruptions). Through these results obtained by the cluster analysis of the SOM 

neural network, it is possible to see that the power quality indicators. More precisely related to 

interruptions, had a marked impact on cluster formation and revealed an existing problem in 

the power supply process. As mentioned in section 4.1, about data sources considerations, the 

interruption indexes in over than limits is 23.41%. This data combined with the results of 

clusters formed by SOM, supports the creation of the target variable described in the 

implementation strategies section, validate the reason why it is possible to understand the 

patterns of this problem, and allows us to conclude that the main objective of this research is 

feasible to be solved through artificial intelligence models. Therefore, in the following sections, 

these models will be presented and discussed. 

 

5.3 Feature extraction and selection – CART and CHAID 

The feature extraction and selection were implemented by the analysis of scenario 2, as 

presented on section 4.1, whose initial analysis starts with 130 brute variables and 852 

transformed. Using variables selection of two models of decisions tree (CHAID and CART), 

their numbers were reduced to 8 brute variables and 236 transformed. The results of the models 

are shown in Figure 22 and Figure 23. 
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Figure 22 – Rules of Classification - Decision Tree CHAID. 

 

Source: The author. 

A decision tree CHAID based on chi-square, reveals the five best nodes that visually 

explain the relationship between the variables and the interruptions. To understand this, the tree 

shows that the greater the frequency of interruptions, the greater the chance of interruptions 

above the limit stipulated by the regulatory agency in the next year, especially in specific 

neighborhoods. In contrast, for certain customers, the lower the number of interruptions in the 

current period and the higher the energy consumption in the fifth month, the lower the chance 

of interruptions outside the norm in the subsequent year. 
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Figure 23 – Rules of Classification - Decision Tree CART. 

 

Source: The author. 

A decision tree CART builds its rules based on feature importance, generating binary 

nodes which have shown that rural networks have more chance of interruptions than urban 

networks, especially in specific circuits. However, when urban networks have more than 9.5 

interruptions, they probably will have in the next year interruption indexes outside the norm in 

the subsequent year.  
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The features selected for the training and validation of neural networks were:  

• ENE_02: measured active energy of the 2nd period (kWh)  

• ENE_05: measured active energy of the 5th period (kWh)  

• DIC: the annual duration values (in hours) of the unit's individual interruptions in the 

year prior to the target  

• FIC: the annual frequency values of the unit's individual interruptions in the year prior 

to the target  

• POT_F02: apparent rated power with forced ventilation 02 (MVA) 

• NOM: substation name  

• CLAS_SUB: description of class and subclass (Commercial, Rural, Public Service, 

Commerce)  

• CTMT: Medium Voltage Circuit Description  

• UNI_TR_S: Substation Transformer Unit Description  

The matrix of correlations of the variables is shown in Figure 24: 

Figure 24 – Correlation Matrix of numeric features. 

  

Source: The author. 

Analyzing the matrix of correlations, it is possible to deduce that the frequency and 

duration are much correlated. A strong correlation between ENE_02 and ENE_05 was expected 

because of the consumption that doesn’t have significant variance over the months in the same 

year. None of the variables have a direct correlation with the target variable.   
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5.4 The baseline neural network implementation  

The simple implementation, called baseline, was constructed with one input layer that 

had 16 neurons and activation ReLU activation. A dropout layer has a rate of 0.5., an output 

layer with 1 neuron and sigmoid activation. The optimizer was implemented with Adam 

algorithm, using a learning rate of 0.001 and the loss function used was binary crossentropy, as 

shown in Figure 25. 

Figure 25 – Baseline algorithm parameterization. 

 

Source: The author. 

 

5.5 The fully connected neural network implementation 

The implementation developed from the baseline was created with two layers fully 

connected. The first input layer had 256 neurons and ReLU activation. A dropout layer with a 

rate of 0.5 was applied, and a second input layer was parameterized with 75 neurons and ReLU 

activation, suggested by the process of tuning. After this was configured an output layer with 1 

neuron and sigmoid activation. The optimizer was implemented with Adam algorithm with a 

learning rate of 0.001 and the loss function used was binary crossentropy, as shown in Figure 

26. 
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Figure 26 – Fully connected neural network algorithm parameterization. 

    

Source: The author. 

 

5.6 Imbalanced, balanced per weight class, and oversampling training   

The baseline implementation was trained with different samples (imbalanced, balanced 

per weight class, and oversampling) after 100 epochs, the best results were generated by the 

samples of oversampling with 0.62 of precision, 0.86 of recall, 0.72 of f1-score, and 0.91 of 

AUC. These results revealed that the problem of interruptions can be predicted, and precision 

metrics improved. To understand if it was possible to achieve better precision and recall, more 

layers and neurons were added. Although, after 1000 epochs the precision increased to 0.76 

with the fully connected neural network, the recall decreased to 0.76, the f1-score increased to 

0.76 and the AUC got very close at 0.90 with a sample generated by oversampling. The result 

with the fully connected neural network can be considered better due to the f1 score, which is 

a harmonic mean of precision and recall, that had better results compared to the baseline with 

the same type of sample. The plots and metrics of training can be visualized in Figures 27, 28, 

and Tables 1, 2.     
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Figure 27 – Confusion matrix and plots of precision, loss, recall, and AUC on the training and validation of 

baseline algorithm. 

 

Source: The author. 

Figure 28 – Confusion matrix and plots of precision, loss, recall, and AUC on the training and validation of fully 

connected neural network algorithm. 

 

Source: The author. 
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Table  Table 1: Results of baseline algorithm using different trainings (imbalanced, balanced per weight class, and 

oversampling training). 

Imbalanced Balanced per Weight Class Oversampling 

precision: 0.45 precision: 0.45 precision: 0.62 

recall: 0.75 recall: 0.75 recall: 0.86 

f1 score: 0.56 f1 score: 0.56 f1 score: 0.72 

auc: 0.85 auc: 0.91 auc: 0.90 

 Source: The author. 

 

  

Table 2: Results of fully connected neural network algorithm using different trainings  

(imbalanced, balanced per weight class and oversampling training)  

Imbalanced Balanced per Weight Class Oversampling 

precision: 0.83  precision: 0.79  precision: 0.76  

recall: 0.56  recall: 0.73  recall: 0.76  

f1 score: 0.66  f1 score: 0.75  f1 score: 0,76  

auc: 0.89  auc: 0.89  auc: 0.90  

Source: The author. 
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Chapter 6 

CONCLUSION 

 

6.1 Introduce 

Techniques of data analyzing were used in a real database. The detailed examples with 

synthetic data contribute to a better understanding of the SOM parameters tuning. The presented 

neural network was shown to be capable of predicting exceeded interruption indexes of medium 

voltage electrical consumers. Based on the available variables, the result of the proof of concept 

is interesting. Even with the uncertainties that are inherent to the problem of power outages, the 

model manages to explain the interruptions, that is, the continuity indices, for the following 

year. In addition to showing the factors that best explain the target variable studied, it provides 

a better prediction than basic (random) algorithms.  

 

6.2 Main contributions 

The main contributions of this work are related to the success in demonstrating how to 

create a proof of concept capable of profiling interruptions and explaining interruptions simply. 

The data and facts obtained, support the achievement of the main purpose objective of this 

paper, such as accuracy of up to 76% to predict the interruptions, which can be considered a 

good result for the metric.  

In addition, the data allowed mining the Geographic Databases of Distributors and 

creating a proof of concept capable of profiling outages and explaining outages, even with the 

uncertainties that are inherent to the problem of power outages, the model manages to explain 

the interruptions. That is, the continuity indices, for the following year. As well as subsidizing 

academics for future work and correlated research, reveals existing problems in consumer units 

so that concessionaires and regulatory bodies to better fulfill their responsibilities.  

 

 6.3 Future Work 

As for future work, it can be mentioned the implementation of improved SOMs with the 

treatment of categorical variables. It is possible to estimate loads installed in residential 

consumer units, using a Brazilian possession and consumption habits research base, based on 
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electrical equipment data from consumer units. Lastly is possible to extend the implementation 

to low voltage consumers, since the same variables exist for this type of consumer unit, it is 

only necessary to replicate the model and analyze the results.   
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APPENDICES A – Source Codes 1 

 

A.1 Collection and Treatment of Data 

##Defining Session Spark 2 

import pyspark 3 

from pyspark import SparkContext 4 

from pyspark.sql import SparkSession 5 

spark = SparkSession \ 6 

 .builder \ 7 

 .appName("eletricity_app") \ 8 

 .config("spark.executor.memory", "3g") \ 9 

 .getOrCreate() 10 

from pyspark.sql import SQLContext 11 

from pyspark.sql.functions import concat,col 12 

from pyspark.sql.functions import lit 13 

import pandas as pd 14 

sqlContext = SQLContext(spark) 15 

sqlContext = SparkSession.builder.getOrCreate() 16 

##Defining the parameters 17 

ANO = '2018' 18 

##Read the variables of consuming and loads  19 

dados = sqlContext.read.format("csv").option("header", "true").option("delimiter", 20 

";").load(path")  21 

dados = dados.withColumn('CHAVE', concat(lit(ANO), col('BRR'), col('ARE_LOC')))  22 

dados = dados.withColumnRenamed("COD_ID","COD_ID_PRINCIPAL") 23 

dados.show(n=5, truncate=False) 24 

##Read the variable CONJ 25 

conj = pd.read_excel(r"path", sheet_name='CONJ-2018', engine='openpyxl') 26 

conj=spark.createDataFrame(conj)  27 

conj=conj.drop('Shape_Area', 'Shape_Leng', 'DESCR', 'OBJECTID')  28 
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conj.printSchema() 29 

conj.show() 30 

##Read the variable CTMT 31 

import pandas as pd 32 

ctmt = pd.read_excel(r"path", engine='openpyxl') 33 

ctmt=sqlContext.createDataFrame(ctmt)  34 

ctmt.printSchema() 35 

ctmt.show() 36 

ctmt = 37 

ctmt.drop('ENE_01','ENE_02','ENE_03','ENE_04','ENE_05','ENE_06','ENE_07','ENE_08','E38 

NE_09','ENE_10','ENE_11','ENE_12','PERD_A3a','PERD_A4','PERD_B','PERD_MED','PE39 

RD_A3a_B','PERD_A4_B','PERD_B_A3a','PERD_B_A4','PNTMT_01','PNTMT_02','PNTM40 

T_03','PNTMT_04','PNTMT_05','PNTMT_06','PNTMT_07','PNTMT_08','PNTMT_09','PNT41 

MT_10','PNTMT_11','PNTMT_12','PNTBT_01','PNTBT_02','PNTBT_03','PNTBT_04','PNT42 

BT_05','PNTBT_06','PNTBT_07','PNTBT_08','PNTBT_09','PNTBT_10','PNTBT_11','PNTB43 

T_12','DESCR','PERD_A3aA4','PERD_A4A3a', 'UNI_TR_S', 'PAC', 'SUB', 'NOM', 44 

'OBJECTID') 45 

ctmt.show() 46 

##Read the variable SUN 47 

sun = pd.read_excel(r"path") 48 

sun=sqlContext.createDataFrame(sun)  49 

sun=sun.drop('POS', 'Shape_Area', 'DESCR', 'Shape_Length', 'OBJECTID') 50 

sun=sun.withColumnRenamed('NOM', 'NOM_SUB')  51 

sun.printSchema() 52 

sun.show()  53 

##Read the variable UNTRS 54 

untrs = pd.read_excel(r"path") 55 

untrs[['BARR_3', 'PAC_3']] = untrs[['BARR_3', 'PAC_3']].astype(str) 56 

untrs=sqlContext.createDataFrame(untrs) 57 

untrs = untrs.drop('ARE_LOC', 'SIT_ATIV', 'CONJ', 'DAT_CON', 'MUN', 'SUB', 'DESCR', 58 

'OBJECTID') 59 
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untrs.printSchema() 60 

untrs.show() 61 

##Read the variable TEN_FORN 62 

ten_forn = pd.read_excel(r"path", sheet_name='TEN_FORN') 63 

ten_forn[['LIMITE_DIC']] = ten_forn[['LIMITE_DIC']].astype(str) 64 

ten_forn=sqlContext.createDataFrame(ten_forn)  65 

ten_forn.printSchema() 66 

ten_forn.show() 67 

##Read the variable TARE 68 

tare = pd.read_excel(r"path") 69 

tare[['COD_ID']] = tare[['COD_ID']].astype(str) 70 

tare=sqlContext.createDataFrame(tare)  71 

tare= tare.withColumnRenamed("DESCR", "DESCR_TARE") 72 

tare.printSchema() 73 

tare.show() 74 

##Read the variable TARIFF GROUP 75 

grupo_tarifario = pd.read_excel(r"path", sheet_name='GRUPO_TARIFARIO') 76 

grupo_tarifario=sqlContext.createDataFrame(grupo_tarifario)  77 

grupo_tarifario= 78 

grupo_tarifario.withColumnRenamed("DESCR","DESCR_GRUPO_TARIFARIO") 79 

grupo_tarifario.printSchema() 80 

grupo_tarifario.show() 81 

##Read the variable PHASES 82 

fases = pd.read_excel(r"path", sheet_name='FASES') 83 

fases[['COD_ID']] = fases[['COD_ID']].astype(str) 84 

fases=sqlContext.createDataFrame(fases) 85 

fases= fases.withColumnRenamed("DESCR","DESCR_FASES") 86 

fases.printSchema() 87 

fases.show() 88 
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##Read the variable CLASS 89 

classes = pd.read_excel(r"path", sheet_name='CLASSE') 90 

classes[['COD_ID']] = classes[['COD_ID']].astype(str) 91 

classes=sqlContext.createDataFrame(classes) 92 

classes= classes.withColumnRenamed("DESCR","DESCR_CLASSE") 93 

classes.printSchema() 94 

classes.show() 95 

##Read the index DIC/FIC yearly  96 

limite_dic_fic_anual = pd.read_excel(r"path") 97 

limite_dic_fic_anual=sqlContext.createDataFrame(limite_dic_fic_anual)  98 

limite_dic_fic_anual.printSchema() 99 

limite_dic_fic_anual.show() 100 

##Read the index DIC/FIC following year 101 

dic_fic_ano_anterior = sqlContext.read.format("csv").option("header", 102 

"true").option("delimiter", ";").load(r"path")  103 

dic_fic_ano_anterior = dic_fic_ano_anterior.withColumn('CHAVE', concat(lit(ANO), 104 

col('BRR'), col('ARE_LOC')))  105 

dic_fic_ano_anterior = dic_fic_ano_anterior.select("COD_ID", "DIC", 106 

"FIC").withColumnRenamed("DIC","DIC_SEG").withColumnRenamed("FIC","FIC_SEG") 107 

##Join all variaveis 108 

dataset_final = dados.join(conj, 109 

on=(dados.CONJ==conj.COD_ID)&(dados.DIST==conj.DIST), 110 

how='left').drop(conj.COD_ID).drop(conj.DIST)\ 111 

 .join(ctmt, on=(dados.CTMT==ctmt.COD_ID)&(dados.DIST==ctmt.DIST), 112 

how='left').drop(ctmt.COD_ID).drop(ctmt.DIST)\ 113 

 .join(sun, on=(dados.SUB==sun.COD_ID)&(dados.DIST==sun.DIST), 114 

how='left').drop(sun.COD_ID).drop(sun.DIST )\ 115 

 .join(untrs, on=(dados.UNI_TR_S==untrs.COD_ID)&(dados.DIST==untrs.DIST), 116 

how='left').drop(untrs.COD_ID).drop(untrs.DIST)\ 117 

 .join(ten_forn, on='TEN_FORN', how='left')\ 118 

 .join(tare, on=dados.ARE_LOC==tare.COD_ID, how='left').drop(tare.COD_ID,)\ 119 
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 .join(grupo_tarifario, on=dados.GRU_TAR==grupo_tarifario.COD_ID, 120 

how='left').drop(grupo_tarifario.COD_ID)\ 121 

 .join(fases, on=dados.FAS_CON==fases.COD_ID, how='left').drop(fases.COD_ID)\ 122 

 .join(classes, on=dados.CLAS_SUB==classes.COD_ID, how='left').drop(fases.COD_ID)\ 123 

 .join(limite_dic_fic_anual, on=dados.CHAVE==limite_dic_fic_anual.CHAVE, 124 

how='left').drop(limite_dic_fic_anual.CHAVE)\ 125 

 .join(dic_fic_ano_anterior, 126 

on=dados.COD_ID_PRINCIPAL==dic_fic_ano_anterior.COD_ID, how='left') 127 

dataset_final.show() 128 

dataset_final.count() 129 

dataset_final = dataset_final.filter(col('MAX_DIC').isNotNull()) 130 

dataset_final.count() 131 

dataset_final = dataset_final.filter(col('MAX_FIC').isNotNull()) 132 

dataset_final.count() 133 

dataset_final = dataset_final.filter(col('DIC_SEG').isNotNull()) 134 

dataset_final.count() 135 

dataset_final = dataset_final.filter(col('FIC_SEG').isNotNull()) 136 

dataset_final.count() 137 

dataset_final.printSchema() 138 

pandasDF2=dataset_final.toPandas() 139 

pandasDF2.to_csv('ETL_VARIAVEIS_ELETRICITY_11-12.csv', sep='|', header=True, 140 

index = False) 141 

 

A.2 Training The Baseline Neural Network Algorithm 

Importing the libraries 

from tensorflow.keras.models import Sequential 1 

from tensorflow.keras.layers import Dense, Dropout, Activation 2 

from tensorflow.keras import optimizers, regularizers 3 

from tensorflow.keras.optimizers import Adam 4 

from pyspark import SparkContext, SparkConf 5 

from pyspark.sql import SQLContext 6 

from pyspark.ml.feature import OneHotEncoder, StringIndexer, StandardScaler, 7 

VectorAssembler 8 
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from pyspark.ml import Pipeline 9 

from pyspark.sql.functions import rand 10 

from pyspark.mllib.evaluation import MulticlassMetrics 11 

from pyspark.sql.functions import col 12 

from pyspark.sql.types import StringType,BooleanType,DateType, IntegerType 13 

import numpy as np 14 

from pyspark.sql.functions import desc, row_number, monotonically_increasing_id 15 

from pyspark.sql.window import Window 16 

from pyspark.sql.functions import rand  17 

import pyspark.sql.functions as func 18 

import matplotlib as mpl 19 

import matplotlib.pyplot as plt 20 

import numpy as np 21 

import pandas as pd 22 

import seaborn as sns 23 

import sklearn 24 

from sklearn.metrics import confusion_matrix 25 

from sklearn.model_selection import train_test_split 26 

from sklearn.preprocessing import StandardScaler 27 

 

Load the data 

df = pd.read_csv('ETL_VARIAVEIS_ELETRICITY_11-12.csv', delimiter ='|') 28 

df.loc[((df['DIC_SEG'] > df.MAX_DIC)  29 

 |(df['FIC_SEG'] > df.MAX_FIC)), 'NORMALIDADE_ANO_SEGUINTE'] = 1 30 

df['NORMALIDADE_ANO_SEGUINTE'] = 31 

df['NORMALIDADE_ANO_SEGUINTE'].fillna(0) 32 

df = df[['OBJECTID', 'ENE_02','ENE_05','DIC', 'FIC', 'POT_F02', 'NOM', 'CLAS_SUB', 33 

'CTMT', 'UNI_TR_S', 'NORMALIDADE_ANO_SEGUINTE']] 34 

from sklearn.model_selection import train_test_split 35 

train, test = train_test_split(df, test_size=0.2) 36 

print("Training Data") 37 

print(train.shape) 38 

print(train.head()) 39 
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print("Test Data") 40 

print(test.shape) 41 

print(test.head()) 42 

 

EDA 

mpl.rcParams['figure.figsize'] = (12, 10) 43 

colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] 44 

train.NORMALIDADE_ANO_SEGUINTE.value_counts() 45 

#check if it is a imbalance dataset 46 

no, yes = np.bincount(train['NORMALIDADE_ANO_SEGUINTE']) 47 

total = no + yes 48 

print('Exemplos:\n Total: {}\n Positivos: {} ({:.2f}% of total)\n'.format( 49 

 total, yes, 100 * yes / total)) 50 

train_t = train.copy() 51 

target = train_t.pop('NORMALIDADE_ANO_SEGUINTE') 52 

ax = sns.countplot(x = target ,palette="Set1") 53 

sns.set(font_scale=1.5) 54 

ax.set_xlabel(' ') 55 

ax.set_ylabel(' ') 56 

fig = plt.gcf() 57 

fig.set_size_inches(10,5) 58 

ax.set_ylim(top=800) 59 

for p in ax.patches: 60 

 ax.annotate('{:.2f}%'.format(100*p.get_height()/len(target)), (p.get_x()+ 0.3, 61 

p.get_height()+800)) 62 

plt.title('Distribution of Target') 63 

plt.show() 64 

#Check for null values 65 

print('Missing data in Train') 66 

print(train.isna().any()) 67 

print('Missing data in Test') 68 

print(test.isna().any()) 69 

#check for data types 70 
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train.dtypes 71 

#Find the category and numeric - Convert the numeric to category variables. 72 

cat=[] 73 

for c in train.columns: 74 

 if train[c].dtypes == 'object': 75 

 cat.append(c) 76 

print(cat) 77 

num=[] 78 

for c in train.columns: 79 

 if c not in cat: 80 

 num.append(c) 81 

print(num) 82 

#Change the type from numeric 83 

cat_features = ['NOM', 'CLAS_SUB', 'CTMT', 'UNI_TR_S'] 84 

for col in cat_features: 85 

 train[col]=train[col].astype('object') 86 

train.dtypes 87 

 

Feature Engineering 

#Change the type from numeric 88 

for col in cat_features: 89 

 test[col]=test[col].astype('object') 90 

test.dtypes 91 

train = pd.get_dummies(train,drop_first=True) 92 

test = pd.get_dummies(test,drop_first=True) 93 

train.dtypes 94 

col=[] 95 

for c in train.columns: 96 

 col.append(c) 97 

print(col) 98 

tcol=[] 99 

for c in test.columns: 100 

 tcol.append(c) 101 
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print(col) 102 

list(set(col) - set(tcol)) 103 

Create train, validation, and test sets 

train_copy = train.copy() 104 

test_copy = test.copy() 105 

train.shape , test.shape 106 

train.head(5) 107 

test.head(5) 108 

train_df, test_df = train_test_split(train, test_size = 0.2) 109 

train_df, val_df = train_test_split(train_df, test_size=0.2) 110 

train_labels = np.array(train_df.pop('NORMALIDADE_ANO_SEGUINTE')) 111 

bool_train_labels = train_labels != 0 112 

val_labels = np.array(val_df.pop('NORMALIDADE_ANO_SEGUINTE')) 113 

test_labels = np.array(test_df.pop('NORMALIDADE_ANO_SEGUINTE')) 114 

#test_labels = data 115 

train_features = np.array(train_df) 116 

val_features = np.array(val_df) 117 

test_features = np.array(test_df) 118 

scaler = StandardScaler() 119 

train_features = scaler.fit_transform(train_features) 120 

val_features = scaler.transform(val_features) 121 

test_features = scaler.transform(test_features) 122 

train_features = np.clip(train_features, -5, 5) 123 

val_features = np.clip(val_features, -5, 5) 124 

test_features = np.clip(test_features, -5, 5) 125 

print('Training labels shape:', train_labels.shape) 126 

print('Validation labels shape:', val_labels.shape) 127 

print('Test labels shape:', test_labels.shape) 128 

print('Training features shape:', train_features.shape) 129 

print('Validation features shape:', val_features.shape) 130 

print('Test features shape:', test_features.shape) 131 

pos_df = pd.DataFrame(train_features[ bool_train_labels], columns=train_df.columns) 132 

neg_df = pd.DataFrame(train_features[~bool_train_labels], columns=train_df.columns) 133 
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import tensorflow as tf 134 

from tensorflow import keras 135 

Baseline 

METRICS = [ 136 

 keras.metrics.TruePositives(name='tp'), 137 

 keras.metrics.FalsePositives(name='fp'), 138 

 keras.metrics.TrueNegatives(name='tn'), 139 

 keras.metrics.FalseNegatives(name='fn'),  140 

 keras.metrics.BinaryAccuracy(name='accuracy'), 141 

 keras.metrics.Precision(name='precision'), 142 

 keras.metrics.Recall(name='recall'), 143 

 keras.metrics.AUC(name='auc'), 144 

] 145 

def make_model(metrics=METRICS, output_bias=None): 146 

 if output_bias is not None: 147 

 output_bias = tf.keras.initializers.Constant(output_bias) 148 

 model = keras.Sequential([ 149 

 keras.layers.Dense( 150 

 16, activation='relu', 151 

 input_shape=(train_features.shape[-1],)), 152 

 keras.layers.Dropout(0.5), 153 

 keras.layers.Dense(1, activation='sigmoid', 154 

 bias_initializer=output_bias), 155 

 ]) 156 

 model.compile( 157 

 optimizer=keras.optimizers.Adam(lr=1e-3), 158 

 loss=keras.losses.BinaryCrossentropy(), 159 

 metrics=metrics) 160 

 return model 161 

EPOCHS = 100 162 

BATCH_SIZE = 2048 163 

early_stopping = tf.keras.callbacks.EarlyStopping( 164 

 monitor='val_auc',  165 
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 verbose=1, 166 

 patience=10, 167 

 mode='max', 168 

 restore_best_weights=True) 169 

model = make_model() 170 

model.summary() 171 

model.predict(train_features[:10]) 172 

results = model.evaluate(train_features, train_labels, batch_size=BATCH_SIZE, verbose=0) 173 

print("Loss: {:0.4f}".format(results[0])) 174 

initial_bias = np.log([yes/no]) 175 

initial_bias 176 

model = make_model(output_bias=initial_bias) 177 

model.predict(train_features[:10]) 178 

results = model.evaluate(train_features, train_labels, batch_size=BATCH_SIZE, verbose=0) 179 

print("Loss: {:0.4f}".format(results[0])) 180 

import os 181 

import tempfile 182 

initial_weights = os.path.join(tempfile.mkdtemp(), 'initial_weights') 183 

model.save_weights(initial_weights) 184 

model = make_model() 185 

model.load_weights(initial_weights) 186 

model.layers[-1].bias.assign([0.0]) 187 

zero_bias_history = model.fit( 188 

 train_features, 189 

 train_labels, 190 

 batch_size=BATCH_SIZE, 191 

 epochs=20, 192 

 validation_data=(val_features, val_labels),  193 

 verbose=0) 194 

model = make_model() 195 

model.load_weights(initial_weights) 196 

careful_bias_history = model.fit( 197 

 train_features, 198 

 train_labels, 199 
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 batch_size=BATCH_SIZE, 200 

 epochs=20, 201 

 validation_data=(val_features, val_labels),  202 

 verbose=0) 203 

def plot_loss(history, label, n): 204 

 plt.semilogy(history.epoch, history.history['loss'], 205 

 color=colors[n], label='Train ' + label) 206 

 plt.semilogy(history.epoch, history.history['val_loss'], 207 

 color=colors[n], label='Val ' + label, 208 

 linestyle="--") 209 

 plt.xlabel('Epoch') 210 

 plt.ylabel('Loss') 211 

 

A.3 Training The Fully Connected  Neural Network Algorithm 

Importing the libraries 

from tensorflow.keras.models import Sequential 1 

from tensorflow.keras.layers import Dense, Dropout, Activation 2 

from tensorflow.keras import optimizers, regularizers 3 

from tensorflow.keras.optimizers import Adam 4 

from pyspark import SparkContext, SparkConf 5 

from pyspark.sql import SQLContext 6 

from pyspark.ml.feature import OneHotEncoder, StringIndexer, StandardScaler, 7 

VectorAssembler 8 

from pyspark.ml import Pipeline 9 

from pyspark.sql.functions import rand 10 

from pyspark.mllib.evaluation import MulticlassMetrics 11 

from pyspark.sql.functions import col 12 

from pyspark.sql.types import StringType,BooleanType,DateType, IntegerType 13 

import numpy as np 14 

from pyspark.sql.functions import desc, row_number, monotonically_increasing_id 15 

from pyspark.sql.window import Window 16 

from pyspark.sql.functions import rand  17 

import pyspark.sql.functions as func 18 
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import matplotlib as mpl 19 

import matplotlib.pyplot as plt 20 

import numpy as np 21 

import pandas as pd 22 

import seaborn as sns 23 

import sklearn 24 

from sklearn.metrics import confusion_matrix 25 

from sklearn.model_selection import train_test_split 26 

from sklearn.preprocessing import StandardScaler 27 

Load the data 

from tensorflow.keras.models import Sequential 28 

from tensorflow.keras.layers import Dense, Dropout, Activation 29 

from tensorflow.keras import optimizers, regularizers 30 

from tensorflow.keras.optimizers import Adam 31 

from pyspark import SparkContext, SparkConf 32 

from pyspark.sql import SQLContext 33 

from pyspark.ml.feature import OneHotEncoder, StringIndexer, StandardScaler, 34 

VectorAssembler 35 

from pyspark.ml import Pipeline 36 

from pyspark.sql.functions import rand 37 

from pyspark.mllib.evaluation import MulticlassMetrics 38 

from pyspark.sql.functions import col 39 

from pyspark.sql.types import StringType,BooleanType,DateType, IntegerType 40 

import numpy as np 41 

from pyspark.sql.functions import desc, row_number, monotonically_increasing_id 42 

from pyspark.sql.window import Window 43 

from pyspark.sql.functions import rand  44 

import pyspark.sql.functions as func 45 

import matplotlib as mpl 46 

import matplotlib.pyplot as plt 47 

import numpy as np 48 

import pandas as pd 49 

import seaborn as sns 50 



62 

 

 

import sklearn 51 

from sklearn.metrics import confusion_matrix 52 

from sklearn.model_selection import train_test_split 53 

from sklearn.preprocessing import StandardScaler 54 

 55 

df = pd.read_csv('ETL_VARIAVEIS_ELETRICITY_11-12.csv', delimiter ='|') 56 

df.loc[((df['DIC_SEG'] > df.MAX_DIC)  57 

 |(df['FIC_SEG'] > df.MAX_FIC)), 'NORMALIDADE_ANO_SEGUINTE'] = 1 58 

df['NORMALIDADE_ANO_SEGUINTE'] = 59 

df['NORMALIDADE_ANO_SEGUINTE'].fillna(0) 60 

df = df[['OBJECTID', 'ENE_02','ENE_05','DIC', 'FIC', 'POT_F02', 'NOM', 'CLAS_SUB', 61 

'CTMT', 'UNI_TR_S', 'NORMALIDADE_ANO_SEGUINTE']] 62 

from sklearn.model_selection import train_test_split 63 

train, test = train_test_split(df, test_size=0.2) 64 

print("Training Data") 65 

print(train.shape) 66 

print(train.head()) 67 

print("Test Data") 68 

print(test.shape) 69 

print(test.head()) 70 

 

EDA 

mpl.rcParams['figure.figsize'] = (12, 10) 71 

colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] 72 

train.NORMALIDADE_ANO_SEGUINTE.value_counts() 73 

#check if it is a imbalance dataset 74 

no, yes = np.bincount(train['NORMALIDADE_ANO_SEGUINTE']) 75 

total = no + yes 76 

print('Exemplos:\n Total: {}\n Positivos: {} ({:.2f}% of total)\n'.format( 77 

 total, yes, 100 * yes / total)) 78 

 train_t = train.copy() 79 

target = train_t.pop('NORMALIDADE_ANO_SEGUINTE') 80 

ax = sns.countplot(x = target ,palette="Set1") 81 
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sns.set(font_scale=1.5) 82 

ax.set_xlabel(' ') 83 

ax.set_ylabel(' ') 84 

fig = plt.gcf() 85 

fig.set_size_inches(10,5) 86 

ax.set_ylim(top=800) 87 

for p in ax.patches: 88 

 ax.annotate('{:.2f}%'.format(100*p.get_height()/len(target)), (p.get_x()+ 0.3, 89 

p.get_height()+800)) 90 

plt.title('Distribution of Target') 91 

plt.show() 92 

plt.figure(figsize=(15, 12)) 93 

sns.heatmap(pd.concat([train_t, target], axis=1).corr(),annot=True , cmap='YlGnBu')  94 

#Visualization 95 

sns.pairplot(train,hue='NORMALIDADE_ANO_SEGUINTE') 96 

#Check for null values 97 

print('Missing data in Train') 98 

print(train.isna().any()) 99 

print('Missing data in Test') 100 

print(test.isna().any()) 101 

#check for data types 102 

train.dtypes 103 

#Find the category and numeric - Convert the numeric to category variables. 104 

cat=[] 105 

for c in train.columns: 106 

 if train[c].dtypes == 'object': 107 

 cat.append(c) 108 

print(cat) 109 

num=[] 110 

for c in train.columns: 111 

 if c not in cat: 112 

 num.append(c) 113 

print(num) 114 

#Change the type from numeric 115 
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cat_features = ['NOM', 'CLAS_SUB', 'CTMT', 'UNI_TR_S'] 116 

for col in cat_features: 117 

 train[col]=train[col].astype('object') 118 

train.dtypes 119 

 

Feature Engineering 

#Change the type from numeric 120 

for col in cat_features: 121 

 test[col]=test[col].astype('object') 122 

test.dtypes 123 

train = pd.get_dummies(train,drop_first=True) 124 

test = pd.get_dummies(test,drop_first=True) 125 

train.dtypes 126 

col=[] 127 

for c in train.columns: 128 

 col.append(c) 129 

print(col) 130 

tcol=[] 131 

for c in test.columns: 132 

 tcol.append(c) 133 

print(col) 134 

list(set(col) - set(tcol)) 135 

 

Create train, validation, and test sets 

train_copy = train.copy() 136 

test_copy = test.copy() 137 

train.shape , test.shape 138 

train.head(5) 139 

test.head(5) 140 

train_df, test_df = train_test_split(train, test_size = 0.2) 141 

train_df, val_df = train_test_split(train_df, test_size=0.2) 142 

train_labels = np.array(train_df.pop('NORMALIDADE_ANO_SEGUINTE')) 143 
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bool_train_labels = train_labels != 0 144 

val_labels = np.array(val_df.pop('NORMALIDADE_ANO_SEGUINTE')) 145 

test_labels = np.array(test_df.pop('NORMALIDADE_ANO_SEGUINTE')) 146 

#test_labels = data 147 

train_features = np.array(train_df) 148 

val_features = np.array(val_df) 149 

test_features = np.array(test_df) 150 

scaler = StandardScaler() 151 

train_features = scaler.fit_transform(train_features) 152 

val_features = scaler.transform(val_features) 153 

test_features = scaler.transform(test_features) 154 

train_features = np.clip(train_features, -5, 5) 155 

val_features = np.clip(val_features, -5, 5) 156 

test_features = np.clip(test_features, -5, 5) 157 

print('Training labels shape:', train_labels.shape) 158 

print('Validation labels shape:', val_labels.shape) 159 

print('Test labels shape:', test_labels.shape) 160 

print('Training features shape:', train_features.shape) 161 

print('Validation features shape:', val_features.shape) 162 

print('Test features shape:', test_features.shape) 163 

pos_df = pd.DataFrame(train_features[ bool_train_labels], columns=train_df.columns) 164 

neg_df = pd.DataFrame(train_features[~bool_train_labels], columns=train_df.columns) 165 

 

Two layer fully connected 

import tensorflow as tf 166 

from tensorflow import keras 167 

METRICS = [ 168 

 keras.metrics.TruePositives(name='tp'), 169 

 keras.metrics.FalsePositives(name='fp'), 170 

 keras.metrics.TrueNegatives(name='tn'), 171 

 keras.metrics.FalseNegatives(name='fn'),  172 

 keras.metrics.BinaryAccuracy(name='accuracy'), 173 

 keras.metrics.Precision(name='precision'), 174 
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 keras.metrics.Recall(name='recall'), 175 

 keras.metrics.AUC(name='auc'), 176 

] 177 

def make_model(metrics=METRICS, output_bias=None): 178 

 if output_bias is not None: 179 

 output_bias = tf.keras.initializers.Constant(output_bias) 180 

 model = keras.Sequential([ 181 

 keras.layers.Dense( 182 

 256, activation='relu', 183 

 input_shape=(train_features.shape[-1],)), 184 

 keras.layers.Dropout(0.5), 185 

 keras.layers.Dense( 186 

 75, activation='relu', 187 

 input_shape=(train_features.shape[-1],)), 188 

 keras.layers.Dense(1, activation='sigmoid', 189 

 bias_initializer=output_bias), 190 

 ]) 191 

 model.compile( 192 

 optimizer=keras.optimizers.Adam(lr=1e-3), 193 

 loss=keras.losses.BinaryCrossentropy(), 194 

 metrics=metrics) 195 

 return model 196 

 EPOCHS = 1000 197 

BATCH_SIZE = 2048 198 

early_stopping = tf.keras.callbacks.EarlyStopping( 199 

 monitor='val_auc',  200 

 verbose=1, 201 

 patience=500, 202 

 mode='max', 203 

 restore_best_weights=True) 204 

model = make_model() 205 

model.summary() 206 

model.predict(train_features[:10]) 207 
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results = model.evaluate(train_features, train_labels, batch_size=BATCH_SIZE, verbose=0) 208 

print("Loss: {:0.4f}".format(results[0])) 209 

initial_bias = np.log([yes/no]) 210 

initial_bias 211 

model = make_model(output_bias=initial_bias) 212 

model.predict(train_features[:10]) 213 

results = model.evaluate(train_features, train_labels, batch_size=BATCH_SIZE, verbose=0) 214 

print("Loss: {:0.4f}".format(results[0])) 215 

import os 216 

import tempfile 217 

initial_weights = os.path.join(tempfile.mkdtemp(), 'initial_weights') 218 

model.save_weights(initial_weights) 219 

model = make_model() 220 

model.load_weights(initial_weights) 221 

model.layers[-1].bias.assign([0.0]) 222 

zero_bias_history = model.fit( 223 

 train_features, 224 

 train_labels, 225 

 batch_size=BATCH_SIZE, 226 

 epochs=20, 227 

 validation_data=(val_features, val_labels),  228 

 verbose=0) 229 

model = make_model() 230 

model.load_weights(initial_weights) 231 

careful_bias_history = model.fit( 232 

 train_features, 233 

 train_labels, 234 

 batch_size=BATCH_SIZE, 235 

 epochs=20, 236 

 validation_data=(val_features, val_labels),  237 

 verbose=0) 238 

def plot_loss(history, label, n): 239 

 plt.semilogy(history.epoch, history.history['loss'], 240 

 color=colors[n], label='Train ' + label) 241 
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 plt.semilogy(history.epoch, history.history['val_loss'], 242 

 color=colors[n], label='Val ' + label, 243 

 linestyle="--") 244 

 plt.xlabel('Epoch') 245 

 plt.ylabel('Loss') 246 

plot_loss(zero_bias_history, "Zero Bias", 0) 247 

plot_loss(careful_bias_history, "Careful Bias", 1) 248 

model = make_model() 249 

#model.load_weights(initial_weights) 250 

two_layer_history = model.fit( 251 

 train_features, 252 

 train_labels, 253 

 batch_size=BATCH_SIZE, 254 

 epochs=EPOCHS, 255 

 callbacks=[early_stopping], 256 

 validation_data=(val_features, val_labels)) 257 

def plot_metrics(history): 258 

 metrics = ['loss', 'auc', 'precision', 'recall'] 259 

 for n, metric in enumerate(metrics): 260 

 name = metric.replace(""," ").capitalize() 261 

 plt.subplot(2,2,n+1) 262 

 plt.plot(history.epoch, history.history[metric], color=colors[0], label='Train') 263 

 plt.plot(history.epoch, history.history['val'+metric], 264 

 color=colors[0], linestyle="--", label='Val') 265 

 plt.xlabel('Epoch') 266 

 plt.ylabel(name) 267 

 if metric == 'loss': 268 

 plt.ylim([0, plt.ylim()[1]]) 269 

 elif metric == 'auc': 270 

 plt.ylim([0.8,1]) 271 

 else: 272 

 plt.ylim([0,1]) 273 

plt.legend() 274 
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plot_metrics(two_layer_history) 275 

train_predictions_two_layer = model.predict(train_features, batch_size=BATCH_SIZE) 276 

test_predictions_two_layer = model.predict(test_features, batch_size=BATCH_SIZE) 277 

def plot_cm(labels, predictions, p=0.5): 278 

 cm = confusion_matrix(labels, predictions > p) 279 

 plt.figure(figsize=(5,5)) 280 

 sns.heatmap(cm, annot=True, fmt="d") 281 

 plt.title('Confusion matrix @{:.2f}'.format(p)) 282 

 plt.ylabel('Actual label') 283 

 plt.xlabel('Predicted label') 284 

 Two layers (Imbalanced) 

two_layer_results = model.evaluate(test_features, test_labels, 285 

 batch_size=BATCH_SIZE, verbose=0) 286 

for name, value in zip(model.metrics_names, two_layer_results): 287 

 print(name, ': ', value) 288 

print() 289 

plot_cm(test_labels, test_predictions_two_layer) 290 

def plot_roc(name, labels, predictions, **kwargs): 291 

 fp, tp, _ = sklearn.metrics.roc_curve(labels, predictions) 292 

 plt.plot(100fp, 100tp, label=name, linewidth=2, **kwargs) 293 

 plt.xlabel('False positives [%]') 294 

 plt.ylabel('True positives [%]') 295 

 plt.xlim([-0.5,20]) 296 

 plt.ylim([80,100.5]) 297 

 plt.grid(True) 298 

 ax = plt.gca() 299 

 ax.set_aspect('equal') 300 

plot_roc("Train two_layer", train_labels, train_predictions_two_layer, color=colors[0]) 301 

plot_roc("Test two_layer", test_labels, test_predictions_two_layer, color=colors[0], 302 

linestyle='--') 303 

plt.legend(loc='lower right') 304 
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Model with Class Weights 

weight_for_0 = (1 / no)(total)/2.0  305 

weight_for_1 = (1 / yes)(total)/2.0 306 

class_weight = {0: weight_for_0, 1: weight_for_1} 307 

print('Weight for class 0: {:.2f}'.format(weight_for_0)) 308 

print('Weight for class 1: {:.2f}'.format(weight_for_1)) 309 

weighted_model = make_model() 310 

weighted_model.load_weights(initial_weights) 311 

weighted_history = weighted_model.fit( 312 

 train_features, 313 

 train_labels, 314 

 batch_size=BATCH_SIZE, 315 

 epochs=EPOCHS, 316 

 callbacks=[early_stopping], 317 

 validation_data=(val_features, val_labels), 318 

 # The class weights go here 319 

 class_weight=class_weight) 320 

plot_metrics(weighted_history) 321 

train_predictions_weighted = weighted_model.predict(train_features, 322 

batch_size=BATCH_SIZE) 323 

test_predictions_weighted = weighted_model.predict(test_features, 324 

batch_size=BATCH_SIZE) 325 

weighted_results = weighted_model.evaluate(test_features, test_labels, 326 

 batch_size=BATCH_SIZE, verbose=0) 327 

for name, value in zip(weighted_model.metrics_names, weighted_results): 328 

 print(name, ': ', value) 329 

print() 330 

plot_cm(test_labels, test_predictions_weighted) 331 

plot_roc("Train two_layer", train_labels, train_predictions_two_layer, color=colors[0]) 332 

plot_roc("Test two_layer", test_labels, test_predictions_two_layer, color=colors[0], 333 

linestyle='--') 334 

plot_roc("Train Weighted", train_labels, train_predictions_weighted, color=colors[1]) 335 

plot_roc("Test Weighted", test_labels, test_predictions_weighted, color=colors[1], linestyle='-336 
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-') 337 

plt.legend(loc='lower right') 338 

 

Oversampling: Oversample The Minority class 

pos_features = train_features[bool_train_labels] 339 

neg_features = train_features[~bool_train_labels] 340 

pos_labels = train_labels[bool_train_labels] 341 

neg_labels = train_labels[~bool_train_labels] 342 

BUFFER_SIZE = 100000 343 

def make_ds(features, labels): 344 

 ds = tf.data.Dataset.from_tensor_slices((features, labels))#.cache() 345 

 ds = ds.shuffle(BUFFER_SIZE).repeat() 346 

 return ds 347 

pos_ds = make_ds(pos_features, pos_labels) 348 

neg_ds = make_ds(neg_features, neg_labels) 349 

for features, label in pos_ds.take(1): 350 

 print("Features:\n", features.numpy()) 351 

 print() 352 

 print("Label: ", label.numpy()) 353 

resampled_ds = tf.data.experimental.sample_from_datasets([pos_ds, neg_ds], weights=[0.5, 354 

0.5]) 355 

resampled_ds = resampled_ds.batch(BATCH_SIZE).prefetch(2) 356 

for features, label in resampled_ds.take(1): 357 

 print(label.numpy().mean()) 358 

resampled_steps_per_epoch = np.ceil(2.0*no/BATCH_SIZE) 359 

resampled_steps_per_epoch 360 

resampled_model = make_model() 361 

resampled_model.load_weights(initial_weights) 362 

output_layer = resampled_model.layers[-1]  363 

output_layer.bias.assign([0]) 364 

val_ds = tf.data.Dataset.from_tensor_slices((val_features, val_labels)).cache() 365 

val_ds = val_ds.batch(BATCH_SIZE).prefetch(2)  366 

resampled_history = resampled_model.fit( 367 
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 resampled_ds, 368 

 epochs=EPOCHS, 369 

 steps_per_epoch=resampled_steps_per_epoch, 370 

 callbacks=[early_stopping], 371 

 validation_data=val_ds) 372 

plot_metrics(resampled_history) 373 

train_predictions_resampled = resampled_model.predict(train_features, 374 

batch_size=BATCH_SIZE) 375 

test_predictions_resampled = resampled_model.predict(test_features, 376 

batch_size=BATCH_SIZE) 377 

resampled_results = resampled_model.evaluate(test_features, test_labels, 378 

 batch_size=BATCH_SIZE, verbose=0) 379 

for name, value in zip(resampled_model.metrics_names, resampled_results): 380 

 print(name, ': ', value) 381 

print() 382 

plot_cm(test_labels, test_predictions_resampled) 383 

plot_roc("Train two_layer", train_labels, train_predictions_two_layer, color=colors[0]) 384 

plot_roc("Test two_layer", test_labels, test_predictions_two_layer, color=colors[0], 385 

linestyle='--') 386 

plot_roc("Train Weighted", train_labels, train_predictions_weighted, color=colors[1]) 387 

plot_roc("Test Weighted", test_labels, test_predictions_weighted, color=colors[1], linestyle='-388 

-') 389 

plot_roc("Train Resampled", train_labels, train_predictions_resampled, color=colors[2]) 390 

plot_roc("Test Resampled", test_labels, test_predictions_resampled, color=colors[2], 391 

linestyle='--') 392 

plt.legend(loc='lower right') 393 
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