UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE BIOTECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA

FLÁVIO CÉSAR THIAGO

IDENTIFICAÇÃO E CARACTERIZAÇÃO DE miRNAs E GENES ENVOLVIDOS NA VIA DE PROCESSAMENTO DE miRNAs EM *Pomacea canaliculata* E *Pomacea maculata*

PATOS DE MINAS – MG AGOSTO - 2021

FLÁVIO CÉSAR THIAGO

IDENTIFICAÇÃO E CARACTERIZAÇÃO DE miRNAs E GENES ENVOLVIDOS NA VIA DE PROCESSAMENTO DE miRNAs EM *Pomacea*

canaliculata E Pomacea maculata

Dissertação de mestrado apresentada ao Programa de Pós-graduação em Biotecnologia como requisito final para obtenção do título de mestre.

Orientador Prof. Dr. Matheus de Souza Gomes Coorientador Prof. Dr. Fábio Ribeiro Queiroz

PATOS DE MINAS - MG AGOSTO - 2021

	Ficha Catalográfica Online do Sistema de Bibliotecas da UF com dados informados pelo(a) próprio(a) autor(a).	Ū
T422 2021	Thiago, Flávio César, 1977- miRNAS EM Pomacea canaliculata E Pomacea maculata: IDENTIFICAÇÃO, CARACTERIZAÇÃO E MAQUINARIA DE PROCESSAMENTO [recurso eletrônico] / Flávio César Thiago 2021.	
	Orientador: Matheus de Souza Gomes. Dissertação (Mestrado) - Universidade Federal de Uberlândia, Pós-graduação em Biotecnologia. Modo de acesso: Internet. Disponível em: http://doi.org/10.14393/ufu.di.2021.417 Inclui bibliografia. Inclui ilustrações.	
	 Biotecnologia. I. Gomes, Matheus de Souza, 1981-, (Orient.). II. Universidade Federal de Uberlândia. Pós- graduação em Biotecnologia. III. Título. 	
		CDU: 60

•

Bibliotecários responsáveis pela estrutura de acordo com o AACR2:

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Coordenação do Programa de Pós-Graduação em Biotecnologia Av. Getúlio Vargas, 230, 3º andar, Sala 308 - Bairro Centro, Patos de Minas-MG, CEP 38700-128 Telefone: (34) 3823-3714 - Ramal 39 - www.ppgbiotec.ibtec.ufu.br - ppgbiotec@ibtec.ufu.br

ATA DE DEFESA - PÓS-GRADUAÇÃO

Programa de Pós-Graduação em:	Biotecnologia				
Defesa de:	Dissertação de Mestrado Acadêmico				
Data:	20 de agosto de 2021	Hora de início:	9:30	Hora de encerramento:	11:53
Matrícula do Discente:	41912BTC007				
Nome do Discente:	Flávio César Thiago				
Título do Trabalho:	IDENTIFICAÇÃO E CARACTERIZAÇÃO DE miRNAs E GENES ENVOLVIDOS NA VIA DE PROCESSAMENTO DE miRNAs EM Pomacea canaliculata E Pomacea maculata				
Área de concentração:	Biociência				
Linha de pesquisa:	Bioinformática e Biologia Molecular aplicada à genômica, transcritômica e proteômica				
Projeto de Pesquisa de vinculação:	Bioinformática e Biologia Molecular aplicada à genômica, transcritômica e proteômica				

Reuniu-se por Webconferência, Campus Patos de Minas, da Universidade Federal de Uberlândia, a Banca Examinadora, designada pelo Colegiado do Programa de Pós-graduação em Biotecnologia, assim composta: Professores Doutores: Enyara Rezende de Morais (UFU), Fernanda Janku Cabral (UNICAMP) e o orientador do candidato, Dr. Matheus de Souza Gomes (UFU).

Iniciando os trabalhos o(a) presidente da mesa, Dr. Matheus de Souza Gomes, apresentou a Comissão Examinadora e o candidato, agradeceu a presença do público, e concedeu ao discente a palavra para a exposição do seu trabalho. A duração da apresentação do discente e o tempo de arguição e resposta foram conforme as normas do Programa.

A seguir o senhor(a) presidente concedeu a palavra, pela ordem sucessivamente, aos(às) examinadores(as), que passaram a arguir o(a) candidato(a). Ultimada a arguição, que se desenvolveu dentro dos termos regimentais, a Banca, em sessão secreta, atribuiu o resultado final, considerando o(a) candidato(a):

Aprovado.

Esta defesa faz parte dos requisitos necessários à obtenção do título de Mestre .

O competente diploma será expedido após cumprimento dos demais requisitos, conforme as normas do Programa, a legislação pertinente e a regulamentação interna da UFU.

Nada mais havendo a tratar foram encerrados os trabalhos. Foi lavrada a presente ata que após lida e achada conforme foi assinada pela Banca Examinadora.

Documento assinado eletronicamente por **Matheus de Souza Gomes**, **Professor(a) do Magistério Superior**, em 20/08/2021, às 11:58, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de outubro de 2015</u>.

Documento assinado eletronicamente por **Enyara Rezende Morais**, **Professor(a) do Magistério Superior**, em 20/08/2021, às 11:58, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de outubro de 2015</u>.

Documento assinado eletronicamente por **Fernanda Janku Cabral**, **Usuário Externo**, em 20/08/2021, às 12:00, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539</u>, <u>de 8 de outubro de 2015</u>.

A autenticidade deste documento pode ser conferida no site <u>https://www.sei.ufu.br/sei/controlador_externo.php?</u> <u>acao=documento_conferir&id_orgao_acesso_externo=0</u>, informando o código verificador **2974485** e o código CRC **B661934A**.

Referência: Processo nº 23117.053850/2021-31

SEI nº 2974485

FLÁVIO CÉSAR THIAGO

IDENTIFICAÇÃO E CARACTERIZAÇÃO DE miRNAs E GENES ENVOLVIDOS NA VIA DE PROCESSAMENTO DE miRNAs EM *Pomacea canaliculata E Pomacea maculata*

Dissertação de mestrado apresentada ao Programa de Pós-graduação em Biotecnologia como requisito parcial para obtenção do título de mestre.

Aprovação: __/___/___

BANCA EXAMINADORA

Prof. Dr. Matheus de Souza Gomes (Presidente)

Prof^a. Dr^a. Enyara Rezende Morais (Membro interno)

Prof^a. Dr^a. Fernanda Janku Cabral (Membro externo)

AGRADECIMENTOS

A Deus por ter me concedido a graça de chegar até aqui nesta caminhada.

Ao meu pai Joaquim Thiago por ser exemplo de luta, determinação, força e ter nos dado a oportunidade de estudar. Estar sempre presente nos momentos de alegria e tristeza. Homem de rotina inflexível que dedicou a vida em prol da família.

A minha eterna mãe: Marina (*in memorian*), como eu gostaria que a senhora estivesse aqui comigo neste momento. Devo a senhora a minha educação, as cobranças das tabuadas, as leituras dos ditados na pré-escola e todo o seu esforço para nos formar homens.

Aos meus irmãos incansáveis batalhadores Alex e Lucas. Toda inspiração, exemplo e toda a minha gratidão também. Alex por ter sido o pioneiro, Lucas por ter dado continuidade ao sonho que nos une.

A minha filha Ana Júlia, meus sobrinhos e afilhados João Victor e ao pequeno Miguel, a qual com certeza herdarão o nosso legado e também minhas cunhadas.

Minha esposa Gaby a qual agradeço de coração. Obrigado por ter vivido cada minuto desta jornada. Compartilhado cada pequena vitória, cuidado de minha saúde mental, abdicado seu tempo para viver este momento ímpar. Se teria palavra para definir o amor, essa palavra seria abdicação, cuidado, dedicação; essa palavra seria Gaby.

Aos colegas da Coordenação de Assistência Farmacêutica da Superintendência Regional de Saúde de Patos de Minas. Todo esforço para manter a equipe coesa na minha ausência e também pelas orações.

A professora Enyara Rezende, pelos conselhos e por me guiar a mudar o rumo da minha trajetória acadêmica. A professora Cristina Ribas a qual levarei seus ensinamentos por toda a minha vida. Raphael, pela ajuda e compartilhamento do artigo. Carlos, pelas "lives" produtivas. Aos mestres e doutores que publicaram artigos que nos inspiravam Fábio Queiroz, Thaís Cunha e finalmente o professor Matheus de Souza Gomes, idealizador do projeto, que me acolheu e se colocou à disposição 24 horas, pela humildade, conhecimento, positividade, artigos. A UFU por ter proporcionado ensino de qualidade e gratuito. A todos muito obrigado, gratidão....

RESUMO

Os miRNAs são pequenos RNAs não codificadores de proteínas que auxiliam e atuam no controle da expressão gênica impedindo a tradução de diversos genes (em sua maior parte). É consenso na literatura científica que os mecanismos de controle da expressão gênica são essenciais para o desenvolvimento do organismo orquestrando vários processos biológicos. A análise de miRNAs em moluscos, sobretudo em caramujos, é muito importante já que possuem poucos miRNAs identificados, quando comparado ao vasto número de espécies de moluscos. Os caramujos do gênero Pomacea são considerados espécies invasoras prejudiciais ao planeta incluindo P. canaliculata e P. maculata. A família Ampullariidae em moluscos constitui um modelo emergente para estudos evolutivos devido à alta diversidade, história antiga e ampla distribuição geográfica. Dessa forma, o objetivo deste trabalho foi identificar e caracterizar através de análises in silico miRNAs maduros conservados e seus respectivos precursores, as prováveis proteínas envolvidas na via de processamento de miRNAs e seus respectivos genes, utilizando banco de dados públicos de genoma e transcriptoma de P. canaliculata e P. maculata. Foi possível identificar 269 pré-miRNAs preditos, 296 miRNAs maduros e 7 prováveis proteínas da via de miRNAs em P. canaliculata. Já em P. maculata foram identificados 299 precursores, 316 miRNAs maduros e 8 prováveis proteínas da biogênese de miRNAs. A caracterização foi realizada baseada na conservação filogenética, na estrutura primária e secundária característica dos precursores e das proteínas da via de miRNAs. Os dados obtidos embasarão estudos de filogenia, divergência populacional, especiação e padrõesde diversidade na família Ampullariidae.

Palavras chave: miRNAs. Análise Computacional. Caramujos. Ampullariidae. Genoma.

ABSTRACT

miRNAs are small non-protein coding RNAs that help and act in the control of gene expression, preventing the translation of several genes (for the most part). There is a consensus in the scientific literature that gene expression control mechanisms are essential for the development of the organism, orchestrating several biological processes. The analysis of miRNAs in molluscs, especially in snails, is very important since they have few identified miRNAs, when compared to the vast number of mollusc species. The snails of the genus Pomacea are considered invasive species harmful to the planet, including *P. canaliculata* and *P. maculata*. The Ampullariidae family in molluscs is an emerging model for evolutionary studies due to its high diversity, ancient history and wide geographic distribution. Thus, the objective of this work was to identify and characterize, through in silico analysis, conserved mature miRNAs and their respective precursors, the putative-putative proteins involved in the miRNA processing pathway and their respective genes, using public database of genome and transcriptome of P. canaliculata and P. maculata. It was possible to identify 269 predicted pre-miRNAs, 296 mature miRNAs and 7 probable miRNA pathway proteins in *P. canaliculata*. In *P. maculata*, 299 precursors, 316 mature miRNAs and 8 probable miRNA biogenesis proteins were identified. The characterization was performed based on phylogenetic conservation, primary and secondary structure characteristic of precursors and proteins of the miRNA pathway. The data obtained will support studies of phylogeny, population divergence, speciation and diversity patterns in the Ampullariidae family.

Keywords: miRNAs. Computational Analysis. Snails. Ampullariidae. Genome.

LISTA DE FIGURAS

Figura 1: Árvore filogenética de <i>P. canaliculata, P. maculata e</i> espécies, construída usando 1.357 genes ortólogos de cópia única com um total de 455.177 aminoácidos17
Figura 2: A) Fotos fêmea de <i>Pomacea canaliculata</i> com uma concha intacta (comprimento da concha 4,0 cm). B) O mesmo animal com concha removido para mostrar estruturas corporais, incluindo glândula albumen. C) Ninhada de ovos (cada um com aproximadamente 2,5 mm de diâmetro)
Figura 3:Ciclo biológico de <i>A. cantonensis</i>
Figura 4: Conchas de <i>P. canaliculata</i> (A) e <i>P. maculata</i> (B)21
Figura 5: Alinhamento de precursores de miRNA-9-1 com ortólogos
Figura 6: Estrutura secundária de precursores de miRNA-9-1 e ortólogos; spu: Strongylocentrotus purpuratus, lgi: Lottia gigantea, lny: Lanistes nyassanus, mcr: Marisa cornuarietis, pcr: Pomacea canaliculata, pmc: Pomacea maculata
Figura 7: Distribuição filogenética de miR-9-1 (bilatéria-especifico)90
Figura 8: Alinhamento de precursores de miRNA-216a com ortólogos
Figura 9: Estrutura secundária de precursores de mir-216a e ortólogos; mle; <i>Melibe leonina</i> , lny: <i>Lanistes nyassanus</i> , mcr: <i>Marisa cornuarietis</i> , pcr: <i>Pomacea canaliculata</i> , pmc: <i>Pomacea maculata</i> , rno; <i>Rattus norvegicus</i>
Figura 10: Distribuição filogenética de mir-216a (bilatéria-especifico)92
Figura 11: Alinhamento de precursores de miRNA-133 e ortólogos, em destaque miRNAs maduros
Figura 12: Estrutura secundária de precursores de miRNA-133 e ortólogos; hme: <i>Heliconius melpomene</i> , bmo: <i>Bombyx mori</i> , lgi: <i>Lottia gigantea</i> , <i>lny: Lanistes nyassanus</i> , <i>mcr: Marisa cornuarietis</i> , <i>pcr: Pomacea canaliculata</i>
Figura 13: Distribuição filogenética de mir-133 (bilatéria-específico)
Figura 14: Alinhamento de precursores de miRNA-33 com ortólogos
Figura 15: Estrutura secundária de precursores de miRNA-133 e ortólogos; nvi: Nasonia vitripennis, lgi: Lottia gigantea, lny: Lanistes nyassanus, mcr: Marisa cornuarietis, pcr: Pomacea canaliculata, pmc: Pomacea maculata
Figura 16: Distribuição filogenética de mir-33 (bilatéria-específico)96
Figura 17: Alinhamento de precursores de miRNA-153 com ortólogos, em destaque miRNA maduro
Figura 18: Estrutura secundária de precursores de miRNA-153 e ortólogos; cgi: <i>Crassostrea gigas</i> , cho: <i>Crassostrea hongkongensis</i> , bgl: <i>Biomphalaria glabrata</i> , rau: <i>Radix auricularia lny: Lanistes nyassanus</i> , pmc: <i>Pomacea maculata</i>
Figura 19: Distribuição filogenética de mir-153 (bilatéria-específico)97
Figura 20: Alinhamento de precursores de miRNA-190 com ortólogos
Figura 21: Estrutura secundária de precursores de miRNA-190 e ortólogos; hdi: <i>Haliotis discus hannai</i> , afu: <i>Achatina fulica, lny: Lanistes nyassanus, mcr: Marisa cornuarietis, pcr: Pomacea canaliculata, pmc: Pomacea maculata, bgl: Biomphalaria glabrata, mle: Melibe leonina</i>

Figura 22: Distribuição filogenética de mir-190 (bilatéria-específico)	99
Figura 23: Alinhamento de precursores miRNA-bantam e ortólogos	100
Figura 24: B) Estrutura secundária de precursores de miRNA-bantam e ortólogos; dqu: Dinoponera quadriceps, nvi: Nasonia vitripennis, lny: Lanistes nyassanus, mcr: Marisa cornuarietis, pcr: Pomacea canaliculata, pmc: Pomacea maculata.	100
Figura 25: Distribuição filogenética de miR-bantam (protostômio específico)	100
Figura 26: Alinhamento de precursores de miRNA-1175 e ortólogos	101
Figura 27: Estrutura secundária de precursores de miRNA-1175 e ortólogos; mle: Melibe leonina, cte: Capitella teleta, lgi: Lottia gigantea, lny: Lanistes nyassanus, mcr: Marisa cornuarietis, pcr: Pomacea canaliculata.	102
Figura 28: Distribuição filogenética de miR-1175 (protostômio específico)	102
Figura 29: Alinhamento de precursores de miRNA-8 e ortólogos	103
Figura 30: Estrutura secundária: precursores de miRNA-8 e ortólogos;dgr: Drosophila grimshawi: dan: Drosophila ananassae, der: Drosophila erecta, hdi: Haliotis discus hanna mcr: Marisa cornuarietis, pmc: Pomacea maculata	ıi, 103
Figura 31: Análise filogenética de miR-8 (protostômio específico)	104
Figura 32: Alinhamento de precursores de miRNA-12 e ortólogos	105
Figura 33: Estrutura secundária: precursores de miRNA-12 e ortólogos: ame: Apis melífera pca: Polistes canadensis pfu: Pinctada fucata, lny: Lanistes nyassanus, pcr: Pomacea canaliculata, pmc: Pomacea maculata.	ı, 105
Figura 34: Análise filogenética de miR-12 (protostômio específico)	106
Figura 35: Alinhamento de precursores de miRNA-750 e ortólogos	106
Figura 36: Estrutura secundária: precursores de miRNA-bantam e ortólogos; dqu: Dinopon quadriceps, pca: Polistes canadensis, lny: Lanistes nyassanus, mcr: Marisa cornuarietis, j Pomacea canaliculata, pmc: Pomacea maculata	<i>era</i> pcr: 107
Figura 37: Análise filogenética de miR-750 (protostômio específico)	107
Figura 38: Alinhamento de precursores de miRNA-745a com seus ortólogos	108
Figura 39: Estrutura secundária dos precursores de miRNA-745a e ortólogos; lgi: Lottia gigantea, bgl: Biomphalaria glabrata, cte: Capitella teleta, lny: Lanistes nyassanus, pcr: Pomacea canaliculata, pmc: Pomacea maculata	108
Figura 40: Distribuição filogenética de miR-754a (lophotrochozoa-específico)	108
Figura 41: Alinhamento de precursores miRNA-1992 com seus ortólogos, em destaque miRNAs maduros	109
Figura 42: Estrutura secundária dos precursores de miRNA-1992 e ortólogos; lgi: Lottia gigantea, mle: Melibe leonina, cte: Capitella teleta, mcr: Marisa cornuarietis, pcr: Pomace canaliculata	<i>ea</i> 110
Figura 43: Distribuição filogenética de miR-1992 (lophotrochozoa-específico). Em destaquespécie: <i>Pomacea canaliculata</i> .	ie a 110
Figura 44: Alinhamento de precursores de miRNA-1994 com ortólogos	111

Figura 45: Estrutura secundária dos precursores de miRNA1994 com ortólogos; cte: Capitella teleta, cla: Cerebratulus lacteus, lny: Lanistes nyassanus, mcr: Marisa cornuarietis, pcr: Pomacea canaliculata, pmc: Pomacea maculata
Figura 46: Distribuição filogenética de miR-1994 (lophotrochozoa-específico)111
Figura 47: Alinhamento de precursores de miRNA-96b com seus ortólogos112
Figura 48: Estrutura secundária de precursores de miRNA-96b com seus ortólogos; mle: <i>Melibe leonina</i> , lgi: <i>Lottia gigantea</i> , lny: <i>Lanistes nyassanus</i> , mcr: <i>Marisa cornuarietis</i> , pcr: <i>Pomacea canaliculata</i> , pmc: <i>Pomacea maculata</i>
Figura 49: Análise filogenética de miR-96b (lophotrochozoa-específco)113
Figura 50: Alinhamento de precursores de miRNA-1990 com seus ortólogos114
Figura 51: Estrutura secundária dos precursores miRNA-1990 ortólogos; cgi Crassostrea gigas, bgl: Biomphalaria glabrata, lny: Lanistes nyassanus, mcr: Marisa cornuarietis, pcr: Pomacea canaliculata, pmc: Pomacea maculata
Figura 52: Alinhamento de precursores de miRNA-1984 com seus ortólogos115
Figura 53: Estrutura secundária dos precursores de miRNA-1984 com seus ortólogos; cgi: Crassostrea gigas, afu: Achatina fulica, bgl: Biomphalaria glabrata, mcr: Marisa cornuarietis, pcr: Pomacea canaliculata, pmc: Pomacea maculata
Figura 54: Alinhamento de precursores de miRNA-1985 com seus ortólogos116
Figura 55: Estrutura secundária dos precursores miRNA-1985 e ortólogos; <i>pfu</i> : Pinctada fucata, bgl: <i>Biomphalaria glabrata</i> , mcr: <i>Marisa cornuarietis</i> , pcr: <i>Pomacea canaliculata</i> , pmc: <i>Pomacea maculata</i>
Figura 56: Alinhamento de precursores de miRNA-12096b com seus ortólogos117
Figura 57: Estrutura secundária dos precursores miRNA-12096b e ortólogos; hla: <i>Haliotis laevigata</i> , hdi: <i>Haliotis discus hannai</i> , mle: <i>Melibe leonina</i> , lny: <i>Lanistes nyassanus</i> , mcr: <i>Marisa cornuarietis</i> , pmc: <i>Pomacea maculata</i>
Figura 58: Arquiteturas de domínio das proteínas de eucariotos da superfamília PIWI 120
Figura 59: Distribuição dos domínios conservados, prováveis proteínas Argonauta125
Figura 60: Alinhamento global, análise do domínio PIWI das proteínas Argonauta de <i>P. canaliculata</i> e <i>P. maculata</i>
Figura 61: Análise filogenética das proteínas Argonauta, de <i>P. maculata</i> e <i>P. canaliculata</i> e seus ortólogos
Figura 62: Três classes de proteínas da família RNase III representadas por Dicer humano (classe III), Drosha humana (classe II) e RNase III bacteriana (classe I)
Figura 63 : Análise de domínios conservados de Drosha em P. canaliculata
Figura 64: Alinhamento global, análise ribonuclease III (Riboc) das proteínas Dicer (acima representado) e Drosha (abaixo representado) de <i>P. canaliculata e P. maculata</i> e seus ortólogos
Figura 65: Análise filogenética das proteínas Dicer (acima representado) e Drosha (abaixo representado) de <i>P. canaliculata</i> e <i>P. maculata</i> e seus ortólogos
Figura 66: Domínios conservados de Dicer de P. canaliculata e ortólogos138

LISTA DE TABELAS

Tabela 1: Principais estatísticas de montagem de genomas de moluscos
Tabela 2: Resumo da montagem e anotação genoma P. canaliculata e P. maculata. 26
Tabela 3 - Proteínas ortólogas de organismos modelo utilizado para pesquisa no banco dedados
Tabela 4: Dados extraídos do banco de dados NCBI de P. canaliculata e P. maculata41
Tabela 5: Características estruturais e termodinâmicas dos pré-miRNAs de P. canaliculata .42
Tabela 6: Características estruturais e termodinâmicas dos pré-miRNas de <i>P. maculata</i> 52
Tabela 7: Prováveis miRNAs maduros conservados identificados em <i>P. canaliculata,</i> tamanho dos nucleotídeos (nt), sequência nucleotítica do miRNA maduro, região <i>seed</i> 63
Tabela 8: Prováveis miRNAs maduros conservados identificados em <i>P. maculata,</i> tamanho dos nucleotídeos (nt), sequência nucleotídica do miRNA maduro, região <i>seed</i> em destaque. 75
Tabela 9: Similaridade das proteínas da via de miRNA de P. canaliculata e suas ortólogas. 119
Tabela 10: Similaridade das proteínas da via de miRNA de P. maculata e suas ortólogas 119
Tabela 11: Similaridade de Argonauta 2 de P. maculata e ortólogos (protostômios edeuterostômios)121
Tabela 12: Análise de domínios conservados Argonauta 2, P. maculata, P. canaliculata eortólogos
Tabela 13: Similaridade de Argonauta de P. maculata e ortólogos (protostômios edeuterostômios)123
Tabela 14: Análise de domínios conservados Argonauta P. maculata, P. canaliculata eortólogos
Tabela 15: Similaridade de Drosha de P. canaliculata e ortólogos
Tabela 16: Análise de domínios conservados de Drosha P. canaliculata e ortólogos129
Tabela 17: Similaridade de Dicer de P. canaliculata e ortólogos
Tabela 18: Domínios conservados de Dicer de P. canaliculata e ortólogos
Tabela 19: Análise de similaridade de DGCR8 de P. maculata e ortólogos140
Tabela 20: Análise de similaridade de DGCR8 de P. canaliculata e ortólogos140
Tabela 21 – Similaridade de XPO-1 de P. maculata e ortólogos
Tabela 22 – Similaridade de XPO-T de P. maculata e ortólogos
Tabela 23 – Similaridade de Ran de P. maculata e ortólogos

SUMÁRIO

1 INTRODUÇÃO	14
1.1 PROBLEMA DE PESQUISA	14
1.2 HIPÓTESES	14
1.3 OBJETIVOS	14
1.3.1 OBJETIVO GERAL	14
1.3.2 OBJETIVOS ESPECÍFICOS	14
1.4 JUSTIFICATIVA	15
2 REFERÊNCIAL TEÓRICO	16
2.1 MOLUSCOS	16
2.2 SEQUENCIAMENTO DE DNA	21
2.2.1 Sequenciamento em moluscos	22
2.2.2 SEQUENCIAMENTO NAS ESPÉCIES P. CANALICULATA E P. MACULATA	25
2.3 PEQUENOS RNAS NÃO CODIFICADORES DE PROTEINAS	28
2.3.1 HISTÓRICO	28
2.3.2 BIOGÊNESE DOS MIRNAS	30
2.3.2.1 Via Canônica	30
2.3.2.2 Via não canônica	31
2.3.3 MECANISMOS DE REGULAÇÃO GÊNICA DESENVOLVIDOS POR MIRNAS	32
2.4 MIRNA EM MOLUSCOS E NAS ESPÉCIES P. CANALICULATA E P. MACULATA	33
3 MATERIAIS E MÉTODOS	37
3.1 BANCO DE DADOS DOS MOLUSCOS P. CANALICULATA E P. MACULATA	37
3.2 PREDIÇÃO DE MIRNAS PERCURSORES E MADUROS	37
3.3 ALINHAMENTO DOS MIRNAS COM ORTÓLOGOS E CONSTRUÇÃO DA ÁRVORE FILOGENÉTICA	37
3.4 PREDIÇÃO DOS GENES E PROTEÍNAS ENVOLVIDOS NA BIOGÊNESE DA VIA DE MIRNASEM <i>P. CANALICULATA</i> E <i>P. MACULATA</i>	38
3.5 ANÁLISE DE DOMÍNIOS CONSERVADOS, ALINHAMENTO MÚLTIPLO DE SEQUÊNCI E ANÁLISE FILOGENÉTICA DAS PROTEÍNAS DA VIA DE MIRNAS	IAS 39
4 RESULTADOS E DISCUSSÃO	41
4.1 BANCO DE DADOS MOLUSCOS P. CANALICULATA E P. MACULATA.	41
4.2 PREDIÇÃO DE MIRNAS PERCURSORES E MADUROS	41
4.3 MIRNAS BILATERIA ESPECÍFICOS	88
4.3.1 MIR-9-1	88

4.3.1 MIR-9-1

4.3.2 MIR-216A	90
4.3.3 MIR-133	92
4.3.4 MIR-33	94
4.3.5 MIR-153	96
4.3.6 MIR-190	97
4.4 MIRNA PROTÔSTOMA ESPECÍFICO	99
4.4.1 MIR-BANTAM	99
4.4.2 MIR-1175	101
4.4.3 MIR-8	102
4.4.4 MIR-12	104
4.4.5 MIR-750	106
4.5 MIRNA LOPHOTROCOZOA ESPECÍFICO	107
4.5.1 MIR-745A	107
4.5.2 MIR-1992	109
4.5.3 MIR-1994	110
4.5.4 MIR-96B	111
4.5.5 MIR-1990	113
4.6 MIRNA MOLLUSCA ESPECÍFICO	114
4.6.1 MIR-1984	115
4.6.2 MIR-1985	116
4.6.3 MIR-12096B	117
4.7 IDENTIFICAÇÃO E CARACTERIZAÇÃO DE PROTEÍNAS ENVOLVIDAS NA DA VIA DE MIRNAS EM <i>P. CANALICULATA</i> E <i>P. MACULATA</i> .	BIOGÊNESE 118
4.7.1 Análise de domínios conservados, alinhamento global e filogenia d. Argonauta	as proteínas 120
4.7.2 Análise de domínios conservados, alinhamento global e filogenia d. Dicer e Drosha	as proteínas 127
4.7.3 ANÁLISE DAS PROTEÍNAS DGCR8, EXPORTINA 1 E T, RAN	139
4.7.3.1 DGCR8	139
4.7.3.2 Exportina 1 e T	141
4.7.3.3 Ran	143

5 CONCLUSÃO	
-------------	--

145

147

REFERÊNCIAS BIBLIOGRÁFICAS

1 INTRODUÇÃO

1.1 PROBLEMA DE PESQUISA

Os miRNAs exercem mecanismos de controle gênico orquestrando vários processos biológicos. Diante disso, quais miRNAs poderão ser identificados nas espécies do gênero *Pomacea* em estudo? Se é possível a identificação de miRNAs nas espécies citadas, quais os genes envolvidos na biogênese dos miRNAs?

1.2 HIPÓTESES

Os miRNAs, precursores e maduros, e os genes envolvidos na via de processamento de pequenos RNAs estão presentes no genoma e transcriptoma de *P. canaliculata* e *P. maculata* e esta descoberta poderá embasar estudos futuros a respeito de doenças e pragas agrícolas nos quais os caramujos estão envolvidos.

1.3 OBJETIVOS

1.3.1 Objetivo Geral

O objetivo deste trabalho foi a identificar e caracterizar miRNAs e genes envolvidos em sua via de processamento, tanto no genoma quanto no transcriptoma das espécies de moluscos *P. canaliculata* e *P. maculata*.

1.3.2 Objetivos específicos

- a) Identificar e caracterizar miRNAs conservados, maduros e precursores, no genoma e transcriptoma de *P. canaliculata*.
- b) Identificar as prováveis proteínas envolvidas na via da biogênese de miRNAs em P. canaliculata e P. maculata
- c) Caracterizar as prováveis proteínas da via de miRNAs em *P. canaliculata* e *P. maculata*, através do alinhamento de proteínas, análise de domínios conservados, sítios ativos e filogenia.

1.4 JUSTIFICATIVA

As duas espécies de caracóis *P. canaliculata* e *P. maculata* são muito semelhantes em características morfológicas e adaptativas, apresentando crescimento rápido, alta taxa de reprodução, tolerância ao estresse ambiental, resistência a altas temperaturas e seca. As duas espécies de moluscos são consideradas pragas para algumas culturas agrícolas.

Para tanto, os estudos relativos aos miRNAs contribuirão para uma melhor compreensão a respeito da adaptabilidade e biologia de *P. canaliculata* e *P. maculata*. Isto é possível devido a capacidade dos pequenos RNAs não codificantes de proteínas de interferir no perfil de expressão de genes específicos relacionados a possíveis processos de resistência e plasticidade ambiental da espécie.

P. canaliculata tem a propriedade de realizar o controle biológico de *B. glabrata*, podendo alterar a transmissibilidade da esquistossomose em humanos. A maneira que os miRNAs de *P. canaliculata* interferem no perfil de expressão de genes poderá fornecer informações importantes para o desenvolvimento de estratégias mais eficientes para o controle da transmissão da esquistossomose. O estudo de miRNAs em *P. canaliculata* poderá conferir inúmeras respostas ao processo de interação do molusco com o nematódeo *A. cantonensis*, fornecendo mecanismos para compreensão da transmissão da meningite eosinofílica em humanos e prováveis instrumentos de controle da patologia.

Identificar miRNAs em *P. canaliculata* e *P. maculata* fornecerá embasamento para trabalhados futuros, dentre estes o possível mecanismo de controle que os miRNAs destes moluscos exercem na invasividade das culturas agrícolas. Nossos resultados ampliarão o estudo de miRNAs em moluscos, propiciando novos conhecimentos para o entendimento da regulação de miRNAs na família Ampullariidae e nas espécies *P. canaliculata* e *P. maculata*.

2 REFERÊNCIAL TEÓRICO

2.1 MOLUSCOS

Moluscos são animais de corpo mole invertebrados não segmentados. O corpo é organizado em um pé musculoso, cabeça e massa visceral que contém a maioria dos sistemas orgânicos. Alguns têm um manto que secreta a concha calcária (BROWN; LYDEARD, 2010). O filo Mollusca é o segundo com maior diversidade de espécies dentre os metazoários e o mais rico em subgrupos. Os habitats podem ser marinhos, de água doce ou terrestres. As espécies podem viver em temperaturas de até 40°C ou ambientes com gelo permanente (HASZPRUNAR; WANNINGER, 2012).

O filo Mollusca é o mais morfologicamente distinto dentre os outros filos, sendo composto por oito classes Chefalopoda (polvos, lulas, etc), Gastropoda (caracóis, lesmas, etc) Bivalvia (ostras, mexilhão,etc), Monoplacophora (moluscos marinhos que vivem em altas profundidades), Solenogastres, Caudofoveata, Polyplacophora e Scaphpoda (GOMES-DOS-SANTOS et al., 2020; SIGWART; LINDBERG, 2015).

A classe gastrópode é a única classe de moluscos que tem representantes tanto em ambientes marinhos como de água doce e também terrestres, possuindo três subclasses: Prosobranchia, Opisthobranchia e Pulmonata (BROWN; LYDEARD, 2010). A classe gastrópode tem mais de 100.000 espécies que compreendem cerca de 80% de todos osmoluscos. É o grupo mais diversificado dentro do filo Mollusca. Alguns moluscos gastrópodesde água doce são hospedeiros intermediários de vários trematódeos patogênicos em seres humanos como na esquistossomose (HASZPRUNAR; WANNINGER, 2012). Os gastrópodes quando com concha são univalves e possuem uma boca com rádula (língua com vários dentículos) (BROWN; LYDEARD, 2010).

Os moluscos são usados como fonte de proteína em todo mundo, dentre estes bivalves (mexilhões), cefalópodes (polvos e lulas) e gastrópodes (abalones, lapas, búzios, caracóis terrestres). Há matérias-primas de valor econômico e cultural para humanidade como conchas, opérculos e pérolas, usadas como decoração, joias e moedas (HASZPRUNAR; WANNINGER, 2012). Os moluscos são utilizados para monitoramento da poluição ambiental, sendo espécies-chave do ecossistema que promovem a reciclagem de nutrientes e filtração de água (FIGUERAS *et al.*, 2019; RENAUT *et al.*, 2018).

Os moluscos da família Ampullariidae apresentam várias adaptações morfológicas e fisiológicas aos seus habitats que os tornam candidatos ideais para estudo de divergência

populacional, especiação, adaptação e padrões de diversidade em maior escala incluindo a biogeografia de populações nativas e invasivas (IP *et al.*, 2018). Há quatro ampularídeos com genomas sequenciados abrangendo os clados do Velho mundo (*Lanistes nyassanus*) e Novo mundo (*P. canaliculata, P. maculata* e *Marisa cornuarietis*) que podem ser objeto de estudos genômicos comparativos e de análise de miRNAs.

A divisão entre as linhagens do Novo e Velho Mundo (figura 1) pode ter ocorrido há cerca de 92,3 milhões de anos atrás (intervalo de confiança de 95% de 61,3–139,0 milhões de anos atrás) que é condizente com a época da separação de Gondwana, em torno de 120 milhões de anos atrás (JOKAT *et al.*, 2003; SUN *et al.*, 2019). *Marisa cornuarietis* e o gênero *Pomacea* divergiram a cerca de 28,3 milhões de anos atrás. As duas espécies de *Pomacea* parecem ter separado há cerca de 3,0 milhões de anos (intervalo de confiança de 95% de 2,0 - 5,0 milhões de anos atrás). O grau de semelhança entre as espécies *P. canaliculata* e *P. maculata* é dimensionado a ponto de poderem hibridizar e produzir progênie F1 viável (JOKAT *et al.*, 2003; MATSUKURA *et al.*, 2013; SUN *et al.*, 2019).

Figura 1: Árvore filogenética de *P. canaliculata, P. maculata e* espécies, construída usando 1.357 genes ortólogos de cópia única com um total de 455.177 aminoácidos.

A espécie *P. canaliculata* (figura 2) é um caramujo de água doce da classe Gastrópode pertencente à família Ampullariidae. Apesar de aquático e possuir brânquias, precisa ir à superfície para realizar as trocas gasosas nos pulmões (JOSHI, 2005). O molusco é

popularmente conhecido como caracol maçã, possuindo fertilização interna e são ovíparos (ACCORSI *et al.*, 2013). O gênero *Pomacea* deposita os ovos acima da superfície da água em objetos sólidos, como rochas e caules de vegetação (HAYES *et al.*, 2009). O fluido perivitelino em torno do embrião em desenvolvimento contém não apenas todos os nutrientes e doadores de energia para o desenvolvimento embrionário (HERAS; GARIN; POLLERO, 1998), mas também muitas macromoléculas que protegem os ovos de estressores ambientais e predadores (DREON *et al.*, 2004; HERAS *et al.*, 2008). Cerca de 21 genes do fluido perivitelino são específicos para a glândula albúmen, indicando que este órgão é a origem de muitas proteínas deste fluido (SUN *et al.*, 2012). A espécie *P. canaliculata* tem alta variação interpopulacional em relação ao tamanho, forma e espessura da concha e habita ampla gama de ecossistemas como pântanos, lagoas, lagos e rios (ESTEBENET; MARTIN, 2003).

Figura 2: A) Fotos fêmea de *Pomacea canaliculata* com uma concha intacta (comprimento da concha 4,0 cm). B) O mesmo animal com concha removido para mostrar estruturas corporais, incluindo glândula albumen. C) Ninhada de ovos (cada um com aproximadamente 2,5 mm de diâmetro).

Adaptado de Sun et al. (2012)

P. canaliculata é o Ampulariídeo com a maior distribuição geográfica conhecida, sendo originário da América do Sul. Está presente na Argentina, Uruguai, Paraguai e Bolívia, sendo abundante nas bacias dos rios da Prata, Uruguai e Paraguai (SILVANA THIENGO, 1993). O molusco também é encontrado na América Central e parte da América do Norte (HALWART, 1994). No Brasil, ocorre principalmente nas regiões Sul, Sudeste, floresta Amazônica ePantanal (SILVANA THIENGO, 1995). A introdução do molusco na Ásia ocorreu na década de 1980 através de empreendedores das Américas do Sul e do Norte, como iguaria para alimentação. No entanto, houve uma migração para agricultura onde se tornou inesperadamenteuma praga do arroz (HALWART, 1994). Na Indonésia, quando introduzido em plantações de arroz, causa uma queda de 15% da produção (NOVARINO, 2011). É descrita como uma espécie invasora e foi classificada entre as 100 maiores pragas em todo mundo (LUQUE et al.,

2014). *P. canaliculata* tem crescimento rápido, alta taxa de reprodução, tolerância e adaptação ao estresse ambiental e distribuição geográfica em todos os continentes. Por estes motivos é considerado uma praga para agricultura, constituindo ameaça grave para o equilíbrio de um ecossistema (LIU *et al.*, 2018).

O molusco tem várias propriedades adaptativas e alta plasticidade ecológica. A espécie é resistente a altas temperaturas e seca (MATSUKURA et al., 2009; YUSA; WADA; TAKAHASHI, 2006). P. canaliculata é capaz de sobreviver em ambientes com metais pesados ocasionando grande concentração nas brânquias (KRUATRACHUE et al., 2011). Na microbiota intestinal do molusco, diversos parasitos reduzem os efeitos tóxicos destes metais (LIU et al., 2018). A lectina neurotoxina presente nos ovos do caramujo defende os embriões dos predadores (DREON et al., 2013). Os ovos de P. canaliculata e P. maculata são depositados na terra, diferente de outros moluscos que os depositam na água. Os ovos depositados em terra evitam o parasitismo e predação. A transição do meio aquático para o terrestre exigiu adaptações morfológicas tais como alongamento das vias respiratórias e aumento do tamanho do pulmão em adultos das espécies P. canaliculata e P. maculata (HAYES et al., 2009). Há presença de um sistema imune neuroendócrino com memória imune específica em P. canaliculata (OTTAVIANI et al., 2013). O sistema de biotransformação de substâncias tóxicas está desenvolvido em moluscos onde foram identificados 157 citocromos P450s nestes animais. A expansão dos genes na família do citocromo P450 em P. canaliculata contribui para resistência ao estresse ambiental. Foram encontradas enzimas antioxidantes (superóxido dismutase, catalase, peroxidase e glutadionaperoxidase) que são fatores inibidores dos radicais livres e condições patológicas (LIU et al., 2018).

P. canaliculata está envolvido na transmissão do helminto *A. cantonensis*, causador da meningite eosinofílica em humanos. O ciclo biológico do nematódeo *A. cantonensis* (Figura 3) é heteroxênico, sendo os roedores hospedeiros definitivos. Nos animais contaminados, a fêmea do helminto adulto faz a postura de seus ovos nas artérias pulmonares dos roedores. Em seguida, ocorre a eclosão dos ovos surgindo a larva de primeiro estágio (L1), que são engolidas e excretadas pelas fezes. Moluscos são os hospedeiros intermediários que se contaminam pela ingestão da Larva L1, pela penetração dessas larvas no poro respiratório ou parede corporal. Ocorre duas mudas larvais dentro dos moluscos, passando pelo estágio larvar L2 originando L3. As larvas de terceiro estágio são transmitidas a hospedeiros paratênicos. Pode ocorrer a contaminação de seres humanos por estes nematódeos através de três maneiras: i) ingestão de hospedeiros paratênicos infectados (caranguejos, lagartos); ii) consumo de hospedeiros intermediários contaminados (moluscos crus ou malcozidos) e; iii) vegetais infestados pelas

larvas infectantes. Os humanos são hospedeiros acidentais e no caso de infecção humana, a larva infectante se move até o Sistema Nervoso Central (SNC). O helminto não completa o ciclo de vida em humanos, embora permaneça no SNC causando meningite eosinofílica ou no globo ocular causando angiostrongilíase ocular (LUESSI et al., 2009; WANG et al., 2012, 2008). O episódio aconteceu pela primeira vez no leste da Ásia, sendo *P. canaliculata* hospedeiro intermediário para infecção em humanos (LV *et al.*, 2008).

A meningite eosinófilica em humanos geralmente apresenta baixa gravidade. A resposta imune produzida pelo hospedeiro contribui para os sinais e sintomas da doença. Os pacientes apresentam meningite caracterizada pela presença de eosinófilos no líquido cefalorraquidiano (ESPÍRITO-SANTO *et al.*, 2013; LUESSI *et al.*, 2009; TSAI *et al.*, 2001). Pode acontecer alguns casos graves da doença com sequelas neurológicas severas, coma e mortes, principalmente em crianças (CHEN et al., 2014a; LINDO et al., 2002; TSAI et al., 2001).

Adaptado de Monte (2014)

P. canaliculata realiza o controle biológico de *B. glabrata*, consumindo a desova deste molusco. Em suma, *P. canaliculata* pode ser uma bioferramenta de controle do hospedeiro intermediário da esquistossomose no ambiente em que coexistem (OLIVEIRA *et al.*, 2012).

Figura 4: Conchas de P. canaliculata (A) e P. maculata (B).

Adaptado de Ng, Tan e Yeo (2017)

P. maculata (Figura 4) é um grande caracol de água doce nativo da América do Sul que coloniza desde o sul da Amazônia até bacia do Rio de da Plata (HAYES *et al.*, 2012). Ele apresenta características fisiológicas e adaptativas semelhantes a *P. canaliculata*, sendo ambas as espécies reconhecidas por sua rápida propagação e aumento da população, constituindo ameaça grave para o equilíbrio de um ecossistema. Os custos econômicos do dano, controle e reparação podem ser imensos (PIMENTEL; ZUNIGA; MORRISON, 2005).

O sequenciamento de genes esclareceu muito a distribuição de *P. maculata* e *P. canaliculata* nos Estados Unidos, que apesar de serem parecidos fisiologicamente são substancialmente diferenciados geneticamente (HAYES *et al.*, 2012). Levantamentos de uma série de populações sugerem que *P. maculata* é a espécie predominante em relação a *P. canaliculata* em pelo menos sete estados nos Estados Unidos: Carolina do Sul, Geórgia, Flórida, Alabama, Mississippi, Louisiana e Texas (MUECK *et al.*, 2018). A extensão da destruição das regiões invadidas causada por *P. maculata* e *P. canaliculata* variaram consideravelmente, apesar das semelhanças ambientais e ecológicas entre os habitats afetados (HORGAN; STUART; KUDAVIDANAGE, 2014). Essas diferenças sugerem que pode haver variação fisiológica significativa entre espécies individuais (*P. maculata* e *P. canaliculata*) e entre populações das mesmas espécies (MATSUKURA *et al.*, 2016).

2.2 SEQUENCIAMENTO DE DNA

O sequenciamento de DNA ganhou notoriedade em 1975 com o desenvolvimento de tecnologia amplamente utilizada, que ficou conhecida como Sequenciamento de Sanger (SANGER; COULSON, 1975). Este sequenciamento é altamente preciso e permaneceu por décadas como principal forma de sequenciamento de DNA, até o surgimento da nova tecnologia *Next Generation Sequencing* (NGS). Essa técnica devido ao menor custo e esforço necessário, permitiu que pesquisadores gerassem grande conjunto de dados genômicos (SCHULTZ; ADEMA, 2017). A enorme quantidade de dados gerados por essa tecnologia impulsionou o desenvolvimento, em paralelo com a bioinformática, de novas ferramentas e técnicas de análise (ZHANG *et al.*, 2011).

2.2.1 Sequenciamento em moluscos

O primeiro sequenciamento de genoma de metazoário ocorreu em 1998 no nematoide *Caenorhabditis elegans*. Desde então, várias sequências genômicas foram identificadas (TAKEUCHI *et al.*, 2012). Há uma tendência crescente no número de publicações que incluem dados genômicos aplicados a moluscos. A maioria dos recursos foram aplicados em gastrópodes e bivalves. A maior parte das abordagens está associada a estudos genéticos populacionais ou mapeamento de características por locus gênico (GOMES-DOS-SANTOS *et al.*, 2020). No banco de dados *National Centre for Biotechnology Information* (NCBI - http://.ncbi.nlm.nih.gov/), em maio de 2020, há registro de 48 genomas de espécies de moluscos sequenciados.

Moluscos apresentam níveis elevados de diversidade genética (WANG et al., 2017), a taxa de Polimorfismos de Nucleotídeo Único (SNPs) e polimorfismos observados em ostras do pacífico é de 6 a 10 vezes maior que observado em humanos (HOLLENBECK; JOHNSTON, 2018). Outro fator que contribui para a diversidade gênica é a alta taxa de mutação, que pode ser elevada devido ao grande número de eventos necessários na meiose, para produzir milhões de ovos na reprodução (PLOUGH; HEDGECOCK, 2016). Esta variabilidade genética está sendo revelada nos genomas sequenciados e um importante passo foi dado no sequenciamento de genoma completo de moluscos. Em um breve resumo, descreve-se o sequenciamento de genoma completo de alguns moluscos gastrópodes, cefalópodes e bivalves.

O sequenciamento de genoma completo do caramujo de água doce: *B. glabrata* (classe: gastrópode) foi um marco devido a importante relevância clínica para os humanos. A alteração genética do molusco poderá modificar a transmissibilidade da esquistossomose, doença negligenciada em países subdesenvolvidos. *B. glabrata* é hospedeiro intermediário do

Schistosoma mansoni causador da esquistossomose. O genoma tem um tamanho estimado de 916,4 megabases compreendidas em 18 cromossomos, nos quais 14.423 genes foram identificados. A caracterização deste genoma define melhor o clado Lophotrochozoa quando comparado ao clado Ecdysozoa e aos animais deuterostômios (ADEMA *et al.*, 2017).

O genoma completo sequenciado do molusco *Lottia gigantea* (gastrópode marinho) foi publicado em 2013 e tem o tamanho estimado em 359,5 megabases (SIMAKOV *et al.*, 2013). Foi verificada a presença de genes que codificam neuropeptídios e neurohormônios neste molusco. Quatro genes codificam peptídeos relacionados à insulina. Foi encontrado um peptídeo semelhante ao GnRH (hormônio liberador de gonadotrofina) e pequenos peptídeos cardioativos, revelando similaridades com outros moluscos e insetos (VEENSTRA, 2010).

O molusco da classe gastrópode, *Achatina fulica* (caramujo gigante africano), foi o primeiro molusco terrestre a ser sequenciado de forma completa. A extensão do genoma é de 2.120 megabases, com o conteúdo de repetições de até 71% (GUO et al., 2019). Estas repetições são parecidas (70%) no caramujo gastrópode pulmonar marinho *Radix auricularia*, devido principalmente aos transposons de DNA (SCHELL *et al.*, 2017). No total 23.726 genes codificadores de proteínas foram previstos em *A. fulica*, compreendidos em 31 cromossomos e também a presença de 675 genes ortólogos relacionados a outros moluscos. O sequenciamento do genoma completo revela inferências filogenéticas entre este caramujo e o molusco *P. canaliculata*. Ambos são gastrópodes com ampla adaptabilidade ambiental, alta taxa de crescimento e capacidade reprodutiva. As espécies são pragas invasoras de culturas agrícolas que causam queda na produção, prejuízos econômicos e também são hospedeiros intermediários para patologias humanas (GUO et al., 2019)

Os genomas de *P. canaliculata* e *P. maculata* e foram montados após o sequenciamento de bibliotecas de DNA de inserção curta e longa usando plataformas de sequenciamento Illumina. Os genomas das espécies são considerados compactos quando comparado com outros moluscos, *P. canaliculata* contém 447,7 megabases e *P. maculata* 432,3 megabases (Tabela 1).

Classe	Espécie	GC Conteúdo	Tamanho	No. Scaffolds	Scaffold mais
			Montagem		longo
Cephalopoda	Octopus	0,31	2.338,2 Mb	151.674	4,1 Mb
	bimaculoides				
Bivalvia	Crassostrea	0,3	557,7 Mb	7.659	1,96 Mb
	gigas				

Tabela 1: Principais estatísticas de montagem de genomas de moluscos.

Bivalvia	Pinctada fucata	0,33	815,3 Mb	29.306	1,26 Mb
Gastropoda	P. canaliculata	0,41	447,7 Mb	3.131	45,35 Mb
Gastropoda	P. maculata	0,4	432,3 Mb	3.914	2,52 Mb
Gastropoda	Marisa cornuarietis	0,41	535,5 Mb	665	24,67 Mb
Gastropoda	Lanistes nyassanus	0,42	510,0 Mb	34.401	1,79 Mb
Gastropoda	Radix auricularia	0,34	909,8 Mb	4.823	2,97 Mb
Gastropoda	Aplysia californica	0,32	927,3 Mb	4.332	610,3 kb
Gastropoda	Biomphalaria glabrata	0,35	916,4 Mb	331.401	2,18 Mb
Gastropoda	Lottia gigantea	0,28	359,5 Mb	4.475	9,39 Mb
Gastropoda	Haliotis discus hannai	0,38	1.865,4 Mb	80.032	2,21 Mb
Gastropoda	Lymnaea stagnalis	0,37	833,2 Mb	328.378	95,6 kb

Adaptado de Sun et al. (2019)

Os genomas de *P. canaliculata, P. maculata* e *Lanistes nyassanus* foram montados após o sequenciamento de bibliotecas de DNA de inserção curta e longa usando plataformas de sequenciamento Illumina. Esses três genomas variam de 432,3 a 510,0 megabases de comprimento total com os dois genomas de *Pomacea* sendo menores, *P. canaliculata* com 447,7 megabases e *P. maculata* com 432,3 megabases. O genoma de *Marisa cornuarietis* foi montado usando leituras curtas Illumina e leituras longas Nanopore, com o comprimento estimado de 535,5 megabases. Os valores finais de scaffold/contig N50 de *P. canaliculata* é de 32,6 Mb e de *M. cornuarietis* de 4,4 Mb, excedem a maioria dos outros genomas de moluscos sequenciados, mostrando a alta continuidade das montagens (Tabela 1) (SUN et al., 2019).

O sequenciamento de genoma completo em moluscos cefalópodes foi realizado primeiramente no polvo *Octopus bimaculoides* no ano de 2015. O tamanho do genoma foi estimado em 2.338,2 megabases (maior genoma conhecido do mundo dos invertebrados) e foram identificados 33.638 genes codificadores de proteína. Quase 45% do genoma é composto por elementos repetitivos, com presença de elementos de transposição. Há elementos sugestivos de duplicação de genoma inteiro, embora não possa ser confirmado. Este fato permite que genes

adicionais adquiram novas funções. O desenvolvimento genético neuronal em cefalópodes é semelhante ao encontrado em bilatérios vertebrados. A família de genes protocaderinas está desenvolvida, sendo necessária para o aprimoramento normal dos circuitos neurais. Acreditavase que as protocaderinas eram desenvolvidas somente em vertebrados. A enorme edição do RNA mensageiro gera diversidades de proteínas envolvidas na excitabilidade neuronal. Justifica-se a maior inteligência dos polvos em relação a outros moluscos. Foram identificados centenas de genes cefalópodes específicos, muitos destes mostraram elevados níveis de expressão na pele (mudança de coloração), ventosas e sistema nervoso (ALBERTIN *et al.*, 2015). No molusco *Lymnae stagnalis* foi identificado o miR-124 (WALKER *et al.*, 2018) que é também verificado no polvo *O. bimaculoides*. Este miRNA é bastante abundante no Sistema Nervoso de vertebrados e invertebrados, que contribui para desenvolvimento e diferenciação neuronal (LIU et al., 2011). A análise de microRNAs conservados revela funções parecidas em espécies distintas, as quais estão ligadas evolutivamente.

O sequenciamento do genoma completo do molusco bivalve Pinctada fucata martensii (ostra de pérola), com a extensão de genômica de 1.150 megabases, identificou 32.937 modelos de genes codificadores de proteínas. A análise filogenética de genomas sequenciados de P. fucata martensii (bivalve), Crassostrea gigas (bivalve) e L. gigantea (Gastropoda) forneceu estimativas de divergências em árvores filogenéticas. P. fucata martensii divergiu de seu ancestral comum ao bivalve descritos a 316 milhões de anos atrás, enquanto divergiu do gastrópode descrito a 485 milhões de anos atrás (DU et al., 2017). Já no mexilhão dourado Limnoperna fortunei, molusco de água doce da classe bivalve, o sequenciamento de seu genoma total apresentou o tamanho de 1.600 megabases. Foram identificados 60.717 modelos de genes (58% destes com evidencias transcricionais baseadas em RNA). Estes moluscos são invasores agressivos prejudiciais as espécies nativas na região que colonizam, possuindo alta taxa de reprodução e causam prejuízos econômicos na agricultura. Estas espécies podem detectar produtos químicos na água e fechar suas válvulas como resposta defensiva, sendo tolerantes ao estresse ambiental. A partir do seu genoma sequenciado poderão ser apresentadas as bases moleculares desta invasividade e os mecanismos para controlar as pragas aquáticas (ULIANO et al., 2018).

2.2.2 Sequenciamento nas espécies P. canaliculata e P. maculata

A escassez de genomas sequenciados de moluscos foi apontada pela Aliança Global Genômica de Invertebrados (*Global Invertebrate Genomics Alliance*) como um problema. A espécie *P. canaliculata* foi designada como espécie prioritária para sequenciamento de genoma total em 2017 (VOOLSTRA *et al.*, 2017). A importância do sequenciamento genômico deste molusco refere-se a um organismo modelo para estudo, apresentando diversas características inerentes para investigações ecológicas, evolutivas e funcionais. Dessa forma, grande esforço foi realizado para o sequenciamento da espécie, que foi publicado em 11 de maio de 2018 (LIU *et al.*, 2018).

Há um estudo de sequenciamento de genoma total para *P. maculata* (SUN *et al.*, 2019) e dois estudos para *P. canaliculata* (LIU *et al.*, 2018; SUN *et al.*, 2019). O primeiro trabalho em 2018 para *P. canaliculata* revela sequenciamento de alta qualidade com montagem genômica próxima ao nível cromossómico. O tamanho médio do genoma foi estimado em torno de 440 megabases, sendo considerado compacto quando comparado a outros moluscos como por exemplo, *Achatina fulica* (2.120 megabases) e *Octopus bimaculoides* (2.338,2 megabases). Os genomas ampularídeos tem um conteúdo de repetições menores do que a maioria dos outros genomas de moluscos (24,2 a 61,1%) (SUN et al., 2019). O baixo conteúdo de elementos repetidos em *P. canaliculata*, contra 71% em *A. fulica* e 45% em *O. bimaculoides* torna o ampularídeo com genoma compacto quando comparado com outros moluscos (ALBERTIN *et al.*, 2015; GUO *et al.*, 2019; LIU *et al.*, 2018). Essa analogia aplica-se também a *P. maculata* com presença de genoma denso (432,3 megabases). Além disto, o comprimento dos íntrons de ampularídeos é semelhante ao de outros gastrópodes, mas é mais curto do que outros moluscos (SUN *et al.*, 2019).

O genoma de *P. canaliculata* (Tabela 2) foi montado após sequenciamento de bibliotecas de DNA em plataformas de sequenciamento Illumina. Os valores finais de *scaffold* / contig N50 de *P. canaliculata* (32,6 Mb) excede a maioria dos outros genomas de moluscos sequenciados, mostrando alta continuidade das montagens (SUN *et al.*, 2019). No entanto, este estudo tem mais *scaffolds* (3131) que o trabalho de LIU *et al.*, 2018 (24). O cariótipo haploide é composto por 14 cromossomos e foram estimados 21.533 genes em uma região codificadora de 32,2 mega bases, que corresponde a 7,3% do genoma (LIU *et al.*, 2018). Foi encontrado menor quantitativo de genes (18.263) identificados no estudo de Sun *et al.* (2019). Os valores menores neste estudo podem ser devido a mais dados transcriptômicos e proteômicos usados para refinamento da predição do modelo de genes na espécie.

Tabela 2: Resumo da montagem e anotação genoma P. canaliculata e P. maculata.

Pomacea maculata	Pomacea canaliculata

Contéudo de GC	0,41	0,41
Tamanho montagem	432,3 MB	447,7 MB
Número de Scaffolds	3.914	3.131
Tamanho de Scaffolds	2,52 MB	45,35 MB
Número de Scaffolds 1MB	38	14
Scaffold N50	375,9 MB	32,6 MB
Contig N50	91,9 MB	81,4 KB
Número de modelos de genes	23.464	18.263

Adaptado de Sun et al. (2019)

Grande parte das abordagens genômicas em moluscos está relacionada ao mapeamento de características por *locus* gênico (GOMES-DOS-SANTOS *et al.*, 2020). Após o sequenciamento genômico das espécies, foi facilitada a identificação de alguns genes em *P. canalicula* e *P. maculata*. Estudos futuros poderão identificar quais miRNAs interagem com a 3' UTR dos mRNAs alvos codificados por estes genes para verificar se ocorre regulação da expressão gênica (HA; KIM, 2014). Em seguida, há alguns genes de *P. canaliculta P. maculata* de características evolutivas identificadas, que poderão ser objetivo de estudo de miRNAs.

O gene Pca_154_3.36 de *P. canaliculata* codifica a proteína CaBP (ligação de cálcio proteína), que pode desempenhar um papel importante na formação da casca dura do ovo, protegendo fisicamente e evitando a dessecação. A proteína pode ter contribuído para a transição evolutiva da deposição de ovos aquática para terrestre nas espécies de ampularídeos. O molusco próximo evolutivamente a *P. canaliculata, Marisa cornuarietis* (da mesma família) não tem CABP e deposita ovos gelatinosos de forma subaquática. Apesar de haver uma presença generalizada de CaBP no filo molusca, ocorreu uma expansão da família de genes CaBP após a divergência de ampularídeos de outros moluscos. Além disso, a análise de dados proteômicos mostram que o CaBP é altamente abundante no fluido perivitelínico de duas espécies (*P. canaliculata e P. maculata*), que põem ovos terrestres com uma casca calcária em ampularídeos (HERAS *et al.*, 2008; SUN *et al.*, 2019).

O gene Pca_1306_1.39 de *P. canaliculata* e o gene Pma_3499_0.31 de *P. maculata* codificam a proteína MAPCF. Esta proteína é uma subunidade das perivitelinas tóxicas (PV2), as quais compõem o fluido perivitelínico (PVF) nos ovos de *P. canaliculata* e *P. maculata*. As PV2 demonstraram ser altamente neurotóxicas para camundongos. É considerada uma proteína defensiva para proteger os ovos ricos em nutrientes de predadores terrestres.

O complexo (PV2) é composto por duas proteínas, a MACPF (provavelmente a porção toxica) e a taquilectina. A análise filogenética mostrou que os genes do tipo MACPF de

ampularídeos estão agrupados em dois grupos. O grupo A compreende sete sequências ampularídeas instaladas entre as não ampularídeas, indicando uma possível origem antiga desses genes remontando ao ancestral comum de todos os moluscos. O grupo B é específico para quatro ampularídeos (*M. cornuarietis, Lanistes nyssanus, P. maculata e P. canaliculata*), compreendendo 17 sequências, indicando que ocorreu extensos eventos de duplicação de genes. Estes fatos aconteceram após a divergência de Ampullariidae de outros moluscos. Dentro do Grupo B, há uma sequência que codifica a subunidade MACPF de *P. canaliculata* (Pca_1306_1.39) e Pma_3499_0.31 de *P. maculata*. Estas aquisições podem ter contribuído para a transição da postura aquática para terrestre de ovos em ampularídeos (DREON *et al.*, 2013; SUN *et al.*, 2019).

Há relatos de expansão das famílias de genes relacionados à detecção ambiental e digestão de celulose, o que pode ter influenciado alguns ampularídeos serem pragas invasivas notórias. Na detecção ambiental, há sete genes de *P. canaliculata* (Pca_112_8.10, Pca_112_8.16, Pca_112_7.37, Pca_112_8.52, Pca_112_8.32, Pca_112_8.45, Pca_112_8.8)que codificam a família das proteínas G (GRL101) (SUN *et al.*, 2019), as quais estão envolvidasna quimiorrecepção em caracóis aquáticos (SCHULTZ; ADEMA, 2017). Em Ampullariidae ocorreu expansão massiva da família GRL101, com pelo menos dois principais eventos de duplicação de genes nesta família, após a divergência de ampulárideos de outros moluscos. Muitos desses genes GRL101 são altamente expressos nos tentáculos cefálicos e palpos labiais de *P. canaliculata*. Esta quimiorrecepção sensorial é extremamente importante para ocupação de ambientes transitórios e colonização de territórios, traços inerentes da invasividade e plasticidade ambiental de *P. canaliculata* e *P. maculata* (MENDOZA; SEBÉ-PEDRÓS; RUIZ-TRILLO, 2014; LIU *et al.*, 2018; SUN *et al.*, 2019).

2.3 PEQUENOS RNAS NÃO CODIFICADORES DE PROTEINAS

2.3.1 Histórico

Os três tipos principais de pequenos RNAs não codificadores de proteínas em animais são microRNAs (miRNAs), pequenos RNAs interferentes (siRNAs) e RNAs que interagem com PIWI (piRNAs) (OKADA *et al.*, 2009). Os siRNAs têm aproximadamente 21 nucleotídeos de comprimento, são derivados de RNAs em formato de grampo longos (hairpins) e processados pela RNAase Dicer. Os siRNAs medeiam a supressão pós-transcricional através da clivagem de mRNA e contribuem para a defesa antiviral (GHILDIYAL; ZAMORE, 2009).

Os piRNAs têm de 24 a 30 nucleotídeos de comprimento e não dependem de proteínas do tipo RNase III para processamento e são obtidos a partir de precursores de fita simples por uma endonuclease. A expressão gênica é inibida por piRNAs através da clivagem do mRNA (IPSARO *et al.*, 2012; NISHIMASU *et al.*, 2012; SIOMI *et al.*, 2011). A principal função dos piRNAs é silenciar elementos transponíveis em células germinativas.

Os miRNAs foram descobertos em 1993 por Victor Ambros e colaboradores ao estudar o nematódeo *C. elegans*. Foram verificados indícios de controle da expressão genica por pequenos RNAs, com funções diferentes até então conhecidas. No gene lin-4 foi observada a presença de pequenos RNAs não codificantes de proteínas. Estes miRNAs continham algumas sequências complementares à região 3'UTR do mRNA transcrito do gene lin-14, que reprimia a expressão pós-transcricionalmente impedindo a tradução (LEE; FEINBAUM; AMBROS, 1993). Desde então, miRNAs foram detectados em vários organismos e mostraram ser altamente conservados entre as espécies (FRIEDLÄNDER *et al.*, 2014).

Os miRNAs são pequenos RNAs não codificantes de proteínas com cerca de 22 nucleotídeos. A maioria dos miRNAs é transcrita de sequências de DNA em miRNAs primários (pri-miRNAs), processados em miRNAs precursores (pré-miRNAs) e subsequentemente em miRNAs maduros. Na grande parte dos casos, os miRNAs interagem com a 3' UTR dos mRNAs alvos para suprimir expressão gênica (HA; KIM, 2014). A interação de miRNAs com outras regiões, incluindo a 5' UTR , a sequência de codificação e genes promotores também foram relatados para inibição gênica (BROUGHTON *et al.*, 2016). Os miRNAs também demonstraram ativar a expressão gênica em determinadas situações (VASUDEVAN, 2012).

Cerca de metade de todos os miRNAs identificados são intragênicos e processados principalmente a partir de íntrons, os demais são intergênicos regulados por seus próprios promotores. O domínio na extremidade 5' dos miRNAs que se estende da posição 2 a 7 é crucial para o reconhecimento do alvo (mRNA) e foi denominada *seeds*, "semente de miRNA ou resíduos-semente". Os nucleotídeos 13 a 16 também contribuem com o emparelhamento de mRNAs alvos (RIE *et al.*, 2017; HA; KIM, 2014; KIM; KIM, 2007).

É consenso na literatura científica os mecanismos reguladores dos miRNAs tais como: diferenciação celular, apoptose, proliferação e tumorigênese, hematopoiese, organogênese; desenvolvimento das células tronco pluripotentes e testicular (FABIAN; SONENBERG; FILIPOWICZ, 2010; KIM, 2005; LEONARDO *et al.*, 2012; RAKOCZY *et al.*, 2013). Os miRNAs desempenham papéis importantes na plasticidade cerebral e memória e em algumas situações se comportam como hormônios, sendo encapsulados em exossomas e transportados a distância (ANFOSSI *et al.*, 2017; BREDY *et al.*, 2011). Da mesma forma, como elemento regulador, o próprio miRNA é modulado de maneira coordenada por diversos fatores (FABIAN; SONENBERG; FILIPOWICZ, 2010).

Os miRNAs têm papel regulatório em processos patológicos (KIM, 2005). No câncer há miRNAs envolvidos na metástase e tumorigênese (BRACKEN *et al.*, 2009). Há relatos de expressões disfuncionais de miRNAs característicos nesta patologia (IORIO; CROCE, 2009). No diabetes, alguns miRNAs estão envolvidos na produção de células β pancreáticas deformadas, prejudicando a produção de insulina. Os miRNAs são possíveis alvos para desenvolvimento de fármacos, como nestes casos (OETJEN, 2012).

Os miRNAs podem servir como biomarcadores para exames de diagnóstico. Nas infecções por Epstein-barr crônicas há elevação de miRNAs virais específicos, sendo potenciais biomarcadores da gravidade da doença ou prognóstico (KAWANO *et al.*, 2013). Dois miRNAs (mir-k12-10b, k12-12) provenientes do Herpes vírus causador do sarcoma de Kaposi (KSHV) foram identificados em pacientes que desenvolveram sepse em grandescirurgias (TUDOR *et al.*, 2014). A desregulação destes dois miRNAs podem levar a falência dos órgãos e morte. A identificação precoce destes marcadores poderá detectar pacientes com alto risco de choque séptico (GIZA *et al.*, 2016). Em 2007, pela primeira vez, foi relatado miRNAs disfuncionais no sangue de pacientes com linfoma. Já em 2008 verificou-se a potencialidade para serem utilizados como biomarcadores no câncer. Há vários estudos a este respeito, um destes diz respeito a níveis de expressão dos miRNAs (miR-21, miR-126, miR-155, miR199a e miR-335), associando às manifestações clínico patológicas do câncer de mama. A possibilidade de utilizar miRNAs como biomarcadores apresenta vantagens por não ser um método invasivo, já que o padrão ouro para diagnóstico na patologia é a biopsia (FERNANDEZ-MERCADO *et al.*, 2015; LAWRIE, 2007; LAWRIE *et al.*, 2008; WANG *et al.*, 2010).

2.3.2 Biogênese dos miRNAs

2.3.2.1 Via Canônica

A via canônica da biogênese de miRNAs é a via dominante no qual os miRNAs são processados pelas RNAases III, Drosha e Dicer, consecutivamente. O miRNAs podem ter origem intragênica (em sua maior parte íntrons) ou intergênica. As unidades de transcrição independentes podem ser transcritas individualmente de forma monocistrônica ou constituindo uma unidade de transcrição policistrônica, sendo transcritos em sequências longas chamadas *clusters*. Os pri-miRNAs (transcrito primário) são transcritos de seus genes pela RNA polimerase II eventualmente regulados pela RNA polimerase III e depois gerados os prémiRNAs, que possuem aproximadamente 65 nucleotídeos no núcleo celular. Tanto os primiRNAs quanto pré-miRNA têm a estrutura secundária em forma de grampo de cabelo (*hairpin*). Em seguida, os pré-miRNAs são processados em miRNAs maduros no citoplasma (LEE, 2002; TANZER; STADLER, 2004; ZHANG; ZHANG; SU, 2009).

O complexo de microprocessadores, composto por uma proteína de ligação (*DiGeorge Syndrome Critical Region 8* - DGCR8) e uma enzima ribonuclease III (Drosha), realiza a clivagem do pri-miRNA. O DGCR8, também conhecido como Pasha em *Drosophila melanogaster*, se liga em uma estrutura no pri-miRNA, enquanto Drosha realiza a cisão do duplex. Depois que os pré-miRNAs são gerados, eles são transportados para o citoplasma através do complexo exportina 5 (XPO5) / RanGTP, em seguida processados pela endonucelase RNA III Dicer (ALARCÓN *et al.*, 2015; DENLI *et al.*, 2004; HAN *et al.*, 2004; OKADA *et al.*, 2009).

No citoplasma os pré-miRNAs são clivados por Dicer, sendo esta constituída por três módulos, dois domínios de RNase III e um domínio PAZ (Piwi, Argonauta e Zwille) (MACRAE *et al.*, 2006). A clivagem por Dicer pode ocorrer na extremidade 5' ou 3'. Na extremidade 3', a clivagem ocorre geralmente a uma distância fixa de 21 a 25 nucleotídeos, dependendo da espécie e tipo de Dicer. Na extremidade 5', em mamíferos e moscas, a divisão acontece a 22 nucleotídeos de distância (MACRAE; ZHOU; DOUDNA, 2007; PARK *et al.*, 2011). A cadeia 5p surge da extremidade 5' do *hairpin*, enquanto que a cadeia 3p é originária da extremidade 3' do pré-miRNA. Ambos os fios derivados do duplex miRNA maduro podem ser carregados pela família de proteínas Argonauta (AGO), em humanos (AGO1-4) de maneira dependente de ATP (KHVOROVA; REYNOLDS; JAYASENA, 2003; MEIJER; SMITH; BUSHELL, 2014; YODA *et al.*, 2010).

2.3.2.2 Via não canônica

A via não canônica de biogênese dos miRNAs foge do processamento sequencial canônico por DGCR8/Drosha e Dicer. Os miRNAs das vias não canônicas podem ser processados por diferentes combinações do processo canônico via DGCR8/Drosha, Dicer, Exportina 5 e Argonauta (AGO2). Nesta via, a biogênese de miRNAs pode ser independente de Drosha ou Dicer (BABIARZ *et al.*, 2008; RUBY; JAN; BARTEL, 2007).

Alguns íntrons imitam a característica estrutural em formato de grampo dos prémiRNAS, para entrar na via de processamento de miRNA sem clivagem por Drosha. Estes íntrons são chamados de mirtrons. Da mesma forma, alguns transcritos curtos com "capeamento" de 7-metilguanosina (m⁷G) na extremidade 5' são exportados diretamente para o citoplasma através de Exportina 1 sem a necessidade de clivagem por Drosha. A presença do "capeamento" do miRNA na cadeia 5' impede o carregamento por Argonauta, favorecendo a utilização de miRNA-3p (RUBY; JAN; BARTEL, 2007; XIE *et al.*, 2013).

Alguns miRNAs podem ser processados independentes de Dicer, onde Drosha gera pequenos transcritos de RNA em forma de grampo (shRNA). Estes pré-miRNAs são de comprimento insuficiente para serem processados por Dicer. Dessa forma, são carregados e clivados pelo núcleo catalítico de Argonauta (AGO2) (CHELOUFI *et al.*, 2010; YANG *et al.*, 2010).

2.3.3 Mecanismos de regulação gênica desenvolvidos por miRNAs

Depois que os miRNAs maduros são sintetizados, eles induzem o silenciamento da expressão gênica (em sua maior parte). São formadas estruturas efetoras de ribonucleoproteínas chamado de Complexo de Silenciamento Induzido por miRNAs, miRISC. A formação deste complexo silenciador começa com o recrutamento da família de proteínas GW182, as quais induzem o recrutamento de outras proteínas efetoras (BEHM-ANSMANT *et al.*, 2006). No núcleo de miRISC está a família de proteínas Argonauta (AGO), que é carregada com uma fita guia de miRNA. Os miRNAs pareiam suas bases com uma relação do tipo Watson-Crick com os RNAs alvo. O complexo é direcionado para o pareamento das bases com mRNA resultando em degradação do mRNA ou repressão da tradução (HAMMOND *et al.*, 2000).

Alguns membros da família Argonauta tem a atividade de fatiamento de mRNAs, exigindo grau de complementariedade entre as bases do miRNA e mRNA para tal ação (ELBASHIR; LENDECKEL; TUSCHL, 2001; JO *et al.*, 2015). Quando a clivagem do alvo é inibida devido às limitações no pareamento de bases ou falta da atividade catalítica do Argonauta, a expressão de mRNAs alvo é reprimida via repressão da tradução ou deadenilação seguida pela degradação do mRNA (HUNTZINGER; IZAURRALDE, 2011). Nas células animais, a maioria das interações miRNA-RNA alvo não são totalmente complementares, gerando "*mismatches*". Dessa forma, é impedida a atividade de endonuclease de AGO2, que passa a atuar como mediador da interferência com RNA (JONAS; IZAURRALDE, 2015). A ligação de miRISC com mRNA resulta em quatro vias de reação, clivagem do alvo, ligação
transitória com o alvo, ligação estável com o alvo e por fim, ligação da fita guia com o alvo e descarregamento da Argonauta (JO *et al.*, 2015; KAWAMATA; TOMARI, 2010).

A maioria dos estudos relatam inibição da expressão gênica, alguns citam a ativação da tradução mediada por miRNAs. A presença de AGO2 (Argonauta) e outras proteínas como FXRP1 (proteína do retardo mental do X frágil) estão associadas ao complexo miRNA-proteína (microRNPs). Estes elementos estão relacionados a elementos ricos em AU no terminal 3' UTR para ativar a tradução (VASUDEVAN; STEITZ, 2007). Outros exemplos de ativação de genes por miRNAs inclui a ligação ao terminal 5 ' UTR de mRNAs, que induz a codificação de proteínas ribossômicas durante a privação de aminoácidos (NIELSEN; LUND, 2008).

2.4 miRNAs EM MOLUSCOS E NAS ESPÉCIES P. canaliculata E P. maculata

Em um estudo em *B. glabrata* utilizando análises *in sílico* e *in vitro* foi possível identificar 89 miRNAs maduros, sendo 5 deles molusco específicos, além de piRNAs identificados no genoma de *B. glabrata* pela primeira vez. Alguns miRNAs se destacaram por apresentar número elevado de leituras; como bgl-bantam, bgl-let-7, bgl-miR-100, bgl-miR-184, bgl-miR-71, bgl-miR-1984, bgl- miR-1a, bgl-miR-315, bgl-miR-375, bgl-miR-750, bgl-miR-8 e bgl-miR-92; sugerindo que estes miRNAs possam ter um papel importante na biologia dos caramujos. Para tanto, bgl-miR-100 e bgl-miR-1a foram os mais expressos, podendo desempenhar papel preponderante na regulação do desenvolvimento e na resposta à infecção de *B. glabrata*. Um número significativo de alvos previstos em *B. glabrata* estão envolvidos na resposta ao estresse, que podem ser determinantes do processo adaptativo dos caramujos à constante colonização por inúmeros microrganismos. Há vários estudos que relatam a susceptibilidade de *B. glabrata* para a infecção com o parasito *Schistosoma mansoni*, alguns dos quais tentam desvendar os mecanismos genéticos que regulam fisiologicamente o molusco. No entanto, nenhum estudo está disponível atualmente que elucida o papel de pequenos RNAs na relação caramujo hospedeiro-parasita (QUEIROZ et al., 2020).

Assim como nos outros metazoários, os miRNAs realizam diversos mecanismos de controle gênico. No bivalve (ostra plana) *Ostrea edulis* após ser exposto a parasitas, revelou expressão diferencial de 63 miRNAs. Desses, 15 miRNAs têm um papel direto nas respostas como proliferação, ativação de macrófagos, inflamação, apoptose e/ou dano oxidativo, conforme relatado para outros organismos. Dessa forma, dentre as diversas funções desempenhadas nos moluscos pelos miRNAs, eles atuam como biomarcadores, que elucidam

efeitos imunotóxicos causados por fatores bióticos e abióticos (BURGOS-ACEVES et al., 2018; MARTÍN-GÓMEZ et al., 2014)

Os miRNAs mostraram-se altamente conservados, principalmente entre os metazoários e também em moluscos. No gastrópode *Littorina littorea* cinco miRNAs precursores foram expressos no músculo do pé (miR-1a-1, -34a, -133a, -125b, -29b e -2a) e três (miR-1a-1, -34a, -29b) no hepatopâncreas, após serem expostos a condições estressantes como hipóxia e gelo. Estes miRNAs mostraram-se conservados em espécies de invertebrados, o que é provável inferir que estariam presentes em todos os moluscos (BIGGAR *et al.*, 2012; OWENS; MALHAM, 2015). OmiRNA-124a está relacionado a processos regenerativos do Sistema Nervoso Central (SNC) de vertebrados, quando associado ao metabólito ácido retinóico. Este miRNA foi identificado pela primeira vez no filo Mollusca, no SNC do gastrópode *Lymnaea stagnalis,* com padrões de expressões semelhantes aos vertebrados (WALKER *et al.*, 2018), corroborando a alta conservação de miRNAs em moluscos e outras espécies.

Há poucos miRNAs de moluscos identificados no miRBase versão 22 (http://www.mirbase.org/), sendo 245 miRNAs maduros e 154 precursores. Apenas 3 espécies de moluscos já tiveram miRNAs registrados: *Lottia gigantea* (64 miRNAs maduros), *Haliotis rufescens* (5 miRNAs maduros) e *Melibe leonina* (176 miRNAs maduros). Já foram catalogados 48.885 miRNAs maduros e 38.589 precursores de 271 espécies identificadas. Há necessidade de maior identificação de miRNAs em moluscos, devido ao extenso número de espécies e poucos registros. Nos artrópodes, filo com maior variedade de espécies, já foram identificados 8.753 miRNAs maduros. Justifica-se assim o estudo de miRNAs em moluscos especificamente nas espécies *P. canaliculata* e *P. maculata*. Estes dados estão disponíveis no *website* do banco de dados miRBase versão 22 (http://www.mirbase.org/) que foi consultado em 16 de maio de 2020.

A regulação da expressão gênica em eucariotos é realizada através de um controle fino, na qual miRNAs e suas vias de silenciamento realizam uma regulação específica da expressão gênica e manutenção da integridade do genoma. Quase todos os processos biológicos, incluindo diferenciação celular, desenvolvimento de tecidos e metabolismo celular podem ser modulado por miRNAs (BARTEL, 2009).

A identificação de miRNAs conservados em moluscos revela diversos mecanismos de modulação nos processos biológicos dentre eles a estivação, que é um fenômeno caracterizado por redução da taxa metabólica para menos de 30% nas condições de repouso. Em um estudo realizado no molusco gastrópode pulmonar terrestre *Otala láctea* (caracol de leite), o fenômeno da estivação é necessário devido às condições ambientais estressantes, com altas temperaturas,

comida e água limitadas. Este molusco reduz sua taxa metabólica em um fenômeno parecido com a hibernação dos ursos. Este fenômeno foi verificado também nos caracóis maçã invasores como *P. maculata,* sendo fundamental à sobrevivência da espécie em climas com períodos prolongados de seca (HOYECK; HADJ-MOUSSA, 2019; MUECK et al., 2018).

Os miRNAs são potenciais candidatos desta regulação na estivação, uma vez que são rápidos, reversíveis e com baixa demanda de energia. Neste estudo foi verificada a expressão de 75 miRNA conservados, dos quais 26 miRNAs foram superexpressos durante a estivação no molusco *O. láctea*, sendo seus genes suprimidos durante a dormência. Estes miRNAs superexpressos são implicados nos mecanismos de sobrevivência celular como: i) anti-apoptose; ii) supressão de tumores e; iii) respostas de manutenção muscular. O presente estudo mostrou níveis elevados de cinco miRNAs anti-apoptose (miR-2a-3p, miR-2c-3p, miRNA-124c, miRNA-153) e miRNA-190 no músculo do pé (HOYECK; HADJ-MOUSSA, 2019).

Outro mecanismo de controle gênico é exercido por miRNAs no abalone *Haliotis midae* (molusco gastrópode marinho) cultivado na África do Sul. O animal é considerado uma iguaria na culinária e perdas comerciais ocorrem devido a doenças infecciosas no abalone. Os miRNAs são capazes de modular a respostas imune em resposta ao estresse, causado pelos processos infecciosos. No estudo preliminar pretendia-se identificar possíveis pequenos RNAs moduladores da resposta imune no molusco, para evitar processos infecciosos e perdas econômicas (PICONE; RHODE; ROODT-WILDING, 2017). Os miRNAs silenciam genes alvo através da destruição específica de mRNA. A detecção de genes nos hospedeiros e não nos patógenos envolvidos na infecção podem ser alvos potenciais para o desenvolvimento de fármacos (HONG-GELLER; MICHEVA-VITEVA, 2010).

Em um estudo em *Lymnaea stagnalis* (molusco gastrópode de água doce) foram identificados 264 miRNAs maduros conservados e 219 novos miRNAs (WALKER *et al.*, 2018). Já em *Haliotis discus hannai* (molusco gastrópode marinho) foram identificados 205 miRNAs maduros, dentre estes 15 conservados e 190 novos miRNAs (HUANG *et al.*, 2018). Em animais bivalves (*Mytilus galloprovincialis*) foram identificados 104 miRNAs conservados e 33 novos miRNAs (YU *et al.*, 2020). Os novos miRNAS maduros identificados não correspondem a nenhuma outra espécie conhecida no miRBase versão 22 (http://www.mirbase.org/). Revela-se a importância da pesquisa de novos miRNAs em moluscos (LAGOS-QUINTANA *et al.*, 2001).

A identificação de miRNAs maduros e seus precursores é realizada por estratégias experimentais e computacionais. As abordagens experimentais, apesar de apresentarem evidências da presença de miRNAs, podem excluir moléculas expressas em certos estágios e

tecidos (GOMES *et al.*, 2011). Assim, análises *in silico* são úteis para espécies com genoma completo sequenciado, permitindo a descoberta de miRNAs usando informações de DNA de genoma inteiro (LI *et al.*, 2010).

Os miRNAs let-7a, miR-279-3p e miR-8-3p mostraram-se abundantes em múltiplos tecidos de moluscos, enquanto miR-9a-3p, miR-183, miR-1986, miR-1990-3p e miR-1993-3p foram expressos de uma maneira específica em alguns tecidos. Os miRNAs 9a-3p, miR-1986 e miR-1990-3p foram altamente expressos nos tecidos do manto em comparação com outros tecidos, o que pode indicar um papel vital por parte desses miRNAs no processo de biomineralização em *Pinctada Fucata* (HUANG et al., 2019, 2021).

Não há registros de miRNAs em *P. canaliculata* e *P. maculata* cadastrados no banco de dados miRBase versão 22 (http://www.mirbase.org/). Os miRNAs, precursores e maduros, e os genes envolvidos na via de processamento de pequenos RNAs estão presentes no genoma e transcriptoma de *P. canaliculata* e *P. maculata*. Desta forma, o objetivo deste trabalho foi identificar e caracterizar miRNAs e, genes envolvidos em sua via de processamento, tanto no genoma e quanto no transcriptoma das espécies de moluscos *P. canaliculata* e *P. maculata*.

3 MATERIAIS E MÉTODOS

3.1 BANCO DE DADOS DOS MOLUSCOS P. canaliculata E P. maculata

As sequências genômicas e transcriptômicas dos moluscos em estudo foram buscadas no banco de dados NCBI (National Centre for Biotechnology Information http://.ncbi.nlm.nih.gov/) e do GigaDB (http://gigadb.org)(GIGADB), [s.d.]., com a finalidade de identificar e analisar miRNAs e os genes envolvidos na via de processamento de pequenos RNAs.

3.2 PREDIÇÃO DE miRNAs PERCURSORES E MADUROS

A análise *in silico* foi realizada utilizando um algoritmo robusto desenvolvido por GOMES *et al.*, 2011 para predição de miRNAs e seus precursores. As análises computacionais foram realizadas no Laboratório de Bioinformática e Análises Moleculares (LBAM), da Universidade Federal de Uberlândia (UFU) no Campus Patos de Minas, seguindo a metodologia estabelecida para predição de miRNAs e precursores a partir do genoma e transcriptoma (GOMES *et al.*, 2011). Foram obtidas as sequências do genoma com tendência em formar estruturas de *hairpin* ou semelhança com miRNAs precursores utilizando o programa Einverted (ferramenta EMBOSS) e o programa BLASTn (NCBI). A identificação de miRNAs homólogos foi realizada a partir do miRBase versão 22 (http://www.mirbase.org/). Estas sequências foram submetidas a uma série de filtros para descartar sequências indesejáveis, permanecendo apenas as sequências correspondentes aos prováveis miRNAs. Os filtros utilizados foram baseados em características conservadas de precursores de miRNAs. Estes filtros foram: i) homologia com miRNAs maduros conservados; ii) conteúdo de GC (guanina e citosina) entre 30% a 65%; iii) Energia Mínima Livre (MFE); iv) homologia com regiões repetidas e; v) homologia com RNAs não codificadores de proteínas, exceto miRNAs.

3.3 ALINHAMENTO DOS miRNAs COM ORTÓLOGOS E CONSTRUÇÃO DA ÁRVORE FILOGENÉTICA

Os prováveis precursores de miRNAs foram comparados com seus ortólogos em vários níveis, através do alinhamento múltiplo de sequências e construção de árvores filogenéticas. As sequências de pré-miRNAs e seus respectivos miRNAs foram submetidos ao alinhamento

múltiplo, por meio das ferramentas ClustalX 2.1 e RNAalifold (THOMPSON; GIBSON; HIGGINS, 2002). Para a ferramenta ClustalX 2.1 foram utilizados os seguintes parâmetros: abertura de espaço ("*gap opening*") 22,50 e extensão do espaço ("*gap extension*") 0,83 (TAKANE *et al.*, 2010). Os prováveis miRNAs precursores escolhidos pela metodologia descrita foram submetidos ao alinhamento entre as espécies mais próximas evolutivamente, bem como aquelas presentes em grupos taxonômicos importantes para comparação. Através do banco de dados miRBase versão 22 (http:// mirbase.org/) foi utilizada a ferramenta BLASTn, na qual foram escolhidos os pré-miRNAs ortólogos. Houve a comparação dos prováveis precursores da espécie estudada com os precursores de miRNAs ortólogos conservados, tanto a nível primário (sequências nucleotídicas) quanto ao nível de estrutura secundária dos precursores.

A análise filogenética dos prováveis pré-miRNAs de *P. canaliculata* e *P. maculata* foi realizada com o auxílio do programa MEGA versão X (TAMURA *et al.*, 2007) utilizando o método Neighbor-joining e aplicando o modelo Kimura dois parâmetros ("*Kimura-twoparameters*"), para estimular a divergência entre as sequências (SAITOU; NEI, 1987). As árvores consenso foram obtidas utilizando "bootstrap" de 5000 réplicas.

3.4 PREDIÇÃO DOS GENES E PROTEÍNAS ENVOLVIDOS NA BIOGÊNESE DA VIA DE miRNAs EM *P. canaliculata* E *P. maculata*

A princípio, para pesquisar as supostas sequências proteicas envolvidas na via miRNA de P. canaliculata e P. maculata, foi utilizada a ferramenta BLASTp (National Centre for Biotechnology Information - http://www.ncbi.nlm.nih.gov/) usando como consultas asequência de proteínas de referência de espécies animais, como Drosophila melanogaster e C.elegans, organismos modelos (Tabela 3). As supostas sequências de proteína e os prováveis genes ortólogos de P. canaliculata e P. maculata foram encontrados e coletados no proteoma predito das espécies no National Centre for Biotechnology Information (NCBI http://www.ncbi.nlm.nih.gov/) e utilizados para análise comparativa de sequências. As sequências de aminoácidos obtidas foram utilizadas para caracterização e validação da maquinaria de processamento de miRNAs em P. canaliculata e P. maculata. No genoma da espécie foram localizadas as sequências dos genes utilizando informações oriundas dos arquivos de anotação disponível no banco de dados da espécie e um script em PERL, para a busca das posições dos nucleotídeos no genoma (CARDOSO et al., 2020; GOMES et al., 2011).

Organismo modelo	Proteína	Código Acesso NCBI
D. melanogaster	Exportina-1	NP_001303316.1
D. melanogaster	Drosha	NP_477436.1
D. melanogaster	TSN	NP_001261195.1
D. melanogaster	Argonauta-1	NP_001246314.1
D. melanogaster	Argonauta 2	NP_730054.1
D. melanogaster	Dicer-1	NP_524453.1
D. melanogaster	Argonauta 3	NP_001163498.1
D. melanogaster	Dicer-2	NP_001286540.1
C. elegans	Argonauta	CCD73272.1
C. elegans	Drosha	001326.2
C. elegans	Dicer	CDK13387.1
C. elegans	Exportina-T	NP_001294153.1
C. elegans	Exportina-1	NP_001368720.1

Tabela 3 - Proteínas ortólogas de organismos modelo utilizado para pesquisa no banco de dados

Fonte: Dados do autor

3.5 ANÁLISE DE DOMÍNIOS CONSERVADOS, ALINHAMENTO MÚLTIPLO DE SEQUÊNCIAS E ANÁLISE FILOGENÉTICA DAS PROTEÍNAS DA VIA DE miRNAs

As sequências preditas de aminoácidos das prováveis proteínas envolvidas na via de processamento de miRNAs em *P. canaliculata* e *P. maculata* foram submetidas ao alinhamento múltiplo de sequência com suas prováveis proteínas ortólogas. Foi utilizada a ferramenta ClustalX 2.1 para analisar alinhamento de estruturas primárias e secundárias das proteínas preditas e seus ortólogos, realizado com parâmetros *default* (LARKIN *et al.*, 2007).

A busca por famílias de domínios e motivos conservados das sequências preditas de aminoácidos das prováveis proteínas envolvidas na via de miRNAs de *P. canaliculata* e *P. maculata* foi realizada utilizando o banco de dados de família de proteínas PFAM versão 32.0 (*Protein Family database* - https://pfam.xfam.org/) (EL-GEBALI *et al.*, 2019; FINN *et al.*, 2010) e o banco de dados de domínios conservados CDD (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (LU *et al.*, 2020).

As sequências das proteínas preditas de *P. canaliculata*, *P. maculata e* possíveis ortólogos de referência (RefSeq) foram submetidos a análises filogenéticas comparativas utilizando o programa MEGA versão X (TAMURA *et al.*, 2007). As árvores filogenéticas

foram construídas utilizando o método Neighbor-joining (NJ) (SAITOU; NEI, 1987) ecalculada com o modelo de substituição JTT. A árvore filogenética consenso foi elaborada utilizando a análise de teste de *bootstrap* para 2000 réplicas representando a história evolutivado grupo de sequências estudadas. A porcentagem de réplicas das árvores filogenéticas foi realizada pelo teste de *boostrop* apresentando no final a árvore consenso. As posições contendoespaços ou dados perdidos de sequências foram subtraídos do conjunto de dados (GOMES *et al.*, 2011).

4 RESULTADOS E DISCUSSÃO

4.1 BANCO DE DADOS DOS MOLUSCOS *P. canaliculata* E *P. maculata*.

Foi realizada uma busca em alguns bancos de dados, a fim de identificar informações genômicas e transcriptomicas das espécies *P. canaliculata* e *P. maculata* incluindo o banco de dados do NCBI (National Centre for Biotechnology Information – http://www.ncbi.nlm.nih.gov/), com registros descritos na Tabela 4 abaixo.

Tabela 4: Dados extraídos do banco de dados NCBI de P. canaliculata e P. maculata.

Espécie	Genoma	Transcriptoma	Proteoma	Regitro no
				Genbank
P. canaliculata	BioProject:	transcriptoma	proteoma	sim
	PRJNA523959		predito	
P. maculata	BioProject:	transcriptoma	proteoma	sim
	PRJNA523958		predito	

Fonte: Dados do autor

4.2 PREDIÇÃO DE miRNAs PERCURSORES E MADUROS

A baixa conservação nucleotídica nos pré-miRNAs restringem as buscas baseadas apenas em métodos de alinhamento de sequências tradicionais (WANG *et al.*, 2005). No entanto, para identificação e caracterização destas moléculas são utilizados alguns parâmetros tais como: energia mínima da estrutura secundária, energia livre ajustada, conteúdo de GC dentre outros (Tabelas 5 e 6) (XUE *et al.*, 2005). A forma mais exata para estudar os pré-miRNAs é feita através de suas características estruturais e termodinâmicas (ZHANG *et al.*, 2009). Para identificação de miRNAs, maduros e precursores, no genoma e transcriptoma de *P. canaliculata* e *P. maculata*, as sequências foram analisadas por suas características estruturais e termodinâmicas estruturais e termodinâmicas e processados computacionalmente de forma a encontrar estruturas secundárias semelhantes aos pré-miRNAs (*hairpins*). As moléculas passaram por diversos filtros como descritos em Materiais e Métodos. Os crivos utilizados foram baseados em características de miRNAs conhecidos (precursores e maduros). Todos os miRNAs identificados obtiveram estrutura secundária estável, ou seja, com energia mínima livre menor que -20 kcal/mol.

Baseado nestas características, neste trabalho foi possível identificar 269 preditos prémiRNAs em *P. canaliculata* e 299 prováveis precursores em *P. maculata*. O tamanho dos precursores das espécies *Lophotrochozoa* situa-se entre 57 a 153 nucleotídeos, com uma média de 90 nucleotídeos por sequência (GOMES *et al.*, 2011). No estudo, o tamanho médio dos precursores de *P. canaliculada* é de 89,55 nucleotídeos e 89,27 nucleotídeos em *P. maculata*. A variação do tamanho dos pré-miRNAs em *P. canaliculata* (63 a 144 nucleotídeos) e *P. maculata* (65 a 100 nucleotídeos) (Tabela 5, coluna 2 e Tabela 6, coluna 2) respectivamente. O tamanho dos pre-miRNAs em espécies animais varia entre 47 a 177 nucleotídeos com um média de 87 \pm 29 nucleotídeos (ZHOU *et al.*, 2009). Os dados do presente estudo corroboram com o tamanho médio de pré-miRNAs das espécies Lophochotrozoa e metazoários de forma geral.

Os precursores identificados neste trabalho apresentaram estrutura secundária característica estável, com capacidade de dobramento. No formato de grampo de cabelo (*hairpin*), o modelo canônico de pré-miRNAs apresenta duas hastes na configuração de *dúplex* e um contorno na extremidade da sequência. As características termodinâmicas das estruturas secundárias destas moléculas se mostraram dentro dos valores padrões de pré-miRNAS. Conforme observado nas Tabela 5, coluna 4 e Tabela 6, coluna 4 respectivamente, a característica MFE (energia mínima livre) para *P. canaliculata* apresenta um valor médio de - 28,70 kcal/mol e -27,55 kcal/ mol para *P. maculata*, sendo valor próximo quando comparado as espécies Lophotrochozoa (-31,27 kcal/mol). Os parâmetros estruturais como a porcentagem de GC (conteúdo) também não apresentaram diferenças estatísticas; *P. canaliculata, P. maculata* e espécies Lophotrochozoa apresentam média de 41,70% , 40,74% e 40,49% respectivamente (GOMES *et al.*, 2011). Dessa forma, verifica-se que as características estruturais e termodinâmicas dos pré-miRNAs de espécies identificadas corroborando achados relacionados aos pré-miRNAs das espécies em estudo.

miRNA	Tamanho	GC (%)	MFE	MFE-	Frequência	Diversidade	AMFE	MFEI
	Nucleotídeos	Conteúdo	kcal/mol	conjunto	(%)	(%)	Kcal/mol	
				Kcal/mol				
pcr-	70	37,14285714	-29,4	-29,4	0,496236	1,25	-42	-1,130769231
bantam-								
pcr-let-7b	84	36,9047619	-18,7	-18,7	0,092975	12,14	-22,26190476	-0,603225806
pcr-let-7d	85	43,52941176	-35,8	-29,3	0,0411056	14,27	-42,11764706	-0,967567568
pcr-let-7f	98	44,89795918	-28	-20,9	0,0575038	32,52	-28,57142857	-0,636363636
pcr-miR-1	95	26,31578947	-18,5	-17,2	0,0456552	8,13	-19,47368421	-0,74
pcr-miR-	92	35,86956522	-21,4	-20,5	0,0641334	16,07	-23,26086957	-0,648484848
1002								

Tabela 5: Características estruturais e termodinâmicas dos pré-miRNAs de P. canaliculata

pcr-miR- 10a	95	43,15789474	-36,3	-36,2	0,0249508	6,41	-38,21052632	-0,885365854
pcr-miR-11	76	46,05263158	-23,7	-23,7	0,279042	5,58	-31,18421053	-0,677142857
pcr-miR- 1175-	98	44,89795918	-42,7	-38,6	0,0798555	5,62	-43,57142857	-0,970454545
pcr-miR- 1187	100	42	-30,8	-25,4	0,0295784	28,62	-30,8	-0,733333333
pcr-miR-12	85	38,82352941	-41,7	-40,3	0,196235	2,83	-49,05882353	-1,263636364
pcr-miR- 122b	91	56,04395604	-27,9	-27,4	0,0537648	26,46	-30,65934066	-0,547058824
pcr-miR- 1238	100	61	-49,3	-47,6	0,0980696	9,54	-49,3	-0,808196721
pcr-miR- 124-5p	74	48,64864865	-33,9	-32,5	0,275153	6,77	-45,81081081	-0,9416666667
pcr-miR- 124c	73	49,31506849	-19,3	-17,4	0,0833127	8,41	-26,43835616	-0,536111111
pcr-miR- 1277-1	92	26,08695652	-19,4	-19,4	0,182954	5,41	-21,08695652	-0,808333333
pcr-miR- 1277-2	91	21,97802198	-21,1	-21,1	0,15848	5,1	-23,18681319	-1,055
pcr-miR- 1322	72	36,11111111	-19,5	-15,5	0,0305019	11,17	-27,083333333	-0,75
pcr-miR- 1328	91	26,37362637	-22,2	-17,7	0,0382424	22,78	-24,3956044	-0,925
pcr-miR- 133	102	41,17647059	-42	-38,2	0,118541	3,77	-41,17647059	-1
pcr-miR- 133c	75	45,33333333	-30,4	-28,9	0,184949	4,61	-40,533333333	-0,894117647
pcr-miR- 137b	84	39,28571429	-33,1	-29,3	0,0390707	10	-39,4047619	-1,003030303
pcr-miR- 13b	95	32,63157895	-24,2	-23,8	0,0196353	15,65	-25,47368421	-0,780645161
pcr-miR- 1421a	79	53,16455696	-23,9	-23,9	0,0165133	12,42	-30,25316456	-0,569047619
pcr-miR- 1421am	96	58,33333333	-31,8	-26,1	0,0477227	21,41	-33,125	-0,567857143
pcr-miR- 143	80	48,75	-22,9	-21,7	0,179141	6,12	-28,625	-0,587179487
pcr-miR- 153-1	93	32,25806452	-19,2	-19,2	0,260282	8,93	-20,64516129	-0,64
pcr-miR- 153-2	87	47,12643678	-37,9	-37,9	0,256161	6,4	-43,56321839	-0,924390244
pcr-miR- 1584	78	34,61538462	-20,5	-16	0,0704864	11,15	-26,28205128	-0,759259259
pcr-miR- 15c	94	40,42553191	-32	-28,3	0,131794	8,15	-34,04255319	-0,842105263
pcr-miR- 1602	96	42,70833333	-25,3	-25,2	0,141519	11,45	-26,35416667	-0,617073171
pcr-miR- 1603	86	23,25581395	-20,1	-20,1	0,0339781	10,39	-23,37209302	-1,005
pcr-miR- 1632	97	44,32989691	-26	-26	0,016941	14,04	-26,80412371	-0,604651163
pcr-miR- 1677	99	51,51515152	-36,2	-35,3	0,0264037	8,83	-36,56565657	-0,709803922
pcr-miR- 1744-1	67	43,28358209	-19,2	-19,2	0,273743	3	-28,65671642	-0,662068966

per-miR-	96	44,79166667	-27,6	-27,6	0,347188	6,28	-28,75	-0,641860465
1744-2	0.		22.0	22.0	0.424.54		24.04526002	0.000000000
pcr-miR- 184	97	50,51546392	-33,8	-33,8	0,131517	7,97	-34,84536082	-0,689795918
pcr-miR-	82	47,56097561	-32,5	-32,3	0,0800475	9,84	-39,63414634	-0,8333333333
170	00	<i>са алалала</i>	21.0	21 7	0.0904550	0.15	25 2222222	0 549275962
1905c	90	04,44444444	-51,6	-51,7	0,0074557	0,15	-33,333333333	-0,340273002
pcr-miR-	94	44,68085106	-26,2	-17,5	0,0795727	16,28	-27,87234043	-0,623809524
1951								
pcr-miR- 1976	73	64,38356164	-28,7	-28,7	0,157786	6,45	-39,31506849	-0,610638298
pcr-miR-	95	60	-47,8	-47,8	0,195263	3,22	-50,31578947	-0,838596491
1984								
pcr-miR-	63	23,80952381	-27	-27	0,311248	2,46	-42,85714286	-1,8
1985								
pcr-miR-	76	57,89473684	-33,4	-33,1	0,171582	3,66	-43,94736842	-0,759090909
1986								
pcr-miR-	72	56,9444444	-30,6	-30,6	0,28064	3,02	-42,5	-0,746341463
1990								
pcr-miR-	74	47,2972973	-32,7	-31,7	0,194317	3,34	-44,18918919	-0,934285714
1992								
pcr-miR-	90	55,55555556	-41,1	-41,1	0,501637	4,6	-45,66666667	-0,822
1994								
pcr-miR-	72	56,9444444	-36,5	-36,2	0,349274	3,61	-50,69444444	-0,890243902
1994a								
pcr-miR-	99	37,37373737	-42,2	-42,2	0,0711267	11,72	-42,62626263	-1,140540541
1996h								
17700								
pcr-miR-1a	65	36,92307692	-23,7	-22,1	0,0750244	6,51	-36,46153846	-0,9875
pcr-miR-1a	65 65	36,92307692 36,92307692	-23,7 -27,1	-22,1 -26	0,0750244 0,4687	6,51 2,23	-36,46153846 -41,69230769	-0,9875 -1,129166667
pcr-miR-1a pcr-miR-1c pcr-miR-	65 65 76	36,92307692 36,92307692 36,84210526	-23,7 -27,1 -36,2	-22,1 -26 -36,2	0,0750244 0,4687 0,193282	6,51 2,23 4,14	-36,46153846 -41,69230769 -47,63157895	-0,9875 -1,129166667 -1,292857143
pcr-miR-1a pcr-miR-1c pcr-miR- 2001	65 65 76	36,92307692 36,92307692 36,84210526	-23,7 -27,1 -36,2	-22,1 -26 -36,2	0,0750244 0,4687 0,193282	6,51 2,23 4,14	-36,46153846 -41,69230769 -47,63157895	-0,9875 -1,129166667 -1,292857143
pcr-miR-1a pcr-miR-1c pcr-miR- 2001 pcr-miR- 2008	65 65 76 96	36,92307692 36,92307692 36,84210526 36,45833333	-23,7 -27,1 -36,2 -24,3	-22,1 -26 -36,2 -24,3	0,0750244 0,4687 0,193282 0,153115	6,51 2,23 4,14 8,97	-36,46153846 -41,69230769 -47,63157895 -25,3125	-0,9875 -1,129166667 -1,292857143 -0,694285714
pcr-miR-1a pcr-miR-1c pcr-miR- 2001 pcr-miR- 2008 pcr-miR-	65 65 76 96	36,92307692 36,92307692 36,84210526 36,45833333	-23,7 -27,1 -36,2 -24,3	-22,1 -26 -36,2 -24,3	0,0750244 0,4687 0,193282 0,153115	6,51 2,23 4,14 8,97	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1	-0,9875 -1,129166667 -1,292857143 -0,694285714
pcr-miR-1a pcr-miR-1c pcr-miR- 2001 pcr-miR- 2008 pcr-miR- 203b	65 65 76 96 100	36,92307692 36,92307692 36,84210526 36,45833333 31	-23,7 -27,1 -36,2 -24,3 -20,1	-22,1 -26 -36,2 -24,3 -18,9	0,0750244 0,4687 0,193282 0,153115 0,0165305	6,51 2,23 4,14 8,97 14,54	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097
pcr-miR-1a pcr-miR-1c pcr-miR- 2001 pcr-miR- 2008 pcr-miR- 203b pcr-miR-	65 65 76 96 100 68	36,92307692 36,92307692 36,84210526 36,45833333 31 48,52941176	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9	-22,1 -26 -36,2 -24,3 -18,9 -21,9	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453	6,51 2,23 4,14 8,97 14,54 4,4	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,663636364
pcr-miR-1a pcr-miR-1c pcr-miR- 2001 pcr-miR- 2008 pcr-miR- 203b pcr-miR- 203b	65 65 76 96 100 68	36,92307692 36,92307692 36,92307692 36,84210526 36,45833333 31 48,52941176	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9	-22,1 -26 -36,2 -24,3 -18,9 -21,9	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453	6,51 2,23 4,14 8,97 14,54 4,4	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,663636364
pcr-miR-1a pcr-miR-1c pcr-miR- 2001 pcr-miR- 2008 pcr-miR- 203b pcr-miR- 204 pcr-miR-	65 65 76 96 100 68 85	36,92307692 36,92307692 36,84210526 36,45833333 31 48,52941176 49,41176471	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169	6,51 2,23 4,14 8,97 14,54 4,4 6,14	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,663636364 -0,554761905
pcr-miR-1a pcr-miR-1c pcr-miR- 2001 pcr-miR- 2008 pcr-miR- 203b pcr-miR- 204 pcr-miR- 2047	65 65 76 96 100 68 85	36,92307692 36,92307692 36,84210526 36,45833333 31 48,52941176 49,41176471	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169	6,51 2,23 4,14 8,97 14,54 4,4 6,14	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,663636364 -0,5554761905
pcr-miR-1a pcr-miR-1c pcr-miR- 2001 pcr-miR- 2008 pcr-miR- 203b pcr-miR- 204 pcr-miR- 2047 pcr-miR-	65 65 76 96 100 68 85 85	36,92307692 36,92307692 36,84210526 36,45833333 31 48,52941176 49,41176471 44,18604651	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3 -20,5	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2 -17,1	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169 0,0594018	6,51 2,23 4,14 8,97 14,54 4,4 6,14 25,69	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471 -23,8372093	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,663636364 -0,554761905 -0,539473684
Por-miR-1a pcr-miR-1c pcr-miR-2001 pcr-miR-2008 pcr-miR-203b pcr-miR-203b pcr-miR-204 pcr-miR-2047 pcr-miR-2155	65 65 76 96 100 68 85 85 86	36,92307692 36,92307692 36,92307692 36,84210526 36,45833333 31 48,52941176 49,41176471 44,18604651	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3 -20,5	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2 -17,1	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169 0,0594018	6,51 2,23 4,14 8,97 14,54 4,4 6,14 25,69	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471 -23,8372093	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,663636364 -0,554761905 -0,539473684
pcr-miR-1a pcr-miR-1c pcr-miR- 2001 pcr-miR- 2008 pcr-miR- 203b pcr-miR- 204 pcr-miR- 2047 pcr-miR- 2155 pcr-miR-	65 65 76 96 100 68 85 85 86 87	36,92307692 36,92307692 36,84210526 36,45833333 31 48,52941176 49,41176471 44,18604651 33,33333333	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3 -20,5 -34	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2 -17,1 -34	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169 0,0594018 0,0973746	6,51 2,23 4,14 8,97 14,54 4,4 6,14 25,69 3,66	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471 -23,8372093 -39,08045977	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,66363636364 -0,554761905 -0,539473684 -1,172413793
pcr-miR-1a pcr-miR-1c pcr-miR- 2001 pcr-miR- 2008 pcr-miR- 203b pcr-miR- 204 pcr-miR- 2047 pcr-miR- 2155 pcr-miR- 2156	65 65 76 96 100 68 85 85 86 87	36,92307692 36,92307692 36,84210526 36,45833333 31 48,52941176 49,41176471 44,18604651 33,33333333	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3 -20,5 -34	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2 -17,1 -34	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169 0,0594018 0,0973746	6,51 2,23 4,14 8,97 14,54 4,4 6,14 25,69 3,66	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471 -23,8372093 -39,08045977	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,663636364 -0,554761905 -0,539473684 -1,172413793
pcr-miR-1a pcr-miR-1c pcr-miR- 2001 pcr-miR- 2008 pcr-miR- 203b pcr-miR- 204 pcr-miR- 2047 pcr-miR- 2155 pcr-miR- 216a pcr-miR-	65 65 76 96 100 68 85 85 86 87 93	36,92307692 36,92307692 36,84210526 36,84210526 36,45833333 31 48,52941176 49,41176471 49,41176471 44,18604651 33,3333333 58,06451613	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3 -20,5 -34 -34,9	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2 -17,1 -34 -29	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169 0,0594018 0,0973746 0,0813189	6,51 2,23 4,14 8,97 14,54 4,4 6,14 25,69 3,66 17,93	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471 -23,8372093 -39,08045977 -37,52688172	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,648387097 -0,654761905 -0,554761905 -0,539473684 -1,172413793 -0,646296296
Por-miR-1a pcr-miR-1c pcr-miR-2001 pcr-miR-2008 pcr-miR-203b pcr-miR-203b pcr-miR-204 pcr-miR-2047 pcr-miR-2155 pcr-miR-216a pcr-miR-216a	65 65 76 96 100 68 85 86 87 93	36,92307692 36,92307692 36,84210526 36,45833333 31 48,52941176 49,41176471 44,18604651 33,3333333 58,06451613	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3 -20,5 -34 -34,9	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2 -17,1 -34 -29	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169 0,0594018 0,0973746 0,0813189	6,51 2,23 4,14 8,97 14,54 4,4 6,14 25,69 3,66 17,93	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471 -23,8372093 -39,08045977 -37,52688172	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,648387097 -0,6363636364 -0,554761905 -0,539473684 -1,172413793 -0,646296296
Por-miR-1a pcr-miR-1c pcr-miR-2001 pcr-miR-2008 pcr-miR-203b pcr-miR-203b pcr-miR-204 pcr-miR-2047 pcr-miR-2155 pcr-miR-216a pcr-miR-216b-1 pcr-miR-216b-1	65 65 76 96 100 68 85 86 87 93 83	36,92307692 36,92307692 36,84210526 36,84210526 36,45833333 31 48,52941176 48,52941176 49,41176471 44,18604651 33,3333333 58,06451613 51,80722892	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3 -20,5 -34 -34,9 -31	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2 -17,1 -34 -29 -30,7	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169 0,0824169 0,0973746 0,0973746 0,0813189 0,290814	6,51 2,23 4,14 8,97 14,54 4,4 6,14 25,69 3,66 17,93 5,92	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471 -23,8372093 -39,08045977 -37,52688172 -37,52688172	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,663636364 -0,554761905 -0,539473684 -1,172413793 -0,646296296 -0,720930233
Por-miR-1a pcr-miR-1c pcr-miR-2001 pcr-miR-2008 pcr-miR-203b pcr-miR-203b pcr-miR-204 pcr-miR-2047 pcr-miR-2155 pcr-miR-216a pcr-miR-216b-1 pcr-miR-216b-2	65 65 76 96 100 68 85 85 86 87 93 83	36,92307692 36,92307692 36,84210526 36,84210526 36,45833333 31 48,52941176 49,41176471 49,41176471 44,18604651 33,3333333 58,06451613 51,80722892	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3 -20,5 -34 -34,9 -31	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2 -17,1 -34 -29 -30,7	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169 0,0594018 0,0973746 0,0813189 0,290814	6,51 2,23 4,14 8,97 14,54 4,4 6,14 25,69 3,66 17,93 5,92	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471 -23,8372093 -39,08045977 -37,52688172 -37,34939759	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,663636364 -0,554761905 -0,539473684 -1,172413793 -0,646296296 -0,720930233
Pysical pcr-miR-1a pcr-miR-1c pcr-miR-2001 pcr-miR-2008 pcr-miR-203b pcr-miR-203b pcr-miR-204 pcr-miR-2047 pcr-miR-2155 pcr-miR-216a pcr-miR-216b-1 pcr-miR-216b-2 pcr-miR-216b-2 pcr-miR-219-1	65 65 76 96 100 68 85 86 87 93 83 77	36,92307692 36,92307692 36,84210526 36,84210526 36,45833333 31 48,52941176 49,41176471 44,18604651 44,18604651 33,3333333 58,06451613 51,80722892 41,55844156	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3 -20,5 -34 -34,9 -31 -27,4	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2 -17,1 -34 -29 -30,7 -27,4	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169 0,0594018 0,0973746 0,0813189 0,290814 0,170426	6,51 2,23 4,14 8,97 14,54 4,4 6,14 25,69 3,66 17,93 5,92 3,13	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471 -23,8372093 -39,08045977 -37,52688172 -37,52688172 -37,34939759 -35,58441558	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,66363636364 -0,554761905 -0,539473684 -1,172413793 -0,646296296 -0,720930233 -0,85625
Pysici pcr-miR-1a pcr-miR-1c pcr-miR-2001 pcr-miR-2008 pcr-miR-203b pcr-miR-203b pcr-miR-204 pcr-miR-2047 pcr-miR-2155 pcr-miR-216a pcr-miR-216b-1 pcr-miR-216b-2 pcr-miR-216b-2 pcr-miR-219-1 pcr-miR-219-1	65 65 76 96 100 68 85 86 87 93 83 77 67	36,92307692 36,92307692 36,84210526 36,84210526 36,45833333 31 48,52941176 49,41176471 44,18604651 33,3333333 58,06451613 51,80722892 41,55844156 40,29850746	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3 -20,5 -34 -34,9 -31 -27,4 -21,9	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2 -17,1 -34 -29 -30,7 -27,4 -21,9	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169 0,0824169 0,0973746 0,0973746 0,0813189 0,290814 0,170426 0,222542	6,51 2,23 4,14 8,97 14,54 4,4 6,14 25,69 3,66 17,93 5,92 3,13 3,22	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471 -23,8372093 -39,08045977 -37,52688172 -37,52688172 -37,52688172 -35,58441558	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,648387097 -0,663636364 -0,554761905 -0,554761905 -0,539473684 -0,539473684 -0,539473684 -0,546296296 -0,720930233 -0,85625 -0,81111111
Pysical pcr-miR-1a pcr-miR-1c pcr-miR-2001 pcr-miR-2008 pcr-miR-203b pcr-miR-203b pcr-miR-204 pcr-miR-204 pcr-miR-216a pcr-miR-216a pcr-miR-216b-1 pcr-miR-216b-2 pcr-miR-219-1 pcr-miR-219-2	65 65 76 96 100 68 85 86 87 93 83 77 67	36,92307692 36,92307692 36,84210526 36,84210526 36,45833333 31 48,52941176 49,41176471 44,18604651 33,3333333 58,06451613 51,80722892 41,55844156 40,29850746	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3 -20,5 -34 -34,9 -31 -27,4 -21,9	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2 -17,1 -34 -29 -30,7 -27,4 -21,9	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169 0,0824169 0,0973746 0,0973746 0,0813189 0,290814 0,170426 0,222542	6,51 2,23 4,14 8,97 14,54 4,4 6,14 25,69 3,66 17,93 5,92 3,13 3,22	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471 -23,8372093 -39,08045977 -39,08045977 -37,52688172 -37,52688172 -37,52688172 -37,52685175 -35,58441558	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,648387097 -0,6463636364 -0,554761905 -0,554761905 -0,539473684 -0,539473684 -0,539473684 -0,646296296 -0,720930233 -0,85625 -0,811111111
Pysici pcr-miR-1a pcr-miR-1c pcr-miR-2001 pcr-miR-2008 pcr-miR-203b pcr-miR-203b pcr-miR-204 pcr-miR-204 pcr-miR-2047 pcr-miR-2165 pcr-miR-216a pcr-miR-216b-1 pcr-miR-216b-2 pcr-miR-219-1 pcr-miR-219-2 pcr-miR-219-2 pcr-miR-219-2	65 65 76 96 100 68 85 86 87 93 83 77 67 88	36,92307692 36,92307692 36,84210526 36,84210526 36,45833333 31 48,52941176 48,52941176 49,41176471 44,18604651 33,3333333 58,06451613 51,80722892 41,55844156 40,29850746 45,45454545	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3 -20,5 -34 -34,9 -31 -27,4 -21,9 -21,1	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2 -17,1 -34 -29 -30,7 -27,4 -21,9 -14,7	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169 0,0824169 0,0973746 0,0973746 0,0813189 0,290814 0,170426 0,222542 0,0688999	6,51 2,23 4,14 8,97 14,54 4,4 6,14 25,69 3,66 17,93 5,92 3,13 3,22 11,59	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471 -23,8372093 -39,08045977 -37,52688172 -37,52688172 -37,34939759 -35,58441558 -32,68656716 -23,97727273	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,663636364 -0,554761905 -0,539473684 -1,172413793 -0,646296296 -0,720930233 -0,85625 -0,811111111 -0,5275
POSOD pcr-miR-1a pcr-miR-1c pcr-miR-2001 pcr-miR-2008 pcr-miR-203b pcr-miR-203b pcr-miR-2047 pcr-miR-2155 pcr-miR-216a pcr-miR-216b-1 pcr-miR-216b-2 pcr-miR-219-1 pcr-miR-219-2 pcr-miR-219-2 pcr-miR-2196	65 65 76 96 100 68 85 86 87 93 83 77 67 88	36,92307692 36,92307692 36,84210526 36,84210526 36,45833333 31 48,52941176 48,52941176 49,41176471 44,18604651 33,3333333 58,06451613 51,80722892 41,55844156 40,29850746 45,45454545	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3 -20,5 -34 -34,9 -31 -27,4 -21,9 -21,1	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2 -17,1 -34 -29 -30,7 -27,4 -21,9 -14,7	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169 0,0594018 0,0973746 0,0973746 0,0813189 0,290814 0,170426 0,222542 0,0688999	6,51 2,23 4,14 8,97 14,54 4,4 6,14 25,69 3,66 17,93 5,92 3,13 3,22 11,59	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471 -23,8372093 -39,08045977 -37,52688172 -37,52688172 -37,52688172 -35,58441558 -32,68656716 -23,97727273	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,663636364 -0,554761905 -0,539473684 -1,172413793 -0,646296296 -0,720930233 -0,85625 -0,811111111 -0,5275
Pysici pcr-miR-1a pcr-miR-1c pcr-miR-2001 pcr-miR-2008 pcr-miR-2003b pcr-miR-203b pcr-miR-2047 pcr-miR-2047 pcr-miR-2155 pcr-miR-216a pcr-miR-216b-1 pcr-miR-216b-2 pcr-miR-219-1 pcr-miR-219-1 pcr-miR-219-2 pcr-miR-2196 pcr-miR-2196	65 65 76 96 100 68 85 86 87 93 83 77 67 88 99	36,92307692 36,92307692 36,84210526 36,84210526 36,45833333 31 48,52941176 49,41176471 44,18604651 44,18604651 33,3333333 58,06451613 51,80722892 41,55844156 40,29850746 45,45454545	-23,7 -27,1 -36,2 -24,3 -20,1 -21,9 -23,3 -20,5 -34 -34,9 -31 -27,4 -21,9 -21,1 -21,1	-22,1 -26 -36,2 -24,3 -18,9 -21,9 -22,2 -17,1 -34 -29 -30,7 -27,4 -21,9 -14,7 -19,4	0,0750244 0,4687 0,193282 0,153115 0,0165305 0,137453 0,0824169 0,0594018 0,0973746 0,0973746 0,0813189 0,290814 0,170426 0,222542 0,0688999 0,0518702	6,51 2,23 4,14 8,97 14,54 4,4 6,14 25,69 3,66 17,93 5,92 3,13 3,22 11,59 8,22	-36,46153846 -41,69230769 -47,63157895 -25,3125 -20,1 -32,20588235 -27,41176471 -23,8372093 -39,08045977 -37,52688172 -37,52688172 -37,52688172 -37,34939759 -35,58441558 -32,68656716 -23,97727273 -21,31313131	-0,9875 -1,129166667 -1,292857143 -0,694285714 -0,648387097 -0,663636364 -0,554761905 -0,539473684 -0,539473684 -1,172413793 -0,646296296 -0,720930233 -0,85625 -0,811111111 -0,5275 -0,57027027

pcr-miR- 2284c	90	34,4444444	-19,4	-19,4	0,0416421	12,72	-21,55555556	-0,625806452
pcr-miR-	100	38	-19,3	-17,8	0,0469214	9,84	-19,3	-0,507894737
2284t								
pcr-miR- 2324	91	58,24175824	-29,7	-20,7	0,0582309	28,39	-32,63736264	-0,560377358
pcr-miR- 2392	100	56	-43,6	-43,1	0,0445531	14,74	-43,6	-0,778571429
pcr-miR-	74	21,62162162	-20,3	-20,3	0,0607476	10,16	-27,43243243	-1,26875
2405								
pcr-miR- 2464	98	29,59183673	-27,8	-26,8	0,142155	8,83	-28,36734694	-0,95862069
pcr-miR- 2470	67	38,80597015	-19,9	-19,9	0,542669	2,57	-29,70149254	-0,765384615
pcr-miR-	95	25,26315789	-23,2	-23,2	0,178642	4,92	-24,42105263	-0,9666666667
2491-1								
pcr-miR- 2491-2	86	37,20930233	-27,25	-26,3	0,182896	6,2	-31,68604651	-0,8515625
pcr-miR-	94	22,34042553	-19	-15,7	0,14487	14,83	-20,21276596	-0,904761905
2491-3								
pcr-miR- 2500	87	35,63218391	-24,7	-24,1	0,0531783	5,65	-28,3908046	-0,796774194
pcr-miR-	94	51,06382979	-37,6	-37,6	0,0595885	5,1	-40	-0,783333333
252a-								
pcr-miR- 254	90	38,88888889	-21,5	-16,1	0,0169726	23,25	-23,888888889	-0,614285714
pcr-miR- 279	94	48,93617021	-39,9	-38,8	0,123884	5,39	-42,44680851	-0,867391304
pcr-miR- 279-2	91	49,45054945	-39,9	-38,8	0,126379	5,36	-43,84615385	-0,886666667
pcr-miR-	88	47,72727273	-27,8	-27,3	0,0316856	14,17	-31,59090909	-0,661904762
279b								
pcr-miR- 2804	99	35,35353535	-25,6	-25,4	0,00606276	12,93	-25,85858586	-0,731428571
pcr-miR-	88	48,86363636	-35,2	-35,1	0,187538	3,76	-40	-0,818604651
281								
pcr-miR- 2962	94	59,57446809	-36	-36	0,402579	13,67	-38,29787234	-0,642857143
pcr-miR-	96	28,125	-23,6	-19,07	0,0416441	16,8	-24,58333333	-0,874074074
297	90	40 42920225	2(2	2(2	0.2(2044	2.27	40.70(51(05	0.925
рсг-тік- 29а	89	49,43820225	-30,3	-30,3	0,263044	3,27	-40,/8051085	-0,825
pcr-miR-	95	53,68421053	-35,8	-30,9	0,0431879	34,86	-37,68421053	-0,701960784
29b								
pcr-miR- 2a-1	99	44,4444444	-40,8	-39,5	0,13114	5,78	-41,21212121	-0,927272727
pcr-miR-	89	43,82022472	-39,8	-39,4	0,329351	1,72	-44,71910112	-1,020512821
2a-2								
pcr-miR- 2a-3	85	47,05882353	-40,5	-40,2	0,12355	3,87	-47,64705882	-1,0125
pcr-miR-	98	38,7755102	-32,4	-30,6	0,111894	7,44	-33,06122449	-0,852631579
2a-4	98	38 7755102	-24.8	-24.8	0 336462	77	-25 30612245	-0 652631570
2b-1	70	56,7755102	-24,0	-2,0	0,000402	1,1	-25,50012245	-0,032051579
pcr-miR-	85	47,05882353	-34,5	-34,5	0,219013	4,37	-40,58823529	-0,8625
2b-2								
pcr-miR-2e	84	34,52380952	-19,3	-19,3	0,294993	3,58	-22,97619048	-0,665517241

pcr-miR-2f	96	47,91666667	-28,6	-28,6	0,0663966	6,92	-29,79166667	-0,62173913
pcr-miR- 3027	88	43,18181818	-25,5	-23,3	0,0225252	10,35	-28,97727273	-0,671052632
pcr-miR- 3050	89	39,3258427	-23,6	-23,6	0,62089	5,09	-26,51685393	-0,674285714
pcr-miR- 3057	90	42,2222222	-24,5	-23	0,146061	9,33	-27,2222222	-0,644736842
pcr-miR- 3071	96	26,04166667	-20,1	-19,8	0,178747	6,13	-20,9375	-0,804
pcr-miR- 308	74	59,45945946	-32,3	-32,3	0,25533	2,19	-43,64864865	-0,734090909
pcr-miR- 3084a	99	38,38383838	-27,5	-22,4	0,0887203	12,04	-27,7777778	-0,723684211
pcr-miR-31	98	47,95918367	-39,3	-36,9	0,095943	6,94	-40,10204082	-0,836170213
pcr-miR- 315	78	48,71794872	-33,4	-33,4	0,276248	3,37	-42,82051282	-0,878947368
pcr-miR- 317-1	94	40,42553191	-40,1	-40,1	0,224017	2,93	-42,65957447	-1,055263158
pcr-miR- 317-2	99	44,4444444	-22,1	-22,1	0,047361	10,2	-22,32323232	-0,502272727
pcr-miR- 3173	88	46,59090909	-29	-29	0,195168	5,51	-32,95454545	-0,707317073
pcr-miR-33	83	43,37349398	-38,7	-37,7	0,204831	5,09	-46,62650602	-1,075
pcr-miR- 340	95	31,57894737	-21,5	-20,6	0,0124846	17,74	-22,63157895	-0,7166666667
pcr-miR- 345	98	57,14285714	-28,8	-28,8	0,301092	13,36	-29,3877551	-0,514285714
pcr-miR- 3529	91	42,85714286	-30,8	-29,7	0,103281	5,67	-33,84615385	-0,78974359
pcr-miR- 3547	98	44,89795918	-22,6	-22,6	0,156123	13,36	-23,06122449	-0,513636364
pcr-miR- 355	98	30,6122449	-22,1	-22,1	0,0174252	13,25	-22,55102041	-0,7366666667
pcr-miR- 3609	92	33,69565217	-18,5	-17	0,0661525	14,65	-20,10869565	-0,596774194
pcr-miR- 3680	97	43,29896907	-32,3	-32	0,0650423	7,8	-33,29896907	-0,769047619
pcr-miR- 36b	70	55,71428571	-30,8	-30,8	0,109108	5,78	-44	-0,78974359
pcr-miR- 3716b	72	36,11111111	-20,4	-20,4	0,0862155	4,88	-28,33333333	-0,784615385
pcr-miR- 3739	94	41,4893617	-39,3	-38	0,332678	4,7	-41,80851064	-1,007692308
pcr-miR- 375-1	98	54,08163265	-34,5	-34,5	0,452928	2,76	-35,20408163	-0,650943396
pcr-miR- 375-2	70	45,71428571	-20,3	-20,3	0,298895	4,19	-29	-0,634375
pcr-miR- 377	81	43,20987654	-24	-24	0,0938628	9,2	-29,62962963	-0,685714286
pcr-miR- 3776	98	36,73469388	-25,2	-24,8	0,0725917	27,27	-25,71428571	-0,7
pcr-miR- 3809	99	37,37373737	-24,9	-24,7	0,0212654	13,08	-25,15151515	-0,672972973
pcr-miR- 3831	69	42,02898551	-23,4	-23,4	0,214068	5,17	-33,91304348	-0,806896552
pcr-miR- 3928	93	38,70967742	-21,1	-19,7	0,138205	13,46	-22,68817204	-0,586111111

pcr-miR- 3957	78	28,20512821	-39,7	-39,7	0,412668	1,21	-50,8974359	-1,804545455
pcr-miR-	81	41,97530864	-26,4	-26,4	0,24589	2,99	-32,59259259	-0,776470588
3965								
pcr-miR-	79	62,02531646	-33,5	-28,4	0,21803	20,3	-42,40506329	-0,683673469
4057	100	29	20.1	22.2	0 120404	15.99	20.1	0 765790474
4066	100	50	-29,1	-22,5	0,120404	15,00	-29,1	-0,703707474
pcr-miR-	76	44,73684211	-25,8	-25,2	0,153161	8,62	-33,94736842	-0,758823529
4070								
pcr-miR- 4185	99	34,34343434	-24	-18,6	0,0912733	7,49	-24,24242424	-0,705882353
pcr-miR-	84	28,57142857	-21	-15,37	0,0100236	18,73	-25	-0,875
4187	02	22 04117647	22.2	22.2	0.0425226	(29	26 11764706	0 7020571 42
4195	85	52,9411/04/	-22,2	-22,2	0,0435520	0,38	-20,11704700	-0,792857145
pcr-miR- 4271	100	48	-35,9	-32,3	0,296371	32,35	-35,9	-0,747916667
pcr-miR-	78	55,12820513	-28,2	-24,9	0,122046	7,91	-36,15384615	-0,655813953
4323	=0		20.6	20 (0.200810	10.00	10.000000000	4 (800 (008
pcr-miR- 4472	79	29,11392405	-38,6	-38,6	0,308719	10,28	-48,86075949	-1,67826087
pcr-miR-	97	41,2371134	-22,3	-19,2	0,0202407	9,91	-22,98969072	-0,5575
449a								
pcr-miR- 449d	97	44,32989691	-25,6	-22,8	0,0371522	9,97	-26,39175258	-0,595348837
pcr-miR-	70	62,85714286	-31	-30,8	0,214837	9,25	-44,28571429	-0,704545455
4525 pcr-miR-	85	43.52941176	-30.3	-19.95	0.101687	17.71	-35.64705882	-0.818918919
4617		10,02711110	00,0	1,,,,,	0,101007	17,71	00,01700002	0,010,10,10
pcr-miR- 4654	99	61,61616162	-41,7	-40,2	0,172557	4,86	-42,12121212	-0,683606557
pcr-miR-	98	24,48979592	-36,4	-36,4	0,12872	16,86	-37,14285714	-1,516666667
466i-1								
pcr-miR-	100	27	-34,8	-12,3	0,119059	30,37	-34,8	-1,288888889
4001-2 ncr-miR-	89	31.46067416	-31.6	-16.94	0.0208055	35.43	-35.50561798	-1.128571429
466i-3		,	,-		.,			-,
pcr-miR-	94	24,46808511	-36,9	-36	0,0677417	18,68	-39,25531915	-1,604347826
466i-4					0.0005550	12.00	20 5(010102	4 000050001
pcr-mik- 466m	88	23,80303030	-26,9	-24,4	0,0337553	13,99	-30,56818182	-1,280952381
pcr-miR-	95	24,21052632	-27,2	-25,5	0,120489	14,18	-28,63157895	-1,182608696
466n	03	20 03225806	10.0	15.6	0.0790441	7.09	21 3078/0/6	0 737037037
466p)5	27,03223800	-1),)	-13,0	0,0770441	7,07	-21,39704940	-0,737037037
pcr-miR-	100	28	-25,7	-22,5	0,0212462	16,27	-25,7	-0,917857143
466q	00	27.5	265	265	0.050.4405	0.5	22.125	0.000000000
pcr-m1R- 467f	80	37,5	-20,5	-20,5	U,USY4607	8,0	-33,125	-0,883333333
pcr-miR-	84	59,52380952	-31,6	-31,6	0,443187	3,44	-37,61904762	-0,632
4715	02	27 6244007	22.4	21.9	0 120005	15.42	24 00602151	0.64
рсг-шік- 4757	13	37,0344080	-22,4	-21,0	0,139005	13,42	-24,00002151	-0,04
pcr-miR-	89	42,69662921	-19,8	-19,8	0,127971	8,44	-22,24719101	-0,521052632
4801								

pcr-miR- 4860	100	38	-21	-15	0,00932122	18,79	-21	-0,552631579
pcr-miR-49	88	32,95454545	-26	-26	0,306727	8,11	-29,54545455	-0,896551724
pcr-miR-	83	56,62650602	-25,6	-24,9	0,0316219	11,38	-30,84337349	-0,544680851
4918								
pcr-miR- 4968-1	94	39,36170213	-30,8	-28,6	0,0493341	13,84	-32,76595745	-0,832432432
pcr-miR- 4968-2	96	37,5	-34,7	-33,6	0,230058	16,55	-36,14583333	-0,963888889
pcr-miR- 4968-3	81	35,80246914	-27,9	-24	0,0741934	12,7	-34,4444444	-0,962068966
pcr-miR-	96	20,83333333	-21,1	-16,1	0,0142023	21,15	-21,97916667	-1,055
4968-4								
pcr-miR- 5317a	93	50,53763441	-29,1	-29,1	0,378556	7,01	-31,29032258	-0,619148936
pcr-miR-	100	33	-18,8	-15,1	0,0106555	34,01	-18,8	-0,56969697
5391 ncr-miR-	100	28	-18.9	-12.7	0.00671688	26.01	-18.9	-0.675
5392	100		10,9	,-	0,00011000	20,01	10,5	0,010
pcr-miR-	98	26,53061224	-20,2	-18,8	0,104707	19,27	-20,6122449	-0,776923077
5440	02	26 00172042	10.5	10.2	0.0010010	11.56	20.06774104	0.79
5549	95	20,881/2043	-19,5	-19,5	0,0919819	11,50	-20,90774194	-0,78
pcr-miR- 559	99	33,33333333	-20,1	-16,59	0,0392066	24,4	-20,3030303	-0,609090909
pcr-miR-	99	44,4444444	-22,2	-20	0,0158651	13,26	-22,42424242	-0,504545455
5594								
pcr-miR- 5595	100	46	-26,5	-26,5	0,0907076	10,96	-26,5	-0,576086957
pcr-miR- 574-1	140	40,71428571	-42,8	-36,9	0,00597424	29,56	-30,57142857	-0,750877193
pcr-miR-	67	28,35820896	-29,2	-15,45	0,0698327	22,63	-43,58208955	-1,536842105
pcr-miR-	89	42,69662921	-20,4	-19,7	0,0426282	9,27	-22,92134831	-0,536842105
5965-5p								
pcr-miR-6-	66	34,84848485	-29	-25,9	0,187241	5,82	-43,93939394	-1,260869565
pcr-miR- 6013	82	68,29268293	-33,6	-22,8	0,0766232	17,71	-40,97560976	-0,6
pcr-miR-	100	35	-27,2	-27,2	0,192392	10,82	-27,2	-0,777142857
6037-1								
pcr-miR- 6037-2	84	38,0952381	-27,2	-27,2	0,62986	1,19	-32,38095238	-0,85
pcr-miR- 6076	91	53,84615385	-30,3	-29,9	0,158352	9,81	-33,2967033	-0,618367347
pcr-miR- 6098	84	41,66666667	-22	-19,4	0,0207902	16,09	-26,19047619	-0,628571429
pcr-miR-	75	33,33333333	-29,7	-28,6	0,15428	5,96	-39,6	-1,188
6132-1		,	,	,-	, -	*		
pcr-miR- 6132-2	84	30,95238095	-34,2	-34,2	0,0260952	5,82	-40,71428571	-1,315384615
pcr-miR-	67	37,31343284	-30,2	-21,3	0,185778	16,57	-45,07462687	-1,208
0132-3 pcr-miR-	92	42,39130435	-25.4	-25.4	0,193109	5.21	-27,60869565	-0.651282051
6335		12,02100100	-0,1	-0,1	0,120102	»,	21,00007000	0,001202001
pcr-miR-	95	43,15789474	-21,2	-20,6	0,0525607	13,18	-22,31578947	-0,517073171
6416								

pcr-miR- 64c	83	40,96385542	-23,4	-23,3	0,0672748	11,61	-28,19277108	-0,688235294
pcr-miR- 6505	94	35,10638298	-21,1	-19,17	0,0134094	12,71	-22,44680851	-0,639393939
pcr-miR- 6516	82	42,68292683	-19,7	-19,7	0,160405	4,33	-24,02439024	-0,562857143
pcr-miR- 6560	69	44,92753623	-19,8	-18,8	0,0706231	8,29	-28,69565217	-0,638709677
pcr-miR- 6575	73	57,53424658	-37,7	-37,7	0,136478	3,17	-51,64383562	-0,897619048
pcr-miR- 6587	94	25,53191489	-20,8	-14,3	0,00508185	23,66	-22,12765957	-0,866666667
pcr-miR- 6603	93	29,03225806	-18,6	-16,4	0,0336602	16,97	-20	-0,688888889
pcr-miR- 6680	93	45,16129032	-24	-24	0,0375404	8,12	-25,80645161	-0,571428571
pcr-miR- 669f	73	24,65753425	-25,6	-20,3	0,138486	10,86	-35,06849315	-1,422222222
pcr-miR-67	73	53,42465753	-42,5	-42,5	0,387173	1,28	-58,21917808	-1,08974359
pcr-miR- 6816	98	57,14285714	-29,7	-29,4	0,0358295	9,47	-30,30612245	-0,530357143
pcr-miR- 6852	98	38,7755102	-24,8	-24,8	0,119887	4,49	-25,30612245	-0,652631579
pcr-miR- 6894	73	49,31506849	-25,9	-25,9	0,400909	2,89	-35,47945205	-0,719444444
pcr-miR- 6951	80	41,25	-23,5	-23,4	0,272799	2,62	-29,375	-0,712121212
pcr-miR- 6974	100	58	-34,3	-27,1	0,0158296	24,28	-34,3	-0,59137931
pcr-miR- 6977	90	53,33333333	-29,4	-28,7	0,0366664	9,79	-32,666666667	-0,6125
pcr-miR- 6999	95	46,31578947	-27,3	-17,3	0,0847578	25,48	-28,73684211	-0,620454545
pcr-miR- 7000	87	44,82758621	-32,8	-32,5	0,12354	7,83	-37,70114943	-0,841025641
pcr-miR- 7072	69	50,72463768	-22,9	-22,9	0,435548	12,1	-33,1884058	-0,654285714
pcr-miR- 71-1	101	43,56435644	-43,3	-43,3	0,1969	5,13	-42,87128713	-0,984090909
pcr-miR- 71-2	95	37,89473684	-19,9	-10,75	0,0389519	25,08	-20,94736842	-0,552777778
pcr-miR- 7151	91	37,36263736	-33,5	-32,8	0,126184	5,54	-36,81318681	-0,985294118
pcr-miR- 7307	97	40,20618557	-26,8	-23,4	0,00551393	16,02	-27,62886598	-0,687179487
pcr-miR- 7314	99	50,50505051	-32,6	-28,7	0,0105412	12,05	-32,92929293	-0,652
pcr-miR- 7386e	98	37,75510204	-24,7	-24,1	0,0259444	13,11	-25,20408163	-0,667567568
pcr-miR- 7389	100	48	-40,8	-39,7	0,0839772	10,1	-40,8	-0,85
pcr-miR- 7398h	93	51,61290323	-24,3	-24,3	0,0318795	3,28	-26,12903226	-0,50625
pcr-miR- 7399	96	22,916666667	-23,9	-23,9	0,118362	17,65	-24,89583333	-1,086363636
pcr-miR- 743b	79	48,10126582	-26,2	-25,6	0,0306733	10,47	-33,16455696	-0,689473684

pcr-miR- 7459	64	51,5625	-30,5	-30,5	0,0883802	5,12	-47,65625	-0,924242424
pcr-miR-	83	57,8313253	-35,7	-31,3	0,0253652	10,13	-43,01204819	-0,74375
745b								
pcr-miR-	65	46,15384615	-20,8	-20,8	0,342745	5,01	-32	-0,693333333
7472	97	50 51546392	-52 7	-51.6	0 157091	3.48	-54 32989691	-1 075510204
750	<i>)</i>	50,51540572	-32,1	-51,0	0,157071	5,40	-34,32707071	-1,075510204
pcr-miR-	94	39,36170213	-27,8	-22,8	0,0515578	21,54	-29,57446809	-0,751351351
751								
pcr-miR- 753d	94	41,4893617	-22,8	-18,7	0,00974595	21,51	-24,25531915	-0,584615385
pcr-miR-	67	49,25373134	-29,1	-28,8	0,330018	2,01	-43,43283582	-0,881818182
760	07	29 96507029	20.4	15.2	0.0361009	14.6	21 02002794	0 729571 420
7643	97	28,80597938	-20,4	-15,5	0,0201098	14,0	-21,03092784	-0,728571429
pcr-miR-	79	32,91139241	-19,5	-18,5	0,0657628	5,47	-24,6835443	-0,75
7649	00		42.4	42.4	0.140211	4.22	40 222222	3.17
рсг-тік- 76b-1	90	,	-43,4	-43,4	0,140211	4,23	-48,22222222	-2,1/
pcr-miR-	97	31,95876289	-21	-14,9	0,0293543	18,5	-21,64948454	-0,677419355
76b-2								
pcr-miR-	77	48,05194805	-19,8	-19,4	0,0757209	9,14	-25,71428571	-0,535135135
770	76	44 72694211	22.8	19.67	0.0850087	19 10	20	0.670599225
7880k	70	44,73064211	-22,8	-10,07	0,0030707	10,19	-50	-0,070388233
pcr-miR-	100	33	-19,6	-19,6	0,125227	11,54	-19,6	-0,593939394
7880q								
pcr-miR-79	95	28,42105263	-18,8	-18,8	0,0982863	9,53	-19,78947368	-0,696296296
pcr-miR- 7901	100	38	-28,4	-28	0,0588354	13,99	-28,4	-0,747368421
pcr-miR-7c	109	37,6146789	-37,2	-34,7	0,144483	9,32	-34,12844037	-0,907317073
pcr-miR-8-	86	43,02325581	-39,6	-39,6	0,178161	3,42	-46,04651163	-1,07027027
1	94	22.00052201	10.6	10.4	0.052(002	0.22		0.09
рсг-тик- 8196b	84	23,80952381	-19,0	-19,4	0,0526092	9,33	-23,33333333	-0,98
pcr-miR-8-	94	45,74468085	-46	-46	0,192059	3,37	-48,93617021	-1,069767442
2								
pcr-miR-	83	51,80722892	-35,3	-34,3	0,251447	8,1	-42,53012048	-0,820930233
8296 ncr-miR-	99	33,33333333	-24.6	-24.5	0.280827	4.23	-24.84848485	-0.745454545
8332	**	00,00000000	21,0	24,0	0,200027	1,20	21,01010105	0,71010101010
pcr-miR-	96	23,95833333	-27,7	-27,7	0,191059	9,75	-28,85416667	-1,204347826
8335-1								
pcr-miR- 8335-2	93	26,88172043	-21	-18	0,0291252	12,45	-22,58064516	-0,84
pcr-miR-	79	37,97468354	-29	-29	0,217216	5,42	-36,70886076	-0,9666666667
8364g								
pcr-miR- 8416	87	31,03448276	-18,7	-18,7	0,245232	4,5	-21,49425287	-0,692592593
pcr-miR-	96	25	-23,6	-23,1	0,141217	4,11	-24,58333333	-0,983333333
8422		20 1-2 10		10.2	0.44-00	10.1.5		
pcr-miR- 8462-1	76	39,47368421	-21,6	-18,9	0,11733	10,16	-28,42105263	-0,72
pcr-miR-	100	30	-19,5	-18	0,0907014	10,52	-19,5	-0,65
8462-2			,			-	-	

pcr-miR- 8485-1	98	20,40816327	-28,9	-25,3	0,0866314	28,22	-29,48979592	-1,445
pcr-miR-	99	21,21212121	-20,6	-10,9	0,0171759	20,99	-20,80808081	-0,980952381
8485-2								
pcr-miR-87	98	40,81632653	-42	-38,2	0,120168	3,71	-42,85714286	-1,05
pcr-miR- 8834a	65	67,69230769	-28,3	-28,3	0,0895969	7	-43,53846154	-0,643181818
pcr-miR- 888	78	50	-25,5	-24,5	0,0825903	6,42	-32,69230769	-0,653846154
pcr-miR- 8915-1	144	59,72222222	-48,1	-38,5	0,00933589	30,97	-33,40277778	-0,559302326
pcr-miR- 8915-2	144	58,33333333	-51,5	-47,1	0,029851	26,76	-35,76388889	-0,613095238
pcr-miR- 8915-3	140	60,71428571	-50,2	-44,5	0,00925419	28,93	-35,85714286	-0,590588235
pcr-miR-	142	60,56338028	-51,2	-50,3	0,0239289	15,77	-36,05633803	-0,595348837
pcr-miR-	142	53,52112676	-48,4	-48,4	0,094252	13,02	-34,08450704	-0,636842105
pcr-miR-	91	51,64835165	-38,6	-36,5	0,0873791	7,6	-42,41758242	-0,821276596
9015 pcr-miR-9-	88	44,31818182	-27,8	-27,8	0,435416	2,15	-31,59090909	-0,712820513
1	02	40 4(22(550	26.6	26.6	0.2209/2	10.00	20 (0215054	0.5792(097
рсг-тік- 9120	93	49,40230559	-20,0	-20,0	0,320862	10,09	-28,60215054	-0,57826087
pcr-miR-9- 2	80	38,75	-23,1	-20	0,134445	5,8	-28,875	-0,74516129
pcr-miR- 92a-1	90	45,55555556	-31,5	-29,1	0,0366431	11,93	-35	-0,768292683
pcr-miR- 92a-2	87	44,82758621	-35,5	-35,5	0,137395	3,64	-40,8045977	-0,91025641
pcr-miR- 92b	89	51,68539326	-32	-32	0,0722739	6,85	-35,95505618	-0,695652174
pcr-miR- 92c-	99	40,4040404	-26,6	-26,6	0,0552462	15,72	-26,86868687	-0,665
pcr-miR-9- 3	93	44,08602151	-34,1	-34	0,28369	3,42	-36,66666667	-0,831707317
pcr-miR- 9341-1	88	44,31818182	-31,8	-28,3	0,0187103	14,65	-36,13636364	-0,815384615
pcr-miR- 9341-2	95	27,36842105	-29,5	-29,5	0,182004	3,22	-31,05263158	-1,134615385
pcr-miR- 9388	88	27,27272727	-19	-17	0,162177	22,34	-21,59090909	-0,7916666667
pcr-miR-9- 4	93	44,08602151	-45,5	-45,5	0,314517	3,87	-48,92473118	-1,109756098
pcr-miR- 1603	86	23,25581395	-20,1	-20,1	0,0339781	10,39	-23,37209302	-1,005
pcr-miR-96	99	25,25252525	-19,7	-17,9	0,0562546	11,21	-19,8989899	-0,788
pcr-miR- 122b	91	56,04395604	-27,9	-27,4	0,0537648	26,46	-30,65934066	-0,547058824
pcr-miR- 96b	70	38,57142857	-23,4	-23,4	0,19695	2,59	-33,42857143	-0,8666666667
pcr-miR- 972	98	32,65306122	-23,7	-19,6	0,0440182	24,34	-24,18367347	-0,740625
pcr-miR- 981	85	49,41176471	-32,6	-28,1	0,0350449	8	-38,35294118	-0,776190476

pcr-miR- 9891	100	65	-37,2	-28,7	0,102885	18,05	-37,2	-0,572307692
pcr-miR- 995	91	53,84615385	-25,2	-20,28	0,0730743	27,75	-27,69230769	-0,514285714

AMFE: Energia Mínima Livre ajustada, MFE: Energia mínima livre, MFEI: Índice de energia mínima livre, MFEE: Energia mínima livre do conjunto

Fonte: Dados do autor.

Fabela 6: Características estruturais e te	ermodinâmicas dos	pré-miRNas de P.	maculata.
--	-------------------	------------------	-----------

miRNA	Tamanho	GC (%)	MFE	MFE-	Frequência	Diversidade	AMFE	MFEI
	Nucleotídeos	Conteúdo	kcal/mol	conjunto	(%)	(%)	Kcal/mol	
				Kcal/mol				
pmc-	70	37,14285714	-29,4	-29,4	0,496236	1,25	-42	-1,130769231
bantam								
pmc-mir-	95	26,31578947	-18,5	-17,2	0,0456552	8,13	-19,47368421	-0,74
1								
ртс-тіг- 1000	74	48,64864865	-28	-27,1	0,0316861	6,94	-37,83783784	-0,77777778
pmc-mir-	100	43	-27,5	-27,5	0,437289	4,9	-27,5	-0,639534884
10031c								
pmc-mir-	98	63,26530612	-37,2	-35,3	0,365188	5,25	-37,95918367	-0,6
10046								
pmc-mir-	91	35,16483516	-33,1	-29,2	0,0940128	18,78	-36,37362637	-1,034375
10055	04	26 15021255	10	15.0	0.0244400	15.12	20.2125(50)	0.550000500
pmc-mir-	94	36,17021277	-19	-17,9	0,0244499	17,13	-20,21276596	-0,558823529
nmc-mir-	75	32	-22.1	-21.7	0 383116	2.01	-29 46666667	_0 920833333
10173	15	52	-22,1	-21,7	0,505110	2,01	-29,4000007	-0,7200000000
pmc-mir-	85	37,64705882	-23,1	-18,2	0,173316	22,89	-27,17647059	-0,721875
10249-1								
pmc-mir-	99	38,38383838	-27,2	-13,3	0,0369505	27,09	-27,47474747	-0,715789474
10249-2								
pmc-mir-	100	44	-30,5	-29	0,0749341	11,46	-30,5	-0,693181818
10256								
pmc-mir-	78	32,05128205	-21,7	-15,8	0,291539	8,02	-27,82051282	-0,868
10267								
pmc-mir-	98	25,51020408	-22,8	-11,64	0,0595061	28,54	-23,26530612	-0,912
10492a	04	29 722 40 426	10.9	16.4	0.0247757	12.65	21.06282070	0.72222222
ршс-шіг- 10508ь	94	28,72340420	-19,8	-10,4	0,034//5/	12,05	-21,00382979	-0,755555555
nmc-mir-	76	50	-27.4	-24.3	0.170278	7.05	-36.05263158	-0.721052632
10509			,.	,-	•,	.,	,	.,
pmc-mir-	79	54,43037975	-24,8	-24,8	0,0248622	11,14	-31,39240506	-0,576744186
10578								
pmc-mir-	98	32,65306122	-20,3	-19,5	0,141481	6,16	-20,71428571	-0,634375
10611								
pmc-mir-	95	41,05263158	-29,6	-26,6	0,0690141	9,88	-31,15789474	-0,758974359
10639								
pmc-mir-	98	29,59183673	-26,4	-25	0,0143851	16,81	-26,93877551	-0,910344828
10770-1	0.		20 7	<u> </u>	0.400432	0.05		0.000
pmc-mir-	87	33,333333333	-28,5	-28,5	0,138113	8,95	-32,75862069	-0,982758621
10//0-2	08	14 80705019	30.8	30.8	0 230692	4.62	31 42857142	0.7
10892	20		-50,0	-50,0	0,237003	4,02	-51,7205/145	-0,7

pmc-mir-								
10972	97	38,1443299	-23,3	-23,3	0,070908	15,83	-24,02061856	-0,62972973
pmc-mir- 10b-1	98	59,18367347	-34	-32,9	0,060236	18,2	-34,69387755	-0,586206897
pmc-mir-	93	41,93548387	-40,6	-40,6	0,262649	9,81	-43,65591398	-1,041025641
pmc-mir-	100	22	-21,4	-15,8	0,0894963	35,03	-21,4	-0,972727273
pmc-mir-	92	31,52173913	-21,9	-21,2	0,135428	13,09	-23,80434783	-0,755172414
11280								
pmc-mir- 1175-1	98	44,89795918	-42,7	-38,6	0,0798555	5,62	-43,57142857	-0,970454545
pmc-mir- 1175-2	98	20,40816327	-20,9	-20	0,0792969	13,02	-21,32653061	-1,045
pmc-mir- 1187	99	23,23232323	-20,3	-19,5	0,0641874	14,27	-20,50505051	-0,882608696
pmc-mir- 11922	79	45,56962025	-25,9	-25,9	0,042274	4,91	-32,78481013	-0,719444444
pmc-mir- 12	85	38,82352941	-41,7	-40,3	0,196235	2,83	-49,05882353	-1,263636364
pmc-mir-	94	42,55319149	-32	-31,6	0,104639	7,62	-34,04255319	-0,8
12096b								
pmc-mir- 12228	88	55,68181818	-33,2	-19,6	0,0758529	14,44	-37,72727273	-0,67755102
pmc-mir- 1224	95	26,31578947	-24,7	-21,1	0,129321	12,41	-26	-0,988
pmc-mir- 12245	96	68,75	-33,6	-33,1	0,0519779	10,23	-35	-0,509090909
pmc-mir- 12286	80	56,25	-28,6	-19,19	0,08512	19,63	-35,75	-0,635555556
pmc-mir- 12287	82	67,07317073	-31,7	-15,9	0,0997248	26,92	-38,65853659	-0,576363636
pmc-mir-	86	55,81395349	-26,4	-25,2	0,0975496	8,86	-30,69767442	-0,55
12292								
12292 pmc-mir- 12293	100	44	-39,4	-30,9	0,181223	7,86	-39,4	-0,895454545
12292 pmc-mir- 12293 pmc-mir- 12296	100 79	44 43,03797468	-39,4 -33,3	-30,9 -33,3	0,181223 0,678283	7,86 1,48	-39,4 -42,15189873	-0,895454545 -0,979411765
12292 pmc-mir- 12293 pmc-mir- 12296 pmc-mir- 12321	100 79 98	44 43,03797468 40,81632653	-39,4 -33,3 -38,7	-30,9 -33,3 -38,7	0,181223 0,678283 0,150689	7,86 1,48 6,68	-39,4 -42,15189873 -39,48979592	-0,895454545 -0,979411765 -0,9675
12292 pmc-mir- 12293 pmc-mir- 12296 pmc-mir- 12321 pmc-mir- 12327	100 79 98 95	44 43,03797468 40,81632653 25,26315789	-39,4 -33,3 -38,7 -29	-30,9 -33,3 -38,7 -28,1	0,181223 0,678283 0,150689 0,0680169	7,86 1,48 6,68 8,35	-39,4 -42,15189873 -39,48979592 -30,52631579	-0,895454545 -0,979411765 -0,9675 -1,208333333
12292 pmc-mir- 12293 pmc-mir- 12296 pmc-mir- 12321 pmc-mir- 12327 pmc-mir- 12339	100 79 98 95 99	44 43,03797468 40,81632653 25,26315789 36,36363636	-39,4 -33,3 -38,7 -29 -43,9	-30,9 -33,3 -38,7 -28,1 -41,47	0,181223 0,678283 0,150689 0,0680169 0,0371689	7,86 1,48 6,68 8,35 11,26	-39,4 -42,15189873 -39,48979592 -30,52631579 -44,34343434	-0,895454545 -0,979411765 -0,9675 -1,208333333 -1,219444444
12292 pmc-mir- 12293 pmc-mir- 12296 pmc-mir- 12321 pmc-mir- 12327 pmc-mir- 12339 pmc-mir- 12358	100 79 98 95 99 98	44 43,03797468 40,81632653 25,26315789 36,36363636 32,65306122	-39,4 -33,3 -38,7 -29 -43,9 -26,7	-30,9 -33,3 -38,7 -28,1 -41,47 -26,7	0,181223 0,678283 0,150689 0,0680169 0,0371689 0,382757	7,86 1,48 6,68 8,35 11,26 2,63	-39,4 -42,15189873 -39,48979592 -30,52631579 -44,34343434 -27,24489796	-0,895454545 -0,979411765 -0,9675 -1,208333333 -1,219444444 -0,834375
12292 pmc-mir- 12293 pmc-mir- 12296 pmc-mir- 12321 pmc-mir- 12327 pmc-mir- 12339 pmc-mir- 12358 pmc-mir- 12358	100 79 98 95 99 98 87	44 43,03797468 40,81632653 25,26315789 36,36363636 32,65306122 47,12643678	-39,4 -33,3 -38,7 -29 -43,9 -26,7 -35,8	-30,9 -33,3 -38,7 -28,1 -41,47 -26,7 -35,8	0,181223 0,678283 0,150689 0,0680169 0,0371689 0,382757 0,255939	7,86 1,48 6,68 8,35 11,26 2,63 5,41	-39,4 -42,15189873 -39,48979592 -30,52631579 -44,34343434 -27,24489796 -41,14942529	-0,895454545 -0,979411765 -0,9675 -1,208333333 -1,21944444 -0,834375 -0,873170732
12292 pmc-mir- 12293 pmc-mir- 12296 pmc-mir- 12321 pmc-mir- 12327 pmc-mir- 12339 pmc-mir- 12358 pmc-mir- 12396 pmc-mir- 124	100 79 98 95 99 98 87 90	44 43,03797468 40,81632653 25,26315789 36,36363636 32,65306122 47,12643678 45,5555556	-39,4 -33,3 -38,7 -29 -43,9 -26,7 -35,8 -27,7	-30,9 -33,3 -38,7 -28,1 -41,47 -26,7 -35,8 -19,2	0,181223 0,678283 0,150689 0,0680169 0,0371689 0,382757 0,255939 0,0731809	7,86 1,48 6,68 8,35 11,26 2,63 5,41 30,63	-39,4 -42,15189873 -39,48979592 -30,52631579 -44,34343434 -27,24489796 -41,14942529 -30,77777778	-0,895454545 -0,979411765 -0,9675 -1,208333333 -1,219444444 -0,834375 -0,873170732 -0,675609756
12292 pmc-mir- 12293 pmc-mir- 12296 pmc-mir- 12321 pmc-mir- 12327 pmc-mir- 12339 pmc-mir- 12358 pmc-mir- 12396 pmc-mir- 124 pmc-mir- 124	100 79 98 95 99 98 87 90 96	44 43,03797468 40,81632653 25,26315789 36,36363636 32,65306122 47,12643678 45,5555556 21,875	-39,4 -33,3 -38,7 -29 -43,9 -26,7 -35,8 -27,7 -25,7	-30,9 -33,3 -38,7 -28,1 -41,47 -26,7 -35,8 -19,2 -23,6	0,181223 0,678283 0,150689 0,0680169 0,0371689 0,382757 0,255939 0,0731809 0,0448405	7,86 1,48 6,68 8,35 11,26 2,63 5,41 30,63 16,09	-39,4 -42,15189873 -39,48979592 -30,52631579 -44,34343434 -27,24489796 -41,14942529 -30,77777778 -26,77083333	-0,895454545 -0,979411765 -0,9675 -1,208333333 -1,219444444 -0,834375 -0,873170732 -0,675609756 -1,223809524
12292 pmc-mir- 12293 pmc-mir- 12296 pmc-mir- 12321 pmc-mir- 12327 pmc-mir- 12339 pmc-mir- 12358 pmc-mir- 12396 pmc-mir- 124 pmc-mir- 1240 pmc-mir- 12410	100 79 98 95 99 98 87 90 96 92	44 43,03797468 40,81632653 25,26315789 36,36363636 32,65306122 47,12643678 45,5555556 21,875 63,04347826	-39,4 -33,3 -38,7 -29 -43,9 -26,7 -35,8 -27,7 -25,7 -37,1	-30,9 -33,3 -38,7 -28,1 -41,47 -26,7 -35,8 -19,2 -23,6 -12,11	0,181223 0,678283 0,150689 0,0680169 0,0371689 0,382757 0,255939 0,0731809 0,0448405 0,0897343	7,86 1,48 6,68 8,35 11,26 2,63 5,41 30,63 16,09 23,69	-39,4 -42,15189873 -39,48979592 -30,52631579 -44,34343434 -27,24489796 -41,14942529 -30,77777778 -26,77083333 -40,32608696	-0,895454545 -0,979411765 -0,9675 -1,208333333 -1,21944444 -0,834375 -0,873170732 -0,675609756 -1,223809524 -0,639655172

pmc-mir-	100	26	-19,9	-19,9	0,0421788	8,59	-19,9	-0,765384615
pmc-mir-	98	30,6122449	-24,5	-22,2	0,0161323	23,72	-25	-0,816666667
1322								
pmc-mir- 133c	75	45,33333333	-30,4	-28,9	0,184949	4,61	-40,53333333	-0,894117647
pmc-mir- 1376	94	47,87234043	-31,4	-26,8	0,0729514	8,03	-33,40425532	-0,697777778
pmc-mir- 137b	86	39,53488372	-33,1	-29,3	0,0221705	10,78	-38,48837209	-0,973529412
pmc-mir- 13b	95	32,63157895	-25,4	-18,3	0,0969165	31,5	-26,73684211	-0,819354839
pmc-mir- 1421am	96	58,33333333	-31,8	-26,1	0,0477227	21,41	-33,125	-0,567857143
pmc-mir-	99	32,32323232	-22,3	-22,3	0,232835	3,91	-22,52525253	-0,696875
pmc-mir-	91	48,35164835	-25,3	-24,9	0,120125	12,48	-27,8021978	-0,575
pmc-mir-	96	37,5	-33	-12,4	0,0174308	29,49	-34,375	-0,9166666667
pmc-mir-	89	47,19101124	-25,1	-25,1	0,0814506	10,2	-28,20224719	-0,597619048
pmc-mir-	87	47,12643678	-37,9	-37,9	0,256161	6,4	-43,56321839	-0,924390244
pmc-mir-	91	38,46153846	-19,4	-19,4	0,255295	14,12	-21,31868132	-0,554285714
pmc-mir-	94	41,4893617	-29,6	-28,4	0,0882062	10,15	-31,4893617	-0,758974359
pmc-mir-	86	23,25581395	-20,1	-20,1	0,0339781	10,39	-23,37209302	-1,005
1603-1		-,	- ,	- ,	- ,	-)	- ,	
pmc-mir- 1603-2	94	25,53191489	-20,1	-19,5	0,0229654	9,06	-21,38297872	-0,8375
pmc-mir- 1632	97	44,32989691	-26	-26	0,016941	14,04	-26,80412371	-0,604651163
pmc-mir- 1642	83	42,1686747	-20,1	-14,7	0,16303	24,29	-24,21686747	-0,574285714
ртс-тіг- 1677	99	51,51515152	-36,2	-35,3	0,0264037	8,83	-36,56565657	-0,709803922
pmc-mir- 17	75	61,33333333	-24,1	-19,8	0,261623	4,23	-32,13333333	-0,523913043
ртс-тіг- 1728	81	45,67901235	-18,9	-18,9	0,107603	12,57	-23,33333333	-0,510810811
pmc-mir- 1744	67	43,28358209	-19,2	-19,2	0,273743	3	-28,65671642	-0,662068966
pmc-mir- 1775	99	42,42424242	-34,9	-34,9	0,331788	5,38	-35,25252525	-0,830952381
pmc-mir- 1781-1	87	35,63218391	-23,1	-23,1	0,071767	5,41	-26,55172414	-0,74516129
ртс-тіг- 1781-2	87	34,48275862	-23,4	-23,4	0,0797214	4,68	-26,89655172	-0,78
ртс-тіг- 1896	100	37	-32,2	-31,6	0,027684	15,11	-32,2	-0,87027027
pmc-mir- 190	82	47,56097561	-32,5	-32,3	0,0800475	9,84	-39,63414634	-0,833333333
ртс-тіг- 1951	94	43,61702128	-23,5	-14,8	0,0639105	17,89	-25	-0,573170732

pmc-mir-								
1955	99	59,5959596	-40,3	-34,2	0,115974	33,97	-40,70707071	-0,683050847
pmc-mir- 196a	100	47	-31,3	-31,3	0,0722099	6,07	-31,3	-0,665957447
pmc-mir- 1984	73	64,38356164	-37,9	-37,9	0,133827	2,65	-51,91780822	-0,806382979
pmc-mir- 1985	67	26,86567164	-28,6	-28,6	0,287364	2,77	-42,68656716	-1,588888889
pmc-mir- 199	93	39,78494624	-20,3	-17,4	0,0562745	14,69	-21,82795699	-0,548648649
pmc-mir- 1990	95	56,84210526	-44,2	-43,8	0,106149	4,96	-46,52631579	-0,818518519
pmc-mir-	90	55,5555556	-41,1	-41,1	0,501637	4,6	-45,666666667	-0,822
pmc-mir- 1994a	91	52,74725275	-44,3	-44,3	0,178398	5,12	-48,68131868	-0,922916667
pmc-mir- 1a	65	36,92307692	-23,7	-22,1	0,0750244	6,51	-36,46153846	-0,9875
pmc-mir- 1b	92	35,86956522	-19,8	-19,2	0,145182	8,89	-21,52173913	-0,6
pmc-mir- 1c	65	36,92307692	-27,1	-26	0,4687	2,23	-41,69230769	-1,129166667
pmc-mir- 2001	76	36,84210526	-36,2	-36,2	0,193282	4,14	-47,63157895	-1,292857143
pmc-mir- 200b	86	39,53488372	-21,8	-21,6	0,126933	11,76	-25,34883721	-0,641176471
pmc-mir- 201	82	59,75609756	-25,8	-25,8	0,163281	11,03	-31,46341463	-0,526530612
pmc-mir- 2017	70	54,28571429	-29	-29	0,16383	21,21	-41,42857143	-0,763157895
pmc-mir-	68	48,52941176	-21,9	-21,9	0,137453	4,4	-32,20588235	-0,663636364
204								-0 657142857
204 pmc-mir- 2064	78	44,87179487	-23	-22,9	0,480687	3,28	-29,48717949	-0,037142037
204 pmc-mir- 2064 pmc-mir- 2155	78 86	44,87179487 44,18604651	-23 -20,5	-22,9	0,480687	3,28 25,69	-29,48717949 -23,8372093	-0,539473684
204 pmc-mir- 2064 pmc-mir- 2155 pmc-mir- 216a	78 86 78	44,87179487 44,18604651 34,61538462	-23 -20,5 -30,5	-22,9 -17,1 -30,5	0,480687 0,0594018 0,146188	3,28 25,69 3,64	-29,48717949 -23,8372093 -39,1025641	-0,539473684 -1,12962963
204 pmc-mir- 2064 pmc-mir- 2155 pmc-mir- 216a pmc-mir- 216b-1	78 86 78 83	44,87179487 44,18604651 34,61538462 51,80722892	-23 -20,5 -30,5 -31	-22,9 -17,1 -30,5 -30,7	0,480687 0,0594018 0,146188 0,290814	3,28 25,69 3,64 5,92	-29,48717949 -23,8372093 -39,1025641 -37,34939759	-0,539473684 -1,12962963 -0,720930233
204 pmc-mir- 2064 pmc-mir- 2155 pmc-mir- 216a pmc-mir- 216b-1 pmc-mir- 216b-2	78 86 78 83 93	44,87179487 44,18604651 34,61538462 51,80722892 59,13978495	-23 -20,5 -30,5 -31 -34,1	-22,9 -17,1 -30,5 -30,7 -34	0,480687 0,0594018 0,146188 0,290814 0,183887	3,28 25,69 3,64 5,92 24,97	-29,48717949 -23,8372093 -39,1025641 -37,34939759 -36,666666667	-0,539473684 -1,12962963 -0,720930233 -0,62
204 pmc-mir- 2064 pmc-mir- 2155 pmc-mir- 216a pmc-mir- 216b-1 pmc-mir- 216b-2 pmc-mir- 216b-3	78 86 78 83 93 91	44,87179487 44,18604651 34,61538462 51,80722892 59,13978495 39,56043956	-23 -20,5 -30,5 -31 -34,1 -20,7	-22,9 -17,1 -30,5 -30,7 -34 -20,6	0,480687 0,0594018 0,146188 0,290814 0,183887 0,0564236	3,28 25,69 3,64 5,92 24,97 15,43	-29,48717949 -23,8372093 -39,1025641 -37,34939759 -36,666666667 -22,74725275	-0,539473684 -1,12962963 -0,720930233 -0,62 -0,575
204 pmc-mir- 2064 pmc-mir- 2155 pmc-mir- 216a pmc-mir- 216b-1 pmc-mir- 216b-2 pmc-mir- 216b-3 pmc-mir- 2223	78 86 78 83 93 91 89	44,87179487 44,18604651 34,61538462 51,80722892 59,13978495 39,56043956 35,95505618	-23 -20,5 -30,5 -31 -34,1 -20,7 -23,8	-22,9 -17,1 -30,5 -30,7 -34 -20,6 -18,8	0,480687 0,0594018 0,146188 0,290814 0,183887 0,0564236 0,195676	3,28 25,69 3,64 5,92 24,97 15,43 11,23	-29,48717949 -23,8372093 -39,1025641 -37,34939759 -36,666666667 -22,74725275 -26,74157303	-0,539473684 -1,12962963 -0,720930233 -0,62 -0,575 -0,74375
204 pmc-mir- 2064 pmc-mir- 2155 pmc-mir- 216a pmc-mir- 216b-1 pmc-mir- 216b-2 pmc-mir- 216b-3 pmc-mir- 2223 pmc-mir- 2238j	78 86 78 83 93 91 89 80	44,87179487 44,18604651 34,61538462 51,80722892 59,13978495 39,56043956 35,95505618 61,25	-23 -20,5 -30,5 -31 -34,1 -20,7 -23,8 -27,6	-22,9 -17,1 -30,5 -30,7 -34 -20,6 -18,8 -25,2	0,480687 0,0594018 0,146188 0,290814 0,183887 0,0564236 0,195676 0,123572	3,28 25,69 3,64 5,92 24,97 15,43 11,23 5,73	-29,48717949 -23,8372093 -39,1025641 -37,34939759 -36,666666667 -22,74725275 -26,74157303 -34,5	-0,539473684 -1,12962963 -0,720930233 -0,62 -0,575 -0,74375 -0,563265306
204 pmc-mir- 2064 pmc-mir- 2155 pmc-mir- 216a pmc-mir- 216b-1 pmc-mir- 216b-2 pmc-mir- 226b-3 pmc-mir- 2223 pmc-mir- 2223 pmc-mir- 2238i pmc-mir- 2284c	78 86 78 83 93 91 89 80 96	44,87179487 44,18604651 34,61538462 51,80722892 59,13978495 39,56043956 35,95505618 61,25 37,5	-23 -20,5 -30,5 -31 -34,1 -20,7 -23,8 -27,6 -22,9	-22,9 -17,1 -30,5 -30,7 -34 -20,6 -18,8 -25,2 -19,8	0,480687 0,0594018 0,146188 0,290814 0,183887 0,0564236 0,195676 0,123572 0,195896	3,28 25,69 3,64 5,92 24,97 15,43 11,23 5,73 4,07	-29,48717949 -23,8372093 -39,1025641 -37,34939759 -36,666666667 -22,74725275 -26,74157303 -34,5 -23,85416667	-0,539473684 -1,12962963 -0,720930233 -0,62 -0,575 -0,74375 -0,563265306 -0,636111111
204 pmc-mir- 2064 pmc-mir- 2155 pmc-mir- 216b-1 pmc-mir- 216b-2 pmc-mir- 216b-3 pmc-mir- 2223 pmc-mir- 2223 pmc-mir- 2238i pmc-mir- 2284c pmc-mir- 2298	78 86 78 83 93 91 89 80 96 93	44,87179487 44,18604651 34,61538462 51,80722892 59,13978495 39,56043956 35,95505618 61,25 37,5 53,76344086	-23 -20,5 -30,5 -31 -34,1 -20,7 -23,8 -27,6 -22,9 -44,5	-22,9 -17,1 -30,5 -30,7 -30,7 -34 -20,6 -18,8 -25,2 -19,8 -41,7	0,480687 0,0594018 0,146188 0,290814 0,183887 0,0564236 0,195676 0,123572 0,195896 0,259982	3,28 25,69 3,64 5,92 24,97 15,43 11,23 5,73 4,07 2,97	-29,48717949 -23,8372093 -39,1025641 -37,34939759 -36,666666667 -22,74725275 -26,74157303 -34,5 -23,85416667 -47,84946237	-0,539473684 -1,12962963 -0,720930233 -0,62 -0,575 -0,74375 -0,563265306 -0,636111111 -0,89
204 pmc-mir- 2064 pmc-mir- 2155 pmc-mir- 216a pmc-mir- 216b-1 pmc-mir- 216b-2 pmc-mir- 2203 pmc-mir- 2223 pmc-mir- 2238i pmc-mir- 2284c pmc-mir- 2284c pmc-mir- 2298 pmc-mir- 2304	78 86 78 83 93 91 89 80 96 93 100	44,87179487 44,18604651 34,61538462 51,80722892 59,13978495 39,56043956 35,95505618 61,25 37,5 53,76344086 43	-23 -20,5 -30,5 -31 -34,1 -20,7 -23,8 -27,6 -22,9 -44,5 -32,8	-22,9 -17,1 -30,5 -30,7 -30,7 -34 -20,6 -18,8 -25,2 -19,8 -41,7 -27,8	0,480687 0,0594018 0,146188 0,290814 0,183887 0,0564236 0,195676 0,123572 0,195896 0,259982 0,0591964	3,28 25,69 3,64 5,92 24,97 15,43 11,23 5,73 4,07 2,97 33,54	-29,48717949 -23,8372093 -39,1025641 -37,34939759 -36,666666667 -22,74725275 -26,74157303 -34,5 -23,85416667 -47,84946237 -32,8	-0,539473684 -1,12962963 -0,720930233 -0,62 -0,575 -0,74375 -0,563265306 -0,636111111 -0,89 -0,762790698

pmc-mir- 2371	85	22,35294118	-23,4	-20,9	0,161131	8,21	-27,52941176	-1,231578947
pmc-mir- 2470	67	38,80597015	-19,9	-19,9	0,542669	2,57	-29,70149254	-0,765384615
pmc-mir- 2491-1	94	25,53191489	-25,1	-23,1	0,0665504	7,31	-26,70212766	-1,045833333
pmc-mir- 2491-2	86	24,41860465	-24,4	-24,2	0,192125	18,27	-28,37209302	-1,161904762
pmc-mir- 2491-3	86	37,20930233	-27,25	-26,3	0,182896	6,2	-31,68604651	-0,8515625
pmc-mir- 2493	93	38,70967742	-28,2	-25,4	0,239172	8,2	-30,32258065	-0,783333333
pmc-mir- 2505	70	22,85714286	-20	-18,8	0,634526	4,68	-28,57142857	-1,25
pmc-mir- 252a	94	51,06382979	-37,6	-37,6	0,0595885	5,1	-40	-0,783333333
pmc-mir- 254	90	38,88888889	-21,5	-16,1	0,0169726	23,25	-23,88888889	-0,614285714
pmc-mir- 2571	83	50,60240964	-29,2	-29,2	0,309071	7,4	-35,18072289	-0,695238095
pmc-mir- 279	91	49,45054945	-39,9	-39,4	0,157559	5,72	-43,84615385	-0,886666667
pmc-mir- 279b	88	46,59090909	-25,9	-23	0,0495292	18,81	-29,43181818	-0,631707317
pmc-mir- 279c	100	60	-38,8	-38,3	0,103385	8,74	-38,8	-0,646666667
pmc-mir- 281	88	40,90909091	-35,2	-35,1	0,187538	3,76	-40	-0,97777778
pmc-mir- 282	85	25,88235294	-20,6	-20,6	0,141364	11,91	-24,23529412	-0,936363636
pmc-mir- 2953	75	50,66666667	-23,8	-23,8	0,296458	3,88	-31,73333333	-0,626315789
pmc-mir- 2a-1	89	42,69662921	-38,6	-38,2	0,276363	1,97	-43,37078652	-1,015789474
pmc-mir- 2a-2	98	38,7755102	-34,2	-33,9	0,160179	6,48	-34,89795918	-0,9
pmc-mir- 2a-3	91	43,95604396	-40,8	-40,8	0,328315	3,78	-44,83516484	-1,02
pmc-mir- 2b-1	98	38,7755102	-24,8	-24,8	0,342782	4,57	-25,30612245	-0,652631579
pmc-mir- 2b-2	85	45,88235294	-34,5	-34,5	0,221463	4,35	-40,58823529	-0,884615385
pmc-mir- 2f	98	48,97959184	-28,7	-28,7	0,0719843	7,94	-29,28571429	-0,597916667
ртс-тіг- 300	68	54,41176471	-24,8	-23,9	0,250391	4,52	-36,47058824	-0,67027027
pmc-mir- 302a	95	34,73684211	-26,3	-26,3	0,0199855	22,21	-27,68421053	-0,796969697
pmc-mir- 302b	93	39,78494624	-25,2	-25,2	0,130818	5,39	-27,09677419	-0,681081081
ртс-тіг- 3057	86	43,02325581	-24,4	-20,9	0,20764	8,46	-28,37209302	-0,659459459
pmc-mir- 3071	96	26,04166667	-20,1	-19,8	0,178747	6,13	-20,9375	-0,804
pmc-mir- 308	74	59,45945946	-32,3	-32,3	0,25533	2,19	-43,64864865	-0,734090909

pmc-mir- 3084a	99	38,38383838	-27,5	-22,4	0,0887203	12,04	-27,7777778	-0,723684211
pmc-mir- 31	100	40	-31,6	-26,5	0,0259012	18,56	-31,6	-0,79
pmc-mir- 315	88	34,09090909	-18,6	-18,6	0,0182896	11,85	-21,13636364	-0,62
pmc-mir- 317	94	40,42553191	-40,1	-40,1	0,224017	2,93	-42,65957447	-1,055263158
pmc-mir- 33	83	43,37349398	-38,7	-37,7	0,204831	5,09	-46,62650602	-1,075
pmc-mir- 336	95	37,89473684	-18,9	-14,5	0,0431525	12,58	-19,89473684	-0,525
pmc-mir- 33b	72	45,83333333	-23,6	-23,6	0,187831	6,78	-32,7777778	-0,715151515
pmc-mir- 345	98	57,14285714	-28,8	-28,8	0,301092	13,36	-29,3877551	-0,514285714
pmc-mir- 3529	91	42,85714286	-30,8	-29,7	0,103281	5,67	-33,84615385	-0,78974359
pmc-mir- 3532	99	56,56565657	-40,6	-30,6	0,0366184	11,77	-41,01010101	-0,725
pmc-mir- 355	98	31,63265306	-22,1	-22,1	0,0174252	13,25	-22,55102041	-0,712903226
pmc-mir- 36	93	41,93548387	-25,6	-18,64	0,0514271	15,9	-27,52688172	-0,656410256
pmc-mir- 3620	74	51,35135135	-27,3	-24,8	0,167443	4,41	-36,89189189	-0,718421053
pmc-mir- 3643	89	47,19101124	-21,4	-13,5	0,040157	24,56	-24,04494382	-0,50952381
pmc-mir- 36b	70	55,71428571	-30,6	-27,6	0,171958	5,87	-43,71428571	-0,784615385
pmc-mir- 3724	80	46,25	-20,3	-19,1	0,192073	5,28	-25,375	-0,548648649
pmc-mir- 375-1	97	55,67010309	-30,9	-30,9	0,454586	4,38	-31,8556701	-0,572222222
pmc-mir- 375-2	70	45,71428571	-20,3	-20,3	0,298895	4,19	-29	-0,634375
pmc-mir- 3782	66	62,12121212	-27,1	-26,3	0,354302	7,68	-41,06060606	-0,66097561
pmc-mir- 3792	66	31,81818182	-19,9	-17,6	0,1503	5,43	-30,15151515	-0,947619048
pmc-mir- 3821	93	31,1827957	-28,6	-28,6	0,0721677	9,75	-30,75268817	-0,986206897
ртс-тіг- 4009с	73	38,35616438	-20,8	-20,7	0,16755	3,74	-28,49315068	-0,742857143
pmc-mir- 4013b	99	36,36363636	-30,2	-30,2	0,107048	16,44	-30,50505051	-0,838888889
pmc-mir- 4057	79	62,02531646	-33,5	-28,4	0,21803	20,3	-42,40506329	-0,683673469
pmc-mir- 4070	81	43,20987654	-27,1	-20,9	0,0822541	16,72	-33,45679012	-0,774285714
pmc-mir- 4133	96	30,20833333	-26,4	-26,4	0,0769195	7,8	-27,5	-0,910344828
pmc-mir- 4140	88	31,81818182	-18,9	-18,9	0,163592	6,36	-21,47727273	-0,675
pmc-mir- 4177	87	27,5862069	-20,5	-19,4	0,131475	8,3	-23,56321839	-0,854166667

pmc-mir- 4185	99	35,35353535	-24,4	-20,7	0,0405048	9,56	-24,64646465	-0,697142857
pmc-mir- 4323	78	53,84615385	-26,3	-25	0,219804	12,73	-33,71794872	-0,626190476
pmc-mir-	73	47,94520548	-25,5	-22,6	0,0746092	17,51	-34,93150685	-0,728571429
pmc-mir-	97	43,29896907	-25,6	-22,8	0,0389626	9,81	-26,39175258	-0,60952381
pmc-mir-	94	59,57446809	-30,5	-25,9	0,0163183	28,06	-32,44680851	-0,544642857
4629								
pmc-mir- 4654	99	61,61616162	-41,7	-40,2	0,172557	4,86	-42,12121212	-0,683606557
pmc-mir- 466-1	95	21,05263158	-24,1	-24,1	0,0352645	12,2	-25,36842105	-1,205
pmc-mir- 466-2	99	28,28282828	-19	-10,61	0,0240587	19,5	-19,19191919	-0,678571429
pmc-mir- 466-3	97	20,6185567	-29,3	-29,3	0,326455	3,38	-30,20618557	-1,465
pmc-mir- 466h	79	29,11392405	-29,5	-29,5	0,500936	3,9	-37,34177215	-1,282608696
pmc-mir-	86	25,58139535	-30,8	-24,1	0,0996183	12,29	-35,81395349	-1,4
pmc-mir-	94	21,27659574	-20,1	-12,9	0,0143588	21,92	-21,38297872	-1,005
pmc-mir-	97	25,77319588	-27,1	-26,2	0,171386	21,7	-27,93814433	-1,084
466m	07	22 68041237	28.3	28.2	0.0494123	16.07	29 17525773	1 286363636
466n	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22,00041257	-20,5	-20,2	0,0494125	10,07	-27,17525775	-1,200505050
pmc-mir- 466q	100	28	-33,1	-14,84	0,0138479	33,92	-33,1	-1,182142857
pmc-mir- 466q pmc-mir- 467d	100 85	28 37,64705882	-33,1 -25,9	-14,84 -23,2	0,0138479 0,0947691	33,92 13,72	-33,1 -30,47058824	-1,182142857 -0,809375
pmc-mir- 466q pmc-mir- 467d pmc-mir- 467f	100 85 82	28 37,64705882 37,80487805	-33,1 -25,9 -30	-14,84 -23,2 -30	0,0138479 0,0947691 0,050335	33,92 13,72 8,93	-33,1 -30,47058824 -36,58536585	-1,182142857 -0,809375 -0,967741935
pmc-mir- 466q pmc-mir- 467d pmc-mir- 467f pmc-mir- 4715	100 85 82 84	28 37,64705882 37,80487805 60,71428571	-33,1 -25,9 -30 -31,6	-14,84 -23,2 -30 -31,6	0,0138479 0,0947691 0,050335 0,33988	33,92 13,72 8,93 8,09	-33,1 -30,47058824 -36,58536585 -37,61904762	-1,182142857 -0,809375 -0,967741935 -0,619607843
pmc-mir- 466q pmc-mir- 467d pmc-mir- 467f pmc-mir- 4715 pmc-mir- 4750	100 85 82 84 98	28 37,64705882 37,80487805 60,71428571 58,16326531	-33,1 -25,9 -30 -31,6 -29,8	-14,84 -23,2 -30 -31,6 -19,7	0,0138479 0,0947691 0,050335 0,33988 0,0669624	33,92 13,72 8,93 8,09 29,71	-33,1 -30,47058824 -36,58536585 -37,61904762 -30,40816327	-1,182142857 -0,809375 -0,967741935 -0,619607843 -0,522807018
pmc-mir- 466q pmc-mir- 467d pmc-mir- 467f pmc-mir- 4715 pmc-mir- 4750 pmc-mir- 4757	100 85 82 84 98 93	28 37,64705882 37,80487805 60,71428571 58,16326531 37,6344086	-33,1 -25,9 -30 -31,6 -29,8 -22,4	-14,84 -23,2 -30 -31,6 -19,7 -21,8	0,0138479 0,0947691 0,050335 0,33988 0,0669624 0,139005	33,92 13,72 8,93 8,09 29,71 15,42	-33,1 -30,47058824 -36,58536585 -37,61904762 -30,40816327 -24,08602151	-1,182142857 -0,809375 -0,967741935 -0,619607843 -0,522807018 -0,64
pmc-mir- 466q pmc-mir- 467d pmc-mir- 467f pmc-mir- 4715 pmc-mir- 4750 pmc-mir- 4757 pmc-mir- 4757	100 85 82 84 98 93 85	28 37,64705882 37,80487805 60,71428571 58,16326531 37,6344086 54,11764706	-33,1 -25,9 -30 -31,6 -29,8 -22,4 -34,6	-14,84 -23,2 -30 -31,6 -19,7 -21,8 -34,5	0,0138479 0,0947691 0,050335 0,33988 0,0669624 0,139005 0,204288	33,92 13,72 8,93 8,09 29,71 15,42 8,13	-33,1 -30,47058824 -36,58536585 -37,61904762 -30,40816327 -24,08602151 -40,70588235	-1,182142857 -0,809375 -0,967741935 -0,619607843 -0,522807018 -0,64 -0,752173913
pmc-mir- 466q pmc-mir- 467d pmc-mir- 467f pmc-mir- 4715 pmc-mir- 4750 pmc-mir- 4757 pmc-mir- 4769 pmc-mir- 4975	100 85 82 84 98 93 85 80	28 37,64705882 37,80487805 60,71428571 58,16326531 37,6344086 54,11764706 51,25	-33,1 -25,9 -30 -31,6 -29,8 -22,4 -34,6 -22,7	-14,84 -23,2 -30 -31,6 -19,7 -21,8 -34,5 -22,7	0,0138479 0,0947691 0,050335 0,33988 0,0669624 0,139005 0,204288 0,227369	33,92 13,72 8,93 8,09 29,71 15,42 8,13 6,98	-33,1 -30,47058824 -36,58536585 -37,61904762 -30,40816327 -24,08602151 -40,70588235 -28,375	-1,182142857 -0,809375 -0,967741935 -0,619607843 -0,522807018 -0,64 -0,752173913 -0,553658537
pmc-mir- 466q pmc-mir- 467d pmc-mir- 467f pmc-mir- 4715 pmc-mir- 4750 pmc-mir- 4757 pmc-mir- 4769 pmc-mir- 487a pmc-mir- 49	100 85 82 84 98 93 85 80 88	28 37,64705882 37,80487805 60,71428571 58,16326531 37,6344086 54,11764706 51,25 32,95454545	-33,1 -25,9 -30 -31,6 -29,8 -22,4 -34,6 -22,7 -26	-14,84 -23,2 -30 -31,6 -19,7 -21,8 -34,5 -22,7 -26	0,0138479 0,0947691 0,050335 0,33988 0,0669624 0,139005 0,204288 0,227369 0,306727	33,92 13,72 8,93 8,09 29,71 15,42 8,13 6,98 8,11	-33,1 -30,47058824 -36,58536585 -37,61904762 -30,40816327 -24,08602151 -40,70588235 -28,375 -29,54545455	-1,182142857 -0,809375 -0,967741935 -0,619607843 -0,522807018 -0,64 -0,752173913 -0,553658537 -0,896551724
pmc-mir- 466q pmc-mir- 467d pmc-mir- 467f pmc-mir- 4715 pmc-mir- 4750 pmc-mir- 4757 pmc-mir- 4769 pmc-mir- 487a pmc-mir- 49 pmc-mir- 49	100 85 82 84 98 93 85 80 88 81	28 37,64705882 37,80487805 60,71428571 58,16326531 37,6344086 54,11764706 51,25 32,95454545 22,2222222	-33,1 -25,9 -30 -31,6 -29,8 -22,4 -34,6 -22,7 -26 -23,1	-14,84 -23,2 -30 -31,6 -19,7 -21,8 -34,5 -22,7 -26 -20,9	0,0138479 0,0947691 0,050335 0,33988 0,0669624 0,139005 0,204288 0,227369 0,306727 0,193135	33,92 13,72 8,93 8,09 29,71 15,42 8,13 6,98 8,11 5,48	-33,1 -30,47058824 -36,58536585 -37,61904762 -30,40816327 -24,08602151 -40,70588235 -28,375 -29,54545455 -28,51851852	-1,182142857 -0,809375 -0,967741935 -0,619607843 -0,522807018 -0,522807018 -0,64 -0,752173913 -0,553658537 -0,896551724 -1,283333333
pmc-mir- 466q pmc-mir- 467d pmc-mir- 467f pmc-mir- 4715 pmc-mir- 4750 pmc-mir- 4757 pmc-mir- 4769 pmc-mir- 487a pmc-mir- 49 pmc-mir- 4938 pmc-mir-	100 85 82 84 98 93 85 80 88 81 89	28 37,64705882 37,80487805 60,71428571 58,16326531 37,6344086 54,11764706 51,25 32,95454545 22,2222222 23,59550562	-33,1 -25,9 -30 -31,6 -29,8 -22,4 -34,6 -22,7 -26 -23,1 -28	-14,84 -23,2 -30 -31,6 -19,7 -21,8 -34,5 -22,7 -26 -20,9 -28	0,0138479 0,0947691 0,050335 0,33988 0,0669624 0,139005 0,204288 0,227369 0,306727 0,193135 0,194482	33,92 13,72 8,93 8,09 29,71 15,42 8,13 6,98 8,11 5,48 3,14	-33,1 -30,47058824 -36,58536585 -37,61904762 -30,40816327 -24,08602151 -40,70588235 -28,375 -29,54545455 -29,54545455 -28,51851852 -31,46067416	-1,182142857 -0,809375 -0,967741935 -0,619607843 -0,522807018 -0,64 -0,752173913 -0,553658537 -0,896551724 -1,283333333 -1,333333333
pmc-mir- 466q pmc-mir- 467d pmc-mir- 4715 pmc-mir- 4750 pmc-mir- 4757 pmc-mir- 4767 pmc-mir- 4757 pmc-mir- 4769 pmc-mir- 487a pmc-mir- 49 pmc-mir- 4938 pmc-mir- 4949 pmc-mir-	100 85 82 84 98 93 85 80 88 81 89 74	28 37,64705882 37,80487805 60,71428571 58,16326531 37,6344086 54,11764706 51,25 32,95454545 22,2222222 23,59550562 31,08108108	-33,1 -25,9 -30 -31,6 -29,8 -22,4 -34,6 -22,7 -26 -23,1 -28 -35,3	-14,84 -23,2 -30 -31,6 -19,7 -21,8 -34,5 -22,7 -26 -20,9 -28 -30,4	0,0138479 0,0947691 0,050335 0,33988 0,0669624 0,139005 0,204288 0,227369 0,306727 0,306727 0,193135 0,194482 0,160289	33,92 13,72 8,93 8,09 29,71 15,42 8,13 6,98 8,11 5,48 3,14 15,99	-33,1 -30,47058824 -36,58536585 -37,61904762 -30,40816327 -24,08602151 -40,70588235 -28,375 -29,54545455 -28,51851852 -31,46067416 -47,7027027	-1,182142857 -0,809375 -0,967741935 -0,619607843 -0,522807018 -0,522807018 -0,64 -0,752173913 -0,553658537 -0,896551724 -1,283333333 -1,33333333 -1,534782609
pmc-mir- 466q pmc-mir- 467d pmc-mir- 4715 pmc-mir- 4750 pmc-mir- 4757 pmc-mir- 4769 pmc-mir- 487a pmc-mir- 49 pmc-mir- 4938 pmc-mir- 4949 pmc-mir- 4968-1 pmc-mir-	100 85 82 84 98 93 85 80 88 81 89 74 90	28 37,64705882 37,80487805 60,71428571 58,16326531 37,6344086 54,11764706 51,25 32,95454545 22,2222222 23,59550562 31,08108108 41,1111111	-33,1 -25,9 -30 -31,6 -29,8 -22,4 -34,6 -22,7 -26 -23,1 -28 -35,3 -33,6	-14,84 -23,2 -30 -31,6 -19,7 -21,8 -34,5 -22,7 -26 -20,9 -28 -30,4 -22,2	0,0138479 0,0947691 0,050335 0,33988 0,0669624 0,139005 0,204288 0,227369 0,306727 0,193135 0,194482 0,160289 0,144928	33,92 13,72 8,93 8,09 29,71 15,42 8,13 6,98 8,11 5,48 3,14 15,99 16,86	-33,1 -30,47058824 -36,58536585 -37,61904762 -30,40816327 -24,08602151 -40,70588235 -28,375 -29,54545455 -28,51851852 -31,46067416 -47,7027027 -37,33333333	-1,182142857 -0,809375 -0,967741935 -0,619607843 -0,522807018 -0,522807018 -0,64 -0,752173913 -0,553658537 -0,896551724 -1,283333333 -1,33333333 -1,534782609 -0,908108108
pmc-mir- 466q pmc-mir- 467d pmc-mir- 467f pmc-mir- 4715 pmc-mir- 4750 pmc-mir- 4757 pmc-mir- 4769 pmc-mir- 487a pmc-mir- 4938 pmc-mir- 4949 pmc-mir- 4968-1 pmc-mir- 4968-2	100 85 82 84 98 93 85 80 88 81 89 74 90	28 37,64705882 37,80487805 60,71428571 58,16326531 37,6344086 54,11764706 51,25 32,95454545 22,2222222 23,59550562 31,08108108 41,1111111	-33,1 -25,9 -30 -31,6 -29,8 -22,4 -34,6 -22,7 -26 -23,1 -28 -35,3 -33,6	-14,84 -23,2 -30 -31,6 -19,7 -21,8 -34,5 -22,7 -26 -20,9 -28 -30,4 -22,2	0,0138479 0,0947691 0,050335 0,33988 0,0669624 0,139005 0,204288 0,227369 0,204288 0,227369 0,306727 0,193135 0,194482 0,160289 0,144928	33,92 13,72 8,93 8,93 8,09 29,71 15,42 8,13 6,98 8,11 5,48 3,14 15,99 16,86	-33,1 -30,47058824 -36,58536585 -37,61904762 -30,40816327 -24,08602151 -40,70588235 -28,375 -29,54545455 -28,51851852 -31,46067416 -47,7027027 -37,33333333	-1,182142857 -0,809375 -0,967741935 -0,619607843 -0,522807018 -0,522807018 -0,64 -0,752173913 -0,553658537 -0,896551724 -1,28333333 -1,33333333 -1,534782609 -0,908108108

pmc-mir- 4968-4	98	40,81632653	-38,8	-38,8	0,480796	14,61	-39,59183673	-0,97
pmc-mir- 4999	88	37,5	-20,3	-20,2	0,0980001	21,47	-23,06818182	-0,615151515
pmc-mir- 501	100	50	-28,4	-28,4	0,207312	9,5	-28,4	-0,568
pmc-mir- 5101-1	100	22	-26,2	-19,3	0,014197	18,79	-26,2	-1,190909091
pmc-mir- 5101-2	93	24,7311828	-26,8	-26,2	0,0651922	10,31	-28,8172043	-1,165217391
pmc-mir- 519f	97	38,1443299	-23,4	-22,1	0,126706	9,47	-24,12371134	-0,632432432
pmc-mir- 5317a	93	60,21505376	-33,8	-33,8	0,197453	11,33	-36,34408602	-0,603571429
pmc-mir- 539	92	36,95652174	-20,4	-20,2	0,064375	14,18	-22,17391304	-0,6
pmc-mir- 5391	100	34	-18,8	-12,3	0,00560855	35,95	-18,8	-0,552941176
pmc-mir- 5396b	94	57,44680851	-34,1	-26,1	0,0205996	19,14	-36,27659574	-0,631481481
pmc-mir- 5549	93	25,80645161	-19,5	-19,3	0,0919819	11,56	-20,96774194	-0,8125
pmc-mir- 5552	85	24,70588235	-23	-20,4	0,0657061	32,41	-27,05882353	-1,095238095
ртс-тіг- 5595	100	46	-30,6	-30,6	0,243502	5,31	-30,6	-0,665217391
pmc-mir- 5600	100	33	-24,6	-24,6	0,137757	6,7	-24,6	-0,745454545
pmc-mir- 5612	91	37,36263736	-20,8	-15,6	0,0415629	12,19	-22,85714286	-0,611764706
pmc-mir- 574-1	99	35,35353535	-26	-18,3	0,0198616	27,93	-26,26262626	-0,742857143
pmc-mir- 574-2	97	27,83505155	-27,6	-27,5	0,0326496	10,86	-28,45360825	-1,022222222
pmc-mir- 5918b	100	25	-22,4	-14	0,0952213	25,67	-22,4	-0,896
pmc-mir- 5965	94	43,61702128	-24,6	-23,9	0,0681876	8,99	-26,17021277	-0,6
pmc-mir- 6056	99	43,43434343	-50,2	-46,8	0,12691	12,98	-50,70707071	-1,16744186
pmc-mir- 6076	97	52,57731959	-33,4	-33,4	0,461099	5,24	-34,43298969	-0,654901961
pmc-mir- 6098	84	41,66666667	-22	-19,4	0,0207902	16,09	-26,19047619	-0,628571429
pmc-mir- 623	88	53,40909091	-29,8	-29,8	0,153312	7,64	-33,86363636	-0,634042553
pmc-mir- 626	96	25	-22,1	-10,23	0,0392647	24,65	-23,02083333	-0,920833333
pmc-mir- 6302	99	34,34343434	-18,9	-17,1	0,135467	11,6	-19,09090909	-0,555882353
pmc-mir- 6416	95	43,15789474	-21,2	-20,6	0,0525607	13,18	-22,31578947	-0,517073171
pmc-mir- 6505	94	36,17021277	-21,1	-19,17	0,0121389	12,86	-22,44680851	-0,620588235
pmc-mir- 651	100	29	-21,6	-21,5	0,14346	4,59	-21,6	-0,744827586

ртс-тіг- 6516	82	41,46341463	-19,7	-19,6	0,151242	5,16	-24,02439024	-0,579411765
pmc-mir- 6528	97	42,26804124	-32,8	-27	0,0291552	15,05	-33,81443299	-0,8
pmc-mir- 6548	74	55,40540541	-31	-31	0,103929	5,12	-41,89189189	-0,756097561
pmc-mir- 6560	69	44,92753623	-19,8	-18,8	0,0706231	8,29	-28,69565217	-0,638709677
pmc-mir- 6562	100	40	-31,7	-31,3	0,0488026	12	-31,7	-0,7925
pmc-mir- 6568	77	66,23376623	-27,4	-27	0,220859	16,73	-35,58441558	-0,537254902
pmc-mir- 669f	73	24,65753425	-25,6	-20,3	0,138486	10,86	-35,06849315	-1,422222222
pmc-mir- 669j	82	31,70731707	-18,5	-17,6	0,121983	11,36	-22,56097561	-0,711538462
pmc-mir- 67	96	51,04166667	-50,4	-50,4	0,287211	2,51	-52,5	-1,028571429
pmc-mir- 6701	97	35,05154639	-19,2	-18,9	0,066024	11,85	-19,79381443	-0,564705882
pmc-mir- 6876	95	33,68421053	-22,5	-22	0,114242	8,28	-23,68421053	-0,703125
pmc-mir- 6891	78	33,33333333	-24,9	-24,9	0,700959	2,36	-31,92307692	-0,957692308
pmc-mir- 6971	70	55,71428571	-24,5	-23,2	0,750631	1,04	-35	-0,628205128
pmc-mir- 6974	94	59,57446809	-35,8	-34,3	0,187738	13,56	-38,08510638	-0,639285714
pmc-mir- 7000	87	43,67816092	-28,9	-28,6	0,111346	9,33	-33,2183908	-0,760526316
pmc-mir- 7046	97	53,60824742	-32,6	-28	0,0594584	25,01	-33,60824742	-0,626923077
pmc-mir- 71	77	45,45454545	-24,6	-24,6	0,0775404	10,03	-31,94805195	-0,702857143
pmc-mir- 7-1	95	37,89473684	-23,3	-21,3	0,0852991	10,39	-24,52631579	-0,647222222
pmc-mir- 7151	91	36,26373626	-37,2	-36,5	0,178864	4,62	-40,87912088	-1,127272727
pmc-mir- 7-2	98	32,65306122	-20,7	-16,47	0,00683777	17,31	-21,12244898	-0,646875
pmc-mir- 7207	95	29,47368421	-20,6	-19,9	0,070254	20,54	-21,68421053	-0,735714286
pmc-mir- 722	90	33,33333333	-20,7	-19,6	0,0614938	7,79	-23	-0,69
pmc-mir- 7241	93	41,93548387	-20,3	-17,7	0,0293226	17,26	-21,82795699	-0,520512821
pmc-mir- 7314	99	50,50505051	-32,6	-28,7	0,0105412	12,05	-32,92929293	-0,652
pmc-mir- 7323	88	36,36363636	-20	-20	0,0493021	14,06	-22,72727273	-0,625
pmc-mir- 7386e	98	36,73469388	-24,7	-24,1	0,0259444	13,11	-25,20408163	-0,686111111
pmc-mir- 7388c	80	53,75	-24,4	-24,4	0,0842249	8,96	-30,5	-0,56744186
pmc-mir- 7398a	96	36,45833333	-21,1	-15,38	0,110809	24,91	-21,97916667	-0,602857143

--								
ртс-тіг- 743b	79	48,10126582	-26,2	-25,6	0,0306733	10,47	-33,16455696	-0,689473684
nmc_mir_	65	40	-20.4	-19 3	0 340793	2 64	-31 38461538	-0 784615385
7448	05	40	-20,4	-17,5	0,540775	2,04	-51,50401556	-0,704015505
pmc-mir-	91	53,84615385	-46,9	-46,9	0,0976825	4,24	-51,53846154	-0,957142857
745a		,	,	,	,	,	,	,
pmc-mir-	70	57,14285714	-29	-25,7	0,0969948	8,37	-41,42857143	-0,725
745b								
pmc-mir-	97	49,48453608	-30,5	-27,9	0,0508509	8,11	-31,44329897	-0,635416667
7472								
pmc-mir-	97	50,51546392	-52,7	-51,6	0,157091	3,48	-54,32989691	-1,075510204
750								
pmc-mir-	94	38,29787234	-27,8	-22,8	0,0515578	21,54	-29,57446809	-0,772222222
751								
pmc-mir-	95	28,42105263	-20,2	-20,2	0,122747	10,51	-21,26315789	-0,748148148
7562								
pmc-mir-	75	36	-19,1	-16,7	0,188578	11,02	-25,466666667	-0,707407407
7575								
pmc-mir-	97	28,86597938	-20,4	-15,3	0,0255881	14,82	-21,03092784	-0,728571429
7643								
pmc-mir-	99	21,21212121	-19,4	-19,4	0,222469	10,6	-19,5959596	-0,923809524
785a								
pmc-mir-	95	21,05263158	-27,3	-24,5	0,144234	12,84	-28,73684211	-1,365
7880b								
pmc-mir-	100	28	-18,6	-17	0,0486767	12,83	-18,6	-0,664285714
ртс-тіг- 7880q	100	28	-18,6	-17	0,0486767	12,83	-18,6	-0,664285714
pmc-mir- 7880q pmc-mir-	100 95	28 28,42105263	-18,6	-17 -18,8	0,0486767	12,83	-18,6 -19,78947368	-0,664285714 -0,696296296
pmc-mir- 7880q pmc-mir- 79	100 95	28 28,42105263	-18,6 -18,8	-17 -18,8	0,0486767 0,0970813	12,83	-18,6 -19,78947368	-0,664285714 -0,696296296
pmc-mir- 7880q pmc-mir- 79 pmc-mir-	100 95 94	28 28,42105263 45,74468085	-18,6 -18,8 -46	-17 -18,8 -46	0,0486767 0,0970813 0,192059	12,83 11,62 3,37	-18,6 -19,78947368 -48,93617021	-0,664285714 -0,696296296 -1,069767442
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8	100 95 94	28 28,42105263 45,74468085	-18,6 -18,8 -46	-17 -18,8 -46	0,0486767 0,0970813 0,192059	12,83 11,62 3,37	-18,6 -19,78947368 -48,93617021	-0,664285714 -0,696296296 -1,069767442
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir-	100 95 94 97	28 28,42105263 45,74468085 45,36082474	-18,6 -18,8 -46 -26,2	-17 -18,8 -46 -23,38	0,0486767 0,0970813 0,192059 0,012202	12,83 11,62 3,37 14,09	-18,6 -19,78947368 -48,93617021 -27,01030928	-0,664285714 -0,696296296 -1,069767442 -0,595454545
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir- 8 pmc-mir- 8250d	100 95 94 97	28 28,42105263 45,74468085 45,36082474	-18,6 -18,8 -46 -26,2	-17 -18,8 -46 -23,38	0,0486767 0,0970813 0,192059 0,012202	12,83 11,62 3,37 14,09	-18,6 -19,78947368 -48,93617021 -27,01030928	-0,664285714 -0,696296296 -1,069767442 -0,595454545
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir- 8250d pmc-mir-	100 95 94 97 96	28 28,42105263 45,74468085 45,36082474 46,875	-18,6 -18,8 -46 -26,2 -25,5	-17 -18,8 -46 -23,38 -25,5	0,0486767 0,0970813 0,192059 0,012202 0,101749	12,83 11,62 3,37 14,09 8,96	-18,6 -19,78947368 -48,93617021 -27,01030928 -26,5625	-0,664285714 -0,696296296 -1,069767442 -0,595454545 -0,5666666667
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir- 8250d pmc-mir- 8250d pmc-mir- 8265	100 95 94 97 96	28 28,42105263 45,74468085 45,36082474 46,875	-18,6 -18,8 -46 -26,2 -25,5	-17 -18,8 -46 -23,38 -25,5	0,0486767 0,0970813 0,192059 0,012202 0,101749	12,83 11,62 3,37 14,09 8,96	-18,6 -19,78947368 -48,93617021 -27,01030928 -26,5625	-0,664285714 -0,696296296 -1,069767442 -0,595454545 -0,5666666667
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir- 8250d pmc-mir- 8265 pmc-mir-	100 95 94 97 96 100	28 28,42105263 45,74468085 45,36082474 46,875 32	-18,6 -18,8 -46 -26,2 -25,5 -21,5	-17 -18,8 -46 -23,38 -25,5 -13,1	0,0486767 0,0970813 0,192059 0,012202 0,101749 0,0304044	12,83 11,62 3,37 14,09 8,96 22,6	-18,6 -19,78947368 -48,93617021 -27,01030928 -26,5625 -21,5	-0,664285714 -0,696296296 -1,069767442 -0,595454545 -0,5666666667 -0,671875
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir- 8250d pmc-mir- 8265 pmc-mir- 8293	100 95 94 97 96 100	28 28,42105263 45,74468085 45,36082474 46,875 32	-18,6 -18,8 -46 -26,2 -25,5 -21,5	-17 -18,8 -46 -23,38 -25,5 -13,1	0,0486767 0,0970813 0,192059 0,012202 0,101749 0,0304044	12,83 11,62 3,37 14,09 8,96 22,6	-18,6 -19,78947368 -48,93617021 -27,01030928 -26,5625 -21,5	-0,664285714 -0,696296296 -1,069767442 -0,595454545 -0,5666666667 -0,671875
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir- 8250d pmc-mir- 8265 pmc-mir- 8293 pmc-mir-	100 95 94 97 96 100 99	28 28,42105263 45,74468085 45,36082474 46,875 32 42,42424242	-18,6 -18,8 -46 -26,2 -25,5 -21,5 -28,4	-17 -18,8 -46 -23,38 -25,5 -13,1 -28,4	0,0486767 0,0970813 0,192059 0,012202 0,101749 0,0304044 0,262782	12,83 11,62 3,37 14,09 8,96 22,6 6,39	-18,6 -19,78947368 -48,93617021 -27,01030928 -26,5625 -21,5 -28,68686869	-0,664285714 -0,696296296 -1,069767442 -0,595454545 -0,5666666667 -0,671875 -0,676190476
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir- 8250d pmc-mir- 8265 pmc-mir- 8293 pmc-mir- 8311	100 95 94 97 96 100 99	28 28,42105263 45,74468085 45,36082474 46,875 32 42,42424242	-18,6 -18,8 -46 -26,2 -25,5 -21,5 -28,4	-17 -18,8 -46 -23,38 -25,5 -13,1 -28,4	0,0486767 0,0970813 0,192059 0,012202 0,101749 0,0304044 0,262782	12,83 11,62 3,37 14,09 8,96 22,6 6,39	-18,6 -19,78947368 -48,93617021 -27,01030928 -26,5625 -21,5 -28,68686869	-0,664285714 -0,696296296 -1,069767442 -0,595454545 -0,5666666667 -0,671875 -0,676190476
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir- 8250d pmc-mir- 8265 pmc-mir- 8293 pmc-mir- 8311 pmc-mir-	100 95 94 97 96 100 99 96	28 28,42105263 45,74468085 45,36082474 46,875 32 42,42424242 22,916666667	-18,6 -18,8 -46 -26,2 -25,5 -21,5 -28,4 -24,4	-17 -18,8 -46 -23,38 -25,5 -13,1 -28,4 -20,9	0,0486767 0,0970813 0,192059 0,012202 0,101749 0,0304044 0,262782 0,125649	12,83 11,62 3,37 14,09 8,96 22,6 6,39 19,36	-18,6 -19,78947368 -48,93617021 -27,01030928 -26,5625 -21,5 -28,68686869 -25,416666667	-0,664285714 -0,696296296 -1,069767442 -0,595454545 -0,5666666667 -0,671875 -0,676190476 -1,109090909
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir- 8250d pmc-mir- 8265 pmc-mir- 8293 pmc-mir- 8311 pmc-mir- 8335	100 95 94 97 96 100 99 96	28 28,42105263 45,74468085 45,36082474 46,875 32 42,42424242 22,916666667	-18,6 -18,8 -46 -26,2 -25,5 -21,5 -28,4 -24,4	-17 -18,8 -46 -23,38 -25,5 -13,1 -28,4 -20,9	0,0486767 0,0970813 0,192059 0,012202 0,101749 0,0304044 0,262782 0,125649	12,83 11,62 3,37 14,09 8,96 22,6 6,39 19,36	-18,6 -19,78947368 -48,93617021 -27,01030928 -26,5625 -21,5 -28,68686869 -25,416666667	-0,664285714 -0,696296296 -1,069767442 -0,595454545 -0,5666666667 -0,671875 -0,676190476 -1,109090909
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir- 8250d pmc-mir- 8265 pmc-mir- 8293 pmc-mir- 8311 pmc-mir- 8335 pmc-mir-	100 95 94 97 96 100 99 96 97	28 28,42105263 45,74468085 45,36082474 46,875 32 42,42424242 22,916666667 20,6185567	-18,6 -18,8 -46 -26,2 -25,5 -21,5 -28,4 -24,4 -18,6	-17 -18,8 -46 -23,38 -25,5 -13,1 -28,4 -20,9 -15,1	0,0486767 0,0970813 0,192059 0,012202 0,101749 0,0304044 0,262782 0,125649 0,018215	12,83 11,62 3,37 14,09 8,96 22,6 6,39 19,36 22,4	-18,6 -19,78947368 -48,93617021 -27,01030928 -26,5625 -21,5 -28,68686869 -25,41666667 -19,17525773	-0,664285714 -0,696296296 -1,069767442 -0,595454545 -0,5666666667 -0,671875 -0,676190476 -1,109090909 -0,93
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir- 8250d pmc-mir- 8265 pmc-mir- 8293 pmc-mir- 8311 pmc-mir- 8335 pmc-mir- 8335 pmc-mir- 8398	100 95 94 97 96 100 99 96 97 96 97 96 97 97 97 96 97 97 97	28 28,42105263 45,74468085 45,36082474 46,875 32 42,42424242 22,916666667 20,6185567	-18,6 -18,8 -46 -26,2 -25,5 -21,5 -21,5 -28,4 -24,4 -18,6	-17 -18,8 -46 -23,38 -25,5 -13,1 -28,4 -20,9 -15,1	0,0486767 0,0970813 0,192059 0,012202 0,101749 0,0304044 0,262782 0,125649 0,018215	12,83 11,62 3,37 14,09 8,96 22,6 6,39 19,36 22,4	-18,6 -19,78947368 -48,93617021 -27,01030928 -26,5625 -21,5 -28,68686869 -25,41666667 -19,17525773	-0,664285714 -0,696296296 -1,069767442 -0,595454545 -0,5666666667 -0,671875 -0,676190476 -1,109090909 -0,93
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir- 8250d pmc-mir- 8265 pmc-mir- 8293 pmc-mir- 8311 pmc-mir- 8335 pmc-mir- 8398 pmc-mir-	100 95 94 97 96 100 99 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96	28 28,42105263 45,74468085 45,36082474 46,875 32 42,42424242 22,916666667 20,6185567 25	-18,6 -18,8 -46 -26,2 -25,5 -21,5 -21,5 -28,4 -24,4 -18,6 -23,6	-17 -18,8 -46 -23,38 -25,5 -13,1 -28,4 -20,9 -15,1 -23,1	0,0486767 0,0970813 0,192059 0,012202 0,101749 0,0304044 0,262782 0,125649 0,018215 0,141217	12,83 11,62 3,37 14,09 8,96 22,6 6,39 19,36 22,4 4,11	-18,6 -19,78947368 -48,93617021 -27,01030928 -26,5625 -21,5 -28,686868689 -25,41666667 -19,17525773 -24,58333333	-0,664285714 -0,696296296 -1,069767442 -0,595454545 -0,5666666667 -0,671875 -0,676190476 -1,109090909 -0,93 -0,983333333
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir- 8250d pmc-mir- 8265 pmc-mir- 8293 pmc-mir- 8311 pmc-mir- 8335 pmc-mir- 8398 pmc-mir- 8422	100 95 94 97 96 100 99 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96	28 28,42105263 45,74468085 45,36082474 46,875 32 42,42424242 22,91666667 20,6185567 25	-18,6 -18,8 -46 -26,2 -25,5 -21,5 -21,5 -28,4 -24,4 -18,6 -23,6	-17 -18,8 -46 -23,38 -25,5 -13,1 -28,4 -20,9 -15,1 -23,1	0,0486767 0,0970813 0,192059 0,012202 0,101749 0,0304044 0,262782 0,125649 0,018215 0,141217	12,83 11,62 3,37 14,09 8,96 22,6 6,39 19,36 22,4 4,11	-18,6 -19,78947368 -48,93617021 -27,01030928 -26,5625 -21,5 -28,686868689 -25,41666667 -19,17525773 -24,58333333	-0,664285714 -0,696296296 -1,069767442 -0,595454545 -0,5566666667 -0,671875 -0,676190476 -1,109090909 -0,93 -0,983333333
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir- 8250d pmc-mir- 8265 pmc-mir- 8203 pmc-mir- 8311 pmc-mir- 8335 pmc-mir- 8398 pmc-mir- 8398 pmc-mir- 8422 pmc-mir-	100 95 94 97 96 100 99 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96 92	28 28,42105263 45,74468085 45,36082474 46,875 32 42,42424242 22,91666667 20,6185567 25 35,86956522	-18,6 -18,8 -46 -26,2 -25,5 -21,5 -21,5 -28,4 -18,6 -23,6 -18,7	-17 -18,8 -46 -23,38 -25,5 -13,1 -28,4 -20,9 -15,1 -23,1 -18,6	0,0486767 0,0970813 0,192059 0,012202 0,101749 0,0304044 0,262782 0,125649 0,018215 0,141217 0,0764442	12,83 11,62 3,37 14,09 8,96 22,6 6,39 19,36 22,4 4,11 11,42	-18,6 -19,78947368 -48,93617021 -27,01030928 -26,5625 -21,5 -28,68686869 -25,41666667 -19,17525773 -24,58333333 -20,32608696	-0,664285714 -0,696296296 -1,069767442 -0,595454545 -0,595454545 -0,5666666667 -0,671875 -0,676190476 -1,109090909 -0,93 -0,983333333 -0,5666666667
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8250d pmc-mir- 8265 pmc-mir- 8311 pmc-mir- 8335 pmc-mir- 8398 pmc-mir- 8422 pmc-mir- 8443	100 95 94 97 96 99 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96 92	28 28,42105263 45,74468085 45,36082474 46,875 32 42,42424242 22,916666667 20,6185567 25 35,86956522	-18,6 -18,8 -46 -26,2 -25,5 -21,5 -21,5 -28,4 -18,6 -23,6 -18,7	-17 -18,8 -46 -23,38 -25,5 -13,1 -28,4 -20,9 -15,1 -23,1 -18,6	0,0486767 0,0970813 0,192059 0,012202 0,101749 0,0304044 0,262782 0,125649 0,018215 0,141217 0,0764442	12,83 11,62 3,37 14,09 8,96 22,6 6,39 19,36 22,4 4,11 11,42	-18,6 -19,78947368 -48,93617021 -27,01030928 -26,5625 -21,5 -28,68686869 -25,41666667 -19,17525773 -24,58333333 -20,32608696	-0,664285714 -0,696296296 -1,069767442 -0,595454545 -0,5666666667 -0,671875 -0,676190476 -1,109090909 -0,93 -0,983333333 -0,5666666667
pmc-mir- 7880q pmc-mir- 79 pmc-mir- 8 pmc-mir- 8250d pmc-mir- 8203 pmc-mir- 8311 pmc-mir- 8335 pmc-mir- 8398 pmc-mir- 8443 pmc-mir-	100 95 94 97 96 100 99 96 97 96 97 96 97 96 97 96 97 96 97 98	28 28,42105263 45,74468085 45,36082474 46,875 32 42,42424242 22,916666667 20,6185567 25 35,86956522 35,95505618	-18,6 -18,8 -46 -26,2 -25,5 -21,5 -21,5 -28,4 -18,6 -23,6 -18,7 -23,7	-17 -18,8 -46 -23,38 -25,5 -13,1 -28,4 -20,9 -15,1 -23,1 -18,6 -20,9	0,0486767 0,0970813 0,192059 0,012202 0,101749 0,0304044 0,262782 0,125649 0,018215 0,141217 0,0764442 0,049028	12,83 11,62 3,37 14,09 8,96 22,6 6,39 19,36 22,4 4,11 11,42 10,23	-18,6 -19,78947368 -48,93617021 -27,01030928 -26,5625 -21,5 -28,68686869 -25,41666667 -19,17525773 -24,58333333 -20,32608696 -26,62921348	-0,664285714 -0,696296296 -1,069767442 -0,595454545 -0,5666666667 -0,671875 -0,676190476 -1,109090909 -0,93 -0,983333333 -0,5666666667 -0,740625

AMFE: Energia Mínima Livre ajustada, MFE: Energia mínima livre, MFEI: Índice de energia mínima livre, MFEE: Energia mínima livre do conjunto.

Fonte: Dados do autor

Através de uma abordagem computacional desenvolvida neste trabalho, no genoma e transcriptoma das espécies em estudo, foi possível detectar miRNAs (maduros e precursores).

Foram identificados 296 (*P. canaliculata*) e 316 (*P. maculata*) prováveis miRNAs maduros conservados, semelhantes aos ortólogos das espécies com miRNAs catalogados no miRbase versão 22 (http://www.mirbase.org). O número de miRNAs identificados corrobora com o número de miRNAs conservados referentes ao molusco próximo evolutivamente *Lymnaea stagnalis*, gastrópode de água doce (264 miRNAs maduros) (WALKER *et al.*, 2018).

Os miRNA não codificantes de proteínas têm aproximadamente 22 nucleotídeos em sua extensão, variando em média de 17 a 25 nucleotídeos (HA; KIM, 2014; RACHAGANI; KUMAR; BATRA, 2010). Os miRNAs maduros identificados neste trabalho possuem em média 21,86 nucleotídeos (*P. canaliculata*) - Tabela 7, coluna 2 e 21,77 nucleotídeos (*P. maculata*) - Tabela 8, coluna 2; com variação de tamanho entre 17 a 25 nucleotídeos para ambas as espécies, corroborando com dados de espécies animais.

A proteína Ago1 apresenta preferência pelo nucleotídeo uracila na primeira posição da sequência do miRNA na extremidade 5' a ser carregado, para ser inserido no complexo RISC. A proteína Ago 2 também pode ser carregada com o miRNA (uma das fitas do *duplex*), intermediando a clivagem de alvos de miRNAs (GHILDIYAL *et al.*, 2010; SEITZ; TUSHIR; ZAMORE, 2011; ZHANG; STELLWAG; PAN, 2009). Neste trabalho, os miRNAs maduros de *P. canaliculata* e *P. maculata*, respectivamente, apresentaram quantitativo de nucleotídeos na primeira posição de 41,2% e 42,40% de uracila, 20,9% e 17,8% (citosina), 20,4% e 24,5% de adenina e 17,5% e 15,3% de guanina. Os resultados encontrados corroboram os dados da literatura acima descritos.

A sequência madura dos miRNAs tem se mostrado conservada evolutivamente (WIT *et al.*, 2009). Esta conservação se acentua na região denominada *seed* (semente), sendo considerada importante para reconhecimento dos alvos de miRNAs (LEWIS; BURGE; BARTEL, 2005). Todos os miRNAs identificados neste trabalho apresentaram 100% de identidade nas regiões *seed* (posição de 2 a 8 nucleotídeos) (LEWIS *et al.*, 2003) e no máximo 30% dos nucleotídeos diferentes (*mismathes*) do miRNA maduro, quando comparado com estrutura do seu respectivo ortólogo.

A conservação da região *seed*, segundo Friedman *et al*. (2009) é muito importante evolutivamente para conservação dos alvos de miRNAs silenciados. Como ocorre a correspondência de bases do tipo Watson-Crick, ambos, miRNAs e alvos, necessitam de uma estrutura conservada, apesar de que todas as interações não sejam totalmente complementares (FRIEDMAN *et al.*, 2009). Na caracterização dos miRNAs, é possível verificar no alinhamento dos precursores a identificação dos miRNAs, apresentando 100% de identidade nas regiões

seed. Todos os miRNAs catalogados neste trabalho possuem um ortólogo correspondente no qual a busca foi baseada.

Tabela 7: Prováveis miRNAs maduros conservados identificados em *P. canaliculata,* tamanho dos nucleotídeos (nt), sequência nucleotítica do miRNA maduro, região *seed*.

miRN	Tamanh	Sequência maduro (5'a 3')	miRN	Tamanh	Sequência maduro (5' a 3')
Α	0 (nt)	Região seed	Α	0 (nt)	<u>Região seed</u>

pcr-	24	C <u>UGGUUUUC</u> ACAGUGAUCCAGC	pcr-	19	G <u>GGGGGAU</u> GUGCAUGCCAG
miR-		AG	miR-		
banta			4525-		
m-5p			3p		
pcr-	23		pcr-	22	U <u>GUGGCUG</u> UCACACCUAAACAC
miR-		U <u>GAGAUCAU</u> UGUAAAAACCAAU	miR-		
banta		U	4617-		
m-3p			3p		
pcr-	22	U <u>GAGGUAG</u> UGGUUGUAUCGUAU	pcr-	23	U <u>GUGGGAU</u> CUGGAGGCAGACUU
miR-			miR-		С
let-7b-			4654-		
3р			5p		
pcr-	22	C <u>UAUACAAC</u> CUGCUGCGGCAGG	pcr-	20	U <u>GUGUGUG</u> UGUGUGUGUGUG
miR-			miR-		
let-7d-			466i-1-		
3p			3p		
pcr-	21	C <u>UGCACAU</u> UCCACCAUCCAUU	pcr-	20	U <u>GUGUGUG</u> UGUGUGUGUGUG
miR-			miR-		
let-7f-			466i-2-		
5p			5p		
pcr-	22	C <u>AUGCUUC</u> UUUAUAGUUUGACC	pcr-	20	U <u>GUGUGUG</u> UGUGUGUGUGUG
miR-1-			miR-		
3p			466i-3-		
			5p		
pcr-	23	C <u>UAAGUAG</u> UUGAUACAAACAGU	pcr-	20	G <u>GUGUGUG</u> UGUGUGUGUGUGUG
miR-		Α	miR-		
1002-			466i-4-		
3p			5p		
pcr-	24	A <u>CCCUGUA</u> GAUCCGAAUUUGUG	pcr-	23	U <u>GUGUGCA</u> UGUGCAUGUGUGCUU
miR-		UA	miR-		
10a-5p			466m-		
			3p		
pcr-	22	C <u>AUCACAG</u> UCAGAGUUCACUGA	pcr-	22	G <u>UGUGUGC</u> GUACAUGUACUCAU
miR-			miR-		
11-3p			466n-		
			3p		
pcr-	23	A <u>GUGGAGA</u> GAGUUUUAUCUCAU	pcr-	21	U <u>AUGUGUG</u> UGUACAUGUGAAG
miR-		С	miR-		

1175-			466p-		
5p			3р		
pcr-	23		pcr-	19	G <u>UGCACAC</u> ACACACAUACG
miR-		U <u>GAGAUUC</u> AACUCCUCCAACUG	miR-		
1175-		С	466q-		
3p			3p		
pcr-	22	U <u>AUGUGUG</u> UGUGUAUGUGUGUG	pcr-	21	A <u>UAUACAC</u> ACACACACCUUUC
miR-			miR-		
1187-			467f-3p		
3p					
pcr-	22	U <u>GAGUAUU</u> ACAUCAGGUACUGA	pcr-	23	G <u>UGCCACC</u> UUAACUGCACGGACC
miR-			miR-		
12-5p			4715-		
			5p		
pcr-	22		pcr-	22	C <u>AUGACGU</u> CACAGAGGCGAGGU
miR-		A <u>GUACCU</u> UUUGUGAUAUUCUUA	miR-		
12-3p			4757-		
			3p		
pcr-	20	A <u>GUGUGAC</u> ACUGGUGUGACA	pcr-	17	U <u>ACACAAG</u> AAAACCAAA
miR-			miR-		
122b-			4801-		
5p			3p		
pcr-	20	C <u>UUCCUCG</u> UCUGUCUGAAGC	pcr-	24	U <u>GUAGAGA</u> UUGUGUGAACUGCUA
miR-			miR-		G
1238-			4860-		
5p			3p		
pcr-	23	G <u>UGUUCAC</u> UGCGUUGGCCUUGG	pcr-	22	A <u>AGCACCA</u> UGUGAAGCACUUUU
miR-		U	miR-		
124-5p			49-3p		
pcr-	21	CAUUCACCGCGUGCCUUAAUA	pcr-	24	G <u>UGAGCAC</u> GAUGGCCAGCACUGC
miR-			miR-		С
124c-			4918-		
5p			5p		
pcr-	23		pcr-	22	C <u>AGCAACA</u> GCAGCAGCAGCAGA
miR-		U <u>UAAGGCA</u> CGCGGUGAAUGCCA	miR-		
124-3p		Α	4968-1-		
			5p		
pcr-	22	U <u>AUAUAUA</u> UAUAUGUACGUCUA	pcr-	22	C <u>AGCAACA</u> GCAGCAGCAGCAGC
miR-			miR-		
1277-1-			4968-2-		
3p			5p		
pcr-	23	A <u>AAUAUAU</u> AUAUAUAUGUAUGAU	pcr-	22	C <u>AGCAACA</u> GCAGCAGCAGCAGC
miR-			miR-		
1277-2-			4968-3-		
3p			3p		
pcr-	19	G <u>AUGAUGC</u> UGCUGAUGACA	pcr-	22	C <u>AGCAACA</u> GCAGCAGCAGCAGC
miR-			miR-		
1322-			4968-4-		
5p			3p		

pcr-	18	G <u>AGAGAGA</u> AAUGAGAAAC	pcr-	24	U <u>UUCUUGU</u> CUCUGUGUACCUCUU
miR-			miR-		G
1328-			5317a-		
5p			3p		
pcr-	23	A <u>GCUGGUU</u> GAACUCGGGCCAAA	pcr-	20	U <u>GGACAGU</u> UAUGAAGAAGUG
miR-		U	miR-		
133-5p			5391-		
			5p		
pcr-	24		pcr-	20	U <u>GUUACUU</u> GACAUUUUGAGA
miR-		U <u>UUGGUCC</u> CCUUCAACCAGCUG	miR-		
133-3p		UA	5392-		
			3р		
pcr-	21	C <u>AGCUGGU</u> UGAAGGGGACCAA	pcr-	21	U <u>CAGGAGG</u> ACUGAAGGGUGGA
miR-			miR-		
133c-			5440-		
5p			5p		
pcr-	24	A <u>CGGGUAU</u> UCUUGGGUAAAUAA	pcr-	19	U <u>CAUGUUG</u> GUUUUUUGAAU
miR-		UA	miR-		
137b-			5549-		
5p			3p		
pcr-	23		pcr-	21	U <u>AAAGUAA</u> AUAAGCACAGACU
miR-		U <u>UAUUGCU</u> UGAGAAUACACGUA	miR-		
137b-		Α	559-3p		
3p					
pcr-	17	U <u>CGUUAAA</u> AUGUUUGUG	pcr-	22	A <u>AGAGUAC</u> UGUAGUUUUUCCAA
miR-			miR-		
13b-3p			5594-		
			3р		
pcr-	22	C <u>UGCAUCC</u> CUUGUGACGGUGGC	pcr-	24	U <u>CUCUUUU</u> UUCUCGCAGUCCCGC
miR-			miR-		Α
1421a-			5595-		
3p			3p		
per-	22	A <u>GGAGGUC</u> GUAGGUCAUCCUGU	per-	24	U <u>GAGUGUG</u> UGUGUGUGAGUGUG
miR-			miR-		UG
1421a			574-1-		
m-3p			5p		
pcr-	23	G <u>UCUGAGA</u> UGAAGCACUCGUUU	pcr-	24	U <u>GAGUGUG</u> UGUGUGUGAGUGUG
miR-		G	mik-		UG
14 3- 3p			574-2-		
	22		зр	20	
per-	23	CAUUUUU GUGAUGUUAUCAAU	per-	20	G <u>ACAAUUC</u> UGACAUUUUGCA
mik-		Α	mik-		
155-1- 3n			5903-		
5p	22		-sp	23	
per- miD	23	U <u>UGLAUAG</u> ULALAAAAGUGAUL C	miD 6	23	A <u>UUUAALU</u> ULUULAULUALU
153.2		0	3n		
155-2- 3n			зр		
ner	20	CCCCCUCCCCCUCCCCCAUA	ner	10	CUICCUICACCACCCCCUICA
miP	20	CLUGGUGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	miP	19	U <u>CUGCUGA</u> CGACCGCCUCA
iiiix-			iiiix-		

1584-			6013-		
5p			3p		
pcr-	22	C <u>AGACCAU</u> UCUGGGCUAUGGGG	pcr-	21	U <u>AAGCUCU</u> GUGUACUUUAGUG
miR-			miR-		
15c-3p			6037-1-		
			3p		
pcr-	22	U <u>GGGCUCU</u> GCAUCACCAGCAGU	pcr-	21	U <u>AAGCUCU</u> GUGUACUUUAGUG
miR-			miR-		
1602-			6037-2-		
5р			3p		
pcr-	20	G <u>UGGUUUG</u> UUUUGUGUUGCG	pcr-	21	A <u>GCAUGAC</u> AGAGGAGAGGAGA
miR-			miR-		
1603-			6076-		
3р			3p		
pcr-	23	U <u>GCUUGUU</u> UUUGGAUGAAAUUA	pcr-	20	A <u>UAGUGAU</u> UGUGUGUUUCUA
miR-		U	miR-		
1632-			6098-		
3р			5p		
pcr-	23	U <u>UGACUUC</u> AAUAGGAGAGACAG	pcr-	19	A <u>GCAGGGC</u> UGGGGAUUCUG
miR-		G	miR-		
1677-			6132-1-		
3р			5p		
pcr-	22	A <u>CUUCAAC</u> AGGAGCAAGUCAAG	pcr-	19	A <u>GCAGGG</u> CUGGGGAUUCUG
miR-			miR-		
1744-1-			6132-2-		
5p			5p		
pcr-	22	A <u>CUUCAAC</u> AGGAGCAAAGUGUA	pcr-	19	A <u>GCAGGGC</u> UGGGGAUUCUG
miR-			miR-		
1744-2-			6132-3-		
5р			5p		
pcr-	22	C <u>CUUGUCA</u> CUCCUCCGCCCCGU	pcr-	22	C <u>UGCAUAC</u> ACAGUGAUGCAGGU
miR-			miR-		
184-5p			6335-		
			5p		
pcr-	24		pcr-	21	C <u>UCCGUAU</u> CAUCUGCUAGCUA
miR-		A <u>CUGGACG</u> GAGAACUGAUAAGG	miR-		
184-3p		GC	6416-		
			3p		
pcr-	23	A <u>GAUAUGU</u> UUGAUAUAUUUGGU	pcr-	21	C <u>AUGACAC</u> ACUGGCUGAACCA
miR-		G	miR-		
190-5p			64c-3p		
pcr-	25	C <u>ACCACC</u> AGCCCCACCACGCGG	pcr-	21	U <u>GACUUCU</u> ACCUGUUCCCUAA
miR-		UAU	miR-		
1905c-			6505-		
3p			5p		
pcr-	22	G <u>UAGUGGA</u> GACUGGUGGCGAAA	pcr-	22	A <u>UGCAGUA</u> ACAGGUGUCUCCAC
miR-			miR-		
1951-			6516-		
3р			3р		

per-	21	C <u>UCCUGCC</u> CUCCUUGCCCAGA	pcr-	23	U <u>GUGUUGC</u> UCCAUACUGCUGAAG
miR-			miR-		
1976-			6560-		
5p			5p		
ncr-	23	UGCCCUAUCCGUCAGGAACUGU	ncr-	22	GAGUUUUCCCAGGCUGAUGUGU
miR-		G	miR-		0 <u></u> 00
1984-		0	6575-		
5n			3n		
- Sp - Dor	24		5p	22	
per-	24	U <u>GCCAUUU</u> UUAUCAGUCACUGU	per-	23	U <u>GCUGGAA</u> GUGGUGCUAUAUGUC
mik-		GU	mik-		
1985-			6587-		
5p			3p		
pcr-	22	U <u>GGAUUUC</u> CCAAGAUCCGUGAU	pcr-	23	A <u>AGGACAA</u> GAGGAAAUAACUUGA
miR-			miR-		
1986-			6603-		
3р			5p		
pcr-	22	A <u>GUAAGUU</u> GAUGGGGUCCCAGG	pcr-	22	G <u>UUGCUGA</u> UGAAGAUAAAUCGU
miR-			miR-		
1990-			6680-		
5р			5р		
pcr-	21		pcr-	23	CAUAUACAUACACACACACGUGU
miR-		CGGGACUACGUCAACGUACUA	miR-		
1990-			669f-5n		
3n			ousiop		
ner-	22	ACUCACUCCUUCACUCCUCCCU	ner-	23	
рст- m;D	22	AUCAUU	miD	23	UCALAACC
1002			1111K-		
1992-			07-3p		
5p					
				10	CLLCCLCCUCCLCCUUCC
pcr-	23		pcr-	18	GAAGGACCUGCACCUUGC
pcr- miR-	23	U <u>CAGCAGU</u> UGUACCACUGAUUU	pcr- miR-	18	G <u>AAGGACC</u> UGCACCUUGC
рсг- miR- 1992-	23	U <u>CAGCAGU</u> UGUACCACUGAUUU G	pcr- miR- 6816-	18	G <u>AAGGACC</u> UGCACCUUGC
рсг- miR- 1992- Зр	23	U <u>CAGCAGU</u> UGUACCACUGAUUU G	рсг- miR- 6816- 3р	18	G <u>AAGGACC</u> UGCACCUUGC
pcr- miR- 1992- 3p pcr-	23	U <u>CAGCAGU</u> UGUACCACUGAUUU G U <u>GAGACAG</u> UGUGUCCUCCCUCU	рсг- miR- 6816- 3р рсг-	18	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU
pcr- miR- 1992- 3p pcr- miR-	23	U <u>CAGCAGU</u> UGUACCACUGAUUU G U <u>GAGACAG</u> UGUGUCCUCCCUCU	per- miR- 6816- 3p per- miR-	18	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU
pcr- miR- 1992- 3p pcr- miR- 1994-	23	U <u>CAGCAGU</u> UGUACCACUGAUUU G U <u>GAGACAG</u> UGUGUCCUCCCUCU	pcr- miR- 6816- 3p pcr- miR- 6852-	18	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU
pcr- miR- 1992- 3p pcr- miR- 1994- 3p	23	U <u>CAGCAGU</u> UGUACCACUGAUUU G U <u>GAGACAG</u> UGUGUCCUCCCUCU	pcr- miR- 6816- 3p pcr- miR- 6852- 5p	18	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU
pcr- miR- 1992- 3p pcr- miR- 1994- 3p pcr-	23	U <u>CAGCAGU</u> UGUACCACUGAUUU G U <u>GAGACAG</u> UGUGUCCUCCCUCU U <u>GAGACAG</u> UGUGUCCUCCCUUG	pcr- miR- 6816- 3p pcr- miR- 6852- 5p pcr-	18 17 24	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU A <u>GGAGGAU</u> GGAGAGCUGUUACA
per- miR- 1992- 3p per- miR- 1994- 3p per- miR-	23	U <u>CAGCAGU</u> UGUACCACUGAUUU G U <u>GAGACAG</u> UGUGUCCUCCCUCU U <u>GAGACAG</u> UGUGUCCUCCCUUG	pcr- miR- 6816- 3p pcr- miR- 6852- 5p pcr- miR-	18 17 24	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU A <u>GGAGGAU</u> GGAGAGCUGUUACA GC
pcr- miR- 1992- 3p pcr- miR- 1994- 3p pcr- miR- 1994a-	23	U <u>CAGCAGU</u> UGUACCACUGAUUU G U <u>GAGACAG</u> UGUGUCCUCCCUCU U <u>GAGACAG</u> UGUGUCCUCCCUUG	pcr- miR- 6816- 3p pcr- miR- 6852- 5p pcr- miR- 6894-	18 17 24	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU A <u>GGAGGAU</u> GGAGAGCUGUUACA GC
pcr- miR- 1992- 3p pcr- miR- 1994- 3p pcr- miR- 1994a- 3p	23	U <u>CAGCAGU</u> UGUACCACUGAUUU G U <u>GAGACAG</u> UGUGUCCUCCCUCU U <u>GAGACAG</u> UGUGUCCUCCCUUG	рсг- miR- 6816- 3р рсг- miR- 6852- 5р рсг- miR- 6894- 3р	18 17 24	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU A <u>GGAGGAU</u> GGAGAGCUGUUACA GC
per- miR- 1992- 3p per- miR- 1994- 3p per- miR- 1994a- 3p per-	23	U <u>CAGCAGU</u> UGUACCACUGAUUU G U <u>GAGACAG</u> UGUGUCCUCCCUCU U <u>GAGACAG</u> UGUGUCCUCCCUUG	pcr- miR- 6816- 3p pcr- miR- 6852- 5p pcr- miR- 6894- 3p pcr-	18 17 24 21	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU A <u>GGAGGAU</u> GGAGAGCUGUUACA GC UUGUAUUUGUGUGAUUCCCGA
pcr- miR- 1992- 3p pcr- miR- 1994- 3p pcr- miR- 1994a- 3p pcr- miR-	23 22 22 22 19	UCAGCAGUUGUACCACUGAUUU G UGAGACAGUGUGUCCUCCCUCU UGAGACAGUGUGUCCUCCCUUG AUCAAGUGAGGUCAGAAUA	pcr- miR- 6816- 3p pcr- miR- 6852- 5p pcr- miR- 6894- 3p pcr- miR-	18 17 24 21	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU A <u>GGAGGAU</u> GGAGAGCUGUUACA GC U <u>UGUAUUU</u> GUGUGAUUCCCGA
pcr- miR- 1992- 3p pcr- miR- 1994- 3p pcr- miR- 1994a- 3p pcr- miR- 1996b-	23 22 22 19	U <u>CAGCAGU</u> UGUACCACUGAUUU G U <u>GAGACAG</u> UGUGUCCUCCCUCU U <u>GAGACAG</u> UGUGUCCUCCCUUG A <u>UCAAGUG</u> AGGUCAGAAUA	pcr- miR- 6816- 3p pcr- miR- 6852- 5p pcr- miR- 6894- 3p pcr- miR- 6894- 3p pcr- miR- 6951-	18 17 24 21	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU A <u>GGAGGAU</u> GGAGAGCUGUUACA GC U <u>UGUAUUU</u> GUGUGAUUCCCGA
pcr- miR- 1992- 3p pcr- miR- 1994- 3p pcr- miR- 1994a- 3p pcr- miR- 1996b- 3n	23 22 22 19	U <u>CAGCAGU</u> UGUACCACUGAUUU G U <u>GAGACAG</u> UGUGUCCUCCCUCU U <u>GAGACAG</u> UGUGUCCUCCCUUG A <u>UCAAGUG</u> AGGUCAGAAUA	pcr- miR- 6816- 3p pcr- miR- 6852- 5p pcr- miR- 6894- 3p pcr- miR- 6951- 5n	18 17 24 21	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU A <u>GGAGGAU</u> GGAGAGCUGUUACA GC U <u>UGUAUUU</u> GUGUGAUUCCCGA
per- miR- 1992- 3p per- miR- 1994- 3p per- miR- 1994a- 3p per- miR- 1996b- 3p	23 22 22 19	UCAGCAGUUGUACCACUGAUUU G UGAGACAGUGUGUCCUCCCUCU UGAGACAGUGUGUCCUCCCUUG A <u>UCAAGUG</u> AGGUCAGAAUA	pcr- miR- 6816- 3p pcr- miR- 6852- 5p pcr- miR- 6894- 3p pcr- miR- 6951- 5p	18 17 24 21	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU A <u>GGAGGAU</u> GGAGAGCUGUUACA GC U <u>UGUAUUU</u> GUGUGAUUCCCGA
pcr- miR- 1992- 3p pcr- miR- 1994- 3p pcr- miR- 1994a- 3p pcr- miR- 1996b- 3p pcr- miR- 1996b- 3p	23 22 22 19 24	UCAGCAGU UGAGACAGU UGAGACAGUGUGUCCUCCCUCU UGAGACAGUGUGUCCUCCCUUG UGAGACAGUGUGUCCUCCCUUG AUCAAGUGAGGUCAGAAUA ACAUACUU CUUUUGCUAUCCCAUA	pcr- miR- 6816- 3p pcr- miR- 6852- 5p pcr- miR- 6894- 3p pcr- miR- 6894- 3p pcr- miR- 6951- 5p pcr- miR-	18 17 24 21 22	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU A <u>GGAGGAU</u> GGAGAGCUGUUACA GC U <u>UGUAUUU</u> GUGUGAUUCCCGA
per- miR- 1992- 3p per- miR- 1994- 3p per- miR- 1994a- 3p per- miR- 1996b- 3p per- miR- 1996b- 3p	23 22 22 19 24	UCAGCAGUUGUACCACUGAUUUU G UGAGACAGUGUGUCCUCCCUUU UGAGACAGUGUGUCCUCCCUUUG UGAGACAGUGUGUCCUCCCUUUG AUCAAGUGAGGUCAGAAUA ACAUACUUCUUUGCUAUCCCAUA U	pcr- miR- 6816- 3p pcr- miR- 6852- 5p pcr- miR- 6894- 3p pcr- miR- 6951- 5p pcr- miR- 6951- 5p pcr- miR- 6951- 5p pcr-	18 17 24 21 22	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU A <u>GGAGGAU</u> GGAGAGCUGUUACA GC U <u>UGUAUUU</u> GUGUGAUUCCCGA
pcr- miR- 1992- 3p pcr- miR- 1994- 3p pcr- miR- 1994a- 3p pcr- miR- 1996b- 3p pcr- miR- 1996b- 3p	23 22 22 19 24	UCAGCAGUUGUACCACUGAUUU G UGAGACAGUGUGUCCUCCCUCU UGAGACAGUGUGUCCUCCCUUG UGAGACAGUGUGUCCUCCCUUG AUCAAGUGAGGUCAGAAUA ACAUACUUCUUUGCUAUCCCAUA U	pcr- miR- 6816- 3p pcr- miR- 6852- 5p pcr- miR- 6894- 3p pcr- miR- 6951- 5p pcr- miR- 6951- 5p pcr- miR- 6951- 5p pcr- miR- 6951- 5p pcr- miR- 6974-	18 17 24 21 22	G <u>AAGGACC</u> UGCACCUUGC U <u>GUCCUCU</u> GUUCCUCAU A <u>GGAGGAU</u> GGAGAGCUGUUACA GC U <u>UGUAUUU</u> GUGUGAUUCCCGA

pcr-	22		pcr-	25	G <u>UGAGGCG</u> CUGUGGGCAGGUGA
miR-		U <u>GGAAUGU</u> AAAGAAGUAUGUAC	miR-		GCC
1a-3p			6977-		
			5p		
pcr-	22	G <u>UACAUAC</u> UUCUUUACAUUCCA	pcr-	23	A <u>AGGAAGG</u> AGAGUCAGGAGCGU
miR-			miR-		G
1c-5p			6999-		
			3р		
pcr-	23	U <u>UGUGACC</u> GUUACAAUGGGCAU	pcr-	22	CACCCACCUGCCUGUCACAGUG
miR-		U	miR-		
2001-			7000-		
5p			5p		
pcr-	22	GUAUUAACAAUGUGGCUACAGU	pcr-	21	CUAGCUUCUCUUCUUCCAGUU
miR-			miR-		
2008-			7072-		
3n			3n		
ncr-	22		-r	23	UGAAAGACAUGGGUAGUGAGAU
miR-		0 <u>-0000</u> 000	miR-		G
203b-			71-1-5n		
3n			, i i op		
ner-	19		ner-	22	
miR-	17	ender middan	miR-		e <u>onemone</u> ncino de la com
204-3n			71_2_3n		
204-5p			/1- <u>2</u> -5p		
pcr-	22	U <u>UCGCCGA</u> GCAGAUGUGUGAAG	pcr-	23	G <u>AUCCAUC</u> UCUGCCUGCUCACCU
miR-			miR-		
2047-			7151-		
3p			5p		
pcr-	23	G <u>ACACUGU</u> UUUACACUCUACUG	pcr-	19	C <u>AAAUGGU</u> CAUUUCUGCGA
miR-		G	miR-		
2155-			7307-		
3p			3p		
pcr-	23	U <u>AAUCUCA</u> GCUGGUAAUUCUGA	pcr-	18	U <u>CAGAAA</u> CAGUGUCUCUG
miR-		G	miR-		
216a-			7314-		
5p			3p		
pcr-	22		pcr-	21	G <u>UAAAC</u> ACUUUACCCGUUUGA
miR-		C <u>AAGUUAC</u> UAGCCGAGAUUACA	miR-		
216a-			7386e-		
3p			5p		
pcr-	22	C <u>ACAGUGG</u> CUACUGGGUCCACA	pcr-	22	G <u>CUGUACU</u> UGAAGCAAGAGAGA
miR-			miR-		
216b-1-			7389-		
3p			3p		
pcr-	23	U <u>AAUAUCA</u> GCUGGUAAUCCUGA	pcr-	22	U <u>AACCCUC</u> CCUUCUUUAUGAUA
miR-		G	miR-		
216b-2-			7398h-		
3p			3p		
pcr-	23	U <u>GAUUGUC</u> CAAACGCAAUUCUU	pcr-	22	U <u>ACGCAUG</u> UAUAUGUAUAUACA
-----------------	----	---------------------------------	------------------	------	----------------------------------
miR-		G	miR-		
219-1-			7399-		
5p			5p		
pcr-	22		pcr-	20	U <u>GUUCAGA</u> CUGGUGUCUGGU
miR-		A <u>GAACUGU</u> GUGUGGACAUCAGU	miR-		
219-1-			743b-		
3p			3p		
pcr-	23	U <u>GAUUGUC</u> CAAACGCAAUUCUU	pcr-	23	AGCUGCCUGAUGAAGAGCUGUCC
miR-		G	miR-		
219-2-			745a-		
5p			3p		
pcr-	22		pcr-	22	GAGCUGCCAAAUGAAGGGCUGU
miR-		AGAACUGUGUGUGGACAUCAGU	miR-		
219-2-			745b-		
3p			3p		
pcr-	24	CCUCUCUGUGCUGCCAGCAAAA	pcr-	22	AUGUGCUGGAGAUGAAAACUCU
miR-		AU	miR-		
2196-			7472-		
5n			3n		
ner-	22	AAAUUUGUAGUUUGUAUUCUUC	ner-	23	AGHUGGAAGAUUGGGUCUUUGG
miR-		A <u>miceouc</u> Adecedenceeeee	miR-	20	C
2218h-			750-5n		C .
3n			700 OP		
ncr-	22		ner-	23	
miR-	22	AMADEUA	miR-	23	CCACAUCUAACUCUUCCACCUCA
1111X- 2284c			750 3n		C <u>LADAULU</u> AACUCUUCCAGCUCA
2204C- 3n			73 0-5 p		
5p	22		DOK	21	CAUCUUUCAAUCCCCACCACU
miD	22	AACUCUAAUGUAUUCU	miD	21	CAUGUUUGAAUGUCACCACU
111IK- 2284+			1111K- 751 3n		
22041- 3n			/31 - 3p		
- Sp	22		nar	21	
miD	23	A	miD	41	AUAULAUUAUULAAGCGAUUG
111IK- 2324		A	1111K- 752 d		
2324- 5			/530- 5		
эр 	22	AUCOAUCOCCOUCACCOCCAUC		22	COCCUCUCOCUCUCAACUCA
per-	22	AUGUAUUU	pcr-	22	C <u>GGUUUG</u> GGUUGUGAAGUUA
mik-			mik-		
2392-			/60-3p		
зр	10			- 22	
per-	19	0 <u>4040440</u> 0040004400	per-	22	G <u>alaulug</u> uuululaguaauuu
MIK-			ШК- 7(42		
2405-			/04 3-		
эр	24		эр	22	
per-	24	A <u>CUUCUGC</u> UGCAGACCUCAAGG	pcr-	22	U <u>GACAGCA</u> GUGCUGUAUCUAUG
miR-		AU	miR-		
2464-			7649-		
3р			5p		
pcr-	21	U <u>UGUGUGG</u> UUUUGGAUACUUG	pcr-	22	U <u>CUUGUUU</u> UUUUCAACUCCUGG
miR-			miR-		

2470-			76b-1-		
3p			3p		
pcr-	18	C <u>AACAACA</u> GCAGCAGCAA	pcr-	22	U <u>CUUGUUU</u> UUUUCAACUGCGUU
miR-			miR-		
2491-1-			76b-2-		
3p			3p		
pcr-	18	C <u>AACAACA</u> GCAGCAGCAA	pcr-	22	A <u>GCACCAC</u> GUGUCUGGUAAAUC
miR-			miR-		
2491-2-			770-3p		
3p					
pcr-	18	C <u>AACAACA</u> GCAGCAGCAG	pcr-	26	G <u>GUCAGAA</u> AUGGUUGCUGAGCUC
miR-			miR-		CAC
2491-3-			7880k-		
5p			3p		
pcr-	17	G <u>GAUUUUG</u> UGUGUGGAC	pcr-	22	U <u>UUGCGAC</u> CAAAAUCACUCUCU
miR-			miR-		
2500-			7880q-		
3p			3p		
pcr-	22	C <u>UAAGUAC</u> UAGUGCCGCGGGAA	pcr-	20	G <u>UAAAGCU</u> AAAUUACCAGUG
miR-			miR-		
252a-			79-3p		
5p					
pcr-	23	U <u>GCAAAUC</u> UUUUGCAACAGACU	pcr-	21	U <u>ACUGUAG</u> UUGAAGCGCUAUU
miR-		U	miR-		
254-5p			7901-		
			3p		
pcr-	22	U <u>GACUAGA</u> UCCACACUCAUCCA	pcr-	23	U <u>GGAAGAC</u> UAGUGAUUUUGUUGU
miR-			miR-		
279-1-			7c-5p		
3p					
pcr-	22	U <u>GACUAGA</u> UCCACACUCAUCCA	pcr-	25	
miR-			miR-		U <u>GGAAGAC</u> UAGUGAUUUUGUUGU
279-2-			7c-3p		UC
3p					
pcr-	22	U <u>GACUAGA</u> CUGAUAACCCCUAG	pcr-	22	C <u>AUCUUAC</u> CUAACAGCAUUAGA
miR-			miR-8-		
279ь-			1-5p		
5p					
pcr-	22	G <u>UAGUGUA</u> UUACAAUACUGACC	pcr-	23	
miR-			miR-8-		U <u>AAUACUG</u> UCAGGUAAAGAUGUC
2804-			1-3p		
3p					
pcr-	21	A <u>AGGGAGC</u> AUCCGUCGACAGU	pcr-	17	A <u>GUAGUUA</u> AUUUUUCUU
miR-			miR-		
281-5p			8196b-		
			3р		
per-	22		pcr-	22	C <u>AUCUUAC</u> CUAACAGCAUUAGA
miR-		U <u>GUCAUGG</u> AGUUGCUCUCUUUA	miR-8-		
281-3p			2-5p		

pcr-	21	C <u>AUCCCCU</u> GCCUCUCUCAUAC	pcr-	22	
miR-			miR-8-		U <u>AAUACUG</u> UCAGGUAAAGAUGUC
2962-			2-3p		
3p					
pcr-	23	A <u>UGUAUGU</u> GUGCAUGUAUGGAG	pcr-	22	U <u>CGAGAUG</u> AUGGAGAGCACACU
miR-		С	miR-		
297-3р			8296-		
			5p		
pcr-	22	U <u>AGCACCA</u> UUUGAAAUCAGUUU	pcr-	23	U <u>UCUUUGC</u> UCUUCUCGACAUGCG
miR-			miR-		
29a-3p			8332-		
			3p		
pcr-	23	U <u>AGCACCA</u> UUUGAAAUCAGUGC	pcr-	25	G <u>UUGUUGU</u> UGUUGUUUUGCCAAC
miR-		U	miR-		UG
29b-3p			8335-1-		
			5p		
pcr-	24	A <u>AUCACAG</u> CCUGCUUUGGUGAG			G <u>UUGUUGU</u> UGUUGUUUUGGUUUU
miR-		CU			UU
2a-1-3p					
pcr-	24	U <u>AUCACAG</u> CCUGCUUGGAUCAG	pcr-	25	A <u>GAGAGUG</u> UGGAAAAGGGGAGA
miR-		UA	miR-		G
2a-2-3p			8335-2-		
			5p		
pcr-	24	U <u>AUCACAG</u> CCAGCUUUGAUGAG	pcr-	23	U <u>GAUUGGU</u> CACAUAGUUUA
miR-		CU	miR-		
2a-3-3p			8364g-		
			3p		
pcr-	24	U <u>AUCACAG</u> CCAGCUUUGAUGAG	pcr-	19	G <u>CAAUUAA</u> AAGUAGCACAA
miR-		CU	miR-		
2a-4-3p			8416-		
			5p		
pcr-	24	U <u>CAUCAAA</u> GCUGGCUGUGAUAU	pcr-	19	G <u>AAUGAUC</u> AAAUAAUUGUC
miR-		GA	miR-		
2b-1-			8422-		
5p			5p		
pcr-	24	U <u>CAUCAAA</u> GCUGGCUGUGAUAU	pcr-	19	U <u>GAUUAAU</u> UUGAUAAGAUGA
miR-		GA	miR-		
2b-2-			8462-1-		
5p			3p		
pcr-	21	U <u>ACCAACU</u> UUGACUGAUGAGA	pcr-	20	C <u>ACACACA</u> CACACACGUAU
miR-			miR-		
2e-3p			8462-2-		
			3p		
pcr-	23	U <u>AUCACAG</u> CCAUGCUAAUCUCCU	pcr-	21	CACACACA CACACACACACACGUAC
miR-			miR-		
2f-3p			8485-1-		
			3p		
pcr-	22	C <u>CAGUCUU</u> GCAUUUAUGAAACA	pcr-	21	C <u>UGCCUGA</u> AAUUUAUGCUCAAAC
miR-			miR-		CU

5p5ppcr-22UGAGAUCUUGAUAAAACAUCAACpcr-25UCGAGAUGAUGGAGAGCACACUmiR-miR-miR-3050-87-5p5ppcr-22UCCCACAGGCCCAGCUGUCACApcr-22miR-miR-GUGAGCAAAGUUUCAGGUGUGU3057-87-3p3ppcr-22AUCAUCAAAACAAAUGUGCAUApcr-23ugcccgcgccugGagGgccagcugmiR-U3071-8834a-5n5n5n
pcr-22UGAGAUCUUGAUAAACAUCAACpcr-25UCGAGAUGAUGGAGAGCACACUmiR-miR-miR-3050-87-5p5p
miR-miR-3050-87-5p5ppcr-22UCCCACAGGCCCAGCUGUCACApcr-22UCCCACAGGCCCAGCUGUCACAmiR-miR-3057-87-3p3ppcr-22AUCAUCAAAACAAAUGUGCAUApcr-22AUCAUCAAAACAAAUGUGCAUApcr-233071-8834a-5n5n
3050-87-5p5pper-22uCCCACAGGCCCAGCUGUCACAper-22miR-miR-3057-87-3p3pper-22AUCAUCAAAACAAAUGUGCAUAper-22AUCAUCAAAACAAAUGUGCAUAper-23UGCCGGGCCUGGAGGCCAGCUGmiR-U3071-8834a-5n5n
5p pcr- 22 UCCCACAGGCCCAGCUGUCACA pcr- 22 miR- miR- GUGAGCAAAGUUUCAGGUGUGU 3057- 87-3p 3p pcr- 22 AUCAUCAAAACAAAUGUGCAUA pcr- 23 UGCCGGGCCUGGAGGCCAGCUG miR- miR- U 3071- 8834a- 5n 5n
pcr-22UCCCACAGGCCCAGCUGUCACApcr-22miR-miR-miR-GUGAGCAAAGUUUCAGGUGUGU3057-87-3p3p3p
miR- miR- GUGAGCAAAGUUUCAGGUGUGU 3057- 87-3p 3p per- 22 AUCAUCAAAACAAAUGUGCAUA per- 23 UGCCGGGCCUGGAGGCCAGCUG miR- miR- U 3071- 8834a-
3057- 87-3p 3p
3p pcr- 22 AUCAUCAAAACAAAUGUGCAUA pcr- 23 UGCCGGGCCUGGAGGCCAGCUG miR- miR- U 3071- 8834a- 5n 5n
pcr- 22 AUCAUCAAAACAAAUGUGCAUA pcr- 23 UGCCGGGC miR- miR- U 3071- 8834a-
miR- U 3071- 8834a-
3071- 8834a-
5
קכ קכ
per- 22 C <u>GCAGGAU</u> UUGCUUGUUUUGAG per- 22 G <u>ACUGACA</u> CCUCUUUGUCCAGC
miR- miR-
308-5p 888-5p
per- 22 U <u>UGAAGGU</u> UCAUUAGCCUUGUG per- 21 C <u>GGAUGGC</u> CAGCUGCAGGUGA
miR- miR-
3084a- 8915-1-
5p 3p
pcr- 23 A <u>GGCAAGA</u> UGUUGGCAUAGCUG pcr- 21 C <u>GGAUGGC</u> CAGCUGCAGGUGA
miR- A miR-
31-5p 8915-2-
3p
per- 22 per- 23 CGGAUGGCCAGCUGCAGGUGAC
miR- AGCUGUGUCGCAUGGUGCCACC miR- G
31-3p 8915-3-
3р
pcr- 23 UUUUGAUUGUUGCUCAGAAAGC pcr- 23 C <u>GGAUGGC</u> CAGCUGCAGGUGAC
miR- C miR- G
315-5p 8915-4-
3р
pcr- 25 U <u>GAACACA</u> GCUGGUGGUAUCUU pcr- 23 C <u>GGAUGGC</u> CAGCUGCAGGUGAC
miR- UUU miR- A
317-1- 8915-5-
3p 3p
pcr- 22 A <u>GUGAACA</u> CAGCUGGUCACAAC pcr- 23 U <u>CCCAGAG</u> GAGACGAGAAAGUUG
per- 22 A <u>GUGAACA</u> CAGCUGGUCACAAC per- 23 U <u>CCCAGAG</u> GAGACGAGAAAGUUG miR- miR-
pcr- 22 AGUGAACACAGCUGGUCACAAC pcr- 23 UCCCAGAGGAGACGAGAAAGUUC miR- miR- 317-2- 9015-
pcr-22AGUGAACACAGCUGGUCACAACpcr-23UCCCAGAGGAGACGAGAAAGUUGmiR-miR-317-2-9015-5p
pcr-22AGUGAACACAGCUGGUCACAACpcr-23UCCCAGAGGAGAGGAGAAAGUUCmiR-miR-miR-317-2-9015-5p5ppcr-23GAAGGAGGAAACAGGCUACAGApcr-23CCUUUGGUAACCUAGCUUUAUGA
pcr- 22 AGUGAACACAGCUGGUCACAAC pcr- 23 UCCCAGAGGAGACGAGAAAGUUC miR- miR- miR- 10 1
pcr-22AGUGAACACAGCUGGUCACAACpcr-23UCCCAGAGGAGAGAGAGAGAAAGUUCmiR-miR-miR-317-2-9015-5p5ppcr-23GAAGGAGGAAAACAGGCUACAGApcr-23GAAGGAGGAAAACAGGCUACAGApcr-23CCUUUGGUAACCUAGCUUUAUGAmiR-UmiR-9-3173-1-5p
pcr-22AGUGAACACAGCUGGUCACAACpcr-23UCCCAGAGGAGAGAGAGAAAGUUCmiR-miR-miR-317-2-9015-5p5ppcr-23GAAGGAGGAAACAGGCUACAGAmiR-UmiR-UmiR-3173-1-5p3p3p
pcr-22AGUGAACACAGCUGGUCACAACpcr-23UCCCAGAGGAGACGAGAAAGUUCmiR-miR-miR-317-2-9015-5p5ppcr-23GAAGGAGGAAACAGGCUACAGApcr-23GAAGGAGGAAACAGGCUACAGApcr-23CCUUUGGUAACCUAGCUUUAUGAmiR-UmiR-9-3173-1-5p3p
pcr-22AGUGAACACAGCUGGUCACAACpcr-23UCCCAGAGGAGACGAGAAAGUUCmiR-miR-miR-317-2-9015-5p5ppcr-23GAAGGAGGAAACAGGCUACAGAmiR-UmiR-U3173-1-5p3p

pcr-	23		pcr-	21	U <u>CAGUCUC</u> CCUCUCUCGCUAU
miR-		G <u>CAAUGCA</u> UCUGCAGUGCAAAU	miR-		
33-3p		Α	9120-		
			3p		
pcr-	22	U <u>UAUAAAG</u> CAAUGAGAGUUUCC	pcr-	23	C <u>CUUUGGU</u> AACCUAGCUUUAUGA
miR-			miR-9-		
340-5p			2-5p		
pcr-	21	UGCUGACCCCUAGUCCGCCUC	pcr-	23	
miR-			miR-9-		UCAUACAGCUAGAUAACCAAAGA
345-3p			2-3p		
pcr-	24	AACAACAAAAUCACUAGUCUUCC	pcr-	22	GAUUGCACUUGUCCCGGCCUUG
miR-		A	miR-		- <u></u>
3529-			92a-1-		
3n			3n		
ncr-	25	GUGGGAAGAGGGGUGGAGGUGA	DCT-	23	GAUUGCACUUGUCCCGGCCUUCU
miR-	20	AGC	miR-	20	d <u>irecterie</u> recterecterectere
3547		hoe	070 7		
3n			3n		
5p	21		5p	21	
per-	21	U <u>UUGUUUU</u> AGCCUGAGUCGCC	per-	21	U <u>AUUGCAC</u> UCGUCCCGGCCUA
mik-			mik-		
355-5p			92b-3p		
pcr-	24	C <u>AAAGUGA</u> UGAGUAAUUAAGGC	pcr-	24	A <u>GGUUGGG</u> AUGUGGGCUCUGUC
miR-		GC	miR-		GC
3609-			92c-5p		
5p					
pcr-	22	G <u>ACUCACU</u> CACAGGAUGUGGUG	pcr-	23	C <u>CUUUGGU</u> AACCUAGCUUUAUGA
miR-			miR-9-		
3680-			3-5p		
5p					
pcr-	23	UCACCGGGUAUACAUUCAUCCG	ner-		
miR-			per=	23	
		C	miR-9-	23	U <u>CAUACAG</u> CUAGAUAACCAAAGA
36b-3p		C	рсг ² miR-9- 3-3р	23	U <u>CAUACAG</u> CUAGAUAACCAAAGA
36b-3p pcr-	23	C C C <u>GAUGUUA</u> UUUGAAAUAUCAAA	miR-9- 3-3p pcr-	23	U <u>CAUACAG</u> CUAGAUAACCAAAGA U <u>CUCGGCC</u> UUUUGGCUAAGAU
36b-3p pcr- miR-	23	C C C C C C C C C C C C C C C C C C C	miR-9- 3-3p pcr- miR-	23	U <u>CAUACAG</u> CUAGAUAACCAAAGA U <u>CUCGGCC</u> UUUUGGCUAAGAU
36b-3p pcr- miR- 3716b-	23	C C C C C GAUGUUA UUUGAAAUAUCAAA C	miR-9- 3-3p pcr- miR- 9341-1-	23	U <u>CAUACAG</u> CUAGAUAACCAAAGA U <u>CUCGGCC</u> UUUUGGCUAAGAU
36b-3p pcr- miR- 3716b- 3p	23	C C C <u>GAUGUUA</u> UUUGAAAUAUCAAA C	miR-9- 3-3p pcr- miR- 9341-1- 3p	23	U <u>CAUACAG</u> CUAGAUAACCAAAGA U <u>CUCGGCC</u> UUUUGGCUAAGAU
36b-3p pcr- miR- 3716b- 3p pcr-	23	C C C <u>GAUGUUA</u> UUUGAAAUAUCAAA C U <u>UGGGAGG</u> GGGAGAGAGUGGAA	pcr- miR-9- 3-3p pcr- miR- 9341-1- 3p pcr-	23	U <u>CAUACAG</u> CUAGAUAACCAAAGA U <u>CUCGGCC</u> UUUUGGCUAAGAU U <u>CUCGGCC</u> UUUUGGCUAAGAU
36b-3p pcr- miR- 3716b- 3p pcr- miR-	23	C C C <u>GAUGUUA</u> UUUGAAAUAUCAAA C U <u>UGGGAGG</u> GGGAGAGAGUGGAA	pcr- miR-9- 3-3p pcr- miR- 9341-1- 3p pcr- miR-	23	U <u>CAUACAG</u> CUAGAUAACCAAAGA U <u>CUCGGCC</u> UUUUGGCUAAGAU U <u>CUCGGCC</u> UUUUGGCUAAGAU
36b-3p pcr- miR- 3716b- 3p pcr- miR- 3739-	23	C C C <u>GAUGUUA</u> UUUGAAAUAUCAAA C U <u>UGGGAGG</u> GGGGAGAGAGUGGAA	pcr- miR-9- 3-3p pcr- miR- 9341-1- 3p pcr- miR- 9341-2-	23	U <u>CAUACAG</u> CUAGAUAACCAAAGA U <u>CUCGGCC</u> UUUUGGCUAAGAU U <u>CUCGGCC</u> UUUUGGCUAAGAU
36b-3p pcr- miR- 3716b- 3p pcr- miR- 3739- 3p	23	C C C <u>GAUGUUA</u> UUUGAAAUAUCAAA C U <u>UGGGAGG</u> GGGAGAGAGUGGAA	pcr- miR-9- 3-3p pcr- miR- 9341-1- 3p pcr- miR- 9341-2- 3p	23 21 21 21	U <u>CAUACAG</u> CUAGAUAACCAAAGA U <u>CUCGGCC</u> UUUUGGCUAAGAU U <u>CUCGGCC</u> UUUUGGCUAAGAU
36b-3p pcr- miR- 3716b- 3p pcr- miR- 3739- 3p pcr-	23 22 22	C C C C UUGGGAGGGGGGAGAGAGUGGAA UUUGUUCGUUCGGCUCGCGUUA	pcr- miR-9- 3-3p pcr- miR- 9341-1- 3p pcr- miR- 9341-2- 3p pcr-	23 21 21 21 23	U <u>CAUACAG</u> CUAGAUAACCAAAGA U <u>CUCGGCC</u> UUUUGGCUAAGAU U <u>CUCGGCC</u> UUUUGGCUAAGAU U <u>CUCGGCC</u> UUUUGGCUAAGAU
36b-3p pcr- miR- 3716b- 3p pcr- miR- 3739- 3p pcr- miR-	23 22 22	C C C C C C C C C C C C C C C C C C C	pcr- miR-9- 3-3p pcr- miR- 9341-1- 3p pcr- miR- 9341-2- 3p pcr- miR-	23 21 21 21 23	U <u>CAUACAG</u> CUAGAUAACCAAAGA U <u>CUCGGCC</u> UUUUGGCUAAGAU U <u>CUCGGCC</u> UUUUGGCUAAGAU U <u>CUCGGCC</u> UUUUGGCUAAGAU
36b-3p pcr- miR- 3716b- 3p pcr- miR- 3739- 3p pcr- miR- 375-1-	23 22 22	C C C CGAUGUUAUUUGAAAUAUCAAA C UUGGGAGGGGGGGGGG	pcr- miR-9- 3-3p pcr- miR- 9341-1- 3p pcr- miR- 9341-2- 3p pcr- miR- 9388-	23 21 21 21 23	UCAUACAGCUAGAUAACCAAAGA UCUCGGCCUUUUGGCUAAGAU UCUCGGCCUUUUGGCUAAGAU GUAUGUAUGUAUGUACAUAUAAU
36b-3p pcr- miR- 3716b- 3p pcr- miR- 3739- 3p pcr- miR- 375-1- 3p	23 22 22	C C C C CGAUGUUAUUUGAAAUAUCAAA C UUGGGAGGGGGGGGGG	pcr- miR-9- 3-3p pcr- miR- 9341-1- 3p pcr- miR- 9341-2- 3p pcr- miR- 9388- 5p	23 21 21 21 23	UCAUACAGCUAGAUAACCAAAGA UCUCGGCCUUUUGGCUAAGAU UCUCGGCCUUUUGGCUAAGAU GUAUGUAUGUAUGUACAUAUAAU
36b-3p pcr- miR- 3716b- 3p pcr- miR- 3739- 3p pcr- miR- 375-1- 3p pcr-	23 22 22 20	C C C C C C C C C C C C C C C C C C C	pcr- miR-9- 3-3p pcr- miR- 9341-1- 3p pcr- miR- 9341-2- 3p pcr- miR- 9388- 5p pcr-	23 21 21 23 23	UCAUACAGCUAGAUAACCAAAGA UCUCGGCCUUUUGGCUAAGAU UCUCGGCCUUUUGGCUAAGAU GUAUGUAUGUAUGUACAUAUAAU
36b-3p pcr- miR- 3716b- 3p pcr- miR- 3739- 3p pcr- miR- 375-1- 3p pcr- miR-	23 22 22 20	C C C CGAUGUUAUUUGAAAUAUCAAA C UUGGGAGGGGGGGGGG	pcr- miR-9- 3-3p pcr- miR- 9341-1- 3p pcr- miR- 9341-2- 3p pcr- miR- 9388- 5p pcr- miR- 9388- 5p	23 21 21 23 23 25	UCAUACAGCUAGAUAACCAAAGA UCUCGGCCUUUUGGCUAAGAU UCUCGGCCUUUUGGCUAAGAU GUAUGUAUGUAUGUACAUAUAAU
36b-3p pcr- miR- 3716b- 3p pcr- miR- 3739- 3p pcr- miR- 375-1- 3p pcr- miR- 375-2-	23 22 22 20	C C C CGAUGUUAUUUGAAAUAUCAAA C UUGGGAGGGGGGGGGG	pcr- miR-9- 3-3p pcr- miR- 9341-1- 3p pcr- miR- 9341-2- 3p pcr- miR- 9388- 5p pcr- miR- 9388- 5p pcr- miR- 9388- 5p	23 21 21 23 23 25	UCAUACAGCUAGAUAACCAAAGA UCUCGGCCUUUUUGGCUAAGAU UCUCGGCCUUUUUGGCUAAGAU GUAUGUAUGUAUGUAUGUAUAUAAU UCUUUGGUUAUCUAGCUGUAUGA UU
36b-3p pcr- miR- 3716b- 3p pcr- miR- 3739- 3p pcr- miR- 375-1- 3p pcr- miR- 375-2- 3n	23 22 22 20	C C C C C C C C C C C C C C C C C C C	pcr- miR-9- 3-3p pcr- miR- 9341-1- 3p pcr- miR- 9341-2- 3p pcr- miR- 9388- 5p pcr- miR- 9388- 5p pcr- miR- 9388- 5p	23 21 21 23 25	UCAUACAGCUAGAUAACCAAAGA UCUCGGCCUUUUGGCUAAGAU UCUCGGCCUUUUGGCUAAGAU GUAUGUAUGUAUGUACAUAUAAU UU

pcr-	22	A <u>GAGGUUG</u> CCUUUGGUGAGAGA	pcr-	23	
miR-			miR-9-		A <u>UAAAGCU</u> AGGUUACCAAAGGCA
377-5p			4-3p		
pcr-	22	AGGAGGGGGGGGGGAGAGAUUUA	pcr-	18	AAAUAUUGCUUGUUUAUU
miR-			miR-		
3776-			95439-		
2			2		
зр	• •		зр		
pcr-	20	G <u>UCGGUCA</u> GUUGGUUAGAUG	pcr-	22	C <u>AAUCAUG</u> UGCAGUGCAGUUCU
miR-			miR-		
3809-			96-5p		
5p					
pcr-	26	C <u>AAACAUU</u> GCUAUUUUUCAUAUC	pcr-	22	
miR-		CAA	miR-		A <u>UUAUACA</u> CCGGUGCCAAGUCA
3831-			96b-3p		
3p					
pcr-	23	U <u>GAAGCUC</u> UAAGGUUCAUCCCA	pcr-	21	G <u>AGUUCCA</u> CUAAGCAAGUUAU
miR-		G	miR-		
3928-		Č	969_3n		
3920- 2m			909-5p		
Sp	- 22			- 22	
pcr-	22	A <u>CGCAUAG</u> CACUUCACAUUGAC	pcr-	23	A <u>UUUGGC</u> ACUUGUGGAAUAAUCG
miR-			miR-		
3957-			96b-5p		
3p					
pcr-	19	U <u>GCUUAUC</u> AGCCUGAUUCU	pcr-	21	U <u>AAAUAUU</u> UUUUUUUUGUCAACU
miR-			miR-		
3965-			972-5p		
5p					
pcr-	20	GGCUUGGCGACUGUAGUAGG	pcr-	22	CGGGUUUCGCGGCUUGCGAACA
miR-			miR-		
4057-			981-5n		
3n			,p		
ner-	10	CAUCCCUUUAUCAUCUCUU	ner-	23	
miD	1)	CAUGEOUTACAUGUGU	miD	20	
101 1 -			0.001 2		U <u>UUUUUU</u> UUUUUAAALUUUUUU
4066-			981 - 3p		
5p					
pcr-	19	C <u>ACGCGUC</u> ACGUGACACCU	pcr-	21	U <u>CGGCUUC</u> GUCCUCGUCUUGG
miR-			miR-		
4070-			9891-		
3p			3p		
pcr-	22	U <u>GUAUUCA</u> UACUGUCUGUUACA	pcr-	23	G <u>CCCGGAU</u> ACUGUGUGUGGCUCA
miR-			miR-		
4185-			995-3p		
3p					
pcr-	20	U <u>UUGGUGU</u> UGUGCUGUUUAA			
miR-					
4187-					
3p					
pcr-	20	UACAUGUAAUACAUUGUACC			
miR.	20				
mitte					

4195-		
5p		
pcr-	19	G <u>GGGGAAG</u> AAAAGGUGGCA
miR-		
4271-		
3p		
pcr-	18	C <u>AGCCCCA</u> CAGCCUCAGG
miR-		
4323-		
3p		
pcr-	18	G <u>GUGGGGG</u> GUGUUGUUGA
miR-		
4472-		
3p		
pcr-	22	A <u>CCAGCUG</u> ACAUUCAGUCCAGA
miR-		
449a-		
3p		
pcr-	20	G <u>AAGGCUG</u> UGUGCUGUAAAG
miR-		
449d-		
3р		

miRN	Tamanh	Sequência maduro (5'a 3')	miRN	Tamanh	Sequência maduro (5' a 3')
Α	o (nt)	Região seed	Α	o (nt)	<u>Região seed</u>
pmc-	23	U <u>GAGAUCAU</u> UGUAAAAACCAAU	pmc-	22	A <u>UCGUGGUA</u> AACUUUGUCCUCG
bantam		U	miR-		
-3p			3724-		
			3p		
pmc-	24	C <u>UGGUUUUC</u> ACAGUGAUCCAGC	pmc-	22	U <u>UUGUUCGU</u> UCGGCUCGCGUUA
bantam		AG	miR-		
-5p			375-1-		
			3р		
pmc-	22	C <u>UGGUGUGA</u> UGGGACAAGACUU	pmc-	20	C <u>UUGUUCGU</u> UCGGCUCGUUC
miR-			miR-		
1000-			375-2-		
5p			3р		
pmc-	22	C <u>UCGUCCA</u> UGUCUUCCUCUUCG	pmc-	24	C <u>UUACAGAG</u> GCACUUGGGUGGC
miR-			miR-		GC
10031c-			3782-		
5p			3р		
pmc-	19	A <u>CUUGUCGC</u> AGUGACGACA	pmc-	21	G <u>ACUGAGGA</u> AAGAGAGAUGUU
miR-			miR-		

Tabela 8: Prováveis miRNAs maduros conservados identificados em *P. maculata,* tamanho dos nucleotídeos (nt), sequência nucleotídica do miRNA maduro, região *seed* em destaque.

10046-			3792-		
3p			3p		
pmc-	21	G <u>UGGGAGGG</u> AGGGAGGACUUU	pmc-	23	A <u>UUUCUAGU</u> GAGUGAGGGUACU
miR-			miR-		U
10055-			3821-		
3р			3р		
pmc-	22	U <u>AAUUUGCU</u> GUUUUGGUGAUAU	pmc-	20	U <u>AUUGCACU</u> UUUACUGGUCG
miR-			miR-		
10089-			4009c-		
5р			3р		
pmc-	22	A <u>GGAAGUGA</u> GGAAGGAAAACAA	pmc-	20	U <u>UACUUGCU</u> UUAACAGCUUA
miR-			miR-		
10173-			4013b-		
3р			5р		
pmc-	22	G <u>UGGUGGCG</u> GUGGUGUUGCCAG	pmc-	20	G <u>GCUUGGCG</u> ACUGUAGUAGG
miR-			miR-		
10249-			4057-		
1-3p			3р		
pmc-	22	G <u>UGGUGGCG</u> GUGGUGUUGCCAG	pmc-	19	C <u>ACGCGUCA</u> CGUGACACCU
miR-			miR-		
10249-			4070-		
2-3p			3р		
pmc-	20	C <u>AUGUCUGC</u> UAUGGCCUUCC	pmc-	19	C <u>AUGUUGUG</u> UUUUUGUAUG
miR-			miR-		
10256-			4133-		
3р			5р		
pmc-	20	C <u>AGAUCAAA</u> CCACCGCCCCC	pmc-	20	A <u>CCAGAUGA</u> UUAUGACACAA
miR-			miR-		
10267-			4140-		
3р			3р		
pmc-	20	G <u>UUUAGCUC</u> UCUGAUUUAUG	pmc-	20	U <u>AAUUGCUG</u> UUUUAAACAGU
miR-			miR-		
10492a			4177-		
-3p			5р		
pmc-	21	A <u>ACAGCAUU</u> UCGUGACUUCUU	pmc-	22	U <u>GUAUUCAU</u> ACUGUCUGUUACA
miR-			miR-		
10508b			4185-		
-3p			3р		
pmc-	23	U <u>GUGUCACG</u> UACAGUAACACUG	pmc-	18	C <u>AGCCCCAC</u> AGCCUCAGG
miR-		Α	miR-		
10509-			4323-		
5р			3р		
pmc-	22	A <u>GCAGUGAG</u> UCAGUCUCACGCU	pmc-	18	G <u>GUGGGGGGG</u> UGUUGUUGA
miR-			miR-		
10578-			4472-		
5p			3р		
pmc-	22	U <u>UUCCCUUU</u> UUCACACAGUGGG	pmc-	20	G <u>AAGGCUGU</u> GUGCUGUAAAG
miR-			miR-		
10611-			449d-		
3р			3р		

pmc-	18	U <u>UGCCAUGA</u> UAGCUUUGG	pmc-	20	U <u>GACUGGAC</u> GUUCAUCGCCG
miR-			miR-		
10639-			4629-		
3p			3p		
pmc-	22	U <u>UGUUGAUG</u> UUGUUGUUGUUGU	pmc-	23	U <u>GUGGGAUC</u> UGGAGGCAGACUU
miR-			miR-		С
10770-			4654-		
1-3p			5p		
pmc-	22	U <u>UGUUGAUG</u> CUGUUGUUGUUUC	pmc-	23	A <u>UAUAUACA</u> CACACAUAUAUA
miR-			miR-		
10770-			466-1-		
2-5p			3p		
pmc-	22	U <u>GAAUAAUG</u> GAUGAAUAACAUC	pmc-	23	A <u>UAUAUACA</u> CACACAAACCAUG
miR-			miR-		
10892-			466-2-		
3p			5p		
pmc-	22	U <u>UUGCUAUG</u> GUCAUCAUAUAUG	pmc-	23	A <u>UAUAUACA</u> CACACAUAUACA
miR-			miR-		
10972-			466-3-		
3p			3p		
pmc-	22	CAUCUCGGUACUCGGGAGGUCA	pmc-	19	UACGCACGCACACACACACAC
miR-			miR-		
10b-1-			466h-		
3p			3p		
pmc-	24	U <u>UACCCUGG</u> AGAACCGAGCGUG	pmc-	20	U <u>GUGUGUGU</u> GUGUGUGUGUG
miR-		UG	miR-		
10b-2-			466i-1-		
5p			5p		
pmc-	22	A <u>GUGUUUGU</u> UGCCAGAGAUUUA	pmc-	20	U <u>GUGUGUGU</u> GUGUGUGUGUG
miR-			miR-		
11054-			466i-2-		
5p			5p		
pmc-	22	A <u>UGAGAGAA</u> GAUCCGUGUGUGA	pmc-	23	U <u>GUGUGCAU</u> GUGCAUGUGAAUG
miR-			miR-		U
11280-			466m-		
3p			5p		
pmc-	23	U <u>GAGAUUCA</u> ACUCCUCCAACUG	pmc-	22	G <u>UGUGUGCG</u> UACAUGUACUCAU
miR-		С	miR-		
1175-1-			466n-		
3р			3p		
pmc-	23	A <u>GUGGAGAG</u> AGUUUUAUCUCAU	pmc-	20	G <u>UGCACACA</u> CACACAUACAC
miR-		С	miR-		
1175-1-			466q-		
5p			3p		
pmc-	22	A <u>AGUGAAGA</u> GAAGAAUGAAGAA	pmc-	22	U <u>AAGUGCGC</u> GCAUGUAUUUAUG
miR-			miR-		
1175-2-			467d-		
5р			5р		

pmc-	23	U <u>AUGUGUGU</u> GUGUAUGUGUGUA	pmc-	21	A <u>UAUACACA</u> CACACACCUUUC
miR-		U	miR-		
1187-			467f-3p		
3p					
pmc-	22	U <u>UCAGGAGA</u> UCAUCGAUAUGUU	pmc-	23	G <u>UGCCACCU</u> UAACUGCACGGAC
miR-			miR-		С
11922-			4715-		
3p			5p		
pmc-	24	U <u>AGGGCAAA</u> AUUAUCACCGAUU	pmc-	22	C <u>CUGACCCA</u> CCCCCUCCCUACU
miR-		AC	miR-		
12096b			4750-		
-3p			3p		
pmc-	24	A <u>AGCGGUGA</u> UACUUUUGUCUCG	pmc-	22	C <u>AUGACGUC</u> ACAGAGGCGAGGU
miR-		СА	miR-		
12096b			4757-		
-5 p			3p		
pmc-	20	U <u>CCCCACUG</u> CUCCCCCAACA	pmc-	22	U <u>CUGCCAUC</u> CUCCCUCUCGUCU
miR-			miR-		
12228-			4769-		
5p			5p		
pmc-	22	C <u>CCCGCCCC</u> GCCCGGCUCAAGG	pmc-	22	G <u>UGGCUAUC</u> CCUGCUGUCAUCC
miR-			miR-		
12245-			487a-		
5p			5p		
pmc-	21	U <u>CACCUCCU</u> CUCUCCUCCUU	pmc-	23	A <u>UCAUCAUG</u> CAUCAUCAUUAUUG
miR-			miR-		
1224-			4938-		
5p			5p		
pmc-	23	U <u>GGGGCUGC</u> AGGGCUGAGUAAG	pmc-	22	A <u>AGCACCAU</u> GUGAAGCACUUUU
miR-		С	miR-		
12286-			49-3p		
3p					
pmc-	21	U <u>GGGGGUGC</u> AGGUGGGCACAC	pmc-	22	A <u>GUGGUGUG</u> CGUGUGUGUGUGU
miR-			miR-		
12287-			4949-		
5p			3p		
pmc-	19	A <u>UGGGGUCU</u> UGGGGUCAUG	pmc-	22	C <u>AGCAACAG</u> CAGCAGCAGCAGC
miR-			miR-		
12292-			4968-1-		
5p			3p		
pmc-	23	C <u>GCCUCUUG</u> AUCUACUAUAACUA	pmc-	22	C <u>AGCAACAG</u> CAGCAGCAGCAGC
miR-			miR-		
12293-			4968-2-		
5p			5p		
pmc-	18	G <u>GGCAGGGG</u> CAGGGGGCA	pmc-	22	C <u>AGCAACAG</u> CAGCAGCAGCAAU
miR-			miR-		
12296-			4968-3-		
3p			3p		

pmc-	23	G <u>CCCUGCCC</u> UCCCUUCCCCUCUC	pmc-	22	CAGCAACAGCAGCAGCAGCAGC
miR-			miR-		
12321-			4968-4-		
5p			3p		
pmc-	21	U <u>UUCUCUCU</u> UUCCCUCUCUCU	pmc-	21	U <u>GCUGUAUU</u> GUCAGGUUUGUA
miR-			miR-		
12327-			4999-		
5p			3p		
pmc-	22	A <u>GAUUGUUC</u> UGGAUUGCCACUG	pmc-	21	A <u>AUGCACCC</u> GGGCAAGUCAGA
miR-			miR-		
12339-			501-5p		
3p					
pmc-	22	A <u>UCUAUGAU</u> UUCAUCGGGUAAG	pmc-	22	U <u>UUGUUUGU</u> UUUGCUGUCUGAC
miR-			miR-		
12358-			5101-1-		
3p			5p		
pmc-	23	A <u>GAGAGACA</u> CAGACAAGAAAGA	pmc-	22	U <u>UUGUUUGU</u> UUUGCUGUGUGCU
miR-		U	miR-		
12396-			5101-2-		
5p			5p		
pmc-	22	A <u>GUACCUUU</u> UGUGAUAUUCUUA	pmc-	22	A <u>AAGUGCAU</u> CCUUUUAUGGCGA
miR-			miR-		
12-3p			519f-3p		
pmc-	22	A <u>AGGAAACU</u> GAGAUCCGGUCAC	pmc-	24	U <u>UUCUUGUC</u> UCUGUGUACCUCUC
miR-			miR-		G
12410-			5317a-		
3p			3p		
pmc-	22	C <u>GCUUUCAU</u> CCGUGACGACACC	pmc-	20	U <u>GGACAGUU</u> AUGAAGAAGUG
miR-			miR-		
124-5p			5391-		
			5p		
pmc-	22	U <u>GAGUAUUA</u> CAUCAGGUACUGA	pmc-	22	A <u>UCAUACAA</u> GGACAAUUUGUCA
miR-			miR-		
12-5p			539-5p		
pmc-	21	C <u>UGCAGACU</u> CGACCUCAGGAU	pmc-	22	C <u>CACACAAC</u> CAGCAAGAUUUGC
miR-			miR-		
1273h-			5396b-		
3p			5p		
pmc-	22	U <u>AUAUAUAU</u> AUAUGUACUCUAC	pmc-	19	U <u>CAUGUUGG</u> UUUUUUGAAU
miR-			miR-		
1277-			5549-		
3p			3p		
pmc-	23	C <u>AGUGCAAU</u> AAUGAAAGUAUUU	pmc-	23	U <u>GUAGUUUG</u> UAGUCUAAAGUCU
miR-		U	miR-		G
130b-			5552-		
3р			3p		
pmc-	18	G <u>AUGCUGCU</u> GCUGAUGGC	pmc-	24	U <u>CUCUUUUU</u> UCUCGCAGUCCCGC
miR-			miR-		Α
1322-			5595-		
5p			3p		

pmc-	21	C <u>AGCUGGUU</u> GAAGGGGACCAA	pmc-	22	A <u>GUGGAAUG</u> UUUUGUUUCAGUA
miR-			miR-		
133c-			5600-		
5p			3р		
pmc-	21	G <u>CUCAGCAG</u> CACUCUUUGAGC	pmc-	22	U <u>AUACAUCA</u> CCAGUUGACAUGU
miR-			miR-		
1376-			5612-		
3p			3р		
pmc-	23	U <u>UAUUGCUU</u> GAGAAUACACGUA	pmc-	21	U <u>GAGUGUGU</u> GUGUGUGAGUGC
miR-		Α	miR-		
137b-			574-1-		
3р			3р		
pmc-	24	A <u>CGGGUAUU</u> CUUGGGUAAAUAA	pmc-	24	U <u>GAGUGUGU</u> GUGUGUGAGUGUG
miR-		UA	miR-		UG
137b-			574-2-		
5р			3р		
pmc-	17	U <u>CGUUAAAA</u> UGUUUGUG	pmc-	22	U <u>CGCUCUAC</u> AUCGUGUGGUCAG
miR-			miR-		
13b-3p			5918b-		
			5p		
pmc-	22	C <u>AUGCUUCU</u> UUAUAGUUUGACC	pmc-	20	G <u>ACAAUUCU</u> GACAUUUUGCA
miR-1-			miR-		
3p			5965-		
			5р		
pmc-	22	A <u>GGAGGUC</u> GUAGGUCAUCCUGU	pmc-	20	G <u>AGGGACGA</u> GGAGGGAGGAG
miR-			miR-		
1421a			6056-		
m-3p			3р		
pmc-	21	A <u>AAACUGCA</u> UCUGGAUUAUGA	pmc-	21	A <u>GCAUGACA</u> GAGGAGAGGAGA
miR-			miR-		
1422j-			6076-		
3p			3р		
pmc-	24	G <u>UCUGAGAU</u> GAAGCACUCGUUU	pmc-	20	A <u>UAGUGAUU</u> GUGUGUUUCUA
miR-		GC	miR-		
143-3p			6098-		
			5р		
pmc-	23	G <u>AGGGAGGG</u> ACGGGGGAUUCAA	pmc-	23	U <u>UCCCUUGC</u> AGGGGCUGAGGUA
miR-		G	miR-		U
149-3p			623-3p		
pmc-	21	C <u>UGGUACAG</u> GCCUGGGGGAGA	pmc-	19	A <u>GCUGUCUG</u> AAAAUGUUUG
miR-			miR-		
150-3p			626-5p		
pmc-	23	U <u>UGCAUAGU</u> CACAAAAGUGAUC	pmc-	22	C <u>AAACUCAU</u> CGUCAGCCACUCA
miR-		G	miR-		
153-3p			6302-		
			3р		
pmc-	22	U <u>GAGUUUGU</u> GUUGCUGGGACAA	pmc-	21	C <u>UCCGUAUC</u> AUCUGCUAGCUA
miR-			miR-		

1551-			6416-		
3p			3p		
pmc-	22	CAGACCAUUCUGGGCUAUGGGG	nmc-	21	UGACUUCUACCUGUUCCCUAA
miR-			miR-		
15c-3n			6505-		
100 00			5n		
nmc-	20	GUGGUUUGUUUGUGUUGCG	nmc-	2.2	
miR-	-0	d <u>eddeedd</u> eeddadadad	miR-		o <u>contonin</u> nocoodinieneae
1603-1-			651-3n		
3n			oor op		
pmc-	20	UUGGUUUGGUUUGUUUUUUU	nmc-	22	AUGCAGUAACAGGUGUCUCCAC
miR-		1 <u></u>	miR-		<u></u>
1603-2-			6516-		
3n			3n		
nmc-	23	UGCUUGUUUUUGGAUGAAAUUA	nmc-	20	AGAGGGAAGAGGGAAGAAAG
miR-		и	miR-	-0	<u></u>
1632-		·	6528-		
3n			5n		
nmc-	23	UGAGAGGCUGUCAGUUUUGUAA	nmc-	22	AGAGGUGCCCCGCUGUCUGUUC
miR-	20	G	miR-		A <u>dadddee</u> ecdcoddoddoo
1642-		0	6548-		
3n			3n		
nmc-	23		nmc-	23	UGUGUUGCUCCAUACUGCUGAA
miR-	20	G	miR-	20	G
1677-		0	6560-		0
3n			5n		
nme-	23		nmc-	22	AGGGGAAAGGAAUGUGCAGGUA
miR-		A	miR-		n <u>ooddiillid</u> diilleooddiiddeii
1728-			6562-		
3n			5n		
nmc-	23	ACUGCACUGCAAGCACCGCCAC	nmc-	21	GCGGCCGCCAUCUUGCGGAGC
miR-		A	miR-		0 <u>-000-00-0</u> .1000000000000
17-3n			6568-		
P			3p		
pmc-	22	ACUUCAACAGGAGCAAGUCAAG	pmc-	23	CAUAUACAUACACACACACGUGU
n miR-			n miR-		
1744-			669f-5p		
5p					
pmc-	22	U <u>CCUGUAGC</u> CAGAAGACAGCGG	pmc-	22	U <u>GCAUAUAC</u> UCACAUGUGCACA
miR-			miR-		
1775-			669j-3p		
5р			ů ř		
pmc-	21	U <u>UUAAAUCA</u> UCCAGCUGCCUU	pmc-	21	A <u>UUAUUUUA</u> CAGACAGCAACU
miR-			miR-		
1781-1-			6701-		
5p			3p		

pmc-	21	U <u>UUAAAUCA</u> UCCAGCUGCCUU	pmc-	23	U <u>CACAACCU</u> GCAUGAAUGAGGA
miR-			miR-		С
1781-2-			67-3p		
5p					
pmc-	18	U <u>GGUGGGUG</u> AGGAGGAGG	pmc-	24	A <u>GCUGUCUG</u> UGUUUUCCCAGAU
miR-			miR-		GC
1896-			6876-		
3p			5p		
pmc-	23	A <u>GAUAUGUU</u> UGAUAUAUUUGGU	pmc-	21	C <u>CCUCAUCU</u> UCCCCUCCCCUC
miR-		G	miR-		
190-5p			6891-		
			5р		
pmc-	22	G <u>UAGUGGAG</u> ACUGGUGGCGAAA	pmc-	21	A <u>CAGCCUCU</u> GCUUCUUCAGCU
miR-			miR-		
1951-			6971-		
3р			3p		
pmc-	21	G <u>AGCAUUGC</u> AUGCUGGACGCG	pmc-	22	U <u>CUCCACUC</u> UCUUCUGUGUCGU
miR-			miR-		
1955-			6974-		
5p			3р		
pmc-	22	ACGGCAACAAGAAACUGUGACU	pmc-	22	CACCCACCUGCCUGUCACACUG
n miR-			n miR-		
196a-			7000-		
3p			5p		
pmc-	23	UGCCCUAUCCGUCAGGAACUGU	pmc-	24	UGUAGGGUGAGGCUGGUGGGUU
miR-		G	miR-		AG
1984-			7046-		
5p			5p		
pmc-	24	UGCCAUUUUUUUUUCAGUCACUGU	nmc-	21	CAACAAAUCGUAGCCUCAGAG
miR-		GU	miR-7-		
1985-			1-3n		
5n			P		
pmc-	21	CGGGACUACGUCAACGUACUA	pmc-	23	GAUCCAUCUCUGCCUGCUCACCU
miR-			miR-		0 <u></u>
1990-			7151-		
3n			5n		
nme-	22	AGUAAGUUGAUGGGGUCCCACG	nme-	22	
miR_		- <u></u> iessourceide	miR-		- <u></u> encounteroux
1990-			71-5n		
5n			/1 0 p		
nme-	21	ACAGUAGUCUGCACAUCCUAU	nme-	20	AUCUUUUAAAAUACAGGGUG
miR.		A <u>CHOUNCE</u> UGEACAUGEUAU	miD.	20	A <u>CCOUCHA</u> AUACAUUUU
100 3n			7207		
199-5p			5p		
	22	UCACACACHCHCHCCHCCCHC	- Sp	22	
pine- miD	22	U <u>GAGALAGU</u> GUGULLULLULU	pine- miD	22	U <u>UUUGLAGA</u> AACGUUUACAGUU
1004			1111K- 722 F		
1994-			/22- 5 p		
эр					

pmc-	22	U <u>GAGACAGU</u> GUGUCCUCCCUUG	pmc-	22	C <u>AACAAGUC</u> CCAGUCUUGGCGG
miR-			miR-7-		
1994a-			2-3p		
3р					
pmc-	22	U <u>GGAAUGUA</u> AAGAAGUAUGUAC	pmc-	23	A <u>CUUGCAUG</u> AGUUAAUGAUUUG
miR-			miR-		U
1a-3p			7241-		
			3р		
pmc-	24	A <u>CAUACUUC</u> UUUGCUAUCCCAUA	pmc-	18	U <u>CAGAAACA</u> GUGUCUCUG
miR-		U	miR-		
1a-5p			7314-		
			3p		
pmc-	17	U <u>CAUACUUC</u> UUUACAUU	pmc-	21	U <u>UACAGAAU</u> UGUGUGAUCAAC
miR-			miR-		
1b-3p			7323-		
			3p		
pmc-	22	G <u>UACAUACU</u> UCUUUACAUUCCA	pmc-	21	G <u>UAAACACU</u> UUACCCGUUUGA
miR-			miR-		
1c-5p			7386e-		
			5p		
pmc-	23	UUGUGACCGUUACAAUGGGCAU	pmc-	20	UGCACAGACGUGACAUCGUU
miR-		U	miR-		
2001-			7388c-		
5n			3n		
nmc-	22	CAUCHUACCUGACAGUCAACAG	nme-	23	
miD		CAUCULACE UTACAUUCAACAU	miD	25	C
200b			72080		C
2000-			7590a- 3n		
эр			эр	20	HOLINGA GA GUGGUGUGUGGU
ртс- :Ъ	22	U <u>GAACAGCG</u> CCUUUCUCACGUG	ртс- :Ъ	20	U <u>GUUCAGAC</u> UGGUGUCUGGU
mik-			mik-		
201-3р			/430-		
			3р		
pmc-	22	U <u>ACCUGUGC</u> ACCUGUGCACGUG	pmc-	23	A <u>ACUGUUGU</u> AGAACAGUUCCGA
miR-			miR-		U
2017-			7448-		
3р			3р		
pmc-	19	U <u>GCAAGGAC</u> AGCAAAGGGA	pmc-	23	A <u>GCUGCCUG</u> AUGAAGAGCUGUC
miR-			miR-		С
204-3p			745a-		
			3p		
pmc-	22	A <u>AGCAGCAC</u> UGUGCAAGAUACU	pmc-	22	G <u>AGCUGCCA</u> AAUGAAGGGCUGU
miR-			miR-		
2064-			745b-		
3p			3p		
pmc-	23	G <u>ACACUGUU</u> UUACACUCUACUG	pmc-	22	A <u>UGUGCUGG</u> AGAUGAAAACUGU
miR-		G	miR-		
2155-			7472-		
			3р		

pmc-	22	C <u>AAGUUACU</u> AGCCGAGAUUACA	pmc-	23	C <u>CAGAUCUA</u> ACUCUUCCAGCUCA
miR-			miR-		
216a-			7 50-3 p		
3р	•••			•••	
pmc-	23	U <u>AAUCUCAG</u> CUGGUAAUUCUGA	pmc-	23	A <u>GUUGGAAG</u> AUUGGGUCUUUGG
miR-		G	miR-		C
216a-			7 50-5 p		
5p					S. V.S. V.S. S.
pmc-	23	U <u>AAUAUCAG</u> CUGGUAAUCCUGA	pmc-	21	C <u>AUGUUUGA</u> AUGGCCACCACU
miR-		G	miR-		
216b-1-			7 51-3 p		
3р					<u></u>
pmc-	22	C <u>ACAGUGGC</u> UACUGGGUCCACA	pmc-	22	C <u>ACACACAU</u> UCAUGGACACGCA
miR-			miR-		
216b-2-			7562-		
3p			5р		
pmc-	22	C <u>ACACUUAC</u> CUGUAGACUGUUA	pmc-	20	G <u>CAUGGUCA</u> UGAUCAUGACA
miR-			miR-		
216b-3-			7575-		
3p			5р		
pmc-	21	A <u>CAGUUACC</u> UGUAGAUUGUGU	pmc-	22	G <u>ACAUCUGU</u> UUCUCAGUAAUUC
miR-			miR-		
216b-3-			7643-		
5p			3р		
pmc-	21	U <u>UUGUACUC</u> AUGUAAGUAUUU	pmc-	21	U <u>AAGUGAAU</u> ACUCUGUUAUGU
miR-			miR-		
2223-			785a-		
3р			5р		
pmc-	23	C <u>CGUUCACU</u> CAUCUCGGAGCUG	pmc-	22	U <u>GGUUGGAU</u> CAGUUUGGUUUGG
miR-		Α	miR-		
2238i-			7880b-		
3р			3р		
pmc-	22	A <u>AAAUCUAA</u> GUGAACUGUCAAG	pmc-	22	U <u>UUGCGACC</u> AAAAUCACUCUCU
miR-			miR-		
2284c-			7880q-		
3р			3р		
pmc-	20	G <u>ACUGAUGU</u> UGUUGUUCAAG	pmc-	20	G <u>UAAAGCUA</u> AAUUACCAGUG
miR-			miR-		
2298-			79-3p		
3р					
pmc-	20	G <u>GUUGUGUG</u> GUUGUGUGGGC	pmc-	25	U <u>CCUUUAUU</u> UGUCUGGGUGGAG
miR-			miR-		GGU
2304-			8250d-		
3р			3р		
pmc-	20	U <u>UUGUGUUG</u> UUUUGUUUUGC	pmc-	24	U <u>CUGAUACU</u> CUUCGCUCCACCUU
miR-			miR-		С
2361-			8265-		
3р			3р		
pmc-	20	U <u>AUAGUUUU</u> GUGUGUGUAU	pmc-	23	A <u>UGAAAGAU</u> AAAAGUGUCUCGU
miR-			miR-		G

2371-			8293-		
5р			5p		
pmc-	21	U <u>UGUGUGGU</u> UUUGGAUACUUG	pmc-	22	U <u>GAUUGUGA</u> GAUUCCCCCACCU
miR-			miR-		
2470-			8311-		
3р			3p		
pmc-	18	C <u>AACAACAG</u> CAGCAGCAA	pmc-	23	G <u>UUGUUGUU</u> GUUGUUUUGUCAG
miR-			miR-		U
2491-1-			8335-		
3р			3p		
pmc-	18	C <u>AACAACAG</u> CAGCAGCAA	pmc-	22	A <u>GUUCUUUC</u> UUUUUAGCAUGCA
miR-			miR-		
2491-2-			8398-		
3р			3р		
pmc-	18	CAACAACAGCAGCAGCAA	pmc-	23	U <u>AAUACUGU</u> CAGGUAAAGAUGU
miR-			miR-8-		С
2491-3-			3р		
3р					
pmc-	21	G <u>CUCACACA</u> CACACAGCCA	pmc-	19	G <u>CAAUUAAA</u> AGUAGCACAA
miR-			miR-		
2493-			8422-		
3р			5р		
pmc-	22	U <u>CGUGCACA</u> CACACAUACAC	pmc-	19	A <u>CUUUGCAU</u> UCAUAUUUGA
miR-			miR-		
2505-			8443-		
3р			5р		
pmc-	22	C <u>UAAGUACU</u> AGUGCCGCGGGAA	pmc-	20	U <u>AAUUAUAU</u> UAUAUUUGCUU
miR-			miR-		
252a-			8460-		
5p			5p		
pmc-	23	U <u>GCAAAUCU</u> UUUGCAACAGACU	pmc-	20	U <u>GAUUAAUU</u> UGAUAAGAUGA
miR-		U	miR-		
254-5p			8462-		
			3p		
pmc-	25	G <u>UGAGUGGU</u> GAUGAUGUUUACC	pmc-	20	C <u>UGAGCAUA</u> AGAAUAUGUUC
miR-		ACU	miR-		
2571-			8470-		
3p			3p		
pmc-	22	U <u>GACUAGAU</u> CCACACUCAUCCA	pmc-	23	U <u>GAGGUAGU</u> UUUAAAUGAAGCU
miR-			miR-		U
279-3p			84f-5p		
pmc-	22	U <u>GACUAGAC</u> UGAUAACCCCUAG	pmc-	24	U <u>ACAAAGUA</u> UUUGAAACCACAGA
miR-			miR-		G
279b-			85-3p		
5р					
pmc-	22	C <u>GGGUGUUC</u> GUUUCGAGUACGA	pmc-	22	C <u>AUCUUACC</u> UAACAGCAUUAGA
miR-			miR-8-		
279с-			5p		
3р					

pmc-	22	U <u>GUCAUGGA</u> GUUGCUCUUUA	pmc-	23	U <u>GCCGGGCC</u> UGGAGGCCAGCUG
miR-			miR-		U
281-3p			8834a-		
-			5p		
pmc-	21	AAGGGAGCAUCCGUCGACAGU	pmc-	22	GACUGACACCUCUUUGUCCAGC
miR-			n miR-		
281-5p			888-5p		
nmc-	22	ACAUAGCCUAAAAGAGGCACCA	pmc-	23	CAGGGUCAAGGGUCAAACAUGG
miR-		<u> </u>	miR-		U
282-3n			8993-		-
202-5p			5n		
nme_	21		nmc-	21	
miD	21	U <u>ACAGAAGU</u> GUUCGUGGGGGA	miD	21	U <u>LAUUUUU</u> UUUUUUUUUUUUUUUUU
1111K-			111K-		
2955-			9120-		
зр	<u>.</u> .		5p		
pmc-	24	U <u>AUCACAGC</u> CUGCUUGGAUCAG	pmc-	23	U <u>CAUACAGC</u> UAGAUAACCAAAGA
miR-		UA	miR-9-		
2a-1-3p			1-3p		
pmc-	24	U <u>AUCACAGC</u> CAGCUUUGAUGAG	pmc-	23	C <u>CUUUGGUA</u> ACCUAGCUUUAUG
miR-		CU	miR-9-		Α
2a-2-3p			1-5p		
pmc-	24	A <u>AUCACAGC</u> CUGCUUUGGUGAG	pmc-	23	U <u>UUGCAUCC</u> UGGCUCUGCUAUC
miR-		CU	miR-		U
2a-3-3p			9170-		
			3p		
pmc-	24	U <u>CAUCAAAG</u> CUGGCUGUGAUAU	pmc-	23	A <u>UAAAGCUA</u> GGUUACCAAAGGC
pmc- miR-	24	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA	pmc- miR-9-	23	A <u>UAAAGCUA</u> GGUUACCAAAGGC A
pmc- miR- 2b-1-5p	24	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA	ртс- miR-9- 2-3р	23	A <u>UAAAGCUA</u> GGUUACCAAAGGC A
pmc- miR- 2b-1-5p pmc-	24	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAG</u> CUGGCUGUGAUAU	pmc- miR-9- 2-3p pmc-	23	A <u>UAAAGCUA</u> GGUUACCAAAGGC A U <u>AAUAAUCA</u> GGCCACUACCUCU
pmc- miR- 2b-1-5p pmc- miR-	24	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA	pmc- miR-9- 2-3p pmc- miR-	23	A <u>UAAAGCUA</u> GGUUACCAAAGGC A U <u>AAUAAUCA</u> GGCCACUACCUCU
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p	24	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA	pmc- miR-9- 2-3p pmc- miR- 9256b-	23	A <u>UAAAGCUA</u> GGUUACCAAAGGC A U <u>AAUAAUCA</u> GGCCACUACCUCU
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p	24	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA	ртс- miR-9- 2-3р ртс- miR- 9256b- 3р	23	A <u>UAAAGCUA</u> GGUUACCAAAGGC A U <u>AAUAAUCA</u> GGCCACUACCUCU
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p	24 24 24 23	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGC</u> CAUGCUAAUCUCCU	ртс- miR-9- 2-3р ртс- miR- 9256b- 3р ртс-	23 22 25	A <u>UAAAGCUA</u> GGUUACCAAAGGC A U <u>AAUAAUCA</u> GGCCACUACCUCU U <u>CUUUGGUUAUCUAGCUGUAUG</u>
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR-	24 24 23	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGC</u> CAUGCUAAUCUCCU	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9-	23 22 25	A <u>UAAAGCUA</u> GGUUACCAAAGGC A U <u>AAUAAUCA</u> GGCCACUACCUCU U <u>CUUUGGUU</u> AUCUAGCUGUAUG AUU
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 2f-3p	24 24 23	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGC</u> CAUGCUAAUCUCCU	ртс- miR-9- 2-3р ртс- miR- 9256b- 3р ртс- miR-9- 2-5р	23 22 25	A <u>UAAAGCUA</u> GGUUACCAAAGGC A U <u>AAUAAUCA</u> GGCCACUACCUCU U <u>CUUUGGUU</u> AUCUAGCUGUAUG AUU
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 2f-3p pmc-	24 24 23 22	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGC</u> CAUGCUAAUCUCCU UAUACAAGGGCAGACUCCAUCC	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9- 2-5p pmc-	23 22 25 23	A <u>UAAAGCUA</u> GGUUACCAAAGGC A U <u>AAUAAUCA</u> GGCCACUACCUCU U <u>CUUUGGUU</u> AUCUAGCUGUAUG AUU GAUUGCACUUGUCCCGGCCUUC
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 2f-3p pmc- miR-	24 24 23 22	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGC</u> CAUGCUAAUCUCCU U <u>AUACAAGG</u> GCAGACUCCAUCC	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9- 2-5p pmc- miR-9- 2-5p pmc- miR-9-	23 22 25 23	A <u>UAAAGCUA</u> GGUUACCAAAGGC A U <u>AAUAAUCA</u> GGCCACUACCUCU U <u>CUUUGGUU</u> AUCUAGCUGUAUG AUU G <u>AUUGCACU</u> UGUCCCGGCCUUC U
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 2f-3p pmc- miR- 300-3p	24 24 23 22	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGC</u> CAUGCUAAUCUCCU U <u>AUACAAGG</u> GCAGACUCCAUCC	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9- 2-5p pmc- miR- 92a-1-	23 22 25 23	AUAAAGCUA GGUUACCAAAGGC A UAAUAAUCA UAAUAAUCA GGCCACUACCUCU UCUUUGGUUAUCUAGCUGUAUG AUU GAUUGCACU UCUUGGUUAUCUAGCUGUAUG U UCUUGGUUAUCUAGCUGUAUG
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 2f-3p pmc- miR- 300-3p	24 24 23 22	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGG</u> CAUGCUAAUCUCCU U <u>AUACAAGG</u> GCAGACUCCAUCC	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9- 2-5p pmc- miR- 92a-1- 3p	23 22 25 23	AUAAAGCUA GGUUACCAAAGGC A UAAUAAUCA UAAUAAUCA GGCCACUACCUCU UCUUUGGUU AUU GAUUGCACU GGCCGGCCUUC U U
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 2f-3p pmc- miR- 300-3p	24 24 23 22 23	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGC</u> CAUGCUAAUCUCCU U <u>AUACAAGG</u> GCAGACUCCAUCC	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9- 2-5p pmc- miR- 92a-1- 3p	23 22 25 23	AUAAAGCUA GGUUACCAAAGGC A UAAUAAUCA UAAUAAUCA GGCCACUACCUCU UCUUUGGUU AUU GAUUGCACU UGUCCCGGCCUUCU U GAUUGCACU
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 2f-3p pmc- miR- 300-3p	24 24 23 22 23	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGC</u> CAUGCUAAUCUCCU U <u>AUACAAGG</u> GCAGACUCCAUCC U <u>AUACAAGG</u> GCAGACUCCAUCC U <u>AUACAAGG</u> GCAGACUCCAUCC	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9- 2-5p pmc- miR-9- 2-5p pmc- miR-9- 3p pmc- miR- 92a-1- 3p pmc- miR-	23 22 25 23 22	AUAAAGCUA GGUUACCAAAGGC A UAAUAAUCA UAAUAAUCA GGCCACUACCUCU UCUUUGGUUAUCUAGCUGUAUG UCUUUGGUUAUCUAGCUGUAUG AUU GAUUGCACU GAUUGCACU GUUGCCCGGCCUUC U GAUUGCACU
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 2f-3p pmc- miR- 300-3p pmc- miR- 302-3p	24 24 23 22 23	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGC</u> CAUGCUAAUCUCCU U <u>AUACAAGG</u> GCAGACUCCAUCC U <u>AUACAAGG</u> GCAGACUCCAUCC U	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9- 2-5p pmc- miR- 92a-1- 3p pmc- miR- 92a-2	23 22 25 23 22	AUAAAGCUA GGUUACCAAAGGC A UAAUAAUCA UAAUAAUCA GGCCACUACCUCU UCUUUGGUU AUCUAGCUGUAUG AUU GAUUGCACU GAUUGCACU GGUUGCCCGGCCUUC U GAUUGCACU
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 300-3p pmc- miR- 300-3p	24 24 23 22 23	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGC</u> CAUGCUAAUCUCCU U <u>AUACAAGG</u> GCAGACUCCAUCC U <u>AUACAAGG</u> GCAGACUCCAUCC U	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9- 2-5p pmc- miR-9- 2-5p pmc- miR- 92a-1- 3p pmc- miR- 92a-2- 3n	23 22 25 23 22	AUAAAGCUA GGUUACCAAAGGC A UAAUAAUCA UAAUAAUCA GGCCACUACCUCU UCUUUGGUU AUU GAUUGCACU UGUCCCGGCCUUC U GAUUGCACU GAUUGCACU UGUCCCGGCCUUG
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 300-3p pmc- miR- 300-3p pmc- miR- 302a- 3p	24 24 23 22 23	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGC</u> CAUGCUAAUCUCCU U <u>AUACAAGG</u> GCAGACUCCAUCC U <u>AUACAAGG</u> GCAGACUCCAUCC U	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9- 2-5p pmc- miR-9- 2-5p pmc- miR- 92a-1- 3p pmc- miR- 92a-1- 3p pmc- miR- 92a-1- 3p pmc- miR- 92a-1- 3p pmc- miR- 92a-2- 3p	23 22 25 23 22 22	AUAAAGCUA GGUUACCAAAGGC A UAAUAAUCA UAAUAAUCA GGCCACUACCUCU UCUUUGGUUAUCUAGCUGUAUG AUU GAUUGCACU UGUCCCGGCCUUCU U GAUUGCACU GAUUGCACU GUUGCCCGGCCUUCU U UCUUGGUUGUCCCGGCCUUCU U UCUUGCACU
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 2f-3p pmc- miR- 300-3p pmc- miR- 302a- 3p pmc- miR- 302a- 3p	24 24 23 22 23 23	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGC</u> CAUGCUAAUCUCCU U <u>AUACAAGG</u> GCAGACUCCAUCC U <u>AUACAAGG</u> GCAGACUCCAUCC A A <u>AGUGCUUC</u> CUUUUAUUGGUGA U	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9- 2-5p pmc- miR-9- 2-5p pmc- miR-9- 3p pmc- miR- 92a-1- 3p pmc- miR- 92a-2- 3p pmc- miR- 92a-2- 3p pmc- miR-	23 22 25 23 22 21	AUAAAGCUAGGUUACCAAAGGC A UAAUAAUCAGGCCACUACCUCU UCUUUGGUUAUCUAGCUGUAUG AUU GAUUGCACUUGUCCCGGCCUUC U GAUUGCACUUGUCCCGGCCUUG U UAUUGCACUUGUCCCGGCCUUG U UAUUGCACUUGUCCCGGCCUUG U
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 300-3p pmc- miR- 302a- 3p pmc- miR- 302a- 3p	24 24 23 22 23 23	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGG</u> CAUGCUAAUCUCCU U <u>AUACAAGG</u> GCAGACUCCAUCC U <u>AUACAAGG</u> GCAGACUCCAUCC U A <u>AGUGCUUC</u> CUUUUAUUGGUGA U A <u>AAGUGCUU</u> CCAUGUUUAAUUC A	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9- 2-5p pmc- miR-9- 2-5p pmc- miR- 92a-1- 3p pmc- miR- 92a-2- 3p pmc- miR- 92a-2- 3p pmc- miR- 92a-2- 3p	23 22 25 23 22 21	AUAAAGCUA GGUUACCAAAGGC A UAAUAAUCA UAAUAAUCA GGCCACUACCUCU UCUUUGGUU AUU GAUUGCACU UGUCCCGGCCUUC U GAUUGCACU GAUUGCACU UGUCCCGGCCUUG U UUGUCCCGGCCUUG U UUGUCCCGGCCUUG
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 2f-3p pmc- miR- 300-3p pmc- miR- 302a- 3p pmc- miR- 302a- 3p pmc- miR- 302b- 2	24 24 23 23 23 23	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGG</u> CAUGCUAAUCUCCU U <u>AUACAAGG</u> GCAGACUCCAUCC U <u>AUACAAGG</u> GCAGACUCCAUCC U A <u>AGUGCUUC</u> CUUUUAUUGGUGA U A <u>AAGUGCUU</u> CCAUGUUUAAUUC A	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9- 2-5p pmc- miR-9- 2-5p pmc- miR- 92a-1- 3p pmc- miR- 92a-2- 3p pmc- miR- 92a-2- 3p pmc- miR- 92a-2- 3p pmc- miR- 92a-2- 3p pmc- miR- 92b-3p	23 22 25 23 22 21	AUAAAGCUA GGUUACCAAAGGC A UAAUAAUCA UAAUAAUCA GGCCACUACCUCU UCUUUGGUU AUU GAUUGCACU UGUCCCGGCCUUCU U GAUUGCACU GAUUGCACU UGUCCCGGCCUUCU U UAUUGCACU UAUUGCACU UGUCCCGGCCUUGU U UAUUGCACU
ртс- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 300-3p pmc- miR- 300-3p pmc- miR- 302a- 3p pmc- miR- 302b- 3p	24 24 23 22 23 23	UCAUCAAAGCUGGCUGUGAUAU GA UCAUCAAAGCUGGCUGUGAUAU GA UAUCACAGCCAUGCUAAUCUCCU UAUACAAGGGCAGACUCCAUCC UAUACAAGGGCAGACUCCAUCC A AAGUGCUUCCUUUUAUUGGUGA U	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9- 2-5p pmc- miR- 92a-1- 3p pmc- miR- 92a-2- 3p pmc- miR- 92a-2- 3p	23 22 25 23 22 21	AUAAAGCUA GGUUACCAAAGGC A UAAUAAUCA UAAUAAUCA GGCCACUACCUCU UCUUUGGUUAUCUAGCUGUAUG AUU GAUUGCACU GUUGCCCGGCCUUC U U GAUUGCACU UGUCCCGGCCUUG UAUUGCACU UUGUCCCGGCCUUG UAUUGCACU UGUCCCGGCCUUG
ртс- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 300-3p pmc- miR- 302a- 3p pmc- miR- 302a- 3p pmc- miR- 302b- 3p	24 24 23 23 23 23 23 23	U <u>CCCACAGGCCCAGCUGUGAUAU</u> GA U <u>AUCAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGC</u> CAUGCUAAUCUCCU U <u>AUACAAGG</u> GCAGACUCCAUCC U A <u>AGUGCUUC</u> CUUUUAUUGGUGA U U	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9- 2-5p pmc- miR- 92a-1- 3p pmc- miR- 92a-2- 3p pmc- miR- 92a-2- 3p pmc- miR- 92a-2- 3p	23 22 25 23 22 21 24	AUAAAGCUAGGUUACCAAAGGC A UAAUAAUCAGGCCACUACCUCU UCUUUGGUUAUCUAGCUGUAUG AUU GAUUGCACUUGUCCCGGCCUUC U GAUUGCACUUGUCCCGGCCUUG U UAUUGCACUUGUCCCGGCCUUG UAUUGCACUUGUCCCGGCCUUG UAUUGCACUCGUCCCGGCCUA
pmc- miR- 2b-1-5p pmc- miR- 2b-2-5p pmc- miR- 300-3p pmc- miR- 302a- 3p pmc- miR- 302b- 3p pmc- miR- 302b- 3p pmc- miR-	24 24 23 23 23 23 23 23	U <u>CAUCAAAG</u> CUGGCUGUGAUAU GA U <u>CAUCAAAAG</u> CUGGCUGUGAUAU GA U <u>AUCACAGG</u> CCAUGCUAAUCUCCU U <u>AUACAAGG</u> GCAGACUCCAUCC U <u>AUACAAGG</u> GCAGACUCCAUCC U A <u>AGUGCUUC</u> CUUUUAUUGGUGA U A <u>AAGUGCUU</u> CCAUGUUUAAUUC A U <u>CCCACAGG</u> CCCAGCUGUCACA	pmc- miR-9- 2-3p pmc- miR- 9256b- 3p pmc- miR-9- 2-5p pmc- miR- 92a-1- 3p pmc- miR- 92a-2- 3p pmc- miR- 92a-2- 3p pmc- miR- 92b-3p	23 22 25 23 22 21 24	AUAAAGCUA GGUUACCAAAGGC A UAAUAAUCA UAAUAAUCA GGCCACUACCUCU UCUUUGGUUAUCUAGCUGUAUG AUU GAUUGCACU UGUCCCGGCCUUC U UGUUGCACU GAUUGCACU UGUCCCGGCCUUG U UGUUGCCCGGCCUUG U UGUCCCGGCCUUG AGGUUGCACU UGUCCCGGCCUGUC AGGUUGGGA UGUGGGCUCUGUC GC UGUGGGCUCUGUC

3057-					
sp nme-	22		nme-	21	UCUCGGCCUUUUCGCUAACAU
miR-	22	AUCAUCAAA	miR-	21	U <u>LULULUL</u> UUUUUUUUAAAAU
3071-			9341-		
5071-			3n		
nmc-	22		nmc-	22	AUACAUAUUCUUCUUUCCAUUU
miR-		C <u>edimeter</u> encendeeeeeeee	miR-		A <u>enenene</u> eeeeeeeeeeee
3084a-			9369-		
5p			5p		
pmc-	22	CGCAGGAUUUGCUUGUUUUGAG	pmc-	21	AUCACAGUGUGGCUGAAAUAU
miR-			miR-		
308-5p			9382-		
-			5р		
pmc-	21	U <u>GGCAAGAU</u> GUUGGCACAGCG	pmc-	23	U <u>CUGACAGG</u> AAUUCUGAACCCU
miR-			miR-		G
31-3p			9434-		
			3р		
pmc-	23	U <u>UUUGAUUG</u> UUGCUCUAGAAAU	pmc-	21	U <u>GAUGUCUG</u> UCAAAAUGUGAU
miR-		U	miR-		
315-3р			9505-		
			5p		
pmc-	25	U <u>GAACACAG</u> CUGGUGGUAUCUU	pmc-	22	C <u>CUGGCACU</u> UUCUAAUUUCUGG
miR-		UUU	miR-		
317-3р			9542a-		
			3p		
pmc-	23	G <u>CAAUGCAU</u> CUGCAGUGCAAAU	pmc-	18	A <u>AAUAUUGC</u> UUGUUUAUU
miR-		Α	miR-		
33-3p			9543a-		
	- 11	CUCCAURCACOURCAURCAU	3p	22	
pmc- miD	22	G <u>UGCAUUGA</u> GGUUGCAUUGCAU	pmc- miD	22	C <u>AAUCAUGU</u> GCAGUGCAGUUCU
1111K- 33.5n			06 5n		
55-5p	21			21	GACHUCCACUAAGCAACUUAU
miR-	21	U <u>CACCEDDC</u> CAUAUCUUUUUU	miR-	21	G <u>AUUUCCAC</u> UAAGCAAUUUAU
336-5n			969-3n		
pmc-	21	CAGUGCCUCUGCAGUGGAUGU	pmc-	22	AUUAUACACCGGUGCCAAGUCA
miR-			miR-		
33b-3p			96b-3p		
pmc-	21	U <u>GCUGACCC</u> CUAGUCCGCCUC	pmc-	23	AUUUGGCACUUGUGGAAUAAUC
miR-			miR-		G
345-3p			96b-5p		
pmc-	24	A <u>ACAACAAA</u> AUCACUAGUCUUCC	pmc-	25	A <u>GCCUUGCA</u> UGAGCUCUAGGUG
miR-		Α	miR-		UCU
3529-			970-5p		
3р					
pmc-	22	U <u>UGGAGGCU</u> GCAGUGUGACCUC	pmc-	22	A <u>UGGUGUUC</u> UAGCCUCCAUCGA
miR-			miR-		
3532-			971-3p		
3p					

pmc-	21	U <u>UUGUUUUA</u> GCCUGAGUCGCC	pmc-	23	U <u>UCGUUGUC</u> GUCGAAACCUGCC
miR-			miR-		С
355-5p			981-3p		
pmc-	22	G <u>UGGGCUGG</u> GCUGGGCUGGGCU	pmc-	22	C <u>GGGUUUCG</u> CGGCUUGCGAACA
miR-			miR-		
3620-			981-5p		
5p					
pmc-	23	U <u>CACCGGGU</u> GGAAAUUCGUCUU			
miR-		U			
36-3p					
pmc-	22	G <u>UGAGUUUA</u> UCUAAAUUCAGGA			
miR-					
3643-					
3p					
pma-	23	UCACCGGGUAUACAUUCAUCCG			
miR-		С			
36b-3p					

A partir do levantamento dos miRNAs das espécies com seus respectivos ortólogos, foram selecionados miRNAs que refletissem a seletividade por alguns táxons, corroborando assim para a ideia de conservação evolucional da estrutural dos precursores e miRNAs. Os táxons que foram utilizados como parâmetro de seleção de miRNAs específicos foram: Bilatéria, Protostômios, Lophotrocozoa e Mollusca.

Dentre estes miRNAs, buscou-se a caracterização de miRNAs bilatéria específicos, protostômio específicos, lophotrochozoa específicos e molusco específicos. As seguintes espécies foram utilizadas para análises; *Lanistes nyassanus* (lny), *Marisa cornuarietis* (mcr), *Pomacea canaliculata* (pcr), *Pomacea maculata* (pmc); animais do clado bilatéria, *Melibe leonina* (mle), *Lottia gigantea* (lgi), miRbase versão 22 (http://www.mirbase.org); todos os moluscos analisados com exceção dos acima citados (HUANG et al., 2021).

4.3 miRNAs BILATERIA ESPECÍFICOS

4.3.1 mir-9-1

A família dos genes de mir-9 é responsável por regular a neurogênese, tendo papel no desenvolvimento cerebral, em linhagens de células neurais e não neurais. A sequência deste miRNA maduro é idêntico em insetos e humanos, revelando sua preservação nucleotídica entre protostômios e deuterostômios. Em deuterostômios há uma preferência para utilização da fita 5p no complexo RISC; no entanto, no molusco marinho gastrópode *Aplysia californica* ambas

as fitas são igualmente utilizadas para induzir o silenciamento da expressão gênica (YUVA-AYDEMIR *et al.*, 2011). Os precursores de mir-9-1 foram encontrados no genoma das espécies *P. maculata* e *P. canaliculata*, com a presença de dois miRNAs maduros por espécie (Figura 5). Observa-se alta similaridade da estrutura secundária dos precursores de *P. canaliculata*, *P. maculata*, *L. nyassanus e M. cornuarietis* (Figura 6). Foi verificado ampla distribuição entre os clados filogenéticos da família mir-9, com a presença de mir-9-1 de *P. canaliculata* e *P. maculata* agrupados com o ampularídeo *M. cornuarietis* no filo dos moluscos (Figura7). Estes dados corroboram para identificação de mir-9-1 nos dois ampularídeos em estudo.

Figura 5: Alinhamento de precursores de miRNA-9-1 com ortólogos.

Figura 6: Estrutura secundária de precursores de miRNA-9-1 e ortólogos; spu: *Strongylocentrotus purpuratus*, lgi: *Lottia gigantea*,lny: *Lanistes nyassanus*, mcr: *Marisa cornuarietis*, pcr: *Pomacea canaliculata*, pmc: *Pomacea maculata*

Figura 7: Distribuição filogenética de miR-9-1 (bilatéria-especifico).

Fonte: Dados do autor

4.3.2 mir-216a

A família dos genes de mir-216a está relacionada a processos patológicos em deuterostômios, especificamente em humanos. O mir-216a-3p inibiu a viabilidade, migração, invasão e proliferação de células de câncer de pulmão em humanos (WANG *et al.*, 2020). Já o mir-216a-5p foi reconhecido como um oncogene e está envolvido na progressão e metástase de vários subtipos de câncer (CHEN *et al.*, 2018). Nos organismos protostômios, a família do mir-216a foi encontrada no genoma de 18 espécies de moluscos, dentre estes 7 gastrópodes. (HUANG et al., 2021). Isso corrobora para a identificação dos precursores de mir-216 em *P. canaliculata* e *P. maculata*, com a presença de dois miRNAs maduros (cadeias 3p e 5p) por espécie (Figura 8). A estrutura secundária dos precursores de *P. canaliculata* e *P. maculata* apresentaram alta similaridade com seus ortólogos, principalmente com *L. nyassanus* e *M. cornuarietis* (Figura 9). Foi verificado ampla distribuição filogenética da família de mir-216a, com mir-216a de *P. canaliculata* e *P. maculata* apresentando-se agrupados (Figura 10).

Figura 8: Alinhamento de precursores de miRNA-216a com ortólogos.

Figura 9: Estrutura secundária de precursores de mir-216a e ortólogos; mle; *Melibe leonina*, lny: *Lanistes nyassanus*, mcr: *Marisa cornuarietis*, pcr: *Pomacea canaliculata*, pmc: *Pomacea maculata*, rno; *Rattus norvegicus*.

Figura 10: Distribuição filogenética de mir-216a (bilatéria-especifico).

4.3.3 mir-133

A família dos genes mir-133 é expressa em tecido muscular, sendo responsáveis pela remodelação cardíaca em humanos e diferenciação miocárdica em camundongos (LI; ZHOU; TANG, 2018; TAKAYA *et al.*, 2009). Os homólogos de mir-133 foram identificados em diversas espécies, dentre estas os invertebrados como a *Drosophila melanogaster* (CHEN *et al.*, 2006). O mir-133 têm ampla distribuição filogenética entre protostômios e deuterostômios, conforme verificado na Figura 13 deste trabalho. Em moluscos, na ostra *Crassostrea gigas*, o mir-133 mostrou-se ser responsivo ao estímulo de noradrenalina, sendo este miRNA

responsável pela modulação do sistema imunológico nestes animais (CHEN *et al.*, 2015). A família dos genes de mir-133 foi encontrada no genoma de *P. maculata* na isoforma mir-133c. Já para *P. canaliculata* foi verificado na espécie dois miRNAs maduros no precursor pcr-mir-133 (Figura11). Observa-se extrema similaridade da estrutura secundária dos precursores de mir-133 entre organismos da família Ampullariidae (*L. nyassanus*, *M. cornuarietis*, *P. canaliculata*) e também destes com *L. gigantea* (Figura 12).

Figura 11: Alinhamento de precursores de miRNA-133 e ortólogos, em destaque miRNAs maduros.

Δ

Figura 12: Estrutura secundária de precursores de miRNA-133 e ortólogos; hme: *Heliconius melpomene*, bmo: *Bombyx mori*, lgi: *Lottia gigantea*, *lny: Lanistes nyassanus*, *mcr: Marisa cornuarietis*, *pcr: Pomacea canaliculata*.

Figura 13: Distribuição filogenética de mir-133 (bilatéria-específico).

Fonte: Dados do autor

4.3.4 mir-33

Os precursores do mir-33 foram encontrados neste estudo: pcr-mir-33, pmc-mir-33 (Figura 14). Os precursores localizados nas 2 espécies apresentaram dois miRNAs maduros cada, 3p e 5p, corroborando estudos observados em moluscos bivalves e *D. melanogaster* (BAO *et al.*, 2014; CLERBAUX *et al.*, 2021). Foi realizada a predição das estruturas secundárias dos pré-miRNAs e seus ortólogos (Figura 15). O mir-33-5p supostamente regula os genes envolvidos na resposta ao estresse induzido por metais pesados no molusco *Tegillarca granosa* (BAO et al., 2014). Da mesma forma, *P. canaliculata* é capaz de sobreviver em ambientes com metais pesados, onde há alta concentração desses metais nas brânquias (KRUATRACHUE et al., 2011), provavelmente regulados por este micro-RNA. Além disso, miR-33 é um regulador pleiotrópico de processos metabólicos e de desenvolvimento em *D. melanogaster*. Sugere-se que o mir-33 seja um regulador conservado da homeostase lipídica (CLERBAUX et al., 2021). A árvore filogenética mostrou a ocorrência do miRNA em Deuterostômios (peixes e mamíferos), bem como em Protostômios (Ecdysozoa e Lophotrocozoa) (Figura 16).

Figura 14: Alinhamento de precursores de miRNA-33 com ortólogos.

Figura 15: Estrutura secundária de precursores de miRNA-133 e ortólogos; nvi: *Nasonia vitripennis*, lgi: *Lottia gigantea, lny: Lanistes nyassanus, mcr: Marisa cornuarietis, pcr: Pomacea canaliculata,* pmc: *Pomacea maculata.*

Figura 16: Distribuição filogenética de mir-33 (bilatéria-específico).

Fonte: Dados do autor

4.3.5 mir-153

Δ

A família dos genes de mir-153 foi encontrada no genoma de *P. maculata*. O precursor pmc-mir-153 apresentou o miRNA maduro na extremidade 3' (Figura 17). Observa-se alta preservação nucleotídica na estrutura secundária e primária de *P. maculata* e seus ortólogos, principalmente na região do miRNA maduro (Figuras 17 e 18). Foi verificado ampla distribuição entre Deuterostômios e Protostômios, neste clado com presença do filo molusco sendo representado por bivalves e gastrópodes (Figura 20).

Figura 17: Alinhamento de precursores de miRNA-153 com ortólogos, em destaque miRNA maduro.

Figura 18: Estrutura secundária de precursores de miRNA-153 e ortólogos; cgi: *Crassostrea gigas*, cho: *Crassostrea hongkongensis*, bgl: *Biomphalaria glabrata*, rau: *Radix auricularia lny: Lanistes nyassanus*, pmc: *Pomacea maculata*.

Figura 19: Distribuição filogenética de mir-153 (bilatéria-específico).

4.3.6 mir-190

A família dos precursores de mir-190 foi encontrada nos genomas de *P. maculata* e *P. canaliculata*. Observou-se um miRNA maduro por espécie na extremidade 5' (Figura 20). Mais uma vez, verifica-se à similaridade das estruturas secundárias e primarias dos precursores entre os organismos da família Ampullariidae (Figuras 20 e 21). O mir-190 foi encontrado ao longo

da cadeia evolutiva sendo classificado como um miRNA bilatéria específico. Desse modo, representantes dos grupos Lophotrocozoa, Ecdysozoa e Deuterostômios estão presentes na árvore filogenética (Figura 22).

Figura 20: Alinhamento de precursores de miRNA-190 com ortólogos.

Figura 21: Estrutura secundária de precursores de miRNA-190 e ortólogos; hdi: *Haliotis discus hannai*, afu: *Achatina fulica, lny: Lanistes nyassanus, mcr: Marisa cornuarietis, pcr: Pomacea canaliculata,* pmc: *Pomacea maculata,* bgl: *Biomphalaria glabrata*, mle: *Melibe leonina*

4.4 miRNA PROTÔSTOMA ESPECÍFICO

4.4.1 mir-bantam

O mir-bantam está relacionado ao crescimento de células cerebrais e homeostase (LAM et al., 2014; LI; PADGETT, 2012). Em Drosophila, mir-bantam funciona na manutenção do ritmo circadiano, estimulam a proliferação celular e reduzem a morte celular programada (BRENNECKE et al., 2003; KADENER et al., 2009). Na esquistossomose este miRNA de trematódeos pode estar envolvido em processos patológicos da doença, sendo mir-bantam detectado na corrente sanguínea de hospedeiros. Há possibilidade de utilizá-lo como possível biomarcador para diagnóstico desta doença (ZHU; LIU; CHENG, 2014). Em um estudo em B. glabrata foi possível identificar bgl-bantam, que é altamente conservado em metazoários. Foi sugerido que bgl-bantam atue na regulação do metabolismo de caramujos, uma vez que reconhece alvos com função redox e com ação regulatória sobre o complexo ubiquitina-proteína (QUEIROZ et al., 2020). O alinhamento com os precursores ortólogos de P. canaliculata e P. maculata revela alta similaridade com os miRNAs maduros, com 100% de identificação desta espécie com alguns dos seus miRNAs ortólogos (Figura 23). Além disso, há uma similaridade entre as estruturas secundárias dos precursores de miRNAs analisados e seus ortólogos (Figura 24). A árvore filogenética foi representada pelos clados Lophotrocozoa e Ecdysozoa (Figura 25). Estes dados corroboram para identificação de mir-bantam (5p e 3p) nas espécies em estudo.

Figura 23: Alinhamento de precursores miRNA-bantam e ortólogos.

Α

Figura 24: B) Estrutura secundária de precursores de miRNA-bantam e ortólogos; dqu: *Dinoponera quadriceps*, nvi: *Nasonia vitripennis*, *lny: Lanistes nyassanus*, *mcr: Marisa cornuarietis*, *pcr: Pomacea canaliculata*, pmc: *Pomacea maculata*.

Figura 25: Distribuição filogenética de miR-bantam (protostômio específico).

Fonte: Dados do autor

4.4.2 mir-1175

Há registros de mir-1175 na literatura em mosquitos da ordem insecta como: *Aedes aegypti, Anopheles stephensi, Anopheles gambiae, Tinissa amboinensis* (LI *et al.*, 2009), conforme observado na figura 28 deste trabalho. Diferentes níveis de expressão de miRNAs são observados em machos e fêmeas da espécie *Anopheles anthropophagus*. No caso do mir-1175, ocorre uma diminuição de expressão de cerca de 2 vezes menor em machos quando comparado a fêmeas (LIU *et al.*, 2014). Em moluscos, em um estudo no gastrópode marinho *Rapana venosa,* analisa os perfis de expressão de miRNAs na metamorfose da espécie. Um total de 195 miRNAs diferentemente expressos foram obtidos neste processo, dentre estes o mir-1175 foi regulado positivamente (SONG *et al.*, 2017). Além disso, a família de mir-1175 foi encontrada no genoma de 34 espécies de moluscos (HUANG et al., 2021), dentre estes cefalópodes, bivalves e gastrópodes (Figura 28). Isso corrobora para a identificação do precursor de mir-1175 em *P. canaliculata*, com a presença de dois miRNAs maduros, 5p e 3p (Figura 26). A estrutura secundária do precursor de *P. canaliculata* apresenta alta similaridade com os ortólogos, principalmente com representantes da família Ampullariidae, *L. nyassanus* e *M. cornuarietis* (Figura 27).

Figura 26: Alinhamento de precursores de miRNA-1175 e ortólogos.

Figura 27: Estrutura secundária de precursores de miRNA-1175 e ortólogos; mle: *Melibe leonina*, cte: *Capitella teleta*, lgi: *Lottia gigantea*, *lny: Lanistes nyassanus, mcr: Marisa cornuarietis, pcr: Pomacea canaliculata*.

Figura 28: Distribuição filogenética de miR-1175 (protostômio específico).

Fonte: Dados do autor

4.4.3 mir-8

O mir-8 assim como o mir-33 está potencialmente associado à regulação gênica no bivalve *T. granosa* quando exposto a níveis tóxicos de cádmio (Cd) (BAO *et al.*, 2014). A família de genes de mir-8 foi encontrada no genoma das 2 espécies Ampullariidae analisadas, com a presença das isoformas mir-8-1 e mir-8-2 em *P. canaliculata*. Para *P. maculata* foi observado o mir-8 com a presença de um miRNA maduro, 5p (Figura 29). A estrutura secundária do precursor de *P. maculata* apresentou alta similaridade com o precursor de *M.*

cornuarietis (Figura 30). A árvore filogenética foi representada pelos clados Lophotrocozoa e Ecdysozoa (Figura 31). Estes dados corroboram para identificação de mir-8 (5p) em *P. maculata.*

Figura 29: Alinhamento de precursores de miRNA-8 e ortólogos.

Α

Figura 30: Estrutura secundária: precursores de miRNA-8 e ortólogos;dgr: *Drosophila grimshawi*: dan: *Drosophila ananassae*, der: *Drosophila erecta*, hdi: *Haliotis discus hannai*, *mcr: Marisa cornuarietis*, pmc: *Pomacea maculata*.

4.4.4 mir-12

Assim como o mir-8, o mir-12 está relacionado potencialmente ao desenvolvimento do crustáceo *Daphnia pulex*. A regulação positiva de mir-8 coincide com mudanças morfológicas e crescimento na espécie (CHEN et al., 2014b). Já em moluscos, a família dos precursores de mir-12 foi identificada no organismo *B. glabrata* (QUEIROZ *et al.*, 2020), próximo evolutivamente aos organismos do gênero *Pomacea* analisados. Os precursores de *B. glabrata*, *P. canaliculata* e *P. maculata* (Figura 32) apresentaram o mir-12-5p para cada espécie. A estrutura secundária dos pré-miRNAs de *P. canaliculata* e *P. maculata* apresentaram formato canônico característico dos precursores, intrinsecamente semelhantes entre si (Figura 33). A distribuição filogenética foi verificada entre os clados Ecdysozoa e Lophotrocozoa, sendo este representado por moluscos das classes cefalópode, bivalve e gastrópode (Figura 34).
Figura 32: Alinhamento de precursores de miRNA-12 e ortólogos.

Figura 33: Estrutura secundária: precursores de miRNA-12 e ortólogos: ame: *Apis melífera*, pca: *Polistes canadensis* pfu: *Pinctada fucata*, lny: *Lanistes nyassanus*, pcr: *Pomacea canaliculata*, pmc: *Pomacea maculata*.

Figura 34: Análise filogenética de miR-12 (protostômio específico).

Fonte: dados do autor.

4.4.5 mir-750

A família do mir-750 apresentou o precursor mir-750 nos organismos *P. canaliculata* e *P. maculata* e os miRNAs maduros pcr-mir-750-3p e pmc-miR-750-3p (Figura 35). O alinhamento com ortólogos e estruturas secundárias revelaram alta preservação nucleotídica entre espécies do gênero *Pomacea* e ortólogos (Figuras 35 e 36). Na distribuição filogenética foi observado o clado Ecdysozoa, representado por artrópodes e nematódeo e o clado Lophotrocozoa, constituído exclusivamente por moluscos (Figura 37).

Figura 36: Estrutura secundária: precursores de miRNA-bantam e ortólogos; dqu: *Dinoponera quadriceps*, pca: *Polistes canadensis*, lny: *Lanistes nyassanus*, mcr: *Marisa cornuarietis*, pcr: *Pomacea canaliculata*, pmc: *Pomacea maculata*.

Figura 37: Análise filogenética de miR-750 (protostômio específico).

4.5 miRNA LOPHOTROCOZOA ESPECÍFICO

4.5.1 mir-745a

A família de mir-745a apresentou um miRNA maduro nas sequencias de cada precursor das espécies *P. canaliculata* e *P. maculata*, extremidade 3' (Figura 38). Frente aos seus ortólogos houve conservação da sequência de nucleotídeos bem como da estrutura secundária (Figuras 38 e 39). Há registros da família mir-745a em 28 espécies de moluscos, dentre estes organismos próximos evolutivamente as espécies analisadas; *B. glabrata, Aplysia californica e* *Lottia gigantea* (HUANG et al., 2021). Foi verificado uma distribuição filogenética formada por animais dos filos dos moluscos, platelmintos e anelídeos (Figura 40).

Figura 38: Alinhamento de precursores de miRNA-745a com seus ortólogos.

Δ

Figura 39: Estrutura secundária dos precursores de miRNA-745a e ortólogos; lgi: *Lottia gigantea*, bgl: *Biomphalaria glabrata*, ete: *Capitella teleta*, *lny: Lanistes nyassanus*, *pcr: Pomacea canaliculata*, pmc: *Pomacea maculata*.

Figura 40: Distribuição filogenética de miR-754a (lophotrochozoa-específico).

4.5.2 mir-1992

Δ

A família dos genes de mir-1992 foi identificada apenas no genoma da espécie de *P. canaliculata*, com a presença de dois miRNAs maduros, 3p e 5p (Figura 41). A estrutura secundária do precursor de *P. canaliculata* revelou alta similaridade com seus ortólogos (Figura 42). O mir-1992 revelou expressão diferencial nos testículos e ovários de *Crassostrea hongkongensis*, sendo altamente expressos (WEI *et al.*, 2019). Em gastrópodes, o mir-1992 foi identificado em 9 espécies de moluscos (HUANG et al., 2021). Assim, na distribuição filogenética foi representado em sua maior parte por moluscos gastrópodes e também por cefalópodes, além da presença de platelmintos (Figura 42).

Figura 41: Alinhamento de precursores miRNA-1992 com seus ortólogos, em destaque miRNAs maduros

Figura 42: Estrutura secundária dos precursores de miRNA-1992 e ortólogos; lgi: *Lottia gigantea*, mle: *Melibe leonina*, cte: *Capitella teleta*, mcr: *Marisa cornuarietis*, pcr: *Pomacea canaliculata*.

Figura 43: Distribuição filogenética de miR-1992 (lophotrochozoa-específico). Em destaque a espécie: *Pomacea canaliculata*.

Fonte: dados do autor.

4.5.3 mir-1994

A família do mir-1994 é composta pelos precursores mir-1994 e mir-1994a, para ambas as espécies da família Ampullariidae. *P. canaliculata* e *P. maculata*, apresentam um miRNA maduro (3p) para cada precursor mir-1994 (Figura 44). Comparado aos seus ortólogos as espécies analisadas apresentaram conservação da sequência de nucleotídeos bem como da estrutura secundária (Figuras 44 e 45). A distribuição filogenética observou-se a presença de animais dos filos como Nemertea, Mollusca e Annelida (Figura 46).

Figura 44: Alinhamento de precursores de miRNA-1994 com ortólogos.

Figura 45: Estrutura secundária dos precursores de miRNA1994 com ortólogos; cte: *Capitella teleta*, cla: *Cerebratulus lacteus*, lny: *Lanistes nyassanus*, mcr: *Marisa cornuarietis*, pcr: *Pomacea canaliculata*, pmc: *Pomacea maculata*.

Figura 46: Distribuição filogenética de miR-1994 (lophotrochozoa-específico).

Fonte: dados do autor.

4.5.4 mir-96b

Α

As sequências dos precursores do mir-96b apresentaram dois miRNAs maduros, 3p e 5p, nos genomas das espécies *P. canaliculata* e *P. maculata* (Figura 47). Os precursores de miR-96b para ambas as espécies demonstraram alta similaridade na estrutura secundária com os organismos gastrópodes (Figuras 48). A análise filogenética dos precursores do mir-96b foi verificada a distribuição entre as espécies em três filos como Moluscos, Anelídeos e Platelmintos (Figura 49). O mir-96b regula genes de forma pós-transcricional em Platelmintos e moluscos. No verme de água doce: *Schmidtea mediterrânea* pode ter funções na cicatrização de feridas, proliferação de neoblatos (principais responsáveis pela regeneração em planárias) e diferenciação de blastema (SASIDHARAN *et al.*, 2013). Em moluscos, o mir-96b está envolvido junto com outros miRNAs na pigmentação das conchas de *C. gigas*, induzindo a síntese de melanina, carotenóide ou tetrapirrol (FENG *et al.*, 2020). O mir-96b também foi encontrado no genoma de gastrópodes próximos evolutivamente às 2 espécies Ampullariidae, *B. glabrata* (QUEIROZ *et al.*, 2020) e *A. californica* (HUANG *et al.*, 2021). Achados na literatura científica corroboram os dados deste trabalho.

Α

Figura 48: Estrutura secundária de precursores de miRNA-96b com seus ortólogos; mle: *Melibe leonina*, lgi: *Lottia gigantea*, lny: *Lanistes nyassanus*, mcr: *Marisa cornuarietis*, pcr: *Pomacea canaliculata*, pmc: *Pomacea maculata*.

Figura 49: Análise filogenética de miR-96b (lophotrochozoa-específco).

Fonte: Dados do autor.

4.5.5 mir-1990

A família mir-1990 predita para as espécies *P. canaliculata* e *P. maculata* é composta pelos precursores pcr-mir-1990 e pcm-mir-1990 e os miRNAs maduros, 3p e 5p, em cada espécie (Figura 50). Para esta família, observou-se grande conservação da estrutura primária, bem como da estrutura secundária dos precursores de *P. canaliculata*, *P. maculata* e seus ortólogos (Figuras 50 e 51). Verificou-se ampla distribuição de mir-1990 em moluscos principalmente em 15 animais bivalves, 10 gastrópodes e 1 cefalópode. Poucos estudos

descreveram o papel dos miRNAs no desenvolvimento de moluscos. O mir-1990-3p pode desempenhar um papel vital no processo de biomineralização da concha em *P. fucata*, visto que é altamente expresso nos tecidos do manto (HUANG *et al.*, 2021). O mir-1990 foi encontrado apenas em moluscos, mas a família mir-1990 é Lophotrochozoa específico pois cte-miR-1990c-3p, cte-miR-1990a e cte-miR-1990b foram identificados em *Capitella teleta* na plataforma miRBase (http://www.mirbase.org /). A ampla distribuição do mir-1990 em moluscos e o provável mecanismo de controle gênico corroboram os dados deste estudo.

Figura 50: Alinhamento de precursores de miRNA-1990 com seus ortólogos.

Α

Figura 51: Estrutura secundária dos precursores miRNA-1990 ortólogos; cgi *Crassostrea gigas*, bgl: *Biomphalaria glabrata*, lny: *Lanistes nyassanus*, mcr: *Marisa cornuarietis*, pcr: *Pomacea canaliculata*, pmc: *Pomacea maculata*.

4.6 miRNA MOLLUSCA ESPECÍFICO

4.6.1 mir-1984

Α

Em *C. gigas*, a expressão de mir-1984 aumentou significativamente em resposta aos estresses: baixa salinidade, calor e infecções bacterianas, sugerindo que este miRNA pode estar implicado em certas funções fisiológicas, como redução da oxidação e metabolismo energético (ZHAO *et al.*, 2016). Já em gastrópodes este miRNA pode estar envolvido no crescimento muscular. Foi verificado que o gene BMP7 é alvo do hdl-miRNA-1984 no molusco gastrópode *Haliotis discus hannai*. A proteína morfogenética óssea 7 (BMP7) induz a formação da cadeia leve quinase de miosina e cadeia pesada de miosina. Desta forma, o mir-1984 pode nortear o crescimento muscular ao regular o gene BMP7 no abalone (HUANG *et al.*, 2018). Achados na literatura científica corroboram os dados deste trabalho, na qual as sequencias dos precursores de *P. canaliculata* e *P. maculata* apresentaram conservação na estrutura primária e secundária em relação aos ortólogos (Figuras 52 e 53).

Figura 52: Alinhamento de precursores de miRNA-1984 com seus ortólogos.

Figura 53: Estrutura secundária dos precursores de miRNA-1984 com seus ortólogos; cgi: *Crassostrea gigas*, afu: *Achatina fulica*, bgl: *Biomphalaria glabrata*, mcr: *Marisa cornuarietis*, pcr: *Pomacea canaliculata*, pmc: *Pomacea maculata*.

4.6.2 mir-1985

Α

A família do mir-1985 predita para as espécies *P. canaliculata* e *P. maculata* é composta pelos precursores pcr-mir-1985 e pmc-mir-1985 e pelos miRNAs maduros pcr-miR-1985-5p e pmc-miR-1985-5p. Estes miRNAs demonstraram 100% de identidade com seus ortólogos (Figura 54). A estrutura secundária também se apresentou conservada entre os moluscos do gênero *Pomacea* e ortólogos (Figura 55).

Figura 54: Alinhamento de precursores de miRNA-1985 com seus ortólogos.

Figura 55: Estrutura secundária dos precursores miRNA-1985 e ortólogos; *pfu*: Pinctada fucata, bgl: *Biomphalaria glabrata*, mcr: *Marisa cornuarietis*, pcr: *Pomacea canaliculata*, pmc: *Pomacea maculata*.

4.6.3 mir-12096b

А

A família de mir-12096b foi encontrado no genoma de *P. maculata*. O precursor predito pmc-mir-12096b apresentou dois miRNAs maduros, 3p e 5p (Figura 56). Estes miRNAs foram localizados no genoma de *Melibe Leonina* na plataforma miRBase. Além disso, a família mir-12096b foi encontrada no genoma das espécies de moluscos; *A. californica, Chlamys farreri, Haliotis discus hannai, Haliotis laevigata* e *Haliotis rubra* (HUANG *et al.*, 2021). No alinhamento das estruturas primárias de *P. maculata* e ortólogos foi verificado alta conservação de nucleotídeos, sobretudo nas regiões dos miRNAs maduros (Figura 56). A estrutura secundária de pmc-mir 12096b demonstrou alta similaridade estrutural com ortólogos, especialmente entre organismos da família Ampullariidae (Figura 57).

Figura 56: Alinhamento de precursores de miRNA-12096b com seus ortólogos.

Figura 57: Estrutura secundária dos precursores miRNA-12096b e ortólogos; hla: *Haliotis laevigata*, hdi: *Haliotis discus hannai*, mle: *Melibe leonina*, lny: *Lanistes nyassanus*, mcr: *Marisa cornuarietis*, pmc: *Pomacea maculata*.

Os prováveis miRNAs maduros de *P. canaliculata* e *P. maculata*, bilatéria-específico, protostômio-específico, lophotrochozoa-específico e mollusca específico, caracterizados neste trabalho apresentaram uma grande conservação na região dos miRNAs maduros, quando comparados com seus respectivos ortólogos. Esta conservação se acentua nas regiões "*seeds*", demonstrando alta preservação nucleotídica, com 100% de similaridade nas posições de 2 a 8 nucleotídeos. As estruturas secundárias dos pré-miRNAs apresentaram formato característico canônico dos precursores de miRNAs e revelaram alta similaridade estrutural entre os ortólogos. Na análise filogenética, foi verificada ampla distribuição entre os clados filogenéticos, verificando uma distribuição evolutiva que corrobora com a árvore da vida.

4.7 IDENTIFICAÇÃO E CARACTERIZAÇÃO DE PROTEÍNAS ENVOLVIDAS NA BIOGÊNESE DA VIA DE miRNAS EM *P. canaliculata* E *P. maculata*.

Os miRNAs são importantes reguladores da expressão gênica que necessitam ser processados no núcleo e citoplasma em pri-miRNA, pré-miRNA e, finalmente, na forma madura do miRNA. Para isso, várias proteínas estruturais e catalíticas executam funções prédeterminadas de forma a obter a forma ativa do regular gênico.

Neste trabalho, as proteínas responsáveis pela biogênese dos miRNAs das espécies *P*. *canaliculata* e *P. maculata* foram identificadas e recuperadas a partir do proteoma predito das

espécies localizados no banco de dados NCBI (<u>http://.ncbi.nlm.nih.gov/</u>). A partir desses dados, através de um script próprio, foi utilizado como ferramenta o BLASTp, usando como sequências de busca (*queries*) as proteínas da via de miRNAs oriundas dos organismos modelo *D. melanogaster* e *C. elegans*.

Foram identificadas e caracterizadas as prováveis proteínas em *P. canaliculata* e *P. maculata* envolvidas na via de miRNA. A detecção foi realizada baseada na homologia, comprimento da proteína, análise de domínios conservados, pesquisa de sítios ativos e filogenia (CARDOSO *et al.*, 2020; QUEIROZ *et al.*, 2017). As proteínas preditas foram comparadas com suas ortólogas de organismos próximo evolutivamente como *A. californica e B. glabrata* (Tabelas 9 e 10).

Proteína ID P.canaliculata	Provável proteína	Tamanho (aa)	Proteína ID A. californica	E-value	Tamanho (aa)	Proteina ID <i>B.glabrata</i>	E-value	Ta manho (aa)
Pca69814_c1_g2	Pca_ Argonauta 2	896	XP_0051075 88.1	0.0	926	XP_013068463.1	0.0	895
			XP_0129430 67.1	0.0	930	XP_013068462.1	0.0	899
			XP_0051075 86.1	0.0	932	XP_013068459.1	0.0	901
Pca61914_c0_g1	Pca_ Argonauta	935	XP_0129401 10.1	0.0	852	XP_013089248.1	0.0	897
			XP_0050961 49.1	0.0	918	XP_013068459.1	6,00E- 50	901
Pca67531_c1_g2	Pca_Dicer	1984	XP_0129423 49.1	0.0	2503	XP_013067888.1	0.0	2332
Pca67887_c3_g1	Pca_Drosha	1524	XP_0051072 64.1	0.0	1528	XP_013069067.1	0.0	1469
Pca59979_c0_g1	Pca_DGCR8	730	XP_0051090 80.1	5,00E- 135	991	XP_013076209.1	1,00E- 139	889
			XP_0051090 77.1	6,00E- 135	993			
Pca65193_c2_g1	Pca_Exportin a 1	973	XP_0051117 54.1	0.0	1074	XP_013069551.1	0.0	1076
Pca52466_c2_g3	Pca_Ran	214	XP_0050939 63.1	3,00E- 149	216	XP_013094746.1	8,00E- 143	281

Tabela 9: Similaridade das proteínas da via de miRNA de P. canaliculata e suas ortólogas.

Tabela 10: Similaridade das proteínas da via de miRNA de P. maculata e suas ortólogas.

Proteína ID P.	Provável	Tamanho	Proteína ID A.	E-value	Comprimento	Proteina ID	E-value	Tamanho
maculata	proteína	(aa)	californica		(aa)	B.glabrata		(aa)
Pma63715_c0_g1_	Pma_	890	XP_005107588.1	0.0	926	XP_013068463.1	0.0	895
	Argonauta 2							
			XP_012943067.1	0.0	930	XP_013068462.1	0.0	899
			XP_005107586.1	0.0	932	XP_013068459.1	0.0	901
Pma60501_c2_g16	Pma_	936	XP_012940110.1	0.0	852	XP_013089248.1	0.0	897
	Argonauta							
			XP_005096149.1	0.0	918	XP_013068459.1	3,00E-	901
							49	
Pma95401_c0_g1	Pma_Dicer	288	XP_012942349.1	8,00E-	2503	XP_013067888.1	1,00E-	2332
				78			76	
Pma66024_c0_g2	Pma_Dicer	766	XP_005102833.1	0.0	1377	XP_013074821.1	6,00E-	785
							180	

Pma65850_c2_g4	Pma_Drosha	358	XP_005107264.1	2,00E-	1528	XP_013069067.1	3,00E-	1469
				180			178	
Pma51393_c0_g1	Pma_Drosha	580	XP_005107264.1	0.0	1528	XP_013069067.1	0.0	1469
Pma62419_c0_g1	PMA_DGCR8	708	XP_005109080.1	3,00E-	991	XP_013076209.1	2,00E-	889
				147			152	
			XP_005109077.1	4,00E-	993			
				147				
Pma59467_c0_g1	Pma_Exportina	1069	XP_005111754.1	0.0	1074	XP_013069551.1	0.0	1076
	1							
Pma63331_c0_g1	Pma_Exportina	965	XP_035825468.1	0.0	978	XP_013079973.1	0.0	963
	Т							
Pma54972_c0_g1	Pma_Ran	152	XP_005093963.1	8,00E-	216	XP_013094746.1	2,00E-	281
				107			99	

Os domínios conservados das proteínas foram analisados de forma a caracterizar as proteínas preditas. A partir das sequências de aminoácidos de *P. canaliculata* e *P. maculata* obtidas, foi utilizada a ferramenta Blastp no banco de dados RefSeq do NCBI (<u>http://.ncbi.nlm.nih.gov/</u>), para busca por proteínas ortólogas. Desta forma, os melhores *hits* foram aquelas que tinham maior similaridade e, então, recuperadas para pesquisa de domínios conservados, alinhamento e filogenia. As sequências escolhidas para pesquisa de sítios ativos basearam-se em espécies próximas evolutivamente, de organismos modelos (*D. melanogaster, C. elegans, H. sapiens*), além de protostômios e deuterostomios de forma geral. Tendo em vista a relação parasita hospedeiro entre *P. canaliculata* e *A. cantonensis*, procurou-se no banco de dados públicos proteínas do nematoide ortológas ao molusco, não obtendo sucesso na pesquisa.

4.7.1 Análise de domínios conservados, alinhamento global e filogenia das proteínas Argonauta

A proteína Argonauta é caracterizada pela presença dos domínios PIWI e PAZ (PIWI-Argonauta-Zwille) (SONG *et al.*, 2004). As proteínas Argonauta de eucariotos podem apresentar além destes os seguintes domínios, N (N-terminal), e MID, junto com dois ligantes de domínio L1 e L2 (Figura 58) (SWARTS *et al.*, 2014). O domínio PIWI em Argonauta contém três resíduos catalíticos conservados compostos por dois aspartatos e uma histidina, chamado de 'DDH' (YANG; STEITZ, 1995).

Figura 58: Arquiteturas de domínio das proteínas de eucariotos da superfamília PIWI.

N L1 PAZ L2 MID PIWI

Adaptado de Swarts et al. (2014)

Foram identificadas quatro prováveis proteínas Argonauta nas espécies em estudo, sendo duas em *P. canaliculata* (Pca69814_c1_g2, Pca61914_c0_g1) e duas em *P. maculata* (Pma63715_c0_g1_, Pma60501_c2_g16). A sequência proteica Argonauta 2 de *P. canaliculata*, (Pca69814_c1_g2) apresentou os mesmos e-values e ortólogos descritos para *P. maculata*, (Pma63715_c0_g1) para as espécies citadas na tabela 11.

Proteina ID	Nome da espécie	E-value Blastp	Tamanho (aa)
Pma63715_c0_g1	Pomacea maculata		896
XP_005107586.1	Aplysia californica	0.0	932
XP_013068459.1	Biomphalaria glabrata	0.0	901
XP_009064000.1	Lottia gigantea	0.0	919
XP_008196653.1	Tribolium castaneum	0.0	951
XP_029721415.1	Aedes albopictus	0.0	929
NP_001367206.1	Caenorhabditis elegans	0.0	1023
XP_012792763.2	Schistosoma haematobium	0.0	1043
XP_024349713.1	Echinococcus granulosus	0.0	1113
XP_032815443.1	Petromyzon marinus	0.0	855
XP_041421428.1	Xenopus laevis	0.0	861
XP_040210947.1	Rana temporaria	0.0	873
XP_016848276.1	Anolis carolinensis	0.0	920
XP_007425657.1	Python bivittatus	0.0	842
NP_001376478.1	Gallus gallus	0.0	800
XP_017602151.1	Corvus brachyrhynchos	0.0	864
NP_694818.3	Mus musculus	0.0	860
XP_023104240.1	Felis catus	0.0	860
NP_036286.2	Homo sapiens	0.0	859

Tabela 11: Similaridade de Argonauta 2 de P. maculata e ortólogos (protostômios e deuterostômios).

Fonte: Dados do autor

As sequências de aminoácidos Pca69814_c1_g2 e Pma63715_c0_g1 apresentaram seis domínios conservados (Tabela 12), enquanto as proteínas Argonauta (Pca61914_c0_g1 e Pma60501_c2_g16) apresentaram apenas os domínios PAZ E PWI (Tabela 13 e Figura 59). O comprimento das sequências para ambas as espécies, além da similaridade com suas ortólogas corroboram para identificação das prováveis proteínas Argonauta 2 e Argonauta (Tabelas 11,12,13 e 14, Figura 60).

ID proteina	espécie	Domínios	ID PFAM	Alinha	mento	e-value
				Inicio	Fim	
Pma63715_c0_g1	Pomacea maculata	ArgoMid	PF16487	461	541	2.8e-33
		ArgoN	PF16486	67	197	2.6e-32
		PAZ	PF02170	271	396	5.8e-25
		ArgoL1	PF08699	207	257	5.8e-23
		ArgoL2	PF16485	405	451	7.3e-17
Pca69814_c1_g2	Pomacea canaliculata	Piwi	PF02171	548	854	3.9e-109
		ArgoMid	PF16487	461	541	2.9e-33
		ArgoL2	PF16485	405	451	7.3e-17
		PAZ	PF02170	271	396	5.9e-25
		ArgoL1	PF08699	207	257	5.8e-23
		ArgoN	PF16486	67	197	2.6e-32
XP_005107586.1	Aplysia californica	Piwi	PF02171	584	884	1.3e-110
		ArgoMid	PF16487	497	577	5.1e-34
		ArgoN	PF16486	103	233	5.7e-33
		PAZ	PF02170	309	432	1.4e-26
		ArgoL1	PF08699	243	293	3.3e-23
		ArgoL2	PF16485	441	487	3.8e-16
XP_013068459.1	Biomphalaria glabrata	Piwi	PF02171	553	853	1.2e-112
		ArgoMid	PF16487	466	546	2.8e-34
		ArgoN	PF16486	72	202	6.1e-32
		PAZ	PF02170	282	401	4.1e-26
		ArgoL1	PF08699	212	262	3.2e-23
		ArgoL2	PF16485	410	456	5.7e-15
XP_009064000.1	Lottia gigantea	Piwi	PF02171	577	877	8.7e-113
		ArgoN	PF16486	96	226	9.5e-34
		ArgoMid	PF16487	490	570	1.9e-33
		PAZ	PF02170	300	425	1.9e-26
		ArgoL1	PF08699	236	286	1.3e-23
		ArgoL2	PF16485	434	480	7.5e-13
XP_008196653.1	Tribolium castaneum	Piwi	PF02171	609	909	4.2e-114
		ArgoMid	PF16487	520	601	1.2e-33
		ArgoN	PF16486	121	250	2.6e-28
		PAZ	PF02170	324	449	9.6e-26
		ArgoL1	PF08699	260	310	3.5e-23
		ArgoL2	PF16485	458	504	2.7e-17
NP_001367206.1	Caenorhabditis elegans	Piwi	PF02171	682	981	9.0e-116
		ArgoMid	PF16487	594	675	4.9e-33
		ArgoN	PF16486	170	300	1.8e-27
		PAZ	PF02170	410	529	2.6e-26
XP_024349713.1	Echinococcus granulosus	Piwi	PF02171	791	1091	1.8e-114

Tabela 12: Análise de domínios conservados Argonauta 2, P. maculata, P. canaliculata e ortólogos.

		ArgoMid	PF16487	703	784	3.8e-30
		ArgoN	PF16486	308	439	7.3e-27
		PAZ	PF02170	512	639	5.6e-27
XP_032815443.1	Petromyzon marinus	Piwi	PF02171	513	813	2.1e-115
		ArgoMid	PF16487	425	506	2.4e-34
		ArgoN	PF16486	32	162	8.8e-31
		PAZ	PF02170	242	361	1.0e-27
XP_016848276.1	Anolis carolinensis	Piwi	PF02171	579	878	6.5e-115
		ArgoMid	PF16487	490	571	8.4e-33
		ArgoN	PF16486	97	227	1.3e-29
		PAZ	PF02170	307	426	1.1e-26
NP_694818.3	Mus musculus	Piwi	PF02171	519	818	2.2e-115
		ArgoMid	PF16487	430	511	7.6e-33
		ArgoN	PF16486	37	167	7.1e-30
		PAZ	PF02170	247	366	1.0e-26
		ArgoL1	PF08699	177	227	3.0e-21
		ArgoL2	PF16485	375	421	5.8e-13
NP_036286.2	Homo sapiens	Piwi	PF02171	518	817	2.1e-115
		ArgoMid	PF16487	429	510	7.6e-33
		ArgoN	PF16486	36	166	7.0e-30
		PAZ	PF02170	246	365	1.0e-26

Proteina ID	Nome da espécie	E-value	Tamanho
		Blastp	(aa)
Pma60501_c2_g16	Pomacea maculata		936
XP_012940110.1	Aplysia californica	0.0	852
XP_013089248.1	Biomphalaria glabrata	0.0	897
XP_009064630.1	Lottia gigantea	0.0	791
XP_041362450.1	Gigantopelta aegis	0.0	943
XP_034311101.1	Crassostrea gigas	0.0	938
XP_033734243.1	Pecten maximus	0.0	964
XP_021371709.1	Mizuhopecte nyessoensis	0.0	878
XP_014773732.1	Octopus bimaculoides	0.0	897
XP_015904269.1	Parasteatoda tepidariorum	0.0	940
XP_040078863.1	Ixodes scapularis	0.0	943
XP_007906012.1	Callorhinchus milii	0.0	853
XP_031752134.1	Xenopus tropicalis	0.0	869
XP_026572019.1	Pseudonaja textilis	0.0	870
XP_007489688.1	Monodelphis domestica	0.0	880

Tabela 13: Similaridade de Argonauta de P. m	naculata e ortólogos (protostômios	e deuterostômios).
--	------------------------------------	--------------------

XP_032252277.1	Phoca vitulina	0.0	861
XP_030856685.1	Gorilla gorilla gorilla	0.0	861
NP_004755.2	Homo sapiens	0.0	861
F D 1 1			

Tabela 14: Análise de domínios conservados Argonauta P. maculata, P. canaliculata e ortólogos.

ID proteína	Espécie	Domínios	ID PFAM	Alin	namento	e-value
				Inicio	Fim	
Pma60501_c2_g16	Pomacea maculata	Piwi	PF02171	629	921	3.1e-89
		PAZ	PF02170	353	485	5.4e-30
Pca61914_c0_g1	Pomacea canaliculata	Piwi	PF02171	628	920	4.3e-89
		PAZ	PF02170	352	484	5.4e-30
XP_012940110.1	Aplysia californica	Piwi	PF02171	546	838	1.2e-85
		PAZ	PF02172	274	402	6.4e-31
XP_013089248.1	Biomphalaria glabrata	Piwi	PF02173	591	881	4.3e-93
		PAZ	PF02174	310	440	2.4e-32
XP_034311101.1	Crassostrea gigas	Piwi	PF02175	633	924	4.7e-87
		PAZ	PF02176	358	489	1.6e-31
		ArgoL1	PF02177	302	348	6.2e-05
NP_492121.1	Caenorhabditis elegans	Piwi	PF02178	500	809	7.8e-79
		PAZ	PF02179	230	352	1.3e-24
XP_040078863.1	Ixodes scapularis	Piwi	PF02180	636	928	2.2e-87
		PAZ	PF02181	371	491	7.1e-32
		ArgoL1	PF02182	307	352	1.9e-05
NP_001036627.2	Drosophila melanogaster	Piwi	PF02183	567	852	1.8e-81
		PAZ	PF02184	297	422	4.5e-28
NP_001352553.1	Danio rerio	Piwi	PF02185	741	1031	1.4e-80
		PAZ	PF02186	465	595	1.2e-31
		ArgoL1	PF02187	412	457	8.4e-07
NP_067286.1	Mus musculus	Piwi	PF02185	556	848	1.1e-104
		PAZ	PF02186	281	413	2.3e-36
		GAGE	PF02187	1	107	5.4e-21
		ArgoL1	PF02188	228	274	4.6e-05
NP_004755.2	Homo sapiens	Piwi	PF02190	555	847	1.4e-106
		PAZ	PF02191	280	412	6.4e-36
		GAGE	PF02192	1	106	4.1e-25
		ArgoL1	PF02193	227	273	5.1e-05

Figura 59: Distribuição dos domínios conservados, prováveis proteínas Argonauta. *Pomacea canaliculata-* Pca61914_c0_g1

Para *P. canaliculata* e *P. maculata,* foi realizado o alinhamento global de forma a demonstrar a similaridade de sequências peptídicas de organismos diversos das prováveis proteínas da via de miRNAs, além de mostrar os resíduos e as circunvizinhanças dos sítios catalíticos. O alinhamento global foi realizado utilizando o software ClustaX2.1 (Figura 60)

O domínio PIWI das prováveis proteínas de *P. canaliculata* e *P. maculata* apresentaram uma tríade catalítica formada por DDH (ácido aspártico, ácido aspártico e histidina), apresentando alta conservação em relação às proteínas ortólogas de Argonauta, principalmente nas imediações do resíduo catalítico (Figura 60).

Figura 60: Alinhamento global, análise do domínio PIWI das proteínas Argonauta de *P. canaliculata* e *P. maculata*.

Fonte: Dados do autor

As sequências das proteínas preditas de *P. canaliculata, P. maculata* e ortólogos de referência (RefSeq) (organismos protostômios e deuterostômios) foram submetidas a análises filogenéticas comparativas utilizando o programa MEGA versão X (TAMURA *et al.*, 2007). As árvores filogenéticas foram construídas utilizando o método Neighbor-joining (NJ) (SAITOU; NEI, 1987) e calculada com o modelo de substituição JTT. Na análise filogenética foi verificada a ampla distribuição entre os clados filogenéticos, verificando uma distribuição evolutiva que corrobora com a árvore da vida (Figura 61).

Figura 61: Análise filogenética das proteínas Argonauta, de *P. maculata* e *P. canaliculata* e seus ortólogos.

4.7.2 Análise de domínios conservados, alinhamento global e filogenia das proteínas Dicer e Drosha

A ribonuclease III (RNase III) pertence à família das endoribonucleases que apresentam especificidade para RNA de fita dupla (dsRNA). Três classes de enzimas RNase III foram relatadas. As enzimas da classe I são as mais simples, contendo um domínio de endonuclease e um domínio de ligação de dsRNA (dsRBD). As proteínas de classe II contêm dois domínios de endonuclease e um dsRBD. As moléculas de classe III consistem em dois domínio de endonuclease, um dsRBD e um domínio de helicase N-terminal seguido por um domínio PAZ (Figura 62). Funcionalmente, as enzimas de classe 3 produzem produtos de RNA de fita simples (ssRNA) de aproximadamente 22 nucleotídeos de comprimento a partir de substratos de dsRNA longos (BERNSTEIN *et al.*, 2001; BLASZCZYK *et al.*, 2001; FILIPPOV *et al.*, 2000). A via canônica da biogênese de miRNAs é a via dominante no qual os miRNAs são processados pelas RNAases III de classe II (Drosha) e classe III (Dicer), consecutivamente.

Figura 62: Três classes de proteínas da família RNase III representadas por Dicer humano (classe III), Drosha humana (classe II) e RNase III bacteriana (classe I).

Adaptado de Zhang et al. (2004)

As RNases III (classes II e II) contém centros catalíticos com aminoácidos importantes para a função. A atividade das enzimas se concentra em domínios RIBOc, que possuem sítios ativos compostos pelos seguintes aminoácidos E (Ácido glutâmico), D (Ácido aspártico), D (Ácido aspártico), E (Ácido glutâmico) (Figura 64) (HAN *et al.*, 2004; ZHANG *et al.*, 2004)

Proteina ID	Nome da espécie	E-value Blastp	Tamanho (aa)
Pca67887_c3_g1	Pomacea canaliculata		1524
XP_033730374.1	Pecten maximus	0.0	1443
XP_014774431.1	Octopus bimaculoides	0.0	1501
XP_005107264.1	Aplysia californica	0.0	1528
XP_014481243.1	Dinoponera quadriceps	0.0	1319
XP_040166968.1	Anopheles arabiensis	0.0	1498
NP_477436.1	Drosophila melanogaster	0.0	1327
XP_012268888.1	Athalia rosae	0.0	1553
XP_018652602.1	Schistosoma mansoni	0.0	1577
XP_024352870.1	Echinococcus granulosus	0.0	1279
XP_035590140.1	Schistosoma haematobium	0.0	1650
XP_001901812.1	Brugia malayi	0.0	1329
NP_001122460.2	Caenorhabditis elegans	0.0	1081
XP_004652583.1	Jaculus jaculus	0.0	1336
XP_005248351.1	Homo sapiens	0.0	1306
XP_014377706.1	Alligator sinensis	0.0	1307
XP_009206471.1	Papio anubis	0.0	1337
XP_032193598.1	Mustela erminea	0.0	1306
XP_017921117.1	Capra hircus	0.0	1337

Tabela 15: Similaridade de Drosha de P. canaliculata e ortólogos.

ID Proteina	Espécie	Domínios	ID PFAM	Alinha	mento	e- value
				Inicio	Fim	
Pca67887_c3_g1	Pomacea canaliculata	Ribonucleas_3_ 3	PF14622	1095	1201	1.2e-20
		Ribonuclease_3	PF00636	1277	1366	9.2e-21
		dsrm	PF00035	1394	1464	3.4e-11
Pma65850_c2_g	Pomacea maculata	Ribonuclease_3	PF00636	111	200	1.1e-21
4		dsrm	PF00035	228	298	4.8e-12
Pma51393_c0_g 1	Pomacea maculata	Ribonucleas_3_ 3	PF14622	502	574	2.2e-12
XP_033730374.1	Pecten maximus	Ribonucleas_3_ 3	PF14622	1008	1115	3.2e-21
		Ribonuclease_3	PF00636	1190	1279	1.8e-20
		dsrm	PF00035	1307	1377	2.7e-08
XP_005107264.1	Aplysia californica	Ribonucleas_3_ 3	PF14622	1107	1214	3.9e-22
		Ribonuclease_3	PF00636	1290	1380	2.0e-17
		dsrm	PF00035	1408	1479	9.9e-11
XP_014481243.1	Dinoponera quadriceps	Ribonucleas_3_ 3	PF14622	997	888	3.1e-22
		Ribonuclease_3	PF00636	1156	1070	1.7e-19
		dsrm	PF00035	1256	1184	2.3e-11
NP_477436.1	Drosophila melanogaster	Ribonucleas_3_ 3	PF14622	829	936	5.9e-22
		Ribonuclease_3	PF00636	1012	1098	2.5e-20
		dsrm	PF00035	1126	1197	4.1e-13
XP_018652602.1	Schistosoma mansoni	Ribonuclease_3	PF00636	966	1056	1.1e-16
		Ribonuclease_3	PF00636	1145	1236	2.6e-20
		dsrm	PF00035	1265	1334	6.0e-11
NP_001122460.2	Caenorhabditis elegans	Ribonuclease_3	PF00636	868	955	1.4e-18
		Ribonucleas_3_ 3	PF14622	687	789	4.8e-18
		dsrm	PF00035	983	1055	8.7e-11
XP_014774431.1	Octopus bimaculoides	Ribonucleas_3_ 3	PF14622	1096	1205	1.4e-21
		Ribonuclease_3	PF00636	1279	1367	4.9e-21
		dsrm	PF00035	1396	1467	2.1e-12
XP_040166968.1	Anopheles arabiensis	Ribonucleas_3_ 3	PF14622	803	911	2.1e-22
		Ribonuclease_3	PF00636	987	1073	1.0e-19
		dsrm	PF00035	1101	1172	3.2e-13
NP_001103942.1	Danio rerio	Ribonucleas_3_ 3	PF14622	881	989	7.3e-25
		Ribonuclease_3	PF00636	1064	1152	1.0e-20
		dsrm	PF00035	1181	1251	1.9e-14
XP_014377706.1	Alligator sinensis	Ribonucleas_3_ 3	PF14622	894	1003	4.4e-24
		Ribonuclease_3	PF00636	1077	1165	1.1e-20

Tabela 16: Análise de domínios conservados de Drosha P. canaliculata e ortólogos.

		dsrm	PF00035	1194	1264	2.0e-14
XP_005248351.1	Homo sapiens	Ribonucleas_3_ 3	PF14622	894	1002	6.2e-24
		Ribonuclease_3	PF00636	1076	1164	8.4e-21
		dsrm	PF00035	1193	1263	1.9e-14
XP_017921117.1	Capra hircus	Ribonucleas_3_ 3	PF14622	925	1033	6.4e-24
		Ribonuclease_3	PF00636	1107	1195	8.7e-21
		dsrm	PF00035	1224	1294	2.0e-14
NP_001123621.1	Mus musculus	Ribonucleas_3_ 3	PF14622	961	1069	6.6e-24
		Ribonuclease_3	PF00636	1143	1231	9.0e-21
_		dsrm	PF00035	1260	1330	2.1e-14

Figura 63 : Análise de domínios conservados de Drosha em P. canaliculata.

Fonte: Dados do autor

A provável proteína Pca67887_c3_g1 de *P. canaliculata* (Pca_drosha) apresentou comprimento compatível e similaridade com seus ortólogos, principalmente com relação aos clados Mollusca e Arthropoda (Tabela 15 e Figura 63). Na análise de domínios conservados, apresentou os dois domínios de endonuclease e um dsrm (importante para a ligação à dupla fita

de RNA), característico das RNAases III de classe 2 (Tabela 16 e Figura 63). Na pesquisa por sítios catalíticos, apresentou apenas o primeiro conjunto composto pelos aminoácidos E-D-D-E no domínio Riboc (figura 64). O comprimento de 1524 aminoácidos é compatível com a proteína de *P. canaliculata* (ID: XP_025111754.1) de 1523 aminoácidos registrada no NCBI (National Centre for Biotechnology Information — http://.ncbi.nlm.nih.gov/), com um percentual de identificação de 99,68% (1522/1524 aminoácidos) e um *gap*. Esses dados corroboram a identificação da provável proteína Drosha em *P. canaliculata*.

Para *P. maculata*, as proteínas Drosha apresentaram tamanho incompatível para os seus ortólogos em deuterostômios e protostômios (Tabela 10). No entanto, revelam indícios de serem prováveis proteínas. A sequências proteica (Pma51393_c0_g1) com 580 aminoácidos tem como ortólogo a proteína de *P. canaliculata* registrada no NCBI (ID: XP_025111754.1). Ao se realizar BLASTp no NCBI do peptídeo Pma51393_c0_g1 de *P. maculata* contra a proteína acima descrita, apresentou percentual de identificação de 99,68% (579/580) dos aminoácidos. Foi verificado parte dos aminoácidos catalíticos (E-D) presentes no primeiro domínio Riboc (Figura 64), apresentando apenas este domínio conservado para a provável proteína Pma51393_c0_g1. Em Drosha, provavelmente devido à falta de cobertura no sequenciamento desta região do genoma de *P. maculata*, não foi possível evidenciar a presençado segundo domínio catalítico Riboc. As regiões no genoma preditas para este gene provavelmente estão com erro de anotação levando ao truncamento das sequências proteicas. Consequentemente, o tamanho das sequências de aminoácidos para estes genes está com tamanho e estrutura subestimadas. Futuras versões do genoma podem resolver este problema (GOMES, 2012).

Proteina ID	Nome da espécie	E-value Blastp	Tamanho (aa)
Pca67531_c1_g2	Pomacea canaliculata		1984
XP_009046342.1	Lottia gigantea	0.0	1800
XP_033733992.1	Pecten maximus	0.0	2132
XP_022331683.1	Crassostrea virginica	0.0	1909
XP_011439629.2	Crassostrea gigas	0.0	1873
XP_014781473.1	Octopus bimaculoides	0.0	2402
XP_021004529.1	Parasteatoda tepidariorum	0.0	1998
XP_023219964.1	Centruroides sculpturatus	0.0	1950
NP_524453.1	Drosophila melanogaster	7,00E-140	2249

Tabela 17: Similaridade de Dicer de P. canaliculata e ortólogos.

XP_018644375.1	Schistosoma mansoni	0.0	2319
XP_024350050.1	Echinococcus granulosus	0.0	1909
XP_003137813.1	Loa loa	0.0	1928
NP_498761.2	Caenorhabditis elegans	0.0	1910
XP_024128907.1	Oryzias melastigma	0.0	1857
XP_020953825.1	Sus scrofa	0.0	1926
XP_018085949.1	Xenopus laevis	0.0	1891
XP_008763126.1	Rattus norvegicus	0.0	1918
XP_021034238.1	Mus caroli	0.0	1917
XP_017170486.1	Mus musculus	0.0	1783
NP_001182502.1	Homo sapiens	0.0	1829

Tabela	18:	Domínios	conservados	de	Dicer	de P	. canaliculata	e ortólogos.

ID Proteina	Espécie	Domínios	ID PFAM	Alinh	amento	e-value
				Inicio	Fim	
Pca67531_c1_g2	Pomacea canaliculata	Ribonucleas_3_3	PF14622	1755	1937	2.0e-33
		PAZ	PF02170	954	1104	9.2e-36
		Dicer_dimer	PF003368	668	758	3.1e-24
		Helicase_C	PF00271	530	591	4.9e-14
Pca66636_c2_g1	Pomacea canaliculata	DEAD	PF00270	131	295	5.6e-20
		RIG-I_C-RD	PF11648	708	818	6.9e-20
		Helicase_C	PF00271	521	629	2.2e-19
		RIG-I_C	PF18119	349	496	1.2e-15
Pma66024_c0_g	Pomacea maculata	DEAD	PF00270	55	219	3.2e-20
2		RIG-I_C-RD	PF11648	632	742	1.1e-19
		Helicase_C	PF00271	445	553	1.9e-19
		RIG-I_C	PF18119	273	420	2.4e-15
Pma95401_c0_g 1	Pomacea maculata	Ribonucleas_3_3	PF14622	195	266	1.3e-25
XP_009046342.1	Lottia gigantea	Ribonucleas_3_3	PF14622	1289	1473	3.0e-33
		Ribonuclease_3	PF00636	1577	1703	1.1e-22
		PAZ	PF02170	890	1041	1.2e-36
		Dicer_dimer	PF003368	607	698	9.8e-24

		Helicase_C	PF00271	480	536	2.0e-13
XP_033733992.1	Pecten maximus	Ribonucleas_3_3	PF14622	1621	1804	9.4e-36
		Ribonuclease_3	PF00636	1914	2035	3.0e-22
		PAZ	PF02170	914	1066	9.3e-37
		Dicer_dimer	PF003368	630	721	1.5e-25
		Helicase_C	PF00271	492	554	7.9e-16
XP_011439629.2	Crassostrea gigas	Ribonucleas_3_3	PF14622	1350	1563	2.5e-36
		Ribonuclease_3	PF00636	1656	1775	1.1e-21
		PAZ	PF02170	933	1085	1.5e-37
		Dicer_dimer	PF003368	645	736	5.5e-27
		Helicase_C	PF00271	516	572	2.3e-13
		DEAD	PF00270	31	181	5.3e-06
XP_012942349.1	Aplysia californica	Ribonucleas_3_3	PF14622	1972	2157	7.0e-31
		Ribonuclease_3	PF00636	2273	2406	1.3e-21
		PAZ	PF02170	954	1110	1.0e-37
		Dicer_dimer	PF003368	676	766	6.7e-24
		Helicase_C	PF00271	519	583	1.2e-13
XP_013067888.1	Biomphalaria glabrata	Ribonucleas_3_3	PF14622	1814	1991	9.9e-34
		Ribonuclease_3	PF00636	2100	2235	1.2e-21
		PAZ	PF02170	946	1097	3.2e-34
		Dicer_dimer	PF003368	662	752	7.1e-25
		Helicase_C	PF00271	493	573	3.9e-12
XP_021004529.1	Parasteatoda tepidariorum	Ribonucleas_3_3	PF14622	1519	1688	3.4e-35
		Ribonuclease_3	PF00636	1782	1903	1.0e-22
		PAZ	PF02170	925	1080	4.4e-42
		Dicer_dimer	PF003368	640	730	1.5e-28
		Helicase_C	PF00271	494	565	2.9e-16
		DEAD	PF00270	31	194	1.6e-12
XP_023219964.1	Centruroides sculpturatus	Ribonucleas_3_3	PF14622	1468	1636	8.5e-37
	1	Ribonuclease_3	PF00636	1729	1850	1.0e-22
		PAZ	PF02170	898	1054	5.7e-42
		Dicer_dimer	PF003368	618	710	1.2e-24
		Helicase_C	PF00271	461	545	2.7e-18

		DEAD	PF00270	31	191	1.6e-17
NP_524453.1	Drosophila melanogastar	Ribonucleas_3_3	PF14622	1742	1919	9.3e-36
	metunoguster	Ribonuclease_3	PF00636	2029	2149	8.5e-22
		PAZ	PF02170	1111	1266	3.9e-40
		Dicer_dimer	PF003368	825	916	2.6e-24
		Helicase_C	PF00271	543	604	7.2e-16
XP_018644375.1	Schistosoma mansoni	Ribonucleas_3_3	PF14622	1767	1943	6.4e-33
		Ribonuclease_3	PF00636	2053	2208	6.1e-23
		PAZ	PF02170	1255	1428	2.0e-28
		Dicer_dimer	PF003368	814	923	3.5e-16
XP_024350050.1	Echinococcus	Ribonucleas_3_3	PF14622	1450	1570	8.5e-30
	grunutosus	Ribonuclease_3	PF00636	1676	1813	7.0e-20
		PAZ	PF02170	1108	1277	2.8e-20
		Dicer_dimer	PF003368	771	891	7.9e-12
NP_498761.2	Caenorhabditis elegans	Ribonucleas_3_3	PF14622	1413	1589	1.1e-35
		Ribonuclease_3	PF00636	1679	1805	6.9e-21
		PAZ	PF02170	856	1025	5.5e-46
		Dicer_dimer	PF003368	571	663	3.5e-24
		Helicase_C	PF00271	381	498	5.2e-17
		ResIII	PF04851	12	182	2.3e-13
NP_524453.1	Drosophila melanogastar	Ribonucleas_3_3	PF14622	1742	1919	9.3e-36
	meianogaster	Ribonuclease_3	PF00636	2029	2149	8.5e-22
		PAZ	PF02170	1111	1266	3.9e-40
		Dicer_dimer	PF003368	825	916	2.6e-24
		Helicase_C	PF00271	543	604	7.2e-16
XP_024128907.1	Oryzias melastigma	Ribonucleas_3_3	PF14622	1256	1537	1.2e-43
		Ribonuclease_3	PF00636	1637	1759	9.8e-23
		PAZ	PF02170	893	1054	1.9e-39
		Dicer_dimer	PF003368	620	708	7.8e-25
		Helicase_C	PF00271	437	544	2.9e-17
		ResIII	PF04851	22	197	1.4e-10
NP_001154925.1	Danio rerio	Ribonucleas_3_3	PF14622	1295	1551	3.7e-45
		Ribonuclease_3	PF00636	1645	1767	1.1e-22

		PAZ	PF02170	889	1050	4.4e-39
		Dicer_dimer	PF003368	616	704	4.3e-24
		Helicase_C	PF00271	428	540	1.9e-17
		DEAD	PF00270	36	177	1.2e-11
XP_020953825.1	Sus scrofa	Ribonucleas_3_3	PF14622	1310	1570	1.2e-43
		Ribonuclease_3	PF00636	1694	1816	1.2e-22
		PAZ	PF02170	903	1064	3.2e-39
		Dicer_dimer	PF003368	630	718	1.7e-23
		Helicase_C	PF00271	442	554	1.6e-17
		DEAD	PF00270	46	192	4.6e-12
XP_018085949.1	Xenopus laevis	Ribonucleas_3_3	PF14622	1289	1550	1.2e-42
		Ribonuclease_3	PF00636	1671	1793	1.0e-22
		PAZ	PF02170	907	1056	1.7e-38
		Dicer_dimer	PF003368	622	710	4.7e-25
		Helicase_C	PF00271	434	546	2.3e-17
		DEAD	PF00270	36	186	3.3e-11
XP_008763126.1	Rattus norvegicus	Ribonucleas_3_3	PF14622	1313	1573	5.4e-43
		Ribonuclease_3	PF00636	1698	1820	1.2e-22
		PAZ	PF02170	903	1064	3.2e-39
		Dicer_dimer	PF003368	630	718	4.2e-23
		Helicase_C	PF00271	442	554	1.4e-17
		ResIII	PF04851	32	207	8.2e-12
XP_017170486.1	Mus musculus	Ribonucleas_3_3	PF14622	1303	1561	8.2e-44
		Ribonuclease_3	PF00636	1686	1758	5.0e-15
		PAZ	PF02170	893	1054	2.9e-39
		Dicer_dimer	PF003368	620	708	1.2e-23
		Helicase_C	PF00271	432	544	1.2e-17
		ResIII	PF04851	22	197	1.6e-11
NP_001182502.1	Homo sapiens	Ribonucleas_3_3	PF14622	1313	1575	9.3e-44
		Ribonuclease_3	PF00636	1702	1776	4.6e-15
		PAZ	PF02170	903	1064	3.1e-39
		Dicer_dimer	PF003368	630	718	6.0e-24
		Helicase_C	PF00271	442	554	1.5e-17

ResIII	PF04851	32	207	1.6e-11

Figura 64: Alinhamento global, análise ribonuclease III (Riboc) das proteínas Dicer (acima representado) e Drosha (abaixo representado) de *P. canaliculata e P. maculata* e seus ortólogos.

Figura 65: Análise filogenética das proteínas Dicer (acima representado) e Drosha (abaixo representado) de *P. canaliculata* e *P. maculata* e seus ortólogos.

Fonte: Dados do autor

Figura 66: Domínios conservados de Dicer de P. canaliculata e ortólogos.

A candidata à sequência proteica Pca67531 c1 g2 de P. canaliculata (Pca Dicer) apresentou comprimento similar (1984 aa) a organismos próximos evolutivamente, A. californica (2503 aa) e B. glabrata (2332 aa) (Tabelas 9 e 17). Foram identificados apenas os domínios conservados; Ribonucleas 3 3, PAZ, Dicer dimer e Helicase C; não apresentando o segundo domínio Riboc (Tabela 18 e Figura 66). Ao verificar o posicionamento de início do segundo domínio Riboc de A. californica (2273 aa) e B. glabrata (2100 aa), corrobora o fato de não identificação da segunda ribonuclease na provável sequência proteica. Em Dicer, provavelmente devido à falta de cobertura no sequenciamento desta região do genoma de P. maculata, não foi possível evidenciar a presença do segundo domínio catalítico Riboc. A proteína Dicer de P. canaliculata (XP 025104500) identificada no NCBI, comprimento 2249 aminoácidos é ortologa a Pca67531 c1 g2, com uma cobertura da query de 99% e porcentagem de identificação de 98,83%. A sequência proteica Pca67531 c1 g2 ao utilizar a ferramenta BLASTp contra o genoma de P. canaliculata no banco de dados AmbuBase (Department of Computer Science HKBU – https://www.comp.hkbu.edu.hk/~db/AmpuBase/#&panel1-4) apresentou um percentual de identificação e cobertura de 100% (1984/1984 aminoácidos). Foi observado o primeiro sítio catalítico dos aminoácidos (E-D) na Riboc na proteína candidata citada (Pca67531 c1 g2) (Figura 64). Ao realizar a busca por resíduos catalíticos tendo como query NP 524453.1 Dicer-1 Drosophila melanogaster, os moluscos ortólogos apresentaram no

primeiro domínio Riboc apenas os aminoácidos catalíticos (E-D), com exceção de Pectem Maximus (E-D-D-E) NCBI (http://.ncbi.nlm.nih.gov/). O alinhamento múltiplo das proteínas mostrou alta similaridade de sequências dos aminoácidos, particularmente em regiões de domínio funcional conservado (Figura 64). Dicer revelou ampla distribuição entre os clados filogenéticos na árvore filogenética, mostrando alta similaridade da proteína catalítica de *P. canaliculata* entre moluscos, artrópodes e cordados sobretudo (Figura 65). Os dados apresentados corroboram para a identificação da provável proteína.

Para *P. maculata*, as prováveis proteínas Dicer, Pma66024_c0_g2 (766 aa) e Pma95401_c0_g1 (288 aa) não apresentaram comprimento compatível com a dimensão média das proteínas ortólogas. As regiões no genoma preditas para este gene provavelmente estão com erro de anotação levando ao truncamento das sequências proteicas. Consequentemente, o tamanho das sequências de aminoácidos para estes genes está com tamanho e estrutura subestimadas. Futuras versões do genoma podem resolver esse problema (GOMES, 2012; QUEIROZ *et al.*, 2017). A sequência proteica (Pma66024_c0_g2) não evidenciou os domínios de endonucleases, já a provável proteína (Pma95401_c0_g1) revelou apenas um domínico Riboc com resíduos catalíticos nos aminoácidos E-D (Tabelas 10 e 18, figura 66). A sequência proteica (Pma95401_c0_g1) de *P. maculata* é ortóloga as proteínas *de P. canaliculata* (XP_025104500) identificada no NCBI e Pca67531_c1_g2 (caracterizada neste trabalho), apresentado percentual de identidade de 97,22 % (280/288 aminoácidos) com a proteína de *P. canaliculata* identificada no NCBI.

4.7.3 Análise das proteínas DGCR8, Exportina 1 e T, ran

As proteínas Ras, Exportinas 1 e T, DGCR8 e TDRD1 em *P. canaliculata* e *P. maculata* foram analisadas através da homologia, tamanho da proteína e domínios conservados.

4.7.3.1 DGCR8

A sequência proteica DGCR8 (DiGeorge Syndrome Critical Region 8) faz parte do complexo de microprocessadores que realiza a clivagem do pri-miRNA (transcrito do DNA) em pré-miRNA. O DGCR8 se liga em uma estrutura no pri-miRNA; enquanto, Drosha realiza a cisão do duplex. Esta etapa realizada no núcleo celular é primordial para a biogênese dos miRNAs, reguladores pós-transcricionais da expressão gênica (HAN *et al.*, 2004).

Proteina ID	Nome da espécie	E-value Blastp	Tamanho (aa)	
Pma62419_c0_g1	Pomacea maculata			708
XP_029632956.1	Octopus sinensis	0.0		679
XP_021357307.1	Mizuhopecten yessoensis	0.0		704
XP_033731508.1	Pecten maximus	0.0		790
XP_033731509.1	Pecten maximus	0.0		786
XP_033747276.1	Pecten maximus	0.0		806
XP_041348914.1	Gigantopelta aegis	0.0		778
XP_033747277.1	Pecten maximus	0.0		802

Tabela 19: Análise de similaridade de DGCR8 de P. maculata e ortólogos.

Tabela 20: Análise de similaridade de DGCR8 de P. canaliculata e ortólogos.

Proteina ID	Nome da espécie	E-value Blastp	Tamanho (aa)
Pca59979_c0_g1	Pomacea canaliculata		730
XP_029632956.1	Octopus sinensis	0.0	679
XP_033747276.1	Pecten maximus	0.0	806
XP_033747277.1	Pecten maximus	0.0	802
XP_021357307.1	Mizuhopecten yessoensis	0.0	704
XP_033731508.1	Pecten maximus	0.0	790
XP_033731509.1	Pecten maximus	0.0	786
XP_041348914.1	Gigantopelta aegis	1,00E-175	778
XP_022344386.1	Crassostrea virginica	3,00E-171	781
XP_014780090.1	Octopus bimaculoides	8,00E-164	646

Fonte: Dados do autor

A proteína identificada no NCBI subunidade DGCR8 (XP_025088948.1) de *P. canaliculata* apresenta o mesmo conjunto de aminoácidos (730/730), 100% de percentual de identificação que a provável sequência proteica predita neste trabalho (Pca59979_c0_g1) de *P. canaliculata*. A sequência de aminoácidos (Pma62419_c0_g1) de *P. maculata* (708 aa) revelou um percentual de identificação de 99,71% com a proteína de *P. canaliculata* acima citada identificada no NCBI. As sequências proteicas preditas de *P. maculata* e *P. canaliculata* (DGCR8) revelam tamanho compatível e similaridade com ortólogos (Tabelas 19 e 20).
Neste trabalho, foram preditas 3 sequências proteicas pertencentes à família de proteínas exportinas (XPO1 e XPOT) no genoma dos caracóis; *P. canaliculata* (Pca65193_c2_g1) e *P. maculata* (Pma59467_c0_g1), Exportina 1; *P. maculata* (Pma63331_c0_g1) exportina T. Intrinsecamente, o transporte de precursores de miRNAs é executado pela proteína XPO5. Ocasionalmente, o transporte de pré-miRNAs pode ser realizado por XPO1 entrando na via de processamento não canônico de miRNAs sem a clivagem por Drosha. O deslocamento de pré-miRNAs também é executado pela exportina T (XPOT) de maneira dependente de Ran-GTP (RUBY; JAN; BARTEL, 2007; XIE *et al.*, 2013).

Proteina ID	Nome da espécie	E-value Blastp	Tamanho (aa)
Pma59467_c0_g1	Pomacea maculata		1069
XP_025103585.1	Pomacea canaliculata	0.0	1069
XP_041355132.1	Gigantopelta aegis	0.0	1073
XP_009046981.1	Lottia gigantea	0.0	1068
XP_021363249.1	Mizuhopecten yessoensis	0.0	1075
XP_033735453.1	Pecten maximus	0.0	1075
XP_022332005.1	Crassostrea virginica	0.0	1076
XP_011451739.1	Crassostrea gigas	0.0	1076
XP_014782256.1	Octopus bimaculoides	0.0	1072
XP_013415269.1	Lingula anatina	0.0	1072
XP_013400816.1	Lingula anatina	0.0	1072

Tabela 21 – Similaridade de XPO-1 de *P. maculata* e ortólogos.

Fonte: Dados do autor

Proteina ID Nome da espécie E-value Blastp Tamanho (aa) Pma63331 c0 g1 Pomacea maculata 965 XP 025106719.1 Pomacea canaliculata 965 0.0 XP_041348237.1 0.0 961 *Gigantopelta aegis* XP_005097615.1 Aplysia californica 968 0.0 XP_009066746.1 Lottia gigantea 0.0 962 XP 011455074.2 Crassostrea gigas 0.0 969 0.0 962 XP 022302836.1 Crassostrea virginica XP_021359684.1 Mizuhopecten yessoensis 0.0 963 960 XP_013079973.1 Biomphalaria glabrata 0.0

Tabela 22 – Similaridade de XPO-T de P. maculata e ortólogos.

Figura 67: Árvore filogenética XPO-1 e XPO-T P. canaliculata e P. maculata.

Fonte: Dados do autor

Figura 68: Análise de domínios conservados de *P. maculata* e *P. canaliculata* – XPO-1. Pomacea canaliculata - Pca65193_c2_g1

Com o objetivo de enfatizar a conservação destas prováveis proteínas identificados nas espécies em estudo, foi construído uma árvore filogenética e estudos de domínios conservados. A análise filogenética revelou uma distribuição das sequências de aminoácidos (Pca65193_c2_g1 e Pma59467_c0_g1) - XPO-1 e (Pma63331_c0_g1) - XPO-T, agrupadas próximas ao clado Deuterostômio. As prováveis proteínas de *P. maculata* e *P. canaliculata* agregaram-se com as respectivas ortólogas próximas ao filo Mollusca e ao clado Deuterostômio (Figura 67).

A similaridade das Exportinas identificadas do gênero *Pomacea* das espécies em estudo foi verificada junto às suas ortólogas observando nível de preservação dos domínios conservados e comprimento. A proteína predita de *P. maculata* (Pma59467_c0_g1) apresentou os mesmos domínios conservados (XPO-1) de suas ortólogas e comprimento compatível com organismos próximos evolutivamente (Tabela 21 e Figura 68). A sequência proteica de *P. canaliculata* (Pca65193_c2_g1) apresentou um domínio conservado a menos que seus ortólogos, revelando tamanho ligeiramente inferior (Figura 68). A falta de cobertura na predição da proteína prejudicou a predição de domínios conservados, uma vez que, ela se deu na porção N-terminal da proteína. A proteína predita (XPO-T) de *P. maculata* (Pma63331_c0_g1) apresentou comprimento compatível e similaridade com suas ortólogas, organismos próximos evolutivamente (Tabela 22).

4.7.3.3 Ran

A proteína Ran executa importante função na via de miRNAs. Na via canônica da biogênese do miRNAs, após a cisão dos pri-miRNAs em pré-miRNAs no núcleo celular os precursores precisam ser exportados para o citoplasma. Esta etapa é dependente complexo XPO5-Ran, que se ligam aos pré-miRNAs com dispêndio de GTP (YI *et al.*, 2003).

Observou-se que a sequência proteica de *P. canaliculata* (Pca52466_c2_g3_Ran) apresentou o mesmo comprimento e 100% de identificação com os aminoácidos da proteína já identificada da espécie (XP_025090191.1) no NCBI com 214 aminoácidos. Da mesma forma, a sequência proteica de *P. maculata* (Pma54972_c0_g) de 152 aminoácidos, provavelmente truncadas no genoma, apresentou percentual de identificação de 100% com a proteína de *P. canaliculata* (XP_025090191.1) *registrada* no NCBI (National Centre for Biotechnology Information — <u>http://.ncbi.nlm.nih.gov/</u>). As regiões no genoma preditas para o gene de Ran de *P. maculata* provavelmente estão com o erro de anotação levando ao truncamento da

sequência proteica ocasionando o tamanho relativamente menor da proteína predita comparados com suas ortólogas (Tabela 23).

Nome da espécie	ID	Cobertura Query	E value	Identidade %	Comprimento
Pomacea maculata	Pma54972_c0_g1				152
Pomacea canaliculata	XP_025090191.1	99%	2,00E-111	100.00%	214
Aplysia californica	XP_005093963.1	99%	1,00E-105	93.42%	216
Gigantopelta aegis	XP_041348103.1	99%	1,00E-102	92.11%	215
Mizuhopecten yessoensis	XP_021345207.1	98%	4,00E-100	89.40%	222
Crassostrea virginica	XP_022309199.1	99%	2,00E-99	88.16%	213
Crassostrea gigas	XP_011426860.1	99%	3,00E-99	88.16%	213
Octopus sinensis	XP_036369268.1	99%	4,00E-99	88.16%	234
Octopus bimaculoides	XP_014781573.1	99%	4,00E-99	88.16%	213
Biomphalaria glabrata	XP_013094746.1	90%	2,00E-98	95.68%	281
Pecten maximus	XP_033747500.1	98%	5,00E-98	87.42%	216
Lottia gigantea	XP_009051818.1	98%	2,00E-97	88.00%	207
Mizuhopecten yessoensis	XP_021344822.1	98%	3,00E-76	70.86%	214
Pecten maximus	XP_033748005.1	99%	4,00E-74	68.63%	215

Tabela 23 – Similaridade de Ran de P. maculata e ortólogos.

Fonte: Dados do autor

Conforme observado nas tabelas descritas acima, as proteínas Ran, Exportinas 1 e T, DGCR8 de *P. canaliculata* e *P. maculata* possuem alta similaridade com seus ortólogos, tamanho compatível com a dimensão média das proteínas ortólogas e domínios conservados característicos de acordo com a função da proteína. Desta forma, foi possível identificar estas prováveis proteínas nas espécies em estudo.

Assim, foi possível identificar 7 prováveis proteínas da via de miRNas em *P. canaliculata*, Pca69814_c1_g2 (Argonauta 2), Pca61914_c0_g1(Argonauta), Pca67531_c1_g2 (Dicer), Pca67887_c3_g1 (Drosha), Pca59979_c0_g1 (DGRC8), Pca65193_c2_g1 (Exportina 1), Pca52466_c2_g3 (Ran) e 8 prováveis proteínas em *P. maculata*, Pma63715_c0_g1 (Argonauta 2), Pma60501_c2_g16 (Argonauta), Pma62419_c0_g1 (DGRC8), Pma59467_c0_g1 (Exportina 1), Pma63331_c0_g1 (Exportina T), Pma54972_c0_g1 (Ran), Pma51393_c0_g1 (Drosha), Pma95401_c0_g1 (Dicer).

5 CONCLUSÃO

A pesquisa por miRNAs em *P. canaliculata* e *P. maculata* a partir de bancos de dados públicos atendeu as características estruturais e termodinâmicas de miRNAs identificados, para elucidação e predição de miRNAs conservados nos genomas das espécies. Foi possível predizer 296 formas maduras de miRNAs conservados em *P. canaliculata* e 316 miRNAs em *P. maculata*. A submissão de alguns pré-miRNAs ao alinhamento múltiplo de sequências revelou alta similaridade com seus ortólogos.

Como mostrado, os resultados indicam que algumas sequências analisadas de mirbantam e mir-1990 de *P. canaliculata* e *P. maculata* mostraram 100% de identificação com alguns de seus ortólogos. A fim de evidenciar a conservação de miRNAs preditos em *P. maculata* e *P. canaliculata* foram construídas árvores filogenéticas, nas quais foram confirmadas a estreita proximidade entre as espécies estudadas e os moluscos da família Ampullariidae, *Lanistes nyassanus* e *Marisa cornuarietis*. A sequência madura de miRNAs se mostrou conservada evolutivamente e esta similaridade aumenta à medida que o grau de parentesco entre as espécies se acentua. Da mesma forma, foi verificada alta similaridade com a estrutura secundária dos precursores de miRNAs preditos e ortólogos, intrinsecamente semelhantes entre moluscos e a família Ampullariidae.

Uma das formas de demonstrar a presença de miRNAs no genoma das espécies: *P. canaliculata* e *P. maculata* é verificar a sua maquinaria de processamento. Dessa forma, foi possível identificar a via de processamento de miRNAs nas espécies: *P. canaliculata* e *P. maculata*, destacando várias prováveis proteínas da via, tais como Argonauta, Drosha, Dicer, DGCR8, XPO1, dentre outras. A caracterização das proteínas da via através de alinhamento múltiplo de sequências, análise de domínios conservados, analogia com similaridade e dimensionamento com ortólogos permitiu confirmar através de análise filogenéticas a conservação e a presença de prováveis proteínas detectas no proteoma das espécies.

As características inerentes de *P. canaliculata* e *P. maculata* referentes ao aspecto invasivo puderam ser ratificadas por mapeamento de características por lócus gênico em estudos anteriores. Estudos de expressão diferencial de miRNAs poderão ser conduzidos na região dos tentáculos cefálicos e palpos labiais, para ratificar estes dados, bem como estabelecer o gene GRL101 como alvo para os miRNAs descobertos neste trabalho. Dessa forma, poderá ser correlacionado o aspecto invasivo das espécies *P. canaliculata* e *P. maculata* a partir da regulação pós-transcricional de miRNAs em genes específicos das espécies.

Por fim, os nossos resultados ampliam o estudo dos miRNAs em moluscos, proporcionando novos desafios para compreensão de processos essenciais relacionados à invasividade das espécies *P. canaliculata* e *P. maculata*.

REFERÊNCIAS

ACCORSI, Alice; BUCCI, Laura; DE EGUILEOR, Magda; OTTAVIANI, Enzo; MALAGOLI, Davide. Comparative analysis of circulating hemocytes of the freshwater snail Pomacea canaliculata. **Fish and Shellfish Immunology**, *[S. l.]*, v. 34, n. 5, p. 1260–1268, 2013. <u>https://doi.org/10.1016/j.fsi.2013.02.008</u>

ADEMA, Coen M. et al. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. **Nature Communications**, [S. l.], v. 8, n. May, 2017. https://doi.org/10.1038/ncomms15451

ALARCÓN, Claudio R.; LEE, Hyeseung; GOODARZI, Hani; HALBERG, Nils; TAVAZOIE, Sohail F. N6-methyladenosine marks primary microRNAs for processing. **Nature**, *[S. l.]*, v. 519, n. 7544, p. 482–485, 2015. <u>https://doi.org/10.1038/nature14281</u>

ALBERTIN, Caroline B.; SIMAKOV, Oleg; MITROS, Therese; WANG, Z. Yan; PUNGOR, Judit R.; EDSINGER-GONZALES, Eric; BRENNER, Sydney; RAGSDALE, Clifton W.; ROKHSAR, Daniel S. The octopus genome and the evolution of cephalopod neural and morphological novelties. **Nature**, *[S. l.]*, v. 524, n. 7564, p. 220–224, 2015. https://doi.org/10.1038/nature14668

ANFOSSI, Simone; BABAYAN, Anna; PANTEL, Klaus; CALIN, George A. Clinical utility of circulating non-coding RNAs — an update. **Nature Reviews Clinical Oncology**, *[S. l.]*, v. 15, n. 9, p. 541–563, 2017. <u>https://doi.org/10.1038/s41571-018-0035-x</u>

BABIARZ, Joshua E.; RUBY, J. Graham; WANG, Yangming; BARTEL, David P.; BLELLOCH, Robert. Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, dicer-dependent small RNAs. Genes and Development, [S. l.], v. 22, n. 20, p. 2773–2785, 2008. <u>https://doi.org/10.1101/gad.1705308</u>

BAO, Yongbo; ZHANG, Lili; DONG, Yinghui; LIN, Zhihua. Identification and comparative analysis of the tegillarca granosa haemocytes MicroRNA transcriptome in response to Cd using a deep sequencing approach. **PLoS ONE**, *[S. l.]*, v. 9, n. 4, 2014. https://doi.org/10.1371/journal.pone.0093619

BARTEL, David P. MicroRNAs: Target Recognition and Regulatory Functions. Cell, [S. l.], v. 136, n. 2, p. 215–233, 2009. <u>https://doi.org/10.1016/j.cell.2009.01.002</u>

BEHM-ANSMANT, Isabelle; REHWINKEL, Jan; DOERKS, Tobias; STARK, Alexander; BORK, Peer; IZAURRALDE, Elisa. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. **Genes and Development**, *[S. l.]*, v. 20, n. 14, p. 1885–1898, 2006. https://doi.org/10.1101/gad.1424106

BERNSTEIN, Emily; CAUDY, Amy A.; HAMMOND, Scott M.; HANNON, Gregory J. Role for a bidentate ribonuclease in the initiation step of RNA interference. **Nature**, *[S. l.]*, v. 409, n. 6818, p. 363–366, 2001. <u>https://doi.org/10.1038/35053110</u>

BIGGAR, Kyle K.; KORNFELD, Samantha F.; MAISTROVSKI, Yulia; STOREY, Kenneth B. MicroRNA Regulation in Extreme Environments: Differential Expression of MicroRNAs in the Intertidal Snail Littorina littorea During Extended Periods of Freezing and Anoxia. Genomics, Proteomics and Bioinformatics, [S. l.], v. 10, n. 5, p. 302–309, 2012. https://doi.org/10.1016/j.gpb.2012.09.002

BLASZCZYK, Jaroslaw; TROPEA, Joseph E.; BUBUNENKO, Mikhail; ROUTZAHN, Karen M.; WAUGH, David S.; COURT, Donald L.; JI, Xinhua. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. **Structure**, *[S. l.]*, v. 9, n. 12, p. 1225–1236, 2001. <u>https://doi.org/10.1016/S0969-2126(01)00685-2</u>

BRACKEN, C. P.; GREGORY, P. A.; KHEW-GOODALL, Y.; GOODALL, G. J. The role of microRNAs in metastasis and epithelial-mesenchymal transition. **Cellular and Molecular Life Sciences**, *[S. l.]*, v. 66, n. 10, p. 1682–1699, 2009. https://doi.org/10.1007/s00018-009-8750-1

BREDY, Timothy W.; LIN, Quan; WEI, Wei; BAKER-ANDRESEN, Danay; MATTICK, John S. MicroRNA regulation of neural plasticity and memory. **Neurobiology of Learning and Memory**, *[S. l.]*, v. 96, n. 1, p. 89–94, 2011. https://doi.org/10.1016/j.nlm.2011.04.004

BRENNECKE, Julius; HIPFNER, David R.; STARK, Alexander; RUSSELL, Robert B.; COHEN, Stephen M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, *[S. l.]*, v. 113, n.1, p. 25–36, 2003. <u>https://doi.org/10.1016/S0092-8674(03)00231-9</u>

BROUGHTON, James P.; LOVCI, Michael T.; HUANG, Jessica L.; YEO, Gene W.; PASQUINELLI, Amy E. Pairing beyond the Seed Supports MicroRNA Targeting Specificity. **Molecular Cell**, *[S. l.]*, v. 64, n. 2, p. 320–333, 2016. <u>https://doi.org/10.1016/j.molcel.2016.09.004</u>.

BROWN, Kenneth M.; LYDEARD, Charles. **Mollusca: Gastropoda**. Third Edit ed. [s.l.] : Elsevier Ltd, 2010. DOI: 10.1016/B978-0-12-374855-3.00010-8. https://doi.org/10.1016/B978-0-12-374855-3.00010-8

BURGOS-ACEVES, Mario Alberto; COHEN, Amit; SMITH, Yoav; FAGGIO, Caterina. MicroRNAs and their role on fish oxidative stress during xenobiotic environmental exposures. **Ecotoxicology and Environmental Safety**, *[S. l.]*, v. 148, n. November 2017, p. 995–1000, 2018. <u>https://doi.org/10.1016/j.ecoenv.2017.12.001</u>

CARDOSO, TCS; DE ARAUJO, CB; PORTILHO, LG; ET.AL. Computational Prediction and Characterisation of miRNAs and Their Pathway Genes in Human Schistosomiasis Caused by Schistosoma Haematobium. **Men Inst Oswaldo Cruz.**, *[S. l.]*, v. 115, 2020. <u>https://doi.org/10.1590/0074-02760190378</u>

CHELOUFI, Sihem; DOS SANTOS, Camila O.; CHONG, Mark M. W.; HANNON, Gregory J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. **Nature**, *[S. l.]*, v. 465, n. 7298, p. 584–589, 2010. <u>https://doi.org/10.1038/nature09092</u>

CHEN, C. Y.; KUO, C. C.; LO, Chung Ping; HUANG, M. Y.; WANG, Y. M.; WANG, W. Y. Eosinophilic meningoencephalitis caused by Angiostrongylus cantonesis. **Qjm**, *[S. l.]*, v. 107, n. 7, p. 573–575, 2014. a. <u>https://doi.org/10.1093/qjmed/hcr261</u>

CHEN, Hao et al. The comprehensive immunomodulation of NeurimmiRs in haemocytes of oyster Crassostrea gigas after acetylcholine and norepinephrine stimulation. **BMC Genomics**, [S. l.], v. 16, n. 1, p. 1–14, 2015. <u>https://doi.org/10.1186/s12864-015-2150-8</u>

CHEN, Jian Fu; MANDEL, Elizabeth M.; THOMSON, J. Michael; WU, Qiulian; CALLIS, Thomas E.; HAMMOND, Scott M.; CONLON, Frank L.; WANG, Da Zhi. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. **Nature Genetics**, *[S. l.]*, v. 38, n. 2, p. 228–233, 2006. <u>https://doi.org/10.1038/ng1725</u>

CHEN, Peijie et al. miR-216a-5p acts as an oncogene in renal cell carcinoma. **Experimental and Therapeutic Medicine**, [S. l.], v. 15, n. 4, p. 4039–4046, 2018. https://doi.org/10.3892/etm.2018.5881

CHEN, Shuai; MCKINNEY, Garrett J.; NICHOLS, Krista M.; SEPÚLVEDA, Maria S. In silico prediction and in vivo validation of Daphnia pulex micrornas. **PLoS ONE**, *[S. l.]*, v. 9, n. 1, p. 1–5, 2014. b. <u>https://doi.org/10.1371/journal.pone.0083708</u>

CLERBAUX, Laure-Alix; SCHULTZ, H.; ROMAN-HOLBA, S.; RUAN, DF; YU, R.; LAMB, AM; BOMMER, GT; KENNELL, JA. The microRNA miR-33 is a pleiotropic regulator of metabolic and developmental processes in Drosophila melanogaster. **Developmental Dynamics**, *[S. l.]*, 2021. <u>https://doi.org/10.1002/dvdy.344</u>

DE RIE, Derek et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. **Nature Biotechnology**, [S. l.], v. 35, n. 9, p. 872–878, 2017. https://doi.org/10.1038/nbt.3947

DE SOUZA GOMES, Matheus. miRNAs em Schistosoma mansoni : biogênese, predição, validação e alvos potenciais. 2012. Universidade Federal de Ouro Preto, [S. l.], 2012. Disponível em: http://www.repositorio.ufop.br/jspui/handle/123456789/2662.

DE SOUZA GOMES, Matheus; MUNIYAPPA, Mohan Kumar; CARVALHO, Sávio Gonçalves; GUERRA-SÁ, Renata; SPILLANE, Charles. Genome-wide identification of novel microRNAs and their target genes in the human parasite Schistosoma mansoni. **Genomics**, *[S. l.]*, v. 98, n. 2, p. 96–111, 2011. <u>https://doi.org/10.1016/j.ygeno.2011.05.007</u>

DE WIT, Elzo; LINSEN, Sam E. V.; CUPPEN, Edwin; BEREZIKOV, Eugene. Repertoire and evolution of miRNA genes in four divergent nematode species. **Genome Research**, *[S. l.]*, v. 19, n. 11, p. 2064–2074, 2009. <u>https://doi.org/10.1101/gr.093781.109</u>

DENLI, Ahmet M.; TOPS, Bastiaan B. J.; PLASTERK, Ronald H. A.; KETTING, René F.; HANNON, Gregory J. Processing of primary microRNAs by the Microprocessor complex. **Nature**, *[S. l.]*, v. 432, n. 7014, p. 231–235, 2004. <u>https://doi.org/10.1038/nature03049</u>

DO ESPÍRITO-SANTO, Maria Cristina Carvalho; PINTO, Pedro Luiz Silva; DA MOTA, Dan Jesse Gonçalves; GRYSCHEK, Ronaldo César Borges. Primeiro caso de meningite eosinofílica diagnosticado na cidade de Sáo Paulo, SP, Brasil. **Revista do Instituto de Medicina Tropical de Sao Paulo**, *[S. l.]*, v. 55, n. 2, p. 129–132, 2013. https://doi.org/10.1590/S0036-46652013000200012

DREON, Marcos S.; SCHINELLA, Guillermo; HERAS, Horacio; POLLERO, Ricardo

J. Antioxidant defense system in the apple snail eggs, the role of ovorubin. Archives of Biochemistry and Biophysics, [S. l.], v. 422, n. 1, p. 1–8, 2004. https://doi.org/10.1016/j.abb.2003.11.018.

DREON, Marcos Sebastián; FRASSA, María Victoria; CEOLÍN, Marcelo; ITUARTE, Santiago; QIU, Jian Wen; SUN, Jin; FERNÁNDEZ, Patricia E.; HERAS, Horacio. Novel Animal Defenses against Predation: A Snail Egg Neurotoxin Combining Lectin and Pore-Forming Chains That Resembles Plant Defense and Bacteria Attack Toxins. **PLoS ONE**, *[S. l.]*, v. 8, n. 5, 2013. <u>https://doi.org/10.1371/journal.pone.0063782</u>

DU, Xiaodong et al. The pearl oyster Pinctada fucata martensii genome and multi-omic analyses provide insights into biomineralization. **GigaScience**, [S. l.], v. 6, n. 8, 2017. https://doi.org/10.1093/gigascience/gix059

EL-GEBALI, Sara et al. The Pfam protein families database in 2019. Nucleic Acids Research, [S. l.], v. 47, n. D1, p. D427–D432, 2019. <u>https://doi.org/10.1093/nar/gky995</u>

ELBASHIR, S. M.; LENDECKEL, W.; TUSCHL, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes and Development, [S. l.], v. 15, n. 2, p. 188–200, 2001. https://doi.org/10.1101/gad.862301

ESTEBENET, Alejandra L.; MARTIN, Pablo R. Shell interpopulation variation and its origin in Pomacea canaliculata (Gastropoda: Ampullariidae) from Southern Pampas, Argentina. **Journal of Molluscan Studies**, *[S. l.]*, v. 69, n. 4, p. 301–310, 2003. https://doi.org/10.1093/mollus/69.4.301.

FABIAN, Marc Robert; SONENBERG, Nahum; FILIPOWICZ, Witold. Regulation of mRNA Translation and Stability by microRNAs. **Annual Review of Biochemistry**, *[S. l.]*, v. 79, n. 1, p. 351–379, 2010. <u>https://doi.org/10.1146/annurev-biochem-060308-103103</u>

FENG, Dandan; LI, Qi; YU, Hong; LIU, Shikai; KONG, Lingfeng; DU, Shaojun. Integrated analysis of microRNA and mRNA expression profiles in Crassostrea gigas to reveal functional miRNA and miRNA-targets regulating shell pigmentation. [S. l.], 2020. https://doi.org/10.1038/s41598-020-77181-0

FERNANDEZ-MERCADO, Marta; MANTEROLA, Lorea; LARREA, Erika; GOICOECHEA, Ibai; ARESTIN, María; ARMESTO, María; OTAEGUI, David; LAWRIE, Charles H. The circulating transcriptome as a source of non-invasive cancer biomarkers: Concepts and controversies of non-coding and coding RNA in body fluids. Journal of Cellular and Molecular Medicine, [S. l.], v. 19, n. 10, p. 2307–2323, 2015. https://doi.org/10.1111/jcmm.12625

FIGUERAS, Antonio; MOREIRA, Rebeca; SENDRA, Marta; NOVOA, Beatriz. Genomics and immunity of the Mediterranean mussel Mytilus galloprovincialis in a changing environment. Fish and Shellfish Immunology, [S. l.], v. 90, n. April, p. 440–445, 2019. https://doi.org/10.1016/j.fsi.2019.04.064.

FILIPPOV, Valery; SOLOVYEV, Victor; FILIPPOVA, Maria; GILL, Sarjeet S. A novel type of RNase III family proteins in eukaryotes. **Gene**, *[S. l.]*, v. 245, n. 1, p. 213–221, 2000. https://doi.org/10.1016/S0378-1119(99)00571-5 FINN, Robert D. et al. The Pfam protein families database. Nucleic Acids Research, [S. l.], v. 38, n. SUPPL.1, p. 211–222, 2010. <u>https://doi.org/10.1093/nar/gkp985</u>

FRIEDLÄNDER, Marc R. et al. Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biology, [S. l.], v. 15, n. 4, p. 1–17, 2014. https://doi.org/10.1186/gb-2014-15-4-r57

FRIEDMAN, Robin C.; FARH, Kyle Kai How; BURGE, Christopher B.; BARTEL, David P. Most mammalian mRNAs are conserved targets of microRNAs. **Genome Research**, *[S. l.]*, v. 19, n. 1, p. 92–105, 2009. <u>https://doi.org/10.1101/gr.082701.108</u>

GHILDIYAL, Megha; XU, Jia; SEITZ, Hervé; WENG, Zhiping; ZAMORE, Phillip D. Sorting of drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. **Rna**, *[S. l.]*, v. 16, n. 1, p. 43–56, 2010. https://doi.org/10.1261/rna.1972910

GHILDIYAL, Megha; ZAMORE, Phillip D. Small silencing RNAs: An expanding universe. **Nature Reviews Genetics**, [S. l.], v. 10, n. 2, p. 94–108, 2009. https://doi.org/10.1038/nrg2504

GOMES-DOS-SANTOS, André; LOPES-LIMA, Manuel; CASTRO, L. Filipe C.; FROUFE, Elsa. Molluscan genomics: the road so far and the way forward. **Hydrobiologia**, *[S. l.]*, v. 847, n. 7, p. 1705–1726, 2020. <u>https://doi.org/10.1007/s10750-019-04111-1</u>

GUO, Yunhai et al. A chromosomal-level genome assembly for the giant African snail Achatina fulica. **GigaScience**, [S. l.], v. 8, n. 10, p. 1–8, 2019. https://doi.org/10.1093/gigascience/giz124

HA, Minju; KIM, V. Narry. **Regulation of microRNA biogenesisNature Reviews Molecular Cell Biology**Nature Publishing Group, , 2014. <u>https://doi.org/10.1038/nrm3838</u>

HALWART, Matthias. The golden apple snail Pomacea canaliculata in asian rice farming systems: Present impact and future threat. **International Journal of Pest Management**, *[S. l.]*, v. 40, n. 2, p. 199–206, 1994. <u>https://doi.org/10.1080/09670879409371882</u>.

HAMMOND, Scott M.; BERNSTEIN, Emily; BEACH, David; HANNON, Gregory J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. **Nature**, *[S. l.]*, v. 404, n. 6775, p. 293–296, 2000. <u>https://doi.org/10.1038/35005107</u>

HAN, Jinju; LEE, Yoontae; YEOM, Kyu Hyun; KIM, Young Kook; JIN, Hua; KIM, V. Narry. The Drosha-DGCR8 complex in primary microRNA processing. Genes and Development, [S. l.], v. 18, n. 24, p. 3016–3027, 2004. <u>https://doi.org/10.1101/gad.1262504</u>

HASZPRUNAR, Gerhard; WANNINGER, Andreas. Molluscs. Current Biology, [S. l.], v. 22, n. 13, p. R510–R514, 2012. <u>https://doi.org/10.1016/j.cub.2012.05.039</u>

HAYES, Kenneth A.; COWIE, Robert H.; JØRGENSEN, Aslak; SCHULTHEISS, Roland; ALBRECHT, Christian; THIENGO, Silvana C. Molluscan Models in Evolutionary Biology: Apple Snails (Gastropoda: Ampullariidae) as a System for Addressing Fundamental Questions*. American Malacological Bulletin, *[S. l.]*, v. 27, n. 1–2, p. 47–58, 2009.

https://doi.org/10.4003/006.027.0204

HAYES, Kenneth A.; COWIE, Robert H.; THIENGO, Silvana C.; STRONG, Ellen E. Comparing apples with apples: Clarifying the identities of two highly invasive Neotropical Ampullariidae (Caenogastropoda). **Zoological Journal of the Linnean Society**, *[S. l.]*, v. 166, n. 4, p. 723–753, 2012. <u>https://doi.org/10.1111/j.1096-3642.2012.00867.x</u>

HERAS, Horacio; FRASSA, M. Victoria; FERNÁNDEZ, Patricia E.; GALOSI, Cecilia M.; GIMENO, Eduardo J.; DREON, Marcos S. First egg protein with a neurotoxic effect on mice. **Toxicon**, [S. l.], v. 52, n. 3, p. 481–488, 2008. https://doi.org/10.1016/j.toxicon.2008.06.022

HERAS, Horacio; GARIN, Claudia F.; POLLERO, Ricardo J. Biochemical composition and energy sources during embryo development and in early juveniles of the snail Pomacea canaliculata (Mollusca: Gastropoda). **Journal of Experimental Zoology**, *[S. l.]*, v. 280, n. 6, p. 375–383, 1998. <u>https://doi.org/10.1002/(SICI)1097-010X(19980415)280:6<375::AID-JEZ1>3.0.CO;2-K</u>

HOLLENBECK, Christopher M.; JOHNSTON, Ian A. Genomic tools and selective breeding in molluscs. Frontiers in Genetics, [S. l.], v. 9, n. JUL, p. 1–15, 2018. https://doi.org/10.3389/fgene.2018.00253

HONG-GELLER, E.; MICHEVA-VITEVA, SN. Functional Gene Discovery UsingRNA Interference-Based Genomic Screens to Combat Pathogen Infection. **Current Drug Discovery Technologies**, *[S. l.]*, v. 7, n. 2, p. 86–94, 2010. <u>https://doi.org/10.2174/157016310793180657</u>

HORGAN, Finbarr G.; STUART, Alexander M.; KUDAVIDANAGE, Enoka P. Impact of invasive apple snails on the functioning and services of natural andmanaged wetlands. Acta **Oecologica**, *[S. l.]*, v. 54, p. 90–100, 2014. <u>https://doi.org/10.1016/j.actao.2012.10.002</u>

HUANG, Jianfang; LUO, Xuan; HUANG, Miaoqin; LIU, Guangmou; YOU, Weiwei; KE, Caihuan. Identification and characteristics of muscle growth-related microRNA in the Pacific abalone, Haliotis discus hannai. **BMC Genomics**, *[S. l.]*, v. 19, n. 1, p. 1–11, 2018. https://doi.org/10.1186/s12864-018-5347-9

HUANG, Songqian et al. Identification and characterization of microRNAs and their predicted functions in biomineralization in the pearl oyster (Pinctada fucata). **Biology**, *[S. l.]*, v. 8, n. 2, 2019. <u>https://doi.org/10.3390/biology8020047</u>

HUANG, Songqian; YOSHITAKE, Kazutoshi; ASADUZZAMAN, Md; KINOSHITA, Shigeharu; WATABE, Shugo; ASAKAWA, Shuichi. Discovery and functional understanding of MiRNAs in molluscs: a genome-wide profiling approach. **RNA Biology**, *[S. l.]*, n. January, 2021. <u>https://doi.org/10.1080/15476286.2020.1867798</u>

HUNTZINGER, Eric; IZAURRALDE, Elisa. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. **Nature Reviews Genetics**, *[S. l.]*, v. 12, n. 2, p. 99–110, 2011. <u>https://doi.org/10.1038/nrg2936</u>

IORIO, Marilena V.; CROCE, Carlo M. MicroRNAs in cancer: Small molecules with a

huge impact. Journal of Clinical Oncology, [S. l.], v. 27, n. 34, p. 5848–5856, 2009. https://doi.org/10.1200/JCO.2009.24.0317

IP, Jack C. H. et al. AmpuBase: A transcriptome database for eight species of apple snails (Gastropoda: Ampullariidae). **BMC Genomics**, *[S. l.]*, v. 19, n. 1, p. 1–9, 2018. https://doi.org/10.1186/s12864-018-4553-9

IPSARO, Jonathan J.; HAASE, Astrid D.; KNOTT, Simon R.; JOSHUA-TOR, Leemor; HANNON, Gregory J. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. **Nature**, [S. l.], v. 491, n. 7423, p. 279–282, 2012. https://doi.org/10.1038/nature11502

JO, Myung Hyun; SHIN, Soochul; JUNG, Seung Ryoung; KIM, Eunji; SONG, Ji Joon; HOHNG, Sungchul. Human Argonaute 2 Has Diverse Reaction Pathways on Target RNAs. **Molecular Cell**, *[S. l.]*, v. 59, n. 1, p. 117–124, 2015. https://doi.org/10.1016/j.molcel.2015.04.027

JOKAT, Wilfried; BOEBEL, Tobias; KÖNIG, Matthias; MEYER, Uwe. Timing and geometry of early Gondwana breakup. **Journal of Geophysical Research: Solid Earth**, *[S. l.]*, v. 108, n. B9, 2003. <u>https://doi.org/10.1029/2002JB001802</u>

JONAS, Stefanie; IZAURRALDE, Elisa. Towards a molecular understanding of microRNA-mediated gene silencing. **Nature Reviews Genetics**, *[S. l.]*, v. 16, n. 7, p. 421–433, 2015. <u>https://doi.org/10.1038/nrg3965</u>

JOSHI, Ravindra C. Managing invasive alien mollusc species in rice. International Rice Research News, [S. l.], v. 30, n. 2, p. 5–13, 2005. https://doi.org/10.1016/j.ecolecon.2008.09.006

KADENER, Sebastian et al. A role for microRNAs in the Drosophila circadian clock. Genes and Development, [S. l.], v. 23, n. 18, p. 2179–2191, 2009. https://doi.org/10.1101/gad.1819509

KAWAMATA, Tomoko; TOMARI, Yukihide. Making RISC. **Trends in Biochemical** Sciences, [S. l.], v. 35, n. 7, p. 368–376, 2010. <u>https://doi.org/10.1016/j.tibs.2010.03.009</u>

KAWANO, Yoshihiko; IWATA, Seiko; KAWADA, Jun Ichi; GOTOH, Kensei; SUZUKI, Michio; TORII, Yuka; KOJIMA, Seiji; KIMURA, Hiroshi; ITO, Yoshinori. Plasma viral MicroRNA profiles reveal potential biomarkers for chronic active epstein-barr virus infection. Journal of Infectious Diseases, [S. l.], v. 208, n. 5, p. 771–779, 2013. https://doi.org/10.1093/infdis/jit222

KHVOROVA, Anastasia; REYNOLDS, Angela; JAYASENA, Sumedha D. Functional siRNAs and miRNAs exhibit strand bias. Cell, [S. l.], v. 115, n. 2, p. 209–216, 2003. https://doi.org/10.1016/S0092-8674(03)00801-8

KIM, V. Narry. MicroRNA biogenesis: Coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, [S. l.], v. 6, n. 5, p. 376–385, 2005. https://doi.org/10.1038/nrm1644 KIM, Young Kook; KIM, V. Narry. Processing of intronic microRNAs. **EMBO Journal**, [S. l.], v. 26, n. 3, p. 775–783, 2007. <u>https://doi.org/10.1038/sj.emboj.7601512</u>

KRUATRACHUE, M.; SUMRITDEE, C.; POKETHITIYOOK, P.; SINGHAKAEW, S. Histopathological effects of contaminated sediments on golden apple snail (Pomacea canaliculata, Lamarck 1822). Bulletin of Environmental Contamination and Toxicology, *[S. l.]*, v. 86, n. 6, p. 610–614, 2011. <u>https://doi.org/10.1007/s00128-011-0265-4</u>

LAGOS-QUINTANA, M.; RAUHUT, R.; LENDECKEL, W.; TUSCHL, T. Identification of novel genes coding for small expressed RNAs. **Science**, *[S. l.]*, v. 294, n. 5543, p. 853–858, 2001. <u>https://doi.org/10.1126/science.1064921</u>

LAM, Victoria; TOKUSUMI, Tsuyoshi; TOKUSUMI, Yumiko; SCHULZ, Robert A. bantam miRNA is important for Drosophila blood cell homeostasis and a regulator of proliferation in the hematopoietic progenitor niche. **Biochemical and Biophysical Research Communications**, *[S. l.]*, v. 453, n. 3, p. 467–472, 2014. https://doi.org/10.1016/j.bbrc.2014.09.109

LARKIN, M. A. et al. Clustal W and Clustal X version 2.0. **Bioinformatics**, *[S. l.]*, v. 23, n. 21, p. 2947–2948, 2007. . <u>https://doi.org/10.1093/bioinformatics/btm404</u>

LAWRIE, Charles H. MicroRNA expression in. **Expert Opinion**, [S. l.], v. 7, n. 9, p. 1363–1374, 2007. <u>https://doi.org/10.1517/14712598.7.9.1363</u>

LAWRIE, Charles H. et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. **British Journal of Haematology**, *[S. l.]*, v. 141, n. 5, p. 672–675, 2008. <u>https://doi.org/10.1111/j.1365-2141.2008.07077.x</u>

LEE, Rosalind C.; FEINBAUM, Rhonda L.; AMBROS, Victor. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. **Cell**, *[S. l.]*, v. 75, n. 5, p. 843–854, 1993. <u>https://doi.org/10.1016/0092-8674(93)90529-Y</u>

LEE, Y. MicroRNA maturation: stepwise processing and subcellular localization. **The EMBO Journal**, *[S. l.]*, v. 21, n. 17, p. 4663–4670, 2002. <u>https://doi.org/10.1093/emboj/cdf476</u>

LEONARDO, Trevor R.; SCHULTHEISZ, Heather L.; LORING, Jeanne F.; LAURENT, Louise C. The functions of microRNAs in pluripotency and reprogramming. **Nature Cell Biology**, *[S. l.]*, v. 14, n. 11, p. 1114–1121, 2012. <u>https://doi.org/10.1038/ncb2613</u>

LEWIS, Benjamin P.; BURGE, Christopher B.; BARTEL, David P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. **Cell**, *[S. l.]*, v. 120, n. 1, p. 15–20, 2005. <u>https://doi.org/10.1016/j.cell.2004.12.035</u>

LEWIS, BP; SHIH, I. U.; JONES-RHOADES, MW; BARTEL, Davi. ..; BURGE, CB. Prediction of mammalian microRNA targets. **Cell**, *[S. l.]*, v. 115, p. 787–798, 2003. https://doi.org/10.1016/S0092-8674(03)01018-3

LI, Li; XU, Jianzhen; YANG, Deyin; TAN, Xiaorong; WANG, Hongfei. Computational approaches for microRNA studies: A review. **Mammalian Genome**, *[S. l.]*, v. 21, n. 1–2, p. 1–12, 2010. <u>https://doi.org/10.1007/s00335-009-9241-2</u>

LI, Ning; ZHOU, Heng; TANG, Qizhu. miR-133: A suppressor of cardiac remodeling? Frontiers in Pharmacology, [S. l.], v. 9, n. AUG, 2018. https://doi.org/10.3389/fphar.2018.00903

LI, Song; MEAD, Edward A.; LIANG, Shaohui; TU, Zhijian. Direct sequencing and expression analysis of a large number of miRNAs in Aedes aegypti and a multi-species survey of novel mosquito miRNAs. **BMC Genomics**, *[S. l.]*, v. 10, p. 1–17, 2009. https://doi.org/10.1186/1471-2164-10-581

LI, Ying; PADGETT, Richard W. Bantam is required for optic lobe development and glial cell proliferation. **PLoS ONE**, *[S. l.]*, v. 7, n. 3, p. 1–12, 2012. https://doi.org/10.1371/journal.pone.0032910

LINDO, John F. et al. Enzootic Angiostrongylus cantonensis in rats and snails after an outbreak of human eosinophilic meningitis, Jamaica. **Emerging Infectious Diseases**, *[S. l.]*, v. 8, n. 3, p. 324–326, 2002. <u>https://doi.org/10.3201/eid0803.010316</u>

LIU, Nghui et al. The genome of the golden apple snail Pomacea canaliculata provides insight into stress tolerance and invasive adaptation. **GigaScience**, *[S. l.]*, v. 7, n. 9, p. 1–13, 2018. <u>https://doi.org/10.1093/gigascience/giy101</u>

LIU, Wenquan; HUANG, Huicong; XING, Cuicui; LI, Chunxiang; TAN, Feng; LIANG, Shaohui. Identification and characterization of the expression profile of microRNAs in Anopheles anthropophagus. **Parasites and Vectors**, *[S. l.]*, v. 7, n. 1, p. 1–8, 2014. https://doi.org/10.1186/1756-3305-7-159

LIU, Xian Shuang et al. MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through notch signaling pathway. **PLoS ONE**, *[S. l.]*, v. 6, n. 8, p. 1–11, 2011. <u>https://doi.org/10.1371/journal.pone.0023461</u>

LUESSI, Felix; SOLLORS, Janina; TORZEWSKI, Michael; MÜLLER, Harald D.; SIEGEL, Ekkehard; BLUM, Johannes; SOMMER, Clemens; VOGT, Thomas; THÖMKE, Frank. Eosinophilic meningitis due to angiostrongylus cantonensis in Germany. Journal of Travel Medicine, [S. l.], v. 16, n. 4, p. 292–294, 2009. <u>https://doi.org/10.1111/j.1708-8305.2009.00337.x</u>

LUQUE, Gloria M.; BELLARD, Céline; BERTELSMEIER, Cleo; BONNAUD, Elsa; GENOVESI, Piero; SIMBERLOFF, Daniel; COURCHAMP, Franck. The 100th of the world's worst invasive alien species. **Biological Invasions**, *[S. l.]*, v. 16, n. 5, p. 981–985, 2014. https://doi.org/10.1007/s10530-013-0561-5

MACRAE, Ian J.; ZHOU, Kaihong; DOUDNA, Jennifer A. Structural determinants of RNA recognition and cleavage by Dicer. **Nature Structural and Molecular Biology**, *[S. l.]*, v. 14, n. 10, p. 934–940, 2007. <u>https://doi.org/10.1038/nsmb1293</u>

MACRAE, Ian J.; ZHOU, Kaihong; LI, Fei; REPIC, Adrian; BROOKS, Angela N.; CANDE, W. Zacheus; ADAMS, Paul D.; DOUDNA, Jennifer A. Structural basis for doublestranded RNA processing by Dicer. **Science**, *[S. l.]*, v. 311, n. 5758, p. 195–198, 2006. https://doi.org/10.1126/science.1121638 MARTÍN-GÓMEZ, Laura; VILLALBA, Antonio; KERKHOVEN, Ron H.; ABOLLO, Elvira. Role of microRNAs in the immunity process of the flat oyster Ostrea edulis against bonamiosis. **Infection, Genetics and Evolution**, *[S. l.]*, v. 27, p. 40–50, 2014. https://doi.org/10.1016/j.meegid.2014.06.026

MATSUKURA, Keiichiro; IZUMI, Yohei; YOSHIDA, Kazuhiro; WADA, Takashi. Cold tolerance of invasive freshwater snails, Pomacea canaliculata, P. maculata, and their hybrids helps explain their different distributions. **Freshwater Biology**, *[S. l.]*, v. 61, n. 1, p. 80–87, 2016. <u>https://doi.org/10.1111/fwb.12681</u>

MATSUKURA, Keiichiro; OKUDA, Mitsuru; CAZZANIGA, Néstor Jorge; WADA, Takashi. Genetic exchange between two freshwater apple snails, Pomacea canaliculata and Pomacea maculata invading East and Southeast Asia. **Biological Invasions**, *[S. l.]*, v. 15, n. 9, p. 2039–2048, 2013. <u>https://doi.org/10.1007/s10530-013-0431-1</u>

MATSUKURA, Keiichiro; TSUMUKI, Hisaaki; IZUMI, Yohei; WADA, Takashi. Physiological response to low temperature in the freshwater apple snail, Pomacea canaliculata (Gastropoda: Ampullariidae). **Journal of Experimental Biology**, *[S. l.]*, v. 212, n. 16, p. 2558–2563, 2009. <u>https://doi.org/10.1242/jeb.031500</u>

MEIJER, Hedda A.; SMITH, Ewan M.; BUSHELL, Martin. Regulation of miRNA strand selection: Follow the leader? **Biochemical Society Transactions**, *[S. l.]*, v. 42, n. 4, p. 1135–1140, 2014. <u>https://doi.org/10.1042/BST20140142</u>

MONTE, Tainá Carneiro de Castro et Al. Estudo Filogenético, Biológico e Morfológicode isolados de Angiostrongylus cantonensis provenientes de diferentes áreas geográficasdoBrasil.2014.[S.l.],2014.Disponívelem:https://www.arca.fiocruz.br/bitstream/icict/12867/1/tainamonteiocmest2014.pdf

MUECK, Kristy; DEATON, Lewis E.; LEE, Andrea; GUILBEAUX, Trey. Physiology of the apple snail pomacea maculata: Aestivation and overland dispersal. **Biological Bulletin**, *[S. l.]*, v. 235, n. 1, p. 43–51, 2018. <u>https://doi.org/10.1086/698817</u>

NG, T. H.; TAN, S. K.; YEO, D. C. J. South American apple snails, Pomacea spp. (Ampullariidae), in Singapore. **Biology and Management of Invasive Apple Snails**, *[S. l.]*, n. October, p. 221–239, 2017. Disponível em: https://www.cabi.org/isc/FullTextPDF/2017/20173354471.pdf

NIELSEN, Finn Cilius; LUND, Anders H. MicroRNA-10a Binds the 5'UTR of Ribosomal Protein mRNAs and Enhances Their Translation. **Molecular Cell**, *[S. l.]*, v. 30, n. 4, p. 460–471, 2008. <u>https://doi.org/10.1016/j.molcel.2008.05.001</u>

NISHIMASU, Hiroshi et al. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. **Nature**, [S. l.], v. 491, n. 7423, p. 284–287, 2012. https://doi.org/10.1038/nature11509

NOVARINO, Aadrean Aadrean. Record of Small-Clawed Otters (Aonyx cinereus) Foraging on an Invasive Pest Species, Golden Apple Snails (Pomacea canaliculata) in a West Sumatra Rice Field. **IUCN/SCC Otter Specialist Group Bulletin**, *[S. l.]*, v. 28, n. 2, p. 34– 38, 2011. Disponível em: https://www.iucnosgbull.org/Volume28/Aadrean_et_al_2011.html

OETJEN, E. MicroRNAs in β-Cell Biology, Insulin Resistance, Diabetes and Its Complications. **Yearbook of Endocrinology**, *[S. l.]*, v. 2012, p. 11–12, 2012. https://doi.org/10.1016/j.yend.2012.05.011

OKADA, Chiman; YAMASHITA, Eiki; LEE, Soo Jae; SHIBATA, Satoshi; KATAHIRA, Jun; NAKAGAWA, Atsushi; YONEDA, Yoshihiro; TSUKIHARA, Tomitake. A high-Resolution structure of the pre-microrna nuclear export machinery. **Science**, *[S. l.]*, v. 326, n. 5957, p. 1275–1279, 2009. <u>https://doi.org/10.1126/science.1178705</u>

OLIVEIRA, Dorlam's da Silva; FRANÇA, Clícia Rosane; PAIXÃO, Dionísia Fernanda; ARAGÃO, Renato juvino; FILHO, Adalberto Alves Pereira; ROSA, Ivone Garros. ESQUISTOSSOMOSE: CONTROLE BIOLÓGICO DA Biomphalaria glabrata POR Pomacea canaliculata. *In*: 64^a REUNIÃO ANUAL DA SBPC 2012, São Luis, Brazil. **Anais** [...]. São Luis, Brazil p. 7–8. Disponível em: http://www.sbpcnet.org.br/livro/64ra/resumos/resumos/1516.htm.

OTTAVIANI, Enzo; ACCORSI, Alice; RIGILLO, Giovanna; MALAGOLI, Davide; BLOM, Joan M. C.; TASCEDDA, Fabio. Epigenetic modification in neurons of the mollusc Pomacea canaliculata after immune challenge. **Brain Research**, *[S. l.]*, v. 1537, p. 18–26, 2013. https://doi.org/10.1016/j.brainres.2013.09.009

OWENS, Leigh; MALHAM, Shelagh. Review of the RNA interference pathway in molluscs including some possibilities for use in bivalves in aquaculture. Journal of Marine Science and Engineering, [S. l.], v. 3, n. 1, p. 87–99, 2015. https://doi.org/10.3390/jmse3010087

PARK, Jong Eun; HEO, Inha; TIAN, Yuan; SIMANSHU, Dhirendra K.; CHANG, Hyeshik; JEE, David; PATEL, Dinshaw J.; KIM, V. Narry. Dicer recognizes the 5' end of RNA for efficient and accurate processing. **Nature**, [S. l.], v. 475, n. 7355, p. 201–205, 2011. https://doi.org/10.1038/nature10198

PICONE, Barbara; RHODE, Clint; ROODT-WILDING, Rouvay. Identification and characterization of miRNAs transcriptome in the South African abalone, Haliotis midae. **Marine Genomics**, [S. l.], v. 31, p. 9–12, 2017. DOI: 10.1016/j.margen.2016.10.005. https://doi.org/10.1016/j.margen.2016.10.005

PIMENTEL, David; ZUNIGA, Rodolfo; MORRISON, Doug. Update on the environmental and economic costs associated with alien-invasive species in the United States. **Ecological Economics**, *[S. l.]*, v. 52, n. 3 SPEC. ISS., p. 273–288, 2005. https://doi.org/10.1016/j.ecolecon.2004.10.002

PLOUGH, Louis V.; HEDGECOCK, Dennis. Quantitative trait locus analysis of stagespecific inbreeding depression in the pacific oyster Crassostrea gigas. **Genetics**, *[S. l.]*, v. 189, n. 4, p. 1473–1486, 2016. <u>https://doi.org/10.1534/genetics.111.131854</u>

QUEIROZ, Fabio Ribeiro; LG, Portilho; WJ, Jeremias; AL., Et. Deep sequencing of small RNAs reveals the repertoire of miRNAs and piRNAs in Biomphalaria glabrata. **Memorias do Instituto Oswaldo Cruz**, *[S. l.]*, v. 115, n. e190498, 2020.

https://doi.org/10.1590/0074-02760190498

QUEIROZ, Fábio Ribeiro; SILVA, Luciana Maria; DE JESUS JEREMIAS, Wander; HIDEO BABÁ, Élio; CALDEIRA, Roberta Lima; COELHO, Paulo Marcos Zech; DE SOUZA GOMES, Matheus. Differential expression of small RNA pathway genes associated with the Biomphalaria glabrata/Schistosoma mansoni interaction. **PLoS ONE**, *[S. l.]*, v. 12, n. 7, p. 1–20, 2017. <u>https://doi.org/10.1371/journal.pone.0181483</u>

RACHAGANI, Satyanarayana; KUMAR, Sushil; BATRA, Surinder K. MicroRNA in pancreatic cancer: Pathological, diagnostic and therapeutic implications. **Cancer Letters**, *[S. l.]*, v. 292, n. 1, p. 8–16, 2010. <u>https://doi.org/10.1016/j.canlet.2009.11.010</u>

RAKOCZY, J. et al. MicroRNAs-140-5p/140-3p Modulate Leydig Cell Numbers in the Developing Mouse Testis. **Biology of Reproduction**, *[S. l.]*, v. 88, n. 6, p. 143–143, 2013. https://doi.org/10.1095/biolreprod.113.107607

RENAUT, Sébastien; GUERRA, Davide; HOEH, Walter R.; STEWART, Donald T.; BOGAN, Arthur E.; GHISELLI, Fabrizio; MILANI, Liliana; PASSAMONTI, Marco; BRETON, Sophie. Genome survey of the freshwater mussel Venustaconcha ellipsiformis (Bivalvia: Unionida) using a hybrid de novo assembly approach. Genome Biology and Evolution, [S. 1.], v. 10, n. 7, p. 1637–1646, 2018. b. <u>https://doi.org/10.1093/gbe/evy117</u>

RUBY, J. Graham; JAN, Calvin H.; BARTEL, David P. Intronic microRNA precursors that bypass Drosha processing. **Nature**, *[S. l.]*, v. 448, n. 7149, p. 83–86, 2007. <u>https://doi.org/10.1038/nature05983</u>

SAITOU, N.; NEI, Masatoshi. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, [S. l.], v. 4, n. 4, p. 406-25, 1987. a. <u>https://doi.org/10.1093/oxfordjournals.molbev.a040454</u>

SANGER, F.; COULSON, A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. **Journal of Molecular Biology**, *[S. l.]*, v. 94, n. 3, p. 441–448, 1975. <u>https://doi.org/10.1016/0022-2836(75)90213-2</u>

SASIDHARAN, Vidyanand; LU, Yi Chien; BANSAL, Dhiru; DASARI, Pranavi; PODUVAL, Deepak; SESHASAYEE, Aswin; RESCH, Alissa M.; GRAVELEY, Brenton R.; PALAKODETI, Dasaradhi. Identification of neoblast- And regeneration-specific miRNAs in the planarian Schmidtea mediterranea. **Rna**, *[S. l.]*, v. 19, n. 10, p. 1394–1404, 2013. https://doi.org/10.1261/rna.038653.113

SCHELL, Tilman et al. An Annotated Draft Genome for Radix auricularia (Gastropoda, Mollusca). Genome Biology and Evolution, [S. l.], v. 9, n. 3, p. 585–592, 2017. https://doi.org/10.1093/gbe/evx032

SCHULTZ, Jonathan H.; ADEMA, Coen M. Comparative immunogenomics of molluscs. **Developmental and Comparative Immunology**, *[S. l.]*, v. 75, p. 3–15, 2017. https://doi.org/10.1016/j.dci.2017.03.013.

SEITZ, Hervé; TUSHIR, Jogender S.; ZAMORE, Phillip D. A 5'-uridine amplifies miRNA/miRNA* asymmetry in Drosophila by promoting RNA-induced silencing complex

formation. Silence, [S. l.], v. 2, n. 1, p. 1-10, 2011. https://doi.org/10.1186/1758-907X-2-4

SHENNAN LU ET AL. **CDD: NCBI's conserved domain database**. 2020. Disponível em: https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. Acesso em: 7 jun. 2020.

SIGWART, Julia D.; LINDBERG, David R. Consensus and confusion in molluscan trees: Evaluating morphological and molecular phylogenies. **Systematic Biology**, *[S. l.]*, v. 64, n. 3, p. 384–395, 2015. <u>https://doi.org/10.1093/sysbio/syu105</u>

SILVANA THIENGO. Sistemática e biogeografia família pilidae connoly: gênero pomacea. [S. l.], 1993. Disponível em: http://books.scielo.org/id/npy7z/pdf/barbosa-9788575414019-05.pdf

SILVANA THIENGO. Sistemática e Biogeografia. **Ecologia**, [S. l.], p. 1–10, 1995. Disponível em: http://books.scielo.org/id/npy7z/pdf/barbosa-9788575414019-04.pdf

SIMAKOV, Oleg et al. Insights into bilaterian evolution from three spiralian genomes. **Nature**, *[S. l.]*, v. 493, n. 7433, p. 526–531, 2013. <u>https://doi.org/10.1038/nature11696</u>

SIOMI, Mikiko C.; SATO, Kaoru; PEZIC, Dubravka; ARAVIN, Alexei A. PIWIinteracting small RNAs: The vanguard of genome defence. **Nature Reviews Molecular Cell Biology**, *[S. l.]*, v. 12, n. 4, p. 246–258, 2011. <u>https://doi.org/10.1038/nrm3089</u>

SONG, Hao; QI, Lu; ZHANG, Tao; WANG, Hai Yan. Understanding microRNA regulation involved in the metamorphosis of the veined rapa whelk (Rapana venosa). **G3: Genes, Genomes, Genetics**, *[S. l.]*, v. 7, n. 12, p. 3999–4008, 2017. https://doi.org/10.1534/g3.117.300210

SONG, Ji Joon; SMITH, Stephanie K.; HANNON, Gregory J.; JOSHUA-TOR, Leemor. Crystal structure of argonaute and its implications for RISC slicer activity. **Science**, *[S. l.]*, v. 305, n. 5689, p. 1434–1437, 2004. <u>https://doi.org/10.1126/science.1102514</u>

SUN, Jin et al. Signatures of divergence, invasiveness, and terrestrialization revealed by four apple snail genomes. **Molecular Biology and Evolution**, *[S. l.]*, v. 36, n. 7, p. 1507–1520, 2019. <u>https://doi.org/10.1093/molbev/msz084</u>

SUN, Jin; ZHANG, Huoming; WANG, Hao; HERAS, Horacio; DREON, Marcos S.; ITUARTE, Santiago; RAVASI, Timothy; QIAN, Pei Yuan; QIU, Jian Wen. First proteome of the egg perivitelline fluid of a freshwater gastropod with aerial oviposition. Journal of Proteome Research, *[S. l.]*, v. 11, n. 8, p. 4240–4248, 2012. <u>https://doi.org/10.1021/pr3003613</u>

SWARTS, Daan C.; MAKAROVA, Kira; WANG, Yanli; NAKANISHI, Kotaro; KETTING, René F.; KOONIN, Eugene V.; PATEL, Dinshaw J.; VAN DER OOST, John. The evolutionary journey of Argonaute proteins. **Nature Structural and Molecular Biology**, *[S. l.]*, v. 21, n. 9, p. 743–753, 2014. <u>https://doi.org/10.1038/nsmb.2879</u>

TAKANE, Kahori; FUJISHIMA, Kosuke; WATANABE, Yuka; SATO, Asako; SAITO, Nobuto; TOMITA, Masaru; KANAI, Akio. Computational prediction and experimental validation of evolutionarily conserved microRNA target genes in bilaterian animals. **BMC** Genomics, [S. l.], v. 11, n. 1, 2010. <u>https://doi.org/10.1186/1471-2164-11-101</u>

TAKAYA, Tomohide et al. MicroRNA-1 and microRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. **Circulation Journal**, *[S. l.]*, v. 73, n. 8, p. 1492–1497, 2009. <u>https://doi.org/10.1253/circj.CJ-08-1032</u>

TAKEUCHI, Takeshi et al. Draft genome of the pearl oyster Pinctada fucata: A platform for understanding bivalve biology. **DNA Research**, *[S. l.]*, v. 19, n. 2, p. 117–130, 2012. https://doi.org/10.1093/dnares/dss005

TAMURA, Koichiro; DUDLEY, Joel; NEI, Masatoshi; KUMAR, Sudhir. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. **Molecular Biology and Evolution**, *[S. l.]*, v. 24, n. 8, p. 1596–1599, 2007. https://doi.org/10.1093/molbev/msm092

TANZER, Andrea; STADLER, Peter F. Molecular evolution of a microRNA cluster. Journal of Molecular Biology, [S. l.], v. 339, n. 2, p. 327–335, 2004. https://doi.org/10.1016/j.jmb.2004.03.065

THOMPSON, Julie D.; GIBSON, Toby. J.; HIGGINS, Des G. Multiple Sequence Alignment Using ClustalW and ClustalX. **Current Protocols in Bioinformatics**, *[S. l.]*, v. 00, n. 1, p. 2.3.1-2.3.22, 2002. <u>https://doi.org/10.1002/0471250953.bi0203s00</u>

TSAI, Hung Chin et al. Eosinophilic meningitis caused by Angiostrongylus cantonensis: Report of 17 cases. American Journal of Medicine, [S. l.], v. 111, n. 2, p. 109–114, 2001. https://doi.org/10.1016/S0002-9343(01)00766-5

TUDOR, S. et al. Cellular and Kaposi's sarcoma-associated herpes virus microRNAs in sepsis and surgical trauma. Cell Death and Disease, [S. l.], v. 5, n. 12, 2014. https://doi.org/10.1038/cddis.2014.515

ULIANO, Marcela; DONDERO, Francesco; DAN OTTO, Thomas; COSTA, Igor; LIMA, Nicholas Costa Barroso; AMERICO, Juliana Alves; MAZZONI, Camila Junqueira; PROSDOCIMI, Francisco; REBELO, Mauro de Freitas. A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel, Limnoperna fortunei. [s.l: s.n.]. v. 7. <u>https://doi.org/10.1093/gigascience/gix128</u>

VASUDEVAN, Shobha. Posttranscriptional Upregulation by MicroRNAs. Wiley Interdisciplinary Reviews: RNA, [S. l.], v. 3, n. 3, p. 311–330, 2012. https://doi.org/10.1002/wrna.121

VASUDEVAN, Shobha; STEITZ, Joan A. AU-Rich-Element-Mediated Upregulation of Translation by FXR1 and Argonaute 2. Cell, [S. l.], v. 128, n. 6, p. 1105–1118, 2007. https://doi.org/10.1016/j.cell.2007.01.038

VEENSTRA, Jan A. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. **General and Comparative Endocrinology**, *[S. l.]*, v. 167, n. 1, p. 86–103, 2010. https://doi.org/10.1016/j.ygcen.2010.02.010

VOOLSTRA, Christian R.; GIGA COMMUNITY OF SCIENTISTS (COS);

WÖRHEIDE, Gert; LOPEZ, Jose V. Corrigendum to: Advancing genomics through the Global Invertebrate Genomics Alliance (GIGA). **Invertebrate Systematics**, *[S. l.]*, v. 31, n. 2, p. 231, 2017. <u>https://doi.org/10.1071/IS16059_CO</u>

WALKER, Sarah E.; SPENCER, Gaynor E.; NECAKOV, Aleksandar; CARLONE, Robert L. Identification and characterization of microRNAs during retinoic acid-induced regeneration of a molluscan central nervous system. **International Journal of Molecular Sciences**, *[S. l.]*, v. 19, n. 9, 2018. <u>https://doi.org/10.3390/ijms19092741</u>

WANG et al. Scallop genome provides insights into evolution of bilaterian karyotype and development. **Nature Ecology and Evolution**, [S. l.], v. 1, n. 5, p. 1–12, 2017. https://doi.org/10.1038/s41559-017-0120

WANG, Fengjun; ZHENG, Zhiguo; GUO, Jiangfeng; DING, Xianfeng. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. **Gynecologic Oncology**, *[S. l.]*, v. 119, n. 3, p. 586–593, 2010. https://doi.org/10.1016/j.ygyno.2010.07.021

WANG, Q. P.; WU, Z. D.; WEI, J.; OWEN, R. L.; LUN, Z. R. Human angiostrongylus cantonensis: An update. **European Journal of Clinical Microbiology and Infectious Diseases**, *[S. l.]*, v. 31, n. 4, p. 389–395, 2012. <u>https://doi.org/10.1007/s10096-011-1328-5</u>

WANG, Qiao Ping; LAI, De Hua; ZHU, Xing Quan; CHEN, Xiao Guang; LUN, Zhao Rong. Human angiostrongyliasis. **The Lancet Infectious Diseases**, *[S. l.]*, v. 8, n. 10, p. 621–630, 2008. <u>https://doi.org/10.1016/S1473-3099(08)70229-9</u>

WANG, Xiaolin; SHI, Jialun; NIU, Zhigao; WANG, Jianwu; ZHANG, Wenping. MiR-216a-3p regulates the proliferation, apoptosis, migration, and invasion of lung cancer cells via targeting COPB2. **Bioscience, Biotechnology and Biochemistry**, *[S. l.]*, v. 00, n. 00, p. 2014–2027, 2020. <u>https://doi.org/10.1080/09168451.2020.1783197</u>

WANG, Xiaowo; ZHANG, Jing; LI, Fei; GU, Jin; HE, Tao; ZHANG, Xuegong; LI, Yanda. MicroRNA identification based on sequence and structure alignment. **Bioinformatics**, *[S. l.]*, v. 21, n. 18, p. 3610–3614, 2005. <u>https://doi.org/10.1093/bioinformatics/bti562</u>

WEI, P.; P, He; X, Zhang; ET. Identification and characterization of microRNAs in the gonads of Crassostrea hongkongensis using high-throughput sequencing. **Comp Biochem Physiol Part D Genomics Proteomics.**, *[S. l.]*, v. 31, 2019. <u>https://doi.org/10.1016/j.cbd.2019.100606</u>

XIE, Mingyi; LI, Mingfeng; VILBORG, Anna; LEE, Nara; SHU, Mei Di; YARTSEVA, Valeria; ŠESTAN, Nenad; STEITZ, Joan A. Mammalian 5'-capped microRNA precursors that generate a single microRNA. Cell, [S. l.], v. 155, n. 7, p. 1568–1580, 2013. https://doi.org/10.1016/j.cell.2013.11.027

XUE, Chenghai; LI, Fei; HE, Tao; LIU, Guo Ping; LI, Yanda; ZHANG, Xuegong. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. **BMC Bioinformatics**, *[S. l.]*, v. 6, p. 1–7, 2005. https://doi.org/10.1186/1471-2105-6-310 YANG, Shiuan et al. Conserved vertebrate mir-451 provides a platform for Dicerindependent, Ago2-mediated microRNA biogenesis. **Proceedings of the National Academy of Sciences of the United States of America**, *[S. l.]*, v. 107, n. 34, p. 15163–15168, 2010. <u>https://doi.org/10.1073/pnas.1006432107</u>

YANG, Wei; STEITZ, Thomas A. Recombining the structures of HIV integrase, RuvC and RNase H. **Structure**, [S. l.], v. 3, n. 2, p. 131–134, 1995. <u>https://doi.org/10.1016/S0969-2126(01)00142-3</u>

YODA, Mayuko; KAWAMATA, Tomoko; PAROO, Zain; YE, Xuecheng; IWASAKI, Shintaro; LIU, Qinghua; TOMARI, Yukihide. ATP-dependent human RISC assembly pathways. **Nature Structural and Molecular Biology**, [S. l.], v. 17, n. 1, p. 17–24, 2010. https://doi.org/10.1038/nsmb.1733

YU, Deliang; WU, Huifeng; PENG, Xiao; JI, Chenglong; ZHANG, Xiaoying; SONG, Jun; QU, Junle. Profiling of microRNAs and mRNAs in marine mussel Mytilus galloprovincialis. **Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology**, *[S. l.]*, v. 230, n. November 2019, p. 108697, 2020. https://doi.org/10.1016/j.cbpc.2019.108697

YUSA, Yoichi; WADA, Takashi; TAKAHASHI, Satoshi. Effects of dormant duration, body size, self-burial and water condition on the long-term survival of the apple snail, Pomacea canaliculata (Gastropoda: Ampullariidae). **Applied Entomology and Zoology**, *[S. l.]*, v. 41, n. 4, p. 627–632, 2006. <u>https://doi.org/10.1303/aez.2006.627</u>

YUVA-AYDEMIR, Yeliz; SIMKIN, Alfred; GASCON, Eduardo; GAO, Fen Biao. MicroRNA-9: Functional evolution of a conserved small regulatory RNA. **RNA Biology**, *[S. l.]*, v. 8, n. 4, p. 557–564, 2011. <u>https://doi.org/10.4161/rna.8.4.16019</u>

ZHANG, Baohong; STELLWAG, Edmund J.; PAN, Xiaoping. Large-scale genome analysis reveals unique features of microRNAs. **Gene**, *[S. l.]*, v. 443, n. 1–2, p. 100–109, 2009. https://doi.org/10.1016/j.gene.2009.04.027

ZHANG, Haidi; KOLB, Fabrice A.; JASKIEWICZ, Lukasz; WESTHOF, Eric; FILIPOWICZ, Witold. Single Processing Center Models for Human Dicer and Bacterial RNase III. Cell, [S. l.], v. 118, n. 1, p. 57–68, 2004. <u>https://doi.org/10.1016/j.cell.2004.06.017</u>

ZHANG, Wenyu; CHEN, Jiajia; YANG, Yang; TANG, Yifei; SHANG, Jing; SHEN, Bairong. A practical comparison of De Novo genome assembly software tools for next-generation sequencing technologies. **PLoS ONE**, *[S. l.]*, v. 6, n. 3, 2011. https://doi.org/10.1371/journal.pone.0017915

ZHANG, Yan Feng; ZHANG, Rui; SU, Bing. Diversity and evolution of MicroRNA gene clusters. Science in China, Series C: Life Sciences, [S. l.], v. 52, n. 3, p. 261–266, 2009. https://doi.org/10.1007/s11427-009-0032-5

ZHANG, Yan Qiong; CHEN, Dong Liang; TIAN, Hai Feng; ZHANG, Bao Hong; WEN, Jian Fan. Genome-wide computational identification of microRNAs and their targets in the deep-branching eukaryote Giardia lamblia. **Computational Biology and Chemistry**, *[S. l.]*, v. 33, n. 5, p. 391–396, 2009. <u>https://doi.org/10.1016/j.compbiolchem.2009.07.013</u>

ZHAO, Xuelin; YU, Hong; KONG, Lingfeng; LIU, Shikai; LI, Qi. High throughput sequencing of small RNAs transcriptomes in two Crassostrea oysters identifies microRNAs involved in osmotic stress response. Scientific Reports, [S. l.], v. 6, n. March, p. 1–11, 2016. https://doi.org/10.1038/srep22687

ZHOU, Meng et al. In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. **Genomics**, *[S. l.]*, v. 94, n. 2, p. 125–131, 2009. <u>https://doi.org/10.1016/j.ygeno.2009.04.006</u>

ZHU, Lihui; LIU, Jinming; CHENG, Guofeng. Role of microRNAs in schistosomes and schistosomiasis. Frontiers in Cellular and Infection Microbiology, [S. l.], v. 4, n. NOV, p. 1–5, 2014. <u>https://doi.org/10.3389/fcimb.2014.00165</u>

CROSSTALK OF CONSERVATION OF SEQUENCES OF miRNAs AND ENZYMATIC MACHINERY OF miRNAs PRODUCTION IN AMPULLARIIDAE

Raphael Rodrigues Porto^{1*}, Flávio César Thiago^{1*}, Carlos Bruno de Araújo¹, Tamires Caixeta Alves¹, Laurence Rodrigues do Amaral¹, Fabio Ribeiro Queiroz², Matheus de Souza Gomes^{1**}

¹Federal University of Uberlândia, Laboratory of Bioinformatics and Molecular Analysis, Patos de Minas, MG, Brazil

²Mário Penna Institute, Laboratory of Translational Research, Belo Horizonte, MG, Brazil

* These authors contributed equally to this work.

**Corresponding author

Corresponding Author: Matheus de Souza Gomes, Federal University of Uberlandia, Institute of Genetics and Biochemistry, Laboratory of Bioinformatics and Molecular Analysis, GetúlioVargas Avenue, 230, Patos de Minas, MG, Brazil. Phone: +55 34 38233714 matheusgomes@ufu.br.

ABSTRACT:

BACKGROUND: The Ampullariidae family of molluscs is an emerging model for evolutionary studies due to its high diversity, ancient history and wide geographic distribution. miRNAs are essential for the development of the organism, as they help and act in the control of gene expression. The analysis of miRNAs in molluscs, especially in the family Ampullariidae, is especially important due to the low representativeness of analyzed species and the possibility of analyzing the conservation of miRNAs among ampullariids species. **OBJECTIVE:** Identification and characterization of miRNAs (precursors and matures) and their processing pathway genes. **METHODS:** Computational prediction and characterization of miRNAs and genes involved in the miRNA pathway were performed using public database of *Lanistes nyassanus, Marisa cornuarietis, Pomacea canaliculata* and *Pomacea maculata*. The *in silico* analysis was performed using a robust algorithm to identify and characterize miRNAs and their precursors in genome of ampullariids species. To search for the putative proteins involved in the miRNA biogenesis the putative proteomes from 4 Ampullariids species and Blastp tool were used. Characterization of conserved protein domains was performed using the PFAM and CDD. Phylogenetic analyzes were performed for the ampullariids miRNA

precursors and their orthologs and also for the putative ampullariids proteins involved in the miRNA pathway and their orthologs using MEGA program. **FINDINGS:** 141 pre-miRNAs and 162 mature miRNAs were identified in the genome of *L. nyassanus*, 279 pre-miRNAs and 297 mature miRNAs in the genome of *M. cornuarietis*, 269 pre-miRNAs and 296 mature miRNAs in the genome of *P. canaliculata* and 299 pre-miRNAs and 316 mature miRNAs in the genome of *P. maculata*. We identified and characterized 24 putative key proteins involved in the miRNA pathway including Argonaute, DICER, DROSHA and EXPORTIN protein families in the predicted proteome of the 4 ampullariids. The data obtained in this work will support studies of phylogeny, population divergence, speciation and patterns of diversity in the Ampullariidae Family. **MAIN CONCLUSIONS**: The searching for novel miRNAs and their processing pathway genes in 4 species of ampullariids was able to predict new structures expanding the study of miRNAs in molluscs and in Ampullariidae family, as well as open an avenue to study the roles of miRNAs in the organisms.

Keyword: miRNAs. Computational Analysis. Snails. Ampullariidae. Genome

INTRODUCTION

Molluscs of the Ampullariidae family are freshwater snails found in tropical and subtropical regions of Africa, Asia and the Americas. The animals belong to the subclass Caenogastropoda, which comprises about 50,000 species and approximately 60% of Gastropod species (Hayes et al., 2009; Strong et al., 2008). As they are a family that derived from the subclass Caenogastropoda in early evolution (Cowie, 2015) ampullariids are an excellent model to study speciation and adaptation (Hayes et al., 2009).

The scarcity of sequenced molluscs genomes was identified by the Global Invertebrate Genomics Alliance as a problem for species characterization (Voolstra et al., 2017). There are four ampullariids with sequenced genomes including the Old World (*Lanistes nyassanus*) and New World (*Pomacea canaliculata, Pomacea maculata* and *Marisa cornuarietis*) clades that can be the object of comparative genomic studies. The division between New and Old World lineages is consistent with the time of separation from Gondwana, around 120 million years ago (Jokat et al., 2003; Sun et al., 2019). The availability of the genome and transcriptome of the cited species makes it promising to study gene regulation, intrinsically the post- transcriptional regulation mediated by miRNAs. Almost all biological processes, including celldifferentiation, tissue development and cell metabolism can be modulated by miRNAs. This

regulation of gene expression is carried out through a fine control, where miRNAs and their silencing pathways carry out a specific regulation of gene expression and maintenance of genome integrity (Bartel, 2009). This may help to better understand the biology of the ampullariids studied and their adaptive properties. miRNAs have a low homoplasy, that is, their presence in two different species is more likely to be linked to a common ancestry, thus correlating the distribution of miRNAs in evolutionary relationships of the species (Kenny et al., 2015). This will allow a better understanding of the biology of the Ampullariidae family in molluscs, particularly its medical and economic importance for the humanity of ampullariids species.

P. canaliculata is involved in the transmission of the helminth *Angiostrongylus cantonensis* that causes eosinophilic meningitis in humans. Molluscs are the intermediate hosts when they are contaminated by ingestion of Larva L1. The infecting larva lodges in the Central Nervous System in humans, causing eosinophilic meningitis or ocular angiostrongyliasis in the eye ball (Luessi et al., 2009; Wang et al., 2012, 2008). Despite eosinophilic meningitis usually course in humans with low severity there may be some severe cases of the disease with severe neurological sequelae, coma and death (especially in children) (Chen et al., 2014; Lindo et al., 2002; Tsai et al., 2001). miRNAs are able to modulate the immune system of molluscs in response to stress caused by infectious processes (Picone et al., 2017).

P. canaliculata is used as a source of dietary protein in Southeast Asia. Ingestion of undercooked animals can transmit *A. cantonensis* causing eosinophilic meningitis in humans. In the Nueva Ecija region of the Philippines, the prevalence of *P. canaliculata* contaminated with nematodes was 17.75% (Cawas et al., 2020). The lack of awareness of the population is notorious, being considered a neglected disease and an important public health problem in the region (Dalton et al., 2017).

In mainland China, eosinophilic meningitis caused by *A. cantonensis* is considered an emerging infectious disease (Lv et al., 2008). Epidemiological evidence indicates that *P. canaliculata* is becoming the most prevalent intermediate host of *A. cantonensis* in this country, due to its high susceptibility to the parasite and its wide environmental tolerance (Yang et al., 2013). A major outbreak occurred in Beijing in 2006 with 160 cases of human angiostrongyliasis causing eosinophilic meningitis. The fact occurred due to the consumption of contaminated *P. canaliculata* imported from regions in southern China (Wang et al., 2008). Thus, we note the extreme importance of more epidemiological studies in the country regarding this serious public health problem. The study of the biology and adaptability of *P. canaliculata*

has the same degree of importance for better management and control of eosinophilic meningitis.

P. canaliculata is described as an invasive species and was ranked among the top 100 pests worldwide. The species is resistant to elevated temperatures and drought (Matsukura et al., 2009; Yusa et al., 2006) . *P. maculata* has physiological and adaptive characteristics similar to *P. canaliculata*, both species being recognized for their rapid propagation and population increase, constituting a serious threat to the balance of an ecosystem. The economic costs of damage, control and repair can be immense (Pimentel et al., 2005).

P. canaliculata is considered an agricultural pest in many parts of Asia (Wang et al., 2020). In Indonesia, when introduced into rice plantations, it causes a 15% drop in production (Novarino, 2011). The dispersion of *P. canaliculata* in crops planted in humid regions causes serious damage in Southeast Asia (Carlsson et al., 2016) in Japan (Yusa, 1999) and also in China (Yang et al., 2013).

In 2003, China's State Department of the Environment ranked *P. canaliculata* in a list of 16 invasive pests. Since the mollusc was introduced to China around 1980, there is no accurate data on the spread of *P. canaliculata* in agriculture. Over the next twenty years, the molluscs spread widely in the country and as the snails moved into agriculture, control measures against *P. canaliculata* were implemented (Yang et al., 2013). More epidemiological studies are needed regarding the impact of *P. canaliculata* on agriculture in China. Work on the biology of the snail such as adaptability and environmental plasticity is also needed. The study of miRNAs in the species is an important step towards understanding part of the physiology of *P. canaliculata*, for possible mechanisms of population control of the species in agriculture.

The inherent skills of *P. canaliculata* and *P. maculata* referring to the invasive aspect could be confirmed by mapping characteristics by gene locus. The ability of *P. canaliculata* and *P. maculata* species to colonize and occupy new territories is attributed in part to genes that encode the G protein family (GRL101) (Sun et al., 2019), highly expressed in tentacles and cephalic palps (chemoreception in aquatic snails) (Schultz and Adema, 2017). Still referring to invasiveness, studies have suggested that the voracious appetite of *P. canaliculata* and *P. maculata* species are attributed to the expansion of gene families related to cellulose digestion (Sun et al., 2019).

L. nyassanus and *M. cornuarietis* are snails related to freshwater (Strong et al., 2008) and have divergences regarding their adaptability. While *M. cornuarietis* is better able to resist factors such as low temperature and hypoxia (Matsukura et al., 2016; Mu et al., 2018) *L. nyassanus* has a low adaptability and is endemic to Lake Nyasa, or Malawi, geographically

located between Malawi, Tanzania and Mozambique (Cowie, 2015; Dohrn, 1865; Van Bocxlaer, 2017).

Since miRNA-mediated post-transcriptional silencing performs several regulatory aspects in animals, it is necessary to understand the processing mechanisms of the miRNA pathway and their respective genes. The identification of major miRNA biogenesis factors including, AGO2, DGCR8, DICER, DROSHA, RAN and XPO5 was elucidated based on homologous sequence search in several molluscs (Huang et al., 2021) and in *Biomphalaria Glabrata* by researchers from our group (Queiroz et al., 2017).

Sun et al., published in 2019 the sequencing of the total genome of four species of Ampullariidae, *L. nyassanus*, *P. canaliculata*, *P. maculata* and *M. cornuarietis*. From then on, it was putative to carry out the mapping of characteristics by gene locus. Given the relevant regulatory aspect of non-protein coding RNAs in gene expression, specifically miRNAs, it is necessary to study mature and precursor miRNAs, as well as the genes involved in the miRNA processing pathway. In this work, mature and precursor miRNAs and the genes involved in miRNA pathway were identified and characterized using the genome of *L. nyassanus*, *P. canaliculata*, *P. maculata* and *M. cornuarietis*.

MATERIALS AND METHODS

PREDICTION AND CHARACTERIZATION OF MATURE AND PRECURSOR MIRNAS

The genomes of *L. nyassanus*, *M. cornuarietis*, *P. canaliculata* and *P. maculata* were retrieved from the NCBI database (https://www.ncbi.nlm.nih.gov/genome). A robust algorithm was used to predict miRNAs, precursor and mature forms. The sequences were processed for identification and characterization of predicted mature miRNAs and their precursors, following the methodology established by Gomes *et al.* (2011).

Genome sequences with potential tendency to formation of hairpin structures or similarity to precursor miRNAs were obtained using the Einverted program (EMBOSS tool) and the BLASTn program (NCBI), for identification of homologous miRNAs from miRBase (http: //www.mirbase.org/). Then, the sequences were submitted through a series of filters, selecting, according to the desired parameters, those that corresponded to putative-putative precursors of miRNAs. These filters were based on conserved characteristics of precursor miRNAs and unwanted sequences were discarded. The filters used were the Minimum Free Energy (MFE) (Gruber et al., 2008; Hofacker, 2009), GC content (Zhou et al., 2009), homology

with mature miRNAs already identified. Finally, sequences with high similarity to genes encoding proteins, repetitive elements and non-coding RNAs, except miRNAs, were discarded.

The putative precursors of miRNAs were compared to their orthologs at various levels. The sequences of pre-miRNAs and their respective miRNAs were submitted to multiple alignment, using the tools ClustalX 2.1(Larkin et al., 2007) and RNAalifold (Bernhart et al., 2008). Alignment patterns for ClustalX 2.1 were based on adjusted parameters (gap opening: 22.50; gap extension: 0.83). Secondary structures were obtained using the RNAfold platform (Gruber et al., 2008; Hofacker, 2009). The phylogenetic analysis of the putative pre-miRNAs of *L. nyassanus, M. cornuarietis, P. canaliculata* and *P. maculata* was carried out using MEGA program version X (Tamura et al., 2007) and the Neighbor-joining method applying the Kimura two-parameters model ("Kimura-twoparameters"), to stimulate the divergence between the sequences (N Saitou and Nei, 1987). Consensus trees were obtained using a bootstrap of 5000 replicates.

PREDICTION AND CHARACTERIZATION OF PROTEINS INVOLVED IN MIRNAS BIOGENESIS

In silico identification and characterization of putative miRNA pathway proteins were performed using the amino acid sequences of the proteins from the model organisms *Biomphalaria glabrata, Drosophila melanogaster* and *C. elegans* and the Blastp tool on the ampubase website (https://www.comp.hkbu.edu.hk/~db/AmpuBase/index.php#&panel1-2). Using PFAM (31.0) (Mistry et al., 2021) and conserved Domains CDD (Marchler-Bauer et al., 2017, 2015, 2011; Marchler-Bauer and Bryant, 2004; Shennan Lu et al., 2020) the putative domain architectures of the ampullariids proteins were established. Analysis of the active sites were used for the proteins Argonaut, Dicer and Drosha using Clustal X 2.1 and Weblogo.

Phylogenetic analysis was performed using the MEGA version X program (Kumar et al., 2018), after alignment in default parameters, using the Neighbor-Joining method (Naruya Saitou and Nei, 1987) and the JTT model. The statistical reliability of each branch in the generated tree was evaluated using a 2000-replica bootstrap.

RESULTS

IDENTIFICATION AND CHARACTERIZATION OF PUTATIVE PROTEINS INVOLVED IN MIRNA PATHWAY IN AMPULLARIIDS SPECIES

The predicted proteome of the species *L. nyassanus. M. cornuarietis, P. canaliculata* and *P. maculata* were retrieved from the NCBI database (National Center for Biotechnology Information - http://.ncbi.nlm.nih.gov/) to identify and characterize the putative proteins responsible for the biogenesis of the miRNAs. The identification was based on conservation, using as parameters protein length, conserved domains, active sites conservation and phylogeny analysis. Lny23421, Lny25187,Lny28936, Lny28171, Lny18581, Lny14710, Lny12572, Lny27692, Lny22624, Lny12572, Lny29643, Lny27624, Lny9931, Mco26370, Mco27042, Mco25093, Mco22837, Mco24030, Mco81614, Mco51286, Mco13761, Mco21592, Mco12258, Pca61914, Pca59652, Pca69814, Pca67531, Pca67887,Pca62316, Pca65193, Pca60969, Pca65193, Pca65324, Pca59979, Pca69254, Pma35144, Pma60501, Pma63715, Pma65850, Pma51393, Pma59467, Pma63331, Pma32975, Pma62419, Pma51302 and Pma61707 putative proteins involved in miRNA pathway were identified in predicted proteome of *L. nyassanus, M. cornuarietis, P. canaliculate* and *P. maculate*, respectively [Supplementary data I – (Supplementary Tables 1,2,3 and 4)]. The key proteins of the miRNA pathway were selected, Argonaute, DICER, DROSHA and Exportin, and thus used for further analysis.

Ten putative Argonaute proteins were identified in the predicted proteome of the ampullariids species, being 3 sequences for *L. nyassanus* (Lny23421_c0_g1, Lny25187_c0_g1 and Lny28936_c7_g7), 3 sequences for *M.* cornuarietis (Mco25093_c0_g2, Mco26370_c0_g1, Mco27042_c1_g1), 2 sequences for *P. canaliculata* (Pca69814_c1_g2, Pca61914_c0_g1) and 2 sequences for *P. maculata* (Pma63715_c0_g1_, Pma60501_c2_g16). The sequences Lny23421_c0_g1, Mco26370_c0_g, Pca69814_c1_g2 and Pma63715_c0_g1 exhibited six conserved domains, while the protein sequences Lny25187_c0_g1, Lny28936_c7_g7, Mco25093_c0_g2, Mco27042_c1_g1, Pca61914_c0_g1 e Pma60501_c2_g16 displayed only the PAZ and PIWI domains (Figure 1).

Figure 1: Argonaute's Conserved Domains, *L. nyassanus*. *M. cornuarietis*, *P. canaliculata*, *P. maculata* and orthologs.

The PIWI domain of these proteins presented a catalytic triad formed by DDH (aspartic acid, aspartic acid and histidine). The global alignment of the PIWI domains of the ampullariids

Argonaute proteins and their orthologs showed a conservation of amino acid sequences, being accentuated in the surroundings of the catalytic sites (Figure 2).

Active sites

Figure 2: Global alignment analysis of the PIWI domain of Argonaute proteins de *L. nyassanus, M. cornuarietis, P. canaliculata* and *P. maculata*

The two subfamilies, AGO and PIWI compose the AGO protein family. The predicted sequences of *L. nyassanus*, *M. cornuarietis*, *P. canaliculata* and *P. maculata* were used in the phylogenetic tree and their orthologs, in order to emphasize the conservation of these putative proteins identified in the Ampullariids species and wide distribution among deuterostomes and protostomes species. The distribution of Argonaute and PIWI proteins corroborated the distribution of species in the tree of life. As expected, the ampullariids species grouped together with the phylum Molluscs. The evolutionary proximity of species ampullariids, *L. nyassanus*, *M. cornuarietis*, *P. canaliculata* and *P. maculata* is represented in the tree (Figure 3).

Figure 3: Phylogenetic analysis of AGO proteins, *L. nyassanus*, *M. cornuarietis*, *P. canaliculata* e *P. maculata* and their orthologs.

Five putative Drosha and two putative Dicer proteins were identified and characterized in the ampullariids species. For Drosha, 1 sequence for *L. nyassanus* (Lny18581_c0_g2), 1 sequence for *M. cornuarietis* (Mco22837_c2_g1), 1 sequence for *P. canaliculata* (Pca67887_c3_g1) and 2 sequences for *P. maculata* (Pma51393_c0-g1 and Pma65850_c2g4)

were identified. The amino acid sequences of Pca67887_c3_g1 and Mco22837_c2_g1 had three conserved domains, Lny18581_c0_g2 and Pma65850_c2_g4 had two conserved domains, while the protein sequence Pma51393_c0_g1 had only one conserved domain. For Dicer 1 amino acid sequence were found for *P. canaliculata* (Pca67531_c1_g2), showing 4 conserved domains and for *L. nyassanus* (Lny28171_c0_g1) showing only 3 conserved domains (Figure 4 and Figure 5).

canaliculata, P. maculata and their orthologs.

dsrm PF00035.26

Figure 5: Analysis of conserved domains Drosha for *L. nyassanus*, *M. cornuarietis*, *P. canaliculata*, *P. maculata* and their orthologs.

In the analysis of the Drosha/Dicer proteins, only one conserved domain of Ribonuclease III was identified in the ampullariids studied. The Riboc I domains presented the catalytic amino acids in the conserved site regions (EDDE): glutamic acid (E), aspartate (D), aspartate (D) and glutamic acid (E). This was verified in the sequences Drosha, Lny18581_c0_g2, Mco22837_c2_g1, Pca67887_c3_g1 and Dicer, Lny28171_c0_g1. Note the conservation of amino acids in the active site itself and in the surroundings of the region (Figure 6).

Active sites

Figure 6: Analysis of the conserved domains of Ribonuclease III (Riboc) of the Drosha and Dicer proteins from ampullariids species.

Phylogenetic analysis of the predicted proteins DROSHA and DICER showed the evolutionary relationship with their orthologs. Proteins from *L. nyassanus*, *M. cornuarietis*, *P. canaliculata*, *P. maculata* grouped in the Molluscs clade, revealing close similarity among the ampullariids studied. The disposition of the orthologs of the putative DICER and DROSHA in the clades in the tree corroborated with the tree of life, with a visible distinction between Deuterostomes and Protostomes for the two classes of RNase (Figure 7).

Figure 7: Phylogenetic analysis of DICER and DROSHA proteins from ampullariids and their orthologs.

Similarity of the predicted protein Drosha from *L. nyassanus*, *M. cornuarietis* and *P. canaliculata* with model organism *D. melanogaster* and evolutionarily close organisms. The percent identity, query coverage, length of the predicted protein Drosha from *P. canaliculata* are similar among closely related organisms (Table 1).

Code	Query coverage	E Value	Identity %	Length of string
NP_477436.1 Drosha [<i>D.</i> melanogaster]	100%	0.0	100,00	1327
XP_013069067.1 (<i>B. glabrata</i>)	73%	0.0	54,91	1469
XP_005107264.1 (Aplysia californica)	72%	0.0	54,81	1528
XP_041368618.1 (<i>G. aegis</i>)	72%	0,0	59,09	1412
Pca67887_c3_g1 (<i>P.canaliculata</i>)	66%	0.0	57,75	1525
Mco22837_c2_g1 (M. cornuarietis)	56%	0.0	60,96	760

Lny18581_c0_g2 (<i>L. yassanus</i>)	27%	7e ⁻¹⁵⁰	69,57	317	
TILL DI CL DDOCUL CL	17	• .• 1	ז זי ז	· ·	

Table 1: Putative DROSHA of *L. nyassanus*, *M. cornuarietis* and *P. canaliculata* cover against NP_477436.1 DROSHA [D. melanogaster], E-Value, % of String Identity and Length.

Comparison of the Dicer protein from the model organism *D. melanogaster* with the putative Dicer protein in *L. nyassanus* and *P. canaliculata* and evolutionarily close organisms. Once again, the predicted protein Dicer of *P. canaliculata* showed greater similarity with its orthologs when compared to the other Ampullariidae (Table 2).

Código	Cobertura da <i>query</i>	E Value	Identidade %	Comprimento da sequência
NP_524453.1 Dicer-1 [<i>D.</i> melanogaster]	100%	0.0	100%	2249
XP_012942349.1 (A. californica)	77%	2e ⁻¹⁴¹	50%	2503
XP_013067888.1 (B. glabrata)	74%	2e ⁻¹⁴⁸	51,90%	2332
XP_021347347.1 (<i>M. yessoensis</i>)	72%	7e ⁻¹⁵²	52,87%	2284
XP_041353083.1 (G. aegis)	70%	2e ⁻¹⁵⁰	50,26%	2063
Pca67531_c1_g2 (<i>P. canaliculata</i>)	71%	7e ⁻¹⁴⁰	45.10%	1985
Lny28171_c0_g1 (<i>L. nyassanus</i>)	38%	2e ⁻¹⁶²	53,32%	1434

Table 2: Putative Dicer *L. nyassanus* e *P. canaliculata*, coverage against NP_524453.1 Dicer-1 [D. melanogaster], E-Value, % identity and string length

Nine putative protein sequences belonging to the Exportin protein family (XPO-5, XPO-1, XPO-T) were identified and characterized in the predicted proteome of ampullariid species; XPO-5: *L. nyassanus* (Lny14170_c0_g1), *P. canaliculata* (Pca62316_c0_g2); XPO-1: *L. nyassanus* (Lny12572_c0_g1), *M. cornuarietis* (Mco24030_c0_g2), *P. canaliculata* (Pca65193_c2_g1) and *P. maculata* (Pma59467_c0_g1), XPO-T: *L. nyassanus* (Lny27692_c0_g2), *M. cornuarietis* (Mco81614_c0_g2) *P. maculata* (Pma63331_c0_g1). The sequences of XPO-5, Lny14170_c0_g1 and Pca62316_c0_g2, exhibited 2 domains. For the XPO-1 protein sequences, the putative proteins Lny12572_c0_g1, Mco24030_c0_g2 and Pma59467_c0_g1 displayed six conserved domains, except for the Pca65193_c2_g1, which exhibited only five conserved domains. Likewise, XPO-T putative proteins Lny27692_c0_g2, Mco81614_c0_g2 and Pma63331_c0_g1 showed one conserved domain (Figure 8).

Figure 8: Distribution of conserved domains in putative proteins of the Exportin family in ampullariids species and orthologs.

In the phylogenetic analysis of putative proteins of the Exportin family (XPO-5, XPO-1 and XPO-T) the evolutionary relationship with their orthologs was verified. Protein sequences from *L. nyassanus*. *M. cornuarietis*, *P. canaliculata* and *P. maculata* were grouped in the phylum Molluscs, confirming once again a close proximity between the ampullariids species, as expected by the degree of relatedness of the species. The phylogenetic tree presented three distinct clades (XPO-5, XPO-1 and XPO-T clades), as well as species belonging to the Protostome and Deuterostome groups, corroborating with the literature (Figure 9).

Figure 9: Phylogenetic distribution of putative proteins, XPO-5 XPO-1 and XPO-T identified in *L. nyassanus*. *M. cornuarietis*, *P. canaliculata* e *P. maculata* and their orthologs.

PREDICTION AND CHARACTERIZATION OF PERCURSOR AND MATURE MIRNAS.

A robust algorithm was applied to the genome sequences of the four ampullariids species to identify mature miRNAs and their precursors. 141 pre-miRNAs and 162 miRNAs of *L. nyassanus*, 279 pre-miRNAs and 297 miRNAs of *M. cornuarietis*, 269 pre-miRNAs and 296 miRNAs of *P. canaliculata*; 299 pre-miRNAs and 316 miRNAs of *P. maculata* were predicted [Supplementary data II – (Supplementary Tables 5,6,7,8 and 9)].

An accurate and stringent structural and thermodynamic analysis were used to identify and characterize conserved miRNAs(Y. Q. Zhang et al., 2009). All pre-miRNAs identified were analyzed for these particular characteristics [Supplementary data II - (Supplementary Tables 5,6,7 and 8)]. The pre-miRNAs for *L. nyassanus* exhibited MFE (minimum free energy) with a mean of -30.30 kcal/mol, with values between -18.50 and -50.90 kcal/mol; for *M. cornuarietis* the mean MFE of -28.05 kcal/mol, with values between -18.50 and -67.10 kcal/mol; for *P. canaliculata* the mean of MFE -28.70 kcal/mol, with values between -18.70 and -48.4 kcal/mol; for *P. maculata* the mean of -27.55 kcal/mol, with values between -18.50 and -52.7 kcal/mol (Table 3).

Species	Average size of	Precursor size	Mean value MFE	Variation MFE -
	precursors	variation	- Kcal/mol	Kcal/mol
	(nucleotides)	(nucleotides)		
L. nyassanus	87.04	66 to 100	-30,3	(-50.90 to -18.50)
M. cornuarietis	88.16	65 to 100	-28,05	(-67.10 to -18.50)
P. canaliculata	89,55	63 to 144	-28,7	(-48.40 to -18.70)
P. maculata	89.27	65 to 100	-27,55	(-52.70 to 18.50)

Table 3: Average size and size variation of precursors, average minimum free energy (MFE) and MFE variation of precursors in 4 species Ampullariidae

The precursors showed mean values for the guanine-cytosine (GC) content for *L. nyassanus*, *M. cornuarietis*, *P. canaliculata* and *P. maculata*; 41.26%, 41.64%, 41.70%, 40.74%, respectively. The maximum and minimum values were respectively 69.05 and 20.25% for *L. nyassanus*, 67.03% and 20.20% for *M. cornuarietis*, 68.29% and 20.83% for *P. canaliculata*, 68, 75% and 20.40% for *P. maculata*. In this study, the average size of miRNA precursors for *L. nyassanus*, *M. cornuarietis*, *P. canaliculata*, P. *maculata* were respectively; 87.04 nucleotides, 88.16 nucleotides, 89.55 nucleotides and 89.27 nucleotides. Size range of pre-miRNAs for *L. nyassanus* (66 to 100 nucleotides), *M. cornuarietis* (65 to 100 nucleotides), *P. canaliculata* (63 to 144 nucleotides), *P. maculata* (65 to 100 nucleotides).

The sequences of miRNAs have been shown to be evolutionarily conserved (De Wit et al., 2009). This conservation is accentuated in the seed region of the mature miRNAs, being considered important for recognition of their mRNA targets (Lewis et al., 2005). All mature miRNAs identified in this work showed 100% identity in the seed regions (position 2 to 8 nucleotides) with the structure of their respective ortholog deposited in miRBase, on which the homology comparison was based.

The mature miRNAs identified in this work had an average of 22.22 nucleotides in *L. nyassanus*, 21.92 nucleotides in *M. cornuarietis*, 21.86 nucleotides in *P. canaliculata* and 21.77 nucleotides for *P. maculata*, ranging in size from 17 to 25 nucleotides for all species analyzed.

The Argonaute protein has a preference for the uracil nucleotide in the first position of the miRNA sequence at the 5' end to be loaded, to be inserted into the RISC complex (Seitz et al., 2011). In this work mature miRNAs from L. nyassanus, M. cornuarietis. P. canaliculata and

P. maculata respectively presented uracil as the main nucleotides in the first position; 41.97%, 44.44%, 41.2% and 42.40% (uracil), 17.28%, 17.84%, 20.9% and 17.8% (cytosine), 26.54%, 22.56%, 20.4% and 24.5% (adenine) and 14.19%, 15.15%, 17.5% and 15.3% (guanine) [Supplementary data II - (Supplementary table 9)].

The presence of miRNAs in two different species is more likely to be linked to a common ancestry, thus correlating the distribution of miRNAs in evolutionary relationships of species (Kenny et al., 2015). In order to emphasize the conservation of these putative miRNAs identified in the ampullariid species, phylogenetic trees were constructed. The global alignment and secondary structure characterization of the precursors of miRNAs was performed, to show the similarity of the sequences with their orthologs already identified. The taxa that were used as a parameter for the selection of specific are Bilateria, Protostomes, Lophotrocozoa and Molluscs. The selection of pre-miRNAs based on these taxons was performed having as parameter the miRNAs prevalent simultaneously in the 4 ampullariids species (Table 4). The characterization of miRNAs by taxons was shown in figures 1 to 11 and Supplementary data III - supplementary figures 1 to 34

Тах	Species	Pre-miRNAs			
	L. nyassanus	Iny-mir-33, Iny-mir-190, Iny-mir-252a, Iny-mir-281, Iny-mir-981			
	M. cornuarietis	mcr-mir-33, mcr-mir-190, mcr-mir-252a, mcr-mir-281, mcr- mir-981			
Bilateria	P. canaliculata	pcn-mir-33, pcn-mir-190, pcn -mir-252a, pcn-mir-281, pcn-mir- 981			
	P. maculata	pmc -mir-33, pmc-mir-190, pmc-mir-252a, pmc-mir-281, pmc- mir-981			
	L. nyassanus	Iny-bantam, Iny-mir-2a, Iny-mir-67, Iny-mir-750			
Protostomies	M. cornuarietis	mcr-bantam, mcr-mir-2a, mcr-mir-67, mcr-mir-750			
	P. canaliculata	pcn-bantam, pcn-mir-750			
	P. maculata	pcr-bantam, pcr-mir-2a, pcr-mir-67, pcr-mir-750			
	L. nyassanus	Iny-mir-1990, Iny-mir-745a, Iny-mir-96b, Iny-mir-1994			
	M. cornuarietis	mcr-mir-1990, mcr-mir-96b, mcr-mir-1994			
Lophotrocozoa	P. canaliculata	pcn-mir-1990, pcn-mir-745a, pcn-mir-1992, pcn-mir-96b, pcn- mir-1994			
	P. maculata	pmc-mir-1990, pmc-mir-745a, pmc-mir-1992, pmc-mir-96b, pmc-mir-1994			
	L. nyassanus	Iny-mir-1985, Iny-mir-12096b			
Molluscs	M. cornuarietis	mcr-mir-1985, mcr-mir-12096b			
	P. canaliculata	pcn-mir-1985, pcn-mir-12096b			

P. maculata	Pmc-mir-1985, Pmc-mir-12096b

Table 4: miRNAs selected by taxon

The precursors of miR-33, Bilateria-specific-miRNA, were found in this study: lnymiR-33, mcr-miR-33, pcn-miR-33, pmc-miR-33. All precursors found the 4 species showed two mature miRNAs, 3p and 5p. The sequences of the precursors showed high conservation in the primary and secondary structures. The similarity of the ampullariids miRNA structures were found to be highly conserved each other (Figure 10 and 11).

Figure 10: Alignment of mir-33 in *L. nyassanus*, *M. cornuarietis*, *P. canaliculata* and *P. maculata* and their orthologs; pen - *P. canaliculata*, pmc - *P. maculata*, mcr - *M. cornuarietis*, lny- *L. nyassanus*, lgi - *L. gigantea*, tcf - *Triops cancriformis*, cte - *Capitella teleta*, sko - *Saccoglossus kowalevskii*, pny - *Pundamilia nyererei*.

Figure 11: Secondary structure of mir-33 in *L. Nyassanus, M. cornuarietis, P. canaliculata, P. maculata* and their orthologs; pcn - *P. canaliculata*, pmc - *P. maculata*, mcr - *M. cornuarietis*, lny - *L. nyassanus*, lgi - *L. gigantea*, tcf - *Triops cancriformis*, cte - *C. teleta*, sko - *Saccoglossus kowalevskii*, pny - *Pundamilia nyererei*.

The Protostome and Deuterostome clades were observed in the phylogenetic. The first clade was subdivided into Lophotrochozoa and Ecdysozoa, being represented respectively by molluscs and arthropods. In the phylum Molluscs, the presence of gastropods was observed, where the ampullariids species were grouped. Deuterostome organisms were represented by clades; mammals, birds and amphibians, verifying wide distribution in phylogenetic clades. This distribution corroborated with the tree of life (Figure 12).

Figure 12: mir-33 phylogenetic distribution for *L. Nyassanus*, *M. cornuarietis P. canaliculata*, *P. maculata* and their orthologs.

The precursors of miRNAs (protostomes specific) lny-miR-67, mcr-miR-67, pcn-miR-67, pmc-miR-67 and a mature miRNA were identified for each Ampullariidae species analyzed. The primary structures of the mi-67 family in *L. nyassanus*, *M. cornuarietis*. *P. canaliculata* and *P. maculata* were highly conserved between themselves and their orthologs, especially in the region of mature miRNAs. Note the extreme similarity in the secondary structures of the precursors in *M. cornuarietis* and *P. maculata* (Figure 13 and Figure 14).

Figure 13: mir-67 alignment to *L. nyassanus*, *M. cornuarietis*. *P. canaliculata* e *P. maculata* and their orthologs; asu - *Ascaris suum*, cbn - *Caenorhabditis brenneri*, cbr - *Caenorhabditis briggsae*, cel - *C. elegans*, lny - *L. nyassanus*, lgi - *L. gigantea*, mcr - *M. cornuarietis*, pcn - *P. canaliculata*, pmc - *P. maculata*.

Figure 14: Secondary structure of mir-67 in *L. nyassanus*, *M. cornuarietis*, *P. maculata and their orthologs*; asu - *Ascaris suum*, cbn - *Caenorhabditis brenneri*, lny - *L. nyassanus*, lgi - *L. gigantea*, mcr-*M. cornuarietis*, pmc - *P. maculata*.

The Lophotrochozoa clade was subdivided into molluscs, annelids and flatworms. In the phylum Molluscs the presence of bivalves and gastropods was observed. For the first class of molluscs it was represented by the species: *Crassostrea virginica*, *Crassostrea hongkongensis*, *Pinctada martensii*, *Pinctada Fucata*, *Patinopecten yessoensis* and *Argopecten purpuratus*. The gastropod animals were represented exclusively by the analyzed Ampullariidae species: *L. nyassanus*, *M. cornuarietis*. *P. canaliculata* and *P. maculata*. This distribution is consistent with the tree of life, where a wide distribution was found in the phylogenetic clades (Figure 15).

Figure 15: Phylogenetic distribution of mir-67 in *L. nyassanus*, *M. cornuarietis*. *P. canaliculata* e *P. maculata* and their orthologs.

Alignment of mir-96b precursors from Ampullariidae species and their orthologs demonstrated the presence of two mature miRNAs (5p and 3p strands) in *L. nyassanus*, *M. cornuarietis*. *P. canaliculata* and *P. maculata*. The 3p strand of mature miRNAs from the analyzed Ampullariidae species showed 100% identity to each other and high similarity with orthologs. The sequence of the precursors of miR-96b, specific Lophochotrozoa, demonstrated high similarity in secondary structure in the gastropod organisms *L.nyassanus*, *M. cornuarietis* and *B.glabrata* (Figure 16 and Figure 17).

Figure 16: Alignment of miRNA-96b precursors of *L. nyassanus*. *M. cornuarietis*, *P. canaliculata* e *P. maculata* and their orthologs. bgl: *B. glabrata*, csi: *Cyclina sinensis*, lny: *Lanistes nyassanus*, mcr: *Marisa cornuarietis*, pfu: *Pinctada fucata*

Figure 17: Secondary structure of ampullariids miRNA-96b precursors studied with their orthologs; bgl: *B. glabrata*, csi: *Cyclina sinensis*, lny: *Lanistes nyassanus*, mcr: *Marisa cornuarietis*, pfu: *Pinctada fucata*

The phylogenetic analysis of the precursors of mir-96b (Lophotrochozoa- specific) was verified the distribution among the species in three phyla (Molluscs, Anelideos and

Platelmiltos). A wide distribution was observed in the phylum Molluscs, where the presence of cephalopods, bivalves and gastropods was verified. The first class of molluscs was represented by *Architeuthis dux*. The bivalve class was represented by *Crassostrea gigas*, *C. virginica*, *C. hongkongensis*, *P. Fucata* and *P. martensii*. The presence of snails of the Ampullariidae family analyzed once again appeared grouped together, as expected. In addition, ampullariids appear segregated in the gastropod class with molluscs of the genus *Haliotis* and *Radix auricularia* species. A wide distribution was observed in the Lophotrochozoa clade, being constructed a phylogenetic tree consistent with the tree of life. (Figure 18).

The mir-1990 family predicted for species *L. nyassanus*, *M. cornuarietis*, *P. canaliculata* and *P. maculata* is composed of the precursors lny-mir-1990, mcr-mir-1990, pcn-mir-1990 pcm-mir-1990 and the mature miRNAs, 3p and 5p, in each species ampullariids. For this family, the conservation and great similarity of the primary structure was observed, as well as secondary structures demonstrate conservation among orthologs (Figure 19 and Figure 20).

Figure 19: mir-1990 alignment for *L. nyassanus*, *M. cornuarietis*. *P. canaliculata* e *P. maculata* and their orthologs; pen - *P. canaliculata*, lny - *L. nyassanus*, mer - *M. cornuarietis*, pme - *P. maculata*, lgi- *L. gigantea*, mle- *M. leonina*, cgi - *C. gigas*, bgl – *B. glabrata*, hru- *H. rufescens*

0 1

Figure 20: Secondary structure of the mir-1990 in *L. nyassanus, M. cornuarietis. P. canaliculata* e *P. maculata* and their orthologs

In this study, three putative Argonaute proteins were found in L. nyassanus (Lny23421 c0 g1, Lny25187 c0 g1 and Lny28936 c7 g7). The same number encountered in M. cornuarietis (Mco25093 c0 g2, Mco26370 c0 g1, Mco27042 c1 g1). For each specie of the genus pomacea, two probable piwi protein were found, in orders P. canaliculata (Pca69814 c1 g2, Pca61914_c0_g1) and Р. maculata (Pma63715 c0 g1, Pma60501 c2 g16). The Argonaute protein is characterized by the presence of the PIWI and PAZ domains (PIWI-Argonaute-Zwille) (Song et al., 2004). The phylogenetic tree presented these two clades in a distinct way (figure 14). The argonaute proteins of eukaryotes can present in addition to these the following domains, N (N-terminal), and MID, together with two domain ligands L1 and L2 (Swarts et al., 2014). The PIWI domain in Argonaute contains three conserved catalytic residues composed of two aspartates and a histidine, called 'DDH' (Yang and Steitz, 1995). It was confirmed the presence of these conserved domains in Argonaute putative proteins identified. The analysis of the amino acid sequence of the PIWI domains confirmed the maintenance of the DDH amino acids (aspartic acid, aspartic acid and histidine) in the proper positions for the activity performed. The PIWI domains have great functional homology with RNase H, which is known for enabling the fragmentation of RNA sequences (Parker et al., 2004). The size of the predicted proteins was compatible with the average size of evolutionarily close organisms.

In this study, Lny28171_c0_g1 and Pca67531_c1_g2 DICER proteins were found in *L. nyassanus* and *P. canaliculata* respectively. Lny18581_c0_g2, Mco22837_c2_g1 and Pca67887_c3_g1 DROSHA proteins were found in *L. nyassanus*, *M. cornuarietis* and *P. canaliculata* respectively. The DROSHA and DICER proteins belong to the family of endoribonucleases, ribonuclease III (RNase III) that have specificity for cleavage of double-stranded RNA (dsRNA). The DROSHA protein is a class II RNAase III containing two endonuclease domains and a dsRBD. Dicer is a class III RNAase III that has two endonuclease domains, a dsRBD, an N-terminal helicase domain and a PAZ domain. Functionally class III enzymes produce single-stranded RNA (ssRNA) products of approximately 22 nucleotides in length from long dsRNA substrates (Bernstein et al., 2001; Blaszczyk et al., 2001; Filippov et al., 2000). The canonical pathway of miRNA biogenesis is the dominant pathway in which miRNAs are processed by class II (Drosha) and class III (Dicer) RNAases consecutively. These RNases III contain two catalytic centers with amino acids important for function. The Riboc I

domain is composed of the amino acids; E (Glutamic acid), E (Glutamic acid), D (Aspartic acid) D (Aspartic acid); and the Riboc II domain is formed by E (Glutamic acid), Q (Glutamine), E (Glutamic acid), D (Aspartic acid), D (Aspartic acid), E (Glutamic acid); responsible for the cleavage of diester bonds (Blaszczyk et al., 2001).

The DROSHA protein predicted from P. canaliculata (Pca67887 c3 g1) showed compatible length and similarity with its orthologs (Table 1). The analysis of conserved domains showed the two endonuclease domains and one dsrm, characteristic of class II RNAases III. In the search for catalytic sites, he presented the first set composed of amino acids E-E-D-D in the Riboc I domain (figure 16). The 1525 amino acid length was compatible with the 1523 amino acid P. canaliculata protein (ID: XP 025111754.1) registered at the NCBI (National Center for Biotechnology Information - http://.ncbi.nlm.nih.gov/). These data corroborated the identification of the putative Drosha protein in *P. canaliculata*. On the other hand, in the DROSHA protein of *M. cornuarietis* (Mco22837 c2 g1), despite having a relatively smaller size than its orthologs (figure 15), the lack of coverage in the prediction of the protein did not affect the prediction of conserved domains, since it occurred, probably in the N-terminal portion of the protein, which, for DROSHA, functional conserved domains have not yet been identified. This predicted Drosha protein had two RIBOc domains and a double-stranded RNA binding domain and the presence of complete catalytic amino acid sequence in the Riboc I domain. These data support the identification for the putative Drosha protein in M. cornuarietis (Mco22837 c2 g1). Regarding another DROSHA candidate, *L. nyassanus* (Lny18581 c0 g2) presented a Riboc domain, a fragment of the second Riboc domain and the presence of a complete catalytic amino acid sequence in the Riboc I domain. The regions in the genome predicted for this gene are probably in error of annotation leading to the truncation of the protein sequences, consequently the size of the amino acid sequences for these genes were underestimated in size and structure. Further versions of the genome may solve this problem.

The putative DICER protein of *P. canaliculata* (Pca67531_c1_g2) was shorter in length (1984 aa) than the evolutionarily close organisms *A. californica* (2503 aa) and *B. glabrata* (2332 aa) (Table 2). Only conserved domains were identified; Ribonucleas_3_3, PAZ, Dicer dimer and Helicase_C; not showing the second Riboc domain. When verifying the starting position of the second Riboc domain of closely related organisms, *A. californica* (2273 aa) and *B. glabrata* (2100 aa), corroborated the fact that the second ribonuclease was not identified in the probable putative sequence. In Dicer, probably due to the lack of coverage in the sequencing of this region of the genome of *P. maculata*, it was not putative to evidence the presence of the second catalytic domain Riboc. The *P. canaliculata* Dicer protein (XP_025104500) identified

at the NCBI with a length 2249 amino acids was orthologous to Pca67531 c1 g2, with a query coverage of 99% and a percentage of identification of 98.83%. The protein sequence Pca67531 c1 g2 using the BLASTp tool against the genome of P. canaliculata in the AmbuBase database (Department of Computer Science HKBU https://www.comp.hkbu.edu.hk/~db/AmpuBase/#&panel1- 4) presented a percentage of identification and coverage of 100% (1984/1984 amino acids). Part of the first catalytic site of amino acids (ED) was observed in Riboc in the candidate protein cited (Pca67531 c1 g2) When performing the search for catalytic residues having as query NP 524453.1 Dicer-1 D. melanogaster the orthologous molluscs presented only the amino acids in the first domain Riboc catalysts (ED), with the exception of Pectem maximus (EDDE) NCBI (National Center for Biotechnology Information — http://.ncbi.nlm.nih.gov/). The data presented corroborated the identification of the putative protein. On the other hand, the putative DICER protein from L. nyassanus (Lny28171_c0_g1), despite having a relatively smaller size than its orthologs (figure 15), the lack of coverage in the protein prediction did not affect the prediction of the two conserved Riboc domains and a PAZ domain, since it was probably in the N-terminal portion of the protein, which for DICER the catalytic domains lie at the C-terminal end. This predicted DICER protein showed the presence of the complete catalytic amino acid sequence in the Riboc I domain. The data support the identification of the putative DICER protein in *L. nyassanus*. The regions in the genome predicted for this gene are likely to have annotation errorleading to the truncation of the protein sequences. Consequently, the size of the amino acid sequences for these genes are underestimated in size and structure (Queiroz et al., 2017).

In this study, Lny14170_c0_g1, Lny12572_c0_g1, Lny27692_c0_g2, Mco24030_c0_g2, Mco81614_c0_g2, Pca62316_c0_g2, Pca65193_c2_g1, Pma59467_c0_g1, and Pma63331_c0_g1 Exportin protein family (XPO-5, XPO1 and XPO-T) were found *L. nyassanus*, *M. cornuarietis*, *P. canaliculata* and *P. maculata* respectively. Intrinsically, the transport of miRNA precursors is performed by the XPO-5 protein. Occasionally the transport of pre-miRNAs can be accomplished by XPO-1 entering the non-canonical miRNA processing pathway without Drosha cleavage. Displacement of pre-miRNAs is also performed by exportin T (XPOT) in a Ran-GTP-dependent manner (Ruby et al., 2007). The search for Exportins proteins (XPO-5, XPO-1 and XPO-T) using the methodology of this work, resulted in the putative proteins found.

In order to emphasize the conservation of these putative proteins identified in the ampullariids species, a phylogenetic tree and studies of conserved domains were constructed. The phylogenetic analysis revealed a distribution of the studied amino acid sequences, in the genes of the Exportin protein family (XPO-5, XPO1 and XPO-T), grouped close to the Deuterostomes clade. Putative proteins from L. nyassanus. M. cornuarietis, P. canaliculata and P. maculata aggregated with their respective orthologs close to the phylum Molluscs and the clade Deuterostomes. The similarity of the identified Exportins of the Ampullariidae species was verified together with their orthologs, observing the level of preservation of the conserved domains and protein length. For Exportin 5 the putative proteins (Lny14170 c0 g1, Pca62316 c0 g2) presented the two conserved domains (Xpo1 and IBN N) characteristic of the XPO-5 protein and a size compatible with the average dimension of its orthologs, confirming the identification of the putative Exportin 5 proteins. Exportin 1 putative proteins (Lny12572 c0 g1, Mco24030 c0 g2, Pca65193 c2 g1, Pma59467 c0 g1) showed six conserved domains characteristic of XPO-1 (IBN N, Xpo1, CRM1 repeat, CRM1 repeat 2, CRM1 repeat 3 and only five domains except for the CRM1 cc1. The Pca65193 c2 did not show the conserved IBN N domain. The lack of protein sequence prediction in the N-terminal region was already reported in this work for *P. canaliculata*, resulting in a relatively smaller size when compared to the analyzed species. Even the length of the protein sequences analyzed for XPO-1 (Lny12572 c0 g1, Mco24030 c0 g2, Pca65193 c2 g1, Pma59467 c0 g1) were strictly the same (1070 aa). This dimension also matched to the average size of the Exportin 1 protein for orthologous organisms. All these factors corroborated the identification of putative XPO-1 proteins in the analyzed species. Likewise, Exportin T in genes (Lny27692 c0 g2, Mco81614 c0 g2 and Pma63331 c0 g1) showed a characteristic conserved domain for all protein sequences (Xpo1). This time, lack of protein sequence prediction was verified in the Nterminal region for M. cornuarietis (Mco81614 c0 g2), presenting a smaller size (331 aa) than the analyzed species. Interestingly, the protein sequences (Lny27692 c0 g2 and Pma63331 c0 g1) also had the same size (966 aa) and matched the average size of XOP-T proteins from orthologous organisms. They were convincing evidence for the identification of putative Exportin T in the analyzed species.

The genomes of four ampullariids (Old World - Lanistes nyassanus and New World -Pomacea canaliculata, P. maculata, and Marisa cornuarietis) were published by Sun et al., 2019, in order to understand the genomic basis underlying the diversity of the Ampullariidae species and also their behavioral, morphological, and physiological adaptations. In our study we were able to apply a robust analysis to identify and characterize miRNAs and the putative proteins involved in miRNA pathway using the genome and predicted proteome from four Ampullariidae species. Either miRNAs or proteins of their biosynthetic pathway were described in several organisms, including several kingdoms such as plants and animals. In model species such as *D. melanogaster* and *C. elegans* mature and precursor miRNAs and also their pathway proteins have been extensively studied. Even though Mollusca is a phylum containing many species, little has been studied about miRNAs and their processing pathway in this phylum.

Sun et al., 2019, sequenced and analyzed the four genomes of ampullariids species, P. canaliculata, P. maculata, and L. nyassanus. The genomes were assembled in 535.5 Mb million base pairs (Mb) in total length or smaller and produced thousands of scaffolds anchored or not to chromosomes. Automatic annotation analyses of the four genomes displayed around 20 thousand gene models (Sun et al., 2019). So far, no study on miRNAs and their processing pathway in ampullariids species has been reported in the literature. In order to improve and increase the annotation of non-protein coding genes, such as miRNAs, and also of protein-coding genes of small RNA processing pathways, this work proposed an in-depth study of mature and precursory miRNAs and their pathway processing in the genome of the four species of ampullariids.

In our study, we were able to identify conserved miRNAs in four species, being 162 mature miRNAs and 141 miRNA precursors in *L. nyassanus*, 297 mature miRNAs and 279 miRNA precursors in *M. cornuarietis*, 296 mature miRNAs and 269 miRNA precursors in *P. canaliculata* and 316 mature miRNAs and 299 miRNA precursors in *P. maculata*. Two miRNAs found in all species was Mollusca-specific.

The minimum free energy value, -18 kcal/mol, in general, is the value necessary for a miRNA precursor to be stable and generates miRNAs (Gomes et al., 2011; Hofacker, 2009). The sequences of pre-miRNAs presented in this work MFE mean of (minimum free energy) and variation of values (Table 3). The mean value of the studied precursors was similar to the mean value of pre-miRNAs of lophotrochozoan species (-31.27 kcal/mol) (Gomes et al., 2011). Of the pre-miRNAs deposited in miRBase approximately 75% of those had minimum free energy values below -18.50 kcal/mol (Leclercq et al., 2013).

The size of the precursors of the lophotrochozoan species is between 57 and 153 nucleotides, with an average of 90 nucleotides per sequence(Gomes et al., 2011). In this study, the average size of the precursors and the length variation were showed in Table 3. The size of pre-miRNAs in animal species ranges from 47 to 177 nucleotides with a mean of 87 ± 29 nucleotides (Zhou et al., 2009). The data from this study corroborated with the average size of pre-miRNAs and the reference range for the size of lophotrochozoan species and metazoans in general.

GC content is one of the main parameters for the identification of pre-miRNAs and is very important for the stability of the secondary structure of precursors. The percentage of pre-

miRNAs present in miRBase that had GC content above 20% and below 65% was 80% (Leclercq et al., 2013). In this work, the variation of GC content and the percentage of miRNAs in the range between 20% and 65% were respectively; *L. nyassanus* (20.25% to 69.05%) and 98.5%, *M. cornuarietis* (20.20% to 67.03%) and 98%, *P. canaliculata* (20.83% and 68.29%) and 99.25%, *P. maculata* (20.40% and 68.75%) and 98.66%. The precursors presented mean values for the guanine-cytosine (GC) content for *L. nyassanus*, *M. cornuarietis*, *P. canaliculata* and *P. maculata*; 41.26%, 41.64%, 41.70%, 40.74% respectively. The mean value of the GC content of the studied ampullariids precursors was similar to the mean of the lophotrochozoan species (40.49%) (Gomes et al., 2011). Comparatively the GC content of the miRNA precursors were not observed statistical differences (p > 0.05) between the Ampullariidae analyzed and lophotrochozoan species.

Mature miRNAs were identified in the genome of 4 ampullariids species: 162 miRNAs for L. nyassanus, 297 miRNAs for M. cornuarietis, 296 miRNAs for P. canaliculata and 316 miRNAs for *P. maculata*. The number of miRNAs identified in *L. nyassanus* genome was similar to the gastropod species Conus tribblei (159 miRNAs) (Huang et al., 2021). The number of miRNAs found in M. cornuarietis (297 miRNAs), P. canaliculata (296 miRNAs), P. maculata (316 miRNAs) corroborated with the number of miRNAs identified for Lymnaea stagnalis (freshwater gastropod molluscs), 264 conserved mature miRNAs (Walker et al., 2018). There are plausible justifications for the smaller quantitative number of miRNAs for L. nyassanus compared to other ampullariids under study. L. nyassanus has fewer adaptive and functional properties when compared to other ampullariids under study (Sun et al., 2019). L. nyassanus is endemic to Lake Nyasa in Africa (Cowie, 2015; Dohrn, 1865; Van Bocxlaer, 2017), while *P. canaliculata* and *P. maculata* are geographically distributed on almost every continent, fast growing, high reproduction rate, tolerance and adaptation to environmental stress (Liu et al., 2018; Pimentel et al., 2005). Species of the genus Pomacea have the adaptive property of terrestrial egg laying, while L. nyassanus does egg laying in the aquatic environment (Sun et al., 2019). In addition, M. cornuarietis is better able to resist factors such as low temperature and hypoxia (Matsukura et al., 2016; Mu et al., 2018). As reported in previous studies, there is a significant increase in the number of miRNAs as the morphological complexity of the species increases (Heimberg et al., 2008), thus, justifying a lower number of miRNAs in *L. nyassanus*, when compared to other ampullariids in study.

The data presented corroborated the identification of miRNAs with the literature (Ha and Kim, 2014; Rachagani et al., 2010). The number of nucleotides in the mature miRNAs from

ampullariids species had an arithmetic mean of 21.94 nucleotides/miRNA, with a size range from 17 to 25 nucleotides.

The Argonaute protein prefers the uracil nucleotide in the first position of the miRNA sequence, to be inserted in the RISC complex (Seitz et al., 2011). In this work mature miRNAs from *L. nyassanus, M. cornuarietis. P. canaliculata* and *P. maculata* presented, respectively, quantitative uracil nucleotides in the first position; 41.97%, 44.44%, 41.2% and 42.40%. Mostly presented this nucleotide in the first position in the miRNA sequence.

The structural and thermodynamic characteristics of pre-miRNAs were more similar among *M. cornuarietis*, *P. canaliculata* and *P. maculata* species. *L. nyassanus* had more dissimilar values, however it is the organism that most diverges with reference to the three species mentioned. The justifications for this probably in phylogeny. The division between the New World (*M. cornuarietis*, *P. canaliculata* and *P. maculata*) and Old World (*L. nyassanus*) lineages may have occurred at the time of the separation from Gondwana, around 120 million years ago (Jokat et al., 2003; Sun et al., 2019).

miR-33, Bilateria-specific, was found in the genomes of *L. nyassanus*, *M. cornuarietis*, *P. canaliculata* and *P. maculata* and had two mature miRNAs (3p and 5p chains), corroborating studies observed in bivalve molluscs and *D. melanogaster* (Bao et al., 2014; Clerbaux et al., 2021). Mir-33-5p supposedly regulates genes involved in the heavy metal-induced stress response in the mollusc *Tegillarca granosa* (Bao et al., 2014). Likewise, *P. canaliculata* is able to survive in environments with heavy metals, where there is a high concentration of these metals in the gills (Kruatrachue et al., 2011), probably regulated by this micro-RNA. In this study, miR-33-5p showed 100% similarity between the ampullariid and orthologous species (figure 1). Furthermore, miR -33 is a pleiotropic regulator of metabolic and developmental processes in *D. melanogaster*. It is suggested that mir-33 is a conserved regulator of lipid homeostasis (Clerbaux et al., 2021).

The family of precursors of mir-67, protostomes specific, was found in the genome of the 4 species Ampullariidae with the presence of mature miR-67-3p for each species, corroborating the wide distribution of this miRNA in molluscs and *C. elegans* (Huang et al., 2021; Ma et al., 2017). Like miRNA-33, miRNA-67 is potentially associated with gene regulation whenexposed to toxic levels of cadmium (Cd) in the bivalve *T. granosa* (Bao et al., 2014). Regulationof the immune system is also performed by mi-67 in *C. elegans* when exposed to pathogenic bacteria *Pseudomonas aeruginosa*. miRNA-67 inhibits the expression of the SAX-7 protein inthe worm, that induces pathogen avoidance behavior (Ma et al., 2017). Furthermore, mir-67 was identified in 34 species of molluscs (Huang et al., 2021).

The sequences of the precursors of miR-96b presented two mature miRNAs, 3p and 5p, in the genomes of the species: *L. nyassanus*, *M. cornuarietis*. *P. canaliculata* and *P. maculata*. The mir-96b, Lophotrochozoa-specific, regulates genes post-transcriptionally in flatworms and molluscs. In the freshwater worm: *Schmidtea mediterranea* may have functions in wound healing, neoblast proliferation (mainly responsible for regeneration in planarians) and blastema differentiation (Sasidharan et al., 2013). In molluscs, miR-96b is involved together with other miRNAs in the pigmentation of the shells of *C. gigas*, inducing the synthesis of melanin, carotenoid or tetrapyrrole (Feng et al., 2020). The miR-96b was also found in the genome of gastropods evolutionarily close to the 4 species Ampullariidae, *B. glabrata* (Queiroz et al., 2020) and *A. californica* (Huang et al., 2021). Findings in the scientific literature corroborate the data of this work.

The family of mir-1990, Lophotrochozoa-specific miRNA, presented two mature miRNAs, 3p and 5p. A wide distribution of mir-1990 in molluscs was verified, mainly in 15 bivalve animals, 10 gastropods and 1 cephalopod (Huang et al., 2021). Few studies describe the role of miRNAs in molluscs development. However, mir-1990-3p may play a vital role in the shell biomineralization process in *P. fucata*, as it is highly expressed in mantle tissues (Huang et al., 2021). mir-1990 was found only in molluscs, however the mir-1990 family is Lophotrochozoa-specific as cte-miR-1990c-3p, cte-miR-1990a and cte-miR-1990b have been identified in *Capitella teleta* (http: //www.mirbase.org/). The wide distribution of mir-1990 in molluscs and the likely mechanism of gene control in the species corroborated the data in this study.

The functional form of a miRNA is generally 22 nucleotides in length, with a size range from 17 to 25 nucleotides (Ha and Kim, 2014; Rachagani et al., 2010). These small RNAs are generated by two cleavage reactions in which miRNAs are processed by RNAases III Drosha and Dicer consecutively (Lee et al., 2002; Tanzer and Stadler, 2004; Y. F. Zhang et al., 2009), in canonical miRNA processing pathway. The microprocessor complex, composed of a protein (DGCR8) and a ribonuclease III enzyme (Drosha), performs the cleavage of pri-miRNA in pre-miRNA in the cell nucleus. DGCR8 binds to a structure in pri-miRNA while Drosha performs the duplex scission. After the pre-miRNAs are generated, they are transported to the cytoplasm through the exportin 5 (XPO5) / RanGTP complex (Alarcón et al., 2015; Denli et al., 2004; Han et al., 2004; Okada et al., 2009). In the cytoplasm, pre-miRNAs are cleaved by Dicer into mature. The miRNAs can effect their action through the miRISC complex, in which a protein from the AGO family is loaded with a miRNA guide strand that directs the complex to base pairing, which by different mechanisms induces the silencing of gene expression (Ipsaro and

Joshua-Tor, 2015; Jo et al., 2015). The AGO-2 protein has endonucleolytic action and the level of complementarity formed between the miRISC complex and the target mRNA is indicative of the complex's action (Jo et al., 2015). All these factors in our analysis were of great relevance.

CONCLUSION

The search for miRNAs in *L. nyassanus*, *M. cornuarietis*, *P. canaliculata* and *P. maculata* was able to predict 162 mature forms of miRNAs for *L. nyassanus*, 297 miRNAs for *M. cornuarietis*, 296 miRNAs for *P. canaliculata* and 316 miRNAs for *P. maculata*.

It was possible to identify the biogenesis pathway of miRNAs in species of the Ampullariidae family, highlighting several putative key pathway proteins; Argonaute, DROSHA, DICER, XPOs, among others. The prediction of some proteins of the miRNA pathway was not verified in some species, probably due to annotation error in the part of the sequenced gene specific to each organism.

Our results expand the study of miRNAs in molluscs, bringing new challenges to the understanding of the essential processes related to the invasiveness of *P. canaliculata* and *P. maculata* species and supposed advances in the control of these molluscs considered agricultural pests for humanity.

Thus, the search for miRNAs and their processing pathways in the species *L. nyassanus*, *M. cornuarietis*, *P. canaliculata* and *P. maculata* were able to predict structures that found the established criteria, also complementing previous results from our study group as well, as creating the need to establish putative new target genes for the discovered miRNAs.

REFERENCES

- Alarcón, C.R., Lee, H., Goodarzi, H., Halberg, N., Tavazoie, S.F., 2015. N6-methyladenosine marks primary microRNAs for processing. Nature 519, 482–485. https://doi.org/10.1038/nature14281
- Bao, Y., Zhang, L., Dong, Y., Lin, Z., 2014. Identification and Comparative Analysis of the Tegillarca granosa Haemocytes MicroRNA Transcriptome in Response to Cd Using a Deep Sequencing Approach. PLoS One 9, e93619. https://doi.org/10.1371/journal.pone.0093619
- Bartel, D.P., 2009. MicroRNAs: Target Recognition and Regulatory Functions. Cell 136, 215–233. https://doi.org/10.1016/j.cell.2009.01.002
- Bernhart, S.H., Hofacker, I.L., Will, S., Gruber, A.R., Stadler, P.F., 2008. RNAalifold: Improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9. https://doi.org/10.1186/1471-2105-9-474
- Bernstein, E., Caudy, A.A., Hammond, S.M., Hannon, G.J., 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366. https://doi.org/10.1038/35053110
- Blaszczyk, J., Tropea, J.E., Bubunenko, M., Routzahn, K.M., Waugh, D.S., Court, D.L., Ji, X., 2001. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure 9, 1225–1236. https://doi.org/10.1016/S0969-2126(01)00685-2
- Carlsson, N.O.L., Brönmark, C., Hansson, L., Carlsson, N.O.L., Bronmark, C., Hansson, L., 2016. Invading Herbivory : The Golden Apple Snail Alters Ecosystem Functioning in Asian Wetlands Stable URL : https://doi.org/10.1890/03-3146.
- Cawas, J.R., Quisao, C.J.T., Castillo, D.S.C., Pornobi, K.O., 2020. Prevalence of Angiostrongylus cantonensis among different species of snails in the village of Bagong Sikat Muñoz, Nueva Ecija, Philippines and its associated risk factors for zoonotic transmission. J. Parasit. Dis. 44, 388–394. https://doi.org/10.1007/s12639-020-01200-0
- Chen, C.Y., Kuo, C.C., Lo, C.P., Huang, M.Y., Wang, Y.M., Wang, W.Y., 2014. Eosinophilic meningoencephalitis caused by Angiostrongylus cantonesis. Qjm 107, 573–575. https://doi.org/10.1093/qjmed/hcr261
- Clerbaux, L.-A., Schultz, H., Roman-Holba, S., Ruan, D., Yu, R., Lamb, A., Bommer, G., Kennell, J., 2021. The microRNA miR-33 is a pleiotropic regulator of metabolic and developmental processes in Drosophila melanogaster. Dev. Dyn. https://doi.org/10.1002/dvdy.344

Cowie, R.H., 2015. The recent apple snails of Africa and Asia (Mollusca: Gastropoda:

Ampullariidae: Afropomus, Forbesopomus, Lanistes, Pila, Saulea): a nomenclatural and type catalogue. The apple snails of the Americas: addenda and corrigenda. Zootaxa 3940, 1–92. https://doi.org/10.11646/zootaxa.3940.1.1

- Dalton, M.F., Fenton, H., Cleveland, C.A., Elsmo, E.J., Yabsley, M.J., 2017. Eosinophilic meningoencephalitis associated with rat lungworm (Angiostrongylus cantonensis) migration in two nine-banded armadillos (Dasypus novemcinctus) and an opossum (Didelphis virginiana) in the southeastern United States. Int. J. Parasitol. Parasites Wildl. 6, 131–134. https://doi.org/10.1016/j.ijppaw.2017.05.004
- De Wit, E., Linsen, S.E.V., Cuppen, E., Berezikov, E., 2009. Repertoire and evolution of miRNA genes in four divergent nematode species. Genome Res. 19, 2064–2074. https://doi.org/10.1101/gr.093781.109
- Denli, A.M., Tops, B.B.J., Plasterk, R.H.A., Ketting, R.F., Hannon, G.J., 2004. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235. https://doi.org/10.1038/nature03049
- Dohrn, H., 1865. List of the land and freshwater shells of the Zambesi and lake Nyasa, eastern tropical Africa, collected by John Kirk. Proc. Zool. Soc. London 1865, 231–234.
- Feng, D., Li, Q., Yu, H., Liu, S., Kong, L., Du, S., 2020. Integrated analysis of microRNA and mRNA expression profiles in Crassostrea gigas to reveal functional miRNA and miRNA-targets regulating shell pigmentation. https://doi.org/10.1038/s41598-020-77181-0
- Filippov, V., Solovyev, V., Filippova, M., Gill, S.S., 2000. A novel type of RNase III family proteins in eukaryotes. Gene 245, 213–221. https://doi.org/10.1016/S0378-1119(99)00571-5
- Gomes, M. de S., Muniyappa, M.K., Carvalho, S.G., Guerra-Sá, R., Spillane, C., 2011. Genome-wide identification of novel microRNAs and their target genes in the human parasite Schistosoma mansoni. Genomics 98, 96–111. https://doi.org/10.1016/j.ygeno.2011.05.007
- Gruber, A.R., Lorenz, R., Bernhart, S.H., Neuböck, R., Hofacker, I.L., 2008. The Vienna RNA websuite. Nucleic Acids Res. 36. https://doi.org/10.1093/nar/gkn188
- Ha, M., Kim, V.N., 2014. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509–524. https://doi.org/10.1038/nrm3838
- Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H., Kim, V.N., 2004. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027. https://doi.org/10.1101/gad.1262504
- Hayes, K.A., Cowie, R.H., Jørgensen, A., Schultheiß, R., Albrecht, C., Thiengo, S.C., 2009. Molluscan Models in Evolutionary Biology: Apple Snails (Gastropoda: Ampullariidae) as a System for Addressing Fundamental Questions*. Am. Malacol. Bull. 27, 47–58. https://doi.org/10.4003/006.027.0204

- Heimberg, A.M., Sempere, L.F., Moy, V.N., Donoghue, P.C.J., Peterson, K.J., 2008. MicroRNAs and the advent of vertebrate morphological complexity. Proc. Natl. Acad. Sci. U. S. A. 105, 2946–2950. https://doi.org/10.1073/pnas.0712259105
- Hofacker, I.L., 2009. Secondary Structure Analysis Using the Vienna Package. Curr. Protoc. Bioinforma. 26, 12.2.1-12.2.16. https://doi.org/10.1002/0471250953.bi1202s26
- Huang, S., Yoshitake, K., Asaduzzaman, M., Kinoshita, S., Watabe, S., Asakawa, S., 2021. Discovery and functional understanding of MiRNAs in molluscs: a genome-wide profiling approach. RNA Biol. 1–14. https://doi.org/10.1080/15476286.2020.1867798
- Ipsaro, J.J., Joshua-Tor, L., 2015. From guide to target: Molecular insights into eukaryotic RNA-interference machinery. Nat. Struct. Mol. Biol. https://doi.org/10.1038/nsmb.2931
- Jo, M.H., Shin, S., Jung, S.R., Kim, E., Song, J.J., Hohng, S., 2015. Human Argonaute 2 Has Diverse Reaction Pathways on Target RNAs. Mol. Cell 59, 117–124. https://doi.org/10.1016/j.molcel.2015.04.027
- Jokat, W., Boebel, T., König, M., Meyer, U., 2003. Timing and geometry of early Gondwana breakup. J. Geophys. Res. Solid Earth 108. https://doi.org/10.1029/2002jb001802
- Kenny, N.J., Namigai, E.K.O., Marlétaz, F., Hui, J.H.L., Shimeld, S.M., 2015. Draft genome assemblies and predicted microRNA complements of the intertidal lophotrochozoans Patella vulgata (Mollusca, Patellogastropoda) and Spirobranchus (Pomatoceros) lamarcki (Annelida, Serpulida). Mar. Genomics 24, 139–146. https://doi.org/10.1016/j.margen.2015.07.004
- Kruatrachue, M., Sumritdee, C., Pokethitiyook, P., Singhakaew, S., 2011. Histopathological effects of contaminated sediments on golden apple snail (Pomacea canaliculata, Lamarck 1822). Bull. Environ. Contam. Toxicol. 86, 610–614. https://doi.org/10.1007/s00128-011-0265-4
- Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547– 1549. https://doi.org/10.1093/molbev/msy096
- Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., Mcgettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G., Bateman, A., 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947– 2948. https://doi.org/10.1093/bioinformatics/btm404
- Leclercq, M., Diallo, A.B., Blanchette, M., 2013. Computational prediction of the localization of microRNAs within their pre-miRNA. Nucleic Acids Res. 41, 7200–7211. https://doi.org/10.1093/nar/gkt466
- Lee, Y., Jeon, K., Lee, J.T., Kim, S., Kim, V.N., 2002. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J. 21, 4663–4670. https://doi.org/10.1093/emboj/cdf476

Lewis, B.P., Burge, C.B., Bartel, D.P., 2005. Conserved seed pairing, often flanked by

adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20. https://doi.org/10.1016/j.cell.2004.12.035

- Lindo, J.F., Waugh, C., Hall, J., Cunningham-Myrie, C., Ashley, D., Eberhard James J Sullivan, M.L., Bishop, H.S., Robinson, D.G., Holtz, T., Robinson, R.D., 2002. Enzootic Angiostrongylus cantonensis in rats and snails after an outbreak of human eosinophilic meningitis, Jamaica. Emerg. Infect. Dis. 8, 324–326. https://doi.org/10.3201/eid0803.010316
- Liu, N., Zhang, Y., Ren, Y., Wang, H., Li, S., Jiang, F., Yin, L., Qiao, X., Zhang, G., Qian, W., Liu, B., Fan, W., 2018. The genome of the golden apple snail Pomacea canaliculata provides insight into stress tolerance and invasive adaptation. Gigascience 7, 1–13. https://doi.org/10.1093/gigascience/giy101
- Luessi, F., Sollors, J., Torzewski, M., Müller, H.D., Siegel, E., Blum, J., Sommer, C., Vogt, T., Thömke, F., 2009. Eosinophilic meningitis due to angiostrongylus cantonensis in Germany. J. Travel Med. 16, 292–294. https://doi.org/10.1111/j.1708-8305.2009.00337.x
- Lv, S., Zhang, Y., Steinmann, P., Zhou, X.N., 2008. Emerging angiostrongyliasis in mainland China. Emerg. Infect. Dis. 14, 161–164. https://doi.org/10.3201/eid1401.061529
- Ma, Y.C., Zhang, L., Dai, L.L., Khan, R.U., Zou, C.G., 2017. mir-67 regulates P. aeruginosa avoidance behavior in C. elegans. Biochem. Biophys. Res. Commun. 494, 120–125. https://doi.org/10.1016/j.bbrc.2017.10.069
- Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C.J., Lu, S., Chitsaz, F., Derbyshire, M.K., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Lu, F., Marchler, G.H., Song, J.S., Thanki, N., Wang, Z., Yamashita, R.A., Zhang, D., Zheng, C., Geer, L.Y., Bryant, S.H., 2017. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45, D200–D203. https://doi.org/10.1093/nar/gkw1129
- Marchler-Bauer, A., Bryant, S.H., 2004. CD-Search: Protein domain annotations on the fly. Nucleic Acids Res. 32. https://doi.org/10.1093/nar/gkh454
- Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., Lu, F., Marchler, G.H., Song, J.S., Thanki, N., Wang, Z., Yamashita, R.A., Zhang, D., Zheng, C., Bryant, S.H., 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43, D222–D226. https://doi.org/10.1093/nar/gku1221
- Marchler-Bauer, A., Lu, S., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., Geer, L.Y., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Jackson, J.D., Ke, Z., Lanczycki, C.J., Lu, F., Marchler, G.H., Mullokandov, M., Omelchenko, M. V., Robertson, C.L., Song, J.S., Thanki, N., Yamashita, R.A., Zhang, D., Zhang, N., Zheng, C., Bryant, S.H., 2011. CDD: A Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39. https://doi.org/10.1093/nar/gkq1189

- Matsukura, K., Izumi, Y., Yoshida, K., Wada, T., 2016. Cold tolerance of invasive freshwater snails, Pomacea canaliculata, P. maculata, and their hybrids helps explain their different distributions. Freshw. Biol. 61, 80–87. https://doi.org/10.1111/fwb.12681
- Matsukura, K., Tsumuki, H., Izumi, Y., Wada, T., 2009. Physiological response to low temperature in the freshwater apple snail, Pomacea canaliculata (Gastropoda: Ampullariidae). J. Exp. Biol. 212, 2558–2563. https://doi.org/10.1242/jeb.031500
- Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E.L.L., Tosatto, S.C.E., Paladin, L., Raj, S., Richardson, L.J., Finn, R.D., Bateman, A., 2021. Pfam: The protein families database in 2021. Nucleic Acids Res. 49, D412–D419. https://doi.org/10.1093/NAR/GKAA913
- Mu, H., Sun, J., Cheung, S.G., Fang, L., Zhou, H., Luan, T., Zhang, H., Wong, C.K.C., Qiu, J.W., 2018. Comparative proteomics and codon substitution analysis reveal mechanisms of differential resistance to hypoxia in congeneric snails. J. Proteomics 172, 36–48. https://doi.org/10.1016/j.jprot.2017.11.002
- Novarino, A.A., 2011. Record of Small-Clawed Otters (Aonyx cinereus) Foraging on an Invasive Pest Species, Golden Apple Snails (Pomacea canaliculata) in a West Sumatra Rice Field. IUCN/SCC Otter Spec. Gr. Bull. 28, 34–38.
- Okada, C., Yamashita, E., Lee, S.J., Shibata, S., Katahira, J., Nakagawa, A., Yoneda, Y., Tsukihara, T., 2009. A high-Resolution structure of the pre-microrna nuclear export machinery. Science (80-.). 326, 1275–1279. https://doi.org/10.1126/science.1178705
- Parker, J.S., Roe, S.M., Barford, D., 2004. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J. 23, 4727–4737. https://doi.org/10.1038/sj.emboj.7600488
- Picone, B., Rhode, C., Roodt-Wilding, R., 2017. Identification and characterization of miRNAs transcriptome in the South African abalone, Haliotis midae. Mar. Genomics 31, 9–12. https://doi.org/10.1016/j.margen.2016.10.005
- Pimentel, D., Zuniga, R., Morrison, D., 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273– 288. https://doi.org/10.1016/j.ecolecon.2004.10.002
- Queiroz, F.R., Portilho, L.G., Jeremias, W. de J., Babá, É.H., do Amaral, L.R., Silva, L.M., Coelho, P.M.Z., Caldeira, R.L., Gomes, M. de S., 2020. Deep sequencing of small RNAs reveals the repertoire of miRNAs and piRNAs in Biomphalaria glabrata. Mem. Inst. Oswaldo Cruz 115, 1–13. https://doi.org/10.1590/0074-02760190498
- Queiroz, F.R., Silva, L.M., Jeremias, W. de J., Babá, É.H., Caldeira, R.L., Coelho, P.M.Z., Gomes, M. de S., 2017. Differential expression of small RNA pathway genes associated with the Biomphalaria glabrata/Schistosoma mansoni interaction. PLoS One 12, e0181483. https://doi.org/10.1371/journal.pone.0181483
- Rachagani, S., Kumar, S., Batra, S.K., 2010. MicroRNA in pancreatic cancer: Pathological, diagnostic and therapeutic implications. Cancer Lett. 292, 8–16.

https://doi.org/10.1016/j.canlet.2009.11.010

- Ruby, J.G., Jan, C.H., Bartel, D.P., 2007. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86. https://doi.org/10.1038/nature05983
- Saitou, N, Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–25. https://doi.org/10.1093/oxfordjournals.molbev.a040454
- Saitou, Naruya, Nei, M., 1987. ESCALA CIWA-AR Escala CIWA-Ar(Clinical Institute Withdrawal Assessment for Alcohol) Evaluación del Síndrome de Abstinencia Alcohólica. Mol. Biol. Evol 4, 406–425. https://doi.org/citeulike-article-id:93683
- Sasidharan, V., Lu, Y.C., Bansal, D., Dasari, P., Poduval, D., Seshasayee, A., Resch, A.M., Graveley, B.R., Palakodeti, D., 2013. Identification of neoblast- And regenerationspecific miRNAs in the planarian Schmidtea mediterranea. Rna 19, 1394–1404. https://doi.org/10.1261/rna.038653.113
- Schultz, J.H., Adema, C.M., 2017. Comparative immunogenomics of molluscs. Dev. Comp. Immunol. 75, 3–15. https://doi.org/10.1016/j.dci.2017.03.013
- Seitz, H., Tushir, J.S., Zamore, P.D., 2011. A 5'-uridine amplifies miRNA/miRNA* asymmetry in Drosophila by promoting RNA-induced silencing complex formation. Silence 2, 1–10. https://doi.org/10.1186/1758-907X-2-4
- Shennan Lu et al., 2020. CDD: NCBI's conserved domain database. Nucleic Acids Res 265–268. https://doi.org/10.1186/1758-907X-2-410.1093/nar/gkz991
- Song, J.J., Smith, S.K., Hannon, G.J., Joshua-Tor, L., 2004. Crystal structure of argonaute and its implications for RISC slicer activity. Science (80-.). 305, 1434–1437. https://doi.org/10.1126/science.1102514
- Strong, E.E., Gargominy, O., Ponder, W.F., Bouchet, P., 2008. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater, in: Freshwater Animal Diversity Assessment. Springer Netherlands, Dordrecht, pp. 149–166. https://doi.org/10.1007/978-1-4020-8259-7_17
- Sun, J., Mu, H., Ip, J.C.H.H., Li, R., Xu, T., Accorsi, A., Sánchez Alvarado, A., Ross, E., Lan, Y., Sun, Y., Castro-Vazquez, A., Vega, I.A., Heras, H., Ituarte, S., Van Bocxlaer, B., Hayes, K.A., Cowie, R.H., Zhao, Z., Zhang, Y., Qian, P.-Y.Y., Qiu, J.-W.W., Alvarado, A.S., Ross, E., Lan, Y., Sun, Y., Castro-Vazquez, A., Vega, I.A., Heras, H., Ituarte, S., Van Bocxlaer, B., Hayes, K.A., Cowie, R.H., Zhao, Z., Zhang, Y., Qian, P.-Y.Y., Qiu, J.-W.W., 2019. Signatures of Divergence, Invasiveness, and Terrestrialization Revealed by Four Apple Snail Genomes. Mol. Biol. Evol. 36, 1507–1520. https://doi.org/10.1093/molbev/msz084
- Swarts, D.C., Makarova, K., Wang, Y., Nakanishi, K., Ketting, R.F., Koonin, E. V., Patel, D.J., Van Der Oost, J., 2014. The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 21, 743–753. https://doi.org/10.1038/nsmb.2879

- Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599. https://doi.org/10.1093/molbev/msm092
- Tanzer, A., Stadler, P.F., 2004. Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335. https://doi.org/10.1016/j.jmb.2004.03.065
- Tsai, H.C., Liu, Y.C., Kunin, C.M., Lee, S.S.J., Chen, Y.S., Lin, H.H., Tsai, T.H., Lin, W.R., Huang, C.K., Yen, M.Y., Yen, C.M., 2001. Eosinophilic meningitis caused by Angiostrongylus cantonensis: Report of 17 cases. Am. J. Med. 111, 109–114. https://doi.org/10.1016/S0002-9343(01)00766-5
- Van Bocxlaer, B., 2017. Hierarchical structure of ecological and non-ecological processes of differentiation shaped ongoing gastropod radiation in the malawi basin. Proc. R. Soc. B Biol. Sci. 284. https://doi.org/10.1098/rspb.2017.1494
- Voolstra, C.R., GIGA Community of Scientists (COS), Wörheide, G., Lopez, J. V., 2017. Corrigendum to: Advancing genomics through the Global Invertebrate Genomics Alliance (GIGA). Invertebr. Syst. 31, 231. https://doi.org/10.1071/is16059_co
- Walker, S.E., Spencer, G.E., Necakov, A., Carlone, R.L., 2018. Identification and Characterization of microRNAs during Retinoic Acid-Induced Regeneration of a Molluscan Central Nervous System. Int. J. Mol. Sci. 19. https://doi.org/10.3390/ijms19092741
- Wang, J., Lu, X., Zhang, J., Ouyang, Y., Qin, Z., Zhao, B., 2020. Using golden apple snail to mitigate its invasion and improve soil quality: a biocontrol approach. Environ. Sci. Pollut. Res. 27, 14903–14914. https://doi.org/10.1007/s11356-020-07998-9
- Wang, Q.P., Lai, D.H., Zhu, X.Q., Chen, X.G., Lun, Z.R., 2008. Human angiostrongyliasis. Lancet Infect. Dis. 8, 621–630. https://doi.org/10.1016/S1473-3099(08)70229-9
- Wang, Q.P., Wu, Z.D., Wei, J., Owen, R.L., Lun, Z.R., 2012. Human angiostrongylus cantonensis: An update. Eur. J. Clin. Microbiol. Infect. Dis. 31, 389–395. https://doi.org/10.1007/s10096-011-1328-5
- Yang, T.B., Wu, Z.D., Lun, Z.R., 2013. The apple snail Pomacea canaliculata, a novel vector of the rat lungworm, Angiostrongylus cantonensis: its introduction, spread, and control in China. Hawaii. J. Med. Public Health 72, 23–25.
- Yang, W., Steitz, T.A., 1995. Recombining the structures of HIV integrase, RuvC and RNase H. Structure 3, 131–134. https://doi.org/10.1016/S0969-2126(01)00142-3
- Yusa, Y. and T.W., 1999. Impact of the introduction of Apple Snails and their control in Japan. Naga, ICLARM Q. 22, 9–13.
- Yusa, Y., Wada, T., Takahashi, S., 2006. Effects of dormant duration, body size, self-burial and water condition on the long-term survival of the apple snail, Pomacea canaliculata (Gastropoda: Ampullariidae). Appl. Entomol. Zool. 41, 627–632. https://doi.org/10.1303/aez.2006.627

- Zhang, Y.F., Zhang, R., Su, B., 2009. Diversity and evolution of MicroRNA gene clusters. Sci. China, Ser. C Life Sci. 52, 261–266. https://doi.org/10.1007/s11427-009-0032-5
- Zhang, Y.Q., Chen, D.L., Tian, H.F., Zhang, B.H., Wen, J.F., 2009. Genome-wide computational identification of microRNAs and their targets in the deep-branching eukaryote Giardia lamblia. Comput. Biol. Chem. 33, 391–396. https://doi.org/10.1016/j.compbiolchem.2009.07.013
- Zhou, M., Wang, Q., Sun, J., Li, X., Xu, L., Yang, H., Shi, H., Ning, S., Chen, L., Li, Y., He, T., Zheng, Y., 2009. In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 94, 125–131. https://doi.org/10.1016/j.ygeno.2009.04.006

SUPPLEMENTARY DATA I

Supplementary Table 1 Id Protein, putative name, length, ID protein Ortholog, Ortholog species, Ortholog length and E-value of *L. nyassanus* proteins

ID protein	Putative name	Length (AA)	ID protein Ortholog Ortholog Species		Length (AA)	E-value
Lny23421	Argonaute 1.1	890	NP_493837.1	Caenorhabditis elegans	891	0.0
			NP_001163498.1	Drosophila melanogaster	866	7e ⁻³⁵
			XP_013068463.1	Biomphalaria glabrata	895	0.0
Lny25187	Argonaute 1.2	880	NP_493837.1	Caenorhabditis elegans	891	9e ⁻⁴⁴
			NP_001163498.1	Drosophila melanogaster	866	8e ⁻¹⁸⁰
			XP_013089248.1	Biomphalaria glabrata	897	0.0
Lny28936	Argonaute 1.3	941	NP_493837.1	Caenorhabditis elegans	891	3e ⁻⁴³
			NP_001163498.1	Drosophila melanogaster	866	0.0
			XP_013089248.1	Biomphalaria glabrata	897	0.0
Lny28171	Dicer	1434	NP_498761.2	Caenorhabditis elegans	1910	9e ⁻¹²⁴
			NP_524453.1	Drosophila melanogaster	2249	2e ⁻¹⁵⁹
			XP_013067888.1	Biomphalaria glabrata	2332	2e ⁻¹⁵⁹
Lny18581	Drosha	317	NP_492599.1	Caenorhabditis elegans	1086	4e ⁻⁸⁷
			NP_477436.1	Drosophila melanogaster	1327	1e ⁻¹⁴⁶
			XP_013069067.1	Biomphalaria glabrata	1469	2e ⁻¹⁷¹
Lny14710	Exportin 5	1196	NP_741567.1	Caenorhabditis elegans	1080	1e ⁻¹¹
			NP_001285453.1	Drosophila melanogaster	1241	0.0
			XP_013087907.1	Biomphalaria glabrata	1193	0.0
Lny12572	Exportin 1	1070	NP_741567.1	Caenorhabditis elegans	1080	0.0
			NP_001303316.1	Drosophila melanogaster	1063	0.0
			XP_013069551.1	Biomphalaria glabrata	1996	0.0
Lny27692	Exportin T	966	NP_501320.2	Caenorhabditis elegans	950	3e ⁻¹⁰¹

			XP_013079973.1	Biomphalaria glabrata	963	0.0
Lny22624	Tudor - SN	897	NP_494839.1	Caenorhabditis elegans	914	0.0
			NP_001261195.1	Drosophila melanogaster	926	0.0
Lny29643	Loquacious	338	NP_723813.1	Drosophila melanogaster	419	8e ⁻⁴³
Lny27624	PASHA	701	NP_001293461.1	Caenorhabditis elegans	751	1e ⁻²⁸
			NP_651879.1	Drosophila melanogaster	642	1e ⁻¹³⁷
Lny9931	VIG	312	NP_001367502.1	Caenorhabditis elegans	378	3e ⁻⁰⁹
			NP_723898.1	Drosophila melanogaster	490	1e ⁻²⁶

Supplementary Table 2 Id Protein, putative name, length, ID protein Ortholog, Ortholog Species, Ortholog Length and E-value of *M. cornuarietis* proteins

ID protein	Putative name	Length (AA)	ID protein Ortholog	Ortholog Species	Length (AA)	E-value
Mco26370	Argonaute 1.1	931	NP_493837.1	Caenorhabditis elegans	891	0.0
			NP_001163498.1	Drosophila melanogaster	866	1e ⁻³²
			XP_013068463.1	Biomphalaria glabrata	895	0.0
Mco27042	Argonaute 1.2	878	NP_493837.1	Caenorhabditis elegans	891	3e ⁻⁴⁴
			NP_001163498.1	Drosophila melanogaster	866	3e ⁻¹⁷⁸
			XP_013089248.1	Biomphalaria glabrata	897	0.0
Mco25093	Argonaute 1.3	938	NP_493837.1	Caenorhabditis elegans	891	1e ⁻⁴¹
			NP_001163498.1	Drosophila melanogaster	866	0.0
			XP_013089248.1	Biomphalaria glabrata	897	0.0
Mco22837	Drosha	760	NP_492599.1	Caenorhabditis elegans	1086	6e ⁻¹⁵⁷
			NP_477436.1	Drosophila melanogaster	1327	0.0
			XP_013069067.1	Biomphalaria glabrata	1469	0.0
Mco24030	Exportin 1	1070	NP_741567.1	Caenorhabditis elegans	1080	0.0
			NP_001285453.1	Drosophila melanogaster	1241	3e ⁻¹⁰
			XP_013069551.1	Biomphalaria glabrata	1076	0.0
Mco81614	Exportin T	331	NP_001294153.1	Caenorhabditis elegans	952	4e ⁻⁴³
			NP_001294153.1	Biomphalaria glabrata	963	2e ⁻¹²²
Mco51286	Tudor - SN	926	NP_494839.1	Caenorhabditis elegans	914	0.0
			NP_001261195.1	Drosophila melanogaster	926	0.0
Mco13761	Loquacious	316	NP_723813.1	Drosophila melanogaster	419	1e ⁻⁴⁴
Mco21592	PASHA	709	NP_001293461.1	Caenorhabditis elegans	751	2e ⁻²⁸
			NP_651879.1	Drosophila melanogaster	642	8e ⁻¹³⁵
Mco12258	VIG	414	NP_001367502.1	Caenorhabditis elegans	378	4e ⁻⁰⁹

		NP_723898.1	Drosophila melanogaster	490	2e ⁻²⁴
--	--	-------------	-------------------------	-----	-------------------

Supplementary Table 3 Id Protein, putative name, length, ID protein Ortholog, Ortholog Species, Ortholog Length and E-value of *P. canaliculata* proteins

ID protein	Putative name	Length (AA)	ID protein Ortholog	Ortholog Species	Length (AA)	E-value
			NP_493837.1	Caenorhabditis elegans	891	7e ⁻⁴⁴
Pca61914	Argonaute 1.1	936	NP_001163498.1	Drosophila melanogaster	866	0.0
			XP_013089248.1	Biomphalaria glabrata	897	0.0
			NP_493837.1	Caenorhabditis elegans	891	3e ⁻³⁶
Pca59652	Argonaute 1.2	468	NP_001163498.1	Drosophila melanogaster	866	6e ⁻¹¹¹
			XP_013089248.1	Biomphalaria glabrata	897	0.0
			NP_493837.1	Caenorhabditis elegans	891	0.0
Pca69814	Argonaute 1.3	897	NP_001163498.1	Drosophila melanogaster	866	1e ⁻³²
			XP_013068463.1	Biomphalaria glabrata	895	0.0
		1984	NP_498761.2	Caenorhabditis elegans	1910	1e ⁻¹²
Pca67531	Dicer		NP_524453.1	Drosophila melanogaster	2249	3e ⁻⁴⁸
			XP_013067888.1	Biomphalaria glabrata	2332	0.0
		1525	NP_492599.1	Caenorhabditis elegans	1086	5e ⁻¹⁷¹
Pca67887	Drosha		NP_477436.1	Drosophila melanogaster	1327	0.0
			XP_013069067.1	Biomphalaria glabrata	1469	0.0
			NP_741567.1	Caenorhabditis elegans	1080	1e ⁻¹¹
Pca62316	Exportin 5	1140	NP_001285453.1	Drosophila melanogaster	1241	0.0
			XP_013069067.1	Biomphalaria glabrata	1469	0.0
			NP_741567.1	Caenorhabditis elegans	1080	0.0
Pca65193	Exportin 1	974	NP_001303316.1	Drosophila melanogaster	1063	0.0
			XP_013069067.1	Biomphalaria glabrata	1469	0.0
Des (2006)	Tude CN	000	NP_494839.1	Caenorhabditis elegans	914	0.0
РСабОЭбЭ	Tudor - SN	898	NP_001261195.1	Drosophila melanogaster	926	0.0
Pca65324	Loquacious	258	NP_723813.1	Drosophila melanogaster	419	3e ⁻²⁵
	DACUA	701	NP_001293461.1	Caenorhabditis elegans	751	4e ⁻²⁸
----------	-------	-----	----------------	-------------------------	-----	--------------------
PCa59979	РАЗНА	/31	NP_651879.1	Drosophila melanogaster	642	2e ⁻¹³²
Pca69254	VIG	390	NP_723898.1	Drosophila melanogaster	490	8e ⁻¹⁰

Supplementary Table 4 Id Protein, putative name, length, ID protein Ortholog, Ortholog Species, Ortholog Length and E-value of *P. maculata* proteins

ID protein	Putative name	Length (AA)	ID protein Ortholog	Ortholog Species	Length (AA)	E-value
			NP_493837.1	Caenorhabditis elegans	891	8e ⁻⁴¹
Pma35144	Argonaute 1.1	909	NP_001163498.1	Drosophila melanogaster	866	2e ⁻¹⁷⁹
			XP_013089248.1	Biomphalaria glabrata	897	0.0
			NP_493837.1	Caenorhabditis elegans	891	1e ⁻⁴³
Pma60501	Argonaute 1.2	937	NP_001163498.1	Drosophila melanogaster	866	0.0
			XP_013089248.1	Biomphalaria glabrata	897	0.0
			NP_493837.1	Caenorhabditis elegans	891	0.0
Pma63715	Argonaute 1.3	891	NP_001163498.1	Drosophila melanogaster	866	1e ⁻³⁴
			XP_013068463.1	Biomphalaria glabrata	895	0.0
			NP_492599.1	Caenorhabditis elegans	1086	2e ⁻⁹⁶
Pma65850	Drosha	359	NP_477436.1	Drosophila melanogaster	1327	2e ⁻⁹⁶
			XP_013069067.1	Biomphalaria glabrata	1469	8e ⁻¹⁷⁸
			NP_492599.1	Caenorhabditis elegans	1080	4e ⁻⁷⁷
Pma51393	Drosha	580	NP_477436.1	Drosophila melanogaster	1241	0.0
			XP_013069067.1	Biomphalaria glabrata	1469	0.0
			NP_741567.1	Caenorhabditis elegans	1080	0.0
Pma59467	Exportin 1	1070	NP_001303316.1	Drosophila melanogaster	1063	0.0
			XP_013069551.1	Biomphalaria glabrata	1076	0.0
D	E contra E	0.55	NP_501320.2	Caenorhabditis elegans	950	1e ⁻⁹⁷
Pma63331	Exportin I	966	XP_013079973.1	Biomphalaria glabrata		0.0
D 00075	T C	600	NP_494839.1	Caenorhabditis elegans	914	0.0
Pma32975	I udor - SN	603	NP_001261195.1	Drosophila melanogaster	926	0.0
Pma62419	PASHA	709	NP_001293461.1	Caenorhabditis elegans	751	2e ⁻²⁸

			NP_651879.1	Drosophila melanogaster	642	2e ⁻¹³⁵
Dma[1202		41.4	NP_001367502.1	Caenorhabditis elegans	378	3e ⁻¹⁰
Pma51302	VIG	414	NP_723898.1	Drosophila melanogaster	490	8e ₋₂₅
Pma61707	Loquacious	316	NP_723813.1	Drosophila melanogaster	419	4e ⁻⁴⁵

SUPPLEMENTARY DATA II

Supplementary Table 1– Structural and thermodynamic characterization of miRNA precursors in *L. nyassanus*. Size (Tam), G content, A content, C content, U content, GC content, AU content, AU ratio (R-AU), GC ratio (R-GC), Minimum Free Energy (MFE), Minimum Free Energy of the Pool (MFEE), Frequency of the MFE Structure in the Pool (Freq), Diversity of the Pool (Div), Minimum Adjusted Free Energy (AMFE), Minimum Free Energy Index (MFEI).

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
lny-mir- 316	UAGUUGUUAAACUGUAGGAAAA CGUCUCUUAUUCCUAUCGGCUCA AUAUAUUUAUGAGCCUAGGCAA CAAAUAUACUGUCUUUUUCCGC UUACAAAUG	98	15,30612	29,59184	19,38776	35,71429	34,69388	65,30612	1,206897	0,789474	-18,9	-14,1	0,015799	21,7	-19,2857	-0,55588
lny-mir- 7965	AUGCAUCGAAGAAACCUCAAAUG ACACGUUUUAAUUAGAAAUGGU GAGGGAAUGAAUUUUGUAUGCU AAAACAUAAAAUUGUCAGCAUUC UUGGAUGAUU	100	20	37	12	31	32	68	0,837838	1,666667	-20	-16,2	0,094567	7,12	-20	-0,625
lny-mir- 2064	GACCAGUAUGGUCAGAGUUGAU GCUUAAGGCGCCAUUCCGUGGC UUAGCACAGCUUUUGACAAAUA AGCAGCACUGUGCAACUGCAA	87	25,28736	27,58621	22,98851	24,13793	48,27586	51,72414	0,875	1,1	-27,2	-26,8	0,071601	11,7	-31,2644	-0,64762
lny-mir- 3484	aauacaaacagCUAAACUAGGAAAA GGAUAUGCUGUGCUUUCCACAU GGUGUUCCUACACAGAUUUUUC UAGUUACcuguuuguggu	87	13,7931	20,68966	14,94253	25,28736	28,73563	45,97701	1,222222	0,923077	-26,7	-26,3	0,091839	12,31	-30,6897	-1,068
lny-mir- 10a	GGGGUGAGACCUACCCUGUAGA UCCGAAUUUGUGUGACAUUCGU	82	28,04878	21,95122	23,17073	26,82927	51,21951	48,78049	1,222222	1,210526	-38,9	-38,9	0,039205	2,67	-47,439	-0,92619

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
Iny-mir- 11	GGUAAGGCCUCACUGC GACCCUAUGGCAAUGUGUCGAG GCUCAUCACAGGCAGAGUUCCag accugucugucugcugacaUCUCUCUC AGACUGCCAUGGCCA	87	18,3908	16,09195	24,13793	17,24138	42,52874	33,33333	1,071429	0,761905	-29,4	-20,8	0,07357	22,9	-33,7931	-0,79459
lny-mir- 2b-1	GAUCUGCUCAUCAAAGCUGGCU GUGAUAUGACUUACAAAAACACA UCCCAGCAGCUUUGAUGAGAAG GCC	70	21,42857	31,42857	24,28571	22,85714	45,71429	54,28571	0,727273	0,882353	-27,6	-27,6	0,092458	3,86	-39,4286	-0,8625
lny-mir- 745a	AUUUGUCGGCUGGAGGCGGCUU UUCAACAGGCUGCCUUGCUUGG GAGGACACAAGCUGCCUGAUGAA GAGCUGUCCUGUAGCGGGCAGU A	90	34,44444	18,88889	22,22222	24,44444	56,66667	43,33333	1,294118	1,55	-46,8	-40,8	0,132252	8,07	-52	-0,91765
lny-mir- 7c	GUGAUCUGGAAGACUAGUGAUU UUGUUGUUCUGAUGCUGACUAA CAAUAAAUCACAUUCUUCCCCGA UUGC	71	19,71831	25,35211	19,71831	35,21127	39,43662	60,56338	1,388889	1	-21,1	-18,6	0,131089	9,74	-29,7183	-0,75357
lny-mir- 9319	UCUCCUUCCCACUCACAGUCACU AGCAGAGCUAGUGGCCUCACCCC CACUACUUGCACUGGCUGCUUCA GGUGAAGGGGG	80	23,75	18,75	35	22,5	58,75	41,25	1,2	0,678571	-30,4	-30,4	0,219681	2,97	-38	-0,64681
lny-mir- 466q-1	AUGGUCUGGUCAUGACAGAcagg cgcgcgcgugcacacacacacauacacaca gacgugUAAAUGUCUGCUCGCGCG UCGUCUGACGUAAUACAUACAGA	100	15	16	13	16	28	32	1	1,153846	-34,9	-33,3	0,065729	20,26	-34,9	-1,24643
Iny-mir- 3297	UAAGCAAGGGUCACAAAACGCCG CUUUCAAGAUAGUGCAGAGAUU CAGCAGAGCACAUCUAGUCAAAA	93	23,65591	33,33333	22,58065	20,43011	46,23656	53,76344	0,612903	1,047619	-22,6	-22	0,137599	8,48	-24,3011	-0,52558

AU	R-GC	MFE	MFEE(Freq	Div
		(kcal/	kcal/m		
		mol)	ol)		

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	CCAAGGUUUGUGACGAUCUUGC AGC															
lny-mir- 7460	AUCAGCAUUCAGCCUGGCACCAU CCUCUUCACAAACAACAUCUGCC UGACUGAGCUCUGCUAGGGCUG UUUUGAGGGCCUGUGCGUGUCG AAUGCUGUC	99	24,24242	19,19192	29,29293	27,27273	53,53535	46,46465	1,421053	0,827586	-28,3	-17,6	0,013885	26,75	-28,5859	-0,53396
lny-mir- 96b	CAUGGCUGUUCAAUUAUUUGGC ACUUGUGGAAUAAUCGUUGCAU CUGAAGUCGAUUAUACAUCGGU GCCAAGUCAUCAGAAAGGCCGGA	89	24,7191	26,96629	19,10112	29,21348	43,82022	56,17978	1,083333	1,294118	-30,3	-28,8	0,042265	5,05	-34,0449	-0,77692
lny-mir- 564	UGAGGUGAACAUUGUACGUGCC AACAAGACUGAAGGCACGGUGGC AGCAGAAGGGCAGGagauagguagg uaauuuuuggCAGACAGUUAUUCC ACCUUA	100	24	24	17	14	41	38	0,583333	1,411765	-22,3	-14,12	0,009426	22,56	-22,3	-0,5439
lny-mir- 6632	CUUAUCGUCAGUGCUCAUCUCAG UCCgauagaaaagagagaagagagagag gUGCUGAACCAUUCC	66	9,090909	10,60606	21,21212	19,69697	30,30303	30,30303	1,857143	0,428571	-18,9	-17,8	0,132348	11,84	-28,6364	-0,945
lny-mir- 6504	guuugugguguaacCAUUACAGCAC AGCCAUGUUUGCGGUGUAACCA UUACAGCACAGC	91	16,48352	24,17582	19,78022	24,17582	36,26374	48,35165	1	0,833333	-26,5	-21	0,034382	27,18	-29,1209	-0,80303
lny-mir- 4262	UAAAUGCCCAGCAGCUGGGACAA CGUCGACAGGCCGACAUUCAGAC UACCUGUCGACGUCGCCUUGAAU GCUGGGAUAAU	80	26,25	26,25	27,5	20	53,75	46,25	0,761905	0,954545	-36,8	-35,1	0,460005	2,87	-46	-0,85581
lny-mir- 133c	UAACUACAGCUGGUUGAAGGGG ACCAAAUGAAAGCCUCUUCAACA	75	22,66667	33,33333	22,66667	21,33333	45,33333	54,66667	0,64	1	-30,4	-27,8	0,231076	4,17	-40,5333	-0,89412

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	AUAGAAG															
lny-mir- 10b	AGAGAGUGUGGGUGGCUUUACC CUGGAGAACCGAGCGUGUgugauc augacgucacagcucguUUCUGAGGG UCAAGUCGCGAUACUCGCG	91	27,47253	14,28571	15,38462	17,58242	42,85714	31,86813	1,230769	1,785714	-41,7	-41,6	0,288526	9,6	-45,8242	-1,06923
lny-mir- 8908i	cucaagaaagaaagaaauuugcaaUCC CCGAUAAACCCAAUGUAAUAGCA ACUACCCGGUAAGGUAGUUGCCa agaaugucuuuuuuuuuuacc	94	9,574468	15,95745	14,89362	10,6383	24,46809	26,59574	0,666667	0,642857	-21,2	-18,84	0,113508	8,17	-22,5532	-0,92174
lny-mir- 1993	AGGAAGGCCCUGUAAUUUUCGG GAAUAUCGGCAUAAUGCAGUUG ACUUGAGAUUCGUAUUAUGCUG CUAUUCACGAGAUGGAAGGGCU UGGA	92	29,34783	26,08696	15,21739	29,34783	44,56522	55,43478	1,125	1,928571	-36,7	-36,7	0,374278	3,58	-39,8913	-0,89512
lny-mir- 466m	gugugugugugacugugugugcaugugc auguguguguuugcaugcaugcacaaua aGGCCCUCCAGUCCCAGACAGGC	79	7,594937	5,063291	12,65823	2,531646	20,25316	7,594937	0,5	0,6	-33,8	-30,8	0,291201	4,92	-42,7848	-2,1125
lny-mir- 8279	GAAACAGUUGAAGAACAGAGCU GAGAGAUUCAUGUCAAUCUGAC AUUUGCAGUAGGUCUGCUagcua cauguauuuucaagUGUAGA	87	20,68966	25,28736	11,49425	20,68966	32,18391	45,97701	0,818182	1,8	-23,3	-21	0,095311	11,78	-26,7816	-0,83214
lny-mir- 7661	CAAGCAGAUGUUGAAGGAAGUU CGUGUuucuacaaaagaaagaaaccug gAUAAACUAGACACUUCCAUCAA AGCGUGCAUC	82	15,85366	24,39024	14,63415	17,07317	30,4878	41,46341	0,7	1,083333	-19,2	-19,2	0,214952	11,41	-23,4146	-0,768
Iny-mir- 87a	AAAUCUUUGUUAAACACUUGGU AAUUUGCAAAUgaacaugcaaauaa aaaggaacacaugacugGCACAUGGA	99	10,10101	29,29293	11,11111	18,18182	21,21212	47,47475	0,62069	0,909091	-19,3	-19,3	0,407153	3,9	-19,4949	-0,91905

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	AAUAAACCCAAGUUAACAACAGA UGA															
lny-mir- 466b	Cauagagagaauuacauauacauacaca cauacuacUCACGCCAGAUAUGUG UCUACAUGUAAUUCUCUCUGUU	74	8,108108	10,81081	13,51351	20,27027	21,62162	31,08108	1,875	0,6	-24,6	-22,9	0,096333	7,47	-33,2432	-1,5375
lny-mir- 10349	CACUGAGCACCAAUAAGCAGCAA UAAGCGGCGAUAGCUCACGACCA GUGAUCACGUGGUCGUUAUCAG CGGGGUUAUAUCCCUUGACUGG UAAUCACUG	99	25,25253	27,27273	25,25253	22,22222	50,50505	49,49495	0,814815	1	-28,4	-25,9	0,020752	14,01	-28,6869	-0,568
lny-mir- 2049	AACUGUAUGUAGCACAGCAAUGA CGUGAAAUUUUGUGCAUGUACG UGgauucaugugcaugcauucauga	70	17,14286	20	10	20	27,14286	40	1	1,714286	-23,5	-23,5	0,409874	4,97	-33,5714	-1,23684
lny-mir- 5920	UCAGUGGGUGCCUGUAGCCUGC CGUUUUGUCAUUCGUAUACAAA ACAGUAGGCCACUGCCCCACAUA	67	22,38806	22,38806	28,35821	26,86567	50,74627	49,25373	1,2	0,789474	-29,7	-29,7	0,51133	1,3	-44,3284	-0,87353
lny-mir- 5600	AGUUGUAGUUAACUAAAUAGGA CAUUUUGAAAAGAAGUGUUCUU GCUUCGUAAAUGCACUUAAUACA UGAGUGGaauguuuuguuucaguac uACAGAG	99	18,18182	28,28283	9,090909	25,25253	27,27273	53,53535	0,892857	2	-25,7	-25,7	0,154731	5,98	-25,9596	-0,95185
lny-mir- 12096b	UGCUACUUCGUGCAAGCGGUGA UACUUUUGUCUCGCAUAUCAAU ACGAGGUAGGGCAAAAUUAUCAC CGAUUACCCGAGGUAUCG	85	23,52941	25,88235	22,35294	28,23529	45,88235	54,11765	1,090909	1,052632	-29	-29	0,105265	6,21	-34,1176	-0,74359
lny-mir- 263a-1	ACUUUCAAGAGUUGGCCAUGCU UAAUGGCACUGGUAGAAUAGCA CACACCAUAGAGAUUAGUGCUGC	95	25,26316	31,57895	17,89474	25,26316	43,15789	56,84211	0,8	1,411765	-24,2	-20,6	0,027018	17,04	-25,4737	-0,59024

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	AGUCAAGAGAGUGGUCAAUAUU GAACGU															
Iny-mir- 124c	AAAUGAUGGUCUUCCCCUUGGC AUUCACCGCGUGCCUUAAUAGU GUGUCAAUCACCAAGGCCAACGC AgugaacacaaacagguaagCCCGGUC ACAC	98	16,32653	19,38776	26,53061	18,36735	42,85714	37,7551	0,947368	0,615385	-26,5	-26,3	0,051306	9,68	-27,0408	-0,63095
lny-mir- 4024	GUCUUUUUUACCUGUCCAAAGC CGUUUUUGAAUAGCUGUGCUAC CGACUUUACUGUCUGUUAUUUG UAGGAUGAAAAGGUUAUUGGAA GUGAAAAAUUA	99	21,21212	26,26263	14,14141	38,38384	35,35354	64,64646	1,461538	1,5	-18,8	-16,9	0,025084	15,96	-18,9899	-0,53714
lny-mir- 216a	guguuugucUAAUCUCAGCUGGUA AUUCUGAGUGGAGUUGUGUACA CCUCAAGUUACUCGCCGAGAUUA CAUAAAUAU	78	17,94872	25,64103	16,66667	28,20513	34,61538	53,84615	1,1	1,076923	-26,2	-26,2	0,262819	2,61	-33,5897	-0,97037
lny-mir- 12	UUGAAUGGUCAGACUGUGAGUA UUACAUCAGGUACUGAGAAAACA GCAUGCUUCAGUACCUUUUGUG AUAUUCUUAGUCUGCCAUUUUG	89	21,34831	25,8427	16,85393	35,95506	38,20225	61,79775	1,391304	1,266667	-42,9	-42,9	0,38245	2,26	-48,2022	-1,26176
lny-mir- 8335-1	ucuuguuguuguuguuguuguuguuguuguuguuguuguu	90	7,77778	25,55556	14,44444	16,66667	22,22222	42,22222	0,652174	0,538462	-24,3	-24,3	0,033164	11,07	-27	-1,215
	CAUUUUUGCCUUUGGUAACCUA															

Iny-mir-

9-1

GCUUUAUGAUAUUUCUACUUCA

AUCAUACAGCUAGAUAACCAAAG ACAAAACCG

76

11,84211

32,89474

22,36842

32,89474

34,21053

65,78947

0,529412

1

-24,2

-24,2

0,496783

1,38

-31,8421

-0,93077

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
lny-mir- 8335-2	GUACACAAGCAAAAGUACAAUUG ACAAAUGUUCCAGAACAGCCCAG CGUCUUUugacacuguuguuguuguug guuuuguuuuguggag	88	10,22727	22,72727	14,77273	12,5	25	35,22727	0,55	0,692308	-21	-18,9	0,011022	19,33	-23,8636	-0,95455
lny-mir- 228	AGGCAUCAUGUGAAAAGAGCAUC AAUUGUAUAAUGGCACUGCAUga auaaaaaauuauguuugCCAGAAAGA AUUGUGUCUUUGCUAAAUGACU GGUU	98	18,36735	26,53061	12,2449	23,46939	30,61224	50	0,884615	1,5	-22,7	-22,5	0,078762	7	-23,1633	-0,75667
lny-mir- 2987	CGACCUGAGACUUGUCUGAUUG UUCAGGAAAGUCUGGAUCUCGC ACACUACGUUAGCUGCUUGAAG ACUUCAGAGCAAGGCUGAGGCU U	89	26,96629	23,59551	22,47191	26,96629	49,4382	50,5618	1,142857	1,2	-24,9	-16,6	0,027121	27,97	-27,9775	-0,56591
lny-mir- 252b-1	GAGAGUAAGUACUCUCGACAGG GGGCGCUUCCUCCAACUUGCUGC GCAGAUGGUGUCCUUGGAGGUA CGUGUCCCUGCGCAGUCCUACUG GG	92	32,6087	16,30435	27,17391	23,91304	59,78261	40,21739	1,466667	1,2	-34,9	-26,6	0,007771	20,62	-37,9348	-0,63455
Iny-mir- 9701a-1	GUGACAGCaggcuguggacuguga ccACCAUCAACCCGCGACGUGUGA CCACAGUCGUAUUUUACUGGAG GUACAGGACAAAUGUCAGCUGU GUU	97	20,61856	20,61856	19,58763	18,5567	40,20619	39,17526	0,9	1,052632	-30,9	-30,1	0,097108	9,96	-31,8557	-0,79231
lny-mir- 281	ACGUGACCUCACGCUGAAGGGAG CAUCCGUCGACAGUCAGAAAUAC AGCACUGUCAUGGAGUUGCUCU CUUUACUGGAAAGGUCAAGG	88	27,27273	27,27273	23,86364	21,59091	51,13636	48,86364	0,791667	1,142857	-36,5	-36,1	0,381583	2,16	-41,4773	-0,81111
lny-mir- 466i-1	GUUUGACAAGUCUGCuagcugacu gugugugugugugugagugugugugug	100	11	18	15	12	26	30	0,666667	0,733333	-35,6	-34,2	0,076901	11,8	-35,6	-1,36923

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	ugacgcacAAAGACAUACAAACCAC CGUCCCAGUCUGAACUGGUCAGA U															
lny-mir- 3128	GAaugguuuuuuuuuaauuucagacUUG GAUUUGAAGAUGAAUGGUCAUG UGAUCCAUGGCACAUCCAUUGCA GUUGAUUUCUGGCAAGUAAAAA ACCAUCC	100	18	24	14	23	32	47	0,958333	1,285714	-26,1	-23,4	0,009444	10,94	-26,1	-0,81563
lny-mir- 279	GUCUCUUAUCUUUGCGGGUGGC UGUGAGUCUAGUCCAUGUGACA AGGCCAGCUCAUGACUAGAUCCA CACUCAUCCACAAGGAUAAGACG G	91	25,27473	24,17582	25,27473	25,27473	50,54945	49,45055	1,045455	1	-40,2	-39,7	0,065907	7,67	-44,1758	-0,87391
lny-mir- 36b	CUGGGGUGCGGUGGGUGUACGC CCUGGUUGGUGGGCGUCGGUAA CAUCACCGGGUAUACAUUCAUCC GCACCCUGA	76	35,52632	14,47368	25	22,36842	60,52632	36,84211	1,545455	1,421053	-43,9	-41,1	0,167581	3,38	-57,7632	-0,95435
Iny-mir- 1662	GUAUAUUGUGUUGCAGAAAUUU GACAUCACCAUACUUUAUGUCGU CAGUUUGACAUCAUCAUACUUU AUGUCAUAAGUUUGACAUCACCA UACUU	95	13,68421	28,42105	18,94737	38,94737	32,63158	67,36842	1,37037	0,722222	-19,6	-19,6	0,371187	6,34	-20,6316	-0,63226
lny-mir- 9a	ggaagggaaggagacGCAGUCCUUAA GCCCGCAGUUCUGUAACUGUCGA UAAGAAAUAAAGCUAGGCGACU GUCCGUCCUCGUUGCCUAAU	91	18,68132	20,87912	21,97802	21,97802	40,65934	42,85714	1,052632	0,85	-26,4	-17,7	0,034951	9	-29,011	-0,71351
lny-mir- 8335-3	UGGCAUCGUUAGAACUUGAUUA AAGCAGGCUUGACucaugcuuuguu guuguuguuguuguuuugaagccaGA UUAAUCAUCUAAUGUGGCU	92	14,13043	17,3913	9,782609	19,56522	23,91304	36,95652	1,125	1,444444	-20	-18,3	0,054089	28,71	-21,7391	-0,90909

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
lny-mir- 2001	GCUGCCAUUUUGUGACCGUUAC AAUGGGCauugacagaaagacaaaug cuCCAUGUGAUGUUCACAAGAUG GCGGU	76	21,05263	14,47368	15,78947	21,05263	36,84211	35,52632	1,454545	1,333333	-39,7	-39,7	0,259527	3,56	-52,2368	-1,41786
lny-mir- 252b-2	GGGGAUAGUGCCGGCGAUAAGU AGUGGUGCCGCAGGUAUGGCUC GUCAACUACCUGCUCAUCUCUGC UUAAUGUUGCUCUAUCAUU	86	27,90698	18,60465	23,25581	30,23256	51,16279	48,83721	1,625	1,2	-33,5	-33,5	0,133838	3,27	-38,9535	-0,76136
lny-mir- 252a	AUUUUCUGGCCCACUACUAAGUA CUAGUGCCGCGGGAGGACAGCU UGCCAUGUCCCGUGGUUCUGGU CCUUACUACAGGGCGGAAUUU	88	27,27273	18,18182	26,13636	28,40909	53,40909	46,59091	1,5625	1,043478	-37,2	-36,8	0,059207	5,64	-42,2727	-0,79149
lny-mir- 7371d	ACUGUAGGCAGCAGAGAGAACU UCCAGUAAAUGCAGUUCGCAAUC AUGGAAACACCAUUCACCAUAUU UGUACCAGAUGCUCUCUCUGGU GCCCACAGA	99	20,20202	30,30303	26,26263	23,23232	46,46465	53,53535	0,766667	0,769231	-33,9	-33,1	0,261583	12,77	-34,2424	-0,73696
Iny-mir- 190	UGCCCACCUACCCGCUUCUGCUA GAUAUGUUUGAUAUAUUUGGU GCGGUUGUCAUGACGACCAAGU AGUCAAACAUGUCAGAGCAGCGG UGGGGCUU	97	26,80412	21,64948	22,68041	28,86598	49,48454	50,51546	1,333333	1,181818	-44,3	-44,3	0,312382	10,4	-45,6701	-0,92292
lny-mir- 92b-1	GACAGUCAGGGUUGUGUAGACC GGUACAGGGGCAAUGCAGUGAG UCGCUUGUAUUGCACUCGUCCCG GCCUAUACAGUCUGACUCGG	87	32,18391	19,54023	24,13793	24,13793	56,32184	43,67816	1,235294	1,333333	-41,1	-41,1	0,171444	4,85	-47,2414	-0,83878
Iny-mir-	GCAUUAGCAUUAGGUCUUGAUG GGUGCAAUACUGGUGAGCCUGA	80	28,75	21,25	22,5	27,5	51,25	48,75	1,294118	1,277778	-36,4	-36,4	0,391022	2,84	-45,5	-0,8878

92a

UGGCAGAUUGCACUCGUCCCGGC CUUCUGCUAAAAG

48,75

0,391022

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
lny-mir- 92b-2	UAGCAUAGGGAGGUUGUGACCU GUGCAAUGAUUGGAGGAAUAUG AGCCAAUUGCACUUGUCCCGGCC UGCCCUGUGUGC	79	31,64557	20,25316	21,51899	26,58228	53,16456	46,83544	1,3125	1,470588	-35,3	-35,1	0,232461	3,35	-44,6835	-0,84048
lny-mir- 184b	ACCCACAAGCCCUUAUCAGUUCU CCGUCCAGUGCUUGAGAACAGAC GGGGCGGGGGGGGAGUGAUAAGGAA AUGUGAAA	76	30,26316	28,94737	22,36842	18,42105	52,63158	47,36842	0,636364	1,352941	-35	-33,4	0,17411	3,39	-46,0526	-0,875
lny-mir- 306	CAGCACCGAGACCGGCCAAUUUU GUCUUUCGAAAGAUCUUCCAGU UAAGAACACCAGCCUUGACACCU GUGACAAAUUUUGGUCAGGUAC UGAGUGACU	99	21,21212	27,27273	25,25253	26,26263	46,46465	53,53535	0,962963	0,84	-24,1	-22,8	0,10238	6,82	-24,3434	-0,52391
lny-mir- 1a	GCCCGGCACAUACUUCUUUGCUA UCCCAUAUGUUCUUCCAAAGCUA UGGAAUGUAAAGAAGUAUGUAC CGUGU	73	19,17808	26,0274	23,28767	31,50685	42,46575	57,53425	1,210526	0,823529	-29,2	-29,2	0,14159	5,1	-40	-0,94194
lny-mir- 4690	UCACCUCCCGCUCAUCUCCUGGU CUGACCAGCACCGGCAGUCCGCG AUCGGGUGUGCUGGGGAGCAGG CGAGGCUGGGAGGGCU	84	36,90476	13,09524	32,14286	17,85714	69,04762	30,95238	1,363636	1,148148	-40,6	-39,2	0,073847	8,43	-48,3333	-0,7
lny-mir- 8075	gcuUGACUGCUGAUGGCAGAUGU GUGUUGGCUGUUCAAUAAACAG AGCCCCACUGCCACACUCAGAUC AUGU	72	23,61111	23,61111	23,61111	25	47,22222	48,61111	1,058824	1	-19,8	-10,6	0,03638	15,58	-27,5	-0,58235
lny-mir- 669k	UUUCUCUCGUACACUGAAGUCCA UAUCUUCAAGAGUGUUUAgaugu gcaugucuguuuacuuguguggegcaug uauggacGUGCAUGUGUAUCAGA GAGG	100	14	15	11	21	25	36	1,4	1,272727	-32,7	-32,3	0,067561	17,27	-32,7	-1,308

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
lny-mir- 9708c	GGGAAGUUGAGGGCUAGAAAAA UUUGUGUAGCACCAGACAUUUG ugagcacagcuaaacauuuucuCUGCU GAGAUAAUUUUGUGGCGCCUCA ACUUCCC	100	21	20	15	22	36	42	1,1	1,4	-39	-31,9	0,079272	20,93	-39	-1,08333
Iny-mir- 1731	uuauuuacuugacUGCAGGCACUAC AGAUUAGUGAUAAUGCUGUUCC AGUCAGUCGAAAUCUGUAUUGA UUCGGUGUAAGUAAACGC	87	20,68966	24,13793	14,94253	25,28736	35,63218	49,42529	1,047619	1,384615	-21,8	-21,7	0,069971	9,58	-25,0575	-0,70323
lny-mir- 8066	Gauucccgcccccucccuucucccacac aucGACCUUCCCAUGGUCCGAGG GGCCGAUGCAAUGUGAUCUUUU GGAGaacauggagaugggggaugU	98	16,32653	8,163265	11,22449	13,26531	27,55102	21,42857	1,625	1,454545	-34,7	-29,6	0,27164	13,85	-35,4082	-1,28519
lny-mir- 5100	CGGGCACGUGACACCUACGUCAU GGCUGUUGUCGAAUCCCAGCGG UGCCCGAGAGCUGGUUCCAGUA ACAGCUCACCUCGUCCUGGAGCC ACGUGCGUC	99	29,29293	17,17172	33,33333	20,20202	62,62626	37,37374	1,176471	0,878788	-36,8	-36,7	0,095799	8,39	-37,1717	-0,59355
lny-mir- 3906	agGGGCAAUGCUCUUGCAAGUUU UUUAUCCAAUAGUUGGAGCAGG AAGAAAAGCAUUUUGAAUGCAU AAAAAGCAUUCCAUAGACCACUC CUGU	94	20,21277	31,91489	18,08511	27,65957	38,29787	59,57447	0,866667	1,117647	-20,6	-16,8	0,091919	20,31	-21,9149	-0,57222
lny-mir- 7062	GAUAAAAAGCUGCACAGCUGAUG GCCAUCCUGUUCGUGGAGGCCA GCUUGUGUCCAGGUUAUUGCA	66	28,78788	22,72727	22,72727	25,75758	51,51515	48,48485	1,133333	1,266667	-20,8	-18,1	0,025013	10,43	-31,5152	-0,61176
lny-mir- 8485-1	UUugugguacacacacacacacacacaca acacacguacuuaAAAUUUAGACUG CAGGGUGUUCGUGCGUUAAUUU CUAUGUGUGGGGGGUACCACCAA	97	16,49485	13,40206	9,278351	20,61856	25,7732	34,02062	1,538462	1,777778	-25,5	-18,6	0,096418	19,61	-26,2887	-1,02

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
lny-mir- 6756	ucccCCCACUUCUUGCCCCUCCU CGCGCAUGGAUAUUACAUAUAU GAAAAUAUUACUUUUUGACUAG GGUGGGGCUGGAGGUGGGGAUA	90	24,44444	21,11111	21,11111	28,88889	45,55556	50	1,368421	1,157895	-39	-37,9	0,064711	9,53	-43,3333	-0,95122
lny-mir- 10790	uuggauacAGAAAGCAGACUAACG GACGUCAGCAAGCAGGUGACACU GUCUGGCUgcucucuuuauuucucuc ucuguucguc	83	16,86747	18,07229	13,25301	8,433735	30,12048	26,50602	0,466667	1,272727	-21,7	-18,1	0,055432	16,72	-26,1446	-0,868
lny-mir- 153	ACACCCCCUUCCCAGGCAGCUUU UGUGAUUCAGCAAUUGUACAGC UAUCAAAUUGCAUAGUCACAAAA GUGAUCGGGAGGCGGGGACU	88	23,86364	27,27273	25	23,86364	48,86364	51,13636	0,875	0,954545	-40,2	-40,2	0,334594	4,07	-45,6818	-0,93488
lny-mir- 124	GUGUGACCGGGcuuaccuguuugug uucacUGCGUUGGCCUUGGUGAU UGACACACUAUUAAGGCACGCGG UGAAUGCCAAGGGGAAGACCAUC AUUU	98	26,53061	18,36735	16,32653	19,38776	42,85714	37,7551	1,055556	1,625	-40,2	-38,8	0,093576	10,13	-41,0204	-0,95714
lny-mir- 133	CUUCUAUAGCUGGUUGAACUCG GGCCAAAUUGUUGAAGAGGCUU UCAUUUGGUCCCCUUCAACCAGC UGUAGUUA	75	22,66667	21,33333	22,66667	33,33333	45,33333	54,66667	1,5625	1	-35,5	-35,1	0,187007	6,7	-47,3333	-1,04412
lny-mir- 10365	uuguGCCCGCAGUCCAUUAGAAU GUGGAAUCUAUGCUUUAAUGGU UGUGACAGAUUCUACUUUAAAA GACAUCUGGCAACC	81	19,75309	27,16049	19,75309	28,39506	39,50617	55,55556	1,045455	1	-20,4	-20,4	0,113197	12,46	-25,1852	-0,6375
lny-mir- 466h	CCUGCuucgcacacacgcauacgcacgc acacacacacaucuccucGGCGACACG UGAAGAUGCACGUGGGAGGGUG UUCAUGUGUGCGAAUGCCUG	97	22,68041	10,30928	12,37113	12,37113	35,05155	22,68041	1,2	1,833333	-34,7	-33,9	0,086928	14,95	-35,7732	-1,02059

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
lny-mir- 981	UUGAUCAGACUUUGUACCGGGU UUCGCGACUGGCGAACAGUCAU UCUGAACUGUGUUCGUUGUCGU CGAAACCUGCCCUGAACUCUGAU GUG	92	26,08696	18,47826	23,91304	31,52174	50	50	1,705882	1,090909	-35,3	-34,1	0,018788	7,48	-38,3696	-0,76739
lny-mir- 7398y	AUGAGAUGUCGGAUGCAAAUGU GAUGGAGUGGGUGGUUUAaccuu cccuucucucucucucucaacaac UCGAUCUUUGUCAGGCAACAUC UCAA	99	20,20202	17,17172	9,090909	20,20202	29,29293	37,37374	1,176471	2,222222	-24,9	-23,9	0,214701	12,35	-25,1515	-0,85862
lny- bantam	uuugacgAAACUGGUUUUCACAGU GAUCCAGCAGAUCGUUCGAAGUC UGAGAUCAUUGUAAAAACCAAU UUUGUCGCC	78	17,94872	26,92308	19,23077	26,92308	37,17949	53,84615	1	0,933333	-31,9	-31,9	0,266041	5,12	-40,8974	-1,1
lny-mir- 7006	GGUCACAGGUGAGUGGGGGUGU UCAAGAccccccaguuuucugugggcc agcaucauagGGGUGAUGCACAUC GCCUCUCCCUUGCUG	88	23,86364	10,22727	14,77273	15,90909	38,63636	26,13636	1,555556	1,615385	-44,5	-43,9	0,07812	5,45	-50,5682	-1,30882
lny-mir- 2a-1	GUGCCAAAGCUGUGAUGCUGAC CAAGUGACUGGGAUGUGUGUUU GUUGUCAUAUCACAGCCUGCUU GGAUC	71	29,57746	19,71831	19,71831	30,98592	49,29577	50,70423	1,571429	1,5	-20,8	-17,8	0,088092	9,24	-29,2958	-0,59429
lny-mir- 2b-2	GGCCUUCUCAUCAAAGCUGCUGG GAUGUGUUUUUGUAAGUCAUAU CACAGCCAGCUUUGAUGAGGAGA UC	70	24,28571	22,85714	21,42857	31,42857	45,71429	54,28571	1,375	1,133333	-32,9	-32,9	0,167727	4,14	-47	-1,02813
Iny-mir- 2d	GUAAGCAUGAAUGGAGGGCCAG CCAAAGUGGCGGUGAUCUGAUG UUCAGAGCAAAUCACAGCCUGCU	92	30,43478	23,91304	20,65217	25	51,08696	48,91304	1,045455	1,473684	-40,6	-40,6	0,14781	5,41	-44,1304	-0,86383

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	GAG															
lny-mir- 2a-2	AAUUGACCGCAGAGGUCACACCA AAGAGGUUGugacuuugucuuucug uucaaaUCACAGCCUGCUUUGGU GAGCUCUUUGUCGUCAGGU	90	21,11111	16,66667	17,77778	20	38,88889	36,66667	1,2	1,1875	-39,5	-39,1	0,224362	3,21	-43,8889	-1,12857
lny-mir- 6868	GUAUUCCUUCUGUUGUCUGUAA ACUGCUUucgggaaaaaaaacccauugu uCCUCCUUUGAGUUCUCAGGUAA CAAGAGGAAAAG	84	15,47619	17,85714	15,47619	26,19048	30,95238	44,04762	1,466667	1	-23	-22,2	0,132737	4,31	-27,381	-0,88462
lny-mir- 67	GUUUCGUGACACGUCUGCCCUU GUUCAGCCCGGUUGUGAUGGAG UUGGUCACAUCACA	90	28,88889	20	25,55556	25,55556	54,44444	45,55556	1,277778	1,130435	-43,9	-40,8	0,079095	4,8	-48,7778	-0,89592
lny-mir-8	UGCGCGGACUCUGGGUUCAUCU UACCUAACAGCAUUAGAUGUGU GUCAGCAUUUUCUAAUACUGUC AGGUAAAGAUGUCCACAGAGUC UGCUGG	94	24,46809	23,40426	21,2766	30,85106	45,74468	54,25532	1,318182	1,15	-46	-46	0,192059	3,37	-48,9362	-1,06977
lny-mir- 6544	AAGUUGUAUUUCUUUUCGCAAA CGCCUUGCUUGGUGAGGCUGAC CGAAACACUAAGCACGUGUAGAU AUAUGCGGcguauuaaaagaaaaaca auug	97	19,58763	19,58763	15,46392	22,68041	35,05155	42,26804	1,157895	1,266667	-29,2	-29,2	0,173343	6,85	-30,1031	-0,85882
lny-mir- 359	CGGAAAGAGGGAAGCCAGAUUU UCAUCUGUGUUCCCCCGUCACAA AAUGGAUGGUUCCAGGUGAACG UCAGAACUUGAUCACUGGUUUU CCUCUGUUGCG	100	26	23	23	28	49	51	1,217391	1,130435	-38,9	-38,3	0,123112	6,16	-38,9	-0,79388

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
lny-mir- 184	UUUCACAUUUCCUUAUCACUCCC CCGCCCCGUCUGUUCUCAAGCAC UGGACGGAGAACUGAUAAGGGC UUGUGGGU	76	22,36842	18,42105	30,26316	28,94737	52,63158	47,36842	1,571429	0,73913	-24,6	-24,3	0,091486	9,76	-32,3684	-0,615
lny-mir- 4931	GGCCCAGCUGUCUUCAAACAGUC GUGAUACAUUUCUAACGUUUGC UCAUCGCUGAUUGGUUGAGCAG CCGGAAG	74	25,67568	21,62162	24,32432	28,37838	50	50	1,3125	1,055556	-21,3	-21,3	0,196775	4,36	-28,7838	-0,57568
lny-mir- 750	GAAGCCAGUUCCCUGUGAGUUG GAAGAUUGGGUCUUUGGCAGCA AUGCUGUCUUCCCUGCCAGAUCU AACUCUUCCAGCUCAUAGUGGCA UGGCACA	97	25,7732	20,61856	25,7732	27,83505	51,54639	48,45361	1,35	1	-48,9	-47,3	0,207948	5,04	-50,4124	-0,978
Iny-mir- 1175	UGAUCAGGUGUGUUAUGUAGUG GAGAGAGUUUUAUCUCAUCAUG AGCCGUAAGCAGGUGAGAUUCA ACUCCUCCAACUGCAGGCUACAC CUGAAAC	96	25	27,08333	20,83333	27,08333	45,83333	54,16667	1	1,2	-44,8	-40,7	0,088251	5,34	-46,6667	-1,01818
lny-mir- 137b	CUACCAGUCGGUUACGGGUAUU CUUGGGUAAAUAAUACAUUGAA CCGCUGUUAUUGCUUGAGAAUA CACGUAACUGACUGGGUG	84	25	26,19048	17,85714	30,95238	42,85714	57,14286	1,181818	1,4	-40	-39,2	0,16289	4,49	-47,619	-1,11111
lny-mir- 2580	uguccguaAGUGUACucacgugucug uguguauguuucuaCAUAGACAUAU ACAUGUGUACGGCUUCGGUUA	72	12,5	15,27778	9,722222	16,66667	22,22222	31,94444	1,090909	1,285714	-27,3	-27,2	0,115281	4,2	-37,9167	-1,70625
lny-mir- 11976	gggcggcggcggcggcggcgcGGCGUGGG NNNNNNNNNNNNNNNNNNNNN GGGggggggcggcggcggcggcggcggcGGC GUGG	79	17,72152	0	2,531646	2,531646	20,25316	2,531646	0	7	-38,07	-38,07	0,922324	0,51	-48,1899	-2,37938

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
lny-mir- 9-2	CGGUUUUGUCUUUGGUUAUCUA GCUGUAUGAUUGAAGUAGAAAU AUCAUAAAGCUAGGUUACCAAAG GCAAAAAUG	76	22,36842	32,89474	11,84211	32,89474	34,21053	65,78947	1	1,888889	-33,1	-33,1	0,29717	2,88	-43,5526	-1,27308
lny-mir- 7290	ACUCUGCAAUCAGAGAUUUUCUG GCUCUGUUUGCAGCAAAUCACUA GUCGUUGGCUCUGUUUGCAGCA AAUCACUAGUCGUUGGCUCUGU UUGCAGCAA	98	22,44898	21,42857	23,46939	32,65306	45,91837	54,08163	1,52381	0,956522	-31,6	-28,2	0,065716	6,74	-32,2449	-0,70222
lny-mir- 4265	AGCUUCUGAGGAGACCUGUGGG CUCAGCUCUGCAUUUAUAUUAG GAGGCAAAUGUCCCUCAGAAAUA	67	25,37313	26,86567	20,89552	26,86567	46,26866	53,73134	1	1,214286	-18,8	-11,8	0,102899	12,25	-28,0597	-0,60645
lny-mir- 9701a-2	CGCCAUAGUAACCACUAGCCGUG AGACACACAACAGGCCGUGUGAC UGUGUACCACCAUCAAGGCGUGA CGUGUGACCCCCAaggugugugacug uguac	99	20,20202	22,22222	26,26263	13,13131	46,46465	35,35354	0,590909	0,769231	-31,4	-31,3	0,319797	5,61	-31,7172	-0,68261
lny-mir- 451	GACAGUACCCAGCCCAAAGAACA AACUUUCGUUUGUAGUAAUGGU AAGGGUUUGAAUCUUAGGGUGG GGUGCUAAG	76	28,94737	28,94737	15,78947	26,31579	44,73684	55,26316	0,909091	1,833333	-29	-29	0,334254	2,61	-38,1579	-0,85294
lny-mir- 33	GCUAUGGUGGUGCAUUGAGGUU GCAUUGCAUCAGUUGAGGAACA UGCAAUGCAUCUGCAGUGCAAG UACCAUGGU	75	30,66667	24	17,33333	28	48	52	1,166667	1,769231	-38,2	-37,2	0,235986	4,29	-50,9333	-1,06111
lny-mir- 653	AAGCUAGGAAAGCCGAGCUGCAG UAGAGAUUGAGACAAUCUCUAC UGCAACAACGGGUUCCUAGGUC	67	26,86567	31,34328	22,38806	19,40299	49,25373	50,74627	0,619048	1,2	-35	-33,2	0,416654	2,33	-52,2388	-1,06061

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
lny-mir- 8485-2	UGGCUCUGCGCGCAugcaacgcaca	76	15,78947	6,578947	14,47368	10,52632	30,26316	17,10526	1,6	1,090909	-25,8	-25,8	0,527609	3,34	-33,9474	-1,12174
lny-mir- 11225	AACUACAGGGCAGUGGACUACAG CAGAUUGUACGUAAAACUGUAC GUAAAACUGUUCUUAAGUCAUG GCCUGUACGA	77	23,37662	32,46753	19,48052	24,67532	42,85714	57,14286	0,76	1,2	-23,7	-23,7	0,093776	6,64	-30,7792	-0,71818
lny-mir- 466i-2	CACCUCCUGGUUCGCGAAACAUG GCCAUcuauaaauauuauaaauauua uauauacacacacacaca	100	13	12	14	10	27	22	0,833333	0,928571	-20,7	-18,07	0,038561	14,52	-20,7	-0,76667
lny-mir- 7195	uauccuccccucucccccccuccaccac acgAGUCAUACGAUUGACGUCAU GGGAAGUGGGGGGGAGCGGAAAAG GACAGGUGA	84	25	19,04762	7,142857	9,52381	32,14286	28,57143	0,5	3,5	-29,8	-23,2	0,107685	18,49	-35,4762	-1,1037
lny-mir- 29b-1	CAUUGGGGCAGCGGGGGCACUGG UCUCGACUGGUGGGUAGAUGGC GCUGUUAGUCUAGCACCAUUUG AAAUCAGUGCUCGCGCAUGUCUC CAGCA	94	32,97872	18,08511	24,46809	24,46809	57,44681	42,55319	1,352941	1,347826	-44,5	-44,5	0,069593	6,31	-47,3404	-0,82407
lny-mir- 29a	AGAUGGCGAGAUGGAUGCUGGU CUCUUUUGGUGCUUAGAGUCAU AUCGCCUGUCUAGCACCAUUUGA AAUCAGUUUCCUGACCUGGCCAC AG	92	26,08696	20,65217	22,82609	30,43478	48,91304	51,08696	1,473684	1,142857	-34	-34	0,158187	4,7	-36,9565	-0,75556
Iny-mir- 734	CAGGUGGAACUAUUCUGCAACA UUCAUGCUGAACCUGAGCCAGCC AUUAUGUGGUCAACACCUUGGG GCCAUGAGUUUGCUGACAUUUC GCACAUG	96	23,95833	23,95833	25	27,08333	48,95833	51,04167	1,130435	0,958333	-23,7	-22,5	0,102	11,88	-24,6875	-0,50426

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
lny-mir- 9235b	ACGGAGAUAGUUCUAAUGGGAC UUGUCUUCUCCGACAAAGGCAU GUUUGAGAAAUUAAUUUUGAUG UGGCUUGAGAACAGUACCAUAAA UUGUCUCCCC	99	22,22222	28,28283	18,18182	31,31313	40,40404	59,59596	1,107143	1,222222	-26,8	-24,1	0,009236	11,43	-27,0707	-0,67
lny-mir- 263a-2	CUUAGUUCCCCUGCUAAUCAAUG GCACUGGUAGAAUUCACGGGUG CUUUCAAAAUCCCGUGGUCUUU CAGUGCCAUCUAUGGGCAAAGG GUGACCUGCA	99	24,24242	22,2222	25,25253	28,28283	49,49495	50,50505	1,272727	0,96	-40,8	-39,7	0,053135	7,61	-41,2121	-0,83265
lny-mir- 1c	ACACGGUACAUACUUCUUUACAU UCCAUAGCUUUGGAAGAACAUA UGGGAUAGCAAAGAAGUAUGUG CCGGGC	73	23,28767	31,50685	19,17808	26,0274	42,46575	57,53425	0,826087	1,214286	-33,4	-32,3	0,415163	2,78	-45,7534	-1,07742
Iny-mir- 1990	GAUGGGCUGUUCGUGAAGUAAG UUGAUGGGGUCCCAGGUAGAUC UACCCCACCCGGGACUACGUCAA CGUACUACCACGCGCAGACCCCA A	91	27,47253	24,17582	29,67033	18,68132	57,14286	42,85714	0,772727	0,925926	-42,4	-41,8	0,25783	4,43	-46,5934	-0,81538
lny-mir- 466q-2	caugugcacacacacacauacaugcuugC ACAUGCAGCCUCACGUGCAAGCU UAAGUUUauagugcacaug	71	8,450704	11,26761	12,67606	11,26761	21,12676	22,53521	1	0,666667	-24,9	-24,7	0,237339	3,05	-35,0704	-1,66
lny-mir- 1947	AAAUGCUCAGAUAAGCUGUCAG GCGAAUCAAGGAUUUUGAAAAC AGUUAACUAGCUGCUUUGUUUU AGCACUGAGCUAGCUCUCUAGCA GUC	92	21,73913	29,34783	19,56522	29,34783	41,30435	58,69565	1	1,111111	-22,3	-21,5	0,091223	6,88	-24,2391	-0,58684
lny-mir- 2491	UCCUAUUGGCAUGUAGUCAAAA CUGCUCAGUuccuaacaacaacagca gcagcagugaccUCACACCAAUAUAG	74	9,459459	18,91892	14,86486	17,56757	24,32432	36,48649	0,928571	0,636364	-18,7	-17,1	0,17106	10,72	-25,2703	-1,03889

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
lny-mir- 1985	GAGGAGAAGGCGUGCCAUGCCA UUUUUAUCAGUCACUGUGUGUU GUCAGUCACAGUGAUGGUGACA AUGGCUUGAUGGGCCUCUCAUG	88	30,68182	20,45455	19,31818	29,54545	50	50	1,444444	1,588235	-38,3	-38,3	0,063273	5,09	-43,5227	-0,87045
lny-mir- 1307	AGAUCGCGACUUCGCCACUCGGC GUGGCGUCGGUGCAAAGGUCGA AAUGCGUUCGGGGCGGCGGAGU GGGGAGGACACGAGCC	83	42,16867	18,07229	25,3012	14,45783	67,46988	32,53012	0,8	1,666667	-34,9	-33,3	0,314815	4,28	-42,0482	-0,62321
lny-mir- 2944a	GUACAGGAGACAUUUCUCUGUG AAAAAGAGUAUAGGUGAUAUUU UCUCUUGCUGUCAUUUAGGGGG GCGAAGAUUUUCAGAAGGAACU UCUGCUGAUC	98	26,53061	26,53061	14,28571	32,65306	40,81633	59,18367	1,230769	1,857143	-22,4	-11,8	0,008713	30,59	-22,8571	-0,56
lny-mir- 5397	agaaaacaaacuacgCAGAAGUUUGC UUCUGuaucauuuucccucccucgGA AUGUUUGCACAUGCGCAGCAAAC GUCUCUGACAUUUAUUUCAG	95	13,68421	15,78947	13,68421	21,05263	27,36842	36,84211	1,333333	1	-20,9	-20,9	0,2969	5,73	-22	-0,80385
lny-mir- 7045	acucuccccccuccccgccccacuuUUC UUCUGCGAGGGACGCCGAUCAGA CGACGCCCGGAGAAAGGUggaggc uggguggguggaggga	92	16,30435	10,86957	13,04348	7,608696	29,34783	18,47826	0,7	1,25	-50,9	-50,9	0,357037	6,43	-55,3261	-1,88519
lny-mir- 106a	UUUUAUUAUCAGCCCUGCUACU GCAAUGCAAGCACAUUGACUGAA UUUUGCUCAGAGAACGUGCAGU UGGAGCUUGCUUUUCAUUGGCU GAUAAUAGCG	99	22,22222	24,24242	20,20202	33,33333	42,42424	57,57576	1,375	1,1	-30,3	-28,6	0,089339	10,78	-30,6061	-0,72143
Iny-mir- 3238	AGUGACUGAAAUGAAUCAUGCA UUUGGCAUGUAAACCUGUGGUG AAAUAGUGUguaacauugguguuug	98	18,36735	24,4898	9,183673	27,55102	27,55102	52,04082	1,125	2	-18,5	-18,5	0,036449	18	-18,8776	-0,68519

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	uguaAAUAUUCUGAUAAUUUCUA GUCGUG															
lny-mir- 2361	CAUGCUgaguuguguuguuuuuuu ucaauacagcAGAUGAACUAACAAU ACUGCAUCCAAAGUGCUAGCAUU AACAAGAAAUAUCAUAGCUUCAG CACA	100	10	29	16	16	26	45	0,551724	0,625	-23	-22,9	0,046036	12,62	-23	-0,88462
lny-mir- 2493	AGCCUCUAUCACUCCUCUGAUCC UGUCGUCAGUGUAGUAAGAAAU UUUGGCGAAAGUAgcugcucacaca cacacacagacgagagagagagagagagaga	99	12,12121	15,15152	13,13131	18,18182	25,25253	33,33333	1,2	0,923077	-26,4	-18,6	0,022709	25,98	-26,6667	-1,056
lny-mir- 9032	GUGAUGUUUGUUGCCAGUGAAU UAAUCAAAUUCUGCCAAUAUGCA CUGCAGAUUCCGUUGAUGCAAU CCAAUGGUCAUCAUCAUGAG	87	20,68966	27,58621	19,54023	32,18391	40,22989	59,77011	1,166667	1,058824	-19	-19	0,117129	13,25	-21,8391	-0,54286
Iny-mir- 3963	GUACACACAGUCAAAUAAAGUAU UGUAUCCCACUUCUGACGCACAA UAUUUGUCGUUUGCCACAGAAA AAAUACCUGGGUUGACGGUGUG CAU	93	19,35484	31,1828	21,50538	27,95699	40,86022	59,13978	0,896552	0,9	-21,7	-21	0,161914	20,42	-23,3333	-0,57105
lny-mir- 1994	ACGGCGGCUGUUCUAAGGGGAA ACUCGCUGUCUGCAUGUGCAAU GACGUCAUGAGACAGUGUGUCC UCCCUCUGAGUCAGAGACCGCUA A	90	28,88889	22,2222	25,55556	23,33333	54,44444	45,55556	1,05	1,130435	-38,4	-38,4	0,344812	5,28	-42,6667	-0,78367
Iny-mir- 51	CUCCCAUCAUGUAUGCGUGCAUG GAAGCAGGUACAGUCACCUGUCC UGACUUAUCCAGCGAACAGUGU GGCCU	73	24,65753	21,91781	28,76712	24,65753	53,42466	46,57534	1,125	0,857143	-21,7	-17,1	0,160663	16,95	-29,726	-0,55641

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE (kcal/	MFEI (kcal/
		(AA)									(KCal) mol)	ol)			mol)	(KCal) mol)
lny-mir- 9229d	UAGGGAUAAGGGGGGAGGUUAAG AUAAGGAAAGGAUACUGUUAUC UGAGUCUUCCCCUUGAGCCUGU	66	31,81818	27,27273	13,63636	27,27273	45,45455	54,54545	1	2,333333	-25,9	-25,4	0,059825	5,61	-39,2424	-0,86333
lny-mir- 4968	GCUCUUCUgcuggguuuguugu uguuguuguuaguaaCGAAGCUGUA AUAGUUCCCCGUGGCAGCAGcaa uaacagcagcaacagcagcagcagcag	100	10	7	11	10	21	17	1,428571	0,909091	-45,8	-45,8	0,189807	22,44	-45,8	-2,18095
lny-mir- 239b	CUCagccaucccccucccccagaguGG GUCAGAUGGCACUUUUGUGGUG UGCAGGUUGGAUGGCUUGU	69	26,08696	7,246377	10,14493	23,18841	36,23188	30,43478	3,2	2,571429	-25,2	-13,05	0,115483	18,21	-36,5217	-1,008
lny-mir- 466i-3	ACUCGCUCAAACACUGUCACUCA CUCAAACACAUGGACGCAUUCGC gugcauucugugugugugugugugugu ggugugugugcgugc	88	6,818182	15,90909	19,31818	10,22727	26,13636	26,13636	0,642857	0,352941	-35,9	-35,4	0,211217	10,98	-40,7955	-1,56087
lny-mir- 277a	UGUUCUUCGGGCAAGGAAACGC GAUCACACGGAgccauuucuuugug ugcuuccUUGGCCGCCAAGAUCG	70	21,42857	17,14286	18,57143	12,85714	40	30	0,75	1,153846	-25,5	-25,4	0,03184	11,31	-36,4286	-0,91071
lny-mir- 29b-2	UGUAAAGUGAUGUAUCGUAUCC UUUGGGAACGCCAGCUGGUUUC ACAUGGACAGAUAACAACACUUU GUC	70	22,85714	27,14286	20	30	42,85714	57,14286	1,105263	1,142857	-19,1	-16,4	0,131874	6,17	-27,2857	-0,63667
lny-mir- 466i-4	AUUACACGCUCUCGACCACACCC GGACCcucaaaccaacaaaaaacguUG Gugagggaagugugugugugugugugu gugug	82	7,317073	8,536585	15,85366	6,097561	23,17073	14,63415	0,714286	0,461538	-32,4	-31,1	0,058041	17,93	-39,5122	-1,70526

Supplementary Table 2 – Structural and thermodynamic characterization of miRNA precursors in *M. cornuarietis*. Size (Tam), G content, A content, C content, U content, GC content, AU content, AU ratio (R-AU), GC ratio (R-GC), Minimum Free Energy (MFE), Minimum Free Energy of the Pool (MFEE), Frequency of the MFE Structure in the Pool (Freq), Diversity of the Pool (Div), Minimum Adjusted Free Energy (AMFE), Minimum Free Energy Index (MFEI).

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	UUCGACGAAACUGGUUUUCACA	78	17,94872	29,48718	23,07692	29,48718	41,02564	58,97436	1	0,777778	-33,4	-33,4	0,687059	0,82	-42,8205	-1,04375
mcr-	GUGAUCCAGCAGAUUGCUCAAAG															
bantam	UCUGAGAUCAUUGUAAAAACCAA															
	UUUUGUCCC															
	UcguacaccaacaccugucaccucuUGU	86	22,09302	17,44186	5,813953	26,74419	27,90698	44,18605	1,533333	3,8	-20,5	-18,9	0,106705	9,05	-23,8372	-0,85417
mcr-mir-	AGUCUGGUAUCUUUGUCUAAGU															
1002	AGUUGAUACAUGAGUUGCAGAG															
	GGUAUGGAGUAGUA															
	UCUGUCUCGUCUUUUCUCAGGU	85	15,29412	11,76471	18,82353	31,76471	34,11765	43,52941	2,7	0,8125	-19,1	-13,9	0,073241	20,99	-22,4706	-0,65862
mcr-mir-																
10080	gagacapapagacaccell															
	gagaladadgadalloo															
	UAUCAGCUCCCGAAGCAAAAUCA	87	25,28736	28,73563	20,68966	25,28736	45,97701	54,02299	0,88	1,222222	-22,8	-16,84	0,043074	18,63	-26,2069	-0,57
mcr-mir-	UGCCAAACAUAAUACAGGACGGU															
10089	ACUCGUGCAGGGAGAUAAUUUG															
	CUGUUUUGGGAUGCUGCUG															
		0 7	15 85266	12 /1/62	17 07217	18 20260	22 02682	21 70722	1 262626	0 0 2 8 5 7 1	- 22 7	-22.7	0 2012/6	7.69	-28 0024	0 97779
mcr-mir-		02	13,85500	13,41403	17,07317	10,29200	32,92083	51,70752	1,303030	0,928571	-23,7	-22,7	0,301240	7,00	-20,5024	-0,87778
10141	GGUCUUCUUCAGUCAGCAUAUG															
	GCUCGGAAA															
mcr-mir-	CAUUAGUACUGUGAUAUGUCAG	94	19,14894	28,7234	18,08511	34,04255	37,23404	62,76596	1,185185	1,058824	-27,3	-27,3	0,173696	5,07	-29,0426	-0,78
10228	UACACACGACAAUGAGUAUUGU															
	ACCAUGUCAGCACAUUAUUAGUC															

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	UUGUACUGUGUGUCAACAUUAG UACUG															
mcr-mir- 10237	UCCAUUGUUAGUUUUGAGUGAG CUAGAAAGGGGUUAAAACUUCU UGCAGCAGGGACUGGUUUGUGG CACAUAUUUCAGCCUCucgacuaau aauaau	97	22,68041	19,58763	14,43299	27,83505	37,1134	47,42268	1,421053	1,571429	-23,8	-23,8	0,115043	18,95	-24,5361	-0,66111
mcr-mir- 10325	AAAAUUAUCAUCGUCUUUCUAUAC AAGUGGCAUUCUCCUCGCCAUUA UUAUCAGCAGCAAAGGCGUUUU GCUAACUUGUCAAACAUGUGAU AAUAUA	96	14,58333	31,25	20,83333	33,33333	35,41667	64,58333	1,066667	0,7	-18,7	-18,7	0,080867	8,79	-19,4792	-0,55
mcr-mir- 10379	AGUAACACAGUUAUUUUUCAAA CAACUCAAACCAGGAAUAACAGA CUGUUUUGUUCGUUGAACUAUG AUUGUGUUGCA	78	16,66667	33,33333	16,66667	33,33333	33,33333	66,66667	1	1	-24,4	-24,4	0,273807	6,43	-31,2821	-0,93846
mcr-mir- 10456	UUUCUGUCAUACUAGAUGCAGG AUAUUUCUGUCAUACUAGAUGC AGGAUAUUUAUGACAUACUAGA UGCAGGAUAUUUCUGUCAUACU AGAUGCAGGAU	99	20,20202	29,29293	15,15152	35,35354	35,35354	64,64646	1,206897	1,333333	-32,6	-32,6	0,295291	5,75	-32,9293	-0,93143
mcr-mir- 10457	AAGCAAAGAGUUUUUGACUACC AaucaaaauaguauuuuaacAAGUUU GCaauuauucuuuguuuguuguguguc uACACGACUCUUUGGCA	92	9,782609	16,30435	10,86957	14,13043	20,65217	30,43478	0,866667	0,9	-19,7	-18,9	0,188376	10,01	-21,413	-1,03684
mcr-mir- 10698	uuuuaggaGAGGAAUUGCUGAGU UCAUGCAUGGCUUCUUUAGUAA	87	18,3908	22,98851	17,24138	32,18391	35,63218	55,17241	1,4	1,066667	-20,4	-20,4	0,075656	7,96	-23,4483	-0,65806

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	CGAGGUUCAUAUUCAUGAUAAG CUGACAUUCAUCUUCUAUCC															
mcr-mir- 106b	CAGAGCGGGUAUCCUCUGUGGG UACCCCUUGUCACUGGCAGGACC GCACUGUGGGUACCCCUGUC	65	30,76923	13,84615	32,30769	23,07692	63,07692	36,92308	1,666667	0,952381	-27	-22,5	0,153722	17,97	-41,5385	-0,65854
mcr-mir- 10717	GCGACACGGAUGCACACACACCU GCGCGCGCCAAGAGCAGUGGAGG UGAAAUAUUGUUUCGGUUAACA AAGGGCACAGCUCAGUGUGUUG CUGUGUGUU	99	31,31313	24,24242	22,22222	22,22222	53,53535	46,46465	0,916667	1,409091	-36,3	-35	0,209813	4,21	-36,6667	-0,68491
mcr-mir- 10738	GUCCCAGUAACUGACCACUCUGA CGUCUCUCCGCCCUUCCGGGUGC UGCUGUCUGCUUUGUAACUGAU GACGUCAGUGGGUCACGUGUAG CUGGUGU	97	27,83505	13,40206	28,86598	29,89691	56,70103	43,29897	2,230769	0,964286	-36,5	-35,1	0,181441	6,85	-37,6289	-0,66364
mcr-mir- 10761	CUGGUCUGUGCAGACUACUAGU ACGGUGACGAUGGUUGAAUUUG UUCUUGUCACCAUUGUGACAGA UUCUGAGCGCACAGUACUAC	86	25,5814	22,09302	20,93023	31,39535	46,51163	53,48837	1,421053	1,222222	-24,9	-19,7	0,050962	23,36	-28,9535	-0,6225
mcr-mir- 10863	UCGAUAUACAACCCUACGAACAU CCCCAUGACCAAGUGAUAUCACC UUUGACUUCUUUGUGGGCACGA UGAUGCUUGUAAGAUUGUUUAU AUG	93	18,27957	26,88172	22,58065	32,25806	40,86022	59,13978	1,2	0,809524	-19,7	-17,9	0,1266	11,6	-21,1828	-0,51842
mcr-mir- 10903-1	CUGCCACUUGAACGCUCAACAGC UCAUCUUCCGACUCGCUUGUGU CGGCCUCAGACCCACUGGCCUCA	95	24,21053	12,63158	35,78947	27,36842	60	40	2,166667	0,676471	-34,4	-34,4	0,328396	6,79	-36,2105	-0,60351

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	CUGCUGUCUGCUGCGUUCCUGU GGUGG															
mcr-mir- 10903-2	CUGCCACUUGAACGCCCAACAGC UCAUCUUCCGACUCGCUUGUGU CGGCCUCAGACCCACUGGCCUCA CUGCUGUCUGCUGCGUUCCUGU GGUGG	95	24,21053	12,63158	36,84211	26,31579	61,05263	38,94737	2,083333	0,657143	-33,6	-33,6	0,309438	7,34	-35,3684	-0,57931
mcr-mir- 10903-3	CUGCCACUUGAACGCCCAACAGC UCAUCUUCCGACUCGCUUGUGU CGGCCUCAGACCCACUAGCCUCA CUGCUGUCUGCUGCGUUCCUGU GGUGG	95	23,15789	13,68421	36,84211	26,31579	60	40	1,923077	0,628571	-30,3	-30,2	0,116672	10,54	-31,8947	-0,53158
mcr-mir- 10918	GACAGGACAGAGAUUAAGGAgug uuaaaauaguuugaagUAUUGGAAA CUGGGUGUUCACAUAUAAGCUA UGUUACUCGAUAAUGCUCUUCC UUGC	96	18,75	23,95833	13,54167	23,95833	32,29167	47,91667	1	1,384615	-23,2	-20,8	0,051911	9,44	-24,1667	-0,74839
mcr-mir- 10967	AACUGUACACUGCAUACUGUACA AUGUAGCUUGUCGGAUGAACUG UGAACUGCAUACUGUACAAUGU AGCUUGUCGGAUGAACUGUACA CUG	92	22,82609	28,26087	19,56522	29,34783	42,3913	57,6087	1,038462	1,166667	-21,6	-20,2	0,048588	15,84	-23,4783	-0,55385
mcr-mir- 10a	CGGUGCAAGACCUACCCUGUAGA UCCGaauuuguguaauauuuuaacUA CAAAUUCGUGUUUGCACGGUAA GGCCUCGCAUCU	83	18,07229	16,86747	21,68675	19,27711	39,75904	36,14458	1,142857	0,833333	-33	-29,9	0,107106	4,44	-39,759	-1
mcr-mir- 10b	AUGAGAGUGUGAGUGGCUUUAC CCUGGAGAACCGAGCGUGUGUG AUCAUGACGUCACAGUUCGUUU	93	31,1828	20,43011	19,35484	29,03226	50,53763	49,46237	1,421053	1,611111	-40,6	-40,6	0,254812	9,91	-43,6559	-0,86383

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	CUGAGGGUCAAGUCGCGAUACU CUGUU															
mcr-mir- 11	GACCUGGGAGAGCCGUGGCCAGC UGGAGACAUCCCUGGAGCUCUG GCUGUGCCGGGUGGAUUUCGUG CCAUGCAGUCAGCCUCUCCAGAU G	91	35,16484	15,38462	28,57143	20,87912	63,73626	36,26374	1,357143	1,230769	-35,2	-21,3	0,010022	23,33	-38,6813	-0,6069
mcr-mir- 11591	UUUUUCGGGUACGUGAAACACCUU UACGAUUCGUUAUCCUUAGGCU GUGCUGUAAGUGUACUUUGAUA ACGGUUCGGCAACAGGUUGAUU GUACCCGACAU	100	24	22	19	30	43	52	1,363636	1,263158	-33	-31	0,123962	9,74	-33	-0,76744
mcr-mir- 1175	UGAUCAGGUGUGUUAUGUAGUG GAGAGAGUUUUAUCUCAUCAUG AGCCUCAGAAGCAGGUGAGAUUC AACUCCUCCAACUGCAGGCUAUA CCUGAAAC	98	24,4898	27,55102	20,40816	27,55102	44,89796	55,10204	1	1,2	-42,7	-38,6	0,079856	5,62	-43,5714	-0,97045
mcr-mir- 12	UGUUUCUACAUAUCUGUGGAAU CUUGCAGCAUCAUGUGCAUGUU GGUGGUGGUCAGACUGUGAGUA UUACAUCAGGUACUGAGAAUCU	88	26,13636	22,72727	15,90909	35,22727	42,04545	57,95455	1,55	1,642857	-21,2	-14,6	0,061401	34,13	-24,0909	-0,57297
mcr-mir- 12037	UGGUAACUCAUUCUGUCUUCUC UUCCAAAAACCAGCAAAUGUGAA AUUGUGUAUGAGCAGUGGGUAU AUCUUUUUUGGUGGGACAAAUG AGUUAAAA	97	21,64948	29,89691	14,43299	34,02062	36,08247	63,91753	1,137931	1,5	-22,2	-21,7	0,076697	11,37	-22,8866	-0,63429
mcr-mir- 12093	UACGGUCAAUAGCUAUCCCCAGG GUaauguuauuuuugcuuuauugCUU	81	14,81481	13,58025	23,45679	22,22222	38,2716	35,80247	1,636364	0,631579	-26,4	-26,4	0,139195	7,63	-32,5926	-0,85161

U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
					(kcal/	kcal/m			(kcal/	(kcal/
					mol)	ol)			mol)	mol)
28,23529	44,70588	55,29412	1,043478	1,111111	-29,6	-29,2	0,079903	7,54	-34,8235	-0,77895

											mol)	ol)			mol)	mol)
	CUAACUUCAGCCCCUGGGGUAGC CUUACCUUU															
mcr-mir- 12096b	UGCUACUUCGUGCAAGCGGUGA UACUUUUGUCUCGCAUAUCAAU AUGAGGUAGGGCAAAAUUAUCA CCGAUUACCCGAGGUAACG	85	23,52941	27,05882	21,17647	28,23529	44,70588	55,29412	1,043478	1,111111	-29,6	-29,2	0,079903	7,54	-34,8235	-0,77895
mcr-mir- 12193	UUUAAAGAAUUCAUCUUUAGAU CAUAACUGUUUAAGCAGUACAG ACCAGUUUUAAACCGGUCCUUUC UGUCUAAUGUUCUGGAAAAGAU CUUUCUUUGUC	100	15	28	18	39	33	67	1,392857	0,833333	-20	-18,8	0,080489	17,54	-20	-0,60606
mcr-mir- 12265	AGAUUCAGCCGUCUUGCAGCUG AAGCCAUACCACGUGAGACUUAG ACUGAGGACACGCUGAAGCA	65	26,15385	29,23077	26,15385	18,46154	52,30769	47,69231	0,631579	1	-20	-17,1	0,213126	4,96	-30,7692	-0,58824
mcr-mir- 12293	gcugccgUCUCCCUUCUACAUCCGC CUCUUGAUCUACUACAACUACGA GCACGAGGAGAUGUUACAGAGG AGAUCGGCCAU	81	18,51852	23,45679	27,16049	22,22222	45,67901	45,67901	0,947368	0,681818	-27,4	-27,4	0,349688	3,61	-33,8272	-0,74054
mcr-mir- 12313	uaggucacgugacauguuAGCAUCUU GACAUAAAGGAAGUCAGUGUGU CUGUAAUGUGUAACAUGUCUCA UUACGAA	77	16,88312	24,67532	11,68831	23,37662	28,57143	48,05195	0,947368	1,444444	-19,1	-18,7	0,051013	5,78	-24,8052	-0,86818
mcr-mir- 12322	agaagaaaagagaaguuGAUCAAACA GCCAACUGGGUUAUCCCGUGUG UUGGGACUCGCCUGUUCUCuggu cauuucucuuucucac	87	14,94253	10,34483	16,09195	16,09195	31,03448	26,43678	1,555556	0,928571	-27,7	-27,5	0,020633	17,77	-31,8391	-1,02593

Pre-

miRNA

Sequence

Length

(AA)

G (%)

A (%)

C (%)

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
mcr-mir- 12352	UUAUUGCUGUUAUGGUGUUAG UUCAGGUGAUUCUUAUGCAUGA GAAGUUAUGAGUUAACACCAUU ACCACAacuu	75	20	25,33333	13,33333	36	33,33333	61,33333	1,421053	1,5	-21,8	-21,8	0,14281	5,72	-29,0667	-0,872
mcr-mir- 1250	gaugacgacgguGCUGGAUGUGGA UAUGGAAUACGGACAGCUCCGU UUCUGAACAACAUCAGAACCUGU AGGUCCCA	77	22,07792	23,37662	19,48052	19,48052	41,55844	42,85714	0,833333	1,133333	-22,1	-19,8	0,186986	22,97	-28,7013	-0,69062
mcr-mir- 1256	CUCUGGCCACUGAGGCAUUGACUUC UCUUCAUGGCAUCUCAAAGGACA AGUCAAGUCA	69	17,3913	23,18841	18,84058	21,73913	36,23188	44,92754	0,9375	0,923077	-22,5	-22,5	0,137838	3,93	-32,6087	-0,9
mcr-mir- 1277	CACGUGCAGAUGUAUUGACAguu ucuguguauauauauauauauguac gauGCAACAGCACAUCUGCACUAC	74	10,81081	17,56757	16,21622	10,81081	27,02703	28,37838	0,615385	0,666667	-24,9	-21,6	0,120471	14,07	-33,6486	-1,245
mcr-mir- 1278	AUUAAUCAGGAGCAGGUUUAUU GCAUGAGGUGUAGUAUUGACUG UAGUACUGUGCAUAUCAGCACCA CAAAUCAUGCAGGAUGAAGACUG UUCGauugug	100	24	28	15	27	39	55	0,964286	1,6	-29,4	-28,6	0,050476	16,75	-29,4	-0,75385
mcr-mir- 1304	CUUCAGGUCGUCACGGAAUGAA UUCUCACUGUAGCCUCGGCUCAG CGUGAUUUCAAACACGUCACAGC CUGCUG	74	22,97297	21,62162	29,72973	25,67568	52,7027	47,2973	1,1875	0,772727	-24,6	-22,7	0,479157	2,33	-33,2432	-0,63077
mcr-mir- 130a	AUCCCUCCCUGCUCUGUUCCUUG UAUCUGCUCAUAGUGCAAUGUU AAAAGAGUACCUUUUGAGUUCU CUUGAGGUGACAAUGGAAAAAG CAGGAGGGCU	99	23,23232	24,24242	21,21212	31,31313	44,44444	55,55556	1,291667	1,095238	-31	-29,3	0,028824	19,37	-31,3131	-0,70455

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU 1,5625	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq 0,186674	Div 6,73	AMFE (kcal/ mol)	MFEI (kcal/ mol)
mcr-mir- 133	GGCCAAAUUGUUGAAGAGCCUU UCAUUUGGUCCCCUUCAACCAGC UGUAGUUA															
mcr-mir- 133c	UAACUACAGCUGGUUGAAGGGG ACCAAAUGAAAGGCUCUUCAACA AUUUGGCCCGAGUUCAACCAGCU AUAGAAG	75	24	33,33333	21,33333	21,33333	45,33333	54,66667	0,64	1,125	-30,4	-28,9	0,184949	4,61	-40,5333	-0,89412
mcr-mir- 137b	AGUUCCAGUCGGUUACGGGUAU UCUUGGGUAAAUAAUACAUUGA ACAGUUGUUAUUGCUUGAGAAU ACACGUAACUACCUGGACGU	86	23,25581	27,90698	16,27907	32,55814	39,53488	60,46512	1,166667	1,428571	-33,1	-33,1	0,033251	6,83	-38,4884	-0,97353
mcr-mir- 14	UAUAAAGGGAAGACAAUGAUCU GAGAGGUGCUGGCUGUACGCUG CUGAACUGAUCUCACUCucagucu uuuucucucucuuuuuu	85	20	20	14,11765	17,64706	34,11765	37,64706	0,882353	1,416667	-21,6	-18,47	0,04849	12,49	-25,4118	-0,74483
mcr-mir- 1421ai	UUGUAGUCAGCAGGUCAGGUGU GGAAGCACUUUGCCAGGUUUUC CCCAUGGGUCCUGCGACUAGUG	66	31,81818	16,66667	22,72727	28,78788	54,54545	45,45455	1,727273	1,4	-24,4	-23,1	0,219346	4,86	-36,9697	-0,67778
mcr-mir- 143	AUGUGUGAGCAUGACAGGAAUG AAAACUGUGCAAACCUCUGUGU GUGCAGUGCUGCAUCUCACAUU A	67	25,37313	28,35821	19,40299	26,86567	44,77612	55,22388	0,947368	1,307692	-20,7	-20,5	0,448845	1,84	-30,8955	-0,69
mcr-mir- 146b	UUUAGGAACACGUUCUCAGAUG GAAGUUUCAGACCCUGUAUUCU GGAGGUUGAGAACUGGUUUUGA GCAAGUGCUUCCUUUU	82	25,60976	21,95122	17,07317	35,36585	42,68293	57,31707	1,611111	1,5	-24,2	-24,2	0,193626	6,98	-29,5122	-0,69143

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
mcr-mir- 153-1	AACCAAAGCCUUAGCGUAGGUCA AGAAGAGUGUUAUAACCAAAUCA UCGUGCUGucauuuuugugauuuug agCUGACAGCUAGAUGCGUUGAA U	95	18,94737	26,31579	15,78947	18,94737	34,73684	45,26316	0,72	1,2	-21	-14,1	0,097127	11,84	-22,1053	-0,63636
mcr-mir- 153-2	AUACCCUCUUCCCAGGCAGCUUU UGUGAUUCAGCAAUUGUACAGC UAUCAAAUUGCAUAGUCACAAAA GUGAUCGGGAGGCGGGGAC	87	24,13793	27,58621	22,98851	25,28736	47,12644	52,87356	0,916667	1,05	-37,9	-37,9	0,256161	6,4	-43,5632	-0,92439
mcr-mir- 1599	ACAUUACUCGCUCUCUGAGAAUc uggagggaggaaaaaaaaacgcuuAUU UUUUAAGCUCCAGAUGUUGACA GCAGGCGUAACCA	85	12,94118	20	16,47059	21,17647	29,41176	41,17647	1,058824	0,785714	-20,8	-16,6	0,027501	14,66	-24,4706	-0,832
mcr-mir- 15a	aaauguuuauccuagcagcacagaaugg cAAAAAUAUAGGGGUCCCUUUAA GAAGGAUAUUGGACGCCUGUGU UUUGUGCUGCUAGGGUAAGCAA UU	97	19,58763	19,58763	9,278351	21,64948	28,86598	41,23711	1,105263	2,111111	-47	-47	0,037871	8,59	-48,4536	-1,67857
mcr-mir- 1610	ACGAAAAUAAUAUCAGCACUUUG CUGUGGCUUGUGGUGGAACGAC AAACCAcuuucaacccccccccccaa uacaUUAAAGUGCCCAUAUAUGU UUCA	100	15	24	14	21	29	45	0,875	1,071429	-21,3	-17,3	0,147086	14,93	-21,3	-0,73448
mcr-mir- 1621	GCGGUACGUGCGAGCGGGCUCU CAACCGGCUGCCUCGGUGGUAAG CGGUGUUGGAGGCUGCUGACCU ACUGG	72	40,27778	12,5	26,38889	20,83333	66,66667	33,33333	1,666667	1,526316	-32,6	-32,1	0,106716	4,49	-45,2778	-0,67917

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
mcr-mir- 1628	AAUUAACUUGAAUUAACGCGAA GAAGAUGUCUUUACACUACUUU GUUUCCUUCCUUUUGUAAGAGC UCUUCCUGUUCGUGUGUGAGAA UCACGCUUACAA	100	17	26	20	37	37	63	1,423077	0,85	-19,3	-19,3	0,079518	10,73	-19,3	-0,52162
mcr-mir- 1693	ACCUUUAAGUGGCUAUUGAUGU CACCAAGAAAUGGUGCAAAGGAU GAAGCUGUAGCUGUGUUUCCUA AUGGCUGCACAAUAUGUUAUUU AAAAGU	95	23,15789	30,52632	14,73684	31,57895	37,89474	62,10526	1,034483	1,571429	-25,5	-25,5	0,09906	5,04	-26,8421	-0,70833
mcr-mir- 1710	GAUCUGUUUCUCAUCUGCUGCA UAACCGUGUGUGACACAGGACAC AGCGGUAGCACACAGAUACAAAA GGGA	72	25	30,55556	23,61111	20,83333	48,61111	51,38889	0,681818	1,058824	-21,5	-21,5	0,221235	4,85	-29,8611	-0,61429
mcr-mir- 1761	GACCAAGCAUAACAUAACGACGG AGGACAAUGGAGGACAGGGGUC ACUUUUUUUCCCCUGACCUUCACU UUUUCUUAUGUGAUCUUGUGG	89	23,59551	24,7191	22,47191	29,21348	46,06742	53,93258	1,181818	1,05	-28,5	-22,9	0,114468	11,78	-32,0225	-0,69512
mcr-mir- 187	GAAAAUUAGAUGAUGUGCUGGU UGCUACAACACAGGACAAUUCUA AACUGAUUCGUAUUCUGCCUGU GCAAUUGCAAGCCCACAACAGAG AAUUGGU	97	21,64948	31,95876	19,58763	26,80412	41,23711	58,76289	0,83871	1,105263	-22,1	-19	0,108197	9,61	-22,7835	-0,5525
mcr-mir- 190	ACCCGCUUCUGCUAGAUAUGUU UGAUAUAUUUGGUGCAGUUGUC GCGACGACCAAGUAGUCAAACAU GUCAGAGCAGCGACG	82	25,60976	25,60976	21,95122	26,82927	47,56098	52,43902	1,047619	1,166667	-32,5	-32,3	0,080048	9,84	-39,6341	-0,83333

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
mcr-mir- 193-1	UUCUAAUAUCAUGGUAUCAGCA UGACUCGUAUGUGAUAUACUGG CCAGCACAAUUAGUGUCUAAUAU CAUGGUAUCACCAUGACUAGUA UGU	92	18,47826	29,34783	18,47826	33,69565	36,95652	63,04348	1,148148	1	-20,8	-20,8	0,129928	10,37	-22,6087	-0,61176
mcr-mir- 193-2	GCCAGCACACUUACUGUCUGGUA UCAUGGUAUCAGCAUGACUCGU AUGUGAUAUACUGGCCAGCACAA UUAGUGUCUAAU	80	21,25	26,25	22,5	30	43,75	56,25	1,142857	0,944444	-21,7	-21,7	0,239175	6,47	-27,125	-0,62
mcr-mir- 193-3	CUAAUAUCAUGGUAUCAGCAUG ACUAGUAUGUGAUAUACUGGCC AGCACAAUUAGUGUCUAAUAUC AUGGUAUCAA	76	18,42105	32,89474	17,10526	31,57895	35,52632	64,47368	0,96	1,076923	-19,8	-19,8	0,11962	11,25	-26,0526	-0,73333
mcr-mir- 194	GUUUGGUCAUCUUCAGUUCCAU GCCAGCCCCACCUGGCAGCCAGU GGAGGUGGUGUAGaaguggucacg ugaccagcc	78	23,07692	11,53846	20,51282	19,23077	43,58974	30,76923	1,666667	1,125	-32,8	-32,8	0,088541	4,32	-42,0513	-0,96471
mcr-mir- 1947	AUCUGAAUGAAGGCUAGUGCAC UGAGCUAGCUCUCUGCGUCAUCA ACUGCAAUGAAGCAUAGAGGGA GGCAGCGGUGGAGUACAAUUCU UCAUAA	95	27,36842	29,47368	20	23,15789	47,36842	52,63158	0,785714	1,368421	-27,3	-11,2	0,050373	20,57	-28,7368	-0,60667
mcr-mir- 194b	GUACUGCAUCAGCCACGCGCUGC GUUGUAACAGCAUCUCCAACUGC GGCGACCACGACGACAGCGACGA GCGCAAAUGUAGGUC	84	27,38095	25	32,14286	15,47619	59,52381	40,47619	0,619048	0,851852	-28,7	-27	0,178572	5,44	-34,1667	-0,574
mcr-mir- 196c	GGUGUGUUGCUGACAACAACAU CAAACCACCUGCCGAACAUCUGG	81	24,69136	23,45679	29,62963	22,22222	54,32099	45,67901	0,947368	0,833333	-24,7	-24,7	0,061423	10,88	-30,4938	-0,56136

Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
	(AA)									(kcal/	kcal/m			(kcal/	(kcal/
										mol)	ol)			mol)	mol)
CCCAGGUGCUGGUGUUUCAUGC UCCAUCAACACGGG															
	79	22,78481	21,51899	15,18987	40,50633	37,97468	62,02532	1,882353	1,5	-22,3	-22,1	0,116729	7,91	-28,2278	-0,74333
UCUUUCUUCUCAGAUUGUGUCA CUGGGGAUAAUUA															
UGUCGCCGUGCCCUAUCCGUCAG GAACUGUGAUCUCGCGAAACACA	73	34,24658	13,69863	30,13699	21,91781	64,38356	35,61644	1,6	1,136364	-37,9	-37,9	0,133827	2,65	-51,9178	-0,80638
GGGUCUGGCGGUUGGGCCUCGG CGCUG															
UGCCAUGCCAUUUUUAUCAGUC	67	14,92537	13,43284	10,44776	28,35821	25,37313	41,79104	2,111111	1,428571	-28,6	-28,6	0,286882	2,78	-42,6866	-1,68235
ACUGUGUGUUGUUGAAAGUcacag ugaugaugauaauggcuUGAUG															
GGCUGCGAGUUGUUCGUGCAGU AAGUUGAUGGGGUCCCAGGUAG AUCUACCCCUCCCGGGACUACGU	95	27,36842	20	29,47368	23,15789	56,84211	43,15789	1,157895	0,928571	-39,9	-39,5	0,101035	5,08	-42	-0,73889
CAACGUACUACCACGCGCAUCUC CAAGU															
CUAAGGGCAUGUGUCUAGUCAG UGGUUGACUGCUUGGUAUUCUA	88	23,86364	21,59091	21,59091	32,95455	45,45455	54,54545	1,526316	1,105263	-41,8	-41,4	0,125422	3,52	-47,5	-1,045

23,3333 25,55556 54,4444 45,55556 1,277778 1,333333 -40,6

PremiRNA

mcr-mir-

1970

mcr-mir-1984

mcr-mir-

1985

mcr-mir-

1990

mcr-mir-1992

mcr-mir-

1994

AAUGUAUCAGCAGUUGUACCAC UGAUUUGCUACGUGCACCUCAC

UGGGCGGCUGUUCUAAGGGGAA

ACUCGCUGUCUGCAUGUGUGAU

GACGUCAUGAGACAGUGUGUCC

UCCCUCUGAGUCAGAGACCGCUA A 31,11111 20

90

-45,1111

-0,82857

-40,6

0,538688 3,53
Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
mcr-mir- 1994a	CAAAAGCUAUUUCUCAGGGGCG GUCACUCUGAUCUCCAUGUGCUC GCACCAGCAUGAGACAGUGUGUC CUCCCUUGAGGGAUGGGCUUAU A	91	26,37363	20,87912	26,37363	26,37363	52,74725	47,25275	1,263158	1	-44,3	-44,3	0,178398	5,12	-48,6813	-0,92292
mcr-mir- 1c	AGUACAUACUUCUUUACAUUCCA UAGCUUUGCAAGAACAUAUGGG AUAGCAAAGAAGUAUGUGCC	65	18,46154	33,84615	18,46154	29,23077	36,92308	63,07692	0,863636	1	-27,1	-26	0,4687	2,23	-41,6923	-1,12917
mcr-mir- 2	AAGGCGAAUGAAUGCUCUGUCU GUUGGUAUGCGAUAGGACCCAG UUUUUCAAAAGACUGUGUUGCU AUGUCCCAGACAUGUUCUACUU UCGCUAA	95	23,15789	24,21053	20	32,63158	43,15789	56,84211	1,347826	1,157895	-26,9	-26,9	0,129077	12,83	-28,3158	-0,6561
mcr-mir- 2001	AAAGGAGAACUGUGUUGCUCUU GAUCGGAUGCUGCCAUUUUGUG ACCGUUACAAUGGGCauugacagaa aaacaaaugcuCCAUG	85	21,17647	16,47059	15,29412	22,35294	36,47059	38,82353	1,357143	1,384615	-20,5	-20,5	0,029997	7,42	-24,1176	-0,66129
mcr-mir- 202	CAGAGGCauagggcaugugcggggccu CGACCAUAGCCAUAUUAAUCAAA CACGCGGGGCCCUAGGUAGAUGC CUCGUCUGCCUGCCCCUAGGCCU AAG	99	20,20202	19,19192	26,26263	14,14141	46,46465	33,33333	0,736842	0,769231	-39,3	-39,3	0,05055	8,37	-39,697	-0,85435
mcr-mir- 204	CCACUCACCAGUCGCUGGCAAUG GACGCUGGGAAGGCAAAGGGAAC CUCGCGCGUGCGUUCGagcgaagg gagagagu	78	26,92308	16,66667	24,35897	11,53846	51,28205	28,20513	0,692308	1,105263	-30,4	-24,1	0,011827	6,78	-38,9744	-0,76
mcr-mir- 2040b	AGAGCAAGAGUCAGGUCAGCUAC GACUGUAACACUAACUAUUUAU GAUAAGGUAUCGUGUGUAGCUA	95	24,21053	32,63158	15,78947	27,36842	40	60	0,83871	1,533333	-32,6	-32,6	0,506504	3,85	-34,3158	-0,85789

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	UGCAAA															
mcr-mir- 216a	GUGUUUGUCUAAUCUCAGCUGG UAAUUCUGAGUGGAGUUCUGCA CACCUCAAGUUACUAGCCGAGAU UACAUAAAUAU	78	20,51282	26,92308	19,23077	33,33333	39,74359	60,25641	1,238095	1,066667	-30,5	-30,5	0,146188	3,64	-39,1026	-0,98387
mcr-mir- 216b-1	CGUAGGAAGAUGAGCCAGGAUU ACAAGAUGGUUGGGCCUGCGGC CCUAAUAUCAGCUGGUAAUCCUG AGUGAGCUUGCCUCAG	83	31,3253	24,09639	21,68675	22,89157	53,01205	46,98795	0,95	1,444444	-31,3	-30	0,152237	7,92	-37,7108	-0,71136
mcr-mir- 216b-2	UGUCACUGUGCAUGACACUUACC UAUAGAGAUGUGUAUUGUCACU GUGCAUGGCACCCAGUAUGGUA CCUAUAGAGAUGUGUAUUGUCA CUGUGCAU	97	23,71134	23,71134	19,58763	32,98969	43,29897	56,70103	1,391304	1,210526	-26,6	-16,37	0,100351	18,69	-27,4227	-0,63333
mcr-mir- 216b-3	UACCUAUAGAGAUGUGUAUUGU CACUGUGCAUGACACUUACCUAU AGAGAUGUGUAUUGUCACUGUG CAUGACACUCACCUAUAGAGA	88	20,45455	28,40909	19,31818	31,81818	39,77273	60,22727	1,12	1,058824	-26,2	-26,2	0,289845	6,27	-29,7727	-0,74857
mcr-mir- 2238k	CGGCUUGGAUGACAGGUUAGAU GCGAAAUCUUCAAUGACUGAACA GUGCAAUGCAGUUUUCGUGUCU AAACGUGGUUUgcaagugu	86	24,4186	23,25581	15,11628	27,90698	39,53488	51,16279	1,2	1,615385	-27	-26,2	0,149473	4,18	-31,3953	-0,79412
mcr-mir- 2253a	GGAUAAACAGCUUGCACGCAUGG CACUGCUGAAGGUUCAUGCAUG UAUAGCAGCAACAUGUGUCAAG UGCCUUUAAGC	78	25,64103	28,20513	21,79487	24,35897	47,4359	52,5641	0,863636	1,176471	-22,7	-22,2	0,18444	5,69	-29,1026	-0,61351

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
mcr-mir- 2254	ACAUUAUAAUUCUCGGCAGUCU UGCGGUUUGUACUAUGCAAAGU AAGUACUGCCGACCAUAUAUGAA GAA	70	20	31,42857	18,57143	30	38,57143	61,42857	0,954545	1,076923	-21,8	-21,4	0,07388	7,52	-31,1429	-0,80741
mcr-mir- 2288	cccaccccaccccacgcCCUCAUCCACC UUCGACUUCUGAGCUCGAUCGU CGUUGCCUACAGCAGguaguaggu gugugugugugugggggggggggaguaGG	99	11,11111	8,080808	18,18182	13,13131	29,29293	21,21212	1,625	0,611111	-43,8	-42,9	0,179465	5,79	-44,2424	-1,51034
mcr-mir- 22b	AUUAGCCUCAUCAUAGUUUACU GGACUGUGGUGUGGACAGCAGC GUUUGCAGCCUCACCUACAGUUC UUCAACUGGACUGAGCUCGC	87	24,13793	20,68966	26,43678	28,73563	50,57471	49,42529	1,388889	0,913043	-29,4	-28,1	0,059837	13,38	-33,7931	-0,66818
mcr-mir- 2304-1	AGAACACAAACGAGAAUCCUAGG UAUAUGUGUUUUGUAUUGUGA AGACACAACACGUGUGGACGUAG Ugguugugugguugugugug	87	19,54023	26,43678	11,49425	20,68966	31,03448	47,12644	0,782609	1,7	-24,4	-21	0,020111	11,06	-28,046	-0,9037
mcr-mir- 2304-2	AUACGCUgguugugugguugugug gcaauuuuuauuuuuaucaucguGUA AAACUUUGCCAAAAAAAGUCACA UUCCACAAUCCAGCGGUC	93	7,526882	20,43011	15,05376	11,82796	22,58065	32,25806	0,578947	0,5	-30,4	-26,3	0,226556	12,43	-32,6882	-1,44762
mcr-mir- 2325c	CUGUACUGUGCAAUuuuuuugggu uguuuuuuuuuuuuugcuugaagCAG ACGAACUUGUAAUAACGAAAAAA ACCCAAGAGAAAUAACUACAUAA AU	98	9,183673	31,63265	12,2449	13,26531	21,42857	44,89796	0,419355	0,75	-20,8	-14,6	0,057963	16,12	-21,2245	-0,99048
mcr-mir- 234	ACUCCGGCACUUCCGACAUGCAA UAAUUAAAGAUUCUUAAUcaguu	83	14,45783	22,89157	16,86747	21,68675	31,3253	44,57831	0,947368	0,857143	-18,5	-17,5	0,15476	7,04	-22,2892	-0,71154

Pre- miRNA	Sequence uuuuccuguuuugauUAUUGCUCGA GAAUGACGGCUG	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
mcr-mir- 2390	aauuuuccugAUUUUUCUACACCU GCAUCCCAACACAAGUGGGAUCU ACUAAAUCCUUGGGUCUUGuagu uguguguuuuuguugaaaaacaagaaa aua	100	9	14	15	18	24	32	1,285714	0,6	-24,1	-24,1	0,203585	18,05	-24,1	-1,00417
mcr-mir- 242	AAUUUGUUAUGAACAAAUGCUG UAAGUUGAAUCUUGCCUUUUUU CAAGGGCAAGGAUUUGCGUAGG CACUUUGCAUGACAAUGU	84	22,61905	27,38095	14,28571	35,71429	36,90476	63,09524	1,304348	1,583333	-27	-25,4	0,060999	11,38	-32,1429	-0,87097
mcr-mir- 2434-1	UUGCCUACAAUGCCCUCAAAUCU GAGaguuuguugggguuuuuuuugaa aaaauguccGAACAUAUCACGUGA UAUAAGGUGACAUGUUGGACA	94	13,82979	21,2766	13,82979	17,02128	27,65957	38,29787	0,8	1	-26,6	-20,5	0,012933	15,5	-28,2979	-1,02308
mcr-mir- 2434-2	GCCUUCAAGGCCUAUGAGGCUCu ugcuaaauuuuaaaauaaaagccaguug uugggguuuuuuuaaucAGCAUGUG CCCCAUGGGCCUUGAAAGU	95	14,73684	10,52632	14,73684	11,57895	29,47368	22,10526	1,1	1	-37,6	-29,5	0,042743	12,24	-39,5789	-1,34286
mcr-mir- 2444	UGGUCAAAACUAACUUCAACAAC AAUAUAUCGUUGUUUCUUUUAC CAUGGCACUAAGCCGugaaggugu uuguguuguuuuuuguuuugaaaa	93	8,602151	20,43011	15,05376	20,43011	23,65591	40,86022	1	0,571429	-21,7	-18,9	0,098683	7,42	-23,3333	-0,98636
mcr-mir- 247	gagggggaaacagAUAAACAAGUUG UACGGUUUGUCUUCGAGAGGGA GAAAAUCACUAGAGAAAAGUUUC UACCGACAACUUGAAGUUAUUU CCCCCCU	99	17,17172	28,28283	17,17172	24,24242	34,34343	52,52525	0,857143	1	-32,3	-30,6	0,021058	14,61	-32,6263	-0,95

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
mcr-mir- 2470	GCCAGAAAAACCUAAGCAUGACA AAAUAUCAUGCUUGUGUGUUU UGGAUACUUGGAUUUUUCUCUC	67	19,40299	28,35821	17,91045	34,32836	37,31343	62,68657	1,210526	1,083333	-18,6	-18,5	0,281925	3,5	-27,7612	-0,744
mcr-mir- 2491	GCUGCCaugaaacaacaacagcagcag caacagcaacagcaagagGGAGCUGC UGAUGUGGAGAUUUUUCUGGCA GA	77	18,18182	7,792208	9,090909	14,28571	27,27273	22,07792	1,833333	2	-27,8	-25	0,10123	15,43	-36,1039	-1,32381
mcr-mir- 250	CACUUGUCCCUGUGUACAGCACU UUAGUGAAUCACAGUCACCUGA GUAAAGAUGACUGCGCAGGGGC AACAC	72	23,61111	27,77778	26,38889	22,22222	50	50	0,8	0,894737	-26,4	-26,4	0,33034	11,12	-36,6667	-0,73333
mcr-mir- 252	CCCAUAUCUCAGCAGCAACGGGU AGAUUUUUGUGCAACUAUCAAA AUAGUCUCGGUUGUAAAUUCAC CUGCUCCCUGCUGCUGCCUUGCG AUAUAUC	97	18,5567	23,71134	26,80412	30,92784	45,36082	54,63918	1,304348	0,692308	-26,9	-26,9	0,313291	8,87	-27,732	-0,61136
mcr-mir- 252a	CAUAACUUCUGGCCCAUUACUAA GUACUAGUGCCGCGGGAAGAUA ACGUGUCAUGUCCCGUGGUUCU GGUCCUUACUACAGGGCGGAAC UUGCA	94	25,53191	22,34043	25,53191	26,59574	51,06383	48,93617	1,190476	1	-37,6	-37,6	0,061669	5,2	-40	-0,78333
mcr-mir- 2582a	GUGACAGCCUGUAUUUCACAGU GUUCAUAAUAUUUCAGCUCCGU UUUGCCUUUGUAGCGAUGUCCC UAGCAAGACUGCUGAAACACUga cuuguaaa	97	17,52577	20,61856	21,64948	29,89691	39,17526	50,51546	1,45	0,809524	-19,7	-13,6	0,037527	15,34	-20,3093	-0,51842
mcr-mir- 2699	UUUUGAGCUGUUUGUGAUAUUC GGCAUUCUUUACUCccugucucugu uucucucuccccaucccCCUCACAC	100	14	18	15	23	29	41	1,277778	0,933333	-19,4	-16,9	0,099228	8,03	-19,4	-0,66897

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	CGAGAUAUCGAGAAAAAGACUCA GGU															
mcr-mir- 277-1	CAACAGACAAAUGUGUCAACCGU AAAUGCAUuuucugcugcauuuuauu gACACGAAAUGUCUGGAU	67	13,43284	28,35821	14,92537	14,92537	28,35821	43,28358	0,526316	0,9	-23,1	-23,1	0,480593	2,17	-34,4776	-1,21579
mcr-mir- 277-2	CUCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	84	23,80952	15,47619	8,333333	17,85714	32,14286	33,33333	1,153846	2,857143	-25,5	-13,7	0,072633	12,27	-30,3571	-0,94444
mcr-mir- 279	CUCUCUUAUCUUUGCGGGUGGC UGUGAGUCUAGUCCAUGUGACA CUGCAAGCUCAUGACUAGAUCCA CACUCAUCCACAAGGAUAGGACG U	91	23,07692	23,07692	26,37363	27,47253	49,45055	50,54945	1,190476	0,875	-39,9	-39,4	0,157559	5,72	-43,8462	-0,88667
mcr-mir- 281	AAAUGACCUCACGCUGAAGGGAG CAUCCGUCGACAGUCAGAAAUGC AGCACUGUCAUGGAGUUGCUCU CUUUACUGAAAAGGUCAAGA	88	25	30,68182	22,72727	21,59091	47,72727	52,27273	0,703704	1,1	-35,2	-35,1	0,187538	3,76	-40	-0,8381
mcr-mir- 283	GCUAAAUCGUGAUCCGUGCUAU AUUUAUCCUUGCUGGAAGAAAG UUAUCGGAAGGGGGGCAUCUCCG AUAAAAUAUCAGCUGGUAAACGA AUUGGA	95	25,26316	30,52632	16,84211	27,36842	42,10526	57,89474	0,896552	1,5	-25,4	-24,2	0,095817	6,58	-26,7368	-0,635

24,70588 29,41176 49,41176 50,58824 1,388889 1

-22,3

-15,9

0,018167

14,62

-26,2353

-0,53095

mcr-mir-

285

UUGUGUACGACGCUCUGUCCAU

CAGUCAACUGGCUUCCAAAGGUC

UCGAAAGCUCUGUUACUGCUGU

AGGGAGGCGUCAUCAUUA

85

24,70588

21,17647

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
mcr-mir- 2970-1	cgaAAUGCGGGUGGUGGACAAGG AUGUUCccugcacacagagacacaugA GUCGGUCGACCGAUCAGAUCAUC UCUUGAUCAACCUACAGCAUUCA G	97	20,61856	19,58763	17,52577	18,5567	38,14433	38,14433	0,947368	1,176471	-25,4	-16,4	0,010574	31,19	-26,1856	-0,68649
mcr-mir- 2970-2	AGCAGGAGCCGGCCGGAGACGGC AAGCCUGGGUCCCGACAGUCAGC AGUUGGCUCCCCAUGGGUCUCU UGCCGGAUCAACCCGCUCCUACC	91	30,76923	17,58242	36,26374	15,38462	67,03297	32,96703	0,875	0,848485	-41,1	-41,1	0,129828	8,12	-45,1648	-0,67377
mcr-mir- 297b	aaauauguaugugugcaugaacAUGC UUUAAAAUGUGUCAGUUGUAAG CUGUACAACUGAACAAGCUUUAA GAACAGAACUAUGAAAAAUCAUA GCA	97	13,40206	31,95876	11,34021	20,61856	24,74227	52,57732	0,645161	1,181818	-23,8	-23,8	0,133853	5,73	-24,5361	-0,99167
mcr-mir- 29b	UUAAGAAUCUUGCAACAUAGCAC CAUUAGAAAUGUUAGUUGUUGA GUAGAGUAGA	93	20,43011	30,10753	13,97849	35,48387	34,4086	65,5914	1,178571	1,461538	-19,8	-19,8	0,035107	6,69	-21,2903	-0,61875
mcr-mir- 2a-1	UGCAAAGCUAUAGUGCUGACCAA GUGACUGGGAUGUGUACCUAAG UGUCAUAUCACAGCCUGCUUGG AUCAGUAUUGUGGUUUUUAA	87	25,28736	25,28736	17,24138	32,18391	42,52874	57,47126	1,272727	1,466667	-38	-37,6	0,220043	3,11	-43,6782	-1,02703
mcr-mir- 2a-2	GAAAAGCAAAUGUGCAUGGAGC AAUCAAAGUAGUUGUGAUGUGU UUCUUGGCUUCAUAUCACAGCCA GCUUUGAUGAGCUUCUUCACAA UUUUCUUGCA	99	21,21212	27,27273	18,18182	33,33333	39,39394	60,60606	1,222222	1,166667	-33,6	-31	0,110768	7,68	-33,9394	-0,86154

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
mcr-mir- 2a-3	UACGACUGCUGAGUCCACAUCAA AGAGGCUGUGACUUUGUGAUGC UGUAUCAAAUCACAGCCUGCUUU GGUGAGCUCUUUGCUGUCCAA	89	23,59551	22,47191	23,59551	30,33708	47,19101	52,80899	1,35	1	-36,2	-35,9	0,18632	8,53	-40,6742	-0,8619
mcr-mir- 2b-1	UGCAAGAAAAUUGUGAAGAAGC UCAUCAAAGCUGGCUGUGAUAU GAAGCCAAGAAACACAUCACAAC UACUUUGAUUGCUCCAUGCACA UUUGCUUUUC	99	18,18182	33,33333	21,21212	27,27273	39,39394	60,60606	0,818182	0,857143	-24,4	-24,4	0,305458	6,72	-24,6465	-0,62564
mcr-mir- 2b-2	GAAGCGAGGCCAGCUCAUCAAAG CUGGCUGUGAUAUGACUGAACU CAACACAUCACAGCAUCUUUGAU GGACAGGUCCUAGCACU	85	23,52941	29,41176	25,88235	21,17647	49,41176	50,58824	0,72	0,909091	-31,5	-30,9	0,181124	5,11	-37,0588	-0,75
mcr-mir- 2c	aaaagagaUUCGUCAACAUUGCCU GCUGCUUAUAAGACCUUUUAGC UUCAAUGUUUUAUGACAAGGUG CAAACAUGUUGACUuaagaaucucu cuc	96	13,54167	19,79167	15,625	28,125	29,16667	47,91667	1,421053	0,866667	-27,8	-27,8	0,136659	7,8	-28,9583	-0,99286
mcr-mir- 3131	UCUUAGCCAAUCAGAAAACAUUC CAUCAAGAAAGUGUGGUGUG	99	25,25253	30,30303	20,20202	24,24242	45,45455	54,54545	0,8	1,25	-27,7	-27,5	0,063458	7,98	-27,9798	-0,61556
mcr-mir- 315b	UUUGCAGACUGCACUGAUAUAA CAAUACCGCCGGAGGUCUCUUUU CUGCUUUGUGGACAUUUUGAUU GUUGUACAGUCCGCUUCUGCUU U	90	21,11111	17,77778	22,22222	38,88889	43,33333	56,66667	2,1875	0,95	-24,6	-24,6	0,280807	8,3	-27,3333	-0,63077

Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
	(AA)									(kcal/	kcal/m			(kcal/	(kcal/
										mol)	ol)			mol)	mol)
GGGAAGGAUACCAUUGCUUGUU CACAGUAAAUUGGACAUGUGAAC ACAGCUGGUGGUAUCUUUUUU	66	25,75758	25,75758	15,15152	33,33333	40,90909	59,09091	1,294118	1,7	-29,1	-29,1	0,162636	2,6	-44,0909	-1,07778
ugaaaagguuaugggaugaccuuuaccu uuuaccuuuaccuuacagAAGGGUCA ACCGGUCAAGCUCAUUCAUGCAU CUUUCCC	84	8,333333	10,71429	14,28571	11,90476	22,61905	22,61905	1,111111	0,583333	-18,5	-18,2	0,011779	13,83	-22,0238	-0,97368
uugAACUCGAUUGUGACGUCUAC AUCACAUGGCuucuuuccccacugcc ccaGGUGUCUUGUGAAGCACAUC GAGUUUGC	80	18,75	16,25	16,25	21,25	35	37,5	1,307692	1,153846	-23	-21,4	0,113698	17,15	-28,75	-0,82143
ACCUUGGGGGUUUUGGAAGCUU AAGCUCCAGGUUGUUUCUUUCU GCUCUAACUUGCAGGAGAUCGU UCAUUGUUAAAGUCUGCAUAAC CCCCAACCU	97	21,64948	20,61856	23,71134	34,02062	45,36082	54,63918	1,65	0,913043	-31,4	-30,2	0,042103	13,35	-32,3711	-0,71364
GCUAUGGUAGUGCAUUGAGGUU GCAUUGCAUCAGCUGAGAAACAU GCAAUGCAUCUGCAGUGCAAAUA UCAUGGU	75	26,66667	28	17,33333	28	44	56	1	1,538462	-33,6	-32,6	0,179681	5,16	-44,8	-1,01818
AGUGACAUGUACUUAAGUUACU GAAAGUACUCAAAUGUGUUUUA UGCAAUGUACCUGCAGUGCUuuc	89	15,73034	22,47191	12,35955	28,08989	28,08989	50,5618	1,25	1,272727	-19,3	-16,7	0,024573	11,69	-21,6854	-0,772

2,3

1,5

-36,4

-36,4

0,283704 3,17

-46,6667

-0,80889

PremiRNA

mcr-mir-

317

mcr-mir-

3223

mcr-mir-324

mcr-mir-

3299

mcr-mir-

33

mcr-mir-

33b

mcr-mir-

34

agaaaagcaaaaacuuGUCUAU

GCUGGUUGUGGUCCGGCCGGUU

UGUGACAACCACUAUCUGCAGUG CCGCGUGAUUG

UGAUCCCGUGGCAGUGUGGUUA 78

12,82051

34,61538

23,07692 29,48718 57,69231 42,30769

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
mcr-mir- 3529	UGUGGCUGCAGCAAUCAGGGAA GAAUGUGAUUUAUUGUUAGUCA GCAUCAGAACAACAAAAUCACUA GUCUUCCAGAUCACGGCAGCCug g	91	21,97802	30,76923	20,87912	23,07692	42,85714	53,84615	0,75	1,052632	-30,8	-29,7	0,103281	5,67	-33,8462	-0,78974
mcr-mir- 3530	AGAGACAAGGUAGGCCUCCGGU GAAGAGAACAAUGGUGUGAGCU GGACAUGACUUGAUUAGCGAAC GACAUCGAUCUCCCCGGCGCCAC CUUUUCGGC	98	29,59184	25,5102	25,5102	19,38776	55,10204	44,89796	0,76	1,16	-31,7	-30,2	0,121532	8,78	-32,3469	-0,58704
mcr-mir- 3671	AGUCACAUAGGUCGUAAGUUGA UCAUUACCUGUAACGUUUUUUA AAGUGAUCAAAUAAGGACUAGU GGCA	70	21,42857	32,85714	14,28571	31,42857	35,71429	64,28571	0,956522	1,5	-18,7	-18,5	0,348559	4,37	-26,7143	-0,748
mcr-mir- 371b	AGUGUACGGCACGUGCUCCCCGC CGCUAGCGCACUCAAAAGAUGGC GGCAAGGGGGUGACGGGGGAGU CGCACGUUGCCGAACCGU	86	37,2093	19,76744	29,06977	13,95349	66,27907	33,72093	0,705882	1,28	-38,5	-35	0,126533	11,61	-44,7674	-0,67544
mcr-mir- 372	GGAUGAUGUUCGAAAGUGCUGC GACAUUAUUACCGACGCUUAUG GUGGCCUCAGGUAUCGUACACG GCUUCUGUGUCGAAAUCCUUUC GUUCAUCAUUA	99	24,24242	21,21212	22,22222	32,32323	46,46465	53,53535	1,52381	1,090909	-32	-29,1	0,23008	11,94	-32,3232	-0,69565
mcr-mir- 373	acggaugauAUAAAGGUGAUGUUC AUUAUGCCCAACUUGAUGGGCU UGGGCAGAAGGAUUCUCAAGCA UAAAAGUGCUUCCCUUUUAUUA UCAuu	95	18,94737	25,26316	15,78947	28,42105	34,73684	53,68421	1,125	1,2	-26,2	-25,2	0,010522	20,57	-27,5789	-0,79394

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/	MFEE(kcal/m	Freq	Div	AMFE (kcal/	MFEI (kcal/
											mol)	01)			mol)	moi)
mcr-mir- 375-1	UUUAGCUGCCCAAUGACCCGAGC CGCUCGUAGCAAGGCGUCUUCAC AAGUUUUGUUCGUUCGGCUCGC GUUACCAUGGUGGCACUGAC	88	26,13636	17,04545	29,54545	27,27273	55,68182	44,31818	1,6	0,884615	-35,3	-35,3	0,510508	5,41	-40,1136	-0,72041
mcr-mir- 375-2	GGCUCUCCGUUUGUUCGUUUUG CUUGCUCAUGGGGUGGGUGGUG UGGGGGGAGAAGGGAGCGAGUA AUAGAGCAAAAUACUAAACUACG GAGACAG	96	37,5	22,91667	14,58333	25	52,08333	47,91667	1,090909	2,571429	-26,5	-26,5	0,439668	2,92	-27,6042	-0,53
mcr-mir- 376c	AGGUGCAAACACUGCCGUGUCAU GUUCAACAUAGAGGAAAAUCACC GAGGAAGUUGUGACAGUGCACC UGACACGGUCACACGUUGCAUCG	91	26,37363	29,67033	24,17582	19,78022	50,54945	49,45055	0,666667	1,090909	-27,4	-27,4	0,263715	8,34	-30,1099	-0,59565
mcr-mir- 376d	UUUCAGGUGUAGAUUUUCCUUC UACAACUUAAUUGCUUCUCGCCG CAGGUGAAGUGAGGUCGAGGAA GAAGGAAACGUCUCCACCUGUGG	90	26,66667	23,33333	21,11111	28,88889	47,77778	52,22222	1,238095	1,263158	-32,7	-22,97	0,106712	16,3	-36,3333	-0,76047
mcr-mir- 3834	UACGUCAGGUCGAUCUCUCUGA UGUUAUUUUCGACAAAUAAGCG AAAAGGCAUCUUGACCUGACUGC	67	20,89552	26,86567	22,38806	29,85075	43,28358	56,71642	1,111111	0,933333	-24,4	-23,6	0,406778	1,27	-36,4179	-0,84138
mcr-mir- 3890	UCAGUUCGAACAGUGUUUCUAG ACUCUGAAGAGCCGGUUAUGUA CGGCUGUUCAAAGGUGGAUAGC UGUCAACCCA	76	26,31579	25	21,05263	27,63158	47,36842	52,63158	1,105263	1,25	-25,4	-24,2	0,10708	10,57	-33,4211	-0,70556
mcr-mir- 39	UAAAUGUGAACUUUCACAAUCCC CUAUCAUGUCUUUAGUCACCUG GCUAAAGCUGAUUUCGUCUUGG GAGUUCUCAUAAU	80	16,25	25	22,5	36,25	38,75	61,25	1,45	0,722222	-22,5	-22,5	0,059743	2,98	-28,125	-0,72581

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
mcr-mir- 4000i	GACAAAGAAAGCUUUUCUUGAA GUUUUUAAGACAGGUUGACACA GUAAGUCUUAAAGUAGGGAAAU CUGAAACUUGCAAGGAACUGCU UUCUUUAUA	97	20,61856	35,05155	13,40206	30,92784	34,02062	65,97938	0,882353	1,538462	-24,9	-21	0,02901	8,86	-25,6701	-0,75455
mcr-mir- 4003d	GGAUUUGUUGACACUCGUGACA ACUUGCAGAGAAAGGUGCAUAU UAAGUUUACACCUAUUCCGCAGC CUGUCACUGAGAAUGGUAACCAA AAAA	94	21,2766	32,97872	20,21277	25,53191	41,48936	58,51064	0,774194	1,052632	-22,7	-22,7	0,028311	9,4	-24,1489	-0,58205
mcr-mir- 4027	CUACCAUCACCUCACCAUUUAAC ACAUUCUGUGCCUCUGGUGCAC UUGAAUUAAAACACUAUGUAUA UUACUUUUAUGUUAAUGAGUGA GACGAAGGUGA	100	16	30	21	33	37	63	1,1	0,761905	-20,8	-18,1	0,009559	16,79	-20,8	-0,56216
mcr-mir- 4029	ACCCACACGUGAGGAUCAAUUCC UGUUUGUUUACAUUGCAUGCAU CGCUAGUGUAGUAACUACGAGA AAUAGACACUCACACGUGUGCGC	90	21,11111	27,77778	24,44444	26,66667	45,55556	54,44444	0,96	0,863636	-23	-17,1	0,03183	24,52	-25,5556	-0,56098
mcr-mir- 4034	GCCAUUAUUUUUGCAAGGUGAA GGUGAGCAGGGAUCUUUUCUCU GGCACUGAGGACCAAAAUAUCCG UAUUCACACgugcaacugaaaaaaaa auuaa	98	18,36735	20,40816	16,32653	22,44898	34,69388	42,85714	1,1	1,125	-21	-19,9	0,119554	9,47	-21,4286	-0,61765
mcr-mir- 4040	AACUAGGGACUAGAUUUCAUGU UUACAAACUGAUGUAAUUUAAC CCAUAGCACAAAAUACAACCAGA UCAGAAAGGUGAUAAGCUAGUU	96	15,625	39,58333	18,75	26,04167	34,375	65,625	0,657895	0,833333	-18,9	-18,5	0,175394	6,72	-19,6875	-0,57273

UCUACAC

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
mcr-mir- 4048	UCAUUCCCUUUCCAGCACCUUGG UCACCAUAGUGACCCAUAGUGAC CAAGGGGGGAUGACGGGAAACC	67	23,8806	25,37313	29,85075	20,89552	53,73134	46,26866	0,823529	0,8	-25,9	-21,3	0,109726	8,22	-38,6567	-0,71944
mcr-mir- 41	aagucUUGUCACCGGGUGAAAAAC UGACGCCUGCAUAUCAUGGUUG AAUGUGGAGUCUGUGCAGUUGC UUGCGCGUGUGAACAAAGAAAA	90	27,77778	25,55556	16,66667	24,44444	44,44444	50	0,956522	1,666667	-28,1	-28,1	0,033067	9,16	-31,2222	-0,7025
mcr-mir- 4127	AGGCAGCUGUGAGAGAGAGCCCUG UAUAUUAUAAUACCGCUAUAUA AGCCAGCUGUGAUUGAGCCCUG UAUAUUAUAAUACCGCUAUCUA AGCCAGCUGUGA	100	22	29	21	28	43	57	0,965517	1,047619	-22	-15,21	0,013453	23,23	-22	-0,51163
mcr-mir- 4130	AUCGAACUCCCUCCGCUGCCCAG ACAGCUGCGUGUCUUUAAGAUG GCGGCGCUUCUGCUUGGGUGAC GAGAGGAGAG	84	30,95238	16,66667	29,7619	22,61905	60,71429	39,28571	1,357143	1,04	-36	-35,6	0,091309	4,96	-42,8571	-0,70588
mcr-mir- 427	UAGGUGACGGCCAUGUGAucgaa aagaaacagagaaagugCUUUCUGUU ACUUCUUCUCAUAUCUGUCGGC ACUUG	76	15,78947	10,52632	17,10526	27,63158	32,89474	38,15789	2,625	0,923077	-24	-24	0,200072	3,94	-31,5789	-0,96
mcr-mir- 44-1	CGCAGGCGGGAGGUUGAAAUGC CGUUGUCGUGGUCAUCAGAUGA CAGGACUGACAGCUGGAUGUGC UCGUUAACGUCGUUCUCCUGCA GCCUAAG	95	32,63158	20	23,15789	24,21053	55,78947	44,21053	1,210526	1,409091	-29,5	-21,4	0,033769	23,95	-31,0526	-0,5566
mcr-mir- 44-2	GCUCAGUGCCUGUAUCCCUCAGU GACUGUGGGUUCGCACGACAGU	71	25,35211	23,94366	25,35211	25,35211	50,70423	49,29577	1,058824	1	-19,8	-18,5	0,203176	16,29	-27,8873	-0,55

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	GACUAGAUGAUCACAAGACAUUG UCA															
mcr-mir- 449a	UCACCUUUGCUUGUCCACUCCUC ACAGUUGUAUAAAAUGGAGGUG GCAGUGCGUGUUAGUGAUGGAG AUGGUAAGGCACAGGAGG	85	31,76471	23,52941	17,64706	27,05882	49,41176	50,58824	1,15	1,8	-25,8	-25,6	0,084124	7,48	-30,3529	-0,61429
mcr-mir- 4502	Acaaguugcugcugcugaugaugauggu gauuggAAGUGCAGUCACAACAGA CAGCGGCACACUGAC	67	11,9403	19,40299	14,92537	4,477612	26,86567	23,8806	0,230769	0,8	-25,2	-25,2	0,397491	8,17	-37,6119	-1,4
mcr-mir- 452	CGGACCAUAUUAUCAAAUGUGAC UGUUCGuuguuuuauuaucuuuugG UCAUAUAAACUGUUUGCAGAGG ACAGUCACAUAUGUCCGAUAAGA AGGUCCU	100	18	25	16	23	34	48	0,92	1,125	-32,4	-32,4	0,183463	8,17	-32,4	-0,95294
mcr-mir- 4552	CAUCAACUAACCAGCGUGAACAA GAGCGAGACCACCUCCCACUUGA UCACUGACAUUCUGGUAUGACCC GGGGUUAGUuggga	83	20,48193	26,50602	27,71084	19,27711	48,19277	45,78313	0,727273	0,73913	-26,2	-25,6	0,350856	1,8	-31,5663	-0,655
mcr-mir- 466h	UcuugaguguuugugugucaugGCGC CCUUAUGUUAAAGUCGGUUCAC GCACUCAGACACguauacgcacgcac acacacacacacacac	90	8,888889	10	13,33333	11,11111	22,22222	21,11111	1,111111	0,666667	-24,9	-24,9	0,117884	19,03	-27,6667	-1,245
mcr-mir- 466i-1	auacacaacacauacacacgcgcacgc gcuaAAUGGCCUGUAUACAAACU CAUCAGAGCCUUUGCGCCAUAUU AUGAUGGUGUGGUC	90	14,44444	15,55556	13,33333	18,88889	27,77778	34,44444	1,214286	1,083333	-23	-17,8	0,062769	25,13	-25,5556	-0,92

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
mcr-mir- 466i-2	ugugugugugugugugugugugucucaau UGUUCUCUCCUAGUAGGUCAUC GUCUGAGACAUCUGUAGACAUA UUAAUCACUACAUCACCCU	90	10	17,77778	18,88889	23,33333	28,88889	41,11111	1,3125	0,529412	-23,3	-18,7	0,058678	13,27	-25,8889	-0,89615
mcr-mir- 467c	AAAAAUCUGUGUGUCUAAGUGC GUGCAUGUAUGCAGGAACAUUU UGAUCACAUGCAUGCAGGAACAC AGAUUGAA	75	24	33,33333	16	26,66667	40	60	0,8	1,5	-31,1	-31,1	0,307267	3,37	-41,4667	-1,03667
mcr-mir- 4760	UGAUGAUCUCAUGAUGAUUUCU UAGCAAAGAAUUCAUUUUCUUG UGUCCCUUUUAGAUUGAACAUG AAUGUUUAAAACAGGAUAUGAG GUCAGAU	95	18,94737	30,52632	12,63158	37,89474	31,57895	68,42105	1,241379	1,5	-22,4	-18,9	0,059494	17,85	-23,5789	-0,74667
mcr-mir- 4810b	UUCCACAUGUAGGUUCAUGAGU AGACUUUUCAGAGGCUGAAGUG AGUUUAAGCAAUACUCUGAGGG UGUAUGAUGUACAUAAUGCUGC AU	90	25,55556	27,77778	14,44444	32,22222	40	60	1,16	1,769231	-18,6	-16,1	0,008321	19,96	-20,6667	-0,51667
mcr-mir- 4865	UACAUGCAAGGCAGGCAACUCAC ACUACACACGGUAUGUAGAGAGA GUGACGCCGCUUUGUAUCGA	66	25,75758	30,30303	24,24242	19,69697	50	50	0,65	1,0625	-22,8	-22,6	0,613718	1,85	-34,5455	-0,69091
mcr-mir- 4968-1	UCAGAGCAGUGCUGCUCAGcagag cagcagcaacagcagcagcagcagcagcagcac acuCCGCAGGCUGACUCUCAGAG	91	15,38462	13,18681	18,68132	10,98901	34,06593	24,17582	0,833333	0,823529	-29,8	-28,8	0,303196	26,91	-32,7473	-0,96129

0,888889 1

-26,6

-18,9

0,141152 31,1

-32,439

-1,33

12,19512 9,756098 24,39024 20,73171

mcr-mir-

4968-2

CAACAUGUCUCAGC

UAGGCAACAGGUCAGCACAacuaa

gcagcagcagcaacagcagcagcagcagc

82

12,19512

10,97561

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	agcagcuguugUAGUGCCACUCUUG CUGG															
mcr-mir- 4968-3	CCGGCGUGACGUGCAGAuuaccag caacaacagcagcagcagccgccgACGC UGACUCGCCGAAGCUGCUUGAU GAUGCAAGUGCCGCCACGCGCC	96	21,875	12,5	22,91667	10,41667	44,79167	22,91667	0,833333	0,954545	-29,2	-26,5	0,033415	18,93	-30,4167	-0,67907
mcr-mir- 4975	AUCAGGACUCAGCUGUCAAACCC AAAAUAUGCUUCUUUUUACUU GGGUUUUCUUUCaggaagaaacaaa uauugGUUCUGCUGAgccuuua	92	11,95652	15,21739	15,21739	29,34783	27,17391	44,56522	1,928571	0,785714	-22	-13,18	0,037553	24,75	-23,913	-0,88
mcr-mir- 50	CGAGUAAUAUUAGACAGCGGAU UAUUCUUcaauauuauuuaauaa uauguauauuauuaUAAUAUAG AGUAACCCGUAGUCUUUUAUAA CCUU	98	10,20408	20,40816	10,20408	23,46939	20,40816	43,87755	1,15	1	-24	-24	0,151437	7,98	-24,4898	-1,2
mcr-mir- 5009	AGAAGUCAUACUGCAACAGCUCC UUCUCUUCGGUGGCCGAACUUC GGGAGUUGGACUUUUUCAGAUG GACUAGU	74	25,67568	21,62162	22,97297	29,72973	48,64865	51,35135	1,375	1,117647	-20,6	-20,6	0,124	9,33	-27,8378	-0,57222
mcr-mir- 5101	GCGAuguugaugacuuuuguuuguuu ugcuguauGAGUCUUUGUUGUAG AGCACGUGGAGCUGUUUACAAAC UAAUUAGUCCGUcgacauuaa	93	16,12903	13,97849	9,677419	18,27957	25,80645	32,25806	1,307692	1,666667	-27,9	-27,4	0,018271	6,78	-30	-1,1625
mcr-mir- 542	AUAAUCUUUACAACUGUGCUUU GAUGAUGUGCUCUCAUAAUAAA AUUGAUGUGACAGAUUGAUAAA GACGCACUUGGGAAAGAUGCA	87	20,68966	34,48276	13,7931	31,03448	34,48276	65,51724	0,9	1,5	-18,8	-18,8	0,137277	8,15	-21,6092	-0,62667

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/	MFEE(kcal/m	Freq	Div	AMFE (kcal/	MFEI (kcal/
		(, , , ,									mol)	ol)			mol)	mol)
mcr-mir- 5429	ccaggaaccuccgGCAUGACUAUUCC UCAAGGCACAUUUACUACGGCGu ugacuacccuccaaggugccuugaggAA UAGUCAUGCUGGAGGUUCCUAG	99	14,14141	15,15152	14,14141	16,16162	28,28283	31,31313	1,066667	1	-67,1	-67,1	0,328258	3,51	-67,7778	-2,39643
mcr-mir- 548d	CACUGAGGGGAGUAUACUCCUU CAGUCAACACAGUUUUAUUACCC UgugagaagaacaaaaaaaacugcaguU ACUUGAAAAUAAACUACCCUCAU Uc	98	9,183673	22,44898	18,36735	22,44898	27,55102	44,89796	1	0,5	-18,9	-17,7	0,01295	10,68	-19,2857	-0,7
mcr-mir- 550	CAAGUGCCUGAGGGAGUAGUGC CUUCUACAGGGAAAACAAUGACU GUAUGGAGCACGAUCUCCACCUU CAGAGGACACC	79	26,58228	29,11392	25,31646	18,98734	51,89873	48,10127	0,652174	1,05	-25,3	-22,1	0,053345	9,46	-32,0253	-0,61707
mcr-mir- 5552	CUGCAGUCUAUAGAUAUAGCCU GUAGUCUGUUACAUUCUACCAA GUGAUCGCUACAGUUAUGUAGU UUGUAGUCUAUAGAUAUAUCCU GUAGUCUGUUA	99	19,19192	25,25253	17,17172	38,38384	36,36364	63,63636	1,52	1,117647	-28,8	-26,6	0,061307	13,22	-29,0909	-0,8
mcr-mir- 5582	auuuguuGUAAUUUAAAACUUUA AGUGUGUCAGACAACUUUUCUU GCAAAAGCUAUGUGACCACAUAA GUUUAUAGUUUAUACAACAGGC	90	14,44444	32,22222	14,44444	31,11111	28,88889	63,33333	0,965517	1	-19	-18,7	0,032948	11,44	-21,1111	-0,73077
mcr-mir- 5698	CAUACUGACCGCCCAACUGUGCA CUGAAGUGGAUUUUAUUUAUCA GUGCgacacacccccuccccuuucuuu GUCCCAGUGUGGGGGAGUGCAG UGAA	99	22,22222	17,17172	16,16162	20,20202	38,38384	37,37374	1,176471	1,375	-28,3	-21	0,011177	15,74	-28,5859	-0,74474

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
mcr-mir- 586	CUCCAUGUUGAUGGUAUGCAUA UUGUAUUUUGUACUUGUAGUUC CCUGGGUACAGUCACCAGUACCA AUGAUGCCAACACUUUACAUGCA U	91	18,68132	24,17582	21,97802	35,16484	40,65934	59,34066	1,454545	0,85	-19,1	-15,9	0,059302	17,12	-20,989	-0,51622
mcr-mir- 5890c	CUCCAGACUAGUUUCAUUCCCUG UGCAGUUCAGGUCAUUGACCCA GACGCUGCCAUAUAACUGAACUG	75	21,33333	21,33333	28	29,33333	49,33333	50,66667	1,375	0,761905	-21,4	-18,9	0,044239	9,08	-28,5333	-0,57838
mcr-mir- 592	CCUGACGGUGAACAAGAACUCGG UCCUCGCAUAGCGACGUGACGU	97	26,80412	17,52577	29,89691	25,7732	56,70103	43,29897	1,470588	0,896552	-31	-28,5	0,039975	20,27	-31,9588	-0,56364
mcr-mir- 6013	UUGUCCACGGCUGCUGACGACCG CCUCAAACGUCAGAAGUUGAAGG AAAACAGAGAGAGACUUGAGCGA GUCGCUGGCGCAGUGGAAGC	88	32,95455	27,27273	23,86364	15,90909	56,81818	43,18182	0,583333	1,380952	-27,3	-26,6	0,063669	7,38	-31,0227	-0,546
mcr-mir- 6058	GGAGAAGAACUGGACAUUACUCA GCUGAUGACAAUGGUGAUGAAU CAGAUGGGUUACAAUAUGUAGU UGUCCUCUGCUGAUUUAUGGAC GUCUUCCAU	98	25,5102	27,55102	16,32653	30,61224	41,83673	58,16327	1,111111	1,5625	-26,2	-26,2	0,10919	8,67	-26,7347	-0,63902
mcr-mir- 6340	GCGGUGCUGGGUUUGCUCAGCU GGUGGAAGAUCAACAGACGUCA GCAGCAGCUUCGAUACCCAACAC	70	30	24,28571	27,14286	18,57143	57,14286	42,85714	0,764706	1,105263	-22,1	-22,1	0,286043	7,87	-31,5714	-0,5525

GAC

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
mcr-mir- 6552	CCCAUCAUUCGACUUCAGCAGGG AAGACUUUCGCGAUCCUUUUCU AAAGCAACAAGAAGUGGACACGG UCUAUUUCCUGCAGGUGUCUGA AAUGAUUCA	99	21,21212	27,27273	24,24242	27,27273	45,45455	54,54545	1	0,875	-28,3	-23,2	0,012686	10,87	-28,5859	-0,62889
mcr-mir- 6560	CGCUGUGUUGCUCCAUACUGCU GAAGAAGUGUCUGCACUUCUGU UUCAGUCAUACUGAGCAGCUCAU CA	69	21,73913	20,28986	26,08696	31,88406	47,82609	52,17391	1,571429	0,833333	-24,8	-24,8	0,250515	3,95	-35,942	-0,75152
mcr-mir- 669f	CCUGCGAACCAUUAUGCUGGaau ucucucucuauauauauauauauacaca cacacaca	89	11,23596	7,865169	10,11236	16,85393	21,34831	24,7191	2,142857	1,111111	-19,4	-18,5	0,056046	7,7	-21,7978	-1,02105
mcr-mir- 67	GAGAUAUCGUGAGCUGUUGGUC CUUGUUCAGCCCGGUUGUGAUG GAGUUGAUCGCAUCACAACCUGC AUGAAUGAGGACUGACGUCAcga aauaac	96	27,08333	19,79167	18,75	25	45,83333	44,79167	1,263158	1,444444	-47,7	-47,7	0,225173	3,14	-49,6875	-1,08409
mcr-mir- 676	CUCUUCAACUUCAGGAUCGUUAA GACAAAAUCAUAGUUGCUGAUA UAGCAGAGCCUGGAuauguccuug ucuuggccuugaCGAUGCUGAAUUU AAAGUG	100	17	25	14	22	31	47	0,88	1,214286	-30,9	-30,9	0,08456	5,13	-30,9	-0,99677
mcr-mir- 6769b	UGAUGGUGGGUGAGGAGGAGAA AGCAAUUAGCAAUAGUUUUCGA AAGACUUUCUGGAAACUCGAUC GAuuauuucacucacucacucacucacu cacuc	99	21,21212	22,22222	8,080808	17,17172	29,29293	39,39394	0,772727	2,625	-29,4	-23,1	0,04736	29,05	-29,697	-1,01379

G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
20,61856	22,68041	14,43299	15,46392	35,05155	38,14433	0,681818	1,428571	-23,6	-23,3	0,05752	17,22	-24,3299	-0,69412
24,70588	20	14,11765	25,88235	38,82353	45,88235	1,294118	1,75	-24,9	-23,7	0,22456	3,8	-29,2941	-0,75455
25,27473	25,27473	21,97802	27,47253	47,25275	52,74725	1,086957	1,15	-26,7	-19	0,021509	23,54	-29,3407	-0,62093

miRNA		(AA)									(kcal/ mol)	kcal/m ol)			(kcal/ mol)	(kcal/ mol)
mcr-mir- 6780a	AAGCUCGUGUAGAAAAGCUCcucc ucuguuuucuuuucaaaaugcaUGUC AGGUGCAACAUAGACGUGUAGU AGGAUGAAUCUUGACACACGAG GCC	97	20,61856	22,68041	14,43299	15,46392	35,05155	38,14433	0,681818	1,428571	-23,6	-23,3	0,05752	17,22	-24,3299	-0,69412
mcr-mir- 6796	GGAGUACAAAGUUUCCGUCCUG AUUUUCUUGUGGGGUUGGAGA GUAUGGCUCCAUGCAAAGUCUA GAAACGUaaacuuggacaau	85	24,70588	20	14,11765	25,88235	38,82353	45,88235	1,294118	1,75	-24,9	-23,7	0,22456	3,8	-29,2941	-0,75455
mcr-mir- 6800	CUGUAGUAGGUGACAGUCAGGC CUGGUCUCUUCUUGUCACCAAG GCCACAUUAUAGGGCUAAGAGG AGGCACUAGUAGUUCACUACUA UAU	91	25,27473	25,27473	21,97802	27,47253	47,25275	52,74725	1,086957	1,15	-26,7	-19	0,021509	23,54	-29,3407	-0,62093
mcr-mir- 6803	CUACACGCACCGCUGCCAGCACC GCCACGCGCCGAGGGGCAGGUGUA AACGGAGCUGUCACGUGACCccga gggugggggugggggggcugggAGAGUG GCU	100	24	16	26	9	50	25	0,5625	0,923077	-43,7	-40,7	0,072188	21,19	-43,7	-0,874
mcr-mir- 6826	CACCUUACUGAUUCGUUUCACAA CAGGACUGGUAUGUUCUGUGUC AAUAGGAAAGAGGUCUGUGAUU UGUCCUGUUUGUGAAUUGAUCA UACAGUAC	97	22,68041	24,74227	17,52577	35,05155	40,20619	59,79381	1,416667	1,294118	-25,9	-25,1	0,012492	20,76	-26,701	-0,6641
mcr-mir- 6830	AGGAACAGGUGCGAUACGAUCG AGAGAGACAAGCGGGUCCUCAGA AAAUCCUCUUUGAAAugcuuucuug ucuuucuucucucccccaucuguuuuu	96	17,70833	21,875	12,5	9,375	30,20833	31,25	0,428571	1,416667	-29,9	-29,5	0,041352	6,82	-31,1458	-1,03103

Pre-

Sequence

Length

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
											,	,			,	,
	GCAGUCGGAGGGUUAAAGUGAA	94	26,59574	31,91489	19,14894	22,34043	45,74468	54,25532	0,7	1,388889	-23,6	-23,2	0,154259	11,86	-25,1064	-0,54884
mcr-mir-																
6864	AUGGGUAUUUCCUGUUACCCCG															
	ACAAU															
	CCUUGCAUGUGUCACAUGAGCAA	89	12,35955	20,22472	14,60674	19,10112	26,96629	39,32584	0,944444	0,846154	-35,2	-34,8	0,118812	5,2	-39,5506	-1,46667
mcr-mir-																
0873	augugcacUUGCAUGA															
	ACAACACCUGAAGACUuuucuucaa	86	12,7907	23,25581	10,46512	11,62791	23,25581	34,88372	0,5	1,222222	-20,5	-19,9	0,218392	9,52	-23,8372	-1,025
mcr-mir-	ggcaccuuggaggguagucgaugcUCA															
6925																
	UACAAAUGUCag															
	GCCCACAAGAGACAGCAAGUAGG	86	23,25581	22,09302	30,23256	24,4186	53,48837	46,51163	1,105263	0,769231	-24	-23,1	0,092411	15,34	-27,907	-0,52174
mcr-mir-	AGGCACAUCCAGACACGAGUGCC															
6955	UGGCAUUCUACACCUGUCUCCUU															
	UGUCGUGUCCUUUGCUU															
	AUCGCGAGGGGAAAGGCUGAGC	74	24,32432	14,86486	32,43243	28,37838	56,75676	43,24324	1,909091	0,75	-33,1	-33,1	0,158058	5,02	-44,7297	-0,7881
mcr-mir-	ACCGCUCAGCAUACUUUAGUUGC															
6975	บดบบดดดดบดบดดดบบดบดดดบ															
	CCGCCUC															
	gggugggguggagagcUGAGUUACAC	81	16,04938	17,28395	29,62963	17,28395	45,67901	34,5679	1	0,541667	-33,4	-33,4	0,234622	9,97	-41,2346	-0,9027
mcr-mir-	GCAGUGAGCACUGCUCAUCCUCA					-		-								
6988	GGCACUGCCUACAACUACGCUCC															
	GCCUCAUCG															
mcr-mir-		91	25,27473	29.67033	21,97802	23.07692	47.25275	52,74725	0.777778	1.15	-22.6	-19.7	0.032478	10.33	-24,8352	-0.52558
7	UUUUCUUUUACACAGACGGGCU	1			,0,002	_0,0.002	,		-,	_,	,0	20,1	-,0020	_0,00	1,0002	0,02000
	GAAUCGCUGACUGGUUACAAAA															

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
MIRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	GCCAACAAGUCCCAGUCUUGGCG GA															
mcr-mir- 7042	AAGGGAGAAUUCAGUGGGAUCA UGUGGGGCUUGGAAGGGGAAGU AAUUUCAUGUUGAAGCCACCUA GUGACAGAUGUcccuuuguuuucuc caca	95	28,42105	23,15789	9,473684	20	37,89474	43,15789	0,863636	3	-36,4	-36,4	0,334669	3,58	-38,3158	-1,01111
mcr-mir- 7051	AUGUUUAAAAGUUAUGUAGCUA AGUAUAAUGUUCACCAGGAGGA GGUGUGCACGUCCUAacuaaucau uauuauuauugcauaacAUUGUAAA GCG	96	18,75	22,91667	9,375	21,875	28,125	44,79167	0,954545	2	-21,7	-19,9	0,057538	7,51	-22,6042	-0,8037
mcr-mir- 71	aaauuccuuuUGGUGUGAAAGACA UGGGUAGUGAGAUGUCGGUCCU GAAGAUUCACCUUAUUACCCUGU CUUUUGCAUCAAGGGGAAACC	90	24,44444	22,22222	16,66667	25,55556	41,11111	47,77778	1,15	1,466667	-44,2	-44,2	0,187606	4,57	-49,1111	-1,19459
mcr-mir- 7186	UGACAGUAGAAUAGCGAGUUGG CGUGUGCAUUAAGAGCUGUGGU UCCUGUAUGUUCGGGAAGCACA GUCACGCUCAGCCGAUGCAUUUC ACUGGAU	96	30,20833	22,91667	19,79167	27,08333	50	50	1,181818	1,526316	-38	-38	0,237347	14,88	-39,5833	-0,79167
mcr-mir- 7234	ACUGUCAGAGUUUCGGGCUUUC UGUGGUCCCCUAAAGACAUGUU UUAAUCGUGUAGCUUGUUUUCU CCAAAGAACACCAUAAACUUCGA CUGA	93	19,35484	24,73118	22,58065	33,33333	41,93548	58,06452	1,347826	0,857143	-21,5	-21,5	0,443504	4,24	-23,1183	-0,55128
mcr-mir- 7241	GUGUUUGUUAGGGUAGUAGAU ACUCAUGGUGAGUAACCCAAAAC	94	21,2766	20,21277	11,70213	20,21277	32,97872	40,42553	1	1,818182	-28,1	-27,8	0,130969	8,02	-29,8936	-0,90645

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	CCGGGGUUACGGAUGUaucugcuu cauaacuacgaccccagAGCAAAUUC															
mcr-mir- 7260	CGCAGCUGUUUUAAAGCCAGUA AUCAAGUCAUCCAGUACAAGGAG AAACAGUGCUGACAGUGCCUUU UACCGACUUUAGUGAUGGCUAA AACAACUGAC	99	21,21212	32,32323	22,22222	24,24242	43,43434	56,56566	0,75	0,954545	-22,8	-16,37	0,04421	16,66	-23,0303	-0,53023
mcr-mir- 7371b	UCGAGCAACUUGAUGAUAUCGC UUAUUAUCUUCUCUUGAGUUGU AGAGAUGGACGGAGGAUAAGAU GCUUUGUAUCAGAUGCUUGC	86	25,5814	24,4186	15,11628	34,88372	40,69767	59,30233	1,428571	1,692308	-22,4	-20,5	0,034701	13,15	-26,0465	-0,64
mcr-mir- 742	auuaucuGUGAUCUAGAGAGAAA GCCACCAUGCUGUUAUAUCACGU CUAUUGUUGAAUCGACUUCUUC GGUGGUGUCUUUUUCUACAUAA CUACAUCAG	99	18,18182	23,23232	19,19192	32,32323	37,37374	55,55556	1,391304	0,947368	-19,2	-11,69	0,033442	29,11	-19,3939	-0,51892
mcr-mir- 7456	UGCUGUUCGCCUGGCGAUCGCA UGGUAGCGUCUGGUUCAGGGAG AUGUACCUGCUGCCAGCUGAAAC AACG	71	32,39437	18,30986	25,35211	23,94366	57,74648	42,25352	1,307692	1,277778	-24,5	-21,8	0,048336	5,34	-34,507	-0,59756
mcr-mir- 7461	ACAUGCUCUUUGAUGACCAGCAU GGCUGGAAUGUGGCUGAGCAAC AGUUCCCGGACGUUCUGGUUGA AUCAGAAGGCAAGC	81	29,62963	24,69136	22,22222	23,45679	51,85185	48,14815	0,95	1,333333	-26,8	-26,5	0,04965	8,31	-33,0864	-0,6381
mcr-mir- 7462	UAUUAUGGCCUGCUCCAGGUAC UGCGGUGUGUGAUGAGCGAUGA UAGGAUGCAACAGAAUAGCCACU	98	24,4898	28,57143	23,46939	23,46939	47,95918	52,04082	0,821429	1,043478	-23,7	-17	0,032162	19,67	-24,1837	-0,50426

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	GACACAACCUCAUUUCUAGCAGA CCAUACAG															
mcr-mir- 7465	CACcaggaauuauuuuuaaacacucaG UUACAAAUCAGCUCAAAUCUGGU AAAACUGCUUCAGAUAGCUGAU ACUCAUUUUUAGAACAAUAUUU CUGCAG	100	11	26	16	24	27	50	0,923077	0,6875	-19,7	-19,7	0,176123	6,74	-19,7	-0,72963
mcr-mir- 750	GCAGCCAGCUCUCUGUGAGUUG GAAGAUUGGGUCUUUGGCAGGA AUGCUGUCUUCCAUGCCAGAUCU AACUCUUCCAGCUCAUAGUGGCA UGGCAUG	97	27,83505	19,58763	23,71134	28,86598	51,54639	48,45361	1,473684	1,173913	-52,7	-51,6	0,157091	3,48	-54,3299	-1,054
mcr-mir- 7589	AUGUGCUUAAUUGAGCCCCCUUC GUCAGUUUCUCAUUCUGGAUGG AUUUCUGGAAAUGGAGAAAUCA GCCGAUGCGGAGGCUAACAGAGC AGUG	94	27,65957	24,46809	20,21277	27,65957	47,87234	52,12766	1,130435	1,368421	-29,8	-24,4	0,024214	13,36	-31,7021	-0,66222
mcr-mir- 765	UGGUGCAGAAGGGAGUUCAGCU UACCAAAUACUGAGGACAUGGAG GAGAAGGAAGGUGUGGUCAGCU GAUCCUCACUUCCUGACAUUC	88	30,68182	27,27273	19,31818	22,72727	50	50	0,833333	1,588235	-24,1	-24,1	0,047094	9,07	-27,3864	-0,54773
mcr-mir- 7683	ACUUGGAAAGGUGGAACACUAAC CAUACUGGCACUGUGGACCUUG GAAACCUGGAGGACAGGCGCAGG AUGGAUAGUAGCCUCCUCUGCAC UG	93	30,10753	26,88172	23,65591	19,35484	53,76344	46,23656	0,72	1,272727	-28,7	-24,8	0,044924	9,43	-30,8602	-0,574
mcr-mir- 770	GGUCACAUUCAAUCACGUUACAG GUGCAGAUCGAACCUCGUGCCAG	79	22,78481	24,05063	27,8481	25,31646	50,63291	49,36709	1,052632	0,818182	-22,2	-22,2	0,116359	8,08	-28,1013	-0,555

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	UCACGAUCAGCACCACGUGUCUG GAAUCUGUUU															
mcr-mir- 7789	CUAUGAGCGAGUAGACUGCUGU GUUCCUcugagaagaggaagaagauga aacGAUUCAGCAGAGCAGACGUC CAGCAGUCGAUGAUCGCUCACUU	95	20	16,84211	18,94737	18,94737	38,94737	35,78947	1,125	1,055556	-35,1	-32,4	0,057006	10,22	-36,9474	-0,94865
mcr-mir- 7795	AGGAGACACGUGAUGCUUACAA UAUGACACCAGCAUCUAAUCUCU UAUCGGUAUAGGUGUGAAGUGU CAGAUGAUCGGUCUUGA	84	25	28,57143	17,85714	28,57143	42,85714	57,14286	1	1,4	-19,9	-19,9	0,054929	9,78	-23,6905	-0,55278
mcr-mir- 789b	CCAUCCUGGUACACCACCAGCAC AUCUCUCCAUUCCAGGUAUGAU GGCGUCGUGCUUCCGCUGCUGG AGAUGGCGGUCGCAGAUGCAGC AGGAAUC	96	27,08333	19,79167	31,25	21,875	58,33333	41,66667	1,105263	0,866667	-29,6	-23,8	0,110276	11,46	-30,8333	-0,52857
mcr-mir- 7950b	UUUGGCAGGCCGGCGAAAGAGU UGCGCCAGACUCACCCAUCAAAG CAACCCGCAGGUCUGGCGCCUGC CUCCCUCG	76	27,63158	19,73684	36,84211	15,78947	64,47368	35,52632	0,8	0,75	-28	-24,8	0,1728	20,48	-36,8421	-0,57143
mcr-mir- 7964a	CGCUCUAGGAUGCAGUGCGUAG UGCAAUCAAGCGGAGCGG	75	32	26,66667	21,33333	20	53,33333	46,66667	0,75	1,5	-20,8	-17,3	0,208513	17,37	-27,7333	-0,52
mcr-mir- 8	CGGACUCUGGGUUCAUCUUACC UAACAGCAUUAGAUGUGUGUCA GCAUUUUCUAAUACUGUCAGGU AAAGAUGUCCACAGAGUUUG	86	22,09302	25,5814	19,76744	32,55814	41,86047	58,13953	1,272727	1,117647	-38,5	-38,5	0,175975	3,55	-44,7674	-1,06944

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
mcr-mir- 802	uuaccuuuguaCCCAUUCCAUAGUU UGUCAGUAACAAAGAUUCUGUU ACACAAGUGACUUGGACCUUGG UGACAAGGAUU	80	17,5	25	17,5	26,25	35	51,25	1,05	1	-20,1	-20,1	0,088615	9,87	-25,125	-0,71786
mcr-mir- 81b	CCUGCAAAAACUCAUGGGCCCUA UUUCGGCCCUAUAUGGGCUUAA AAUAGGCCCUGCAUGGUGAAACG AUCAUGGGCCUAUGUGUGUUUU GCCCA	95	24,21053	23,15789	25,26316	27,36842	49,47368	50,52632	1,181818	0,958333	-38,4	-35,6	0,107415	11,5	-40,4211	-0,81702
mcr-mir- 8234	GAACAGGAUAUUGGCAUGGAGA AGCAACACCACUCUUUGCCUUCU CCAUCCCAUC	66	16,66667	22,72727	33,33333	27,27273	50	50	1,2	0,5	-23,7	-23,7	0,285672	2,31	-35,9091	-0,71818
mcr-mir- 8293	AGGAGUGAUAGGUAGCUGAUUU AUCAUGAAAGAUAAAAGUGGAU GAAUACAUUCCCUGUCCUAGACA UGAUAAACCACUCACAGUUCACU Gua	93	20,43011	34,4086	17,2043	25,80645	37,63441	60,21505	0,75	1,1875	-21,3	-20,8	0,146917	10,11	-22,9032	-0,60857
mcr-mir- 83	AUGUAGCACCAUAUAAAUUCCUG CUGCUGAGCUGCUGCUAACUAA UGCAUUGAUAGUUUUAAGGAAU GUGGAGCAGCAUAGUUACUGUG UUGCUAUAC	98	22,44898	27,55102	17,34694	32,65306	39,79592	60,20408	1,185185	1,294118	-26,9	-26,9	0,117633	12,41	-27,449	-0,68974
mcr-mir- 8319	AACAAUGCAGCAAGAGGCUCAUU GCCAUagauuuugguuguuuuuuuuuu gagcuGUUCAAAUUAGCAAGUGA GGUCAGGCUGCCUUUAG	89	17,97753	21,34831	14,60674	16,85393	32,58427	38,20225	0,789474	1,230769	-21	-10,6	0,048695	25,91	-23,5955	-0,72414

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/	MFEE(kcal/m	Freq	Div	AMFE (kcal/	MFEI (kcal/
		(, ,									mol)	ol)			mol)	mol)
mcr-mir- 8335-1	uuguuguuguuguuguuuugcucaUG GCUGGUCAUUAAGACCAAACUGA CAAAACUGCUUACAGACAAUUU	71	11,26761	23,94366	14,08451	16,90141	25,35211	40,84507	0,705882	0,8	-21,2	-18,8	0,146315	6,81	-29,8592	-1,17778
mcr-mir- 8335-2	GCGCUGCAGAGguguauauaauaaug uuugccauguuguuguuguuguuuuuu uuuuuuuagcuuacaGACGAUUAUU AUAUUGAUACACUUGUGAGGCC	99	12,12121	11,11111	8,080808	12,12121	20,20202	23,23232	1,090909	1,5	-23,4	-20,9	0,130829	15,27	-23,6364	-1,17
mcr-mir- 8364j	UCGGGGCGACUGCGUGAUCUCA CGUGugagcaugcaugugugucuuCA UUUCUCACGUGAAUGCGCGCGcc cgag	75	21,33333	9,333333	18,66667	16	40	25,33333	1,714286	1,142857	-28,6	-24,2	0,014357	24,88	-38,1333	-0,95333
mcr-mir- 8485-1	cacacacacacacacacaaaagucacAAU GUAACUGCAGUGUGUUUUUACA CAUGGUCAGCAGUGACAGUGUG AUAUAUUGAAGUGAGAGAGUGU UUU	98	20,40816	20,40816	7,142857	25,5102	27,55102	45,91837	1,25	2,857143	-25,6	-20,8	0,086901	11,94	-26,1224	-0,94815
mcr-mir- 8485-2	gaguuugcacacacacacacacacguaug auACAUUUCGUACUCCGCAAGCU CAGGUGAAUAUGGCAGGAGUGU GUGUUUCAUGAUGCUGGCAAAA AU	98	18,36735	18,36735	12,2449	19,38776	30,61224	37,7551	1,055556	1,5	-24,8	-19,4	0,065813	22,98	-25,3061	-0,82667
mcr-mir- 8485-3	cacacacacacacacacacacgucacauu CAAGAGGGGAGCAAUCUAGAUCC CUGACAGAUUAGGUAUAUGCAug ugauguguguauguuuuuuguaAG	99	13,13131	16,16162	8,080808	9,090909	21,21212	25,25253	0,5625	1,625	-26,8	-24,6	0,07266	13,36	-27,0707	-1,27619
mcr-mir- 8881	CUGGUUUUUAAACCAAGAAAGG AAGAUAAAUUAUACAGAAUAUA AAUGCAGCCGUUGCUUUGUUUU	92	15,21739	30,43478	16,30435	38,04348	31,52174	68,47826	1,25	0,933333	-20,4	-20,4	0,106037	7,86	-22,1739	-0,70345

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/	MFEE(kcal/m	Freq	Div	AMFE (kcal/	MFEI (kcal/
											mol)	ol)			mol)	mol)
	CUCUGGUUCUUCUCUUUCAAAA CUUU															
mcr-mir- 8956	GCAGAUUCUGUUGACACAGCAUC CAACACAUCAGUGUGAAGGUGU GUUUCUUUGCCUGCAAAGCCCCU ACAUUGACUUGGAUCUUUGCAA CGUAUCGGU	99	22,22222	23,23232	24,24242	30,30303	46,46465	53,53535	1,304348	0,916667	-25,5	-24,6	0,178773	11,53	-25,7576	-0,55435
mcr-mir- 8993	GUCAUGACCUUGACCUUUGACCA AGUGCAGCGCCUCUCGUGCUGAC AUGAAUGAAGCAAAGGCCAGACU UGCUCCUGGCCAAGUGGCAUUG G	92	27,17391	22,82609	27,17391	22,82609	54,34783	45,65217	1	1	-28,9	-27	0,19811	10,01	-31,413	-0,578
mcr-mir- 9077	UGUCUCAAAUUAUCUGAGGGCU UUUGCACUGCUGCUGAAAAUUU CUGCUGAUAUGCAGAAGUCAUA AAUAAAUGaguga	79	18,98734	27,8481	15,18987	31,64557	34,17722	59,49367	1,136364	1,25	-18,7	-18,3	0,09631	8,26	-23,6709	-0,69259
mcr-mir- 9093	GCUGUCACGUAGAACCUGAUGG AUGUCACCUACGACUGUAGUCCA UGUCCCGGACCAGUGUGUGUCA CAAUAGUUUCAAGUUCUUACAG GUGACUUU	97	23,71134	22,68041	23,71134	29,89691	47,42268	52,57732	1,318182	1	-25,6	-25,3	0,077213	8,56	-26,3918	-0,55652
mcr-mir- 9-1	GGCGGCUCCGGUUUUGUCUUUG GUUAUCUAGCUGUAUGAUUGGG GCAGAAAUAUCAUAAAGCUAGG UUACCAAAGGCAAAAAUGGACGC CAAA	93	26,88172	29,03226	17,2043	26,88172	44,08602	55,91398	0,925926	1,5625	-45,5	-45,5	0,314517	3,87	-48,9247	-1,10976
mcr-mir- 91860	UGACUAAGAGGUGGCAUGGCUG GUGUUGGCAACAUUCCCUGACCU CUCUGAAAGCCUUGUGGUAUCCC	98	25,5102	18,36735	29,59184	26,53061	55,10204	44,89796	1,444444	0,862069	-29,1	-25,24	0,012852	15,39	-29,6939	-0,53889

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	CCCUGACCCAGGCAUGCCUUCUU CUAGCGA															
mcr-mir- 9-2	uugaacagcacaggugacagGGGACAA CCUUAACGUAUGCUUACUGUAau gcaaaaguaagcuccucUUUGGUUAU CCAGUAGUAUUGUGCUUGUUGA G	99	15,15152	13,13131	9,090909	23,23232	24,24242	36,36364	1,769231	1,666667	-27,4	-24,7	0,019343	8,03	-27,6768	-1,14167
mcr-mir- 92a-1	CUGGCAUUAGCAGUAGGUCUUG AUAAGUGCAAUUCUGGUGAAUU AGAUAACAGAUUGCACUUGUCCC GGCCUUCUGCUAAUAGCUAA	87	22,98851	26,43678	18,3908	31,03448	41,37931	57,47126	1,173913	1,25	-43,2	-43,2	0,272477	2,43	-49,6552	-1,2
mcr-mir- 92a-2	AUUUGUGUGCUCAGGAAAGGUU GUGACUUGGGCAAUUCUGUGAU GUCCUGUCAGAUUGCACUUGUC CCGGCCUUGUCUUGGCUUACACU U	90	26,66667	15,55556	21,11111	36,66667	47,77778	52,22222	2,357143	1,263158	-31,5	-29,1	0,036643	11,93	-35	-0,73256
mcr-mir- 92b	CACCGAUCAGGGUUGUGUAGAC CGGAACAGGGGCAAUGCAUUUU GAGUCGUCUGUAUUGCACUCGU CCCGGCCUAUCCAAUCUGACUCG UAG	92	27,17391	20,65217	26,08696	26,08696	53,26087	46,73913	1,263158	1,041667	-33,5	-31,7	0,067381	6,55	-36,413	-0,68367
mcr-mir- 92e	ACCAAGCAUUUCAAAGAUCcacgu gggugugugcgugcgugcguggggggg ugugggugg	100	9	16	13	13	22	29	0,8125	0,692308	-55,5	-54,6	0,151057	12,27	-55,5	-2,52273
mcr-mir- 9-3	UUUGGCGUCCAUUUUUGCCUUU GGUAACCUAGCUUUAUGAUAUU UCUGCCCCAAUCAUACAGCUAGA	93	17,2043	26,88172	26,88172	29,03226	44,08602	55,91398	1,08	0,64	-34,1	-34	0,28369	3,42	-36,6667	-0,83171

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	UAACCAAAGACAAAACCGGAGCC GCC															
mcr-mir- 9358	UGAGGUACCCCGAGACAACUUUU UCGCUUUGACUAUUCGUUUGAC AUGCUUGUUCCUGCAUUUUUUC UUCAAACGAGAACGAUGGCCCUG GGUACCUGU	99	21,21212	19,19192	24,24242	35,35354	45,45455	54,54545	1,842105	0,875	-26	-26	0,127101	8,99	-26,2626	-0,57778
mcr-mir- 936	CAGCUCGCUGGAcaggagaggggga aggggacUGGAACCUUCCUUUCCU CAACAUCUCUCCAGUUGAGGCC	72	13,88889	12,5	25	19,44444	38,88889	31,94444	1,555556	0,555556	-31,6	-29,2	0,090386	19,4	-43,8889	-1,12857
mcr-mir- 9392	AAACACUGGCUUUCCUUCAUAUU AUGACUAGAUGAAAuucauuaaau guuuuucuagUCACAUUAAUUCAC UGAAAGAAGUGGCA	85	11,76471	28,23529	14,11765	22,35294	25,88235	50,58824	0,791667	0,833333	-18,6	-18,6	0,301505	7,56	-21,8824	-0,84545
mcr-mir- 943	ACUACAAGACAGGGAGAGAAUG UCAGACGACAAUGAAAUAUCUU UCGAAAUGUCUGCCAGUGAUUC UUUCUGACUGUUGCUGUCCGUU UUUUGUCUG	97	22,68041	25,7732	18,5567	32,98969	41,23711	58,76289	1,28	1,222222	-21,5	-12,9	0,033141	29,31	-22,1649	-0,5375
mcr-mir- 9438	AGCCUGGCUACACAUCAUACUAC ACAAGUGUCUAGUGUGGCUACA AACAUUGCAAGCACCCCCCACUU GUCUACUCUGGGUGCAGUGCA	93	23,65591	24,73118	29,03226	22,58065	52,68817	47,31183	0,913043	0,814815	-28,8	-28,3	0,192015	6,09	-30,9677	-0,58776
mcr-mir- 9505	UGGAUGAUGUCUGUCAAAAUCC AAUGGAGACAUAAGAGGCCAGCA AGCACACUGCCUGCUGACCUGCU	99	23,23232	30,30303	23,23232	23,23232	46,46465	53,53535	0,766667	1	-27,7	-27,5	0,050009	11,15	-27,9798	-0,60217

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	CUUGGACUACAUGAUUACAGACA CUAAUGUG															
mcr-mir- 9542a	CGACUGACAAAACGGCUCACGAC AUGGCCUGGCACUUUCUAAUUU CUGGCCAAGUUAGGCGCCUGUU UGUCGAGGGC	77	27,27273	20,77922	27,27273	24,67532	54,54545	45,45455	1,1875	1	-23,6	-19,5	0,032476	12,94	-30,6494	-0,5619
mcr-mir- 9573	agaaaaaauaucaaaacuaGGAUUGU GAGGCUGUUGGUCCAGCCCUGCC AUCAUGGUGUUGGUUUUUUACC	71	22,53521	8,450704	15,49296	26,76056	38,02817	35,21127	3,166667	1,454545	-19,6	-17,5	0,079399	19,85	-27,6056	-0,72593
mcr-mir- 9592	GGAUUGCUUUGCUGUUUGGGGC UGAUGCAAGGUUCCUUGCAGUG ACGACCUUAUUCAGACAAAGAAA CGG	70	30	22,85714	18,57143	28,57143	48,57143	51,42857	1,25	1,615385	-20,9	-20,4	0,264055	3,01	-29,8571	-0,61471
mcr-mir- 9598	GAUAUUAUUGAUAUAAAACUGU CAGUGCUUAUUAGUACUAGGAU UUUGAUUAGCUGUUGUAAUUAG UGCUACAGCUUAUAUCAAGGUA AUCGU	93	19,35484	30,10753	10,75269	39,78495	30,10753	69,89247	1,321429	1,8	-21,6	-20,9	0,026556	30,6	-23,2258	-0,77143
mcr-mir- 9640	UUCACAUGUCUAAGCAUGCUUU CGUGUUUCAGAUGGCAGAGCUG GACAAGGUGUCGCACCCUGAGAA GCCCUACCCGUACAGCAUGGCUG ACAUGUUCA	99	25,25253	23,23232	26,26263	25,25253	51,51515	48,48485	1,086957	0,961538	-27,2	-22,7	0,044766	14,41	-27,4747	-0,53333
mcr-mir- 965	GGGGGAGAAGUUAUUGCUGCGA AGCCUCAGCUUCUGCAAGCAGGA guuggucuucagcaugucacGAAUGU GCUCGCAGCUAGCGUCUCCAAC	93	24,73118	18,27957	19,35484	16,12903	44,08602	34,4086	0,882353	1,277778	-38	-36,4	0,037571	7,54	-40,8602	-0,92683

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
mcr-mir- 96b	CGACUGCUGGCUGUUCAAUUAU UUGGCACUUGUGGAAUAAUCGG UGUAUCUGAAAGUCGAUUAUAC ACCGGUGCCAAGUCAUCAGAAAU GCCUGAAGCAC	100	24	27	21	28	45	55	1,037037	1,142857	-33,2	-33,2	0,110762	3,59	-33,2	-0,73778
mcr-mir- 9771g	CAAAACAGAGAACUACAUAUUUU ACAUGCAAUGCUUCUAUUGCACU GGGcugucggaaaagucaugacgcAUU UUUGCAAUAUAUGGUGCUCGUU CAU	98	13,26531	23,46939	14,28571	27,55102	27,55102	51,02041	1,173913	0,928571	-19,7	-19,7	0,07496	11,01	-20,102	-0,72963
mcr-mir- 981	GCUAUCAGACUUUGUUCCGGGU UUCGCGGCUGGCGAACAGUCAU UUUGAGCUGUGUUCGUUGUCGU CGAAACCUGCCCUGAAAUCUGAU GUG	92	28,26087	16,30435	22,82609	32,6087	51,08696	48,91304	2	1,238095	-35,5	-31	0,014511	9,61	-38,587	-0,75532
mcr-mir- 9896	GACCUGAUGGAACAGACUAUAGA GCGAGUGCUAAUGAAGGCCAUU ACAAUAAUCGGACACACCGCCAG GCCACUCGCACUGCACGUGCUCA AUCAGUCC	99	23,23232	30,30303	29,29293	17,17172	52,52525	47,47475	0,566667	0,793103	-26,4	-26,4	0,216116	8,18	-26,6667	-0,50769
mcr-mir- 99	CUGGUGGGUCUUCACCCUCCUCA UCCUCUCCGUCUACACGGCCAAG CUCGCCUCUGUGCUGACGGUGG AGGUGCAGGGCGCGAAGAUCGA CUCU	94	28,7234	13,82979	34,04255	23,40426	62,76596	37,23404	1,692308	0,84375	-40,8	-40,8	0,362029	6,15	-43,4043	-0,69153
mcr-mir- 9934	UUGCUUAUCAGCGAUGCAUCUG AUGGUCUUGAUAUGUCCAUUUC UAUAUCAGAUCCUUAGGCUUCG UCUGGUUAAGGGA	79	22,78481	20,25316	18,98734	37,97468	41,77215	58,22785	1,875	1,2	-24,6	-22	0,079099	4,85	-31,1392	-0,74545

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
mcr-mir- 994	UUGUUCAGUAAUGCCAUAAUuuc uaagaaagaaaaaaguaaauucuUGUA GCUACAUAAUCACAGUUGCUGU UUCUUAGUUUGUUACUGGUACU GAAUAU	99	13,13131	19,19192	11,11111	31,31313	24,24242	50,50505	1,631579	1,181818	-23	-20,7	0,065496	12,27	-23,2323	-0,95833
mcr-mir- 9945	ccccuccccaguugACCACCUGUCC ACCUGAGCCCAUAGACAUAGAGG GUUGGACAAGGUCAGGUAGCAA UGGAGAGGAAA	83	24,09639	26,50602	18,07229	12,04819	42,16867	38,55422	0,454545	1,333333	-27,9	-21,9	0,019816	14,79	-33,6145	-0,79714
mcr-mir- 9b	UUGUGUUAUGAGUUAACAUAAA GGCUGUUAUGCUGUAAGAACUG CGACUAAAGCUGAAGCAACUAUU GUUAAGUCUUAACAUAU	84	20,2381	33,33333	13,09524	33,33333	33,33333	66,66667	1	1,545455	-19,9	-17,3	0,08065	9,04	-23,6905	-0,71071

Supplementary Table 3 – Structural and thermodynamic characterization of miRNA precursors in *P. canaliculata*. Size (Tam), G content, A content, C content, U content, GC content, AU content, AU ratio (R-AU), GC ratio (R-GC), Minimum Free Energy (MFE), Minimum Free Energy of the Pool (MFEE), Frequency of the MFE Structure in the Pool (Freq), Diversity of the Pool (Div), Minimum Adjusted Free Energy (AMFE), Minimum Free Energy Index (MFEI).

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pcn- bantam	ACGAAACUGGUUUUCACAGUGA UCCAGCAGAUUGCUCAAAGUCUG AGAUCAUUGUAAAAACCAAUUU UGU	70	18,57143	32,85714	18,57143	30	37,14286	62,85714	0,913043	1	-29,4	-29,4	0,496236	1,25	-42	-1,13077
pcn-let- 7b	UCAUACUGUGACUAGAUCAUAU CUCAUUGAGGUAGUGGUUGUAU CGUAUUACUCUCUCUGUAAUCA GUUGUCAGUCACAUAAAG	84	19,04762	26,19048	17,85714	36,90476	36,90476	63,09524	1,409091	1,066667	-18,7	-18,7	0,092975	12,14	-22,2619	-0,60323
pcn-let- 7d	cugcugcugcugcugcuguaugUGCCC AGAGAAGACGUCUGCCUCAGACG UUGUGGCUGCACUAUACAACCU GCUGCGGCAGGCA	85	21,17647	16,47059	22,35294	14,11765	43,52941	30,58824	0,857143	0,947368	-35,8	-29,3	0,041106	14,27	-42,1176	-0,96757
pcn-let-7f	GGUCUGCACAUUCCACCAUCCAU UACUGUAGGUAAUAUUGUGUCC UCUUUGAGAGCCUAUAUCAGCA AAGCUACGGUAAUUGCUGGUAG UGGCAGUCA	98	22,44898	24,4898	22,44898	30,61224	44,89796	55,10204	1,25	1	-28	-20,9	0,057504	32,52	-28,5714	-0,63636
pcn-mir- 1	AUUAUUACAUAUCUGGUAUGUU UGUGGAGUUGAUGUGUUCAUGC UUCUUUAUAGUUUGACCUUUUC CCUCacacaacauaaagaugagaaaUU CU	95	13,68421	12,63158	12,63158	38,94737	26,31579	51,57895	3,083333	1,083333	-18,5	-17,2	0,045655	8,13	-19,4737	-0,74
pcn-mir- 1002	CACUGCAGGUGUAAAGGUUAUG UACAGGUCAGUGCCGAGACUGA GAAUAUUGUACAGCUAAGUAGU	92	22,82609	29,34783	13,04348	21,73913	35,86957	51,08696	0,740741	1,75	-21,4	-20,5	0,064133	16,07	-23,2609	-0,64848

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	UGAUACAAACAGUAacaccagcaaa a															
pcn-mir- 10a	CAUGUCGGUGCAAGACCUACCCU GUAGAUCCGAAUUUGUGuaauau uauuaacaacaaauuCGUGUUUGCA CGGUAAGGCCUCGCACGUGACGC U	95	22,10526	14,73684	21,05263	20	43,15789	34,73684	1,357143	1,05	-36,3	-36,2	0,024951	6,41	-38,2105	-0,88537
pcn-mir- 11	CAAACACCAUUCAGCAUCAUGUU CAUCACAGUCAGAGUUCACUGAC UAACUGUGAGCAAAGCUCUGCU GGUGUCGA	76	19,73684	28,94737	26,31579	25	46,05263	53,94737	0,863636	0,75	-23,7	-23,7	0,279042	5,58	-31,1842	-0,67714
pcn-mir- 1175	UGAUCAGGUGUGUUAUGUAGUG GAGAGAGUUUUAUCUCAUCAUG AGCCUCAGAAGCAGGUGAGAUUC AACUCCUCCAACUGCAGGCUAUA CCUGAAAC	98	24,4898	27,55102	20,40816	27,55102	44,89796	55,10204	1	1,2	-42,7	-38,6	0,079856	5,62	-43,5714	-0,97045
pcn-mir- 1187	GCGACUACAACACCACCUUAGUC AACACACUGCACCAGCCCCGGGG UGGCUGGGGGGACGUAGGGUGgg aguuuauauauauguguguguguaugu gugug	100	21	15	21	9	42	24	0,6	1	-30,8	-25,4	0,029578	28,62	-30,8	-0,73333
pcn-mir- 12	UGGUGGUCAGACUGUGAGUAUU ACAUCAGGUACUGAGAAUCUAAC AAGCUUCAGUACCUUUUGUGAU AUUCUUAGUCUGCCAUUU	85	21,17647	24,70588	17,64706	36,47059	38,82353	61,17647	1,47619	1,2	-41,7	-40,3	0,196235	2,83	-49,0588	-1,26364
pcn-mir- 122b	GGUCAACAGUAGUGUGACACUG GUGUGACAGUCGUGCCUGUCGU CACACAGGCCAGGGCCUAUACCC	91	26,37363	21,97802	29,67033	21,97802	56,04396	43,95604	1	0,888889	-27,9	-27,4	0,053765	26,46	-30,6593	-0,54706

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	UGUCAUCACACAAUCCGCUUGCA G															
pcn-mir- 1238	GACAGGGCGCGAGGGCCAUCGAC UGGGUGUCUUCCUCGUCUGUCU GAAGCAGUGAUGCUGCGGGGAA GUCUGGUCAGUCGGAGGCUCUC UCUGGCCUUUA	100	36	14	25	25	61	39	1,785714	1,44	-49,3	-47,6	0,09807	9,54	-49,3	-0,8082
pcn-mir- 124	UACCUGUUUGUGUUCACUGCGU UGGCCUUGGUGAUUUACACACU AUUAAGGCACGCGGUGAAUGCCA AGGGGAA	74	28,37838	21,62162	20,27027	29,72973	48,64865	51,35135	1,375	1,4	-33,9	-32,5	0,275153	6,77	-45,8108	-0,94167
pcn-mir- 124c	UCCCCUUGGCAUUCACCGCGUGC CUUAAUAGUGUGUAAAUCACCA AGGCCAACGCAGUGAACACAAAC AGGUA	73	20,54795	30,13699	28,76712	20,54795	49,31507	50,68493	0,681818	0,714286	-19,3	-17,4	0,083313	8,41	-26,4384	-0,53611
pcn-mir- 1277-1	AAGACUCUAUGGUUAAACUAcga ugguauauauauauauguacguCUAU ACGUUUCUACAAUGUAUAUUUG CCUUGUUCAUCCAUGCGUGAC	92	10,86957	19,56522	15,21739	27,17391	26,08696	46,73913	1,388889	0,714286	-19,4	-19,4	0,182954	5,41	-21,087	-0,80833
pcn-mir- 1277-2	UGUAUAGAUAGUGUAUUUAUCU GUAUUUCUGCGUGUGUUCUUGA GUCUUUGCCUCUUUUaggcaaaaa aaauauauauauauauguaugau	91	13,18681	8,791209	8,791209	34,06593	21,97802	42,85714	3,875	1,5	-21,1	-21,1	0,15848	5,1	-23,1868	-1,055
pcn-mir- 1322	UCUCUUACCUGcgaugaugcugcuga ugacaaGGGGUAGAAUGGCAGCA UUCAUCAUCCGCAUGUACAGCUC	72	16,66667	15,27778	19,44444	19,44444	36,11111	34,72222	1,272727	0,857143	-19,5	-15,5	0,030502	11,17	-27,0833	-0,75
Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
----------	------------------------------	--------	----------	----------	----------	----------	----------	-----------	---------------	-----------	--------	--------	----------	-------	----------	----------
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	gagagagagagaaaugagaaacaaauau	91	10,98901	13,18681	15,38462	25,27473	26,37363	38,46154	1,916667	0,714286	-22,2	-17,7	0,038242	22,78	-24,3956	-0,925
pcn-mir-	uucgCUAGAGCUACAACAGUUUU															
1328	ACGAGUGCUGCUAUUUGCUGUU															
	CACAUUGUCUCCUCUUAU															
	AAUGCUCUUCUAUAGCUGGUUG	86	22,09302	22,09302	23,25581	32,55814	45,34884	54,65116	1,473684	0,95	-39,7	-39,3	0,1295	7,69	-46,1628	-1,01795
pcn-mir-	AACUCGGGCCAAAUUGUUGAAG															
133	AGCCUUUCAUUUGGUCCCCUUCA															
	ACCAGCUGUAGUUAGCAGU															
	UAACUACAGCUGGUUGAAGGGG	75	24	33,33333	21,33333	21,33333	45,33333	54,66667	0,64	1,125	-30,4	-28,9	0,184949	4,61	-40,5333	-0,89412
pcn-mir-	ACCAAAUGAAAGGCUCUUCAACA															
133c	AUUUGGCCCGAGUUCAACCAGCU															
	AUAGAAG															
				27.20005	45 47640		20.00574	CO 74 400	4 9 4 7 9 9 4	4 500 460			0.000074	40		1 00000
	AGUUCCAGUCGGUUACGGGUAU	84	23,80952	27,38095	15,47619	33,33333	39,28571	60,71429	1,21/391	1,538462	-33,1	-29,3	0,039071	10	-39,4048	-1,00303
pcn-mir-	UCUUGGGUAAAUAAUACAUUGA															
1370	GUAGUUGUUAUUGCUUGAGAAU															
	ALALGUAALUALLUGGAL															
	uaaaauacacuuuaacUGACGUGUG	95	20	11,57895	12,63158	22,10526	32,63158	33,68421	1,909091	1,583333	-24,2	-23,8	0,019635	15,65	-25,4737	-0,78065
pcn-mir-	GCUUCUGAUGUCUCUGAAGGGU															
13b	GCGAGAGUUUGUUGUUCAGACU															
	CAUCAAGCCUcguuaaaauguuugug															
		79	25 31646	24.05063	27 8481	22 78481	53 16456	46 83544	0 947368	0 909091	-23.9	-23.9	0.016513	12.42	-30 2532	-0 56905
pcn-mir-		75	25,51040	24,05005	27,0401	22,70401	33,10430	-0,035	0,547500	0,505051	23,5	23,5	0,010515	12,72	50,2552	0,50505
1421a	GGCUGCGAGACUGAGACACAUG															
	GCAUAAAGACA															
pcn-mir-	GGUGCGUCAAGGCGGUCAGUAA	96	34,375	19,79167	23,95833	21,875	58,33333	41,66667	1,105263	1,434783	-31,8	-26,1	0,047723	21,41	-33,125	-0,56786
1421am	GACGUCCGCCACCUUAGGCGUUC															
	AAACGGAUUUCGAGGAGGUCGU															

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	AGGUCAUCCUGUAGACGACUUG GCGCUGG															
pcn-mir- 143	ACGACAGAGGGCCUCAUCAGUCU GGCUGAACACAAGAAGUAGAAAG UGUUGCACACAGUCUGAGAUGA AGCACUCGUUUG	80	27,5	31,25	21,25	20	48,75	51,25	0,64	1,294118	-22,9	-21,7	0,179141	6,12	-28,625	-0,58718
pcn-mir- 153-1	CUGUUGAUCACAACACCAGAUAA AUUACAGGAAACAGAACAUGUAA CACGAGUAACAUGUUUACGCAUA UCAUUUUUGUGAUGUUAUCAAU AA	93	15,05376	38,70968	17,2043	29,03226	32,25806	67,74194	0,75	0,875	-19,2	-19,2	0,260282	8,93	-20,6452	-0,64
pcn-mir- 153-2	AUACCCUCUUCCCAGGCAGCUUU UGUGAUUCAGCAAUUGUACAGC UAUCAAAUUGCAUAGUCACAAAA GUGAUCGGGAGGCGGGGAC	87	24,13793	27,58621	22,98851	25,28736	47,12644	52,87356	0,916667	1,05	-37,9	-37,9	0,256161	6,4	-43,5632	-0,92439
pcn-mir- 1584	GAGUUACAAUCAUAACCGGGUG GGGCUGGGCCAUAUAAGgguagau cacgugaccacucGGUGAUUAGUUA GUAAGCA	78	24,35897	21,79487	10,25641	17,94872	34,61538	39,74359	0,823529	2,375	-20,5	-16	0,070486	11,15	-26,2821	-0,75926
pcn-mir- 15c	UUGAAGAAUAUCUCUUAUCCCA UAGGACAGAUAUUUCAAGGAAU CAUGUGACCAGCAGACCAUUCUG GGCUAUGGGGUCAGAGCUAUUC UUUUU	94	21,2766	27,65957	19,14894	31,91489	40,42553	59,57447	1,153846	1,111111	-32	-28,3	0,131794	8,15	-34,0426	-0,84211
pcn-mir- 1602	AUCCUAUAUCCAUGUAUCUAUCC UGUAAUGGGCUCUGCAUCACCA GCAGUCUAAUCUGUCUUCAGUA	96	18,75	27,08333	23,95833	30,20833	42,70833	57,29167	1,115385	0,782609	-25,3	-25,2	0,141519	11,45	-26,3542	-0,61707

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	CAUGGCAGGUUAGACAUGAAUC UGAGCAA															
pcn-mir- 1603	AUAGCAGAAAUCAAAACAGCCCA CAUUUUAUGUCAAACUUAUUAC ACAGAGAUAUUAAAGCAAuguggu uuguuuuguguugcgCA	86	8,139535	34,88372	15,11628	17,44186	23,25581	52,32558	0,5	0,538462	-20,1	-20,1	0,033978	10,39	-23,3721	-1,005
pcn-mir- 1632	GAUGGCUGUUGACACACUCGAG UGACAAGACAAAGGUCUGAUUU CCUUGCUUGUUUUUGGAUGAAA UUAUUUUGCGACGCAGCUGUUC ACAGCCUCU	97	23,71134	22,68041	20,61856	32,98969	44,3299	55,6701	1,454545	1,15	-26	-26	0,016941	14,04	-26,8041	-0,60465
pcn-mir- 1677	UGACCAUCACCUUUAUCUCUCUG CCGUCGAGGUAGCGCGACACGAA CUCCACUCCA	99	25,25253	23,23232	26,26263	25,25253	51,51515	48,48485	1,086957	0,961538	-36,2	-35,3	0,026404	8,83	-36,5657	-0,7098
pcn-mir- 1744-1	UUUGAGAAGAGGUACUUCAACA GGAGCAAGUCAAGGCAUGCUUC UUUUUAACACCAGUCUUCUCUG C	67	20,89552	26,86567	22,38806	29,85075	43,28358	56,71642	1,111111	0,933333	-19,2	-19,2	0,273743	3	-28,6567	-0,66207
pcn-mir- 1744-2	CCACACACUUCAACAGGAGCAAA GUGUAAGAUGAUAAUGCUGUGC CUACAUGUUAGCCUCUUACAUCA UGUGGGCUAUCUGAUACUAAGU GUGGCC	96	21,875	28,125	22,91667	27,08333	44,79167	55,20833	0,962963	0,954545	-27,6	-27,6	0,347188	6,28	-28,75	-0,64186
pcn-mir- 184	CAGUUCACCUUUUUCACGUUUCC UUGUCACUCCUCCGCCCCGUCUG UGAACAAGCACUGGACGGAGAAC	97	23,71134	20,61856	26,80412	28,86598	50,51546	49,48454	1,4	0,884615	-33,8	-33,8	0,131517	7,97	-34,8454	-0,6898

R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE
		(kcal/	kcal/m			(kcal/
		mol)	ol)			mol)

miRNA		(AA)									(kcal/ mol)	kcal/m ol)			(kcal/ mol)	(kcal/ mol)
	UGAUAAGGGCUUGUGGGUGAUU UGACAA															
pcn-mir- 190	ACCCGCUUCUGCUAGAUAUGUU UGAUAUAUUUGGUGCAGUUGUC GCGACGACCAAGUAGUCAAACAU GUCAGAGCAGCGACG	82	25,60976	25,60976	21,95122	26,82927	47,56098	52,43902	1,047619	1,166667	-32,5	-32,3	0,080048	9,84	-39,6341	-0,83333
pcn-mir- 1905c	UGUAGGUGUGUGUCUGUUGCU GGAUGCGCUUGAUGGUCGCCCCC UUGGGUCCCACCACCAGCCCCACC ACGCGGUAUGGCACAGCCACCC	90	28,88889	13,33333	35,55556	22,22222	64,44444	35,55556	1,666667	0,8125	-31,8	-31,7	0,089456	8,15	-35,3333	-0,54828
pcn-mir- 1951	UUAGUUUUGCGCAUCAAUCACCA UCAUUUGUGUAAACGUCUUCCC UGACUUAUUUGGAGCCCCCAAAU GUAGUGGAGACUGGUGGCGAAA CCUU	94	21,2766	23,40426	23,40426	31,91489	44,68085	55,31915	1,363636	0,909091	-26,2	-17,5	0,079573	16,28	-27,8723	-0,62381
pcn-mir- 1976	ACUCUCCUGCCUCCUUGCCCAG ACAGGGGCAGCGUGUCCAUGACC UGUCUGUGCGAUCAGCUGCACG AGGGC	73	28,76712	15,06849	35,61644	20,54795	64,38356	35,61644	1,363636	0,807692	-28,7	-28,7	0,157786	6,45	-39,3151	-0,61064
pcn-mir- 1984	ACACUGGCACUGUCGCCGUGCCC UAUCCGUCAGGAACUGUGAUCU CGCGAAACACAGGGUCUGGCGGU UGGGCCUCGGCGCUGGUGGUCca gacg	95	31,57895	13,68421	28,42105	20	60	33,68421	1,461538	1,111111	-47,8	-47,8	0,195263	3,22	-50,3158	-0,8386
pcn-mir- 1985	AUGCCAUUUUUAUCAGUCACUG UGUGUUGUGAAAGucacagugaug augauaauggcuUGAUG	63	15,87302	14,28571	7,936508	25,39683	23,80952	39,68254	1,777778	2	-27	-27	0,311248	2,46	-42,8571	-1,8

Pre-

Sequence

Length

G (%)

A (%)

C (%)

U (%)

GC (%) AU (%)

MFEI

_	-		- 1-13		- (- ()								_			
Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	(lo			mol)	mol)
											mony	01)			mony	mony
	CGUUUGUGGCCGCGGGUCAUGG	76	30,26316	21,05263	27,63158	21,05263	57,89474	42,10526	1	1,095238	-33,4	-33,1	0,171582	3,66	-43,9474	-0,75909
pcn-mir-	GAGCGCCACGUACAAUCAAAGCG															
1986	GUGGAUUUCCCAAGAUCCGUGA															
	UCGCACUAC															
		70			20 55550			10.05556	4.000007	0.000000	20.6	20.6	0.00004	0.00	40.5	0.74604
	GUUCGUGCAGUAAGUUGAUGGG	72	26,38889	20,83333	30,55556	22,22222	56,94444	43,05556	1,066667	0,863636	-30,6	-30,6	0,28064	3,02	-42,5	-0,74634
pcn-mir-	GULLAGGUAGAULUALLULUL															
1990																
	ACCC															
	GCAUGUGUCCAGUCAGUGGUUG	74	25,67568	20,27027	21,62162	32,43243	47,2973	52,7027	1,6	1,1875	-32,7	-31,7	0,194317	3,34	-44,1892	-0,93429
pcn-mir-	ACUGCUCGGUAUUCUAAACGUA															
1992	UCAGCAGUUGUACCACUGAUUU															
	GCUACGUG															
	CUGGCGGCUGUUCUAAGGGGAA	90	30	18,88889	25,55556	25,55556	55,55556	44,44444	1,352941	1,173913	-41,1	-41,1	0,501637	4,6	-45,6667	-0,822
pcn-mir-	ACUCGCUGUCUGCGUGUGUGAU															
1994	GACGUCAUGAGACAGUGUGUCC															
	UCCCUCUGAGUCAGACACCGCUA															
	A															
		72	27,77778	16,66667	29,16667	26.38889	56,94444	43.05556	1.583333	0.952381	-36.5	-36.2	0.349274	3.61	-50.6944	-0.89024
pcn-mir-	AUCUCCAUGUGCUCGCACCAGCA	/2	21,1110	10,00007	23,10007	20,50005	50,51111	13,03330	1,5055555	0,552501	30,5	30,2	0,015271	5,01	50,0511	0,05021
1994a	UGAGACAGUGUGUCCUCCCUUG															
	AGGGA															
	UAUUCUGACCUUAUUUGAUAAU	99	18,18182	24,24242	19,19192	38,38384	37,37374	62,62626	1,583333	0,947368	-42,2	-42,2	0,071127	11,72	-42,6263	-1,14054
ncn-mir-	GACCAGUAUUUCCUUUCGUCGU															
1996b	CCUCUUGUAGACUGAUGCUGAU															
	GCUUAACUGUCAUUAUCAAGUG															
	AGGUCAGAAUA															
									1							

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pcn-mir- 1a	GGCACAUACUUCUUUGCUAUCCC AUAUGUUCUUGCAAAGCUAUGG AAUGUAAAGAAGUAUGUACU	65	18,46154	29,23077	18,46154	33,84615	36,92308	63,07692	1,157895	1	-23,7	-22,1	0,075024	6,51	-36,4615	-0,9875
pcn-mir- 1c	AGUACAUACUUCUUUACAUUCCA UAGCUUUGCAAGAACAUAUGGG AUAGCAAAGAAGUAUGUGCC	65	18,46154	33,84615	18,46154	29,23077	36,92308	63,07692	0,863636	1	-27,1	-26	0,4687	2,23	-41,6923	-1,12917
pcn-mir- 2001	GCUGCCAUUUUGUGACCGUUAC AAUGGGcauugacagaaaaacaaaugc uCCAUGUGGUGUUCACAAGAUG GCGGU	76	22,36842	13,15789	14,47368	21,05263	36,84211	34,21053	1,6	1,545455	-36,2	-36,2	0,193282	4,14	-47,6316	-1,29286
pcn-mir- 2008	AGGUUAAUUAUAGUUUGUGUCC UCACUUGAAGGCACACUUCCAGU GUGAGAGUAUUAACAAUGUGGC UACAGUGAUGUGACAAAUAUUG UUAAUAC	96	21,875	30,20833	14,58333	33,33333	36,45833	63,54167	1,103448	1,5	-24,3	-24,3	0,153115	8,97	-25,3125	-0,69429
pcn-mir- 203b	ACUUGUGAAGUUACCACCCAACA AAUAUUAGUUUGGGUCAAAGAA UUGAAUAUUUGAACUGUUAAGA ACAGUAAAUUAGUUGCUAAUGG AACUUCCAUUU	100	17	36	14	33	31	69	0,916667	1,214286	-20,1	-18,9	0,016531	14,54	-20,1	-0,64839
pcn-mir- 204	GUUCUUUGUGUCACCUCACUUC CACUUCCGGUGAAAUCCGGAUU GGUAAUGCAAGGACAGCAAAGG GA	68	25	25	23,52941	26,47059	48,52941	51,47059	1,058824	1,0625	-21,9	-21,9	0,137453	4,4	-32,2059	-0,66364
pcn-mir- 2047	CCAAAGCCUAUGUCACGUCUCUC AGAGAUAAAGGACGUCAGCAGU GUAUUACGCCCUUUCGCCGAGCA GAUGUGUGAAGGUUAAG	85	25,88235	27,05882	23,52941	23,52941	49,41176	50,58824	0,869565	1,1	-23,3	-22,2	0,082417	6,14	-27,4118	-0,55476

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pcn-mir- 2155	GUGUGCUCUGGUGCUCUGUGAA UGUAAGUUCUUUGUGGUAGAAU GAAGUGACACUGUUUUACACUC UACUGGAGCCUCAAGCAAAG	86	26,74419	23,25581	17,44186	32,55814	44,18605	55,81395	1,4	1,533333	-20,5	-17,1	0,059402	25,69	-23,8372	-0,53947
pcn-mir- 216a	uguugguguuugucUAAUCUCAGCU GGUAAUUCUGAGUGGAGUUCUG CACACCUCAAGUUACUAGCCGAG AUUACAUAAAUAUCGUA	87	16,09195	25,28736	17,24138	25,28736	33,33333	50,57471	1	0,933333	-34	-34	0,097375	3,66	-39,0805	-1,17241
pcn-mir- 216b-1	GCGGGACCACUUGCCCUGUGGAG CGAGGAUGCUCUGGAGGACGGC UGGACCUUUAUUAAAACUCGCCU CUACACAGUGGCUACUGGGUCCA CA	93	30,10753	20,43011	27,95699	21,50538	58,06452	41,93548	1,052632	1,076923	-34,9	-29	0,081319	17,93	-37,5269	-0,6463
pcn-mir- 216b-2	CGUAGGAAGAUGAGCCAGGAUU ACAAGAUUGUUGGGCCUGCGGC CCUAAUAUCAGCUGGUAAUCCUG AGUGAGCUUGCCUCAG	83	30,12048	24,09639	21,68675	24,09639	51,80723	48,19277	1	1,388889	-31	-30,7	0,290814	5,92	-37,3494	-0,72093
pcn-mir- 219-1	GUUGUCUGGCUGUGAUUGUCCA AACGCAAUUCUUGUGAAGUUUA AAUCAAGAACUGUGUGUGGACA UCAGUGCUUGA	77	25,97403	24,67532	15,58442	33,76623	41,55844	58,44156	1,368421	1,666667	-27,4	-27,4	0,170426	3,13	-35,5844	-0,85625
pcn-mir- 219-2	GUGAUUGUCCAAACGCAAUUCU UGUGAAGUUUAAAUCAAGAACU GUGUGUGGACAUCAGUGCUUGA G	67	25,37313	28,35821	14,92537	31,34328	40,29851	59,70149	1,105263	1,7	-21,9	-21,9	0,222542	3,22	-32,6866	-0,81111
pcn-mir- 2196	CAAGGUCAACUGCAAGAAUUUGC CUCUCUGUGCUGCCAGCAAAAAU	88	20,45455	32,95455	25	21,59091	45,45455	54,54545	0,655172	0,818182	-21,1	-14,7	0,0689	11,59	-23,9773	-0,5275

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
MIRNA		(AA)									(KCal/	kcal/m			(KCal/	(KCal/
											moi)	01)			mol)	moi)
	UCUGAGCGCUCUGCAAGACAAAU ACAAGCAUGUUGAACCAAG															
pcn-mir- 2218b	aaaaauaauaauaaaguacauaUUUG GGUGGAGGCAUGGUCUAGCGCC UUGGGUUGGCGUGGGAACAUUU GGGAAAAAUUUGUAGUUUGUAU UCUUCGG	99	28,28283	13,13131	9,090909	27,27273	37,37374	40,40404	2,076923	3,111111	-21,1	-19,4	0,05187	8,22	-21,3131	-0,57027
pcn-mir- 2284c	uaaugauaagCUGUACAUGAAACA GCUAAAAAUCUAAGUGAACUGU GACGGUGGAAAAUUUUACAUGU UGCACAGUCAUCUUGCUCAGCA	90	17,77778	30	16,66667	24,44444	34,44444	54,44444	0,814815	1,066667	-19,4	-19,4	0,041642	12,72	-21,5556	-0,62581
pcn-mir- 2284t	UCUCUUUGAUUGAAAUCCCUCU UGAUCCAUGUCAAUAAAACUCGA AUGAAUGUAGUUCGUAGGACAG GCUCACUGUCAAAGAAAGUUACA AUCUAAGACC	100	17	33	21	29	38	62	0,878788	0,809524	-19,3	-17,8	0,046921	9,84	-19,3	-0,50789
pcn-mir- 2324	AAACACGUGACUAACGUCGUUGA CCUGGGGUUGGGGCAGUGACCA GCAGGUGUCGUCUGCUAGGCUU CAAAGCCGUUAGACCGACGUGGG C	91	34,06593	20,87912	24,17582	20,87912	58,24176	41,75824	1	1,409091	-29,7	-20,7	0,058231	28,39	-32,6374	-0,56038
pcn-mir- 2392	AUCCCCUCUCACUCCGGCCCUC GUUACGCCUUAUGUUAGCAUCC UGUCUCCUCUUUGCCUACAGGAC UUAGUGAACGAUGGAUGGGGGU GAGGGGGAUG	100	27	16	29	28	56	44	1,75	0,931034	-43,6	-43,1	0,044553	14,74	-43,6	-0,77857
pcn-mir- 2405	UUGCAGAAAACUGCAACAACACA CAAGGCUUGUAUAUAUAUGGggu	74	10,81081	22,97297	10,81081	13,51351	21,62162	36,48649	0,588235	1	-20,3	-20,3	0,060748	10,16	-27,4324	-1,26875

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	agauugugugugugugguuuguuuggu u															
pcn-mir- 2464	GAAUGUUGUCUGGCGUCCucgac aucaacaucaacaucaacaucagcuUCA UCAGCUAUUGACUUCUGCUGCA GACCUCAAGGAUGCcagaaacaaga	98	14,28571	11,22449	15,30612	17,34694	29,59184	28,57143	1,545455	0,933333	-27,8	-26,8	0,142155	8,83	-28,3673	-0,95862
pcn-mir- 2470	GCCAGAAAAACCUAAGCAUGACA AAAUAUCAUGCUUGUGUGGUUU UGGAUACUUGGAUUUUUCUCCC	67	19,40299	28,35821	19,40299	32,83582	38,80597	61,19403	1,157895	1	-19,9	-19,9	0,542669	2,57	-29,7015	-0,76538
pcn-mir- 2491-1	GCAGUUGUCUUCUUUUGCAUGU UCUGUGUUCGUAAAAUCGCUUA UCAAUGAUGUAGUCGGUagccaac aacagcagcagcaacaacaacaacggc	95	14,73684	11,57895	10,52632	27,36842	25,26316	38,94737	2,363636	1,4	-23,2	-23,2	0,178642	4,92	-24,4211	-0,96667
pcn-mir- 2491-2	GAUGGCGGCGAAGAAGUCCACGC cugaagaagaacaacaacaacagcagcagcaa caacaaggGUGGCGAGGGCUGCUU CGUCACCUGU	86	22,09302	9,302326	15,11628	10,46512	37,2093	19,76744	1,125	1,461538	-27,25	-26,3	0,182896	6,2	-31,686	-0,85156
pcn-mir- 2491-3	agcagcagcagcagcagcagcaacaacaacag cagcagcagaacaGGCAAGGUAAUG GUGAUUGCUCUGCAUUUUUGUG UACUUCUGAUCUCCUAAA	94	12,76596	11,70213	9,574468	21,2766	22,34043	32,97872	1,818182	1,333333	-19	-15,7	0,14487	14,83	-20,2128	-0,90476
pcn-mir- 2500	GAUCAUACAUUAAAGUGUUCAU AUGUAAUGUAAAGGGAAAAGGU GUAAUGUCUUCCCUUAACAGACA AGAGGAUUUUGUGUGUGGAC	87	24,13793	33,33333	11,49425	31,03448	35,63218	64,36782	0,931034	2,1	-24,7	-24,1	0,053178	5,65	-28,3908	-0,79677
pcn-mir- 252a	CCUAACUUCUGGCCCAUUACUAA GUACUAGUGCCGCGGGAAGAUA ACUUGUCAUGUCCCGUGGUUCU	94	24,46809	21,2766	26,59574	27,65957	51,06383	48,93617	1,3	0,92	-37,6	-37,6	0,059589	5,1	-40	-0,78333

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	UUGCA															
pcn-mir- 254	GUGUGUGCAAAUCUUUUGCAAC AGACUUUUAAACUAUGGGUGUU UGGUGUUUGAGUGUGCAGAGU UGUUUGCAAACUCUUUGCUACA GAA	90	25,55556	23,33333	13,33333	37,77778	38,88889	61,11111	1,619048	1,916667	-21,5	-16,1	0,016973	23,25	-23,8889	-0,61429
pcn-mir- 279-1	UCUCUUAUCUUUGCGGGUGGCU GUGAGUCUAGUCCAUGUGACAC GUCAAGCUCAUGACUAGAUCCAC ACUCAUCCACAAGGAUAGGACGU UCAC	94	22,34043	23,40426	26,59574	27,65957	48,93617	51,06383	1,181818	0,84	-39,9	-38,8	0,123884	5,39	-42,4468	-0,86739
pcn-mir- 279-2	CUCUCUUAUCUUUGCGGGUGGC UGUGAGUCUAGUCCAUGUGACA CGUCAAGCUCAUGACUAGAUCCA CACUCAUCCACAAGGAUAGGACG U	91	23,07692	23,07692	26,37363	27,47253	49,45055	50,54945	1,190476	0,875	-39,9	-38,8	0,126379	5,36	-43,8462	-0,88667
pcn-mir- 279b	AAGGGGACCAACCACUAGAGUGA CUAGACUGAUAACCCCUAGAGAU GUUGUGCUUCAGUUAUCACUAA CCAUGGUGGUGGAUCCCUGA	88	25	28,40909	22,72727	23,86364	47,72727	52,27273	0,84	1,1	-27,8	-27,3	0,031686	14,17	-31,5909	-0,6619
pcn-mir- 2804	UUUUUAAACCACAGUAACAGAU GACAUGGUGAACCAUGAUGAAG GGUAGUGUAUUACAAUACUGAC CAAGUUUUCAGCUGUUUGCUGU GUUUGUAAAUA	99	21,21212	31,31313	14,14141	33,33333	35,35354	64,64646	1,064516	1,5	-25,6	-25,4	0,006063	12,93	-25,8586	-0,73143
pcn-mir- 281	AAAUGACCUCACGCUGAAGGGAG CAUCCGUCGACAGUCAGAAAUGC	88	26,13636	29,54545	22,72727	21,59091	48,86364	51,13636	0,730769	1,15	-35,2	-35,1	0,187538	3,76	-40	-0,8186

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/	MFEE(kcal/m	Freq	Div	AMFE (kcal/	MFEI (kcal/
											mol)	ol)			mol)	mol)
	AGCACUGUCAUGGAGUUGCUCU CUUUACUGAAAAGGUCAAGG															
pcn-mir- 2962	UCGUGCAGUGAGUCAGGUGCUC GUGACAGGGAUGCUGUGGCAGG UGUUGUGGGGGCGUGACACAGGU CACUGUGCAUCCCCUGCCUCUCU CAUAC	94	34,04255	14,89362	25,53191	25,53191	59,57447	40,42553	1,714286	1,333333	-36	-36	0,402579	13,67	-38,2979	-0,64286
pcn-mir- 297	AUGAACGAAUGAAUGUCUACAG UACUGUguacguguauguaugugugc auguauggaGCCUGGCAGGUAGAG AGAUGUAUAGAUGCAUUCAUUU UG	96	18,75	20,83333	9,375	20,83333	28,125	41,66667	1	2	-23,6	-19,07	0,041644	16,8	-24,5833	-0,87407
pcn-mir- 29a	GACUGGGCCGGGAUGGAUGCUG GUCUCUUUUGGUGCUUAGAGUC AUUCCCUGUCUAGCACCAUUUGA AAUCAGUUUCUUGAACUGGCCA	89	26,96629	17,97753	22,47191	32,58427	49,4382	50,5618	1,8125	1,2	-36,3	-36,3	0,263044	3,27	-40,7865	-0,825
pcn-mir- 29b	GGGAGGAGAGUGGGAGGCAGCG GGACACUGGUCUCGACUGGUGG AUAGAUGGCUGCUAUUCUAGCA CCAUUUGAAAUCAGUGCUCUCGC UUGUUU	95	34,73684	20	18,94737	26,31579	53,68421	46,31579	1,315789	1,833333	-35,8	-30,9	0,043188	34,86	-37,6842	-0,70196
pcn-mir- 2a-1	CAUCAGUUAUGACUGCUGAGUU CACAUCAAAGAGGCUGUGACUU UGUGAUGCUGUUUCAAAUCACA GCCUGCUUUGGUGAGCUCUUUG CUGUCAGAUUC	99	23,23232	21,21212	21,21212	34,34343	44,44444	55,55556	1,619048	1,095238	-40,8	-39,5	0,13114	5,78	-41,2121	-0,92727
pcn-mir- 2a-2	AGGCAAAGCUAUGGUGCUGACCA AGUGACUGGGAUGUGUACCUUA	89	25,8427	25,8427	17,97753	30,33708	43,82022	56,17978	1,173913	1,4375	-39,8	-39,4	0,329351	1,72	-44,7191	-1,02051

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/	MFEE(kcal/m	Freq	Div	AMFE (kcal/	MFEI (kcal/
											mol)	01)			moi)	moi)
	AUGUCAUAUCACAGCCUGCUUG GAUCAGUAUUAUGGUUUUGAAC															
pcn-mir- 2a-3	AGUGCUAGGAUCUGCCCAUCAAA GAUGCUGUGAUGUGUUGAGUUC AGUCAUAUCACAGCCAGCUUUGA UGAGCUGGUCUAGCUUC	85	25,88235	22,35294	21,17647	30,58824	47,05882	52,94118	1,368421	1,222222	-40,5	-40,2	0,12355	3,87	-47,6471	-1,0125
pcn-mir- 2a-4	ACAAAGCAAAUGUGCAUGGAGCA AUCAAAGUAGUUGUGAUGUGUU UGUUGACUUCAUAUCACAGCCAG CUUUGAUGAGCUUUUUCACAGU UUCUUGCA	98	21,42857	27,55102	17,34694	33,67347	38,77551	61,22449	1,222222	1,235294	-32,4	-30,6	0,111894	7,44	-33,0612	-0,85263
pcn-mir- 2b-1	UGCAAGAAACUGUGAAAAAGCUC AUCAAAGCUGGCUGUGAUAUGA AGUCAACAAACACAUCACAACUA CUUUGAUUGCUCCAUGCACAUU UGCUUUGU	98	17,34694	33,67347	21,42857	27,55102	38,77551	61,22449	0,818182	0,809524	-24,8	-24,8	0,336462	7,7	-25,3061	-0,65263
pcn-mir- 2b-2	GAAGCUAGACCAGCUCAUCAAAG CUGGCUGUGAUAUGACUGAACU CAACACAUCACAGCAUCUUUGAU GGGCAGAUCCUAGCACU	85	21,17647	30,58824	25,88235	22,35294	47,05882	52,94118	0,730769	0,818182	-34,5	-34,5	0,219013	4,37	-40,5882	-0,8625
pcn-mir- 2e	CUACUGGUAUAACUCAAUUAUCA AUCUCUUGAAUUCAGAGAUACCA ACUUUGACUGAUGAGAUCUGAU ACUGAAUAGCCAGAAA	84	15,47619	35,71429	19,04762	29,7619	34,52381	65,47619	0,833333	0,8125	-19,3	-19,3	0,294993	3,58	-22,9762	-0,66552
pcn-mir- 2f	UCGGGUAGAUAAGCCAGCGAUG UGAGACUCAGACGAUGGUGUGA CUGAGAGUUAGCAGACCAGUGU	96	27,08333	27,08333	20,83333	25	47,91667	52,08333	0,923077	1,3	-28,6	-28,6	0,066397	6,92	-29,7917	-0,62174

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	AUGUAUAUCACAGCCAUGCUAAU CUCCUCU															
pcn-mir- 3027	UCCAGGCCCCAGUCUUGCAUUUA UGAAACAUCAUUAGGAUUAUGC CUGGGUUAGUGGUGGAAUAUGA AAUGCAAGCUUUGUGCCUAAG	88	25	26,13636	18,18182	30,68182	43,18182	56,81818	1,173913	1,375	-25,5	-23,3	0,022525	10,35	-28,9773	-0,67105
pcn-mir- 3050	AAUGAUCAGAUAUGAGAUCUUG AUAAACAUCAACUGACUGCUAAU UGGUCAUCAGGUCGAUGUAUGA CCCAGUCCAAGAUGUGAUCUCU	89	20,22472	31,46067	19,10112	29,21348	39,32584	60,67416	0,928571	1,058824	-23,6	-23,6	0,62089	5,09	-26,5169	-0,67429
pcn-mir- 3057	agagugacUGGCUGUUCUUGAGAG AUGUUAGCAAGUUAGUUCAAAA UGUUAUGGCGCGAACCAACAUCC CACAGGCCCAGCUGUCACAAA	90	21,11111	26,66667	21,11111	22,22222	42,22222	48,88889	0,833333	1	-24,5	-23	0,146061	9,33	-27,2222	-0,64474
pcn-mir- 3071	AuaucaucaaaaacaaauguGCAUAGU GUUACACAGAUACCAGGAUCAUG GAUUCAGCUGAUUUAGUGACUG aaacacuuucauuucuugAUGAAGC	96	15,625	19,79167	10,41667	16,66667	26,04167	36,45833	0,842105	1,5	-20,1	-19,8	0,178747	6,13	-20,9375	-0,804
pcn-mir- 308	CGAGUGCGCAUGACAGCGCGCGC AGGAUUUGCUUGUUUUGAGCAA CUCGGGUGGCGAUGUCCAUGAC GCACAGC	74	33,78378	18,91892	25,67568	21,62162	59,45946	40,54054	1,142857	1,315789	-32,3	-32,3	0,25533	2,19	-43,6486	-0,73409
pcn-mir- 3084a	UAUAUGUAUUGAAGGUUCAUUA GCCUUGUGGUCAGAGCACUCCAA UUUGGAGCAAAAGGUUACUGGU UCAAGGUCUGCUUGAACCUAUG ACUAAAUaau	99	22,22222	27,27273	16,16162	31,31313	38,38384	58,58586	1,148148	1,375	-27,5	-22,4	0,08872	12,04	-27,7778	-0,72368

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pcn-mir- 31	UCAAGGUGUGAAUCCAGGUUAG GCAAGAUGUUGGCAUAGCUGAG UGAACUCUAACAUCAGCUGUGUC GCAUGGUGCCACCAUUUGGGUU CUUGUGAAC	98	28,57143	23,46939	19,38776	28,57143	47,95918	52,04082	1,217391	1,473684	-39,3	-36,9	0,095943	6,94	-40,102	-0,83617
pcn-mir- 315	UUGGCUCAUUUUUUGAUUGUU GCUCAGAAAGCCGGUGACUCAGC UGCGGCACUCGAGUAACAAUCAA AGCGUGACGCU	78	25,64103	23,07692	23,07692	28,20513	48,71795	51,28205	1,222222	1,111111	-33,4	-33,4	0,276248	3,37	-42,8205	-0,87895
pcn-mir- 317-1	AAUAUGUGCACUGUGGGAAGGA UACCAUUGCUUGUUCACAGUGA AUUGGACAUGUGAACACAGCUG GUGGUAUCUUUUUUAAUGUGAA CAUGAC	94	25,53191	27,65957	14,89362	31,91489	40,42553	59,57447	1,153846	1,714286	-40,1	-40,1	0,224017	2,93	-42,6596	-1,05526
pcn-mir- 317-2	UCACUUAUUGGCAUGUACAGUG AACACAGCUGGUCACAACAUCCU CACAUACAGUUGUACAGUGAACA CAGCUGGUCACAACAUCCUCACA UACAGUUG	99	17,17172	31,31313	27,27273	24,24242	44,44444	55,55556	0,774194	0,62963	-22,1	-22,1	0,047361	10,2	-22,3232	-0,50227
pcn-mir- 3173	ACAUGUACUGUUUCUAGCUGAG CACAGAUACCUUUAAGCCAGAGU GCUCGGAGUGUUCUGAUGCUGA AGGAGGAAACAGGCUACAGAU	88	27,27273	28,40909	19,31818	25	46,59091	53,40909	0,88	1,411765	-29	-29	0,195168	5,51	-32,9545	-0,70732
pcn-mir- 33	GUGUACUAUGGUAGUGCAUUGA GGUUGCAUUGCAUCAGCUGAGA AACAUGCAAUGCA	83	26,50602	27,71084	16,86747	28,91566	43,37349	56,62651	1,043478	1,571429	-38,7	-37,7	0,204831	5,09	-46,6265	-1,075

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pcn-mir- 340	GAAUAAACAUAUAAAACGUCUGU GGGAUUAUAAAGCAAUGAGAGU UUCCGUUGUGUGUUGUUUAGAA AAUCCCACAUGUUGCAGuuuguuu aaau	95	20	29,47368	11,57895	27,36842	31,57895	56,84211	0,928571	1,727273	-21,5	-20,6	0,012485	17,74	-22,6316	-0,71667
pcn-mir- 345	UCAGCGGCUCGUGGUGCAACAU UUGUUACCUGCACCUUUCUGCAC UCGGCGGAGAUGAAGAACACGU GACGAGAACGUGCUGACCCCUAG UCCGCCUC	98	26,53061	20,40816	30,61224	22,44898	57,14286	42,85714	1,1	0,866667	-28,8	-28,8	0,301092	13,36	-29,3878	-0,51429
pcn-mir- 3529	UGUGGCUGCAGCAAUCAGGGAA GAAUGUGAUUUAUUGUUAGUCA GCAUCAGAACAACAAAAUCACUA GUCUUCCAGAUCACGGCAGCCug g	91	21,97802	30,76923	20,87912	23,07692	42,85714	53,84615	0,75	1,052632	-30,8	-29,7	0,103281	5,67	-33,8462	-0,78974
pcn-mir- 3547	ACAAUUAAUAGAAGCUAGACAAU GAUAGCGGGUGGCCAAGUGGGA AGAGGGGUGGAGGUGAAGCCAC CGCAUACACACCCUGUCaacuuuu uaauauc	98	27,55102	27,55102	17,34694	13,26531	44,89796	40,81633	0,481481	1,588235	-22,6	-22,6	0,156123	13,36	-23,0612	-0,51364
pcn-mir- 355	UGAcugauuuaucuguuuauuuguuu uagccUGAGUCGCCAGAGGAAAU GGAUGAUGAAUCUGAACAACCUA AAACAGCUGGCAAGAUAAUUCAG GCA	98	18,36735	27,55102	12,2449	13,26531	30,61224	40,81633	0,481481	1,5	-22,1	-22,1	0,017425	13,25	-22,551	-0,73667
pcn-mir- 3609	CAAAGUGAUGAGUAAUUAAGGC GCAUUUGAAUUAUGGCUACCUC CAAUGAGAUUUAUAACACUAUA	92	16,30435	34,78261	17,3913	31,52174	33,69565	66,30435	0,90625	0,9375	-18,5	-17	0,066153	14,65	-20,1087	-0,59677

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	AAUGCCAUAAAUUGUGCAUCUC UCAU															
pcn-mir- 3680	GAAUGUCUUGCUCCUGGUGUGG GUGACUCACUCACAGGAUGUGG UGAGGACCUCGGGCAGCUAGCU UCUGCCgaucacacacaccaacaacaca aaa	97	24,74227	11,34021	18,5567	19,58763	43,29897	30,92784	1,727273	1,333333	-32,3	-32	0,065042	7,8	-33,299	-0,76905
pcn-mir- 36b	UGAUGCGGUGAGUGUAAACCCU GGUCGGUGCUCACCAGCAACAUC ACCGGGUAUACAUUCAUCCGCAC CC	70	24,28571	22,85714	31,42857	21,42857	55,71429	44,28571	0,9375	0,772727	-30,8	-30,8	0,109108	5,78	-44	-0,78974
pcn-mir- 3716b	CUCAUCAGUCGGCUAUUCGAUUC GAUGUUAUUUGAAAUAUCAAAC AUUCGAUUUGAAGUGUCGCUGU AUAUC	72	18,05556	26,38889	18,05556	37,5	36,11111	63,88889	1,421053	1	-20,4	-20,4	0,086216	4,88	-28,3333	-0,78462
pcn-mir- 3739	CAGUCCCCCUUUCCAUGUCGACC UCUGCAAGUUCAUUGCCAUGAA GGCAACGAAAGGUGcuugggagggg gagagaguggAAAGGUGAGGAGGG	94	22,34043	20,21277	19,14894	15,95745	41,48936	36,17021	0,789474	1,166667	-39,3	-38	0,332678	4,7	-41,8085	-1,00769
pcn-mir- 375-1	ACAGAACAUUUCGCUGCCCAAUG ACCCGAGCCGCUCGUAGCAAGGC AUCUUCACAAGUUUUGUUCGUU CGGCUCGCGUUACCAUGGUGGC ACUUGCAG	98	24,4898	20,40816	29,59184	25,5102	54,08163	45,91837	1,25	0,827586	-34,5	-34,5	0,452928	2,76	-35,2041	-0,65094
pcn-mir- 375-2	GGGACUUAAUUCAUCGCGAGCA GAAAAGAACGCAACAUCUUGUUC GUUCGGCUCGUUCUGAAAAAGU GAC	70	24,28571	30	21,42857	24,28571	45,71429	54,28571	0,809524	1,133333	-20,3	-20,3	0,298895	4,19	-29	-0,63438

Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
	(AA)									(kcal/	kcal/m			(kcal/	(kcal/
	. ,									mol	ما)			mol	moll
										11101)	01)			mon	mon
UUUCCAGAUUAACUAGAGGUUG	81	25,92593	24,69136	17,28395	32,09877	43,20988	56,79012	1,3	1,5	-24	-24	0,093863	9,2	-29,6296	-0,68571
CCUUUGGUGAGAGAAGUCAUAG															
CCGAUGUCUUCAUCCUAGGAAU															
UAGCUAGUCUGGUAG															
UCGAGCACGCUUCACCUUUGCUU	98	22,44898	13,26531	14,28571	16,32653	36,73469	29,59184	1,230769	1,571429	-25,2	-24,8	0,072592	27,27	-25,7143	-0,7
UCUCUAUGCCUGAAAAGGAGGG															
GGGGAGAGAGauuuauaaacacaua															
uauaagcagauaugagugAGCGUCUG															
UG															
UUACUACUUCAACUUUUCGGUU	99	22,22222	28,28283	15,15152	34,34343	37,37374	62,62626	1,214286	1,466667	-24,9	-24,7	0,021265	13,08	-25,1515	-0,67297
AGUCGGUCGGUCAGUUGGUUAG															
AUGACUUUUUGUCAUUUAGCAA															
CUCGGCACAGAUAAAGAGAUAGA															
UGAAUAGAUA															
CAGCUUGUGUGUCUCAGAGCAA	69	21,73913	27,53623	20,28986	30,43478	42,02899	57,97101	1,105263	1,071429	-23,4	-23,4	0,214068	5,17	-33,913	-0,8069
ACAUUGCUAUUUUUCAUAUCCA															
AUGUGGCUCCGAGAUGCAAAAG															
GUA															
ACCAAGCAACUUUGUCUCAGACC	93	16,12903	32,25806	22,58065	29,03226	38,70968	61,29032	0,9	0,714286	-21,1	-19,7	0,138205	13,46	-22,6882	-0,58611
UAUCAUUGAGAUUCACUAUGAA															
AUCAGUAUAUGAAGCUCUAAGG															

0,466667

-39,7

-39,7

0,412668 1,21

-50,8974

-1,80455

19,23077 7,692308 28,20513 23,07692 0,5

PremiRNA

pcn-mir-377

pcn-mir-

3776

pcn-mir-

3809

pcn-mir-3831

pcn-mir-

3928

pcn-mir-

3957

UUCAUCCCAGACAAGGCUGCAUU UUA

guugguguugguguuggugcugguguu

gguguugguccCAUAUCCAGAAGAC

GCACAGCACCUCACACUGACGCC GUU 78

8,974359

15,38462

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pcn-mir- 3965	UGCUUAUCAGCCUGAUUCUGCU AACGCUGCAUCGUUGAAGUCAGC UAGCUGUGAUAGAAGGAAUAAC AGGCUUGAUAAAAA	81	23,45679	30,8642	18,51852	27,16049	41,97531	58,02469	0,88	1,266667	-26,4	-26,4	0,24589	2,99	-32,5926	-0,77647
pcn-mir- 4057	GGUCGGCAACUGACCUCCUGCAU CUCCAGGGUGUAGGAGAUGGGG GUGGCUUGGCGACUGUAGUAGG GCAGUUCCGCUG	79	39,24051	15,18987	22,78481	22,78481	62,02532	37,97468	1,5	1,722222	-33,5	-28,4	0,21803	20,3	-42,4051	-0,68367
pcn-mir- 4066	aacccaucauGCAGAACAUGCCUUU AUCAUGUGUUAGCUAAACACUU GGUUAUCGUGCUCACACGAAGAC AGUGUUAAACCAGUGUUUUUCA UGUGGGGA	100	21	24	17	28	38	52	1,166667	1,235294	-29,1	-22,3	0,120404	15,88	-29,1	-0,76579
pcn-mir- 4070	GCAAGCAGGUUGUGAGCGACCAC CacgcgucacgugacaccuaGUGACAG CUGUGUUGACGUCACAGGCAGC UGUC	76	25	15,78947	19,73684	14,47368	44,73684	30,26316	0,916667	1,266667	-25,8	-25,2	0,153161	8,62	-33,9474	-0,75882
pcn-mir- 4185	CAUAAAGUAUCUAUGUUUAAUG CGCUAUUGUGUGAGUCUCCUUC UUUGUAUUCAUACUGUCUGUUA CAAGCAAGCGGAUUAUUCAAAGA AUACUUUGCA	99	17,17172	27,27273	17,17172	38,38384	34,34343	65,65657	1,407407	1	-24	-18,6	0,091273	7,49	-24,2424	-0,70588
pcn-mir- 4187	CUAGUGUGGUCAAUUAACAACU GUUUUGGUGUUUGUGCUGUUUA ACUUCACGUCGAAGUAAACAgua uauuuucacacacacauc	84	16,66667	19,04762	11,90476	27,38095	28,57143	46,42857	1,4375	1,4	-21	-15,37	0,010024	18,73	-25	-0,875
pcn-mir- 4195	ACCCUAGUUACAUGUAAUACAUU GUACCUUGGUUACAUGUAAUAC	85	12,94118	32,94118	20	34,11765	32,94118	67,05882	1,035714	0,647059	-22,2	-22,2	0,043533	6,38	-26,1176	-0,79286

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/	MFEE(kcal/m	Freq	Div	AMFE (kcal/	MFEI (kcal/
											mol)	ol)			mol)	mol)
	AUUGUACCCUAGUUACAUGUAA UACAUUGUACCCUAGAAA															
pcn-mir- 4271	UACAGGUCACCUAACAUCAUUUG CCACAGUUUUUCUCUUAGAACU GUGGGGAGAGAGGUGGUAGGGGGA AGAAAAGGUGGCAGGUGUGGCA UGUGUCCUAAA	100	32	26	16	26	48	52	1	2	-35,9	-32,3	0,296371	32,35	-35,9	-0,74792
pcn-mir- 4323	AUCUGCGGCUUCCUGCACUUAGA GGGGAGCGAUUUGCUUUUGACA GCCCCACAGCCUCAGGAGCAGAA AGCUGCAUAG	78	28,20513	23,07692	26,92308	21,79487	55,12821	44,87179	0,944444	1,047619	-28,2	-24,9	0,122046	7,91	-36,1538	-0,65581
pcn-mir- 4472	UGCUCUGCAGCAACAAUCGACUA UUCCCACCCUCCUUUUUuacuggg gggggggggugggggggguguuGUUGAUC AGAAAU	79	8,860759	16,4557	20,25316	21,51899	29,11392	37,97468	1,307692	0,4375	-38,6	-38,6	0,308719	10,28	-48,8608	-1,67826
pcn-mir- 449a	ACAACUGUACAGACUUUAGUCCA AUCAUCUAUACUGGCUUGUAUG UUUGACACCAGCUGACAUUCAGU CCAGAUGAUAAGCAGAUCUUGAC AGUGUC	97	18,5567	28,86598	22,68041	29,89691	41,23711	58,76289	1,035714	0,818182	-22,3	-19,2	0,020241	9,91	-22,9897	-0,5575
pcn-mir- 449d	CCUAUCAACCAUUGUCAGCAGUG AAACUAAUGGUAUUCAUUUGUC UUGAAGGCUGUGUGCUGUAAAG AUAAUGCUCACUGCUGCCCUCGU GGAUCUG	97	22,68041	23,71134	21,64948	31,95876	44,3299	55,6701	1,347826	1,047619	-25,6	-22,8	0,037152	9,97	-26,3918	-0,59535
pcn-mir- 4525	AGUGCAUGCCAGAUAUCCCACCA CGUCAUGCGCAGGGUGUGCCUG	70	35,71429	18,57143	27,14286	18,57143	62,85714	37,14286	1	1,315789	-31	-30,8	0,214837	9,25	-44,2857	-0,70455

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/	MFEE(kcal/m	Freq	Div	AMFE (kcal/	MFEI (kcal/
											mol)	ol)			mol)	mol)
	GACCUGGGGGGGGGAUGUGCAUGC CAG															
pcn-mir- 4617	CCAGGUGUAGACGGGUGUGACA AGUCcucaacacacagacacuggUUAG UGGGGUCUUCUGUGGCUGUCAC ACCUAAACACCCGC	85	23,52941	15,29412	20	18,82353	43,52941	34,11765	1,230769	1,176471	-30,3	-19,95	0,101687	17,71	-35,6471	-0,81892
pcn-mir- 4654	GGCUGAUACGCCAGGUGAUGUG GGAUCUGGAGGCAGACUUCGGC UUCCGCAUCGGCCCGUGGAACCA GGCCUACAUGUACGACACCCUGC CGAUCAGUC	99	31,31313	19,19192	30,30303	19,19192	61,61616	38,38384	1	1,033333	-41,7	-40,2	0,172557	4,86	-42,1212	-0,68361
pcn-mir- 466i-1	CAUAACCACAAGCUACACACGAC UAUUCAGAUAUGCAUUGACACC UAUCUACACUUGUGUcaguaugug uaucuguguguguguguguguguguuu gu	98	7,142857	20,40816	17,34694	16,32653	24,4898	36,73469	0,8	0,411765	-36,4	-36,4	0,12872	16,86	-37,1429	-1,51667
pcn-mir- 466i-2	gugugugugugugugugugugugugug ugugugauguuuaucACUCACCAUC UCAAUCUUUUAUGUGCACAAACA CACCCCCAGCACACACAGAACAAG C	100	5	21	22	10	27	31	0,47619	0,227273	-34,8	-12,3	0,119059	30,37	-34,8	-1,28889
pcn-mir- 466i-3	GUGUgcauagcugugugugugugugu gugugcgugcgcgcgcccCACGUCUCG UGAUGAGCCAGUACACACCACAG AACUCGUGCAGCG	89	14,60674	13,48315	16,85393	10,11236	31,46067	23,59551	0,75	0,866667	-31,6	-16,94	0,020806	35,43	-35,5056	-1,12857
pcn-mir- 466i-4	ggugugugugugugugugugagaagug UCCUCUUAAUUCAGACAGAAGAG	94	13,82979	12,76596	10,6383	12,76596	24,46809	25,53191	1	1,3	-36,9	-36	0,067742	18,68	-39,2553	-1,60435

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	GUGUGCUCGUGAGGACAGACUG CuaaacacacaucacacacuaU															
pcn-mir- 466m	CAUAGUAUGUUCuucucggugugg ugugugcaugugcaugugugcuugcaug uaaGUGAACAAGCAACCGAGUCA GCAAAUGCUCGG	88	12,5	15,90909	11,36364	10,22727	23,86364	26,13636	0,642857	1,1	-26,9	-24,4	0,033755	13,99	-30,5682	-1,28095
pcn-mir- 466n	uuuuauauuACUUCAUGCUCAcgaa ugugugcacacacacacacaugggugCA UAGGAGACAGGUGUGUGCGUAC AUGUACUCAUGUAUAUACAU	95	12,63158	16,84211	11,57895	17,89474	24,21053	34,73684	1,0625	1,090909	-27,2	-25,5	0,120489	14,18	-28,6316	-1,18261
pcn-mir- 466p	UGCUGUUUAUCCCUUCACUAUC UUCCACACUUCCUAUCUCACUGA AUGAGUGAAuuauaauaugugugg uacaugugaagAGAGAAUCACUC	93	8,602151	18,27957	20,43011	23,65591	29,03226	41,93548	1,294118	0,421053	-19,9	-15,6	0,079044	7,09	-21,3978	-0,73704
pcn-mir- 466q	UCGAUGAGGUAGUGGUGCACAA AUGAGAGAAUUAUUUUUGAGAG AAGAAUUCAGAUUUUGAGGCAG UAAAUACUGCaucaugugcacacaca cacauacg	100	21	26	7	22	28	48	0,846154	3	-25,7	-22,5	0,021246	16,27	-25,7	-0,91786
pcn-mir- 467f	UAUGCCAACGUCUCCCUCCCGCU GAaaaauuuauauacacacacacaccuu ucaaGUGGGAGGAGAUGGACAAU GGCCCA	80	18,75	13,75	18,75	11,25	37,5	25	0,818182	1	-26,5	-26,5	0,059461	8,5	-33,125	-0,88333
pcn-mir- 4715	CGCCACGCUGAUCACGUGCCAAC GUGCCACCUUAACUGCACGGACC GCGGAAGAUGGUUUGGCCGUGG AAAGUGAGAGGUGAGU	84	33,33333	22,61905	26,19048	17,85714	59,52381	40,47619	0,789474	1,272727	-31,6	-31,6	0,443187	3,44	-37,619	-0,632

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pcn-mir- 4757	aaaaaaaacccaaaacucaAGCGUCUC AGUAAAGGGUCUACAUUUUACA CCUGUCAUUUCCAUGACGUCACA GAGGCGAGGUUUGGCUUUUGGA	93	20,43011	18,27957	17,2043	24,73118	37,63441	43,01075	1,352941	1,1875	-22,4	-21,8	0,139005	15,42	-24,086	-0,64
pcn-mir- 4801	AAAGGUCUUCCUCUGUGUGUCU CCAGGAACCGGUCAAUAUUUUCC AGCUGAUCAACACCGUUCUGAAC GAAAUACACAAGAAAACCAAA	89	16,85393	33,70787	25,8427	23,59551	42,69663	57,30337	0,7	0,652174	-19,8	-19,8	0,127971	8,44	-22,2472	-0,52105
pcn-mir- 4860	GGUGCACAUGCUUGUUUAGAAG UUACAAGCUUUGCUAGAAAAUG AUUGUAAGUUAUGUUGUAGAGA UUGUGUGAACUGCUAGACACAU CACUGAUGCUCU	100	24	28	14	34	38	62	1,214286	1,714286	-21	-15	0,009321	18,79	-21	-0,55263
pcn-mir- 49	aacaaaagaaaccaaaaaggGCAUCUU CCCAUGAUGCAAAUAGACUAAGG GAAGCACCAUGUGAAGCACUUU UCUGGUUUCUUUUCCa	88	14,77273	19,31818	18,18182	23,86364	32,95455	43,18182	1,235294	0,8125	-26	-26	0,306727	8,11	-29,5455	-0,89655
pcn-mir- 4918	AGCAACGAACCGAUGGGAGCUGU GAGCACGAUGGCCAGCACUGCCA GUGUCAGAACCUGCCCACAGUCA CCGUUUGCGuucaa	83	27,71084	22,89157	28,91566	14,45783	56,62651	37,3494	0,631579	0,958333	-25,6	-24,9	0,031622	11,38	-30,8434	-0,54468
pcn-mir- 4968-1	agcaucagcaucagcaacagcagcagcag cagaggaCCAGCCCAGAAGAUUCU GGUAGCCAGACCGCUGCACGCGC UGGUCCUGCGCAGAUCGA	94	18,08511	12,76596	21,2766	9,574468	39,3617	22,34043	0,75	0,85	-30,8	-28,6	0,049334	13,84	-32,766	-0,83243
pcn-mir- 4968-2	CGACAGCGcacuggcagcagcaacagc agcagcagcagcagcagcacucgGCGGA	96	21,875	6,25	15,625	12,5	37,5	18,75	2	1,4	-34,7	-33,6	0,230058	16,55	-36,1458	-0,96389

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	UGUGCAGCUUCCCUCGGUGGUU GCUGGCAGGGCCACUGGUU															
pcn-mir- 4968-3	ACUUGCGCAUGCUUCGAGGUGU GGCUGCGCCCUCUCUUAGACAAG GUUGAGcgcacagcaacagcagcagca gcagcagca	81	19,75309	9,876543	16,04938	17,28395	35,80247	27,16049	1,75	1,230769	-27,9	-24	0,074193	12,7	-34,4444	-0,96207
pcn-mir- 4968-4	uugugugugugugugagacuggcAUCA UUAUGCUAAGUACUCAUCAGCCU CGACUGUAGCCACUAAGGAUgua cagcaacagcagcagcagcagcg	96	8,333333	14,58333	12,5	13,54167	20,83333	28,125	0,928571	0,666667	-21,1	-16,1	0,014202	21,15	-21,9792	-1,055
pcn-mir- 5317a	GGGCCAGGGCCACAUCCCUAGCU ACGGUccguuucuugucucuguguaC CUCUUGUGCUGCCAGACCGAGU GGUGAUCGGUGACCGCUGGAAC	93	25,80645	12,90323	24,73118	15,05376	50,53763	27,95699	1,166667	1,043478	-29,1	-29,1	0,378556	7,01	-31,2903	-0,61915
pcn-mir- 5391	uuccugcaaGGUACCUUAUGAGGU AACUUGUUUGGACAGUUAUGAA GAAGUGGAAUUUAAUGUCCAAC AGUUUAGAAUCAAACAGGCUAU CAUUCAGACc	100	20	30	13	27	33	57	0,9	1,538462	-18,8	-15,1	0,010656	34,01	-18,8	-0,5697
pcn-mir- 5392	AAGUGAUUUUGCUCCAUGUGUG CAAUAAACUGGGAAAGAACGAUC UUUUUAGGUUUUAUUUGGCACA AUAUGUGUUACUugacauuuugag aaaacagUG	100	18	22	10	31	28	53	1,409091	1,8	-18,9	-12,7	0,006717	26,01	-18,9	-0,675
pcn-mir- 5440	aaaaaauuugcgAAUGCUUUUUAG UUUAUCAGGAGGACUGAAGGGU GGAUGUGAAUACCACAUCCuuaac	98	15,30612	19,38776	11,22449	21,42857	26,53061	40,81633	1,105263	1,363636	-20,2	-18,8	0,104707	19,27	-20,6122	-0,77692

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	aaacuaaaaauaaccUCACUAAUUU GAC															
pcn-mir- 5549	CCccaaaauaucaaaauagaaUAAUA AGAGGAGGGUGGGACUUCUUUA ACAUUACACAGAUAUCCUAUUAU UCUUCAUGUUGGUUUUUUGAAU	93	15,05376	21,50538	11,82796	31,1828	26,88172	52,68817	1,45	1,272727	-19,5	-19,3	0,091982	11,56	-20,9677	-0,78
pcn-mir- 559	AUCUGUCAAAGUACACAAACUAA UGAUGCUCAAAAUGUUAGCCAU UUGCGUUUAUAUGAUAAAGUAA AUAAGCACAGACUAUGUGUGGU UGUGACAGUU	99	19,19192	35,35354	14,14141	31,31313	33,33333	66,66667	0,885714	1,357143	-20,1	-16,59	0,039207	24,4	-20,303	-0,60909
pcn-mir- 5594	GCAGUAAAGAAGGAAGACACGG UAUUUGCUGUUACAGACCUCGC AUAGCUAAGAGUACUGUAGUUU UUCCAAAGACCGUUCUCGCUCUC CGUUUACUCA	99	21,21212	27,27273	23,23232	28,28283	44,44444	55,55556	1,037037	0,913043	-22,2	-20	0,015865	13,26	-22,4242	-0,50455
pcn-mir- 5595	UAGUGUCACGUGCUUUAAAAAA GGUGCAGGCUCUCUUUUUUCUC GCAGUCCCGCACUGACCUGAGAG AGUCACCAUCUUAUGUCAAACAC AUGGACAAGA	100	21	27	25	27	46	54	1	0,84	-26,5	-26,5	0,090708	10,96	-26,5	-0,57609
pcn-mir- 574-1	UCUAGACCUCAGUGCACGCGcggc gugaguguguguguguggggugugugug cgugugugugugcagagcuGAACGCA GGAGCACGAGCGGAGCUCCCCCC UCAACACCCCAGUGCUGUCGUCA UGGACCAUGCUACCUCC	140	15,71429	13,57143	25	10	40,71429	23,57143	0,736842	0,628571	-42,8	-36,9	0,005974	29,56	-30,5714	-0,75088

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pcn-mir- 574-2	AAAGCGCCACACUCUAGACCUCA GUGCACGCGcggcgugagugugugug ugugagugugugugggggg	67	10,44776	13,43284	17,91045	5,970149	28,35821	19,40299	0,444444	0,583333	-29,2	-15,45	0,069833	22,63	-43,5821	-1,53684
pcn-mir- 5965	AUCUUGGGUGAUGACAAUUCUG ACAUUUUGCAAGGUUUCAUCCU UGUCUGUUUCAUUCUUCAAACU GCGAAGUCGCGCAUCACCAAUGG	89	20,22472	22,47191	22,47191	34,83146	42,69663	57,30337	1,55	0,9	-20,4	-19,7	0,042628	9,27	-22,9213	-0,53684
pcn-mir- 6	CCGCCAGUCGGACUAAAGCAGUC CGUUUUGUUGGCAGGAGggaacu gcugcugcagcgacugggcc	66	19,69697	12,12121	15,15152	13,63636	34,84848	25,75758	1,125	1,3	-29	-25,9	0,187241	5,82	-43,9394	-1,26087
pcn-mir- 6013	GGCGCCCUGGCCUACGAGCGGAG GAACAGCAUGGCGACCCUGUCCU CGGCUGCUGACGACCGCCUCAAA CGCCAGAGGCUGA	82	32,92683	19,5122	35,36585	12,19512	68,29268	31,70732	0,625	0,931034	-33,6	-22,8	0,076623	17,71	-40,9756	-0,6
pcn-mir- 6037-1	GGAAUCUUAUACACUAUACUGU GUGUACUUUAGUGUAACAUGGA AUCUUAUGCACUAAGCUCUGUG UACUUUAGUGUAACAUAGUAUG UGGACAGAUAUG	100	21	29	14	36	35	65	1,241379	1,5	-27,2	-27,2	0,192392	10,82	-27,2	-0,77714
pcn-mir- 6037-2	AACUCUGUGUACUUUAGUGUAA CAUAGUCAUGGAGUCUUAUACA CUAAGCUCUGUGUACUUUAGUG UAACACAGUCACGGAAUG	84	20,2381	28,57143	17,85714	33,33333	38,09524	61,90476	1,166667	1,133333	-27,2	-27,2	0,62986	1,19	-32,381	-0,85
pcn-mir-	GCUGACACCCUUCCCUCAGGUCG UCCUCCUCUAAGAAGCAAACAGA	91	26,37363	30,76923	27,47253	15,38462	53,84615	46,15385	0,5	0,96	-30,3	-29,9	0,158352	9,81	-33,2967	-0,61837

6076

AGCAUGACAGAGGAGAGAGAA AACCCAAAGGGAGGGCUCUCUGU

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pcn-mir- 6098	GUGCUCGUCAUAGUGAUUGUGU GUUUCUAGAAGACAAGAC	84	23,80952	28,57143	17,85714	29,7619	41,66667	58,33333	1,041667	1,333333	-22	-19,4	0,02079	16,09	-26,1905	-0,62857
pcn-mir- 6132-1	gaaagcagggcuggggauucuggcaugg caccguuCCCCCAUCGGCCAGGUGC CAGAGCACCAAACCUGACUGAa	75	12	13,33333	21,33333	5,333333	33,33333	18,66667	0,4	0,5625	-29,7	-28,6	0,15428	5,96	-39,6	-1,188
pcn-mir- 6132-2	CCCUGCAagaagcagggcuggggauucu ggcaaugGCGCCUCCUCCCUUCGCC AUGGUCCAGAGCcaaccacccuggcu gcaaga	84	9,52381	4,761905	21,42857	8,333333	30,95238	13,09524	1,75	0,444444	-34,2	-34,2	0,026095	5,82	-40,7143	-1,31538
pcn-mir- 6132-3	ggaagcagggcuggggauucuggcaugg gcacGCGCCCCGCCACGUCCAGAG CUACACCCUGCUGGA	67	13,43284	8,955224	23,8806	5,970149	37,31343	14,92537	0,666667	0,5625	-30,2	-21,3	0,185778	16,57	-45,0746	-1,208
pcn-mir- 6335	AUAGACAUUCAAGCCAAUCACUG CAUACACAGUGAUGCAGGUCAU UCGACAACUUUACUGCACCACUG UUUGAGCAUAUGUCUUGUGUCA GU	92	18,47826	28,26087	23,91304	29,34783	42,3913	57,6087	1,038462	0,772727	-25,4	-25,4	0,193109	5,21	-27,6087	-0,65128
pcn-mir- 6416	AGCAAAUUGCUUGAUCAUAGUG AGCGUAUCAUGGCAGCACAUCCU CAUGGGUUUGCGUCUCCGUAUC AUCUGCUAGCUACUGAGAACAAU UUUUU	95	21,05263	24,21053	22,10526	32,63158	43,15789	56,84211	1,347826	0,952381	-21,2	-20,6	0,052561	13,18	-22,3158	-0,51707
pcn-mir- 64c	uaauuaguccagugUUGAUGUCACA CCAGUGUUAAUUGUCUCCAUGU CCAGCUGCUCGUUGGCAUGACAC ACUGGCUGAACCA	83	18,07229	18,07229	22,89157	24,09639	40,96386	42,16867	1,333333	0,789474	-23,4	-23,3	0,067275	11,61	-28,1928	-0,68824

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pcn-mir- 6505	UUUAGCUCCAUCUGACUUCUACC UGUUCCCUAAACUCAAAUCCCAC CUAGUUGGUCAccauuuuggaaaca augauGAAGUCAUAUGAGCUGUG	94	12,76596	19,14894	22,34043	25,53191	35,10638	44,68085	1,333333	0,571429	-21,1	-19,17	0,013409	12,71	-22,4468	-0,63939
pcn-mir- 6516	CGGUCUUAUUCUAACUGGUUUC AUGAAUGCAGUAACAGGUGUCU CCACCUCUGCAUUGCUCAAACCA CAUUACAUCAGAAAG	82	17,07317	28,04878	25,60976	29,26829	42,68293	57,31707	1,043478	0,666667	-19,7	-19,7	0,160405	4,33	-24,0244	-0,56286
pcn-mir- 6560	CGCUGUGUUGCUCCAUACUGCU GAAGUAGUGUCUGUACUUCUGU UUCAGUCAUAAUGAGCAGCUCA UCA	69	21,73913	20,28986	23,18841	34,78261	44,92754	55,07246	1,714286	0,9375	-19,8	-18,8	0,070623	8,29	-28,6957	-0,63871
pcn-mir- 6575	GAACUCCAAACGGUGGGCCUGGG AAGAGGACAGGAGCAUCUGUCG AGUUUUCCCAGGCUGAUGUGUG GAGCAG	73	36,9863	23,28767	20,54795	19,17808	57,53425	42,46575	0,823529	1,8	-37,7	-37,7	0,136478	3,17	-51,6438	-0,89762
pcn-mir- 6587	guuuuuuuugguuuuuuguuuuuug uuuauugcuuugcUGGAAGUGGUG CUAUAUGUCGCUUCUUCGUAGA AACCAUAGGACCAAAGAAACUG	94	14,89362	18,08511	10,6383	14,89362	25,53191	32,97872	0,823529	1,4	-20,8	-14,3	0,005082	23,66	-22,1277	-0,86667
pcn-mir- 6603	acacacagugagauCAAGUUAAAGG ACAAGAGGAAAUAACUUGAGCAG CUUUGUCAUUUUCAGCUCGUAU UUUAUUUUGAUCCAUCAGUGAU U	93	16,12903	25,80645	12,90323	30,10753	29,03226	55,91398	1,166667	1,25	-18,6	-16,4	0,03366	16,97	-20	-0,68889
pcn-mir- 6680	CCACAAAACACACUAAAGCGGAU GUUGCUGAUGAAGAUAAAUCGU GGACCUAAGGUAUCAGCGGACAU	93	22,58065	31,1828	22,58065	23,65591	45,16129	54,83871	0,758621	1	-24	-24	0,03754	8,12	-25,8065	-0,57143

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	CCAAGCUCUAGUAUUGUCUCUG GUC															
pcn-mir- 669f	acacacauauacauacacaccacguguu guUUCACAAGUAGUACAACAGGC GUGUGAGAUGUUUAUGUGAGG	73	17,80822	16,43836	6,849315	16,43836	24,65753	32,87671	1	2,6	-25,6	-20,3	0,138486	10,86	-35,0685	-1,42222
pcn-mir- 67	GUUGUCGGUCCUUGUUCAGCCC GGUUGUGAUGGAGUUGGUCGCA UCACAACCUGCAUGAAUGAGGAC UGACGU	73	31,50685	17,80822	21,91781	28,76712	53,42466	46,57534	1,615385	1,4375	-42,5	-42,5	0,387173	1,28	-58,2192	-1,08974
pcn-mir- 6816	UCCUGCACGUCGCUCCCGUCGUU GAUCAGGGCGUUCCCAAAUUGAA GGACCUGCACCUUGCAUGGAACG CCAUAUCCAGCCUCGAGGACAAU GCACUC	98	23,46939	21,42857	33,67347	21,42857	57,14286	42,85714	1	0,69697	-29,7	-29,4	0,03583	9,47	-30,3061	-0,53036
pcn-mir- 6852	CUAAAGAUUUGUCCUCUGUUCC UCAUCGUUCGUGAUCACAAAGCC AAACGCUUUGCUUU	98	15,30612	29,59184	23,46939	31,63265	38,77551	61,22449	1,068966	0,652174	-24,8	-24,8	0,119887	4,49	-25,3061	-0,65263
pcn-mir- 6894	CCGCUUGGUGGUAAUGUCAAGG AGGAUGGAGAGCUGUUACAGCA UCUUCGCCAUCUUACAUCCUAGC AAGUAG	73	27,39726	24,65753	21,91781	26,0274	49,31507	50,68493	1,055556	1,25	-25,9	-25,9	0,400909	2,89	-35,4795	-0,71944
pcn-mir- 6951	UUGUUGUAUUUGUGUGAUUCCC GACACUGUUCCUUGUACUGUAU AUACAGCGAACAGGACCUUUAUC ACACCUACAAUGG	80	18,75	23,75	22,5	35	41,25	58,75	1,473684	0,833333	-23,5	-23,4	0,272799	2,62	-29,375	-0,71212

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pcn-mir- 6974	UCAACCACAACGACGACGGUGGA CAAGGGGUGGACCUCGAUGCCAG CAUGGUGUCCACCAGCUACAUUG CGCUCUUCUCCACUCUCUUCUGU GUCGUGGG	100	27	19	31	23	58	42	1,210526	0,870968	-34,3	-27,1	0,01583	24,28	-34,3	-0,59138
pcn-mir- 6977	CCUCGUGCGUGGAGAAAACAUU GAUUGUGAGGCGCUGUGGGCAG GUGAGCCAGACUGUCACUAAUG UAUGACUUCUGCUCACUCACGGC U	90	30	21,11111	23,33333	25,55556	53,33333	46,66667	1,210526	1,285714	-29,4	-28,7	0,036666	9,79	-32,6667	-0,6125
pcn-mir- 6999	CACACGUGCACUGCACGCCAUCU CGCCUCCAUCCCAUCAUCUcaggag aaggaaggagagucAGGAGCGUGAA UGUCUUGCAGAUGCCCCGUCAC	95	15,78947	15,78947	30,52632	16,84211	46,31579	32,63158	1,066667	0,517241	-27,3	-17,3	0,084758	25,48	-28,7368	-0,62045
pcn-mir- 7000	CAAACAGUGCCCACCCACCUGCCU GUCACAGUgugauuuauuuacauug uaaCUGGAUGCUCAUGGCUGGUG GCCCAGCACUGUAUA	87	18,3908	16,09195	26,43678	16,09195	44,82759	32,18391	1	0,695652	-32,8	-32,5	0,12354	7,83	-37,7011	-0,84103
pcn-mir- 7072	UGAGGAUACAAAGGAGGGGCAG GUCUAGCUUCUUCUUCCAGU UCCUGCUGGUCUCUUUGUCUCC AGA	69	26,08696	17,3913	24,63768	31,88406	50,72464	49,27536	1,833333	1,058824	-22,9	-22,9	0,435548	12,1	-33,1884	-0,65429
pcn-mir- 71-1	AAGAAAUCCUUUUGGUGUGAAA GACAUGGGUAGUGAGAUGUCGG UCCUUCAGAUUCACCUUAUUACC CUGUCUUUUGCAUCAAGGGGAA ACCAUGCGUCAA	101	23,76238	26,73267	19,80198	29,70297	43,56436	56,43564	1,111111	1,2	-43,3	-43,3	0,1969	5,13	-42,8713	-0,98409

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pcn-mir- 71-2	gcacagacacaucUGCAUUCACAUU ACACUUACUUGCACCCGUACCCU AGUCUGGUGAAAGACACAGGUA GAAUGUAAUUCGUGUUGUUCUG CUG	95	17,89474	21,05263	20	27,36842	37,89474	48,42105	1,3	0,894737	-19,9	-10,75	0,038952	25,08	-20,9474	-0,55278
pcn-mir- 7151	UUGUUGACACUGAGAAAAGUGA CAGGAUCCAUCUCUGCCUGCUCA CCUUCACUUUUGUGGUGAGCAG cugucauuucucucuuugCAAGAU	91	18,68132	19,78022	18,68132	23,07692	37,36264	42,85714	1,166667	1	-33,5	-32,8	0,126184	5,54	-36,8132	-0,98529
pcn-mir- 7307	AGUCAGGAGAAUGCCAUUGAGU UAUUAACUUGGUGUGGUG	97	25,7732	28,86598	14,43299	30,92784	40,20619	59,79381	1,071429	1,785714	-26,8	-23,4	0,005514	16,02	-27,6289	-0,68718
pcn-mir- 7314	GUCACAGGGACCCUGGUUGGCC UGCACAAGCCCCAGUAAUACUGG UGUCAAGGAUAGACGAAACUCCU UGAAGAUUGUCAGAAACAGUGU CUCUGUGCa	99	26,26263	26,26263	24,24242	22,22222	50,50505	48,48485	0,846154	1,083333	-32,6	-28,7	0,010541	12,05	-32,9293	-0,652
pcn-mir- 7386e	UGUAAAGUAGUAAACACUUUAC CCGUUUGACUGUUUGCCCUUGU UCUUGAACAGUGUGGGUGAACC UCUUGACUGGUGUAAAGUUGUA UAACUUUUUA	98	21,42857	23,46939	16,32653	38,77551	37,7551	62,2449	1,652174	1,3125	-24,7	-24,1	0,025944	13,11	-25,2041	-0,66757
pcn-mir- 7389	GUUGGGAAGAAGCUGCGGUCAC AGCUGUUGGUGAGGGUGAGCCC UUGCUGUACUUGAAGCAAGAGA GACCUCCUGACUGUUACCUCCAg cuucuccccu	100	28	19	20	21	48	40	1,105263	1,4	-40,8	-39,7	0,083977	10,1	-40,8	-0,85

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pcn-mir- 7398h	CGUACAGGUACACGGGACUCAAC AGUCACCUUGUCGUAACCCUCCC UUCUUUAUGAUAGCCCUUCAAG AUGCUUUACCGCAGUGACCUGU GGG	93	21,50538	21,50538	30,10753	26,88172	51,6129	48,3871	1,25	0,714286	-24,3	-24,3	0,03188	3,28	-26,129	-0,50625
pcn-mir- 7399	AGGACUUCAAUGUAGCACUUAUa cgcauguauauguauauacaugaaUGU AUUUAUGAAUGUACACAUGUAU CUCUCAUAGGUACUUUGAAGUA UU	96	12,5	21,875	10,41667	29,16667	22,91667	51,04167	1,333333	1,2	-23,9	-23,9	0,118362	17,65	-24,8958	-1,08636
pcn-mir- 743b	AGUAGACACUUCUGAACGAGCU UCUUGUACUAACCUUGCUGUAA ACCCCAGGACGAAGCUGUUCAGA CUGGUGUCUGGU	79	24,05063	24,05063	24,05063	27,8481	48,10127	51,89873	1,157895	1	-26,2	-25,6	0,030673	10,47	-33,1646	-0,68947
pcn-mir- 745a	GAGGCGGCUUUUCAACAGGCUG CCUUGCGUUCUUAAUACAAGCU GCCUGAUGAAGAGCUGUCCU	64	26,5625	20,3125	25	28,125	51,5625	48,4375	1,384615	1,0625	-30,5	-30,5	0,08838	5,12	-47,6563	-0,92424
pcn-mir- 745b	AGCCUAUUUCCCUCCGCUCUUCC UUUGGACAGCUAUCGUGCCGAC AAGGAGAGCUGCCAAAUGAAGG GCUGUGGUGGACGGGC	83	30,12048	19,27711	27,71084	22,89157	57,83133	42,16867	1,1875	1,086957	-35,7	-31,3	0,025365	10,13	-43,012	-0,74375
pcn-mir- 7472	GCAUUCCGGGGAGAACAUUUCA UAUGAGAUGUGCUGGAGAUGAA AACUCUUCCUCCCCAGAACAU	65	23,07692	29,23077	23,07692	24,61538	46,15385	53,84615	0,842105	1	-20,8	-20,8	0,342745	5,01	-32	-0,69333
pcn-mir-	GCAGCCAGCUCUCUGUGAGUUG	97	26,80412	20,61856	23,71134	28,86598	50,51546	49,48454	1,4	1,130435	-52,7	-51,6	0,157091	3,48	-54,3299	-1,07551

750

GAAGAUUGGGUCUUUGGCAGGA AUACUGUCUUCCAUGCCAGAUCU

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	AACUCUUCCAGCUCAUAGUGGCA UGGCAUG															
pcn-mir- 751	CUUGGCUCUGUGUGAUUGGUUU CUGUUCUCCAAGauuaaaacauguu ugaauGGCCACCACUUUGGCACAG UAAACAUCAUCCAUAGAGCCCUU	94	17,02128	15,95745	22,34043	25,53191	39,3617	41,48936	1,6	0,761905	-27,8	-22,8	0,051558	21,54	-29,5745	-0,75135
pcn-mir- 753d	AGAAGAUCAUUAUUCAAGCGAU UGCAGAGAGAAAAACUAUUCGCA UGCAUGAAUGCAUAGGUAUGAG UGUGCACGUGCCUGCAUAUGAU CUCAC	94	23,40426	32,97872	18,08511	25,53191	41,48936	58,51064	0,774194	1,294118	-22,8	-18,7	0,009746	21,51	-24,2553	-0,58462
pcn-mir- 760	GAGCAAGUGACUGACACAGAAAA GCUGAUCAUGAAGAUCGGCUCU GGGUCUGUGAAGUCAGUUGGCA	67	31,34328	29,85075	17,91045	20,89552	49,25373	50,74627	0,7	1,75	-29,1	-28,8	0,330018	2,01	-43,4328	-0,88182
pcn-mir- 7643	aguuuguuuuucaguGAACAUUGAA UACUGUCGACAUCUGUUUCUCA GUAAUUUUUACUUAGUAUCACA GAUUCAACUGAACACUGAUACAG AACGA	97	12,37113	28,86598	16,49485	26,80412	28,86598	55,6701	0,928571	0,75	-20,4	-15,3	0,02611	14,6	-21,0309	-0,72857
pcn-mir- 7649	GAGAUCAUAGUAAUGACAGCAG UGCUGUAUCUAUGUAUGCCAAC AAAGUGAAUCAUUGUUGUACUU UAUUUAUGAUUUG	79	20,25316	30,37975	12,65823	36,70886	32,91139	67,08861	1,208333	1,6	-19,5	-18,5	0,065763	5,47	-24,6835	-0,75
pcn-mir- 76b-1	ACAUCCAAGCCUCACCCAUAGUU GAGAAAAGCCAUAGUUGUGGUA Acaaacugucuuguuuuuuucaacuccu gggugaggcuuagaaca	90	10	17,77778	12,22222	11,11111	22,22222	28,88889	0,625	0,818182	-43,4	-43,4	0,140211	4,23	-48,2222	-2,17

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pcn-mir- 76b-2	UACACUGCUGCCAAAUUGUUGA UAGAAAUGGUAGUUCCGCAAUU GCAGgugucuuguuuuuuucaacUGC GUUUGCACUACAAUUUUGAACA GUUGU	97	17,52577	21,64948	14,43299	26,80412	31,95876	48,45361	1,238095	1,214286	-21	-14,9	0,029354	18,5	-21,6495	-0,67742
pcn-mir- 770	UGUUGAUUGGACUGUACAUGUA UGUACCAGCAGUUGGGGCAGCAC CACGUGUCUGGUAAAUCUGAGU GUCAACAUGG	77	29,87013	23,37662	18,18182	28,57143	48,05195	51,94805	1,222222	1,642857	-19,8	-19,4	0,075721	9,14	-25,7143	-0,53514
pcn-mir- 7880k	AAACGUCACAGUCCUGAGCUCUG CCAAACCCgaggucacgaggucagaaA UGGUUGCUGAGCUCCACGUGAC GCCG	76	18,42105	17,10526	26,31579	14,47368	44,73684	31,57895	0,846154	0,7	-22,8	-18,67	0,085099	18,19	-30	-0,67059
pcn-mir- 7880q	UCAAUGACAUUUACAUACUCUU GGAAGAGGGUCAUGCCUACCAU GCAGUUUGCGACCAaaaucacucuc ucuuucaaguACUAUUGCUUACAU GCAUUCA	100	14	22	19	24	33	46	1,090909	0,736842	-19,6	-19,6	0,125227	11,54	-19,6	-0,59394
pcn-mir- 79	GGUUGGUAUUAUAUcuguauuaua uuauuaugUCAGUUGCUGUAGCC ACUGUAACUCUGUAGCUCUUUU AUAAUGUAAAGCUAAAUUACCAG UG	95	15,78947	21,05263	12,63158	30,52632	28,42105	51,57895	1,45	1,25	-18,8	-18,8	0,098286	9,53	-19,7895	-0,6963
pcn-mir- 7901	CGUCGUCAUUUCUGAAAGUGAU UGUUUGUCUUUAUGAUUACUGU AGUUGAAGCGCUAUUGGUUCAA CUUGAAAAACAGUGACUUCUCU GUUCUGACGACU	100	21	23	17	39	38	62	1,695652	1,235294	-28,4	-28	0,058835	13,99	-28,4	-0,74737

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pcn-mir- 7c	aaaaaaaaacuaacccaGGCUGCCGU GAUCUGGAAGACUAGUGAUUUU GUUGUUCUGAUGCUGACUAACA AUAAAUCACAUUCUUCCCUGAUU GCUGCAGCCACAUGCU	109	18,34862	19,26606	19,26606	27,52294	37,61468	46,78899	1,428571	0,952381	-37,2	-34,7	0,144483	9,32	-34,1284	-0,90732
pcn-mir- 8-1	GCGGACUCUGGGUUCAUCUUAC CUAACAGCAUUAGAUGUGUGUC AGCAUUUUCUAAUACUGUCAGG UAAAGAUGUCCACAGAGUCU	86	22,09302	25,5814	20,93023	31,39535	43,02326	56,97674	1,227273	1,055556	-39,6	-39,6	0,178161	3,42	-46,0465	-1,07027
pcn-mir- 8196b	UGCAAGAAAUUUACGaugcuguuu uaaaauguaacggGUUACAAGUCCG UUCUGGCAUUUUGACACCAGuag uuaauuuuucuu	84	11,90476	15,47619	11,90476	16,66667	23,80952	32,14286	1,076923	1	-19,6	-19,4	0,052609	9,33	-23,3333	-0,98
pcn-mir- 8-2	UGCGCGGACUCUGGGUUCAUCU UACCUAACAGCAUUAGAUGUGU GUCAGCAUUUUCUAAUACUGUC AGGUAAAGAUGUCCACAGAGUC UGCUGG	94	24,46809	23,40426	21,2766	30,85106	45,74468	54,25532	1,318182	1,15	-46	-46	0,192059	3,37	-48,9362	-1,06977
pcn-mir- 8296	UGAGACCUCGAGAUGAUGGAGA GCACACUUGACUUACUCUGGCUG AGAGUCCGUGAUGUGUCUCUCG UCUUCUCCUGGUCAGA	83	27,71084	19,27711	24,09639	28,91566	51,80723	48,19277	1,5	1,15	-35,3	-34,3	0,251447	8,1	-42,5301	-0,82093
pcn-mir- 8332	UCCAUUUAUCUGCACAUCUCUU GAUGAAGUCAGUAAAGACCACAG AUCCUCCGggauguuucuuucuuugc ucuucUCGACAUGCGUGCACAAAA UAAG	99	13,13131	24,24242	20,20202	19,19192	33,33333	43,43434	0,791667	0,65	-24,6	-24,5	0,280827	4,23	-24,8485	-0,74545

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pcn-mir- 8335-1	uuuuguuguuguuguuguuguuguuguuguuguuguugu	96	13,54167	15,625	10,41667	9,375	23,95833	25	0,6	1,3	-27,7	-27,7	0,191059	9,75	-28,8542	-1,20435
pcn-mir- 8335-2	uaccuguuguuguuguuguuguuuugg uuuuuuuugcugCAAGGCUGUUAG CUUAUCUUCACCCGCAAGCACAA GCAUUACAACGAACAGACA	93	9,677419	20,43011	17,2043	10,75269	26,88172	31,1828	0,526316	0,5625	-21	-18	0,029125	12,45	-22,5806	-0,84
pcn-mir- 8364g	GCCCACCUUCCCUUUCUGCUUAC CAAACGGAAAAAGGAUGCUACGC AGAGAGUGUGgaaaaggggagaggg aggugcAG	79	17,72152	20,25316	20,25316	15,18987	37,97468	35,44304	0,75	0,875	-29	-29	0,217216	5,42	-36,7089	-0,96667
pcn-mir- 8416	uaugauugGUCACAUAGUUUAUCA GAUGAUAAAUGGAGUGAACAUA GUAUUUACUUCCCCUGCUGAUA AGUUAAGUAUCCAUUCUUG	87	16,09195	27,58621	14,94253	32,18391	31,03448	59,77011	1,166667	1,076923	-18,7	-18,7	0,245232	4,5	-21,4943	-0,69259
pcn-mir- 8422	AGGAAAAGAUCAUCAGAACUUGC AAUUAAAAGUAgcacaaacaagaaag caagaCCAAGUGUUAGUAAAAUGC AUGUUGAGGAUGAUUCUUUUUC A	96	15,625	30,20833	9,375	23,95833	25	54,16667	0,793103	1,666667	-23,6	-23,1	0,141217	4,11	-24,5833	-0,98333
pcn-mir- 8462-1	AAUCCCAGGUGCAGAUAGGCAAA AAUCAUAAGAAUGAUCAAAUAAU UGUCCUUGUGAUUUGACACUCA CUGGGGUG	76	22,36842	34,21053	17,10526	26,31579	39,47368	60,52632	0,769231	1,307692	-21,6	-18,9	0,11733	10,16	-28,4211	-0,72
pcn-mir- 8462-2	aaacugucaagcAUCUUUCUUUUGG AAACAAGUAAAUCAUAUGCCACC UGUCAGUGACAUGAUGAUUAAU	100	16	30	14	28	30	58	0,933333	1,142857	-19,5	-18	0,090701	10,52	-19,5	-0,65

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	UUGAUAAGAUGAAAUGGUCUUC AACAGCAG															
pcn-mir- 8485-1	UGUACAGGCAGCCCAUACCUGUC AUUUCUGUUUGGUAGAguguacg cgcgcgcacacacacacacacacguauuc aUAGAGUAuguuuugcgugugug	98	11,22449	11,22449	9,183673	15,30612	20,40816	26,53061	1,363636	1,222222	-28,9	-25,3	0,086631	28,22	-29,4898	-1,445
pcn-mir- 8485-2	acacacaacacacacacguacucacacac acacauguucauuCAGGCUCGCGCC ACAGGAAACAUCAGGUGAGAGAC Augucgcugcuguugcugugg	99	11,11111	12,12121	10,10101	3,030303	21,21212	15,15152	0,25	1,1	-20,6	-10,9	0,017176	20,99	-20,8081	-0,98095
pcn-mir- 87	UUUUAAAAGUGCGGAACUGGCC UGCCUGAAAUUUAUGCUCAAACC UAUCUUGUGAUAAGGUGAGCAA AGUUUCAGGUGUGUUAGAUCUG UACCUGAUC	98	23,46939	26,53061	17,34694	32,65306	40,81633	59,18367	1,230769	1,352941	-42	-38,2	0,120168	3,71	-42,8571	-1,05
pcn-mir- 8834a	UUGCUGCCGGGCCUGGAGGCCA GCUGUACCACACAUCUGCUGCCC CUCCACACCUGCGGCAGGUG	65	29,23077	13,84615	38,46154	18,46154	67,69231	32,30769	1,333333	0,76	-28,3	-28,3	0,089597	7	-43,5385	-0,64318
pcn-mir- 888	UCAAAGGACUGACACCUCUUUGU CCAGCUCAUGACAGGCUGCACAG AUGAGCCGGACAAGUGUUGUUA GUGGCUUCAU	78	25,64103	24,35897	24,35897	25,64103	50	50	1,052632	1,052632	-25,5	-24,5	0,08259	6,42	-32,6923	-0,65385
pcn-mir- 8915-1	UAUUUGCCACCGCUUGGCGGCU UCUGGGUUUUCUUCGGGAGCAG GACGGCCUGGAUGUUGGGCAGC ACACCACCUUGCGCGAUGGUGAC GCCAGACAGAAGCUUGUUCAACU	144	32,63889	15,97222	27,08333	24,30556	59,72222	40,27778	1,521739	1,205128	-48,1	-38,5	0,009336	30,97	-33,4028	-0,5593
Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
--------------------	--	----------------	----------	----------	----------	----------	----------	----------	----------	----------	-----------------------	------------------------	----------	-------	------------------------	------------------------
	CCUCGUCGUUGCGGAUGGCCAGC UGCAGGUGA															
pcn-mir- 8915-2	GCUUAUUUGCCGCCGCUUGGCG GCUUCUGGAUUUUCUUGGGGAG GACGGCUUGGAUGUUGGGCAGC ACACCACCGUGUGCGAUGGUGAC GCCAGACAGAAGCUUGUUCAACU CCUUGUCGUUGCGGAUGGCCAG CUGCAGGUGA	144	34,02778	15,27778	24,30556	26,38889	58,33333	41,66667	1,727273	1,4	-51,5	-47,1	0,029851	26,76	-35,7639	-0,6131
pcn-mir- 8915-3	ACGGCCUGGAUGUUGGGCAGCA CACCACCUUGCGCGAUGGUGACG CCGGACAGAAGCUUGUUCAACUC CUCGUCGUUGCGGAUGGCCAGC UGCAGGUGACGGGGGAUGAUUC UCGUCUUCUUGUUGUCGCGAGC GGCGUU	140	34,28571	15	26,42857	24,28571	60,71429	39,28571	1,619048	1,297297	-50,2	-44,5	0,009254	28,93	-35,8571	-0,59059
pcn-mir- 8915-4	GACGGCCUGGAUGUUGGGCAGC ACACCACCUUGCGCGAUGGUGAC GCCAGACAGAAGCUUGUUCAACU CCUCGUCGUUGCGGAUGGCCAGC UGCAGGUGACGGGGGAUGAUUC UCGUCUUCUUGUUGUCGCGAGC GGCGUUG	142	34,50704	15,49296	26,05634	23,94366	60,56338	39,43662	1,545455	1,324324	-51,2	-50,3	0,023929	15,77	-36,0563	-0,59535
pcn-mir- 8915-5	GACGGCUUGGAUGUUGGGCAGC ACACCACCGUGUGCGAUGGUGAC GCCAGACAGAAGCUUGUUCAACU CCUUGUCGUUGCGGAUGGCCAG CUGCAGGUGACAGGUUACUGCA AACCCUAGAAAGGAUUUGAGAU UUGUAGCU	142	30,98592	22,53521	22,53521	23,94366	53,52113	46,47887	1,0625	1,375	-48,4	-48,4	0,094252	13,02	-34,0845	-0,63684

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pcn-mir- 9015	CGAGGAGUGUCACGAUGGUCCCA GAGGAGACGAGAAAGUUGUUUG GCUUCCAUCACUCCGAUCUCCUA AUCGACUGUUGUGACAUUCCGC U	91	26,37363	21,97802	25,27473	26,37363	51,64835	48,35165	1,2	1,043478	-38,6	-36,5	0,087379	7,6	-42,4176	-0,82128
pcn-mir- 9-1	GUCCAUUUUUGCCUUUGGUAAC CUAGCUUUAUGAUAUUUCUGCC CCAAUCAUACAGCUAGAUAACCA AAGACAAAACCGGAGCCGCCG	88	17,04545	28,40909	27,27273	27,27273	44,31818	55,68182	0,96	0,625	-27,8	-27,8	0,435416	2,15	-31,5909	-0,71282
pcn-mir- 9120	CCUCUUCUACACAACAAUCUCAC UGGGGAGAGGGUACACUCGUGAC UCAGUCUCCCUCUCUCGCUAUCU CGCGCACAGAGAUGGUUAGAAgc ac	93	19,35484	22,58065	30,10753	23,65591	49,46237	46,23656	1,047619	0,642857	-26,6	-26,6	0,320862	10,09	-28,6022	-0,57826
pcn-mir- 9-2	UUGGCGUCCAUUUUUGCCUUUG GUAACCUAGCUUUAUGAUAUUU CUGCCCCAAUCAUACAGCUAGAU AACCAAAGACAAA	80	15	28,75	23,75	32,5	38,75	61,25	1,130435	0,631579	-23,1	-20	0,134445	5,8	-28,875	-0,74516
pcn-mir- 92a-1	AUUUGUGUGCUCAGGAAAGGUU GUGACUUGGGCAAUUCUGUGAU GUCCUGUCAGAUUGCACUUGUC CCGGCCUUGUCUUGGCUUAcacu u	90	26,66667	14,44444	18,88889	34,44444	45,55556	48,88889	2,384615	1,411765	-31,5	-29,1	0,036643	11,93	-35	-0,76829
pcn-mir- 92a-2	CUGGCAUUAGCAGUAGGUCUUG AUGGGUGCAAUUCUGAUGCAUU AAAUAACAGAUUGCACUUGUCCC	87	22,98851	25,28736	21,83908	29,88506	44,82759	55,17241	1,181818	1,052632	-35,5	-35,5	0,137395	3,64	-40,8046	-0,91026

GGCCUUCUGCCAAUAGCUAA

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	AGCGAUCAGGGUUGUGUAGACC	89	26.96629	22.47191	24.7191	25.8427	51.68539	48.31461	1.15	1.090909	-32	-32	0.072274	6.85	-35.9551	-0.69565
pcn-mir-	GGAACAGGGGCAAUGCAUUUGA		-,	, -		- / -	- ,	-,		,				- ,		-,
92b	GUCGUCUGUAUUGCACUCGUCCC															
	GGCCUAUCCAAUCUGACUCAUA															
	AUUAUGUGUUAUUGUAAAAGGU	99	19,19192	28,28283	21,21212	31,31313	40,40404	59,59596	1,107143	0,904762	-26,6	-26,6	0,055246	15,72	-26,8687	-0,665
pcn-mir-	UGGGAUGUGGGCUCUGUCGCGC															
92c	AAUAGAUAACUUUCUUUGACAA															
	GCAUUCGCCCACACCUUAUUACA															
	ACACAAUCAC															
	UUUGGCGUCCAUUUUUGCCUUU	93	17,2043	26,88172	26,88172	29,03226	44,08602	55,91398	1,08	0,64	-34,1	-34	0,28369	3,42	-36,6667	-0,83171
pcn-mir-	GGUAACCUAGCUUUAUGAUAUU															
9-3	UCUGCCCCAAUCAUACAGCUAGA															
	GCC															
	ACCUGAUUGUUAGUUAAAAGGG	88	26,13636	26,13636	18,18182	29,54545	44,31818	55,68182	1,130435	1,4375	-31,8	-28,3	0,01871	14,65	-36,1364	-0,81538
pcn-mir-	CCGAGGAUAGUCAGGCAUAUCGA															
9341-1	CAAGUUUGUGUAUCGCUUCUCG															
	GCCUUUUGGCUAAGAUCAAAG															
	caauucugacauuuuuacugugCCAUG	95	14,73684	13,68421	12,63158	17,89474	27,36842	31,57895	1,307692	1,166667	-29,5	-29,5	0,182004	3,22	-31,0526	-1,13462
pcn-mir-	GAUGAGACUUGUUGUCAAAAUG															
9341-2	GACAUCGCUUCUCGGCCUUUUG															
	GCUAAGAucaaagugugagaaaaa															
	UUAUGUGCacguauguauguaugua	88	15,90909	21,59091	11,36364	21,59091	27,27273	43,18182	1	1,4	-19	-17	0,162177	22,34	-21,5909	-0,79167
pcn-mir-	cauauaauaUUUAUCAGUGGGUG															
9388	UGAGCACCAAAACAUUUAUGAAU															
	GCAUGAUAAGCACAGUC															
pcn-mir-	GGCGGCUCCGGUUUUGUCUUUG	93	26,88172	29,03226	17,2043	26,88172	44,08602	55,91398	0,925926	1,5625	-45,5	-45,5	0,314517	3,87	-48,9247	-1,10976
9-4	GUUAUCUAGCUGUAUGAUUGGG															
	GCAGAAAUAUCAUAAAGCUAGG															

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/	MFEE(kcal/m	Freq	Div	AMFE (kcal/	MFEI (kcal/
											mol)	ol)			mol)	mol)
	UUACCAAAGGCAAAAAUGGACGC CAAA															
pcn-mir- 9543a	GAGAAACUAGCAAGUUCAUUAU AUGUCAGUAUGCAGAUUGCAAU GGUUUACUUUCCAUUGCACUGC ACUGGAGUAAAUAUUgcuuguuua uu	92	17,3913	27,17391	14,13043	29,34783	31,52174	56,52174	1,08	1,230769	-28	-26,4	0,033319	14,41	-30,4348	-0,96552
pcn-mir- 96	ACAUgguauuuauuacaaucauguG CAGUGCAGUUCUUUAUAUAACU AAUCAUACUGCAAAAAGUACAUG ACUGCAAUAUGCAAAAAACAUAU CACAC	99	9,090909	33,33333	16,16162	20,20202	25,25253	53,53535	0,606061	0,5625	-19,7	-17,9	0,056255	11,21	-19,899	-0,788
pcn-mir- 969	AAGAAGCGCGAAUCUUCUUCUCC UGGAucaggaaaauaaauuauuuaag aGUUCCACUAAGCAAGUUAUCUU GCAGGAGCUAGAAAAUCGCCCUU AGA	98	16,32653	22,44898	18,36735	19,38776	34,69388	41,83673	0,863636	0,88889	-22,7	-22,7	0,05101	17,67	-23,1633	-0,66765
pcn-mir- 96b	UCAAUUAUUUGGCACUUGUGGA AUAAUCGGUGUAUCUAAAAGUC GAUUAUACACCGGUGCCAAGUCA UCA	70	20	30	18,57143	31,42857	38,57143	61,42857	1,047619	1,076923	-23,4	-23,4	0,19695	2,59	-33,4286	-0,86667
pcn-mir- 972	CUCUGGGAUGUAGGGGGAAAAC UGUCaguaauguaaauauuuuuuuug ucaacuGAUAUAUGAGAAUUAUG UGGCUACUUUAACCCCUUCACCC ACAC	98	16,32653	19,38776	16,32653	19,38776	32,65306	38,77551	1	1	-23,7	-19,6	0,044018	24,34	-24,1837	-0,74063
pcn-mir- 981	AUCAGACUUUGUUCCGGGUUUC GCGGCUUGCGAACAGUCAUUUU	85	25,88235	17,64706	23,52941	32,94118	49,41176	50,58824	1,866667	1,1	-32,6	-28,1	0,035045	8	-38,3529	-0,77619

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	GAGCUGUGUUCGUUGUCGUCGA AACCUGCCCUGAAAUCUGA															
pcn-mir- 9891	CUCCACCUGGCGGCCGACCGAUG GUUCGGGAUGCGCGUUGACCUC AUCGGCUUCGUCCUCGUCUUGG CCACGACACUCGGCUCGG	100	29	12	36	23	65	35	1,916667	0,805556	-37,2	-28,7	0,102885	18,05	-37,2	-0,57231
pcn-mir- 995	CUGACCGCCAGGAGCAGACGAGA ACUAACCAGAGCCCGGAUACUGU GUGUGGCUCAUGAUUGACUGUC ACACCUUCUCGCUGGAUGGUAAA	91	27,47253	25,27473	26,37363	20,87912	53,84615	46,15385	0,826087	1,041667	-25,2	-20,28	0,073074	27,75	-27,6923	-0,51429

Supplementary Table 4– Structural and thermodynamic characterization of miRNA precursors in P. maculata. Size (Tam), G content, A content, C content, GC content, AU content, AU ratio (R-AU), GC ratio (R-GC), Minimum Free Energy (MFE), Minimum Free Energy of the Pool (MFEE), Frequency of the MFE Structure in the Pool (Freq), Diversity of the Pool (Div), Minimum Adjusted Free Energy (AMFE), Minimum Free Energy Index (MFEI).

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pmc- bantam	ACGAAACUGGUUUUCACAGUGA UCCAGCAGAUUGCUCAAAGUCUG AGAUCAUUGUAAAAACCAAUUU UGU	70	18,57143	32,85714	18,57143	30	37,14286	62,85714	0,913043	1	-29,4	-29,4	0,496236	1,25	-42	-1,13077
pmc-mir- 1	AUUAUUACAUAUCUGGUAUGUU UGUGGAGUUGAUGUGUUCAUGC UUCUUUAUAGUUUGACCUUUUC CCUCacacaacauaaagaugagaaaUU CU	95	13,68421	12,63158	12,63158	38,94737	26,31579	51,57895	3,083333	1,083333	-18,5	-17,2	0,045655	8,13	-19,4737	-0,74
pmc-mir- 1000	ACUACAGAUGUGGACUGGCUGG UGUGAUGGGACAAGACUUCAUC ACUCUCUCUGCCGGUUUCAUCAU CUGUCAA	74	24,32432	21,62162	24,32432	29,72973	48,64865	51,35135	1,375	1	-28	-27,1	0,031686	6,94	-37,8378	-0,77778
pmc-mir- 10031c	UUACUGAUGUUAUUACUCGUCC AUGUCUUCCUCUUCGUCCUUAU GAUCCCUAACAUAGGUAUGUGC ACACCUGACACUGUGAGGAGUU UUAACGCAGGUA	100	19	22	24	35	43	57	1,590909	0,791667	-27,5	-27,5	0,437289	4,9	-27,5	-0,63953
pmc-mir- 10046	CGCCGUCCUGCGAGAUCUCACCU GUCUAACGCGCAUGCGCCUCUCA UCACCACGCGCAACGGUUCCGCC UGACAGGGCGACUUGUCGCAGU GACGACA	98	25,5102	18,36735	37,7551	18,36735	63,26531	36,73469	1	0,675676	-37,2	-35,3	0,365188	5,25	-37,9592	-0,6

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pmc-mir- 10055	UUGCUCCUGCAUCUGCAAGCCUG GGCCAGGGUACCccgggugggagga gggaggacuuuuuuuuuccucagguAG CGAUGACUGGAGACG	91	18,68132	10,98901	16,48352	10,98901	35,16484	21,97802	1	1,133333	-33,1	-29,2	0,094013	18,78	-36,3736	-1,03437
pmc-mir- 10089	UCCAGCAUAAUUUGCUGUUUUG GUGAUAUACUCGUGUACAAUGA AAAUGAGCAAGACUAUGAUAUCA UCAUGAAAGCGAGAAAUGUUAG CUCAG	94	21,2766	34,04255	14,89362	29,78723	36,17021	63,82979	0,875	1,428571	-19	-17,9	0,02445	17,13	-20,2128	-0,55882
pmc-mir- 10173	UAGAACUUUUUUCUUCCCACCAU UCCUACACGCCUACUUCUUGCGG AAGGAAGugaggaaggaaaacaaauu aaa	75	10,66667	16	21,33333	22,66667	32	38,66667	1,416667	0,5	-22,1	-21,7	0,383116	2,01	-29,4667	-0,92083
pmc-mir- 10249-1	UGAAGAAGUGACUAACGCUGAU AACAGUCGAUGGACGAGGUAGAg uuggugguggcgguggugguugCCAGC GGAGCAGUUCUGAC	85	23,52941	23,52941	14,11765	12,94118	37,64706	36,47059	0,55	1,666667	-23,1	-18,2	0,173316	22,89	-27,1765	-0,72188
pmc-mir- 10249-2	AGAAGUGAACAAGAAGUGACUA ACGCUGAUAACAGUUGGUGGAC GAGGUGGAguuggugguggcgguggu guugCCAGCGGAGCAGUUCUGAC ACUUGU	99	25,25253	24,24242	13,13131	15,15152	38,38384	39,39394	0,625	1,923077	-27,2	-13,3	0,036951	27,09	-27,4747	-0,71579
pmc-mir- 10256	UAGCCAGUAUAGAACAGUAGCCA GGCAUGUGAGCACCACAAGCUAU GUAUAUAAAACUUAUGGUACCCC UAUCACAUGUCUGCUAUGGCCU UCCUGGUAU	100	20	29	24	27	44	56	0,931034	0,833333	-30,5	-29	0,074934	11,46	-30,5	-0,69318

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pmc-mir- 10267	AGAGCUUUGUCGGUUUUUGGCU GUGAGGGAGACCAGAUCAAACCA ccgcccccacaacaccaaaaaagcAAGG CAAU	78	20,51282	19,23077	11,53846	16,66667	32,05128	35,89744	0,866667	1,777778	-21,7	-15,8	0,291539	8,02	-27,8205	-0,868
pmc-mir- 10492a	gucauugucauugucaucgcugucguca ucgucgucguuuaGCUCUCUGAUUU AUGUAGCAGACGAGAGGCAUGA GAGACGAAUUGGACAGAAAUUC U	98	16,32653	18,36735	9,183673	14,28571	25,5102	32,65306	0,777778	1,777778	-22,8	-11,64	0,059506	28,54	-23,2653	-0,912
pmc-mir- 10508b	agagagagauauguaaAAUGUCAGG AAAGGUAAACAGGUGUAAUCAU UCAAUACCUCUGAACAGCAUUUC GUGACUUCUUUAAAUAUCUUCA GU	94	13,82979	27,65957	14,89362	26,59574	28,7234	54,25532	0,961538	0,928571	-19,8	-16,4	0,034776	12,65	-21,0638	-0,73333
pmc-mir- 10509	CUGUGUCACGUACAGUAACACUG AUCGUCACGACUCCACCGUGACA UGACGAUGUACAGUGAGUGACG UGACAUGA	76	25	27,63158	25	22,36842	50	50	0,809524	1	-27,4	-24,3	0,170278	7,05	-36,0526	-0,72105
pmc-mir- 10578	CUCCUUCAGCAGUGAGUCAGUCU CACGCUGCAUCCCUUGUGACGGU GGCUGCGAGACUGAGACACAUG GCAUAAAGACA	79	26,58228	24,05063	27,8481	21,51899	54,43038	45,56962	0,894737	0,954545	-24,8	-24,8	0,024862	11,14	-31,3924	-0,57674
pmc-mir- 10611	GUCAUGAUGAUUAGCUUUCACU GAUUUCUAAGGGUUCUAAUAGC AUCACCACUCUUGAUUUCCCUUU UUCACACAGUGGGaaauuuaaucu ucauuuu	98	14,28571	18,36735	18,36735	30,61224	32,65306	48,97959	1,666667	0,777778	-20,3	-19,5	0,141481	6,16	-20,7143	-0,63438

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pmc-mir- 10639	GAUAAGCUUAUCAUACGUAACCC AUACAAAGGUUAUGGAAGUGAG GAGAAGAACAAGAAGUUCUCUCC CAUGGGUAUUUGCCAUGAUAGC UUUGG	95	24,21053	32,63158	16,84211	26,31579	41,05263	58,94737	0,806452	1,4375	-29,6	-26,6	0,069014	9,88	-31,1579	-0,75897
pmc-mir- 10770-1	GCGAAACCACAGAACACGACUGA CUGAUACGAUCUCAAAGGGCUU UCUGCUAAAAAGCAUCCUUgagu uguugauguuguuguuguuguuguuuu guu	98	12,2449	22,44898	17,34694	13,26531	29,59184	35,71429	0,590909	0,705882	-26,4	-25	0,014385	16,81	-26,9388	-0,91034
pmc-mir- 10770-2	cuuguugaugcuguuguuguuucccGC AGCCUCAAAGAUGCGGACCUUGU CAAGUAAGGGGGAGACAAAAAUA CAGUAUCUAACCUC	87	17,24138	25,28736	16,09195	12,64368	33,33333	37,93103	0,5	1,071429	-28,5	-28,5	0,138113	8,95	-32,7586	-0,98276
pmc-mir- 10892	GCCACGAAAAAAGACCAGUGGAC AACCAUCGGUGAAUAAUGGAUG AAUAACAUCCUGUUUCUAUCAUC CGAUGGGCGAGCUGUGUUUGUU GUCGUCUU	98	24,4898	27,55102	20,40816	27,55102	44,89796	55,10204	1	1,2	-30,8	-30,8	0,239683	4,62	-31,4286	-0,7
pmc-mir- 10972	CCGGUAGUGAUGACAACGAUGA GAACAAUGAUGAUUCAUCAACGA UGAUUUGCUAUGGUCAUCAUAU AUGUGUCUCAUAUAGUUUGCAC AAUACAGG	97	21,64948	31,95876	16,49485	29,89691	38,14433	61,85567	0,935484	1,3125	-23,3	-23,3	0,070908	15,83	-24,0206	-0,62973
pmc-mir- 10b-1	UGCCAAGUCGACCACGGCACCCG GUGUGUCCCUCCCACUGACCAGU CAUCUCGGUACUCGGGAGGUCA AAUCGACUGAGGUCAGGGGUCG AAUUGACU	98	28,57143	20,40816	30,61224	20,40816	59,18367	40,81633	1	0,933333	-34	-32,9	0,060236	18,2	-34,6939	-0,58621

R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE
		(kcal/	kcal/m			(kcal/
		mol)	ol)			mol)
1,692308	2	-40,6	-40,6	0,262649	9,81	-43,6559

											mol)	ol)			mol)	mol)
pmc-mir- 10b-2	GUGAGAGUGUGAGUGGCUUUAC CCUGGAGAACCGAGCGUGUGUga ucaugacgucacaguucGUUUCUGAG GGUCAAGUCGCGAUACUCUGUU	93	27,95699	13,97849	13,97849	23,65591	41,93548	37,63441	1,692308	2	-40,6	-40,6	0,262649	9,81	-43,6559	-1,04103
pmc-mir- 11054	uguuuguaguguuuguUGCCAGAGA UUUAGCAGAUAUGAUGGAAAcug cauuuucuuguuuucacacaUUAGAA UCUAAGAGAAACAGCACUAUCAA CCA	100	12	26	10	13	22	39	0,5	1,2	-21,4	-15,8	0,089496	35,03	-21,4	-0,97273
pmc-mir- 11280	AGAUACAGAUGUGUGACAUACau gucuaacccuaacccugaaugAGAGAA GAUCCGUGUGUGAGGUUGGAUG UAGGUGUAAACAUCUUACAC	92	21,73913	23,91304	9,782609	19,56522	31,52174	43,47826	0,818182	2,222222	-21,9	-21,2	0,135428	13,09	-23,8043	-0,75517
pmc-mir- 1175-1	UGAUCAGGUGUGUUAUGUAGUG GAGAGAGUUUUAUCUCAUCAUG AGCCUCAGAAGCAGGUGAGAUUC AACUCCUCCAACUGCAGGCUAUA CCUGAAAC	98	24,4898	27,55102	20,40816	27,55102	44,89796	55,10204	1	1,2	-42,7	-38,6	0,079856	5,62	-43,5714	-0,97045
pmc-mir- 1175-2	CACACGGAAGUGAAGAGAAGAAU GAAGAAGGAGGCUAUAGCGAAA UUAUagguauuucuuuuuuuaucauca ucaucaucaucucauc	98	15,30612	22,44898	5,102041	7,142857	20,40816	29,59184	0,318182	3	-20,9	-20	0,079297	13,02	-21,3265	-1,045
pmc-mir- 1187	UGACUCAGGUAUCAAAUGuucuu uuauguguguaugugugugugugugug uguauacguguguugCUAGCGGCUA AAAGCAAUAUGUGAGAGCGAGU GU	99	15,15152	17,17172	8,080808	12,12121	23,23232	29,29293	0,705882	1,875	-20,3	-19,5	0,064187	14,27	-20,5051	-0,88261

GC (%) AU (%)

Pre-

miRNA

Sequence

Length

(AA)

G (%)

A (%)

C (%)

U (%)

MFEI

(kcal/

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pmc-mir- 11922	CGUUUCGACCUGACAGAUGCAG UUGGAUCGUUGAUCUUUUCAGG AGAUCAUCGAUAUGUUCAUCGU UCAGGGUGAAGGA	79	27,8481	22,78481	17,72152	31,64557	45,56962	54,43038	1,388889	1,571429	-25,9	-25,9	0,042274	4,91	-32,7848	-0,71944
pmc-mir- 12	UGGUGGUCAGACUGUGAGUAUU ACAUCAGGUACUGAGAAUCUAAC AAGCUUCAGUACCUUUUGUGAU AUUCUUAGUCUGCCAUUU	85	21,17647	24,70588	17,64706	36,47059	38,82353	61,17647	1,47619	1,2	-41,7	-40,3	0,196235	2,83	-49,0588	-1,26364
pmc-mir- 12096b	GAUAUGCUACUUCGUGCAAGCG GUGAUACUUUUGUCUCGCAUAU CAAUAUGAGGUAGGGCAAAAUU AUCACCGAUUACCCGAGGUAACG AUCAA	94	22,34043	29,78723	20,21277	27,65957	42,55319	57,44681	0,928571	1,105263	-32	-31,6	0,104639	7,62	-34,0426	-0,8
pmc-mir- 12228	UCCCCACUGCUCCCCCAACAUCCC CCCACCAGCGCCGgcuaccccaccac ccugcUGCGGGGGGACGAGCUCGG AGGAGUCGUGGUCU	88	22,72727	11,36364	32,95455	11,36364	55,68182	22,72727	1	0,689655	-33,2	-19,6	0,075853	14,44	-37,7273	-0,67755
pmc-mir- 1224	uugaucuucaccuccucucuccucccuuc aaCUAAUAUGUCUGAGGUGUCAA UCAUGGGCUGUUUGAAGUUAGC GAAAGAGUUGACGAAGAUAUU	95	18,94737	20	7,368421	21,05263	26,31579	41,05263	1,052632	2,571429	-24,7	-21,1	0,129321	12,41	-26	-0,988
pmc-mir- 12245	CCUUCCCCGGCCCGGCUCA AGGUCAGCGCGCCAGAGAGCAAU UCGUCCAGGUAGACCAGGUGCU UGAACCCGAGAGAGCGCGGUGGC GACAG	96	32,29167	18,75	36,45833	12,5	68,75	31,25	0,666667	0,885714	-33,6	-33,1	0,051978	10,23	-35	-0,50909
pmc-mir- 12286	ACGCUGCUCAGCACGUCACUCUA	80	31,25	18,75	25	25	56,25	43,75	1,333333	1,25	-28,6	-19,19	0,08512	19,63	-35,75	-0,63556

UCAUUUCACAGUCUCGUGGGGC

Pre- miRNA	Sequence UGCAGGGCUGAGUAAGCUGAGU GGCUGAGUAGGCU	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pmc-mir- 12287	GGCUGUGGGGGGUGCAGGUGGGC ACACAUUCAUGGGAGGGGGGCCCC CCCAUCAUAGGAGGCCAAGGUGC CGGCCCCAUCAUAG	82	39,02439	18,29268	28,04878	14,63415	67,07317	32,92683	0,8	1,391304	-31,7	-15,9	0,099725	26,92	-38,6585	-0,57636
pmc-mir- 12292	GUUUCUGACGAUAUGGGGUCUU GGGGUCAUGCAGGAAGAGAUCU ACGCGCUCGUGAACGACCCCAAC CACCGCGAGCAUCAGAUUC	86	29,06977	23,25581	26,74419	20,93023	55,81395	44,18605	0,9	1,086957	-26,4	-25,2	0,09755	8,86	-30,6977	-0,55
pmc-mir- 12293	gcugcugguggugcugccGUCUCCUUUCU ACAUCCGCCUCUUGAUCUACUAU AACUACGAGCACGAGGAGAUGAU AGAGAGGAGAUCGGCCAUCUCCC GCCUG	100	19	20	25	21	44	41	1,05	0,76	-39,4	-30,9	0,181223	7,86	-39,4	-0,89545
pmc-mir- 12296	ACUGCAGUGCCCUGUGUGUGU GGGGAGUgaggggcagggcaggggca gggggCACACGACAUUACGGGCAC AGCGGG	79	26,58228	12,65823	16,4557	12,65823	43,03797	25,31646	1	1,615385	-33,3	-33,3	0,678283	1,48	-42,1519	-0,97941
pmc-mir- 12321	AAUGCGCCCUgcccucccuucccucu ccuccacccucaCACCGUUACUACCG AUUGUGAGAACGGGACCACAAG GAGGAACAACGGUAGGGCGCGAC	98	21,42857	20,40816	19,38776	9,183673	40,81633	29,59184	0,45	1,105263	-38,7	-38,7	0,150689	6,68	-39,4898	-0,9675
pmc-mir- 12327	caacuucuuuucucucuuucccucuuc uuugcUUUAGUGUUCAAAUGUAC ACAAGGUAUAAAGAAAGAGGAU UGGUGAGCGAGCAGGGAAGcaa	95	20	23,15789	5,263158	13,68421	25,26316	36,84211	0,590909	3,8	-29	-28,1	0,068017	8,35	-30,5263	-1,20833

U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFE
					(kcal/	kcal/m			(kcal/	(kcal
					mol)	ol)			mol)	mol)
22,22222	36,36364	47,47475	0,88	1,769231	-43,9	-41,47	0,037169	11,26	-44,3434	-1,2194
28,57143	32,65306	45,91837	1,647059	0,230769	-26,7	-26,7	0,382757	2,63	-27,2449	-0,8343

											- /	- /			- /	- /
pmc-mir- 12339	uuccaucuuuuucugcCAUGUUUAU CUUCACUGCUGGAAAGAUUGUU CUGGAUUGCCACUGGAGUGCAG UGCAGAGAAACAUGGCAUAGAAA GAUGGAA	99	23,23232	25,25253	13,13131	22,22222	36,36364	47,47475	0,88	1,769231	-43,9	-41,47	0,037169	11,26	-44,3434	-1,21944
pmc-mir- 12358	CCCCAUCUCCUCCUUCUACCUA AUCAUCUUAAAAUCAUCUCACUG UCAUCCGCUUUAUCUAUGAUUU CAUCGGGUAagguaaagggagguaau guaa	98	6,122449	17,34694	26,53061	28,57143	32,65306	45,91837	1,647059	0,230769	-26,7	-26,7	0,382757	2,63	-27,2449	-0,83438
pmc-mir- 12396	CCGCGCAGUGUGAGUGACUGAA AAGAGAGACACAGACAAGAAAGA UAUUCUUUAAAACCUCUCCUUUC GUCAGCUCGCACUGCGAAG	87	22,98851	32,18391	24,13793	20,68966	47,12644	52,87356	0,642857	0,952381	-35,8	-35,8	0,255939	5,41	-41,1494	-0,87317
pmc-mir- 124	cuaUCGCUUUCAUCCGUGACGAC ACCGUGUCCUCCCGGCAAGUGAC GUUCCCGcgacuguugcugcugucgcC AGGAGUCAAGGCGAACA	90	20	15,55556	25,55556	14,44444	45,55556	30	0,928571	0,782609	-27,7	-19,2	0,073181	30,63	-30,7778	-0,67561
pmc-mir- 12410	GUCCAUCGUAAAcgguugcuguuuu uuuuuuucuucguggaACUAAAGAA ACCcgggaagaaggaaggaaggaaacuG AGAUCCGGUCACGUGACG	96	10,41667	15,625	11,45833	7,291667	21,875	22,91667	0,466667	0,909091	-25,7	-23,6	0,044841	16,09	-26,7708	-1,22381
pmc-mir- 1273h	GUGCUGGGUGAGUACUCGGUGC GCGUGCUGUGGGACACAGGUGU AGAGAGCACGUGCAGAGCAGGGC GGGACUGCAGACUCGACCUCAGG AU	92	41,30435	19,56522	21,73913	17,3913	63,04348	36,95652	0,88889	1,9	-37,1	-12,11	0,089734	23,69	-40,3261	-0,63966

Pre-

miRNA

Sequence

Length

(AA)

G (%)

A (%)

C (%)

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pmc-mir- 1277	GACGUACUGCAAGGAucccuguau auauauauauguacucuaCAAGGGAG UCGAUGUACGUACAGA	66	19,69697	19,69697	10,60606	9,090909	30,30303	28,78788	0,461538	1,857143	-19,3	-18,4	0,217022	13,76	-29,2424	-0,965
pmc-mir- 130b	AAUUCUGAUAAGCGAAACAUAU GUUUCAUCUAUGUUGGUAUAAC CGAUUACUAAACAUAUGCAAAAC AGUGCaauaaugaaaguauuuuuguu caGACGA	100	13	29	13	22	26	51	0,758621	1	-19,9	-19,9	0,042179	8,59	-19,9	-0,76538
pmc-mir- 1322	GGAAUAUCUGGUCGUAGCUCAga gcugaugcugcugcugauggcuaUCAA GUAAAUGAUGCUGGUCAACAGA UGAAAUAUGGCACACCAAGAUAU CUG	98	17,34694	25,5102	13,26531	18,36735	30,61224	43,87755	0,72	1,307692	-24,5	-22,2	0,016132	23,72	-25	-0,81667
pmc-mir- 133c	UAACUACAGCUGGUUGAAGGGG ACCAAAUGAAAGGCUCUUCAACA AUUUGGCCCGAGUUCAACCAGCU AUAGAAG	75	24	33,33333	21,33333	21,33333	45,33333	54,66667	0,64	1,125	-30,4	-28,9	0,184949	4,61	-40,5333	-0,89412
pmc-mir- 1376	CUCAGCUGCAACAGACUCUGACA UUAGCAGAUCUCAAGCUCAGCAG CACUCUUUGAGCUUGGAGGAUG UUAGUCAUGAUGCUUUGCAGAC UCUG	94	23,40426	24,46809	24,46809	27,65957	47,87234	52,12766	1,130435	0,956522	-31,4	-26,8	0,072951	8,03	-33,4043	-0,69778
pmc-mir- 137b	AGUUCCAGUCGGUUACGGGUAU UCUUGGGUAAAUAAUACAUUGA GUAGUUGUUAUUGCUUGAGAAU ACACGUAACUACCUGGACGU	86	24,4186	26,74419	15,11628	33,72093	39,53488	60,46512	1,26087	1,615385	-33,1	-29,3	0,022171	10,78	-38,4884	-0,97353
pmc-mir- 13b	uaaaauacacuuuaacUGACGUCUG GCUUCUGAUGUCUCUGAAGGGU	95	18,94737	11,57895	13,68421	22,10526	32,63158	33,68421	1,909091	1,384615	-25,4	-18,3	0,096917	31,5	-26,7368	-0,81935

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	GCGAGAGUUUGUUGUUCAGACU CAUCAAGCCUcguuaaaauguuugug															
pmc-mir- 1421am	GGUGCGUCAAGGCGGUCAGUAA GACGUCCGCCACCUUAGGCGUUC AAACGGAUUUCGAGGAGGUCGU AGGUCAUCCUGUAGACGACUUG GCGCUGG	96	34,375	19,79167	23,95833	21,875	58,33333	41,66667	1,105263	1,434783	-31,8	-26,1	0,047723	21,41	-33,125	-0,56786
pmc-mir- 1422j	UGGGUGUUCUACUGUUUCAUGA UUUAUCAUAGGGAGAUGACACA UAAUCGAAAACUGCAUCUGGAU UAUGAUAUCAAGUGAAAUAUAU CAGAAAACUAA	99	19,19192	36,36364	13,13131	31,31313	32,32323	67,67677	0,861111	1,461538	-22,3	-22,3	0,232835	3,91	-22,5253	-0,69688
pmc-mir- 143	GCACAUGACAGAGGGGCCUCAUCG GUCUGGCUGAACACAAGAAGUA GAAAGUGUUGCACACAGUCUGA GAUGAAGCACUCGUUUGCAUGA UA	91	27,47253	30,76923	20,87912	20,87912	48,35165	51,64835	0,678571	1,315789	-25,3	-24,9	0,120125	12,48	-27,8022	-0,575
pmc-mir- 149	acaugaaucgucucccccccccccccccc gcAAUACAUGGCGCAGUGCAAAG GUCACACCGCUAGUGCUGAGAGG GAGGGACGGGGGGAUUCAAGA	96	25	19,79167	12,5	9,375	37,5	29,16667	0,473684	2	-33	-12,4	0,017431	29,49	-34,375	-0,91667
pmc-mir- 150	ACAUGUCACCACAUGCGUGUGCA CGCACAUAAAUAUGUCAGCUUAU CUCACAGAUACAUGUUGCUGGU ACAGGCCUGGGGGAGACAAAU	89	23,59551	29,21348	23,59551	23,59551	47,19101	52,80899	0,807692	1	-25,1	-25,1	0,081451	10,2	-28,2022	-0,59762
pmc-mir- 153	AUACCCUCUUCCCAGGCAGCUUU UGUGAUUCAGCAAUUGUACAGC	87	24,13793	27,58621	22,98851	25,28736	47,12644	52,87356	0,916667	1,05	-37,9	-37,9	0,256161	6,4	-43,5632	-0,92439

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	UAUCAAAUUGCAUAGUCACAAAA GUGAUCGGGAGGCGGGGAC															
pmc-mir- 1551	CUUUUGAUCUUAAUGUGGUAAA ACGCAUUUCAGGUUUAUGAGUU UGUGUUGCUGGGACAAUGACUG UUUUAGGCCAUCUGUACAUCAAC CA	91	21,97802	24,17582	16,48352	37,36264	38,46154	61,53846	1,545455	1,333333	-19,4	-19,4	0,255295	14,12	-21,3187	-0,55429
pmc-mir- 15c	UUGAAGAAUAUCUCUUAUCCCA UAGGACAGCUAUUUCAAGGAAU CAUGUGACCAGCAGACCAUUCUG GGCUAUGGGGUCAGAGCUAUUC UUUUU	94	21,2766	26,59574	20,21277	31,91489	41,48936	58,51064	1,2	1,052632	-29,6	-28,4	0,088206	10,15	-31,4894	-0,75897
pmc-mir- 1603-1	AUAGCAGAAAUCAAAACAGCCCA CAUUUUAUGUCAAACUUAUUAC ACAGAGAUAUUAAAGCaauguggu uuguuuuguguugcgCA	86	8,139535	32,55814	15,11628	17,44186	23,25581	50	0,535714	0,538462	-20,1	-20,1	0,033978	10,39	-23,3721	-1,005
pmc-mir- 1603-2	GGGUUAGUGUUUGACAGAGGAU UGCAGCUUGCAauguugguuugguu uguuuuuuuucuaaacacagCGACAA UAUCUUGUGAAAUAGUAAGUU	94	18,08511	18,08511	7,446809	20,21277	25,53191	38,29787	1,117647	2,428571	-20,1	-19,5	0,022965	9,06	-21,383	-0,8375
pmc-mir- 1632	GAUGGCUGUUGACACACUCGAG UGACAAGACAAAGGUCUGAUUU CCUUGCUUGUUUUUGGAUGAAA UUAUUUUGCGACGCAGCUGUUC ACAGCCUCU	97	23,71134	22,68041	20,61856	32,98969	44,3299	55,6701	1,454545	1,15	-26	-26	0,016941	14,04	-26,8041	-0,60465
pmc-mir- 1642	GUGAACACUUAAAUAACUGCUU GUCCCCUCUACCCUGAUAGAGGG	83	25,3012	27,71084	16,86747	30,12048	42,16867	57,83133	1,086957	1,5	-20,1	-14,7	0,16303	24,29	-24,2169	-0,57429

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	AAAGUGGUGAGAGGCUGUCAGU UUUGUAAGAUAUUUAG															
pmc-mir- 1677	UGACCAUCACCUUUAUCUCUCUG CCGUCGAGGUAGCGCGACACGAA CUCCACUCCA	99	25,25253	23,23232	26,26263	25,25253	51,51515	48,48485	1,086957	0,961538	-36,2	-35,3	0,026404	8,83	-36,5657	-0,7098
pmc-mir- 17	CACGGCGAUGACUGGAGUCAUU AGGGAGGCGCACGCGCGCGCACUA GACCUUAACUGCACUGC	75	29,33333	25,33333	32	13,33333	61,33333	38,66667	0,526316	0,916667	-24,1	-19,8	0,261623	4,23	-32,1333	-0,52391
pmc-mir- 1728	UGUGACUGUUCUGCAGUGACUG UAUGCGUCCCAUGAAUCAUUGG UUGAUCCAUUGGAAGAAACAUG ACUGGGUACAUCCUG	81	25,92593	23,45679	19,75309	30,8642	45,67901	54,32099	1,315789	1,3125	-18,9	-18,9	0,107603	12,57	-23,3333	-0,51081
pmc-mir- 1744	UUUGAGAAGAGGUACUUCAACA GGAGCAAGUCAAGGCAUGCUUC UUUUUAACACCAGUCUUCUCUG C	67	20,89552	26,86567	22,38806	29,85075	43,28358	56,71642	1,111111	0,933333	-19,2	-19,2	0,273743	3	-28,6567	-0,66207
pmc-mir- 1775	guaaaaauuaaggCAAAGAAAUCCU GUAGCCAGAAGACAGCGGAGGAC CAGAGUUGUCUGUGCAGCCUGG CUACAUGUUUCUCUGUCCAAGA UUUUGAG	99	23,23232	23,23232	19,19192	21,21212	42,42424	44,44444	0,913043	1,210526	-34,9	-34,9	0,331788	5,38	-35,2525	-0,83095
pmc-mir- 1781-1	GUUUGAAAGGAUUUAAAUCAUC CAGCUGCCUUUUUGACUGUUUA GCAGUCUCCAACAGGAGUGGAU UAAUUUGAGUAAUUUUCAUUC	87	19,54023	26,43678	16,09195	37,93103	35,63218	64,36782	1,434783	1,214286	-23,1	-23,1	0,071767	5,41	-26,5517	-0,74516

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pmc-mir- 1781-2	GUUUGAAAAGAUUUAAAUCAUC CAGCUGCCUUUUUGACUGUUUA GCAGUCUCCAACAGGAGUGGAU UAAUUUGAGUAAUUUUCAUUC	87	18,3908	27,58621	16,09195	37,93103	34,48276	65,51724	1,375	1,142857	-23,4	-23,4	0,079721	4,68	-26,8966	-0,78
pmc-mir- 1896	CAUUCUUCCUCAAACCAAGUGUG UAUUAGAGAUAAAUGGGGUCUC AAAGGACAUAGACACCGAGUGUA UCCACUCAUACGGUGGugggugag gaggagga	100	19	26	18	21	37	47	0,807692	1,055556	-32,2	-31,6	0,027684	15,11	-32,2	-0,87027
pmc-mir- 190	ACCCGCUUCUGCUAGAUAUGUU UGAUAUAUUUGGUGCAGUUGUC GCGACGACCAAGUAGUCAAACAU GUCAGAGCAGCGACG	82	25,60976	25,60976	21,95122	26,82927	47,56098	52,43902	1,047619	1,166667	-32,5	-32,3	0,080048	9,84	-39,6341	-0,83333
pmc-mir- 1951	UUAGUUUUGUGCAUCAAUCACC AUCAUUUGUGUAAACGUCUUCC CUGACUUAUUUGGAGCCCCCAAA UGUAGUGGAGACUGGUGGCGAA ACCUU	94	21,2766	23,40426	22,34043	32,97872	43,61702	56,38298	1,409091	0,952381	-23,5	-14,8	0,063911	17,89	-25	-0,57317
pmc-mir- 1955	GGAGGAGCAUUGCAUGCUGGAC GCGCGUGAUCAGGUCCUGGCGG UGUCAGUGACAGUCAUUGCCAU GACAGCAGCGUGCACAGGUCAUG UGACUCCACC	99	33,33333	20,20202	26,26263	20,20202	59,59596	40,40404	1	1,269231	-40,3	-34,2	0,115974	33,97	-40,7071	-0,68305
pmc-mir- 196a	AAACAUCCUUUUUGCACACGACA AUGACCUGGUGGCCGACGGCAAC AAGAAACUGUGACUGAGCCACAG UGUAUUGAUAUUGAAUGCAGAC AGGAUGCCA	100	24	32	23	21	47	53	0,65625	1,043478	-31,3	-31,3	0,07221	6,07	-31,3	-0,66596

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pmc-mir- 1984	UGUCGCCGUGCCCUAUCCGUCAG GAACUGUGAUCUCGCGAAACACA GGGUCUGGCGGUUGGGCCUCGG CGCUG	73	34,24658	13,69863	30,13699	21,91781	64,38356	35,61644	1,6	1,136364	-37,9	-37,9	0,133827	2,65	-51,9178	-0,80638
pmc-mir- 1985	UGCCAUGCCAUUUUUAUCAGUC ACUGUGUGUUGUGAAAGUcacag ugaugaugauaauggcuUGAUG	67	16,41791	13,43284	10,44776	26,86567	26,86567	40,29851	2	1,571429	-28,6	-28,6	0,287364	2,77	-42,6866	-1,58889
pmc-mir- 199	CAUUGCAUGUCAAAACUAAGGGA UGUUUACCUAUAUUUGUAGAGA CACACAUGACAGUAGUCUGCACA UGCUAUAGAUUUUGGGGAUGCA GCA	93	22,58065	31,1828	17,2043	29,03226	39,78495	60,21505	0,931034	1,3125	-20,3	-17,4	0,056275	14,69	-21,828	-0,54865
pmc-mir- 1990	GGCUGCGAGAUGUUCGUGCAGU AAGUUGAUGGGGUCCCAGGUAG AUCUACCCCUCCCGGGACUACGU CAACGUACUACCACGCGCAUCUC CAAGU	95	27,36842	21,05263	29,47368	22,10526	56,84211	43,15789	1,05	0,928571	-44,2	-43,8	0,106149	4,96	-46,5263	-0,81852
pmc-mir- 1994	CUGGCGGCUGUUCUAAGGGGAA ACUCGCUGUCUGCGUGUGUGAU GACGUCAUGAGACAGUGUGUCC UCCCUCUGAGUCAGACACCGCUA A	90	30	18,88889	25,55556	25,55556	55,55556	44,44444	1,352941	1,173913	-41,1	-41,1	0,501637	4,6	-45,6667	-0,822
pmc-mir- 1994a	CAAAAGCUAUUUCUCAGGGGCG GUCACUCUGAUCUCCAUGUGCUC GCACCAGCAUGAGACAGUGUGUC CUCCCUUGAGGGAUGGGCUUAU A	91	26,37363	20,87912	26,37363	26,37363	52,74725	47,25275	1,263158	1	-44,3	-44,3	0,178398	5,12	-48,6813	-0,92292

Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
	(AA)									(kcal/	kcal/m			(kcal/	(kcal/
										mol)	ol)			mol)	mol)
											0.7				
GGCACAUACUUCUUUGCUAUCCC	65	18,46154	29,23077	18,46154	33,84615	36,92308	63,07692	1,157895	1	-23,7	-22,1	0,075024	6,51	-36,4615	-0,9875
AUAUGUUCUUGCAAAGCUAUGG															
AAUGUAAAGAAGUAUGUACU															
CCAGUAGAGACAAGUGAUGUUA	92	18,47826	31,52174	17,3913	32,6087	35,86957	64,13043	1,034483	1,0625	-19,8	-19,2	0,145182	8,89	-21,5217	-0,6
CACAGGUUAUGCGUAUAAACAAA															
GGUAUGGUCGCAUUAUAUUACG															
UGUCCUAAUCAUACUUCUUUAC															
AUU															
	6F	19 46154	22.94615	19 46154	20 22077	26.02208	62.07602	0.962626	1	27.1	26	0.4697	2 22	41 6022	1 1 2 0 1 7
	05	18,46154	33,84615	18,46154	29,23077	36,92308	63,07692	0,863636	T	-27,1	-26	0,4687	2,23	-41,6923	-1,12917
GCUGCCAUUUUGUGACCGUUAC	76	22,36842	13,15789	14,47368	21,05263	36,84211	34,21053	1,6	1,545455	-36,2	-36,2	0,193282	4,14	-47,6316	-1,29286
AAUGGGCauugacagaaaaacaaaug															
cucCAUGUGGUGUUCACAAGAUG															
GCGGU															
	86	10 76744	20 22256	10 76744	20 22256	20 52/80	60 46512	1	1	-21.9	-21.6	0 126022	11 76	-25 2499	0.64118
	80	19,70744	30,23230	19,70744	30,23230	39,33400	00,40312	T	1	-21,0	-21,0	0,120955	11,70	-23,3400	-0,04110
GEUGAUGAGAUUGAAGGU															
AGUUGCUGGAAGAGCUGCAGGC	82	25,60976	19,5122	34,14634	20,73171	59,7561	40,2439	1,0625	0,75	-25,8	-25,8	0,163281	11,03	-31,4634	-0,52653
CACUUCCUAUGAACAGCGCCUUU															
CUCACGUGCGGUGUCCUCAGCAC															
CUCGCCCAGCACGA															

21,42857 27,14286 54,28571 45,71429

1,461538 1,533333 -29

-29

0,16383

21,21

-41,4286

-0,76316

PremiRNA

pmc-mir-

1a

pmc-mir-

1b

pmc-mir-

1c

pmc-mir-

2001

pmc-mir-

200b

pmc-mir-201

pmc-mir-

2017

GAAGUGCACGUGGUGUUGACAG

UUACCUGUGCACCUGUGCACGU GGUGUUGACAAUGACCUGUGCA

CGUG

32,85714

70

18,57143

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
MIRNA		(AA)									(kcal/	kcai/m			(kcal/	(ксаі/
											mol)	ol)			mol)	mol)
pmc-mir- 204	GUUCUUUGUGUCACCUCACUUC CACUUCCGGUGAAAUCCGGAUU GGUAAUGCAAGGACAGCAAAGG GA	68	25	25	23,52941	26,47059	48,52941	51,47059	1,058824	1,0625	-21,9	-21,9	0,137453	4,4	-32,2059	-0,66364
pmc-mir- 2064	AUGAGAUUCAGAAACAUGUCCA UCACAAGCUGCUGAAAGAAGCAG CACUGUGCAAGAUACUUUUUCCC CGAAUCUGGG	78	21,79487	32,05128	23,07692	23,07692	44,87179	55,12821	0,72	0,944444	-23	-22,9	0,480687	3,28	-29,4872	-0,65714
pmc-mir- 2155	GUGUGCUCUGGUGCUCUGUGAA UGUAAGUUCUUUGUGGUAGAAU GAAGUGACACUGUUUUACACUC UACUGGAGCCUCAAGCAAAG	86	26,74419	23,25581	17,44186	32,55814	44,18605	55,81395	1,4	1,533333	-20,5	-17,1	0,059402	25,69	-23,8372	-0,53947
pmc-mir- 216a	guguuugucUAAUCUCAGCUGGUA AUUCUGAGUGGAGUUCUGCACA CCUCAAGUUACUAGCCGAGAUUA CAUAAAUAU	78	16,66667	26,92308	17,94872	26,92308	34,61538	53,84615	1	0,928571	-30,5	-30,5	0,146188	3,64	-39,1026	-1,12963
pmc-mir- 216b-1	CGUAGGAAGAUGAGCCAGGAUU ACAAGAUUGUUGGGCCUGCGGC CCUAAUAUCAGCUGGUAAUCCUG AGUGAGCUUGCCUCAG	83	30,12048	24,09639	21,68675	24,09639	51,80723	48,19277	1	1,388889	-31	-30,7	0,290814	5,92	-37,3494	-0,72093
pmc-mir- 216b-2	GCGGGACCACUUGCCCUGUGGAG CGAGGAUGCUCUGGAGGACGGC UGGACCUUUAUUAAAACUCGCCG CUACACAGUGGCUACUGGGUCCA CA	93	31,1828	20,43011	27,95699	20,43011	59,13978	40,86022	1	1,115385	-34,1	-34	0,183887	24,97	-36,6667	-0,62
pmc-mir- 216b-3	ACACAGUUACCUGUAGAUUGUG UCACUGACUAGUAACACAGUUAC CUGUAGAUUGUCACUGACUAGU	91	17,58242	29,67033	21,97802	30,76923	39,56044	60,43956	1,037037	0,8	-20,7	-20,6	0,056424	15,43	-22,7473	-0,575

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	AACACACUUACCUGUAGACUGUU A															
pmc-mir- 2223	AAGUGUUUGUAACAAACAUCCU GUGUCUGUACUGUACACAUGAC GUGCUACAGUAUUUGUACUCAU GUAAGUAUUUGUAACAAACAUC C	89	16,85393	30,33708	19,10112	33,70787	35,95506	64,04494	1,111111	0,882353	-23,8	-18,8	0,195676	11,23	-26,7416	-0,74375
pmc-mir- 2238i	GUACCCGCACGUGGUCAUCACCA AGUUCCGGUCCAAGGAAGGCCGU UCACUCAUCUCGGAGCUGAUCAU CGAGCGGGGCC	80	28,75	20	32,5	18,75	61,25	38,75	0,9375	0,884615	-27,6	-25,2	0,123572	5,73	-34,5	-0,56327
pmc-mir- 2284c	AUAUGAUGAUAAGGUGUACAUG AAACAGCUAAAAAUCUAAGUGAA CUGUCAAGGUGGAAAAUUUUAC AUGUUGCACAGUCACCUUGCUCA GCAGGA	96	21,875	36,45833	15,625	26,04167	37,5	62,5	0,714286	1,4	-22,9	-19,8	0,195896	4,07	-23,8542	-0,63611
pmc-mir- 2298	CUACCUGCUGGGUUGGUCAGGG UAGUGGGAUACAGAACGAUGAC UGAUGUUGUUGUUCAAGAACCA AACCCUGACCAUGGAGCGAGCAG GCGC	93	32,25806	24,73118	21,50538	21,50538	53,76344	46,23656	0,869565	1,5	-44,5	-41,7	0,259982	2,97	-47,8495	-0,89
pmc-mir- 2304	AGUUCAGCGGUUGGUAGUGGAA GUGGUGUGUAGGUGugguugugu gguugugggGCGGUCAGUGUGCU CCUGCACUUCACACGACAAACAC GUUGACAA	100	27	18	16	20	43	38	1,111111	1,6875	-32,8	-27,8	0,059196	33,54	-32,8	-0,76279
pmc-mir- 2361	CAUUCAAUGGAAGGUCGUUAUU CAUUAUCGUAAACAAAACA	100	12	30	10	18	22	48	0,6	1,2	-25,8	-25,8	0,03599	8,11	-25,8	-1,17273

Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
	(AA)									(kcal/	kcal/m			(kcal/	(kcal/
										mol)	0)			mol)	mol)
										moŋ	017			mony	mony
gcauaguaACAAAAUGAAUACAUU															
GAAUG															
AUGUUAUGUAUAGUUUUGUGU	85	14,11765	24,70588	8,235294	27,05882	22,35294	51,76471	1,095238	1,714286	-23,4	-20,9	0,161131	8,21	-27,5294	-1,23158
GGUGUAUAAGUuguauaaauuuua															
cagaaacaaCUUGUCCACCACUAAA															
AAAAGAUACUAAUGA															
GCCAGAAAAACCUAAGCAUGACA	67	19,40299	28,35821	19,40299	32,83582	38,80597	61,19403	1,157895	1	-19,9	-19,9	0,542669	2,57	-29,7015	-0,76538
AAAUAUCAUGCUUGUGUGGUUU															
UGGAUACUUGGAUUUUUCUCCC															
CAGUGUUGCAAAGUUUACCUGC	94	12,76596	12,76596	12,76596	15,95745	25,53191	28,7234	1,25	1	-25,1	-23,1	0,06655	7,31	-26,7021	-1,04583
UGCUAUUGUGACUCAGACAUCU															
CAAGGGCaccugcaacaacaacagcag															
cagcaacaacaacagcaacaaca															
GAAUGUUAAUGACGAUGACUGC	86	15,11628	15,11628	9,302326	19,76744	24,4186	34,88372	1,307692	1,625	-24,4	-24,2	0,192125	18,27	-28,3721	-1,1619
UGUUGUUCCCUUGAAAUAGGCU															
AAGGUCUacuuaacaacaacagcagca															

pmc-mir- 2371	AUGUUAUGUAUAGUUUUGUGU GGUGUAUAAGUuguauaaauuuua cagaaacaaCUUGUCCACCACUAAA AAAAGAUACUAAUGA	85	14,11765	24,70588	8,235294	27,05882	22,35294	51,76471	1,095238	1,714286	-23,4	-20,9	0,161131	8,21	-27,5294	-1,23158
pmc-mir- 2470	GCCAGAAAAACCUAAGCAUGACA AAAUAUCAUGCUUGUGUGGUUU UGGAUACUUGGAUUUUUCUCCC	67	19,40299	28,35821	19,40299	32,83582	38,80597	61,19403	1,157895	1	-19,9	-19,9	0,542669	2,57	-29,7015	-0,76538
pmc-mir- 2491-1	CAGUGUUGCAAAGUUUACCUGC UGCUAUUGUGACUCAGACAUCU CAAGGGCaccugcaacaacaacagcag cagcaacaacaacagcaacaaca	94	12,76596	12,76596	12,76596	15,95745	25,53191	28,7234	1,25	1	-25,1	-23,1	0,06655	7,31	-26,7021	-1,04583
pmc-mir- 2491-2	GAAUGUUAAUGACGAUGACUGC UGUUGUUCCCUUGAAAUAGGCU AAGGUCUacuuaacaacaacagcagca gcaacaacaacaaca	86	15,11628	15,11628	9,302326	19,76744	24,4186	34,88372	1,307692	1,625	-24,4	-24,2	0,192125	18,27	-28,3721	-1,1619
pmc-mir- 2491-3	GAUGGCGGCGAAGAAGUCCACGC cugaagaagaacaacaacagcagcagcaa caacaaggGUGGCGAGGGCUGCUU CGUCACCUGU	86	22,09302	9,302326	15,11628	10,46512	37,2093	19,76744	1,125	1,461538	-27,25	-26,3	0,182896	6,2	-31,686	-0,85156
pmc-mir- 2493	AUCGCUGUGUGGGACUCGUGUU GAUCAUCGCGGUGCACUAAAUG UCAUCCGGCCAGACAUCAGACCA ucgugcucacacacacacacagccag	93	19,35484	16,12903	19,35484	17,2043	38,70968	33,33333	1,066667	1	-28,2	-25,4	0,239172	8,2	-30,3226	-0,78333

Pre-

miRNA

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pmc-mir- 2505	GACCGUGUAUUCUCGcucucgugca cacacacauacacacgcgcgcgcgggg caGACAUACCCGCUG	70	10	7,142857	12,85714	10	22,85714	17,14286	1,4	0,777778	-20	-18,8	0,634526	4,68	-28,5714	-1,25
pmc-mir- 252a	CCUAACUUCUGGCCCAUUACUAA GUACUAGUGCCGCGGGAAGAUA ACUUGUCAUGUCCCGUGGUUCU GGUCCUUACUACAGGGCGGAAC UUGCA	94	24,46809	21,2766	26,59574	27,65957	51,06383	48,93617	1,3	0,92	-37,6	-37,6	0,059589	5,1	-40	-0,78333
pmc-mir- 254	GUGUGUGCAAAUCUUUUGCAAC AGACUUUUAAACUAUGGGUGUU UGGUGUUUGAGUGUGCAGAGU UGUUUGCAAACUCUUUGCUACA GAA	90	25,55556	23,33333	13,33333	37,77778	38,88889	61,11111	1,619048	1,916667	-21,5	-16,1	0,016973	23,25	-23,8889	-0,61429
pmc-mir- 2571	UCCUUCUGCAUGGCCACUUCGCU GGUGUGAGUGGUGAUGAUGUU UACCACUCAGGACGAAGUCAAAG AGGCGAUCAGCAACAA	83	27,71084	25,3012	22,89157	24,09639	50,60241	49,39759	0,952381	1,210526	-29,2	-29,2	0,309071	7,4	-35,1807	-0,69524
pmc-mir- 279	CUCUCUUAUCUUUGCGGGUGGC UGUGAGUCUAGUCCAUGUGACA CUGCAAGCUCAUGACUAGAUCCA CACUCAUCCACAAGGAUAGGACG U	91	23,07692	23,07692	26,37363	27,47253	49,45055	50,54945	1,190476	0,875	-39,9	-39,4	0,157559	5,72	-43,8462	-0,88667
pmc-mir- 279b	AAGGGGACCAACCACUAGAGUGA CUAGACUGAUAACCCCUAGAGAU GUUGUGCUUCAGUUAUCACUAA CCAUUGUGGUGGAUCCCUGA	88	23,86364	28,40909	22,72727	25	46,59091	53,40909	0,88	1,05	-25,9	-23	0,049529	18,81	-29,4318	-0,63171
pmc-mir- 279c	GUUUCUGCCGGAACAUGACCAGC AUCGUUCUGGAAGGAGGCACUC GGCUGGCGGGUGUUCGUUUCGA	100	36	18	24	22	60	40	1,222222	1,5	-38,8	-38,3	0,103385	8,74	-38,8	-0,64667

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pmc-mir- 281	UUCGGCGACAG AAAUGACCUCACGCUGAAGGGAG CAUCCGUCGACAGUCAGAAAUGC AGCACUGUCAUGGAGUUGCUCU CUUUAcugaaaaggucaagg	88	20,45455	22,72727	20,45455	19,31818	40,90909	42,04545	0,85	1	-35,2	-35,1	0,187538	3,76	-40	-0,97778
pmc-mir- 282	uaauauguuuuuugugguuguuuuugg CAGUCCUGUAGACAUCAAUACUA GACAUAGCCUAAAAGAGGCACCA AGAAUGAUAaca	85	11,76471	27,05882	14,11765	11,76471	25,88235	38,82353	0,434783	0,833333	-20,6	-20,6	0,141364	11,91	-24,2353	-0,93636
pmc-mir- 2953	AGACCAUGCCUCAGACACUGUGC UGCUCCUGAACUUGUUCCUUCA UGCUACAGAAGUGUUCGUGGGG GAUGGAAA	75	26,66667	22,66667	24	26,66667	50,66667	49,33333	1,176471	1,111111	-23,8	-23,8	0,296458	3,88	-31,7333	-0,62632
pmc-mir- 2a-1	AGGCAAAGCUAUGGUGCUGACCA AGUGACUGGGAUGUGUACCUAA AUAUCAUAUC	89	24,7191	28,08989	17,97753	29,21348	42,69663	57,30337	1,04	1,375	-38,6	-38,2	0,276363	1,97	-43,3708	-1,01579
pmc-mir- 2a-2	AAAAAGCAAAUGUGCAUGGAGCA AUCAAAGUAGUUGUGAUGUGUU UGUUGACUUCAUAUCACAGCCAG CUUUGAUGAGCUUCUUCACAGU UUCUUGCA	98	21,42857	28,57143	17,34694	32,65306	38,77551	61,22449	1,142857	1,235294	-34,2	-33,9	0,160179	6,48	-34,898	-0,9
pmc-mir- 2a-3	UUAUGACUGCUGAGUUCACAUC AAAGAGGCUGUGACUUUGUGAU GCUGUUUCAAAUCACAGCCUGCU UUGGUGAGCUCUUUGCUGUCAG AU	91	24,17582	20,87912	19,78022	35,16484	43,95604	56,04396	1,684211	1,222222	-40,8	-40,8	0,328315	3,78	-44,8352	-1,02

Length G (%) A (%) C (%) U (%) GC (%) AU (%) R-AU R-GC MFE MFE(kcal/mol) Freq Div AMFE (kcal/mol) Div AMFE MFE(kcal/mol) MFE(kcal/mol) Div AMFE MFE(kcal/mol) Div AMFE MFE(kcal/mol) MFE(kcal/mol) MFE(kcal/mol) Me(kcal/mol) Me(kcal/mol) Me(kcal/mo																
(AA)		Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
Image: Column and the state of the		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
CLC IGA ICUA ICUA ICUA ICUA 17,34694 32,65306 21,42857 28,57143 38,77551 61,22449 0,875 0,809524 -24,8 -24,8 0,342782 4,57 -25,3061 -0,65263 MAG ICUA SAU 85 21,17647 31,76471 24,70588 22,35294 45,88235 54,11765 0,703704 0,857143 -34,5 -34,5 0,221463 4,35 -40,5882 -0,88462 VIG SAU SAU 98 27,55102 26,53061 21,42857 24,4898 48,97959 51,02041 0,923077 1,285714 -28,7 -28,7 0,071984 7,94 -29,2857 -0,59792 VIG GU GU CUU CUU CUU CUU SAU 23,52941 23,52941 30,88235 22,05882 54,41176 45,58824 0,9375 0,761905 -24,8 -28,7 0,071984 7,94 -29,2857 -0,59792 VIG GU CUU 23,52941 23,52941 30,88235 22,05882 54,41176 45,58824 0,9375 0,761905 -24,8 -23,9 0,250391 4,52 36,4706 -0,67027											mol)	ol)			mol)	mol)
AAG ACU ACU ACU ACU ACU 21,17647 31,76471 24,70588 22,35294 45,88235 54,11765 0,703704 0,857143 -34,5 -34,5 0,221463 4,35 -40,5882 -0,88462 AUG AUG AUG GU 98 27,55102 26,53061 21,42857 24,4898 48,97959 51,02041 0,923077 1,285714 -28,7 -28,7 0,071984 7,94 -29,2857 -0,59792 SUG CU 60 23,52941 23,52941 30,88235 22,05882 54,41176 45,58824 0,9375 0,761905 -24,8 -23,9 0,250391 4,52 -36,4706 -0,67027	CUC JGA CUA	98	17,34694	32,65306	21,42857	28,57143	38,77551	61,22449	0,875	0,809524	-24,8	-24,8	0,342782	4,57	-25,3061	-0,65263
NUG GUG GUG GUG GUG27,5510226,5306121,4285724,489848,9795951,020410,9230771,285714-28,7-28,70,0719847,94-29,2857-0,597923UG GUG GU30,823522,0588254,4117645,588240,93750,761905-24,8-23,90,2503914,52-36,4706-0,67027	∖AG \CU GAU	85	21,17647	31,76471	24,70588	22,35294	45,88235	54,11765	0,703704	0,857143	-34,5	-34,5	0,221463	4,35	-40,5882	-0,88462
GUG 68 23,52941 23,52941 30,88235 22,05882 54,41176 45,58824 0,9375 0,761905 -24,8 -23,9 0,250391 4,52 -36,4706 -0,67027 AAG AC Supervisition Sup	NUG GUG NGU GCU	98	27,55102	26,53061	21,42857	24,4898	48,97959	51,02041	0,923077	1,285714	-28,7	-28,7	0,071984	7,94	-29,2857	-0,59792
	gug Aag Ac	68	23,52941	23,52941	30,88235	22,05882	54,41176	45,58824	0,9375	0,761905	-24,8	-23,9	0,250391	4,52	-36,4706	-0,67027

															,	
pmc-mir- 2b-1	UGCAAGAAACUGUGAAGAAGCUC AUCAAAGCUGGCUGUGAUAUGA AGUCAACAAACAACAAUCAAACUA CUUUGAUUGCUCCAUGCACAUU UGCUUUUU	98	17,34694	32,65306	21,42857	28,57143	38,77551	61,22449	0,875	0,809524	-24,8	-24,8	0,342782	4,57	-25,3061	-0,65263
pmc-mir- 2b-2	GAAGCUAGACCAGCUCAUCAAAG CUGGCUGUGAUAUGACUGAACU CAACACAUCACAGCAUCUUUGAU GGGCAGAUCCUAGCAAU	85	21,17647	31,76471	24,70588	22,35294	45,88235	54,11765	0,703704	0,857143	-34,5	-34,5	0,221463	4,35	-40,5882	-0,88462
pmc-mir- 2f	UCGGGUAGAUAAGCCAGCGAUG UGAGACUCCAGACGAUGGUGUG ACUGAGGAGUUAGCAGACCAGU GUAUGUAUAUCACAGCCAUGCU AAUCUCCUCU	98	27,55102	26,53061	21,42857	24,4898	48,97959	51,02041	0,923077	1,285714	-28,7	-28,7	0,071984	7,94	-29,2857	-0,59792
pmc-mir- 300	AGCGCUCGGUGGAUUAAGCGUG UCUUGCCCAUGUAUCUAUACAAG GGCAGACUCCAUCCCCAAGCCAC	68	23,52941	23,52941	30,88235	22,05882	54,41176	45,58824	0,9375	0,761905	-24,8	-23,9	0,250391	4,52	-36,4706	-0,67027
pmc-mir- 302a	CUACACCCGUGGACCACUCCAUU UAUUUGAUaacaggaaagugcuuccu uUUAUUGGUGAUUUCACACUAU UAUUGAGAGGAACACCGGGUGG UG	95	17,89474	18,94737	16,84211	26,31579	34,73684	45,26316	1,388889	1,0625	-26,3	-26,3	0,019986	22,21	-27,6842	-0,79697
pmc-mir- 302b	GAAACUAGCUUGACAGCCAAUGC AUAGCCAUCAGACAAAGUGCUUC CAUGUUUAAUUCAGUCCAUGGC UUUGUAUUAGCCUUAAAGCUGU AUA	93	18,27957	30,10753	21,50538	30,10753	39,78495	60,21505	1	0,85	-25,2	-25,2	0,130818	5,39	-27,0968	-0,68108

Pre-

miRNA

Sequence

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pmc-mir- 3057	agagugacUGGCUGUUCUUGAGAG AUGUUAGCAAGUUCAAAAUGUU AUGGCGCGAACCAACAUCCCACA GGCCCAGCUGUCACAAA	86	20,93023	26,74419	22,09302	20,93023	43,02326	47,67442	0,782609	0,947368	-24,4	-20,9	0,20764	8,46	-28,3721	-0,65946
pmc-mir- 3071	AuaucaucaaaacaaauguGCAUAGU GUUACACAGAUACCAGGAUCAUG GAUUCAGCUGAUUUAGUGACUG aaacacuuucauuucuugauGAAGC	96	15,625	18,75	10,41667	15,625	26,04167	34,375	0,833333	1,5	-20,1	-19,8	0,178747	6,13	-20,9375	-0,804
pmc-mir- 308	CGAGUGCGCAUGACAGCGCGCGC AGGAUUUGCUUGUUUUGAGCAA CUCGGGUGGCGAUGUCCAUGAC GCACAGC	74	33,78378	18,91892	25,67568	21,62162	59,45946	40,54054	1,142857	1,315789	-32,3	-32,3	0,25533	2,19	-43,6486	-0,73409
pmc-mir- 3084a	UAUAUGUAUUGAAGGUUCAUUA GCCUUGUGGUCAGAGCACUCCAA UUUGGAGCAAAAGGUUACUGGU UCAAGGUCUGCUUGAACCUAUG ACUAAAUaau	99	22,22222	27,27273	16,16162	31,31313	38,38384	58,58586	1,148148	1,375	-27,5	-22,4	0,08872	12,04	-27,7778	-0,72368
pmc-mir- 31	GUCUGUGCUGGUCuacauuuugua ucuguuugaaCUGUCUGUUGGCAA GAUGUUGGCACAGCGUAGUGAG AUUGACAGAAAGUGAAAACCGGC CACAGAA	100	25	21	15	18	40	39	0,857143	1,666667	-31,6	-26,5	0,025901	18,56	-31,6	-0,79
pmc-mir- 315	UGAUGUGAAGUUCUUAGCAGAG GGGUCAAUGUAAGUUAAUUUUG AUUGUUGCUCUAGAAAUUAGAG CUCUUUGUAAAAGUUUACAGAG	88	25	29,54545	9,090909	36,36364	34,09091	65,90909	1,230769	2,75	-18,6	-18,6	0,01829	11,85	-21,1364	-0,62
pmc-mir- 317	AAUAUGUGCACUGUGGGAAGGA UACCAUUGCUUGUUCACAGUGA AUUGGACAUGUGAACACAGCUG	94	25,53191	27,65957	14,89362	31,91489	40,42553	59,57447	1,153846	1,714286	-40,1	-40,1	0,224017	2,93	-42,6596	-1,05526

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/	MFEE(Freq	Div	AMFE (kcal/	MFEI (kcal/
IIIKNA		(AA)									(Kcal) mol)	ol)			mol)	mol)
	GUGGUAUCUUUUUUAAUGUGAA CAUGAC															
pmc-mir- 33	GUGUACUAUGGUAGUGCAUUGA GGUUGCAUUGCAUCAGCUGAGA AACAUGCAAUGCA	83	26,50602	27,71084	16,86747	28,91566	43,37349	56,62651	1,043478	1,571429	-38,7	-37,7	0,204831	5,09	-46,6265	-1,075
pmc-mir- 336	UGACAGAGUACUUGAUUUGCUA UGUCACCCUUCCAUAUCUUUUG GUUUACUUUGUAUGAUGUGAAG UGUAUGUGAGCAAAGCUGAACA UCUGGAA	95	22,10526	25,26316	15,78947	36,84211	37,89474	62,10526	1,458333	1,4	-18,9	-14,5	0,043153	12,58	-19,8947	-0,525
pmc-mir- 33b	CAUUGACUACUAUAAUCCAUCUG UCAAGCAGACACGUUUCAGUGCC UCUGCAGUGGAUGUAUGGUGGC AUCU	72	22,22222	23,61111	23,61111	30,55556	45,83333	54,16667	1,294118	0,941176	-23,6	-23,6	0,187831	6,78	-32,7778	-0,71515
pmc-mir- 345	UCAGCGGCUCGUGGUGCAACAU UUGUUACCUGCACCUUUCUGCAC UCGGCGGAGAUGAAGAACACGU GACGAGAACGUGCUGACCCCUAG UCCGCCUC	98	26,53061	20,40816	30,61224	22,44898	57,14286	42,85714	1,1	0,866667	-28,8	-28,8	0,301092	13,36	-29,3878	-0,51429
pmc-mir- 3529	UGUGGCUGCAGCAAUCAGGGAA GAAUGUGAUUUAUUGUUAGUCA GCAUCAGAACAACAAAAUCACUA GUCUUCCAGAUCACGGCAGCCug g	91	21,97802	30,76923	20,87912	23,07692	42,85714	53,84615	0,75	1,052632	-30,8	-29,7	0,103281	5,67	-33,8462	-0,78974
pmc-mir- 3532	CACGCUCGACGGACUUCACGAGA GCUGUUUUACACUCAUACACAAG CUCGGGUCUUGGAGGCUGCAGU	99	27,27273	19,19192	29,29293	24,24242	56,56566	43,43434	1,263158	0,931034	-40,6	-30,6	0,036618	11,77	-41,0101	-0,725

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
						-	-		-		-					
	GUGACCUCAGCCUCGUGUCUGUC															
	GCAGCAGO															
	UGACugauuuaucuguuuauuuguuu	98	18,36735	27,55102	13,26531	13,26531	31,63265	40,81633	0,481481	1,384615	-22,1	-22,1	0,017425	13,25	-22,551	-0,7129
pmc-mir-	uagccUGAGUCGCCAGAGGAAAU															
355	GGAUGAUGAAUCUGAACAACCUA															
	AAACAGCUGGCAAGAUAAUUCAG															
	GCA															
	UGAGACUCUUGUCAAUAAAGUA	93	23,65591	23,65591	18,27957	34,4086	41,93548	58,06452	1,454545	1,294118	-25,6	-18,64	0,051427	15,9	-27,5269	-0,65641
nmc-mir-	CGUGUCGUUCUUGUCACCGGGU															
36	GGAAAUUCGUCUUUAAGACCUCC															
50	UUCAGUAUUUUGUGAGAAGGGU															
	CAUA															
	GGGUGGGCUGGGCUGGGCUGGG	74	29,72973	25,67568	21,62162	22,97297	51,35135	48,64865	0,894737	1,375	-27,3	-24,8	0,167443	4,41	-36,8919	-0,71842
pmc-mir-	CUGAAAUAGGAAAAGAAUUAAU															
3620	CCUCUUUCUGCUCCACAGUACAG															
	CACAUCA															
		80	21 46067	26.06620	15 72024	25 9/27	47 10101	52 80800	0 058333	2	-21.4	_12 5	0.040157	24.56	-24 0449	0 50952
nmc-mir-		65	31,40007	20,90029	15,75054	23,8427	47,19101	52,80855	0,938333	2	-21,4	-13,5	0,040137	24,50	-24,0449	-0,50952
3643	UUCAGGAAAUGAGGAGCAGACA															
	AGCUCGCUGGGUGAUUUCGUUG															
	UGAUGCGGUGAGUGUAAACCCU	70	24,28571	24,28571	31,42857	20	55,71429	44,28571	0,823529	0,772727	-30,6	-27,6	0,171958	5,87	-43,7143	-0,78462
pmc-mir-	GGUCGGUGCACACCAGCAACAUC															
36b	ACCGGGUAUACAUUCAUCCGCAC															
	CC															
	AACUGCAUUGUAGUAAUUGGCA	80	18,75	25	27,5	28,75	46,25	53,75	1,15	0,681818	-20,3	-19,1	0,192073	5,28	-25,375	-0,54865
pmc-mir-	GGAAUCCCCCAGAAUCGUGGUAA															
3724	ACUUUGUCCUCGCCCUACAUUCU															
	UACAGUGCACUC															
1																

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pmc-mir- 375-1	CGCCGCCAGACGACAUCACAGAA CAUGUAGCUGCCCAAUGACCCGA GCCGCUCGUAGCAAGGCAUCUUC ACAAGUUUUGUUCGUUCGGCUC GCGUUA	97	23,71134	22,68041	31,95876	21,64948	55,6701	44,3299	0,954545	0,741935	-30,9	-30,9	0,454586	4,38	-31,8557	-0,57222
pmc-mir- 375-2	GGGACUUAAUUCAUCGCGAGCA GAAAAGAACGCAACAUCUUGUUC GUUCGGCUCGUUCUGAAAAAGU GAC	70	24,28571	30	21,42857	24,28571	45,71429	54,28571	0,809524	1,133333	-20,3	-20,3	0,298895	4,19	-29	-0,63438
pmc-mir- 3782	AGGAGAGGAUCGGGGCCAGCCAA GGAGGCUUACAGAGGCACUUGG GUGGCGCGCCAUUCCACUUGA	66	37,87879	22,72727	24,24242	15,15152	62,12121	37,87879	0,666667	1,5625	-27,1	-26,3	0,354302	7,68	-41,0606	-0,66098
pmc-mir- 3792	CUUAUCUUUCUGGGCCUCGUGU UAUGUAAGUCAUCAGACACUAAC GACugaggaaagagagauguu	66	13,63636	16,66667	18,18182	24,24242	31,81818	40,90909	1,454545	0,75	-19,9	-17,6	0,1503	5,43	-30,1515	-0,94762
pmc-mir- 3821	AAGCUUACUAUUGAGAGGGUCA guacuuuuuucauuugaguUCAUUUC UAGUGAGUGAGGGUACUUUGUA GCUGAUGUUCUCAAUGUUAGUA G	93	21,50538	19,35484	9,677419	29,03226	31,1828	48,3871	1,5	2,222222	-28,6	-28,6	0,072168	9,75	-30,7527	-0,98621
pmc-mir- 4009c	CUUGCAUgcagcacagacacagauagU GCAGCCUCUCAUUAUUGCACUU UUACUGGUCGUGGCUCCAGGCU CC	73	15,06849	9,589041	23,28767	26,0274	38,35616	35,61644	2,714286	0,647059	-20,8	-20,7	0,16755	3,74	-28,4932	-0,74286
pmc-mir- 4013b	auuugauuuugcuuACUUGCUUUAA CAGCUUACUUACAGGUACAAAGU AGGCUUUUAACCUGUGUACCUG	99	17,17172	25,25253	19,19192	24,24242	36,36364	49,49495	0,96	0,894737	-30,2	-30,2	0,107048	16,44	-30,5051	-0,83889

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	UCACGU															
pmc-mir- 4057	GGUCGGCAACUGACCUCCUGCAU CUCCAGGGUGUAGGAGAUGGGG GUGGCUUGGCGACUGUAGUAGG GCAGUUCCGCUG	79	39,24051	15,18987	22,78481	22,78481	62,02532	37,97468	1,5	1,722222	-33,5	-28,4	0,21803	20,3	-42,4051	-0,68367
pmc-mir- 4070	CUCACAAGCAGGUUGUGAGCGAC CACCacgcgucacgugacaccuagUGA CAGCUGUGUUGACGUCACAGGC AGCUGUCUC	81	20,98765	16,04938	22,22222	16,04938	43,20988	32,09877	1	0,944444	-27,1	-20,9	0,082254	16,72	-33,4568	-0,77429
pmc-mir- 4133	aaaccauguuguguuuuuguaugcAGG AUUAGCUGCAAGUGACAAGGAA AAUUACUGUCACAAGAUAAUCCU UCCAUCAGGAAACUCAAAUGGGA C	96	15,625	29,16667	14,58333	15,625	30,20833	44,79167	0,535714	1,071429	-26,4	-26,4	0,07692	7,8	-27,5	-0,91034
pmc-mir- 4140	UCAAUUAUAUAAAAUCAACUGG UGCAAGAUGCUUUGCUGGAGAU UUCAUGGUAAUACUUCAGUAAC CAGAUGAUUAUGACACAAUAAA	88	17,04545	37,5	14,77273	30,68182	31,81818	68,18182	0,818182	1,153846	-18,9	-18,9	0,163592	6,36	-21,4773	-0,675
pmc-mir- 4177	UUACAGGGUGUUUACAUAAUUG cuguuuuaaacaguuuucaggUUAUA UACCAGGAUCAAACAGACUCUAG UCAUAAUACCCUGGGU	87	13,7931	24,13793	13,7931	24,13793	27,58621	48,27586	1	1	-20,5	-19,4	0,131475	8,3	-23,5632	-0,85417
pmc-mir- 4185	CAUAAAGUAUCUAUGUUUAAUG CGCUGUUGUGUGAGUCUCCUUC UUUGUAUUCAUACUGUCUGUUA CAAGCAAGCGGAUUAUUCAAAGA AUACUUUGCA	99	18,18182	26,26263	17,17172	38,38384	35,35354	64,64646	1,461538	1,058824	-24,4	-20,7	0,040505	9,56	-24,6465	-0,69714

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pmc-mir- 4323	AUCUGCGGCUUCCUGCACUUAGA GGGGAGAGAUUUGCUUUUGACA GCCCCACAGCCUCAGGAGCAGAA AGCUGCAUAG	78	28,20513	24,35897	25,64103	21,79487	53,84615	46,15385	0,894737	1,1	-26,3	-25	0,219804	12,73	-33,7179	-0,62619
pmc-mir- 4472	UGCUCUGCAGCAACAAUCGACUA UUCCCACCCUCCUUUUUUUACUG GGGUGGGGGGGUGUUGUUGAUC AGAAAU	73	24,65753	19,17808	23,28767	32,87671	47,94521	52,05479	1,714286	1,058824	-25,5	-22,6	0,074609	17,51	-34,9315	-0,72857
pmc-mir- 449d	CCUAUCAACCAUUGUCAGCAGUG AAACUAAUGGUAUUCAUUUGUC UUGAAGGCUGUGUGCUGUAAAG AUAAUGCUCACUGCUGCCCUCGU GGAUCUA	97	21,64948	24,74227	21,64948	31,95876	43,29897	56,70103	1,291667	1	-25,6	-22,8	0,038963	9,81	-26,3918	-0,60952
pmc-mir- 4629	AACGAGGCUCACGUGUGUGAUG ACGUGGCAGUGUCACGGCGAGG AUCCUGUCCCAAUGACUGGACGU UCAUCGCCGACAGCGAUGGCUCU CCCU	94	30,85106	19,14894	28,7234	21,2766	59,57447	40,42553	1,111111	1,074074	-30,5	-25,9	0,016318	28,06	-32,4468	-0,54464
pmc-mir- 4654	GGCUGAUACGCCAGGUGAUGUG GGAUCUGGAGGCAGACUUCGGC UUCCGCAUCGGCCCGUGGAACCA GGCCUACAUGUACGACACCCUGC CGAUCAGUC	99	31,31313	19,19192	30,30303	19,19192	61,61616	38,38384	1	1,033333	-41,7	-40,2	0,172557	4,86	-42,1212	-0,68361
pmc-mir- 466-1	AUACAGUCUGUGGCGUGUUUUG UAUGauguauaauauauacacacacac auauauauauauacacacauaccacauac aaggCCUAGAGUCUGCGG	95	13,68421	6,315789	7,368421	14,73684	21,05263	21,05263	2,333333	1,857143	-24,1	-24,1	0,035265	12,2	-25,3684	-1,205

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pmc-mir- 466-2	uauauauauacacaacacaacaauggA GUCUCCACAUGAGUGAGACAAGU GACCCUGAAAUGAGUGACUCAGC ACCCAAGUUUUUGUguauaaauag c	99	14,14141	18,18182	14,14141	15,15152	28,28283	33,33333	0,833333	1	-19	-10,61	0,024059	19,5	-19,1919	-0,67857
pmc-mir- 466-3	CAGGUGAUACAGAGCGAACUGU AAUAUUcauacuguguauauauauaac acacacaauauacauauaaugaaCAU UAUGUGUGCACUGUAUUACUAG	97	12,37113	16,49485	8,247423	17,52577	20,61856	34,02062	1,0625	1,5	-29,3	-29,3	0,326455	3,38	-30,2062	-1,465
pmc-mir- 466h	AGCUGAUCGGCCAGGAUUCUCGC GCGUGcgcguacgcacgcacacacaca acacgcacgcacgccugGCCAAACAAC a	79	13,92405	11,39241	15,18987	7,594937	29,11392	18,98734	0,666667	0,916667	-29,5	-29,5	0,500936	3,9	-37,3418	-1,28261
pmc-mir- 466i-1	gugugugugugugugugugugugugugug ugugaucauaaCAUAUGCCAUCUCC UGAUCACAGGCAUUCACACUAAA CAACACCAGGA	86	6,976744	19,76744	18,60465	10,46512	25,5814	30,23256	0,529412	0,375	-30,8	-24,1	0,099618	12,29	-35,814	-1,4
pmc-mir- 466i-2	ugugugugugugugugugugugugugugugugugugug	94	9,574468	14,89362	11,70213	4,255319	21,2766	19,14894	0,285714	0,818182	-20,1	-12,9	0,014359	21,92	-21,383	-1,005
pmc-mir- 466m	aaauugugugcaugugcaugugaaugug ugugcaugcuuacCUGCUUUAGAGA UAUCAGAGCAGAGAACAUCUACC AUGCAUGACCAUGCCAAACCU	97	10,30928	19,58763	15,46392	12,37113	25,7732	31,95876	0,631579	0,666667	-27,1	-26,2	0,171386	21,7	-27,9381	-1,084
pmc-mir- 466n	uuuuguauUACUUCAUGCUCAcgaa ugugugcacacacacacaugggugCA	97	12,37113	11,34021	10,30928	13,40206	22,68041	24,74227	1,181818	1,2	-28,3	-28,2	0,049412	16,07	-29,1753	-1,28636

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	UAGGGGACAGGUGUGUGCGUAC AUGUACUCAuguauauacauag															
pmc-mir- 466q	CCGCGAGCUGUaacgugcacacagac acacagacuguugCGUGCUGuaacgu gugcacacacacacauacacugguGCGU GCUGUAACGUACUGCCGCGU	100	15	4	13	10	28	14	2,5	1,153846	-33,1	-14,84	0,013848	33,92	-33,1	-1,18214
pmc-mir- 467d	GAGGGUUGUAAGUGCGCGCAUG UAUUUAUGUUGCAUUCGUAUGU AGUUAUGCAUGUAUAAAUACAU GCACUCGAUAAAAACCAGA	85	23,52941	30,58824	14,11765	31,76471	37,64706	62,35294	1,038462	1,666667	-25,9	-23,2	0,094769	13,72	-30,4706	-0,80938
pmc-mir- 467f	GUAGGCCAACGUCUCCCUCCCGC UGAaaaauuuauauacacacacacaccu uucaagUGGGAGGAGAUGGACAA UGGCCCAU	82	19,5122	13,41463	18,29268	10,97561	37,80488	24,39024	0,818182	1,066667	-30	-30	0,050335	8,93	-36,5854	-0,96774
pmc-mir- 4715	CGCCACGCUGAUCACGUGCCAAC GUGCCACCUUAACUGCACGGACC GCGGAAGAUGGUUUGGCCGUGG AAAGUGAGCGGUGAGU	84	33,33333	21,42857	27,38095	17,85714	60,71429	39,28571	0,833333	1,217391	-31,6	-31,6	0,33988	8,09	-37,619	-0,61961
pmc-mir- 4750	CCUUCAAUGUCUCACGUGCACGA UGGGGGGGAAGGGGCUGUGAACA CAUGGACUGACACCUGACCCACC CCCUCCCUACUCUGACCGUGACA GUGACAA	98	25,5102	23,46939	32,65306	18,36735	58,16327	41,83673	0,782609	0,78125	-29,8	-19,7	0,066962	29,71	-30,4082	-0,52281
pmc-mir- 4757	aaaaaaaacccaaaacucaAGCGUCUC AGUAAAGGGUCUACAUUUUACA CCUGUCAUUUCCAUGACGUCACA GAGGCGAGGUUUGGCUUUUGGA	93	20,43011	18,27957	17,2043	24,73118	37,63441	43,01075	1,352941	1,1875	-22,4	-21,8	0,139005	15,42	-24,086	-0,64

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	01)			mol)	mol)
pmc-mir- 4769	AUUGCUGGCUUCACUCUUCUGC CAUCCUCCCUCUCGUCUGUCGAC AUGGCUGACCCCAAGAUGGUCAG AAGAGUGAACAAGCGAG	85	23,52941	21,17647	30,58824	24,70588	54,11765	45,88235	1,166667	0,769231	-34,6	-34,5	0,204288	8,13	-40,7059	-0,75217
pmc-mir- 487a	GGGAUUGUGCACUAGUGGCUAU CCCUGCUGUCAUCCCACCGAUAU CACGGCCAUAGCACGGUCACCAC UAUUACAAUAGU	80	21,25	23,75	30	25	51,25	48,75	1,052632	0,708333	-22,7	-22,7	0,227369	6,98	-28,375	-0,55366
pmc-mir- 49	aacaaaagaaaccaaaaaggGCAUCUU CCCAUGAUGCAAAUAGACUAAGG GAAGCACCAUGUGAAGCACUUU UCUGGUUUCUUUUCCa	88	14,77273	19,31818	18,18182	23,86364	32,95455	43,18182	1,235294	0,8125	-26	-26	0,306727	8,11	-29,5455	-0,89655
pmc-mir- 4938	UUUCUgcauauuauuauaaucaucau gcaucaucauuauugaCCAUGCAGGU GCAUGAUCGAUCCUUAAUUGUA UGAGGAU	81	12,34568	12,34568	9,876543	19,75309	22,22222	32,09877	1,6	1,25	-23,1	-20,9	0,193135	5,48	-28,5185	-1,28333
pmc-mir- 4949	AUUAGCAUUCAUGAUACGGAUU UUAAGGAaguggugugcgugugugug ugugcccacuUAUGACAAAGUCCAC AUCAUGUAACGCUGUU	89	12,35955	22,47191	11,23596	21,34831	23,59551	43,82022	0,95	1,1	-28	-28	0,194482	3,14	-31,4607	-1,33333
pmc-mir- 4968-1	gaCGUUGCUGCCGAGCUCGGCUG UGCGUCGUGCUGgacggcagcagca gcaacagcagcagcagcagcagcaacauu	74	17,56757	1,351351	13,51351	12,16216	31,08108	13,51351	9	1,3	-35,3	-30,4	0,160289	15,99	-47,7027	-1,53478
pmc-mir- 4968-2	CGACAGCGCAcuggcagcaacagcagc agcagcagcagcacucgGCGGAUGUG CAGCUUCCCUCGGUGGUUGCUG GCAGGGCCACUGGUU	90	23,33333	7,77778	17,77778	13,33333	41,11111	21,11111	1,714286	1,3125	-33,6	-22,2	0,144928	16,86	-37,3333	-0,90811

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pmc-mir- 4968-3	ACACGACAGCCCGCAUCUGAUGC ACUGCUUCCUCAGUUUCauccagc aacaacagcagcagcaaccagcagcagcag caaugccGAGAUGCCGGGA	95	13,68421	11,57895	17,89474	11,57895	31,57895	23,15789	1	0,764706	-24,8	-24,1	0,103418	14,12	-26,1053	-0,82667
pmc-mir- 4968-4	CUACACCCUGGGCUGCGGCGGUU GUGUCCAGcaucacagcagcaacagca gcagcagcagcagcagccucaaCCAGCG CAGCAGCUGCAGCGGUGCGA	98	21,42857	8,163265	19,38776	9,183673	40,81633	17,34694	1,125	1,105263	-38,8	-38,8	0,480796	14,61	-39,5918	-0,97
pmc-mir- 4999	GACGCAUUGACCAACAAUAUGAU ACACUGAUGGCUUUCCUAUUGC UGUAUUGUCAGGUUUGUAGAUA UUGUAAUAGGUUAACUGCCAU	88	20,45455	27,27273	17,04545	35,22727	37,5	62,5	1,291667	1,2	-20,3	-20,2	0,098	21,47	-23,0682	-0,61515
pmc-mir- 501	AAUGCACCCGGGCAAGUCAGAGG ACACAUUAAGAGCCCCAUUAGAG UAAAACGGGAAUGGAGUUCCGU UAACUGACGUCAUUUGUUUCCA GGGGUGCCAG	100	28	29	22	21	50	50	0,724138	1,272727	-28,4	-28,4	0,207312	9,5	-28,4	-0,568
pmc-mir- 5101-1	uuuguuuguuuguuuguuuguuuguu uugcugucugACGUUUGCGGAAAA CCACAGCUCAGUCUGUCAGCAGA CAACCAgaugaaaugaaagauaacaug	100	9	14	13	7	22	21	0,5	0,692308	-26,2	-19,3	0,014197	18,79	-26,2	-1,19091
pmc-mir- 5101-2	UCGACCGAAGGAUAGUGACGGuc cuauuuguuuguuugcuguggcUU AUUUGUGUUAGGUUUGGUCUU AGGACUGUUUUaccuuugguuuu	93	18,27957	10,75269	6,451613	23,65591	24,73118	34,4086	2,2	2,833333	-26,8	-26,2	0,065192	10,31	-28,8172	-1,16522
pmc-mir- 519f	GUGCGCAUAUUUCUUGCUGAAA AUUGUCAUGUUUAAUUUGGAGG AUAAAGUGCAUCCUUUUAUGGC	97	24,74227	27,83505	13,40206	34,02062	38,14433	61,85567	1,222222	1,846154	-23,4	-22,1	0,126706	9,47	-24,1237	-0,63243
Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
-------------------	--	----------------	----------	----------	----------	----------	----------	----------	----------	----------	-----------------------	------------------------	----------	-------	------------------------	------------------------
	GAAACAUCAAUUCGGAAUGUAA UGUGCGGGA															
pmc-mir- 5317a	GGGCCAGGGCCACAUCCCUAGCU CUGGUCCGUUUCUUGUCUCUGU GUACCUCUCGUGCUGCCAGACCA AGUGGUGAUCGGUGACCGCUGG AAC	93	29,03226	13,97849	31,1828	25,80645	60,21505	39,78495	1,846154	0,931034	-33,8	-33,8	0,197453	11,33	-36,3441	-0,60357
pmc-mir- 539	AUGGUGAUGACUCAUCAUACAA GGACAAUUUGUCACCAGCGAAGA UGUUAUUUAUACCAUGACAGAA UGUGUCUUGUAUUUGUUCACAC GAA	92	19,56522	31,52174	17,3913	31,52174	36,95652	63,04348	1	1,125	-20,4	-20,2	0,064375	14,18	-22,1739	-0,6
pmc-mir- 5391	uuccugcaagGUACCUUAUGAGGU AACUUGUUUGGACAGUUAUGAA GAAGUGGAAUCUAAUGUCCAACA GUUUAGAAUCAAACAGGCUAUC AUUCAGACC	100	19	30	15	26	34	56	0,86667	1,266667	-18,8	-12,3	0,005609	35,95	-18,8	-0,55294
pmc-mir- 5396b	GAAGAGGAAUCCCCCACACAACC AGCAAGAUUUGCUGCUGCGGAA GGAACAUCCCGGCAUUCGUUGAC UGCCUCUGGUGGGUGGAGUCCU CGUG	94	29,78723	22,34043	27,65957	20,21277	57,44681	42,55319	0,904762	1,076923	-34,1	-26,1	0,0206	19,14	-36,2766	-0,63148
pmc-mir- 5549	CcccaaaauaucaaaauagaaUAAUAA GAGGAGGGUGGGACUUCUUUAA CAUUACACAGAUAUCCUAUUAUU CUUCAUGUUGGUUUUUUGAAU	93	15,05376	21,50538	10,75269	31,1828	25,80645	52,68817	1,45	1,4	-19,5	-19,3	0,091982	11,56	-20,9677	-0,8125

85

gucuguagucuauagucuguagucugua

gucuaUAGUCUGUGGUCUGUAGU

pmc-mir-

5552

15,29412

12,94118

9,411765

23,52941

24,70588

36,47059

1,818182

1,625

-23

-20,4

0,065706

32,41

-27,0588

-1,09524

194

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	UUGUAGUCUAAAGUCUGCAGCA AUGAGUUCAUCU															
pmc-mir- 5595	UAGUGUCACGUGCUUUAAAAAA GGUGCAGGCUCUCUUUUUUCUC GCAGUCCCGCACUGACCUGAGAG AGUCACCAUCUUAUGUCAAAGAC AUGGACAAGA	100	22	27	24	27	46	54	1	0,916667	-30,6	-30,6	0,243502	5,31	-30,6	-0,66522
pmc-mir- 5600	UGAGGUCUUUGACAGUAAGUAC AGAGUUUGCUCAGACAAGUAAG GAAUCAGuggaauguuuuguuucagu aGUUGUCUAUCUUCUGUACCAA UGACCAUC	100	18	23	15	24	33	47	1,043478	1,2	-24,6	-24,6	0,137757	6,7	-24,6	-0,74545
pmc-mir- 5612	ACAGGUGUCUAUAUGCUACAUC ACCUGAAUAAUAGCUAUUGUGU CUAUACAUCACCAGUUGACAUGU UAGGUAUGGUAU	91	16,48352	29,67033	20,87912	32,96703	37,36264	62,63736	1,111111	0,789474	-20,8	-15,6	0,041563	12,19	-22,8571	-0,61176
pmc-mir- 574-1	CAGCUCACAGAAACCAUCAGCCA CAGGCUUCAAGAAAAAUACUCUA AUGACAGCUCGCGCCAUUGAGAG UCGUggaggugaguguguguguguggggugag ugc	99	14,14141	25,25253	21,21212	13,13131	35,35354	38,38384	0,52	0,666667	-26	-18,3	0,019862	27,93	-26,2626	-0,74286
pmc-mir- 574-2	AUUUUCCGCCAUUACUCAUCUUC CACCCAGCAUCACGUUAGUUAAU AGUCAGGcggagugugagugugugug ugugaguguguguaaggGGGAAUAC	97	10,30928	16,49485	17,52577	18,5567	27,83505	35,05155	1,125	0,588235	-27,6	-27,5	0,03265	10,86	-28,4536	-1,02222
pmc-mir- 5918b	UUCUCAUGGUUGUGUGUUAUUA UGUUCGCUCUACAUCGUGUGGU CAGAGAUggugagagagggaagagaga	100	15	10	10	24	25	34	2,4	1,5	-22,4	-14	0,095221	25,67	-22,4	-0,896

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
mikna		(AA)									(KCal) mol)	ol)			(KCal) mol)	mol)
	gugagagaaagaaugacaagaCAUGAU GC															
pmc-mir- 5965	CAACCUUGGGUGAUGACAAUUC UGACAUUUUGCAAGGUUUCAUC CUUGUCUGUUUCAUUCUUCAAA CUGCGAAGUCGCGCAUCACCAAU GGGUA	94	20,21277	23,40426	23,40426	32,97872	43,61702	56,38298	1,409091	0,863636	-24,6	-23,9	0,068188	8,99	-26,1702	-0,6
pmc-mir- 6056	UCUCUGUCGACUUCAUUUCCUCC UCGGCCCAGUCUUCCUCUCUG GUGAUGAUAGGGGUGAGGUGA	99	23,23232	11,11111	20,20202	23,23232	43,43434	34,34343	2,090909	1,15	-50,2	-46,8	0,12691	12,98	-50,7071	-1,16744
pmc-mir- 6076	AAGGCUGACACCCUUCCCUCAGG UCGUCCUCCUCUAAGAAGCAAAC AGAAGCAUGACAGAGGAGAGAG GAAAACCCAAAGGGAAGGCUCUC UGCAUG	97	25,7732	32,98969	26,80412	14,43299	52,57732	47,42268	0,4375	0,961538	-33,4	-33,4	0,461099	5,24	-34,433	-0,6549
pmc-mir- 6098	GUGCUCGUCAUAGUGAUUGUGU GUUUCUAGAAGACAAGAC	84	23,80952	28,57143	17,85714	29,7619	41,66667	58,33333	1,041667	1,333333	-22	-19,4	0,02079	16,09	-26,1905	-0,62857
pmc-mir- 623	UAACAUACCUGUUCCGCCAUGGU GAACGAGUGAGGAAAAGACCGGA ACGGGGUUCACACGUUUCCCUU GCAGGGGCUGAGGUAUGAGA	88	31,81818	26,13636	21,59091	20,45455	53,40909	46,59091	0,782609	1,473684	-29,8	-29,8	0,153312	7,64	-33,8636	-0,63404
pmc-mir- 626	UGACACUGUGUCACACCAGCAAG cugucugaaaauguuugcaugaaaacau	96	14,58333	10,41667	10,41667	6,25	25	16,66667	0,6	1,4	-22,1	-10,23	0,039265	24,65	-23,0208	-0,92083

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	gaagacauuaaaacauuuauaaaaagug CGGGUGGGGAAGUGCAC															
pmc-mir- 6302	GGAUGAGUCACUCgagauauuuga uauuuuucaucaaUGAAACCAUGUU CCUGUGAUGAAGAUAGAUAAUG CACCAAACUCAUCGUCAGCCACU CACGA	99	15,15152	24,24242	19,19192	17,17172	34,34343	41,41414	0,708333	0,789474	-18,9	-17,1	0,135467	11,6	-19,0909	-0,55588
pmc-mir- 6416	AGCAAAUUGCUUGAUCAUAGUG AGCGUAUCAUGGCAGCACAUCCU CAUGGGUUUGCGUCUCCGUAUC AUCUGCUAGCUACUGAGAACAAU UUUUU	95	21,05263	24,21053	22,10526	32,63158	43,15789	56,84211	1,347826	0,952381	-21,2	-20,6	0,052561	13,18	-22,3158	-0,51707
pmc-mir- 6505	CUUAGCUCCAUCUGACUUCUACC UGUUCCCUAAACUCAAAUCCCAC CUAGUUGGUCAccauuuuggaaaca augauGAAGUCAUAUGAGCUGUG	94	12,76596	19,14894	23,40426	24,46809	36,17021	43,61702	1,277778	0,545455	-21,1	-19,17	0,012139	12,86	-22,4468	-0,62059
pmc-mir- 651	CAUGAUAUUUUAAGUGAUAAAG GCUUUUACCUGCAAAAGAUAUG GAGUUUUAUGCUCGAUAUAAAA UUUUAGGAUAAGUUUGAACACG UAAAGCAUCAAU	100	18	37	11	34	29	71	0,918919	1,636364	-21,6	-21,5	0,14346	4,59	-21,6	-0,74483
pmc-mir- 6516	GAGUCUUAUUCUAACUGGUUUC AUGAAUGCAGUAACAGGUGUCU CCACCUCUGCAUUGCUCAAACCA CAUUACAUCAGAAAG	82	17,07317	29,26829	24,39024	29,26829	41,46341	58,53659	1	0,7	-19,7	-19,6	0,151242	5,16	-24,0244	-0,57941
pmc-mir- 6528	GGUGGGuaggagagagggaagaggga agAAAGCAAGAUGAAAGUGUCGC CUCUGGGAGAGCUUUCGGUGGU	97	23,71134	14,43299	18,5567	20,61856	42,26804	35,05155	1,428571	1,277778	-32,8	-27	0,029155	15,05	-33,8144	-0,8

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/	MFEE(kcal/m	Freq	Div	AMFE (kcal/	MFEI (kcal/
											mol)	ol)			mol)	mol)
	AUUCUCCUCCUGUCACGUAGCC UCU															
pmc-mir- 6548	CCGUUCACACAGAGAUUUGAGAG GGGGAGGGGGCAGAAAAGAGAGG UGCCCCGCUGUCUGUUCUCUGG UGAAAAG	74	36,48649	25,67568	18,91892	18,91892	55,40541	44,59459	0,736842	1,928571	-31	-31	0,103929	5,12	-41,8919	-0,7561
pmc-mir- 6560	CGCUGUGUUGCUCCAUACUGCU GAAGUAGUGUCUGUACUUCUGU UUCAGUCAUAAUGAGCAGCUCA UCA	69	21,73913	20,28986	23,18841	34,78261	44,92754	55,07246	1,714286	0,9375	-19,8	-18,8	0,070623	8,29	-28,6957	-0,63871
pmc-mir- 6562	AGGCAUAUGAGGGGAAAGGAAU GUGCAGGUAAUGGUACUUGUAG UUUCCUAGUUUGUAAACAUUAA CACUGGACACUUGUCUCCCUCGG UUCAuaugcaa	100	24	25	16	28	40	53	1,12	1,5	-31,7	-31,3	0,048803	12	-31,7	-0,7925
pmc-mir- 6568	CUGAGCCUGACGAUGCCGGGCGC CAUAAUGGCCACGAGCUAACUGU CGCACGGCGGCCGCCAUCUUGCG GAGCUGUG	77	33,76623	16,88312	32,46753	16,88312	66,23377	33,76623	1	1,04	-27,4	-27	0,220859	16,73	-35,5844	-0,53725
pmc-mir- 669f	acacacauauacauacacaccacguguu guUUCACAAGUAGUACAACAGGC GUGUGAGAUGUUUAUGUGAGG	73	17,80822	16,43836	6,849315	16,43836	24,65753	32,87671	1	2,6	-25,6	-20,3	0,138486	10,86	-35,0685	-1,42222
pmc-mir- 669j	CUUUGACAUGACAGUUUUUGAU UUGUGGAUCguauaaaagacaaaua caucCACAGGCAUGCAUAUACUCA CAUGUGCACAC	82	14,63415	19,5122	17,07317	24,39024	31,70732	43,90244	1,25	0,857143	-18,5	-17,6	0,121983	11,36	-22,561	-0,71154

Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
	(AA)									(kcal/	kcal/m			(kcal/	(kcal/
										mol)	ol)			mol)	mol)
											,				
GAGAUGUCGUGAGUUGUCGGUC	96	30,20833	22,91667	20,83333	26,04167	51,04167	48,95833	1,136364	1,45	-50,4	-50,4	0,287211	2,51	-52,5	-1,02857
CUUGUUCAGCCCGGUUGUGAUG															
GAGUUGGUCGCAUCACAACCUGC															
AUGAAUGAGGACUGACGUCACG															
AAAUAAC															
CCUAUCAUUAUGGAGUUGCUUU	97	17,52577	31,95876	17,52577	32,98969	35,05155	64,94845	1,032258	1	-19,2	-18,9	0,066024	11,85	-19,7938	-0,56471
GUUGUUAUCUGACAGCCCAGGA															
AAAAUAUUCUGAUUAUUUUACA															
GACAGCAACUAUGAAUCCAAAAC															
UGGAUGAU															
	95	18 94737	21 05263	14 73684	35 78947	33 68421	56 84211	17	1 285714	-22.5	-22	0 114242	8 28	-23 6842	-0 70312
	55	10,5 17 57	21,05205	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	33,70317	33,00 121	50,01211	-,,	1,203711	22,5		0,111212	0,20	23,0012	0,70012
UAGUCUGUAAACAAUGCAGUGaa															
accanan															
0-00															
CACCCUcaucuuccccuccccucuccau	78	21,79487	16,66667	11,53846	3,846154	33,33333	20,51282	0,230769	1,888889	-24,9	-24,9	0,700959	2,36	-31,9231	-0,95769
cccacccccaccucGGCGAGCGGACU															
GCGAAACGGAGAGGAAAUGGGA															
AG															
CGCCCGUUUCCCUAGAGAAGAAG	70	25,71429	20	30	24,28571	55,71429	44,28571	1,214286	0,857143	-24,5	-23,2	0,750631	1,04	-35	-0,62821
CGUGUCAUCUGCGACAGCCUCUG															
CUUCUUCAGCUAGUGUCACGGA															
AG															

40,42553 1,375

1

-35,8

-34,3

0,187738 13,56

-38,0851

-0,63929

17,02128

29,78723 23,40426 59,57447

29,78723

PremiRNA

pmc-mir-67

pmc-mir-6701

pmc-mir-6876

pmc-mir-

6891

pmc-mir-

6971

pmc-mir-

6974

ACAACGACGACGGUGGACAGGGG 94

GUGGACCUCGAUGCCAGCAUGG

UGUCCACCAGCUACAUUGCGCUC

UUCUCCACUCUUCUGUGUCG UGGG

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pmc-mir-	CAAACAGUGCCCACCCACCUGCCU GUCACAcugugauuuauuuacauugu	87	17,24138	16,09195	26,43678	14,94253	43,67816	31,03448	0,928571	0,652174	-28,9	-28,6	0,111346	9,33	-33,2184	-0,76053
7000	GCCCAGCACUGUGUG															
pmc-mir- 7046	GGUGUAGGGUGAGGCUGGUGG GUUAGUUGGGUGGCUGGUCGGG UGAAGAAAGGGAAGUAAGUCAA AUUUAAACGUGACACCACCACCC ACCUACCCU	97	35,05155	24,74227	18,5567	21,64948	53,60825	46,39175	0,875	1,888889	-32,6	-28	0,059458	25,01	-33,6082	-0,62692
pmc-mir- 71	CACCCGUACCCUAGUCUGGUGAA AGACACAGGUAGAAUGUAAUUC UACUGUUCACUUUUAAACGAGG GAUGCGGACU	77	23,37662	28,57143	22,07792	25,97403	45,45455	54,54545	0,909091	1,058824	-24,6	-24,6	0,07754	10,03	-31,9481	-0,70286
pmc-mir- 7-1	UACUGUUCUCCAGAUUGACUUC CUCUAAGUACUGAUAGUUGUUG UUACCAACAAAUCGUAGCCUCAG AGGUAAGGCAGGUCAUUGaacaac acau	95	18,94737	23,15789	18,94737	28,42105	37,89474	51,57895	1,227273	1	-23,3	-21,3	0,085299	10,39	-24,5263	-0,64722
pmc-mir- 7151	UUGUUGACACUGAGAAAAGUGA CAGGAUCCAUCUCUGCCUGCUCA CCUUCACGUUUGUGGUGAGCAgc ugucauuuuucucuuugcAAGAU	91	18,68132	19,78022	17,58242	21,97802	36,26374	41,75824	1,111111	1,0625	-37,2	-36,5	0,178864	4,62	-40,8791	-1,12727
pmc-mir- 7-2	AAUGCAAAUACUAGGGACAgggu ucuuuuuaaaaaaaaaaagaugcagacggC UGAAUCGCUGACUGGUUACAAA AGCCAACAAGUCCCAGUCUUGGC GGA	98	16,32653	23,46939	16,32653	13,26531	32,65306	36,73469	0,565217	1	-20,7	-16,47	0,006838	17,31	-21,1224	-0,64688

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pmc-mir- 7207	AGUUGAGGAAAUGAAAGuugcuu ucaucuuuuaaaauacaggGUGUUGA CAGUCAUUUCACCAGAUGAAUAA ACACGUGGCUCAAUUCCUCAUUC	95	15,78947	24,21053	13,68421	20	29,47368	44,21053	0,826087	1,153846	-20,6	-19,9	0,070254	20,54	-21,6842	-0,73571
pmc-mir- 722	UAUAAGGUAGAAUUUUGCAGAA ACGUUUACAGUUUACUACUCUU UGGAGUUGGCUGGUGUAUAUG UUACAAGUAUAUUUCCUACCUU UUG	90	20	25,55556	13,33333	41,11111	33,33333	66,66667	1,608696	1,5	-20,7	-19,6	0,061494	7,79	-23	-0,69
pmc-mir- 7241	CACCUGUUGUGAAAAUGCUUUG AACUUAGGUGUAUGCAUGUUGG AUCCUGACUCCUACUUGCAUGAG UUAAUGAUUUGUCAGGUCAACA GAGG	93	24,73118	24,73118	17,2043	33,33333	41,93548	58,06452	1,347826	1,4375	-20,3	-17,7	0,029323	17,26	-21,828	-0,52051
pmc-mir- 7314	GUCACAGGGACCCUGGUUGGCC UGCACAAGCCCCAGUAAUACUGG UGUCAAGGAUAGACGAAACUCCU UGAAGAUUGUCAGAAACAGUGU CUCUGUGCa	99	26,26263	26,26263	24,24242	22,22222	50,50505	48,48485	0,846154	1,083333	-32,6	-28,7	0,010541	12,05	-32,9293	-0,652
pmc-mir- 7323	UUUUUCCGAAAUAGCUUUGUGC UUUGACAAGUGCACUCUGCAAG UUACAGAAUUGUGUGAUCAACG UCAAUUCUAAUUUCCGGAAUAU	88	18,18182	27,27273	18,18182	36,36364	36,36364	63,63636	1,333333	1	-20	-20	0,049302	14,06	-22,7273	-0,625
pmc-mir- 7386e	UGUAAAGUAGUAAACACUUUAC CCGUUUGACUGUUUGCCCUUGU UCUUGAACAGUGUGGGUGAACC UCUUGACUGGUGUAAAGUUGUA UAacuuuuua	98	21,42857	21,42857	15,30612	33,67347	36,73469	55,10204	1,571429	1,4	-24,7	-24,1	0,025944	13,11	-25,2041	-0,68611

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
pmc-mir- 7388c	UGGUCCUUCAAGUGUGGCGUCA GUUACCUGCCCCUGUUCUACCUG CACAAGGUGCACAGACGUGACAU CGUUGAGGAAGU	80	27,5	20	26,25	26,25	53,75	46,25	1,3125	1,047619	-24,4	-24,4	0,084225	8,96	-30,5	-0,56744
pmc-mir- 7398a	aaagagaacuUCCGUAACCUGUAAC AUUCACAUGAUGAUUUGUUAAU UUGGAGCUUAUGAGCUCACCGU AUGUGUAGAGGUGAGAAAGUUG UCGCU	96	21,875	22,91667	14,58333	30,20833	36,45833	53,125	1,318182	1,5	-21,1	-15,38	0,110809	24,91	-21,9792	-0,60286
pmc-mir- 743b	AGUAGACACUUCUGAACGAGCU UCUUGUACUAACCUUGCUGUAA ACCCCAGGACGAAGCUGUUCAGA CUGGUGUCUGGU	79	24,05063	24,05063	24,05063	27,8481	48,10127	51,89873	1,157895	1	-26,2	-25,6	0,030673	10,47	-33,1646	-0,68947
pmc-mir- 7448	ACAACUUGAGUCUCGAAGAAGCG AACUGUUGUAGAACAGUUCCGA UCAAUCGAUAAUCGAGUAUU	65	21,53846	33,84615	18,46154	26,15385	40	60	0,772727	1,166667	-20,4	-19,3	0,340793	2,64	-31,3846	-0,78462
pmc-mir- 745a	AGCUUGCUGGCUGGAGGCGGCU UUUCAACAGGCUGCCUUGCGUU CUAAAUACAAGCUGCCUGAUGAA GAGCUGUCCUGUGGCGAGCAAU GU	91	30,76923	19,78022	23,07692	26,37363	53,84615	46,15385	1,333333	1,333333	-46,9	-46,9	0,097683	4,24	-51,5385	-0,95714
pmc-mir- 745b	UUCCCUCCGCUCUUCCUUUGGAC AGCUAUCGUGCCGACAAGGAGAG CUGCCAAAUGAAGGGCUGUGGU GG	70	30	18,57143	27,14286	24,28571	57,14286	42,85714	1,307692	1,105263	-29	-25,7	0,096995	8,37	-41,4286	-0,725
pmc-mir- 7472	CCUGUGCCUGCUGAUUGUGCAU UCCGGGGAGAACAUUUCAUAUG AGAUGUGCUGGAGAUGAAAACU	97	24,74227	24,74227	24,74227	25,7732	49,48454	50,51546	1,041667	1	-30,5	-27,9	0,050851	8,11	-31,4433	-0,63542

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/	MFEE(kcal/m	Freq	Div	AMFE (kcal/	MFEI (kcal/
											mol)	ol)			mol)	mol)
	GUUCCUCCCCAGAACAUAAAUCU GGCACCGC															
pmc-mir- 750	GCAGCCAGCUCUCUGUGAGUUG GAAGAUUGGGUCUUUGGCAGGA AUACUGUCUUCCAUGCCAGAUCU AACUCUUCCAGCUCAUAGUGGCA UGGCAUG	97	26,80412	20,61856	23,71134	28,86598	50,51546	49,48454	1,4	1,130435	-52,7	-51,6	0,157091	3,48	-54,3299	-1,07551
pmc-mir- 751	CUUGGCUCUGUGUGAUUGGUUU CUGUUCUCCAAGauuaaaacauguu ugaaugGCCACCACUUUGGCACAG UAAACAUCAUCCAUAGAGCCCUU	94	15,95745	15,95745	22,34043	25,53191	38,29787	41,48936	1,6	0,714286	-27,8	-22,8	0,051558	21,54	-29,5745	-0,77222
pmc-mir- 7562	cacacacccccgacacacacacacacauuc auggaCACGCAUGCCUGCACUAAA AGUUUGGUUGGGAAUUGUGAGA GAUAUGUCGCGCAUGUUUA	95	17,89474	15,78947	10,52632	18,94737	28,42105	34,73684	1,2	1,7	-20,2	-20,2	0,122747	10,51	-21,2632	-0,74815
pmc-mir- 7575	AGCACAAAAAGUUAGCAUGGUCA UGAUCAUGACACAAUGGGACAAU UAUGCACCAUAUGGCUGAUUAU UUGUUUA	75	20	34,66667	16	29,33333	36	64	0,846154	1,25	-19,1	-16,7	0,188578	11,02	-25,4667	-0,70741
pmc-mir- 7643	aguuuguuuuucagugaACAUUGAA UACUGUCGACAUCUGUUUCUCA GUAAUUCUUACUUAGUAUCACA GAUUCAACUGAACACUGAUACAG AACGA	97	11,34021	27,83505	17,52577	25,7732	28,86598	53,60825	0,925926	0,647059	-20,4	-15,3	0,025588	14,82	-21,0309	-0,72857
pmc-mir- 785a	AAUCUCGGACUUAUGAAAAUAA GUGAAUACUCUGUUAUGUCGUU AUUGUCCAgguguuuugaaaaaagaa	99	12,12121	17,17172	9,090909	20,20202	21,21212	37,37374	1,176471	1,333333	-19,4	-19,4	0,222469	10,6	-19,596	-0,92381

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	uuucauuuauuguucuuuuguccUAG CGG															
pmc-mir- 7880b	uggcagacagacaacugucaaccuauaca cguccaugguuggAUGGUUGGUUA UUUUGGUUUAUAGUUGGUUGG AUCAGUUUGGUUUG	95	18,94737	7,368421	2,105263	27,36842	21,05263	34,73684	3,714286	9	-27,3	-24,5	0,144234	12,84	-28,7368	-1,365
pmc-mir- 7880q	UCAAUGACAUUUACAUACUCUU GGAAGAGGGUCAUGCCUACCAU GCAGUUUGCGACCAaaaucacucuc ucuuucaaguACUAUUGguuacaugc auaca	100	13	18	15	19	28	37	1,055556	0,866667	-18,6	-17	0,048677	12,83	-18,6	-0,66429
pmc-mir- 79	GGUUGGUAUUAUAAcuguauuaua uuauauuagUCAGUUGCUGUAGCC ACUGUAACUCUGUAGCUCUUUU AUAAUGUAAAGCUAAAUUACCAG UG	95	15,78947	22,10526	12,63158	29,47368	28,42105	51,57895	1,333333	1,25	-18,8	-18,8	0,097081	11,62	-19,7895	-0,6963
pmc-mir- 8	UGCGCGGACUCUGGGUUCAUCU UACCUAACAGCAUUAGAUGUGU GUCAGCAUUUUCUAAUACUGUC AGGUAAAGAUGUCCACAGAGUC UGCUGG	94	24,46809	23,40426	21,2766	30,85106	45,74468	54,25532	1,318182	1,15	-46	-46	0,192059	3,37	-48,9362	-1,06977
pmc-mir- 8250d	CAGGCUGCAAACGUUCCAAUCCA CACAAGUCCAGUCAUAGAACAGA UCUUAUAGACAGAAGUCCUUUA UUUGUCUGGGUGGAGGGUUUG GCUGCUUA	97	23,71134	26,80412	21,64948	27,83505	45,36082	54,63918	1,038462	1,095238	-26,2	-23,38	0,012202	14,09	-27,0103	-0,59545
pmc-mir- 8265	CAUGAAGCUCAGCGAACAGCACC UAGCAUUAUCUACAUGCCAUCAG UUAAUGAACUGUGGGCUGUAGU	96	18,75	23,95833	28,125	29,16667	46,875	53,125	1,217391	0,666667	-25,5	-25,5	0,101749	8,96	-26,5625	-0,56667

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	GUCUGAUACUCUUCGCUCCACCU UCCUU															
pmc-mir- 8293	AUCUUAGAUGAAAGAUAAAAGU GUCUCGUGAGUGCUUGUUGCAG UUUCGCAUCUGUGGUGCAGAUA AGUAAGCAgcaucuguuuauuuuccu cCUAAUAC	100	20	24	12	25	32	49	1,041667	1,666667	-21,5	-13,1	0,030404	22,6	-21,5	-0,67188
pmc-mir- 8311	UGUUUACUAGAAGAGAGAACUC CUACAAGGGAAAAACCACCAUCA GUGAUUGUGAGAUUCCCCCACCU AGCCACUAGAAGUUCUCUUUCG UAGUAAAGU	99	19,19192	32,32323	23,23232	25,25253	42,42424	57,57576	0,78125	0,826087	-28,4	-28,4	0,262782	6,39	-28,6869	-0,67619
pmc-mir- 8335	UCCGACAUAACAACCACGACUAC AGUCAACAGAUGGCCACUgaacuc ucauucucucuccaCUGcuccauguug uuguuguuguuguuuuugucagu	96	7,291667	15,625	15,625	7,291667	22,91667	22,91667	0,466667	0,466667	-24,4	-20,9	0,125649	19,36	-25,4167	-1,10909
pmc-mir- 8398	UGCUUGCACUGAUCUagaagacag aagugaaaaCACUUUUUCUAAAUGA AGUGAAUCUGAACAAAUGAUcac aguucuuucuuuuuagcauGCAAAGU	97	10,30928	19,58763	10,30928	18,5567	20,61856	38,14433	0,947368	1	-18,6	-15,1	0,018215	22,4	-19,1753	-0,93
pmc-mir- 8422	AGGAAAAGAUCAUCAGAACUUGC AAUUAAAAGUAgcacaaacaagaaag caagaCCAAGUGUUAGUAAAAUGC AUGUUGAGGAUGAUUCUUUUUC A	96	15,625	30,20833	9,375	23,95833	25	54,16667	0,793103	1,666667	-23,6	-23,1	0,141217	4,11	-24,5833	-0,98333
pmc-mir- 8443	ACCAGAUUGGUGGUACUUUGCA UUCAUAUUUGAGUUUCGUAACA UUCUUUUCAGCUGGGUGAUAUG	92	21,73913	28,26087	14,13043	35,86957	35,86957	64,13043	1,269231	1,538462	-18,7	-18,6	0,076444	11,42	-20,3261	-0,56667

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
	GUAGGUAAUAGUACUACAAAAC UAAG															
pmc-mir- 8460	AAGGUCAGCUAUAGUUUCCUUG UCACAcuaauuauauuauauuugcuU UCUAGGGAAUUAUAGGACGAGG CAGUCACUAAGCUGACGGG	89	21,34831	21,34831	14,60674	20,22472	35,95506	41,57303	0,947368	1,461538	-23,7	-20,9	0,049028	10,23	-26,6292	-0,74062
pmc-mir- 8462	aaacugucaagcAUCUUUCUUUUGG AAACAAGUAAAUCAUAUGCCACC UGUCAGUGACAUUAUGAUUAAU UUGAUAAGAUGAAAUGGUCUUC AACAGCAG	100	15	30	14	29	29	59	0,966667	1,071429	-19,5	-18	0,088648	10,6	-19,5	-0,67241
pmc-mir- 8470	AAAUUAAAACUAUAUAUUGUGA UGCAAUAGCUAGGAUGGCAAAA UUUUGUGCCUGAAAGCUGAGCA UAAGAAUAUGUucuuuaacau	87	18,3908	34,48276	9,195402	26,43678	27,58621	60,91954	0,766667	2	-19,4	-18,4	0,195062	6,64	-22,2989	-0,80833
pmc-mir- 84f	uuguauugucaUGUUUCACAAGAG AUGAGGUAGUUUUAAAUGAAGC UUGAUAUUUAAAGCACCAUCUG GUGCUGAAAAUGGAUAGAUAGU U	91	20,87912	29,67033	8,791209	28,57143	29,67033	58,24176	0,962963	2,375	-21,2	-20,2	0,110814	22,46	-23,2967	-0,78519
pmc-mir- 85	AGGUGACAAGGGAUCUGGGUGU CAGUGGGUGGGUGACCUCAGGA CCUCAUCAAGUCCCGGGUACAAA GUAUUUGAAACCACAGAGUCGC UAGUGCAAGA	99	32,32323	27,27273	20,20202	20,20202	52,52525	47,47475	0,740741	1,6	-26,6	-24,3	0,014883	18,45	-26,8687	-0,51154
pmc-mir- 8834a	UUGCUGCCGGGCCUGGAGGCCA GCUGUACCACACAUCUGCUGCCC CUCCACACCUGCGGCAGGUG	65	29,23077	13,84615	38,46154	18,46154	67,69231	32,30769	1,333333	0,76	-28,3	-28,3	0,089597	7	-43,5385	-0,64318

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/	MFEE(kcal/m	Freq	Div	AMFE (kcal/	MFEI (kcal/
											mol)	ol)			mol)	mol)
pmc-mir- 888	UCAAAGGACUGACACCUCUUUGU CCAGCUCAUGACAGGCUGCACAG AUGAGCCGGACAAGUGUUGUUA GUGGCUUCAU	78	25,64103	24,35897	24,35897	25,64103	50	50	1,052632	1,052632	-25,5	-24,5	0,08259	6,42	-32,6923	-0,65385
pmc-mir- 8993	aucgCAGAACGUGACCUCUAUUac agggucaagggucaaaCAUGGUUAU GUCCGCCAUCUUGCUGGUGACCC UGUGGAGAAUUUACGugaucugcu uu	98	16,32653	13,26531	16,32653	20,40816	32,65306	33,67347	1,538462	1	-39,4	-39,4	0,233529	5,01	-40,2041	-1,23125
pmc-mir- 9-1	UUUGGCGUCCAUUUUUGCCUUU GGUAACCUAGCUUUAUGAUAUU UCUGCCCCAAUCAUACAGCUAGA UAACCAAAGACAAAACCGGAGCC GCC	93	17,2043	26,88172	26,88172	29,03226	44,08602	55,91398	1,08	0,64	-34,1	-34	0,28369	3,42	-36,6667	-0,83171
pmc-mir- 9120	CACUUACAUUCAUAUAUACACUC UUGUUcagucucccucucucacacaca caagcagcagCAAAGAGGUUGUAAC ACGAGAGAAGAUGAGAAAGUAA GGA	100	14	27	10	17	24	44	0,62963	1,4	-19,1	-18,3	0,095566	17,68	-19,1	-0,79583
pmc-mir- 9170	AUAGCUCUUAAGAGCCUGAAUA GCCGGCGAGUCACCAGAGUCAAG UGUUGAAGGUGAUGUUUGCAUC CUGGCUCUGCUAUCUACAGUAU UAAGUGCUAU	99	25,25253	25,25253	20,20202	29,29293	45,45455	54,54545	1,16	1,25	-25,6	-23,2	0,013327	17,12	-25,8586	-0,56889
pmc-mir- 9-2	GGCGGCUCCGGUUUUGUCUUUG GUUAUCUAGCUGUAUGAUUGGG GCAGAAAUAUCAUAAAGCUAGG UUACCAAAGGCAAAAAUGGACGC CAAA	93	26,88172	29,03226	17,2043	26,88172	44,08602	55,91398	0,925926	1,5625	-45,5	-45,5	0,314517	3,87	-48,9247	-1,10976

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
		02	21 52174	10 56522	20 24792	10 56522	60.96057	20 12042	1	1 074074	42.9	12.6	0.14902	4.74	47.6097	0 79214
pmc-mir- 9256b	GAGGUCUCACGAGGUGUAAUAA UCAGGCCACUACCUCUUACCGAG ACCUCACAGGGGGCCCGCUUCACA	52	51,52174	19,30322	29,34783	19,30322	00,80957	39,13043	1	1,074074	-43,6	-42,0	0,14805	4,74	-47,0087	-0,78214
	UU															
pmc-mir- 92a-1	CUGGCAUUAGCAGUAGGUCUUG AUGGGUGCAAUUCUGAUGAAUU AAAUAACAGAUUGCACUUGUCCC GGCCUUCUGCCAAUAGCUAA	87	22,98851	26,43678	20,68966	29,88506	43,67816	56,32184	1,130435	1,111111	-35,5	-35,5	0,154162	3,54	-40,8046	-0,93421
pmc-mir- 92a-2	AUUUGUGUGCUCAGGAAAGGUU GUGACUUGGGCAAUUCUGUGAU GUCCUGUCAGAUUGCACUUGUC CCGGCCUUGUCUUGGCUUAcacu u	90	26,66667	14,44444	18,88889	34,44444	45,55556	48,88889	2,384615	1,411765	-31,5	-29,1	0,036643	11,93	-35	-0,76829
pmc-mir- 92b	AGCGAUCAGAGUUGUGUAGACC GGAACAGGGGCAAUGCAUUUGA GUCGUCUGUAUUGCACUCGUCCC GGCCUAUCCAAUCUGACUCAUA	89	25,8427	23,59551	24,7191	25,8427	50,5618	49,4382	1,095238	1,045455	-32,6	-32,6	0,172648	4,96	-36,6292	-0,72444
pmc-mir- 92c	AUUAUGUGUUAUUGUAAAAGGU UGGGAUGUGGGCUCUGUCGCGC AAUAGAUAACUUUCUUUGACAA GCAUUCGCCCACACCUUAUUACA ACACAAUCAC	99	19,19192	28,28283	21,21212	31,31313	40,40404	59,59596	1,107143	0,904762	-26,6	-26,6	0,055246	15,72	-26,8687	-0,665
pmc-mir- 9341	ACCUGAUUGUUAGUUAAAAGGG CCGAGGAUAGUCAGGCAUAUCGA CAAGCUGUAGUAUCGCUUCUCG GCCUUUUGGCUAAGAUCAAAG	88	26,13636	27,27273	19,31818	27,27273	45,45455	54,54545	1	1,352941	-31,1	-21,81	0,019761	18,12	-35,3409	-0,7775

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%) 38,29787	GC (%)	AU (%)	R-AU 1,714286	R-GC 0,761905	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq 0,083295	Div 15,62	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pmc-mir- 9369	UAUUCUUUCUUUCCAUUUCCUUA CAGUGUUGCUGAUUGUUUGAUA AGAUUUGUCAGUCUUAGUGCCU GUCAU															
pmc-mir- 9382	GAUGUUGACCAUCGGAAUAUCA CAGUGUGGCUGAAAUAUGCUGA GAUGGAAAUGAAGUAaguauuaau aaauuuucugugaUAUUCAUGCUAA ACCAA	98	18,36735	27,55102	11,22449	20,40816	29,59184	47,95918	0,740741	1,636364	-19,3	-15,05	0,237583	13,37	-19,6939	-0,66552
pmc-mir- 9434	UAGUCAGUGAGCAGACUUUCUG UCGUUGGUUAUGUAACGGCUCG CAGCUCUGACAGGAAUUCUGAAC CCUGAUGU	75	26,66667	21,33333	21,33333	30,66667	48	52	1,4375	1,25	-23	-19,2	0,186112	9,2	-30,6667	-0,63889
pmc-mir- 9505	UCUUGAAGUUAGGUUUAUGAUG UCUGUCAAAAUGUGAUCUCUCAC GAAGGCAGACACCGUGACCCUUU CUUCAUGC	76	21,05263	23,68421	22,36842	32,89474	43,42105	56,57895	1,388889	0,941176	-29,4	-29,4	0,503167	1,22	-38,6842	-0,89091
pmc-mir- 9542a	CACCGACUGACAGAACGCCUCAC GACAUGGCCUGGCACUUUCUAA UUUCUGGCCAAGUUAGGCGCCU GUUUGUCGAGG	78	25,64103	20,51282	29,48718	24,35897	55,12821	44,87179	1,1875	0,869565	-29,2	-29,2	0,234782	2,71	-37,4359	-0,67907
pmc-mir- 9543a	GAGAAACUAGCAAGUUCAUUAU AUGUCAGUAUGCAGAUUGCAAU GGUUUACUUUCCAUUGCACUGC ACUGGAGUAAAUAUugcuuguuua uu	92	17,3913	27,17391	14,13043	28,26087	31,52174	55,43478	1,04	1,230769	-28	-26,4	0,033319	14,41	-30,4348	-0,96552

Pre- miRNA	Sequence	Length (AA)	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE (kcal/ mol)	MFEE(kcal/m ol)	Freq	Div	AMFE (kcal/ mol)	MFEI (kcal/ mol)
pmc-mir- 96	UACAUaguauuuauuuacaaucaugU GCAGUGCAGUUCUUUAUAUAAC UAAUCAUACUGCAAAAAGUACAU GACUGCAAUAUGCAAAAAACAUA UCAC	98	9,183673	32,65306	15,30612	22,44898	24,4898	55,10204	0,6875	0,6	-19,5	-19,1	0,124316	9,09	-19,898	-0,8125
pmc-mir- 969	AAGAAGCGCGAAUCUUCUUCUCC UGGaucaggaaaauaaauuauuuaaga GUUCCACUAAGCAAGUUAUCUU GCAGGAGCUAGAAAAUCGCCCUU AGA	98	16,32653	21,42857	18,36735	19,38776	34,69388	40,81633	0,904762	0,88889	-22,7	-22,7	0,05101	17,67	-23,1633	-0,66765
pmc-mir- 96b	GCUGGCUGUUCAAUUAUUUGGC ACUUGUGGAAUAAUCGGUGUAU CUAAAAGUCGAUUAUACACCGGU GCCAAGUCAUCAGAAAUGCCUGA	90	23,33333	27,77778	18,88889	30	42,22222	57,77778	1,08	1,235294	-30,3	-30,3	0,149015	2,78	-33,6667	-0,79737
pmc-mir- 970	AAGAGAAGCCUUGCAUGAGCUCU AGGUgucuccagauguuuguacagagu auucaGCAGGAACAGCUUGGAUC AUCUACACCUCUCCCAGCUCUAU A	97	15,46392	19,58763	19,58763	16,49485	35,05155	36,08247	0,842105	0,789474	-20,4	-15,2	0,030264	26,39	-21,0309	-0,6
pmc-mir- 971	UGCUGAUGAAAGUGAAAUGAUC UCGAUGGUGUUCUAGCCUCCAU CGACAUAGAAAAAACACCCAUCAU GCAGAUACAUGCCUUUAUCAUG U	90	18,88889	32,22222	21,11111	27,77778	40	60	0,862069	0,894737	-21,2	-20,1	0,039445	9,59	-23,5556	-0,58889
pmc-mir- 981	GCUAUCAGACUUUGUUCCGGGU UUCGCGGCUUGCGAACAGUCAU UUUGAGCUGUGUUCGUUGUCGU CGAAACCUGCCCUGAAAUCUGAU GUG	92	27,17391	16,30435	22,82609	33,69565	50	50	2,066667	1,190476	-35,2	-30,7	0,023194	9,17	-38,2609	-0,76522

Pre-	Sequence	Length	G (%)	A (%)	C (%)	U (%)	GC (%)	AU (%)	R-AU	R-GC	MFE	MFEE(Freq	Div	AMFE	MFEI
miRNA		(AA)									(kcal/	kcal/m			(kcal/	(kcal/
											mol)	ol)			mol)	mol)
	AUGACAACAGCAGCUCAACUGUU	83	26,50602	25,3012	22,89157	25,3012	49,39759	50,60241	1	1,157895	-26,3	-24,6	0,066358	12,72	-31,6867	-0,64146
pmc-mir-	ACUGUGGAUGGCACCAGCACUGG															
9851	CACUGCCAUGGAUCAGAGCAGUG															
	AUGUCAGUUGUUUU															

Supplementary Table 5: - Structural characterization of miRNAs in Apullariidae species, lny - L. nyassanus, mcr - M. cornuarietis, pcn - P.

canaliculata, pmc - *P. maculata*.

Mature miRNA	Mature miRNA sequence	miRNA length	Mature miRNA	Mature miRNA sequence	miRNA length	Mature miRNA	Mature miRNA sequence	miRNA length	Mature miRNA	Mature miRNA sequence	miRNA length
pmc- bantam-3p	UGAGAUCAUUGUAAA AACCAAUU	23	pcn- bantam-3p	UGAGAUCAUUGUAAA AACCAAUU	23	mcr- bantam-3p	UGAGAUCAUUGUAAA AACCAAUU	23	lny- bantam-3p	UGAGAUCAUUGUAAA AACCAAUU	23
pmc- bantam-5p	CUGGUUUUCACAGUG AUCCAGCAG	24	pcn- bantam-5p	CUGGUUUUCACAGUG AUCCAGCAG	24	mcr- bantam-5p	CUGGUUUUCACAGUG AUCCAGCAG	24	lny- bantam-5p	CUGGUUUUCACAGUG AUCCAGCAG	24
pmc-miR- 1000-5p	CUGGUGUGAUGGGAC AAGACUU	22	pcn-let-7b- 3p	UGAGGUAGUGGUUGU AUCGUAU	22	mcr-miR- 1002-3p	CUAAGUAGUUGAUAC AUGAGUUG	23	lny-miR- 10349-5p	UGAGCACCAAUAAGCA GCAAUAAG	24
pmc-miR- 10031c-5p	CUCGUCCAUGUCUUC CUCUUCG	22	pcn-let-7d- 3p	CUAUACAACCUGCUGC GGCAGG	22	mcr-miR- 10080-5p	UUUCUCAGGUUGUCU CAAUC	20	lny-miR- 10365-5p	AUUAGAAUGUGGAAU CUAUGCUU	23
pmc-miR- 10046-3p	ACUUGUCGCAGUGAC GACA	19	pcn-let-7f- 5p	CUGCACAUUCCACCAU CCAUU	21	mcr-miR- 10089-3p	UAAUUUGCUGUUUUG GGAUGCU	22	lny-miR- 106a-5p	UACUGCAAUGCAAGCA CAUUGA	22
pmc-miR- 10055-3p	GUGGGAGGGAGGGA GGACUUU	21	pcn-miR- 1002-3p	CUAAGUAGUUGAUAC AAACAGUA	23	mcr-miR- 10141-3p	AGAAGAAACACGCAUU CGGUCU	22	lny-miR- 10790-3p	UUUAUUUCUCUCUCU GUUCGUC	22
pmc-miR- 10089-5p	UAAUUUGCUGUUUU GGUGAUAU	22	pcn-miR- 10a-5p	ACCCUGUAGAUCCGAA UUUGUGUA	24	mcr-miR- 10228-3p	UGAGUAUUGUACCAU GUCAGCA	22	lny-miR- 10a-5p	UACCCUGUAGAUCCGA AUUUGUGU	24
pmc-miR- 10173-3p	AGGAAGUGAGGAAGG AAAACAA	22	pcn-miR- 11-3p	CAUCACAGUCAGAGUU CACUGA	22	mcr-miR- 10237-3p	AGCAGGGACUGGUUU GUGGCAC	22	lny-miR- 10b-5p	UUACCCUGGAGAACCG AGCGUGUG	24
pmc-miR- 10249-1-3p	GUGGUGGCGGUGGU GUUGCCAG	22	pcn-miR- 1175-3p	UGAGAUUCAACUCCUC CAACUGC	23	mcr-miR- 10325-5p	UAUCAUCGUCUUCUA UACAAGUGG	24	lny-miR- 11225-3p	AAAACUGUUCUUAAG UCAUGGC	22
pmc-miR- 10249-2-3p	GUGGUGGCGGUGGU GUUGCCAG	22	pcn-miR- 1175-5p	AGUGGAGAGAGUUUU AUCUCAUC	23	mcr-miR- 10379-3p	ACUGUUUUGUUCGUU GAACUAU	22	lny-miR-11- 3p	CAUCACAGGCAGAGUU CCAGA	21
pmc-miR- 10256-3p	CAUGUCUGCUAUGGC CUUCC	20	pcn-miR- 1187-3p	UAUGUGUGUGUGUAU GUGUGUG	22	mcr-miR- 10456-3p	GAUGCAGGAUAUUUA UGACA	20	lny-miR-11- 5p	CAUCACAGGCAGAGUU CCAGAC	22
pmc-miR- 10267-3p	CAGAUCAAACCACCGC CCCC	20	pcn-miR- 122b-5p	AGUGUGACACUGGUG UGACA	20	mcr-miR- 10457-3p	UUUGUUUGUUGUGU GUCUAC	20	lny-miR- 1175-3p	UGAGAUUCAACUCCUC CAACUGC	23

									-		
pmc-miR- 10492c-3p	GUUUAGCUCUCUGAU UUAUG	20	pcn-miR- 1238-5p	CUUCCUCGUCUGUCU GAAGC	20	mcr-miR- 10698-5p	UCAUGCAUGGCUUCU UUAGUA	21	lny-miR- 1175-5p	AGUGGAGAGAGUUUU AUCUCAUC	23
pmc-miR- 10508b-3p	AACAGCAUUUCGUGA CUUCUU	21	pcn-miR- 12-3p	AGUACCUUUUGUGAU AUUCUUA	22	mcr-miR- 106b-3p	GACCGCACUGUGGGU ACCCCUG	22	lny-miR- 11976-5p	GGCGGCGGCGGCGCC GGCGUG	21
pmc-miR- 10509-5p	UGUGUCACGUACAGU AACACUGA	23	pcn-miR- 124-3p	UUAAGGCACGCGGUG AAUGCCAA	23	mcr-miR- 10717-5p	CACGGAUGCACACACA CCUGCG	22	lny-miR- 12096b-3p	UAGGGCAAAAUUAUC ACCGAUUAC	24
pmc-miR- 10578-5p	AGCAGUGAGUCAGUC UCACGCU	22	pcn-miR- 124-5p	GUGUUCACUGCGUUG GCCUUGGU	23	mcr-miR- 10738-3p		21	lny-miR- 12096b-5p	AAGCGGUGAUACUUU UGUCUCGCA	24
pmc-miR- 10611-3p	UUUCCCUUUUUCACA CAGUGGG	22	pcn-miR- 124c-5p	CAUUCACCGCGUGCCU UAAUA	21	mcr-miR- 10761-3p	UUGAAUUUGUUCUUG UCACCAU	22	Iny-miR-12- 3p	AGUACCUUUUGUGAU AUUCUUA	22
pmc-miR- 10639-3p	UUGCCAUGAUAGCUU UGG	18	pcn-miR- 12-5p	UGAGUAUUACAUCAG GUACUGA	22	mcr-miR- 10863-3p	UGACUUCUUUGUGGG CACGAUG	22	Iny-miR- 124-3p	UUAAGGCACGCGGUG AAUGCCAA	23
pmc-miR- 10770-1-3p	UUGUUGAUGUUGUU GUUGUUGU	22	pcn-miR- 1277-1-3p	UAUAUAUAUAUAUGU ACGUCUA	22	mcr-miR- 10903-1-3p	GACUCGCUUGUGUCG GCCUC	20	Iny-miR- 124-5p	GUGUUCACUGCGUUG GCCUUGGU	23
pmc-miR- 10770-2-5p	UUGUUGAUGCUGUU GUUGUUUC	22	pcn-miR- 1277-2-3p	AAAUAUAUAUAUAUA UGUAUGAU	23	mcr-miR- 10903-2-3p	GACUCGCUUGUGUCG GCCUC	20	Iny-miR- 124c-5p	CAUUCACCGCGUGCCU UAAUA	21
pmc-miR- 10892-3p	UGAAUAAUGGAUGAA UAACAUC	22	pcn-miR- 1322-5p	GAUGAUGCUGCUGAU GACA	19	mcr-miR- 10903-3-3p	GACUCGCUUGUGUCG GCCUC	20	lny-miR-12- 5p	UGAGUAUUACAUCAG GUACUGA	22
pmc-miR- 10972-3p	UUUGCUAUGGUCAUC AUAUAUG	22	pcn-miR- 1328-5p	GAGAGAGAAAUGAGA AAC	18	mcr-miR- 10918-3p	CAUAUAAGCUAUGUU ACUCGAU	22	lny-miR- 1307-5p	ACUCGGCGUGGCGUC GGUGCAAA	23
pmc-miR- 10b-1-3p	CAUCUCGGUACUCGG GAGGUCA	22	pcn-miR- 133-3p	UUUGGUCCCCUUCAAC CAGCUGUA	24	mcr-miR- 10967-3p	UGAACUGUGAACUGC AUACUG	21	lny-miR- 133-3p	UUUGGUCCCCUUCAAC CAGCUGUA	24
pmc-miR- 10b-2-5p	UUACCCUGGAGAACC GAGCGUGUG	24	pcn-miR- 133-5p	AGCUGGUUGAACUCG GGCCAAAU	23	mcr-miR- 10a-5p	ACCCUGUAGAUCCGAA UUUGUGUA	24	lny-miR- 133-5p	AGCUGGUUGAACUCG GGCCAAAU	23
pmc-miR- 11054-5p	AGUGUUUGUUGCCA GAGAUUUA	22	pcn-miR- 133c-5p	CAGCUGGUUGAAGGG GACCAA	21	mcr-miR- 10b-5p	UUACCCUGGAGAACCG AGCGUGUG	24	lny-miR- 133c-5p	CAGCUGGUUGAAGGG GACCAA	21
pmc-miR- 11280-3p	AUGAGAGAAGAUCCG UGUGUGA	22	pcn-miR- 137b-3p	UUAUUGCUUGAGAAU ACACGUAA	23	mcr-miR- 11-3p	GGAGCUCUGGCUGUG CCGGGUG	22	lny-miR- 137b-3p	UUAUUGCUUGAGAAU ACACGUAA	23
pmc-miR- 1175-1-3p	UGAGAUUCAACUCCU CCAACUGC	23	pcn-miR- 137b-5p	ACGGGUAUUCUUGGG UAAAUAAUA	24	mcr-miR- 11591-3p	GGCUGUGCUGUAAGU GUACUUU	22	lny-miR- 137b-5p	ACGGGUAUUCUUGGG UAAAUAAUA	24
pmc-miR- 1175-1-5p	AGUGGAGAGAGUUU UAUCUCAUC	23	pcn-miR- 13b-3p	UCGUUAAAAUGUUUG UG	17	mcr-miR- 1175-3p	UGAGAUUCAACUCCUC CAACUGC	23	lny-miR- 153-3p	UUGCAUAGUCACAAAA GUGAUCG	23
pmc-miR- 1175-2-5p	AAGUGAAGAGAAGAA UGAAGAA	22	pcn-miR-1- 3p	CAUGCUUCUUUAUAG UUUGACC	22	mcr-miR- 1175-5p	AGUGGAGAGAGUUUU AUCUCAUC	23	lny-miR- 1662-3p	UUGACAUCAUCAUAC UUUAUGU	22
pmc-miR- 1187-3p	UAUGUGUGUGUGUA UGUGUGUAU	23	pcn-miR- 1421a-3p	CUGCAUCCCUUGUGAC GGUGGC	22	mcr-miR- 12037-5p	CAUUCUGUCUUCUCU UCCAA	20	lny-miR- 1731-5p	ACUUGACUGCAGGCAC UACAGAU	23
pmc-miR- 11922-3p	UUCAGGAGAUCAUCG AUAUGUU	22	pcn-miR- 1421am-3p	AGGAGGUCGUAGGUC AUCCUGU	22	mcr-miR- 12093-3p	UCAGCCCCUGGGGUA GCCUUAC	22	lny-miR- 184-3p	ACUGGACGGAGAACU GAUAAGGGC	24
pmc-miR- 12096b-3p	UAGGGCAAAAUUAUC ACCGAUUAC	24	pcn-miR- 143-3p	GUCUGAGAUGAAGCA CUCGUUUG	23	mcr-miR- 12096b-3p	UAGGGCAAAAUUAUC ACCGAUUAC	24	lny-miR- 184-5p	CCUUAUCACUCCCCCG CCCCGU	22
pmc-miR- 12096b-5p	AAGCGGUGAUACUUU UGUCUCGCA	24	pcn-miR- 153-1-3p	UCAUUUUUGUGAUGU UAUCAAUA	23	mcr-miR- 12096b-5p	AAGCGGUGAUACUUU UGUCUCGCA	24	lny-miR- 184b-5p	CCUUAUCAGUUCUCCG UCCAGU	22
pmc-miR- 12228-5p	UCCCCACUGCUCCCCC AACA	20	pcn-miR- 153-2-3p	UUGCAUAGUCACAAAA GUGAUCG	23	mcr-miR- 12193-3p	ACCGGUCCUUUCUGU CUAAUG	21	lny-miR- 190-5p	AGAUAUGUUUGAUAU AUUUGGUG	23

pmc-miR- 12245-5p	CCCCGCCCCGCCCGGC UCAAGG	22	pcn-miR- 1584-5p	CCGGGUGGGGCUGGG CCAUA	20	mcr-miR- 12265-5p	UCAGCCGUCUUGCAGC UGAAG	21	lny-miR- 1947-3p	GCACUGAGCUAGCUC UCUAGCA	22
pmc-miR- 1224-5p	UCACCUCCUCUCUCC UCCCUU	21	pcn-miR- 15c-3p	CAGACCAUUCUGGGCU AUGGGG	22	mcr-miR- 12293-5p	CGCCUCUUGAUCUACU ACAACUA	23	lny-miR- 1985-5p	UGCCAUUUUUAUCAG UCACUGUGU	24
pmc-miR- 12286-3p	UGGGGCUGCAGGGCU GAGUAAGC	23	pcn-miR- 1602-5p	UGGGCUCUGCAUCACC AGCAGU	22	mcr-miR- 12313-5p	ACAUGUUAGCAUCUU GACAUAA	22	lny-miR- 1990-3p	CGGGACUACGUCAACG UACUA	21
pmc-miR- 12287-5p	UGGGGGUGCAGGUG GGCACAC	21	pcn-miR- 1603-3p	GUGGUUUGUUUUGU GUUGCG	20	mcr-miR- 12322-3p	UCUGGUCAUUUCUCU UUCUCAC	22	lny-miR- 1990-5p	AGUAAGUUGAUGGGG UCCCAGG	22
pmc-miR- 12292-5p	AUGGGGUCUUGGGG UCAUG	19	pcn-miR- 1632-3p	UGCUUGUUUUUGGAU GAAAUUAU	23	mcr-miR- 12352-5p	UAUUGCUGUUAUGGU GUUAGUU	22	lny-miR- 1993-3p	UAUUAUGCUGCUAUU CACGAGA	22
pmc-miR- 12293-5p	CGCCUCUUGAUCUAC UAUAACUA	23	pcn-miR- 1677-3p	UUGACUUCAAUAGGA GAGACAGG	23	mcr-miR- 12-3p	UGAGUAUUACAUCAG GUACUGA	22	lny-miR- 1993-5p	UCGGGAAUAUCGGCA UAAUGCA	22
pmc-miR- 12296-3p	GGGCAGGGGCAGGGG GCA	18	pcn-miR- 1744-1-5p	ACUUCAACAGGAGCAA GUCAAG	22	mcr-miR- 1250-5p	ACGGUGCUGGAUGUG GAUAU	20	lny-miR- 1994-3p	UGAGACAGUGUGUCC UCCCUCU	22
pmc-miR- 12321-5p	GCCCUGCCCUCCCUUC CCCUCUC	23	pcn-miR- 1744-2-5p	ACUUCAACAGGAGCAA AGUGUA	22	mcr-miR- 1256-5p	AGGCAUUGACUUCUC UUCAUGG	22	lny-miR-1a- 3p	UGGAAUGUAAAGAAG UAUGUAC	22
pmc-miR- 12327-5p		21	pcn-miR- 184-3p	ACUGGACGGAGAACU GAUAAGGGC	24	mcr-miR- 1277-3p	UAUAUAUAUAUAUGU ACGAUGC	22	lny-miR-1a- 5p	ACAUACUUCUUUGCU AUCCCAUAU	24
pmc-miR- 12339-3p	AGAUUGUUCUGGAU UGCCACUG	22	pcn-miR- 184-5p	CCUUGUCACUCCUCCG CCCCGU	22	mcr-miR- 1278-3p	UAGUACUGUGCAUAU CAGCAC	21	Iny-miR-1c- 5p	GUACAUACUUCUUUA CAUUCCA	22
pmc-miR- 12358-3p	AUCUAUGAUUUCAUC GGGUAAG	22	pcn-miR- 1905c-3p	CACCACCAGCCCCACCA CGCGGUAU	25	mcr-miR- 1304-3p	UCUCACUGUAGCCUCG GCUCAG	22	lny-miR- 2001-5p	UUGUGACCGUUACAA UGGGCAUU	23
pmc-miR- 12396-5p	AGAGAGACACAGACA AGAAAGAU	23	pcn-miR- 190-5p	AGAUAUGUUUGAUAU AUUUGGUG	23	mcr-miR- 130a-3p	UAGUGCAAUGUUAAA AGAGUAC	22	lny-miR- 2049-3p	GAUUCAUGUGCAUGC AUUCAUG	22
pmc-miR- 12-3p	AGUACCUUUUGUGAU AUUCUUA	22	pcn-miR- 1951-3p	GUAGUGGAGACUGGU GGCGAAA	22	mcr-miR- 133-3p	UUUGGUCCCCUUCAAC CAGCUGUA	24	lny-miR- 2064-3p	AAGCAGCACUGUGCAA CUGCAA	22
pmc-miR- 12410-3p	AAGGAAACUGAGAUC CGGUCAC	22	pcn-miR- 1976-5p	CUCCUGCCCUCCUUGC CCAGA	21	mcr-miR- 133-5p	AGCUGGUUGAACUCG GGCCAAAU	23	lny-miR- 216a-3p	CAAGUUACUCGCCGAG AUUACA	22
pmc-miR- 124-5p	CGCUUUCAUCCGUGA CGACACC	22	pcn-miR- 1984-5p	UGCCCUAUCCGUCAGG AACUGUG	23	mcr-miR- 133c-5p	CAGCUGGUUGAAGGG GACCAA	21	lny-miR- 216a-5p	UAAUCUCAGCUGGUA AUUCUGAG	23
pmc-miR- 12-5p	UGAGUAUUACAUCAG GUACUGA	22	pcn-miR- 1985-5p	UGCCAUUUUUAUCAG UCACUGUGU	24	mcr-miR- 137b-3p	UUAUUGCUUGAGAAU ACACGUAA	23	lny-miR- 228-5p	AAUGGCACUGCAUGA AUAAAAAA	23
pmc-miR- 1273h-3p	CUGCAGACUCGACCU CAGGAU	21	pcn-miR- 1986-3p	UGGAUUUCCCAAGAU CCGUGAU	22	mcr-miR- 137b-5p	ACGGGUAUUCUUGGG UAAAUAAUA	24	lny-miR- 2361-5p	GUUGUGUUGUUUUU UUUUCA	20
pmc-miR- 1277-3p	UAUAUAUAUAUAUG UACUCUAC	22	pcn-miR- 1990-3p	CGGGACUACGUCAACG UACUA	21	mcr-miR- 1421ai-5p	AGCAGGUCAGGUGUG GAAGCAC	22	lny-miR- 239b-3p	GCACUUUUGUGGUGU GCAGGUU	22
pmc-miR- 130b-3p	CAGUGCAAUAAUGAA AGUAUUUU	23	pcn-miR- 1990-5p	AGUAAGUUGAUGGGG UCCCAGG	22	mcr-miR- 143-3p	UGUGCAGUGCUGCAU CUCACA	21	lny-miR- 2491-3p	CAACAACAGCAGCAGC AG	18
pmc-miR- 1322-5p	GAUGCUGCUGCUGAU GGC	18	pcn-miR- 1992-3p	UCAGCAGUUGUACCAC UGAUUUG	23	mcr-miR- 14-3p		22	lny-miR- 2493-3p	GCUCACACACACACAC AGACG	21
pmc-miR- 133c-5p	CAGCUGGUUGAAGGG GACCAA	21	pcn-miR- 1992-5p	AGUCAGUGGUUGACU GCUCGGU	22	mcr-miR- 146b-3p	UGAGAACUGGUUUUG AGCAAGU	22	lny-miR- 252a-5p	CUAAGUACUAGUGCC GCGGGAG	22
pmc-miR- 1376-3p	GCUCAGCAGCACUCU UUGAGC	21	pcn-miR- 1994-3p	UGAGACAGUGUGUCC UCCCUCU	22	mcr-miR- 153-1-3p	GUCAUUUUUGUGAUU UUGAGCU	22	lny-miR- 252b-1-3p	CCCUGCGCAGUCCUAC UGGG	20

		-							-		
pmc-miR- 137b-3p	UUAUUGCUUGAGAA UACACGUAA	23	pcn-miR- 1994a-3p	UGAGACAGUGUGUCC UCCCUUG	22	mcr-miR- 153-2-3p	UUGCAUAGUCACAAAA GUGAUCG	23	lny-miR- 252b-2-5p	AUAAGUAGUGGUGCC GCAGGUA	22
pmc-miR- 137b-5p	ACGGGUAUUCUUGG GUAAAUAAUA	24	pcn-miR- 1996b-3p	AUCAAGUGAGGUCAG AAUA	19	mcr-miR- 1599-5p	GGAGGGAGGAAAAAA AAACG	20	lny-miR- 2580-3p	CGUGUCUGUGUGUAU GUUUCUA	22
pmc-miR- 13b-3p	UCGUUAAAAUGUUU GUG	17	pcn-miR- 1a-3p	UGGAAUGUAAAGAAG UAUGUAC	22	mcr-miR- 15a-5p	UAGCAGCACAGAAUG GCAAAA	21	lny-miR- 263a-1-5p	CUUAAUGGCACUGGU AGAAUAGCA	24
pmc-miR-1- 3p	CAUGCUUCUUUAUAG UUUGACC	22	pcn-miR- 1a-5p	ACAUACUUCUUUGCU AUCCCAUAU	24	mcr-miR- 1610-5p	UGGCUUGUGGUGGAA CGACAA	21	lny-miR- 263a-2-5p	AAUGGCACUGGUAGA AUUCACGG	23
pmc-miR- 1421am-3p	AGGAGGUCGUAGGUC AUCCUGU	22	pcn-miR-1c- 5p	GUACAUACUUCUUUA CAUUCCA	22	mcr-miR- 1621-3p	ACCGGCUGCCUCGGUG GUAA	20	lny-miR- 277a-3p	GAGCCAUUUCUUUGU GUGCU	20
pmc-miR- 1422j-3p	AAAACUGCAUCUGGA UUAUGA	21	pcn-miR- 2001-5p	UUGUGACCGUUACAA UGGGCAUU	23	mcr-miR- 1628-3p	AAGAGCUCUUCCUGU UCGUGUG	22	lny-miR- 279-3p	UGACUAGAUCCACACU CAUCCA	22
pmc-miR- 143-3p	GUCUGAGAUGAAGCA CUCGUUUGC	24	pcn-miR- 2008-3p	GUAUUAACAAUGUGG CUACAGU	22	mcr-miR- 1693-3p	GCAAAGGAUGAAGCU GUAGCU	21	lny-miR- 281-3p	UGUCAUGGAGUUGCU CUCUUUA	22
pmc-miR- 149-3p	GAGGGAGGGACGGG GGAUUCAAG	23	pcn-miR- 203b-3p	UUGAACUGUUAAGAA CAGUAAA	22	mcr-miR- 1710-5p	UCAUCUGCUGCAUAAC CGUGUG	22	lny-miR- 281-5p	AAGGGAGCAUCCGUC GACAGU	21
pmc-miR- 150-3p	CUGGUACAGGCCUGG GGGAGA	21	pcn-miR- 204-3p	UGCAAGGACAGCAAAG GGA	19	mcr-miR- 1761-3p	CAGGGGUCACUUUUU UCCCC	20	lny-miR- 2944a-3p	GAAGGAACUUCUGCU GAUC	19
pmc-miR- 153-3p	UUGCAUAGUCACAAA AGUGAUCG	23	pcn-miR- 2047-3p	UUCGCCGAGCAGAUG UGUGAAG	22	mcr-miR- 187-5p	GCUACAACACAGGACA AUUCUA	22	lny-miR- 2987-3p	AGAGCAAGGCUGAGG CUU	18
pmc-miR- 1551-3p	UGAGUUUGUGUUGC UGGGACAA	22	pcn-miR- 2155-3p	GACACUGUUUUACAC UCUACUGG	23	mcr-miR- 190-5p	AGAUAUGUUUGAUAU AUUUGGUG	23	lny-miR- 29a-3p	UAGCACCAUUUGAAA UCAGUUU	22
pmc-miR- 15c-3p	CAGACCAUUCUGGGC UAUGGGG	22	pcn-miR- 216a-3p	CAAGUUACUAGCCGAG AUUACA	22	mcr-miR- 193-1-3p	UACUGGCCAGCACAAU UAGUGU	22	lny-miR- 29b-1-3p	UAGCACCAUUUGAAA UCAGUGCU	23
pmc-miR- 1603-1-3p	GUGGUUUGUUUUGU GUUGCG	20	pcn-miR- 216a-5p	UAAUCUCAGCUGGUA AUUCUGAG	23	mcr-miR- 193-2-3p	UACUGGCCAGCACAAU UAGUGU	22	lny-miR- 29b-2-3p	AGCUGGUUUCACAUG GACAGAUAAC	25
pmc-miR- 1603-2-3p	UUGGUUUGGUUUGU UUUUUU	20	pcn-miR- 216b-1-3p	CACAGUGGCUACUGG GUCCACA	22	mcr-miR- 193-3-3p	UACUGGCCAGCACAAU UAGUGU	22	lny-miR-2a- 1-3p	UAUCACAGCCUGCUU GGAUC	20
pmc-miR- 1632-3p	UGCUUGUUUUUGGA UGAAAUUAU	23	pcn-miR- 216b-2-3p	UAAUAUCAGCUGGUA AUCCUGAG	23	mcr-miR- 194-3p	CCAGUGGAGGUGGUG UAGAAGU	22	lny-miR-2a- 2-3p	AAUCACAGCCUGCUUU GGUGAGCU	24
pmc-miR- 1642-3p	UGAGAGGCUGUCAGU UUUGUAAG	23	pcn-miR- 219-1-3p	AGAACUGUGUGUGGA CAUCAGU	22	mcr-miR- 1947-5p	GCACUGAGCUAGCUCU CUGCGU	22	lny-miR-2b- 1-5p	UCAUCAAAGCUGGCU GUGAUAUGA	24
pmc-miR- 1677-3p	UUGACUUCAAUAGGA GAGACAGG	23	pcn-miR- 219-1-5p	UGAUUGUCCAAACGCA AUUCUUG	23	mcr-miR- 194b-3p	UGUAACAGCAUCUCCA ACUGCGG	23	lny-miR-2b- 2-3p	UAUCACAGCCAGCUUU GAUGAGC	23
pmc-miR- 1728-3p	UGGUUGAUCCAUUG GAAGAAACA	23	pcn-miR- 219-2-3p	AGAACUGUGUGUGGA CAUCAGU	22	mcr-miR- 196c-5p	ACAACAACAUCAAACC ACCUGC	22	lny-miR-2d- 3p	AAUCACAGCCUGCUUU GGUGAG	22
pmc-miR- 17-3p	ACUGCACUGCAAGCA CCGCCACA	23	pcn-miR- 219-2-5p	UGAUUGUCCAAACGCA AUUCUUG	23	mcr-miR- 1970-3p	UGUGUCACUGGGGAU AAUUA	20	lny-miR- 306-3p	UCAGGUACUGAGUGA CU	17
pmc-miR- 1744-5p	ACUUCAACAGGAGCA AGUCAAG	22	pcn-miR- 2196-5p	CCUCUCUGUGCUGCCA GCAAAAAU	24	mcr-miR- 1984-5p	UGCCCUAUCCGUCAGG AACUGUG	23	lny-miR- 3128-3p	UCUGGCAAGUAAAAA ACCAUCC	22
pmc-miR- 1775-5p	UCCUGUAGCCAGAAG ACAGCGG	22	pcn-miR- 2218b-3p	AAAUUUGUAGUUUGU AUUCUUC	22	mcr-miR- 1985-5p	UGCCAUUUUUAUCAG UCACUGUGU	24	lny-miR- 316-3p	UGUCUUUUUCCGCUU ACAAAUG	22
pmc-miR- 1781-1-5p	UUUAAAUCAUCCAGC UGCCUU	21	pcn-miR- 2284c-3p	AAAAUCUAAGUGAAC UGUGACG	22	mcr-miR- 1990-3p	CGGGACUACGUCAACG UACUA	21	lny-miR- 3238-5p	AAAUGAAUCAUGCAU UUGGCAUGUA	25

pmc-miR- 1781-2-5p	UUUAAAUCAUCCAGC UGCCUU	21	pcn-miR- 2284t-3p	AAACUCGAAUGAAUG UAGUUCG	22	mcr-miR- 1990-5p	AGUAAGUUGAUGGGG UCCCAGG	22	lny-miR- 3297-3p	GCACAUCUAGUCAAAA CCAAGGUUU	25
pmc-miR- 1896-3p	UGGUGGGUGAGGAG GAGG	18	pcn-miR- 2324-5p	UGGGGUUGGGGCAGU GACCAGCA	23	mcr-miR- 1992-3p	UCAGCAGUUGUACCAC UGAUUUG	23	lny-miR-33- 3p	GCAAUGCAUCUGCAG UGCAAGUA	23
pmc-miR- 190-5p	AGAUAUGUUUGAUA UAUUUGGUG	23	pcn-miR- 2392-3p	AUGGAUGGGGGUGAG GGGGAUG	22	mcr-miR- 1994-3p	UGAGACAGUGUGUCC UCCCUCU	22	Iny-miR-33- 5p	GUGCAUUGAGGUUGC AUUGCAU	22
pmc-miR- 1951-3p	GUAGUGGAGACUGG UGGCGAAA	22	pcn-miR- 2405-3p	UGUGUGGUUUGUUU GGUU	18	mcr-miR- 1994a-3p	UGAGACAGUGUGUCC UCCCUUG	22	lny-miR- 3484-5p	AUACAAACAGCUAAAC UAGG	20
pmc-miR- 1955-5p	GAGCAUUGCAUGCUG GACGCG	21	pcn-miR- 2464-3p	ACUUCUGCUGCAGACC UCAAGGAU	24	mcr-miR-1c- 5p	GUACAUACUUCUUUA CAUUCCA	22	lny-miR- 359-3p	UCACUGGUUUUCCUC UGUUGCG	22
pmc-miR- 196a-3p	ACGGCAACAAGAAAC UGUGACU	22	pcn-miR- 2470-3p	UUGUGUGGUUUUGG AUACUUG	21	mcr-miR- 2001-3p	UUGUGACCGUUACAA UGGGCAUU	23	lny-miR- 36b-3p	UCACCGGGUAUACAU UCAUCCGC	23
pmc-miR- 1984-5p	UGCCCUAUCCGUCAG GAACUGUG	23	pcn-miR- 2491-1-3p	CAACAACAGCAGCAGC AA	18	mcr-miR- 202-5p	AGAGGCAUAGGGCAU GUGCGGG	22	lny-miR- 3906-3p	AAAAGCAUUUUGAAU GCAUAAAA	23
pmc-miR- 1985-5p	UGCCAUUUUUAUCAG UCACUGUGU	24	pcn-miR- 2491-2-3p	CAACAACAGCAGCAGC AA	18	mcr-miR- 2040b-5p	UCAGGUCAGCUACGAC UGUAACA	23	lny-miR- 3963-5p	UGUAUCCCACUUCUG ACGC	19
pmc-miR- 1990-3p	CGGGACUACGUCAAC GUACUA	21	pcn-miR- 2491-3-5p	CAACAACAGCAGCAGC AG	18	mcr-miR- 204-3p	GCUGGGAAGGCAAAG GGAACC	21	lny-miR- 4024-3p	UUUGUAGGAUGAAAA GGUU	19
pmc-miR- 1990-5p	AGUAAGUUGAUGGG GUCCCAGG	22	pcn-miR- 2500-3p	GGAUUUUGUGUGUGG AC	17	mcr-miR- 216a-3p	CAAGUUACUAGCCGAG AUUACA	22	lny-miR- 4262-3p	GACAUUCAGACUACCU G	17
pmc-miR- 199-3p	ACAGUAGUCUGCACA UGCUAU	21	pcn-miR- 252a-5p	CUAAGUACUAGUGCC GCGGGAA	22	mcr-miR- 216a-5p	UAAUCUCAGCUGGUA AUUCUGAG	23	lny-miR- 4265-5p	CUGUGGGCUCAGCUC UGCA	19
pmc-miR- 1994-3p	UGAGACAGUGUGUCC UCCCUCU	22	pcn-miR- 254-5p	UGCAAAUCUUUUGCA ACAGACUU	23	mcr-miR- 216b-1-3p	UAAUAUCAGCUGGUA AUCCUGAG	23	lny-miR- 451-3p	UAGUAAUGGUAAGGG UUUG	19
pmc-miR- 1994a-3p	UGAGACAGUGUGUCC UCCCUUG	22	pcn-miR- 279-1-3p	UGACUAGAUCCACACU CAUCCA	22	mcr-miR- 216b-2-5p	ACACUUACCUAUAGAG AUGUGU	22	lny-miR- 466b-5p	AUAUACAUACACACAU ACUAC	21
pmc-miR- 1a-3p	UGGAAUGUAAAGAAG UAUGUAC	22	pcn-miR- 279-2-3p	UGACUAGAUCCACACU CAUCCA	22	mcr-miR- 216b-3-3p	ACACUUACCUAUAGAG AUGUGU	22	lny-miR- 466h-5p	UACGCACGCACACACA CAC	19
pmc-miR- 1a-5p	ACAUACUUCUUUGCU AUCCCAUAU	24	pcn-miR- 279b-5p	UGACUAGACUGAUAA CCCCUAG	22	mcr-miR- 2238k-3p	AAUGACUGAACAGUG CAAUGCA	22	lny-miR- 466i-1-5p	UGUGUGUGUGUGUG UGAGUG	20
pmc-miR- 1b-3p	UCAUACUUCUUUACA UU	17	pcn-miR- 2804-3p	GUAGUGUAUUACAAU ACUGACC	22	mcr-miR- 2253a-5p	CAUGGCACUGCUGAA GGUUCA	21	lny-miR- 466i-2-3p	AUACACACACACACAC ACACAU	22
pmc-miR- 1c-5p	GUACAUACUUCUUUA CAUUCCA	22	pcn-miR- 281-3p	UGUCAUGGAGUUGCU CUCUUUA	22	mcr-miR- 2254-3p	UUUGUACUAUGCAAA GUAAGUAC	23	lny-miR- 466i-3-3p	UGUGUGUGUGUGUG UGUGUG	20
pmc-miR- 2001-5p	UUGUGACCGUUACAA UGGGCAUU	23	pcn-miR- 281-5p	AAGGGAGCAUCCGUC GACAGU	21	mcr-miR- 2288-3p	AGGUAGUAGGUGUGU GUGUG	20	lny-miR- 466i-4-3p	UGUGUGUGUGUGUG UGUGUG	20
pmc-miR- 200b-5p	CAUCUUACCUGACAG UCAACAG	22	pcn-miR- 2962-3p	CAUCCCCUGCCUCUU CAUAC	21	mcr-miR- 22b-3p	ACAGUUCUUCAACUG GACUGAG	22	lny-miR- 466m-5p	UGUGUGCAUGUGCAU GUGUGUGU	23
pmc-miR- 201-3p	UGAACAGCGCCUUUC UCACGUG	22	pcn-miR- 297-3p	AUGUAUGUGUGCAUG UAUGGAGC	23	mcr-miR- 2304-1-3p	GGUUGUGUGGUUGU GUGUG	19	lny-miR- 466q-1-5p	GUGCACACACACAU ACAC	20
pmc-miR- 2017-3p	UACCUGUGCACCUGU GCACGUG	22	pcn-miR- 29a-3p	UAGCACCAUUUGAAA UCAGUUU	22	mcr-miR- 2304-2-5p	GGUUGUGUGGUUGU GUGUGG	20	lny-miR- 466q-2-5p	GUGCACACACACAU ACAU	20
pmc-miR- 204-3p	UGCAAGGACAGCAAA GGGA	19	pcn-miR- 29b-3p	UAGCACCAUUUGAAA UCAGUGCU	23	mcr-miR- 2325c-5p	GGUUGUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	20	lny-miR- 4690-3p	GAGCAGGCGAGGCUG GGAGGGC	22

pmc-miR- 2064-3p	AAGCAGCACUGUGCA AGAUACU	22	pcn-miR- 2a-1-3p	AAUCACAGCCUGCUUU GGUGAGCU	24	mcr-miR- 234-3p	AUUAUUGCUCGAGAA UGACGGC	22	lny-miR- 4931-3p	UCGCUGAUUGGUUGA GCAGC	20
pmc-miR- 2155-3p	GACACUGUUUUACAC UCUACUGG	23	pcn-miR- 2a-2-3p	UAUCACAGCCUGCUU GGAUCAGUA	24	mcr-miR- 2390-3p	GUUGUGUGUUUUUG UUGAAA	20	lny-miR- 4968-3p	CAGCAACAGCAGCAGC AGCAG	21
pmc-miR- 216a-3p	CAAGUUACUAGCCGA GAUUACA	22	pcn-miR- 2a-3-3p	UAUCACAGCCAGCUUU GAUGAGCU	24	mcr-miR-2- 3p	UUCAAAAGACUGUGU UGCUAUG	22	lny-miR- 5100-5p	UCGAAUCCCAGCGGUG CCCGA	21
pmc-miR- 216a-5p	UAAUCUCAGCUGGUA AUUCUGAG	23	pcn-miR- 2a-4-3p	UAUCACAGCCAGCUUU GAUGAGCU	24	mcr-miR- 242-3p	UUGCGUAGGCACUUU GCAUGAC	22	lny-miR-51- 5p	CAUGGAAGCAGGUAC AGUCACC	22
pmc-miR- 216b-1-3p	UAAUAUCAGCUGGUA AUCCUGAG	23	pcn-miR- 2b-1-5p	UCAUCAAAGCUGGCU GUGAUAUGA	24	mcr-miR- 2434-1-5p	UUGUUGGGGUUUUU UUUGAA	20	Iny-miR- 5397-5p	UACGCAGAAGUUUGC UUCUGUA	22
pmc-miR- 216b-2-3p	CACAGUGGCUACUGG GUCCACA	22	pcn-miR- 2b-2-5p	UCAUCAAAGCUGGCU GUGAUAUGA	24	mcr-miR- 2434-2-3p	UUGUUGGGGUUUUU UUAAUC	20	lny-miR- 5600-3p	AGUGGAAUGUUUUGU UUCAGUA	22
pmc-miR- 216b-3-3p	CACACUUACCUGUAG ACUGUUA	22	pcn-miR- 2e-3p	UACCAACUUUGACUG AUGAGA	21	mcr-miR- 2444-3p	UUUGUGUUGUUUUU UGUUUU	20	lny-miR- 564-5p	AGGCACGGUGGCAGC AGAA	19
pmc-miR- 216b-3-5p	ACAGUUACCUGUAGA UUGUGU	21	pcn-miR-2f- 3p	UAUCACAGCCAUGCUA AUCUCCU	23	mcr-miR- 2470-3p	UUGUGUGGUUUUGGA UACUUG	21	lny-miR- 5920-3p	GUUUUGUCAUUCGUA UACAAAACA	24
pmc-miR- 2223-3p	UUUGUACUCAUGUAA GUAUUU	21	pcn-miR- 3027-5p	CCAGUCUUGCAUUUA UGAAACA	22	mcr-miR- 247-3p	UAGAGAAAAGUUUCU ACCGACA	22	lny-miR- 6504-5p	CAUUACAGCACAGCCA UGUU	20
pmc-miR- 2238i-3p	CCGUUCACUCAUCUC GGAGCUGA	23	pcn-miR- 3050-5p	UGAGAUCUUGAUAAA CAUCAAC	22	mcr-miR- 2491-5p	CAACAACAGCAGCAGC AA	18	Iny-miR- 653-3p	UUGAGACAAUCUCUA CUGCAAC	22
pmc-miR- 2284c-3p	AAAAUCUAAGUGAAC UGUCAAG	22	pcn-miR- 3057-3p	UCCCACAGGCCCAGCU GUCACA	22	mcr-miR- 250-3p	AAUCACAGUCACCUGA GUAA	20	lny-miR- 6544-5p	AAGUUGUAUUUCUUU UCGCAAACG	24
pmc-miR- 2298-3p	GACUGAUGUUGUUG UUCAAG	20	pcn-miR- 3071-5p	AUCAUCAAAACAAAUG UGCAUA	22	mcr-miR- 252-3p	ACCUGCUCCCUGCUGC UGCCUU	22	lny-miR- 6632-3p	AGAGAUGAGAGGAGU GCUGAACCAU	25
pmc-miR- 2304-3p	GGUUGUGUGGUUGU GUGGGC	20	pcn-miR- 3084a-5p	UUGAAGGUUCAUUAG CCUUGUG	22	mcr-miR- 252a-5p	CUAAGUACUAGUGCC GCGGGAA	22	lny-miR- 669k-3p	UGUGCAUGUCUGUUU ACUUGUGUGU	25
pmc-miR- 2361-3p	UUUGUGUUGUUUUG UUUUGC	20	pcn-miR- 308-5p	CGCAGGAUUUGCUUG UUUUGAG	22	mcr-miR- 2582a-5p	UUCACAGUGUUCAUA AUAUUUCAG	24	lny-miR-67- 3p	UCACAACCUGCAUGAA UGAGGAC	23
pmc-miR- 2371-5p	UAUAGUUUUGUGUG GUGUAU	20	pcn-miR- 31-3p	AGCUGUGUCGCAUGG UGCCACC	22	mcr-miR- 2699-5p	GUUUGUGAUAUUCGG CAUUCUU	22	lny-miR- 6756-3p	AGGGUGGGGCUGGAG GUGGGGAU	23
pmc-miR- 2470-3p	UUGUGUGGUUUUGG AUACUUG	21	pcn-miR- 315-5p	UUUUGAUUGUUGCUC AGAAAGCC	23	mcr-miR- 277-1-3p	GUAAAUGCAUUUUCU GCUGCA	21	lny-miR- 6868-5p	UUCCUUCUGUUGUCU GUAAAC	21
pmc-miR- 2491-1-3p	CAACAACAGCAGCAGC AA	18	pcn-miR- 31-5p	AGGCAAGAUGUUGGC AUAGCUGA	23	mcr-miR- 277-2-3p	UAAAUGCAUUAUUUG GGGAGGUA	23	lny-miR- 7006-5p	UGGGGGUGUUCAAGA CCCCCCAGUU	25
pmc-miR- 2491-2-3p	CAACAACAGCAGCAGC AA	18	pcn-miR- 317-1-3p	UGAACACAGCUGGUG GUAUCUUUUU	25	mcr-miR- 279-3p	UGACUAGAUCCACACU CAUCCA	22	lny-miR- 7045-5p	UCUCCCCCCUCCCCGC CCCA	21
pmc-miR- 2491-3-3p	CAACAACAGCAGCAGC AA	18	pcn-miR- 317-2-5p	AGUGAACACAGCUGG UCACAAC	22	mcr-miR- 281-3p	UGUCAUGGAGUUGCU CUCUUUA	22	lny-miR- 7062-3p	UGGAGGCCAGCUUGU GUCCAGGUU	24
pmc-miR- 2493-3p	GCUCACACACACACAC AGCCA	21	pcn-miR- 3173-3p	GAAGGAGGAAACAGG CUACAGAU	23	mcr-miR- 281-5p	AAGGGAGCAUCCGUC GACAGU	21	lny-miR- 7195-5p	UAUCCUCCCUCUCCC CCCCCCU	23
pmc-miR- 2505-3p	UCGUGCACACACACAC AUACAC	22	pcn-miR- 33-3p	GCAAUGCAUCUGCAG UGCAAAUA	23	mcr-miR- 283-3p	AAAUAUCAGCUGGUA AACGAAU	22	lny-miR- 7290-5p	UCUGGCUCUGUUUGC AGCAA	20
pmc-miR- 252c-5p	CUAAGUACUAGUGCC GCGGGAA	22	pcn-miR- 33-5p	GUGCAUUGAGGUUGC AUUGCAU	22	mcr-miR- 285-3p	ACUGGCUUCCAAAGG UCUCGAAA	23	lny-miR- 734-5p	GAACUAUUCUGCAACA UUCAUG	22

pmc-miR- 254-5p	UGCAAAUCUUUUGCA ACAGACUU	23	pcn-miR- 340-5p	UUAUAAAGCAAUGAG AGUUUCC	22	mcr-miR- 2970-1-3p	UCAGAUCAUCUCUUG AUCAAC	21	lny-miR- 7371d-3p	UAUUUGUACCAGAUG CUCUCUCUGG	25
pmc-miR- 2571-3p	GUGAGUGGUGAUGA UGUUUACCACU	25	pcn-miR- 345-3p	UGCUGACCCCUAGUCC GCCUC	21	mcr-miR- 2970-2-3p	GACAGUCAGCAGUUG GCUCCCC	22	lny-miR- 7398y-3p	UAACCUUCCCUUCUCU CUUUCU	22
pmc-miR- 279-3p	UGACUAGAUCCACAC UCAUCCA	22	pcn-miR- 3529-3p	AACAACAAAAUCACUA GUCUUCCA	24	mcr-miR- 297b-5p	AUGUAUGUGUGCAUG AACAUGC	22	lny-miR- 745a-3p	AGCUGCCUGAUGAAG AGCUGUCC	23
pmc-miR- 279b-5p	UGACUAGACUGAUAA CCCCUAG	22	pcn-miR- 3547-3p	GUGGGAAGAGGGGUG GAGGUGAAGC	25	mcr-miR- 29b-5p	UAGCACCAUUAGAAAU GUUAGU	22	Iny-miR- 7460-3p	CCUGACUGAGCUCUGC UAGGGC	22
pmc-miR- 279c-3p	CGGGUGUUCGUUUC GAGUACGA	22	pcn-miR- 355-5p	UUUGUUUUAGCCUGA GUCGCC	21	mcr-miR- 2a-1-3p	UAUCACAGCCUGCUUG GAUCAGUA	24	Iny-miR- 750-3p	CCAGAUCUAACUCUUC CAGCUCA	23
pmc-miR- 281-3p	UGUCAUGGAGUUGC UCUCUUUA	22	pcn-miR- 3609-5p	CAAAGUGAUGAGUAA UUAAGGCGC	24	mcr-miR- 2a-2-3p	UAUCACAGCCAGCUUU GAUGAGCU	24	Iny-miR- 750-5p	AGUUGGAAGAUUGGG UCUUUGGC	23
pmc-miR- 281-5p	AAGGGAGCAUCCGUC GACAGU	21	pcn-miR- 3680-5p	GACUCACUCACAGGAU GUGGUG	22	mcr-miR- 2a-3-3p	AAUCACAGCCUGCUUU GGUGAGCU	24	Iny-miR- 7661-3p	AAGAAAGAAACCUGGA UAAACUAGA	25
pmc-miR- 282-3p	ACAUAGCCUAAAAGA GGCACCA	22	pcn-miR- 36b-3p	UCACCGGGUAUACAU UCAUCCGC	23	mcr-miR- 2b-1-5p	UCAUCAAAGCUGGCU GUGAUAUGA	24	Iny-miR- 7965-3p	UUUUGUAUGCUAAAA CAUAAAAU	23
pmc-miR- 2953-3p	UACAGAAGUGUUCGU GGGGGA	21	pcn-miR- 3716b-3p	CGAUGUUAUUUGAAA UAUCAAAC	23	mcr-miR- 2b-2-5p	UCAUCAAAGCUGGCU GUGAUAUGA	24	Iny-miR-7c- 5p	UGGAAGACUAGUGAU UUUGUUGUUC	25
pmc-miR- 2c-1-3p	UAUCACAGCCUGCUU GGAUCAGUA	24	pcn-miR- 3739-3p	UUGGGAGGGGGAGAG AGUGGAA	22	mcr-miR-2c- 5p	UCGUCAACAUUGCCUG CUGCUU	22	Iny-miR- 8066-3p	CAAUGUGAUCUUUUG GAGAAC	21
pmc-miR- 2c-2-3p	UAUCACAGCCAGCUU UGAUGAGCU	24	pcn-miR- 375-1-3p	UUUGUUCGUUCGGCU CGCGUUA	22	mcr-miR- 3131-3p	UCGAGGACUGGUGGA AUUUUCCA	23	lny-miR- 8075-5p	UGCUGAUGGCAGAUG UGUGUUGGC	24
pmc-miR- 2c-3-3p	AAUCACAGCCUGCUU UGGUGAGCU	24	pcn-miR- 375-2-3p		20	mcr-miR- 315b-3p	UUUUGAUUGUUGUAC AGUCCGC	22	lny-miR- 8279-5p	AGAUUCAUGUCAAUC UGACAUU	22
pmc-miR- 2b-1-5p	UCAUCAAAGCUGGCU GUGAUAUGA	24	pcn-miR- 377-5p	AGAGGUUGCCUUUGG UGAGAGA	22	mcr-miR- 317-3p	UGAACACAGCUGGUG GUAUCUUUUU	25	lny-miR- 8335-1-5p	GUUGUUGUUGUUGU UUUGGUCCUUG	25
pmc-miR- 2b-2-5p	UCAUCAAAGCUGGCU GUGAUAUGA	24	pcn-miR- 3776-3p	AGGAGGGGGGGAGAG AGAUUUA	22	mcr-miR- 3223-5p	UACCUUUUACCUUUA CCUUACA	22	lny-miR- 8335-2-3p	GUUGUUGUUGUUGU UUUGUUUUGUG	25
pmc-miR-2f- 3p	UAUCACAGCCAUGCU AAUCUCCU	23	pcn-miR- 3809-5p	GUCGGUCAGUUGGUU AGAUG	20	mcr-miR- 324-3p	CCCACUGCCCCAGGUG UCUUGUG	23	lny-miR- 8335-3-3p	GUUGUUGUUGUUGU UUUGAAGCCAG	25
pmc-miR- 300-3p	UAUACAAGGGCAGAC UCCAUCC	22	pcn-miR- 3831-3p	CAAACAUUGCUAUUU UUCAUAUCCAA	26	mcr-miR- 3299-3p	UCAUUGUUAAAGUCU GCAUAACC	23	lny-miR-8- 3p	UAAUACUGUCAGGUA AAGAUGUC	23
pmc-miR- 302a-3p	AAGUGCUUCCUUUUA UUGGUGAU	23	pcn-miR- 3928-3p	UGAAGCUCUAAGGUU CAUCCCAG	23	mcr-miR- 33-3p	GCAAUGCAUCUGCAG UGCAAAUA	23	lny-miR- 8485-1-5p	CACACACACACACACAC GUAC	21
pmc-miR- 302b-3p	AAAGUGCUUCCAUGU UUAAUUCA	23	pcn-miR- 3957-3p	ACGCACAGCACCUCAC ACUGAC	22	mcr-miR- 33-5p	GUGCAUUGAGGUUGC AUUGCAU	22	lny-miR- 8485-2-3p	CACACACACACACACAC GUAC	21
pmc-miR- 3057-3p	UCCCACAGGCCCAGCU GUCACA	22	pcn-miR- 3965-5p	UGCUUAUCAGCCUGA UUCU	19	mcr-miR- 33b-3p	CAAUGUACCUGCAGU GCUUUC	21	lny-miR-8- 5p	CAUCUUACCUAACAGC AUUAGA	22
pmc-miR- 3071-5p	AUCAUCAAAACAAAU GUGCAUA	22	pcn-miR- 4057-3p	GGCUUGGCGACUGUA GUAGG	20	mcr-miR- 34-3p	CAACCACUAUCUGCAG UGCCGCG	23	lny-miR- 87a-5p	AACACUUGGUAAUUU GCAAAUGAA	24
pmc-miR- 3084a-5p	UUGAAGGUUCAUUA GCCUUGUG	22	pcn-miR- 4066-5p	CAUGCCUUUAUCAUG UGUU	19	mcr-miR- 34-5p	UGGCAGUGUGGUUAG CUGGUUGUG	24	lny-miR- 8908i-3p	UACCCGGUAAGGUAG UUGCCAAGAA	25
pmc-miR- 308-5p	CGCAGGAUUUGCUUG UUUUGAG	22	pcn-miR- 4070-3p	CACGCGUCACGUGACA CCU	19	mcr-miR- 3529-3p	AACAACAAAAUCACUA GUCUUCCA	24	lny-miR- 9032-3p	UGCAGAUUCCGUUGA UGCAAUCCAA	25

pmc-miR- 31-3p	UGGCAAGAUGUUGGC ACAGCG	21	pcn-miR- 4185-3p	UGUAUUCAUACUGUC UGUUACA	22	mcr-miR- 3530-5p	CAAUGGUGUGAGCUG GACAUG	21	lny-miR-9- 1-3p	UCAUACAGCUAGAUAA CCAAAGA	23
pmc-miR- 315-3p	UUUUGAUUGUUGCU CUAGAAAUU	23	pcn-miR- 4187-3p	UUUGGUGUUGUGCUG UUUAA	20	mcr-miR- 3671-3p	AUCAAAUAAGGACUA GUGGCA	21	lny-miR-9- 1-5p	CCUUUGGUAACCUAG CUUUAUGA	23
pmc-miR- 317-3p	UGAACACAGCUGGUG GUAUCUUUUU	25	pcn-miR- 4195-5p	UACAUGUAAUACAUU GUACC	20	mcr-miR- 371b-3p	ACUCAAAAGAUGGCG GCAAGG	21	lny-miR- 9229d-3p	UGAGUCUUCCCCUUG AG	17
pmc-miR- 33-3p	GCAAUGCAUCUGCAG UGCAAAUA	23	pcn-miR- 4271-3p	GGGGGAAGAAAAGGU GGCA	19	mcr-miR- 372-5p	AAAGUGCUGCGACAU UAUUACCG	23	lny-miR- 9235b-3p	UAAUUUUGAUGUGGC UUGAGAACA	24
pmc-miR- 33-5p	GUGCAUUGAGGUUG CAUUGCAU	22	pcn-miR- 4323-3p	CAGCCCCACAGCCUCA GG	18	mcr-miR- 373-3p	AAAGUGCUUCCCUUU UAUUAUC	22	lny-miR-9- 2-3p	AUAAAGCUAGGUUAC CAAAGGCA	23
pmc-miR- 336-5p	UCACCCUUCCAUAUC UUUUGG	21	pcn-miR- 4472-3p	GGUGGGGGGGUGUUG UUGA	18	mcr-miR- 375-1-3p	UUUGUUCGUUCGGCU CGCGUUA	22	lny-miR-9- 2-5p	UCUUUGGUUAUCUAG CUGUAUGAUU	25
pmc-miR- 33b-3p	CAGUGCCUCUGCAGU GGAUGU	21	pcn-miR- 449a-3p	ACCAGCUGACAUUCAG UCCAGA	22	mcr-miR- 375-2-5p	UUUGUUCGUUUUGCU UGCUCAUG	23	lny-miR- 92a-3p	GAUUGCACUCGUCCCG GCCUUC	22
pmc-miR- 345-3p	UGCUGACCCCUAGUC CGCCUC	21	pcn-miR- 449d-3p	GAAGGCUGUGUGCUG UAAAG	20	mcr-miR- 376c-3p	AACAUAGAGGAAAAUC ACCGA	21	lny-miR- 92b-1-3p	UAUUGCACUCGUCCCG GCCUA	21
pmc-miR- 3529-3p	AACAACAAAAUCACUA GUCUUCCA	24	pcn-miR- 4525-3p	GGGGGGGAUGUGCAUG CCAG	19	mcr-miR- 376c-5p	AACAUAGAGGAAAAUC ACCGA	21	lny-miR- 92b-2-3p	AAUUGCACUUGUCCC GGCCUGC	22
pmc-miR- 3532-3p	UUGGAGGCUGCAGUG UGACCUC	22	pcn-miR- 4617-3p	UGUGGCUGUCACACC UAAACAC	22	mcr-miR- 376d-5p	GUAGAUUUUCCUUCU ACAACUU	22	lny-miR- 9319-3p	AGCAGAGCUAGUGGC CUCACCCC	23
pmc-miR- 355-5p	UUUGUUUUAGCCUG AGUCGCC	21	pcn-miR- 4654-5p	UGUGGGAUCUGGAGG CAGACUUC	23	mcr-miR- 3834-3p	UGAUGUUAUUUUCGA CAAAU	20	lny-miR- 96b-3p	AUUAUACAUCGGUGC CAAGUCA	22
pmc-miR- 3620-5p	GUGGGCUGGGCUGG GCUGGGCU	22	pcn-miR- 466i-1-3p	UGUGUGUGUGUGUG UGUGUG	20	mcr-miR- 3890-3p	AGCCGGUUAUGUACG GCUG	19	lny-miR- 96b-5p	AUUUGGCACUUGUGG AAUAAUCG	23
pmc-miR- 36-3p	UCACCGGGUGGAAAU UCGUCUUU	23	pcn-miR- 466i-2-5p	UGUGUGUGUGUGUG UGUGUG	20	mcr-miR- 39-3p	AGCUGAUUUCGUCUU GGGAGUU	22	lny-miR- 9701a-1-5p	CUGUGUACCACCAUCA ACCCGCG	23
pmc-miR- 3643-3p	GUGAGUUUAUCUAAA UUCAGGA	22	pcn-miR- 466i-3-5p	UGUGUGUGUGUGUG UGUGUG	20	mcr-miR- 4000i-3p	UGAAACUUGCAAGGA ACUGC	20	lny-miR- 9701a-2-3p	CUGUGUACCACCAUCA AGGCGUG	23
pmc-miR- 36b-3p	UCACCGGGUAUACAU UCAUCCGC	23	pcn-miR- 466i-4-5p	GGUGUGUGUGUGUG UGUGUG	20	mcr-miR- 4003d-3p	UGAGAAUGGUAACCA AAAAA	20	lny-miR- 9708c-3p	UGAGCACAGCUAAACA UUUUCU	22
pmc-miR- 3724-3p	AUCGUGGUAAACUUU GUCCUCG	22	pcn-miR- 466m-3p	UGUGUGCAUGUGCAU GUGUGCUU	23	mcr-miR- 4027-3p	UAUAUUACUUUUAUG UUAAU	20	lny-miR- 981-3p	UUCGUUGUCGUCGAA ACCUGCCC	23
pmc-miR- 375-1-3p	UUUGUUCGUUCGGC UCGCGUUA	22	pcn-miR- 466n-3p	GUGUGUGCGUACAUG UACUCAU	22	mcr-miR- 4029-5p	GUUUACAUUGCAUGC AUCGC	20	lny-miR- 981-5p	CGGGUUUCGCGACUG GCGAACA	22
pmc-miR- 375-2-3p	CUUGUUCGUUCGGCU CGUUC	20	pcn-miR- 466p-3p	UAUGUGUGUGUACAU GUGAAG	21	mcr-miR- 4034-3p	CUUUUCUCUGGCACU GAGGA	20	lny-miR-9a- 3p	AUAAAGCUAGGCGAC UGUCCGU	22
pmc-miR- 3782-3p	CUUACAGAGGCACUU GGGUGGCGC	24	pcn-miR- 466q-3p	GUGCACACACACAU ACG	19	mcr-miR- 4040-3p	CAACCAGAUCAGAAAG GUGA	20			
pmc-miR- 3792-3p	GACUGAGGAAAGAGA GAUGUU	21	pcn-miR- 467f-3p	AUAUACACACACACAC CUUUC	21	mcr-miR- 4048-5p	GCACCUUGGUCACCAU AGUGAC	22			
pmc-miR- 3821-3p	AUUUCUAGUGAGUG AGGGUACUU	23	pcn-miR- 4715-5p	GUGCCACCUUAACUGC ACGGACC	23	mcr-miR- 4127-5p	AGGCAGCUGUGAGAG AGCCCU	21			
pmc-miR- 4009c-3p	UAUUGCACUUUUACU GGUCG	20	pcn-miR- 4757-3p	CAUGACGUCACAGAGG CGAGGU	22	mcr-miR- 4130-5p	CAGACAGCUGCGUGUC UUUA	20			

pmc-miR- 4013b-5p	UUACUUGCUUUAACA GCUUA	20	pcn-miR- 4801-3p	UACACAAGAAAACCAA A	17	mcr-miR- 41-5p	UCACCGGGUGAAAAAC UGAC	20		
pmc-miR- 4057-3p	GGCUUGGCGACUGUA GUAGG	20	pcn-miR- 4860-3p	UGUAGAGAUUGUGUG AACUGCUAG	24	mcr-miR- 427-3p	GAAAGUGCUUUCUGU UACUUCUU	23		
pmc-miR- 4070-3p	CACGCGUCACGUGAC ACCU	19	pcn-miR- 4918-5p	GUGAGCACGAUGGCC AGCACUGCC	24	mcr-miR- 44-1-3p	CUGGAUGUGCUCGUU AACGUC	21		
pmc-miR- 4133-5p	CAUGUUGUGUUUUU GUAUG	19	pcn-miR- 49-3p	AAGCACCAUGUGAAGC ACUUUU	22	mcr-miR- 44-2-3p	UGACUAGAUGAUCAC AAGACAU	22		
pmc-miR- 4140-3p	ACCAGAUGAUUAUGA CACAA	20	pcn-miR- 4968-1-5p	CAGCAACAGCAGCAGC AGCAGA	22	mcr-miR- 449a-3p	UGGCAGUGCGUGUUA GUGAUG	21		
pmc-miR- 4177-5p	UAAUUGCUGUUUUA AACAGU	20	pcn-miR- 4968-2-5p	CAGCAACAGCAGCAGC AGCAGC	22	mcr-miR- 4502-5p	GCUGAUGAUGAUGGU GAUUGGA	22		
pmc-miR- 4185-3p	UGUAUUCAUACUGUC UGUUACA	22	pcn-miR- 4968-3-3p	CAGCAACAGCAGCAGC AGCAGC	22	mcr-miR- 452-3p	AACUGUUUGCAGAGG ACAGUCACA	24		
pmc-miR- 4323-3p	CAGCCCCACAGCCUCA GG	18	pcn-miR- 4968-4-3p	CAGCAACAGCAGCAGC AGCAGC	22	mcr-miR- 4552-3p	UCCCACUUGAUCACUG ACAUUCU	23		
pmc-miR- 4472-3p	GGUGGGGGGUGUUG UUGA	18	pcn-miR- 5317a-3p	UUUCUUGUCUCUGUG UACCUCUUG	24	mcr-miR- 466h-3p	UACGCACGCACACACA CAC	19		
pmc-miR- 449d-3p	GAAGGCUGUGUGCUG UAAAG	20	pcn-miR- 5391-5p	UGGACAGUUAUGAAG AAGUG	20	mcr-miR- 466i-1-5p	AUACACACACACAUAC ACACGC	22		
pmc-miR- 4629-3p	UGACUGGACGUUCAU CGCCG	20	pcn-miR- 5392-3p	UGUUACUUGACAUUU UGAGA	20	mcr-miR- 466i-2-5p	UGUGUGUGUGUGUG UGUGUG	20		
pmc-miR- 4654-5p	UGUGGGAUCUGGAG GCAGACUUC	23	pcn-miR- 5440-5p	UCAGGAGGACUGAAG GGUGGA	21	mcr-miR- 467c-5p	UAAGUGCGUGCAUGU AUGCAGG	22		
pmc-miR- 466-1-3p	AUAUAUACACACACA CAUAUAUA	23	pcn-miR- 5549-3p	UCAUGUUGGUUUUUU GAAU	19	mcr-miR- 4760-3p	UUUAGAUUGAACAUG AAUGUUU	22		
pmc-miR- 466-2-5p	AUAUAUACACACACA CAACCAUG	23	pcn-miR- 559-3p	UAAAGUAAAUAAGCAC AGACU	21	mcr-miR- 4810b-5p	GUAGGUUCAUGAGUA GACUUUU	22		
pmc-miR- 466-3-3p	AUAUAUACACACACA CAUAUACA	23	pcn-miR- 5594-3p	AAGAGUACUGUAGUU UUUCCAA	22	mcr-miR- 4865-3p	AUGUAGAGAGAGUGA CGCCGCUU	23		
pmc-miR- 466h-3p	UACGCACGCACACACA CAC	19	pcn-miR- 5595-3p	UCUCUUUUUUCUCGC AGUCCCGCA	24	mcr-miR- 4968-1-3p	CAGCAACAGCAGCAGC AGCAGC	22		
pmc-miR- 466i-1-5p	UGUGUGUGUGUGUG UGUGUG	20	pcn-miR- 574-1-5p	UGAGUGUGUGUGUGU GAGUGUGUG	24	mcr-miR- 4968-2-3p	CAGCAACAGCAGCAGC AGCAGC	22		
pmc-miR- 466i-2-5p	UGUGUGUGUGUGUG UGUGUG	20	pcn-miR- 574-2-3p	UGAGUGUGUGUGUGU GAGUGUGUG	24	mcr-miR- 4968-3-5p	CAGCAACAACAGCAGC AGCAGC	22		
pmc-miR- 466m-5p	UGUGUGCAUGUGCA UGUGAAUGU	23	pcn-miR- 5965-5p	GACAAUUCUGACAUU UUGCA	20	mcr-miR- 4975-3p	UUUACUUGGGUUUUC UUUCAG	21		
pmc-miR- 466n-3p	GUGUGUGCGUACAU GUACUCAU	22	pcn-miR- 6013-3p	GCUGCUGACGACCGCC UCA	19	mcr-miR- 5009-3p	UUGGACUUUUUCAGA UGGACUAGU	24		
pmc-miR- 466q-3p	GUGCACACACACACA UACAC	20	pcn-miR- 6037-1-3p	UAAGCUCUGUGUACU UUAGUG	21	mcr-miR- 50-5p	CGAGUAAUAUUAGAC AGCGGAUU	23		
pmc-miR- 467d-5p	UAAGUGCGCGCAUGU AUUUAUG	22	pcn-miR- 6037-2-3p	UAAGCUCUGUGUACU UUAGUG	21	mcr-miR- 5101-5p	UUUGUUUGUUUUGCU GUAUGAG	22		

pmc-miR- 467f-3p	AUAUACACACACACAC CUUUC	21	pcn-miR- 6076-3p	AGCAUGACAGAGGAG AGGAGA	21	mcr-miR- 542-3p	UGUGACAGAUUGAUA AAGACGC	22		
pmc-miR- 4715-5p	GUGCCACCUUAACUG CACGGACC	23	pcn-miR- 6098-5p	AUAGUGAUUGUGUGU UUCUA	20	mcr-miR- 5429-3p	AUAGUCAUGCUGGAG GUUCCUA	22		
pmc-miR- 4750-3p	CCUGACCCACCCCCUC CCUACU	22	pcn-miR- 6132-1-5p	AGCAGGGCUGGGGAU UCUG	19	mcr-miR- 548d-3p	AAAAAACUGCAGUUAC UUGAA	21		
pmc-miR- 4757-3p	CAUGACGUCACAGAG GCGAGGU	22	pcn-miR- 6132-2-5p	AGCAGGGCUGGGGAU UCUG	19	mcr-miR- 550-5p	AGUGCCUGAGGGAGU AGUGCCUU	23		
pmc-miR- 4769-5p	UCUGCCAUCCUCCCU CUCGUCU	22	pcn-miR- 6132-3-5p	AGCAGGGCUGGGGAU UCUG	19	mcr-miR- 5552-3p	UGUAGUUUGUAGUCU AUAGAUAU	23		
pmc-miR- 487c-5p	GUGGCUAUCCCUGCU GUCAUCC	22	pcn-miR- 6335-5p	CUGCAUACACAGUGAU GCAGGU	22	mcr-miR- 5582-5p	UAAAACUUUAAGUGU GUCAGAC	22		
pmc-miR- 4938-5p	AUCAUCAUGCAUCAU CAUUAUUG	23	pcn-miR-6- 3p	AGGGAACUGCUGCUG CAGCGACU	23	mcr-miR- 5698-3p	UGGGGGGAGUGCAGUG AA	17		
pmc-miR- 49-3p	AAGCACCAUGUGAAG CACUUUU	22	pcn-miR- 6416-3p	CUCCGUAUCAUCUGCU AGCUA	21	mcr-miR- 586-5p	UAUGCAUAUUGUAUU UUGUACUUG	24		
pmc-miR- 4949-3p	AGUGGUGUGCGUGU GUGUGUGU	22	pcn-miR- 64c-3p	CAUGACACACUGGCUG AACCA	21	mcr-miR- 5890c-3p	CAUAUAACUGAACUG UCUGUG	21		
pmc-miR- 4968-1-3p	CAGCAACAGCAGCAGC AGCAGC	22	pcn-miR- 6505-5p	UGACUUCUACCUGUU CCCUAA	21	mcr-miR- 592-3p	UCAUCACGUGGUGAC GUGUUC	21		
pmc-miR- 4968-2-5p	CAGCAACAGCAGCAGC AGCAGC	22	pcn-miR- 6516-3p	AUGCAGUAACAGGUG UCUCCAC	22	mcr-miR- 6013-5p	GCUGCUGACGACCGCC UCA	19		
pmc-miR- 4968-3-3p	CAGCAACAGCAGCAGC AGCAAU	22	pcn-miR- 6560-5p	UGUGUUGCUCCAUAC UGCUGAAG	23	mcr-miR- 6058-5p	AUGACAAUGGUGAUG AAUCAG	21		
pmc-miR- 4968-4-3p	CAGCAACAGCAGCAGC AGCAGC	22	pcn-miR- 6575-3p	GAGUUUUCCCAGGCU GAUGUGU	22	mcr-miR- 6340-3p	GUCAGCAGCAGCUUCG AUACCCA	23		
pmc-miR- 4999-3p	UGCUGUAUUGUCAG GUUUGUA	21	pcn-miR- 6587-3p	UGCUGGAAGUGGUGC UAUAUGUC	23	mcr-miR- 6552-3p	CAACAAGAAGUGGACA CGGUC	21		
pmc-miR- 501-5p	AAUGCACCCGGGCAA GUCAGA	21	pcn-miR- 6603-5p	AAGGACAAGAGGAAA UAACUUGA	23	mcr-miR- 6560-5p	UGUGUUGCUCCAUAC UGCUGAAG	23		
pmc-miR- 5101-1-5p	UUUGUUUGUUUUGC UGUCUGAC	22	pcn-miR- 6680-5p	GUUGCUGAUGAAGAU AAAUCGU	22	mcr-miR- 669f-3p	UAUAUACACACACACA CACAUAA	23		
pmc-miR- 5101-2-5p	UUUGUUUGUUUUGC UGUGUGCU	22	pcn-miR- 669f-5p	CAUAUACAUACACACA CACGUGU	23	mcr-miR- 67-3p	UCACAACCUGCAUGAA UGAGGAC	23		
pmc-miR- 519f-3p	AAAGUGCAUCCUUUU AUGGCGA	22	pcn-miR- 67-3p	UCACAACCUGCAUGAA UGAGGAC	23	mcr-miR- 676-5p	CUCUUCAACUUCAGGA UCGUUA	22		
pmc-miR- 5317a-3p	UUUCUUGUCUCUGU GUACCUCUCG	24	pcn-miR- 6816-3p	GAAGGACCUGCACCUU GC	18	mcr-miR- 6769b-5p	UGGUGGGUGAGGAGG AGAAAGCA	23		
pmc-miR- 5391-5p	UGGACAGUUAUGAAG AAGUG	20	pcn-miR- 6852-5p	UGUCCUCUGUUCCUC AU	17	mcr-miR- 6780a-5p	CUCCUCUGUUUUCUU UUCAAA	21		
pmc-miR- 539-5p	AUCAUACAAGGACAA UUUGUCA	22	pcn-miR- 6894-3p	AGGAGGAUGGAGAGC UGUUACAGC	24	mcr-miR- 6796-3p	UUGUGGGGUUGGAGA GUAUGGCU	23		
pmc-miR- 5396b-5p	CCACACAACCAGCAAG AUUUGC	22	pcn-miR- 6951-5p	UUGUAUUUGUGUGAU UCCCGA	21	mcr-miR- 6800-5p	GUAGGUGACAGUCAG GCCUGG	21		

pmc-miR- 5549-3p	UCAUGUUGGUUUUU UGAAU	19	pcn-miR- 6974-3p	UCUCCACUCUCUUCUG UGUCGU	22	mcr-miR- 6803-3p	GUGGGGGUGGGGGGC UGGGAGA	22		
pmc-miR- 5552-3p	UGUAGUUUGUAGUC UAAAGUCUG	23	pcn-miR- 6977-5p	GUGAGGCGCUGUGGG CAGGUGAGCC	25	mcr-miR- 6826-3p	UCAAUAGGAAAGAGG UCUGUGAU	23		
pmc-miR- 5595-3p	UCUCUUUUUUUCUCGC AGUCCCGCA	24	pcn-miR- 6999-3p	AAGGAAGGAGAGUCA GGAGCGUG	23	mcr-miR- 6830-3p	UGUCUUUCUUCUCUC CCCCAUCU	23		
pmc-miR- 5600-3p	AGUGGAAUGUUUUG UUUCAGUA	22	pcn-miR- 7000-5p	CACCCACCUGCCUGUC ACAGUG	22	mcr-miR- 6864-3p	UUGAAGGGACAAGUC AGACUUUAA	24		
pmc-miR- 5612-3p	UAUACAUCACCAGUU GACAUGU	22	pcn-miR- 7072-3p	CUAGCUUCUCUUCUU CCAGUU	21	mcr-miR- 6873-3p	UUCUCUCUGUCUUUC UCUCAUGU	23		
pmc-miR- 574-1-3p	UGAGUGUGUGUGUG UGAGUGC	21	pcn-miR- 71-1-5p	UGAAAGACAUGGGUA GUGAGAUG	23	mcr-miR- 6925-3p	AGAGGAAGAAAUGGC UUACAAA	22		
pmc-miR- 574-2-3p	UGAGUGUGUGUGUG UGAGUGUGUG	24	pcn-miR- 71-2-3p	UGAAAGACACAGGUA GAAUGUA	22	mcr-miR- 6955-3p	ACACCUGUCUCCUUUG UCGUGU	22		
pmc-miR- 5918b-5p	UCGCUCUACAUCGUG UGGUCAG	22	pcn-miR- 7151-5p	GAUCCAUCUCUGCCUG CUCACCU	23	mcr-miR- 6975-3p	UCUCUCCUUUCUCCUC CGCC	20		
pmc-miR- 5965-5p	GACAAUUCUGACAUU UUGCA	20	pcn-miR- 7307-3p	CAAAUGGUCAUUUCU GCGA	19	mcr-miR- 6988-5p	GGGGUGGAGAGCUGA GUUACA	21		
pmc-miR- 6056-3p	GAGGGACGAGGAGGG AGGAG	20	pcn-miR- 7314-3p	UCAGAAACAGUGUCUC UG	18	mcr-miR- 7042-3p	UGUCCCUUUGUUUUC UCCACA	21		
pmc-miR- 6076-3p	AGCAUGACAGAGGAG AGGAGA	21	pcn-miR- 7386e-5p	GUAAACACUUUACCCG UUUGA	21	mcr-miR- 7051-5p	UCACCAGGAGGAGGU GUGCACG	22		
pmc-miR- 6098-5p	AUAGUGAUUGUGUG UUUCUA	20	pcn-miR- 7389-3p	GCUGUACUUGAAGCA AGAGAGA	22	mcr-miR- 71-5p	UGAAAGACAUGGGUA GUGAGAUG	23		
pmc-miR- 623-3p	UUCCCUUGCAGGGGC UGAGGUAU	23	pcn-miR- 7398h-3p	UAACCCUCCCUUCUUU AUGAUA	22	mcr-miR- 7186-3p	CUGUGGUUCCUGUAU GUUCGGG	22		
pmc-miR- 626-5p	AGCUGUCUGAAAAUG UUUG	19	pcn-miR- 7399-5p	UACGCAUGUAUAUGU AUAUACA	22	mcr-miR- 7234-3p	UUGUUUUCUCCAAAG AACACCAU	23		
pmc-miR- 6302-3p	CAAACUCAUCGUCAG CCACUCA	22	pcn-miR- 743b-3p	UGUUCAGACUGGUGU CUGGU	20	mcr-miR- 7241-5p	UAGUAGAUACUCAUG GUGAGUA	22		
pmc-miR- 6416-3p	CUCCGUAUCAUCUGC UAGCUA	21	pcn-miR- 745a-3p	AGCUGCCUGAUGAAG AGCUGUCC	23	mcr-miR- 7260-3p	AUGGCUAAAACAACUG AC	18		
pmc-miR- 6505-5p	UGACUUCUACCUGUU CCCUAA	21	pcn-miR- 745b-3p	GAGCUGCCAAAUGAA GGGCUGU	22	mcr-miR- 7371b-3p	UUUGUAUCAGAUGCU UGC	18		
pmc-miR- 651-3p	UUUAGGAUAAGUUU GAACACGU	22	pcn-miR- 7472-3p	AUGUGCUGGAGAUGA AAACUCU	22	mcr-miR-7- 3p	CAACAAGUCCCAGUCU UGGCGG	22		
pmc-miR- 6516-3p	AUGCAGUAACAGGUG UCUCCAC	22	pcn-miR- 750-3p	CCAGAUCUAACUCUUC CAGCUCA	23	mcr-miR- 742-5p	GAAAGCCACCAUGCUG UUAUAU	22		
pmc-miR- 6528-5p	AGAGGGAAGAGGGAA GAAAG	20	pcn-miR- 750-5p	AGUUGGAAGAUUGGG UCUUUGGC	23	mcr-miR- 7456-3p	CAGGGAGAUGUACCU GCUGCCA	22		
pmc-miR- 6548-3p	AGAGGUGCCCCGCUG UCUGUUC	22	pcn-miR- 751-3p	CAUGUUUGAAUGGCC ACCACU	21	mcr-miR- 7461-5p	CAUGGCUGGAAUGUG GCUGAGCAAC	25		
pmc-miR- 6560-5p	UGUGUUGCUCCAUAC UGCUGAAG	23	pcn-miR- 753d-5p	AGAUCAUUAUUCAAG CGAUUG	21	mcr-miR- 7462-3p	CAACCUCAUUUCUAGC AGACCA	22		

pmc-miR- 6562-5p	AGGGGAAAGGAAUGU GCAGGUA	22	pcn-miR- 760-3p	CGGCUCUGGGUCUGU GAAGUCA	22	mcr-miR- 7465-3p	UCAGAUAGCUGAUAC UCAUU	20		
pmc-miR- 6568-3p	GCGGCCGCCAUCUUG CGGAGC	21	pcn-miR- 7643-3p	GACAUCUGUUUCUCA GUAAUUU	22	mcr-miR- 750-3p	CCAGAUCUAACUCUUC CAGCUCA	23		
pmc-miR- 669f-5p	CAUAUACAUACACAC ACACGUGU	23	pcn-miR- 7649-5p	UGACAGCAGUGCUGU AUCUAUG	22	mcr-miR- 750-5p	AGUUGGAAGAUUGGG UCUUUGGC	23		
pmc-miR- 669j-3p	UGCAUAUACUCACAU GUGCACA	22	pcn-miR- 76b-1-3p	UCUUGUUUUUUUCAA CUCCUGG	22	mcr-miR- 7589-3p	UGGAAAUGGAGAAAU CAGCCGA	22		
pmc-miR- 6701-3p	AUUAUUUUACAGACA GCAACU	21	pcn-miR- 76b-2-3p	UCUUGUUUUUUUCAA CUGCGUU	22	mcr-miR- 765-3p	UGGAGGAGAAGGAAG GUGUGG	21		
pmc-miR- 67-3p	UCACAACCUGCAUGA AUGAGGAC	23	pcn-miR- 770-3p	AGCACCACGUGUCUGG UAAAUC	22	mcr-miR- 7683-5p	UGGAAAGGUGGAACA CUAACC	21		
pmc-miR- 6876-5p	AGCUGUCUGUGUUU UCCCAGAUGC	24	pcn-miR- 7880k-3p	GGUCAGAAAUGGUUG CUGAGCUCCAC	26	mcr-miR- 770-3p	AGCACCACGUGUCUGG AAUCUG	22		
pmc-miR- 6891-5p	CCCUCAUCUUCCCCUC CCCUC	21	pcn-miR- 7880q-3p	UUUGCGACCAAAAUCA CUCUCU	22	mcr-miR- 7789-3p	CAGCAGAGCAGACGUC CAGCA	21		
pmc-miR- 6971-3p	ACAGCCUCUGCUUCU UCAGCU	21	pcn-miR- 7901-3p	UACUGUAGUUGAAGC GCUAUU	21	mcr-miR- 7795-5p	AGGAGACACGUGAUG CUUAC	20		
pmc-miR- 6974-3p	UCUCCACUCUCUUCU GUGUCGU	22	pcn-miR- 79-3p	GUAAAGCUAAAUUACC AGUG	20	mcr-miR- 789b-5p	CCAUCCUGGUACACCA CCAGCA	22		
pmc-miR- 7000-5p	CACCCACCUGCCUGUC ACACUG	22	pcn-miR-7c- 3p	UGGAAGACUAGUGAU UUUGUUGUUC	25	mcr-miR- 7950b-5p	GCCGGCGAAAGAGUU GCGCCA	21		
pmc-miR- 7046-5p	UGUAGGGUGAGGCU GGUGGGUUAG	24	pcn-miR-7c- 5p	UGGAAGACUAGUGAU UUUGUUGU	23	mcr-miR- 7964a-3p	GUCAACCACUCGCUGC AUAU	20		
pmc-miR-7- 1-3p	CAACAAAUCGUAGCC UCAGAG	21	pcn-miR-8- 1-3p	UAAUACUGUCAGGUA AAGAUGUC	23	mcr-miR- 802-3p	UCAGUAACAAAGAUUC UGUUACAC	24		
pmc-miR- 7151-5p	GAUCCAUCUCUGCCU GCUCACCU	23	pcn-miR-8- 1-5p	CAUCUUACCUAACAGC AUUAGA	22	mcr-miR- 81b-3p	AUGGGCCUAUGUGUG UUUUGCC	22		
pmc-miR- 71-5p	UGAAAGACACAGGUA GAAUGUA	22	pcn-miR- 8196b-3p	AGUAGUUAAUUUUUC UU	17	mcr-miR- 8234-3p	CUCCAUCCCAUCUUCU CCUGCC	22		
pmc-miR- 7207-5p	AUCUUUUAAAAUACA GGGUG	20	pcn-miR-8- 2-3p	UAAUACUGUCAGGUA AAGAUGUC	23	mcr-miR- 8293-5p	AUGAAAGAUAAAAGU GGAUGAAU	23		
pmc-miR- 722-5p	UUUUGCAGAAACGUU UACAGUU	22	pcn-miR-8- 2-5p	CAUCUUACCUAACAGC AUUAGA	22	mcr-miR- 8319-3p	AAAUUAGCAAGUGAG GUCAGGCU	23		
pmc-miR-7- 2-3p	CAACAAGUCCCAGUC UUGGCGG	22	pcn-miR- 8296-5p	UCGAGAUGAUGGAGA GCACACU	22	mcr-miR- 8319-5p	AGAGGCUCAUUGCCA UAG	18		
pmc-miR- 7241-3p	ACUUGCAUGAGUUAA UGAUUUGU	23	pcn-miR- 8332-3p	UUCUUUGCUCUUCUC GACAUGCG	23	mcr-miR- 8335-1-5p	GUUGUUGUUGUUGU UUUGCUCAUGG	25		
pmc-miR- 7314-3p	UCAGAAACAGUGUCU CUG	18	pcn-miR- 8335-1-5p	GUUGUUGUUGUUGU UUUGCCAACUG	25	mcr-miR- 8335-2-3p	GUUGUUGUUGUUGU UUUUUUUUUUUU	25		
pmc-miR- 7323-3p	UUACAGAAUUGUGU GAUCAAC	21	pcn-miR- 8335-2-5p	GUUGUUGUUGUUGU UUUGGUUUUUU	25	mcr-miR- 83-5p	UAGCACCAUAUAAAUU CCUGCU	22		
pmc-miR- 7386e-5p	GUAAACACUUUACCC GUUUGA	21	pcn-miR- 8364g-3p	AGAGAGUGUGGAAAA GGGGAGAG	23	mcr-miR- 8364j-3p	UCUUCAUUUCUCACG UGAAUGCG	23		

pmc-miR- 7388c-3p	UGCACAGACGUGACA UCGUU	20	pcn-miR- 8416-5p	UGAUUGGUCACAUAG UUUA	19	mcr-miR-8- 3p	UAAUACUGUCAGGUA AAGAUGUC	23		
pmc-miR- 7398c-3p	UGUGUAGAGGUGAG AAAGUUGUC	23	pcn-miR- 8422-5p	GCAAUUAAAAGUAGC ACAA	19	mcr-miR- 8485-1-5p	CACACACACACACACACACACACACACACACACACACA	21		
pmc-miR- 743b-3p	UGUUCAGACUGGUG UCUGGU	20	pcn-miR- 8462-1-3p	GAAUGAUCAAAUAAU UGUC	19	mcr-miR- 8485-2-5p	CACACACACACACACAC GUAU	21		
pmc-miR- 7448-3p	AACUGUUGUAGAACA GUUCCGAU	23	pcn-miR- 8462-2-3p	UGAUUAAUUUGAUAA GAUGA	20	mcr-miR- 8485-3-5p	CACACACACACACACAC GUCA	21		
pmc-miR- 745c-3p	AGCUGCCUGAUGAAG AGCUGUCC	23	pcn-miR- 8485-1-3p	CACACACACACACACAC GUAU	21	mcr-miR-8- 5p	CAUCUUACCUAACAGC AUUAGA	22		
pmc-miR- 745b-3p	GAGCUGCCAAAUGAA GGGCUGU	22	pcn-miR- 8485-2-5p	CACACACACACACACAC GUAC	21	mcr-miR- 8881-3p		23		
pmc-miR- 7472-3p	AUGUGCUGGAGAUGA AAACUGU	22	pcn-miR- 87-3p	GUGAGCAAAGUUUCA GGUGUGU	22	mcr-miR- 8956-3p	UUGACUUGGAUCUUU GCAACGUAUC	25		
pmc-miR- 750-3p	CCAGAUCUAACUCUU CCAGCUCA	23	pcn-miR- 87-5p	CUGCCUGAAAUUUAU GCUCAAACCU	25	mcr-miR- 8993-5p	UGACCUUGACCUUUG ACCAAGUG	23		
pmc-miR- 750-5p	AGUUGGAAGAUUGG GUCUUUGGC	23	pcn-miR- 8834n-5p	UGCCGGGCCUGGAGG CCAGCUGU	23	mcr-miR- 9077-5p	UCUGAGGGCUUUUGC ACUGCUGCU	24		
pmc-miR- 751-3p	CAUGUUUGAAUGGCC ACCACU	21	pcn-miR- 888-5p	GACUGACACCUCUUU GUCCAGC	22	mcr-miR- 9093-3p	CUGUAGUCCAUGUCCC GGACCAG	23		
pmc-miR- 7562-5p	CACACACAUUCAUGG ACACGCA	22	pcn-miR- 8915-1-3p	CGGAUGGCCAGCUGCA GGUGA	21	mcr-miR-9- 1-3p	AUAAAGCUAGGUUAC CAAAGGCA	23		
pmc-miR- 7575-5p	GCAUGGUCAUGAUCA UGACA	20	pcn-miR- 8915-2-3p	CGGAUGGCCAGCUGCA GGUGA	21	mcr-miR-9- 1-5p	UCUUUGGUUAUCUAG CUGUAUGAUU	25		
pmc-miR- 7643-3p	GACAUCUGUUUCUCA GUAAUUC	22	pcn-miR- 8915-3-3p	CGGAUGGCCAGCUGCA GGUGACG	23	mcr-miR- 9186r-5p	GAGGUGGCAUGGCUG GUGUUGGC	23		
pmc-miR- 785c-5p	UAAGUGAAUACUCUG UUAUGU	21	pcn-miR- 8915-4-3p	CGGAUGGCCAGCUGCA GGUGACG	23	mcr-miR-9- 2-3p	UCUUUGGUUAUCCAG UAGUAUU	22		
pmc-miR- 7880b-3p	UGGUUGGAUCAGUU UGGUUUGG	22	pcn-miR- 8915-5-3p	CGGAUGGCCAGCUGCA GGUGACA	23	mcr-miR- 92a-1-3p	GAUUGCACUUGUCCC GGCCUUCU	23		
pmc-miR- 7880q-3p	UUUGCGACCAAAAUC ACUCUCU	22	pcn-miR- 9015-5p	UCCCAGAGGAGACGAG AAAGUUG	23	mcr-miR- 92a-2-3p	GAUUGCACUUGUCCC GGCCUUG	22		
pmc-miR- 79-3p	GUAAAGCUAAAUUAC CAGUG	20	pcn-miR- 9120-3p	UCAGUCUCCCUCUCUC GCUAU	21	mcr-miR- 92b-3p	UAUUGCACUCGUCCCG GCCUA	21		
pmc-miR- 8250d-3p	UCCUUUAUUUGUCU GGGUGGAGGGU	25	pcn-miR-9- 1-3p	UCAUACAGCUAGAUAA CCAAAGA	23	mcr-miR- 92e-3p	CGGUGUGGGUGGGUG CAUGG	20		
pmc-miR- 8265-3p	UCUGAUACUCUUCGC UCCACCUUC	24	pcn-miR-9- 1-5p	CCUUUGGUAACCUAG CUUUAUGA	23	mcr-miR-9- 3-3p	UCAUACAGCUAGAUAA CCAAAGA	23		
pmc-miR- 8293-5p	AUGAAAGAUAAAAGU GUCUCGUG	23	pcn-miR-9- 2-3p	UCAUACAGCUAGAUAA CCAAAGA	23	mcr-miR- 9358-3p	UUUGACAUGCUUGUU CCUGCAU	22		
pmc-miR- 8311-3p	UGAUUGUGAGAUUCC CCCACCU	22	pcn-miR-9- 2-5p	CCUUUGGUAACCUAG CUUUAUGA	23	mcr-miR-9- 3-5p	CCUUUGGUAACCUAGC UUUAUGA	23		
pmc-miR- 8335-3p	GUUGUUGUUGUUGU UUUGUCAGU	23	pcn-miR- 92a-1-3p	GAUUGCACUUGUCCC GGCCUUG	22	mcr-miR- 936-5p	ACAGGAGAGGGAGGA AGGGGAC	22		

pmc-miR- 8398-3p	AGUUCUUUCUUUUU AGCAUGCA	22	pcn-miR- 92a-2-3p	GAUUGCACUUGUCCC GGCCUUCU	23	mcr-miR- 9392-3p	AUUAAAUGUUUUUCU AGUCAC	21		
pmc-miR-8- 3p	UAAUACUGUCAGGUA AAGAUGUC	23	pcn-miR- 92b-3p	UAUUGCACUCGUCCCG GCCUA	21	mcr-miR- 943-3p	CUGACUGUUGCUGUC CGUUUU	21		
pmc-miR- 8422-5p	GCAAUUAAAAGUAGC ACAA	19	pcn-miR- 92c-5p	AGGUUGGGAUGUGGG CUCUGUCGC	24	mcr-miR- 9438-5p	AUACUACACAAGUGUC UAGUGU	22		
pmc-miR- 8443-5p	ACUUUGCAUUCAUAU UUGA	19	pcn-miR-9- 3-3p	UCAUACAGCUAGAUAA CCAAAGA	23	mcr-miR- 9505-5p	UGAUGUCUGUCAAAA UCCAAU	21		
pmc-miR- 8460-5p	UAAUUAUAUUAUAU UUGCUU	20	pcn-miR- 9341-1-3p	UCUCGGCCUUUUGGC UAAGAU	21	mcr-miR- 9542a-3p	CCUGGCACUUUCUAA UUUCUGG	22		
pmc-miR- 8462-3p	UGAUUAAUUUGAUA AGAUGA	20	pcn-miR- 9341-2-3p	UCUCGGCCUUUUGGC UAAGAU	21	mcr-miR- 9573-5p	UCAAAACUAGGAUUG UGAGGCU	22		
pmc-miR- 8470-3p	CUGAGCAUAAGAAUA UGUUC	20	pcn-miR-9- 3-5p	CCUUUGGUAACCUAG CUUUAUGA	23	mcr-miR- 9592-3p	GACCUUAUUCAGACAA AGAAAC	22		
pmc-miR- 84f-5p	UGAGGUAGUUUUAA AUGAAGCUU	23	pcn-miR- 9388-5p	GUAUGUAUGUAUGUA CAUAUAAU	23	mcr-miR- 9598-3p	UAGUACUAGGAUUUU GAUUAGCU	23		
pmc-miR- 85-3p	UACAAAGUAUUUGAA ACCACAGAG	24	pcn-miR-9- 4-3p	AUAAAGCUAGGUUAC CAAAGGCA	23	mcr-miR- 9640-5p	UCAGAUGGCAGAGCU GGACAAGG	23		
pmc-miR-8- 5p	CAUCUUACCUAACAG CAUUAGA	22	pcn-miR-9- 4-5p	UCUUUGGUUAUCUAG CUGUAUGAUU	25	mcr-miR- 965-5p	GGGGAGAAGUUAUUG CUGCGAAG	23		
pmc-miR- 8834a-5p	UGCCGGGCCUGGAGG CCAGCUGU	23	pcn-miR- 9543a-3p	AAAUAUUGCUUGUUU AUU	18	mcr-miR- 96b-3p	AUUAUACACCGGUGCC AAGUCA	22		
pmc-miR- 888-5p	GACUGACACCUCUUU GUCCAGC	22	pcn-miR- 96-5p	CAAUCAUGUGCAGUG CAGUUCU	22	mcr-miR- 96b-5p	AUUUGGCACUUGUGG AAUAAUCG	23		
pmc-miR- 8993-5p	CAGGGUCAAGGGUCA AACAUGGU	23	pcn-miR- 969-3p	GAGUUCCACUAAGCAA GUUAU	21	mcr-miR- 9771g-3p	GAAAAGUCAUGACGCA UUUUU	21		
pmc-miR- 9120-5p	UCAGUCUCCCUCUCU CACACA	21	pcn-miR- 96b-3p	AUUAUACACCGGUGCC AAGUCA	22	mcr-miR- 981-3p	UUCGUUGUCGUCGAA ACCUGCCC	23		
pmc-miR-9- 1-3p	UCAUACAGCUAGAUA ACCAAAGA	23	pcn-miR- 96b-5p	AUUUGGCACUUGUGG AAUAAUCG	23	mcr-miR- 981-5p	CGGGUUUCGCGGCUG GCGAACA	22		
pmc-miR-9- 1-5p	CCUUUGGUAACCUAG CUUUAUGA	23	pcn-miR- 972-5p	UAAAUAUUUUUUUUU UCAACU	21	mcr-miR- 9896-3p	ACAAUAAUCGGACACA CCGCCA	22		
pmc-miR- 9170-3p	UUUGCAUCCUGGCUC UGCUAUCU	23	pcn-miR- 981-3p	UUCGUUGUCGUCGAA ACCUGCCC	23	mcr-miR- 9934-5p	AUGGUCUUGAUAUGU CCAUUUC	22		
pmc-miR-9- 2-3p	AUAAAGCUAGGUUAC CAAAGGCA	23	pcn-miR- 981-5p	CGGGUUUCGCGGCUU GCGAACA	22	mcr-miR- 99-3p	CAAGCUCGCCUCUGUG CUGACGG	23		
pmc-miR- 9256b-3p	UAAUAAUCAGGCCAC UACCUCU	22	pcn-miR- 9891-3p	UCGGCUUCGUCCUCG UCUUGG	21	mcr-miR- 994-3p	CACAGUUGCUGUUUC UUAGUUUG	23		
pmc-miR-9- 2-5p	UCUUUGGUUAUCUA GCUGUAUGAUU	25	pcn-miR- 995-3p	GCCCGGAUACUGUGU GUGGCUCA	23	mcr-miR- 9945-5p	CUGUCCACCUGAGCCC AUAGAC	22		
pmc-miR- 92c-1-3p	GAUUGCACUUGUCCC GGCCUUCU	23				mcr-miR- 9b-3p	UAAAGCUGAAGCAACU AUUGUU	22		
pmc-miR- 92c-2-3p	GAUUGCACUUGUCCC GGCCUUG	22								

pmc-miR- 92b-3p	UAUUGCACUCGUCCC GGCCUA	21					
pmc-miR- 92c-5p	AGGUUGGGAUGUGG GCUCUGUCGC	24					
pmc-miR- 9341-3p	UCUCGGCCUUUUGGC UAAGAU	21					
pmc-miR- 9369-5p	AUACAUAUUCUUCUU UCCAUUU	22					
pmc-miR- 9382-5p	AUCACAGUGUGGCUG AAAUAU	21					
pmc-miR- 9434-3p	UCUGACAGGAAUUCU GAACCCUG	23					
pmc-miR- 9505-5p	UGAUGUCUGUCAAAA UGUGAU	21					
pmc-miR- 9542a-3p	CCUGGCACUUUCUAA UUUCUGG	22					
pmc-miR- 9543a-3p	AAAUAUUGCUUGUU UAUU	18					
pmc-miR- 96-5p	CAAUCAUGUGCAGUG CAGUUCU	22					
pmc-miR- 969-3p	GAGUUCCACUAAGCA AGUUAU	21					
pmc-miR- 96b-3p	AUUAUACACCGGUGC CAAGUCA	22					
pmc-miR- 96b-5p	AUUUGGCACUUGUG GAAUAAUCG	23					
pmc-miR- 970-5p	AGCCUUGCAUGAGCU CUAGGUGUCU	25					
pmc-miR- 971-3p	AUGGUGUUCUAGCCU CCAUCGA	22					
pmc-miR- 981-3p	UUCGUUGUCGUCGAA ACCUGCCC	23					
pmc-miR- 981-5p	CGGGUUUCGCGGCUU GCGAACA	22					
pmc-miR- 9851-3p	UGGCACCAGCACUGG CACUGCC	22					

SUPPLEMENTARY DATA III

Bilaterial specific miRNAs

mir-190

Supplementary figure 1: Alignment of mi-190 in Ampullariidae species and their orthologs; pcn - *P. canaliculata*, pmc - *P. maculala*, mcr - *M. cornuarietis*, lny - *L. nyassanus*, mle - *M. leonina*, cte - C. teleta, cli - *Columba livia*, nle - *Nomascus leucogenys*, oga - *Otolemur garnettii*, ccr - *Cyprinus carpio*.

Supplementary figure 2: Secondary structure of mir-190 in Ampullariidae species and their orthologs; pcn - *P. canaliculata*, pmc - *P. maculata*, mcr - *M. cornuaritis*, lny - *L. nyassanus*, mle - *M. leonina*, cte - *C. teleta*, cli - *Columba livia*, nle - *Nomascus leucogenys*, oga - *Otolemur garnettii*, ccr - *Cyprinus carpio*.

Supplementary figure 3: Phylogenetic distribution of mir- in Ampullariidae species and their orthologs.

Supplementary figure 4: Alignment of mir-252a in Ampullariidae species and their orthologs; pcn - *P. canaliculata*, pmc - *P. maculata*, mcr - *M. cornuarietis*, lny - *L. nyassanus*, sko - *Saccoglossus kowalevskii*, bbe - *Branchiostoma belcherimle*, dqu - *Dinoponera quadríceps*, pmi - *Patiria miniata*, tca - *Tribolium castaneum*

bbe-mir-252a dqu-mir-252a lny-mir-252a mcr-mir-252a pcn-mir-252a pmc-mir-252a pmi-mir-252a sko-mir-252a tca-mir-252a

0

1

Supplementary figure 5: Secondary structure of mir-252a in Ampullariidae species and their orthologs; pcn - *P. canaliculata*, pmc - *P. maculata*, mcr - *M. cornuarietis*, lny - *L. nyassanus*, sko - *Saccoglossus kowalevskii*, bbe - *Branchiostoma belcherimle*, dqu - *Dinoponera quadríceps*, pmi - *Patiria miniata*, tca - *Tribolium castaneum*.

Supplementary figure 6: Phylogenetic distribution of mir-252a in Ampullariidae species and their orthologs.

Supplementary figure 7: Alignment of mir-281 in Ampullariidae species and their orthologs; api - Acyrthosiphon pisum, hme - Heliconius melpomene, lny - L. nyassanus, lgi - L. gigantea, mcr - M. cornuarietis, mle - M. leonina, pcn - P. canaliculata, pmc - P. maculata, tca - Tribolium castaneum.

Supplementary figure 8: Secondary structure of mir-281 in Ampullariidae species and their orthologs; api - *Acyrthosiphon pisum*, hme - *Heliconius melpomene*, lny - *L. nyassanus*, lgi - *L. gigantea*, mcr - *M. cornuarietis*, mle - *M. leonina*, pcn - *P. canaliculata*, pmc - *P. maculata*, tca - *Tribolium castaneum*.

87	99 92 86	Branchiostoma floridae mir-281 Branchiostoma belcheri mir-281 Ciona savignyi mir-281 Ciona intestinalis mir-281 Oikopleura dioica mir-281	Chordata		Deuterostomia
60	99 32 40	Anopheles gambiae mir-281 Aedes aegypti mir-281 Heliconius melpomene mir-281 Apis mellifera mir-281 Acyrthosiphon pisum mir-281	Arthropoda	Ecdysozoa	
50 50 31 56	61 59 83 83 88 91	Crassostrea virginica miR-281 Crassostrea hongkongensis mir-281 Crassostrea gigas mir-281 Pinctada martensii mir-281 Pinctada fucata mir-281 Biomphalaria glabrata mir-281 Lanistes nyassanus mir-281 Marisa cornuarietis mir-281 Pomacea maculata mir-281	Mollusca	Lophotrocozoa	Protostomia

Supplementary figure 9: Phylogenetic distribution of mir-281 in Ampullariidae species and their orthologs.

mir-981

miR-981-5p mcr-mir-981/1-92 ---GCUAUCAGACUUUGU-UC AGU--41 --GCUAUCAGACUUUGU-UC ----AUCAGACUUUGU-UC AGU--41 38 pmc-mir-981/1-92 UUG AGU-pcn-mir-981/1-85 lny-mir-981/1-92 UUGAUCAGACUUUGU-AC UGG AGU--41 mle-mir-981/1-61 lgi-mir-981/1-69 24 JCUG JUUG AGU----UUU-GA AGUcte-mir-981/1-87 aae-mir-981/1-91 dpu-mir-981/1-99 ---AUGGUCUUUCAA-UI 40 JAUU GUA UUCCA --AAACCUUGCCUGG GAA 41 -----AAUUGUGCCGUGCUUG-UC GCCGU 44 miR-981-3p .))))) .)))))))))) mcr-mir-981/1-92 -CAUUUUGAGCUGU---CCUGAAAUCUGAUGUG--92 92 CCUGAAAUCUGAUGUG -CAUUUUGAGCUGU pmc-mir-981/1-92 UU pcn-mir-981/1-85 lny-mir-981/1-92 -CAUUUUGAGCUGU CCUGAAAUCUGA-85 UUUAUAA -CAUUCUGAACUGU--CCGCUAAAACUGU-UU -CCUGAACUCUGAUGUG 92 mle-mir-981/1-61 lgi-mir-981/1-61 cte-mir-981/1-87 aae-mir-981/1-91 UU --CU--61 -UAACGGAUUGU CUUAAG---UU 69 CCAAUAGCAGUUG--UUUGAAAGAUAGU 87 CCAUGAUGAAUAGCA TTTT ACAUUGCAAGGCA-91 dpu-mir-981/1-99 99 UUACUUUCACAGUCC AUAUCGCACGGUCACUCU--....1

Supplementary figure 10: Alignment of mir-981 in Ampullariidae species and their orthologs; aae - Aedes aegypti, dpu - Daphnia pulex, mle – M. leonina, lny - L. nyassanus, lgi - L. gigantea, mcr - M. cornuarietis, pcn - P. canaliculata, pmc - P. maculata, cte - C. teleta.

Supplementary figure 11: Secondary structure of mir-981 in Ampullariidae species and their orthologs; aae - Aedes aegypti, dpu - Daphnia pulex, cte - C. teleta, lny - L. nyassanus, lgi - L. gigantea, mcr - M. cornuarietis, pcn - P. canaliculata, pmc - P. maculata.

Supplementary figure 12: Phylogenetic distribution of mir-981 in Ampullariidae species and their orthologs.

Protostome specific miRNAs

Supplementary figure 13: Alignment of mi-bantam in Ampullariidae species and their orthologs; ame - *Apis melifera*, isc - *Ixodes scapularis*, lny - *L. nyassanus*, mcr - *M. cornuarietis*, pca - *Polistes canadenses*, pcn - *P. canaliculata*, pmc - *P. maculata*, tca - *Tribolium castaneum*, mle - *M. leonina*.

Supplementary figure 14: Secondary structure of mir-bantam in Ampullariidae species and their orthologs; ame – *Apis melífera*, isc - *Ixodes scapularis*, lny - *L. nyassanus*, mcr - *M. cornuarietis*, pca - *Polistes canadenses*, pcn - *P. canaliculata*, pmc - *P. maculata*, tca - *Tribolium castaneum*, mle – *M. leonina*.

Supplementary figure 15: Phylogenetic distribution of mir-bantam in Ampullariidae species and their orthologs.

mir- 2a-2

Supplementary figure 16: Alignment of mir-2a-2 in Ampullariidae species and their orthologs; cte - *C. teleta*, dse - *Drosophila sechellia*, lny - *L. nyassanus*, mcr - *M. cornuarietis*, pcn - *P. canaliculata*, pmc - *P. maculata*, dya - *Drosophila yakuba*, lgi- *L. gigantea*, tca - *Tribolium castaneum*.

0____1

Supplementary figure 17: Secondary structure of mir-2a-2 in Ampullariidae species and their orthologs; cte - *C. teleta*, dse - *Drosophila sechellia*, lny - *L. nyassanus*, mcr - *M. cornuarietis*, pcn - *P. canaliculata*, pmc - *P. maculata*, dya - *Drosophila yakuba*, lgi- *L. gigantea*, tca - *Tribolium castaneum*

Supplementary figure 18: Phylogenetic distribution of mir-2a-2 in Ampullariidae species and their orthologs

mir-750

Supplementary figure 19: Alignment of mi-750 in Ampullariidae species and their orthologs; pcn - *P. canaliculata*, lny - *L. nyassanus*, mcr - *M. cornuarietis*, pmc - *P. maculata*, ame – *Apis melífera*, dqu - *Dinoponera quadríceps*, pca - *Polistes canadenses*, lgi - *L. gigantea*, mle - *M. leonina*.

Supplementary figure 20: Secondary structure of mir-750 in Ampullariidae species and their orthologs; lny - *L. nyassanus*, mcr - *M. cornuarietis*, ame - *Apis melífera*, dqu - *Dinoponera quadriceps*, lgi - *L. gigantea*, mle - *M. leonina*.

Supplementary figure 21: Phylogenetic distribution of mir-750 in Ampullariidae species and their orthologs.

Lophotrochozoa specific miRNAs

Supplementary figure 22: Alignment of mir-745a in Ampullariidae species and their orthologs; pcn - *P. canaliculata*, lny - *L. nyassanus*, pmc - *P. maculata*, lgi - *L. gigantea*, mle - *M. leonina*, obi – *Octopus bimaculoides*, bgl – *B. glabrata*, dro - *Dreissena rostriformis*, apu - *Argopecten purpuratus*.

Supplementary figure 23: Secondary structure of mir-745a in Ampullariidae species and their orthologs; pcn - *P. canaliculata*, lny - *L. nyassanus*, lgi - *L. gigantea*, bgl - *B. glabrata*, dro - *Dreissena rostriformis*, apu - *Argopecten purpuratus*.

Supplementary figure 24: Phylogenetic distribution of mir-745a in Ampullariidae species and their orthologs.

mir-1992

Supplementary figure 25: Alignment of mi-1992 in Ampullariidae species and their orthologs; mcr - *M. cornuarietis*, pcn- *P. canaliculata*, hdi - *Haliotis discus hannai*, hru - *Haliotis rufescens*, lgi - *L. gigantea*, adu - *Architeuthis dux*, pms - *Pinctada martensii*, mle - *M. leonina*, bgl - *B. glabrata*.

Supplementary figure 26: Secondary structure of mir-1992 in Ampullariidae species and their orthologs; mcr -*M. cornuarietis*, pcn- *P. canaliculata*, hdi - *Haliotis discus hannai*, lgi - *L. gigantea*, adu - *Architeuthis dux*, mle - *M. leonina*, bgl - *B. glabrata*.

Supplementary figure 27: Phylogenetic distribution of mir-1992 in Ampullariidae species and their orthologs.

Supplementary figure 28: Alignment of mi-1994 in Ampullariidae species and their orthologs; pcn - *P. canaliculata*, lny - *L. nyassanus*, mcr - *M. cornuarietis*, pmc - *P. maculata*, cte - *C. teleta*, cla - *Cerebratulus lacteus*.

Supplementary figure 29: Secondary structure of mir-1994 in Ampullariidae species and their orthologs; pcn - *P. canaliculata*, lny - *L. nyassanus*, mcr - *M. cornuarietis*, pmc - *P. maculata*, cte - *C. teleta*, cla - *Cerebratulus lacteus*.

87	94	- <i>Pomacea canaliculata</i> mir-1994 - <i>Pomacea maculata</i> mir-1994 - <i>Marisa cornuarietis</i> mir-1994 - <i>Lanistes nyassanus</i> mir-1994	Mollusca
		Cerebratulus lacteus mir-1994	Nemertea
	81	– <i>Capitella teleta</i> mir-1994	Annelida

Supplementary figure 30: Phylogenetic distribution of mir-1994 in Ampullariidae species and their orthologs.

Mollusc-specific miRNAs

mir-1985

Supplementary figure 31: Alignment of mi- in Ampullariidae species and their orthologs; pcn-*P. canaliculata*, lny - *L. nyassanus*, mcr -*M. cornuarietis*, pmc - *P. maculata*, lgi - *L. gigantea*, mle - *M. leonina*, cgi - *C. gigas*, cfi - *Chlamys farreri*, bgl - *B. glabrata*.

Supplementary figure 32: Secondary structure of mir- in Ampullariidae species and their orthologs; lny - *L. nyassanus*, mcr -*M. cornuarietis*, pmc - *P. maculata*, mle - *M. leonina*, cgi - *C. gigas*, cfi - *Chlamys farreri*, bgl - *B. glabrata*

mir-12096b

Supplementary figure 33: Alignment of mir-12096b in Ampullariidae species and their orthologs; Aci- Aplysia californica, pmc - P. maculata, mcr - M. cornuarietis, lny - L. nyassanus, lgi - L. gigantea, hdi - H. discushannai, hla - Haliotis laevigata, hrb - Haliotis rubra

0_____1

Supplementary figure 34: Secondary structure of mir-12096b in Ampullariidae species and their orthologs; Aci- *Aplysia californica*, pmc - *P. maculata*, mcr - *M. cornuarietis*, lny - *L. nyassanus*, lgi - *L. gigantea*, mle - *M. leonina*.