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RESUMO 

A perda de controle da aeronave durante o voo é causa de aproximadamente 70% de 

todas as fatalidades ocorridas em aeronaves com massa de decolagem superior a 5.700 kg. 

A relevância do tema provoca a comunidade técnica e científica, e leva a uma série de 

discussões e à geração de normas, procedimentos e dispositivos que buscam mitigar as 

causas desses acidentes. No intuito de contribuir com o setor aeronáutico no que tange ao 

desenvolvimento de novas estratégias que procurem minimizar o número de acidentes aéreos 

fatais, neste trabalho é proposta a utilização de uma nova arquitetura de controle baseada na 

combinação de sistemas neuro-fuzzy no controle de aeronaves em operações críticas de voo. 

Para isso, desenvolve-se um novo método de inferência fuzzy, denominado PIA (Pondered 

Individual Analysis), que alia intuitividade e alto desempenho computacional no processo de 

tradução matemática da base de regras envolvida no processo. A validação da técnica 

proposta passa pelo desenvolvimento de uma simulação do tipo software-in-the-loop entre o 

MATLAB e o X-Plane 11, em que se verifica a capacidade da arquitetura de controle proposta, 

em operações críticas de voo, de manter a resposta da aeronave em torno dos sinais de 

referência, e também pela verificação do desempenho do sistema de controle ao se levar em 

consideração um modelo dinâmico levantado a partir de dados experimentais, extraídos em 

ensaio de voo realizado em uma aeronave Cessna 172 em escala reduzida. Os resultados 

das dinâmicas longitudinal e látero-direcional da aeronave são analisados e comparados aos 

obtidos com os controladores proporcional integral derivativo, e neuro-fuzzy que utiliza o 

método de inferência fuzzy de Takagi-Sugeno, e apresentam menor erro médio absoluto com 

relação ao comportamento desejado para a aeronave, e dessa forma evidenciam que o 

método PIA demonstra ser uma eficaz ferramenta a ser considerada na resolução de 

problemas na área de controle. 

 

Palavras-Chave: Análise Individual Ponderada, Controle de Aeronaves, Controle 
Inteligente, Controle Neuro-Fuzzy, LOC-I, Método de Inferência Fuzzy, PIA, SBRF, Sistema 
Neuro-Fuzzy, Teoria dos Conjuntos Fuzzy. 
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ABSTRACT 

Loss of control in-flight is the cause of approximately 70% of all fatalities occurring in 

aircraft with a take-off mass greater than 5,700 kg. The relevance of this subject provokes the 

technical and scientific community, and leads to a series of discussions and the generation of 

norms, procedures and devices that seek to mitigate the causes of these accidents. In order 

to contribute to the aeronautical sector with regard to the development of new strategies that 

seek to minimize the number of fatal air accidents, this work proposes the use of a new control 

architecture based on the combination of neuro-fuzzy systems in the control of aircraft in critical 

flight operations. For that matter, a new fuzzy inference method, called PIA (Pondered 

Individual Analysis), is developed, which combines intuitiveness and high computational 

performance in the process of mathematical translation of the rule base involved in the 

process. The validation of the proposed technique involves the development of a software-in-

the-loop simulation between MATLAB and X-Plane 11, in which the ability of the proposed 

control architecture, in critical flight operations, to maintain the response of the aircraft around 

the reference signals is verified, and also it is analyzed the performance of the control system 

when taking into account a dynamic model raised from experimental data, extracted from a 

flight test carried out on a small scale Cessna 172 aircraft. The results of the longitudinal and 

lateral-directional dynamics of the aircraft are analyzed and compared to those obtained with 

the proportional integral derivative controller and with the neuro-fuzzy controller that uses 

theTakagi-Sugeno fuzzy inference method, and they present lower mean absolute error in 

relation to the desired behavior for the aircraft, and thus highlight that the PIA method 

demonstrates to be an effective tool to be considered in solving problems in the control area. 

 

 

Keywords: Pondered Individual Analysis, Aircraft Control, Intelligent Control, Neuro-Fuzzy 
Control, LOC-I, Fuzzy Inference Method, PIA, FRBS, Neuro-Fuzzy System, Fuzzy Sets 
Theory.  
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CAPÍTULO I 

 

 

 

INTRODUÇÃO  

 

 

As técnicas da inteligência computacional baseiam-se na observação de como os 

seres vivos, e em particular os seres humanos, comportam-se enfrentando e resolvendo 

diferentes problemas. Estas técnicas são geralmente versáteis e ajustadas para controlar 

diferentes sistemas dinâmicos, mesmo sob qualquer variação de suas propriedades. De fato, 

estas variações podem acontecer, como por exemplo, devido ao envelhecimento ou à falha 

de componentes mecânicos. Nesse sentido, os parâmetros de controle precisam ser 

acessados e adaptados em tempo real ou em operação off-line. 

Com o aumento da capacidade de processamento de sistemas embarcados, ocorrido 

nos últimos anos, torna-se viável lançar mão de técnicas de otimização e da inteligência 

computacional na resolução de problemas de controle em tempo real. Os controladores 

clássicos tornam-se ineficazes à medida em que há o aumento da complexidade dos 

processos, como por exemplo em cadeias de controle multivariável com acoplamento entre 

as variáveis, presença de fortes não linearidades e variações rápidas dos parâmetros dos 

processos (SILVA, 2006). 

Em um sistema aeronáutico, as variações das propriedades dinâmicas podem ocorrer 

devido a vários fatores: alteração das condições de voo, alterações climáticas, congelamento 

ou colapso de partes da estrutura, perda de potência do sistema propulsor, ocorrência do stall 

(perda abrupta de sustentação de uma superfície aerodinâmica devido ao aumento de seu 

ângulo de ataque), dentre outros fatores. 
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De acordo com o relatório desenvolvido pela IATA (International Air Transport 

Association), (IATA, 2020), entre 2015 e 2019, aproximadamente 70% de todas as fatalidades 

ocorridas em aeronaves com massa de decolagem superior a 5.700 kg foram causadas devido 

à perda de controle da aeronave durante o voo (em inglês, Loss of Control In-Flight – LOC-I). 

A relevância do tema provoca a comunidade técnica e científica, e leva a uma série de 

discussões e à geração de normas a respeito de novas abordagens necessárias à mitigação 

das causas desses acidentes (OLIVEIRA, 2018). 

A perda de controle da aeronave durante o voo pode resultar de uma série de fatores, 

incluindo falhas no motor, condições meteorológicas severas, congelamento, falhas 

operacionais e o stall (IATA, 2015). A partir de 2006, através de uma estação móvel de testes 

de dinâmica de voo e controle de aeronaves em escala reduzida, a NASA (National 

Aeronautics and Space Administration) desenvolve pesquisas visando a melhor compreensão 

do LOC-I e o desenvolvimento de estratégias para a retomada de controle da aeronave 

submetida a condições críticas de voo (COX, CUNNINGHAM e JORDAN, 2012; FRINK, et al., 

2017). 

As verificações que envolvem novas modelagens e o desenvolvimento de sistemas de 

controle mais eficientes para aeronaves comerciais, sobretudo devido aos altos custos 

associados ao projeto e ao desenvolvimento de protótipos, geralmente não são inicialmente 

realizadas em aeronaves reais ou nem mesmo em aeromodelos, uma vez que quaisquer 

problemas poderiam ocasionar perdas materiais consideráveis. Dessa forma, a simulação é 

um recurso correntemente utilizado na validação prévia de técnicas e de novas tecnologias 

do setor aeronáutico. A Fig. 1.1 ilustra uma simulação realizada no simulador de voo X-Plane. 

 

 

Figura 1.1: Imagens extraídas do simulador de voo X-Plane (autoria própria). 
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Em Craighead et al. (2007) são apresentados os principais simuladores de voo 

utilizados para o desenvolvimento de produtos e para a simulação de pilotagem, destacando-

se o simulador de voo X-Plane, certificado pela FAA (Federal Aviation Administration) para o 

treinamento de pilotos. Este simulador é utilizado, de forma bem-sucedida, no teste de 

controladores aplicados a aeronaves reais (BITTAR, OLIVEIRA e FIGUEREIDO, 2014). Há 

trabalhos (BITTAR e OLIVEIRA, 2013; BITTAR et al., 2014; BITTAR, OLIVEIRA e 

FIGUEREIDO, 2014; ZABIDIN, PAIRAN e SHAMSUDIN, 2020) que propõem a utilização do 

Simulink e do X-Plane na realização de simulações do tipo software-in-the-loop (SITL), em 

que o X-Plane presta-se como o ambiente de modelagem e simulação de voo, e no Simulink 

é desenvolvida a interface de comunicação entre os programas e a implementação da 

arquitetura de controle da planta.  

Há trabalhos na literatura que utilizam técnicas da inteligência computacional para o 

controle de aeronaves submetidas a falha de componentes e atuadores (KWONG et al., 1995; 

CHEN, SHI e LIM, 2016), para o controle de pouso (LIU, NAADIMUTHU e LEE, 2008), para o 

controle de atitude (CHEN e CHENG, 1998; KURNAZ, CETIN e KAVNAK, 2010; THUMS, 

TORRES e PALHARES, 2012; JHA, GAUR e YADAV, 2016; XU, ZHANG e PAN, 2016; ULUS 

e ESKI, 2021) e para a modelagem aerodinâmica (BRANDON e MORELLI, 2012), porém em 

nenhuma pesquisa conhecida pelos autores ocorre a utilização de simuladores de voo 

certificados por agências reguladoras, ou o uso de procedimentos experimentais, na validação 

das técnicas de controle desenvolvidas baseadas na inteligência computacional. 

Neste projeto de pesquisa, opta-se pela utilização do sistema neuro-fuzzy dado à sua 

característica de aliar a capacidade de adaptação aos problemas da rede neural (HAYKIN, 

2008), com a robustez e intuitividade da teoria dos conjuntos fuzzy (ZADEH, 1965), assim 

como em outros trabalhos que utilizam técnica similar (JANG, 1993), conhecida como ANFIS 

(Adaptive-Network-Based Fuzzy Inference System), no setor aeronáutico (KWONG et al, 

1995; LIU, NAADIMUTHU e LEE, 2008; KURNAZ, CETIN e KAYNAK, 2010; BRANDON e 

MORELLI, 2012; ULUS e ESKI, 2021). Este trabalho, porém, inova ao propor e aplicar um 

novo método de inferência fuzzy denominado PIA (Pondered Individual Analysis), que garante 

intuitividade e dispensa o uso de métodos de integração numérica, ao controle de uma 

aeronave submetida a condições críticas de voo, simuladas por meio do simulador de voo X-

Plane. 

 

 

 



4 
 

1.1. Objetivos 

 

Os objetivos principais da pesquisa são a análise, projeto e desenvolvimento de um 

controlador inteligente adaptativo a ser aplicado no controle de aeronaves em operações 

críticas de voo, como condições climáticas severas, rajadas de vento e mau funcionamento 

ou falha do sistema propulsor, dando ênfase no desenvolvimento do algoritmo e na 

contribuição da pesquisa na área da inteligência computacional. 

Como estudo de caso do sistema de controle, utiliza-se a aeronave Cessna 172, 

devido à grande documentação disponível na literatura, simplicidade e importância do modelo, 

além do simulador de voo X-Plane como ambiente de simulação desta aeronave. 

Os objetivos específicos do projeto são: 

 Concepção de um novo método de inferência fuzzy denominado PIA (Pondered 

Individual Analysis); 

 Projeto e implementação de um sistema de controle neuro-fuzzy para uma aeronave 

Cessna 172, com foco no controle longitudinal e látero-direcional do avião em 

operações críticas de voo; 

 Realização de simulações no software MATLAB para a validação numérica e análise 

de estabilidade da arquitetura de controle desenvolvida, a partir de uma modelagem 

dinâmica linear do comportamento da aeronave em voo; 

 Validação numérica da arquitetura de controle a partir de uma simulação do tipo 

software-in-the loop através do MATLAB e do simulador de voo X-Plane; 

 Concepção de um protótipo em escala reduzida da aeronave Cessna 172; 

 Realização de ensaios com o protótipo no intuito de coletar dados e analisar 

comparativamente as técnicas clássicas de controle com as desenvolvidas neste 

projeto. 

Os principais fatores de inovação são citados a seguir: 

 Desenvolvimento do novo método de inferência fuzzy PIA; 

 Utilização de uma arquitetura de controle neuro-fuzzy associada ao método PIA de 

inferência fuzzy;  

 Aplicação do sistema neuro-fuzzy em operações críticas de voo no simulador X-Plane; 

 Validação numérica de um controlador neuro-fuzzy; 

 Análise comparativa entre as técnicas de controle clássicas e as baseadas na 

inteligência computacional a partir de dados numéricos e experimentais. 
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1.2. Justificativa 

 

Conforme discutido anteriormente, a perda de controle da aeronave durante o voo 

(LOC-I) é responsável por aproximadamente 70% de todas as fatalidades ocorridas em 

aeronaves com massa de decolagem superior a 5.700 kg (780 das 1116 mortes).  

Além das falhas relacionadas à tripulação e à operação da aeronave em condições de 

voo crítico (com ocorrência em cerca de 55% dos acidentes causados devido ao LOC-I), na 

Tab. 1.1 são apresentadas as principais condições de voo presentes nos acidentes 

relacionados à perda de controle da aeronave, sendo que em muitos dos casos há a 

ocorrência simultânea de mais de um fator de risco (IATA, 2020).   

 

Tabela 1.1: Fatores Causadores da Perda de Controle da Aeronave Durante o Voo (IATA, 
2020). 

Fatores Causadores de LOC-I Ocorrência (%) 

Operações de Voo (falha humana) 55 

Condições meteorológicas críticas 45 

Voo manual / Falta de aderência aos Procedimentos Operacionais 

Padrão (POPs)  

50 

Operação fora das limitações da aeronave 40 

Performance da tripulação 50 

Velocidade vertical/lateral fora do limite operacional da aeronave 35 

Mau funcionamento da aeronave 35 

Mau funcionamento / falha do sistema propulsor 20 

 

A partir dos dados apresentados na Tab. 1.1, verifica-se que o estudo de técnicas 

aplicadas no controle de aeronaves submetidas a condições climáticas severas, rajadas de 

vento, e mau funcionamento ou falha do sistema propulsor pode assumir grande importância 

não somente no cenário acadêmico (COX, CUNNINGHAN e JORDAN, 2012), mas também 

na contribuição técnica relativa à segurança de aeronaves. 
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A aplicação de técnicas da inteligência computacional na resolução de problemas 

relacionados ao controle e modelagem de aeronaves é uma temática já desenvolvida em 

trabalhos prévios, conforme será apresentado na revisão de literatura, mas em nenhum 

trabalho conhecido pelos autores há o uso de simuladores de voo catalogados por agências 

reguladoras, nem se realiza uma análise comparativa entre as técnicas de controle clássicas 

e as baseadas na inteligência computacional a partir de dados numéricos e experimentais. 

Além disso, não há conhecimento de trabalhos que associam a inteligência computacional ao 

controle de aeronaves de asa fixa submetidas a problemas de LOC-I, revelando assim 

potenciais fatores de inovação na área. 

Neste momento, cabe destacar que o uso de técnicas de inteligência computacional 

no controle de sistemas aeronáuticos, atualmente, em função do elevado rigor técnico 

necessário à validação das mesmas antes de serem exploradas comercialmente no setor 

aeronáutico, limita-se majoritariamente a aplicações terrestres não-críticas. Este trabalho, 

dessa forma, apresenta um foco estritamente acadêmico, embora busque também encorajar 

a comunidade técnica e científica especializada quanto ao maior uso da inteligência 

computacional na área. 

Ressalta-se que os trabalhos que aplicam as técnicas da inteligência computacional 

no controle e modelagem de sistemas aeronáuticos propõem inovações associadas à 

aplicação de técnicas já conhecidas. Neste trabalho, há também a proposição de uma técnica 

de inteligência computacional inovadora: o método PIA (novo método de inferência fuzzy), o 

qual apresenta alto desempenho, quando comparado a outros métodos na minimização do 

erro médio quadrático do processo, e pode ser utilizado em uma diversidade de aplicações. 

Esta tese está dividida em fundamentação teórica, revisão bibliográfica, metodologia, 

PIA: um novo método de inferência fuzzy, controle neuro-fuzzy para aeronaves, conclusões, 

referências bibliográficas e por fim os anexos. Na Fig. 1.2 são indicados e relacionados os 

capítulos e as principais seções do texto com os seus respectivos temas. 
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Figura 1.2: Fluxograma – organização da tese (autoria própria). 

 

No intuito de fornecer suporte ao entendimento das principais temáticas envolvidas 

nesta tese, no próximo capítulo é apresentada a fundamentação teórica que norteia os 

principais desenvolvimentos presentes neste texto. 
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CAPÍTULO II 

 

 

 

FUNDAMENTAÇÃO TEÓRICA  

 

 

A fundamentação teórica deste trabalho consiste em fornecer ao leitor o conhecimento 

necessário para o entendimento das principais aplicações e dos conceitos desenvolvidos 

nesta tese. Este capítulo é dividido em controle e sistemas não-lineares, teoria dos conjuntos 

fuzzy, métodos de inferência fuzzy, redes neurais, ANFIS, evolução diferencial e modelagem 

dinâmica de uma aeronave de asa fixa. 

 

2.1. Controle e Sistemas Não-Lineares 

 

O controle não-linear é definido como sendo o conjunto de procedimentos destinados 

à estabilização ou ao rastreamento das variáveis de saída de um sistema não-linear em 

relação a uma determinada referência.  

Sistemas não-lineares apresentam comportamentos que os diferem dos sistemas 

lineares, e dentre estes comportamentos, os principais são indicados a seguir (SILVA, 2006): 

 Dependência da amplitude de excitação; 

 Tempo de escape finito; 

 Pontos de equilíbrio múltiplos; 

 Não unicidade da solução; 

 Elevada sensibilidade aos parâmetros e às condições iniciais (caos); 
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 Existência de ciclos limite de oscilação; 

 Respostas harmônicas e sub-harmônicas a uma entrada senoidal.  

De modo a facilitar a análise e o controle de sistemas dessa natureza, correntemente 

é aplicado sobre os mesmos o processo de linearização (SILVA, 2006). Dada a Eq. (2.1), 

admitindo que a função 𝑓[𝑥(𝑡), 𝑢(𝑡)] seja diferenciável, sendo  𝑥(𝑡) o estado do sistema e 𝑢(𝑡) 

a ação de controle aplicada ao mesmo, ambos no tempo 𝑡: 

𝑥̇(𝑡) = 𝑓[𝑥(𝑡), 𝑢(𝑡)],                                                                                                              (2.1) 

esta pode ser expandida em série de Taylor em torno de um ponto 𝑃 = (𝑥௣, 𝑢௣). Ao se realizar 

a expansão em torno de um ponto de equilíbrio (𝑥௘, 𝑢௘) tal que 𝑥௘ = 0  e 𝑢௘ = 0, tem-se que: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝑓௦௢(𝑥, 𝑢),                                                                                                        (2.2)       

sendo 𝐴 = ቀ
డ௙

డ௫
 ቁ ௫ୀ଴ 

௨ୀ଴
e 𝐵 = ቀ

డ௙

డ௨
 ቁ ௫ୀ଴

௨ୀ଴
.  

Desprezando os termos de ordem superior da expansão em série de Taylor 𝑓௦௢(𝑥, 𝑢), 

realiza-se a linearização do sistema em torno do ponto de equilíbrio (𝑥௘, 𝑢௘).  

Após o processo de linearização, pode ser necessário apresentar o sistema dinâmico 

na forma discreta, permitindo que o mesmo seja utilizado no projeto de controladores digitais. 

Na Eq. (2.3) é apresentado o sistema na forma discreta, considerando o segurador de ordem 

zero, ou seja, mantendo valores constantes de ação de controle 𝑢௞ durante o intervalo de 

tempo 𝑇௦, sendo 𝑇௦ o tempo de amostragem adotado para o sistema e 𝑘 a iteração corrente, 

𝑥௞ାଵ = 𝐺𝑥௞ +  𝐻𝑢௞ .                                                                                                               (2.3) 

As matrizes 𝐺 e 𝐻 são determinadas através das Eqs. (2.4) e (2.5): 

𝐺 = 𝑒஺ ೞ் ,                                                                                                                                (2.4) 

𝐻 = 𝐴ିଵ(𝑒஺ ೞ் − 𝐼)𝐵,                                                                                                               (2.5) 

em que 𝐼 é a matriz identidade. 

A partir do sistema linearizado, é possível aplicar as teorias de controle clássico. 

Contudo, ao se realizar o processo de linearização, algumas características do sistema 

passam a ser desprezadas, sobretudo quando se afasta do ponto de equilíbrio em que foi 

realizada a linearização. 

Outro aspecto de importante consideração é a estabilidade de sistemas não-lineares 

(KHALIL, 2002; SILVA, 2006; PRECUP, TOMESCU e PREITL, 2009). Dado um sistema não-
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linear escrito da forma apresentada na Eq. (2.6), em que  𝑥, 𝑥 ∈ 𝑅௡୶ଵ, é o estado do sistema, 

𝑢, 𝑢 ∈ 𝑅௠୶ଵ,é a ação de controle aplicada ao mesmo, 𝑓(𝑥), 𝑓(𝑥) ∈ 𝑅௡୶ଵ, e 𝑏(𝑥), 𝑏(𝑥) ∈ 𝑅௡୶௠, 

são funções que descrevem a dinâmica do sistema e 𝑥(𝑡଴) é o estado inicial no tempo 𝑡଴: 

𝑥̇(𝑡) = 𝑓(𝑥) + 𝑏(𝑥)𝑢(𝑥), 𝑥(𝑡଴) = 𝑥௢,                                                                                      (2.6) 

é possível definir uma função 𝑉: 𝑅௡ → 𝑅, 𝑉(𝑥) = 𝑥்𝑃𝑥, denominada de função Lyapunov, 

sendo 𝑃 ∈ 𝑅௡௫௡ uma matriz positiva definida, a partir da qual pode-se iniciar a análise da 

estabilidade do sistema. 

 A análise da estabilidade passa pela verificação da derivada temporal da função de 

Lyapunov 𝑉̇, Eq. (2.7). Se 𝑉̇(𝑥) < 0 ∀𝑥, tem-se que o sistema em malha fechada, composto 

pelo controlador e pelo processo não-linear, será localmente assintoticamente estável no 

sentido de Lyapunov na origem 𝑥଴. 

𝑉̇(𝑥) = 𝑥்̇𝑃𝑥 + 𝑥்𝑃𝑥̇  =                                                                                                             

𝑉̇(𝑥) = ൫𝑓(𝑥) + 𝑏(𝑥)𝑢(𝑥)൯
்

𝑃𝑥 + 𝑥்𝑃൫𝑓(𝑥) + 𝑏(𝑥)𝑢(𝑥)൯ =  

𝑉̇(𝑥) = 𝐹(𝑥) + 𝐵(𝑥),                                                                                                              (2.7) 

em que: 

𝐹(𝑥) = 𝑓(𝑥)்𝑃𝑥 + 𝑥்𝑃𝑓(𝑥),   𝐵(𝑥) = 𝑢்(𝑥)𝑏்(𝑥)𝑃𝑥 + 𝑥்𝑃𝑏(𝑥)𝑢(𝑥).                                    (2.8) 

 Existem técnicas aplicadas em controle, como as redes neurais, a teoria dos conjuntos 

fuzzy e os sistemas neuro-fuzzy, que levam em consideração as não-linearidades do sistema, 

e dessa forma são importantes objetos de estudo na área de controle de sistemas não-

lineares. 

 

2.2. Teoria dos Conjuntos Fuzzy 

 

Como referência para estudar a teoria dos conjuntos fuzzy, são utilizados (JAFELICE, 

2003; GOMIDE, GUDWIN e TANSCHEIT, 2015), e alguns dos principais conceitos 

concernentes à área são mencionados em sequência. 

Conjunto Fuzzy: Um conjunto fuzzy 𝐴 definido em um conjunto universo U é o gráfico 

da função 𝜇஺: 𝑋 
 

→  [0, 1], chamada de função de pertinência de 𝐴. Em outras palavras, o 

conjunto 𝐴 é dado por: 
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𝐴 = {(𝑥, 𝜇஺(𝑥)): 𝑥 ∈ 𝑋, 𝜇஺(𝑥) ∈ [0, 1]}.                                                                                   (2.9) 

O subconjunto clássico de 𝑈 definido por 𝑠𝑢𝑝𝑝(𝐴) = {𝑥 ∈ 𝑈: 𝜇஺(𝑥) > 0 } é chamado de 

suporte de 𝐴. 

Considerando 𝐴 como sendo um subconjunto fuzzy de 𝑈 e 𝛼 ∈  [0, 1] , o 𝛼-nível de 𝐴 

é o subconjunto clássico de 𝑈 definido por [𝐴]ఈ = {𝑥 ∈ 𝑈: 𝜇஺(𝑥) ≥ 𝛼 }, se 0 < 𝛼 ≤ 1. O nível 

zero de um subconjunto de 𝐴 é definido como o menor conjunto fechado (clássico) de 𝑈 que 

contém o conjunto suporte de 𝐴. 

Um subconjunto 𝐴 é chamado número fuzzy quando o conjunto universo em que 𝜇஺ é 

definida é o conjunto de número reais ℝ e 𝐴 satisfaz as seguintes condições: 

 Todos os 𝛼-níveis de 𝐴 são não-vazios, com 0 ≤ 𝛼 ≤ 1; 

 Todos os 𝛼-níveis de 𝐴 são intervalos fechados de ℝ; 

 𝑠𝑢𝑝𝑝(𝐴) = {𝑥 ∈ ℝ: 𝜇஺(𝑥) > 0 } é limitado. 

Os números fuzzy mais comuns são: triangular, trapezoidal e em forma de sino. Outros 

conceitos importantes dentro da teoria dos conjuntos fuzzy são a s-norma e t-norma. 

Uma co-norma triangular (s−norma) é uma operação binária 𝑠 ∶  [0, 1]  × [0, 1]  →

 [0, 1] satisfazendo as seguintes condições: 

 Comutatividade: 𝑥𝑠𝑦 = 𝑦𝑠𝑥; 

 Associatividade: 𝑥𝑠(𝑦𝑠𝑧) = (𝑥𝑠𝑦)𝑠𝑧; 

 Monotonicidade: Se 𝑥 ≤ 𝑦 𝑒 𝑤 ≤ 𝑧 então 𝑥𝑠𝑤 ≤ 𝑦𝑠𝑧; 

 Condições de fronteira: 𝑥𝑠0 = 𝑥, 𝑥𝑠1 = 1. 

Uma norma triangular (t−norma) é uma operação binária 𝑡 ∶  [0, 1]  × [0, 1]  →

 [0, 1] satisfazendo as seguintes condições: 

 Comutatividade: 𝑥𝑡𝑦 = 𝑦𝑡𝑥; 

 Associatividade: 𝑥𝑡(𝑦𝑡𝑧) = (𝑥𝑡𝑦)𝑡𝑧; 

 Monotonicidade: Se 𝑥 ≤ 𝑦 𝑒 𝑤 ≤ 𝑧 então 𝑥𝑡𝑤 ≤ 𝑦𝑡𝑧; 

 Condições de fronteira: 0𝑡𝑥 = 0, 1𝑡𝑥 = 𝑥. 

Claramente, o operador 𝑚𝑎𝑥 é uma s−norma e o operador 𝑚𝑖𝑛 é uma t−norma. 

Pode-se relacionar dois ou mais conjuntos fuzzy, e assim modelar, controlar ou 

classificar sistemas com incertezas, a partir de um Sistema Baseado em Regras Fuzzy 

(SBRF). 
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Sistema Baseado em Regras Fuzzy: Contém quatro componentes, a saber, um 

processador de entrada que realiza a fuzzificação dos dados de entrada, uma coleção de 

regras nebulosas chamada base de regras, um método de inferência fuzzy e um processador 

de saída que fornece um número real como saída. Uma vez estabelecida uma base de regras, 

isto é, como relacionamos os conjuntos fuzzy pela forma “Se...então...”, um SBRF pode ser 

visto como um mapeamento entre a entrada e a saída da forma 𝑦 =  𝑓(𝑥), 𝑥 ∈  ℝ௡ e 𝑦 ∈  ℝ௠. 

A Fig. 2.1 ilustra a arquitetura de um SBRF. 

 

 

Figura 2.1: Ilustração da arquitetura de um SBRF (autoria própria). 

 

Esta classe de sistema é amplamente utilizada em problemas de modelagem, controle 

e classificação. Os componentes do SBRF são descritos a seguir: 

 Processador de Entrada (Fuzzificação): Neste componente as entradas do sistema são 

traduzidas em conjuntos fuzzy em seus respectivos domínios. É neste momento em que 

são construídas as funções de pertinências para a descrição das entradas. 

 Base de Regras: Este componente, juntamente com a máquina de inferência, pode ser 

considerado o núcleo dos sistemas baseados em regras fuzzy. Ele é composto por uma 

coleção de proposições fuzzy na forma ‘Se...então...’. 

 Método de Inferência Fuzzy: É neste componente que cada proposição fuzzy é traduzida 

matematicamente por meio de métodos de Inferência Fuzzy. Apresentam-se os métodos 

de Mamdani e de Takagi-Sugeno de Inferência Fuzzy: 

o Método de Mamdani: Este método agrega cada uma das regras – ‘Se (antecedente) 

então (consequente)’ – através do operador lógico OU, que é modelado pelo operador 



13 
 

máximo e, em cada regra, o operador lógico E é modelado pelo operador mínimo. Como 

exemplo, citam-se as regras a seguir: 

 

Regra 1: Se (𝑋ଵ é 𝐴ଵ e 𝑋ଶ é 𝐵ଵ) então (𝑍 é 𝐶ଵ); 

Regra 2: Se (𝑋ଵ é 𝐴ଶ e 𝑋ଶ é 𝐵ଶ) então (𝑍 é 𝐶ଶ). 

 

A Fig. 2.2 ilustra como uma saída real 𝑧 de um sistema de inferência do tipo Mamdani é 

gerada a partir das entradas 𝑥ଵ e 𝑥ଶ reais e a regra de composição 𝑚𝑎𝑥 − 𝑚𝑖𝑛. A saída 

𝑧 ∈  ℝ  é obtida pela defuzzificação do conjunto fuzzy 𝐶 =  𝐶’ଵ 𝑈 𝐶’ଶ da Fig. 2.2.  

 

 

Figura 2.2: Ilustração do método de inferência de Mamdani (autoria própria). 

 
o Método de Takagi-Sugeno: A diferença básica deste método com relação ao método 

de Mamdani está na modelagem dos consequentes do SBRF, os quais são funções do 

tipo 𝑓௜ = 𝑓௜(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) associadas à saída 𝑧 do SBRF, sendo 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ as entradas 

(VALLE, 2015; BARROS, BASSANEZI e LODWICK, 2016). Duas regras fuzzy, como 

exemplo, são mostradas a seguir: 

 

Regra 1: Se (𝑋ଵ é 𝐴ଵ e 𝑋ଶ é 𝐵ଵ) então (𝑍 é 𝑓ଵ = 𝑓ଵ(𝑥ଵ, 𝑥ଶ)); 

Regra 2: Se (𝑥ଵ é 𝐴ଶ e 𝑥ଶ é 𝐵ଶ) então (𝑍 é 𝑓ଶ = 𝑓ଶ(𝑥ଵ, 𝑥ଶ)). 
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 Na Fig. 2.3, a saída real 𝑧 de um sistema de inferência fuzzy é gerada a partir das 

entradas reais 𝑥ଵ e 𝑥ଶ.  

  

 

Figura 2.3: Ilustração do método de inferência de Takagi-Sugeno (JAFELICE, 2003). 

 

 Processador de Saída (Defuzzificação): Na teoria dos conjuntos fuzzy, pode-se dizer que 

a defuzzificação é o processo de se representar a combinação de conjuntos fuzzy (ou não), 

dispostos na saída do processo de inferência, através de um número real. Vários 

defuzzificadores são propostos na literatura para o método de Mamdani, enquanto que há 

apenas dois para método de Takagi-Sugeno (MENDEL, 2017). A seguir, apresentam-se os 

métodos mais comuns de defuzzificação. 

o Média Ponderada: É o método de defuzzificação mais usado quando se utiliza o 

método de inferência fuzzy de Takagi-Sugeno. A saída z para o SBRF é calculada a 

partir da Eq. (2.10), em que 𝑘 é o número de funções consequentes associadas à saída 

do SBRF, e o peso µ
௜
(𝑥ଵ, 𝑥ଶ, … , 𝑥௡), 𝑖 = 1, … , 𝑘, é o grau de compatibilidade das entradas 

𝑥ଵ, 𝑥ଶ, … , 𝑥௡, obtido através de uma t-norma, com relação à função consequente 𝑓௜ =

𝑓௜(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) (MIZUMOTO, 1995; BARROS, BASSANEZI e LODWICK, 2016).  

𝑧 =
∑ µ௜(𝑥ଵ, 𝑥ଶ, … , 𝑥௡)𝑓௜ 

௞
௜ୀଵ

∑ µ௜(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) ௞
௜ୀଵ

.                                                                                                             (2.10) 
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o Centro de Gravidade: Este método de defuzzificação é semelhante à média ponderada 

para distribuição de dados, com a diferença que o peso µ
஼

(𝑍) indica o grau de 

compatibilidade do valor 𝑍 com o conceito modelado pelo conjunto fuzzy 𝐶, onde 𝑅 é a 

região de integração e 𝑧 a saída do SBRF. O centro de gravidade é a forma de 

defuzzificação mais utilizada quando a inferência fuzzy é dada a partir do método de 

Mamdani, dado por (MIZUMOTO, 1995):   

𝑧 =
∫ 𝑍 µ஼(𝑍) 𝑑𝑍

 

ோ

∫ µ஼(𝑍) 𝑑𝑍
 

ோ

.                                                                                                                        (2.11)        

Em função da importância dos métodos de inferência fuzzy no comportamento 

matemático da estrutura de um SBRF, a próxima seção trata especificamente deste tema. 

 

2.3. Métodos de Inferência Fuzzy 

 

O método de inferência fuzzy é o componente de um SBRF responsável pela tradução 

matemática de sua base de regras, exercendo grande influência não apenas na resposta do 

sistema, mas também em seu custo computacional. As técnicas de inferência fuzzy mais 

utilizadas na literatura são os métodos de Mamdani e de Takagi-Sugeno (BLEJ e AZIZI, 2016). 

Há trabalhos que apontam os métodos de Mamdani e Takagi-Sugeno como os 

principais métodos de inferência fuzzy e propõem comparações cujos resultados demonstram 

as vantagens do uso de Takagi-Sugeno sobre Mamdani sobretudo com relação a seu melhor 

desempenho computacional (SIDDIQUE e ADELI, 2013; EYOH e UMOH, 2013; FAHMY, 

ZAHER e KANDIL, 2015; SHLEEG e ELLABIB, 2013). A literatura contempla trabalhos que 

propõem outros métodos de inferência fuzzy, ou a possibilidade de adicionar inovações às 

técnicas existentes, melhorando assim o desempenho computacional e a aplicabilidade de 

um SBRF (SON, VIET e HAI, 2017).  

Há métodos, a exemplo dos de Kosko-Mizumoto e Larsen, que diferem do método 

Mamdani apenas na definição do conjunto fuzzy de saída. No método de Kosko-Mizumoto 

(KOSKO, 1994; MIZUMOTO, 1995), Fig. 2.4, o conjunto fuzzy de saída é dado por 𝐶 =  𝐶’ଵ +

 𝐶’ଶ, enquanto no método de Larsen (LARSEN, 1980), a diferença está na obtenção das 

regiões 𝐶’ଵ e 𝐶’ଶ, conforme mostrado na Fig. 2.5. 
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Figura 2.4: Ilustração do método Kosko-Mizumoto (autoria própria). 

 

 

Figura 2.5: Ilustração do método de inferência de Larsen (autoria própria). 
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Selvachandran et al. (2019) propõem um novo sistema de inferência fuzzy aplicado a 

números complexos, baseado no método de Mamdani, para problemas de tomada de decisão 

com vários atributos, especialmente quando se trabalha com dados com tendência periódica, 

como chuvas registradas em uma região ou ondas sonoras produzidas por um instrumento 

musical. 

Os autores em (JEE, TAY e LIM, 2015) desenvolvem uma nova abordagem baseada 

no método de Takagi-Sugeno para reduzir o número de regras que precisam ser reunidas 

para a construção de um SBRF. Esta técnica é composta por dois estágios, a saber, no 

estágio 1, um algoritmo genético é usado para obter um pequeno conjunto de regras a serem 

coletadas e no estágio 2, as regras restantes são deduzidas aproximadamente por um 

esquema de raciocínio de similaridade que preserva a monotonicidade das relações 

matemáticas. Em (ZHANG E SHEN, 2019), os autores desenvolvem uma técnica de 

interpolação de regras fuzzy para SBRFs que utilizam o método de inferência de Takagi-

Sugeno e apresentam base de regras esparsa, no intuito de inferir conclusões para as 

instâncias sem correspondência. 

Outro artigo introduz a noção de partição fuzzy monótona (KERK, TAY, e LIM, 2019), 

que é útil para a construção de um SBRF monótono baseado no método de Takagi-Sugeno 

de ordem zero. Os autores desenvolvem um método intervalar para modelar as incertezas de 

um sistema, que considera o intervalo mínimo de aceitabilidade de uma regra fuzzy, 

resultando assim em um SBRF monótono e intervalar. 

No intuito de aplicar o SBRF a problemas específicos e inovadores, Jamshidi et al.  

(2013) usam o método de Mamdani para a avaliação de risco de dutos, em (SHLEEG e 

ELLABIB, 2013) há uma comparação do desempenho dos métodos de Mamdani e Takagi-

Sugeno na análise do risco de câncer de mama, e em (AHMAD et al., 2019) o método Takagi-

Sugeno é utilizado para o diagnóstico inteligente da hepatite. 

Dentro do contexto de trabalhos que propõem inovações às técnicas existentes, 

Bemani e Akbarzadeh (2019) apresentam uma abordagem fuzzy adaptativa híbrida 

denominada HGFRD (Hybrid Adaptive Granular Fuzzy Approach to Rule Discovery), que 

efetivamente utiliza as vantagens dos métodos de inferência fuzzy de Mamdani e Takagi-

Sugeno em um único processo de aprendizagem, dividido em 2 estágios.  

O primeiro estágio de aprendizagem do HGFRD se inicia utilizando o método de 

inferência fuzzy de Mamdani, pois fornece melhor generalização e uma solução inicial mais 

razoável para o estágio de otimização secundário. Por outro lado, o segundo estágio lança 

mão do método de Takagi-Sugeno para o procedimento de ajuste fino dos parâmetros do 
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SBRF, oferecendo assim menor carga de processo, melhor capacidade de aproximação do 

ótimo global e a possibilidade de utilização de métodos de otimização mais eficazes, levando 

a uma melhor precisão do modelo. 

Antes do início do segundo estágio, a estrutura e os parâmetros obtidos do método de 

Mamdani devem ser transformados em uma estrutura e em parâmetros do método de Takagi-

Sugeno que sejam matematicamente equivalentes. Enquanto as partes antecedentes das 

regras fuzzy permanecem intactas durante essa transformação, a parte consequente de cada 

regra é reestruturada para o formato compatível com o método de Takagi-Sugeno equivalente, 

de modo que o valor de cada coeficiente seja inicializado pelo valor de centro correspondente 

à função de pertinência de saída do método de Mamdani. 

A Fig. 2.6 ilustra a arquitetura da abordagem HGFRD proposta em (BEMANI e 

AKBARZADEH, 2019):  

 

Figura 2.6: Arquitetura da abordagem HGFRD (BEMANI e AKBARZADEH, 2019). 
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O HGFRD é aplicado a dez benchmarks padrão e os resultados são comparados com 

outras vinte e duas estratégias recentes. Resultados numéricos confirmam que o HGFRD 

atinge maior capacidade de ajuste a dados experimentais, e com baixo custo computacional; 

embora esta tese proponha o método PIA de inferência fuzzy, que demonstra apresentar 

resultados mais satisfatórios que os obtidos com o HGFRD na resolução do estudo de caso 

exposto neste trabalho.  

Em certas aplicações, é desejável que os parâmetros relacionados a um SBRF sejam 

obtidos a partir de algum método de otimização. Jang (1993) propôs um sistema neuro-fuzzy, 

denominado ANFIS, a ser explanado na seção 2.5, que mantém a estrutura do sistema de 

inferência fuzzy, mas que alia também a capacidade de adaptação de uma rede neural, tema 

explorado na próxima seção. 

 

2.4. Redes Neurais 

 

2.4.1. Conceitos Gerais 

 
Uma Rede Neural Artificial (RNA), Fig. 2.7, é uma estrutura matemática constituída por 

um número finito de unidades individualizadas, também designadas por neurônios, Fig. 2.8, 

organizados em camadas (SILVA, 2006). A rede neural é utilizada, dentre outras aplicações, 

para o reconhecimento de padrões, para a obtenção de modelos para sistemas estáticos e 

dinâmicos e também como estrutura matemática de controladores, apresentando a 

característica de ser adequada a uma série de problemas devido à sua capacidade de ajuste 

e adaptação aos problemas. 

 

Figura 2.7: Representação da arquitetura de uma RNA multicamadas (SILVA, 2006). 
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Figura 2.8: Esquema de um neurônio i da camada l (SILVA, 2006). 

 

A saída 𝑎௜
௟ de cada neurônio 𝑖 da camada 𝑙 é apresentada na Eq. (2.12), sendo 𝜎௜

௟ a 

função de ativação de cada neurônio 𝑖 da camada 𝑙 da rede neural, cuja saída é limitada 

geralmente ao intervalo [−1, 1] e é a responsável por prover à estrutura matemática a 

característica desejada de não-linearidade. Os parâmetros 𝑤௜௝
௟  e 𝑏௜

௟ são respectivamente o 

peso sináptico e o valor do bias associados ao neurônio 𝑖, ambos determinados durante o 

processo de treinamento da rede neural, sendo:                                                                                

𝑖௜
௟ = ෍ 𝑤௜௝

௟  𝑎௝
௟ିଵ

௡೗షభ

௝ୀଵ

+ 𝑏௜
௟ , 

𝑎௜
௟ = 𝜎௜

௟൫𝑖௜
௟൯.                                                                                                                         (2.12) 

A Fig. 2.9 é a representação das funções de ativação 𝜎௜
௟ usualmente utilizadas de cada 

neurônio 𝑖 da camada 𝑙: degrau, linear, sigmoide ou tangente hiperbólica.  

 

Figura 2.9: Funções de ativação usualmente utilizadas (autoria própria). 
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2.4.2. Treinamento da Rede Neural 

 

Após a fixação do número de camadas e do número de neurônios em cada camada, 

procedimento realizado geralmente de forma intuitiva, é necessário determinar os valores dos 

parâmetros 𝑤௜௝
௟  e 𝑏௜

௟ que conduzem ao melhor desempenho da rede, processo denominado 

treinamento da rede neural. 

O treinamento da rede neural é tradicionalmente executado através de métodos de 

otimização inspirados nos métodos da máxima descida e de métrica variável (HAYKIN, 2008) 

– embora haja na literatura trabalhos em que métodos heurísticos, como a evolução diferencial 

e os algoritmos genéticos, passam a ser utilizados para tal função (PEREIRA et al., 2016) – e 

baseia-se na minimização da função custo 𝐶𝑓, Eq. (2.13):  

𝐶𝑓 = ෍[𝑦(𝑘) − 𝑦ො(𝑘)]ଶ

ேௗ

௞ୀଵ

,                                                                                                                              (2.13) 

em que 𝑁𝑑 é o número de elementos da sequência 𝑦(𝑘);  𝑦(𝑘), 𝑘 = 1, . . . , 𝑁𝑑, é o conjunto de 

dados utilizados para o treinamento da rede; e 𝑦ො(𝑘), 𝑘 = 1, . . . , 𝑁𝑑,  são os valores obtidos na 

saída da rede neural. Ao se realizar com sucesso o processo de minimização da função custo, 

espera-se que a rede neural, para os valores de entrada que geram 𝑦(𝑘), apresente valores 

de saída 𝑦ො(𝑘) tais que 𝑦ො(𝑘) ⋍ 𝑦(𝑘), 𝑘 = 1, . . . , 𝑁𝑑. 

O treinamento da RNA pode ser realizado de duas formas: em grupo, chamado 

alternativamente de treinamento off-line; e em linha, também chamado de on-line ou em tempo 

real. 

O treinamento em grupo é utilizado para processos invariantes no tempo ou para obter 

valores iniciais dos parâmetros da rede. O valor de 𝑁𝑑 deve ser da ordem das centenas, o 

que permite ter uma grande variedade de amplitudes e informações do processo. O número 

de iterações utilizado para obter a convergência da rede é variável e é função da respectiva 

rapidez de convergência do processo de otimização e do valor aceitável para 𝐶𝑓. Após o treino 

em grupo, as redes devem ser testadas utilizando outras sequências de entrada/saída para 

verificar a sua boa capacidade de generalização. 

Já o treinamento em linha é necessário quando se precisa identificar um processo 

variante no tempo. Ressalta-se que para garantir a rápida adaptação da rede ao sistema, o 

número de iterações realizadas durante o treinamento por cada passo de execução, por 

exemplo, de um sistema controle, deverá ser no mínimo na ordem de dezenas, conforme é 

ilustrado na Fig. 2.10. Em sistemas não-lineares, porém, o treinamento em linha pode causar 
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o esquecimento das características globais da rede, ficando esta mais adaptada apenas para 

pontos de funcionamento com características locais. 

 

 

Figura 2.10: Relação temporal entre os instantes de execução de um sistema de controle e 
o número de iterações realizadas para a atualização da rede (SILVA, 2006). 

 

2.4.3. Aplicação de Redes Neurais em Sistemas de Controle Adaptativos 

 

De acordo com Haykin (2008), há basicamente duas formas de se trabalhar com redes 

neurais aplicadas a sistemas de controle adaptativos: controle direto adaptativo e indireto 

adaptativo. 

Nos métodos de controle indireto adaptativo, a obtenção dos pesos e bias da rede 

neural não está ligada diretamente ao controle, mas sim à estimação da dinâmica da planta, 

Fig. 2.11. Nesta figura, a rede neural artificial encontra-se implementada no bloco “Estimação 

do modelo da planta” (cujo detalhamento é apresentado na Fig. 2.12), e a partir deste modelo 

em RNA é realizada a sintonia do controlador. 

 

 

Figura 2.11: Princípio do controle indireto adaptativo (LANDAU et al., 2011). 
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Neste método de controle é utilizado um procedimento subdividido em 2 passos, a saber: 

 Obtém-se um modelo da planta 𝑃 através de uma amostra contendo dados de entrada e 

saída da mesma. Para exemplificar, considere um sistema de uma entrada 𝑢(𝑘) e uma 

saída  𝑦(𝑘) para o tempo discreto 𝑘, Figs. 2.11 e 2.12. O modelo de identificação da rede 

neural artificial com realimentação da entrada, 𝑃෠ , pode ser dado da forma:  

𝑦ො(𝑘 + 1) = 𝑓൫𝑦(𝑘), … , 𝑦(𝑘 − 𝑞 + 1), 𝑢(𝑘), … , 𝑢(𝑘 − 𝑞 + 1)൯,                                              (2.14) 

em que 𝑞 é a ordem do sistema desconhecido e 𝑦ො é a estimativa da saída 𝑦. A estimativa 

𝑦ො(𝑘 + 1) é então subtraída de 𝑦(𝑘 + 1) (saída real do sistema, obtida por meio de sensores) 

para produzir o sinal de erro: 

𝑒(𝑘 + 1) = 𝑦(𝑘 + 1) − 𝑦ො(𝑘 + 1).                                                                                       (2.15) 

O erro 𝑒(𝑘 + 1) é usado para ajustar os pesos sinápticos da rede neural, de modo a 

minimizar o erro na estimação da saída 𝑦 durante o processo de treinamento da estrutura. 

Ressalta-se que é a saída real do sistema (e não a saída do modelo de identificação) que 

é realimentada para a entrada do modelo. A Fig. 2.12 ilustra o procedimento de obtenção 

do modelo de identificação 𝑃෠, em que 𝑍ିଵ representa um atraso discreto no tempo, e 

considerando-se que o sistema apresenta ordem 𝑞 = 1.  

 

 

Figura 2.12: Esquema básico da estimação on-line dos parâmetros da rede neural (LANDAU 
et al., 2011). 

 

 O modelo identificado da planta é utilizado para se obter as estimativas da saída do sistema 

em função da entrada imposta no mesmo. Dessa forma, a partir deste, é possível projetar 

controladores adaptativos, conforme verificado na Fig. 2.11, que obtêm o conjunto de 

ações de controle capaz de garantir que o sistema controlado atinja o desempenho 

desejado.  

Já nos métodos de controle direto adaptativo, a dinâmica da planta é desconhecida, e 

dessa forma o controlador e a planta formam um sistema realimentado de laço fechado cujas 
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entradas são a referência e uma versão atrasada da saída da planta; e a saída do sistema de 

controle é a correspondente ação de controle a ser aplicada no mesmo, Fig. 2.13. 

Em (HAYKIN, 2008), os valores dos pesos e dos bias são diretamente ajustados para 

melhorar o desempenho do sistema, embora não existam métodos precisos para ajustar estes 

parâmetros, visto que a planta desconhecida encontra-se entre o controlador e o erro de 

saída. 

O esquema do controle direto adaptativo, apresentado na Fig. 2.13, baseia-se na 

observação de que a diferença entre a saída da planta e a saída do modelo de referência, 

chamada subsequentemente de erro planta-modelo, é uma medida comparativa entre o 

desempenho real do controlador e o desejado. Esta informação, juntamente com outras, é 

utilizada pelo método de adaptação para ajustar diretamente em tempo real os parâmetros do 

controlador adaptativo, de modo a forçar, de forma assintótica, o erro planta-modelo para zero 

(LANDAU et al., 2011). 

 

Figura 2.13: Esquema do controle direto adaptativo (LANDAU et al., 2011). 

 

O controle direto adaptativo, porém, apresenta algumas limitações. Embora o 

desempenho do sistema possa, em muitos casos, ser especificado em termos de um modelo 

de referência, as condições para a existência de um controlador viável que permita, em malha 

fechada, seguir esse modelo são restritivas (LANDAU et al., 2011). 

Na próxima seção são apresentadas as principais características do ANFIS, sistema 

híbrido que alia as características de um sistema de inferência fuzzy, com a adaptabilidade 

de uma rede neural. 
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2.5. ANFIS 

 

O ANFIS (Adaptive-Network-based Fuzzy Inference System), surgiu da fusão da RNA 

com o SBRF, Fig. 2.14. Dessa forma, o ANFIS herda a estrutura de um SBRF, ou seja, contém 

o processo de fuzzificação, uma base de regras do tipo Se ... Então, uma máquina de 

inferência fuzzy e a defuzzificação; porém com a mesma representação da estrutura e 

capacidade de aprendizado e adaptação de uma RNA através do ajuste dos parâmetros 

relacionados ao sistema fuzzy.  

 

Figura 2.14: Representação de um sistema neuro-fuzzy (autoria própria). 

 

A seguir é indicada a composição e a função de cada uma das camadas do ANFIS, 

considerando a utilização do método de inferência fuzzy de Takagi-Sugeno (TAKAGI e 

SUGENO, 1985; JANG, 1993; CHEN, LIN e LIN, 2009): 

 Camada 1: Cada nó da primeira camada recebe uma das variáveis de entrada 𝐼௜(𝑘) do 

sistema neuro-fuzzy, em que a saída do nó 𝑖 da camada 1 no tempo 𝑘, 𝑢௜
(ଵ)

(𝑘), é dada por: 

 𝑢௜
(ଵ)

(𝑘) = 𝐼௜(𝑘).                                                                                                             (2. 16) 

 Camada 2: Realização da fuzzificação dos dados de entrada, ou seja, estes são traduzidos 

em conjuntos fuzzy em seus respectivos domínios. É neste momento em que são 

construídas as funções de pertinência 𝑀𝐹 para a descrição das entradas. Adotando 

funções de pertinência do tipo gaussiana, a saída do nó 𝑖𝑗 da camada 2 no tempo k, 𝑢௜௝
(ଶ)

(𝑘), 

é dada por: 

𝑢௜௝
(ଶ)(𝑘) = 𝑒

( ೠ೔(భ)(ೖ)ష೘೔ೕ(ೖ))మ഑೔ೕమ (ೖ)

,                                                                                                (2.17) 
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em que 𝑚௜௝(𝑘) e 𝜎௜௝
ଶ (𝑘) são respectivamente a média e a variância da função de pertinência 

gaussiana 𝑀𝐹௜௝. 

 Camada 3: Coleção de proposições do tipo Se ... Então, formando assim a base de regras 

do ANFIS. Para toda regra 𝑅௅, os operadores lógicos E e OU são modelados 

respectivamente através dos operadores matemáticos produto e máximo, de modo que a 

saída do nó 𝐿 desta camada, 𝑢௅
(ଷ)

(𝑘), seja função das saídas da camada 2 selecionadas a 

partir da regra 𝑅௅. 

 Camada 4: Cada nó desta camada, denominado nó consequente, realiza o papel de um 

consequente, que é definido como sendo uma função 𝑓௅: 𝑅௡ → 𝑅 tal que 𝑓௅ =

𝑓௅(𝐼ଵ, … , 𝐼௜ , … , 𝐼௡, 𝑤ଵ௅ , … , 𝑤௝௅ , … , 𝑤௢௅ , 𝑘), em que  𝑤ଵ୐, … , 𝑤௝௅ , … , 𝑤௢௅ são pesos a serem 

determinados na fase de treinamento do ANFIS. Dessa forma, a saída do nó 𝐿 da camada 

4 𝑢௅
(ସ)

(𝑘) é calculada por: 

𝑢௅
(ସ)(𝑘) = 𝑢௅

(ଷ)(𝑘)𝑓௅൫𝐼ଵ, … , 𝐼௜, … , 𝐼௡ , 𝑤ଵ௅ , … , 𝑤௝௅ , … , 𝑤௢௅ , 𝑘൯.                                                (2.18) 

 Camada 5: Determinação da saída do sistema neuro-fuzzy, dada pela Eq. (2.19): 

𝑂(𝑘) =
∑ ௨ಽ

(ర)
(௞)ೃ

ಽసభ

∑ ௨ಽ
(య)

(௞)ೃ
ಽసభ

.                                                                                                           (2.19) 

Considerando que o ANFIS seja invariante no tempo e que o método de inferência 

utilizado seja o de Takagi-Sugeno de primeira ordem, os consequentes passam a ser 

polinômios de primeira ordem, e assim tem-se que: 

𝑂 =
∑ ௨ಽ

(ర)ೃ
ಽసభ

∑ ௨ಽ
(య)ೃ

ಽసభ

=
∑ ௨ಽ

(య)
(௪బಽା௪భಽூభା⋯ା௪೔ಽூ೔ା⋯ା௪೙ಽூ೙)ೃ

ಽసభ

∑ ௨ಽ
(య)ೃ

ಽసభ

.                                                              (2.20) 

Quando se trabalha com problemas de modelagem ou controle neuro-fuzzy, é 

necessário que seja utilizado um método de otimização que minimize a função custo 

relacionada ao processo e consequentemente busque uma solução de interesse, que passa 

por exemplo pela determinação dos pesos da estrutura matemática. Dessa forma, na próxima 

seção, será apresentada a evolução diferencial, o método de otimização utilizado nesta tese. 

 

2.6. Evolução Diferencial 

 

A evolução diferencial, algoritmo desenvolvido por Storn e Price (1997), é um método 

de minimização de funções, podendo ser até não lineares e não diferenciáveis, que se mostra 

capaz de se chegar ao valor ótimo global até mais facilmente e rapidamente que outros 
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métodos clássicos e heurísticos. O método requer poucas variáveis de controle, é robusto, de 

fácil implementação e apresenta boa adaptabilidade à computação paralela (STORN e 

PRICE, 1997).  

O método da evolução diferencial busca encontrar o valor mínimo global de uma 

função 𝑓௢௕௝(𝑋), sendo 𝑋 um vetor cujos elementos representam cada uma das variáveis 

independentes da função. As etapas e operadores constituintes do algoritmo estão descritos 

a seguir (HAN, LIN e CHANG, 2013) e representados na Fig. 2.15. 

 

 

Figura 2.15: Representação da evolução diferencial, adaptada de Mór et al. (2015), sendo 𝑆 
o conjunto das possíveis soluções do problema de otimização. 

 

Durante a inicialização do algoritmo, os valores dos parâmetros utilizados durante a 

execução do método são definidos, e são também determinados os limites de busca para 

cada variável. Os vetores (ou indivíduos) 𝑋௜,଴, cada um representando uma possível solução 

para o problema de otimização e cujos elementos são os valores normalizados das variáveis 

do processo, são inicializados seguindo uma distribuição uniforme definida dentro do intervalo 

[0,1], e em seguida é calculada a aptidão de todos os vetores com relação à função objetivo 

𝑓௢௕௝. 

Na fase de mutação, utiliza-se a alteração dos vetores 𝑋௜,௞ a partir da Eq. (2.21), em 

que 𝑉௜,௞ é o vetor resultante obtido a partir do vetor 𝑋௜,௞ na iteração k, F é o fator de perturbação 

do vetor 𝑋௜,௞, geralmente apresentando valor contido no intervalo [0,2], e 𝑋௝,௞ e 𝑋௟,௞ são outros 

vetores escolhidos aleatoriamente pertencentes ao conjunto (ou população) S das soluções 

possíveis para o problema de otimização também na iteração 𝑘. Esse procedimento é 

realizado n vezes, em que n é o número de elementos do conjunto S: 

𝑉௜,௞ = 𝑋௜,௞ + 𝐹൫𝑋௝,௞ − 𝑋௟,௞൯.                                                                                                  (2.21) 
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Na fase de cruzamento (ou recombinação), busca-se mesclar as informações 

presentes nos vetores 𝑉௜,௞ e 𝑋௜,௞, garantindo maior diversidade na população. Para cada 

elemento 𝑒 do vetor 𝑉௜,௞, utiliza-se um gerador de valores uniformemente distribuídos dentro 

do intervalo [0,1], 𝑟𝑎𝑛𝑑(0,1), e compara-se com o valor da taxa de cruzamento (CR), também 

definido dentro do intervalo [0,1]. A tomada de decisão desse operador é especificada na Eq. 

(2.22), em que 𝐶௜,௞ é o vetor candidato a participar do conjunto S na iteração 𝑘 + 1 e 

𝑟𝑎𝑛𝑑𝑛𝑢𝑚(1, 𝑛௘), sendo 𝑛௘ o número de elementos dos vetores, é um gerador de números 

inteiros uniformemente distribuídos dentro do intervalo [1, 𝑛௘]. Esse procedimento é repetido 

para todos os vetores do conjunto S: 

𝐶௘,௜,௞ = ቊ
𝑉௘,௜,௞ , 𝑆𝐸  𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅 𝑂𝑈 𝑒 = 𝑟𝑎𝑛𝑑𝑛𝑢𝑚(1, 𝑛௘);

𝑋௘,௜,௞ , 𝑆𝐸  𝑟𝑎𝑛𝑑(0,1) > 𝐶𝑅 𝐸 𝑒 ≠ 𝑟𝑎𝑛𝑑𝑛𝑢𝑚(1, 𝑛௘).
                                              (2.22) 

A seleção é o último operador padrão da evolução diferencial e que se baseia na 

análise dos vetores 𝐶௜,௞ gerados no cruzamento. A Eq. (2.23) descreve o procedimento de 

seleção, a ser realizado também para todos os vetores do conjunto S. Após a seleção, avança-

se para a iteração 𝑘 + 1, e é repetido todo o procedimento a partir do operador mutação até 

que na iteração 𝑘௘  alguma condição de parada pré-determinada seja atendida: 

𝑋௜,௞ାଵ = ቊ
𝑋௜,௞ , 𝑠𝑒  𝑓௢௕௝൫𝑋௜,௞൯ ≤ 𝑓௢௕௝൫𝐶௜,௞൯;

𝐶௜,௞ ,                              𝑜𝑢𝑡𝑟𝑜 𝑐𝑎𝑠𝑜.
                                                                            (2.23) 

 

2.7. Modelagem Dinâmica de uma Aeronave de Asa Fixa 

 

As equações do movimento para qualquer configuração tradicional de aeronave, como 

helicópteros e aviões, podem ser derivadas a partir da segunda lei de Newton aplicada a 

corpos rígidos com 6 graus de liberdade, possuindo assim 3 graus de translação e 3 graus de 

rotação (MACHINI, 2016). 

Utiliza-se para a modelagem dois referenciais, sendo eles: um referencial inercial fixo 

à terra denotado por 𝐼௖௦ e outro baricêntrico fixo à aeronave 𝐵௖௦ capaz de transladar e 

rotacionar junto com a mesma.  Uma vez que as forças e momentos, sejam elas 

aerodinâmicas ou inerciais, atuam no corpo, as equações do movimento são derivadas em 

relação ao referencial 𝐵௖௦. Por consequência, pode-se definir qualquer vetor escrito no 

referencial 𝐵௖௦ no referencial 𝐼௖௦ utilizando os ângulos de Euler. Estes representam a atitude 

da aeronave, que é definida por: rolagem (ɸ), arfagem (𝛩) e guinada (𝛹). 
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A posição da aeronave em relação ao eixo inercial 𝐼௖௦, bem como os ângulos de Euler, 

são dispostos no vetor 𝜂, Eq. (2.24). 

𝜂ሬ⃗ =  

⎣
⎢
⎢
⎢
⎢
⎡

𝑋𝐸

𝑌𝐸

𝑍𝐸 𝑜𝑢 ℎ

ɸ

𝛩

𝛹 ⎦
⎥
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎡
𝑝𝑜𝑠𝑖çã𝑜 𝑥 𝑒𝑚 𝑟𝑒𝑙𝑎çã𝑜 𝑎 𝐼𝑐𝑠

𝑝𝑜𝑠𝑖çã𝑜 𝑦 𝑒𝑚 𝑟𝑒𝑙𝑎çã𝑜 𝑎 𝐼𝑐𝑠

𝑝𝑜𝑠𝑖çã𝑜 𝑧 𝑒𝑚 𝑟𝑒𝑙𝑎çã𝑜 𝑎 𝐼𝑐𝑠

â𝑛𝑔𝑢𝑙𝑜 𝑑𝑒 𝑟𝑜𝑙𝑎𝑔𝑒𝑚

â𝑛𝑔𝑢𝑙𝑜 𝑑𝑒 𝑎𝑟𝑓𝑎𝑔𝑒𝑚

â𝑛𝑔𝑢𝑙𝑜 𝑑𝑒 𝑔𝑢𝑖𝑛𝑎𝑑𝑎 ⎦
⎥
⎥
⎥
⎥
⎤

.                                                                        (2.24)  

As componentes das velocidades lineares e angulares em relação ao referencial 𝐵௖௦ 

são arranjadas no vetor 𝜈 e expressas a partir da Eq. (2.25). 

𝜈 =

⎣
⎢
⎢
⎢
⎢
⎡

𝑈
𝑉
𝑊
𝑃
𝑄
𝑅 ⎦

⎥
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎡

𝑣𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙

𝑣𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑙𝑎𝑡𝑒𝑟𝑎𝑙
𝑣𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

𝑣𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑑𝑒 𝑟𝑜𝑙𝑎𝑔𝑒𝑚
𝑣𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑑𝑒 𝑎𝑟𝑓𝑎𝑔𝑒𝑚
𝑣𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑑𝑒 𝑔𝑢𝑖𝑛𝑎𝑑𝑎 ⎦

⎥
⎥
⎥
⎥
⎤

.                                                                   (2.25)  

Por fim, na Eq. (2.26), são visualizadas as componentes das forças e momentos que 

agem sobre a aeronave. 

⎣
⎢
⎢
⎢
⎢
⎡

𝑋
𝑌
𝑍
𝐿
𝑀
𝑁⎦

⎥
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎡

𝑓𝑜𝑟ç𝑎 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙
𝑓𝑜𝑟ç𝑎 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙

𝑓𝑜𝑟ç𝑎 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

𝑚𝑜𝑚𝑒𝑛𝑡𝑜 𝑑𝑒 𝑟𝑜𝑙𝑎𝑔𝑒𝑚
𝑚𝑜𝑚𝑒𝑛𝑡𝑜 𝑑𝑒 𝑎𝑟𝑓𝑎𝑔𝑒𝑚
𝑚𝑜𝑚𝑒𝑛𝑡𝑜 𝑑𝑒 𝑔𝑢𝑖𝑛𝑎𝑑𝑎 ⎦

⎥
⎥
⎥
⎥
⎤

.                                                                                          (2.26) 

A partir da Fig. 2.16 é possível visualizar os eixos, os ângulos de Euler, as velocidades, 

forças e momentos definidos anteriormente. 

 

Figura 2.16: Visualização dos eixos, ângulos de Euler, velocidades, forças e momentos da 
aeronave (autoria própria). 
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Após a definição das variáveis envolvidas na modelagem dinâmica da aeronave, é 

necessária a análise cinemática do sistema. A equação cinemática para a translação e rotação 

de um corpo rígido fixo pode ser expressa da forma: 

቎

𝑋̇ா

𝑌̇ா

𝑍̇ா

቏ =  𝑅௭,అ𝑅௬,௵𝑅௫,ɸ ൥
𝑈
𝑉
𝑊

൩,                                                                                                    (2.27) 

onde 𝑅௭,అ, 𝑅௬,௵ e 𝑅௫,ɸ são as matrizes de rotação do referencial 𝐵௖௦ para 𝐼௖௦ nas direções 𝑧, 𝑦 

e 𝑥 respectivamente (ROSKAM, 2001). 

Desta forma, a velocidade angular da aeronave escrita no referencial 𝐵௖௦ pode se 

relacionar com a taxa de variação dos ângulos de Euler utilizando das matrizes de rotação 

que resultam na seguinte relação cinemática:  

൥
𝑃
𝑄
𝑅

൩ =  ൥
ɸ̇
0
0

൩ +  𝑅௫,ɸ
் ൥

0
𝛩
0

̇ ൩ +  𝑅௫,ɸ
் 𝑅௬,௵

் ൥
0
0
𝛹̇

൩.                                                                                  (2.28)      

Aplicando a segunda lei de Newton para um corpo rígido com 6 graus de liberdade, 

sendo “x” o operador indicativo de produto vetorial, tem-se que: 

𝑚൫𝜈̇ଵ
ሬሬሬ⃗ +  𝜈ଶሬሬሬ⃗ x𝜈ଵሬሬሬ⃗ ൯ =  𝜏ଵሬሬሬ⃗ ,                                                                                                            (2.29) 

𝐼஼ீ𝜈̇ଶ
ሬሬሬ⃗ + 𝜈ଶሬሬሬ⃗ x(𝐼஼ீ𝜈ଶሬሬሬ⃗ ) =  𝜏ଶሬሬሬ⃗ ,                                                                                                      (2.30) 

em que 𝑚 é a massa da aeronave, 𝐼஼ீ é seu tensor de inércia,  𝜈ଵሬሬሬ⃗ = [𝑈, 𝑉, 𝑊]், 𝜈ଶሬሬሬ⃗ = [𝑃, 𝑄, 𝑅]், 
𝜏ଵሬሬሬ⃗ = [𝑋, 𝑌, 𝑍]்e 𝜏ଶሬሬሬ⃗ = [𝐿, 𝑀, 𝑁]். 

A partir do desenvolvimento das Eqs. (2.29) e (2.30) apresentado em Fossen (2011), 

sendo 𝑔 a aceleração da gravidade, tem-se: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑚൫𝑈̇ + 𝑄𝑊 − 𝑅𝑉 + 𝑔 sin(𝛩)൯

𝑚൫𝑉̇ + 𝑈𝑅 − 𝑊𝑃 − 𝑔 cos(𝛩) sin(ɸ)൯

𝑚൫𝑊̇ + 𝑉𝑃 − 𝑄𝑈 − 𝑔 cos(𝛩) cos(ɸ)൯

𝐼௫𝑃̇ − 𝐼௫௭൫𝑅̇ + 𝑃𝑄൯ +  (𝐼௭ − 𝐼௬)𝑄𝑅

𝐼௬𝑄̇ + 𝐼௫௭(𝑃ଶ − 𝑅ଶ) + (𝐼௫ − 𝐼௭)𝑃𝑅

𝐼௭𝑅̇ − 𝐼௫௭𝑃̇ +  (𝐼௬ − 𝐼௫)𝑃𝑄 + 𝐼௫௭𝑄𝑅 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

𝑋
𝑌
𝑍
𝐿
𝑀
𝑁⎦

⎥
⎥
⎥
⎥
⎤

,                                                                     (2.31) 

sendo 𝐼௫, 𝐼௬ e 𝐼௭ os momentos de inércia da aeronave em torno respectivamente dos eixos 𝑥, 

𝑦 e 𝑧, e 𝐼௫௭ é o produto de inércia em relação aos eixos 𝑥 e 𝑧.  

As Eqs. (2.28) e (2.31) modelam o comportamento dinâmico da aeronave e formam 

um sistema possível e determinado com nove variáveis e nove equações. Essas equações 
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podem ser integradas ao longo do tempo a fim de se obter a variação temporal das variáveis 

de estado. O processo de integração, porém, se contabilizar todas as não-linearidades do 

sistema, torna-se um processo matematicamente complexo e muitas vezes inviável sobretudo 

quando se busca uma solução analítica. Assim, utilizam-se ferramentas de linearização em 

torno de pontos de operação da aeronave, como a teoria das pequenas perturbações, que 

simplificam consideravelmente o processo de integração numérica. 

A teoria das perturbações define que é possível escrever um estado 𝑠 como a soma 

do seu valor nominal (constante) 𝑠଴, que representa uma condição de equilíbrio do sistema, e 

uma perturbação no entorno desta condição de equilíbrio 𝛿𝑠. A partir disto, definem-se as 

variáveis apresentadas anteriormente na sua forma perturbada: 

𝜏 =  𝜏଴ሬሬሬ⃗ + 𝛿𝜏ሬሬሬሬ⃗ =  

⎣
⎢
⎢
⎢
⎢
⎡
𝑋଴

𝑌଴

𝑍଴

𝐿଴

𝑀଴

𝑁଴ ⎦
⎥
⎥
⎥
⎥
⎤

+ 

⎣
⎢
⎢
⎢
⎢
⎡

𝛿𝑋
𝛿𝑌
𝛿𝑍
𝛿𝐿
𝛿𝑀
𝛿𝑁⎦

⎥
⎥
⎥
⎥
⎤

,                                                                                                (2.32) 

𝜈 =  𝜈଴ሬሬሬ⃗ + 𝛿𝜈ሬሬሬሬ⃗ =  

⎣
⎢
⎢
⎢
⎢
⎡
𝑈଴

𝑉଴

𝑊଴

𝑃଴

𝑄଴

𝑅଴ ⎦
⎥
⎥
⎥
⎥
⎤

+  

⎣
⎢
⎢
⎢
⎢
⎡
𝛿𝑈 

𝛿𝑉 

𝛿𝑊 

𝛿𝑃 

𝛿𝑄 

𝛿𝑅 ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

𝑈଴

𝑉଴

𝑊଴

𝑃଴

𝑄଴

𝑅଴ ⎦
⎥
⎥
⎥
⎥
⎤

+ 

⎣
⎢
⎢
⎢
⎢
⎡
𝑢
𝑣
𝑤
𝑝
𝑞
𝑟 ⎦

⎥
⎥
⎥
⎥
⎤

,                                                                                               (2.33) 

൥
𝛩
ɸ
𝛹

൩ =  ൥

𝛩଴

ɸ଴

𝛹଴

൩ + ൥
𝛿𝛩
𝛿ɸ
𝛿𝛹

൩ = ൥

𝛩଴

ɸ଴

𝛹଴

൩ + ൥

𝜃
𝜙
𝜓

൩.                                                                                                               (2.34) 

Segundo Fossen (2011), as equações lineares perturbadas que representam o 

movimento da aeronave são dadas por: 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑚[𝑢̇ +  𝑄଴𝑤 + 𝑊଴𝑞 − 𝑅଴𝑣 − 𝑉଴𝑟 + 𝑔 cos(𝛩଴) 𝜃]

𝑚[𝑣̇ + 𝑈଴𝑟 + 𝑅଴𝑢 − 𝑊଴𝑝 − 𝑃଴𝑤 − 𝑔 cos(𝛩଴) cos(ɸ଴)𝜙 + 𝑔 sin(𝛩଴) sin(ɸ଴)𝜃]

𝑚[𝑤̇ +  𝑉଴𝑝 + 𝑃଴𝑣 − 𝑈଴𝑞 − 𝑄଴𝑢 + 𝑔 cos(𝛩଴) sin(ɸ଴)𝜙 + 𝑔 sin(𝛩଴) cos(ɸ଴) 𝜃]

𝐼௫𝑝̇ −  𝐼௫௭𝑟̇ + ൫𝐼௭ − 𝐼௬൯(𝑄଴𝑟 + 𝑅଴𝑞) −  𝐼௫௭(𝑃଴𝑞 + 𝑄଴𝑝)

𝐼௬𝑞̇ +  (𝐼௫ −  𝐼௭)(𝑃଴𝑟 + 𝑅଴𝑝) −  2𝐼௫௭(𝑅଴𝑟 + 𝑃଴𝑝)

𝐼௭𝑟̇ −  𝐼௫௭𝑝̇ +  ൫𝐼௬ −  𝐼௫൯(𝑃଴𝑞 + 𝑄଴𝑝) +  𝐼௫௭(𝑄଴𝑟 + 𝑅଴𝑞) ⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

𝛿𝑋
 𝛿𝑌
𝛿𝑍
𝛿𝐿
𝛿𝑀
𝛿𝑁⎦

⎥
⎥
⎥
⎥
⎤

.       (2.35) 

 

Na Eq. (2.35), as variáveis que possuem sub-índice “0” são denominadas variáveis de 

equilíbrio ou de trimagem, as quais são obtidas, Eq. (2.36), assumindo na Eq. (2.31) que a 

aeronave esteja em equilíbrio dinâmico: 
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⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑚(𝑄଴𝑊଴ − 𝑅଴𝑉଴ + 𝑔 sin(𝛩଴))

𝑚(𝑈଴𝑅଴ − 𝑃଴𝑊଴ − 𝑔 cos(𝛩଴) sin(ɸ଴))

𝑚(𝑃଴𝑉଴ − 𝑄଴𝑈଴ − 𝑔 cos(𝛩଴) cos(ɸ଴))

൫𝐼௭ − 𝐼௬൯𝑄଴𝑅଴ − 𝑃଴𝑄଴𝐼௫௭

(𝑃଴
ଶ − 𝑅଴

ଶ)𝐼௫௭ + (𝐼௫ − 𝐼௭)𝑃଴𝑅଴

൫𝐼௬ − 𝐼௫൯𝑃଴𝑄଴ + 𝑄଴𝑅଴𝐼௫௭ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎡
𝑋଴

𝑌଴

𝑍଴

𝐿଴

𝑀଴

𝑁଴ ⎦
⎥
⎥
⎥
⎥
⎤

.                                                                   (2.36) 

No intuito de novamente simplificar a modelagem matemática de uma aeronave, é 

comum desacoplar sua dinâmica de corpo rígido em 2 subsistemas: dinâmica longitudinal, 

composta pelos estados 𝑢, 𝑤, 𝑞 e 𝜃; e dinâmica látero-direcional, composta pelos estados 

𝑣, 𝑝, 𝑟 e 𝜙. Assim, negligencia-se o efeito de qualquer estado de um subsistema sobre o outro. 

A principal hipótese que sustenta o desacoplamento é a de que a fuselagem é esbelta, 

ou seja, o comprimento é muito maior que a largura e a altura da aeronave. Supõe-se também 

que a velocidade longitudinal seja muito maior que as velocidades vertical e transversal. 

As Eqs. (2.37), (2.38) e (2.39) descrevem a dinâmica longitudinal de uma aeronave 

(FOSSEN, 2011): 

𝑚[𝑢̇ +  𝑄଴𝑤 + 𝑊଴𝑞 + 𝑔 cos(𝛩଴) 𝜃] = 𝛿𝑋,   

𝑚[𝑤̇ − 𝑈଴𝑞 − 𝑄଴𝑢  +𝑔 sin(𝛩଴) cos(ɸ଴) 𝜃] = 𝛿𝑍,                                                                   (2.37) 

𝐼௬𝑞̇ = 𝛿𝑀,  

 

൥

𝑚 0 0
0 𝑚 0
0 0 𝐼௬

൩  ൥
𝑢̇
𝑤̇
𝑞̇

൩ + ൥
0 𝑚𝑄଴ 𝑚𝑊଴

−𝑚𝑄଴ 0 −𝑚𝑈଴

0 0 0
൩  ൥

𝑢
𝑤
𝑞

൩ + ൥
𝑚𝑔𝑐𝑜𝑠(𝛩଴)

𝑚𝑔𝑠𝑖𝑛(𝛩଴)cos (ɸ଴)
0

൩ 𝜃 = ൥
𝛿𝑋
𝛿𝑍
𝛿𝑀

൩,           (2.38) 

 

𝜃̇ = 𝑞.                                                                                                                                   (2.39) 

As Eqs. (2.40), (2.41) e (2.42) descrevem a dinâmica látero-direcional de uma 

aeronave, (FOSSEN, 2011): 

𝑚[𝑣̇ +  𝑈଴𝑟 − 𝑊଴𝑝 − 𝑔 cos(𝛩଴) cos(ɸ଴)𝜙] = 𝛿𝑌,   

𝐼௫𝑝̇ −  𝐼௫௭𝑟̇ + ൫𝐼௭ − 𝐼௬൯𝑄଴𝑟 −  𝐼௫௭𝑄଴𝑝 = 𝛿𝐿,                                                                            (2.40) 

𝐼௭𝑟̇ −  𝐼௫௭𝑝̇ +  ൫𝐼௬ −  𝐼௫൯𝑄଴𝑝 +  𝐼௫௭𝑄଴𝑟 = 𝛿𝑁,  

 

൥

𝑚 0 0
0 𝐼௫ − 𝐼௫௭

0 − 𝐼௫௭ 𝐼௭

൩  ൥
𝑣̇
𝑝̇
𝑟̇

൩ + ቎

0 −𝑚𝑊଴ 𝑚𝑈଴

0 − 𝐼௫௭𝑄଴ ൫𝐼௭ − 𝐼௬൯𝑄଴

0 ൫𝐼௬ −  𝐼௫൯𝑄଴ 𝐼௫௭𝑄଴

቏  ቈ
𝑣
𝑝
𝑟

቉ + ൥
−𝑚𝑔 cos(𝛩଴) cos(ɸ଴)

0
0

൩ 𝜙 = ൥
𝛿𝑌
𝛿𝐿
𝛿𝑁

൩,  (2.41) 

  



33 
 

ቈ
𝜙̇

𝜓̇
቉ = ൤

1 tan (𝛩଴)
0 1/𝑐𝑜𝑠(𝛩଴)

൨ ቂ
𝑝
𝑟ቃ.                                                                                                    (2.42) 

As forças e momentos aerodinâmicos e propulsivos, Eq. (2.26), são gerados pela 

própria estrutura da aeronave, pelos flaps 𝛿ி, pelos propulsores 𝛿்  e pelas demais superfícies 

de comando descritas na Eq. (2.43) e ilustradas na Fig. 2.17. 

⎣
⎢
⎢
⎢
⎡
𝛿்

𝛿ா

𝛿ி

𝛿஺

𝛿ோ⎦
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎡

𝐹𝑜𝑟ç𝑎 𝑑𝑒 𝑝𝑟𝑜𝑝𝑢𝑙𝑠ã𝑜
𝐷𝑒𝑓𝑙𝑒𝑥ã𝑜 𝑑𝑜 𝑝𝑟𝑜𝑓𝑢𝑛𝑑𝑜𝑟

𝐷𝑒𝑓𝑙𝑒𝑥ã𝑜 𝑑𝑜𝑠 𝑓𝑙𝑎𝑝𝑠
𝐷𝑒𝑓𝑙𝑒𝑥ã𝑜 𝑑𝑜𝑠 𝑎𝑖𝑙𝑒𝑟𝑜𝑛𝑠

𝐷𝑒𝑓𝑙𝑒𝑥ã𝑜 𝑑𝑜 𝑙𝑒𝑚𝑒 ⎦
⎥
⎥
⎥
⎤

.                                                                                       (2.43) 

 

Figura 2.17: Ilustração das principais superfícies de comando (FOSSEN, 2011). 

 

McLean (1990) expressa as forças e momentos longitudinais e látero-direcionais em 

função dos propulsores e das superfícies de comando de acordo respectivamente com as 

Eqs. (2.44) e (2.45): 

൥
𝛿𝑋
𝛿𝑍
𝛿𝑀

൩ = ቎

𝑋௨̇ 𝑋௪̇ 𝑋௤̇

𝑍௨̇ 𝑍௪̇ 𝑍௤̇

𝑀௨̇ 𝑀௪̇ 𝑀௤̇

቏  ൥
𝑢̇
𝑤̇
𝑞̇

൩ + ቎

𝑋௨ 𝑋௪ 𝑋௤

𝑍௨ 𝑍௪ 𝑍௤

𝑀௨ 𝑀௪ 𝑀௤

቏ ൥

𝑢
𝑤
𝑞

൩ + ቎

𝑋ఋ೅
𝑋ఋಶ

𝑋ఋಷ

𝑍ఋ೅
𝑍ఋಶ

𝑍ఋಷ

𝑀ఋ೅
𝑀ఋಶ

𝑀ఋಷ

቏ ൥

𝛿்

𝛿ா

𝛿ி

൩,                   (2.44) 

൥
𝛿𝑌
𝛿𝐿
𝛿𝑁

൩ = ቎

𝑌௩̇ 𝑌௣̇ 𝑌௥̇

𝐿௩̇ 𝐿௣̇ 𝐿௥̇

𝑁௩̇ 𝑁௣̇ 𝑁௥̇

቏  ൥
𝑣̇
𝑝̇
𝑟̇

൩ + ቎

𝑌௩ 𝑌௣ 𝑌௥

𝐿௩ 𝐿௣ 𝐿௥

𝑁௩ 𝑁௣ 𝑁௥

቏ ቈ
𝑣
𝑝
𝑟

቉ + ቎

𝑌ఋಲ
𝑌ఋೃ

𝐿ఋಲ
𝐿ఋೃ

𝑁ఋಲ
𝑁ఋೃ

቏ ൤
𝛿஺

𝛿ோ
൨.                                     (2.45) 

Os parâmetros 𝑋௨̇, 𝑋௪̇, ..., 𝑁ఋೃ
 são relativos respectivamente às derivadas parciais 

డ௑

డ௨̇
, 

డ௑

డ௪̇
, ..., 

డே

డఋೃ
  e são denominados de coeficientes aerodinâmicos, os quais são função da 

aeronave em estudo e da sua condição de operação. Roskam (2001) apresenta em seu livro 

uma tabela contendo os coeficientes aerodinâmicos das principais aeronaves comerciais em 

diversas condições de operação. Ressalta-se que se as dinâmicas dos atuadores forem 
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importantes para uma maior exatidão do modelo resultante da aeronave, coeficientes 

aerodinâmicos como 𝑋ఋ೅̇
 e 𝑌ఋಲ̇

devem ser incluídos no processo de modelagem. 

Por fim, ao se levar em conta as relações matemáticas apresentadas nas Eqs. (2.38) 

e (2.39), e os efeitos dos atuadores sobre o sistema aeronáutico, Eq. (2.44), é possível obter 

um sistema de equações que descreve o comportamento dinâmico longitudinal de uma 

aeronave submetida a pequenas perturbações, Eqs. (2.46) e (2.47). 

቎

𝑚 − 𝑋௨̇ −𝑋௪̇ −𝑋௤̇

−𝑍௨̇ 𝑚 − 𝑍௪̇ −𝑍௤̇

−𝑀௨̇ −𝑀௪̇ 𝐼௬ − 𝑀௤̇

቏  ൥
𝑢̇
𝑤̇
𝑞̇

൩ + ቎

−𝑋௨ 𝑚𝑄଴ − 𝑋௪ 𝑚𝑊଴ − 𝑋௤

−𝑚𝑄଴ − 𝑍௨ −𝑍௪ −𝑚𝑈଴ − 𝑍௤

−𝑀௨ −𝑀௪ −𝑀௤

቏  ൥

𝑢
𝑤
𝑞

൩ +

൥
𝑚𝑔𝑐𝑜𝑠(𝛩଴)

𝑚𝑔𝑠𝑖𝑛(𝛩଴)cos (ɸ଴)
0

൩ 𝜃 = ቎

𝑋ఋ೅
𝑋ఋಶ

𝑋ఋಷ

𝑍ఋ೅
𝑍ఋಶ

𝑍ఋಷ

𝑀ఋ೅
𝑀ఋಶ

𝑀ఋಷ

቏ ൥

𝛿்

𝛿ா

𝛿ி

൩.                                                               (2.46) 

  

𝜃̇ = 𝑞.                                                                                                                                   (2.47) 

Analogamente, ao se levar em conta as relações matemáticas apresentadas nas Eqs. 

(2.41) e (2.42), e os efeitos dos atuadores sobre o sistema aeronáutico, Eq. (2.45), é possível 

obter um sistema de equações que descreve o comportamento dinâmico látero-direcional de 

uma aeronave submetida a pequenas perturbações, Eqs. (2.48) e (2.49). 

቎

𝑚 − 𝑌௩̇ −𝑌௣̇ −𝑌௥̇

−𝐿௩̇ 𝐼௫ − 𝐿௣̇ − 𝐼௫௭ − 𝐿௥̇

−𝑁௩̇ − 𝐼௫௭ − 𝑁௣̇ 𝐼௭ − 𝑁௥̇

቏  ൥
𝑣̇
𝑝̇
𝑟̇

൩ + ൦

−𝑌௩ −𝑚𝑊଴ − 𝑌௣ 𝑚𝑈଴ − 𝑌௥

−𝐿௩ − 𝐼௫௭𝑄଴ − 𝐿௣ ൫𝐼௭ − 𝐼௬൯𝑄଴ − 𝐿௥

−𝑁௩ ൫𝐼௬ −  𝐼௫൯𝑄଴ − 𝑁௣ 𝐼௫௭𝑄଴ − 𝑁௥

൪  ቈ
𝑣
𝑝
𝑟

቉ +

൥
−𝑚𝑔 cos(𝛩଴) cos(ɸ଴)

0
0

൩ 𝜙 = ቎

𝑌ఋಲ
𝑌ఋೃ

𝐿ఋಲ
𝐿ఋೃ

𝑁ఋಲ
𝑁ఋೃ

቏ ൤
𝛿஺

𝛿ோ
൨.                                                                      (2.48) 

  

ቈ
𝜙̇

𝜓̇
቉ = ൤

1 tan (𝛩଴)
0 1/𝑐𝑜𝑠(𝛩଴)

൨ ቂ
𝑝
𝑟ቃ.                                                                                                    (2.49) 

Após a apresentação da modelagem dinâmica linear de uma aeronave de asa fixa, no 

próximo capítulo será exibido o estado da arte no que tange à modelagem e sobretudo ao 

controle de aeronaves, simuladores, e operações críticas de voo. 
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CAPÍTULO III 

 

 

 

REVISÃO DE LITERATURA 

 

 

A revisão de literatura deste trabalho consiste em apresentar o estado da arte no que 

se refere ao estudo de temáticas relacionadas ao controle de aeronaves, sobretudo quanto à 

utilização de técnicas de inteligência computacional para tal. Este capítulo é dividido em perda 

de controle da aeronave durante o voo, simuladores de voo e inteligência computacional 

aplicada a sistemas aeronáuticos. 

 

3.1. Perda de Controle da Aeronave Durante o Voo 

 

A perda de controle da aeronave durante o voo, também conhecida como LOC-I (Loss 

of Control In-flight) agrega um conjunto de acidentes em que a tripulação não consegue 

manter o controle da aeronave em voo, resultando em um desvio de rota irrecuperável (IATA, 

2015). É um tema de grande relevância no setor aeronáutico devido ao fato de ser causa de 

boa parte dos acidentes aéreos fatais, e dessa forma é tema de estudo das comunidades 

técnicas e científicas do setor aeronáutico. 

 A Tab. 3.1 exibe trabalhos que exploram a temática, e em seguida são discutidos os 

principais desenvolvimentos, informações e as conclusões relevantes para o desenvolvimento 

desta tese. 
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Tabela 3.1: Trabalhos que Exploram a Perda de Controle da Aeronave Durante o Voo. 

Trabalho Assunto 

IATA (2020) Estatísticas – Acidentes aéreos de 2015 a 2019 

Oliveira (2018) Requisitos para o treinamento full-stall 

Frink et al. (2017) Modelagem de LOC-I com ênfase no fenômeno de 

stall 

IATA (2015) Estatísticas – Acidentes aéreos de 2010 a 2014 

Cox, Cunninghan e 

Jordan (2012) 

Controle de aeronaves em escala reduzida – 

LOC-I 

Murch, Cox e 

Cunninghan (2009) 

Controle de Aeronaves: considerações de 

software 

Jordan e Bailey (2008) Bancada e metodologia da NASA para o controle 

de Veículos Aéreos Não Tripulados (VANTs) 

submetidos a LOC-I 

Jordan et al. (2006) Apresentação da bancada da NASA de estudo de 

VANTs submetidos a LOC-I 

Wu, Zhang e Zhou (2000) Filtro de Kalman: Efetividade do sistema de 

controle de uma aeronave 

 

IATA (2020) desenvolve um relatório a respeito dos acidentes aéreos ocorridos de 

2015 a 2019 em aeronaves comerciais com massa de decolagem máxima superior a 5700 

kg. Neste relatório é indicado que, embora apenas 8% dos acidentes aéreos têm como causa 

a LOC-I, Fig. 3.1, aproximadamente 70% das fatalidades (780 mortes) foram causadas por 

acidentes classificados dentro desta categoria. As categorias de acidentes são apresentadas 

na Tab. 3.2. 
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Tabela 3.2: Categorias de Acidentes e as Descrições de Suas Terminologias Padrão. 

Categoria de Acidente Descrição/Tradução  

Runway/Taxiway Excursion Saída inadequada da aeronave da pista de pouso 

In-flight Damage Danos durante o voo 

Hard Landing Aterrissagem forçada 

 

Gear-up Landing/ Gear Collapse Pouso sem o trem de pouso totalmente estendido 

Ground Damage Incidentes em que o pessoal da companhia aérea 

causa danos a uma aeronave no solo 

Loss of Control In-flight Perda de controle da aeronave durante o voo 

Tailstrike Colisão da extremidade traseira de uma aeronave 

na pista 

Undershoot Pouso antes ou na frente do alvo pretendido 

Other Outras causas de acidentes 

Collision Colisão 

Controlled Flight into Terrain Deficiência nos sistemas de medição da aeronave 
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Figura 3.1: Percentual de acidentes aéreos em função das categorias de acidentes 
apresentadas com a nomenclatura padrão (IATA, 2020). 

 

A Tab. 3.3 sintetiza as 3 principais categorias de acidentes aéreos no que diz respeito 

à letalidade, sendo Controlled Flight into Terrain (CFIT) os acidentes em que a aeronave 

preserva toda sua controlabilidade, mas que por motivos diversos os sistemas de medição e 

a tripulação não são capazes de detectar uma divergência de rota, e Runway/Taxiway 

Excursion, categoria mais recorrente de acidente aéreo, é a falha de sistema ou colisão da 

aeronave em solo. 

 

Tabela 3.3: Principais Categorias de Acidentes Aéreos Quanto à Letalidade (IATA, 2020). 

Categoria de 

Acidente 

Número de 

Acidentes 

Acidentes 

Fatais 

Fatalidades Fatalidades 

(%) 

Loss of Control In-

Flight (LOC-I) 

22 19 780 70% 

Controlled Flight 

into Terrain (CFIT) 

4 3 124 11% 

Runway/Taxiway 

Excursion 

74 4 55 5% 

Total 292 37 1116 100% 
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IATA (2020) faz uma série de levantamentos de dados na tentativa de determinar a 

origem e os principais motivos que levam à LOC-I. Na Fig. 3.2 é apresentado um gráfico que 

indica a fase do voo em que as tripulações que sofreram o acidente relatam ter iniciado a 

perda de controle da aeronave. As especificações das siglas referentes às fases de voo 

apresentadas na Fig. 3.2 estão descritas na Tab. 3.4. 

 

Tabela 3.4: Fases de Voo. 

Fase Especificação 

TOF Decolagem (Take-off) 

ICL Subida inicial (Initial Climb) 

ECL Em rota de subida (En Route Climb) 

CRZ Cruzeiro (Cruise) 

DST Descida (Descent) 

APR Aproximação (Approach) 

GOA Arremetida (Go-around) 

LND Aterrisagem (Landing) 

 

 

Figura 3.2: Fase do voo em que houve a ocorrência de LOC-I (IATA, 2020). 

 

Ao se considerar a Fig. 3.2 e também o tempo de duração de cada uma das fases, 

verifica-se que é em regime transiente que mais ocorre este fenômeno, como por exemplo na 

decolagem e na subida inicial. 



40 
 

Os fatores mais recorrentes quando há a perda de controle da aeronave durante o voo 

são elencados na Tab. 3.5. Vale ressaltar que mais de um fator costuma ocorrer 

simultaneamente. 

Tabela 3.5: Fatores Recorrentes em Acidentes Devido à LOC-I (IATA, 2020). 

Classificação Fator Ocorrência (%) 

Deficiências Operações de voo (falhas humanas) 55 

Gerenciamento de segurança 50 

Sistemas de treinamento 40 

Procedimentos operacionais padrão (POPs) e 
verificação 

40 

Supervisão regulatória 40 

Erros da 
tripulação 

Operação manual / Controles de voo 50 

Aderência dos procedimentos aos POPs 50 

Comunicação entre pilotos 35 

Falha de checklist 25 

Falhas gerais de comunicação  20 

Ameaças 
ambientais 

Condições meteorológicas severas 45 

Pouca visibilidade/ condições meteorológicas de voo 
por instrumentos 

20 

Rajadas de vento 15 

Condições de congelamento 15 

Tempestade de raios 5 

Estados 
indesejados 
da aeronave 

Operação fora das limitações da aeronave  40 

Velocidade vertical/lateral fora do limite operacional da 
aeronave 

35 

Abrupto controle da aeronave 30 

Controle de voo / Automação  20 

Penetração desnecessária em condições 
meteorológicas adversas 

15 
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Ameaças 
durante o 

voo 

Mau funcionamento da aeronave 35 

Mau funcionamento / falha do sistema propulsor 20 

Fadiga 15 

Pressão operacional 15 

Fatores não-
mensuráveis 

Performance da tripulação 50 

Monitoramento / Verificação 50 

Liderança 40 

Liderança que deve ser demonstrada pelo capitão 40 

Gerenciamento de eventualidades 30 

 

Ao se analisar cada um desses fatores seguidos por suas taxas de ocorrência, 

merecem atenção: condições meteorológicas severas (45%), operação fora das limitações da 

aeronave (40%), velocidade vertical/lateral fora do limite operacional (35%), mau 

funcionamento da aeronave (35%) e mau funcionamento/falha do sistema propulsor (20%). 

Esses fatores são alvos de estudo pelas comunidades técnicas e científicas, e também são 

objetos de estudo desta tese no que diz respeito ao desenvolvimento de sistemas de controle 

que possam minimizar os efeitos dos mesmos sobre a controlabilidade de um sistema 

aeronáutico.  

Cox, Cunninghan e Jordan (2012), trabalho realizado pela NASA, lança mão de 

aeronaves em escala reduzida para a validação de modelos dinâmicos, controle e tecnologias 

voltadas a condições de voo de alto risco e LOC-I. A agência espacial desenvolveu uma 

plataforma de testes, denominada AirSTAR, Fig. 3.3, que de 2009 a 2011 viabilizou a 

realização de 58 voos de teste. 

 

Figura 3.3: Bancada de testes AirSTAR (COX, CUNNINGHAN e JORDAN, 2012). 
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Os objetivos principais de Cox, Cunninghan e Jordan (2012) são a identificação e 

modelagem aerodinâmica da aeronave, e a realização de testes de algoritmos adaptativos no 

intuito de verificar a robustez dos mesmos em condições críticas de voo. Os autores indicam 

como limitações da pesquisa a necessidade de alcance visual da aeronave, visto que não se 

dispunha de pilotagem automática, e também a necessidade de construção de um protótipo 

maior e com cauda em T, configuração crítica em voos com condições meteorológicas 

adversas. 

Frink et al. (2017) trabalham a temática da LOC-I, porém com ênfase em um fenômeno 

denominado stall, a perda abrupta da força de sustentação de partes ou de toda a aeronave 

durante o voo. É um tema de bastante relevância devido ao potencial de causar acidentes 

graves, visto que o piloto perde completamente o controle do sistema, e além de ser um 

fenômeno de difícil reprodução, devido à alta complexidade matemática e da dificuldade de 

se reproduzir experimentos com razoável grau de segurança. 

O trabalho de Frink et al. (2017) compara o resultado de modelos representativos, 

criados a partir de dados aerodinâmicos computacionais e de túnel de vento; com modelos 

específicos, produzidos a partir de dados de stall em voo. O estudo conclui a semelhança 

matemática entre os modelos representativos e específicos, o que sugere que análises 

numéricas e ensaios com túnel de vento podem servir efetivamente como ferramentas de 

estudo para o fenômeno de stall. 

Através do túnel de vento e do protótipo ilustrados na Fig. 3.4, o trabalho levanta a 

curva do coeficiente de sustentação da aeronave em função do ângulo de incidência do vento 

com relação à superfície da aeronave, denominado ângulo de ataque 𝛼, sendo este variado 

de 0௢ até 90௢. Além disso simulam-se diferentes intensidades e ângulos de rajadas de vento 

laterais, e também o efeito de falhas na estrutura aeronáutica no coeficiente de sustentação 

da mesma. Todas as informações subsidiam uma maior compreensão e a previsão da 

ocorrência do stall no protótipo ensaiado. 

 

Figura 3.4: Túnel de vento e protótipo utilizados em Frink et al. (2017). 
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Oliveira (2018) aponta em seu trabalho o protocolo internacional (FAA-H-8083- 3B, 

2016) que dispõe sobre os procedimentos de recuperação de stall, resumidamente e em 

ordem cronológica expostos a seguir: 

 Desabilitar o auto-pilot e o auto-throttle; 

 Aplicar tanta ação de profundor quanto o necessário para abaixar o nariz da 

aeronave; 

 Ajustar o ângulo de rolagem; 

 Ajustar throttle da aeronave assim que o ângulo de ataque estiver dentro dos limites 

operacionais; 

 Recolher speed brakes; 

 Após retomado o controle da aeronave, retornar ao percurso desejado. 

Diante do protocolo e da tentativa mundial de se reduzir o número de acidentes devido 

à LOC-I, Oliveira (2018) propõe uma investigação, com 20 pilotos de teste da empresa 

EMBRAER, a respeito da periculosidade na realização de testes de voo que envolvam a 

indução do fenômeno de stall, e a efetividade do treinamento de recuperação de stall em 

simuladores de voo. A grande maioria dos pilotos considera que o risco que envolve um ensaio 

de voo é inaceitável, envolvendo a potencial perda da tripulação e do protótipo; além disso, 

embora uma discreta maioria dos pilotos considera que ensaios virtuais de stall seriam uma 

opção válida de treinamento, boa parte dos entrevistados não acredita na eficácia da 

proposição, alegando principalmente divergências entre a simulação e a vida real. 

Apesar das desconfianças com relação à eficácia de simuladores de voo, estes são 

cada vez mais utilizados no projeto de aeronaves e no treinamento de pilotos, dessa forma, 

este assunto é abordado a seguir. 

 

3.2. Simuladores de Voo 

 

A Tab. 3.6 exibe trabalhos que exploram a temática, e em seguida são discutidos os 

principais desenvolvimentos, informações e as conclusões relevantes para o desenvolvimento 

desta tese. 
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Tabela 3.6: Trabalhos que Exploram a Utilização de Simuladores de Voo. 

Trabalho Assunto 

Zabidin, Pairan e 
Shamsudin (2020) 

Estudo do desempenho de uma arquitetura de controle de 
VANT baseada em PIDs em cascata, a partir de uma 
simulação do tipo software-in-the-loop realizada entre o 
LabView e o X-Plane. 

Bittar et al. (2014) X-Plane, software-in-the-loop e navegação de VANT. 

Bittar, Oliveira e 
Figuereido (2014) 

X-Plane, hardware-in-the-loop e controle de VANT em 
operações críticas de voo. 

Bittar e Oliveira (2013) X-Plane e controle de VANT. 

Garcia e Barnes (2010) X-Plane e simulação da operação de múltiplos helicópteros. 

Ribeiro e Oliveira (2010) X-Plane e software-in-the-loop. 

Craighead et al. (2007) Apresentação dos simuladores comerciais e open source 

Adiprawita, Ahmad e 
Sembiring (2008) 

Teste de voo automático e identificação dinâmica de 
sistemas para helicópteros não tripulados a partir do método 
da resposta em frequência. 

 

Em Bittar et al. (2014), pesquisa realizada no Instituto Tecnológico de Aeronáutica 

(ITA), utiliza-se o software X-Plane para o estudo do controle e da navegação de VANT. O 

trabalho indica que o X-Plane é um simulador de voo certificado pela agência de aviação 

americana – FAA (Federal Aviation Administration) para o treinamento de pilotos e que 

controladores testados neste software foram bem-sucedidos em aeronaves reais. 

O X-Plane utiliza como ferramenta matemática a teoria de elementos de pá (Bittar et 

al., 2014), que se baseia na divisão da aeronave em pequenos elementos, nos quais são 

calculados os esforços envolvidos, e por último a soma dos efeitos de cada um destes 

elementos no sistema aeronáutico. Neste simulador aeronáutico é possível trabalhar tanto 

com aeronaves comerciais, quanto com VANTs, Fig. 3.5, que podem ser modelados 

geometricamente e exportados ao X-Plane a partir do software Plane-Maker. 
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Figura 3.5: O X-Plane permite simular a operação de aeronaves comerciais e de 
aeromodelos (adaptada de BITTAR et al., 2014). 

 

Bittar et al. (2014) desenvolvem uma interface de comunicação entre o Simulink e o X-

Plane, em que 𝑃1, 𝑃2, 𝑃3 e 𝑃4 são as portas de comunicação, Fig. 3.6. Esta interface permite 

a utilização do simulador de voo como a planta do sistema a ser controlado, e o MATLAB 

como plataforma de desenvolvimento do controlador aeronáutico, assim, viabilizando a 

realização do software-in-the-loop. 

 

 

Figura 3.6: Interface de comunicação entre o Simulink e o X-Plane (BITTAR et al., 2014). 

 

A partir das Eqs. (3.1) e (3.2), é possível controlar o ângulo de guinada da aeronave e 

consequentemente gerenciar sua navegação, Fig. 3.7, sendo 𝐷௚௥௔௨௦ a distância da aeronave 

em graus com relação ao ponto de destino, 𝛾 o ângulo formado entre a aeronave e o ponto 

de destino, medido em sentido horário a partir de um vetor com sentido norte, 𝐿𝑎𝑡௪௣ e 𝐿𝑜𝑛௪௣ 

são as coordenadas geográficas do ponto de destino, e 𝐿𝑎𝑡௏஺ே் e 𝐿𝑜𝑛௏஺ே் são as 

coordenadas geográficas da aeronave (Bittar et al., 2014). 

𝐷௚௥௔௨௦ = ට൫𝐿𝑜𝑛௪௣ − 𝐿𝑜𝑛௏஺ே்൯
ଶ

+  ൫𝐿𝑎𝑡௪௣ − 𝐿𝑎𝑡௏஺ே்൯
ଶ
                                                     (3.1) 

𝛾 = tanିଵ ൤
௅௢௡

ೢ೛

ି௅௢௡

ೇಲಿ೅

௅௔

ೢ೛

ି௅௔௧

ೇಲಿ೅

൨                                                                                                    (3.2) 
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Figura 3.7: Navegação da aeronave (BITTAR et al., 2014). 

 

Em Bittar e Oliveira (2013), utiliza-se a interface de comunicação apresentada na Fig. 

3.6, mas alterada de modo a viabilizar a execução de um hardware-in-the-loop, no qual em 

um computador é executado o X-Plane, e em outro opera o sistema de controle da aeronave 

simulada. Este procedimento separa fisicamente a planta e o sistema de controle, e assim 

aproxima mais a simulação de uma situação real. 

Bittar, Oliveira e Figuereido (2014) compilam todos os desenvolvimentos anteriormente 

expressos e apresentam como fator de inovação a utilização de controlador Proporcional 

Integral Derivativo (PID) em cascata no controle de uma aeronave submetida a condições 

críticas de voo. As condições de voo são simuladas no software X-Plane, Fig. 3.8, em que é 

possível selecionar o tempo (ensolarado, chuvoso, tempestuoso), a visibilidade do voo, a 

velocidade do vento, a velocidade e ângulo de cisalhamento do vento, o nível de turbulência, 

a falha de componentes da aeronave, dentre outras configurações. 

 

 

Figura 3.8: Seletor de algumas das configurações de voo do software X-Plane (BITTAR, 
OLIVEIRA e FIGUEREIDO, 2014). 
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Finalizando a exposição de trabalhos que exploram a utilização de simuladores de voo, 

Zabidin, Pairan e Shamsudin (2020) propõem a modelagem e controle de um VANT de asa 

rotativa a partir da utilização dos softwares LabVIEW e X-Plane 9. Neste software é realizada 

toda a modelagem geométrica e matemática do VANT, Fig. 3.9, enquanto que naquele é 

implementado o controlador proporcional integral derivativo (PID) em cascata a ser validado 

a partir da realização do software-in-the-loop (SITL). A partir dos gráficos apresentados na 

Fig. 3.10, extraídos do X-Plane 9 durante o SITL, evidencia-se a capacidade do controlador 

PID em cascata de controlar satisfatoriamente os ângulos de arfagem 𝜃 e rolagem 𝜙 do VANT. 

 

 

Figura 3.9: Modelagem geométrica e dinâmica realizada no X-Plane 9 (ZABIDIN, PAIRAN e 
SHAMSUDIN, 2020). 

 

 

Figura 3.10: Desempenho do controlador PID em cascata no SITL, sendo o valor de 
referência em amarelo, e a saída do sistema em preto (ZABIDIN, PAIRAN e SHAMSUDIN, 

2020). 

 

Após a explanação de pesquisas que exploram a temática de simuladores de voo, em 

sequência são apresentados trabalhos que exploram a temática da inteligência 

computacional, sobretudo aplicada a sistemas aeronáuticos. 
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3.3. Inteligência Computacional Aplicada a Sistemas Aeronáuticos 

 

A inteligência computacional é um conjunto de técnicas que se baseia na observação 

de como os seres vivos, e em especial os seres humanos, comportam-se solucionando 

diferentes problemas. É um conjunto de técnicas que, devido à alta capacidade de adaptação 

e versatilidade, além da viabilidade tecnológica proporcionada pela nova geração de 

computadores e plataformas de desenvolvimento, são aplicadas em diferentes áreas do 

conhecimento e em uma diversidade de aplicações. 

Dentre as áreas do conhecimento em que a inteligência computacional ganha espaço, 

merece destaque o controle de sistemas. O conjunto de técnicas da inteligência 

computacional, utilizado para garantir que um sistema opere dentro das especificações pré-

determinadas, é denominado controle inteligente. A Tab. 3.7 exibe trabalhos que exploram a 

temática em diversas aplicações. 

 

Tabela 3.7: Inteligência Computacional Aplicada ao Controle de Sistemas. 

Trabalho Assunto 

Li, Wang, Wu, Lam e 
Gao (2018) 

Controlador sliding-mode: Aplicação no controle de um sistema 
com tempo de atraso e incertezas, modelado a partir de um 
sistema fuzzy do tipo 2. 

Zhao, Wang, Zhang, 
Liu e Yang (2018) 

Rede neural artificial: Controle de vibração de corda com zona 
morta do atuador. 

Xu e Sun (2018) ANFIS: Controle de sistemas realimentados na presença de 
distúrbios. 

Zhou, Wu e Shi 
(2017) 

ANFIS: Controle de sistemas com tempo de atraso e saturação 
do atuador. 

Zhou, Li, Wu, Wang 
e Ahn (2017) 

ANFIS: Controle de sistemas com dinâmica não-modelada e 
saturação do atuador. 

Wang, Sun e Liu 
(2017) 

Rede neural artificial: Controle de sistemas com tempo de 
atraso e incerteza no modelo dinâmico. 

Cui, Yang, Li e 
Sharma (2017) 

Rede neural artificial: Controle de submarino. 

Chen, Zhang e Liu 
(2016) 

Controlador fuzzy: Piloto automático veicular. 
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Há também na literatura trabalhos que lançam mão da inteligência computacional 

especificamente para a modelagem e controle de aeronaves. A Tab. 3.8 exibe trabalhos que 

exploram a temática, e em seguida são discutidos os principais desenvolvimentos, 

informações e as conclusões relevantes para o desenvolvimento desta tese. 

 

Tabela 3.8: Inteligência Computacional Aplicada à Modelagem e Controle de Aeronaves. 

Trabalho Assunto 

Ulus e Eski (2021) Análise comparativa do desempenho de diferentes arquiteturas de 

controle fuzzy híbridas aplicadas, em simulação, ao controle de 

atitude de um VANT 

Cui e Zhang 

(2021) 

Simulação do tipo hardware-in-the-loop na análise do desempenho 

de um controlador fuzzy aplicado a um veículo aéreo não tripulado 

comandado a partir de um motor turbojet 

Li (2020) Controlador PID-fuzzy aplicado ao controle de um veículo aéreo não 

tripulado 

Raboaca, 

Dumitrescu e 

Manta (2020) 

Controle de trajetória de aeronaves através de equipamento de radar 

a partir da utilização de um algoritmo baseado em lógica fuzzy  

Radhakrishnan e 

Swarup (2020) 

Comparação entre a performance de um controlador PID-fuzzy com 

demais técnicas de controle aplicadas ao ângulo de arfagem (𝜃) de 

uma aeronave 

Scott e González 

(2020) 

Desenvolvimento de um controlador fuzzy aplicado a aeronave sem 

a utilização de um modelo dinâmico do sistema 

Wang et al. (2020) Controle preditivo da relação ar/combustível nos motores de veículos 

aéreos não tripulados a partir de um sistema neuro-fuzzy 

Hu, Xu e Hu 

(2018) 

Desenvolvimento de um controlador fuzzy adaptativo para um veículo 

aéreo hipersônico 

Chen, Shi e Lim 

(2016) 

Rede neural artificial: Controle de helicóptero submetido a falha nos 

atuadores e incerteza do processo. 
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Jha, Gaur e 

Yadav (2016) 

Controle de aeronaves: Diferentes técnicas de inteligência 

computacional. 

Xu, Zhang e Pan 

(2016)  

Rede neural artificial: Controle de aeronave hipersônica. 

Brandon e Morelli 

(2012) 

ANFIS: Modelagem aerodinâmica de aeronave militar. 

Thums, Torres e 

Palhares (2012) 

PID em cascata otimizado via algoritmo genético: Controle 

longitudinal de aeronave. 

Kurnaz, Cetin e 

Kaynak (2010) 

ANFIS: Aplicação em simulador de voo. 

Liu, Naadimuthu 

e Lee (2008) 

ANFIS: Controle de pouso. 

Chen e Cheng 

(1998) 

H-infinito e algoritmo genético: Controle longitudinal de aeronave. 

Kwong et al. 

(1995) 

ANFIS: Controle de aeronave submetida a falha de componentes. 

 

Kurnaz, Cetin e Kaynak (2010) utilizam o ANFIS, otimizado através do método da 

máxima descida, para o controle látero-direcional (controle do ângulo de rolagem) e 

longitudinal (controle de altitude e velocidade) de um VANT denominado aerosonda. Este 

trabalho lança mão do simulador de voo open source Flight Gear, Fig. 3.11, e do software 

MATLAB respectivamente para a modelagem e controle da aeronave. 

 

 

Figura 3.11: Flight Gear simulando a operação da aeronave aerosonda (KURNAZ, CETIN e 
KAYNAK, 2010). 
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Thums, Torres e Palhares (2012) propõem um controlador longitudinal de VANTs com 

a mesma arquitetura de controle do sistema comercial Micropilot, Fig. 3.12. O fator de 

inovação está na metodologia de sintonização do sistema de controle: incialmente, aplica-se 

um algoritmo genético na obtenção dos parâmetros da malha interna, delimitada pelas linhas 

pontilhadas; em seguida, o mesmo método de otimização é usado na sintonização dos 

parâmetros do PID externo e do multiplicador 𝐾ி. Esta metodologia mostra-se capaz de 

satisfatoriamente controlar a altitude ℎ, o ângulo de guinada 𝜃 e a velocidade 𝑉் de um veículo 

aéreo não tripulado a partir da atuação do profundor 𝑢௘௟௘௩ e do motor 𝑢௧௛௥. 

 

 

Figura 3.12: Arquitetura de controle desenvolvida pela empresa Micropilot (THUMS, 
TORRES e PALHARES, 2012). 

 

Brandon e Morelli (2012) desenvolvem uma técnica de modelagem ANFIS da dinâmica 

de um supersônico. Uma aeronave desta categoria é posta em operação, enquanto são 

extraídos dados experimentais em voo, os quais são submetidos a um processo de ajuste a 

partir de um método de otimização. Este processo de busca da solução passa pela otimização 

da base de regras, da quantidade e dos parâmetros das funções de pertinência. Os resultados 

do trabalho indicam a capacidade do ANFIS no ajuste aos dados experimentais da aeronave, 

tendo obtido taxas de ajuste aos dados superiores a 95%. 

Jha, Gaur e Yadav (2016) propõem a aplicação de diferentes técnicas para o controle 

do ângulo de arfagem de uma aeronave, a saber, controle PID convencional, controle auto-

organizador Proporcional Integral (PI) mais Proporcional Derivativo (PD), e controle fuzzy PD 

mais controle fuzzy PI. Os resultados indicam que o primeiro apresenta melhor solução de 

compromisso entre tempo de resposta, oscilação e tempo de acomodação; o segundo 

apresenta o melhor tempo de resposta, porém alto nível de oscilação; e o terceiro apresenta 

oscilação próxima de zero, porém elevado tempo de resposta. 
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Xu, Zhang e Pan (2016) aplicam ao controle longitudinal de um veículo aéreo 

hipersônico uma rede neural artificial, denominada RNA com funções de ativação de base 

radial, que se diferencia das redes neurais clássicas com múltiplas camadas pela presença 

de apenas uma camada oculta de neurônios, e a utilização de gaussianas como as funções 

de ativação (HAYKIN, 2008). Este tipo de RNA possui a vantagem de apresentar uma 

estrutura matemática mais simples, o que facilita o processo de otimização do controlador, e 

viabiliza a análise de estabilidade analiticamente através de manipulações matemáticas da 

função de Lyapunov adotada para o problema. Xu, Zhang e Pan (2016) provam a estabilidade 

do sistema, e apresentam em simulação que o veículo aéreo hipersônico controlado através 

da RNA consegue seguir os valores de referência pré-estipulados. 

Chen, Shi e Lim (2016) realizam o controle da bancada apresentada na Fig. 3.13, 

sendo o sistema sujeito a incertezas, a distúrbios variantes no tempo, e a falhas nos 

atuadores. O trabalho lança mão da RNA com funções de ativação de base radial, e dessa 

forma também é provada analiticamente a estabilidade do sistema controlado. A bancada 

controlada através da RNA consegue satisfatoriamente seguir os valores de referência dos 

ângulos de arfagem e guinada, indicando novamente a capacidade da inteligência 

computacional em ser utilizada na resolução de problemas de controle. 

 

 

Figura 3.13: Bancada utilizada para o estudo de sistemas aeronáuticos de asa rotativa 
(CHEN, SHI e LIM, 2016). 

 

Hu, Xu e Hu (2018) propõem a teoria dos conjuntos fuzzy no controle de um veículo 

aéreo hipersônico durante a fase de cruzeiro do voo. Utiliza-se para tal o método de inferência 

fuzzy de Takagi-Sugeno no desenvolvimento da arquitetura de controle, que associado a uma 

manipulação matemática que parte da definição da função de Lyapunov, viabiliza a verificação 

da robustez e estabilidade do sistema. 
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No intuito de comparar o desempenho do controlador que lança mão da lógica fuzzy, 

desenvolve-se neste trabalho um sistema de controle ótimo, mas que despreza as incertezas 

e as não-linearidades intrínsecas à dinâmica do processo. Na Fig. 3.14 são apresentados os 

gráficos dos erros de altitude e de velocidade da aeronave ao se utilizar, em simulação, os 

controladores fuzzy (em preto) e ótimo (em azul). Verifica-se que o controlador fuzzy obteve 

os valores de erro mais próximos a zero. 

    

Figura 3.14: Performance dos controles (HU, XU e HU, 2018). 

 

A equipe da NASA, no centro de pesquisa de Langley, desenvolvem a aplicação da 

teoria dos conjuntos fuzzy no controle de aeronaves. Scott e González (2020) lançam mão de 

um controlador genérico que opera a partir do método de inferência fuzzy de Takagi-Sugeno, 

que consegue de forma satisfatória controlar uma aeronave enquanto são extraídos dados de 

voo da mesma. Esses dados são processados pelo método RTGM (Real Time Global 

Modeling), que obtém um modelo especifico para aeronave, o qual é utilizado na concepção 

de um controlador PD para o sistema. 

A bancada utilizada para os testes de desempenho do sistema de controle consiste 

em um túnel de vento de 12 pés, em que um protótipo de aeronave é fixado em um dispositivo 

que permite apenas a arfagem e a rolagem da mesma. 

Neste trabalho da NASA, compara-se inicialmente o desempenho dos SBRFs do tipo 

1 e do tipo 2, cujas funções de pertinência, MF, são apresentadas respectivamente nas Figs. 

3.15 e 3.16, no controle dos ângulos de arfagem e rolagem da aeronave, Fig. 3.17.  

  

Figura 3.15: Funções de pertinência dos SBRFs do tipo 1 (SCOTT e GONZÁLEZ, 2020). 
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Figura 3.16: Funções de pertinência dos SBRFs do tipo 2 (SCOTT e GONZÁLEZ, 2020). 
 

  

Figura 3.17: Desempenho dos SBRFs dos tipos 1, em azul, e 2, em vermelho, em relação 
ao sinal de referência, em preto, no controle dos ângulos de arfagem, à esquerda, e 

rolagem, à direita (SCOTT e GONZÁLEZ, 2020). 
 

Os resultados do trabalho indicam a proximidade de desempenho dos SBRFs dos tipos 

1 e 2, porém havendo ligeira superioridade deste último em se aproximar do sinal de 

referência. Na Fig. 3.18 é apresentado o desempenho dos controladores fuzzy, na faixa em 

azul, e PD, na porção final do gráfico. Verifica-se que o controlador fuzzy, embora 

notoriamente apresente desempenho inferior ao controlador PD, de fato obtém bons 

resultados, principalmente ao se considerar o fato de que o sistema de controle é genérico, 

ou seja, não há qualquer conhecimento das especificidades do sistema dinâmico nesta 

primeira fase do voo. 

  

Figura 3.18: Desempenho dos controladores fuzzy e PD, gráfico azul, em relação ao sinal de 
referência, em preto, no controle do ângulo de arfagem (SCOTT e GONZÁLEZ, 2020). 
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Radhakrishnan e Swarup (2020) utilizam um sistema de controle PID fuzzy, cuja 

arquitetura é apresentada na Fig. 3.19, para controlar o sistema de arfagem de uma aeronave, 

em que 𝑟(𝑡) é o sinal de referência, 𝑦(𝑡) é a resposta do sistema, 𝑒(𝑡) é o sinal de erro, 𝑢(𝑡) 

é o sinal de controle, e 𝐾௣, 𝐾௜ 𝑒 𝐾ௗ são os parâmetros do controlador PID, considerados neste 

trabalho como sendo parâmetros fuzzy. 

 

  

Figura 3.19: Arquitetura de controle PID fuzzy adotada em Radhakrishnan e Swarup (2020). 

 

O sistema de controle desenvolvido no trabalho é comparado com os controladores 

PID tradicional, LQR (Linear Quadratic Regulator), LQR otimizado com AG (Algoritmo 

Genético) e com um controlador desenvolvido a partir da alocação de pólos e zeros, e os 

resultados são apresentados na Fig. 3.20 e na Tab. 3.9. É possível verificar, sobretudo na 

análise gráfica, a superioridade do controlador PID fuzzy frente às demais técnicas, fato 

também evidenciado pelos baixos valores de tempo de subida e de acomodação. 

 

  

Figura 3.20: Resposta do sistema de arfagem da aeronave (RADHAKRISHNAN e SWARUP, 
2020). 
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Tabela 3.9: Características dos Controladores no Domínio do Tempo (RADHAKRISHNAN e 
SWARUP, 2020). 

Controladores Tempo de Subida (s) Tempo de Acomodação (s) 

PID 0,0757 0,1558 

PID fuzzy 0,1477 0,2536 

LQR 0,6963 1,2574 

LQR otimizado 
com AG 

0,2612 0,4245 

Alocação de 
pólos e zeros 

0,2497 1,1543 

 

Seguindo a mesma linha do trabalho anterior, Li (2020) propõe a utilização de um 

controlador PID fuzzy, mas neste caso no controle de um VANT de asa rotativa. A arquitetura 

de controle adotada é basicamente a mesma representada na Fig. 3.19, porém aplicada ao 

controle de altitude ℎ e dos ângulos de rolagem 𝜙, arfagem 𝜃 e guinada 𝜓 do veículo aéreo. 

Os parâmetros 𝐾௣, 𝐾௜ e 𝐾ௗ são considerados fuzzy, e na Fig. 3.21 são apresentadas as 

superfícies de resposta do SBRF deste controlador. A metodologia de controle adotada, cujos 

resultados são apresentados na Fig. 3.22, mostra-se eficaz no controle de atitude do veículo 

aéreo.  

 

  

Figura 3.21: Superfícies de resposta do SBRF do controlador PID fuzzy (LI, 2020). 

 



57 
 

  

Figura 3.22: Desempenho do controlador PID fuzzy (LI, 2020). 

 

Cui e Zhang (2021) apresentam a aplicação da teoria dos conjuntos fuzzy no controle 

de voo de um VANT submetido a velocidades próximas à velocidade do som, ou seja, número 

de mach 𝑀𝑎 próximo a 1. A arquitetura de controle do VANT é ilustrada na Fig. 3.23, em que 

Ref é o valor de referência da velocidade do VANT, que subtraído à resposta do sistema 

aeronáutico gera o sinal de erro e, o qual gera as duas entradas do sistema (as quais passam 

pelo processo de fuzzificação FUZ), sendo uma delas a derivada Der do erro; a saída U do 

sistema de controle é obtida pelo processo de defuzzificação Defuz; e por fim, os parâmetros 

𝛼௘, 𝛼௘௖ e 𝛼௨ são obtidos através de algum método de otimização que minimize o valor do sinal 

de erro e ao longo do processo de simulação. 

 

  

Figura 3.23: Arquitetura de controle fuzzy (CUI e ZHANG, 2021). 

 

O desempenho do sistema de controle com os valores dos parâmetros 𝛼௘, 𝛼௘௖ e 𝛼௨ 

arbitrados, e após o procedimento de otimização, é apresentado na Fig. 3.24, à esquerda. 

Verifica-se que em ambos os casos o sistema de controle é capaz de manter aeronave em 

voo em torno da velocidade de referência 𝑀𝑎 = 0,8, embora após a otimização haja menor 

oscilação da resposta em torno do valor de referência. 
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Após o processo de otimização, Cui e Zhang (2021) implementam também uma 

simulação do tipo hardware-in-the-loop, no intuito de validar a técnica por meio da migração 

do processamento do sistema de controle à unidade de comando real do VANT. O resultado 

obtido, apresentado na Fig. 3.24 à direita, ratifica a capacidade do controlador em garantir um 

voo próximo às condições requeridas. 

 

  

Figura 3.24: À esquerda, desempenho do controlador fuzzy não otimizado, em preto, e 
otimizado, em vermelho; à direita, resultado do hardware-in-the-loop, em preto, e do 

software-in-the-loop, em vermelho (CUI e ZHANG, 2021). 

 

Ulus e Eski (2021) propõem analisar e comparar, em simulação, o desempenho de 

uma série de arquiteturas de controle fuzzy aplicadas ao controle de atitude de um VANT de 

asa fixa. Inicialmente é definido o modelo dinâmico linearizado a ser adotado no trabalho, e 

em seguida são propostas as seguintes arquiteturas de controle, a saber: Controlador PID 

cujos parâmetros são obtidos a partir do método de Ziegler-Nichols (ZN), controlador 

puramente fuzzy (FLC) que lança mão do método Mamdani de inferência fuzzy, controlador 

puramente ANFIS, controlador ANFIS em paralelo com PID (ANFIS+PID), e controlador 

híbrido PD-Fuzzy-PI. No intuito de ilustrar um dos processos de hibridização expostos no 

trabalho, na Fig. 3.25 é apresentada a arquitetura de controle ANFIS+PID, sendo 𝜙(𝑡) o 

ângulo de rolagem, 𝜓(𝑡) o ângulo de guinada, 𝑝(𝑡) e 𝑟(𝑡) são respectivamente as velocidades 

angulares de rolagem e guinada, 𝑒 é o sinal de erro, e por fim 𝑢(𝑡) é a ação de controle a ser 

aplicada à aeronave. 
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Figura 3.25: Arquitetura de controle ANFIS+PID (ULUS e ESKI, 2021). 

 

A comparação do desempenho das estruturas mencionadas anteriormente é 

apresentada na Tab. 3.10 e na Fig. 3.26. É possível concluir que todas as arquiteturas 

conseguem satisfatoriamente controlar o VANT, sobretudo os controladores híbridos, a 

exemplo do ANFIS+PID e do PD+Fuzzy+PI, que mantêm em simulação os valores de 

sobressinal, tempo de acomodação e erro em regime permanente satisfatoriamente aceitáveis 

para a dinâmica lateral do VANT. 

 

Tabela 3.10: Características dos Controladores no Domínio do Tempo (ULUS e ESKI, 2021). 

 Ângulo de Rolagem Ângulo de Guinada 

Controladores Sobres-

sinal 

(%) 

Tempo de 

Acomodação 

(s) 

Erro em 

Regime 

(%) 

Sobres-

sinal (s) 

Tempo de 

Acomodação 

(s) 

Erro em 

Regime 

(%) 

PID (ZN) 51,3 0,88 0,01 15,6 0,15 1,1 

ANFIS 14,8 0,73 2,65 18,1 0,09 0 

ANFIS+PID 33,4 0,74 0,12 12,4 0,07 0 

FLC 22,4 0,54 0,90 2,8 0,10 0,6 

PD+Fuzzy+PI 1,7 0,10 0,01 1,9 0,11 2,0 
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Figura 3.26: Desempenho das arquiteturas de controle com relação aos ângulos de rolagem, 
à esquerda, e guinada, à direita (ULUS e ESKI, 2021). 

 

Esta tese, de forma semelhante a Ulus e Eski (2021), lança mão de uma arquitetura 

de controle baseada na teoria dos conjuntos fuzzy, porém inova ao propor uma nova técnica 

de inferência fuzzy para tal, que alia intuitividade, dispensa o uso de métodos de integração 

numérica, e que se presta não somente ao controle da dinâmica látero-direcional da aeronave, 

como em Ulus e Eski (2021), mas também ao controle da dinâmica longitudinal. Esta técnica 

é utilizada na programação computacional do sistema neuro-fuzzy desenvolvido neste 

trabalho, que é aplicada na arquitetura de controle da aeronave, cuja estabilidade é verificada 

numericamente. Além disso, realizam-se análises, em simulador de voo catalogado pela FAA, 

da capacidade do sistema de controle desenvolvido em controlar uma aeronave submetida a 

condições críticas de voo. 

Após a revisão de literatura, no Capítulo IV é apresentada a metodologia adotada para 

a execução das atividades previstas para esta tese.  
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CAPÍTULO IV 

 

 

 

METODOLOGIA 

 

 

A metodologia adotada para a execução do trabalho é dividida em etapas, que são 

apresentadas na Fig. 4.1, e a seguir estas etapas são esquematizadas no intuito de facilitar a 

compreensão do leitor quanto aos principais procedimentos adotados para o cumprimento 

dos objetivos desta tese. 
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Figura 4.1: Esquema das etapas que compõem a metodologia da tese (autoria própria). 
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1. Estudo de Caso 

 

Nesta etapa é definido o escopo das investigações científicas presentes neste 

trabalho, que busca aplicar o novo método PIA de inferência fuzzy no controle de aeronaves 

em operações críticas de voo. 

Sabe-se que LOC-I é causa da grande maioria das fatalidades ocorridas na aviação 

comercial (IATA, 2020). Esse fato motiva o estudo do controle de aeronaves em operações 

críticas, a exemplo de condições meteorológicas severas, rajadas de vento, mau 

funcionamento da aeronave e o mau funcionamento ou falha do sistema propulsor. 

Neste trabalho, para o desenvolvimento da arquitetura de controle, lança-se mão da 

inteligência artificial em função da viabilidade tecnológica para tal (existência no mercado de 

controladores de voo de alta capacidade de processamento), e sobretudo da versatilidade e 

adaptabilidade das técnicas existentes.  

Para a realização das simulações necessárias para validação das técnicas, utiliza-se 

o software MATLAB em paralelo com o simulador de voo X-Plane 11, que é certificado pela 

FAA para o treinamento de pilotos. Nestas simulações, utiliza-se o Cessna 172 como objeto 

de estudo em função da grande disponibilidade de dados na literatura desta aeronave. Já para 

verificar a eficácia da técnica com relação à utilização de modelos obtidos a partir de dados 

experimentais, realizam-se ensaios de voo com uma aeronave Cessna 172 em escala 

reduzida. 

O esquema apresentado na Fig. 4.2 é um resumo do estudo de caso utilizado neste 

trabalho. 
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Figura 4.2: Esquema do estudo de caso desta tese (autoria própria). 
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2. Método de Controle 

 

A partir da revisão bibliográfica apresentada no capítulo III, além de simulações 

previamente realizadas relativas a técnicas desenvolvidas por outros autores, é estabelecida 

uma arquitetura de controle neuro-fuzzy para aeronaves, técnica híbrida que alia a alta 

capacidade de adaptação das redes neurais, com a robustez e intuitividade da teoria dos 

conjuntos fuzzy. 

Ressalta-se que a arquitetura de controle concebida é capaz de controlar as dinâmicas 

longitudinal e látero-direcional de uma aeronave. O esquema apresentado na Fig. 4.3 é um 

resumo do método de controle utilizado neste trabalho. 

 

 

Figura 4.3: Esquema do método de controle (autoria própria). 

 

3. Método de Inferência Fuzzy 

 

A utilização dos métodos clássicos de inferência fuzzy mostra-se pouco eficiente no 

efetivo controle de um sistema aeronáutico. Dessa forma, no intuito de aliar a eficiência 

computacional do método de inferência fuzzy de Takagi-Sugeno, com a intuitividade do 

método de Mamdani, propõe-se o desenvolvimento de uma nova técnica de inferência fuzzy, 

denominada Pondered Individual Analysis (PIA). 

O método PIA é baseado na análise e tradução matemática de cada proposição fuzzy 

que compõe a base de regras, ponderando o efeito de cada variável de entrada na saída de 

um SBRF. A definição dos conjuntos fuzzy de entrada e saída, bem como a base de regras 
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de um SBRF, segue o mesmo procedimento adotado no método de Mamdani, entretanto, o 

método pode ser entendido como um caso particular do método de Takagi-Sugeno. Isso 

ocorre porque as funções consequentes também são determinadas para cada subconjunto 

fuzzy da saída e, a partir da média ponderada ou de outro método de defuzzificação que 

dispense técnicas de integração, fornecem a resposta de um SBRF. 

O esquema apresentado na Fig. 4.4 é um resumo do método PIA de inferência fuzzy. 

 

Figura 4.4: Esquema do método PIA de inferência fuzzy (autoria própria). 
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4. Controlador Neuro-Fuzzy 

 

O controlador neuro-fuzzy desenvolvido passa por simulações no software MATLAB a 

fim de, a partir do modelo dinâmico do comportamento da aeronave em voo, sintonizar os 

parâmetros do controlador por meio de treinamento off-line e verificar numericamente a 

estabilidade do sistema. 

O processo de sintonização do sistema de controle passa pela obtenção das médias 

e desvios padrão que definem as funções de pertinência das entradas e saídas dos SBRFs. 

O processo de otimização é conduzido por meio da simulação da operação da aeronave 

Cessna 172, em que são adotados valores de referência para as variáveis do processo, assim 

como condições iniciais e perturbações. O método de otimização utilizado é a evolução 

diferencial, aplicada à minimização do erro médio quadrático com relação aos valores de 

referência do sistema de controle. Consideram-se para essa simulação os modelos dinâmicos 

longitudinal e látero-direcional, linearizados através da teoria das pequenas perturbações, e o 

desempenho da técnica desenvolvida é comparado aos obtidos com os métodos PID e ANFIS 

(método de inferência fuzzy de Takagi-Sugeno). 

O esquema apresentado na Fig. 4.5 é um resumo da metodologia aplicada à 

sintonização do controlador neuro-fuzzy. 
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Figura 4.5: Esquema da sintonização do sistema de controle (autoria própria). 
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Após o processo de sintonização, principalmente por se tratar de um sistema 

aeronáutico, é fundamental que seja feita a análise da estabilidade do sistema controlado. 

Para a verificação de sua estabilidade assintótica no sentido de Lyapunov, realiza-se a análise 

da derivada da função de Lyapunov associada ao sistema, devendo o valor desta ser menor 

ou igual a zero para todo o domínio analisado.  

Ressalta-se que a verificação da estabilidade é realizada neste trabalho de forma 

numérica, assim como em outros trabalhos (KIM, KANG e PARK, 1999; KIM, 2001), em função 

do elevado nível de complexidade de se reproduzir a mesma análise, porém de forma 

analítica. A análise numérica da estabilidade é desenvolvida considerando-se o modelo 

linearizado da aeronave, assim, discretiza-se o domínio do sistema de equações que rege a 

dinâmica da planta e avalia-se o valor da derivada da função de Lyapunov para cada condição 

testada. 

O esquema apresentado na Fig. 4.6 é um resumo da metodologia aplicada à análise 

de estabilidade do controlador neuro-fuzzy. 

 

 

Figura 4.6: Esquema da análise de estabilidade do sistema de controle (autoria própria). 
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5. Software-in-Loop: Operações Críticas de Voo 

 

A viabilidade de utilização do simulador de voo X-Plane se dá a partir do 

desenvolvimento de uma interface de comunicação entre o software MATLAB e o simulador 

de voo. Tal interface viabiliza a realização de simulações do tipo software-in-the-loop entre as 

duas plataformas, o que permite executar análises da capacidade da metodologia proposta 

em controlar uma aeronave submetida a operações críticas de voo. 

A comunicação entre os softwares se dá em tempo real através do protocolo de 

comunicação UDP (User Datagram Protocol). No MATLAB, é realizada a implementação do 

controlador neuro-fuzzy e da interface de comunicação com o simulador de voo X-Plane 11, 

sendo que cada variável da aeronave no simulador de voo é recebida no MATLAB como 

sendo um pacote de dados pré-estruturados contendo 32 bytes, e a resposta do sistema de 

controle é calculada, transformada em um pacote de dados reconhecível pelo simulador e 

endereçada a este. No software X-Plane 11, realiza-se a simulação do comportamento 

dinâmico da aeronave. Os resultados obtidos são enviados em tempo real ao MATLAB através 

da especificação de IP e porta correspondentes. 

O esquema apresentado na Fig. 4.7 é um resumo da metodologia aplicada à 

comunicação entre os softwares MATLAB e X-Plane. 

 

 

Figura 4.7: Esquema da comunicação entre MATLAB e X-Plane (autoria própria). 
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Após concluída a comunicação entre os aplicativos, busca-se analisar o desempenho 

do controlador, sintonizado na etapa anterior, em operações críticas de voo, sendo a análise 

gráfica e o desvio em relação ao sinal de referência os métodos utilizados na avaliação do 

método de controle. As operações críticas analisadas são: condições meteorológicas severas 

e rajadas de vento, mau funcionamento da aeronave, falha do sistema propulsor, e todas as 

condições anteriores simultaneamente. 

O esquema apresentado na Fig. 4.8 é um resumo da metodologia utilizada na análise 

de desempenho do controlador em operações críticas de voo. 

 

 

 

Figura 4.8: Esquema da análise de desempenho do controlador em operações críticas de 

voo (autoria própria). 

 

6. Controle de Aeronave em Escala Reduzida 

 

Nesta etapa é construído um protótipo de aeronave em escala reduzida, Fig. 4.9, e 

são realizados ensaios de voo no intuito de se extrair dados a serem utilizados na modelagem 

do VANT. Aeronaves em escala reduzida possibilitam a validação das técnicas de controle de 

forma experimental, e com baixo custo financeiro se comparados os ensaios aos testes em 

aeronaves comerciais. Utiliza-se nos ensaios experimentais uma aeronave Cessna 172 em 

escala reduzida de 1:10, associada a um controlador de voo Pixhawk. 
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Figura 4.9: Esquema relativo à construção de aeronave em escala reduzida (autoria 

própria). 

 

Para a extração dos dados experimentais, Fig. 4.10, estabiliza-se a aeronave em voo 

e aplicam-se perturbações à mesma, tudo por meio do piloto do aeromodelo. Durante os 

ensaios, o próprio controlador de voo Pixhawk é capaz de armazenar os dados extraídos em 

voo para posterior análise. 

 

 

Figura 4.10: Esquema relativo à obtenção de dados de voo (autoria própria). 

 

Após a obtenção dos dados de voo, realiza-se a identificação do modelo dinâmico da 

aeronave, Fig. 4.11, levando-se em conta neste caso apenas a alteração do ângulo de 

arfagem da aeronave em função da atuação do profundor, buscando-se assim um modelo do 

tipo SISO (Single Input Single Output). A identificação é obtida a partir do ajuste do modelo 

aos dados experimentais extraídos da aeronave (minimização do erro médio quadrático deste 

ajuste) a partir do método da evolução diferencial. 



73 
 

 

Figura 4.11: Esquema que resume a identificação do modelo da aeronave (autoria própria). 

 

Por fim, chega-se novamente em um instante de validação do método PIA e da 

estratégia de controle adotada neste trabalho, Fig. 4.12. Utiliza-se, em uma simulação no 

MATLAB, um sistema neuro-fuzzy aliado ao método de inferência PIA no controle do 

aeromodelo. Apresenta-se, então, uma análise comparativa da técnica desenvolvida com os 

métodos PID e ANFIS.  

 

 

Figura 4.12: Esquema que ilustra a validação da estratégia de controle (autoria própria). 

 

Após a apresentação da metodologia, inicia-se a exposição do desenvolvimento deste 

trabalho, a começar pelo PIA, novo método de inferência fuzzy proposto nesta tese e utilizado 

na concepção da arquitetura de controle de aeronaves. 
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CAPÍTULO V 

 

 

PIA: UM NOVO MÉTODO DE INFERÊNCIA FUZZY 

 

 

A análise individual ponderada, PIA (Pondered Individual Analysis), é um método de 

inferência fuzzy que combina baixo custo computacional e capacidade de ser utilizado na 

otimização de sistemas, e na modelagem e controle de processos. A técnica é baseada na 

análise e tradução matemática de cada proposição fuzzy que compõe a base de regras, 

ponderando o efeito de cada variável de entrada na saída de um SBRF. 

A seguir, é apresentada uma breve descrição dos procedimentos para executar o 

método PIA. 

1. A definição dos conjuntos fuzzy de entrada e saída, bem como a base de regras 

de um SBRF, segue o mesmo procedimento adotado no método Mamdani. 

2. A união e a interseção de conjuntos fuzzy são realizadas respectivamente 

pelos operadores t-norma (por exemplo, operador máximo) e s-norma (por 

exemplo, operador mínimo). 

3. Embora, no método PIA, as funções de pertinência sejam definidas para cada 

conjunto fuzzy das variáveis de saída, o método pode ser entendido como um 

caso particular do método de Takagi-Sugeno. Isso ocorre porque as funções 

consequentes 𝑓஼ೕ
 também são determinadas para cada conjunto fuzzy 𝐶௝ da 

saída e, a partir da média ponderada ou de outro método de defuzzificação que 

não envolva integração numérica, fornecem a resposta de um SBRF. 

A seção 5.1 apresenta a formalização conceitual e matemática do método PIA. 
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5.1. Método PIA: Descrição, Conceitos e Definições 

 

As definições elaboradas neste trabalho e apresentadas a seguir estabelecem as 

funções consequentes e formalizam matematicamente o método PIA. 

Definição 1: O ponto em que uma função de pertinência de um número fuzzy possui 

valor unitário é chamado de ponto central CP, Fig. 5.1. No caso de funções de pertinência que 

possuam mais de um ponto nessa condição, CP é definido através aplicação da média 

aritmética a esses pontos. Pode-se notar que qualquer função de pertinência, por exemplo, 

triangular, trapezoidal ou gaussiana, mesmo assimétrica, pode ser usada na construção de 

um SBRF para o método PIA. 

 

 

Figura 5.1: Definição dos pontos centrais das funções de pertinência (autoria própria). 

 

Definição 2: Considerando dois conjuntos fuzzy 𝑆ଵ e 𝑆ଶ, respectivamente 

apresentando funções de pertinência com os pontos centrais 𝐶𝑃ଵ e 𝐶𝑃ଶ, e pertencentes ao 

mesmo conjunto universo 𝑈: 

 Se 𝐶𝑃ଵ < 𝐶𝑃ଶ, então 𝑆ଵ <௦ 𝑆ଶ; 

 Se 𝐶𝑃ଵ > 𝐶𝑃ଶ, então 𝑆ଵ >௦ 𝑆ଶ; 

 Se 𝐶𝑃ଵ = 𝐶𝑃ଶ, então 𝑆ଵ =௦ 𝑆ଶ; 

em que os símbolos <௦, >௦ e =௦ significam, respectivamente, semanticamente menor que, 

semanticamente maior que, e semanticamente igual a. 

A partir das definições descritas anteriormente, é possível elaborar novos conceitos 

para relacionar as variáveis de entrada e as variáveis de saída de um SBRF. 
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Definição 3: Para cada regra fuzzy ou proposição 𝑖 de um SBRF, é verificado o efeito 

do aumento ou diminuição de cada variável de entrada sob a variável de saída. Diz-se que a 

relação entre uma variável de entrada 𝐼𝑁, e uma variável de saída 𝑂𝑈𝑇 de um SBRF é: 

 Direta, representado por 𝐼𝑁 Dir 𝑂𝑈𝑇, quando o aumento e a diminuição da 

variável 𝐼𝑁 causam, respectivamente, o aumento e a diminuição da variável 

𝑂𝑈𝑇; 

 Inversa, representada por 𝐼𝑁 Inv 𝑂𝑈𝑇, quando o aumento e a diminuição da 

variável 𝐼𝑁 causam, respectivamente, a diminuição e o aumento da variável 

𝑂𝑈𝑇; 

 Neutra, representada por 𝐼𝑁 Neut 𝑂𝑈𝑇, quando não é possível inferir sobre a 

relação entre 𝐼𝑁 e 𝑂𝑈𝑇. 

Um exemplo de base de regras é construído e apresentado na Tab. 5.1, em que 𝑋 e 𝑌 

são as entradas do SBRF e 𝑍 é a saída. Os conjuntos fuzzy de entrada são 𝐴ଵ, 𝐴ଶ, 𝐴ଷ, 𝐵ଵ, 𝐵ଶ 

e 𝐵ଷ; e 𝐶ଵ, 𝐶ଶ e 𝐶ଷ são os conjuntos fuzzy de saída, sendo 𝐴ଵ <௦  𝐴ଶ  <௦  𝐴ଷ, 𝐵ଵ <௦  𝐵ଶ  <௦  𝐵ଷ 

e 𝐶ଵ  <௦  𝐶ଶ  <௦  𝐶ଷ. Na Tab. 5.2 é exposta a relação entre as variáveis de entrada e saída para 

cada regra 𝑅௜, 𝑖 = 1, 2, … ,9. 

Tabela 5.1: Exemplo 1 - Base de Regras. 

Regras Se         𝑿                E              𝒀 Então           𝒁 

𝑅ଵ               𝐴ଵ                               𝐵ଵ                     𝐶ଵ 

𝑅ଶ               𝐴ଶ                               𝐵ଵ                     𝐶ଶ 

𝑅ଷ               𝐴ଷ                               𝐵ଵ                     𝐶ଷ 

𝑅ସ               𝐴ଵ                               𝐵ଶ                     𝐶ଷ 

𝑅ହ               𝐴ଶ                               𝐵ଶ                     𝐶ଶ 

𝑅଺               𝐴ଷ                               𝐵ଶ                     𝐶ଵ 

𝑅଻               𝐴ଵ                               𝐵ଷ                     𝐶ଶ 

𝑅଼               𝐴ଶ                               𝐵ଷ                     𝐶ଶ 

𝑅ଽ               𝐴ଷ                               𝐵ଷ                     𝐶ଷ 
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Tabela 5.2: Exemplo 1 - Relação Entre as Variáveis. 

Regra Relação: 𝑿
 

→ 𝒁 Justificativa Relação: 𝒀
 

→ 𝒁 Justificativa 

𝑅ଵ 𝑋 Dir 𝑍 𝐶ଵ <ௌ 𝐶ଶ 𝑌 Dir 𝑍 𝐶ଵ <ௌ 𝐶ଷ 

𝑅ଶ 𝑋 Dir 𝑍 𝐶ଶ >ௌ 𝐶ଵ, 𝐶ଶ <ௌ 𝐶ଷ 𝑌 Neut 𝑍 𝐶ଶ =ௌ 𝐶ଶ 

𝑅ଷ 𝑋 Dir 𝑍 𝐶ଷ >ௌ 𝐶ଶ 𝑌 Inv 𝑍 𝐶ଷ >ௌ 𝐶ଵ 

𝑅ସ 𝑋 Inv 𝑍 𝐶ଷ >ௌ 𝐶ଶ 𝑌 Neut 𝑍 𝐶ଷ >ௌ 𝐶ଵ, 𝐶ଷ >ௌ 𝐶ଶ 

𝑅ହ 𝑋 Inv 𝑍 𝐶ଶ <ௌ 𝐶ଷ, 𝐶ଶ >ௌ 𝐶ଵ 𝑌 Neut 𝑍 𝐶ଶ =ௌ 𝐶ଶ 

𝑅଺ 𝑋 Inv 𝑍 𝐶ଵ <ௌ 𝐶ଶ 𝑌 Neut 𝑍 𝐶ଵ <ௌ 𝐶ଷ 

𝑅଻ 𝑋 Neut 𝑍 𝐶ଶ =ௌ 𝐶ଶ 𝑌 Inv 𝑍 𝐶ଶ <ௌ 𝐶ଷ 

𝑅଼ 𝑋 Neut 𝑍 𝐶ଶ =ௌ 𝐶ଶ, 𝐶ଶ <ௌ 𝐶ଷ 𝑌 Neut 𝑍 𝐶ଶ =ௌ 𝐶ଶ 

𝑅ଽ 𝑋 Dir 𝑍 𝐶ଷ >ௌ 𝐶ଶ 𝑌 Dir 𝑍 𝐶ଷ >ௌ 𝐶ଵ 

 

Ressalta-se que esta análise da relação entre as variáveis de entrada e saída pode 

ser, sem grandes dificuldades, programada por um profissional responsável pela construção 

de um eventual toolbox para o método. Em outras palavras, como as relações são unicamente 

dependentes da base de regras adotada, a construção das relações de um SBRF pode ser 

programada previamente, de uma forma tal que o usuário da técnica apenas se preocupe com 

a definição das variáveis de entrada e saída, funções de pertinência e base de regras, da 

mesma forma feita quando se lança mão do método de Mamdani.     

Definição 4: Para cada regra 𝑅௜, pode-se calcular uma contribuição para a saída de 

um SBRF a partir do procedimento descrito a seguir: 

1. Dada uma variável de entrada 𝐼𝑁 e seu valor 𝑖𝑛, o grau de pertinência de 𝑖𝑛 

em relação ao subconjunto de entrada mapeado pela regra 𝑅௜, 𝜇, é projetado 

para o subconjunto fuzzy de saída. Assume-se que 𝜇 defina dois candidatos 

𝑜𝑢𝑡௖௔௡ௗ  e 𝑜𝑢𝑡௖௔  da variável de saída 𝑂𝑈𝑇 para compor a solução do SBRF, 

Fig. 5.2. 
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Figura 5.2: Valores dos candidatos (autoria própria). 

 

2. A escolha de 𝑜𝑢𝑡௖௔௡ௗଵ ou 𝑜𝑢𝑡௖௔௡ௗଶ leva em consideração a base de regras do 

SBRF e está em função das seguintes condições: 

 𝑆𝐸 𝑖𝑛 < 𝐶𝑃 𝐸 𝐼𝑁 𝑫𝒊𝒓 𝑂𝑈𝑇, 𝐸𝑁𝑇Ã𝑂 𝑜𝑢𝑡௖௔௡ௗଵ; 

 𝑆𝐸 𝑖𝑛 > 𝐶𝑃 𝐸 𝐼𝑁 𝑰𝒏𝒗 𝑂𝑈𝑇, 𝐸𝑁𝑇Ã𝑂 𝑜𝑢𝑡௖௔௡ ; 

 𝑆𝐸 𝑖𝑛 < 𝐶𝑃 𝐸 𝐼𝑁 𝑰𝒏𝒗 𝑂𝑈𝑇, 𝐸𝑁𝑇Ã𝑂 𝑜𝑢𝑡௖௔௡ௗ ; 

 𝑆𝐸 𝑖𝑛 > 𝐶𝑃 𝐸 𝐼𝑁 𝑫𝒊𝒓 𝑂𝑈𝑇, 𝐸𝑁𝑇Ã𝑂 𝑜𝑢𝑡௖௔௡ௗଶ; 

 Em qualquer outro caso, a escolha do valor para compor a solução do 

SBRF é dada pela média aritmética de 𝑜𝑢𝑡௖௔௡ௗଵ e 𝑜𝑢𝑡௖௔௡ௗଶ. 

3. Todo o processo é replicado para cada uma das 𝑛௜௡ variáveis de entrada, de 

modo que para cada regra 𝑅௜, é possível definir uma contribuição de saída 

𝑐𝑜𝑛𝑡஼௝௠, Eq. (5.1), dado que 𝐶௝ é um conjunto fuzzy de saída, e 𝑚 indica o 

número vezes que o conjunto 𝐶௝ já foi relacionado na base de regras: 

𝑐𝑜𝑛𝑡஼௝௠ =
∑ 𝛼௞𝑜𝑢𝑡௞௜

௡೔೙
௞ୀଵ

∑ 𝛼௞
௡೔೙
௞ୀଵ

                                                                                                   (5.1) 

sendo 𝑜𝑢𝑡௞௜ o valor escolhido e 𝛼௞ o peso associado à influência na variável de 

saída, ambos com relação à variável de entrada 𝑘. A variável 𝛼௞ é 

implementada nesta equação para impor uma maior apreciação do efeito de 

certas variáveis de entrada na saída. Quando essas informações não estão 

disponíveis ou se todas as variáveis têm o mesmo efeito na saída do processo, 

assume-se que 𝛼௞ = 1.  

A partir das definições apresentadas anteriormente, pode-se definir as funções 

consequentes 𝑓஼௝ associadas a cada conjunto fuzzy de saída e, finalmente, determinar a 
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resposta do SBRF. A seguir, é apresentado um exemplo que ilustra a resolução de um SBRF 

pelo método PIA. 

Considerando a base de regras exibida na Tab. 5.3, 𝑋 e 𝑌 são entradas do SBRF e 𝑍 

é a saída. Os conjuntos fuzzy de entrada são 𝐴ଵ, 𝐴ଶ, 𝐵ଵ e 𝐵ଶ; e 𝐶ଵ e 𝐶ଶ são os conjuntos fuzzy 

de saída, sendo 𝐴ଵ  <௦  𝐴ଶ, 𝐵ଵ  <௦  𝐵ଶ e 𝐶ଵ  <௦  𝐶ଶ. 

 

Tabela 5.3: Exemplo 2 - Base de Regras. 

Se Se         𝑿                E              𝒀 Então           𝒁 

𝑅ଵ               𝐴ଵ                               𝐵ଵ                     𝐶ଵ 

𝑅ଶ               𝐴ଶ                               𝐵ଵ                     𝐶ଶ 

𝑅ଷ               𝐴ଵ                               𝐵ଶ                     𝐶ଵ 

𝑅ସ               𝐴ଶ                               𝐵ଶ                     𝐶ଵ 

 

A Tab. 5.4 apresenta a relação entre as variáveis de entrada e saída. Para exemplificar 

a obtenção dessas relações, é analisada a regra 𝑅ଵ: 

 𝑋 𝑫𝒊𝒓 𝑍, porque manter 𝑌 =௦  𝐵ଵ, e aumentar 𝑋 de 𝐴ଵ para 𝐴ଶ, causa o 

aumento da variável 𝑍 de 𝐶ଵ para 𝐶ଶ; 

 𝑌 𝑵𝒆𝒖𝒕 𝑍, porque manter 𝑋 =௦  𝐴ଵ, e aumentar 𝑌 de 𝐵ଵ para 𝐵ଶ, não altera 𝑍. 

 

Tabela 5.4: Exemplo 2 - Relação Entre as Variáveis. 

Regra Relação: 𝑿
 

→ 𝒁 Relação: 𝒀
 

→ 𝒁 

𝑅ଵ 𝑋 Dir 𝑍 𝑌 Neut 𝑍 

𝑅ଶ 𝑋 Dir 𝑍 𝑌 Inv 𝑍 

𝑅ଷ 𝑋 Neut 𝑍 𝑌 Neut 𝑍 

𝑅ସ 𝑋 Neut 𝑍 𝑌 Inv 𝑍 

 

Na Fig. 5.3, é resumido o procedimento para encontrar o peso, 𝑤஼௝௠, e a contribuição 

de saída, 𝑐𝑜𝑛𝑡஼௝௠, de cada regra 𝑅௜. Como um exemplo, a regra 𝑅ଵ é analisada: 
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 𝑧௫ଵ = 𝑧௖௔௡ௗଶ, porque 𝑥 > 𝐶𝑃஺ଵ e 𝑋 𝑫𝒊𝒓 𝑍; 

 𝑧௬ଵ =
௭೎ೌ೙೏భା௭೎ೌ೙೏మ

ଶ
, porque 𝑌 𝑵𝒆𝒖𝒕 𝑍. 

 

 

Figura 5.3: Ilustração do método PIA, em que 𝛼௫ e 𝛼௬ são os pesos associados, 

respectivamente, à influência de 𝑥 e 𝑦 na variável de saída (autoria própria). 

 

Após definir os pesos 𝑤஼௝௠ e as contribuições 𝑐𝑜𝑛𝑡஼௝௠ de cada regra, o próximo passo 

é calcular o valor da função consequente 𝑓஼௝ de cada conjunto fuzzy 𝐶௝ da saída, Eq. (5.2), 

em que 𝑇௝ é o total de regras relacionadas ao conjunto 𝐶௝: 

𝑓஼௝ =
∑ 𝑤஼௝௠𝑐𝑜𝑛𝑡஼௝௠

்ೕ

௠ୀଵ

∑ 𝑤஼௝௠
்ೕ

௠ୀଵ

.                                                                                                                              (5.2) 

Neste exemplo, as funções consequentes são obtidas da seguinte maneira: 

 𝑓஼ଵ =
௪಴భభ௖௢௡௧಴భభା௪಴భ ௖௢௡௧಴భమା௪಴భయ௖௢௡ ಴భయ

௪಴భ ା௪಴భ ା௪಴భయ
 ; 

 𝑓஼ଶ =
௪಴మభ௖௢௡௧಴మభ

௪಴మభ
= 𝑐𝑜𝑛𝑡஼ଶଵ. 

Os pesos 𝑊஼௝  de cada conjunto fuzzy de saída podem ser obtidos pelo operador 𝑚𝑎𝑥: 

𝑊஼௝ = max൫𝑤஼௝௠൯ , 𝑚 = 1, … , 𝑇௝.                                                                                           (5.3) 
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Finalmente, a defuzzificação do SBRF é realizada a partir do método da média 

ponderada, Eq. (5.4), sendo 𝑛஼ o número de conjuntos fuzzy que compõe a variável de saída 

𝑍, e o valor de saída, 𝑧, sendo dado por: 

𝑧 =
∑ ௐ಴ೕ௙಴ೕ

೙಴
ೕసభ

∑ ௐ಴ೕ
೙಴
ೕసభ

=
ௐ಴భ௙಴భାௐ಴మ௙಴మ

ௐ಴భାௐ಴మ
.                                                                                            (5.4) 

Dois fluxogramas que resumem a definição e a avaliação de um SBRF que usa o PIA 

como o método de inferência fuzzy são apresentados na Fig. 5.4.  

 

 

Figura 5.4: Fluxogramas do método PIA (autoria própria). 

 

Após a apresentação do método PIA de inferência fuzzy, a seção 5.2 mostra um estudo 

de caso comparando o desempenho matemático e computacional dessa técnica com outras 

abordagens fuzzy. 
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5.2. Estudo de Caso: Modelagem Aerodinâmica 

 

Esta seção explora a aplicação e a comparação do método PIA com os métodos de 

inferência fuzzy Mamdani, Takagi-Sugeno, Kosko-Mizumoto e Larsen na modelagem 

aerodinâmica de uma aeronave Cessna 172. 

A direção relativa do vento, o ângulo de ataque da aeronave, 𝛼, a deflexão do 

profundor, 𝛿𝑒, e as forças de sustentação, 𝐿, e arrasto, 𝐷, são mostrados na Fig. 5.5. 

 

 

Figura 5.5: Variáveis envolvidas no processo de modelagem (autoria própria). 

 

As forças de sustentação e arrasto da aeronave são sempre perpendiculares entre si 

e, para um voo em regime permanente, são definidas respectivamente pelas Eqs. (5.5) e (5.6): 

𝐿 =
ଵ

ଶ
𝜌𝑉ଶ𝑆𝐶௅,                                                                                                                         (5.5) 

𝐷 =
ଵ

ଶ
𝜌𝑉ଶ𝑆𝐶஽,                                                                                                                         (5.6) 

onde 𝜌 é a densidade do ar, 𝑉 é a velocidade do vento relativo, 𝑆 é a área de referência da 

aeronave, e 𝐶௅ e 𝐶஽ são respectivamente os coeficientes de sustentação e arrasto. 

O coeficiente sustentação da aeronave depende de muitas variáveis. De acordo com 

Roskam (2001), o coeficiente de sustentação para um voo em regime permanente é definido 

como: 

𝐶௅ = 𝐶௅బ
+ 𝐶௅ഀ

𝛼 + 𝐶௅೔೓
𝑖௛ + 𝐶௅ഃ೐

𝛿𝑒,                                                                                         (5.7) 



83 
 

em que 𝐶௅బ
 é o coeficiente linear da equação, 𝐶௅ഀ

é o coeficiente de sustentação devido ao 

ângulo de ataque, 𝐶௅೔೓
 é o coeficiente de sustentação devido à deflexão do estabilizador 

horizontal, 𝑖௛, e 𝐶௅ഃ೐
 é o coeficiente de sustentação devido à deflexão do profundor. 

O coeficiente de arrasto 𝐶஽, analogamente ao 𝐶௅, possui a mesma equação para um 

voo em regime permanente, definida como: 

𝐶஽ = 𝐶஽బ
+ 𝐶஽ഀ

𝛼 + 𝐶஽೔೓
𝑖௛ + 𝐶஽ഃ೐

𝛿𝑒.                                                                                       (5.8) 

A aeronave Cessna 172 possui estabilizador horizontal fixo, de modo que as equações 

para 𝐶௅ e 𝐶஽ podem ser simplificadas como: 

𝐶௅ = 𝐶௅బ
+ 𝐶௅ഀ

𝛼 + 𝐶௅ഃ೐
𝛿𝑒;  

𝐶஽ = 𝐶஽బ
+ 𝐶஽ഀ

𝛼 + 𝐶஽ഃ೐
𝛿𝑒.                                                                                                     (5.9) 

Como a relação entre as entradas e saídas deste processo não pode ser extraída 

linearmente para todas as condições de voo devido às incertezas intrínsecas, este trabalho 

opta por considerar esse processo como um sistema fuzzy. 

Em sequência é descrito o desenvolvimento de um SBRF em relação a 𝐶஽ e 𝐶௅ em 

função de 𝛼 e 𝛿𝑒. A base teórica para a concepção do sistema é a Eq. (5.9) e as informações 

extraídas em (ROSKAM, 2001). 

 

Modelagem Fuzzy 

 

O SBRF que trata da modelagem aerodinâmica da aeronave Cessna 172 é 

apresentado a seguir, incluindo a definição das funções de pertinência, base de regras e 

superfície de resposta para os métodos Mamdani, Takagi-Sugeno de ordem 0, Kosko-

Mizumoto, Larsen e PIA. 

Vale ressaltar que o suporte e o número de subconjuntos fuzzy, bem como a escolha 

das funções de pertinência, são determinados com base em (ROSKAM, 2001) e também a 

partir da análise dos dados extraídos do simulador de voo X-Plane 11. 

Para ambas as variáveis de entrada (𝛼 e 𝛿𝑒), as funções de pertinência são definidas 

de acordo com a Fig. 5.6. 
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(a) Funções de pertinência de 𝛼.                         (b) Funções de pertinência de 𝛿𝑒. 

Figura 5.6: Funções de pertinência das entradas (autoria própria). 

 

As funções de pertinência das variáveis de saída (𝐶஽ e 𝐶௅) para os métodos de 

inferência fuzzy Mamdani, Kosko-Mizumoto, Larsen e PIA são definidas de acordo com a Fig. 

5.7. No método de Takagi-Sugeno, as funções de pertinência das variáveis de saída são 

singleton, cujos suportes correspondem à média de cada uma das funções de pertinência dos 

outros métodos de inferência fuzzy. 

 

    

(a) Funções de pertinência de 𝐶஽.                         (b) Funções de pertinência de 𝐶௅. 

Figura 5.7: Funções de pertinência das saídas (autoria própria). 
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A base de regras deste SBRF, apresentada na Tab. 5.5, é construída com base em 

(ROSKAM, 2001) e através do apoio de profissionais com experiência na área. 

 

Tabela 5.5: Base de Regras. 

Regras Se        𝜶           E           𝜹𝒆 Então         𝐶௅                  E                  𝑪𝑫 

𝑅ଵ            𝑏𝑎𝑖𝑥𝑜                  𝑏𝑎𝑖𝑥𝑎                𝑚é𝑑𝑖𝑜                               𝑚é𝑑𝑖𝑜 

𝑅ଶ            𝑚é𝑑𝑖𝑜                 𝑏𝑎𝑖𝑥𝑎                 𝑎𝑙𝑡𝑜                              𝑎𝑙𝑡𝑜 

𝑅ଷ            𝑎𝑙𝑡𝑜                  𝑏𝑎𝑖𝑥𝑎                 𝑚𝑢𝑖𝑡𝑜 𝑎𝑙𝑡𝑜                𝑚𝑢𝑖𝑡𝑜 𝑎𝑙𝑡𝑜 

𝑅ସ            𝑏𝑎𝑖𝑥𝑜                 𝑚é𝑑𝑖𝑎                 𝑏𝑎𝑖𝑥𝑜                              𝑏𝑎𝑖𝑥𝑜 

𝑅ହ            𝑚é𝑑𝑖𝑜                𝑚é𝑑𝑖𝑎                 𝑚é𝑑𝑖𝑜                              𝑚é𝑑𝑖𝑜 

𝑅଺            𝑎𝑙𝑡𝑜                  𝑚é𝑑𝑖𝑎                 𝑎𝑙𝑡𝑜                              𝑎𝑙𝑡𝑜 

𝑅଻            𝑏𝑎𝑖𝑥𝑜                  𝑎𝑙𝑡𝑎                 𝑚𝑢𝑖𝑡𝑜 𝑏𝑎𝑖𝑥𝑜           𝑚𝑢𝑖𝑡𝑜 𝑏𝑎𝑖𝑥𝑜 

𝑅଼            𝑚é𝑑𝑖𝑜                  𝑎𝑙𝑡𝑎                 𝑏𝑎𝑖𝑥𝑜                              𝑏𝑎𝑖𝑥𝑜 

𝑅ଽ            𝑎𝑙𝑡𝑜                  𝑎𝑙𝑡𝑎                 𝑚é𝑑𝑖𝑜                              𝑚é𝑑𝑖𝑜 

  

As superfícies de resposta 𝐶஽  (𝛼, 𝛿𝑒) para cada um dos métodos de inferência fuzzy 

são apresentadas nas Figs. 5.8 e 5.9. Além disso, as superfícies de resposta 𝐶௅ (𝛼, 𝛿𝑒) para 

cada um dos métodos de inferência fuzzy são apresentadas nas Figs. 5.10 e 5.11. 

Pode-se notar que, para 𝐶௅ e 𝐶஽, o método PIA garante consistência com a base de 

regras construída a priori, superfícies de resposta mais suaves que os outros métodos e maior 

semelhança com gráficos planares, de acordo com a Eq. (5.9). 

A seguir, é apresentada uma análise numérica e estatística da ajustabilidade de um 

sistema fuzzy adaptativo aos dados numéricos-experimentais extraídos do simulador de voo 

X-Plane 11. Os resultados do método PIA de inferência fuzzy são comparados com os obtidos 

com os outros métodos. 
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(a) Método de inferência de Mamdani.        (b) Método de inferência de Takagi-Sugeno. 

       

(c) Método de inferência de Kosko-Mizumoto.        (d) Método de inferência de Larsen. 

Figura 5.8: Superfície de resposta 𝐶஽ (𝛼, 𝛿𝑒) para os métodos de Mamdani, Takagi-Sugeno, 

Kosko-Mizumoto e Larsen (autoria própria). 

 

 

Figura 5.9: Superfície de resposta 𝐶஽ (𝛼, 𝛿𝑒) para o método PIA (autoria própria). 



87 
 

        

(a) Método de inferência de Mamdani.       (b) Método de inferência de Takagi-Sugeno. 

        

(c) Método de inferência de Kosko-Mizumoto.       (d) Método de inferência de Larsen. 

Figura 5.10: Superfície de resposta 𝐶௅ (𝛼, 𝛿𝑒) para os métodos de Mamdani, Takagi-Sugeno, 

Kosko-Mizumoto e Larsen (autoria própria). 

 

 

Figura 5.11: Superfície de resposta 𝐶௅ (𝛼, 𝛿𝑒) para o método PIA (autoria própria). 
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Análise Comparativa de Sistemas Fuzzy Adaptativos 

 

Nesta etapa, um conjunto de dados, extraído de um voo virtual realizado no simulador 

de vôo X-Plane11, é usado para analisar a capacidade de ajuste do PIA, e comparar a 

eficiência computacional desse método em relação aos métodos Mamdani, Takagi-Sugeno, 

Kosko-Mizumoto, Larsen e à abordagem híbrida HGFRD (BEMANI e AKBARZADEH, 2019). 

Os sistemas fuzzy adaptativos são baseados no SBRF apresentado anteriormente 

nessa seção, ou seja, os mesmos possuem as três funções de pertinência gaussianas para 

cada uma das variáveis de entrada, Fig. 5.6, as mesmas cinco funções de pertinência para 

cada uma das variáveis de saída, Fig. 5.7, e também a base de regras fuzzy apresentada na 

Tab. 5.5. A única diferença é que os parâmetros que definem as funções de pertinência (média 

e desvio padrão) são adaptativos e ajustáveis por um método de otimização. 

O método de otimização usado neste capítulo para ajustar os sistemas fuzzy aos 

dados numérico-experimentais é a evolução diferencial (STORN e PRICE, 1997). Os valores 

dos parâmetros utilizados na evolução diferencial são apresentados na Tab. 5.6. 

 

Tabela 5.6: Parâmetros da Evolução Diferencial. 

Parâmetro Valor 

Número de iterações 400 

Número de vetores 150 

Taxa de cruzamento 0,95 

Fator de perturbação 0,4 

  

O processo de otimização e os gráficos dos valores estimados de 𝐶஽ e 𝐶௅, em azul, 

comparados a um conjunto de 300 dados extraídos durante 30 segundos (s) de simulação no 

X-Plane 11, em vermelho, são apresentados respectivamente nas Figs. 5.12, 5.13(a) e 

5.13(b). 
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Figura 5.12: Processo de otimização do erro absoluto médio (MAE) da resposta do SBRF 

que utiliza o método PIA em função da iteração da evolução diferencial (autoria própria). 

 

    

                  (a) 𝐶஽ em função do tempo.                                 (b) 𝐶௅ em função do tempo. 

Figura 5.13: 𝐶஽ e 𝐶௅ em função do tempo com o método PIA (autoria própria). 

 

Nas Figs. 5.13(a) e 5.13(b), pode-se verificar a capacidade de ajuste do método PIA; 

no entanto, para analisar e comparar quantitativamente o desempenho do PIA com as outras 

técnicas, é realizada uma análise estatística dos resultados obtidos por cada um dos métodos 

de inferência fuzzy. 

O algoritmo de evolução diferencial é executado 30 vezes para cada método de 

inferência fuzzy, e a média, 𝑋ത, e desvio padrão, 𝑆஽, do tempo de execução, ∆𝑡, e do erro 

absoluto médio da resposta, 𝑀𝐴𝐸 (Mean Absolute Error), com relação aos dados numérico-

experimentais de 𝐶஽ e 𝐶௅ extraídos no X -Plane 11, são apresentados respectivamente nas 
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Tabs. 5.7 e 5.8. Ressalta-se que todas as execuções do método de otimização ocorrem em 

uma máquina com processador intel i7 com clock de 4,5 GHz (execução realizada em apenas 

um núcleo do processador), memória RAM com 32 GB, disco rígido com capacidade de 

armazenamento de 1 TB, e memória SSD contendo 256 GB de espaço de armazenamento. 

 

Tabela 5.7: Estatísticas dos Métodos de Inferência Fuzzy para 𝐶஽. 

 𝑴𝑨𝑬 ∆𝒕 (s) 

 𝑋ത 𝑆஽ 𝑋ത 𝑆஽ 

Mamdani 0,0383 0,0093 9052 3951 

Takagi-Sugeno 0,0292 0,0024 45 13 

Kosko-Mizumoto 0,0386 0,0022 5400 2055 

Larsen 0,0398 0,0032 4213 1677 

HGFRD 0,0280 0,0039 1752 34 

PIA 0,0278 0,0022 597 63 

 

Tabela 5.8: Estatísticas dos Métodos de Inferência Fuzzy para 𝐶௅. 

 𝑴𝑨𝑬 ∆𝒕 (s) 

 𝑋ത 𝑆஽ 𝑋ത 𝑆஽ 

Mamdani 0,5590 0,1020 6139 1436 

Takagi-Sugeno 0,4285 0,0625 25 9 

Kosko-Mizumoto 0,4687 0,1169 5859 1965 

Larsen 0,5492 0,0814 5689 2840 

HGFRD 0,3904 0,0453 2377 40 

PIA 0,3883 0,0469 544 23 
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As estatísticas apresentadas nas Tabs. 5.7 e 5.8 indicam que o método PIA é o que 

mais reduz o erro absoluto médio em relação aos dados numérico-experimentais. Para 

verificar a superioridade do método PIA nesse critério, tanto para 𝐶஽ quanto para 𝐶௅, são 

elaborados testes de hipóteses comparando o PIA com cada um dos outros métodos, cujas 

hipóteses nula, 𝐻଴, e alternativa, 𝐻௔, (MONTGOMERY e RUNGER, 2002) são apresentadas 

a seguir: 

 𝐻଴: O 𝑀𝐴𝐸 do método em análise é igual ao 𝑀𝐴𝐸 do método PIA; 

 𝐻௔: O 𝑀𝐴𝐸 do método em análise é maior do que o 𝑀𝐴𝐸 do método PIA. 

Com 98,5% de nível de confiança, com base na distribuição t-Student aplicada a 

variáveis aleatórias heterocedásticas, o teste rejeitou a hipótese nula para os métodos de 

Mamdani, Takagi-Sugeno, Kosko-Mizumoto e Larsen, ou seja, para resolver esse problema, 

o método PIA é o que obtém o menor valor de 𝑀𝐴𝐸, e consequentemente a maior capacidade 

de ajuste aos dados numérico-experimentais. Embora o valor médio de 𝑀𝐴𝐸 obtido pelo PIA 

tenha sido um pouco melhor que o obtido pelo HGFRD, não há elementos estatísticos que 

rejeitem a hipótese de desempenho numérico equivalente de ambas as técnicas. 

Quanto ao tempo de execução de cada método, Takagi-Sugeno é o que possui o 

menor custo computacional, seguido pelo PIA, que por sua vez é mais rápido em termos 

computacionais do que os métodos de Mamdani, Kosko-Mizumoto, Larsen e HGFRD. 

Os resultados sugerem a eficácia do método PIA, que combina capacidade de ajuste 

e baixo tempo de execução em relação a algumas técnicas, características típicas do método 

de Takagi-Sugeno, com a intuitividade de utilizar o mesmo processo de definição das funções 

de pertinência do método de Mamdani. 

Após a explanação do método PIA, no próximo capitulo é apresentado o principal 

estudo de caso utilizado para a validação do método PIA de inferência fuzzy: controle neuro-

fuzzy para aeronaves.  
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CAPÍTULO VI 

 

 

 

CONTROLE NEURO-FUZZY PARA AERONAVES 

 

 

Neste capítulo são apresentados os métodos utilizados de ajuste dos parâmetros dos 

controladores neuro-fuzzy, bem como os resultados obtidos via simulação e durante a 

operação do veículo para cada um dos métodos.  

 

6.1. Arquitetura de Controle Neuro-Fuzzy 

 

O modelo dinâmico de uma aeronave é composto por uma série de não-linearidades 

e acoplamentos. Existe, porém, a possibilidade de se trabalhar com razoável fidelidade à 

dinâmica real da aeronave a partir de seu modelo linearizado, que despreza sobretudo os 

acoplamentos entre as dinâmicas longitudinal e látero-direcional, mas sem deixar de 

considerar a aplicação de perturbações ao sistema (ROSKAM, 2001). 

A partir do entendimento da aeronave como sendo submetida a dois comportamentos 

dinâmicos desacoplados entre si, controladores de voo são desenvolvidos levando em 

consideração essa natureza do sistema.  

Esse é o caso do sistema de controle da empresa Micropilot, líder no desenvolvimento 

de controladores de voo para veículos aéreos não-tripulados. Na Fig. 3.12 é apresentada uma 

representação da arquitetura de controle longitudinal desenvolvida pela Micropilot, baseada 
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em controladores PID (Proporcional Integral Derivativo) conectados em cascata (THUMS, 

TORRES e PALHARES, 2012). 

Nesta arquitetura de controle desenvolvida pela Micropilot, a sintonização dos 

parâmetros é dividida em duas etapas: inicialmente sintonizam-se os parâmetros localizados 

dentro da área delimitada pela linha tracejada indicada na Fig. 3.12, e em seguida realiza-se 

um segundo processo de otimização para a obtenção dos valores dos demais parâmetros. 

Esse mesmo procedimento de sintonização é também replicado para o controle látero-

direcional do sistema.  

Baseando-se nesta arquitetura de controle, e tendo como inspiração a crescente 

utilização da inteligência computacional no desenvolvimento de sistemas de controle de 

aeronaves, Tab. 3.7, nas Figs. 6.1 e 6.2 são ilustradas respectivamente as arquiteturas de 

controle longitudinal e látero-direcional propostas nesta pesquisa. 

 

     

Figura 6.1: Controle longitudinal (autoria própria). 

 

 

Figura 6.2: Controle látero-direcional (autoria própria). 
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No controle longitudinal da aeronave, ℎ é a altitude, 𝜃 é o ângulo de arfagem, 𝑞 é a 

velocidade angular de arfagem, U é a velocidade longitudinal, 𝑤 é a velocidade vertical, 𝛿் é 

a porcentagem relativa à aceleração máxima da aeronave, e 𝛿ா é a deflexão do profundor. 

Já no controle látero-direcional, 𝜙 é o ângulo de rolagem, 𝜓 é o ângulo de guinada, 𝑝 

é a velocidade angular de rolagem, 𝑟 é a velocidade angular de guinada,  𝑈 continua sendo a 

velocidade longitudinal, 𝑣 é a velocidade lateral, 𝛿஺ é a deflexão dos ailerons da aeronave, e 

por fim 𝛿ோ é a deflexão do leme. 

Na arquitetura de controle, 𝑘 indica a iteração atual, e 𝑠𝑒𝑡 e 𝑒𝑟𝑟 são respectivamente 

os indicativos dos sinais de referência (setpoint) e erro. Os blocos 𝐾 e 𝐾/𝑠 são, nesta ordem, 

controladores proporcionais e integradores cujas respostas são somadas às saídas dos 

SBRFs. Todo o sistema de controle é composto por 6 SBRFs, cada um com suas respectivas 

entradas e saídas, e tendo o PIA como método de inferência fuzzy. As entradas e saídas de 

cada um dos SBRFs são apresentadas na Tab. 6.1. 

 

Tabela 6.1: Entradas e Saídas dos Sistemas Baseados em Regras Fuzzy. 

SBRF 𝑆𝐵𝑅𝐹ଵ 𝑆𝐵𝑅𝐹ଶ 𝑆𝐵𝑅𝐹ଷ 𝑆𝐵𝑅𝐹ସ 𝑆𝐵𝑅𝐹ହ 𝑆𝐵𝑅𝐹଺ 

Entradas ℎ௘௥௥,௞ 𝜃௘௥௥,௞ e 𝑈௞ ℎ௘௥௥,௞ e 𝑈௘௥௥,௞ 𝜓௘௥௥,௞ 𝜙௘௥௥,௞ e 𝑈௞ 𝜓௘௥௥,௞ e 𝑈௞ 

Saída 𝜃௦௘௧,௞ 𝛿ாଵ,௞ 𝛿்௞ 𝜙௦௘௧,௞ 𝛿஺ଵ,௞ 𝛿ோଵ,௞ 

  

Os termos linguísticos e a base de regras de cada um dos SBRFs, obtidos a partir de 

Roskam (2001) e do conhecimento de especialistas na área de engenharia aeronáutica, são 

apresentados nas Tabs. 6.2 a 6.7. 

𝑺𝑩𝑹𝑭𝟏: 

 Termos linguísticos de ℎ௘௥௥,௞: 𝐵𝑎𝑖𝑥𝑜, 𝑀é𝑑𝑖𝑜 e 𝐴𝑙𝑡𝑜; 

 Termos linguísticos de 𝜃௦௘௧,௞: 𝐵𝑎𝑖𝑥𝑜, 𝑀é𝑑𝑖𝑜 e 𝐴𝑙𝑡𝑜. 
 

Tabela 6.2: 𝑆𝐵𝑅𝐹ଵ - Base de Regras. 

Regras Se            𝒉𝒆𝒓𝒓,𝒌 Então    𝜽𝒔𝒆𝒕,𝒌 

𝑅ଵ  𝐵𝑎𝑖𝑥𝑜                 𝐵𝑎𝑖𝑥𝑜            

𝑅ଶ  𝑀é𝑑𝑖𝑜                𝑀é𝑑𝑖𝑜           

𝑅ଷ  𝐴𝑙𝑡𝑜                 𝐴𝑙𝑡𝑜           
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𝑺𝑩𝑹𝑭𝟐: 

 Termos linguísticos de 𝜃௘௥௥,௞: 𝐵𝑎𝑖𝑥𝑜, 𝑀é𝑑𝑖𝑜 e 𝐴𝑙𝑡𝑜; 

 Termos linguísticos de 𝑈௞: 𝐵𝑎𝑖𝑥𝑎, 𝑀é𝑑𝑖𝑎 e 𝐴𝑙𝑡𝑎; 

 Termos linguísticos de 𝛿ாଵ,௞: 𝐵𝑎𝑖𝑥í𝑠𝑠𝑖𝑚𝑎, 𝑀𝑢𝑖𝑡𝑜 𝐵𝑎𝑖𝑥𝑎, 𝐵𝑎𝑖𝑥𝑎, 𝑀é𝑑𝑖𝑎, 𝐴𝑙𝑡𝑎, 

𝑀𝑢𝑖𝑡𝑜 𝐴𝑙𝑡𝑎, 𝐴𝑙𝑡í𝑠𝑠𝑖𝑚𝑎. 

 

Tabela 6.3: 𝑆𝐵𝑅𝐹ଶ - Base de Regras. 

Regras Se          𝜽𝒆𝒓𝒓,𝒌          E           𝑼𝒌 Então                     𝜹𝑬𝟏,𝒌 

𝑅ଵ                𝑏𝑎𝑖𝑥𝑜                    𝑏𝑎𝑖𝑥𝑎                            𝐴𝑙𝑡í𝑠𝑠𝑖𝑚𝑎 

𝑅ଶ              𝑚é𝑑𝑖𝑜                   𝑏𝑎𝑖𝑥𝑎                            𝑀é𝑑𝑖𝑎 

𝑅ଷ               𝑎𝑙𝑡𝑜                      𝑏𝑎𝑖𝑥𝑎                            𝐵𝑎𝑖𝑥í𝑠𝑠𝑖𝑚𝑎   

𝑅ସ               𝑏𝑎𝑖𝑥𝑜                    𝑚é𝑑𝑖𝑎                            𝑀𝑢𝑖𝑡𝑜 𝐴𝑙𝑡𝑎 

𝑅ହ               𝑚é𝑑𝑖𝑜                    𝑚é𝑑𝑖𝑎                            𝑀é𝑑𝑖𝑎 

𝑅଺                𝑎𝑙𝑡𝑜                      𝑚é𝑑𝑖𝑎                            𝑀𝑢𝑖𝑡𝑜 𝐵𝑎𝑖𝑥𝑎 

𝑅଻              𝑏𝑎𝑖𝑥𝑜                      𝑎𝑙𝑡𝑎                            𝐴𝑙𝑡𝑎 

𝑅଼             𝑚é𝑑𝑖𝑜                     𝑎𝑙𝑡𝑎                            𝑀é𝑑𝑖𝑎 

𝑅ଽ              𝑎𝑙𝑡𝑜                       𝑎𝑙𝑡𝑎                            𝐵𝑎𝑖𝑥𝑎 

 

𝑺𝑩𝑹𝑭𝟑: 

 Termos linguísticos de ℎ௘௥௥,௞: 𝐵𝑎𝑖𝑥𝑜, 𝑀é𝑑𝑖𝑜 e 𝐴𝑙𝑡𝑜; 

 Termos linguísticos de 𝑈௘௥௥,௞: 𝐵𝑎𝑖𝑥𝑜, 𝑀é𝑑𝑖𝑜 e 𝐴𝑙𝑡𝑜; 

 Termos linguísticos de 𝛿்௞: 𝑀𝑢𝑖𝑡𝑜 𝐵𝑎𝑖𝑥𝑎, 𝐵𝑎𝑖𝑥𝑎, 𝑀é𝑑𝑖𝑎, 𝐴𝑙𝑡𝑎 e 𝑀𝑢𝑖𝑡𝑜 𝐴𝑙𝑡𝑎. 

 

 

 

 

 



96 
 

Tabela 6.4: 𝑆𝐵𝑅𝐹ଷ - Base de Regras. 

Regras Se         𝒉𝒆𝒓𝒓,𝒌           E            𝑼𝒆𝒓𝒓,𝒌 Então                     𝜹𝑻𝒌
 

𝑅ଵ                𝑏𝑎𝑖𝑥𝑜                       𝑏𝑎𝑖𝑥𝑜                            𝑀𝑢𝑖𝑡𝑜 𝐵𝑎𝑖𝑥𝑎 

𝑅ଶ               𝑚é𝑑𝑖𝑜                       𝑏𝑎𝑖𝑥𝑜                            𝐵𝑎𝑖𝑥𝑎 

𝑅ଷ               𝑎𝑙𝑡𝑜                         𝑏𝑎𝑖𝑥𝑜                            𝑀é𝑑𝑖𝑎   

𝑅ସ               𝑏𝑎𝑖𝑥𝑜                       𝑚é𝑑𝑖𝑜                             𝐵𝑎𝑖𝑥𝑎 

𝑅ହ               𝑚é𝑑𝑖𝑜                     𝑚é𝑑𝑖𝑜                            𝑀é𝑑𝑖𝑎 

𝑅଺                𝑎𝑙𝑡𝑜                       𝑚é𝑑𝑖𝑜                            𝐴𝑙𝑡𝑎 

𝑅଻              𝑏𝑎𝑖𝑥𝑜                       𝑎𝑙𝑡𝑜                            𝑀é𝑑𝑖𝑎 

𝑅଼             𝑚é𝑑𝑖𝑜                      𝑎𝑙𝑡𝑜                            𝐴𝑙𝑡𝑎 

𝑅ଽ              𝑎𝑙𝑡𝑜                        𝑎𝑙𝑡𝑜                            𝑀𝑢𝑖𝑡𝑜 𝐴𝑙𝑡𝑎 

 

𝑺𝑩𝑹𝑭𝟒: 

 Termos linguísticos de 𝜓௘௥௥,௞: 𝐵𝑎𝑖𝑥𝑜, 𝑀é𝑑𝑖𝑜 e 𝐴𝑙𝑡𝑜; 

 Termos linguísticos de 𝜙௦௘௧,௞: 𝐵𝑎𝑖𝑥𝑜, 𝑀é𝑑𝑖𝑜 e 𝐴𝑙𝑡𝑜. 
 

Tabela 6.5: 𝑆𝐵𝑅𝐹ସ - Base de Regras. 

Regras Se              𝝍𝒆𝒓𝒓,𝒌 Então    𝝓𝒔𝒆𝒕,𝒌 

𝑅ଵ  𝐵𝑎𝑖𝑥𝑜         𝐵𝑎𝑖𝑥𝑜            

𝑅ଶ  𝑀é𝑑𝑖𝑜          𝑀é𝑑𝑖𝑜           

𝑅ଷ  𝐴𝑙𝑡𝑜          𝐴𝑙𝑡𝑜           

 

𝑺𝑩𝑹𝑭𝟓: 

 Termos linguísticos de 𝜙௘௥௥,௞: 𝐵𝑎𝑖𝑥𝑜, 𝑀é𝑑𝑖𝑜 e 𝐴𝑙𝑡𝑜; 

 Termos linguísticos de 𝑈௞: 𝐵𝑎𝑖𝑥𝑎, 𝑀é𝑑𝑖𝑎 e 𝐴𝑙𝑡𝑎; 

 Termos linguísticos de 𝛿஺ଵ,௞
: 𝐵𝑎𝑖𝑥í𝑠𝑠𝑖𝑚𝑎, 𝑀𝑢𝑖𝑡𝑜 𝐵𝑎𝑖𝑥𝑎, 𝐵𝑎𝑖𝑥𝑎, 𝑀é𝑑𝑖𝑎, 𝐴𝑙𝑡𝑎, 

𝑀𝑢𝑖𝑡𝑜 𝐴𝑙𝑡𝑎, 𝐴𝑙𝑡í𝑠𝑠𝑖𝑚𝑎. 
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Tabela 6.6: 𝑆𝐵𝑅𝐹ହ - Base de Regras. 

Regras Se         𝝓𝒆𝒓𝒓,𝒌           E         𝑼𝒌 Então                  𝜹𝑨𝟏,𝒌 

𝑅ଵ                𝑏𝑎𝑖𝑥𝑜                    𝑏𝑎𝑖𝑥𝑎                            𝐵𝑎𝑖𝑥í𝑠𝑠𝑖𝑚𝑎 

𝑅ଶ              𝑚é𝑑𝑖𝑜                   𝑏𝑎𝑖𝑥𝑎                            𝑀é𝑑𝑖𝑎 

𝑅ଷ               𝑎𝑙𝑡𝑜                      𝑏𝑎𝑖𝑥𝑎                            𝐴𝑙𝑡í𝑠𝑠𝑖𝑚𝑎   

𝑅ସ               𝑏𝑎𝑖𝑥𝑜                    𝑚é𝑑𝑖𝑎                            𝑀𝑢𝑖𝑡𝑜 𝐵𝑎𝑖𝑥𝑎 

𝑅ହ               𝑚é𝑑𝑖𝑜                    𝑚é𝑑𝑖𝑎                            𝑀é𝑑𝑖𝑎 

𝑅଺                𝑎𝑙𝑡𝑜                      𝑚é𝑑𝑖𝑎                            𝑀𝑢𝑖𝑡𝑜 𝐴𝑙𝑡𝑎 

𝑅଻              𝑏𝑎𝑖𝑥𝑜                      𝑎𝑙𝑡𝑎                            𝐵𝑎𝑖𝑥𝑎 

𝑅଼             𝑚é𝑑𝑖𝑜                     𝑎𝑙𝑡𝑎                            𝑀é𝑑𝑖𝑎 

𝑅ଽ              𝑎𝑙𝑡𝑜                       𝑎𝑙𝑡𝑎                            𝐴𝑙𝑡𝑎 

 

𝑺𝑩𝑹𝑭𝟔: 

 Termos linguísticos de 𝜓௘௥௥,௞: 𝐵𝑎𝑖𝑥𝑜, 𝑀é𝑑𝑖𝑜 e 𝐴𝑙𝑡𝑜; 

 Termos linguísticos de 𝑈௞: 𝐵𝑎𝑖𝑥𝑎, 𝑀é𝑑𝑖𝑎 e 𝐴𝑙𝑡𝑎; 

 Termos linguísticos de 𝛿ோଵ,௞: 𝐵𝑎𝑖𝑥í𝑠𝑠𝑖𝑚𝑎, 𝑀𝑢𝑖𝑡𝑜 𝐵𝑎𝑖𝑥𝑎, 𝐵𝑎𝑖𝑥𝑎, 𝑀é𝑑𝑖𝑎, 𝐴𝑙𝑡𝑎, 

𝑀𝑢𝑖𝑡𝑜 𝐴𝑙𝑡𝑎, 𝐴𝑙𝑡í𝑠𝑠𝑖𝑚𝑎. 

 

Tabela 6.7: 𝑆𝐵𝑅𝐹଺ - Base de Regras. 

Regras Se           𝝍𝒆𝒓𝒓,𝒌          E          𝑼𝒌 Então                     𝜹𝑹𝟏,𝒌 

𝑅ଵ                 𝑏𝑎𝑖𝑥𝑜                    𝑏𝑎𝑖𝑥𝑎                            𝐴𝑙𝑡í𝑠𝑠𝑖𝑚𝑎 

𝑅ଶ               𝑚é𝑑𝑖𝑜                   𝑏𝑎𝑖𝑥𝑎                            𝑀é𝑑𝑖𝑎 

𝑅ଷ                𝑎𝑙𝑡𝑜                      𝑏𝑎𝑖𝑥𝑎                            𝐵𝑎𝑖𝑥í𝑠𝑠𝑖𝑚𝑎   

𝑅ସ                𝑏𝑎𝑖𝑥𝑜                    𝑚é𝑑𝑖𝑎                            𝑀𝑢𝑖𝑡𝑜 𝐴𝑙𝑡𝑎 

𝑅ହ                𝑚é𝑑𝑖𝑜                    𝑚é𝑑𝑖𝑎                            𝑀é𝑑𝑖𝑎 
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𝑅଺                 𝑎𝑙𝑡𝑜                      𝑚é𝑑𝑖𝑎                            𝑀𝑢𝑖𝑡𝑜 𝐵𝑎𝑖𝑥𝑎 

𝑅଻               𝑏𝑎𝑖𝑥𝑜                      𝑎𝑙𝑡𝑎                            𝐴𝑙𝑡𝑎 

𝑅଼              𝑚é𝑑𝑖𝑜                     𝑎𝑙𝑡𝑎                            𝑀é𝑑𝑖𝑎 

𝑅ଽ               𝑎𝑙𝑡𝑜                       𝑎𝑙𝑡𝑎                            𝐵𝑎𝑖𝑥𝑎 

 

As funções de pertinência envolvidas neste sistema de controle são adotadas como 

sendo gaussianas, logo, cada uma das quais é definida por meio da adoção, no processo de 

sintonização do controlador, de valores para a média e desvio padrão, sendo este o tema da 

seção a seguir. 

 

6.2. Sintonização e Estabilidade do Sistema de Controle 

 

O processo de sintonização do controlador neuro-fuzzy passa pela simulação da 

operação da aeronave Cessna 172 submetida a perturbações ao longo do tempo de 

simulação.  

Da mesma forma que em Thums, Torres e Palhares (2012), o processo de 

sintonização, ou seja, o cálculo dos valores dos parâmetros do controlador (neste caso, a 

média e desvio padrão associados a cada função de pertinência), é dividido em 

procedimentos, os quais são descritos a seguir. 

1. Adota-se como estudo de caso a aeronave Cessna 172, em função de sua 

grande utilização e disponibilidade de informações a respeito de suas 

características dinâmicas. 

2. O modelo utilizado é o exposto nas Eqs. (2.46) a (2.49), e os valores dos 

parâmetros, para a aeronave Cessna 172, são extraídos em Roskam (2001) e 

apresentados na Tab 6.8. 
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቎

𝑚 − 𝑋௨̇ −𝑋௪̇ −𝑋௤̇

−𝑍௨̇ 𝑚 − 𝑍௪̇ −𝑍௤̇

−𝑀௨̇ −𝑀௪̇ 𝐼௬ − 𝑀௤̇

቏  ൥
𝑢̇
𝑤̇
𝑞̇

൩ +

቎

−𝑋௨ 𝑚𝑄଴ − 𝑋௪ 𝑚𝑊଴ − 𝑋௤

−𝑚𝑄଴ − 𝑍௨ −𝑍௪ −𝑚𝑈଴ − 𝑍௤

−𝑀௨ −𝑀௪ −𝑀௤

቏  ൥

𝑢
𝑤
𝑞

൩ + ൥
𝑚𝑔𝑐𝑜𝑠(𝛩଴)

𝑚𝑔𝑠𝑖𝑛(𝛩଴)cos (ɸ଴)
0

൩ 𝜃 =

቎

𝑋ఋ೅
𝑋ఋಶ

𝑋ఋಷ

𝑍ఋ೅
𝑍ఋಶ

𝑍ఋಷ

𝑀ఋ೅
𝑀ఋಶ

𝑀ఋಷ

቏ ൥

𝛿்

𝛿ா

𝛿ி

൩.                                                                                (2.46) 

 

𝜃̇ = 𝑞.                                                                                                                                   (2.47) 

 

቎

𝑚 − 𝑌௩̇ −𝑌௣̇ −𝑌௥̇

−𝐿௩̇ 𝐼௫ − 𝐿௣̇ − 𝐼௫௭ − 𝐿௥̇

−𝑁௩̇ − 𝐼௫௭ − 𝑁௣̇ 𝐼௭ − 𝑁௥̇

቏  ൥
𝑣̇
𝑝̇
𝑟̇

൩ +

൦

−𝑌௩ −𝑚𝑊଴ − 𝑌௣ 𝑚𝑈଴ − 𝑌௥

−𝐿௩ − 𝐼௫௭𝑄଴ − 𝐿௣ ൫𝐼௭ − 𝐼௬൯𝑄଴ − 𝐿௥

−𝑁௩ ൫𝐼௬ −  𝐼௫൯𝑄଴ − 𝑁௣ 𝐼௫௭𝑄଴ − 𝑁௥

൪  ቈ
𝑣
𝑝
𝑟

቉ + ൥
−𝑚𝑔 cos(𝛩଴) cos(ɸ଴)

0
0

൩ 𝜙 =

቎

𝑌ఋಲ
𝑌ఋೃ

𝐿ఋಲ
𝐿ఋೃ

𝑁ఋಲ
𝑁ఋೃ

቏ ൤
𝛿஺

𝛿ோ
൨.                                                                                           (2.48) 

 

ቈ
𝜙̇

𝜓̇
቉ = ൤

1 tan (𝛩଴)
0 1/𝑐𝑜𝑠(𝛩଴)

൨ ቂ
𝑝
𝑟

ቃ.                                                                                                   (2.49) 

 

Tabela 6.8: Valores dos Parâmetros para a Aeronave Cessna 172 (ROSKAM, 2001).  

𝑚 1202 𝑘𝑔  𝑋௨̇ 0  𝑋௪̇ 0  𝑋௤̇ 0 

𝑍௨̇ 0  𝑍௪̇ −10,41 

𝑁𝑠ଶ/𝑚 

 𝑍௤̇ 0  𝑀௨̇ 0 

𝑀௪̇ −66,34  

𝑁𝑠ଶ/𝑚  

 𝐼௬ 1825  

𝑘𝑔𝑚ଶ  

 𝑀௤̇ 0  𝑋௨ −22,69  

𝑁𝑠/𝑚 

𝑄଴ 0  𝑋௪ 45,86 

𝑁𝑠/𝑚 

 𝑊଴ 0  𝑋௤ 0 
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𝑍௨ −151,4 

𝑁𝑠/𝑚 

 𝑍௪ −1095 

𝑁𝑠/𝑚 

 𝑈଴ 68,00 

𝑚/𝑠 

 𝑍௤ −716,5  

𝑁𝑠/𝑟𝑎𝑑 

𝑀௨ 0  𝑀௪ −513,1 

𝑁𝑠 

 𝑀௤ −7732 

𝑁𝑚𝑠/𝑟𝑎𝑑 

 𝑔 −9,807  

𝑚/𝑠ଶ 

𝛩଴ 0  ɸ଴ 0  𝑋ఋ೅
 2030 

𝑁 

 𝑋ఋಶ
 0 

𝑋ఋಷ
 0  𝑍ఋ೅

 0  𝑍ఋಶ
 −16508 

𝑁/𝑟𝑎𝑑 

 𝑍ఋಷ
 0 

𝑀ఋ೅
 0  𝑀ఋಶ

 −64179 

𝑁𝑚/𝑟𝑎𝑑 

 𝑀ఋಷ
 0  𝑌௩̇ 0 

𝑌௣̇ 0  𝑌௥̇ 0  𝐿௩̇ 0  𝐼௫ 1285  

𝑘𝑔𝑚ଶ 

𝐿௣̇ 0  𝐼௫௭ 0  𝐿௥̇ 0  𝑁௩̇ 0 

𝑁௣̇ 0  𝐼௭ 2667  

𝑘𝑔𝑚ଶ 

 𝑁௥̇ 0  𝑌௩ −220,8 

𝑁𝑠/𝑚 

𝑌௣ −220,8 

𝑁𝑠/𝑟𝑎𝑑 

 𝑈଴ 68,00 

𝑚/𝑠 

 𝑌௥ 659,4 

𝑁𝑠/𝑟𝑎𝑑 

 𝐿௩ −568,8 

𝑁𝑠 

𝐿௣ −16360 

𝑁𝑚𝑠/𝑟𝑎𝑑 

 𝐿௥ 2697 

𝑁𝑚𝑠/𝑟𝑎𝑑 

 𝑁௩ 361,7 

𝑁𝑠 

 𝑁௣ −939,7 

𝑁𝑚𝑠/𝑟𝑎𝑑 

𝑁௥ −3167 

𝑁𝑚𝑠/𝑟𝑎𝑑 

 𝑌ఋಲ
 0  𝑌ఋೃ

 7179 

𝑁/𝑟𝑎𝑑 

 𝐿ఋಲ
 9644 

𝑁𝑚/𝑟𝑎𝑑 

𝐿ఋೃ
 6191 

𝑁𝑚/𝑟𝑎𝑑 

 𝑁ఋಲ
 −9097 

𝑁𝑚/𝑟𝑎𝑑 

 𝑁ఋೃ
 −27163 

𝑁𝑚/𝑟𝑎𝑑 
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3. A otimização do sistema de controle é desenvolvida a partir do método da 

evolução diferencial, cujos parâmetros são apresentados na Tab. 6.9, que 

busca minimizar o erro médio absoluto MAE com relação ao comportamento 

(decaimento) imposto ao sistema de controle. No processo de busca por 

soluções que atendam ao requisito do sistema, impõe-se que as funções de 

pertinência que ocupam os limites dos intervalos de busca apresentem o 

mesmo valor de desvio padrão e tenham os valores de média iguais aos 

próprios limites de busca. Quanto às demais funções de pertinência, impõe-se 

igualdade de valor de desvio padrão e simetria com relação ao centro do 

intervalo de busca. O processo de otimização é subdividido em 4 etapas, 

descritas a seguir: 
 

Tabela 6.9: Parâmetros da Evolução Diferencial. 

Parâmetro Valor 

Número de iterações 100 

Número de vetores 50 

Taxa de cruzamento 0,95 

Fator de perturbação 0,4 

 

a. Otimização dos parâmetros do 𝑆𝐵𝑅𝐹ଶ e consequentemente a definição 

de suas funções de pertinência, Figs. 6.3 e 6.4. Esta otimização se 

realiza a partir da simulação da operação da aeronave Cessna 172 

submetida aos valores de referência, condições iniciais e perturbações 

apresentados na Eq. (6.1). 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

     𝜃௦௘௧,௞ = 0,  0 ≤ 𝑡 < 90 𝑠

𝜃௞(𝑡 = 0) = 10୭                                

𝜃௞(𝑡 = 15 𝑠) = −10୭                      

𝜃௞(𝑡 = 30 𝑠) = 10୭                           

𝜃௞(𝑡 = 45 𝑠) = −10୭                       

𝜃௞(𝑡 = 60 𝑠) = 10୭                          

𝜃௞(𝑡 = 75 𝑠) = −10୭                       
𝑈௦௘௧,௞ = U୩ = 30 𝑚/𝑠,  0 ≤ 𝑡 < 30 𝑠 

𝑈௦௘௧,௞ = U୩ = 68 𝑚/𝑠,  30 ≤ 𝑡 < 60 𝑠

𝑈௦௘௧,௞ = U୩ = 100 𝑚/𝑠,  60 ≤ 𝑡 < 90 𝑠.

                                                                (6.1) 
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 𝑆𝐵𝑅𝐹ଶ – Entradas 

    

            (a) Funções de pertinência de 𝜃௘௥௥,௞.               (b) Funções de pertinência de 𝑈௞. 

Figura 6.3: Funções de pertinência das entradas do 𝑆𝐵𝑅𝐹ଶ (autoria própria). 

 

 𝑆𝐵𝑅𝐹ଶ – Saída 

 

Figura 6.4: Funções de pertinência da saída do 𝑆𝐵𝑅𝐹ଶ (autoria própria). 

 

b. Otimização dos parâmetros de 𝑆𝐵𝑅𝐹ଵ e 𝑆𝐵𝑅𝐹ଷ , e consequentemente a 

definição de suas funções de pertinência, Figs. 6.5 a 6.8. Esta 

otimização se realiza por meio da simulação da operação da aeronave 

Cessna 172 submetida aos valores de referência, condições iniciais e 

perturbações apresentados na Eq. (6.2). 
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⎩
⎪
⎨

⎪
⎧

ℎ௦௘௧,௞ = 50 𝑚,  0 ≤  𝑡 < 30 𝑠

ℎ௦௘௧,௞ =  0 𝑚,  30 ≤ 𝑡 < 100 𝑠

𝑈௦௘௧,௞ = 68 𝑚/𝑠,  0 ≤ 𝑡 < 30 𝑠  

𝑈௦௘௧,௞ =  73 𝑚 𝑠⁄ ,  30 ≤ 𝑡 < 50 𝑠

𝑈௦௘௧,௞ = 68 𝑚 𝑠⁄ ,  50 ≤ 𝑡 < 100 𝑠.

                                                                (6.2) 

 

 𝑆𝐵𝑅𝐹ଵ – Entrada 
 

 

Figura 6.5: Funções de pertinência da entrada do 𝑆𝐵𝑅𝐹ଵ (autoria própria). 

 

 𝑆𝐵𝑅𝐹ଵ – Saída 
 

 

Figura 6.6: Funções de pertinência da saída do 𝑆𝐵𝑅𝐹ଵ (autoria própria). 
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 𝑆𝐵𝑅𝐹ଷ – Entradas 
 

    

            (a) Funções de pertinência de ℎ௘௥௥,௞.               (b) Funções de pertinência de 𝑈௘௥௥,௞. 

Figura 6.7: Funções de pertinência das entradas do 𝑆𝐵𝑅𝐹ଷ (autoria própria). 

 

 𝑆𝐵𝑅𝐹ଷ – Saída 
 

 

Figura 6.8: Funções de pertinência da saída do 𝑆𝐵𝑅𝐹ଷ (autoria própria). 

 

c. Otimização dos parâmetros do 𝑆𝐵𝑅𝐹ହ e assim a definição de suas 

funções de pertinência, Figs. 6.9 e 6.10. Esta otimização se dá a partir 

novamente da simulação da operação da aeronave Cessna 172 

submetida aos valores de referência, condições iniciais e perturbações 

apresentados na Eq. (6.3). 
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

    𝜙௦௘௧,௞ = 0,  0 ≤ 𝑡 < 90 𝑠

𝜙௞(𝑡 = 0) = 10୭                                

𝜙௞(𝑡 = 15 𝑠) = −10୭                      

𝜙௞(𝑡 = 30 𝑠) = 10୭                           

𝜙௞(𝑡 = 45 𝑠) = −10୭                       

𝜙௞(𝑡 = 60 𝑠) = 10୭                          

𝜙௞(𝑡 = 75 𝑠) = −10୭                       
𝑈௦௘௧,௞ = U୩ = 30 𝑚/𝑠,  0 ≤ 𝑡 < 30 𝑠 

𝑈௦௘௧,௞ = U୩ = 68 𝑚/𝑠,  30 ≤ 𝑡 < 60 𝑠

𝑈௦௘௧,௞ = U୩ = 100 𝑚/𝑠,  60 ≤ 𝑡 < 90 𝑠.

                                                                (6.3) 

 

 𝑆𝐵𝑅𝐹ହ – Entradas 

    

            (a) Funções de pertinência de 𝜙௘௥௥,௞.               (b) Funções de pertinência de 𝑈௞. 

Figura 6.9: Funções de pertinência das entradas do 𝑆𝐵𝑅𝐹ହ (autoria própria). 

 

 𝑆𝐵𝑅𝐹ହ – Saída 

 

Figura 6.10: Funções de pertinência da saída do 𝑆𝐵𝑅𝐹ହ (autoria própria). 
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d. Por fim, a otimização dos parâmetros de 𝑆𝐵𝑅𝐹ସ e 𝑆𝐵𝑅𝐹଺, e logo a 

definição de suas funções de pertinência, Figs. 6.11 a 6.14, a partir da 

simulação da operação da aeronave Cessna 172 submetida aos valores 

de referência, condições iniciais e perturbações apresentados na Eq. 

(6.4). 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝜓௦௘௧,௞ = 90୭,  0 ≤  𝑡 < 50 𝑠

𝜓௦௘௧,௞ = 0୭,  50 ≤ 𝑡 < 100 𝑠 

𝜓௦௘௧,௞ = 90୭, 100 ≤  𝑡 < 150 𝑠

𝜓௦௘௧,௞ = 0୭,  150 ≤ 𝑡 < 200 𝑠

𝜓௦௘௧,௞ = 90୭,  200 ≤ 𝑡 < 250 𝑠

𝜓௦௘௧,௞ = 0୭,  250 ≤ 𝑡 < 300 𝑠

𝑈௦௘௧,௞ = U୩ = 30 𝑚/𝑠,  0 ≤ 𝑡 < 100 𝑠   

𝑈௦௘௧,௞ = U୩ =  60 𝑚 𝑠⁄ ,  100 ≤ 𝑡 < 200 𝑠

𝑈௦௘௧,௞ = U୩ = 100 𝑚 𝑠⁄ ,  200 ≤ 𝑡 < 300 𝑠.

                                                                (6.4) 

 

 𝑆𝐵𝑅𝐹ସ – Entrada 

 

Figura 6.11: Funções de pertinência da entrada do 𝑆𝐵𝑅𝐹ସ (autoria própria). 
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 𝑆𝐵𝑅𝐹ସ – Saída 

 

Figura 6.12: Funções de pertinência da saída do 𝑆𝐵𝑅𝐹ସ (autoria própria). 

 

 𝑆𝐵𝑅𝐹଺ – Entradas 

    

            (a) Funções de pertinência de ℎ௘௥௥,௞.               (b) Funções de pertinência de U୩. 

Figura 6.13: Funções de pertinência das entradas do 𝑆𝐵𝑅𝐹଺ (autoria própria). 
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 𝑆𝐵𝑅𝐹଺ – Saída 

 

Figura 6.14: Funções de pertinência da saída do 𝑆𝐵𝑅𝐹଺ (autoria própria). 

 

O desempenho do sistema aeronáutico, controlado a partir da arquitetura de controle 

neuro-fuzzy proposta neste trabalho (PIA), é apresentado nas Figs. 6.15 a 6.19, assim como 

o desempenho dos controladores PID e neuro-fuzzy com o método de inferência de Takagi-

Sugeno de ordem 0 (TS), sendo este último dotado da mesma arquitetura de controle e 

mesma técnica de otimização utilizada no controlador PIA. Nessas figuras, também são 

apresentados os gráficos dos sinais de referência 𝑠𝑒𝑡 no tempo discreto 𝑘, e o comportamento 

(decaimento) considerado para a resposta, requisito este que é função das dimensões da 

aeronave e está relacionado ao conforto dos passageiros a bordo, sendo mais suave que o 

valor de referência. 

 

Figura 6.15: Velocidade da aeronave 𝑈(𝑚/𝑠) em função do tempo de simulação 𝑡(𝑠) 

(autoria própria). 
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Na análise dos gráficos da Fig. 6.15, é possível verificar que a resposta do sistema 

com o controlador PID apresenta menor sobressinal se comparada às respostas dos demais 

controladores. A aderência da resposta da aeronave com relação ao decaimento desejado de 

0 a 50 segundos é melhor com o controlador PID, porém, de 50 a 100 segundos, os 

controladores TS e PIA apresentam desempenho superior a este. 
 

 

Figura 6.16: Ângulo de arfagem da aeronave 𝜃( ௢) em função do tempo de simulação 𝑡(𝑠) 

(autoria própria). 
 

No gráfico da Fig. 6.16, verifica-se o desempenho semelhante dos sistemas de 

controle, porém o controlador PIA, na maior parte da simulação, apresenta maior capacidade 

de seguir o decaimento pré-estipulado. 
 

 

Figura 6.17: Altitude da aeronave em relação ao ponto de linearização ℎ(𝑚) em função do 

tempo de simulação 𝑡(𝑠) (autoria própria). 
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Nos gráficos da Fig. 6.17, nota-se que a altitude da aeronave em simulação é 

controlada de forma semelhante utilizando quaisquer dos controladores testados. O 

controlador PID, porém, obteve desempenho mais satisfatório sobretudo no intervalo de 

tempo de 40 a 60 segundos. 
 

 

Figura 6.18: Ângulo de rolagem da aeronave 𝜙( ௢) em função do tempo de simulação 𝑡(𝑠) 

(autoria própria). 
 

Os controladores empregados em simulação, mais uma vez, desempenham-se de 

forma satisfatória e semelhante, conforme é possível verificar na Fig. 6.18. Nota-se, porém, 

que em praticamente toda a simulação, o controlador PIA apresenta maior capacidade de 

seguir o comportamento pré-estipulado. 

 

Figura 6.19: Ângulo de guinada da aeronave 𝜓( ௢) em função do tempo de simulação 𝑡(𝑠) 

(autoria própria). 
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Por fim, ao se analisar os gráficos da Fig. 6.19 e levar em consideração a velocidade 

de cruzeiro adotada para a aeronave durante a simulação, a saber: 30 m/s no intervalo [0,100) 

𝑠, 60 m/s no intervalo [100,200) s e 100 m/s no intervalo [200,300) s; é possível verificar 

novamente que todos os controladores conseguem manter o ângulo de guinada do Cessna 

172 próximo ao comportamento desejado, sobretudo o controlador PIA. Ressalta-se também 

que este controlador, se comparado ao PID, mostra ser consideravelmente menos suscetível 

aos efeitos do aumento da velocidade de cruzeiro. 

As ações de controle geradas pelo sistema neuro-fuzzy que lança mão do método PIA 

de inferência fuzzy, e que são responsáveis pelas respostas anteriormente apresentadas, são 

compostas pela deflexão do profundor 𝛿𝐸, taxa de aceleração 𝛿𝑇, deflexão do aileron 𝛿𝐴 e 

deflexão do leme 𝛿𝑅, e são exibidas respectivamente nas Figs. 6.20(a), 6.20(b), 6.21(a) e 

6.21(b). 

         

               (a) 𝛿𝐸 em função do tempo 𝑡(𝑠).                       (b) 𝛿𝑇 em função do tempo 𝑡(𝑠). 

Figura 6.20: Ações de controle associadas à dinâmica longitudinal da aeronave (autoria 

própria).  

          

               (a) 𝛿𝐴 em função do tempo 𝑡(𝑠).                       (b) 𝛿𝑅 em função do tempo 𝑡(𝑠). 

Figura 6.21: Ações de controle associadas à dinâmica látero-direcional da aeronave (autoria 

própria).  
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Através dos gráficos apresentados, é possível verificar que as ações de controle 

tendem a zero à medida em que o sistema se aproxima de seus valores de referência, com 

exceção à taxa de aceleração, responsável por manter o equilíbrio dinâmico da aeronave em 

um voo reto e nivelado, que oscila em torno de 0,5 (50% de carga do propulsor). 

Diante dos resultados expostos graficamente nas Figs. 6.15 a 6.19, é possível verificar 

a capacidade de todas as técnicas de controlar efetivamente a aeronave Cessna 172. Em 

função do semelhante desempenho dos sistemas de controle, apresentam-se na Tab. 6.10, 

para cada uma das metodologias testadas, os dados relativos ao erro absoluto médio (MAE) 

da resposta do sistema controlado com relação ao decaimento de referência. 

 

Tabela 6.10: Erro MAE da Resposta do Sistema Controlado. 

       Controlador 

Variável 

PIA TS PID 

𝑈(𝑚/𝑠) 0,4196 0,4234 0,3748 

𝜃( ௢) 0,5858 0,6320 0,7313 

ℎ(𝑚) 2,2105 2,3969 1,5356 

𝜙( ௢) 0,1357 0,2623 0,1588 

𝜓( ௢) 5,1227 8,2976 14,0976 

 

É possível concluir, dentro das condições em teste e por meio dos resultados expostos 

na Tab. 6.10, que o controlador neuro-fuzzy que utiliza o método PIA de inferência fuzzy 

apresenta o melhor desempenho geral dentre as metodologias testadas, tendo obtido 

resultados superiores às demais técnicas em 3 das 5 variáveis de saída do sistema. Esse 

resultado indica que o método PIA se mostra, também, eficaz como estrutura matemática de 

um sistema de controle. 

No intuito de verificar a estabilidade do sistema de controle sintonizado, as Eqs. (2.46), 

(2.47), (2.48) e (2.49) são aglutinadas em uma única equação matricial na forma 𝑀𝑥̇ + 𝐾𝑥 =

= 𝐷𝑢, Eq. (6.5), em que 𝑥 é o estado do sistema, 𝑢 é a ação de controle aplicada ao mesmo 

e 𝑀, 𝐾 e 𝐷 são as matrizes que armazenam os coeficientes aerodinâmicos da aeronave: 
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑚 − 𝑋௨̇ −𝑋௪̇ −𝑋௤̇ 0 0 0 0 0 0

−𝑍௨̇ 𝑚 − 𝑍௪̇ −𝑍௤̇ 0 0 0 0 0 0

−𝑀௨̇ −𝑀௪̇ 𝐼௬ − 𝑀௤̇ 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
0 0 0 0 𝑚 − 𝑌௩̇ −𝑌௣̇ −𝑌௥̇ 0 0

0 0 0 0 −𝐿௩̇ 𝐼௫ − 𝐿௣̇ − 𝐼௫௭ − 𝐿௥̇ 0 0

0 0 0 0 −𝑁௩̇ − 𝐼௫௭ − 𝑁௣̇ 𝐼௭ − 𝑁௥̇ 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑢̇
𝑤̇
𝑞̇

𝜃̇
𝑣̇
𝑝̇
𝑟̇
𝜙̇

𝜓̇⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+ 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑋௨ 𝑚𝑄଴ − 𝑋௪ 𝑚𝑊଴ − 𝑋௤ 𝑚𝑔𝑐𝑜𝑠(𝛩଴) 0 0 0 0 0

−𝑚𝑄଴ − 𝑍௨ −𝑍௪ −𝑚𝑈଴ − 𝑍௤ 𝑚𝑔𝑠𝑖𝑛(𝛩଴)cos (ɸ଴) 0 0 0 0 0

−𝑀௨ −𝑀௪ −𝑀௤ 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0
0 0 0 0 −𝑌௩ −𝑚𝑊଴ − 𝑌௣ 𝑚𝑈଴ − 𝑌௥ −𝑚𝑔 cos(𝛩଴) cos(ɸ଴) 0

0 0 0 0 −𝐿௩ − 𝐼௫௭𝑄଴ − 𝐿௣ ൫𝐼௭ − 𝐼௬൯𝑄଴ − 𝐿௥ 0 0

0 0 0 0 −𝑁௩ ൫𝐼௬ −  𝐼௫൯𝑄଴ − 𝑁௣ 𝐼௫௭𝑄଴ − 𝑁௥ 0 0

0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑢
𝑤
𝑞
𝜃
𝑣
𝑝
𝑟
𝜙
𝜓⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑋ఋ೅
𝑋ఋಶ

𝑋ఋಷ
0 0

𝑍ఋ೅
𝑍ఋಶ

𝑍ఋಷ
0 0

𝑀ఋ೅
𝑀ఋಶ

𝑀ఋಷ
0 0

0 0 0 0 0
0 0 0 𝑌ఋಲ

𝑌ఋೃ

0 0 0 𝐿ఋಲ
𝐿ఋೃ

0 0 0 𝑁ఋಲ
𝑁ఋೃ

0 0 0 0 0
0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝛿்

𝛿ா

𝛿ி

𝛿஺

𝛿ோ⎦
⎥
⎥
⎥
⎤

.                                                                       (6.5) 

Ao se multiplicar a Eq. (6.5) por 𝑀ିଵ e isolar 𝑥̇, é possível reescrever a dinâmica do 

sistema no formato disposto na Eq. (2.6), em que 𝑓(𝑥) e 𝑏(𝑥)  são funções que descrevem a 

dinâmica do sistema, e 𝑥(𝑡଴) é o estado inicial no tempo 𝑡଴. 

𝑥̇(𝑡) = 𝑓(𝑥) + 𝑏(𝑥)𝑢(𝑥), 𝑥(𝑡଴) = 𝑥௢.                                                                                     (2.6) 

Define-se a função de Lyapunov 𝑉(𝑥) = 𝑥்𝑃𝑥, tomando 𝑃 como sendo uma matriz 

identidade, e em seguida determina-se a derivada da função de Lyapunov 𝑉̇, Eq. (2.7): 

𝑉̇(𝑥) = 𝑥்̇𝑃𝑥 + 𝑥்𝑃𝑥̇  =                                                                                                             

𝑉̇(𝑥) = ൫𝑓(𝑥) + 𝑏(𝑥)𝑢(𝑥)൯
்

𝑃𝑥 + 𝑥்𝑃൫𝑓(𝑥) + 𝑏(𝑥)𝑢(𝑥)൯ =  

𝑉̇(𝑥) = 𝐹(𝑥) + 𝐵(𝑥),                                                                                                              (2.7) 

em que: 

𝐹(𝑥) = 𝑓(𝑥)்𝑃𝑥 + 𝑥்𝑃𝑓(𝑥),   𝐵(𝑥) = 𝑢்(𝑥)𝑏்(𝑥)𝑃𝑥 + 𝑥்𝑃𝑏(𝑥)𝑢(𝑥).                                    (2.8) 
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Se 𝑉̇(𝑥) < 0 ∀𝑥, tem-se que o sistema em malha fechada, composto pelo controlador e pelo 

processo não-linear, será localmente assintoticamente estável no sentido de Lyapunov na 

origem 𝑥଴.  

Em função da complexidade matemática do modelo e do controlador neuro-fuzzy 

desenvolvido neste trabalho, abre-se mão de uma avaliação analítica, e realiza-se então a 

avaliação numérica da derivada da função da Lyapunov 𝑉̇ dentro dos limites pré-definidos 

para as variáveis do processo. Esses limites são estabelecidos de modo a contemplar o 

envelope de voo (limites operacionais) da aeronave e são apresentados na Tab. 6.11. 

Ressalta-se que os intervalos de avaliação de 𝑉̇ são discretizados, gerando um total de 

1679616 avaliações, Fig. 6.22, o que é um indicativo de confiabilidade na inferência da 

estabilidade do sistema controlado. 

 

Tabela 6.11: Intervalo de Avaliação da Função de Lyapunov 𝑉̇. 

Variável Limite Inferior Limite superior 

𝑢(𝑚/𝑠) -25 25 

𝑣(𝑚/𝑠) -25 25 

𝑤(𝑚/𝑠) -25 25 

𝑝(𝑟𝑎𝑑/𝑠) -0,05 0,05 

𝑞(𝑟𝑎𝑑/𝑠) -0,05 0,05 

𝑟(𝑟𝑎𝑑/𝑠) -0,05 0,05 

𝜙( ௢) -8 8 

𝜃( ௢) -8 8 
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Figura 6.22: Avaliação numérica da derivada da função de Lyapunov 𝑉̇ (autoria própria). 

 

É possível verificar através do gráfico apresentado anteriormente que o valor da derivada 

da função de Lyapunov para todas as condições testadas é negativo, sendo o maior valor 

observado igual a −0,3634, o que é um forte indício numérico de que o sistema controlado em 

malha fechada em questão é localmente assintoticamente estável no sentido de Lyapunov na 

origem 𝑥଴. 

Após a sintonização e análise de estabilidade do sistema aeronáutico controlado através 

do controlador neuro-fuzzy associado ao método PIA de inferência fuzzy, na próxima seção é 

apresentada a aplicação da técnica desenvolvida no controle de aeronave em operações 

críticas de voo. 

 

6.3. Software-in-the-Loop – Operações Críticas de Voo 

 

Esta seção apresenta o desempenho do sistema de controle aplicado a operações 

críticas de voo, porém, para viabilizar o software-in-loop realizado entre o MATLAB e o X-

Plane 11, é necessário o desenvolvimento de uma interface de comunicação entre os dois 

softwares, assunto a ser abordado na etapa a seguir. 
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Comunicação UDP entre MATLAB e X-Plane 11 

 

O X-Plane 11 é um simulador de voo produzido pela empresa Laminar Research 

(FIGUEIREDO e SAOTOME, 2012) caracterizado pela sua versatilidade e fidedignidade. 

Conta com modelos de aeronaves comerciais e militares, e um cenário virtual que abrange 

aeroportos e regiões do mundo todo. Além disso, o X-Plane 11 possibilita a reprodução de 

operações críticas de voo, relacionadas tanto ao funcionamento da aeronave, quanto às 

condições meteorológicas. Durante a simulação, é possível submeter a aeronave a uma série 

de avarias como falhas nos motores, sensores, instrumentos de navegação, controles, trens 

de pouso, dentre outros componentes. Da mesma forma também é possível alterar, a qualquer 

momento durante a simulação, as condições climáticas de forma a inserir perturbações como 

rajadas de vento, zonas de turbulência, chuvas fortes, dentre outras condições. 

A agência americana FAA e a Agência Nacional de Aviação Civil (ANAC) reconhecem 

o X-Plane 11 como um software de base para simulações utilizadas no treinamento de pilotos 

profissionais, uma vez que este é capaz de reproduzir com alta fidelidade o ambiente de voo 

e a resposta da aeronave às ações de controle aplicadas pelo piloto. Além disso, o simulador 

possui ferramentas que permitem que o desempenho do piloto seja avaliado após o 

encerramento das simulações (ALMEIDA e CORREA, 2017). 

Há na literatura trabalhos que propõem a utilização do Simulink e do X-Plane 11 na 

realização de simulações do tipo software-in-the-loop (BITTAR, 2011; FIGUEIREDO e 

SAOTOME, 2012; BITTAR et al., 2014). No entanto, a literatura carece de trabalhos que 

apresentem a elaboração de um código puramente desenvolvido em linguagem de 

programação, e não em programação gráfica como o Simulink, o que garantiria que técnicas 

de controle mais complexas pudessem ser implementadas de forma mais direta e 

computacionalmente eficiente. Assim, este trabalho propõe o desenvolvimento de um 

algoritmo, através do uso do MATLAB, que possibilite o estabelecimento de uma comunicação 

entre este e o simulador de voo X-Plane 11, baseada no protocolo UDP (User Datagram 

Protocol). 

Durante as simulações realizadas no X-Plane 11, são gerados dados em tempo real 

referentes à atitude, à localização e às ações de controle da aeronave. Caso o simulador seja 

configurado adequadamente, estes dados podem ser enviados através de uma rede UDP, a 

um IP (Internet Protocol) e a uma porta especificados, o que permite que outros softwares 

possam ter acesso aos dados gerados durante a simulação. Além disso, pacotes de 

comandos podem ser endereçados ao X-Plane 11 através da rede UDP estabelecida, de 
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forma que a aeronave possa ser controlada através da atuação sobre as superfícies de 

controle e sobre o sistema de propulsão, configurando assim uma simulação do tipo software-

in-the-loop. 

Para tratar os dados gerados durante a simulação, é necessário fazer com que o X-

Plane 11 os envie para algum outro software que fique responsável pelo seu processamento 

e armazenamento. Neste trabalho, a análise dos dados é realizada através da utilização do 

MATLAB, e a comunicação entre este e o simulador é feita por meio de uma conexão baseada 

no protocolo UDP. Por fim, é importante destacar que o simulador e o algoritmo desenvolvido 

no MATLAB devem ser executados simultaneamente e no mesmo computador. 

Para que a comunicação entre o MATLAB e o X-Plane 11 seja estabelecida da forma 

adequada, é necessário antes disso realizar um estudo acerca do simulador, e de como este 

constrói os pacotes de dados que são enviados através da rede. Este estudo é essencial para 

que o algoritmo aqui proposto seja desenvolvido, uma vez que o código deve levar em conta 

a estrutura dos pacotes que recebe do X-Plane 11, visto que é responsável pelo tratamento 

dos dados contidos nestes pacotes, e deve ser capaz de extrair deles as informações 

referentes à simulação. 

Basicamente, as mensagens enviadas pelo X-Plane podem conter quaisquer 

informações geradas durante a simulação. Estas informações normalmente estão 

relacionadas ao estado atual da aeronave e dizem respeito a variáveis como por exemplo as 

velocidades lineares, as velocidades angulares, as acelerações, a deflexão das superfícies 

de comando, os ângulos de Euler, as coordenadas geográficas da aeronave, entre outras 

(BITTAR, 2011; BITTAR et al., 2014). Desta forma, é necessário escolher quais variáveis 

estarão por fim contidas na mensagem enviada pelo X-Plane11, e esta configuração é 

realizada no menu Settings, na aba Data Output, Fig. 6.23. 
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Figura 6.23: Variáveis enviadas pelo X-Plane (IASBECK, PEREIRA e SANCHES, 2020). 

 

Como o controle dos ângulos de Euler da aeronave é realizado durante a simulação, 

é preciso que o MATLAB receba do simulador pacotes que contenham informações acerca 

da atitude do avião. Assim sendo, o conjunto de variáveis selecionado na aba Data Output do 

X-Plane 11 é o de índice 17 (Pitch, roll & headings). Uma vez selecionado apenas este 

conjunto de variáveis, as mensagens enviadas pelo X-Plane 11 devem conter, em graus, o 

ângulo de arfagem (𝜃), o ângulo de rolagem (𝜙), e a diferença entre a direção para a qual 

aponta o avião e o norte (𝜓 ou headings). 

As mensagens enviadas pelo X-Plane 11 são compostas por uma série de bytes e 

seguem a seguinte estrutura (LEWIS, 2009): 

 Cabeçalho: 5 bytes; 

 Índice correspondente ao conjunto de dados contido na mensagem: 4 bytes; 

 Dados da mensagem: 32 bytes (8 números do tipo float com 4 bytes cada). 

O cabeçalho da mensagem enviada pelo X-Plane possui cinco bytes e cada um deles 

representa um caractere. As mensagens enviadas pelo simulador têm seu cabeçalho 

composto pelas letras D, A, T e A, que indicam que a mensagem se trata de um pacote de 

dados, e além delas o caractere null. No entanto, como a mensagem enviada pelo X-Plane 

11 é um conjunto de valores numéricos, sendo cada byte um valor que varia entre 0 e 255, 

serão observados como seus 5 primeiros bytes os números [68 65 84 65 0], correspondentes 
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na tabela ASCII (American Standard Code for Information Interchange) aos caracteres [D A T 

A null] (ASCIITABLE, 2010). No momento em que o MATLAB envia comandos ao simulador, 

a mesma estrutura é considerada na construção das mensagens. 

Logo após o cabeçalho, encontra-se o índice correspondente ao conjunto de dados 

contido na mensagem. O mesmo possui comprimento de quatro bytes. Neste trabalho foi 

escolhido inicialmente apenas um conjunto de variáveis: o de índice 17. Assim sendo, é 

possível observar logo após o cabeçalho o conjunto de bytes [0 0 0 17]. 

Por fim, os valores dos ângulos 𝜃, 𝜙 e 𝜓 (variáveis relativas ao conjunto de índice 17, 

discutido no parágrafo anterior) encontram-se ao fim da mensagem e são os dados que de 

fato devem ser processados pelo algoritmo responsável pelo controle da aeronave. Cada 

pacote construído pelo X-Plane 11 pode conter até oito variáveis, sendo cada uma delas um 

número real do tipo float (single precision) composto por 4 bytes (32 bits). O primeiro bit indica 

o sinal 𝑠 do número real representado, os próximos oito o expoente 𝑒, e os demais a mantissa 

𝑚. Para que os vetores de bytes recebidos possam ser convertidos em números reais, a 

inversão destes se faz necessária, já que neste caso o computador utilizado implementa a 

arquitetura de representação de dados little endian. 

Uma vez realizada a inversão dos bytes, os mesmos devem ser convertidos em suas 

correspondentes cadeias binárias que devem por fim ser concatenadas. Neste caso, como a 

conversão se dá a partir de vetores de 4 bytes, o valor binário gerado deverá possuir, por fim, 

32 bits e a partir deste devem ser obtidos a mantissa 𝑚ଶଷି௜ , 𝑖 = 1, … 23, o expoente 𝑒, e o bit 

de sinal 𝑠 (STALLINGS, 2003). Para calcular o número real (ou single) correspondente aos 

dados recebidos, converte-se o vetor de bits que compõe o expoente em um número decimal, 

𝑒ଵ଴, e em seguida utilizam-se as Eqs. (6.6) a (6.9) (LEWIS, 2009): 

𝐴 = (−1)௦,                                                                                                                             (6.6) 

𝐵 = ൫1 + ∑ 𝑚ଶଷି௜2
ି௜ଶଷ

௜ୀଵ ൯,                                                                                                       (6.7) 

𝐶 = 2௘భబିଵଶ ,                                                                                                                          (6.8) 

𝑠𝑖𝑛𝑔𝑙𝑒 = 𝐴𝐵𝐶.                                                                                                                        (6.9) 

A conversão de um vetor de quatro bytes enviados no X-Plane em um número real, 

realizada a partir da aplicação das Eqs. (6.6) a (6.9), é implementada no software MATLAB 

por meio das funções a serem apresentadas nesta seção. 
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Caso vários conjuntos de variáveis sejam selecionados pelo usuário, todos eles 

deverão estar contidos na mensagem encaminhada pelo X-Plane. Assim sendo, a estrutura 

de um pacote que contenha mais de um conjunto de variáveis é mostrada a seguir. 

 Cabeçalho: 5 bytes; 

 Índice correspondente ao 1º conjunto de dados contido na mensagem: 4 bytes; 

 1º conjunto de dados da mensagem: 32 bytes (8 números do tipo float com 4 

bytes cada); 

 Índice correspondente ao 2º conjunto de dados contido na mensagem: 4 bytes; 

 2º conjunto de dados da mensagem: 32 bytes (8 números do tipo float com 4 

bytes cada); 

 E assim sucessivamente ... 

À medida em que os dados são gerados pelo simulador, é interessante que eles sejam 

não somente enviados via UDP, mas também salvos em um arquivo e mostrados na tela 

durante a execução do algoritmo aqui desenvolvido, de forma que seja possível confirmar, 

tanto em tempo real quanto após o fim da simulação, que os dados recebidos pelo MATLAB 

realmente estejam corretos. Para tal, marca-se na tabela presente na aba Data Output (no 

menu de configurações do X-Plane 11) as caixas de seleção Show in Cockpit, Disk (data.txt 

File) e Network via UDP, Fig. 6.24. Desta forma, os dados da simulação serão não somente 

enviados através da rede, mas também mostrados durante a simulação no canto superior 

esquerdo da tela, Fig. 6.25, e salvos no arquivo File.txt, presente na pasta principal do X-Plane 

11. 

 

 

Figura 6.24: Caixas de seleção da tabela presente na aba Data Output (IASBECK, 

PEREIRA e SANCHES, 2020). 
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Figura 6.25: Dados de voo no X-Plane 11 (IASBECK, PEREIRA e SANCHES, 2020). 

 

Ainda na aba Data Output é determinada a taxa de envio de dados através da rede 

UDP (número de pacotes enviados pelo X-Plane 11 a cada segundo), em UDP Rate, a taxa 

de escrita no arquivo File.txt (número de escritas no arquivo realizadas a cada segundo), em 

Disk Rate, e o IP do dispositivo para o qual o X-Plane enviará seus pacotes, em IP Address, 

Fig. 6.26. Ressalta-se que a taxa de envio de dados através da rede UDP, utilizada na 

simulação de forma equivalente à frequência de amostragem do sistema, deve ser 

determinada com base nas características dinâmicas da aeronave em estudo. 

 

 

Figura 6.26: Configurações da comunicação (IASBECK, PEREIRA e SANCHES, 2020). 

 

Para o IP de destino dos pacotes enviados pelo X-Plane 11, é escolhido o local host. 

Este endereço representa o IP do dispositivo responsável por remeter a mensagem, o que 

significa que quando uma mensagem é enviada para ao local host, esta retorna ao dispositivo 

que a enviou. Neste caso, o X-Plane envia uma mensagem ao local host, e a mesma retorna 

para o computador em que ocorre a simulação. Uma vez que o MATLAB é executado 
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juntamente ao X-Plane e na mesma máquina, essa é uma das formas de fazer com que as 

mensagens enviadas pelo simulador cheguem até o MATLAB. O número da porta para onde 

as mensagens serão direcionadas pode ser estabelecido de forma arbitrária, porém é 

importante observar se nenhum outro software utiliza, durante a simulação, a porta 

selecionada. Neste trabalho, o número escolhido para a porta foi o 8888, e este parâmetro 

deve ser levado em consideração no desenvolvimento do código em MATLAB que deverá 

receber e tratar as mensagens. 

Além de receber pacotes de dados do X-Plane 11, é possível também enviar ao 

simulador mensagens contendo comandos que possam alterar a deflexão das superfícies de 

comando da aeronave (ailerons, profundores e leme) ou a aceleração de seus motores. Desta 

forma é possível controlar o comportamento da aeronave por meio do envio de comandos 

através da rede. Como o MATLAB e o X-Plane 11 são executados simultaneamente e no 

mesmo computador, os pacotes que contêm os comandos são enviados ao local host 

(127.0.0.1), e à porta 49000 (utilizada por padrão pelo simulador para o recebimento de 

mensagens). Os pacotes enviados ao X-Plane devem possuir a mesma estrutura daqueles 

remetidos por ele: um cabeçalho de 5 bytes preenchido com os valores [68 65 84 65 0], em 

seguida o índice correspondente ao comando a ser enviado, e por fim os oito valores do tipo 

float devidamente representados como vetores de bytes. 

Para enviar comandos ao simulador que ocasionem alterações na posição das 

superfícies de comando, o índice utilizado na construção do pacote encaminhado ao X-Plane 

deve ser o 11, Fig. 6.23. Assim sendo, a mensagem final é composta por cinco bytes de 

cabeçalho, [69 65 94 65 0], quatro de índice, [0 0 0 11], e trinta e dois de dados (os quatro 

primeiros referentes ao controle dos profundores, os quatro seguintes ao dos ailerons, e os 

próximos quatro ao do leme). Neste caso há apenas três informações a serem enviadas, 

sendo que o pacote encaminhado ao simulador deve conter oito valores float. Dessa forma, 

para satisfazer à estrutura de pacotes imposta pelo X-Plane 11, aos demais dados é atribuído 

o valor -999, ou mais precisamente, sua representação em bytes [0 192 121 196]. 

Os valores das variáveis referentes à deflexão das superfícies de comando, presentes 

no pacote de comandos enviado ao X-Plane, encontram-se sempre entre -1.0 e 1.0, visto que 

o simulador apenas recebe, através da rede UDP, comandos normalizados. Estes extremos 

representam as posições limite de cada uma das superfícies de comando. Caso o simulador 

receba uma mensagem contendo o valor referente à deflexão do profundor igual a 1.0, por 

exemplo, isso fará com que esta superfície de comando se incline para cima o máximo 

possível, enquanto que, sendo recebido o valor -1.0 nesta mesma variável, ocorrerá o oposto. 

Entre -1.0 e 1.0, todos os valores reais podem ser utilizados. Cabe ressaltar que uma vez que 
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uma dada posição tenha sido alcançada por alguma das superfícies de comando, esta será 

mantida até que um novo comando seja enviado ao X-Plane, ou até que a comunicação seja 

encerrada. 

Durante a simulação, é possível que o usuário manobre o avião através de um joystick, 

ou utilizando o próprio mouse do computador. No entanto, uma vez que a comunicação tenha 

sido estabelecida e o MATLAB passe a enviar comandos ao X-Plane, o controle manual não 

poderá mais ser utilizado. Para que o usuário possa controlar novamente a aeronave, o 

programa desenvolvido no MATLAB deve enviar um pacote em que o valor -999 é atribuído a 

todo o conjunto de dados da mensagem, o que indica ao simulador que mais nenhuma 

mensagem será a ele encaminhada. 

A Fig. 6.27 é um fluxograma que ilustra os processos envolvidos no software-in-the-

loop realizado entre o MATLAB e o X-Plane. 

 

Figura 6.27: Fluxograma – software-in-the-loop entre MATLAB e X-Plane (autoria própria). 
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Os passos apresentados no fluxograma são detalhados a seguir: 

 

1. Estabelecimento da comunicação com o X-Plane:  

 

Para estabelecer a comunicação com o X-Plane 11, um socket UDP é criado e 

configurado para encaminhar mensagens ao IP 127.0.0.1 e à porta 49000, 

enquanto recebe mensagens na porta 8888. Depois de criado, o socket deve 

ser inicializado, como mostrado na Fig. 6.28. 
 

 

Figura 6.28: Inicialização da comunicação (IASBECK, PEREIRA e SANCHES, 2020). 

 

2. Recebimento e tratamento da mensagem: 

 

Para que as mensagens enviadas pelo X-Plane 11 sejam recebidas pelo 

MATLAB, a leitura do socket UDP, inicializado no processo anterior, é realizada 

como mostrado na Fig. 6.29. A função getData(), Fig. 6.30, então extrai da 

mensagem recebida os 4 bytes referentes ao dado desejado (por exemplo, 

pitch, roll ou headings) e os repassa à função bytes2single(), Fig. 6.31. Esta 

função, por sua vez, transforma os bytes a ela repassados em uma única 

cadeia binária através da aplicação da função data2bits(), Fig. 6.32, para que, 

por fim, o número binário gerado seja então repassado à função bits2single(), 

Fig. 6.33, que converte este binário em um número real do tipo float (single 

precision) através da aplicação das Eqs. (6.6) a (6.9). Assim que obtidos os 

valores das variáveis de interesse, os mesmos são salvos em um arquivo para 

análise posterior. 
 

 

Figura 6.29: Recebimento das mensagens advindas do simulador (IASBECK, PEREIRA e 

SANCHES, 2020). 
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Figura 6.30: Função que obtém os dados, referentes ao comportamento da aeronave, 

contidos nos pacotes enviados pelo simulador (IASBECK, PEREIRA e SANCHES, 2020). 

 

 

Figura 6.31: Função que converte um vetor de 4 bytes em um número do tipo float – single 

precision (IASBECK, PEREIRA e SANCHES, 2020). 

 

 

Figura 6.32: Função responsável pela conversão de um vetor de 4 bytes em uma cadeia 

binária formada pela concatenação dos números binários gerados a partir de cada um dos 

bytes (IASBECK, PEREIRA e SANCHES, 2020). 
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Figura 6.33: Função que converte um número binário de 32 bits em um número real do tipo 

float – single precision (IASBECK, PEREIRA e SANCHES, 2020). 

 

3. Cálculo da atuação sobre as superfícies de comando – controlador neuro-

fuzzy  

 

Após o MATLAB ter acesso ao estado da aeronave, utiliza-se o controlador 

neuro-fuzzy para calcular os valores das deflexões das superfícies de comando 

e o nível de propulsão dos motores. 

 

4. Construção e envio das mensagens ao X-Plane (atuação sobre as 

variáveis de saída) 

 

A ação de controle obtida através do controlador neuro-fuzzy é enviada ao X-

Plane através de funções como a setElevator(...), Fig. 6.34, que recebe como 

argumentos a nova deflexão que o profundor deve assumir, e o socket UDP 

através do qual o pacote contendo esta ação de controle deve ser enviado. 

Dentro desta função, um pacote de dados é construído por meio da função 

msgBuilder(...), Fig. 6.35, que por sua vez recebe como entradas todos os oito 

dados a serem enviados ao X-Plane, e o índice a eles correspondente, e 

converte cada um destes valores reais em um conjunto de quatro bytes, 

retornando o vetor de 32 bytes que compõe a mensagem final. Neste exemplo, 

como apenas a deflexão do profundor é alterada, é atribuído o valor -999 a 

todos os demais dados da mensagem. Por fim, o pacote de comando 

construído é enviado ao X-Plane através do socket UDP. A função responsável 
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por enviar ao X-Plane um valor normalizado correspondente, por exemplo, à 

nova deflexão dos ailerons, segue a mesma estrutura da função 

setElevator(...). 

 

 

Figura 6.34: Função responsável por enviar ao X-Plane um pacote contendo um comando 

que altera a deflexão do profundor, em inglês, elevator (IASBECK, PEREIRA e SANCHES, 

2020). 

 

 

Figura 6.35: Função responsável pela construção dos pacotes de comando enviados ao X-

Plane durante a simulação (IASBECK, PEREIRA e SANCHES, 2020). 
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5. Encerramento da comunicação 

 

Para que a comunicação entre o MATLAB e o X-Plane 11 seja encerrada, Fig. 

6.36, é enviado ao simulador um pacote de comandos formado integralmente 

pelo valor -999. A função leaveControl(...), Fig. 6.37, constrói este pacote e o 

envia ao X-Plane, para que, em seguida, o socket utilizado no estabelecimento 

da comunicação seja fechado. 

 

 

Figura 6.36: Seção do código que encerra a comunicação entre o MATLAB e o X-Plane 

11 (IASBECK, PEREIRA e SANCHES, 2020). 

 

 

Figura 6.37: Função que envia ao X-Plane 11 um pacote de comandos que informa ao 

simulador que nenhuma outra mensagem será remetida pelo MATLAB, e que a aeronave, a 

partir de então, passará a responder apenas a intervenções diretas do usuário (IASBECK, 

PEREIRA e SANCHES, 2020). 

 

Após o desenvolvimento da interface de comunicação UDP, realiza-se a análise de 

desempenho do controlador neuro-fuzzy, sintonizado na seção anterior, em operações críticas 

de voo através de uma simulação do tipo software-in-the-loop envolvendo os softwares 

MATLAB e X-Plane 11. 

 

 



129 
 

Análise de Desempenho do Controlador em Operações Críticas de Voo 

 

O relatório apresentado em IATA (2020) aponta que as condições meteorológicas 

críticas, o mau funcionamento da aeronave, e o mau funcionamento ou falha do sistema 

propulsor estão entre os principais fatores causadores da perda de controle da aeronave 

durante o voo, com taxas de ocorrência respectivamente iguais a 45, 35 e 20%, sendo que 

em muitos dos casos há a ocorrência simultânea de mais de um fator de risco. Dessa forma, 

no intuito de verificar a eficácia da técnica desenvolvida no controle de aeronave em 

operações críticas de voo, realizam-se cinco simulações do tipo software-in-the-loop entre o 

MATLAB e o X-Plane 11,  a fim de avaliar o desempenho do sistema neuro-fuzzy no controle 

da aeronave Cessna 172: três simulações avaliando cada uma das condições mencionadas 

anteriormente de forma isolada; uma considerando apenas condição inicial não nula; e uma 

avaliando a ocorrência simultânea de todas as condições críticas citadas. 

Na primeira simulação, Fig. 6.38, verifica-se a capacidade do sistema neuro-fuzzy de 

estabilizar a aeronave submetida apenas a uma condição inicial de voo não nula. Nas Figs. 

6.39 e 6.40 são apresentados respectivamente os gráficos dos ângulos de arfagem 𝜃 e 

rolagem 𝜙 em função do tempo 𝑡. 

No gráfico apresentado na Fig. 6.39, verifica-se que a simulação se inicia com 𝜃 =

3,7௢, atinge sobressinal equivalente a aproximadamente 1,85௢, e no tempo 𝑡 = 16 𝑠 já ocorre 

a acomodação do ângulo de arfagem da aeronave, que alcança o valor de 0,015௢. No gráfico 

apresentado na Fig. 6.40, verifica-se que a simulação se inicia com 𝜙 = 4,6௢, atinge 

sobressinal equivalente a aproximadamente 2,2௢, e também no tempo 𝑡 = 16 𝑠 ocorre a 

acomodação do ângulo de rolagem, que alcança o valor de 0,001௢. A partir da análise 

realizada, constata-se a eficácia do sistema neuro-fuzzy, com o método PIA de inferência 

fuzzy, em levar o erro com relação aos sinais de referência 𝑠𝑒𝑡 para praticamente zero nesta 

condição de operação da aeronave.  
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Figura 6.38: Ilustração da primeira simulação realizada no simulador de voo X-Plane 11 

(autoria própria). 
 

 

Figura 6.39: Ângulo de arfagem da aeronave 𝜃( ௢) em função do tempo 𝑡(𝑠) na primeira 

simulação (autoria própria). 
 

 

Figura 6.40: Ângulo de rolagem da aeronave 𝜙( ௢) em função do tempo 𝑡(𝑠) na primeira 

simulação (autoria própria). 
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Na segunda simulação, verifica-se a capacidade do sistema neuro-fuzzy de estabilizar 

a aeronave submetida a mau funcionamento da semiasa direita. Nas Figs. 6.41 e 6.42 são 

apresentados respectivamente os gráficos dos ângulos de arfagem 𝜃 e rolagem 𝜙 em função 

do tempo 𝑡. 

No gráfico apresentado na Fig. 6.41, verifica-se que a simulação se inicia com 𝜃 =

−1,7௢, atinge sobressinal equivalente a aproximadamente 0,75௢, e no tempo 𝑡 = 16 𝑠 já ocorre 

a acomodação do ângulo de arfagem da aeronave, que alcança o valor de −0,006௢. No  

gráfico apresentado na Fig. 6.42, verifica-se que a simulação se inicia com 𝜙 = 7,7௢, atinge 

sobressinal equivalente a aproximadamente 4,4௢, e no tempo 𝑡 = 18 𝑠 ocorre a acomodação 

do ângulo de rolagem, que alcança o valor de −0,015௢. Constata-se então a eficácia do 

controlador neuro-fuzzy em levar o erro com relação aos sinais de referência 𝑠𝑒𝑡 para zero 

para essa condição de mau funcionamento da aeronave, somente, porém, com um pequeno 

aumento do tempo de acomodação do ângulo de rolagem comparativamente à simulação 

anterior.  

 

Figura 6.41: Ângulo de arfagem da aeronave 𝜃( ௢) em função do tempo 𝑡(𝑠) na segunda 

simulação (autoria própria). 
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Figura 6.42: Ângulo de rolagem da aeronave 𝜙( ௢) em função do tempo 𝑡(𝑠) na segunda 

simulação (autoria própria). 

 

Na terceira simulação, analisa-se a eficácia do sistema neuro-fuzzy de controlar a 

aeronave Cessna 172 submetida à perda total de potência do sistema propulsor. Nas Figs. 

6.43 e 6.44 são apresentados novamente, respectivamente, os gráficos dos ângulos de 

arfagem e rolagem em função do tempo. 

No gráfico apresentado na Fig. 6.43, verifica-se que a simulação se inicia com 𝜃 =

−7,6௢, atinge sobressinal equivalente a aproximadamente 2,9௢, e no tempo 𝑡 = 16 𝑠 já ocorre 

a acomodação do ângulo de arfagem da aeronave, que alcança o valor de −0,042௢. No gráfico 

apresentado na Fig. 6.44, verifica-se que a simulação se inicia com 𝜙 = 6,5௢, atinge 

sobressinal equivalente a aproximadamente 2,3௢, e também no tempo 𝑡 = 16 𝑠 ocorre a 

acomodação do ângulo de rolagem, que alcança o valor de −0,005௢. Embora seja verificada 

mais uma vez a competência do controlador desenvolvido nessa tese em minimizar o erro 

com relação aos sinais de referência, em função da falha do sistema propulsor e da inevitável 

perda gradual de altitude da mesma, há o surgimento de um pequeno erro em regime 

permanente para o ângulo de arfagem, mas que não compromete o desempenho do sistema. 
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Figura 6.43: Ângulo de arfagem da aeronave 𝜃( ௢) em função do tempo 𝑡(𝑠) na terceira 

simulação (autoria própria). 
 

 

Figura 6.44: Ângulo de rolagem da aeronave 𝜙( ௢) em função do tempo 𝑡(𝑠) na terceira 

simulação (autoria própria). 

 

Na quarta simulação, Fig. 6.45, a capacidade do sistema neuro-fuzzy de controlar a 

aeronave submetida a condições climáticas severas (visibilidade inferior a 3 milhas, altura da 

base das nuvens mais baixas inferior a 1000 pés acima do nível do solo, forte precipitação e 

tempestade) é colocada a prova. Nas Figs. 6.46 e 6.47 são apresentados respectivamente os 

gráficos dos ângulos de arfagem e rolagem em função do tempo.  
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No gráfico apresentado na Fig. 6.46, verifica-se que a simulação se inicia com 𝜃 =

6,3௢, e chega a alcançar até ângulo de arfagem aproximadamente igual a 7,8௢. No gráfico 

apresentado na Fig. 6.47, nota-se que a simulação se inicia com 𝜙 = 2,0௢, e chega a alcançar 

até ângulo de rolagem aproximadamente igual a −6,6௢. As condições climáticas críticas de 

fato impõem dificuldade para o sistema de controle da aeronave Cessna 172, porém é 

possível observar em ambos os gráficos a tendência de oscilação do sistema em torno do 

sinal de referência e também de redução da amplitude da resposta com o avanço do tempo.  

 

 

Figura 6.45: Ilustração da quarta simulação realizada no simulador de voo X-Plane 11 

(autoria própria). 

 

 

Figura 6.46: Ângulo de arfagem da aeronave 𝜃( ௢) em função do tempo 𝑡(𝑠) na quarta 

simulação (autoria própria). 
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Figura 6.47: Ângulo de rolagem da aeronave 𝜙( ௢) em função do tempo 𝑡(𝑠) na quarta 

simulação (autoria própria). 
 

Por fim, na quinta simulação, submete-se a aeronave Cessna 172 a todas as 

condições iniciais e perturbações mencionadas anteriormente e de forma simultânea. Nas 

Figs. 6.48 e 6.49 são apresentados novamente, respectivamente, os gráficos dos ângulos de 

arfagem e rolagem em função do tempo, mas neste momento com uma janela de tempo de 

100 segundos.  

No gráfico apresentado na Fig. 6.48, verifica-se que a simulação se inicia com 𝜃 =

−7,80௢, e durante o processo alcança ângulo de arfagem aproximadamente igual a −7,75௢. 

Já no gráfico apresentado na Fig. 6.49, nota-se que a simulação se inicia com 𝜙 = −7,20௢, e 

durante o processo alcança ângulo de rolagem aproximadamente igual a 6,80௢. Em função 

das condições climáticas severas, há dificuldade por parte do sistema de controle de manter 

o voo reto e nivelado, e a falha do sistema propulsor causa inevitável perda gradual de altitude 

da aeronave e o consequente surgimento de um desvio da média da resposta com relação ao 

sinal de referência para o ângulo de arfagem. Apesar das condições críticas impostas e dos 

seus efeitos sobre o desempenho do sistema controlado, o sistema neuro-fuzzy é capaz de 

autonomamente manter a oscilação da aeronave, durante todo o tempo de simulação, ao 

redor do valor de referência para o ângulo de rolagem 𝜙, e com um desvio de apenas −1௢ 

para o ângulo de arfagem 𝜃 (valor aceitável partindo do princípio de que na simulação não há 

geração de potência por parte do motor). 
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Figura 6.48: Ângulo de arfagem da aeronave 𝜃( ௢) em função do tempo 𝑡(𝑠) na terceira 

simulação (autoria própria). 
 

 

Figura 6.49: Ângulo de rolagem da aeronave 𝜙( ௢) em função do tempo 𝑡(𝑠) na terceira 

simulação (autoria própria). 

 

A validação da arquitetura de controle e do método PIA de inferência fuzzy é 

desenvolvida até o momento a partir de simulações considerando inicialmente o modelo 

linearizado da aeronave Cessna 172, e em seguida a modelagem disponibilizada pelo 

simulador de voo X-Plane. Na próxima seção, as técnicas propostas neste trabalho são 

validadas levando-se em consideração um modelo dinâmico obtido a partir de dados 

experimentais extraídos em ensaios de voo, os quais são realizados em uma aeronave 

Cessna 172 em escala reduzida.  
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6.4. Controle de Aeronave em Escala Reduzida 

 

A validação das técnicas desenvolvidas nesta tese também passa pela utilização de 

dados experimentais, assim, constrói-se um protótipo de aeronave em escala reduzida e são 

realizados ensaios de voo no intuito de se extrair dados a serem utilizados na modelagem do 

VANT, e na posterior verificação, em simulação, da capacidade das técnicas de 

satisfatoriamente controlar o sistema em estudo. Esse último processo de validação pode ser 

subdividido em etapas, a saber: construção de aeronave em escala reduzida, obtenção de 

dados de voo, identificação do modelo da aeronave e validação da estratégia de controle. 

 

Construção de Aeronave em Escala Reduzida 

 

Aeronaves em escala reduzida possibilitam a validação das técnicas de controle de 

forma experimental, e com baixo custo financeiro se comparados os ensaios aos testes em 

aeronaves comerciais.  

Utiliza-se nos ensaios experimentais uma aeronave Cessna 172 em escala reduzida 

de 1:10, sendo composta pela fuselagem, trem de pouso e hélice do aeromodelo Cessna 172 

Class 500, Fig. 6.50, desenvolvida pela empresa Art-tech; por um motor elétrico do tipo 

brushless de 800 Kv (rpm/V); e por um controlador de voo (que substitui o original do 

aeromodelo) denominado Pixhawk-PX4, o qual é um hardware de baixo custo, de projeto 

aberto e desenvolvido pela comunidade acadêmica, Fig. 6.51. 

 

 

Figura 6.50: Fuselagem, trem de pouco e hélice do aeromodelo Cessna 172 Class 500 

(adaptada de SANT’ANA, 2019). 



138 
 

 

Figura 6.51: Controlador de voo Pixhawk e sua localização na aeronave (adaptada de 

SANT’ANA, 2019). 

 

Após a construção da aeronave em escala reduzida, segue-se com o planejamento e 

execução dos ensaios de voo, e consequentemente com a obtenção dos dados 

experimentais. 

 

Obtenção de Dados de Voo 

 

O controlador de voo Pixhawk centraliza uma série de importantes funções, a saber: 

 Fornecer a atitude da aeronave por meio do acelerômetro integrado à placa – para 

tal, é fundamental que esta esteja situada próxima ao centro de gravidade da 

aeronave, de onde parte o referencial baricêntrico do sistema; 

 Receber os sinais dos sensores externos, como o módulo de GPS e o tubo de 

pitot, e também os comandos provindos do piloto do VANT; 

 Filtrar os sinais através sobretudo do filtro de Kalman, cujos principais aspectos 

são descritos no Apêndice A deste trabalho; 

 Processar os sinais filtrados, calcular o valor das saídas, e controlar o propulsor e 

os servomotores que defletem as superfícies de comando da aeronave; 

 Armazenar os dados de voo em um cartão de memória SD inserido na placa. 

Após o ajuste do controlador de voo, e a verificação de sua sintonia com o computador 

localizado em solo e com controle remoto do piloto, inicia-se o plano de voo. O plano de voo 

é desenvolvido no software Ardupilot instalado no computador em solo, em que são traçados 

pontos de destino (trajetória a ser seguida de maneira autônoma pela aeronave), em 
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sequência o piloto retoma o controle manual da aeronave, induz perturbações à mesma no 

intuito de proporcionar dados de voo que propiciem a obtenção de um modelo mais 

representativo do comportamento dinâmico da aeronave, e por fim pousa-se esta. 

O ensaio de voo tem como localização a entrada do Campus Glória da Universidade 

Federal de Uberlândia e possui tempo total de duração de 10 minutos. O plano de voo é 

executado de forma satisfatória e os dados são armazenados em cartão SD para que 

posteriormente sejam utilizados na identificação do modelo da aeronave. O software Ardupilot, 

em que é inserido o plano de voo do aeromodelo, e a foto da aeronave pronta para voo no 

Campus Glória são apresentados na Fig. 6.52. 

 

 

Figura 6.52: Software Arduplane e aeronave Cessna 172 em escala reduzida pronta para 

voo (adaptada de SANT’ANA, 2019). 

 

Identificação do Modelo da Aeronave 

 

O processo de identificação do modelo dinâmico da aeronave se inicia com a avaliação 

dos dados obtidos em voo e armazenados no cartão de memória SD. Em função do alto grau 

de complexidade do processo de identificação do modelo completo da aeronave, e sobretudo 

em função do alto nível de ruído a que os dados extraídos estão submetidos (devido à 

turbulência gerada pela hélice, à vibração do motor, à baixa inércia da aeronave e à própria 

imprecisão intrínseca dos sensores), opta-se por identificar um modelo do tipo SISO (Single 

Input Single Output) que relaciona a deflexão do profundor 𝛿𝐸 ao ângulo de arfagem 𝜃 do 

Cessna 172 em escala reduzida. Nas Figs. 6.53(a) e 6.53(b) são apresentados os gráficos da 

deflexão do profundor e do ângulo de arfagem obtidos durante os 600 segundos de ensaio de 

voo, respectivamente.  
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               (a) 𝛿𝐸 em função do tempo 𝑡(𝑠).                       (b) 𝜃 em função do tempo 𝑡(𝑠). 

Figura 6.53: Dados extraídos em voo (autoria própria).  

 

Para a obtenção de um modelo dinâmico representativo do sistema aeronáutico, 

tomam-se duas amostras de 20 segundos cada, uma para a identificação e outra para a 

validação da estrutura matemática resultante, as quais são contidas no conjunto de dados 

ilustrados na Fig. 6.53. As amostras de identificação e de validação são apresentadas 

respectivamente nas Figs. 6.54 e 6.55. 

 

       

               (a) 𝛿𝐸 em função do tempo 𝑡(𝑠).                       (b) 𝜃 em função do tempo 𝑡(𝑠). 

Figura 6.54: Amostra de identificação do modelo dinâmico (autoria própria).  
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               (a) 𝛿𝐸 em função do tempo 𝑡(𝑠).                       (b) 𝜃 em função do tempo 𝑡(𝑠). 

Figura 6.55: Amostra de validação do modelo dinâmico (autoria própria).  

 

Utiliza-se para a determinação do modelo do sistema a evolução diferencial como 

método de otimização, cujos parâmetros são os mesmos apresentados na Tab. 6.9. A técnica 

busca minimizar o erro absoluto médio 𝑀𝐴𝐸 (Mean Absolute Error) da resposta do modelo 

com relação aos dados experimentais da amostra de identificação. Adota-se, de forma 

intuitiva e por meio de tentativa e erro, um modelo em transformada 𝑧 com 3 pólos e 2 zeros, 

e levando-se em consideração o tempo mínimo de amostragem da plataforma Pixhawk de 

0,032 𝑠. A Eq. (6.10) é o modelo matemático alcançado nesse processo de otimização, 

ressaltando-se que foram obtidas as taxas de ajuste aos dados experimentais das amostras 

de identificação, Fig. 6.56(a), e de validação, Fig. 6.56(b), iguais respectivamente a 92,3% e 

90,3%: 

𝐺(𝑧) = 0,82
(௭ି଴,ଽ଼)(௭ା଴,ଽସ)

(௭ି଴,ଽଽ)(௭మା଴,ଷ଼௭ା଴,଺ଽ)
.                                                                                           (6.10) 

    

                (a) Amostra de identificação.                                 (b) Amostra de validação. 

Figura 6.56: Ajuste do modelo dinâmico às amostras selecionadas (autoria própria). 
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Após o processo de identificação do modelo dinâmico da aeronave Cessna 172 em 

escala reduzida, a seguir é apresentada mais uma aplicação e validação da estratégia de 

controle desenvolvida nesta tese. 

 

Validação da Estratégia de Controle 

 

A arquitetura de controle utilizada no controle do aeromodelo é basicamente a 

apresentada na Fig. 6.1, porém simplificada de modo a se ajustar a um sistema do tipo SISO. 

Aplicam-se, de forma semelhante à aeronave em escala real, imposições ao processo, 

conforme a Eq. (6.11): 

ቐ

 𝜃௦௘௧,௞ = 0,  0 ≤ 𝑡 < 30 𝑠

𝜃௞(𝑡 = 0) = 10୭              

𝜃௞(𝑡 = 15 𝑠) = −10୭,     

                                                                                                   (6.11) 

de modo a viabilizar a otimização dos parâmetros do 𝑆𝐵𝑅𝐹 e consequentemente a definição 

de suas funções de pertinência. 

O desempenho do sistema aeronáutico e as ações de controle geradas pela técnica 

proposta nesta tese são apresentados respectivamente nas Figs. 6.57(a) e 6.57(b). Pode-se 

notar na Fig. 6.57(a) que, partindo da condição inicial 𝜃௞(𝑡 = 0) = 10୭, rapidamente a 

aeronave é capaz de buscar o valor de referência  𝜃௦௘௧,௞ = 0, entrando em regime permanente 

após um intervalo de tempo de 2,5 𝑠, sendo que o mesmo ocorre após a imposição do ângulo 

de arfagem 𝜃௞(𝑡 = 15 𝑠) = −10୭. Na Fig. 6.57(b), verifica-se que ocorre a deflexão do 

profundor nos instantes em que o ângulo de arfagem é diferente do valor de referência, 

havendo picos de deflexão de 8,5௢ e −8,5௢ nos instantes 𝑡 = 0 e 𝑡 = 15 𝑠, respectivamente, 

seguidos de progressiva redução até o ângulo de arfagem atingir valor nulo. 
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                (a) 𝜃 em função do tempo 𝑡(𝑠).                          (b) 𝛿𝐸 em função do tempo 𝑡(𝑠).                        

Figura 6.57: Resultados obtidos a partir do controlador neuro-fuzzy que lança mão do 

método PIA de inferência fuzzy (autoria própria).  

 

No intuito de propiciar uma análise mais apurada dos resultados obtidos com o método 

PIA de inferência fuzzy, apresentam-se na Fig. 6.58 os gráficos do desempenho dos 

controladores PID, e neuro-fuzzy com o método de inferência de Takagi-Sugeno de ordem 0 

(TS), assim como os gráficos dos sinais de referência 𝑠𝑒𝑡 no tempo discreto 𝑘, e o decaimento 

requerido para a resposta. 

 

 

Figura 6.58: Análise comparativa das técnicas de controle (autoria própria). 



144 
 

A partir da Fig. 6.58, é possível verificar a capacidade de todas as técnicas de controlar 

efetivamente o ângulo de arfagem da aeronave Cessna 172 em escala reduzida, porém tendo 

o controlador que utiliza o método PIA, nesta análise comparativa de desempenho, uma 

pequena vantagem diante dos demais, no que diz respeito à proximidade da resposta obtida 

com relação ao sinal de decaimento desejado. Essa vantagem também se repete na análise 

do erro absoluto médio (MAE) da resposta do sistema controlado, com relação ao decaimento 

de referência, para cada uma das metodologias testadas: 0,0134 utilizando o sistema neuro-

fuzzy com o método PIA; 0,0135 utilizando o sistema neuro-fuzzy com o método de TS; e 

0,0159 utilizando o controlador PID. Os resultados obtidos nessa análise final ratificam a 

eficácia do método PIA também como estrutura matemática de um sistema de controle. 
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CAPÍTULO VII 

 

 

 

CONCLUSÕES 

 

  

O trabalho apresenta a aplicação de sistemas neuro-fuzzy no controle de aeronaves 

em operações críticas, com ênfase no desenvolvimento de um novo método de inferência 

fuzzy denominado PIA (Pondered Individual Analysis). Na intenção de facilitar a exposição 

dos principais pontos relativos às conclusões, perspectivas e resultados acadêmicos da tese, 

este capítulo é dividido em 3 seções, a saber: principais conclusões, perspectivas e trabalhos 

futuros, e principais publicações.  

 

7.1. Principais Conclusões 

 

Em linhas gerais, o método de inferência fuzzy PIA alia baixo custo computacional, 

intuitividade, consistência da resposta com ele obtida com relação à base de regras construída 

a priori, e superfícies de resposta suaves, sendo dessa forma uma técnica potencialmente 

indicada tanto para a modelagem, quanto para o controle de processos. 

No primeiro teste de validação do novo método de inferência fuzzy, busca-se modelar 

os coeficientes de sustentação 𝐶௅ e arrasto 𝐶஽ em função do ângulo de ataque 𝛼 e da deflexão 

do profundor 𝛿𝑒 de uma aeronave Cessna 172. Em uma análise qualitativa da superfície de 

resposta resultante do modelo utilizando os métodos de inferência fuzzy PIA, Mamdani e 
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Takagi-Sugeno, a nova técnica é a que obtém superfícies de resposta mais suaves e 

compatíveis com a base de regras construída a priori. Os resultados satisfatórios se repetem 

na análise quantitativa, haja vista que o método PIA, no ajuste a dados numérico-

experimentais extraídos no simulador de voo X-Plane 11, garante o menor desvio aos dados 

com relação aos demais métodos, e com baixo custo computacional já que dispensa, no 

processo de defuzzificação, o uso de ferramentas de integração. 

O segundo processo de validação conta com uma arquitetura de controle neuro-fuzzy 

inovadora, que também lança mão do método PIA de inferência fuzzy, que se propõe a 

controlar a velocidade, o ângulo de arfagem, a altitude, o ângulo de rolagem e o ângulo de 

guinada de uma aeronave Cessna 172. Através das simulações realizadas, é possível concluir 

que essa arquitetura de controle apresenta o melhor desempenho geral dentre as 

metodologias testadas, tendo obtido resultados superiores com relação aos controladores PID 

e neuro-fuzzy que utiliza o método de inferência fuzzy de Takagi-Sugeno em 3 das 5 variáveis 

de saída do sistema. Esse resultado indica o desempenho computacional e generalidade do 

método PIA, que mostra-se também eficaz como estrutura matemática de um sistema de 

controle. 

Operações críticas de voo que dão origem a acidentes aéreos da categoria LOC-I 

(Loss of Control In-Flight), como condições meteorológicas críticas, mau funcionamento da 

aeronave, e o mau funcionamento ou falha do sistema propulsor, foram causa de 

aproximadamente 70% de todas as fatalidades ocorridas em aeronaves com massa de 

decolagem superior a 5.700 kg entre 2015 e 2019, assim, devido à relevância do tema, são 

utilizadas como objeto de estudo da terceira etapa de validação do novo método de inferência 

fuzzy, na intenção de também provocar a comunidade científica a buscar novos olhares no 

que diz respeito à utilização de técnicas da inteligência computacional no controle de 

aeronaves. Durante as simulações do tipo software-in-the-loop realizadas entre o MATLAB e 

o simulador de voo X-Plane, a capacidade da arquitetura de controle desenvolvida de 

controlar a aeronave submetida a condições severas é colocada a prova. As condições críticas 

de fato impõem dificuldade para o sistema de controle que lança mão do método PIA, porém 

é possível observar, em praticamente todas as simulações, a tendência de oscilação do 

sistema em torno do sinal de referência e também de redução da amplitude da resposta com 

o avanço do tempo. 

Por fim, a última análise se dá a partir de um modelo dinâmico obtido a partir de dados 

experimentais extraídos em ensaios de voo, os quais são realizados em uma aeronave 

Cessna 172 em escala reduzida. Os resultados, quando comparados novamente aos obtidos 

com os controladores PID e neuro-fuzzy que utiliza o método de inferência fuzzy de Takagi-
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Sugeno, indicam menor erro médio quadrático com relação ao comportamento (decaimento) 

desejado para a aeronave, e dessa forma confirmam a eficácia da nova estrutura matemática 

aplicada à área de controle. 

 

7.2. Perspectivas e Trabalhos Futuros 

 

O trabalho desenvolvido nesta tese serve potencialmente de suporte para uma série 

de estudos diretamente relacionados ao escopo desta pesquisa, ou até mesmo para outras 

áreas do conhecimento, assim, pode-se dividir as perspectivas e trabalhos futuros em dois 

grupos: continuidade das atividades, e perspectivas de aplicação do método de inferência 

fuzzy PIA. 

 

Continuidade das Atividades 

 

Diante do rigor necessário para a validação de uma arquitetura de controle a ser 

aplicada em um sistema aeronáutico, o seu teste em uma aeronave em escala reduzida pode 

ser mais um passo para viabilizar a realização de ensaios em aeronaves comerciais. A 

implementação da arquitetura de controle já se encontra em curso, está sendo desenvolvida 

em linguagem C++, e terá como hardware de execução de suas rotinas a própria plataforma 

Pixhawk. 

O fenômeno do estol (perda abrupta de sustentação da aeronave durante o voo) é um 

potencial causador de perda de controle da aeronave durante o voo, porém, em função da 

alta complexidade matemática envolvida e dos altos custos relacionados aos ensaios de voo, 

apenas nos últimos anos ganha efetivo espaço nos trabalhos que envolvem o controle de 

aeronaves. Em função da viabilidade tecnológica dos novos controladores e sistemas 

computacionais, busca-se estudar a aplicação da arquitetura de controle desenvolvida 

também na mitigação dos efeitos do estol. 

Por fim, dentro dos aspectos de continuidade das atividades desenvolvidas na tese, 

pretende-se realizar uma análise técnica do comportamento (decaimento) da aeronave em 

função de suas dimensões e das condições de operação, e também desenvolver uma análise 

de computabilidade do novo método de inferência fuzzy no intuito de tornar as comparações, 
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quanto ao tempo de execução dos métodos de inferência, independentes da máquina em que 

se realizam os testes. 

 

Perspectivas de aplicação do método de inferência fuzzy PIA 

 

O método PIA, assim como os demais métodos de inferência fuzzy, é caracterizado 

pela generalidade, assim, prospecta-se que o mesmo seja utilizado em uma série de 

aplicações, algumas das quais expostas a seguir: 

 Inclusão do método em toolboxes comumente utilizadas quando da utilização 

da teoria dos conjuntos fuzzy, de modo a popularizar e difundir o método na 

comunidade científica; 

 Utilização na modelagem e predição do mercado de criptomoedas; 

 Aplicação do método na biomatemática, área em que a teoria dos conjuntos 

fuzzy é amplamente utilizada; 

 Realização de comparações diversas entre o desempenho do método PIA e 

dos demais métodos de inferência fuzzy. 

 

7.3. Principais Publicações  

 

As principais publicações produzidas durante o período do doutorado são 

mencionadas a seguir e divididas em três categorias: trabalhos apresentados em congressos, 

trabalhos publicados como capítulos de livro e trabalhos em periódicos. 

 

Trabalhos Apresentados em Congressos 

 

IASBECK, A.H., PEREIRA, B.L & SANCHES, L. UDP Communication Between MATLAB and 
X-Plane 11. Anais do XXIII Encontro Nacional de Modelagem Computacional (ENMC), 
Palmas, 2020. 

BERNARDES, R., PEREIRA, B.L., MACHINI, F.M.M. & FINZI, R.M. Neuro-Fuzzy Systems 
Applied on a Fixed-Wing Aircraft Control. International Congress of Mechanical 
Engineering (COBEM), Uberlândia, 2019. 
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SANT’ANA, V., MACHINI, F.M.M., PEREIRA, B.L. & FINZI, R.M. Multi-Copter Forces and 
Moments Coefficients Estimation Using Neuro-Fuzzy. International Congress of Mechanical 
Engineering (COBEM), Uberlândia, 2019. 

CARVALHO, F.C., OLIVEIRA, M.V.F., PEREIRA, B.L., CAVALINI JR, A.A. & STEFFEN JR, 
V. Systematic Approach to the Design of Robust Controllers Applied to Supercritical Rotors 
Supported by Magnetic Bearings. Proceedings of International Conference on Structural 
Engineering Dynamics (ICEDyn), Viana do Castelo, Portugal, 2019. 

CARVALHO, F. C., OLIVEIRA, M. V. F., PEREIRA, B. L., CAVALINI JR, A. A. & STEFFEN 
JR, V. Modeling and Characterization of a Flexible Rotor Supported by Active Magnetic 
Bearings Using Model Reduction Techniques. Proceedings of XVIII International 
Symposium on Dynamic Problems of Mechanics (DINAME), Búzios, 2019.  

PEREIRA, B. L., LIMA, L., SILVA, G. D. & SANCHES, L. Aplicação da Evolução Diferencial 
na Identificação dos Parâmetros do Modelo de um Veículo de Duas Rodas do Tipo Pêndulo 
Invertido com Zona Morta. Congresso Nacional de Engenharia Mecânica (CONEM), 
Salvador, 2018. 

SILVA, G.D., PEREIRA, B.L., SOUSA, A.R., SANCHES, L., TAVARES, J.J.P.Z.S., 
MUROFUSHI, R. H. & CARDOSO, R.N. Nonlinear Modeling, Simulation and Control of a Two- 
Wheeled Inverted Pendulum. International Congress of Mechanical Engineering 
(COBEM), Curitiba, 2017. 

PEREIRA, B.L., SANCHES, L. & TAVARES, J.J.P.Z.S. Neuro-Fuzzy Control and Differential 
Evolution in the Compensation of the Actuators’ Dead Zone of a Two-Wheeled Vehicle. 
International Congress of Mechanical Engineering (COBEM), Curitiba, 2017. 

 

Trabalhos Publicados como Capítulos de Livro 

 

SANT’ANA, V.T., PEREIRA, B.L., MORAIS, T. & FINZI, R.M. Aplicação de Sistemas Neuro-

Fuzzy na Predição do Coeficiente de sustentação do Aerofólio NACA 1412. Impactos das 

Tecnologias na Engenharia Mecânica 2. Ponta Grossa: Atena, 2019. p. 190-194. 

MARCOS, W. P., MUROFUSHI, R.H. & PEREIRA, B. L. Identificação Experimental e Projeto 

de um PID para um Servomecanismo. Impactos das Tecnologias na Engenharia Mecânica 

2. Ponta Grossa: Atena, 2019. p. 83-97. 
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Trabalhos em Periódicos  

 

JAFELICE, R.M., PEREIRA, B.L., BERTONE, A.M.A & BARROS, L.C. An Epidemiological 

Model for HIV Infection in a Population Using Type-2 Fuzzy Sets and Cellular Automaton. 

Computational & Applied Mathematics, 2019. 38: 141. https://doi.org/10.1007/s40314-019-

0867-8. 

PEREIRA, B. L., DINIZ, G., SANCHES, L. & TAVARES, J.J.P.Z.S. Online Modified Differential 

Evolution Method: Static Stability Control of Two-Wheeled Inverted Pendulum Vehicle Case 

Study. Brazilian Journal of Development. (Artigo Aceito). 

PEREIRA, B. L., SANT’ANA, V.T., JAFELICE, R.S.M. & FINZI, R.M. Pondered Individual 

Analysis: a New Fuzzy Inference Method - Application in Aerodynamic Modeling. Neural 

Computing and Applications. (Artigo Submetido). 

PEREIRA, B. L., JAFELICE, R.S.M. & FINZI, R.M. An Approach of Pondered Individual 

Analysis Method in Aircraft Control. Journal of the Brazilian Society of Mechanical 

Sciences and Engineering. (Artigo Submetido). 
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APÊNDICE 

 

 

A) Filtro de Kalman 

 

O filtro de Kalman foi desenvolvido no ano de 1960 e até hoje é o método estocástico 

mais utilizado na filtragem de sinais. Ele se baseia em um conjunto de equações matemáticas 

que constitui um processo recursivo eficiente de estimação, uma vez que o erro quadrático é 

minimizado. Através da observação da variável denominada variável de observação, outra 

variável (não observável) denominada variável de estado pode ser estimada eficientemente. 

 Para o estudo do filtro de Kalman, utiliza-se a referência (Brown e Hwang, 2012), e 

alguns conceitos referentes ao tema são apresentados a seguir. 

 Variável de Estado (𝒙):  

o Variável relacionada à dinâmica de um sistema, baseada em um modelo matemático. 

Relacionada também à predição de dados futuros.  

o O valor de 𝑥  na iteração posterior é o valor na iteração atual com uma correção 𝜙௞ e 

corrompido por um sinal 𝑤௞ de natureza aleatória (sequência branca) e com variância 

𝑄, Eq. (A.1): 

     𝑥௞ାଵ = 𝜙௞𝑥௞ + 𝑤௞.                                                                                                      (A.1) 

 Variável de Observação (𝒛): 

o Variável relacionada à aquisição de dados de um sensor; 

o O valor obtido pelo sensor no tempo 𝑘 é o valor da variável de estado com uma correção 

𝐻௞ e somado com ruído branco 𝑣௞ com variância 𝑅, Eq. (A.2): 

𝑧௞ = 𝐻௞𝑥௞ + 𝑣௞.                                                                                                         (A.2) 

 Propagação: 

o É a predição do valor das variáveis em iterações seguintes baseada nos valores atuais 

destas e no modelo matemático do sistema. 
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 Atualização: 

o É a correção da predição utilizando os novos dados coletados pelos sensores.  

 Variância do Erro (𝑷): 

o O erro de estimação do filtro de Kalman em uma iteração 𝑘 é definido como sendo a 

diferença entre o valor da variável de estado obtido pelo modelo (𝑥௞) e o valor estimado 

pelo filtro (𝑥ො௞).  

o Como o valor do erro flutua em torno de zero durante a execução do filtro (e portanto, 

tem média nula), a variância do erro é equivalente ao seu erro quadrático. Dessa forma, 

para se obter as equações do filtro de Kalman, é calculada a derivada de 𝑃 em relação 

a 𝐾(ganho do filtro) e igualada a zero, de modo a minimizar de forma ótima o valor do 

erro quadrático. 

No tópico a seguir são indicadas as matrizes e vetores que expandem os conceitos 

acima para problemas em que há mais de uma variável de estado. Além disso, são 

apresentadas as equações do filtro de Kalman. 

 

A.1 Expansão do Método para Problemas com Mais de Uma Variável de Estado 

e Equações do Filtro de Kalman 

 

Seguem as matrizes e vetores utilizados nas equações do filtro de Kalman: 

 𝑥௞  (𝑛x1): Vetor de estados do processo no tempo 𝑡௞; 

 𝜙௞  (𝑛x𝑛): Matriz de transição de estados, relacionando 𝑥௞ com 𝑥௞ାଵ; 

 𝑤௞  (𝑛x1): Vetor cujos elementos são sequências brancas e com matriz de covariância 

conhecida; Resposta em 𝑡௞ାଵ devido à presença de ruído branco na entrada do sistema no 

intervalo (𝑡௞, 𝑡௞ାଵ); 

 𝑧௞  (𝑚x1): Vetor de observações no tempo 𝑡௞; 

 𝐻௞  (𝑚x𝑛): Matriz que relaciona 𝑥௞ com 𝑧௞; 

 𝑣௞  (𝑚x1): Vetor cujos elementos são sequências brancas e com matriz de covariância 

conhecida, sendo que cada elemento está relacionado a uma das variáveis de observação. 

Para obter as equações do filtro, adota-se que a correlação entre 𝑣௞ e 𝑤௞ é nula; 

 𝑃௞  (𝑛x𝑛): Matriz de covariância do erro; 

 𝑄௞  (𝑛x𝑛): Matriz de covariância de 𝑤௞, 𝑄௞ = 𝐸[𝑤௞ , 𝑤௞
்]; 

 𝑅௞  (𝑚x𝑚): Matriz de covariância de 𝑣௞, 𝑅௞ = 𝐸ൣ𝑣௞ , 𝑣௞
்൧; 
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 𝐾௞  (𝑛x𝑚): Ganho do filtro de Kalman; 

 𝐼 (𝑛x𝑛): Matriz Identidade. 

A seguir são apresentadas as equações do filtro de Kalman. Os valores a priori (-) são 

aqueles que ainda não passaram pelas equações de atualização de sua iteração 

correspondente, já os valores a posteriori (+) são aqueles que já passaram por esse processo: 

 Equações de Atualização: 

o Ganho do Filtro de Kalman: 

        𝐾௞ = 𝑃௞
ି𝐻௞

்൫𝐻௞𝑃௞
ି𝐻௞

் + 𝑅௞൯
ିଵ

.                                                                                      (A.3)                                                          

o Atualização do Estado: 

𝑥ො௞
ା =  𝑥ො௞

ି + 𝐾௞[𝑧௞ − 𝐻௞𝑥ො௞
ି].                                                                                          (A.4) 

o Atualização da Matriz de Covariância do Erro: 

𝑃௞
ା = (𝐼 − 𝐾௞𝐻௞)𝑃௞

ି.                                                                                                    (A.5) 

 Equações de Propagação: 

o Propagação do Estado: 

𝑥ො௞ାଵ
ି =  𝜙௞𝑥ො௞

ା.                                                                                                              (A.6)                                                                  

o Propagação da Matriz de Covariância do Erro: 

𝑃௞ାଵ
ି =  𝜙௞𝑃௞

ା𝜙௞
் + 𝑄௞.                                                                                                 (A.7) 

Após terem sido apresentadas as equações do filtro de Kalman, no próximo tópico é 

abordado como se determinar os parâmetros deste. 

 

A.2 Determinação dos Parâmetros do Filtro de kalman 

 

Durante o projeto do filtro de Kalman, é desejável ter a representação do processo 

escrita na forma vetorial. A partir do processo em estudo, é possível reescrevê-lo da forma: 

𝑥̇ = 𝐹𝑥 + 𝐺𝑢,                                                                                                                        (A.8) 

em que 𝑥 é o vetor de estados do processo, 𝑥̇ é sua derivada e 𝑢 é o vetor de perturbação do 

sistema, que devido a critérios matemáticos do filtro de Kalman, corresponde a uma entrada 

de ruído branco unitário. 

Alguns dos parâmetros do filtro são determinados de forma mais direta, como o valor 

da matriz 𝐻௞, que relaciona as variáveis de observação e os elementos correspondentes do 

vetor de estados 𝑥; e os valores dos elementos da matriz 𝑅௞, que quando é assumido que os 
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dados provenientes de cada um dos sensores utilizados não são correlacionados, são 

determinados pelo cálculo da variância dos dados obtidos por cada um destes. 

Por outro lado, o cálculo das matrizes 𝜙௞ e 𝑄௞ depende do modelo do sistema, e 

tornam-se de difícil obtenção quando os elementos das matrizes 𝐹 e 𝐺 não são constantes.  

A seguir são apresentados o método analítico e métodos numéricos (relativamente 

simples e eficazes, mas restritos ao caso de os elementos de 𝐹 e 𝐺 serem constantes) para 

se obter esses parâmetros: 

 

A.2.1 Método Analítico 

 

 Obtenção de 𝝓𝒌:  

 

É possível obter o valor de k através da equação (A.9), sendo ℒିଵ o operador relativo à 

inversa da transformada de Laplace, e ∆𝑡 a taxa de amostragem do sistema: 

𝜙௞ = {ℒିଵ[(𝑠𝐼 − 𝐹)ିଵ]}௧ୀ∆௧.                                                                                                 (A.9) 

 Obtenção de 𝑸𝒌:  

Baseando-se no modelo matemático do sistema – Eq. (A.8), a Eq. (A.1) também pode ser 

escrita na forma: 

𝑥(𝑡௞ାଵ) = 𝜙(𝑡௞ାଵ, 𝑡௞)𝑥(𝑡௞) +  ∫ 𝜙(𝑡௞ାଵ, 𝜏)𝐺(𝜏)𝑢(𝜏)𝑑𝜏
௧ೖశభ

௧ೖ
.                                                    (A.10) 

Desse modo, conforme pode ser verificado abaixo, é possível obter a matriz 𝑄௞: 

𝑄௞ = 𝐸[𝑤௞ , 𝑤௞
்],  

𝑄௞ = 𝐸 ൜ ቂ∫ 𝜙(𝑡௞ାଵ, 𝜉)𝐺(𝜉)𝑢(𝜉)𝑑𝜉
௧ೖశభ

௧ೖ
ቃ ቂ∫ 𝜙(𝑡௞ାଵ, 𝜂)𝐺(𝜂)𝑢(𝜂)𝑑𝜂 

௧ೖశభ

௧ೖ
ቃ

்

ൠ,  

𝑄௞ =  ∫ ∫ 𝜙(𝑡௞ାଵ, 𝜉)𝐺(𝜉)𝐸[𝑢(𝜉)𝑢்(𝜂)]𝐺்(𝜂)𝜙்(𝑡௞ାଵ, 𝜂)𝑑𝜉𝑑𝜂
௧ೖశభ

௧ೖ

௧ೖశభ

௧ೖ
.                              (A.11) 
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A.2.2 Método Numérico 

 

 Obtenção de 𝝓𝒌:  

 

Para se obter o valor de k, pode-se partir da Eq. (A.8) e impor 𝑢 = 0 a fim de que a equação 

descreva a dinâmica natural do sistema. Assim, temos: 

𝑥̇ = 𝐹𝑥.                                                                                                                             (A.12) 

Verifica-se que a resolução desta equação pode ser escrita da forma: 

௫(௧మ)

௫(௧భ)
=  𝜙(𝑡ଶ, 𝑡ଵ) = 𝑒ி(௧మି௧భ).                                                                                           (A.13) 

A partir da Eq. (A.13), pode-se concluir que: 

𝜙௞ =
௫ೖశభ

௫ೖ
= 𝑒ி୼௧.                                                                                                           (A.14) 

A exponencial matricial que aparece na equação anterior pode ser resolvida pelo comando 

do MATLAB expm(Ft), que a expande em série – Eq. (A.15) - e a trunca. 

𝑒ி୼௧ = 𝐼 + 𝐹Δ𝑡 +
(ி୼௧)మ

ଶ!
+ ⋯.                                                                                           (A.15) 

 Obtenção de 𝑸𝒌: 

 

o Primeiramente, forme uma matriz 2𝑛x2𝑛 que se chama 𝐴 (𝑛 é o número de elementos 

do vetor de estados 𝑥). 

𝐴 =  ൤−𝐹 𝐺𝐺்

0 𝐹் ൨  Δ𝑡.                                                                                                  (A.16) 

o Faça eA e chame de B. 

𝐵 =  ቈ
… 𝜙௞

ିଵ𝑄௞

0 𝜙௞
் ቉.                                                                                                      (A.17) 

o Faça a transposição da parte inferior direita para verificar o valor de 𝜙௞. 

o Finalmente, 𝑄௞ é obtido através da parte superior direita de 𝐵, como segue: 

𝑄௞ =  𝜙௞  𝑥 (𝑃𝑎𝑟𝑡𝑒 𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 𝑑𝑖𝑟𝑒𝑖𝑡𝑎 𝑑𝑒 𝐵).                                                                (A.18) 


