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RESUMO

A perda de controle da aeronave durante o voo € causa de aproximadamente 70% de
todas as fatalidades ocorridas em aeronaves com massa de decolagem superior a 5.700 kg.
A relevancia do tema provoca a comunidade técnica e cientifica, e leva a uma série de
discussbes e a geragdo de normas, procedimentos e dispositivos que buscam mitigar as
causas desses acidentes. No intuito de contribuir com o setor aeronautico no que tange ao
desenvolvimento de novas estratégias que procurem minimizar o nimero de acidentes aéreos
fatais, neste trabalho é proposta a utilizacdo de uma nova arquitetura de controle baseada na
combinagéo de sistemas neuro-fuzzy no controle de aeronaves em operagdes criticas de voo.
Para isso, desenvolve-se um novo método de inferéncia fuzzy, denominado PIA (Pondered
Individual Analysis), que alia intuitividade e alto desempenho computacional no processo de
tradugdo matematica da base de regras envolvida no processo. A validagdo da técnica
proposta passa pelo desenvolvimento de uma simulagéo do tipo software-in-the-loop entre o
MATLAB e o X-Plane 11, em que se verifica a capacidade da arquitetura de controle proposta,
em operacobes criticas de voo, de manter a resposta da aeronave em torno dos sinais de
referéncia, e também pela verificacdo do desempenho do sistema de controle ao se levar em
consideracdo um modelo dindmico levantado a partir de dados experimentais, extraidos em
ensaio de voo realizado em uma aeronave Cessna 172 em escala reduzida. Os resultados
das dindmicas longitudinal e latero-direcional da aeronave s&o analisados e comparados aos
obtidos com os controladores proporcional integral derivativo, e neuro-fuzzy que utiliza o
método de inferéncia fuzzy de Takagi-Sugeno, e apresentam menor erro médio absoluto com
relagdo ao comportamento desejado para a aeronave, e dessa forma evidenciam que o
método PIA demonstra ser uma eficaz ferramenta a ser considerada na resolucdo de

problemas na area de controle.

Palavras-Chave: Analise Individual Ponderada, Controle de Aeronaves, Controle
Inteligente, Controle Neuro-Fuzzy, LOC-I, Método de Inferéncia Fuzzy, PIA, SBRF, Sistema
Neuro-Fuzzy, Teoria dos Conjuntos Fuzzy.
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PEREIRA, B.L. APPLICATION OF NEURO-FUZZY SYSTEMS IN AIRCRAFT CONTROL IN
CRITICAL FLIGHT OPERATIONS. 2021. Doctoral Thesis— PhD in Mechanical Engineering,
Universidade Federal de Uberlandia, Uberlandia, 2021.

ABSTRACT

Loss of control in-flight is the cause of approximately 70% of all fatalities occurring in
aircraft with a take-off mass greater than 5,700 kg. The relevance of this subject provokes the
technical and scientific community, and leads to a series of discussions and the generation of
norms, procedures and devices that seek to mitigate the causes of these accidents. In order
to contribute to the aeronautical sector with regard to the development of new strategies that
seek to minimize the number of fatal air accidents, this work proposes the use of a new control
architecture based on the combination of neuro-fuzzy systems in the control of aircraft in critical
flight operations. For that matter, a new fuzzy inference method, called PIA (Pondered
Individual Analysis), is developed, which combines intuitiveness and high computational
performance in the process of mathematical translation of the rule base involved in the
process. The validation of the proposed technique involves the development of a software-in-
the-loop simulation between MATLAB and X-Plane 11, in which the ability of the proposed
control architecture, in critical flight operations, to maintain the response of the aircraft around
the reference signals is verified, and also it is analyzed the performance of the control system
when taking into account a dynamic model raised from experimental data, extracted from a
flight test carried out on a small scale Cessna 172 aircraft. The results of the longitudinal and
lateral-directional dynamics of the aircraft are analyzed and compared to those obtained with
the proportional integral derivative controller and with the neuro-fuzzy controller that uses
theTakagi-Sugeno fuzzy inference method, and they present lower mean absolute error in
relation to the desired behavior for the aircraft, and thus highlight that the PIA method

demonstrates to be an effective tool to be considered in solving problems in the control area.

Keywords: Pondered Individual Analysis, Aircraft Control, Intelligent Control, Neuro-Fuzzy
Control, LOC-I, Fuzzy Inference Method, PIA, FRBS, Neuro-Fuzzy System, Fuzzy Sets
Theory.
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CAPITULO |

INTRODUGAO

As técnicas da inteligéncia computacional baseiam-se na observacdo de como os
seres vivos, € em particular os seres humanos, comportam-se enfrentando e resolvendo
diferentes problemas. Estas técnicas sdo geralmente versateis e ajustadas para controlar
diferentes sistemas dindmicos, mesmo sob qualquer variagdo de suas propriedades. De fato,
estas variagbes podem acontecer, como por exemplo, devido ao envelhecimento ou a falha
de componentes mecanicos. Nesse sentido, os parametros de controle precisam ser

acessados e adaptados em tempo real ou em operagao off-line.

Com o aumento da capacidade de processamento de sistemas embarcados, ocorrido
nos ultimos anos, torna-se viavel langar mao de técnicas de otimizagdo e da inteligéncia
computacional na resolugdo de problemas de controle em tempo real. Os controladores
classicos tornam-se ineficazes a medida em que ha o aumento da complexidade dos
processos, como por exemplo em cadeias de controle multivariavel com acoplamento entre
as variaveis, presenca de fortes ndo linearidades e variagbdes rapidas dos parametros dos
processos (SILVA, 2006).

Em um sistema aeronautico, as varia¢des das propriedades dindmicas podem ocorrer
devido a varios fatores: alteragao das condi¢des de voo, alteragdes climaticas, congelamento
ou colapso de partes da estrutura, perda de poténcia do sistema propulsor, ocorréncia do stall
(perda abrupta de sustentagdo de uma superficie aerodindmica devido ao aumento de seu

angulo de ataque), dentre outros fatores.



De acordo com o relatério desenvolvido pela IATA (International Air Transport
Association), (IATA, 2020), entre 2015 e 2019, aproximadamente 70% de todas as fatalidades
ocorridas em aeronaves com massa de decolagem superior a 5.700 kg foram causadas devido
a perda de controle da aeronave durante o voo (em inglés, Loss of Control In-Flight — LOC-I).
A relevancia do tema provoca a comunidade técnica e cientifica, e leva a uma série de
discussodes e a geracao de normas a respeito de novas abordagens necessarias a mitigagao
das causas desses acidentes (OLIVEIRA, 2018).

A perda de controle da aeronave durante o voo pode resultar de uma série de fatores,
incluindo falhas no motor, condicbes meteoroldgicas severas, congelamento, falhas
operacionais e o stall (IATA, 2015). A partir de 2006, através de uma estagdo movel de testes
de dindmica de voo e controle de aeronaves em escala reduzida, a NASA (National
Aeronautics and Space Administration) desenvolve pesquisas visando a melhor compreensao
do LOC-I e o desenvolvimento de estratégias para a retomada de controle da aeronave
submetida a condigdes criticas de voo (COX, CUNNINGHAM e JORDAN, 2012; FRINK, et al.,
2017).

As verificagbes que envolvem novas modelagens e o desenvolvimento de sistemas de
controle mais eficientes para aeronaves comerciais, sobretudo devido aos altos custos
associados ao projeto e ao desenvolvimento de protétipos, geralmente ndo s&o inicialmente
realizadas em aeronaves reais ou nem mesmo em aeromodelos, uma vez que quaisquer
problemas poderiam ocasionar perdas materiais consideraveis. Dessa forma, a simulagéo é
um recurso correntemente utilizado na validacao prévia de técnicas e de novas tecnologias

do setor aeronautico. A Fig. 1.1 ilustra uma simulagao realizada no simulador de voo X-Plane.
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Figura 1.1: Imagens extraidas do simulador de voo X-Plane (autoria propria).



Em Craighead et al. (2007) sdo apresentados os principais simuladores de voo
utilizados para o desenvolvimento de produtos e para a simulagéo de pilotagem, destacando-
se o simulador de voo X-Plane, certificado pela FAA (Federal Aviation Administration) para o
treinamento de pilotos. Este simulador é utilizado, de forma bem-sucedida, no teste de
controladores aplicados a aeronaves reais (BITTAR, OLIVEIRA e FIGUEREIDO, 2014). Ha
trabalhos (BITTAR e OLIVEIRA, 2013; BITTAR et al., 2014; BITTAR, OLIVEIRA e
FIGUEREIDO, 2014; ZABIDIN, PAIRAN e SHAMSUDIN, 2020) que propdem a utilizagcdo do
Simulink e do X-Plane na realizagdo de simulagdes do tipo software-in-the-loop (SITL), em
que o X-Plane presta-se como o ambiente de modelagem e simulag&o de voo, e no Simulink
€ desenvolvida a interface de comunicagdo entre os programas e a implementacdo da

arquitetura de controle da planta.

Ha trabalhos na literatura que utilizam técnicas da inteligéncia computacional para o
controle de aeronaves submetidas a falha de componentes e atuadores (KWONG et al., 1995;
CHEN, SHI e LIM, 2016), para o controle de pouso (LIU, NAADIMUTHU e LEE, 2008), para o
controle de atitude (CHEN e CHENG, 1998; KURNAZ, CETIN e KAVNAK, 2010; THUMS,
TORRES e PALHARES, 2012; JHA, GAUR e YADAYV, 2016; XU, ZHANG e PAN, 2016; ULUS
e ESKI, 2021) e para a modelagem aerodinamica (BRANDON e MORELLI, 2012), porém em
nenhuma pesquisa conhecida pelos autores ocorre a utilizagdo de simuladores de voo
certificados por agéncias reguladoras, ou o uso de procedimentos experimentais, na validagao

das técnicas de controle desenvolvidas baseadas na inteligéncia computacional.

Neste projeto de pesquisa, opta-se pela utilizagdo do sistema neuro-fuzzy dado a sua
caracteristica de aliar a capacidade de adaptagéo aos problemas da rede neural (HAYKIN,
2008), com a robustez e intuitividade da teoria dos conjuntos fuzzy (ZADEH, 1965), assim
como em outros trabalhos que utilizam técnica similar (JANG, 1993), conhecida como ANFIS
(Adaptive-Network-Based Fuzzy Inference System), no setor aeronautico (KWONG et al,
1995; LIU, NAADIMUTHU e LEE, 2008; KURNAZ, CETIN e KAYNAK, 2010; BRANDON e
MORELLI, 2012; ULUS e ESKI, 2021). Este trabalho, porém, inova ao propor e aplicar um
novo método de inferéncia fuzzy denominado PIA (Pondered Individual Analysis), que garante
intuitividade e dispensa o uso de métodos de integragdo numérica, ao controle de uma
aeronave submetida a condi¢des criticas de voo, simuladas por meio do simulador de voo X-

Plane.



1.1. Objetivos

Os objetivos principais da pesquisa sdo a analise, projeto e desenvolvimento de um
controlador inteligente adaptativo a ser aplicado no controle de aeronaves em operacdes
criticas de voo, como condi¢des climaticas severas, rajadas de vento e mau funcionamento
ou falha do sistema propulsor, dando énfase no desenvolvimento do algoritmo e na

contribuicdo da pesquisa na area da inteligéncia computacional.

Como estudo de caso do sistema de controle, utiliza-se a aeronave Cessna 172,
devido a grande documentacé&o disponivel na literatura, simplicidade e importancia do modelo,

além do simulador de voo X-Plane como ambiente de simulacado desta aeronave.
Os objetivos especificos do projeto sao:

e Concepgdo de um novo método de inferéncia fuzzy denominado PIA (Pondered
Individual Analysis);

e Projeto e implementacdo de um sistema de controle neuro-fuzzy para uma aeronave
Cessna 172, com foco no controle longitudinal e latero-direcional do avido em
operacgoes criticas de voo;

e Realizagao de simulagdes no software MATLAB para a validagdo numérica e analise
de estabilidade da arquitetura de controle desenvolvida, a partir de uma modelagem
dinamica linear do comportamento da aeronave em voo;

e Validagdo numérica da arquitetura de controle a partir de uma simulagdo do tipo
software-in-the loop através do MATLAB e do simulador de voo X-Plane;

e Concepcéao de um protdtipo em escala reduzida da aeronave Cessna 172;

o Realizagdo de ensaios com o protétipo no intuito de coletar dados e analisar
comparativamente as técnicas classicas de controle com as desenvolvidas neste

projeto.
Os principais fatores de inovagéo s&o citados a seguir:

e Desenvolvimento do novo método de inferéncia fuzzy PIA;

e Utilizagdo de uma arquitetura de controle neuro-fuzzy associada ao método PIA de
inferéncia fuzzy;

e Aplicacao do sistema neuro-fuzzy em operagoes criticas de voo no simulador X-Plane;

e Validagao numérica de um controlador neuro-fuzzy;

¢ Analise comparativa entre as técnicas de controle classicas e as baseadas na

inteligéncia computacional a partir de dados numéricos e experimentais.



1.2. Justificativa

Conforme discutido anteriormente, a perda de controle da aeronave durante o voo
(LOC-I) é responsavel por aproximadamente 70% de todas as fatalidades ocorridas em

aeronaves com massa de decolagem superior a 5.700 kg (780 das 1116 mortes).

Além das falhas relacionadas a tripulagao e a operacao da aeronave em condi¢des de
voo critico (com ocorréncia em cerca de 55% dos acidentes causados devido ao LOC-I), na
Tab. 1.1 sdo apresentadas as principais condi¢cdes de voo presentes nos acidentes
relacionados a perda de controle da aeronave, sendo que em muitos dos casos ha a

ocorréncia simultdnea de mais de um fator de risco (IATA, 2020).

Tabela 1.1: Fatores Causadores da Perda de Controle da Aeronave Durante o Voo (IATA,

2020).
Fatores Causadores de LOC-I Ocorréncia (%)

Operagodes de Voo (falha humana) 55
Condigbdes meteoroldgicas criticas 45
Voo manual / Falta de aderéncia aos Procedimentos Operacionais 50
Padrao (POPs)

Operacéo fora das limitagdes da aeronave 40
Performance da tripulagao 50
Velocidade vertical/lateral fora do limite operacional da aeronave 35
Mau funcionamento da aeronave 35
Mau funcionamento / falha do sistema propulsor 20

A partir dos dados apresentados na Tab. 1.1, verifica-se que o estudo de técnicas
aplicadas no controle de aeronaves submetidas a condi¢des climaticas severas, rajadas de
vento, e mau funcionamento ou falha do sistema propulsor pode assumir grande importancia
ndo somente no cenario académico (COX, CUNNINGHAN e JORDAN, 2012), mas também

na contribuicao técnica relativa a seguranga de aeronaves.



A aplicagédo de técnicas da inteligéncia computacional na resolu¢cado de problemas
relacionados ao controle e modelagem de aeronaves € uma tematica ja desenvolvida em
trabalhos prévios, conforme sera apresentado na revisao de literatura, mas em nenhum
trabalho conhecido pelos autores ha o uso de simuladores de voo catalogados por agéncias
reguladoras, nem se realiza uma analise comparativa entre as técnicas de controle classicas
e as baseadas na inteligéncia computacional a partir de dados numéricos e experimentais.
Além disso, nao ha conhecimento de trabalhos que associam a inteligéncia computacional ao
controle de aeronaves de asa fixa submetidas a problemas de LOC-I, revelando assim

potenciais fatores de inovagéo na area.

Neste momento, cabe destacar que o uso de técnicas de inteligéncia computacional
no controle de sistemas aeronauticos, atualmente, em fungdo do elevado rigor técnico
necessario a validagdo das mesmas antes de serem exploradas comercialmente no setor
aeronautico, limita-se majoritariamente a aplicacbes terrestres nao-criticas. Este trabalho,
dessa forma, apresenta um foco estritamente académico, embora busque também encorajar
a comunidade técnica e cientifica especializada quanto ao maior uso da inteligéncia

computacional na area.

Ressalta-se que os trabalhos que aplicam as técnicas da inteligéncia computacional
no controle e modelagem de sistemas aeronauticos propdem inovagdes associadas a
aplicagao de técnicas ja conhecidas. Neste trabalho, ha também a proposi¢do de uma técnica
de inteligéncia computacional inovadora: o método PIA (novo método de inferéncia fuzzy), o
qual apresenta alto desempenho, quando comparado a outros métodos na minimizagao do

erro médio quadratico do processo, e pode ser utilizado em uma diversidade de aplicagdes.

Esta tese esta dividida em fundamentagao tedrica, revisdo bibliografica, metodologia,
PIA: um novo método de inferéncia fuzzy, controle neuro-fuzzy para aeronaves, conclusdes,
referéncias bibliograficas e por fim os anexos. Na Fig. 1.2 séo indicados e relacionados os

capitulos e as principais sec¢oes do texto com os seus respectivos temas.
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Figura 1.2: Fluxograma — organizagao da tese (autoria propria).

No intuito de fornecer suporte ao entendimento das principais tematicas envolvidas
nesta tese, no proximo capitulo é apresentada a fundamentacéo tedrica que norteia os

principais desenvolvimentos presentes neste texto.



CAPITULO Il

FUNDAMENTAGAO TEORICA

A fundamentagao tedrica deste trabalho consiste em fornecer ao leitor o conhecimento
necessario para o entendimento das principais aplicagdes e dos conceitos desenvolvidos
nesta tese. Este capitulo € dividido em controle e sistemas nao-lineares, teoria dos conjuntos
fuzzy, métodos de inferéncia fuzzy, redes neurais, ANFIS, evolugao diferencial e modelagem

dindmica de uma aeronave de asa fixa.

2.1.Controle e Sistemas Nao-Lineares

O controle nao-linear é definido como sendo o conjunto de procedimentos destinados
a estabilizacdo ou ao rastreamento das variaveis de saida de um sistema nao-linear em

relacdo a uma determinada referéncia.

Sistemas nao-lineares apresentam comportamentos que os diferem dos sistemas

lineares, e dentre estes comportamentos, os principais s&o indicados a seguir (SILVA, 2006):

o Dependéncia da amplitude de excitagao;
o Tempo de escape finito;

o Pontos de equilibrio multiplos;

¢ N&o unicidade da solugéao;

o Elevada sensibilidade aos parametros e as condigdes iniciais (caos);



e Existéncia de ciclos limite de oscilagao;

¢ Respostas harménicas e sub-harménicas a uma entrada senoidal.

De modo a facilitar a analise e o controle de sistemas dessa natureza, correntemente
é aplicado sobre os mesmos o processo de linearizagao (SILVA, 2006). Dada a Eq. (2.1),
admitindo que a funcao f[x(t), u(t)] seja diferenciavel, sendo x(t) o estado do sistema e u(t)

a acao de controle aplicada ao mesmo, ambos no tempo t:

x(@) = flx(®),u®)], (2.1)

esta pode ser expandida em série de Taylor em torno de um ponto P = (x,,u,). Ao se realizar

a expansao em torno de um ponto de equilibrio (x,,u,) tal que x, = 0 e u, = 0, tem-se que:

X = Ax + Bu + f5,(x,u), (2.2)
_ (o — (Y _
sendo A = (ax)’f;%e B = (au)ﬁ;g'

Desprezando os termos de ordem superior da expansao em série de Taylor f;,(x, u),

realiza-se a linearizacao do sistema em torno do ponto de equilibrio (x,, u,).

Apos o processo de linearizagao, pode ser necessario apresentar o sistema dindmico
na forma discreta, permitindo que o mesmo seja utilizado no projeto de controladores digitais.
Na Eg. (2.3) é apresentado o sistema na forma discreta, considerando o segurador de ordem
zero, ou seja, mantendo valores constantes de agéo de controle u;, durante o intervalo de

tempo T, sendo T, o tempo de amostragem adotado para o sistema e k a iteragdo corrente,
Xg41 = Gxp + Huy,. (2.3)
As matrizes G e H sao determinadas através das Egs. (2.4) e (2.5):

G = 4T, (2.4)
H = A"Y(e4s — B, (2.5)
em que I é a matriz identidade.

A partir do sistema linearizado, é possivel aplicar as teorias de controle classico.
Contudo, ao se realizar o processo de linearizagdo, algumas caracteristicas do sistema
passam a ser desprezadas, sobretudo quando se afasta do ponto de equilibrio em que foi

realizada a linearizagao.

Outro aspecto de importante consideragéo é a estabilidade de sistemas nao-lineares
(KHALIL, 2002; SILVA, 2006; PRECUP, TOMESCU e PREITL, 2009). Dado um sistema néo-
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linear escrito da forma apresentada na Eq. (2.6), em que x, x € R™1, é o estado do sistema,
u, u € R™1 ¢ a agéo de controle aplicada ao mesmo, f(x), f(x) € R™, e b(x), b(x) € R™™,

sdo fungbes que descrevem a dindmica do sistema e x(t,) € o estado inicial no tempo t,:

x(t) = f(x) + b(u(x), x(to) = Xo, (2.6)

¢ possivel definir uma fungdo V:R™ - R,V (x) = xTPx, denominada de fungdo Lyapunov,
sendo P € R™™ uma matriz positiva definida, a partir da qual pode-se iniciar a analise da

estabilidade do sistema.

A analise da estabilidade passa pela verificacdo da derivada temporal da fungéo de
Lyapunov V, Eq. (2.7). Se V(x) < 0 Vx, tem-se que o sistema em malha fechada, composto
pelo controlador e pelo processo nao-linear, sera localmente assintoticamente estavel no

sentido de Lyapunov na origem x,.
V(x) =x"Px +xTPx =

V(x) = (f(x) + b(x)u(x))TPx + xTP(f(x) + b(x)u(x)) =

V(x) = F(x) + B(x), (2.7)
em que:
F(x) = f(x)TPx + xTPf(x), B(x) =ul(x)bT (x)Px + xTPb(x)u(x). (2.8)

Existem técnicas aplicadas em controle, como as redes neurais, a teoria dos conjuntos
fuzzy e os sistemas neuro-fuzzy, que levam em consideragéo as nao-linearidades do sistema,
e dessa forma sao importantes objetos de estudo na area de controle de sistemas nao-

lineares.

2.2. Teoria dos Conjuntos Fuzzy

Como referéncia para estudar a teoria dos conjuntos fuzzy, sao utilizados (JAFELICE,
2003; GOMIDE, GUDWIN e TANSCHEIT, 2015), e alguns dos principais conceitos

concernentes a area sdo mencionados em sequéncia.

Conjunto Fuzzy: Um conjunto fuzzy A definido em um conjunto universo U é o grafico
da fungdo uy: X — [0,1], chamada de funcdo de pertinéncia de A. Em outras palavras, o

conjunto A é dado por:
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A={(x, pa(x)):x €X,pua(x) €[0,1]} (2.9)

O subconjunto classico de U definido por supp(4) = {x € U: uyu(x) > 0} é chamado de
suporte de A.

Considerando A como sendo um subconjunto fuzzy de U e @ € [0,1], 0 a-nivel de A
€ o subconjunto classico de U definido por [A]* ={x € U:uy(x) = a}, se 0 <a < 1. O nivel
zero de um subconjunto de A é definido como o menor conjunto fechado (classico) de U que

contém o conjunto suporte de A.

Um subconjunto A é chamado numero fuzzy quando o conjunto universo em que u, é

definida é o conjunto de numero reais R e A satisfaz as seguintes condigbes:

e Todos os a-niveis de A sdo nao-vazios,com0 < a < 1;
e Todos os a-niveis de A sao intervalos fechados de R;

o supp(4) ={x € R:uy(x) > 0} é limitado.

Os numeros fuzzy mais comuns sao: triangular, trapezoidal e em forma de sino. Outros

conceitos importantes dentro da teoria dos conjuntos fuzzy séo a s-norma e t-norma.

Uma co-norma triangular (s—norma) é uma operacdo binaria s: [0,1] x [0,1] —

[0, 1] satisfazendo as seguintes condicdes:

e Comutatividade: xsy = ysx;
e Associatividade: xs(ysz) = (xsy)sz;
¢ Monotonicidade: Se x <y ew < z entdo xsw < ysz;

e Condicoes de fronteira: xs0 = x, xs1 = 1.

Uma norma triangular (t-norma) € uma operagdo binaria t: [0,1] x[0,1] —

[0, 1] satisfazendo as seguintes condicdes:

o Comutatividade: xty = ytx;
e Associatividade: xt(ytz) = (xty)tz;
e Monotonicidade: Se x <y e w < z entdo xtw < ytz;

e Condicoes de fronteira: 0tx = 0, 1tx = x.
Claramente, o operador max € uma s—norma e o operador min € uma t-norma.

Pode-se relacionar dois ou mais conjuntos fuzzy, e assim modelar, controlar ou
classificar sistemas com incertezas, a partir de um Sistema Baseado em Regras Fuzzy
(SBRF).
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Sistema Baseado em Regras Fuzzy: Contém quatro componentes, a saber, um
processador de entrada que realiza a fuzzificagdo dos dados de entrada, uma colegao de
regras nebulosas chamada base de regras, um método de inferéncia fuzzy e um processador
de saida que fornece um nimero real como saida. Uma vez estabelecida uma base de regras,
isto €, como relacionamos os conjuntos fuzzy pela forma “Se...entdo0...”, um SBRF pode ser
visto como um mapeamento entre a entrada e a saidadaformay = f(x),x € R"ey € R™.

A Fig. 2.1 ilustra a arquitetura de um SBRF.

| Base de Regras |
ENTRADA i
Processador de Processador de mé
x e R™ Entrada Saida yeR™
CONJUNTO FUZZY N CONJUNTO FUZZY
% e Meétodo de
ENTRADA inferéncia fuzzy SAIDA

Figura 2.1: llustracdo da arquitetura de um SBRF (autoria propria).

Esta classe de sistema é amplamente utilizada em problemas de modelagem, controle

e classificagdo. Os componentes do SBRF sao descritos a seguir:

¢ Processador de Entrada (Fuzzificagao): Neste componente as entradas do sistema séo
traduzidas em conjuntos fuzzy em seus respectivos dominios. E neste momento em que
sao construidas as fungdes de pertinéncias para a descrigao das entradas.

o Base de Regras: Este componente, juntamente com a maquina de inferéncia, pode ser
considerado o nucleo dos sistemas baseados em regras fuzzy. Ele € composto por uma
colecao de proposi¢des fuzzy na forma ‘Se...entdo...".

e Método de Inferéncia Fuzzy: E neste componente que cada proposigéo fuzzy é traduzida
matematicamente por meio de métodos de Inferéncia Fuzzy. Apresentam-se os métodos
de Mamdani e de Takagi-Sugeno de Inferéncia Fuzzy:

o Método de Mamdani: Este método agrega cada uma das regras — ‘Se (antecedente)

entédo (consequente)’ — através do operador légico OU, que € modelado pelo operador
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maximo e, em cada regra, o operador l6gico E € modelado pelo operador minimo. Como

exemplo, citam-se as regras a seguir:

Regra 1: Se (X; € A, e X, € B,) entdo (Z é C,);
Regra 2: Se (X, € A, e X, é B,) entédo (Z € ().

A Fig. 2.2 ilustra como uma saida real z de um sistema de inferéncia do tipo Mamdani é
gerada a partir das entradas x; e x, reais e a regra de composigdo max — min. A saida

z € R é obtida pela defuzzificagdo do conjunto fuzzy ¢ = C’; U C’, da Fig. 2.2.

min
oA A |g ol Cy
?lL'"'"'{f{"' — ~ Cy
[\ ."i I"..
S 5 v | I T - z
Ty x'ul e al C,
A? B) ‘.\
/* g, [ Yo L s
L i sk il
t = \_ L l . i S — :E
Xt x_.'r
x‘ x max (unido)
[y
C=ClUC ¢
y
z

Figura 2.2: llustracdo do método de inferéncia de Mamdani (autoria propria).

o Método de Takagi-Sugeno: A diferenca basica deste método com relagdo ao método
de Mamdani esta na modelagem dos consequentes do SBRF, os quais sao fungdes do
tipo f; = fi(xq, x5, ..., x,) @associadas a saida z do SBRF, sendo x4, x5, ..., X, as entradas
(VALLE, 2015; BARROS, BASSANEZI e LODWICK, 2016). Duas regras fuzzy, como

exemplo, sdo mostradas a seguir:

Regra1:Se (X; € A, e X, éBy)entdao (Z é f; = f1(x1,x2));
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Na Fig. 2.3, a saida real z de um sistema de inferéncia fuzzy é gerada a partir das

entradas reais x; e x,.

min ou
produto

Regra 1- My (xy,27) f1 =f1(xy.x2)

Regra 2 -

Gz f =fyem)

Figura 2.3: llustragdo do método de inferéncia de Takagi-Sugeno (JAFELICE, 2003).

¢ Processador de Saida (Defuzzificagao): Na teoria dos conjuntos fuzzy, pode-se dizer que

a defuzzificagéo é o processo de se representar a combinagao de conjuntos fuzzy (ou nio),

dispostos na saida do processo de inferéncia, através de um numero real. Varios

defuzzificadores sao propostos na literatura para o método de Mamdani, enquanto que ha
apenas dois para método de Takagi-Sugeno (MENDEL, 2017). A seguir, apresentam-se os
métodos mais comuns de defuzzificagao.

o Média Ponderada: E o método de defuzzificagdo mais usado quando se utiliza o
método de inferéncia fuzzy de Takagi-Sugeno. A saida z para o SBRF é calculada a
partir da Eq. (2.10), em que k € o numero de fungdes consequentes associadas a saida
do SBRF, e 0 peso ,(xy, x5, ..., xp), i = 1,..., k, € 0 grau de compatibilidade das entradas
X1, X3, ..., Xn, Obtido através de uma t-norma, com relagdo a fungdo consequente f; =
fi (x4, %32, ..., x7) (MIZUMOTO, 1995; BARROS, BASSANEZ| e LODWICK, 2016).

k
_ Zi:l ui(xlerr ""xn)fi
2?21 l’li(‘xll‘XZl ---;xn)

(2.10)
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o Centro de Gravidade: Este método de defuzzificagdo é semelhante a média ponderada
para distribuicdo de dados, com a diferenga que o peso L .(Z) indica o grau de
compatibilidade do valor Z com o conceito modelado pelo conjunto fuzzy C, onde R € a
regido de integracdo e z a saida do SBRF. O centro de gravidade é a forma de

defuzzificagdo mais utilizada quando a inferéncia fuzzy € dada a partir do método de
Mamdani, dado por (MIZUMOTO, 1995):

e Zuc(@) dz

Em funcdo da importancia dos métodos de inferéncia fuzzy no comportamento

matematico da estrutura de um SBRF, a préxima secao trata especificamente deste tema.

2.3. Métodos de Inferéncia Fuzzy

O método de inferéncia fuzzy € o componente de um SBRF responsavel pela tradugéo
matematica de sua base de regras, exercendo grande influéncia ndo apenas na resposta do
sistema, mas também em seu custo computacional. As técnicas de inferéncia fuzzy mais

utilizadas na literatura sdo os métodos de Mamdani e de Takagi-Sugeno (BLEJ e AZIZI, 2016).

Ha trabalhos que apontam os métodos de Mamdani e Takagi-Sugeno como os
principais métodos de inferéncia fuzzy e propdem comparagdes cujos resultados demonstram
as vantagens do uso de Takagi-Sugeno sobre Mamdani sobretudo com relagéo a seu melhor
desempenho computacional (SIDDIQUE e ADELI, 2013; EYOH e UMOH, 2013; FAHMY,
ZAHER e KANDIL, 2015; SHLEEG e ELLABIB, 2013). A literatura contempla trabalhos que
propdéem outros métodos de inferéncia fuzzy, ou a possibilidade de adicionar inovacbes as
técnicas existentes, melhorando assim o desempenho computacional e a aplicabilidade de
um SBRF (SON, VIET e HAI, 2017).

Ha& métodos, a exemplo dos de Kosko-Mizumoto e Larsen, que diferem do método
Mamdani apenas na definicdo do conjunto fuzzy de saida. No método de Kosko-Mizumoto
(KOSKO, 1994; MIZUMOTO, 1995), Fig. 2.4, o conjunto fuzzy de saida € dado porC = C’; +
C’,, enquanto no método de Larsen (LARSEN, 1980), a diferenca estd na obtencdo das

regides C’; e C’,, conforme mostrado na Fig. 2.5.



min
A A [
Regra 1 i /‘\ .........
7z 3
) A '
Regra2 - ﬂ ............
\
X
Ci+GC)’

Figura 2.4: llustragdo do método Kosko-Mizumoto (autoria prépria).

produto
A A uh B, u A
Regra 1l - [\ /\ .................
> % Y
u
) A o B 1
. ﬂ ............ / \ .....................
S -
X ) &
X y
C=C,UC;

Figura 2.5: llustragdo do método de inferéncia de Larsen (autoria propria).
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Selvachandran et al. (2019) propdem um novo sistema de inferéncia fuzzy aplicado a
numeros complexos, baseado no método de Mamdani, para problemas de tomada de decisao
com varios atributos, especialmente quando se trabalha com dados com tendéncia periddica,
como chuvas registradas em uma regido ou ondas sonoras produzidas por um instrumento

musical.

Os autores em (JEE, TAY e LIM, 2015) desenvolvem uma nova abordagem baseada
no método de Takagi-Sugeno para reduzir o numero de regras que precisam ser reunidas
para a construgdo de um SBRF. Esta técnica € composta por dois estagios, a saber, no
estagio 1, um algoritmo genético € usado para obter um pequeno conjunto de regras a serem
coletadas e no estagio 2, as regras restantes sdo deduzidas aproximadamente por um
esquema de raciocinio de similaridade que preserva a monotonicidade das relagdes
matematicas. Em (ZHANG E SHEN, 2019), os autores desenvolvem uma técnica de
interpolagdo de regras fuzzy para SBRFs que utilizam o método de inferéncia de Takagi-
Sugeno e apresentam base de regras esparsa, no intuito de inferir conclusdes para as

instancias sem correspondéncia.

Outro artigo introduz a nogéo de partigdo fuzzy monétona (KERK, TAY, e LIM, 2019),
que é util para a construgdo de um SBRF monétono baseado no método de Takagi-Sugeno
de ordem zero. Os autores desenvolvem um método intervalar para modelar as incertezas de
um sistema, que considera o intervalo minimo de aceitabilidade de uma regra fuzzy,

resultando assim em um SBRF monétono e intervalar.

No intuito de aplicar o SBRF a problemas especificos e inovadores, Jamshidi et al.
(2013) usam o método de Mamdani para a avaliagdo de risco de dutos, em (SHLEEG e
ELLABIB, 2013) ha uma comparagéo do desempenho dos métodos de Mamdani e Takagi-
Sugeno na analise do risco de cancer de mama, e em (AHMAD et al., 2019) o método Takagi-

Sugeno é utilizado para o diagndstico inteligente da hepatite.

Dentro do contexto de trabalhos que propdem inovacbes as técnicas existentes,
Bemani e Akbarzadeh (2019) apresentam uma abordagem fuzzy adaptativa hibrida
denominada HGFRD (Hybrid Adaptive Granular Fuzzy Approach to Rule Discovery), que
efetivamente utiliza as vantagens dos métodos de inferéncia fuzzy de Mamdani e Takagi-

Sugeno em um unico processo de aprendizagem, dividido em 2 estagios.

O primeiro estagio de aprendizagem do HGFRD se inicia utilizando o método de
inferéncia fuzzy de Mamdani, pois fornece melhor generalizagdo e uma solugéo inicial mais
razoavel para o estagio de otimizagdo secundario. Por outro lado, o segundo estagio lanca
mao do método de Takagi-Sugeno para o procedimento de ajuste fino dos pardmetros do
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SBREF, oferecendo assim menor carga de processo, melhor capacidade de aproximagéo do
otimo global e a possibilidade de utilizagdo de métodos de otimizagdo mais eficazes, levando

a uma melhor precisdo do modelo.

Antes do inicio do segundo estagio, a estrutura e os pardmetros obtidos do método de
Mamdani devem ser transformados em uma estrutura e em parametros do método de Takagi-
Sugeno que sejam matematicamente equivalentes. Enquanto as partes antecedentes das
regras fuzzy permanecem intactas durante essa transformagéo, a parte consequente de cada
regra € reestruturada para o formato compativel com o método de Takagi-Sugeno equivalente,
de modo que o valor de cada coeficiente seja inicializado pelo valor de centro correspondente

a fungao de pertinéncia de saida do método de Mamdani.

A Fig. 2.6 ilustra a arquitetura da abordagem HGFRD proposta em (BEMANI e

AKBARZADEH, 2019):

[ Normalizagao dos dados ]

~
Inicializagdo aleatéria dos parametros do

método de Mamdani

4 N
Otimizagdo dos parametros do método de
Mamdani
& 7
4 '

Conversdo do método de Mamdani no
método de Takagi-Sugeno equivalente

Otimizagdo para o ajuste fino dos
L parametros do método de Takagi-Sugeno )

Critério de
parada

Figura 2.6: Arquitetura da abordagem HGFRD (BEMANI e AKBARZADEH, 2019).
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O HGFRD ¢ aplicado a dez benchmarks padrao e os resultados sdo comparados com
outras vinte e duas estratégias recentes. Resultados numéricos confirmam que o HGFRD
atinge maior capacidade de ajuste a dados experimentais, e com baixo custo computacional;
embora esta tese proponha o método PIA de inferéncia fuzzy, que demonstra apresentar
resultados mais satisfatérios que os obtidos com o HGFRD na resolugéo do estudo de caso

exposto neste trabalho.

Em certas aplicages, € desejavel que os parametros relacionados a um SBRF sejam
obtidos a partir de algum método de otimizagéo. Jang (1993) propds um sistema neuro-fuzzy,
denominado ANFIS, a ser explanado na secdo 2.5, que mantém a estrutura do sistema de
inferéncia fuzzy, mas que alia também a capacidade de adaptagao de uma rede neural, tema

explorado na préxima secao.

2.4.Redes Neurais

2.4.1. Conceitos Gerais

Uma Rede Neural Artificial (RNA), Fig. 2.7, € uma estrutura matematica constituida por
um numero finito de unidades individualizadas, também designadas por neurdnios, Fig. 2.8,
organizados em camadas (SILVA, 2006). A rede neural € utilizada, dentre outras aplicagdes,
para o reconhecimento de padrdes, para a obtengdo de modelos para sistemas estaticos e
dinAmicos e também como estrutura matematica de controladores, apresentando a
caracteristica de ser adequada a uma série de problemas devido a sua capacidade de ajuste

e adaptacgao aos problemas.

>

Entradas O Saidas

—»0

Camada de Camadas Camada de
Entrada Ocultas Saida

Figura 2.7: Representagao da arquitetura de uma RNA multicamadas (SILVA, 2006).
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(r’i(i,') — > a

Figura 2.8: Esquema de um neurdnio i da camada / (SILVA, 2006).

A saida a! de cada neurénio i da camada [ é apresentada na Eq. (2.12), sendo o} a
funcédo de ativagdo de cada neur6nio i da camada [ da rede neural, cuja saida é limitada
geralmente ao intervalo [—1,1] e € a responsavel por prover a estrutura matematica a
caracteristica desejada de ndo-linearidade. Os parametros wl-lj e b} sdo respectivamente o
peso sinaptico e o valor do bias associados ao neurdnio i, ambos determinados durante o

processo de treinamento da rede neural, sendo:

ni—1
= whai+ b},
=1
U 1l
aj = o/ (i}). (2.12)

AFig. 2.9 é a representagéo das fungdes de ativagéo o} usualmente utilizadas de cada

neurdnio i da camada [: degrau, linear, sigmoide ou tangente hiperbdlica.

alg A a;
it T
i L
Fungédo Degrau Fungéo Sigmoide
af al

Funcéo Linear Fungao Tangente Hiperbdlica

Figura 2.9: Fungdes de ativagdo usualmente utilizadas (autoria propria).
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2.4.2. Treinamento da Rede Neural

Apés a fixacdo do numero de camadas e do numero de neurbnios em cada camada,
procedimento realizado geralmente de forma intuitiva, € necessario determinar os valores dos
parametros wl-lj e bf que conduzem ao melhor desempenho da rede, processo denominado

treinamento da rede neural.

O treinamento da rede neural € tradicionalmente executado através de métodos de
otimizagao inspirados nos métodos da maxima descida e de métrica variavel (HAYKIN, 2008)
— embora haja na literatura trabalhos em que métodos heuristicos, como a evolugao diferencial
e os algoritmos genéticos, passam a ser utilizados para tal fungéo (PEREIRA et al., 2016) — e

baseia-se na minimizag&o da fungéo custo Cf, Eq. (2.13):

Nd
cf = ) ) - 9K, 2.13)
k=1

em que Nd é o numero de elementos da sequéncia y(k); v(k),k =1,...,Nd, é o conjunto de
dados utilizados para o treinamento da rede; e y(k), k = 1,...,Nd, sao os valores obtidos na
saida da rede neural. Ao se realizar com sucesso o processo de minimizag¢ao da fungao custo,
espera-se que a rede neural, para os valores de entrada que geram y(k), apresente valores
de saida y (k) tais que y(k) = y(k), k =1,...,Nd.

O treinamento da RNA pode ser realizado de duas formas: em grupo, chamado
alternativamente de treinamento off-line; e em linha, também chamado de on-line ou em tempo

real.

O treinamento em grupo é utilizado para processos invariantes no tempo ou para obter
valores iniciais dos parametros da rede. O valor de Nd deve ser da ordem das centenas, o
que permite ter uma grande variedade de amplitudes e informagdes do processo. O numero
de iteragbes utilizado para obter a convergéncia da rede é variavel e é fungao da respectiva
rapidez de convergéncia do processo de otimizagéo e do valor aceitavel para Cf. Apos o treino
em grupo, as redes devem ser testadas utilizando outras sequéncias de entrada/saida para

verificar a sua boa capacidade de generalizagao.

Ja o treinamento em linha é necessario quando se precisa identificar um processo
variante no tempo. Ressalta-se que para garantir a rapida adaptagcéo da rede ao sistema, o
numero de iteragdes realizadas durante o treinamento por cada passo de execugdo, por
exemplo, de um sistema controle, devera ser no minimo na ordem de dezenas, conforme é

ilustrado na Fig. 2.10. Em sistemas nao-lineares, porém, o treinamento em linha pode causar
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0 esquecimento das caracteristicas globais da rede, ficando esta mais adaptada apenas para

pontos de funcionamento com caracteristicas locais.

atualizagdo da rede

L

/ Tempo discreto, n

Instantes de execugdo ~ .
do controle

Figura 2.10: Relagéo temporal entre os instantes de execugao de um sistema de controle e
o numero de iteragbes realizadas para a atualizagao da rede (SILVA, 2006).

2.4.3. Aplicagcao de Redes Neurais em Sistemas de Controle Adaptativos

De acordo com Haykin (2008), ha basicamente duas formas de se trabalhar com redes
neurais aplicadas a sistemas de controle adaptativos: controle direto adaptativo e indireto

adaptativo.

Nos métodos de controle indireto adaptativo, a obtengao dos pesos e bias da rede
neural ndo esta ligada diretamente ao controle, mas sim a estimagéo da dindmica da planta,
Fig. 2.11. Nesta figura, a rede neural artificial encontra-se implementada no bloco “Estimacéo
do modelo da planta” (cujo detalhamento é apresentado na Fig. 2.12), e a partir deste modelo

em RNA é realizada a sintonia do controlador.

Desempenho Sintonia do | o Estimag&o do
desejado controlador modelo da planta

Referéncia ) ‘
—®{ Controlador| u y
p| ajustavel Planta >

y

Figura 2.11: Principio do controle indireto adaptativo (LANDAU et al., 2011).
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Neste método de controle é utilizado um procedimento subdividido em 2 passos, a saber:

¢ Obtém-se um modelo da planta P através de uma amostra contendo dados de entrada e
saida da mesma. Para exemplificar, considere um sistema de uma entrada u(k) e uma
saida y(k) para o tempo discreto k, Figs. 2.11 e 2.12. O modelo de identificagao da rede
neural artificial com realimentagdo da entrada, P , pode ser dado da forma:

Pk +1) = f(y(k), .., y(k — q + 1), u(k), .., u(k —q + 1)), (2.14)
em que q é a ordem do sistema desconhecido e y é a estimativa da saida y. A estimativa
y(k + 1) é entdo subtraida de y(k + 1) (saida real do sistema, obtida por meio de sensores)
para produzir o sinal de erro:

ek +1D)=yk+1) -9k +1). (2.15)
O erro e(k + 1) é usado para ajustar os pesos sinapticos da rede neural, de modo a
minimizar o erro na estimagao da saida y durante o processo de treinamento da estrutura.
Ressalta-se que € a saida real do sistema (e ndo a saida do modelo de identificagdo) que
é realimentada para a entrada do modelo. A Fig. 2.12 ilustra o procedimento de obtengéo
do modelo de identificacdo P, em que Z~! representa um atraso discreto no tempo, e

considerando-se que o sistema apresenta ordem q = 1.

u(k

WERE—— Z7 |q---- Método de
Adaptagéo

|
— P(k+1
|| Estrutura P(k+1)

adaptativa

(

Figura 2.12: Esquema basico da estimacgao on-line dos parametros da rede neural (LANDAU
etal., 2011).

¢ O modelo identificado da planta € utilizado para se obter as estimativas da saida do sistema
em fung¢do da entrada imposta no mesmo. Dessa forma, a partir deste, é possivel projetar
controladores adaptativos, conforme verificado na Fig. 2.11, que obtém o conjunto de
agOes de controle capaz de garantir que o sistema controlado atinja o desempenho

desejado.

Ja nos métodos de controle direto adaptativo, a dindmica da planta € desconhecida, e

dessa forma o controlador e a planta formam um sistema realimentado de lago fechado cujas
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entradas sao a referéncia e uma versao atrasada da saida da planta; e a saida do sistema de

controle é a correspondente acao de controle a ser aplicada no mesmo, Fig. 2.13.

Em (HAYKIN, 2008), os valores dos pesos e dos bias sado diretamente ajustados para
melhorar o desempenho do sistema, embora ndo existam métodos precisos para ajustar estes
parametros, visto que a planta desconhecida encontra-se entre o controlador e o erro de

saida.

O esquema do controle direto adaptativo, apresentado na Fig. 2.13, baseia-se na
observacao de que a diferenga entre a saida da planta e a saida do modelo de referéncia,
chamada subsequentemente de erro planta-modelo, € uma medida comparativa entre o
desempenho real do controlador e o desejado. Esta informagéo, juntamente com outras, é
utilizada pelo método de adaptagéo para ajustar diretamente em tempo real os parametros do
controlador adaptativo, de modo a forcgar, de forma assintética, o erro planta-modelo para zero
(LANDAU et al., 2011).

Método de

/7 Adaptagao -

Referéncia Q

—1—®{ Controlador | | U(k) Plant y(k)
’—> ajustavel e

y

y(k-1) ——p»] Modelo de
—> referéncia

Figura 2.13: Esquema do controle direto adaptativo (LANDAU et al., 2011).

O controle direto adaptativo, porém, apresenta algumas limitagbes. Embora o
desempenho do sistema possa, em muitos casos, ser especificado em termos de um modelo
de referéncia, as condigbes para a existéncia de um controlador viavel que permita, em malha

fechada, seguir esse modelo s&o restritivas (LANDAU et al., 2011).

Na proxima secao sao apresentadas as principais caracteristicas do ANFIS, sistema
hibrido que alia as caracteristicas de um sistema de inferéncia fuzzy, com a adaptabilidade

de uma rede neural.
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2.5.ANFIS

O ANFIS (Adaptive-Network-based Fuzzy Inference System), surgiu da fusdo da RNA
com o SBRF, Fig. 2.14. Dessa forma, o ANFIS herda a estrutura de um SBRF, ou seja, contém
o processo de fuzzificagdo, uma base de regras do tipo Se ... Entdo, uma maquina de
inferéncia fuzzy e a defuzzificagdo; porém com a mesma representagdo da estrutura e
capacidade de aprendizado e adaptacdo de uma RNA através do ajuste dos parametros

relacionados ao sistema fuzzy.

O(k)

}_Camada 1

l1(k) i (k) Ia(k)

Figura 2.14: Representagdo de um sistema neuro-fuzzy (autoria prépria).

A seguir é indicada a composicao e a fungdo de cada uma das camadas do ANFIS,
considerando a utilizagdo do método de inferéncia fuzzy de Takagi-Sugeno (TAKAGI e
SUGENO, 1985; JANG, 1993; CHEN, LIN e LIN, 2009):

e Camada 1: Cada n6 da primeira camada recebe uma das variaveis de entrada I;(k) do
sistema neuro-fuzzy, em que a saida do n6 i da camada 1 no tempo k, ul(l)(k), € dada por:
uM (k) = (k). (2. 16)

e Camada 2: Realizagao da fuzzificagdo dos dados de entrada, ou seja, estes séo traduzidos

em conjuntos fuzzy em seus respectivos dominios. E neste momento em que sdo

construidas as fungdes de pertinéncia MF para a descricdo das entradas. Adotando
fungbes de pertinéncia do tipo gaussiana, a saida do né ij da camada 2 no tempo k, ugf) (k),
é dada por:

uP (k) = e , (2.17)
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emque m;;(k) e aizj (k) sao respectivamente a média e a variancia da fungéo de pertinéncia
gaussiana MF;;.

o Camada 3: Colegao de proposigdes do tipo Se ... Entdo, formando assim a base de regras
do ANFIS. Para toda regra R;,, os operadores logicos E e OU sdao modelados
respectivamente através dos operadores matematicos produto e maximo, de modo que a
saida do n6 L desta camada, uf”(k), seja funcao das saidas da camada 2 selecionadas a
partir da regra R; .

¢ Camada 4: Cada n6 desta camada, denominado n6 consequente, realiza o papel de um
consequente, que é definido como sendo uma fungdo f;:R"—> R tal que f;=
ol e diy oo Ly Wap, oo, Wip, o, W, k), €M que  wyyp, ..., Wjg, ..., W, S80 pesos a serem
determinados na fase de treinamento do ANFIS. Dessa forma, a saida do n6 L da camada
4 uf” (k) é calculada por:
uP (k) = uP R f (I, oo Ly ooy Ly Wiy ooy Wy ey Wop, K- (2.18)

¢ Camada 5: Determinacédo da saida do sistema neuro-fuzzy, dada pela Eq. (2.19):

i) ug})(k)

0(k) = ST,

(2.19)

Considerando que o ANFIS seja invariante no tempo e que o método de inferéncia
utiizado seja o de Takagi-Sugeno de primeira ordem, os consequentes passam a ser

polinbmios de primeira ordem, e assim tem-se que:

Rl vR uP wertwiply bt wi bt Wy Iy) 220
~ R 3) R (3) ' ( . )
YL=1U[ Yi=1Up

Quando se trabalha com problemas de modelagem ou controle neuro-fuzzy, é
necessario que seja utilizado um método de otimizacdo que minimize a funcdo custo
relacionada ao processo e consequentemente busque uma solugéo de interesse, que passa
por exemplo pela determinagao dos pesos da estrutura matematica. Dessa forma, na préxima

secao, sera apresentada a evolugao diferencial, o método de otimizacgao utilizado nesta tese.

2.6.Evolucgao Diferencial

A evolugéo diferencial, algoritmo desenvolvido por Storn e Price (1997), € um método
de minimizacao de fungbes, podendo ser até nao lineares e nao diferenciaveis, que se mostra

capaz de se chegar ao valor 6timo global até mais facilmente e rapidamente que outros
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meétodos classicos e heuristicos. O método requer poucas variaveis de controle, é robusto, de
facil implementagcado e apresenta boa adaptabilidade a computagdo paralela (STORN e
PRICE, 1997).

O método da evolugéo diferencial busca encontrar o valor minimo global de uma

fungéo f,,;(X), sendo X um vetor cujos elementos representam cada uma das variaveis

independentes da fungéo. As etapas e operadores constituintes do algoritmo estao descritos
a seguir (HAN, LIN e CHANG, 2013) e representados na Fig. 2.15.

Repetir por k. iteragdes

1
I
1
Inicializagao -i—‘ M—P Cruzamento Selegdo

Para cada individuo i do conjunto S, faga

Figura 2.15: Representacao da evolugao diferencial, adaptada de Mor et al. (2015), sendo S
0 conjunto das possiveis solugdes do problema de otimizagéo.

Durante a inicializagao do algoritmo, os valores dos parédmetros utilizados durante a
execucdo do método sdo definidos, e sdo também determinados os limites de busca para
cada variavel. Os vetores (ou individuos) X; ,, cada um representando uma possivel solugéo
para o problema de otimizagao e cujos elementos sdo os valores normalizados das variaveis
do processo, sao inicializados seguindo uma distribui¢gdo uniforme definida dentro do intervalo
[0,1], e em seguida é calculada a aptiddo de todos os vetores com relagao a fungao objetivo

fobj-

Na fase de mutacgéo, utiliza-se a alteragéo dos vetores X; ; a partir da Eq. (2.21), em
que V; € o vetor resultante obtido a partir do vetor X; , na iteragéo k, F € o fator de perturbagéo
do vetor X; ., geralmente apresentando valor contido no intervalo [0,2], e X; , e X, sdo outros
vetores escolhidos aleatoriamente pertencentes ao conjunto (ou populagéo) S das solugbes
possiveis para o problema de otimizagao também na iteragdo k. Esse procedimento &

realizado n vezes, em que n € o numero de elementos do conjunto S:

Vi = Xige + F (X — Xii0)- (2.21)
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Na fase de cruzamento (ou recombinag¢do), busca-se mesclar as informagdes
presentes nos vetores V;, e X;,, garantindo maior diversidade na populagdo. Para cada
elemento e do vetor V;, utiliza-se um gerador de valores uniformemente distribuidos dentro
do intervalo [0,1], rand(0,1), e compara-se com o valor da taxa de cruzamento (CR), também
definido dentro do intervalo [0,1]. A tomada de decisdo desse operador é especificada na Eq.
(2.22), em que C;, € o vetor candidato a participar do conjunto S na iteragéo k+1 e
randnum(1,n,), sendo n, o nimero de elementos dos vetores, € um gerador de numeros
inteiros uniformemente distribuidos dentro do intervalo [1, n.]. Esse procedimento é repetido

para todos os vetores do conjunto S:

Voiw, SE rand(0,1) < CR OU e = randnum(1,n,);
Ce i —{ o @1 (1,ne) (2.22)

- Xeik, SE rand(0,1) > CRE e # randnum(1,n,).

A seleg¢ao € o ultimo operador padrdo da evolugéo diferencial e que se baseia na
analise dos vetores C;, gerados no cruzamento. A Eq. (2.23) descreve o procedimento de
selecdo, a ser realizado também para todos os vetores do conjunto S. Apds a sele¢ao, avanga-
se para a iteragéo k + 1, e é repetido todo o procedimento a partir do operador mutagéo até

que na iteragao k., alguma condi¢ao de parada pré-determinada seja atendida:

X = Xijer 5€ fonj(Xix) < fonj(Cir); (2.23)
LA € outro caso. '

2.7.Modelagem Dindmica de uma Aeronave de Asa Fixa

As equagdes do movimento para qualquer configuragéo tradicional de aeronave, como
helicépteros e avides, podem ser derivadas a partir da segunda lei de Newton aplicada a
corpos rigidos com 6 graus de liberdade, possuindo assim 3 graus de translagéo e 3 graus de
rotacdo (MACHINI, 2016).

Utiliza-se para a modelagem dois referenciais, sendo eles: um referencial inercial fixo
a terra denotado por I.; e outro baricéntrico fixo a aeronave B, capaz de transladar e
rotacionar junto com a mesma. Uma vez que as forgas e momentos, sejam elas
aerodinamicas ou inerciais, atuam no corpo, as equag¢des do movimento sdo derivadas em
relagdo ao referencial B.;. Por consequéncia, pode-se definir qualquer vetor escrito no
referencial B.; no referencial I utilizando os angulos de Euler. Estes representam a atitude

da aeronave, que € definida por: rolagem (¢), arfagem (@) e guinada (¥).
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A posicao da aeronave em relagéo ao eixo inercial I, bem como os angulos de Euler,

sdo dispostos no vetor 7, Eq. (2.24).

Xz [posig:do xemrelagdoal
Yi | posicao y em relacdo al |
Zgouh| _ |posi¢aozemrelagdoal |

(2.24)

angulo de arfagem |

1

|

|

I N i dangulo de rolagem

J l angulo de guinada J

As componentes das velocidades lineares e angulares em relagéo ao referencial B,

sao arranjadas no vetor v e expressas a partir da Eq. (2.25).

rU [ velocidade longitudinal 1
|V | velocidade lateral |
_lw | velocidade vertical |

<¢

~ | velocidade angular de rolagem | (2.25)

|velocidade angular de arfageml
velocidade angular de guinada

QO T
-

Por fim, na Eq. (2.26), sao visualizadas as componentes das forgas e momentos que

agem sobre a aeronave.

[<1

[ forga longitudinal 1
| forc¢atransversal |
for¢a vertical
I I (2.26)
omento de rolagem
|l momento de arfagem'

momento de guinada

z:E_:E?x

A partir da Fig. 2.16 € possivel visualizar os eixos, os dngulos de Euler, as velocidades,

forgas e momentos definidos anteriormente.

Figura 2.16: Visualizag&do dos eixos, angulos de Euler, velocidades, forcas e momentos da
aeronave (autoria proépria).
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Apods a definicdo das variaveis envolvidas na modelagem dindmica da aeronave, é
necessaria a analise cinematica do sistema. A equacao cinematica para a translacao e rotacao

de um corpo rigido fixo pode ser expressa da forma:

):(E U
Ye [ = RzwRyoRxy|V |, (2.27)
Zg w

onde R, y, R, ¢ € Ry 4 S80 as matrizes de rotagéo do referencial B, para I s nas diregoes z, y

e x respectivamente (ROSKAM, 2001).

Desta forma, a velocidade angular da aeronave escrita no referencial B,y pode se
relacionar com a taxa de variagdo dos angulos de Euler utilizando das matrizes de rotagao

que resultam na seguinte relagédo cinematica:

P 0 0
Q= |o|+ Ris|6|+ RisRy 6|0 (2.28)
R 0 0 g

Aplicando a segunda lei de Newton para um corpo rigido com 6 graus de liberdade,

[1R 1]

sendo “x” o operador indicativo de produto vetorial, tem-se que:

m(v; + voxv7) = 7, (2.29)
IegVz + Vax(IegVs) = T3, (2.30)

em que m € a massa da aeronave, I; € seu tensor de inércia, v; = [U,V,W]T,v, = [P,Q,R]",
T, =[XY,Z]"et, = [L,M,N]".

A partir do desenvolvimento das Egs. (2.29) e (2.30) apresentado em Fossen (2011),

sendo g a aceleragao da gravidade, tem-se:

m(U +QW —-RV+g sin(@))
m(V + UR — WP — g cos(@) sin(d))
m(W + VP — QU — g cos(0) cos())

LP—-1,(R+PQ)+ (I,—1,)QR
L,Q + L,(P* = R*) + (I, — I,)PR
| IR —I,P+ (I, = L)PQ + I,QR |

(2.31)

EGLRE

sendo I, I, e I, os momentos de inércia da aeronave em torno respectivamente dos eixos x,

y ez, el,, & o produto de inércia em relagdo aos eixos x e z.

As Egs. (2.28) e (2.31) modelam o comportamento dindmico da aeronave e formam

um sistema possivel e determinado com nove variaveis e nove equagdes. Essas equagdes
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podem ser integradas ao longo do tempo a fim de se obter a variagdo temporal das variaveis
de estado. O processo de integragdo, porém, se contabilizar todas as nao-linearidades do
sistema, torna-se um processo matematicamente complexo e muitas vezes inviavel sobretudo
quando se busca uma solugéo analitica. Assim, utilizam-se ferramentas de linearizagdo em
torno de pontos de operagcdo da aeronave, como a teoria das pequenas perturbagdes, que

simplificam consideravelmente o processo de integragdo numeérica.

A teoria das perturbacdes define que é possivel escrever um estado s como a soma
do seu valor nominal (constante) s,, que representa uma condigado de equilibrio do sistema, e
uma perturbagdo no entorno desta condicdo de equilibrio §s. A partir disto, definem-se as

variaveis apresentadas anteriormente na sua forma perturbada:

el 15
f=a+§=if§i igfi (2.32)
el Low]
il o] fet 1
o= e [, 1
) L] 16 18
0 601 [66 0o 6
o= [bo|+|60|=[Po| + 0| (2:34)
17 Yol lswl 1¥,1 Ly

Segundo Fossen (2011), as equagdes lineares perturbadas que representam o

movimento da aeronave s&o dadas por:

m[i+ Quw + Wyq — Ryv — Vyr + g cos(0y) 8]

m[v + Uyr + Ryu — Wyp — Pow — g cos(0,) cos(dg) ¢ + g sin(0,) sin(dg)0] rf;;]
m[w + Vop + Pyv — Uyq — Qou + g cos(0y) sin(dpg)d + g sin(0,) cos(dy) 6] I 57 I
pr - Ixzfﬂ + (Iz - Iy)(QOr + ROQ) - Ixz(POq + Qop) - I oL l (235)
Lq+ (I — L)Por + Rop) — 2Ly (Ror + Pop) |1an
127" - Ixzf’ + (Iy - Ix)(POq + Qop) + Ixz(QOr + ROQ) | 8N

Na Eq. (2.35), as variaveis que possuem sub-indice “0” sdo denominadas variaveis de
equilibrio ou de trimagem, as quais sao obtidas, Eq. (2.36), assumindo na Eq. (2.31) que a

aeronave esteja em equilibrio dindmico:
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m(QoWo — RoV, + g sin(6,)) X,
m(URy ~ PoWo — g cos(0p) sin(bo)| |y |
m(PoVy — QoUy — g c0s(8y) cos(dy)) 1 Zo |
(I, = 1y)QoRo — PoQolx T Ll (2.36)
(P2 — R¥)I, + (I, — I,)PyR, llMOJI
(Iy = Ix)PoQo + QoRolx, No

No intuito de novamente simplificar a modelagem matematica de uma aeronave, é
comum desacoplar sua dindmica de corpo rigido em 2 subsistemas: dindmica longitudinal,
composta pelos estados u, w,q e 8; e dindmica latero-direcional, composta pelos estados

v,p,r € ¢. Assim, negligencia-se o efeito de qualquer estado de um subsistema sobre o outro.

A principal hipétese que sustenta o desacoplamento é a de que a fuselagem é esbelta,
ou seja, o comprimento € muito maior que a largura e a altura da aeronave. Supde-se também

que a velocidade longitudinal seja muito maior que as velocidades vertical e transversal.

As Egs. (2.37), (2.38) e (2.39) descrevem a dindmica longitudinal de uma aeronave
(FOSSEN, 2011):

m[i+ Quw + Wyq + g cos(0,) ] = 6X,

m[w — Uyq — Qou +gsin(0,) cos(dy) 6] = 6Z, (2.37)
I,q = M,

m 0 07 ru 0 mQ, mWy] [U mgcos(0y) oX
[0 m 0] wl+|-mQ, 0 —mUy| [W]|+ |mgsin(6y)cos (c])o)l 0=16Z| (2.38)
o o g o o o Ilg 0 M
6 =q. (2.39)

As Egs. (2.40), (2.41) e (2.42) descrevem a dindmica latero-direcional de uma
aeronave, (FOSSEN, 2011):

m[v + Uyr — Wop — g cos(0,) cos(dg) ] = Y,
Lp — L7+ (I, — 1,)Qor — 1,Qop = 6L, (2.40)

17— L,p+ (Iy - Ix)Qop + L,Qor = 6N,

0 _mWO mUO

m 0 0 v v —mg cos(6,) cos(d,) Y
[0 Ix — Ixz] p + 0 - Isz() (Iz - Iy)QO [P] + 0 ] ¢ =|6L|, (241)
0 - Ixz Iz 4 0 (Iy - Ix)QO IszO r 0 SN
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' 0
Lﬂ [0 1t/acr;§(@oz)] [p] (2.42)

As forgas e momentos aerodindmicos e propulsivos, Eq. (2.26), sdo gerados pela
propria estrutura da aeronave, pelos flaps §5, pelos propulsores §; e pelas demais superficies
de comando descritas na Eq. (2.43) e ilustradas na Fig. 2.17.

Forca de propulsao 1
| Deflexdo do profundor |
Deflexdo dos flaps I (2.43)

I
| Deflexdo dos ailerons
l Deflexdo do leme

L]

184,

Figura 2.17: llustrag&o das principais superficies de comando (FOSSEN, 2011).

McLean (1990) expressa as forgas e momentos longitudinais e latero-direcionais em
fungao dos propulsores e das superficies de comando de acordo respectivamente com as

Egs. (2.44) e (2.45):

56X [ Xy X X4 ru Xy Xw Xglru Xsr  Xsp KXoz |[6r
57| =\Za Zw Zg| |Wl+|Zu 2Zw Zg||\W|+|Zs, Zsz Zsg [551, (2.44)
L 5M My My, M| Lq M, M, Mg|laq Ms, Ms, Ms,|Lop
rS5Y Y, Y Y] o Y, Y Ylw Ys, VYs 5
SL{=|Lv Lp Ly| |p|+|Lv Lp Lr [p]+ Ls, Ls, [;]. (2.45)
6N |N; Ny Ni| Ll [N, N, Nerd|Ns, N | TR

Os parametros X;, X, ..., N5, s8o relativos respectivamente as derivadas parciais g—z,
Z—Z, :TN e sdo denominados de coeficientes aerodinamicos, os quais sédo fungéo da

R

aeronave em estudo e da sua condigédo de operacédo. Roskam (2001) apresenta em seu livro
uma tabela contendo os coeficientes aerodindmicos das principais aeronaves comerciais em
diversas condi¢cdes de operagado. Ressalta-se que se as dindmicas dos atuadores forem
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importantes para uma maior exatiddo do modelo resultante da aeronave, coeficientes

aerodinamicos como X5 e Yz devem ser incluidos no processo de modelagem.

Por fim, ao se levar em conta as relagdes matematicas apresentadas nas Egs. (2.38)
e (2.39), e os efeitos dos atuadores sobre o sistema aeronautico, Eq. (2.44), é possivel obter
um sistema de equagdes que descreve o comportamento dindmico longitudinal de uma

aeronave submetida a pequenas perturbagodes, Egs. (2.46) e (2.47).

m-X, —Xo  —Xq | ru ~X,  mQo—X, mMWo—X,] ru
—Z; m-—2Z, —Z4 W+ |—-mQy —Z, —Zy -mUy —Z4| |W|+
| M, My, L-M| g —M, —M, —M, q
mgcos(60y) Xor  Xsp  Xsp|[6r
mgsm(@o)cos (d)o)l 0=\2Zs; Zsy Zsg 551. (2.46)
Ms, Ms, Ms,|Lop
6=q. (2.47)

Analogamente, ao se levar em conta as relagbes matematicas apresentadas nas Egs.
(2.41) e (2.42), e os efeitos dos atuadores sobre o sistema aeronautico, Eq. (2.45), é possivel
obter um sistema de equacgdes que descreve o comportamento dindmico latero-direcional de

uma aeronave submetida a pequenas perturbagdes, Egs. (2.48) e (2.49).

[m — Y, —¥ -Y; o =Y -mW, =Y, mUy — Y, v
Ly L=l —lLe—Le| [p| 4|~k —le@o-Ly  (L—1)0 Lk H ;

| =Ny —L—Ny I,—N; r —N, (I, — I,)Qo — N, L,Qo — N, r

[—mg cos(0y) cos(dg) You Yop 5
0 ¢ =|Ls, I@R[é] (2.48)
0 Ns, N,

[ tan (0y) 1[p

) [0 1/005(60)“ ] (2.49)

Apods a apresentacao da modelagem dinamica linear de uma aeronave de asa fixa, no
préximo capitulo sera exibido o estado da arte no que tange a modelagem e sobretudo ao

controle de aeronaves, simuladores, e operagdes criticas de voo.
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CAPITULO Il

REVISAO DE LITERATURA

A revisao de literatura deste trabalho consiste em apresentar o estado da arte no que
se refere ao estudo de tematicas relacionadas ao controle de aeronaves, sobretudo quanto a
utilizagao de técnicas de inteligéncia computacional para tal. Este capitulo é dividido em perda
de controle da aeronave durante o voo, simuladores de voo e inteligéncia computacional

aplicada a sistemas aeronauticos.

3.1.Perda de Controle da Aeronave Durante o Voo

A perda de controle da aeronave durante o voo, também conhecida como LOC-I (Loss
of Control In-flight) agrega um conjunto de acidentes em que a tripulagdo ndo consegue
manter o controle da aeronave em voo, resultando em um desvio de rota irrecuperavel (IATA,
2015). E um tema de grande relevancia no setor aeronautico devido ao fato de ser causa de
boa parte dos acidentes aéreos fatais, e dessa forma é tema de estudo das comunidades

técnicas e cientificas do setor aeronautico.

A Tab. 3.1 exibe trabalhos que exploram a tematica, e em seguida séo discutidos os
principais desenvolvimentos, informagdes e as conclusdes relevantes para o desenvolvimento

desta tese.
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Tabela 3.1: Trabalhos que Exploram a Perda de Controle da Aeronave Durante o Voo.

Trabalho Assunto

IATA (2020) Estatisticas — Acidentes aéreos de 2015 a 2019

Oliveira (2018) Requisitos para o treinamento full-stall

Frink et al. (2017) Modelagem de LOC-I com énfase no fenbmeno de
stall

IATA (2015) Estatisticas — Acidentes aéreos de 2010 a 2014

Cox, Cunninghan e Controle de aeronaves em escala reduzida —

Jordan (2012) LOC-I

Murch, Cox e Controle de Aeronaves: consideragdes de

Cunninghan (2009) software

Jordan e Bailey (2008) Bancada e metodologia da NASA para o controle
de Veiculos Aéreos N&ao Tripulados (VANTS)
submetidos a LOC-I

Jordan et al. (2006) Apresentacao da bancada da NASA de estudo de
VANTs submetidos a LOC-I

Wu, Zhang e Zhou (2000) | Filtro de Kalman: Efetividade do sistema de
controle de uma aeronave

IATA (2020) desenvolve um relatério a respeito dos acidentes aéreos ocorridos de
2015 a 2019 em aeronaves comerciais com massa de decolagem maxima superior a 5700
kg. Neste relatério € indicado que, embora apenas 8% dos acidentes aéreos tém como causa
a LOC-HI, Fig. 3.1, aproximadamente 70% das fatalidades (780 mortes) foram causadas por
acidentes classificados dentro desta categoria. As categorias de acidentes sdo apresentadas
na Tab. 3.2.



Tabela 3.2: Categorias de Acidentes e as Descri¢gdes de Suas Terminologias Padrao.
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Categoria de Acidente

Descrigcao/Tradugao

Runway/Taxiway Excursion

Saida inadequada da aeronave da pista de pouso

In-flight Damage

Danos durante o voo

Hard Landing

Aterrissagem forgcada

Gear-up Landing/ Gear Collapse

Pouso sem o trem de pouso totalmente estendido

Ground Damage

Incidentes em que o pessoal da companhia aérea

causa danos a uma aeronave no solo

Loss of Control In-flight

Perda de controle da aeronave durante o voo

Tailstrike Colisdo da extremidade traseira de uma aeronave
na pista

Undershoot Pouso antes ou na frente do alvo pretendido

Other Outras causas de acidentes

Collision Colisdo

Controlled Flight info Terrain

Deficiéncia nos sistemas de medig¢do da aeronave
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Figura 3.1: Percentual de acidentes aéreos em funcao das categorias de acidentes
apresentadas com a nomenclatura padréo (IATA, 2020).

A Tab. 3.3 sintetiza as 3 principais categorias de acidentes aéreos no que diz respeito
a letalidade, sendo Controlled Flight into Terrain (CFIT) os acidentes em que a aeronave
preserva toda sua controlabilidade, mas que por motivos diversos os sistemas de medicao e
a tripulagdo ndo séo capazes de detectar uma divergéncia de rota, e Runway/Taxiway
Excursion, categoria mais recorrente de acidente aéreo, é a falha de sistema ou colisdo da

aeronave em solo.

Tabela 3.3: Principais Categorias de Acidentes Aéreos Quanto a Letalidade (IATA, 2020).

Categoria de Numero de Acidentes Fatalidades Fatalidades
Acidente Acidentes Fatais (%)
Loss of Control In- 22 19 780 70%
Flight (LOC-I)
Controlled Flight 4 3 124 11%

into Terrain (CFIT)

Runway/Taxiway 74 4 55 5%

Excursion

Total 292 37 1116 100%
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IATA (2020) faz uma série de levantamentos de dados na tentativa de determinar a
origem e os principais motivos que levam a LOC-Il. Na Fig. 3.2 é apresentado um grafico que
indica a fase do voo em que as tripulagdes que sofreram o acidente relatam ter iniciado a
perda de controle da aeronave. As especificagdes das siglas referentes as fases de voo

apresentadas na Fig. 3.2 estdo descritas na Tab. 3.4.

Tabela 3.4: Fases de Voo.

Fase Especificagado
TOF Decolagem (Take-off)
ICL Subida inicial (Initial Climb)
ECL Em rota de subida (En Route Climb)
CRz Cruzeiro (Cruise)
DST Descida (Descent)
APR Aproximacgéao (Approach)
GOA Arremetida (Go-around)
LND Aterrisagem (Landing)
9 ; LOC-I: Fase do voo
b4 | =Fatal
E 7 1 =N3o Fatal
T 6 -
o
< g |
3
o 41
£
> 2 4
1
0 4

PO OZATAR OISR

Figura 3.2: Fase do voo em que houve a ocorréncia de LOC-I (IATA, 2020).
Ao se considerar a Fig. 3.2 e também o tempo de duragdo de cada uma das fases,

verifica-se que é em regime transiente que mais ocorre este fendbmeno, como por exemplo na

decolagem e na subida inicial.
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Os fatores mais recorrentes quando ha a perda de controle da aeronave durante o voo
sdo elencados na Tab. 3.5. Vale ressaltar que mais de um fator costuma ocorrer

simultaneamente.

Tabela 3.5: Fatores Recorrentes em Acidentes Devido a LOC-I (IATA, 2020).

Classificagao Fator Ocorréncia (%)
Deficiéncias | Operagdes de voo (falhas humanas) 55
Gerenciamento de seguranga 50
Sistemas de treinamento 40
Procedimentos operacionais padréo (POPs) e 40
verificacao
Supervisao regulatéria 40
Erros da Operagéao manual / Controles de voo 50
tripulagao
Aderéncia dos procedimentos aos POPs 50
Comunicagao entre pilotos 35
Falha de checklist 25
Falhas gerais de comunicagao 20
Ameacas Condi¢des meteoroldgicas severas 45
ambientais
Pouca visibilidade/ condicdes meteorolégicas de voo 20
por instrumentos
Rajadas de vento 15
Condigbes de congelamento 15
Tempestade de raios 5
Estados Operacao fora das limitagbes da aeronave 40
indesejados
da aeronave | Velocidade vertical/lateral fora do limite operacional da 35
aeronave
Abrupto controle da aeronave 30
Controle de voo / Automacao 20
Penetracao desnecessaria em condigcbes 15

meteoroldgicas adversas
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Ameacas Mau funcionamento da aeronave 35
durante o

voo Mau funcionamento / falha do sistema propulsor 20

Fadiga 15

Press&o operacional 15

Fatores ndao- | Performance da tripulagao 50
mensuraveis

Monitoramento / Verificagao 50

Lideranca 40

Lideranga que deve ser demonstrada pelo capitdo 40

Gerenciamento de eventualidades 30

Ao se analisar cada um desses fatores seguidos por suas taxas de ocorréncia,
merecem atengao: condicdes meteorologicas severas (45%), operagao fora das limitagdes da
aeronave (40%), velocidade vertical/lateral fora do limite operacional (35%), mau
funcionamento da aeronave (35%) e mau funcionamento/falha do sistema propulsor (20%).
Esses fatores sdo alvos de estudo pelas comunidades técnicas e cientificas, e também sao
objetos de estudo desta tese no que diz respeito ao desenvolvimento de sistemas de controle
gue possam minimizar os efeitos dos mesmos sobre a controlabilidade de um sistema

aeronautico.

Cox, Cunninghan e Jordan (2012), trabalho realizado pela NASA, lanca mao de
aeronaves em escala reduzida para a validagao de modelos dindmicos, controle e tecnologias
voltadas a condigbes de voo de alto risco e LOC-I. A agéncia espacial desenvolveu uma
plataforma de testes, denominada AiIrSTAR, Fig. 3.3, que de 2009 a 2011 viabilizou a
realizagao de 58 voos de teste.

Figura 3.3: Bancada de testes AirSTAR (COX, CUNNINGHAN e JORDAN, 2012).
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Os objetivos principais de Cox, Cunninghan e Jordan (2012) s&o a identificagédo e
modelagem aerodindmica da aeronave, e a realizagéo de testes de algoritmos adaptativos no
intuito de verificar a robustez dos mesmos em condigdes criticas de voo. Os autores indicam
como limitagbes da pesquisa a necessidade de alcance visual da aeronave, visto que nao se
dispunha de pilotagem automatica, e também a necessidade de construgdo de um prototipo
maior e com cauda em T, configuragdo critica em voos com condi¢des meteoroldgicas

adversas.

Frink et al. (2017) trabalham a teméatica da LOC-I, porém com énfase em um fenémeno
denominado stall, a perda abrupta da forgca de sustentagao de partes ou de toda a aeronave
durante o voo. E um tema de bastante relevancia devido ao potencial de causar acidentes
graves, visto que o piloto perde completamente o controle do sistema, e além de ser um
fendmeno de dificil reproducéo, devido a alta complexidade matematica e da dificuldade de

se reproduzir experimentos com razoavel grau de seguranca.

O trabalho de Frink et al. (2017) compara o resultado de modelos representativos,
criados a partir de dados aerodinamicos computacionais e de tunel de vento; com modelos
especificos, produzidos a partir de dados de stall em voo. O estudo conclui a semelhancga
matematica entre os modelos representativos e especificos, 0 que sugere que analises
numeéricas e ensaios com tunel de vento podem servir efetivamente como ferramentas de

estudo para o fenébmeno de stall.

Através do tunel de vento e do protétipo ilustrados na Fig. 3.4, o trabalho levanta a
curva do coeficiente de sustentagdo da aeronave em fungéo do angulo de incidéncia do vento
com relagao a superficie da aeronave, denominado angulo de ataque «, sendo este variado
de 0° até 90°. Além disso simulam-se diferentes intensidades e &ngulos de rajadas de vento
laterais, e também o efeito de falhas na estrutura aeronautica no coeficiente de sustentagao
da mesma. Todas as informagdes subsidiam uma maior compreensdo e a previsdo da

ocorréncia do stall no protétipo ensaiado.

Figura 3.4: Tunel de vento e prototipo utilizados em Frink et al. (2017).
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Oliveira (2018) aponta em seu trabalho o protocolo internacional (FAA-H-8083- 3B,
2016) que dispbe sobre os procedimentos de recuperagdo de stall, resumidamente e em

ordem cronologica expostos a seguir:

o Desabilitar o auto-pilot e o auto-throttle;

e Aplicar tanta acdo de profundor quanto o necessario para abaixar o nariz da
aeronave;

o Ajustar o &dngulo de rolagem;

o Ajustar throttle da aeronave assim que o angulo de ataque estiver dentro dos limites
operacionais;

o Recolher speed brakes;

e Apods retomado o controle da aeronave, retornar ao percurso desejado.

Diante do protocolo e da tentativa mundial de se reduzir o nimero de acidentes devido
a LOC-I, Oliveira (2018) propde uma investigagdo, com 20 pilotos de teste da empresa
EMBRAER, a respeito da periculosidade na realizagdo de testes de voo que envolvam a
inducao do fenémeno de stall, e a efetividade do treinamento de recuperacdo de stall em
simuladores de voo. A grande maioria dos pilotos considera que o risco que envolve um ensaio
de voo é inaceitavel, envolvendo a potencial perda da tripulagcdo e do protétipo; além disso,
embora uma discreta maioria dos pilotos considera que ensaios virtuais de stall seriam uma
opg¢ao valida de treinamento, boa parte dos entrevistados n&o acredita na eficacia da

proposi¢ao, alegando principalmente divergéncias entre a simulagado e a vida real.

Apesar das desconfiangas com relagao a eficacia de simuladores de voo, estes séo
cada vez mais utilizados no projeto de aeronaves e no treinamento de pilotos, dessa forma,

este assunto é abordado a seguir.

3.2.Simuladores de Voo

A Tab. 3.6 exibe trabalhos que exploram a tematica, e em seguida sao discutidos os
principais desenvolvimentos, informagdes e as conclusdes relevantes para o desenvolvimento

desta tese.
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Trabalho

Assunto

Zabidin, Pairan e
Shamsudin (2020)

Estudo do desempenho de uma arquitetura de controle de
VANT baseada em PIDs em cascata, a partir de uma
simulagao do tipo software-in-the-loop realizada entre o
LabView e o X-Plane.

Bittar et al. (2014)

X-Plane, software-in-the-loop e navegagao de VANT.

Bittar, Oliveira e
Figuereido (2014)

X-Plane, hardware-in-the-loop e controle de VANT em
operagoes criticas de voo.

Bittar e Oliveira (2013)

X-Plane e controle de VANT.

Garcia e Barnes (2010)

X-Plane e simulacéo da operacao de multiplos helicépteros.

Ribeiro e Oliveira (2010)

X-Plane e software-in-the-loop.

Craighead et al. (2007)

Apresentacéo dos simuladores comerciais e open source

Adiprawita, Ahmad e
Sembiring (2008)

Teste de voo automatico e identificacdo dindmica de
sistemas para helicépteros n&o tripulados a partir do método
da resposta em frequéncia.

Em Bittar et al. (2014), pesquisa realizada no Instituto Tecnologico de Aeronautica

(ITA), utiliza-se o software X-Plane para o estudo do controle e da navegagao de VANT. O

trabalho indica que o X-Plane é um simulador de voo certificado pela agéncia de aviagcao

americana — FAA (Federal Aviation Administration) para o treinamento de pilotos e que

controladores testados neste software foram bem-sucedidos em aeronaves reais.

O X-Plane utiliza como ferramenta matematica a teoria de elementos de pa (Bittar et

al., 2014), que se baseia na divisdo da aeronave em pequenos elementos, nos quais séo

calculados os esforgos envolvidos, e por ultimo a soma dos efeitos de cada um destes

elementos no sistema aeronautico. Neste simulador aeronautico é possivel trabalhar tanto

com aeronaves comerciais, quanto com VANTs, Fig. 3.5, que podem ser modelados

geometricamente e exportados ao X-Plane a partir do software Plane-Maker.
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Figura 3.5: O X-Plane permite simular a operagéo de aeronaves comerciais e de
aeromodelos (adaptada de BITTAR et al., 2014).

Bittar et al. (2014) desenvolvem uma interface de comunicagéo entre o Simulink e o X-
Plane, em que P1,P2,P3 e P4 sao as portas de comunicagao, Fig. 3.6. Esta interface permite
a utilizagdo do simulador de voo como a planta do sistema a ser controlado, e o0 MATLAB
como plataforma de desenvolvimento do controlador aeronautico, assim, viabilizando a

realizagédo do software-in-the-loop.

SIMULINK X-PLANE
Output PortIP: Input portIP:

49005/127.0.0.1 (v

A

49000/127.0.0.1

Input Port/IP: . Output Port/IP:

P3 P4

49004/127.0.0.1 | - 49001/127.0.0.1

Figura 3.6: Interface de comunicagéo entre o Simulink e o X-Plane (BITTAR et al., 2014).

A partir das Eqgs. (3.1) e (3.2), é possivel controlar o angulo de guinada da aeronave e
consequentemente gerenciar sua navegagao, Fig. 3.7, sendo Dy, a distancia da aeronave
em graus com relagéo ao ponto de destino, y o angulo formado entre a aeronave e o ponto
de destino, medido em sentido horario a partir de um vetor com sentido norte, Lat,,, € Lon,,,
sdo as coordenadas geograficas do ponto de destino, e Laty yr © Lony,yr S@0 as

coordenadas geograficas da aeronave (Bittar et al., 2014).

2 2
Dgraus = \/(Lonwp - LOTlVANT) + (Latwp - LatVANT) (31)

tan-1 Lon —Lon
= tan S
4 La —Lat
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Figura 3.7: Navegacao da aeronave (BITTAR et al., 2014).

Em Bittar e Oliveira (2013), utiliza-se a interface de comunicagao apresentada na Fig.
3.6, mas alterada de modo a viabilizar a execugao de um hardware-in-the-loop, no qual em
um computador é executado o X-Plane, e em outro opera o sistema de controle da aeronave
simulada. Este procedimento separa fisicamente a planta e o sistema de controle, e assim

aproxima mais a simulagao de uma situagao real.

Bittar, Oliveira e Figuereido (2014) compilam todos os desenvolvimentos anteriormente
expressos e apresentam como fator de inovagao a utilizagdo de controlador Proporcional
Integral Derivativo (PID) em cascata no controle de uma aeronave submetida a condi¢des
criticas de voo. As condi¢des de voo sao simuladas no software X-Plane, Fig. 3.8, em que é
possivel selecionar o tempo (ensolarado, chuvoso, tempestuoso), a visibilidade do voo, a
velocidade do vento, a velocidade e angulo de cisalhamento do vento, o nivel de turbuléncia,

a falha de componentes da aeronave, dentre outras configuragdes.

~00000
N g layer 2.5.0 00 ] (feet, MSL) |
DU000
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wind speed # (kt)
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shear speed * " (kt)
70

direction — " (deg)
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turbulence ——

Figura 3.8: Seletor de algumas das configura¢des de voo do software X-Plane (BITTAR,
OLIVEIRA e FIGUEREIDO, 2014).
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Finalizando a exposic¢ao de trabalhos que exploram a utilizagdo de simuladores de voo,
Zabidin, Pairan e Shamsudin (2020) propdem a modelagem e controle de um VANT de asa
rotativa a partir da utilizacdo dos softwares LabVIEW e X-Plane 9. Neste software é realizada
toda a modelagem geométrica e matematica do VANT, Fig. 3.9, enquanto que naquele é
implementado o controlador proporcional integral derivativo (PID) em cascata a ser validado
a partir da realizagao do software-in-the-loop (SITL). A partir dos graficos apresentados na
Fig. 3.10, extraidos do X-Plane 9 durante o SITL, evidencia-se a capacidade do controlador

PID em cascata de controlar satisfatoriamente os angulos de arfagem 6 e rolagem ¢ do VANT.

Figura 3.9: Modelagem geomeétrica e dindmica realizada no X-Plane 9 (ZABIDIN, PAIRAN e
SHAMSUDIN, 2020).

0 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 0 1 2 3 3 5 6 7 8 9 10

Tempo (s) - Tempo (s)

Figura 3.10: Desempenho do controlador PID em cascata no SITL, sendo o valor de
referéncia em amarelo, e a saida do sistema em preto (ZABIDIN, PAIRAN e SHAMSUDIN,
2020).

Apos a explanagao de pesquisas que exploram a tematica de simuladores de voo, em
sequéncia sdo apresentados trabalhos que exploram a tematica da inteligéncia

computacional, sobretudo aplicada a sistemas aeronauticos.
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3.3.Inteligéncia Computacional Aplicada a Sistemas Aeronauticos

A inteligéncia computacional € um conjunto de técnicas que se baseia na observagao
de como o0s seres vivos, € em especial 0os seres humanos, comportam-se solucionando
diferentes problemas. E um conjunto de técnicas que, devido & alta capacidade de adaptagao
e versatilidade, além da viabilidade tecnoldgica proporcionada pela nova geragdo de
computadores e plataformas de desenvolvimento, sdo aplicadas em diferentes areas do

conhecimento e em uma diversidade de aplicagdes.

Dentre as areas do conhecimento em que a inteligéncia computacional ganha espaco,
merece destaque o controle de sistemas. O conjunto de técnicas da inteligéncia
computacional, utilizado para garantir que um sistema opere dentro das especificagdes pré-
determinadas, é denominado controle inteligente. A Tab. 3.7 exibe trabalhos que exploram a

tematica em diversas aplicagdes.

Tabela 3.7: Inteligéncia Computacional Aplicada ao Controle de Sistemas.

Trabalho Assunto

Li, Wang, Wu, Lam e | Controlador sliding-mode: Aplicagdo no controle de um sistema
Gao (2018) com tempo de atraso e incertezas, modelado a partir de um
sistema fuzzy do tipo 2.

Zhao, Wang, Zhang, Rede neural artificial: Controle de vibragdo de corda com zona
Liu e Yang (2018) morta do atuador.

Xu e Sun (2018) ANFIS: Controle de sistemas realimentados na presencga de
disturbios.

Zhou, Wu e Shi ANFIS: Controle de sistemas com tempo de atraso e saturagao

(2017) do atuador.

Zhou, Li, Wu, Wang ANFIS: Controle de sistemas com dindmica ndo-modelada e

e Ahn (2017) saturacao do atuador.

Wang, Sun e Liu Rede neural artificial: Controle de sistemas com tempo de

(2017) atraso e incerteza no modelo dindmico.

Cui, Yang, Li e Rede neural artificial: Controle de submarino.

Sharma (2017)

Chen, Zhang e Liu Controlador fuzzy: Piloto automatico veicular.

(2016)
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Ha também na literatura trabalhos que lancam mao da inteligéncia computacional

especificamente para a modelagem e controle de aeronaves. A Tab. 3.8 exibe trabalhos que

exploram a tematica, e em seguida sdo discutidos os principais desenvolvimentos,

informacdes e as conclusdes relevantes para o desenvolvimento desta tese.

Tabela 3.8: Inteligéncia Computacional Aplicada a Modelagem e Controle de Aeronaves.

Trabalho

Assunto

Ulus e Eski (2021)

Analise comparativa do desempenho de diferentes arquiteturas de
controle fuzzy hibridas aplicadas, em simulagdo, ao controle de
atitude de um VANT

Cui e Zhang | Simulagéo do tipo hardware-in-the-loop na analise do desempenho

(2021) de um controlador fuzzy aplicado a um veiculo aéreo ndo tripulado
comandado a partir de um motor turbojet

Li (2020) Controlador PID-fuzzy aplicado ao controle de um veiculo aéreo nao
tripulado

Raboaca, Controle de trajetoria de aeronaves através de equipamento de radar

Dumitrescu e | a partir da utilizacdo de um algoritmo baseado em légica fuzzy

Manta (2020)

Radhakrishnan e
Swarup (2020)

Comparagao entre a performance de um controlador PID-fuzzy com
demais técnicas de controle aplicadas ao angulo de arfagem (6) de

uma aeronave

Scott e Gonzalez
(2020)

Desenvolvimento de um controlador fuzzy aplicado a aeronave sem

a utilizacdo de um modelo dinamico do sistema

Wang et al. (2020)

Controle preditivo da relacao ar/combustivel nos motores de veiculos

aéreos néo tripulados a partir de um sistema neuro-fuzzy

Hu, Xu e Hu | Desenvolvimento de um controlador fuzzy adaptativo para um veiculo
(2018) aéreo hipersbnico
Chen, Shi e Lim Rede neural artificial: Controle de helicoptero submetido a falha nos

(2016)

atuadores e incerteza do processo.
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Jha, Gaur e
Yadav (2016)

Controle de aeronaves: Diferentes técnicas de inteligéncia

computacional.

Xu, Zhang e Pan
(2016)

Rede neural artificial: Controle de aeronave hipersénica.

Brandon e Morelli
(2012)

ANFIS: Modelagem aerodinamica de aeronave militar.

Thums, Torres e
Palhares (2012)

PID em cascata otimizado via algoritmo genético: Controle

longitudinal de aeronave.

Kurnaz, Cetin e
Kaynak (2010)

ANFIS: Aplicacdo em simulador de voo.

Liu, Naadimuthu
e Lee (2008)

ANFIS: Controle de pouso.

Chen e Cheng
(1998)

H-infinito e algoritmo genético: Controle longitudinal de aeronave.

Kwong et al.
(1995)

ANFIS: Controle de aeronave submetida a falha de componentes.

Kurnaz, Cetin e Kaynak (2010) utilizam o ANFIS, otimizado através do método da

maxima descida, para o controle latero-direcional (controle do angulo de rolagem) e

longitudinal (controle de altitude e velocidade) de um VANT denominado aerosonda. Este

trabalho langa m&o do simulador de voo open source Flight Gear, Fig. 3.11, e do software

MATLAB respectivamente para a modelagem e controle da aeronave.

Figura 3.11: Flight Gear simulando a operagéo da aeronave aerosonda (KURNAZ, CETIN e

KAYNAK, 2010).
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Thums, Torres e Palhares (2012) propdem um controlador longitudinal de VANTs com
a mesma arquitetura de controle do sistema comercial Micropilot, Fig. 3.12. O fator de
inovacao esta na metodologia de sintonizagédo do sistema de controle: incialmente, aplica-se
um algoritmo genético na obtengéo dos pardmetros da malha interna, delimitada pelas linhas
pontilhadas; em seguida, o0 mesmo método de otimizagcdo € usado na sintonizacdo dos
parametros do PID externo e do multiplicador K. Esta metodologia mostra-se capaz de
satisfatoriamente controlar a altitude h, o angulo de guinada 6 e a velocidade V- de um veiculo

aéreo nao tripulado a partir da atuagao do profundor u,,,,, € do motor u;p, .

v
s

A(’I'()II(II‘(’
v
>

v
—
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Figura 3.12: Arquitetura de controle desenvolvida pela empresa Micropilot (THUMS,
TORRES e PALHARES, 2012).

Brandon e Morelli (2012) desenvolvem uma técnica de modelagem ANFIS da dindmica
de um supersénico. Uma aeronave desta categoria é posta em operagdo, enquanto sao
extraidos dados experimentais em voo, 0s quais sdo submetidos a um processo de ajuste a
partir de um método de otimizagéo. Este processo de busca da solugéo passa pela otimizagéo
da base de regras, da quantidade e dos parametros das fungdes de pertinéncia. Os resultados
do trabalho indicam a capacidade do ANFIS no ajuste aos dados experimentais da aeronave,

tendo obtido taxas de ajuste aos dados superiores a 95%.

Jha, Gaur e Yadav (2016) propdem a aplicagao de diferentes técnicas para o controle
do angulo de arfagem de uma aeronave, a saber, controle PID convencional, controle auto-
organizador Proporcional Integral (Pl) mais Proporcional Derivativo (PD), e controle fuzzy PD
mais controle fuzzy Pl. Os resultados indicam que o primeiro apresenta melhor solugdo de
compromisso entre tempo de resposta, oscilagdo e tempo de acomodagdo; o segundo
apresenta o melhor tempo de resposta, porém alto nivel de oscilacao; e o terceiro apresenta

oscilacao proxima de zero, porém elevado tempo de resposta.
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Xu, Zhang e Pan (2016) aplicam ao controle longitudinal de um veiculo aéreo
hipersbénico uma rede neural artificial, denominada RNA com fungdes de ativacdo de base
radial, que se diferencia das redes neurais classicas com multiplas camadas pela presenca
de apenas uma camada oculta de neurdnios, e a utilizagdo de gaussianas como as fungodes
de ativagdo (HAYKIN, 2008). Este tipo de RNA possui a vantagem de apresentar uma
estrutura matematica mais simples, o que facilita o processo de otimizagao do controlador, e
viabiliza a analise de estabilidade analiticamente através de manipulagées matematicas da
fungéo de Lyapunov adotada para o problema. Xu, Zhang e Pan (2016) provam a estabilidade
do sistema, e apresentam em simulagcédo que o veiculo aéreo hipersbénico controlado através

da RNA consegue seguir os valores de referéncia pré-estipulados.

Chen, Shi e Lim (2016) realizam o controle da bancada apresentada na Fig. 3.13,
sendo o sistema sujeito a incertezas, a disturbios variantes no tempo, e a falhas nos
atuadores. O trabalho lanca mao da RNA com fungdes de ativagcao de base radial, e dessa
forma também é provada analiticamente a estabilidade do sistema controlado. A bancada
controlada através da RNA consegue satisfatoriamente seguir os valores de referéncia dos
angulos de arfagem e guinada, indicando novamente a capacidade da inteligéncia

computacional em ser utilizada na resolugao de problemas de controle.

4

Figura 3.13: Bancada utilizada para o estudo de sistemas aeronauticos de asa rotativa
(CHEN, SHI e LIM, 2016).

Hu, Xu e Hu (2018) propdem a teoria dos conjuntos fuzzy no controle de um veiculo
aéreo hipersoénico durante a fase de cruzeiro do voo. Utiliza-se para tal o método de inferéncia
fuzzy de Takagi-Sugeno no desenvolvimento da arquitetura de controle, que associado a uma
manipulacao matematica que parte da definigdo da fungéo de Lyapunov, viabiliza a verificacao

da robustez e estabilidade do sistema.
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No intuito de comparar o desempenho do controlador que langa mé&o da légica fuzzy,
desenvolve-se neste trabalho um sistema de controle 6timo, mas que despreza as incertezas
e as nao-linearidades intrinsecas a dindmica do processo. Na Fig. 3.14 s&o apresentados os
graficos dos erros de altitude e de velocidade da aeronave ao se utilizar, em simulagao, os
controladores fuzzy (em preto) e 6timo (em azul). Verifica-se que o controlador fuzzy obteve

os valores de erro mais proximos a zero.
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Figura 3.14: Performance dos controles (HU, XU e HU, 2018).

A equipe da NASA, no centro de pesquisa de Langley, desenvolvem a aplicagao da
teoria dos conjuntos fuzzy no controle de aeronaves. Scott e Gonzalez (2020) langam mao de
um controlador genérico que opera a partir do método de inferéncia fuzzy de Takagi-Sugeno,
que consegue de forma satisfatéria controlar uma aeronave enquanto sao extraidos dados de
voo da mesma. Esses dados s&o processados pelo método RTGM (Real Time Global
Modeling), que obtém um modelo especifico para aeronave, o qual € utilizado na concepgao

de um controlador PD para o sistema.

A bancada utilizada para os testes de desempenho do sistema de controle consiste
em um tunel de vento de 12 pés, em que um protétipo de aeronave é fixado em um dispositivo

que permite apenas a arfagem e a rolagem da mesma.

Neste trabalho da NASA, compara-se inicialmente o desempenho dos SBRFs do tipo
1 e do tipo 2, cujas fungdes de pertinéncia, MF, sdo apresentadas respectivamente nas Figs.

3.15 e 3.16, no controle dos angulos de arfagem e rolagem da aeronave, Fig. 3.17.

MF MFZ2 WF3 MFd MFS MFB

o Graude Pertinénda g¢ .

Conjunto Universo

Figura 3.15: Fungdes de pertinéncia dos SBRFs do tipo 1 (SCOTT e GONZALEZ, 2020).
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Figura 3.16: Fungdes de pertinéncia dos SBRFs do tipo 2 (SCOTT e GONZALEZ, 2020).
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Figura 3.17: Desempenho dos SBRFs dos tipos 1, em azul, e 2, em vermelho, em relagédo
ao sinal de referéncia, em preto, no controle dos angulos de arfagem, a esquerda, e
rolagem, a direita (SCOTT e GONZALEZ, 2020).

Os resultados do trabalho indicam a proximidade de desempenho dos SBRFs dos tipos
1 e 2, porém havendo ligeira superioridade deste ultimo em se aproximar do sinal de
referéncia. Na Fig. 3.18 é apresentado o desempenho dos controladores fuzzy, na faixa em
azul, e PD, na porgao final do grafico. Verifica-se que o controlador fuzzy, embora
notoriamente apresente desempenho inferior ao controlador PD, de fato obtém bons
resultados, principalmente ao se considerar o fato de que o sistema de controle é genérico,
ou seja, ndo ha qualquer conhecimento das especificidades do sistema dindmico nesta

primeira fase do voo.

0 20 40 60 80 100 120 140 160 180
Tempo (s)

Figura 3.18: Desempenho dos controladores fuzzy e PD, grafico azul, em relagéo ao sinal de
referéncia, em preto, no controle do angulo de arfagem (SCOTT e GONZALEZ, 2020).
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Radhakrishnan e Swarup (2020) utilizam um sistema de controle PID fuzzy, cuja
arquitetura é apresentada na Fig. 3.19, para controlar o sistema de arfagem de uma aeronave,
em que r(t) é o sinal de referéncia, y(t) é a resposta do sistema, e(t) € o sinal de erro, u(t)

é o sinal de controle, e K, K; e K; s&o os parametros do controlador PID, considerados neste

trabalho como sendo parametros fuzzy.

SBRF
d/de [Kpa Kist]
r(t) e(t) Controlador | Y() [sistema de Arfagem y(®
+ PID da Aeronave

Figura 3.19: Arquitetura de controle PID fuzzy adotada em Radhakrishnan e Swarup (2020).

O sistema de controle desenvolvido no trabalho € comparado com os controladores
PID tradicional, LQR (Linear Quadratic Regulator), LQR otimizado com AG (Algoritmo
Genético) e com um controlador desenvolvido a partir da alocagédo de poélos e zeros, e os
resultados sdo apresentados na Fig. 3.20 e na Tab. 3.9. E possivel verificar, sobretudo na
analise grafica, a superioridade do controlador PID fuzzy frente as demais técnicas, fato

também evidenciado pelos baixos valores de tempo de subida e de acomodacgéo.
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Figura 3.20: Resposta do sistema de arfagem da aeronave (RADHAKRISHNAN e SWARUP,
2020).
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Tabela 3.9: Caracteristicas dos Controladores no Dominio do Tempo (RADHAKRISHNAN e

SWARUP, 2020).

Controladores Tempo de Subida (s) Tempo de Acomodagéo (s)
PID 0,0757 0,1558
PID fuzzy 0,1477 0,2536
LQR 0,6963 1,2574
LQR otimizado 0,2612 0,4245
com AG
Alocacao de 0,2497 1,1543
polos e zeros

Seguindo a mesma linha do trabalho anterior, Li (2020) propde a utilizacdo de um

controlador PID fuzzy, mas neste caso no controle de um VANT de asa rotativa. A arquitetura

de controle adotada é basicamente a mesma representada na Fig. 3.19, porém aplicada ao

controle de altitude h e dos angulos de rolagem ¢, arfagem 6 e guinada i do veiculo aéreo.

Os parametros K,

K; e K; sdo considerados fuzzy, e na Fig. 3.21 sdo apresentadas as

superficies de resposta do SBRF deste controlador. A metodologia de controle adotada, cujos

resultados s&o apresentados na Fig. 3.22, mostra-se eficaz no controle de atitude do veiculo

aéreo.

Figura 3.21: Superficies de resposta do SBRF do controlador PID fuzzy (LI, 2020).
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Figura 3.22: Desempenho do controlador PID fuzzy (LI, 2020).

Cui e Zhang (2021) apresentam a aplicagédo da teoria dos conjuntos fuzzy no controle
de voo de um VANT submetido a velocidades préximas a velocidade do som, ou seja, nimero
de mach Ma proximo a 1. A arquitetura de controle do VANT ¢ ilustrada na Fig. 3.23, em que
Ref é o valor de referéncia da velocidade do VANT, que subtraido a resposta do sistema
aeronautico gera o sinal de erro e, o qual gera as duas entradas do sistema (as quais passam
pelo processo de fuzzificagdo FUZ), sendo uma delas a derivada Der do erro; a saida U do
sistema de controle é obtida pelo processo de defuzzificagdo Defuz; e por fim, os parametros
a,, ®e € o, S&0 obtidos através de algum método de otimizagdo que minimize o valor do sinal

de erro e ao longo do processo de simulagéo.

Saida

Maquina de U
i oerur}fa

Fuzzy

Figura 3.23: Arquitetura de controle fuzzy (CUl e ZHANG, 2021).

O desempenho do sistema de controle com os valores dos parametros «a,, a,.. € a,
arbitrados, e apos o procedimento de otimizagdo, € apresentado na Fig. 3.24, a esquerda.
Verifica-se que em ambos os casos o sistema de controle é capaz de manter aeronave em
voo em torno da velocidade de referéncia Ma = 0,8, embora apds a otimizagdo haja menor

oscilagao da resposta em torno do valor de referéncia.
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Apds o processo de otimizagdo, Cui e Zhang (2021) implementam também uma
simulagdo do tipo hardware-in-the-loop, no intuito de validar a técnica por meio da migragéo
do processamento do sistema de controle a unidade de comando real do VANT. O resultado
obtido, apresentado na Fig. 3.24 a direita, ratifica a capacidade do controlador em garantir um

voo proximo as condi¢gdes requeridas.
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Figura 3.24: A esquerda, desempenho do controlador fuzzy ndo otimizado, em preto, e
otimizado, em vermelho; a direita, resultado do hardware-in-the-loop, em preto, e do
software-in-the-loop, em vermelho (CUl e ZHANG, 2021).

Ulus e Eski (2021) propdéem analisar e comparar, em simulagédo, o desempenho de
uma série de arquiteturas de controle fuzzy aplicadas ao controle de atitude de um VANT de
asa fixa. Inicialmente é definido o modelo dindmico linearizado a ser adotado no trabalho, e
em seguida sao propostas as seguintes arquiteturas de controle, a saber: Controlador PID
cujos parametros sdo obtidos a partir do método de Ziegler-Nichols (ZN), controlador
puramente fuzzy (FLC) que langa mao do método Mamdani de inferéncia fuzzy, controlador
puramente ANFIS, controlador ANFIS em paralelo com PID (ANFIS+PID), e controlador
hibrido PD-Fuzzy-PI. No intuito de ilustrar um dos processos de hibridizagdo expostos no
trabalho, na Fig. 3.25 é apresentada a arquitetura de controle ANFIS+PID, sendo ¢(t) o
angulo de rolagem, ¥ (t) o &ngulo de guinada, p(t) e r(t) s&o respectivamente as velocidades
angulares de rolagem e guinada, e é o sinal de erro, e por fim u(t) € a acao de controle a ser

aplicada a aeronave.
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Figura 3.25: Arquitetura de controle ANFIS+PID (ULUS e ESKI, 2021).

A comparagdo do desempenho das estruturas mencionadas anteriormente é
apresentada na Tab. 3.10 e na Fig. 3.26. E possivel concluir que todas as arquiteturas
conseguem satisfatoriamente controlar o VANT, sobretudo os controladores hibridos, a
exemplo do ANFIS+PID e do PD+Fuzzy+Pl, que mantém em simulagdo os valores de
sobressinal, tempo de acomodagao e erro em regime permanente satisfatoriamente aceitaveis

para a dindmica lateral do VANT.

Tabela 3.10: Caracteristicas dos Controladores no Dominio do Tempo (ULUS e ESKI, 2021).

Angulo de Rolagem Angulo de Guinada

Controladores | Sobres- | Tempo de |Erro em|Sobres-| Tempo de |Erro em

sinal |Acomodacao|Regime |sinal (s)| Acomodacdo|Regime

(%) (s) (%) (s) (%)

PID (ZN) 51,3 0,88 0,01 | 156 0,15 1,1
ANFIS 14,8 0,73 2,65 | 18,1 0,09 0
ANFIS+PID 33,4 0,74 012 | 12,4 0,07 0

FLC 22,4 0,54 09 | 28 0,10 0,6

PD+Fuzzy+PI 1,7 0,10 0,01 1,9 0,11 2,0
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Figura 3.26: Desempenho das arquiteturas de controle com relagdo aos angulos de rolagem,
a esquerda, e guinada, a direita (ULUS e ESKI, 2021).

Esta tese, de forma semelhante a Ulus e Eski (2021), langa mao de uma arquitetura
de controle baseada na teoria dos conjuntos fuzzy, porém inova ao propor uma nova técnica
de inferéncia fuzzy para tal, que alia intuitividade, dispensa o uso de métodos de integragao
numérica, e que se presta ndo somente ao controle da dindmica latero-direcional da aeronave,
como em Ulus e Eski (2021), mas também ao controle da dindmica longitudinal. Esta técnica
€ utilizada na programagao computacional do sistema neuro-fuzzy desenvolvido neste
trabalho, que é aplicada na arquitetura de controle da aeronave, cuja estabilidade é verificada
numericamente. Além disso, realizam-se analises, em simulador de voo catalogado pela FAA,
da capacidade do sistema de controle desenvolvido em controlar uma aeronave submetida a

condicdes criticas de voo.

Apos a revisao de literatura, no Capitulo IV é apresentada a metodologia adotada para

a execucio das atividades previstas para esta tese.
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CAPITULO IV

METODOLOGIA

A metodologia adotada para a execugéo do trabalho é dividida em etapas, que séo
apresentadas na Fig. 4.1, e a seguir estas etapas sao esquematizadas no intuito de facilitar a
compreensao do leitor quanto aos principais procedimentos adotados para o cumprimento

dos objetivos desta tese.



1. Estudo de Caso

Controle de Aeronaves
em Operagdes Criticas

2. Método de Controle

Arquitetura de Controle
Neuro-Fuzzy

}

3. Método de Inferéncia Fuzzy

PIA: um Novo Método de
Inferéncia Fuzzy

v

4. Controlador Neuro-Fuzzy

4.1.
Sintoniza¢do do 4.2.

Sistema de
Controle

Andlise de
Estabilidade

5. Software-in-the-loop: Operagdes Criticas de Voo

5.2,
Analise de
Desempenho do
Controladorem
Operagdes Criticas
de Voo

5.1.
Comunicagdo:

MATLAB
X-Plane

v

\

6.1.
Construgdo de

Aeronave em
Escala Reduzida

6. Controle de Aeronave em Escala Reduzida

6.2. 6.3.
Obtengdo de Identificagdo do
Dados de Voo Modelo da
Aeronave

6.4.
Validagdo da
Estratégia de

Controle

J

Figura 4.1: Esquema das etapas que compdem a metodologia da tese (autoria prdpria).
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1. Estudo de Caso

Nesta etapa € definido o escopo das investigagdes cientificas presentes neste
trabalho, que busca aplicar o novo método PIA de inferéncia fuzzy no controle de aeronaves

em operagoes criticas de voo.

Sabe-se que LOC-I| é causa da grande maioria das fatalidades ocorridas na aviagéo
comercial (IATA, 2020). Esse fato motiva o estudo do controle de aeronaves em operagoes
criticas, a exemplo de condigdes meteoroldgicas severas, rajadas de vento, mau

funcionamento da aeronave e o mau funcionamento ou falha do sistema propulsor.

Neste trabalho, para o desenvolvimento da arquitetura de controle, langa-se mao da
inteligéncia artificial em fungéo da viabilidade tecnolégica para tal (existéncia no mercado de
controladores de voo de alta capacidade de processamento), e sobretudo da versatilidade e

adaptabilidade das técnicas existentes.

Para a realizagcado das simulacdes necessarias para validagao das técnicas, utiliza-se
o software MATLAB em paralelo com o simulador de voo X-Plane 11, que é certificado pela
FAA para o treinamento de pilotos. Nestas simulagdes, utiliza-se o Cessna 172 como objeto
de estudo em fungéo da grande disponibilidade de dados na literatura desta aeronave. Ja para
verificar a eficacia da técnica com relagéo a utilizagdo de modelos obtidos a partir de dados
experimentais, realizam-se ensaios de voo com uma aeronave Cessna 172 em escala

reduzida.

O esquema apresentado na Fig. 4.2 € um resumo do estudo de caso utilizado neste
trabalho.
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Figura 4.2: Esquema do estudo de caso desta tese (autoria propria).
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2. Método de Controle

A partir da revisdo bibliografica apresentada no capitulo 1ll, além de simulagdes
previamente realizadas relativas a técnicas desenvolvidas por outros autores, € estabelecida
uma arquitetura de controle neuro-fuzzy para aeronaves, técnica hibrida que alia a alta
capacidade de adaptacédo das redes neurais, com a robustez e intuitividade da teoria dos

conjuntos fuzzy.

Ressalta-se que a arquitetura de controle concebida é capaz de controlar as dindmicas
longitudinal e latero-direcional de uma aeronave. O esquema apresentado na Fig. 4.3 € um

resumo do método de controle utilizado neste trabalho.

2. Método de Controle

Arquitetura de Controle
Neuro-Fuzzy

Redes Neurais Teoria dos Conjuntos Fuzzy Arquitetura de Controle
Alta capacidade de Robustez e intuitividade Controle das dinamicas longitudinal
adaptagdo e latero-direcional de aeronaves

Figura 4.3: Esquema do método de controle (autoria propria).

3. Método de Inferéncia Fuzzy

A utilizagdo dos métodos classicos de inferéncia fuzzy mostra-se pouco eficiente no
efetivo controle de um sistema aeronautico. Dessa forma, no intuito de aliar a eficiéncia
computacional do método de inferéncia fuzzy de Takagi-Sugeno, com a intuitividade do
método de Mamdani, propbe-se o desenvolvimento de uma nova técnica de inferéncia fuzzy,

denominada Pondered Individual Analysis (PIA).

O método PIA é baseado na analise e tradugdo matematica de cada proposigéo fuzzy
gue compde a base de regras, ponderando o efeito de cada variavel de entrada na saida de
um SBRF. A definigdo dos conjuntos fuzzy de entrada e saida, bem como a base de regras
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de um SBRF, segue o0 mesmo procedimento adotado no método de Mamdani, entretanto, o
meétodo pode ser entendido como um caso particular do método de Takagi-Sugeno. Isso
ocorre porque as fungdes consequentes também sio determinadas para cada subconjunto
fuzzy da saida e, a partir da média ponderada ou de outro método de defuzzificagdo que

dispense técnicas de integragao, fornecem a resposta de um SBRF.

O esquema apresentado na Fig. 4.4 € um resumo do método PIA de inferéncia fuzzy.
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Figura 4.4: Esquema do método PIA de inferéncia fuzzy (autoria prépria).
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4. Controlador Neuro-Fuzzy

O controlador neuro-fuzzy desenvolvido passa por simulagdes no software MATLAB a
fim de, a partir do modelo dindmico do comportamento da aeronave em voo, sintonizar os
par@metros do controlador por meio de treinamento off-line e verificar numericamente a

estabilidade do sistema.

O processo de sintonizagao do sistema de controle passa pela obtengdo das médias
e desvios padrao que definem as fungdes de pertinéncia das entradas e saidas dos SBRFs.
O processo de otimizagdo € conduzido por meio da simulacdo da operacdo da aeronave
Cessna 172, em que sao adotados valores de referéncia para as variaveis do processo, assim
como condi¢des iniciais e perturbagdes. O método de otimizagdo utilizado é a evolugéo
diferencial, aplicada a minimizacdo do erro médio quadratico com relagdo aos valores de
referéncia do sistema de controle. Consideram-se para essa simulagao os modelos dindmicos
longitudinal e latero-direcional, linearizados através da teoria das pequenas perturbagoes, e o
desempenho da técnica desenvolvida € comparado aos obtidos com os métodos PID e ANFIS

(método de inferéncia fuzzy de Takagi-Sugeno).

O esquema apresentado na Fig. 4.5 € um resumo da metodologia aplicada a

sintonizag&o do controlador neuro-fuzzy.
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Figura 4.5: Esquema da sintonizag&o do sistema de controle (autoria prépria).
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Apos o processo de sintonizagdo, principalmente por se tratar de um sistema
aeronautico, é fundamental que seja feita a analise da estabilidade do sistema controlado.
Para a verificagao de sua estabilidade assintética no sentido de Lyapunov, realiza-se a analise
da derivada da fungéo de Lyapunov associada ao sistema, devendo o valor desta ser menor

ou igual a zero para todo o dominio analisado.

Ressalta-se que a verificagdo da estabilidade é realizada neste trabalho de forma
numeérica, assim como em outros trabalhos (KIM, KANG e PARK, 1999; KIM, 2001), em fungéo
do elevado nivel de complexidade de se reproduzir a mesma analise, porém de forma
analitica. A analise numérica da estabilidade é desenvolvida considerando-se o modelo
linearizado da aeronave, assim, discretiza-se o dominio do sistema de equagdes que rege a
dindmica da planta e avalia-se o valor da derivada da fungao de Lyapunov para cada condigao

testada.

O esquema apresentado na Fig. 4.6 € um resumo da metodologia aplicada a analise

de estabilidade do controlador neuro-fuzzy.

4.2. Controlador Neuro-Fuzzy

Andlise de Estabilidade

! !

Fundamentacio Matematica Analise Numeérica

Discretizacdo do dominio e avaliagdo
do valor da derivada da fungdo de
Lyapunov

Derivada da fungao de Lyapunov

Figura 4.6: Esquema da analise de estabilidade do sistema de controle (autoria propria).
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5. Software-in-Loop: Operagées Criticas de Voo

A viabilidade de utilizacdo do simulador de voo X-Plane se da a partir do
desenvolvimento de uma interface de comunicagao entre o software MATLAB e o simulador
de voo. Tal interface viabiliza a realizagao de simulagdes do tipo software-in-the-loop entre as
duas plataformas, o que permite executar andlises da capacidade da metodologia proposta

em controlar uma aeronave submetida a operagdes criticas de voo.

A comunicacdo entre os softwares se da em tempo real através do protocolo de
comunicagédo UDP (User Datagram Protocol). No MATLAB, é realizada a implementagéo do
controlador neuro-fuzzy e da interface de comunicagéo com o simulador de voo X-Plane 11,
sendo que cada variavel da aeronave no simulador de voo é recebida no MATLAB como
sendo um pacote de dados pré-estruturados contendo 32 bytes, e a resposta do sistema de
controle é calculada, transformada em um pacote de dados reconhecivel pelo simulador e
enderecada a este. No software X-Plane 11, realiza-se a simulagdo do comportamento
dindmico da aeronave. Os resultados obtidos sdo enviados em tempo real ao MATLAB através

da especificagdo de IP e porta correspondentes.

O esquema apresentado na Fig. 4.7 € um resumo da metodologia aplicada a

comunicagao entre os softwares MATLAB e X-Plane.

5.1. Software-in-the-loop: Operacoes
Criticas de Voo

Comunicagdo: MATLAB
X-Plane

l A4 l

Comunicacao MATLAB X-Plane 11

Em tempo real - protocolo de Implementagdo do controlador e da Simulagio do comportamento
comunicagio UDP interface de comunicagdo dinamico da aeronave

!

Recepgio dos Dados Envio de Dados

Resposta do modelo - pacote de dados Resposta do controlador - codificada
de 32 bytes recebido do X-Plane 11 e enderegada ao X-Plane 11

Figura 4.7: Esquema da comunicagéo entre MATLAB e X-Plane (autoria prépria).
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Apos concluida a comunicagao entre os aplicativos, busca-se analisar o desempenho
do controlador, sintonizado na etapa anterior, em operagoes criticas de voo, sendo a analise
grafica e o desvio em relagédo ao sinal de referéncia os métodos utilizados na avaliagdo do
método de controle. As operagdes criticas analisadas sao: condi¢des meteoroldgicas severas
e rajadas de vento, mau funcionamento da aeronave, falha do sistema propulsor, e todas as

condigdes anteriores simultaneamente.

O esquema apresentado na Fig. 4.8 € um resumo da metodologia utilizada na analise

de desempenho do controlador em operagdes criticas de voo.

5.2. Software-in-the-loop: Operacoes
Criticas de Voo

Anidlise de Desempenho do Controlador em
Operagdes Criticas de Voo

Controlador Operagdes Criticas Analise de Desempenho
Controlador neuro-fuzzy sintonizado e 5o irs - . ~
o afara ante:lior Condi¢es meteoroldgicas severas, Anilise grafica e desvio com relagio
P mau funcionamento da aeronave ao sinal de referéncia

Figura 4.8: Esquema da analise de desempenho do controlador em operagdes criticas de

voo (autoria prépria).

6. Controle de Aeronave em Escala Reduzida

Nesta etapa € construido um protétipo de aeronave em escala reduzida, Fig. 4.9, e
séo realizados ensaios de voo no intuito de se extrair dados a serem utilizados na modelagem
do VANT. Aeronaves em escala reduzida possibilitam a validacao das técnicas de controle de
forma experimental, e com baixo custo financeiro se comparados os ensaios aos testes em
aeronaves comerciais. Utiliza-se nos ensaios experimentais uma aeronave Cessna 172 em

escala reduzida de 1:10, associada a um controlador de voo Pixhawk.
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6.1. Controle de Aeronave em Escala
Reduzida

Construgdo de Aeronave em Escala Reduzida

Custo de Execugao dos Planta Utilizada

Testes
Aeronave Cessna 172, escala 1:10 e

Baixo custo se comparado aos testes controlador de voo Pixhawk

em aeronaves comerciais

Figura 4.9: Esquema relativo a construgédo de aeronave em escala reduzida (autoria

propria).

Para a extragao dos dados experimentais, Fig. 4.10, estabiliza-se a aeronave em voo
e aplicam-se perturbacées a mesma, tudo por meio do piloto do aeromodelo. Durante os
ensaios, o proprio controlador de voo Pixhawk é capaz de armazenar os dados extraidos em

VOO para posterior analise.

6.2. Controle de Aeronave em Escala
Reduzida

Obtencao de Dados de Voo

! !

Pilotagem Armazenamento dos Dados

Piloto em terra — estabiliza¢do e

R ° Pixhawk armazena os dados de voo
aplicagao de perturbagdes

Figura 4.10: Esquema relativo a obtencao de dados de voo (autoria propria).

Apos a obtengao dos dados de voo, realiza-se a identificagdo do modelo dinamico da
aeronave, Fig. 4.11, levando-se em conta neste caso apenas a alteragdo do angulo de
arfagem da aeronave em fungao da atuagao do profundor, buscando-se assim um modelo do
tipo SISO (Single Input Single Output). A identificagcdo € obtida a partir do ajuste do modelo
aos dados experimentais extraidos da aeronave (minimizagéo do erro médio quadratico deste

ajuste) a partir do método da evolugao diferencial.
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6.3. Controle de Aeronave em Escala
Reduzida

Identificagdo do Modelo da Aeronave

! !

Modelo Dinamico Identificacao
Sistema SISO — deflexdo do profundor Ajuste do modelo aos dados
x angulo de arfagem experimentais - evolugdo diferencial

Figura 4.11: Esquema que resume a identificagdo do modelo da aeronave (autoria propria).

Por fim, chega-se novamente em um instante de validagdo do método PIA e da
estratégia de controle adotada neste trabalho, Fig. 4.12. Utiliza-se, em uma simulagcédo no
MATLAB, um sistema neuro-fuzzy aliado ao método de inferéncia PIA no controle do
aeromodelo. Apresenta-se, entdo, uma analise comparativa da técnica desenvolvida com os
métodos PID e ANFIS.

6.4. Controle de Aeronave em Escala
Reduzida

Validagdo da Estratégia de Controle

! !

Controlador Neuro-Fuzzy Analise Comparativa
Sistema neuro-fuzzy aliado ao método Comparagao da técnica com os
de inferéncia PIA controladores PID e ANFIS

Figura 4.12: Esquema que ilustra a validagdo da estratégia de controle (autoria propria).

Apods a apresentacao da metodologia, inicia-se a exposi¢cao do desenvolvimento deste
trabalho, a comegar pelo PIA, novo método de inferéncia fuzzy proposto nesta tese e utilizado

na concepgao da arquitetura de controle de aeronaves.
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CAPITULO V

PIA: UM NOVO METODO DE INFERENCIA FUZZY

A analise individual ponderada, PIA (Pondered Individual Analysis), € um método de
inferéncia fuzzy que combina baixo custo computacional e capacidade de ser utilizado na
otimizacao de sistemas, e na modelagem e controle de processos. A técnica € baseada na
anadlise e traducdo matematica de cada proposigédo fuzzy que compde a base de regras,

ponderando o efeito de cada variavel de entrada na saida de um SBRF.

A seguir, é apresentada uma breve descricdo dos procedimentos para executar o
método PIA.

1. Adefini¢do dos conjuntos fuzzy de entrada e saida, bem como a base de regras
de um SBRF, segue 0 mesmo procedimento adotado no método Mamdani.

2. A unido e a intersegdo de conjuntos fuzzy sao realizadas respectivamente
pelos operadores t-norma (por exemplo, operador maximo) e s-norma (por
exemplo, operador minimo).

3. Embora, no método PIA, as fungbes de pertinéncia sejam definidas para cada
conjunto fuzzy das variaveis de saida, o método pode ser entendido como um
caso particular do método de Takagi-Sugeno. Isso ocorre porque as fungdes

consequentes fc]- também s&o determinadas para cada conjunto fuzzy C; da

saida e, a partir da média ponderada ou de outro método de defuzzificagao que

néo envolva integragdo numérica, fornecem a resposta de um SBRF.

A secao 5.1 apresenta a formalizagdo conceitual e matematica do método PIA.
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5.1.Método PIA: Descrigao, Conceitos e Definicoes

As definigbes elaboradas neste trabalho e apresentadas a seguir estabelecem as

fungbes consequentes e formalizam matematicamente o método PIA.

Definigdo 1: O ponto em que uma fungéo de pertinéncia de um nimero fuzzy possui
valor unitario € chamado de ponto central CP, Fig. 5.1. No caso de fungbes de pertinéncia que
possuam mais de um ponto nessa condigcdo, CP é definido através aplicagcdo da média
aritmética a esses pontos. Pode-se notar que qualquer fungdo de pertinéncia, por exemplo,
triangular, trapezoidal ou gaussiana, mesmo assimétrica, pode ser usada na constru¢do de

um SBRF para o método PIA.

CP cp cp

Figura 5.1: Definicdo dos pontos centrais das fungbes de pertinéncia (autoria propria).

Definicdo 2: Considerando dois conjuntos fuzzy S; e S,, respectivamente
apresentando fungbes de pertinéncia com os pontos centrais CP; e CP,, e pertencentes ao

mesmo conjunto universo U:

e Se(CP; <C(CP,,entdo S; < Sy;
e Se(CP; > CP,, entdo S; >, Sy;
e Se(CP, =CP,, entédo S; =, Sy;

em que os simbolos <, >¢ e =, significam, respectivamente, semanticamente menor que,

semanticamente maior que, e semanticamente igual a.

A partir das definigdes descritas anteriormente, é possivel elaborar novos conceitos

para relacionar as variaveis de entrada e as variaveis de saida de um SBRF.
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Definigao 3: Para cada regra fuzzy ou proposi¢do i de um SBREF, é verificado o efeito
do aumento ou diminuicao de cada variavel de entrada sob a variavel de saida. Diz-se que a

relacdo entre uma variavel de entrada IN, e uma variavel de saida OUT de um SBRF é:

o Direta, representado por IN Dir OUT, quando o aumento e a diminuicao da
variavel IN causam, respectivamente, o aumento e a diminuicdo da variavel
ouT,

¢ Inversa, representada por IN Inv OUT, quando o aumento e a diminui¢cdo da
variavel IN causam, respectivamente, a diminuicdo e o aumento da variavel
ouT,

¢ Neutra, representada por IN Neut OUT, quando nao é possivel inferir sobre a

relacéo entre IN e OUT.

Um exemplo de base de regras € construido e apresentado na Tab. 5.1, emque X e Y
sdo as entradas do SBRF e Z é a saida. Os conjuntos fuzzy de entrada séo 4,, 4,, A3, By, B,
e Bs; e C;, C, e (5 séo os conjuntos fuzzy de saida, sendo A; <g A, <; A3z, B; <¢ B, <; B;
eC, <s C, <; C3.NaTab. 5.2 éexposta a relagédo entre as variaveis de entrada e saida para

cadaregraR;,i=1,2,..,9.

Tabela 5.1: Exemplo 1 - Base de Regras.

Regras Se X E Y Entao Z
Ry Aq B, G
R, A, B, G
R; Az B, Cs
R, Aq B, Cs
Rs A, B, G,
Rg Az B, &}
R, Ay B3 G
Rg A, By G,
Ry Az B; Cs




Tabela 5.2: Exemplo 1 - Relagao Entre as Variaveis.
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Regra | Relagdo: X > Z Justificativa Relagao: Y - Z Justificativa
Ry X DirZ C, <5 Cy Y DirZ C, <s C3
R, X DirZ Cp > C1,Cy <g C3 Y Neut Z C, =5 C,
Rs X DirZ Cs >5 C, Y InvZ Cs >5 C;
R, XInvZ C3 >5 C, Y Neut Z C3 >5 C1,C3 >5 Cy
Rs XInvZ Cy <5 C3,Cy >¢ Cy Y Neut Z C, =5 C,
R XInvZ C, <5 C, Y Neut Z C, <s C3
R, X Neut Z Cy =5 C, Y InvZ C, <s Cs
Rg X Neut Z C, =5 Cy,Cy <g C3 Y Neut Z C, =5 C,
Ry X Dir Z Cs >5 C, Y DirZ Cs >5 Cy

Ressalta-se que esta analise da relagéo entre as variaveis de entrada e saida pode
ser, sem grandes dificuldades, programada por um profissional responsavel pela construgéo
de um eventual toolbox para o método. Em outras palavras, como as relagées sdo unicamente
dependentes da base de regras adotada, a construgédo das relagbes de um SBRF pode ser
programada previamente, de uma forma tal que o usuario da técnica apenas se preocupe com
a definicdo das variaveis de entrada e saida, fungdes de pertinéncia e base de regras, da

mesma forma feita quando se langa mao do método de Mamdani.

Definicao 4: Para cada regra R;, pode-se calcular uma contribuicdo para a saida de

um SBRF a partir do procedimento descrito a seguir:

1. Dada uma variavel de entrada IN e seu valor in, o grau de pertinéncia de in
em relagao ao subconjunto de entrada mapeado pela regra R;, u, € projetado
para o subconjunto fuzzy de saida. Assume-se que u defina dois candidatos
OUt,qna ©out., davariavel de saida OUT para compor a solugdo do SBRF,

Fig. 5.2.
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in Outcandl Outcandz

Figura 5.2: Valores dos candidatos (autoria propria).

2. A escolha de out.4nq1 OU OUt.4n42 lEVA €M consideragdo a base de regras do
SBREF e esta em fungéo das seguintes condig¢des:
e SEin < CPE IN Dir OUT,ENTAO out,gng1;
e SEin>CPEIN InvOUT,ENTAO out,q, ;
e SEin<CPEINInvOUT,ENTAO out.gpng ;
e SEin> CPEIN Dir OUT,ENTAO out,gn4z;
¢ Em qualquer outro caso, a escolha do valor para compor a solugéo do
SBRF é dada pela média aritmética de out 441 € 0Utanaz-
3. Todo o processo é replicado para cada uma das n;, variaveis de entrada, de
modo que para cada regra R;, &€ possivel definir uma contribuicdo de saida
contcjm, EQ. (5.1), dado que C; € um conjunto fuzzy de saida, e m indica o

numero vezes que o conjunto C; ja foi relacionado na base de regras:

Nin
Dl agouty;
contejm = ——p———

(5.1)

Nin
k=1

ay

sendo outy; o valor escolhido e a;, 0 peso associado a influéncia na variavel de
saida, ambos com relagdo a variavel de entrada k. A variavel «a; €
implementada nesta equacédo para impor uma maior apreciagao do efeito de
certas variaveis de entrada na saida. Quando essas informagdes nao estido
disponiveis ou se todas as variaveis tém o mesmo efeito na saida do processo,

assume-se que a; = 1.

A partir das definicdbes apresentadas anteriormente, pode-se definir as fungdes

consequentes f;; associadas a cada conjunto fuzzy de saida e, finalmente, determinar a



79

resposta do SBRF. A seguir, é apresentado um exemplo que ilustra a resolu¢gado de um SBRF

pelo método PIA.

Considerando a base de regras exibida na Tab. 5.3, X e Y sdo entradas do SBRF e Z
€ a saida. Os conjuntos fuzzy de entrada séo 4,, 4,, B; € B,; e C; € C, s&o os conjuntos fuzzy

de saida, sendo 4; < A4,,B; <; B, e (; <; Cs.

Tabela 5.3: Exemplo 2 - Base de Regras.

Se Se X E Y Entao zZ
R, Aq By Gy
R, Ay B, G
R; Ay B, Gy
R, Ay B, G

A Tab. 5.4 apresenta a relagao entre as variaveis de entrada e saida. Para exemplificar

a obtengdo dessas relagdes, é analisada a regra R;:

e X DirZ, porque manter Y =; B;, e aumentar X de A; para 4,, causa o
aumento da variavel Z de C; para C5;

e Y Neut Z, porque manter X =; A;, e aumentar Y de B, para B,, n&o altera Z.

Tabela 5.4: Exemplo 2 - Relag&o Entre as Variaveis.

Regra | Relagdo: X -7 | Relagdo: Y > Z7
Ry X Dir Z Y Neut Z
R, X Dir Z YinvZ
R; X Neut Z Y Neut Z
R, X Neut Z YinvZ

Na Fig. 5.3, € resumido o procedimento para encontrar o peso, wcjn,, € a contribuigéo

de saida, contj,, de cada regra R;. Como um exemplo, a regra R, € analisada:
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®  Z,1 = Zcgnaz, PoOrque x > CPy, € X Dir Z;

Zcand1tZcand2

T A—
y1 2

, porque Y Neut Z.

Oy Zyq + OyyZaq
G, conty,, =™ Gt
H /‘L Ay + O(y
g “f I\\; K
R R
X i
UyZyo + ocyzyz
C,conte, =————
S »ﬁ.._‘_'.--’_2\ e ax &0 ay
/’LL"_,
Zy2 Zxp 7
A B, " _ Ay Zy3 + ayzyg
L1 2 C1 conte
S . " TN 12 ay +ay
R _ 4 \
3
U
R4 —
Zxa Zya
—>'LUC13 Z

Figura 5.3: llustragéo do método PIA, em que a, e a,, s&o 0s pesos associados,

respectivamente, a influéncia de x e y na variavel de saida (autoria propria).

Apos definir os pesos w¢;p, € as contribuigdes contj,, de cada regra, o proximo passo
é calcular o valor da fungéo consequente f.; de cada conjunto fuzzy C; da saida, Eq. (5.2),

em que T; € o total de regras relacionadas ao conjunto C;:

ZTj Weimcont
=1 YCjm Cjm
fej =="""% : (5.2)

Zn{=1 Weim

Neste exemplo, as fungdes consequentes sao obtidas da seguinte maneira:

N f _ Wericontey1+Wey conteia+Weg3Con cisz |
c1 — ’

wc1 tWer tWeis
* fe=

Wc21€0ntcar cont
- C21-
Wc21

Os pesos W, de cada conjunto fuzzy de saida podem ser obtidos pelo operador max:

Wcj = max(wcjm),m =1, ,T] (5.3)
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Finalmente, a defuzzificagdo do SBRF é realizada a partir do método da média
ponderada, Eq. (5.4), sendo n. 0 numero de conjuntos fuzzy que compde a variavel de saida

Z, e o valor de saida, z, sendo dado por:

n
7= Zj=cl Weifej WC1f01+Wczfcz_ (5.4)

n
Z]-fl Wcj Wei1tWes

Dois fluxogramas que resumem a definigao e a avaliagao de um SBRF que usa o PIA

como o método de inferéncia fuzzy sdo apresentados na Fig. 5.4.

SBRF: Defini¢ao SBRF: Resposta

4 N\ < N
Defini¢do das varidveis e fun¢des

de pertinéncia das entradas e

Adotam-se valores para as

saidas, e da base de regras do SBRF entradas
\ J N\ Y,
( ) ("Para cada regra R;, determinacio

Determinagdo dos pontos centrais,
CPs, de todas as funcdes de
pertinéncia, Definicdo 1

da contribuicdo, cont., ,edo
jm
peso, wg, , baseada na

\_ 1 y, \ _ Defini¢ao 4ie na Fig. 5.3 Y,
(" ) fara cada conjunto fuzzy de sal'da,@

Estabelecimento das relacdes entre
as variaveis de entrada e saida,

Definicdes 2 e 3
\ P \obtidos a partir das Egs. (5.2) e (5.3))

7~ )
Determinacdo dos valores das

saidas a partir da média
ponderada, Eq. (5.4)

os valores da fun¢do consequente,
fcj: e do peso, Wcj: devem ser

Figura 5.4: Fluxogramas do método PIA (autoria propria).

Apés a apresentacdo do método PIA de inferéncia fuzzy, a se¢cao 5.2 mostra um estudo
de caso comparando o desempenho matematico e computacional dessa técnica com outras

abordagens fuzzy.
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5.2.Estudo de Caso: Modelagem Aerodinamica

Esta secao explora a aplicagdo e a comparagdo do método PIA com os métodos de
inferéncia fuzzy Mamdani, Takagi-Sugeno, Kosko-Mizumoto e Larsen na modelagem

aerodindmica de uma aeronave Cessna 172.

A diregao relativa do vento, o angulo de ataque da aeronave, a, a deflexdo do

profundor, §e, e as forgas de sustentagao, L, e arrasto, D, sdo mostrados na Fig. 5.5.

Figura 5.5: Variaveis envolvidas no processo de modelagem (autoria prépria).

As forgas de sustentacdo e arrasto da aeronave sdo sempre perpendiculares entre si

€, para um voo em regime permanente, sdo definidas respectivamente pelas Egs. (5.5) e (5.6):
L =2pV2SC, (5.5)
D ==pV2SCp, (5.6)

onde p é a densidade do ar, V é a velocidade do vento relativo, S € a area de referéncia da

aeronave, e C; e Cp séo respectivamente os coeficientes de sustentagado e arrasto.

O coeficiente sustentagdo da aeronave depende de muitas variaveis. De acordo com
Roskam (2001), o coeficiente de sustentagédo para um voo em regime permanente € definido

como:

CL = CLO + CLaa + CLihih + CLSBSe, (57)
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em que C,, € o coeficiente linear da equagéo, C;_é o coeficiente de sustentagdo devido ao
angulo de ataque, C,, € o coeficiente de sustentagéo devido a deflexdo do estabilizador

horizontal, iy, e C,,, € o coeficiente de sustentagcdo devido a deflexdo do profundor.

O coeficiente de arrasto Cj, analogamente ao C;, possui a mesma equagao para um

voo em regime permanente, definida como:
CD = CDO + CDa(I + CDihih + CD586e' (58)

A aeronave Cessna 172 possui estabilizador horizontal fixo, de modo que as equagdes

para C; e Cp podem ser simplificadas como:
CL = CLO + CLaOl + CL6856;
CD = CDO + CDaa + CD&e6e' (59)

Como a relagéo entre as entradas e saidas deste processo ndo pode ser extraida
linearmente para todas as condigbes de voo devido as incertezas intrinsecas, este trabalho

opta por considerar esse processo como um sistema fuzzy.

Em sequéncia € descrito o desenvolvimento de um SBRF em relagédo a Cp e C;, em
fungéo de a e de. A base tedrica para a concepgao do sistema € a Eq. (5.9) e as informagdes
extraidas em (ROSKAM, 2001).

Modelagem Fuzzy

O SBRF que trata da modelagem aerodindmica da aeronave Cessna 172 é
apresentado a seguir, incluindo a definicdo das fung¢des de pertinéncia, base de regras e
superficie de resposta para os métodos Mamdani, Takagi-Sugeno de ordem 0, Kosko-

Mizumoto, Larsen e PIA.

Vale ressaltar que o suporte e 0 nimero de subconjuntos fuzzy, bem como a escolha
das fungdes de pertinéncia, sdo determinados com base em (ROSKAM, 2001) e também a

partir da analise dos dados extraidos do simulador de voo X-Plane 11.

Para ambas as variaveis de entrada (a e de), as fungdes de pertinéncia sao definidas

de acordo com a Fig. 5.6.
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Figura 5.6: Fungdes de pertinéncia das entradas (autoria prépria).

As fungdes de pertinéncia das variaveis de saida (Cp e C,) para os métodos de
inferéncia fuzzy Mamdani, Kosko-Mizumoto, Larsen e PIA sido definidas de acordo com a Fig.
5.7. No método de Takagi-Sugeno, as fungdes de pertinéncia das variaveis de saida sao
singleton, cujos suportes correspondem a média de cada uma das fungdes de pertinéncia dos

outros métodos de inferéncia fuzzy.
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Figura 5.7: Fungdes de pertinéncia das saidas (autoria propria).
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A base de regras deste SBRF, apresentada na Tab. 5.5, é construida com base em

(ROSKAM, 2001) e através do apoio de profissionais com experiéncia na area.

Tabela 5.5: Base de Regras.

Regras Se a E ée | Entao Cy, Cp
Ry baixo baixa médio médio
R, médio baixa alto alto
R; alto baixa muito alto muito alto
R, baixo média baixo baixo
Rs médio média médio médio
Rg alto média alto alto
R baixo alta muito baixo muito baixo
Rg médio alta baixo baixo
Ry alto alta médio médio

As superficies de resposta Cp (a, de) para cada um dos métodos de inferéncia fuzzy

sdo apresentadas nas Figs. 5.8 e 5.9. Além disso, as superficies de resposta C;, (a, 5e) para

cada um dos métodos de inferéncia fuzzy sdo apresentadas nas Figs. 5.10 e 5.11.

Pode-se notar que, para C;, e Cp, o método PIA garante consisténcia com a base de

regras construida a priori, superficies de resposta mais suaves que os outros métodos e maior

semelhanga com gréficos planares, de acordo com a Eq. (5.9).

A seguir, é apresentada uma andlise numérica e estatistica da ajustabilidade de um

sistema fuzzy adaptativo aos dados numéricos-experimentais extraidos do simulador de voo

X-Plane 11. Os resultados do método PIA de inferéncia fuzzy sdo comparados com os obtidos

com os outros métodos.
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Figura 5.8: Superficie de resposta C;, (a, de) para os métodos de Mamdani, Takagi-Sugeno,

Kosko-Mizumoto e Larsen (autoria propria).
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Figura 5.9: Superficie de resposta Cj, (a, de) para o método PIA (autoria propria).
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(a) Método de inferéncia de Mamdani. (b) Método de inferéncia de Takagi-Sugeno.

(c) Método de inferéncia de Kosko-Mizumoto. (d) Método de inferéncia de Larsen.
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Figura 5.10: Superficie de resposta C;, (a, 5e) para os métodos de Mamdani, Takagi-Sugeno,

Kosko-Mizumoto e Larsen (autoria propria).
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Figura 5.11: Superficie de resposta C; (a, 5e) para o método PIA (autoria propria).
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Analise Comparativa de Sistemas Fuzzy Adaptativos

Nesta etapa, um conjunto de dados, extraido de um voo virtual realizado no simulador
de vbo X-Plane11, é usado para analisar a capacidade de ajuste do PIA, e comparar a
eficiéncia computacional desse método em relagdo aos métodos Mamdani, Takagi-Sugeno,
Kosko-Mizumoto, Larsen e a abordagem hibrida HGFRD (BEMANI e AKBARZADEH, 2019).

Os sistemas fuzzy adaptativos sdo baseados no SBRF apresentado anteriormente
nessa segao, ou seja, 0s mesmos possuem as trés fungdes de pertinéncia gaussianas para
cada uma das variaveis de entrada, Fig. 5.6, as mesmas cinco fungdes de pertinéncia para
cada uma das variaveis de saida, Fig. 5.7, e também a base de regras fuzzy apresentada na
Tab. 5.5. A Unica diferenga é que os parametros que definem as fungdes de pertinéncia (média

e desvio padrao) sao adaptativos e ajustaveis por um método de otimizagao.

O método de otimizagdo usado neste capitulo para ajustar os sistemas fuzzy aos
dados numeérico-experimentais € a evolugao diferencial (STORN e PRICE, 1997). Os valores

dos parametros utilizados na evolugéao diferencial sdo apresentados na Tab. 5.6.

Tabela 5.6: Pardmetros da Evolugao Diferencial.

Parametro Valor
Nuamero de iteracdes 400
Numero de vetores 150
Taxa de cruzamento 0,95
Fator de perturbagao 0,4

O processo de otimizagao e os graficos dos valores estimados de Cp e C;, em azul,
comparados a um conjunto de 300 dados extraidos durante 30 segundos (s) de simulagdo no
X-Plane 11, em vermelho, sdo apresentados respectivamente nas Figs. 5.12, 5.13(a) e
5.13(b).
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Figura 5.12: Processo de otimizag&o do erro absoluto médio (MAE) da resposta do SBRF

que utiliza o método PIA em fungéo da iteragédo da evolugao diferencial (autoria propria).
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Figura 5.13: Cp e €, em fungdo do tempo com o método PIA (autoria propria).

Nas Figs. 5.13(a) e 5.13(b), pode-se verificar a capacidade de ajuste do método PIA;
no entanto, para analisar e comparar quantitativamente o desempenho do PIA com as outras
técnicas, é realizada uma analise estatistica dos resultados obtidos por cada um dos métodos

de inferéncia fuzzy.

O algoritmo de evolugdo diferencial é executado 30 vezes para cada método de
inferéncia fuzzy, e a média, X, e desvio padrdo, Sp, do tempo de execugdo, At, e do erro
absoluto médio da resposta, MAE (Mean Absolute Error), com relagdo aos dados numérico-

experimentais de C, e C; extraidos no X -Plane 11, sdo apresentados respectivamente nas
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Tabs. 5.7 e 5.8. Ressalta-se que todas as execugdes do método de otimizagdo ocorrem em
uma maquina com processador intel i7 com clock de 4,5 GHz (execugéo realizada em apenas
um nucleo do processador), memoéria RAM com 32 GB, disco rigido com capacidade de

armazenamento de 1 TB, e memoria SSD contendo 256 GB de espaco de armazenamento.

Tabela 5.7: Estatisticas dos Métodos de Inferéncia Fuzzy para Cp,.

MAE At (s)
X Sp X Sp
Mamdani 0,0383 | 0,0093 | 9052 | 3951
Takagi-Sugeno | 0,0292 | 0,0024 | 45 13

Kosko-Mizumoto | 0,0386 | 0,0022 5400 2055

Larsen 0,0398 | 0,0032 4213 1677
HGFRD 0,0280 | 0,0039 1752 34
PIA 0,0278 | 0,0022 597 63

Tabela 5.8: Estatisticas dos Métodos de Inferéncia Fuzzy para C;.

MAE At (s)
X Sp X Sp
Mamdani 0,5590 | 0,1020 | 6139 1436
Takagi-Sugeno | 0,4285 | 0,0625 25 9

Kosko-Mizumoto | 0,4687 | 0,1169 | 5859 1965

Larsen 0,5492 | 0,0814 | 5689 2840

HGFRD 0,3904 | 0,0453 | 2377 40

PIA 0,3883 | 0,0469 544 23




91

As estatisticas apresentadas nas Tabs. 5.7 e 5.8 indicam que o método PIA é o que
mais reduz o erro absoluto médio em relacdo aos dados numérico-experimentais. Para
verificar a superioridade do método PIA nesse critério, tanto para €, quanto para C;, sdo
elaborados testes de hipoteses comparando o PIA com cada um dos outros métodos, cujas
hipoteses nula, Hy, e alternativa, H,, (MONTGOMERY e RUNGER, 2002) sdo apresentadas

a seguir:

e Hy: O MAE do método em analise € igual ao MAE do método PIA;

e H,;: O MAE do método em analise € maior do que 0 MAE do método PIA.

Com 98,5% de nivel de confianga, com base na distribuigdo t-Student aplicada a
variaveis aleatodrias heterocedasticas, o teste rejeitou a hipdtese nula para os métodos de
Mamdani, Takagi-Sugeno, Kosko-Mizumoto e Larsen, ou seja, para resolver esse problema,
o0 método PIA é o que obtém o menor valor de MAE, e consequentemente a maior capacidade
de ajuste aos dados numérico-experimentais. Embora o valor médio de MAE obtido pelo PIA
tenha sido um pouco melhor que o obtido pelo HGFRD, ndo ha elementos estatisticos que

rejeitem a hipotese de desempenho numérico equivalente de ambas as técnicas.

Quanto ao tempo de execug¢ao de cada método, Takagi-Sugeno € o que possui 0
menor custo computacional, seguido pelo PIA, que por sua vez é mais rapido em termos

computacionais do que os métodos de Mamdani, Kosko-Mizumoto, Larsen e HGFRD.

Os resultados sugerem a eficacia do método PIA, que combina capacidade de ajuste
e baixo tempo de execugédo em relagao a algumas técnicas, caracteristicas tipicas do método
de Takagi-Sugeno, com a intuitividade de utilizar o mesmo processo de definigdo das fungbes

de pertinéncia do método de Mamdani.

Apos a explanagdo do método PIA, no proximo capitulo € apresentado o principal
estudo de caso utilizado para a validagdo do método PIA de inferéncia fuzzy: controle neuro-

fuzzy para aeronaves.
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CAPITULO VI

CONTROLE NEURO-FUZZY PARA AERONAVES

Neste capitulo sdo apresentados os métodos utilizados de ajuste dos parametros dos
controladores neuro-fuzzy, bem como os resultados obtidos via simulagédo e durante a

operacéao do veiculo para cada um dos métodos.

6.1. Arquitetura de Controle Neuro-Fuzzy

O modelo dindmico de uma aeronave € composto por uma série de nao-linearidades
e acoplamentos. Existe, porém, a possibilidade de se trabalhar com razoavel fidelidade a
dinamica real da aeronave a partir de seu modelo linearizado, que despreza sobretudo os
acoplamentos entre as dindmicas longitudinal e latero-direcional, mas sem deixar de

considerar a aplicagao de perturbagdes ao sistema (ROSKAM, 2001).

A partir do entendimento da aeronave como sendo submetida a dois comportamentos
dindmicos desacoplados entre si, controladores de voo sdo desenvolvidos levando em

consideracdo essa natureza do sistema.

Esse é o caso do sistema de controle da empresa Micropilot, lider no desenvolvimento
de controladores de voo para veiculos aéreos nao-tripulados. Na Fig. 3.12 é apresentada uma

representacdo da arquitetura de controle longitudinal desenvolvida pela Micropilot, baseada
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em controladores PID (Proporcional Integral Derivativo) conectados em cascata (THUMS,
TORRES e PALHARES, 2012).

Nesta arquitetura de controle desenvolvida pela Micropilot, a sintonizagdo dos
parametros é dividida em duas etapas: inicialmente sintonizam-se os parametros localizados
dentro da area delimitada pela linha tracejada indicada na Fig. 3.12, e em seguida realiza-se
um segundo processo de otimizacédo para a obtengdo dos valores dos demais parametros.
Esse mesmo procedimento de sintonizagao € também replicado para o controle latero-

direcional do sistema.

Baseando-se nesta arquitetura de controle, e tendo como inspiragdo a crescente
utilizagdo da inteligéncia computacional no desenvolvimento de sistemas de controle de
aeronaves, Tab. 3.7, nas Figs. 6.1 e 6.2 s&o ilustradas respectivamente as arquiteturas de

controle longitudinal e latero-direcional propostas nesta pesquisa.
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Figura 6.1: Controle longitudinal (autoria prépria).
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Figura 6.2: Controle latero-direcional (autoria propria).
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No controle longitudinal da aeronave, h € a altitude, 8 € o angulo de arfagem, q é a
velocidade angular de arfagem, U é a velocidade longitudinal, w é a velocidade vertical, 6 é

a porcentagem relativa a aceleragdo maxima da aeronave, e §; € a deflexdo do profundor.

Ja no controle latero-direcional, ¢ é o angulo de rolagem, ¥ é o angulo de guinada, p
€ a velocidade angular de rolagem, r € a velocidade angular de guinada, U continua sendo a
velocidade longitudinal, v é a velocidade lateral, §, é a deflexdo dos ailerons da aeronave, e

por fim &y € a deflexdo do leme.

Na arquitetura de controle, k indica a iteragao atual, e set e err sdo respectivamente
os indicativos dos sinais de referéncia (setpoint) e erro. Os blocos K e K /s s&o, nesta ordem,
controladores proporcionais e integradores cujas respostas sdo somadas as saidas dos
SBRFs. Todo o sistema de controle € composto por 6 SBRFs, cada um com suas respectivas
entradas e saidas, e tendo o PIA como método de inferéncia fuzzy. As entradas e saidas de

cada um dos SBRFs sao apresentadas na Tab. 6.1.

Tabela 6.1: Entradas e Saidas dos Sistemas Baseados em Regras Fuzzy.

SBRF SBRF, SBRF, SBRF; SBRF, SBRF; SBRF,
Entradas herr,k gerr,k e Uk herr,k € Uerr,k lperr,k ¢err,k € Uk 1l}err,k € Uk
Saida eset,k 6E1‘k 6Tk ¢set,k 6A 1,k 6R 1,k

Os termos linguisticos e a base de regras de cada um dos SBRFs, obtidos a partir de
Roskam (2001) e do conhecimento de especialistas na area de engenharia aerondutica, séo

apresentados nas Tabs. 6.2 a6.7.
SBRFq:

e Termos linguisticos de h,,,x: Baixo, Médio e Alto;

e Termos linguisticos de O, : Baixo, Médio e Alto.

Tabela 6.2: SBRF; - Base de Regras.

Regras Se herrk Entdo O
R4 Baixo Baixo
R, Médio Médio
R; Alto Alto




SBRF,:

Termos linguisticos de 6., ,: Baixo, Médio e Alto;

Termos linguisticos de U,: Baixa, Média e Alta;
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Termos linguisticos de 0g, : Baixissima, Muito Baixa, Baixa, Média, Alta,

Muito Alta, Altissima.

Tabela 6.3: SBRF, - Base de Regras.

Regras Se Ocrrk E Uy Entao Ok}
Ry baixo baixa Altissima
R, médio baixa Média
R, alto baixa Baixissima
R, baixo média Muito Alta
Rs médio média Média
Rg alto média Muito Baixa
R, baixo alta Alta
Rg médio alta Média
Ry alto alta Baixa

SBRFj;:

Termos linguisticos de h,,..x: Baixo, Médio e Alto;

Termos linguisticos de U, x: Baixo, Médio e Alto;,

Termos linguisticos de &7, : Muito Baixa, Baixa, Média, Alta € Muito Alta.



Tabela 6.4: SBRF; - Base de Regras.

Regras | Se | J— E Uerrik Entao 87,
R, baixo baixo Muito Baixa
R, médio baixo Baixa
R, alto baixo Média
R, baixo médio Baixa
Rs médio médio Média
Rg alto médio Alta
R, baixo alto Média
Rg médio alto Alta
Ry alto alto Muito Alta
SBRF,:

e Termos linguisticos de Y, x: Baixo, Médio e Alto;

e Termos linguisticos de ¢t : Baixo, Médio e Alto.

SBRF5:

Tabela 6.5: SBRF, - Base de Regras.

Regras Se Yerrk | ENtA0  Pger
R4 Baixo Baixo
R, Médio Médio
R; Alto Alto

e Termos linguisticos de ¢, x: Baixo, Médio e Alto;

e Termos linguisticos de Uy: Baixa, Média e Alta,

e Termos linguisticos de 84, - Baixissima, Muito Baixa, Baixa, Média, Alta,

Muito Alta, Altissima.
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Tabela 6.6: SBRF; - Base de Regras.

Regras Se Perrk E Uy Entao b4 Lk
R, baixo baixa Baixissima
R, médio baixa Média
R, alto baixa Altissima
R, baixo média Muito Baixa
Rs médio média Média
Rg alto média Muito Alta
R, baixo alta Baixa
Rg médio alta Média
Ry alto alta Alta
SBRF:

Termos linguisticos de Y, x: Baixo, Médio e Alto;,

Termos linguisticos de Uy: Baixa, Média e Alta;
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Termos linguisticos de Or, y: Baixissima, Muito Baixa, Baixa, Média, Alta,

Muito Alta, Altissima.

Tabela 6.7: SBRF, - Base de Regras.

Regras Se Yerrk E Uy Entao Orix
R, baixo baixa Altissima
R, médio baixa Média
R3 alto baixa Baixissima
R, baixo média Muito Alta
Rg médio média Média
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Rg alto média Muito Baixa
R, baixo alta Alta

Rg médio alta Média

Rq alto alta Baixa

As fungdes de pertinéncia envolvidas neste sistema de controle sdo adotadas como
sendo gaussianas, logo, cada uma das quais € definida por meio da adogao, no processo de
sintonizacao do controlador, de valores para a média e desvio padrao, sendo este o tema da

secao a segquir.

6.2.Sintonizagao e Estabilidade do Sistema de Controle

O processo de sintonizagao do controlador neuro-fuzzy passa pela simulagéo da
operagdo da aeronave Cessna 172 submetida a perturbagdes ao longo do tempo de

simulagao.

Da mesma forma que em Thums, Torres e Palhares (2012), o processo de
sintonizag&o, ou seja, o calculo dos valores dos paradmetros do controlador (neste caso, a
média e desvio padrdao associados a cada fungdo de pertinéncia), é dividido em

procedimentos, os quais sao descritos a seguir.

1. Adota-se como estudo de caso a aeronave Cessna 172, em funcdo de sua
grande utilizacdo e disponibilidade de informagbes a respeito de suas
caracteristicas dindmicas.

2. O modelo utilizado é o exposto nas Egs. (2.46) a (2.49), e os valores dos
parametros, para a aeronave Cessna 172, sdo extraidos em Roskam (2001) e

apresentados na Tab 6.8.
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m—X; —Xu q u

—7Zy m-—27y —Zq' wi+

-M,; —M,;, Iy - Mq' q

—X,, Qo — X, mW, — X, u mgcos(0,)

—mQy —Z ~Z -mUy —Z W(+ |mgsin(6y)cos (Cbo)l 6=
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_M5T M5E M5F OF
b a (2.47)
'm —Y, —Y; —Y; v

—Li] Ix_LIj _Ixz_LT" P +
] —N,; — Ly — NZ'J I; = Ny 4

-, —-mW, — Y, mUp — Yy v —mg cos(0y) cos(Py)

_LU — IszO — Lp (IZ — Iy)QO - Lr [p] + 0 ¢ =
Ny (= L) —Ny  LQo— Ny | 7 0
Yor YVor] s

Le Ly [5:]. (2.48)
_N5A N5R

q,'> tan (@) ] p

. 2.49
il=lo veosiénl D) -

Tabela 6.8: Valores dos Parametros para a Aeronave Cessna 172 (ROSKAM, 2001).

m 1202 kg Xy 0 X 0 X 0
Z; 0 Z, ~10,41 7 0 M, 0
Ns?/m
My, —66,34 1y, 1825 M, 0 Xu —22,69
Ns?/m kgm? Ns/m
0 0 X, 45,86 W, 0 X, 0
Ns/m
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Zy, —-151,4 YA —1095 Uy 68,00 Zq —716,5
Ns/m Ns/m m/s Ns/rad
M, 0 M, —-513,1 M, —7732 g -9,807
Ns Nms/rad m/s?
0o 0 bo 0 Xsy 2030 X5, 0
N
Xsp 0 Zs, 0 Zsy —16508 Zsp, 0
N/rad
Mg, 0 Mg, —64179 Mg, 0 Y, 0
Nm/rad
Y 0 Y 0 L, 0 L, 1285
kgm?
Ly 0 Lz 0 L 0 Ny 0
Ny 0 I, 2667 N; 0 Y, —-220,8
kgm? Ns/m
Y, —-220,8 Uy 68,00 Y, 659,4 L, —-568,8
Ns/rad m/s Ns/rad Ns
L, —-16360 L, 2697 N, 361,7 N, —-939,7
Nms/rad Nms/rad Ns Nms/rad
N, -3167 Ys, 0 Y5, 7179 Ls, 9644
Nms/rad N/rad Nm/rad
Lsg 6191 Ns, —-9097 Ns, —27163
Nm/rad Nm/rad Nm/rad
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3. A otimizagado do sistema de controle &€ desenvolvida a partir do método da
evolugéo diferencial, cujos parametros sdo apresentados na Tab. 6.9, que
busca minimizar o erro médio absoluto MAE com relacdo ao comportamento
(decaimento) imposto ao sistema de controle. No processo de busca por
solucbes que atendam ao requisito do sistema, impde-se que as funcdes de
pertinéncia que ocupam os limites dos intervalos de busca apresentem o
mesmo valor de desvio padrdo e tenham os valores de média iguais aos
proprios limites de busca. Quanto as demais fungdes de pertinéncia, impde-se
igualdade de valor de desvio padrdo e simetria com relagdo ao centro do
intervalo de busca. O processo de otimizagdo é subdividido em 4 etapas,
descritas a seguir:

Tabela 6.9: Pardmetros da Evolugao Diferencial.

Parametro Valor
Numero de iteragbes 100
Numero de vetores 50
Taxa de cruzamento 0,95
Fator de perturbacao 0,4

a. Otimizagéo dos parametros do SBRF, e consequentemente a definicdo
de suas fungdes de pertinéncia, Figs. 6.3 e 6.4. Esta otimizagdo se
realiza a partir da simulagdo da operacdo da aeronave Cessna 172
submetida aos valores de referéncia, condigdes iniciais e perturbacdes

apresentados na Eq. (6.1).

Osetx =0,0<t<90s
0,(t=0)=10°
0,(t =15s) = —-10°
0,(t=30s)=10°
J 0,(t =45s) =—-10°
0,(t=60s) =10°

0,(t=75s)=-10°
Uset,k =Ur=30m/s, 0<t<30s
Uset,k =Ur=68m/s, 30<t<60s
\Uset x = Ux = 100m/s, 60 <t <90s.
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Otimizagao dos parametros de SBRF; e SBRF; , e consequentemente a

definicdo de suas fungbes de pertinéncia, Figs. 6.5 a 6.8. Esta

otimizagao se realiza por meio da simulac&do da operagdo da aeronave

Cessna 172 submetida aos valores de referéncia, condi¢des iniciais e

perturbagbes apresentados na Eq. (6.2).



( hsety =50m, 0< t<30s
| hee= 0m, 30 <t<100s
{ Uset,k=68m/S,OSt<3OS
IUset,k= 73 m/s,30<t<50s
\Uset,k =68 m/s, 50 <t <100s.
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Figura 6.5: Fungbes de pertinéncia da entrada do SBRF; (autoria propria).
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Figura 6.6: Funcgbes de pertinéncia da saida do SBRF; (autoria prépria).
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Figura 6.7: Fungdes de pertinéncia das entradas do SBRF; (autoria propria).
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Figura 6.8: Fungdes de pertinéncia da saida do SBRF; (autoria propria).

c. Otimizagdo dos parametros do SBRFs; e assim a definicdo de suas
funcdes de pertinéncia, Figs. 6.9 e 6.10. Esta otimizacao se da a partir
novamente da simulacdo da operagcao da aeronave Cessna 172
submetida aos valores de referéncia, condigdes iniciais e perturbacoes

apresentados na Eq. (6.3).
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Pseex =0,0<t<90s

¢ (t=0) =10°
éi(t = 155) = —10°
b (t =305s) = 10°
| (e =455)=-10° (6.3)

75 s) = —10°
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Figura 6.9: Fungdes de pertinéncia das entradas do SBRFs (autoria propria).
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d. Por fim, a otimizagdo dos parametros de SBRF, e SBRF,, e logo a
definicdo de suas funcgdes de pertinéncia, Figs. 6.11 a 6.14, a partir da
simulacao da operacéo da aeronave Cessna 172 submetida aos valores
de referéncia, condigdes iniciais e perturbacdes apresentados na Eq.
(6.4).

lpset,k =90° 0< t<50s
lzbset,k =0°50<t<100s
Yserre = 90°,100 < ¢ <150 s

Vserr = 0° 150 <t < 200s
J Vsetx = 90°, 200 < t < 250s (6.4)

Vsetr = 0° 250 <t <300s
Uset,k =U,=30m/s, 0<t<100s

Usetx = Ux = 60 m/s, 100 <t <200s

(Userx = U = 100 m/s, 200 < t < 300 s.
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Figura 6.11: Funcbes de pertinéncia da entrada do SBRF, (autoria propria).
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Figura 6.13: Fungdes de pertinéncia das entradas do SBRF, (autoria propria).
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O desempenho do sistema aeronautico, controlado a partir da arquitetura de controle

neuro-fuzzy proposta neste trabalho (PIA), é apresentado nas Figs. 6.15 a 6.19, assim como

o desempenho dos controladores PID e neuro-fuzzy com o método de inferéncia de Takagi-

Sugeno de ordem 0 (TS), sendo este ultimo dotado da mesma arquitetura de controle e

mesma técnica de otimizagao utilizada no controlador PIA. Nessas figuras, também séo

apresentados os graficos dos sinais de referéncia set no tempo discreto k, e o comportamento

(decaimento) considerado para a resposta, requisito este que é fungdo das dimensdes da

aeronave e esta relacionado ao conforto dos passageiros a bordo, sendo mais suave que o

valor de referéncia.

U (m/s)

Usetk
= = *Decaimento
—l, - PIA
U~ TS
u, -PID

64

t(s)

Figura 6.15: Velocidade da aeronave U(m/s) em fungao do tempo de simulagao t(s)

(autoria propria).

80

100
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Na andlise dos gréaficos da Fig. 6.15, € possivel verificar que a resposta do sistema
com o controlador PID apresenta menor sobressinal se comparada as respostas dos demais
controladores. A aderéncia da resposta da aeronave com relagao ao decaimento desejado de

0 a 50 segundos é melhor com o controlador PID, porém, de 50 a 100 segundos, os

controladores TS e PIA apresentam desempenho superior a este.

10

—_—

set k
= = :Decaimento
_Hk -PIA

| |—¢,-Ts
6, - PID

== arly

0
e ——

-10 1

15 . . . . . . . . )
0 10 20 30 40 50 60 70 80 90

t(s)
Figura 6.16: Angulo de arfagem da aeronave 6( °) em fungdo do tempo de simulagéo t(s)
(autoria propria).

No gréafico da Fig. 6.16, verifica-se o desempenho semelhante dos sistemas de
controle, porém o controlador PIA, na maior parte da simulagéo, apresenta maior capacidade
de seguir o decaimento pré-estipulado.

50

—h

setk
— — *Decaimento
h,-PIA
—hy =TS
h,-PID

40

30

20

h (m)

Figura 6.17: Altitude da aeronave em relagao ao ponto de linearizagdo h(m) em fungao do

tempo de simulagao t(s) (autoria propria).
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Nos graficos da Fig. 6.17, nota-se que a altitude da aeronave em simulagéo é
controlada de forma semelhante utilizando quaisquer dos controladores testados. O
controlador PID, porém, obteve desempenho mais satisfatério sobretudo no intervalo de

tempo de 40 a 60 segundos.

10¢ X
Psetk

— = rDecaimento

i PIA

I ————-wK-TS

¢K-FWD

¢ ()

-10

Figura 6.18: Angulo de rolagem da aeronave ¢( ®) em fungéo do tempo de simulago t(s)

(autoria propria).

Os controladores empregados em simulagdo, mais uma vez, desempenham-se de
forma satisfatoria e semelhante, conforme € possivel verificar na Fig. 6.18. Nota-se, porém,
que em praticamente toda a simulagéo, o controlador PIA apresenta maior capacidade de

seguir o comportamento pré-estipulado.
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Figura 6.19: Angulo de guinada da aeronave 1( °) em fungdo do tempo de simulagéo t(s)

(autoria propria).



111

Por fim, ao se analisar os gréaficos da Fig. 6.19 e levar em consideragao a velocidade
de cruzeiro adotada para a aeronave durante a simulagéo, a saber: 30 m/s no intervalo [0,100)
s, 60 m/s no intervalo [100,200) s e 100 m/s no intervalo [200,300) s; é possivel verificar
novamente que todos os controladores conseguem manter o angulo de guinada do Cessna
172 préximo ao comportamento desejado, sobretudo o controlador PIA. Ressalta-se também
que este controlador, se comparado ao PID, mostra ser consideravelmente menos suscetivel

aos efeitos do aumento da velocidade de cruzeiro.

As agdes de controle geradas pelo sistema neuro-fuzzy que langa mao do método PIA
de inferéncia fuzzy, e que séo responsaveis pelas respostas anteriormente apresentadas, séo
compostas pela deflexao do profundor 6E, taxa de aceleragao 6T, deflexdo do aileron 64 e
deflexdo do leme 6R, e sdo exibidas respectivamente nas Figs. 6.20(a), 6.20(b), 6.21(a) e
6.21(b).

b ©)

0 10 20 30 40 50 60 70 80 90 0 20 40 60 80 100
t(s) t(s)

(a) 6E em fungéo do tempo t(s). (b) 8T em fungéo do tempo t(s).

Figura 6.20: Agbes de controle associadas a dindmica longitudinal da aeronave (autoria

propria).
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(a) 64 em fungéo do tempo t(s). (b) SR em fungao do tempo t(s).

Figura 6.21: Acbes de controle associadas a dindmica latero-direcional da aeronave (autoria

propria).
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Através dos graficos apresentados, é possivel verificar que as ag¢des de controle
tendem a zero a medida em que o sistema se aproxima de seus valores de referéncia, com
excecao a taxa de aceleragao, responsavel por manter o equilibrio dindmico da aeronave em

um voo reto e nivelado, que oscila em torno de 0,5 (50% de carga do propulsor).

Diante dos resultados expostos graficamente nas Figs. 6.15 a 6.19, é possivel verificar
a capacidade de todas as técnicas de controlar efetivamente a aeronave Cessna 172. Em
funcao do semelhante desempenho dos sistemas de controle, apresentam-se na Tab. 6.10,
para cada uma das metodologias testadas, os dados relativos ao erro absoluto médio (MAE)

da resposta do sistema controlado com relagdo ao decaimento de referéncia.

Tabela 6.10: Erro MAE da Resposta do Sistema Controlado.

Controlador PIA TS PID
Variavel
U(m/s) 0,4196 0,4234 0,3748
0(°%) 0,5858 0,6320 0,7313
h(m) 2,2105 2,3969 1,5356
d(%) 0,1357 0,2623 0,1588
Y(°) 5,1227 8,2976 14,0976

E possivel concluir, dentro das condigdes em teste e por meio dos resultados expostos
na Tab. 6.10, que o controlador neuro-fuzzy que utiliza o método PIA de inferéncia fuzzy
apresenta o melhor desempenho geral dentre as metodologias testadas, tendo obtido
resultados superiores as demais técnicas em 3 das 5 variaveis de saida do sistema. Esse
resultado indica que o método PIA se mostra, também, eficaz como estrutura matematica de

um sistema de controle.

No intuito de verificar a estabilidade do sistema de controle sintonizado, as Egs. (2.46),
(2.47), (2.48) e (2.49) sao aglutinadas em uma Unica equagdo matricial na forma Mx + Kx =
= Du, Eq. (6.5), em que x é o estado do sistema, u é a agdo de controle aplicada ao mesmo

e M, K e D sdo as matrizes que armazenam os coeficientes aerodinamicos da aeronave:
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Ao se multiplicar a Eq. (6.5) por M~1 e isolar x, € possivel reescrever a dinamica do
sistema no formato disposto na Eq. (2.6), em que f(x) e b(x) sé&o fungbes que descrevem a

dindmica do sistema, e x(t,) € o estado inicial no tempo t,.
x(t) = f(x) + b(ux), x(to) = x,. (2.6)

Define-se a fungdo de Lyapunov V(x) = xT Px, tomando P como sendo uma matriz

identidade, e em seguida determina-se a derivada da fungéo de Lyapunov V, Eq. (2.7):

V(x) =x"TPx +xTPx =

V) = (F(x) + b(x)u(x))TPx +xTP(f(x) + b(x)u(x)) =

V(x) = F(x) + B(x), 2.7)
em que:

F(x) = f(xX)TPx + xTPf(x), B(x) =ul(x)bT (x)Px + xTPb(x)u(x). (2.8)
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Se V(x) < 0 Vx, tem-se que o sistema em malha fechada, composto pelo controlador e pelo
processo nao-linear, sera localmente assintoticamente estavel no sentido de Lyapunov na

origem x,.

Em funcdo da complexidade matematica do modelo e do controlador neuro-fuzzy
desenvolvido neste trabalho, abre-se mao de uma avaliagdo analitica, e realiza-se entdo a
avaliacdo numérica da derivada da fungdo da Lyapunov V dentro dos limites pré-definidos
para as variaveis do processo. Esses limites sdo estabelecidos de modo a contemplar o
envelope de voo (limites operacionais) da aeronave e sido apresentados na Tab. 6.11.
Ressalta-se que os intervalos de avaliagdo de V s&o discretizados, gerando um total de
1679616 avaliagbes, Fig. 6.22, o que é um indicativo de confiabilidade na inferéncia da

estabilidade do sistema controlado.

Tabela 6.11: Intervalo de Avaliagdo da Fungéo de Lyapunov V.

Variavel Limite Inferior Limite superior
u(m/s) -25 25
v(m/s) -25 25
w(m/s) -25 25

p(rad/s) -0,05 0,05

q(rad/s) -0,05 0,05

r(rad/s) -0,05 0,05

¢(%) -8 8
0(% -8 8
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Figura 6.22: Avaliagdo numérica da derivada da fungdo de Lyapunov V (autoria prépria).

E possivel verificar através do grafico apresentado anteriormente que o valor da derivada
da funcdo de Lyapunov para todas as condigbes testadas é negativo, sendo o maior valor
observado igual a —0,3634, o que € um forte indicio numérico de que o sistema controlado em
malha fechada em quest&o é localmente assintoticamente estavel no sentido de Lyapunov na

origem x,.

Apos a sintonizacao e analise de estabilidade do sistema aeronautico controlado através
do controlador neuro-fuzzy associado ao método PIA de inferéncia fuzzy, na proxima segao é
apresentada a aplicacdo da técnica desenvolvida no controle de aeronave em operagoes

criticas de voo.

6.3. Software-in-the-Loop — Operagoes Criticas de Voo

Esta se¢do apresenta o desempenho do sistema de controle aplicado a operagdes
criticas de voo, porém, para viabilizar o software-in-loop realizado entre o MATLAB e o X-
Plane 11, é necessario o desenvolvimento de uma interface de comunicacéo entre os dois

softwares, assunto a ser abordado na etapa a seguir.
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Comunicagdo UDP entre MATLAB e X-Plane 11

O X-Plane 11 é um simulador de voo produzido pela empresa Laminar Research
(FIGUEIREDO e SAOTOME, 2012) caracterizado pela sua versatilidade e fidedignidade.
Conta com modelos de aeronaves comerciais e militares, € um cenario virtual que abrange
aeroportos e regides do mundo todo. Além disso, o X-Plane 11 possibilita a reprodugéo de
operagOes criticas de voo, relacionadas tanto ao funcionamento da aeronave, quanto as
condi¢cdes meteorolégicas. Durante a simulagéo, € possivel submeter a aeronave a uma série
de avarias como falhas nos motores, sensores, instrumentos de navegacao, controles, trens
de pouso, dentre outros componentes. Da mesma forma também é possivel alterar, a qualquer
momento durante a simulagéo, as condi¢des climaticas de forma a inserir perturbagdes como

rajadas de vento, zonas de turbuléncia, chuvas fortes, dentre outras condigdes.

A agéncia americana FAA e a Agéncia Nacional de Aviagao Civil (ANAC) reconhecem
0 X-Plane 11 como um software de base para simulagdes utilizadas no treinamento de pilotos
profissionais, uma vez que este é capaz de reproduzir com alta fidelidade o ambiente de voo
e a resposta da aeronave as agdes de controle aplicadas pelo piloto. Além disso, o simulador
possui ferramentas que permitem que o desempenho do piloto seja avaliado apds o
encerramento das simula¢des (ALMEIDA e CORREA, 2017).

Ha na literatura trabalhos que propéem a utilizagdo do Simulink e do X-Plane 11 na
realizagdo de simulagbes do tipo software-in-the-loop (BITTAR, 2011; FIGUEIREDO e
SAOTOME, 2012; BITTAR et al., 2014). No entanto, a literatura carece de trabalhos que
apresentem a elaboragdo de um cdodigo puramente desenvolvido em linguagem de
programacao, e nao em programagao grafica como o Simulink, o que garantiria que técnicas
de controle mais complexas pudessem ser implementadas de forma mais direta e
computacionalmente eficiente. Assim, este trabalho propde o desenvolvimento de um
algoritmo, através do uso do MATLAB, que possibilite o estabelecimento de uma comunicagéo
entre este e o simulador de voo X-Plane 11, baseada no protocolo UDP (User Datagram

Protocol).

Durante as simulacgdes realizadas no X-Plane 11, s&o gerados dados em tempo real
referentes a atitude, a localizagao e as agdes de controle da aeronave. Caso o simulador seja
configurado adequadamente, estes dados podem ser enviados através de uma rede UDP, a
um IP (Internet Protocol) e a uma porta especificados, o que permite que outros softwares
possam ter acesso aos dados gerados durante a simulagdo. Além disso, pacotes de
comandos podem ser enderecados ao X-Plane 11 através da rede UDP estabelecida, de
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forma que a aeronave possa ser controlada através da atuacdo sobre as superficies de
controle e sobre o sistema de propulsao, configurando assim uma simulagéo do tipo software-

in-the-loop.

Para tratar os dados gerados durante a simulagdo, € necessario fazer com que o X-
Plane 11 os envie para algum outro software que fique responsavel pelo seu processamento
e armazenamento. Neste trabalho, a analise dos dados é realizada através da utilizacdo do
MATLAB, e a comunicacgao entre este e o simulador é feita por meio de uma conexao baseada
no protocolo UDP. Por fim, é importante destacar que o simulador e o algoritmo desenvolvido

no MATLAB devem ser executados simultaneamente e no mesmo computador.

Para que a comunicagéo entre o MATLAB e o X-Plane 11 seja estabelecida da forma
adequada, € necessario antes disso realizar um estudo acerca do simulador, e de como este
constréi os pacotes de dados que sao enviados através da rede. Este estudo é essencial para
que o algoritmo aqui proposto seja desenvolvido, uma vez que o codigo deve levar em conta
a estrutura dos pacotes que recebe do X-Plane 11, visto que é responsavel pelo tratamento
dos dados contidos nestes pacotes, e deve ser capaz de extrair deles as informagdes

referentes a simulagao.

Basicamente, as mensagens enviadas pelo X-Plane podem conter quaisquer
informagbes geradas durante a simulagdo. Estas informagbes normalmente estao
relacionadas ao estado atual da aeronave e dizem respeito a variaveis como por exemplo as
velocidades lineares, as velocidades angulares, as aceleragdes, a deflexdo das superficies
de comando, os angulos de Euler, as coordenadas geograficas da aeronave, entre outras
(BITTAR, 2011; BITTAR et al., 2014). Desta forma, € necessario escolher quais variaveis
estardo por fim contidas na mensagem enviada pelo X-Plane11, e esta configuragao é

realizada no menu Settings, na aba Data Output, Fig. 6.23.
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Figura 6.23: Variaveis enviadas pelo X-Plane (IASBECK, PEREIRA e SANCHES, 2020).

Como o controle dos angulos de Euler da aeronave é realizado durante a simulagéo,
€ preciso que o MATLAB receba do simulador pacotes que contenham informagdes acerca
da atitude do avido. Assim sendo, o conjunto de variaveis selecionado na aba Data Output do
X-Plane 11 é o de indice 17 (Pitch, roll & headings). Uma vez selecionado apenas este
conjunto de variaveis, as mensagens enviadas pelo X-Plane 11 devem conter, em graus, o
angulo de arfagem (6), o angulo de rolagem (¢), e a diferenga entre a dire¢cdo para a qual

aponta o avido e o norte (3 ou headings).

As mensagens enviadas pelo X-Plane 11 sdo compostas por uma série de bytes e

seguem a seguinte estrutura (LEWIS, 2009):

o Cabecgalho: 5 bytes;
 indice correspondente ao conjunto de dados contido na mensagem: 4 bytes;

e Dados da mensagem: 32 bytes (8 numeros do tipo float com 4 bytes cada).

O cabegalho da mensagem enviada pelo X-Plane possui cinco bytes e cada um deles
representa um caractere. As mensagens enviadas pelo simulador tém seu cabecgalho
composto pelas letras D, A, T e A, que indicam que a mensagem se trata de um pacote de
dados, e além delas o caractere null. No entanto, como a mensagem enviada pelo X-Plane
11 é um conjunto de valores numéricos, sendo cada byte um valor que varia entre 0 e 255,

serao observados como seus 5 primeiros bytes os numeros [68 65 84 65 0], correspondentes
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na tabela ASCII (American Standard Code for Information Interchange) aos caracteres [D AT
A null] (ASCIITABLE, 2010). No momento em que o MATLAB envia comandos ao simulador,

a mesma estrutura é considerada na construgao das mensagens.

Logo apds o cabegalho, encontra-se o indice correspondente ao conjunto de dados
contido na mensagem. O mesmo possui comprimento de quatro bytes. Neste trabalho foi
escolhido inicialmente apenas um conjunto de variaveis: o de indice 17. Assim sendo, &

possivel observar logo apds o cabegalho o conjunto de bytes [0 0 0 17].

Por fim, os valores dos angulos 6, ¢ e y (variaveis relativas ao conjunto de indice 17,
discutido no paragrafo anterior) encontram-se ao fim da mensagem e sdo os dados que de
fato devem ser processados pelo algoritmo responsavel pelo controle da aeronave. Cada
pacote construido pelo X-Plane 11 pode conter até oito variaveis, sendo cada uma delas um
numero real do tipo float (single precision) composto por 4 bytes (32 bits). O primeiro bit indica
o sinal s do numero real representado, os proximos oito o expoente e, e os demais a mantissa
m. Para que os vetores de bytes recebidos possam ser convertidos em numeros reais, a
inversao destes se faz necessaria, ja que neste caso o computador utilizado implementa a

arquitetura de representagcéo de dados little endian.

Uma vez realizada a inverséo dos bytes, os mesmos devem ser convertidos em suas
correspondentes cadeias binarias que devem por fim ser concatenadas. Neste caso, como a
conversao se da a partir de vetores de 4 bytes, o valor binario gerado devera possuir, por fim,
32 bits e a partir deste devem ser obtidos a mantissa m,3_;,i = 1, ...23, 0 expoente e, e 0 bit
de sinal s (STALLINGS, 2003). Para calcular o numero real (ou single) correspondente aos
dados recebidos, converte-se o vetor de bits que compde o expoente em um numero decimal,
e10, € em seguida utilizam-se as Egs. (6.6) a (6.9) (LEWIS, 2009):

A= (-1)%, (6.6)
B=(1+3X3my;_;27), (6.7)
C = 200712 (6.8)
single = ABC. (6.9)

A converséo de um vetor de quatro bytes enviados no X-Plane em um nudmero real,
realizada a partir da aplicacéo das Egs. (6.6) a (6.9), € implementada no software MATLAB

por meio das fungdes a serem apresentadas nesta secao.
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Caso varios conjuntos de variaveis sejam selecionados pelo usuario, todos eles

deverédo estar contidos na mensagem encaminhada pelo X-Plane. Assim sendo, a estrutura

de um pacote que contenha mais de um conjunto de variaveis € mostrada a seguir.

Cabecalho: 5 bytes;

indice correspondente ao 1° conjunto de dados contido na mensagem: 4 bytes;
1° conjunto de dados da mensagem: 32 bytes (8 numeros do tipo float com 4
bytes cada);

indice correspondente ao 2° conjunto de dados contido na mensagem: 4 bytes;
2° conjunto de dados da mensagem: 32 bytes (8 numeros do tipo float com 4
bytes cada);

E assim sucessivamente ...

A medida em que os dados s&o gerados pelo simulador, é interessante que eles sejam

nao somente enviados via UDP, mas também salvos em um arquivo € mostrados na tela

durante a execucgéo do algoritmo aqui desenvolvido, de forma que seja possivel confirmar,

tanto em tempo real quanto apés o fim da simulagéo, que os dados recebidos pelo MATLAB

realmente estejam corretos. Para tal, marca-se na tabela presente na aba Data Output (no

menu de configuragdes do X-Plane 11) as caixas de selecdo Show in Cockpit, Disk (data.txt

File) e Network via UDP, Fig. 6.24. Desta forma, os dados da simulagéo serdo ndo somente

enviados através da rede, mas também mostrados durante a simulagdo no canto superior

esquerdo da tela, Fig. 6.25, e salvos no arquivo File.txt, presente na pasta principal do X-Plane

11.

Show in Cockpit Data Graph Window Disk (data.txt File) Network via UDP

Figura 6.24: Caixas de selecao da tabela presente na aba Data Output (IASBECK,

PEREIRA e SANCHES, 2020).
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Figura 6.25: Dados de voo no X-Plane 11 (IASBECK, PEREIRA e SANCHES, 2020).

Ainda na aba Data Output é determinada a taxa de envio de dados através da rede
UDP (numero de pacotes enviados pelo X-Plane 11 a cada segundo), em UDP Rate, a taxa
de escrita no arquivo File.txt (nUumero de escritas no arquivo realizadas a cada segundo), em
Disk Rate, e o IP do dispositivo para o qual o X-Plane enviara seus pacotes, em /P Address,
Fig. 6.26. Ressalta-se que a taxa de envio de dados através da rede UDP, utilizada na
simulagdo de forma equivalente a frequéncia de amostragem do sistema, deve ser

determinada com base nas caracteristicas dindmicas da aeronave em estudo.

OUTPUT RATES
Graph Rate EXD packets/sec

UDP Rate packets/sec

Disk Rate R vrites/sec

NETWORK CONFIGURATION

Send network data output

1P Address CT—

Port

Figura 6.26: Configuragdes da comunicagao (IASBECK, PEREIRA e SANCHES, 2020).

Para o IP de destino dos pacotes enviados pelo X-Plane 11, é escolhido o local host.
Este endereco representa o IP do dispositivo responsavel por remeter a mensagem, o que
significa que quando uma mensagem é enviada para ao local host, esta retorna ao dispositivo
que a enviou. Neste caso, o X-Plane envia uma mensagem ao local host, e a mesma retorna

para o computador em que ocorre a simulacdo. Uma vez que o MATLAB é executado
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juntamente ao X-Plane e na mesma maquina, essa € uma das formas de fazer com que as
mensagens enviadas pelo simulador cheguem até o MATLAB. O numero da porta para onde
as mensagens serdo direcionadas pode ser estabelecido de forma arbitraria, porém é
importante observar se nenhum outro software utiliza, durante a simulacdo, a porta
selecionada. Neste trabalho, o numero escolhido para a porta foi o 8888, e este parametro
deve ser levado em consideragao no desenvolvimento do codigo em MATLAB que devera

receber e tratar as mensagens.

Além de receber pacotes de dados do X-Plane 11, é possivel também enviar ao
simulador mensagens contendo comandos que possam alterar a deflexao das superficies de
comando da aeronave (ailerons, profundores e leme) ou a aceleragdo de seus motores. Desta
forma é possivel controlar o comportamento da aeronave por meio do envio de comandos
através da rede. Como o MATLAB e o X-Plane 11 sdo executados simultaneamente e no
mesmo computador, os pacotes que contém os comandos s&o enviados ao local host
(127.0.0.1), e a porta 49000 (utilizada por padrdo pelo simulador para o recebimento de
mensagens). Os pacotes enviados ao X-Plane devem possuir a mesma estrutura daqueles
remetidos por ele: um cabegalho de 5 bytes preenchido com os valores [68 65 84 65 0], em
seguida o indice correspondente ao comando a ser enviado, e por fim os oito valores do tipo

float devidamente representados como vetores de bytes.

Para enviar comandos ao simulador que ocasionem alteracbées na posicdo das
superficies de comando, o indice utilizado na construgdo do pacote encaminhado ao X-Plane
deve ser o 11, Fig. 6.23. Assim sendo, a mensagem final € composta por cinco bytes de
cabegalho, [69 65 94 65 0], quatro de indice, [0 0 0 11], e trinta e dois de dados (os quatro
primeiros referentes ao controle dos profundores, os quatro seguintes ao dos ailerons, e os
préximos quatro ao do leme). Neste caso ha apenas trés informagdes a serem enviadas,
sendo que o pacote encaminhado ao simulador deve conter oito valores float. Dessa forma,
para satisfazer a estrutura de pacotes imposta pelo X-Plane 11, aos demais dados € atribuido

o valor -999, ou mais precisamente, sua representagdo em bytes [0 192 121 196].

Os valores das variaveis referentes a deflexao das superficies de comando, presentes
no pacote de comandos enviado ao X-Plane, encontram-se sempre entre -1.0 e 1.0, visto que
o simulador apenas recebe, através da rede UDP, comandos normalizados. Estes extremos
representam as posicoes limite de cada uma das superficies de comando. Caso o simulador
receba uma mensagem contendo o valor referente a deflexdo do profundor igual a 1.0, por
exemplo, isso fara com que esta superficie de comando se incline para cima o maximo
possivel, enquanto que, sendo recebido o valor -1.0 nesta mesma variavel, ocorrera o oposto.

Entre -1.0 e 1.0, todos os valores reais podem ser utilizados. Cabe ressaltar que uma vez que



123

uma dada posicao tenha sido alcangada por alguma das superficies de comando, esta sera
mantida até que um novo comando seja enviado ao X-Plane, ou até que a comunicagéo seja

encerrada.

Durante a simulagéo, € possivel que o usuario manobre o aviao através de um joystick,
ou utilizando o proprio mouse do computador. No entanto, uma vez que a comunicagao tenha
sido estabelecida e o MATLAB passe a enviar comandos ao X-Plane, o controle manual ndo
podera mais ser utilizado. Para que o usuério possa controlar novamente a aeronave, o
programa desenvolvido no MATLAB deve enviar um pacote em que o valor -999 ¢é atribuido a
todo o conjunto de dados da mensagem, o que indica ao simulador que mais nenhuma

mensagem sera a ele encaminhada.

A Fig. 6.27 é um fluxograma que ilustra os processos envolvidos no software-in-the-

loop realizado entre o MATLAB e o X-Plane.

Inicio

's )
1. Estabelecimento da comunicagdo com o
X-Plane
. 7
s “

2. Recebimento e tratamento da mensagem

\ v

{ N
3. Calculo da atuacdo sobre as superficies de

comando — controlador neuro-fuzzy
\ > |

{ N\
4, Construgdo e envio das mensagens ao X-

Plane (atuacdo sobre as variaveis de saida)
\ J

Processo
finalizado ?

Sim

[ 5. Encerramento da Comunicagdo ]

Fim

Figura 6.27: Fluxograma — software-in-the-loop entre MATLAB e X-Plane (autoria propria).
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Os passos apresentados no fluxograma sao detalhados a seguir:

1. Estabelecimento da comunicag¢do com o X-Plane:

Para estabelecer a comunicacdo com o X-Plane 11, um socket UDP é criado e
configurado para encaminhar mensagens ao IP 127.0.0.1 e a porta 49000,
enquanto recebe mensagens na porta 8888. Depois de criado, o socket deve
ser inicializado, como mostrado na Fig. 6.28.

1 ; n ; =3 1LZaca a S CKel Ul

2 display('Iniciando comunicagao...');

3 sockUDP = udp('127.0.0.1"', ...
'RemotePort', 49000, 'LocalPort', ...
8888) ;

4 fopen (sockUDP) ;

5 display('Comunicagdo UDP 1inicializada.');

Figura 6.28: Inicializagdo da comunicagéo (IASBECK, PEREIRA e SANCHES, 2020).

2. Recebimento e tratamento da mensagem:

Para que as mensagens enviadas pelo X-Plane 11 sejam recebidas pelo
MATLAB, a leitura do socket UDP, inicializado no processo anterior, € realizada
como mostrado na Fig. 6.29. A fungéo getData(), Fig. 6.30, entdo extrai da
mensagem recebida os 4 bytes referentes ao dado desejado (por exemplo,
pitch, roll ou headings) e os repassa a fungéo bytes2single(), Fig. 6.31. Esta
fungdo, por sua vez, transforma os bytes a ela repassados em uma Unica
cadeia binaria através da aplicagdo da fungao data2bits(), Fig. 6.32, para que,
por fim, o nimero binario gerado seja entado repassado a fungao bits2single(),
Fig. 6.33, que converte este binario em um numero real do tipo float (single
precision) através da aplicagdo das Egs. (6.6) a (6.9). Assim que obtidos os
valores das variaveis de interesse, 0s mesmos s&o salvos em um arquivo para

analise posterior.

1 msgRecv = fread(sockUDP) ;
2 pitch = getData (msgRecv, 2);
3 roll = getData (msgRecv, 3);

Figura 6.29: Recebimento das mensagens advindas do simulador (IASBECK, PEREIRA e
SANCHES, 2020).
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function data = getData (msgRecv, dataNum)

firstIndex = 6 + 4% (dataNum-1);
lastIndex = firstIndex + 3;
dataBytes = ...
msgRecv (firstIndex:lastIndex);
data = bytesZsingle (dataBytes);
end

Figura 6.30: Fungéo que obtém os dados, referentes ao comportamento da aeronave,
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contidos nos pacotes enviados pelo simulador (IASBECK, PEREIRA e SANCHES, 2020).

function single = bytes2single (bytes)

bits = dataZbits (bytes);
single = bits2single (bits);

end

Figura 6.31: Fungao que converte um vetor de 4 bytes em um namero do tipo float — single

precision (IASBECK, PEREIRA e SANCHES, 2020).

1

&

6

function dataOut = data2bits(dataln)
dataIn = dec2bin(dataln,8);

dataOut = [dataIn (4, :)
dataIn(3,:) dataIn(2,:)
dataIn(l,:)];
end

Figura 6.32: Fungao responsavel pela conversao de um vetor de 4 bytes em uma cadeia

binaria formada pela concatenagdo dos numeros binarios gerados a partir de cada um dos

bytes (IASBECK, PEREIRA e SANCHES, 2020).
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1 function dataOut = bits2single (dataln)
2 bin = dataln;
3 signal = (-1)“bin2dec(bin(1));
4 e = bin2dec(bin(2:9));
5 fraction = 1;
6 = 1;
7 for i=10:32
8 fraction = fraction +
bin2dec (bin(i))*2"(-3);
9 j =3+ 1;
10 end
11
12 value = signalxfractionx2”(e-127);
13 dataOut = wvalue;
14 end

Figura 6.33: Fungao que converte um nuamero binario de 32 bits em um numero real do tipo
float — single precision (IASBECK, PEREIRA e SANCHES, 2020).

3. Calculo da atuagao sobre as superficies de comando — controlador neuro-

fuzzy

Apds o MATLAB ter acesso ao estado da aeronave, utiliza-se o controlador
neuro-fuzzy para calcular os valores das deflexdes das superficies de comando

e o nivel de propulsdo dos motores.

4. Construgcdo e envio das mensagens ao X-Plane (atuagdo sobre as

variaveis de saida)

A agao de controle obtida através do controlador neuro-fuzzy é enviada ao X-
Plane através de fungbes como a setElevator(...), Fig. 6.34, que recebe como
argumentos a nova deflexao que o profundor deve assumir, e o socket UDP
através do qual o pacote contendo esta agdo de controle deve ser enviado.
Dentro desta fungdo, um pacote de dados é construido por meio da fungao
msgBuilder(...), Fig. 6.35, que por sua vez recebe como entradas todos os oito
dados a serem enviados ao X-Plane, e o indice a eles correspondente, e
converte cada um destes valores reais em um conjunto de quatro bytes,
retornando o vetor de 32 bytes que compde a mensagem final. Neste exemplo,
como apenas a deflexdo do profundor é alterada, é atribuido o valor -999 a
todos os demais dados da mensagem. Por fim, o pacote de comando

construido é enviado ao X-Plane através do socket UDP. A fungéo responsavel
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por enviar ao X-Plane um valor normalizado correspondente, por exemplo, a

nova deflexdo dos ailerons,

setElevator...).

00 1 O LR W KN e

10
11
12

function setElevator (value, sendUDP)

end

if value > 1

value = 1;
end
if value < -1
value = -1;
end
msgSend =

msgBuilder (11,value,-999,-999, ...
-999,-999,-999,-999, ...

=999} ;
fwrite (sendUDP, msgSend);

segue a mesma estrutura da fungéo

Figura 6.34: Funcao responsavel por enviar ao X-Plane um pacote contendo um comando
que altera a deflexdo do profundor, em inglés, elevator (IASBECK, PEREIRA e SANCHES,

2020).

1

wowN
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10
11

12

function msg = msgBuilder (dataType,

end

datal, data2, data3, datad,

data5, data6, data7, data8)

headerData = [68 65 84 65 0];

msgData = [singleZ2bytes(datal)
single2bytes (data2)
single2bytes (data3)
single2bytes (datad)
single2bytes (data)b)
single2bytes (data6)
singleZ2bytes (data?7)
single2bytes (data8)];

msg = [headerData

int2bytes (dataType) msgData]l;

Figura 6.35: Fungao responsavel pela construgdo dos pacotes de comando enviados ao X-

Plane durante a simulagao (IASBECK, PEREIRA e SANCHES, 2020).
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Para que a comunicagao entre o MATLAB e o X-Plane 11 seja encerrada, Fig.

6.36, é enviado ao simulador um pacote de comandos formado integralmente

pelo valor -999. A fungéo leaveControl(...), Fig. 6.37, constroi este pacote e o

envia ao X-Plane, para que, em seguida, o socket utilizado no estabelecimento

da comunicagéo seja fechado.

fclose (sockUDP) ;
delete (sockUDP) ;
clear sockUDP;

U

leaveControl (sockUDP) ;
display('Encerrandc comunicagédo [

6 display('Comunicagao UL

: o I

Figura 6.36: Secao do cddigo que encerra a comunicacao entre o MATLAB e o X-Plane

11 (IASBECK, PEREIRA e SANCHES, 2020).

1 function leaveControl (sockUDP)

2 msgSend = msgBuilder (11, -999,
=099, =999, =999, =999, =899,
-999, =999)

3 fwrite (sockUDP, msgSend);

4 end

Figura 6.37: Fungéo que envia ao X-Plane 11 um pacote de comandos que informa ao

simulador que nenhuma outra mensagem sera remetida pelo MATLAB, e que a aeronave, a

partir de entéo, passara a responder apenas a intervengdes diretas do usuario (IASBECK,
PEREIRA e SANCHES, 2020).

Apds o desenvolvimento da interface de comunicacdo UDP, realiza-se a analise de

desempenho do controlador neuro-fuzzy, sintonizado na segéo anterior, em operagdes criticas

de voo através de uma simulagcdo do tipo software-in-the-loop envolvendo os softwares

MATLAB e X-Plane 11.
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Analise de Desempenho do Controlador em Operagoes Criticas de Voo

O relatério apresentado em IATA (2020) aponta que as condi¢gdes meteorologicas
criticas, o mau funcionamento da aeronave, e o mau funcionamento ou falha do sistema
propulsor estdo entre os principais fatores causadores da perda de controle da aeronave
durante o voo, com taxas de ocorréncia respectivamente iguais a 45, 35 e 20%, sendo que
em muitos dos casos ha a ocorréncia simultdnea de mais de um fator de risco. Dessa forma,
no intuito de verificar a eficacia da técnica desenvolvida no controle de aeronave em
operagoes criticas de voo, realizam-se cinco simula¢des do tipo software-in-the-loop entre o
MATLAB e o X-Plane 11, a fim de avaliar o desempenho do sistema neuro-fuzzy no controle
da aeronave Cessna 172: trés simulacdes avaliando cada uma das condicbes mencionadas
anteriormente de forma isolada; uma considerando apenas condigao inicial ndo nula; e uma

avaliando a ocorréncia simultanea de todas as condi¢des criticas citadas.

Na primeira simulagéo, Fig. 6.38, verifica-se a capacidade do sistema neuro-fuzzy de
estabilizar a aeronave submetida apenas a uma condig&o inicial de voo ndo nula. Nas Figs.
6.39 e 6.40 sado apresentados respectivamente os graficos dos angulos de arfagem 6 e

rolagem ¢ em fungéo do tempo t.

No grafico apresentado na Fig. 6.39, verifica-se que a simulagdo se inicia com 6 =
3,7°, atinge sobressinal equivalente a aproximadamente 1,85°, e no tempo t = 16 s ja ocorre
a acomodacgéao do angulo de arfagem da aeronave, que alcanga o valor de 0,015°. No grafico
apresentado na Fig. 6.40, verifica-se que a simulagdo se inicia com ¢ = 4,6°, atinge
sobressinal equivalente a aproximadamente 2,2°, e também no tempo t = 16 s ocorre a
acomodacgdo do angulo de rolagem, que alcanga o valor de 0,001°. A partir da analise
realizada, constata-se a eficacia do sistema neuro-fuzzy, com o método PIA de inferéncia
fuzzy, em levar o erro com relagéo aos sinais de referéncia set para praticamente zero nesta

condicdo de operacdo da aeronave.
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Figura 6.38: llustracdo da primeira simulagéo realizada no simulador de voo X-Plane 11

(autoria prépria).

0 5 10 15 20 25 30
t(s)

Figura 6.39: Angulo de arfagem da aeronave 6( °) em fungdo do tempo t(s) na primeira

simulagao (autoria propria).

(‘Uset,k

o (%)

t(s)

Figura 6.40: Angulo de rolagem da aeronave ¢( °) em fungéo do tempo t(s) na primeira

simulacgao (autoria prépria).
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Na segunda simulagao, verifica-se a capacidade do sistema neuro-fuzzy de estabilizar
a aeronave submetida a mau funcionamento da semiasa direita. Nas Figs. 6.41 e 6.42 sao
apresentados respectivamente os graficos dos angulos de arfagem 6 e rolagem ¢ em fungao

do tempo t.

No gréafico apresentado na Fig. 6.41, verifica-se que a simulagao se inicia com 6 =
—1,7°, atinge sobressinal equivalente a aproximadamente 0,75°, e no tempo t = 16 s ja ocorre
a acomodagdo do angulo de arfagem da aeronave, que alcanga o valor de —0,006°. No
grafico apresentado na Fig. 6.42, verifica-se que a simulagdo se inicia com ¢ = 7,7°, atinge
sobressinal equivalente a aproximadamente 4,4°, e no tempo t = 18 s ocorre a acomodagao
do angulo de rolagem, que alcanga o valor de —0,015°. Constata-se entdo a eficacia do
controlador neuro-fuzzy em levar o erro com relagdo aos sinais de referéncia set para zero
para essa condicdo de mau funcionamento da aeronave, somente, porém, com um pequeno
aumento do tempo de acomodagédo do angulo de rolagem comparativamente a simulagao

anterior.

— ]

set,k

05} Hk

-1.5

0 5 10 1‘5 2IG 25 3IG
t(s)
Figura 6.41: Angulo de arfagem da aeronave 6( °) em funcéo do tempo t(s) na segunda

simulagao (autoria propria).
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Figura 6.42: Angulo de rolagem da aeronave ¢( ) em fungéo do tempo t(s) na segunda

simulagao (autoria propria).

Na terceira simulagéo, analisa-se a eficacia do sistema neuro-fuzzy de controlar a
aeronave Cessna 172 submetida a perda total de poténcia do sistema propulsor. Nas Figs.
6.43 e 6.44 sdo apresentados novamente, respectivamente, os graficos dos angulos de
arfagem e rolagem em fung¢ao do tempo.

No grafico apresentado na Fig. 6.43, verifica-se que a simulagdo se inicia com 6 =
—7,6°, atinge sobressinal equivalente a aproximadamente 2,9°, e no tempo t = 16 s ja ocorre
a acomodacao do angulo de arfagem da aeronave, que alcanga o valor de —0,042°. No grafico
apresentado na Fig. 6.44, verifica-se que a simulagdo se inicia com ¢ = 6,5°, atinge
sobressinal equivalente a aproximadamente 2,3°, e também no tempo t = 16 s ocorre a
acomodacao do angulo de rolagem, que alcanga o valor de —0,005°. Embora seja verificada
mais uma vez a competéncia do controlador desenvolvido nessa tese em minimizar o erro
com relagdo aos sinais de referéncia, em funcdo da falha do sistema propulsor e da inevitavel
perda gradual de altitude da mesma, ha o surgimento de um pequeno erro em regime

permanente para o angulo de arfagem, mas que nao compromete o desempenho do sistema.
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Figura 6.43: Angulo de arfagem da aeronave 6( ®) em fung&o do tempo t(s) na terceira

simulagao (autoria propria).
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Figura 6.44: Angulo de rolagem da aeronave ¢( ) em fungéo do tempo t(s) na terceira

simulagao (autoria propria).

Na quarta simulacéo, Fig. 6.45, a capacidade do sistema neuro-fuzzy de controlar a
aeronave submetida a condi¢des climaticas severas (visibilidade inferior a 3 milhas, altura da
base das nuvens mais baixas inferior a 1000 pés acima do nivel do solo, forte precipitacao e
tempestade) é colocada a prova. Nas Figs. 6.46 e 6.47 sao apresentados respectivamente os

graficos dos angulos de arfagem e rolagem em fungéo do tempo.
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No grafico apresentado na Fig. 6.46, verifica-se que a simulagdo se inicia com 6 =
6,3°, e chega a alcancar até angulo de arfagem aproximadamente igual a 7,8°. No grafico
apresentado na Fig. 6.47, nota-se que a simulagao se inicia com ¢ = 2,0°, e chega a alcangar
até angulo de rolagem aproximadamente igual a —6,6°. As condigbes climaticas criticas de
fato impéem dificuldade para o sistema de controle da aeronave Cessna 172, porém é
possivel observar em ambos os graficos a tendéncia de oscilagdo do sistema em torno do

sinal de referéncia e também de reducéo da amplitude da resposta com o avango do tempo.

Figura 6.45: llustracao da quarta simulacao realizada no simulador de voo X-Plane 11

(autoria prépria).

0 I5 1IO 1I5 2I0 2I5 1;0
t(s)
Figura 6.46: Angulo de arfagem da aeronave 6( °) em fungédo do tempo t(s) na quarta

simulagao (autoria propria).
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Figura 6.47: Angulo de rolagem da aeronave ¢( ) em fungéo do tempo t(s) na quarta

simulacao (autoria prépria).

Por fim, na quinta simulacdo, submete-se a aeronave Cessna 172 a todas as
condicdes iniciais e perturba¢gdes mencionadas anteriormente e de forma simultdnea. Nas
Figs. 6.48 e 6.49 sdo apresentados novamente, respectivamente, os graficos dos angulos de
arfagem e rolagem em fungédo do tempo, mas neste momento com uma janela de tempo de

100 segundos.

No gréafico apresentado na Fig. 6.48, verifica-se que a simulagao se inicia com 6 =
—7,80°, e durante o processo alcanga angulo de arfagem aproximadamente igual a —7,75°.
Ja no grafico apresentado na Fig. 6.49, nota-se que a simulagdo se inicia com ¢ = —7,20°, e
durante o processo alcanga angulo de rolagem aproximadamente igual a 6,80°. Em fungéo
das condicOes climaticas severas, ha dificuldade por parte do sistema de controle de manter
o voo reto e nivelado, e a falha do sistema propulsor causa inevitavel perda gradual de altitude
da aeronave e o0 consequente surgimento de um desvio da média da resposta com relagao ao
sinal de referéncia para o angulo de arfagem. Apesar das condigbes criticas impostas e dos
seus efeitos sobre o desempenho do sistema controlado, o sistema neuro-fuzzy é capaz de
autonomamente manter a oscilagdo da aeronave, durante todo o tempo de simulagado, ao
redor do valor de referéncia para o angulo de rolagem ¢, e com um desvio de apenas —1°
para o angulo de arfagem 6 (valor aceitavel partindo do principio de que na simulagéo nao ha

geragao de poténcia por parte do motor).
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Figura 6.48: Angulo de arfagem da aeronave 6( ®) em fung&o do tempo t(s) na terceira

simulagao (autoria propria).
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Figura 6.49: Angulo de rolagem da aeronave ¢( ) em fungéo do tempo t(s) na terceira

simulacgao (autoria prépria).

A validagdo da arquitetura de controle e do método PIA de inferéncia fuzzy é
desenvolvida até o momento a partir de simulagdes considerando inicialmente o modelo
linearizado da aeronave Cessna 172, e em seguida a modelagem disponibilizada pelo
simulador de voo X-Plane. Na proxima se¢do, as técnicas propostas neste trabalho sao
validadas levando-se em consideragdo um modelo dinamico obtido a partir de dados
experimentais extraidos em ensaios de voo, 0s quais sdo realizados em uma aeronave

Cessna 172 em escala reduzida.
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6.4.Controle de Aeronave em Escala Reduzida

A validacao das técnicas desenvolvidas nesta tese também passa pela utilizagao de
dados experimentais, assim, constréi-se um protétipo de aeronave em escala reduzida e sdo
realizados ensaios de voo no intuito de se extrair dados a serem utilizados na modelagem do
VANT, e na posterior verificagdo, em simulagdo, da capacidade das técnicas de
satisfatoriamente controlar o sistema em estudo. Esse ultimo processo de validagao pode ser
subdividido em etapas, a saber: constru¢do de aeronave em escala reduzida, obtencido de

dados de voo, identificagdo do modelo da aeronave e validagdo da estratégia de controle.

Construcdo de Aeronave em Escala Reduzida

Aeronaves em escala reduzida possibilitam a validacdo das técnicas de controle de
forma experimental, e com baixo custo financeiro se comparados os ensaios aos testes em

aeronaves comerciais.

Utiliza-se nos ensaios experimentais uma aeronave Cessna 172 em escala reduzida
de 1:10, sendo composta pela fuselagem, trem de pouso e hélice do aeromodelo Cessna 172
Class 500, Fig. 6.50, desenvolvida pela empresa Art-tech; por um motor elétrico do tipo
brushless de 800 Kv (rpm/V); e por um controlador de voo (que substitui o original do
aeromodelo) denominado Pixhawk-PX4, o qual é um hardware de baixo custo, de projeto

aberto e desenvolvido pela comunidade académica, Fig. 6.51.

Figura 6.50: Fuselagem, trem de pouco e hélice do aeromodelo Cessna 172 Class 500
(adaptada de SANT'ANA, 2019).
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Figura 6.51: Controlador de voo Pixhawk e sua localizagao na aeronave (adaptada de
SANT'ANA, 2019).

Apos a construgdo da aeronave em escala reduzida, segue-se com o planejamento e
execucdo dos ensaios de voo, e consequentemente com a obtencdo dos dados

experimentais.

Obtengédo de Dados de Voo

O controlador de voo Pixhawk centraliza uma série de importantes fung¢des, a saber:

o Fornecer a atitude da aeronave por meio do acelerbmetro integrado a placa — para
tal, € fundamental que esta esteja situada proxima ao centro de gravidade da
aeronave, de onde parte o referencial baricéntrico do sistema;

e Receber os sinais dos sensores externos, como o moédulo de GPS e o tubo de
pitot, e também os comandos provindos do piloto do VANT;

o Filtrar os sinais através sobretudo do filtro de Kalman, cujos principais aspectos
sao descritos no Apéndice A deste trabalho;

e Processar os sinais filtrados, calcular o valor das saidas, e controlar o propulsor e
os servomotores que defletem as superficies de comando da aeronave;

o Armazenar os dados de voo em um cartdo de memoria SD inserido na placa.

Apds o ajuste do controlador de voo, e a verificagao de sua sintonia com o computador
localizado em solo e com controle remoto do piloto, inicia-se o plano de voo. O plano de voo
€ desenvolvido no software Ardupilot instalado no computador em solo, em que sao tragados
pontos de destino (trajetéria a ser seguida de maneira autbnoma pela aeronave), em
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sequéncia o piloto retoma o controle manual da aeronave, induz perturbagdes a mesma no
intuito de proporcionar dados de voo que propiciem a obtencdo de um modelo mais

representativo do comportamento dindmico da aeronave, e por fim pousa-se esta.

O ensaio de voo tem como localizagédo a entrada do Campus Gléria da Universidade
Federal de Uberlandia e possui tempo total de duragcdo de 10 minutos. O plano de voo é
executado de forma satisfatéria e os dados sdo armazenados em cartdo SD para que
posteriormente sejam utilizados na identificagdo do modelo da aeronave. O software Ardupilot,
em que é inserido o plano de voo do aeromodelo, e a foto da aeronave pronta para voo no

Campus Gloria sdo apresentados na Fig. 6.52.

0,00 0,00

Figura 6.52: Software Arduplane e aeronave Cessna 172 em escala reduzida pronta para
voo (adaptada de SANT’ANA, 2019).

Identificagdo do Modelo da Aeronave

O processo de identificacdo do modelo dindmico da aeronave se inicia com a avaliagao
dos dados obtidos em voo e armazenados no cartdo de memoria SD. Em fung&o do alto grau
de complexidade do processo de identificacdo do modelo completo da aeronave, e sobretudo
em funcdo do alto nivel de ruido a que os dados extraidos estdo submetidos (devido a
turbuléncia gerada pela hélice, a vibragao do motor, a baixa inércia da aeronave e a propria
imprecisdo intrinseca dos sensores), opta-se por identificar um modelo do tipo SISO (Single
Input Single Output) que relaciona a deflexdo do profundor §E ao angulo de arfagem 6 do
Cessna 172 em escala reduzida. Nas Figs. 6.53(a) e 6.53(b) sdo apresentados os graficos da
deflexao do profundor e do angulo de arfagem obtidos durante os 600 segundos de ensaio de

VOO, respectivamente.



140

0()

0 100 200 300 400 500 600 0 100 200 300 400 500 600
t(s) t(s)

(a) E em fungao do tempo t(s). (b) 8 em fungéo do tempo t(s).

Figura 6.53: Dados extraidos em voo (autoria proépria).

Para a obtencdo de um modelo dindmico representativo do sistema aeronautico,
tomam-se duas amostras de 20 segundos cada, uma para a identificagdo e outra para a
validagao da estrutura matematica resultante, as quais sao contidas no conjunto de dados
ilustrados na Fig. 6.53. As amostras de identificacdo e de validagdo sdo apresentadas

respectivamente nas Figs. 6.54 e 6.55.

o)

0 5 10 15 20 0 5 10 15 20
t(s) t(s)

(a) 6E em fungao do tempo t(s). (b) 8 em fungéo do tempo t(s).

Figura 6.54: Amostra de identificacdo do modelo dindmico (autoria prépria).
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(a) 6E em fungao do tempo t(s). (b) 8 em fungéo do tempo t(s).

Figura 6.55: Amostra de validagao do modelo dindmico (autoria prépria).

Utiliza-se para a determinagcdo do modelo do sistema a evolugéo diferencial como
método de otimizagao, cujos parametros sdo os mesmos apresentados na Tab. 6.9. A técnica
busca minimizar o erro absoluto médio MAE (Mean Absolute Error) da resposta do modelo
com relagdo aos dados experimentais da amostra de identificacdo. Adota-se, de forma
intuitiva e por meio de tentativa e erro, um modelo em transformada z com 3 pdlos e 2 zeros,
e levando-se em consideragdo o tempo minimo de amostragem da plataforma Pixhawk de
0,032s. A Eq. (6.10) € o modelo matematico alcangado nesse processo de otimizagéo,
ressaltando-se que foram obtidas as taxas de ajuste aos dados experimentais das amostras
de identificagao, Fig. 6.56(a), e de validagao, Fig. 6.56(b), iguais respectivamente a 92,3% e
90,3%:

(z—0,98)(z+0,94)

G(z) =082 (2-0,99)(22+0,382+0,69)"

(6.10)

—— Amostra - Identificagdo —— Amostra - Validagdo
Modelo

Modelo

0 5 10 15 20 0 5 10 15 20
t(s) t(s)

(a) Amostra de identificagdo. (b) Amostra de validacgéo.

Figura 6.56: Ajuste do modelo dindmico as amostras selecionadas (autoria propria).
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Apods o processo de identificagcdo do modelo dinAmico da aeronave Cessna 172 em
escala reduzida, a seguir € apresentada mais uma aplicagdo e validagdo da estratégia de

controle desenvolvida nesta tese.

Validagao da Estratégia de Controle

A arquitetura de controle utilizada no controle do aeromodelo é basicamente a
apresentada na Fig. 6.1, porém simplificada de modo a se ajustar a um sistema do tipo SISO.
Aplicam-se, de forma semelhante a aeronave em escala real, imposi¢cdes ao processo,

conforme a Eq. (6.11):

Oseck =0,0<t<30s
0,(t=0)=10° (6.11)
0, (t = 155) = —10°,

de modo a viabilizar a otimizagao dos parametros do SBRF e consequentemente a definigdo

de suas funcgbes de pertinéncia.

O desempenho do sistema aeronautico e as agbes de controle geradas pela técnica
proposta nesta tese sdo apresentados respectivamente nas Figs. 6.57(a) e 6.57(b). Pode-se
notar na Fig. 6.57(a) que, partindo da condi¢ido inicial 6,(t = 0) = 10°, rapidamente a
aeronave € capaz de buscar o valor de referéncia 6., = 0, entrando em regime permanente
apos um intervalo de tempo de 2,5 s, sendo que 0 mesmo ocorre apos a imposi¢ao do angulo
de arfagem 6, (t =15s) = —10°. Na Fig. 6.57(b), verifica-se que ocorre a deflexdo do
profundor nos instantes em que o angulo de arfagem é diferente do valor de referéncia,
havendo picos de deflexdo de 8,5° e —8,5° nos instantes t = 0 e t = 15 s, respectivamente,

seguidos de progressiva redugao até o angulo de arfagem atingir valor nulo.
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(a) & em fungéo do tempo t(s). (b) 6E em funcgédo do tempo t(s).

Figura 6.57: Resultados obtidos a partir do controlador neuro-fuzzy que langa mao do

método PIA de inferéncia fuzzy (autoria propria).

No intuito de propiciar uma analise mais apurada dos resultados obtidos com o método
PIA de inferéncia fuzzy, apresentam-se na Fig. 6.58 os graficos do desempenho dos
controladores PID, e neuro-fuzzy com o método de inferéncia de Takagi-Sugeno de ordem 0
(TS), assim como os graficos dos sinais de referéncia set no tempo discreto k, e o decaimento

requerido para a resposta.

D ——r
set,k
- = +Decaimento
¢ - PIA
: O - TS
3 3 ¢, - PID
° l(:) k
5+
-10
-15 g : : : ; :
0 5 10 15 20 25 30

t(s)

Figura 6.58: Analise comparativa das técnicas de controle (autoria propria).
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A partir da Fig. 6.58, é possivel verificar a capacidade de todas as técnicas de controlar
efetivamente o angulo de arfagem da aeronave Cessna 172 em escala reduzida, porém tendo
o controlador que utiliza o método PIA, nesta analise comparativa de desempenho, uma
pequena vantagem diante dos demais, no que diz respeito a proximidade da resposta obtida
com relagao ao sinal de decaimento desejado. Essa vantagem também se repete na analise
do erro absoluto médio (MAE) da resposta do sistema controlado, com relagdo ao decaimento
de referéncia, para cada uma das metodologias testadas: 0,0134 utilizando o sistema neuro-
fuzzy com o método PIA; 0,0135 utilizando o sistema neuro-fuzzy com o método de TS; e
0,0159 utilizando o controlador PID. Os resultados obtidos nessa andlise final ratificam a

eficacia do método PIA também como estrutura matematica de um sistema de controle.
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CAPITULO VII

CONCLUSOES

O trabalho apresenta a aplicacdo de sistemas neuro-fuzzy no controle de aeronaves
em operacoes criticas, com énfase no desenvolvimento de um novo método de inferéncia
fuzzy denominado PIA (Pondered Individual Analysis). Na intencao de facilitar a exposicao
dos principais pontos relativos as conclusoes, perspectivas e resultados académicos da tese,
este capitulo é dividido em 3 segdes, a saber: principais conclusdes, perspectivas e trabalhos

futuros, e principais publicagdes.

7.1.Principais Conclusodes

Em linhas gerais, o método de inferéncia fuzzy PIA alia baixo custo computacional,
intuitividade, consisténcia da resposta com ele obtida com relagédo a base de regras construida
a priori, e superficies de resposta suaves, sendo dessa forma uma técnica potencialmente

indicada tanto para a modelagem, quanto para o controle de processos.

No primeiro teste de validagdo do novo método de inferéncia fuzzy, busca-se modelar
os coeficientes de sustentagéo C; e arrasto €, em fungdo do angulo de ataque « e da deflexao
do profundor §e de uma aeronave Cessna 172. Em uma andlise qualitativa da superficie de

resposta resultante do modelo utilizando os métodos de inferéncia fuzzy PIA, Mamdani e
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Takagi-Sugeno, a nova técnica é a que obtém superficies de resposta mais suaves e
compativeis com a base de regras construida a priori. Os resultados satisfatérios se repetem
na analise quantitativa, haja vista que o método PIA, no ajuste a dados numérico-
experimentais extraidos no simulador de voo X-Plane 11, garante o menor desvio aos dados
com relagdo aos demais métodos, e com baixo custo computacional ja que dispensa, no

processo de defuzzificagédo, o uso de ferramentas de integragao.

O segundo processo de validagao conta com uma arquitetura de controle neuro-fuzzy
inovadora, que também langa mao do método PIA de inferéncia fuzzy, que se propde a
controlar a velocidade, o dngulo de arfagem, a altitude, o &ngulo de rolagem e o angulo de
guinada de uma aeronave Cessna 172. Através das simulagdes realizadas, € possivel concluir
que essa arquitetura de controle apresenta o melhor desempenho geral dentre as
metodologias testadas, tendo obtido resultados superiores com relagéo aos controladores PID
e neuro-fuzzy que utiliza o método de inferéncia fuzzy de Takagi-Sugeno em 3 das 5 variaveis
de saida do sistema. Esse resultado indica o desempenho computacional e generalidade do
meétodo PIA, que mostra-se também eficaz como estrutura matematica de um sistema de

controle.

Operagdes criticas de voo que d&o origem a acidentes aéreos da categoria LOC-I
(Loss of Control In-Flight), como condi¢des meteoroldgicas criticas, mau funcionamento da
aeronave, e o mau funcionamento ou falha do sistema propulsor, foram causa de
aproximadamente 70% de todas as fatalidades ocorridas em aeronaves com massa de
decolagem superior a 5.700 kg entre 2015 e 2019, assim, devido a relevancia do tema, sao
utilizadas como objeto de estudo da terceira etapa de validagao do novo método de inferéncia
fuzzy, na intengdo de também provocar a comunidade cientifica a buscar novos olhares no
que diz respeito a utilizagcdo de técnicas da inteligéncia computacional no controle de
aeronaves. Durante as simulagdes do tipo software-in-the-loop realizadas entre o MATLAB e
o simulador de voo X-Plane, a capacidade da arquitetura de controle desenvolvida de
controlar a aeronave submetida a condi¢oes severas é colocada a prova. As condigdes criticas
de fato impdem dificuldade para o sistema de controle que langa mao do método PIA, porém
€ possivel observar, em praticamente todas as simulagdes, a tendéncia de oscilagdo do
sistema em torno do sinal de referéncia e também de reduc¢ao da amplitude da resposta com

0 avanco do tempo.

Por fim, a Ultima anélise se da a partir de um modelo dindmico obtido a partir de dados
experimentais extraidos em ensaios de voo, os quais sao realizados em uma aeronave
Cessna 172 em escala reduzida. Os resultados, quando comparados novamente aos obtidos

com os controladores PID e neuro-fuzzy que utiliza o método de inferéncia fuzzy de Takagi-
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Sugeno, indicam menor erro médio quadratico com relagdo ao comportamento (decaimento)
desejado para a aeronave, e dessa forma confirmam a eficacia da nova estrutura matematica

aplicada a area de controle.

7.2.Perspectivas e Trabalhos Futuros

O trabalho desenvolvido nesta tese serve potencialmente de suporte para uma série
de estudos diretamente relacionados ao escopo desta pesquisa, ou até mesmo para outras
areas do conhecimento, assim, pode-se dividir as perspectivas e trabalhos futuros em dois
grupos: continuidade das atividades, e perspectivas de aplicagdo do método de inferéncia
fuzzy PIA.

Continuidade das Atividades

Diante do rigor necessario para a validagdo de uma arquitetura de controle a ser
aplicada em um sistema aeronautico, o seu teste em uma aeronave em escala reduzida pode
ser mais um passo para viabilizar a realizacdo de ensaios em aeronaves comerciais. A
implementagao da arquitetura de controle ja se encontra em curso, esta sendo desenvolvida
em linguagem C++, e terd como hardware de execugao de suas rotinas a prépria plataforma
Pixhawk.

O fenbmeno do estol (perda abrupta de sustentag¢édo da aeronave durante o voo) € um
potencial causador de perda de controle da aeronave durante o voo, porém, em funcéo da
alta complexidade matematica envolvida e dos altos custos relacionados aos ensaios de voo,
apenas nos Ultimos anos ganha efetivo espago nos trabalhos que envolvem o controle de
aeronaves. Em fungdo da viabilidade tecnolégica dos novos controladores e sistemas
computacionais, busca-se estudar a aplicagdo da arquitetura de controle desenvolvida

também na mitigagédo dos efeitos do estol.

Por fim, dentro dos aspectos de continuidade das atividades desenvolvidas na tese,
pretende-se realizar uma analise técnica do comportamento (decaimento) da aeronave em
funcgao de suas dimensdes e das condigdes de operagao, e também desenvolver uma anélise

de computabilidade do novo método de inferéncia fuzzy no intuito de tornar as comparacées,
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quanto ao tempo de execugao dos métodos de inferéncia, independentes da maquina em que

se realizam os testes.

Perspectivas de aplicagao do método de inferéncia fuzzy PIA

O método PIA, assim como os demais métodos de inferéncia fuzzy, é caracterizado
pela generalidade, assim, prospecta-se que o mesmo seja utilizado em uma série de

aplicagbes, algumas das quais expostas a seguir:

¢ Inclusdo do método em toolboxes comumente utilizadas quando da utilizagao
da teoria dos conjuntos fuzzy, de modo a popularizar e difundir o método na
comunidade cientifica;

e Utilizacdo na modelagem e predi¢cdo do mercado de criptomoedas;

e Aplicacdo do método na biomatematica, area em que a teoria dos conjuntos
fuzzy € amplamente utilizada;

¢ Realizagdo de comparagdes diversas entre o desempenho do método PIA e

dos demais métodos de inferéncia fuzzy.

7.3.Principais Publicagoes

As principais publicacdes produzidas durante o periodo do doutorado sao
mencionadas a seguir e divididas em trés categorias: trabalhos apresentados em congressos,

trabalhos publicados como capitulos de livro e trabalhos em periddicos.

Trabalhos Apresentados em Congressos

IASBECK, A.H., PEREIRA, B.L & SANCHES, L. UDP Communication Between MATLAB and
X-Plane 11. Anais do XXIIl Encontro Nacional de Modelagem Computacional (ENMC),
Palmas, 2020.

BERNARDES, R., PEREIRA, B.L., MACHINI, F.M.M. & FINZI, R.M. Neuro-Fuzzy Systems
Applied on a Fixed-Wing Aircraft Control. International Congress of Mechanical
Engineering (COBEM), Uberlandia, 2019.
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SANT'ANA, V., MACHINI, F.M.M., PEREIRA, B.L. & FINZI, R.M. Multi-Copter Forces and
Moments Coefficients Estimation Using Neuro-Fuzzy. International Congress of Mechanical
Engineering (COBEM), Uberlandia, 2019.

CARVALHO, F.C., OLIVEIRA, M.V.F., PEREIRA, B.L., CAVALINI JR, A.A. & STEFFEN JR,
V. Systematic Approach to the Design of Robust Controllers Applied to Supercritical Rotors
Supported by Magnetic Bearings. Proceedings of International Conference on Structural
Engineering Dynamics (ICEDyn), Viana do Castelo, Portugal, 2019.

CARVALHO, F. C., OLIVEIRA, M. V. F., PEREIRA, B. L., CAVALINI JR, A. A. & STEFFEN
JR, V. Modeling and Characterization of a Flexible Rotor Supported by Active Magnetic
Bearings Using Model Reduction Techniques. Proceedings of XVIII International
Symposium on Dynamic Problems of Mechanics (DINAME), Buzios, 2019.

PEREIRA, B. L., LIMA, L., SILVA, G. D. & SANCHES, L. Aplicacédo da Evolugao Diferencial
na ldentificacdo dos Parametros do Modelo de um Veiculo de Duas Rodas do Tipo Péndulo
Invertido com Zona Morta. Congresso Nacional de Engenharia Mecanica (CONEM),
Salvador, 2018.

SILVA, G.D., PEREIRA, B.L.,, SOUSA, A.R.,, SANCHES, L., TAVARES, JJ.P.ZS.,
MUROFUSHI, R. H. & CARDOSO, R.N. Nonlinear Modeling, Simulation and Control of a Two-
Wheeled Inverted Pendulum. International Congress of Mechanical Engineering
(COBEM), Curitiba, 2017.

PEREIRA, B.L., SANCHES, L. & TAVARES, J.J.P.Z.S. Neuro-Fuzzy Control and Differential
Evolution in the Compensation of the Actuators’ Dead Zone of a Two-Wheeled Vehicle.
International Congress of Mechanical Engineering (COBEM), Curitiba, 2017.

Trabalhos Publicados como Capitulos de Livro

SANT'ANA, V.T., PEREIRA, B.L., MORAIS, T. & FINZI, R.M. Aplicacao de Sistemas Neuro-
Fuzzy na Predigdo do Coeficiente de sustentagao do Aerofdlio NACA 1412. Impactos das

Tecnologias na Engenharia Mecéanica 2. Ponta Grossa: Atena, 2019. p. 190-194.

MARCOS, W. P., MUROFUSHI, R.H. & PEREIRA, B. L. Identificagdo Experimental e Projeto
de um PID para um Servomecanismo. Impactos das Tecnologias na Engenharia Mecanica
2. Ponta Grossa: Atena, 2019. p. 83-97.
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Trabalhos em Periédicos

JAFELICE, R.M., PEREIRA, B.L., BERTONE, AM.A & BARROS, L.C. An Epidemiological
Model for HIV Infection in a Population Using Type-2 Fuzzy Sets and Cellular Automaton.
Computational & Applied Mathematics, 2019. 38: 141. https://doi.org/10.1007/s40314-019-
0867-8.

PEREIRA, B. L., DINIZ, G., SANCHES, L. & TAVARES, J.J.P.Z.S. Online Modified Differential
Evolution Method: Static Stability Control of Two-Wheeled Inverted Pendulum Vehicle Case
Study. Brazilian Journal of Development. (Artigo Aceito).

PEREIRA, B. L., SANT'ANA, V.T., JAFELICE, R.S.M. & FINZI, R.M. Pondered Individual
Analysis: a New Fuzzy Inference Method - Application in Aerodynamic Modeling. Neural

Computing and Applications. (Artigo Submetido).

PEREIRA, B. L., JAFELICE, R.S.M. & FINZI, R.M. An Approach of Pondered Individual
Analysis Method in Aircraft Control. Journal of the Brazilian Society of Mechanical

Sciences and Engineering. (Artigo Submetido).
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APENDICE

A)Filtro de Kalman

O filtro de Kalman foi desenvolvido no ano de 1960 e até hoje é o método estocastico
mais utilizado na filtragem de sinais. Ele se baseia em um conjunto de equagdes matematicas
que constitui um processo recursivo eficiente de estimagao, uma vez que o erro quadratico é
minimizado. Através da observacado da variavel denominada variavel de observagao, outra

variavel (nao observavel) denominada variavel de estado pode ser estimada eficientemente.

Para o estudo do filtro de Kalman, utiliza-se a referéncia (Brown e Hwang, 2012), e

alguns conceitos referentes ao tema s&o apresentados a seguir.
¢ Variavel de Estado (x):

o Variavel relacionada a dinamica de um sistema, baseada em um modelo matematico.
Relacionada também a predi¢cao de dados futuros.

o O valor de x na iteragédo posterior € o valor na iteragao atual com uma corregéo ¢, e
corrompido por um sinal w;, de natureza aleatdria (sequéncia branca) e com variancia
Q, Eq. (A.1):

X1 = PreXi + Wi (A1)

e Variavel de Observagao (z):

o Variavel relacionada a aquisi¢cdo de dados de um sensor;
o O valor obtido pelo sensor no tempo k é o valor da variavel de estado com uma corregéo
H;, e somado com ruido branco v, com variancia R, Eq. (A.2):
Zx = Hpxp + vy, (A.2)

¢ Propagacao:

o E a predigéo do valor das variaveis em iteracdes seguintes baseada nos valores atuais

destas e no modelo matematico do sistema.
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o Atualizagao:

o E a correcdo da predicao utilizando os novos dados coletados pelos sensores.

¢ Variancia do Erro (P):

o O erro de estimacao do filtro de Kalman em uma iteragao k é definido como sendo a
diferenga entre o valor da variavel de estado obtido pelo modelo (x;) e o valor estimado
pelo filtro (x).

o Como o valor do erro flutua em torno de zero durante a execucéo do filtro (e portanto,
tem média nula), a variancia do erro é equivalente ao seu erro quadratico. Dessa forma,
para se obter as equagdes do filtro de Kalman, é calculada a derivada de P em relagao
a K(ganho do filtro) e igualada a zero, de modo a minimizar de forma 6tima o valor do
erro quadratico.

No topico a seguir sdo indicadas as matrizes e vetores que expandem os conceitos
acima para problemas em que ha mais de uma variavel de estado. Além disso, séo

apresentadas as equacoes do filtro de Kalman.

A.1 Expansédo do Método para Problemas com Mais de Uma Variavel de Estado

e Equacgoes do Filtro de Kalman

Seguem as matrizes e vetores utilizados nas equagdes do filtro de Kalman:

e x, (nx1): Vetor de estados do processo no tempo ty;

o ¢, (nxn): Matriz de transi¢cao de estados, relacionando x;, com x;.4;

o w; (nx1): Vetor cujos elementos sdo sequéncias brancas e com matriz de covariancia
conhecida; Resposta em t;,; devido a presenga de ruido branco na entrada do sistema no
intervalo (ti, tx+1);

o 7, (mx1): Vetor de observagdes no tempo ty;

e H; (mxn): Matriz que relaciona x; com z;

o v, (mx1): Vetor cujos elementos sdo sequéncias brancas € com matriz de covariancia
conhecida, sendo que cada elemento esta relacionado a uma das variaveis de observacao.
Para obter as equacgdes do filtro, adota-se que a correlacéo entre v, e w;, € nula;

e P, (nxn): Matriz de covariancia do erro;

e Qy (nxn): Matriz de covariancia de wy, Q = E[wy, wi];

e Ry (mxm): Matriz de covariancia de v, Ry, = E[vy, v |;
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¢ K (nxm): Ganho do filtro de Kalman;

e [ (nxn): Matriz Identidade.

A seguir sao apresentadas as equagdes do filtro de Kalman. Os valores a priori (-) séo
aqueles que ainda nao passaram pelas equagdes de atualizacdo de sua iteragéo

correspondente, ja os valores a posteriori (+) s&o aqueles que ja passaram por esse processo:
o Equacgodes de Atualizagao:

o Ganho do Filtro de Kalman:

Ki = PrHE (HoPeHE + Ry) (A.3)
o Atualizagéo do Estado:

RF = R + K[z — HiZi - (A.4)
o Atualizacdo da Matriz de Covariancia do Erro:

P = (I — Ky Hy)Py, . (A.5)

o Equagodes de Propagacgao:

o Propagacéo do Estado:

Bir1 = Prki- (A.6)
o Propagagéo da Matriz de Covariancia do Erro:
Pir1 = OrPi ok + Qr (A7)

Apods terem sido apresentadas as equacgdes do filtro de Kalman, no préximo tdpico é

abordado como se determinar os parametros deste.

A.2 Determinagao dos Parametros do Filtro de kalman

Durante o projeto do filtro de Kalman, é desejavel ter a representagdo do processo

escrita na forma vetorial. A partir do processo em estudo, é possivel reescrevé-lo da forma:
x = Fx + Gu, (A.8)

em que x é o vetor de estados do processo, x € sua derivada e u é o vetor de perturbacao do
sistema, que devido a critérios matematicos do filtro de Kalman, corresponde a uma entrada

de ruido branco unitario.

Alguns dos parédmetros do filtro sdo determinados de forma mais direta, como o valor
da matriz Hy, que relaciona as variaveis de observagéo e os elementos correspondentes do

vetor de estados x; e os valores dos elementos da matriz R;,, que quando é assumido que os
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dados provenientes de cada um dos sensores utilizados ndo s&o correlacionados, séo

determinados pelo célculo da variancia dos dados obtidos por cada um destes.

Por outro lado, o céalculo das matrizes ¢, e Q, depende do modelo do sistema, e

tornam-se de dificil obtengdo quando os elementos das matrizes F e G nao séo constantes.

A seguir sdo apresentados o método analitico e métodos numéricos (relativamente
simples e eficazes, mas restritos ao caso de os elementos de F e G serem constantes) para

se obter esses parametros:

A.2.1 Método Analitico

Obtencgao de ¢;:

E possivel obter o valor de ¢ através da equagéo (A.9), sendo L~ o operador relativo a

inversa da transformada de Laplace, e At a taxa de amostragem do sistema:

br = (LT = F)™e=ar- (A.9)

Obtencgao de Q:

Baseando-se no modelo matematico do sistema — Eq. (A.8), a Eq. (A.1) também pode ser

escrita na forma:

t
X(tr+1) = Pt t)x(tr) + ft:ﬂ ¢ (tr+1, DG (Du(r)dr. (A.10)
Desse modo, conforme pode ser verificado abaixo, é possivel obter a matriz Q,:

Qr = E[WkrWI:L
0 = B { [ 9(tisn, GOUOE [ 6 Gurn G utman | |

Qu = [ [ B (tesr, )G E[u(@uT MIGT DT (b1, m)dEd. (A.11)

tk tk
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A.2.2 Método Numeérico

Obtengao de ¢:

Para se obter o valor de ¢, pode-se partir da Eq. (A.8) e imporu = 0 a fim de que a equagao
descreva a dindmica natural do sistema. Assim, temos:
X = Fx. (A.12)

Verifica-se que a resolucao desta equacgao pode ser escrita da forma:

x(t2) _ — LF(t—ty)
O Pty ty) = ez, (A13)

A partir da Eq. (A.13), pode-se concluir que:

i = et = AL, (A.14)

Xk

A exponencial matricial que aparece na equagéao anterior pode ser resolvida pelo comando

do MATLAB expm(FAt), que a expande em série — Eq. (A.15) - e a trunca.

(FAt)?
2!

efAt =1 + FAt + + e (A.15)

Obtencgéao de Q:

o Primeiramente, forme uma matriz 2nx2n que se chama A (n € o numero de elementos

do vetor de estados x).

[—F GGT]
A= At. A.16
| O FT ( )
o Faca € e chame de B.
I -1
B = i TQ" . (A.17)
[0 ¢

o Faga a transposigao da parte inferior direita para verificar o valor de ¢y,.
o Finalmente, Q, € obtido através da parte superior direita de B, como segue:
Qi = ¢r x (Parte superior direita de B). (A.18)



