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Resumo

A classiĄcação de imagens histológicas é uma tarefa que tem sido amplamente explo-

rada nas recentes pesquisas de visão computacional. A abordagem mais estudada para

esta tarefa tem sido a aplicação de aprendizado profundo por meio de modelos de CNN.

Entretanto, o uso de CNN no contexto da classiĄcação de imagens histológicas tem ainda

algumas limitações, como a necessidade de grandes conjuntos de dados e a diĄculdade

de implementar um modelo generalizado capaz de classiĄcar diferentes tipos de tecido

histológico. Neste trabalho, propõe-se um modelo de comitê de classiĄcadores baseado

em atributos fractais e aprendizado profundo que consiste em combinar a classiĄcação

de duas CNN e a classiĄcação de atributos manuais locais e globais aplicando a regra da

soma. A extração das características é aplicada para obter 300 atributos fractais de difer-

entes conjuntos de dados histológicos. Estes atributos são reorganizados em uma matriz

a Ąm de compor uma imagem RGB. São avaliados quatro procedimentos diferentes para

efetuar esta reorganização, que geram modelos de representação dos atributos fractais

que são dados como entrada para uma primeira CNN. Outra CNN recebe como entrada

a imagem original correspondente. Depois de combinar os resultados de ambas as CNN

com a classiĄcação dos atributos manuais utilizando abordagens clássicas de aprendizado

de máquina, foram obtidas acurácias que variam de 88,45% a 99,77% em cinco conjuntos

de dados diferentes. Além disso, o modelo foi capaz de classiĄcar imagens de conjuntos

de dados com classes desbalanceadas, sem a necessidade de imagens possuírem a mesma

resolução, e com um treinamento de 10 épocas. Também foi veriĄcado que os resulta-

dos obtidos são complementares aos estudos mais relevantes publicados recentemente no

contexto da classiĄcação de imagens histológicas.

Palavras-chave: aprendizado profundo; atributos fractais; comitê de classiĄcadores;

imagens histológicas.
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Abstract

ClassiĄcation of histology images is a task that has been widely explored on recent

computer vision researches. The most studied approach for this task has been the appli-

cation of deep learning through CNN models. However, the use of CNN in the context

of histological images classiĄcation has yet some limitations such as the need of large

datasets and the difficulty to implement a generalized model able to classify different

types of histology tissue. In this project, an ensemble model based on handcrafted fractal

features and deep learning that consists on combining the classiĄcation of two CNN and

the classiĄcation of local and global handcrafted features by applying the sum rule is

proposed. Feature extraction is applied to obtain 300 fractal features from different histo-

logical datasets. These features are reshaped into a matrix in order to compose an RGB

feature image. Four different reshaping procedures are evaluated, wherein each generates

a representation model of fractal features which is given as input to a CNN. Another CNN

receives as input the correspondent original image. After combining the results of both

CNN with the classiĄcation of the handcrafted features using classical machine learing ap-

proaches, accuracies that range from 88.45% up to 99.77% on Ąve different datasets were

obtained. Moreover, the model was able to classify images from datasets with imbalanced

classes, without the need of images having the same resolution, and using 10 epochs for

training. It was also veriĄed that the obtained results are complementary to the most

relevant studies recently published in the context of histology image classiĄcation.

Keywords: deep learning; fractal features; classiĄcation ensemble; histology images.
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Chapter 1

Introduction

Histopathology comprises the study of diseases affecting biological tissues, through

the analysis of cell samples. The analysis is performed by a specialist, via a microscope,

where tissues stained with speciĄc materials, for example Hematoxylin and eosin (H&E),

are observed. The analysis process can be summarised as a detailed visual assessment

aimed at counting and checking the shape of cells (BENTAIEB; HAMARNEH, 2018).

Furthermore, to ensure greater accuracy in diagnosis, techniques such as double reading,

in which two specialists analyse tissue samples independently, increase the cost of the

procedure (BENVENISTE; FERREIRA; AGUILLAR, 2006). This task is complex, can

demand a high time consumption and the diagnosis can be highly dependent on the level

of experience of the specialist (DOBBS et al., 2015; MUELLER et al., 2016). In this

context, the use of a Computer aided diagnosis (CAD) system can support and automate

some of these tasks, assisting the professionals involved in the decision-making process.

A CAD system can be divided into steps, from image acquisition, through prepro-

cessing, segmentation, feature extraction and classiĄcation (JOTHI; RAJAM, 2017). Ac-

cording to the authors in (FUKUMA et al., 2016), a CAD system for tumour detection

requires an effective feature extraction method and, consequently, a classiĄer capable of

distinguishing such attributes. Furthermore, computer vision methods should be able to

represent an object-level analysis of the features present in histological images, based on

the criteria used by pathologists such as shape or size of cell nuclei (GURCAN et al.,

2009). In general, the spatial distribution of cellular structures is distorted according to

the degree of malignancy of a tumour and the appearance of cell clusters in the tissues.

To quantify such information present in the tissues, computational algorithms must be

able to extract features from histological images that explore their morphology, texture,

topology and colouration (JOTHI; RAJAM, 2017). Due to the importance of these steps,

feature extraction and, consequently, the classiĄcation of such features are the focus of

the model proposed in this work.

Several techniques can be applied to extract attributes from histological images, com-

monly referred to as handcrafted features. Among the most common techniques in the
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literature, Local binary pattern (LBP), Grey level co-occurrence matrix (GLCM), Speeded

up robust features (SURF) and fractal geometry can be highlighted, which have been ap-

plied for renal tissue analysis (SIMON et al., 2018), breast cancer classiĄcation (YU et

al., 2019), colon cell nucleus detection (AMALINA; RAMADHANI; STHEVANIE, 2019)

and lymphoma classiĄcation (RIBEIRO et al., 2018), respectively. Among the available

feature extraction methods, fractal geometry stands out in the context of histological

images (LI et al., 2012; ROBERTO et al., 2019). Fractal geometry consists of the study

of shapes that do not appear to have continuity or well-deĄned patterns and therefore

cannot be described by Euclidean geometry (DHANSAY; BRANDL; WIT, 2016). The

main proposals related to the calculation of properties in complex structures, which can

be associated with fractals, were Ąrst presented by Mandelbrot (MANDELBROT, 1983).

The Fractal dimension (FD) and the Lacunarity (LAC) are the best known examples in

the context of fractal geometry (JOTHI; RAJAM, 2017). The FD is a metric that quan-

tiĄes the irregularity and complexity of a fractal, indicating how much the space is Ąlled.

LAC, on the other hand, measures how such space is Ąlled. Approaches based on these

measures have indicated interesting results in quantifying psoriatic lesions (IVANOVICI;

RICHARD; DECEAN, 2009), prostate cancer (NEVES et al., 2014), brain tumours (AL-

KADI, 2015) and colorectal cancer (RIBEIRO et al., 2019). More recently, the concept of

Percolation (PERC) has also started to be explored to deĄne fractal features of images,

even showing that vascular and histological structures can present similar behaviours to

those observed in models explored in percolation theory (BAISH; JAIN, 2000). The in-

formation obtained with percolation has the ability to describe properties related to the

presence, the dimension and the quantity of clusters in the images. These properties

are related to features such as shape, size and quantity of objects, which are relevant

information for experts in histopathology (HE et al., 2012).

Handcrafted features were the main way of obtaining information from an image until

approximately the beginning of the 2010s. It was during this period that, due to the

increased availability of large image sets and advances in hardware technology such as

GPUŠs, Convolutional neural networks (CNN) became a powerful tool in the Ąeld of

computer vision (KHAN et al., 2020). In the last decade, CNN-based models have been

proposed for image processing in various types of applications, including CAD systems.

When CNNs receive an image as input, the information analysis can be treated in

two ways: a) feature extraction in the initial layers followed by classiĄcation through an

external classiĄer; and/or b) classiĄcation of the features in the Ąnal layers of the CNN.

In the extraction stage, a series of convolutional Ąlters and normalization techniques are

applied to each image in order to build a feature vector. This vector is used for the pattern

classiĄcation stage, but convolutional Ąlters present some limitations in the extraction of

information from images of speciĄc contexts, such as in histopathology, causing CNNs to

have variable performances in this environment, which may result in classiĄcation rates
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lower than 70%, as observed in some of the studies (XU et al., 2016; KHOSHDELI;

CONG; PARVIN, 2017; YI et al., 2018; WINKENS et al., 2018).

The main difficulties regarding the use of CNNs include the need for a training set

with a signiĄcant number of samples (YAMASHITA et al., 2018), the initialisation of

suitable values for the parameters (SEVERYN; MOSCHITTI, 2015) and a standardised

input set (HE et al., 2015). In the context of histological images, these limitations are

even more evident due to the fact that most public image datasets have a limited set

of samples, and these, on several occasions, do not have standardised resolutions. To

deal with this problem, data augmentation can be applied to the images in order to

generate more samples through rotation, mirroring or region clipping. Another option is

to use Adaptive synthetic sampling approach (ADASYN), which is a technique applied

to generate synthetic data from minority classes in order to deal with imbalance (HE et

al., 2008). Nevertheless, this increase in data further raises the computational cost of

operations with a CNN (LIU et al., 2018).

One of the possible solutions to reduce the processing time is to simplify the CNN

architecture by reducing the number of layers. However, the removal of deeper layers

may impair the image analysis from a global perspective (ARAÚJO et al., 2017), which

may compromise the performance of the whole network. So, some alternative approaches

such as hybrid networks have been explored in the literature (WANG et al., 2014; YU et

al., 2019; BAI et al., 2019; NANNI et al., 2019; TRIPATHI; SINGH, 2020). These ap-

proaches associate feature extraction techniques such as Gabor Ąlters or LBP operators

with CNN convolution operations, replacing some of the network layers (JUEFEI-XU;

BODDETI; SAVVIDES, 2017; JIANG; SU, 2018). Recent research has shown that a

combination between feature extraction techniques with deep learning models can im-

prove the results obtained by applying these approaches separately (NANNI; GHIDONI;

BRAHNAM, 2017; BAI et al., 2019; TRIPATHI; SINGH, 2020).

Other approaches generate feature images from the obtained attributes and provide

them as input to a CNN. In (LUMINI; NANNI, 2018), a technique is proposed to generate

feature images from a feature vector in order to classify them via CNN. In (KAUSAR et

al., 2019), the authors applied Haar-wavelet decomposition to breast histological images

and used the decomposed images as inputs to a CNN.

Fractal geometry-based descriptors can also be associated with hybrid CNNs. In (XU

et al., 2017), CNNs were applied to extract values from a FD invariant Ąlter for curve

detection in grayscale image objects. The authors in (MOHAMMED et al., 2018) applied

multifractal analysis to quantify and detect breast cancer by classifying the generated

feature vectors using a deep learning technique. However, an approach similar to that

proposed in (LUMINI; NANNI, 2018) or (KAUSAR et al., 2019) in which CNN receives

as input feature images generated by a speciĄc technique is still an open challenge in the

context of fractal geometry. Methods that directly associate fractal features with CNN
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through a classiĄer ensemble in the context of histological images were not found in the

literature.

1.1 Motivation

Cancer consists of a disease that is caused by the disordered growth of malignant

tumours. There are several types of cancer, however, breast cancer, colorectal cancer

and lymphomas are among the most common and have resulted in higher mortality rates

(NOONE et al., 2018).

Breast cancer is a disease that starts with a tumour in the breast region, which after

some time can grow and spread to adjacent tissue. This is the most common type of cancer

among women, although it can also affect men. According to the Instituto Nacional

de Câncer (INCA), 66,280 new cases are expected in 2020 in Brazil (SAÚDE, 2020).

Colorectal cancer consists of the growth of malignant polyps in the area of the colon

or rectum. This is one of the most common types of cancer, with 40,990 new cases

expected in 2020 in Brazil (SAÚDE, 2020). Lymphomas are a type of cancer that affects

the cells of the immune system, in which the most common occurrence is of the Non-

Hodgkin lymphoma (NHL) type. According to statistics, 12,030 new cases are expected

in 2020 in Brazil (SAÚDE, 2020). NHL are divided into categories, each requiring speciĄc

treatments.

Regardless of the classes of cancer described herein, histopathological analysis is in-

evitable for the detection of the disease (JOTHI; RAJAM, 2017). Early diagnosis is

essential for efficient treatment and an effective detection system is critical for advances

in this area (DABEER; KHAN; ISLAM, 2019). Furthermore, algorithms in CAD systems

extend a pathologistŠs vision beyond the microscope, according to (NIAZI; PARWANI;

GURCAN, 2019), enabling the integration of human knowledge with artiĄcial intelligence.

Therefore, the accuracy of diagnosis provided by pathologists can be improved with the

integration of computational techniques applied to images.

Feature extraction techniques based on fractal geometry can provide relevant perfor-

mances in the quantiĄcation of histological images, as demonstrated in (LI et al., 2012;

NEVES et al., 2014; ROBERTO et al., 2017; RIBEIRO et al., 2019; ROBERTO et al.,

2019). On the other hand, the small number of samples available in public histologi-

cal image datasets is a factor that hinders the application of CNN for the classiĄcation

of this type of image (YAMASHITA et al., 2018). As this factor has not been shown

as a limitation for fractal feature classiĄcation, the association of these techniques to a

CNN-based network architecture may improve the results obtained in histological image

classiĄcations.

The implementation of a CNN that receives the three main types of fractal features

as input can automate the task of selecting parameters for the various metrics calculated
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from the different existing fractal features. Furthermore, recent research has shown that

the association of handcrafted features with CNN was able to provide good results in the

context of histological images (WANG et al., 2014; YU et al., 2019; BAI et al., 2019;

NANNI et al., 2019; TRIPATHI; SINGH, 2020). The combination of CNN models are

one of the main directions of the researches in this area, according to (KHAN et al.,

2020). However, fractal geometry has not yet been explored in this type of application,

especially in approaches similar to (LUMINI; NANNI, 2018; KAUSAR et al., 2019), where

the extracted attributes form a feature image that is given as input to a CNN.

The generation of a feature image is usually done from reshaping a handcrafted feature

vector into a matrix. Methods such as the proposed in (AFONSO et al., 2019; FARIA

et al., 2016; WANG; OATES, 2015) applied different procedures to convert a 1-D feature

vector into an image, which were later used for tasks such as ParkinsonŠs disease detection

and plant recognition. These methods could be evaluated using fractal descriptors as

inputs to support the classiĄcation of histological images.

1.2 Objectives

The general objective of this work is to develop a model based on the ensemble of

deep learning and handcrafted features, using fractal descriptors for the classiĄcation of

breast and colorectal tumours, non-Hodgkin lymphomas, and liver tissue. The speciĄc

objectives are listed below:

1. construction of a feature image model to represent fractal properties;

2. development of an approach based on CNN and fractal geometry to identify deĄ-

ciencies and improve performance in unbalanced histological image datasets with

different resolutions;

3. development of a hybrid CNN model based on fractal and convolutional features;

4. investigating shortcomings and enhancements to improve the performance of a clas-

siĄer ensemble with fractal descriptor approaches for different histological image

samples, using learned and handcrafted features.

1.3 Contributions

The implementation of the proposed model may bring the following contributions to

the literature:

1. New representations based on fractal descriptors for histological lesion classiĄcation;
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2. The availability of an adaptive method, capable of classifying different sets of his-

tology images, including datasets with unbalanced classes and variations in image

resolution;

3. A support tool for pathologists able to provide a diagnosis from a computational

perspective and reduce the costs of an eventual second reading;

4. A deep learning based approach where there is no requirement for a long training

of the network every time a new set of images has to be classiĄed;

5. Multiclass classiĄer ensemble methods to improve predictive performance for lesions

in histological images.

1.4 Text Organisation

Chapter 2 of this text presents the theoretical foundations necessary for the develop-

ment of the method. The bibliographical survey is discussed in Chapter 3, with current

and relevant works in the area. Chapter 4 presents the methodology applied for the de-

velopment of the work. The tests performed and the results obtained are presented in

Chapter 5. Chapter 6 presents the conclusions obtained from the results achieved, as well

as the overview of the work developed during this doctorate.
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Chapter 2

Technical Background

The objective of this chapter is to present theoretical concepts that are important for

the understanding of the work. The section was divided into concepts of histology, com-

puter aided diagnosis system, fractal geometry applied to digital images, basic concepts

about CNN and metrics to evaluate the performance of the techniques described.

2.1 Histology images

Histology is a subĄeld of medicine that consists of the microscopic analysis of cells and

tissues. In the procedure for diagnosing cancer, for example, histopathologists analyse

histological samples under a microscope. The specialists visually examine the regular-

ity, shape and distribution of structures in order to determine whether the tissue being

analysed has some kind of lesion or can be considered healthy.

The process of acquiring a histological image begins with the collection of a tissue sam-

ple in vivo. As described in (HE et al., 2012), after obtaining the sample, it must be Ąxed

to preserve decomposition. Depending on the type of tissue, different Ąxation methods

can be applied, such as Ąxation by heat or by immersion in substances such as ethanol,

methanol, chloroform or acetone. Besides preserving the sample, immersion in these com-

pounds also causes tissue dehydration by removing lipids and reducing protein solubility.

This procedure is necessary to slow down the degeneration of the specimen (HAM; COR-

MACK, 1983). Next, a series of treatments are applied to the tissue with the aim of

Ąxing it in a solid mould and thus facilitating the cutting of the sample into thin sec-

tions for analysis under the microscope. This procedure is known as sectioning, in which

5Û𝑚 or 80 to 100𝑛𝑚 samples are sectioned for analysis under a light or electron micro-

scope. The sections are placed separately on glass slides, where they will receive dyes to

enhance contrast and facilitate identiĄcation of intra- and extra-cellular structures. In

light microscopy, the most commonly used stains are H&E. Hematoxylin marks the cell

nuclei with dark blue shades, while eosin acts on the stroma and cytoplasm organelles

by marking them with pink, red or orange shades (KIERNAN, 2008). Finally, the slides
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on thresholding or edge detection. Thresholding approaches consist of selecting one or

more values, usually based on the intensities of pixels, to separate objects from the back-

ground (SEZGIN; SANKUR, 2004). In histological images, these methods are efficient for

separating nuclei from the stromal region (VETA et al., 2013). Edge detection-based ap-

proaches apply algorithms to analyse the difference between the intensity levels of pixels

in order to deĄne the boundary between the objects of interest and the background, such

as the Sobel Ąlter (BEN-COHEN et al., 2017). Recently, bio-inspired algorithms have also

obtained relevant results in the segmentation of histological images. The segmentation

of the nuclei of histological images of lymphomas was performed by applying a genetic

algorithm that adopted RényiŠs entropy as a Ątness function (TOSTA et al., 2018).

The feature extraction step, or information quantiĄcation, consists in obtaining nu-

merical attributes that are able to describe, in a colour model, properties such as shape,

size or texture present in the regions of interest of the images. In the context of histolog-

ical images, the most commonly evaluated features are: morphological attributes, based

on object shape and size (DIMITROPOULOS et al., 2017); topological attributes (BE-

JNORDI et al., 2016); colour and brightness intensity attributes (NGUYEN et al., 2017;

NASCIMENTO et al., 2018); attributes extracted from the frequency domain (LIN et al.,

2016; RIBEIRO et al., 2019); and texture attributes, which highlight those based on Har-

alick features (HARDER et al., 2016) and fractals (ROBERTO et al., 2017; ROBERTO

et al., 2019). In histological images, the use of fractal features can indicate the growth

pattern of tumours and vascular structures (LOPES; BETROUNI, 2009; LI et al., 2012;

RIBEIRO et al., 2019), (BAISH; JAIN, 2000) apud (JOTHI; RAJAM, 2017).

The last stage of a CAD system consists in the pattern recognition from the obtained

features. Generally, this recognition is done based on the use of a classiĄer algorithm,

which consists in a supervised learning method, whose application occurs in two main

stages: training and test. In the training stage, a classiĄer model is built based on at-

tributes of previously labeled images. The test stage consists in applying on unlabelled im-

ages the model built in the training step, with the purpose of assigning them a class label.

Several types of classiĄers can be used in the context of histological images, among which

stand out Bayesian classiĄers (KURMI; CHAURASIA; GANESH, 2019; MURTAZA et

al., 2019), function-based (SIMON et al., 2018; RIBEIRO et al., 2019), instance-based

(ROBERTO et al., 2017), decision trees (LIU; YAN; WANG, 2018; ROBERTO et al.,

2019) and neural networks, which include CNN (TAVOLARA et al., 2019; TRIPATHI;

SINGH, 2020).

2.3 Feature extraction

In image processing, the feature extraction stage consists in obtaining relevant in-

formation present in the image (KUMAR; BHATIA, 2014). This procedure is applied



22 Chapter 2. Technical Background

in CAD systems to quantify elements present in cellular tissues. According to (JOTHI;

RAJAM, 2017), histological images representing malignant tissue have a more irregular

spatial distribution of cellular components compared to normal tissue. The main feature

extraction techniques applied in the context of histopathology consist in obtaining:

❏ Morphological features: these describe simple characteristics such as the shape and

size of cell structures. Examples of this type of information are area, perimeter,

concavity and Fourier shape descriptors;

❏ Topological features: they describe the spatial distribution of cellular components.

The main ones include Delaunay triangulation, Voronoi diagram and minimum span-

ning tree;

❏ Texture features: they describe the intensity variation in different regions of the

image. According to (JOTHI; RAJAM, 2017), the main methods for obtaining

texture features are GLCM, Gabor Ąlter, wavelet transform and fractal geometry.

Although there are several ways to quantify a histological image, fractal geometry is

one of the approaches that has recently stood out most to the classiĄcation of histological

images through handcrafted features (RIBEIRO et al., 2019), due to the existing similarity

between the growth pattern of tumors and the architecture of a fractal (BAISH; JAIN,

2000). Therefore, this approach was selected for application in the groups of images

investigated in this work.

2.4 Fractal features

Fractal geometry is a concept presented for the study of shapes that cannot be deĄned

by Euclidean geometry, as described in (MANDELBROT, 1975). The shapes present in

nature, such as the coastline of an island, clouds, trees and lightning, are examples of

structures that do not present patterns to be described by representations with geomet-

ric structures such as circle, polygon or polyhedron, which are well deĄned by classical

mathematics.

In this context, for shapes with irregular representation, it is possible to apply rules

that can deĄne them, in which these rules are related to the observation scale of the

object. In Figure 3 the visualization of a natural form of a lightning that cannot be

described by the Euclidean geometry is presented, in which in Figure 3(a) there is the

complete representation of a lightning and in Figure 3(b) this representation has its scale

reduced, presenting only a part of the structure of the lightning. The images are similar,

but have different scales. This property is one of the foundations of fractal geometry,

known as self-similarity (CASTRO, 2006). Although there is still no formal deĄnition for

self-similarity, the authors at (BRACHMANN; REDIES, 2017) describe that this property
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can be deĄned as features present in the image that can be observed either at smaller

scales, in sub-regions, or in the complete image.

Figure 3 Ű Picture of a lightining under two different observation scales: full picture (a)
and picture under a scale four times smaller (b).

(Source: Adapted from (POHJOLA; GRANDELL, 2016))

In general, a fractal should have the following characteristics: detail at small scales; in-

ability to be described by traditional geometry; approximate or statistical self-similarity;

possibly recursive deĄnition; and fractal dimension larger than the topological one. In

computer vision, there are some approaches for the observation of self-similarity proper-

ties in images, known as multi-scale. Among the most common ones, the algorithms box-

counting (NIKOLAIDIS; NIKOLAIDIS; TSOUROS, 2011) and gliding-box (IVANOVICI;

RICHARD; DECEAN, 2009) stand out. These algorithms aim to divide images into dif-

ferent scales and then extract features from each sub-image, generating local features, for

each scale, and global features to represent the complete image. FD, LAC and percolation

(PERC) are among the main features for representing properties in images with fractal

data (BAISH; JAIN, 2000; LOPES; BETROUNI, 2009; ROBERTO et al., 2017; JOTHI;

RAJAM, 2017; RIBEIRO et al., 2019).

In the context of medical area, there are some techniques that use colour images

for abnormalities analysis. As the model proposed by Mandelbrot presents limitations,

new adaptations and improvements motivated researchers to investigate approaches for

the context of colour images (IVANOVICI; RICHARD; DECEAN, 2009; IVANOVICI;

RICHARD, 2009; ROBERTO et al., 2017).

According to these adaptations, fractal features can be obtained from coloured images

initially by applying the gliding-box algorithm. This algorithm consists in positioning

a box of size 𝐿 × 𝐿 in the upper left corner of the image, where 𝐿 represents the side

dimension of the box in pixels. This box moves from left to right to the bottom region

of the image, passing through all pixels. After gliding through the entire image, the box

is repositioned to the starting point and the value of 𝐿 is incremented by 2 units, as

illustrated in Figure 4. The value of 𝐿 must always be an odd number, since the existence

of a central pixel is required for next steps of the method. In an image of size 𝐻 ×𝑊 ,

the total number 𝑇 of boxes Ñ𝑖 as a function of 𝐿 is given by Equation 1:
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2.4.2 Lacunarity

LAC is a complementary measure to FD and allows to evaluate how the space of a

fractal is Ąlled. As in the FD measure, (IVANOVICI; RICHARD, 2009) also proposed a

method to obtain the lacunarity in colour images. This method presents steps similar to

the FD method for the construction of the probability matrix. From this, the Ąrst and

second order moments are calculated using Equations 7 and 8. The values 𝑚 and 𝑃 (𝑚, 𝐿)

are obtained in the same way as described for FD in Equation 5.

Û(𝐿) =
𝐿2

∑︁

𝑚=1

𝑚𝑃 (𝑚, 𝐿). (7)

Û2(𝐿) =
𝐿2

∑︁

𝑚=1

𝑚2𝑃 (𝑚, 𝐿). (8)

Then, the LAC measure on a 𝐿 scale is given by Λ(𝐿), obtained with Equation 9.

Λ(𝐿) =
Û2(𝐿)⊗ (Û(𝐿))2

(Û(𝐿))2
. (9)

2.4.3 Percolation

Percolation is a physical phenomenon, deĄned by (BROADBENT; HAMMERSLEY,

1957), referring to the transport of Ćuids in porous media. Several natural systems exhibit

this type of behaviour, such as water Ćowing through coffee powder or gases through a

rocky medium. If one of these Ćuids, given by water or gas, is able to cross the whole

system from one end to the other, a phenomenon known as percolation occurs. These

concepts can also be adapted to image analysis. In Figure 7 an example of a grid of size

15×15 pixels is presented which shows how percolation occurs. In the example, some pixels

of the grid have been labelled with the symbol (*). In an analogy to percolation theory,

these labelled pixels correspond to pores, which are spaces through which a supposed Ćuid

is able to pass over a medium. It can be observed that some pixels form clusters, when

a neighbourhood of 4 pixels is applied, as shown in Figure 7(b). When a cluster occurs

where it extends from one end of the image to the other, the occurrence of the percolation

phenomenon is deĄned.

In natural systems, the distribution of pores happens randomly. Based on this prin-

ciple, studies have found that each system has a value 𝑝, which corresponds to the prob-

ability that a space is or is not a pore (MALARZ, 2015). In addition to indicating what

the ratio between the existence of pores and non-pores in a system is, 𝑝 has an important

property known as the percolation threshold. This property denotes that, after a certain

value of 𝑝, there is the guarantee of percolation occurrence. These concepts can also be

adapted for images and avoid efforts in searching for clusters that indicate percolation.

Each type of system has a different percolation threshold value, as shown in Table 2. The
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Figure 7 Ű Matrix of size 15 × 15 (a) wherein percolation occurs due to the existence of
a cluster that extends between two extremities of the matrix, represented in
light-green (b).

(a) (b)

(Source: author)

threshold for square matrices, which also Ąts for images, is 0.59275 based on (DEAN,

1963; ZIFF, 1986; BIRD; PERRIER, 2010).

Table 2 Ű Percolation thresholds for different structures.

Grid Percolation threshold
Square 0.593
Triangular 0.486
Hexagonal 0.679
Four-eight 0.739
Kagome 0.655

In 2017, an approach was proposed to extract percolation features from an image us-

ing concepts from fractal geometry (ROBERTO et al., 2017). The method is based on

Ivanovici and RichardŠs models for obtaining FD and LAC from colour images (IVANOVICI;

RICHARD; DECEAN, 2009; CĂLIMAN; IVANOVICI, 2012). This approach follows the

steps of the gliding-box algorithm and calculation of the Minkowski distance between a

central pixel and the other pixels of a box for similarity analysis of the coloured pixels.

Then, the pixels that satisĄed the Minkowski distance, which can be deĄned as pores,

are identiĄed through the Hoshen-Kopelman labelling algorithm (HOSHEN; BERRY;

MINSER, 1997). For each scale 𝐿, three different features are extracted: average number

of clusters per bin, percolation occurrence rate, and average area of the largest cluster.

The average number of clusters 𝐶(𝐿) is given by Equation 10, which consists of the sum

of the total number of clusters 𝑐 in each bin 𝑖 divided by the total number of boxes 𝑇 .

𝐶(𝐿) =

∑︀𝑇 (𝐿)
𝑖=1 𝑐𝑖

𝑇 (𝐿)
. (10)

In Equation 12, it is shown how the percolation occurrence rate 𝑄(𝐿) is calculated.
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This corresponds to the sum of boxes Ñ𝑖 whose number of pixels labelled as pores (Ω𝑖)

satisfy the percolation threshold.

𝑞𝑖 =

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

1, Ω𝑖

𝐿2 ⩾ 0.59275.

0, Ω𝑖

𝐿2 < 0.59275.

(11)

𝑄(𝐿) =

∑︀𝑇 (𝐿)
𝑖=1 𝑞𝑖

𝑇 (𝐿)
. (12)

Equation 13 corresponds to the calculation of the average coverage area of the largest

cluster 𝑀(𝐿), given by the sum of the occupancy rates of the largest clusters in each box
𝑀𝑖

𝐿2 divided by the total number of boxes 𝑇 .

𝑀(𝐿) =

∑︀𝑇 (𝐿)
𝑖=1

𝑀𝑖

𝐿2

𝑇 (𝐿)
. (13)

The number of local features obtained depends on the total observation scale 𝐿. Con-

sidering that 𝐿 varies between 3 and 𝐿𝑚𝑎𝑥 with an increment of 2 units, the amount of

local features corresponds to 5× (𝐿𝑚𝑎𝑥−3
2

+ 1) for each Δ. A summary of these features is

shown in Table 3.

Table 3 Ű Summary of the obtained local features for each Δ.

FD LAC PERC
𝐷(3) Λ(3) 𝐶(3) 𝑄(3) 𝑀(3)
𝐷(5) Λ(5) 𝐶(5) 𝑄(5) 𝑀(5)

...
...

...
...

...
𝐷(𝐿𝑚𝑎𝑥) Λ(𝐿𝑚𝑎𝑥) 𝐶(𝐿𝑚𝑎𝑥) 𝑄(𝐿𝑚𝑎𝑥) 𝑀(𝐿𝑚𝑎𝑥)

2.4.4 Global Features

Fractal Dimension

A global FD value can also be obtained by generating a plot from the values 𝑙𝑜𝑔𝐿 ×

𝑙𝑜𝑔𝐷(𝐿). With the use of linear regression to estimate the slope of the 𝑙𝑜𝑔 ⊗ 𝑙𝑜𝑔 curve,

the resultant slope value can be considered as a global FD indicator.

Lacunarity

Similar to what is done for the FD, global LAC features can be obtained from a curve

containing the local values of Λ. Using the method proposed in (CĂLIMAN; IVANOVICI,

2012), global values can be obtained from such curve: area under curve (𝐴(Λ)), skewness
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(𝑆(Λ)), area ratio (𝐴𝑟(Λ)), maximum point (𝑀𝑎𝑥(Λ)) and scale of the maximum point

(à(Λ)).

The area under the function curve can be obtained by applying the trapezoidal method,

as given by Equation 14, where 𝑎 and 𝑏 are the minimum and maximum values of 𝐿

respectively, Λ is the lacunarity function and 𝑁 is the number of local LAC values:

𝐴(Λ) =
𝑏⊗ 𝑎

2𝑁

𝑏−1
∑︁

𝑛=𝑎

(𝑓(Λ𝑛) + 𝑓(Λ𝑛+1)). (14)

The second global LAC feature obtained is the skewness, which corresponds to a

measure of asymmetry. For a LAC curve wherein 𝑁 local values were calculated, the

skewness is obtained according to Equation 15, wherein Λ𝑖 is the 𝑖𝑡ℎ value of the sample

and Λ is its average value.

𝑆(Λ) =
1
𝑁

∑︀𝑏
𝑖=𝑎(Λ𝑖 ⊗ Λ)3

2

√︁

[ 1
𝑁−1

∑︀𝑏
𝑖=𝑎(Λ𝑖 ⊗ Λ)2]3

. (15)

Another feature that can be calculated is the ratio between the right and left halves

of the curve as shown in Equation 16. According to (CĂLIMAN; IVANOVICI, 2012), a

greater value on this feature indicates a more heterogeneous texture.

𝐴𝑅(Λ) =
𝐴( 𝑏

2
+1,𝑏)

𝐴(𝑎, 𝑏
2

)

. (16)

The values of 𝑀𝑎𝑥(Λ) and à(Λ) can also be obtained, which gives a total of Ąve LAC

global features.

Percolation

To obtain percolation global features, the same metrics applied to the LAC curves can

be applied to the three PERC functions (𝐶, 𝑄 and 𝑀). Therefore, a number of 21 global

features are obtained for each Δ. The summary of these features is shown in Table 4.

Table 4 Ű Summary of the obtained global features for each Δ.

FD LAC PERC

𝐹𝑑(𝐷)

𝐴(Λ) 𝐴(𝐶) 𝐴(𝑄) 𝐴(𝑀)
𝑆(Λ) 𝑆(𝐶) 𝑆(𝑄) 𝑆(𝑀)

𝐴𝑅(Λ) 𝐴𝑅(𝐶) 𝐴𝑅(𝑄) 𝐴𝑅(𝑀)
𝑀𝑎𝑥(Λ) 𝑀𝑎𝑥(𝐶) 𝑀𝑎𝑥(𝑄) 𝑀𝑎𝑥(𝑀)

à(Λ) à(𝐶) à(𝑄) à(𝑀)
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𝑓(𝑧) =

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

1, 𝑊 ×𝑋 + 𝑏 > 0.

0, 𝑊 ×𝑋 + 𝑏 ⊘ 0.

(18)

Unlike the programming of traditional algorithms speciĄc to solving a problem, neural

networks have a learning process. This process starts with a set of input samples where

the desired outputs are known. This is called the training set, and each sample is a pair

(𝑋; 𝑌 ), where 𝑋 is an 𝑛-dimensional vector describing an input signal, and 𝑌 is the

corresponding desired response. The parameters 𝑊 and 𝑏 conĄgure the decision frontier

modeled by the neuron, and thus are the parameters to be learned during training. To

start training a perceptron, the 𝑛 weights of the set 𝑊 are given random values in the range

[⊗1, 1] and 0 for 𝑏. Some works propose that these initial values be different (IJJINA;

CHALAVADI, 2016; AN, 2019).

The training step consists of two phases to be alternated repeatedly: (a) processing

an input signal 𝑋, in order to produce an output value 𝑜(𝑡); and, (b) adjusting the

neuron parameters, according to the comparison between the obtained output 𝑜(𝑡) and

the desired result 𝑌 . When performing the Ąrst step, the parameter values 𝑊 and 𝑏 are

kept Ąxed and used to weight the elements of a training sample. These values are summed

to the bias 𝑏 and applied to the activation function, producing an output 𝑜(𝑡) = 𝑓(𝑧(𝑋)).

After an output, the second step must be performed based on the learning process. Then,

the perceptron adjusts the weights and the bias based on the difference between these

parameters given by the term 𝑜(𝑡). The error obtained in iteration 𝑡 is calculated by

𝑒(𝑡) = 𝑌 ⊗ 𝑜(𝑡), whose value is employed to update the parameters given by Equation 19:

𝑊 (𝑡 + 1) = 𝑊 (𝑡) + Ð× (𝑌 ⊗ 𝑜(𝑡))×𝑋, (19)

where Ð represents the learning rate, 𝑡 represents the iteration step, 𝑋 represents the

feature vector of the input sample plus 𝑥0 = 1 and 𝑊 represents the vector of weights

plus 𝑤0 = 𝑏.

2.5.1 Feedforward neural network

In this type of neural network, which is also known as a Multilayer perceptron (MLP),

neurons are organized in sequential layers so that the signal provided as input is trans-

mitted in only one direction to the next layer. Each neuron receives input signals coming

from neurons in previous layers and, in turn, transmits the signal it produces to neurons

in subsequent layers. This layer structure is illustrated in Figure 9, which is composed of:

❏ An initial layer deĄned as the input layer, which is responsible for reading the data

to be processed;
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2.6 Convolutional neural networks

CNNs are special deep learning models that obtain features from low- and high-level

patterns in grid format data (YAMASHITA et al., 2018). The core of CNNs is usually

built from layers: convolution; pooling; and fully connected (FC). While the Ąrst two

are responsible for feature extraction, the FC layers perform feature classiĄcation and

generate as output a label to be assigned to the input data.

The convolution layers are the structures related to the base of the network, which

generally consist of two operations. The Ąrst is the convolution itself, a linear procedure

that performs the multiplication of the input data elements and small numerical matrices

called kernels, which are the trainable parameters in this type of layer. In Figure 10, an

example of the operation performed by the convolution layer in a CNN is shown. The

second operation consists of applying a non-linear activation function to the feature map

resulting from the convolution. Different functions, such as logistic or sigmoid, are applied

in CNN models, but the RectiĄed linear unit (ReLU) has become the most popular due

to its tendency to reduce training time by eliminating negative values (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012). This function is calculated according to Equation 22:

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥). (22)

Figure 10 Ű Application of a kernel sized 3× 3 pixels for obtaining a feature map.

(Source: (YAMASHITA et al., 2018))

The pooling layers perform operations to reduce the dimensionality of the data. This

usually occurs by selecting the maximum (Max Pooling) or average (Global Average Pool-

ing) value among the elements of a sub-region of the feature map. The aim of this

operation is not only to reduce the number of features but also to introduce a certain

invariance to translations and distortions of structures in the input data. In Figure 11,

a Max Pooling operation is illustrated with a 2 × 2 pixels Ąlter on a feature map of size

4× 4 pixels. In this operation, it is possible to observe that in the regions marked in red,

grey, blue and green the largest values were selected.
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Figure 11 Ű Max Pooling operation performed on the feature map of a CNN.

(Source: adapted from (YAMASHITA et al., 2018))

FC layers consist of a series of one or more layers in which all outputs are connected to

all inputs of the next layer by using a weight adapted through training. The adjustment

of the weights is usually done by using the backpropagation algorithm, since the sequence

of one or more FC layers in a CNN has operation close to that of an MLP. Generally, the

number of perceptrons in the last FC layer is equal to the number of classes in the dataset

under training. In classiĄcation problems, its outputs correspond to class probabilities,

which are obtained by means of an activation function. For multi-class problems, the

most suitable function for this task is softmax (YAMASHITA et al., 2018). This function

is applied in order to normalize the results transmitted to the output layer. For each

perceptron, the probability calculation is given by Equation 23:

𝑓(𝑢𝑗) =
𝑒𝑢𝑗

∑︀𝑁
𝑘=1 𝑒𝑢𝑘

, (23)

wherein 𝑢𝑗 is the output perceptron representing class 𝑗 and 𝑁 is the number of classes

in the problem under analysis. The Ąnal prediction of the network model is given by the

class that obtained the highest probability value.

2.6.1 CNN Models

A CNN consists of an alternating sequence of convolutional and pooling layers, together

with activation functions, with at least one FC layer at the end. Several ways of combining

such layers have been published in the literature, making the most varied CNN models

available to researchers in the Ąeld. The Ąrst of these, the LeNet model, was proposed in

(LECUN et al., 1998) for the classiĄcation of handwritten characters. LeNet was a simple

network consisting of only 7 layers, as illustrated in Figure 12. Due to its simplicity,

the model had very limited applications and was not suited to more complex problems

(ALOYSIUS; GEETHA, 2017). It took almost 15 years for computer capability to evolve

enough to support more complex models, which will be described in this section.
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Figure 12 Ű LeNet architecture.

(Source: (TRA et al., 2017))

2.6.1.1 AlexNet

The publication of the AlexNet CNN model (KRIZHEVSKY; SUTSKEVER; HIN-

TON, 2012) was a milestone in the evolution of image recognition algorithms by signiĄ-

cantly reducing the image classiĄcation error rate of the project ImageNet (ALOYSIUS;

GEETHA, 2017). The AlexNet model consists of a 25-layer sequential architecture, illus-

trated in Figure 13, totaling 61 million parameters. In the following years, the performance

of AlexNet was outperformed by other more complex CNN models.

Figure 13 Ű AlexNet architecture.

(Source: (KRIZHEVSKY; SUTSKEVER; HINTON, 2012))

2.6.1.2 ResNet-50 and ResNet-101

CNN models proposed after the success of AlexNet consisted only of incrementing the

number of layers. However, there is a degradation point in which if the network becomes

too deep, the accuracy is saturated (HE; SUN, 2015). Thus, in (HE et al., 2016) the

concept of residual blocks has been applied, consisting of the use of “skip connectionsŤ,

as can be observed in Figure 14. The residual blocks are always composed of three layers

that have 𝑘 convolutional Ąlters 1 × 1, 3 × 3 and 1 × 1, respectively. Given an input 𝑥,
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Figure 20 Ű ClassiĄer ensembles based on the approaches bagging (a) and boosting (b).

(a) (b)

(Source: Adapted from (YANG et al., 2019))

1. Sum rule: consists in combining the result of one or more classiĄers by summing the

prediction probabilities obtained by each classiĄer in each class (NANNI; LUMINI;

GHIDONI, 2018);

2. Weighted sum: similar to the sum rule, with the inclusion of weight values that

prioritise speciĄc models or classes. This technique requires a pre-training step to

determine the weights (ONAN; KORUKOĞLU; BULUT, 2016);

3. Majority voting: technique that simulates a voting system among the classiĄers,

where the class selected by the majority of the classiĄers consists in the Ąnal pre-

diction. According to (LEON; FLORIA; BĂDICĂ, 2017), the probability of the

set of classiĄers predicting the correct class is greater than that of which individual

classiĄer, if the hit probability of each classiĄer is greater than 50%.

In general, a classiĄer ensemble is an approach that aims to make decisions based on

opinions from different sources (SAGI; ROKACH, 2018). These approaches have gener-

ated relevant results in computer vision applications from the Ąeld of histopathology in

classiĄcations by means of CNN (NANNI; LUMINI; GHIDONI, 2018) or fractal features

(ROBERTO et al., 2019).

2.8 Considerations

In this chapter, several computer vision methods applied in histological images were

presented. Regarding the feature extraction step, techniques for obtaining fractal features
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capable of describing different properties present in histological tissue were presented

(IVANOVICI; RICHARD; DECEAN, 2009; CĂLIMAN; IVANOVICI, 2012; ROBERTO

et al., 2017). These features aim to represent characteristics such as shape, irregularity or

quantity of cell nuclei, in order to simulate the microscopic analysis techniques performed

manually by pathologists (GURCAN et al., 2009).

Furthermore, CNN models, which serve both as feature extraction and classiĄcation,

were presented and were able to provide good results in the context of histopathology

(RAKHLIN et al., 2018; MAHBOD et al., 2018; JIANG et al., 2019). Using transfer

learning and classiĄer ensemble approaches, the fractal features and image classiĄcation

strategies via CNN can be investigated, aiming to highlight the strengths of each approach.
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Chapter 3

Related Work

This chapter aims to present recent studies related to image processing in histology,

the application of techniques based on fractal geometry for feature extraction and the

use of CNN for quantiĄcation and classiĄcation of histological images. The described

works allow to ground the model proposed in this thesis. On each section, the studies are

grouped according to the type of histology image wherein they were applied, and then

presented in chronological order.

3.1 Methods based on the classiĄcation of fractal fea-

tures

Before the advent of CNNs as the most common tool in computer vision, feature

extraction methods were the main way to obtain information from images (TRIPATHI;

SINGH, 2020). However, even with the increasing use of deep learning techniques, the

extraction of “handcrafted featuresŤ is still an important way to obtain descriptors of the

structures present in histological images, such as shape, size, regularity and connectivity of

cellular structures (KURMI; CHAURASIA; GANESH, 2019). Moreover, these techniques

present a certain advantage in relation to deep learning models when applied to image

sets with few samples, since CNNs depend on a large number of examples for a good

generalization in the weight training stage (TRIPATHI; SINGH, 2020).

Techniques based on fractal geometry are part of this set of methods that obtain

texture information. In (CHAN; TUSZYNSKI, 2016), FD was applied to differentiate

eight classes of tumours from breast histological images. The method was explored on

a public image dataset (SPANHOL et al., 2016), which consists of 7,909 images at 4

magniĄcation scales. Initially, each image was binarized and the edge detected using the

algorithm EdgeDetect, available in the software Mathematica (WOLFRAM, 2013). The

approach used to obtain the FD was box-counting, with two box sizes (𝐿 = 3 and 𝐿 = 4).

Although the obtained F-score (𝐹1) of 0.979 is relevant in a binary investigation, when
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applied to multiclass classiĄcation with 8 groups the accuracy (𝐴𝑐) metric was only 55.6%.

All tests were performed using the SVM classiĄer. According to the authors, there is a

need for new descriptors that can complement the FD metric in a multiclass investigation.

Fractal features can also be applied in conjunction with other texture features. Based

on this concept, the authors at (FONDÓN et al., 2018) developed a method that as-

sociates FD with HaralickŠs texture descriptors, LBP, among other colour descriptors.

These descriptors were applied to a dataset of 156 histological images of breast tumours,

labelled in four distinct grades. Then, a feature vector containing 260 features was gener-

ated and given as input to nine different classiĄers. The best classiĄcation result obtained

among the four tumour grades was an accuracy of 75.8%, via the SVM classiĄer. Be-

sides the association of several descriptors for the composition of the feature vector, this

method presented as innovation the application of a histogram equalization algorithm in

a pre-processing step. The applied algorithm was the contrast level adaptive histogram

equalization (CLAHE). This algorithm consisted in adapting the histogram of all images

from the dataset so that they are as similar as possible to a reference image. According

to the authors, the application of this technique standardized the tested images in terms

of dyes coloration and the main contribution of this work was the ability to classify a

problem involving four classes, in which tumors were not only labeled as malignant or

benign, but in different degrees of evolution.

Fractal features have also shown a good performance in the context of colorectal tu-

mors classiĄcation. The method proposed in (RIBEIRO et al., 2019) applies the curvelet

transform on colorectal histological images to obtain 41 curvelet sub-images from each

original image. Then, fractal features given by the techniques proposed in (IVANOVICI;

RICHARD; DECEAN, 2009; NIKOLAIDIS; NIKOLAIDIS; TSOUROS, 2011; CĂLI-

MAN; IVANOVICI, 2012; ROBERTO et al., 2017) and Haralick descriptors were ex-

tracted from the original images and the curvelet sub-images, which generated a vector

containing 1,512 features. The ReliefF feature selection algorithm was applied and the set

was reduced to 43 features, which were given as input to a polynomial classiĄer. The ac-

curacy obtained by this method was 97.68% for this lesion classiĄcation model. It is worth

mentioning that among the 43 selected features, 40 corresponded to fractal attributes, 26

from PERC and 12 from LAC, which indicates the relevance of fractal geometry in the

context of histology. The authors suggested that different approaches to select the most

relevant attributes could improve the results.

Thus, a method based on Genetic algorithm (GA) was proposed in (TAINO et al.,

2019) aiming to perform a more complete evaluation of the 1,512 features obtained in

the work (RIBEIRO et al., 2019) to classify histological images of colorectal tumors. In

this proposal, the GA is applied to choose the classiĄer, feature selection method and

number of features that are closest to an AUC of value 1.0. After 50 iterations with a

population of 50 individuals, an accuracy of 90.82% was obtained with the selection of 29
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features using the ReliefF algorithm and the Random Forest classiĄer. Although the same

initial set of features was used, this approach provided lower results than (RIBEIRO et

al., 2019). As the main difference between the two methods is in the classiĄer used, it can

be concluded that the choice of a polynomial classiĄer was a decisive factor for obtaining

the results reported in (RIBEIRO et al., 2019).

Another fractal-based approach was also applied in (ROBERTO et al., 2019), where

fractal percolation features were extracted from histological images of colorectal and breast

tumors. However, the application of the curvelet transform was replaced by a colour

normalisation technique, where no sub-images are generated and features are extracted

directly from the normalised images. The Ąnal feature set was composed of 63 percolation

features, which were given as input to different classiĄers. For breast tumour classiĄcation,

the best accuracy (86.2%) was obtained with the Logistic classiĄer. The best accuracy

value for colorectal tumors classiĄcation was 90.9% and was obtained by the Rotation

Forest classiĄer. The authors also found that while global PERC features obtained better

performance on colorectal images, the local PERC features at scales corresponding to low

𝐿 observation values generated better classiĄcation results for breast tumors.

Although it is an approach with a lower computational cost, the performance obtained

was also lower than that proposed in (RIBEIRO et al., 2019), which, besides percolation,

also used LAC and FD features, as well as Haralick features, which may have been one

of the reasons that made it possible to obtain a higher accuracy. As future works, the

authors suggested tests in different image contexts and also new ways of exploring the

attributes, such as organizing them as a feature matrix and providing this as input for a

CNN.

Fractal geometry was also able to provide promising results in the classiĄcation of lym-

phomas. In (ROBERTO et al., 2017), PERC was used for the Ąrst time as a descriptor

for colour histological images. The method was applied to segmented and non-segmented

NHL images and global features were extracted from the curves of each of the three PERC

functions generated, which was based on metrics proposed in (CĂLIMAN; IVANOVICI,

2012) and the calculation of the Minkowski distance. For non-segmented images, the best

AUC value obtained was 0.940 with the K* classiĄer. However, there was no signiĄcant

improvement in the AUC value obtained from images segmented by an expert (TOSTA et

al., 2017), which was 0.944 using the DECORATE classiĄer. These results were obtained

from a set of only 15 features, which indicates the feasibility of the PERC metrics for the

classiĄcation of NHL images. The analysis of the method in different sets of histologi-

cal images and the evaluation of different distance calculation approaches to obtain the

features may improve the results obtained with this technique.

In (MARTINS et al., 2019), other fractal features (FD and LAC) were obtained from

NHL images coloured in RGB and LAB models. The features extracted from the original

images, without data augmentation, composed feature vectors containing 18 attributes
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each, which were provided as input to a polynomial classiĄer. For the binary classiĄcation,

an accuracy of up to 97% was obtained. The use of fractal features together with different

colour models proved to be efficient in this context of images. Moreover, as occurred in

(RIBEIRO et al., 2019), which consisted in the analysis of colorectal tumors, the polyno-

mial classiĄer was also able to obtain good results in the context of NHL images, which

is a probable indicator of its good performance when associated with fractal features.

However, according to the authors, the main limitation of the classiĄer is the processing

time, which increases exponentially with the increase in the number of features.

Although fractal geometry has shown good performance as a metric for quantiĄcation

of histological lesions, we have not found any applications of these approaches in other

histopathology problems outside the context of disease identiĄcation. In (SHAMIR et al.,

2008) a series of biological image classiĄcation challenges were proposed. One of these

consisted in the differentiation of gender and age based on images of liver tissue obtained

from mice. Some works stood out in this context, such as in (WATANABE; KOBAYASHI;

WADA, 2016), where a semi-supervised feature transformation method was proposed

through fusion between PCA and LDA techniques. This method was applied to features

extracted from liver tissue images through the GIST global descriptor, one of the most

popular feature extraction techniques (DOUZE et al., 2009). The features were given

as input to a nearest mean classiĄer, which provided accuracies of 88.4% and 93.7% for

age and gender classiĄcation respectively. In (RUBERTO et al., 2016), three statistical

approaches were applied for texture analysis in different colour spaces. After using SVM

to classify the generated features, an accuracy of 100% was obtained for gender and age

classes. Despite the relevant classiĄcation performance, employing fractal descriptors may

be relevant to discover the behaviour characteristics of the method on using other texture

descriptors.

In Table 6, a summary is presented with information on methods that have applied

handcrafted features in the context of breast, colorectal, NHL and liver histological images.

3.2 Methods based on deep learning

In the context of medical image classiĄcation with CNN, breast tumour analysis was

one of the Ąrst applications to be investigated. In (CIREŞAN et al., 2013), the authors

implemented a CNN for mitosis detection in breast cancer. In this approach, each pixel of

the image was labelled as mitosis or non-mitosis. Then, square windows were generated

representing different regions of the image, where a window was labelled as mitosis if

its pixel was at most 10 pixels away from a pixel initially labelled as mitosis. The win-

dows were given as input to two CNN models, initially proposed in (CIREŞAN; MEIER;

SCHMIDHUBER, 2012), with 12 and 10 layers, respectively. As the mitosis detection

problem is rotation invariant, eight variations of each image were constructed by applying
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Table 6 Ű Overview of methods based on handcrafted features applied in histology images.

Method Image Approach Results
(CHAN; TUSZYNSKI,
2016)

Breast tumours FD 0,979 (F1)

(FONDÓN et al., 2018) Breast tumours
FD, Haralick, LBP and
other descriptors

75,80% (Ac)

(PAPASTERGIOU;
ZACHARAKI;
MEGA-
LOOIKONOMOU,
2018)

Breast tumours
Spatial decomposition,
tensors

84,67% (Ac)

(JØRGENSEN et al.,
2018)

Colorectal tumours
Different colour mod-
els, histogram and
GLCM

0,950 (AUC)

(SANTOS et al., 2018) Colorectal tumours
Sample entropy, fuzzy
function

0,983 (AUC)

(RIBEIRO et al., 2019) Colorectal tumours
Fractal features, Haral-
ick, curvelet transform

97,68% (Ac)

(ROBERTO et al.,
2019)

Breast tumours PERC, colour
normalizatiopn

86,21% (Ac)
Colorectal tumours 90,91% (Ac)

(ROBERTO et al.,
2017)

NHL PERC 92,00% (Ac)

(MARTINS et al.,
2019)

NHL FD and LAC 97,00% (Ac)

(JIANG et al., 2018) NHL
Morphology, entropy,
GLCM and other de-
scriptors

97,96% (Ac)

WATANABE et al., 2016
Liver (gender) GIST descriptors,

PCA and LDA
93,70% (Ac)

Liver (age) 88,40% (Ac)
(RUBERTO et al.,
2016)

Liver (gender) Statistical analysis of
texture features

100,00% (Ac)
Liver (age) 100,00% (Ac)

four 90° rotations with and without mirroring for evaluation of the two CNNs. After

combining the classiĄcation results of the two CNNs, the obtained F-score was 0.758.

According to the authors, the main limitation of this approach lies in the need for a bulky

image set, a problem that occurs in much of CNN applications (YAMASHITA et al.,

2018).

In (ARAÚJO et al., 2017), the authors developed a custom 13-layer CNN for can-

cer classiĄcation in breast histological images. A dataset of 70,000 images of resolution

512×512 were given as input for training the CNN. The images belonged to four different

classes: normal tissue, benign abnormality, carcinoma in situ and invasive carcinoma.

Importantly, these 70,000 images were generated from 250 available breast histological

samples, by cutting and rotating them. Initially, the colour channel normalization algo-

rithm available at (MACENKO et al., 2009) was applied to all images in the dataset. This
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algorithm aimed to standardise the colours of the H&E dyes in an initial process of the

analysis. According to the authors, for a good classiĄcation of breast cancer images, CNN

should extract features at different scales, especially regarding the analysis of nuclei and

histological tissue as a whole. Thus, the CNN architecture was implemented to identify

these features in different layers: a) the identiĄcation of the edges occurs in the Ąrst two

layers; b) the analysis of the nuclei was performed in layers 3, 4, 5 and 6; c) layers 7, 8, 9

and 10 were responsible for exploring the general structure of the tissue represented in the

image; and d) the classiĄcation occurred in the last three layers. The obtained accuracies

were 77.8% and 80.6% for the classiĄcation of 4 (normal, benign, carcinoma in situ and

invasive carcinoma) and 2 (benign and malignant) classes, respectively. The authors also

tested the performance of the convolution Ąlters when classiĄed in an SVM algorithm.

The values obtained after the 12th layer of the network were employed to build a feature

vector given as input to the SVM. The obtained accuracy values exceeded the classiĄca-

tions performed in the CNN in relation to the 2 classes (83.3%) and maintained the same

values in the comparison of 4 classes (77.8%). The results obtained were relevant, with

highlight to the good accuracy indexes with experiments of more than 2 classes and the

association of an external SVM classiĄer to complement the CNN. However, according

to the authors, accuracy values can be improved with the use of other feature extraction

methods besides convolution-based features.

Recently, with greater availability of computational resources, the implementation of

more complex CNN models, as well as the combination of different CNNs has become

a recurrent practice in research in the area. In (LI et al., 2019), the authors used data

augmentation to increase the number of samples from the breast cancer dataset, gener-

ating sub-images of size 112 × 112 pixels. To improve classiĄcation, the authors applied

a six-layer CNN called ReĄneNet to remove incorrectly labelled sub-images. Then, the

sub-images were given as input to a new CNN model named Atrous DenseNet. This

model consists of the use of the atrous convolution operation, which consists of applying

a dilation to the kernels based on a Ú parameter, in order to increase the information cap-

ture area for the construction of the feature maps. With the combined use of the atrous

convolution with the traditional convolution, this model was able to obtain an accuracy

of 100%. According to the authors, this operation is capable of highlighting multiscale

attributes in an image, besides providing a balance between the network depth and the

learning capacity, which is effective for sets with few samples.

In the context of colorectal tumor classiĄcation, the use of CNN has also provided ex-

cellent results. In (DABASS; VIG; VASHISTH, 2019), the authors proposed a custom 31-

layer CNN to perform classiĄcation of colorectal histological images, achieving an accuracy

of 93.24% and 96.97% for the classiĄcation of 5 and 2 classes, respectively. The proposed

model resembles the AlexNet network architecture (KRIZHEVSKY; SUTSKEVER; HIN-

TON, 2012), however the dimensionality of the convolution kernels were changed so that
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it was not necessary to change the original resolution of the images, as usually occurs

in good parts of CNN applications where each model requires a different input resolu-

tion. Similar results were obtained in (SENA et al., 2019) when classifying 4 categories of

colorectal tumors with a custom 12-layer network, in which an accuracy of 93.08% was ob-

tained after 400 training epochs. Both in the work of (DABASS; VIG; VASHISTH, 2019)

and (SENA et al., 2019), the optimization of hyper-parameters and the increase in the

number of CNN layers are indicated as necessary factors for improving the performance

obtained by CNN models for the classiĄcation of colorectal images.

Some researchers have recently experimented with approaches consisting of ensembles

of different CNN models. In the method proposed in (AWAN et al., 2019), for example,

a normalisation of the colour channels was initially applied to the colorectal images.

Then, the normalised images were provided as input to a U-Net model CNN to perform

segmentation, in order to remove non-glandular areas. The CNN models GoogLeNet,

DenseNet and ResNet-50 were tested to classify the images after the segmentation step.

However, due to the depth of these networks, the classiĄcation would be susceptible to

overĄtting if a large enough sample set was not trained. To avoid this problem, the data

were augmented by mirroring and rotation operations. During classiĄcation on CNN, each

image was divided into six sub-images of resolution 256×256, where the probability vectors

obtained for each sub-image were summed and the Ąnal prediction was given by the class

that obtained the highest probability after applying the sum rule. The best accuracy was

obtained by CNN GoogLeNet, by classifying four classes of segmented colorectal images,

with a value of 85%. According to the authors, segmentation was a decisive factor for the

improvement in the classiĄcation of this type of images, however, superior results were

obtained in non-segmented colorectal images (DABASS; VIG; VASHISTH, 2019; SENA

et al., 2019).

In regard to the study of colorectal tumour detection methods, a set of different CNNs

was also proposed in (TAVOLARA et al., 2019). The authors developed an approach

based on Generative adversarial networks (GAN), where the generator was implemented

as a U-Net and the discriminator is a standard CNN. With 3,000 colorectal tumour image

samples available, the method provided a F-score of 0.940. According to the authors,

this approach allows exploring data in unbalanced classes due to the fact that, instead

of training a generic CNN model for the whole set of images, a different model must be

trained for each class. This strategy allows new classes to be added without the need to

re-train the entire set, but it is computationally expensive since several models must be

trained initially instead of just one. However, this study does not provide details on the

description of the model implemented, such as, for instance, which parameters or which

number of layers of the CNN architecture was used as discriminator.

In (JANOWCZYK; MADABHUSHI, 2016), NHL images were also investigated for

CNN model-based approaches. These images were split into sub-images of resolution 32×
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32 using the Caffe architecture to generate 825,000 training samples. These samples were

given as input to an AlexNet CNN model that applied a classiĄcation scheme similar to

that used in (AWAN et al., 2019), however instead of combining the subimage classiĄcation

by the sum rule, a majority vote scheme was used, where the class with the highest number

of votes in the subimage classiĄcation was considered as the class of the complete image.

For the classiĄcation, cross-validation of 5 folds was used, which were composed of 300

images for training and 75 images for testing each, which provided an accuracy of 96.58%.

The authors observed that in cases where the vote was won by a small margin, the chance

of the image being incorrectly classiĄed was higher. In such cases, it was suggested that

the classiĄcation should be done visually by an expert. The authors suggested the use of

handcrafted features to complement and improve the CNN classiĄcation.

Using a denser CNN, the authors at (TAMBE et al., 2019) were able to outperform

the results of (JANOWCZYK; MADABHUSHI, 2016) by applying a model similar to

InceptionV3. Data augmentation was applied to the image set through rotation and

displacement operations, resulting in a set of 225 images for training and 75 images for

testing. After running tests with different values for the hyperparameters, the method

was able to obtain an accuracy of 97.33% for differentiating the three classes of NHL,

considering a Ąxed learning rate of 10−3 and 35 training epochs. The method was able

to obtain relevant results even without applying segmentation techniques and with a

relatively low number of training epochs. The use of handcrafted features and segmented

images was indicated by the authors as a possible improvement of the work.

Gender and age identiĄcation through histological tissue analysis has also been inves-

tigated with the application of CNN models. In (ANDREARCZYK; WHELAN, 2017),

a new deep learning approach called Texture-CNN was presented, which consists of a 12-

layer architecture developed speciĄcally for texture classiĄcation. Each image was divided

into 24 non-overlapping sub-images, which were then rescaled to the input resolution of

the model which was deĄned as a patch of size 227×227 pixels. Each of the 24 sub-images

was classiĄed by CNN and then the probability vectors obtained by the classiĄcation are

summed and the class with the highest value corresponds to the classiĄcation of the orig-

inal image. After applying this approach, together with a voting classiĄcation scheme,

accuracies of 99.1% and 98.2% were obtained for the classiĄcation of 2 gender and 4 age

classes, respectively. The approach adopted resembles the sum rule used in the classiĄers

ensembles. The division of the image into 24 sub-images also served as a way to increase

the dataset, since the images analysed were of regular textures and the same can also be

used for training without loss of information, since the textures of the sub-images gen-

erated were similar to the texture of the original image. The authors suggested that a

deeper network could generate better results, but highlighted the main limitation of the

application of CNN models in histological images as being the difficulty in obtaining good

results with a small number of samples.
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A classiĄer ensemble can also be applied in approaches based only on deep learning.

After selecting the ResNet-50 model, the authors in (NANNI et al., 2020) generated

9 variations of this model by replacing the activation function ReLU by the functions

LeakyReLU, SeLu, SReLu, APLu, GaLu, preLu, MeLu and wMeLu. The set of liver

tissue images was augmented by mirroring and scaling operations. The resulting images

were given as input to the 10 available CNN models and trained for 30 epochs with a

Ąxed learning rate of 10−4. When analysed separately, the standard ResNet-50 model,

which applies the function ReLu as the activation function, provided the best results with

accuracies of 93% and 85.1% for gender and age classiĄcation, respectively. However,

when the results of the 10 models are combined using the sum rule, accuracy values of

98.3% and 91.16% were obtained for gender and age classiĄcation, respectively. According

to the authors, this approach introduces diversity to CNN models, which would be ideal in

a classiĄer ensemble context. Moreover, due to the transfer learning applied, a relatively

low number of training epochs was sufficient to obtain relevant results. An evaluation of

this approach on other CNN models could provide more information about the behaviour

of different activation functions in CNNs and how they can complement the classiĄcation.

In Table 7, a summary is presented with information about methods that have applied

deep learning in the context of breast, colorectal, NHL and liver histological images.

Table 7 Ű Overview of methods based on deep learning applied in histology images.

Method Image Approach Results
(CIREŞAN et al., 2013) Breast tumours 12- and 10-layer CNNs 0,782 (F1)

(ARAÚJO et al., 2017) Breast tumours
Colour normalization,
13-layer CNN and SVM

83,30% (Ac)

(LI et al., 2019) Breast tumours
ReĄneNet and Atrous-
DenseNet

100% (Ac)

(DABASS; VIG;
VASHISTH, 2019)

Colorectal tumours
31-layer CNN, similar
to AlexNet

96,97% (Ac)

(SENA et al., 2019) Colorectal tumours 12-layer CNN 93,28% (Ac)

(AWAN et al., 2019) Colorectal tumours
Colour normalization,
U-Net and GoogLeNet

85,00% (Ac)

(TAVOLARA et al.,
2019)

Colorectal tumours GAN and U-Net 0,940 (F1)

(JANOWCZYK; MAD-
ABHUSHI, 2016)

NHL Caffe and AlexNet 96,58% (Ac)

(TAMBE et al., 2019) NHL InceptionV3 97,33% (Ac)
(ANDREARCZYK;
WHELAN, 2017)

Liver (gender)
Texture CNN

99,10% (Ac)
Liver (age) 98,20% (Ac)

(NANNI et al., 2020)
Liver (gender) ResNet-50 and different

activation functions
98,30% (Ac)

Liver (age) 91,16% (Ac)
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3.3 Hybrid methods

As occurred with deep learning-based methods, hybrid methods also had in breast

tumour images one of the Ąrst contexts of application in histological images. In (WANG

et al., 2014), the authors proposed a combination of attributes generated by a CNN and

handcrafted features obtained via morphological, intensity and texture descriptors for

the identiĄcation of mitosis in breast cancer histological images. A total of 253 hand-

crafted features such as area, perimeter, Hausdorff dimension, mean, variance, skewness

and Haralick descriptors were extracted. Due to the high computational cost of a CNN,

the authors opted for a custom CNN implementation with only 3 layers. Thus, three clas-

siĄcations were performed in this approach: Ąrst, the handcrafted features composed a

feature vector for a Random Forest classiĄer. Then, another classiĄcation was performed

using the same three-layer CNN. Finally, in case of conĆict in the result of the Ąrst two

classiĄcations, a third classiĄcation is performed combining the two sets of features, hand-

crafted and convolutional, which were again classiĄed by the Random Forest classiĄer.

The F-score obtained was 0.735, and when comparing only the CNN without comple-

mentary attributes the F-score was 0.573. Despite being a relatively fast method, when

compared to other CNN-based approaches, the accuracy obtained was not expressive,

according to the authors. As a solution, it was suggested for future works the addition of

more layers to improve the performance of the classiĄcations and the use of GPU.

In (YU et al., 2019), an automatic breast cancer detection method was developed by

applying handcrafted feature extraction and segmentation via CNN. The segmentation

of breast tumour nuclei was performed by applying a custom 9-layer CNN whose output

consists of three binary images highlighting the nuclei, the contour of the nuclei, and the

image background, respectively. Then, texture, morphological, and spatial features such

as LBP, SURF, GLCM, Delaunay diagram and number of nuclei, were obtained from the

segmented images and provided as input to an SVM classiĄer. After applying the Relief

feature selection method, the approach provided an accuracy of 96.7%. This result was

higher than studies that employed only handcrafted features or CNN for breast cancer

image classiĄcation. Moreover, the authors showed that the proposed nine-layer CNN

performs a more accurate segmentation than that of other classical techniques such as

OtsuŠs method or watershed (VETA et al., 2011). However, no comparison was made

regarding the performance of the same set of features in non-segmented images, which

hinders an analysis about the importance of using segmentation in this type of image.

Besides the combination of different types of handcrafted features, different CNN

models can be used for the composition of a set of classiĄers, as proposed in (TRIPATHI;

SINGH, 2020) for colorectal image classiĄcation. In this method, the CNN models named

AlexNet, VGG16, VGG19, ResNet50, DenseNet121 and InceptionV3 were applied on a

colorectal histological tissue base. The features generated by the FC layers of each CNN

are extracted and stored in feature vectors. Classical feature extraction techniques such as
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SURF, LBP and histogram oriented gradients were also applied on the colorectal image

base. The authors propose two models to perform the fusion of different types of at-

tributes. The Ąrst, named as “cascade modelŤ, applied the PCA technique on each set of

features to reduce the dimensionality of the data and then perform classiĄcations through

an MLP network. The fusion of the probability values obtained for each class by each set

of features is done using the sum rule, where the set of classiĄcations performed by the

six CNNs has the same weight as the results of the classiĄcations obtained by using the

classical features. The cascade model provided a F-score of 0.981. The second proposed

model, named as “concatenated modelŤ, consists of the concatenation of all the obtained

features, which includes the six CNNs and all the classical feature extraction techniques.

The F-score value obtained with this model was 0.985. The results obtained with both

models indicate that the combination of classiĄcations obtained by handcrafted features

and classiĄcations via CNNs can provide important contributions to the literature. How-

ever, the use of six CNN models makes this method highly costly, and difficult to apply

in larger sets of images.

In (BAI et al., 2019), the authors proposed a method that applies transfer learning and

handcrafted feature extraction for NHL classiĄcation. In this approach, colour and texture

features such as LBP and histogram statistics, were extracted from cropped samples of

the original images and provided as input to a Random Forest classiĄer and a pre-trained

CNN from the GoogLeNet model. Both the Random Forest and CNN provided class

predictions that were combined using three different techniques: majority vote; sum rule;

and weighted sum. The best accuracy obtained was 99.10% with the use of the weighted

sum technique. According to the authors, this work was able to show the efficiency

of the transfer learning in the classiĄcation of lymphomas, besides the relevance of the

assignment of weights to perform the combination of different classiĄers. The application

of this method in different image bases and the test with other pre-trained CNN models

were suggested for future works.

More recently, classiĄer ensemble techniques for handcrafted features have been ap-

plied to obtain better results from this image dataset. The authors in (NANNI et al.,

2019) proposed a combination of 12 texture features and deep learning approaches. In

addition, new data augmentation techniques based on principal component analysis and

discrete cosine transform were also presented. Using a set of 6 CNN models trained with

different data augmentation approaches and a set of features, the method was also able

to obtain an accuracy of 100% for gender and age classiĄcation from liver histological

images. According to the authors, one of the main contributions of the work consisted

in the indication that different data augmentation methods can be used to compose a

set of CNNs in order to combine their respective classiĄcation results. The authors also

suggest that the work could be enhanced with methods to train CNNs on sets with a

small number of images.
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In Table 8, a summary is presented with information on hybrid methods applied in

the context of breast, colorectal, NHL and liver histological imaging.

Table 8 Ű Overview of hybrid methods applied in histology images.

Method Image Approach Results

(WANG et al., 2014) Breast tumours
3-layer CNN, intensity,
texture and morpho-
logical features

0,735 (F1)

(YU et al., 2019) Breast tumours
CNN, LBP, SURF,
GLCM and other
descriptors

96,70% (Ac)

(TRIPATHI; SINGH,
2020)

Colorectal tumours
6 CNN models, LBP,
SURF, gradient his-
tograms

0,985 (F1)

(BAI et al., 2019) NHL
GoogLeNet, intensity,
texture and morphol-
ogy features

99,10% (Ac)

(NANNI et al., 2019)
Liver (gender) 6 CNN models and

other descriptors
100,00% (Ac)

Liver (age) 100,00% (Ac)

3.4 Considerations

This chapter presented several computer vision methods for the classiĄcation of his-

tological images of breast tumours, colorectal tumours, NHL and liver tumours.

Although handcrafted features have performed well in various histological imaging

contexts, the increasing evolution of deep learning techniques cannot be ignored. The

improvement of approaches such as transfer learning, data augmentation and Ąne-tuning

have served as options to circumvent the limitations imposed by sparse medical image

sets (TRIPATHI; SINGH, 2020). Thus, researchers have increasingly delved into the use

of deep learning in recent years, especially with the exploration of different CNN models.

Regarding deep learning-based methods, although these have provided excellent results

in several application contexts, becoming the most popular approach in recent research

in computer vision, CNNs still have certain limitations. Especially when used for the

classiĄcation of histological images, where datasets with signiĄcant numbers of samples

are rare, making it difficult to train the networks (YAMASHITA et al., 2018). Thus,

other types of features have been used to complement the classiĄcations performed by

deep learning models (NANNI et al., 2019).

On the other hand, hybrid models attempt to exploit the strengths of each approach,

combining the great discriminative power of CNNs with the adaptability to speciĄc fea-

tures of different histological lesion types of the handcrafted features. This association

have shown promising results in recent years (YU et al., 2019; BAI et al., 2019; NANNI
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et al., 2019; TRIPATHI; SINGH, 2020). However, these methods were implemented for

speciĄc classiĄcation tasks, so only the method from (NANNI et al., 2019) was able to

provide relevant results in different histological imaging contexts.

In general, there are few computer vision approaches that have been able to perform

well on different categories of histological images (SHAMIR et al., 2008; ILSE; TOM-

CZAK; WELLING, 2018; ROBERTO et al., 2019; NANNI et al., 2019). Fractal features

(RIBEIRO et al., 2019; ROBERTO et al., 2019; ROBERTO et al., 2017) and CNN mod-

els (LI et al., 2019; ANDREARCZYK; WHELAN, 2017; BAI et al., 2019) were able to

provide high accuracy rates in several CAD systems for histopathology tasks, but usu-

ally in separate applications. These features also performed well on image sets with few

samples, and their application in conjunction with a CNN would be a possible solution to

circunvent the problem of insufficient training samples. Therefore, a hybrid method that

addresses fractal geometry and deep learning can be investigated to improve these results

when applied to different histological datasets. Nevertheless, models usually consist of

classifying the handcrafted features with a common classiĄer such as SVM or decision

tree and then combining the result with the classiĄcation of one or more CNNs using the

sum rule or majority vote.

A novel approach of converting the handcrafted features into a synthetic model can

be investigated as input to a CNN. Studies based on this approach are being addressed

in the literature as highlighted in the works (LUMINI; NANNI, 2018; KAUSAR et al.,

2019). Some works have applied well known techniques such as Recurrence plot (RP)

and Gramian angular Ąelds (GAF) in order to convert handcrafted features into a visual

representation and classify it with a CNN. These approaches have been applied recently

for tasks such as ParkinsonŠs disease identiĄcation (AFONSO et al., 2019), time series

classiĄcation (YANG; CHEN; YANG, 2020), epileptic seizure detection (SHANKAR et

al., 2020) and cardiac arrhythmia classiĄcation (ZHANG et al., 2021). However, there is

still no research exploring this kind of approach with methods based on fractal geometry,

while we also noticed a lack of studies regarding the use of RP or GAF as a tool for features

representation in histology images classiĄcation. We believe that new investigations can

contribute in the process of histology lesions classiĄcation, addressing this gap in the

literature.
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features and images obtained in the Ąrst phase are carried out, whose aim is to combine

these classiĄcations using an ensemble to obtain class probability vectors.

There are four classiĄcations that occur in the second phase. The Ąrst one is performed

by a CNN, hereafter called O-CNN (Original image CNN), which receives as input the

original image. The second classiĄcation is also performed by a CNN, hereafter named

F-CNN (Feature image CNN), and it consists in the classiĄcation of an artiĄcial image

generated from the 300 local features obtained by the application of the FD, LAC and

PERC techniques. This set of features is transformed into a square RGB image through

a reshaping procedure (LUMINI; NANNI, 2018; KAUSAR et al., 2019). Three different

reshaping procedures were evaluated: sequential reshaping (ROBERTO et al., 2021);

recurrence plot (AFONSO et al., 2019); and gramian angular Ąelds (GAF) using the

summation and difference approaches (WANG; OATES, 2015). The third and fourth

classiĄcations were performed by traditional machine learning algorithms and consist in

the classiĄcations of the local and global feature vectors, respectively. Then, the values of

class probabilities obtained by each of these classiĄcations were combined in an ensemble

using the sum rule, similarly to (NANNI; LUMINI; GHIDONI, 2018). After this step,

the highest probability value indicated the class prediction. An overview of this approach

is presented in Figure 26, with each step described in details in the following sections.

4.3 Feature extraction

The main stage of the proposed method consists in applying techniques based on frac-

tal geometry, described in Section 2.4, on the images under investigation. Local and global

FD, LAC and PERC features are extracted by applying multi-scale and multidimensional

approaches.

4.3.1 Local features

Each input image is divided into different scales according to the gliding-box algorithm,

which generates a set of matrices for each region of the image at each assigned value of

𝐿, ranging from 3 to 41 with an increment of 2 (RIBEIRO et al., 2019; ROBERTO et al.,

2019). This provides a total of 20 features per function (𝐶(𝐿), 𝑄(𝐿), 𝑀(𝐿), Λ(𝐿) and

𝐷(𝐿)), which results in 100 features for each Δ. In order not to generate distortion when

resizing the image when it is given as input to CNN, the value 41 was chosen for 𝐿𝑚𝑎𝑥

since it generates an amount of features that can be organized as a square matrix after the

rearrangement procedures, which will be detailed in Section 4.4. Furthermore, this value

for the parameter 𝐿𝑚𝑎𝑥 has demonstrated relevant results in classiĄcation as presented in

(RIBEIRO et al., 2019). Then, the multidimensional approach described in Section 2.4.1

is applied to the generated matrices, which consists in the computation of a different Δ

distance between the pixels of the region, as illustrated in Figure 5 and Equations 2-4.
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Figure 26 Ű Overview of the proposed method.
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The application of the multidimensional approach outputs a set of binary matrices,

whose values labelled 1 correspond to the pixels that have satisĄed the Δ distance cri-

terion. These matrices are given as input to the third stage of the proposed method,

where the techniques described in Section 2.4 for obtaining the local values of FD, LAC

and PERC are Ąnally applied according to Equations 6-13. The resulting output con-

sists of a set of 300 local features. These features are classiĄed on two different occa-

sions. First, they are given as input to a classic machine learning algorithm as a regular

300-dimensional handcrafted feature vector. On a second occasion, the 300 features are

reshaped into a feature image that consists of a square RGB matrix, which is given as

input to a CNN. This reshaping procedure is detailed in Section 4.4.
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4.3.2 Global features

After obtaining the 300 local features, the metrics described in Subsection 2.4.4 are

applied in order to generate FD, LAC and PERC global features. As the number of global

features is not dependent on the value of 𝐿𝑚𝑎𝑥, the same 21 features presented in Table

4 are obtained for each Δ, which results in a total of 63 global features.

These features are given as inputs to be classiĄed by a machine learning algorithm,

wherein the classiĄcation results will be part of the Ąnal ensemble. The reshaping proce-

dure is not applied on the global features.

4.4 Reshape

In order to generate a feature image to be given as input to a CNN, a reshaping

procedure is applied to the set of 300 local features. We have tested four different reshaping

approaches, which are detailed in the following subsections.

4.4.1 Sequential reshape

In order to be classiĄed by a CNN, the local feature vectors generated in the previous

stages must be converted into feature matrices, in a similar way to the method available in

(LUMINI; NANNI, 2018). In this way, the 300 local features obtained from the calculation

of each of the three Δ distances are reshaped to compose different dimensions of the

matrix, in order to represent colour model channels. In this case, for this stage of the

experiments, the conversion to RGB colour channels was employed. These features were

sequentially arranged in a matrix 10×10×3. The matrices generated by Δℎ, Δ𝑒 and Δ𝑚

correspond to the red, green and blue colour channels, respectively. In Figure 27, images

are presented to exemplify the process of building the feature image generated with the

RGB colour channels. Since each of the functions 𝐶(𝐿), 𝑄(𝐿), 𝑀(𝐿), Λ(𝐿) and 𝐷(𝐿),

obtained from a speciĄc Δ, generate 20 features, each function Ąts exactly 2 columns of

the feature image.

4.4.2 Recurrence plot

Another way of representing feature vectors as an image is through the use of recur-

rence plot (RP), which is a technique that has been proposed in (ECKMANN et al., 1995)

for the projection of repeated events into two or three dimensional spaces. It has been

used in applications such as the detection of ParkinsonŠs disease and plant recognition

(AFONSO et al., 2019; FARIA et al., 2016).

The application of this technique on a feature vector containing 𝑁 features outputs

a squared matrix 𝑁 × 𝑁 wherein each element 𝑅𝑖,𝑗 of the matrix is obtained through

Equation 24:
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Algorithm 1 Feature extraction module
1: input ⊂ originalImage
2: for 𝐿 = 3 to 𝐿 = 41, increment 𝐿 in 2 do
3: boxes(L) ⊂ glidingBox(input,L)
4: for dist = i ∀ i ∈ {Chessboard, Euclidian, Manhattan} do
5: binaryBoxes(dist) ⊂ Δ𝑑𝑖𝑠𝑡(boxes(L))
6: PERCfeatures ⊂ {PERCfeatures, obtainPERC(binaryBoxes(dist))}
7: LACfeatures ⊂ {LACfeatures, obtainLAC(binaryBoxes(dist))}
8: FDfeatures ⊂ {FDfeatures, obtainFD(binaryBoxes(dist))}
9: end for

10: end for

the local features. A transfer learning approach from pre-trained models in the ImageNet

dataset (RUSSAKOVSKY et al., 2015) was used, with the aim of improving accuracy as

well as reducing training time. In the second module, the feature vectors containing the

local and global handcrafted fractal features are classiĄed by classical machine learning

algorithms.

4.5.1 Deep learning module

Original images CNN

In the O-CNN classiĄcation, the original images were given as inputs and the class

probabilities obtained in the softmax layer were considered as classiĄcation results. These

results were later combined with the class probabilities obtained from the other three

classiĄcations.

Feature images CNN

The classiĄcation of the feature images obtained after reshaping the local features

is performed on the F-CNN. We Ąrstly evaluated how the use of the four reshaping

approaches (sequential, RP, GASF and GADF) affects the classiĄcation outcome. The

approach that provided the best classiĄcation outcome was selected to be part of the

classiĄer ensemble.

It is important to emphasize that O-CNN and F-CNN are not different networks, but

a same CNN model that is employed twice in the proposed model: once to analyze the

original image; and another time to analyze the feature image.

4.5.1.1 Transfer learning

In order to reduce the training time of CNN and obtain promising results with a

smaller number of epochs, the transfer learning strategy was adopted to decrease the

evaluation time of a model without presetting the weights. Therefore, four candidate CNN
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classical machine learning algorithms. The evaluated classiĄers were: Decision tree (DT);

Logistic (LOG); Random forest (RaF); Support vector machine (SVM); and Multilayer

perceptron (MLP). We selected these classiĄers as they are the most common representa-

tives of two of the main supervised learning approaches: tree- and function-based (HSIEH

et al., 2011; ROBERTO et al., 2019; CHEN et al., 2020). Then, the class probabilities

obtained from the classiĄcations of both feature sets are included in the classiĄcation en-

semble, as illustrated in Figure 26. After applying the sum rule to all probability vectors

included in the ensemble, the class which obtained the highest value is considered the

predicted class.

4.6 Ensemble model

In order to investigate a relevant ensemble model that properly associates the modules

previously described, some approaches were evaluated. In this stage, we Ąrstly investi-

gated the association composed by O-CNN and F-CNN, considering all possible feature

image representations. Then, a model combining the proposed ensemble composed by

two CNN classiĄers (O-CNN and F-CNN) and handcrafted feature classiĄers (local and

global) was investigated. This association employed the LOG and MLP classiĄers to fully

evaluate the ensemble based in the obtained results (which will be presented at Section

5.3). Moreover, as preliminary tests have shown that O-CNN signiĄcantly outperforms

the other classiĄcation approaches present in the ensemble, it has been assigned a weight

of 3, which represents 50% of the ensemble sum, as described in (ONAN; KORUKOĞLU;

BULUT, 2016; HSU; CHIEN, 2020). This weight value was obtained through empirical

testing. For simpliĄcation, the part of the ensemble composed by the CNN classiĄcation

module was deĄned as Φ, according to Equation 29:

Φ = 3× 𝑝(𝑂-𝐶𝑁𝑁) + 𝑝(𝐹 -𝐶𝑁𝑁). (29)

, wherein the probability vectors obtained after each classiĄcation is denoted by 𝑝(). The

Ąnal proposed ensemble is composed by the following elements:

❏ CNN for the classiĄcation of the original images, with weight 3, representing 50%

of the ensemble composition (𝑂-𝐶𝑁𝑁);

❏ CNN for the classiĄcation of the feature images, generated by one of the tested

reshaping procedures (𝐹 -𝐶𝑁𝑁);

❏ ClassiĄcation of handcrafted local fractal features (𝐻𝐶𝑙𝑜𝑐𝑎𝑙);

❏ ClassiĄcation of handcrafted global fractal features (𝐻𝐶𝑔𝑙𝑜𝑏𝑎𝑙);
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Therefore, using the weighted sum rule, the proposed ensemble ϒ can be summarized

according to Equation 30:

ϒ = 3× 𝑝(𝑂-𝐶𝑁𝑁) + 𝑝(𝐹 -𝐶𝑁𝑁) + 𝑝(𝐻𝐶𝑙𝑜𝑐𝑎𝑙) + 𝑝(𝐻𝐶𝑙𝑜𝑐𝑎𝑙). (30)

The pseudo-code corresponding to the classiĄcation module, as well as the ensemble

composition of the proposed method is presented in Algorithm 2.

Algorithm 2 ClassiĄcation module and ensemble
1: O-CNN ⊂ classifyCNN(input)
2: localFeatureVector ⊂ {PERCfeatures, LACfeatures, FDfeatures}
3: featureImage ⊂ reshape(localFeatureVector)
4: F-CNN ⊂ classifyCNN(featureImage)
5: localClassiĄcation ⊂ classify(localFeatureVector)
6: globalClassiĄcation ⊂ classify(globalFeatureVector)
7: result ⊂ argmax(3×O-CNN + F-CNN + localClassiĄcation + globalClassiĄcation)

4.7 Performance evaluation

In order to investigate the performance of the approaches proposed in this research,

details of the experiments conducted are presented.

In the Ąrst stage, an investigation of the most relevant network model for histological

image classiĄcation was performed. Each of the CNN models presented in Section 2.6.1,

apart from the LeNet, was applied to the Ąve tested datasets. In the second stage, in

order to ensure that there is not a negative transfer problem, which occurs when the

use of transfer learning impairs the performance of the model (TORREY; SHAVLIK,

2010), tests were performed without the use of transfer learning and the results obtained

were compared. In the third testing stage, the performance of F-CNN and handcrafted

classiĄcations were evaluated separately. Then, in the fourth stage, different ensemble

compositions were evaluated, containing the results previously obtained by O-CNN, F-

CNN and handcrafted classiĄcations. Then, the proposed method was compared with

other techniques such as geometric data augmentation, ADASYN and other handcrafted

feature-based approaches. To obtain features from these other techniques, the respective

methods were implemented in software Matlab R2019b and applied on the same image

bases. For classiĄcation of the feature vectors, the classiĄers available in the Weka 3.6.13

platform were used with their default parameters.

All tests were run on a Intel Xeon Silver 4116 CPU of 2.10𝐺𝐻𝑧, 128GB RAM and

a NVIDIA GeForce RTX 2080Ti card using software MATLAB R2019b. As some of the

tested bases have a small number of samples, the cross-validation technique with 10-folds

was adopted in all test steps to avoid problems such as overĄtting. The training/test

split for each fold is 90%/10%. Moreover, all the tests were performed 10 times, where
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each time the set of 10 folds was generated differently. For training the CNN models,

the default values of hyper-parameters available from the Deep Learning Toolbox of the

software MATLAB R2019b were used, which are listed below:

1. Solver: sgdm;

2. Initial learning rate: 0.01;

3. Learning rate drop period: 2 epochs;

4. Learning rate drop factor: 0.75;

5. Mini-batch size: 32;

6. L2 regularization: 0.0001;

7. Epochs: 10.

4.7.1 Evaluation metrics

The evaluation of results obtained from the application of a new proposal is an im-

portant step in the process of analysing its feasibility. For that purpose, it is necessary to

deĄne the metrics to be evaluated and the statistical analysis procedure of the obtained

values. In this section, two of the most commonly used performance metrics in image

classiĄcation problems will be described, as well as a non-parametric statistical test to

evaluate the results.

4.7.1.1 Accuracy

Accuracy is among the most common metrics for the analysis of results in the context of

image classiĄcation because the calculation is simple and the interpretation of the results

is easy. After data classiĄcation, a structure called confusion matrix can be generated.

This matrix is able to provide the number of True Positives (TP), positive values that

the system correctly classiĄed as positive; True Negatives (TN), negative values that

the system correctly classiĄed as negative; False Positives (FP), negative values that the

system incorrectly classiĄed as positive; and False Negatives (FN), positive values that

the system incorrectly classiĄed as negative. The accuracy 𝐴𝑐 is given based on these

values, as shown in Equation 31.

𝐴𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(31)

Accuracy corresponds to a value between 0 and 1. If the classiĄer has correctly labelled

all samples, the accuracy will have a value equal to 1 (or 100%). However, in problems

where classes are unbalanced, accuracy may not be a reliable measure. An accuracy of
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90% for a given class A, where this class contains 95% of the total number of samples in

the base, is not a good result. Therefore, the use of complementary performance measures

is necessary to evaluate methods.

4.7.1.2 F-score

The F-score is a metric that indicates the general quality of a method, independent

of the number of classes in the input sets or its unbalance. This metric consists of the

harmonic mean between two other metrics: precision (𝑃𝑟𝑒𝑐) and recall (𝑅𝑒𝑐). The 𝑃𝑟𝑒𝑐

indicates the ratio between samples classiĄed as a given class and the total samples of the

same class, given by Equation 32.

𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(32)

The calculation of 𝑅𝑒𝑐 is done in a similar way, but number of samples classiĄed as A

is used instead, as indicated in Equation 33.

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(33)

Thus, the F-score, on several occasions also called 𝐹1, is given by Equation 34.

𝐹1 =
2× 𝑃𝑟𝑒𝑐×𝑅𝑒𝑐

𝑃𝑟𝑒𝑐 + 𝑅𝑒𝑐
(34)

4.7.1.3 Statistical signiĄcance test

The performance measures 𝐴𝑐 and 𝐹1 are adequate measures to evaluate the perfor-

mance of a given computational approach. However, for a comparison across different

approaches, it is necessary to apply a statistical test in order to verify whether the differ-

ences in the results obtained by each approach are relevant or not (JAPKOWICZ; SHAH,

2011).

There are several tests of statistical signiĄcance, and the choice of the optimal test de-

pends on the type of comparison that is intended. In a context where different approaches

are evaluated on different input sets independent of each other, FriedmanŠs non-parametric

test is the most appropriate (JAPKOWICZ; SHAH, 2011). The aim of this test is to check

whether there is a statistically relevant difference between the compared algorithms given

an Ð value. If this difference is veriĄed, a Post-hoc analysis is performed with the objective

of Ąnding in which pairs of compared methods such difference occurs. For the statistical

analysis, the software StatsDirect 3 was used.
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4.8 Considerations

On this chapter, the proposed method was presented in details. The method consists

in an ensemble among the CNN classiĄcation of the original image, the CNN classiĄca-

tion of a feature image, which is generated from the set of local fractal features, and the

classiĄcation of local and global handcrafted fractal features. The chosen datasets for

evaluating the proposed method were CR, LA, LG, NHL and UCSB, which are repre-

sentatives of four different types of histology images: colorectal, breast, lymphomas and

liver tissue. The method was evaluated using the 𝐴𝑐 and 𝐹1 metrics and the results are

presented in the following chapter.
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Chapter 5

Results and Discussion

In this section, the results obtained from the experiments described in Section 4.7 are

presented. The chapter is divided in three sections. First, the deep learning classiĄcation

module is evaluated. Then, the tests regarding the classiĄcation of local and global

fractal features are performed for evaluating the handcrafted classiĄcation module. At

last, the two modules are combined and the proposed ensemble is evaluated. In some

cases, the standard deviation values were omitted for better formatting. These values can

be consulted in Appendix A.

5.1 Deep learning module

5.1.1 O-CNN

The Ąrst set of experiments aimed to identify the most suitable CNN model for classi-

fying the original input images. The Ąve datasets were given as input to the CNN models

described in Section 2.6.1, except for the LeNet model which only supports grayscale

images. These models were chosen not only due to their good performance in the classi-

Ącation of histology datasets (RAKHLIN et al., 2018; MAHBOD et al., 2018; JIANG et

al., 2019), but also as they have a signiĄcantly lower computational cost than the recent

deeper models. The parameters described in Section 4.7 were used in the experiments

presented here. The classiĄcation results are shown in Table 10. The evaluated metrics

were CNN loss for the testing set and training time in seconds.

To analyse the statistical relevance between the investigated models, the Friedman

non-parametric test was employed in this step to verify the difference between the loss

values (JAPKOWICZ; SHAH, 2011). With Ð = 0.05, the value 𝑃𝑘 = 0.4144 was obtained,

which indicates the absence of a signiĄcant difference in the values compared between the

four tested CNN models once 𝑃𝑘 > Ð. Then, the training time was analysed and the

Friedman test indicated a signiĄcant difference (𝑃𝑘 < 0.0001) in all pairwise comparisons

(Conover) involving the ResNet-50 model. Therefore, this model was chosen to be utilized
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Table 10 Ű Loss and training time (s) for the classiĄcation of the Ąve datasets using the
original images in different CNN models (O-CNN).

Dataset ResNet-50 ResNet-101 InceptionV3 Xception

CR
Loss 0.018 0.022 0.045 0.043
Time 50.21 91.26 93.82 83.37

LA
Loss 0.048 0.128 0.031 0.051
Time 122.47 247.67 259.65 247.22

LG
Loss 0.005 0.017 0.005 0.041
Time 67.25 133.84 139.99 128.66

NHL
Loss 0.767 0.585 0.497 0.409
Time 42.69 85.79 87.58 77.01

UCSB
Loss 0.318 0.271 0.305 0.606
Time 21.99 39.65 39.01 29.76

in the deep learning module of the proposed method. Moreover, this model was adopted

due to its reduced training time and the relevant results recently obtained in the classiĄ-

cation of histological images (RAKHLIN et al., 2018; MAHBOD et al., 2018; WANG et

al., 2019; WANG et al., 2020).

In order to better visualize how the ResNet-50 model is interpreting the images, we

can use the Grad-CAM tool to obtain heat maps that illustrate which regions of the

images were more relevant for the networkŠs prediction, as described in Section 4.5.1.2.

An example of each type of tissue of the obtained class activation maps are shown in

Figure 32.

For the colorectal tissue example, shown in Figure 32 (a), the network seems to focus

on regions wherein structures called goblet cells are present (LEEUWEN et al., 2007).

These regions are often less homogeneous than the stroma and, therefore, can be more

relevant for the model to identify them. The opposite can be stated about the breast

tissue example shown in Figure 32 (d), wherein the focus is on the nuclei cells. On the

other hand, the liver and NHL images have a more regular texture, which makes it less

clear to visualize which patterns are being detected by the CNN. For the liver example

shown in Figure 32 (b), the modelŠs focus is spread throughout different areas, while in the

NHL example in Figure 32 (c), the area with less nuclei cells appear to be more relevant.

It is noteworthy that these generated heat maps are highly dependent on the dataset and

the trained model.

Finally, the occurrence of negative transfer was evaluated. In order to do so, the Ąve

datasets were classiĄed using a pre-trained version of the ResNet-50 model, as described

in Section 4.5.1.1, and an untrained version, without pre-loaded weights. The results are

shown in Table 11.

These results show that the pre-trained model has a better performance in all datasets

by a signiĄcant margin, which indicates the absence of negative transfer. We also consid-

ered increasing the number of training epochs from 10 to 100 and using geometric data
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fer learning without data augmentation and only 10 training epochs. Therefore, transfer

learning was applied to all of the procedures involving CNN classiĄcation.

5.1.2 F-CNN

The following experiment was aimed to investigate the most appropriate reshaping

procedure that generates a feature image to be given as input to a CNN (F-CNN). As

detailed in Section 4.4, the four evaluated procedures are: sequential, RP, GASF, and

GADF. The generate feature images are given as inputs to the ResNet-50 CNN model.

The accuracy and F1 values obtained from the Ąve datasets are shown in Table 12.

Table 12 Ű Results obtained from the classiĄcation of feature images using the ResNet-50
CNN model.

Dataset
Sequential Rec. Plot GASF GADF
𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1

CR 82.73% 0.825 84.79% 0.845 85.21% 0.849 84.97% 0.847
LA 95.40% 0.954 94.81% 0.948 93.52% 0.936 93.66% 0.937
LG 94.91% 0.948 95.58% 0.955 94.19% 0.941 94.34% 0.943
NHL 69.71% 0.693 72.43% 0.719 72.25% 0.717 73.45% 0.729
UCSB 72.76% 0.724 72.76% 0.724 71.03% 0.708 72.93% 0.726
Average 83.10% 0.829 84.08% 0.838 83.24% 0.830 83.87% 0.836

The sequential reshape provided the best results for the LA dataset, with an accuracy

of 95.40%. For the LG dataset, the best result was obtained using the RP reshape, which

provided an accuracy of 95.58% and an F-score of 0.955. The CR dataset had the best

performance using the GASF reshape, with an accuracy of 85.21%. The GADF reshape

was the only one that provided the best results for two datasets: NHL and UCSB, with

F1 values of 0.729 and 0.726, respectively. From an overall perspective, there is not a

speciĄc reshaping procedure that clearly outperforms the other three, in regard to the

classiĄcation of the feature images. Hence, the Friedman test was applied for a more

detailed analysis and the results are shown in Table 13.

Table 13 Ű p-values obtained for all pairwise comparisons obtained from the classiĄcations
of feature images using different reshaping procedures.

𝑝-values GADF Rec. Plot Sequential GASF Avg. Ranking
GADF - 0.8142 0.4850 0.1751 2.00
Rec. Plot 0.8142 - 0.6396 0.2529 2.20
Sequential 0.4850 0.6396 - 0.4850 2.60
GASF 0.1751 0.2529 0.4850 - 3.20

These 𝑝-values indicate that none of the reshaping procedures are clearly more suitable

than the others, since all obtained 𝑝-values were above the signiĄcance threshold (Ð =

0.05). According to the average ranking, the GADF reshape performed slightly better,
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which can be observed by the results presented in Table 12 specially in the NHL and

UCSB datasets. These datasets were also the ones whose classiĄcation has shown to be

more challenging, considering both original and feature images.

Since the feature images are generated based on well-deĄned rules, it is possible to

know what features each pixel is composed of, according to the type of reshaping procedure

applied. Therefore, Grad-CAM can be applied in order to identify which regions of

the image contributed more to the CNN classiĄcation and, consequently, verify which

features these regions are composed of. For each class, the output maps generated for each

image were combined and a map containing the average values was generated. However,

since misclassiĄcations could affect the analysis, we only considered activation maps from

images that obtained a score greater than 0.95 in the softmax layer. This provides an

overview of what regions, in general, are more relevant for a correct classiĄcation.

For the CR dataset, whose Grad-CAM images are shown in Figure 33, the network

does not focus on the regions related to the 𝐶(𝐿) function, which represents the number

of percolating clusters per box, in neither classes, except when combined with the FD

features, represented by 𝐷(𝐿), in the benign class. For the malignant class, the focus is

primarily on the central area of the feature image, which corresponds to the 𝑄(𝐿) 𝑀(𝐿)

and Λ(𝐿) functions, which represent occurrence of percolation, size of the largest cluster

and LAC, respectively.

Figure 33 Ű Class activation maps of the benign (a) and malignant (b) classes from the
CR dataset classiĄed in the F-CNN using the GADF reshape.

(a) (b)

(Source: author)

The LA dataset is split into four classes, whose Grad-CAM images are shown in Figure

34. For the Ąrst three (one, six and 16 months), the focus is mainly on the combinations

of the 𝑄(𝐿), 𝑀(𝐿) and Λ(𝐿) functions. The FD features are more relevant for the 24

months class, when combined with the 𝐶(𝐿) and 𝑄(𝐿) function.

The class activation maps obtained from the LG dataset are similar to the ones from

the LA dataset, as these are composed by the same type of images. The average class
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Figure 34 Ű Class activation maps of liver tissue from female mice aged one (a), six (b),
16 (c) and 24 (d) months, from the LA dataset classiĄed in the F-CNN using
the GADF reshape.

(a) (b) (c) (d)

(Source: author)

activation maps are shown in Figure 35. Therefore, the areas represented by the combi-

nations of the 𝑄(𝐿), 𝑀(𝐿) and Λ(𝐿) functions were once again the networkŠs focus for

classifying both male and female classes. The FD features were also important for the

classiĄcation of the male class, specially when combined with the 𝐶(𝐿) function.

Figure 35 Ű Class activation maps of liver tissue from male (a) and female (b) mice from
the LG dataset classiĄed in the F-CNN using the GADF reshape.

(a) (b)

(Source: author)

For the NHL dataset, the combination pairs 𝑀(𝐿), Λ(𝐿) and 𝐶(𝐿), 𝐷(𝐿) were the

focus of the network for all three classes, as seen in Figure 36. For the MCL class though,

the region represented by the combination of the FD features with the 𝐶(𝐿) and 𝑄(𝐿)

functions seems to be more relevant.

For the UCSB dataset shown in Figure 37, the activation areas are more spread

throughout all different regions of the feature images representing the benign class, with

focus on 𝐷(𝐿) function combined with 𝑄(𝐿) and 𝑀(𝐿) functions. We believe that this

is related to the lower accuracy obtained for this dataset in relation to the others. On

the other hand, there is only one region in the average image representing the malignant

class that is composed mainly by the 𝑀(𝐿) and Λ(𝐿) functions.
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Figure 36 Ű Class activation maps of a CLL (a), FL (b) and MCL (c) case from the NHL
dataset classiĄed in the F-CNN using the GADF reshape.

(a) (b) (c)

(Source: author)

Figure 37 Ű Class activation maps of a benign (a) and a malignant (b) case from the
UCSB dataset classiĄed in the F-CNN using the GADF reshape.

(a) (b)

(Source: author)

Overall, these class activation maps show that all Ąve functions were relevant for the

F-CNN classiĄcation in at least one of the tested datasets. PERC features were mainly

represented by the 𝑄(𝐿) and 𝑀(𝐿) functions, although the areas represented by 𝐶(𝐿)

function were also focused in some cases, specially when combined with the 𝐷(𝐿) function,

which is composed by the FD features. Finally, LAC features, represented by the Λ(𝐿)

function, seem to have worked better when combined with the 𝑄(𝐿) and 𝑀(𝐿) functions.

5.2 Handcrafted classiĄcation module

In this section, the results obtained from the classiĄcation of the feature vectors com-

posed by the handcrafted local and global fractal features are presented. Firstly, the

results obtained from classifying the local fractal features are shown in Table 14. The

best results for each dataset are highlighted in bold.

The LOG classiĄer provided the best results for the CR, NHL and UCSB datasets

with accuracy values of 0.948, 0.818 and 0.802 respectively. The best results for the LA
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Table 14 Ű Results obtained from the classiĄcation of handcrafted local fractal features.

Dataset
DT LOG RaF SVM MLP

𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1
CR 70.67% 0.703 94.85% 0.948 81.39% 0.809 82.06% 0.811 92.67% 0.926
LA 91.50% 0.917 96.86% 0.969 94.07% 0.942 94.68% 0.947 97.78% 0.979
LG 91.81% 0.916 98.23% 0.982 95.43% 0.954 96.08% 0.960 99.85% 0.998
NHL 61.95% 0.613 81.82% 0.816 68.45% 0.677 65.21% 0.642 71.55% 0.712
UCSB 73.10% 0.730 80.17% 0.800 68.10% 0.678 65.17% 0.635 77.41% 0.771
Average 77.81% 0.776 90.38% 0.903 81.48% 0.812 80.64% 0.799 87.85% 0.877

and LG datasets were provided by the MLP classiĄer. In order to analyse the overall

performance of these classiĄers on the Ąve datasets, the Friedman test was also applied.

The average ranking considering the F1 metric and the 𝑝-values are shown in Table 15.

Comparisons with a signiĄcant statistical difference (Ð = 0.05) are highlighted in bold.

Table 15 Ű 𝑝-values obtained for all pairwise comparisons obtained from the classiĄcations
of handcrafted local fractal features.

𝑝-values LOG MLP SVM RaF DT Avg. Ranking
LOG - 0.4313 <0.0001 <0.0001 <0.0001 1.33
MLP 0.4313 - 0.0003 <0.0001 <0.0001 1.67
SVM <0.0001 0.0003 - 0.4313 0.0108 3.50
RaF <0.0001 <0.0001 0.4313 - 0.0583 3.83
DT <0.0001 <0.0001 0.0108 0.0583 - 4.67

These 𝑝-values indicate that the MLP and LOG classiĄers outperform the other three

by a signiĄcant margin, with 𝑝-values smaller than 0.001 in all comparisons. When the

classiĄers MLP and LOG are compared, the latter seems to have a slightly better per-

formance, however it is not statistically signiĄcant. The LOG classiĄer obtained the best

average ranking (1.33). These same evaluations were performed using global fractal fea-

tures. The classiĄcation results for each of the Ąve datasets are shown in Table 16 and

the statistical evaluation using the Friedman test is shown in Table 17.

Table 16 Ű Results obtained from the classiĄcation of handcrafted global fractal features.

Dataset
DT LOG RaF SVM MLP

𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1
CR 72.67% 0.723 90.42% 0.902 85.15% 0.849 87.45% 0.871 90.30% 0.902
LA 86.08% 0.860 94.49% 0.944 93.60% 0.937 93.30% 0.932 97.25% 0.973
LG 89.32% 0.892 97.58% 0.975 93.96% 0.939 94.26% 0.942 98.75% 0.987
NHL 62.17% 0.616 71.44% 0.710 72.54% 0.718 67.73% 0.669 72.67% 0.721
UCSB 72.76% 0.726 77.93% 0.777 72.76% 0.722 70.52% 0.700 75.86% 0.754
Average 76.60% 0.763 86.37% 0.862 83.60% 0.833 82.65% 0.823 86.97% 0.867

Similarly to what was observed in the local features classiĄcation, LOG and MLP

classiĄers have provided the best accuracy and F-score values when classifying global

fractal features. The LOG classiĄer provided accuracy values of 90.42% and 77.93% for

the CR and UCSB datasets, respectively. The LA, LG and NHL datasets had their best

results provided by the MLP classiĄer.
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Table 17 Ű 𝑝-values obtained for all pairwise comparisons obtained from the classiĄcations
of handcrafted global fractal features.

𝑝-values MLP LOG RaF SVM DT Avg. Ranking
MLP - 0.3185 0.0003 0.0001 <0.0001 1.33
LOG 0.3185 - 0.0028 0.0013 <0.0001 1.83
RaF 0.0003 0.0028 - 0.7367 0.0270 3.50
SVM 0.0001 0.0013 0.7367 - 0.0541 3.67
DT <0.0001 <0.0001 0.0270 0.0541 - 4.67

The Friedman test has also indicated that the statistical differences of the classiĄers

MLP and LOG is signiĄcant when compared to RaF, SVM and DT. However, there is

not a signiĄcant difference between LOG and MLP classiĄers regarding the classiĄcation

of global fractal features, although MLP has achieved a slightly better average ranking.

It is noteworthy that the local features provided better classiĄcation results overall

when compared to the global features, which indicates a higher discriminating power.

Despite not being the main reason they were selected for generating the feature images,

this shows that the local features are more suitable for this task.

5.3 Ensemble model evaluation

In this section, the evaluation of different combinations of reshaping procedures and

classiĄers for the handcrafted features are presented. The Ąrst tests consisted in evaluat-

ing the O-CNN + F-CNN ensemble. Since the statistical analysis presented in Table 13

has shown that all representations of a feature image provided similar results, the four

reshaping methods were reevaluated in an ensemble. The classiĄcation results are pre-

sented in Table 18 and the statistical analysis using the Friedman test is shown in Table

19.

Table 18 Ű Evaluation of different reshaping procedures for the O-CNN + F-CNN ensem-
ble model.

Dataset
Sequential Rec. Plot GASF GADF
𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1

CR 98.48% 0.985 98.55% 0.985 98.18% 0.982 98.42% 0.984
LA 99.07% 0.991 99.09% 0.991 99.15% 0.992 99.17% 0.992
LG 99.47% 0.995 99.17% 0.992 98.91% 0.989 99.13% 0.991
NHL 89.41% 0.892 89.57% 0.894 88.85% 0.887 89.06% 0.889
UCSB 83.62% 0.832 82.59% 0.822 83.97% 0.835 85.34% 0.850
Average 94.01% 0.939 93.79% 0.937 93.81% 0.937 94.22% 0.941

Once again, none of the four reshaping procedures evaluated clearly outperformed the

other three. In the classiĄcation results shown in Table 18, the sequential reshape pro-

vided the best accuracy for the LG dataset. CR and NHL datasets had their best results
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Table 19 Ű 𝑝-values obtained for all pairwise comparisons obtained from the classiĄcations
of the O-CNN + F-CNN ensemble using different reshaping procedures.

𝑝-values GADF Rec. Plot Sequential GASF Avg. Ranking
GADF - >0.9999 0.8176 0.2614 2.20
Rec. Plot >0.9999 - 0.8176 0.2614 2.20
Sequential 0.8176 0.8176 - 0.3644 2.40
GASF 0.2614 0.2614 0.3644 - 3.20

with the RP reshape while the GADF reshape provided the best results for the LA and

UCSB datasets. The Friedman test presented in Table 19 has also indicated the absence

of a signiĄcant statistical difference among these four procedures, with GADF and RP

obtaining the best average rankings (2.20). Since the GADF reshaping has also obtained

the highest average ranking in the individual evaluation (see Table 12), this procedure

has been chosen for the following evaluations. However, it must be noted that the four

reshaping procedures were able to provide good results in the overall performance in the

O-CNN + F-CNN ensemble, considering the Ąve datasets. This ensemble model signif-

icantly outperforms the results obtained with the use of the the handcrafted descriptors

only. However, it provided only a marginal improvement when compared to the results

obtained with a single ResNet-50: the average accuracy increased from 93.78% to 94.22%

using the GADF representation. Therefore, the classiĄcations with both local and global

handcrafted descriptors were included in the model.

Finally, the proposed ensemble composed by two CNN classiĄers (O-CNN and F-CNN)

and handcrafted feature classiĄers (local and global) was evaluated. For the CNN clas-

siĄers, the ResNet-50 model and the GADF reshaping procedure were used, as indicated

on the previous tests. Since the handcrafted classiĄcation tests presented in Section 5.2

have shown that LOG and MLP classiĄers outperformed the other three in both local and

global features classiĄcation, these two algorithms were evaluated in the full ensemble.

The classiĄcation results for all possible variations between the LOG and MLP classiĄers

for local and global feature classiĄcation are shown in Table 20. For the deĄnition of Φ

see Equation 29.

Table 20 Ű Evaluation of the proposed ensemble with different classiĄer combinations for
the handcrafted features.

Dataset
Φ + 𝐿𝑂𝐺(𝑙𝑜𝑐𝑎𝑙) + ... Φ + 𝐿𝑂𝐺(𝑙𝑜𝑐𝑎𝑙) + ... Φ + 𝑀𝐿𝑃 (𝑙𝑜𝑐𝑎𝑙) + ... Φ + 𝑀𝐿𝑃 (𝑙𝑜𝑐𝑎𝑙) + ...

... + 𝐿𝑂𝐺(𝑔𝑙𝑜𝑏𝑎𝑙) ... + 𝑀𝐿𝑃 (𝑔𝑙𝑜𝑏𝑎𝑙) ... + 𝐿𝑂𝐺(𝑔𝑙𝑜𝑏𝑎𝑙) ... + 𝑀𝐿𝑃 (𝑔𝑙𝑜𝑏𝑎𝑙)
𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1

CR 99.27% 0.993 99.27% 0.993 99.45% 0.995 99.27% 0.993
LA 99.60% 0.996 99.55% 0.996 99.45% 0.995 99.45% 0.995
LG 99.58% 0.996 99.58% 0.996 99.77% 0.998 99.70% 0.997
NHL 92.81% 0.927 93.16% 0.931 92.41% 0.923 92.33% 0.922
UCSB 88.45% 0.882 87.41% 0.871 88.45% 0.882 86.21% 0.856
Average 95.94% 0.959 95.79% 0.957 95.91% 0.959 95.39% 0.953

Apart from the ensemble wherein the MLP classiĄer was used for the classiĄcation of
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both local and global features, the other three combinations seemed to have presented

similar results overall. The Friedman test was applied for a more complete analysis. The

results are shown in Table 21.

Table 21 Ű 𝑝-values for all pairwise comparisons obtained from the classiĄcations of the
proposed ensemble including Φ and using different classiĄers for the hand-
crafted features.

𝑝-values MLP+LOG LOG+LOG LOG+MLP MLP+MLP Avg. Ranking
MLP+LOG - 0.6027 0.4383 0.0859 1.90
LOG+LOG 0.6027 - 0.7938 0.2062 2.30
LOG+MLP 0.4383 0.7938 - 0.3061 2.50
MLP+MLP 0.0859 0.2062 0.3061 - 3.30

Besides the lack of a statistically signiĄcant difference among the evaluated combi-

nations, the ensemble composed by Φ + 𝑀𝐿𝑃 (𝑙𝑜𝑐𝑎𝑙) + 𝐿𝑂𝐺(𝑔𝑙𝑜𝑏𝑎𝑙) has obtained the

highest average ranking. Moreover, the classiĄcation results obtained for all datasets are

relevant, with the smallest accuracy being of 88.45% for the UCSB dataset. Hence, de-

spite most of the evaluated combinations presenting results similarly relevant, we chose

the combinations the provided the highest average ranking.

The results obtained with the proposed ensemble were compared with some other

approaches commonly used in the literature for the classiĄcation of histological images.

For a fair comparison, the approaches were applied in the Ąve datasets using exactly

the same folds conĄguration that were used for all the previously presented experiments.

The compared approaches were: ResNet-50; ResNet-50 with ADASYN, a technique that

generates synthetic data to Ąx imbalanced datasets (HE et al., 2008); and ResNet-50

with data augmentation through geometric transformations. The comparison is shown in

Table 22.

Table 22 Ű Comparison of the proposed ensemble with other approaches commonly used
in the literature.

Dataset
Proposed ensemble ResNet-50 ADASYN Data augmentation

𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1
CR 99.45% 0.995 98.61% 0,986 99.41% 0,994 99.03% 0,990
LA 99.45% 0.995 99.03% 0,991 99.28% 0,993 98.05% 0,981
LG 99.77% 0.998 99.36% 0,993 99.17% 0,992 99.25% 0,992
NHL 92.41% 0.923 91.55% 0,914 92.11% 0,920 93.58% 0,935
UCSB 88.45% 0.882 80.34% 0,797 80.34% 0,798 86.55% 0,862
Average 95.91% 0.959 93.78% 0.936 94.06% 0.939 95.29% 0.952

The proposed ensemble was able to provide the best results for the CR, LA, LG

and UCSB datasets when compared to the ResNet-50, ADASYN and data augmentation

approaches. However, the approach using data augmentation provided the best results

for the NHL dataset. These results show that the proposed method is able to achieve
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promising performance in histological image classiĄcation. With the exception of the

UCSB dataset, the accuracy values were higher than 90%, which shows an approach

with good adaptive characteristics to different histological tissue categories. Despite the

evaluations in unbalanced samples in all the tested bases, the proposed method was also

able to provide F-score values above 0.880 in all cases. It is worth highlighting the relevant

results obtained in the CR, LG and LA datasets with performance values close to 100%

and 1.0 with these metrics. However, using only ResNet-50 also provided accuracy rates

close to 99% in these datasets. Therefore, it can be said that the contribution provided by

the proposed method was higher in the NHL and UCSB datasets. A statistical analysis

using the Friedman test was also performed. According to the results shown in Table 23,

the proposed ensemble not only has the best average ranking, but it also provides results

statistically more signiĄcant than the compared approaches, since the 𝑝-values were all

smaller than Ð.

Table 23 Ű 𝑝-values for all pairwise comparisons obtained from the classiĄcations of the
Ąve datasets using different approaches.

𝑝-values Proposed Data Aug. ADASYN ResNet-50 Avg. Ranking
Proposed - 0.0470 0.0264 0.0046 1.20
Data Aug. 0.0470 - 0.7573 0.2299 2.60
ADASYN 0.0264 0.7573 - 0.3615 2.80
ResNet-50 0.0046 0.2299 0.3615 - 3.40

Despite the proposed ensemble having obtained relevant results even in small datasets,

as is the case for UCSB, data augmentation through geometric transformations could be

applied for a slight enhancement in the accuracy. Table 24 shows the accuracy and F-score

values when data augmentation is applied to images trained in the O-CNN. The proposed

ensemble described in Equation 30 was used. It can be noted that, despite there being a

slight improvement in the accuracy obtained for the CR, NHL and UCSB datasets, this

improvement falls within the error margin. Therefore, it is unlikely that the use of data

augmentation through geometric transformations signiĄcantly improves the performance

of the proposed ensemble.

To show the contribution of the feature images classiĄcation (F-CNN) to the ensemble,

we have performed tests without including F-CNN. The evaluated ensemble consists of the

O-CNN and the local and global handcrafted features classiĄcation with either LOG or

MLP classiĄers. We also evaluated the proposed ensemble without assigning any weights.

The results are shown in Table 25, which indicate that the proposed ensemble in the

conĄguration presented in Equation 30 outperforms the other scenarios in all of the Ąve

datasets. This highlights the contribution of the feature images in the F-CNN and how

assigning a greater weight to the O-CNN improved the classiĄcation accuracy.

Finally, an overview of the results obtained with the proposed ensemble, in relation to

other approaches presented in the literature for the context of histology image classiĄca-
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Table 24 Ű ClassiĄcation results from the proposed ensemble with data augmentation ap-
plied to the O-CNN.

Dataset
Proposed ensemble Proposed ensemble

with data augmentation without data augmentation
𝐴𝑐 𝐹1

CR 99.70%∘ 0.43 0.997∘ 0.004 99.45%∘ 0.67 0.995∘ 0.007
LA 99.15%∘ 0.29 0.992∘ 0.003 99.45%∘ 0.36 0.995∘ 0.004
LG 99.62%∘ 0.36 0.996∘ 0.004 99.77%∘ 0.36 0.998∘ 0.004
NHL 93.58%∘ 0.56 0.935∘ 0.006 92.41%∘ 1.05 0.923∘ 0.011
UCSB 90.69%∘ 2.72 0.905∘ 0.028 88.45%∘ 2.16 0.882∘ 0.022
Average 96.55%∘ 0.87 0.965∘ 0.009 95.91%∘ 0.92 0.959∘ 0.010

Table 25 Ű Evaluation of the F-CNN contribution to the ensemble and the use of weights
on the O-CNN.

Dataset
Proposed ensemble No F-CNN (LOG) No F-CNN (MLP) No weights

𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1
CR 99.45% 0.995 98.48% 0,985 99.27% 0,993 96.85% 0,968
LA 99.45% 0.995 99.38% 0,994 99.36% 0,994 99.09% 0,991
LG 99.77% 0.998 99.58% 0,996 99.77% 0,998 99.70% 0,997
NHL 92.41% 0.923 89.68% 0,895 91.44% 0,913 86.10% 0,859
UCSB 88.45% 0.882 83.28% 0,830 83.97% 0,835 85.69% 0,855
Average 95.91% 0.959 94.08% 0.940 94.76% 0.947 93.49% 0.934

tion is shown in Tables 26, 27, 28 and 29. The methods are ordered chronologically and

the best results on each dataset are highlighted in bold. It can be noted that the methods

that provided the best results on each classiĄcation task applied both deep learning (DL)

and handcrafted (HC) features, except for breast image classiĄcation.

According to Table 26, we noted a lack of methods that used both HC features and

DL for NHL image classiĄcation, which indicates a demand for new research in the area,

although the best accuracy for this dataset was reported by (BAI et al., 2019), wherein

both DL and HC approaches were applied. Breast cancer classiĄcation remains a challeng-

ing task in computer vision since few methods were able to obtain accuracies above 95%

when classifying these types of images, as observed in Table 27. It is likely that the main

reason for this is related to the short number of samples available on public breast tu-

mour datasets. The methods that obtained higher accuracies on this dataset applied data

augmentation techniques through geometric transformations, wherein they were able to

generate and train 200,000 (YU et al., 2019) and 896,000 (LI et al., 2019) image patches,

respectively. When geometric data augmentation was applied to the proposed ensemble,

an accuracy of 90.69% was obtained for the classiĄcation of breast cancer. For colorectal

images classiĄcation, the proposed method obtained the best performance in relation to

other approaches, as seen in Table 28. The second, third and fourth methods ranked

in the comparison are all based on CNN approaches, without the use of HC features

(DABASS; VIG; VASHISTH, 2019; TAVOLARA et al., 2019; SENA et al., 2019). The

results obtained with the proposed ensemble may encourage new research on the com-
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bination of HC and DL features for colorectal images classiĄcation since few papers on

literature have applied similar approaches. Lastly, different papers that applied computer

vision approaches for the classiĄcation of gender and age from liver tissue images were

compared, as seen in Table 29. This is a context that has not been as explored as cancer

detection challenges. However, it has already provided relevant results with high accuracy

rates.

Table 26 Ű Overview of the accuracy values (%) obtained by different approaches for NHL
image classiĄcation.

Method Approach Accuracy
(JANOWCZYK; MADABHUSHI, 2016) Caffe and AlexNet (DL) 96.58
(ROBERTO et al., 2017) PERC (HC) 92.00

(JIANG et al., 2018)
Morphology, entropy, GLCM and other
handcrafted features (HC)

97.96

(RIBEIRO et al., 2018)
Colour normalization, PERC, LAC, GLCM
and curvelet (HC)

86.14

(MARTINS et al., 2019) FD and LAC (HC) 97.00

(BAI et al., 2019)
GoogLeNet, intensity, texture and
morphological features (DL+HC)

99.10

(ZHANG et al., 2020)
Static and Dynamic training method for
VGG-16 and PCA (DL)

98.93

(MARTINS et al., 2021)
FD, LAC and Hermite polynomial classiĄer
(HC)

91.61

Proposed
ResNet-50, GADF, FD, LAC, PERC, LOG
and MLP (DL+HC)

92.41

Table 27 Ű Overview of the accuracy values (%) obtained by different approaches for
breast histology image classiĄcation (UCSB).

Method Approach Accuracy

(ARAÚJO et al., 2017)
Colour normalization, 13-layer CNN and
SVM (DL)

83.30

(PAPASTERGIOU; ZACHARAKI;
MEGALOOIKONOMOU, 2018)

Spatial decomposition, tensors (DL) 84.67

(FENG; ZHANG; YI, 2018) Stacked denoising autoencoder (DL) 94.41
(LI et al., 2019) ReĄneNet and Atrous DenseNet (DL) 97.63

(YU et al., 2019)
CNN, LBP, SURF, GLCM and other hand-
crafted features (DL+HC)

96.67

(ROBERTO et al., 2019) PERC (HC) 86.20

(KAUSAR et al., 2019)
Colour normalization, Haar wavelet decom-
position and 16-layer CNN (DL)

91.00

Proposed
ResNet-50, GADF, FD, LAC, PERC, LOG
and MLP (DL+HC)

88.45

Overall, despite providing relevant results, most of these methods were implemented

for speciĄc classiĄcation tasks. Few computer vision approaches were able to perform

well on different histological image categories (ROBERTO et al., 2019; NANNI et al.,

2019). Moreover, recent papers have presented new approaches to deal with handcrafted

fractal features. (ROBERTO et al., 2017) proposed an approach to obtain global PERC

features from RGB images. Later, in (ROBERTO et al., 2019), local PERC features were

also used for image classiĄcation. In (RIBEIRO et al., 2019), the authors used different
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Table 28 Ű Overview of the accuracy values (%) obtained by different approaches for col-
orectal histology image classiĄcation (CR).

Method Approach Accuracy
(SANTOS et al., 2018) Sample entropy and fuzzy (HC) 91.39
(BENTAIEB; HAMARNEH, 2018) U-Net and AlexNet (DL) 87.50
(DABASS; VIG; VASHISTH, 2019) 31-layer CNN (DL) 96.97
(TAVOLARA et al., 2019) GAN and U-Net (DL) 94.02
(SENA et al., 2019) 12-layer CNN (DL) 93.28
(ROBERTO et al., 2019) PERC (HC) 90.90

(AWAN et al., 2019)
Colour normalization, U-Net and
GoogLeNet (DL)

85.00

(CANDELERO et al., 2020)
LeNet-5, FD, LAC, PERC, Haralick de-
scriptors, K* and GA (DL+HC)

91.06

Proposed
ResNet-50, GADF, FD, LAC, PERC,
LOG and MLP (DL+HC)

99.45

Table 29 Ű Overview of the accuracy values (%) obtained by different approaches for gen-
der and age classiĄcation from liver histology images.

Method Approach Acc. (gender) Acc. (age)
(WATANABE; KOBAYASHI;
WADA, 2016)

GIST descriptors, PCA and LDA
(HC)

93.70 88.40

(RUBERTO et al., 2016)
Statistical analysis and tex-
ture features (HC)

100.00 100.00

(ANDREARCZYK; WHELAN,
2017)

Texture CNN (DL) 99.10 98.20

(NANNI et al., 2019)
6 CNN models and hand-
crafted descriptors (DL+HC)

100.00 100.00

Proposed
ResNet-50, GADF, FD, LAC,
PERC, LOG and MLP (DL+HC)

99.77 99.45

types of handcrafted features, including FD, LAC and PERC, to classify colorectal tu-

mours. However, these methods applied only the Δℎ metric to extract the fractal features.

Moreover, none of these approaches explored the contribution of these features along with

CNN models, which were able to provide high accuracy rates in several CAD systems for

histopathology tasks (LI et al., 2019; BAI et al., 2019; ANDREARCZYK; WHELAN,

2017). Besides, each of these authors have chosen a different validation approach for

their methods, including 𝑘-fold cross validation with different values for 𝑘 or hold-out

validation. We have used 10-fold cross validation performed 10 times with different fold

variations, which increases the reliability of the results. Nevertheless, these values are

rather complementary than comparable since the experiments were performed under dif-

ferent situations. Hence, an ensemble method that addresses both fractal geometry and

deep learning, which is the core of the proposed method, could improve these results when

applied to different histology datasets.
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5.4 Considerations

On this chapter, we have presented a detailed evaluation of the proposed method. It

was shown that the ResNet-50 is the most adequate model for the deep learning module,

as well as the LOG and MLP classiĄers are for the handcrafted classiĄcation module. We

have also noted that the GADF reshape provides better classiĄcation results on average

when compared to the other three reshaping procedures evaluated, although there is not

a statistically signiĄcant difference. We have also shown that, in general, our method

is able to obtain better results than other common computer vision approaches such as

ADASYN and data augmentation. At last, we have shown that our results are on par

with recent published research in this area, and we believe that our method can serve

as a complementary approach for the development of new histology image classiĄcation

studies.
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Chapter 6

Conclusion

In this PhD work, a new approach was presented whose objective was to investigate

representations based on fractal geometry for the classiĄcation of lesions in histology

images. The evaluated representations were GASF and GADF (WANG; OATES, 2015),

sequential (ROBERTO et al., 2021) and RP (AFONSO et al., 2019). The obtained

results have shown that the use of an image representation of fractal features through the

GADF method in association with the classiĄcation of local and global handcrafted fractal

features contributed signiĄcantly to the improvement of the classiĄcation accuracy when

compared to traditional techniques such as ADASYN or geometric data augmentation.

The proposed approach was able to provide relevant results, with accuracy rates above

88%, for the Ąve sets of histological images analysed. Moreover, accuracy values higher

than 99% were obtained for three of the Ąve datasets evaluated (CR, LG and LA). The

evaluations performed with the class activation mapping using Grad-CAM have shown

that the three fractal approaches (FD, LAC and PERC) have played a signiĄcant role in

the classiĄcation of the feature images (F-CNN) using the GADF reshape in all tested

datasets.

A classiĄer ensemble was proposed, composed by four classiĄcation elements: O-CNN,

F-CNN, local and global handcrafted fractal features classiĄcation. Despite the fact that

the highest accuracy rates were provided by the O-CNN, we have shown that using an

ensemble, each of these elements play a signiĄcant role in the classiĄcation of the Ąve

datasets, since the removal of the F-CNN causes a reduction of up to 1.83% in the average

accuracy and 1.90% if only the CNN classiĄers are used. We have also shown that

assigning a greater weight to the O-CNN increased the overall accuracy by 2.42%. This is a

relevant improvement since any misdiagnosis in the medical area could lead to inadequate

treatment, hindering the patientŠs life quality. However, a more detailed study on weight

assignment is required for better understanding the contribution of each of the ensemble

elements. This could be explored in future works, as well as other open points that are

described Section 6.1. Nevertheless, despite requiring two CNN classiĄcations, we have

shown that with the use of transfer learning, both O-CNN and F-CNN require only 10
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training epochs for obtaining the expected classiĄcation accuracy rates. Therefore, we

believe that the objectives listed at the beginning of the project have been met:

1. the feature image models based on RP, GASF, GADF and sequential reshape were

able to represent fractal properties;

2. the proposed model has performed well on Ąve different histology image datasets;

3. the proposed model is based on both convolutional and fractal features;

4. handcrafted local and global fractal features were able to enhanced the modelŠs

performance.

Overall, we believe that the proposed method could provide to the literature the

expected contributions. The new feature image representation of handcrafted fractal fea-

tures based on GADF has shown to increase the classiĄcation performance in an ensemble

model. Our method was also able to obtain relevant results on Ąve datasets from four dif-

ferent types of histology tissue: colorectal, breast, lymphoma and liver. These results are

compatible with state-of-the-art approaches and we believe that our method can provide

good information as a supporting tool for pathologists. Moreover, we have shown that

the association of fractal features and deep learning is able to classify different types of

histology lesions even in unbalanced and multiclass contexts.

6.1 Future works

The proposed approach shows that the values obtained are promising for the research

area, allowing adaptability to different domains of histological tissues and with relatively

low computational cost. Moreover, this approach brings the reshaping of fractal feature

vectors for applications in CNN. This method, which consists of building a feature image

from handcrafted fractal features, has still open points that must be explored for a more

robust analysis for the classiĄcation of lesions in histological images. Nevertheless, some

improvements in the proposed model can be explored so that results can be enhanced

such as the UCSB dataset and other image sets. The adjustment of hyperparameters,

such as the learning rate and the way it varies, can play an important role to improve the

modelŠs accuracy. It is also suggested to evaluate a pre-processing step based on H&E

colour channel normalisation for dye uniformisation. The colour normalisation techniques

proposed in (REINHARD et al., 2001; KHAN et al., 2014; VAHADANE et al., 2016) have

provided promising results in the classiĄcation of breast, colorectal and NHL tumour im-

ages when applied in association with fractal features (RIBEIRO et al., 2018; ROBERTO

et al., 2019). However, this approach has not yet been explored in a CNN context, as

proposed in this work. At last, we encourage the application of this method on other

types of image, including classiĄcation tasks that are not related to the medical area.
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6.2 Research topics

The following papers were published in local and international conferences, as well as

in relevant journals, as an outcome of the results obtained during the research developed

in this doctorate course.

❏ Publication of the paper An investigation of Jaya optmization for non-Hodgkin lym-

phoma classiĄcation at the Computer Vision Workshop, held in november 2018 at

Ilhéus-BA, which was awarded as 3rd best poster in the event (ROBERTO et al.,

2018);

❏ Presentation of the poster ClassiĄcação de tumores de mama e colorretais baseada

em percolação de imagens normalizadas at the XIII Workshop of thesis and disser-

tations in computer science Ű FACOM TechWeek, which was awarded as the best

doctorate project of the event;

❏ Publication of the paper ClassiĄcation of breast and colorectal tumors based on

percolation of color normalized images in the journal Computer and Graphics, which

was also presented at the event SIBGRAPI 2019, held in Rio de Janeiro-RJ in

october 2019 (ROBERTO et al., 2019);

❏ Publication of the paper Fractal Neural Network: a new ensemble of fractal geometry

and convolutional neural networks for the classiĄcation of histology images in the

journal Expert Systems with Applications, volume 166, 2021, in collaboration with

Prof. Dr. Alessandra Lumini, from Università di Bologna.

❏ Submission of the paper ClassiĄcation of histology images using an association of

fractal geometry and deep learning in the journal Biomedical Signal Processing and

Control.

During the development of this doctorate, some collaborative research, in the Ąeld of

histology images classiĄcation, have also been published through the knowledge acquired

while implementing the proposed approach. These papers are listed below:

❏ Publication of the paper Unsupervised method for normalization of hematoxylin-

eosin stain in histological images in the journal Computerized Medical Imaging and

Graphics (TOSTA et al., 2019);

❏ Publication of the paper A Model Based on Genetic Algorithm for Colorectal Cancer

Diagnosis in the Iberoamerican Congress on Pattern Recognition (TAINO et al.,

2019);
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❏ Publication of the paper Multidimensional and multiscale Higuchi dimension for the

analysis of colorectal histological images in the 2020 IEEE International Conference

on Bioinformatics and Biomedicine (BIBM) (TENGUAM et al., 2020);

❏ Publication of the paperSelection of CNN, Haralick and Fractal Features Based

on Evolutionary Algorithms for ClassiĄcation of Histological Images in the 2020

IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (CAN-

DELERO et al., 2020);

❏ Publication of the paper Analysis of cancer in histological images: employing an

approach based on genetic algorithm in the journal Pattern Analysis and Applications

(TAINO et al., 2021);

❏ Publication of the paper A Hermite polynomial algorithm for detection of lesions in

lymphoma images in the journal Pattern Analysis and Applications (MARTINS et

al., 2021).
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APPENDIX A

Standard deviation values

The standard deviation values for the results described in Chapter 5 are presented in

this appendix.

Table 30 Ű Standard deviation values for the results presented in Table 12.

Dataset
Sequential Rec. Plot GASF GADF
𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1

CR 1.96% 0.020 1.68% 0.017 1.88% 0.019 1.89% 0.019
LA 1.09% 0.011 0.94% 0.010 0.77% 0.008 0.84% 0.008
LG 1.39% 0.014 1.07% 0.011 0.89% 0.009 1.11% 0.011
NHL 1.77% 0.019 1.07% 0.011 2.39% 0.024 1.78% 0.018
UCSB 3.23% 0.032 3.79% 0.039 3.62% 0.036 4.81% 0.048
Average 1.89% 0.019 1.71% 0.018 1.91% 0.019 2.09% 0.021

Table 31 Ű Standard deviation values for the results presented in Table 14.

Dataset
DT LOG RaF SVM MLP

𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1
CR 2.46% 0.026 1.12% 0.011 2.62% 0.027 1.81% 0.019 1.19% 0.012
LA 1.30% 0.013 0.66% 0.007 0.46% 0.004 0.27% 0.003 0.39% 0.004
LG 1.08% 0.011 0.59% 0.006 0.72% 0.007 0.44% 0.005 0.26% 0.003
NHL 1.88% 0.019 1.65% 0.017 1.18% 0.013 0.91% 0.010 1.95% 0.019
UCSB 4.24% 0.042 4.16% 0.042 2.73% 0.028 3.62% 0.039 3.68% 0.037
Average 2.19% 0.022 1.64% 0.017 1.54% 0.016 1.41% 0.015 1.49% 0.015

Table 32 Ű Standard deviation values for the results presented in Table 16.

Dataset
DT LOG RaF SVM MLP

𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1
CR 2.70% 0.029 1.36% 0.014 1.57% 0.016 1.18% 0.012 2.19% 0.022
LA 1.13% 0.011 0.49% 0.005 0.35% 0.003 0.42% 0.004 0.47% 0.005
LG 1.74% 0.017 0.57% 0.006 0.62% 0.006 0.46% 0.005 0.36% 0.004
NHL 2.23% 0.023 1.96% 0.020 0.87% 0.009 1.27% 0.013 1.26% 0.013
UCSB 4.51% 0.045 1.78% 0.018 3.02% 0.031 3.09% 0.033 3.45% 0.036
Average 2.46% 0.025 1.23% 0.013 1.29% 0.013 1.29% 0.013 1.55% 0.016
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Table 33 Ű Standard deviation values for the results presented in Table 18.

Dataset
Sequential Rec. Plot GASF GADF
𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1

CR 0.77% 0.008 0.65% 0.007 0.49% 0.005 0.51% 0.005
LA 0.43% 0.004 0.23% 0.002 0.29% 0.003 0.31% 0.003
LG 0.41% 0.004 0.58% 0.006 0.52% 0.005 0.73% 0.008
NHL 1.42% 0.014 0.92% 0.010 1.23% 0.013 0.88% 0.009
UCSB 2.47% 0.025 2.98% 0.030 3.15% 0.033 2.47% 0.025
Average 1.10% 0.011 1.07% 0.011 1.14% 0.012 0.98% 0.010

Table 34 Ű Standard deviation values for the results presented in Table 20.

Dataset
Φ + 𝐿𝑂𝐺(𝑙𝑜𝑐𝑎𝑙) + ... Φ + 𝐿𝑂𝐺(𝑙𝑜𝑐𝑎𝑙) + ... Φ + 𝑀𝐿𝑃 (𝑙𝑜𝑐𝑎𝑙) + ... Φ + 𝑀𝐿𝑃 (𝑙𝑜𝑐𝑎𝑙) + ...

... + 𝐿𝑂𝐺(𝑔𝑙𝑜𝑏𝑎𝑙) ... + 𝑀𝐿𝑃 (𝑔𝑙𝑜𝑏𝑎𝑙) ... + 𝐿𝑂𝐺(𝑔𝑙𝑜𝑏𝑎𝑙) ... + 𝑀𝐿𝑃 (𝑔𝑙𝑜𝑏𝑎𝑙)
𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1

CR 0.75% 0.008 0.63% 0.006 0.67% 0.007 0.63% 0.006
LA 0.33% 0.003 0.31% 0.003 0.36% 0.004 0.33% 0.003
LG 0.33% 0.003 0.28% 0.003 0.36% 0.004 0.39% 0.004
NHL 0.89% 0.009 0.94% 0.010 1.05% 0.011 0.88% 0.009
UCSB 1.83% 0.019 3.15% 0.033 2.16% 0.022 2.57% 0.028
Average 0.83% 0.008 1.06% 0.011 0.92% 0.010 0.96% 0.010

Table 35 Ű Standard deviation values for the results presented in Table 22.

Dataset
Proposed ensemble ResNet-50 ADASYN Data augmentation

𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1
CR 0.67% 0.007 0.86% 0,009 0.49% 0,005 0.77% 0,008
LA 0.36% 0.004 0.48% 0,005 0.33% 0,003 0.88% 0,009
LG 0.36% 0.004 0.44% 0,004 0.50% 0,005 0.36% 0,004
NHL 1.05% 0.011 0.97% 0,010 1.57% 0,016 1.25% 0,013
UCSB 2.16% 0.022 4.47% 0,045 3.06% 0,031 4.51% 0,047
Average 0.92% 0.010 1.44% 0.015 1.19% 0.012 1.55% 0.016

Table 36 Ű Standard deviation values for the results presented in Table 25.

Dataset
Proposed ensemble No F-CNN (LOG) No F-CNN (MLP) No weights

𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1 𝐴𝑐 𝐹1
CR 0.67% 0.007 0.71% 0,007 0.48% 0,005 0.89% 0,009
LA 0.36% 0.004 0.20% 0,002 0.34% 0,003 0.28% 0,003
LG 0.36% 0.004 0.21% 0,002 0.32% 0,003 0.24% 0,002
NHL 1.05% 0.011 1.27% 0,013 0.85% 0,009 1.00% 0,010
UCSB 2.16% 0.022 2.45% 0,024 3.15% 0,034 2.00% 0,019
Average 0.92% 0.010 0.97% 0.010 1.03% 0.011 0.88% 0.009


