

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

FACULDADE DE ENGENHARIA MECÂNICA

PEDRO ISMAEL PAVINSKI PIMENTEL

PARACHUTE SIMULATION: INTEGRATION METHODS

Uberlândia

2021

PEDRO ISMAEL PAVINSKI PIMENTEL

PARACHUTE SIMULATION: INTEGRATION METHODS

Undergraduate thesis submitted to the Course
of Aeronautical Engineering from the
Universidade Federal de Uberlândia as part of
requeriment for obtaining the Bacherlor’s
degree on Aeronautical Engineering.

Fiel of study: Numerical Simulation. Material
Structure.

Tutor: Prof. Dr. Francisco José de Souza

 Co-Tutor: PhD. Miguel Charlotte

 (ISAE-SUPAERO)

Uberlândia

2021

PEDRO ISMAEL PAVINSKI PIMENTEL

PARACHUTE SIMULATION: INTEGRATION METHODS

Undergraduate thesis submitted to the Course
of Aeronautical Engineering from the
Universidade Federal de Uberlândia as part of
requeriment for obtaining the Bacherlor’s

degree on Aeronautical Engineering.

Fiel of study: Numerical Simulation. Material
Structure.

Uberlândia, 09 November 2021.

Undergraduate Thesis Committee:

Prof. Dr. Francisco José de Souza – Orientador (UFU)

Prof. Dr. Tobias Souza Morais (UFU)

Prof. Dr. João Rodrigo Andrade (UFU)

To all those who supported me during my journey.

ACKNOWLEDGEMENTS

I would first like to thank my family and friends for all the support during my journey.

To the professors of the Aeronautical Engineering graduation course at the Faculdade de

Engenharia Mecânica - Universidade Federal de Uberlândia and of the Institut Supérieur de

l'Aéronautique et de l'Espace, my sincere thank you for the shared knowledge and constant

incentive to aim even higher.

ABSTRACT

Mass-spring models are frequently employed in parachute simulations due to their simplicity

and efficiency. A series of integration methods can be used to solve the dynamic system,

however their use presents some difficulties often associated with the stability, accuracy and

the computational resources consumption. We compared some of these methods in four

different situations: simple pendulum, spring pendulum and two parachute models, and for each

system the behavior of the integration methods was different. In the parachute simulations,

which are

the main objective of this thesis, the Improved Explicit Euler presented the best performance in

the first model, although the simulation ended up diverging. For the second model, all of the

tested schemes worked.

Keywords: Parachute Simulation. Integration methods. Mass-spring model. Finite-Element

Method. Darcy-Forchheimer.

RESUMO

Modelos massa-mola são frequentemente empregados em simulações de paraquedas devido à

sua simplicidade e eficiência. Diversos métodos de integração podem ser utilizados para a

resolução desses sistemas, entretanto, sua utilização pode acarretar em dificuldades associadas

à estabilidade, acurácia e ao consumo de recursos computacionais. Comparamos alguns desses

métodos em quatro diferentes situações: um pendulo simples, um pêndulo com mola e dois

modelos de paraquedas. E para cada modelo, o comportamento dos métodos de integração

mostrou-se diferente. Nas simulações de paraquedas, o principal objetivo deste trabalho, o

Método Melhorado de Euler Explícito apresentou a melhor performance no primeiro modelo,

apesar de a simulação acabar divergindo. Para o segundo modelo de paraquedas, todos os

métodos testados funcionaram.

Palavras-chave: Simulação de Paraquedas. Métodos de Integração. Modelo Massa-Mola.

Método de Elementos Finitos. Darcy-Forchheimer.

LIST OF ILLUSTRATIONS
Figure 1- Apollo 15 safely descends to splashdown using parachutes..................................... 12

Figure 2 - Example of parachute mesh: internal radius = 0.1m, external radius = 1m, number of

elements = 1232. ... 15

Figure 3 - Forces in a simple pendulum system. .. 22

Figure 4 - Displacement obtained with varios schemes. .. 23

Figure 5 - Displacemement obtained with various schemes. ... 24

Figure 6 - Displacememnt obtained with various schemes. ... 24

Figure 7 - Spring pendulum diagram. ... 25

Figure 8 - Displacement obtained with various schemes. .. 27

Figure 9 - Displacement obtained with various schemes. .. 27

Figure 10 - Displacement obtained with various schemes. .. 28

Figure 11 - Displacement obtained with various schemes. .. 28

Figure 12 - Displacement obtained with various schemes. .. 29

Figure 13 - Displacement obtained with various schemes. .. 29

Figure 14 - Developed parachute at 2.6 ∙ 10 − 11𝑠 using Velocity Verlet. 31

Figure 15 – Same parachute at 3.4 ∙ 10 − 11𝑠. .. 32

Figure 16 – Parachute simulation near the equilibrium point, 𝐾 = 100 and 𝑑𝑡 = 2 ∙ 10 − 3𝑠

using Velocity Verlet. ... 34

Figure 17 – Displacement in the z axis of some nodes from the resting position, for 𝐾 =

100𝑁𝑚 − 1 and 𝑑𝑡 = 2 ∙ 10 − 3𝑠. .. 35

Figure 18 – Phase diagram, for 𝐾 = 100𝑁𝑚 − 1 and 𝑑𝑡 = 2 ∙ 10 − 3𝑠. 35

Figure 19 - Displacement in the z axis of some nodes from the resting position, for 𝐾 =

1000𝑁𝑚 − 1 and 𝑑𝑡 = 5 ∙ 10 − 4𝑠. .. 36

Figure 20 - Displacement in the z axis of some nodes from the resting position, for 𝐾 =

1000𝑁𝑚 − 1 and 𝑑𝑡 = 5 ∙ 10 − 4𝑠. .. 36

Figure 21 - Displacement in the z axis of some nodes from the resting position, for 𝐾 =

10000𝑁𝑚 − 1 and 𝑑𝑡 = 2 ∙ 10 − 4𝑠. ... 37

Figure 22 – Phase diagram, for 𝐾 = 10000𝑁𝑚 − 1 and 𝑑𝑡 = 2 ∙ 10 − 4𝑠. 37

Figure 23- Displacement in the z axis of some nodes from the resting position, for 𝐾 =

100000𝑁𝑚 − 1 and 𝑑𝑡 = 5 ∙ 10 − 5𝑠. ... 38

Figure 24 – Phase diagram, for 𝐾 = 100000𝑁𝑚 − 1 and 𝑑𝑡 = 5 ∙ 10 − 5𝑠. 38

Figure 25 – Modified reference system. ... 42

Figure 26 – Displacement for the undamped case. ... 43

Figure 27 – Phase for the undamped case. ... 44

Figure 28 – Displacement for the undamped case. ... 44

Figure 29 - Phase for the undamped case. .. 45

Figure 30 - Displacement for the undamped case. ... 45

Figure 31 - Phase for the undamped case. .. 46

Figure 32 - Displacement for the undamped case. ... 46

Figure 33 - Phase for the undamped case. .. 47

Figure 34 - Displacement for the undamped case. ... 47

Figure 35 - Phase for the undamped case. .. 48

Figure 36 - Displacement for the undamped case. ... 49

Figure 37 - Phase for the undamped case. .. 49

Figure 38 - Displacement for the undamped case. ... 50

Figure 39 - Displacement for the undamped case. ... 50

Figure 40 - Displacement for the undamped case. ... 51

Figure 41 - Nodes positioning. ... 52

Figure 42 - Detailed positioning. .. 53

LIST OF TABLES

Table 1- Mean resource consumption with 10 executions each for dt = 0.005s. 25

Table 2 - Mean resource consumption with 10 executions each for dt = 0.0001s. 30

Table 3 - Simulation parameters. .. 30

Table 4 -Simulation results for the mesh described in Table 3. ... 32

SUMÁRIO

1 INTRODUCTION ... 12

2 STATE OF THE ART ... 13

2.1 Model ... 13

2.2 Conception of the mesh .. 15

2.3 Project structure ... 16

2.3.1 Maillage Tri ... 16

2.3.2 Bilan forces .. 16

2.3.3 Force Aero ... 16

2.4 Time-Integration Methods ... 17

2.4.1 Explicit Euler ... 17

2.4.2 Euler-Cromer ... 17

2.4.3 Euler-Richardson ... 17

2.4.4 Improved Explicit Euler .. 18

2.4.5 Newmark ... 18

2.4.6 Velocity Verlet .. 20

2.4.7 HHT ... 20

2.4.8 Fourth order Runge-Kutta ... 20

2.4.9 A fast and stable implicit method .. 21

2.5 Reference Systems .. 22

2.5.1 Simple Pendulum ... 22

2.5.2 Spring pendulum ... 25

3 PROCEDURE AND RESULTS ... 30

3.1 Parachute Simulation ... 30

3.2 Cloth simulation .. 32

4 CONCLUSIONS .. 39

REFERÊNCIAS ... 40

APENDIX A – ANALYTIC SOLUTION FOR REFERECE SYSTEMS 42

APENDIX B – CLOTH SIMULATION ... 52

12

INTRODUCTION

Parachutes have been an important method for cargo and personnel deployment in rough

access areas especially in war zones since the Second World War. More recently they have also

begun to be used in space-crafts within or not Earth's atmosphere. Their use presents various

technical challenges to planners and engineers, as it involves dropping from the sky a high value

cargo attached to a piece of wrapped cloth that will, hopefully, be correctly deployed mid-air,

holding the weight and allowing the cargo to gently touch the ground. Thus, the need of

accurate simulations, in order to predict their behavior.

Figure 1- Apollo 15 safely descends to splashdown using parachutes.

Source: NASA (1971).

To simulate a parachute is a complex subject (SAHU, 1997) since it involves the

coupling of fluid dynamics with the surrounding environment and the canopy's structural

dynamics. In our case the fluid-structure interaction has not been implemented yet, so the only

contribution of the flow to the canopy is the aerodynamic force applied to each node of the

mesh.

This project is a continuation of previous years' PIR projects (Projet d'Innovation et

Recherche Modélisation numérique de parachutes (LEOTARD, 2017), Models to Simulate an

Inflated Paraglider (HERLAUT, 2016) and Numerical simulation of parachutes (GRAMLICH,

2016). The code library used in the current work is based on that of those works.

13

The code inherited was composed of the mesh generation functions, created by Persson

et al. (PERSSON, 2004) and the effort functions, where each element's position and velocity

were estimated using the Explicit Euler method. This simulation did not converge even with a

small step of 1 ∙ 10−12 seconds. Our goal was to deploy new time-integration methods, to

achieve stability even with larger time steps.

Before the deployment, a theoretical study regarding general parachute simulation,

integration methods, porous media and cloth simulation was conducted, allowing us to better

understand the theory behind the code. Also, three reduced models (simple pendulum, spring

pendulum and circular cloth) were coded as a simple way to show each method's characteristics.

STATE OF THE ART

2.1 Model

The project employs a mass-spring model which is widely used for cloth modeling.

Discrete mass-points are connected by damped springs in the model to simulate the cloth's

behavior (PROVOT, 1995).

 𝐹𝑒𝑥𝑡(𝑖, 𝑗) + 𝐹𝑖𝑛𝑡(𝑖, 𝑗) = 𝑚 ∙ 𝑎(𝑖, 𝑗) (1)

With:

• 𝑎(𝑖, 𝑗) the acceleration of the point P(i,j);
• 𝑚 the mass of the node;

• 𝐹𝑖𝑛𝑡(𝑖, 𝑗) the forces the forces mass-points exert on each other through damped
springs;

• 𝐹𝑒𝑥𝑡(𝑖, 𝑗) the net external force composed of the gravity, and the wind force.

The internal force caused by the damped spring can be divided into two parts: the spring

force which can be calculated by the Hooke's Law (BAYRAKTAR, 2002) and the damping

force.

 𝐹𝑖𝑛𝑡(𝑖, 𝑗) = 𝑇𝛿(𝑖, 𝑗) + 𝑇𝛿̇(𝑖, 𝑗) (2)

 𝑇𝛿(𝑖, 𝑗) = 𝑘 ∙ max(𝑙𝑖𝑗− 𝑙𝑖𝑗
0 , −𝑒𝑝𝑠)

(3)

14

𝑇𝛿̇(𝑖, 𝑗) = 𝑐𝑖𝑗 ∙

𝑙𝑖𝑗
̇

𝑙𝑖𝑗
0

(4)

With:

• 𝑘 the spring constant;

• 𝑐𝑖𝑗 the damping constant;

• 𝑙𝑖𝑗 the length of the spring;

• 𝑙𝑖𝑗
0 the rest length of the spring;

• 𝑒𝑝𝑠 the compressive tolerance value;

As mentioned early, the gravity is a part of the external force.

𝐹𝑖,𝑗 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝑖,𝑗 ∙ 𝑔 (5)

The cloth can also be modeled as a porous medium and the interaction between

the fluid and the canopy is given by the Ergun equation, which relates the fluid pressure

drop during its passage through a porous medium with its velocity. This pressure

gradient will allow to model an aerodynamic force (JAMBHEKAR, 2011).

∆𝑃

𝑒
= 𝐴(𝜀, 𝜇) ∙ 𝑣𝑓 + 𝐵(𝜀, 𝜇) ∙ 𝑣𝑓

2 (6)

𝐴(𝜀, 𝜇) =
𝜇 ∙ 150 ∙ (1 − 𝜀)2

𝐷2 ∙ 𝜀2

(7)

𝐵(𝜀, 𝜇) =
𝜌 ∙ 1.75 ∙ (1 − 𝜀)

𝐷 ∙ 𝜀2

(8)

Whit:

• 𝐷 the diameter;

• 𝜀 the porosity of the parachute;

• 𝜇 the dynamic viscosity of the fluid;

• 𝑒 the thickness of the cloth;

• 𝜌 the density of the fluid;

• 𝑣𝑓 the Forchheimer velocity.

The Forchheimer velocity is related to the Darcy flux by the porosity. Eq. (9) gives the

formulation of the 𝑣𝑓⃗⃗⃗⃗ .

15

𝑣𝑓⃗⃗⃗⃗ = 𝑣𝑝𝑜𝑟𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∙ 𝜀 (9)

𝑣𝑝𝑜𝑟𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑛⃗ ∙ (𝑛⃗ ∙ (𝑣𝑓𝑙𝑢𝑖𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝑣𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑔𝑟𝑎𝑣𝑖𝑡𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)) (10)

With:

• 𝑛⃗ the unit normal to the considered mesh surface;

• 𝑣𝑝𝑜𝑟𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ the seepage velocity vector.

2.2 Conception of the mesh

 The discretization of the parachute is a crucial step in parachute simulation. Here, we

used the code "distmesh" developed by Per-Olof Persson to discretize the physical model. The

parameters in the mesh generation functions were regulated to create a high-quality mesh. The

number of the node and the size of each element in the unstructured triangular mesh can be

controlled. We also applied the Dirichlet boundary condition at nodes in the external radius of

the parachute, impeding its movement.

Figure 2 - Example of parachute mesh: internal radius = 0.1m, external radius = 1m, number
of elements = 1232.

Source: the Author.

16

2.3 Project structure

2.3.1 Maillage Tri

The function Maillage_Tri generates the mesh of the parachute, the nodes and springs

numeration and connectivity matrix. The mesh discretization code "distmesh" developed by

Persson et al. (PERSSON, 2004) was implemented in it. First, the input parameters in

"distmesh" were determined and then it gave the nodes and elements numeration. Later, the list

of the spring connecting the mass points and the table of the seam in the parachute were created.

After that, we initialized the position of each node and the length of the spring. With the table

of the seam, the nodes on the boundary of the parachute were found. Finally, the mass matrix

which includes the mass of each mass-point was generated.

2.3.2 Bilan forces

In the code library, the function Bilan_Forces was employed to synthesize all the forces

added on the mass-points and different integration methods were implemented in it to calculate

the position and the velocity of each mass-point. First, the initial length of each spring which

connects the mass-points was calculated. Then the function Calcul_Tensions_mich gave,

correspondingly, the stiffness of the springs. After that, the specific time-integration method

was chosen to update the state of the mass-points. The boundary condition was also set in

Bilan_Forces. Afterwards we calculated the tension in the spring again. Finally, the state of the

parachute was saved and displayed on the screen. With numerous iterations, the process of the

inflation of the parachute can be simulated.

2.3.3 Force Aero

Responsible for the aerodynamic force caused by the change in air speed as it passes by

the cloth, this function takes the original velocity and position, calculates each triangle normal

vector and z-axis velocity with a weighted average. The velocity vector is then used to

determine the pressure gradient with Eq. (6). The aerodynamic force is then obtained by the

multiplication of the gradient by the element area and normal unitary vector.

17

2.4 Time-Integration Methods
2.4.1 Explicit Euler

A first-order ordinary differential equation (ODE) described by Eq. (11) can be

expanded using the Taylor expansion series just at the first order derivative, giving the Explicit

Euler method.
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦(𝑡)), 𝑦(𝑡0) = 𝑦0 (11)

𝑦(𝑡 + 𝑑𝑡) = 𝑦(𝑡0) + 𝑑𝑡 ∙ 𝑦̇(𝑡0) + 𝑂(ℎ2) (12)

Eq. (12) shows that we are dealing with a first-order method, since the step error is one

power of 𝑑𝑡 smaller than the correction 𝑂(ℎ2) (PRESS, 2007). It can also suffer from

instability, especially when used with stiff equations, thus requiring really small steps when

compared with other methods.

2.4.2 Euler-Cromer

This methods is used to solve pairs of related differential equations of the form below.
𝑑𝑥

𝑑𝑡
= 𝑣(𝑡) (13)

𝑑𝑣

𝑑𝑡
= 𝑎(𝑡) (14)

The algorithms, characterized by Eqs (15) and (16), unlike Explicit Euler's, uses the first

function to update the velocity and the second function to update the position. Although first-

order accurate, the algorithm is energy conservative, thus, more accurate than Explicit Euler.

𝑣𝑛+1 = 𝑣𝑛 + 𝑑𝑡 ∙ 𝑎(𝑡) (15)

𝑥𝑛+1 = 𝑥𝑛 + 𝑑𝑡 ∙ 𝑣𝑛+1 (16)

2.4.3 Euler-Richardson

This algorithm uses a half step approximation (Eq. (18) to (20) to compute the

acceleration (and consequentially the force) at the middle of the interval and then it updates the

velocity and displacement (Eq. (21)and (22)). This evaluation allows the reduction of the

truncation error by half, when compared to Explicit Euler's.

18

𝑎𝑛 = 𝑚−1 × 𝐹(𝑥𝑛, 𝑣𝑛, 𝑡𝑛) (17)

𝑣
𝑛+

1
2
= 𝑣𝑛 +

1

2
∙ 𝑑𝑡 ∙ 𝑎𝑛 (18)

𝑥
𝑛+

1
2
= 𝑥𝑛 +

1

2
∙ 𝑑𝑡 ∙ 𝑣𝑛 (19)

𝑎
𝑛+

1
2
= 𝑚−1 ∙ 𝐹 (𝑥

𝑛+
1
2
, 𝑣

𝑛+
1
2
, 𝑡 +

1

2
∙ 𝑑𝑡) (20)

𝑣𝑛+1 = 𝑣𝑛 + 𝑑𝑡 ∙ 𝑎
𝑛+

1
2
 (21)

𝑥𝑛+1 = 𝑥𝑛 + 𝑑𝑡 ∙ 𝑣
𝑛+

1
2
 (22)

This half step evaluation produces a more accurate algorithm than simple Euler's and

Euler-Cromer's, however, it takes twice as much computation per time step (NIKOLIK, 2018).

2.4.4 Improved Explicit Euler

This method starts with a simple Euler step, that is evaluated using the derivative at the

given time (Eq. (23)). This derivative is never corrected after the function value is obtained and,

because of this, according to Hanna in (HANNA, 1988), a more efficient method is obtained.

The approximated first step is used to evaluate the function at the new point, which will be used

in a trapezoidal rule (Eq. (24)).

𝑥̃(𝑡 + 𝑑𝑡) = 𝑥(𝑡) + 𝑑𝑡 ∙ 𝑓(𝑡, 𝑥(𝑡)) (23)

𝑥(𝑡 + 𝑑𝑡) = 𝑥(𝑡) +
𝑑𝑡

2
∙ (𝑓(𝑡, 𝑥(𝑡)) + 𝑓(𝑡 + 𝑑𝑡, 𝑥̃(𝑡 + 𝑑𝑡))) (24)

The advantage of such algorithm is the improved global accuracy: 𝑂(ℎ2), compared to

𝑂(ℎ), of simple Euler's.

2.4.5 Newmark

Developed by Nathan M. Newmark in 1959 (NEWMARK, 1959) this method (whose

equations are shown below) has found widespread use in the structural dynamic analysis field

due to its flexibility(ANDERSON, 2012) (KONTOE, 2006).

19

𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛 ∙ 𝑑𝑡 + (
1

2
− 𝛽) ∙ 𝑎𝑛 ∙ 𝑑𝑡2 + 𝛽 ∙ 𝑎𝑛+1 ∙ 𝑑𝑡2 (25)

𝑣𝑛+1 = 𝑣𝑛 + (1 − 𝛾) ∙ 𝑎𝑛 ∙ 𝑑𝑡 + 𝛾 ∙ 𝑎𝑛+1 ∙ 𝑑𝑡 (26)

It is an implicit method whose stability and accuracy are governed by the 𝛾 and 𝛽

parameters. The critical time step for conditional stability is given by Eq.(27), where we can

see that for 𝛾 =
1

2
 and 𝛽 =

1

4
 (constant acceleration method) the scheme is unconditionally

stable, although susceptible to inaccuracy (RAJASEKARAN, 2009).
𝛿𝑡

𝑇𝑛
≤

1

𝜋 ∙ √2
∙

1

√𝛾 − 2 ∙ 𝛽
 (27)

 A compromise between stability and accuracy must be reached considering the effects

of the 2 parameters. Such as the creation of spurious damping if 𝛾 ≠
1

2
 (KRENK, 2006), and

the reduced stability area if 𝛾 =
1

2
 and 𝛽 =

1

6
 (linear acceleration method), since 𝛿𝑡 ≤

0.551 × 𝑇𝑛 must be satisfied (RAJASEKARAN, 2009).

The difficulty associated with Newmark is the presence of the implicit term 𝑎𝑛+1. The

algorithm proposed by Rajasekaran in (RAJASEKARAN, 2009) was used to overcome this

problem.

𝐴0 = 𝑀−1 ∙ (−𝐶 ∙ 𝑉0 − 𝐾 ∙ 𝑋0) (28)

𝐾 = 𝐾 +
𝛾

𝛽 ∙ 𝑑𝑡
∙ 𝐶 +

1

𝛽 ∙ 𝑑𝑡
 (29)

𝐹𝑎𝑐𝑡𝑜𝑟1 =
1

𝛽 ∙ 𝑑𝑡
∙ 𝑀 +

𝛾

𝛽
∙ 𝐶 (30)

𝐹𝑎𝑐𝑡𝑜𝑟2 =
1

2 ∙ 𝛽
∙ 𝑀 + 𝑑𝑡 ∙ (

𝛾

2 ∙ 𝛽
− 1) ∙ 𝐶 (31)

Δ𝐹̂ = 𝐹𝑎𝑐𝑡𝑜𝑟1 ∙ 𝑉𝑖+ 𝐹𝑎𝑐𝑡𝑜𝑟2 ∙ 𝐴𝑖 (32)

Δ𝑋𝑖 = 𝐾 −1 × Δ𝐹̂ (33)

Δ𝑉𝑖 =
𝛾

𝛽 ∙ 𝑑𝑡
∙ Δ𝑋𝑖−

𝛾

𝛽
∙ 𝑉𝑖+ 𝑑𝑡 ∙ (1 −

𝛾

2 ∙ 𝛽
) (34)

𝑉𝑖+1 = 𝑉𝑖+ Δ𝑉𝑖 (35)

𝑋𝑖+1 = 𝑋𝑖+ Δ𝑋𝑖 (36)

20

2.4.6 Velocity Verlet

It is an explicit second-order method (Eq. (37) to (40)) solved with the use of half step

approximations. The velocity is updated in two stages while the position is updated with the

intermediate velocity (SCHAFER, 2008).

𝑣
𝑛+

1
2
= 𝑣𝑛 +

1

2
∙ 𝑑𝑡 ∙ 𝑎𝑛 (37)

𝑥𝑛+1 = 𝑥𝑛 + 𝑑𝑡 ∙ 𝑣
𝑛+

1
2
 (38)

𝑎𝑛+1 = 𝑚−1 ∙ 𝐹𝑛+1(𝑡𝑛+1, 𝑥𝑛+1, 𝑣𝑛+1) (39)

𝑣𝑛+1 = 𝑣
𝑛+

1
2
+

1

2
∙ 𝑑𝑡 ∙ 𝑎𝑛+1 (40)

2.4.7 HHT

The Hilber-Hughes-Taylor is an improvement of the Newmark family, since it presents

numerical damping proprieties and A-stability (NEGRUT, 2006). It has the same formulation

as the parent method, the only changes being the 𝛾, 𝛽 values and the addition of a lag parameter

in the damping, stiffness and external forces (GAVIN, 2016).

𝑀 ∙ 𝑎̈𝑛+1 + (1 − 𝛼) ∙ 𝐶 ∙ 𝑣̇𝑛+1 − 𝛼 ∙ 𝐶 ∙ 𝑞̇𝑛 + (1 − 𝛼) ∙ 𝐾 ∙ 𝑥𝑛+1 − 𝛼 ∙ 𝐾 ∙ 𝑥𝑛

= (1 + 𝛼) ∙ 𝐹𝑛+1 − 𝛼 ∙ 𝐹𝑛

(4142)

2.4.8 Fourth order Runge-Kutta

 The Runge-Kutta methods are an array of implicit and explicit iterative methods,

including the Euler method (currently used in our simulation) and the fourth order method,

which is one of the most ubiquitous integration methods today, but, like the Verlet method, it

needs the state-space representation when solving second-order systems (RAJASEKARAN,

2009) (NEWMARK, 1952). It is a fourth-order method defined by the equations below.

𝑘1𝑣 = 𝑎(𝑥𝑛, 𝑣𝑛, 𝑡𝑛) ∙ 𝑑𝑡 (42)

21

𝑘1𝑥 = 𝑣𝑛 ∙ 𝑑𝑡 (43)

𝑘2𝑣 = 𝑎 (𝑥𝑛 +
𝑘1𝑥

2
, 𝑣𝑛 +

𝑘1𝑣

2
, 𝑡𝑛 +

𝑑𝑡

2
) ∙ 𝑑𝑡 (44)

𝑘2𝑥 = (𝑣𝑛 +
𝑘1𝑣

2
) ∙ 𝑑𝑡 (45)

𝑘3𝑣 = 𝑎 (𝑥𝑛 +
𝑘2𝑥

2
, 𝑣𝑛 +

𝑘2𝑣

2
, 𝑡𝑛 +

𝑑𝑡

2
) ∙ 𝑑𝑡 (46)

𝑘3𝑥 = (𝑣𝑛 +
𝑘2𝑣

2
) ∙ 𝑑𝑡 (47)

𝑘4𝑣 = 𝑎(𝑥𝑛 + 𝑘3𝑥 , 𝑣𝑛 + 𝑘3𝑣, 𝑡 + 𝑑𝑡) ∙ 𝑑𝑡 (48)

𝑘4𝑥 = (𝑣𝑛 + 𝑘3𝑣) ∙ 𝑑𝑡 (49)

𝑣𝑛+1 = 𝑣𝑛 +
1

6
∙ (𝑘1𝑣 + 2 ∙ 𝑘2𝑣 + 2 ∙ 𝑘3𝑣 + 𝑘4𝑣) (50)

𝑥𝑛+1 = 𝑥𝑛 +
1

6
∙ (𝑘1𝑥 + 2 ∙ 𝑘2𝑥 + 2 ∙ 𝑘3𝑥 + 𝑘4𝑥) (51)

2.4.9 A fast and stable implicit method

The implicit integration method allows larger time steps for parachute simulation by

ensuring the system stability (KANG, 2000). The fast and stable implicit method, which can be

used to calculate the next state of each mass-point of the parachute based on the mass-spring

networks, can be summarized as follows:

𝐹𝑠,𝑖
𝑡 = ∑ 𝑘𝑖,𝑗 ∙ (|𝑥𝑗 − 𝑥𝑖|) − 𝑙𝑖,𝑗

0

∀𝑗|(𝑖,𝑗)∈𝐸
) ∙

(𝑥𝑗 − 𝑥𝑖)

|𝑥𝑗 − 𝑥𝑖|

(52)

𝐹𝑣,𝑖
𝑡 = ∑ 𝑘𝑖,𝑗 ∙ 𝑑𝑡 ∙ (𝑣𝑗

𝑡 −
∀𝑗|(𝑖,𝑗)∈𝐸

𝑣𝑖
𝑡) (53)

𝐹𝑖
𝑡 = 𝐹𝑠,𝑖

𝑡 + 𝐹𝑣,𝑖
𝑡 (54)

Δ𝑣𝑖
𝑡+𝑑𝑡 =

𝐹𝑖
𝑡 ∙ 𝑑𝑡 + 𝑑𝑡2 ∙ 𝑘𝑖,𝑗 ∙ ∑ 𝐹𝑗

𝑡 ∙
𝑑𝑡

(𝑚𝑗 + 𝑑𝑡2 ∙ 𝑘 ∙ 𝑛𝑗)
(𝑖,𝑗)∈𝐸

𝑚𝑖+ 𝑑𝑡2 ∙ 𝑘𝑖,𝑗 ∙ 𝑛𝑖

(55)

𝑣𝑖
𝑡+𝑑𝑡 = 𝑣𝑖

𝑡 + Δ𝑣𝑖
𝑡+𝑑𝑡 (56)

𝑥𝑖
𝑡+𝑑𝑡 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+𝑑𝑡 ∙ 𝑑𝑡 (57)

22

With:

• 𝐹𝑖
𝑡 the total internal force on the i-th mass-point at time t;

• 𝐹𝑣,𝑖
𝑡 the viscosity force;

• Δ𝑣𝑖
𝑡+𝑑𝑡 the velocity change of the i-th mass-point at the next time step;

• 𝑘𝑖,𝑗 the spring constant;

• 𝑁̂𝑖 the unit normal of the i-th mass-point;

• 𝑛𝑖, 𝑛𝑗 the number of mass-points linked to i, j.

This method was only applied in our cloth simulation, where we used it with uniform

stiffness. We modified it by suppressing the velocity change caused by the air flow, because

we chose to maintain the original aerodynamic force function, once it uses a good

approximation of the Darcy-Forchheimer law.

2.5 Reference Systems

In order to better understand the behavior of the prior methods, two simulations were

created: a simple pendulum and a spring pendulum.

2.5.1 Simple Pendulum

Figure 3 - Forces in a simple pendulum system.

Source: Maschen (2015)

This system is composed of a lumped mass 𝑚 = 1𝑘𝑔) linked to a ceiling with an

inextensible line (𝐿 = 1𝑚). At 𝑡0 the mass is released from a certain height, starting a

damped oscillatory movement (𝑐 = 0.1). Using the generalized coordinate 𝜃 for the

displacement, we have the following Lagrangian:

23

ℒ =
1

2
∙ 𝑚 ∙ 𝐿2 ∙ 𝜃̇2 + 𝑚 ∙ 𝑔 ∙ 𝐿 ∙ cos (𝜃) (58)

𝜕ℒ

𝜕𝜃
−

𝑑

𝑑𝑡
∙
𝜕ℒ

𝜕𝜃̇
= 0 (59)

Having solved the Lagrangian, the following equations were obtained.

𝜃̇ = 𝜔 (60)

𝜔̇ = −
𝑔

𝑚 ∙ 𝐿
sin(𝜃) − 𝜔 ∙

𝑐

𝑚 ∙ 𝐿2
 (61)

A comparison between the displacement obtained and the CPU time was made with

Explicit Euler, 4𝑡ℎ-order Runge-Kutta, Velocity Verlet, Euler Cromer and Improved Explicit

Euler for several time intervals.

Figure 4 - Displacement obtained with varios schemes.

24

Figure 5 - Displacemement obtained with various schemes.

Figure 6 - Displacememnt obtained with various schemes.

25

Table 1- Mean resource consumption with 10 executions each for dt = 0.005s.

Integration scheme CPU time [s]

Explicit Euler 0.0029

4𝑡ℎ Runge-Kutta 0.0069

Velocity Verlet 0.0045

Euler Cromer 0.0025

Improved Explicit Euler 0.0059

It can be seen in Figures 4 to 6 that Explicit Euler and 4𝑡ℎ-order Runge-Kutta are more

susceptible to divergence than the others, when it comes to the time interval. Also, that the

Velocity Verlet, the Euler-Cromer and the Improved Explicit Euler algorithms produced

similar results for the chosen time steps. Only in the simulations with 𝑑𝑡 ≤ 10−3𝑠 all of the

tested methods produced a solution close to the analytical one, characterized by the exponential

decay (ROOT, [20--]).

2.5.2 Spring pendulum

To evaluate Newmark and HHT against the other schemes, the system shown in Figure

7 was used.

Figure 7 - Spring pendulum diagram.

Source: CANCIAN (2015).

ℒ =
1

2
∙ 𝑀 ∙ 𝑥̇2 +

1

2
∙ 𝑀 ∙ 𝑦̇2 −

1

2
∙ 𝐾 ∙ [√𝑥2 + (𝑦 − 𝑎)2 − 𝑙]

2

+
1

2
∙ 𝐾

∙ [√𝑥2 + (𝑦 + 𝑎)2 − 𝑙]
2

(62)

26

Eq. (63) and (64), corresponding to the acceleration, were obtained with the use of the

Lagrangian (Eq. (62)). During the initial moment the system was kept in a charged position and

then released. Figures 8 to 13 show the system response.

𝑥̈ = −
𝐾

𝑀
∙ [2 ∙ 𝑥 − 𝑙 ∙ (

𝑥

√𝑥2 + (𝑦 − 𝑎)2
+

𝑥

√𝑥2 + (𝑦 + 𝑎)2
)]

(63)

𝑦̈ = −
𝐾

𝑀
∙ [2 ∙ 𝑦 − 𝑙 ∙ (

𝑦 − 𝑎

√𝑥2 + (𝑦 − 𝑎)2
+

𝑦 + 𝑎

√𝑥2 + (𝑦 + 𝑎)2
)]

(64)

With Figure 8 we can compare the Euler algorithms along with the 4𝑡ℎ-order Runge-

Kutta. It is noticeable that only Explicit Euler diverges. In Figure 10 we see a coherent solution.

Figures 9 and 11 show the system phase space with relation to its potential and kinetic energy.

For the chosen time step all methods but Explicit Euler's have an elliptical phase diagram.

𝑥2

𝑎2
+

𝑥̇2

𝑏2
= 1

(65)

𝑇 ≈
𝑥̇2

𝑏2
, 𝑉 ≈

𝑥2

𝑎2
→ 𝑇 + 𝑉 = 1

(66)

The elliptic form seen is characteristic for stable systems (CANCIAN, 2015).

Considering small displacements in the 𝑥 and 𝑦 axis, the sum of the potential and kinetic energy

can be approximated as shown in Eq. (66) to a constant, which is consistent with the system

energy conservation, since there is no damping in it.

The diverging spiral in Figure 9 is caused by the energy accumulation inherent to

Explicit Euler and, no matter how small the step, over time the system will gain energy. This

can be mitigated with the introduction of damping or with the use of an implicit method. The

advantage of the latter compared to explicit methods is that they allow the use of larger time

steps while keeping a stable, although less accurate result. Figure 13 shows a stable phase

diagram generated with implicit methods for a time step 1000 times larger. With the same time

step all others schemes diverged.% with the same step all other schemes diverged.

Despite the stability, the implicit schemes consume more resources than explicit or

semi-implicit schemes, as seen in Table 2. So, for large and complex simulations (such as

parachute's) a compromise between accuracy and resource consumption has to be made, while

keeping it stable

27

Figure 8 - Displacement obtained with various schemes.

Figure 9 - Displacement obtained with various schemes.

28

Figure 10 - Displacement obtained with various schemes.

Figure 11 - Displacement obtained with various schemes.

29

Figure 12 - Displacement obtained with various schemes.

Figure 13 - Displacement obtained with various schemes.

30

Table 2 - Mean resource consumption with 10 executions each for dt = 0.0001s.

Integration scheme CPU time [s]

Explicit Euler 0.0298

Newmark 0.7421

Velocity Verlet 0.0481

Euler Richardson 0.0471

Euler Cromer 0.0296

4𝑡ℎ Runge-Kutta 0.1144

HHT 0.7243

Improved Explicit Euler 0.0286

3 PROCEDURE AND RESULTS

3.1 Parachute Simulation

At first, the methods cited in Section 2.4 were implemented into the Bilan_Forces

function using individual functions. In general, each function took the position, the velocity,

the mass, the internal and the external forces matrices to determine the new state of the system.

Table 3 - Simulation parameters.

Parameter Value

𝑑𝑡 1 ∙ 10−12𝑠

𝐸 9.575 ∙ 107 𝑃𝑎 [24]

𝑉∞ 1 ∙ 1012𝑚𝑠−1

𝑅𝑖𝑛𝑡 0.1𝑚

𝑅𝑒𝑥𝑡 1.0𝑚

𝑁𝑜𝑑𝑒𝑠 703

𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 1280

𝑆𝑝𝑟𝑖𝑛𝑔− 𝐵𝑟𝑖𝑛𝑠 1983

31

Using the parameters summarized in Table 3, all of our simulations ended up diverging

around a simulation time near 3.4 ∙ 10−11𝑠, with the notable exception of the Improved Euler,

which went approximately 3.5 times further. Even Newmark and HHT, which worked very

well with larger steps in our reference system, did not produce a favorable result.

Initially, we thought that the instability was caused by the fluid velocity value 𝑉∞ =

1012𝑚𝑠−1,such high value was chosen to produce a deformation in the meter scale), so we

reduced it to 50𝑚𝑠−1, however, it also ended up exploding. So, we started to look further into

the internal forces function Calcul_Tensions_mich and FNodCalcule.

We found out that the internal force which each mass-point was submitted to, did not

consider the gravity. Even with its addition the result was the same. Searching to produce a

working simulation we then decided to do a cloth simulation adopting the model used by Khang

et al. (KANG, 2000) and Desbrun et al. (DESBRUN, 1999) with 𝑉∞ = 50𝑚𝑠−1.

Figure 14 - Developed parachute at 2.6 ∙ 10−11𝑠 using Velocity Verlet.

32

Figure 15 – Same parachute at 3.4 ∙ 10−11𝑠.

Table 4 -Simulation results for the mesh described in Table 3.

Integration scheme Simulation time [s]

Explict Euler 3.3 ∙ 10−11

Velocity Verlet 3.4 ∙ 10−11

4𝑡ℎ Runge-Kutta 3.4 ∙ 10−11

Newmark 3.5 ∙ 10−11

HHT 3.5 ∙ 10−11

Euler Cramer 3.4 ∙ 10−11

Improved Explicit Euler 1.16 ∙ 10−10

Euler Richardson 3.2 ∙ 10−11

3.2 Cloth simulation

In this model, each i-th mass-point can be connected to several other mass-points

through springs, so the internal force on the i-th can be calculated with the Eq. (67), where E is

a spring connected to the i-th and j-th mass-points, 𝑘𝑖,𝑗 the spring stiffness, 𝑥𝑖 the i-th node

position and 𝑙𝑖𝑗
0 the spring resting length. They are also submitted to a viscous effort

proportional to the different velocity of each spring end, as shown in the Eq. (68).

33

𝐹𝑠,𝑖
𝑡 = ∑ 𝑘𝑖,𝑗 ∙ (|𝑥𝑗 − 𝑥𝑖|) − 𝑙𝑖,𝑗

0

∀𝑗|(𝑖,𝑗)∈𝐸
) ∙

(𝑥𝑗 − 𝑥𝑖)

|𝑥𝑗 − 𝑥𝑖|

(67)

𝐹𝑣,𝑖
𝑡 = ∑ 𝑘𝑖,𝑗 ∙ 𝑑𝑡 ∙ (𝑣𝑗

𝑡 −
∀𝑗|(𝑖,𝑗)∈𝐸

𝑣𝑖
𝑡) (68)

𝐹𝑖
𝑡 = 𝐹𝑠,𝑖

𝑡 + 𝐹𝑣,𝑖
𝑡 (69)

Our new code was based on the old one, but with some changes. We took the same

meshes, integration schemes and aerodynamic force function Force_Aero. The main change

came in the form of a new function: Forces. This function implements the force whose relations

are described above, as well as the mass weight's, in one single matrix [𝐹𝑜𝑟𝑐𝑒]3×𝑁 . Each line

carries the sum of internal and gravitational forces in the 𝑥, 𝑦 or 𝑧 direction for each node.

[𝐹𝑜𝑟𝑐𝑒]3×𝑁 = [

𝐹1
𝑥 … 𝐹𝑛

𝑥

𝐹1
𝑦

… 𝐹𝑛
𝑦

𝐹1
𝑧 + 𝐹𝑔𝑟𝑎𝑣1

𝑧 … 𝐹𝑛
𝑧 + 𝐹𝑔𝑟𝑎𝑣𝑛

𝑧

]
(70)

Before the integration, the aerodynamic force was added into the force matrix, which

was then used to derive the acceleration needed to update the current system state in some

methods.

In the original simulation the stiffness was calculated using Eq. (71), with the cross-

section area, the Young's modulus and the resting length of the fibers. The obtained values

ranged between 1.53 ∙ 106𝑁𝑚−1 and 2.75 ∙ 105𝑁𝑚−1, however, this rigidity contributed to the

divergence of the simulation and, at the same time, to avoid the apparition of the "Super-Elastic"

effect described in (PROVOT, 1996). So, searching to simplify our model, we applied uniform

rigidity and tried it with several values.

𝑘𝑖,𝑗 =
𝐴 ∙ 𝐸

𝑙𝑖,𝑗
0 (71)

In Figure 17, 19, 21 and 23 we have the displacement of some nodes (node 650 to node

703, we did not took all nodes because it would decrease the graphics readability) in the z-axis,

as the simulation begins the nodes move from the starting position 𝑧𝑖
0, ∀𝑖∈ [1, 𝑛] starting a

damped oscillatory movement caused by the aerodynamic and weight loads applied. The

damping is caused by the viscous effort described in Eq. (68) and is responsible for the nodes

settling in a new equilibrium position. We can see that both the equilibrium position and the

settling time are affected by the stiffness, as well as the time step. The 𝑑𝑡 needed to achieve

34

stability is related to the stiffness and node mass, once it must have approximately the same

value as the natural period of the system (PROVOT, 1996).

The phase diagrams presents converging spirals, indicating that the system's energy is

consumed during the simulation, which agrees with our model, since it embeds a dissipative

factor (the viscous force).

𝑑𝑡 ≈ 𝜋√
𝑚𝑚𝑖𝑛

𝑘𝑚𝑎𝑥

(72)

In our tests we found out that 𝑑𝑡 must be at approximately 10 times smaller than the

natural period described by Eq. (72). The simulation also worked with all of the methods

discussed in Section 2.4, however, we could not evaluate the "Super-Elasticity" problem since

the use of uniform stiffness impeded its apparition.

Figure 16 – Parachute simulation near the equilibrium point, 𝐾 = 100 and 𝑑𝑡 = 2 ∙ 10−3𝑠
using Velocity Verlet.

35

Figure 17 – Displacement in the z axis of some nodes from the resting position, for 𝐾 =
100𝑁𝑚−1 and 𝑑𝑡 = 2 ∙ 10−3𝑠.

Figure 18 – Phase diagram, for 𝐾 = 100𝑁𝑚−1 and 𝑑𝑡 = 2 ∙ 10−3𝑠.

36

Figure 19 - Displacement in the z axis of some nodes from the resting position, for 𝐾 =
1000𝑁𝑚−1 and 𝑑𝑡 = 5 ∙ 10−4𝑠.

Figure 20 - Displacement in the z axis of some nodes from the resting position, for 𝐾 =
1000𝑁𝑚−1 and 𝑑𝑡 = 5 ∙ 10−4𝑠.

37

Figure 21 - Displacement in the z axis of some nodes from the resting position, for 𝐾 =
10000𝑁𝑚−1 and 𝑑𝑡 = 2 ∙ 10−4𝑠.

Figure 22 – Phase diagram, for 𝐾 = 10000𝑁𝑚−1 and 𝑑𝑡 = 2 ∙ 10−4𝑠.

38

Figure 23- Displacement in the z axis of some nodes from the resting position, for 𝐾 =
100000𝑁𝑚−1 and 𝑑𝑡 = 5 ∙ 10−5𝑠.

Figure 24 – Phase diagram, for 𝐾 = 100000𝑁𝑚−1 and 𝑑𝑡 = 5 ∙ 10−5𝑠.

39

4 CONCLUSIONS

Parachute simulations are indeed complex and time consuming matters. They can

employ a wide range of models (such as structural only or fluid-structure interaction) and

integration methods to solve its ODE's. During our research we came across several explicit,

semi-implicit and implicit methods and implemented some of then in the code inherited from

De Leotard (LEOTARD, 2017), Herlaut et al. (HERLAUT, 2016) and Gramlich et al.

(GRAMLICH, 2016), and we found that Improved Explicit Euler has the best performance in

the parachute simulation, although we did not succeeded in our goal to stabilize it.

To prove our methods we constructed two reference systems and a cloth simulation, and

tested then with various time steps and stiffness with success. Our theory for the failure in the

original simulation is that the current model is not complete, since it does not account for the

fluid-structure interaction. All of the cited methods worked with our cloth simulation (at least

for the tested cases), but it is important to find a compromise between accuracy and the

consumption of the computational resources. In our case the Velocity Verlet presented a good

balance.

40

REFERÊNCIAS

SAHU, Jubaraj; COOPER, Gene R.; BENNEY, Richard J.. 3-D Parachute Descent Analysis
Using Coupled Computational Fluid Dynamic and Structural Codes. [S. L.]: Army
Research Laboratory, 1997.

LEOTARD, Yves de. Modélisation numérique de parachutes. 2017. 1 v. Dissertação
(Mestrado) - Curso de Formation Ingénieur, Isae-Supaero, Toulouse, 2017.

HERLAUT, Etienne; LOLIES, Tom. FLUID STRUCTURE INTERACTION MODELS
TO SIMULATE AN INFLATED PARAGLIDER. 2016. 1 v. Dissertação (Mestrado) - Curso
de Formation Ingénieru, Isae-Supaero, Toulouse, 2016.

GRAMLICH, Guillaume; PINTO, Valentin. Numerical simulation of parachutes. 2016. 1 v.
Dissertação (Mestrado) - Curso de Formation Ingénieur, Isae-Supaero, Toulouse, 2016.

PERSSON, Per-Olof; STRANG, Gilbert. A Simple Mesh Generator in MATLAB. Siam
Review, [S. L.], v. 46, n. 2, p. 329-345, jan. 2004.

PROVOT, Xavier. Deformation constraints in a mass-spring model to describe rigid cloth
behavior. Proceedings of Graphics Interface, 1995.

BAYRAKTAR, Serkan. Simulating cloth behavior by using mass-spring networks. 2002. 1
v. Dissertação (Mestrado) - Curso de Computer Engineering, Bilkent University, Ankara, 2002.

JAMBHEKAR, Vishal A.. Forchheimer Porous-media Flow Models - Numerical
Investigation and Comparison with Experimental Data. 2011. 1 v. Dissertação (Mestrado)
- Curso de Engenharia, Universität Stuttgart, Stuttgart, 2011.

PRESS, William H.; TEUKOLSKY, Saul A.; VETTERLING, William T.; FLANNERY, Brian
P.. Numerical Recipes. Cambridge: Cambridge University Press, 2007.

NIKOLIC, Branislav K.. Numerical Integration of Newton's Equations: Finite Difference
Methods. Disponível em:
http://www.physics.udel.edu/~bnikolic/teaching/phys660/numerical_ode/ode.html. Acesso
em: 18 jun. 2018.

HANNA, O. T.. New explicit and implicit "Improved Euler" methods for the integration of
ordinary differential equations. Computers & Chemical Engineering, [S. L.], v. 12, n. 11, p.
1083-1086, nov. 1988.

NEWMARK, Nathan M.. A METHOD OF COMPUTATION FOR STRUCTURAL
DYNAMICS. Journal Of The Engineering Mechanics Division: Proceedings of the
American Society of Civil Engineers. Urbana07, p. 67-95. jul. 1959.

ANDERSON, James C.; NAEIM, Farzad. Basic Structural Dynamics. [S. L.]: John Wiley &
Sons Inc, 2012.

41

KONTOE, Stavroula. Development of time integration schemes and advanced boundary
conditions for dynamic geotechnical analysis. 2006. 1 v. Tese (Doutorado) - Curso de
Geology, Imperial College Of Science, Thecnology And Medicine, London, 2006.

RAJASEKARAN, S.. Structural Dynamics of Earthquake Engineering: Theory and
Application Using MATHEMATICA and MATLAB. [S. L.]: Woodhead Pub, 2009.

KRENK, Steen. Energy conservation in Newmark based time integration algorithms.
Computer Methods In Applied Mechanics And Engineering, [S. L.], v. 195, n. 44-47, p.
6110-6124, set. 2006.

SCHAFER, Nick; NEGRUT, Dan; SERBAN, Radu. Experiments to Compare Implicit and
Explicit Methods of Integration in Molecular Dynamics Simulation. 2008. Disponível em:
http://sbel.wisc.edu/People/schafer/mdexperiments/. Acesso em: 18 jun. 2018.

NEGRUT, Dan; OTTARSSON, Gisli; RAMPALLI, Rajiv; SAJDAK, Anthony. On an
Implementation of the Hilber-Hughes-Taylor Method in the Context of Index 3 Differential-
Algebraic Equations of Multibody Dynamics (DETC2005-85096). Journal Of
Computational And Nonlinear Dynamics. [S. L.], p. 73-95. jul. 2006.

GAVIN, Henri P.. Numerical Integration in Structural Dynamics. 2016. 17 f. Dissertação
(Mestrado) - Curso de Civil Engineering, Duke University, Durham, 2016.

NEWMARK, N. M.; CHAN, S. P.. A comparison of numerical methods for analyzing the
dynamic response of structures. Urbana: University Of Illinois At Urbana-Champaign, 1952.

KANG, Young-Min; CHOI, Jeong-Hyeon; CHO, Hwan-Gue; PARK, Chan-Jong. FAST AND
STABLE ANIMATION OF CLOTH WITH AN APPROXIMATED IMPLICIT METHOD,
2000, [S. L.]. Proceedings of Computer Graphics International Conference. [S. L.]: Ieee
Comput. Soc, 2000.

ROOT, Morgan. Solving the harmonic oscillator equation. Raleigh: Department Of Math,
[20--]. 30 slides, color.

CANCIAN, Caio Garcia; DOMINGUES, Pietro Teruya. Modelagem e simulação de um
sistema massa-mola com 2 graus de liberdade. Mecatrone, São Carlos, v. 1, n. 1, p. 1-22, maio
2015.

STEIN, Keith R.; BENNEY, Richard J.; TEZDUYAR, Tayfun E.; LEONARD., John W.;
ACCORSI, Michael L.. Fluid-Structure Interactions of a Round Parachute: Modeling and
Simulation Techniques. Journal Of Aircraft. [S. L.], p. 800-808. set. 2001.

DESBRUN, Mathieu; SCHRODER, Peter; BARR, Alan. Interactive animation of structured
deformable objects. [S. L.]: Proc. Of Graphics Interface '99, 1999.

42

APENDIX A – ANALYTIC SOLUTION FOR REFERECE SYSTEMS

In order to assess the quality of the solutions obtained with the integration methods we

changed our reference systems to match those described by Root in (ROOT, [20--]), where he

derived the analytical solutions of these systems.

Figure 25 – Modified reference system.

Eq. (73) to (76) represent the analytical solution for the undamped case, while Eq. (77)

to (81) represent the damped case. During our tests the stiffness constant was set to 𝑘 =

3𝑁𝑚−1, the mass to 𝑚 = 2𝑘𝑔 and the initial displacement to 𝑥0 = 2𝑚. The following figures

show the response obtained.

43

𝜔 0 = √
𝑘

𝑚

(73)

𝐴 = 𝑥0
2 + (

𝑣0

𝜔 0
) (74)

𝜙 = tan−1 (
𝑥0 ∙ 𝜔 0

𝑣0
) (75)

𝑥(𝑡) = 𝐴 ∙ sin(𝜔 0 ∙ 𝑡 + 𝜙) (76)

𝜔 =
√4 ∙ 𝑚 ∙ 𝑘 − 𝑐2

2 ∙ 𝑚

(77)

𝐵 =
𝑣0

𝜔
+

𝑐 ∙ 𝑥0

2 ∙ 𝑚 ∙ 𝜔

(78)

𝐴 = √𝑥0
2 + 𝐵2

(79)

𝜙 = tan−1 (
𝑥0

𝐵
) (80)

𝑥(𝑡) = 𝐴 ∙ 𝑒𝑥𝑝
−𝑐∙𝑡
2∙𝑚 ∙ sin(𝜔 ∙ 𝑡 + 𝜙) (81)

Figure 26 – Displacement for the undamped case.

44

Figure 27 – Phase for the undamped case.

Figure 28 – Displacement for the undamped case.

45

Figure 29 - Phase for the undamped case.

Figure 30 - Displacement for the undamped case.

46

Figure 31 - Phase for the undamped case.

Figure 32 - Displacement for the undamped case.

47

Figure 33 - Phase for the undamped case.

Figure 34 - Displacement for the undamped case.

48

Figure 35 - Phase for the undamped case.

49

Figure 36 - Displacement for the undamped case.

Figure 37 - Phase for the undamped case.

50

Figure 38 - Displacement for the undamped case.

Figure 39 - Displacement for the undamped case.

51

Figure 40 - Displacement for the undamped case.

52

APENDIX B – CLOTH SIMULATION

In Figures 17, 18, 19, 20, 21, 22, 23 and 24 we took the last 54 nodes of the mesh to

display their displacement and phase. These nodes were chosen randomly and figures 41 and

42 show their location in the mesh.

Figure 41 - Nodes positioning.

53

Figure 42 - Detailed positioning.

