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ABSTRACT 
 

Mass-spring models are frequently employed in parachute simulations due to their simplicity 

and efficiency. A series of integration methods can be used to solve the dynamic system, 

however their use presents some difficulties often associated with the stability, accuracy and 

the computational resources consumption. We compared some of these methods in four 

different situations: simple pendulum, spring pendulum and two parachute models, and for each 

system the behavior of the integration methods was different. In the parachute simulations, 

which are 

the main objective of this thesis, the Improved Explicit Euler presented the best performance in 

the first model, although the simulation ended up diverging. For the second model, all of the 

tested schemes worked. 

 

Keywords: Parachute Simulation. Integration methods. Mass-spring model. Finite-Element 

Method. Darcy-Forchheimer. 

 

 
 



     

 

RESUMO 
 

Modelos massa-mola são frequentemente empregados em simulações de paraquedas devido à 

sua simplicidade e eficiência. Diversos métodos de integração podem ser utilizados para a 

resolução desses sistemas, entretanto, sua utilização pode acarretar em dificuldades associadas 

à estabilidade, acurácia e ao consumo de recursos computacionais. Comparamos alguns desses 

métodos em quatro diferentes situações: um pendulo simples, um pêndulo com mola e dois 

modelos de paraquedas. E para cada modelo, o comportamento dos métodos de integração 

mostrou-se diferente. Nas simulações de paraquedas, o principal objetivo deste trabalho, o 

Método Melhorado de Euler Explícito apresentou a melhor performance no primeiro modelo, 

apesar de a simulação acabar divergindo. Para o segundo modelo de paraquedas, todos os 

métodos testados funcionaram.  

Palavras-chave: Simulação de Paraquedas. Métodos de Integração. Modelo Massa-Mola. 

Método de Elementos Finitos. Darcy-Forchheimer. 
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INTRODUCTION 

 
Parachutes have been an important method for cargo and personnel deployment in rough 

access areas especially in war zones since the Second World War. More recently they have also 

begun to be used in space-crafts within or not Earth's atmosphere. Their use presents various 

technical challenges to planners and engineers, as it involves dropping from the sky a high value 

cargo attached to a piece of wrapped cloth that will, hopefully, be correctly deployed mid-air, 

holding  the weight and allowing the cargo to gently touch the ground. Thus, the need of 

accurate simulations, in order to predict their behavior. 

 

Figure 1- Apollo 15 safely descends to splashdown using parachutes. 

 
Source: NASA (1971). 

 

To simulate a parachute is a complex subject (SAHU, 1997) since it involves the 

coupling of fluid dynamics with the surrounding environment and the canopy's  structural 

dynamics. In our case the fluid-structure interaction has not been implemented yet, so the only 

contribution of the flow to the canopy is the aerodynamic force applied to each node of the 

mesh. 

This project is a continuation of previous years' PIR projects (Projet d'Innovation et 

Recherche Modélisation numérique de parachutes (LEOTARD, 2017),  Models to Simulate an 

Inflated Paraglider (HERLAUT, 2016) and Numerical simulation of parachutes (GRAMLICH, 

2016). The code library used in the current work is based on that of those works. 
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The code inherited was composed of the mesh generation functions, created by Persson 

et al. (PERSSON, 2004) and the effort functions, where each element's position and velocity 

were estimated using the Explicit Euler method. This simulation did not converge even with a 

small step of 1 ∙ 10−12 seconds. Our goal was to deploy new time-integration methods, to 

achieve stability even with larger time steps.  

Before the deployment, a theoretical study regarding general parachute simulation, 

integration methods, porous media and cloth simulation was conducted, allowing us to better 

understand the theory behind the code. Also, three reduced models (simple pendulum, spring 

pendulum and circular cloth) were coded as a simple way to show each method's characteristics. 

 

STATE OF THE ART  

 
2.1 Model 
 

The project employs a mass-spring model which is widely used for cloth modeling. 

Discrete mass-points are connected by damped springs in the model to simulate the cloth's 

behavior (PROVOT, 1995). 

 𝐹𝑒𝑥𝑡(𝑖, 𝑗) + 𝐹𝑖𝑛𝑡(𝑖, 𝑗) = 𝑚 ∙ 𝑎(𝑖, 𝑗) (1) 

 

With:  

• 𝑎(𝑖, 𝑗) the acceleration of the point P(i,j); 
• 𝑚 the mass of the node; 

• 𝐹𝑖𝑛𝑡(𝑖, 𝑗) the forces the forces mass-points exert on each other through damped 
springs; 

• 𝐹𝑒𝑥𝑡(𝑖, 𝑗) the net external force composed of the gravity, and the wind force. 
 

The internal force caused by the damped spring can be divided into two parts: the spring 

force which can be calculated by the Hooke's Law (BAYRAKTAR, 2002) and the damping 

force. 

 𝐹𝑖𝑛𝑡(𝑖, 𝑗) = 𝑇𝛿(𝑖, 𝑗) + 𝑇𝛿̇(𝑖, 𝑗) (2) 

 𝑇𝛿(𝑖, 𝑗) = 𝑘 ∙ max(𝑙𝑖𝑗− 𝑙𝑖𝑗
0 , −𝑒𝑝𝑠) 

  

(3) 
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𝑇𝛿̇(𝑖, 𝑗) = 𝑐𝑖𝑗 ∙

𝑙𝑖𝑗
̇

𝑙𝑖𝑗
0  

(4) 

 

With: 

• 𝑘 the spring constant; 

• 𝑐𝑖𝑗 the damping constant; 

• 𝑙𝑖𝑗 the length of the spring; 

• 𝑙𝑖𝑗
0  the rest length of the spring; 

• 𝑒𝑝𝑠 the compressive tolerance value; 

 

As mentioned early, the gravity is a part of the external force. 

𝐹𝑖,𝑗 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝑖,𝑗 ∙ 𝑔 (5) 

 

The cloth can also be modeled as a porous medium and the interaction between 

the fluid and the canopy is given by the Ergun equation, which relates the fluid pressure 

drop during its passage through a porous medium with its velocity. This pressure 

gradient will allow to model an aerodynamic force (JAMBHEKAR, 2011). 

 
∆𝑃

𝑒
= 𝐴(𝜀, 𝜇) ∙ 𝑣𝑓 + 𝐵(𝜀, 𝜇) ∙ 𝑣𝑓

2 (6) 

𝐴(𝜀, 𝜇) =  
𝜇 ∙ 150 ∙ (1 − 𝜀)2

𝐷2 ∙ 𝜀2
 

(7) 

𝐵(𝜀, 𝜇) =
𝜌 ∙ 1.75 ∙ (1 − 𝜀)

𝐷 ∙ 𝜀2
 

(8) 

 

Whit:  

• 𝐷 the diameter; 

• 𝜀 the porosity of the parachute; 

• 𝜇 the dynamic viscosity of the fluid; 

• 𝑒 the thickness of the cloth; 

• 𝜌 the density of the fluid; 

• 𝑣𝑓 the Forchheimer velocity. 

 

The Forchheimer velocity is related to the Darcy flux by the porosity. Eq. (9) gives the 

formulation of the 𝑣𝑓⃗⃗⃗⃗ . 
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𝑣𝑓⃗⃗⃗⃗ =  𝑣𝑝𝑜𝑟𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∙ 𝜀 (9) 

𝑣𝑝𝑜𝑟𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑛⃗ ∙ (𝑛⃗ ∙ (𝑣𝑓𝑙𝑢𝑖𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑣𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑔𝑟𝑎𝑣𝑖𝑡𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)) (10) 

 

With: 

• 𝑛⃗  the unit normal to the considered mesh surface; 

• 𝑣𝑝𝑜𝑟𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   the seepage velocity vector. 

 

2.2 Conception of the mesh 

  

 The discretization of the parachute is a crucial step in parachute simulation. Here, we 

used the code "distmesh" developed by Per-Olof Persson to discretize the physical model. The 

parameters in the mesh generation functions were regulated to create a high-quality mesh. The 

number of the node and the size of each element in the unstructured triangular mesh can be 

controlled. We also applied the Dirichlet boundary condition at nodes in the external radius of 

the parachute, impeding its movement. 

 

 

Figure 2 - Example of parachute mesh: internal radius = 0.1m, external radius = 1m, number 
of elements = 1232. 

 
Source: the Author. 
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2.3 Project structure 

2.3.1 Maillage Tri 

 

The function Maillage_Tri generates the mesh of the parachute, the nodes and springs 

numeration and connectivity matrix. The mesh discretization code "distmesh" developed by 

Persson et al. (PERSSON, 2004) was implemented in it. First, the input parameters in 

"distmesh" were determined and then it gave the nodes and elements numeration. Later, the list 

of the spring connecting the mass points and the table of the seam in the parachute were created. 

After that, we initialized the position of each node and the length of the spring. With the table 

of the seam, the nodes on the boundary of the parachute were found. Finally, the mass matrix 

which includes the mass of each mass-point was generated. 

 

2.3.2 Bilan forces 

 

In the code library, the function Bilan_Forces was employed to synthesize all the forces 

added on the mass-points and different integration methods were implemented in it to calculate 

the position and the velocity of each mass-point. First, the initial length of each spring which 

connects the mass-points  was calculated. Then the function Calcul_Tensions_mich gave, 

correspondingly, the stiffness of the springs. After that, the specific time-integration method 

was chosen to update the state of the mass-points. The boundary condition was also set in 

Bilan_Forces. Afterwards we calculated the tension in the spring again. Finally, the state of the 

parachute was saved and displayed on the screen. With numerous iterations, the process of the 

inflation of the parachute can be simulated. 

 

2.3.3 Force Aero 

 

Responsible for the aerodynamic force caused by the change in air speed as it passes by 

the cloth, this function takes the original velocity and position, calculates each triangle normal 

vector and z-axis velocity with a weighted average. The velocity vector is then used to 

determine the pressure gradient with Eq. (6). The aerodynamic force is then obtained by the 

multiplication of the gradient by the element area and normal unitary vector. 
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2.4 Time-Integration Methods 
2.4.1 Explicit Euler 

 

A first-order ordinary differential equation (ODE) described by Eq. (11) can be 

expanded using the Taylor expansion series just at the first order derivative, giving the Explicit 

Euler method. 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦(𝑡)), 𝑦(𝑡0) = 𝑦0 (11) 

𝑦(𝑡 + 𝑑𝑡) = 𝑦(𝑡0) + 𝑑𝑡 ∙ 𝑦̇(𝑡0) + 𝑂(ℎ2) (12) 

  

Eq. (12) shows that we are dealing with a first-order method, since the step error is one 

power of 𝑑𝑡 smaller than the correction 𝑂(ℎ2) (PRESS, 2007). It can also suffer from 

instability, especially when used with stiff equations, thus requiring really small steps when 

compared with other methods. 

 

2.4.2 Euler-Cromer 

 

This methods is used to solve pairs of related differential equations of the form below. 
𝑑𝑥

𝑑𝑡
= 𝑣(𝑡) (13) 

𝑑𝑣

𝑑𝑡
= 𝑎(𝑡) (14) 

 

The algorithms, characterized by Eqs (15) and (16), unlike Explicit Euler's, uses the first 

function to update the velocity and the second function to update the position. Although first-

order accurate, the algorithm is energy conservative, thus, more accurate than Explicit Euler. 

𝑣𝑛+1 = 𝑣𝑛 + 𝑑𝑡 ∙ 𝑎(𝑡) (15) 

𝑥𝑛+1 = 𝑥𝑛 + 𝑑𝑡 ∙ 𝑣𝑛+1 (16) 

 

2.4.3 Euler-Richardson 

 

This algorithm uses a half step approximation (Eq. (18) to (20) to compute the 

acceleration (and consequentially the force) at the middle of the interval and then it updates the 

velocity and displacement (Eq. (21)and (22)). This evaluation allows the reduction of the 

truncation error by half, when compared to Explicit Euler's. 
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𝑎𝑛 = 𝑚−1 × 𝐹(𝑥𝑛, 𝑣𝑛, 𝑡𝑛) (17) 

𝑣
𝑛+

1
2
= 𝑣𝑛 +

1

2
∙ 𝑑𝑡 ∙ 𝑎𝑛 (18) 

𝑥
𝑛+

1
2
= 𝑥𝑛 +

1

2
∙ 𝑑𝑡 ∙ 𝑣𝑛 (19) 

𝑎
𝑛+

1
2
= 𝑚−1 ∙ 𝐹 (𝑥

𝑛+
1
2
, 𝑣

𝑛+
1
2
, 𝑡 +

1

2
∙ 𝑑𝑡) (20) 

𝑣𝑛+1 = 𝑣𝑛 + 𝑑𝑡 ∙ 𝑎
𝑛+

1
2
 (21) 

𝑥𝑛+1 = 𝑥𝑛 + 𝑑𝑡 ∙ 𝑣
𝑛+

1
2
 (22) 

 

This half step evaluation produces a more accurate algorithm than simple Euler's and 

Euler-Cromer's, however, it takes twice as much computation per time step (NIKOLIK, 2018). 

 

2.4.4 Improved Explicit Euler 

 

This method starts with a simple Euler step, that is evaluated using the derivative at the 

given time (Eq. (23)). This derivative is never corrected after the function value is obtained and, 

because of this, according to Hanna in (HANNA, 1988), a more efficient method is obtained. 

The approximated first step is used to evaluate the function at the new point, which will be used 

in a trapezoidal rule (Eq. (24)). 

𝑥̃(𝑡 + 𝑑𝑡) = 𝑥(𝑡) + 𝑑𝑡 ∙ 𝑓(𝑡, 𝑥(𝑡)) (23) 

𝑥(𝑡 + 𝑑𝑡) = 𝑥(𝑡) +
𝑑𝑡

2
∙ (𝑓(𝑡, 𝑥(𝑡)) + 𝑓(𝑡 + 𝑑𝑡, 𝑥̃(𝑡 + 𝑑𝑡))) (24) 

 

The advantage of such algorithm is the improved global accuracy: 𝑂(ℎ2), compared to 

𝑂(ℎ),  of simple Euler's. 

 

2.4.5 Newmark 

 

Developed by Nathan M. Newmark in 1959 (NEWMARK, 1959) this method (whose 

equations are shown below) has found widespread use in the structural dynamic analysis field 

due to its flexibility(ANDERSON, 2012) (KONTOE, 2006). 
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𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛 ∙ 𝑑𝑡 + (
1

2
− 𝛽) ∙ 𝑎𝑛 ∙ 𝑑𝑡2 + 𝛽 ∙ 𝑎𝑛+1 ∙ 𝑑𝑡2 (25) 

𝑣𝑛+1 = 𝑣𝑛 + (1 − 𝛾) ∙ 𝑎𝑛 ∙ 𝑑𝑡 + 𝛾 ∙ 𝑎𝑛+1 ∙ 𝑑𝑡 (26) 

  

It is an implicit method whose stability and accuracy are governed by the 𝛾 and 𝛽 

parameters. The critical time step for conditional stability is given by Eq.(27), where we can 

see that for 𝛾 =
1

2
 and 𝛽 =

1

4
 (constant acceleration method) the scheme is unconditionally 

stable, although susceptible to inaccuracy (RAJASEKARAN, 2009). 
𝛿𝑡

𝑇𝑛
≤

1

𝜋 ∙ √2
∙

1

√𝛾 − 2 ∙ 𝛽
 (27) 

 

 A compromise between stability and accuracy must be reached considering the effects 

of the 2 parameters. Such as the creation of spurious damping if 𝛾 ≠
1

2
 (KRENK, 2006), and 

the reduced stability area if 𝛾 =
1

2
 and 𝛽 =

1

6
  (linear acceleration method), since 𝛿𝑡 ≤

0.551 × 𝑇𝑛 must be satisfied (RAJASEKARAN, 2009).   

 

The difficulty associated with Newmark is the presence of the implicit term 𝑎𝑛+1. The 

algorithm proposed by Rajasekaran in (RAJASEKARAN, 2009) was used to overcome this 

problem. 

𝐴0 = 𝑀−1 ∙ (−𝐶 ∙ 𝑉0 − 𝐾 ∙ 𝑋0) (28) 

𝐾 = 𝐾 +
𝛾

𝛽 ∙ 𝑑𝑡
∙ 𝐶 +

1

𝛽 ∙ 𝑑𝑡
 (29) 

𝐹𝑎𝑐𝑡𝑜𝑟1 =
1

𝛽 ∙ 𝑑𝑡
∙ 𝑀 +

𝛾

𝛽
∙ 𝐶 (30) 

𝐹𝑎𝑐𝑡𝑜𝑟2 =
1

2 ∙ 𝛽
∙ 𝑀 + 𝑑𝑡 ∙ (

𝛾

2 ∙ 𝛽
− 1) ∙ 𝐶 (31) 

Δ𝐹̂ = 𝐹𝑎𝑐𝑡𝑜𝑟1 ∙ 𝑉𝑖+ 𝐹𝑎𝑐𝑡𝑜𝑟2 ∙ 𝐴𝑖 (32) 

  

Δ𝑋𝑖 = 𝐾 −1 × Δ𝐹̂ (33) 

Δ𝑉𝑖 =
𝛾

𝛽 ∙ 𝑑𝑡
∙ Δ𝑋𝑖−

𝛾

𝛽
∙ 𝑉𝑖+ 𝑑𝑡 ∙ (1 −

𝛾

2 ∙ 𝛽
) (34) 

𝑉𝑖+1 = 𝑉𝑖+ Δ𝑉𝑖 (35) 

𝑋𝑖+1 = 𝑋𝑖+ Δ𝑋𝑖 (36) 
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2.4.6 Velocity Verlet 

 

It is an explicit second-order method (Eq. (37) to (40)) solved with the use of half step 

approximations. The velocity is updated in two stages while the position is updated with the 

intermediate velocity (SCHAFER, 2008). 

𝑣
𝑛+

1
2
= 𝑣𝑛 +

1

2
∙ 𝑑𝑡 ∙ 𝑎𝑛 (37) 

𝑥𝑛+1 = 𝑥𝑛 + 𝑑𝑡 ∙ 𝑣
𝑛+

1
2
 (38) 

𝑎𝑛+1 = 𝑚−1 ∙ 𝐹𝑛+1(𝑡𝑛+1, 𝑥𝑛+1, 𝑣𝑛+1) (39) 

𝑣𝑛+1 = 𝑣
𝑛+

1
2
+

1

2
∙ 𝑑𝑡 ∙ 𝑎𝑛+1 (40) 

 

2.4.7 HHT 

 

The Hilber-Hughes-Taylor is an improvement of the Newmark family, since it presents 

numerical damping proprieties and A-stability (NEGRUT, 2006). It has the same formulation 

as the parent method, the only changes being the 𝛾, 𝛽 values and the addition of a lag parameter 

in the damping, stiffness and external forces (GAVIN, 2016). 

 

𝑀 ∙ 𝑎̈𝑛+1 + (1 − 𝛼) ∙ 𝐶 ∙ 𝑣̇𝑛+1 − 𝛼 ∙ 𝐶 ∙ 𝑞̇𝑛 + (1 − 𝛼) ∙ 𝐾 ∙ 𝑥𝑛+1 − 𝛼 ∙ 𝐾 ∙ 𝑥𝑛

= (1 + 𝛼) ∙ 𝐹𝑛+1 − 𝛼 ∙ 𝐹𝑛 

(4142) 

 

2.4.8 Fourth order Runge-Kutta 

  

 The Runge-Kutta methods are an array of implicit and explicit iterative methods, 

including the Euler method (currently used in our simulation) and the fourth order method, 

which is one of the most ubiquitous integration methods today, but, like the Verlet method, it 

needs the state-space representation when solving second-order systems (RAJASEKARAN, 

2009) (NEWMARK, 1952). It is a fourth-order method defined by the equations below. 

 

𝑘1𝑣 = 𝑎(𝑥𝑛, 𝑣𝑛, 𝑡𝑛) ∙ 𝑑𝑡 (42) 
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𝑘1𝑥 = 𝑣𝑛 ∙ 𝑑𝑡 (43) 

𝑘2𝑣 = 𝑎 (𝑥𝑛 +
𝑘1𝑥

2
, 𝑣𝑛 +

𝑘1𝑣

2
, 𝑡𝑛 +

𝑑𝑡

2
) ∙ 𝑑𝑡 (44) 

𝑘2𝑥 = (𝑣𝑛 +
𝑘1𝑣

2
) ∙ 𝑑𝑡 (45) 

𝑘3𝑣 = 𝑎 (𝑥𝑛 +
𝑘2𝑥

2
, 𝑣𝑛 +

𝑘2𝑣

2
, 𝑡𝑛 +

𝑑𝑡

2
) ∙ 𝑑𝑡 (46) 

𝑘3𝑥 = (𝑣𝑛 +
𝑘2𝑣

2
) ∙ 𝑑𝑡 (47) 

𝑘4𝑣 = 𝑎(𝑥𝑛 + 𝑘3𝑥 , 𝑣𝑛 + 𝑘3𝑣, 𝑡 + 𝑑𝑡) ∙ 𝑑𝑡 (48) 

𝑘4𝑥 = (𝑣𝑛 + 𝑘3𝑣) ∙ 𝑑𝑡 (49) 

𝑣𝑛+1 = 𝑣𝑛 +
1

6
∙ (𝑘1𝑣 + 2 ∙ 𝑘2𝑣 + 2 ∙ 𝑘3𝑣 + 𝑘4𝑣) (50) 

𝑥𝑛+1 = 𝑥𝑛 +
1

6
∙ (𝑘1𝑥 + 2 ∙ 𝑘2𝑥 + 2 ∙ 𝑘3𝑥 + 𝑘4𝑥) (51) 

  

  

2.4.9 A fast and stable implicit method 

 

The implicit integration method allows larger time steps for parachute simulation by 

ensuring the system stability (KANG, 2000). The fast and stable implicit method, which can be 

used to calculate the next state of each mass-point of the parachute based on the mass-spring 

networks, can be summarized as follows: 

𝐹𝑠,𝑖
𝑡 = ∑ 𝑘𝑖,𝑗 ∙ (|𝑥𝑗 − 𝑥𝑖|) − 𝑙𝑖,𝑗

0

∀𝑗|(𝑖,𝑗)∈𝐸
) ∙

(𝑥𝑗 − 𝑥𝑖)

|𝑥𝑗 − 𝑥𝑖|
 

(52) 

𝐹𝑣,𝑖
𝑡 = ∑ 𝑘𝑖,𝑗 ∙ 𝑑𝑡 ∙ (𝑣𝑗

𝑡 −
∀𝑗|(𝑖,𝑗)∈𝐸

𝑣𝑖
𝑡) (53) 

𝐹𝑖
𝑡 = 𝐹𝑠,𝑖

𝑡 + 𝐹𝑣,𝑖
𝑡  (54) 

Δ𝑣𝑖
𝑡+𝑑𝑡 =

𝐹𝑖
𝑡 ∙ 𝑑𝑡 + 𝑑𝑡2 ∙ 𝑘𝑖,𝑗 ∙ ∑ 𝐹𝑗

𝑡 ∙
𝑑𝑡

(𝑚𝑗 + 𝑑𝑡2 ∙ 𝑘 ∙ 𝑛𝑗)
(𝑖,𝑗)∈𝐸

𝑚𝑖+ 𝑑𝑡2 ∙ 𝑘𝑖,𝑗 ∙ 𝑛𝑖
 

(55) 

𝑣𝑖
𝑡+𝑑𝑡 = 𝑣𝑖

𝑡 + Δ𝑣𝑖
𝑡+𝑑𝑡 (56) 

𝑥𝑖
𝑡+𝑑𝑡 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+𝑑𝑡 ∙ 𝑑𝑡 (57) 
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With: 

• 𝐹𝑖
𝑡 the total internal force on the i-th mass-point at time t; 

• 𝐹𝑣,𝑖
𝑡  the viscosity force; 

• Δ𝑣𝑖
𝑡+𝑑𝑡 the velocity change of the i-th mass-point at  the next time step; 

• 𝑘𝑖,𝑗 the spring constant; 

• 𝑁̂𝑖 the unit normal of the i-th mass-point; 

• 𝑛𝑖,  𝑛𝑗 the number of mass-points linked to i, j. 

 

This method was only applied in our cloth simulation, where we used it with uniform 

stiffness. We modified it by suppressing the velocity change caused by the air flow, because 

we chose to maintain the original aerodynamic force function, once it uses a good 

approximation of the Darcy-Forchheimer law. 

 

 

2.5 Reference Systems 

 

In order to better understand the behavior of the prior methods, two simulations were 

created: a simple pendulum and a spring pendulum. 

 

2.5.1 Simple Pendulum 

 

Figure 3 - Forces in a simple pendulum system. 

 
Source: Maschen (2015) 

This system is composed of a lumped mass 𝑚 = 1𝑘𝑔) linked to a ceiling with an 

inextensible line (𝐿 = 1𝑚). At 𝑡0 the mass is released from a certain height, starting a 

damped oscillatory movement (𝑐 = 0.1). Using the generalized coordinate 𝜃 for the 

displacement, we have the following Lagrangian: 
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ℒ =
1

2
∙ 𝑚 ∙ 𝐿2 ∙ 𝜃̇2 + 𝑚 ∙ 𝑔 ∙ 𝐿 ∙ cos (𝜃) (58) 

𝜕ℒ

𝜕𝜃
−

𝑑

𝑑𝑡
∙
𝜕ℒ

𝜕𝜃̇
= 0 (59) 

 

Having solved the Lagrangian, the following equations were obtained. 

𝜃̇ = 𝜔  (60) 

𝜔̇ = −
𝑔

𝑚 ∙ 𝐿
sin(𝜃) − 𝜔 ∙

𝑐

𝑚 ∙ 𝐿2
 (61) 

 

A comparison between the displacement obtained and the CPU time was made with 

Explicit Euler, 4𝑡ℎ-order Runge-Kutta, Velocity Verlet, Euler Cromer and Improved Explicit 

Euler for several time intervals. 

 

Figure 4 - Displacement obtained with varios schemes. 
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Figure 5 - Displacemement obtained with various schemes. 

 
 

Figure 6 - Displacememnt obtained with various schemes. 
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Table 1- Mean resource consumption with 10 executions each for dt = 0.005s. 

Integration scheme CPU time [s] 

Explicit Euler 0.0029 

4𝑡ℎ Runge-Kutta 0.0069 

Velocity Verlet 0.0045 

Euler Cromer 0.0025 

Improved Explicit Euler 0.0059 

 

It can be seen in Figures 4 to 6 that Explicit Euler and 4𝑡ℎ-order Runge-Kutta are more 

susceptible to divergence than the others, when it comes to the time interval. Also, that the 

Velocity Verlet, the  Euler-Cromer and the Improved Explicit Euler algorithms produced 

similar results for the chosen time steps. Only in the simulations with 𝑑𝑡 ≤ 10−3𝑠 all of the 

tested methods produced a solution close to the analytical one, characterized by the exponential 

decay (ROOT, [20--]). 

 

2.5.2 Spring pendulum 

 

To evaluate Newmark and HHT  against the other schemes, the system shown in Figure 

7 was used. 

 

Figure 7 - Spring pendulum diagram. 

 
Source: CANCIAN (2015). 

ℒ =
1

2
∙ 𝑀 ∙ 𝑥̇2 +

1

2
∙ 𝑀 ∙ 𝑦̇2 −

1

2
∙ 𝐾 ∙ [√𝑥2 + (𝑦 − 𝑎)2 − 𝑙]

2

+
1

2
∙ 𝐾

∙ [√𝑥2 + (𝑦 + 𝑎)2 − 𝑙]
2

 

(62) 
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Eq. (63) and (64), corresponding to the acceleration, were obtained with the use of the 

Lagrangian (Eq. (62)). During the initial moment the system was kept in a charged position and 

then released. Figures 8 to 13 show the system response.   

𝑥̈ = −
𝐾

𝑀
∙ [2 ∙ 𝑥 − 𝑙 ∙ (

𝑥

√𝑥2 + (𝑦 − 𝑎)2
+

𝑥

√𝑥2 + (𝑦 + 𝑎)2
)] 

(63) 

𝑦̈ = −
𝐾

𝑀
∙ [2 ∙ 𝑦 − 𝑙 ∙ (

𝑦 − 𝑎

√𝑥2 + (𝑦 − 𝑎)2
+

𝑦 + 𝑎

√𝑥2 + (𝑦 + 𝑎)2
)] 

(64) 

 

With Figure 8 we can compare the Euler algorithms along with the 4𝑡ℎ-order Runge-

Kutta. It is noticeable that only Explicit Euler diverges. In Figure 10 we see a coherent solution. 

Figures 9 and 11 show the system phase space with relation to its potential and kinetic energy. 

For the chosen time step all methods but Explicit Euler's have an elliptical phase diagram. 

𝑥2

𝑎2
+

𝑥̇2

𝑏2
= 1 

(65) 

𝑇 ≈
𝑥̇2

𝑏2
, 𝑉 ≈

𝑥2

𝑎2
→ 𝑇 + 𝑉 = 1 

(66) 

 

The elliptic form seen is characteristic for stable systems (CANCIAN, 2015). 

Considering small displacements in the 𝑥 and 𝑦 axis, the sum of the potential and kinetic energy 

can be approximated as shown in Eq. (66) to a constant, which is consistent with the system 

energy conservation, since there is no damping in it. 

The diverging spiral in Figure 9 is caused by the energy accumulation inherent to 

Explicit Euler and, no matter how small the step, over time the system will gain energy. This 

can be mitigated with the introduction of damping or with the use of an implicit method. The 

advantage of the latter compared to explicit methods is that they allow the use of larger time 

steps while keeping a stable, although less accurate result. Figure 13 shows a stable phase 

diagram generated with implicit methods for a time step 1000 times larger. With the same time 

step all others schemes diverged.% with the same step all other schemes diverged. 

Despite the stability, the implicit schemes consume more resources than explicit or 

semi-implicit schemes, as seen in Table 2. So, for large and complex simulations (such as 

parachute's) a compromise between accuracy and resource consumption has to be made, while 

keeping it stable 
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Figure 8 - Displacement obtained with various schemes. 

 
 

 

Figure 9 - Displacement obtained with various schemes. 

 
 



28 

 

Figure 10 - Displacement obtained with various schemes. 

 
 

Figure 11 - Displacement obtained with various schemes. 
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Figure 12 - Displacement obtained with various schemes. 

 
 

Figure 13 - Displacement obtained with various schemes. 
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Table 2 - Mean resource consumption with 10 executions each for dt = 0.0001s. 

Integration scheme CPU time [s] 

Explicit Euler 0.0298 

Newmark 0.7421 

Velocity Verlet 0.0481 

Euler Richardson 0.0471 

Euler Cromer 0.0296 

4𝑡ℎ Runge-Kutta 0.1144 

HHT 0.7243 

Improved Explicit Euler 0.0286 

 

 

3 PROCEDURE AND RESULTS 
 

3.1 Parachute Simulation 
 

At first, the methods cited in Section 2.4 were implemented into the Bilan_Forces 

function using individual functions. In general, each function took the position, the velocity, 

the mass, the internal and the external forces matrices to determine the new state of the system. 

 

Table 3 - Simulation parameters. 

Parameter Value 

𝑑𝑡 1 ∙ 10−12𝑠 

𝐸 9.575 ∙ 107 𝑃𝑎 [24] 

𝑉∞ 1 ∙ 1012𝑚𝑠−1 

𝑅𝑖𝑛𝑡 0.1𝑚 

𝑅𝑒𝑥𝑡  1.0𝑚 

𝑁𝑜𝑑𝑒𝑠 703 

𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 1280 

𝑆𝑝𝑟𝑖𝑛𝑔− 𝐵𝑟𝑖𝑛𝑠 1983 
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Using the parameters summarized in Table 3, all of our simulations ended up diverging 

around a simulation time near 3.4 ∙ 10−11𝑠, with the notable exception of the Improved Euler, 

which went  approximately 3.5 times further. Even Newmark and HHT, which worked very 

well with larger steps in our reference system, did not produce a favorable result.   

Initially, we thought that the instability was caused by the fluid velocity value 𝑉∞ =

1012𝑚𝑠−1,such high value was chosen to produce a deformation in the meter scale), so we 

reduced it to 50𝑚𝑠−1, however, it also ended up exploding. So, we started to look further into 

the internal forces function Calcul_Tensions_mich and FNodCalcule. 

We found out that the internal force which each mass-point was submitted to, did not 

consider the gravity. Even with its addition the result was the same. Searching to produce a 

working simulation we then decided to do a cloth simulation adopting the model used by Khang 

et al. (KANG, 2000) and Desbrun et al. (DESBRUN, 1999) with 𝑉∞ = 50𝑚𝑠−1.      

 

Figure 14 - Developed parachute at 2.6 ∙ 10−11𝑠 using Velocity Verlet. 
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Figure 15 – Same parachute at 3.4 ∙ 10−11𝑠. 

 
Table 4 -Simulation results for the mesh described in Table 3. 

Integration scheme Simulation time [s] 

Explict Euler 3.3 ∙ 10−11 

Velocity Verlet 3.4 ∙ 10−11 

4𝑡ℎ Runge-Kutta 3.4 ∙ 10−11 

Newmark 3.5 ∙ 10−11 

HHT 3.5 ∙ 10−11 

Euler Cramer 3.4 ∙ 10−11 

Improved Explicit Euler 1.16 ∙ 10−10 

Euler Richardson 3.2 ∙ 10−11 

 

3.2 Cloth simulation 
 

In this model, each i-th mass-point can be connected to several other mass-points 

through springs, so the internal force on the i-th can be calculated with the Eq. (67), where E is 

a spring connected to the i-th and j-th mass-points, 𝑘𝑖,𝑗 the spring stiffness, 𝑥𝑖 the i-th node 

position and 𝑙𝑖𝑗
0  the spring resting length. They are also submitted to a viscous effort 

proportional to the different velocity of each spring end, as shown in the Eq. (68). 



33 

 

𝐹𝑠,𝑖
𝑡 = ∑ 𝑘𝑖,𝑗 ∙ (|𝑥𝑗 − 𝑥𝑖|) − 𝑙𝑖,𝑗

0

∀𝑗|(𝑖,𝑗)∈𝐸
) ∙

(𝑥𝑗 − 𝑥𝑖)

|𝑥𝑗 − 𝑥𝑖|
 

(67) 

𝐹𝑣,𝑖
𝑡 = ∑ 𝑘𝑖,𝑗 ∙ 𝑑𝑡 ∙ (𝑣𝑗

𝑡 −
∀𝑗|(𝑖,𝑗)∈𝐸

𝑣𝑖
𝑡) (68) 

𝐹𝑖
𝑡 = 𝐹𝑠,𝑖

𝑡 + 𝐹𝑣,𝑖
𝑡  (69) 

 

Our new code was based on the old one, but with some changes. We took the same 

meshes, integration schemes and aerodynamic force function Force_Aero. The main change 

came in the form of a new function: Forces. This function implements the force whose relations 

are described above, as well as the mass weight's, in one single matrix [𝐹𝑜𝑟𝑐𝑒]3×𝑁 . Each line 

carries the sum of internal and gravitational forces in the 𝑥, 𝑦 or 𝑧 direction for each node. 

[𝐹𝑜𝑟𝑐𝑒]3×𝑁 = [

𝐹1
𝑥 … 𝐹𝑛

𝑥

𝐹1
𝑦

… 𝐹𝑛
𝑦

𝐹1
𝑧 + 𝐹𝑔𝑟𝑎𝑣1

𝑧 … 𝐹𝑛
𝑧 + 𝐹𝑔𝑟𝑎𝑣𝑛

𝑧

] 
(70) 

 

Before the integration, the aerodynamic force was added into the force matrix, which 

was then used to derive the acceleration needed to update the current system state in some 

methods.  

In the original simulation the stiffness was calculated using Eq. (71), with the cross-

section area, the Young's modulus and the resting length of the fibers. The obtained values 

ranged between 1.53 ∙ 106𝑁𝑚−1 and 2.75 ∙ 105𝑁𝑚−1, however, this rigidity contributed to the 

divergence of the simulation and, at the same time, to avoid the apparition of the "Super-Elastic" 

effect described in (PROVOT, 1996). So, searching to simplify our model, we applied uniform 

rigidity and tried it with several values. 

𝑘𝑖,𝑗 =
𝐴 ∙ 𝐸

𝑙𝑖,𝑗
0  (71) 

 

In Figure 17, 19, 21 and 23 we have the displacement of some nodes (node 650 to node 

703, we did not took all nodes because it would decrease the graphics readability) in the z-axis, 

as the simulation begins the nodes move from the starting position 𝑧𝑖
0, ∀𝑖∈ [1, 𝑛] starting a 

damped oscillatory movement caused by the aerodynamic and weight loads applied. The 

damping is caused by the viscous effort described in Eq. (68) and is responsible for the nodes 

settling in a new equilibrium position. We can see that both the equilibrium position and the 

settling time are affected by the stiffness, as well as the time step. The 𝑑𝑡 needed to achieve 
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stability is related to the stiffness and node mass, once it must have approximately the same 

value as the natural period of the system (PROVOT, 1996). 

The phase diagrams presents converging spirals, indicating that the system's energy is 

consumed during the simulation, which agrees with our model, since it embeds a dissipative 

factor (the viscous force). 

𝑑𝑡 ≈ 𝜋√
𝑚𝑚𝑖𝑛

𝑘𝑚𝑎𝑥
 

(72) 

 

In our tests we found out that 𝑑𝑡 must be at approximately 10 times smaller than the 

natural period described by Eq. (72). The simulation also worked with all of the methods 

discussed in Section 2.4, however, we could not evaluate the "Super-Elasticity" problem since 

the use of uniform stiffness impeded its apparition. 

 

Figure 16 – Parachute simulation near the equilibrium point, 𝐾 = 100 and 𝑑𝑡 = 2 ∙ 10−3𝑠 
using Velocity Verlet. 
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Figure 17 – Displacement in the z axis of some nodes from the resting position, for 𝐾 =
100𝑁𝑚−1 and 𝑑𝑡 = 2 ∙ 10−3𝑠. 

 
Figure 18 – Phase diagram, for 𝐾 = 100𝑁𝑚−1 and 𝑑𝑡 = 2 ∙ 10−3𝑠. 
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Figure 19 - Displacement in the z axis of some nodes from the resting position, for 𝐾 =
1000𝑁𝑚−1 and 𝑑𝑡 = 5 ∙ 10−4𝑠. 

 
 

Figure 20 - Displacement in the z axis of some nodes from the resting position, for 𝐾 =
1000𝑁𝑚−1 and 𝑑𝑡 = 5 ∙ 10−4𝑠. 
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Figure 21 - Displacement in the z axis of some nodes from the resting position, for 𝐾 =
10000𝑁𝑚−1 and 𝑑𝑡 = 2 ∙ 10−4𝑠. 

 
 

Figure 22 – Phase diagram, for 𝐾 = 10000𝑁𝑚−1 and 𝑑𝑡 = 2 ∙ 10−4𝑠. 

 
 



38 

 

Figure 23- Displacement in the z axis of some nodes from the resting position, for 𝐾 =
100000𝑁𝑚−1 and 𝑑𝑡 = 5 ∙ 10−5𝑠. 

 
 

Figure 24 – Phase diagram, for 𝐾 = 100000𝑁𝑚−1 and 𝑑𝑡 = 5 ∙ 10−5𝑠. 
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4 CONCLUSIONS 

 
Parachute simulations are indeed complex and time consuming matters. They can 

employ a wide range of models (such as structural only or fluid-structure interaction) and 

integration methods to solve its ODE's. During our research we came across several explicit, 

semi-implicit and implicit methods and implemented some of then in the code inherited from 

De Leotard (LEOTARD, 2017), Herlaut et al. (HERLAUT, 2016) and Gramlich et al. 

(GRAMLICH, 2016), and we found that Improved Explicit Euler has the best performance in 

the parachute simulation, although we did not succeeded in our goal to stabilize it. 

To prove our methods we constructed two reference systems and a cloth simulation, and 

tested then with various time steps and stiffness with success. Our theory for the failure in the 

original simulation is that the current model is not complete, since it does not account for the 

fluid-structure interaction. All of the cited methods worked with our cloth simulation (at least 

for the tested cases), but it is important to find a compromise between accuracy and the 

consumption of the computational resources. In our case the Velocity Verlet presented a good 

balance. 
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APENDIX A – ANALYTIC SOLUTION FOR REFERECE SYSTEMS 
 

In order to assess the quality of the solutions obtained with the integration methods we 

changed our reference systems to match those described by Root in (ROOT, [20--]), where he 

derived the analytical solutions of these systems. 

 

Figure 25 – Modified reference system. 

 
 

Eq. (73) to (76) represent the analytical solution for the undamped case, while Eq. (77) 

to (81) represent the damped case. During our tests the stiffness constant was set to 𝑘 =

3𝑁𝑚−1, the mass to 𝑚 = 2𝑘𝑔 and the initial displacement to 𝑥0 = 2𝑚. The following figures 

show the response obtained. 
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𝜔 0 = √
𝑘

𝑚
 

(73) 

𝐴 =  𝑥0
2 + (

𝑣0

𝜔 0
) (74) 

𝜙 = tan−1 (
𝑥0 ∙ 𝜔 0

𝑣0
)  (75) 

𝑥(𝑡) = 𝐴 ∙ sin(𝜔 0 ∙ 𝑡 + 𝜙 ) (76) 

  

𝜔 =
√4 ∙ 𝑚 ∙ 𝑘 − 𝑐2

2 ∙ 𝑚
 

(77) 

𝐵 =
𝑣0

𝜔
+

𝑐 ∙ 𝑥0

2 ∙ 𝑚 ∙ 𝜔
 

(78) 

𝐴 =  √𝑥0
2 + 𝐵2 

(79) 

𝜙 = tan−1 (
𝑥0

𝐵
)  (80) 

𝑥(𝑡) = 𝐴 ∙ 𝑒𝑥𝑝
−𝑐∙𝑡
2∙𝑚 ∙ sin(𝜔 ∙ 𝑡 + 𝜙) (81) 

  

 

Figure 26 – Displacement for the undamped case. 
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Figure 27 – Phase for the undamped case. 

 
 

Figure 28 – Displacement for the undamped case. 
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Figure 29 - Phase for the undamped case. 

 
 

 

Figure 30 - Displacement for the undamped case. 
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Figure 31 - Phase for the undamped case. 

 
 

 

Figure 32 - Displacement for the undamped case. 
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Figure 33 - Phase for the undamped case. 

 
 

 

Figure 34 - Displacement for the undamped case. 

 
 



48 

 

Figure 35 - Phase for the undamped case. 
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Figure 36 - Displacement for the undamped case. 

 
 

Figure 37 - Phase for the undamped case. 
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Figure 38 - Displacement for the undamped case. 

 
 

Figure 39 - Displacement for the undamped case. 
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Figure 40 - Displacement for the undamped case. 
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APENDIX B – CLOTH SIMULATION 
 

In Figures 17, 18, 19, 20, 21, 22, 23 and 24 we took the last 54 nodes of the mesh to 

display their displacement and phase. These nodes were chosen randomly and figures 41 and 

42 show their location in the mesh. 

 

Figure 41 - Nodes positioning. 
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Figure 42 - Detailed positioning. 

 
 
 

 
 

 
 

 


