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Resumo 1 

As interações ecológicas são amplamente distribuídas na natureza e são capazes de afetar a 2 

diversificação e manutenção da biodiversidade global. Nesta tese, avaliamos como diversas 3 

variáveis ecológicas afetam a intensidade de interações mutualistas entre formigas e plantas 4 

com nectários extraflorais (NEFs), como tais interações afetam e são afetadas por interações 5 

associativas entre plantas do Cerrado, e, por fim, realizamos uma ampla revisão a fim de 6 

quantificar os impactos dos efeitos associativos entre plantas de forma mais ampla. No 7 

primeiro capítulo, avaliamos o efeito da distribuição e riqueza de ninhos de formiga, além de 8 

potenciais efeitos causados pela presença de plantas vizinhas com NEFs, sobre uma espécie 9 

de liana do Cerrado, Smilax polyantha. Amostramos ninhos de formigas e plantas vizinhas 10 

com NEFs no entorno de cada planta S. polyantha, além de medirmos sua herbivoria foliar e a 11 

produção de frutos. Observamos que a maior densidade de ninhos de formiga contribuiu para 12 

a redução da herbivoria foliar e para o aumento da produção de frutos em S. polyantha. 13 

Todavia, uma maior riqueza de ninhos de formiga esteve associada a maiores valores de 14 

herbivoria foliar, enquanto a diversidade de plantas vizinhas esteve associada a reduções na 15 

herbivoria e produção de frutos. Os efeitos da distribuição de ninhos de formiga e de plantas 16 

vizinhas foram, portanto, antagônicos. No segundo capítulo, testamos os efeitos da associação 17 

entre S. polyantha e plantas associadas (suporte) sobre a herbivoria e a produção de frutos de 18 

S. polyantha. Medimos a herbivoria foliar, assimetria flutuante, e produção de flores e frutos 19 

em S. polyantha e verificamos a presença de NEFs entre as espécies de plantas suporte. As S. 20 

polyantha associadas a plantas com NEFs foram mais visitadas por formigas e tiveram menor 21 

herbivoria foliar e assimetria flutuante. Plantas com NEFs podem, portanto, beneficiar outras 22 

espécies vegetais próximas e, possivelmente, impactar a estruturação de comunidades 23 

vegetais. No terceiro capítulo, realizamos uma ampla revisão qualiquantitativa a respeito da 24 

resistência associativa (RA) entre plantas. Inicialmente realizamos uma revisão histórica a 25 
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respeito do uso do termo RA seguida de uma revisão qualitativa. Compilamos dados de 1 

estudos publicados em plataformas digitais e utilizamos ferramentas meta-analíticas para 2 

investigar os principais mecanismos por trás da RA em associação com uma série de variáveis 3 

ecológicas (e.g., traços vegetativos e variáveis espaciais). Por fim, nós discutimos os padrões 4 

ecológicos observados e suas implicações em práticas de controle biológico e na estruturação 5 

de comunidades. Concluímos que a intensidade e direção das interações ecológicas dependem 6 

não apenas das espécies diretamente envolvidas, mas do contexto ecológico do entorno. No 7 

atual cenário global, a preservação da diversidade é vegetal fundamental visto que a mesma 8 

está associada à manutenção da biodiversidade como um todo. 9 

Palavras-chave: defesa indireta, facilitação, mutualismo, simbiose, susceptibilidade 10 

associativa  11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 
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Abstract 1 

Ecological interactions are widely distributed in nature and can affect the diversification and 2 

maintenance of the global biodiversity. In this dissertation, we evaluated how several 3 

ecological variables affect the intensity of mutualistic interactions between ants and plants 4 

with extrafloral nectaries (EFNs), how such interactions affect and are affected by associative 5 

interactions between Cerrado plants, and, at last, we performed a comprehensive review 6 

aiming to quantify the impact of associative effects among plants in a broader sense. In the 7 

first chapter, we evaluated the effects of ant nest distribution and richness, in addition to the 8 

potential effects caused by the presence of neighboring plant species with EFNs, on a liana 9 

plant from the Brazilian Cerrado, Smilax Polyantha. We sampled ant nests and neighboring 10 

plants with EFNs around each S. polyantha, and measured its foliar herbivory and fruit 11 

production. We observed that higher densities of ant nests contributed to a reduction of foliar 12 

herbivory and to increases in fruit production. However, higher ant nest richness was 13 

associated with higher foliar herbivory values, while the diversity of neighboring plants was 14 

associated with reductions in herbivory and fruit production. The effects of ant nest 15 

distribution were, thus, antagonistic. In the second chapter, we tested the associative effects 16 

between S. polyantha and support plants on the herbivory and fruit production of S. 17 

polyantha. We measured foliar herbivory, fluctuating asymmetry, and the fruit production of 18 

S. polyantha, and we verified the presence of EFNs in support plant species. Smilax polyantha 19 

individuals associated with plants with EFNs were more visited by ants and had lower 20 

herbivory and fluctuating asymmetry. Plants with EFNs can, thus, benefit closely distributed 21 

plants and possibly impact the structuring of plant communities. In the third chapter, we 22 

performed an extensive quali-quantitative review about associative resistance (AR) between 23 

plants. We initially performed a historical review regarding the AR term, and then we 24 

conducted a quantitative review. We gathered data from studies on online databases and used 25 
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meta-analytical tools to identify and measure the main mechanisms behind AR and measure 1 

them against a series of ecological variables (e.g., plant traits, and spatial variables). At last, 2 

we discuss the patterns found and their implications for biological control practices and the 3 

structuring of communities. We conclude that the intensity and direction of ecological 4 

interactions rely not only on the directly involved species, but on the surrounding ecological 5 

context. In the current global scenario, preserving plant biodiversity is essential since it is 6 

associated with the maintenance of biodiversity as a whole. 7 

Keywords: associative susceptibility, indirect defense, facilitation, mutualism, symbiosis 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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Introdução geral 1 

As interações ecológicas são amplamente distribuídas na natureza e são organizadas 2 

em cinco grandes classes (mutualismo, comensalismo, competição, predação e parasitismo) 3 

responsáveis, em grande medida, pela diversificação e manutenção dos padrões de 4 

biodiversidade globais (Hembry e Weber 2020, Bronstein 2021). As interações entre animais 5 

e plantas são de particular interesse, visto que virtualmente todas as espécies vegetais 6 

interagem de alguma forma com animais, seja por meio de interações mutualísticas como a 7 

polinização, ou por interações predatórias como a herbivoria (Pearse et al. 2020). Diversos 8 

estudos demonstram que a herbivoria é uma pressão ecológica com força suficiente para 9 

afetar o padrão evolutivo das espécies (Marquis e Braker 1994, Marquis e Moura 2021). Em 10 

resposta às pressões dos herbívoros, as plantas evoluíram traços defensivos que podem ser 11 

genericamente caracterizados como defesas diretas ou indiretas (Price et al. 1980, Dicke e 12 

Sabelis 1988).  13 

As defesas diretas não dependem de nenhum tipo de intermediador e podem deter ou 14 

inibir a ação de herbívoros por meio de mecanismos físicos e químicos. Os mecanismos 15 

físicos incluem, por exemplo, a presença de espinhos e acúleos, além do aumento da dureza 16 

de estruturas vegetativas como as folhas. Os mecanismos químicos, por outro lado, são 17 

caracterizados pela produção de uma miríade de metabólitos secundários tóxicos que podem 18 

ser voláteis ou não. As defesas diretas são primariamente constitutivas, portanto são 19 

continuamente expressas ao longo do desenvolvimento da planta (Boege e Marquis 2005). 20 

Por outro lado, as defesas indiretas podem ser induzidas (Zangerl e Rutledge 1996) e 21 

aumentam o fitness vegetal por meio de mediadores biológicos, geralmente através da atração 22 

ou a manipulação do comportamento de inimigos naturais dos herbívoros (Pearse et al. 2020). 23 

Embora as defesas indiretas possam envolver um maquinário vegetal químico (por meio de 24 

compostos orgânicos voláteis ou nutrientes como néctares e corpúsculos vegetais), elas são 25 
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caracterizadas, em termos últimos, pela ação predatória dos inimigos naturais sobre os 1 

herbívoros. Nesse contexto, os inimigos naturais são chamados de agentes bióticos, razão pela 2 

qual as defesas indiretas também são classificadas como “defesas bióticas” (Del-Claro et al. 3 

2016; Moura et al. 2021). Os impactos ecológicos das defesas diretas são amplamente 4 

documentados e discutidos na literatura, mas os impactos das defesas indiretas ainda são 5 

relativamente pouco estudados, especialmente fora das clássicas interações tritróficas 6 

envolvendo plantas, herbívoros e inimigos naturais (e.g., Heil 2014).  7 

 As interações entre formigas e plantas são um dos exemplos mais conhecidos de 8 

interações indiretas. A importância das formigas como agentes de defesa biótica foi 9 

popularizada a partir de meados da década de 1960 por estudos de Daniel Janzen (e.g., Janzen 10 

1966). Em países da América Central, Janzen verificou que algumas espécies do gênero 11 

Pseudomyrmex nidificam em plantas do gênero Acacia, e, além de usarem a planta como 12 

domicílio e fonte secundária de recursos alimentares, ele observou que as formigas protegem 13 

a planta da ação de herbívoros. Dessa forma, além de se configurar como um sistema 14 

envolvendo defesa biótica, a relação entre a acácia e as formigas pode ser considerada um tipo 15 

de mutualismo, isto é, uma interação ecológica interespecífica onde ambas as espécies 16 

envolvidas se beneficiam por meio da troca de serviços ou recompensas (Bronstein 1994).  17 

 A partir das observações iniciais de Janzen, diversos outros pesquisadores voltaram 18 

seus olhares ao estudo das interações mutualísticas entre formigas e plantas. Bentley (1977), 19 

por exemplo, foi um dos primeiros a estudar experimentalmente as interações entre formigas e 20 

plantas com estruturas conhecidas como nectários extraflorais (NEF). Os NEFs são estruturas 21 

vegetais que podem ser encontradas em diversas regiões das plantas, como folhas, galhos, 22 

estípulas, pecíolos e pedicelos (e.g., Machado et al. 2008, Schoereder et al. 2010, Marazzi et 23 

al. 2013) e são distribuídas em mais de 100 famílias de plantas ao redor do planeta (Weber e 24 

Keeler 2013). Essa estrutura produz néctares ricos em açúcares (mas com pequenas 25 
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quantidades de aminoácidos, lipídios e outros compostos orgânicos) capazes de atrair diversas 1 

espécies de animais como vespas, aranhas e, principalmente, formigas (Blüthgen et al. 2004, 2 

González-Teuber e Heil 2009, Bixenmann et al. 2011, Moura et al. 2021). São especialmente 3 

comuns na região Neotropical, onde, por exemplo, compõem mais de 33% das espécies 4 

lenhosas e lianas presentes nas florestas tropicais da Ilha de Barro Colorado, Panamá (Schupp 5 

e Feener 1991). Na Amazônia, até 53% das espécies lenhosas apresentam NEFs, o que 6 

corresponde a cerca de 50% do total de indivíduos (Morellato e Oliveira 1991). Já no Cerrado 7 

brasileiro, 25% de todas as espécies lenhosas possuem NEFs, o que representa mais de 30% 8 

de todos os indivíduos vegetais (Oliveira e Oliveira-Filho 1991).  9 

Diversos estudos já demonstraram que a visitação de formigas agressivas pode reduzir 10 

o dano vegetal por herbivoria e, consequentemente, aumentar o fitness da planta (Cuautle et 11 

al. 2005, Baker-Méio e Marquis 2012, Stefani et al. 2015). Em uma meta-análise, Rosumek et 12 

al. (2009) concluiu que o fitness vegetal foi reduzido em quase 60% quando as formigas 13 

foram removidas das plantas com NEFs, enquanto Trager et al. (2010) demonstrou que a 14 

presença de formigas reduziu o dano por herbivoria em aproximadamente 60%, levando a 15 

uma produção de frutos cerca de 50% superior. No entanto, o resultado das interações entre 16 

formigas e plantas com NEFs é variável e depende de diversos fatores ecológicos (Barton 17 

1986, Chamberlain e Holland 2009, Staab et al. 2017, Calixto et al. 2021). Especificamente, a 18 

eficiência da proteção fornecida depende de fatores como a fenologia da planta (Miller 2014), 19 

a concentração de nutrientes do néctar (Flores-Flores et al. 2018; Pacelhe et al. 2019) e a 20 

agressividade, capacidade de recrutamento e frequência de visitação das formigas (Agrawal 21 

1998, Cuautle et al. 2005, Del-Claro e Marquis 2015, Fagundes et al. 2017). 22 

 Capítulo 1 23 
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 A capacidade de recrutamento e frequência de visitação de formigas são certamente 1 

fatores fundamentais para o sucesso da proteção vegetal e são parcialmente regulados pela 2 

distribuição espacial dos ninhos das espécies. Apesar disso, a distribuição dos ninhos de 3 

formigas foi pouquíssimo apreciada em estudos envolvendo mutualismo entre formigas e 4 

plantas (Inouye e Taylor 1979, Wagner 1997). Sabemos, por exemplo, que a presença de 5 

recursos alimentares próximos aos ninhos aumenta a probabilidade de uso e o número de 6 

formigas explorando o recurso (e.g., Fewell et al. 1992, Belchior et al. 2012, Lanan e 7 

Bronstein 2013). Além disso, as plantas com NEFs afetam diretamente a distribuição espacial 8 

das formigas, pois se sabe que as formigas tendem a nidificar em locais próximos a essas 9 

plantas (Wagner e Nicklen 2010, Lanan e Bronstein 2013). A riqueza de ninhos de formiga 10 

também pode afetar as interações formiga-planta, já que as espécies de formigas visitantes 11 

dependem, ao menos em parte, da disponibilidade de ninhos. Além disso, uma elevada 12 

riqueza de ninhos de formigas pode intensificar a competição entre as espécies de formiga por 13 

acesso ao néctar extrafloral. (Blüthgen e Fiedler 2004). Apesar de haver a hipótese de que 14 

diferentes espécies de formigas poderiam se especializar na captura de diferentes espécies de 15 

herbívoros (veja Nahas et al. 2012), os estudos conduzidos indicam que a ocorrência de 16 

múltiplas espécies fornece pouco ou nenhum benefício às plantas (Miller 2007, Del-Claro e 17 

Marquis 2015). 18 

No primeiro capítulo desta tese, portanto, examinamos como a abundância e riqueza 19 

de ninhos de formiga afeta uma espécie de planta do Cerrado que possui NEFs (Smilax 20 

polyantha [Smilacaceae]). Para isso, amostramos todos os ninhos de espécies mutualistas 21 

dentro de um raio de 12 m de cada planta estudada e, em seguida, medimos a herbivoria foliar 22 

e a produção de frutos de cada S. polyantha. Todas as plantas vizinhas com NEFs em um raio 23 

de 10 metros de cada S. polyantha também foram amostradas. Formulamos as hipóteses de 24 

que (i) grandes quantidades de ninhos ao redor de S. polyantha reduziriam a herbivoria foliar 25 
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e aumentariam a produção de frutos de cada indivíduo, enquanto que (ii) altas riquezas de 1 

ninhos aumentariam a herbivoria foliar e reduziriam a produção de frutos.  2 

Capítulo 2 3 

Quase todos os estudos que investigaram a relação entre formigas e plantas com NEFs 4 

estavam interessados na planta hospedeira (e.g., Rosumek et al. 2009, Beaumont et al. 2016, 5 

Yamawo e Suzuki 2018), em suas formigas visitantes (Byk e Del-Claro 2011), ou na 6 

comunidade de formigas em geral (Dáttilo et al. 2014, Camarota et al. 2015, Lange e Del-7 

Claro 2014, Madureira et al. 2018). Existe um único estudo em que se testou o efeito das 8 

defesas bióticas de plantas com NEFs em plantas do entorno (veja Jezorek et al. 2011). No 9 

estudo de Jezorek (2011), verificou-se que as plantas no entorno são beneficiadas pelo 10 

compartilhamento de formigas atraídas pelas plantas produtoras de néctar extrafloral. Essa 11 

relação indireta entre a planta produtora (vizinha) e a planta beneficiada (focal) configura-se 12 

como um caso de como resistência associativa (RA). Essa interação ocorre, especificamente, 13 

quando uma planta vizinha é capaz de reduzir, direta ou indiretamente, a herbivoria em 14 

plantas focais (Barbosa et al. 2009). A RA é, portanto, um tipo específico de facilitação, onde 15 

a planta vizinha não é beneficiada nem penalizada e a planta focal é beneficiada através de 16 

quaisquer mecanismos capazes de reduzir os danos por herbivoria.  17 

 No segundo capítulo, verificamos se a RA pode ocorrer por meio do 18 

compartilhamento de defesa biótica entre plantas, usando S. polyantha como espécie modelo. 19 

Por ser uma espécie de liana, S. polyantha pode ser particularmente suscetível à RA, pois 20 

necessita do suporte de outras plantas para evitar os herbívoros de solo e para aumentar sua 21 

exposição à luz solar (Gianoli e Molina-Montenegro 2005, Gallagher e Leishman 2012). 22 

Além disso, as lianas são particularmente sensíveis ao dano por herbivoria porque produzem 23 

folhas ricas em nutrientes (Salzer et al. 2006, Cai e Bongers 2007, Zhu e Cao 2010), e, ao 24 
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mesmo tempo, possuem poucas defesas químicas contra herbívoros (Aide e Zimmerman 1 

1990, Ødegaard 2000, Tang et al. 2012). Em campo, marcamos diversos indivíduos de S. 2 

polyantha e medimos a herbivoria foliar, assimetria flutuante (medida de estresse ambiental), 3 

produção de frutos, variáveis estruturais e verificamos se as plantas vizinhas à S. polyantha 4 

(nesse caso, plantas suporte) possuíam NEFs. Nossa principal hipótese é a de que indivíduos 5 

de S. polyantha associados a plantas com NEFs teriam menores valores de herbivoria e 6 

assimetria flutuante e maior produção de frutos quando comparados a indivíduos associados a 7 

plantas sem NEFs. Considerando o efeito dos NEFs sobre a visitação de formigas (Lange e 8 

Del-Claro 2014), também testamos a hipótese de que a diversidade de formigas depende da 9 

presença ou ausência de NEFs das plantas vizinhas. 10 

Capítulo 3 11 

Para a formulação do capítulo 2, foi necessário um estudo aprofundado a respeito da 12 

resistência associativa (RA). Assim, nos deparamos com uma rica literatura sobre o tema, 13 

porém que ainda carece de estudos aprofundados, além de apresentar considerável variação no 14 

uso de termos e em sua fundamentação teórica. Por ser um tipo de interação ecológica 15 

genérica, a resistência associativa entre duas espécies pode ser alcançada de diversas 16 

maneiras. Barbosa et al. (2009) classificam a RA a partir de dois tipos amplos de 17 

mecanismos: os bióticos e abióticos. Os mecanismos bióticos são aqueles que envolvem a 18 

ação de componentes biológicos como a produção de compostos químicos, ou a atração de 19 

inimigos naturais (e.g., formigas) pela planta focal, enquanto os mecanismos abióticos 20 

envolvem componentes ambientais, como mudanças na luminosidade e umidade ou nos 21 

nutrientes do solo. Apesar de bem estabelecida a ideia da RA, os mecanismos por trás de seu 22 

funcionamento são pouquíssimos examinados pela literatura, especialmente os mecanismos 23 

abióticos. Passados mais de 10 anos desde a última grande revisão (Barbosa et al. 2009), 24 

decidimos, no capítulo 3, promover uma nova revisão a respeito do tema. O capítulo foi 25 
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dividido em duas seções. Na primeira, nós realizamos uma revisão histórica qualitativa a 1 

respeito do tema. Na segunda seção, nós realizamos um apanhado dos artigos científicos 2 

publicados acerca do tema e efetuamos diversas meta-análises de modo a medir e avaliar os 3 

principais mecanismos reguladores da RA e contrastá-los com distintas variáveis ecológicas. 4 
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Abstract 1 

1. Studies assessing the effects of the spatial distribution of ant nests on ant-plant 2 

mutualisms are rare, even though they could be decisive to the outcomes of such 3 

interactions. Here, we investigated how ant nest abundance and richness affected a 4 

Neotropical plant with extrafloral nectaries (EFN), Smilax polyantha (Smilacaceae).  5 

2. We used baits to sample all nests of potential mutualistic ants within a 12 m radius of 6 

each plant. All neighboring plants with EFN within 10 m of each tagged plant were 7 

also sampled. We measured foliar herbivory and fruit production of each S. polyantha. 8 

We hypothesized that (i) high numbers of ant nests near S. polyantha individuals 9 

would reduce foliar herbivory and increase fruit production, and that (ii) high ant nest 10 

richness would increase foliar herbivory and reduce fruit production.  11 

3. Results showed that plants surrounded by more ant nests had lower foliar herbivory 12 

and higher fruit production. However, ant nest richness was associated with higher 13 

foliar herbivory. Furthermore, plants producing more leaves and those surrounded by 14 

more neighboring plants bearing EFN had reduced herbivory. Despite this, S. 15 

polyantha had low numbers of ant nests and reduced fruit production when surrounded 16 

by high numbers of neighboring plants with EFN.  17 

4. We suggest that the spatial distribution of ant nests and resources (EFN-bearing 18 

plants) plays an important role in ant-mediated mutualisms, where both ants and plants 19 

are likely competing for each other’s services. Thus, incorporating these two variables 20 

in ecological models should provide insights into how protective mutualisms are 21 

structured. 22 

Keywords: Ant colony, biotic defense, Brazilian savanna, facilitation, indirect interaction, 23 

symbiosis 24 
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Introduction 1 

Mutualisms are common interspecific ecological interactions in which two species 2 

receive net benefits (reviewed by Bronstein 1994). A well-known example is the protective 3 

mutualisms between ants and plants with extrafloral nectaries (EFNs) (Rico-Gray and 4 

Oliveira 2007; Moura et al. 2021). The EFNs are structures found on different plant above-5 

ground parts such as leaves, stems, stipules, and flower buds (e.g., Machado et al. 2008; 6 

Schoereder et al. 2010; Marazzi et al. 2013) and are distributed among at least 100 plant 7 

families worldwide (Weber and Keeler 2013). They produce a valuable food resource 8 

composed mostly of water and sugars (it may contain other organic compounds), which 9 

attracts several ant species to the producing plant (Koptur 1994; Blüthgen et al. 2004; 10 

González-Teuber and Heil 2009; Bixenmann et al. 2011).  11 

Numerous studies have demonstrated that aggressive ants visiting plants with EFNs 12 

can decrease damage caused by herbivores and increase plant fitness (Cuautle et al. 2005; 13 

Baker-Méio and Marquis 2012; Stefani et al. 2015). For instance, Rosumek et al. (2009) 14 

concluded that plant fitness decreased almost 60% when ants were removed from plants, 15 

while Trager et al. (2010) showed that the presence of ants enhanced plant reproductive 16 

production by 49% and decreased herbivory by 62%. However, interactions between ants and 17 

EFN-bearing plants are highly variable depending on the involved species and the 18 

environmental conditions (Barton 1986; Chamberlain and Holland 2009; Staab et al. 2017; 19 

Calixto et al. 2021). The efficiency of ant protection depends on several factors such as plant 20 

phenology (Miller 2014), nectar concentration (Fagundes et al. 2017; Flores-Flores et al. 21 

2018; Pacelhe et al. 2019), frequency of ant visitation (Cuautle et al. 2005), and ant 22 

aggressiveness and recruitment capacity (Agrawal 1998; Del-Claro and Marquis 2015). 23 

Despite the numerous studies assessing ant-plant mutualisms, two potentially important 24 

aspects were not well-explored: the role of ant nest distribution and ant nest species richness. 25 



23 
 

The distribution of ant nest distribution and plant resources may naturally affect the 1 

outcomes of ant-plant interactions. Some ant species tend to construct nests near plants 2 

producing food rewards (Wagner and Nicklen 2010; Lanan and Bronstein 2013), increasing 3 

the probability and number of foraging workers exploring the resource (e.g., Fewell et al. 4 

1992; Belchior et al. 2012). Given this, it is expected that ant nests near plants with active 5 

EFNs should be able to recruit more individuals to feed on extrafloral nectar (Lanan and 6 

Bronstein 2013), increasing the biotic protection of plants. To our knowledge, however, the 7 

specific effects of ant nest distribution on ant-plant mutualisms were only considered twice 8 

(Inouye and Taylor 1979; Wagner 1997).  9 

Ant nest species richness might also affect ant-plant interactions since the observed 10 

visiting ant species partially depend on the availability of nests. Although high ant nest 11 

richness may raise the chances of mutualistic ants finding S. polyantha, it may also allow the 12 

occurrence of many visiting species that do not provide any protection to plants (Miller 2007; 13 

Byk and Del-Claro 2010, Fagundes et al. 2017). An increased number of ant nest species 14 

should also intensify the interspecific competition for accessing plants with resources 15 

(Blüthgen and Fiedler 2004). While multiple ant species could reward plants by capturing 16 

different types of herbivores (see Nahas et al. 2012 for an example involving mutualistic ants 17 

and spiders), empirical data suggests that they provide little or no benefits to plants (Miller 18 

2007; Del-Claro and Marquis 2015). 19 

In the Brazilian Cerrado, more than 30% of all plant individuals and about 25% of all 20 

tree species have EFNs (Oliveira e Oliveira-Filho 1991), making it a suitable environment to 21 

study such mutualistic interactions between these plants and ants (Del-Claro and Torezan-22 

Silingardi 2009). In this study, we aimed to quantify the effects of ant nests distribution and 23 

richness on foliar herbivory and fruit production of a native plant species bearing EFNs. 24 

Using ant nest abundance as a proxy for ant protection (see Lanan and Bronstein 2013), we 25 
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hypothesized that (i) high numbers of ant nests near EFN-bearing plants would reduce foliar 1 

herbivory and increase fruit production. Conversely, we hypothesized that (ii) high ant nest 2 

richness would be associated with high foliar herbivory and low fruit production. We expect 3 

that since most visiting ant species are not mutualists (Byk and Del-Claro 2010, Fagundes et 4 

al. 2017), and heavily-protected plants are usually visited by one or few ant species (e.g., 5 

Miller 2007). 6 

Materials and methods 7 

Study site and plant species 8 

We carried out the study at a natural Cerrado reserve (Clube Caça e Pesca Itororó de 9 

Uberlândia; 18°59'00.0"S 48°18'00.0"W) in Uberlândia city, Minas Gerais state, southeastern 10 

Brazil. The landscape is composed of a typical cerrado vegetation, with a predominant 11 

understory of shrubs, grasses, and perennial herbs, with trees ranging from 2–8 m in height. 12 

The region has two well-defined seasons: a rainy season occurring from October to April and 13 

a dry season from May to September (Velasque and Del-Claro 2016). 14 

For this study, we used as a model the plant Smilax polyantha Griseb. (Smilacaceae) 15 

(Fig. 1d), a liana that occurs throughout the reserve. This plant has EFNs located at the base 16 

of the leaf petioles, which are mainly active when leaves are young (Figs. 1b-c). Ants such as 17 

Ectatomma tuberculatum (Fig. 1a) are commonly found feeding on the extrafloral nectar. At 18 

least 11 ant species from 5 subfamilies are known to visit S. polyantha. A single plant 19 

produces a considerable volume of extrafloral nectar—about 6.5uL a day, which contains 20 

approximately 30 calories (Pires et al. 2017). 21 

Ant nest distribution, species identification, and visiting ants  22 

The fieldwork was conducted three times a week from October 2017 to September 23 

2018, in the morning (7:40-11:30h). We established nine transects of 50 m x 10 m separated 24 
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from each other by at least 50 m. In the transects, we found and tagged 23 plants (using a 1 

piece of string), with a maximum size of 2 m, that presented at least three young leaves with 2 

no herbivory. We identified the young leaves by their size (maximum of 7 cm length), texture 3 

(young leaves are thin and smooth), and color (they often present a reddish coloration 4 

compared to mature leaves green) (Fig. 1c). After all plant identification and markings, we 5 

identified all ant nests within a 12 m radius from each plant. To do this, we positioned 12 6 

baits around each plant, distributed on the ground (over a piece of white paper with 8.0 x 5.0 7 

cm) in all four cardinal directions (north, south, east, and west of the plant). Three baits were 8 

positioned per cardinal direction: one immediately at the plant base and two others at 9 

distances of 5 m and 10 m. Baits were composed of sardine and honey (approximately 15 g). 10 

We chose this study design based on the work of Gómez and Espadaler (1998) and 11 

Yamamoto and Del-Claro (2008), who showed that many ant species do not often travel more 12 

than 10 m from their nests to acquire food resources. In our system, we would expect that S. 13 

polyantha individuals near ant nests would be frequently visited by ants and, hence, be well-14 

protected against herbivores. 15 

After positioning the baits, we waited 30 minutes to 1 hour until the ants’ arrival (this 16 

time variation is due to weather conditions; at cooler and rainy periods, ants took more time to 17 

leave the nests). After the arrival of the first ants, we observed each bait for at least 30 18 

minutes. We waited until at least one individual of each species returned to its respective nest. 19 

When we successfully found the ant nest entrance, we collected at least one ant individual and 20 

stuck a numbered stick into the ground, indicating the nest entrance. After identifying all nest 21 

entrances, we measured the distance from each ant nest entrance to S. polyantha. 22 

We identified each collected ant individual (according to Baccaro et al. 2015, 23 

taxonomic key) at the Laboratory of Behavioral Ecology and Interactions (LECI) from the 24 

Federal University of Uberlândia, Brazil. We sampled a total of 394 ant nests from 25 species 25 



26 
 

(see supplementary material 1). Preliminary observations, however, showed that most 1 

sampled species either do not interact with EFN-bearing plants or they perform as robbers, 2 

using the extrafloral nectar but providing no benefits to the plant. Thus, we performed all 3 

analyses using a subset of species that would have the highest potential for mutualistic impact 4 

on S. polyantha. To select the most appropriate ant species, we observed the ant visitation on 5 

each tagged S. polyantha, once a week, for 10 straight weeks, from April to June 2018. 6 

Observations lasted five minutes per plant, always in the morning periods, from 7:40 to 7 

11:30h. After recording and identifying the number of foraging ants we concluded that, at 8 

most times, S. polyantha is visited by several Camponotus species and Ectatomma 9 

tuberculatum (see supplementary material 2). Ant observations also revealed that many ant 10 

genera such as Pheidole, Crematogaster, Solenopsis, Pseudomyrmex, and Cephalotes, either 11 

do not visit S. polyantha (see Pires et al. 2017) or have a minor role in protecting these plants 12 

from herbivores. That occurs due to their lack of aggressiveness and small size, as other 13 

studies suggest as well (e.g., Byk and Del-Claro 2010; Fagundes et al. 2017). This is not 14 

surprising since many studies demonstrated that plant protection depends on the identity of 15 

the visiting ant species (Palmer et al. 2008, 2010; Sendoya et al. 2009; Byk and Del-Claro 16 

2010; Fagundes et al. 2017; Schuldt et al. 2017). Many Camponotus species and Ectatomma 17 

tuberculatum are considered efficient mutualists (Del-Claro and Marquis 2015; Fagundes et 18 

al. 2017) due to their high level of aggressiveness and abundance on plants with EFNs (Lange 19 

et al. 2013; Pires et al. 2017). Given this, we considered for this study only the effects of ant 20 

nests of species of Camponotus and Ectatomma tuberculatum (see Fig. S1).  21 

Ant visitation  22 

We visited each of the 23 plants once a week during September and October 2018 in 23 

the morning periods (7:40 - 11:30). During this period, we observed each plant for five 24 

minutes, recording the identity of all visiting ant species. When we found an unknown 25 
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species, we collected it for subsequent identification. Taxonomical identifications were based 1 

on Baccaro’s (2015) taxonomic key.  2 

Plant measurements and neighboring plants 3 

Immediately after mapping nest distribution, we recorded the total number of leaves of 4 

each S. polyantha and we randomly tagged four young and intact (no signs of herbivory) 5 

leaves (approximately one week old; see Fig. 1c) from the studied plants. The total number of 6 

leaves was recorded as we believed that variation in leaf number among individuals could 7 

influence the observed herbivory values (see Barbosa et al. 2009). After two weeks, we 8 

brought all tagged leaves to the laboratory, and we photographed them under a flat piece of 9 

translucent glass (Moura et al. 2017). From these pictures, we measured the leaf area and the 10 

amount of foliar area loss using the software ImageJ (Rasband 2016). Foliar herbivory was 11 

calculated as a proportion by dividing the mean foliar area loss by the estimated mean leaf 12 

area. From August to September 2018, we revisited each plant and recorded the number of 13 

fruits produced per individual. 14 

In the field study, we also recorded all plant species with EFNs around each tagged S. 15 

polyantha. We speculated that the additional sources of extrafloral nectar would drive away 16 

potential ants that otherwise would visit tagged S. polyantha (reviewed by Barbosa et al. 17 

2009, but see Vilela and Del-Claro 2018), thus we also evaluated whether the availability of 18 

other plants with EFNs would interfere with the foliar herbivory and fruit production of our 19 

focal plant species. Specifically, we recorded the neighboring plants (with at least 1 m height) 20 

from the seven most common native species within a radius of 10 m from tagged individuals 21 

of S. polyantha: Caryocar brasiliense (Caryocaraceae), Ouratea hexasperma (Ochnaceae), O. 22 

spectabilis (Ochnaceae), Qualea grandiflora (Vochysiaceae), Q. multiflora (Vochysiaceae), 23 
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Q. parviflora (Vochysiaceae), non-tagged S. polyantha, and Stryphnodendron polyphyllum 1 

(Fabaceae). 2 

Statistical analyses 3 

All statistical analyses were conducted using the R software (R Core Team 2018). We 4 

performed Generalized Linear Models (GLMs) to test the effects of ant nest abundance, 5 

richness and distance, the number of leaves, and the neighboring plants 6 

(predictor/independent variables) over S. polyantha foliar herbivory and the number of 7 

produced fruits (dependent variables). We applied square-root transformations to number of 8 

fruits to normalize the data. Several models were performed combining all these independent 9 

variables and we used the Akaike Information Criteria and R² and p-values to select the best 10 

models. In the results, we show all possible significant or nearly significant models (P < 11 

0.10). 12 

We verified statistical assumptions visually, using histograms and boxplots, and by 13 

performing formal analyses (Zuur et al. 2010). The plot function was used to diagnose 14 

normality and residuals distribution. Formal analyses included Shapiro-Wilk normality tests 15 

and homogeneity tests of variance performed using the var.test function from stats package 16 

(R Core Team 2018). Variables used in GLMs were tested for collinearity using the 17 

ols_coll_diag function from olsrr package (Hebbali 2018). Variance Inflation Factor values 18 

higher than 4 indicate moderate collinearity between variables and should be investigated, 19 

while values higher than 10 indicate severe collinearity and must be avoided (Hebbali 2018). 20 

Despite ant nest abundance and richness having considerably high correlation (r = 0.60, P = 21 

0.002, D.F. = 21), collinearity analysis revealed low values of Variance Inflation Factor (max 22 

value = 2.57), so we proceeded using all variables in our GLM models (see results).  23 

Results 24 
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Ant nest distribution 1 

We found 117 nests of mutualistic ant species near 23 S. polyantha plants across nine 2 

studied transects. The sampled nests comprised five ant species of Camponotus and one 3 

species of Ectatomma (Table 1; see Materials and Methods for further details). All species 4 

were directly observed on S. polyantha, except Camponotus renggeri, which was not recorded 5 

on plants probably due to its nocturnal foraging activity (Del-Claro and Oliveira 1999; Anjos 6 

et al. 2017).  7 

All sampled nests occurred at distances that varied between 0.3 to 11.7 m (5.9 ± SE 8 

0.3) from tagged plants. The mean percentage of foliar herbivory per plant varied from 0.02% 9 

to 17% (3.7% ± SE 0.01) and the number of leaves per plant varied from 24 to 224 (87.4 ± SE 10 

12.9). Regarding the number of neighboring plants with EFNs, we found 12 to 47 individuals 11 

(at least 1 m height) around each plant (Table 1). 12 

Ant visitation 13 

Ant nest abundance and richness had overall small effects on ant visitation. Although 14 

we found a positive trend between ant nest abundance and the total number of ants found on 15 

the plants, the relationship was not significant (F1,21 = 3.80, R² = 0.15, P = 0.065). We found 16 

no link between ant nest richness and the number of visiting ant species per focal plant of S. 17 

polyantha (F1,21 = 0.14, R² = 0.007, P = 0.71). There was a positive non-significant trend 18 

between the abundance of neighboring plants with EFNs and the number of visiting ant 19 

species (F1,20 = 4.13, R² = 0.17, P = 0.056). We found no association between the abundance 20 

of plants with EFNs and ant visitation (F1,20 = 2.43, R² = 0.11, P = 0.135). 21 

Foliar herbivory models 22 
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In Table 2 we kept only significant or closely significant models, and since ant nest 1 

distance was not significant in our models (see Table S1 and Fig. S2 for details), we omitted 2 

this variable from the models presented below.  3 

According to the performed GLMs, the two most complete models (nest 4 

abundance+nest richness+EFN neighbors and nest abundance+nest richness+leaf 5 

number+EFN neighbors, see Table 2) best explained the observed foliar herbivory according 6 

to the AIC and coefficient of determination (R²) values. Even though the complete model 7 

(nest abundance+nest richness+leaf number+EFN neighbors) had the lowest AIC and the 8 

highest R² values, the second one (nest abundance+nest richness+EFN neighbors) had similar 9 

R² values: a difference of only 0.03 between these models (Table 2). While the complete 10 

model explained 54% of the variation in foliar herbivory, the second most complete model 11 

explained 51% of its variation. All independent variables from the significant models above 12 

had negative associations with foliar herbivory, except ant nest richness (Table 2). We also 13 

observed that although ant nest abundance and richness had opposite effects on these models, 14 

there was a significant positive relationship between these two variables (F1,21 = 12.08, R² = 15 

0.37, P = 0.002).  16 

Fruit set models 17 

A complete model using the number of fruits (dependent variable) and a set of 18 

independent variables (ant nest abundance, ant nest richness, ant nest distance, leaf number, 19 

and EFN neighbors) revealed non-significant results (F1,17 = 1.88, R² = 0.36, P = 0.15). 20 

However, we observed certain significant patterns when using independent variables 21 

separately. There was a negative association between the number of neighboring plants with 22 

EFNs and the number of ant nests around each S. polyantha (F1,21 = 6.07, R² = 0.22, P = 23 

0.022; Fig. 2a). We also observed that the number of fruits produced per focal plant of S. 24 



31 
 

polyantha was positively associated with ant nest abundance (F1,20 = 6.07, R² = 0.23, P = 1 

0.023; Fig. 2b) and negatively associated with the number of neighboring plants (F1,21 = 4.59, 2 

R² = 0.18, P = 0.044; Fig. 2c). We found no relationship between ant nest richness and fruit 3 

production (F1,21 = 1.76, R² = 0.08, P = 0.19; Fig. 2d). 4 

Discussion 5 

We observed opposite effects of ant nest abundance and nest richness on foliar 6 

herbivory in S. polyantha, an extrafloral-bearing plant. As stated by our first hypothesis, ant 7 

nest abundance was negatively associated with foliar herbivory and positively associated with 8 

fruit production. As for our second hypothesis, ant nest richness was positively associated 9 

with foliar herbivory, as expected, but we observed no association of it with fruit production. 10 

Ant nest abundance and nest richness themselves partially explained the observed patterns of 11 

foliar herbivory, but the best models included the number of leaves per plant and the number 12 

of neighboring plants. We also observed that the number of neighboring plants was negatively 13 

associated with fruit production, suggesting that EFNs-bearing plants may compete for ant 14 

services. Lastly, we found no association between the number of visiting ant species of S. 15 

polyantha and ant nest richness, suggesting that environmental filters might prevent some ant 16 

species from exploiting S. polyantha resources. 17 

Ant nest abundance may affect S. polyantha herbivory and fruit production by 18 

increasing ant visitation. Other studies already demonstrated how ants forage and manage 19 

recruitment when dealing with valuable resources. For instance, ants can regulate their 20 

recruitment capability according to the resource distribution and quality (e.g., Holldobler and 21 

Wilson 1990; Robson and Traniello 1998; Belchior et al. 2012; Pacelhe et al. 2019). Thus, ant 22 

nests in contact with valuable food resources may spend high numbers of foragers (Holway 23 

1998), reducing herbivory damage and increasing the fruit production of plants with EFNs 24 
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(Cuautle et al. 2005; Rosumek et al. 2009; Del-Claro and Marquis 2015; Del-Claro et al. 1 

2016). The observed increase in fruit production is of particular importance since true 2 

mutualisms require gains in fitness (Heil 2008). 3 

We found no association between ant nest richness and the number of visiting ant 4 

species on S. polyantha. This result does not support the idea that plant species-rich 5 

environments should benefit EFN-bearing plants (Ribeiro et al. 2018). Environmental filters 6 

may prevent the local diversity of ant nests to be translated into the observed visiting ant 7 

species of S. polyantha. Specifically, we suggest that competition for extrafloral resources 8 

among ant species might prevent weak competitors from accessing resources (Blüthgen and 9 

Fiedler 2004). This argument is sustained in our study by the fact that the main visitors of S. 10 

polyantha were Camponotus species (supplementary material 2), which are considered a 11 

group of aggressive and territorial ants (Fagundes et al. 2017; Lange et al. 2019). Dáttilo et al. 12 

(2014) found that most plants bearing EFNs had few dominant ant species, arguing that this 13 

could be occurring due to competition effects. Miller (2007) showed that Crematogaster and 14 

Liometopum ants never occurred simultaneously on the same plant and that Liometopum, the 15 

superior competitor, tends to occur on plants when they are offering better food resources. In 16 

fact, multiple aggressive ant species seldom occur, simultaneously, on the same resource for 17 

long periods, as dominant ant species can exclude weak competitors from high-quality 18 

resources and more productive habitats (Yu and Davidson 1997; Flores-Flores et al. 2018). 19 

Even when ant competitors occur on the same plant, they tend to explore distinct parts of it. 20 

For instance, a dominant species can occur in a higher canopy, while a subordinate can only 21 

explore the lower canopy (Ribeiro et al. 2013). Interspecific competition might be distracting 22 

EFN-visiting ants from the presence of herbivores, increasing herbivory; in fact, we observed 23 

three cases of aggression between Camponotus and Ectatomma on S. polyantha individuals 24 

(personal observation). Although experimental studies are needed to clarify this matter, our 25 
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study shows that species-rich plots do not necessarily increase the number of EFN-visiting ant 1 

species on plants. 2 

We expected that S. polyantha individuals with high numbers of neighbors (with 3 

EFNs) would have high values of herbivory as the resource offered by these neighbors could 4 

drain potential visiting ants of S. polyantha (see Vilela and Del-Claro 2018). Many studies 5 

found positive relationships between tree diversity and foliar herbivory, as diverse 6 

environments may provide a plethora of resources for generalist herbivores (Jactel and 7 

Brockerhoff 2007; Joshi et al. 2008; Unsicker et al. 2008, Schuldt et al. 2010). We found, 8 

however, a negative association between foliar herbivory and the abundance of neighboring 9 

plants (see Barbosa et al. 2009 and Salazar et al. 2013). Since the potential damage caused by 10 

herbivorous insects is limited, focal S. polyantha plants surrounded by dense vegetation might 11 

be benefited by dilution or other associational effects between plants (Barone 2000; Otway et 12 

al. 2005; Dyer et al. 2007; Barbosa et al. 2009; Hambäck et al. 2014), resulting in decreased 13 

levels of foliar loss per individual. Dilution effects also explain why S. polyantha with 14 

increased leaf numbers presented low herbivory levels, although we cannot discredit that 15 

plants with many leaves may also have high numbers of EFNs, which would increase ant 16 

recruitment (e.g., Dáttilo et al. 2014; Lange et al. 2017; Queiroga and Moura 2017). The 17 

influence of neighboring plants on fruit production was, however, negative. Even though we 18 

cannot assure a causal correlation between these variables, a plausible explanation would be 19 

competition (e.g., for water or sunlight) between focal S. polyantha and neighboring plants. 20 

Our results, nonetheless, suggest that neighboring plants might be draining potential ant nests 21 

that would otherwise be serving focal S. polyantha (see Fig. 2a). Since extrafloral nectars 22 

constitute a relevant complementary food source to ants (Byk and Del-Claro 2011), 23 

neighboring plants producing more nutritious nectars than S. polyantha should not only attract 24 
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more ants (see Alves-Silva and Del-Claro 2013; Pacelhe et al. 2019) but also interfere with 1 

nesting site selection (Wagner and Nicklen 2010; Lanan and Bronstein 2013).  2 

We did not find a consistent effect of ant nest distance on foliar herbivory as this 3 

variable was not explicative in our statistical models. Although the ant nest distance from 4 

plants with EFNs is not associated with ant visitation for some ant species (see Mody and 5 

Linsenmair 2003), we hypothesize that the distancing considered in this study (up to 12 m 6 

from nests) were not enough to interfere with the outcomes of ant-plant interactions. While 7 

some researchers recorded that most ant species can travel no more than 10 m carrying food 8 

resources (Gómez and Espadaler 1998; Yamamoto and Del-Claro 2008), recent studies 9 

showed that some ant species traveled for distances farther than 100 m (e.g., Grüter et al. 10 

2018). Thus, a study considering farther distances between nests and plants might achieve 11 

different results. Alternatively, the presence of litter might be acting as a barrier that affects 12 

the movement of ants (see Farji-Brener et al. 2004), masking the effects of resource 13 

distancing. 14 

Ant-plant mutualisms are usually generalized associations regulated by the 15 

effectiveness of shared services and resources between guilds (Bronstein 2021). Despite its 16 

considerable context-dependency (e.g., Baker-Méio and Marquis 2012), it is well-established 17 

that mutualistic ants can have significant and positive effects on plant fitness and evolution 18 

(Rosumek et al. 2009). We showed that the spatial distribution of ant nests and plants is 19 

associated with the effectiveness of a protective mutualism and that both ants and plants are 20 

likely competing for each other’s services. The consequences of those interactions are 21 

complex and evoke distinct responses of plant features such as foliar herbivory and fruit 22 

production. The effects of nest distribution and ant richness are rarely considered, and we 23 

believe these variables could help researchers understand why some studies had shown 24 

relative discrepancies concerning these interactions (e.g., Barton 1986; Fagundes et al. 2017). 25 
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To clarify how mutualistic ant-plant interactions are formed and sustained, it is necessary to 1 

understand how mutualistic ant species interact with each other and how ant nests, in addition 2 

to the community of EFNs-bearing plants, are spatially and temporally distributed in natural 3 

environments. 4 
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Tables 1 

Table 1. The number of ant nests and the most abundant neighboring plant species with 2 

extrafloral nectaries found near tagged Smilax polyantha plants. Ant nests and neighboring 3 

plants were recorded within 12 and 10 meters away, respectively, from each tagged plant. 4 

Data between parentheses represent the relative abundance (%) of ant nests. 5 

Ant species Number of nests Mean nests/Smilax 

Camponotus crassus  58 (50) 2.70 

Camponotus sp.1  25 (21) 1.17 

C. blandus  15 (13) 0.91 

Ectatomma tuberculatum  13 (11) 0.61 

C. melanoticus  4 (3) 0.17 

C. renggeri  2 (2)  0.09 

Total 117 5.65* 

EFN neighbor species Number of 

individuals 

Mean 

neighbor/Smilax 

Qualea multiflora  110 (18) 4.78 

Stryphnodendron polyphyllum  104 (17) 4.52 

Smilax polyantha  89 (14) 3.87 

Q. parviflora  78 (12) 3.39 

Ouratea spectabilis  72 (12) 3.13 

Caryocar brasiliense  71 (11) 3.09 

O. hexasperma  67 (11) 2.91 

Q. grandiflora  31 (5) 1.35 



45 
 

Total 622 27.04 

*Notice that the number of nests per plant is higher than the expected for a total of 117 1 

sampled nests. That occurred because some nests were near to more than one plant. 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 



46 
 

Table 2. GLMs results for foliar herbivory regarding several independent variables associated 1 

with the extrafloral nectar-producing plant, Smilax polyantha. The following variables 2 

indicate: Lea = leaf number, Nei = EFN neighbors, Nes = nest abundance, and Ric = nest 3 

richness. Ant richness was the only variable positively related to foliar herbivory (see 4 

asterisks). Bold values indicate significant models (α = 5%). For simplicity, we removed the 5 

ant nest distance variable since it was not significant in any model. 6 

Model               F R² D.F P AIC 
β                         
             
Nes             
-0.02         3.71 0.15 21 0.07 -39.84 
             
Nes + Lea           
-0.02  -0.04       2.92 0.23 20 0.08 -39.98 
             
Nes + Ric           
-0.03  -0.2       6.59 0.39 20 0.006 -45.73 
             
Nes + Ric + Lea         
-0.03  0.19  -0.02     4.47 0.41 19 0.015 -44.38 
             
Nes + Lea + Nei         
-0.03  -0.07  -0.006     3.94 0.40 18 0.025 -48.92 
             
Nes + Ric + Nei         
-0.04  0.26  -0.005     6.15 0.51 18 0.005 -46.92 
             
Nes + Ric + Lea + Nei       
-0.04  0.14  -0.06  -0.006   4.9 0.54 17 0.008 -52.68 

 7 

 8 

 9 

 10 

 11 

 12 
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Figure legends 1 

Figure 1. Overview of Smilax polyantha (Smilacaceae) and a visiting ant. (A) An Ectatomma 2 

tuberculatum ant visiting a S. polyantha plant, (B) a drop of extrafloral nectar produced by the 3 

extrafloral nectary, (C) a nectar-producing young leaf, and (D) an adult specimen of Smilax 4 

polyantha. 5 

Figure 2. Linear regressions associating the ant nest abundance around Smilax polyantha 6 

plants and their fruit production with several independent variables. The number of 7 

neighboring plants with extrafloral nectaries negatively affected the ant nest abundance 8 

around S. polyantha (a), which ultimately reduces fruit production (c). Conversely, ant nest 9 

abundance increased fruit production in S. polyantha (b). Ant nest richness had no effect on 10 

fruit production (d) considering α = 0.05. We applied square root transformation on fruit 11 

production to normalize the data. 12 
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Figures 1 
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Associational resistance effects mediated by extrafloral nectaries of plants from the 1 

Brazilian Cerrado 2 

 3 

Renan Fernandes Moura and Kleber Del-Claro 4 

* Referências formatadas de acordo com o periódico Journal of Ecology 5 

 6 

Abstract 7 

Associational resistance (AR) is a type of positive interaction in which a plant suffers less 8 

damage caused by herbivores due to its association with a protective plant. In this study, we 9 

evaluated whether supporting plants with extrafloral nectaries can share their biotic 10 

protections with a climbing plant, Smilax polyantha (Smilacaceae). We sampled 45 11 

individuals of S. polyantha, recorded its respective supporting plant species and whether it 12 

had or not extrafloral nectaries. From S. polyantha we measured foliar herbivory, fluctuating 13 

asymmetry (measure of environmental stress), and flower and fruit production. We also 14 

examined the ant visitation and composition of S. polyantha and whether they changed 15 

according to its type of supporting plant (with or without extrafloral nectaries). We found that 16 

supporting plants with EFNs indirectly benefit S. polyantha by sharing mutualistic ant 17 

species. When supporting plant species had extrafloral nectaries, S. polyantha had a higher 18 

number of visiting ants and ant richness, lower foliar herbivory, and fluctuating asymmetry 19 

values, and a distinct composition of visiting ant species. Despite this, we have not observed 20 

differences in fruit production between the two groups of S. polyantha. Plants with extrafloral 21 

nectaries may benefit other plant species at local scales and potentially affect the structure of 22 

plant communities. 23 
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Keywords: indirect defense, facilitation, mutualism, nurse effect, simbiosis  1 

Introduction 2 

Interactions among plants are considered one of the main ecological drivers of plant 3 

communities (Bronstein 2009, Callaway 1995). Although many of these interactions are 4 

considered negative to the involved parties (e.g., competition), there are also facilitation 5 

mechanisms involving several species (Brooker et al. 2008). Associational resistance (AR) is 6 

a type of positive interaction in which a plant suffers less damage caused by herbivores due to 7 

its association with a protective plant (Pfister and Hay 1988, Hambäck et al. 2000, Stiling et 8 

al. 2003, Barbosa et al. 2009). Neighboring plants can make the herbivore’s search for its host 9 

plants difficult (Bell 1990) or may promote host plant protection by providing physical 10 

(Gutiérrez and Squeo 2004), chemical or biotic defenses (Barbosa et al. 2009).  11 

Biotic defenses of plants usually involve vegetative structures that increase the 12 

abundance of polyphagous predators that control the damage caused by herbivores (Hambäck 13 

et al. 2000). Mutualistic interactions between ants and plants with extrafloral nectaries (EFNs) 14 

represent an example of biotic defense (see Del-Claro et al. 2016). EFN is a plant structure 15 

that secretes sugary substances consumed by arthropods, including several ant species 16 

(Koptur 1994, Blüthgen et al. 2004, González-Teuber and Heil 2009). Aggressive ants may 17 

prey or remove the arthropod herbivores from plants, reducing the plant damage and 18 

increasing fruit production (Cuautle et al. 2005, Rosumek et al. 2009). 19 

Most studies investigating interactions between ants and EFN-bearing plants aimed to 20 

test interaction effects on target plants (e.g., Rosumek et al. 2009, Beaumont et al. 2016, 21 

Yamawo and Suzuki 2018), the directed involved ants (Byk and Del-Claro 2011) and the ant 22 

community, in general (Dáttilo et al. 2014b, Camarota et al. 2015, Lange and Del-Claro 2014, 23 

Madureira et al. 2018). However, there is only one study that addressed how these mutualistic 24 
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plants affect other individual plants in the neighborhood (see Jezorek et al. 2011). From the 1 

AR perspective, EFN-bearing plants could induce indirect biotic defense, through the 2 

attraction of ants, on support plants, especially when the involved parties are in direct contact.  3 

In this study, we aimed to verify whether the associational resistance occurs on 4 

interactions between a focal plant and support plants with and without EFNs, in natural 5 

conditions. To achieve this goal, we used as a model Smilax polyantha (Smilacaceae), a liana 6 

with EFNs that is often observed climbing on other plants in a Brazilian Cerrado. Lianas may 7 

be particularly susceptible to associational resistance interactions as they need other plants for 8 

physical support and thus receive sufficient amount of sunlight and protection from ground 9 

herbivores (Gianoli and Molina-Montenegro 2005, Gallagher and Leishman 2012). In 10 

addition, lianas produce nutrient-rich leaves—especially in nitrogen (Salzer et al. 2006, Cai 11 

and Bongers 2007, Zhu and Cao 2010), but have low levels of chemical foliar defenses, 12 

making them more vulnerable to the attack of herbivores (Aide and Zimmerman 1990, 13 

Ødegaard 2000, Tang et al. 2012).  14 

To understand the effects of support plants on of S. polyantha, we measured the foliar 15 

herbivory, fluctuating asymmetry (FA) – a measure of environmental stress –, fruit 16 

production, and physical attributes of S. polyantha. We also recorded ant visitation on S. 17 

polyantha individuals supported by EFN-bearing plants and plants without EFNs. We 18 

hypothesized that S. polyantha individuals supported by EFN-bearing plants will experience 19 

distinct values of foliar herbivory, fruit production, and FA in comparison to individuals 20 

supported by plants without EFNs. Since EFNs affect the community of ants (Lange and Del-21 

Claro 2014), we also hypothesized that the visiting ant species of S. polyantha will vary 22 

according to their supported plants. We predicted that S. polyantha individuals supported by 23 

plants bearing EFNs will have lower foliar herbivory and FA, increased production of 24 

inflorescences and fruits, and higher ant richness and visitation than the group supported by 25 
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plants without EFNs, as the ant visitation of mutualistic ants is strongly associated with the 1 

amount of nectar produced by these plants (Fagundes et al. 2017). 2 

Materials and methods 3 

Study site and plant species 4 

The study was carried from October 2017 to August 2018 at natural Cerrado reserve – 5 

Clube Caça e Pesca Itororó de Uberlândia; 18°59'00.0"S 48°18'00.0"W) located at Uberlândia 6 

city, Minas Gerais state, south-eastern Brazil. This reserve is a private conservation entity, 7 

with more than 400 ha of Cerrado vegetation (Vilela et al. 2014). The predominant vegetation 8 

type is a sensu stricto cerrado (Brazilian Savanna), with an understory composed of shrubs, 9 

grasses, and perennial herbs and most trees ranging from 2–8 m height. The region’s climate 10 

is divided into a rainy season that lasts from October to April and a dry season that occurs 11 

from May to September (see Oliveira and Marquis 2002). 12 

Plant sampling 13 

At the reserve, we established 11 transects of 50 m x 10 m separated from each other 14 

by at least 50 m. At all transects, we marked 45 S. polyantha individuals that had at least three 15 

young leaves with no signs of herbivory that were in direct contact with support plants. We 16 

fixed a piece of string around the undamaged young leaves that we identified according to 17 

their size, texture, and color. To analyze the potential influence of these interactions, we 18 

recorded the support species in which S. polyantha was attached to and observed whether they 19 

presented EFNs or not. Then, we stablished two S. polyantha groups: the first group included 20 

S. polyantha supported by EFN-bearing plants, and the second group included S. polyantha 21 

supported by plants without EFN. 22 

Support plants with EFNs included individuals from nine species: Banisteriopsis 23 

malifolia (Malpighiaceae), Caryocar brasiliense (Caryocaraceae), Eriotheca gracilipes 24 
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(Malvaceae), Ouratea hexasperma (Ochnaceae), O. spectabilis (Ochnaceae), Qualea 1 

grandiflora (Vochysiaceae), Q. multiflora (Vochysiaceae), Q. parviflora (Vochysiaceae), and 2 

Stryphnodendron polyphyllum (Fabaceae). After six months, we collected three to five leaves 3 

of each S. polyantha that were physical contact with its support plant. We believe the 4 

collected number is sufficient to have an accurate evaluation of its herbivory values since S. 5 

polyantha does not produce high numbers of leaves (𝑥 ̅ = 87.35 ± SD 62.23). Furthermore, we 6 

only collected young leaves from the intersection point between the plants, so we had few 7 

leaves available to collect.  8 

Foliar herbivory and fluctuating asymmetry 9 

In the laboratory, we took pictures of all collected leaves under a transparent glass 10 

plate with a ruler positioned beside it as a measuring reference (see Ivanov et al. 2015, Alves-11 

Silva and Del-Claro 2016, Moura et al. 2017). All measurements from pictures were 12 

performed using the Image J software (Rasband 2016). We calibrated the software to 0.01 13 

mm accuracy (see Cornelissen and Stiling 2005) and then measured the foliar area, the 14 

amount of foliar loss (herbivory), and the width of each leaf side starting from the midrib to 15 

each of its blade edges (used to calculate the fluctuating asymmetry). Since leaf size varied 16 

among all sampled plants, we calculated the mean proportional leaf loss of each plant 17 

dividing the mean foliar area loss by the mean leaf area of the collected leaves. 18 

Fluctuating asymmetry (FA) represents small, random variations within a bilateral 19 

axis (left-right sides) that deviates from perfect symmetry (Palmer 1994). FA can be caused 20 

by several environmental issues such as pollution, luminous stress, and for plants, the foliar 21 

damage caused by herbivores (Hódar 2002, Puerta-Piñero et al. 2003, Moura et al. 2017). 22 

Currently, FA is being used as a reliable measure of developmental stability, indicating 23 
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whether a population is under potential environmental stress or not (reviewed by Beasley et 1 

al. 2013). After measuring each side of the leaves, we applied the following formula: 2 

∑[
|𝑅 𝑖 − 𝐿 𝑖|

(𝑅 𝑖 + 𝐿 𝑖)/2
]

𝑁
 3 

where R is the right side and L is the left side of the same leaf, and N represents the total 4 

number of leaves measured per plant. We divided the difference between leaf sizes by the 5 

average leaf size (R + L)/2 to control for size-scale effects, as FA may be size-dependent 6 

(Cornelissen and Stiling 2005, Alves-Silva and Del-Claro 2016, Miljković et al. 2018). 7 

Although FA is diffused throughout nature, there are other types of symmetries, such as 8 

directional asymmetry (DA) or antisymmetry (AS) (Graham et al. 2010), and they should be 9 

evaluated. While FA is induced and enhanced by environmental and biotic/abiotic factors, 10 

including foliar damages caused by herbivores (Silva et al. 2016, Moura et al. 2017, Telhado 11 

et al. 2017), DA and AS are mainly caused by genetic factors (Graham et al. 2010). In DA, 12 

one of the trait sizes is always greater than the other, which means that a histogram may show 13 

skewed data distribution when sizes are subtracted. AS depicts a scenario where a given 14 

population presents a bimodal distribution, hence, high values of both R > L and L > R 15 

measurements are commonly observed and may also be evident in a histogram. On the other 16 

hand, a plant population with FA presents random and small variations between its leaf sides 17 

that are normally distributed. To analyze the potential presence of these three types of 18 

symmetry, we performed histograms to visually inspect our data.  19 

Ant visitation 20 

After sampling foliar herbivory and FA, we visited each of the 45 plants weekly, 21 

during September and October 2018 in the morning periods (7:40 - 11:30). During this period, 22 

we observed each plant for five minutes and recorded the species identity and total number of 23 
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visiting ants. When we found an unknown species, we collected it for subsequent 1 

identification. Taxonomical identifications were based on Baccaro’s (2006) entomological 2 

key.  3 

Statistical analysis 4 

Although we were only interested in the effects of EFNs of support plants on our 5 

target species, structural differences (e.g., height and canopy size) among support plants (with 6 

and without EFNs) could affect S. polyantha attributes (e.g., foliar herbivory and fruit 7 

production). Thus, we measured the canopy size (length and width), plant height, and stem 8 

diameter (15 cm from the ground) of all support plants (with and without EFNs) and then we 9 

conducted a Principal Component Analysis (PCA) to create an index that accounted for the 10 

total variance explained by these variables combined (Bro and Smilde 2014, Moura et al. 11 

2017). Using the obtained values, we performed a Mann-Whitney test to seek differences 12 

between groups using a new variable called “structural complexity” (Alves-Silva and Del-13 

Claro 2014).  14 

We re-measured a leaf subset of 32 plants and performed a correlation test between 15 

using the original and the re-measured R and L difference to examine how comparable and 16 

related the variables were (Hódar 2002, Moura et al. 2017). This procedure allowed us to 17 

check whether our measurements were accurate enough to allow the subsequent statistical 18 

procedures without measurement errors (Yezerinac et al. 1992, Cornelissen and Stiling 2005). 19 

To rule out DA, we performed a one sample Student’s t-test using the R minus L 20 

measurements to see whether the obtained values deviated from zero. A significant result 21 

indicates the presence of DA in S. polyantha leaves. To investigate AS, we subjected the R 22 

minus L measurements to a normality test together with the visual examination in a 23 

histogram, which might reveal bimodality, an indicative of AS (Alves-Silva and Del-Claro 24 
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2016). Once these tests were not statistically significant, FA could be considered the type of 1 

asymmetry found in S. polyantha leaves. 2 

We used sets of GLMs to test the effects of plants groups and ant recruitment and 3 

richness on plant traits. To evaluate the effects of support plants (with and without EFNs) on 4 

S. polyantha, we performed GLMs on foliar herbivory, FA, the number of inflorescences and 5 

fruit production per inflorescence, and the abundance and richness of visiting ants. We 6 

performed a GLM between foliar herbivory (independent variable) and FA (dependent 7 

variable) to analyze the effect of foliar herbivory on FA. Afterward, we conducted an 8 

ANCOVA to evaluate whether the FA values between the two plant groups (partner plant 9 

with and without EFNs) differed, using the herbivory values as a covariate (e.g., Moura et al. 10 

2017). On another set of GLMs, we tested whether ant recruitment and ant richness affected 11 

foliar herbivory, number of inflorescences and fruit production per inflorescence. Finally, we 12 

conducted two binomial logit regressions to assess whether the ant visitation and richness 13 

affected the probability of S. polyantha in producing fruits. 14 

We analyzed differences in species composition of visiting ants of the two groups of 15 

paired plants by performing an analysis of similarities with 999 computed permutations 16 

(ANOSIM; see Clarke 1993, Antoniazzi et al. 2019). Then, we used the Bray-Curtis distance 17 

transformation to graphically expose the results in a non-metric multidimensional scaling 18 

(NMDS). We also performed a similarity percentage breakdown (SIMPER), with 999 19 

computed permutations, between the two plant groups to identify what ant species had greater 20 

weight when forming the functional groups (Neves et al. 2013). 21 

All statistical assumptions were verified according to Zuur et al. (2010). Data 22 

normality was assessed by using boxplots, histograms, and Lilliefors normality tests. All tests 23 

were performed in the R statistical software version 4.0.0 (R Core Team 2018). Variance 24 
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homogeneity was assessed by using the function “var. test” from the “stats” package. The 1 

“InfluencePlot” function from the “car” package (Fox and Weisberg 2018) and the 2 

“chisq.out.test” function from the “outliers” package (Dixon 1950) were used to identify, 3 

analyze, and remove possible outliers. 4 

Results 5 

All variables combined included in the PCA explained 81.3% of the total variance 6 

observed. Since we observed no differences regarding this variable concerning the two groups 7 

of support plants (U1,44 = 216; P = 0.61), we assumed that both groups had similar physical 8 

attributes and any variation found can be accounted as an effect of EFNs.  9 

 Foliar herbivory and fluctuating asymmetry 10 

Our correlation analysis between leaf side (L and R) measurements revealed a 96% 11 

match (n = 32). Therefore, we considered that measurements to be accurate. DA was not 12 

significant (t1,32 = 0.73; P = 0.47) and we did not observe any sign of AS during our 13 

exploratory analysis. We observed a significant association between S. polyantha foliar 14 

herbivory and FA (F1,42 = 18.76; R² = 0.31; P < 0.001).  15 

Associational resistance effects 16 

There was a significant difference between the two plant groups (support plants with 17 

and without EFNs) concerning the FA of S. polyantha leaves (F1,43 = 6.21; R² = 0.13; P = 18 

0.02), where S. polyantha supported by plants with EFNs had lower values of FA (𝑥 ̅ = 0.015 19 

± 0.006) in comparison to plants without EFNs (𝑥 ̅ = 0.029 ± 0.027; Fig.2a). We also observed 20 

that S. polyantha supported by plants with EFNs had lower values of foliar herbivory (leaf 21 

loss proportion) in comparison with plants without EFNs (𝑥 ̅ = 0.014 ± 0.026; 𝑥 ̅ = 0.036 ± 22 

0.04;  F1,43 = 10.83; R² = 0.20; P = 0.002; Fig.2b). However, the ANCOVA revealed 23 

differences between the two plant groups when controlling for the effects of foliar herbivory 24 
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(F1,42 = 5.13; P = 0.028; Fig. 3), meaning that FA was not only caused by the foliar loss 1 

experienced by S. polyantha. The inflorescence production between the two groups was not 2 

significant (F1,43 = 3.14; R² = 0.07; P = 0.083; Fig. 2c), neither the number of 3 

fruits/inflorescence (F1,43 = 0.002; R² < 0.001; P = 0.96; Fig. 2d). S. polyantha supported by 4 

plants with EFNs had significant higher ant recruitment (F1,43 = 5.34; R² = 0.11; P = 0.026; 5 

Fig. 2e) and richness (F1,43 = 4.18; R² = 0.09; P = 0.047; Fig. 2f) than plants without EFNs. 6 

 7 

Figure 2. GLM analyses results among several variables between two groups of Smilax 8 

polyantha and its support plants. S. polyantha plants supported by plants with extrafloral 9 

nectaries (NEFs) had decreased fluctuating asymmetry (a) and foliar herbivory (b) and 10 

increased ant richness (e) and recruitment (f). There were no differences regarding the number 11 

of produced fruits/inflorescence (d) and the absolute number of inflorescences (c). Letters “a” 12 
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and “b” denote significant differences between treatments while “n.s” indicate non-significant 1 

comparisons, both according to α = 5%. Notice that most y-axis exhibit distinct scales.  2 

 3 

 4 

 5 

Figure 3. Graph showing ANCOVA results between two groups of Smilax polyantha 6 

plants (supported by plants with and without extrafloral nectaries – EFNs). S. polyantha 7 

supported by plants without EFNs (black) had higher fluctuating asymmetry than S. polyantha 8 

supported by other plants bearing EFNs (gray), even after controlling for the foliar herbivory 9 

factor.  10 

 11 

Ant visitation 12 

We observed a total of 15 ant species visiting S. polyantha individuals (supplementary 13 

material). Ant recruitment positively affected fruit production (fruits/inflorescence) (F1,43 = 14 

5.04; R² = 0.11; P = 0.030; Fig. 4a), but we found no association between ant richness and 15 
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fruit production (F1,43 = 2.83; P = 0.09; Fig. 4b). There was no effect of ant recruitment on the 1 

number of inflorescences (F1,43 = 2.31; P = 0.14; Fig. 4c), but we observed a positive 2 

relationship between ant richness and the number of inflorescences (F1,43 = 5.45; R² = 0.11; P 3 

= 0.024; Fig. 4d). Foliar herbivory was not affected neither by ant recruitment (F1,43 = 0.76; P 4 

= 0.39; Fig. 4e) and ant richness (F1,43 = 1.16; P = 0.29; Fig. 4f). The probability of fruit 5 

production in S. polyantha was positively associated by both ant recruitment (χ² = 1.88; P = 6 

0.021; Fig. 5a) and ant richness of visiting ants (χ² = 1.99; P = 0.029; Fig. 5b). For each 7 

additional visiting ant individual, the probability of fruit production increased by 8.4% (odds 8 

ratio = 1.084), while each additional ant species increased the probability of fruit production 9 

by 84% (odds ratio = 1.84). The ANOSIM showed significant differences regarding the 10 

species composition between the two plant groups (R = 0.16, P = 0.002; Fig. 6). The SIMPER 11 

analysis revealed that the species that strongly influenced the formation of groups within the 12 

plant groups were Crematogaster sp. (P = 0.031) and Pseudomyrmex gracilis (P = 0.051), 13 

where these two species were more common among S. polyantha individuals supported by 14 

plants without EFNs. 15 
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 1 

Figure 4. The effect of ant recruitment and species richness on the number of 2 

produced fruits per inflorescence (a, b), inflorescence number (c, d), and foliar herbivory (e, f) 3 

in Smilax polyantha. The number of fruits produced was positively affected by ant 4 

recruitment (a), while the number of inflorescences produced was positively affected by ant 5 
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richness. All the other comparisons were not statistically significant accordingly to α = 0.05. 1 

We used squared root transformations in ant recruitment and richness to normalize the data. 2 

 3 

 4 

Figure 5. Logistic regression depicting positive effects of ant recruitment and richness 5 

on the probability of Smilax polyantha in producing or not fruits. Each additional visiting ant 6 

individual increased the probability of fruit production by 8.4% (a), while each additional 7 

visiting ant species increased the probability of production by 84% (b).  8 

. 9 

 10 
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 1 

Figure 6. Ant species composition present in two groups of plants. Each dot represents 2 

a pair of plants: An individual of Smilax polyantha and its associated plant (that may have or 3 

not extrafloral nectaries – EFNs). When S. polyantha plants were supported by EFN-bearing 4 

plants, they experienced distinct richness and composition of visiting ants, when compared to 5 

S. polyantha supported by plants without EFNs, forming two separate groups (see analysis of 6 

similarities—ANOSIM—in results). 7 

 8 

Discussion 9 

Our results strengthen the predictions that associated plants with EFNs indirectly 10 

benefit S. polyantha by boosting the attraction of mutualistic ant species that might be visiting 11 

both plants. When supported by other EFN-bearing plants, S. polyantha exhibited a higher 12 
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number of visiting ants and ant richness, had lower foliar herbivory and fluctuating 1 

asymmetry (measure of environmental stress) values, and a distinct composition of visiting 2 

ant species when compared to S. polyantha supported by plants without EFNs. Although we 3 

did not observe differences between the two plant groups regarding the number of 4 

inflorescences and fruit production, we demonstrated that the recruitment and richness of 5 

visiting ants had positive effects on S. polyantha production (inflorescences and fruits per 6 

inflorescence). To our best knowledge, this is the first study demonstrating that a neighboring 7 

(support) plant can influence both the ant richness and composition of visiting ants in another 8 

plant individual. 9 

Specifically, we observed that S. polyantha supported by other EFN-bearing plants 10 

had increased ant richness, and this variable was positively related to the inflorescence 11 

production and the probability of fruit production. There is a debate in the literature on how 12 

the ant community is associated with EFN-bearing plants and how ant richness affects these 13 

mutualisms (see Lange et al. 2013, Camarota et al. 2015, Belchior et al. 2016, Ribeiro et al. 14 

2018). Although we do not know studies that observed how the community of visiting ants 15 

affects EFN-bearing plants, some researchers concluded that plants visited by more than one 16 

ant species often experience low protection (Miller 2007, Palmer et al. 2008, Del-Claro and 17 

Marquis 2015). This occurs because most ant species are opportunistic and do not provide 18 

benefits for EFN-bearing plants (see Del-Claro et al. 2016). Few or single ant species are 19 

observed in well-protected plants because effective mutualistic ants are aggressive; hence, 20 

they do not only exclude herbivores but other competing ant species to seize resources 21 

(Palmer et al. 2008, Dáttilo et al. 2014a, Clark and Singer 2018). However, even though 22 

aggressive ant species are presumed to offer better protection (Miller 2007), there are also 23 

cases where extremely aggressive ants can cause harm to the visited plants by driving off 24 
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potential pollinators (Ness 2006, Hanna et al. 2015, Melati and Leal 2018) or damaging 1 

vegetative parts (Palmer et al. 2008; Villamil et al. 2018).  2 

These examples demonstrate how ant-plant mutualisms are complex and context-3 

dependent (Baker-Méio and Marquis 2012). In our study system, ant richness prompted by an 4 

associated plant caused a positive impact in S. polyantha, although, how exactly it benefits 5 

EFN-bearing plants is still an open question. We hypothesize that different ant species may be 6 

specialized in preying different types of herbivores since they vary in behavioral traits, size, 7 

and recruitment capacity (see Del-Claro and Marquis 2015). Also, ants have distinct activity 8 

periods, so EFN-bearing plants visited by more ant species may be benefited by a turnover of 9 

ant species along the day (see Díaz-Castelazo et al. 2004, Anjos et al. 2017).  10 

There were some inconsistencies regarding the effects of ants and associated plants 11 

since we did not observe the ant richness effect on S. polyantha foliar herbivory. Furthermore, 12 

fruit production was not different between the two plant groups, although ant recruitment was 13 

positively associated with the number of fruits produced. Thus, we conclude that the 14 

mechanisms benefiting S. polyantha supported by other EFN-bearing plants might not be 15 

related to the absolute ant recruitment nor richness, since we have noticed no effects of ant 16 

recruitment nor richness on foliar herbivory. We, however, discarded the structural 17 

differences between the associated plant groups, as we observed no variation in structural 18 

complexity, a trait that should affect factors such as ant visiting and foliar herbivory. 19 

According to the observed difference in FA between the two plant groups, after controlling 20 

for foliar herbivory effects, we concluded that associated EFN-bearing plants might be 21 

benefiting S. polyantha in another way than by just attracting ants. Although we cannot offer 22 

a response for this outcome, we hypothesize that support plants with EFNs might reduce the 23 

S. polyantha investment EFNs or extrafloral nectar (volume or composition; see Calixto et al. 24 

2021), which could decrease the leaf development instability (i.e., FA). Investment reduction 25 
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was already observed in plants protected by neighboring plants (Coverdale et al. 2018, 2019), 1 

and it is known that the production of extrafloral nectar can be regulated by external factors 2 

(Calixto et al. 2021).   3 

The composition of ants might partially explain how associated plants with EFNs 4 

might have benefited Smilax polyantha. It is known that most ant species in the Brazilian 5 

Cerrado are not involved in mutualistic interactions with EFN-bearing plants, and we 6 

observed a subtle, but significant, difference in ant composition regarding the two plant 7 

groups. S. polyantha supported by plants without EFN-bearing plants were visited by more 8 

ants such as Crematogaster sp. and Pseudomyrmex gracilis. Although Crematogaster sp. 9 

exhibits considerable aggressiveness and recruitment, its reduced size mitigates its ability in 10 

attacking herbivores efficiently (Del-Claro and Marquis 2015). Conversely, P. gracilis is 11 

greater than Crematogaster sp., but its individuals are not aggressive, so its presence on EFN-12 

bearing plants does not indicate any effective protection (Fagundes et al. 2017). Even though 13 

studies showed that the composition of ant species differs between plants with and without 14 

EFNs (Camarota et al. 2015), no studies demonstrated that associated or close-ranged support 15 

plants can impact the ant composition and richness of focal plants.  16 

That said, we assume that the benefits, such as increased fruit and inflorescence 17 

production, were possible as the mutualistic ants might have a stronger effect than the 18 

exploiter ants on our models. We cannot discredit, however, that the positive effect of ant 19 

recruitment on fruit production was caused by mutualistic ants during the flowering period, as 20 

some ants can prey or drive-off flower herbivores, increasing the plant’s performance and 21 

fitness (Leal et al. 2006). There are also rare cases where ants perform pollination themselves 22 

(Del-Claro et al. 2019). These two scenarios would explain our results, but since we did not 23 

directly observe the behavior of ants during the flowering period of S. polyantha, we cannot 24 

offer a decisive explanation. 25 
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Taken together, our results suggest that EFN-bearing plants do not only affect the 1 

parties directly involved—the EFN-bearing plants and their ant partners—but, at least in fine 2 

scales, they may benefit the vegetal community, overall. Of course, this will only happen if 3 

the competition effects between these plants do not surpass the associational benefits, and, if 4 

that is the case, associational resistance can promote the coexistence of less competitive plants 5 

(Coverdale et al. 2018). The benefits should be even greater for lianas since they have 6 

nitrogen-rich leaves (Salzer et al. 2006, Cai and Bongers 2007, Zhu and Cao 2010) and few 7 

defenses against herbivores (Aide and Zimmerman 1990, Ødegaard 2000, Tang et al. 2012). 8 

A promising next step would be to evaluate whether EFN-bearing lianas reduce their defense 9 

investment when supported by other EFN-bearing plants and what are its effects on the 10 

associated plants. Defense investments can be evaluated not only by measuring their nectar 11 

production (volume, compounds concentration and identity) but also by verifying physical 12 

defenses such as leaf toughness and spine production (see Coverdale et al. 2018, 2019). 13 

Additionally, evaluating distinct populations of associated plants can clarify how abiotic 14 

factors and the ant community interact and affect the outcomes of the associated plant 15 

relationships. 16 

Acknowledgements  17 

We thank Eduardo Calixto, Robert Marquis, Eva Colberg, Miguel Chaves-Fallas, Estefania 18 

Fernandez, Jared Chauncey, Diego Anjos, Rodrigo Pereira, and Drielly Queiroga for 19 

interesting discussions and suggestions on previous versions of this manuscript. 20 

References 21 

Aide TM, Zimmerman JK (1990) Patterns of insect herbivory, growth, and survivorship in 22 

juveniles of a neotropical liana. Ecology 71:1412–1421 23 



70 
 

Alves-Silva E, Del-Claro K (2014) Fire triggers the activity of extrafloral nectaries, but ants 1 

fail to protect the plant against herbivores in a neotropical savanna. Arthropod Plant 2 

Interact 8:233–240 3 

Alves-Silva E, Del-Claro K (2016) Herbivory-induced stress: Leaf developmental instability 4 

is caused by herbivore damage in early stages of leaf development. Ecol Indic 61:359–5 

365 6 

Anjos D V, Caserio B, Rezende FT, et al (2017) Extrafloral‐nectaries and interspecific 7 

aggressiveness regulate day/night turnover of ant species foraging for nectar on Bionia 8 

coriacea. Austral Ecol 42:317–328 9 

Antoniazzi R, Garro RNSL, Dáttilo W, et al (2019) Ant species richness and interactions in 10 

canopies of two distinct successional stages in a tropical dry forest. Sci Nat 106:1–14 11 

Baccaro FB (2006) Chave para as principais subfamílias e gêneros de formigas 12 

(Hymenoptera: Formicidae). Inst Nac Pesqui da Amaz Faculdades Cathedr 13 

Baker‐Méio B, Marquis RJ (2012) Context‐dependent benefits from ant–plant mutualism in 14 

three sympatric varieties of Chamaecrista desvauxii. J Ecol 100:242–252 15 

Barbosa P, Hines J, Kaplan I, et al (2009) Associational resistance and associational 16 

susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol Syst 40:1–20 17 

Beasley DAE, Bonisoli-Alquati A, Mousseau TA (2013) The use of fluctuating asymmetry as 18 

a measure of environmentally induced developmental instability: A meta-analysis. Ecol 19 

Indic 30:218–226 20 

Beaumont KP, Mackay DA, Whalen MA (2016) Ant defence of a dioecious shrub, Adriana 21 

quadripartita (Euphorbiaceae), with extrafloral nectaries. Aust J Bot 64:539–546 22 



71 
 

Belchior C, Sendoya SF, Del-Claro K (2016) Temporal variation in the abundance and 1 

richness of foliage-dwelling ants mediated by extrafloral nectar. PLoS One 2 

11:e0158283 3 

Bell WJ (1990) Searching behavior patterns in insects. Annu Rev Entomol 35:447–467 4 

Blüthgen N, Gottsberger G, Fiedler K (2004) Sugar and amino acid composition of ant‐5 

attended nectar and honeydew sources from an Australian rainforest. Austral Ecol 6 

29:418–429 7 

Bro R, Smilde AK (2014) Principal component analysis. Anal methods 6:2812–2831 8 

Bronstein JL (2009) The evolution of facilitation and mutualism. J Ecol 97:1160–1170 9 

Brooker RW, Maestre FT, Callaway RM, et al (2008) Facilitation in plant communities: the 10 

past, the present, and the future. J Ecol 96:18–34 11 

Byk J, Del-Claro K (2011) Ant–plant interaction in the Neotropical savanna: direct beneficial 12 

effects of extrafloral nectar on ant colony fitness. Popul Ecol 53:327–332 13 

Cai Z, Bongers F (2007) Contrasting nitrogen and phosphorus resorption efficiencies in trees 14 

and lianas from a tropical montane rain forest in Xishuangbanna, south-west China. J 15 

Trop Ecol 23:115–118 16 

Calixto ES, Lange D, Bronstein J, et al (2021) Optimal defense theory in an ant–plant 17 

mutualism: extrafloral nectar as an induced defence is maximized in the most valuable 18 

plant structures. J Ecol 109:167–178 19 

Callaway RM (1995) Positive interactions among plants. Bot Rev 61:306–349 20 



72 
 

Camarota F, Powell S, Vasconcelos HL, et al (2015) Extrafloral nectaries have a limited 1 

effect on the structure of arboreal ant communities in a Neotropical savanna. Ecology 2 

96:231–240 3 

Clark RE, Singer MS (2018) Differences in aggressive behaviors between two ant species 4 

determine the ecological consequences of a facultative food-for-protection mutualism. J 5 

Insect Behav 31:510–522 6 

Clarke KR (1993) Non‐parametric multivariate analyses of changes in community structure. 7 

Aust J Ecol 18:117–143 8 

Cornelissen T, Stiling P (2005) Perfect is best: low leaf fluctuating asymmetry reduces 9 

herbivory by leaf miners. Oecologia 142:46–56 10 

Coverdale TC, Goheen JR, Palmer TM, Pringle RM (2018) Good neighbors make good 11 

defenses: associational refuges reduce defense investment in African savanna plants. 12 

Ecology 99:1724–1736 13 

Coverdale TC, McGeary IJ, O’Connell RD, et al (2019) Strong but opposing effects of 14 

associational resistance and susceptibility on defense phenotype in an African savanna 15 

plant. Oikos 128:1772–1782 16 

Cuautle M, Rico‐Gray V, Díaz‐Castelazo C (2005) Effects of ant behaviour and presence of 17 

extrafloral nectaries on seed dispersal of the Neotropical myrmecochore Turnera 18 

ulmifolia L.(Turneraceae). Biol J Linn Soc 86:67–77 19 

Dáttilo W, Díaz-Castelazo C, Rico-Gray V (2014a) Ant dominance hierarchy determines the 20 

nested pattern in ant–plant networks. Biol J Linn Soc 113:405–414 21 

Dáttilo W, Marquitti FMD, Guimarães Jr PR, Izzo TJ (2014b) The structure of ant–plant 22 

ecological networks: Is abundance enough? Ecology 95:475–485 23 



73 
 

Del-Claro K, Rico-Gray V, Torezan-Silingardi HM, et al (2016) Loss and gains in ant–plant 1 

interactions mediated by extrafloral nectar: fidelity, cheats, and lies. Insectes Soc 2 

63:207–221 3 

Del-Claro K, Rodriguez-Morales D, Calixto ES, et al (2019) Ant pollination of Paepalanthus 4 

lundii (Eriocaulaceae) in Brazilian savanna. Ann Bot 123:1159–1165 5 

Del‐Claro K, Marquis RJ (2015) Ant Species Identity has a Greater Effect than Fire on the 6 

Outcome of an Ant Protection System in B razilian C errado. Biotropica 47:459–467 7 

Díaz-Castelazo C, Rico-Gray V, Oliveira PS, Cuautle M (2004) Extrafloral nectary-mediated 8 

ant-plant interactions in the coastal vegetation of Veracruz, Mexico: Richness, 9 

occurrence, seasonality, and ant foraging patterns. Ecoscience 11:472–481 10 

Dixon WJ (1950) Analysis of extreme values. Ann Math Stat 21:488–506 11 

Fagundes R, Dáttilo W, Ribeiro SP, et al (2017) Differences among ant species in plant 12 

protection are related to production of extrafloral nectar and degree of leaf herbivory. 13 

Biol J Linn Soc 122:71–83 14 

Fox J, Weisberg S (2018) An R companion to applied regression. Sage Publications 15 

Gallagher R V, Leishman MR (2012) A global analysis of trait variation and evolution in 16 

climbing plants. J Biogeogr 39:1757–1771 17 

Gianoli E, Molina‐Montenegro MA (2005) Leaf damage induces twining in a climbing plant. 18 

New Phytol 167:385–390 19 

González-Teuber M, Heil M (2009) Nectar chemistry is tailored for both attraction of 20 

mutualists and protection from exploiters. Plant Signal Behav 4:809–813 21 



74 
 

González‐Teuber M, Gianoli E (2008) Damage and shade enhance climbing and promote 1 

associational resistance in a climbing plant. J Ecol 96:122–126 2 

Graham JH, Raz S, Hel-Or H, Nevo E (2010) Fluctuating asymmetry: methods, theory, and 3 

applications. Symmetry (Basel) 2:466–540 4 

Gutiérrez JR, Squeo FA (2004) Importancia de los arbustos en los ecosistemas semiáridos de 5 

Chile. Ecosistemas 13: 6 

Hambäck PA, Ågren J, Ericson L (2000) Associational resistance: insect damage to purple 7 

loosestrife reduced in thickets of sweet gale. Ecology 81:1784–1794 8 

Hanna C, Naughton I, Boser C, et al (2015) Floral visitation by the Argentine ant reduces bee 9 

visitation and plant seed set. Ecology 96:222–230 10 

Hódar JA (2002) Leaf fluctuating asymmetry of Holm oak in response to drought under 11 

contrasting climatic conditions. J Arid Environ 52:233–243 12 

Jezorek H, Stiling P, Carpenter J (2011) Ant predation on an invasive herbivore: can an 13 

extrafloral nectar-producing plant provide associational resistance to Opuntia 14 

individuals? Biol Invasions 13:2261–2273 15 

Koptur S (1994) Floral and extrafloral nectars of Costa Rican Inga trees: a comparison of 16 

their constituents and composition. Biotropica 276–284 17 

Lange D, Dáttilo W, Del‐Claro K (2013) Influence of extrafloral nectary phenology on ant–18 

plant mutualistic networks in a neotropical savanna. Ecol Entomol 38:463–469 19 

Lange D, Del-Claro K (2014) Ant-plant interaction in a tropical savanna: may the network 20 

structure vary over time and influence on the outcomes of associations? PLoS One 21 

9:e105574 22 



75 
 

Leal IR, Fischer E, Kost C, et al (2006) Ant protection against herbivores and nectar thieves 1 

in Passiflora coccinea flowers. Ecoscience 13:431–438 2 

Madureira MS, Sobrinho TG, Schoereder JH (2018) The Influence of Extrafloral Nectaries on 3 

Arboreal Ant Species Richness in Tree Communities. Sociobiology 65:162–169 4 

Melati BG, Leal LC (2018) Aggressive bodyguards are not always the best: Preferential 5 

interaction with more aggressive ant species reduces reproductive success of plant 6 

bearing extrafloral nectaries. PLoS One 13:e0199764 7 

Miljković D, Selaković S, Vujić V, et al (2018) Patterns of herbivore damage, developmental 8 

stability, morphological and biochemical traits in female and male Mercurialis perennis 9 

in contrasting light habitats. Alp Bot 128:193–206 10 

Miller TEX (2007) Does having multiple partners weaken the benefits of facultative 11 

mutualism? A test with cacti and cactus‐tending ants. Oikos 116:500–512 12 

Moura RF, Alves-Silva E, Del-Claro K (2017) Patterns of growth, development and herbivory 13 

of Palicourea rigida are affected more by sun/shade conditions than by cerrado 14 

phytophysiognomy. Acta Bot Brasilica 31:. https://doi.org/10.1590/0102-15 

33062016abb0446 16 

Ness JH (2006) A mutualism’s indirect costs: the most aggressive plant bodyguards also deter 17 

pollinators. Oikos 113:506–514 18 

Neves FS, Queiroz-Dantas KS, Da Rocha WD, Delabie JHC (2013) Ants of three adjacent 19 

habitats of a transition region between the Cerrado and Caatinga biomes: the effects of 20 

heterogeneity and variation in canopy cover. Neotrop Entomol 42:258–268 21 

Ødegaard F (2000) The relative importance of trees versus lianas as hosts for phytophagous 22 

beetles (Coleoptera) in tropical forests. J Biogeogr 27:283–296 23 



76 
 

Oliveira PS, Marquis RJ (2002) The cerrados of Brazil. Columbia University Press New York 1 

Palmer AR (1994) Fluctuating asymmetry analyses: a primer. In: Developmental instability: 2 

its origins and evolutionary implications. Springer, pp 335–364 3 

Palmer TM, Stanton ML, Young TP, et al (2008) Breakdown of an ant-plant mutualism 4 

follows the loss of large herbivores from an African savanna. Science (80- ) 319:192–5 

195 6 

Pfister CA, Hay ME (1988) Associational plant refuges: convergent patterns in marine and 7 

terrestrial communities result from differing mechanisms. Oecologia 77:118–129 8 

Puerta-Pinero C, Gómez JM, Hódar JA (2008) Shade and herbivory induce fluctuating 9 

asymmetry in a Mediterranean oak. Int J Plant Sci 169:631–635 10 

R Core Team (2018) R: A language and environment for statistical computing; 2018 11 

Rasband WS (2016) National Institutes of Health, Bethesda, Maryland, USA. http//imagej nih 12 

gov/ij/ 13 

Ribeiro LF, Solar RRC, Muscardi DC, et al (2018) Extrafloral nectar as a driver of arboreal 14 

ant communities at the site‐scale in Brazilian savanna. Austral Ecol 43:672–680 15 

Rosumek FB, Silveira FAO, Neves F de S, et al (2009) Ants on plants: a meta-analysis of the 16 

role of ants as plant biotic defenses. Oecologia 160:537–549 17 

Salzer J, Matezki S, Kazda M (2006) Nutritional differences and leaf acclimation of climbing 18 

plants and the associated vegetation in different types of an Andean montane rainforest. 19 

Oecologia 147:417–425 20 



77 
 

Silva HV, Alves-Silva E, Santos JC (2016) On the relationship between fluctuating 1 

asymmetry, sunlight exposure, leaf damage and flower set in Miconia fallax 2 

(Melastomataceae). Trop Ecol 57:419–427 3 

Stiling P, Rossi AM, Cattell M V (2003) Associational resistance mediated by natural 4 

enemies. Ecol Entomol 28:587–592. https://doi.org/10.1046/j.1365-2311.2003.00546.x 5 

Tang Y, Kitching RL, Cao M (2012) Lianas as structural parasites: a re-evaluation. Chinese 6 

Sci Bull 57:307–312 7 

Telhado C, Silveira FAO, Fernandes GW, Cornelissen T (2017) Fluctuating asymmetry in 8 

leaves and flowers of sympatric species in a tropical montane environment. Plant 9 

species Biol 32:3–12 10 

Vilela AA, Torezan-Silingardi HM, Del-Claro K (2014) Conditional outcomes in ant–plant–11 

herbivore interactions influenced by sequential flowering. Flora-Morphology, Distrib 12 

Funct Ecol Plants 209:359–366 13 

Villamil N, Boege K, Stone GN (2018) Ant-pollinator conflict results in pollinator deterrence 14 

but no nectar trade-offs. Front Plant Sci 9:1093 15 

Yamawo A, Suzuki N (2018) Induction and relaxation of extrafloral nectaries in response to 16 

simulated herbivory in young Mallotus japonicus plants. J Plant Res 131:255–260 17 

Yezerinac SM, Lougheed SC, Handford P (1992) Measurement error and morphometric 18 

studies: statistical power and observer experience. Syst Biol 41:471–482 19 

Zhu S-D, Cao K-F (2010) Contrasting cost–benefit strategy between lianas and trees in a 20 

tropical seasonal rain forest in southwestern China. Oecologia 163:591–599 21 

Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common 22 

statistical problems. Methods Ecol Evol 1:3–14 23 



78 
 

Capítulo 3 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 



79 
 

The associational resistance effects among plants: a review 1 

 2 

Renan F. Moura, Katherine D. Holmes, Robert J. Marquis, and Kleber Del-Claro 3 

 4 

Abstract 5 

Associational resistance (AR) is a specific case of facilitation where a neighboring 6 

plant provides benefits to focal plants by reducing their herbivore pressure. Associational 7 

effects have great application in agroecological practices and also considerable impacts on the 8 

structuring of natural communities. Despite the great number of studies depicting AR, there is 9 

still misinterpretations about its terminology and little information on the mechanisms behind 10 

these interactions. This chapter is divided into two parts. In part I we provide a qualitative 11 

review on the historical aspects of the AR term. In Part II we used quantitative and meta-12 

analytical tools to identify and measure the main mechanisms of AR against a series of 13 

ecological variables (e.g., plant traits and spatial variables). Lastly, we discuss the patters 14 

found and their implications for biological control practices and the structuring of natural 15 

ecological communities. 16 

Keywords: associative effects, facilitation, pest control, plant diversity, natural enemy 17 

hypothesis 18 
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Introduction 1 

  Many studies have shown that the identity of neighboring plant species can either 2 

directly or indirectly affect the fitness of focal plants. Early studies focused on antagonistic 3 

interactions between plant neighbors, particularly competition or apparent competition 4 

(Bronstein 1994, Callaway 1995, Bertness and Leonard 1997, Kunstler et al. 2016, Holt and 5 

Bonsall 2017). However, a growing number of studies since the 1970s show that neighbor 6 

identity and diversity can also contribute to the maintenance of plant diversity in natural and 7 

manipulated environments (i.e., cropping systems), across spatial scales (Letourneau et al. 8 

2011, Mathis and Bronstein 2020, Sato 2018). 9 

Associational resistance (AR) is a type of positive interaction among plants, wherein 10 

the presence of intra- or interspecific neighbors benefits focal individuals by reducing 11 

susceptibility to herbivores (Tahvanainen and Root 1972, Wahl and Hay 1995). AR effects 12 

mitigate the impact of herbivores by reducing their abundance, attack intensity, or simply 13 

their probability of finding focal plants, through direct (e.g., production of repellent 14 

compounds by neighbors) or indirect (e.g., attraction of predatory arthropods by induced 15 

biotic defenses) mechanisms (Hambäck et al. 2000, Barbosa et al. 2009, Plath et al. 2012). 16 

AR has received significant attention especially after a meta-analysis published by Barbosa et 17 

al. (2009) showing that positive associational effects are more frequently documented than 18 

negative ones. However, many conceptual and technical aspects of AR still require attention 19 

due to its broad conceptualization as a neighbor-mediated reduction in herbivore impacts. In 20 

particular, AR overlaps with several other ecological concepts—e.g., facilitation, nursing 21 

effects, background matching—and it is most likely to be caused by many different biotic and 22 

abiotic scale-dependent mechanisms acting simultaneously (see Agrawal et al. 2006, 23 

Bronstein 2009, Underwood et al. 2014, Mathis and Bronstein 2020). To summarize, AR can 24 

be caused by any type of direct or indirect interaction provided by neighboring plants, or even 25 
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by changes in microclimate conditions caused by specific traits of neighboring plants, that 1 

result in reduced herbivore pressure. 2 

Due to this great complexity and breadth, it is imperative to understand how different 3 

mechanisms of AR interact with other important ecological factors in herbivore susceptibility, 4 

such as scale-dependent interactions and functional trait diversity. For instance, attracting 5 

natural enemies of herbivores is one mechanism by which neighboring plants can benefit 6 

focal plants. It is expected, nonetheless, for factors such as the spatial arrangement of focal 7 

and neighboring plants to be relevant when considering AR mechanisms. For example, the 8 

attraction of natural enemies by neighboring plants can be studied at both local and 9 

geographical scales. At local scales, AR mechanisms rely on specific plant traits; taking 10 

natural enemies as an example, we could argue that neighboring plants can produce food 11 

resources that attract them to the system. Conversely, herbivory damage can be reduced due 12 

to a heterogeneous distribution of resources that depends on the arrangement and distribution 13 

of plants rather than specific plant traits.  14 

Due to a lack of data, past reviews and meta-analyses could not provide strong 15 

quantitative information on the mechanisms of AR (see Agrawal 2006, Barbosa et al. 2009, 16 

Letourneau et al. 2011, Underwood et al. 2014). However, with a growing number of AR 17 

studies, more and better data can be gathered to provide a synthesis. Our main goal in this 18 

review is to identify and quantify, using meta-analytical tools, the main mechanisms of 19 

associational resistance This paper is divided into two sections. In the first, we summarize and 20 

discuss the historical and conceptual aspects of AR. In the second section, we review the AR 21 

literature and use statistical and meta-analytical tools to evaluate and compare the effects of 22 

the main mechanisms driving AR, as well as the role of plant traits and distinct spatial scales 23 

in AR.   24 
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Part I 1 

Historical and conceptual aspects of AR 2 

The core idea of AR is usually attributed to Tahvanainen and Root (1972) and Root 3 

(1973). In an agroecological study, Tahvanainen and Root (1972) observed that vulnerable 4 

crops received protection against herbivores when they were intercropped with another plant 5 

species. They argued that, in addition to the natural individual resistance of plants, complex 6 

communities exhibit a special type of protection known as “associational resistance”, which is 7 

regulated by a combination of biotic and abiotic factors. This resistance is lost when 8 

complexity is reduced (e.g., monocultures), leaving plants more vulnerable to specialist 9 

herbivores. In a long term study, Root (1973) expanded the AR concept (without mentioning 10 

the term) by formally proposing two alternative mechanisms—the natural enemy hypothesis 11 

and the resource concentration hypothesis —to explain the benefits provided by intercropping 12 

practices. The “enemies” hypothesis states that neighboring plants attract predatory 13 

arthropods (e.g., carnivorous mites) that then control herbivore populations occurring on focal 14 

plants. In contrast, the “resource concentration” hypothesis asserts that complex communities 15 

should suffer fewer impacts of specialist herbivores because the resources provided by certain 16 

plant species are not evenly distributed, reducing the ability of such herbivores to find their 17 

correct hosts (see Hambäck et al. 2014). 18 

Despite the use of AR since the 1970s and its increasing development, there has been 19 

no consensus regarding its application. For example, Atsatt and O’Dowd (1976) and 20 

McNaughton (1978) applied the term “defense guilds” when referring to associated plants that 21 

use any mechanism to resist to herbivores, while Bach (1979) opted to test the “resource 22 

concentration” and the “enemies” hypotheses independently—even Root (1973) did not apply 23 

the AR concept in his study. One of the possible reasons for this is that the connection 24 



83 
 

between Roots’ hypotheses and AR were not clear at that time, and some studies considered 1 

them to be three alternative hypotheses explaining plant-herbivore interactions (Letourneau 2 

1986, 1995). Eventually, however, studies by Risch (1981) and Stamps and Linit (1997) 3 

suggested that the hypotheses proposed by Root (1973) represent some of the mechanisms 4 

that drive AR. This view stimulated future studies that investigated Root’s hypotheses in light 5 

of AR. Despite this, the number of studies that have tested AR mechanisms is still limited 6 

almost 50 years following Root’s study. 7 

It is challenging to study AR mechanisms since they potentially involve many 8 

different plant-plant interactions that result in reduced herbivory. A simple way to cut through 9 

this confusion is to sort the mechanisms according to whether the key factors are abiotic or 10 

biotic (see Barbosa et al. 2009, Fig. 1a). Abiotic mechanisms depict physical changes 11 

stimulated by neighboring plants, including factors such as temperature, soil type, and light 12 

incidence (e.g., Piiroinen et al. 2014, Kim 2017). For instance, Bach (1984) observed that the 13 

neighboring plants increase leaf shading of Cayaponia americana, a condition that is not 14 

conducive to its herbivorous fly (Acalymma innubum). Biotic mechanisms require the 15 

interaction of biological components and are more frequently investigated. The “enemies” and 16 

“resource concentration” hypotheses proposed by Root (1973) are classic examples, but 17 

others have been suggested. Neighboring plants, for example, may promote AR by simply 18 

offering shading, refuge or camouflage to focal plants (Rausher 1981, Baraza et al. 2006, 19 

Danet et al 2017, Kim 2017). Coverdale et al. (2018, 2019) showed that neighboring plants 20 

may provide a physical defense to nearby plants growing under spiny Acacia bushes and that 21 

they were less grazed by large mammals than those growing far away from neighbors. 22 

Neighbors may also provide indirect defenses, as in the case of extrafloral-nectary producing 23 

plants. These plants usually attract ants that attack their herbivores, but one study has shown 24 

that these ants can also benefit nearby plants without extrafloral nectaries (Jezorek et al. 25 
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2011). Neighboring plants may also exhibit chemical defenses that benefit nearby focal 1 

plants. In crop systems, researchers often observe that plants with high chemical activity, such 2 

as volatile organic compounds (VOCs), may reduce the damage and abundance of pest 3 

herbivores by acting as a repellent (Kost and Heil 2006, Barman et al. 2016, Zhang et al. 4 

2017, Camacho-Coronel et al. 2021). For instance, Karban et al. (2000) noticed that tobacco 5 

plants can use airborne cues produced by neighboring damaged sagebush to increase the 6 

production of polyphenol oxidase, an enzyme that produces reactive oxygen compounds and 7 

organic free radicals that are toxic for certain herbivore insects (Duffey and Stout 1996, 8 

Constabel and Barbehenn 2008). VOCs can also protect focal plants by masking scents used 9 

by herbivores to detect appropriate hosts, functioning as a camouflage strategy (Hambäck and 10 

Beckerman 2003). 11 

 12 
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Figure 1. Representation of biotic and abiotic mechanisms (a) and the interaction strength (b) 1 

of associational resistance and associational susceptibility. Arrows depict the effects of 2 

neighboring plants on focal plants. Blue arrows depict positive interactions while orange 3 

arrows depict negative interactions. The width of arrows indicates the interaction’s strength, 4 

meaning that associational resistance (green arrow) or susceptibility (red arrow) are 5 

characterized by the net result of combining positive and negative interactions. 6 

 7 

Despite these clear examples of associational resistance, a rising body of studies has 8 

shown mixed evidence for AR. Although many studies report positive effects, others 9 

demonstrate neutral, or even negative effects when interacting with neighbors (reviewed by 10 

Agrawal et al. 2006); the latter case is known as associational susceptibility (AS). Letourneau 11 

(1995) was one of the earliest studies to use this term, coined after a growing body of studies 12 

showed negative effects of some intercropping practices on herbivore susceptibility. From this 13 

point onwards, several researchers focused on understanding the interaction mechanisms and 14 

factors that lead to AR or AS.  15 

Thresholds between AR and AS 16 

The threshold between AR and AS is of particular interest for predicting the dynamics 17 

of plant communities, although it cannot be easily determined (Castagneyrol et al. 2017). As 18 

in any other interaction outcome, associational effects will depend on the net result of 19 

multiple and opposite interacting factors. For instance, if focal and neighboring plants 20 

strongly compete for resources (i.e, sunlight), AR outcomes will only occur if the neighboring 21 

plant can provide enough benefits that overcome competition losses (Fig. 1b). But what plant 22 

or herbivore traits dictate the threshold between AR and AS? Agrawal (2004) and Agrawal et 23 

al. (2006) argued that the quality of neighbors and the specificity of herbivores determines 24 
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outcomes: the strength of associational resistance should increase as the host quality (e.g., leaf 1 

nutrition) of plant neighbors decreases. However, there is still controversy when it comes to 2 

the role of the quality of neighbor plants in AR or AS. Some studies show, for instance, that 3 

highly palatable neighboring plants can benefit focal plants as they can attract herbivores that 4 

would otherwise be feeding on focal plants (Jiao et al. 2019). The effects of relative 5 

palatability may depend on the scale at which herbivores forage, determining whether 6 

palatable neighbors “concentrate” herbivores on themselves, or export them to nearby focal 7 

plants (Bergvall et al. 2006, Champagne et al. 2016, Huang et al. 2016)  8 

Many different plant traits can be used to define the quality of plants as herbivores’ 9 

host. Leaf traits, for instance, are well-known for affecting the preference of leaf herbivores, 10 

and although distinct herbivore species exhibit distinct nutritional needs and specificity, 11 

young and unsclerotized leaves are usually more consumed (Pérez-Herguindeguy et al. 2003). 12 

Leaves can be palatable or unpalatable (see Barbosa et al. 2009) according to properties such 13 

as carbon/nitrogen ratio (C/N), toughness, chemical properties, etc. Nitrogen-rich leaves, for 14 

example, are frequently attacked by insect herbivores, since nitrogen is a limited resource in 15 

most natural environments. The use of high-quality neighbors to control for pests in crops is a 16 

common practice called “attract and reward”: the idea is to provide a trap crop to attract 17 

herbivores that would otherwise attack focal plants of economic interest. However, this 18 

strategy might provide the opposite result, as neighboring plants can spill over herbivores and 19 

contaminate nearby focal plants, leading to AS instead (reviewed by Shelton and Badenes-20 

Perez 2006). 21 

A recent meta-analysis found that the phylogenetic distance between focal and 22 

neighboring plants can also affect herbivore pressure in systems containing generalist 23 

herbivores: herbivore pressure reduces as the phylogenetic distance between potential hosts 24 

increases, leading to AR (Castagneyrol et al. 2014). However, measures of phylogenetic 25 
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distance may often be a proxy for certain plant traits that directly affect the susceptibility of 1 

plants to herbivore attach. Although it is expected that phylogenetically close species exhibit 2 

more similar morphophysiological traits than distant species (Pearse and Hipp 2009), in many 3 

cases such relationships are weak and cannot be used to predict ecological interactions 4 

(Uriarte et al. 2010, Kunstler et al. 2012). Many studies have shown that plants with similar 5 

traits can share herbivores (reviewed by Pearse et al. 2013). Plant traits are, thus, a better 6 

predictor of interaction strength than phylogenetic signal. In conclusion, models that 7 

incorporate trait quality and similarity might provide useful information on associational 8 

effects. 9 

The study designs of AR 10 

Most studies apply classic experimental designs inspired in the past works of Root and 11 

Tahvanainen (1972). These designs commonly make use of two species (one focal and one 12 

neighbor), in which they measure the pest effects in two treatments: monocultures (only the 13 

focal plants) and mixed crops (focal plants plus the neighboring plant species). In this design, 14 

researchers grow the same number of focal plants in monoculture and mixed treatments while 15 

simply adding the neighboring plants in mixed treatments, so the absolute number of plants in 16 

mixed crops is at least twice the monocrop (but it can be higher depending on the focal-17 

neighbor ratio applied). This difference does not allow one to disentangle the AR effects from 18 

density and relative proportion effects, which, per se, is enough to impact herbivores. 19 

Underwood et al. (2014) recommends surface plot designs that combine several focal-20 

neighbor proportions and densities, although we believe this design might be too intricate and 21 

not very practical for most studies interested in AR. Sato et al. (2018) provides a simple 2x2 22 

design that consists of plots with high-low and low-high proportions of focal-neighboring 23 

plants that are also replicated to control for the presence of herbivores. This design enables 24 
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the researcher to control for both the proportion and the herbivore effects, although the 1 

density effects of each plant species cannot be assessed.  2 

Due to their agricultural roots, most AR studies still focus on agricultural systems, 3 

with the goal of ameliorating the effects of pests on commercial crops. However, early studies 4 

such as Hambäck et al. (2000) performed the first AR studies in natural systems. They 5 

observed that the presence of neighboring plants reduced the impact of herbivores on a focal 6 

plant by attracting predators of herbivores, especially ladybugs. This study showed the 7 

potential applications of AR for conservation and community ecology studies. Nonetheless, it 8 

is challenging to disentangle confounding effects and to prepare experiments in natural 9 

communities, especially in diverse and rich environments. Hence, most studies conducted in 10 

natural communities struggle to demonstrate the mechanisms behind AR effects.    11 

Although study designs involving AR are relatively consistent, there is a considerable 12 

variation regarding how to measure the effect of neighboring plants on herbivores, which 13 

results in confusion and replication problems. Some studies, for example, measure as 14 

response variables the abundance of arthropod herbivores (adults, eggs, or everything 15 

together), while others may measure leaf, fruit, or seed damage. Furthermore, studies are 16 

often performed at different scales and systems (natural or crops), an issue identified by 17 

Underwood et al. (2014). Distinct scales consider plant distribution and density differently, 18 

which affects relations among plant, herbivores, and predators. Given that AR is a result of 19 

simultaneous and multi-directional ecological factors, future studies should focus on 20 

identifying and measuring multiple mechanisms underlying associative interactions.  21 

Part II  22 

Study objectives and hypotheses 23 
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We selected studies performed in agricultural environments where AR effects were 1 

tested between monoculture and polyculture (mixed crops) treatments. We used statistical 2 

procedures, including meta-analyses, to test and compare the effects of the main mechanisms 3 

(i.e., natural enemies, chemical repellency, refuge). In comparison to studying complex 4 

ecological systems, studying relatively simple systems (monoculture x polyculture) has some 5 

advantages as they can provide finer information on the influence of neighboring plants. 6 

Furthermore, complex systems can have a high number of confounding factors since they are 7 

ruled by a great number of ecological variables. In cases where it was not possible to find 8 

enough studies addressing the same mechanisms, we enumerate available studies and describe 9 

their results. Finally, we tested how plot size and trait quality and similarity between focal and 10 

neighboring plants affect AR. 11 

Meta-analyses  12 

We used the Web of Science database as a primary source for searching published 13 

papers. Using the advanced search tool, we applied several combinations of the following 14 

keywords (including plural variations of each term): associational resistance, refuge, 15 

neighbor, plant, crop, herbivore, chemical, volatile, VOC, intercrop, pest, repel, mixed crop, 16 

multiple cropping, intercrop, polyculture, cover crop, trap crop, push-pull, thorn, spine, graze, 17 

browse, and nurse. We individually inspected more than 700 studies to see whether they 18 

depicted associational effects (AR and AS) or not. In addition to the studies obtained by this 19 

filtering, we sought out additional studies cited within review and meta-analysis papers that 20 

escaped our filtering. After gathering all studies, we sorted them into abiotic and biotic 21 

groups, and according to the AR mechanisms observed (e.g., “enemies” hypothesis). 22 

Using the R environment, we performed a meta-analysis for each AR mechanism that 23 

reached a minimum number of 10 experiments. Each examined experiment had to contain two 24 
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treatments: one considering the effects of neighboring plants on focal plants (experimental) 1 

and another one with only focal plants (control). Here, we included multiple experiments per 2 

paper, but when we found experiments involving time series events, we included only those 3 

with highest difference between the control and experimental group (adapted from Rosumek 4 

et al. 2009). We only selected studies presenting the number of used samples, means, and a 5 

measure of variability (standard deviation or standard error of the mean). We extracted these 6 

measures from texts, tables or graphs. When data were available in graphs, we digitalized the 7 

figure and extracted its values using the ImageJ software (Rasband 2019). Specifically, we 8 

used the known values of the Y-axis as a ruler to calibrate our measuring—with 0.01 mm of 9 

accuracy—and determine the observed mean and deviation of each group. We calculated the 10 

tests statistics using Hedges’ g, a corrected version of Hedges’ d instead of raw means to 11 

control for possible large variations among studies. This method standardizes the data and 12 

provides results that are easy to interpret (see Barbosa et al. 2009, Rosumek et al. 2009). Due 13 

to the high variability within and among observed studies, we chose to perform all analyses 14 

using random effects (Borenstein et al. 2010), which assumes that the sampled studies do not 15 

come from the same population. We also evaluated the heterogeneity of each model by using 16 

the I² index (Higgins et al. 2003).  17 

Meta-analyses are subject to “publication bias” or the “file drawer problem”, which 18 

assumes that most studies that find non-significant or negative results relationships are not 19 

published. Since we only worked with published papers, the number of studies with non-20 

significant and negative results (AS) included in our analyses is likely to be biased. To 21 

overcome this problem, we used Rosenthal’s fail-safe number test. The fail-safe number 22 

calculates the number of negative results that would be necessary to turn a given positive 23 

result into a non-significant one (Rosumek et al. 2009). If negative bias is not concerning, the 24 

observed fail-safe number should be higher than 5k +10, where k is the number of studies in 25 
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the analysis. Furthermore, we used the funnel plot as a visual approach to identify publication 1 

bias according to sample sizes, by plotting the mean results of each study on the X-axis and 2 

the standard error on the Y-axis. When there is no significant bias, it is expected a high 3 

number of studies with high variability of results and standard errors (bottom) studies than in 4 

large studies (top), so the figure shape reminds an inverted funnel (Hoffman 2015). 5 

Testing the effects of natural enemies on herbivores 6 

The “enemies” hypothesis was the AR mechanism tested in most of our selected 7 

studies (see Results). Thus, we evaluated its relationship with AR by performing a meta 8 

regression using the natural enemies’ increase (abundance, density and frequency of predators 9 

and parasitoids), from monocrops to mixed crops, as a predictive variable against herbivores’ 10 

effect size (abundance, density, or frequency). Our goal here was to test whether increases in 11 

natural enemies caused by neighboring plants can reduce the incidence of herbivores. Given 12 

this, we only selected studies in which mixed crops had greater numbers of natural enemies 13 

when compared to monocrops. If natural enemies can in fact reduce the availability of 14 

herbivores from crop treatments, we would expect that greater positive differences in natural 15 

enemies will be associated with greater negative differences in herbivore numbers between 16 

treatments. Here, we also evaluated whether the number of herbivores depends on plant 17 

treatments (monocrops vs. mixed crops) themselves rather than by the natural enemy 18 

mechanism.  19 

Testing the effects of plant trait quality 20 

Here we tested how traits related to the relative host quality of focal and neighboring 21 

plants (Agrawal 2004, Agrawal et al. 2006, and Castagneyrol et al. 2014) affect the strength 22 

of associational resistance in mixtures relative to monocrops. We further tested how the 23 

quality of neighboring plants specifically affects herbivores. To do so, we collected data on 24 
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leaf traits from the Traits Database (https://www.try-db.org/TryWeb/Home.php), which 1 

contains compilations of thousands of plant traits available for more than 10.000 species, 2 

extracted from peer-review papers and environmental reports. Plants traits sampled included 3 

leaf toughness (N/mm), leaf nitrogen (mg/g), leaf carbon/nitrogen ratio (g/cm³), woodiness 4 

(woody/non-woody), growth form (tree/herb), palatability (low/high), plant height (m) and 5 

specific leaf area (SLA; mm²/mg). After collecting data on plant traits, we used meta-6 

regressions to test the effects of neighboring traits on the effect size of herbivores and natural 7 

enemies.   8 

 Testing the effects of plot size, plant proportion, and plant spacing 9 

Spatial scale is expected to affect the strength of AR (Underwood et al. 2010, Sato 10 

2018). Given this, we extracted data on plot area (m), plant proportion (relative proportion 11 

neighboring plants in comparison to focal plants), and plant spacing (distance between plant 12 

rows, in cm). When the same study reported distinct plot sizes and plant spacing, we used the 13 

lowest reported values. We then performed meta-regressions associating each spatial data 14 

point with the number of herbivores and natural enemies found in monocrops and mixed 15 

crops. We also performed t tests to evaluate whether equal or distinct proportions (binomial 16 

categorical variable) of focal and neighboring plants were associated with the abundance of 17 

natural enemies. 18 

Results 19 

We found 401 studies depicting associational effects. From this total, “natural 20 

enemies” was the mechanism of associational resistance most frequently tested (43 studies), 21 

followed by chemically repellent plants (28), plant palatability (27) and refuge effects (20). A 22 

few studies described abiotic mechanisms (10), physical defenses (6), camouflage (2), 23 

phylogenetic effects (2), and indirect defenses (1). However, most studies do not clearly 24 

about:blank
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describe or demonstrate AR mechanisms (157 studies; see the complete list in the 1 

supplementary material and note that some studies may match more than one category of 2 

mechanism).  3 

After identifying the main AR mechanisms, we proceeded with the meta-analyses 4 

investigating the effect of natural enemies, chemical repellency, and refuge mechanisms. For 5 

natural enemies, we used data on abundance, frequency, and presence of predators and 6 

parasitoids (see Fig. S1 for details on statistical procedures). We also extracted data on 7 

parasitism levels by parasitoids. Data on chemical repellence and refuge included abundance, 8 

frequency, and presence of herbivores (adults, larvae and eggs). Furthermore, we classified 9 

chemical studies in two types: plant and extract. Most studies performed experiments using 10 

neighboring plants themselves (n = 34), but some experiments tested the effects of either parts 11 

of neighboring plants (e.g., leaves, stems) or their chemical extracts on focal plants (n =18). 12 

Effects of the natural enemy hypothesis and parasitism levels 13 

Overall, the number of natural enemies (predators and parasitoids) was greater in 14 

mixed crops than in monocrops in studies that tested for associational resistance (g = 0.54, 15 

95% CI 0.29 to 0.79, n = 101, = p < 0.001; Fig. 2). The heterogeneity test was significant (I² = 16 

58%; tau = 0.81, p < 0.01). When we tested these groups separately, the results remained 17 

significant for both predators and parasitoids, but the positive effect of mixed crops tended to 18 

be higher on parasitoids (predators: g = 0.41, 95% CI 0.11 to 0.71, n = 75; parasitoids: g = 19 

0.90, 95% CI 0.39 to 1.40, n = 26), even though the difference between predators and 20 

parasitoids was not significant (Q = 2.68, p = 0.10). The heterogeneity test was significant for 21 

both groups (predators: I² = 57%; tau = 0.80, p < 0.01; parasitoids: I² = 63%; tau = 0.94, p < 22 

0.01). Parasitism levels were also higher in mixed crops than monocrops (g = 0.51, 95% CI 23 
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0.08 to 0.95, n = 23, p = 0.022). The heterogeneity test for parasitism level was also 1 

significant (I² = 58%; tau = 0.49, p < 0.01). 2 

 3 

Figure 2. Associational resistance between mixed crops increased the number of parasitoids 4 

and herbivore predators relative to monocrops. Squares represent the weighted mean of each 5 

group; a larger weight—based on sample size and variance—is given to the group with larger 6 

squares. Error bars indicate 95% CI. All results are significant. Numbers in parentheses 7 

represent the total number of studies involving each group. The center of the diamond 8 

(indicated by the dotted line) shows the pooled effect of plants on parasitoids and predators, 9 

while its edges represent 95% CI. 10 

 11 

In studies that found associational resistance due to natural enemies, meta regressions 12 

showed that an increase in natural enemy abundance (pooled effect of predators and 13 

parasitoids) corresponds with a slight reduction in the number of herbivores (Qm = 10.18, p = 14 

0.0014, R² = 0.08, n = 97). However, when we evaluated the effects of natural enemies 15 

separately, we found a stronger relationship between predator and herbivore abundance (Qm = 16 

25.03, p < 0.001, R² = 0.36, n = 81; Fig. 3a), and no correlation between parasitoids and 17 

herbivores (Qm = 0.25, p = 0.62, n = 16; Fig. 3b). Furthermore, the impact of plant groups 18 
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(mixed crops vs monocrops) on herbivores was not significant, suggesting that plant diversity 1 

cannot explain, by itself, the reduced numbers of herbivores (g = - 0.20, 95% CI - 0.44 to 2 

0.03, n = 97, p = 0.089). 3 

 4 

Figure 3. Meta-regressions showing how increases of natural enemies in mixed crops (relative 5 

to enemies found in monocrops) affected herbivores. Increases in predator numbers 6 

corresponded linearly with reductions in herbivore abundance in mixed crops (a), but 7 

parasitoid increases did not (b). All predictive variables were log-transformed for the analysis. 8 

Larger circles represent studies with larger weight in the model due to greater sample sizes 9 

and lower variance. 10 

 11 

Effects of chemical repellence/masking and refuge hypotheses 12 

Chemical and refuge effects reduced the number of herbivores on mixed crops in 13 

comparison to monocrops (chemical-repellent plants: g = -1.73, 95% CI -2.20 to -1.26, n = 14 

52; refuge plants: g = -2.01, 95% CI -3.41 to -0.74, n = 11; Fig. 4). There was no difference in 15 

the direction or strength of associational effects between these two AR mechanisms (Q = 16 

0.23; p = 0.63). Heterogeneity was high and significant for both groups (chemical-repellent 17 

plants: I² = 86%; tau = 2.26, p < 0.01; refuge plants: I² = 89%; tau = 4.14, p < 0.01). Subgroup 18 
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analysis involving only chemical-repellent plants showed that the effect of using live plants 1 

was higher than using parts or extracts of plants (extract: g = -0.51, 95% CI -0.93 to -0.09, n = 2 

18; real plant: g = -2.83, 95% CI -3.58 to -2.09, n = 34; Fig. 5), and the difference between 3 

these two groups was significant (Q = 28.29, p < 0.001). Heterogeneity tests were significant 4 

for both groups (extract: I² = 64%; tau = 0.44, p < 0.01; real plant: I² = 88%; tau = 3.92, p < 5 

0.01). 6 

 7 

Figure 4. Strength of associational resistance due to chemically-defensive plants and plant 8 

refuges found in mixed crops and control monocrops. Squares represent the weighted mean of 9 

each group; a larger weight—based on sample size and variance—is given to the group with 10 

larger squares. Error bars indicate 95% CI. All results are significant, but the difference 11 

between groups is not significant (see results for details). Numbers in parenthesis represent 12 

the total number of studies involving each group. 13 

 14 
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 1 

Figure 5. Strength of associational resistance (reduction in herbivore abundance) in studies 2 

comparing chemical-repellent mixed crops and control monocrops. Herbivore (extract) 3 

indicates studies using treatments with plant parts or extracts, while herbivore (plant) 4 

indicates studies using treatments with live chemical-repellent crops. Squares represent the 5 

weighted mean of each group; a larger weight—based on sample size and variance—is given 6 

to the group with larger squares. Error bars indicate 95% CI. All results are significant. 7 

Numbers in parentheses represent the total number of studies involving each group. The 8 

center of the diamond (indicated by the dotted line) shows the pooled effect of plant extracts 9 

and real plants on herbivores, while its edges represent 95% CI. 10 

 11 

Effects of plant trait quality 12 

Plant traits had limited effects on herbivores, where the only significant neighboring 13 

plant trait was C/N ratio. Higher C/N values were associated with increased numbers of 14 

herbivores on focal plants found in mixed crops (Qm = 10.21, p = 0.0014, n = 27; Fig. 6), 15 

suggesting that low quality neighbors may trigger AS effects. 16 
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 1 

Figure 6. Meta-regression showing how C/N ratio of neighboring plants affects the abundance 2 

of herbivores found on focal plants. Larger circles represent studies with larger weight in the 3 

model. 4 

 5 

Effects of plot size, plant proportion, and plant distancing 6 

Increases in plot size negatively affected the overall number of natural enemies 7 

attracted by neighboring plants, in general (Qm = 13.51, p = 0.0002, n = 97). Separately the 8 

effect was significant for predators (Qm = 9.25, p = 0.0024, n = 71; Fig 7a), but it was not for 9 

parasitoids (Qm = 2.31, p = 0.13, n = 26; Fig 7b).    10 

There was no effect of minimum plant spacing (row distance) on the attraction of 11 

natural enemies (pooled) (Qm = 0.36, p = 0.55, n = 81) or predators only (Qm = 0.13, p = 0.72, 12 

n = 65; Fig 7c), but there was a negative effect on the attraction of parasitoids (Qm = 5.16, p = 13 

0.023, n = 16; Fig 7d). 14 
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There was no effect of focal/neighboring plant proportion on the attraction of natural 1 

enemies (Qm = 0.73, p = 0.39, n = 94) as well as predators specifically (Qm = 1.66, p = 0.19, n 2 

= 72; Fig. 7e). Nonetheless, we found a positive association between neighboring/focal plant 3 

proportion and the attraction of parasitoids (Qm = 9.84, p = 0.0017, n = 22; Fig. 7e). We also 4 

found that, within mixed crops, equal proportions of focal and neighboring plants tend to 5 

attract more predators (t1,73 = 3.45, p = 0.001), but that was not significant for parasitoids 6 

alone (t1,24 = 1.44, p = 0.16) and all natural enemies pooled (t1,99 = 1.86, p = 0.065).  7 
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 1 

Figure 7. Meta-regressions showing how plot size (m), plant spacing (cm) and 2 

neighboring/focal plant proportion affected the attraction of predators (a, c and e) and 3 

parasitoids (b, d, and f). Increases in plot size linearly reduced the number of predators found 4 

in focal plants in mixed crop treatments (a); this effect was not observed for parasitoids (b). 5 

Increases in plant spacing did not affect predators (c), but had a negative effect on the 6 

attraction of parasitoids (d). Increases in neighboring proportion relative to focal plants had no 7 
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effect on predators, but increased the attraction of parasitoids (f). All predictor variables were 1 

log-transformed for the analysis. Larger circles represent studies with larger weight in the 2 

model. 3 

 4 

Discussion 5 

The main identified AR mechanism was the natural enemies (found in 43 studies), 6 

followed by the production of chemical repellents, and refuge. All these mechanisms were 7 

associated with reduced numbers of herbivores. C/N ratio of neighboring plants was 8 

correlated with increased numbers of herbivores on focal plants, suggesting that herbivores 9 

can choose host plants based on the quality of neighboring plants. Plot size was negatively 10 

associated with the number of predators, but there was no association with parasitoids. 11 

Increased proportions of neighboring plants were associated with an increased abundance of 12 

parasitoids, while plant row distance was negatively associated with the abundance of 13 

parasitoids. These results provide evidence of the importance of spatial variables in AR 14 

studies. 15 

We observed that neighboring plants increased the availability of natural enemies 16 

(predators and parasitoids), and that increases in predators were associated with reduced 17 

numbers of herbivores. Natural enemies were already known to increase with landscape 18 

complexity (e.g., Langellotto and Denno 2004, Chaplin-Kramer et al. 2011, Letourneau et al. 19 

2011), but, unlike similar meta-analyses and review studies, we specifically showed that focal 20 

plants can experience increases in natural enemy availability due to associational effects with 21 

neighboring plants (Fig. 2). Those effects are also shaped by scale and spatial variables such 22 

as plant spacing and the relative proportion of neighboring and focal plants (Fig. 7). 23 

Neighboring plants attracted a variety of natural enemies—including ladybugs, spiders, ants, 24 
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and parasitoid wasps and flies. The attraction of natural enemies, however, can be attributed 1 

to many sorts of plant attributes. For instance, natural enemies can use neighboring plants as 2 

shelters, nesting sites, or even as food resources (e.g., pollen, nectar), and after visiting or 3 

stablishing on those plants, these predators, especially generalists, can conveniently feed on 4 

herbivores from focal plants. Increases in landscape complexity also benefits natural enemies 5 

by reducing the level of cannibalism (Langellotto and Denno 2006).  6 

Spatial variables also had considerable effects on natural enemies’ abundance. Plot 7 

size had a negative effect on predators, while plant spacing had a negative effect on 8 

parasitoids. Large plots can reduce the ability of predators to move within the vegetation (see 9 

Bommarco and Banks 2002, Champagne et al. 2016), while large plant spacing can reduce the 10 

likelihood of a plant’s visual and chemical cues being detected by parasitoids. Interestingly, 11 

higher proportions of neighbors were associated with higher numbers of parasitoids, but not 12 

predators. Studying ecological systems at distinct scales conveys opportunities and challenges 13 

for those who seek to understand the extent to which neighboring plants can affect focal 14 

plants in individual and population levels (Underwood et al. 2014, Sato 2018). 15 

Although natural enemies tend to be more common in conserved and complex 16 

environments (reviewed by Chaplin-Kramer et al. 2011, Wan et al. 2020), they do not 17 

necessarily provide better control of herbivores (Cohen and Crowder 2017). This might 18 

explain why we only observed controlling effects of predators (not parasitoids) on herbivores. 19 

Although parasitism rates were higher in mixed crops, our results suggest that parasitoids 20 

have limited effects on herbivore numbers, overall. The reason for this result is not clear, but 21 

we suggest that the higher prey and plant host specificity of parasitoids might limit their 22 

biological control potential (Vattala et al. 2006). Furthermore, plant diversity itself can 23 

enhance the vegetal heterogeneity and may ultimately reduce the ability of parasitoids to track 24 

herbivores within the vegetation (Bommarco and Banks 2002, Chaplin-Kramer et al. 2011). 25 
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Complex systems emit a wide array of visual and chemical cues that may disrupt the ability of 1 

natural enemies to find their prey and this may be particularly harmful to parasitoids due to 2 

their higher specificity. In fact, generalist predators are usually better biological agents than 3 

specialists in diversified environments due to an increased availability of alternative prey 4 

(Letourneau 1990). our synthesis suggests that predators are overall better 5 

It is a real challenge to demonstrate causal links between an increase in natural 6 

enemies and a resultant decline in herbivore numbers (see Chaplin-Kramer et al. 2011, 7 

Letourneau et al. 2011). Herbivore decreases could be correlated with other factors associated 8 

with increased plant diversity (Barbosa et al. 2009). In fact, negative associations between 9 

natural enemies and herbivores is not even certain, as some studies concluded that diverse 10 

herbivore communities enhance the abundance of natural enemies (Dyer and Letourneau 11 

2003, Pearson and Dyer 2006). Regardless, considering the data on natural enemies’ 12 

experiments, we found two key results that support a causal link between natural enemies 13 

increase and herbivore decrease. First, we found a negative correlation between natural enemy 14 

diversity and herbivore diversity, and second, and more importantly, we observed that 15 

increases in plant diversity (monocrops vs. mixed crops) could not explain, by themselves, the 16 

reduction of herbivores on focal plants. Taken together, these results support a top down 17 

control of predators via interspecific associational effects. 18 

Other AR mechanisms, including chemical compounds and refuge plants, also 19 

decreased the number of herbivores. However, using real plants on mixed plant treatments 20 

reduced herbivores even more than using plant extracts or parts of plants to simulate 21 

neighboring plants, implying that other mechanisms besides chemical compounds (e.g., 22 

refuge) might be benefiting the focal plants. It is important to note that the potential chemical 23 

effects of neighboring plants are likely to be diverse, so the chemical mechanism leading to 24 

AR can in fact be broke down more refined mechanisms. In fact, some studies fitting the 25 
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chemical mechanism category can also be considered in other categories such as the natural 1 

enemy category since some plants use VOCs to attract natural enemies of herbivores (Zhang 2 

et al. 2017). Nevertheless, most studies used in this synthesis consider volatiles produced by 3 

plants as repellents or having masking properties. Many neighboring plants selected in these 4 

kinds of experiments are known for producing chemicals with strong odors (e.g., garlic), 5 

which would drive away potential herbivores. Conversely, plants with masking chemicals can 6 

produce volatiles that prevent herbivores from finding host plants, functioning as a form of 7 

camouflage (Schröder and Hilker 2008). Such masking effects are certainly the mechanisms 8 

of some studies investigating the resource concentration hypothesis and should especially 9 

affect specialists and chemically-orienting herbivores (see Marquis and Moura 2021).  10 

We found that the sampled plant traits had limited effects on herbivores. Rather, C/N 11 

ratio of neighboring plants was positively correlated with the abundance herbivores of focal 12 

plants. This suggests that low quality neighbors might spill-off herbivores onto focal plants, 13 

leading to AS effects. This outcome is precisely the opposite expected by previous models 14 

(see Agrawal 2004, Agrawal et al. 2006). Studies investigating the effects of plant diversity 15 

on herbivores and natural enemies are usually performed in natural communities. On one 16 

hand, studies in natural communities can potentially provide answers more closely related 17 

with real conditions. On the other hand, natural communities are rather complex, and results 18 

across studies can be conflicting due to a plethora of confounding factors, including high 19 

variation in the scale at which the experiment is conducted to inconsistent variable definitions 20 

and measurements (Langellotto and Denno 2004, Chaplin-Kramer et al. 2011). Since our 21 

meta-analyses only included relatively well-controlled experiments with mixed and control 22 

crops, a lower number of confounding effects is expected. We argue that our results 23 

considering small-sampled analyses (e.g., refuge effects) should be relatively consistent, and 24 
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that causal links between variables such as predator and herbivore abundance should more 1 

reliable. 2 

Our review shows that AR effects can be caused by many different factors, so it is 3 

important to take a step forward and discuss the mechanisms behind the plant diversity 4 

consequences on animals. Our study is the first synthesis evaluating the mechanistic effects of 5 

AR while combining the influence of plant traits and spatial variables. Future studies should 6 

be aware of the distinguished influences of predators and parasitoids in biological control 7 

practices and the considerable effects of scale. 8 
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Conclusão geral 1 

Nesta tese avaliamos diversos aspectos a respeito de interações mutualístas entre 2 

formigas e plantas com nectários extraflorais, alguns possíveis desdobramentos dessas 3 

interações em termos de interações associativas entre plantas do Cerrado, e, por fim, 4 

realizamos uma ampla revisão qualiquantitativa a fim de estudar os efeitos associativos de 5 

forma mais ampla.  6 

No Capítulo 1, observamos que maiores abundâncias de ninhos estiveram relacionadas 7 

a uma menor herbivoria foliar e maior produção de frutos, enquanto maiores riquezas de 8 

ninhos estiveram associadas a aumentos em herbivoria. Todavia, não houve relação entre a 9 

riqueza de ninhos e a produção de frutos. Além disso, observamos que indivíduos de Smilax 10 

polyantha tiveram menos ninhos próximos de si quando estiveram em contato com um 11 

elevado número de plantas vizinhas com NEFs. Conclui-se, portanto, que a distribuição 12 

espacial dos ninhos de formiga é fundamental nas relações entre formigas e plantas com 13 

NEFs, onde ambas as plantas e formigas parecem competir pelos serviços um do outro. A 14 

inclusão da abundância e riqueza de ninhos de formiga em modelos ecológicos pode fornecer 15 

novas pistas a respeito de como as relações entre formigas e plantas são estruturadas.  16 

Já no Capítulo 2, observamos que as plantas suporte com nectários extraflorais 17 

beneficiaram indiretamente a trepadeira Smilax polyantha por meio do compartilhamento de 18 

defesas bióticas efetuadas por formigas mutualistas. As espécies de plantas suporte com 19 

nectários extraflorais alteraram a composição e diversidade de formigas visitantes de S. 20 

polyantha, o que consequentemente contribuiu para a redução da herbivoria foliar e assimetria 21 

flutuante da mesma. Apesar disso, não observamos diferenças na produção de frutos entre os 22 

dois grupos de S. polyantha estudados (S. polyantha associada à espécies de plantas suporte 23 

com ou sem nectários extraflorais). Concluímos que interações mutualistas formadas a partir 24 
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de defesas bióticas podem também beneficiar plantas vizinhas por meio da redução de danos 1 

por herbivoria. Estudos futuros devem investigar a amplitude de tais efeitos associativos por 2 

meio de potenciais impactos na estruturação de comunidades vegetais.  3 

Por fim, no Capítulo 3, concluímos que a resistência associativa pode atuar por uma 4 

série de mecanismos distintos, sendo o compartilhamento de defesas bióticas pelas plantas 5 

vizinhas o principal mecanismo identificado na literatura. Além de constatarmos que o 6 

aumento da diversidade de plantas vizinhas favorece a atração de inimigos naturais, 7 

demonstramos que os predadores podem controlar a pressão da herbivoria em plantas focais. 8 

Os efeitos de escala e a proporção relativa entre plantas focais e vizinhas apresentaram 9 

consideráveis efeitos na atração de predadores naturais. Ademais, observamos que as plantas 10 

vizinhas controlam os herbívoros em plantas focais por meio da produção de compostos 11 

químicos e pela atuação como barreira física (refúgio). Surpreendentemente, os traços 12 

vegetais amostrados tiveram efeitos limitados sobre os herbívoros, apenas a qualidade da 13 

folha de plantas vizinhas (razão entre carbono e nitrogênio) teve efeito significativo sobre os 14 

herbívoros.  15 

Sugerimos, por fim, que as interações positivas entre plantas apresentam grande 16 

potencial para a estruturação de comunidades. Mecanismos fundamentais de resistência 17 

vegetal, como as defesas bióticas, dependem não somente da relação direta entre a planta 18 

produtora de recurso e a formiga mutualista, mas também da estrutura vegetal local e regional 19 

como um todo. Em um planeta ameaçado por constantes impactos antrópicos, é fundamental 20 

não apenas a conservação da diversidade vegetal, mas a conservação das interações 21 

ecológicas. Como demonstrado nesta tese, o aumento da diversidade vegetal está associado ao 22 

aumento da diversidade de inimigos naturais (predadores e parasitóides) e ao controle de 23 

insetos herbívoros. Portanto, além de potenciais benefícios econômicos, a conservação da 24 
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diversidade vegetal pode aumentar a resiliência da comunidades naturais por meio do 1 

aumento da diversidade das faunas local e regional.  2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

  11 
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Apêndice 1 
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Capítulo 1 1 

Lista de espécies de formigas amostradas (Supplementary material 1) 2 

 3 

transect plant nest ant species 

1 1 36 Camponotus crassus 

1 1 37 Ectatomma tuberculatum 

1 1 38 Pseudomyrmex sp. 

1 1 39 Pheidole sp. 

1 1 33 Camponotus crassus 

1 1 29 Pheidole sp. 

1 1 31 Camponotus crassus 

1 1 32 Pheidole sp. 

1 1 30 Ectatomma opaciventre 

1 1 34 Pheidole sp. 

1 1 35 Camponotus crassus 

1 1 44 Camponotus crassus 

1 1 45 Pheidole sp. 

1 1 43 Pheidole sp. 

1 1 40 Pheidole sp. 

1 1 41 Camponotus crassus 

1 1 42 Pheidole sp. 

1 1 46 Camponotus crassus 

1 1 47 Pheidole sp. 

1 2 48 Linepithema sp. 

1 2 50 Ectatomma edentatum 

1 2 58 Pheidole sp. 

1 2 49 Camponotus sp. 

1 2 51 Ectatomma edentatum 

1 2 53 Pheidole sp. 

1 2 52 Camponotus sp. 

1 2 55 Pheidole sp. 

1 2 57 Neoponera sp. 

1 2 56 Pheidole sp. 

1 2 64 Camponotus sp. 

1 2 59 Pheidole sp. 

1 2 61 Camponotus crassus 

1 2 60 Pheidole sp. 

1 2 62 Linepithema sp. 

1 2 63 Ectatomma tuberculatum 

1 3 65 Pheidole sp. 

1 3 66 Ectatomma edentatum 

1 3 67 Pheidole sp. 

1 3 72 Crematogaster sp. 

1 3 68 Ectatomma opaciventre 



119 
 

1 3 71 Camponotus crassus 

1 3 70 Pheidole sp. 

1 3 69 Ectatomma edentatum 

1 3 84 Linepithema sp. 

1 3 83 Camponotus crassus 

1 3 82 Linepithema sp. 

1 3 42 Pheidole sp. 

1 3 46 Camponotus crassus 

1 3 47 Pheidole sp. 

1 3 53 Pheidole sp. 

1 3 52 Camponotus sp. 

2 1 1 Pheidole sp. 

2 1 15 Pheidole sp. 

2 1 6 Camponotus sp. 

2 1 11 Camponotus crassus 

2 1 19 Neoponera sp. 

2 1 13 Camponotus crassus 

2 1 20 Camponotus crassus 

2 1 12 Camponotus crassus 

2 1 16 Dorymyrmex sp. 

2 1 3 Ectatomma edentatum 

2 1 8 Pheidole sp. 

2 1 7 Pheidole sp. 

2 1 17 Pheidole sp. 

2 1 14 Camponotus crassus 

2 1 18 Ectatomma tuberculatum 

2 2 5 Camponotus sp. 

2 2 23 Cephalotes pusillus 

2 2 22 Camponotus crassus 

2 2 21 Camponotus crassus 

2 2 4 Camponotus crassus 

2 2 24 Ectatomma tuberculatum 

2 2 25 Camponotus crassus 

2 2 7 Pheidole sp. 

2 2 8 Pheidole sp. 

2 2 3 Ectatomma edentatum 

2 2 27 Camponotus sp. 

2 2 28 Camponotus sp. 

2 2 9 Camponotus sp. 

3 1 74 Pheidole sp. 

3 1 81 Camponotus crassus 

3 1 75 Linepithema sp. 

3 1 80 Ectatomma opaciventre 

3 1 79 Ectatomma tuberculatum 

3 1 76 Pheidole sp. 

3 1 78 Pheidole sp. 
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3 1 77 Camponotus crassus 

3 1 73 Pheidole sp. 

3 1 92 Linepithema sp. 

3 1 93 Camponotus crassus 

3 1 97 Camponotus crassus 

3 1 96 Pseudomyrmex sp. 

3 1 88 Pheidole sp. 

3 1 94 Camponotus crassus 

3 1 91 Camponotus sp. 

3 1 90 Pheidole sp. 

3 1 89 Ectatomma opaciventre 

3 1 87 Pheidole sp. 

3 1 86 Ectatomma opaciventre 

3 1 98 Solenopsis sp. 

3 2 103 Ectatomma opaciventre 

3 2 101 Linepithema sp. 

3 2 102 Pheidole sp. 

3 2 108 Solenopsis sp. 

3 2 111 Camponotus crassus 

3 2 104 Ectatomma opaciventre 

3 2 106 Solenopsis sp. 

3 2 99 Pheidole sp. 

3 2 100 Neoponera sp. 

3 2 105 Linepithema sp. 

3 2 109 Crematogaster sp. 

3 2 110 Camponotus crassus 

3 2 114 Pheidole sp. 

3 2 116 Camponotus crassus 

3 2 115 Pheidole sp. 

3 2 120 Ectatomma opaciventre 

3 2 112 Camponotus renggeri 

3 2 121 Camponotus crassus 

3 2 113 Pheidole sp. 

3 2 122 Ectatomma opaciventre 

3 3 118 Pheidole sp. 

3 3 119 Pheidole sp. 

3 3 117 Pheidole sp. 

3 3 125 Camponotus crassus 

3 3 126 Crematogaster sp. 

3 3 106 Solenopsis sp. 

3 3 87 Pheidole sp. 

3 3 86 Ectatomma opaciventre 

3 3 104 Ectatomma opaciventre 

3 3 111 Camponotus crassus 

3 3 123 Pheidole sp. 

3 3 124 Crematogaster sp. 
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3 3 131 Ectatomma opaciventre 

3 3 127 Atta sp. 

3 3 132 Ectatomma tuberculatum 

3 3 128 Camponotus crassus 

3 3 129 Pheidole sp. 

3 3 130 Camponotus crassus 

4 1 136 Ectatomma edentatum 

4 1 135 Camponotus crassus 

4 1 139 Camponotus crassus 

4 1 138 Ectatomma edentatum 

4 1 137 Camponotus crassus 

4 1 141 Pheidole sp. 

4 1 142 Trachymyrmex sp. 

4 1 133 Gnamptogenys sp. 

4 1 134 Ectatomma edentatum 

4 1 140 Pheidole sp. 

4 1 150 Cephalotes pusillus 

4 1 144 Camponotus crassus 

4 1 145 Ectatomma edentatum 

4 1 146 Pheidole sp. 

4 1 147 Ectatomma opaciventre 

4 1 148 Camponotus crassus 

4 1 149 Pseudomyrmex sp. 

4 1 143 Pheidole sp. 

4 1 151 Camponotus crassus 

4 2 152 Pheidole sp. 

4 2 158 Ectatomma permagnum 

4 2 154 Ectatomma permagnum 

4 2 156 Pheidole sp. 

4 2 155 Pheidole sp. 

4 2 153 Ectatomma opaciventre 

4 2 159 Pheidole sp. 

4 2 157 Ectatomma opaciventre 

4 2 160 Neoponera sp. 

4 2 161 Crematogaster sp. 

4 2 140 Pheidole sp. 

4 2 133 Gnamptogenys sp. 

4 2 134 Ectatomma edentatum 

4 2 162 Pheidole sp. 

4 2 166 Ectatomma edentatum 

4 2 165 Pseudomyrmex sp. 

4 2 164 Pheidole sp. 

4 2 163 Crematogaster sp. 

5 1 168 Crematogaster sp. 

5 1 170 Camponotus blandus 

5 1 169 Ectatomma brunneum 
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5 1 167 Solenopsis sp. 

5 1 171 Camponotus sp. 

5 1 182 Camponotus blandus 

5 1 181 Pheidole sp. 

5 1 183 Cephalotes pusillus 

5 1 184 Camponotus blandus 

5 1 186 Ectatomma opaciventre 

5 1 172 Pheidole sp. 

5 1 173 Camponotus blandus 

5 1 185 Ectatomma opaciventre 

5 1 177 Camponotus blandus 

5 1 178 Pheidole sp. 

5 1 179 Ectatomma sp. 

5 1 180 Camponotus sp. 

5 1 197 Solenopsis sp. 

5 1 199 Camponotus blandus 

5 1 196 Atta sp. 

5 1 175 Pheidole sp. 

5 1 174 Camponotus blandus 

5 2 192 Pheidole sp. 

5 2 188 Camponotus crassus 

5 2 200 Camponotus blandus 

5 2 193 Ectatomma brunneum 

5 2 187 Ectatomma brunneum 

5 2 189 Solenopsis sp. 

5 2 198 Camponotus melanoticus 

5 2 190 Ectatomma opaciventre 

5 2 191 Pheidole sp. 

5 2 194 Ectatomma opaciventre 

5 2 195 Camponotus crassus 

5 2 196 Atta sp. 

5 2 202 Ectatomma brunneum 

5 2 203 Pheidole sp. 

5 2 204 Camponotus crassus 

5 2 201 Crematogaster sp. 

5 2 205 Camponotus blandus 

5 2 206 Camponotus sp. 

5 2 207 Pheidole sp. 

5 2 208 Ectatomma brunneum 

5 2 209 Camponotus crassus 

5 2 210 Pheidole sp. 

5 2 211 Camponotus crassus 

5 3 217 Camponotus crassus 

5 3 216 Cephalotes pusillus 

5 3 218 Ectatomma brunneum 

5 3 215 Pheidole sp. 
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5 3 222 Camponotus blandus 

5 3 219 Ectatomma brunneum 

5 3 201 Crematogaster sp. 

5 3 203 Pheidole sp. 

5 3 214 Neoponera sp. 

5 3 204 Camponotus crassus 

5 3 220 Ectatomma edentatum 

5 3 221 Ectatomma tuberculatum 

5 3 212 Camponotus crassus 

5 3 213 Atta sp. 

5 3 187 Ectatomma brunneum 

5 3 188 Camponotus crassus 

5 3 202 Ectatomma brunneum 

5 3 200 Camponotus blandus 

5 3 193 Ectatomma brunneum 

6 1 167 Solenopsis sp. 

6 1 168 Crematogaster sp. 

6 1 169 Ectatomma brunneum 

6 1 170 Camponotus blandus 

6 1 172 Pheidole sp. 

6 1 173 Camponotus blandus 

6 1 174 Camponotus blandus 

6 1 175 Pheidole sp. 

6 1 225 Atta sp. 

6 1 224 Ectatomma brunneum 

6 1 223 Neoponera sp. 

6 1 226 Pheidole sp. 

6 1 231 Ectatomma opaciventre 

6 1 227 Odontomachus sp. 

6 1 177 Camponotus blandus 

6 1 185 Ectatomma opaciventre 

6 1 178 Pheidole sp. 

6 1 179 Ectatomma sp. 

6 1 180 Camponotus sp. 

6 2 246 Neoponera sp. 

6 2 247 Solenopsis sp. 

6 2 245 Neoponera sp. 

6 2 257 Camponotus blandus 

6 2 184 Camponotus blandus 

6 2 183 Cephalotes pusillus 

6 2 186 Ectatomma opaciventre 

6 2 249 Pheidole sp. 

6 2 250 Crematogaster sp. 

6 2 256 Neoponera sp. 

6 2 251 Neoponera sp. 

6 2 258 Pheidole sp. 
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6 2 260 Pheidole sp. 

6 2 266 Camponotus melanoticus 

6 2 259 Neoponera sp. 

6 2 227 Odontomachus sp. 

6 2 248 Odontomachus sp. 

6 2 262 Crematogaster sp. 

6 2 261 Pheidole sp. 

6 2 263 Ectatomma brunneum 

6 2 264 Neoponera sp. 

6 3 228 Camponotus blandus 

6 3 229 Dorymyrmex sp. 

6 3 232 Camponotus crassus 

6 3 233 Cephalotes pusillus 

6 3 237 Cephalotes pusillus 

6 3 238 Pheidole sp. 

6 3 239 Ectatomma edentatum 

6 3 241 Camponotus sp. 

6 3 240 Pheidole sp. 

6 3 244 Solenopsis sp. 

6 3 230 Neoponera sp. 

6 3 235 Pheidole sp. 

6 3 242 Camponotus sp. 

6 3 243 Camponotus crassus 

6 3 236 Pheidole sp. 

6 3 255 Neoponera sp. 

6 3 265 ant_escaped 

6 3 253 Ectatomma tuberculatum 

6 3 254 Camponotus crassus 

6 3 252 Neoponera sp. 

7 1 274 Odontomachus sp. 

7 1 273 Ectatomma edentatum 

7 1 275 Camponotus melanoticus 

7 1 276 Camponotus sp. 

7 1 277 Ectatomma brunneum 

7 1 271 Camponotus crassus 

7 1 272 Ectatomma brunneum 

7 1 283 Linepithema sp. 

7 1 287 Ectatomma edentatum 

7 1 270 Neoponera sp. 

7 1 268 Ectatomma brunneum 

7 1 267 Pheidole sp. 

7 1 269 Camponotus blandus 

7 1 284 Pheidole sp. 

7 1 285 Camponotus crassus 

7 1 288 Camponotus sp. 

7 1 278 Pheidole sp. 
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7 1 280 Ectatomma brunneum 

7 1 282 Camponotus sp. 

7 1 281 Pheidole sp. 

7 1 279 Camponotus sp. 

7 2 291 Pheidole sp. 

7 2 292 Camponotus sp. 

7 2 294 Camponotus melanoticus 

7 2 293 Camponotus crassus 

7 2 286 Camponotus crassus 

7 2 297 Camponotus crassus 

7 2 289 Pheidole sp. 

7 2 290 Ectatomma brunneum 

7 2 296 Camponotus crassus 

7 2 295 Pheidole sp. 

7 2 299 Camponotus crassus 

7 2 298 Atta sp. 

7 2 301 Odontomachus sp. 

7 2 307 Camponotus blandus 

7 2 300 Ectatomma brunneum 

7 2 302 Ectatomma edentatum 

7 2 303 Gnamptogenys sp. 

7 2 305 Dorymyrmex sp. 

7 2 304 Pheidole sp. 

7 2 308 Cephalotes pusillus 

8 1 309 Pheidole sp. 

8 1 312 Neoponera sp. 

8 1 310 Pheidole sp. 

8 1 311 Ectatomma edentatum 

8 1 317 Ectatomma brunneum 

8 1 313 Trachymyrmex sp. 

8 1 318 Camponotus crassus 

8 1 319 Pheidole sp. 

8 1 320 Camponotus sp. 

8 1 314 Ectatomma edentatum 

8 1 315 Cephalotes pusillus 

8 1 316 Pheidole sp. 

8 1 327 Pheidole sp. 

8 1 332 Linepithema sp. 

8 1 328 Ectatomma tuberculatum 

8 1 326 Pheidole sp. 

8 1 325 Neoponera sp. 

8 1 324 Ectatomma edentatum 

8 1 321 Ectatomma brunneum 

8 1 322 Pheidole sp. 

8 1 323 Pheidole sp. 

8 1 329 Pseudomyrmex sp. 



126 
 

8 1 330 Cephalotes pusillus 

8 2 324 Ectatomma edentatum 

8 2 325 Neoponera sp. 

8 2 327 Pheidole sp. 

8 2 332 Linepithema sp. 

8 2 328 Ectatomma tuberculatum 

8 2 326 Pheidole sp. 

8 2 310 Pheidole sp. 

8 2 311 Ectatomma edentatum 

8 2 309 Pheidole sp. 

8 2 312 Neoponera sp. 

8 2 334 Ectatomma tuberculatum 

8 2 335 Pheidole sp. 

8 2 336 Ectatomma opaciventre 

8 2 341 Pseudomyrmex sp. 

8 2 338 Camponotus sp. 

8 2 337 Camponotus sp. 

8 2 339 Pheidole sp. 

8 3 347 Linepithema sp. 

8 3 348 Ectatomma brunneum 

8 3 351 Camponotus sp. 

8 3 354 Ectatomma opaciventre 

8 3 343 Ectatomma brunneum 

8 3 352 Ectatomma opaciventre 

8 3 344 Ectatomma edentatum 

8 3 346 Ectatomma brunneum 

8 3 349 Neoponera sp. 

8 3 350 Cephalotes pusillus 

8 3 342 Linepithema sp. 

8 3 345 Ectatomma brunneum 

8 3 355 Solenopsis sp. 

8 3 356 Camponotus sp. 

8 3 357 Ectatomma edentatum 

8 3 360 Linepithema sp. 

8 3 359 Linepithema sp. 

8 3 361 Ectatomma opaciventre 

10 1 362 Atta sp. 

10 1 366 Atta sp. 

10 1 367 Camponotus blandus 

10 1 364 Crematogaster sp. 

10 1 365 Dorymyrmex sp. 

10 1 369 Camponotus crassus 

10 1 368 Pheidole sp. 

10 1 370 Pheidole sp. 

10 1 363 Linepithema sp. 

10 1 377 Pheidole sp. 
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10 1 376 Linepithema sp. 

10 1 378 Ectatomma edentatum 

10 1 379 Ectatomma tuberculatum 

10 1 380 Camponotus renggeri 

10 1 372 Neoponera sp. 

10 1 373 Pheidole sp. 

10 1 371 Camponotus crassus 

10 1 375 Gnamptogenys sp. 

10 1 374 Solenopsis sp. 

10 2 381 Nomamyrmex sp. 

10 2 383 Ectatomma opaciventre 

10 2 384 Pheidole sp. 

10 2 385 Neoponera sp. 

10 2 386 Ectatomma tuberculatum 

10 2 382 Ectatomma opaciventre 

10 2 387 Ectatomma tuberculatum 

10 2 388 Nylanderia 

10 2 389 Crematogaster sp. 

10 2 390 Pheidole sp. 

10 2 391 Pheidole sp. 

10 2 392 Pheidole sp. 

10 2 393 Camponotus crassus 

10 2 394 Camponotus sp. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 
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Espécies de formigas observadas visitando Smilax polyantha (Supplementary material 2)1 
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  Week1  Week2  Week3  Week4  Week5  Week6  Week7  Week8  Week9  Week10 

transect plant ants species  ants species  ants species  ants species  ants species  ants species  ants species  ants species  ants species  ants species 

1 1 0   1 Camponotus crassus 3 Camponotus crassus 3 Camponotus crassus 2 Camponotus crassus 1 Camponotus crassus 1 Camponotus crassus 3 Camponotus crassus 2 Camponotus crassus 1 Camponotus crassus 

1 2 1 Ectatomma tuberculatum 1 Ectatomma tuberculatum 0   0   0   0   0   2 Camponotus crassus 3 Camponotus crassus 1 Ectatomma tuberculatum 

1 3 0   0   0   0   0   0   0   0   0   0  

2 1 3 Camponotus sp 1 Camponotus sp 0   1 Camponotus crassus 0   0   0   0   1 Camponotus sp1 0  

2 2 3 Camponotus crassussus 1 Camponotus crassus 0   0   0   0   0   0   0   0  

3 1 1 Camponotus crassussus 3 Camponotus crassus 2 Camponotus crassus 2 Camponotus crassus 1 Pseudomyrmex sp 1 Pseudomyrmex gracilis 0   0   0   1 Camponotus crassus 

3 2 0   1 Camponotus crassus 0   0   0   0   1 Ectatomma tuberculatum 0   0   2 1Ectatomma 
tuberculatum,1Pseudomyrmex 

gracilis 
3 3 0   2 Camponotus crassus 0   3 Camponotus crassus 2 Camponotus crassus 1 Camponotus crassus 3 Camponotus crassus 3 Camponotus crassus 6 Camponotus crassus 2 Camponotus crassus 

4 1 0   1 Camponotus crassus 2 Camponotus crassus 4 1Camponotus 
crassus,3Crematogaster sp 

3 Camponotus crassus 1 Camponotus crassus 3 1Camponotus 
crassus,2Crematogaster sp 

3 Camponotus sp1 0   2 Camponotus crassus 

4 2 0   0   2 1Camponotus 
crassus,1Pseudomyrmex 

gracilis 

0   0   0   0   0   0   0  

5 1 0   0   1 Ectatomma tuberculatum 0   0   0   0   0   1 Camponotus blandus 0  

5 2 2 Camponotus crassus 4 Camponotus crassus 3 Camponotus crassus 5 Camponotus crassus 3 Camponotus crassus 0   1 Camponotus crassus 2 Camponotus crassus 5 Camponotus crassus 2 Camponotus crassus 

5 3 3 Camponotus crassus 5 Camponotus crassus 4 Camponotus crassus 6 Camponotus crassus 4 Camponotus crassus 5 Camponotus crassus 2 Camponotus crassus 5 4Camponotus 
crassus,1Camponotus 

sp1 

4 Camponotus crassus 3 Camponotus crassus 

6 1 1 Camponotus melanoticus 3 2Camponotus 
blandus,1Cephalotes 

pusilus 

1 Camponotus crassus 0   3 1Camponotus 
blandus,2Camponotus 

crassus 

0   0   3 Camponotus blandus 2 Camponotus blandus 1 Cephalotes pusilus 

6 2 10 Crematogaster sp 5 2Camponotus 
crassus,3Crematogaster 

sp 

44 2Camponotus 
blandus,40Crematogaster 

sp,1Cephalotes 
pusilus,1Pseudomyrmex 

gracilis 

1 Camponotus blandus 22 1Camponotus 
blandus,21Crematogaster 

sp 

18 1Camponotus 
crassus,17Crematogaster 

sp 

9 Crematogaster sp 29 Crematogaster sp 27 26Crematogaster 
sp,1Camponotus 

crassus 

5 Crematogaster sp 

6 3 0   0   0   0   0   0   0   0   0   0  

7 1 1 Camponotus crassus 2 Cephalotes pusilus 1 Camponotus crassus 0   0   2 Cephalotes pusilus 4 Cephalotes pusilus 3 2Camponotus 
crassus,1Cephalotes 

pusilus 

1 Camponotus crassus 0  

7 2 3 Camponotus crassus 6 Camponotus crassus 5 Camponotus crassus 5 Camponotus crassus 4 Camponotus crassus 2 Pseudomyrmex 
gracilis,Camponotus 

crassus 

2 Pseudomyrmex 
gracilis,Camponotus 

crassus 

3 1Camponotus 
mus,2Camponotus 

crassus 

5 4Camponotus 
crassus,1Cephalotes 

pusilus 

1 Camponotus crassus 

8 1 2 Cephalotes pusillus 3 1Camponotus 
crassus,2Crematogaster 

sp 

3 Crematogaster sp 3 1Camponotus 
crassus,2Crematogaster sp 

1 Camponotus crassus 0   0   17 Crematogaster sp 3 1Camponotus 
crassus,2Crematogaster 

sp 

0  

8 2 4 Crematogaster sp 3 Crematogaster sp 15 Crematogaster sp 10 Crematogaster sp 0   24 Crematogaster sp 4 Crematogaster sp 0   0   0  

8 3 2 Pseudomyrmex gracilis 1 Pseudomyrmex gracilis 0   0   0   0   0   0   1 Camponotus crassus 0  

10 1 0   4 Camponotus crassus 2 Camponotus crassus 0   4 Camponotus crassus 5 Camponotus crassus 4 Camponotus crassus 6 Camponotus crassus 1 Camponotus crassus 2 Camponotus crassus 

10 2 1 Camponotus crassus 0   1 Camponotus crassus 0   0   0   1 Camponotus crassus 2 Ectatomma 
tuberculatum 

0   0  

pp 1 0   0   0   1 Camponotus crassus 2 Camponotus crassus 0   0   2 Camponotus crassus 5 Camponotus crassus 0  

pp 2 1 Camponotus crassus 1 Camponotus sp2 0   1 Pseudomyrmex gracilis 1 Camponotus crassus 0   0   0   0   0  

pp 3 1 Ectatomma tuberculatum 2 Ectatomma 
tuberculatum,Camponotus 

leydigi 

1 Ectatomma tuberculatum 3 1Ectatomma 
tuberculatum,2Camponotus 

blandus 

3 Ectatomma tuberculatum 0   1 Ectatomma tuberculatum 0   0   0  

pp 4 1 Ectatomma tuberculatum 2 Ectatomma 
tuberculatum,Camponotus 

leydigi 

0   1 Ectatomma tuberculatum 1 Ectatomma tuberculatum 2 Ectatomma 
tuberculatum 

2 Ectatomma tuberculatum 1 Ectatomma 
tuberculatum 

0   0  
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 1 

 2 

 3 

 4 

pp 4.2 0   0   2 Camponotus crassus 2 Camponotus crassus 2 Camponotus crassus 0   1 Camponotus crassus 0   0   0  

pp 5 2 Ectatomma 
tuberculatum,Pseudomyrmex 

gracilis 

1 Ectatomma tuberculatum 1 Camponotus crassus 2 1Camponotus 
crassus,1Camponotus sp2 

0   0   0  142 0   2 Camponotus sp1 2 Camponotus 
mus,Camponotus sp1 

pp 6 0   0   3 Camponotus crassus 1 Camponotus crassus 1 Camponotus crassus 1 Ectatomma 
tuberculatum 

0  0 0   0   0  

pp 7 1 Pseudomyrmex gracilis 0   0   7 Camponotus crassus 0   0   1 Pseudomyrmex gracilis 0   0   0  

pp 8 1 Camponotus crassus 0   3 Camponotus crassus 2 1Camponotus 
crassus,1Ectatomma 

tuberculatum 

1 Ectatomma tuberculatum 0   0   1 Ectatomma 
tuberculatum 

1 Camponotus blandus 0  

pp 9 2 Camponotus crassus 3 Camponotus crassus 0   3 Camponotus crassus 0   2 Camponotus crassus 0   0   1 Camponotus crassus 0  

pp 10 1 Camponotus crassus 8 6Crematogaster 
sp,1Camponotus 

crassus,1Camponotus 
senex 

3 Camponotus crassus 0   0   0   0   0   0   0  

pp 11 2 Camponotus crassus 2 Ectatomma 
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2 Camponotus 
crassus,Ectatomma 
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1 Ectatomma tuberculatum 

ad ad7 1 Camponotus blandus 7 3Camponotus 
blandus,4Camponotus 

crassus 

8 7Camponotus 
crassus,1Camponotus 

blandusus 

7 6Camponotus 
crassus,1Camponotus 

blandus 

6 4Camponotus 
crassus,2Camponotus 

blandus 

7 2Camponotus 
blandus,Camponotus 

crassus 

7 4Camponotus 
blandus,2Camponotus 
crassus,1Cephalotes 
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5 4Camponotus 
blandus,1Cephalotes 

pusilus 

9 7Camponotus 
blandus,2Camponotus 

crassus 

1 Camponotus blandus 

ad t9 3 2Camponotus 
crassus,1Pseudomyrmex 

gracilis 

5 4Camponotus 
crassus,1Cephalotes 

pusilus 

4 Camponotus crassus 2 Camponotus crassus 4 1Camponotus 
crassus,3Cephalotes 

pusilus 

2 Cephalotes pusilus 5 Cephalotes pusilus 4 Camponotus crassus 6 5Camponotus 
crassus,1Cephalotes 

pusilus 

2 Camponotus crassus 

ad t9 1 Camponotus crassus 0   0   2 Camponotus crassus 2 Camponotus 
crassus,Pseudomyrmex 

gracilis 

2 Camponotus crassus 2 1Pseudomyrmex 
gracilis,1Camponotus 

crassus 
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ad t9 0   0   0   1 Camponotus sp2 0   3 2Camponotus 
blandus,1Ectatomma 

tuberculatum 

0   0   0   0  

ad ad10 1 Pseudomyrmex gracilis 2 Camponotus crassus 2 Camponotus crassus 1 Camponotus crassus 4 3Camponotus 
crassus,Camponotus sp1 

3 Camponotus crassus 2 Camponotus crassus 2 Camponotus crassus 0   0  
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Figura S1 1 

 2 
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Figure S1. The distribution of Smilax polyantha plants and ant nests, including their 1 

relative distances from each studied plant (see results for further details). The top figure 2 

(a) shows plants and ant nests studied in the first five established transects, while the 3 

bottom figure (b) shows plants and ant nests found within the last four transects. Each 4 

numbered circle (1 to 13 and 14 to 23) corresponds to one plant. The six most frequent 5 

ant species were chosen to compose these figures, which are: Camponotus sp.1, C. 6 

blandus, C. crassus, C. melanoticus, C. renggeri, and Ectatomma tuberculatum. For 7 

each nest of a certain species found within the transect of a reference plant, there is a 8 

corresponding symbol, which is described in the figure's legend. The exact geographical 9 

positions of plants and ant nests are not illustrated in this diagram, but the distance from 10 

each ant nest to the plant is represented in scale by dotted lines. Beside each represented 11 

plant's circle, the values of the average distance between all ant nests recorded in a 12 

transect and the reference plant (d), the absolute number of all neighboring plans (p), the 13 

foliar herbivory percentage (h), and the number of fruits (f) are shown.  14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 
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Figura S2 1 

 2 

Figure S2. Linear regression between the mean distance of ant nests (m) and foliar 3 

herbivory of Smilax polyantha (F1,21 = 0.002, R² < 0.001, p = 0.97). 4 

 5 
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 17 
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Capítulo 2 1 

Espécies de formigas observadas visitando S. polyantha (Supplementary material) 2 

 

 
 

c.cras camposp camposp1 camposp2 camposp3 c.blandus c.melanot c.senex campo_mus c.leidy e.tube pseudo_p cephalo cremat pseudo_ama 

t1_p3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

t2_p1 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 

t2_p2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

t3_p2 1 0 0 0 0 0 0 0 0 0 2 1 0 0 0 

t3_p3 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

t5_p1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

t5_p2 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

t5_p3 40 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

t6_p1 3 0 0 0 0 8 1 0 0 0 0 0 2 0 0 

t6_p2 7 0 0 0 0 4 0 0 0 0 0 1 1 160 0 

t6_p3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

t7_p1 5 0 0 0 0 0 0 0 0 0 0 0 9 0 0 

t8_p1 4 0 0 0 0 0 0 0 0 0 0 0 2 26 0 

t8_p2 0 0 0 0 0 0 0 0 0 0 0 0 0 60 0 

t10_p2 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 1 9 0 0 0 0 

6 5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

10 5 0 0 0 0 0 0 1 0 0 0 0 0 6 0 

2ad 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

t9_p3 0 0 0 1 0 2 0 0 0 0 1 0 0 0 0 

t1_p1 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

t1_p2 4 0 0 0 0 0 0 0 0 0 3 0 0 0 0 

t3_p1 9 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

t4_p1 14 0 1 0 0 0 0 0 0 0 0 0 0 5 0 

t4_p2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

t7_p2 32 0 0 0 0 0 0 0 1 0 0 2 1 0 0 

t8_p3 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 

t10_p1 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 

3 0 0 0 0 0 2 0 0 0 1 8 0 0 0 0 

4.2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 2 0 3 1 0 0 0 0 1 0 2 1 0 0 0 

7 7 0 0 0 0 0 0 0 0 0 0 2 0 0 0 

8 5 0 0 0 0 1 0 0 0 0 0 3 0 0 0 

9 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 6 0 0 0 1 1 0 0 0 0 3 0 0 0 0 

1ad 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 

3ad 8 0 0 0 0 0 0 0 0 0 2 0 0 0 0 

4ad 2 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

6ad 8 0 1 0 0 0 0 0 0 0 4 0 4 1 0 
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7ad 30 0 0 0 0 26 0 0 0 0 0 0 2 0 0 

t9_p1 24 0 0 0 0 0 0 0 0 0 0 1 12 0 0 

t9_p2 12 0 0 0 0 0 0 0 0 0 1 2 0 0 0 

10ad 15 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 
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Capítulo 3 1 

Figura S1 2 

 3 

Figure S1. Chart showing the organization of performed meta-analyses 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 
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