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Abstract
In the present thesis we study the quantum magnetic impurity inserted in single and
multi Dirac and Weyl hosts. We start by reproducing well known cases in literature,
such as the Dirac and Weyl semimetals, manipulating the model Hamiltonian to change
break symmetries at the emergence of the Kondo effect. By changing symmetries and the
chemical potential, we explore various combinations of systems such as Dirac semimetal,
Dirac metal, Weyl semimetal and Weyl semimetal for linear (J = 1) and non-linear (J > 1)
behavior in dispersion relation. J is also called topological charge of the system and
influence for Kondo to emerge as well as the symmetries we choose to break, such as Time
Reversal and Inversion symmetry. We will explore the numerical method that allows us
to calculate the Kondo physics properties that emerge in such systems. We also describe
the process throughout the work and how we evolved from a simple system to a more
complete one. We conclude that for some specific combination of parameters and breaking
inversion symmetry of these exotic systems, Kondo physics emerges. We also analyze the
behavior of the magnetization in the dispersion relation for Weyl semimetals.

Keywords: Quantum magnetic impurities, Weyl systems, Dirac systems, Kondo effect,
NRG.





Resumo
Na presente tese estudamos a impureza magnética quântica inserida em hospedeiros simples
e múltiplos de Dirac e Weyl. Começamos reproduzindo casos bem conhecidos na literatura,
como os semimetais de Dirac e Weyl, manipulando o modelo hamiltoniano para alterar
simetrias de quebra no surgimento do efeito Kondo. Ao alterar as simetrias e o potencial
químico, exploramos várias combinações de sistemas, como semimetal de Dirac, metal de
Dirac, semimetal de Weyl e semimetal de Weyl para comportamento linear (J = 1) e não
linear (J > 1) na dispersão relação. J também é chamado de carga topológica do sistema
e influência para o surgimento de Kondo, bem como as simetrias que escolhemos quebrar,
como inversão de tempo e simetria de inversão. Exploraremos o método numérico que nos
permite calcular as propriedades físicas de Kondo que surgem em tais sistemas. Também
descrevemos o processo ao longo do trabalho e como evoluímos de um sistema simples para
um mais completo. Concluímos que para alguma combinação específica de parâmetros e
quebra de simetria de inversão desses sistemas exóticos, surge a física Kondo. Analisamos
também o comportamento da magnetização na relação de dispersão para semimetais de
Weyl.

Palavras-chave: Impurezas magnéticas quânticas, Sistema de Weyl, Sistemas de Dirac,
efeito Kondo, NRG.
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1 Introduction

Telling this story is part of the process that brought us here in the first place, and
this is how the reader will be part of this journey, in some sort, as we share the narrative
of our work. This story started on August 2017, when I entered the ph.D program at
the Federal University of Uberlândia, UFU, where I can surely call home. I had just
received the Msc degree in Physics at the same institution and I was back in the game
for the ph.D. Was it a good choice? I don’t know, only time will tell. The Nanoscience
group of UFU received me with arms wide open for this new endeavor. My supervisor,
at first, would be Professor Dr. Edson Vernek in collaboration with Dr. M. A. Bosseli,
who supervised me during my Msc studies, teaching me the art of quantum propagators.
However, he could not supervise me for some bureaucratic reasons. This partnership was
very productive, I learned a lot from Professor Vernek and his students, mainly Dr. Joelson
Fernandes, which deserves very special thanks for being so patient with me, teaching me
great things about physics and life in general. At first, we should work on something
that both supervisors were familiarized with, however, the new perspectives of science
and researches in condensed matter brought us to the so called Weyl solutions to Dirac’s
Equations, leading to applications that caught our attention and we are going to extensively
talk about in this work, a great effort of a prestigious colleagues. For this reason, we were
dragged away from the partnership with Boselli, and for that I need to say my sincere
apologies to him.

At the same time we were studying the Weyl fermions while Joelson was studying
Majorana fermions, also another solution to Dirac’s Equations. So we had a good and
strong group researching a new class of materials and collaborations between us started
strengthening. These solutions for the Dirac’s Equations applied to condensed matter were
being extensively explored in the scientific community due to a variety of new applications.
And this is where we start. We are going to explain the emergence of a quantum mechanical
phenomena called Kondo effect when an impurity is embedded in these materials that we
call host, which is attracting considerable attention in condensed matter.

It is interesting to know that the very beginning of our study comes from a renowned
British physicist, Paul Adrien Maurice Dirac, born in 1902. With 27 years old, he came
up with a set of equations, that we will explore in more detail later, that described
mathematically new particles in the universe. By bringing up together special relativity
and quantum mechanics, he was capable of unifying those two theories and the outcome
was a set of equations that describes the physics of anti-particles, a new set of particles
in physics. The antimatter, as they are also called, has the same properties as the usual
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matter, however the charge has opposite sign and as we are going to see later in this
work, this description only applies to half spin particles. For instance, for the electron
we have its anti particle, having the same mass but positive charge, also called positron.
This new description of reality allowed a better understanding of the universe. It also
led new questions to arise like why is there more matter than antimatter in the universe.
Moreover, algebraic manipulations of Diracs equations paved the way for new particles
like the one we will explore here, the Weyl fermions, in principle they are particles. It is in
condensed matter that they emerge as quasiparticles. This study is only possible because
a German physicist, Hermann Weyl (1885-1995) proposed, a year after Dirac’s work, a
different set of solutions for the same set of equations that Dirac described in 1928. He
considered the mass of the particle to be zero to solve Dirac’s Equations with which he
could uncouple them, coming up with massless fermions, also known as weyl fermions.
These elementary particles has not yet been found in particle physics, and it is not our
intention to discuss them in this context. In fact, we seek to explore their properties in
condensed matter physics, where some materials provide us with quasiparticle excitations
that behave very much similar to Weyl fermions. There are other interesting outcomes by
manipulating the same equations, like Majorana fermions. However, it is not our intention
to explore those others because it would take us to different and far away paths (DIRAC;
FOWLER, 1928).

To understand where these new physics in the context of Dirac and Weyl fermions
come from, we first need to comprehend that topological materials have promoted a
colossal excitement in the recent years (ANDO, 2013; KANE; MELE, 2005; BERNEVIG;
HUGHES; ZHANG, 2006; FU; KANE, 2007; XIA et al., 2009). The idea behind the
characterization of these materials is the use of concepts of topology to classify their
electronic band structures. As such, topological phase transition involves changes in some
topological index rather than in an order parameter by a broken symmetry (BURKOV;
HOOK; BALENTS, 2011; ALEXANDRADINATA; WANG; BERNEVIG, 2016). The
best known example of topological materials are topological insulators (BERNEVIG;
HUGHES, 2013; HASAN; KANE, 2010; ANDO, 2013) that are bulk insulators, a class
of two dimensional materials that exhibit band touching (metallic) edge states that are
protected by time reversal symmetry (TRS)(HASAN; KANE, 2010; MOORE, 2010b;
KÖNIG et al., 2007; QI; ZHANG, 2011). Analogues of these 2D materials exists in 3D and
are generically dubbed Dirac semimetals (YOUNG et al., 2012) found in compounds such
as Na3Bi (LIU et al., 2014) and Cd3As2 (BORISENKO et al., 2014; HE et al., 2014). Near
the crossing points, the linearly dispersive bands are well described by 3D versions of the
Dirac equation. These crossing points are therefore commonly called Dirac nodes and their
degeneracy is protected by both TRS and inversion symmetry (IS) of the lattice structure.

An interesting family of topological materials called Weyl semimetals (WSM)
emerge from Dirac systems when at least one of the aforementioned symmetries that
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protect the degeneracy of the Dirac nodes is broken (ARMITAGE; MELE; VISHWANATH,
2018; ZHONG et al., 2016; FANG et al., 2012; YANG; NAGAOSA, 2014). These systems
are recognized by exhibiting peculiar physical properties such as Fermi arcs (WAN et al.,
2011; XU et al., 2015a; OJANEN, 2013), chiral anomaly (NANDY et al., 2017; HEIDARI;
ASGARI, 2020), affecting drastically their transport properties (KUNDU et al., 2020;
LOPEZ; TORRES; NUNEZ, 2018). Later, another variety of WSMs was predicted to exist
protected by group symmetry Cn (FANG et al., 2012). These WSMs exhibit topological
charge J > 1 and appear as a generalization of the first WSM exhibiting J = 1, as
such they were called multi-Weyl node semimetals (MWSMs) (FANG et al., 2012). This
prediction was confirmed for J = 2 in HgCr2Se4 and SrSi2 (XU et al., 2011; FANG et al.,
2012; HUANG et al., 2016) while systems in which J = 3 have been anticipated to exist
in quasi 1D molybdenum monochalcogenide compounds (LIU; ZUNGER, 2017).

With the increasing popularity of these exotic materials and the gain of comprehen-
sion on their physical properties, we have witnessed a rising interest in the low-temperature
properties of these materials when they host magnetic impurities (PRINCIPI; VIGNALE;
ROSSI, 2015; YANAGISAWA, 2015). When an isolated quantum magnetic impurity (also
known as Anderson impurity) is inserted in a system of free electrons, such as metals and
also these topological materials, their itinerant electrons cooperate to screen the localized
moment, a phenomena known as the Kondo effect (ANDERSON, 1961). Although the
Kondo effect is more commonly studied in conventional metallic materials (HEWSON,
1993; BULLA; COSTI; PRUSCHKE, 2008), interesting facets of Kondo physics is also
found in structured conduction bands near the Fermi level (SILVA et al., 2006; SILVA et
al., 2017; GONZALEZ-BUXTON; INGERSENT, 1998; LOGAN; TUCKER; GALPIN,
2014). More recently, the Kondo effect has also been investigated in topological materials
such as Dirac and Weyl semimetals in which metallic or pseudo-gap screening regimes
have been found (PRINCIPI; VIGNALE; ROSSI, 2015)

In this work we revisit the problem of Kondo screening regimes in the Dirac and
Weyl systems (MITCHELL; FRITZ, 2015b), with special attention to the MWSMs, on
which a detailed investigation of the Kondo effect is still lacking. We adopt a generic
model capable of describing multi-Dirac semimetals (MDSMs) as well MWSMs (LÜ et
al., 2019) and employ a numerical renormalization group (NRG) approach (HEWSON,
1993; BULLA; COSTI; PRUSCHKE, 2008) to access the Kondo physics of the system in
a systematic manner. Our numerical results show that the Kondo regimes of all MDSM lie
on some class of pseudo-gap Kondo effect, in which Kondo screening is possible only at
the particle-hole asymmetric situation. In contrast, in IS broken, which can be performed
applying strains in host’s crystalline structure, MWSM, Kondo screening is possible even
in particle-hole symmetric condition. Moreover, rich Kondo regimes emerge as a result of
the interplay between the chemical potential µ and inversion symmetry parameter Q0. We
also find that in MWSMs with broken TRS the Kondo screening is affected, albeit weakly,
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by magnetic polarization induced at the impurity via hybridization function.

1.1 Motivation

In order to understand what makes us do a certain work like the one we present
here, leads us to an ethics problem. There are a lot of motivations for this work, some
of them are not the ones intended to be mentioned because we are expected to convince
that this writings are useful. Usefulness, what an awkward concept. To prove that the
work is worth doing can cause trouble once it is subject, however we can give you some
examples of how relevant this work is. In terms of personal motivation, we have a bunch
of explanations that brought us here, like something we find interesting studying by some
other influence, for example our colleagues or supervisor. Or we just want to look for a
subject that is being explored extensively, therefore, increasing the chance of having a
higher number of publications that will enhance our career, giving us prestige. Are we
looking for recognition, acceptance or maybe we want to be remembered by something we
do? Other times we just need a motivation to wake up in the morning and get out of bed.

Without further ado, since it is not a philosophical discussion, we need to convince
you, reader, that this work has a major purpose and is worth publishing. To do so we come
up with some novel researches and developments in this area of science to convince you,
we are going to tell you about the topological properties of these materials and how these
properties are innovating in science and leads the scientific community to new discoveries.
But before that, however, we have to explain what topology is and then we can understand
a little about topological materials and how they are giving us such new possibilities in
science.

Topology comes from the Greeks and it means the knowledge of place, region or
space. It is a part of science and mathematics that studies the conformation of algebraic
and/or geometric spaces. It is a complex and sometimes vague concept, feeling that talking
about topology is to say a lot and understand almost nothing. It is not our intention
to explain in detail what topology is, however, we have to give you the possibility to
comprehend what is being studied in these writings. The seminal studies of Kosterlitz
e Thouless (KOSTERLITZ; THOULESS, 2001; THOULESS et al., 1982) and Haldane
(HALDANE, 1983) about forty years ago made it possible to classify and study systemati-
cally the states of matter based on their topological characteristics (see Ref.(QI; ZHANG,
2011; MOORE, 2010a; FU; KANE; MELE, 2007; FU; KANE, 2007; TOKURA; YASUDA;
TSUKAZAKI, 2019; SCHNYDER et al., 2008)). Given the revolutionary implications
that the work of these three physicists provided concerning this new type of materials,
the so called topological materials, they were awarded with the Nobel Prize in physics
of 2016. More recently, we are testifying an increasing interest in these materials and



1.1. Motivation 25

other properties that emerge from this concept, such as Topological Insulators (TI) and
Topological Superconductors (TS), to which topological concepts used to explain these
phenomena are justify the term topological phases of matter (YAN; FELSER, 2017;
BERNEVIG, 2013). There are plenty of reasons for the interest in these materials. From a
theoretical perspective, for example, it is a great opportunity to test the abstract properties
of these topological materials in realistic systems. From a practical perspective, the idea
of protected topological systems provides us with new possibilities to develop devices for
technological applications like spintronics and quantum computation, just to name a few
(HE et al., 2021; KUREBAYASHI; NOMURA, 2016; ZHAO et al., 2020; SUN et al., 2016;
CHEN; NAZAROV, 2020; YANG, 2016; ŠMEJKAL; JUNGWIRTH; SINOVA, 2017; LI et
al., 2018).

The main physical characteristics in topological materials are the bulk, surface
and edge states in 3D, 2D and 1D systems, respectively. These states are topologically
protected by some sort of symmetry presented in the material under consideration. For
example, in traditional TI materials, Time-Reversal Symmetry (TRS) protects those states.
On the other hand, the TS edge states are protected by particle-hole (PH) symmetry of
Bogoliubov-de Genes Hamiltonian, usually employed to describe these materials. A very
interesting property presented in TS materials is the Majorana quasiparticle behavior, a
Majorana bound state (MBS) on its edges [commonly called Majorana fermions (MF)
(READ; GREEN, 2000; FRANZ, 2010; ALICEA, 2010)]. Like Weyl proposed a solution
for Dirac’s equation so did Ettore Majorana in 1937 (MAJORANA, 1937). MBS are
quasiparticles excitations that correspond to its own antiparticle, occuring always in pairs.
A topological superconductor wire, for example, is predicted to exhibit a MBS on its edges.
Even more interesting, is the fact that spatially separated MBS can be combined into a
conventional non-local fermion. This uncommon non-locality property has great potential
in applications in topological quantum computation (PACHOS; SIMON, 2014; SARMA;
FREEDMAN; NAYAK, 2015; AKHMEROV, 2010; LAFLAMME et al., 2014; OREG;
REFAEL; OPPEN, 2010; NAYAK et al., 2008; LEE et al., 2012).

Let us refocus our attention to the Weyl Semimetals (WSM). Unlike TI, we believe
these materials were not explored extensively so far and have promising innovations,
becoming a field of interest in the scientific community. The WSMs present a non-trivial
topological phase that extends beyond TI. While TI preserve TRS we can break this
symmetry in WSMs. We can picture these materials being TI exhibiting surface states
with exotic properties. In fact, WSMs are described by Dirac Hamiltonians, exhibiting
either broken TRS or broken IS, or both. Known as quasi-particles, these systems exhibits
this emergent behavior due to weak interactions that stimulates its appearance (WENG
et al., 2015; YANG et al., 2017; XU et al., 2015a; LV et al., 2015; LÜ et al., 2019).

The recent interest in WSMs and their technological applications is motivating
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scientific investigations of these materials in a low-energy regime in the presence of magnetic
impurities for 3D systems. It has been shown that, when a magnetic impurity is attached
to a WSM surface, the Kondo effect (KONDO, 1964a) takes place for these materials
(PRINCIPI; VIGNALE; ROSSI, 2015; YANAGISAWA, 2015; MA et al., 2018). In fact,
it was shown by Mitchell and Fritz (MITCHELL; FRITZ, 2015a) that different aspects
of Kondo effect can be obtained depending on which type of symmetry is being broken,
controlling the parameters in the Dirac-like Hamiltonian that describes the model. In this
work, we are going to explore a theoretical model capable of describing the Kondo effect
in Weyl semimetals with either broken Time-reversal and/or broken Iversion symetry.
Despite the recent developments of scientific research in this field, many questions remain
to be answered, for example how the Kondo effect depends on the model Hamiltonian, or
if there is quantum phase transitions in these kind of systems. We will provide a better
understanding of these problems as we progress in the work presented here.

Along this work, we aim at answering these questions and propose future studies.
In particular, we are also interested in non-linear anisotropic behavior in the dispersion
relation of these materials, in the context of the so called Multi Weyl Semimetals (MWSM).
There is a rich variety of combinations of symmetries with the parameters our model
provides. For example, we can have either TRS and/or IS combining with metal and/or
semimetal case if we change the chemical potential. Also, we have single, 2-Multi or 3-Multi
Weyl and the Dirac cases as well.

As a result of these four years of PhD, we were able to develop a profound
understanding of the referred topics of this work, more precisely, the Kondo screening of
the impurity hosted in multi-Weyl and massless Multi-Dirac systems (PEDROSA; SILVA;
VERNEK, 2021). The results presented here are a more detailed presentation of the article
alongside with some other results that are not included in the publication, as well as the
journey that brought us here. To deserve our effort in developing such study and attract
the reader’s attention, it is good to emphasize that the contribution of the present work
to the scientific community is the description of Kondo physics in a multi-Weyl system by
manipulating the topological symmetries of it. And we will prove that it is possible to
have Kondo physics even for no chemical potential in Weyl and multi-Weyl systems.

To accomplish our goal, in the next chapter we derive the famous Dirac’s Equations
2.1 followed by Weyl’s alternative solution in Chapter 2.2. Chapter 3, we present a brief
study of the Kondo effect due to impurities 3.1 and quantum dots 3.2. The next chapter is
the description and understanding of Weyl 4.1 and Multi-Weyl 4.2 systems, followed by
the model description in 4.3. In sequence, we give a description of the steps to perform
the calculations that evolved from RG 5.1 to a numerical approach extensively used in
this work, NRG 5.2. Finally, the discussion of the results will be presented in Chapter 6.
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2 From Dirac to Weyl

In order to understand the strategy through which Hermann Weyl developed his set
of equations and came out with massless electrons, it is instructive to derive his equations
explicitly. To give a better explanation, we are going to explain each and every step along
this process.

Paul Adrien Maurice Dirac (1902-1984) in a brilliant effort to unify the theories of
special relativity and quantum mechanics, came up with a set of equations that brought
them together. Those equations were proposed in 1928, which became the well known
Dirac’s Equations, led to the discovery of antimatter. Such description was applied for
usual 1/2-spin particles with mass, like electrons. However, this new discovery described
the same particles but with opposite charge, also known as the antiparticles. Therefore,
the electron’s antiparticle is the positron, a spin half particle with positive charge and
same mass. Similarly, the proton has a spin half particle with the same mass but with
negative charge, which is called the antiproton. This new group of particles allowed us a
new description of reality and new questions arise from it. One example is why there is
more matter than antimatter in our observable universe? Sometimes I wonder, myself, why
do we ask such questions and what is the need to answer so many questions? Is it going
to change our lives to know why there is more matter than antimatter in our universe?
Anyways, this exotic attempt to understand reality was also found by Carl D. Anderson.
Anderson provided major contributions for particle physics when he detected unexpected
particle tracks in a cloud chamber, something like a cathodic tube, while he was studying
the cosmic background radiation. He confirmed that it was particles with the same mass
of electrons but with opposite charge. It was published in 1932 (ANDERSON, 1933) as
the first experimental validation of Dirac’s theoretical prediction of such particles.

2.1 A derivation of Dirac’s Equation

We start with the basic quantum mechanical Hamiltonian describing a free particle

Ĥ = p̂ · p̂
2m , (2.1)

in which we define p̂ as a three dimensional quantum momentum operator as

p̂ = −i~~∇. (2.2)

As such, the Hamiltonian (2.1) describes just the kinetic energy of the particle.
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For 1/2 spin particles in the presence of magnetic field, we have

Ĥspin = −
(
e~

2mc

)
~σ. ~B. (2.3)

The Pauli matrices form a vector ~σ, that can be written as

~σ = σxx̂+ σyŷ + σz ẑ, (2.4)

where x̂, ŷ and ẑ are the canonical base of R3, and

σx =
 1 0

0 1

 ;σy =
 0 −i
i 0

 ;σz =
 1 0

0 −1


are the Pauli matrices.

From Maxwell’s Equations, the magnetic field can be written as

~B = ~∇× ~A (2.5)

where ~A is the electromagnetic vector potential.

We introduce a substitution on the quantum momentum operator, that was used
by Dirac, in order to establish a relation between quantum mechanics and electromag-
netism. The procedure is called the minimum coupling and is introduced even in classical
electrodynamics. This is done by replacing the momentum operator with

p̂→ p̂− e ~A

c
. (2.6)

From this rearrangement of the momentum operator, we can rewrite the Hamiltonian as

Ĥ = 1
2m(~σ · p̂)(~σ · p̂). (2.7)

We should emphasize that this is a non-trivial way of writing the Hamiltonian. Substituting
Eq. (2.6) into Eq. (2.7), we can write the Hamiltonian as follows

Ĥ = 1
2m

~σ ·
p̂− e ~A

c

~σ ·
p̂− e ~A

c

 . (2.8)

Using the demonstration in Appendix A, we have the following relation

(~σ · ~a)(~σ ·~b) = (~a ·~b)1̂+ i~σ · (~a×~b). (2.9)
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When we apply Eq. (2.9) in Eq. (2.8), we have a simplification of this Hamiltonian. So,
Eq. (2.8) can be rewritten as~σ ·

p̂− e ~A

c

~σ ·
p̂− e ~A

c

 =
p̂− e ~A

c

 ·
p̂− e ~A

c

 (2.10)

+i~σ ·
p̂− e ~A

c

×
p̂− e ~A

c

 =

=
p̂− e ~A

c

2

+ i~σ ·

p̂− e ~A

c

×
p̂− e ~A

c

 (2.11)

From basic vector properties we can write1

p̂× p̂ = 0 (2.12)

and

~A× ~A = 0. (2.13)

Therefore, the Hamiltonian can be greatly simplified as follows

Ĥ = 1
2m

p̂− e ~A

c

2

+ i

2m~σ ·
(
−e
c
p̂× ~A− e

c
~A× p̂

)
(2.14)

or

Ĥ = 1
2m

p̂− e ~A

c

2

− ie

2mc~σ ·
(
p̂× ~A+ ~A× ~p

)
. (2.15)

To further simplify this expression, let us manipulate the left hand side of the equation
above. We have the relation

(p̂× ~A) φ = (−i~~∇× ~A) φ

= −i~(~∇× ~A) φ

= −i~
[
~∇×

(
~Aφ
)]

= −i~
[(
~∇φ
)
× ~A+ φ

(
~∇× ~A

)]
= −i~

[
− ~A×

(
~∇φ
)

+ φ~B
]

= − ~A×
(
−i~~∇φ

)
− i~ ~Bφ

=
(
− ~A× p̂− i~ ~B

)
φ. (2.16)

With this we can write
p̂× ~A = − ~A× p̂− i~ ~B, (2.17)

1 For further proof of the statements about vector properties, follow the notes in Appendix A.
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as in a more viable form, we have

(p̂× ~A) + ( ~A× p̂) = −i~ ~B . (2.18)

Therefore,

Ĥ = 1
2m

p̂− e ~A

c

2

− e~
2mc~σ ·

~B → Coming from Minimal Coupling. (2.19)

Now, we will bring Special relativity to take part in the Hamiltonian in order to
reach Dirac’s Equations. The relativistic energy is given by

E2 = p2c2 +m2c4. (2.20)

Dividing Eq. (2.20) by c2, we have

E2

c2 = p2 +m2c2

or we can simplify a little more to get

E2

c2 − p
2 = (mc)2

which can be written as

[(
E

c

)2
− p2

]
=

[(
E

c
+ p

)(
E

c
− p

)]
= (mc)2 , (2.21)

or simply (
E

c
− p

)(
E

c
+ p

)
= (mc)2. (2.22)

We know from the Time-Dependent Schrödinger Equation (TDSE) that

i~
∂

∂t
ψ = Ĥψ = Eψ. (2.23)

If we observe the relation above, we can notice that E can be written as

E → i~
∂

∂t
(2.24)

and using the trick introduced by Dirac

p̂→ ~σ · p̂ (2.25)

and substituting in Eq. (2.22)
p̂→ ~σ ·

(
−i~~∇

)
. (2.26)
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Therefore, [
i~
c

∂

∂t
+ ~σ ·

(
i~~∇

)] [i~
c

∂

∂t
− ~σ ·

(
i~~∇

)]
φ = (mc)2 φ. (2.27)

We also have {
i~
[

∂

∂(ct) + ~σ · ~∇
]
i~
[

∂

∂(ct) − ~σ ·
~∇
]}

φ = (mc)2φ, (2.28)

such that by setting x0 = ct, we can write(
∂

∂x0
+ ~σ · ~∇

)(
∂

∂x0
− ~σ · ~∇

)
φ =

(
mc

i~

)2
φ. (2.29)

Making some simplifications through a substitution for a constant to help us easily carry
some terms, we write mc

i~ = g, 2 we have(
∂

∂x0
+ ~σ · ~∇

)(
∂

∂x0
− ~σ · ~∇

)
φ = g2φ. (2.30)

We can now introduce two new variables φ(R) and φ(L) as,

φ
(R) = 1

g

(
∂
∂x0
− ~σ · ~∇

)
φ(L)

φ(L) = 1
g

(
∂
∂x0

+ ~σ · ~∇
)
φ(R).

(2.31)

Note that,

φ(R) = 1
g2

(
∂

∂x0
− ~σ · ~∇

)(
∂

∂x0
+ ~σ · ~∇

)
φ(R). (2.32)

If we transform φ(R) → φ, we recover Eq. (2.30). Therefore, after some algebraic manipu-
lations, we can write gφ

(L) = ∂
∂x0
φ(R) + ~σ · ~∇φ(R)

gφ(R) = ∂
∂x0
φ(L) − ~σ · ~∇φ(L)

(2.33)

Upon summing and subtracting the coupled equations above, we can obtain, respectively,

∂

∂x0

[
φ(R) + φ(L)

]
+ ~σ · ~∇

[
φ(R) − φ(L)

]
= g

[
φ(R) + φ(L)

]
(2.34)

and
− ∂

∂x0

[
φ(R) − φ(L)

]
− ~σ · ~∇

[
φ(R) + φ(L)

]
= g

[
φ(R) − φ(L)

]
. (2.35)

We can write the wave functions in terms of a spinor as

ψ =
 φR + φL

φR − φL

 =
 ψA

ψB

 . (2.36)

2 Note that the dimension of g can be expressed as [g] = Kg·m
s2 · 1

J = 1
m .
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Now, we rewrite Eq. (2.34) and Eq. (2.35) in terms of ψA and ψB, as
∂
∂x0
ψA + ~σ · ~∇ψB = gψA

− ∂
∂x0
ψB − ~σ · ~∇ψA = gψB.

(2.37)

In a matrix form, we have ∂
∂x0
1 ~σ · ~∇

−~σ · ~∇ − ∂
∂x0
1

 ψA

ψB

 = g

 ψA

ψB

 (2.38)

We will manipulate these matrices in order to write them in terms of the momentum
operator. First, recalling that g = mc

i~ , we obtain

−i~

 − ∂
∂x0
1 −~σ · ~∇

~σ · ~∇ ∂
∂x0
1

 ψA

ψB

 = mc

 ψA

ψB

 (2.39)

 −i~ ∂
∂x0
1 −i~~σ · ~∇

i~~σ · ~∇ i~ ∂
∂x0
1

 ψA

ψB

 = −mc
 ψA

ψB

 (2.40)

Since x0 = ct, we introduce x4 = ict to write

1
~

 ~ ∂
∂x4
1 −i~~σ · ~∇

i~~σ · ~∇ −~ ∂
∂x4
1

 ψA

ψB

 = −mc
~

 ψA

ψB

 . (2.41)

Manipulating the matrix above, we can write

 ∂
∂x4
1 −i~σ · ~∇

i~σ · ~∇ − ∂
∂x4
1

 =
 1 0

0 1

 ∂

∂x4
+
 0 −iσk
iσk 0

 ∂

∂xk

where k = x, y or z.

 ∂
∂x4
1 −i~σ · ~∇

i~σ · ~∇ − ∂
∂x4
1

 = σz ⊗ σ0
∂

∂x4
+ σy ⊗ σk

∂

∂xk

= σy ⊗ σk
∂

∂xk
+ σz ⊗ σ0

∂

∂x4
(2.42)

Here x→ 1, y → 2 and z → 3, such that k = 1, 2, 3. We can use µ to write a more
general subscript that contains the three dimensional (3D) space coordinates and time as
a fourth coordinate, such that µ = 1, 2, 3, 4. Making use of the following matrices

γk = σy ⊗ σk =
 0 −iσk
iσk 0

 (2.43)



2.2. Weyl’s Solution 33

and,

γ4 = σz ⊗ σ0 =
 1 0

0 −1

 . (2.44)

With this we can write
γµ

∂

∂xµ
ψ = −mc

~
ψ (2.45)

or simply, (
γµ

∂

∂xµ
+ mc

~

)
ψ = 0 . (2.46)

Eq. (2.46) is the famous Dirac Equation, where

γk = σy ⊗ σk. (2.47)

This is the matrix form that synthesizes Dirac’s solution into one single equation.
Since it is a combination of quantum mechanics with special relativity, we have a four
dimensional tensor, the three first dimensions are spatial ones and the fourth is temporal.

2.2 Weyl’s Solution

In 1929, one year after Dirac’s work, the German physicist Hermann Weyl published
a different description for Dirac’s Equation, proposing a new set of solutions for the
same problem, leading to a new set of particles (WEYL, 1929). As we are about to see,
he proposed that the rest mass of the particles are zero. As they knew at that time,
charged particles, like electrons for example, are massive, while only bosonic particles,
like photons which carries no charge, are known to be massless. So, they first divided
particles into two groups with distinct properties, fermions and bosons. They have distinct
properties. Fermions have charge, a finite mass and half-spin. Bosons, on the other hand
are massless, have no charge and integer spin. Weyl was proposing a new class of particles,
something totally different from what they already knew at that time. However, we
know that mathematical solutions do not necessarily imply physical reality. In other
words, theoretical predictions need experiments that prove the hypothesis and so far,
there is no such experiment proving the existence of Weyl fermions. Indeed, these exotic
massless particles were never found in high energy physics. Interestingly, Weyl fermions
can appear as emergent quasiparticles in low energy physics of topological systems in
condensed matter, a very recent field of research for extraordinary discoveries and potential
applications on spintronics, magnetoresistance, transport phenomena and optics, to name
a few (JIAN; YAO, 2015; ŠMEJKAL; JUNGWIRTH; SINOVA, 2017; YANG; LU; RAN,
2011; SUSHKOV et al., 2015; LANDSTEINER, 2014; LIANG et al., 2018).
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Based on Weyl’s solutions for Dirac’s Equations, we have the following description.
Dirac’s Hamiltonian is given as follows

(
~γµ

∂

∂xµ
+mc

)
φ = 0. (2.48)

Weyl applied a symmetric condition to the equations as he noticed that there
are some special cases in odd spatial dimension (WEYL, 1929; ARMITAGE; MELE;
VISHWANATH, 2017). In the following, we use the matrix relations Eq. (2.43) and Eq.
(2.44), we will manipulate to show Weyl’s solutions. So, we have

 (
~ ∂
∂x4

+mc
)
1 −i~σk ∂

∂xk

i~σk ∂
∂xk

(
−~ ∂

∂x4
+mc

)
1

 ψA

ψB

 =
 0

0

 (2.49)


(
~ ∂
∂x4

+mc
)
ψA − i~ σk ∂

∂xk
ψB = 0

i~σk ∂
∂xk

ψA +
(
−~ ∂

∂x4
+mc

)
ψB = 0

(2.50)

~
∂
∂x4
ψA +mc ψA − i~ σk ∂

∂xk
ψB = 0

i~σk ∂
∂xk

ψA − ~ ∂
∂x4
ψB +mcψB = 0.

(2.51)

Adding and subtracting the terms in Eq. (2.51), we have

~
∂

∂x4
(ψA − ψB) + i~ σk

∂

∂xk
(ψA − ψB) +mc (ψA + ψB) = 0 (2.52)

and

~
∂

∂x4
(ψA + ψB)− i~ σk

∂

∂xk
(ψA + ψB) +mc (ψA − ψB) = 0. (2.53)

Let us write ψ± = 1√
2 (ψA ± ψB), so

~
∂
∂x4
ψ− + i~σk ∂

∂xk
ψ− +mcψ+ = 0

~ ∂
∂x4
ψ+ − i~σk ∂

∂xk
ψ+ +mcψ− = 0

(2.54)

or

~
(

∂
∂x4
1− iσk ∂

∂xk

)
ψ+ +mcψ− = 0

mcψ+ + ~
(

∂
∂x4
1+ iσk

∂
∂xk

)
ψ− = 0.

(2.55)

In its matrix form, we have

 ∂
∂x4
1− iσk ∂

∂xk

mc
~

mc
~

∂
∂x4
1+ iσk

∂
∂xk

 ψ+

ψ−

 =
 0

0

 (2.56)
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Now, Weyl thought it would be a good idea trying to set mass equals to zero
(m = 0). In this way, the solutions would be decoupled,

 ∂
∂x4
1− iσk ∂

∂xk
0

0 ∂
∂x4
1+ iσk

∂
∂xk

 ψ+

ψ−

 =
 0

0

 . (2.57)

Or in other form

1
∂
∂x4
ψ+ − i σk ∂

∂xk
ψ+ = 0

1 ∂
∂x4
ψ− + i σk

∂
∂xk

ψ− = 0.
(2.58)

Note that the first equation in Eq. (2.58) can be written as

 1 0
0 1

 ∂

∂x4
ψ+ − i

(
σk

∂

∂xk
ψ+

)
= 0 (2.59)

Weyl noticed that for odd spatial dimensions, d = 1 for simplicity, this equation
can be further simplified (WEYL, 1929). For k = 1, we have

 ∂ψ+
∂x4

0
0 ∂ψ+

∂x4

− i
 0 ∂ψ+

∂x1
∂ψ+
∂x1

0

 = 0, (2.60)

which leads to


∂ψ+
∂x4

= 0
∂ψ+
∂x1

= 0.
(2.61)

This implies that ψ+ is independent of x1 and x4. The same applies for k = 2, since
the matrix elements will lead to zero for the derivatives of the wavefunctions.

For k = 3, we have

 1 0
0 1

 ∂ψ+

∂x4
= i

 1 0
0 −1

 ∂ψ+

∂z
(2.62)


∂ψ+
∂x4

= i∂ψ+
∂x3

∂ψ+
∂x4

= −i∂ψ+
∂x3

.
(2.63)

Using the relation x4 = ict and multiplying by ~ in both sides, we have

~
∂ψ+
∂(ict) = i~∂ψ+

∂z

~ ∂ψ+
∂(ict) = −i~∂ψ+

∂z
.

(2.64)
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Multiplying both sides by the speed of light, c, and manipulating i, we obtain

i~
∂ψ+
∂t

=
(
−i~∂ψ+

∂z

)
c

i~∂ψ+
∂t

= −
(
−i~∂ψ+

∂z

)
c

(2.65)

or

i~
∂ψ+
∂t

= +cp̂zψ+

i~∂ψ+
∂t

= −cp̂zψ+.
(2.66)

Therefore, the equation of motion for ψ+ acquires the form

i~
∂ψ+

∂t
= ±c p̂z ψ+. (2.67)

Similarly, for the other term of the equation in Eq. (2.58), we have

 1 0
0 1

 ∂ψ−
∂x4

= −i
 1 0

0 −1

 ∂ψ−
∂z

(2.68)


∂ψ−
∂x4

= −i∂ψ−
∂z

∂ψ−
∂x4

= i∂ψ−
∂z

(2.69)

−i~
∂ψ−
∂t

= −ic~∂ψ−
∂z

−i~∂ψ−
∂t

= ic~∂ψ−
∂z

(2.70)

i~
∂ψ−
∂t

= −c
(
−i~∂ψ−

∂z

)
i~∂ψ−

∂t
= c

(
−i~∂ψ−

∂z

) (2.71)

i~
∂ψ−
∂t

= −cp̂zψ−
i~∂ψ−

∂t
= +cp̂zψ−

(2.72)

i~
∂ψ−
∂t

= ∓cp̂zψ−. (2.73)
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Putting all these together, the equations of motion for ψ+ and ψ− are



i~∂ψ+
∂t

= +cp̂zψ+

i~∂ψ+
∂t

= −cp̂zψ+

i~∂ψ−
∂t

= −cp̂zψ−
i~∂ψ−

∂t
= +cp̂zψ−

(2.74)

This box contains the Weyl solution where the first two are responsible for con-
duction electrons and the last two are responsible for the valence electrons, represented
by the ± sings in the wavefunction’s indexes respectively. These four nodes, the pair of
cones with the same chirality, are separated when we break either one or both symmetries
simultaneously, and once we have these broken, we see two nodes splitting into four, as
expected in Weyl systems. It is a different case compared to Dirac because in this case
we preserve both TRS and IS. The sign of the momentum denotes a right (+) or left(-)
moving particle, also known as the chirality of the system, a characteristic of the Weyl’s.
For dimensions d > 1, Weyl solution is still valid, however it is harder to demonstrate do
to the matrix order we should work with and since d = 1 is sufficient for demonstrating
Weyl’s solution, we will not extend to higher orders. The reader can use the original Weyl
paper for further explanations (WEYL, 1929).

This strange property called chirality in particle physics, is a concept that emerges
from Weyl’s solution. It is a complex subject and should be understood as a quantum
property just like spin. Chirality is only equivalent to helicity (another quantum mechanical
concept) when particles are massless, which is the case in Weyl Fermions. Chirality can be
viewed as the behavior of the particle’s wavefunction when it is rotated. While talking
about rotation, it is associated with topological concept and since we have massless
particles in Weyl Fermions, can be understood in terms of helicity, which is the projection
of the spin in the momentum of the particle. The emergence of chirality is due to the
special relativistic property that, once we have massless particles, like photons, there is
no preferable frame of reference and chirality and helicity are the same, also, for Weyl
Fermions, chirality is invariant under Lorentz transformations.

The Weyl Fermions have momentum p and spin s, and helicity is the projection of
the spin onto the direction of its momentum.
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3 Kondo Physics

The Kondo effect is an anomalous phenomenon observed for the first time in 1934
(de Haas; de Boer; van dën Berg, 1934) and shows that below a certain temperature, the
material exhibits a behavior in resistivity that was not expected and was in disagreement
with the explanation of the time. Jun Kondo proposed a model in which the scattering
rate of the conduction electrons of the magnetic impurities present in these materials
should diverge as we lower the temperature near 0K (KONDO, 1964b). According to
Drude’s Model, when a system approaches near zero Kelvin, the material should exhibit a
residual constant resistance. However, he did not observed the expected behavior, instead
he noticed that resistance increased and the scattering rate of the carriers should diverge,
in other words, the resistence must increase below a certain temperature [See (3.2)]. There
was a characteristic temperature, later called in his tribute as Kondo Temperature as well
as the effect, below which this effect takes place.

There are essentially two typical systems where the Kondo effect emerges. One
is associated with true magnetic impurities in metals and the other with quantum dots
coupled with metallic leads. In the following we will discuss in more detail these two
systems. It is very important to emphasize that this effect is purely a quantum behavior,
so it can only be understood in this regime having no analogy in the classical realm.

3.1 Kondo Effect due to Magnetic Impurities

For the Kondo effect to take place in magnetic impurities, we first need a conducting
material that hosts magnetic atoms and low temperature. As an example of Kondo effect in
impurities embedded in a metal is Copper (Cu) doped with Iron (Fe). In this example Cu
is our host material and Fe is the magnetic impurity. Fig. 1 shows the resistance (R/R0) as
a function of the temperature T (K), for three different concentrations of Fe (0.05%, 0.1%
and 0.2%). When the temperature decreases, we observe a decreasing of the resistance as
well. However, at a certain characteristic temperature the resistance reaches a minimum
point and R/R0 starts increasing with further decrease of T . The temperature where the
behavior changes is called the Kondo Temperature (TK). Observe that the curves display
an analogous shape, however with different values. For example, TK for 0.05%-Fe is smaller
compared with 0.1% and 0.2%-Fe, however their resistance at that point is higher.

Kondo proposed a local antiferromagnetic interaction between the impurities and
the conduction electrons to explain this anomalous effect. He wrote down a model where
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Figure 1 – The electrical resistance (R/R0) as a function of temperature T (K) of a Copper
(Cu) crystal with different concentrations of Fe impurities. The top curve has
0.2% of Fe. The curve in the middle has a 0.1% concentration of Fe and the
bottom curve has 0.05%. The vertical dashed line on the lowest part of the
concavity of each curve marks the Kondo temperature for this alloy (FRANCK;
MANCHESTER; MARTIN, 1961; KRULL, 2014).

he describes this mechanism as

HK = J~s(~r = 0) · ~S. (3.1)

Here, J stands for the nature of the magnetic interaction, in which ferromagnetic and
antiferromagnetic corresponds to J < 0 and J > 0, respectively (it is good to notice that
this J that emerges in Eq.(3.1) should not be confused with the topological charge that
is responsible for multi-Wyel systems). ~s represents the spin operator of the conduction
electrons in the host and ~S is the impurity spin. By employing a perturbative approach
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and considering only the conduction electrons around the Fermi level εF on a range of
energy of the order KBT Kondo showed that the electrical resistance can be written as

RT = R0

1 + 2Jρln
 KBT

D − εF

, (3.2)

where R0 is the first order electrical resistance, ρ is the density of states and D is a
cut on the energy band. It is only in the antiferromagnetic regime (J > 0) that Kondo
could observe the anomalous effect in the resistivity. The magnetic impurity has a spin
oriented in a specific direction ~S and the conduction electrons of the host interacts with
it creating an opposite alignment, thus screening the impurity. The screening creates a
bound state making it harder for the conduction electrons to move throughout the system.
The collection of conduction electrons that screen the impurity creates what is known
as the Kondo cloud (BÜSSER et al., 2010; AFFLECK; SIMON, 2001; BERGMANN,
2008; PARK et al., 2013). The Kondo effect has no analog in the classical realm only
understandable using a quantum theory approach to describe it. It is not our interest to
explore the many facets of Kondo effect in great detail, therefore we are not diving deeper
into this subject in different materials. It is, however, interesting to give an idea of this
phenomenon since it is a fundamental application of the problem and is something we are
looking for in the Weyl systems.

Even though Kondo was able to explain certain experiments, the problem has
strong dependency with energy and a perturbative method is not enough to give a
full understanding of it, in other words, we would have to consider higher orders of
the perturbation series for a better description. Even in this case, we could be missing
something for even higher orders. For low energy scales, the perturbation approach can
be applied, but it is not true for higher energies. As we know, perturbation theory is
only exact if we consider infinite orders. The logarithmic divergences that appears in
Feynman diagrams, a pictorial representation of the behavior and interaction between
particles (KAISER, 2005), tell us that a perturbation description could not give a complete
understanding of the whole picture (ANDERSON; YUVAL; HAMANN, 1970). Also, based
on the Schrieffer-Wolff transformation, that not only perturbatively diagonalize a many-
body Hamiltonian, but also projects the higher orders excitations of it in a low-energy
model (BRAVYI; DIVINCENZO; LOSS, 2011), we can see that the Kondo problem lies
in the strong coupling regime as we use an Anderson impurity, which means we need
higher orders to describe the problem leading to a more refined theory (ANDERSON,
1961; SCHRIEFFER; WOLFF, 1966).

The lower the energy scale, ε = KBT , the stronger the coupling between impurity
and the electrons of the host, consequently the higher the orders of the perturbation theory
we need to describe these interactions. Said that, we need a more accurate method to
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describe the strong coupling interactions that take place in low energy scale. This can
be understood only under the light of the renormalization group (RG) (ANDERSON,
1961) as we are going to see further in Sec. 5.1. For now, you have to notice that the
solution Kondo proposed is limited by the energy scale of the system a problem that RG
calculations handles exactly.

The understanding of RG method will allow us to use a numerical approach
(Numerical RG, or simply NRG) (see Sec. 5.2) and solve this problem properly.

3.2 Kondo Effect in quantum dots

While Kondo effect in magnetic impurities we have an anomaly in resistivity,
the same effect in quantum dots has a different behavior. Although quantum dots are
not the interest of this work, they offer a simple description of another application of
Kondo effect and can be a candidate for future works and applications such as charge
transport (HOSUR; PARAMESWARAN; VISHWANATH, 2012) and photocurrents in
Weyl semimetals (CHAN et al., 2017) to name a few.

Quantum dots are artificial structures capable of confining electrons in three
dimensional space. In this sense, they behave like atoms, hence they are known as artificial
atoms. Their energy levels are easily tuned upon control of applied gate voltages. To
understand the Kondo effect and its importance in these systems, we need to comprehend
the behavior of the electrons and their interactions when confined in quantum dots.

Suppose we have a single level energy quantum dot ε0 hybridized to two metallic
reservoir under different chemical potentials, as shown in Fig. 2 extracted from (CRO-
NENWETT; OOSTERKAMP; KOUWENHOVEN, 1998). This configuration allows the
reservoirs to provide electrons to flow between them through the quantum dot respecting
the Pauli exclusion principle and the energies of the quantum dot. The energy µL and µR
(µL > µR) are the chemical potential of the left and right reservoir, respectively. If ε0 > µL,
the dot will not let electrons flow from one side to the other, which is not the case in Fig.
2, as we can see in A1 (ε0 < µL and µR, allowing them to flow from one side to the other).

In A1, the electron inside the device will produce a strong Coulomb repulsion (U)
preventing the occupation of another electron in the quantum dot energy level. Since the
Coulomb repulsion U plus the energy level ε0 in the quantum dot are greater than the
chemical potential level of the reservoirs, µL and µR (in other words U + ε0 > µL,R), then
a single electron will occupy the quantum dot. There will be not enough energy for double
occupation. Under these conditions, the transition of electrons between reservoirs is not
possible, thus no current will flow in this experimental condition (A1). This is the result of
a phenomenon called Coulomb Blockade (CB). However, at lower T , thermally activated
transport will be suppressed and only co-tunneling will occur due to quantum fluctuations.



3.2. Kondo Effect in quantum dots 43

Figure 2 – Virtual states due to Kondo resonance once we reach the characteristic energy
scale, Kondo Temperature (KBTK). This figure shows a single-level quantum
dot with energy ε0 connected to two reservoir µL and µR, where µL > µR > ε0.
In A1, we can see the occupied quantum dot level by a spin up electron.
Because of Coulomb Blockade (CB), another electron with spin down cannot
occupy this energy level, so there is no particle flow through it. In A2, we
reach the energy scale KBTK , allowing virtual states, this contributes for the
flow of electrons through reservoirs (A3). (CRONENWETT; OOSTERKAMP;
KOUWENHOVEN, 1998).

These quantum fluctuations are more relevant as compared to thermal ones, there will be
electronic transport between reservoirs, even if we are under CB regime, namely when the
repulsion is greater than the Fermi level. This is only possible thanks to virtual states,
accessible when we lower the energy scale of the experimental example and reach the
quantum regime (A2). This is analogous to the Kondo problem in magnetic impurities in
the sense that the interaction of the electron and the quantum dot can only occur when we
access the condition ε = KBTK . Under this configuration, the spin can interact with the
single energy level quantum dot due to quantum fluctuations. This allow the flow of the
electrons from left to right reservoirs thus increasing the conductance of the system (A3).

We conclude that there is a significant difference between Kondo in an impurity
embedded in a host material and due to quantum dots. In the latter, coherent processes take
place and is characterized by a Kondo resonance in the Fermi level, and as a consequence,
we observe the increase of the conductance of the system, even when CB is present. While
in the system described in section 3.1, there is an increase in the resistivity due to the
same nature of interaction, the Kondo resonance.

After the Kondo physics in the context of magnetic impurities, we have a better
understanding of it and how this very effect can be applied resulting in opposite effects,
the increase of resistivity in hosts doped with magnetic impurity and the increase of
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conductivity in quantum dots when we reach a characteristic energy scale. Kondo effect
can be explored in different contexts showing its vast scientific versatility.

When we have a host material such as Weyl semimetals, with a magnetic im-
purity embedded in it they will interact via hybridization function Γ. This function is
responsible for describing the communication between host and magnetic impurity and
will be extensively discussed in future sections since it is an important information to
obtain other properties such as temperature, density of states and magnetization. The
magnetic impurity is a local moment and the free electrons in the conduction band of
the host material will feel the presence of this local moment. If the material presents an
antiferromagnetic configuration in the host material, it will provide electrons capable of
screening the magnetic impurity so Kondo effect can emerge.

An impurity coupled to host materials containing quasiparticles, such as Weyl
SM, that present a strong particle-hole (PH) asymmetry is expected to have a pseudogap
Kondo. When we have a finite chemical potential or a broken IS we induce this kind of
phenomenon due to its asymmetric PH contribution (MITCHELL; FRITZ, 2015b). These
pseudogaps are point-like regions on the Fermi surface, and that is exactly what happens
in Dirac/Weyl systems, where we have these semimetals that are described by a DoS as
ρ(ω) ∝ |ω|r, where r = 2/J , where J is a topological number that will be discussed in
further detail later (TIMUSK; STATT, 1999; VOJTA; FRITZ, 2004; FRITZ; FLORENS;
VOJTA, 2006). We study the behavior of the DoS depending on the values of r = 2/J and
discuss the emergence of Kondo physics. In cases like the Dirac metal, where µ is finite,
providing free electrons to screen the impurity, which is well known in literature, we have
Kondo physics. In some special cases, even for PH symmetry and µ = 0, we show that by
breaking and increasing IS, we can provide electrons to screen the impurity, reaching the
pseudogap Kondo regime which was not yet described by the scientific community. We
are going to show in this work, using the model presented here, that pseudogap Kondo
emerges in MWSM and MDSM in PH symmetry due to the broken IS.
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4 Kondo effect in Dirac and Weyl Systems

In this chapter, we discuss in more details the object of this study. We first present
the Weyl and Multi-Weyl systems. The methods are rigorously presented in a chronological
order, to make it easy for the reader to follow the discussion. In sec. 4.1 we present the
Weyl systems and in sec. 4.2 we will see that there is a generalization of Weyl semimetals,
the so called Multi-Weyl semimetals (MWSM).

4.1 Weyl Systems

When we study Weyl systems, the first figures we see in articles are those cones
facing up against each other and touching in a single point, they represent the dispersion
relation of these materials, which is the energy of the bands. This point occurs and gives
the name semimetal, because we have a regime whether valence and conduction bands
touch in a single point, in a stable region. The double degenerate bands when we preserve
Time-Reversal and Inversion symmetries, which is equivalent to a Dirac semimetal or
metal depending on if chemical potential is zero or not. For instance, if we break TRS, by
applying an external magnetic field, the Dirac-like system split into a left and right handed
chirality cones characterizing Weyl systems, even preserving IS. For finite structures,
presenting surface states, if there is a degeneracy over the top of each cones, we have
something called Fermi-arcs. These surface states happens only in the condensed matter
context (WAN et al., 2011) and can be understood as the signature of Weyl systems.
When we consider the four nodes, composed of positive and negative chiralities, the total
momentum of the system is preserved. The right-hand chirality has ±p momentum while
the left hand chirality has ∓p momentum.

The first experimental observations of Weyl semimetals, in the context of condensed
matter, in a TaAs crystal, was recently observed (XU et al., 2015b). Using a technique
called angle-resolved photo-emission spectroscopy (ARPES), an experimental method
based on the photoelectric effect, they could observe surface states showing Fermi arcs of
the chiral cones for valence and conduction bands. Since then, the scientific community has
devoting great deal of effort studying and exploring these structures and this exotic effect
(JIA; XU; HASAN, 2016; LI et al., 2018; RAO et al., 2019). These characteristic cones in
the dispersion relation for Weyl semimetals when TRS is broken, in Fig. 3 for example,
can be deformed if we change the parameters of the Hamiltonian and change the exponents
of host electrons wave vectors, k, in other words, we can change the dispersion relation
due to manipulations in the model in order to obtain single Weyl, double Weyl (2-Weyl) or
triple Weyl (3-Weyl) systems. When we do that, we change the isotropic behavior on the
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energy of the system as shown in Fig. 4. Now, the cones are not symmetric in all directions
and we have what we call mult-Weyl systems (Fig. 4 b and c). The 2-Weyl semimetals
were found in HgCr2Se4 (XU et al., 2011; FANG et al., 2012) and SrSi2 (HUANG et
al., 2016) crystals and 3-Weyl semimetals were predicted in A(MoX)3 (with A = Rb, TI
and X = Te) (LIU; ZUNGER, 2017). Theoretical studies are also being conducted in the
direction of multi-Weyl (EZAWA, 2017; WANG; LIU; ZHANG, 2019; LÜ et al., 2019). In
order to contribute to Kondo physics in multi-Dirac and multi-Weyl systems and different
regimes. To this end, we choose a Hamiltonian model that allows to explore different
system families such as multi-Weyl metals and semimetals, whether breaking or preserving
TRS and IS, in order to understand the different regimes where Kondo emerges.

(a) (b)

Figure 3 – Dispersion Relation of the model Hamiltonian. (a) Dirac Semimetal (TRS = 0
and IS = 0) e (b) Weyl Semimetal breaking TRS only (TRS = 1 and IS = 0).
Since TRS is related to the magnetic field B, if TRS is broken we have B 6= 0.
This figure was reproduced using the model Hamiltonian presented in this work.

It should be emphasized that Weyl systems are massless Dirac systems that have
either or both TRS and IS broken. Because of the antiferromagnetic phase property of
some materials such as Na3Bi and Cd3As2 for Dirac systems and TaAs and NbAs in
case of Weyl systems, they can sustaining Dirac points (XIONG et al., 2015). We consider
a magnetic impurity that is coupled to these materials. Their aintiferromagnetic phase
will allow the host electrons to interact with the magnetic impurity forming a screening so
the Kondo physics can emerge.

Before addressing the main model we are interested in this work, we will discuss
the Kondo effect in a specific Hamiltonian proposed by Andrew Mitchell (MITCHELL;
FRITZ, 2015a). Upon comprehending this model, we were able to develop the methods
used in a more general case. For concreteness, the Dirac-Weyl Hamiltonian considered by
Mitchell, can be written as

Ĥ = ĤD + δĤ, (4.1)
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Figure 4 – The dispersion relation εk of a (a) Weyl semimetal J = 1, (b) a 2-multi-Weyl
semimetal J = 2 and (c) 3-multi-Weyl semimetal. Here we fixed ky = 0. Note
that both TRS and IS are broken in this case.

where

ĤD(~k) = vF τ̂z ⊗ ~k · σ̂ (4.2)

describes a bare Dirac material and δĤ is introduced to break the desired symmetry. In Eq.
(4.2) σ̂ and τ̂ are the Pauli matrices acting over the spin and orbital spaces, respectively,
and vF is the effective Fermi velocity. Following Mitchell, the perturbation term δĤ is
given by

δĤ =
(
~a · ~τ + a0τ0

)
⊗
(
~b · ~σ + b0σ0

)
, (4.3)

where ~a is the IS parameters, ~b is the TRS parameter, while a0 and b0 are constants.
Depending on the parameters of this Hamiltonian, the perturbation can lead to different
symmetries and, consequently, break or preserve both symmetries, break TRS and preserve
IS or preserve TRS and break IS. For instance, we have Dirac Metal if we preserve both
symmetries and Weyl semimetal if we break TRS and preserve IS if we have the presence
of ~b. Also, the spin and orbital spaces will ensure different configurations depending on
the combinations of their directions.

As an example, we consider the systems represented in Fig. 5. For a perturbation
δĤ = −µτ̂0 ⊗ σ̂0 (First line) we have a Dirac metal, where TRS and IS are preserved.
In this case, Kondo physics emerge once we have µ 6= 0, displacing the Fermi level to a
region where the contribution of free electrons can now screen the impurity. If we observe
the second line, where we have Dirac insulator (TRS and IS preserved), Kondo peak is
suppressed and a Free Local Moment appears, due to the lack of free electrons in the
Fermi level to screen the impurity. For δĤ = τ̂0 ⊗~b · ~σ we have a Weyl semimetal with
TRS broken while IS is preserved. Note that for this case, there is a symmetric behavior
of dispersion for ~k, characterizing the Weyl Semimetal where we do not have that single
sharp peak in the spectral density t(ω) characterizing Kondo. This is due to µ = 0 and so,
not enough electrons to screen the impurity and a polarized local moment emerges in t(ω).
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For the case in the last line, δĤ = aτ̂z⊗ σ̂0, we have a Weyl Metal. Here, TRS is preserved
while IS is broken because the parameter a that is associated with the orbital space. Since
IS displaces the nodes, we have contributions as if we are changing µ compared to Dirac
metal, depending on the manipulation of the parameters, a pseudogap Kondo emerges in
this regime.

In the case of Fig. 5 we have a summary of the different perturbations that leads
to different configurations of the Hamiltonian. We have six different models depending
on the perturbation. Each one has its dispersion relation given by E as a function of kx
and ky, fixing kz. The Density of States (DoS), ρσ(ω) for a given spin σ and the spectral
function t(ω) for T = 0K. The NRG band cutoff is established as D = vF = 1.0 and
Coulomb repulsion U = 0.3. The impurity symmetry is set to be particle-hole symmetry
η = −2ε/U = 1.0 and the coupling term or hopping term V = 0.2, for all except the fifth
case, where the particle-hole symmetry is set as η = 1/2 and the hopping term varies
V = 0.420, 0.479, 0.520 as represented in Fig. 5 for the Asymmetric Local Moment (ALM),
Nontrivial Interacting Critical point (ACR) and Asymmetric Strong Coupling (ASC),
respectively. The chemical potential is set to be µ = −1/3 for the first case, m = 0.1 for
the second, bz = 0.10 for the cases 3, 4 and 5 and a = 1/3 for the last case. it is worth
mentioning that we also obtained the spectral function t(ω) with the NRG, using the
methods described in section Sec. 5.2.

From this model, we reproduced some important work in literature (MITCHELL;
FRITZ, 2015a) and was the beginning of the discussion of Kondo in Weyl systems, which
we are not going to present here only mentioning that our work started with the reliability
test via reproducing what was well established. Based on this study, comprehending
the steps from the model to the numerical implementation, we developed the numerical
methods for the the multi-Weyl model with another more general Hamiltonian. However,
this was a very important step for the understanding of symmetry breaking methods and
how to manipulate variables of the model in order to implement the numerical tools to
do so in a more general case. The contribution in this present work is to explore beyond
1-Weyl metals and semimetals and explore where those cases presented in Fig. 5 are not
symmetric cones anymore, in other words, when kx and ky do not behave like kz, distorting
the Weyl cones.

4.2 Multi-Weyl Semimetals

From a theoretical point of view, multi-Dirac/Weyl systems are extensions of the
Dirac/Weyl systems, more precisely, a generalization of the massless Dirac and Weyl cases.
This new property of these materials can be vastly explored since it is a novel subject on
the scientific community. From this study, we mainly explore how Kondo physics emerges
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Figure 5 – Six possible cases related to the nature of the perturbation on the first column,
the Dispersion relation on the second, DoS on the third and spectral function
on the fourth column (MITCHELL; FRITZ, 2015a).
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for different regimes of the model Hamiltonian.

The multi-Dirac/Weyl semimetals are characterized by abundant topological charge
or topological invariant. Dirac andWeyl semimetals, for example, have symmetric dispersion
relation with respect to Fermi Level plane. When it loses its symmetry or when we have
anisotropic energy dispersion, it leads to an increase of topological charge, a characteristic
of multi-Weyl and multi-Dirac systems. The topological charge only assumes discrete set
of numbers and is related to the topological defects on the structure of the system such as
strains in crystalline structure. The charge of a solved system is called the winding number
and is represented by J and when the this number is two we have a 2-multi-Dirac/Weyl
case and if it is three, the system is named 3-multy-Dirac/Weyl one, and so on. Since this
topological property is related to the defects on the structure of the material, quite often
because of its boundary conditions, we have spatial limitations on its dimensions, so we
are going to stick to a 3-dimensional winding number (LÜ et al., 2019; FANG et al., 2012).

We are not going to extend this section since it is not the object of this work to
explore the topological concepts but only apply them to the systems of interest. For a
more complete discussion of this theme, I suggest the following Ref. (J.THOULESS, 2012).

In the next section, we will consider a model capable of describing multi-Dirac and
Weyl systems with winding number up to 3. The winding number appears as a parameter
of the Hamiltonian and can be simply manipulated, regardless of possible difficulties in
implementing it experimentally.

4.3 Model

In this section we explore the model that allows us to develop the multi-Weyl
system. The multi-Weyl and multi-Dirac metals and semimetals are due to a non linear
anysotropy in dispersion relation associated with a topological charge parameter J in the
Hamiltonian, as we discussed in Sec. 4.2. This parameter is responsible for changing from
Weyl system when J = 1, to multi-Weyl cases, more specifically double-Weyl when J = 2
and triple-Weyl when J = 3 or simply multi-Weyl, noticing we already have either TRS
or IS broken or both, leading to an anysotropy in energy since it is a function of the three
directions on the wave vector k.

For completeness, the total Hamiltonian that describes our system can be split into
three terms as H = H0 + Himp + HV, where H0 represents the clean multi-Weyl/Dirac
fermion system, Himp describes the impurity Hamiltonian, and HV accounts for the
hybridization between them. Introducing the spinor

Ψ†k = (c†k+↑, c
†
k+↓, c

†
k−↑, c

†
k−↓), (4.4)
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in which c†kps creates a fermion with momentum ~k, chirality ±p, as defined in Chapter 2.2,
and spin s =↑, ↓, we can write

H0 =
∑

k
Ψ†kHkΨk

, with

Hk = τz ⊗

v⊥k0

(
k̃J−σ+ + k̃J+σ−

)
+ vzkzσz −Q0σ0


−vzQτ0 ⊗ σz − µτ0 ⊗ σ0. (4.5)

Here, µ is the chemical potential, it will tell us if the material is a metal or a semimetal,
for zero temperature, the chemical potential is the Fermi energy. v⊥ and vz, are effective
velocities perpendicular and parallel with respect to z, respectively, and k̃± = (kx± iky)/k0

with k0 being system-dependent constant. These are parameters of the Hamiltonian that
we kept constant and equal to one. Of key importance in this work are the parameters
Q and Q0, responsible for breaking time reversal (TRS) and inversion (IS) symmetries,
respectively. These ones are responsible for giving us the Dirac or Weyl systems, depending
on how we choose the values. These values were explored with detail and will be exposed in
the results section. The exponent J in Eq. (4.5) represents the winding number associated
with the multi-Weyl/Dirac topological charge (FANG et al., 2012) and is responsible for
the anysotropy in the dispersion relation. As you can see it changes the exponents of kx
and ky. If we keep J = 1, both kx and ky have the same dimension of kz, leading to the
usual cases of Dirac/Weyl systems, that is not true for J > 1, that will allow us to access
the multi cases. Finally, σ and τ are Pauli matrices acting on the spin and chirality sectors
of the Hilbert space, respectively, with σ0 and τ0 being the corresponding identities. To
simplify the notation, we have introduced σ± =

(
σx ± iσy

)
/2.

The impurity Hamiltonian in turn can be written as

Himp =
∑
s=↑,↓

(εd − µ
)
d†sds + Und↑nd↓, (4.6)

where d†s(ds) creates (annihilates) an electron in the impurity with spin s and energy εd
at the impurity site. ndσ = d†σdσ is the impurity number operator and U is the Coulomb
interaction repulsion energy.

Assuming, for simplicity, that the impurity hybridizes equally with all bands with
a ~k-independent matrix element V 1, the Hamiltonian HV can be written as HV =∑

k(Ψ†kV̂Ψd + H.c), where Ψ†d = (d†↑, d
†
↓) and V̂ is a matrix given by (LÜ et al., 2019)

V̂ =
V 0 V 0

0 V 0 V

 . (4.7)

1 Assuming k-independent matrix element V implies a point-like hybridization between the impurity
and host orbitals. A more realistic approach to a specific material should account for the structure of
the orbitals involved in the hybridization.
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To access the low-energy physics of the full system we employ the NRG method
which allows us to compute the impurity spectral and thermodynamic properties (BULLA;
COSTI; PRUSCHKE, 2008). Within this method, the entire effect of the host material on
the impurity is given by the so-called hybridization function, Γ(ω). To obtain this quantity,
we define local Green’s function (NOLTING; BREWER, 2009)

Ĝimp(ω) =
[
(ω − εd)σ0 − Σ̂(I)(ω)− Σ̂(0)(ω)

]−1
, (4.8)

where Σ̂(I)(ω) and Σ̂(0)(ω) are the interacting and hybridization self-energies. The latter
accounts for the effect of the host fermions on the impurity and is formally given by

Σ̂(0)(ω) =
∫ dk

(2π)3 V̂ G
host
k (ω)V̂ †, (4.9)

in which
Ĝhost

k (ω) = [ωI−Hk]−1 . (4.10)

In spherical coordinates, kx = k sin θ cosφ, ky = k sin θ sinφ, and kz = k cos θ, the Green’s
function (4.10) can be recast in the matrix form

Ĝhost
k (ω) =


g+,Q0,Q(k, θ) −e−iJφFQ0,Q(k, θ) 0 0
−eiJφFQ0,Q(k, θ) g−,Q0,Q(k, θ) 0 0

0 0 g−,−Q0,−Q(k, θ) e−iJφF−Q0,−Q(k, θ)
0 0 eiJφF−Q0,−Q(k, θ) g+,−Q0,−Q(k, θ)

 .

In the above we have defined

g±,Q0,Q(k, θ) = 1

ω + µ+Q0 ∓ vz(k cos θ −Q)− k2
0v

2
⊥(k̃ sin θ)2J

ω+µ+Q0±vz(k cos θ−Q)

(4.11)

and

FQ0,Q(k, θ) =
k0v⊥

(
k̃ sin θ

)J
k2

0v
2
⊥

(
k̃ sin θ

)2J
+ v2

z(Q− k cos θ)2 − (µ+Q0 + ω) 2
. (4.12)

With these expressions, the integrand of Eq. (4.9) becomes

V̂ Ĝhost
k (ω)V̂ † = V 2

 AQ0,Q(k, θ) e−iJφBQ0,Q(k, θ)
eiJφBQ0,Q(k, θ) A−Q0,−Q(k, θ),


(4.13)

where AQ0,Q(k, θ) = g+,Q0,Q(k, θ) + g−,−Q0,−Q(k, θ) and BQ0,Q(k, θ) = F−Q0,−Q(k, θ) −
FQ0,Q(k, θ). Transforming the integral (4.9) into spherical coordinates, it is easy to see
that the off diagonal terms vanish under integration over the azimuthal angle φ, while the
remaining diagonal terms can be written as

Σ(0)
s (ω)= V 2

4π2

∫ ∞
0
k2dk

∫ π

0
dθ sin θAsQ0,sQ(k, θ, ω). (4.14)
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On the right hand side of the expression above, s = +1 and −1 for spin ↑ and ↓, respectively.
We ask the reader not to mistake the s in AsQ0,sQ(k, θ, ω) for spins but only the signs
that multiplies Q and Q0. For practical purpose we introduce a cutoff kc to truncate the
integral over k 2.

Within the NRG approach, the effect of the host material on the impurity and
entirely accounted for by hybridization function defined as

Γs(ω) = −Im[Σ(0)
s (ω + i0+)]. (4.15)

The integration in Eq. (4.14) is rather complicated and, in general, cannot be performed
analytically. Therefore, we solve it numerically via the introduction of the integrals of
Eq. (4.14) in any numerical software capable of calculating it. Having the numerical results
for Γs(ω) we apply the standard numerical logarithmic discretization scheme described in
Ref. (BULLA; COSTI; PRUSCHKE, 2008).

To get some insight on what we expect from our numerical results for the Kondo
physics, it is instructive to take a close look at the structure of the hybridization function
in the various regimes of the Hamiltonian model. This will allow us to compare the Kondo
regimes expected here with those already known in the literature. For a given set of
parameters of the host Hamiltonian, the contribution for Γs(ω) is associated to the four
energy bands of the clean multi-Weyl/Dirac node system [obtained upon diagonalizing the
Hamiltonian (4.5)],

εhs~k = h
√
k2

0v
2
⊥k̃

2J
⊥ + v2

z (Q− skz) 2 − sQ0 − µ. (4.16)

Here, k2
0k̃

2
⊥ = k2

x + k2
y, h represents conduction (+) and valence (-) bands and s = ± is

the quantum number resulting from linear combinations of the original spin and chirality
quantum numbers (we advise the reader to be careful not to confuse these sub-indexes
in the dispersion relation with quantum numbers defined above. Even though these are
related to quantum numbers, the choice of indexes are merely illustrative, having the
purpose to tag each band.). These bands are shown in the three upper layers of Fig. 6.
Each of these layers corresponds to a given value of J indicated on the left hand side of
the figure, while a given set of Q and Q0 is indicated by the pair (Q,Q0) placed at the
top of each column.

In first column of Fig. 6, we have the degenerated conduction and valence bands
once we preserve both TRS and IS, (0,0) respectively. The column starts with J = 1 and
2 This is the cutoff, more like a limitation of the method. The ideal case would have to be integrated over

all space and see the contribution of it, however the numerical method cannot perform an integration
from −∞ to +∞, so we have to truncate it with this parameter. It is worth noticing that kc is
problematic because the numerical method has a hard time handling with it. We choose the cutoff kc

such that the total density of states of the host electrons, normalized within [−D,D] and calculated for
Q0 = Q = 0, does not change significantly upon a further increase of kc. Note that D is an ultraviolet
energy cutoff (imposed independently from kc) that establishes a finite bandwidth for the host material.
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Figure 6 – Energy bands vs kx and kz (ky = 0) (top three layers) and hybridization vs
energy for different values of J (lowest layer). The different columns correspond
to different values of Q and Q0 indicated by the pairs (Q,Q0) at the top of
the columns. The dashed gray vertical lines in the lowest panels represent the
chemical potential, here set at µ = 0. Other parameters are k0 = v⊥ = vz = 1.

if we go back to the Hamiltonian (4.5) and to the dispersion relation (4.16), the momentum
kx, ky and kz have the same value of exponents when J = 1, so we have symmetric valence
and conduction bands with respect to kxkz plane. For J = 2, we can see that the nodes
are not symmetric in kxkz plane anymore and the asymmetry is even larger for J = 3 in
the third line. In the second column of Fig. 6, we break TRS and preserve IS, (-0.1,0)
respectively. The negative sign in Q is due to our magnetic field, B = −vzQ [we are going
to discuss it in Sec. 4.4]. For this configuration, there is a break on the degeneracy and we
see four nodes, the conduction and valence bands on the right (red and green, respectively),
valence and conduction on the left side (yellow and blue, respectively) (the inversion of
valence and conduction bands are described by Weyl’s solution to Dirac’s Equations). The
right side nodes have positive chirality while the left side nodes have negative chirality.
The asymmetry in the dispersion relation increases with the increase of J , in fact, the
first line where J = 1, we will have symmetric dispersion relation. The second line, where
J = 2, we have an asymmetry in dispersion relation that increases with J = 3 on the third
line. For the third column in Fig. 6, we preserve TRS and break IS, (0,0.1) respectively.
We see a displacement of the nodes merging each other as the IS break causes the nodes
to displace the red-green nodes to move vertically down while the yellow-blue nodes will
move vertically up breaking the degeneracy. The last column in Fig. 6, we break both
symmetries so we observe a displacement of the red-green nodes moving right and down,
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while the yellow-blue nodes move left and up.

The lower layer of Fig. 6 shows the hybridization function of spin up for different
representative instances of the multi-Weyl and Dirac node cases studied here. We only
plot the spin up Γ↑ because it is degenerate to the Γ↓. The dots on each curve are the
numerical points. We have black red and green curves for J = 1, 2 and 3, respectively. The
curves obey the relation ρ ∝ |ω|2/J . When we break TRS and preserve IS, there is no
change in Γ↑, however if we break IS in any case, there is a finite hybridization function
in its lower point (Γ(ω = 0) 6= 0) that increases with J . Since there is a similarity between
Γ and the DoS, this gap will also be present in the DoS allowing pseudogap Kondo.

In the next section we will discuss in detail the various features of the hybridization
function alongside the discussion of the Kondo physics dredged up by the NRG calculations.

Our first approach to these multi-Weyl and multi-Dirac systems was using an
analytical description, however we encountered major difficulties and the problem had no
solution due to its complexity in solving for a wide variety of parameters and degrees of
freedom such as s and h.

4.4 Spin-Polarization in Weyl Semimetals µ = 0

The model Hamiltonian (4.5) has a term that can be understood as a magnetic
field. This term, by comparison with the behavior of the Zeeman Effect 〈Sz〉 is presented
in our model as the magnetic field B = −vzQ. Also, we can control whether kx, ky and kz
is zero or not by adopting various values for them. Our model is three- dimensional and
since we are plotting a two dimensional view of the dispersion relation, we will fix two
and the other will be our variable. These results are qualitative and the parameters were
chosen just for plotting the magnetization, then some of those will differ from previous
values. A variety of behavior in the bands will emerge as we manipulate the two other
momenta that are fixed. We can see that 〈Sz〉 changes its value for each band smoothly
when either of the two fixed parameters are finite. We also tested different combinations
of symmetry breaking, as you can see in the following pictures where we preserve IS
and break TRS, preserve TRS and break IS, break both symmetries or preserve both.
We have four distinct cases for each plot depending on the combination of chirality and
valence/conduction bands. The quantum numbers in the dispersion relation εsh (s and h)
stands for chirality and valence/conduction bands, respectively. Remember that here we
changed the indexes. This will give us the tags for each band in the plots. For instance,
ε++ is the conduction band with positive chirality, while ε−− is the valence band with
negative chirality. We also have the conduction band with negative chirality, ε−+ and the
valence band with positive chirality, ε+−. The bands are given by the blue/red colors,
where blue means negative magnetization, while red is positive. A colormap is displayed
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on the right side of each plot with the respective value of 〈Sz〉. The cases we are about to
study are Weyl systems only, J = 1 and can be extend for J = 2 and 3 in future studies.
The behavior of these bands are associated with the Eq. (4.16). Note that since we will
have terms inside the square root that are not zero, the dispersion relation does not go to
zero in its lowest point. We should emphasize that it is not a gap but a kinetic energy due
to finite momentum of the electrons. The following study will analyze the plot of dispersion
relation in terms of a specific momentum and keeping the other two as constants.

The expression that allows us to calculate the magnetization 〈Sz〉 can be written as

〈Sz〉 =
∑
sh

〈sh|Ŝz|sh〉, (4.17)

where |sh〉 are the diagonal eigenvectors of Eq. (4.5) and the magnetization matrix can be
expressed as

Ŝz = σ0 ⊗ σz, (4.18)

σ0 and σz are Identity and Pauli matrix, respectively.

In the first case, we break TRS and IS and plot εsh as a function of kz, so kx and
ky will be constants. Note that our model Hamiltonian (4.5) is symmetric in kx and ky,
meaning that switching kx and ky does not change the results, in other words, our model
is symmetric for rotations in the plane kxky. The parameters kx and ky add two more
degrees of freedom to the system and for this reason we have four plots for each case of
each set of symmetries. For our first case, in Fig. 7, TRS and IS are broken, so we have a
non degenerate Weyl semimetal with a displacement in both directions, horizontally and
vertically. When kx and ky are zero, we have constant magnetization on each band, which is
also equivalent to say that the Hamiltonian is diagonal, otherwise the magnetization would
vary in each band. The mix between momenta, due to the Hamiltonian, is responsible for
the behavior of the magnetization varying for each band. Since 〈Sz〉 is associated with the
magnetic field, B = −vzQ, if we change the sign of Q we also change the magnetization in
the bands, in terms of our plots, the positive magnetization (red in colormap representation)
will become negative (blue in colormap representation), and vice-versa.

Note that broken IS contributes for the unbalance of the energy bands. We can see
that one band contributes more than the other due to this asymmetry. We can preserve
the TRS and analyze the dispersion relation ε(kz) while breaking only IS. In this case, we
have Fig. 8, where the preservation of TRS kept the bands centered, and the displacement
is only in the vertical direction. Again, cases (b) and (c) are identical due to the symmetry
of the Hamiltonian for kx and ky. Comparing the cases (b) and (c) to the case (a), we
observe that the distance between bands is greater for greater contributions, in this case,
when we have kx = ky = 1. In case (d), we notice that 〈Sz〉 is constant in each band since
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(a) kx = 1 and ky = 1 (b) kx = 1 and ky = 0
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Figure 7 – Dispersion relation εsh as a function of kz for TRS and IS broken, where Q = 1
and Q0 = 0.5. We also have v⊥ = vz = 1, k0 = 1 and µ = 0. The magnetization
〈Sz〉 is given by the colormap, where blue is negative and red is positive. Since
kz is our variable, kx and ky are fixed parameters that will give us four plot
combinations, depending whether it is zero or not. We have (a) kx = 1 and
ky = 1, (b) kx = 1 and ky = 0, (c) kx = 0 and ky = 1 and (d) kx = 0 and
ky = 0. Note that cases (b) and (c) are equivalent, since the Hamiltonian is
symmetric in the xy-plane.

the Hamiltonian is diagonal and the bands of different magnetization touch each other
points equivalent to the value of ±Q0. To make it easier for visualization, lets think about
the Hamiltonian in terms of matrix and divide it into two blocks, the upper block is the
positive chirality and the bottom block is the negative chirality. Each block can be divided
into conduction and valence terms in its diagonal. This way, we can have a picture in mind
of how εsh is divided and we can conclude that the conduction and valence, positive and
negative chirality bands are exchanged, ε++ and ε−− are at the same side while ε+− and
ε−+ are on the other.

We also have the dispersion relation in terms of kz, where we break only TRS,
preserving IS. As we know, a broken TRS gives the bands a displacement in the horizontal
direction. Note that the cases in Fig. 7, 9 and 8, where εsh(kz), are equivalent in terms
of 〈Sz〉, and we can conclude that this term does not depend on the symmetries we
are working with, as long as we have Weyl semimetals, in other words, if we break one
symmetry we will have the magnetization of the bands. In these three cases, it is clear
that the greater the contribution of the fixed momentum the greater the kinetic energy
and the distance between valence and conduction bands for each chirality.

We can also do the same study if we keep ky and kz as parameters and plot the
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(a) kx = 1 and ky = 1 (b) kx = 1 and ky = 0
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Figure 8 – Dispersion relation εsh as a function of kz for TRS preserved and IS broken,
where Q = 0 and Q0 = 0.5. We also have v⊥ = vz = 1, k0 = 1 and µ = 0. The
magnetization 〈Sz〉 is given by the colormap, where blue is negative and red is
positive. Since kz is our variable, kx and ky are fixed parameters that will give
us four plot combinations, depending whether it is zero or not. We have (a)
kx = 1 and ky = 1, (b) kx = 1 and ky = 0, (c) kx = 0 and ky = 1 and (d) kx = 0
and ky = 0. Note that cases (b) and (c) are identical, since the Hamiltonian is
symmetric in the xy-plane. We see a displacement only in the vertical direction,
since the IS is broken and TRS is preserved. We also notice that the distance
between bands is greater when we have a contribution of both parameters kx
and ky, and is smaller when we have only one of them.

dispersion relation in terms of kx that is equivalent to the study where we keep kx and kz
as parameters and analyze the dispersion relation in terms of ky. As we already discussed,
the model is symmetric for kx and ky. For broken TRS and IS, we have the dispersion
relation in the x direction. Because of a different set of symmetries due to the choice of
the parameters, a different behavior will emerge. Note that, in Fig. 10, even though some
cases are similar, they are not equivalent, since the symmetries of the model Hamiltonian
are not present like in the previous cases.

Another case would be to preserve IS and break TRS. For this specific case, when
we place the parameter kz = 0, we have a degeneracy for the bands of opposite chirality,
for valence and conduction bands. Since we choose to plot the dispersion relation in terms
of kx, the plane we are analyzing does not allow us to observe the effects of TRS break
when we keep this set of parameters.

For the last case, we have TRS preserved and we now break IS. This is an exotic
case where the manipulation of the parameters will give us a small change in the kinetic
gap for cases (a) and (c), and there will be distinct behavior for the cases (b) and (d), where
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(a) kx = 1 and ky = 1 (b) kx = 1 and ky = 0
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Figure 9 – Dispersion relation εsh as a function of kz for broken TRS and IS preserved,
where Q = 1.0 and Q0 = 0. We also have v⊥ = vz = 1, k0 = 1 and µ = 0. The
magnetization 〈Sz〉 is given by the colormap, where blue is negative and red is
positive. Since kz is our variable, kx and ky are fixed parameters that will give
us four plot combinations, depending whether it is zero or not. We have (a)
kx = 1 and ky = 1, (b) kx = 1 and ky = 0, (c) kx = 0 and ky = 1 and (d) kx = 0
and ky = 0. Note that cases (b) and (c) are identical, since the Hamiltonian
is symmetric in the xy-plane. We see a displacement only in the horizontal
direction, since the TRS is broken and IS is preserved. We also notice that
the distance between bands is greater when we have a contribution of both
parameters kx and ky, and is smaller when we have only one of them.

the magnetization is zero. It should be emphasized that this is not indeed a gap but only a
cut in the dispersion relation, and since we are plotting an hyperfigure [a four-dimensional
figure ε(kx, ky, kz)], we should fix some parameters in order to present the following plots,
from where this gap emerges. Case (d) behaves like case (d) of Fig. 8, although in the
present case, the magnetization vanished due to the choice of the parameters and the
symmetries we are considering.

This is a brief study on the magnetization behavior for bands where we manipulate
symmetries and parameters of the system in order to have different regimes for the bands.
This study contributed for the understanding of the momentum in each band, whether it
is valence or conduction. We see the change of magnetization, or in other words, the spin
and this is in agreement with the literature where we know that the momentum must be
conserved (ARMITAGE; MELE; VISHWANATH, 2017).
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(a) ky = 1 and kz = 1.5 (b) ky = 1 and kz = 0
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(c) ky = 0 and kz = 1.5 (d) ky = 0 and kz = 0
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Figure 10 – Dispersion relation in the x direction, where TRS and IS are broken, Q = 1.0
and Q0 = 0.5, respectively. We also have v⊥ = vz = 1, k0 = 1 and µ = 0. The
magnetization 〈Sz〉 is given by the colormap, where blue is negative and red
is positive. Since kx is our variable, ky and kz are fixed parameters that will
give us four plot combinations, depending whether it is zero or not. We have
(a) ky = 1 and kz = 1.5, (b) ky = 1 and kz = 0, (c) ky = 0 and kz = 1.5 and
(d) ky = 0 and kz = 0.

4.5 A brief Explanation on the cutoff kc

As you may have noticed, our numerical method depends on the region of the
momentum space we consider for our calculations. Our numerical method relies on the
integration on the momentum kx, ky and kz, since it is a three-dimensional model. So
we have to integrate over this three dimensional momentum space to find the quantum
propagator, that in turn will allow us to find the hybridization matrix, as we discussed in
4.3. The cutoff is responsible to tell us the portion of the band we are analyzing. Therefore,
if we want to complete description of the problem we should consider the entire band, but
that is not possible due to numerical limitations. For this reason, we introduce kc which is
a limitation in our method but that allow us to perform the numerical calculations. In
order to know what value or values of kc we should consider, we compare our method with
the literature for some well known case.

When we calculate the host DoS using any kc, we known that the Weyl system
DoS, when we break IS should go to zero in its minimum point. The valence band behaves
just like the conduction one, we calculate the two distinct chirality s = ±. We should also
consider that our method may not handle well the low energy cases for some very large kc,
also, small ones may not reproduce the physics we are interested to study.
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(a) ky = 1 and kz = 1.5 (b) ky = 1 and kz = 0
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(c) ky = 0 and kz = 1.5 (d) ky = 0 and kz = 0
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Figure 11 – Dispersion relation in the x direction, where TRS is broken and IS is preserved,
Q = 1.0 and Q0 = 0, respectively. We also have v⊥ = vz = 1, k0 = 1 and µ = 0.
The magnetization 〈Sz〉 is given by the colormap, where blue is negative and
red is positive. Since kx is our variable, ky and kz are fixed parameters that
will give us four plot combinations, depending whether it is zero or not. We
have (a) ky = 1 and kz = 1.5, (b) ky = 1 and kz = 0, (c) ky = 0 and kz = 1.5
and (d) ky = 0 and kz = 0. Notice the degeneracy in the cases (b) and (d) due
to the plane we are analyzing our data and the set of parameters we choose,
where kz = 0. For the cases (a) and (c), the magnetization is positive in the
conduction band and negative in the valence band. For the cases (b) and (d)
for positive chirality we have inverted magnetization, where it is positive in
the valence band and negative in the conduction band. While in the negative
chirality, the valence band has negative magnetization while the conduction
band the magnetization is positive.

We can see in Fig. 13 using (4.5), that increasing kc does not change significantly
the DoS. The distance between the minimum point in DoS increases slightly with the
significant increase in kc. We know that when we break IS, there will be a gap in dispersion
relation (ε). This gap in ε means that we do not have electrons with such energy, and in
DoS we see as ρ going to zero. For this reason, we wish to see in Fig. 13 the curve going to
zero in ω in Fig.13 as much as possible. This shows us that the optimum value is kc = 5,
as we can see in Fig. 13.

In some other tests, we calculate the dispersion relation to understand how it
behaves for different values of kc. There is relation between DoS and dispersion relation
given by

ρn(ε) =
∫
Sn(ε)

dS

4π3
1

|∇εn(k)| . (4.19)
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(a) ky = 1.5 and kz = 1.5 (b) ky = 1.5 and kz = 0
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(c) ky = 0 and kz = 1.5 (d) ky = 0 and kz = 0
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Figure 12 – Dispersion relation in the x direction, where TRS is preserved and IS is
broken, Q = 0 and Q0 = 0.50, respectively. We also have v⊥ = vz = 1, k0 = 1
and µ = 0. The magnetization 〈Sz〉 is given by the colormap, where blue
is negative and red is positive. Since kx is our variable, ky and kz are fixed
parameters that will give us four plot combinations, depending whether it
is zero or not. We have (a) ky = 1 and kz = 1.5, (b) ky = 1 and kz = 0, (c)
ky = 0 and kz = 1.5 and (d) ky = 0 and kz = 0. Notice that cases (a) and
(c) are similar differing only on the distance between conduction and valence
bands of same chirality. This is due to the fact that preserving kz = 1.5 in
both cases and changing only ky only changes contribution to kinetic energy
of each band. For the case (b) and (d) the magnetization is zero, while in (d)
is similar when we keep the same symmetries but analyze the dispersion in
terms of kz.

(a) s = + (b) s = −

-1 -0,5 0 0,5
ω

0

0,5

1

1,5

2

ρ
(ω

)

k
c
=5

k
c
=10

k
c
=20

k
c
=30

k
c
=40

-1 -0,5 0 0,5
ω

0

0,5

1

1,5

2

ρ
(ω

)

k
c
=5

k
c
=10

k
c
=20

k
c
=30

k
c
=40

Figure 13 – DoS ρ(ω) for kc = 5, 10, 20, 30 and 40. The Hamiltonian parameters are
v⊥ = vz = 1, k0 − 1, J = 1, µ = 0. We also break TRS and IS, Q = 1 and
Q0 = 0.1, respectively. We use 20 points for each curve. In case (a) the band
has positive chirality (s = +), while for case (b) we have negative chirality
(s = −). The valence and conduction bands are degenerate.
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The DoS is equivalent to the hybridization function. Despite the fact that the hybridization
function we have the products with the matrix V̂ , it behaves like the DoS. We can conclude
that the hybridization matrix is influenced by the choice of kc. We have seen that, for
a small region of k, the dispersion relation continues to exhibit parabolic energy, as the
density of states is linked with the inverse of the module of the gradient of the dispersion
relation, implying that if the dispersion relation is a plane, that is, a constant, then
the gradient will be null, which leads to a singularity in the moment. However, as our
dispersion relation remains parabolic for the adopted parameters, we saw that the DoS
does not have singularity for certain values of kc, but this does not prevent us from having
cases where the dispersion relation is flat and that the DoS diverges. This will happen
for example, when v⊥ = 0 or kx and ky are zero. In this case, the dispersion relations are
planes (showed as lines for our case, since we are plotting only ε as function of only one
momentum) and the gradient is zero. We will discuss this behavior in Sec. 6, where we
plot some specific cases where some momentum are zero in dispersion relation.

We can conclude that the choice of an optimal value of kc will allow a better
description of the problems we describe in this chapter. For our study, the region considered
due to the choice of the cutoff of the band, permitted us to reproduce the well known
cases in literature. This is sufficient to ensure the reliability of the results provided from
our work. The next natural step of this thesis is to find a method capable of handling
this limitation. It would be of great use to find a way to avoid work with the cutoff, this
would give us a more complete description of Weyl and Multi weyl systems. After finding
the best kc for our numerical integration method, we keep this value (kc = 5) for all the
results presented in this work.
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5 Methodology

In this part of the journey we will describe the theoretical approach that led
to a numerical method to solve the Kondo problem exactly. We will try to provide a
trustworthy description of Weyl and multi-Weyl semimetals (µ = 0) and metals (µ 6= 0) and
the methods that allow us to perform calculations and study these materials numerically
using the NRG approach. The numerical renormalization group comes from a theory called
Renormalization Group (RG) and receives the name, called the Numerical Renormalization
Group (NRG). In the following we will give you a brief description of the RG and the
NRG methods. Since it is not our propose to give a thorough digression on the method,
there is no need for exhaustive and prolix description of something that were already
vastly discussed in the literature (GONZALEZ-BUXTON; INGERSENT, 1998; ŽITKO;
PRUSCHKE, 2009; BULLA; COSTI; PRUSCHKE, 2008; HEWSON, 1993).

5.1 The Renormalization Group
In the previous chapter we have discussed the treatment of the Kondo effect using

perturbation theory, and how problematic it can be. It was shown that a more robust
method is necessary to deal with this problem. The north-American physicist Philip
Warren Anderson, laureated with the Nobel Prize in 1977, proposed a model Hamiltonian
to describe magnetic impurities hosted in metals, called Anderson Impurity Model described
by

H =
∑
k,σ

εkc
†
k,σck,σ +

∑
σ

εdd
†
σdσ + Ud†↑d↑d

†
↓d↓ +

∑
k,σ

Vk(d†σck,σ + c†k,σdσ), (5.1)

where c†k,σ and ck,σ are creation and annihilation operators for conducting electrons in
host materials with momentum k and spin σ, respectively, d†k,σ and dk,σ are creation and
annihilation operators for electrons in the magnetic impurity energy level. The Coulomb
repulsion between electrons in the magnetic impurities is U and Vk gives the interaction
between host and magnetic impurity, or the hybridization between them. Together with
Eq. (5.1), Keneth Wilson, an American theoretical physicist, proposed the Numerical
Renormalization Group method specifically to solve the Kondo problem. In few words,
the idea consists in a recursive rescaling of the Hamiltonian parameters that allow us
to avoid the divergences that are present in the Kondo problem. In this problem, and
many others presented in physics and science in general, the many-body interactions take
place in a broad range of the energy scale, there are very fast energetic particles and also
low energetic ones in the same system. The conduction electrons of the host system in
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question vary from several electron-Volts (eV ) to values near the scale of energy 10−4eV ,
the equivalent to few Kelvin. The Kondo effect occurs at very low energy scale, however
all energy scales matter equally. The arising question is then how to come up with a
method that treats the infrared limit and also takes into account the influence of high
energy scales that also influences the low-temperature behavior of the system. The crucial
idea of this method consists of, instead of considering the fine details of the model for
high energy, like the conduction band width, we go all the way to the lower energy scales
by considering the contributions of these small energies and grouping them in intervals
and analyzing their contributions separately. It is a rescaling in energy to get a specific
regime [see Fig. 14(a)]. This way, in a perturbative approach of some kind, we take into
account the high energy effects. This is possible because the parameters of the Hamiltonian
can be reproduced at smaller scales compared to the conduction band cutoff D, so we
can consider smaller energy regimes of the system until we reach even lower scales also
compared to D (We should emphasize that all scales are set based on D, the band cutoff).
For example the Kondo regime, the model can be described by the fixed point of this
Hamiltonian where the model tends to and we say it belongs to the same Universality
Classes. These collections of properties that share this invariant property has a specific
energy scale. Although, to be more precise, Universality class are defined by a set of critical
exponents in the thermodynamical limit. This Universality implies that the behavior of
these systems at low energies, consequently, low temperature behaviors are independent of
the fine details of the high temperature model.

The Renormalization Group can be applied to a model to attain its Universalities of
the low energy scales, doing so, we rescale the energy through a reduction in the conduction
band width, D → D′ = D/λ, where λ > 1. After that, we integrate over the degrees of
freedom in the energy interval [D/λ,D]. This will change the Hamiltonian, H(D)→ H ′.
We then rescale the energy back, such that ω = λω′ (where ω is the variation of energy in
the band interval [−D,D]). The new Hamiltonian can be written as H(D/λ) = λH ′. This
rescaling method is performed successively when we obtain H(D), back to the top of the
integration limit.

5.2 The Numerical Renormalization Group (NRG)

Motivated by the perturbative RG, the NRG is a non-perturbative numerical
method proposed by the American physicist Kenneth Wilson to solve the Kondo problem
exactly. As a numerical method, it solves the problem through an iterative procedure using
the RG theory.

The NRG is applied to a system in order to diagonalize it exactly with a numerical
approach. As it solves the Kondo problem, the NRG performs the study of a quantum
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Figure 14 – Initial steps of the NRG method illustrated for the single-impurity Anderson
model in which an impurity (green circle) couples to a continuous conduction
band via the hybridization function ∆(ω) [in our case Γ(ω)]. (a) A logarithmic
set of intervals is introduced through the NRG discretization parameter Λ. (b)
The continuous spectrum within each of these intervals is approximated by a
single state. (c) The resulting discretized model is mapped onto a semi-infinite
chain where the impurity couples to the first conduction electron site via
the hybridization parameter V while εn and tn are the parameters of the
tight-binding Hamiltonian (BULLA; COSTI; PRUSCHKE, 2008).

mechanical impurity with some degrees of freedom coupled to its host. The impurity
interacts with electrons in the material. It is worth mentioning that the NRG calculations
do not consider the interaction between conduction electrons.

To perform our numerical analysis, we will look mainly at the impurity magnetic
moment kBTχimp(T ) and the local density of states ρ(ω) that reveal most of the relevant
features of the Kondo effect. Here, χimp(T ) is the impurity contribution to the total
magnetic susceptibility defined as χimp(T ) ≡ χ(T ) − χ(0)(T ), where χ(T ) − χ(0)(T ) are
the magnetic susceptibilities calculated with and without the impurity, respectively [see
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discussion in Ref. (BULLA; COSTI; PRUSCHKE, 2008)], and ρs(ω) can be defined using
the diagonal elements of the impurity local Green’s function matrix (4.8) as ρs(ω) =
− 1
π
Im[Ĝimp(ω + i0+)]ss. Within the NRG approach, ρs(ω) is calculated via Lehman

representation Ĝimp(ω+ i0+)ss using the many-body spectrum readily available in standard
NRG calculations, where s is the impurity spin quantum number. For more details, see
thorough discussion in Ref. (ŽITKO; PRUSCHKE, 2009).

The basic procedure of the NRG method consists first to dividing the energy of
the hybridization function Γ(ω) of the host into logarithmic intervals (the Γ function is
the responsible for the interaction between impurity and host and will be extensively
explored in further sections). The best way to do it is using a logarithmic discretization,
that consists in a division of the band energy in logarithmic sections, although there
are many other ways to divide the continuous interval. The explanation for choosing the
logarithmic discretization is that for a finite system the splitting of energies is inversely
proportional to the system size, since the system size is of the order of some microns, the
number of sites is extremely big (∼ 106 for example). The logarithmic method reduces the
problem in which the low-energy resolution now depends exponentially on the number of
sites of the discretized model, a chain of atoms beginning with the impurity in the first
site and each site corresponds to an energy scale in the problem, usually called NRG shell,
as shown in Fig. 14-c. The next step consists in mapping the model that was discretized
onto a semi-infinite chain. Then we diagonalize iteratively this chain and the final step is
to analyze and treat the output data such as band structure, matrix elements, spectral
function and local density of states.

In Fig. 14, we show a pictorial scheme of how the NRG works. We have a continuous
host in an interval [−1, 1]. The NRG discretization parameter, Λ > 1, defines a set
of logarithmic discretization displacement points ±Λ−n, where n = 0, 1, 2, · · · and a
corresponding set of intervals. The continuous case in Fig. 14(a) is then approximated
by a single state in each interval, Fig. 14(b). Then we map it in a semi-infinite chain as
shown in Fig. 14(c), where the impurity is the green circle and corresponds to the first
site of the chain. It turns out that the hopping matrix elements decreases exponentially
with increasing distance from the impurity since we consider a logarithmic discretization,
tn = Λ−n/2 (BULLA; COSTI; PRUSCHKE, 2008).

The Hamiltonian of the general impurity model inserted in a host, is composed
of three parts, the impurity part Himp, the host part H0 and the interaction between
those two, that we call the hybridization Hamiltonian HV . This Hamiltonian was explicitly
shown in Eq. (5.1) in a more general form and can be simply written as

H = Himp +H0 +HV . (5.2)
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We will go into the details of our Hamiltonians in the next sections. But for now,
this is the general form of the Hamiltonian and will be used as the initial step for the
calculations of the NRG. The information of our system is all stored in this Hamiltonian.
After that, we calculate the hybridization matrix Γ(ω), whose matrix elements will be
the input data for the NRG to provide us with the required information such as LDOS
and Kondo temperature, to name a few. This hybridization matrix function contains the
HV part of the Hamiltonian responsible for the interaction of the host and the impurity.
To calculate the hybridization function Γ(ω), we should find the self-energy, which is the
scattering rate for single-particle excitations with energy |ω|, of the propagator related to
the Hamiltonian we want to calculate, in our case Eq. (4.5). The self energy was discussed
in Sec. 4.3 and Γ(ω) is minus the imaginary part of this quantity, as shown in Eq.(4.15).
The product between interaction matrix Vk, the host propagator related to the Hamiltonian
and the complex conjugated interaction matrix V †k is equivalent to Γ(ω), which can be
written as

Γ̂ = V̂ · Ĝhost
k (ω) · V̂ †. (5.3)

With this in hand, we have the complete influence of the conduction band over the magnetic
impurity.

The NRG calculations perform a discretization over the reciprocal space of the
conduction band. The method does a series of calculations at logarithmic intervals inside
the band being considered. In order to calculate physical quantities such as magnetization
and entropy, NRG provides the energies and states of the Hamiltonian we are working
with.

From the model Hamiltonian (4.5), we derive a Green function of the host, given
by

Ĝhost
k (ω) =

[(
ω + iη

)
1−Hk

]−1
. (5.4)

From this expression, we can calculate, using V̂ , the interaction matrix (4.7), we derive
the hybridization function Eq. (5.3). We should emphasize that the total hybridization
function is a combination of advanced Γ+ and retarded Γ− hybridization functions, given
by

Γ(ω) = i

2

[
Γ+(ω + iη)− Γ−(ω − iη)

]
. (5.5)

We can also calculate the magnetic impurity DoS via the steps that follows

ρimp(ω) = − 1
π

Im
[
Ĝimp

k (ω)
]
, (5.6)
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where the impurity propagator is associated to the self-energy that gives the interaction
between the host and the impurity as

Ĝimp
k (ω) =

[
(ω + iη)1− U − Γ̂(ω)

]−1
, (5.7)

where Γ̂ was previously defined by Eq. (5.5) and Eq. (5.3). Notice that they depend on
Ĝhost

k (ω) that is described by Eq. (5.4). With all these tools, the impurity DoS can be
calculated.

The physical properties can be derived from the states given by the NRG method.
Entropy is defined by

S = KBT
∂ln(Z)
∂T

(5.8)

where Z is the partition function. Or, in terms of the states, we can write

S = 1
T

∑
n

〈n|Sz|n〉e−βEn , (5.9)

where β = 1/KBT . The states |n〉 and the energies En are obtained from the NRG
calculations. The magnetic impurity entropy is given by the difference between the total
and host entropies, as follows

Simp = Stotal − Shost. (5.10)

With the eigenvalues and eigenvectors, we can also calculate the magnetic susceptibility as

χ(T ) = β
(
〈S2

z 〉 − 〈Sz〉2
)
, (5.11)

and the impurity susceptibility can be written as

χimp(T ) = χtotal(T )− χhost(T ). (5.12)

The NRG calculation details are omitted but the main method is presented here.
Because the NRG can solve the Kondo problem exactly allowing us to perform an accurate
description of our problem (the pseudogap Kondo in MWSM and MDSM), it is a useful
tools for this work that can only be possible because of this numerical method.

5.3 A Brief Look at the Numerical Steps
To understand the steps we use to develop the numerical method, it is of great use

to describe how we go from a theoretical Hamiltonian that contains the information of our
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system until we reach the NRG method. After this part, all we have left is to treat the
data that this systematization provides.

From the model Hamiltonian (4.5), that will be discussed in the next section, we
calculate the propagator, also known as the Green function as

Ĝhost
k (ω) = [ω1−Hk]−1 . (5.13)

Here, Hk is the system Hamiltonian (4.5). From this Green’s function, we use the hybridiza-
tion matrix V̂ , the one responsible for the interaction between the magnetic impurity and
the host material, which was presented as Eq. 5.3.

Since the Green’s function (5.13) is a 4× 4 matrix for the Weyl host and V̂ is a
2× 4 matrix, the outcome Γ matrix is a 2× 2 matrix, which is not true for a metal. This
matrix is the entry data for the NRG calculation.

The fist goal was to find the best candidate to describe the physical problems we
want to treat, in our case we want to connect our host material with a magnetic impurity
using the NRG to calculate main physical quantities such as DoS and spectral function
revealing features of the Kondo effect. Once we had the Hamiltonian in hand (remember
that it is a theoretical model) we are able to follow the steps describe above and obtain a
systematic calculation of this interaction.

Our NRG calculations were obtained using the well-known open source NRG
Ljubljana code (ŽITKO; PRUSCHKE, 2009), using Λ = 2.5, keeping a maximum number
of states Ns = 2000 at each iteration and z-averaging Nz = 4. The NRG flow is truncated
at a lowest energy Emin = 10−12. This choice is good enough to access the main features
of the Kondo regime with great accuracy. Finally, the impurity density of states ρs was
calculated at T = 10−10 (the temperature unit is related to D).
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6 Numerical results

Having discussed the Kondo effect and its features in relevant physical quantities
using NRG, we are now in position to tackle the Kondo effect in multi-Weyl semimetals.
Akin to what happens in pseudogap Kondo systems, we will show that Kondo depends
strongly on the parameters of the system. Some of those, such as J and µ are well
established in literature, however for cases like multi-Weyl semimetals, Kondo is present
due to the configuration of the model Hamiltonian and is the contribution of this work
for this area of research. We are going to explore the effects of each parameter such as
the symmetries and chemical potential and its contributions for the emergence of Kondo
physics.

To obtain the numerical results, we set D = 1 as the ultraviolet energy cutoff for all
the calculations which follows. Moreover, we set the model parameters v⊥ = vz = k0 = 1.
For simplicity, we also set the fundamental Boltzmann and Plank constants kB = } = 1.
We will fix the impurity-related parameters V = 0.12625, U = 0.2 and εd = −U/2. You
may ask yourself why there is such a simple choice for the velocity constants but a peculiar
one for the coupling strength (or hybridization strength). There is nothing special with
the specific choice of the coupling strength V here. It just renders Γ↑(D) = Γ↓(D) = 0.1,
which in combination with U = 0.2 and εd = −U/2 (corresponding to the particle-hole
symmetric point of the impurity Hamiltonian) provides us with TK much smaller than D,
U , and Γs for any regime considered in this work. This prevents the system from entering
in a mixed-valence regime. It is worth mentioning that along with the specific values of
the set of parameters together with V = 0.12625 we reproduced Fig. 1 of (LI et al., 2019).
We first established the particle-hole parameters U and εd and then tuned the coupling
strength until we reach the referred case of the article.

6.1 Multi-Dirac node fermions: Q = Q0 = 0

Let us start by studying the regime of (Q,Q0) = (0, 0), in which the Hamiltonian
(4.5) is invariant under TRS and IS (note that we do not have a Weyl system for this case
since we preserve both symmetries). The Hamiltonian then describes the aforementioned
multi-Dirac node materials (YANG; NAGAOSA, 2014; YU et al., 2015; WU, 2019). For
µ = 0 and µ 6= 0 it corresponds to semimetal and metal, respectively. The energy bands
and hybridization functions for this case are shown in the first column of Fig. 6. For J = 1
the host corresponds to a four-band Dirac semimetal (for µ = 0) exhibiting two copies
of Dirac cones. This renders a hybridization function that behaves as Γ(ω) ≡ Γ↑(ω) ∼
|ω − µ|2 = Γ↓(ω) (since TRS is preserved). For J = 2 and 3, the bands are distorted
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around k = 0. Note that, while ε(0, 0, kz) ∼ |kz| the dispersion is no longer linear with
kx or ky. The hybridization function behaves as Γ(ω) ∼ |ω − µ| and Γ(ω) ∼ |ω − µ|2/3

(for J = 2 and J = 3, respectively). These results are consistent with the prediction that
Γ(ω) ∼ |ω − µ|2/J as ω → 0 for a generic J (BERA; SAU; ROY, 2016; ROY; GOSWAMI;
JURIČ, 2017).

The Kondo physics emerging from this class of hybridization functions is well
understood as it has been thoroughly investigated previously in a generic context, namely
the so-called pseudogap regime (WITHOFF; FRADKIN, 1990). Indeed, the Anderson
and Kondo models for a pseudogap density of states ρ(ω) ∝ |ω|r, where r = 2/J , presents
a rich quantum phase diagram extensively studied (INGERSENT; SI, 2002; FRITZ;
VOJTA, 2004; FRITZ; FLORENS; VOJTA, 2006; CHENG et al., 2017; BULLA; PR-
USCHKE; HEWSON, 1997; MITCHELL et al., 2013; KOLLER; HEWSON; MEYER,
2005) [remember that Γ(ω) ∝ ρhost(ω)]. Numerical and perturbative renormalization group
calculations shown that the fixed points structure of the pseudogap Anderson/Kondo
systems are radically distinct for r < 1 and r > 1, suggesting r = 1 as the upper-critical
“dimension” of the problem in the RG sense (INGERSENT; SI, 2002; FRITZ; VOJTA,
2004). For completeness, here we present the results we have obtained for these three
regimes when J = 1, 2, or 3. From a theoretical point of view, cases of J > 3 are interesting
as they render r ≤ 1/2, leading to anomalous Kondo screenings (GONZALEZ-BUXTON;
INGERSENT, 1998). It has been shown, however, that Weyl materials with J > 3 are
not topologically protected (FANG et al., 2012). Therefore, these cases are not considered
here. The results for J = 1, which corresponds to r = 2, are summarized in Fig. 15.

In Ref. (VOJTA; FRITZ; BULLA, 2010), the authors have shown that the Kondo
screening in this case is influenced by the electron-hole asymmetry of the pseudogap density
of states. Here, the electron-hole asymmetry of the multi-Dirac/Weyl hosts is controlled
by the chemical potential µ, resulting in significant changes in the low-energy physics in
comparison with the electron-hole symmetric case (µ = 0). This is shown in Fig. 15(a) that
presents us with Γ(ω) vs ω for various values of µ. Note that the hybridization function
vanishes quadratically at ω = −µ, which results in a finite hybridization function at ω = 0.
This is why for µ = 0 there is no Kondo peak, as seen in Fig. 15(b) (black line). Note also
that as Γ(0) increases with |µ| the system becomes metallic, resulting in the emergence of
the Kondo peak (note the sharp peaks for µ = −0.15 and µ = −0.2). The finite Kondo
temperature (TK) in this case is known in the literature (HEWSON, 1993; MITCHELL;
FRITZ, 2015b). The right inset of Fig. 15(b) shows the evolution of ρs(0) (the height of
the impurity density of states) with |µ|. Observe that the Kondo peak starts increasing
very rapidly for |µ| ≈ 0.1. For very small |µ|, although finite, TK is smaller than T (the
temperature at which ρs is calculated). The maximum value of ρs(0) for |µ| ≈ 0.16 suggests
the complete onset of the Kondo screening when TK becomes larger than T , after which
the broadening of the Kondo resonance is more pronounced.
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Figure 15 – Hybridization function (a) and impurity density of states ρs (s =↑, ↓) (b) of
a Dirac system transitioning from semimetal (µ = 0) to a metal (µ 6= 0) as
a function of ω for J = 1 and for different values of µ. The left inset of (b)
shows a zoom of the region about ω = 0, while the right inset shows the height
of the peak, ρs(0), as a function of |µ|.

The results for J = 2 and J = 3 (r = 1 and r = 2/3) are shown in Figs. 16 and
17, respectively, showing the same quantities plotted in Fig. 15. Note that the results for
the three values of J are qualitatively equivalent. This equivalence is consistent with the
predictions of Ref. (CHENG et al., 2017) that identifies all cases of r > 1/2 as belonging
to the same class of pseudogap Kondo screening. Note, however that for larger values of J
the Kondo peaks are broader for a fixed value of µ. This can be understood by noticing
that for a given value of µ and any ω 6= µ, ρhost(ω) = |ω − µ|2/J is larger for larger J .
Hence, the impurity is more strongly hybridized with the host material for larger J . It is
also noteworthy that the value of the chemical potential below which ρs(0) drops to zero
is smaller for larger J . We will come back to this point below.

To conclude this section, in Fig. 18(a), 18(b), and 18(c) we show the impurity
magnetic moment, kBTχs as a function of temperature for J = 1, J = 2, and J = 3,
respectively, and various values of µ. Note that for all J and µ = 0 the magnetic moment
remains finite all the way to T → 0, confirming the doublet ground state, a characteristic
of the LM fixed point. However, for µ 6= 0, it drops to zero when T → 0, which is consistent
with the singlet Kondo ground state, the strong coupled fixed point. Figure 18(d) shows
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Figure 16 – Hybridization function (a) and impurity density of states ρs (s =↑, ↓) (b)
as a function of ω for J = 2 and for different values of µ. The left inset of
(b) shows a zoom of the region about ω = 0, while the right inset shows the
height of the peak ρs(0), as a function of |µ|.

TK as a function of µ for the three values of J1. Note that TK becomes vanishingly small as
|µ| → 0 for all three values of J . When |µ| increases the curves tend to coincide with each
other, which is better observed for J = 2, 3. This is an expected behavior since there are
two regions along ω within which the hybridization functions, Γ(ω), for different J have
similar values, see lower panel in the left column of Fig. 6. Interestingly, the values of |µ|
for which TK crosses T (= 10−10) agree fairly well with those at which ρs(0) is maximum
in the insets of Figs. 15(b), 16(b) and 17(b), confirming that, indeed, ρs(0) vanishes as
|µ| → 0 because TK becomes smaller than T .

The physical explanation for when kBTχs goes to zero is that the Kondo singlet
is formed and the impurity’s magnetic moment vanishes. In other words, the impurity
has a total magnetic moment and the conduction electrons in host material surrounds
the impurity in order to cancel its total magnetic moment, forming the Kondo singlet.
This cloud of carriers around impurity’s magnetic moment occurs for lower temperatures
for J = 2 and even lower for J = 3, meaning that the hybridization between conduction
carriers of host material and impurity is stronger for greater values of J .

1 The Kondo temperature is extracted from the magnetic moment, following Wilson criteria
kBTKχimp(TK) = 0.07 (KRISHNA-MURTHY; WILKINS; WILSON, 1980).
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Figure 17 – Hybridization function (a) and impurity density of states (b) as a function of
ω for J = 3 and for different values of µ. Left inset of (b) shows a zoom of
the region about ω = 0, while right inset shows the height of the peak, ρs(0),
as a function of |µ|.
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6.2 Multi-Weyl node fermions: Q 6= 0 or Q0 6= 0

Up to now we have considered situations in which the system exhibits both TRS
and IS invariance. Let us now focus on the Weyl fermions, obtained when at least one of
these symmetries is broken.

6.2.1 Broken TRS multi-Weyl node semimetal (Q 6= 0)

Here we analyze the situation where only TRS is broken by keeping Q0 = 0. The
energy bands and hybridization function for this case are shown in the second column of
Fig. 6, where we used the notation (Q,Q0) = (−0.1, 0).

The effect of breaking TRS in the energy bands is to shift the nodes along kz. We
should note that the conduction and valence energy bands have opposite spin polarization.
As a result, since here we have assumed that the spins of the impurity couples equally to
all bands of the host material, at a given value of µ the spin splitting of the hybridization
functions vanishes upon integration over the entire momentum space. In our approach, the
introduction of the momentum cutoff kc induces a small spin splitting in the hybridization
function for a finite Q.

The polarization Γ↑ − Γ↓ of the hybridization function is shown in Fig. 19(a) for
J = 1, µ = −0.2, and several values of Q. Observe that it depends on ω and vanishes at
ω = −µ. This is quite different from that obtained in Ref. (LI et al., 2019) in the context
of magnetic graphene, in which Γ↑(ω) and Γ↓(ω) vanish at different energies, rendering a
full polarization of the hybridization function. Here, full polarization should be absent and
is indeed very small. Nevertheless, it is enough to induce a visible spin splitting in the
impurity density of states. In real systems, integration over the well defined first Brillouin
zone should naturally induce spin splitting in the hybridization function. This can be
confirmed by adopting a more realistic model for the multi-Dirac/Weyl node host material.
Moreover, spin-dependent coupling of the impurity orbital to the host bands can also
contribute to spin polarization of the hybridization function. This important improvement
in the model is beyond the scope of the present work and will be presented in a future
publication.

The spin resolved LDOS is shown in Fig. 19(b) (for spin ↑) and Fig. 19(c) (for
spin ↓) for J = 1. Interestingly, despite the relatively large spin splitting of the LDOS,
the suppression of the Kondo peak is slow as Q increases as shown in Fig. 19(d). The
spin splitting in the LDOS induces a sizable magnetization 〈Sz〉, shown in Fig. 19(e). For
J = 2 and J = 3, the spin polarization is vanishingly small and is not observed in our
calculations [see red and blue curves in Fig. 19(e)]. Moreover, the Kondo temperature is
larger for these cases, making the Kondo screening more robust against TRS breaking. A
change Q→ −Q in the above leads to opposite polarization in the hybridization function
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Figure 19 – (a) Splitting of the hybridization function for several values of Q for a fixed
chemical potential µ = −0.2. Impurity density of states for spin up (b) and
down (c) for the same values of Q as in panel (a). (d) height of the Kondo
peak averaged over spins [ρ̄(0) = [ρ↑(0) + ρ↓(0)]/2 vs Q for µ = −0.2. (e) 〈Sz〉
vs |Q| also for µ = −0.2. In all panels Q0 = 0 and J=1.

with identical effect in the Kondo screening.

6.2.2 Broken IS multi-Weyl node semimetal (Q0 6= 0)

The situation is radically different for finite Q0. The hybridization function, Γ(ω),
is always finite even for µ = 0, as shown in the lower panel of the third column of
Fig. 6. Consequently, the system can exhibit Kondo screening for any chemical potential
µ. The results we present in this section were not yet explored in scientific community and
therefore is our major contribution in this area of study.

Figure 20(a) shows the hybridization function as a function of ω for J = 1, µ = 0,
and various values of Q0. Note that the parabolas are shifted upwards and becomes slightly
flatter as Q0 increases2. The progressive enhancement of the hybridization function at
2 It has been found in Ref. (LÜ et al., 2019) that the host density of states behaves as ρhost(ω) ∼
|(ω + µ)2 +Q2

0 for J = 1 and and ρhost(ω) ∼ |ω + µ+Q0|2/J + |ω + µ−Q0|2/J for J = 2, 3.
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ω = 0 as Q0 increases provides the condition for the Kondo screening to take place at
finite temperature. In Fig. 20(b) we show TK(Q0, µ)/TK(Q0, µ = 0) as a function of µ
for Q0 = 0.15 and Q0 = 0.2, which shows how TK increases with |µ|. Despite of their
values, note that the curves exhibits very similar behavior. This is because a finite value
of µ produces a rigid shift of the curves (not shown) enhancing the value of Γ(0) due
to more conduction electron’s density of states at the Fermi level. The reader may have
already anticipated this by noticing that the hybridization function is a smooth function
of ω. It is worth mentioning that for Q0 = 0.1 and Q0 = 0.05 shown in Fig. 20(a), TK
becomes too small to be captured by our NRG flow which was truncated at a lower
temperature Tmin = 10−12. We examine now, how the Kondo temperature changes with
Q0. To see this, in Fig. 20(c) we show TK(Q0, µ) vs 1/Q0 for several values of µ. Note
that in the limit of large Q0 (small 1/Q0) all curves tend to collapse onto a single function
of Q0 given by TK = AExp(−B/Q2

0), where A and B depend on the parameters of the
system. This is because in this limit the density of states of the effective conduction band
depends essentially on Q0 and becomes ρhost(ω) ∼ Q2

0 even for finite values of µ (NADA,
a), and the Kondo temperature approaches its "standard" form for usual metallic systems
TK ∼ Exp[−1/ρ(0)J0] (HEWSON, 1993), where J0 is the Kondo coupling of the equivalent
effective low-energy Kondo model3.

The situation is more compelling for J > 1, in which case the energy dependence
of the hybridization function changes at ω = ±Q0 (for µ = 0) (NADA, a). Figure 21(a)
shows how the hybridization function evolves with increasing Q0 for J = 2 by fixing
µ = 0. Clearly, the hybridization function exhibits a plateau of width 2Q0, consistent
with previous analytical calculations in Ref. (LÜ et al., 2019). Moreover, the height of the
plateau increases with Q0, which suggests that the Kondo temperature increases with Q0,
resembling the flat band Anderson model. This is important to understand the behavior
of TK in the regime of Q0 > |µ|. Indeed, this suggests that for J = 2 and for a fixed
Q0 6= 0 the system will exhibit two distinct regimes observed in the behavior of TK as a
function of µ. To confirm this expectation, in Fig. 21(b) we show TK(Q0, µ)/TK(Q0, µ = 0)
as a function of |µ|/Q0 for several values of Q0. One can clearly see that TK have distinct
behavior for |µ|/Q0 < 1 and |µ|/Q0 > 1. For |µ|/Q0 < 1 the Kondo temperature tends to
collapse onto a single universal function of |µ|/Q0. On the other hand, for |µ|/Q0 > 1, the
curves change their concavity and are far apart from each other. This reveals that the
region |µ|/Q0 < 1 characterizes a regime dominated by Q0 in which TK should depend
very weakly on µ as the hybridization function is nearly flat. This becomes more evident in
Fig. 21(c) where we show TK(Q0, µ) vs 1/Q0 for various values of µ. These curves expose
very clearly that indeed for Q0 > |µ|, TK depends on Q0 as TK = AExp(−B/Q0). Again,
here A and B are quantities dependent on the other parameters of the model.

3 An effective equivalent Kondo model could be obtained by performing a Schrieffer-Wolff transformation
to a single impurity Anderson model with parameter equivalent to ours is some particular limit.
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Figure 21 – (a) Hybridization function vs energy for J = 2 and various values of Q0. (b)
TK(Q0, µ)/TK(Q0, µ = 0) as a function of µ/Q0, for different values of Q0. (c).
Kondo temperature vs Q−1

0 for various values of µ. Here, Q = 0 for all panels.
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Finally, we examine the Kondo regimes for triple WSM, J = 3. In Fig. 22 we show
the same results as in Figs. 20 and 21 but for J = 3. First, note that we have again two very
distinct regions in the energy axis. The flat plateau observed in the hybridization function
shown in Fig. 21(a) is deformed into an arc within the region |ω| ≤ Q0 in Fig. 22(a)
with a maximum value at ω = 0. The non monotonic behavior of Γ(ω) is reflected in
the Kondo temperature of the system. Figure 22(b) shows TK(Q0, µ)/TK(Q0, µ = 0) for
various valued of Q0. Similar to the case of J = 2, one can clearly distinguish two regimes
separated by |µ| = Q0. Interestingly, note that the minimum of Γ(ω) observed at ω = ±Q0

is accompanied by a minimum of TK at |µ| = Q0, visible in the green and yellow curves.
Moreover, it is remarkable that even in this case the curves collapse nicely onto each other
|µ| < Q0, showing the universality of the Q0 dominated regime.

From what we have seen above, the Kondo temperature for broken IS MWSMs
behaves asymptotically as TK = AExp(−B/Q2/J

0 ) for large Q0 for all J = 1, 2, 3 [Figs. 20(c),
21(c), and 22(c)]. This behavior results from the shape of the effective hybridization function.
Recalling that the Kondo temperature depends essentially on the structure of Γ(ω) at
ω near the Fermi level and that Γ(ω) = πV 2ρhost(ω), the behavior of TK for Q0 & µ can
be understood in light of the well-known Haldane formula for the Kondo temperature
TK ∼ Exp[−πU/8Γ(0)] (HALDANE, 1978), valid for a flat band SIAM in the particle-hole
symmetric point. Keeping this in mind, we can see that J = 2 is a special case in which
Γ(ω) becomes flat for |ω| ≤ Q0 [Fig. 21(a)]. This is why the curves of Fig. 21(c) collapse
more nicely onto the analytical result shown in the dashed line as compared to those of
Fig. 20(c) and Fig. 22(c).

In conclusion, the breaking of IS in regimes J > 1 has a special motivation for
this study and was not yet explored in literature. Not only these results brought us the
conclusion that Kondo can emerge for these special cases even for µ = 0, but this work
also provided a contribution from the publication of Ref. (PEDROSA; SILVA; VERNEK,
2021) in collaboration with Dr. Joelson F. Silva.
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7 Conclusion

We have studied the Kondo physics in a quantum magnetic impurity embedded in
multi-Dirac(Weyl) node fermionic systems. Our numerical results reveal that the Kondo
physics in the double- and triple-Dirac node systems always lies within known classes of
pseudogap Kondo problem, well studied in the literature. While no Kondo screening is
observed in the particle-hole symmetric case, in the asymmetric case for finite chemical
potential, µ 6= 0, the Kondo screening takes place due to finite hybridization function
at the Fermi level. However, different scenarios appear in multi-Weyl node systems. (i)
Breaking TRS (finite Q) is detrimental to Kondo at any finite chemical potential, but the
Kondo peak is very slowly suppressed as |Q| increases. This is because the spin polarization
induced in the impurity is very tiny, as the polarization of the various conduction and
valence band compensate each other, rendering a vanishingly small spin splitting in the
hybridization function. (ii) When IS is broken we show that Kondo screening is present
for any finite Q0, meaning that the Kondo temperature is always finite. We find that the
double- (J = 2) and triple- (J = 3) Weyl node fermionic systems are radically distinct
from the single- (J = 1) Weyl node fermion systems. In contrast to the J = 1 case
where µ is always an important parameter, for J = 2 and J = 3 we observe two distinct
regimes: namely the regime |µ| > Q0, in which the Kondo temperature depends strongly
on µ, and the regime |µ| < Q0, where TK depends very weakly on the chemical potential.
In particular, for J = 2 the system behaves almost as the traditional flat-band single
impurity Anderson model. We believe our results expose distinct Kondo regimes present
in multi-node Dirac and Weyl materials, contributing for future theoretical as well as
experimental investigations in various Dirac/Weyl available materials.

In conclusion, our study comprehends the possibility of breaking TRS and IS
through the manipulation of the model Hamiltonian which allows us to reproduce the
well known results in the literature such as Kondo in Weyl and Dirac systems. Not only,
but the Hamiltonian also allows us to study the topological physics of these systems
trough manipulation of parameter J , showing that topology and pseudogap Kondo are
intimately related for these materials when J > 1. When we protect the symmetries, PH
asymmetry must be present in order for Kondo to emerge, however when IS is broken it is
not necessary.

For future works, we want to explore different methods of calculating the numerical
integrals of Γ(ω) in Eq.4.14 in k eliminating the usage of kc.
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A From Dirac to Weyl

This is the supplemental material to the text. Here you will find some calculus that
were not included in the main text.

The following steps proves that quantum operators obey the same mathematical
rules when they are submitted to matrix operations. So we have

p̂× p̂ =

∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

px py pz

px py pz

∣∣∣∣∣∣∣∣∣ =

= (pypz − pzpy)x̂+ (pzpx − pxpz)ŷ + (pxpy − pypx)ẑ =

=
[(
−i~ ∂

∂y

)(
−i~ ∂

∂z

)
−
(
−i~ ∂

∂z

)(
−i~ ∂

∂y

)]
x̂+

+
[(
−i~ ∂

∂z

)(
−i~ ∂

∂x

)
−
(
−i~ ∂

∂x

)(
−i~ ∂

∂z

)]
ŷ +

+
[(
−i~ ∂

∂x

)(
−i~ ∂

∂y

)
−
(
−i~ ∂

∂y

)(
−i~ ∂

∂x

)]
ẑ =

= −~2


��

���
���:

0∂2

∂y∂z
− ∂2

∂z∂y

 x̂+

��

���
���:

0∂2

∂z∂x
− ∂2

∂x∂z

 ŷ +

���

���
��:0∂2

∂x∂y
− ∂2

∂y∂x

 ẑ
 =

= −~2 (0x̂+ 0ŷ + 0ẑ) = 0 (A.1)

we conclude, from basic vector property, that

p̂× p̂ = 0. (A.2)

Another relation from vector products, is that if ~u× ~v for ~u = ~v, the outcome is always
zero. In other words, vectors in the same direction has null vector product, leading to the
following conclusion

~A× ~A = 0. (A.3)

These statements might seem a little bit too obvious, but the obvious must be presented.
We should remember that what may seem trivial for someone may not be so for someone
else. We are talking about quantum operators, showing that they respect the classical
operations is an important demonstration.

This next step is the demonstration of the product of two scalar products. This
will be used to implement the minimum coupling in the Hamiltonian we are working to
demonstrate Dirac’s Equations.

Note the following relation between the products of vectors:
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(~σ · ~a)(~σ ·~b) = = [(σxx̂+ σyŷ + σz ẑ) · (axx̂+ ayŷ + az ẑ)]

· [(σxx̂+ σyŷ + σz ẑ) · (bxx̂+ byŷ + bz ẑ)]

= (σxax + σyay + σzaz)(σxbx + σyby + σzbz)

= σxσxaxbx + σxσyaxby + σxσzaxbz

+ σyσxaybx + σyσyayby + σyσzaybz + (A.4)

+ σzσxazbx + σzσyazby + σzσzazbz

= axbx1̂+ ayby1̂+ azbz1̂+

+ (iσz)axby + (−iσy)axbz + (−iσz)aybx +

+ (iσx)aybz + (iσy)azbx + (−iσx)azby

where we rearranged the terms in the last relation and used the fact that equal
Pauli matrices products results in identity matrices, as proven bellow:

σxσx =
 0 1

1 0

 ·
 0 1

1 0

 =
 1 0

0 1

 = 1̂ (A.5)

σyσy =
 0 −i
i 0

 ·
 0 −i
i 0

 =
 1 0

0 1

 = 1̂ (A.6)

σzσz =
 1 0

0 −1

 ·
 1 0

0 −1

 =
 1 0

0 1

 = 1̂ (A.7)

We conclude that σiσj = iεijσk, where εij is the Levi-Civita Tensor, in this case a
two dimensional tensor defined as

εij =


+1 if (i, j) = (x, y)

−1 if (i, j) = (y, x)

0 if i = j

(A.8)

Moreover, σxσy = iσz, σyσx = −iσz, σxσz = −iσy, σzσx = iσy, σyσz = iσx and
σzσy = −iσx. We use Eq. (A.4) to write these expressions as
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(~σ · ~a)(~σ ·~b) = axbx1̂+ ayby1̂+ azbz1̂+

+ (iσz)axby + (−iσy)axbz + (−iσz)aybx +

+ (iσx)aybz + (iσy)azbx + (−iσx)azby
= axbx1̂+ ayby1̂+ azbz1̂+

+ iσz(axby − aybx) + iσx(aybz − azby) + iσy(az − axbz)

= (axbx + ayby + azbz)1̂+

+ iσz(axby − aybx) + iσx(aybz − azby) + iσy(az − axbz)

= (~a ·~b)1̂+

+ i~σ · [(axby − aybx)ẑ] + i~σ · [(aybz − azby)x̂] + i~σ · [(azbx − axbz)ŷ]

= (~a ·~b)1̂+

+ i~σ · [(aybz − azby)x̂+ (azbx − axbz)ŷ + (axby − aybx)ẑ]

= (~a ·~b)1̂+ i~σ · (~a×~b). (A.9)

We conclude that
(~σ · ~a)(~σ ·~b) = (~a ·~b)1̂+ i~σ · (~a×~b). (A.10)

We show the anti-commutation relations between Dirac’s Equation fourth dimen-
sional tensors. The proof can be demonstrated as follows:

{γµ; γν} = γµγν + γνγµ. (A.11)

Proof,

If µ = ν, we have,  1 0
0 −1

 1 0
0 −1

 =
 1 0

0 1

 = 14×4 (A.12)

 0 −iσk
iσk 0

 0 −iσk
iσk 0

 =
 σ2

k 0
0 σ2

k

 = 14×4 (A.13)

 0 −iσk
iσk 0

 0 −iσj
iσj 0

 =
 σkσj 0

0 σkσj

 (A.14)

σkσj + σjσk = 0, ∀ k, j | k 6= j (A.15)

σkσj − σjσk = 0. (A.16)

Therefore, anti-commutation is given by,

{γµ, γν} = γµγν + γνγµ = 2δµν . (A.17)


	Kondo Effect in Multi-Dirac and Weyl Fermions
	Kondo Effect in Multi-Dirac and Weyl Fermions
	Title page

	0b5dc56cd6f791dfc54605ccf45ed4f7c48c78ec992adc22966676502c7c3fc7.pdf
	Kondo Effect in Multi-Dirac and Weyl Fermions
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of abbreviations and acronyms
	Contents
	Introduction
	Motivation

	From Dirac to Weyl
	A derivation of Dirac's Equation
	Weyl's Solution

	Kondo Physics
	Kondo Effect due to Magnetic Impurities
	Kondo Effect in quantum dots

	Kondo effect in Dirac and Weyl Systems
	Weyl Systems
	Multi-Weyl Semimetals
	Model
	Spin-Polarization in Weyl Semimetals =0
	A brief Explanation on the cutoff kc

	Methodology
	The Renormalization Group
	The Numerical Renormalization Group (NRG)
	A Brief Look at the Numerical Steps

	Numerical results
	Multi-Dirac node fermions: Q=Q0=0
	Multi-Weyl node fermions: Q=0 or Q0=0
	Broken TRS multi-Weyl node semimetal (Q=0)
	Broken IS multi-Weyl node semimetal (Q0=0)


	Conclusion
	Bibliography
	From Dirac to Weyl


