
Orquestração de Cloud-Network Slices

Orientada à Predição de Métricas de Serviço a

Partir do Monitoramento da Infraestrutura

Aryadne Guardieiro Pereira Rezende

Universidade Federal de Uberlândia

Faculdade de Computação

Programa de Pós-Graduação em Ciência da Computação

Uberlândia

2020

Aryadne Guardieiro Pereira Rezende

Orquestração de Cloud-Network Slices

Orientada à Predição de Métricas de Serviço a

Partir do Monitoramento da Infraestrutura

Dissertação de mestrado apresentada ao Pro-

grama de Pós-graduação da Faculdade de

Computação da Universidade Federal de Uber-

lândia como parte dos requisitos para a obtenção

do título de Mestre em Ciência da Computação.

Área de concentração: Ciência da Computação

Orientador: Rafael Pasquini

Coorientadora: Raquel Fialho de Queiroz Lafetá

Uberlândia

2020

Dedico esse trabalho a todas as mulheres que lutaram por todos direitos que temos hoje,

principalmente pelo o libertador direito de estudar.

Agradecimentos

Agradeço aos meus pais, Adriana Guardieiro Pereira Rezende e Diom Gande Rezende,

que nunca mediram esforços para que eu conseguisse avançar nos meus estudos. Obrigada

Adriana por não me deixar duvidar do seu amor não importasse qual seriam os resultados

das minhas empreitadas, por ter me incentivado desde sempre a ser o melhor que eu podia

e por sempre me fazer peixe em momentos importantes para que eu Ącasse mais inteligente.

Obrigada Diom por sempre poder contar com você a qualquer momento e por ser meu

exemplo de disciplina e dedicação. O amor e a dedicação de vocês é a fundação de cada

conquista que tive e terei. Agradeço ao meu irmão, Diom Gande Rezende Filho, por ser

meu conĄdente sincero e sempre me mostrar o quanto eu podia melhorar, obrigada pelos

lanchinhos que me levava na universidade e pelos cafés, ideias e planos que compartilha

comigo.

Ao meu orientador, Rafael Pasquini, tenho muita gratidão pela paciência, disponibili-

dade, gentileza e empenho em sempre abrir caminhos e me guiar em meu desenvolvimento

acadêmico durante o mestrado. Agradeço profundamente à minha coorientadora, Raquel

Fialho de Queiroz Lafetá, por me ajudar a estruturar e apresentar meu raciocínio de

maneira mais clara e lógica e por ser um fundamental ponto de apoio emocional durante

todo esse período. Agradeço também ao meu parceiro de mestrado Gustavo Silveira por

me mostrar que quando a execução acompanha o planejamento podemos ter grandes

resultados.

Agradeço muito a todas professoras que tive desde os primeiros anos da minha edu-

cação até hoje. Vocês foram meus maiores exemplos para que eu sempre continuasse me

desenvolvendo em meus estudos. Sou grata também ao professor Rodrigo Miani, por ser

a alegria dos alunos nas manhãs de sexta-feira nas aulas de Segurança da Informação.

Com certeza seus conselhos, leveza, motivação e ensinamentos Ącarão registrados.

Este projeto de mestrado foi Ąnanciado com recursos da 4o chamada colaborativa BR-

EU no contexto do H2020, registrados no acordo 777067 (NECOS - Novel Enablers for

Cloud Slicing), que é fomentado pelo Ministério da Ciência e Tecnologia no lado Brasileiro

e pela Comissão Europeia de Tecnologia no lado Europeu.

“If I have seen further, it is by standing upon the shoulders of giants.”

(Sir Isaac Newton)

Resumo

Este trabalho, inserido no contexto do projeto Novel Enablers for Cloud Slices (NE-

COS), visava a proposta de um orquestrador de recursos de nuvem de provedores fed-

erados. Dada a natureza do projeto NECOS, o orquestrador deveria gerenciar parcelas

de recursos dessa nuvem federada, chamadas de fatias. Graças a diversidade dos re-

cursos que poderiam compor essa fatia e visando manter o Service Level Agreement dos

clientes da plataforma para com seus usuários Ąnais, foi desenvolvida uma estratégia auto-

maticamente customizável de orquestração, baseada em aprendizado de máquina. Redes

Neurais Recorrentes foram usadas para prever valores futuros de uma métrica indicadora

de performance. Com base nessa predição, o orquestrador deveria disparar ações de red-

imensionamento dos recursos da fatia, tanto no sentido de aumentar a capacidade para

acomodar altas cargas, quanto reduzir essa capacidade a Ąm de economizar recursos em

caso de baixa demanda. A criação do protótipo do orquestrador aliada aos experimentos

executados mostram que é possível, viável e adequado o uso da estratégia proposta.

Palavras-chave: Orquestração. Nuvem. Fatias de nuvem. Predição. Redes Neurais

Recorrentes. Aprendizado de Máquina.

Cloud-Network Slices Orchestration Driven by

Service-level Metrics Prediction from

Infrastructure Monitoring

Aryadne Guardieiro Pereira Rezende

Universidade Federal de Uberlândia

Faculdade de Computação

Programa de Pós-Graduação em Ciência da Computação

Uberlândia

2020

Abstract

This work was developed in the context of the Novel Enablers for Cloud Slices (NECOS)

project. This dissertation aimed to propose an orchestrator of cloud-network resources

from federated providers. Given the nature of the NECOS project, the orchestrator should

manage portions of the resources inside this federation, which were called slices. Due to

the diversity of resources that could make up each slice and aiming to maintain the Ser-

vice Level Agreement of the platformŠs clients towards their end-users, an automatically

customizable orchestration strategy was developed, based on machine learning. Recur-

rent Neural Networks were used to predict future values of a key performance indicator,

previously chosen by the client. Based on this prediction, the orchestrator triggered slice

resizing actions, both in the sense of increasing the capacity of the slice to accommodate

high loads, as well as reducing this capacity to save resources in case of low demand. The

creation of the orchestrator prototype allied with the experiments carried out showed that

it is possible, viable, and appropriate to use the proposed strategy.

Keywords: Orchestration. Cloud. Cloud Slice. Forecasting. Machine Learning.

List of Figures

Figure 1 Ű MAPE loop and challenges of each phase. 18

Figure 2 Ű NECOS functional architecture. 24

Figure 3 Ű Osmotic Orchestrator proposed at (CARNEVALE et al., 2018). 29

Figure 4 Ű Autonomous element structure (KEPHART; CHESS, 2003). 30

Figure 5 Ű Abstraction of a multilayer feed-forward neural network (HYNDMAN;

ATHANASOPOULOS, 2018). 33

Figure 6 Ű How recurrent neural networks work (NICHOLSON, 2019). 33

Figure 7 Ű Slice and Ćavor relationship. 35

Figure 8 Ű Flavors upgrade and downgrade hierarchy. 36

Figure 9 Ű ProĄling WorkĆow. 37

Figure 10 Ű Elasticity WorkĆow. 38

Figure 11 Ű SRO modules in NECOS scenario. The allocated slice 1 with its re-

sources is shown in yellow, NECOS related modules in blue, and re-

source providers in green. 40

Figure 12 Ű Dataset during pre-process phase. 47

Figure 13 Ű Training phase schema. 47

Figure 14 Ű Test bed. 50

Figure 15 Ű Closer view of the interaction among the Cassandra Cluster, the Mod-

iĄed Client and the Load Generator. 52

Figure 16 Ű Experiment executed for three hours to get the Flavor 1 𝑌 Ąle. The

green curve represents the tenantŠs service KPI measurements while

the pink represents the load applied to the Cassandra system. 55

Figure 17 Ű Experiment executed during three hours to get the Flavor 2 𝑌 Ąle. The

green curve represents the tenantŠs service KPI measurements while the

pink represents the load applied to the Cassandra system. 55

Figure 18 Ű Forecasting provided by models trained for Flavor 1. At left, 240s of

window size and 480 seconds at right. The forecasting horizon varied

for each line starting in 1, 30, 60, and Ąnally 120 seconds. 57

Figure 19 Ű MAPE for Flavor 1 models. 58

Figure 20 Ű Models trained for Flavor 2 under the same conditions of previously

shown models. 59

Figure 21 Ű MAPE for Flavor 2 models. 60

Figure 22 Ű Elasticity upgrade triggered by forecasted value crossing the upper

threshold (blue star). 61

Figure 23 Ű Elasticity downgraded triggered when the prediction reaches the bot-

tom threshold (blue star). 62

List of Tables

Table 1 Ű Testbed machine conĄgurations. 51

Acronyms list

API Application Programming Interface

CSV Comma Separated Values

IoT Internet of Things

IMA Infrastructure and Monitoring Abstraction

KPI Key Performance Indicator

LSDC Lightweight Software DeĄned Cloud

MAPE Monitoring, Analysis, Planning, and Execution

ML Machine Learning

NECOS Novel Enablers for Cloud Slicing

QoS Quality of Service

RNN Recurrent Neural Network

SLA Service Level Agreement

SLO Service Level Objective

SRO Slice Resource Orchestrator

VM Virtual Machine

List of Algorithms

3.1 Slice Control Loop. 42

3.2 analyze_kpi function. 43

3.3 Function inside Flavor that evaluates if a forecasted tenantŠs service KPI

value is too good. 44

3.4 Elasticity request code. 44

3.5 Elasticity callback. 45

Contents

1 INTRODUCTION . 15

1.1 Motivation . 17

1.2 Research Goals and Challenges . 19

1.3 Hypotheses . 20

1.4 Contributions . 20

1.5 Dissertation Organization . 21

2 BACKGROUND . 23

2.1 The NECOS Project . 23

2.2 Resource Orchestration . 26

2.3 Time Series Forecasting . 31

3 PROPOSAL . 35

3.1 Orchestration Workflows . 35

3.2 Orchestrator Architecture . 39

3.3 The Slice Control Loop . 42

3.4 Forecasting Model . 45

4 EXPERIMENTAL RESULTS AND ANALYSIS 49

4.1 Evaluation Method . 49

4.2 Experiments . 54

5 CONCLUSION . 63

5.1 Main Contributions . 63

5.2 Future Work . 64

5.3 Contributions in Bibliographic Production 64

BIBLIOGRAPHY . 65

14 List of Tables

15

Chapter 1

Introduction

Cloud Computing is the paradigm that has emerged of the computational resource

offer in a-pay-as-you-go manner, in which the service payment is calculated based on its

usage during some period. One attribute of this paradigm is elasticity, which allows users

to acquire or release a certain amount of computational resources, according to their needs

(NETTO et al., 2014).

Cloud Computing offers services in three levels: infrastructure, (IaaS - Infrastructure

as a Service), platform (PaaS - Platform as a Service) and software (SaaS - Software as

a Service), wherein each layer there are thousands of resource providers. Alongside these

layers is the Cloud Slice concept. A slice can be deĄned as a set of virtual or physical

resources (network, processing, and storage) that can accommodate service components,

in an integrated fashion, independent of other slices (FREITAS et al., 2018). A large

number of possible resource combinations and the high complexity of integration make

it hard for an organization to deploy its services using different computing, network,

and storage providers. The choice of resources to run a service among many resource

and providers options and then to integrate them makes new services launching time-

consuming and expensive (SILVA et al., 2018).

To address this issue, it was created the Novel Enablers for Cloud Slicing (NECOS)

project (NECOS, 2018b), which was the background of this dissertation. The main

projectŠs goal was to investigate a new business model called Slice as a Service. Inside the

project, it was tested the on-demand slice creation, in a multi-domain environment, and

its automatic reconĄguration. To reach this goal, three main requirements were gathered:

1. To make application, network, and service innovation and integration easier and

quicker;

2. To develop management systems more integrated;

3. To improve energy and cost efficiency and interoperability among different domains.

16 Chapter 1. Introduction

The Ąrst requirement regards the difficulty of dealing with the high coupling of data

centers, cloud, and network systems. Static connections among data centers are migrating

to software-deĄned connections, where storage, processing, and communication are being

virtualized. At the same time, the second requirement refers to the data centers man-

agement integration and it aims to facilitate the products and services combination, once

that, currently, this is done individually in each provider. Lastly, the third requirement

comes from the need of saving costs using the most appropriate conĄguration, combined

with automation of currently manual tasks, usually expensive and imprecise.

Following the workĆow deĄned in NECOS, Ąrst, the tenant (most likely a service

provider) gives a description of the sliceŠs conĄguration that is needed. After this resource

set has been allocated, from one or more resource providers, the tenant can deploy its

service(s) and provide them to its end users. Due to the dynamic nature of the majority

of cloud-hosted applications, the tenantŠs demand for resources can increase or decrease

depending on its service usage.

If the resource need is increasing, more resources should be allocated, which can be

a time expensive task (ZANELA et al., 2019). If the resource needs to be reduced,

to save money and electricity, for example, it is interesting to release the previously

allocated resources. For this reason, can be useful to anticipate resource usage to allocate

or release resources accordingly. In this context, this dissertation works upon the third

requirement above, building a slice orchestrator that forecasts if a slice conĄguration

should be adjusted, acting autonomously, during the slice run-time. The strategy used to

predict when this change should happen is to forecast the Service Level Agreement (SLA)

being delivered to the end-users of the tenantŠs service.

It is possible to use a simple orchestration, guided by the monitoring of a metric,

where whenever this metric reaches a threshold it causes an elasticity operation. One

weakness of this method is that cloud computing workload may change rapidly over time

and a scalable application requires time to perform the elasticity request (VAZQUEZ;

KRISHNAN; JOHN, 2015). For this reason, to use a proactive approach to foresee future

demands avoids resource wasting during non-peak hours and decreases the risk of bad

quality or denying of service for online users, thus improving their product experience.

To accomplish this goal, this dissertation implements a computer system where a

slice is proĄled and then a model of its behavior is generated, using a Recurrent Neural

Network (RNN). This model is capable of forecasting a tenantŠs service Key Performance

Indicator (KPI), which tells whether the service is being delivered as the tenant requires.

This forecast is done 𝑡 seconds beforehand, where 𝑡 is a predeĄned parameter. Once the

scaling of a slice comes with an overhead, it is necessary a 𝑡 large enough to preemptively

scale to the correct conĄguration, alleviating this way some or all of the elasticity overhead.

1.1. Motivation 17

1.1 Motivation

In October of 2001, IBM issued a manifesto attesting that the main challenge of

Information Technology would be an imminent software complexity crisis. To support

this claim, the company used applications that weighed thousands of lines of code and

were dependent on highly skilled professionals to be installed, conĄgured, tweaked, and

maintained. These reasons could turn the dream of pervasive computing in all areas a

nightmare (KEPHART; CHESS, 2003).

Reinforcing this concern, it has been estimated by Gartner (VELOSA et al., 2014) that

the number of connected devices in 2020 will exceed 25 billion. Managing resources and

information produced by so many pieces of equipment will be hard problems to handle

manually. Thus, one possible way out would be autonomous computing. This name

is inspired by the human autonomic nervous system, and carries the idea of automatic

adaptation in response to stimuli (KEPHART; CHESS, 2003). In this sense, the use of a

standalone slice orchestrator emerges as a solution to be analyzed.

Since NECOS will act at the slice level, all levels of the cloud stack (infrastructure,

platform, or software) can be touched. According to (RANJAN et al., 2015), the or-

chestrator must take action that is holistic taking into account all cloud service layers,

beneĄting the application as a whole. In addition to the concern with all levels of a par-

ticular slice, when multiple providers are considered, this problem gets another dimension

that can be investigated, which aims to combine resources from multiple providers at any

level of the cloud stack.

In Qu, Calheiros e Buyya (2018), there is a survey on how the automatic scaling of

cloud resources in the state of the art is handled. In this article, the authors point out that

automatic resource scaling can be seen as an automatic control problem, and therefore

we can use the Monitoring, Analysis, Planning, and Execution (MAPE) cycle to solve it.

Figure 1 shows this control loop. Each step and its challenges are deĄned as follows:

Monitoring: In this step, metrics are collected and can be transformed into performance

indicators. Then, they will be used to determine which scaling strategies will be used

and how they should be executed. In this context, there are two main challenges.

The Ąrst is selecting which are the most significant performance indicators,

which increase the accuracy of resource estimation and decrease information traffic

costs on the network. The second is to define a monitoring interval of these

indicators, which also impacts the amount of information on the network and also

inĆuences how sensitive the changes will be to the orchestrator.

Analysis: At this stage the orchestrator determines, through the collected data, whether

it is necessary to make any changes to the resources already allocated or not. It is

needed to deĄne the scaling time, which can be proactive or reactive to changes.

If the method is proactive, a load estimation strategy shall be chosen. It is also

1.2. Research Goals and Challenges 19

1.2 Research Goals and Challenges

As pictured in Figure 1, there are several research challenges in cloud orchestration

in each phase of the MAPE cycle. This work selected as subject the Şappropriate scaling

timeŤ issue, from the Analysis step. Besides, there are some additional challenges inherited

from the NECOS project context:

1. NECOS has a multi-tenant architecture. Two restrictions come up from this feature:

a) The orchestration of each slice must happen isolated.

b) Different kinds of services can run on top of the slice. Thus, to perform a

good orchestration, the orchestration needs to adapt its resource management

strategy to each slice.

2. NECOS aims to reduce the deployment time of the service on a slice. For this

reason, the orchestration conĄguration should be as automatic as possible, avoiding

the need to have a specialist to conĄgure the orchestration rules.

3. Since scaling the resources inside the slice takes time, a truly effective approach

should do it before it is needed, avoiding the prejudicial effects of not having the

right conĄguration when necessary. However, it can not be too much beforehand,

which would result in resource waste.

4. Finally, a tenant may not have an online probe running all the time collecting real

end userŠs metrics, which is used as an orchestration metric. This means that the

orchestrator can not rely on the end-userŠs side metrics to forecast the tenantŠs

service KPI during the slice run-time.

Having in mind these conditions, the overall goal of this dissertation was to explore the

slice resource orchestration problem in the NECOS context, proposing a slice orchestrator

architecture to keep the SLA agreed between the tenants and their end-users while saving

resources when possible. This macro objective was broken in the following way:

1. Propose an orchestration architecture with the support of multi-slice, where each

slice is orchestrated in isolation.

2. Develop an automatized and customized orchestration strategy for each slice.

3. Investigate forecasting approaches that allow foreseeing the service quality been

delivered to the end-users, respecting the NECOS formerly described restrictions,

previously and precisely enough to perform the elasticity actions proactively.

4. Lastly, implement a prototype of this architecture to perform experiments to validate

the selected approaches.

20 Chapter 1. Introduction

1.3 Hypotheses

Considering the whole scenario presented so far, the following hypotheses, and their

motivating questions, were evaluated in this dissertation:

H1 - It is possible to forecast the selected tenantŠs service KPI using only the provider

(sliceŠs infrastructure) side metrics.

Q1.1 - Is it possible to use a forecasting method that uses only the providersŠ

monitoring metrics to estimate the selected tenantŠs service KPI?

H2 - It is possible to propose an automatic and proactive slices orchestrator, which avoids

breaches in the tenantsŠ SLAs, while also saves resources.

Q2.1 - Does the orchestrator adapt properly (maintain SLA and keep the cost as

low as possible) in situations where resources need to be added?

Q2.2 - Does the orchestrator adapt properly (maintain SLA and keep the cost as

low as possible) in situations where it is necessary to remove resources?

Q2.3 - Can the conĄguration changes be done previously enough to avoid SLA

breaches?

The results found about these assumptions are shown in Chapter 4. The next section

shows the dissertationŠs scientiĄc outcomes so far.

1.4 Contributions

Firstly, this work contributed to the core of the NECOS project, providing an architec-

ture for a smart and automatic orchestrator, which was demonstrated in the Ąnal review

of the project at UNICAMP (NECOS, 2019b). The orchestrator prototype, its documen-

tation, along with a real monitoring information dataset, are available as open-source at

the NECOS-associated repository1.

1 <https://gitlab.com/necos/demos/mlo>

1.5. Dissertation Organization 21

1.5 Dissertation Organization

Chapter 2 aims to give context about the project where this dissertation was devel-

oped, it also introduces the state of art and concepts about resource orchestration in cloud

environments and gives notions about time series forecasting, as it was one tool used here

to reach the described goals. Then, Chapter 3 explains the solution found to the target

research challenges. It shows, in a top-down manner, how the orchestrationŠs workĆows

were embodied in an orchestration architecture, and how from such an orchestration ar-

chitecture was derived a management cycle, using a high-level codding language. Chapter

4 shows how the proposed solution was evaluated, and the experiment results that were

obtained from it. Finally, it is given a conclusion which ties the objectives, hypothesis,

and experiment results.

22 Chapter 1. Introduction

23

Chapter 2

Background

The central topics for this dissertation were: the NECOS project, resource orchestra-

tion, and time series forecasting methods. Section 2.1 presents the fundamental concepts

related to NECOS and an architectural overview. Section 2.2 shows different approaches

used currently in resource orchestration, and also the concepts related to it. At last,

Section 2.3 focus on time series forecasting and the method used here to perform this

task.

2.1 The NECOS Project

The NECOS project vision is that Şcomputation, storage and networking resources

have to be considered as a whole to be allocated to service requestsŤ (NECOS, 2018b).

To do so, the project coined a new business model: The Slice as a Service. In this model,

a grouping of resources from different resource providers is managed as a whole to accom-

modate service components on top of each slice, independently of other slices (NECOS,

2019a). The Slice as a Service approach provides an adaptable control plane, supporting

features for creating, scaling up or down, and deleting slices, as well as adapting slices at

run-time while considering service requirements and current cloud resource conditions.

There are three key roles inside NECOS: the Resource Provider, the Slice Provider,

and the Slice Tenant. The Ąrst owns the physical resources and infrastructure (network/

cloud/ data center) and provides them. The second is typically a telecommunication

service provider, which is the owner or tenant of the infrastructures from which cloud

network slices can be created. And Ąnally, a slice tenant is the user of a speciĄc slice, in

which its services are hosted.

Another important concept is the Cloud-Network Slice, which is a set of infrastructures

(network, cloud, data center) components/network functions, infrastructure resources

(i.e., connectivity, compute, and storage manageable resources), and service functions

that have attributes speciĄcally designed to meet the needs of an industry vertical or a

service. The Cloud-Network Slice key concepts are:

2.1. The NECOS Project 25

The NECOS (LSDC) Slice Provider presents a northbound API compatible with a

tenantŠs Service Orchestrator, thus enabling tenants to operate on the full infrastructure,

or to choose to interact with Slice as a Service providers, using NECOS. When requesting

a slice from a NECOS provider, there is a Slice Builder component that goes out to a

specially designed and conĄgured Resource Marketplace that can Ąnd Slice parts across

various participating Resource Domains, based on a Slice SpeciĄcation.

Within the NECOS (LSDC) Slice Provider, the Slice Resource Orchestrator (SRO)

module has the following attributions:

1. To combine the Slice Parts that make up a slice into a single aggregated slice.

2. To orchestrate the running end-to-end Slices, including the run-time management

of their lifecycle.

3. To manage the service elements across the slice parts that make up the full end-to-

end slice.

4. To place and embed VMs and virtual links for the services into the resource domains.

This dissertation explored the attribution 2. In this context, the aim was to perform

the slice orchestration during run-time, guided by the service quality being delivered to

the tenantsŠ end-users, while investigating the problem of intelligent and automatic slice

reconĄguration. The proposed orchestration solution is explained in details in Chapter 3,

and its experimental outcomes are shown in Chapter 4.

The next relevant module for this dissertation in this architecture is the Infrastructure

and Monitoring Abstraction (IMA). It is responsible for interacting with the actual remote

cloud elements. Through it the Slice Provider can interact with various remote VIMs,

WIMs, and monitoring sub-systems in a generic way, using plugin adaptors with the

relevant API interactions. The IMA allows the SRO to interact with the remote clouds in

order to provision the actual tenant services and to monitor the remote resources running

those services (via additional monitoring data that is not available via the Service Level

Monitoring Interface).

The SRO will take care of performing the slice life-cycle management, i.e., continuously

checking whether the allocated slice is capable of fulĄlling the requirements that were

initially requested by the Tenant. With this goal in mind, the SRO must have access to a

set of monitoring measurements (coming from each slice part) that provides information

about respective slice resource utilization patterns (e.g., the number of available cores,

memory, network delay/loss, etc.). This information set will be at the granularity of the

slice and will not directly be linked to any of the service instances running on that slice.

The monitoring information is expected to be propagated to the SRO via the underlying

monitoring abstraction implemented by the IMA.

26 Chapter 2. Background

A key concept inside NECOS is elasticity. It is deĄned as the degree to which a

system is able to adapt to workload changes by provisioning and de-provisioning resources

(computing, networking, and storage) in an autonomic manner NECOS (2018a). The goal

is that at each point in time the available resources match the current demand as closely

as possible. The types of elasticity and each workĆow are showed in.

Vertical elasticity is deĄned as the ability to resize slice parts dynamically, as needed,

to adapt the slicing part to demand changes. In other words, it means to resize the

resources inside an already allocated slice part. For example, this expresses the ability to

augment the bandwidth among hosts in a particular slice part of a data center when the

demand for the services supported by the slice increases.

On the other hand, horizontal elasticity is the capability of creating or removing

slice parts dynamically, using resources of the same or other(s) provider(s), depending

on the workload evolution. For example, as the service workload moves from an area to

another in the globe, maybe because of time zones, a slice part under a lighter workload

can be removed, while another slice part can be created in the heavier load area, maybe

being composed by resources from different providers. It is important to notice that

vertical elasticity is preferred whenever possible because of its set up smaller cost, once

the conĄguration and contracts are more simple than for horizontal elasticity, and using

more infrastructure from the same provider usually facilitates to get better costs. The

next section presents other deĄnitions of resource orchestration and also presents how it

is done in related works.

2.2 Resource Orchestration

The aim of this section is to deĄne the key concepts around resource orchestration and

also compare the most related current orchestrators with the proposed one. The resource

orchestration problem can be observed from different angles, depending on the resources

to be managed. The works cited in (QU; CALHEIROS; BUYYA, 2018), for example,

deal with orchestrating virtual machines. In (CASALICCHIO; PERCIBALLI, 2017) and

(CASALICCHIO, 2019), container-level orchestration is analyzed. (CARNEVALE et al.,

2018) describes an osmotic orchestrator that manages devices in the Internet of Things

(IoT) context. On the other hand, the work (SCIANCALEPORE; CIRILLO; COSTA-

PEREZ, 2017) illustrates a slices orchestrator in a 5G background.

In (QU; CALHEIROS; BUYYA, 2018) a pertinent theme is introduced in cloud or-

chestration: resource auto-scaling, or automatic resource scaling. It takes advantage of

the elasticity facilitated by virtualization and deals with the challenge of scaling and pro-

viding only the necessary amount of resources required for a given application at a given

time automatically. It provides a compilation of the latest research on cloud computing,

focusing on automatic scaling in a Virtual Machine (VM) level.

2.2. Resource Orchestration 27

The approach used to analyze resource orchestration in (QU; CALHEIROS; BUYYA,

2018), is to treat the auto-scaling problem as a classic automatic control problem, the

Monitoring, Analysis, Planning, and Execution (MAPE) loop described previously in

Section 1.1, Figure 1. In this control loop, a controller should dynamically adjust the

type and amount of resources allocated in order to comply with the SLA or satisfy a

Service Level Objective (SLO).

In the context of a cloud service, a SLA is used to describe and set service level

objectives (WEES et al., 2014). In general, a SLO is a service objective linked to metrics.

A metric can be described as Şa deĄned measurement method and measurement scale,

which is used in relation to a quantitative service level objectiveŤ (WEES et al., 2014). In

an SLO, metrics are applied to establish boundaries and margins of errors, related to the

behavior of the cloud service and any limitations. Thus, metrics can be used at run-time

for service monitoring, balancing, or remediation. A single measurement of a metric is

the value that this metric has at a certain point in time.

According to Qu, Calheiros e Buyya (2018), to meet a SLO, four types of elasticity

operations can be performed. Regarding enlarge resources, the scaling up operation

increases the internal resources of a VM (number of CPUs, memory capacity, etc.), while

the scaling out creates more VMs. When it is needed to shrink resources, the scaling

down action can be applied to reduce the internal resources of a VM, or a scaling in

operation can be performed to reduce the number of VMs assigned to the application.

Operations of scaling out and scaling in are considered horizontal scaling, whereas scaling

up or down is considered vertical scaling.

By raising the level of abstraction, instead of scaling VMs, it is possible to orchestrate

containers that run inside these machines or directly into metal. A container can be

deĄned as an isolated and portable environment in which one can install an application,

add libraries, binaries, and even a basic conĄguration of how the application should

be executed (CASALICCHIO; PERCIBALLI, 2017). Executing an image, which is a

description of a container, is the same as creating an instance of it. One can create or

delete copies of these instances depending on the needs of the application users. These

copies are deĄned as replicas.

Instances of a container are managed locally by a container manager (CASALIC-

CHIO, 2019), for example: Docker (MERKEL, 2014), Apache Mesos (MESOSPHERE,

2018a), and Amazon ECS (AMAZON WEB SERVICES, 2018). On the other hand, con-

tainer orchestrators allow the selection, deployment, monitoring, and dynamic control

of containers in a cloud (CASALICCHIO, 2019) environment. This type of orchestra-

tor should be concerned with multi-node resource control, scaling instances within the

cluster, load balancing, health checking, fault tolerance, and automatic scaling of active

instances. In this way, container managers act at a local level, while orchestrators act at

a cluster level, managing instances among multiple nodes on a network.

28 Chapter 2. Background

Examples of such orchestrators are: Kubernetes (KUBERNETES AUTHORS, 2018),

Docker Swarm (DOCKER INC, 2018), and Mesosphere Marathon (MESOSPHERE, 2018b).

In contrast with these orchestrators, the one proposed here deals with resources at a

broader level, the slice level. Thus, it may operate over any layer involved in the slice. It

means that an elasticity operation that triggers changes in a lower level of the slice can

bubble to higher levels, and also be applied to containers. However, due to the complexity

of the slice context and time constraints, the orchestrator presented here is only concerned

with the automatic scaling aspect.

Regarding the auto-scaling aspect, Kubernetes has an implementation of a Horizon-

tal Pod Autoscaler. A Pod is a basic container organization level, which represents a

process running within the cluster (KUBERNETES, 2018). It encapsulates one or more

containers, which will share storage resources, an IP, and other settings deĄned in the

Pod description.

However, problems with the metrics used by this scaler were pointed out in Casalicchio

e Perciballi (2017). The article evaluated the best types of metrics for predicting the

required amount of Pods according to current demand. Two types of metrics were deĄned:

relative, which measures the portion of resources that each container uses, and absolute,

which represents the actual resource utilization of the physical system or VM. The article

proposed an algorithm that uses only absolute metrics. It also demonstrated that for

the benchmarks tested, absolute metrics are better at estimating the number of replicas

needed than relative metrics used natively by Kubernetes. The orchestrator designed in

this dissertation works with low-level metrics, as recommended by Casalicchio e Perciballi

(2017). The results in Chapter 4 showed that this approach is indeed promising also in a

slice context.

A new paradigm in the state of the art, that emerges from the relationship between

the computing structures: IoT, edge (small data centers at the network edge), and cloud

computing, is the Osmotic Computing (CARNEVALE et al., 2018). The purpose of

this computing model is to enable the automatic deployment of microservices in highly

distributed and federated environments interconnected between edge and cloud (VILLARI

et al., 2016) structures. Taking the term borrowed from chemistry, osmotic computing

aims to migrate microservices, usually in the form of containers, between cloud and edge

in an organic and automatic manner. The possibility of migration of resources among

parts of the same provider infrastructure or different providers is what correlates this

paradigm with NECOS.

Carnevale et al. (2018) illustrates the architecture of an orchestrator capable of de-

ploying microservices in an osmotic environment, where applications can migrate between

layers: Cloud, edge, and IoT. Their work focuses on the abstraction of services, which

are transformed into containerized ŞmicroelementsŤ (MELS), and also on the abstract

proposal of an orchestrator architecture. Orchestration is treated as a multi-objective op-

2.3. Time Series Forecasting 31

In order to implement cloud resource orchestration Kephart e Chess (2003) suggests a

comprehensive control loop composed of four phases: Monitoring, Analysis, Planning, and

Execution Ű the MAPE loop. At the Ąrst, infrastructure usage metrics are collected, the

second step inspects this data, checking if the application is healthy, the third generates

actions to keep the application running nicely (if needed), and the last will apply the

actions generated by the former.

Kephart e Chess (2003) also coined the predecessor of the MAPE cycle, the MAPE-

K, that can be seen inside of the autonomic manager, in Figure 4. The MAPE-K cycle

includes a Knowledge step, that is pervasive to the other stages of the cycle, used for

learning and dynamic adjustments of all other steps.

NECOS orchestration approach Ąts on this one. The IMA module is responsible for

the Monitoring part, but also includes a feature selection step, which is responsible for

picking only the most relevant metrics to be collected for each slice. The SRO takes care

of the Analysis and Planning phases, receiving the information collected by the IMA,

estimating the future values for the tenantŠs KPI, and then using this intelligence to

choose which actions are needed to apply. The chosen actions are then executed by the

DC Slice Controller or WAN Slice Controller modules.

The Quality of Service (QoS) prediction from service provider metrics is analyzed in

Pasquini e Stadler (2017). There, an artiĄcial intelligence model is trained to predict the

QoS being delivered to end-users. The way in which it is trained allows us to use only

infrastructure metrics to do the service KPI prediction. This dissertation builds upon

this work once it forecasts the KPI seconds ahead in the future, also using only service

provider metrics to do the forecast during the run-time.

The last section of this chapter deĄnes concepts that are used in time series forecasting

and also, concepts related to Recurrent Neural Networks, used in this dissertation to

perform the forecast.

2.3 Time Series Forecasting

Vazquez, Krishnan e John (2015) endorses how important is the use of time series

forecasting in cloud computing applications, pointing out the beneĄts of predicting the

infrastructure demand beforehand. The beneĄts include: to avoid the loss of potential

sales, to keep the quality of service for current clients, and also to prevent the denial

of the running service. According to Hyndman e Athanasopoulos (2018), a time series

is Şanything that is observed sequentially over timeŤ, being the time lag between each

observation constant or variable.

A time series is a set of measurements of a metric, starting in a point at time 1 to 𝑡.

This real measurements can be followed by forecasted values, which are separated from

32 Chapter 2. Background

the last collected measurement 𝑡 by a time lag 𝑙:

𝑡𝑠 = {𝑦1, 𝑦2, 𝑦𝑡, ..., 𝑦′

𝑡+𝑙} (1)

To perform the prediction of the future behavior of a variable 𝑦, a forecasting method

is used, which can predict one or more values after the last observation 𝑦𝑡. As stated

by Hyndman e Athanasopoulos (2018), the most straightforward way to perform this

prediction is to use the past measurements of 𝑦 to build a forecasting model like:

𝑦𝑡+1 = 𝑓(𝑦𝑡, 𝑦𝑡⊗1, 𝑦𝑡⊗2, 𝑦𝑡⊗3, ..., 𝑒𝑟𝑟𝑜𝑟) (2)

Where a function 𝑓 should process the given observations and also use an ŞerrorŤ

parameter, to allow for random variation and the effects of relevant variables that are

not included in the model. Although this kind of model can represent the trends and

seasonal patterns, it will not be able to use new information about other factors that

affect the variableŠs behavior. Some methods that use this strategy are decomposition

models, ARIMA models, exponential smoothings, and also moving averages.

Another kind of model uses predictor variables that explain the values of the forecasted

variable, instead of its values. For this reason they are called explanatory models. This

type of model can be represented as:

𝑦𝑡+1 = 𝑓(𝑥1

𝑡 , 𝑥2

𝑡 , 𝑥3

𝑡 , ..., 𝑥𝑘
𝑡 , 𝑒𝑟𝑟𝑜𝑟) (3)

where 𝑥𝑘
𝑡 is the value of the predictor variable 𝑘 at time 𝑡. It is possible to see it takes

one measurement of each 𝑘 predictor variables along with an error parameter to predict

𝑦𝑡+1. The choice of which model to use in forecasting relies on the resources and data

available, the accuracy of the competing models, and the way in which the forecasting

model is to be used (HYNDMAN; ATHANASOPOULOS, 2018).

The method used in this dissertation to generate an explanatory forecasting model is a

Recurrent Neural Network. The reason for this choice is detailed in Chapter 3. An RNN

is Şa type of artiĄcial neural network, elaborated to recognize patterns in sequences of

data, such as text, genomes, handwriting, the spoken word, or numerical times series data

emanating from sensors, stock markets, and government agenciesŤ (NICHOLSON, 2019).

The decision making of an RNN is a combination of the predictor variables and also the

previous outputs did by the own RNN. This additional memory makes this kind of neural

network a model that uses the recent past to determine its responses, just like a person

that reads each letter of this phrase in sequence and then uses the previous information

to extract the meaning of this text.

The basic structure of a neural network is two or more sequences of ŞneuronsŤ layers,

as can be seen in Figure 5 extracted from (HYNDMAN; ATHANASOPOULOS, 2018).

This kind of neural network is called a multilayer feed-forward network. The Ąrst layer

34 Chapter 2. Background

Besides the description of the advantages to using forecasting in cloud orchestration,

Vazquez, Krishnan e John (2015) also compares different forecasting methods including

ARIMA models, exponential smoothing, and neural networks. To do so, traces of two ser-

vices the Intel Netbatch and Google Cluster Data under a certain workload were recorded

to be used as inputs to the methods to create a forecasting model. After performing

experiments like the evaluation of training sets of different sizes, estimation of values that

were not in the training set, and multiple-point forecasting, they concluded that none of

the methods is optimal for all situations, but the neural network performance was at least

in the average of the other methods.

The differences between Vazquez, Krishnan e John (2015) and this dissertation are:

they did not use the infrastructure metrics where the services were run, they used only the

service side metrics to perform the forecast. Also, the neural network used (HYNDMAN;

KHANDAKAR et al., 2007) was a traditional feed-forward neural network, while here an

RNN, which is a more sophisticated method, is used.

3.2. Orchestrator Architecture 39

(c) The last possible outcome is to keep the same conĄguration, once the forecasted

tenantŠs service KPI value is under conformance, so no action is required and the

loop can continue to step (4).

If one of the options (a) or (b) is chosen, a different set of relevant metrics may be

needed, resulting in a request for relevant feature collection. On the other hand, if (c)

is chosen, then the loop continues with the measurements window being updated with

newly published measurements, and so on. This workĆow lacks an end state because it

should be ŞinĄnityŤ while the slice run time lasts.

Next, Section 3.2 presents more details about the orchestration implementation, in

terms of orchestrator components, their relationships, and tasks.

3.2 Orchestrator Architecture

The architecture shown in Figure 11 is responsible for performing the previous work-

Ćows. The components developed during this work are bounded by dashed lines, the

others are represented to improve the visualization of the workĆow steps. Both workĆows

start with the tenant performing a request to the SRO through the SRO Server com-

ponent. The SRO Server is the SRO entry point. The main endpoints exposed by this

server are:

profile_flavor - Receives a Ćavor proĄling request, at step 1 of the ProĄling WorkĆow

(Figure 9). The request contains a tenantŠs service KPI measurements Ąle, in a

Comma Separated Values (CSV) format. This Ąle is called the ŞX ĄleŤ, once it is

the independent variables Ąle. Also, it is one of the two input Ąles that are necessary

to build the forecasting model. The consistency of this Ąle is checked (format,

maximum size), and then it is delivered to the Slice Controller to be processed.

register_metrics_flavor - Once the request of the relevant metrics to the IMA is

asynchronous, this endpoint is a callback that is used at step 5, of the ProĄling

WorkĆow. It receives a Ąle, called ŞY ĄleŤ, with the relevant infrastructure metrics

measurements, that were collected during the tenantŠs benchmark. The Y Ąle is

sent to the Slice Controller to be processed along with the X Ąle.

start_sla_forecasting - This endpoint is exposed to allow the tenant to visualize,

at the Slice Monitoring Dashboard, the tenantŠs service KPI forecasting values,

without enabling the automatic orchestration. It triggers a call to a task inside the

Slice Controller to perform the KPI forecasting and then publish the values in the

Information Bus.

start_orchestration - Responsible to start the automatic orchestration as shown in

Figure 10, step 1. It enables the automatic orchestration option inside the Slice

40 Chapter 3. Proposal

Figure 11 Ű SRO modules in NECOS scenario. The allocated slice 1 with its resources is
shown in yellow, NECOS related modules in blue, and resource providers in
green.

Controller, allowing changes in the slice Ćavor based on the tenantŠs service KPI

forecasting.

elasticity_upgrade - Available if the tenant wants to perform a Ćavor upgrade man-

ually. Triggers the actions as in step 7 of the Elasticity WorkĆow.

elasticity_downgrade - As the previous one, deĄned if the tenant wants to perform

a Ćavor downgrade manually. It starts the actions as in step 8 of the Elasticity

WorkĆow.

While the SRO Server receives tasks requests, the SRO Client is responsible to make

tasks requests to other components. For example, it requests the metrics selection to

3.2. Orchestrator Architecture 41

the IMA, at step 3 of the ProĄling WorkĆow in Figure 9. Also, it is used by the Slice

Controller to communicate with other components. It handles the request to change the

metrics set being collected when a Ćavor switching is performed, once two Ćavors of the

same slice can have different sets of most relevant features (step 2 of Elasticity WorkĆow

in Figure 10). When an elasticity action needs to be executed, it is also responsible

for requesting the elasticity changes to the appropriate resource provider (steps 7 and 8

of Elasticity WorkĆow in Figure 10). These two modules are the SRO interface to the

external world.

As in an autonomous element (Section 2.2), where each element has an autonomous

control loop, here, each slice has its control loop being executed by its own Slice Con-

troller instance. After the forecasting or automatic orchestration being enable, this

component should consume the measurements of the most relevant metrics from the in-

formation bus, which is the step 4 of the Elasticity WorkĆow in Figure 10. It is deĄned as

the consume_measurements task, and the goal is to Ąll a window 𝑊 like the matrix

structure:

𝑊 =

⋃︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑥𝑡,1 𝑥𝑡,2 · · · 𝑥𝑡,𝑘

𝑥𝑡+𝑙,1 𝑥𝑡+𝑙,2 · · · 𝑥𝑡+𝑙,𝑘

...
...

. . .
...

𝑥𝑡+ℎ,1 𝑥𝑡+ℎ,2 · · · 𝑥𝑡+ℎ,𝑘

⋂︀

∑︁

∑︁

∑︁

∑︁

∑︁

∑︁

⋀︀

where each 𝑥𝑖,𝑗 is a measurement of the relevant metric 𝑗 at time 𝑖. All measurements in

the same row were collected at the same time. All measurements from the same column

belong to the same infrastructure metric. This window has size ℎ × 𝑘, where ℎ is the

number of samples needed for each metric, which means, the history of the previous

measurements necessary to forecast, and 𝑘 is the number of metrics that were selected

in the proĄling phase. The 𝑘 parameter is selected by the IMA, after performing an

analysis of the correlation among the infrastructure metrics and the tenantŠs service KPI.

The 𝑙 indicates the time lag passed between two measurements of the same metric being

collected. For example, a metric can be measured every 5 seconds, so 𝑙 = 5.

After having a full window of infrastructure metrics, the next task is to forecast_kpi.

It is done using the model trained at the Ćavor proĄling phase. How the training is

performed is shown in Section 3.4. The Slice Controller selects the current slice Ćavor

and uses its Forecasting Model component, passing to it the Ąlled window. This

component returns the forecasted value, which goes to the analyze_kpi task, in the

Slice Controler. The behavior of this task was already described in step 6 description of

the Elasticity WorkĆow in Figure 10. If the analysis requires any elasticity action, which

means in our context a Ćavor change, the infrastructure updates are requested using the

42 Chapter 3. Proposal

SRO Client component, which asks the appropriate resource providers to perform the

necessary changes.

Finally, the tenant can follow what is happening with its slice using a Slice Mon-

itoring Dashboard which summarizes the information that is being published in the

information bus. In the dashboard are presented the forecasted tenantŠs service KPI val-

ues, the current most relevant metrics measurements, and the last actions performed by

the orchestrator.

The next section shows the control loop performed by the Slice Controller of each slice

in detail.

3.3 The Slice Control Loop

In this section, pseudo code is used to show in detail some important tasks cited

before. The Ąrst piece of code is the Algorithm 3.1. It shows the control loop process

which is the core of the slice orchestration and runs inside the Slice Controller component.

It loops through the measurements collected, reading the messages published by the IMA

in the information bus. The aim is to Ąll a line from the window 𝑊 , grouping all metrics

collected at the same timestamp. The 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 is the variable that keeps

the measurements set.

1 current_timestamp = now ()

2 window = empty_window ()

3 current_measurements = empty_measurements_list ()

4

5 for message in information_bus :

6 i f cur r ent_f l avor . i s_re l evant_metr i c (message . metr ic) :

7 i f message . timestamp == current_timestamp :

8 current_measurements . add (message . measurement)

9 else i f message . timestamp > current_timestamp :

10 current_measurements = empty_measurements_list ()

11 current_measurements . add (message . metric , message . measurement)

12 current_timestamp = message . timestamp

13

14 i f current_measurements . is_completed () :

15 window . update_window (current_measurements)

16 i f window . i s _ f u l l () :

17 kpi_value = cur rent_f l avor . forecast ing_mode l . f o r e ca s t_kp i (window)

18 pub l i sh_fo r e ca s t (kpi_value , current_timestamp)

19 current_measurements = empty_measurements_list ()

20 i f i s_orches t rat ion_enab led :

3.3. The Slice Control Loop 43

21 analyze_kpi (kpi_value)

Algorithm 3.1 Ű Slice Control Loop.

A message contains the metric name, the measurement value, and the timestamp

marking the time the measurement was collected. A message is processed if it is a relevant

metric for the current Ćavor (messages from previous Ćavors could be in the information

bus). A measurement is inserted inside the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 if it has the same

timestamp as the others (line 7). Line 9 means that if the current measurement is newer

than the others inside the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠, a new list of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

of that timestamp should be completed.

When a line of the window is completed, it is inserted into it (line 15). When the

window is completed, a tenantŠs service KPI forecasting can be performed (line 17). The

current Ćavor of the slice has a forecasting model that is used to perform this prediction.

If the automatic orchestration is enabled (line 20) this value is analyzed and based on it,

and elasticity action may be performed. This evaluation is detailed at the Algorithm 3.2.

In this function, line 2 shows that if some elasticity action is being done, until it is

Ąnished, no other elasticity action can be performed, once the values being collected from

the infrastructure do not represent the Ćavor.

1 analyze_kpi (kpi_value) :

2 i f not i s _ p e r f o r m i n g _ e l a s t i c i t y :

3 i f cur r ent_f l avor . is_too_good (kpi_value) :

4 r e q u e s t _ e l a s t i c i t y (‘ ‘ downgrade ’ ’)

5 i f cur r ent_f l avor . is_too_bad (kpi_value) :

6 r e q u e s t _ e l a s t i c i t y (‘ ‘ upgrade ’ ’)

Algorithm 3.2 Ű analyze_kpi function.

At the lines 3 and 5 the functions 𝑖𝑠_𝑡𝑜𝑜_𝑔𝑜𝑜𝑑 and 𝑖𝑠_𝑡𝑜𝑜_𝑏𝑎𝑑 deĄne the border

values that the tenantŠs service KPI should not cross. For example, consider that a

tenant chose as the KPI the download velocity being delivered to its end users. This

way, the tenant stipulates that 100 Mb/s of download throughput is the highest velocity

that it provides. On the other hand, it guarantees at least 10 Mb/s. In this context, the

forecasted value of 200 is greater than 100, so it is Ştoo goodŤ once the clients are not

paying by it. On the other side, 5 is Ştoo badŤ, because the clients are expecting at least

10 Mb/s. In this case, being Ştoo goodŤ is a 𝑘𝑝𝑖_𝑣𝑎𝑙𝑢𝑒 > 100 relationship and a being

Ştoo badŤ is a 𝑘𝑝𝑖_𝑣𝑎𝑙𝑢𝑒 < 10.

The relationship being greater than a threshold is good and being less than a threshold

is bad does not work for all cases. If the tenantŠs service KPI represents a response

44 Chapter 3. Proposal

time, for example, being great than a value can indicate that the system is too slow, so

an elasticity upgrade should be performed, while if the value is too low, and elasticity

downgrade should take place, once the end-users may not be paying enough to receive it.

This way, the logic behind the 𝑖𝑠_𝑡𝑜𝑜_𝑔𝑜𝑜𝑑 function can be deĄned as shown at the

Algorithm 3.3, where the 𝑔𝑜𝑜𝑑_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 and the 𝑔𝑜𝑜𝑑_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are previously cho-

sen by the tenant, when establishing the SLOŠs, and the 𝑔𝑜𝑜𝑑_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 belongs to the

𝑣𝑎𝑙𝑖𝑑_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 = {<, ≤, =, ≥, >} set. The test performed at the line 4 depends on an-

other parameter provided by the tenant, the Ştoo_good_occurrencesŤ, and it is used to

avoid the elasticity being triggered because of punctual oscillations at the tenantŠs service

KPI forecasting. This value is reset after a period of time, also provided by the tenant.

1 is_too_good (kpi_value) :

2 i f good_operator (kpi_value , good_threshold) :

3 too_good_occurrences = too_good_occurrences + 1

4 i f too_good_occurrences > allowed_times_too_good :

5 return True

6 return False

Algorithm 3.3 Ű Function inside Flavor that evaluates if a forecasted tenantŠs service KPI

value is too good.

The 𝑖𝑠_𝑡𝑜𝑜_𝑏𝑎𝑑 function behavior is analogous to the Algorithm 3.3. Continuing at

the Algorithm 3.2, if the return of the functions Şis_too_goodŤ or Şis_too_badŤ is posi-

tive, an elasticity action is requested. Details about this request are shown at Algorithm

3.4. If the operation is a downgrade, line 2, the algorithm checks if there is a downgrade

Ćavor for that current Ćavor. If it has, the global Ćag 𝑖𝑠_𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑖𝑛𝑔_𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 is set

to true and a message of elasticity is published at the information bus. Next, a function

at the Flavor component is called so it can call the actions in the providers to downgrade

the Ćavor. The global variable 𝑛𝑒𝑤_𝑓𝑙𝑎𝑣𝑜𝑟 holds temporarily the next slice Ćavor. The

behavior when a Ćavor upgrade is performed is similar.

1 r e q u e s t _ e l a s t i c i t y (operat i on) :

2 i f opera t ion == ‘ ‘ downgrade ’ ’ :

3 i f cur r ent_f l avor . has_downgrade_flavor () :

4 i s _ p e r f o r m i n g _ e l a s t i c i t y = True

5 publ ish_sro_log (‘ ‘ Request ing e l a s t i c i t y downgrade ’ ’)

6 cur r ent_f l avor . request_downgrade ()

7 new_flavor = cur r ent_f l avor . downgrade_flavor

8 else :

9 publ ish_sro_log (‘ ‘ Current f l a v o r does not a l low downgrade ’ ’)

3.4. Forecasting Model 45

10

11 i f opera t ion == ‘ ‘ upgrade ’ ’ :

12 i f cur r ent_f l avor . has_upgrade_flavor () :

13 i s _ p e r f o r m i n g _ e l a s t i c i t y = True

14 publ ish_sro_log (‘ ‘ Request ing e l a s t i c i t y upgrade . ’ ’)

15 cur r ent_f l avor . request_upgrade ()

16 new_flavor = cur r ent_f l avor . upgrade_flavor

17 else :

18 publ ish_sro_log (‘ ‘ Current f l a v o r does not a l low upgrade ’ ’)

Algorithm 3.4 Ű Elasticity request code.

Finally, when the providers return that the elasticity actions were completed, a call-

back function, shown at Algorithm 3.5 is called. It sets the 𝑖𝑠_𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑖𝑛𝑔_𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦

Ćag to False, once the elasticity is completed, it resets the measurements window then up-

dates the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑓𝑙𝑎𝑣𝑜𝑟 variable to the new current slice Ćavor, and Ąnally, it publishes

the message that the elasticity action previously requested was completed.

1 e l a s t i c i t y _ c a l l b a c k ()

2 i s _ p e r f o r m i n g _ e l a s t i c i t y = False

3 window = empty_window ()

4 cur r ent_f l avor = new_flavor

5 publ ish_sro_log (‘ ‘ E l a s t i c i t y completed ’ ’)

Algorithm 3.5 Ű Elasticity callback.

All these actions are possible only because at the proĄling phase a machine learning

model was trained to perform the forecasting. The next section gives details about how

the forecasting model used at line 17 of Algorithm 3.1 was trained.

3.4 Forecasting Model

Here, the forecasting model is trained to answer the question: ŞGiven a sequence of

infrastructure monitoring measurements, which is the most probable tenantŠs service KPI

value in 𝑠 seconds?Ť. This question regards the two hypotheses from Section 1.3, once

it requires that the forecast model uses only the infrastructure metrics (Ąrst hypotheses)

and predicts the future (second hypotheses). To do so, the intelligent model Ąrst needs to

learn how to associate the monitoring metrics with the tenantŠs service KPI. In machine

learning, this process is called as Ştraining phaseŤ. However, before training the model

to perform the forecast, the training data needs to be prepared, which is called data

preprocessing. First, the previously received Ąles 𝑋 and 𝑌 are read by the SRO and then

46 Chapter 3. Proposal

have their values under a standardization process. It is done by subtracting the mean

and dividing by the standard deviation of each metric (TENSORFLOW, 2019). The

standardization is needed because some metrics can have very different scales, and doing

that process gives the same meaning to all values: how much they are different from the

standard deviation (FROST, 2020).

Different from Şvanilla neural networksŤ that are fed with a vector containing a single

measurement of each metric, the RNN input is a sequence of measurements of each metric.

The reason to give this piece of time series as input is to provide context for the RNN

to perform a more precise forecast. Therefore, the X Ąle is broken in windows of size

ℎ, where ℎ is the window size. Each window is then associated with the future tenantŠs

service KPI value which is the target, which is shown in detail next. This is a ŞlabelingŤ

process, where the labels are in the Y Ąle. The label is the value that we want our model

to ŞguessŤ from the features that we have.

In our case, it means that if a window has the values starting at the timestamp 𝑡 to

𝑡+ℎ, the target is the 𝑦 value in the Y Ąle with timestamp 𝑡+ℎ+𝑠, where 𝑠 is the distance

in the future that we want to forecast. Figure 12 shows the labeling phase. There, it is

possible to see in the middle a data set instance, which is the window 𝑊 extracted from

the 𝑋 Ąle and its corresponding label, from 𝑌 Ąle. In the Ągure, it is also possible to see

that the 𝑌 Ąle starts at ℎ + 𝑠, instead of 1, which represents the Ąrst timestamp of the X

Ąle, because the Ąrst label labels the window metrics from 1 to ℎ.

After the Ąles being preprocessed in instances, each instance needs to be digested by

the RNN more than one time, to be effectively learned. Thus, the training instances

are shuffled and grouped in batches of size 𝐵. After having the dataset in batches the

training phase can start. It is shown in Figure 13. The RNN architecture is in purple,

in which each circle is a neuron. The architecture used here was inspired by the RNN

shown in TensorĆow (2019), but other architectures could be applied as well. The RNN

has three layers, one input layer, one hidden layer, and one output layer. The input layer

size depends on the window size of ℎ. The middle layer, which is the ŞhiddenŤ layer has

a Ąxed size of 32 neurons. One neuron is used in the output because just one value needs

to be estimated by this RNN.

The pink arrows that connect the neurons in the hidden layer show the recurrent

element of the neural network, in which case one neuron gives to the next its output.

This is what gives the RNN the ability to predict based on the past context.

Before the training starts, the RNN is initialized with random weights in its neurons.

Each input neuron processes a vector from the window and passes the processed value

in the Ćow of the black arrows. Again, the hidden layer process these values, and the

outcome of each neuron is passed to the following neuron of the layer, which is shown

by the pink arrows. After that, all values are once more combined in the output layer,

by the single neuron. The produced Ąnal output (𝑦′) is going to be compared with the

48 Chapter 3. Proposal

certain precision. Finally, after the model has been trained, it is not going to need the

label value 𝑦 anymore. The only necessary input is the recent window of metrics, which

is the recent infrastructure history to perform the forecasting.

The presented orchestration approach is totally agnostic to the service running on top

of the cloud-network slice, which makes it suitable for many kinds of applications. Another

advantage is that it is proactive, being capable to adjust the infrastructure before an SLA

breach. Also, after proĄling the Ćavors and set the thresholds, it runs automatically after

triggered, free of manual interaction.

Next, the following chapter shows the implementation of the SRO prototype and its

behavior. It shows the testbed built to prove the proposed SRO architecture. It also

shows results like the RNN training convergence, behavior of the forecasting values for

each slice Ćavor, and the elasticity triggering based on the forecasting values.

49

Chapter 4

Experimental Results and Analysis

This chapter shows how the intelligent slice orchestration architecture proposed before

can evaluate the hypotheses from Section 1.3. To do so, a testbed, which is a platform of

experiments was set up to provide a slice, its elasticity, and monitoring metrics. Section

4.1 shows more details about this testbed. Section 4.2 shows how the experiments were

run on this platform and also, the results obtained from each experiment. The discussion

about the outcomes of the experiments is provided as they are presented.

4.1 Evaluation Method

In order to embody the proposed architecture shown in Figure 11 and make the exper-

imental process closer to reality, a real private cloud infrastructure was set up. This way,

it was possible to collect real service and infrastructure metrics and also apply load and

elasticity actions on them. Figure 14 shows this testbed and Table 1 shows the conĄgura-

tion of each used machine. In blue, are the NECOS components. In green, the Resource

Domains division, showing an infrastructure provider simulation. In purple is the third

part software used. They include:

Granafa: An open-source analytics and monitoring tool that facilitates the visualization

of time series databases (GRAFANA LABS, 2020). It is used as the visualization

part of the Slice Monitoring Dashboard. The version used was 6.2.4.

InfluxDB: A database optimized to store time series in real-time (INFLUXDATA INC,

2020) and open source. It groups and stores the monitoring and orchestration data

that Grafana displays. This system was installed in the 1.7.6 version.

Kafka: A streaming platform, similar to a message queue. It stores the streams of

records in a fault-tolerant and durable way (APACHE KAFKA, 2017). Kafka can

be deployed in a cluster of one or more servers, storing the streams in categories

called topics. It is used as the information bus of the orchestration architecture. The

50 Chapter 4. Experimental Results and Analysis

Figure 14 Ű Test bed.

SRO is subscribed to the slice metricsŠ topic and publishes its forecast to another

speciĄc topic. Version 2.11-2.0.0 is used.

Kafka-InfluxDB-Consumer: An open-source Kafka consumer for InĆuxDB written

in Python (ENDLER, 2018). After being subscribed to receive topics like the SRO

forecasting results and monitoring selected metrics from IMA, it reads the informa-

tion published in Kafka and stores it in the InĆuxDB database.

Prometheus: An open-source systems monitoring used to collect the slice metrics

(THE LINUX FOUNDATION, 2020). It collects the server-related metrics asso-

ciated with CPU, memory, and network. Its function is to collect the metrics that

are provided by the IMA. The installed version is 2.2.1.

Cassandra: It is a NoSQL database management system, open-source, and free (THE

APACHE SOFTWARE FOUNDATION, 2016). In the testbed, it represents the

Tenant service running on top of the slice. The Cassandra version used is the

3.11.3.

Load Generator: It is a python code that was programmed to generate client processes

that make requests to the Cassandra service (CUNHA, 2019). It is conĄgurable so

4.1. Evaluation Method 51

Components hosted OS RAM HD Processor
IMA Ubuntu 16.04 16GB 500GB 8 vCPUs
SRO Ubuntu 16.04 16GB 500GB 8 vCPUs

InĆux DB, Kafka-InĆuxDB Ubuntu 16.04 16GB 500GB 8 vCPUs
Grafana Ubuntu 16.04 16GB 500GB 8 vCPUs

Kafka Node 1 Ubuntu 16.04 4GB 20GB 1 vCPU
Kafka Node 2 Ubuntu 16.04 4GB 20GB 1 vCPU
Kafka Node 3 Ubuntu 16.04 4GB 20GB 1 vCPU
Kafka Node 4 Ubuntu 16.04 4GB 20GB 1 vCPU
Kafka Node 5 Ubuntu 16.04 4GB 20GB 1 vCPU

Load Generator Ubuntu 16.04 8GB 20GB 2 vCPUs
ModiĄed Client Ubuntu 16.04 4GB 20GB 2 vCPUs

Prometheus 1, Prometheus 2 Ubuntu 16.04 8GB 500GB 4 vCPUs

Table 1 Ű Testbed machine conĄgurations.

the client creation can follow a certain distribution like a Gaussian, for example.

Modified Client: It is a program written in Java, that was used to perform queries to

the Cassandra service (CUNHA, 2019), as an end-user would do. It also records the

tenantŠs service KPI measurements, and export them as the Y Ąle in .csv format.

VIM Openstack: It is a cloud operating system (VEXXHOST, 2020), and its role was

to create all the VMs employed in the testbed. The version used was Openstack

Queens, 3.14.0.

The slice holding the Cassandra service was composed of one slice part which had

5 servers, forming a Cassandra cluster. Each cluster node had 1 vCPU, 4GB of RAM,

and 50GB of disk. This slice could have two different Ćavors, and the difference was

in the network traffic police. In the Ąrst Ćavor, which was the Şsmaller ĆavorŤ, a traffic

control police had been conĄgured to allow only 10Mbit to pass through the main network

interface of each cluster node. This was done by using the Linux tc command:

sudo tc qdisc add dev ens3 root tbf rate 10Mbit latency 1ms

burst 10000

Such a command uses the 𝑖𝑝𝑟𝑜𝑢𝑡𝑒 package. The latency was 1ms because the aiming

was not simulating a distant network package traveling. The burst of 10000 was chosen

to not compromise the package processing. In the Şbigger ĆavorŤ the traffic restriction

was 30Mbit, with the same other parameters. The 10Mbit and 30Mbit values were chosen

once they could induce variations in the chosen tenantŠs service KPI. The KPI was the

99𝑡ℎ percentile of the reading response time, in milliseconds. It indicates that the reading

response time of 99% of the reading requests performed by the ModiĄed Client is under

4.1. Evaluation Method 53

name (𝐾𝑃𝐼), the name of the Ąeld in the Ąle that represents the measurementsŠ times-

tamps (𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝐹𝑖𝑒𝑙𝑑), and Ąnally, the 𝑌 Ąle being transferred to the SRO (𝑦𝐹 𝑖𝑙𝑒.𝑐𝑠𝑣).

After receiving this request, the SRO called the IMA to select the most relevant metrics

of the infrastructure to train the Ćavor model, also passing the 𝑌 Ąle (interaction I.2 in

Figure 14). The IMA then requests to Prometheus 1 all the previously collected metrics

to perform the metrics selection (interaction I.3 in Figure 14). Next, the IMA returns the

selected metrics in a .csv Ąle, which was the 𝑋 Ąle (interaction I.2 in Figure 14). The

SRO then trains the Ćavor model that represented that Ćavor under the given load.

Once both Ćavors had been proĄled, the SRO could accept forecasting requests or

orchestration requests (interaction I.1 in Figure 14). For the forecasting, the request

would be:

curl -X POST

http://{SRO_IP:SRO_PORT}/slice/{sliceId}/start_sla_forecast

or to enable forecasting based orchestration:

curl -X POST

http://{SRO_IP:SRO_PORT}/slice/{sliceId}/start_orchestration

When the forecasting request is received, the SRO requests the IMA to publish real-

time measurements of the 𝐾 selected metrics (interaction I.2 in Figure 14). The IMA

requests the Prometheus 2 to send the measurements to Kafka (interactions I.5, I.4, and I.6

in Figure 14). The SRO then consumes the real-time data, in order to forecast the tenantŠs

service KPI 𝑠 seconds in the future (interaction I.7 in Figure 14). The SRO publishes

its forecasted values to Kafka, which are plot in a Grafana dashboard (interaction I.7 in

Figure 14). If the orchestration request is performed, the SRO may execute actions in

the infrastructure to keep the selected tenantŠs service KPI in compliance (interaction I.8

in Figure 14), which means, to keep its values inside the acceptable interval previously

deĄned.

To know whether the forecasting models were representing well the Ćavors conditions,

it was needed to measure their accuracy. According to Hyndman e Athanasopoulos (2018),

it is possible to measure the forecast accuracy by summarizing the forecast errors. In their

book, they show a percentage metric called Mean Absolute Percentage Error (MAPE),

which is a unit-free metric and can compare forecast performances between datasets. This

MAPE metric was chosen to measure the modelsŠ accuracy in this dissertation. Note that

from now on, the MAPE acronym will be used to designate this metric and not the MAPE

loop mentioned earlier in this work. It can be calculated doing:

𝑀𝐴𝑃𝐸 =

√︁𝑛
1

|𝑦′

𝑖 − 𝑦𝑖|

𝑦𝑖

∗ 100

𝑛
(4)

54 Chapter 4. Experimental Results and Analysis

where 𝑦′ stands for the forecasted value at time 𝑖, 𝑦𝑖 is the real value for the same time 𝑖 and

𝑛 is the number of samples. Each trained model is going to have its MAPE compared with

the MAPE of a naïve method, a simple mean of the training KPI values, which is going to

be used as a baseline. This is done to answer the questions: Is the RNN prediction better

than a simple and cheap arithmetic mean? Does the RNN provide a better estimation

that makes it worth it to be used?

The next section brings the experimental results obtained using the experimental

strategy and the proposed testbed. It shows how the tenantŠs service KPI Ćoats under

different Ćavor and load conditions, how the trained models perform for each Ćavor, and

Ąnally, how the orchestration could keep the KPI in conformance.

4.2 Experiments

To validate the hypotheses at Section 1.3, this section presents three kinds of exper-

iment and their results. The Ąrst hypothesis, H1, aimed to check if it was possible to

create a model that predicted the tenantŠs KPI using only infrastructure data, and H2

hoped to verify if the model could be used in a run time orchestration to maintain the

SLA and also save costs. The experiments worked as a three steps pipeline, where the

output of one was used as input by the next:

1. Put the testbed under load to gather the infrastructure and client metrics for each

slice Ćavor. It represents steps 1 to 5 of the ProĄling WorkĆow (Figure 9). It was

used to collect data for hypothesis H1.

2. With the collected data, to train different RNN models for each Ćavor, varying the

window size and forecast horizon. Also for each Ćavor, select the model with the

best MAPE value (step 6 of the ProĄling WorkĆow). This aimed to validate the

hypothesis H1.

3. Finally, after deploying the selected models at the SRO, the third experiment con-

sisted of running the orchestrator and check if the proposed orchestration did obey

the hypothesis H2 (Elasticity WorkĆow - Figure 10).

For experiment number 1, the Ąrst step is to get the 𝑌 Ąle for each slice Ćavor. The

Ąrst experiment to get the 𝑌 Ąle for Flavor 1 is shown in Figure 16. The load applied

to the service is shown in pink, while the 99𝑡ℎ Percentile of Reading Response Time

measurements is shown in green. The tenantŠs service KPI axis is on the left, whereas

the right axis shows how many users were sending requests.

In this experiment, a load Ćoating from two to twelve clients in a time interval (si-

nusoidal load pattern) of twenty minutes was applied to the Cassandra service for three

hours, generating nine repetitions of this pattern. As can be seen in the plot, there is

56 Chapter 4. Experimental Results and Analysis

During both experiments, Prometheus 1 was collecting the infrastructure monitoring

data, to be extracted by IMA in the form of the 𝑋 Ąle. The 𝑋 Ąle from Flavor 1 was

requested, as in steps 3-5 of the ProĄling WorkĆow (Figure 9). With this and the client

data (𝑌 Ąle) it was possible to train models to forecast the tenantŠs service KPI (Figure

9, step 6).

Aiming to understand the RNN behavior under different conditions, 8 models were

trained for each Ćavor, with different window sizes and forecasting horizons. As it is a

common choice to train AI algorithms, all models were trained with 70% of the experi-

mental data, leaving 30% of unseen measurements for validation. The Flavor 1 models

predictions are shown in Figure 18. In all Ągures, in the left column (a, c, e, and g), the

models were trained using a window size of 240s. The right column (letters b, d, f, and h)

shows the performance for a wider window, 480 seconds large. This kind of experiment

was done to observe the effect of more past information on the RNN performance.

In each line of the Figures, a different forecasting horizon is used: 1s (a, b), 30s (c, d),

60s (e, f), and 120s (g, h). This variation aimed to explore how good the model is to look

ahead in the future, providing information beforehand. In each plot, the real tenantŠs

service KPI values are plotted in green and the forecasting in blue. Finally, in orange

is the mean of the real values, which represents our naïve method, used as a baseline to

compare with the RNN performance.

On each plot of Figure 18 we see a remarkable resemblance of shape between the real

values and the forecasted ones. Both, the forecasted shape and real shape present two

distinct and well-concentrated areas: a ceiling and a Ćoor. Another peculiarity is that

the Ćuctuations of the real values for the ceiling area are wider than for the Ćoor area.

Also, those shapes have a straight transition from the ceiling to the Ćoor, and vice-versa.

It is possible to see that with a larger range of future forecasting, the top of the shape in

blue becomes disturbed (plots 𝑔 and 𝑓). It may indicate that the larger horizon makes

the predictions more vulnerable to data Ćuctuations. The loss of the shape while rising

the curve for the plot ℎ, may indicate that a larger window may increase the forecasting

problems.

As the forecasting horizon gets larger, the plots tend to shift right, which starts to be

visible in plots 𝑒 and 𝑓 and it is even more clear in plots 𝑔 and ℎ. This shift may indicate

that the model becomes late as it has to predict ahead in the future.

To help us to see how good the forecasting is compared with the naïve model, the

MAPE metric described in Equation 4 was used. As it represents an error metric, a smaller

value means better model performance. For improving the visualization the MAPEs of

each model was put together in the plot of Figure 19. The Ąrst values for each bar represent

the RNN with 240s history (blue). This model had the best performance accordingly with

the MAPE indicator for the majority forecasting horizons, except by the 1s horizon, where

it has a quite small worse behavior comparing with the RNN with 480s history (red). The

63

Chapter 5

Conclusion

As it was stated at the beginning of this document, at Section 1.2, the main goal of this

project was to propose a slice orchestrator architecture, inside the context of the NECOS

project. The main objective of this orchestration approach was to keep the SLA that was

established between the NECOS tenant and its end users managing the cloud-network

slice in a way that a deĄned SLO could be kept. This primary goal was broken into four

steps which were shown in Section 1.2 and were concluded in the following way:

1. To propose an orchestration architecture. This goal was reached as shown by the

multi-slice orchestration architecture designed and presented in Section 3.2.

2. To create an automatized and customized orchestration strategy for each slice. To

do so, it was adopted an approach using the training of ML models for each slice

conĄguration (Ćavors), which was detailed in Section 3.4.

3. To investigate forecasting approaches in orchestration, respecting the NECOS re-

striction to use only the providerŠs infrastructure metrics. This was achieved by

exploring the RNN as described in Section 4.2.

4. To implement a prototype of the suggested orchestration architecture. This proto-

type was built and its behavior was portrayed in Section 4.2.

All these goals were used to prove that the hypotheses of Section 1.3 hold. The

Ćavors forecasting models plots and metrics showed in the Section 4.2 convince that it

was possible to use ML models to forecast tenantŠs service KPI values in the future using

only infrastructure metrics (Hypotheses 1) and, Ąnally, that these models could be used

to stimulate an automatic orchestration of a slice.

5.1 Main Contributions

The biggest contribution of this dissertation is to prove that the providerŠs side metrics

can give a good prediction in the future of the quality been delivered to the end userŠs

64 Chapter 5. Conclusion

point of view. Also, this work provided an orchestrator prototype that is agnostic to

service and slice conĄguration in an open-source form and also datasets to future works
1. This way, other works can explore other prediction methods using the data sets, other

infrastructure conĄgurations, or even explore other services.

5.2 Future Work

During the development of this orchestration architecture, three points of attention

came up. The Ąrst is that when a change of Ćavor happens, the previous window is Ąlled

with the last ĆavorŠs data, which can cause the prediction to lose some precision. Future

work could explore more this situation, analyzing the impacts, and maybe proposing

solutions. Secondly, the forecasting can be truly compromised by the latency/failure of

the network or any other service involved in the metrics collection and publication. It

would be necessary to explore techniques to mitigate the orchestration unavailability or

even fallback options if it happens. The third is to automate the choice of the machine

learning model, which could take into consideration the precision metric, the time to

perform forecasting, the time to be trained, etc.

Besides these two subjects, other kinds of machine learning techniques could be ana-

lyzed to generate better models, or even to explore other RNN architectures and parame-

terization. More complex test cases involving more slice parts or other applications could

also be explored, and new techniques of slice setting reconĄguration more complex than

predeĄned Ćavors could be investigated as well.

5.3 Contributions in Bibliographic Production

Two articles were published at the SBRC 37th Brazilian Symposium on Computer

Networks and Distributed Systems at the Workshop of Theory, Technologies, and Appli-

cations of Slicing for Infrastructure Softwarization (WSLICE), in 2019. The Ąrst paper

was titled ŞArcabouço para Orquestração Osmótica de Cloud SlicesŤ (GUARDIEIRO et

al., 2019) and the second ŞArcabouço de um sistema inteligente de monitoramento para

cloudslicesŤ (MARQUES et al., 2019). Also, in the same event, one poster titled: ŞA. To-

wards osmotic orchestration of cloud slicesŤ was presented at the Latin American Student

Workshop on Data Communication Networks (GUARDIEIRO, 2019).

1 https://gitlab.com/necos/demos/mlo

65

Bibliography

AMAZON WEB SERVICES. Amazon Elastic Container Service. 2018.
<https://aws.amazon.com/pt/ecs/>. Online; accessed 12 dec. 2018.

APACHE KAFKA. Apache Kafka a Distributed Streaming Platform -
Introduction. 2017. <https://kafka.apache.org/intro>. Online; accessed 12 jan. 2020.

CARNEVALE, L. et al. From the cloud to edge and iot: a smart orchestration architecture
for enabling osmotic computing. In: IEEE. 2018 32nd International Conference on
Advanced Information Networking and Applications Workshops (WAINA).
[S.l.], 2018. p. 419Ű424. <https://doi.org/10.1109/WAINA.2018.00122>.

CASALICCHIO, E. Container orchestration: A survey. In: Systems Modeling:
Methodologies and Tools. [S.l.]: Springer, 2019. p. 221Ű235. <https://doi.org/10.
1007/978-3-319-92378-9_14>.

CASALICCHIO, E.; PERCIBALLI, V. Auto-scaling of containers: The impact of
relative and absolute metrics. In: IEEE. Foundations and Applications of Self*
Systems (FAS* W), 2017 IEEE 2nd International Workshops on. [S.l.], 2017. p.
207Ű214. <https://doi.org/10.1109/FAS-W.2017.149>.

CUNHA, I. R. d. Construction of a tool to support prediction of Cassandra
response times from infrastructure metrics. 2019. Computer Science Bachelor
Monograph. <https://repositorio.ufu.br/handle/123456789/26441>.

DOCKER INC. Swarm mode overview. 2018. <https://docs.docker.com/engine/
swarm/>. Online; accessed 12 dec. 2018.

ENDLER, M. Kafka-InfluxDB. 2018. <https://github.com/mre/kafka-inĆuxdb>.
Online; accessed 12 jan. 2020.

FREITAS, L. A. et al. Slicing and allocation of transformable resources for the
deployment of multiple virtualized infrastructure managers (vims). In: IEEE. 2018 4th
IEEE Conference on Network Softwarization and Workshops (NetSoft). [S.l.],
2018. p. 424Ű432. <https://doi.org/10.1109/NETSOFT.2018.8459990>.

FROST, J. Standardization. 2020. <https://statisticsbyjim.com/glossary/
standardization/>. Online; accessed 23 nov. 2020.

66 Bibliography

GRAFANA LABS. The open observability platform. 2020. <https://grafana.com/>.
Online; accessed 12 jan. 2020.

GUARDIEIRO, A. Towards osmotic orchestration of cloud slices. Poster at LANCOMM
Student Workshop (Latin American Student Workshop on Data Communication
Networks). 2019.

GUARDIEIRO, A. et al. Arcabouço para orquestração osmótica de cloud slices.
In: SBC. Workshop of Theory, Technologies, and Applications of Slicing
for Infrastructure Softwarization (WSLICE), 2019 SBRC 37th Brazilian
Symposium on Computer Networks and Distributed Systems. [S.l.], 2019. p.
30Ű43. <https://doi.org/10.5753/wslice.2019.7720>.

HYNDMAN, R. J.; ATHANASOPOULOS, G. Forecasting: principles and practice.
Melbourne, Australia: OTexts, 2018. <https://otexts.com/fpp2/>. Online; accessed 12
mar. 2019.

HYNDMAN, R. J.; KHANDAKAR, Y. et al. Automatic time series for forecasting:
the forecast package for R. [S.l.]: Monash University, Department of Econometrics
and Business Statistics, 2007. <https://doi.org/10.18637/jss.v027.i03>.

INFLUXDATA INC. Real-time visibility into stacks, sensors and systems. 2020.
<https://www.inĆuxdata.com/>. Online; accessed 12 jan. 2020.

KEPHART, J. O.; CHESS, D. M. The vision of autonomic computing. Computer,
IEEE, n. 1, p. 41Ű50, 2003. <https://doi.org/10.1109/MC.2003.1160055>.

KUBERNETES. Pod Overview. 2018. <https://kubernetes.io/docs/concepts/
workloads/pods/pod-overview/>. Online; accessed 21 dec. 2018.

KUBERNETES AUTHORS. Production-Grade Container Orchestration. 2018.
<https://kubernetes.io/>. Online; accessed 12 dec. 2018.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, Nature Publishing
Group, v. 521, n. 7553, p. 436, 2015. <https://doi.org/10.1038/nature14539>.

MARQUES, G. et al. Arcabouço de um sistema inteligente de monitoramento para cloud
slices. In: SBC. Workshop of Theory, Technologies, and Applications of Slicing
for Infrastructure Softwarization (WSLICE), 2019 SBRC 37th Brazilian
Symposium on Computer Networks and Distributed Systems. [S.l.], 2019. p.
58Ű70. <https://doi.org/10.5753/wslice.2019.7722>.

MERKEL, D. Docker: lightweight linux containers for consistent development and
deployment. Linux Journal, Belltown Media, v. 2014, n. 239, p. 2, 2014.

MESOSPHERE. Apache Mesos. 2018. <http://mesos.apache.org/>. Online; accessed
12 dec. 2018.

. Marathon: A container orchestration platform for Mesos and DC/OS.
2018. <https://mesosphere.github.io/marathon/>. Online; accessed at 12-12-2018.

NECOS. D5.1: Architectural update, Monitoring and Control Policies
Frameworks. 2018. <http://www.maps.upc.edu/public/D5.1_Ąnal.pdf>. Online;
accessed 12 mar. 2019.

Bibliography 67

. Novel Enablers for Cloud Slicing. 2018. <http://www.h2020-necos.eu/>.
Online; accessed 12 dec. 2018.

. D3.2: NECOS System Architecture and Platform Specification. V2.
2019. <http://www.maps.upc.edu/public/necos_d3.2.v4.11_Ąnal_web.pdf>. Online;
accessed 17 dec. 2019.

. NECOS Final Review. 2019. <http://www.h2020-necos.eu/
ufrn-telecomday-2019-2-2/>. Online; accessed at 11-17-2020.

. Machine Learning Based Orchestration of Slices. 2020. <http:
//www.maps.upc.edu/public/MLO_demo_video_with_audio.mp4>. Online; accessed
at 06-24-2020.

NETTO, M. A. et al. Evaluating auto-scaling strategies for cloud computing
environments. In: IEEE. Modelling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2014 IEEE 22nd International
Symposium. [S.l.], 2014. p. 187Ű196. <https://doi.org/10.1109/MASCOTS.2014.32>.

NICHOLSON, C. A Beginner’s Guide to LSTMs and Recurrent Neural
Networks. 2019. <https://pathmind.com/wiki/lstm>. Online; accessed 29 dec. 2019.

PASQUINI, R.; STADLER, R. Learning end-to-end application qos from openĆow switch
statistics. In: IEEE. Network Softwarization (NetSoft), 2017 IEEE Conference.
[S.l.], 2017. p. 1Ű9. <https://doi.org/10.1109/NETSOFT.2017.8004198>.

QU, C.; CALHEIROS, R. N.; BUYYA, R. Auto-scaling web applications in clouds: A
taxonomy and survey. ACM Computing Surveys (CSUR), ACM, v. 51, n. 4, p. 73,
2018. <https://doi.org/10.1145/3148149>.

RANJAN, R. et al. Cloud resource orchestration programming: overview, issues,
and directions. IEEE Internet Computing, IEEE, v. 19, n. 5, p. 46Ű56, 2015.
<https://doi.org/10.1109/MIC.2015.20>.

SCIANCALEPORE, V.; CIRILLO, F.; COSTA-PEREZ, X. Slice as a service
(slaas) optimal iot slice resources orchestration. In: IEEE. GLOBECOM
2017-2017 IEEE Global Communications Conference. [S.l.], 2017. p. 1Ű7.
<https://doi.org/10.1109/GLOCOM.2017.8254529>.

SILVA, F. S. D. et al. Necos project: Towards lightweight slicing of cloud
federated infrastructures. In: IEEE. 2018 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). [S.l.], 2018. p. 406Ű414. <https:
//doi.org/10.1109/NETSOFT.2018.8460008>.

TENSORFLOW. Time series forecasting. 2019. <https://www.tensorĆow.org/
tutorials/structured_data/time_series>. Online; accessed 26 jul. 2020.

THE APACHE SOFTWARE FOUNDATION. Apache Cassandra. 2016. <http:
//cassandra.apache.org/>. Online; accessed 12 jan. 2020.

THE LINUX FOUNDATION. Prometheus. 2020. <https://prometheus.io/>. Online;
accessed 12 jan. 2020.

68 Bibliography

VAZQUEZ, C.; KRISHNAN, R.; JOHN, E. Time series forecasting of cloud data center
workloads for dynamic resource provisioning. JoWUA, v. 6, n. 3, p. 87Ű110, 2015.

VELOSA, A. et al. Predicts 2015: The internet of things. Gartner: Stamford, CT,
USA, 2014.

VEXXHOST. Open source software for creating private and public clouds.
2020. <https://www.openstack.org/>. Online; accessed 12 jan. 2020.

VILLARI, M. et al. Osmotic computing: A new paradigm for edge/cloud
integration. IEEE Cloud Computing, IEEE, v. 3, n. 6, p. 76Ű83, 2016.
<https://doi.org/10.1109/MCC.2016.124>.

WEES, A. Van der et al. Cloud service level agreement standardisation guidelines. Cloud
Select Industry Group-Subgroup on Service Level Agreement (C-SIGSLA),
Tech. Rep, p. 2, 2014.

ZANELA, E. H. et al. Proposta de vim on-demand para fatiamento de nuvem.
In: SBC. Workshop of Theory, Technologies, and Applications of Slicing
for Infrastructure Softwarization (WSLICE), 2019 SBRC 37th Brazilian
Symposium on Computer Networks and Distributed Systems. [S.l.], 2019. p.
2Ű15. <https://doi.org/10.5753/wslice.2019.7718>.

	Title page
	Approval
	Dedication
	Agradecimentos
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	Acronyms list
	Contents
	Introduction
	Motivation
	Research Goals and Challenges
	Hypotheses
	Contributions
	Dissertation Organization

	Background
	The NECOS Project
	Resource Orchestration
	Time Series Forecasting

	Proposal
	Orchestration Workflows
	Orchestrator Architecture
	The Slice Control Loop
	Forecasting Model

	Experimental Results and Analysis
	Evaluation Method
	Experiments

	Conclusion
	Main Contributions
	Future Work
	Contributions in Bibliographic Production

	Bibliography

