Orquestracao de Cloud-Network Slices
Orientada a Predicao de Métricas de Servico a

Partir do Monitoramento da Infraestrutura

Aryadne Guardieiro Pereira Rezende

G

UFU

UNIVERSIDADE FEDERAL DE UBERLANDIA
FACULDADE DE COMPUTAGAO
PROGRAMA DE POsS-GRADUAGAO EM CIENCIA DA COMPUTAGAO

Uberlandia
2020

Aryadne Guardieiro Pereira Rezende

Orquestracao de Cloud-Network Slices
Orientada a Predicao de Métricas de Servico a

Partir do Monitoramento da Infraestrutura

Dissertacao de mestrado apresentada ao Pro-
grama de Poés-graduacao da Faculdade de
Computacao da Universidade Federal de Uber-
landia como parte dos requisitos para a obtencao

do titulo de Mestre em Ciéncia da Computagao.
Area de concentracao: Ciéncia da Computacéo

Orientador: Rafael Pasquini

Coorientadora: Raquel Fialho de Queiroz Lafeta

Uberlandia
2020

Dados Internacionais de Cataloga¢do na Publicacio (CIP)
Sistema de Bibliotecas da UFU, M@, Brasil.

R4670
2020

Rezende, Aryadne Guardieiro Pereira, 1993-

Orquestracdo de Cloud-Network Slices orientada a predicdo de
métricas de servigo a partir do monitoramento da infraestrutura [recurso
eletronico] / Aryadne Guardieiro Pereira Rezende. - 2020.

Orientador: Rafael Pasquini.

Coorientadora: Raquel Fialho de Queiroz Lafetd.

Dissertagdo (mestrado) - Universidade Federal de Uberlandia,
Programa de P6s-Graduagdo em Ciéncia da Computacio.

Modo de acesso: Internet.

Disponivel em: http://doi.org/10.14393/ufu.di.2020.3053

Inclui bibliografia.

Inclui ilustragdes.

1. Computacdo.l. Pasquini, Rafael, 1981-, (Orient.). II. Lafetd,
Raquel Fialho de Queiroz, 1983-, (Coorient.). III. Universidade Federal
de Uberlandia. Programa de P6s-Graduagdo em Ciéncia da Computacio.
IV. Titulo.

CDU: 681.3

Rejine Maria da Silva — CRB6/1925

UNIVERSIDADE FEDERAL DE UBERLANDIA

Coordenacdo do Programa de Pds-Graduacdo em Ciéncia da Computacdo
Av. Jodo Naves de Avila, n® 2121, Bloco 1A, Sala 243 - Bairro Santa Mdnica, Uberlandia-MG, CEP 38400-902
Telefone: (34) 3239-4470 - www.ppgco.facom.ufu.br - cpgfacom@ufu.br

ATA DE DEFESA - POS-GRADUACAO

P de Pds- a ~
rogram? e ros Ciéncia da Computacao
Graduacdo em:
Defesa de: Mestrado Académico, 26/2020, PPGCO
Data: 27 de agosto de 2020 Hora de inicio: 12h00min Hora de 14h30min
encerramento:
Matricula do 11812CCPO08
Discente:
Nome do Aryadne Guardieiro Pereira Rezende
Discente
Titulo do Orquestracao de Cloud-Network Slices Orientada a Predicdo de Métricas de Servigo a Partir do
Trabalho: Monitoramento da Infraestrutura
Area de
~ Ciéncia da Computacao
concentragdo:
Linha de pesquisa: | Sistemas de Computacao
Projeto de
Pesquisa de -
vinculacdo:

Reuniu-se, por videoconferéncia, a Banca Examinadora, designada pelo Colegiado do Programa de Pés-graduacdo em
Ciéncia da Computacdo, assim composta: Professores Doutores: Rodrigo Sanches Miani - FACOM/UFU; Paulo Rodolfo
da Silva Leite Coelho - FACOM/UFU; Erika Susana Rosas Olivos - Universidad Técnica Frederico Santa Maria -
Santiago/Chile; Raquel Fialho de Queiroz Lafetad - XP Inc (coorientadora) e Rafael Pasquini - FACOM/UFU, orientador
da candidata.

Os examinadores participaram desde as seguintes localidades: Erika Susana Rosas Olivos - Santiago/Chile; Paulo
Rodolfo da Silva Leite Coelho, Rodrigo Sanches Miani, Raquel Fialho de Queiroz Lafetd e Rafael Pasquini - Uberlandia-
MG. A discente participou da cidade de Uberlandia-MG.

Iniciando os trabalhos o presidente da mesa, Prof. Dr. Rafael Pasquini, apresentou a Comissdo Examinadora e a
candidata, agradeceu a presenca do publico, e concedeu a Discente a palavra para a exposicdo do seu trabalho. A
duracdo da apresentacdo da Discente e o tempo de arguicdo e resposta foram conforme as normas do Programa.

A seguir o senhor presidente concedeu a palavra, pela ordem sucessivamente, aos examinadores, que passaram a
arguir a candidata. Ultimada a arguicdo, que se desenvolveu dentro dos termos regimentais, a Banca, em sessao
secreta, atribuiu o resultado final, considerando a candidata:

Aprovada.
Esta defesa faz parte dos requisitos necessarios a obtencao do titulo de Mestre.

Ressalta-se que a examinadora Erika Susana Rosas Olivos é estrangeira e ndo possui documento brasileiro, portanto
nao devera assinar este documento.

O competente diploma serd expedido apds cumprimento dos demais requisitos, conforme as normas do Programa, a
legislacdo pertinente e a regulamentacdo interna da UFU.

Nada mais havendo a tratar foram encerrados os trabalhos. Foi lavrada a presente ata que apds lida e achada
conforme foi assinada pela Banca Examinadora.

Documento assinado eletronicamente por Rodrigo Sanches Miani, Professor(a) do Magistério Superior, em
01/09/2020, as 10:53, conforme horario oficial de Brasilia, com fundamento no art. 62, § 12, do Decreto n2 8.539,

Dedico esse trabalho a todas as mulheres que lutaram por todos direitos que temos hoje,

principalmente pelo o libertador direito de estudar.

Agradecimentos

Agradecgo aos meus pais, Adriana Guardieiro Pereira Rezende e Diom Gande Rezende,
que nunca mediram esforgos para que eu conseguisse avangar nos meus estudos. Obrigada
Adriana por ndo me deixar duvidar do seu amor nao importasse qual seriam os resultados
das minhas empreitadas, por ter me incentivado desde sempre a ser o melhor que eu podia
e por sempre me fazer peixe em momentos importantes para que eu ficasse mais inteligente.
Obrigada Diom por sempre poder contar com vocé a qualquer momento e por ser meu
exemplo de disciplina e dedicacao. O amor e a dedicacao de vocés é a fundagao de cada
conquista que tive e terei. Agradeco ao meu irmao, Diom Gande Rezende Filho, por ser
meu confidente sincero e sempre me mostrar o quanto eu podia melhorar, obrigada pelos
lanchinhos que me levava na universidade e pelos cafés, ideias e planos que compartilha
comigo.

Ao meu orientador, Rafael Pasquini, tenho muita gratidao pela paciéncia, disponibili-
dade, gentileza e empenho em sempre abrir caminhos e me guiar em meu desenvolvimento
académico durante o mestrado. Agradeco profundamente a minha coorientadora, Raquel
Fialho de Queiroz Lafetda, por me ajudar a estruturar e apresentar meu raciocinio de
maneira mais clara e légica e por ser um fundamental ponto de apoio emocional durante
todo esse periodo. Agradeco também ao meu parceiro de mestrado Gustavo Silveira por
me mostrar que quando a execuc¢ao acompanha o planejamento podemos ter grandes
resultados.

Agradeco muito a todas professoras que tive desde os primeiros anos da minha edu-
cagao até hoje. Vocés foram meus maiores exemplos para que eu sempre continuasse me
desenvolvendo em meus estudos. Sou grata também ao professor Rodrigo Miani, por ser
a alegria dos alunos nas manhas de sexta-feira nas aulas de Seguranca da Informagao.
Com certeza seus conselhos, leveza, motivagdo e ensinamentos ficardo registrados.

Este projeto de mestrado foi financiado com recursos da 4° chamada colaborativa BR-
EU no contexto do H2020, registrados no acordo 777067 (NECOS - Novel Enablers for
Cloud Slicing), que é fomentado pelo Ministério da Ciéncia e Tecnologia no lado Brasileiro

e pela Comissao Europeia de Tecnologia no lado Europeu.

“If I have seen further, it is by standing upon the shoulders of giants.”
(Sir Isaac Newton)

Resumo

Este trabalho, inserido no contexto do projeto Novel Enablers for Cloud Slices (NE-
COS), visava a proposta de um orquestrador de recursos de nuvem de provedores fed-
erados. Dada a natureza do projeto NECOS, o orquestrador deveria gerenciar parcelas
de recursos dessa nuvem federada, chamadas de fatias. Gracas a diversidade dos re-
cursos que poderiam compor essa fatia e visando manter o Service Level Agreement dos
clientes da plataforma para com seus usuarios finais, foi desenvolvida uma estratégia auto-
maticamente customizavel de orquestracao, baseada em aprendizado de maquina. Redes
Neurais Recorrentes foram usadas para prever valores futuros de uma métrica indicadora
de performance. Com base nessa predicao, o orquestrador deveria disparar agoes de red-
imensionamento dos recursos da fatia, tanto no sentido de aumentar a capacidade para
acomodar altas cargas, quanto reduzir essa capacidade a fim de economizar recursos em
caso de baixa demanda. A criacao do protétipo do orquestrador aliada aos experimentos

executados mostram que é possivel, viavel e adequado o uso da estratégia proposta.

Palavras-chave: Orquestracao. Nuvem. Fatias de nuvem. Predicao. Redes Neurais

Recorrentes. Aprendizado de Maquina.

Cloud-Network Slices Orchestration Driven by
Service-level Metrics Prediction from

Infrastructure Monitoring

Aryadne Guardieiro Pereira Rezende

G

UFU

UNIVERSIDADE FEDERAL DE UBERLANDIA
FACULDADE DE COMPUTAGAO
PROGRAMA DE POsS-GRADUAGAO EM CIENCIA DA COMPUTAGAO

Uberlandia
2020

Abstract

This work was developed in the context of the Novel Enablers for Cloud Slices (NECOS)
project. This dissertation aimed to propose an orchestrator of cloud-network resources
from federated providers. Given the nature of the NECOS project, the orchestrator should
manage portions of the resources inside this federation, which were called slices. Due to
the diversity of resources that could make up each slice and aiming to maintain the Ser-
vice Level Agreement of the platform’s clients towards their end-users, an automatically
customizable orchestration strategy was developed, based on machine learning. Recur-
rent Neural Networks were used to predict future values of a key performance indicator,
previously chosen by the client. Based on this prediction, the orchestrator triggered slice
resizing actions, both in the sense of increasing the capacity of the slice to accommodate
high loads, as well as reducing this capacity to save resources in case of low demand. The
creation of the orchestrator prototype allied with the experiments carried out showed that

it is possible, viable, and appropriate to use the proposed strategy.

Keywords: Orchestration. Cloud. Cloud Slice. Forecasting. Machine Learning.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Figure 6
Figure 7
Figure 8
Figure 9

Figure 10 —
Figure 11 —

Figure 12 —
Figure 13 —
Figure 14 —
Figure 15 —

Figure 16 —

Figure 17 —

Figure 18 —

List of Figures

MAPE loop and challenges of each phase. 18
NECOS functional architecture. 24
Osmotic Orchestrator proposed at (CARNEVALE et al., 2018). 29
Autonomous element structure (KEPHART; CHESS, 2003). 30
Abstraction of a multilayer feed-forward neural network (HYNDMAN;

ATHANASOPOULOS, 2018).o oo 33
How recurrent neural networks work (NICHOLSON, 2019). 33
Slice and flavor relationship. 35
Flavors upgrade and downgrade hierarchy. 36
Profiling Workflow. 37
Elasticity Workflow. oo 38

SRO modules in NECOS scenario. The allocated slice 1 with its re-

sources is shown in yellow, NECOS related modules in blue, and re-

source providers in green.o 40
Dataset during pre-process phase. 47
Training phase schema. o000 47
Test bed. 50
Closer view of the interaction among the Cassandra Cluster, the Mod-

ified Client and the Load Generator. 52

Experiment executed for three hours to get the Flavor 1 Y file. The
green curve represents the tenant’s service KPI measurements while
the pink represents the load applied to the Cassandra system. 55
Experiment executed during three hours to get the Flavor 2 Y file. The
green curve represents the tenant’s service KPI measurements while the
pink represents the load applied to the Cassandra system. 55
Forecasting provided by models trained for Flavor 1. At left, 240s of
window size and 480 seconds at right. The forecasting horizon varied

for each line starting in 1, 30, 60, and finally 120 seconds. 57

Figure 19 — MAPE for Flavor 1 models. 58

Figure 20 — Models trained for Flavor 2 under the same conditions of previously

shown models. oo 59
Figure 21 — MAPE for Flavor 2 models. 60
Figure 22 — Elasticity upgrade triggered by forecasted value crossing the upper

threshold (blue star). 61

Figure 23 — Elasticity downgraded triggered when the prediction reaches the bot-
tom threshold (blue star). 62

List of Tables

Table 1 — Testbed machine configurations. 51

API Application Programming Interface

CSV Comma Separated Values

IoT Internet of Things

IMA Infrastructure and Monitoring Abstraction
KPI Key Performance Indicator

LSDC Lightweight Software Defined Cloud
MAPE Monitoring, Analysis, Planning, and Execution
ML Machine Learning

NECOS Novel Enablers for Cloud Slicing

QoS Quality of Service

RNN Recurrent Neural Network

SLA Service Level Agreement

SLO Service Level Objective

SRO Slice Resource Orchestrator

VM Virtual Machine

Acronyms list

3.1
3.2
3.3

3.4
3.5

List of Algorithms

Slice Control Loop. 42
analyze kpi function. 43
Function inside Flavor that evaluates if a forecasted tenant’s service KPI

value is too good. 44
Elasticity request code. 44
Elasticity callback. o o 45

1

1.1
1.2
1.3
14
1.5

2

2.1
2.2
2.3

3

3.1
3.2
3.3
3.4

4
4.1
4.2

5)

5.1
5.2
5.3

Contents

INTRODUCTIONttt et e e e e e e e 15
Motivation 17
Research Goals and Challenges 19
Hypotheses 20
Contributions 20
Dissertation Organization 21
BACKGROUND i it e i it e e e e 23
The NECOS Project 23
Resource Orchestration 26
Time Series Forecasting 31
PROPOSAL o s e e s e e 35
Orchestration Workflows 35
Orchestrator Architecture 39
The Slice Control Loop 42
Forecasting Model 45
EXPERIMENTAL RESULTS AND ANALYSIS 49
Evaluation Method 49
Experiments 54
CONCLUSION o et e e e e e e e e e e e e e e e 63
Main Contributions 63
Future Work 64
Contributions in Bibliographic Production 64

BIBLIOGRAPHY it i e 65

I hereby certify that I have obtained all legal permissions from the owner(s) of each
third-party copyrighted matter included in my dissertation, and that their permissions

allow availability such as being deposited in public digital libraries.

P § P

Aryadne Guardieiro Pereira Rezende

14

List of Tables

15

CHAPTER

Introduction

Cloud Computing is the paradigm that has emerged of the computational resource
offer in a-pay-as-you-go manner, in which the service payment is calculated based on its
usage during some period. One attribute of this paradigm is elasticity, which allows users
to acquire or release a certain amount of computational resources, according to their needs
(NETTO et al., 2014).

Cloud Computing offers services in three levels: infrastructure, (laaS - Infrastructure
as a Service), platform (PaaS - Platform as a Service) and software (SaaS - Software as
a Service), wherein each layer there are thousands of resource providers. Alongside these
layers is the Cloud Slice concept. A slice can be defined as a set of virtual or physical
resources (network, processing, and storage) that can accommodate service components,
in an integrated fashion, independent of other slices (FREITAS et al., 2018). A large
number of possible resource combinations and the high complexity of integration make
it hard for an organization to deploy its services using different computing, network,
and storage providers. The choice of resources to run a service among many resource
and providers options and then to integrate them makes new services launching time-
consuming and expensive (SILVA et al., 2018).

To address this issue, it was created the Novel Enablers for Cloud Slicing (NECOS)
project (NECOS, 2018b), which was the background of this dissertation. The main
project’s goal was to investigate a new business model called Slice as a Service. Inside the
project, it was tested the on-demand slice creation, in a multi-domain environment, and

its automatic reconfiguration. To reach this goal, three main requirements were gathered:

1. To make application, network, and service innovation and integration easier and

quicker;
2. To develop management systems more integrated;

3. To improve energy and cost efficiency and interoperability among different domains.

16 Chapter 1. Introduction

The first requirement regards the difficulty of dealing with the high coupling of data
centers, cloud, and network systems. Static connections among data centers are migrating
to software-defined connections, where storage, processing, and communication are being
virtualized. At the same time, the second requirement refers to the data centers man-
agement integration and it aims to facilitate the products and services combination, once
that, currently, this is done individually in each provider. Lastly, the third requirement
comes from the need of saving costs using the most appropriate configuration, combined

with automation of currently manual tasks, usually expensive and imprecise.

Following the workflow defined in NECOS, first, the tenant (most likely a service
provider) gives a description of the slice’s configuration that is needed. After this resource
set has been allocated, from one or more resource providers, the tenant can deploy its
service(s) and provide them to its end users. Due to the dynamic nature of the majority
of cloud-hosted applications, the tenant’s demand for resources can increase or decrease

depending on its service usage.

If the resource need is increasing, more resources should be allocated, which can be
a time expensive task (ZANELA et al., 2019). If the resource needs to be reduced,
to save money and electricity, for example, it is interesting to release the previously
allocated resources. For this reason, can be useful to anticipate resource usage to allocate
or release resources accordingly. In this context, this dissertation works upon the third
requirement above, building a slice orchestrator that forecasts if a slice configuration
should be adjusted, acting autonomously, during the slice run-time. The strategy used to
predict when this change should happen is to forecast the Service Level Agreement (SLA)

being delivered to the end-users of the tenant’s service.

It is possible to use a simple orchestration, guided by the monitoring of a metric,
where whenever this metric reaches a threshold it causes an elasticity operation. One
weakness of this method is that cloud computing workload may change rapidly over time
and a scalable application requires time to perform the elasticity request (VAZQUEZ;
KRISHNAN; JOHN;, 2015). For this reason, to use a proactive approach to foresee future
demands avoids resource wasting during non-peak hours and decreases the risk of bad

quality or denying of service for online users, thus improving their product experience.

To accomplish this goal, this dissertation implements a computer system where a
slice is profiled and then a model of its behavior is generated, using a Recurrent Neural
Network (RNN). This model is capable of forecasting a tenant’s service Key Performance
Indicator (KPI), which tells whether the service is being delivered as the tenant requires.
This forecast is done t seconds beforehand, where ¢ is a predefined parameter. Once the
scaling of a slice comes with an overhead, it is necessary a t large enough to preemptively

scale to the correct configuration, alleviating this way some or all of the elasticity overhead.

1.1. Motivation 17

1.1 Motivation

In October of 2001, IBM issued a manifesto attesting that the main challenge of
Information Technology would be an imminent software complexity crisis. To support
this claim, the company used applications that weighed thousands of lines of code and
were dependent on highly skilled professionals to be installed, configured, tweaked, and
maintained. These reasons could turn the dream of pervasive computing in all areas a
nightmare (KEPHART; CHESS, 2003).

Reinforcing this concern, it has been estimated by Gartner (VELOSA et al., 2014) that
the number of connected devices in 2020 will exceed 25 billion. Managing resources and
information produced by so many pieces of equipment will be hard problems to handle
manually. Thus, one possible way out would be autonomous computing. This name
is inspired by the human autonomic nervous system, and carries the idea of automatic
adaptation in response to stimuli (KEPHART; CHESS, 2003). In this sense, the use of a
standalone slice orchestrator emerges as a solution to be analyzed.

Since NECOS will act at the slice level, all levels of the cloud stack (infrastructure,
platform, or software) can be touched. According to (RANJAN et al., 2015), the or-
chestrator must take action that is holistic taking into account all cloud service layers,
benefiting the application as a whole. In addition to the concern with all levels of a par-
ticular slice, when multiple providers are considered, this problem gets another dimension
that can be investigated, which aims to combine resources from multiple providers at any
level of the cloud stack.

In Qu, Calheiros e Buyya (2018), there is a survey on how the automatic scaling of
cloud resources in the state of the art is handled. In this article, the authors point out that
automatic resource scaling can be seen as an automatic control problem, and therefore
we can use the Monitoring, Analysis, Planning, and Execution (MAPE) cycle to solve it.

Figure 1 shows this control loop. Each step and its challenges are defined as follows:

Monitoring: In this step, metrics are collected and can be transformed into performance
indicators. Then, they will be used to determine which scaling strategies will be used
and how they should be executed. In this context, there are two main challenges.
The first is selecting which are the most significant performance indicators,
which increase the accuracy of resource estimation and decrease information traffic
costs on the network. The second is to define a monitoring interval of these
indicators, which also impacts the amount of information on the network and also

influences how sensitive the changes will be to the orchestrator.

Analysis: At this stage the orchestrator determines, through the collected data, whether
it is necessary to make any changes to the resources already allocated or not. It is
needed to define the scaling time, which can be proactive or reactive to changes.

If the method is proactive, a load estimation strategy shall be chosen. It is also

18 Chapter 1. Introduction

needed to evaluate if the system will support change adaptation, or will consist
of fixed rules. Another relevant point to be evaluated is to mitigate the oscillation
in the distribution of resources because increasing or decreasing their allocation in

a short time causes waste and loss of SLA.

Planning: Here, the resources that will be provided or released in the next resize ac-
tion are estimated. It is important to select the right amount to reduce financial
costs. Difficulties at this stage include estimating which and what amount
of resources will be needed for the current or future situation of the service, and
also how to combine them. The challenges of this step make it an optimization
problem with a large space of possibilities, being an NP-hard problem to generate

a perfect provisioning plan.

Execution: At the end of the MAPE cycle, execution will be the realization of the
provision plan produced, which is done by performing resizing actions through each
service provider’s Application Programming Interface (API). When it comes to
applications that can be deployed in different data centers, or if actions at different
tiers need to be performed, different APIs need to be dealt with, which increases

the degree of difficulty in building a generic orchestrator.

Execution Monitoring
Wariety of providers API's « Performance Indicators
+ Monitoring interval

MAPE Loop
Planning Analysis
* Resource estimation + Appropriate scaling time
* Resource combination + Load prediction

+ Adaptation to changes
« Oscillation mitigation

Figure 1 — MAPE loop and challenges of each phase.

Due to the variety and complexity of these challenges, specific objectives were selected

to be investigated in this work. They are portrayed in the next section.

1.2. Research Goals and Challenges 19

1.2 Research Goals and Challenges

As pictured in Figure 1, there are several research challenges in cloud orchestration
in each phase of the MAPE cycle. This work selected as subject the “appropriate scaling
time” issue, from the Analysis step. Besides, there are some additional challenges inherited
from the NECOS project context:

1. NECOS has a multi-tenant architecture. Two restrictions come up from this feature:

a) The orchestration of each slice must happen isolated.

b) Different kinds of services can run on top of the slice. Thus, to perform a
good orchestration, the orchestration needs to adapt its resource management

strategy to each slice.

2. NECOS aims to reduce the deployment time of the service on a slice. For this
reason, the orchestration configuration should be as automatic as possible, avoiding

the need to have a specialist to configure the orchestration rules.

3. Since scaling the resources inside the slice takes time, a truly effective approach
should do it before it is needed, avoiding the prejudicial effects of not having the
right configuration when necessary. However, it can not be too much beforehand,

which would result in resource waste.

4. Finally, a tenant may not have an online probe running all the time collecting real
end user’s metrics, which is used as an orchestration metric. This means that the
orchestrator can not rely on the end-user’s side metrics to forecast the tenant’s

service KPI during the slice run-time.

Having in mind these conditions, the overall goal of this dissertation was to explore the
slice resource orchestration problem in the NECOS context, proposing a slice orchestrator
architecture to keep the SLA agreed between the tenants and their end-users while saving

resources when possible. This macro objective was broken in the following way:

1. Propose an orchestration architecture with the support of multi-slice, where each

slice is orchestrated in isolation.
2. Develop an automatized and customized orchestration strategy for each slice.

3. Investigate forecasting approaches that allow foreseeing the service quality been
delivered to the end-users, respecting the NECOS formerly described restrictions,

previously and precisely enough to perform the elasticity actions proactively.

4. Lastly, implement a prototype of this architecture to perform experiments to validate

the selected approaches.

20 Chapter 1. Introduction

1.3 Hypotheses

Considering the whole scenario presented so far, the following hypotheses, and their

motivating questions, were evaluated in this dissertation:

H1 - It is possible to forecast the selected tenant’s service KPI using only the provider

(slice’s infrastructure) side metrics.

Q1.1 - Is it possible to use a forecasting method that uses only the providers’

monitoring metrics to estimate the selected tenant’s service KPI?

H2 - It is possible to propose an automatic and proactive slices orchestrator, which avoids

breaches in the tenants’ SLAs, while also saves resources.

Q2.1 - Does the orchestrator adapt properly (maintain SLA and keep the cost as

low as possible) in situations where resources need to be added?

Q2.2 - Does the orchestrator adapt properly (maintain SLA and keep the cost as

low as possible) in situations where it is necessary to remove resources?

Q2.3 - Can the configuration changes be done previously enough to avoid SLA

breaches?

The results found about these assumptions are shown in Chapter 4. The next section

shows the dissertation’s scientific outcomes so far.

1.4 Contributions

Firstly, this work contributed to the core of the NECOS project, providing an architec-
ture for a smart and automatic orchestrator, which was demonstrated in the final review
of the project at UNICAMP (NECOS, 2019b). The orchestrator prototype, its documen-
tation, along with a real monitoring information dataset, are available as open-source at
the NECOS-associated repository!.

L <https://gitlab.com/necos/demos/mlo>

1.5. Dissertation Organization 21

1.5 Dissertation Organization

Chapter 2 aims to give context about the project where this dissertation was devel-
oped, it also introduces the state of art and concepts about resource orchestration in cloud
environments and gives notions about time series forecasting, as it was one tool used here
to reach the described goals. Then, Chapter 3 explains the solution found to the target
research challenges. It shows, in a top-down manner, how the orchestration’s workflows
were embodied in an orchestration architecture, and how from such an orchestration ar-
chitecture was derived a management cycle, using a high-level codding language. Chapter
4 shows how the proposed solution was evaluated, and the experiment results that were
obtained from it. Finally, it is given a conclusion which ties the objectives, hypothesis,

and experiment results.

22

Chapter 1.

Introduction

23

CHAPTER

Background

The central topics for this dissertation were: the NECOS project, resource orchestra-
tion, and time series forecasting methods. Section 2.1 presents the fundamental concepts
related to NECOS and an architectural overview. Section 2.2 shows different approaches
used currently in resource orchestration, and also the concepts related to it. At last,
Section 2.3 focus on time series forecasting and the method used here to perform this
task.

2.1 The NECOS Project

The NECOS project vision is that “computation, storage and networking resources
have to be considered as a whole to be allocated to service requests” (NECOS, 2018b).
To do so, the project coined a new business model: The Slice as a Service. In this model,
a grouping of resources from different resource providers is managed as a whole to accom-
modate service components on top of each slice, independently of other slices (NECOS,
2019a). The Slice as a Service approach provides an adaptable control plane, supporting
features for creating, scaling up or down, and deleting slices, as well as adapting slices at
run-time while considering service requirements and current cloud resource conditions.

There are three key roles inside NECOS: the Resource Provider, the Slice Provider,
and the Slice Tenant. The first owns the physical resources and infrastructure (network/
cloud/ data center) and provides them. The second is typically a telecommunication
service provider, which is the owner or tenant of the infrastructures from which cloud
network slices can be created. And finally, a slice tenant is the user of a specific slice, in
which its services are hosted.

Another important concept is the Cloud-Network Slice, which is a set of infrastructures
(network, cloud, data center) components/network functions, infrastructure resources
(i.e., connectivity, compute, and storage manageable resources), and service functions
that have attributes specifically designed to meet the needs of an industry vertical or a

service. The Cloud-Network Slice key concepts are:

24 Chapter 2. Background

d A cloud-network slice supports at least one type of service.

d A cloud-network slice may consist of cross-domain components from separate do-
mains in the same or different administrations, or components applicable to the

infrastructure.

A A collection of cloud-network slice parts from separate domains is combined, con-
nected through network slices, and finally aggregated to form an end-to-end cloud-

network slice.

With the aim to make this kind of business model possible, the functional architecture,
shown in Figure 2, was designed (NECOS, 2019a). It contains three main high-level
sub-systems: The NECOS Lightweight Software Defined Cloud (LSDC) Slice Provider

(colored in blue), the Resource Marketplace (in yellow), and the Resource Providers (in

green).
Tenant's ™ g Service - Slice
Domain |_ Description Orchestrator | Activator o_‘ Service
Lewvel
1 ? Manitoring
@ Z [Clientlo Cloud 1 | Resource
o E-", L Marketplace
; (o] _ Service Orchestrator Slice Spec Shice Request Interface Slice
- Slices Adaptor Processor Broker
e+ Database <
a w Slice Builder | : Slice Instantiation Interface
) o @ 4—_. Slice Siige Marketplace inferface
- Q Resource o] Shice Runtime inteface
@ Orchestrator g
g
/ \ Sllclng Orchestrator |2| || .
<
Infr. & Mon. Abstraction / % o A o 5
Resource & VM Resouroe & VM Monitoring 2 3 w 3 w 3 la w
8 8 99| = a2 OF= 5 59| F
Mapmls [5 Sol8 :g;g 5 308
o E‘ [} z O3 > o g @l
3 &F a == e 3 |=8|l%B
= Y] = s g > @ 5
VIM / WIM specific - / \ VIM / WIM spegific g PP E3 g E] -
Control inlerface - 7 Wanitoring Intefface = s =
-~ + % 2 2 8
- / \ = = =
’/ . \ 7 \ 5y
ol []
| Domain Mgm Domain Mgm Domain Mgm
. = " Ty Lomdainiigme s 3
5 T : ______ P |
e
= [Edge DC \ Net] Central DC
Resource Domains o000 “ W\ oooo
T T

Figure 2 - NECOS functional architecture.

The NECOS (LSDC) Slice Provider is the sub-system that allows for the creation of
full end-to-end Slices from a set of constituent Slice Parts. In NECOS, a slice looks the
same as the full set of federated resources, with the main attribute being that the domains
look a lot smaller, once they were partitioned in slices. For this reason, the slice is called
“LSDC” - Lightweight Software Defined Cloud (NECOS, 2019a).

2.1. The NECOS Project 25

The NECOS (LSDC) Slice Provider presents a northbound API compatible with a
tenant’s Service Orchestrator, thus enabling tenants to operate on the full infrastructure,
or to choose to interact with Slice as a Service providers, using NECOS. When requesting
a slice from a NECOS provider, there is a Slice Builder component that goes out to a
specially designed and configured Resource Marketplace that can find Slice parts across
various participating Resource Domains, based on a Slice Specification.

Within the NECOS (LSDC) Slice Provider, the Slice Resource Orchestrator (SRO)

module has the following attributions:
1. To combine the Slice Parts that make up a slice into a single aggregated slice.

2. To orchestrate the running end-to-end Slices, including the run-time management

of their lifecycle.

3. To manage the service elements across the slice parts that make up the full end-to-

end slice.
4. To place and embed VMs and virtual links for the services into the resource domains.

This dissertation explored the attribution 2. In this context, the aim was to perform
the slice orchestration during run-time, guided by the service quality being delivered to
the tenants’ end-users, while investigating the problem of intelligent and automatic slice
reconfiguration. The proposed orchestration solution is explained in details in Chapter 3,
and its experimental outcomes are shown in Chapter 4.

The next relevant module for this dissertation in this architecture is the Infrastructure
and Monitoring Abstraction (IMA). It is responsible for interacting with the actual remote
cloud elements. Through it the Slice Provider can interact with various remote VIMs,
WIMs, and monitoring sub-systems in a generic way, using plugin adaptors with the
relevant API interactions. The IMA allows the SRO to interact with the remote clouds in
order to provision the actual tenant services and to monitor the remote resources running
those services (via additional monitoring data that is not available via the Service Level
Monitoring Interface).

The SRO will take care of performing the slice life-cycle management, i.e., continuously
checking whether the allocated slice is capable of fulfilling the requirements that were
initially requested by the Tenant. With this goal in mind, the SRO must have access to a
set of monitoring measurements (coming from each slice part) that provides information
about respective slice resource utilization patterns (e.g., the number of available cores,
memory, network delay/loss, etc.). This information set will be at the granularity of the
slice and will not directly be linked to any of the service instances running on that slice.
The monitoring information is expected to be propagated to the SRO via the underlying

monitoring abstraction implemented by the IMA.

26 Chapter 2. Background

A key concept inside NECOS is elasticity. It is defined as the degree to which a
system is able to adapt to workload changes by provisioning and de-provisioning resources
(computing, networking, and storage) in an autonomic manner NECOS (2018a). The goal
is that at each point in time the available resources match the current demand as closely
as possible. The types of elasticity and each workflow are showed in.

Vertical elasticity is defined as the ability to resize slice parts dynamically, as needed,
to adapt the slicing part to demand changes. In other words, it means to resize the
resources inside an already allocated slice part. For example, this expresses the ability to
augment the bandwidth among hosts in a particular slice part of a data center when the
demand for the services supported by the slice increases.

On the other hand, horizontal elasticity is the capability of creating or removing
slice parts dynamically, using resources of the same or other(s) provider(s), depending
on the workload evolution. For example, as the service workload moves from an area to
another in the globe, maybe because of time zones, a slice part under a lighter workload
can be removed, while another slice part can be created in the heavier load area, maybe
being composed by resources from different providers. It is important to notice that
vertical elasticity is preferred whenever possible because of its set up smaller cost, once
the configuration and contracts are more simple than for horizontal elasticity, and using
more infrastructure from the same provider usually facilitates to get better costs. The
next section presents other definitions of resource orchestration and also presents how it

is done in related works.

2.2 Resource Orchestration

The aim of this section is to define the key concepts around resource orchestration and
also compare the most related current orchestrators with the proposed one. The resource
orchestration problem can be observed from different angles, depending on the resources
to be managed. The works cited in (QU; CALHEIROS; BUYYA, 2018), for example,
deal with orchestrating virtual machines. In (CASALICCHIO; PERCIBALLI, 2017) and
(CASALICCHIO, 2019), container-level orchestration is analyzed. (CARNEVALE et al.,
2018) describes an osmotic orchestrator that manages devices in the Internet of Things
(IoT) context. On the other hand, the work (SCIANCALEPORE; CIRILLO; COSTA-
PEREZ, 2017) illustrates a slices orchestrator in a 5G background.

In (QU; CALHEIROS; BUYYA, 2018) a pertinent theme is introduced in cloud or-
chestration: resource auto-scaling, or automatic resource scaling. It takes advantage of
the elasticity facilitated by virtualization and deals with the challenge of scaling and pro-
viding only the necessary amount of resources required for a given application at a given
time automatically. It provides a compilation of the latest research on cloud computing,

focusing on automatic scaling in a Virtual Machine (VM) level.

2.2. Resource Orchestration 27

The approach used to analyze resource orchestration in (QU; CALHEIROS; BUYYA,
2018), is to treat the auto-scaling problem as a classic automatic control problem, the
Monitoring, Analysis, Planning, and Execution (MAPE) loop described previously in
Section 1.1, Figure 1. In this control loop, a controller should dynamically adjust the

type and amount of resources allocated in order to comply with the SLA or satisfy a
Service Level Objective (SLO).

In the context of a cloud service, a SLA is used to describe and set service level
objectives (WEES et al., 2014). In general, a SLO is a service objective linked to metrics.
A metric can be described as “a defined measurement method and measurement scale,
which is used in relation to a quantitative service level objective” (WEES et al., 2014). In
an SLO, metrics are applied to establish boundaries and margins of errors, related to the
behavior of the cloud service and any limitations. Thus, metrics can be used at run-time
for service monitoring, balancing, or remediation. A single measurement of a metric is

the value that this metric has at a certain point in time.

According to Qu, Calheiros e Buyya (2018), to meet a SLO, four types of elasticity
operations can be performed. Regarding enlarge resources, the scaling up operation
increases the internal resources of a VM (number of CPUs, memory capacity, etc.), while
the scaling out creates more VMs. When it is needed to shrink resources, the scaling
down action can be applied to reduce the internal resources of a VM, or a scaling in
operation can be performed to reduce the number of VMs assigned to the application.
Operations of scaling out and scaling in are considered horizontal scaling, whereas scaling

up or down is considered vertical scaling.

By raising the level of abstraction, instead of scaling VMs, it is possible to orchestrate
containers that run inside these machines or directly into metal. A container can be
defined as an isolated and portable environment in which one can install an application,
add libraries, binaries, and even a basic configuration of how the application should
be executed (CASALICCHIO; PERCIBALLI, 2017). Executing an image, which is a
description of a container, is the same as creating an instance of it. One can create or
delete copies of these instances depending on the needs of the application users. These

copies are defined as replicas.

Instances of a container are managed locally by a container manager (CASALIC-
CHIO, 2019), for example: Docker (MERKEL, 2014), Apache Mesos (MESOSPHERE,
2018a), and Amazon ECS (AMAZON WEB SERVICES, 2018). On the other hand, con-
tainer orchestrators allow the selection, deployment, monitoring, and dynamic control
of containers in a cloud (CASALICCHIO, 2019) environment. This type of orchestra-
tor should be concerned with multi-node resource control, scaling instances within the
cluster, load balancing, health checking, fault tolerance, and automatic scaling of active
instances. In this way, container managers act at a local level, while orchestrators act at

a cluster level, managing instances among multiple nodes on a network.

28 Chapter 2. Background

Examples of such orchestrators are: Kubernetes (KUBERNETES AUTHORS, 2018),
Docker Swarm (DOCKER INC, 2018), and Mesosphere Marathon (MESOSPHERE, 2018b).
In contrast with these orchestrators, the one proposed here deals with resources at a
broader level, the slice level. Thus, it may operate over any layer involved in the slice. It
means that an elasticity operation that triggers changes in a lower level of the slice can
bubble to higher levels, and also be applied to containers. However, due to the complexity
of the slice context and time constraints, the orchestrator presented here is only concerned

with the automatic scaling aspect.

Regarding the auto-scaling aspect, Kubernetes has an implementation of a Horizon-
tal Pod Autoscaler. A Pod is a basic container organization level, which represents a
process running within the cluster (KUBERNETES, 2018). It encapsulates one or more
containers, which will share storage resources, an IP, and other settings defined in the

Pod description.

However, problems with the metrics used by this scaler were pointed out in Casalicchio
e Perciballi (2017). The article evaluated the best types of metrics for predicting the
required amount of Pods according to current demand. Two types of metrics were defined:
relative, which measures the portion of resources that each container uses, and absolute,
which represents the actual resource utilization of the physical system or VM. The article
proposed an algorithm that uses only absolute metrics. It also demonstrated that for
the benchmarks tested, absolute metrics are better at estimating the number of replicas
needed than relative metrics used natively by Kubernetes. The orchestrator designed in
this dissertation works with low-level metrics, as recommended by Casalicchio e Perciballi
(2017). The results in Chapter 4 showed that this approach is indeed promising also in a

slice context.

A new paradigm in the state of the art, that emerges from the relationship between
the computing structures: IoT, edge (small data centers at the network edge), and cloud
computing, is the Osmotic Computing (CARNEVALE et al., 2018). The purpose of
this computing model is to enable the automatic deployment of microservices in highly
distributed and federated environments interconnected between edge and cloud (VILLARI
et al., 2016) structures. Taking the term borrowed from chemistry, osmotic computing
aims to migrate microservices, usually in the form of containers, between cloud and edge
in an organic and automatic manner. The possibility of migration of resources among
parts of the same provider infrastructure or different providers is what correlates this
paradigm with NECOS.

Carnevale et al. (2018) illustrates the architecture of an orchestrator capable of de-
ploying microservices in an osmotic environment, where applications can migrate between
layers: Cloud, edge, and IoT. Their work focuses on the abstraction of services, which
are transformed into containerized “microelements” (MELS), and also on the abstract

proposal of an orchestrator architecture. Orchestration is treated as a multi-objective op-

2.2. Resource Orchestration 29

timization problem, taking into account power consumption, cost, and availability metrics.
In contrast with this dissertation, the orchestration here is guided by one main objective:
To ensure that a given tenant’s service KPI is being kept under the agreed SLO, shrink-
ing the allocated resources when possible to avoid waste. Also, besides the orchestrator
architecture, this dissertation presents its implementation and experimental results.

The osmotic orchestrator’s architecture presented in Carnevale et al. (2018) can be
seen in Figure 3. On it, IoT devices and MELS are registered in a dashboard and then or-
chestrated by a Smart Orchestrator. Their Smart Orchestrator has the following modules:

container manager, streaming management, training module, and prediction module.

Osmotic Agents

N\

Dashboard

Z

vt

Event Bus

5 il

Streaming Management

DB

Container Training Prediction
Manager module module

Smart Orchestrator

Figure 3 — Osmotic Orchestrator proposed at (CARNEVALE et al., 2018).

The streaming module should preprocess the metrics sent by devices to facilitate
training and prediction tasks. The training and prediction modules would be responsible
for the osmotic orchestrator learning. The training module would use Deep Learning
(LECUN; BENGIO; HINTON, 2015) to learn patterns from metrics sent by Osmotic
Agents to generate dynamic manifests for more assertive MELS deployments. Manifest
templates would be saved to a database (DB module). The prediction module would
then use the previous templates to generate new manifests that might be more useful in
deploying MELS at different levels (IoT, Edge, Fog, and or Cloud).

The architecture proposed here, in this dissertation, has some similar features. Al-
though there is a training module, it is used to create a model to forecast a tenant’s service
KPI. The strategy used to perform this forecast also uses a neural network, however, its
used a RNN, which is described later in this chapter. There is also a module similar to

the prediction module, in this case, doing forecasts in the future.

30 Chapter 2. Background

About slice orchestration, Sciancalepore, Cirillo e Costa-Perez (2017) splits resources
into two management fronts: network and IoT devices. In this sense, it creates network
and IoT device maximization functions based on priority. Because it is a rule-based
orchestrator, this approach is not adaptable to variations in network and IoT device
usage. Different from this one, the approach used here does not rely on fixed rules, being
more flexible to deal with cloud applications which often face changes in their demands.

Closing this section, the Autonomous Computing paradigm, a term coined by IBM
(KEPHART; CHESS, 2003) reflects the idea that computer systems can manage them-
selves using high-level goals given by administrators. This term comes from the au-
tonomous systems found in nature, which hierarchically coordinate simpler autonomous
systems, ranging from molecular machines within cells to societies and the international

market.

]

|

7
I? Autonomic manager

Managed element

Figure 4 — Autonomous element structure (KEPHART; CHESS, 2003).

Figure 4 shows the schema of an autonomic element, which is composed of an auto-
nomic manager and usually only one managed element. The standalone manager com-
municates with the outside environment by getting resources for itself and making it
available to other standalone elements according to their functionality. It also receives
self-level instructions that guide its management. On the other hand, a managed element
can be seen as any common non-standalone system: a hardware resource (CPU, storage,
printer), or software (a database, a large legacy system), or in the case of NECOS, a slice,

or components of a slice.

2.8. Time Series Forecasting 31

In order to implement cloud resource orchestration Kephart e Chess (2003) suggests a
comprehensive control loop composed of four phases: Monitoring, Analysis, Planning, and
Execution — the MAPE loop. At the first, infrastructure usage metrics are collected, the
second step inspects this data, checking if the application is healthy, the third generates
actions to keep the application running nicely (if needed), and the last will apply the

actions generated by the former.

Kephart e Chess (2003) also coined the predecessor of the MAPE cycle, the MAPE-
K, that can be seen inside of the autonomic manager, in Figure 4. The MAPE-K cycle
includes a Knowledge step, that is pervasive to the other stages of the cycle, used for

learning and dynamic adjustments of all other steps.

NECOS orchestration approach fits on this one. The IMA module is responsible for
the Monitoring part, but also includes a feature selection step, which is responsible for
picking only the most relevant metrics to be collected for each slice. The SRO takes care
of the Analysis and Planning phases, receiving the information collected by the IMA,
estimating the future values for the tenant’s KPI, and then using this intelligence to
choose which actions are needed to apply. The chosen actions are then executed by the
DC Slice Controller or WAN Slice Controller modules.

The Quality of Service (QoS) prediction from service provider metrics is analyzed in
Pasquini e Stadler (2017). There, an artificial intelligence model is trained to predict the
QoS being delivered to end-users. The way in which it is trained allows us to use only
infrastructure metrics to do the service KPI prediction. This dissertation builds upon
this work once it forecasts the KPI seconds ahead in the future, also using only service

provider metrics to do the forecast during the run-time.

The last section of this chapter defines concepts that are used in time series forecasting
and also, concepts related to Recurrent Neural Networks, used in this dissertation to

perform the forecast.

2.3 Time Series Forecasting

Vazquez, Krishnan e John (2015) endorses how important is the use of time series
forecasting in cloud computing applications, pointing out the benefits of predicting the
infrastructure demand beforehand. The benefits include: to avoid the loss of potential
sales, to keep the quality of service for current clients, and also to prevent the denial
of the running service. According to Hyndman e Athanasopoulos (2018), a time series
is “anything that is observed sequentially over time”, being the time lag between each

observation constant or variable.

A time series is a set of measurements of a metric, starting in a point at time 1 to t.

This real measurements can be followed by forecasted values, which are separated from

32 Chapter 2. Background

the last collected measurement ¢ by a time lag :

ls = {ylvaayt7""y1/t+l} (]‘)

To perform the prediction of the future behavior of a variable y, a forecasting method
is used, which can predict one or more values after the last observation y;. As stated
by Hyndman e Athanasopoulos (2018), the most straightforward way to perform this

prediction is to use the past measurements of y to build a forecasting model like:

Yt+1 = f(yt, Yt—1,Yt—2, Yt—3, -+, 37”7"07“) (2)

Where a function f should process the given observations and also use an “error”
parameter, to allow for random variation and the effects of relevant variables that are
not included in the model. Although this kind of model can represent the trends and
seasonal patterns, it will not be able to use new information about other factors that
affect the variable’s behavior. Some methods that use this strategy are decomposition
models, ARIMA models, exponential smoothings, and also moving averages.

Another kind of model uses predictor variables that explain the values of the forecasted
variable, instead of its values. For this reason they are called explanatory models. This

type of model can be represented as:

Y1 = f(af, 22, 23, ...,xf,error) (3)

where ¥ is the value of the predictor variable k at time ¢. It is possible to see it takes
one measurement of each k predictor variables along with an error parameter to predict
Yrr1. The choice of which model to use in forecasting relies on the resources and data
available, the accuracy of the competing models, and the way in which the forecasting
model is to be used (HYNDMAN; ATHANASOPOULOS, 2018).

The method used in this dissertation to generate an explanatory forecasting model is a
Recurrent Neural Network. The reason for this choice is detailed in Chapter 3. An RNN
is “a type of artificial neural network, elaborated to recognize patterns in sequences of
data, such as text, genomes, handwriting, the spoken word, or numerical times series data
emanating from sensors, stock markets, and government agencies” (NICHOLSON, 2019).
The decision making of an RNN is a combination of the predictor variables and also the
previous outputs did by the own RNN. This additional memory makes this kind of neural
network a model that uses the recent past to determine its responses, just like a person
that reads each letter of this phrase in sequence and then uses the previous information
to extract the meaning of this text.

The basic structure of a neural network is two or more sequences of “neurons” layers,
as can be seen in Figure 5 extracted from (HYNDMAN; ATHANASOPOULOS, 2018).

This kind of neural network is called a multilayer feed-forward network. The first layer

2.3. Time Series Forecasting 33

receives the predictor’s variables, also called inputs, and after extracting information
about its values in the hidden middle layer(s), in form of weights, generates one or more

outputs for the next layer(s).

Input Hidden Output
layer layer layer
Input #1 —
Input #2 —
> Output
Input #3
Input #4 -

Figure 5 — Abstraction of a multilayer feed-forward neural network (HYNDMAN;
ATHANASOPOULOS, 2018).

The main difference between a regular multilayer feed-forward neural network and a
RNN can be seen comparing Figure 5 and Figure 6, from Nicholson (2019). In Figure 6,
each z is an input example, w is the weight that filters the input, a is the activation of
the hidden layer (a combination of weighted input and the previous hidden state), and b
is the output of the hidden layer after it has been transformed. It is also possible to see
the intermediate step in an RNN, where the output from each neuron given by b is passed
to the neighbor to be one of its inputs. The sharing of this value is what gives the RNN

memory ability.

bY is fed to next layer b'isfed ... b?is fed ...

0

t 0

.\ .\

+ +
™~ N
Ry

Figure 6 — How recurrent neural networks work (NICHOLSON, 2019).

34 Chapter 2. Background

Besides the description of the advantages to using forecasting in cloud orchestration,
Vazquez, Krishnan e John (2015) also compares different forecasting methods including
ARIMA models, exponential smoothing, and neural networks. To do so, traces of two ser-
vices the Intel Netbatch and Google Cluster Data under a certain workload were recorded
to be used as inputs to the methods to create a forecasting model. After performing
experiments like the evaluation of training sets of different sizes, estimation of values that
were not in the training set, and multiple-point forecasting, they concluded that none of
the methods is optimal for all situations, but the neural network performance was at least
in the average of the other methods.

The differences between Vazquez, Krishnan e John (2015) and this dissertation are:
they did not use the infrastructure metrics where the services were run, they used only the
service side metrics to perform the forecast. Also, the neural network used (HYNDMAN;
KHANDAKAR et al., 2007) was a traditional feed-forward neural network, while here an

RNN, which is a more sophisticated method, is used.

35

CHAPTER 3

Proposal

The proposition is presented in a top-down approach. Section 3.1 shows the high-level
workflows executed to perform the machine learning-based slice orchestration. One step
down in the level of abstraction, Section 3.2 shows the orchestration modules created to
perform the workflows. It also shows the connection between the modules and how they
work together to orchestrate the slices. Finally, Section 3.3 goes deeper into the central

orchestration control loop, explaining it in a high-level code definition.

3.1 Orchestration Workflows

Section 2.1 defines the two kinds of elasticity concepts inside NECOS. The horizontal
elasticity incorporates two actions that are out of the scope of this dissertation: the
creation and the decommission of a slice part, which is a simplification of the slice creation
and decommission. For this reason, this dissertation focuses only on the vertical elasticity,
that updates the resource in an already allocated slice part.

As stated in Section 1.1, the choice of the best reconfiguration plan can be a very
expansive combination problem. To overcome this problem, a flavor approach was used.
Before the slice creation, the tenant is supposed to choose a set of possible slice config-
urations that the slice can assume in terms of resource amount. Each configuration in
the set is a slice flavor. Each slice needs to have at least one flavor to start with. The

relationship between a slice and a flavor is shown in the class diagram of Figure 7.

+1

Slice Flavor
- flavors : List<Flavor> +1 .. * - sliceParts : List<SlicePart>
- currentFlavor: Flavor - upgradeFlavor: Flavor

- downgradeFlavor: Flavor
- forecastingModel: ForecastModel

Figure 7 — Slice and flavor relationship.

36 Chapter 3. Proposal

Each slice flavor needs to have at most one flavor to upgrade to and at most one flavor
to downgrade to, forming a linked list, where the flavors are linked between each other.
Figure 8 shows three possible flavors for a hypothetical slice. The slice has three slice
parts, in red, and each slice part has its resources, in green. In case of need, Flavor 1 can
upgrade to Flavor 2, which has more resources in the top slice part. If even more resource
is needed, Flavor 2 can upgrade to Flavor 3. In case of demand decrease, Flavor 3 can

downgrade to Flavor 2, and then Flavor 2 to Flavor 1.

o0 Y

O o 0e® '.o

upgrades to upgrades to
[| _ [_ |
| | |
- downgrades to - downgrades to -
[[|
Flavor 1 Flavor 2 Flavor 3

Figure 8 — Flavors upgrade and downgrade hierarchy.

It would be possible to develop a more sophisticated mechanism that would analyze
what flavor was better for the current demand without respect to a predefined order.
However, as the focus of the dissertation is not in the MAPE planning phase, this simpler
approach is used.

However, the remarkable feature in this orchestration proposal is to predict when an
elasticity action is going to be needed, which means when the workload over the slice
requires a scaling action to be performed. The strategy used here is to learn how each
flavor’s infrastructure behaves under a certain workload. This learning is kept in the at-
tribute forecastingModel showed in the Flavor class, in Figure 7. Before the orchestration
is performed, each flavor is required to go under a profiling phase.

Figure 9 shows how the profiling phase works. The diagrams’ notation is a green circle
for a workflow starting point, orange circle for an ending point. A rounded gray rectangle
indicates an action, a group of actions is included in a dashed rectangle with the name
of the responsible NECOS component. A diamond shape is a gateway, and a diamond
shape with an X inside means that only one action is going to be performed, meaning an
exclusive gateway.

According to the flow shown in Figure 9, first, the tenant should collect measurements
of the chosen tenant’s service KPI, while its service is under a varying, and realistic, load
(step 1). This tenant’s service KPI can be collected by customized client software, and

the load can be either real or artificial. After collecting this data, the tenant can request

3.1. Orchestration Workflows 37

(Tenant
: 1 2
Perform workload Request slice flavor
—_— . pe
benchmark profiling
‘ " SRO
Start : 3 6 7
Request relevant Train forecasting Notify end of
metrics model profiling
" IMA
4 5
Perform relevant XCTLICIEL! 1 End
- - —> metrics map and
metrics selection
values

Figure 9 — Profiling Workflow.

the profiling of that flavor, sending the collection of the tenant’s service measurements
recorded during the benchmark. Specifically, the tenant needs to send the time series of
its service’s KPI, while requesting the flavor profiling (step 2). Then, the SRO connects
the information from the service side, which is not always available, and the infrastructure

information, which is always available.

As the amount of all infrastructure metrics can result in a huge data set very quickly
(MARQUES et al., 2019), and the Slice Resource Orchestrator (SRO) needs to perform
forecasting in real-time, it is necessary to request only the relevant metrics from the
monitoring module (step 3). The responsible for this feature selection is the Infrastructure
and Monitoring module (IMA), as it is in charge of collecting the infrastructure metrics,
once knowing which are the relevant metrics can help to avoid processing unnecessary
data (step 4). The IMA after performing this selection, using the relationship between
the tenant’s service KPI time series and the infrastructure metrics, returns the relevant
feature names and their time series during the moment of the tenant’s benchmark (step

5). Steps 4 and 5 were not subjects of this work.

Having the tenant’s service KPI and the infrastructure metrics time series, the orches-
trator can train a model (step 6), that relates both, which will allow the SRO to perform
real-time forecasting of the KPI only having the infrastructure data during run time. In
the end, a response is sent to a callback given by the tenant’s informing that the profiling

phase for that flavor is finished.

After profiling each flavor, the automatic resource orchestration can be performed.

Figure 10 shows the orchestration workflow. Initially, the tenant makes a request to

38 Chapter 3. Proposal

the SRO to allow the automatic orchestration (step 1). The SRO informs the IMA to
collect only the relevant metrics for that flavor (step 2). The IMA publishes the relevant
metrics to an information bus that SRO (step 3) has access to. The SRO consumes the
measurements from the bus until filling a window of measurements (step 4). Having this

window full, forecasting can be performed (step 5).

{ Tenant

1
Request automatic
orchestration
Start ! l
SRO
‘ 2 6 -
Request relevant Analyze the future Peré(o)melzzt;cny
feature collection situation of the KPI —L 9
. 4 & 8
Fill measurements Perform elasticity
window with recent —— Make a KPI forecast upgrade [
measurements
A
IMA
Send relevant

—— measurements to
the information bus

Figure 10 — Elasticity Workflow.

If the automatic orchestration is enabled, the value produced by the forecasting is

analyzed (step 6) and three actions are possible:

(a) To trigger an elasticity downgrade (step 7), if the tenant’s service KPI value is “too
good” so the end-user is not paying enough to receive it. In this context, “too good”
is defined as the KPI crossing a threshold given by the tenant, depending on one
operator that the tenant picks (the script 3.3 shows how this evaluation can be
done). It means to downgrade the flavor, and by consequence, the resources and
the infrastructure costs. The value being “too good” depends on the service, and it

is a parameter given by the tenant during the slice creation.

(b) To trigger an elasticity upgrade (step 8), if the value is “too bad” that the tenant
can have its service compromised, and needs more resources to avoid it. It means
to upgrade the flavor, and as result, increase resources and costs. The badness of

the tenant’s service KPI is also given as a parameter during the slice creation.

3.2. Orchestrator Architecture 39

(c) The last possible outcome is to keep the same configuration, once the forecasted
tenant’s service KPI value is under conformance, so no action is required and the

loop can continue to step (4).

If one of the options (a) or (b) is chosen, a different set of relevant metrics may be
needed, resulting in a request for relevant feature collection. On the other hand, if (c)
is chosen, then the loop continues with the measurements window being updated with
newly published measurements, and so on. This workflow lacks an end state because it
should be “infinity” while the slice run time lasts.

Next, Section 3.2 presents more details about the orchestration implementation, in

terms of orchestrator components, their relationships, and tasks.

3.2 Orchestrator Architecture

The architecture shown in Figure 11 is responsible for performing the previous work-
flows. The components developed during this work are bounded by dashed lines, the
others are represented to improve the visualization of the workflow steps. Both workflows
start with the tenant performing a request to the SRO through the SRO Server com-
ponent. The SRO Server is the SRO entry point. The main endpoints exposed by this

server are:

profile_ flavor - Receives a flavor profiling request, at step 1 of the Profiling Workflow
(Figure 9). The request contains a tenant’s service KPI measurements file, in a
Comma Separated Values (CSV) format. This file is called the “X file”, once it is
the independent variables file. Also, it is one of the two input files that are necessary
to build the forecasting model. The consistency of this file is checked (format,

maximum size), and then it is delivered to the Slice Controller to be processed.

register__metrics_ flavor - Once the request of the relevant metrics to the IMA is
asynchronous, this endpoint is a callback that is used at step 5, of the Profiling
Workflow. It receives a file, called “Y file”, with the relevant infrastructure metrics
measurements, that were collected during the tenant’s benchmark. The Y file is

sent to the Slice Controller to be processed along with the X file.

start__sla_ forecasting - This endpoint is exposed to allow the tenant to visualize,
at the Slice Monitoring Dashboard, the tenant’s service KPI forecasting values,
without enabling the automatic orchestration. It triggers a call to a task inside the
Slice Controller to perform the KPI forecasting and then publish the values in the

Information Bus.

start__orchestration - Responsible to start the automatic orchestration as shown in

Figure 10, step 1. It enables the automatic orchestration option inside the Slice

40 Chapter 3. Proposal

< xR & R & & 2
@©
§ e BAEEA R o H A A-
. — . -
2 oleoene oleoelne
©
g 2 R R 2 R R
slice ; t, slice , t,
Slice Monitoring Dashboard
(- TTTTTTTTTTTTTToTTTTooToTmTTToTmmTmommmmmmmmmm s i
: Slice Resource Orchestrator 1
N B e o
Lo e | Slice Controller i |
I : : : E : r----------------------—---“---“---__-___-_J_-I :
P] [Slice Controller ... o
{1) ! 1
. b - e ey b]
.) &= d N Slice Controller F
= | - L o q]
3 @ G ¢ G = I IO x Lo
3 | - IR R BEER B : Slice , .
o s = TR O O TR e . i [
@ = | 7 e O 5 O o I Flavor : Lo
o 5 R W Y i v . : (]
0 = : | i = o j‘ Flavor ; : a
| [} 9 : ! I et e : :
. = B L Flavor , .
! ') ! ! LA .. - ! [I
P] . M | © Forecasting Model ' ! | P
I | ! 1 i ' A _ﬂ__‘_:'_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:__ _1 N ‘: i 1
} I Dot _;:_1:__: I e
, v
g @ ® DC Controller B WAN Controller A DC Controller
o Q
=S O A
= >
52 e ®o® EEEN A AL A
= Cloud Provider Network Provider Edge Provider
| \ |

Figure 11 — SRO modules in NECOS scenario. The allocated slice 1 with its resources is
shown in yellow, NECOS related modules in blue, and resource providers in
green.

Controller, allowing changes in the slice flavor based on the tenant’s service KPI

forecasting.

elasticity__upgrade - Available if the tenant wants to perform a flavor upgrade man-

ually. Triggers the actions as in step 7 of the Elasticity Workflow.

elasticity__downgrade - As the previous one, defined if the tenant wants to perform
a flavor downgrade manually. It starts the actions as in step 8 of the Elasticity
Workflow.

While the SRO Server receives tasks requests, the SRO Client is responsible to make

tasks requests to other components. For example, it requests the metrics selection to

3.2. Orchestrator Architecture 41

the IMA, at step 3 of the Profiling Workflow in Figure 9. Also, it is used by the Slice
Controller to communicate with other components. It handles the request to change the
metrics set being collected when a flavor switching is performed, once two flavors of the
same slice can have different sets of most relevant features (step 2 of Elasticity Workflow
in Figure 10). When an elasticity action needs to be executed, it is also responsible
for requesting the elasticity changes to the appropriate resource provider (steps 7 and 8
of Elasticity Workflow in Figure 10). These two modules are the SRO interface to the
external world.

As in an autonomous element (Section 2.2), where each element has an autonomous
control loop, here, each slice has its control loop being executed by its own Slice Con-
troller instance. After the forecasting or automatic orchestration being enable, this
component should consume the measurements of the most relevant metrics from the in-
formation bus, which is the step 4 of the Elasticity Workflow in Figure 10. It is defined as
the consume__measurements task, and the goal is to fill a window W like the matrix

structure:

T T2 Ttk
Ti411 Tel2 - Tiylk
W =))
LTi+h1 LTi+h2 - LTithk

where each z; ; is a measurement of the relevant metric j at time 7. All measurements in
the same row were collected at the same time. All measurements from the same column
belong to the same infrastructure metric. This window has size h x k, where h is the
number of samples needed for each metric, which means, the history of the previous
measurements necessary to forecast, and k is the number of metrics that were selected
in the profiling phase. The k parameter is selected by the IMA, after performing an
analysis of the correlation among the infrastructure metrics and the tenant’s service KPI.
The [indicates the time lag passed between two measurements of the same metric being
collected. For example, a metric can be measured every 5 seconds, so [= 5.

After having a full window of infrastructure metrics, the next task is to forecast__kpi.
It is done using the model trained at the flavor profiling phase. How the training is
performed is shown in Section 3.4. The Slice Controller selects the current slice flavor
and uses its Forecasting Model component, passing to it the filled window. This
component returns the forecasted value, which goes to the analyze_ kpi task, in the
Slice Controler. The behavior of this task was already described in step 6 description of
the Elasticity Workflow in Figure 10. If the analysis requires any elasticity action, which

means in our context a flavor change, the infrastructure updates are requested using the

© 00 N O Ot W NN

I T e e e e
S © 00 N O Ot s W N = O

42 Chapter 3. Proposal

SRO Client component, which asks the appropriate resource providers to perform the
necessary changes.

Finally, the tenant can follow what is happening with its slice using a Slice Mon-
itoring Dashboard which summarizes the information that is being published in the
information bus. In the dashboard are presented the forecasted tenant’s service KPI val-
ues, the current most relevant metrics measurements, and the last actions performed by
the orchestrator.

The next section shows the control loop performed by the Slice Controller of each slice

in detail.

3.3 The Slice Control Loop

In this section, pseudo code is used to show in detail some important tasks cited
before. The first piece of code is the Algorithm 3.1. It shows the control loop process
which is the core of the slice orchestration and runs inside the Slice Controller component.
It loops through the measurements collected, reading the messages published by the IMA
in the information bus. The aim is to fill a line from the window W, grouping all metrics
collected at the same timestamp. The current measurements is the variable that keeps

the measurements set.

current_timestamp = now ()
window = empty_window ()
current__measurements = empty_measurements_ list ()

for message in information_bus:
if current_flavor.is_relevant__metric(message.metric):
if message.timestamp == current_timestamp:
current__measurements.add(message . measurement)
else if message.timestamp > current timestamp:
current__measurements = empty__measurements_ list ()
current__measurements.add(message. metric, message.measurement)

current_timestamp = message.timestamp

if current_measurements.is_completed ():
window . update_window (current__measurements)

if window.is_full():

kpi_value = current_ flavor.forecasting model. forecast_ kpi(window)

publish_forecast (kpi_value, current_timestamp)
current measurements = empty_measurements_list()

if is orchestration enabled:

21

S O s W N

3.8. The Slice Control Loop 43

analyze kpi(kpi_value)

Algorithm 3.1 — Slice Control Loop.

A message contains the metric name, the measurement value, and the timestamp
marking the time the measurement was collected. A message is processed if it is a relevant
metric for the current flavor (messages from previous flavors could be in the information
bus). A measurement is inserted inside the current_measurements if it has the same
timestamp as the others (line 7). Line 9 means that if the current measurement is newer
than the others inside the current measurements, a new list of current measurements
of that timestamp should be completed.

When a line of the window is completed, it is inserted into it (line 15). When the
window is completed, a tenant’s service KPI forecasting can be performed (line 17). The
current flavor of the slice has a forecasting model that is used to perform this prediction.
If the automatic orchestration is enabled (line 20) this value is analyzed and based on it,
and elasticity action may be performed. This evaluation is detailed at the Algorithm 3.2.

In this function, line 2 shows that if some elasticity action is being done, until it is
finished, no other elasticity action can be performed, once the values being collected from

the infrastructure do not represent the flavor.

analyze_kpi(kpi_value):
if not is_performing_elasticity:
if current_ flavor.is_too_good(kpi_value):
request__elasticity (¢ ‘downgrade’”)
if current_flavor.is_too_bad(kpi_value):

request__elasticity (¢ ‘upgrade’’)

Algorithm 3.2 — analyze kpi function.

At the lines 3 and 5 the functions is_too_good and is_too_bad define the border
values that the tenant’s service KPI should not cross. For example, consider that a
tenant chose as the KPI the download velocity being delivered to its end users. This
way, the tenant stipulates that 100 Mb/s of download throughput is the highest velocity
that it provides. On the other hand, it guarantees at least 10 Mb/s. In this context, the
forecasted value of 200 is greater than 100, so it is “too good” once the clients are not
paying by it. On the other side, 5 is “too bad”, because the clients are expecting at least
10 Mb/s. In this case, being “too good” is a kpi_value > 100 relationship and a being
“too bad” is a kpi_ value < 10.

The relationship being greater than a threshold is good and being less than a threshold

is bad does not work for all cases. If the tenant’s service KPI represents a response

S O = W N

© 0 N O Ot s W N

44 Chapter 3. Proposal

time, for example, being great than a value can indicate that the system is too slow, so
an elasticity upgrade should be performed, while if the value is too low, and elasticity
downgrade should take place, once the end-users may not be paying enough to receive it.

This way, the logic behind the is_too_good function can be defined as shown at the
Algorithm 3.3, where the good_operator and the good_ threshold are previously cho-
sen by the tenant, when establishing the SLO’s, and the good operator belongs to the
valid__operators = {<,<,=,>,>} set. The test performed at the line 4 depends on an-
other parameter provided by the tenant, the “too_good_occurrences”, and it is used to
avoid the elasticity being triggered because of punctual oscillations at the tenant’s service

KPI forecasting. This value is reset after a period of time, also provided by the tenant.

is_too__good (kpi_value):
if good_operator(kpi_value, good_threshold):
too__good__occurrences = too_good_occurrences + 1
if too_good_occurrences > allowed_times_too_ good:
return True

return False

Algorithm 3.3 — Function inside Flavor that evaluates if a forecasted tenant’s service KPI

value is too good.

The is_too bad function behavior is analogous to the Algorithm 3.3. Continuing at
the Algorithm 3.2, if the return of the functions “is_ too_good” or “is_too_bad” is posi-
tive, an elasticity action is requested. Details about this request are shown at Algorithm
3.4. If the operation is a downgrade, line 2, the algorithm checks if there is a downgrade
flavor for that current flavor. If it has, the global flag is per forming elasticity is set
to true and a message of elasticity is published at the information bus. Next, a function
at the Flavor component is called so it can call the actions in the providers to downgrade
the flavor. The global variable new__flavor holds temporarily the next slice flavor. The

behavior when a flavor upgrade is performed is similar.

request__elasticity (operation):
if operation = ‘‘downgrade’’:

if current_flavor.has_downgrade_flavor ():
is_performing_elasticity = True
publish_sro_log(‘‘Requesting elasticity downgrade’’)
current_ flavor.request_downgrade ()
new_ flavor = current_ flavor.downgrade_ flavor

else:

publish_sro_log(‘‘Current flavor does not allow downgrade’’)

10
11
12
13
14
15
16
17
18

T = W NN =

3.4. Forecasting Model 45

if operation = ‘‘upgrade’’:
if current_flavor.has upgrade flavor():
is_performing_elasticity = True
publish_sro_log(‘‘Requesting elasticity upgrade.’’)
current__flavor.request__upgrade ()
new_ flavor = current_ flavor.upgrade_flavor
else:

publish sro log(‘‘Current flavor does not allow upgrade’’)

Algorithm 3.4 — Elasticity request code.

Finally, when the providers return that the elasticity actions were completed, a call-
back function, shown at Algorithm 3.5 is called. It sets the is_performing elasticity
flag to False, once the elasticity is completed, it resets the measurements window then up-
dates the current__flavor variable to the new current slice flavor, and finally, it publishes

the message that the elasticity action previously requested was completed.

elasticity__callback ()

is_ performing_elasticity = False
window = empty_ window ()
current flavor = new_flavor

publish_sro_log(‘‘Elasticity completed’”)

Algorithm 3.5 — Elasticity callback.

All these actions are possible only because at the profiling phase a machine learning
model was trained to perform the forecasting. The next section gives details about how

the forecasting model used at line 17 of Algorithm 3.1 was trained.

3.4 Forecasting Model

Here, the forecasting model is trained to answer the question: “Given a sequence of
infrastructure monitoring measurements, which is the most probable tenant’s service KPI
value in s seconds?”. This question regards the two hypotheses from Section 1.3, once
it requires that the forecast model uses only the infrastructure metrics (first hypotheses)
and predicts the future (second hypotheses). To do so, the intelligent model first needs to
learn how to associate the monitoring metrics with the tenant’s service KPI. In machine
learning, this process is called as “training phase”. However, before training the model
to perform the forecast, the training data needs to be prepared, which is called data

preprocessing. First, the previously received files X and Y are read by the SRO and then

46 Chapter 3. Proposal

have their values under a standardization process. It is done by subtracting the mean
and dividing by the standard deviation of each metric (TENSORFLOW, 2019). The
standardization is needed because some metrics can have very different scales, and doing
that process gives the same meaning to all values: how much they are different from the
standard deviation (FROST, 2020).

Different from “vanilla neural networks” that are fed with a vector containing a single
measurement of each metric, the RNN input is a sequence of measurements of each metric.
The reason to give this piece of time series as input is to provide context for the RNN
to perform a more precise forecast. Therefore, the X file is broken in windows of size
h, where h is the window size. Each window is then associated with the future tenant’s
service KPI value which is the target, which is shown in detail next. This is a “labeling”
process, where the labels are in the Y file. The label is the value that we want our model

to “guess” from the features that we have.

In our case, it means that if a window has the values starting at the timestamp ¢ to
t+h, the target is the y value in the Y file with timestamp t+h+s, where s is the distance
in the future that we want to forecast. Figure 12 shows the labeling phase. There, it is
possible to see in the middle a data set instance, which is the window W extracted from
the X file and its corresponding label, from Y file. In the figure, it is also possible to see
that the Y file starts at h + s, instead of 1, which represents the first timestamp of the X

file, because the first label labels the window metrics from 1 to h.

After the files being preprocessed in instances, each instance needs to be digested by
the RNN more than one time, to be effectively learned. Thus, the training instances
are shuffled and grouped in batches of size B. After having the dataset in batches the
training phase can start. It is shown in Figure 13. The RNN architecture is in purple,
in which each circle is a neuron. The architecture used here was inspired by the RNN
shown in Tensorflow (2019), but other architectures could be applied as well. The RNN
has three layers, one input layer, one hidden layer, and one output layer. The input layer
size depends on the window size of h. The middle layer, which is the “hidden” layer has
a fixed size of 32 neurons. One neuron is used in the output because just one value needs
to be estimated by this RNN.

The pink arrows that connect the neurons in the hidden layer show the recurrent
element of the neural network, in which case one neuron gives to the next its output.
This is what gives the RNN the ability to predict based on the past context.

Before the training starts, the RNN is initialized with random weights in its neurons.
Each input neuron processes a vector from the window and passes the processed value
in the flow of the black arrows. Again, the hidden layer process these values, and the
outcome of each neuron is passed to the following neuron of the layer, which is shown
by the pink arrows. After that, all values are once more combined in the output layer,

by the single neuron. The produced final output (y') is going to be compared with the

3.4. Forecasting Model 47

X file OSSOSO ,
i Training instance [
oo : ; O
X X, o1 ; ; oo _
! 1,1 1k ; Wt yH,HS i ; : Y file
; i XU X‘-k | i : : yh+s
PTTTTTTTTTTT ! D G i S R B
! : i to !) [
: X1+|1 X1+|k 1 . e : s ' i .
tossosesssessasoss ! : oo i ; Ir i Yha
i AR Xk i i T .
; i o ! I
e . i e l P
E X4 Xk i : : : i
__________________ ' : e : : ' » yl+h+s
i : ! A
é ! Xin1 Xiohk i i : ' .
__________________ , i wh | | Lo
| Xons Xonk 4 et o
e :
Training dataset
Figure 12 — Dataset during pre-process phase.
E X1 X |
P X ' —
N S | P T
L T L] N
ot | / \\
5 X i :
: ot tHLk 1 oo A TN S N e s
X, — Yhes Yhes
R | . [|
N I predicted real
HE output layer value value
""""""""" ! L
E Xie 1 te 1
X : :‘—>
t+h ' ' : :
T L E hidden layer
training instance input layer

Figure 13 — Training phase schema.

real value from the training instance (y), and using the difference of these two values,
the RNN adjusts its neuron weights, from the right to left. This process is known as
backpropagation, and it is illustrated by the gray arrows. All this process continues for
each training instance in each batch for a predefined number of times, and the expectation

is that the RNN weights converge to a number that can predict the target value with a

48 Chapter 3. Proposal

certain precision. Finally, after the model has been trained, it is not going to need the
label value y anymore. The only necessary input is the recent window of metrics, which
is the recent infrastructure history to perform the forecasting.

The presented orchestration approach is totally agnostic to the service running on top
of the cloud-network slice, which makes it suitable for many kinds of applications. Another
advantage is that it is proactive, being capable to adjust the infrastructure before an SLA
breach. Also, after profiling the flavors and set the thresholds, it runs automatically after
triggered, free of manual interaction.

Next, the following chapter shows the implementation of the SRO prototype and its
behavior. It shows the testbed built to prove the proposed SRO architecture. It also
shows results like the RNN training convergence, behavior of the forecasting values for

each slice flavor, and the elasticity triggering based on the forecasting values.

49

CHAPTER

Experimental Results and Analysis

This chapter shows how the intelligent slice orchestration architecture proposed before
can evaluate the hypotheses from Section 1.3. To do so, a testbed, which is a platform of
experiments was set up to provide a slice, its elasticity, and monitoring metrics. Section
4.1 shows more details about this testbed. Section 4.2 shows how the experiments were
run on this platform and also, the results obtained from each experiment. The discussion

about the outcomes of the experiments is provided as they are presented.

4.1 Evaluation Method

In order to embody the proposed architecture shown in Figure 11 and make the exper-
imental process closer to reality, a real private cloud infrastructure was set up. This way,
it was possible to collect real service and infrastructure metrics and also apply load and
elasticity actions on them. Figure 14 shows this testbed and Table 1 shows the configura-
tion of each used machine. In blue, are the NECOS components. In green, the Resource
Domains division, showing an infrastructure provider simulation. In purple is the third

part software used. They include:

Granafa: An open-source analytics and monitoring tool that facilitates the visualization
of time series databases (GRAFANA LABS, 2020). It is used as the visualization
part of the Slice Monitoring Dashboard. The version used was 6.2.4.

InfluxDB: A database optimized to store time series in real-time (INFLUXDATA INC,
2020) and open source. It groups and stores the monitoring and orchestration data

that Grafana displays. This system was installed in the 1.7.6 version.

Kafka: A streaming platform, similar to a message queue. It stores the streams of
records in a fault-tolerant and durable way (APACHE KAFKA, 2017). Kafka can
be deployed in a cluster of one or more servers, storing the streams in categories

called topics. It is used as the information bus of the orchestration architecture. The

50 Chapter 4. Experimental Results and Analysis

% Tenant S
|
L1 ‘
o Z) l
o (r% Slice Orchestrator
i)
(@) Slice Resource 17 Influx
g @ B Orchestrator = /’ DB
2 -
a o t p
- 8 1.2 Kafka-InfluxDB
= o
Infr. & Man. Abstraction | i
.3
.6
Central DC
Load
Generator
Cassandra
penstack | | siice Part Modiied |
1.4 Client
L Storage

Resource Domains

Figure 14 — Test bed.

SRO is subscribed to the slice metrics’ topic and publishes its forecast to another

specific topic. Version 2.11-2.0.0 is used.

Kafka-InfluxDB-Consumer: An open-source Kafka consumer for InfluxDB written
in Python (ENDLER, 2018). After being subscribed to receive topics like the SRO
forecasting results and monitoring selected metrics from IMA, it reads the informa-
tion published in Kafka and stores it in the InfluxDB database.

Prometheus: An open-source systems monitoring used to collect the slice metrics
(THE LINUX FOUNDATION, 2020). It collects the server-related metrics asso-
ciated with CPU, memory, and network. Its function is to collect the metrics that
are provided by the IMA. The installed version is 2.2.1.

Cassandra: It is a NoSQL database management system, open-source, and free (THE
APACHE SOFTWARE FOUNDATION, 2016). In the testbed, it represents the
Tenant service running on top of the slice. The Cassandra version used is the
3.11.3.

Load Generator: It is a python code that was programmed to generate client processes
that make requests to the Cassandra service (CUNHA, 2019). It is configurable so

4.1. FEwvaluation Method 51
Components hosted OS RAM HD | Processor
IMA Ubuntu 16.04 | 16GB | 500GB | 8 vCPUs
SRO Ubuntu 16.04 | 16GB | 500GB | 8 vCPUs
Influx DB, Kafka-InfluxDB | Ubuntu 16.04 | 16GB | 500GB | 8 vCPUs
Grafana Ubuntu 16.04 | 16GB | 500GB | 8 vCPUs
Kafka Node 1 Ubuntu 16.04 | 4GB | 20GB | 1 vCPU
Kafka Node 2 Ubuntu 16.04 | 4GB | 20GB | 1 vCPU
Kafka Node 3 Ubuntu 16.04 | 4GB | 20GB | 1 vCPU
Kafka Node 4 Ubuntu 16.04 | 4GB | 20GB 1 vCPU
Kafka Node 5 Ubuntu 16.04 | 4GB | 20GB 1 vCPU
Load Generator Ubuntu 16.04 | 8GB | 20GB | 2 vCPUs
Modified Client Ubuntu 16.04 | 4GB | 20GB | 2 vCPUs
Prometheus 1, Prometheus 2 | Ubuntu 16.04 | 8GB | 500GB | 4 vCPUs

Table 1 — Testbed machine configurations.

the client creation can follow a certain distribution like a Gaussian, for example.

Modified Client: It is a program written in Java, that was used to perform queries to
the Cassandra service (CUNHA, 2019), as an end-user would do. It also records the

tenant’s service KPI measurements, and export them as the Y file in .csv format.

VIM Openstack: It is a cloud operating system (VEXXHOST, 2020), and its role was
to create all the VMs employed in the testbed. The version used was Openstack
Queens, 3.14.0.

The slice holding the Cassandra service was composed of one slice part which had
5 servers, forming a Cassandra cluster. Each cluster node had 1 vCPU, 4GB of RAM,
and 50GB of disk. This slice could have two different flavors, and the difference was
in the network traffic police. In the first flavor, which was the “smaller flavor”, a traffic
control police had been configured to allow only 10Mbit to pass through the main network

interface of each cluster node. This was done by using the Linux tc¢ command:

sudo tc gdisc add dev ens3 root tbf rate 10Mbit latency 1lms
burst 10000

Such a command uses the iproute package. The latency was 1ms because the aiming
was not simulating a distant network package traveling. The burst of 10000 was chosen
to not compromise the package processing. In the “bigger flavor” the traffic restriction
was 30Mbit, with the same other parameters. The 10Mbit and 30Mbit values were chosen
once they could induce variations in the chosen tenant’s service KPI. The KPI was the
99" percentile of the reading response time, in milliseconds. It indicates that the reading

response time of 99% of the reading requests performed by the Modified Client is under

52 Chapter 4. FExperimental Results and Analysis

this value, as a maximum mark. Section 4.2 shows more details about the behavior of
this tenant’s service KPI in both flavors.

To perform the profiling workflow, a tenant’s service KPI file (Y file) is needed for
each slice flavor. In order to generate it, three main modules shown before were used:
the Cassandra Service, hosted in a cluster, the Modified Client, and the Load Genera-
tor. Figure 15 shows their interactions. In the center are the five nodes that compose
the Cassandra Cluster, which was connected by a bandwidth b. This bandwidth varied
(10Mbit or 30Mbit) depending on the selected cloud-network slice flavor. The Modified
Client, on the right, was responsible by generate the Y file with the tenant’s service KPI
measurements. This means that it performed requests to the service and recorded the
tenant’s service KPI that was delivered to it, the 99" percentile of the reading response
time. On the other hand, the Load Generator created and destroyed clients that also per-
formed requests to the service, in a wavy form. Meanwhile, the underlying Prometheus 1
instance (omitted) was collecting all the infrastructure metrics available in the Cassandra
Cluster, and keeping them in the local storage, which were used later to generate the X

file.

Request v N ’ Vo) Request
Cassandra
Mgﬁ:iﬁd N, = Cluster N, Load Generator
v 9\ A v Cl CI CI CI Cli
Response N ___ N Response

a
q

Figure 15 — Closer view of the interaction among the Cassandra Cluster, the Modified
Client and the Load Generator.

After this required step, the profiling phase was started. It is represented by the
interaction (I.1) shown in Figure 14 in yellow. This interaction was triggered by the
following HTTP POST request:

curl -X POST "http://{SRO_IP:SRO_PORT}/slice/{sliceId}/
flavor/{flavorId}/profile?url_to_answer={callbackEndpoint}
&sla_metric_name={KPI}×tamp_label={timestampField}" -H
"Content-Type: multipart/form-data"™ -F "file=Q@{yFile.csv}"

using the curl program, a command-line software used to perform requests from the termi-
nal. The parameters were: The IP of the machine running the SRO (SRO_ IP), the SRO
server port (SRO__PORT), the slice identifier (sliceld), the flavor identifier (flavorld),
the URL to be called to inform the profiling phase result (callback Endpoint), the KPI

4.1. FEwvaluation Method 53

name (K PI), the name of the field in the file that represents the measurements’ times-
tamps (timestampField), and finally, the Y file being transferred to the SRO (yF'ile.csv).
After receiving this request, the SRO called the IMA to select the most relevant metrics
of the infrastructure to train the flavor model, also passing the Y file (interaction 1.2 in
Figure 14). The IMA then requests to Prometheus 1 all the previously collected metrics
to perform the metrics selection (interaction 1.3 in Figure 14). Next, the IMA returns the
selected metrics in a .csv file, which was the X file (interaction 1.2 in Figure 14). The
SRO then trains the flavor model that represented that flavor under the given load.
Once both flavors had been profiled, the SRO could accept forecasting requests or
orchestration requests (interaction 1.1 in Figure 14). For the forecasting, the request

would be:

curl -X POST
http://{SRO_IP:SRO_PORT}/slice/{sliceld}/start_sla_forecast

or to enable forecasting based orchestration:

curl —-X POST
http://{SRO_IP:SRO_PORT}/slice/{slicelId}/start_orchestration

When the forecasting request is received, the SRO requests the IMA to publish real-
time measurements of the K selected metrics (interaction 1.2 in Figure 14). The IMA
requests the Prometheus 2 to send the measurements to Kafka (interactions .5, 1.4, and 1.6
in Figure 14). The SRO then consumes the real-time data, in order to forecast the tenant’s
service KPI s seconds in the future (interaction 1.7 in Figure 14). The SRO publishes
its forecasted values to Kafka, which are plot in a Grafana dashboard (interaction 1.7 in
Figure 14). If the orchestration request is performed, the SRO may execute actions in
the infrastructure to keep the selected tenant’s service KPI in compliance (interaction 1.8
in Figure 14), which means, to keep its values inside the acceptable interval previously
defined.

To know whether the forecasting models were representing well the flavors conditions,
it was needed to measure their accuracy. According to Hyndman e Athanasopoulos (2018),
it is possible to measure the forecast accuracy by summarizing the forecast errors. In their
book, they show a percentage metric called Mean Absolute Percentage Error (MAPE),
which is a unit-free metric and can compare forecast performances between datasets. This
MAPE metric was chosen to measure the models’ accuracy in this dissertation. Note that
from now on, the MAPE acronym will be used to designate this metric and not the MAPE

loop mentioned earlier in this work. It can be calculated doing:

/_ .

MAPE = Yi (4)
n

54 Chapter 4. Experimental Results and Analysis

where ¢ stands for the forecasted value at time 7, y; is the real value for the same time ¢ and
n is the number of samples. Each trained model is going to have its MAPE compared with
the MAPE of a naive method, a simple mean of the training KPI values, which is going to
be used as a baseline. This is done to answer the questions: Is the RNN prediction better
than a simple and cheap arithmetic mean? Does the RNN provide a better estimation
that makes it worth it to be used?

The next section brings the experimental results obtained using the experimental
strategy and the proposed testbed. It shows how the tenant’s service KPI floats under
different flavor and load conditions, how the trained models perform for each flavor, and

finally, how the orchestration could keep the KPI in conformance.

4.2 Experiments

To validate the hypotheses at Section 1.3, this section presents three kinds of exper-
iment and their results. The first hypothesis, H1, aimed to check if it was possible to
create a model that predicted the tenant’s KPI using only infrastructure data, and H2
hoped to verify if the model could be used in a run time orchestration to maintain the
SLA and also save costs. The experiments worked as a three steps pipeline, where the

output of one was used as input by the next:

1. Put the testbed under load to gather the infrastructure and client metrics for each
slice flavor. It represents steps 1 to 5 of the Profiling Workflow (Figure 9). It was
used to collect data for hypothesis H1.

2. With the collected data, to train different RNN models for each flavor, varying the
window size and forecast horizon. Also for each flavor, select the model with the
best MAPE value (step 6 of the Profiling Workflow). This aimed to validate the
hypothesis H1.

3. Finally, after deploying the selected models at the SRO, the third experiment con-
sisted of running the orchestrator and check if the proposed orchestration did obey
the hypothesis H2 (Elasticity Workflow - Figure 10).

For experiment number 1, the first step is to get the Y file for each slice flavor. The
first experiment to get the Y file for Flavor 1 is shown in Figure 16. The load applied
to the service is shown in pink, while the 99" Percentile of Reading Response Time
measurements is shown in green. The tenant’s service KPI axis is on the left, whereas
the right axis shows how many users were sending requests.

In this experiment, a load floating from two to twelve clients in a time interval (si-
nusoidal load pattern) of twenty minutes was applied to the Cassandra service for three

hours, generating nine repetitions of this pattern. As can be seen in the plot, there is

4.2. Experiments 55

Flavor 1 - Reading Response Time and Load x Time

== Reading Response Time == Online End Users

300

200

100 ¢

Online End Users

Reading Response Time (ms)

2000 4000 6000 8000 10000

Time (s)

Figure 16 — Experiment executed for three hours to get the Flavor 1 Y file. The green
curve represents the tenant’s service KPI measurements while the pink rep-
resents the load applied to the Cassandra system.

a strong relationship between the tenant’s service KPI and the load applied, which was
the reason to choose it in this exploratory work. In addition, the similarity of the shapes
during the load repetitions shows that this relation is reproducible and not a random
event.

Next, the slice Flavor 2 was exposed to the same conditions, and the results are pre-
sented in Figure 17. It is possible to see that because more network resource was available
(from 10 Mbit/s restriction to 30Mbit/s in the main network interface) the reading re-
sponse time wave was lower, which means smaller reading response times. Again, the

similarity between tenant’s service KPI and load holds and is reproducible.

Flavor 2 - Reading Response Time and Load x Time

= = Reading Response Time == Online End Users

300

200

100

Online End Users

Reading Response Time (ms)

2000 4000 6000 8000 10000

Time (s)

Figure 17 — Experiment executed during three hours to get the Flavor 2 Y file. The
green curve represents the tenant’s service KPI measurements while the pink
represents the load applied to the Cassandra system.

56 Chapter 4. Experimental Results and Analysis

During both experiments, Prometheus 1 was collecting the infrastructure monitoring
data, to be extracted by IMA in the form of the X file. The X file from Flavor 1 was
requested, as in steps 3-5 of the Profiling Workflow (Figure 9). With this and the client
data (Y file) it was possible to train models to forecast the tenant’s service KPI (Figure
9, step 6).

Aiming to understand the RNN behavior under different conditions, 8 models were
trained for each flavor, with different window sizes and forecasting horizons. As it is a
common choice to train Al algorithms, all models were trained with 70% of the experi-
mental data, leaving 30% of unseen measurements for validation. The Flavor 1 models
predictions are shown in Figure 18. In all figures, in the left column (a, ¢, e, and g), the
models were trained using a window size of 240s. The right column (letters b, d, f, and h)
shows the performance for a wider window, 480 seconds large. This kind of experiment

was done to observe the effect of more past information on the RNN performance.

In each line of the Figures, a different forecasting horizon is used: 1s (a, b), 30s (c, d),
60s (e, f), and 120s (g, h). This variation aimed to explore how good the model is to look
ahead in the future, providing information beforehand. In each plot, the real tenant’s
service KPI values are plotted in green and the forecasting in blue. Finally, in orange
is the mean of the real values, which represents our naive method, used as a baseline to

compare with the RNN performance.

On each plot of Figure 18 we see a remarkable resemblance of shape between the real
values and the forecasted ones. Both, the forecasted shape and real shape present two
distinct and well-concentrated areas: a ceiling and a floor. Another peculiarity is that
the fluctuations of the real values for the ceiling area are wider than for the floor area.
Also, those shapes have a straight transition from the ceiling to the floor, and vice-versa.
It is possible to see that with a larger range of future forecasting, the top of the shape in
blue becomes disturbed (plots g and f). It may indicate that the larger horizon makes
the predictions more vulnerable to data fluctuations. The loss of the shape while rising
the curve for the plot h, may indicate that a larger window may increase the forecasting

problems.

As the forecasting horizon gets larger, the plots tend to shift right, which starts to be
visible in plots e and f and it is even more clear in plots g and A. This shift may indicate

that the model becomes late as it has to predict ahead in the future.

To help us to see how good the forecasting is compared with the naive model, the
MAPE metric described in Equation 4 was used. As it represents an error metric, a smaller
value means better model performance. For improving the visualization the MAPEs of
each model was put together in the plot of Figure 19. The first values for each bar represent
the RNN with 240s history (blue). This model had the best performance accordingly with
the MAPE indicator for the majority forecasting horizons, except by the 1s horizon, where

it has a quite small worse behavior comparing with the RNN with 480s history (red). The

4.2. Experiments

1sin future 240s wmdow

1sin future 480s Wlndow

300 300 =
oy ?
Real r"‘%’{{gx Real e, X
e Forecast " %) » Forecast i {
250 250 Average & o,)
. 200 200 ﬁ. ke m o2
@ M
£ £ M
o v N
5 150 5150 o
& S
> >
g T
* 100 * 100
50 50
0
7500 8000 8500 9000 9500 10000 7500 8000 8500 9000 9500 10000
Time (s) Time (s)
(a) (b)
30s |n future 240s wmdow 30s in future, 4805 wmdow
300 3 300 N -
- Real ’
e Forecast Sbw&-
250 2504 Average o't 7
200 200 ‘ : i‘

KPI value (ms)
=
w
o

KPI value (ms)
=
w
o

P

100 100
A
50 50
3 3o
L L 2
7500 8000 8500 9000 9500 10000 7500 8000 8500 9000 9500 10000
Time (s) Time (s)
(c) (d)
300 605 |n future 240s wmdow 300 60s |n future, 4805 wmdow
Real “"45"" y‘%"éf 3 u 3
e Forecast ; ere.
M o
250 Average @ " . " 2 250
ol -
200 200

KPI value (ms)
=
w
o

100

KPI value (ms)
=
w
o

=
o
o

50 50
RS
7500 8000 8500 9000 9500 10000 7500 8000 8500 9000 9500 10000
Time (s) Time (s)
(e) (f)
300 1205 |n future 2405 wmdow 300 12(2‘5‘ in future, 480s ‘wmdow
Real :\I “ Real
. Forecast‘ JIIN‘ o Forecast |
2507 Average 2507 Average

?- IS BT
200 \ ~ 200
(%) . (%)
£ M £
£ . £
2150 .. 5150
© Ld ©
> . >
g H g
~ 100 f ~ 100

‘0
50 50
S
0 0 .
10000

10000

7500 8000 8500 9000 9500
Time (s)

(g)

7500 8000 8500 9000 9500
Time (s)

(h)

Figure 18 — Forecasting provided by models trained for Flavor 1. At left, 240s of window
size and 480 seconds at right. The forecasting horizon varied for each line
starting in 1, 30, 60, and finally 120 seconds.

58 Chapter 4. FExperimental Results and Analysis

RNN with a window size of 480s (red) was the second better model for almost all cases. It
shows that a larger window did not represent, in general, improvements to the forecasting.
The naive methods were the two worse methods, about 5x worse than the RNNs for both
windows sizes, which indicates that our Machine Learning (ML) implementation delivers
a better tenant’s service KPI prediction than the naive method.

Although it can be seen as an expected result, we consider it an important result,
since it shows that the ML solution considerably improves the predictions and, in such a
case, it justifies the overall complexity associated with such a solution. We also would like
to emphasize that our proposed method is agnostic to the service and the cloud-network

slice infrastructure configuration, which also grants value to the proposal.

Flavor 1 - MAPE x Forecasting Horizon
B RNA 240 history [RNA 480 history Naive 240 history [Naive 480 history

1 PEEEEN 128,24

Figure 19 - MAPE for Flavor 1 models.

K[\l 24,13 24,56

S0l 24,74 27,29

Forecasting Horizon

(V'R 26,64 32,02

An analogous analysis was performed with the Flavor 2 models, which are shown in
Figure 20. Tt is effortless to see the similarity with the blue and green curves, which
demonstrates also a strong relationship between the models’ predicted values and the real
ones. A shift in the blue curves is also presented as the forecasting horizon increased,
being more visible with a wider window size (h). The predicted values’ curves weren’t as
smooth as the ones seen for Flavor 1, maybe because the real data set for Flavor 2 had
more diffuse measurements.

One more time, the MAPE comparison is done, now for the Flavor 2 models, and it
is shown in Figure 21. This time, the naive methods delivered a smaller MAPE than for
Flavor 1. However, they were about twice times worse than the RNN’s predictions, on
average. Comparing the RNN’s, one more time a wider window size did not deliver the
best performance in the majority of the cases. Essentially, Flavor 2 has more network
bandwidth and the same number of clients were used in the load generator as for Flavor
1. So, actually, Flavor 2 was not pushed to the boundaries of its capacity and the dataset
is not as rich as desirable, which is expected to be the reason why the naive method

closely approximates the predictions of the RNN. Also, as the majority of the real values

4.2. Experiments 59

300 1s in future, 240s wmd‘ow S5 1s in future, 480s wln:d.ow -
+ Real " + Real b ¥
e Forecast * Forecast - ¥ .
2501 Average 2501 Average .. * .
~ 200 ~ 200
m 7
E E
2 150 5150
g g
5 T
* 100 * 100
50 50
0 . ' . . ' 0 . . | . |
7500 8000 8500 9000 9500 10000 7500 8000 8500 9000 9500 10000
Time (s) Time (s)
(a) (b)
560 30s in future, 240s window 360 30s in future, 480s window
K vty o © Real i . e
e Forecast - g . * Forecast " .
250 Average . :«‘ ” . 250 Average
— 200 — 200
(%) [u)
E E
5150 3150
© ©
> >
a a
¥ 100 * 100
50 50
0
7500 8000 8500 9000 9500 10000 7500 8000 8500 9000 9500 10000
Time (s) Time (s)
(c) (d)
St 60s in future, 240s window e 60s in future, 480s window
* Real Yol " * Real e "
« Forecast - o . « Forecast . ° .
2501 . Average ¥io LA 2501 Average - .’ ¥ % .
— 200 — 200
m m
E E
5150 3150
© ©
> >
o a
* 100 * 100
50 50
0 0
7500 8000 8500 9000 9500 10000 7500 8000 8500 9000 9500 10000
Time (s) Time (s)
(e) (f)
300 120s in future, 240s window 300 120s in future, 480s window
© Real r o " * Real
* Forecast - * . « Forecast
2504 Average 2501 Average
~ 200 —. 200
w (L)
E E
5150 3 150
© ©
> >
g g
¥ 100 * 100
50 50
Q
7500 8000 8500 9000 9500 10000 7500 8000 8500 9000 9500 10000
Time (s) Time (s)

(e) (h)

Figure 20 — Models trained for Flavor 2 under the same conditions of previously shown
models.

60 Chapter 4. FExperimental Results and Analysis

for the Flavor’s 2 tenant’s service KPI had a smaller range, the naive method, which is
a simple mean, becomes closer to the real points, making the error metric smaller. It is
important to clarify that our decision was to not use a different number of clients (loads)

while profiling the different flavors because we did not intend to apply even larger flavors.

Flavor 2 - MAPE x Forecasting Horizon
I RNA 240 history [RNA 480 history Naive 240 history [Naive 480 history

60 27,66 5173
120 24,24 23,03 50,43 m

30

Forecasting Horizon

Figure 21 — MAPE for Flavor 2 models.

It was proven until here that “it is possible to forecast the selected tenant’s service KPI
using only the provider side metrics”, the first hypothesis of Section 1.3. The final step to
validate the proposed orchestration approach was to demonstrate that using two of the
previously trained models (one for each flavor) could be used to provoke elasticity actions,
in an adequate manner. As stated in Section 1.3, an adequate orchestration means to
keep the resource usage as low as possible, and therefore the costs, but without breaches
in the SLA. Another point to highlight is the restriction to use only the provider’s data
during the slice run time, step 3 of the Elasticity Workflow (Figure 10).

Therefore, two experiments were run, aiming to observe the orchestration behavior
during the two possible orchestration actions: elasticity upgrade and downgrade. The
forecasting models used for both flavors were the 30s ahead models, once the elasticity
actions take about 2.39s to be performed in our infrastructure, and the 30s models showed
a good performance, which was closer to the real curve and the smallest MAPE indicator.
To demonstrate the elasticity upgrade case, an upper bound for the tenant’s service KPI
of 180ms of Reading Response Time was set. This way, when the model forecasted a value
equals or greater than this value, the orchestrator should perform the elasticity upgrade.
In order to test the upgrade, we started with Flavor 1, the smallest, making a request to
the SRO orchestration endpoint.

Figure 22 shows what happened with the real and forecasted tenant’s service KPI
values (green and blue dots). As the load increased (stair shape in yellow), the predicted
KPI started to grow as well. As it crossed the 180ms threshold (blue star) near to 200s,
the elasticity upgrade action was triggered by the SRO, which put the slice in Flavor 2 set

4.2. Experiments 61

up. After a few seconds, the real and predicted KPI was kept under the threshold, and
the model’s predictions continued to follow a pattern similar to the real KPI, with the
0.99 percentile of real values kept under 180ms. This means that if the client’s SLO was
to keep the 0.99 percentile of the Reading Response Time (tenant’s service KPI) under

180ms, it would have been accomplished.

Predicted Response Time x Observed Response Time

® Observed Response Time (ms) Automatically Generated End Users KPI Threshold
@ Estimated Response Time

250 12
200 10
>
N . 8 2
E s 3
(]
E 6 2
= k' w
. LY
g 100 A TN g
@ $ o R S
& .. &% o (‘B
A)
0 0
0 100 200 300 400

Elapsed Time (s)

Figure 22 — Elasticity upgrade triggered by forecasted value crossing the upper threshold
(blue star).

Advancing in the orchestration analysis, Figure 23 shows the elasticity downgrade
point of view. The lower bound was set to 10ms. In this case, the lower bound means
that the slice would be delivering a “too good” tenant’s service KPI, and the used resources
are being wasted. This way, the slice starts with the Flavor 2 configured. As the load
started to decrease, the ML model predicted a tenant’s service KPI value smaller than
the threshold, which is shown as a star, near to 200 seconds. This prediction triggered
an elasticity downgrade action, putting the slice back in Flavor 1. This time, the 0.99
percentile of the real values were kept above the tenant’s service KPI threshold, which
could represent another client’s SLO. It is possible to see that the predicted values started
to grow again after this action. As the KPI values were growing again, a situation very
similar to the one showed in Figure 22 took place again, which formed an orchestration
cycle. This cycle can be watched in real-time in a video available at NECOS (2020).

Lastly, the time cost of this orchestration approach can be considered in two parts,
the time to perform the profiling phase and how long it takes to perform a prediction and
to apply the orchestration actions. The profiling phase includes 6 hours to carry out the
loading experiments of Figures 16 and 17, 10 hours of feature selection for the two flavors,
and 20 minutes to generate each of the two 30s forecasting models. Such a process adds

up to 16:40h. To perform a single prediction, the window needs to be full, which takes 4

62 Chapter 4. FExperimental Results and Analysis

Predicted Response Time x Observed Response Time (ms)

® Observed Response Time (ms) Automatically Generated End Users KPI Threshold
@ Estimated Response Time

200 12
= 10

150 .
@ o
5 8 2
~ >
(0]
£ . 2
100 . . 6 0
) . . o
@ R o
& W 5 . o
Q . = ° "% . 4]
7] . .) " e e ., : . c
€ 50 -~ e A el fie 8

e \",,'.‘. 2
0 0
0 100 200 300 400

Elapsed Time (s)

Figure 23 — Elasticity downgraded triggered when the prediction reaches the bottom
threshold (blue star).

minutes for the first prediction. Later, it takes less than a second, on average, to perform
forecasting. As stated before, to execute a scaling action it took on average 2.49s. This
means that the offline preparation phase took about 16:40, however, during run time, the
orchestration itself is quite lightweight taking about 4 seconds in the worse case (when
a scaling action is needed) and less than one second in general cases (just performed a
forecast).

This section concludes that the Hypotheses at Section 1.3 were valid, once the orches-
tration manages satisfactorily the infrastructure, considering pretty tight SLO’s, as shown
in Figures 22 and 23. Another very important aspect to highlight is that the elasticity
actions were triggered before the real tenant’s service KPI crossed the thresholds, proving
to be a working proactive by prediction orchestration method.

A final remark about the results is that we proved that it is feasible to use infrastruc-
ture metrics to predict service-level KPIs for cloud-network slices. We used supervised
learning techniques under the offline learning approach since this dissertation fits an ex-
ploratory phase in the development, in which phase the idea was to prove the solution
as feasible. We consider that the entire process can benefit from on-line techniques and
other ML, methods, for example, reinforcement learning techniques, but they are left as
future work. What we have achieved can be seen as a baseline implementation framework

that can be really deployed and used for orchestration.

63

CHAPTER 5

Conclusion

As it was stated at the beginning of this document, at Section 1.2, the main goal of this
project was to propose a slice orchestrator architecture, inside the context of the NECOS
project. The main objective of this orchestration approach was to keep the SLA that was
established between the NECOS tenant and its end users managing the cloud-network
slice in a way that a defined SLO could be kept. This primary goal was broken into four

steps which were shown in Section 1.2 and were concluded in the following way:

1. To propose an orchestration architecture. This goal was reached as shown by the

multi-slice orchestration architecture designed and presented in Section 3.2.

2. To create an automatized and customized orchestration strategy for each slice. To
do so, it was adopted an approach using the training of ML models for each slice

configuration (flavors), which was detailed in Section 3.4.

3. To investigate forecasting approaches in orchestration, respecting the NECOS re-
striction to use only the provider’s infrastructure metrics. This was achieved by

exploring the RNN as described in Section 4.2.

4. To implement a prototype of the suggested orchestration architecture. This proto-

type was built and its behavior was portrayed in Section 4.2.

All these goals were used to prove that the hypotheses of Section 1.3 hold. The
flavors forecasting models plots and metrics showed in the Section 4.2 convince that it
was possible to use ML models to forecast tenant’s service KPI values in the future using
only infrastructure metrics (Hypotheses 1) and, finally, that these models could be used

to stimulate an automatic orchestration of a slice.

5.1 Main Contributions

The biggest contribution of this dissertation is to prove that the provider’s side metrics

can give a good prediction in the future of the quality been delivered to the end user’s

64 Chapter 5. Conclusion

point of view. Also, this work provided an orchestrator prototype that is agnostic to
service and slice configuration in an open-source form and also datasets to future works
1 This way, other works can explore other prediction methods using the data sets, other

infrastructure configurations, or even explore other services.

5.2 Future Work

During the development of this orchestration architecture, three points of attention
came up. The first is that when a change of flavor happens, the previous window is filled
with the last flavor’s data, which can cause the prediction to lose some precision. Future
work could explore more this situation, analyzing the impacts, and maybe proposing
solutions. Secondly, the forecasting can be truly compromised by the latency/failure of
the network or any other service involved in the metrics collection and publication. It
would be necessary to explore techniques to mitigate the orchestration unavailability or
even fallback options if it happens. The third is to automate the choice of the machine
learning model, which could take into consideration the precision metric, the time to
perform forecasting, the time to be trained, etc.

Besides these two subjects, other kinds of machine learning techniques could be ana-
lyzed to generate better models, or even to explore other RNN architectures and parame-
terization. More complex test cases involving more slice parts or other applications could
also be explored, and new techniques of slice setting reconfiguration more complex than

predefined flavors could be investigated as well.

5.3 Contributions in Bibliographic Production

Two articles were published at the SBRC 37th Brazilian Symposium on Computer
Networks and Distributed Systems at the Workshop of Theory, Technologies, and Appli-
cations of Slicing for Infrastructure Softwarization (WSLICE), in 2019. The first paper
was titled “Arcabougo para Orquestragao Osmética de Cloud Slices” (GUARDIEIRO et
al., 2019) and the second “Arcabougo de um sistema inteligente de monitoramento para
cloudslices” (MARQUES et al., 2019). Also, in the same event, one poster titled: “A. To-
wards osmotic orchestration of cloud slices” was presented at the Latin American Student
Workshop on Data Communication Networks (GUARDIEIRO, 2019).

L https://gitlab.com/necos/demos/mlo

65

Bibliography

AMAZON WEB SERVICES. Amazon Elastic Container Service. 2018.
<https://aws.amazon.com/pt/ecs/>. Online; accessed 12 dec. 2018.

APACHE KAFKA. Apache Kafka a Distributed Streaming Platform -
Introduction. 2017. <https://kafka.apache.org/intro>. Online; accessed 12 jan. 2020.

CARNEVALE, L. et al. From the cloud to edge and iot: a smart orchestration architecture
for enabling osmotic computing. In: IEEE. 2018 32nd International Conference on
Advanced Information Networking and Applications Workshops (WAINA).
[S.1], 2018. p. 419-424. <https://doi.org/10.1109/WAINA.2018.00122>.

CASALICCHIO, E. Container orchestration: A survey. In: Systems Modeling;:
Methodologies and Tools. [S.l.]: Springer, 2019. p. 221-235. <https://doi.org/10.
1007/978-3-319-92378-9_ 14>.

CASALICCHIO, E.; PERCIBALLI, V. Auto-scaling of containers: The impact of
relative and absolute metrics. In: IEEE. Foundations and Applications of Self*
Systems (FAS* W), 2017 IEEE 2nd International Workshops on. [S.1.], 2017. p.
207-214. <https://doi.org/10.1109/FAS-W.2017.149>.

CUNHA, I. R. d. Construction of a tool to support prediction of Cassandra
response times from infrastructure metrics. 2019. Computer Science Bachelor
Monograph. <https://repositorio.ufu.br/handle/123456789/26441>.

DOCKER INC. Swarm mode overview. 2018. <https://docs.docker.com/engine/
swarm/>. Online; accessed 12 dec. 2018.

ENDLER, M. Kafka-InfluxDB. 2018. <https://github.com/mre/kafka-influxdb>.
Online; accessed 12 jan. 2020.

FREITAS, L. A. et al. Slicing and allocation of transformable resources for the
deployment of multiple virtualized infrastructure managers (vims). In: IEEE. 2018 4th
IEEE Conference on Network Softwarization and Workshops (NetSoft). [S.1],
2018. p. 424-432. <https://doi.org/10.1109/NETSOFT.2018.8459990> .

FROST, J. Standardization. 2020. <https://statisticsbyjim.com/glossary/
standardization/>. Online; accessed 23 nov. 2020.

66 Bibliography

GRAFANA LABS. The open observability platform. 2020. <https://grafana.com/>.
Online; accessed 12 jan. 2020.

GUARDIEIRO, A. Towards osmotic orchestration of cloud slices. Poster at LANCOMM
Student Workshop (Latin American Student Workshop on Data Communication
Networks). 2019.

GUARDIEIRO, A. et al. Arcabougo para orquestracao osmética de cloud slices.

In: SBC. Workshop of Theory, Technologies, and Applications of Slicing
for Infrastructure Softwarization (WSLICE), 2019 SBRC 37th Brazilian
Symposium on Computer Networks and Distributed Systems. [S.1.], 2019. p.
30-43. <https://doi.org/10.5753 /wslice.2019.7720>.

HYNDMAN, R. J.; ATHANASOPOULOS, G. Forecasting: principles and practice.
Melbourne, Australia: OTexts, 2018. <https://otexts.com/fpp2/>. Online; accessed 12
mar. 2019.

HYNDMAN, R. J.; KHANDAKAR, Y. et al. Automatic time series for forecasting:
the forecast package for R. [S.1.]: Monash University, Department of Econometrics
and Business Statistics, 2007. <https://doi.org/10.18637/jss.v027.103>.

INFLUXDATA INC. Real-time visibility into stacks, sensors and systems. 2020.
<https://www.influxdata.com/>. Online; accessed 12 jan. 2020.

KEPHART, J. O.; CHESS, D. M. The vision of autonomic computing. Computer,
[EEE, n. 1, p. 41-50, 2003. <https://doi.org/10.1109/MC.2003.1160055>.

KUBERNETES. Pod Overview. 2018. <https://kubernetes.io/docs/concepts/
workloads/pods/pod-overview/>. Online; accessed 21 dec. 2018.

KUBERNETES AUTHORS. Production-Grade Container Orchestration. 2018.
<https://kubernetes.io/>. Online; accessed 12 dec. 2018.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, Nature Publishing
Group, v. 521, n. 7553, p. 436, 2015. <https://doi.org/10.1038 /nature14539>.

MARQUES, G. et al. Arcabouco de um sistema inteligente de monitoramento para cloud
slices. In: SBC. Workshop of Theory, Technologies, and Applications of Slicing
for Infrastructure Softwarization (WSLICE), 2019 SBRC 37th Brazilian
Symposium on Computer Networks and Distributed Systems. [S.1.], 2019. p.
58-70. <https://doi.org/10.5753 /wslice.2019.7722>.

MERKEL, D. Docker: lightweight linux containers for consistent development and
deployment. Linux Journal, Belltown Media, v. 2014, n. 239, p. 2, 2014.

MESOSPHERE. Apache Mesos. 2018. <http://mesos.apache.org/>. Online; accessed
12 dec. 2018.

. Marathon: A container orchestration platform for Mesos and DC/OS.
2018. <https://mesosphere.github.io/marathon/>. Online; accessed at 12-12-2018.

NECOS. D5.1: Architectural update, Monitoring and Control Policies
Frameworks. 2018. <http://www.maps.upc.edu/public/D5.1_ final.pdf>. Online;
accessed 12 mar. 2019.

Bibliography 67

. Novel Enablers for Cloud Slicing. 2018. <http://www.h2020-necos.eu/>.
Online; accessed 12 dec. 2018.

. D3.2: NECOS System Architecture and Platform Specification. V2.
2019. <http://www.maps.upc.edu/public/necos d3.2.v4.11_final web.pdf>. Online;
accessed 17 dec. 2019.

. NECOS Final Review. 2019. <http://www.h2020-necos.eu/
ufrn-telecomday-2019-2-2/>. Online; accessed at 11-17-2020.

. Machine Learning Based Orchestration of Slices. 2020. <http:
//www.maps.upc.edu/public/MLO__demo_ video_with audio.mp4>. Online; accessed
at 06-24-2020.

NETTO, M. A. et al. Evaluating auto-scaling strategies for cloud computing
environments. In: IEEE. Modelling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2014 IEEE 22nd International
Symposium. [S.1.], 2014. p. 187-196. <https://doi.org/10.1109/MASCOTS.2014.32>.

NICHOLSON, C. A Beginner’s Guide to LSTMs and Recurrent Neural
Networks. 2019. <https://pathmind.com/wiki/lstm>. Online; accessed 29 dec. 2019.

PASQUINI, R.; STADLER, R. Learning end-to-end application qos from openflow switch
statistics. In: IEEE. Network Softwarization (NetSoft), 2017 IEEE Conference.
[S.1.], 2017. p. 1-9. <https://doi.org/10.1109/NETSOFT.2017.8004198>.

QU, C.; CALHEIROS, R. N.; BUYYA, R. Auto-scaling web applications in clouds: A
taxonomy and survey. ACM Computing Surveys (CSUR), ACM, v. 51, n. 4, p. 73,
2018. <https://doi.org/10.1145/3148149>.

RANJAN, R. et al. Cloud resource orchestration programming: overview, issues,
and directions. IEEE Internet Computing, [EEE, v. 19, n. 5, p. 46-56, 2015.
<https://doi.org/10.1109/MIC.2015.20>.

SCIANCALEPORE, V.; CIRILLO, F.; COSTA-PEREZ, X. Slice as a service
(slaas) optimal iot slice resources orchestration. In: IEEE. GLOBECOM
2017-2017 IEEE Global Communications Conference. [S.1.], 2017. p. 1-7.
<https://doi.org/10.1109/GLOCOM.2017.8254529>.

SILVA, F. S. D. et al. Necos project: Towards lightweight slicing of cloud
federated infrastructures. In: IEEE. 2018 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). [S.1.], 2018. p. 406-414. <https:
//doi.org/10.1109/NETSOFT.2018.8460008> .

TENSORFLOW. Time series forecasting. 2019. <https://www.tensorflow.org/
tutorials/structured__data/time_series>. Online; accessed 26 jul. 2020.

THE APACHE SOFTWARE FOUNDATION. Apache Cassandra. 2016. <http:
//cassandra.apache.org/>. Online; accessed 12 jan. 2020.

THE LINUX FOUNDATION. Prometheus. 2020. <https://prometheus.io/>. Online;
accessed 12 jan. 2020.

68 Bibliography

VAZQUEZ, C.; KRISHNAN, R.; JOHN, E. Time series forecasting of cloud data center
workloads for dynamic resource provisioning. JoOWUA v. 6, n. 3, p. 87-110, 2015.

VELOSA, A. et al. Predicts 2015: The internet of things. Gartner: Stamford, CT,
USA, 2014.

VEXXHOST. Open source software for creating private and public clouds.
2020. <https://www.openstack.org/>. Online; accessed 12 jan. 2020.

VILLARI, M. et al. Osmotic computing: A new paradigm for edge/cloud
integration. IEEE Cloud Computing, IEEE, v. 3, n. 6, p. 76-83, 2016.
<https://doi.org/10.1109/MCC.2016.124>.

WEES, A. Van der et al. Cloud service level agreement standardisation guidelines. Cloud
Select Industry Group-Subgroup on Service Level Agreement (C-SIGSLA),
Tech. Rep, p. 2, 2014.

ZANELA, E. H. et al. Proposta de vim on-demand para fatiamento de nuvem.

In: SBC. Workshop of Theory, Technologies, and Applications of Slicing
for Infrastructure Softwarization (WSLICE), 2019 SBRC 37th Brazilian
Symposium on Computer Networks and Distributed Systems. [S.1.], 2019. p.
2-15. <https://doi.org/10.5753 /wslice.2019.7718>.

	Title page
	Approval
	Dedication
	Agradecimentos
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	Acronyms list
	Contents
	Introduction
	Motivation
	Research Goals and Challenges
	Hypotheses
	Contributions
	Dissertation Organization

	Background
	The NECOS Project
	Resource Orchestration
	Time Series Forecasting

	Proposal
	Orchestration Workflows
	Orchestrator Architecture
	The Slice Control Loop
	Forecasting Model

	Experimental Results and Analysis
	Evaluation Method
	Experiments

	Conclusion
	Main Contributions
	Future Work
	Contributions in Bibliographic Production

	Bibliography

