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Fuzzy Approach. Master’s thesis. Federal University of Uberlandia: Uberlandia, 2021. 

 

 

ABSTRACT 

 

Magnetorheological dampers are able to adapt their mechanical properties when subjected to a 

magnetic field which makes them a versatile option for controlling vibration in a vast number 

of industrial applications. This work proposes a numerical model of magnetorheological 

dampers using fuzzy sets as an alternative to the parametric models existing in the literature. Its 

main advantage is that it does not depend on highly complex mathematical modeling to 

represent the dynamic phenomena intrinsic to the system. Experimental data from tests 

previously performed with a LORD brand damper, model RD-8040-1, was used. A study of the 

modified Bouc-Wen Model and the Hysteretic Model was performed. Its parameters were 

updated by using the Differential Evolution algorithm. Then, the non-parametric model, based 

on neuro-fuzzy, was proposed. Through a comparison between the models, it was possible to 

confront the results of each model and observe that the fuzzy model was able to represent the 

damper in different conditions of electric current. 

 

Keywords: Smart Materials. Neuro-Fuzzy. Magnetorheological Dampers. 
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OLIVEIRA NETO, R. A. Modelagem de Amortecedores Magnetorreológicos: uma 

abordagem usando neuro-fuzzy. Dissertação de Mestrado. Universidade Federal de 

Uberlândia: Uberlândia, 2021. 

 

 

RESUMO 

 

 

Amortecedores magnetorreológicos são capazes de adaptar suas propriedades mecânicas 

quando submetidos a um campo magnético, sendo, assim, uma opção versátil ao controle de 

vibração em diversas aplicações industriais. Este trabalho tem como objetivo propor uma 

modelagem de atuadores de fluido magnetorreológico utilizando lógica fuzzy. Essa abordagem 

se apresenta como uma alternativa aos modelos paramétricos existentes na literatura. Sua 

principal vantagem é a não dependência de uma modelagem de grande complexidade para 

representar os fenômenos dinâmicos intrínsecos ao sistema. Para tanto, utilizou-se dados 

experimentais de um experimento previamente realizado com um atuador da marca LORD 

modelo RD-8040-1. Foi feito um estudo dos modelos paramétricos de Bouc-Wen Modificado 

e do Modelo Histerético, cujos parâmetros foram ajustados utilizando o algoritmo de Evolução 

Diferencial. Em seguida, o modelo não paramétrico, baseado em neuro-fuzzy, foi proposto. Por 

meio de uma comparação entre os modelos, foi possível confrontar as peculiaridades de cada 

modelo e observar que o modelo fuzzy foi capaz de representar o atuador em diferentes 

condições de corrente elétrica. 

 

Palavras-chave: Materiais Inteligentes. Neuro-Fuzzy. Amortecedores Magnetorreológicos. 
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CHAPTER I 

 

 
INTRODUCTION 

 

 
“Intelligence is the ability to adapt to change.” 

– Unknown author 

 

 
1.1 Overview 

 

Smart materials are those that can have physical characteristics controlled by 

changing environmental or operational parameters, such as stress, temperature, electric or 

magnetic field, for example. This kind of technology opens up a wide range of possibilities. 

From orthodontic wires to smart structures, there are countless applications of smart materials, 

what motivated the Brazilian government to finance a special department of research on this 

field: the Nacional Institute of Science and Technology of Smart Structures in Engineering 

(INCT-EIE). This is a network that highlights the importance of this research field to the 

country and abroad. 

Such institute divides the research on smart materials in seven main lines, which 

can give the reader an understanding about some specificities of this large field of research. The 

first line is related to shape memory alloys (SMA). These materials can recover their original 

shape, after being deformed, when a thermal load is applied. The commercial development of 

this technology started with pipe coupling, orthodontic wires and some medical applications in 

the early 1960’s (SCHWARTZ, 2002). A significant number of patents were registered in this 

line of research in the past decade. For example, a measurement system using thermoelectric 

effect was patented by Araújo; Monteiro; Reis (2015). This system aimed to characterize the 

thermal hysteresis of SMAs by subjecting the material to electric currents on Peltier cells. 

The second line deals with robust control and energy generation using smart 

materials. The possibility to harvest energy to provide power supply to micro-power devices 

motivates the development of numerous ingenious techniques in this context. Piezoelectric 
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materials (PZTs), for example, generate an electric charge when mechanically deformed. This 

characteristic enables using PZTs for energy harvesting and as sensors. For piezoelectric 

harvesters, the idea is to use these materials instead of the traditional batteries as power source 

for wireless systems. This procedure avoids the expensive battery changes and the consequent 

environmental problems (DORIA, 2019). For control purposes, these materials have interesting 

applications since a deformation causes electric charges that can be processed and interpreted 

numerically. 

The third line deals with applications of smart materials in aeroelastic control. 

When elastic bodies are subjected to a fluid flow, some interactions between aerodynamic 

forces and the structure occur. These interactions are the field of study of aeroelasticity 

(HODGES; PIERCE, 2011). Understanding and controlling such interactions is of interest 

especially to the aeronautical industry. In this context, smart materials are mainly applied in 

adaptative structures to improve aircraft performance.  

The fourth line of research is a subset of the third one. It is related to aeroelastic 

control using active fiber composites (AFCs). Such materials consist of uniaxially oriented 

piezoelectric fibers embedded in a polymer matrix and sandwiched between two interdigitated 

electrodes that polarize the fibers. When the electrodes are subjected to electric current, the 

electric field causes an extension on the fibers’ longitudinal direction (KORNMANN, 2004). 

The material’s ability to change its length is used to control vibrations caused by aeroelastic 

forces. 

The fifth line of research is vibration control using smart materials. Vibration 

control is a classical problem in mechanical engineering. The oscillations caused in machines 

and structures can generate undesired effects, such as noise, wear and fatigue. Aiming to 

attenuate vibrations, engineers seek solutions, and smart materials are a feasible technical 

possibility. Some systems operate in variable conditions and it is interesting to have the ability 

to adapt to different situations. In this scenario, electrorheology and magnetorheology emerge 

with alternatives to servomechanisms and regular actuators. SMAs and smart composites are 

also used for the purpose of attenuating vibrations. 

The sixth line is about multifunctional structures for autonomous aircrafts. 

Multifunctional Material Systems (MFMS) are defined as systems that integrate more than one 

function of different components in themselves (FERREIRA; NÓVOA; MARQUES, 2016). 

For example, sensing, conducting electricity, reducing drag, and structural function at the same 

time, thus forming multiphysics design. These systems use composite materials to achieve their 
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objectives. Applying that concept to aircrafts structures makes possible to reduce the number 

of parts and the weight, what is very interesting from the aeronautical engineering perspective. 

The seventh line of research deals with smart rotors and integrity monitoring of 

metallic and composite structures. Indeed, the traditional inspection procedures require 

stopping the equipment operation, what limits the production. Thus, researchers look up for 

solutions that are as reliable as the traditional ones, but do not require pauses for inspection. In 

this sense, alternatives are sought for the prediction and prevention of failures, as well as ways 

to extend the useful life of the equipment, giving rise to modern Structural Health Monitoring 

(SHM) techniques. For example, the method of monitoring cross cracks using 

electromechanical impedance (EMI) technique proposed by Cavalini Júnior (2013). Likewise, 

Franco (2009) developed a SHM technique using piezoelectric materials as actuators and 

sensors based on Lamb waves. Furthermore, a failure, depending on the situation, could mean 

huge financial loss or, even worse, could cause deaths.  

 

1.2 Scientific Object 

 

This work is inserted on vibration control using smart materials, refering to the fifth 

line of research previously mentioned. More specifically, mathematical modeling of 

magnetorheological (MR) dampers, whose results help the development of alternatives to 

attenuate vibrations in mechanical systems. Vibration control systems are typically classified 

as either active or passive. Active systems employ servomechanisms to apply or absorb energy. 

Koroishi (2013) studied active vibration control using electromagnetic actuators on flexible 

shafts. Marangoni (2020) used electromagnetic actuators for active vibration control with the 

self-sensing technique, which does not require position sensors since the controller uses current 

and voltage present in the coil to perform the control action. 

Passive systems consist of applying energy absorbers with fixed configurations in 

order to achieve certain pre-established mechanical properties, such as springs and pneumatic 

or hydraulic actuators. This method is relatively simple; however, the performance level is 

limited once the system is not able to adapt to different situations. This type of control is useful 

in contexts where the equipment will be subjected to a constant work regime and does not need 

to adapt during operation.  

Despite the better performance achieved by active suspensions compared to passive 

suspensions, the high costs, complexity and weight overcome the advantages of that type of 

system, whose use is justified only in cases where performance is a critical factor (KARNOPP, 
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1974). Thus, Karnopp (1974) proposed a semi-active control system that combines the 

simplicity of passive systems with the good performance of active systems, requiring only 

signal processing and low levels of energy demand. Since then, many models of semi-active 

control systems have been developed, using electrorheological (ER) and magnetorheological 

(MR) dampers. Such actuators contain fluids that change their rheological properties when 

subjected to electric and magnetic fields, respectively. MR dampers offer low energy 

consumption, robustness and mechanical simplicity, which motivates several researchers to 

investigate their performance in structural applications (DYKE, 1996).  

Figure 1.1 shows a performance comparison between active, passive and semi-

active systems taken from a Lord© catalog, a major manufacturer of MR dampers and MR 

fluids. This is an illustration of the range of velocities for which a given damping force can be 

obtained. The black curve refers to passive systems, with limited scope, being designed for 

specific conditions and reaching maximum force only at high velocities. The gray area 

represents other types of suspension, including active, which modify its characteristics through 

controllable valves. The blue part refers to MR dampers. In this case, the velocity response at 

the maximum damping force is higher as compared to the others. This characteristic added to 

the advantages already mentioned makes this type of system quite attractive regarding practical 

applications. 

 

Figure 1.1 – Performance comparison of suspension types 

 

Source: Lord ([201-]) 

Figure 1.2 shows some MR dampers available on the market. These devices have 

been applied in the development of smart structures, such as bridges and buildings with 
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protection systems against earthquakes. Figure 1.3 illustrates applications of MR dampers in 

constructions. On the left, the Sanwa Tekki building is depicted, and on the right, the bridge 

under Dongting Lake in China is shown. 

 

Figure 1.2 – Commercially available MR dampers 

 

Source: Lord ([201-]) 

 

Figure 1.3 – MR dampers in buildings 

Source: Liu; Tomizuka; Ulsoy (2006). 

Another important application is in the automotive sector, where semi-active 

control allows for the suspension system to adapt to lane variations, obtaining optimal 

performances for vehicles suspension systems, more comfort and safety for users 

(PASCHOAL, 2011). An example of comfort products designed by using MR dampers is 
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shown in Figure 1.4. A vehicle seat that adapts its stiffness depending on track conditions, 

relieving the impacts on the passenger’s body. 

There are countless mathematical models of MR dampers. Usually, the models are 

parametric and non-parametric models. Parametric models are based on mathematical 

expressions with parameters to be adjusted to represent the MR damper. Non-parametric 

models are based on approaches that do not require the parameter fitting, such as the model 

created by using fuzzy logic. This work analyses the differences between parametric models 

and proposes a non-parametric alternative model by using fuzzy sets. 

 

Figure 1.4 – Seat suspension system 

 

Source: Jim Toscano (2009) apud Ahamed; Choi; Ferdaus (2018) 

 

According to Simões, Shaw (2007), the need to represent inaccurate quantities in a 

systematic way favored the advent of fuzzy logic. In fuzzy systems, modeling is defined by 

means of linguistic rules instead of binary propositions. This fact makes the development of 

this type of models extremely fast. Fuzzy systems are considered as being intelligent due to the 

ability to provide answers without depending only on an input value in their transfer function. 

The objective of studying these systems is to allow for machines to make more complex 

decisions, similar to human reasoning, giving more autonomy to the processes. 

Schurter, Roschke (2000) developed a fuzzy model of a magnetorheological 

damper using ANFIS, an application developed by Mathworks© to implement adaptative neuro-

fuzzy inference systems. These authors used data from a parametric model to generate the 
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training and checking data. The model was considered valid and showed some advantages when 

compared to parametric models. For example, the fuzzy approach to characterize MR dampers 

does not require solving multiple simultaneous differential equations. 

Paschoal (2011) used a fuzzy controller in a magnetorheological damper to 

attenuate vibrations in vehicle suspensions. The choice of this type of controller is justified by 

the nonlinearities existing in this type of actuator, which has properties of different domains 

influencing its dynamic response. Teixeira (2017) studied some of the existing parametric 

models of MR fluid, developed a fuzzy model to describe the phenomena existing in the MR 

damper and made a comparison between parametric and non-parametric models. The major 

difficulty faced by that author in non-parametric modeling was the number of factors and their 

respective contributions to the fuzzy model, which demanded a high computational cost. 

In view of this, it can be observed that the research on smart materials is very broad 

and promising with several ramifications of relevance. This work is focused specifically on 

mathematical modeling of MR dampers, whose results can be used as technical alternatives in 

vibration control. An investigation on different models and their performances is done. The 

steps followed during the development of this work and the text organization are summarized 

next. 

 

1.3 Objectives and Methodology 

 

This work has as main goal to present an alternative model of magnetorheological 

fluid dampers. To this goal, the following steps were performed: 

 

• Two parametric models were adjusted, analyzed and compared; 

 

• The fuzzy model was proposed and compared to the previous studied models; 

 

• Data from a previous experimental characterization, executed on a MTS Landmark® 

testing bench using a LORD damper model RD-8040-1, was used. 

 

1.4 Text structure 

 

This dissertation is organized in five chapters in order to gradually provide an 

understanding of the theme, the relevance of the work, its theoretical foundation and 

application. The chapters are divided as follows. 
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In Chapter 1, a brief overview of the context of research on smart materials was 

presented. Papers from the literature were referenced forming the basis for the present thesis. 

The methodology used was highlighted as well as the main motivation of this work.   

In Chapter 2, an extensive bibliographic research is carried out on 

magnetorheological dampers, magnetorheological fluid and the development of mathematical 

models over the years. 

In Chapter 3, theoretical aspects of fuzzy logic required for the correct 

understanding of this work are revised.  

In Chapter 4, Modified Bouc-Wen and Hysteretic models were analyzed. 

Numerical simulations were executed by varying the associated parameters. Some 

particularities of each model could be observed. Furthermore, the fuzzy model is presented and 

a similar analysis is made. Such a model was capable of predicting the dynamic behavior of the 

MR damper. 

In Chapter 5, a discussion on the obtained results is performed. The conclusions 

and contributions of this work are presented, and perspectives of future works are briefly 

outlined. 



 

 

 

 

CHAPTER II 

 

 
MAGNETORHEOLOGICAL FLUID DAMPERS 

 

 
“It’s not stress that kills us, it is our reaction to it.” 

– Hans Selye 

 

 

2.1 Introduction 

MR dampers consist of a piston in a metal housing filled with MR fluid. The piston 

has annular holes through which the fluid passes. The main difference between MR dampers 

and regular dampers, other than the presence of MR fluid instead of mineral oil, is the MR 

piston. It has a coil which induces a magnetic field when subjected to an electric current from 

the power supply wires. The magnetic field changes the properties of the fluid passing through 

the magnetic flux region. Figure 2.1 shows the constituent parts of a MR damper assembly. The 

diaphragm acts as a spring to push the piston back to its steady position.  

MR fluid is a mix of particles with diameters between 0.5 and 10 µm suspended in 

an oil. When an electric current is applied, these particles align themselves in the direction of 

the magnetic field (TEIXEIRA, 2017). The greater the intensity of the magnetic field, the 

greater the resistance of the fluid to the piston movement. Hence the semi-active characteristic 

of this type of device, since it acts by changing mechanical properties during operation. Figure 

2.2 illustrates the alignment behavior of ferromagnetic particles in the direction of the magnetic 

field. The part (a) corresponds to the situation in which the fluid is not in the presence of a 

magnetic field, and the part (b) is when the fluid is under action of a magnetic field represented 

by the red arrows. Without the presence of a magnetic field, MR dampers behave like 

conventional dampers. 
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Figure 2.1 – Typical assembly of a MR damper 

 

Source: Lord, ([201-]) 

 

Figure 2.2 – MR Fluid 

 

(a) magnetic field off                (b) magnetic field on 

Source: Lord, ([201-]). 

 

It is quite complicated to accurately describe all the phenomena present in a 

magnetorheological fluid damper, since these phenomena are coupled electromagnetically, 

thermodynamically and hydrodynamically. Thus, simplifications of these phenomena are made 

(CRIVELLARO, 2008). The modeling of MR fluid can be done in two different approaches: 

one in the macrogeometric domain (volumes with dimensions greater than 50 µm), in which 

the Bingham number is used; and the other approach is in the particle domain, based in the 

Mason number. These numbers (Bingham and Mason) are ratios of properties that govern 
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equations related to the respective modeling approaches. In the macrogeometric analysis, the 

fluid is considered as a continuous mass with rheological properties, while in the 

microgeometric analysis the behavior of the suspended particles is considered, since their size 

is significant in such scale (SHERMAN; BECNEL; WERELEY, 2015). 

2.2 Bingham Model 

The Bingham viscoplastic model is usually adopted to describe the stress-strain 

behavior of magnetorheological and electroreological fluids (DYKE, 1996). For positive values 

of shear rate, the total stress is given by 

 

𝜏 = 𝜏𝑦 + μ ∙ 𝛾̇ (2.1) 

 

where 𝜏𝑦 represents the shear stress induced by the magnetic field, μ is the plastic viscosity, and 

𝛾̇ represents the shear rate. In this model, the viscosity is given by the inclination of the shear 

stress caused by the field. The first right hand side term of the Equation 2.1 represents the 

magnetic part since it is the only part under influence of the magnetic field. The second right 

hand side term of that equation is the rheological part, because viscosity is independent from 

the magnetic field. That modeling explains the increase of shear stress when the intensity of the 

magnetic field is increased, as is shown in Figure 2.3. 

 

Figure 2.3 – Shear Stress versus Shear Rate 

 

Adapted from: Srinivasan; Mcfarland (2001) apud Paschoal (2011) 
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From Bingham’s plastic, Stanway, Sproston, and Stevens (1987) developed a 

mechanical model to predict the damping force of electrorheological dampers. The model 

consists of Coulomb friction in parallel with viscous damping. The model is known as Bingham 

Model and Figure 2.4 demonstrates it schematically. 

 

Figure 2.4 – Bingham Model 

 

Adapted from: Dyke (1996) 

 

Equation 2.2 describes the damping force F for non-zero velocities, whose 

parameters 𝑓𝑐, 𝑐0, and 𝑓0 correspond to Coulomb friction force, viscous damping, and residual 

force present in the diaphragm, respectively. The dependence of the movement direction is 

represented by 𝑠𝑖𝑔𝑛(𝑥̇).  

 

𝐹 = 𝑓𝑐 ∙ 𝑠𝑖𝑔𝑛(𝑥̇) + 𝑐0𝑥̇ + 𝑓0 (2.2) 

 

Bingham Model is able to reasonably describe the force behavior versus 

displacement. Although, due to its simplicity, the model fails to predict the inherent transient 

behavior of this type of device, characterized by the hysteresis curve when changing the 

direction of speed (PASCHOAL, 2011). 

 

2.3 Modified Bingham Model 

In order to improve Bingham Model’s performance, Gamota, and Filisko (1991) 

proposed a modification focusing on ER dampers. The modification consists of adding a 

viscoelastic-plastic model in series with the previous model. Figure 2.5 schematically illustrates 

the Modified Bingham model. 
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Figure 2.5 – Modified Bingham Model 

 

Source: Dyke (1996)  

 

This model is governed by Equations 2.3 and 2.4, where F is the damping force, c0 

is the damping related to the Bingham model, c1 is the viscous damping coefficient, and k1 and 

k2 are elastic stiffness constants. The parameter f0 is the residual force present in the diaphragm 

and fc represents the Coulomb frictional force. The coefficients x1, x2, and x3 are displacements 

and 𝑥̇1, 𝑥̇2, and 𝑥̇3 are velocities. Moreover, when the damping force module is less than or 

equal Coulomb frictional force, 𝑥̇1 = 0 (DYKE, 1996). 

 

𝐼𝑓 |𝐹| > 𝑓𝑐 , {

𝐹 = 𝑘1(𝑥2 − 𝑥1) + 𝑐1(𝑥̇2 − 𝑥̇1) + 𝑓0

𝐹 = 𝑐0𝑥̇1 + 𝑓𝑐𝑠𝑖𝑔𝑛(𝑥̇1) + 𝑓0               

𝐹 = 𝑘2(𝑥3 − 𝑥2) + 𝑓0                           

 (2.3) 

 

𝐼𝑓 |𝐹| ≤ 𝑓𝑐 , {
𝐹 = 𝑘1(𝑥2 − 𝑥1) + 𝑐1𝑥̇2 + 𝑓0

𝐹 = 𝑘2(𝑥3 − 𝑥2) + 𝑓0             
 (2.4) 

 

Dyke (1996) demonstrates that this model is able to represent a hysteresis curve, 

unlike the model proposed by Stanway, Sproston, and Stevens (1987). It can be seen in Figure 

2.6 which presents two force-velocity graphically. Part (a) shows the response of the Bingham 

Model and part (b) of the Modified Bingham Model. The black curves are the numerical values 

while the cyan curves represent values obtained experimentally. Despite the ability to represent 

the force-velocity behavior well, it is emphasized that the equations that govern the Modified 

Bingham Model are quite difficult to deal numerically, that being its main deficiency. The 

model is capable of representing well the MR damper force-displacement behaviors, as well as 

the Bingham model. 

 

 

𝑓𝑐 
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Figure 2.6 – Comparison of hysteresis between models proposed 

by Stanway et al. (1987) and Gamota, Filisko (1991) 

 

      (a) Stanway et al. (1987)                                       (b) Gamota, Filisko (1991) 

Adapted from: Dyke (1996) 

2.4 Bouc-Wen Model 

The model proposed by Wen (1976) apud Dyke (1996) is numerically treatable and, 

for this reason, widely used. Figure 2.7 schematically represents this model which is called 

Bouc-Wen model. It is based on a Bouc-Wen element in parallel with a stiffness k and a viscous 

damping c.  

 

Figure 2.7 – Bouc-Wen Model 

 

Source: Dyke (1996) 

 

Damping force in the system is determined by Equation 2.5, where the parameters 

c, k, α, z e x0 correspond to damping, stiffness, scale factor, evolutionary variable and initial 

displacement, respectively. 

 

F 
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𝐹 = 𝑐𝑥̇ + 𝑘(𝑥 − 𝑥0) + 𝛼𝑧 (2.5) 

 

The evolutionary variable z is obtained by Equation 2.6, updating the terms γ, β, δ, 

and n using some optimization method, and solving this differential equation. Such parameters 

depend on the characteristics of each damper and, through them, the smoothness of the 

transition in the inversion of the direction of speed and the linearities in the unloading are 

controlled. In addition, the residual force can be inserted in this model by means of an initial 

displacement x0 in linear stiffness k, as described in Equation 2.5 (DYKE, 1996).  

 

𝑧̇ = −𝛾|𝑥̇|𝑧|𝑧|𝑛−1 − 𝛽𝑥̇|𝑧|𝑛 + 𝛿𝑥̇ (2.6) 

 

To adjust the cited parameters, Paschoal (2011) assumed the damping c, and the 

scale factor α as functions dependent on the electric voltage v applied to the actuator coil, 

proposing the relations provided in Equations 2.7, 2.8, and 2.9, where u is a resultant variable 

of a first order filter that represents the delay of the electric current in the circuit in relation to 

the input voltage. The factor 𝜂 is also updated with the parameters presented on the right hand 

side of Equations 2.7 to 2.9. 

 

α(𝑢) = 𝛼𝑎 + 𝛼𝑏𝑢 (2.7) 

𝑐(𝑢) = 𝑐𝑎 + 𝑐𝑏𝑢 (2.8) 

𝑢̇ = 𝜂(𝑢 − 𝑣) (2.9) 

 

The Bouc-Wen model is able to accurately predict the MR damper force-

displacement behavior and is able to more accurately approximate the force-velocity behavior 

obtained experimentally. This model was modified by some authors in search of obtaining a 

model capable of responding even closer to the experimental values, as will be presented below. 

 

2.5 Modified Bouc-Wen Model 

Dyke (1996) proposed a modification to the Bouc-Wen model, adding a viscous 

damping c1 and a stiffness k1 to the model, as shown in Figure 2.8. In this way, the author 

obtained a model capable of describing well the behavior of the MR damper in all regions, 

including the change in the direction of velocity.  

 



C h a p t e r  2 .  M a g n e t o r h e o l o g i c a l  F l u i d  D a m p e r s                  16 

 

 

Figure 2.8 – Modified Bouc-Wen Model 

 

Source: Dyke (1996) 

 

Damping force in the Modified Bouc-Wen Model is governed by Equations 2.10, 

2.11 and 2.12. In these equations, the parameters c0 and c1 represent viscous damping, k0 and 

k1 linear stiffness, α is the scale factor, and z is the evolutionary variable. The parameters λ, β, 

and n depend on the physical characteristics of each damper, like the MR fluid used, brand and 

model of the damper, and the piston rest position, for example.  

 

𝐹 = 𝑐1𝑦̇ + 𝑘1(𝑥 − 𝑥0) (2.10) 

𝑦̇ =
1

𝑐0 + 𝑐1

[𝛼𝑧 + 𝑐0𝑥̇ + 𝑘0(𝑥 − 𝑦)] (2.11) 

𝑧̇ = −𝜆|𝑥̇ − 𝑦̇|𝑧|𝑧|𝑛−1 − 𝛾(𝑥̇ − 𝑦̇)|𝑧|𝑛 + 𝛽(𝑥̇ − 𝑦̇) (2.12) 

 

There are different ways to obtain the parameters of the Modified Bouc-Wen 

Model. The parameters can be adjusted as linear functions of the electric current, as did Teixeira 

(2017), by Equation 2.13 below, where i corresponds to the value of the applied electric current, 

and the values with indices a and b are obtained using optimization. Teixeira (2017) considers 

the parameters c1 and k1 independent of the electric current in the optimization. 

 

𝑐0 = 𝑐0𝑎 ∙ 𝑖 + 𝑐0𝑏 

𝑘0 = 𝑘0𝑎 ∙ 𝑖 + 𝑘0𝑏 

𝑓0 = 𝑓0𝑎 ∙ 𝑖 + 𝑓0𝑏 

𝑛 = 𝑛𝑎 ∙ 𝑖 + 𝑛𝑏 

𝑐1 = 𝑐1 

𝛼 = 𝛼𝑎 ∙ 𝑖 + 𝛼𝑏 

𝛽 = 𝛽𝑎 ∙ 𝑖 + 𝛽𝑏 

𝛾 = 𝛾𝑎 ∙ 𝑖 + 𝛾𝑏 

𝜆 = 𝜆𝑎 ∙ 𝑖 + 𝜆𝑏 

𝑘1 = 𝑘1 

(2.13) 

F 
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Another way of obtaining the parameters was proposed by Spencer et al. (1997). 

The values of the scale factor α and damping c0 and c1 were considered linear functions of the 

electric voltage, as described in Equations 2.14, 2.15, 2.16 and 2.17 below. Again, the variable 

u is the result of a first order filter that represents the delay of the electric current in the circuit 

in relation to the input electric voltage.  

 

α(𝑢) = 𝛼𝑎 + 𝛼𝑏𝑢 (2.14) 

𝑐0(𝑢) = 𝑐0𝑎 + 𝑐0𝑏𝑢 (2.15) 

𝑐1(𝑢) = 𝑐1𝑎 + 𝑐1𝑏𝑢 (2.16) 

𝑢̇ = 𝜂(𝑢 − 𝑣) (2.17) 

 

Such an approach is known in the literature as the Phenomenological Model, and 

has the advantage of reducing the number of parameters to be adjusted. Because it responds 

well to hysteresis behavior, this modeling was adopted by Paschoal (2011) and Cavalini Júnior 

et al. (2015).  

2.6 Hysteretic Model 

The Hysteretic Model proposed by Kwok et al. (2006) models the transient effect 

of the actuator well. Teixeira (2017) compared several parametric models and obtained the 

hysteresis curve closest to the experimental data using this model. 

 

Figure 2.9 – Hysteretic Model 

Adapted from: Kwok (2006) 

 

Hysteresis 

k 

c 

F – f0 

x 
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Such model, like the Bouc-Wen model, consists of viscous damping parallel to 

linear stiffness and an element related to hysteresis, as shown in Figure 2.9. However, the 

hysteretic variable z is modeled only as a hyperbolic tangent, as can be seen in Equation 2.19, 

which makes the model quite simple to implement numerically (KWOK, 2006).  

 

𝐹 = 𝑐𝑥̇ + 𝑘𝑥 + 𝛼𝑧 + 𝑓0 (2.18) 

𝑧 = tanh(𝛽𝑥̇ + 𝛿𝑠𝑖𝑔𝑛(𝑥)) (2.19) 

 

The damping force is described in Equation 2.18, where c and k are damping and 

stiffness, respectively. α is the scale factor, z is the hysteretic variable, and f0 is the residual 

force. The constants β and δ in Equation 2.19 are parameters to be adjusted according to the 

electric current, as shown in Equation 2.20. 

 

𝑐 = 𝑐𝑎 ∙ 𝑖 + 𝑐𝑏 

𝑘 = 𝑘𝑎 ∙ 𝑖 + 𝑘𝑏 

𝛼 = 𝛼𝑎 ∙ 𝑖2 + 𝛼𝑏 ∙ 𝑖 + 𝛼𝑐 

𝑓0 = 𝑓0𝑎 ∙ 𝑖 + 𝑓0𝑏 

𝛽 = 𝛽 

𝛿 = 𝛿𝑎 ∙ 𝑖 + 𝛿𝑏 

(2.20) 

 

 

 

 

 

 

  



 

 

 

 

CHAPTER III 

 

 
FUZZY SETS 

 

 
“There is nothing worse than a sharp image of a fuzzy concept.” 

– Ansel Adams 

 

 

3.1 Introduction 

As mentioned in Chapter 1, fuzzy logic emerged by the need to represent 

systematically imprecise quantities. This need derives from the fact that not all systems require 

or are capable of inputting and outputting accurate values. 

Fuzzy, as a mathematical concept, was first called that way by Zadeh (1965) in his 

work entitled ‘Fuzzy sets’. According to Pelletier (2000), the same theory was previously 

investigated since the 1920’s by authors like Lukasiewicz and Tarski under the name of ‘infinite-

value logic’. Mamdani (1974) sized up applications of fuzzy logic in the synthesis of controllers 

for dynamic plants, Takagi; Sugeno (1985) presented a mathematical tool to build fuzzy 

models, and many other authors helped to develop studies in this field. 

The great difference between fuzzy logic and traditional Boolean algebra is the act 

of attributing pertinence degrees (the ‘significance’) to membership functions (MF), instead of 

precise values to variables. Such concept can be applied widely, from the financial to the 

medical sectors, passing through refrigerator and camera technology, fuzzy logic theory led to 

many advances and it is object of study by many researchers since its conception. Fuzzy logic 

controllers, for example, decreased the development time and the deployment cost for nonlinear 

controllers for dynamic systems. The applications can be seen in turboshaft aircraft engine 

control, steam turbine startup, and steam turbine cycling optimization (BONISSONE et al, 

1995). Thus, there are several applications of fuzzy theory on renewable energy systems. 

Sughanti, Iniyan, and Samuel (2015) summarized some of these applications, like using fuzzy 
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to manage energy systems under multiple uncertainties to identify optimal strategies in that 

context.  

In mechanical engineering, fuzzy sets can be used to analyze inputs and outputs of 

mechanical systems. The deformation of a mechanical part, for example, depends on several 

factors. The engineer uses some criteria to determine which premises are significant to the 

system and then understands the process. By selecting temperature and stress as inputs to 

analyze strain, it can be observed that higher temperatures increase the deformation with 

moderate loads. 

Originally, the rules of a fuzzy inference system (FIS) were set by the domain expert 

knowledge. With the aim of controlling nonlinear systems without the dependence of expertise 

about the plant, Jang (1992) developed a self-learning mechanism able of derive the 

membership functions of the rules used by fuzzy systems based on adaptative networks. Such 

a method expanded the range of applications of fuzzy controllers and their implementation 

feasibility. 

3.2 Fundamentals 

The definitions made by Zadeh (1965) were explained by Jafelice (2003). Both 

works serve as basis for the following definitions and their reading is suggested for a deeper 

understanding of fuzzy theory. 

A fuzzy set A in a universe X is characterized by a membership function fA(x) which 

is related to a significance parameter: the ‘grade of membership’, as called by Zadeh (1965). 

Such a parameter is a real number in the interval [0, 1]. When zero is attributed means x has no 

pertinence in A, and the closer the value is to the unity the higher the pertinence of x in A. Two 

fuzzy sets A and B are equal if and only if fA(x) = fB(x) for all x in X. 

Let A and B be fuzzy sets in the universe X. The sets 

 

𝐴 ∪ 𝐵 = {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵} (3.1) 

𝐴 ∩ 𝐵 = {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵} (3.2) 

𝐴′ = {𝑥 ∈ 𝑋 |𝑥 ∉ 𝐵} (3.3) 

 

have the following characteristic functions 

 

𝑓𝐴∪𝐵(𝑥) = max{ 𝑓𝐴(𝑥),  𝑓𝐵(𝑥) } , ∀𝑥 ∈ 𝑋 (3.4) 
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𝑓𝐴∩𝐵(𝑥) = min{ 𝑓𝐴(𝑥),  𝑓𝐵(𝑥) }, ∀𝑥 ∈ 𝑋 (3.5) 

𝑓𝐴′(𝑥) = 1 − 𝑓𝐴(𝑥), ∀𝑥 ∈ 𝑋 (3.6) 

 

where Equation 3.4 represents the grade of membership of the union set, Equation 3.5 

represents the grade of membership of the intersection set, and Equation 3.6 represents the grade 

of membership of the complement set for fuzzy operations. Both union and intersection have 

the associative property, that is, 𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵) ∪ 𝐶 and 𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶. 

Algebraic operations like sum and product are also possible on fuzzy sets. 

According to Zadeh (1965), the algebraic sum of A and B is denoted by A + B and 

is defined in terms of the membership function by 𝑓𝐴+𝐵 = 𝑓𝐴 + 𝑓𝐵. Similarly, the algebraic 

product of A and B is denoted by AB and is defined in terms of the membership function by 

𝑓𝐴𝐵 = 𝑓𝐴𝑓𝐵. 

Cartesian product of fuzzy sets is important for fuzzy rule-based systems. The 

general definition of a cartesian product 𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) of the fuzzy sets 𝐴1, 𝐴2, … , 𝐴𝑛 in the 

domain 𝑋1, 𝑋2, … , 𝑋𝑛 is the fuzzy relation 

 

𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐴1(𝑥1) ∧ 𝐴2(𝑥2) ∧ … ∧ 𝐴𝑛(𝑥𝑛) (3.7) 

 

where ∧ is the t-norm operator Jafelice (2003). T-norm is also known as s-conorm and can be 

defined as 

 

𝑇[𝑓𝐴(𝑥), 𝑓𝐵(𝑥)] = 𝑓𝐴∩𝐵(𝑥), ∀𝑥 ∈ 𝑋 (3.8) 

 

Inputs and outputs of fuzzy systems are related to each other by fuzzy rules. These 

rules are ‘if-then’ premises that make possible to infer the output depending on input values. 

The relations make use of linguistic variables. For example, ‘IF displacement IS large THEN 

action’ governs a generic control output, with variables ‘displacement’, ‘action’ and ‘large’. 

The full set of linguistic variables in such example could be, for displacement, 𝐷 =

 {𝑠𝑚𝑎𝑙𝑙, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑎𝑟𝑔𝑒} and, for output, 𝑂 =  {𝑎𝑐𝑡𝑖𝑜𝑛, 𝑛𝑜 𝑎𝑐𝑡𝑖𝑜𝑛}. The relations 

(operations) between linguistic variables are carried out under the definition of cartesian 

products presented in Equation 3.7. A practical example presented in the next topic will make 

it clearer. 
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3.3 Fuzzy Rule-Based Systems (FRBS) 

Jafelice (2003) described FRBSs in four components: an input processor 

(fuzzification), a set of fuzzy rules, an inference machine and an output processor 

(defuzzification). Fuzzy Rule-Based Systems are also known as Fuzzy Inference Systems (FIS). 

The architecture of this type of system is shown in Figure 3.1. 

 

Figure 3.1 – Fuzzy Rule-Based System Architecture

 

Adapted from: Jafelice (2003) 

 

The input processor, represented by the ‘fuzzification’ box, converts real numbers 

in fuzzy sets, that is, acts as a fuzzification interface transforming crisp quantities in fuzzy 

quantities. These quantities will be subjected to operations in the inference machine together 

with fuzzy rules. A specialist is required in this step to model the number membership functions 

and the grade of membership of each input parameter to the respective domain. Membership 

functions can be modeled in numerous shapes. The most common are triangular, gaussian and 

trapezoidal shapes. 

The box named ‘rule set’ contains the basis of fuzzy ‘if-then’ rules to be used in the 

inference machine. All relations between linguistic variables are described in this step, and can 

be modeled according to the specialist’s knowledge. This component, together with the 

inference machine, can be considered the kernel of fuzzy rule-based systems. 

Outputs from the fuzzification interface are inputs for the inference machine 

together with the fuzzy rules. It acts as a decision-making unit, performing operations on rules 

and each proposition using approximation techniques. The two most used methods available to 

this end are Mamdani Method and Takagi-Sugeno Method. Some details of each method are 

presented in the following subtopics. 
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3.3.1 Mamdani Method 

 

This method relates each ‘if-then’ rule via an ‘or’ operator or an ‘and’ operator. 

Equations 3.1 and 3.4 showed that ‘or’ is a maximum operator and Equations 3.2 and 3.5 

showed that ‘and’ is a minimum operator for operations with fuzzy sets. It can be understood 

by the following example. Set two fuzzy rules: Rule 1: IF (x is A1 and y is B1) THEN (z is C1). 

Rule 2: IF (x is A2 and y is B2) THEN (z is C2). The inference machine output computes the 

cartesian product of the antecedent sets (if) and the consequent sets (then). The antecedent 

proposition of Rules 1 and 2 use the operator ‘and’. Then, the minimum between the grade of 

membership of x in 𝐴1 ∈ 𝑋 and y in 𝐵1 ∈ 𝑌 will be evaluated based on Rule 1, and the grade of 

membership of x in 𝐴2 ∈ 𝑋 and y in 𝐵2 ∈ 𝑌 will be evaluated based on Rule 2. The union of 

these fuzzy sets generates the output 𝐶 = 𝐶1
′ ∪ 𝐶2

′  to be deffuzificated by the output processor, 

as Figure 3.2 illustrates. 

 

Figure 3.2 – Mamdani Method 

 

Adapted from: Jafelice (2003) 

 

3.3.2 Takagi-Sugeno Method 

 

This method’s consequent (then) is a function of input variables. That is, a linear 

combination of inputs is used to represent input relations for each rule on the form 𝑧𝑖 = 𝑝𝑖𝑥 +

𝑞𝑖𝑦 + 𝑟𝑖. Considering  two fuzzy rules: Rule 1: IF (x is A1 and y is B1) THEN [z1 = f1 (x, y)]. 
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Rule 2: IF (x is A2 and y is B2) THEN [z2 = f2 (x, y)]. Figure 3.3 illustrates how the inference 

machine generates the output z using this method.  

 

Figure 3.3 – Takagi-Sugeno Method 

 

Adapted from: Jafelice (2003) 

 

Similar to Mamdani, the minimum between the grade of membership of x in 𝐴1 ∈

𝑋 and y in 𝐵1 ∈ 𝑌 will be evaluated based on Rule 1, and the grade of membership of x in 𝐴2 ∈

𝑋 and y in 𝐵2 ∈ 𝑌 will be evaluated based on Rule 2. But, instead of a union set, the cartesian 

products are considered as weights (𝑤1 and 𝑤2) for the weighted mean (deffuzification) 

calculated together with the linear combinations of inputs (𝑧1 and 𝑧2). Such combinations 

depend on the system’s characteristics. For example, Rule 1: “IF displacement is low and 

damping is low THEN force is 𝐹 = 𝑚𝑥̈ + 𝑘𝑥; Rule 2: “IF displacement is low and damping is 

high THEN force is 𝐹 = 𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥. Note that, in this playful case, 𝑥̈, 𝑥̇ and 𝑥 are input 

values (real numbers) and not variables. 

 

3.3.3 Defuzzification 

 

Similar to fuzzification, the defuzzification interface does the opposite, converting 

fuzzy quantities into crisp values in the domain of real numbers. As shown in Figure 3.3, the 

weighted mean is the deffuzification method used in systems based on Takagi-Sugeno Method. 

The output z is obtained generically by solving Equation 3.9. 
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𝑧 =
∑ 𝑤𝑖𝑧𝑖

𝑘
𝑖=1

∑ 𝑧𝑖
𝑘
𝑖=1

 (3.9) 

 

where i is the i-th rule and k is the number of fuzzy rules. 

Another deffuzification method, the most common, according to Jafelice (2003), is 

the centroid method, expressed in Equations 3.10 and 3.11 for discrete and continuous domain, 

respectively. 𝑧𝑖 is the i-th output from the inference machine and k is the number of fuzzy rules. 

 

z̅ =
∑ 𝑓𝑖(𝑧𝑖) ∙ 𝑧𝑖

𝑘
𝑖=1

∑ 𝑧𝑖
𝑘
𝑖=1

 (3.10) 

z̅ =
∫ 𝑓𝑖(𝑧) ∙ 𝑧 ∙ 𝑑𝑧

 

𝑅

∫ 𝑧 ∙ 𝑑𝑧
 

𝑅

 (3.11) 

 

Such a method resembles the weighted mean. The difference is that the weights are 

𝑓𝑖(𝑧𝑖) values that represent the grade of membership of 𝑧𝑖 to 𝑓𝑖. It can be seen in Figure 3.4, 

where R is the yellow area and stands for the integration region. The green curve represents 

fuzzy set A and curve red represents fuzzy set B. Depending on the operation between A and B 

(and or or), a different R will be obtained. Centroid values of 𝐴 ∩ 𝐵 and 𝐴 ∪ 𝐵 are not 

necessarily equal. 

 

Figure 3.4 – Representation of union and intersection of fuzzy sets 

Source: Elaborated by the author 

 

3.4 Adaptive Neuro-Fuzzy Inference Systems (ANFIS) 

 

The dependence on an expert to model the membership functions and their 

characteristics motivated researchers to seek alternatives for such modeling. Jang (1992) 

combined Adaptive Neural Networks (ANN) with FRBS structure giving rise to Adaptive 

Neuro-Fuzzy Inference Systems (ANFIS). Neural networks are a type of mathematical model 

that has some internal coefficients (weights and bias). During training, input and output values 

𝐵 
𝐴 𝑓1 

𝑧 𝑧 

𝐴 ∩ 𝐵 𝑓 

𝑧 

𝐴 ∪ 𝐵 𝑓 

𝑧 z̅ 

𝑓2 

z̅ 𝑧2 𝑧1 

𝑓
1
(𝑧1) 

𝑓
2

(𝑧2) 
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are assigned to the network inputs and outputs, aiming to minimize the network's output error 

compared to the desired output data. 

Nedjah; Mourelle (2005) does a deep dive on the theory behind ANFIS modeling. 

For this work purposes, the focus is on adaptive neuro-fuzzy systems that use Takagi-Sugeno 

Method. These systems normally use backpropagation to learn the membership functions and 

least mean square estimations to determine the coefficients of the linear combinations in the 

rules’s conclusions. However, some works use different optimization techniques, as Chen; Lin; 

Lin (2009), Pereira (2017) and Sant’ana (2019) used Differential Evolution to tune their neuro-

fuzzy systems. 

 

Figure 3.5 – Takagi-Sugeno ANFIS architecture 

 

Source: Nedjah; Mourelle (2005) 

 

Figure 3.5 shows the structure of a Takagi-Sugeno ANFIS. Each node of Layer 1 

(input layer) receives an input (𝑥1 and 𝑥2) and passes it directly to the next layer. No 

mathematical operation is done in this step. 

Fuzzification is done in Layer 2 (fuzzification layer). After building the membership 

functions (MF), what is done by a clustering algorithm that decides the initial number of 



C h a p t e r  3 .  F u z z y  S e t s                                                  27 

 

membership functions and their type with respect with each input variable, the grade of 

membership is calculated. Each node of this layer represents a linguistic variable, as high or 

low for example. 

Each node of Layer 3 (rule antecedent layer) corresponds to the antecedent part of 

a rule, i.e., a fuzzy quantity to be computed, commonly by a triangular norm (t-norm), with the 

consequent part. The output of the nodes in layer 3 is, as called by Nedjah; Mourelle (2005), 

the ‘firing strength’ of the corresponding fuzzy rule. 

In Layer 4 (rule strength normalization), a ratio between the i-th rule’s firing 

strength and the sum of all rules’ firing strength is calculated in each node, as show Equation 

3.12. This gives normalized weights for each node output. 

 

𝑤̅𝑖 =
𝑤𝑖

𝑤1 + 𝑤2
, 𝑖 = 1, 2 … (3.12) 

 

Each node on Layer 5 (rule consequent layer) has a node function in the form 

described in Equation 3.13, where 𝑤̅𝑖 is the output from layer 4 and the parameters 𝑝𝑖, 𝑞𝑖 and 𝑟𝑖 

are coefficients of inputs, as exposed in the previous topic. These coefficients are usually 

determined by using least mean squares algorithm. 

 

𝑤̅𝑖𝑓𝑖 = 𝑤̅(𝑝𝑖𝑥1 + 𝑞𝑖𝑥2 + 𝑟𝑖) (3.13) 

 

Layer 6 (rule inference layer) sums all signals from layer 4 as an overall output 

described in Equation 3.14. 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 = ∑ 𝑤̅𝑖 𝑓𝑖 =
∑ 𝑤𝑖𝑓𝑖

∑ w𝑖   

 (3.14) 

 

To obtain the ANFIS weights, the system must be trained using some optimization 

method to tune the model’s internal coefficient minimizing the error between the model output 

and the desired output. The next three subtopics are dedicated to give an overview of three 

optimization methods relevant to this work: backpropagation, least squares and differential 

evolution. 
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3.4.1 Backpropagation 

 

Nielsen (2015) explain in details how the backpropagation algorithm works. The 

following concepts are based on his book entitled “Neural networks and deep learning”. 

Backpropagation’s main goal is to compute a gradient of a cost function C with respect to 

weights w and bias b of a neural network (∂C/∂w and ∂C/∂b) to have a measure of how changes 

in weights and biases affect C. To this end, an error function δlj is introduced in the j-th neuron 

in the l-th layer as an intermediate quantity. Then, backpropagation provides a procedure to 

compute such error and relate it to the gradient. 

In synthesis, the algorithm starts by receiving an input activation for the input layer. 

Then, a feedforward step is done by computing activations as functions of weights and bias. A 

vector of error is provided and propagated on each layer backwards (the reason why the 

algorithm is called backpropagation). Finally, the gradient of cost function is obtained. 

 

3.4.2 Least Squares 

 

One of the most used approximation techniques in numerical analysis and practical 

problems is the Least Squares Method. This is due both to its simplicity and to the fact that, in 

general, authors seek approximations for experimentally obtained data with a certain degree of 

uncertainty. The approximation strategy is to minimize the residual distance ri between each 

point in the database yi and its respective point in a curve, Equation 3.15, obtained by the method 

as a function f of data xi and parameters α as shows Equation 3.16. The subscript i stands for 

the i-th value from database and n is the number of individuals to be fit (RUGGIERO; LOPES, 

1997). 

 

𝑓(𝑥, 𝛼𝑖) = 𝛼1 + 𝛼2𝑥 + 𝛼3𝑥2 + ⋯ + 𝛼𝑛+1𝑥𝑛
 
 (3.15) 

𝑟𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖 , 𝛼)  (3.16) 

 

The least squares method finds an optimal value of the parameter vector by 

minimizing the sum of squared residuals S as expressed in Equation 3.17. 

 

𝑆 = ∑ 𝑟𝑖
2

𝑛

𝑖=1  

= ∑[𝑦𝑖 − 𝑓(𝑥𝑖, 𝛼)]2

𝑛

𝑖=1

 (3.17) 
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3.4.3 Differential Evolution 

 

Differential Evolution (DE) is an evolutionary algorithm that has the advantage of 

achieving global minimums of non-linear or non-differentiable continuous space functions 

faster and more accurate when compared to other heuristic methods. This algorithm requires 

few variables what makes it easy to deal and implement (STORN; PRICE, 1996). Figure 3.6 

shows a representation of DE. According to Pereira (2017), it is divided in four steps: 

initialization, mutation, crossover, and selection.  

 

Figure 3.6 – Differential evolution schematic 

 

Adapted from: Mór et al (2015) apud Pereira (2017) 

 

At the initialization, the parameter values used throughout the iterations and the 

stop criteria for each variable are defined, i.e., each Xi,0 that contains a possible solution for the 

fitness function is initialized and their fitness to the objective function (fobj) is calculated. Then, 

the mutation changes the values of Xi,k as expressed in Equation 3.18, where Vi,k is the vector 

obtained at iteration k from Xi,k, Xj,k, and Xl,k are random vectors from population set at iteration 

k, and F is the perturbation factor for the vector Xi,k. 

 

𝑉𝑖,𝑘 = 𝑋𝑖,𝑘 + 𝐹(𝑋𝑗,𝑘 − 𝑋𝑙,𝑘)
 
 (3.18) 

𝐶𝑒,𝑖,𝑘 = {
𝑉𝑒,𝑖,𝑘, 𝐼𝐹 𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅 𝑂𝑅 𝑒 = 𝑟𝑎𝑛𝑑𝑛𝑢𝑚(1, 𝑛𝑒)

𝑋𝑒,𝑖,𝑘, 𝐼𝐹 𝑟𝑎𝑛𝑑(0,1) > 𝐶𝑅 𝐴𝑁𝐷 𝑒 ≠ 𝑟𝑎𝑛𝑑𝑛𝑢𝑚(1, 𝑛𝑒)
 

 (3.19) 

 

A recombination is done at the crossover stage. It aims to mix data present in vectors 

Vi,k and Xi,k to guarantee diversity in the population. For each element e from vector Vi,k, a value 

between zero and one is generated by rand(0,1) and compared to a crossing rate CR. Equation 

3.19 specifies the decision making for this recombination process, where Ci,k is the candidate 

solution on for the next iteration and ne is the number of vector elements. 
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Selection is the last DE operator. It analyses the Ci,k generated at the recombination. 

Equation 3.20 shows the selection criteria to be done for all vectors in solution set. After 

selection, the next iteration starts, and the steps are repeated until the stop criteria is achieved. 

 

𝑋𝑖,𝑘+1 = {
𝑋𝑖,𝑘, 𝑖𝑓 𝑓𝑜𝑏𝑗(𝑋𝑖,𝑘) ≤ 𝑓𝑜𝑏𝑗(𝐶𝑖,𝑘)

𝐶𝑖,𝑘, 𝑖𝑓 𝑓𝑜𝑏𝑗(𝑋𝑖,𝑘) > 𝑓𝑜𝑏𝑗(𝐶𝑖,𝑘)
 

 (3.20) 

 

That said, differential evolution was used on the parameter fitting process for the 

parametric models. Backpropagation and least squares were used for the ANFIS with Takagi-

Sugeno inference method. The details are presented in the next chapter. 

 



 

 

 

 

CHAPTER IV 

 

 
COMPARISON OF MR DAMPER MODELS 

 

 
“It doesn’t matter how beautiful your theory is, it doesn’t matter how 

smart you are. If it doesn’t agree with experiment, it’s wrong.” 

– Richard P. Feynman 

 

 

4.1 Introduction   

 

There is a trend in literature for authors to seek mathematical expressions capable 

of modeling magnetorheological dampers more efficiently. Teixeira (2017), in his master's 

dissertation, brought a comparison between the parametric models mentioned in Chapter 2 of 

this work and a non-parametric model, using fuzzy logic. To this end, an experiment was carried 

out to characterize an MR actuator of the LORD brand and model RD-8040-1 at the LMEst of 

Federal University of Uberlandia (UFU). All the experimental values considered in the present 

work are results of such experiment. 

 

4.2 Experimental Overview  

 

Teixeira (2017), used a servo-hydraulic MTS Landmark® machine, model 370.10, 

to characterize the MR damper. The idea of this type of test was to subject the damper to a 

sinusoidal displacement previously configured. In other words, the damper stroke was moved 

at a defined frequency and displacement. Then, the force expended for such movement was 

observed. The force data is the force applied by the machine on the MR damper, whose values 

correspond to the damping force. The obtained results are presented in Figure 4.1, and the 

assembly of the test is shown in Figure 2. 
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Figure 4.1 – MR damper characterization 

 

(a) 

 

(b) 

 

(c) 

Source: Elaborated by the author  
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The electric current is also an input parameter for this type of test and is a linear 

function of electric voltage. As can be seen in Figure 4.1, the damping force increases according 

to the electric current as resistance to motion generated by the MR damper. When subjected to 

a magnetic field it increases. However, a saturation region is observed. From a certain point 

onwards, the increase in the intensity of the electric current does not imply a proportional 

increase in the damping force. That happens because the MR fluid’s magnetic particles are fully 

aligned to the magnetic field and can’t align themselves more than they already are.  

 

Figure 4.2 – Experimental gear 

 

Source: Teixeira (2017) 

 

The results presented in Figure 4.1 were obtained for a frequency of 10 Hz, 

amplitude displacement of 3 mm, and electric current ranging from 0 A to 1.0 A, increasing in 

steps of 0.2 A. Figure 4.1a represents the dynamic response of the damping force over time. 

Figure 4.1b shows the hysteresis curve, in which a greater energy dissipation is observed to 

perform the same displacement in the actuator, as the electric current increases. Similarly, 

Figure 4.1c illustrates the relation between force and displacement obtained, in which the 

machine increases the intensity of the force necessary to promote the same displacement, also 

according to the electric current. 
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4.3 Parametric Models   

 

In this section, a study of Modified Bouc-Wen and Hysteretic model is performed. 

The uptading of parameters associated with each model was performed using optimization with 

Differential Evolution algorithm proposed by Storn and Price (1997). The objective function 

aims to minimize the deviation (error) between force values obtained numerically and 

experimentally. That is, the minimum of the quotient between the norm of the difference of the 

numerical and experimental values of force and the norm of the experimental values of force, 

as given by Equation 3.1. 

 

𝑓obj = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [
‖Fnumerical − Fexperimental‖

‖Fexperimental‖
] (4.1) 

 

Four scenarios of simulation, shown in Table 4.1, were performed to analyze the 

parametric models. In scenario A, the parameters were updated for each value of electric current 

and solved for the same value of electric current that the parameter fitting was done. This is 

expected to be the closest the model can get to experimental values. In scenario B, all the 

optimized models in scenario A are solved for the same electric current value (0.6 A) and 

overlapped. In an ideal situation, the results calculated for each model should be the same. Note 

that each parameter fitting represents one model with different parameters and that was done 

for both Modified Bouc-Wen and Hysteretic models, as explained before. In scenario C, the 

parameters obtained for 0.6 A in scenario A are solved for each electric current analyzed. Then, 

in scenario D, the same is done for the parameters obtained for 1.0 A in scenario A. The purpose 

of this is to observe the impact of the selected value of electric current for the optimization in 

the accuracy of the model.  

 

Table 4.1 – Scenarios of Simulation 

Scenario Description 

A six different models solved for six different values of electric current 

B six different models solved for the same value of electric current 

C model adjusted for 0.6 A solved for six different values of electric current 

D model adjusted for 1.0 A solved for six different values of electric current 

Source: Elaborated by the author 
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4.3.1 Modified Bouc-Wen Model 

 

The obtained parameters for the Modified Bouc-Wen model are presented in Table 

4.2. In the optimization, it was considered a maximum of 200 generations for the 18 variables, 

a population size of 360 individuals, and 0.8 for mutation, and crossover probability. The range 

of search used to update each parameter is shown in Table 4.3 with their respectives lower and 

upper bounds. 

 

Table 4.2  –  Parameters for modified Bouc-Wen model 

 0 A 0.2 A 0.4 A 0.6 A 0.8 A 1.0 A 

c0a 3178.27 2001.24 2091.29 2842.23 3881.18 3075.68 

c0b 4500.01 4500.00 4513.19 5336.02 5122.17 4514.26 

k0a 7000.00 6115.13 7000.00 6609.54 7000.00 6711.34 

k0b 9273.62 14028.67 12994.59 30000.00 29969.10 29937.62 

αa 788.21 894.49 855.22 715.38 581.13 520.93 

αb 300.29 518.10 478.26 337.99 315.20 300.00 

f0a 552.71 293.02 556.88 600.00 491.78 200.00 

f0b 152.13 247.29 250.00 80.00 217.39 131.89 

na 1.71 2.10 3.48 3.50 3.49 3.50 

nb 1.00 3.53 4.00 4.00 3.99 4.00 

γa 134000.70 135831.05 90776.97 80000.00 80105.91 82167.09 

γb 350000.00 333239.49 100000.00 101171.07 100519.84 100000.00 

λa 8000.00 8000.00 8031.41 8021.91 8008.42 8025.55 

λb 10015.24 10607.79 10000.00 10002.25 10001.61 10005.90 

βa -600000.00 -497206.08 -596085.91 -567784.27 -600000.00 -600000.00 

βb 3000000.00 1000000.00 1004078.35 1000000.00 1000000.00 1000000.00 

c1 600000.00 600000.00 636136.36 766198.09 741164.57 800000.00 

k1 10000.00 14068.80 40073.32 48977.11 50000.00 49758.10 

Source: Elaborated by the author 
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Table 4.3 – Search Space for the optimized parameters in Modified Bouc-Wen Model 

Parameter c0a k0a αa f0a na γa λa βa c1 

lower 2000 4000 500 200 1.0 80000 8000 -600000 600000 

upper 4000 7000 2000 600 3.5 200000 20000 -400000 800000 

Parameter c0b k0b αb f0b nb γb λb βb k1 

lower 4500 9000 300 80 1.0 100000 10000 1000000 10000 

upper 7000 30000 600 250 4.0 350000 35000 3000000 50000 

Source: Elaborated by the author 

 

Table 4.4 shows the calculated errors for all simulation scenarios. These values 

were obtained using Equation 4.2, which is the same argument used in Equation 4.1. It is 

observed that for zero electric current, error values are higher. It is a consequence of the 

architecture used to fit the parameters which consisted in functions of electric current, as 

presented in Equation 2.13. For i = 0, some parameters are negleted and the model becomes 

less representative. 

 

error =
‖Fnumerical − Fexperimental‖

‖Fexperimental‖
 (4.2) 

 

Considering the range of electric current analyzed, the smallest errors in scenarios 

A and B are closest to the middle, i.e., far from the saturation region and the region of zero 

electric current. It happens due to the model’s weakness in representing the nonlinearities 

intrinsic on MR fluids and its lost in mathematical representation for small values of electric 

current. 

 

Table 4.4 – Errors compared to experiment for Modified Bouc-Wen Model 

 0 A 0.2 A 0.4 A 0.6 A 0.8 A 1.0 A 

errorA 56.09 % 10.34 % 8.23 % 8.71 % 9.59 % 11.22 % 

errorB 46.60 % 13.09 % 9.96 % 8.71 % 9.29 % 16.44 % 

errorC 138.24 % 21.02 % 10.18 % 8.71 % 10.42 % 20.26 % 

errorD 107.49 % 18.79 % 17.92 % 16.44 % 15.01 % 11.22 % 

Source: Elaborated by the author 
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Figure 4.4 shows the obtained results for the simulations of scenarios A and B. The 

indexes a and b are related to time versus damping force, c and d to velocity versus damping 

force and e and f to displacement versus damping force. In scenario B the data is not perfectly 

overlapped. This is another indicative that the selected value of electric current for the 

parameter fitting impacts the model’s ability to represent the experiment. 

Figure 4.5 shows the obtained results for the simulations of scenarios C and D. The 

indexes are analog to Figure 4.4. The impact observed in scenario B is quantified in scenarios 

C (parameters updating to 0.6 A) and D (parameters updating to 1.0 A). The closer to the 

selected electric current for optimization, the smallest are the errors. That can be observed in 

Figure 4.3, where errors from scenarios C and D are shown. 

In scenario C, the model predicts reasonably well the damping force behavior for 

0.4 A and 0,8 A with deviations of 10.18 % and 10.42 %, respectively, which are similar values 

to 8.71 % that corresponds to 0.6 A. However, the deviations aproximately double on the next 

step of electric current, with 21.02 % for 0.2 A and 20.26 % for 1.0 A. The same is observed in 

scenario D which error values are smaller next to 1.0 A and increase as values are calculated 

further away from it. Furthermore, the standard deviation of errors in scenario C and D are 51.0 

% and 37.5 %, respectively. That indicates that fitting the parameters close to saturation region 

gives more precision for Modified Bouc-Wen model. Mean values of errors are similar: 34.8 % 

and 31.1 % for C and D, respectively. 

 

Figure 4.3 – Comparison of errors between scenarios C and D (Modified Bouc-Wen) 

 

Source: Elaborated by the author 
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Figure 4.4 – Modified Bouc-Wen: Simulation Scenarios A and B 

 

(a)                (b) 

 

(c)                (d) 

  

(e)                (f) 

Source: Elaborated by the author 
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Figure 4.5 – Modified Bouc-Wen: Simulation Scenarios C and D 

  

(a)                (b) 

 

(c)                (d) 

 

(e)                (f) 

Source: Elaborated by the author 
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4.3.2 Hysteretic Model 

 

Table 4.5 – Search Space for the optimized parameters in Hysteretic Model 

Parameter ca ka αa αc δa f0a 

lower 0 -1000000 -3000 -100 0 -50 

upper 6000 10 3000 100 1 50 

Parameter cb kb αb β δb f0b 

lower -4000 0 -10000.0 -100.0 0 -100 

upper 4000 1000 100000.0 100.0 1 100 

Source: Elaborated by the author 

 

The parameter updating results for the Hysteretic model are exposed in Table 4.6. 

In the optimization, it was considered a maximum of 40 generations for the 12 variables, a 

population size of 800 individuals, 0.5 for mutation, and 0.8 for crossover probability. 

 

Table 4.6  –  Parameters for hysteretic model 

 0 A 0.2 A 0.4 A 0.6 A 0.8 A 1.0 A 

ca 3078.41 1625.78 2035.00 1711.07 672.03 363.69 

cb 1592.15 1492.85 1010.80 1184.96 1971.24 485.64 

ka -288040.52 27.62 -40561.77 -63913.90 -77296.85 -98311.31 

kb 998.22 407.80 105.62 232.57 351.89 263.79 

αa 820.98 -595.39 -717.86 764.71 -1290.97 -1380.42 

αb 73160.81 2729.33 1931.06 745.17 2308.57 2500.17 

αc 100.00 -87.63 12.51 97.60 -56.29 43.34 

β 44.38 47.39 36.32 31.38 29.93 26.88 

δa 0.59 0.52 0.52 0.55 0.56 0.39 

δb 0.84 0.93 0.71 0.55 0.50 0.49 

f0a 3.25 22.15 0.31 -4.17 13.27 0.05 

f0b -8.24 44.73 -18.64 35.41 -13.35 -13.84 

Source: Elaborated by the author 
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The obtained errors for all simulation scenarios are in Table 4.7. It is observed that, 

for zero electric current, hysteretic model is more representative than modified Bouc-Wen. 

However, the parameter fitting is also performed in function of electric current, as displayed in 

Equation 2.20, and error values can be more expressive for small values of electric current. 

The errors obtained in scenario A are smaller for Hysteretic model than for modified 

Bouc-Wen. The model represents better the damper dynamics in all the steps of electric current 

analyzed. It’s important to note that such a model has fewer parameters to be updated, which 

makes it easier to deal numerically, and its equation of motion is simpler compared to other 

models. 

The hysteretic model has some significant disadvantages compared to the previous 

studied model. Figure 4.7 shows the results obtained for the simulations of scenarios A and B. 

In scenario B, there is 4722.83 % of error for 0 A. Such a value is so high that makes impossible 

to visualize the other steps of electric current in Figure 4.7b other than for 0 A. That happens 

due to high values of stiffness obtained at optimization. Reviewing the stiffness parametrization 

in Equation 2.20, 𝑘 = 𝑘𝑎 ∙ 𝑖 + 𝑘𝑏. For i = 0, 𝑘𝑎 = −288040.52 N/m has no influence on 

stiffness. It causes the high value of 𝑘𝑏 to increase the stiffness and consequently high values 

of damping force are calculated. The error value for 0.2 A is also higher compared to values 

from 0.4 A onwards. Figure 4.8 shows the scenario C without the curves for 0 A. It shows that 

the model can predict well the damping force behavior when is not adjusted for small values of 

electric current. 

 

Table 4.7 – Errors compared to experiment for Hysteretic Model 

 0 A 0.2 A 0.4 A 0.6 A 0.8 A 1.0 A 

errorA 6.82 % 10.01 % 3.50 % 6.05 % 3.09 % 3.51 % 

errorB 4722.83 % 65.43 % 13.04 % 6.05 % 5.63 % 8.84 % 

errorC 24.89 % 35.98 % 21.61 % 6.05 % 21.58 % 54.93 % 

errorD 65.36 % 15.08 % 5.24 % 8.84 % 4.85 % 3.51 % 

Source: Elaborated by the author 

 

Hysteretic model’s ability to predict better than modified Bouc-Wen the dynamics 

at 0 A makes the standard deviations at scenarios C and D to be smaller, with values of 16.5 % 

and 24.0 % of error, respectively. But, depending on the selected electric current for parameter 
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fitting, the mean error can be significantly different. Scenario C has 27.5 % of mean error while 

scenario D has 17.1 %. This means that even if hysteretic model is more precise independent 

of the parameter fitting criteria, the model’s accuracy is impacted by that. Figure 4.9 shows 

graphical representations of simulation scenarios C and D, and it can be seen that the gap 

between the curves is larger for scenario C. Figure 4.6 shows Hysteretic model errors from 

scenarios C and D. 

The smallest error obtained in scenario C was 6.05 % at 0.6 A (selected value for 

optimization) and the smallest for scenario D was 3.51 % at 1.0 A (selected value for 

optimization). The error increases as the electric current value distances itself from the selected 

one for the parameter fitting process, but not proportionally as modified Bouc-Wen model did. 

That occurs due to the hysteretic variable z, that multiplies the scale factor α in Equation 2.17, 

be modeled as a hyperbolic tangent which is an exponential function of parameters, as exposed 

in Equation 4.3.  

 

z = tanh(𝛽𝑥̇ + 𝛿𝑠𝑖𝑔𝑛(𝑥)) =
𝑒𝛽𝑥̇+𝛿𝑠𝑖𝑔𝑛(𝑥) − 𝑒−(𝛽𝑥̇+𝛿𝑠𝑖𝑔𝑛(𝑥))

𝑒𝛽𝑥̇+𝛿𝑠𝑖𝑔𝑛(𝑥) + 𝑒−(𝛽𝑥̇+𝛿𝑠𝑖𝑔𝑛(𝑥))
 (4.3) 

 

 

Figure 4.6 – Comparison of errors between scenarios C and D (Hysteretic) 

 

Source: Elaborated by the author 
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Figure 4.7 – Hysteretic: Simulation Scenarios A and B 

  

(a)                (b) 

  

(c)                (d) 

  

(e)                (f) 

Source: Elaborated by the author 
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Figure 4.8 – Simulation Scenario B without data for i = 0 A 

 

(a) 

 

(b) 

 

(c) 

Source: Elaborated by the author 
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Figure 4.9 – Hysteretic: Simulation Scenarios C and D 

  

(a)                (b) 

  

(c)                (d) 

  

(e)                (f) 

Source: Elaborated by the author 
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4.3.3 Fuzzy Model 

 

Initially, six fuzzy models were developed aiming to perform a similar analysis to 

the one done with parametric models. For this aim, three cycles of experimental data were used 

as training data. The displacement and velocity for each electric current were set as the inputs 

for the ANFIS. The velocity data was obtained from a differentiation of displacement in time. 

Thus, the experimental values of damping force were set as the output training data. 

The neuro-fuzzy platform used was ANFIS from Mathworks©. Three membership 

functions were created for each input parameter: small, moderate and large for displacement 

and low, moderate and high for velocity. The selected shape for input membership functions 

was gaussian and the inference method used was Takagi-Sugeno. This way, the consequent 

terms were modeled as constants, i.e., 𝑧𝑖 = 𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖 with 𝑝𝑖 = 0 and 𝑞𝑖 = 0. 

The rule set was created combining all possibilities for the membership functions 

for small, moderate or large values of displacement and low, moderate or high values of 

velocities. Such a procedure resulted in 9 rules, as exposed in Table 4.8. 

 

Table 4.8 – Rule set  

Rule Description 

1 IF (displacement is small AND velocity is low) THEN (Force is z1) 

2 IF (displacement is small AND velocity is moderate) THEN (Force is z2) 

3 IF (displacement is small AND velocity is high) THEN (Force is z3) 

4 IF (displacement is moderate AND velocity is low) THEN (Force is z4) 

5 IF (displacement is moderate AND velocity is moderate) THEN (Force is z5) 

6 IF (displacement is moderate AND velocity is high) THEN (Force is z6) 

7 IF (displacement is large AND velocity is low) THEN (Force is z7) 

8 IF (displacement is large AND velocity is moderate) THEN (Force is z8) 

9 IF (displacement is large AND velocity is high) THEN (Force is z9) 

Source: Elaborated by the author 

 

ANFIS platform allows the user to select the optimization technique between 

backpropagation and hybrid. The first option uses backpropagation for all parameters and the 

second uses backpropagation for the parameters associated with input membership functions 

and least squares estimation for the parameters associated with the output membership functions 

(ROGER; GULLEY, 1997). 



C h a p t e r  4 .  C o m p a r i s o n  o f  M R  D a m p e r  M o d e l s                                       47 

 

 

According to Nedjah and Mourelle (2005), Takagi-Sugeno neuro-fuzzy systems 

learn the membership functions using backpropagation and least square estimation to determine 

the coefficients of the linear combinations in the rules’ conclusion. Based on that, the hybrid 

option was selected for the optimization technique at ANFIS platform. The obtained parameters 

after training are exposed in Tables 4.9 to 4.11, and since a gaussian shape was selected for the 

membership functions, the parameters are mean and standard deviation. Table 4.9 shows mean 

and standard deviation values for displacement, Table 4.10 shows mean and standard deviation 

values for velocity, and Table 4.11 shows the values of zi for each rule. 

In simulation scenario A, the deviation from experimental data was small for all 

electric current analyzed. But it is important to stand out that, in this case, there are six fuzzy 

models trained for six different conditions of electric current. This is the reason these models 

were tested for the same electric current of 0.6 A in scenario B. 

 

Table 4.9 – Displacement (mm) parameters after training  

 Small Moderate Large 

i 𝒙 𝝈 𝒙̅ 𝝈 𝒙̅ 𝝈 

0 A -2.0430 0.2183 0.1188 1.1280 2.4130 0.4285 

0.2 A -2.4100 0.3723 0.1509 1.2340 2.7750 0.5407 

0.4 A -2.6540 0.4646 0.05489 1.279 2.729 0.5397 

0.6 A -2.5300 0.4013 0.1157 1.215 2.712 0.5441 

0.8 A -2.516 0.398 0.07672 1.154 2.632 0.5459 

1.0 A -2.485 0.3889 0.09975 1.154 2.653 0.5379 

Source: Elaborated by the author 

 

Table 4.10 – Velocity (mm/s) parameters after training 

 Low Moderate High 

i 𝒙 𝝈 𝒙̅ 𝝈 𝒙̅ 𝝈 

0 A -94.96 40.44 -0.133 40.34 94.73 40.45 

0.2 A -95.50 40.63 -0.1608 40.46 95.24 40.62 

0.4 A -94.91 40.66 0.4397 40.49 95.79 40.69 

0.6 A -95.79 4..85 -0.137 40.63 95.58 40.91 

0.8 A -94.91 40.62 0.1033 40.35 95.15 40.72 

1.0 A -94.99 40.88 0.6327 40.6 96.32 40.98 

Source: Elaborated by the author 
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Table 4.11 – Force (kN) parameters after training 

 0 A 0.2 A 0.4 A 0.6 A 0.8 A 1.0 A 

z1 -2.478 -10.48 -21.46 -22.61 -21.02 -25.7 

z2 -0.4114 -2.334 -4.326 -3.646 -3.176 -3.475 

z3 5.856 13.22 13.98 17.12 13.12 14.27 

z4 -0.2496 -0.6297 -0.8813 -1.06 -1.221 -1.25 

z5 -0.105 -0.2414 -0.216 -0.4557 -0.5729 -0.5599 

z6 0.2769 0.6782 0.9293 1.135 1.311 1.359 

z7 -0.1904 -4.253 -3.146 -0.8345 0.07375 0.8384 

z8 0.7359 5.176 4.956 5.753 4.9 5.29 

z9 5.371 22.56 21.88 25.23 18.83 26.23 

Source: Elaborated by the author 

 

Table 4.12 shows the calculated errors for both scenarios. As expected, at 0.6 A, 

the error is the same. However, for the other steps of electric current, it drastically increases in 

scenario B. Fuzzy models were not able to predict the dynamics of other values of electric 

current without a previous training. It can be graphically observed in Figure 4.10. Scenario A 

seems to display acceptable results as shown in parts a, c and e. But the curves should be 

overlapped, or close to it, in scenario B and that is not what happens as can be seen in parts b, 

d and f. 

 

Table 4.12 – Errors in scenarios A and B 

Current 0 A 0.2 A 0.4 A 0.6 A 0.8 A 1.0 A 

errorA 5.12 % 4.11 % 3.25 % 3.48 % 2.78 % 3.67 % 

errorB 77.10 % 39.36 % 16.67 % 3.48 % 16.03 % 19.32 % 

Source: Elaborated by the author 

 

The curves from scenarios A and B were overlapped in Figure 4.11 to qualitatively 

analyze how different they are. It is possible to observe that they are very close to each other. 

This indicates that, for the selected setup, fuzzy models need to be trained for the conditions 

that the analysis will be performed. For this reason, simulations scenarios C and D, similar to 

the parametric models’ study, were not performed in this case since it is already observed that 

the models need more information to predict the MR damper behavior in different conditions. 

Instead, another input variable was added to the model and it seemed to be a better option, as 

will be presented next. 
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Figure 4.10 – Fuzzy: Simulation Scenarios A and B 

  

(a)                (b) 

  

(c)                (d) 

   

(e)                (f) 

Source: Elaborated by the author 
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Figure 4.11 – Fuzzy: Overlapped data from Simulation Scenarios A and B 

 

(a) 

  

(b) 

 

(c) 

 Source: Elaborated by the author 
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Now, one single fuzzy model capable of predict the MR damper’s dynamic 

behavior was developed. Similarly, three cycles of experimental data were used as training data. 

In this case, the electric current was added as an input to the model alongside with displacement 

and velocity, and damping force was the output. 

The same neuro-fuzzy platform was used. Three membership functions were 

created for each input parameter: small, moderate and large for displacement and low, moderate 

and high for velocity and electric current. The membership functions have gaussian shape and 

the inference method used is Takagi-Sugeno. The consequent terms were modeled the same 

way: 𝑧𝑖 = 𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖 with 𝑝𝑖 = 0 and 𝑞𝑖 = 0. 

The rule set was created following the same procedure as before: all possible 

combinations of small, moderate or large values of displacement and low, moderate or high 

values of velocities and electric currents for the membership functions. Adding electric current 

as an input increased the number of possible combinations and consequently the number of 

rules. Table 4.13 presents the set of 27 rules considered in the model. 

 

Table 4.13 – Rule set (continued) 

Rule Description 

1 IF (current is low AND displacement is small AND velocity is low) THEN (Force is z1) 

2 IF (current is low AND displacement is small AND velocity is moderate) THEN (Force is z2) 

3 IF (current is low AND displacement is small AND velocity is high) THEN (Force is z3) 

4 IF (current is low AND displacement is moderate AND velocity is low) THEN (Force is z4) 

5 IF (current is low AND displacement is moderate AND velocity is moderate) THEN (Force is z5) 

6 IF (current is low AND displacement is moderate AND velocity is high) THEN (Force is z6) 

7 IF (current is low AND displacement is large AND velocity is low) THEN (Force is z7) 

8 IF (current is low AND displacement is large AND velocity is moderate) THEN (Force is z8) 

9 IF (current is low AND displacement is large AND velocity is high) THEN (Force is z9) 

10 IF (current is moderate AND displacement is small AND velocity is low) THEN (Force is z10) 

11 IF (current is moderate AND displacement is small AND velocity is moderate) THEN (Force is z11) 

12 IF (current is moderate AND displacement is small AND velocity is high) THEN (Force is z12) 

13 IF (current is moderate AND displacement is moderate AND velocity is low) THEN (Force is z13) 

14 IF (current is moderate AND displacement is moderate AND velocity is moderate) THEN (Force is z14) 

15 IF (current is moderate AND displacement is moderate AND velocity is high) THEN (Force is z15) 

16 IF (current is moderate AND displacement is large AND velocity is low) THEN (Force is z16) 

17 IF (current is moderate AND displacement is large AND velocity is moderate) THEN (Force is z17) 

18 IF (current is moderate AND displacement is large AND velocity is high) THEN (Force is z18) 

19 IF (current is high AND displacement is small AND velocity is low) THEN (Force is z19) 
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Table 4.13 – Rule set (end) 

Rule Description 

20 IF (current is high AND displacement is small AND velocity is moderate) THEN (Force is z20) 

21 IF (current is high AND displacement is small AND velocity is high) THEN (Force is z21) 

22 IF (current is high AND displacement is moderate AND velocity is low) THEN (Force is z22) 

23 IF (current is high AND displacement is moderate AND velocity is moderate) THEN (Force is z23) 

24 IF (current is high AND displacement is moderate AND velocity is high) THEN (Force is z24) 

25 IF (current is high AND displacement is large AND velocity is low) THEN (Force is z25) 

26 IF (current is high AND displacement is large AND velocity is moderate) THEN (Force is z26) 

27 IF (current is high AND displacement is large AND velocity is high) THEN (Force is z27) 

Source: Elaborated by the author 

 

The neuro-fuzzy optimization technique used was also backpropagation for 

parameters corresponding with inputs and least squares for parameters corresponding with the 

output. After training, values of mean and standard deviation for electric current, displacement, 

velocity and damping force were obtained. They are displayed in Tables 4.14 to 4.17, 

respectively. 

 

Table 4.14 – Electric current (A) parameters after training  

Low Moderate High 

𝒙 𝝈 𝒙̅ 𝝈 𝒙̅ 𝝈 

-0.09468 0.1867 0.3549 0.2069 0.9048 0.3245 

Source: Elaborated by the author 

 

Table 4.15 – Displacement (mm) parameters after training  

Small Moderate Large 

𝒙 𝝈 𝒙̅ 𝝈 𝒙̅ 𝝈 

-2.088 0.3057 0.04375 1.106 2.143 0.4329 

Source: Elaborated by the author 

 

Table 4.16 – Velocity (mm/s) parameters after training  

Low Moderate High 

𝒙 𝝈 𝒙̅ 𝝈 𝒙̅ 𝝈 

-95.84 40.93 0.2862 40.85 96.44 40.94 

Source: Elaborated by the author 
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Table 4.17 – Force (kN) parameters after training  

z1 0.1840 z10 -4.8470 z19 -7.0650 

z2 0.2143 z11 -1.3080 z20 -1.3760 

z3 0.2072 z12 6.7230 z21 5.2260 

z4 -0.08422 z13 -0.7713 z22 -1.2610 

z5 -0.0461 z14 -0.2894 z23 -0.6149 

z6 0.09722 z15 0.8422 z24 1.3780 

z7 0.01684 z16 -1.9590 z25 -1.0790 

z8 -0.003367 z17 1.3540 z26 2.0500 

z9 0.4448 z18 4.4490 z27 7.7990 

Source: Elaborated by the author 

 

Table 4.18 shows the calculated errors for the proposed fuzzy model. The model 

was capable to predict well the dynamic behavior at all the analyzed steps of electric current, 

having errors smaller than 7 %. That accredit more robustness to the non-parametric modeling 

than to the parametric approach, i.e., the output damping force is more accurate in a model that 

also has precision. The error is greater at 0 A and 0.2 A with 6.40 % and 5.36 %, respectively. 

The best fit results are at 0.8 A with 3.24 % of deviation from experiment. This is smaller than 

the smallest value obtained in hysteretic model: 3.51 % for 1.0 A in scenario D. Furthermore, 

the mean error for fuzzy model is 4.6 % while the standard deviation of errors is 1.1 % what 

confirms the robustness of this fuzzy model to describe the MR damper in the studied conditions 

of displacement, frequency and electric current. 

 

Table 4.18 – Error between fuzzy model and experimental data 

Current 0 A 0.2 A 0.4 A 0.6 A 0.8 A 1.0 A 

error 6.40 % 5.36 % 4.23 % 4.13 % 3.24 % 4.10 % 

Source: Elaborated by the author 

 

Figure 4.12 represents the proposed fuzzy model graphically. Numerical data was 

overlapped with experimental values. Figure 4.12a presents the curves of damping force versus 

time, Figure 4.12b presents the curves of damping force versus velocity, and Figure 4.12c 

presents values of damping force versus displacement. The dotted curves correspond to 

experimental data and the continuous curves are from numerical fuzzy calculations. 
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Figure 4.12 – Proposed fuzzy model overlapped to experimental data 

 

   

(a)                (b) 

                      

(c)                (d) 

Source: Elaborated by the author 

 

Figure 4.13 brings a visual comparison of experimental and numerical values. 

Modified Bouc-Wen model, hysteretic model, the proposed fuzzy model, and the experimental 

data are overlapped for 0.6 A. It is possible to see the differences between each curve, especially 

at damping force versus velocity where such differences become more evident. Modeling MR 

dampers using hyperbolic tangent, the strategy of hysteretic model, seemed an accurate and 

simple way. The disadvantages rely on the parametrization in function of electric current which 

increase errors next to zero and affect the model’s performance depending on the region of 

parameter fitting. Neuro-fuzzy modeling has the accuracy and precision, needing only to be 

trained for the desired application. 
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Figure 4.13 – Comparison between the models and experimental data (i = 0.6 A; f = 10 Hz) 

 

(a) 

 

(b) 

  

(c) 

Source: Elaborated by the author 
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Errors from simulation scenarios C and D of modified Bouc-Wen and hysteretic 

models are displayed graphically alongside with errors from fuzzy model in Figure 4.14. Black 

circled points correspond to modified Bouc-Wen where points linked by a dashed line are from 

scenario C and points linked by a continuous line are from scenario D. Similarly, green points 

with triangles correspond to hysteretic model’s errors where points linked by a dashed line are 

from scenario C and points linked by a continuous line are from scenario D. The points with 

blue diamonds linked by a dashed line correspond to errors from proposed fuzzy model. 

 

Figure 4.14 – Errors for Modified Bouc-Wen, Hysteretic and Fuzzy models 

 

Source: Elaborated by the author 

 

Such a way of expressing errors gives a good measure for comparing the difference 

between models. It ratifies the observed precision of modified Bouc-Wen that predicted the MR 

damper behavior in a similar way for both optimization setups. The eficiency of hysteretic 

model to obtain accurate values at parameter fitting is also highlighted, with small errors, except 

for 0 A and 0.2 A. Finally, the fuzzy model ability to predict well the MR damper’s dynamics 

in all the analyzed points makes it a good alternative to this application. 

 

 



 

 

 

 

CHAPTER V 

 

 
CONCLUSION 

 

 
“Open mind for a different view and nothing else matters.” 

– Metallica 

 
 

A methodology for developing a fuzzy model for magnetorheological dampers was 

presented in this work. The non-parametric approach aims to simplify the modeling procedure. 

MR dampers have hydrodynamic, thermodynamic and magnetic coupled phenomena what is 

complex to model in function of parameters. A general overview of smart materials was 

presented at Chapter 1. The required concepts and definitions for the comprehension and 

development of such a model were explored with a vast literature review in the next two 

chapters. 

In Chapter 2, it was given a notion of what magnetorheological dampers and 

magnetorheological fluids are and its applications. Mathematical models with parametric 

equations available in literature were presented. The parametrization techniques were also 

detailed in that chapter. In Chapter 3, the concepts related to fuzzy sets were displayed with 

playful examples and mathematical expressions easy to understand. Initially, the classical fuzzy 

approach was defined, i.e., the definition of fuzzy sets, membership functions, grade of 

membership and operations with fuzzy sets were addressed.  Then, fuzzy rule-based systems 

definitions were explored to finally explain how artificial neural networks are applied in fuzzy 

logic with neuro-fuzzy. A brief overview of the optimization techniques used in this work were 

also addressed at the end of Chapter 3. 

Chapter 4 was designed to deal with methodology. Amid the mathematical models 

presented in Chapter 2, two of them were selected for analysis: the modified Bouc-Wen model 

and the Hysteretic model. Four scenarios of simulations were performed with different 

parameter fitting values. The optimization was done using differential evolution algorithm with 
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an objective function that minimized the normalized errors between numerical and 

experimental data. The experimental values used were obtained from a previous research 

developed at Laboratory of Mechanics and Structures (LMEst). Modified Bouc-Wen model 

was more precise and less accurate than hysteretic model. Parametric models were not capable 

to predict the damping force when optimized for zero or almost zero values of electric current, 

especially hysteretic model which had errors greater than 1000 %. 

Then, it was shown that a similar analysis could not be performed with neuro-fuzzy 

model due to its dependence of training data to different steps of electric current. Considering 

electric current, displacement and velocity as inputs, the model was able to predict well the 

damping force at all steps of electric current.  

 

5.1 Main contributions 

 

This work is a continuation of a previous research developed at LMEst that now 

can be more explored both at UFU and other universities. This dissertation serves as a good 

source of knowledge about MR dampers and fuzzy logic with the text and the relevant 

bibliographical references. 

The analysis made in chapter 4, forcing the models to fail to predict the damping 

force, can inspire researchers from other fields to apply the same approach to their work and 

take a broader view of the data they are eventually managing. Thus, this text documents how 

two of the best parametric models of MR dampers predict the damping force in different 

conditions. 

All models studied in this work can be replicated since the necessary parameter 

values are all expressed in tables. That makes possible the readers to exercise numerical skills, 

criticize this work, find leaks and help to develop science even more.  

 

5.2 Future works 

 

Studies about magnetorheological dampers, fuzzy sets and applications can be 

carried out in the future. For example, applying MR dampers to a rotating machine bench and 

characterizing it numerically and experimentally can yield interesting results to compare to the 

traditional vibration control options. 
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 Other possibility is to perform an experimental characterization of a MR damper 

sweeping different ranges of frequency and displacement. The same methodology presented in 

this work can be used and the results compared. 

The uncertainties intrinsic to the system can be treated statistically to have 

quantified comparison between models. Thus, different optimization techniques for parameter 

fitting and different inference methods for the fuzzy model can be implemented to analyze the 

impact of these variables on computational cost.   

Moreover, a non-parametric model based on deep learning can also be an alternative 

for modeling MR dampers. Such a model could have an artificial neural network with more 

layers and nodes than neuro-fuzzy. 

Developing a brand-new model of magnetorheological damper or fluid and starting 

a national mass production of this technology is the final suggestion of future work. The range 

of applications is wide and it would generate not only comfort and safety but profit and jobs. 

 

5.3 Final thoughts 

 

Magnetorheological dampers are a good alternative for semi-active vibration 

control. In that context, it is important to have reliable and robust models. This works’ main 

goal was to develop a fuzzy model able to predict the dynamic behavior of a MR damper with 

the available data. That objective was successfully achieved with satisfactory results. This 

makes possible to future researchers and engineers to improve performance of systems based 

on magnetorheological dampers and develop new product modalities to increase comfort and 

safety to the final users.  
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