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Abstract

Convolutional neural networks (CNN) are tools which have been intensively explored

lately in the image processing Ąeld, showing very positive and promising results in classi-

Ącation and segmentation tasks. This project aims to study its application in the segmen-

tation process of histological images of the bone vascular network. A PyTorch implemen-

tation of a U-Net was adapted to suit the purpose of this work. Training was performed

with a provided set of bone vascular tissues images of rats and a corresponding manually

marked set, where the canals, which are the objects of interest of the segmentation, were

very roughly identiĄed, presenting several Ćaws and wrong markings. This lack of preci-

sion in the ground truths had a huge negative impact on the model results, which ended

up only achieving a Dice Coefficient of 0.20 due to overĄtting.

Keywords: CNN, Segmentation, Histological images, Bone Vascular Network, U-Net



Resumo

Redes neurais convolucionais (CNN) são ferramentas que vêm sendo intensamente ex-

ploradas recentemente na área de processamento de imagem e demonstram resultados

muito positivos e promissores em tarefas de classiĄcação e segmentação. Este projeto

têm o objetivo de estudar a sua aplicação ao processo de segmentação de imagens his-

tológicas da rede vascular óssea. Uma implementação em PyTorch de uma U-Net foi

adaptada para cumprir o propósito deste trabalho. O treinamento foi realizado com um

conjunto fornecido de imagens da rede vascular óssea de ratos e um conjunto correspon-

dente, manualmente marcado, em que os canais, os quais são as estruturas de interesse

da segmentação, foram rusticamente identiĄcados, apresentando assim diversas falhas e

marcações erradas. Essa falta de precisão nas ground truths teve um enorme impacto neg-

ativo nos resultados do modelo, o qual foi capaz de atingir um Dice Coefficient de apenas

0.20 devido a overfitting.

Keywords: CNN, Segmentação, Imagens Histológicas, Rede Vascular Óssea, U-Net
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1 Introduction

Primary data from various Ąelds are acquired through images with multiple res-

olutions and dimensions (e.g. 2D, 3D) and there are several methods of capturing these

images. For instance, in medical imagiology, images can be obtained through x-rays, one

of the Ąrsts and mostly used image capture techniques to assist medical diagnosis, manly

when it comes to the bone structure (CHEN; SONG; CHEN XIAOYUAN ANDYANG,

2019). In biology, it is common to use histological images in the study of cells, tissues

and organs. Basically, these images are obtained through the preparation of serial cuts

which go through a colouring process that uses dye, since most tissues are colourless. All

these processes are performed in slides, that are then taken to a microscope to capture

the images. Histology is the study of tissues and how they compose organs. Tissues are

classiĄed into four groups: epithelial, conjunctive, muscular and nervous (JUNQUEIRA;

CARNEIRO, 2013). Bone tissue, which is the main component of the skeleton, is part of

the conjunctive tissue. It supports soft tissue and protects vital organs. This research will

focus on the segmentation of the bone vascular network using deep learning techniques.

Deep learning is an artiĄcial intelligence and machine learning Ąeld which is char-

acterized by computational models composed of multiple processing layers. As the layers

get deeper, the models can discoverer complex structures in big datasets using the back-

propagation algorithm to designate how a machine should modify its internal parameters,

which are used to compute the representation in each layer, based on the representation

of the previous layer. These methods have improved the state-of-the-art in speech recog-

nition, visual object recognition, object detection and many others domains. (LECUN;

BENGIO; HINTON, 2015).

The complexity of the extracted image data, as well as the data volume obtained

with the evolution of new and automatized microscopy technology, has transformed com-

puters into one of the most viable resources for information extraction. Computational

techniques have arisen with the goal of assisting humans in tasks that were previously

done manually, which makes the whole process quicker and more efficient (SCHINDELIN

et al., 2012).

Computerized methods for microscopical image analysis can signiĄcantly enhance

the efficiency and objectivity of diagnosis and have gained a lot of focus in contemporary

literature. Machine learning techniques in particular, like Convolutional Neural Networks

(CNN), have been successfully applied in biological and medical researches (XING et al.,

2018).

Seeing that convolutional neural networks have outperformed the state-of-the-
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art in many visual recognition tasks (KRIZHEVSKY; SUTSKEVER; HINTON, 2012a;

LONG; SHELHAMER; DARRELL, 2015a), new investigations about the application of

CNN in digital images processing problems are very important. In this paper this has

been done through histological images segmentation of the bone vascular network of rats

femurs.

1.1 Objectives and Challenges of this research

The authorŠs main research goal is to develop a computational methodology

to segment serial cuts from histological images of the bone vascular network using deep

learning. This main goal was divided into the following speciĄcs goals:

• Analysing deep learning techniques to segment histological images of bone tissue;

• Proposing a convolutional neural network model for segmenting canals in histological

images from the bone vascular network of rats femurs;

• Observing the behavior of a CNN when trained with poorly marked ground truths

and how the results are affected by the wrong markings.

1.2 Justification

Studying the bone vascular network is very important because it can help pre-

venting and treating possible bone tissue disorders. The histological analysis can detect

both characteristics inherent in the individual who is being analysed and anomalies lo-

cated in the tissue which were caused by therapy, medicament injections or incisions.

These anomalies can cause vascularization reduction, bone metabolism deĄciency and

even cell loss or death (GONDIM et al., 2021).

Most histological images analysis of the bone vascular network is performed man-

ually by a specialist. In this task, the specialist has to acquire the images, isolate the

regions of interest, measure those regions and analyse the results. This is usually a long

and subjective undertaking that can also be expensive. In addition, it can be a very tiring

process for the specialist, turning the analysis susceptible to mistakes (GONDIM et al.,

2021).

Recently, encouraged by promising results, deep learning based techniques are

becoming increasingly popular in segmentation tasks (CUI et al., 2018). Figure 1 exhibits

the amount of published papers that propose deep learning applications in histological

images considering the network architecture and most common tasks.
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2 Background and Related Work

This chapter presents basic biological and computational concepts. In the biology

topics, histology and bone tissue and its cellular formation are discussed. The computa-

tional concepts discussed are related to digital images, image segmentation, artiĄcial neu-

ral networks and convolutional neural networks. In the last section, some related works

about computational methods used for cellular structure detection in images are pre-

sented.

2.1 Histology

Histology is a biology Ąeld that studies not only about the microscopic structure of

all components in an organism, but also the functions which formulate these components.

In order to analyse the structure of a body, in a histological perspective, it is necessary, in

addition to using microscopes, to have knowledge on these instruments components and

on the most used practices of specimens preparation for observation (ABRAHAMSOHN,

2016). Histology is a Ąeld which studies body tissues microscopically, as well as how these

tissues are organized to build organs. Tissues are groupings of cells and extracellular ma-

trices that, operating in an integrated way, conduct speciĄc functions. In animals, tissues

are deĄned in four fundamental groups. Each group contains very unique organization

and functions and they can be deĄned as: epithelial tissue, conjunctive tissue, muscular

tissue and nervous tissue. (JUNQUEIRA; CARNEIRO, 2013).

Since cells and the other matrices structures are very small, the histological analysis

procedure depends on microscopes. Hence, the samples to be studied by histological tech-

niques need to be previously prepared. The most used procedure for studying tissues with

microscopes consists in the preparation of histological cuts (JUNQUEIRA; CARNEIRO,

2013).

A growing tendency in the histological tissue analysis Ąeld is the whole slide tissue

scanning after a staining process. In this way, pathologists can make diagnoses based solely

in a digital image. Furthermore, storing digital images is a more desirable alternative than

storing glass slides, since slides require a lot more space and can be damaged, lost or

even disappear over time (McCann et al., 2015). Consequently, once the digital images is

obtained, it is possible to apply image processing techniques to improve the qualities of

the images and also to use diagnostic algorithms, which can help/complement specialists

evaluations (Gurcan et al., 2009).
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2.2 Bone tissue and its cellular formation

The main component of the skeleton, known as bone tissue, which is a conjunctive

tissue, supports soft tissues and protects vital organs. It is formed by cells and calciĄed

extracellular material, known as bone matrix. These tissue cells belong to two different

groups: osteoclasts and osteoblasts. Osteoblastic cells are constituted by osteoblasts and

osteocytes. As for the osteoblastic cells, they are composed by osteoclasts (JUNQUEIRA;

CARNEIRO, 2013).

Osteocytes are Ćattened cells that are located in the extracellular matrix, where

they occupy spaces which are called gaps. Osteoblasts are located in the bone surface

in an arrangement that resembles a simple epithelium and which synthesize the organic

part of the bone matrix. The osteoclasts, in comparison to other cells, are big, multinu-

cleated, reabsorb bone tissue and take part in bone remodeling processes (JUNQUEIRA;

CARNEIRO, 2013).

2.3 Digital images

An image can be deĄned as a bi-dimensional function f(x, y), where x and y are

spatial coordinates and the amplitude of f in any point (x, y) is called color intensity or

image color in that point. When the amplitude values of f and of any point (x, y) are all

Ąnite (discretized), this image is called a digital image (BHABATOSH et al., 2011). In

other words, a digital image can be interpreted as a matrix in which, the row and column

index identiĄes an element of the image and the value of the element corresponds to the

intensity or color at that point. Each element of this matrix is called a pixel.

In colored digital images, each pixel is described through a set of properties like

hue, saturation and brightness. In general, the color of each pixel is represented by a

point in space deĄned by a color model (BHABATOSH et al., 2011). A color model, also

known as color space or color system, is a set of 3D coordinates where each color can be

represented by a point in this three-dimensional space (BHABATOSH et al., 2011).

2.4 Segmentation

Image segmentation is an important step applied to many tasks in the image,

video and computer vision Ąeld. This process consists of dividing a certain image into

various regions, accordingly to some criteria, in order to identify objects of interest. Image

segmentation can also be used to identify regions of interest (foreground) and differentiate

them from the other regions in the back of the image (background) (SHAPIRO; GEORGE,

2002).
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In a segmentation process, image pixels are grouped based on similarity criteria,

such as color or texture. The identiĄed regions must be uniform and homogeneous ac-

cordingly to the criteria. Therefore, two pixels from distinct regions will have signiĄcant

differences based on the chosen criterion (SHAPIRO; GEORGE, 2002).

There are many techniques used for image segmentation tasks, such as cluster-

ing algorithms (CAI; CHEN; ZHANG, 2007), edge detection algorithms (GONZALES;

WOODS, 2002), watershed transform (BEUCHER; MEYER, 1993), limiarization (OTSU,

1979) and deep learning (KRIZHEVSKY; SUTSKEVER; HINTON, 2012b).

2.5 Artificial neural networks

According to Aggarwal (2018), artiĄcial neural networks are popular machine

learning techniques which simulate the learning mechanism of biological organisms. The

human nervous system contains cells, which are called neurons. The neurons are connected

to each other by axons and dendrites and the connection regions between these structures

are called synapses. The strength of these synaptic connections frequently changes in

response to external stimuli. These changes are how living organisms learn.

This biological mechanism is simulated in artiĄcial neural networks, which con-

tain computational units known as neurons. These computation units are connected to

each other through weights, which have the same role as the strength of the synaptic

connections in biological organisms. Each neuron input possesses a weight that affects

the function that is calculated in that unit. This architecture is illustrated in Figure 2.

An artiĄcial neural network computes the inputs function through the propagation of the

calculated values from the input neurons to the output neurons and uses the weights as

intermediary parameters. Learning occurs upon the update of the weights that connect

the neurons. Just like external stimuli are necessary for the learning process in biological

individuals, they are also required in artiĄcial neural networks and are provided through

training data, which contains input-output examples of the function to be learned.

2.6 Convolutional neural networks

Convolutional neural networks (CNN) have historically been the most successful

among all types of artiĄcial neural networks. They are usually used in image recog-

nition tasks, object detection and even text processing (GOODFELLOW; BENGIO;

COURVILLE, 2016).

CNNs are feedforward networks in which information Ćow takes place in a single

direction: from their inputs to their outputs. Just as artiĄcial neural networks (ANN)

are biologically inspired, so are CNNs. The visual cortex in the brain, which consists of
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to a neighborhood of neurons, located in the previous layer, through a set of trainable

weights. Inputs are convolved with the learned weights in order to compute a new feature

map, and the convolved results are sent through a nonlinear activation function (LE-

CUN; BENGIO; HINTON, 2015). To summarize, the convolution process consists of the

application of multiple kernels to an image with the aim of highlighting relevant features.

The purpose of the pooling layers is to reduce the spatial resolution of the feature

maps and thus achieve spatial invariance to input distortions and translations (LECUN

et al., 1990; LECUN et al., 1998; LECUN; BENGIO; HINTON, 2015; RANZATO et al.,

2007; RAWAT; WANG, 2017). That means that the pooling layers shrink the images

dimension in a way that the important information loss is minimal. The pooling process

basically reduces the amount of parameters in the network.

Multiple convolutional and pooling layers are usually stacked on top of each other

to extract more abstract feature representations in the process of moving through the

network. The fully connected layers, which follow these convolutional and pooling layers,

interpret these feature representations and perform the function of high-level reasoning

(HINTON et al., 2012; SIMONYAN; ZISSERMAN, 2014; ZEILER; FERGUS, 2014). In

other words, the fully connected layer performs the classiĄcation, which generates the

networks prediction, also known as the network output. For classiĄcation problems, it is

standard to use the softmax operator (RAWAT; WANG, 2017).

CNNs are usually used in classiĄcation tasks, where an image output is a single

class label. Nevertheless, in many visual tasks, especially when dealing with biomedi-

cal images, a class label is supposed to be assigned to each pixel, since localization is

important in the desired output. These visual tasks are known as segmentation tasks

(RONNEBERGER; P.FISCHER; BROX, 2015).

2.7 Related work

The Ąrst studies approaching cellular structures detection and analysis in histolog-

ical images worked with clustering algorithms such as K-means (FILIPCZUK; KOWAL;

OBUCHOWICZ, 2011) and threshold techniques (FORD et al., 2018). Data about nu-

clear size were used as a prognosis factor for the Ąrst time in 1982 by Diamond et al.

(1982). The authors developed a computerized method which, using histological H&E

(haematoxylin and eosin stain) images, evaluate the shape of cellular nuclei through a

measurement that was proposed by them, known as nuclear roundness.

Since then, a lot of progress has been achieved in histological images segmentation.

Doyle et al. (2008) presented a model capable of distinguishing malignant lesions from

non-malignant lesions (cancer vs. non-cancer) through studies of breast cancer cases. The

model presented by Doyle et al. carries out the processing of histological images to extract
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architectural features (space organization and histological structures distribution), as well

as texture features (gray levels). After the extraction, the features were processed by a

classiĄer, which made the distinction between cancer and non-cancer. The authors also

presented a paper addressing which architectural and texture features were more relevant,

not only for the cancer or non-cancer classiĄcation, but also for determining the stage of

the disease.

CNNs have recently and frequently been applied to many image classiĄcation and

segmantic segmentation tasks (Lecun et al., 1998), (CIREŞEAN et al., 2012), (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012a), (LONG; SHELHAMER; DARRELL, 2015b), (RON-

NEBERGER; P.FISCHER; BROX, 2015), (SIMONYAN; ZISSERMAN, 2015), (SZEGEDY

et al., 2015), (MILLETARI; NAVAB; AHMADI, 2016), (KAMNITSAS et al., 2017),

(HAVAEI et al., 2017). Medical images may come from a variety of imaging technolo-

gies, like ultrasound, X-ray, computed tomography (CT) and magnetic resonance imaging

(MRI). They are often used for identifying different anatomical structures in the human

body, such as blood vessels, bones, vertebrae and major organs. Since medical images por-

trait not only healthy human anatomy, but also different types of unhealthy structures

(tumors, injuries, lesions, etc.), segmentation usually has two goals: delineating different

anatomical structures (such as bone canals) and detecting unhealthy tissue (such as brain

lesions) (KAYALIBAY; JENSEN; SMAGT, 2017).

Cireşean et al. (2012) used a Deep Neural Network (DNN), which is a structure

inspired by CNN, to segment neuronal membranes through pixel classiĄcation. The net-

work calculates the probability of a pixel belonging to the membrane, an operation that

is applied to each pixel of the input image.

In 2015, the concept of a Fully Convolutional Network (FCN) was proposed for

segmentation purposes by Long, Shelhamer e Darrell (2015b). FCNs are adapted CNNs,

where a deconvolution process is done after the regular convolution. That allows the

network to receive inputs of arbitrary size and, then, to produce segmentated outputs of

the same size.

Basing themselves on the concept of FCNs, Ronneberger, P.Fischer e Brox (2015)

presented a CNN model known as U-Net that is considered fast and precise for biomedical

image segmentation and requires few training images. According to the authors, the pro-

posed model is capable of segmentating 512 × 512 pixels images in less than one second.

The model has won the Cell Tracking Challenge 2015 cellular image segmentation contest

(RONNEBERGER; P.FISCHER; BROX, 2015). A further explanation of this model will

be presented in Chapter 3.

The use of convolutional neural networks for medical images segmentation is be-

coming more common every day, however, a study about CNN applied to histological

images of the bone vascular network hasnŠt been suggested yet, which is the proposition
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of this work.

There are many approaches proposed in the literature to evaluate histological bone

images. In Liu et al. (1999), they were able to measure how old the samples were through

micro features analysis of bone tissue. In addition, the authors had to segment the images,

which was performed using a neighborhood adaptive smoothing process that had the aim

of lowering the amount of noise in the images. Then, the k-means algorithm was applied

to the output of the previous step and, Ąnally, each generated group was labeled as an

image object. In Oliveira et al. (2006), morphological features of chickens were evaluated

with the aim of analysing changes in the bone structure. To reach that goal, the authors

segmented bone canals in images using manual limiarization, where pixels with a lower

intensity than a predeĄned value (determined by the authors) were considered background,

whereas pixel with equal or larger intensity values were considered the objects of interest.

Rabelo, Beletti e Dechichi (2010) Šs research aimed to study the alterations caused in rats

bones by radiotherapy, through the analysis of histological images. First, the authors had

to segment the images using a manual limiarization method and, then, area features were

extracted, as well as their standard deviation, perimeter and lacunarity.

Gondim et al. (2021) proposed an automated bone canals segmentation method

that can be divided in three steps. The Ąrst step is preprocessing, in which color deconvolu-

tion techniques were used (with the aim of highlighting the components that were tainted

by hematoxylin and eosin), color space transformation (with the aim of highlighting the

white parts of the image) and also contrast adjustment (to correct possible inadequate

alteration in the tonalities that might have happens when the images were captured). The

second step consists in segmentation, which was done through the k-means algorithm, to

identify the areas of interest and image binarization. As for the third step, it is the post-

processing step, where the results were reĄned through the withdrawal of objects that

were not of interest.

The authors proposals also aims for a method for automated bone canals seg-

mentation, however, as opposed to the paper presented by Gondim et al. (2021), the

segmentation will be obtained using a convolutional neural network.
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3 Methodology

The research methodology was divided in Materials, Methods and Dataset.

3.1 Materials

The images in this project are from bone vascular tissue of rats and were pro-

vided by Dr. Paula Dechichi, from the Federal University of Uberlândia. The intermediary

region of the femur, known as the diaphysis, is the only bone region used in this study

because it has a great concentration of vascular networks, which are responsible for blood

irrigation. In this region there are two types of vascular canals: HaverŠs canals, which

follow the long bone axis, and VolkmanŠs canals, which connect the HaverŠs canals trans-

versely (PAIVA, 2019). Figure 4 illustrates the detailing in the bone vascular network of

a rat.

Figure 4 Ű Schematic illustration of the bone vascular network. (a) Localization of a rat
femur. (b) Localization of the diaphysis in a femur. (c) VolkmanŠs and HaverŠs
canals. VolkmanŠs canals are the vertical ones and HaverŠs are the transversal
ones that connect VolkmanŠs.

Source: Abreu (2016).

The images were acquired from a single rat that was monitored in a bioterium in

the Federal University of Uberlândia. It weighted between 200g and 300g, was kept in a

cage and was fed water and ration in an appropriate manner. A single dose of 30 Gy was

applied to the ratŠs left femur. No medication was applied to the right femur so it could

be used as a control mechanism. Sixty days after the application, the rat was scariĄed.

The histological images were captured with a high resolution ScanScope At Tur-

booR Scaner. Figure 5 shows an original histological image of a rat femur. In Figure 6, the

canals, which are the structures of interest, are identiĄed. Structures known as osteocytes

are also identiĄed in Figure 6, however they wonŠt be segmented.
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and a 2×2 max pooling operation with stride 2 for downsampling. At each downsampling

step the number of feature channels is doubled. Every step in the expansive path consists

of an upsampling of the feature map followed by a 2×2 convolution (“up-convolution")

that halves the number of feature channels, a concatenation with the correspondingly

cropped feature map from the contracting path, and two 3×3 convolutions, each followed

by a ReLU. The cropping is necessary due to the loss of border pixels in every convo-

lution. At the Ąnal layer a 1×1 convolution is used to map each 64-component feature

vector to the desired number of classes. In total the network has 23 convolutional layers

(RONNEBERGER; FISCHER; BROX, 2015).

Figure 7 Ű U-Net architecture. Each blue box corresponds to a multi-channel feature map.
The number of channels is denoted on top of the box. The x-y-size is provided
at the lower left edge of the box. White boxes represent copied feature maps.
The arrows denote the different operations.

Source: adapted from Ronneberger, Fischer e Brox (2015).

A Pytorch implementation of a U-Net, originally proposed for FLAIR abnormality

segmentation in brain MRI, provided in Buda, Saha e Mazurowski (2019), was altered to

Ąt the task proposed in this work. The main alterations were performed in the Dataset

class, where the images are preprocessed and passed as input to the network.

3.2.2 Evaluation and loss metrics

The Evaluation and loss metrics used in this work were Dice coefficient, Precision

and Recall.
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3.2.2.1 Dice coefficient

In image segmentation tasks, severe data imbalance, a phenomenon where negative

examples outnumber positive ones, is very common and can prove to be a problem in the

training process. Data imbalance results in training-test discrepancy: if the labels arenŠt

balanced, the learning process tends to converge to a point that strongly biases towards

the class with the majority label (LI et al., 2020).

In this light, Dice Coefficient, or SørensenŰDice coefficient, or F1 score, or Dice

Loss has proven to be a very good loss function and evaluation method for semantic

segmentation problems with highly imbalanced data, which is the case for the dataset

used in this work.

As deĄned in (Wikipedia contributors, 2021), given two sets, X and Y, it is deĄned

as:

DSC =

2|X
⎸

Y |

|X|+|Y |
where |X| and |Y| are the cardinalities of the two sets (i.e. the

number of elements in each set). The Sørensen index equals twice the number of elements

common to both sets divided by the sum of the number of elements in each set.

When applied to Boolean data, using the deĄnition of true positive (TP), false

positive (FP), and false negative (FN), it can be written as:

DSC =
2T P

2T P +F P +F N

In the segmentation task proposed by this work, in which the objects of interest

are the canals, each pixel is classiĄed by the network as canal or not canal. A TP consists

of a pixel that was correctly classiĄed as canal, whereas a FP consists of a pixel that was

incorrectly classiĄed as canal, in other words, a pixel that isnŠt part of a canal in the

ground truth, but was classiĄed as so by the network. Following the same logic, a true

negative (TN) is a pixel that was correctly classiĄed as not canal by the network, whereas

a FN is a pixel that was incorrectly classiĄed as not canal.

3.2.2.2 Precision

Precision is a good metric to evaluate how many true positives were predicted, out

of all the positive predictions. It can be deĄned as:

Precision =
T P

T P +F P

3.2.2.3 Recall

Recall is a metric that evaluates how many positives the model predicted correctly,

out of all the actual positives. It can be deĄned as:

Recall =
T P

T P +F N
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(a) Original (b) Mask

Figure 10 Ű Examples of image patches. (a) Patch from the original image; (b) Corre-
sponding mask patch

Figure 11 Ű Examples of noise in the dataset caused by the JPEG format.

Since the images are very large (around 7800×7800 pixels), they, and their cor-

responding masks, were sliced into 10266 256×256 pixels image patches. The patch size

was chosen based on the standard input size of the U-Net implementation that was used.

Finally, after performing a pixel-wise normalization, the patches were passed as input to

the network. In Figure 10, an input example is presented.

It is important to highlight that the original images were provided in JPEG, which

turned out to be a problem in the threshold step, generating noise in the dataset. This

happens because, when compressing the image, the JPEG format changes the values of

objects borders in the image. These modiĄcations are not perceivable to the human eye,

but they can affect image processing routines. Examples of this issue can be observed in

Figure 11.

Moreover, the provided manually marked images contained various Ćaws and

wrong markings. That occurred because the images were originally marked for the iden-

tiĄcation of the canals (and not their exact borders), for a better understanding of the

inĆuence of radiation in the architecture of the diaphysis. Hence, precision was neglected.

Besides, the markings were made in the original images, which was also a key factor

for inaccuracy in the ground truths, since the images are very large and the canals are

small, making it very difficult for a human to mark them accurately without a close-up.

Examples of such Ćaws and wrong marking can be observed in Figure 12.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 12 Ű Examples of originals patches overlapped with their corresponding masks that
illustrate some of the datasetŠs Ćaws and wrong marking.
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4 Results and Discussion

As mentioned before, training was done with a dataset of 10266 patches (70 images)

and, out of those, two randomly chosen images were used for validation. In addition, three

images (419 patches) that werenŠt part of the dataset were used for testing the trained

model. It is also important to highlight that the model contained data augmentation

(rotation and horizontal Ćip).

The best accuracy achieved by the model were a mean dice coefficient of 0.18 for

the validation images and of 0.20 for the test images. These results were reached with 100

epochs, a batch size of 16 and a learning rate of 0.001. The poor performance of the model

can be explained by overĄtting, which is when the model is unable to generalize well. It

learns the features of the training set, but is unable to classify accurately any data that

slightly deviates from the exact data used during training. This usually happens when

the dataset doesnŠt correctly represents the proposed problem.

During training, it was observed that, although both the training and validations

dice losses kept diminishing throughout the epochs, the accuracy stopped improving very

quickly, which indicates overĄtting. Tests with different learning rates were also performed,

but the results did not improve. As mentioned in Chapter 3, the provided marked images

of the dataset contained very serious Ćaws and wrong marking, which was probably the

main reason for such results.

The mean precision and recall for the test outputs were also calculated and the

results were 0.16 and 0.32, respectively. Figure 13 shows examples of output images from

the test set. The green outlines correspond to ground truth (masks markings) and red to

model predictions. It is possible to observe that the model tends to predict several false

positives. Not only it is segmenting larger areas than the canals, which are the areas of

interest, but it is also getting confused by the osteocytes, which are objects very similar

to the canals. The model also predicted a lot of false negatives, which can be observed in

Figure 14.

It is also important to discuss the possible reasons for such discrepancy between the

results of this work and the one proposed by Gondim et al. (2021), which were very good,

considering that the same images and corresponding marked images were used in both

works. Gondim et al. (2021) proposed an automated bone canals segmentation method

that used traditional image segmentation techniques, which did not involve deep learning.

In their approach, the marked images were only used after the segmentation process, for

validation, which means that they do not have any impact in the actual segmentation.

In this work, on the other hand, the Ćawed marked images were used for training, hence,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 13 Ű Examples of model outputs for test images. The green outlines correspond to
ground truth (masks markings) and red to model predictions.
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(a) (b) (c) (d)

Figure 14 Ű False negative examples of model outputs for test images. The green out-
lines correspond to ground truth (masks markings). These regions were not
predicted by the model (i.e, they are false negatives).

they had a direct impact in the segmented outputs, which was probably why the results of

this work were much more affected by the poorly marked images than the ones presented

by Gondim et al. (2021).
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5 Conclusion

This work had as a main goal the development of a computational methodology

to segment serial cuts from histological images of the bone vascular network using deep

learning. Throughout the process of trying to achieve such a goal, a lot of research about

machine learning theory and frameworks, CNNs architectures, as well as deep learning

and image processing techniques had to be performed, which was a very enriching and

rewarding experience for the authors, since this isnŠt a topic much explored yet by the

Computer Science undergraduate course.

Reaching the achieved results required not only learning and getting familiarized

with Pytorch, the machine learning framework, but also modifying an implementation of

a U-Net, originally proposed for FLAIR abnormality segmentation in brain MRI, to Ąt

the proposed task. Furthermore, the authors had to work with a very Ćawed and weak

dataset, which was an extremely challenging process.

The main conclusion reached by this research is that the datasetŠs Ćaws resulted

in the overĄtting of the model. Not only it is Ąlled with wrong and poorly made mark-

ings, a consequence of the method used for marking and of the initial purpose of the

marked images, but also holds many residue border pixels, since the originals images were

provided in JPEG, which created noise in the masks. Moreover, it was observed that the

osteocytes proved to be a problem, since they are very similar to the canals and the model

is frequently classifying them as objects of interest.

Although the results ended up being quite poor, a lot has been learned by the

authors about machine learning and image processing, which are largely researched Ąelds

at the moment. The knowledge acquired in this work will create a very strong basis for

future projects and we believe that, after the adjustments in the training and test dataset,

the methodology will perform well.

5.1 Future works

In future works, the authors intend to correct the Ćaws found in the dataset by

manually marking the masks again and removing the noise present in them, with the aim

of obtaining better results. In addition, they plan to Ąnd a solution to diminish the impact

the osteocytes are having on the model.
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