Universidade Federal de Uberlândia - UFU Faculdade de Engenharia Elétrica - FEELT Graduação em Engenharia Elétrica

João Victor Araújo Caetano

Carregadores de Veículos Elétricos e Seu Impacto na Qualidade da Energia Elétrica

Uberlândia

2021

João Victor Araújo Caetano

Carregadores de Veículos Elétricos e Seu Impacto na Qualidade da Energia Elétrica

Trabalho apresentado como requisito parcial de avaliação na disciplina Trabalho de Conclusão de Curso do Curso de Engenharia Elétrica da Universidade Federal de Uberlândia.

Orientador: Paulo Henrique Oliveira Rezende

Uberlândia

João Victor Araújo Caetano

Carregadores de Veículos Elétricos e Seu Impacto na Qualidade da Energia Elétrica

Trabalho apresentado como requisito parcial de avaliação na disciplina Trabalho de Conclusão de Curso do Curso de Engenharia Elétrica da Universidade Federal de Uberlândia.

Banca examinadora

Prof. Dr. Paulo Henrique Oliveira Rezende

Prof. Dr. Gustavo Brito de Lima

Prof. M. Sc. Eduardo Tavares Silvério

Uberlândia

2021

Dedico este trabalho à minha vó Tereza, que não pôde me ver formar e aos meus pais, por tudo que fizeram para que eu tivesse condições de estar aqui hoje.

Agradecimentos

A Deus, por ter me dado a força e suporte necessários para superar as dificuldades e seguir adiante.

Aos meus pais Vilma de Jesus Araújo e Ari José Caetano por toda base, estrutura, apoio e orientação que me deram desde o meu nascimento, possibilitando que eu estivesse aqui hoje.

À minha vó Tereza, que foi quem cuidou e me educou durante a infância enquanto meus pais trabalhavam, mas que infelizmente faleceu no final do ano passado e não poderá me ver formado como sempre quis.

Aos meus padrinhos e madrinha: Rafael Dias Araújo, Valdir Borges e Cristiane de Morais, pela orientação, carinho, amizade e inspiração para vencer os obstáculos do curso e da vida, bem como na influência para a escolha desta faculdade.

Ao meu professor e orientador Paulo Henrique, por toda a assistência prestada ao longo do desenvolvimento do trabalho, pelo companheirismo, paciência e dedicação durante o curso.

Aos meus amigos, em especial Gabriel Masete, Lincoln Társio e Pedro Henrique por todo o apoio, amizade, ajuda e troca de experiências e aprendizado ocorridas durante a graduação.

À minha namorada, pelo apoio moral e incentivo para o desenvolvimento deste trabalho.

A quem mais não foi citado, mas que possa ter auxiliado de alguma forma no meu desenvolvimento acadêmico, pessoal ou profissional, e na trajetória de vida até aqui.

Resumo

Com o intuito de promover um desenvolvimento socioeconômico mais sustentável e reduzir os impactos ambientais causados pelos veículos à combustão, há um incentivo crescente ao uso de carros elétricos ou híbridos como alternativa aos convencionais. No entanto, a viabilidade destes veículos ainda é questionada por conta da autonomia das baterias e da estrutura da rede de energia elétrica necessária para suprir seu carregamento. Este trabalho visa mensurar os impactos da inserção de um sistema de carregamento de baterias de veículos elétricos na rede elétrica de distribuição e compará-lo com os principais indicadores da qualidade da energia elétrica descritos no módulo 8 do PRODIST, verificando quais as possíveis consequências que essa mudança de tecnologia para transporte poderá implicar do ponto de vista de distribuição de energia elétrica.

Modelando um conversor CC-CC *Boost* de um carregador de veículos elétricos com circuito de controle da razão cíclica para correção de fator de potência, é possível notar uma grande redução na magnitude do pico da corrente de entrada bem como no nível de distorção harmônica, aproximando o fator de potência ao valor unitário e adequando a qualidade de energia elétrica aos valores dos indicadores estabelecidos.

Palavras-chave: Conversor Boost PFC, Carregadores, Veículos elétricos, Qualidade da energia elétrica.

Abstract

With the intent of promoting a more sustainable socio-economic development and reducing the impacts caused by combustion vehicles, there is a growing incentive to use electric or hybrid cars as an alternative to the conventional ones. However, the viability of these vehicles is still questioned due to the autonomy of the batteries and the structure of the electricity network needed to supply their charging. This work aims to measure the impacts of the insertion of a charging system for electric vehicle batteries in the electric distribution network and compare it to the main indicators of the quality of the electric power described in PRODIST's module 8, verifying the possible consequences that this change of technology for transportation may imply from the electric power distribution point of view.

Modelling a DC-DC Boost converter of an electric vehicle charger with duty cycle control for power factor correction, it is possible to notice a great reduction in the magnitude of the peak of the input current as well as in the harmonic distortion level, approaching the power factor to the unitary value and complying with the established electric power quality indicators.

Keywords: Boost PFC Converter, Chargers, Electric vehicles, Electric power quality.

Lista de figuras

Figura 1: Modo 1 - Tomada fixa não dedicada	17
Figura 2: Modo 2 – Tomada fixa não dedicada com ICCPD	17
Figura 3: Modo 3 – Tomada fixa dedicada	18
Figura 4: Modo 4 – Conexão CC	18
Figura 5: Esquema de transferência de energia por condução	19
Figura 6: Rede elétrica, filtro e dispositivos de chaveamento	19
Figura 7: Conversor Boost	20
Figura 8: Corrente CA e corrente no indutor de um conversor Boost PFC	20
Figura 9: Corrente no indutor ampliada	20
Figura 10: Sistemas de carregamento e níveis de potência	21
Figura 11: Distorção de corrente causada por resistência não linear	24
Figura 12: Representação de uma forma de onda distorcida na série de Fourier	26
Figura 13: Triângulo de potência	27
Figura 14: Conversor Boost e grandezas elétricas	31
Figura 15: Etapa 1 do modo de condução descontínua do conversor Boost	32
Figura 16: Etapa 2 do modo de condução descontínua do conversor Boost	33
Figura 17: Etapa 3 do modo de condução descontínua do conversor Boost	34
Figura 18:Formas de onda nos elementos do conversor Boost em condução contínua	35
Figura 19: Formas de onda de tensão no conversor Boost operando em condução contínua	36
Figura 20: Forma de onda da corrente no capacitor em modo de condução contínua	37
Figura 21: Formas de onda de uma fonte sem PFC e harmônicas presentes	38
Figura 22: Formas de onda de uma fonte com PFC quase perfeito e harmônicas presentes	38
Figura 23: Controlador para PFC por corrente média no indutor	39
Figura 24: Moduladora, portadora e saída do bloco PWM	40
Figura 25: Saída modulada	40
Figura 26: Carregador elétrico proposto	43
Figura 27: Controlador PFC	44
Figura 28: Sistema de distribuição típico com carregador elétrico com PFC inserido	44
Figura 29: Forma de onda da tensão de saída do conversor no circuito com PFC	46
Figura 30: Forma de onda da tensão de saída do conversor no circuito sem PFC	46

Figura 31: Forma de onda da corrente de entrada no circuito com PFC	47
Figura 32: Forma de onda da corrente de entrada no circuito sem PFC	47
Figura 33: Forma de onda da corrente de entrada ampliada no circuito com PFC	48
Figura 34: Forma de onda da corrente de entrada ampliada no circuito sem PFC	48
Figura 35: Análise da THD da corrente de entrada no circuito com PFC	49
Figura 36: Análise da THD da corrente de entrada no circuito sem PFC	49
Figura 37: Tensão de entrada do carregador no circuito com PFC	50
Figura 38: Tensão de entrada do carregador no circuito sem PFC	50
Figura 39: Tensão de entrada no carregador ampliada no circuito com PFC	51
Figura 40: Tensão de entrada no carregador ampliada no circuito sem PFC	51
Figura 41: Análise da THD da tensão na entrada do carregador no circuito com PFC	52
Figura 42: Análise da THD da tensão na entrada do carregador no circuito sem PFC	52
Figura 43: Corrente nas fases no circuito com PFC	53
Figura 44: Corrente nas fases no circuito sem PFC	53
Figura 45: Correntes nas fases ampliadas no circuito com PFC	54
Figura 46: Correntes nas fases ampliadas no circuito sem PFC	54
Figura 47: Análise da THD da corrente nas fases no circuito com PFC	55
Figura 48: Análise da THD da corrente nas fases no circuito sem PFC	55
Figura 49: Corrente no neutro	56
Figura 50: Análise da THD da corrente no neutro no circuito com PFC	56
Figura 51: Análise da THD da corrente no neutro no circuito sem PFC	57
Figura 52: Análise da THD da tensão na saída do transformador no circuito com PFC	57
Figura 53: Análise da THD da tensão na saída do transformador no circuito sem PFC	58

Lista de tabelas

Tabela 1: Níveis de potência no carregamento por condução	15
Tabela 2: Tipos de baterias e suas características	22
Tabela 3: Limites das distorções harmônicas totais (em % da tensão fundamental)	30
Tabela 4: Características do sistema de distribuição típico	45
Tabela 5: Resumo dos níveis de THD medidos	58

Lista de abreviaturas e siglas

- Hev's Hybrid Electric Vehicles
- Phev's Plug-in Hybrid Electric Vehicles
- Bev's Battery Electric Vehicles
- EVSE Electric Vehicle Supply Equipment
- SAE Sociedade dos Engenheiros Automotivos
- IEC International Eletrotechnical Comission
- ICCPD In Cable Control and Protecting Device
- PFC Power Factor Correction

D – Razão cíclica

- EMI Electromagnetic Interference
- SOC State of Charge %
- Hz-Hertz
- ANEEL Agência Nacional de Energia Elétrica
- QEE Qualidade da Energia Elétrica
- DTT Distorção Total de Tensão
- Ton Tempo da chave ligada
- Toff Tempo da chave desligada
- Pin Potência de entrada
- Po-Potência de saída
- PWM Pulse Width Modulation
- FFT Fast Fourier Transform
- RMS Root Mean Square

Sumário

2. Fundamentação Teórica	1. Introdução	13
2.1. Tipos de veículos elétricos e suas características 14 2.2. Tipos de carregamento 14 2.3. Níveis de potência e modos de carregamento 15 2.4. Etapas de carregamento 18 2.5. Baterias 21 3. Revisão Sobre Qualidade da Energia Elétrica 23 3.1 Definição 23 3.2 Termos importantes 26 4. Revisão Sobre o Conversor CC-CC Boost 31 4.1 Definição 31 4.2 Modos de operação 32 4.2.1 Condução Descontinua 32 4.2.2 Condução Contínua 35 4.3 O controle de chaveamento do conversor Boost 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 41 5.1 Dimensionamento e projeto do conversor do carregador 41 5.2 Modelagem computacional em ambiente MATLAB Simulink 43 5.3 Simulações e análise 45 6. Considerações Finais 60	2. Fundamentação Teórica	14
2.2. Tipos de carregamento 14 2.3. Níveis de potência e modos de carregamento 15 2.4. Etapas de carregamento 18 2.5. Baterias 21 3. Revisão Sobre Qualidade da Energia Elétrica 23 3.1 Definição 23 3.2 Termos importantes 26 4. Revisão Sobre o Conversor CC-CC Boost 31 4.1 Definição 31 4.2 Modos de operação 32 4.2.1 Condução Descontinua 32 4.2.2 Condução Contínua 35 4.3 O controle de chaveamento do conversor Boost 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 41 5.1 Dimensionamento e projeto do conversor do carregador 41 5.2 Modelagem computacional em ambiente MATLAB Simulink 43 5.3 Simulações e análise 45 6. Considerações Finais 60	2.1. Tipos de veículos elétricos e suas características	14
2.3. Níveis de potência e modos de carregamento 15 2.4. Etapas de carregamento 18 2.5. Baterias 21 3. Revisão Sobre Qualidade da Energia Elétrica 23 3.1 Definição 23 3.2 Termos importantes 26 4. Revisão Sobre o Conversor CC-CC Boost 31 4.1 Definição 31 4.2 Modos de operação 32 4.2.1 Condução Descontinua 32 4.2.2 Condução Contínua 35 4.3 O controle de chaveamento do conversor Boost 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 41 5.1 Dimensionamento e projeto do conversor do carregador 41 5.2 Modelagem computacional em ambiente MATLAB Simulink 43 5.3 Simulações e análise 45 6. Considerações Finais 60	2.2. Tipos de carregamento	14
2.4. Etapas de carregamento 18 2.5. Baterias 21 3. Revisão Sobre Qualidade da Energia Elétrica 23 3.1 Definição 23 3.2 Termos importantes 26 4. Revisão Sobre o Conversor CC-CC Boost 31 4.1 Definição 31 4.2 Modos de operação 32 4.2.1 Condução Descontinua 32 4.2.2 Condução Contínua 32 4.3 O controle de chaveamento do conversor Boost 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 41 5.1 Dimensionamento e projeto do conversor do carregador 41 5.2 Modelagem computacional em ambiente MATLAB Simulink 43 5.3 Simulações e análise 45 6. Considerações Finais 60	2.3. Níveis de potência e modos de carregamento	15
2.5. Baterias 21 3. Revisão Sobre Qualidade da Energia Elétrica 23 3.1 Definição 23 3.2 Termos importantes 26 4. Revisão Sobre o Conversor CC-CC Boost 31 4.1 Definição 31 4.2 Modos de operação 32 4.2.1 Condução Descontinua 32 4.2.2 Condução Contínua 35 4.3 O controle de chaveamento do conversor Boost 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 41 5.1 Dimensionamento e projeto do conversor do carregador 41 5.2 Modelagem computacional em ambiente MATLAB Simulink 43 5.3 Simulações e análise 45 6. Considerações Finais 60	2.4. Etapas de carregamento	18
3. Revisão Sobre Qualidade da Energia Elétrica 23 3.1 Definição 23 3.2 Termos importantes 26 4. Revisão Sobre o Conversor CC-CC Boost 31 4.1 Definição 31 4.2 Modos de operação 32 4.2.1 Condução Descontinua 32 4.2.2 Condução Contínua 32 4.3 O controle de chaveamento do conversor Boost 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 41 5.1 Dimensionamento e projeto do conversor do carregador 41 5.2 Modelagem computacional em ambiente MATLAB Simulink 43 5.3 Simulações e análise 45 6. Considerações Finais 60	2.5. Baterias	21
3.1 Definição 23 3.2 Termos importantes 26 4. Revisão Sobre o Conversor CC-CC Boost 31 4.1 Definição 31 4.2 Modos de operação 32 4.2.1 Condução Descontinua 32 4.2.2 Condução Contínua 32 4.3 O controle de chaveamento do conversor Boost 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 37 5.1 Dimensionamento e projeto do conversor do carregador 41 5.2 Modelagem computacional em ambiente MATLAB Simulink 43 5.3 Simulações e análise 45 6. Considerações Finais 60	3. Revisão Sobre Qualidade da Energia Elétrica	23
3.2 Termos importantes. 26 4. Revisão Sobre o Conversor CC-CC Boost. 31 4.1 Definição 31 4.2 Modos de operação 32 4.2.1 Condução Descontinua 32 4.2.2 Condução Contínua 32 4.3 O controle de chaveamento do conversor Boost 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 41 5.1 Dimensionamento e projeto do conversor do carregador 41 5.2 Modelagem computacional em ambiente MATLAB Simulink 43 5.3 Simulações e análise 45 6. Considerações Finais 60	3.1 Definição	23
4. Revisão Sobre o Conversor CC-CC Boost	3.2 Termos importantes	26
4.1 Definição 31 4.2 Modos de operação 32 4.2.1 Condução Descontinua 32 4.2.1 Condução Contínua 32 4.2.2 Condução Contínua 35 4.3 O controle de chaveamento do conversor <i>Boost</i> 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 41 5.1 Dimensionamento e projeto do conversor do carregador 41 5.2 Modelagem computacional em ambiente MATLAB Simulink 43 5.3 Simulações e análise 45 6. Considerações Finais 60	4. Revisão Sobre o Conversor CC-CC <i>Boost</i>	31
4.2 Modos de operação 32 4.2.1 Condução Descontinua 32 4.2.2 Condução Contínua 32 4.2.2 Condução Contínua 35 4.3 O controle de chaveamento do conversor <i>Boost</i> 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 41 5.1 Dimensionamento e projeto do conversor do carregador 41 5.2 Modelagem computacional em ambiente MATLAB Simulink 43 5.3 Simulações e análise 45 6. Considerações Finais 60	4.1 Definição	31
4.2.1 Condução Descontinua 32 4.2.2 Condução Contínua 35 4.3 O controle de chaveamento do conversor Boost 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias Veicular em Sistema de Distribuição de Energia Elétrica 41 5.1 Dimensionamento e projeto do conversor do carregador 41 5.2 Modelagem computacional em ambiente MATLAB Simulink 43 5.3 Simulações e análise 6. Considerações Finais	4.2 Modos de operação	32
4.2.2 Condução Contínua 35 4.3 O controle de chaveamento do conversor <i>Boost</i> 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 41 5.1 Dimensionamento e projeto do conversor do carregador 41 5.2 Modelagem computacional em ambiente MATLAB Simulink 43 5.3 Simulações e análise 45 6. Considerações Finais 60	4.2.1 Condução Descontinua	32
4.3 O controle de chaveamento do conversor <i>Boost</i> 37 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias 41 Veicular em Sistema de Distribuição de Energia Elétrica 41 5.1 Dimensionamento e projeto do conversor do carregador 41 5.2 Modelagem computacional em ambiente MATLAB Simulink 43 5.3 Simulações e análise 45 6. Considerações Finais 60	4.2.2 Condução Contínua	35
 5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias Veicular em Sistema de Distribuição de Energia Elétrica	4.3 O controle de chaveamento do conversor <i>Boost</i>	37
Veicular em Sistema de Distribuição de Energia Elétrica	5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias	
 5.1 Dimensionamento e projeto do conversor do carregador	Veicular em Sistema de Distribuição de Energia Elétrica	41
 5.2 Modelagem computacional em ambiente MATLAB Simulink	5.1 Dimensionamento e projeto do conversor do carregador	41
5.3 Simulações e análise	5.2 Modelagem computacional em ambiente MATLAB Simulink	43
6. Considerações Finais60	5.3 Simulações e análise	45
	6. Considerações Finais	60
7. Referências Bibliográficas62	7. Referências Bibliográficas	62

1. Introdução

A maior parte dos veículos de transporte utilizam motores a combustão para sua locomoção. Na maioria das vezes, os combustíveis utilizados são a gasolina, o diesel ou o etanol, cuja queima emite gases poluentes que contribuem para a destruição da camada de ozônio, provocando um aumento no efeito estufa e consequentemente no aquecimento global[1]. Os carros elétricos utilizam baterias para fornecer energia ao motor e emitem pouquíssimos ou nenhum poluente durante seu funcionamento, já os híbridos combinam o funcionamento dos dois motores para reduzir o consumo de combustível e aumentar a eficiência.

Apesar de à primeira vista os veículos elétricos parecerem quase uma alternativa perfeita no que tange à preservação do meio ambiente e na sustentabilidade, há alguns pontos que são menos abordados na sua comercialização e promoção. Em países onde a geração de energia elétrica necessária para a recarga das baterias é feita por termoelétricas, a emissão média de CO₂ nessas usinas necessária para recarregar as baterias de um veículo elétrico durante um ano pode ser maior do que a emissão de CO₂ por um veículo à combustão[2]. Mesmo em países onde a matriz energética é formada por energia limpa, a demanda crescente ao longo dos anos por energia nos horários de ponta, quando geralmente os veículos estarão se carregando após a volta dos locais de trabalho, implicará numa necessidade de maior produção de energia, fazendo com que mais usinas sejam ativadas nesses horários ou até mesmo requisitando a construção de novas. Outro problema existente é a produção das baterias, uma vez que o processo emite diversos gases poluentes.

O processo de recarga de um veículo elétrico, conforme será explicado no item 2.4, faz uso de várias tecnologias da eletrônica de potência. Isso resulta em problemas do ponto de vista da qualidade de energia elétrica, o que implicou na instituição de normas específicas que limitam as distorções de corrente e os efeitos causados pela recarga, como a IEEE 1547, IEC 61000-3-2 e a *US National Electric Code* (NEC) 690. O carregador também deve atender um fator de potência pré-determinado[3]. Estudos e pesquisas recentes tem explorado esse campo, buscando desenvolver equipamentos que podem fornecer mais potência e diminuir o tempo de recarga ao mesmo tempo em que não poluem a rede elétrica, além de regulamentar os procedimentos com diversas normas de segurança, principalmente nas recargas em potências mais elevadas.

2. Fundamentação Teórica

2.1. Tipos de veículos elétricos e suas características

Os veículos elétricos podem ser divididos em três tipos: os veículos elétricos híbridos (*Hybrid Electric Vehicles* - HEV's), veículos elétricos híbridos plug -in (*Plug-in Hybrid Electric Vehicles* – PHEV's), e os veículos elétricos a bateria (*Battery Electric Vehicles* – BEV's)[4]. Os veículos *plug-in* e os BEV's têm esse nome pois podem ser conectados à rede elétrica para realizar a recarga da bateria. Já os HEV's utilizam um grupo gerador associado ao motor a combustão para gerar e armazenar energia elétrica. Todos esses veículos são beneficiados pela frenagem regenerativa, isto é, reaproveitam a energia cinética liberada durante as frenagens convertendo-a em energia elétrica e recarregando a bateria, aumentando sua vida útil. A eficiência de um motor a combustão é estimada entre 15% e 30%, enquanto a eficiência de um motor elétrico é significativamente maior, em torno de 90%[2]. Além disso motores elétricos possuem outras vantagens, como baixo ruído, a possibilidade de se desligarem automaticamente quando o veículo estiver parado sem dificultar uma nova partida, economizando energia e, no caso dos veículos elétricos híbridos, combustível também.

Uma grande desvantagem dos veículos elétricos em relação aos veículos à combustão é a autonomia. As baterias possuem um alto custo e ainda não tem capacidade energética suficiente para que os veículos se desloquem em longas distancias, além de pesarem muito. Nos últimos anos, novas tecnologias na produção de baterias e a construção de estações de recargas nas estradas e estabelecimentos tem ajudado a solucionar esse problema ou pelo menos reduzir sua intensidade. No item 2.5 são discutidas as diferentes baterias e suas tecnologias.

2.2. Tipos de carregamento

Existem dois tipos de carregamento para os veículos elétricos: por condução elétrica e por transferência de energia sem fios. Nesse trabalho o foco será direcionado para o carregamento por condução elétrica, que ainda é o mais comum e mais padronizado, visto que o carregamento sem fios ainda enfrenta desafios relacionados à performance, custo e segurança[5]. Os veículos podem ser carregados através de um carregador *on-board* (presente

internamente no veículo) que está relacionado a potências mais baixas, ou um carregador *off-board* (externo ao veículo) relacionado a potências mais altas. Geralmente estão incorporados à uma EVSE (*Electric Vehicle Supply Equipment*), conforme será abordado no item 2.3.

A necessidade de carregamentos mais rápidos, mais eficientes e disponíveis publicamente, requisitou o desenvolvimento de estações de carregamento com recargas rápidas, as EVSE. Isso culminou, a partir de 2009, na atualização das normas que regulamentavam esses processos por parte de algumas organizações de padronização, como a Sociedade de Engenheiros Automotivos (*Society of Automobile Engineers* - SAE) e a Comissão Eletrotécnica Internacional (*International Electrotechnical Commission* – IEC), além do Instituto de Pesquisa Automotiva do Japão (*Japan Automotive Research Institute* – JARI). As principais normas são a SAEJ1772 que especifica os níveis de recarregamento e os conectores, a IEC 61851 que determina os requisitos do sistema e a IEC 62196-2 que complementa com as especificações dos conectores elétricos[6].

2.3. Níveis de potência e modos de carregamento

Segundo a SAE, por meio da norma J-1772, o carregamento dos veículos elétricos pode ser realizado em diferentes níveis de potência e consequentemente em diferentes durações. Os níveis no carregamento por condução são mostrados na Tabela 1[3].

Nível	Sentido da corrente	Potência	Tensão	Corrente
1	СА	Até 1,92 kW	120 V	Até 16 A
2	CA	Até 19,2 kW	240 V	Até 80 A
3 (Rápido)	CC	Até 240 kW	208 – 600 V	Até 400 A

Tabela 1: Níveis de potência no carregamento por condução.

O tempo de recarga pode ser calculado através da Equação 1:

Fonte: SAE J-1772

$$Tempo \ de \ recarga(h) = \frac{Capacidade \ da \ bateria \ (kWh)}{Potência \ de \ carregamento \ (kW)}$$
(1)

O nível 1 de potência para recarga é considerado lento e está associado à recarga durante a noite. Apesar de lento, esse nível é considerado suficiente para proprietários de PHEV's. A recarga é feita através de tomadas domésticas comuns. Nesse nível a duração da recarga pode durar mais de 24 horas dependendo da capacidade da bateria e do sistema que está sendo utilizado para realizar a recarga.

O nível 2 de potência para a recarga é semelhante ao nível 1, isto é, pode ser usada uma tomada doméstica, porém a tensão de alimentação é de 240 V. Outra forma de se utilizar o nível 2 é através de uma estação de recarga (EVSE). O nível 3 de potência para recarga é bem diferente. Sua utilização requer conectores de tecnologias especiais como o CHAdeMO e o conector da Tesla e seu EVSE é significativamente mais caro. Nos níveis 1 e 2, é usado o carregador *on-board* do veículo, enquanto no nível 3 é usado um carregador *off-board*. O carregador é responsável por retificar a corrente e a tensão que vem da rede elétrica, filtrar ruídos e elevar o nível de tensão através de um conversor CC – CC, a fim de alimentar a bateria. Essas etapas serão explicadas em mais detalhes no item 2.4.

No nível 3, como esse processo acontece externamente ao veículo, ocorre um *by-pass* no carregador *on-board*[7], suprindo diretamente as baterias com corrente continua.

A norma IEC 61851-1 define 4 modos de carregamento para os veículos elétricos:

• Modo 1: Tomada doméstica e cabo de extensão

A conexão do veículo com a rede se dá através de uma tomada doméstica comum. A instalação elétrica deve satisfazer os requisitos de segurança, como ter um sistema de aterramento, um disjuntor para proteção contra sobrecarga e proteção para fuga de corrente pelo cabo de aterramento. Esse modo é proibido em alguns países devido aos riscos de incêndio ou acidentes elétricos que podem ser causados por sobreaquecimento dos cabos e tomadas e/ou instalações elétricas obsoletas ou mal projetadas.

Figura 1: Modo 1 - Tomada fixa não dedicada

- *Fonte:* [8]
- Modo 2: Tomada doméstica e cabo com dispositivo de proteção

Bastante semelhante com o modo 1, a diferença desse modo se dá num dispositivo de proteção e controle incorporado no cabo de extensão (*In-Cable Control and Protection Device* - ICCPD). Esse dispositivo possui uma função de controle piloto, isso significa que adapta as condições de recarga de acordo com o estado da bateria durante o processo de recarregamento, além de possuir outras funções de proteção.

Figura 2: Modo 2 – Tomada fixa não dedicada com ICCPD

Fonte: [8]

• Modo 3: Tomada específica num circuito dedicado

Nesse modo o veículo é conectado à rede elétrica através de uma tomada dedicada, com funções permanentes de proteção e controle.

Figura 3: Modo 3 – Tomada fixa dedicada

• Modo 4: Conexão em corrente contínua (CC) para recarga rápida.

Semelhante ao modo 3, porém devido à alta potência, o conversor CA/CC está localizado na estação de recarga (carregador *off-board*) e há mais alguns requisitos de segurança a serem satisfeitos.

Figura 4: Modo 4 – Conexão CC

Fonte: [8]

2.4. Etapas de carregamento

Assim como dito no item 2.3, a energia elétrica que vem da rede tem que passar por algumas etapas até que esteja em condições ideais para recarregar a bateria do veículo elétrico. Essas etapas são exemplificadas na Figura 5[6]:

A primeira etapa passa pelo conversor CA-CC. São retificadores nas aplicações unidirecionais e inversores nas bidirecionais. Eles fazem a conexão com a rede de energia (*front-end*). A Figura 6 ilustra um retificador monofásico ou bifásico.

Figura 6: Rede elétrica, filtro e dispositivos de chaveamento

Fonte: [9]

Para garantir o máximo possível de potência ativa fornecida à bateria e diminuir distorções de corrente, o carregador deve atender certos padrões de qualidade com relação ao fator de potência e à qualidade de energia elétrica. Para isso, na segunda etapa é usado um conversor CC – CC como o conversor *Boost* para PFC (*power factor correction*). Isso é feito através do controle da razão cíclica (D), do dispositivo de chaveamento. Na Figura 7, o dispositivo é representado pelo *Mosfet*. Variando a razão cíclica do dispositivo de chaveamento, é possível determinar a corrente média no indutor, e então através de um controle fazer a corrente no indutor se aproximar da corrente desejada. As Figuras 8 e 9 mostram um pouco desse processo. As linhas parecem grossas por conta das rampas de subida e descida da corrente durante o controle para a aproximação da corrente desejada. Apesar de ser ilustrado um simples

conversor *Boost* na Figura 7, há diversas topologias de conversores e diversas estratégias para diminuir perdas, permitir maiores níveis de potência e reduzir a EMI (*Electromagnetic Interference*).

Fonte: [9]

Figura 8: Corrente CA e corrente no indutor de um conversor Boost PFC

Fonte: [9]

Fonte: [9]

Após o conversor *Boost*, na etapa 3, a tensão elevada poderá alimentar as baterias e/ou passar por outro conversor CC-CC abaixador (conversor *Buck*) a fim de alimentar dispositivos do carro com tensões nominais mais reduzidas. A Figura 10 esquematiza o sistema mecânico e elétrico do veículo assim como seus diferentes níveis de carga.

Figura 10: Sistemas de carregamento e níveis de potência

2.5. Baterias

Baterias são dispositivos de armazenamento que consistem em uma ou mais células eletroquímicas que convertem a energia química armazenada em energia elétrica. São medidas em sua capacidade, dada em Amperes-horas (Ah). A energia é medida em Watts-horas (Wh) ou kWh, podendo ser obtida multiplicando a capacidade pela tensão de descarga. É importante conhecer a porcentagem de carga da bateria (SOC *- state-of-charge*) porque este indica o quanto de energia elétrica resta. Além disso, o SOC é um importante fator contribuinte na vida útil das baterias. Cada tipo de bateria requer ser operado em diferentes faixas de SOC para diminuir o número de seus ciclos de recarga e consequentemente maximizar sua vida útil[10]. A Tabela 2 mostra os diferentes tipos de baterias destinadas para veículos elétricos e suas características.

Tipo de armazenamento de Energia	Densidade Energética (Wh/L)	Potência mássica (W/kg)	Ciclos de vida da bateria	Eficiência energética (%)	Custo de produção (US\$/kWh)
Chumbo-ácido	100	150 - 900	500 - 1500	> 80	60 - 200
Níquel	60 - 300	100 - 300	300 < 3000	70 - 76	100 - 300
ZEBRA	160	150 - 230	800 – 1200+	80	230 - 450
Lítio	200 - 400	200 - 4500	1000 - 18000	80-95+	110 - 2000
Metal-ar	1400	60 - 140	200	60	90 - 120

Tabela 2: Tipos de baterias e suas características.

Fontes: [10], [11]

Como pode ser visto através da Tabela 2, as baterias de Lítio apresentam características melhores no geral se comparadas com as baterias de outros tipos, como densidade energética, potência mássica, ciclos de vida da bateria e eficiência energética. Estes aspectos são importantes dados os requisitos e funcionamento de um veículo elétrico.

As baterias precisam ser capazes de armazenar uma grande quantidade de energia para aumentar a autonomia do veículo e possuir um peso reduzido para não interferir negativamente na sua performance. Além disso, a unidade de armazenamento de energia é projetada para permitir várias recargas ao longo dos anos, para prolongação de sua vida útil.

Nos últimos anos tem se investido muito em pesquisas tecnológicas para elevar a autonomia dos PEV's através das baterias. Baterias com maior densidade energética como as de Lítio são as preferidas, mas o lado negativo fica por conta do custo elevado.

3. Revisão Sobre Qualidade da Energia Elétrica

3.1 Definição

À medida que a tecnologia avança e os equipamentos e dispositivos eletrônicos se tornam cada vez mais frequentes e mais complexos, a importância da qualidade da energia elétrica cresce proporcionalmente. A razão desse crescimento se deve aos controladores com microprocessadores e dispositivos de eletrônica de potência, que são mais sensíveis às variações das grandezas do sistema elétrico, aos estudos acerca do aumento da eficiência dos sistemas, à confiabilidade relacionada a dispositivos de segurança ou de precisão, entre outros.

Um problema na qualidade da energia elétrica pode ser definido como qualquer problema ocorrido em variações de tensão, corrente ou frequência que resulte em falha ou operação inadequada de um equipamento do consumidor[12]. Desta forma, o assunto aborda o estudo das características elétricas de um sistema e como essas afetam seu funcionamento.

Apesar do tema tratar das características citadas acima, os sistemas de fornecimento de energia elétrica só podem controlar a qualidade da tensão elétrica; não há controle sobre as correntes que cargas especificas podem demandar. Devido a este fato, os padrões da área de qualidade de energia elétrica se dedicam a manter a tensão elétrica dentro de certos limites, e por isso, o tema é comumente nomeado como "qualidade da tensão elétrica".

Os sistemas de potência CA são normalmente projetados para operar com uma tensão senoidal de frequência entre 50 e 60 hertz (Hz) e magnitude de valor eficaz constante. Os geradores providenciam uma tensão com forma de onda muito próxima à senoidal, porém as correntes ao passarem pela impedância do sistema podem causar certos distúrbios na tensão, como por exemplo:

- Afundamento;
- Sobretensão;
- Transitórios oscilatórios;
- Distorções.

Apesar de haver casos em que as distorções são aleatórias, em sua maioria são periódicas ou possuem frequência múltipla de um número inteiro da frequência fundamental. Por conta disso, foi originado o termo "harmônicas" para descrever distorções das formas de onda. A Figura 11 o conceito de um dispositivo não-linear, isto é, um dispositivo cuja corrente não é proporcional à tensão aplicada.

Figura 11: Distorção de corrente causada por resistência não linear

Fonte: [12]

Uma forma de onda distorcida e periódica pode ser expressa como uma soma de senoides, onde cada senoide tem uma frequência múltipla de um número inteiro da frequência da senoide de frequência fundamental. A soma dessas senoides é chamada de série de Fourier e pode ser vista na Figura 12. Isto é importante pois essa propriedade permite a separação de uma senoide distorcida em várias senoides puras (harmônicas), facilitando as análises. A Equação 2 demonstra como podem ser expressas as equações das séries de Fourier[13].

$$f(t) = a_0 + \sum_{n=1}^{\infty} [a_n \cos(nw_o t) + b_n sen(nw_o t)]$$
(2)

$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(t) dt$$
(3)

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(nw_o t) dt$$
(4)

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \, sen(nw_o t) \, dt \tag{5}$$

Senos e cossenos de mesma frequência podem ser combinados em uma senoide, resultando em uma expressão alternativa da série de Fourier:

$$f(t) = a_0 + \sum_{n=1}^{\infty} C_n \cos(nw_o t + \theta_n)$$
(6)

$$C_n = \sqrt{a_n^2 + b_n^2} \ e \ \theta_n = tg^{-1}(\frac{a_n}{b_n})$$
 (7)

A palavra "harmônicas" é geralmente usada isoladamente, porém existem causas e efeitos diferentes para tensões e correntes distorcidas. Por isso é importante notar que o termo "harmônicas" sem detalhamento é insuficiente para descrever um problema. Por convenção no meio de produção de energia, quando o termo é usado de forma isolada para se referir aos consumidores ou à carga, refere-se às correntes, mas quando o termo é usado para se referir ao sistema da concessionária, refere-se às tensões.

Fonte: [12]

3.2 Termos importantes

Para realizar os estudos acerca do tema da qualidade de energia, é necessário conhecimento prévio de alguns termos, são eles:

• Fator de potência;

O fator de potência pode ser definido como a razão da potência média pela potência aparente, conforme Equação 8[13]:

$$fp = \frac{P}{S} = \frac{P}{V_{rms}I_{rms}} \tag{8}$$

E a potência aparente pode ser definida como o produto dos valores da tensão RMS e da corrente RMS, conforme Equação 9:

$$S = V_{rms} I_{rms} \tag{9}$$

Fonte: Do autor

Em circuitos CA senoidais o cálculo da Equação 8 resulta em fp = $cos(\theta)$, sendo θ o ângulo de fase entre as senoides da tensão e da corrente, do contrário devemos utilizar a Equação 10.

Para casos em que a tensão tem forma de onda senoidal, é possível relacionar o fator de potência e o índice de distorção harmônica total (THD – *Total Harmonic Distortion*) que será detalhado no próximo item.

$$fp = \frac{\cos\theta}{\sqrt{(1 + THD^2)}} \tag{10}$$

É importante ter a consciência do fator de potência pois conforme Figura 13 e Equação 8, este define a relação entre a potência útil (potência ativa, que é transformada em trabalho), e a potência reativa. Seguindo o assunto abordado no item 3.1, uma das preocupações da área de qualidade de energia elétrica é justamente aumentar o nível de eficiência dos dispositivos e equipamentos elétricos, portanto o fator de potência deve ser o mais próximo possível de 1, significando que toda energia elétrica que entra é transformada em energia ativa. Isso implica em redução de custos através de cabeamentos de bitola menor e dispositivos de proteção, menor queda de tensão, dispositivos mais confiáveis e instalações mais disponíveis.

Quando um circuito tem fator de potência unitário, isto significa que a corrente está em fase com a tensão, ou seja, a carga é puramente resistiva ou existe compensação de fator de potência (com capacitores ou reatores) suficiente para que a fonte enxergue apenas uma resistência na carga. Do ponto de vista da qualidade, a correção do fator de potência é muito importante uma vez que ajuda a reduzir os níveis de magnitude da corrente, simplificando a análise das distorções nas formas de onda e ajudando a reduzir os níveis delas. A Agência Nacional de Energia Elétrica, ANEEL, na Resolução Normativa Nº 414 de 09 de setembro de 2010, exige um fator de potência igual ou maior a 0,92 para as unidades consumidoras do grupo A[14].

• Total Harmonic Distortion (THD) – Distorção Harmônica Total (DHT)

A THD mede a distorção de uma forma de onda não senoidal em relação à uma senoide pura. Quanto menor o THD, mais a onda se aproxima de uma senoide pura e menos conteúdo harmônico apresenta. Essa análise é baseada na série de Fourier e pode ser calculada através da Equação 11:

$$THD = \frac{\sqrt{\sum_{n=2}^{y} {I_n}^2}}{I_1}$$
(11)

Onde I_n é a amplitude da harmônica de ordem n, e I_1 é a amplitude da onda de frequência fundamental.

• Módulo 8 do PRODIST

O PRODIST (Procedimentos de Distribuição de energia Elétrica no Sistema Elétrico Nacional) são documentos elaborados pela ANEEL (Agência Nacional de Energia Elétrica) para normatização e padronização das atividades técnicas relacionadas ao funcionamento e desempenho dos sistemas de distribuição de energia elétrica.

Atualmente o PRODIST é dividido em onze módulos e o oitavo módulo discute o tema da qualidade de energia elétrica[15]. Atualmente o módulo 8 está na sua revisão número 12. O documento visa estabelecer os procedimentos relativos à qualidade de energia elétrica – QEE, abordando a qualidade do produto, qualidade do serviço prestado e a qualidade do tratamento de reclamações. Além disso, define a terminologia e os indicadores, caracteriza os fenômenos, estabelece os limites ou valores de referência, a metodologia de medição, a gestão das reclamações relativas à conformidade de tensão em regime permanente e às perturbações na forma de onda de tensão e os estudos específicos de qualidade de energia elétrica para fins de acesso aos sistemas de distribuição.

Para realizar a medição das distorções harmônicas presentes num sistema e posteriormente compará-las com os indicadores definidos, o modulo 8 do PRODIST define as seguintes instruções: "O conjunto de leituras para gerar os indicadores individuais deve compreender o registro de 1008 (mil e oito) leituras válidas obtidas em intervalos consecutivos (período de integralização) de 10 minutos cada, salvo as que eventualmente sejam expurgadas conforme item 9.1.6.2 (quando ocorrem variações temporárias de tensão). No intuito de se obter 1008 (mil e oito) leituras válidas, intervalos adicionais devem ser agregados, sempre consecutivamente". O módulo 8 do PRODIST propõe coleta de dados de até a harmônica de ordem 40.

A Tabela 3 destaca os limites de DTT definidos pelo módulo 8 do PRODIST, onde:

- O indicador DTT95% representa o valor do indicador DTT% que foi superado em apenas 5% das 1008 leituras válidas;
- O indicador *DTT_p*95% representa o valor do indicador *DTT_p* (DTT% para as componentes pares não múltiplas de 3) que foi superado em apenas 5% das 1008 leituras válidas;

- O indicador *DTT_i*95% representa o valor do indicador *DTT_i* (DTT% para as componentes ímpares não múltiplas de 3) que foi superado em apenas 5% das 1008 leituras válidas;
- O indicador $DTT_395\%$ representa o valor do indicador DTT_3 (DTT% para as componentes múltiplas de 3) que foi superado em apenas 5% das 1008 leituras válidas;

Indicador	Tensão nominal			
Indicador	$Vn \le 1,0 \text{ kV}$	1,0 kV < Vn < 69 kV	$69 \text{ kV} \le \text{Vn} < 230 \text{ kV}$	
DTT95%	10%	8,0%	5,0%	
<i>DTT</i> _p 95%	2,5%	2,0%	1,0%	
$DTT_i95\%$	7,5%	6,0%	4,0%	
<i>DTT</i> ₃ 95%	6,5%	5,0%	3,0%	

Tabela 3: Limites das distorções harmônicas totais (em % da tensão fundamental)

Fonte: [15]

Os limites correspondem ao máximo valor desejável a ser observado no sistema de distribuição.

4. Revisão Sobre o Conversor CC-CC Boost

4.1 Definição

O conversor *Boost* permite obter uma tensão de saída com amplitude maior que a da tensão de entrada, mantendo a polaridade. Além da imposição da tensão de saída, a presença do indutor no início do circuito faz com que o conversor *Boost* opere como fonte de corrente, permitindo a imposição da forma de onda da corrente de entrada[16]. O conversor *Boost* pode ser utilizado para a correção do fator de potência, mitigação do conteúdo harmônico de corrente e como estágio retificador de fontes ininterruptas de energia, entre outras aplicações.

Pode-se elevar a tensão de uma fonte tirando proveito da tensão induzida no chaveamento de um indutor. O capacitor C faz com que a oscilação da tensão na carga seja mínima e o indutor eleva a tensão na saída por meio de uma tensão induzida pela variação da corrente[17].

Fonte: [17]

Para realizar a análise do conversor *Boost*, algumas suposições devem ser feitas. São elas:

• A tensão média no indutor é zero;

- A corrente no indutor é periódica e no modo contínuo;
- A corrente média no capacitor é zero;
- O valor do capacitor é bem alto e a tensão na saída é mantida constante em Vo;
- O período de chaveamento é *Tch*, a chave é fechada pelo tempo *D x Tch* e é aberta pelo tempo (*1-D*) x *Tch*;
- A chave e o diodo são ideais (Pin = Po).

4.2 Modos de operação

4.2.1 Condução Descontinua

No modo de condução descontinua, na primeira etapa a chave está fechada e a corrente no indutor aumenta gradativamente, não permitindo a passagem de corrente pelo diodo.

Figura 15: Etapa 1 do modo de condução descontínua do conversor Boost

Fonte:[17]

A análise do circuito produz as equações a seguir:

$$V_L = V_E - V_{ch} = V_E = \frac{Ldi_L(t)}{dt}$$
(12)

$$\frac{V_E \Delta t}{L} = \Delta i_L = i_{max} - 0 \qquad \rightarrow \qquad i_{max} = \frac{V_E T_{on}}{L} \tag{13}$$

Na segunda etapa, a chave está aberta e o diodo conduz. A queda de corrente no indutor induz uma tensão que será somada à tensão da fonte para resultar na tensão da carga.

Figura 16: Etapa 2 do modo de condução descontínua do conversor Boost

A análise do circuito produz as equações a seguir:

$$V_L = V_E - V_s = \frac{Ldi_L(t)}{dt}$$
(14)

$$\Delta t = \frac{L\Delta i_L}{(V_E - V_S)} = \frac{L(0 - i_{max})}{V_E - V_S} \quad \rightarrow \quad T_d = \frac{Li_{max}}{V_S - V_E} \tag{15}$$

Na terceira etapa a corrente no indutor é extinta e a corrente da carga passa a ser fornecida pelo capacitor.

Figura 17: Etapa 3 do modo de condução descontínua do conversor Boost

Fonte:[17]

A análise do circuito produz a Equação a seguir:

$$I_C = \frac{-V_S}{R} \tag{16}$$

As formas de onda no conversor *Boost* em modo de operação contínuo podem ser vistas na Figura 18.

A partir da análise da Figura 18 e do circuito do conversor *Boost*, é possível obter as equações 17 e 18:

$$V_{Smed} = V_s = \frac{V_s T_{on} + (V_s - V_E) (T_{off} - T_d)}{T_{on} + T_{off}} + V_E$$
(17)

$$V_{s} = \frac{V_{E}[1 - (T_{off} - T_{d})/T]}{1 - d - (T_{off} - T_{d})/T}$$
(18)

Onde:

$$T = T_{on} + T_{off} \qquad e \qquad d = \frac{T_{on}}{T}$$
(19)

Na condução descontínua a tensão de saída depende do período de extinção da corrente. Usando indutores maiores ou frequências mais altas, é possível usar o conversor *Boost* no modo de operação contínua, conforme veremos no item 4.2.2.

Figura 18: Formas de onda nos elementos do conversor Boost em condução descontínua

Fonte: [17]

4.2.2 Condução Contínua

No modo de condução contínua, as formas de onda no conversor *Boost* são conforme Figura 19:

Figura 19: Formas de onda de tensão no conversor Boost operando em condução contínua

Fonte: [16]

A partir da análise da Figura e do circuito do conversor, obtemos a Equação 21, que representa o ganho estático do conversor (valor médio de tensão no indutor igual a zero):

$$V_{Lb} = \frac{V_{in}DT_{ch} + (V_{in} - V_o)(1 - D)T_{ch}}{T_{ch}} = 0$$
(20)

$$\frac{V_o}{V_{in}} = \frac{1}{1 - D} \tag{21}$$

A partir da Equação 14 podemos calcular a variação de corrente no indutor ou o valor da indutância do indutor uma vez que escolhemos a máxima variação de corrente nele.

$$\Delta i_{Lb} = \frac{V_{in}D}{L_b f_{ch}} \tag{22}$$

A corrente média no Indutor pode ser calculada admitindo-se um conversor com eficiência total, isto é, 100% (Pin = Po).

$$V_{in}I_{Lb} = \frac{V_o^2}{R} \to I_{Lb} = \frac{V_o^2}{V_{in}R}$$
(23)

O cálculo da capacitância pode ser realizado através da análise das formas de onda da Figura 20.

Figura 20: Forma de onda da corrente no capacitor em modo de condução contínua

Fonte: [16]

$$|\Delta Q| = \frac{V_o}{R} DT_{ch} = C \Delta V_o \rightarrow C = \frac{V_o D}{R \Delta V_o f_{ch}}$$
(24)

4.3 O controle de chaveamento do conversor Boost

Conforme foi abordado no item 3.2, a correção do fator de potência não é importante apenas para minimizar perdas e custos associados com a distribuição de energia elétrica, mas também para atender requisitos normativos. Atualmente, equipamentos elétricos na Europa e no Japão devem atender a norma IEC61000-3-2, que se aplica a equipamentos com potência de 75 W ou maior, e especifica as amplitudes máximas das harmônicas até a ordem de número 39[18].

Figura 21: Formas de onda de uma fonte sem PFC e harmônicas presentes

Fonte: [18]

Um modo de se realizar o controle do conversor *Boost* pode ser visto na Figura 23[19]. Esse modo chama-se controle por corrente média. Nele, a corrente que passa pelo indutor é medida por um sensor, filtrada e então enviada a um amplificador de erro que acionará um modulador PWM (*Pulse Width Modulation*). O modulador PWM terá um sinal de saída 0 ou 1 em frequência predeterminada, mas com razão cíclica variante. A variação da razão cíclica conduzira o conversor *Boost* a aumentar ou diminuir a corrente no indutor, fazendo com que a tensão na carga fique próxima ao valor de referência e a corrente no indutor seja ajustada de forma que o fator de potência seja o mais próximo possível do unitário.

Figura 23: Controlador para PFC por corrente média no indutor

Fonte: [19]

Como o objetivo do controlador é tornar o fator de potência próximo do valor unitário, o que é necessário é que a corrente esteja em fase com a tensão na entrada do circuito. Por isso, o primeiro passo é providenciar uma referência de corrente para que o controlador ajuste a corrente do conversor. Essa referência deve ser a tensão, seja ela antes ou após o estágio de retificação.

No caso da Figura 23, a referência de tensão é tomada após a retificação e multiplicada por um ganho tal que seu valor esteja no intervalo entre 0 e 1. Essa manobra é necessária porque o sinal PWM, como previamente explicado, trabalha com o valor mínimo zero e valor máximo um.

Após essa medida, a tensão na carga também é tomada e comparada com um valor de referência, de forma a incorporar o erro no cálculo da corrente de referência. Esse erro passa por um módulo multiplicador que tem também a referência de tensão na entrada e o valor segue para o amplificador de erro da corrente. O erro de corrente é resultado da comparação entre a referência de corrente calculada na saída do multiplicador e a medição de corrente instantânea no conversor *Boost* (representada na Figura 23 pelo sensor Rs).

O modulador PWM funciona comparando o sinal do erro de corrente e um sinal de onda dente de serra de alta frequência. A onda dente de serra tem módulo de 1 Vpp (Volt pico a pico). A onda dente de serra temo nome de onda portadora, e o sinal enviado ao amplificador de corrente denomina-se moduladora ou referência, conforme pode ser visto na Figura 24.

Figura 24: Moduladora, portadora e saída do bloco PWM

Fonte: [19]

Fonte: [19]

5. Modelagem Computacional e Análise de Desempenho do Carregador de Baterias Veicular em Sistema de Distribuição de Energia Elétrica

5.1 Dimensionamento e projeto do conversor do carregador

Para realizar as análises necessárias, considerou-se as informações contidas nos manuais do veículo elétrico plug-in Nissan Leaf[20], que possui um conjunto de baterias de Litio-ion e associação de tal forma que sua tensão nominal seja 360 Vcc[21].

Considerando uma estação de recarga doméstica (EVSE) e o cabo que é fornecido com o veículo, o carregador pode fornecer até 2,4 kW de potência através de uma fonte de tensão 220 – 240 Vca e uma corrente de 8 a 10 A. Essa configuração se enquadra no nível de potência 2 e modo de carregamento 2, conforme discutido no item 2.3.

Com o objetivo de simplificar algumas informações secundárias, adotou-se que as perdas do conversor são desprezíveis, isto é, a potência de entrada é igual à potência de saída (Pin = Pout). Buscando obter uma operação mais estável com uma corrente no indutor aproximadamente constante, optou-se em projetar o conversor para operar no modo de condução contínua. Considerando que no Brasil a tensão mais comum (entre as opções de 220 Vca e 240 Vca) nas tomadas das instalações elétricas residenciais é 220 Vca, a tensão no início do conversor foi escolhida de acordo com a tensão da fonte após retificação, isto é, 200 Vcc.

Conforme detalhado no item 4.3, o controle de fator de potência funciona variando a razão cíclica D para ajustar a corrente no indutor e a tensão na carga. Desta forma, a razão cíclica não é constante durante o funcionamento do conversor e seu valor depende de diversas variáveis que mudam de valor ao longo do tempo. Isto torna determinar a razão cíclica uma tarefa complexa. Contudo, num primeiro momento a Equação 21 pode ser usada como ponto de partida para o projeto do conversor e cálculo dos valores de seus elementos.

Conforme mostrado na Equação 21, podemos obter a razão cíclica necessária para elevar a tensão de saída do conversor até 360 V:

$$D = 1 - \frac{V_{in}}{V_o} = 1 - \frac{200}{360} = 0,45$$
(25)

Para calcular a indutância L_b utilizou-se a Equação 22, admitindo-se uma frequência de chaveamento de 50 kHz e uma ondulação de corrente de 30%. Valores de ondulação muito baixos podem levar a uma operação instável e valores mais altos podem tornar o indutor mais susceptível a EMI (*Electromagnetic Interference*).

O valor da corrente pode ser calculado considerando a conservação de potência e o indutor pela Equação 22:

$$P_{in} = P_o \rightarrow V_{in} I_{Lb} = 2200 \rightarrow I_{Lb} = \frac{2200}{200} = 11 A$$
 (26)

$$L_b = \frac{V_{in}D}{\Delta i_{Lb}f_{ch}} = \frac{200 * 0.45}{0.3 * 11 * 50 * 10^3} = 545 \ \mu H \tag{27}$$

O valor do capacitor deve ser no mínimo, o calculado através da Equação 24. Foi-se considerada uma variação de tensão de 1%.

A carga do conversor, isto é, a bateria, requer muito tempo para se recarregar. As altas frequências de chaveamento necessárias para o funcionamento correto do conversor aumentam muito o tempo de simulação dos softwares de modelagem de conversores. Isto inviabiliza o uso das baterias na simulação, uma vez que em aplicações reais, as recargas das baterias podem durar de muitos minutos a algumas horas. Desta forma, considerou-se uma carga R, que simula as baterias, e pode ser calculada usando a conservação de potência:

$$\frac{Vo^2}{R} = 2200 \quad \to R = \frac{360^2}{2200} = 60 \ \Omega \tag{28}$$

$$C = \frac{V_o D}{R\Delta V_o f_{ch}} = \frac{360 * 0.45}{60 * 0.01 * 360 * 50 * 10^3} = 15\mu F$$
(29)

No entanto, através de estudos e análises pode-se mostrar que o efeito de ondulação de tensão no capacitor está mais associado à sua resistência do que sua capacitância pura[16]. Neste caso, através de testes, foi determinado um valor de 2000 μF para manter a ondulação de tensão na saída aproximadamente constante, isto é, 1% de ondulação.

5.2 Modelagem computacional em ambiente MATLAB Simulink

Usando o software computacional Simulink, do MATLAB e da empresa MathWorks, o carregador proposto foi modelado conforme Figura 26. O controlador de fator de potência, assim como foi explicado no item 4.3, é ilustrado na Figura 27. A tensão de referência passa por um ganho proporcional ao valor do pico de tensão após a retificação, buscando manter os valores entre 0 e 1, e o mesmo acontece com a tensão na saída.

Fonte: Do autor

Figura 27: Controlador PFC

Fonte: Do autor

Para analisar os resultados, o carregador será inserido num sistema de distribuição típico, conforme Figura 28 e Tabela 4. Esse procedimento se faz necessário uma vez que a fonte de tensão do software se comporta de maneira ideal, como num barramento infinito. Isto significa que suas características não serão alteradas independentemente das características da corrente fornecida. Ao inserir o carregador no sistema de distribuição descrito, pode-se fazer medições e análises em diferentes pontos do sistema que estão sob a influência da corrente dos circuitos.

Figura 28: Sistema de distribuição típico com carregador elétrico com PFC inserido

Para simular um carregador com conversor sem controle PFC, utiliza-se um modelo semelhante ao apresentado na Figura 26, porém fixa-se um valor de razão cíclica de 0,13 para se obter 360 Vcc na carga.

Elemento	Descrição		
Rg1 e Rg2	Resistências Neutro - Terra (40 Ohms)		
Fonte	13,8 kV - 60 Hz		
ZL	Impedância de curto-circuito - $(R = 0,3 \text{ Ohms e } L = 791 \text{ uH})$		
Trafo 45	13.8 kV/220 V 45 kVA DYn 7% = 3.5%[22]		
kVA	13,0 K 7/220 Y, 13 K Y K, D I H, 2/0 3,5 /0[22]		
LL1	Três cargas monofásicas – 1200 W+900 Q, 1300 W+700 Q, 1400W+800 Q		
LL2	Três cargas monofásicas - 1200 W+700 Q, 1600 W+800 Q, 1500 W+600 Q		
LL3	Três cargas monofásicas - 1500 W, 800 W, 1400 W		
71 e 72	Impedância de trajeto nas fases da rede dos consumidores, 30 m (R = 0,09		
	Ohms e L = 23,73 uH)		
Zn1 e Zn2	Impedância de trajeto no neutro da rede dos consumidores, 30 m (R = 0,09		
	Ohms e L = $23,73$ uH)		

Tabela 4: Características do sistema de distribuição típico

Fonte: Do autor

Diferentemente da Figura 23, o software Simulink possui blocos PID e moduladores PWM, que substituem os amplificadores de erro e a onda dente de serra. O bloco PID é ajustado via testagem para impor a estabilização da tensão na carga o mais rápido possível. O bloco tem um ganho de integrador (Ki) de 1000 e um ganho proporcional (Kp) de 1.

Há ainda no módulo de PFC um bloco de saturação que garante que os valores de razão cíclica enviados ao modulador PWM se manterão entre 0 e 1.

5.3 Simulações e análise

As figuras 29 e 30 mostram as formas de onda da tensão de saída do conversor, com e sem PFC. É possível notar que apesar de possuir uma estabilização mais demorada, em torno de 0,4 segundos, devido ao sistema PI do controlador, o conversor com PFC tem uma tensão de pico menor.

Figura 29: Forma de onda da tensão de saída do conversor no circuito com PFC

Figura 30: Forma de onda da tensão de saída do conversor no circuito sem PFC

Fonte: Do autor

As figuras 31 e 32 mostram as formas de onda da corrente de entrada do conversor, com e sem PFC. É possível perceber que em torno de 0,3 segundos a corrente se estabiliza no

conversor com PFC e mantém um padrão muito mais próximo do senoidal, se comparado ao do conversor sem PFC.

Figura 31: Forma de onda da corrente de entrada no circuito com PFC

Fonte: Do autor

Figura 32: Forma de onda da corrente de entrada no circuito sem PFC

Fonte: Do autor

As figuras 33 e 34 mostram as formas de onda da corrente de entrada após sua estabilização (0,40 - 0,45 segundos) e com ampliação para a melhor observação.

Figura 33: Forma de onda da corrente de entrada ampliada no circuito com PFC

Fonte: Do autor

Figura 34: Forma de onda da corrente de entrada ampliada no circuito sem PFC

Fonte: Do autor

Através da ferramenta FFT (*Fast Fourier Transform*) *analysis* do bloco Powergui do Simulink, é possível analisar as harmônicas presentes nos sinais. As Figuras 35 e 36 a seguir mostram os níveis de THD medidos. Através da comparação das duas figuras, é notável que o conversor com PFC possui 5,77% de THD na corrente de entrada, bem menos que o conversor sem PFC, com 92,77%.

Figura 35: Análise da THD da corrente de entrada no circuito com PFC

Fonte: Do autor

Figura 36: Análise da THD da corrente de entrada no circuito sem PFC

Fonte: Do autor

As figuras 37 e 38 mostram as formas de onda da tensão de entrada do carregador, com e sem PFC. As Figuras 39 e 40 mostram os mesmos sinais, porém com ampliação para melhor observação.

Figura 38: Tensão de entrada do carregador no circuito sem PFC

Fonte: Do autor

Fonte: Do autor

Figura 39: Tensão de entrada no carregador ampliada no circuito com PFC

Fonte: Do autor

Fonte: Do autor

Através da análise visual das Figuras 39 e 40, é claro como a forma de onda da tensão de entrada do carregador no circuito com PFC é mais próxima do padrão puramente senoidal. As análises de THD nas figuras 41 e 42 comprovam isto: 2,72% de THD no conversor com PFC contra 5,03% de THD no conversor sem PFC.

Figura 41: Análise da THD da tensão na entrada do carregador no circuito com PFC

Fonte: Do autor

Figura 42: Análise da THD da tensão na entrada do carregador no circuito sem PFC

Fonte: Do autor

As figuras 43 e 44 mostram as formas de onda das correntes nas fases do sistema típico de distribuição ilustrado na Figura 28, com a conexão do carregador com PFC e depois sem PFC. As Figuras 45 e 46 mostram os mesmos sinais, porém com ampliação para melhor observação.

Fonte: Do autor

Figura 44: Corrente nas fases no circuito sem PFC

Fonte: Do autor

Figura 45: Correntes nas fases ampliadas no circuito com PFC

Fonte: Do autor

Figura 46: Correntes nas fases ampliadas no circuito sem PFC

Fonte: Do autor

Através da análise visual das Figuras 45 e 46, é claro como as formas de onda das correntes nas fases do sistema de distribuição modelado, quando no circuito do carregador com PFC, são bem mais próximas do padrão puramente senoidal. As análises de THD nas figuras 47 e 48 comprovam isto: 1,33% de THD no conversor com PFC contra 20,78% de THD no conversor sem PFC.

Figura 47: Análise da THD da corrente nas fases no circuito com PFC

Fonte: Do autor

Figura 48: Análise da THD da corrente nas fases no circuito sem PFC

Fonte: Do autor

A figura 49 mostra a forma de onda da corrente no neutro. A forma de onda se manteve muito parecida nas duas situações: carregador com e sem PFC. As análises de THD nas figuras 50 e 51 comprovam isto: 0,06% de THD no conversor com PFC contra 0,44% de THD no conversor sem PFC.

Figura 49: Corrente no neutro

Fonte: Do autor

Figura 51: Análise da THD da corrente no neutro no circuito sem PFC

Fonte: Do autor

As Figuras 52 e 53 mostras os níveis de THD medidos na tensão de saída do transformador, nos circuitos do carregador com e sem PFC. A forma de onda da tensão é muito similar àquelas mostradas nas Figuras 37 e 38, da tensão de entrada do carregador.

Figura 53: Análise da THD da tensão na saída do transformador no circuito sem PFC

Fonte: Do autor

Através da comparação das Figuras 52 e 53, é notável que o circuito do conversor com PFC possui 2,16% de THD na tensão de saída do carregador, contra 4,02% de THD no circuito do conversor sem PFC.

A Tabela 5 resume os níveis de THD das grandezas descritas e compara os circuitos do carregador com PFC e sem.

Crandaza alátrica	TH	THD %		
Granueza eletrica	Com PFC	Sem PFC		
Corrente de entrada	5,77	92,77		
Tensão de entrada	2,72	5,03		
Correntes nas fases	1,33	20,78		
Corrente no neutro	0,06	0,44		
Tensão na saída do transformador	2,16	4,02		
Fonte: Do Autor				

Tabela 5: Resumo dos níveis de THD medidos

Através dos valores comparados na Tabela 5, conclui-se que o controlador de fator de potência contribui muito na redução das distorções harmônicas, distanciando os valores medidos dos limites estabelecidos no módulo 8 do PRODIST.

Os valores de THD medidos nos circuitos com PFC são menores que os valores medidos nos circuitos sem PFC. Atendendo os limites estabelecido no módulo 8 do PRODIST, conforme Tabela 3.

6. Considerações Finais

Antecipando a realidade que já se impõe, as questões envolvendo as alternativas de desenvolvimento e produção sustentáveis são cada vez mais recorrentes. Os veículos elétricos se apresentam como uma excelente alternativa nesse sentido, uma vez que seu funcionamento não emite gases poluentes, além de possuírem tecnologias mais variadas e avançadas, que impactam positivamente na hora da escolha. Algumas montadoras já têm datas predefinidas para diminuírem os investimentos nos motores à combustão.

Entretanto, lançar um olhar sustentável sobre os veículos elétricos e uma análise superficial assim não basta, já que a produção de suas peças e principalmente as baterias emitem gases poluentes, e os requisitos para recarga das baterias demandam uma grande quantidade de energia. Ao somar as contribuições individuais num futuro em que os donos de veículos elétricos sejam maioria da população, é possível prever vários problemas relacionados a distribuição e qualidade da energia elétrica caso não sejam tomadas algumas providências. É nessa etapa que entram as regulamentações dos diferentes órgãos de normatização acerca do assunto, que definem limites para os distúrbios na rede. Além disso, haverá problemas relacionados à operação do Sistema Interligado Nacional. Muitas fontes intermitentes e um pico adicional com os carros elétricos.

Dito isto, o presente trabalho discorreu sobre os diferentes níveis de potência, modos de carregamento, normatizações dos equipamentos e da relé elétrica, e estratégias de controle para mitigar o impacto causado pelo carregamento dos veículos elétricos.

Numa sociedade onde os dispositivos elétricos requerem cada vez mais precisão, velocidade e desempenho, distúrbios na rede podem ter um grande impacto negativo em termos de custo e adoção definitiva de novas tecnologias.

A simulação e análise do conversor *Boost* operando com controle PFC, evidenciou, além da redução da magnitude da corrente de entrada no equipamento, a diminuição de problemas relacionados à qualidade de energia elétrica. A tabela 5 resume os resultados medidos e mostra os impactos positivos do controlador de fator de potência inserido num carregador veicular.

No entanto, ainda haverá vários desafios a seguir, uma vez que diferentes tecnologias de carregamento e níveis de potência, carregadores e plugues proprietários, normas e padrões

surgem na sociedade. É importante atenção ao tema no dia a dia pois, como apresenta grandes oportunidades de desenvolvimento e inovação, está relacionado a muito investimento e oportunidades de trabalho, o que faz com que sejam produzidas uma grande quantidade de pesquisas e documentações todos os dias. É muito importante manter-se atualizado para acompanhar os pequenos progressos feitos de tempos em tempos para que quando o tema já estiver bastante desenvolvido, não haja problemas com relação ao acompanhamento das diferentes tecnologias.

7. Referências Bibliográficas

- [1] G. F. Netto and E. H. Carmo, "Mudanças climáticas e ambientais e seus efeitos na saúde: cenários e incertezas para o Brasil," *Bras. Ministério da Saúde; Organ. Pan-Americana da Saúde.*, p. 40, 2008, doi: 10.1080/713613191.
- [2] C. Basso, "O impacto dos veículos elétricos plug-in no sistema elétrico de potência,"
 2011.
- [3] M. Yilmaz and P. T. Krein, "Review of charging power levels and infrastructure for plug-in electric and hybrid vehicles," in 2012 IEEE International Electric Vehicle Conference, 2012, pp. 1–8, doi: 10.1109/IEVC.2012.6183208.
- [4] B. H. Ribeiro and T. T. Ferreira, "Veículos elétricos : aspectos básicos, perspectivas e oportunidades," 2010.
- [5] National Academy of Engineering, Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2017 Symposium. Washington, D.C: National Academies Press, 2018.
- [6] W. H. Ganzenmuller and F. A. S. Gonçalves, "Revisão de Sistemas de Carregamento de Veículos Elétricos." Sorocaba - SP, p. 6, 2016.
- [7] C. Botsford and A. Szczepanek, "Fast Charging vs . Slow Charging : Pros and cons for the New Age of Electric Vehicles 20 Years of EV History 1989 to 2009," *EVS24 Int. Batter. Hybrid Fuel Cell Electr. Veh. Symp.*, pp. 1–9, 2009.
- [8] P. Vollet, "How to charge your Electric Vehicle safely and simply," 2013. [Online]. Available: https://blog.se.com/electric-vehicle/2013/04/24/how-to-charge-yourelectric-vehicle-safely-and-simply/.
- [9] D. Williams, "How the Boost PFC Converter Circuit Improves Power Quality."
 [Online]. Available: https://www.allaboutcircuits.com/technical-articles/how-the-boost-pfc-converter-circuit-improves-power-quality/.
- [10] S. F. Tie and C. W. Tan, "A review of energy sources and energy management system in electric vehicles," *Renew. Sustain. Energy Rev.*, vol. 20, pp. 82–102, 2013, doi: 10.1016/j.rser.2012.11.077.

- [11] Karl BA. Mikkelsen, "Design and Evaluation of Hybrid Energy Storage Systems for Electric Powertrains," Univ. Waterloo, p. 103, 2010.
- [12] R. C. Dugan, M. F. Granaghan, S. Santoso, and H. W. Beaty, *Electrical Power Systems Quality*, 2^a. New York: McGraw-Hill, 2002.
- [13] D. W. Hart, *Eletrônica de Potência*. AMGH Editora Ltda., 2012.
- [14] A. N. D. E. E. ANEEL, RESOLUÇÃO NORMATIVA Nº 414, DE 9 DE SETEMBRO DE 2010. Brasil, 2010, p. 293.
- [15] Agência Nacional de Energia Elétrica, Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional – Módulo 8 – Qualidade da Energia Elétrica.
 2021, p. 70.
- [16] L. C. de Freitas, "Conversor CC-CC: Boost." Uberlândia, p. 38.
- [17] N. Libert, "Conversores Buck e Boost." p. 35, 2000.
- [18] L. Turchi, Joel Dalal, Dhaval Wang, Patrick Jenck, Power Factor Correction (PFC) Handbook, 5th ed. Denver, 2014.
- [19] H. C. de Oliveira, "Condicionadores de Ar Inverter: Modelagem Computacional e Curvas de Suportabilidade para Estudos de Pedidos de Ressarcimento por Danos Elétricos," UFU, 2020.
- [20] "Guia de carregamento Nissan Leaf," 2018.
- [21] Nissan, "2018 LEAF First Responder's Guide," 2018.
- [22] WEG, "Transformador Óleo Distribuição Características do ambiente," 2021.